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Kurzreferat 
Die potentiell großen Diskrepanzen in der physiologischen Wirkung von Molekülpaaren, welche 
sich lediglich durch ihre Spiegelbildlichkeit unterscheiden, sind spätestens seit der Vermarktung 
des Moleküles Thalidomid (Contergan®, Grünenthal/Germany) allgemein bekannt geworden. 
Ausgehend von einer Forderung der Amerikanischen Food and Drug Administration (FDA) hat 
in chemischen, pharmazeutischen als auch in biotechnologischen Branchen ein sogenannter 
‘chiral switch’ stattgefunden. Ziel ist die ausschliessliche Formulierung von Produkten, welche 
nur das gewünschte Enantiomer, das aktive Spiegelbild, enthalten. Aufgrund der weitgehenden 
Ähnlichkeit der Moleküle, erweist sich diese Forderung nach wie vor als sehr aufwendig und 
bedarf in der Regel des aufwendigen Screenings geeigneter Methoden für jedes neue Molekül. In 
der vorliegenden Arbeit wurden neuartige, leistungsfähige chirale Aufreinigungsverfahren 
entwickelt, welche methodisch verallgemeinbar sind und einen einfacheren Zugang zu 
enantiomerenreinen Produkten gewährleisten können. 

Die dreigliedrige Arbeit beschäftigt sich im ersten Teil mit der systematischen Analyse von 
komplexen Flüssig-/Fest- und Fest-/Feststoffphasengleichgewichten, dessen Verständnis die 
Grundlage für chirale kristallisationsbasierte Trennungen ist. Hierzu wurde exemplarisch das 
System der chiralen Äpfelsäure, welches partielle Mischbarkeit in der Festphase aufweist, in 
mehreren Lösungsmitteln untersucht. Die experimentell aufwendige Analyse der Vermessung 
von Konoden wurde begleitet mit zeitaufgelösten Röntgenstrukturanalysen der 
korrespondierenden Festphasen. Die so gewonnenen kinetischen Daten und 
thermodynamischen Gleichgewichtsinformationen ermöglichten die Abschätzung des Erfolges 
von kristallisationsbasierten Trennungen für dieses und konzeptionell ähnliche Stoffsysteme. 

Im zweiten Teil der Arbeit wurden für eine größere Anzahl chiraler Stoffsysteme sowohl 
korrelative als auch rein prädiktive thermodynamische Vorhersagemodelle angepasst und 
genutzt, um ausgehend von einem Minimum an experimentellen Daten, relevante Kenngrößen 
von Phasengleichgewichten für das Design chiraler Trennungen zu erhalten. Es zeigte sich, dass 
das vorhandene Potential oftmals die sichere Abschätzung und Auslegung von chiralen 
Trennprozessen ermöglicht. Das entwickelte short-cut und ein detaillierteres Model bieten die 
Möglichkeit der gezielten Variation einer charateristischen thermodynamischen Größe und die 
Grundlage für einen neuen, effektiveren Kristallisationsprozess. Letzterer wurde im folgenden 
Teil der Arbeit an verschiedenen Stoffsystemen evaluiert. 

Das sich anschliessende Kapitel widmet sich der synergetischen Kopplung zweier chiraler 
Trennverfahren. Dabei wurden ausgewählte Verschaltungen von kontinuierlicher 
Gegenstromchromatographie und selektiver Kristallisation für zwei Stoffsysteme zunächst im 
Labormassstab und später im Pilotmassstab theoretisch und experimentell evaluiert. Die 
Optimierung der Kopplungen ergab signifikante Produktivitätsverbesserungen gegenüber den 
Einzelverfahren. Es konnte gezeigt werden, dass die Verschaltung eines im zweiten Teil der 
Arbeit neu entwickelten 2-Schritt-Kristallisationsprozesses mit einem chromatographischen 
Teilschritt und interner Rezyklierung in einer zusätzlich deutlich gesteigerten Produktivität 
resultiert. Diese Prozessvariante erwies sich als robuster und leistungsfähiger im Vergleich zu 
Kopplungsprozessen, welche den Stand der Technik repräsentieren. 
  



Abstract 
The large discrepancies in the physiological impact of a pair of molecules, that can be 
discriminated by its mirror symmetry only, are widely known not only after the 
commercialisation of the molecule Thalidomide (Contergan®, Grünenthal/Germany). Initiated 
by a claim by the American Food and Drug Administration (FDA) a so-called ‘chiral switch’ took 
place in the chemical, pharmaceutical and biotechnological branches. It aims on the exclusive 
formulation of products, which contain only the desired enantiomer, the active mirror image. 
Due to the very similar nature of the molecules, the claim remains very demanding and requires 
usually an extensive screening of suitable methods for each new molecule. Within the thesis in 
hand new powerful chiral purification methods were developed, which allow a certain degree of 
generalisation und the simplified access to single enantiomers.  

Within the first part of the tripartite thesis, a systematic analysis of complex liquid/solid and 
solid/solid phase equilibria was performed, whose understanding provides the foundation for 
chiral separations. Therefore, the system of the chiral malic acid, which exhibits partial solid 
solutions, was investigated exemplarily in different solvents. The experimental determination of 
tie lines was accompanied by time-resolved X-ray powder determination of the corresponding 
solid phases. The obtained data on the prevailing phase equilibria allowed estimating the degree 
of success of crystallisation-based separations of this and conceptionally similar systems. 

The second part of the thesis is concerned with the extension and application of both, correlative 
and entirely predictive thermodynamic models for a number of chiral systems in order to obtain 
relevant key properties of phase equilibria necessary for the design of chiral separations. 
Significant potential was found, which often allowed the estimation and design of chiral 
separation processes based on rather limited experimental data. The developed short-cut model 
and a more detailed model allowed tailoring a characteristic thermodynamic property, which 
was considered the key element for a new and more effective crystallisation process. The latter 
was validated using different chiral systems in the following part of the thesis. 

The last part compares synergetic couplings of chiral separation processes. Hereby, selected 
combinations of continuous multi-column chromatography and selective crystallisation were 
evaluated for two chiral systems on a theoretical and experimental basis and both, on lab-scale 
and on a pilot-plant-scale. Optimisation of selected coupled processes revealed significant 
increases in productivities compared to the individual separation processes. It was shown, that 
the combination of a newly developed 2-step crystallisation process and a chromatographic pre-
enrichment step with internal recycling of fractions leads to additional improvements in 
productivities. This process variation outperforms other coupled processes state-of-the-art in 
terms of robustness and productivity.  
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List of symbols 
Symbols, that are relevant within a single paragraph only, are explained at the corresponding 
section and are not listed here.  

Latin symbols 

Aij Margules model interaction parameter [J mol-1] 
Ai area of molecular cavity of component i [Å2] 
C number of components [-] 
cp heat capacity [J mol-1 K-1] 
cii cohesive energy density [MPa] 
chb cutoff value for hydrogen bonding [e Å2] 
Dax apparent axial dispersion coefficient [m2 s-1 kg-1] 
dmn distance between segment m and n [Å] 
E total energy [J] 
F phase ratio [-] 
fpol polarisability factor [-] 
G Gibbs energy [J mol-1] 
Gij model interaction parameter [J mol-1] 
H enthalpy [J mol-1] 
H Hamiltonian operator [J] 
ħ reduced Planck constant, 1.054571628 10-34 [J s-1] 
Hi Henry coefficient of component i [arbitrary] 
Iij binary interaction parameter [-] 
k Boltzmann constant, 1.380 6504 10-23 [J K-1] 
ki’ capacity factor [-] 
L lengths [m] 
M molecular mass [g mol-1] 
n molar amount [mol] 
p pressure [Pa] 
pi(σ) probability function of component i with respect to σ [-] 
qi normalised molecular volume of component i, 79.53 [Å2] 
qi specific adsorption of component i [g dm-3] 
R ideal gas constant, 8.3174 [J mol-1 K-1] 
Rij resolution [-] 
ri normalised molecular volume, 66.99 [Å3] 
rav effective radius of a surface element [Å] 
rn radius of surface segment n [Å] 
S entropy [J mol-1 K-1]  
T temperature [K] 
t time [s] 
U internal energy [J mol-1] 
u linear velocity [m s-1] 
V volume [m3] 
w width of a Gaussian distribution [arbitrary] 
w weight fraction [-] 
xi molar fraction of component i in the liquid phase [-] 
zi molar fraction of component i in the solid phase [-] 
z lattice coordination number [-] 
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XRPD X-ray powder diffraction (analysis) 
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σm surface charge density of element m [e Å 2] 
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jiτ  energy parameter, interactions between components i and j [J mol-1] 
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θ diffraction angle  [degree] 
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1 Introduction 

1.1 Motivation and scientific background  

Unit operations for the separation of molecules similar in kind are a major field in process 

engineering. Despite great developments in a multitude of disciplines, new challenges remain to 

emerge and the quality and reliability of engineering tools define the pace in the advancement of 

applied chemical processes. Effective and efficient separations are of particular interest for tons-

scale applications to get a hold on both, investment and running costs as well as for high-value 

products, where complex purification steps become necessary. For the latter the early access to 

pure product samples on the one hand and processes with high yields on the other are of vital 

interest. 

Optical isomers are one prominent class of substances, for which short time-to-market demands 

and elevated purity constraints coincide. The number of chiral compounds used in 

agrochemicals, flavours, fragrances and pharmaceuticals has been growing rapidly over the last 

years and analogously the demand for optically pure products. The specific rise in value for the 

target enantiomer upon chiral separation from its antipode is significant for many cases.  

The Nobel price award in 2001 was devoted to studies by William S. Knowles and Ryoji Noyori 

for their work on chirally catalysed hydrogenation reactions and further to the work by K. Barry 

Sharpless for his work on chirally catalysed oxidation reactions 1. It highlights the need and the 

complexity for the probably most elegant technique to produce single enantiomers. Up to now 

the development of enantioselective synthesis routes for active pharmaceutical ingredients 

remains demanding and can outweigh the economical advantages of optically pure enantiomers. 

Intensive research on the advancement of physical separation methods has led in parallel to 

efficient alternatives to asymmetric synthesis. Selective crystallisation processes for 

diastereoisomers can be considered as state-of-the-art, whereas crystallisation processes for the 

isolation of single enantiomers are less frequently found in the industrial and pharmaceutical 

environment. Thermodynamically dominated crystallisation techniques comprise the inherent 

limitation that single enantiomers can be obtained from asymmetric mixtures only. The 

necessary magnitude of asymmetry for chiral separation is substance specific and often impedes 

efficient crystallisations. In summary, robust low-cost chiral separation techniques with a large 

degree of generality are missing.  

This thesis will aim to develop new concepts for chiral separations, that are widely applicable. 

One major topic will be the accelerated model-based assessment of chiral systems on the bases 

of limited or even no available thermodynamic data. The amount and kind of information 

necessary for successful chiral separation will be evaluated. Further, the thesis will utilise the 

developed thermodynamic models in order to tailor solid/liquid equilibria (SLE) such, that new 

separation schemes emerge. The schemes will be evaluated for different operating modes. 

Hereby, the combination of innovative chiral crystallisations with continuous multi-column 

chromatography will be compared in terms of performance and robustness to approaches state-

of-the-art. Theoretical considerations will be corroborated by experimental studies. 
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1.2 Conceptual approach  

The knowledge of specific solid/solid and solid/liquid phase equilibria is an essential pre-

requirement for the design of any crystallisation process. The interactions in both phases 

together define the domains, in which selective crystallisations of target compounds can take 

place. Systems of enantiomers in solution exhibit ternary solid/liquid equilibria (SLE), that share 

important characteristics. The work in hand is divided into 6 chapters. The first two chapters 

will provide an overview of the relevant fundamental context to the characterisation of 

crystalline phases, the estimation of solid/liquid equilibria and methodologies state-of-the-art 

for chiral separations. Chapters III and IV will comprise individual studies on coherent aspects of 

selective crystallisations of enantiomers. The subsequent chapter V rests on the outcome of 

foregoing chapters and will proceed with the application and validation of coupled separation 

schemes. A summary will be given by the concluding chapter. 

 

Figure 1.1 Interlink of chapters. 

The first goal of the thesis in hand will be the identification and validation of methodologies for 

the accelerated estimation of phase diagrams of chiral compounds in the melt and in solution. 

Corresponding comprehensive binary, ternary and quaternary phase equilibria will be derived 

for selected chiral system on the basis of own experimental studies and literature values. 

Hereby, the composition of the so-called ‘eutectic composition’ will gain particular interest.  

The merit of predictive thermodynamic models for solid phase descriptions is rather limited in 

comparison to models for liquid phase interactions. This is unfortunate, since the correct 

representation of SLE is directly connected to the prevailing crystalline phase present in 

solution. For this reason, particular emphasis will be given on the experimental investigation of 

the solid phases of all compounds considered. The role of more complex solid phases on the 

corresponding SLE will be investigated exemplarily for the chiral system of malic acid/acetone. 

A model for its description will be proposed and the impact of the specific solid phase on chiral 

separation will be investigated. Chapter 3 will aim to exemplify strategies how to overcome 

ambiguous phase behaviour through thorough studies on a system, which shows polymorphism 

and the formation of partial solid solutions.  

The second contribution to the SLE of a chiral system are interactions in the liquid phase, which 

will be studied on the basis of a larger number of selected chiral systems and will be 

summarised in chapter 4. A correlative gE-model will be applied and modified to allow the 

estimation of ternary and quaternary SLE on the basis of limited binary data. Further, an a priori 
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concept for the prediction of activity coefficients in the liquid phase will be evaluated and 

combined with the gE-model to allow the estimation of ternary solubility data without recourse 

to experimental measurements. The applied method will make use of databases for the 

identification of (anti-) solvent candidates to achieve the most promising SLE for chiral 

separations.  

In summary, solid phase interactions will be derived entirely from experiments in combination 

with correlative models, while liquid phase interactions will be estimated both through 

correlative and estimation models. 

The second objective of this thesis will be the development and evaluation of new modes of 

chiral crystallisation-based separations. A summary of the conducted studies and results will be 

given in chapter 5. The investigated comprehensive SLE data of the previous chapter 4 will allow 

the identification of key parameters that pose large influences on the composition of the eutectic 

composition of chiral systems in solution. On this basis a new chiral separation process will be 

developed, that will allow to bridge the gap from poorly enriched asymmetric mixtures to 

optically pure products by a 2-step crystallisation process. Changes to the eutectic composition 

through well chosen temperatures and selected solvents will allow the purification of slightly 

asymmetric mixtures. The use of thermodynamic models for the corresponding SLE will pave 

the way for the design of separation processes. The new processes will be validated on an 

experimental basis firstly on model systems. Theoretical mass balances for proposed 

crystallisation schemes will be compared to practical results. Further, cyclic operation modes 

will be evaluated in practise. 

The chiral separation of a racemic mixture of the active pharmaceutical ingredient Bicalutamide 

will be conducted on a pilot-plant–scale by a hybrid process consisting of a pre-enrichment step 

using continuous counter-current chromatography followed by the new 2-step selective 

crystallisation process. Prior to the separation, the optimal interface in terms of highest 

productivity between the two processes will be identified by a dynamic model and will allow the 

identification of advantageous operating modes of this particular process combination. 

In summary, the work will aim to provide new crystallisation-based methodologies for the 

accelerated and rather generic access to single enantiomers originating from racemic mixtures. 

Differently detailed thermodynamic models will allow the rapid assessment of separation tasks 

and simplify the choice for the corresponding most promising separation technique. The concept 

will be illustrated for both model substances and compounds of pharmaceutical relevance by 

means of lab-scale and pilot plant-scale validation experiments.  

All studies presented in this thesis were conducted under supervision of Prof. Andreas Seidel-

Morgenstern in his group of Physical and Chemical Foundations of Process Engineering at the 

Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg. Individual tasks 

of pharmaceutical relevance were supported by and embedded in a bilateral collaboration with 

AstraZeneca. Selected conceptual studies and validation work on the pharmaceutical compound 

Bicalutamide were integrated in the collaborative project ‘INTENANT’ under the umbrella of the 

European framework program 7. 
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For the three fields of investigation, solid phase-, fluid phase analysis and chiral separation, 

selected chiral systems will be studied with different objectives. Table 1.1 summarises the 

systems and assigns the conducted investigations to corresponding chapters to clarify the 

objective of the corresponding studies. 

Table 1.1 Investigated chiral systems classified according to the investigated aspects. 

Type  Compound/solvent Analysis Chiral separation 
technique 

Chapter 
Solid phase Fluid phase 

co
ns

id
er

ed
 a

s 
m

od
el

 c
om

po
un

d
s 

3-Chloromandelic acid 
• water 
• 2-propanol 

- modelling - 
4.2.4 

Undisclosed system,  
denoted UND 

• ethyl acetate  

- modelling - 4.2.2 

Mandelic acid 
• water 
• (S)-ethyl lactate 
• (2R, 3R)-diethyl tartrate 

-  modelling - 4.2.2 

Methionine 
• water 

- modelling crystallisation 4.2.2 
4.3 
4.4.4 
5.1.3.2 

Propranolol·HCL 
• water 
• methanol 

- modelling - 

- 

4.2.2 

Threonine 
• water 

modelling modelling - 4.1.1 

Tröger’s Base 
• ethanol 

- modelling - 4.2.2 

co
m

po
un

d
s 

of
 p

ha
rm

ac
eu

ti
ca

l r
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2 Theoretical foundations 

The fundamental context necessary to understand the separation and screening techniques 

presented in the later chapters will be provided in the following. A characteristic property of a 

group of compounds – chirality - and its significance for human life and consequently valuable 

products will be highlighted. The role of chiral crystalline phases and the equilibria with and 

within liquid phases will be explained in appropriate depth. The introduction of relevant 

correlative and a priori models for the description and prediction of solid/liquid equilibria will 

be given followed by an outline of crystallisation-based separation techniques discriminating 

among chiral species. 

Further, a brief outline of techniques and theories for the separation of chiral compounds by 

means of continuous multi-column preparative chromatography is given. 

 

2.1 Systems of enantiomers  

When Pasteur recognised in 1847, that an identical substance can appear in more than a single 

crystalline form and that these forms, dissolved separately, exhibit different properties, the 

phenomenon of chirality was described for the first time 2. His discovery, that the two forms can 

interact differently with living organisms paved the way for a new discipline: stereo-chemistry. 

 

2.1.1 Chirality 

The concept of Chirality1 is explained best by the geometric property that is responsible for the 

non-identity of an object with its mirror image. A hand, a snail shell or a key are examples, which 

lack inverse symmetry elements, that is, a centre, a plane and an improper axis of symmetry. A 

bar or a ball is considered as achiral, since at least one inverse symmetry element and therefore 

superimposable mirror images exist.  

In chemistry, chirality is predominantly caused by the presence of an asymmetric carbon atom-a 

chiral centre-although exceptions are known. Chiral compounds can be divided into 

constitutional (structural) isomers and stereoisomers. They latter are also called spatial isomers 

and are identical in atomic constitution and bonding, but differ in the three-dimensional 

arrangement of the atoms. Stereoisomerism comprises also geometric (cis/trans) isomers and 

diastereoisomers. The latter belong to a class of isomers with more than one chiral centre that 

are not mirror images of one another. According to the number of chiral centres n within the 

molecular structure, n2  stereoisomers are possible. Diastereoisomers and geometric isomers 

are both, chemically distinct and pharmacologically different and are generally readily separated 

_____________________________ 
1
 greek: χειρ (cheir), hand 
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without chiral techniques. In contrast, pairs of stereoisomers, whose individual isomers are 

mirror-images, have essentially identical physical (except for optical rotatory) and chemical 

properties (except in a chiral environment). The isomers, belonging to this class, are also called 

enantiomers or optical isomers.  

Figure 2.1 compiles exemplarily the relationship between diastereoisomers and enantiomers of 

the amino acid Threonine. Pairs of isomers with identical substituents on the same side of the 

chiral centres hold the prefix threo, while isomers with substituents opposing each other are 

erythro-compounds. The latter is called meso, if the isomers coincide as e. g. for (2S,3R)- and 

(2R,3S)-tartaric acid. Erythro-Threonine is usually substituted by allo-Threonine. Two pairs of 

the 4 Threonine isomers exhibit mirror symmetry with each other, while all other pairs are not 

enantiomers.  

L-Threonine (2S,3R) 

↔ 
mirror 

symmetry 

D-Threonine (2R,3S) 

  

↕ no mirror symmetry  no mirror symmetry ↕ 

 

mirror 
symmetry 

↔ 
 

 

D-allo-Threonine (2R,3R) L-allo-Threonine (2S,3S) 

Figure 2.1 Fischer projections of the 4 stereoisomers of Threonine. Chiral centres are denoted by asterisks. 
Symmetric and non-symmetric relations of the isomers are indicated by arrows. 

Basically three classifications for enantiomers are equally often found in the scientific literature. 

The enantiomer, which turns the plane of a beam of polarised light in positive direction upon 

passing through a sample containing this enantiomer, is denoted (+) and the antipode (-). The 

classical projection method by Fischer allows a classification according to L- (lat. laevus ”left“) 

and D- (lat. dexter ”right“) enantiomers 3. The letters are frequently set to small caps. Finally, the 

IUPAC recommends the use of CIP conventions (by Cahn, Ingold and Prelog 4, 5), which classifies 

the enantiomers by the letters (R)- for ”right“ (lat. rectus ) and (S)- for ”left“ (lat. sinister ) 

respectively, according to the direction of chemical groups of increasing priority at the chiral 

centres. The latter classification will be used throughout this thesis.  

Equimolar mixtures of two enantiomers are called a racemate or a racemic mixture of 

enantiomers. The expression must not be mixed up with racemic compounds, as will be 

explained in the following. The term most frequently used for a separation of a racemate is 

resolution. In case of incomplete separations the term partially resolved racemate is used.  
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2.1.2 Production of single enantiomers 

The number of sold molecules with one or more chiral centres is huge and continuously rising 6-

8. A survey from 2004 lists 9 out of the top 10 selling drugs to contain chiral active ingredients 9. 

In 2008 it was 8 and in 2009 still 7 entries in the list were chiral 10. The majority of the chiral 

drugs within the 80 top-selling drugs in 2008 contained at least one single chiral centre. The 

existence of chirality does not necessarily imply enantiopure products, but the American Food 

and Drug Administration (FDA) arrogated in 1992 with large success the so-called ‘chiral 

switch’, the development of new drugs composed of single enantiomers, or alternatively, the 

proof of harmlessness of the antagonist, which can become elaborate 11. Already Pasteur 

followed correctly, that biological systems exhibit a distinct ability to discriminate between two 

forms of the same substance. Different scenarios are known, that motivate the production of 

single enantiomers: 

• both enantiomers are effective, but one enantiomer diminishes the pharmaceutical effect 

of the other (Esomeprazol , Nexium®, list entry n°2); 

• while one enantiomer exhibits a desired physiological effect, the antagonist acts toxic 

(Thalidomide, Contergan®); 

• while one enantiomer exhibits a desired physiological effect, the antagonist is ineffective 

(Bicalutamide, Casodex®). 

 
Figure 2.2 Fraction of chiral (55%) and non-chiral drugs (34%) in 2008 (11% are macromolecules and entries of 
unknown chirality’). 

Single enantiomers are nowadays of particular importance in the production of pharmaceuticals, 

agrochemicals and also cosmetics 12. The relevance of single enantiomers in the pharmaceutical 

industry was recently summarised by Francotte et al. 13. Numerous approaches are known for 

the production of single enantiomers (Figure 2.3). The most elegant way to enantiopure 

substances is the asymmetric synthesis. The key developments within this field of research 

(Noble price in chemistry W. S. Knowles, R. Noyori and K. B. Sharpless in 2001 1) utilise 

specialised catalysts. However, it is unlikely that generic approaches will be available soon, that 

will allow for the direct synthesis of single enantiomers for every compound. This is partly due 

to the manifold and diverse nature of pharmaceutical compounds. Secondly, already available 

asymmetric synthesis are often not competitive and symmetric classical synthesis outperform 

these, provided that subsequent efficient physical separation methods are available.  
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Another option, which is often considered, starts at the so

comprises cheap fragments or ‘building blocks’ of molecules, that show already the desired 

chirality. These molecules are used as ini

here, that the present and wanted isomerism is preserved throughout upcoming synthesis steps.

Figure 2.3 Some sources of single enantiomers

Finally, there is a large field of classical synthesis, where either racemic or slightly asymmetric 

mixtures of the desired compounds are produced. 

separation of mixtures by specific separation methods. 

methods, where specific chiral selectors are used (often in immobilised form) and into the group 

of crystallisation-based methods, where the crystals itself exhibits the required chiral

The demand for the chiral selectivity

enantiomers, which are identical

specific compound. Several techniques have proven to allow the separation of mixtures. Besides 

the most frequently applied techniques of chiral chromatography and diastereomeric salt 

resolution, other methods as enzyme cataly

chiral membranes and specific crystallisation techniques as Ostwald grinding and preferenti

crystallisation 14, 15 are studied more intensively. 

remains limited to the minority of chiral systems, the so

and the determination of kinetic and thermodynamic data required to setup effective 

preferential crystallisation processes is rather demanding. Further, 

within limits only and more generic tools 
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It is convenient to assign racemates according to the crystal lattice formed to one of three main 

groups. The crystalline racemate can form a mechanical mixture of crystals of the two pure 
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here, that the present and wanted isomerism is preserved throughout upcoming synthesis steps.

of single enantiomers 

here is a large field of classical synthesis, where either racemic or slightly asymmetric 

compounds are produced. This approach entails the subsequent 

separation of mixtures by specific separation methods. The latter can be dived in

methods, where specific chiral selectors are used (often in immobilised form) and into the group 
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identical. Thus, the choice for separation methods is often limited for a 

specific compound. Several techniques have proven to allow the separation of mixtures. Besides 

tly applied techniques of chiral chromatography and diastereomeric salt 

enzyme catalysed reactions, molecular imprinted polymers (MIP), 

chiral membranes and specific crystallisation techniques as Ostwald grinding and preferenti

are studied more intensively. However, the applicability of Ostwald grinding 

remains limited to the minority of chiral systems, the so-called ‘conglomerate

and the determination of kinetic and thermodynamic data required to setup effective 

processes is rather demanding. Further, generalisation is possible 

and more generic tools appear to be largely missing. 
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enantiomers next to each other. Such conglomerates are estimated to be present in the case of 

less than 10 % of all known systems of enantiomers 16. A characteristic property of 

conglomerates is the lower melting point compared to the pure enantiomer. For achiral systems, 

like diastereoisomers and others it is very common to crystallise as conglomerates. A prominent 

example from everyday life in the winter season is the system water/NaCl. Already small 

quantities of salt lower the melting point in the mixture and prevent recrystallisation to a certain 

extend. 

The majority of racemates crystallises as racemic compounds in which both enantiomers are 

situated in crystals of well ordered arrangements. The homogenous solid phase features largely 

different properties compared to crystals of the pure enantiomer. E. g. the heats and 

temperatures of fusion of racemates and therefore their solubility can deviate largely from the 

single enantiomer, depending on the stability of the racemic compound. 

Less than 1 % of chiral racemates is known to form the third type of crystals, the so called 

pseudoracemates or solid solutions 16. Within these crystals both enantiomers are coexisting in an 

unordered manner; the term solid solutions comprises also mixtures of non-equimolar 

proportion of the enantiomers. Hereby changes in thermodynamic properties can be positive, 

negative and negligible compared to the single enantiomer. 

Polymorphs and solvates 

“…every compound has different polymorphic forms and that, in general, the number of forms 

known for a given compound is proportional to the time and money spent in research on the 

compound”, is an often cited phrase originally provocatively written by Walter McCrone in 1965 
17. He defined polymorphism as the ability of a substance to exist as two or more crystalline 

phases, that have different arrangements and/or conformations of the molecules in the crystal 

lattice 18. The probably most widely known example of polymorphism is the element carbon, 

which can exist in the form of graphite (hexagonal), diamond (cubic) or as fullerenes (C60 and 

C70). The identification and description of modifications in the solid phase can be rather 

demanding. A previously uncovered conformational isomer of the active pharmaceutical 

ingredient (API) Ritonavir, which was not therapeutically effective, entered production lines and 

halted production processes at Abbott Laboratories in 1998 19. Pharmaceutical compounds are 

increasingly well studied with particular focus on polymorphism due to the current patent 

situation. Many drugs receive regulatory approval for only a single crystal form or polymorph. 

Atorvastatin calcium was the world-best selling medicine in 2009. Consequently more than 70 

polymorphic forms and solvates are patented 20. In addition, API are often chiral and 

polymorphism can appear separately for the racemic compound and the pure enantiomer. 

The formation of solvates implies the inclusion of foreign solvent molecules into the crystal 

lattice. While this phenomenon is certainly solvent dependent and can be controlled more easily, 

often solvates with water form hydrates and hereby the ambient humidity can be sufficient to 

induce solvate formation to a crystalline sample.  

Different polymorphs and solvates exhibit significantly different physicochemical properties, 

owing to differences in crystal packing or surface. Examples include the heat and temperature of 

fusion and therefore solubility, dissolution rate and stability 21. Thus, the formation of additional 

metastable phases can act both, beneficial and adverse to the formulation of a product. 



10  2 Theoretical foundations 
 

Solid phase stability  

A first phase analysis is often made on the basis of Gibb’s phase rule. For a system involving C 

components and φ  phases, the degree of freedom of the system υ  is limited by 2φCυ +−= . 

The assumption of constant pressure for condensed systems leads further to 1φCυ +−=  16. 

Under these conditions, a system of C=1 component can possess φ=2 different crystalline 

phases simultaneously only at a single temperature, since then it is invariant with 0υ = . The 

stability of a polymorphic phase is limited to a certain thermodynamic state. Hereby, it is 

generally discriminated among Enantiotropic and Monotropic systems. Figure 2.4 considers the 

temperature influence for two modifications I and II of a molecular crystal at constant pressure, 

with I being the more stable phase at 0 K. The ordinate represents qualitatively Gibbs energy 

and Enthalpy, which are related by Eq. (2.1) and coincide for negligible temperatures.  

STHTpG ⋅−=),(
 

(2.1) 

Enantiotropic systems are characterised by a transition temperature tT  below the melting 

temperature f

iT of the higher melting phase. A dimorphic enantiotropic system is split by tT  

into a low temperature domain in which phase I exhibits superior thermodynamic stability 

(lower Gibbs energy) with respect to phase II. Exceeding the temperature threshold tT
 
and 

disregarding kinetic limitations, phase II will form and prevail with lower Gibbs energy. It 

undergoes solid-liquid transformation (melting) and is substituted by the liquid phase through a 

further rise in temperature. The phase transformations are reflected in the corresponding 

enthalpies. The change in Gibbs energy at the transition temperature is usually zero, since both 

solid phases coexist in equilibrium. The thermodynamic properties as the solubilities in any 

solvent and the vapour pressure of both forms are identical at this temperature. Taking into 

account that the variation in entropy is positive upon heating, the resulting change in enthalpy 
tH∆  according to Eq. (2.1) must be positive also and the solid phase transformation is 

endothermic 22. Additionally, the latent energy representing the heat of fusion f

IH∆  of phase I 

and f

IIH∆  of phase II can be derived from Figure 2.4a. 

  
Figure 2.4 Schematic representation of two dimorphic systems. Within the enantiotropic system in a) phase I is 
stable below the transition temperature T

t
. Phase II becomes the stable phase above this temperature up to 

the melting temperature of this phase. The dimorphic monotropic system in b) reveals a stable phase I up to 
the melting temperature of this phase. The Gibbs energy of phase II does not intersect with the Gibbs energy of 
phase I in the range corresponding to the solid state.  
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Figure 2.5 Melting point phase diagrams for 
a) conglomerate type, b) compound-forming type and 
c) solid solution type of chiral systems.  

Monotropic systems do not undergo a solid/solid phase transformation through temperature 

changes due to thermodynamic reasons. Transformations are virtually possible, but can not pose 

thermodynamically stable phases ( tv
T , Figure 2.4b). The fact, that those systems become 

monotropic systems above a virtual tvT , unfolds the problem of a realistic identification of the 

type of systems. It is generally possible that a system possesses a tT  below measureable melting 

points, accordingly the phases are enantiotrophically related around this temperature and 

monotrophically related at ambient temperature 18.  

The proper identification of the relation of solid phases and their transformations is crucial for 

the description of the SLE and for further process design. 

 

2.2.2 Melting point phase diagrams 

A measureable thermodynamic property 

of crystalline compounds is the 

temperature Tfi at which fusion takes 

place. It can be determined for a large 

number of compounds directly through 

calorimetric measurements and provides 

fundamental information on the 

underlying SLE of enantiomers.  

Roozeboom published a comprehensive 

work in 1899 aiming to classify binary 

mixtures on the basis of measureable 

properties of fusion 23. Among the 

multitude of possible SLE, three 

fundamental types are most prominent for 

enantiomers (Figure 2.5). The 

arrangement of the liquidus, solidus and 

solvus lines determines the phase 

boundaries and the domains in which 

different phase equilibria exist.  

In the simplest case, only pure crystals of 

the (R)- and the (S)-enantiomer are found 

in the solid phase. The increasing slope of 

the liquidus line towards the centre of the 

diagram at eufT ,  and eu
Sx )(  is defined solely 

by the properties of the crystals (Figure 

2.5a).  

The most frequently found binary phase 

diagram (compare chapter 2.1.2) is 

governed by the formation of a crystalline 

racemic compound. The resulting 

additional liquidus line peaks at the 
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dystectic melting point at f

SRT ),(  where the (reversible) dissociation of the racemic compound 

into the two constituent enantiomers takes place (Figure 2.5b). The liquidus line of the racemic 

compound intersects the liquidus lines of the pure enantiomers twice at 
21eu

Sx /,
)(  and eufT , . 

Another important property, that can be derived through the determination of melting point 

phase diagrams, is denoted by the dashed lines in Figure 2.5a/b. The lines define fractions, for 

which the above mentioned solid phases do not crystallise in pure form, but exhibit partial 

miscibility with other molecules. Hereby, limited amounts of the counter enantiomer are 

incorporated into the crystal lattice of a single enantiomer and/or the crystal lattice of the 

racemic compound looses its 1:1 restriction and incorporates a single enantiomer in excess. If 

the solid phase is fully miscible, solid solutions form over the whole range of compositions and 

the liquidus line yields a straight line as exemplified at idf

RT ,

)(  and idf

ST ,

)( , respectively, in Figure 

2.5c. Phase boundaries can be attributed directly to the solid phases present and for ideal 

systems also their slope can be derived accurately from the heat and temperature of fusion. In 

reality, the curvatures of the liquidus and solidus lines are influenced by specific interactions 

among the constituents in the melt and in the solid phase and their courses can deviate 

significantly from the courses according to the assumption of ideal solutions. Two additional 

liquidus lines through max,

)(

f

RT  and min,

)(

f

RT , respectively, are given by Figure 2.5c with possible 

negative and positive deviations from the ideal case. In practice, a cross-check, whether 

experimental melting points coincide with ideal liquidus lines, is an appropriate method to 

evaluate the complexity of a given system 16.  

A reliable and accurate experimental method for the determination of melting points and heats 

of fusion is given by differential scanning calorimetry (DSC) devices. This technique allows to 

apply temperature profiles to solid samples and to track changes in the differential heat flow 

dq/dT with respect to a reference. Figure 2.6 illustrates typical heat flow profiles obtained from 

subsequent heating of four solid samples i)-iv) with different ratios of enantiomers.  

T

dq/dT

i) ii) iii) iv)

(S)

T

iv)iii) i)iib)iia)

(R)

T

t
 

Figure 2.6 Derivation of liquidus curves from the interpretation of heat flow curves of discrete DSC 

measurements. Beginning with a sample of the pure (S)-enantiomer (i)) a single sharp melting peak indicating 

the (high) fusion temperature of the enantiomer is recorded. From initial compositions, where upon melting 

solution equilibria between a pure component and a mixture are passed through (e. g. iia),iib)), a narrow and a 

broad peak can be measured. These endothermic events can be assigned points on the liquidus line.  

The temperature and shape of the peaks provides information on the (here endothermic) phase 

transformations, which can be interpreted to estimate the melting point phase diagram. Further 

the heat of fusion of the pure enantiomer i) and the racemic compound iii) can be obtained as a 

function of the areas covered by the melting peaks.  
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General care must be taken in the interpretation of results, since the curves can be ambiguous 

(Figure 2.6, compositions iia/b)) and it is possible that identical melting point curves originate 

from completely different solid phases. 

A specific advantage of DSC measurements, besides the identification of solid/liquid 

transformations, is that solid/solid transformations (i. e. between polymorphic modifications) 

can be quantitatively described. Also metastable phases and related transformations can be 

determined in principle. 

 

2.2.3 Solubility diagrams 

The general ability of a chiral substance to dissolve in a solvent is a crucial property not only for 

most separation processes, but also for the formulation of products and the intake and dosing of 

pharmaceutically active compounds. It can vary 

significantly for different solid phase 

modifications of the same compound as discussed 

e. g. for the case of Ritonavir 19. Four solubility 

curves for the same molecule are plotted in Figure 

2.7. Metastable phases, denoted II, often melt at a 

lower temperature, which in turn corresponds to 

higher solubilities. If a racemate forms a racemic 

compound, its solubility can deviate in positive or 

negative direction from the solubility of the single 

enantiomer. In contrast, a racemate will always 

exhibit higher solubility in conglomerate-forming 

systems. The situation can become more complex, if the solubility curves of two modifications 

do not run in parallel as in Figure 2.7 (monotrophically related) but intersect at a certain 

temperature (enantiotrophically related). Thus, even for ideal solutions the determination and 

representation of SLE can be a difficult task.  

 

Realistic solubility 

For the description of real systems, interactions in the liquid phase can cause changes in 

solubility curves and must be taken into account. While both enantiomers (R) and (S) have 

identical physical properties and therefore solubilities, the simultaneous presence of both 

enantiomers in solution can alter the solubility curve of a single enantiomer. This can be 

explained best by a plot of a ternary phase diagram involving a pair of enantiomers and a single 

solvent. It is convenient to explain at first the derivation of this type of diagram for ideal 

systems. Therefore the already introduced binary subsystems i) for the (R)-enantiomer and ii) 

for the (S)-enantiomer in an arbitrary solvent (Sol) as well as the binary phase diagram of the 

melt of enantiomers iii) are sketched in a linked form in Figure 2.8. The subsystems i) and ii) are 

in fact identical in the case of enantiomers. The composition of solutions in i) and ii) at three 

independent temperatures T1-3 can be transferred onto the outer boundaries of the ternary 

(shaded) phase diagram. The solubility lines of both enantiomers originate here and intersect in 

the middle of the diagram with the dashed ‘eutectic line’, which can be derived from the 

Figure 2.7 Schematic solubility curves for two 
modifications I/II of a single enantiomer and two 
modifications I/II of a racemic compound of an 
identical substance in the same single solvent 



14  2 Theoretical foundations 
 

intersection of the liquidus lines in subsystem iii) 24. The solubility of a single enantiomer is not 

influenced by the presence of the other in ideal solutions and thus, the overall solubility 

increases linearly by addition of the counter enantiomer until its value doubles itself for a 

racemate in solution. This ideal case is described by the ‘double-solubility-rule’ formulated by 

Meyerhoffer 16, 25, 26. Accordingly, all solubility isotherms appear parallel to the sides of the 

triangle of the ternary phase diagram. 

 

Figure 2.8 Compilation of a ternary phase diagram of a simple conglomerate-forming system from three binary 
subsystems. Ideal solubility isotherms are drawn for three temperatures. 

A typical deviation from ideal solubility is exemplified by Figure 2.9. The dashed lines in the 

subsystems i) and ii) respectively, are altered with respect to the ideal (solid line) solubility. 

Consequently, the dissolved fraction of an enantiomer at the same temperature T1 is diminished 

at the binary solubility curve and the origin of the ternary solubility isotherm at the outer side of 

the ternary phase diagram is shifted upwards.  

 

Figure 2.9 Non-ideal solubilities of the (R)- and the (S)-enantiomer in the corresponding binary subsystems and 
the impact of non-ideality on ternary solubility isotherms.  
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It is worth to emphasise, that the deviation from ideal solution in both subsystems i) and ii) is 

assumed identical and possible non-ideal heterochiral interactions (compare subsystem iii)) are 

not considered in this figure. However, ternary solubility isotherms deviate now from a straight 

line and the ‘double solubility rule’ fails in this case. Thus, an exact description of ternary 

solubility isotherms can not be derived directly from the binary subsystems, but requires either 

experimental determined ternary data or suitable theoretical models with predictive 

capabilities.  

Solubility phase diagrams involving compound formation 

Analogously to the conglomerate-forming systems, ternary phase diagram involving compound 

formation can be derived from binary subsystems. Hereby, the second subsystem ii) for a second 

enantiomer in solution is substituted by the binary solubility diagram of the racemic compound 

in solution (Figure 2.10a).  

 

Figure 2.10 Ternary phase diagram of a compound-forming system and the corresponding binary subsystems. 

The compiled figure yields one half of the mirror-symmetrical ternary phase diagram. The shape 

of the whole solubility isotherm and four corresponding and important tie lines are given by 

Figure 2.10b. They separate 6 different mono-, bi- and triphasic domains, whose spatial 

arrangement is relevant for the design of separation processes. 

 

Solubility phase diagrams involving more than one solvent 

The introduced graphical representations of chiral phase equilibria may here appear still slightly 

peculiar; however, important conclusions with respect to chiral separations can be drawn 

directly from those figures. If binary mixtures of solvents need to be considered, a graphical 

modification can be achieved in a way straightforward as given by Figure 2.11. A second solvent 

or antisolvent (Sol2) contributes exemplarily to a given SLE. As in all figures above, the fractions 

of the constituents sum up to unity in the pyramidal quaternary representation a). A variation of 

this diagram in b) is often simpler to understand. Hereby, the axis representing the second 

solvent is placed rectangular above the plane of the ternary phase diagram of enantiomers in the 

first solvent. Its scale can be adjusted independently from the three others. The quaternary 

phase equilibria considered in this work are illustrated by the type given in Figure 2.11b).  



16  2 Theoretical foundations 
 

a)  
b)  

Figure 2.11 Methods for the graphical representation of quaternary phase equilibria. 

For multicomponent mixtures exceeding four components, it is suitable to keep the ratio of (at 

least) two constituents constant and place this fixed composition in a ‘corner’ of one of the 

diagrams above in order to simplify the graphical interpretation of SLE. 

Often, the operating range for a cooling crystallisation spans over a wide temperature range or a 

second solvent is added in significant amounts for antisolvent crystallisations. Consequently, the 

experimental determination of a multitude of data points for an adequate description of the 

relevant SLE can become time-intensive and theoretical models with predictive capabilities are 

in high demand. A suitable model for the rapid description of ideal SLE and more comprehensive 

approaches will be explained in the following.  

 

2.3 Thermodynamic description of solid/liquid equilibria 

Thermodynamic equilibrium 

The description of homogeneous and coexisting heterogenous phases demands for the outmost 

cases the fulfilment of fundamental criteria of thermodynamic equilibria. Herein, a pure 

component or a mixture is considered to be enclosed in a system, which has reached its specific 

minimum in energy. By definition, thermodynamic equilibrium is obtained, if the internal 

energy, denoted by U, can not be lowered upon changes in the natural variables. This applies to a 

single phase to coexisting phases of the same state of matter and to SLE. The equilibrium state 

implies equal temperatures χT , equal pressures χp  and identical chemical potentials χ
iµ  of all 

components i in all phases χ .  

χIII TTT === ...  
(2.2) 

χIII ppp === ...  
(2.3) 

χ
i

II
i

I
i µµµ === ...  

(2.4) 

The binary melt of enantiomers and the SLE of enantiomers in a single solvent or in a solvent 

mixture are considered as the most relevant phase equilibria involving enantiomers. The 

following brief descriptions introduce the main types.  
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Solubility of simple compounds 

The mathematical derivation of solubility from fundamental thermodynamics requires 

introducing several formal quantities. The fugacity2 if  describes isothermal changes of every 

single component i at every state of matter. It is related to the chemical potential by Eq. (2.5) 

using the same reference state, denoted 0, with respect to temperature. The relation between 

fugacity and chemical potential is of conceptual aid in performing the translation from 

thermodynamic to physical (measureable) variables.

 

 

0
i

i0
iii

f

f
RTµµµ ln∆ ⋅=−=  

(2.5) 

The term thermodynamic equilibrium implies for SLE, that besides identical temperatures, 

pressures and chemical potentials in all phases, another property, the fugacity of the pure (solid) 

solute i equals the fugacity of the solute in solution 27. 

l
i

s
i ff =  

(2.6) 

Another representation of the Gibbs energy G, besides Eq. (2.1), utilises the internal energy U.  

STVpUpTG ⋅−⋅+=),(

 

(2.7) ∑+⋅−⋅=
i

iinµVpSTU  (2.8) 

Consideration of the definition of U and combination of Eq. (2.7) and Eq. (2.8) yields Eq. (2.9). It 

is convenient to related the Gibbs energy to e. g. molar quantities and to work with the specific 

Gibbs energy gi as will be demonstrated for the thermodynamic cycle in the following. 

Differences in the Gibbs energy between two thermodynamic states are denoted herein a delta 

symbol ∆ (Eq. (2.10)).  

∑=
i

iinµpTG ),(  (2.9) ii

i

i
µg

n

G
∆∆

∆
==  (2.10) 

In thermodynamics it is often avoided (or impossible) to derive an absolute value for the 

reference state 0
iµ . Instead, the reference state is chosen such, that either its quantity drops 

from the equation or the difference among two states is obtained. Here, the direct description of 

the solute in solution is substituted by a three step thermodynamic cycle in Figure 2.12. The 

reference state is defined by the pure, subcooled solid at temperature T under its own saturation 

pressure (a)). The solute is heated from the temperature T, that represents ambient or solution 

temperature level, up to its triple point temperature (b)). The latent heat to effect fusion is 

added and the solute melts (c)). Afterwards the melt is cooled down again to the solution 

temperature without a change in the state of matter (d)).  

Lewis called the ratio of the actual fugacity and the fugacity of the reference state the activity, 

designated by α 28. The activity defines how ‘active’ a certain fraction xi in solution is relative to 

its standard state. Multiplication of l
ix  by an activity coefficient for the liquid phase 

_____________________________ 
2 lat.: fugare, fleetness 



18  2 Theoretical foundations 
 

),( l
i

l
i

l
i xTγγ =  yields iα . Consequently, the real fugacity of a dissolved component can be related 

to its standard state by Eq. (2.11). Here, the solubility of the solvent in the solute is assumed 

negligible. 

 
Figure 2.12 Thermodynamic cycle a)→b) expressing the dissolution of a solute by passing through two states of 
matter and two temperature domains. 

0l
ii

0l
i

l
i

l
i

s
i fαfxγf ,, ==  

(2.11) 

It becomes visible, that the fugacities depend on the properties of the solute only and are 

independent on the solvent used.  

Combining the Eqs. (2.1), (2.5) and (2.10) allows a quantitative description of the 

thermodynamic pathway a)→b)→c)→d) within Figure 2.12 through changes in Gibbs energy, 

which can be expressed by the corresponding measureable variations in enthalpy and entropy 

according to the Eq. (2.12). The index i is omitted in the following for simplicity.  

))))
,
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∆∆ln∆
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f
RTg

→→→

−=⋅=  
(2.12) 

Changes in enthalpy can be determined from the heat of fusion at the triple point temperature 
tpTf

h
,

∆  and the difference in the heat capacities pc∆  between the solid and the liquid state of 

matter, respectively. In practise, the difference is often constant for a larger temperature range 
16. The change in entropy can be derived analogously, using the heat of fusion at the triple point.  
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With reference to Eq. (2.1) and Eq. (2.12), the three terms above can be summarised into Eq. 

(2.16) and yield an expression for the fugacity and therefore solubility of a solute on the basis of 

measureable caloric properties, i. e. the heat and temperature of fusion.  
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(2.16) 

Several simplifying assumptions are usually considered. The triple point temperature is often 

replaced by the melting temperature. The heat of fusion is also taken at this temperature. The 

first term on the right-hand side is the dominant one and the remaining two terms possess 

opposite signs and tend to cancel out each other. They drop off completely, if experimental 

measurements are made close to the triple point, which is possible. Thus, often only the first 

term is considered. Other assumptions in the derivation of the equation imply constant or 

negligible effects through pressure changes. Of course, no solid/solid transformations are 

allowed to occur in the considered temperature range. In its most simple representation, for 

1γ l = , the equation can be written as follows.  

( ) 







−=

T

1

T

1

R

h
x

f

f

l
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If applied for SLE estimations Eq. (2.17) is called the equation by ‘Schröder and van-Laar’, while 

its general form bears resemblance to the equations by van’t Hoff and Clausius-Clapeyron. Those 

equations relate changes in temperature to changes in the equilibrium constant using the 

standard enthalpy change or relate the saturation pressure to the saturation temperature using 

the enthalpy of phase change, respectively. The expressions by Schröder and van-Laar and 

Clausius-Clapeyron both, manage to link intensive quantities to extensive quantities, which is 

often in demand in thermodynamic applications. Further, they have in common, that they are 

entirely based on pure component properties, which simplifies their use, but often implies 

limitations in accuracy in practical applications.  

The Apelblatt equation is one example for an alternative estimation of solubilities by a (semi-) 

empirical expression 29, 30. It shares similarities with the (extended) Antoine equation for the 

description of vapour/liquid equilibria. 

( ) ( )Tc
T

b
axl lnln ⋅++=  

(2.18) 

The analogies to Eq. (2.16) are evident; the three terms with caloric values are replaced by free 

variables, to be found through correlation to experimental data. Since no activities are 

considered, all deviations from ideal solubility are lumped into the three variables, which hold 

no physical relevance. Of course, extrapolations of SLE data to other temperatures and 

concentrations is not admissible, if non-ideal SLE behaviour cannot be excluded. 

Solubility of dissociating compounds 

As announced in the very first section, most chiral systems form a compound in the solid phase, 

which dissociates fully upon dissolution. The corresponding balance can be described by a 
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simple schema as given in Eq. (2.19) and analogously by the chemical potentials of the 

constituents in Eq. (2.20). 

lls SRSR )()(),( +↔  (2.19) s
SRSR
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(2.20) 

Prigogine and Defay 31 considered the physical dissociation of the solid compound, denoted 

(R,S), into the enantiomers (R),(S) in the liquid phase as a chemical reaction. The extent of 

dissociation is represented here by the progress variable ζ  and the stoichiometric coefficients 

iν  give the amount of consumed or produced molecules relative to their overall amounts ni. 

ζd

dn
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i
i =  

(2.21) 

The total differential of the Gibbs energy depends on the quantities T, p and ni . 
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Analogously, this total differential can be derived by substitution of ni by the progress variable ζ  

as in Eq. (2.23). 
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For conditions of constant temperature and pressure, the total differential of the partial 

derivative of the Gibbs energy with respect to the progress variable can be derived. The 

expression is numerically identical to the total differential of the so-called affinity A, which was 

originally used for the description of reactions by Prigogine and Defay 31. It is beneficial to utilise 

this quantity instead of extensive quantities, whenever a link between a set of stoichiometric 

chemical reactions and the underlying thermodynamics is needed. Thus, for a single reaction, 

the affinity A is defined as the negative partial derivative of the Gibbs energy with respect to the 

progress variable ζ  at conditions of constant pressure and temperature.  
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(2.26) 

The affinity becomes zero in thermodynamic equilibrium and here the chemical potential of the 

solid racemic compound equals the sum of the chemical potentials of the enantiomers in the 

liquid phase. The stoichiometric coefficients iν  for each enantiomer and the racemic compound 

are usually set to unity, since the racemic compound is considered to consist of equimolar 

amounts of the two enantiomers. Very few examples, given in the literature, prove that other 

stoichiometric coefficients can become principally reasonable, too. Tabora et al. identified a 1:3 
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compound of (R)- and (S)-3-hydroxy-4-(2,4,5-trifluorophenyl) butanoic acid and yielded good 

results with adjusted stoichiometric coefficients 32. However, specific crystal lattices must exist, 

that allow besides the formation of a racemic compound at least a second crystal lattice, with 

another ratio of enantiomers. Such cases were rarely observed.  

The fraction of one enantiomer, e. g. the (R)-enantiomer, can be chosen as a suitable progress 

variable l
Rxζ )(=  for the description of dissociation according to Eq. (2.20). Consequently, the 

second derivative of the Gibbs energy with respect to the quantity l
Rx )(  provides Eq. (2.27).  
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The chemical potential of the stoichiometric compound has dropped off from the summation, 

leaving two partial derivatives. Now, a Gibbs-Duhem equation for binary systems (Eq. (2.28)) 

can be used to remove another partial derivative and Eq. (2.29) is obtained. Insertion into 

Eq. (2.26) and assumption of negligible pressure differences provides Eq. (2.30).  
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 (2.30)  

The Gibbs-Helmholtz equation as given by Eq. (2.33) relates changes to the G/T ratio to the 

enthalpy of dissociation hdiss. Provided, the latter is only weakly affected by temperature, 

Eq. (2.32) applies. Rearragement using the quotient rule leads to a term, which can be used in 

conjuction with Eq. (2.30). The term for the change in Gibbs energy ∆G equals zero, since 

thermodynamic equilibrium is given und the compound dissociation is reversible.  
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Thus, Eq. (2.30) can be rewritten as Eq. (2.33). 
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For identical ratios of the constituents (R),(S) and identical stoichiometric coefficients, the term 

in brackets on the right-hand side becomes zero and thus, the differential expression on the left-

hand side equals zero, too. The composition shows an extremum (only maxima are physically 

possible) in solubility. This complies with the melting point maxima of racemic compounds 

(dystectic type) as introduced in section 0. If more than one stoichiometric compound exists, 

several local extrema may be present. The equation allows estimating the whole shape of the 
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liquidus curve for a pair of enantiomers in the melt, if a correlation for the differential change in 

the chemical potential with respect to the composition is available. Reformulation of Eqs. (2.11) 

and (2.15) provides the general form of the chemical potential in Eq. (2.34). 
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(2.34) 

Provided, the third term on the right-hand side is negligible (e. g. ideal melt), the following 

expression of the partial derivative with respect to the composition can be applied (Eq. (2.35)) 

and Eq. (2.36) follows. 
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The deviation of the actual heat of dissociation hdiss from its ideal quantity is formally related to 

the activity coefficients of the constituents according to Eq. (2.37). Substitution of the heat of 

dissociation by the heat of fusion of the stoichiometric compound f

SRh ),(∆ , though common 

practice in numerous publications, is formally correct only at constant temperature or for 

negligible deviations of the activity coefficients from unity of the enantiomer in the melt. In 

summary, pronounced differences between hdiss and f

SRh ),(∆  should only be present i) for 

explicitly non-ideal systems and ii) far away from the melting point of the compound at relative 

low solution temperatures. 
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By assumption of an ideal ( 1γ l
R =)( ) binary system ( l

R
l
S x1x )()( −= ), the simplified Eq. (2.36) is 

obtained. The lower integration limits are the composition of the stoichiometric compound (for 

a racemic compound applies 50x s
SR .),( = ) and its melting point f

SRT ),(
. The upper limits are the 

composition and temperature of interest. The formation of a racemic compound implies 
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The obtained simplified expression of Eq. (2.39) is frequently cited in the literature and yields 

good results for a number of systems 16, 31, 33, 34. Other systems with pronounced non-ideal 

behaviour, i. e. with dominating repulsive or cohesive forces in the mixture, are expected to 

deviate from the predicted curves of Eq. (2.39). The formation of hydrogen bonds between (R)- 

and (S)-enantiomers strengthens cohesive forces and lessens the repulsive forces between 

homochiral molecules. Consequently, activity coefficients of Eq. (2.34) become smaller than 

unity. The resulting lowered melting temperature is comparable to a lowered partial vapour 
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pressure of a mixture of molecules and is denoted accordingly a negative deviation from Raoult’s 

law, which is known from the description of VLE. On the contrary, minor chances in the melting 

temperature close to the racemic compound account for a positive deviation from Raoult’s law 
31. Figure 2.13 exemplifies two deviating liquidus lines and their intersection with the liquidus 

lines of the single enantiomers (Eq. (2.17)). Further, the corresponding changes in the eutectic 

compositions Xeu,pos and Xeu,neg and in the temperatures Tpos and Tneg are given. 
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Figure 2.13 Liquidus curves of a compound-forming system representing ideal behaviour (ID), negative (neg) 
and positive deviations (pos) from Raoult’s law 

31
. The bold lines denote liquidus lines according to Eq. (2.12) by 

Schröder and van-Laar. The compositions x
eu,i

 indicate different eutectic compositions due to the deviation from 
ideality. 

 

2.3.1 Estimating the eutectic composition 

While the eutectic composition of a conglomerate-forming system of enantiomers is set fixed to 

the mirror axis of a binary phase diagram, the eutectic compositions of compound-forming 

systems varies as a substance specific property. It is determined by the intersection of the two 

branches of the liquidus curves of the single enantiomer and the dissociating stoichiometric 

compound (Figure 2.13). Its composition holds a large importance in crystallisation-based chiral 

separations, as will be shown in section 2.4.1.2. For this reason, it is worth investigating this 

specific composition in more detail.  

Considering a model compound, which is physically stable upon melting, the heat and 

temperature of fusion needed to apply Eqs. (2.17) and (2.39) can be obtained. Further, the 

solubility isotherms for the single enantiomer and the stoichiometric compound and therefore 

the eutectic compositions in the ideal melt can be derived. In principle, it is not required to plot 

the whole phase diagram in order to derive the eutectic composition in solution. Wang et al. 35 

and Klussmann et al. 36 presented two shortcut methods, which can be transferred one in 

another. Hereby, the ratio rα  of the solubilities of the stoichiometric compound l

SRx ),(  and the 

single enantiomer l

Rx )(  is used to express the eutectic composition eu
x  in solution. It is assumed 

that l

SRx ),(  equals the sum of the solubilities of the enantiomers at the stoichiometric 

composition of the compound. 
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The limiting case of 2αr =  yields 50xeu .=  and 

matches ideal conglomerates. Klussmann et al. 

listed a number of compounds for which the ratio of 

solubilities resulted in fair agreement with respect 

to measured eutectic compositions. Hereby, 

variations in the ratio of a single compound were 

obtained from different solvents and at different 

temperatures. Thus, a first estimation of the eutectic 

composition in solution, without recourse to 

solubility measurements can be made on the basis 

of the Eqs. (2.17) and (2.39). For a racemic 

compound the molar fraction of one enantiomer 

equals the fraction of the other in solution and the 

solubility of the compound can be expressed by Eq. (2.42). By integration of this expression and 

introducing Eq. (2.17) into Eq. (2.41), the eutectic composition of ideal systems can be predicted 

avoiding any measurements in solution. 
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In using Eq. (2.41), it must be kept in mind, that the simple formula is restricted to ideal 

solubilities. Very non-ideal solubility ratios far above two have been observed. The system of 

Propranolol·HCl/water is such an example 37. 

 

2.3.2 Theoretical approaches to non-ideal SLE 

Although used throughout the last chapter, the terms ideal and non-ideal have not been defined 

up to know. The official definition is given here to make good for. A component is denoted ideal 

according to the International Union of Pure and Applied Chemistry (IUPAC) if its activity equals 

its molar fraction in a mixture. If this applies for all constituents, the composition is called ideal 

mixture or ideal solution 38. It is thermodynamically equivalent to a solution, for which the 

enthalpy of mixing mix

solutionh∆  is zero. An analogy becomes evident by comparison of the differential 

form of Eq. (2.17) and an expression for solubility using the van’T Hoff enthalpy of solution 
vH

solutionh∆  39. It can be accounted for non-idealities in solution either on the left-hand or on the 

right-hand side of the expressions. The equations coincide, if the activity coefficients become 

unity.  

Figure 2.14 Eutectic composition in relation to 
the solubility ratio of the racemic compound 
and the single enantiomer for ideal systems. 
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In general, it is more convenient to work with Eq. (2.44) since expressions of partial derivatives 

are readily available for a number of activity coefficient models as will be shown in the next 

paragraph. 

A large enthalpy of mixing indicates a solution far from being ideal. Pronounced intermolecular 

forces are usually considered to be the reason for non-ideal solutions. The forces can be assigned 

to four main groups of increasing order of strength:  

• van der Waals (dispersive) forces,  

• forces due to dipole-dipole interactions,  

• forces due to hydrogen bond formation and  

• ionic forces.  

Thermodynamic models account either separately for each physical force or the contributions 

by all forces are merged into lumped parameters.  

In thermodynamic terms, deviations from ideality are usually captured by introducing excess 

functions. The excess Gibbs energy is defined by 

),,(),,( xpTatsolutionidealxpTatsolutionactual
E GGG −≡

. 
(2.48) 

The partial derivatives of extensive excess functions are analogous to those of the total excess 

functions. Thus, the activity coefficient of an arbitrary constituent in a mixture can be assigned 

to the partial derivative of the excess Gibbs energy (compare Eqs. (2.21) and (2.24)). 
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Figure 2.15 attempts to outline briefly the virtually vast field of models and expressions 

available for describing the excess Gibbs energy of solutions. More comprehensive reviews on 

these and other SLE models can be found by 27, 40-46.  

 

Figure 2.15 Overview of one century of the development of models for the application in process 
developments 
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2.3.2.1 Local composition models 

The first group of so called local composition models is named after local compositions that are 

used in the description of deviation from ideality. The simplest model by Margules is based on a 

single empirical constant Aij for a binary mixture, which is neither temperature nor composition 

dependent. It represents the behaviour of mixtures of molecules, similar in size, shape and 

chemical nature in a good manner 27. A series expansion of the equation by Margules is known as 

the Redlich-Kistler expansion and allows modelling of larger complexity in solution. The 

expansion of the same equation through a power series by Wohl added for the first time a rough 

physical significance to the formulation. The first parameter in Wohl’s equation is related to the 

effective volumes iq  of molecules in the mixture and the parameter ija  attempts to characterise 

intermolecular interactions. Truncation of the power series after the first term yields the often 

cited equation by van Laar. Depending on the kind of solution the physical significance of the 

two parameters can turn (again) into purely empirical for polar systems. The concept of models 

like the Wilson model, the non-random two liquid (NRTL) model and the universal quasi-chemical 

(UNIQUAC) model rests on the theory of corresponding states 27, 47. The key idea is to express the 

configurational properties of two different fluids in reduced form, such that they coincide on a 

generalised plot using non-dimensional coordinates. It is asserted that the properties of any 

mixture of two liquids are situated on a common function within the same plot. According to the 

theory, a hypothetical pure fluid exits with the same configurational properties as those in the 

mixture, at the same temperature and pressure. The achievement of thermodynamic models is 

essentially to relate the pairwise interactions within the hypothetical fluid to known pairwise 

interactions and the composition. One option is to use reduced variables. In the case of a pure 

fluid, the reducing parameters are constants, which characterise molecular size and 

intermolecular forces in the pure fluid. For a mixture the reducing parameters are composition-

dependent because they characterise average molecular size and average intermolecular forces 

in the mixture. The approach is not limited to a single hypothetical fluid, the non-random two 

liquid model and the UNIQUAC model are prominent examples. However, theories based on 

several fluids come along with a significantly higher mathematical complexity and the increased 

model flexibility does not guarantee automatically a better representation of experimental data. 

While the general concept of local compositions is the same, the model by Wilson et al. 48, the 

non-random two liquid model by Renon et al. 49 and the UNIQUAC model 27 can be discriminated 

according to the thermodynamic assumptions applied in their derivations.  

Flory and Huggins set the molecular size to be decisive for a solution of molecules, which are 

chemically similar (athermal solution). Accordingly, mixtures of molecules of similar liquid 

volume ijυ /  are ideal. The same applies for the Wilson model, but here in addition, 

intermolecular forces come into play. A stronger cohesive force between dissimilar molecules 

1→2 compared to the 1→1 case is reflected in a larger interaction parameter 
1112 λλ > . This 

definition is not precise. Care must be taken if pronounced hydrogen bonds exist for the 1→1 

case and if the second component is nonpolar. Then, the mixture yields 
1112 λλ <  and 

1122 λλ <  

and the relation of 
12λ  and 

22λ  would remain undefined. It is an advantage of the Wilson model, 

that it can be extended easily to multicomponent mixtures and is not restricted to binary 

mixtures as e. g. Margules. Renon et al. introduced a third, the so-called non-random parameter 

into the NRTL model, which is formally equivalent to the reciprocal of the coordination number 
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in the quasi-chemical theory by Guggenheim 49. The theory is a simplification to the lattice theory 

suggested by the same inventor. The lattice theory assigns every molecule in a mixture a distinct 

and discrete position (similar to a lattice) and the energy needed to interchange its place is used 

as the argument to describe the (excess) enthalpy of mixing. Hereby, the interchange energy is a 

function of the potential energy of all possible molecular pairs in solution. Their numerical 

values can, in principle, be obtained from potential functions. The lattice theory assumes no 

preference in the choice of neighbours, i. e. a mixture where all possible arrangements of the 

molecules on the lattice are equally probable. The quasi-chemical theory asserts, that for 

different pair potentials, segregation of molecular pairs 1→2, 1→1 or 2→2 must occur, invoking 

an altered order (the nonrandomness) of the solution. The theory is not rigorous, but uses a 

simplification named the quasichemical approximation for the implementation into models 50. It 

could be shown that the difference to models for fully randomly distributed molecules becomes 

large only for very non-ideal mixtures and in areas close to phase separation 27. In summary, the 

NRTL model requires two interaction parameters jiG and ijG  and a well chosen randomness 

parameter ijα . Also this model does not take into account differences in the molecular sizes, 

which renders the model unfavourable for e. g. polymer solutions.  

The Wilson, the UNIQUAC, the NRTL and many other models split molar excess Gibbs energy 

(Eq. (2.49)) into contributions by a combinatorial term and a residual term. The first is an 

entropic term quantifying the deviation from ideal solubility as a result of differences in 

molecular shape. The latter is an enthalpic correction caused by the change in interacting forces 

between different molecules upon mixing. 

residualialcombinatorE ggg −≡ . 
(2.51) 

The UNIQUAC model is a combination of the Wilson equation and Guggenheim’s lattice theory. 

Guggenheim formulated a term for the combinatorial entropy of mixing, which accounts 

explicitly for the size and shape of molecules. Thus, the UNIQUAC model contains two adjustable 

energy parameters ijτ / jiτ , again the lattice coordination number z and in addition two 

substance specific physical parameters, reflecting the normalised molecular size (by ir ) and the 

normalised molecules surface area iq  of molecules in the mixture. The latter values are defined 

according to the lattice model as 66.99 Å3 and 79.53 Å2, respectively 51, 52. It was found that 

experimental data of systems containing water or lower alcohols were better represented for 
'

ii qq ≠ , though, this deviates from the original formulation of '

ii qq = . While substance specific 

data can be found tabulated for the most solvents, these parameters are usually not available for 

solutes and need to be estimated by a functional group approach as e. g. UNIFAC (s. chapter 

2.3.2.4) 53.  
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Table 2.1: Overview of selected local composition models for the description of activity coefficients  
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A second combinatorial term, which is often used in thermodynamic models, was derived by 

Flory and Huggins. Chen et al. used the term in their formulation of a NRTL model for polymers 

and split the excess Gibbs energy accordingly into a combinatorial and a residual term 54. 

Further development of the approach resulted in the non-random two liquid segment activity 

coefficient model (NRTL-SAC) 55, 56. The model attempts to map solvent and solute molecules into 

predefined functional groups based on chemical structure. Hereby, the effective surface 

interaction of the molecules is described by hydrophobic, polar and hydrophilic segments. The 

ratio of the three conceptual segments can be characteristic for a certain molecule and is usually 

derived for a solute from solubility measurements in a test set of solvents with pronounced 

hydrophobicity, hydrophilicity or polarity. Databases on segment parameters for the most 

common solvents in the pharmaceutical environment are available 55, the analogue database for 

solutes is far from being comprehensive. The obtained segment parameters for a solute can 

allow the prediction of solubilities in mixtures of solvents.  
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2.3.2.2 Solutions containing electrolytes 

Besides neutral molecular species also ionic and charged species can be present in solution and 

may alter or even dominate the shape of SLE. Debye and Hückel proposed the most relevant 

theoretical approach for long-range ion-ion interactions in 1924. Chen et al. 57 implemented the 

theory into the electrolyte NRTL model (eNRTL). More recently, an estimation model was 

extended also by a Debye-Hückel term (eCOSMO-SAC) by the same author 58. The separate 

treatment of ions and molecular species is more precise in physical terms and allows more 

accurate predictions, e. g. for ionic liquids 59. Since the effort for model parameterisation is 

rather high, one is advised to assess the degree and relevance of dissociation of a strong acid (or 

base) or the fraction of salts in solution before switching to electrolyte models.  

 

2.3.2.3 Theoretical equations of state 

Another group of models, whose origin was (initially) entirely theoretical, are the equations of 

state (EOS). Within the virial equation the compressibility factor is given by as a power series 

and the reciprocal molar volume. The equation constants hold a clear physical significance and 

link pressure, temperature and molar volume. Since for many liquids the value of ( )
v

Tp ∂∂  is a 

function of the molar volume only 46, the expression can represent non-ideal liquids. 

Furthermore, it can be simply extended to multicomponent mixtures and provides the fugacities 

and therefore activity coefficients of the constituents of the mixture. Virial coefficients can be 

derived through regression to experimental data. In addition, the second virial coefficient can be 

acquired through potential functions like Hard-Sphere, Lennard-Jones or many others 27. The 

derivation of the third and following coefficients requires sound theoretical assumptions. A 

rapid development of different EOS for polar compounds, close to and above the critical point of 

substances and for various other applications of interest was observed in the last century. 

Recent EOS like the perturbed chain-statistical associating fluid theory (PC-SAFT) are not 

anymore fully theoretical, but have been fitted in parts to reference data and yield excellent 

agreements for a number of complex systems 60. The model parameters possess physical 

significance. The PC-SAFT EOS is parameterised using three parameters (five, in case of 

associating compounds) and pure component properties, like vapour pressures. Parameters for 

the most common solvents can be found tabulated. However, prior to the prediction of 

multicomponent mixture properties, reasonable values for the binary interaction parameter of 

each binary mixture need to be identified by means of experimental data. The formation of solid 

stoichiometric compounds can be modelled with such EOS 61, 62. 

 

2.3.2.4 Estimation methods for SLE  

The last group of theoretical approaches to SLE to be introduced here comprises estimation 

methods, whose nature is more predictive rather than correlative. The difference in the actual 

Gibbs energy and the ideal Gibbs energy of a solution is denoted by the Gibbs energy of mixing. 

The energy term comprises the enthalpy of mixing and the contribution of the entropy of mixing. 

As described earlier, the first term vanishes for ideal solutions. Solutions, for which the second 
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term becomes zero at negligible volume change upon mixing are called a regular solution 

according to Hildebrand.  

mixmixmix sThg ∆∆∆ ⋅−=  
(2.52) 

 

Solubility parameters by Hildebrand and Hansen 

Hildebrand and Scatchard related independently the internal energy of mixing mix

vu∆  to the 

activity coefficient of a solute in solution 63. mix

vu∆  reflects the energy of complete vaporisation, 

that is, the energy change upon isothermal vaporisation of a saturated liquid to the ideal-gas 

state (Eq. (2.55)). The model was developed on the basis of van Laar’s theory and the van der 

Waals EOS. Here, the assumption of a regular solution with EE ug =  applied. A comprehensive 

derivation of the model is given by 27, 64. The key quantity cohesive energy density cii reflects 

intermolecular forces. The obtained activity coefficients are always larger than unity, since no 

other forces are considered. Usually, the binary parameter Iij is neglected. Despite its limitations, 

the model gives still good results for a number of non-polar solutions.  
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The regular solution equation can be extended to multicomponent mixtures and yields 

predictions for mixture properties. The required molar liquid volumes and the heat of 

vaporisation can be obtained from databases for a large number of compounds. Hansen 

proposed additive extensions to the model to allow predictions for polar and hydrogen bonding 

systems also. The database of Hansen solubility parameters comprises currently more than 

10.000 entities 65. 

 

UNIFAC/PSRK 

Similar in kind but different in the method is the universal functional activity coefficient 

(UNIFAC) model. Herein the Guggenheim equation is used to estimate the combinatorial 

contribution to the excess Gibbs energy. The remaining residual term is derived through specific 

contributions based on the molecular structure of the molecules in the mixture. The approach 

exhibits similarities to the NRTL-SAC model, but utilises a much larger set of predefined 

functional groups. The UNIFAC model attempts to break down the huge number of possible 

binary interactions into a limited number of interactions among these functional groups, that 

can still be handled. The simplification entails several deficiencies. The mutual effect of 

neighbouring groups and the information on the relative position of functional groups 

(isomerism can not be treated) is lost. Predictions can only be made on the basis of a complete 

set of functional groups in the database for all constituents of a mixture. This is particularly 

problematic for molecules in the size of 200-600 g/mol, which are typical e. g. in the 

pharmaceutical industry 57.  

The Predictive Soave-Redlich-Kwong (PSRK) model was initially developed for the estimation of 

properties of substances close to and of mixtures partly above their critical state. These 

properties could not be derived from the UNIFAC model. The PSRK model uses an EOS, such as 
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the Soave-Redlich-Kwong approach and a suitable mixing rule. Parameters for the mixing rule 

can be derived through UNIFAC. 

 

Molecular estimation models 

A number of models attempt estimating characteristic mixture properties entirely from 

molecular structures without depending on experimental data or reference to databases. While 

the view on thermodynamics was macroscopic for the models above, the following considers the 

microscopic level and focuses on particles at the (sub-) atomic level. Due to the rather different 

theoretical backgrounds a rapid classification will be given below. Much more comprehensive 

information is found e. g. by 45, 66, 67. 

The Schrödinger equation uses the wavefunction to determine the exact locus of any particle 

(electron, nuclei) between x and x+∆x at a time t. The wavefunction ),( trψ  is in general a 

complex valued quantity and a function of the Cartesian position coordinates x,y,z (in the vector 

r) and time. It links the total energy E of a system and the so–called Hamiltonian operator H, also 

referred as Hamiltonian.  

),(),( trψEtrψH =
 

(2.57) 

The Hamiltonian consists of an operator for the kinetic energy and an operator representing the 

potential energy U with ħ being the reduced Planck constant and m being the mass of the 

particle. Both operators depend on the three Cartesian coordinates. 
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The equations (2.58) and (2.59) represent only a single particle (electron, nuclei). It becomes 

evident, that the complexity of the Schrödinger equation increases largely with the number of 

electrons of a system and computations for typical molecules in engineering tasks cannot by be 

treated by far up to now. The major problem lies in the formulation of the wavefunction. The 

exact formulation is difficult to find, since every particle interacts mutually with the remaining 

particle ensemble. The Born-Oppenheimer-Approximation decouples the movement of atom 

cores and electrons and allows the exact solution of the electronic Schrödinger equation for just 

two particles 68, 69.  

For more complex systems ab initio methods like the Hartree-Fock-approximation (HF) or, 

numerically less demanding but less rigorous, semi-empirical methods like MNDO, AM1 or PM3 

can be applied 67. Ab initio methods do not require information other than fundamental 

constants and the charges of relevant atom cores. Semi-empirical methods contain parameters, 

that are fitted to experimental data. The methods are numerically faster since only valence 

electrons are considered and their basis sets are restricted to a limited number of functions and 

hence, the theoretical background for the estimation of molecular orbitals is less profound. The 

HF-approximation neglects the Coulomb electron correlation leading to a total electron energy, 

which is always higher than the one obtained from the Schrödinger equation. The density 
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functional theory (DFT) takes the electron correlation explicitly into account and provides more 

accurate results 67, 69-71. Computational methods based on DFT are widely used tools for 

geometry optimisations and electron density descriptions. Accurate estimations for molecules of 

40 and more atoms on standard computers are feasible in a day and less. However, DFT 

computations yield predominantly results for isolated molecules in vacuum; intermolecular 

forces do not exist here. The latter are present (and important) in the condensed systems of 

interest in this work. Since DFT is in addition not suitable to derive accurately dispersive forces, 

a detour needs to be made to get a hold on quantitative solution behaviour. 

 

Continuum solvation model COSMO 

In 1995 a theory quantifying solvent/solute interactions based on quantum chemistry 

calculations was introduced by Klamt et al. 70. The so-called COnductor-like Screening MOdel for 

Real Solvents (COSMO-RS) consists of two separate parts originating from the disciplines of 

theoretical physics and statistical 

thermodynamics. The COSMO part is a 

Continuum solvation model. These models 

are simplifications to the formal 

representation of the electrostatic potential 

energy and can lead directly to 

macroscopic thermodynamic properties, 

notably changes in the Gibbs energy of 

solvation as a consequence of electrostatic 

interactions and changes in the van der 

Waals Gibbs energy 66. Continuum 

solvation models account for the effects, 

that are experienced by a molecule, e. g. a 

solute, being transferred from an ideal gas 

state into a liquid solvent. The solute is presumably surrounded by solvent molecules only, 

similar to an infinitely diluted solution. The reference state after solvation can be used to derive 

the chemical potential in solution. Within the concept of continuum approaches the atomic 

structure of the solvent is neglected and the electrostatic properties are replaced by those of the 

dielectric continuum. The polarisation of the medium and the back polarisation of the solute, 

whose geometry is represented by a model specific cavity, is a measure of the electrostatic 

interaction between the solute and its surroundings. The COSMO model places a molecule into 

an infinitely extended electrical conductor ( ∞=ε ) and simplifies hereby the derivation of so-

called screening charges. The electric field arising from the nuclei and the electrons of the solute 

molecule is screened by the polarisation of the continuum. Within the COSMO approach the 

resulting electrostatic potential is zero for every point on the surface of the cavity in the 

conductor, because the special conductor screens the charges perfectly and all charges are 

balanced. The obtained histogram of charges σ, the so-called ‘surface charge density 

distribution’, is characteristic for every molecule, or more precisely, for every conformation of a 

molecule. Thus, in contrast to the UNIFAC model, the specific information is not linked to 

functional groups but it is extracted from the whole molecule. It could be expected, that a 

description of solutes by the COSMO model contains a higher degree of information on e. g. the 

 
Figure 2.16 Characteristic charge histograms for some 
molecules (COSMO-SAC model). 
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spatial arrangement of atoms, that can be used further. However, this is apparently not the case, 

since it is possible to derive identical charge histograms also through group contribution 

methods as shown by Mu and Gmehling et al. 72, 73. Only compounds containing sulphur resulted 

in different charge histograms. Thus, it can be possible to avoid the time consuming quantum 

mechanical computation of charge histograms, provided that all functional groups of a 

compound of interest can be well represented through group contributions methods. However, 

information on isomerism are lost also in this model, i. e. a pair of enantiomers shows identical 

charge histograms.  

Implementations of COSMO are found in a number of modules of commercial software packages 

like Gaussian, MOPAC, TURBOMOLE, DMol3, ADF and also in the open-source software GAMESS. 

The most comprehensive product COSMOtherm is developed and distributed by the COSMOlogic 

GmbH & Co. KG. The charge histograms of every package varies due to slightly different COSMO 

implementations, specific parameterisations, basis sets and the functionals used. Apparently, the 

differences are not large 74. However, a coupling of the algorithm for the statistical 

thermodynamics with a certain COSMO software is important for consistent model 

parameterisation using experimental data. The applied algorithm in this thesis was 

parameterised on the basis of charge histograms generated through the DMol3 package 75, 76. 

 

COSMO-RS/ COSMO-SAC 

Charge histograms can be used to derive activity coefficients of solutes in solutions. The 

procedure is to the greatest extend the same in the COSMO-‘Real-Solvent’ and in the later re-

implementation, the COSMO-‘Segment Activity Coefficient’ model.  

According to implicit continuum solvation theories, the solvation Gibbs energy solG∆  of 

transferring a molecule stepwise from an ideal gas state through a state in an ideal conductor to 

a solvated state can be written as the sum of the contributions of the long-range electrostatic 

Gibbs energy el
G∆  and the van der Waals Gibbs energy vdw

G∆ . The latter can be expressed 

through the cavity formation Gibbs energy cavG∆ , which is needed to create a cavity in a liquid 

upon insertion of a solute molecule and the short-range dispersion Gibbs energy dispG∆ , which 

results from the interactions between the actual charges on the molecular surface. Other terms 

for the Gibbs energies of vibration, rotation and the internal structure of the molecule are 

considered to be negligible, since their change resulting from the transfer of the molecule from 

vacuum into a real solvent is small 77. 
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Wang et al. have shown that the contribution of the dispersion interaction term dispG∆  to the 

activity coefficients is small and can also be neglected. In the recent COSMO-SAC models cavG∆  

is generally expressed by the Stavermann-Guggenheim term. The electrostatic Gibbs energy 
elG∆  itself consists of the contributions of the difference in ideal solvation charge isG∆  (ideal 

gas state – ideal conductor state), a model specific correction term ccG∆ and the restoring Gibbs 

energy term resG∆ , which accounts for the change from the corrected screening state (ideal 

conductor) to the real liquid state. The first two terms cancel out within the calculations, while 

the restoring Gibbs energy term resG∆  remains. It is the main contribution to the derivation of 
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activity coefficients. The Gibbs energy of solvation solG∆  reflects the difference of a solute 

molecule at a fixed position in an ideal gas with respect to a fixed position in a solution.  

sol

SiG /∆
sol

iiG /∆
 

Figure 2.17 Pathway to the Gibbs energy of solvation from ideal screening charges.  

The activity of the solute i in solution S can be described by the change in Gibbs energy through 

solvation solG∆∆
 
 and the Gibbs energy required to span the molecular cavity. The second term 

( )SG
Siγ /ln  equals the combinatorial Stavermann-Guggenheim term as applied also in e. g. the 

UNIQUAC model (Eq. (20) of Table 2.1). 

( ) ( )SG
Si

Sol
ii

Sol
Si

Si γ
RT

GG
γ /

//
/ ln

∆∆
ln +

−
=  

(2.62) 

A more detailed description of the (refined) COSMO-SAC model can be found in Sandler, Lin, 

Wang, Mullins and also Banerjee 75, 77-80.  

 

2.3.3 Estimating the heat and temperature of fusion  

Though, it is a rather challenging task to derive accurate activity coefficients from estimation 

methods, a predictive SLE model would still demand the knowledge of the latent heat of fusion 
fh∆  and the temperature of fusion fT  of the solutes considered. Solubilities are in general very 

sensitive to the value of the heat and temperature of fusion of solutes since they are related by 

exponential functions (Eqs. (2.17) and (2.39)). Unfortunately, the heat of fusion is not known for 

a larger class of substances that undergo decomposition during melting as e. g. many amino 

acids do. Estimation methods on the basis of group contributions and molecular descriptors can 

provide rough estimates, but their accuracy is usually very limited with mean errors of up to 

20 % 81, 82. Thus, it might be advantageous to refine those values during SLE model 

parameterisations 37, 83.  

An additional hurdle relevant for enantioseparation is the possible formation of racemic 

compounds, solvates or partial solid solutions. The obtained heat and temperature of fusion 

often differ significantly from the values of the single enantiomer. Since property estimation 

procedures are based on the molecular structure only, rather than on the (different) crystalline 

phases, no predictions regarding discrimination between the racemic compound, solvates and 

the single enantiomer is possible.  
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2.4 Separation of mixtures of single enantiomers 

Numerous physical, chemical and enzymatic methods for the separation of mixtures of 

enantiomers are available form the literature. Two physical methods, that are mostly generic, 

will be described in the following paragraphs in brief. Further, compilations of these two 

methods aiming to enhance the overall productivity will be introduced. 

 

2.4.1 Selective crystallisation of enantiomers 

The purification of enantiomers and the chiral separation of mixtures of diastereoisomers by 

crystallisation can be considered as state-of-the-art in the chemical and pharmaceutical 

industry. Comparatively simple processes and low investment as well as operating costs can 

yield single enantiomers with high purities and desired particle formulations. The 

thermodynamic properties, that should be known for successful separations and the physical 

limitations of characteristic phase diagrams will be discussed. 

 

2.4.1.1 Nucleation and crystal growth 

Phase transitions follow directed driving forces. The formation of crystals from a saturated 

solution is made possible through e. g. cooling, solvent removal or antisolvent addition. The 

driving force can be expressed in terms of supersaturation S or the change in Gibbs energy as the 

difference in the chemical potentials of a saturated (denoted an asterix) and a solution of other 

(higher) concentration.  
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Large S values do not necessarily cause crystallisation events. The birth of nuclei, clusters of 

solute molecules, requires additional energy, since a new surface is generated and may even 

grow. The process of nucleation of crystals is more complex compared to the formation of e. g. 

stable droplets from supersaturated vapour, since the constituent molecules of a single nucleus 

have to become orientated into a fixed lattice 84.  

Figure 2.18a) depicts the tradeoff between the Gibbs energy ∆Gs needed to increase the surface 

and the volumetric energy gain ∆Gv from the generation of a new volume. The new volume 

consists typically of a cluster of n molecules with numbers between very few and a couple of 

thousands molecules. A maximum in ∆G is found, which represents the critical nuclei size, that 

needs to be exceeded to allow crystals to grow further. The shape and height of the maxima is 

substance specific and depends largely on the modification of the crystalline phase.  
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Figure 2.18a)/b) Relations of cluster size and Gibbs energy. a) Contributions by surface and volume formation, 
b) Changes in Gibbs energy upon crystal formation for a polymorphic system. 

The change in Gibbs energy ∆Gv due to the formation of a single cluster of n molecules can be 

expressed by Eq. (2.67). The chemical potential is not a molar quantity in this equation, but 

relates to the cluster only. 

SlnnTkµnG clusv −=−= ∆∆  
(2.67) 

The second contribution ∆Gs is related according to the classical nucleation theory by the surface 

tension tγ  and the surface area of the new cluster A. The latter can be defined by a shape factor c 

representing the cluster’s form 85 and by the specific volume of the cluster vclus. Provided, the 

cluster appears cubic c equals six, for spherical clusters as assumed here c=(36 π)1/3 applies. The 

cluster size can be substituted by an equivalent cluster radius as shown by several authors 85, 86. 
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The 1st derivative of ∆G with respect to the nucleus size yields the critical Gibbs energy and the 

critical size of a single spherical cluster (Eqs. (2.70)/(2.71)). 
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Figure 2.18b) illustrates differences in the change of the Gibbs energy for a system, that 

crystallises as two polymorphs. Both, the total changes in energy upon crystallisation ∆Ga/b as 

well as the critical Gibbs energies ∆G*a/b are shown. In general, a higher thermodynamic stability, 
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expressed by a larger ∆G, will result in a higher solubility 86. Thus, a metastable phase 

experiences a lower driving force at the same supersaturation, compared to the stable 

modification. This contradicts the common observation, that metastable phases tend to 

crystallise first from a supersaturated solution. The phenomenon can be explained through a 

comparison of Eqs. (2.70) and (2.71). It allows to relate the critical Gibbs energy to 

supersaturation in Eqs (2.72).  
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It is found, that the barrier to exceed the critical nucleus size and to allow crystal growth is as 

high as half of the chemical potential of the supersaturated solution, which is significant.Thus, 

the higher possible supersaturation of the stable modification prior to a nucleation event implies 

a smaller size of critical nuclei but also a higher critical Gibbs energy, that needs to be overcome. 

This entirely thermodynamic relation is known as the ‘Ostwald’s rule of stages’. Due to the larger 

number of exceptions from this rule, also kinetic-thermodynamic derivations were proposed, 

which had also limited success proving the complex nature of nucleation 84. For this reason, 

rather simple theoretical approaches are more frequently used. The rate of nucleation J, 

expressed by the number of nuclei formed per unit time and per unit volume is hereby assumed 

to follow an Arrhenius reaction rate term with A being an fitting parameter.  

)Tk/Gexp(AJ *∆−=  
(2.73) 

 

Classification of nucleation 

The description above refers to primary homogeneous nucleation only, though there are a 

number of different nucleation events known. As a matter of fact, the classical nucleation theory 

fails in most cases of industrial crystallisers, most likely due to the dominance of heterogeneous 

nucleation processes 84, 85.  

Nucleation

Secondary

(contact, fracture, 
shear stress, attrition…)

Primary

Homogeneous
(spontaneous)

Heterogeneous

(through foreign particles)  

Figure 2.19 Speciation of nucleation according to driving forces. 

Often, it is attempted to lump several phenomena in apparent model constants. It can be 

beneficial to relate empirical relationships to the maximal supersaturation (so called metastable 

zone widths, see below) using fitted nucleation rate constants k and apparent orders n of 

nucleation.  
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max∆ nn ckJ =  
(2.74) 

Secondary nucleation can be caused by the joint effect of a number of factors. It is e. g. observed 

at high shear velocities through intensive agitation in crystallisers, where attrition and breakage 

of crystals cannot be avoided.  

 

Metastable zone widths 

The term ‘metastable zone width’ (MSZW) describes according to Nyvlt 87 the maximal 

supersaturation, that can be achieved before nucleation events take place. The quantity is 

important for the design of both, thermodynamically and kinetically controlled crystallisation 

processes. This width can be obtained through repeated subcooling of saturated solutions. The 

temperature, at which the first detectable crystals appear (‘cloud point’) is recorded, the solute 

is dissolved again by heating and subsequent cooling runs are carried out with varied cooling 

rates, varied initial concentrations or varied saturation temperatures. By extrapolation of the 

corresponding data points, a virtual subcooling temperature at a negligible small cooling rate 

can be estimated (Figure 2.20). It represents the MSZW within crystallisation should not occur 

for a given initial condition.  

The MSZW depends largely on the experimental conditions and the nucleation mechanism as 

depicted in Figure 2.21.  

  

Figure 2.20 Extrapolation procedure for three 
different initial concentrations ci used to estimate the 
maximal possible subcooling. 

Figure 2.21 Solubility curve (Sol) and theoretical 
subcooling ranges from identical initial conditions 
(concentration, temperature) for  

• primary homogeneous (P-HO), 
• primary heterogeneous (P-HE) and  
• secondary (Sec) nucleation.  

Crystal growth 

Besides nucleation, crystal growth is the main process for the depletion of supersaturation. The 

growth kinetics of different crystals sites and their ratios are responsible for crystal habits and 

morphology. In case of crystal growth, disturbances as e. g. mother liquor inclusion, limit the 

product purity to be achieved. The control of crystal growth is of particular interest in the final 

product formulation (crystals size distribution, habitus, crystal stability) and in subsequent 

downstream processes to guarantee wash-ability and filter-ability. The field of crystal growth 

was considered only briefly in the course of this thesis with its restricted focus on crystallisation 

thermodynamics. Product formulation was not subject of the investigations. 

Both nucleation and crystal growth of single enantiomers are inherently linked to the presence 

of the antipode, i. e. the counter enantiomer. Already traces can lead to specific blocking of 
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growth sites of the desired enantiomer 88. Also, the MSZW is generally influenced significantly by 

the antipode for systems of enantiomers in solution 89-91. Estimation, measurement and 

correlation of those mainly kinetic effects are rather demanding. These data were determined in 

this work for selected cases and process design. 

 

2.4.1.2 Selective crystallisation strategies based on phase diagrams 

The measurement and thermodynamic description of SLE usually provides sound information 

on the relevant phase diagrams for chiral systems in solution. These can be exploited 

subsequently for the design of separation processes. Hereby, a larger fraction of the antipode in 

solution has a directing effect on the thermodynamic domain, in which the target enantiomer is 

situated and can either force or hinder selective crystallisation. The following descriptions are 

predominantly, but not entirely, based on equilibrium thermodynamics. In principle, three cases 

of selective crystallisation strategies can be deduced directly from the information on 

thermodynamic equilibria. 

(R) (S)

(Sol)(Sol)

(R) (S)(R,S)

3 P

2 P
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1 P
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(R) (S)

(Sol)c)
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Figure 2.22 Undersaturated solution (1 P), biphasic domains (2 P), triphasic domains (3 P) and polyphasic 
domains (poly p) and the corresponding tie lines within a compound-forming system a), a system exhibiting a 
conglomerate b) and a system with complete miscibility in the solid phase c). 

Provided, that the (R)-enantiomer is the target component, an asymmetric initial mixture must 

be situated in the outer left biphasic domain in Figure 2.22a) in order to crystallise solely the 

target enantiomer from solution. The same applies also to the conglomerate-forming system as 

of Figure 2.22b), but not to a solid solutions system depicted in subfigure c), since no biphasic 

domain is present here. Instead, a polyphasic domain consisting of all ratios of the enantiomers 

in the solid phase in equilibrium with corresponding ratios of the enantiomers in the liquid 

phase is found. Within the inner biphasic domain of compound-forming systems, the racemic 

compound can be crystallised only.  

The tie lines of the triphasic domains link mixtures of either the racemic compound and the 

single enantiomer or mixtures of both enantiomers with the liquid phase of eutectic 

composition. This domain can be used for the enrichment of slightly asymmetric mixtures 

further up to the eutectic composition, provided that the latter is higher than the initial 

composition 16, 92, 93. The slope of the tie lines of systems with full miscibility in the solid phase 

allow no direct equilibration with a phase containing the pure product, but is decisive for 

enantiomeric enrichment by crystallisation. Its knowledge requires usually laborious 

experimental measurements. It is generally possible to design a multi-stage-crystallisation 
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process by simultaneous enrichment of a product stream in one direction and stripping of the 

target enantiomer in another counter-current stream. However, it is possible, that numerous 

stages are necessary 94. Those separations are out of the scope of this thesis. 

Figure 2.23 summarises the possible product purities, that can be obtained starting with initial 

solutions of different purity. The figure does not consider kinetically controlled crystallisations. 

The final purity to be obtained through crystallisation processes is related to the initial 

composition of the feed mixture. Initial solutions exhibiting a purity below the eutectic 

composition, but above 50 % can be enriched up to a purity, which equals the eutectic 

composition. An initial solution, that exceeds already this value, can be purified up to a 100 % 

pure enantiomer. Since the eutectic composition is a substance specific property, the ease of 

purification may by high in case of low eutectic compositions. Here, only slightly asymmetric 

initial solutions are required in order exceed the corresponding eutectic composition and to gain 

pure product. High eutectic compositions between e. g. 80-100 % demand highly asymmetric 

initial solutions, which often causes selective crystallisation to fail. 
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Figure 2.23 Product purities to be obtained from different initial purities through thermodynamic dominated 
crystallisations. Boxes indicate feasible relations. Initial composition below the eutectic composition can be 
purified up to the eutectic composition, initial composition above this value can be purified up to 100 %. 

This work aims to overcome this limitation such that, also only slightly enriched solutions far 
below the eutectic composition can be purified up to the pure enantiomer. 

All described processes end up in condition of thermodynamic equilibrium, which are described 

by the corresponding phase diagram. Thus, it is not a hurdle if the transient process trajectories 

are unknown. On the contrary, the kind of driving force to be applied can be chosen freely, which 

bears a degree of freedom in process design. In addition, seeding with a slurry or with dry 

crystals of the product, although possible, is not required to obtain the pure product. This 

renders this class of processes to be rather robust. The process design and its outcome is 

derived directly from mass balances.  

Preferential crystallisation 

Another field of selective crystallisation exploits the so-called ‘entrainment effect’ 16, 95-98. 

Hereby, crystallisation is initialised by the addition of crystalline seeds of either the target 

enantiomer in order to crystallise this species ‘preferentially’ or by seeds of another species in 

order to remove the latter from solution and purify the mother liquor. These kinetic 

crystallisations yield process trajectories, which are not in thermodynamic equilibrium and can 
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make crystallisation-based processes possible even within domains of phase diagrams with 

unfavourable thermodynamics. In fortunate cases and if the entrainment trajectories cross 

phase boundaries, process yields above the thermodynamically possible yields were observed 99. 

However, the process success depends largely on the existence of an exploitable entrainment 

effect and on the controllability of the nucleation event of the unwanted species, that has to be 

prevented in any case 100. Preferential crystallisation is not applicable to systems as given by 

Figure 2.22 c), since no distinct product phases exist, that could grow preferentially. 

 

Solubility phase diagrams involving metastable phases, solvates and partial solid 

solutions 

The three cases given by Figure 2.22 illustrate only a simplified image of real systems. Often, 

several modifications of the solid phases are found, leading to significant differences in the shape 

of the corresponding phase diagrams. A number of the most prominent examples is given by 

Figure 2.24.  

 
Figure 2.24 Illustrations of resulting shapes of phase diagrams upon changes in the solid phases: 
a) Solvent and/or temperature changes-entire change in the type of phase diagram;  
b) Formations of partial solid solutions of terminal type and a type involving the racemic compound;  
c) Solvate formation involving the single enantiomer and the racemic compound.  

As discussed in section 2.1.2, the stability of a certain solid phase may be restricted to a specific 

temperature (range) and solvent.  

Figure 2.24 a) aims to illustrate such an example with a particularly large impact on selective 

crystallisation processes. The transformation of a compound-forming to a conglomerate-forming 

system is very beneficial for separation purposes. Examples of systems of enantiomers involving 

metastable phases are known from the literature 101-103.  

The limited inclusion of molecules of the antipode into the crystal lattice of the single target 

enantiomer (terminal partial solid solutions) or of the racemic compound widens the biphasic 

domains as in Figure 2.24b). Thermodynamic equilibration of solutions in the outer biphasic 

domain yields crystals composed of both enantiomers and therefore lowered purity. 

Equilibration of a supersatured solution within the inner biphasic domain results in crystals of 

the racemic compound, which do not necessarily exhibit a 1:1 ratio. This generally undesired 

property in selective crystallisation processes is frequently cited in the literature 104-106. 

Solvates and hydrates incorporate distinct amounts of solvent molecules into their crystal 

lattice. The consequences on the shape of phase diagrams can be large, especially, if both species, 
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the racemic compound and the enantiomer, form a solvate upon changes to the solvent 

composition or the process conditions. 

Evaluation of the introduced changes to phase diagrams and assessment with respect to 

enantioseparation is one task within this thesis. 

 

2.4.2 Chiral chromatography 

Within the last years chiral chromatography has gained increasing attention as a powerful 

method in the purification of mixtures of enantiomers. This can be attributed to two key factors: 

Rapid progress in the development of effective and efficient stationary phases and innovations 

in the modes of operation of batchwise and continuous chromatography in general. 

Chromatography remains an expensive unit operation, but the choice for competitive 

alternatives is limited. Due to the broad field of available stationary phases, nowadays almost 

every separation problem can be solved (with different productivities, of course), which makes 

chromatographic techniques more and more generically applicable.  

 

2.4.2.1 Fundamental relations 

Both, in analytical and preparative chromatography a number of specific terms and relations are 

frequently used, whose meanings are of fundamental relevance in chromatographic separations. 

While most definitions will be explained in the view of batch-wise chromatography, they are also 

helpful in understanding modern concepts of continuous multi-column chromatography. 

Chromatographic separation concepts are based on the unequal distribution of molecules 

(solutes) different in kind between a fluid phase (eluent) and a stationary phase (the adsorbent). 

It is usually discriminated among physisorption and chemisorption as the two main binding 

forces, that can lead to adsorption of a solute onto the adsorbent’s surface. Chromatographic 

separations require a reversible binding. Therefore, stationary phases are chosen such, that only 

physisorption takes place.  

In chiral chromatographic separations usually binary mixtures of solute molecules (e. g. a pair of 

enantiomers) are dissolved in a suitable solvent. This feed mixture is injected into an eluent 

stream and passes through a column, which is filled with a specific enantioselective packing 

material. The stationary phase can consists of a solid support made of porous (spherical) silica 

particles, that is functionalised by derivatised amylose-, cellulose- or antibiotic molecules 

containing numerous stereocentres. It is assumed, that a pair of enantiomers adsorbs equally 

onto the solid (nonchiral) support, but the interplay with the chiral part of the adsorbent is 

different in strength and so the adsorption. In efficient separations both enantiomers escape 

(elute) from the column one after the other with a clear gap in time. UV-detectors at the column 

outlet are used to record the so-called chromatogram, which contains the substance (-mixture)- 

specific elution-profiles. For chiral separations in addition polarimeter devices are frequently 

used, since a pair of enantiomers and therefore the order of elution can not be distinguished 

from UV-absorption signals.  



2.4 Separation of mixtures of single enantiomers 43 
 

Assessing chromatographic separations-performance and productivity factors 

A chromatogram obtained from the injections of three different components is given in Figure 

2.25. The adsorption of each individual component onto the stationary phase is proportional to 

the specific retention times tR,i for small injection amounts. Virtually every chromatographic 

device produces a specific additional retention time t0 due to the volumes of connecting tubings, 

pump heads and the detector cell. The time t0 is obtained from the injection of a non-retained 

substance. Since the retention time depends also on the geometry of the column and the flow 

rate, a normalised value, the capacity factor ki’, is introduced 107-109.  
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The ratio of the individual capacity factors of two components determines the selectivity α for a 

binary separation. By convention, the numerator contains the less adsorbed component. 

Consequently, the selectivity is always greater than unity. 
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Besides highest selectivity, also elevated throughput is essential for efficient preparative 

chromatographic applications. This is achieved through large injection volumes and/or highly 

concentrated injections in batch chromatography. Peaks in the elution profile encounter 

broadening due to mass transfer limitations and fluid-dynamic non-idealities (axial dispersion). 

Further increase in the column loading leads to distorted and asymmetric peaks, whose shapes 

are depending on the substance specific adsorption behaviour 108.  

 

 

 

Figure 2.25 Chromatogram of discrete analytical 
injections of two substances leading to symmetric 
peaks. 

Figure 2.26 Estimation of column efficiency from peak 
shapes. 

The efficiency of a chromatographic column can be assessed by the number of apparent 
theoretical equilibration plates (NTP), similar to distillation processes. The plate number as well 
as the corresponding height of an equivalent theoretical plate (HETP) lumps together all effects 
responsible for peak broadening. For perfectly symmetric peaks from high efficiency columns, 
the width of the Gaussian distribution w can be used to estimate the number of transport plates. 
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A more robust method is based on the width w1/2 at half-height of the peak. The NTP is specific 
for any component i and denoted NTPi within the following.  
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For heavily distorted peaks, the concept of moments is more reliable. Hereby, the 1st absolute 

moment 
imµ ,  equals the retention time and the normalised 2nd central moment 2

,imσ  determines 

the squared variance 107. 
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The number of plates is given by the quotient of the squared retention time over the squared 
variance.  
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Its value is related linearly to the flow rate. The contribution of axial dispersion can be attributed 
to Eddy-diffusion and to molecular diffusion. The latter follows also a function involving the flow 
rate. Summation of the three terms leads to the well known equation by van-Deemter 110. 
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The function runs through a minimum, for which the highest column separation efficiency can be 
assumed. The highest productivity is usually found at much higher flow rates as a compromise 
between separation efficiency and throughput.  

Another performance factor to be named for completeness is the resolution Rij of separating i and 
j. It relates the peak distances to the peak widths 109. The number of components to be separated 
is denoted by Nc. 
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The productivity of a chromatographic separation is usually defined by the amount of product 
per unit time and per amount (volume) of stationary phase. 
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2.4.2.2 Equilibrium thermodynamics 

Theoretical descriptive models for chromatographic processes require the quantitative 

description of the adsorption of solutes onto the stationary phase. Pressure effects are usually 

neglected in liquid chromatography and adsorption is determined assuming isothermal 

conditions.  

The simplest expression for adsorption follows a linear approach by introducing a Henry 

constant Hi. The constant represents the slope, that links the loading qi of a component i onto the 

stationary phase with the concentration ci of the same component in the fluid phase. The ratio of 

Henry constants of two components equals the introduced separation factor αij. 

iii cHq =   (i= 1,…, Nc) (2.85) 

Numerous models for adsorption isotherms are available, whose physical foundations range 

from entirely empirical to rather sound. The Bi-Langmuir type of adsorption isotherms is one 

suitable model for the description of chiral-specific adsorption. It reflects the possibility of non-

chiral adsorption onto the support layer and the adsorption on a second site featuring chiral 

discrimination. The modelling of adsorption was conducted exclusively with the Bi-Langmuir 

model within this thesis. Since two different binding sites are considered, two constants qs1 and 

qs2 are used to describe the corresponding saturation conditions. The first site describes the non-

chiral site. Consequently, adsorption onto this site is assumed to be of equal strength for a pair of 

enantiomers. Further, two constants b1 and b2 need to be estimated in order to describe the site- 

and concentration-specific adsorption. 
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The competitive behaviour of two enantiomers with respect to adsorption sites on the 
stationary phase can be expressed under certain assumptions by multi-component isotherms. 
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2.4.2.3 Modelling of single column chromatography 

The migration velocity of a component through a column with a volume Vc depends on the void 

fraction, that is not occupied by the packing material Vint and the volume of the porous particles, 

that is accessible to the mobile phase Vpore. Obviously, the total porosity ε has a large impact on 

the outcome of theoretical descriptions of chromatography and needs to be known prior to the 

use of models.  

c

pore

V

VV
ε

+
=

int
 

(2.88) 



46  2 Theoretical foundations 
 

It is often more convenient to use the phase ratio F as the ratio of the volumes of the solid and 

the liquid phase. 

ε

ε
=F

−1
 

(2.89) 

Non-retained components migrate with an interstitial velocity u through a column (with Q being 

the volumetric flow and Ac being the cross-sectional area of the column). Thus, the retention 

time t0 can be expressed by the interstitial velocity u and the column lengths Lc. 
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The migration velocity for an adsorbed component depends largely on the corresponding 

adsorption isotherm. Mass balances around a column and consideration of linear adsorption 

leads to the following expression for the retention time. 

)( FH1t=t 0R +  
(2.92) 

For nonlinear isotherms and high concentrations, the curvature of the adsorption isotherm 

needs to be taken into account and comprehensive models are of demand. 

In general, it can be discriminated among four classes of models for the theoretical 

representation of chromatographic columns. Model complexity increases beginning from  

a)  ideal models (no dispersion, no mass transfer limitations),  

b) the consideration of a single band-broadening effect (Thomas model, equilibrium-dispersive 

model, transport model) towards  

c) lumped rate models with an independent description of either mass transfer or kinetic 

limitations and axial dispersion (transport-dispersive model, reactive-dispersive model).  

d) General rate models describe mass transfer in the most detailed manner.  

Analogously, the computational effort for the model solution increases in the same direction 

since the availability of analytical solutions is scarce. For the equilibrium-dispersive model 

considering linear adsorption isotherms analytical solutions are available, but not for nonlinear 

isotherms. Comprehensive reviews on chromatographic models and their specific application 

areas can be found 107, 111. 

Within this thesis the equilibrium-dispersive model was used due to its comparatively fast 

numerical solution and motivating results from the literature 112-114. Continuous models balance 

differential slices within the axial dimension of a column with respect to every individual 

component i. The differential mass balances comprise the solute movement through convective 

flow and lump all effects leading to axial dispersion into an apparent coefficient Dax. The 

differential mass balance for a single component reads as follows.  
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Provided Dax can be neglected due to e. g. highly efficient columns, the first term on the right 

hand side cancels out and the equation can be further simplified by considering Eq. (2.94). 
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The migration velocity uc of the component at a concentration level c is described by an 

expression for its propagation through the column, the so-called wavefunction. 
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For this simplified case the expression for the retention time for a certain concentration c bears 

similarities with the expression for linear adsorption. 
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2.4.2.4 Determination of adsorption behaviour 

Proper design of chiral chromatographic separation processes relies strongly on the availability 

and quality of fundamental information on the competitive adsorption behaviour of mixtures of 

enantiomers. Due to the complex nature of the interactions between solutes and chiral 

stationary phases, experimental studies are essential in most cases. Experiments should allow 

the correlation of models for the quantitative description of processes.  

The Henry coefficients are obtained best, regardless of the model applied, from analytical 

injections. Any additional parameter for nonlinear adsorption isotherms requires the 

measurement of the entire corresponding adsorption isotherm to allow its estimation.  

Usually, the most comprehensive information can be derived from dynamic measurements. Four 

characteristic techniques, namely frontal analysis, elution by a characteristic point, perturbation 

method and peak-fitting are frequently found. They vary in the experimental effort and amount 

of substance required, the influence of kinetics on the measurement and the theoretical 

background (model availability) 111, 115. Adsorption isotherms in this thesis were solely derived 

through peak fitting. 

 

2.4.2.5 Design of continuous multi-column chromatography 

Besides the rapid development of new stationary phases, the modes of operation are most 

relevant for chromatographic process efficiency. Preparative separations are conducted, 

whenever possible, in continuous mode. An attractive (semi-) continuous mode is the so-called 

‘steady state recycling’ (SSR). Here, the feed mixture is injected batchwise onto a HPLC column 

and the leaving fractions are cut such, that pure fractions are harvested and removed from the 
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system, whilst fractions, which contain mixtures of e. g. the target and also the unwanted 

counter-enantiomer are fed back to the inlet of the column. These impure fractions are injected 

again together with fresh feed in a cyclic mode. Compared to a classical batchwise HPLC 

operation, much higher productivities can be obtained 116-118. However, the operation of such a 

system is demanding since the cut times need to be determined very accurately. A major 

advantage is the intensified usage of the (expensive) stationary phase material.  

Another more frequently found continuous operation mode is based on a serially connected 

setup of columns comprising two inlet ports for feed and eluent and two outlet ports for extract 

and raffinate. The feed, e. g. a solution containing a racemic mixture of an (R)- and (S)-

enantiomer, is pumped continuously into the column setup. In the simplest case, the setup 

consists of four so-called separation zones with e. g. two columns each (Figure 2.27). The feed 

enters between zone II and zone III and is pumped in clockwise direction through the columns 

towards zone IV. Provided, the (S)-enantiomer is retained less by the stationary phase, it will 

migrate faster through the columns and will reach the raffinate port faster. The mode of 

operation to be introduced here is called simulated moving bed chromatography (SMB) due to a 

simulated movement of the stationary phase in counter-current direction with respect to the 

mobile phase. The important counter-current movement is realised by discrete changes of the 

in- and outlets of the system. Thus, after a defined periode, the feed mixture will be fed into the 

system one position further up in clockwise direction (into the former zone III). The same 

applies to the position of removal of the raffinate. The discrete simultaneous port switching 

event causes a simulated movement of the stationary phase in counter-clockwise direction and 

the (R)-enantiomer, migrating slowlier through the columns, approaches the extract port, where 

it is collected continuously.  

 

Figure 2.27 Illustrative setup and description of flow directions and in- and outlet port shifts of a simulated 
moving bed process. 

The continuous removal of a raffinate fraction containing the pure (S)-enantiomer and an extract 

fraction with the (R)-enantiomer requires the rigorous control of the switching time and the 

internal flows through the columns. The assignment of columns to zones is hereby of conceptual 

aid. Each zone can consist of different numbers of columns and needs to fulfil different tasks. The 

different internal flow rates within the zones II and III are chosen such, that the binary feed 
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mixture separates. Well defined internal flow rates within zones I and IV and a corresponding 

eluent flow rate result in the complete regeneration of the mobile phase in zone IV and 

regeneration of the stationary phase in zone I, respectively.  

The development of SMB techniques has made significant progress over the last years and the 

classical processes has been modified and adapted successfully for numerous separation tasks 
108, 119, 120. Analogue to SSR techniques, an intensified usaged of the stationary phase takes place, 

leading to higher separation productivities compared to classical batch chromatograpy. Further, 

the specific solvent consumption is reduced, if a closed loop (Figure 2.27, outlet of zone IV is 

connected to the inlet of zone I) process can be realised 120. Comprehensive work on the 

theoretical description and optimisation of SMB processes has supported the general acceptance 

of SMB techniques, such that a number of SMB plants of industrial-scale for e. g. pharmaceutical 

and biotechnological applications were realised.  

The conducted experimental work and theoretical modelling within this thesis is based on 

continuous multi-column chiral chromatographic separation techniques and classical SMB 

modes of operation. It is possible, that other than the conducted continuous separation modes 

and also certain batchwise operating modes can achieve higher productivities. However, the 

obtained trends should remain the same and a generalisation of the findings with care should be 

possible.  

SMB techniques allow the continues processing of a binary feed mixture of enantiomers. The 

classical SMB setup comprises four identical zones i=I…IV arranged in a closed loop. The time 

between discrete port shifts tshift is defined by the column volume and the virtual solid phase 

flow S
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Mass balances around a single zone need to take into account the amount of solute, that is 

shifted backwards upon each discrete port shift. Thus, the simulated zone flow rate SMB
iV&

  
deviates from the ideal flow rate iV&  according to the following equation. Vtot denotes the 

additional volume from tubings, pumps and valves and ns denotes the number of columns. 
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It is advantageous to consider dimensionless flow rates mi in each zone i by normalisation of the 

zone flow rates .SMB
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Provided, very efficient columns (high NTP) are available and the system considered can be 

described by linear isotherms (nonlinear within limits), the so-called ‘triangle theory’ provides 

valuable information on the most promising choice of mi-values for a given separation problem 
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121, 122. However, e. g. in case of very few theoretical stages, parameter estimation procedures 

using numerical solvers are needed. In principle, the SMB process has five degrees of freedom by 

the four external flow rates (feed, eluent, raffinate, extract) and the time between port shifts. 

Typical constraints in the optimisation problem are the maximal flow rates within the columns 

limited by the maximal allowed pressure drop, the packing stability and/or the pumps used. The 

purities at the extract and the raffinate port and (more strictly) the full regeneration of zone I 

and IV are further constraints. The objective function can be defined by the productivity of a 

single or both components. Typical mathematical solvers for constrained and non-linear 

problems can be used to estimate promising operating points. Therefore, more comprehensive 

process models are needed (compare chapter 2.4.2.3), which are capable of reflecting the 

dynamics of the SMB process. 

Typically, semi-stationary concentration profiles over all zones are obtained after a few tens of 

shifts after the process start-up. From Figure 2.28 the internal spatial distribution of a binary 

mixture is given. Dotted lines represent the concentration profile at the beginning of a tact (in 

between two shifts), solid lines illustrate the same profiles right before the port shifting at the 

end of the tact. Both curves migrate towards zone IV and will be moved back at the port shift 

event. For the case given, the profile of component a) is always superimposed by component b) 

at the extract port, while pure component b) can be removed at the raffinate port.  

 

Figure 2.28 Spatially distributed quasi-stationary concentration profiles (dashed lines: stronger adsorbed 
component a), solid lines: less adsorbed component b); left profile: start of tact; corresponding right profile 
lines: end of tact).  

The concentration at both outlets is not constant over the duration of the tact, but is an 

increasing function at the raffinate port and decreases at the extract port (compare terminal 

concentrations in Figure 2.28). Periodic shifting of ports causes ‘reset events’ in the column 

profiles. Thus, the outlet concentrations within a tact (in between two shifts) are a function of 

time. These profiles appear as a series of subsequent ‘saw-teeth’. The purified amount of e. g. 

(S)-enantiomer at the raffinate port within a given period of time is obtained from integration 

and summation of the ‘saw-teeths’ for all tacts within the given period. 
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2.4.3 Coupling of single processes  

A common figure can be drawn for the majority of physical separation methods: the overall 

productivity decreases with increasing purity requirements. This applies to distillation as well 

as to membrane separation processes. In principle, product purity is likely to drop for selective 

crystallisation processes also, if the establishment of thermodynamic equilibria is dominated by 

kinetic effects through e. g. too high driving forces. However, the comparatively simple 

constructional design of crystallisers without chiral specific internals allows a cheap scale-up. 

This motivates the investigation of couplings of unit operations involving selective 

crystallisation. Further, crystallisation is the process of choice for product formulations in 

pharmaceuticals. In ideal cases chiral separation and product formulation can go hand in hand 

saving additional time.  

The process combination of continuous chromatography and selective crystallisation was 

investigated already in depth by a number of authors. Lowering the purity constraints on the 

chromatographic separation step resulted in much higher productivities 123-129. If the eutectic 

composition of a chiral system is exceeded by a chromatographic enrichment, the single 

enantiomer can be crystallised. Provided rapid crystallisation kinetics can be exploited, a 

eutectic composition close to 50 % and a pronounced gain in productivity of the pre-enrichment 

step at low purity constraints are available, hybrid processes can outperform chromatographic 

processes 125, 126, 128. If the crystallisation operation is significantly faster compared to the pre-

enrichment step, the design of the chromatographic separation step at low purity requirements 

is the limiting property to the overall productivity.  

All introduced hybrid processes are limited by the underlying SLE and the substance specific 

pre-enrichment, that is needed to be provided by the first enrichment step. Within this thesis a 

crystallisation process will be introduced, that requires no substance specific pre-enrichment. 

Instead, every asymmetry originating from a pre-enrichment step can be processed in the 

subsequent crystallisation step. The additional degree of freedom will alter the objective 

function of pre-enrichment processes and lead to different figures of the coupled process 

productivity. Subsequently, new process parameters need to be identified aiming to approach 

the process optimum.  

The newly designed hybrid processes will be evaluated and compared in terms of productivity 

enhancement and process stability. 
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of this system by Kuhnert-Brandstätter and Friedl 134 furnishes proof of dimorphism of the 

racemic compound and partial miscibility both for the enantiomers and the racemic compound. 

Nevertheless, inconsistencies within the literature remain among others due to the very limited 

experimental verification work, which has been undertaken for this system up to now.  

The motivation for the study described in this chapter was threefold. Firstly, a comprehensive 

investigation of the chiral Malic acid systems was intended aiming to overcome the remarkable 

diversity of phase interpretations present in the literature for this system. Secondly, it was also 

intended to provide a guideline towards a more rapid access to solid/solid and solid/liquid 

phase equilibria of systems exhibiting solid solutions. Further, an attempt was made to evaluate 

the possibility of enantioselective crystallisation for a system exhibiting large miscibility in the 

solid state and a eutectic composition of > 96 % optical purity 134. 

In a first step the binary melting point phase diagram was determined and analysed in order to 

elucidate the multiplicity of phases. Systematic solubility measurements of Malic acid in acetone 

provided a basis for the determination of the ternary phase diagram. Intensive usage of solid 

phase analysis by XRPD accompanied by ATR FT-IR measurements have become necessary to 

define the regions of existence of the two polymorphic forms of the racemic compound and to 

enable the allocation of mixed crystals to these forms. Time resolved results of the latter 

techniques were analysed in addition to track changes to the solid phases. The orientation of the 

tie lines in the ternary phase diagram allowed the assignment of characteristic areas to 

corresponding phases.  

In a second step it was evaluated whether the formation of partial solid solutions in this system 

can be kinetically altered in a desired manner with respect to chiral resolution from solution. 

Thus, the question was raised whether the first crystal formed is already of mixed type (as it will 

be in thermodynamic equilibrium). To study this problem the development of the solid phase 

was analysed after primary nucleation and during crystal growth. Finally, considerations 

regarding the molecular structure of Malic acid suggest an explanation of the formation of the 

corresponding particular solid solutions. Consequences for chiral separation of the Malic acid 

enantiomers are drawn and discussed.  

 

3.1.1 Experimental section 

Solid phase analysis 

The binary melting point phase diagram of Malic acid was determined by a combination of 

analyses of DSC melting curves and measurements of XRPD patterns.  

Different mixtures of (R,S)- and (S)-Malic acid were investigated with compositions over the 

whole relevant range. Substance mixtures were weighed to the determined composition with 

errors <0.1 wt%. A sufficient amount of deionised water respectively acetone as solvent was 

added (typically 5 mL) and the sample was gently stirred until complete dissolution occurred.  

The solid samples were dried in an oven at 323 K at vacuum and subsequently crushed and 

ground in a mortar. This procedure is claimed to be the most promising way to achieve the 

required homogeneous composition of molecularly dispersed solids 104. The prepared samples 

were split for DSC (DSC 131, SETARAM, France; closed aluminium crucibles, ~12 mg substance, 

1 K/min, 20 mL/min helium purge gas flow) and XRPD (X`Pert Pro Diffractometer (PANalytical 
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GmbH, Germany; X`Celerator detector, CuK-α radiation, 2θ range of 3-40°, step size of 0.017°, 

counting time of 50 s or 100 s per step) analysis respectively.  

The melting temperatures of the pure substances were taken from extrapolated DSC-onset 

temperatures within the heat flux/ temperature plane. Peak values were used to determine the 

liquidus line in case of mixtures. Passing the solidus line caused melting peaks, which 

disappeared for compositions exhibiting < 74 wt% of the (S)-enantiomer. The melting 

temperature was correlated by extrapolation of the appropriate onset temperature.  

Thermogravimetrical measurements of the racemic compound aiming to evaluate possible 

thermal degradation of Malic acid during the melting were conducted by use of a SETARAM 

TG- DSC 111 device. The applied heating rate was set to 1 K/min and the temperature range 

investigated was between 298 K and 473 K. 

Due to the plurality of phases in addition an ATR FT-IR Nicolet 6700 device (Thermo, GB, DTGS, 

scans: 32, res.:4 cm-1) was used to discriminate between polymorphic forms and between solid 

solutions.  

Determination of the ternary SLE 

Solubility data of Malic acid in acetone were available from previous studies 137 in the 

temperatures range of 293 K to 308 K. Additional data for elevated temperatures (up to 313 K) 

were determined in this work. Sealed flasks of 5 mL were used with a large excess of solid phase 

and the content was agitated by a magnetic stirrer. Above the liquid phase only very little vapour 

phase was present. All flasks were tempered in a water bath over at least 48 h to ensure, that the 

phase compositions got sufficiently close to thermodynamic equilibrium.  

Subsequently, the liquid phase was withdrawn quickly with a syringe and fed directly through a 

0.45 µm filter into a tempered density meter (Mettler-Toledo, DE40). By means of a calibration 

function, the saturation concentrations for the given temperature were obtained. Tie lines and 

hence borders of miscibility were determined from 15 different compositions at 298 K. The first 

five compositions were repeated once.  

Some samples were prepared in such a way, that their initial compositions were located clearly 

within the 2-phase area, while other samples were located within the 3-phase region of the 

ternary solubility phase diagram. The experimental procedure was based on the method for 

solubility measurements, except that both phases were analysed and the time for the samples to 

reach equilibrium had been extended to 10 days in order to ensure equilibration also of 

solid/solid-phase transitions.  

After the density measurement the liquid phase samples were dried by solvent evaporation at 

vacuum, dissolved in the applied HPLC eluent and analysed by chiral HPLC. The solid phase was 

filtered simultaneously and washed with n-Heptane. The dried material was dissolved in the 

eluent and analysed also by chiral HPLC. For this purpose a HP 1100 HPLC system (Hewlett-

Packard, Germany) equipped with an analytical chiral column (Phenomenex, Chirex 3126, 

Veluent=0.5 mL/min, 5 mM CuSO4 at pH 3.2 (acetic acid), vinj=2 µL, T=293 K, 254 nm) was used and 

the enantiomeric ratios of solid and liquid samples were determined. A change of the solvent of 

the samples became necessary since traces of acetone did cause unfavourable peak shifts.  

By analyses of both phases the accuracy and reliability of the measurement can be verified by 

use of mass balance calculations. This cross-check is necessary, since the analysis of the solid 

phase can suffer from the problem of adherent mother liquor.  
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Crystallisation from solution 

All crystallisation experiments have been conducted in an automated system (autoMATE, HEL, 

UK) equipped with standard probes for turbidity and temperature. The solvent volume was 

200 mL of acetone except for additional measurements of the metastable zone width (MSZW) 

(20 mL). The MSZW of the (S)-enantiomer and the racemic compound were determined prior to 

crystallisation experiments by means of the polythermal method by Nyvlt et al. 87.  

Primary nucleation was induced by cooling. A saturated solution (60 wt% of the (S)-enantiomer) 

was reduced by evaporation prior to the cooling ramp to facilitate crystallisation at elevated 

temperatures. Saturated solutions of acetone at 318 K have been supersaturated up to 122 % by 

evaporation of the solvent. Subsequent cooling with 1 K/h down to 293 K led to nucleation at 

temperatures between 315 K and 298 K (increase in turbidity). Samples of the liquid as well as 

the solid phase were withdrawn and analysed by chiral HPLC and XRPD periodically from that 

time.  

A slurry of saturated solution of acetone with a defined excess of solid (R,S)-Malic acid (stable 

polymorph) was used for seeding experiments. Crystallisation was initiated from solutions with 

different supersaturations S(c/csat)=1.12-1.27 and with different seed loads (2.0-14.2 mL seed 

slurry/ 0.4-2.9 g undissolved seeds). The solution was initially enantiomerically enriched 

(80 wt% (S)-enantiomer). Again, samples of the solid and liquid phase were withdrawn 

periodically after seeding and analysed by chiral HPLC and XRPD. 

A slurry of (S)-enantiomer/ acetone was further used for preferential crystallisation 

experiments. 5 mL of seed slurry (2.5 g undissolved seeds) were used for seeding of two 

enantiomerically enriched solutions (85 wt%/ 92 wt% (S)-enantiomer, 200 mL each) of the 

same supersaturation. Solid and liquid phases were analysed periodically after seeding.  

 

3.2 Discussion of results 

3.2.1 Derivation of phase diagrams  

Solid phase identification by XRPD 

All solid phase samples were analysed by a high precision XRPD device. NaCl (<1 wt%) was used 

as an internal standard to assure that shifts in the patterns are clearly recognised. For most of 

the samples Malic acid did not crystallise completely and few amorphous material was present 

additionally. Some measurements were affected by the distinct preferred orientation of the 

crystals (e. g. Figure 3.2, f)). Therefore the quality of the obtained patterns varied significantly. 

Six specific XRPD patterns of crystallisations of different Malic acid mixtures from acetone are 

shown in Figure 3.2. The racemic compound was crystallised herein from water additionally. 

The patterns represent all recognised phases of the Malic acid system. It can be differentiated 

amongst the patterns of the (S)-enantiomer and the stable racemic compound by the existence 

of the main reflection at ~20° respectively ~24° 2θ. The solid particles of the racemic 

compound, crystallised from water, show much less crystallinity. This phase has a lower melting 

temperature, consistent with the metastable racemic compound. This β-form can be identified 

also by XRPD by the shift of the reflection at 20.1° (stable α-form) towards 20.4° 2θ. The shift of 

the reflection accompanies the findings from ATR FT-IR measurements in the next section.  
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The powder pattern of an (R,S)-Malic acid sample (crystallised from water) was recorded once 

directly after evaporation of the solvent and again after 17 hours. Any mechanical stress on the 

sample has been avoided (no grinding) to prevent the metastable form transforming into the 

stable analogue. Therefore the prepared solution was put directly on the sample carrier for 

drying. The same treatment was done on an (R,S)-sample from acetone for comparison 

purposes. It was found that the sample from water changed its structure overnight towards the 

pattern known from the stable form, while the sample from acetone was already the stable 

modification and remained unchanged.  

The XRPD patterns of mixed crystals (denoted MC in the following) exhibiting concentrations of 

lower than 70 wt% (S)-enantiomer showed a typical shift of the main reflection of the (R,S)-

crystal at ~20° 2θ towards smaller angles. This shift was in accordance with changes of the 

lattice due to incorporation of the enantiomer in excess. This aspect is discussed in the following 

section. Up to a fraction of 85 wt% (S)-enantiomer no XRPD patterns of the pure (S)-enantiomer 

were found. This is surprising since from DSC measurements the area of miscibility was 

considered to be smaller than 74 wt% (S)-enantiomer (see next but one section). Instead, a 

fourth pattern was found. The pattern c) of Figure 3.2 represents a sample of 77 wt% (related to 

dry matter) of the (S)-enantiomer and shows explicit differences with respect to the patterns of 

the stable racemic compound and the enantiomer. Two new reflections at 23.3° and 24.1° 2θ 

were observed, while the specific reflection of the metastable β-form at 20.4° remained constant. 

This allows an interpretation, that involves more than one stoichiometric compound. Andersson 

et al. 136 claimed that an ‘anomalous racemate’ exists in the Malic acid system exhibiting an 

enantiomeric ratio of 2:1. Thus, the question was raised whether this pattern represents a mixed 

crystal involving the metastable racemic compound (MCM, case A) or whether this is a non-

racemic compound (compound II) exhibiting a (hidden) dystectic or peritectic point (case B). 

The solid phases for both possible cases are summarised in Table 3.1. 

 

 

 

 

Fraction of the (S)-enantiomer 

a), 100 wt% 

 

b), 86 wt% 

 

c), 77 wt%, MCM 

d), 61 wt%, MC 
 
e), 50 wt%, β-form 

f), 50 wt%, α-form 

Figure 3.2 XRPD patterns of the enantiomer a), the two polymorphs of the racemic compound e)/f) and two 
different mixed crystals d)/ c) and a mixture b). 
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The pattern b) represents a sample of the solid phase of 86 wt% (S)-enantiomer. Superposition 

of the patterns of phases of the pure enantiomer and MCM is visible. Considering the case B the 

composition of the new compound is clearly below 86 wt%, probably close to 80 wt% of the 

(S)-enantiomer. In contrast to MC, no shifts of a certain reflection of this pattern due to changes 

of the composition of partial solid solutions have been determined.  

Table 3.1 Summary of observed solid phases. Common phases are denoted by full dots, open dots compare two 
possible interpretations. 

case A  

(Kaemmerer et al. 
90

) 

case B  

(Andersson et al. 
136

) 

• (S)-enantiomer 

• stable racemic compound (α-form) 

• metastable racemic compound (β-form) 

• mixed crystals involving the stable α-form (MC) 

o mixed crystals involving the 

metastable β-form (MCM) 

o existence of a 2:1 stoichiometric 

compound II  

 

Solid phase identification by ATR FT-IR 

Solid phase samples were investigated by ATR FT-IR in order to obtain a better insight into the 

phase variations by use of an orthogonal measurement technique. Some spectra of solid phase 

samples from the measurement of tie lines are drawn together with the (S)-enantiomer and the 

two forms of the racemic compound in Figure 3.3 and Figure 3.4. It can be seen from both figures 

that the spectra of the stable racemic compound (α-form), the (S)-enantiomer and the 

metastable racemic compound (β-form) differ significantly in the range of 500-1000 cm-1 and in 

the range of 3200-3600 cm-1. For the latter variations in the oscillation of the hydroxyl group 

due to differences in the intermolecular bonds appear to be likely. 

  

Figure 3.3 FT-IR spectra of the five recognised solid phases in the 
fingerprint region. MC is very similar to the stable racemic 
compound, while MCM clearly resembles the metastable 
compound between 800 and 1000 cm-1. 

Figure 3.4 FT-IR spectra at higher 
wavenumbers. The spectrum of the 
metastable racemic compound MCM 
appears completely different. 

The series increases by the amount of the (S)-enantiomer. The spectrum of the α-form of the 

racemic compound is very similar in comparison with the spectra from samples of 61.5 wt% and 

66.1 wt% (S)-enantiomer. By contrast the spectra of samples composed of 78.4 wt% and 

84.1 wt% (S)-enantiomer agree with bands of the β-form in the range of 800-1000 cm-1, in 
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particular at 920 cm-1. The samples show the band of the (S)-enantiomer at 650 cm-1 

additionally.  

Interpretation of DSC results 

In the TG-DSC analysis up to a temperature of 408 K (<< 1 wt%.) only minor thermal 

degradation of Malic acid was observed. Thus, results of the DSC should be hardly influenced 

from that side and the measured enthalpy and temperature of fusion can be considered as 

accurate. Accelerated substance degradation occurs above the melting temperature. 

Unfortunately, liquid Malic acid did not recrystallise upon cooling. Therefore an often conducted 

procedure (mechanical mixing of enantiomers→ heating and melting→ cooling at different rates 

and recrystallisation→ slowly heating), which can indicate the formation of metastable phases, 

was not feasible. 

DSC measurements of the pure (S)-enantiomer and the (R,S)-Malic acid showed melting 

temperatures of 376 K and 401 K and specific melting enthalpies of 197 J/g and 249 J/g 

respectively. These values are in good agreement with data obtained by Ceolin et al. 135: 376 K, 

402 K and 200 J/g, 250 J/g.  

Figure 3.5 exemplifies measurements obtained from physical mixtures of the enantiomers 

between 50 wt% and 76.5 wt% of the (S)-enantiomer. The heat flow curves show a stepwise 

disappearance of the eutectic melting peak with decreasing fraction of (S)-Malic acid in the 

mixture. This observation is a hint for the existence of mixed crystals in the region. Instead of 

melting of the single enantiomer, continuous melting of the racemic compound together with the 

incorporated enantiomer occurs up to the liquidus line.  

 

Figure 3.5 DSC curves of physical mixtures of Malic acid enantiomers in the vicinity of the limit of solid 
solutions. The eutectic melting peak disappears between 70.5-68.9 wt%. The melting curves of the pure 
enantiomer and the racemic compound are shown additionally. 

A composition with 68.9 wt% (S)-enantiomer features no peak for the eutectic line, while 

samples with a slightly higher fraction of the (S)-enantiomer show deviations from a straight 

baseline. Mixtures of higher excess of the (S)-enantiomer led to a typical melting curve with one 

peak representing the eutectic temperature and the second peak indicating the temperature at 

the liquidus line for this  
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composition. Thus, boundaries of the partial solid solutions at elevated temperatures can be 

identified by DSC measurements. From literature a lower melting β-form of the racemic 

compound is known 134, 135. While Ceolin found the β-form preferably after crystallisation from 

acetone and the α-form from water, here the complementary case was observed; the α-form was 

mainly obtained from acetone. The measured thermodynamic properties of this lower melting 

form ( ,),( K395T f
SR = gJ225h f

SR /∆ ),( = ) furnished proof that the same phase was 

considered (Ceolin et al. 135: ,),( K396T f
SR =  gJ225h f

SR /∆ ),( = ).  

It was found that the rate of supersaturation generation induced by solvent removal through 

evaporation has major effects on the formation of a particular polymorphic form. Fast 

evaporation of the solvent favoured the formation of the β-form for both used solvents. 

Nevertheless, the metastable form was obtained from acetone by fast solvent removal at vacuum 

only, while this form crystallised from water from much lower evaporation rates also. 

Subsequently the generation of the stable α-form from water was obtained from very low 

evaporation rates only.  

Kuhnert-Brandstätter and Friedl 134 investigated the Malic acid system in order to explain 

certain discontinuities of the liquidus line and found the β-form finally. They claimed the 

interception of the regions of existence of the two polymorphs to cause a discontinuous liquidus 

line. This implies that the polymorphic forms are of enantiotropic type and a transition 

temperature was suggested to be close to 393 K. Unfortunately, no experimental work was 

undertaken in this regard. Thus, a larger sample of the β-form was kept clearly below this 

transition temperature for three weeks at ambient temperature. Fractions of the sample were 

taken for regular DSC measurements. After two weeks a fraction of the remaining sample was 

put to an oven and kept at 353 K to enhance the kinetics of solid phase transitions. The 

temperature was still 40 K below the supposed transition temperature. Figure 3.6 shows the 

heat flow curves obtained from the DSC measurements. The initial sample at t=0 days melted at 

395 K.  

 

Figure 3.6 Time resolved DSC heat flow curves of an identical sample of the metastable racemic compound  
( β -form) over three weeks. A second melting peak appears, indicating the transformation of the metastable 
towards the stable modification of the racemic compound (bold lines indicate storage of the sample at ambient 
temperature, while thin lines represent annealing of the sample at 353 K). 
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A peak shoulder having its origin in the highe

weeks a solid phase transition towards the higher melting phase was visible. The transition was 

accelerated by higher temperatures; after three weeks the stable higher melting phase was 

present only. Thus, the observed β

The relationship of the two modifications is in agreement with the 

melting at higher temperatures has the larger heat of fusion (

Figure 3.7 summarises the results obtained from DSC measurements as well as the conducted 

phase analyses. Triangles on the right half represent DSC peaks (liquidus line) and onset values 

of eutectic melting peaks. The initial slope of the solvus line can be derived from t

temperature of the ‘eutectic’ melting peaks close to the area of solid solutions. Lines, which are 

drawn through, represent curves calculated by equations of Schröder and van

Prigogine-Defay (2.39). Both equations were applied in their 

contribution of the two heat capacity terms which tend to compensate mutually

composition of the stable system 

3.7) was found to differ only slightly from the calculated intersection of the two liquidus lines. 

The small gap between the eutectic point and the pure enantiomers did not allow reasonable 

statements regarding partial miscibility in this narrow region. 

Figure 3.7 Binary melting phase diagram of 
corresponding two different liquidus lines are shown. The differently shaded areas in the right half o
stand for the areas of mixed crystals
respectively. The same colours in the left section 
liquidus and the solidus line of MC and MCM
lines: assumed phase boundaries drawn to guide the eye

The upper liquidus line represents the stable α

metastable β-form. No intersection

monotropic type as stated above. The 

used for the description of the liquidus lines as described. 

values of the mixtures (Figure 

could be easily assumed, since the two liquidus lines seem to confine the area of th

XRPD measurements confirmed, that the stable form was present prior to the DSC 

measurements. It should be noted that for systems, which exhibit monotropic behaviour, any 

A peak shoulder having its origin in the higher melting form is present here already. During two 

weeks a solid phase transition towards the higher melting phase was visible. The transition was 

accelerated by higher temperatures; after three weeks the stable higher melting phase was 

the observed β-form was a monotropic modification of the stable α

The relationship of the two modifications is in agreement with the heat of fusion rule

melting at higher temperatures has the larger heat of fusion ( f
SRh ),(∆ ). 

the results obtained from DSC measurements as well as the conducted 

phase analyses. Triangles on the right half represent DSC peaks (liquidus line) and onset values 

ting peaks. The initial slope of the solvus line can be derived from t

melting peaks close to the area of solid solutions. Lines, which are 

drawn through, represent curves calculated by equations of Schröder and van

). Both equations were applied in their simplified form without the minor 

contribution of the two heat capacity terms which tend to compensate mutually

composition of the stable system was calculated to 96.7 wt%. The experimental valued (

was found to differ only slightly from the calculated intersection of the two liquidus lines. 

The small gap between the eutectic point and the pure enantiomers did not allow reasonable 

statements regarding partial miscibility in this narrow region.  

Binary melting phase diagram of Malic acid. The two modifications of the racemic compound and the 
corresponding two different liquidus lines are shown. The differently shaded areas in the right half o

mixed crystals of the stable (MC) and the metastable racemic compound (MCM), 
he same colours in the left section (0-50 wt% (S)-enantiomer) represent the areas between 

C and MCM (triangles: measurements; bold lines: calculated curves; dotted 
assumed phase boundaries drawn to guide the eye). 

The upper liquidus line represents the stable α-form, the thinner lower line indicates the 

form. No intersection of the two lines is visible due to polymorphism of 

monotropic type as stated above. The heat and temperature of fusion of the three phases were 

for the description of the liquidus lines as described. It is assumed that the measurement 

ure 3.7, triangles) must not be assigned to the metastable phase. This 

could be easily assumed, since the two liquidus lines seem to confine the area of th

XRPD measurements confirmed, that the stable form was present prior to the DSC 

measurements. It should be noted that for systems, which exhibit monotropic behaviour, any 
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r melting form is present here already. During two 

weeks a solid phase transition towards the higher melting phase was visible. The transition was 

accelerated by higher temperatures; after three weeks the stable higher melting phase was 

form was a monotropic modification of the stable α-form. 

heat of fusion rule 22. The form 

the results obtained from DSC measurements as well as the conducted 

phase analyses. Triangles on the right half represent DSC peaks (liquidus line) and onset values 

ting peaks. The initial slope of the solvus line can be derived from the decaying 

melting peaks close to the area of solid solutions. Lines, which are 

drawn through, represent curves calculated by equations of Schröder and van-Laar (2.17) and 

simplified form without the minor 

contribution of the two heat capacity terms which tend to compensate mutually 16. The eutectic 

. The experimental valued (Figure 

was found to differ only slightly from the calculated intersection of the two liquidus lines. 

The small gap between the eutectic point and the pure enantiomers did not allow reasonable 

 

acid. The two modifications of the racemic compound and the 
corresponding two different liquidus lines are shown. The differently shaded areas in the right half of the figure 

the stable (MC) and the metastable racemic compound (MCM), 
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of the three phases were 

It is assumed that the measurement 
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XRPD measurements confirmed, that the stable form was present prior to the DSC 

measurements. It should be noted that for systems, which exhibit monotropic behaviour, any 
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heating simplifies the transition of the metastable phase towards the stable phase 138. Thus, it is 

possible that the phase transition can take place already before or during melting of the 

metastable phase.  

The dashed lines in Figure 3.7 define, in addition, assumed phase areas. The hatched region in 

the left half of the figure (25-50 wt% of the (S)-enantiomer) indicates the existence of mixed 

crystals of the stable racemic compound (MC) and the enantiomer in excess, while the 

(underlying) gray region represents the limits of the equivalent region for mixed crystals of the 

metastable racemic compound (MCM). It should be noted that the eutectic melting occurs at 

slightly lower temperatures in the case of the metastable form and the width of the area of solid 

solution is extended (15-85 wt% of the (S)-enantiomer). The latter is exemplified in the right 

half of the figure (gray area: region of existence of mixed crystals involving the metastable form 

(MCM); hatched region: stable form- MC).  

At this point both, the interpretation given by Figure 3.7 and the proposed 2:1 compound by 

Andersson et al. 136, are possible options. The latter, case B, is shown in Figure 3.8 for 

completeness. Here, the liquidus line of an additional compound II is drawn, leading to a 

peritectic point at the intersection with the liquidus line of the racemic compound (bold lines). 

The (underlying) gray region represents again the limits of the region of partial solid solutions. 

Small deviations regarding the eutectic composition can be explained easily by this figure. 

Tabora et al. have shown 32, that the correct intersection of the liquidus lines should be 

described by use of the thermodynamic properties of the additional compound II.  

 

Figure 3.8 Another interpretation of the binary phase diagram showing a second compound. The interpretation 
is confirmed by the measured melting points and the XRPD pattern of MCM, while tie lines determined in the 
next section proved this option to be impossible (triangles: observed melting peaks; open dot: determined 
melting point of the metastable racemic compound). 

The presence of the additional phase cannot be derived from DSC or XRPD measurements alone. 
The results obtained here illustrate the need for a combination of different measurements 
techniques. Tie line measurements are necessary to clarify which phase interpretation is correct 
and which is wrong. 
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S/L-equilibria and tie lines of the Malic acid/acetone system 

The ternary phase diagram was estimated on the basis of solubility isotherm measurements at 

five temperatures (Figure 3.9a: 293 K, 298 K, 303 K, 308 K, 313 K) and again with the knowledge 

of the slopes of certain tie lines (Figure 3.9b). All measurements were restricted to the half of the 

(S)-enantiomer, since both sides of the phase diagram must appear in symmetric manner. Full 

squares in Figure 3.9b indicate the initial composition of the tie line measurements at 298 K. 

Open signs link the resulting compositions of the liquid with the solid phase.  

a) b) 

  

Figure 3.9a/b Determined phase equilibria of the solubility isotherms in the Malic acid/acetone system at 293, 
298, 303, 308 and 313 K. Solubility increases with temperature. Full dots (initial composition) and open dots 
(composition of the solid and liquid phase after equilibration) denoted results of measurements, lines are guide 
to the eye. The eutectic composition shifts slightly towards lower optical purity with increasing temperature. 
The right half plane of b) shows the determined tie lines at 298 K. The left half plane allows the direct 
comparison with the slopes of tie lines in a system exhibiting a hidden peritectic. 

For completeness, the possible tie lines for a dystectic or peritectic point of a second compound 

as discussed above were sketched in the left half plane. Its existence can be ruled out from 

Figure 3.9b, since reasonable agreement of the tie lines in the left (existence of compound II) and 

right half plane (measurements) of Figure 3.9b is not given. Thus, a partial solid solution 

involving the metastable racemic compound (MCM) must exist and indeed the determined tie 

lines fit well to the interpretation introduced in Figure 3.10. The ternary phase diagram 

involving the stable and the metastable modification of the racemic compound are shown in a 

decoupled manner in Figure 3.10b.  

The eutectic composition of the stable compound identified by equilibriation experiments was 

identified to be slightly higher (98.5 wt%) in comparison to DSC results (96.7 wt%). This may be 

due to the large difference in temperature between the melt and the solution. As a consequence 

the outer 2-phase region, denoted as D, is very limited in size and the inner 2-phase region 

dominates the phase diagram. The latter area is even extended, since a large area of partial 

solubility needs to be considered (capital letters A/ B in Figure 3.10a/b). 
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Figure 3.10a/b Description of phases in the ternary phase diagram. (R,S) α-/β-form: stable/metastable 
racemic compound; EU, α-/β-form: point of eutectic composition in the system involving the stable/metastable 
racemic compound; A in a): 2-phase area of MC and saturated solution; B in b): 2-phase area of MCM and 
saturated solution; C in b): 3-phase area of the enantiomer, MCM and the saturated solution of eutectic 
composition (EU, β-form); D in b): 2-phase area of the enantiomer and the saturated solution; C and the 
difference of B and A together yield the second 3-phase region, which is made up of MC, the enantiomer and 
the saturated solution of eutectic composition (EU, α-form). 

The tie lines given can be assigned to four different regions according to the capital letters A-D: 

 A: MC: Incorporation of the (S)-enantiomer into crystals of the stable racemic 

compound. No other solid phase was found from XRPD and ATR FT-IR measurements for these 

samples. The measured solid phases close to the racemic compound do not exhibit a ratio of 1:1 

but up to 70 wt% of the (S)-enantiomer according to the tie lines and results of DSC 

measurements. Therefore the intersection with the baseline is shifted from the centre of the 

diagram (at 0 wt% acetone) towards the side of the (S)-enantiomer. The mass balances of these 

tie lines are fulfilled regarding the two enantiomers in the liquid and the solid phase. It is 

assumed from the conducted measurements, that the limit of the partial solid solution of the 

stable racemic compound is not shifted by temperature. 

 B: MCM: The second region contains tie lines with solid phase compositions in the 

range of 15-~85 wt% (S)-enantiomer. The amount of the metastable phase increases 

continuously whilst the solid phase composition approaches the side of the enantiomers. Solid 

phase samples exhibited XRPD patterns of MCM, incorporation of the (S)-enantiomer into the 

lattice of the metastable racemic compound took place. Since the performed DSC measurements 

are based on the stable racemic compound only, it can be followed that incorporation of the 

(S)-enantiomer into the lattice of the metastable compound occurs at even larger extent. 

Nevertheless (very weak) reflections of the (S)-enantiomer could be determined. Additionally, 

patterns of MC were found. It is presumed that this was due to incomplete washing of the 

crystals.  

 C: The third region (3-phase region: metastable racemic compound/ 

(S)-enantiomer/ saturated solution) is defined by an increase in solubility and large differences 

in the XRPD patterns. The patterns of the metastable racemic compound are accompanied by 

intensive reflections of the (S)-enantiomer patterns.  
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 D: Region D is the domain of the pure enantiomer and the saturated solution. Due to the 

narrow region of existence no experiments have been performed here. The metastable racemic 

compound becomes the prevailing crystalline phase at higher enantiomeric excess. Thus, the 

curves of the isotherms cannot be assigned completely to the stable form of Malic acid crystals. 

Region B spans over large parts of the region A, but the metastable compound is not stable in 

this area. It was found from some solid phase samples, that the eutectic composition was shifted 

to lower enantiomeric excess whilst higher solubility was determined. It is evident, that the 

composition of the eutectic point depends on the prevailing phase and so does the phase 

boundary between regions D and C.  

 

3.2.2 Modelling of solid/solid interactions 

Deviations of experimental data in Figure 3.7 from the calculated lines are due to the non-ideal 

behaviour of the substances in the melt and in the solid phase. The approach by Prigogine and 

Defay (Eq. (2.39)) is inadequate for this system between 25-75 % (S)-enantiomer, since the 

equation is limited to cases, in which miscibility in the solid phase does not exist and activity 

coefficient are therefore unity. Thus, the application of Eq. (2.39) is thermodynamically 

consistent only at the outer regions. Correlation of the measured data and the NRTL model 

(Eqs. (13)-(18) of Table 2.1) leads to the curve of the liquidus line in Figure 3.11. The area 

between 25-75 % (S)-enantiomer was estimated by the model, too. Larger deviation between 

the model correlation and experiments were found mainly in the latter section; these can be 

attributed to the non-idealities in the melt and the discussed model insufficiencies. There are a 

few approaches for solid phase compounds of different compositions in the recent literature 

(Tabora et al. 32, 139), but partial solid solutions have not been modelled in more detail so far. A 

consistent approach, that accounts for the miscibility of enantiomers in the solid phase by use of 

a simple activity coefficient model is proposed below. It is related to a model by Slaughter et al. 
140. 

 

Figure 3.11 Liquidus line as obtained from the 
approach by Prigogine and Defay and the NRTL 
model. 

 

Figure 3.12 Liquidus line as obtained from an 
approach considering non-ideal mixing in the solid 
state. Dashed lines represent the computed 
corresponding solidus line. 
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The relation of the species in the solid phase and in the liquid phase can be expressed by a 

general chemical reaction equilibrium. The reaction equilibrium constant K is hereby described 

by the Gibbs free energy of reaction ∆G and a prefactor A. 
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Eq. (3.3) can be derived for the given binary system of the enantiomers (S) and (R), with zi being 

the fractions in the solid phase and s
iγ  being the corresponding activity coefficients.  
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The interactions in the solid phase are considered to be rather complex. It is not clear, whether 

any model, that has been developed in the frame of fluid phase interactions is capable of 

reflecting non-ideal solid phase behaviour. For this reason as a rather simple approach the 

1-constant Margules equation (Table 2.1, Eqs. (1)-(4)) was chosen and evaluated, being aware of 

its physical limitations. In order to estimate the three parameters A, ∆G and Aij (Eq. (3.2); Table 

2.1, Eq. (3)) a relation of the composition of the liquid and the solid phase needs to be assumed. 

At the racemic composition the liquid and the solid phase composition coincide, while at the 

eutectic composition of the liquid phase, the composition of the solid phase is the limit of the 

solid solution, i. e. 75% (see chapter 3.2.1). The simplest function is given by a linear 

interpolation in between these boundaries. In summary, the activity coefficients for the liquid 

phase were applied as derived for Figure 3.11 and the 1-constant Margules equation and Eq. 

(3.3) was fitted again against the determined liquidus curve data. 

Table 3.2 Optimised parameters for the representation of partial solid solutions of Malic acid. 
 

Relation for xi/zi f(x(S))=0.54348x(S)+0.22826 

NRTL α   9.1625e-2 

∆g12   2.7241e4 kJ mol
-1

 

∆g21 -1.5609e4 kJ mol
-1

 

1-constant  Margules A12   3.0592e2 kJ mol
-1

 

Reaction equilibrium constant K A   3.7351e4  

∆G -3.7333e4 kJ mol
-1

 

The obtained parameters are given by Table 3.2 and the resulting liquidus line is shown in 

Figure 3.12. The agreement of the prediction with experimental values has improved clearly, 

moreover the proposed functional relation of the liquidus and the solidus lines appears to be 

feasible. Thus, the Malic acid system provides one example, for which interactions in the solid 

phase are very relevant for the course of the liquidus line. The simple model introduced here, 

provides one approach, that accounts explicitly for non-idealities in the (partial) solid solution.  
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3.2.3 Considerations regarding the molecular structure  

Three crystal structures of Malic acid are known– the enantiomer and two polymorphs of the 

racemic compound 135. In addition two regions of partial solid solutions of compositions in the 

range 30-70 wt% and 15-85 wt% (S)-enantiomer are found. Within this chapter the three 

known crystal structures are investigated for a structural understanding of this behaviour. 

In all three structures, the carboxylic acids form hydrogen-bonded dimers, which are then linked 

into chains. This is a common motif for linear dicarboxylic acids e. g. terephthalic acid 141-143 and 

adipic acid 144 in solution and also in the crystalline phase. There are various bonding options, 

both intra- and intermolecular, for the hydroxyl hydrogen atom.  

The XRPD patterns, the unit cell parameters and the atom configuration of the three crystal 

structures have been used as taken from the Cambridge Crystallographic Data Centre 145 (CCDC). 

Unfortunately, not all hydrogen positions are available from the database.  

There is one conformation in the structure of the stable racemic compound (Z’=1, Figure 3.13). 

The carboxylic acid groups are not co-planar but twisted. The chains contain alternating (R) and 

(S) molecules linked ‘head to head’ and ‘tail to tail’. The carboxylic acid groups are linked by 

intermolecular hydrogen bonds. 

 

Figure 3.13 Molecular structure of the dicarboxylic acid chain of the stable (R,S)-Malic acid (α-form)  
(heterochiral (R)-(S)-(R)-(S); ‘head-head’, ‘tail-tail’). 

There is further one conformation in the structure of the metastable racemic compound (Z’=1). 

This conformation is very similar to the conformation in the stable racemic compound (Figure 

3.14). The chains contain alternating (R) and (S) molecules linked ‘head to tail’. Intermolecular 

hydrogen bonds are denoted only, since the positions of hydrogen atoms of the carboxylic acid 

groups and the hydroxyl groups of this compound are not listed in the CCDC database. 

 

Figure 3.14 Molecular structure of the dicarboxylic acid chain of metastable (R,S)-Malic acid (β-form) 
(heterochiral (R)-(S)-(R)-(S): ‘head-tail’). 

The chains of the (S)-enantiomer contain two crystallographically independent molecules (Z'=2) 

that alternate. The conformations of these two molecules are significantly different. One 

conformation is very similar to that observed in the racemic compounds. The other differs 

significantly in the relative orientation of the two carboxyl groups, which are much more nearly 

co-planar. This allows the hydroxyl hydrogen to form an intramolecular hydrogen bond with an 
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oxygen atom of the carboxylic group, as shown in Figure 3.15. The linkages between molecules 

in the chain are alternately ‘head to head’ and ‘tail to tail’.  

 

Figure 3.15 Molecular structure of the dicarboxylic acid chain of (S)-Malic acid (homochiral (S)-(S)-(S)-(S); head-
head; tail-tail). 

The strongest intermolecular bonds in all three structures are the hydrogen bonds holding the 

chains together. These chains can form with either enantiomer or with both in equal 

proportions, i. e. they are not themselves chirally specific. This is consistent with the ability to 

form solid solutions. 

However the observations are more subtle. Two kinds of partial solid solutions are observed, 

and only from the racemic compounds (s. chapter 3.2.1). There is no evidence for solid solution 

formation in the enantiomer structure. Moreover from experimental findings only the stable 

racemic compound structures were found to accommodate non-stoichiometric R:S ratios in the 

range of 30-70 wt% (S)-enantiomer. 

The presence of two significantly different molecular conformations in the (S)-enantiomer 

structure prompted an investigation into the relative energies of these two conformations. A 

geometry optimisation method was applied on a chain of (S)-enantiomers of both conformations 

in order to identify the preferred conformation. The bond type has been adjusted manually and 

missing hydrogen atoms were added by use of the commercial software package Materials 

Studio 4.3 (Accelrys, USA). The DMol3 module was used for geometry optimisation. Hereby the 

type of the exchange-correlation potential was the Perdew-Burke functional (PB) and the local 

correlation was replaced by the gradient-corrected potential by Vosko-Wilk-Nusair (GGA-VWN). 

The basis for the number and type of atomic orbitals was DNP, version 4.0.0. Further the COSMO 

solvation scheme with parameters for the solvent acetone was applied. The calculations indicate 

that the energetically preferred molecular conformation (Figure 3.16) is similar to the 

conformation in the racemate structures.  

 

Figure 3.16 Structure of the (S)-enantiomer chain after DFT geometry optimisation. 

When the single enantiomer crystallises, a second, less energetically favourable conformation is 

present. It may be that this second conformation is necessary to create chains with a 

crystallographic repeat that can pack in a crystal structure. This would be consistent with the 

lower stability (lower melting point and melting enthalpy) of the (S)-enantiomer crystals.  

The structure of the stable racemic compound contains ‘head to head’ dimers of (R) and (S) 

molecules. Homochiral ‘head to head’ dimers are found in the enantiomer structure. It is 
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plausible that these could be incorporated into chains in the structure of the stable racemic 

compound. However the hydrogen bonding between the chains would be disrupted. Moreover, 

complete substitution of one enantiomer by the other does not appear possible. It is tempting to 

suggest that the structure of the stable racemic compound can accommodate an (R,S)-(S)-(S)-

(R,S) sequence, but not an (R,S)-(S)-(S)-(S)-(R,S) sequence. This would be consistent with a 

restricted stoichiometry of a solid solution of 66 wt%.  

The formation of partial solid solutions involving the metastable racemic compound cannot be 

explained from considerations on the molecular structure alone. The formation of chains 

consisting of metastable-(R,S)-(S) are hindered and presumably energetically unfavorable. 

Accordingly the changes to the crystal lattice should be larger. In fact, the recorded XRPD 

patterns vary substantially upon formation of the partial solid solution involving the metastable 

racemic compound. More detailed molecular modeling activities to investigate the solid state 

might help in future to figure out, which structure should be expected here. 

 

3.2.4 Chiral separation in case of occurrence of mixed crystals 

The initial and the final composition of a crystallisation process are determined by the 

thermodynamics, while the linking trajectory between the latter points is influenced by the 

crystallisation kinetics. It was further investigated in this work whether the solid phase 

undergoes a certain development of the crystal lattice composition during supersaturation 

depletion. Prior to these experiments, the metastable zone width (MSZW) was determined. Some 

results can be seen in Figure 3.17. 

The MSZW of the racemic compound depends largely on the applied cooling rate while the 

MSZW of the (S)-enantiomer remains constant close to 30 K. The largest MSZW (> 45 K) was 

obtained for a solution of eutectic composition. Nucleation experiments have been conducted at 

rather low enantiomeric enrichment of 60 wt% (S)-enantiomer for this reason. The first crystals 
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Figure 3.17 Results of the metastable zone width 
measurements of Malic acid in acetone 
(Tsaturation=318 K). The MSZW differ significantly for 
the (S)-enantiomer (circles) and (R,S)-Malic acid 
(diamonds). Squares denote a solution of 60 % (S)-
enantiomer. A solution of eutectic composition did 
not crystallise upon subcooling below 45 K 
(dashed line). Lines are guide to the eye. 

Figure 3.18 Concentration and composition trajectories 
after primary nucleation of an asymmetric mixture (60%) 
of enantiomers of Malic acid. The first crystals of MC show 
large incorporation of the enantiomer in excess. The 
(S)-enantiomer was released after 20 h and the MC 
crystals equilibrated. 
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obtained by primary nucleation upon cooling crystallisation showed larger incorporation of the 

(S)-enantiomer than deduced from the tie line equilibration measurements (Figure 3.18).  

The enantiomeric excess in the solid phase decreased during supersaturation depletion and 

pointed towards the equilibrium value. The enantiomeric enrichment in the liquid phase due to 

the formation of the described crystals and the subsequent release of the (S)-enantiomer from 

these crystals can be seen in Figure 3.18.  

Motivated by these findings, seeded crystallisation experiments have been conducted in order to 

investigate, whether the initial incorporation of the (S)-enantiomer in excess can be influenced. 

Preferential crystallisation is a suitable chiral separation technique for this kind of compound-

forming systems. The procedure was presented elsewhere in detail 105, 146 and was discussed 

briefly in section 2.4.1.2. In a first step a supersaturated solution is adjusted in such a way that 

the composition is located inside the 3-phase area of a ternary phase diagram. To this 

enantiomerically enriched solution in turns seed crystals of the enantiomer or the racemic 

compound will be provided in order to obtain periodically crystals of either the target 

enantiomer or to enrich the solution optically by crystallisation of the racemic compound.  

Feed material for preferential crystallisation is often of eutectic composition after partial 

separation by e. g. chiral chromatography. Nevertheless, the single enantiomer can also be 

preferentially crystallised from a much 

less enriched solution, which is relevant 

and attractive for cases of elevated 

eutectic compositions (as considered 

here: 98.5 wt%). The feasibility to 

separate this system by preferential 

crystallisation is, however, limited 

according to the observations made 

during this study.  

Firstly a slurry of the (S)-enantiomer 

was used as seeds and added to a 

supersaturated Malic acid/ acetone 

solution as described in the 

experimental section 3.1.1. The 

treatment of the seeds and the 

supersaturation of both points within 

the ternary phase diagram as shown in 

Figure 3.19 were the same. Repeated 

seeding within the gray area (A: full 

circle) resulted in dissolutions of the 

seed crystals, while seeding within the 

3-phase area (C: open circle with 

composition >90 wt% (S)-enantiomer) 

caused initialisation of preferential 

crystallisation of the (S)-enantiomer. 

This rather higher initial enantiomeric excess in solution was necessary to enter the 3-phase 

region and to initiate crystal growth. In a second step seed crystals of the racemic compound (α-

 
Figure 3.19 Section of the ternary phase diagram (313 K) with 
three phase areas (regions A/B/C: Figure 3.10). Seeding with 
crystals of the (S)-enantiomer inside region A (full dot): 
dissolution of the seeds. Seeding within the (limited) 3-phase 
region C (empty dot): crystal growth. 



3.2 Discussion of results 71 
 

form) were added to a supersaturated solution to force preferential crystallisation of the 

racemic compound. Upon crystal growth a large fraction of the (S)-enantiomer was incorporated 

in the solid phase. This effect was much more pronounced than expected. Sampling of the solid 

phase during crystallisation from an enantiomerically enriched solution exhibited a change of 

the optical enrichment within the MC crystals (Figure 3.20). 

 
 

Figure 3.20 Development of the solid phase (SP) lattice 
and composition after seeding with (R,S)-crystals 
(S=1.19; 6.75 mL seed slurry). 

Figure 3.21 Development of the composition of the 
solid phase (SP) with respect to the initial 
supersaturation. 

  

Figure 3.22 Development of the position of the main 
reflex of the racemic compound with respect to the 
initial supersaturation. 

Figure 3.23 Development of the composition of the 
solid phase (SP) with respect to the initial amount of 
seeds. 

The measured XRPD pattern of the stable racemic compound experienced only minor changes 

upon incorporation of the enantiomer in excess (Figure 3.2, patterns d) and e)). It was found 

that the change to the lattice is small but very specific. The larger the incorporation of the excess 

enantiomer and the consequent deviation from the equimolar ratio within the crystal, the larger 

was the shift of the main reflection at ~20.1° 2θ towards smaller angles. The change in the angle 

of the main reflection and the ratio of the enantiomers in the solid phase match up (Figure 3.20). 

Conducted TG-DSC experiments showed no evidence for substantial inclusion of mother liquor 

into the (R,S)-crystals. The direction exhibits a counter-trend with respect to the formation of 

the metastable phase (shift towards higher angles). This behaviour has been found for cooling as 

well as for seeding experiments. Further results of the seeding experiments with (R,S)-crystals 

20,075

20,100

20,125

20,15050

54

58

62

00 12 24 36 48

X
R

P
D

 /°
2θ

(S
)-

en
an

tio
m

er
 in

 S
P

 /w
t%

time /h

(S)-enantiomer in SP
(R,S)-seeds
XRPD of SP samples

00 12 24 36 48

55

60

65

70

(S
)-

en
an

tio
m

er
 in

 S
P 

[w
t%

]
time [h]

 S=1.12
 S=1.19
 S=1.27

6.75 mL Slurry

00 24 48 72 96

20,140

20,130

20,120

20,110

po
si

tio
n 

of
 th

e 
m

ai
n 

re
fle

x 
[°

2T
he

ta
]

time [h]

 S=1.19
 S=1.27

(6.75 mL seed slurry)

00 01 02 40

60

70

80

(S
)-

en
an

tio
m

er
 in

 S
P 

[w
t%

]

time [h]

 14.2 mL Slurry
   2.0 mL Slurry 

(S=1.27)



72 3 Study of solid phases in the Malic acid system 
 

(α-form) and different initial conditions are shown by the following Figure 3.20 to Figure 3.23. 

The amount of the (S)-enantiomer within the solid phase increased always directly after seeding.  

Large differences were observed in the composition of the crystals by variation of the initial 

supersaturation (Figure 3.21 and Figure 3.22) at constant seed masses. The incorporation of the 

enantiomer in excess was especially large beginning with low supersaturations.Thermodynamic 

equilibrium was approached faster for larger driving forces. The formation of racemic crystals 

was not observed. The crystal lattice of the seeds was highly distorted if only a small seed 

amount was added. Incorporation of the enantiomer in excess was obviously kinetically 

favoured with respect to crystallisation of the racemic compound. For all cases an initial 

‘overshoot’ of the 2θ value of the main reflection was detected, followed by a slow approach 

toward the ‘equilibrium’ 2θ value.  

Any excess incorporation of the target enantiomer into crystals of the solid phase is especially 

unfavourable in terms of preferential crystallisation, because the mother liquor lacks the desired 

enantiomer. In principle the liquid phase should be enriched with the target enantiomer upon 

seeding with the racemic compound.  

 

3.3 Summary 

Within this chapter the binary phase diagram of Malic acid has been determined aiming to 

clarify the crystallisation behaviour for an example of a complex chiral system. The 

discontinuities of the liquidus line, which were proposed in literature as the result of an 

‘anomalous racemate’ could be associated to the formation of partial solid solutions of the 

system. It was shown that the racemic compound crystallises in two different polymorphic 

forms. The lower melting metastable form obtained from water was not stable over time and 

was of monotropic type. Solvent mediation was of minor importance, since the metastable phase 

was obtained from water as well as from acetone at high solvent evaporation rates. The 

mechanism whether the metastable or the stable form was obtained from crystallisation, 

remaines still unclear. 

It was observed, that in solution both the metastable and the stable racemic compound allowed 

the incorporation of non-stoichiometric quantities of the enantiomer in excess resulting in two 

phases (MC and MCM). This accounts for a stabilisation of the metastable racemic compound at 

large enantiomeric excesses in solution. While the disappearance of eutectic melting peaks for 

compositions ≤70 wt% of the enantiomer served as a good guide to estimate the limits of partial 

solubility of MC also in solution, a region of partial miscibility of MCM could not be identified. A 

simplified model was developed and applied for the quantitative description of the partial solid 

solution of MC. 

The conclusions drawn from the results concerning the eutectic compositions and the extent of 

solid solutions are consistent with the data from solution studies. Five crystalline phases were 

obtained in total in crystallisation experiments from solution. The XRPD patterns of MC and 

MCM were consistent with two possible interpretations of the Malic acid system. Additional tie 

line measurements have become necessary to rule out the existence of a second intermediate 

compound of defined composition and proved that MCM is a second solid solution. 
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Investigations concerning the two regions of possible partially miscibility at the pure 

enantiomer sides of the melting phase diagram did neither confirm nor deny the existence of 

mixed crystals, since the regions were rather narrow. 

Neither XRPD pattern nor FT-IR spectra or DSC measurements alone were found sufficient to 

clarify the co-existence of the different solid phases, that were found. The conducted additional 

elaborate experiments appear to be necessary to describe the regions of existence of all 

determined phases in a more quantitative manner.  

The high eutectic composition (96-98.5 wt%) is not unfavourable for chiral resolution by 

crystallisation in general. Preferential crystallisation of the (S)-enantiomer was performed from 

solutions of smaller enantiomeric excess within this work. The major drawback was found in the 

formation of the large area of partial solid solutions of MCM, which was necessary to overcome 

by pre-enrichment of the mother liquor. Another difficulty in optical resolution of this system 

was recognised: enrichment of the mother liquor through crystallisation of the racemic 

compound was less successful, since large amounts of the target enantiomer were incorporated 

into the crystalline phase. All conducted crystallisation experiments yielded trajectories by 

which the thermodynamic equilibria were indeed approached. Experiments have shown that 

during the initial supersaturation depletion mixed crystals of even higher enantiomeric excess 

were formed. The lower the initial supersaturation and the seed mass, the slower equilibration 

took place and the higher the initial lattice distortion.  

The study of the complex Malic acid system exemplified that extensive phase analysis can cause 

a multiplicity of possible consistent but also misleading phase interpretations. Important aspects 

of the formation of partial solid solutions of Malic acid were investigated. The findings 

contributed to the thermodynamic as well as to the kinetic understanding of the behaviour of 

such chiral system. The structured approach described here can serve as a guideline of how to 

determine the presence or absence and the extent of solid solutions and to assess the feasibility 

of chiral resolution for systems of enantiomers characterised by such complex phase behaviour.  

A more comprehensive description of the conducted experimental work and conclusion drawn 

on the Malic acid system was published in the Journal of Crystal Growth and Design 90. 

 

 

 





 

 

 

 

 

4 Solid/liquid equilibria in chiral systems 
 

More than the absolute values for the solubility of an enantiomer in a given solvent, the shape of 

a corresponding solubility isotherm in the environment of a pair of enantiomers and one or 

more solvents is of interest for chiral separations. In particular the slopes of solubility isotherms 

and the eutectic composition are decisive for the ease and adaptability of known separation 

schemes for a specific solvent/substance system. While the measurement of binary systems can 

be done comparably fast and simple analytical techniques can be used (no demand for chiral 

specificity), the determination of thermodynamic data in the ternary or quaternary space is 

more cumbersome and chiral analysis techniques become necessary. Results on the model-

based estimation of such data from binary systems considering different types of chiral systems 

and thermodynamic models are presented in the following. Within this chapter different models 

were evaluated, both on the basis of model compounds and further on compounds of 

pharmaceutical relevance. Hereby, an estimation model approach was combined with a 

correlative model to allow for predictions of chiral-specific interactions. Examples are given, 

how solvent systems can be tailored to simplify chiral separations by crystallisation.  

The sources of thermodynamic data of the systems considered are referenced in the following 

sections. Individual data were obtained from the literature, sources of the research group of 

Physical and Chemical Foundations of Process Engineering’ at the Max Planck Institute 

Magdeburg and, when missing, from own measurements.  

 

4.1 Modelling conglomerate-forming systems 

4.1.1 Investigated systems 

Three chiral systems have been investigated exemplarily for this class of systems. The choice 

comprises an amino acid and an active pharmaceutical ingredient (API) in two different 

solvents. Emphasis was spent on their characteristic SLE properties and the theoretical 

description thereof.  

Threonine/water 

The amino acid Threonine is besides Asparagine the only proteinogenic amino acid, that does 

not form a racemic compound. Thermodynamic data on this compound is available from a 

number of publications 147, 148. The molecular structure of the four stereoisomers was given 

already in Figure 2.1. This study is focussed on the pair of L-Threonine (2S,3R) and D-Threonine 

(2R,3S). 

Commonly, amino acids decompose upon heating before melting occurs. This applies also to 

Threonine. Differential scanning calorimetry cannot be used to derive neither the heat of fusion 

nor the melting point and these important properties need to be estimated. The group 
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contribution method by Marrero et al. 149 reveals a melting point of 579.5 K and a latent heat of 

fusion of 38.4 kJ/mol for (2S,3R)-Threonine. Herein, the estimation was based on so-called 

second order groups. The average deviation of the estimation method is known to be smaller 

than 16 %. The obtained parameters can be used as suitable initial values and are supposed to 

vary within the given uncertainty during further optimisation procedures 83, 148. In this case the 

parameters were kept as provided and have not been optimised further. 

In Figure 4.1 the dependency on temperature of the solubilities of (2S,3R)-Threonine (full 

diamonds) and racemic Threonine (open dots) in water is illustrated. The solubility of the single 

enantiomer deviates largely from the ideal solubility (dashed line) as provided through 

Eq. (2.17) using the heat and temperature of fusion above.  

The multicomponent NRTL model (s. Table 2.1, Eqs. (13)-(18)). with the expressions for two 

components in the case of a single enantiomer in solution (c=2) or three components in the case 

of a mixture of two enantiomers in solution (c=3) (i,j: constituents) was used to quantify non-

ideal interactions in the solution. The three binary model parameters α13, ∆g13 and ∆g31 

(1)(2S,3R)-Threonine, 2)(2R,3S)-Threonine, 3)water) were estimated by minimisation of the 

objective function OF and the gap between the composition depending solution temperatures at 

saturation and the temperatures of the experiments. The used Matlab (MathWorks, USA) routine 

utilised a Nelder-Mead optimiser.  
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The parameter search was restricted to reasonable ranges. Temperature dependency of the 

activity coefficients was implemented in the NRTL model by the expressions provided in Table 

2.1 (Eqs. (15) and (17)). Third and higher-order interaction terms of the NRTL model were 

neglected and consideration of the symmetry of the system allowed for a simplification of the 

model ( 3231231332312313 ααααgggg ===== ,∆∆,∆∆ ).  

  

Figure 4.1 Experimental solubility data of the single 
enantiomer and racemic Threonine in water 

147
. Lines: 

NRTL model with different parameterisations 
(3-parameters and 6-parameters) 

147
 and ideal 

solubility (lower dashed line). 

Figure 4.2 Predicted ternary solubility isotherms 
compared to experimental data points from 
Sapoundjiev et al.

147
 at T=283.15K, 293.15K, 303.15K, 

307.15K, 310.15K, 313.15K and 316.15K. 

Firstly, only solute-solvent interactions were considered and heterochiral interactions among 

the enantiomers were neglected. This implies that the non-idealities among the solvent and each 
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enantiomer (1/2) were the same. Application of the NRTL model using the obtained parameters 

for the estimation of the solubility of racemic Threonine gave limited accuracy (dotted line). 

Apparently, the additional presence of the (2R,3S)-enantiomer causes pronounced heterochiral 

interactions, that need to be taken into account. Therefore, α13, ∆g13, ∆g31 were set fixed, while the 

objective function was used again in order to identify α12, ∆g12, ∆g21 (2)(2R,3S)-enantiomer) by 

minimising the gap to the solubility data of racemic Threonine. The obtained 6-parameter model 

fits both the solubility of the single enantiomer and the solubility of the racemic mixture very 

well. The predicted solubility within the ternary phase diagram of both enantiomers in water 

reveals a good agreement with all available experimental data of Figure 4.2. It is remarkable, 

that the obtained solubility isotherms run almost in parallel to the sides of the phase diagram 

despite the observed pronounced non-ideality in solution. A trial confirmed, that also large 

changes to the (comparably uncertain) heat and temperature of fusion can not render the 

solubility ideal. It is tempting to suggest that the combination of the specific heat and 

temperature of fusion, the solute/solvent interactions and the (weaker) heterochiral 

interactions contribute to the almost linear solubility isotherms by coincidence. Consequently, 

the chemical potentials of the species in solution, i. e. the driving forces for crystallisation, which 

can be derived from the NRTL model, vary substantially from the ideal case (compare Eq. 

(2.34)).  

The relation of the activity coefficients on temperature and on solution composition are 

reflected by Figure 4.4. Temperature dominates the changes in the activity coefficients for this 

system, while the activity coefficients appear to be almost composition-independent.  

The introduced methodology accelerates the access to the shape of specific solubility isotherms 

in the ternary phase diagram. The chemical potential of the solute in solution can be derived for 

every given composition within the range of the model parameterisation using the activity 

coefficient model. Further, the continuation of the solubility isotherms, i. e. the metastable 

solubility isotherms can be derived, which allows estimating the productivity of preferential 

crystallisation processes 150. The parameterised model may be used for the prediction of 

properties outside the known temperature and composition plane, but validation experiments 

are still crucial. Model parameters are listed in the appendix in Table A.1. 

  

Figure 4.3 Temperature dependency of the activity 
coefficients of (2S,3R)-Threonine in water at 
saturation. 

Figure 4.4 Dependency of activity coefficients of the 
single enantiomer on the composition and on 
temperature for T=273.15, 278.15,…,318.15 for the 
undersaturated (left) and the saturated (right) region. 
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N-methylephedrine/(S)-ethyl lactate and N-methylephedrine /(2R,3R)-diethyl tartrate  

A typical strategy to induce asymmetry within a system of enantiomers is the application of 

chiral molecules. These can be found immobilised as chiral stationary phases in 

chromatographic columns and also in chiral membranes. Consequently, the use of suitable chiral 

solvents might cause chiral discrimination either in terms of thermodynamics or kinetics or both 

in e. g. crystallisation processes. A chiral-specific thermodynamic effect would lead to different 

solubilities of the enantiomers in the chiral solvent and therefore to an asymmetric ternary 

phase diagram.  

Data from solubility measurements were available for enantiomeric compositions and 

temperatures ranging from 1:1 mixtures to the pure enantiomer and from (273 to 313) K for the 

API of N-methylephedrine (NME) in the two chiral solvents (S)-ethyl lactate and 

N-methylephedrine /(2R,3R)-diethyl tartrate within the research group. The molecular 

structures of the solutes and the two chiral solvents are given by Figure 4.5a)-d). 

   
   

Figure 4.5a)-d) Chemical structures of the solutes a) (1S, 2R)-(+)-N-methylephedrine and b) (1R,2S)-(-)-N-
methylephedrine and the chiral solvents c) (2R, 3R)-diethyl tartrate) and d) (S)-ethyl lactate. 

The introduced NRTL model was parameterised separately by binary solubility data of a single 

enantiomer of one of the solvents and evaluated in the ternary space 150. The conducted XRPD 

analysis revealed no additional or new phases (neither polymorphs nor solvates) differing from 

those of the pure enantiomers. The enthalpy of fusion and the melting temperature of the N-

methylephedrine enantiomers were available from repeated differential scanning calorimetry 

experiments. The predicted ideal solubility curves of the N-methylephedrine species in both 

solvents revealed deviations from experimental data (Figure 4.6 and Figure 4.7).  

  

Figure 4.6 Solubility of NME in (S)-ethyl lactate. 
Symbols, experimental data; lines, ideal and solubility 
according to the NRTL model. 

Figure 4.7 Solubility of NME in (2R,3R)-diethyl 

tartrate. Symbols, experimental data; lines, ideal and 

solubility according to the NRTL model. 
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Apparently, significant attractive forces exist between (S)-(-)-ethyl lactate/(2R, 3R)-(+)-diethyl 

tartrate and N-methylephedrine molecules. Interestingly, no chiral-specific interactions were 

found, the solubilities of both enantiomers were identical. This finding allowed for the same 

model simplification as in the case of Threonine/water 

( )3231231332312313 ααααgggg ===== ,∆∆,∆∆ . The model correlation in the case of (S)-ethyl 

lactate is satisfying. However, only limited data were available. Again, a satisfying agreement 

was observed for the second solvent (2R,3R) diethyl tartrate.  

Figure 4.8 and Figure 4.9 illustrate the resulting ternary solubility phase diagrams of the 

N-methylephedrine enantiomers in (S)-(-)-ethyl lactate and (2R, 3R)-(+)-diethyl tartrate. The 

diagrams show symmetrical mirror images with respect to the racemic axis, rather than 

asymmetry which is possible in chiral solvents. As known from the binary phase diagram of the 

chiral system, N-methylephedrine enantiomers do not form a racemic compound but rather a 

simple eutectic (conglomerate) system. The dashed solubility isotherms in the left figure are the 

prediction on the basis of the upper binary phase diagram.  

The solubilities of racemic mixtures are underestimated for all temperatures and the model 

agreement with solubilities of the single enantiomer is poor for some temperatures. The latter is 

a consequence of the less successful fitting of the binary phase diagram. The attempt to use 

solubility data of the racemic mixture to estimate the parameters α12, ∆g12 and ∆g21 allowed a much 

better agreement as denoted by the solid lines. Surprisingly, no parameterisation of heterochiral 

interactions was necessary for the systems involving (2R,3R) diethyl tartrate. The difference in 

ideal solubility isotherms and isotherms according to the parameterised NRTL model are shown 

in Figure 4.9 by dashed and solid lines, respectively. A rather good agreement with experimental 

data is visible. 

The temperature and composition dependency of the modelled activity coefficients is illustrated 

in Figure 4.10 and Figure 4.11. The γ-values are smaller in (2R,3R) diethyl tartrate, indicating a 

larger deviation from an ideal solution. The temperature effect is less pronounced in comparison 

to (S)-ethyl lactate. It is incongruous, that heterochiral interactions were found in only one of the 

two solvent systems, since these are considered as solvent-independent. A second fitting 

procedure omitting the solubility data points at the highest temperature in (S)-ethyl lactate, 

  

Figure 4.8 Solubility of NME enantiomers in (S)-ethyl 
lactate. Symbols, experimental data at 273.15 K, 
278.15 K, 288.15 K and 298.15 K 

150
; lines, ideal (w/o 

heterochiral interactions, dashed) and solubility 
according to the NRTL model (solid). 

Figure 4.9 Solubility of NME enantiomers in 
(2R,3R)-diethyl tartrate. Symbols, experimental data 
at 298.15 K, 303.15 K, 308.15 K and 313.15 K 

150
; lines, 

ideal (dashed) and solubility according to the NRTL 
model (solid). 
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which appear rather low yielded binary interaction parameters α12, ∆g12 and ∆g21, that improved 

also the accuracy within the ternary phase diagram of (2R,3R) diethyl tartrate. Thus, the 

introduced model is strongly sensitive with respect to the binary data and the number of 

available data points may be not sufficient for an unambiguous description. On the contrary, the 

accuracy of the ternary phase diagram is considered to be satisfying for process design.  

The general shape of both ternary systems is rather similar, while the solubility isotherms are 

clearly steeper in (S)-(-)-ethyl lactate than in (2R,3R)-(+)-diethyl tartrate. This aspect is 

reflected in the ratio of the solubilities of the racemic mixture and the single enantiomer. It has 

been determined for (S)-ethyl lactate to be about 2 (1.95 at 273 K, 2.14 at 298 K) and for (2R, 

3R)-diethyl tartrate to be significantly smaller (1.73 at 298 K, 1.49 at 313 K), revealing a clear 

deviation from ideal behaviour for this system (compare chapter 2.3.1). An ideal system always 

exhibits ratios equal to 2 according to the ‘double solubility rule’ by Meyerhoffer 26. One has to 

be aware that this statement does hold only in one direction. Also non-ideal systems like N-

methylephedrine in (S)-ethyl lactate can have ratios close to 2. The ratio means that the 

solubility of one enantiomer is not (strongly) affected by the other one. Ratios smaller 2 account 

for a decrease in solubility of one enantiomer in the presence of the other enantiomer. 

Accordingly, at large ratios, the solubility of one enantiomer increased significantly by the 

presence of the other enantiomer. It is known that the solubility ratios have a large influence on 

the possible productivity of preferential crystallisation strategies due to the change in the slope 

of the metastable solubility isotherms. This aspect will be discussed in chapter 5.1 in more 

detail. 

The study of the ternary systems of N-methylephedrine in (S)-ethyl lactate and (2R, 3R)-diethyl 

tartrate revealed no asymmetry, allowing for a simplified model description. The 

parameterisation of the NRTL model with binary solubility data in (S)-ethyl lactate was possible 

with limited precision. Consequently, the predicted ternary phase diagram represented only 

partly the experimentally determined values. Therefore, interactions between the enantiomers 

  
Figure 4.10 Activity coefficients of (S)-NME in (S)-
ethyl lactate (solid) and in (2R,3R)-diethyl tartrate 
(dashed). Bold lines indicate saturation conditions, 
thin lines to the left denote the undersaturated solid, 
thin lines to the right correspond to the 
supersaturated solution, respectively. 

Figure 4.11 Activity coefficients of the saturated binary 
system of NME in (S)-ethyl lactate (solid) and in 
(2R,3R)-diethyl tartrate (dashed) for comparison.  
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were considered and additional model parameters were introduced resulting in an improved 

agreement of experimental data and model prediction. In summary, the solid/liquid phase 

equilibria of N-methylephedrine enantiomers in (2R, 3R)-diethyl tartrate were predicted 

accurately on the basis of the model parameterisation using only binary solubility data. It is 

likely that more solubility data would provide a more congruent figure of the heterochiral 

interactions between N-methylephedrine enantiomers. For both solvents the magnitude of the 

solubility ratio was estimated correctly, while the general shapes of the bent solubility isotherms 

were not reflected well by the NRTL model prediction. It is concluded, that the use of the applied 

model offers reasonable improvements compared to the precision of predicted ideal solubilities, 

but the quality of the binary data basis remains decisive.  

The estimated model parameters and the used heats and temperatures of fusion for the systems 

are listed in the appendix in Table A.2 and Table A.3 respectively. 

 

4.1.2 Activity coefficients and the shape of solubility isotherms 

Often, the simultaneous presence of homo- and heterochiral interactions masks the individual 

relations of specific activity coefficients in solvent/solute systems on the corresponding ternary 

systems. Low activity coefficients shift the fraction of the single enantiomer alongside the outer 

axis towards the edge of the pure enantiomer. Homochiral interactions can further affect 

changes to the slope of the whole solubility isotherm in the ternary phase diagram; this applies 

also in the absence of heterochiral interactions. Pronounced deviations from ideality lead to 

either very steep or flat solubility isotherms in the ternary phase diagram. This is illustrated by 

the examples given in Figure 4.12 and Figure 4.13.  

  

Figure 4.12 Two cases of non-ideal solubilities. Low 
activity coefficients, system 1 (thin line); high 
activity coefficients, system 2 (bold line). 

Figure 4.13 Corresponding solubility isotherms in the 
ternary space. Low activity coefficients, system 1 (flat 
solubility isotherms, thin lines); high activity coefficients, 
system 2 (steep solubility isotherms, bold lines). 

Two theoretical systems are considered, that deviate strongly in negative and positive direction 

from ideal solubilities. The actual solubility is the same in both systems for the ease of 

comparison (dashed line). For modelling purposes the temperatures of fusion were assumed the 

same for both systems, while the heats of fusion differed by a factor of eight. System 1 (thin line) 

exhibits activity coefficients far below unity, its real solubilities are decreased in comparison to 

the ideal case. Parameterisation of a gE-model and estimations in the ternary space result in flat 

293 303 313
0

20

40

60

80

Temperature /K

S
ol

ub
ili

ty
 /m

ol
%

 

 

real solubility
ideal solubility, system 1
ideal solubility, system 2

  0

 20

 40

 60

 80

 0

20

40

60

80

(S)−enantiomer

so
lve

n
t

(R
)−

e
n
a
n
tio

m
e
r

100

100



82 4 Solid/liquid equilibria in chiral systems 
 

solubility isotherms (Figure 4.13, thin lines). An increase in solubility compared to the ideal case 

indicates activity coefficients above unity (Figure 4.12, bold line). The estimated solubility 

isotherms in the ternary space will exhibit a rather steep shape (Figure 4.13, bold lines). This 

might be unexpected from the point of view, that one enantiomer should not increase the 

solubility of another without heterochiral interactions in place. However, the presence of the 

second enantiomer affects the solute/solvent ratio and therefore the activity coefficients of all 

components in the mixture according to the applied gE-model. In other words, the probability of 

interactions among e. g. the (S)-enantiomer and the solvent is altered upon introducing the (R)-

enantiomer into a mixture, even if no heterochiral interactions between the (S)- and the (R)-

enantiomer are encountered. It was found in the course of analysing the compounds in this 

thesis, that the shape of non-ideal solubility isotherms in the ternary space can be well 

approximated by this model approach. However, this applies only to systems in the absence of 

heterochiral interactions. The latter can superimpose the discussed general trends. 

 

4.2 Modelling compound-forming systems 

4.2.1 Investigated systems 

The majority of known chiral systems reveal the formation of a compound in a distinct 1:1 

composition. Very few exceptions are known 32. A thermodynamic consistent model was 

developed and evaluated. It is introduced and explained for both model compounds, as Tröger’s 

Base, Methionine, Mandelic acid, Serine, Proline, 3-Chloro-Mandelic acid and two compounds of 

pharmaceutical interest- Propranolol hydrochloride and Bicalutamide. Further, a precursor to 

compounds of commercial interest was studied in this context. Unfortunately, its name and 

structure has to remain undisclosed according to a pending patent between the MPI Magdeburg 

and an industrial collaboration partner. It will be denoted UND in the following.  

The possibility to incorporate pronounced heterochiral interactions among a pair of 

enantiomers was investigated. 

 

4.2.2 Heterochiral interactions in solution 

Tröger’s Base/ethanol 

The isomerism of the enantiomers of Tröger’s base emanates not from a chiral centre situated at 

a central carbon atom, but from two stereogenic nitrogen atoms, that are bridged.  

a) 

 

b) 

Figure 4.14 Enantiomers of Tröger's base: (5S,11S)-(-)-enantiomer, a) ((S)-enantiomer for brevity); (5R,11R)-
(+)-enantiomer, b). 
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A thermodynamic model as well as the heats and temperatures of fusion and SLE data in ethanol 

were published by Worlitschek et al. 33. In this study, the model was refined and extended and 

yielded, in contrast to the former approach, thermodynamic consistent model parameters. As in 

the Threonine/water system, pronounced non-ideal solubility in solution was observed from the 

single enantiomer and the racemic compound, respectively. Figure 4.17 illustrates the large 

differences with respect to the ideal solubilities. The NRTL model was parameterised by 

correlating the solubility of the (S)-enantiomer to Eq. (2.17) with the same objective function as 

in the case of Threonine (Eq. (4.1)). The same assumptions on symmetry applied. The 

correlation between the model and the (few) experimental data from Worlitschek et al. 33 was 

good. 

  

Figure 4.15 Symbols denote the solubility of the single 
enantiomer and the racemic compound of Tröger’s 
Base in ethanol as published by Worlitschek et al. 

33
. 

Lines indicate ideal solubilities and the correlations by 
the NRTL model approach. 

Figure 4.16 Predicted ternary solubility isotherms 
compared to experimental data points (Worlitschek 
et al. 

33 
) at T=298.15K, 308.15K and 323.15K. 

The use of the parameterised activity coefficient model for the estimation of the non-ideal SLE of 

the racemic compound may save additional experimental work. The description of the approach 

requires to refer back to the thermodynamic derivation of the theory by Prigogine and Defay 

(Eq. (2.39)). Rearranging Eq. (2.33) reads 
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The definition of the partial derivatives of the terms on the right hand side can be written  

according to Eq. (2.34) as follows.  
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The first term on the right hand side of both equations vanishes, while the remaining terms can 

be obtained through differentiation of a suitable gE-model as given by Table 2.1. The solubility of 

a racemic compound can be derived from the ordinary differential Eq. (4.5), provided f
SRh ),(∆ = 
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dissh∆  (compare chapter 2.3). The integration limits are the heat of fusion of the racemic 

compound and the temperature of the solution of interest. Accordingly, the activity coefficients 

need to be taken at the solution temperature and at the temperature of fusion. 
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The estimated solubilities of the figure above (Figure 4.15, dotted line) agree well with the 

experimental data. The enantiomers do not show evidence of heterochiral interactions, that 

would contribute to the SLE. Application of the 3-parameters NRTL model on three solubility 

isotherms in the ternary phase diagrams yields 

good agreement with experimental data. A 

change of about 4 % in the eutectic composition 

for a temperature difference of 25 K was found 

from the data by Worlitschek (Figure 4.17). 

Inserting the ratios of the solubilities of the 

racemic compound and the enantiomer into the 

shortcut model introduced in section 2.3.1, a 

similar trend is observed. The same decaying 

curve is derived form the shortcut model fed 

with the heats and temperatures of fusion. A 

plot of eutectic compositions from the NRTL 

model coincides with these results. The scatter 

of measurement data of the eutectic 

composition is not unusual, since its determination requires the isothermal solid/liquid 

separation and often a solvent change for chiral chromatographic analysis becomes necessary. 

These steps can lead to experimental errors. It is not determinable, whether the model 

deviations from experimental data must be attributed to the model or errors in the (small) 

experimental data basis. However, it was possible to derive the ternary phase diagram from 

three data points only. Its accuracy is believed to be sufficient for further process design. The 

characteristic shift of the eutectic composition was estimated on the basis of the heat and 

temperature of fusion only. For this system no influence of the solvent on the eutectic 

composition was found. The absence of heterochiral interactions, disallows to describe changes 

in the general shape of the ternary phase diagram in other solvents. Though, the absolute 

solubilities will change, it is expected that for the same temperature, the same eutectic 

composition is found. This is in agreement with the postulate by Wang et al. 35. The estimated 

model parameters for the system of Tröger’s Base in ethanol are listed in the appendix in Table 

A.4. 

 

Methionine/water  

The system of the amino acid methionine (Figure 4.18) was studied with a particular view on the 

eutectic composition. Polenske et al. described a large change of this property between 273 K 

 

Figure 4.17 Eutectic compositions of Tröger’s base in 
ethanol- experimental data and model estimations 
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and 333 K in water 89. Methionine is not melt-stable and the heats and temperatures of fusion of 

the single enantiomer and the racemic compound need to be estimated. The introduced 

methodology by Marrero et al. 149 does not discriminate among the two solid species and thus, 

the obtained values for both species were considered as equal.  

Within the NRTL parameter estimation procedure, the initially estimated heat and temperature 

of fusion for the enantiomer were allowed to vary within the method uncertainty (16 %). The 

values for the racemic compound were allowed to vary freely within a physical reasonable 

range. Although or even hence, the heats and temperatures of fusion are decisive for the 

description of SLE, numerous largely different values have been published 83, 151. The few 

experiment-based data reveal, that (S)-Methionine does not melt below 549 K 152 or 581 K 153. 

The upper values was taken into account, while fitting the three binary NRTL parameters 

together with the heats and temperatures of fusion to solubilities of the enantiomer and the 

racemic compound.  

The binary solubility data by Polenske et al. 89 (Figure 4.19) exhibits pronounced differences 

with respect to the ideal solubilities (solid lines). The model-based solubility correlation 

involving solvent/solute interactions only agree well for the enantiomer (bold dashed line) and 

less good for the racemic compound (thin dashed line) indicating that heterochiral interactions 

are present. Incorporation of the solubilities of the racemic compound into the data set to be 

fitted and addition of three parameters for solute/solute interactions allowed a better 

agreement between model and experimental data (dotted line).  

a) 

 

b) 

 

Figure 4.18 (S)-enantiomer (a)) and (R)-enantiomer (b)) of Methionine (2-amino-4-(methylthio)butanoic acid). 

 
Figure 4.19 Solubility data of the single enantiomer 
(open squares) and the racemic compound (open dots) 
in water from Polenske et al. 

88
 Curves by the NRTL 

model.  

Figure 4.20 Eutectic compositions of Methionine in 
water- experimental data and model estimations. 
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Application of the shortcut model for eutectic compositions fails as illustrated by Figure 4.20. 

Both, consideration of the heat and temperature of fusion only and the non-ideality in solution 

(3-parameters NRTL model) yield straight lines, which cannot represent the experimentally 

determined eu
Sx )( -values. The additional consideration of heterochiral interactions (6-parameters 

NRTL model) led to a better agreement. Even though, the experimentally observed solubility 

ratios are well captured, the determined eutectic compositions by Polenske et al. are slightly 

lower for all temperatures (full symbols).  

A plot of the ternary phase diagram on the basis of the 3-parameters NRTL model led to a fair 

agreement with ternary experimental data between 274.15-333.15 K in Figure 4.21a). 

Apparently, the identified combination of NRTL parameters and the heat and temperature of 

fusion is promising. The simple estimation of ternary SLE based on the solubility of the 

enantiomer as the only input might serve already as a good basis for process design. However, 

since specific emphasis was given to the eutectic composition in the ternary space, the obtained 

estimate lacks accuracy.  

The addition of 3 parameters for heterochiral interactions yielded a better estimate for the 

eutectic composition, but the resulting estimate for the ternary space captured the solubility 

isotherms less good. It is likely, that the limitation to data of racemic composition is too 

restrictive for this system and cannot yield satisfying description of heterochiral interaction 

parameters. Thus, ternary data of selected solubility isotherms was used to identify a more 

suitable set of parameters for solute/solute interactions via a second fitting procedure. Figure 

4.21b) illustrates the resulting ternary system of Methionine enantiomer in water. The 

description of the eutectic composition and the overall accuracy was improved. The estimate 

shows high accuracies up to 313.15 K. The correct shape of solubility isotherms above this value 

is still reflected, but the model tends to overestimate the solubility values of the enantiomer, 

while underestimating the values for the racemic compound.  

All estimated model parameters and the heats and temperatures of fusion of this system are 

listed in the appendix in Table A.5 and Table A.6. 

  

Figure 4.21 Predicted ternary solubility isotherms based on the 3-parameters model (a)) and the 6-parameter 
model (b)), respectively. The estimates are compared to experimental data points at T=274.15 K, 293.5 K, 
313.15 K, 323.15 K, 333.15 K from Polenske et al. 
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On the estimation of heterochiral interactions from the melt:  

undisclosed chiral system UND 

This paragraph comprises studies of a pair of enantiomers, that were performed in the course of 

an- still ongoing- industrial collaboration with the MPI Magdeburg. Neither the common project 

nor the patent application have been finalised, thus the following data can be considered as 

foreground and the compound will not be named here.  

The two enantiomers of the undisclosed compound UND form a racemic compound in the 

crystalline phase, when crystallised from ethyl acetate. Measurement of the heats and 

temperatures of fusion of the racemic compound and the (R)-UND-enantiomer by differential 

scanning calorimetry yielded 24.0 kJ/mol, 398.7 K and 14.4 kJ/mol, 370.8 K, respectively. 

Solubility data in ethyl acetate were available from internal studies in the research group. The 

binary system of the (R)-enantiomer in that solvent showed a deviation from ideal solution 

behaviour by a factor of two. Interestingly, the ideal solubility of the racemic compound agrees 

well with experimental data. The system was analysed with the introduced methodology in 

order to explain the apparently different activity coefficients of the single enantiomer and the 

racemic compound Firstly, the parameters α13, ∆g13 and ∆g31 (1)(R)-UND, 2)(S)-UND, 3)ethyl acetate) 

were estimated by correlating the NRTL model to solubility data of the single enantiomer. The 

agreement between model and experimental data was good for the enantiomer, while the 

estimated solubility of the racemic compound was far below the determined values in solution. 

It is possible, that heterochiral interactions between the single enantiomers increase the 

solubility of a mixture in solution. This does not apply to a homochiral mixture of the 

enantiomers, since the determined solubility is significantly lower compared to the ideal case. It 

is assumed that the two contributions compensate each other mutually at the racemic 

composition, giving rise to the (misleading) assumption, that the racemic compound behaves 

ideally. Introducing the parameters α12, ∆g12 and ∆g21 allows a much better description of the two 

binary SLE. The latter parameters were found by correlating the NRTL model to the solubility 

data of the racemic compound (R,S). The obtained agreement with experimental data is 

illustrated by Figure 4.22. The estimated solubility of the single enantiomer remained, as 

expected, unchanged using this 6-parameters NRTL model. 

  

Figure 4.22 Solubility of the single enantiomer and 
the racemic compound of UND in ethyl acetate-
experimental data and model estimations.  

Figure 4.23 Melting point phase diagram of mixtures of 
(R)- and (S)-UND exhibiting compound formation 
(dotted lines: ideal SLE; solid lines: NRTL model). 
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In principle, binary heterochiral interactions should be reflected also by the melting point phase 

diagram. In the case of the UND-enantiomers only small deviations from the ideal liquidus curve 

were observed (Figure 4.23). However, the eutectic point deviates slightly towards a smaller 

value. It is tempting to quantify the binary interactions among the two enantiomers in the 

melting point phase diagram, since this can be derived quickly in comparison to solubility 

measurements. Only a few milligrams of substance are required. However, the estimation of the 

parameters α12, ∆g12, ∆g21 takes place at more than 40 K above the solution temperature. Often, 

the temperature dependency is decisive for activity coefficients as in the case of Threonine. 

Here, the parameterisation of the NRTL model using the data from the melt resulted in rather 

different model parameters. The plots of activity coefficients of the UND-enantiomer in the 

absence of ethyl acetate for different temperatures and compositions and the two parameter 

sets appear rather different (Figure 4.24/Figure 4.25). It should be noted, that the area 

corresponding to the melting point phase diagram gives similar results compared to the same 

area in the figure derived from the solution. It is likely that a set of NRTL model parameters 

exists, whose extrapolation agrees with Figure 4.24. Since no feasible methodology is known, it 

is believed that a parameter set obtained from DSC data cannot be transferred to gain detailed 

inside in solution behaviour. In addition, heterochiral interactions may be of different kind in the 

presence of the solvent and it seems to be advantageous to quantify heterochiral interactions 

directly from solution.  

A characteristic property of the chiral ternary system of UND-enantiomers in ethyl acetate, the 

eutectic composition, shifts to lower values at higher temperatures from the shortcut method 

(Eq. (2.43)). The trend was not observed from experiments (full symbols, Figure 4.26). On the 

contrary, the ratios of the experimental solubilities of the racemate and the single enantiomer in 

conjunction with the shortcut method yielded decaying eutectic compositions (open symbols, 

Figure 4.26). While the combination of the 3-parameters NRTL model with the shortcut method 

provided almost constant eutectic compositions of about 98 wt%, the full 6-parameters NRTL 

model in combination with the shortcut model yielded the same decaying trend.  

Direct measurement of the eutectic compositions from solution revealed a counter-trend- a 

slight increase with temperature was found here. Apparently the description by the simple 

  

Figure 4.24 Activity coefficients of mixtures of the 
(R)- and (S)-enantiomer according to the model 
parameterisation from solution (solvent free case, 
T=270, 275,…,400 K). The area used for parameter 
estimation is framed. 

Figure 4.25 For comparison: activity coefficients 
according to the model parameterisation from the melt 
(solvent free case, T=270, 275,…,400 K). Again, the area 
used for parameter estimation is framed. 
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shortcut model is not accurate if heterochiral interactions are present. The 6-parameters NRTL 

model reflected the rather little increase in eutectic composition with good accuracy. Figure 4.26 

summarises all results and illustrates the remarkable large differences in the predictions by the 

full NRTL model and the shortcut methods.  

The ternary phase diagram of the enantiomers in ethyl acetate is represented well by the NRTL 

prediction. There are significant differences in the solubility at the eutectic compositions at 

elevated temperatures. As discussed earlier, the compositions themselves were estimated 

accurately by the model. It is not clear, whether these deviations can be attributed to model 

insufficiencies or measurement uncertainties.  

The system of UND-enantiomers poses a more complex system, however with less pronounced 

non-idealities with respect to the solvent. Heterochiral interactions among the enantiomers 

proved to have large influences on the overall SLE characteristics. More detailed modelling is 

necessary to capture correctly the temperature depending change in the eutectic composition. It 

is assumed that the eutectic composition in other solvents will deviate from this example, since 

the interplay of the solute/solvent non-idealities and the present heterochiral solute/solute 

interactions compensated each other here by coincidence. The introduced methodology may 

serve as a guideline to characterise similar systems more quickly.  

The 2 sets of estimated model parameters for this system are listed in the appendix in Table A.7. 
  

  

Figure 4.26 Eutectic composition of UND-

enantiomers in ethyl acetate from experiments 

and models. 

Figure 4.27 Predicted ternary solubility isotherms for the 

system of (R)- and (S)-UND in ethylactete compared to 

experimental data points at T=283.15 K, 288.15 K, 293.15 K, 

298.15 K, 303.15 K, 308.15 K and 313.15 K. 
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Inflection point of activity coefficients in solution: Mandelic acid/water 

The system of mandelic acid enantiomers in water is well studied and comprehensive SLE data 

are available 88, 154, 155. (Semi-) empirical solubility models have been proposed, but no 

parameterisation of any classical gE-model was found. 

This might be due to the somewhat peculiar S-shaped 

solubility curve of both the racemic compound and the 

single enantiomer in water (Figure 4.29). Though, the 

physical cause was not investigated in detail, it was 

attempted to find a suitable thermodynamic 

description by the NRTL model. The proceeding might 

be permitted in the view of providing a quick 

assessment of the feasibility of chiral separations by 

crystallisation. However, the initial attempt to use a parameterised 3-parameters NRTL model to 

capture the solubility curve failed. The specific temperature-solubility relation demanded the 

addition of two parameters in order to describe the temperature-dependency of solute-solvent 

interactions in more detail. One approach frequently found uses a pair of parameters aji/aij and 

bji/bij. 

Tbaggg jijiiijiji +=−=∆  
(4.7) 

Figure 4.29 points up the large differences between experimental data and the ideal solubility 

curves of the racemic compound and the single enantiomer.  

  

Figure 4.29 Solubility of the single enantiomer and the 
racemic compound of Mandelic acid in water-
experimental data 

154
 and model correlations. 

Figure 4.30 Activity coefficients of (S)-Mandelic acid in 
water at saturation according to the model 
parameterisation. 

The obtained fit by the 5-parameters NRTL model represents the experimental data of the single 

enantiomer accurately (dotted line). Application of this model for the estimation of the real 

solubility of the racemic compound reveals an unsatisfactory agreement with the experimental 

data (thin solid line). Thus, it is assumed that the systems experiences variations to the SLE due 

to the presence of heterochiral interactions. Incorporation of these by addition of the 

parameters α12, ∆g12, ∆g21 for solute-solute interactions permitted a much better agreement with 

experimental data (dashed solid line). However, solubilities at temperatures in the middle 

region were slightly overestimated. The S-shaped solubility curve is reflected in the activity 
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coefficients of the NRTL model (Figure 4.30). An increase of γ-values is followed by a drop with 

increasing temperature. At 78 wt% the γ-value becomes smaller than unity.  

The use of temperature dependent model parameters led to a difficult situation with respect to 

the lower boundaries of Eq. (4.6). The activities of the enantiomers at solvent free conditions 

need to be considered at the temperature of fusion of the racemic compound, which is far above 

solution temperature. For the previous examples a correct description of these interactions were 

performed successfully by the parameter estimation procedure. The additional temperature-

dependent parameters did not allow to cover the large gap to the melting temperature. The 

activities of the enantiomers in the melt have therefore been set empirically to unity. This 

applied to the parameter estimation procedure as well as to the prediction of the ternary phase 

diagram. The latter represents the challenging phase behaviour of the enantiomers in solution 

quite well. The are two different shapes of the solubility isotherms for the single enantiomer 

corresponding to the inflection point of the activity coefficient curve. While the solubilities of the 

single enantiomer were predicted well throughout the whole temperature range, the prediction 

of the solubilities of the racemic compound suffered inaccuracies in the middle temperature 

range. This is a consequence of the fit of Figure 4.29.  

The eutectic composition is predicted with limited accuracy by the proposed model as 

illustrated by Figure 4.31 and Figure 4.32 on the next page.  

  

Figure 4.31 Predicted ternary solubility isotherms by the NRTL model compared to experimental data points 
from Lorenz et al.

154
 at T=273.15 K, 278.15 K,…, 333.15 K. 

The eutectic composition remains constant from the experiments, while a decaying slope is 

obtained from the shortcut method fed with the heats and temperatures of fusion and the full 8-

parameters NRTL model. It should be noticed that the solubility ratios are higher than 3, which 

is outside the physical range of the shortcut model introduced in section 2.3.1. Application of the 

shortcut model using the experimental solubility ratios and the 8-parameters NRTL model 

provides a peculiar curve, which is not relevant in physical terms. 
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Figure 4.32 Eutectic compositions of the enantiomers of Mandelic acid in water as given in the literature 
154

 
(full symbols), derived from the shortcut model and the experimental ratios of the solubilities of the 
enantiomer and the racemic compound (open symbols) and from the NRTL model (lines). 

The NRTL model variation proposed above appears to be a suitable option to correlate also 

more complex solubility behaviour over a large temperature range. The model assumption of 

ideality in the melt did allow the prediction of the ternary phase diagram and the eutectic 

composition with superior accuracy compared to a simple shortcut model. The investigated 

system proved that the knowledge of the ratios of solubilities is not a sufficient criteria to 

estimate (changes in) the eutectic composition. Binary solubility data and a gE-model together 

deemed to be a reliable basis for the estimation of characteristics of corresponding ternary SLE. 

All estimated model parameters for this system are listed in the appendix in Table A.8. 

Solvent-independency of heterochiral interactions:  

Mandelic acid/(S)-ethyl lactate and Mandelic acid/(2R, 3R)-diethyl tartrate 

In analogy to the NME system, also the thermodynamics of Mandelic acid in chiral solvents were 

investigated. Solubility measurements have been available in the chiral solvents (S)-ethyl lactate 

and (2R, 3R)-diethyl tartrate (compare chapter 4.1.1) or a number of enantiomeric compositions 

between the racemic compound and the single enantiomer for temperatures between 273 K and 

333 K 156. All binary solubility data considered is summarised in Figure 4.33 and Figure 4.34. No 

additional or new phases were identified other than the racemic compound and the enantiomers 

from the crystal lattice analysis by XRPD. The effect of temperature on solubility was more 

pronounced in (2R, 3R)-diethyl tartrate for the temperature ranges considered. All solubility 

values exhibited a significant deviation from ideal solubility for both chiral solvents. This raised 

the question whether the gap is due to speciation of the acid or other pronounced binary 

interactions with the two solvents. The NRTL-model as applied here accounts successfully for 

the latter and model parameterisation was done with negligible deviations for the 

(S)-enantiomer. 
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Figure 4.33 Solubility of the single enantiomer and the 
racemic compound of Mandelic acid in (S)-ethyl 
lactate -experimental data and model estimations. 

Figure 4.34 Solubility of the single enantiomer and the 
racemic compound of Mandelic acid in (2R, 3R)-diethyl 
tartrate -experimental data and model estimations. 

The NRTL model predictions match the determined values quite closely. Since the solubilities for 

both enantiomers (S)- and (R)-Mandelic acid were the same, the NRTL model result was plotted 

only for the (S)-Mandelic acid. The rather large deviations from ideality in both chiral solvents is 

exemplified in Figure 4.36 by means of plotting the theoretical activity coefficients of the (S)-

Mandelic acid as a function of temperature. While the values in (2R, 3R)-diethyl tartrate were 

already far from unity, the deviation from ideality in (S)-ethyl lactate is even more pronounced. 

In addition, the order of non-ideality in the two solvents is visible. A more comprehensive 

compilation of the activity coefficients according to the NRTL model also for under- and 

supersaturated solutions is given by Figure 4.35. The activity coefficients relevant for the 

determined solubility isotherms can be found on the thick lines and correspond to the values in 

Figure 4.36.  

 
 

Figure 4.35 Activity coefficients of (S)-Mandelic acid 
in (S)-ethyl acetate (solid) and in (2R, 3R)-diethyl 
tartrate (dashed). Solid lines represent saturation 
conditions. 

Figure 4.36 Activity coefficients of saturated solutions of 
(S)-Mandelic acid in (S)-ethyl acetate (dashed) and in 
(2R, 3R)-diethyl tartrate (solid). 

The prediction of the solubilities of the racemic Mandelic acid based on the activity coefficients 

for the enantiomer was improved significantly in comparison to the large gap between ideal 

solubility and experimental values. Nevertheless, larger deviations remained. It was assumed 

that this was due to pronounced heterochiral interactions among the enantiomers, which were 
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not yet incorporated in the model and required a re-parameterisation of the model by 

introducing the parameters α12, ∆g12 and ∆g21. The already obtained parameters α13 , ∆g13, ∆g31, 

α23, ∆g23 and ∆g32 were set fixed and the solubilities of the racemic compound were used to 

estimate suitable parameters to express the heterochiral solute-solute interactions. In principle, 

heterochiral interactions are solvent-independent properties. Thus, the interchange of the 

parameters α12, ∆g12 and ∆g21 between different solvent systems should be possible. Figure 4.37 

and Figure 4.38 compare the predicted ternary solubility phase diagrams and measurements of 

the Mandelic acid enantiomers in (S)-ethyl lactate and (2R, 3R)-diethyl tartrate, respectively. 

The solubility isotherms confirm the (unchanged) compound-forming character of the Mandelic 

acid system. The diagrams show symmetrical mirror images with respect to the racemic axis as 

observed in the case of NME in the same solvents. The predicted solubility isotherms were in 

good agreement with the measured solubility points in (S)-ethyl lactate in particular for lower 

temperatures. The determined solubility points in (2R, 3R)-diethyl tartrate are less well 

represented by the NRTL model prediction; the agreement is again better for lower 

temperatures. The solubilities in the region of the outer 2-phase region of the enantiomers are 

better captured than for the inner 2-phase region. The worst agreement is found for the 

solubilities at the eutectic compositions, while the eutectic compositions were fairly good 

derived by the model. The eutectic compositions remained unchanged with temperature at 69 % 

and 31 % (S)-enantiomer, respectively, in both solvents as it was also reported in earlier results 

for non-chiral solvents 157, 158.  

 

  

Figure 4.37 Predicted ternary phase diagram of 
Mandelic acid enantiomers in (S)-ethyl lactate. Solid 
lines: predictions based on a parameterisation of 
heterochiral interactions in ethyl acetate; dotted 
lines: predictions based on parameterisation of 
heterochiral interactions in (2R, 3R)-diethyl tartrate. 

Figure 4.38 Predicted ternary phase diagram of 
Mandelic acid enantiomers in (2R, 3R)-diethyl 
tartrate. Solid lines:  predictions based on 
parameterisation of heterochiral interactions in (2R, 
3R)-diethyl tartrate; dotted lines:  predictions based 
on parameterisation of heterochiral interactions in 
(S)-ethyl lactate. 

An important aspect of the two figures concerns the rather good agreement upon interchanging 

the model parameters for the heterochiral interactions. It has been possible to parameterise 

these in one solvent and to apply them in another. Consequently, the ternary phase diagram of 

Mandelic might be predicted on the basis of few measurements of a single enantiomer in an 

arbitrary solvent. If those binary data can be derived through an estimation model, an entirely 

measurement-free estimation of unknown ternary phase diagrams might be possible. 
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Disregarding heterochiral interactions led in this case to significantly underestimated 

solubilities of the racemic compound in both solvents (compare Figure 4.33 and Figure 4.34) 

and erroneous predictions with respect to the eutectic compositions.  

The presented thermodynamic modelling of the solubilities of Mandelic acid in two chiral 

solvents based on limited binary data yielded good results. As a matter of fact, even less data 

would have been sufficient, to allow for the estimation of the ternary phase diagrams. It is likely 

that the derived parameter sets can support the estimation of phase equilibria also in other 

solvents. 

The estimated model parameters for this system are listed in the appendix in Table A.10. 

 

Consequences of speciation in solution-limits of the presented approach: 

Propranolol hydrochloride/methanol, Propranolol hydrochloride/water 

The pharmaceutical compound Propranolol has been one of the first beta blockers on the market 

and is nowadays among other available in form of Propranolol hydrochloride. The enantiomers 

of Propranolol·HCl form a racemic compound in the solid phase 159. The melting point phase 

diagram and solubility data in at least two solvents is published 99. Within all phase diagrams the 

eutectic composition is found very close to the mirror axis. Thus, it is likely that heterochiral 

interaction among the enantiomers do not contribute to the SLE. This is supported by the ideal 

melting point phase diagram 159. On the contrary, the ternary phase diagrams in methanol and in 

water exhibit significant differences though, the eutectic composition remains constant. An 

attempt was made, to specify, whether the large differences in SLE can be explained on the basis 

of a gE-model in this work.  

 a)  b) 

   

Figure 4.39a)/b) Molecular structures of the (R)- and the (S)-enantiomer of 1-(1-methylethylamino)-3-(1-
naphthyloxy)-propanolol hydrochloride 

The heats and temperatures of fusion of the single enantiomer and the racemic compound 

provided in the literature deviate by up to 16% 99, 160. Here, the heats and temperatures of fusion 

were optimised within this range of uncertainty together with the NRTL model parameters α13, 

∆g13 and ∆g31 by correlation with the solubility data of the single enantiomer. The obtained 

agreement with respect to the racemic compound confirms the absence of pronounced 

heterochiral interactions. The predicted ternary phase diagram in methanol exhibits slightly 

steeper solubility isotherms compared to the non-ideal case. It resamples the measurements at 

293 K well. The eutectic composition decays from 59% at 273 K down to 55% at 313 K. The 

ternary SLE behaviour seems to be adequately described by the model. 

·HCl 

·HCl 



96 4 Solid/liquid equilibria in chiral systems 
 

  

Figure 4.39 Solubility of the single enantiomer and the 
racemic compound of Propranolol·HCl in methanol-
experimental data and model estimations 

Figure 4.40 Predicted ternary solubility isotherms 
and experimental data points of Propranolol·HCl in 
methanol at T=273.15 K, 283.15 K, 293.15 K, 
303.15 K and 313.15 K. 

Application of the same model to the system of Propranolol·HCl/water allows to describe the 

binary solubility of a single enantiomer in solution. In water the solubility is strongly suppressed 

in comparison to the ideal solubility. Interestingly, this applies only to the single enantiomer. 

The solubility of the racemic compound appears to be more ideal. Thus, transfer of the model 

parameters to the estimation of the solubility of the racemic compound leads to significantly 

lower solubilities, that do not represent the experimental values at all. A clear differentiation 

between homochiral and heterochiral pairs of enantiomers in solution must exist. The speciation 

in solution deviates from the melt and from the methanol solution.  

It is likely, that water molecules cause the chiral 

discrimination. A possible rational for the 

mechanism can be derived from the molecular 

structure. The Propranolol·HCl molecule 

consists of an unpolar section A and a section B 

(Figure 4.42), which contains more polar 

functional groups. Provided, that polar water 

molecules interact predominantly with section 

B, it is tempting to suggest, that this section is 

less good accessible to the solvent in a 

homochiral mixture. One explanation is given by 

the formation of AB-BA dimers in solution, that 

shield the B sections. Moreover, the dimer 

sequence must be chiral-specific. Considering 

the B sections, only (S)-(S) or (R)-(R) pairs are likely to form. The solubility of the racemic 

mixture is not  suppressed, probably due to the accessible B section, since no dimer formation 

takes place. Since this behaviour is not observed from methanol, it is assumed that water 

molecules exhibit a coordinating role in dimer formation. The distinct coordination of molecules 

in solution contradicts with the basic assumptions of the NRTL model. Indeed, it was not 

possible to identify any set of model parameters for heterochiral interactions, that allowed for a 

proper estimation of the ternary solubility behaviour observed in water (Figure 4.41).  
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Figure 4.41 Solubility of the single enantiomer and 
the racemic compound of Propranolol·HCl in water-
experimental data and model estimations. 
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Figure 4.42 Molecular structure of Propranolol·HCl divided into a polar section B and a less polar section A. 

In summary, modelling of the Propranolol·HCl systems yielded two results. Firstly, the 

compound belongs in general to the class of simple systems for which ternary solubility data can 

be derived on the basis of few binary solubility data. Secondly, the water system serves as one 

example, that shows up the limits of the gE approach. The speciation in solution can be followed 

directly from a single binary measurement of the racemic mixture. It is obvious, that the systems 

requires either extensive ternary measurements or a theoretically much more sound approach 

or both in order to get a hold on the specific SLE in water. 

The estimated model parameters and heats and temperatures of fusion for both systems are 

listed in the appendix in Table A.10 and Table A.11. 

 

4.2.3 Solvate formation  

Serine/water 

The system of the amino acid Serine in water is known to feature a characteristic eutectic 

composition very close to 100%. Comprehensive solubility data for the racemic compound is 

available from Dalton et al. 161 and for the (S)-Serine by Ferreira et al.. The ternary solubility data 

of a single solubility isotherm was published by Klussmann et al. 36. Further, several solubility 

models considering either the racemic compound or the single enantiomer were parameterised 

by several authors 151, 162.  

a) 

 

b) 

 
Figure 4.43 Molecular structures of (S)- and (R)-Serine.  

This study aimed to introduce a first thermodynamic consistent model for the ternary phase 

equilibria of Serine in water. Additional solubility data were determined in the course of this 

work. The heat and temperature of fusion of the compound were not available, since it 

decomposes prior to the melting. The proposed values in the literature range from melting 

points of 375 K for the enantiomer 163 up to 776 K for the racemic compound 164 and highlight 

the difficulty in their proper estimation. It is known from a database 152 that decomposition of 

(S)-Serine occurs at 493 K and thus, the melting point was expected to be close by or above this 

value. The group contribution method by Marrero et al. yielded a melting point of 588.9 K and a 

heat of fusion of 33.273 kJ/mol for the single enantiomer. These values were used as initial 
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values and have been optimised during the parameterisation procedure. As described earlier, 

16% variance was given as the model accuracy. The initial values for the racemic compound 

were taken as identical. Physical reasonable limits set the boundaries for the solver. The 

correlation of the solubilities of the single enantiomer with the NRTL model was generally 

possible. It is obvious, that the 3-parameters NRTL model together with the two heats and 

temperatures of fusion allow numerous possible parameter sets, that represent well the given 

solubility data. Surprisingly, it was not possible to describe the solubility of the racemic 

compound even after adjustment of its heat and temperature of fusion in addition. Apparently, 

heterochiral interactions are relevant. The attempt to fit simultaneously all parameters, 6 for the 

NRTL model and the 4 values for the heats and temperatures of fusion, to the solubility data of 

the single enantiomer and the racemic compound failed. No suitable set of parameters was 

found. XRPD analysis of the solid phase of the single enantiomer clarified the situation. A 

monohydrate of the serine enantiomer is known from the literature 165. However, Luk et al. 

described its formation to occur only above 303 K. The conducted XRPD analysis did prove the 

existence of the monohydrate at any temperature within the investigated range. 

In Figure 4.44 the patterns of the racemic compound (n°1), the anhydrous enantiomer (n°2) and 

patterns from the time-resolved analysis of a sample of the single enantiomer (n°3-6), 

crystallised from water at 283 K, are summarised.  

 

 

Figure 4.44 Time-resolved evolution of the solid phase of (S)-Serine after recrystallisation from water. A hydrate-
specific reflection at ~15° 2θ vanishes after time. Samples: n°1, (R,S)-reference; n°2, (S)-reference; n°3-6, 
identical sample at 20 min, 140 min, 200 min and 21 h. 

The result of the first XRPD analysis directly after recrystallisation showed distinct preferred 

orientation of the crystals at ~15° 2θ. The reflections indicates the presence of the monohydrate, 

which is stable for about 20 hours. The pattern of the latest analysis of the sample (n°6) were 

identical to the ones of the anhydrous sample n°2. The incorporation of water and also the 1:1 

stoichiometry were supported by a conducted TG-DSC experiment. For the racemic compound 

no changes to the solid phase were observed.  
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The general shape of the phase diagram 

under consideration is illustrated in Figure 

4.45.  

Taking into account that the obtained 

solubility values should actually be assigned 

to the monohydrate of the enantiomer, a 

much better correlation of the NRTL model 

to the experimental data was possible. The 

solubility data of both species was reflect by 

minor adjustments of the heats and 

temperatures of fusion and use of the NRTL 

model with 3 parameters. No decision was 

made on whether heterochiral interactions 

were present or not due to the high model 

sensitivity with respect to changes to the 

heats and temperatures of fusion.  

The outcome of the parameterisation 

procedure points up large discrepancies between the actual measurements and the ideal 

solubilities for both species. Despite the rich databases available, only own data were used for 

the model parameterisation (Figure 4.46, open symbols). Good agreement was found also for the 

literature values, except for some solubilities of the enantiomer at elevated temperatures from 

Luk et al. 165. The accuracy of the prediction of the ternary phase diagram compared to literature 

values and own data was acceptable. The general shape of the solubility isotherms and the 

important eutectic composition was captured well. Own experimental data points in the domain 

of the racemic compound were less well represented, while data at the solubility isotherm at 

298 K from Klussman et al. was predicted accurately. The eutectic composition was found 

slightly below 99% for all temperatures. From the experiments conducted, no dependency of the 

hydrate formation on temperature was found.  

One possibility to adjust the formation of the monohydrate is given by use of aqueous methanol 

or ethanol solutions. The alcohols suppressed the solubility and hindered the hydrate to form. At 

ambient temperature and ratios of 3:2 by mass of methanol and water, no characteristic 

reflections for the hydrate have been detected by XRPD analysis. In the case of elevated 

temperatures (353.15 K) ratios of 4:1 became necessary to force the formation of the anhydrous 

phase.  

Provided that no heterochiral interactions are present, the eutectic composition is assumed to 

remain the same in any solvent (-mixture) at the same temperature. Consequently, the caloric 

properties of the enantiomer are likely to change for the anhydrous form and the monohydrate. 

Thus, the relative solubilities of the racemic compound and the single enantiomer (or 

monohydrate) will vary and cause changes to the eutectic composition in solution. It was found, 

that the relative solubilities of the single enantiomer rise with respect to the solubilities of the 

racemic compound leading to even higher eutectic compositions. High alcohol content and low 

temperatures favour the formation of the anhydrous phase of Serine and also eutectic 

compositions, which are about 100%.  

 

Figure 4.45 Schematic representation of hydrate 
formation of the single enantiomer (compare chapter 
2.4.1.2). 
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The initial approach to model the system of Serine/water yielded failed. The insufficiency of the 

model to parameterise the apparently anhydrous system of serine, indicated erroneous 

assumptions. The single enantiomer of Serine was found to form a monohydrate between 

283.15 K and 353.15 K. Using the known stoichiometry, the revision of the model approach led 

to a good correlation between the NRTL model and binary as well as ternary experimental data. 

The hydrate formation was tailored using alcohols in order to investigate changes to the eutectic 

composition.  

The identification of the correct solid phase helped to overcome the fundamental error in former 

models approaches. Now, the chemical potential at any composition and temperature within the 

range of the parameterisation of the model can be derived directly using the presented 

thermodynamically consistent model. 

The estimated model parameters and the heats and temperatures of fusion for the system of 

serine in water are listed in the appendix in Table A.12 and Table A.13, respectively. 

 

  

Figure 4.46 Solubilities of the single enantiomer and the 
racemic compound of Serine in water-experimental data 
(open symbols, own; full symbols and stars, 

161, 163, 165
) and 

NRTL model correlations. 

Figure 4.47 Predicted ternary solubility isotherms 
and experimental data points at T=298.15 K, 
303.15 K, 313.15 K (open symbols, own; Klussmann 
et al., stars 

36
) and at 333.15 K (crosses 

163
).  

  

Figure 4.48 Eutectic compositions within the Serine 
system in aqueous ethanol solutions (lines are a guide 
to the eye) 

Figure 4.49 Eutectic compositions within the Serine 
system in aqueous methanol solutions (lines are a 
guide to the eye) 
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Proline/various solvents 

A chiral system, for which the eutectic composition is reported in contradictive manner to be 

between 57% and 99.6% is the amino acid Proline. It is known from Methionine, that differences 

of 8% absolute can be attributed to changes in the temperatures. The cause of the significantly 

larger shifts of the Proline system have been investigated in an own study. The available data 

sets by Hayashi 166 and Klussmann 36 were extended by own data from isothermal equilibration 

experiments.  

a) 

 

b) 

 

Figure 4.50 Molecular structures of (S)- and (R)-Proline.  

The large variety of eutectic compositions for the enantiomers of Proline are illustrated by Table 

4.1. Among all values two trends can be extracted. Firstly, the solvent applied is decisive. The 

two alcohols and DMSO reveal similar values around 75%. Within water, the obtained eutectic 

composition compares to the Propranolol·HCl systems, while chloroform as solvent yields 

exceptionally high values as in the system of Serine/water. Proline is known to form hydrates, 

both, the enantiomer and the racemic compound. The well investigated system of Proline/water 

was not part of this study. 

Table 4.1 Eutectic compositions of the Proline systems as a function of temperature and the solvent used. The 
table comprises results from own measurements and literature values. 

T/K Eutectic composition /wt% 

methanol dimethyl sulfoxide  
(DMSO)  chloroform ethanol water 

273.15 
70.5 

 99.2 71.5 57 166 72 

293.15 
77.7 

    77.8 

298.15 79.0 36 
77.7 

99.6 36 77.0 36  74.8 167 

313.15 
77.6 

    77.2 

333.15 
78.3 

 

92.6 

  77.3 94.7 

 

XRPD analysis of the recrystallised solid phases were performed for all other solvent systems. 

The results are summarised in Figure 4.51.  

The pattern of the single enantiomer remained unchanged compared to the reference pattern of 

the (stable) phase as purchased through Sigma-Aldrich. The pattern of the racemic compound 

showed additional reflections upon recrystallisation from chloroform only. Klussmann claimed 

the existence of an air-sensitive hemi-chloroformate, which was not stable enough for XRPD 

analysis. The crystalline phase obtained in this study was also less stable after drying. Its 

formation required isothermal equilibration for several days. There is an entity in the CCDC 145 

showing a Proline chloroformate. However, its pattern are different and the solid phase obtained 
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from chloroform here was not assigned to an entity of the database. As for all amino acids 

studied, neither reliable data were available nor DSC could be used to derive the corresponding 

heats and temperatures of fusion.  

 

Figure 4.51 XRPD pattern of the reference solids and the solid phases after recrystallisation from solution. It 

can be discriminated among the patterns of the (S)-enantiomer and the racemic compound (R,S). The latter 

patterns are identical when crystallised from DMSO, methanol and water, but deviate in the case of 

chloroform. 

The data of Proline were obtained as follows. All samples of a series of mixtures of different 

enantiomeric ratio decomposed shortly above 473 K. Provided, that Proline belongs to the class 

of compounds, that do not exhibit pronounced heterochiral interactions, the eutectic 

composition should remain the same in different solvents at comparable temperatures. It was 

assumed, that the solid phase of the single enantiomer remained unchanged in all solvents. The 

heat and temperature of fusion of the racemic compound were considered as identical in the 

alcohols and in DMSO. Thus, a fit of the shortcut model (Eq. (2.43)) to the corresponding 

determined eutectic compositions should allow the estimation of the missing six values for the 

heats and temperatures of fusion. Again, initial values for the solvate –free species were derived 

through the group estimation method by Marrero 149. The decomposition temperatures were set 

as lower boundaries for the solver except for the chloroformate. The resulting model 

correlations are presented by Figure 4.52. The counter trends in both solvents were captured as 

well as the largely different eutectic compositions. The NRTL model was fitted against ternary 

solubility data of a single isotherm in DMSO from Klussmann 167. The binary model parameters 

were found satisfactory, to describe correctly the given solubility isotherm and the increase in 

the eutectic compositions with solution temperature. It is interesting to note, that the two 

different trends of Figure 4.52 can be attributed solely to the heats and temperatures of fusion.  
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Due to the absence of heterochiral interactions, a similar trend as in the case of DMSO should be 

observed in other solvents, provided, no changes to the solid phase occur. Among others, 

alcohols are suitable to enhance the solubility of Proline, without changing the eutectic 

composition. In summary, the changes to the system of Proline can be explained through the 

proposed formation of a hemi-chloroformate and hydrates in water, respectively. The system 

comprises several degrees of freedom, such that the eutectic composition can be adjusted 

through the choice of the solvent (-mixture) and temperature. 

The estimated model parameters for the system Proline/DMSO and the heats and temperatures 

of fusion for the enantiomer, the hemi-chloroformate and the racemic compound are listed in 

the appendix in Table A.14 and Table A.15, respectively. 

 

4.2.4 Quaternary phase diagrams 

Different crystallisation applications require the use of more than a single solvent. Mixtures of 

solvents can simplify the adjustment of a desired solubility strength. Besides evaporative and 

cooling crystallisation, antisolvents are frequently used to create supersaturation, to initialise 

nucleation and to foster crystal growth. The system of 3-Chloro-Mandelic acid in mixtures of 

water and 2-propanol and the system of Bicalutamide in aqueous methanol were studied with 

the objective to validate the model described above in order to accelerate the estimation of the 

corresponding quaternary SLE for further process design. 

 

3-Chloro-Mandelic acid/water/2-propanol 

SLE data in water and the melting point phase diagram are available e. g. from Le Minh et al. 168. 

Quaternary solubility data of systems of enantiomers are less frequently published. 

Comprehensive data covering a larger temperature range as well as different solvent ratios has 

been available for the chiral system of 3-Chloro-Mandelic acid in the solvent system 

water/2-propanol by Zhang et al. 169.  

 
 

Figure 4.52 Changes in the eutectic composition of 
Proline in DMSO and Chloroform. Experimental data 
and model estimations. 

Figure 4.53 Experimental data at 298 K and predicted 

solubility isotherms at 273.15 K and 333.15 K for the 

system of Proline enantiomers in DMSO. 
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a) 

 

b) 

 

Figure 4.54 Molecular structures of the (S)- and (R)-enantiomer of 3-chloromandelic acid. 

Two subsequent parameter estimation procedures have been performed, both on binary 

systems. In this context the term ‘binary’ means, that solubilities can be determined without any 

differentiation among the chiral species. Thus, measurements on the basis of density, 

refractometry or simple gravimetric determination of solubilities are sufficient. Firstly, the 

binary solubility data of the single enantiomer in pure water was used to parameterise the NRTL 

model and the parameters α23, ∆g23 and ∆g32. The parameter indices denote the species of the (S)-

enantiomer, the (R)-enantiomer, water and 2-propanol in increasing order. Heats and 

temperatures of fusion of the two solid species were used as published by Zhang 169. The 

resulting gap to the ideal solubility curves in Figure 4.55 is significant. Further, the increase in 

solubility of the single enantiomer at elevated temperature appeares somewhat peculiar. 

However, the obtained model fit for the enantiomer was considered as satisfying. In addition, the 

solubilities of the racemic compound were predicted well using the activity coefficients of the 

enantiomer only. Apparently, heterochiral interactions can be neglected for this compound.  

Secondly, solubility data of the racemic compound in isothermal mixtures of 2-propanol and 

water were available. The values of Figure 4.56 have been used to identify suitable parameters 

α24, ∆g24 and ∆g42. The agreement between model and experimental data was considered good. 

  

Figure 4.55 Solubilities of the single enantiomer and 
the racemic compound of 3-Chloro-Mandelic acid in 
water-experimental data 

169
 and model correlations. 

Figure 4.56 Increase in solubilities upon addition of 
2-propanol to water-experimental data from 

169
 and 

NRTL model correlation. 

The parameterisation (α34, ∆g34 and ∆g43) for the third contribution to the quaternary SLE-the 

solvent/solvent interactions-was taken from the literature. No further measurement data were 

considered. The predicted quaternary phase diagram is illustrated by Figure 4.57 in the form as 

described by Figure 2.11b in chapter 2.2.3.  

275 285 295 305
0

10

20

30

40

50

Temperature /K

3
−

C
h
lo

ro
−

M
a
n
d
e
lic

 a
c
id

 /
w

t−
%

 

 

exp. data (R)
exp. data (R,S)
NRTL (R)
NRTL (R,S)
ideal (R)
ideal (R,S)

0 10 20 30
0

10

20

30

40

50

2−Propanol (solute free basis) /wt%

(R
,S

)−
3
−

C
h
lo

ro
−

M
a
n
d
e
lic

 a
c
id

 /
w

t%

 

 

exp. data
NRTL model



4.2 Modelling compound-forming systems 105 
 

 

Figure 4.57 Predicted isothermal quaternary phase diagram (T=298.15 K) of the enantiomers (C/D) of 3-Chloro-
Mandelic acid in different water (B)/2-propanol (A) mixtures. The thick solubility isotherm corresponds to the 
experimental data 

169
 at a 9/1 ratio of the solvents. Further ratios: 3,4,…,20,25,50/1. All values in percent mass 

fraction. The second thick line corresponds to Figure 4.56 and links the solubilities of the racemic compound. 

Several solubility isotherms for different solvent 

ratios at 298.15 K are sketched. The S-shaped 

solubility increase of the previous Figure 4.56 is 

highlighted by a solid line. Quaternary 

experimental data from Zhang et al. 169 is accurately 

predicted by the corresponding solubility isotherm 

(solid line). The agreement within the domain of 

the racemic compound is better than for the 

domain of the enantiomer, probably due to the 

method of parameterisation. The eutectic 

composition is estimated rather accurately. Since 

no heterochiral interactions are present, no shift in 

the whole figure was determined.  

Secondly, the model estimation was compared to available experimental data at a constant 

solvent ratio of 9/1 and for varying temperatures (Figure 4.58). The agreement at 303.15 K is 

most satisfying, which can be attributed to the temperature of the model parameterisation. 

Other solubility isotherms exhibit large deviations from experimental data either for the domain 

of the enantiomer (293.15 K) or for the domain of the racemic compound (313.15 K). These 

thermodynamic areas are afar of the range of the model parameterisation. The poor fit reveals 

the limits of the possible extrapolation of modelled data. 

In summary, the quaternary phase diagram of the system investigated was derived on the basis 

of rather limited selected binary data. In total 13 solubility measurements were used to cover 

the large thermodynamic domain of Figure 4.57. The model predicted thermodynamic data, 

which would otherwise require cumbersome measurements including analytical chiral HPLC. Its 

accuracy depends largely on the utilised binary data for parameterisation. Extrapolation into 
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Figure 4.58 Predicted solubility isotherms and 
experimental data 

169
 at a constant solvent ratio 

of 9/1 and 293.15 K, 303.15 K and 313.15 K. 
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completely unknown areas should be avoided from the findings of this study. In anticipation of 

an antisolvent process to design, the provided properties may still be useful to assess in which 

domain a certain composition is situated and which species will crystallise. The important 

property of the eutectic composition was estimated correctly within both phase diagrams.  

The estimated parameters of the NRTL model for the system 3-Chloro-Mandelic acid/water/2-

propanol are listed in the appendix in Table A.16. 

 

Bicalutamide/methanol/water 

The chiral active pharmaceutical ingredient Bicalutamide was investigated in collaboration 

within a joined project embedded in the European Framework Program 7 (www.INTENANT.eu, 

FP7-NMP2-SL2008-214129).  

The compound is manufactured at a scale of several metric tons per annum at AstraZeneca and 

is used as a racemate for the treatment of prostate cancer. The sales value (sales figures are for 

2008) is approximately 210 million US dollars. During a development program within 

AstraZeneca targeting manufacture of the pure (R)-enantiomer of Bicalutamide, the 

manufacturing method developed utilised SMB-HPLC for essentially full enantioseparation of 

the racemic material. An alternative separation route based on the selective crystallisation of 

asymmetric mixtures of Bicalutamide enantiomers required comprehensive SLE data. The 

separation methodology and a detailed description of the conducted solubility measurements 

are summarised in chapter 5.1.3.3. Within this paragraph the thermodynamic foundation to the 

subsequent separation is explained. 

21 21
 

Figure 4.59 Structures of racemic bicalutamide 1 and the pure (R)-enantiomer 2. 

The results of SLE measurements of Bicalutamide in methanol are plotted in Figure 4.60 for 

temperatures between 273.15 K and 333.15 K. Open dots represent the solubility of the 

enantiomer, while open squares indicate the solubility of the racemic compound. Error bars are 

based on repeated measurements of the same composition. The solubilities of the single 

enantiomer are almost twice as high as the solubilities of the racemic compound for all 

temperatures. The NRTL model was fitted to these binary data and the result is given by the 

solid line. The parameters obtained used to predict the solubility of the racemic compound 

(dotted line). The agreement with experimental data is excellent. Thus, it is likely that 

heterochiral interactions, as discussed above, can be neglected for this system. The result 

obtained here greatly simplifies predictions for other solvents, since solubility data of the single 

enantiomers is sufficient to derive multiphase equilibria involving several solvents.  



4.2 Modelling compound-forming systems 107 
 

  

Figure 4.60 Solubilities of the enantiomers of 
Bicalutamide in methanol-own experimental data and 
model correlation. 

Figure 4.61 Phase diagram of both enantiomers 
and methanol for 293.15 K, 313.15 K and 
333.15 K. Comparison of solubility measurements 
and model prediction. 

The ternary SLE determined for mixtures of Bicalutamide enantiomers in methanol are shown in 

Figure 4.61 for the three temperatures 298.15 K, 303.15 K and 333.15 K, respectively. Solid lines 

were derived using the NRTL model parameter set as obtained from the solubility data of the 

(R)-enantiomer (Figure 4.60). The predicted ternary SLE are in good agreement with 

experimental data for the whole temperature range. The eutectic compositions for all 

temperatures were captured well.  

Selected measurements of quaternary SLE of Bicalutamide enantiomers in methanol/water 

mixtures were conducted using calibrated ATR FTIR equipment as described in chapter 5.1.3.3.  

The obtained isothermal solubility (333.15 K) 

of Bicalutamide enantiomers of eutectic 

compositions in methanol/water mixtures 

(Figure 4.62) were used to identify binary 

NRTL model parameters for enantiomer/water 

interactions (α14, ∆g14 and ∆g41). Water acts as an 

antisolvent to the compound. The 

solvent/antisolvent model parameters (α34, ∆g34 

and ∆g43) were taken from the LLE database of 

the commercial software package Aspen Plus 

(Aspentech, USA). Two views onto an identical 

plot of the estimated quaternary phase diagram 

of Bicalutamide enantiomers in the two 

solvents at isothermal conditions are given by 

the Figure 4.63a/b. All lines represent solubility isotherms at 333.15 K. The pronounced 

decrease in solubility upon addition of water is clearly visible. As expected, no change in the 

eutectic composition was observed. The representation of quaternary SLE by the NRTL model 

(Table 2.1, Eqs. (13-18)) was considered to be sufficiently accurate for process design.  
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Figure 4.62 Isothermal solubilities of the enantiomers 
at the eutectic composition for different methanol/ 
water ratios (T=333.15 K). 
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Figure 4.63a/b Quaternary isothermal (T=333.15 K) phase diagram consisting of 
(1)

(R)-Bicalutamide, 
(2)

(S)-Bicalutamide, 
(3)

methanol and 
(4)

water. Solid symbols were used for model parameterisation, open symbols 
were not considered for the parameterisation, but for model validation. 

The estimated model parameters and applied heats and temperatures of fusion for the system 

Bicalutamide/methanol/water are listed in the appendix in Table A.17 and Table A.18. 

 

4.3 Assessment of model parameters for solid/liquid equilibria  

The foregoing paragraphs were concerned with methodologies representing chiral SLE by 

thermodynamic models. The underlying thermodynamic assumptions to the models were 

summarised in chapter 2. However, the applied parameter estimation methods do not allow to 

consider individually the contributions from hydrogen-bonds, dipole-dipole interactions and 

others. The majority of gE-models incorporate all interactions into a few ‘lumped’ model 

parameters. This raises the question, whether both the model parameters obtained through 

fitting procedures and the applied model itself, can really represent the relevant SLE in such a 

way that a proper process design is feasible. By the worst scenario an unsuitable model had have 

been fitted by an effective algorithm to a random ensemble of experimental data points. Those 

model parameters obtained will not hold any physical relevance and both intrapolations as well 

as extrapolations by the model were not justified. For this reason and in order to evaluate the 

impact of typical uncertainties for a given set of experimental data in this work, statistical 

methods were applied to the NRTL model and the experimental data sets of a selected model 

compound. 

 

Fisher Information Matrix and Bootstrap Method 

The classical method based on the Fisher Information Matrix (FIM) and the bootstrap method 

(BM, 170) allow to get a hold on confidence intervals, parameter identifiability and other 

statistical properties of model parameters 170, 171. Estimations for confidence intervals of model 

parameters are usually derived through parameter sensitivities iw , that describe the change of 

the state variable x according to a change of the parameter iΘ . The FIM is calculated by the sum 

over all sample points with the sensitivity vector [ ]N21 wwww ...= . In addition, the variance of 
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another model, which was based on only two parameters might represent the given SLE at 

similar quality, but with physically more reliable model parameters.  

The introduced methodologies allow for a first estimate on the reliability of already identified 

model parameters and also on the choice for the applied model itself. Since the principles are 

(within limits) of generic kind, their transfer to other gE models is possible and might allow for 

the identification of the most promising model.  

Regarding further details it is referred for a more quantitative assessment of the gained 

statistical data for the case considered to the original publication 172. The study shows that the 

physical meaning of parameters of gE-models must be considered with care and may pose, 

together with the model applied, uncertainties with respect to process design on the basis of 

modelled thermodynamic data. 

 

4.4 Utilising estimation models for chiral applications 

Estimation models like UNIFAC and COSMO-SAC cannot discriminate among enantiomers. 

COSMO models suffer the inherent limitation, that the 3-dimensional information of the 

molecular structure is broken down into a 2-dimensional representation. Within this step, any 

information regarding chirality is lost. While this procedure simplifies tremendously the 

derivation of thermodynamic data for most molecules, the predictive power of COSMO models 

appears limited with respect to chiral systems. It is aimed within this paragraph to elucidate 

how estimations from the COSMO-SAC model can be utilised despite the named restrictions for 

the design of selective crystallisation processes for chiral compounds.  

 

4.4.1 Methods and tools 

The performed predictive calculations on activity coefficients for chiral substances in solution 

rest on the procedures published by Lin and Sandler 76 and Mullins et al. 75, 173. For consistency, 

the corresponding parameterisations and sigma profile databanks were utilised. The following 

procedure was adopted to estimate activity coefficients in solution: 

I. Charge profiles of solutes and solvents were either taken from databases or generated 

with the commercial software package Materials studio (V4.3, Accelrys, USA) and the 

implementation of COSMO within the module DMol3.  

II. Numerous procedures are suggested in the literature on how to proceed in terms of 

geometry structure optimisation 45, 75, 174. In general, DFT geometry optimisations were 

performed beginning with up to 10 initial conformations, selected from I.) and from additional 

molecular sketches, that were generated manually. Pre-optimisations were performed with the 

module VAMP. The relevant parameters are listed in the appendix in Table C.1. The general 

procedure was kept identical to the conditions used for the model parameterisations. The 

resulting locally optimised structures were compared to identify the conformation lowest in 

energy, which was used for the next steps. The output file generated for this conformation 

contains a list of surface charge segments assigned to corresponding atoms. Furthermore, the 
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location of each segment, its assumed charge and the cavity volume in the dielectric continuum 

necessary to immerse the molecule, is provided. 

III. The obtained charge profiles were processed further using the Segment Activity 

Coefficient (SAC) approach. The required segment averaging procedure and the iterative 

algorithm for the generation of segment activity coefficients were performed in analogy to the 

Fortran code available online at the Virginia Tech from Oldland et al. 175, 176. The published 

scripts yield activity coefficients for binary mixtures. The code was implemented in the Matlab 

(Mathworks, USA) environment and extended for multicomponent systems and chiral 

applications.  

The surface-charge densities need to be averaged to ‘smooth’ the charge distribution according 

to the COSMO-RS/SAC theory. Firstly, the averaging algorithm as proposed by Mullins et al. was 

considered. 
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with n_cosmo:  
number of segments in COSMO file 

(4.9) 

The parameters used are given in Table C.2. rav defines the effective radius of a surface element, 

rn denotes the radius of the actual surface segment, σm represents the surface segment charge 

density of segment m, dmn equals the distance between segment m and n (calculated from the 

coordinates of the segment origins given by the DFT/COSMO calculation) and σn* is the surface 

segment charge density as derived from the DFT/COSMO calculation.  

The sigma profile )(σpi  for a molecule of type i  is basically a histogram of the probabilities of 

finding a segment with a surface charge density σ . The segment number of the latter is given by 

)(σn i , where 
in  is the total number of surface segments covering the molecule i  required to 

build its molecular cavity. The area of the cavity as defined by 
iA  and )(σAi

 respectively, is the 

total surface area of all segments of a charge density σ . Mullins used the area weighted sigma 

profiles )(' σp i
 of Eq. (4.10). Analogously, mixture sigma profiles )(σpS

 for multicomponent 

mixtures can be obtained from the normalised fraction of each single component sigma profile. 
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In the course of the averaging process a discretisation and re-assigment of charge densities is 

performed such, that 
in  equals 51 segments now and throughout further computations. 

IV. The activity coefficient Siγ /  of a molecule of type i  in a solution S  is related to the 

difference in the Gibbs energies res
SiG /∆  of restoring the charges around a pure species i in a 

solution of S  and the Gibbs energies res
iiG /∆  of restoring the charges around a pure species i  in 

a solution of i . The Gibbs energies are derived by the assumption of individual and independent 
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charged segments. To each segment of the screening procedure another segment is added with 

opposite charge. The paired segments are assumed to have no interaction with each other. 

Combinations of segments of the same charge vanish, while others show a certain ‘misfit’, which 

is summed up. Segment pairs with charge differences above an empirical threshold gain hereby 

additional attention, since they might be prone to form hydrogen bonds. The concept of 

independent segments allows the simple compilation of charge histograms for binary (and 

multicomponent) mixtures of desired composition. The difference in the mixture res
i/S∆G  for a 

solute in the solvent and the reference case for res

i/i∆G , the solute i in a solution of i yields the 

activity coefficient of the solute in solution. 
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According to Lin and Sandler the difference can be expressed by the sum of the products of the 

(area weighted) sigma profiles and the natural logarithm of the segment activity coefficients 

over all surface segments 
in .  
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The respective segment activity coefficients Si /Γ  and ii /Γ  for each segment in solution and in a 

pure liquid can be derived using statistical mechanics.  
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The exchange energy ),(∆ nm σσW  consists of the three contributions, namely the misfit energy 

Emf, hydrogen-bonding interaction energy Ehb and energy for nonelectrostatic interactions Ene for 

the segment pairs. W∆  accounts for the difference between a neutral and realistic pair of 

segments. Ene is assumed constant and removed from Eq. (4.15). The decision whether a 

segment can contribute to the formation of hydrogen bonds is based on a charge threshold chb, 

which must be exceeded in order to form hydrogen bonds. The misfit energy constant 'α , the 

hydrogen bonding constant chb, and the hydrogen bonding threshold value hbσ  were fitted by 

various authors according to the model variation applied to experimental data sets. Lin and 

Sandler as well as Klamt calculated the polarisability factor according to Eqs. (4.16)/(4.17). 
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The parameter sets considered within this thesis are summarised in the appendix in Table C.2. A 

Matlab script developed solves Eqs. (4.12) and (4.14) iteratively and yields the activity 

coefficients of each species in a mixture for a given composition and temperature.  

 

4.4.2 Screening of solid/liquid equilibria with respect to an antisolvent 

The adjustment of solvent strength for a given solute by a combination of solvents is far from 

being a trivial task. Known cases are rare, where stoichiometric mixtures of solvents and 

antisolvents led to exactly averaged solubilities. On the contrary, solubility values in solvent 

mixtures above or below the solubilities of both individual solvents are frequently found 42, 177-

179. An illustrative example has been determined by Romero et al. 180 and describes the increase 

in solubility of Paracetamol in mixtures of ethanol/water mixtures. A pronounced solubility 

maximum was observed at about ~15% water at 298.15 K (Figure 4.66). Here, an attempt was 

made to derive the same ternary system from the predictive COSMO-SAC model without 

referring back to experimental solubility data. A similar approach was publishes by Hsieh et al. 

and Shu et al. 181, 182. The only inputs to the model have been the molecular structures of all 

constituents and the heats and temperatures of fusion of Paracetamol as given by Rüther et al. 42. 

A pre-optimised molecular structure of Paracetamol was obtained from a free database 152. Using 

the DMol3 module a conformation of lower energy was identified and used for further 

computations. The ethanol molecule was taken from the NIST database 183 and geometrically 

optimised. A readily optimised water molecule from the same database was used as obtained. 

The corresponding charge density profiles of the three molecules are plotted in Figure 4.65. For 

the water molecule, all charge densities between -0.015 e/Å2 and 0.015 e/Å2 are present with 

similar frequency, resulting in an even distribution. On the contrary, most segments of ethanol 

exhibit a charge density close to zero, which is, as a rough interpretation, more similar to the 

profile of Paracetamol. The solubilities for different solvent ratios at constant temperature were 

obtained from consistent solutions of Eqs.(2.16),(2.62) and (4.11) using the nonlinear solver 

‘lsqnonlin’ within the Matlab environment.  

Figure 4.65 Charge distribution profiles of 
Paracetamol and two solvents. 

Figure 4.66 Solubility of Paracetamol in water/ethanol 
mixtures at 298.15 K- experimental data 

42
 and ‘a 

priori‘ COSMO-SAC prediction. 

The prediction reflects the complex solution behaviour qualitatively. The locus of the solubility 

maximum was estimated well. However, the overall solubility is largely overestimated in the 
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mixture and also for the individual solvents. The measurement-free prediction is appropriate to 

exclude water as an antisolvent candidate for Paracetamol, even if the solubility in pure water is 

rather low.  

Motivated by the rather positive results of the Paracetamol/water/ethanol system an 

antisolvent screening on the basis of the COSMO-SAC model for another compound of 

pharmaceutical interest was performed. Prior to the collaborative study, a continuous 

chromatographic process for the separation of enantiomers of the compound Bicalutamide was 

established at the pharmaceutical company AstraZeneca. Herein, pure methanol was used for 

the eluent. In order to enhance the yield of the chiral separation process, two subsequent 

crystallisation steps were designed, which are explained in more detail in chapter 5. Within the 

second crystallisation step, an antisolvent was sought, which lowers significantly the solubility 

of Bicalutamide in methanol at isothermal conditions. The developed screening procedure was 

based on the four steps introduced above. Initial molecular structures of Bicalutamide were 

obtained from databases and literature 152, 183, 184. The most promising geometry was found by 

the DMol3 module. Solvent sigma profiles were taken from a free database 75. The database used 

covers in total 1432 compounds, of which 1268 have boiling points above 323.15 K. Only the 

latter entities were considered, since only elevated initial temperatures allowed two 

crystallisation steps with a maximal gap in temperature, which enhances the specific process 

yield. The heat and temperature of fusion of Bicalutamide were determined by differential 

scanning calorimetry (Table A.18). The solubilities of the single enantiomer of Bicalutamide 

were computed for an antisolvent content of 0, 17, 33, 41, 50, 60, 75, 90 and 99 mol-% and for 

the three temperatures 273.15 K, 303.15 K and 333.15 K, respectively. This sums up to 34‘236 

mixtures. Three criteria were applied to identify suitable antisolvents. Only the subset of 

antisolvents, which passed the criteria at all three temperatures, was investigated further.  

a) First, the solubility in the antisolvent was required to be lower than that in methanol. 

This was not the case for 344 compounds, which exhibited higher solubilities for Bicalutamide. 

b) In general, the amount of antisolvent to be added to a solution should be small, since it 

also dilutes the solution and this effect must be overcompensated. Thus, the slope of the 

isothermal solubility curve upon antisolvent addition should be negative and exhibit the 

steepest decline right at the beginning. No inflection points should be present. These aspects 

were addressed as secondary criteria. Selected results out of 762 antisolvents with other shapes 

of solubility curves are shown in Figures 4.67b). These were removed from further 

consideration.  

c) Finally, as an empirical constraint, a solubility of <0.01 mol-% of Bicalutamide in the 

antisolvent, was applied and another 159 antisolvents were removed from the screening 

ensemble.  

d) In total three out of 1268 solvents were found ‘suitable’ based on the results of the 

COSMO-SAC computations.  

The remaining antisolvent candidate ensemble consisted of water, formamide and 

N-tetradecylcyclopentane. It is likely that some candidates are not fully miscible with methanol 

and may undergo a liquid–liquid phase split, which is undesired. This aspect was not addressed 

by this study, though some approaches are known from the literature, which consider this 

aspect within the framework of the COSMO-RS model and with some success. Formamide is 
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known to be miscible with lower alcohols 185, but its toxicity is high. N-tetradecylcyclopentane 

can be considered as non-standard in a pharmaceutical environment and requires additional 

data acquisition. Fortunately, water was among the candidates, and the advantages of this 

solvent are manifold. Amongst others it poses no health hazard, has a low price, high availability 

and is fully miscible with methanol. Thus, water was chosen for further crystallisation studies. It 

is evident, that a higher empirical threshold would increase the candidate ensemble and uncover 

other solvents with only slightly higher solubilities, but favourable physical properties in other 

regards. This matrix was not investigated further. 

 

Figures 4.67a)-d) Predicted solubilities of Bicalutamide in methanol/antisolvent mixtures. 1268 solvent 
database entities were considered and classified according to the criteria described. Only approximately every 
tens database entity is plotted for improved visibility. 

Two solvent systems were chosen to evaluate the reliability of the qualitative prediction. The 

quaternary phase diagram of Bicalutamide enantiomers in different methanol/water systems 

has been introduced already in chapter 4.2.4. Indeed, water acts as a strong antisolvent to 

Bicalutamide/methanol solutions. In addition, an assessment was made on the basis of toluene, 

since it represents very low solubilities on the one hand, but the predicted isothermal solubility 

curve exhibited a maximum solubility for a 3:1 methanol/toluene mixture and belonged to the 

candidate group of Figures 4.67b) according to the criteria introduced above (steepest decline of 

solubility not right at the antisolvent addition). 

Solid/liquid equilibria determined for (R)-Bicalutamide in methanol/toluene mixtures were 

plotted for a temperature range of 280 K to 330 K. A simple two-dimensional polynomial fit of 

fourth order was used to interpolate among the experimental data points using the Matlab 

function ‘polyfitn’. The surface spans over a solubility range starting at the side of pure methanol 

between 0.5 and 1.7 mol-%, passes through a maximum with solubilities between 0.74 and 
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3.8 mol-% and ends at the pure toluene side, where the solubility was lower than the detection 

limit. The solid lines represent the solubility predicted by the COSMO-SAC model for the 6 

temperatures 280 K, 290 K, 300 K, 310 K, 320 K and 330 K. The shape of the solubility isotherms 

agrees well and the solubility maxima are captured correctly with a peak at a 3:1 ratio of 

methanol and toluene. However, the prediction can only be used on a qualitative basis for 

process design, since the computed absolute values overestimate the measured solubility. This is 

pronounced in particular on the methanol side at elevated temperatures.  

 

Figure 4.68 Predicted solubilities of (R)-Bicalutamide in methanol/toluene mixtures (solid lines) and comparison 
with experimental data (symbols and grid); full dots, polythermal solubility measurements; stars, gravimetric 
solubility measurements. The polynomial of the grid is given in the appendix (chapter B). 

Summarising this paragraph, the screening of 1432 compounds resulted in the identification of 

three antisolvent candidates, which are supposed to exhibit favourable properties in 

combination with methanol, which was fixed earlier as an eluent. Two solvent/antisolvent 

combinations were evaluated on an experimental basis, covering a wide temperature and 

solvent ratio field. The measurement data were compared to predicted solubilities in solvent 

mixtures and a good qualitative agreement was found. The methodology cannot substitute 

correlative gE-models, since the design of crystallisation processes requires a much larger 

accuracy. However, it is believed, that laboratory time can be saved using the introduced 

methodology. The most promising approach is considered to be a two step process using both, 

firstly an estimation model followed by a correlative gE-model. 

 

4.4.3 A priori estimation of chiral solid/liquid equilibria 

The introduced methodology aimed to achieve a ranking of solvents or solvent mixtures 

disregarding the absolute solubility values. Although this is a major class of applications for this 

type of models, it is tempting to evaluate how closely chiral equilibria can be estimated from a 

fully ‘a priori’ concept. Thus, the solubilities of the enantiomers and the racemic compound of 

Bicalutamide in methanol were considered for a second time. The term ‘a priori’ is not entirely 

rigorous, since the model itself has been parameterised once to a larger dataset of atoms and 

molecules and further, both, the heat and the temperature of fusion of the enantiomer and the 
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racemic compound are required. The introduced COSMO-SAC and a later re-implementation, the 

so-called ‘refined COSMO-SAC’ model by Wang 77 were evaluated in this study. The refined 

model varies by three theoretical considerations and applied a largely different parameter set 

with respect to the hydrogen bonding cutoff, the averaging radius and other values of Table C.2 

(in the appendix).  

 Firstly, the averaging procedure was performed by an altered expression introducing an 

empirical factor decayf . The meaning of the averaging radius avr
 
remains the same as in the 

original model formulation, though its value is different in the new model parameter set. The 

combination of a new averaging value and decayf  
 resulted in very similar sigma profiles for the 

compounds investigated. 
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with 
n_cosmo: number of segments in 
COSMO file 

(4.18) 

Secondly, the decision whether a segment can contribute to the formation of hydrogen 

bonds was treated differently as by Mullins and Wang. For both models a certain charge 

threshold must be exceeded in order to form hydrogen bonds. Mullins treated all atoms in the 

same manner, while Wang allows only the formation of hydrogen bonds from N/O/F atoms and 

attached hydrogen atoms. Thus, two separate sigma profiles for N/O/F atoms (hb) and others 

(nhb) need to be considered. This also involves the separate summation of segment activity 

coefficients s
Si /Γ  and s

ii /Γ , respectively, with s and t designating either hb or nhb type hydrogen 

bonds in Eqs. (4.19) and (4.20). The difference in restoring Gibbs energy is derived from the 

double summation of contributions arising from hydrogen-bonding and non-hydrogen-bonding 

segments.  
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with i: component; S: solvent; neff: effective segments; seg: 1…either hb or nhb; s: hb or nhb segments 

The individual terms, the segment activity coefficients in solution and in pure liquid, are also 

double summations over hb and nhb segments.  

( )( )













−
−= ∑ ∑

=

hbnhb

seg

s
n

t
ms

n

51

1nm

s
Si

s
n

s
S

t
m

t
Si

RT

σσW
σσpσ

.

,

//

),(∆
exp)(Γ)(lnΓln  (4.20) 

( )( )













−
−= ∑ ∑

=

hbnhb

seg

51

1nm

s
n

t
ms

n
s

ii
s
n

s
i

t
m

t
ii

RT

σσW
σσpσ

.

,

//

),(∆
exp)(Γ)(lnΓln  (4.21) 

with i: component; S: solvent; seg: 1…either hb or nhb; t,s: hb or nhb segments 

The exchange energy term ),(∆ s
n

t
m σσW  is modified such, that the hydrogen bonding part 

contributes only to segment combinations of hb–hb type and then only if their product is 

negative. The fitted parameters of hydrogen bonding constant chb, misfit energy constant 'α  and 

the hydrogen bonding threshold value hbσ  vary from the values of the COSMO-SAC model.  
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Thirdly, a redistribution of charges is performed in the model by Wang. Contributions 

arising from small charges are damped in the hb-profiles and added to the nhb-profiles. This is 

realised by the Gaussian-type function of Eq. (4.21), which weights the hb-sigma profile. 

Differences between the weighted and the unweighted profile are added to the nhb-profile.  
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The algorithm for the refined COSMO-SAC model was implemented in the Matlab environment. 

In addition to the file generated by Materials Studio, which contains the segment charge 

information (‘*.cosmo’), the compound structure file (‘*.xsd’) was needed in order to assign the 

segment charges to either N/O/F atoms or others. The files for Bicalutamide and methanol were 

generated by the DMol3 module. Unfortunately, those files are not available from the ‘VT2005 

Sigma Profile database’ for other solvents and the refined model cannot be used with the 

database entries.  

The obtained averaged sigma profiles for the hb- and the nhb-contributions of the Bicalutamide 

and the methanol molecule are displayed in Figure 4.69a/b. 

 

  

Figure 4.69a/b Sigma profile of Bicalutamide (a) and methanol (b) according to the refined COSMO-SAC model. 
Dashed line, contributions by ‘hydrogen bond’ atoms; solid line, contributions by ‘non-hydrogen bond’ atoms. 

The solubilities of Bicalutamide in methanol were obtained from consistent solutions of 

Eqs. (2.16), (2.62), (4.11) and (4.19). The nonlinear solver ‘lsqnonlin’ within the Matlab 

environment was used to identify the corresponding SLE compositions within the temperature 

range of 273-333 K. Figure 4.70 compares the obtained results from the two COSMO-SAC model 

implementations. The thin solid line represents the best fit by the NRTL model as derived in 

chapter 4.2.4. The original COSMO-SAC model overestimates the experimental solubility values 

throughout the entire temperature range, while the prediction by the refined model 

overestimates the experimental values in the worst case by 5.6 wt% absolute, which is a 

remarkably good estimation for an ‘a priori’ model. 
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Figure 4.70 Solubility of (R)-Bicalutamide in methanol and comparison with two ‘a priori’ models. The refined 
COSMO-SAC model reveals a better agreement over the COSMO-SAC model. 

It was shown earlier, that heterochiral interactions are negligible in the Bicalutamide/methanol 

system. Thus, the binary system contains the entire information necessary to sketch the ternary 

phase diagram of both enantiomers in solution. However, the refined COSMO-SAC model has not 

yet been adapted to racemic compounds, while the NRTL model 49 has already successfully been 

applied to compound-forming systems 33, 186, 187. A simple approach comprises the generation of 

a set of activity coefficients for the relevant temperature (273.15 K to 333.15 K) and 

composition (0 to 2 mol-%) ranges by the refined COSMO-SAC model. A set of 260 activity 

coefficients covering 20 compositions and 13 temperatures was used. Thereafter, suitable NRTL 

model parameters were estimated for this set. The model estimates by the refined COSMO-SAC 

model are compared to experimental data and the best fit of the NRTL model as presented in 

chapter 4.2.4. The relevant SLE are split into two figures for improved visibility. The ‘a priori‘ 

model overestimates the solubility of the single enantiomer, in agreement to the binary SLE. This 

is pronounced at higher temperatures. The solubility isotherms of the two models coincide over 

a large domain at 283.15 K (Figure 4.71a)).  

  

Figure 4.71 a/b Ternary SLE of Bicalutamide enantiomers in methanol at two different scales for 283.15 K (full 
diamond, a)), 298.15 K (open dots, a)), 313.15 K (full dots, b)) and 333.15 K (open squares, b)). Solid lines are 
drawn according to the NRTL model, dashed lines represent the estimated solubilities by the refined COSMO-
SAC model. 
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The errors caused by the too low activity coefficients are exactly doubled in the region of the 

racemic compound. This is self-explaining in view of Eq. (4.6). The composition of the eutectic 

composition is reflected correctly by all models due to the absence of heterochiral interactions.  

In summary, the estimation of ternary solid-liquid equilibria of the given system by the ‘a priori’ 

model yielded a phase diagram, which reflects correctly the general shape and certain SLE 

characteristics. Its accuracy at low temperatures is sufficient for process design. At higher 

temperatures, the SLE information is of limited use. It depends strongly on the application and 

the crystallisation domain whether the provided accuracy will be sufficient. On the basis of the 

conducted ternary SLE estimation, the additional (experimental) determination of SLE data 

appears recommended. 

 

4.4.4  Screening with respect to the eutectic composition 

As studies on a number of compound-forming systems revealed, minor changes to the eutectic 

composition due to temperature or the choice of solvents are not exceptional cases and is found 

more frequently than it might be expected. It was elaborated within the previous paragraphs 

how the magnitude of these shifts can be estimated for a given system on the basis of limited 

data. Here, an attempt is made to go one step further. As shown for the mandelic acid system 

(chapter 4.2.2), heterochiral interactions can remain unchanged in different solvents. It should 

therefore be possible to apply an available parameter set to a solvent (system), from which no 

data are available. The proposed procedure assumes, that heterochiral interactions are not 

solvent specific. For those cases, the different temperature and composition at the 

corresponding solubility isotherm will effect the magnitude of heterochiral interactions. 

Consequently, the eutectic composition can deviate from the system of parameterisation.  

In this study, the system of Methionine in water was considered for a second time. The 

contribution of heterochiral interactions on the shape of the solubility isotherms was illustrated 

in chapter 4.2.2. It is assumed, that heterochiral interactions pose a larger effect at higher 

concentrations, i. e. if the solute fraction is high. Thus, solvents, that allow to dissolve larger 

amounts of the same solute (small activity coefficients) at a constant temperature, should exhibit 

a smaller eutectic composition. The following paragraph addresses the aspect by a conceptional 

study. 

Methionine is hardly soluble in alcohols. Isothermal equilibration experiments yielded a strong 

dependency of solubility on temperature and on the amount of ethanol and methanol, 

respectively. Thus, saturated solutions are rather dilute and only weak heterochiral interactions 

are expected.  
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Figure 4.72 Determined solubilities of eutectic 
Methionine in aqueous ethanol. 

Figure 4.73 Determined solubilities of eutectic 
Methionine in aqueous methanol. 

Although, the 6-parameters NRTL model yielded a good estimation of changes in the eutectic 

composition of Methionine in water, a gap to experimental data remained. It can generally be 

assumed, that, either the model is not appropriately chosen or its parameterisation was not 

optimal. In order to estimate the possibility of transferring heterochiral interactions, a better 

agreement in particular with respect to the experimental eutectic compositions is sought.  

Here, a practical approach is proposed, which 

relaxes the physical link between the 

dissociated enantiomers of the racemic 

compound and mixtures of the enantiomers in 

the domains beside the racemic compound. If 

a single parameter set does not cover both 

domains, a successful identification of three 

parameters for the heterochiral interactions is 

not possible.  

Thus, a separate parameterisation of the 

domain of the enantiomer until the eutectic 

composition and a second parameterisation of 

the domain of the racemic compound was 

performed using all available ternary data. 

The new parameter set is given in the appendix (Table A.6), the achieved improved fit to ternary 

data can be seen in Figure 4.74.  

The new parameter set was applied for a concept validation using solvents with different solvent 

strength for Methionine. 5 successive steps were performed: 

I. Sketch and computational optimisation of the molecular geometry of (S)-Methionine. The 

applied COSMO-SAC model is parameterised for a real space cutoff of 5.5 Å for the charge 

density profile generation 173. However, solubilities of (S)-Methionine in arbitrary solvents are 

highly overestimated in this case. Choosing a smaller value of 4.0 Å as proposed by other authors 

resulted in better results and was used with all solvents.  
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Figure 4.74 Best model fit to ternary data of 
Methionine in water. 
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II. The COSMO-SAC model was used to identify common and frequently used solvents, for 

which Methionine exhibits very large or very small activity coefficients. The required sigma 

profiles were taken from a solvent database 75. Besides methanol and ethanol, the sigma profiles 

from ethyl acetate (ET) (large activity coefficients) and dimethyl sulfoxide (DMSO) (small 

activity coefficients) were chosen from the screening ensemble for a more detailed investigation.  

III. Activity coefficients for Methionine in the considered solvents at relevant compositions 

and temperatures were plotted using the COSMO-SAC model. The grid allowed for the 

parameterisation of the NRTL model instead of using experimental data. This step might be 

substituted, since the profiles by the COSMO-SAC model are only estimates. Correlative models 

or experimental data are always favoured, if available.  

IV. The binary NRTL parameters for heterochiral interaction and the binary NRTL 

parameters for solvent/solute interactions were combined to derive the corresponding ternary 

SLE.  

a) 
 

 

b) 
 

 

c) 
 

 

d) 
 

 

Figure 4.75 Activity coefficient profiles (symbols) of (S)-Methionine between 273-333 K as obtained through 
the COSMO-SAC model for a) ethanol, b) methanol, c) DMSO and d) ethyl acetate. Lines: correlation by the 
NRTL model. 

Within Figure 4.76 the estimated corresponding shifts of the eutectic composition of Methionine 

in the solvents ethanol, methanol and ethyl acetate are summarised. The thick bold line 

corresponds to the shift in water as given by Figure 4.74.  

The solubility of (S)-Methionine in water at low temperatures is much higher as the 

corresponding ideal values up to 330 K. Activity coefficients above this temperature become 

greater than unity (compare Figure 4.19). The activity coefficients of Methionine in both alcohols 
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are lower than in water up to 298 K, the order is switched for higher temperatures. Accordingly, 

the curves of the proposed eutectic compositions of the alcohols intersect at 298 K in Figure 4.76 

with the eutectic composition in water. The performed equilibrium experiments with ethanol 

and methanol (dashed lines, symbols) reveal an intersection, too. The experimental intersection 

is situated at temperatures 15 K higher. It is tempting to suggest, that the activity coefficients of 

Methionine in ethanol and methanol are not accurately represented by the COSMO-SAC model 

for higher temperatures. This could explain the deviation from experimental data at higher 

temperatures. Nevertheless, the plot provides an indication, that larger shifts of the eutectic 

compositions in alcohols compared to water might be possible. An extreme case is given by the 

system of Methionine in ethyl acetate. The very high activity coefficients disallow for high 

solubilities. This aspect is reflected by high eutectic compositions at all temperatures and the 

corresponding upper dashed line in Figure 4.76. The second extreme case- low activity 

coefficients- is given for the solvent DMSO. The shape of the resulting solubility isotherm is 

rather steep, leading to very low eutectic compositions. The NRTL model was not capable to 

predict these values accurately over a larger temperature range. Thus, the eutectic compositions 

are not drawn in Figure 4.76, but indicated for a single isotherm in Figure 4.77. Eutectic 

compositions are estimated to 70-80 %. Further the shapes of the solubility isotherms of the 

enantiomer and the racemic compound in DMSO and in water are plotted in the same figure for 

comparison.  

 

Figure 4.76 Experimental and predicted eutectic compositions for ethanol (a), dashed lines, open symbols), 
methanol (b), dotted lines, full symbols) and ethyl acetate (d)). The eutectic composition in water according the 
NRTL model is given by the bold solid line. 

Both, DMSO and ethyl acetate reveal largely different isotherms with respect to water. Here, a 

correlation of low eutectic compositions and low activity coefficients is found. This trend can be 

explained by reference to the equation by Prigogine and Defay (Eq. (4.6)). Low activity 

coefficients account for a larger fraction of dissolved solute, since the left side of the equation 

remains constant for isothermal conditions. Compared to the equation by Schröder and van-Laar 

(Eq. (2.16)), the activity coefficients are multiplied, thus that the increase in solubility is higher 

for the racemate than for the enantiomer and the eutectic compositions shifts to lower values. 
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However, these considerations must be more subtle. It is possible that the contribution by 

pronounced homochiral interactions prevails and correlations different from the presented ones 

are obtained. The (artificial) two systems presented in chapter 4.1.2 are one example, where 

high activity coefficients led to steep solubility isotherms in the absence of heterochiral 

interactions. Thus, both contributions can be relevant for proper estimations. 

solvent solvent 

 

← ethyl acetate 
 
 
 
← DMSO 
 
 
 
 
 
← water 

 

(R)-Methionine (S)-Methionine  

Figure 4.77 Comparison of shapes of solubility isotherms at 293 K (scaled) of Methionine in water (lower line), 
DMSO (middle line) and ethyl acetate (upper line). 

The conducted conceptual approach appears attractive, although the quantitative estimates of 

shifts in the solvents ethanol and methanol lack accuracy. Provided, that more reliable data on 

the solubility of a compound of interest are available (through experiments or group 

contribution methods), a higher quality of estimates is expected. The identification of solvents 

with low activity coefficients and presumably large changes in the eutectic composition is in 

demand for high process yields of crystallisation process. This aspect is addressed again in more 

depth in chapter 5.1.3. 

 

4.4.5 Solid state properties from the analysis of solid/liquid equilibria  

The phase behaviour of Malic acid (chapter 3) outlines the general obstacle, that the knowledge 

of solubility isotherms is not sufficient to assign phase domains to solid species aiming to 

crystallise the latter selectively. SLE models can be suitable to derive the slope of solubility 

isotherms, provided, that the corresponding solid phases are known. The reverse direction-solid 

state properties from SLE analysis-is usually plurivalent and may lead to miss-interpretations as 

explained more comprehensively in chapter 3. In fortunate cases, model parameterisation from 

solubility isotherms will fail vigorously as described for the case of the Serine anhydrate. Those 

cases underline the need for in-depth solid state analysis. A complete description of SLE appears 

ill-posed until an appropriate (theoretical) description of the solid phase is found.  

An illustrative example is given by the system of Escitalopram. Hereby, the (S)-enantiomer of the 

compound Citalopram is the pharmaceutically active species.  
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It is sold as Escitalopram oxalate, which is a molecular salt of the N-protonated Escitalopram 

cation. The molecular weight of Escitalopram (324.39 g/mol) and the oxalic acid molecule 

(90.04 g/mol) sum up to M=414.43 g/mol. Binary solubility data of the Escitalopram 

oxalate/ethanol system are available from a master thesis by Ewelina Płoszaj 188. The thesis 

comprises an attempt for the chiral separation by crystallisation. It is shown, that the system 

belongs the class of solid solutions (compare Figure 4.23c)), which can be less suitable for chiral 

separation by crystallisation (see chapter 3). Thus, understanding of the solid phase (formation) 

might be the first step to tailor more suitable SLE for this compound.  

Determination of the heat and temperature of fusion of Escitalopram oxalate by DSC yielded a 

temperature of fusion of 425.4 K and a heat of fusion of 39.8 kJ/mol. The refined COSMO-SAC 

model was used to estimate the activities of the oxalate salt in ethanol. In a first step, a proposed 

molecular structure of the neutral salt of Escitalopram oxalate ((Figure 4.78a), denoted ‘Mono’) 

was geometrically optimised.  

Further, sigma profiles were generated and allowed the estimation of solubilities of the 

undissociated salt in ethanol. The results revealed a large gap with respect to the experimental 

values (dashed line, Figure 4.79). Such a large error of prediction was considered very unusual. 

Harrison et al. 189 offered an explanation proposing a larger molecular complex as previously 

assumed. Herein, two N-protonated Escitalopram cations and a double negatively charged 

oxalate anion are accompanied by a neutral oxalic acid molecule and a partially occupied water 

molecule (not shown) in the crystalline state. The complex, denoted herein ‘Dimer’, was 

obtained from crystallisation from ethanol. Consequently, the molecular mass of the ‘Dimer 

‘complex doubles to M=828.86 g/mol (with disregard of the water molecule) and the specific 

heat of fusion changes to 78.8 kJ/mol. The latter is due to the conducted mass based DSC 

measurement, which yields the molar heat of fusion from the information of the molar mass 

only. Geometrical optimisation of the published molecular structure and re-calculation of the 

solubility in solution revealed a much better agreement between the estimates and the 

experimental data (Figure 4.79, solid line).  

 

 
Figure 4.78 Complexes of Escitalopram oxalate involving 2 molecules (‘Mono’, a)) and 4 molecules (‘Dimer’, b)). 

It is an open discussion, if and where organisation of molecules in solution takes place. It may 

happen prior to the incorporation into a restricted unit cell and again while entering into the 

crystalline lattice. In the limiting case, there are molecularly organised structures surrounded by 

solvent molecules, which are identical to the structures in the crystal. In the opposite case, the 

molecular structure and conformation of the molecules involved is not related to the structure 

a) b) 
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within the corresponding crystals and the crystalline structure forms right at the solid/liquid 

interface. The latter implies for the case of Escitalopram oxalate, that either the whole ‘Mono’-

complex or alternatively Escitalopram and oxalic acid molecules are placed alternately into a 

growth unit forming a ‘Dimer’.  

Both cases were considered for the solubility 

estimates. The solid line of Figure 4.79, denoted 

‘Dimer/Dimer’, represents the estimate for the 

large complex both in the solid and in the liquid 

state, whilst ‘Mono/Dimer’ is the estimate for the 

proposed case of a small complex in the liquid 

phase and the large complex in the solid phase. 

The results support the case of different 

structures in the crystal and in the liquid phase 

due to the better agreement with experimental 

data. However, the difference to the estimate of 

the ‘Dimer/Dimer’ case is within the accuracy of 

the COSMO-SAC model estimate. Thus, rather an 

indication than a concluding remark can be stated 

here. In contrast, the existence of the proposed 

large complex in the crystalline phase is strongly favoured over the simple salt structure, since 

the differences in the estimates are surprisingly large and far beyond the typical error of the 

model. In summary, the citalopram oxalate system investigated poses a selected example, for 

which indications regarding the correct solid state can be derived through SLE models. Since the 

considered model rests on the determination of the heats and temperatures of fusion only, a 

decision between two theories can be supported from limited experimental data. 

 

4.5  Summary 

The preceding chapter 4 relates to the description of characteristic properties of SLE, which are 

in demand for successful chiral separations. The most relevant types, conglomerate- and 

compound-forming phase diagrams, were derived for a number of compounds. The NRTL model 

was capable of predicting ternary and quaternary phase diagrams from binary data, if systems 

appeared more simple and heterochiral interactions were less pronounced. The model was 

found suitable for the estimation of changes to the eutectic composition, which is relevant for 

chiral separations. It was shown, that heterochiral interactions can be, once determined, 

transferred from one solvent to another. Since changes to the eutectic composition alter with a 

specific solvent strength, the approach opens up possibilities for a targeted screening of solvents 

with suitable properties for chiral crystallisations. 

Parameters of thermodynamic gE-models can be highly correlated and their physical meaning 

might vanish. A studies involving the NRTL model and Methionine in water quantified typical 

uncertainties and parameters sensitivities providing a more general framework how to assess 

the quality of a models and their parameters. 

 

Figure 4.79 Solubility of Escitalopram oxalate in 
ethanol. Experimental data 

188
and estimates by 

the refined COSMO-SAC model. ‘Mono’ denotes 
the small complex made of a single Escitalopram 
cation and ‘Dimer’ denotes the large complex in 
the liquid/solid phase. 
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Recent SLE estimation models cannot discriminate among enantiomers. This is no hurdle in the 

identification of suitable antisolvents. Tools like the COSMO-SAC model appeared appropriate 

here. Provided, simple systems without pronounced heterochiral interactions are present, the 

quantitative estimation of the relevant SLE for process design is possible for chiral systems. The 

limited accuracy of estimation models entails generally larger errors in the prediction of 

solubilities of the racemic compound compared to the single enantiomer, since the estimated 

activity coefficients are multiplied. This aspect necessitates particular attention in the use of 

group contribution and COSMO-type model for chiral systems. On the other hand, the use of 

estimation models might serve as an powerful tool in the first identification of solvents, which 

allow for larger shifts in the eutectic composition, if pronounced heterochiral interactions can be 

expected. On a less accurate level, which can be appropriate for selected cases, predictions of 

estimation model can assist in judging whether a certain solid state can exist or not and may 

allow the accelerated system description.  

More comprehensive information on the aspects introduced in this chapter were published in 

the Journal of Chemical Engineering Data 150, 187, in the Journal of Fluid Phase Equilibria 190 and in 

the Journal of Chemical Engineering and Technology 172. 

 

 





 

 

 

 

 

5 Separation of enantiomers  
 

Being aware of fundamental properties for a given chiral system, the most promising strategies 

for its separation can be identified. Selected theoretical approaches for the crystallisation-based 

and chromatography-based chiral separations together with coupled processes were 

corroborated by experiments, validated and assessed in this chapter. The scale-up of a coupled 

process aimed  to prove its practical relevance. 
 

 
 
Figure 5.1 Structure of chapter 5. The most comprehensive study was performed for the pharmaceutical 
compound Bicalutamide, other compounds were analysed according to the mapping chapters only. 

 

5.1 Selective crystallisation of enantiomers 

Within the previous chapter a number of phase diagrams have been presented. Methodologies 

affecting the eutectic composition and the slope of solubility isotherms were presented. Facing 

the design process of a thermodynamic separation, the spatial distribution of the different 

domains is of importance in the first place. However, there are more aspects to be considered, of 

which selected examples will be explained in this paragraph.  

 

5.1.1 Solubility ratios 

The ratio of the solubilities of a racemic mixture and the solubilities of the single enantiomer 

have a large influence on the possible productivity of preferential crystallisation strategies due 

to the change in the slope of the metastable solubility isotherms. Metastable solubility isotherms 

are prolonged isothermal solubility lines into the supersaturated area. They denote the driving 

force for crystallisation, i. e. the species-specific supersaturation and can be used to estimate the 

theoretical yield. A comprehensive discussion of this aspect is reported by Collet et. al., Levilain 

et al. and Polenske et al. 16, 99, 191, 192. In theory, the crystallisation trajectories of a seeded 

preferential crystallisation process are extended for small ratios and more target enantiomer 
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can be crystallised and harvested, provided that no nucleation of the undesired counter 

enantiomer takes place. Within Figure 5.2 a racemic supersaturated solution is seeded with 

crystals of the (R)-enantiomer. The lengths of the crystallisation trajectories equal the maximal 

thermodynamic potential, that can be used for a directed selective crystallisation process. The 

area of possible entrainment, i .e. the possible enrichment before the metastable solubility 

isotherm is approached, is larger in the case (bold lines), where flat solubility isotherms are 

present. The upper dashed arrow is prolonged in comparison to the lower dashed arrow as a 

result of the different slope of the solubility isotherms. Attention is invited to the fact, that the 

solubility of the single enantiomer in both solvents is assumed identical. The resulting change of 

the compositions of the mother liquors after selective crystallisations (denoted by solid arrows) 

is large and consequently different crystallisation process yields can be expected. 

 

Figure 5.2 Two cases of seeded crystallisations for a compound exhibiting the same solubility in a solvent but 
largely different slopes of solubility isotherms (thin and bold lines, respectively). Flat solubility isotherms (bold) 
allow the efficient purification of a racemic mixture (initial composition, open bold symbol). The remaining 
mother liquor holds mainly the (S)-enantiomer (bold arrow). Seeded crystallisation witin a system with steep 
solubility isotherms (thin steep lines) allows only for very minor yields, the process trajectory (thin dotted 
arrow) hits the solubility isotherm in the vicinity of the racemic composition an the initial composition (open 
thin symbol). The remaining mother liquor is only slightly enriched by the (S)-enantiomer. 

Within chapter 4.1.2, the slope of solubility isotherms was related to values of activity 

coefficients. From this findings, it is simple to follow, that well chosen solvents will yield more 

flat solubility isotherms and therefore larger areas for entrainment. Estimation models as the 

COSMO-SAC approach can provide activity coefficients and may assist in identifying suitable 

solvents. If heterochiral interactions are known to be present, a parameterisation of the latter 

and re-use of the obtained parameters in the solvent screening procedure (as described in 

chapter 4.4.4) might allow the identification of promising solvent (systems). 
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5.1.2 Preferential enrichment in the liquid phase 

Though, originally introduced by Tamura and co-workers for enantioseparation by a 

polymorphic transition process 193, the term ‘preferential enrichment’ describes well a simple 

process variation for systems exhibiting an eutectic composition close to unity. In analogy to 

Tamura’s process, the target enantiomer is not crystallised, but dissolved selectively in the liquid 

phase. Another reference to this concept is given by Chen et al. 92. The process allows the 

purification of any asymmetric initial mixture, provided suitable ternary SLE are present. 

The corresponding mass balances, necessary for process design, and a generic expression for 

process yield are derived in the following. An initial feed mixture can consist either of solvent-

free solids or, as the result of a pre-enrichment step, be fed as solution. Adjustment of this 

mixture by addition of a specific amount of solvent or removal of the surplus of solvent by e. g. 

partial evaporation, respectively, places the overall composition onto the phase boundary 

between the 3-phase and the inner 2-phase region as illustrated in Figure 5.3.  

 

The theoretical yield of this process is derived from a mass balance considering the enantiomer 

in the racemic solid phase sm , in the liquid phase eum  and in the initial composition initialm . The 

balance for a racemic compound and the (R)-enantiomer reads 

seuinitial mmm +=  
(5.1) seu

R
euinitial

R
initial m50xmxm .)()( +=  (5.2) 

with k
Rx )(  being the ratio of the enantiomers defined as 

k
S

k
R

k
Rk

R
mm

m
x

)()(

)(

)(
+

=  k: initial, eu. (5.3) 

Algebraic reformulation leads to an expression, that relates the dissolved amount of the 

compound to the initial amount of substance to be separated. Provided, that the solubility at the 

eutectic composition weu is known, the amount of solvent to be added to a dry mixture of solids 

 

 
 

Figure 5.3 Concept of ‘preferential enrichment’ via the 
liquid phase. 

Figure 5.4 Theoretical yield of the process introduced 
for various initial feed compositions and eutectic 
compositions for given systems. 
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can be derived. Analogously, msolvent can be used to derive the amount of solvent to be removed 

from a diluted initial solution.  
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Introducing expressions for the mass of the target component (here, the (R)-enantiomer) and 

the amount of the target component in the initial mixture, the yield PE
RY )(  can be defined as
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(5.8) 

It is illustrated in Figure 5.4, that virtually every asymmetric mixture can be enriched in the 

liquid phase, provided that the eutectic composition exceeds the initial composition. It should be 

noted, that the elevated theoretical yields according to Eq. (5.8) refer always to the purity at the 

corresponding eutectic composition.  

In case of Serine, the eutectic composition is quite close to unity and highest purities at elevated 

yields are possible using this enrichment procedure. This concept has been evaluated 

experimentally in combination with a pre-enrichment step based on chiral chromatography 

within chapter 5.2.1.  

Example: Separation of Proline enantiomers 

The eutectic composition of the system of the Proline hemi-

chloroformate yields an almost enantiopure eutectic 

composition in chloroform (chapter 4.2.3). The drawback 

of the solvent is the very low solubility of 0.05 wt%. 

Klussmann showed, that the solubility can be increased by 

the addition of methanol. The co-solvent leads to a 

subsequent disappearance of the solvate and therefore to 

lower eutectic compositions. In summary, a typical 

optimisation problem is found here, which depends on cost 

factors for solvents and the purity requirements. An 

alternative separation process for Proline is introduced in 

the next paragraph. 

 

5.1.3 Exploitation of shifts in the eutectic composition 

5.1.3.1 Theoretical concept and process yield 

The concept above is limited to substances, whose eutectic compositions exceed already the 

purity requirements. Another, more general, concept is introduced in the following. It shares the 

first step with the preferential enrichment process. The new concept is independent on the 

 

Figure 5.5 Change in the eutectic 
composition through co-solvent 
addition. Data from Klussmann 

36
. 

0 1 2 3 4 5
97

98

99

100

methanol /wt%

E
ut

ec
tic

 c
om

po
si

tio
n 

/w
t%



5.1 Selective crystallisation of enantiomers 133 
 

eutectic composition, it rather exploits a shift of this property between two thermodynamic 

states. The process can be compared to the among chemical engineers probably better known 

concept of pressure-swing-rectification. Two thermodynamic states are used here to alter the 

position of an azeotrope for more difficult separation problems. Firstly, a (pseudo-) binary 

mixture is equilibrated such, that the distillate composition equals the composition of the 

azeotrope, which is closer to the target component. In a second step, the azeotrope is shifted by a 

pressure and temperature change towards lower values. Now, the target component can be 

withdrawn as the bottom product, while the distillate composition equals the lower azeotrope 

and can be fed back to the first column. The separation of chloroform/methanol is such an 

example.  

Analogously, it can be attempted to exploit changes to the eutectic composition in solution for 

separation purposes. Starting from any asymmetric mixture of enantiomers (Figure 5.6, point 1, 
initial
Rx )(

), preferential enrichment can be achieved through solvent removal and equilibration at a 

low temperature Tlow. The composition will approach point 2 at the phase boundary between the 

inner two-phase region and the three-phase region (shaded) and will separate into a solid phase 

(point 3) and a liquid phase of eutectic composition (point 4). The latter composition 1eu
Rx ,

)(
 is 

enriched by the target enantiomer compared to the initial composition initial
Rx )(

 at point 1.  

  

Figure 5.6 1
st

 step: Preferential enrichment of the 
liquid phase until the high eutectic composition. 

Figure 5.7 2
nd

 step: Solvent removal and selective 
crystallisation of the (S)-enantiomer.  

The change in the eutectic compositions 1eu
Rx ,

)(
 and 2eu

Rx ,
)(

 between two temperatures is illustrated 

by a bent dashed line within Figure 5.7. The corresponding variation in the shape of the outer 

2-phase areas is visible. The enriched liquid phase of Figure 5.6 is separated from the (racemic) 

solid phase and re-used at a higher temperature Thigh (Figure 5.7). Point 4 represents the initial 

state for a 2nd process step. There are two options for shifting point 4 into the outer two-phase 

region (shaded), in which selective crystallisation of the target enantiomer can take place. Either 

more solvent is evaporated in order to concentrate the solution up to the phase boundary 

towards the three-phase region, or, alternatively, the solubility isotherm can be shifted upwards 

by controlled injection of an antisolvent. The optimal yield is obtained at the phase boundary 

between the outer 2-phase and the 3-phase region (point 5). Its composition splits into a liquid 

phase with the lower eutectic composition 2eu
Rx ,

)(   
(point 6) and a pure solid phase consisting 

solely of the target enantiomer (point 7). The composition of interest, i. e. point 5 on the phase 
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boundary can be found from a mass balance. Herein, the optimal amount of solvent is given by 

Eq. (5.13), with weu,2 being the sum of the solubilities of the enantiomers at the lower eutectic 

composition, defined as 

.
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(5.13) 

A principle drawback of the process using the introduced tie lines becomes visible. The liquid 

phase with 2eu
Rx ,

)(
 remains largely enriched by the target enantiomer, even after a successful 

crystallisation run. Thus, it appears favourable to merge this fraction with feed material of point 

(1) and a fraction of the already crystallised racemic compound of point (3). Hereby, a 

composition identical to the initial composition prior to the 1st crystallisation step can be 

obtained and hence, the same amount of product can be crystallised from less feed material. In 

summary, the 2-step process circulates alongside the three thermodynamic states (2), (4) and 

(6) as depicted in Figure 5.6.  

The fact, that the proposed 2-step process is defined through thermodynamically stable states, 

allows applying a simple balance. Since the change of 2eu
R

1eu
R

eu
R xxx ,

)(
,
)()(∆ −=  for different 

temperatures can be relatively large (methionine/water: 8% 89, 186; less for other systems 33, 35, 

169), the theoretical outcome and the optimal conditions (temperature, solvent/antisolvent) for 

maximum yield are of interest. Therefore, it is convenient to define the yield as the mass of the 

crystallised target enantiomer relative to the mass of the excess of the more abundant 

enantiomer in the feed, since it ranges in this manner between zero and unity. A simple mass 

balance for the more abundant (enriched) enantiomer, in this case the (R)-enantiomer, can be 

written as follows. It will result in an expression for the theoretical process yield. The initial total 

amount of solute to be separated minitial is based on the contributions by the mass of the 

(R)-enantiomer and the mass of the racemic compound (R,S). In the 1st process step, minitial is 

distributed amongst the liquid and the solid phase according to the equilibrium isotherms at 

Tlow. The purities and the amounts obtained are independent of the initial composition xinitial and 

depend on the composition and solubility at point 4 in Figure 5.6 at Tlow only. Further, the 

dissolved amount 1eum ,  depends neither on minitial nor on xinitial, but only on the size of the 

system, i. e. the volume of the liquid phase. 

( ) 1s
SR

1eu1s
SR

l
SR

l
R

initial mmmmmm ,
),(

,,
),(),()( +=++=  

(5.14) 

The 2nd process step is balanced by the amount of the crystallised target enantiomer using the 

composition at point 5 shown in Figure 5.7 at the temperature Thigh. The mass of solutes meu,1, 
dissolved in the 1st process step at the temperature Tlow, is transferred to the 2nd process step. 

This mass is reduced after equilibration by the amount of the target enantiomer crystallised in 

the 2nd process step 2s
Rm ,

)(
: 
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(5.15) 

A corresponding balance of the (R)-enantiomer only yields a description of the 2nd process step 

after equilibration: 
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Hereby, the composition of the solid phase is defined by pure (R)-enantiomer:
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and the equations above can be rewritten as:
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With the yield )(RY , defined as the excess of the target (R)-enantiomer in the initial, enriched 

solution in relation to the crystallised target enantiomer, division of Eq. (5.18) by l
Rm )(  and 

consideration of the definition of the eutectic composition (Eqs. (5.20) and (5.21)) the following 

set of expressions can be followed. 
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The theoretical process yield depends herein on the eutectic compositions only. A generic plot of 

the theoretical yield of the 2-step process for a given eutectic composition 1eu
Rx ,

)(  in the 1st step 

and a difference 2eu
R

1eu
R

eu
R xxx ,

)(
,
)()(∆ −=  between both steps is presented by Figure 5.8. Certainly, the 

value of eu
Rx )(∆  is decisive, but also the eutectic composition itself. Elevated yields can be 

expected from either high eutectic compositions or from low compositions.  
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Figure 5.8 Generic plot of theoretical process yields according to the eutectic composition in the first step and 
the difference between both eutectic compositions. 

Application of this concept to Proline results in a yield above 84 % according to the data from 

Figure 5.5 and Eq. (5.24). 

 

5.1.3.2 Validation experiments based on a model system (Methionine) 

The 2-step concept was exemplarily validated on the amino acid Methionine, which represents a 

system with a temperature-depending eutectic composition between 94% and 86% (chapter 

4.2.2). Thus, a yield of 68 wt% was expected. Though, the locus of the tie line to be met in the 1st 

process step is known in theory, three aspects 

were considered to simplify validation 

experiments. A too diluted solution led to a 

drop in the eutectic composition. Thus, a 

surplus of solids is recommended to be added 

to the solution, leading to a solid phase of 52% 

(S)-enantiomer. 5 wt% loss of solid phase was 

assumed to happen during filtration in between 

the two steps and again during the final 

product filtration process. Finally, the 

reduction of the amount of solvent to be 

removed in the 2nd step by 10% appeared 

appropriate to assure, that the overall 

composition remained in the outer 2-phase 

region. Otherwise, nucleation of the racemic 

compound would be possible. The resulting 

drop in the expected yields is sketched in Figure 5.9. The largest difference to the theoretical 

yield (68 wt%) is observed from only slightly enriched solutions. Within other areas, the gap to 

the ideal yield is not significant. It is interesting to note, that initial enrichments above 70 wt% 

do not lead to a further improvement of the yield. A simple stirred vessel and a fully equipped 
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Figure 5.9 Ideal yield (upper mesh) and more realistic 
yield (lower plane) of the proposed process for 
different initial conditions and temperature 
differences between the two process steps. 
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(Pt-100 element, turbidity probe, vacuum gauge) and automised crystallisation reactor (2-pot 

automate, HEL ,UK) have been used for process validation experiments.  

In a first step, a double-walled flask was 

tempered to 274 K and a supersaturated 

solution (1 l water, 55 g racemic 

Methionine, 37 g (S)-Methionine,  

70x initial
S .)( = ) was added and agitated by a 

magnetic stirrer bar for 24 hours. The 

supernatant was filtered of by vacuum 

filtration and the solid phase was washed 

with methanol. Both phases were analysed 

by chiral HPLC (Chirobiotic T, 250x4.6 mm, 

5 µm; mobile phase: methanol/water 

60/40 v/v, 1 mL/min, 298 K; UV: 210 nm). 

The liquid phase was concentrated up at 

333 K and ~190 mbar in subsequent 

batches of 300 mL each. The batches were 

recombined to the concentration needed for 

the 1st crystallisation step. The start of the 

crystallisation and the thermodynamic 

equilibrium was estimated by the turbidity 

probe. The target component was separated 

from the liquid phase by vacuum filtration. 

Again, the purities of both phases were 

analysed by chiral HPLC.  

Internal recycling  

The introduced crystallisation concept suffers from a general disadvantage in comparison to 

pressure-swing-distillation. The final product is crystallised within the outer 2-phase area 

leaving a mother liquor, which is still highly enriched by the target enantiomer (
2eu

Sx ,
)( ). In 

distillation processes, this fraction is continuously fed back and remixed with the feed. 

Analogously, the recycling of fractions within subsequent crystallisation batches will lead to 

superior mass of product per mass of feed ratios. The whole amount of the solute in the liquid 

phase in the second step and also a fraction of the solid phase crystallised from the first step can 

be recycled internally as illustrated by Figure 5.10. In addition, the solvent can be re-used. The 

corresponding trajectory of the liquid phase compositions upon recycling is presented by the 

points i)-iii) in Figure 5.7. Provided, that the establishment of thermodynamic equilibria is fast, a 

continuous crystallisation process involving this three states might be feasible. The purity of the 

initial feed stream determines the grade of recycling of the solid phase from the first step and 

also the gain in productivity. It is visible, that already a second batch increases the overall 

productivity significantly. The value approaches unity for an infinite number of subsequent 

batches, if the considered losses due to filtration, etc. are neglected. Recycling processes bear the 

inherent difficulty, that impurities accumulate. On order to evaluate this aspect and the whole 

concept, three subsequent batches were crystallised. Hereby, the mother liquor after the 2nd 

 

Figure 5.10 Schematic representation of two subsequent 

crystallisations of Methionine enantiomers. Arbitrary 

asymmetric mixtures are enriched up to 100% purity. 
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process step was reused and combined with a fraction of dry solids from the first crystallisation 

step and fresh feed material. The composition of this mixture was adjusted to maintain the same 

initial composition 70x initial
S .)( =  in all batches.  

 

Results of crystallisation runs 

Three successful separations of Methionine enantiomers have been performed. Due to internal 

recycling, reduced amounts of feed became necessary to achieve to same product mass. This 

applied from the 2nd batch on. The product 

purities have been close to 100% throughout 

the series of experiments. No contamination by 

impurities or degradation products was 

determined. The solvent consumption became 

negligible after the first batch, since the 

solvent was recovered directly from 

distillation. The practical considerations on 

product losses appeared reasonable, since the 

obtained yields followed the theoretical values 

quite closely (5.14).  

Variables as dissolution kinetics and the 

duration until the thermodynamic equilibrium 

is established, can pose limiting factors, but 

have not been considered quantitatively. No 

delay between the end of the partial solvent 

evaporation in the 2nd step and the 

equilibration was determined. The 

evaporation rate was considered as the main 

bottleneck and therefore the heating of the 

reactor. Cost factors for more a powerful 

heating may help to assess this issue in the context of a whole process framework. Dissolution 

kinetics have been the limiting factor in the 1st process step. However, it is known, that crystal 

sizes, crystal surface properties, crystal habitus and fluid dynamics have a large influence on 

these kinetics. It was found, that ground crystals dissolve within a few minutes and no further 

  

Figure 5.11 Realistic productivities for a single batch 
and a number of subsequent batches. 

Figure 5.12 Fraction of the solid phase to be recycled 
from the 1

st
 step.  

Table 5.1 Feed, yield and purity figures of three 
subsequent crystallisation runs for the separation of 
Methionine enantiomers. 

run 

Methionine /g water 
/g 

product 
/g 

purity 
/% (R,S) (S) 

I 55 37 1000 21 >99 

II 37 27 76 21 99 

III 37 27 57 21 >99 
 

 

Figure 5.13 Increase in process yield for subsequent 
batches-model estimation and experimental 
validation (three runs). 
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optimisation was undertaken in this regard. Obviously, there is room for improvement, which is 

beyond the focus of this study.  

In summary, a new process variation was proposed for the crystallisation-based 

enantioseparation of Methionine. The process was balanced and validated exemplarily for one 

amino acid. The fact, that the process is not requiring any substance-specific enrichment,  

allowed the purification of a feed stream of 70 %, which was below the eutectic composition of 

this compound. Feeds streams of much lower initial enrichment can be purified also. In theory, 

no drop in the process yield has to be accepted. However, validation experiments have shown, 

that for slightly enriched feed streams, a reduction in the process yield occurs. One option for 

compensation is given by a series of subsequent crystallisation batches. 

 

5.1.3.3 Validation experiments based on an API (Bicalutamide) 

One key result of this thesis comprises the application of the developed separation scheme to an 

API of pharmaceutical and economic relevance in order to prove the generic applicability of the 

new concept. Bicalutamide was selected for evaluation in the course of a collaborative project 

between the MPI Magdeburg and AstraZeneca. The joint work was embedded in a 3-years 

project under the umbrella of the European Framework Program 7 (FP7-NMP2-SL2008-214129, 

www.INTENANT.eu). The compound is manufactured at a scale of several metric tons per 

annum at AstraZeneca and is used as a racemate for the treatment of prostate cancer. It is the 

active pharmaceutical ingredient of the drug CasodexTM. The sales value (sales figures are for 

2008) is approximately 210 million US dollars. During a development program within 

AstraZeneca targeting manufacture of the pure (R)-enantiomer of Bicalutamide, the 

manufacturing method developed utilised SMB-HPLC for essentially full enantioseparation of 

the racemic material. It was aimed to benchmark the developed 2-step separation scheme with 

respect to the actual production routine performed at AstraZeneca. 

Therefore, the introduced 2-step crystallisation scheme was modified, adapted and evaluated on 

AstraZeneca’s API Bicalutamide. Firstly, binary, ternary and quaternary SLE were derived and 

parameterised using the methodologies described in chapter 4. Secondly, the introduced 2-step 

process was modified and applied and the compound was separated. Further, a scale-up of the 

developed process was performed (scale factor: 600) aiming to elucidate, whether such a 

process can be conducted succesfully at a pharmaceutically relevant scale (s. chapter 5.2.2). The 

transfer of bench-scale experiments to pilot and even production scale is considered as a non-

trivial task. Crystallisation kinetics and MSZW can differ significantly 87. Thus, it was believed 

that the practical process realisation provides the best insight in the process applicability. 

Experimental section 1 

a) Solid phase analysis 

(R)-and (S)-Bicalutamide were obtained from AstraZeneca via a collaborative project. The 

purities were given as >99%. The heats and temperatures of fusion of (R)-Bicalutamide and the 

racemic compound were determined using differential scanning calorimetry (DSC). A sufficient 

amount of methanol was added (typically 5 mL) to Bicalutamide and the sample was gently 

stirred until complete dissolution occurred. The solid samples were dried in an oven at 323 K 

under vacuum and subsequently crushed and ground in a mortar. The samples prepared were 
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divided for DSC (DSC 131, SETARAM, France; closed aluminium crucibles, ~12 mg substance, 

1 K/min, 20 mL/min helium purge gas flow) and XRPD (X’Pert Pro Diffractometer (PANalytical 

GmbH, Germany; X’Celerator detector, Cu Kα radiation, 2θ range of 3-40°, step size of 0.017°, 

counting time of 50 s or 100 s per step) analysis respectively.  

 

b) Measurement of multiphase equilibria  

The results of the preceding solvent screening were provided in chapter 4.4.2. For validation 

experiments a promising candidate (methanol/water) and a less favourable combination 

(methanol/toluene) were chosen. The ternary solid-liquid phase equilibria (SLE) of 

Bicalutamide in both solvent systems were determined by means of in-situ ATR-FTIR 

spectroscopy, gravimetric off-line measurements and a polythermal, in-line measurement 

device. In addition, the binary and the quaternary solid-liquid phase equilibria (SLE) of 

Bicalutamide in methanol/water were determined. 

The determination of the solubility of (R)-Bicalutamide in both methanol/water and 

methanol/toluene mixtures was initially carried out by means of an isothermal equilibration 

method. Sealed flasks with a volume of 5 mL were filled with a predefined amount of solvent 

(mixture) and (R)-Bicalutamide with a large excess of the solid phase. The mixtures were 

agitated by a magnetic stirrer for at least 48 hours and kept at a controlled temperature between 

273 and 333 K using a thermostat (RC6 CP, Lauda edition 2000, Germany). Subsequently, the 

liquid phase was withdrawn quickly with a syringe and filtered (45 μm pore size). The solvent 

was evaporated and the differences in weight were recorded. Ternary SLE were derived 

analogously using predefined slurries of (R)- and (S)-Bicalutamide in solvent (mixtures). Here, 

both the liquid and the solid phase were analysed after solvent evaporation by means of chiral 

HPLC (methanol, 298 K, 1 mL/min, Chiralpak AD, 250 x 4.6 mm, Vinj=1 mL). In addition, the solid 

phase was investigated using XRPD analysis to ensure, that the same solid phase was present for 

all measurements. 

Further to this, solubility measurements were conducted in the system (R)-Bicalutamide in 

methanol/toluene, where applicable, by means of a polythermal dissolution method using a 

Crystal16TM device (Avantium Tec. BV, NL). Predefined amounts of mixtures of the enantiomers 

were dissolved in a solvent (mixture) at high temperature, then cooled and recrystallised and 

then completely dissolved again by applying a heating ramp of 3 K/hr and sufficient agitation at 

700 rpm. The cloud- and the clear-points were determined by a turbidity probe and the 

corresponding temperatures were recorded. The application of this device is restricted to 

temperature ranges far above the crystallisation point of the solvent, since recrystallisation can 

require substantial subcooling of the solution. It is generally impossible to assign a crystal 

structure to the solid phase investigated and thus, no information on polymorphism can be 

derived. The advantage of this method is the rather quick acquisition of solubility data. It is 

believed that the two techniques described above should be used in combination for best 

reliability and performance. 

 

c) In-Situ Concentration Measurements 

The experimental setup used was based on a jacketed 50 mL vessel equipped with a Pt-100 

element, which was connected to a thermostat (RC6 CP, Lauda edition 2000, Germany). A simple 

magnetic stirrer bar was used for agitation. Changes in absorption in the liquid phase were 



5.1 Selective crystallisation of enantiomers 141 
 

determined from Fourier Transform Infrared Spectroscopy (FTIR) data acquired using an in situ 

probe for attenuated total reflection (ATR). The probe (DiComp) was equipped with a diamond 

ATR crystal, immersed at a slight angle against the flow direction of the solution and connected 

to a ReactIR45m device (Mettler Toledo, Switzerland). Spectra were recorded continuously in 

the region 2800-650 cm-1 and averaged over 90 s (256 scans) with a resolution of 4 cm-1. Three 

different measurements were performed using ATR FTIR. 

The solubility of Bicalutamide enantiomers at the eutectic composition was measured for 

different methanol/water ratios and under isothermal conditions (333 K). A slurry consisting of 

methanol and both enantiomers with a composition in the three-phase region was agitated and 

the spectra were recorded until thermodynamic equilibrium was assumed (20 min after the last 

change in the spectra). The concentration was determined from a calibration model and a 

defined amount of water was added to obtain the next data point.  

A number of SLE points in the quaternary phase diagram consisting of both enantiomers in 

methanol/water mixtures were then measured for model evaluation. Within the domain of the 

racemic compound and the inner two-phase region, all tie lines end at the same composition 

(Figure 2.22a)). Starting with any composition of the enantiomers in this region, the composition 

separates into a solid phase consisting of the racemic compound only and a liquid phase 

corresponding to the solubility isotherm. The liquid phase concentration was measured by ATR-

FTIR and the ratio of the enantiomers was computed from simple mass balances. The initial 

composition of the slurry consisted of 43 g methanol, 16 g water, 1.6 g (R)-Bicalutamide and 

2.4 g (S)- Bicalutamide. The solutions were allowed to attain thermodynamic equilibration after 

injection of a defined amount of water by waiting for at least 20 minutes after the recorded 

spectrum remained constant. The procedure was repeated for 12 data points, which are plotted 

in Figure 4.63. 

 

d) Multivariate Data Analysis 

Reliable and accurate tracking of changes in the liquid phase composition is a crucial 

requirement for crystallisation processes in general and in particular if more than two 

components are involved. Measurement techniques such as refractometry or the determination 

of density fail if the solvent mixture composition cannot be kept constant due to effects such as 

partial evaporation of solvents or if a second solvent is dosed. In these cases, models based on IR 

absorbance measurements can serve as useful tools to overcome this limitation 158, 194-198. The 

spectrum of the compound Bicalutamide and the spectra of the solvents water, methanol and 

toluene overlap almost in the entire spectral range considered, providing very little hope for a 

successful univariant calibration. Since the content of the solute in the liquid phase was expected 

to change with the ratio of the solvents, no simple subtraction of any background or reference 

state is possible. Consequently, multivariate calibration models were set up, validated and used 

in this study.  

 

e) Calibration Sets 

(R)-Bicalutamide was used exclusively for all calibrations, since the (S)-enantiomer and also the 

(solid) racemic compound should not affect any changes to the recorded spectra of the liquid 

phase, i. e. it is sufficient to measure spectra involving the (R)-enantiomer. Although this 

assumption is often found in the recent literature; there are examples to the contrary, where the 
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solid phase can indeed influence the measurements. Kee et al. 199 and Alatalo et al. 198 reported, 

that crystals can lead to interferences, if they are comparable in size to the penetration depth of 

the IR energy field. Fortunately, none of these phenomena have been encountered in this study. 

Three different calibration methods were used aiming to achieve a broad range of model 

applicability. First, controlled amounts of a defined solvent mixture were added to a 

concentrated (R)-Bicalutamide solution under isothermal conditions. The resulting spectra were 

recorded and thermodynamic equilibrium was assumed, when the spectrum remained constant 

for at least 20 minutes. The spectrum was added to the calibration set and, again, a controlled 

amount of defined solvent mixture was added.  

Then, just a single solvent was added to the mixture and the samples were allowed to 

equilibrate. In the case of nucleation occurring due to antisolvent addition, the sample was 

rejected from the calibration data set.  

Finally, the temperature was changed in 10 K steps at constant solution composition in order to 

identify temperature dependent peak shifts in the spectra. Again, if nucleation occurred, no 

measurements were carried out.  

Calibration sets were generated for the systems (R)-Bicalutamide/methanol/toluene and 

(R)-Bicalutamide/methanol/water. The first set consisted of 122 spectra, from which 112 were 

used for model description and 10 spectra were rejected as outliers. For the second system a set 

of 86 spectra was recorded, from which 5 spectra were removed as outliers. Two different 

calibration models were derived from the remaining data set; a model with lower accuracy 

covering a broader range of compositions and a second, high-accuracy model, which covers a 

range of compositions of particular interest. The latter calibration model is based on 49 spectra 

only and is restricted to solutions containing less than 6 wt% Bicalutamide. The spectra 

recorded were found to vary significantly with temperature, which in general requires a very 

comprehensive data set. However, the available data set is based on a narrow temperature range 

328 K to 343 K, which guarantees high accuracy, but is limited to almost isothermal applications. 

 

f) Calibration Models 

Since the compound specific information is stored in the whole characteristic spectrum and can 

be extracted to a different extend from a multitude of wave numbers, the problem can 

considered to be ill-posed. Most wave numbers are highly correlated and for this reason a 

number of different methods such as principal component analysis (PCA) and partial least 

squares regression (PLSR) are often used in order to obtain a quantitative description of the 

specific IR absorbance. The calibration models developed in this study are based on the 

information contained in the absorbance at wave numbers in the region 1784-655 cm-1 and on 

283 variables. PLS regression and model building was carried out with the software ICIR Quant 

(Metter Toledo, Switzerland). Initially, factors (also called latent variables) were identified, 

which are linear combinations of the measured spectra (dependent variables) and are suitable 

for regression of the given concentrations (independent data). The most promising number of 

factors for a given problem can be derived through a cross validation procedure. In this 

procedure, the number of factors is increased stepwise while searching for the lowest ratio of 

the error with respect to the number of factors or, if present, for a minimum error region. 

Therefore, the ‘leave-one-out’ method was applied. The models were built based on subsets 

(whole set reduced by one) and the missing data were estimated based on the model derived. 
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Every spectrum was removed once, leading to 112 repetitions for the first system. The decision 

criterion was the root-mean-square-error of cross validation (RMSECV). Prior to the model 

building step, different pre-processing procedures were applied to the measured spectra.  

 

Results and model parameterisation  

Quaternary SLE measurements of Bicalutamide enantiomers in methanol/water mixtures were 

conducted using calibrated ATR-FTIR equipment. In addition, a FTIR calibration for 

Bicalutamide in methanol/toluene mixtures was carried out. Although, the latter was not applied 

in this particular study, both calibrations are summarised here. The optimum model 

performance for the system Bicalutamide/methanol/toluene was obtained with 19 latent factors 

for all components independently (appendix, Figure D.1a)). This rather high number can be 

reduced by introducing temperature as additional independent data. However, for the system 

considered, the RMSECV then increased significantly. It is likely, that temperature effects can be 

compensated better by introducing more factors, as was also found by Profir et al. 158.  

The impact of pre-processing procedures was different for the calibration models. Autoscaling 

by means of a combination of mean centring (subtraction of the mean value of the dataset from 

each variable) and variance scaling (dividing each variable by its variance over the whole 

dataset) did result in significant improvements for the system Bicalutamide/methanol/toluene, 

while normalisation, baseline correction and the use of derivatives of the dependent variables 

did not contribute to a lower RMSECV. The second and the third calibration models for the 

system Bicalutamide/methanol/water both benefited from each of the pre-processing 

procedures, specifically mean centring, variance scaling, baseline correction and normalisation. 

The second and the first derivative of the spectral information resulted in the lowest RMSECV at 

9 and 6 factors, respectively (appendix, Figure D.1b/c). The corresponding model agreements 

for both systems are plotted in Figure D.1d/e and provided in the appendix. The average error of 

solubility measurements using the calibration models derived is expected to be <0.4, <0.5 and 

<0.2 wt%, respectively, within the ranges of compositions and temperatures considered. 

Thermodynamic equilibration and solubility measurements were controlled using the most 

accurate FTIR calibration model.  

 

Process Design 

The shortcut model was used to estimate the eutectic composition by assuming negligible 

heterochiral interactions. The solubility of the racemic compound was estimated correctly on 

the basis of activity coefficients derived from the single enantiomer. This finding and 

experimental data of the eutectic compositions in methanol/water solutions confirmed, that the 

simple estimation methods is suitable. The solvent independent shift of the eutectic composition 

xeu ranges from 97.7 wt% to 95 wt% for a temperature range of 273.15 K to 333.15 K. Thus, the 

maximum theoretical yield of this separation process is 55.3% (Eq. (5.24)), provided that the 2nd 

process step is conducted at 333.15 K and the 1st process step is performed at 273.15 K 

(compare Figure 5.14 and Figure 5.15). Again, the yield is defined by the ratio of the crystallised 

target enantiomer with respect to the excess of the target enantiomer in the initial mixture.  
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Figure 5.14 Expected yield of the separation of 
Bicalutamide enantiomers from mass balances. 

Figure 5.15 Estimated eutectic composition for 
various temperatures (solid line) and corresponding 
process yield according to the given temperatures of 
the 2

nd
 process step (dashed line) and a 

temperature in the 1
st 

process step of 273.15 K. 

The 1st process step was applied analogously to the case of Methionine. An antisolvent was used 

in the 2nd crystallisation step, since solvent evaporation was found feasible in principle, but less 

efficient. The applicability of solvent evaporation depends strongly on the solubility of the 

compound considered. It is possible, that almost the complete solvent needs to be evaporated to 

achieve the maximum yield. 

Heavy slurries are generally undesired, since SLE can hardly be controlled. The situation is 

illustrated in Figure 5.16 and Figure 5.17. The enriched mother liquor at point 4 is filtered off 

and transferred to the second batch and heated to Thigh. Upon solvent evaporation, the outer two-

phase region is reached and the solution will separate into a solid phase containing the 

crystalline target enantiomer (point 7) and the corresponding equilibrated liquid phase (point 

6’).  

According to the ‘lever-rule’ the proportion between the liquid phase and the solid phase 

illustrated is 1:1. The figure is not drawn to scale. In the case of Bicalutamide in methanol the 
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Figure 5.16 1st process step at low temperature, 
preferential enrichment. 

Figure 5.17 2
nd

 process step at higher temperature, 
addition of an antisolvent or evaporation of solvent, 
respectively. 
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proportion is even more unfavourable. For this reason, water was used to suppress the 

solubility. Its addition at isothermal conditions shifts the solubility isotherm upwards. Hereby, 

the liquid phase will contain less substance (point 6), which is beneficial for the overall process.  

Additional amounts of antisolvent shift the overall composition into the three-phase region, 

which is the domain of the solid racemic compound, the solid pure enantiomer and the liquid 

phase, which will contain both enantiomers at the eutectic composition. Within this undesired 

region the racemic compound may also crystallise and will become an impurity in the final 

product. Thus, the amount of antisolvent needs to be chosen well. 

 
Experimental section 2  

a) Chiral separation 

After evaluation of ternary and quaternary SLE, the proposed 2-step separation process was 

designed. An experimental crystallisation run was conducted to evaluate the introduced 

balances. The theoretical and the determined compositions of the liquid and the solid phase at 

all process states are given by Table 5.2.  

Therefore, a solution of enantiomers (point 1) was considered as an adequate output of a 

SMB-HPLC run with reduced purity requirements and was used as a reference mixture for 

separation. The solvent was partially evaporated according to the definition of the 1st process 

step and balances provided. 12 g of methanol remained after the concentration step. The ratio of 

the enantiomers in the liquid phase obtained was determined by HPLC as 97.7 % 

(R)-Bicalutamide and the solubility was measured by ATR-FTIR to 4.17 wt%. Solid-liquid 

separation was carried out by means of vacuum filtration and the liquid phase was reused.  

Point 5 in Figure 5.17 and Table 5.2 show the results of a theoretical process variation, which 

was applied earlier for the separation of Methionine enantiomers 186.  

Table 5.2 Evaluated process states of a conducted chiral separation run (in brackets: theoretical values) 

Point in  
Figure 5.16, 
Figure 5.17 

Process 
step 

Temperature 
/K )()(

)(

SR

R

+

/wt-% 

solute 
concentration 

/wt% 
watermethanol

methanol

mm
m

+
/wt%, solute free basis 

1 1st 273.15 (Tlow) 70 (70) 2.2 (2.2) 100 (pure) 
2 1st 273.15 70 (70) (9.4) 100 
3 1st 273.15 50 (50) 100.0 (100) - 
4 1st 273.15 97.7 (97.7) 4.2 (4.2) 100 

5  
(not conducted) 

2nd 333.15 (Thigh) (97.7) (43) (100) 

4 2nd 333.15 97.7 (97.7) (1.7) 40 (60 wt% water) 

6 2nd 333.15 95.1 (95.0) 1.0 (0.8) 40 
7 2nd 333.15 99.2/98.4 

(100.0) 
100.0 (100) - 

Partial solvent evaporation led to supersaturation and selective crystallisation of the target 

enantiomer. In the case of Bicalutamide 11.3 g of solvent would become necessary to evaporate 

in order to crystallise the (R)-enantiomer with maximum yield. The remaining slurry would 

consist of 43 wt% Bicalutamide and a solid-liquid separation would become practically 

impossible. Thus, for the 2nd process step an antisolvent was used instead. The run was designed 

to stop directly at the computed phase boundary in the 2nd process step (Figure 5.17, point 4). 

Figure 4.63 provides the necessary information to derive the more practical Figure 5.18 and 

Figure 5.19, which allow for the quantification of the antisolvent to be added at constant 
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temperature. The operating window for a successful crystallisation process is obtained. The 

threshold ‘∆solubility’ in this diagram is defined by the difference in solubility of point 4 (Figure 

5.17) and the solubility at the intersection with the phase boundary to the three-phase region. A 

supersaturated solution was generated at a water content of about 41 wt%. The possible 

addition of antisolvent is limited. The maximum water content must not exceed 57 wt%, which 

corresponds to a yield of 50.5 wt%. The deviation from the above mentioned theoretical yield 

originates from the NRTL model accuracy. The same experimental setup as described in the 

experimental section 1 (4.2.2) was used for the 2nd process step. The solution was kept 

isothermal at 333.15 K and water was added in 4 discrete steps. The ATR FTIR probe was used 

to track changes in solution composition during the chiral separation run. The process 

trajectories obtained can be seen in Figure 5.20. 

Upon water addition, nucleation was observed to occur at every injection step, followed by 

dissolution of crystals. Apparently, strong supersaturation is generated locally, due to the 

inability of Bicalutamide to dissolve in water, which, in addition, was not preheated and fed at 

ambient temperature. Nucleation is considered favourable here, since even at rather high 

supersaturation nucleation events do not necessarily occur due to large metastable zone widths 

and seeding was not planned for the process. Thus, in this case nuclei or small crystals were 

always present after antisolvent injections and helped to establish the required corresponding 

thermodynamic equilibrium. Starting from a concentration of approximately 4.2 wt% 

Bicalutamide, the value dropped to ca. 2.2 wt% upon antisolvent additions. Crystals did not 

dissolve again from here on and supersaturation was depleted by crystal growth until an 

equilibrium value of 1 wt% solubility was achieved. A sample of the first crystals to remain was 

taken and the ratio of the enantiomers was determined as 99.2 % (R)-Bicalutamide by HPLC. 

After two hours the ratio of the enantiomers in the liquid phase was determined by HPLC and 

was found to be 95.0 % (R)-Bicalutamide. The solid phase was separated from the mother liquor 

by vacuum filtration and washed with pure methanol. Its purity was determined (98.4 %) and 

found to be higher than the purity prior to this step (97.7 %). problems. However, the counter 

enantiomer was still present. It has to be taken into account that small amounts of adhering or 

 
 

Figure 5.18 Solubilities of the mixture of eutectic 
composition and the enantiomer. The intersection with 
the process trajectory marks the crossing of the liquidus 
line and the beginning of supersaturation.  

Figure 5.19 Beginning of supersaturation and 
maximal amount of antisolvent to be added for the 
2

nd
 process step of a separation of Bicalutamide 

enantiomers. 
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included mother liquor can always remain and there is room for improvement using more 

intensive downstream processing. Furthermore, the experimental run did in fact slightly exceed 

the phase boundary, as can be seen from the water content (60 wt%) in Figure 5.20, which is too 

high. Crystallisation of the racemic compound might already have occurred. The crystallisation 

kinetics have been rather fast in view of the establishment of the thermodynamic equilibrium. 

The crystal sizes were, due to locally large supersaturations, initially very small. Le et al. 

reported, that the addition of ethanol acts as an antisolvent to a DMSO solution and produces 

Bicalutamide crystals of 450 nm sizes. Crystals, produced through the addition of water to 

methanol were much larger when removed from the vessel and did not cause any filtration 

issues. 

 

Figure 5.20 Transient of the separation process progress of Bicalutamide. The vertical dashed lines highlight 
discrete water injections. Open symbols: water content. Full symbols: methanol content. Stars: Bicalutamide 
content. All data were recorded by ATR FTIR. 

 

Summary 

A new 2-step process for enantioseparation was evaluated on the chiral compound 

Bicalutamide. The process was balanced and the theoretical yield was estimated based on the 

heats and temperatures of fusion of the enantiomer and the racemic compound. The concept of 

defined antisolvent dosing for selective crystallisation was explained.  

In total three ATR FTIR calibration sets were generated for in situ process control. The 

calibrations derived helped to target suitable compositions for multicomponent SLE 

determination, thus improving the efficiency of process development. In addition, the 

calibrations were useful in tracking process progress.  

The study yielded the purified (R)-enantiomer of Bicalutamide from an asymmetric mixture of 

70 % purity. In the first step, the initial purity was increased from 70 % to 97.7 %. In the 2nd 

process step this was increased even further to 98.4 % (99.2 %). The design of both process 

steps was based on the SLE models derived. Process control was provided by the calibrated in 

situ ATR FTIR probe. The experimental crystallisation run proved the concept to be feasible and 

accurate.  
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The methodology described can serve as a general guideline for the separation of enantiomers 

with compound formation, provided either a pronounced shift of the eutectic composition or a 

eutectic composition close to unity is identified. A quick quantification of the theoretical process 

yield of the proposed two-step process is easily possible with knowledge of the corresponding 

heats and temperatures of fusion. The tools applied here for the first time in this comprehensive 

manner are rather generic and are not restricted to certain substance specific properties.  

 

5.2 Chiral separation by coupled processes 

The majority of the introduced selective crystallisation schemes demand an (at least slightly) 

asymmetric initial mixture. Those mixtures can originate from asymmetric synthesis with low 

yields in terms of enantioselectivity. Another source will be described in the following.  

The throughput of chiral separation methods, that exploit chiral selectors (compare Figure 2.3), 

is limited by the capacity and often the price of the corresponding selector. Lowered purity 

requirements can allow the increase in productivity for a given enantiomer. Since process 

throughput can only be assessed by a holistic approach, the individual productivities of 

processes capable of breaking racemates and to feed selective crystallisation processes with 

asymmetric mixtures are of interest. E. g. chromatographic separation processes exhibits the 

common drawback, that an increase in purity does not come along with an increase in 

productivity. Often, compromises are required. A number of publications have considered this 

aspect on a theoretical basis. Wibowo 128 and Kaspereit 123, 127, as well as Ammanullah 126, 200 

presented solutions for the identification of suitable interfaces between the two unit operations 

of chromatography and selective crystallisation. Within this chapter the specific interfaces for 

two systems with different characteristics were derived on the basis of dynamic models and 

mass balances. Both systems have been separated experimentally to allow the concept 

validation. The processes were compared to other hybrid methodologies state of the art.  

 

5.2.1 Separation of Serine enantiomers  

The large number of available efficient stationary phases for chiral separation tasks render 

chromatographic separation techniques almost universal. Often, the transfer of efficient 

preparative-scale processes from analytical methods is challenging. Preparative 

chromatography and in particular its optimisation requires in general more comprehensive 

knowledge of firstly the corresponding adsorption equilibria (s. chapter 2.4.2), secondly of the 

characteristics of the available columns and chromatographic equipment and finally on the 

mode of operation. In addition, the identification of suitable or even optimal operating points 

can be a tough task. The following paragraphs provide guidance to a comparison of standalone 

chromatography and the coupling of chromatographic pre-enrichment and selective 

crystallisation for the case study of Serine enantiomers.  

The chiral separation of the amino acid serine depicts a scenario, where an analytical chiral 

HPLC method is available, but the capacities of the chiral columns are limited such, that a large 

scale production of the single enantiomer by chromatographic methods required tremendous 

volumes of suitable stationary phase. Within a case study, the coupling of a highly selective 
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commercial column and a subsequent crystallisation scheme was investigated. The proposed 

separation scheme is depicted in Figure 5.21.  

 

Figure 5.21 Partial separation of racemic Serine followed by a crystallisation-based preferential enrichment 
step. 

A systematic study of different mobile phases and operating conditions was conducted in a first 

step. Selective adsorption of the enantiomers was quantified and a functional relation of 

productivity and product purity was obtained through a model approach. Secondly, the 

knowledge, gained in chapter 4.2.3 on the SLE of Serine in aqueous alcohols, was exploited to 

design an efficient selective crystallisation process for the purification of asymmetric mixtures. 

Its optimisation and outcome is illustrated in chapter 5.2.1.3. 

 

5.2.1.1 Inducing asymmetry by chiral chromatography 

Determination of adsorption isotherms  

The column characterisation and the determination of adsorption isotherms was performed 

using a fully equipped HPLC device (HP1100). Flow rates were limited to 0.5 mL/min due to 

pressure drop constraints of the Chirobiotic T column (Astec, ICZ Chemietechnik GmbH, 250 mm 

x 4,6 mm, 5 µm). The stationary phase consists of silica beads functionalised by the macrocyclic 

glycopeptide Teicoplanin, which offers by more than 20 chiral centres a high chiral selectivity. 

Supplier-recommended HPLC grade solvents methanol, ethanol and deionised water were used. 

Injections were performed with 1-5 µL volume at different temperatures (293.15 K, 298.15 K, 

303.15 K, 308.15 K), elution profiles were recorded at a wavelength of 205 nm. The alcohol 

content in the mobile phase was varied between 0-40 % by volume. A comprehensive summary 

of all conditions is given by Vorster as part of a diploma thesis conducted at the MPI Magdeburg 
201. 

 

Results 

A number of trends in the chromatographic separations were observed from the screening 

procedure, which are summarised here in brief. The capacity as well as the resolution of the 

stationary phase increased slightly for higher alcohol contents for both enantiomers. A counter-

trend was found for the separation factors and the NTP values. While the separation factor was 

not affected by temperature, much lower capacities were obtained from elevated temperatures. 

As reported in a several publications, a cyclic shift of retention times can take place using this 

column. This might be attributed to a folding of functional groups, but the predominant cause is 

not found up to now. For the experiments conducted, a shift was observed from aqueous ethanol 
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solutions, but not in case of methanol. In summary, a mobile phase composition of 20/80 

methanol/water at 298.15 K (separation factor of 1.5) was chosen as the most promising 

separation condition.  

Selected elution profiles were used to identify suitable adsorption model parameters. 

Overloading of the column happened already from injection amounts of 0.25 mg Serine on 

(Figure 5.22 left). Characteristic peak shapes of (Bi-) Langmuir-type were obtained. 

 

 

 
Figure 5.22 Serine elution profiles of racemic mixtures (solid line), the (S)-enantiomer (dotted lines) and the 

(R)-enantiomer (dashed lines). Symbols denote measurements, lines indicate simulation results.  

(injection volumes: 50 µL; injection concentrations: (R,S), 25, 20,…,5 g/L; (S)/(R), 50 g/L). 

Thus, the Bi-Langmuir model for multi-component-systems (Eq. (2.86) and Eq. (2.87)) was 

chosen to reflect the competitive adsorption behaviour of the two enantiomers. The loading at 

saturation was assumed equal for both components as well as the adsorption onto the silica 

matrix. Thus, a single parameter only describes the difference in adsorption onto the chiral sites, 

while in total 5 parameters need to be identified. Their estimation was conducted using the 

peak-fitting method. Migration of the solutes through the column was modelled using the 

equilibrium-dispersive model (Eq. (2.93)). The Matlab solver ‘patternsearch’ was found suitable 

for fitting theoretical chromatograms based on the chosen adsorption isotherm model to 

experimental chromatograms. The NTP (Eq. (2.77) to Eq. (2.81)) were not identical for both 

enantiomers- an assumption, the equilibrium-dispersive model rests on- but here the 

differences were less pronounced. However, since the tailing of the (R)-enantiomer profiles (less 

plates) was found more pronounced than for the (S)-enantiomer, a compromise had to be made 

during the parameter estimation procedure and minor discrepancies between the model and the 

experimental data set remained.  

The model parameters obtained through the simultaneous fit of the three profiles of Figure 5.22 

are listed in Table E.2 in the appendix. 
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5.2.1.2 Design of a continuous counter-current chromatographic separation process 

Identification of process parameters 

External constraints as e. g. flow limits on pumps and limits on switching times can have a large 

impact on the choice for an optimal set of operating parameters. For the case study of the model 

compound Serine, no constraints of such kind were considered, except for the maximal flow rate 

(here: 0.5 mL/min), which is limited intrinsically by the kind and size of packing material and 

the related pressure drop. Further, the minimal solubility of Serine, given by the racemic 

compound, is relevant. Methanol lowers the solubility down to 25 g/l at 298.15 K and a 20/80 

volumetric Methanol/water ratio. Though, the market values of (R)-Serine is significantly higher, 

it was chosen to evaluate the maximal productivity with respect to the (S)-enantiomer for the 

simple reason, that a crystallisation process for this enantiomer was evaluated beforehand 

already. Due to the mirror symmetry of phase equilibria, no hurdle is expected in the analogue 

crystallisation, the purification the (R)-enantiomer. However, the specific productivity of a SMB 

separation will vary, since the (R)-enantiomer-rich fraction leaves at the extract port, while the 

(S)-enantiomer-rich fraction can be withdrawn at the raffinate port and no symmetry applies. 

In summary, maximal productivity with respect to the amount of Serine in the raffinate fraction 

was chosen as the objective function. Constraints on the optimisation have been, the inequalities 

on the dimensionless flow rates (mi: mII ≤ mIII; mIV ≤ mI; mII ≤ mI; mIV ≤ mIII) and high purities 

(>99%) at the opposite port in order to avoid (S)-Serine losses. The minimal purities at the 

raffinate port were varied between 70 to 100 % (S)-enantiomer. Serine was not allowed to 

migrate between zone I and IV (compare Figure 2.28). The maximal flow rate is critical to the 

process productivity and the flow in zone I was set to 0.5 mL/min. Thus, only the four mi values 

were optimised. Four columns, each identical to the one used, compiled in a 1-1-1-1 

arrangement were considered as a suitable model setup.  

The number of transport plates derived 

from the adsorption quantification 

procedure is in the order of 4.000-13.000 

for this column. The optimisation of 

separation tasks based on the introduced 

model for very high NTP requires either 

enormous patience or computing power 

or both. Since this case study shall rather 

provide a profound indication than most 

accurate data, it was attempted to 

estimate characteristic productivity-

purity curves from optimisations 

involving a series of individual 

optimisations with increasing NTP.  

Results of the parameter estimation procedure  

For the optimisation problem, a pronounced drop in productivity was observed between 95 and 

100 % purity. The estimated productivities for the chiral separation of Serine enantiomers are 

highly depending on the number of transport plates, i. e. the quality of the packing and also the 

 

Figure 5.23 Optimised productivities with respect to the 
raffinate port and (S)-Serine for different product purities 
and NTP (100, squares; 200, dots; 300, diamonds). 
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length of the column. Both, productivities and achievable raffinate purity increases significantly 

for the range of NTP considered. The main aspect relevant for a process coupling is given by the 

S-shape of the productivity curve, which is present beginning with from 200 NTP on. Simple 

extrapolation of productivities towards the effective NTP is not recommended- however, the S-

shape is expected to remain unchanged also for higher NTP. The productivity/ purity correlation 

is very relevant for process design and for process synthesis in view of process coupling as 

proposed in chapter 5.2.1. 

 
5.2.1.3 Performance of a coupled separation process 

The case study on continues chiral chromatography revealed largely different productivities for 

slightly asymmetric mixtures compared to a fraction containing only the single enantiomer as 

product. The ternary phase diagram of Serine/water was introduced in chapter 4.2.3. The key 

property, to be exploited here, is the hydrate-/anhydrate relation. Depending on the amount of 

alcohol, very high eutectic compositions (up to 99.5 %) and therefore product purities can be 

achieved. The corresponding SLE favour a selective crystallisation process based on preferential 

enrichment. The combination of the information on chiral chromatography and preferential 

enrichment allows the estimation of the productivities of a coupled process. Herein, the yield of 

a crystallisation process is given by the Eqs. (5.4) and (5.35) with initial
Sx )(  being the raffinate 

purity and %.)( 599x eu
S = . 

).(

).(

)(

)(,
)(
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50x
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Provides, the same assumptions hold as in the 

case of the Bicalutamide separation, i. e. no 

additional time losses due to the crystallisation 

step, the overall productivity can be estimated by 

.,
)()(

chromtotPE
S

tot
S PYP ⋅=  (5.25) 

The productivities of a coupled process for the 

Serine separation by continuous chromatography 

followed by the crystallisation process of 

preferential enrichment are illustrated by Figure 

5.24. A significant increase is found, compared to 

the productivities of a standalone chromatography 

and 99.5% raffinate purity. The curves reflect a 

coupled process, wherein the pre-enrichment step 

is based on 300 NTP. Thus, the absolute gain in productivity will vary for higher NTP numbers. 

However, it is expected, that a similar figure will be obtained for other cases as well. The gain in 

productivity is not limited to certain raffinate purities. Though, there is a pronounced optimum 

found at ~90 % raffinate purity, basically any other asymmetric feed can be processed 

successfully by selective crystallisation and will lead to an increase in productivity. This renders 

 

Figure 5.24 Comparison of productivities the 
standalone chromatographic process for (S)-
Serine (thin line, 300 NTP) and for a coupled 
process (bold line). Points on the upper curve 
correspond to the abscissa, while all points on the 
lower curve are of 99.5 % purity.  

70 80 90 100
0

0.2

0.4

0.6

0.8

1

raffinate purity /%

pr
od

uc
tiv

ity
 /g

 L
−

1
 h

−
1

65−100%

99.5%



5.2 Chiral separation by coupled processes 153 
 

this process coupling robust, since ‘off-spec’ batches of pre-enrichment processes can be 

reprocessed also. 

 

5.2.2 Separation of Bicalutamide enantiomers  

The successful separation of asymmetric mixtures of Bicalutamide by a 2-step crystallisation 

(chapter 5.1.3.3) process entailed the optimisation of a method, that provides the asymmetric 

mixture itself. Secondly, it was attempted to evaluate, whether and how the new processes can 

be scaled-up from bench-scale to pilot-plant-scale. Thus, 600 g of racemic Bicalutamide were 

pre-enriched in a validation study using simulated moving bed chromatography. The 

asymmetric mixture obtained was purified further by selective crystallisation as presented in 

Figure 5.25. 

 
Figure 5.25 Partial separation of racemic Bicalutamide prior to selective crystallisation. 

 

5.2.2.1 Inducing asymmetry by chiral chromatography 

Determination of adsorption isotherms  

A preparative chromatographic method for Bicalutamide was already available through the 

collaboration with the pharmaceutical company AstraZeneca. It was known, that simulation and 

experimental results did not agree well due to few data on the adsorption isotherms. For this 

reason, a re-determination of adsorption isotherms and parameterisation of a suitable model 

was performed. The type of column has been Chiralpak AD (250x4.6 mm, Daicel Chemical 

Industries Ltd, Japan) with spherical packing material of 20 µm. The eluent was pure methanol. 

Very small ‘analytical’ injections were used to derive the porosity and the Henry constants.  

Table 5.3 Column efficiency measured for the two enantiomers of Bicalutamide for different flow rates Q. 

Q /mL·min
-1 

u0 cm·min
-1

 NTP(S) NTP(R) HETP(S) /cm HETP(R) /cm 

1 6.02 432 288 0.058 0.087 

2 12.03 499 213 0.050 0.117 

3 18.05 432 126 0.058 0.198 

3 18.05 417 122 0.060 0.205 

4 24.07 390 88 0.064 0.284 

5 30.09 336 89 0.074 0.281 
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The dead volume caused by tubings and connectors was determined with and without the 

column in place. The highest possible flow rate according to the determined pressure drop 

without damage to the column was 5 mL/min. 

Apparent stage numbers were determined for 1 to 

5 mL/min flow rate using ‘analytical injections’ and the 

peak width at half-height (Eq. (2.78)).  

Remarkable large differences between the adsorption 

behaviour of the two enantiomers were found. The 

separation factor was estimated to 7.1. However, the 

axial dispersion of the more retained (R)-enantiomer 

(the target compound) was considered to be significant, 

which caused unfavourably pronounced peak 

broadening. The van-Deemter plot for both 

enantiomers highlights the large differences with 

respect to the height equivalent to the theoretical plate 

(HETP, s. chapter 2.4.2). This aspect gains more 

importance during upscaling, when much larger flow 

rates need to be considered. 

The Bi-Langmuir model for multi-component-systems (Eqs. (2.86) and (2.87)) was chosen to 

reflect the competitive adsorption behaviour of the two species. Model parameters were 

estimated using the peak-fitting method. The results are shown in Figure 5.27.  

 

Figure 5.27 Chromatograms used for peak fitting. Experimental data and modelled elution profiles. 
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Figure 5.26 Van-Deemter plot for the less 
retained (S)-enantiomer (dashed) and the 
more retained (R)-enantiomer (solid). 
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The column was overloaded using different volumes and concentrations for the injection of 

racemic mixtures of Bicalutamide in methanol. The highest concentration matched the solubility 

limit. The eluent flow was set to 5 mL/min. Using the equilibrium-dispersive model and the 

Matlab solver ‘patternsearch’, the adsorption isotherm model was fitted to six chromatograms 

simultaneously. Hereby, the previously obtained Henry constants have been kept constant and 

the remaining five parameters were estimated only. The applied model assumes similar HETP 

(Eq. (2.82)) for both components, which did not apply. A rather simple approach makes use of 

averaging both values and thus, 212 theoretical plates were used during the parameters 

estimation procedure.  

While the model agreement for injections of low volume exhibited large deviations, injections of 

1 and 2.4 mL are captured satisfactorily by the model. Higher NTP values (Eq. (2.77)(2.81)) led 

to a better agreement with respect to the first peak, while lower NTP values captured better the 

more retained component. The best overall agreement was achieved using the NTP value of the 

(S)-enantiomer (336). However, this was not theoretically founded and the isotherm parameters 

obtained from the fit with 212 plates were used for a cross-check with other chromatograms.  

Both, the ratio of the enantiomers and the injection volume was changed and the experimentally 

determined chromatograms were compared to the model prediction. The agreement (Figure 

5.28) was assumed to be sufficient for process design, since the retention times of both the peak 

fronts and the peak tails were reflected with good accuracy. The parameters obtained are listed 

in the appendix in Table E.1. 

 

Figure 5.28 Determined chromatograms from asymmetric mixtures of Bicalutamide enantiomers (symbols) and 
estimated elution profiles, which were not used for the parameter estimation procedure (lines). 
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5.2.2.2 Optimisation of pre-enrichment 

Identification of process parameters 

Prior to the separation run, a typical optimisation problem had to be solved. A maximal 

productivity of the stream, rich of the (R)-enantiomer (extract port), was chosen as the objective 

function. Constraints on the optimisation have been the following inequalities on the 

dimensionless flow rates mi: mII ≤ mIII; mIV ≤ mI; mII ≤ mI; mIV ≤ mIII. Further, the purity at the 

raffinate port (rich in the (S)-enantiomer) was required to exceed 99%, since losses of the target 

component through this port should be minimised. The requirements on the purity of the extract 

port outlet were varied between 70 to 100 % (R)-enantiomer. Due to restrictions of the SMB 

unit used, the lowest possible shifting time was set to 0.25 min. The maximal flow rate of the 

feed pump was 90 mL/min and 200 mL/min applied for the eluent pump, respectively. 

Regeneration of the solvent in zone IV and the stationary phase in zone I was assured by low 

maximal limits on the terminal concentration profiles. The parameters to be optimised have 

been the four mi values and the flow rate within zone I. Only non-negative values were possible. 

The upper boundary for any flow rate was set to 300 mL/min due to pressure drop constraints 

on the packing material. The number of transport plates was set to the average value of both 

enantiomers at the respective flow rate. This is considered a less safe but practical approach, 

since the estimation requires the extrapolation to interstitial velocities of up to 88 cm/min, 

which is far above the range of experimental values (compare Figure 5.26).  

The modelling of SMB separations was based on a algorithm initially developed by Godunov 202 

and transferred later by Rouchon 203 to chromatographic problems. The algorithm makes use of 

the numerical dispersion, which is generated from the numerical solution of Eq. (2.93). The 

numerical dispersion and the physical dispersion ‘cancel out’ mutually, which allows to remove 

the term of physical dispersion from Eq. (2.93), leaving a first order ordinary differential 

equation. The chromatographic algorithm was described by Kniep 204 and implemented into a 

Pascal code. Within this study, the code was edited and compiled to be called by a Matlab 

routine, which contained the solver for the parameter estimation. Here, a genetic algorithm in 

combination with the Matlab routine ‘fminsearchcon’ was used. It is known, that the algorithm 

can run into parameter areas, where mass balances are not fulfilled. Additional penalties were 

set for the solver, when mass balance errors exceeded empirical thresholds. The results 

obtained have never been close to these boundaries.  

After feasible start values were obtained from using the genetic algorithm, different scenarios 

were analysed using the algorithm of Nelder-Mead type. An optimised operating point was 

obtained herein within an hour or less on a standard notebook (Intel U9400 processor).  

 

Results of the parameter estimation procedure 

The maximal productivity with respect to a single enantiomer depends largely on the purity 

constraints 124. Kaspereit showed 127, that relaxing the constraints on regeneration within zone I 

and zone IV can lead to elevated throughputs and so do changes to the purity constraint on the 

raffinate port. Results of own simulation studies were limited to the purity of the target 

component and exhibited similar shapes of productivity/purity curves. The productivities given 

are scaled to 1 l of stationary phase (Figure 5.29).  

For the optimisation problem, a pronounced drop in productivity was observed between 95 % 

and 100 % purity. The function of productivity and feed flow rate are strongly related and 
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describe a countertrend to the m2/3-values. A single operating point was validated on an 

experimental basis. The obtained purity exceeded slightly the theoretical value after reaching 

pseudo-steady-state (full symbol in Figure 5.30). The Figures above provide the basis for 

coupled processes using chiral chromatography as one integrated process step. It is referred 

back to the given productivity/purity correlation in chapter 5.2.2.  

  

Figure 5.29 Optimised m-values of the separation 
zones and corresponding feed flow rates. Lines are 
drawn to guide the eye. 

Figure 5.30 Optimised productivities with respect to 
the extract port and (R)-Bicalutamide (theoretical 
values: open symbols; experimental value: full symbol). 
The specific solvent consumption related to the mass 
of Bicalutamide in the extract fraction is plotted. 

Performance of the coupled process 

The process-relevant SLE of Bicalutamide in solution were summarised within chapter 4.2.4. 

Herein, the eutectic composition was found to vary between 95-97.7% purity. The identification 

of the optimal outlet purity of the pre-enrichment step for a coupled process will by illustrated 

in the following. 

Classical coupled processes required the enrichment of a solution above the eutectic 

composition prior to a selective crystallisation step. The introduced 2-step crystallisation 

process yields the target enantiomer from any asymmetric solution. It is convenient to alter the 

definition of process yield as defined by Eq. (5.24) to comply with the definition of other 

processes for the ease of comparison. The mass of product was related to the excess of the more 

abundant enantiomer in the initial mixture. This is the definition of the so called- ‘enantiomeric 

excess ee’. Multiplication of Eq. (5.26) and Eq. (5.24) leads to the definition of process yield tot
RY )(  

with respect to the whole initial feed mass. 

The equation shares similarities to the process yield of the classical process (Eq. (5.28)). The 

yields of both processes become very similar, provided that 1eu
Rx ,

)(  coincides with feed
Rx )( . The 

reason for the deviation of both processes is found in the 1st process step, where racemic 
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crystals are harvested in order to obtain the enriched liquid phase. In the classical process, the 

enriched solution is fed directly to the 2nd crystallisation step. Figure 5.31 and Figure 5.32 

compare both processes by generic plots.  

It becomes visible, that each process shows superior performance with respect to limited areas. 

However, the 2-step process can be conducted from any pre-enrichment, which is not possible 

for the classical case.  

The simulation of optimal operating points for the chromatographic separation of Bicalutamide 

yielded a typical S-shaped productivity curve ( chromP ) for different extract purities (Figure 5.29). 

Combination of this curve and the knowledge of the correlation of crystallisation yield on the 

initial feed purity (Figure 5.33) allows to draw the productivities for a coupled process. The 

dashed line of Figure 5.34 represents the productivity of the reference case-entire 

chromatographic separation- up to 100% purity of the extract fraction. The possible gain in 

productivity with respect to the pure (R)-enantiomer can be estimated for both the classical 

process and the 2-step process from Eqs. (5.29) and (5.30).  

chromclassicaltot
R

classicaltot
R PYP ⋅= ,

)(
,

)(  
(5.29) 

chromtot
R

tot
R PYP ⋅= )()(  (5.30) 

Herein, the time needed for the two steps B/C (Figure 5.25) is neglected entirely. This is a 

simplifying assumption and generalisation will fail in particular, if solvents of very low partial 

pressure need to be evaporated or if a chiral system approaches thermodynamic equilibrium 

during step B or C only very slowly. In all cases investigated, step B and C were not considered to 

create bottlenecks in comparison to the chromatographic separation (22 hours in the case of 

Bicalutamide). However, this aspect must be investigated with care for each particular system. 

Obviously, there is a set-up and cleaning time, which need to be considered for each additional 

step. In case of pharmaceutical productions, the product formulation requires in most cases the 

solvent removal and crystallisation of the product anyway. Thus, this aspect vanishes. In any 

case, cost factors are needed to balance and assess different process variations. It should be 

 
 

Figure 5.31 Theoretical yields for the classical 
process for different feed purities and eutectic 
compositions. 

Figure 5.32 Theoretical yields for the 2-step process 
(solid lines) for different feed purities and eutectic 
compositions in the 2

nd
 step and eutectic compositions 

of 80% (full symbols, solid lines) and 90% (open 
symbols, dotted lines) in the 1

st
 step. 
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noted, that the comparison introduced here rests exclusively on purification and productivity 

and aspects of product formulation were not taken into account. 

The gain in productivity for coupled processes is illustrated exemplarily for the system of 

Bicalutamide by Figure 5.34. All points at the dashed line, the bold line and the dotted line 

correspond to 100 % extract purity, whilst only the thin solid line (Figure 5.30) corresponds to 

the abscissa.  

The intersection of the dotted line with the dashed horizontal line denotes the beginning of an 

increase in productivity for the classical process. The productivity curve peaks at 99.4% purity 

and doubles the productivity compared to the standalone chromatographic process. The rather 

narrow area can be attributed both to the steep decline in productivity for this particular system 

and its high eutectic composition. Elevated productivities can be expected only, if the pre-

enrichment exceeds the eutectic composition, which is >95 % in the case of Bicalutamide. 

The bold line represents the productivities of the coupled process involving the 2-step process. 

It intersects with the classical process at the high eutectic composition. The process shows 

superior performance up to the higher eutectic composition. The curve exhibits hereby rather a 

plateau, than a productivity maximum. The maximal gain in productivity is estimated to 73 %. 

Apparently, the optimal interface between both process units is not limited by a specific extract 

purity for this particular separation problem. The curve reveals a quite robust process 

combination, since any output of a pre-enrichment step can be advantageously processed. 

Taking into account, that the solvent consumption is lowered at reduced purity requirements 

(compare Figure 5.30), the curve suggests to operate at 70 % purity as the most promising 

interface. However, solvent consumption was not issued for the separation of Bicalutamide and 

thus, the extract purity requirement was lowered to the beginning of the productivity plateau to 

90 %.  

  

Figure 5.33 Correlation of crystallisation process yields 
and purity at the extract port for the classical process 
and the 2-step process. The vertical dashed line denotes 
the higher eutectic composition at 273 K. The classical 
process can be applied beginning at the lower eutectic 
composition of 95 %, while the 2-step process can be 
applied from negligible enrichment up to the higher 
eutectic composition. 

Figure 5.34 Estimated productivities for the 
separation of Bicalutamide enantiomers by entire 
chromatographic separation (thin solid line, dashed 
line), the classical coupling scheme (dotted line) and 
coupling using the 2-step crystallisation process 
(bold line). The numbers in brackets denote the final 
product purities to be obtained by the corresponding 
process. 

In summary, the performance of the stand-alone chromatographic process can be improved in 

combination with each of the crystallisation methods. The characteristics of the coupled 
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processes complement each other. The classical process shows higher yields, while the 2-step 

process does not require the rather high pre-enrichment and improves the coupled process from 

basically every degree of pre-enrichment.  

 

5.2.2.3 Chiral separation by preparative scale chromatography and crystallisation 

Continuous counter-current chiral chromatography 

Experimental setup  

Through the FP7 project INTENANT and the collaboration with AstraZeneca, 150 g of stationary 

phase (Chiralpak AD) and 4 preparative scale columns (100x25 mm) were obtained for process 

validation. The columns were packed with ~30 g of stationary phase each (97.5 mm bed length) 

and arranged in a classical 1-1-1-1 mode. The columns were characterised in terms of pressure 

drop, porosity and in addition by ‘analytical injections’ to assess their homogeneity. All packings 

were of similar quality with a porosity slightly above the value of the analytical column. The 

simulated moving bed chromatographic unit was a CSEP 912 system (Knauer, Berlin), which 

consists of 4 preparative pumps (K-1800, Knauer, Germany) and 2 UV detectors (K-2501, 

Knauer, Germany) located at the extract and the raffinate lines, respectively. A multi-port valve 

allowed for the connection of up to 12 columns. Since only 1 column per zone was used and 

switching over two positions was not successful in practise, a rearrangement of the connecting 

lines became necessary. The setup is described in more detail in the annex of a publication 205. 

 

 

Figure 5.35 Preparative scale multi column chromatographic separation unit. Four identical columns are 
installed (centre of figure) and connected to a multiport valve, which operates from top. The pumps for feed, 
extract, raffinate and eluent are placed on the left side.  

Step A-process parameters 

The pre-enrichment step, denoted A (Figure 5.25) was conducted with the parameters as given 

by Table 5.4. Extract purities to be achieved by chromatography were 90% from considerations 
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on process coupling (Figure 5.34). In total 600 g of racemic Bicalutamide was dissolved as feed 

in 30.33 l methanol. The mixture was separated in two chromatography runs of similar duration. 

Table 5.4 Process parameters and results of the chromatographic separation of Bicalutamide enantiomers. 

Internal dimensionless flow rates mI,…mIV 6.713, 0.665, 1.426, 0.203 
External flow rates   
 Feed 23.70 mL/min 
 Eluent 200.00 mL/min 
 Raffinate 36.50 mL/min 
 Extract 179.70 mL/min 
Volumes   
 Eluent 255.96 l 
 Feed 30.33 l 
 Raffinate 47.53 l 
 Extract 233.94 l 
Purity raffinate 99.54 % 
Mass Bicalutamide in raffinate 274.00 g 
Purity extract 92.38 % 
Mass Bicalutamide in extract 322.00 g 
Mass lost on column, etc. 7.43 g 
Overall separation time 21:27 hh:mm 
Switching time 29 s 

 

Step B-preferential enrichment and solvent removal  

 (first step of 2-step selective crystallisation process) 

The outlet stream of unit A was transferred batch-

wise into unit B, a 20 l crystallisation vessel. The setup 

used consisted of a double-walled and temperature-

controlled vessel, equipped with a draft tube for 

agitation and Pt-elements for temperature control. 

The crystalliser was extended by a reflux cooler, a 

distillate collecting vessel positioned on a balance and 

a vaccum pump.  

In total 237 l of extract with a purity of 92.38% (R)-

enantiomer was concentrated up by solvent 

evaporation at ~300 mbar and ~313 K. The 

remaining amount of 8.2 l solvent contained 322 g of 

Bicalutamide. The double-walled vessel was cooled 

down by a thermostat to 273.15 K to force the 

crystallisation of the racemic compound and to 

perform preferential enrichment in the liquid phase 

up to 97.7 wt% of the (R)-enantiomer. Even after 

12 hours no crystals became visible. Apparently, the 

MSZW of Bicalutamide was much larger in this vessel 

compared to the bench-scale experiments. Addition of 

1 g of ground racemic Bicalutamide caused 

immediately a nucleation event and the solution 

 

Figure 5.36 Batch-crystalliser equipped with 
solvent reflux and distillate balance. The 
draft  tube inside the vessel is visible. 
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equilibrated within minutes. The integration of the crystallisation process in the coupled scheme 

is depicted in Figure 5.37. 

 
Figure 5.37 Schematic figure of connected single units and process streams. 

The whole process was initially scaled such, that in the 2nd step after addition of the antisolvent, 

the whole volume of the crystalliser (20 l) was used. Thus, 8.2 l in this intermediate step were 

rather suboptimal and caused stirring issues. The vessel was equipped with a draft tube for 

typical loop-like agitation. Unfortunately, the baffle plate was not covered due to a too low liquid 

level disallowing for proper stirring. The poor agitation led to splashes of mother liquor onto the 

freeboard, where crystallisation took place and significant losses of the solute were recognised. 

The solid phase generated, exhibited the desired racemic composition, while the overall 

composition of the crystallised material deviated largely and was summed up to 70 % purity 

(stream B4). Hereby, the amount of target enantiomer in the liquid phase (stream B3) was 

diminished and additional material crystallised. The obtained purity was only slightly below the 

theoretical value. The stirrer was shut off allowing the solids to settle. Afterwards the liquid 

phase was pumped off the vessel through a filter and stored.  

 
Step C-selective crystallisation of the target enantiomer using antisolvent 

(second step of the 2-step selective crystallisation process) 
After removal of remaining crystalline material, the vessels was filled with the previously stored 

mother liquor and heated up to 333.15 K. About 8 kg of water was added; the amount was 

controlled by mass. Nucleation of the target enantiomer happened instantly and the 

thermodynamic equilibrium was approached again within minutes. The stirrer was switched off 

and crystals of the target compound settled down. The liquid phase was removed by a pump and 

the solid phase was filtered off and washed firstly with the mother liquor and secondly with 

cooled methanol. The solids were dried in a drying cupboard under vacuum. The mother liquor 

was fed back into the crystalliser and cooled down to 283 K to force crystallisation of the 

dissolved material of eutectic composition. No solubility could be determined at these conditions 

and virtually all Bicalutamide was recovered. The purities of all phases were analysed by chiral 

chromatography. The overall mass balance and the yield of the individual steps is depicted in 

Figure 5.38 on the next page. 
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Figure 5.38 Development of product purity and yield for the conducted separation of Bicalutamide enantiomers 
at a larger scale. LP and SP denote liquid and solid phase, respectively.  

 

Summary  

The purification of a pre-enriched mixture of Bicalutamide enantiomers was transferred 

successfully from a ‘less than a gram’ scale to 600 g of racemic substance. In contrast to bench-

scale experiments, nucleation of the racemic compound did not happen and seeding with the 

racemic compound became necessary. Further, experimental stirring issues prevented from 

obtaining the theoretical yield of 56%. For the single batch conducted a yield of 45% was 

measured. The crystal purity was excellent and exceeded the purities of bench-scale 

experiments by far.  

 

5.2.2.4 Considerations on internal recycling-comparison of processes  

A concept of recycling of side streams for yield improvements was illustrated and validated for 

the separation of Methionine in chapter 5.1.3.2 and will be applied for Bicalutamide as well. Its 

relevancy for productivities of coupled processes will be discussed in this chapter.  

 

Figure 5.39 Recycle streams within the proposed process scheme.  

There are two streams, that evolve from the crystallisations B and C, which contain Bicalutamide 

below the required purities. C2 represents the eutectic mother liquor after selective 
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crystallisation and B4 contains the racemic Bicalutamide. For the setup of B, a certain amount of 

pre-enriched material B1 is fed to a vessel. Its composition is always below the composition of 

C2. Thus, the stream A2, the stream C2 and a fraction of the stream B4 can be pooled. It yields the 

same amount of product at the cost of less feed material.  

This applies to all subsequent batches, except for the first batch. While C2 can be recovered 

entirely, the fraction of B4 varies. In case of Bicalutamide the lower eutectic composition (95%) 

allows a-values of up to 40 % depending on the purity of the extract. Further, the solvent 

removed (B2) in the concentration step B can be fed back to the chromatography unit A. The 

balance around the node prior to B allows the quantification of the recycling flow of B4.  

4B2Creduced2A1B mammm ⋅++= ,

 with 1a0 ≤≤  
(5.31) 

It is suitable to introduce the overall yield recycle
SY )( , which applies beginning with the second 

batch. Provided the whole excess of the more abundant enantiomer is harvested and only a 

fraction of the racemic stream B4 is fed back to the pre-enrichment step, the yield can be defined 

according to the ‘enantiomeric excess’. 
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The quotient of the yield of the first and the subsequent batches defines the ratio of the feed 

mass needed to produce the same amount of product, with and without recycling.  
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An expression for the amount of dissolved material in B3 with respect to the initial amount B1 

was introduced by Eq. (5.4) and is re-used here. It is denoted the total yield totPE
RY ,

)(  of 

preferential enrichment.
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Compilation of Eqs.(5.31) to (5.36) reads  
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and finally 
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The corresponding fraction of racemic Bicalutamide to be recycled and its dependency on the 

purity of pre-enriched feed stream are plotted in 

Figure 5.40. The aspect of internal recycling is 

beneficial compared to the classical coupling 

process, where the remaining mother liquor exhibits 

a lower composition than the feed and needs to be 

withdrawn. The comparison of the process 

variations highlights the pronounced increase in 

yield and productivity, respectively (Figure 5.41 and 

Figure 5.42). In theory, the chromatographic 

productivity can be more than tripled neglecting the 

first batch. Further, improvements can be achieved 

over the whole range of extract purities provided.  

From the internal recycling between B and C a 

fraction of racemic material is not recovered, but 

send back to A instead. At this point, a clear differentiation among two objectives needs to be 

made. The coupled process introduced here was optimised for the production of a single 

enantiomer from a racemic mixture. Another objective would be the separation of a given 

amount of substance with the highest yield in the shortest time.  

Within the classical schema, eutectic material is recycled, which can be considered as a severe 

drawback, since the already highly enriched stream is mixed with fresh racemic feed. The two 

objectives can lead to different optimal operating parameters. For the 2-step crystallisation 

process, both variations coincide, since the recycled material is of racemic composition, too. 

 

 

Figure 5.40 Internal recycling rate for racemic 
Bicalutamide (B4). 

  

Figure 5.41 Comparison of process yields for the classical 
case, the 2-step process and the 2-step process with 
internal recycling. The dashed vertical line denotes the 
upper application limit of the 2-step process. 

Figure 5.42 Comparison of productivities for the 
classical case (thin dashed line), the 2-step process 
(thick solid line) and the 2-step process with internal 
recycling (thick dashed line). The latter process 
shows superior performance over the whole figure. 

60 70 80 90 100
0

10

20

30

40

50

a
−

v
a
lu

e
 /
w

t%

purity extract /%

70 80 90 100
0

20

40

60

80

100

Y
to

t
(R

), Y
re

cy
cl

e
(R

)
, Y

to
t,c

la
ss

ic
al

(R
)

 /%

purity extract

 

 

single batch
subsequent batches
classical coupling

70 80 90 100
0

5

10

15

purity extract /%

pr
od

uc
tiv

ity
 /g

 ⋅L
−

1
 ⋅m

in
−

1

(100%)

(100%)

(100%)

(70−100%)

(100%)



166 5 Separation of enantiomers 
 

Process robustness 

Referring back to the conducted crystallisation 

process, the theoretical mass balances were 

not entirely fulfilled. Losses in the first 

crystallisation step due to the low liquid level 

led to a fraction of crystallised product. Results 

of imperfect crystallisations as in the 

conducted 1st batch can be recovered in 

subsequent batches improving the overall 

yield. Considering mass balances and the 

experimental results as given in Figure 5.38, it 

is possible to feed back the entire stream C2 

and 22 % of the stream B4 to the unit B. Within 

Figure 5.42 a series of imperfect 

crystallisations based on the results of the 

single conducted crystallisation run are 

plotted. The overall yield will never approach 

100 %, but the increase in yield even for small 

numbers of subsequent batches is significant.  

 

5.3 Summary  

Within the fifth chapter selected options for chiral pre-enrichment and resolution, which are 

linked to the underlying SLE, were presented. Two of these, a preferential enrichment process 

and a new 2-step crystallisation process were balanced and evaluated for different compounds.  

The experimental validation work was performed both at lab-scale and also using a 20 l 

pharmaceutical pilot-plant-scale crystalliser and a preparative-scale SMB unit. Crystallisation 

processes were monitored by in situ ATR-FTIR and offline analytics as density meter and chiral 

HPLC. 

The potential of preferential enrichment in combination with tailored SLE through the choice of 

solvents was illustrated for the amino acids Proline and Serine. It was shown for the systems of 

Methionine and Bicalutamide, how shifts in the eutectic composition in solution can be tailored 

and exploited for enantioseparation using a 2-step process. 

The crystallisation processes were modelled based on general mass balances, which allowed the 

rapid assessment of theoretical yields and process trajectories for the compounds considered 

and others. The experimental experiments validated the theoretical considerations to a very 

large extend. Further, losses due to experimental issues were corroborated into the models 

leading to more precise predictions of e. g. a series of batches. Hereby, rather realistic 

estimations of process yields were possible and the robustness of the introduced processes with 

respect to typical disturbences could be rated. 

 

Figure 5.43 Increase in process yield for subsequent 
batches considering a series of batches identical to 
the one conducted. 
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The single process units of chiral continuous chromatography and selective crystallisation were 

optimised individually and again based on a proposed coupled mode. The optimal operating 

points of the pre-enrichment steps were altered for the coupled processes considered. Hereby, 

the overal productivities for all coupled processes were found to be largely above the 

corresponding values for the individual units. It was shown theoretically and on an experimental 

basis that a framework of recycling streams led to large increases in the overal process yields 

and productivities. Further, the degree of process robustness was increased, when streams were 

recycled in subsequent batches. The introduced 2-step process conducted in a coupled mode 

was compared to similar coupled process state-of-the-art. The comparison revealed significant 

advantages for the majority of applications. 

More details on the studies conducted can be found published in the German Journal of Chemie, 

Ingenieur, Technik 186, the Journal of Fluid Phase Equilibria 190 and the Journal of Organic Process 

Research and Development 205. 

 

 

 

 





 

 

 

 

 

6 Conclusions and outlook 
 

The availability of chiral selectors allowing for the effective and efficient separation of 

enantiomers remains limited. In contrast to the large datasets available from liquid/liquid and 

liquid/vapour equilibria, the amount of fundamental comprehensive data of solid/liquid 

equilibria and in particular of chiral systems is scarce. However, crystals of chiral compounds 

pose highly specific chiral selectors themselves, whose potential appears far from being 

exploited. The eminent lack of generic tools and fundamental knowledge in the field of 

solid/liquid equilibria and related multiphase correlation of chiral systems leaves the potential 

of selective crystallisation untouched.  

Within the course of this work in total 24 chiral systems were analysed theoretically and 

practically attempting to identify a minima of characteristics necessary to assess the feasibility 

of the corresponding chiral separation. Besides others, a thermodynamic property was 

identified, whose purposeful variation opened up the way for a new crystallisation-based 

separation scheme. This property and corresponding schemes were evaluated together with 

descriptive thermodynamic tools on an experimental basis. The thesis in hand aims to assist in 

the identification of suitable separation modes involving enantioselective crystallisation for a 

given chiral system. 

The experimental techniques included primarily the determination of relevant SLE by 

gravimetry, ATR-FTIR and HPLC and the measurement of the heats and temperatures of fusion 

by DSC. Solid phase transformations were analysed by XRPD.  

Modifications of the Non Random Two Liquid gE model (NRTL) and the COSMO-SAC models 

(Conductor-like Screening MOdel with the Segment Activity Coefficient approach) were 

implemented into scripts in order to describe and predict binary/ternary and quaternary SLE of 

chiral systems in solutions. For the latter model a non-commercial solvent database was used.  

The thesis is divided into three main chapters according to three coherent aspects of the 

crystallisation-based separation of enantiomers.  

 Firstly, emphasis was spent on analysis techniques to follow the thermodynamic and 

kinetic development of chiral phase formations upon crystallisation from different SLE phase 

domains. Within a detailed case study the chiral compound Malic acid was investigated. The 

systematic study of the identified partial solid solutions allowed for the assessment of chiral 

separation procedures for this and related systems. An accompanying thermodynamic model for 

the description of partial solid solutions was proposed.  

 The consecutive chapter comprised the determination, analysis and model-based 

description of 12 chiral model and pharmaceutical compounds in solvents and solvent systems. 

The comprehensive studies revealed, that the composition of the eutectic composition of chiral 

systems can be shifted in solution in advantageous manner. Controlled shifts through purposeful 

variations in temperature and/or solvent (mixtures) disclosed new powerful strategies for the 
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chiral separation of enantiomers. A shortcut model approach allowed the prediction of shifts of 

the characteristic property for systems exhibiting no heterochiral interactions. Further, an 

extended model and an ‘a priori’ approach for the description and estimation of shifts in the 

eutectic composition in various solvents were proposed and validated to some extend. Particular 

focus was set on the assessment of SLE models for chiral separation applications. The fourth 

chapter explained identified feasible tasks of recent correlative gE and estimation models and 

summarised the conducted attempts to widen the field of applications of thermodynamic SLE 

models to chiral applications. The limits of the individual approaches considered are named and 

the developed model extensions beyond the state-of-the-art are discussed and compared to 

experimental data. 

 The preceding chapters provided the basis for conceptual studies on new crystallisation 

schemes and coupled modes of chiral separations, which were summarised in the fifth chapter. 

Quantitative relations between the shape of solubility isotherms, thermodynamic domains for 

successful selective crystallisations and the underlying activity coefficients of chiral solutes in 

solution supported the identification of the most promising crystallisation scheme to conduct. 

A newly developed 2-step separation scheme, which exploits shifts in the eutectic composition, 

allows the purification of any asymmetric mixture of enantiomers irrespectively of the eutectic 

composition of the system. The scheme was evaluated first for the amino acid Methionine and 

further for the active pharmaceutical ingredient (API) Bicalutamide. The most promising 

separation for the API consisted of a hybrid process based on a pre-enrichment step using 

continuous counter-current chromatography (SMB) and a 2-step separation scheme using an 

antisolvent in the 2nd process step. The separation of the API at lab-scale was repeated 

successfully at pilot-plant scale providing even higher product purities.  

The chromatographic step was optimised beforehand using a dynamic model. Selective 

adsorption of the two enantiomers was quantified through a peak fitting method. Optimal 

operating points of the SMB unit were derived using an equilibrium-dispersive model and 

nonlinear solvers. The coupling of the two processes revealed rather a plateau than a maximum 

with respect to the purity at the optimal interface between both processes. The conducted 

process validation was compared to a standalone chromatographic separation and further 

coupled processes. The proposed coupling mode exhibited clearly enhanced productivity and 

improved robustness. If the 2-step crystallisation process would be operated in a cyclic mode, 

even superior productivities with respect to all considered coupled processes are expected. 

Specific characteristics of the quaternary SLE of Serine in aqueous methanol solution motivated 

a second coupled process of continuous chromatography and selective crystallisation. An 

enantioselective chromatographic separation method for Serine was identified, quantified and a 

case study involving the corresponding SMB was set up and optimised. Again, enhanced 

productivities and improved robustness can be expected for this process compared to a 

standard standalone batch chromatographic separation.  

 

Outlook 

The conducted studies leave space for follow-up research in various directions. Though, 

numerous poor crystallisation results reported can be assigned to the unknown presence of 

mixed crystals, the thermodynamic data of systems exhibiting solid solutions is scarce. Further, 
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in depth studies for e. g. Malic acid might assist in the identification of a common pattern for 

solid state formations of similar kind. 

The fact, that the eutectic composition is invariant for a given thermodynamic state 

(constant: p,T,solvent) only, and may be varied by purposeful changes of this state, might 

motivate further research in this direction. The introduced 2-step process allows the efficient 

separation of complex chiral systems from any asymmetric mixture. Since slightly enriched 

mixtures are more frequently found after e. g. partial selective asymmetric synthesis, further 

process combinations involving, enzymes, membranes, partial asymmetric synthesis and others 

might be of interest to evaluate. The thermodynamic model framework provided might simplify 

the identification of promising chiral systems and solvents. 

There is another unexploited area of preferential crystallisation in the context of the 

investigated 2-step processes. It is very likely, that kinetically driven crystallisations will 

enhance the specific yield compared to the thermodynamic separation studies in this work. 

Provided, sufficient kinetic data becomes available, the investigation of numerous powerful 

process variantions starting from the 1st or the 2nd process step might be an attractive field. 

Another aspect, which was not fully covered in the thesis, consists in the purposeful 

option to use thermodynamic states and solvents in order to switch the solid state of a given 

compound back and forth. The resulting SLE and the corresponding shift in the eutectic 

composition will allow similar 2-step separations as studied in this work.  
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Appendix 
 

A. gE-model parameters and heats and temperatures of fusion 
 
Table A.1 Binary interaction parameters of 

1)
(2S,3R)-Threonine, 

2)
(2R,3S)-Threonine and 

3)
water. 

 

NRTL model 
parameters 

water  

α13   1.5328·10-2 
∆g13   6.8587·101  kJ mol-1 
∆g31 -5.3298·101  kJ mol-1 

α12   2.2371·10-5  
∆g12   2.3781·103  kJ mol-1 

∆g21 -2.3095·103  kJ mol-1 

 

Table A.2 Binary interaction parameters of 
1)

(1S,2R)-N-methylephedrine,  
2)

(1R,2S)-N-methylephedrine and 
3)

(S)-ethyl lactate, 
4)

(2R, 3R)-diethyl tartrate. 
 

NRTL
 model 
parameters 

(S)-ethyl lactate,
 3) (2R,3R)-
diethyl tartrate, 4) 

α13  2.411·10-1  7.474·10
1 

∆g13  2.118·101 kJ·mol-1  1.770·103  kJ·mol-1 
∆g31 -3.728         kJ·mol-1 -2.406          kJ·mol-1 
α12  1.140·10-12  0 
∆g12  1.399·106  kJ·mol-1 - 
∆g21 -1.399·106  kJ·mol-1 - 

 

Table A.3 Heat and temperature of fusion of (1S,2R) N-methylephedrine 
fh∆  29240 J mol-1 

fT  360.3 K 
 

Table A.4 Binary interaction parameters of 
1)

(S)-Tröger’s Base in 
3)

ethanol 
 

NRTL model 
parameters 

ethanol 

α13   1.536e-2 
∆g13   6.521          kJ mol-1 
∆g31 -3.651·10-3  kJ mol
1 

 

Table A.5 Optimised values for the heat and temperature of fusion of the single enantiomer and 

the racemic compound of Methionine. 
f

SRh ),(∆  2·30076.1  J mol-1 
f

SR
T

),(
 591.1 K 

f

Rh )(∆  28635.36  J mol-1 

f
R

T
)(
 581.8 K 
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Table A.6 Binary interaction parameters of 
1)

(S)-Methionine, 
2)

(R)-Methionine and 
3)

water. 
 

NRTL model 
parameters 

water  

α13   6.6442·10-2 
∆g13   1.3175·102   kJ mol-1 
∆g31 -5.5268        kJ mol-1 

α12   5.9929·10-4 

∆g12   1.0977·102   kJ mol-1 
∆g21   5.7223·104   kJ mol-1 
α121   4.0740·10-4 

∆g121 -1.5722·103  kJ mol-1 
∆g211   3.3842·103   kJ mol-1 
α122   1.2140·10-2 

∆g122   1.9878·102   kJ mol-1 
∆g212 -1.3377·102   kJ mol-1 

 

Table A.7 Binary interaction parameters of the undisclosed compound UND:  
1)

(R)-UND, 
2)

(S)-UND and 
3)

ethyl acetate. 
 

NRTL model 
parameters 

solution melt 

α13   7.4728·10-5  
∆g
3   4.1004·103 kJ mol-1  
∆g31 -4.0307·103 kJ mol-1  

α12   2.250·10-14   5.0905·10-4   
∆g12 -7.680·102·   kJ mol-1 -4.6860·103   kJ mol-1 
∆g21   8.708·102  kJ mol-1   5.0819·103   kJ mol-1 

 

Table A.8 Binary interaction parameters of 
1)

(S)-Mandelic acid, 
2)

(R)-Mandelic acid and 
3)

water. 
 

NRTL model 
parameters 

water 

α13   8.4021·10-1 
a13 -7.7452·10-1   kJ mol-1 
b13   7.0767·10-4  kJ mol-1 K-1 

a31 -8.5421    kJ mol-1  
b3   4.8826·10-2  kJ mol-1 K-1 

α12   2.2711·10-1 

∆g12   6.9201  kJ mol-1 
∆g21   1.7507·101  kJ mol-1 

 

Table A.9 Binary interaction parameters of 
1)

(S)-Propranolol·HCl and 
3)

methanol/water. 
 

NRTL model 
parameter 


ethanol water 

α13   1.1747·10-6 3.0001·10-1 
∆g13   5.4058·103  kJ mol-1 1.5686·101  kJ mol-1 
∆g31 -5.3958·103  kJ mol-1 1.3985·102  kJ mol-1 
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Table A.10 Binary interaction parameters of 
1
(S)-Mandelic acid , 

2
(R)-Mandelic acid and  

3)
(S)-ethyl lactate/(2R, 3R)-diethyl tartrate. 

 

NRTL model 
parameters 

(S)-ethyl lactate (2R, 3R)-diethyl tartrate 

α13   5.7532·10-1   4.0104e-1 

∆g13 -2.9341   kJ mol-1   2.5269e4   kJ mol-1 

∆g31   3.1028·104   kJ mol   3.2357e3   kJ mol-1 
α12   1.9925·10-4   1.9388·10-3 
∆g12 -3.2301·102   kJ mol-1 -8.2707·101   kJ mol-1 
∆g21   3.2897·103   kJ mol-1   8.4895·101   kJ mol-1 

 

Table A.11 Optimised values for the heat and temperature of fusion of Propranolol·HCl. 
f

SRh ),(∆  2·36800  J mol-1 
f

SRT ),(  436.3  K 

f
Rh )(∆  35462   J mol-1 

f

RT )(  471.6  K 

 

Table A.12 Binary interaction parameters of 
1)

(S)-Serine and 
3)

water. 
 

NRTL model 
parameters 

water 

α13   3.0001·10-1 
∆g13 -4.2222    kJ mol-1 
∆g31 -5.3578    kJ mol-1 

 

Table A.13 Optimised values for the heat and temperature of fusion of the single enantiomer 

and the racemic compound of Serine. 

f
SRh ),(∆  2·41609  J mol-1 

f
SRT ),(  700   K 

f
Rh )(∆  39611   J mol-1 

f

RT )(  551.9   K 

 

Table A.14 Binary interaction parameters of 
1)

(S)-Proline and 
3)

DMSO. 
 

NRTL model 
parameters 

water 

α13   1.030·10-1 
∆g13   6.5570·101   kJ mol-1 
∆g31   2.2257·102   kJ mol-1 
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Table A.15 Optimised values for the heat and temperature of fusion of Proline and its  

hemi-chloroformate. 
f

SRh ),(∆  2·26558 J mol-1 
f

SRT ),(  501.8 K 

f
atechloroformhemiSRh −),,(∆

 
2·60275 J mol-1 

f
atechloroformhemi),S,R(T −

 
404.8 K 

f

Rh )(∆  28817.6 J mol-1 

f

RT )(  484.6 K 

 

Table A.16 Binary interaction parameter of 
1)

(S)-3-Chloro-Mandelic acid, 
2)

(R)-3-Chloro-Mandelic acid, 
3)

water and 
4)

2-propanol. 

NRTL model 
parameters 

water/2-propanol 

α23   8.7353·10-1 
∆g23   7.468  kJ mol-1 
∆g32   8.2266·104 kJ mol-1 

α14   2.1107·10-1 

∆g14 -7.7338  kJ mol-1 
∆g41   1.1839·101 kJ mol-1 

α34   2.875·10-1 

∆g34   927.63·R· K 
∆g43  -55.35·R· K 
 

Table A.17 Binary interaction parameter of 
1)

(R)-Bicalutamide, 
2)

(S)-Bicalutamide,  
3)

methanol and 
4)

water 

NRTL model 
parameters 

methanol/water 

α13   1.1524·10-1 
∆g13 -1.4587·104     J mol-1 
∆g31   2.8845·104     J mol-1 

α14   8.0852·10-2 

∆g14   2.0836·104     J mol-1 
∆g41   7.3571·103     J mol-1 

α34          3.0·10-1 

∆g34 R (2.7312·T-6.1727·102)  J mol-1 
∆g43 R (6.93·10-1·T+1.7299·102) J mol-1 
 

Table A.18 Determined values for the heat and temperature of fusion of the single enantiomer 
and the racemic compound  of Bicalutamide. 

 own data Vega et al. 184 

f
SRh ),(∆  

2·43185 J mol-1 47771  J mol-1 
43037  J mol-1 

f
SRT ),(  466.1  K 

465.2  K  
462.2  K 

f

Rh )(∆  38179  J mol-1  

f

RT )(  453.7  K  
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B. Solubilities of Bicalutamide in methanol/toluene 
solutions 

The solvent composition and temperature dependent solubility was described by 

Eq. (B.1) with xm being the methanol fraction in percent on a solute free basis. The 

R2 value of the polynomial obtained for the solubility of (R)-Bicalutamide in 

methanol/toluene mixtures is estimated to 0.9856 and the root mean square error 

is 0.1166. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )
( )  10691.011610.4284

0.0381140.00012865106.0618T137.1171

T0.0884260.00019923104.093

0.659170.00024709102.4272

0.0014077102.2636T10-1.1268,x
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C. Parameters used within COSMO-SAC studies 
 
Table C.1 Input parameters used within Materials Studio (DMol3) and considered COSMO-SAC 
parameterisations. 

Task Settings and Parameters 

Geometry 
optimisation  

• DFT Module DMol3 
• No solvation scheme 
• Double Numerical basis with Polarization functions, DNP v4.0.0 
• Generalised Gradient Approximation/Becke-Perdew version of 

the Volsko-Wilk-Nusair functional, GGA/VWN-BP 
• Real space cutoff: default value 
• ‘fine’ tolerances with default values 

Energy calculation • DFT Module DMol3 
• COSMO option set ‘on’, dielectric constant set ‘infinity’ 
• Double Numerical basis with Polarisation functions, DNP v4.0.0 
• Generalised Gradient Approximation/Becke-Perdew version of 

the Volsko-Wilk-Nusair functional, GGA/VWN-BP 
• Real space cutoff: 5.5 Å 
• ‘fine’ tolerances with default values 

 

Table C.2 Parameterisation used within the (refined) COSMO-SAC model. 

 Mullins 75 Wang 77  

Cutoff value for hydrogen bonding, 
hbσ  0.0084 0.0084 e/ Å2 

Hydrogen bonding coefficient, 
hbc  85580 3484.42 kcal/mol Å4/e2 

Effective surface area, aeff 7.5 7.25 Å2 

Effective radius, rav 0.81764 πaeff /  Å 
Empirical correction factor used in the 
sigma profile averaging process, fdecay  

[-] 3.57 [-] 

Polarisability factor, fpol 0.64 0.6917
 

[-] 

Permittivity of free space, 
0ε  2.395e-4 e2 mol/kcal Å4/e2 
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D. ATR FTIR calibration model 
 

 

Figure D.1a)-f) Root-mean-square-error of cross validation (RMSECV) using different numbers of model factors 
for three calibration models for Bicalutamide in methanol/toluene and methanol/water mixtures (a)-c)). Parity 
plots of calibration models are given in Figures d)-f). 

 
Table D.1 Accuracy of the ATR-FTIR models for Bicalutamide in solution. 

system 1  system 2 (full data set) system 2 (small data set) 

RMSECV1) R2 cumulative RMSECV R2 cumulative RMSECV R2 cumulative 
Bicalutamide 0.37 0.99 0.50 0.996 0.16 0.993 
methanol 0.54 1 1.8 0.998 1.77 0.997 
toluene 0.43 1 - - - - 

water - - 2.0 0.998 1.80 0.997 

1) root mean square error of cross validation 
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E. Parameters of adsorption isotherm models 
Table E.1 Determined adsorption isotherm model parameters for Bicalutamide enantiomers in 
methanol (competitive multi-component Bi-Langmuir model, Eq. (2.87)). 

Parameter (R)-Bicalutamide (S)-Bicalutamide 

iS1,q  /g L
-1

 44.04 44.04 

ib1,  /L g
-1

 0.008386 0.008386 

i,2Sq  /g L
-1

 17.10 17.10 

ib2,  /L g
-1

 0.011312 0.199096 

 
Table E.2 Determined adsorption isotherm model parameters for Serine enantiomers in 
20/80 v/v methanol/water (competitive multi-component Bi-Langmuir model, Eq. (2.87)). 

Parameter (R)-Serine (S)-Serine 

iS1,q  /g L
-1

 93.36 93.36 

ib1,  /L g
-1

 6.11E-05 6.11E-05 

i,2Sq  /g L
-1

 3.87 3.87 

ib2,  /L g
-1

 0.0743 0.1291 
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