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Summary

Mixed effects models are applied for the analysis of grouped data in various areas of science.

The fundamental idea of mixed modeling is the assumption that observations within groups of

individuals follow a common response structure, whereas observations between groups differ

by group wise varying parameters, which are in population studies assumed to be realizations

of random variables.

The statistical properties of estimators in nonlinear mixed effects models with bounded in-

dividual sample sizes are not sufficiently known, such that experimental designs are based in

the examined models on the Fisher information matrix. Approximations of the Fisher infor-

mation are usually applied for the construction of optimal designs, as the Fisher information

can not be represented in a closed form in nonlinear mixed effects models. Aim of this thesis

is the derivation of reliable approximations of the Fisher information and the study of the

influence of approximations on the designs of the planned studies.

Linear and nonlinear regression models and the basic terms of the experimental design theory

are presented after an introductory chapter in the second chapter. A first definition of mixed

effects models and estimation methods, designs and information matrices in the linear case

are given in the third chapter. Two approximations of the Fisher information are introduced

in the following chapter on nonlinear mixed effects models after a short summary of estima-

tion methods. A small example motivates further studies of the Fisher information.

Novel approximations of the Fisher information are developed in the fifth chapter, which are

based on a representation of the Fisher information as the variance of the conditional mean

of the individual parameters for given observations. This leads to an alternative motivation

for the application of the Fisher information resulting from linear mixed effects models in

the problematic nonlinear case. An example illustrates the accuracy and the dependence of

different approximations on the variance of the individual parameters.

The generalization of the optimal design theory to mixed effects models is the topic of the

sixth chapter. The theory on approximations and designs is applied in an example of two

pharmacokinetic models in the seventh chapter, which leads to the concluding findings that

the approximations proposed in the literature provide a good foundation for the construction

of efficient designs. Designs of higher efficiency can however be derived by taking the here

introduced approximations of the Fisher information into account.

An outlook on further considerations and a summarizing discussion of the approximations

are given in the concluding chapter eight.
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Zusammenfassung

Gemischte Modelle werden zur Analyse gruppierter Daten in verschiedensten Forschungsge-

bieten angewendet. Die grundlegende Idee ist hierbei, dass Beobachtungen innerhalb einer

Gruppe einer gemeinsamen Grundstruktur folgen, die jeweiligen Gruppen sich jedoch durch

individuelle Parameter unterscheiden, welche in Populationsstudien als Realisierungen von

Zufallsvariablen modelliert werden.

Da in nichtlinearen gemischten Modellen die statistischen Eigenschaften der Schätzer im Falle

begrenzter individueller Stichprobengrößen nicht ausreichend bekannt sind, wird als Grund-

lage für die Versuchsplanung die Fisher-Information genutzt, die sich jedoch in den betrach-

teten Modellen nicht in einer geschlossenen Form darstellen lässt. Ziel der vorliegenden Ar-

beit ist nun die Herleitung zuverlässiger Approximationen der Fisher-Information und die

Überprüfung des Einflusses der Approximationen auf die Effizienz der Versuchspläne.

Nach einem in das Thema einleitenden Kapitel werden lineare und nichtlineare Regressions-

modelle und die Theorie der optimalen Versuchsplanung in diesen Modellen im zweiten Kapitel

eingeführt. Modelle mit gemischten Effekten werden erstmals im dritten Kapitel vorgestellt

und Schätzer, Versuchspläne und Informationsmatrizen im linearen Fall behandelt. Im folgen-

den Kapitel über nichtlineare gemischte Modelle werden nach der Zusammenfassung einiger

Schätzmethoden zwei in der Literatur verwendete Approximationen der Fisher-Information

eingeführt. Ein kleines Beispiel motiviert das weitere Studium der Fisher-Information.

Im fünften Kapitel der Arbeit werden neue Approximationen der Fisher-Information hergelei-

tet. Die Basis der Approximationen bildet eine Darstellung der Fisher-Information als Ko-

varianzmatrix des bedingten Erwartungswertes der individuellen Parameter für gegebene

Beobachtungen. Dies liefert eine weitere Motivation für die Anwendung der Fisher-Information

linearer gemischter Modelle im nichtlinearen Fall. Ein Beispiel illustriert die Abhängigkeit

verschiedener Approximationen von der Varianz der individuellen Parameter.

Die Verallgemeinerung der Versuchsplanungstheorie auf Modelle mit gemischten Effekten ist

das Thema des sechsten Kapitels, bevor im siebten Kapitel die in der Arbeit vorgestellte The-

orie an zwei Beispielen der Populationspharmakokinetik angewandt wird. Zusammenfassend

zeigt sich, dass die bisher in der Literatur genutzten Verfahren eine gute Basis zur Konstruk-

tion effizienter Versuchspläne bilden. Eine höhere Effizienz kann jedoch mit Hilfe der neu

eingeführten Approximationen erreicht werden.

Im abschließenden achten Kapitel werden die Approximationen zusammenfassend diskutiert

und Ausblicke für weiterführende Überlegungen gegeben.
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1 Introduction

Experiments are conducted in sciences in order to obtain ideas on relations, to verify or to

discard theories. Bandemer and Bellmann (1994) interpret experiments as questions to the

nature, which should be adequately posed to obtain reasonable and useful answers. In these

terms the first ideas on optimally questioning were published in an Biometrika article of Kirs-

tine Smith (1918) about a century ago. Although Fisher published a book with the title

“The design of experiments” already in 1935, the main development in experimental design

theory took place in the second half of the last century with the works of Elfving (1952) and

Kiefer and Wolfowitz (1959) on optimally planning experiments. The resulting convex design

theory, optimality criteria and equivalence theorems nowadays still form the foundations for

the construction of optimal experimental designs.

Atkinson and Bailey (2001) briefly summarize the development of experimental designs in

the last century and name some recent areas of research. Specially mentioned are designs

for studies with complicated variance structures, designs for computer experiments, adaptive

designs and designs for training neural networks. Complicated variance structures might be

caused by individual wise varying parameter vectors, which are met in population studies and

described by mixed effects models. The development of statistical tools for the analysis of

mixed effects models and the new computational possibilities allow the application of popu-

lation modeling in wide areas in the life sciences and explain hence the growing demand for

optimal designs in mixed effects models, which are the topic of this thesis.

The theory on least squares estimators for location parameters in linear mixed effects models

was already developed in 1965 by Rao. For generalized linear and nonlinear mixed effects

models, reliable estimators are harder to obtain. Sheiner et al. (1972) describe some estima-

tion methods in nonlinear mixed effects models, which were further refined and discussed in

the following works on evaluations of methods for estimating population parameters in clinical

studies by Sheiner and Beal (1980, 1981, 1983). Relatively new approaches aim in minimizing

iteratively reweighted sums of squares (Lindstrom and Bates (1990)) or in maximizing the

likelihood function by stochastic algorithms (Kuhn and Lavielle (2001)). Quasi-likelihood

estimators might be used in generalized linear mixed models for gaining reliable insight in the

population behavior (Niaparast (2010)). A generalization of this method for the estimation

in nonlinear mixed effects models is in general not possible, as closed form representations of

mean and variance of the observations as functions of the unknown parameters are possible
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only in few cases.

Mixed effects models are frequently used in the analysis of grouped data. In clinical studies the

observed individuals usually share common response structures, such that information from

individual responses can be merged to obtain efficient estimates. The particular example of

pharmacokinetics in paediatrics often serves as a motivation for population modeling. Phar-

macokinetic studies are applied in order to examine the absorption, distribution, metabolism

and excretion of drugs in the body. The time-concentration relationship of drugs in the body

is usually described by compartmental models, which are extensively presented in the mono-

graph on nonlinear regression by Seber and Wild (2003, ch. 8) and in the dissertation of

Schmelter (2007a). Experimental designs with many measurements in few individual tend to

be inefficient for the estimation of the population mean parameter vector compared to designs

with few measurements on many individuals. Moreover, blood samples with dense individual

sampling schemes are due to ethical and logistical reasons usually not possible in the target

population of ill patients. Nonlinear mixed effects models are used in the analysis of pharma-

cokinetic studies and encouraged specially for sparse sampling schemes by the EMEA (2006):

“Population pharmacokinetic analysis, using non-linear mixed effects models is an

appropriate methodology for obtaining pharmacokinetic information in paediatric

trials both from a practical and ethical point of view. Mean and variances are

estimated and information from all individuals is merged making it possible to use

sparse sampling schemes.”

The main problem in designing experiments for nonlinear mixed effects models is the missing

knowledge of the probabilistic behavior of the parameter estimators in the case of limited

numbers of individual measurements. The usual approach for circumventing this problem is

in the literature the use of the inverse of the Fisher information matrix as a lower bound of the

variance of any unbiased estimator. Two different approximations of the Fisher information

matrix for nonlinear mixed effects models compete in the literature.

Mentré et al. (1997) and Schmelter (2007a) approximate the nonlinear mixed effects model

by a linear mixed effects model and optimize the design with respect to the Fisher informa-

tion matrix of the resulting model. Algorithms and equivalence theorems for optimal designs

in linear mixed effects models can be readily generalized from the book of Fedorov (1972).

Optimal designs for individual predictions in mixed effects models were assumed to follow

from results of Gladitz and Pilz (1982), but recently Prus and Schwabe (2011) reviewed this

assumption and presented updated equivalence theorems for this situation.

The second information approximation is based on the Fisher information matrix in het-

eroscedastic normal models and was developed by Retout and Mentré (2003). Some results

on designs in heteroscedastic models were published by Atkinson and Cook (1995) and in the

dissertation of Holland-Letz (2009). Although both mentioned approaches for approximating

the Fisher information are based on similar linearizations, the resulting information matrices

and designs might severely differ, as was discussed in Mielke and Schwabe (2010).
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In mixed effects models optimal design problems can be solved analytically only in few cases,

but various numerical techniques for addressing design problems might be applied in these

models. However, because of the unknown structure of the Fisher information matrix in non-

linear mixed effects models, one has to return to the statement of Bandemer and Bellmann

(1994): the questions have to be posed in the right way in order to obtain reasonable and

useful answers to the optimal design problem in nonlinear mixed effects models.

Based on linear and nonlinear regression models, we will introduce the fundamental terms

in optimal designs of experiments in the second chapter. Different estimation methods are

presented in the second chapter, which will be useful for the estimation of the population

mean parameter vector in the third chapter on linear mixed effects models. The linear mixed

effects models build the foundations for nonlinear mixed effects models, which are introduced

in the fourth chapter. After the presentation of different estimation methods in nonlinear

mixed effects models, the last subsection of the fourth chapter describes the two mentioned

approximations of the Fisher information matrix by the information matrix of a linear mixed

effects model and a nonlinear heteroscedastic normal model. This motivates further studies

on approximations of the Fisher information, which are presented in the fifth chapter. After

these considerations on information matrices in nonlinear mixed effects models, we return in

the sixth chapter to the design problem in mixed effects models before presenting the impact

of different information matrices on the design of pharmacokinetic studies in two models in

the seventh chapter. The concluding eighth chapter summarizes the findings of this thesis and

addresses further considerations on experimental designs in nonlinear mixed effects models.



4 1 Introduction



2 Design in Linear and Nonlinear

Regression Models

Many general definitions and results on experimental design can be well explained within the

topic of ordinary linear regression models and then be generalized to other model classes, as

nonlinear and mixed effects models. This chapter provides the foundations for the theory and

results of the following chapters.

Experimental designs in linear models are well discussed in many publications. The mono-

graphs by Fedorov (1972), Silvey (1980) and Bandemer and Bellmann (1994) build a good

introduction to optimal designs of experiments. The book of Pukelsheim (1993) on experimen-

tal design describes optimal design problems on an abstract mathematical level. Specially the

dissertation of Schmelter (2007a) yields an insight in the topic of optimal designs for mixed

effects models. This introductory chapter on optimal designs in linear regression models is

based on the mentioned publications.

The linear regression model and some connections to nonlinear models are presented in sec-

tion 2.1. The second part of this chapter describes the fundamental terms in the theory of

optimal designs of experiments. Analytical and numerical approaches to the design problem

are given in section 2.3.

2.1 Classical Regression Models

Let the j-th observation under experimental setting xj ∈ X be described by

Yj = η(β, xj) + εj , j = 1, ...,m (2.1)

with a real valued response function η, a p dimensional unknown parameter vector β and an

observation error εj ∈ R with zero mean and variance σ2 > 0. In the classical regression

framework the errors εj are assumed to be uncorrelated and homoscedastic. The real valued

response function η is assumed to be differentiable in β and continuous on the design region

X , which for technical reasons is assumed to be a compact set. Primary aim is the estimation

of the underlying response function η(β, x), x ∈ X .
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2.1.1 Linear Models

In linear regression models the function η is linear in the parameter vector β, such that

Yj = f(xj)
Tβ + εj , j = 1, ...,m (2.2)

with a vector of known real valued regression functions f(x) =
(
f1(x), ..., fp(x)

)T
. Note that

the design locus f(X ) := {y|y = f(x), x ∈ X} is a compact set, as f(x) is continuous on the

compact design region X . The vector Y = (Y1, ..., Ym)T summarizes the m observations in one

model with the design matrix F =
(
f(x1), ..., f(xm)

)T
and an error vector ε = (ε1, ..., εm)T

as

Y = Fβ + ε. (2.3)

The above assumption on the correlation of the observation errors leads to a model of Y with

expectation and variance as

E(Y ) = Fβ and Cov(Y ) = σ2Im.

The best linear unbiased estimator is obtained by minimizing the squared distance of the

proposed model from the observed values:

LOLS(β; y) := (y − Fβ)T (y − Fβ)→ min
β∈Rp

.

and results for design matrices F with full column rank in

β̂OLS := (F TF )−1F TY.

Under the classical assumptions of uncorrelated and homoscedastic observation errors with

variance σ2, the covariance of the ordinary least squares estimator is obtained as

Cov(β̂OLS) = σ2(F TF )−1.

Note however, that the classical assumptions are generally not fulfilled. The observation

errors are not necessarily uncorrelated and the variance may depend on the experimental

settings. Then the variance matrix of the observation vector is of the form

Cov(Y ) = σ2V

with a matrix V , which is here assumed to be positive definite and independent of the vector β.

In this new model, the best linear unbiased estimator takes the variance of the measurements

into account. The solution of

LWLS(β; y) := (y − Fβ)TV −1(y − Fβ)→ min
β∈Rp

is called the weighted least squares estimator and is obtained for matrices F of full column

rank as

β̂WLS := (F TV −1F )−1F TV −1Y.
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The covariance of the estimator results in

Cov(β̂WLS) = σ2(F TV −1F )−1.

For unknown variance matrices V , generalized least squares procedures are often applied,

which iteratively modify a weight matrix for optimally estimating the vector β. Estimates

of the true variance matrix V are usually used as weight matrices. Further details on the

generalized least squares estimation will be presented in section 3.2.2.

Notice that for rank deficient design matrices F no linear unbiased estimator of β exists. If

just the estimation of a linear function ψ(β) = Lψβ is of interest, the existence of a matrix

Q with Lψ = QF is sufficient for the identifiability of ψ(β):

ψ̂ = Lψ(F TV −1F )−F TV −1Y

with a generalized inverse (F TV −1F )− of F TV −1F . The covariance of the estimator results

in

Cov(ψ̂) = σ2Lψ(F TV −1F )−LTψ .

2.1.2 Nonlinear Models

The estimation for nonlinear functions η can be conducted in a similar way. Let the vector

valued response function be therefore described as η(β) =
(
η(β, x1), ..., η(β, xm)

)T
.

In the nonlinear model with uncorrelated and homoscedastic observation errors εi with vari-

ance σ2 > 0, the squared distance

LOLS(β; y) :=
(
y − η(β)

)T (
y − η(β)

)
is to be minimized. The derivatives of the response function with respect to the parameter

take here the role of the design matrix, such that we define:

Fβ :=
∂η(β)

∂βT
,

what depends on the unknown parameter vector β, which is to be estimated. The ordinary

least-squares estimator is obtained as a root of the estimating equation

l′OLS(β; y) := F Tβ
(
y − η(β)

)
=
∂η(β)T

∂β

(
y − η(β)

) !
= 0.

With n replications of the measurements under the experimental settings (x1, ..., xm) and

under appropriate regularity conditions, the ordinary least squares estimator β̂OLS is asymp-

totically normally distributed (e.g. Jennrich (1969)):

√
n(β̂OLS − β)

L−→ N
(
0, σ2(F Tβ Fβ)−1

)
as n→∞.

In the more general model of possibly correlated and heteroscedastic observations errors, the

variance of the observation vector results in

Cov(Y ) = σ2V
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with a matrix V as in 2.1.1. The uncertainty of the observations should then be taken into

account for the estimation. The weighted squared distance

LWLS(β; y) :=
(
y − η(β)

)T
V −1

(
y − η(β)

)
is minimized by the weighted least squares estimator β̂WLS , which under some regularity

conditions is asymptotically normally distributed as

√
n(β̂WLS − β)

L−→ N
(
0, σ2(F Tβ V

−1Fβ)−1
)

as n→∞.

For the numerical derivation of nonlinear least squares estimates, the response function might

be linearized around a guess β0 of the true parameter vector β. For β0 close enough to β,

this leads under the assumption of negligible linearization errors to a linear model as in 2.1.1.

Note that the root of the estimating equation needs not be unique.

2.1.3 Maximum Likelihood Estimation

Least squares estimation yields in linear models unbiased estimates of the parameter β spec-

ifying the location, even without knowledge of the underlying distribution of the observation

error. If the error distribution is assumed to be an element of a parametric family of prob-

ability distributions, Maximum Likelihood Estimation can be applied for fitting the model

to the data. Let fY (y, θ) describe the probability density of Y with a parameter θ to be

estimated. For given realizations y of Y , the maximization of the likelihood function L(θ; y)

or equivalently the log-likelihood function l(θ; y):

L(θ; y) := fY (y, θ) and l(θ; y) := log[L(θ; y)]

with respect to the parameter θ yields the maximum likelihood estimate θ̂ML. The maxi-

mum likelihood estimate defines the probability distribution, which optimally describes the

observed data within the proposed class of probability distributions fY (y, θ) and is obtained

as a root of the score function:

l′(θ; y) :=
∂l(θ; y)

∂θ

!
= 0.

Maximum likelihood estimators are under some regularity conditions asymptotically optimal

within the class of asymptotically unbiased estimators. The variance of the maximum like-

lihood estimator then asymptotically reaches the Cramer-Rao bound, a lower bound of the

variance of any unbiased estimator, which corresponds to the inverse of the Fisher information:

Definition 2.1. For a given parametric model fY (y, θ) of a random vector Y with

E

(
∂l(θ;Y )

∂θ

)
= 0

and under appropriate regularity conditions, the covariance of the score function is called the

Fisher information:

M := E

(
∂l(θ;Y )

∂θ

∂l(θ;Y )

∂θT

)
.
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With n replications of the experimental settings (x1, ..., xm), the maximum likelihood

estimator is under some more regularity conditions asymptotically normally distributed:

√
n(θ̂ML − θ)

L−→ N (0,M−1) as n→∞.

Maximum likelihood and least squares estimators generally yield different results. For the

classical assumption of uncorrelated and homoscedastic normally distributed observation er-

rors εi with a constant variance σ2 > 0, maximum likelihood and ordinary least squares

estimator in the presented model (2.1) coincide. Specially for nonlinear response functions η

the least squares estimators share the asymptotic results of maximum likelihood estimators

on unbiasedness and asymptotic efficiency. However, maximum likelihood estimators might

lead for misspecified families of distributions of Y to biased inefficient estimates, whereas

the asymptotic results on least squares estimators are based on the zero expectation and the

variance matrix σ2V of the observation errors only. Hence least squares estimators are more

robust with respect to model missspecifications compared to maximum likelihood estimators.

For the introduction on design of experiments we will thus concentrate on designs minimizing

the variance of least squares estimators.

2.2 Experimental Design

In the following sections we will focus on linear models with uncorrelated and homoscedastic

observation errors ε, such that Cov(ε) = σ2Im. The presented results can be readily general-

ized for nonlinear response functions, by taking the dependence of the asymptotic covariance

matrix of the estimator on the unknown parameter vector β into account. The situation of

more general variance structures σ2V will be considered in the following chapters.

2.2.1 Information and Design

Given the linear model (2.3), the variance of the best linear unbiased estimator of the location

parameter vector β depends on the sample settings xj , j = 1, ...,m and the variance of the

observations only.

Definition 2.2. An exact design x of size m is a vector (x1, ..., xm) of experimental settings

xi, i = 1, ...,m chosen from a design region X . The settings xi, i = 1, ...,m are called support

points of the design x. The set of all exact designs of size m is given by the m-dimensional

design region Xm.

For optimally estimating the vector β, the variance of the estimator has to be minimized

with respect to the design settings

Cov(β̂OLS) = σ2
(
F (x)TF (x)

)−1 → min
x∈Xm

,

with design matrices F (x). The influence of the design x on the information is contained

in the matrix F (x)TF (x), which is therefore generally called information matrix. Up to

the constant 1
σ2 , the information matrix coincides with the Fisher information for normally

distributed homoscedastic observation errors.



10 2 Design in Linear and Nonlinear Regression Models

Definition 2.3. For an exact design x of size m the matrix

M(x) :=
1

m
F (x)TF (x)

is called the normalized information matrix of the design x.

Exact designs with k distinct experimental settings xi and mi measurement replications

under the experimental settings xi, i = 1, ..., k, are in the literature often described with the

notation

x ∼

(
x1 ... xk
m1 ... mk

)
.

With a matrix of weights W (x) = diag(ω1, ..., ωk), where ωi := mi
m and now a k × p design

matrix F (x) :=
(
f(x1), ..., f(xk)

)T
the normalized information can be described as

M(x) =
1

m

k∑
j=1

mjf(xj)f(xj)
T =

k∑
j=1

ωjf(xj)f(xj)
T = F (x)TW (x)F (x),

such that the resulting matrix does not depend on the total number of measurements m any

more, but only on the proportions ω1, ..., ωk with

k∑
i=1

ωi = 1

of the experimental settings xi, i = 1, ..., k in the design x. Hence designs can be described

by measures ξx as in Silvey (1980):

ξx =
k∑
i=1

ωiδxi .

For constructing optimal designs thus probability distributions on the design region X are

sought, which minimize the variance of the estimator β̂OLS by maximizing the information

M(ξx) := Eξx
(
f(x)f(x)T

)
=

∫
X
f(x)f(x)T ξx(dx).

Definition 2.4. The measure ξ =
k∑
i=1

ωiδxi with support points xi ∈ X and weights ωi ≥ 0,

i = 1, ..., k;
k∑
i=1

ωi = 1, for some k ∈ N, is called approximate design on X .

ξ :=

(
x1 ... xk
ω1 ... ωk

)
.

Contrary to exact designs, the approximate designs build a convex set and its closure

leads to the set of all probability measures on X .
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Definition 2.5. Let

(i) Ξ denote the set of all approximate designs on X ,

(ii) ΞLψ denote the set of all approximate designs, under which the linear aspect ψ(β) = Lψβ

is identifiable,

(iii) Ξβ := ΞIp.

Designs ξ ∈ Ξ \ Ξβ are called singular designs.

The set Ξ induces the set of information matrices

M := {M(ξ), ξ ∈ Ξ}.

The linearity of the integral yields with the compactness of the design locus the convexity

and compactness of the set M. Even more, with the proposed assumptions on uncorrelated

observations, every information matrix M ∈M can be constructed as a convex combination

of information matrices of design measures with mass on one support point only.

Since the information matrices are symmetric, they can be represented as vector valued func-

tions with image in R
1
2
p(p+1). With an application of Caratheodory’s theorem, the number of

support points of optimal designs can be limited, since every point in the convex hull of the

set M can be represented as a convex combination of a finite number of points of M.

Theorem 2.6. For every design ξ ∈ Ξ an approximate design ξ̄ exists with k ≤ 1
2p(p+ 1) + 1

support points, satisfying M(ξ) = M(ξ̄). For boundary elements M(ξ) of M a design ξ̄ exists

with at most 1
2p(p+ 1) support points and M(ξ) = M(ξ̄).

As a consequence it is sufficient to optimize designs in the class of approximate designs

with at most 1
2p(p+ 1) + 1 support points only.

2.2.2 Design Criteria

Note that the covariance of the estimator is for parameter vectors of dimension p ≥ 2 a

matrix. Hence covariances induced by different experimental designs cannot be compared

straightforwardly. The construction of optimal designs with respect to the Loewner partial

ordering on the set of non-negative definite matrices would be desirable:

Definition 2.7. The Loewner partial ordering for non-negative definite (n.n.d.) matrices M1

and M2 is defined as

M1 ≤M2 :⇔ (M2 −M1) n.n.d.

Unfortunately this optimization task is not practicable, as generally no Loewner optimal

design exists. To circumvent this problem, design criteria Φ are used to determine efficient

designs with respect to the aim of the planned studies. Design criteria are real valued functions

Φ of the information matrices or alternatively of the designs defining the information matrices.
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With the proposed asymptotic normality of the least squares estimator for β, the content of

the confidence ellipsoid is inversely proportional to the square root of the determinant of the

information matrix, yielding the D-optimality criterion. The determinant is in this thesis

described by ‖ · ‖. The D-optimality criterion then takes the form:

Definition 2.8. A design ξ∗ is called D-optimal if

‖M(ξ∗) ‖ ≥ ‖M(ξ) ‖, ∀ ξ ∈ Ξ.

The design ξ∗ minimizes ΦD

(
M(ξ)

)
:= − log

(
‖M(ξ) ‖

)
on Ξ.

The D-optimality criterion is one of the most popular design criteria in the literature.

Welcome properties of D-optimal designs are the invariance with respect to linear reparam-

eterizations of the parameter vector and the equivalence of D- and G-optimal designs in the

case of uncorrelated homoscedastic measurement errors. The G-optimality criterion is used

for minimizing the maximal variance of the estimate of a response over the design region X :

Definition 2.9. A design ξ∗ is called G-optimal if

max
x∈X

f(x)TM(ξ∗)−1f(x) ≤ max
x∈X

f(x)TM(ξ)−1f(x), ∀ ξ ∈ Ξβ.

The design ξ∗ minimizes ΦG

(
M(ξ)

)
:= max

x∈X
f(x)TM(ξ)−1f(x) on Ξβ.

Alternatively linear criteria are induced by non-negative definite p×p matrices L. Designs

can be optimized with respect to different aspects in dependence of the choice of the matrix

L. Designs with singular information matrices might be optimal for the L-optimality criteria,

such that a generalized inverse M− of the information matrix is used to define these criteria.

Definition 2.10. A design ξ∗ is called L-optimal if

tr
(
LM(ξ∗)−

)
≤ tr

(
LM(ξ)−

)
, ∀ ξ ∈ ΞL.

The design ξ∗ minimizes ΦL

(
M(ξ)

)
:= tr

(
LM(ξ)−

)
on ΞL.

The IMSE-optimality is used if interest lies in minimizing the mean variance of the

estimated response over the design region. Depending on a probability measure µ on the

design region X , the Integrated Mean Squared Error is minimized, what results for ordinary

linear models and the least squares estimator in:

E
( ∫
X

[f(x)Tβ − f(x)T β̂]2µ(dx)
)

= tr
( ∫
X
f(x)f(x)Tµ(dx) M(ξ)−1

)
→ min

ξ∈Ξβ
,

such that with

L =

∫
X
f(x)f(x)Tµ(dx)

the IMSE-criterion is a particular case of definition 2.10.

Other particular linear criteria are the A-optimality criterion and the c-optimality. A-optimal
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designs minimize the average variance of the parameter estimator, such that for A-optimality

the matrix L is the p-dimensional identity. Note that the value of the optimality criterion is

influenced by the scale of the components of the parameter vector for the A-criterion.

Aim of the c-optimality is the minimization of the variance of an estimator of the linear aspect

cTβ. Only the linear aspect cTβ has here to be identifiable, such that the design optimization

is based on the set Ξc instead of Ξβ:

Definition 2.11. A design ξ∗ is called c-optimal if

cTM(ξ∗)−c ≤ cTM(ξ)−c, ∀ ξ ∈ Ξc.

The design ξ∗ minimizes Φc

(
M(ξ)

)
:= cTM(ξ)−c on Ξc.

The presented criteria can be similarly applied for the optimization of designs for the

estimation of arbitrary linear aspects ψ(β). Design optimization is then constrained on the

set ΞLψ .

This list of optimality criteria is in no way comprehensive. Possible nonstandard criteria are

E- and MV -optimality. E-optimal designs minimize the maximal eigenvalue of the variance

matrix, whereas MV -optimal designs minimize the maximal diagonal element of the variance

matrix, and hence an upper bound of the variance of the estimator.

In nonlinear models the information matrix generally depends on the prior unknown pa-

rameter vector β. Bayesian optimality criteria circumvent this problem by including the

uncertainty on the parameter in the criterion function via a probability distribution on the

unknown parameter vector β. Another approach in order to circumvent the problem of pa-

rameter misspecifications is the use of adaptive designs (e.g. Pronzato (2010)).

Desired properties of design criteria are the monotonicity with respect to the Loewner partial

ordering and the convexity:

Definition 2.12. An optimality criterion is called

(i) monotone, if for information matrices M1 and M2 holds

M1 ≥M2 ⇒ Φ(M1) ≤ Φ(M2).

(ii) convex, if for information matrices M1 and M2 holds

Φ
(
αM1 + (1− α)M2

)
≤ αΦ(M1) + (1− α)Φ(M2), ∀ α ∈ [0, 1].

For strictly monotone criteria, the optimal information matrix M(ξ∗) is a boundary point

of the setM. Hence each optimal design ξ∗ can be represented as a convex combination of at

most 1
2p(p+ 1) one-point designs. Notice that strictly convex design criteria yield an unique

optimal information matrix, whereas the optimal design is not necessarily unique.
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2.3 Design Optimization

2.3.1 Equivalence Theorems

Equivalence theorems are used in the convex design theory to prove the optimality of designs

and to construct optimal designs. With the Fréchet derivative of Φ at M1 in the direction of

M2:

FΦ(M1,M2) := lim
ε→0

1

ε

(
Φ[(1− ε)M1 + εM2]− Φ[M1]

)
,

a design ξ∗ ∈ Ξ is Φ-optimal if and only if

FΦ

(
M(ξ∗),M(ξ)

)
≥ 0 ∀ ξ ∈ Ξ (e.g. Silvey (1980)).

The linearity of FΦ

(
M1,M2

)
in the second argument can be shown for differentiable criteria

Φ, such that for approximate designs ξ with support points xi and weights ωi, i = 1, ..., k,

holds:

FΦ

(
M(ξ∗),M(ξ)

)
=

k∑
i=1

ωiFΦ

(
M(ξ∗), f(xi)f(xi)

T
)
,

what directly yields the equivalence theorem:

Theorem 2.13. (Silvey (1980)) If Φ is differentiable on M+ := {M ∈M, Φ(M) <∞} and

a Φ-optimal design exists, then ξ∗ is Φ optimal if and only if

min
x∈X

FΦ

(
M(ξ∗), f(x)f(x)T

)
= max

ξ
min
x∈X

FΦ

(
M(ξ∗), f(x)f(x)T

)
,

where the maximum with respect to ξ is the maximum over {ξ ∈ Ξ, M(ξ) ∈M+}.

Note that support points of the optimal design ξ∗ are minima of the Fréchet derivative in

ξ∗. The Fréchet derivative shows the effect on the criterion function, when marginally moving

from a matrix M1 to a matrix M2. Alternatively it can be derived as

FΦ(M1,M2) :=
∂

∂ε
Φ[(1− ε)M1 + εM2]|ε=0.

For the proposed optimality criteria of D- and L-optimality the equivalence theorems can be

readily calculated with some matrix differential calculus (e.g. Fedorov (1972, ch. 2)):

Theorem 2.14. The design ξ∗ is D- and G- optimal if and only if

max
x∈X

tr [M(ξ∗)−1f(x)f(x)T ] ≤ p.

Notice that this theorem holds generally only under the assumption of uncorrelated ob-

servation errors. The result for linear optimality criteria and regular information matrices is

similar:
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Theorem 2.15. The design ξ∗ is L-optimal if and only if

tr [M(ξ∗)−1LM(ξ∗)−1
(
f(x)f(x)T −M(ξ∗)

)
] ≤ 0 ∀ x ∈ X .

Silvey (1978) discusses the problem of optimal design measures with singular information

matrices. Note that the above equivalence theorem for L-optimality is then not applicable

and alternative considerations to prove optimality have to be undertaken.

The optimality of certain approximate designs ξ ∈ Ξβ can be relatively easy verified using

the functions

gD,ξ(x) := tr [M(ξ)−1f(x)f(x)T ]− p and

gL,ξ(x) := tr
[
M(ξ)−1LM(ξ)−1

(
f(x)f(x)T −M(ξ)

)]
.

which are some kind of sensitivity functions for D- and L-optimality. Designs with non-

positive functions gD,ξ or gL,ξ on X are optimal with respect to the corresponding optimality

criterion.

2.3.2 Construction of Optimal Designs

The analytical construction of optimal designs is just in special cases possible. The informa-

tion provided by the Fréchet derivative can be used in hill climbing optimization algorithms as

the V - or the W -algorithm. A design ξn with xn ∈ X fulfilling g·,ξn(xn) > 0 can be improved

by adding weight to the point xn, such that a new design ξn+1 results in

ξn+1 := (1− αn)ξn + αnδxn

The convergence of the algorithm depends on the choice of the sequence of step lengths

αn ∈ (0, 1) and the added design point xn. In the V -algorithm the step length is defined to

maximize the decrease of the criterion function in αn for given xn
(
Fedorov (1972)

)
. The

steepest decent is attained when adding optimal weight to the point xn maximizing the

sensitivity function. Alternatively the step length can be defined by sequences fulfilling

αn → 0 and
∑

αn →∞,

what then leads to the W -algorithm
(
Wynn (1970)

)
. Typically step lengths as αn = n−1 are

applied. Specially for design regions X with higher dimensions, the location of the maximum

of the functions g·,ξn complicates the problem.

With the proposed result on the representation of the optimal design by a design with at

most k = 1
2p(p+ 1) + 1 support points, the design problem can be formulated as

Φ
(
M(ξ)

)
→ min

ξ∈Ξk
with Ξk :=

{
X k × [0, 1]k−1,

k−1∑
i=1

ωi ≤ 1

}
.

such that standard numerical algorithms can be applied for solving this optimization problem.

Figure 2.1 shows the functions gD,ξn for D-optimality in a nonlinear model with the exponen-

tial decay η(β, x) = β1 exp(xβ2), resulting from iterations of the V - and a BFGS-algorithm.
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Figure 2.1: 10 iterations of the optimization algorithms: Left: V -algorithm; Right: BFGS-

Algorithm

Notice that optimal designs in the present nonlinear example depend on the value of the pa-

rameter β = (β1, β2) and are hence only locally optimal. For both algorithms the same initial

design was used and the functions gD,ξn were plotted for the first ten iterations. An often

observed behavior of standard design algorithms as the V -algorithm is the cycling on a set

of points as described by Silvey (1980). Every second iteration in the present example yields

a function gD,ξn with approximately the same maxima as two iterations before. The design

points in these iterations just slightly change, only the weights get updated until convergence.

In the proposed example, optimal designs can be analytically derived without big problems.

The sign of the derivative of the function gD,ξn here depends on a quadratic polynomial of

x, such that at most one maximum in the interior of X exists. Hence the D-optimal design

is supported on at most two points with equal weights on each and results for real design

regions X = [xl, xu] and a parameter β = (β1, β2)T in

ξ∗ =

(
xl min(xl + 1

|β2| , xu)

0.5 0.5

)
for β2 < 0 and ξ∗ =

(
max(xu − 1

β2
, xl) xu

0.5 0.5

)
for β2 > 0.



3 Linear Mixed Effects Models

The presented results in the second chapter were mainly based on the uncorrelated ho-

moscedastic observation errors. If measurements from a population of individuals are drawn,

the observations within one individual are possibly correlated, such that the model assump-

tions of chapter 2 are then generally not fulfilled. In the analysis of grouped data often

mixed effects models are applied for modeling the correlated observations by individual and

observation-wise varying random effects. Before discussing nonlinear mixed effects models,

this chapter presents some definitions and results on linear mixed effects models.

The books by Davidian and Giltinan (1995) and Demidenko (2005) provide an insight on

estimators and their distributions in mixed effects models. Numerical approaches for solving

occurring nonlinear optimization problems are extensively discussed in Demidenko’s book.

Pinheiro and Bates (2000) discuss computational methods and tools for analyzing mixed ef-

fects models with normally distributed random effects in the statistical software S.

The linear mixed effects model will be introduced in the first section with special emphasis

on the random coefficient regression model. Estimation methods for the linear mixed effects

model will be described in the second section. The experimental designs in mixed effects

models usually consist of two levels, which will be described together with the information

matrices for mixed effects models in the third section.

3.1 Model Formulation

Mixed effects models are generally defined in two stages. In the random coefficient regression

model, the observations of each individual are assumed to follow the same statistical model

(intra-individual) with individual-wise varying parameters (inter-individual). A generalized

influence of individual effects will be given at the end of this section.

3.1.1 Intra-Individual Model

The j-th observation of the i-th individual, i = 1, ..., N under experimental settings xij ∈ X
is with a vector of known regression functions f(xij) described by

Yij = f(xij)
Tβi + εij , j = 1, ...,mi,

with uncorrelated and homoscedastic observation errors εij , j = 1, ...,mi of zero mean and

variance σ2 > 0. The vector of regression functions f(x) is assumed to be continuous on the
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compact design region X . Hence the intra-individual model is an ordinary linear regression

model with an unknown parameter vector βi ∈ Rp. The vector of the mi observations under

experimental settings (xi1, ..., ximi) of the i-th individual can be summarized as

Yi = Fiβi + εi,

with a design matrix Fi :=
(
f(xi1), ..., f(ximi)

)T
and an error vector εi = (εi1, ..., εimi)

T .

Note that the number of measurements mi is not necessarily constant among the individuals

and that more complicated covariance structures of the observation errors than σ2Imi might

be considered as well. General covariance structures will be briefly discussed in the last

subsection of this chapter.

3.1.2 Inter-Individual Model

For modeling the observations of different individuals together in one model, the individual

parameter vectors in the random coefficient regression model are assumed to be realizations

of uncorrelated and identically distributed random variables with the so called population

parameters

E(βi) = β, and Cov(βi) = σ2D.

The individual parameter vector can alternatively be interpreted as the sum of a fixed pop-

ulation parameter β and an individual effect bi with zero mean and variance σ2D. If some

of the components of βi are assumed not to vary between the individuals, the correspondent

rows and columns of the covariance matrix σ2D are zero.

Example 3.1. In the case of quadratic regression the difference of the individual response

functions

η(βi, x) := βi;1 + βi;2x+ βi;3x
2.

for matrices D = diag(d1, 0, 0) with d1 > 0 is only induced by the individual-wise varying

intercepts, i.e. βi = (βi;1, β2, β3).

Observation errors and individual parameter vectors are generally assumed to be uncor-

related. For the observations within one individual this yields

Yi = Fiβ + Fibi + εi,

E(Yi) = Fiβ, Cov(Yi) = σ2Vi, with Vi := Imi + FiDF
T
i ,

and for F := (F T1 , ..., F
T
N )T , b = (bT1 , ..., b

T
N )T , ε = (εT1 , ..., ε

T
N )T and G := diag(F1, ..., FN ), the

model of all observations can be summarized as

Y = Fβ +Gb+ ε.

Hence the linear mixed effects model is a linear model as in chapter 2, with mean and variance

as

E(Y ) = Fβ and Cov(Y ) = σ2V := σ2diag(V1, ..., VN ),
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where the matrices F and V depend on the individual experimental settings.

Of special interest are models with normally distributed random effects bi and εij . For the

marginal distribution of Yi then straightforwardly follows:

Yi ∼ Nmi
(
Fiβ, σ

2(Imi + FiDF
T
i )
)
.

A generalized model description is frequently used in the literature, considering a population

location parameter β ∈ Rp1 and individual random effects bi ∈ Rp. The observation vector

of the i-th individual is with design matrices Fi,1 and Fi,2 of appropriate dimensions then

modeled by

Yi = Fi,1β + Fi,2bi + εi.

One possible application of this model is the inclusion of fixed group effects as described by

Schmelter (2007a) with a matrix Ki. The individual parameter vectors are then modeled as

in Laird and Ware (1982) or Verberke and Molenberghs (2001) by

βi = Kiβ + bi

and the design matrix Fi,1 is obtained as Fi,1 = Fi,2Ki. Mean and covariance result for the

marginal model of the individual observation vectors in

E(Yi) = Fi,1β and Cov(Yi) = σ2(Imi + Fi,2DF
T
i,2),

such that the proposed model can still be interpreted as a linear regression model with a block

diagonal variance matrix.

3.2 Estimation

The linear mixed effects model as described in the previous section is a linear regression

model with correlated observations. The estimation in linear regression models with general

covariance matrices σ2V was in section 2.1 briefly discussed. In dependence on the knowledge

of the variance matrix, different estimation procedures were proposed.

3.2.1 Weighted Least Squares Estimation

A known variance σ2 of the observation errors and variance matrix σ2D of the individual

parameter vectors yield the complete knowledge of the variance matrix of the observation

vector Y . The weighted least squares estimator results with the block diagonal structure of

V in:

β̂WLS = (F TV −1F )−F TV −1Y = (

N∑
i=1

F Ti V
−1
i Fi)

−
N∑
i=1

F Ti V
−1
i Yi

= (

N∑
i=1

F Ti V
−1
i Fi)

−
N∑
i=1

F Ti V
−1
i Fiβ̂WLS,i,
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where

β̂WLS,i := (F Ti V
−1
i Fi)

−F Ti V
−1
i Yi, i = 1, ..., N

describe the individual weighted least squares estimators. With a matrix inversion formula

(e.g. Schott (1997, p. 9)) follows

F Ti V
−1
i = F Ti − F Ti FiD(Ip + F Ti FiD)−1F Ti = (Ip + F Ti FiD)−1F Ti ,

such that the estimators β̂WLS,i do not depend on the matrix D, as the estimating equations

for the individual weighted and ordinary least squares estimators coincide:

F Ti V
−1
i (Yi − Fiβ) = 0⇔ F Ti (Yi − Fiβ) = 0 ⇒ β̂WLS,i = β̂OLS,i.

If all individuals are observed under identical individual sampling schemes, mi = m1 and

Fi = F1, i = 1, ..., N , the weighted least squares estimator results in the arithmetic mean of

the individual ordinary least squares estimates:

β̂WLS =
1

N
(F T1 V

−1
1 F1)−

N∑
i=1

F T1 V
−1

1 Yi =
1

N

N∑
i=1

β̂OLS,i.

Hence the inter-individual variance σ2D has for these special designs no influence on the

estimation (Entholzner et al. (2005)).

Note however, that the weighted least squares estimator for β generally depends on the matrix

D if not all individual sampling schemes are identical.

For a matrix F of full column rank and a known variance matrix σ2V , the proposed estimator

β̂WLS is the best linear unbiased estimator. The covariance is obtained as in chapter 2 by

Cov(β̂WLS) = σ2(F TV −1F )−1 = σ2(
N∑
i=1

F Ti V
−1
i Fi)

−1.

The results of section 2.1.1 on the estimation of identifiable linear aspects can be readily

applied. The linear aspect ψ(β) = Lψβ is identifiable, if a matrix Q with Lψ = QF exists.

Then

ψ̂ = Lψ(F TV −1F )−F TV −1Y with Cov
(
ψ̂
)

= σ2Lψ(F TV −1F )−LTψ

is the best linear unbiased estimator for ψ(β).

3.2.2 Generalized Least Squares Estimation

Weighted and ordinary least squares estimators generally not coincide if not all individual

sampling schemes are identical. If the variance parameters σ2 andD are unknown, an unbiased

estimator for β is given by the ordinary least squares estimator. Theoretically, the estimation

can be improved by taking the variances into account. Generalized least squares procedures

are described in the literature for iteratively estimating the parameter vector β and the

variance parameters based on the estimated parameter β̂. Davidian and Giltinan (1995, p.

35) describe for general nonlinear regression models the following procedure:
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(1) Estimate β, e.g. using the ordinary least squares estimator β̂OLS

(2) Form estimated weights based on the actual estimate of β → estimate V by some V̂

(3) Reestimate β by weighted least squares, using V̂ as weight matrix, return to step (2).

The final estimate is denoted as generalized least squares estimate β̂GLS and is sometimes also

referred to as iteratively reweighted least squares estimator. Different approaches might be

applied for the second step of this algorithm. Notice that the true variance of the observations

σ2V depends on the unknown parameters σ2 and D, where the matrix D can be represented

in vector notation by a ν-dimensional vector α as in Schmelter (2007a), with ν ≤ 1
2p(p+ 1).

Davidian and Carroll (1987) discuss for heteroscedastic regression models different methods

for estimating variance functions. Methods based on estimators maximizing normal likeli-

hoods were proposed by the authors for estimating the unknown parameters. Demidenko

(2005, ch. 3) develops distribution-free unbiased estimators for the variance parameters in

linear mixed effects models. The described estimators are non-iterative and Demidenko states

their consistency under certain conditions, such that the asymptotic distributions for numbers

of individuals N →∞ of the weighted and generalized least squares estimators for β in linear

mixed effects models coincide
(
Davidian and Giltinan (1995), Demidenko (2005)

)
.

3.2.3 Maximum Likelihood Estimation

Linear Mixed Effects Models are in the literature usually discussed under the assumption of

normally distributed random effects:

βi ∼ N (β, σ2D) and εi ∼ N (0, σ2Imi).

The resulting individual observations vectors Yi are then normally distributed, as described

in section 3.1.2:

Yi ∼ N
(
Fiβ, σ

2(Imi + FiDF
T
i )
)
,

such that the log-likelihood function for N individuals with mi measurements and an obser-

vation vector y = (y1, ..., yN )T results with the independence of the observations of different

individuals for the parameter vector θ = (βT , σ2, αT )T and a parameterization α of the matrix

D = D(α), in

l(θ; y) =
N∑
i=1

l(θ; yi)

= −1

2

N∑
i=1

mi log(2πσ2) + log ‖ Vi ‖ +
1

σ2
(yi − Fiβ)TV −1

i (yi − Fiβ),

where the matrix Vi depends on α and ‖ · ‖ describes the determinant. Maximization of the

likelihood with respect to σ2 yields with mT =
N∑
i=1

mi:

σ̂2
ML =

1

mT

N∑
i=1

(yi − Fiβ)TV −1
i (yi − Fiβ).
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The profile likelihood function is obtained by including the estimate σ̂2
ML in the original

likelihood (Demidenko (2005)):

lp(β, α; y) := l
(
(βT , σ̂2

ML, α
T ); y

)
= −1

2

(
mT log[

N∑
i=1

(yi − Fiβ)TV −1
i (yi − Fiβ)]

+mT [log(mT )− 1 + 2π] +
N∑
i=1

log ‖ Vi ‖
)
,

what is maximized in β with

β̂ML = (
N∑
i=1

F Ti V
−1
i Fi)

−
N∑
i=1

F Ti V
−1
i Yi.

Maximum likelihood estimator and weighted least squares estimator obviously coincide for

normally distributed random effects with known variances σ2 and σ2D. When plugging

the estimator β̂ML in the profile likelihood, the maximum likelihood estimation results in a

nonlinear optimization problem on the set of non-negative definite matrices for D, or the

vector α parameterizing D respectively.

Note that the maximum likelihood estimators for the variance parameters are biased. A

slightly modified likelihood function

lREML(θ; y) := −1

2

(
(mT − p) log(2πσ2) + log ‖

N∑
i=1

(F Ti V
−1
i Fi) ‖

+
N∑
i=1

[log ‖ Vi ‖ +
1

σ2
(yi − Fiβ)TV −1

i (yi − Fiβ)]
)

is maximized by the restricted maximum likelihood estimator. The function can be profiled

on the resulting estimator for σ2:

σ̂2
REML =

1

mT − p

N∑
i=1

(yi − Fiβ)TV −1
i (yi − Fiβ).

The restricted maximum likelihood estimator for β is of the same form as the maximum

likelihood estimator, however now depending on the matrix D maximizing the profile re-

stricted likelihood function. The asymptotic properties of maximum likelihood and restricted

maximum likelihood estimators coincide (Demidenko (2005)).

3.3 Information and Design

Experimental designs in linear regression models were described by probability measures on

the design region X and optimized by minimizing a real valued function of the information

matrix depending on the design. As mentioned in the preceding subsections, linear mixed

effects models are linear models with a special covariance structure of the observation vector.
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This special covariance is induced by the correlated observations within the individuals and

uncorrelated observations of different individuals, which imply an impact of the different

individual experimental settings on the covariance of the final estimator.

The first part of this section hence defines experimental designs in mixed effects models. With

the introduced designs, we describe in the second part of this section the information provided

by the weighted least squares and maximum likelihood estimator. Considerations on more

general covariance structures will be presented in the last subsection.

3.3.1 Experimental Designs in Mixed Effects Models

The two stages in modeling the observations of different individuals carry forward to the

design of population studies. In the second subsection the weighted least squares estimator

could be shown to coincide for identical individual designs with the arithmetic mean of the

ordinary individual least squares estimators. Individual designs ξ define the experimental

settings for a group of individuals. Two different kinds of individual designs in mixed effects

models are often considered. The exact individual designs are based on a bounded natural

number of measurements in the individuals:

Definition 3.2. The exact individual design ξ of size m describes the m experimental settings

xj from the design region X :

ξ := (x1, ..., xm), m ∈ N.

The set of all exact individual designs of size m hence coincides with the m-dimensional

design region Xm. For exact designs ξ, the design matrix is defined as in section 2.2.1 by

F (ξ) :=
(
f(x1), ..., f(xm)

)T
and V (ξ) := Im + F (ξ)DF (ξ)T

results up to the constant σ2 as the variance of the individual observations for a given exact

design ξ.

Similar to exact designs in ordinary linear regression models, the class of exact individual

designs can be extended to the class of approximate designs, by taking non-integer numbers

of measurement replications into account:

Definition 3.3. The approximate individual design ξ of size m describes the experimental

settings (x1, ..., xl) ∈ X l, for some l ∈ N, with the according numbers of measurement repli-

cations (m1, ...,ml) ∈ Rl+ with
∑
mj = m:

ξ :=

(
x1 ... xl
m1 ... ml

)
.

The set of approximate individual designs of size m will be denoted as Ξm.

The design and variance matrix can for the so defined approximate individual design be

represented with a weight matrix W (ξ) = (m1, ...,ml) by

Fa(ξ) :=
(
f(x1), ..., f(xl)

)T
and Va(ξ) := W (ξ)−1 + Fa(ξ)DFa(ξ)

T .
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Note that exact individual designs of size m are elements of Ξm. Hence optimal approximate

individual designs of size m are at least as good as exact individual designs. However, exact

individual designs are in most population studies more realistic, as the number of measure-

ments on each individual is usually small, such that approximations of the exact designs by

approximate designs are generally not satisfying. Schmelter (2007b, ch. 7) showed some op-

timality results on approximate individual designs, which might help designing experiments

for exact designs.

The second stage of the mixed effects model is described by the inter-individual variation and

motivates the population designs. Generally not all individuals have to be observed under the

same experimental settings. The population design describes the proportions of individual

sampling schemes in the whole population:

Definition 3.4. The population design ζ is a vector of individual designs (ξ1, ..., ξk), for some

k ∈ N, with a vector of according proportions (ω1, ..., ωk), where ωi ≥ 0 and
∑
ωi = 1:

ζ :=

(
ξ1 ... ξk
ω1 ... ωk

)
.

This definition does not specify the number of measurements in the individual designs.

For designing experiments we will generally consider individual designs consisting of the same

number of observations. The above definition corresponds in the special case of population

designs with exact individual designs of equal size mi = m, i = 1, ..., k, to the definition of

approximate designs in linear regression models on a design region Xm given in chapter 2.

3.3.2 Information in Mixed Models

For known variance parameters σ2 and D, the covariance matrix of the best linear unbiased

estimator β̂WLS under a regular population design ζ with N individuals and k distinct exact

individual designs ξi ∈ Xmi is easily obtained as:

Cov(β̂WLS) =
σ2

N

(
k∑
i=1

ωiF (ξi)
TV (ξi)

−1F (ξi)

)−1

.

The information matrix of an estimator is here defined as the inverse of the covariance matrix

of the estimator. In mixed effects models two stages of information matrices are of interest.

The population information matrix of the weighted least squares estimators is for a population

design ζ defined by

M
β̂WLS ;pop

(ζ) :=
1

σ2

k∑
i=1

ωiF (ξi)
TV (ξi)

−1F (ξi).

The information matrix of the population design ζ is a weighted sum of matrices depending

on the individual designs ξi ∈ Xmi supporting the population design and the matrices

M
β̂WLS ;ind

(ξi) :=
1

σ2
F (ξi)

TV (ξi)
−1F (ξi)
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are called individual information matrices. The population information matrix contains the

complete influence of the experimental settings on the accuracy of the parameter estimates.

Note that the information matrix for the whole parameter vector θ = (βT , σ2, αT )T generally

depends on the estimators, which are applied for estimating the variance parameters σ2 and

α.

The Fisher information matrix provides under certain regularity conditions an upper bound

for the information of any unbiased estimator with respect to the Loewner partial ordering.

Given a parametric model fYi(yi, θ) and the independence of observations Yi of the N different

individuals, the joint density of the whole observation vector Y is easily derived as the product

of the individual densities, such that likelihood and log-likelihood function result in

L(θ; y) =

N∏
i=1

fYi(yi, θ) and l(θ; y) =

N∑
i=1

log
(
fYi(yi, θ)

)
.

The independence of the individual observations carries forward to the Fisher information.

The normalized Fisher information of a population design ζ is defined as

Mpop(ζ) :=
1

N
E

(
∂l(θ;Y )

∂θ

∂l(θ;Y )

∂θT

)
,

and results with the independence of observations of different individuals in the weighted sum

of the individual Fisher information matrices Mind(ξi):

Mpop(ζ) :=
1

N
E

(
∂l(θ;Y )

∂θ

∂l(θ;Y )

∂θT

)
=

k∑
i=1

ωiE

(
∂l(θ;Yi)

∂θ

∂l(θ;Yi)

∂θT

)
=

k∑
i=1

ωiMind(ξi),

where

Mind(ξi) := E

(
∂l(θ;Yi)

∂θ

∂l(θ;Yi)

∂θT

)
.

In the case of mixed effects models with an unknown parameter vector θ = (βT , σ2, αT )T ,

where the ν-dimensional vector α parameterizes the matrix D, the individual and population

Fisher information matrices are of the form

M·(·) =


Mβ
· Mβ,σ2

· Mβ,α
·

Mβ,σ2 T

· Mσ2

· Mσ2,α
·

Mβ,αT
· Mσ2,αT

· Mα
·

 .

For homoscedastic normally distributed random effects βi and εi, the entries of the Fisher

information matrix can be readily calculated and result on the individual level for an exact

individual design ξ ∈ Xm as presented by Mentré et al. (1997) in
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Mβ
ind(ξ) = 1

σ2F (ξ)TV (ξ)−1F (ξ)(
Mβ,σ2

ind (ξ)
)
j

= 0, j = 1, ..., p(
Mβ,α

ind(ξ)
)
j,k

= 0, j = 1, ..., p, k = 1, ...ν

Mσ2

ind(ξ) = m
2σ4(

Mσ2,α
ind (ξ)

)
j

= 1
2σ2 tr

[
V (ξ)−1∂V (ξ)

∂αj

]
, j = 1, ..., ν(

Mα
ind(ξ)

)
j,k

= 1
2tr

[
V (ξ)−1∂V (ξ)

∂αj
V (ξ)−1∂V (ξ)

∂αk

]
, j, k = 1, ..., ν.

The components of the Fisher information matrix depend on the usually unknown variance

parameters σ2 and α, such that optimal designs are generally just locally optimal. The

Fisher information in linear mixed effects models with normally distributed and homoscedas-

tic random effects is block-diagonal. Hence efficient estimates of the variance and location

parameters are uncorrelated. Weighted least squares information and Fisher information for

β coincide under the assumed normal distribution of the random effects.

Schmelter (2007a) generalized the presented results to information matrices of approximate

individual designs ξ ∈ Ξm. For approximate individual designs with l distinct support points

xj ∈ X , corresponding real valued measurement replications mj > 0 and with the matrices

Fa(ξ), Va(ξ) and W (ξ) as defined in the preceding subsection, the individual weighted least

squares information for β results in

M
β̂WLS ;ind,a

(ξ) =
1

σ2
Fa(ξ)

TVa(ξ)
−1Fa(ξ) =

1

σ2
lim
δ→0

(
[Fa(ξ)

TW (ξ)Fa(ξ) + δIp]
−1 +D

)−1
.

This yields for regular matrices Fa(ξ)
TW (ξ)Fa(ξ) the representation of the information as in

Liski et al. (2002):

M
β̂WLS ;ind,a

(ξ) =
1

σ2

(
[Fa(ξ)

TW (ξ)Fa(ξ)]
−1 +D

)−1
.

Under the normality assumptions on the random effects and the assumption of a diagonal

covariance matrix D = diag(α) of the individual random effects, the components of the

variance parameter blocks of the Fisher information were specified for approximate and exact

individual designs by Schmelter (2007a, p. 47)

Mα
ind(ξ) = σ4

2 Mβ
ind(ξ) ◦M

β
ind(ξ) and(

Mσ2,α
ind (ξ)

)
j

= 1
2M

β
ind(ξ)j,j , j = 1, ..., ν,

with ◦ describing the Hadamard product of matrices.

The results in the more general model

Yi = Fi,1β + Fi,2bi + εi

follow analogously with the appropriate variance model

Cov(Yi) = σ2(Imi + Fi,2DF
T
i,2)

of the vector Yi.
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3.3.3 General Covariance Structures

Proportional error models with normally distributed random effects βi and εij , as for example

Yij = f(xij)
Tβi exp(εij) or Yij = f(xij)

Tβi(1 + εij),

are often considered in the pharmacokinetic literature. For both models generally no closed

form representation of the likelihood function exists. The first model might be transformed

using the logarithm (Schmelter (2007a)), what yields a nonlinear mixed effects model with

additive normal errors:

log(Yij) = log
(
f(xij)

Tβi
)

+ εij .

Note however, that the transformation cannot be done straightforwardly for linear functions,

as negative values of the response function for normally distributed individual parameter

vectors βi are possible. Nonlinear mixed effects models will be discussed in the following

chapter.

Retout and Mentré (2003) approximate the second model by a model with an error variance,

depending on the population parameter vector β instead of the individual parameter vector

and by assuming the observation errors to be uncorrelated. These assumptions lead to the

model

Yij = f(xij)
Tβi + ε̃ij , where ε̃ij ∼ N

(
0, σ2 · (f(xij)

Tβ)2
)
.

The individual observation vector Yi hence follows with a design ξ ∈ Xm under the assumption

of normally distributed individual parameters βi a heteroscedastic normal model, similar to

the models presented in Atkinson and Cook (1995):

Yi ∼ N
(
F (ξ)β, σ2V (ξ)

)
with V (ξ) := diag

(
(f(xi1)Tβ)2, ..., (f(xim)Tβ)2

)
+ F (ξ)DF (ξ)T .

The components of the Fisher information matrix result with the dependence of the matrix

V (ξ) on the parameters β and α in

Mβ
ind(ξ) = 1

σ2F (ξ)TV (ξ)−1F (ξ) + 1
2S with

(S)j,k := tr

[
V (ξ)−1∂V (ξ)

∂βj
V (ξ)−1∂V (ξ)

∂βk

]
, j, k = 1, ..., p(

Mβ,σ2

ind (ξ)
)
j

= 1
2σ2 tr

[
V (ξ)−1∂V (ξ)

∂βj

]
, j = 1, ..., p(

Mβ,α
ind(ξ)

)
j,k

= 1
2tr

[
V (ξ)−1∂V (ξ)

∂βj
V (ξ)−1∂V (ξ)

∂αk

]
, j = 1, ..., p, k = 1, ...ν

Mσ2

ind(ξ) = m
2σ4(

Mσ2,α
ind (ξ)

)
j

= 1
2σ2 tr

[
V (ξ)−1∂V (ξ)

∂αj

]
, j = 1, ..., ν(

Mα
ind(ξ)

)
i,k

= 1
2tr

[
V (ξ)−1∂V (ξ)

∂αj
V (ξ)−1∂V (ξ)

∂αk

]
, j, k = 1, ..., ν.
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Notice specially that the information for the location parameter β does not correspond to the

weighted least squares information any more. Additional information in the estimation of β

might be gained by the dependence of the observation variance on the vector β, such that

the parameter β might in these models be not efficiently estimated with the weighted least

squares estimator.
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Nonlinear mixed effects models generalize the presented linear mixed effects model to response

functions nonlinearly depending on the individual parameter vector βi. The nonlinear influ-

ence of the parameter vector βi on the response function η complicates estimation in mixed

effects models extremely. Specially in population pharmacokinetic models the response func-

tions are generally nonlinear in the vector βi and insight in the distribution of estimators

in the proposed models is sought for optimally planning pharmacokinetic studies. Nonlinear

mixed effects models are discussed in the literature by various authors. As in linear mixed

effects models, the books by Davidian and Giltinan (1995) and Demidenko (2005) extensively

describe the analysis in nonlinear mixed effects models.

The first part of this chapter briefly describes the model formulation, before estimation pro-

cedures are presented in the second section. The missing closed form representation of the

likelihood function carries forward to the construction of the Fisher information. Topic of the

third section are information matrices based on in the literature proposed linearizations of

the response function.

4.1 Model Formulation

The nonlinear mixed effects model can be motivated by a two-stage model, similar to the linear

mixed effects model. In this section the intra- and inter-individual models are described under

the assumption of normally distributed random effects.

4.1.1 Intra-Individual Model

The j-th observation of the i-th individual under experimental setting xij ∈ X is modeled by

Yij = η(βi, xij) + εij ,

with a real valued response function η, a p dimensional individual parameter vector βi and a

real valued observation error εij . To avoid difficulties, the response function η is assumed to

be continuous on X and differentiable in βi.

The exact individual experimental design ξi = (xi1, ..., ximi) ∈ Xmi describes the experimental

settings of the i-th individual. The response function for the whole mi-dimensional individual
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observation vector Yi is then vector valued and denoted as

η(βi, ξi) :=
(
η(βi, xi1), ..., η(βi, ximi)

)T
.

The vector of the mi observations within the i-th individual is for a given parameter vector

βi completely described up to the unknown normally distributed observation error vector

εi = (εi1, ..., εimi)
T by the response function η and the individual experimental settings ξi.

The intra-individual statistical model results in

Yi|βi=βi ∼ N
(
η(βi, ξi), σ

2Imi
)
. (4.1)

4.1.2 Inter-Individual Model

The individual parameter vectors βi are assumed to be independent and identically distributed

as

βi ∼ N (β, σ2D), (4.2)

inducing the inter-individual variation. The observation error vectors εi and individual pa-

rameter vectors βi are considered to be stochastically independent and the observations of

different individuals are stochastically independent as well. The vector θ = (βT , σ2, αT )T

summarizes the population parameters, with an appropriate vector-valued parameterization

α of the matrix D.

For linear response functions η, the normality of the random effects εi and βi yields the nor-

mality of the random variable Yi, as described in chapter 3. For nonlinear response functions,

σ2 > 0 and a positive definite matrix D, the probability density fYi(yi) of Yi cannot be

represented in a closed form. The likelihood of observations yi results in integral form in

L(θ; yi) := fYi(yi) =

∫
Rp
φYi|βi(yi)φβi(βi)dβi

The population parameter θ influences the likelihood by the normal densities φYi|βi and φβi
with mean and variance as in the models 4.1 and 4.2:

φYi|βi(yi) =
√

2πσ2
−mi

exp

[
− 1

2σ2

(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)]
φβi(βi) =

√
2πσ2

−p√
‖ D ‖

−1
exp

[
− 1

2σ2
(βi − β)TD−1(βi − β)

]
,

where ‖ · ‖ describes the determinant. With

l̃(βi, θ; yi) :=
(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
+ (βi − β)TD−1(βi − β)

the integrand then results in

φYi|βi(yi)φβi(βi) =
1

c
exp

[
− 1

2σ2
l̃(βi, θ; yi)

]
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with the constant c =
√

2πσ2
(mi+p)√‖ D ‖.

As in the previous chapter, the model of the individual parameter vector βi can be generalized.

The p-dimensional individual parameter vector βi can be modeled by

βi = γi(β) + bi

with individual random effects bi ∈ Rp and differentiable functions γi : Rp1 → Rp of the

population parameters β ∈ Rp1 . Fixed group effects might be considered, as in the preceding

chapter, by a function γi(β) = Kiβ with an appropriate matrix Ki. In this chapter we

concentrate on the simpler case of p1 = p with γi(β) = Ipβ and cover the general case in some

remarks in the next chapter only.

The matrix

Fβ0 :=
∂η(βi, ξi)

∂βTi
|βi=β0 , β0 ∈ Rp

describes in the following the design matrix in nonlinear mixed effect models.

4.2 Estimation

The ordinary nonlinear regression model can be represented as the limiting case of a nonlinear

mixed effects models with inter-individual variance σ2D → 0. Nonlinear least squares esti-

mators can then be applied for estimating the location parameter vector β. Another special

case is obtained for an intra-individual variance σ2 → 0, while the inter-individual variance

σ2D = const remains constant. If the individual models are identifiable, nonlinear least

squares estimates β̂i of the individual parameter vector βi then coincide with the true indi-

vidual parameter vector, such that the mean of the individual estimates yields the maximum

likelihood estimator of the population location vector β.

In more realistic scenarios, different estimation procedures can be applied, which generally

yield different estimates of the parameter vector β. The proposed estimators are generally

based either on linearizations of the model, on the two-stages of the model or on approxima-

tions of the likelihood function. In this section we briefly summarize results on often applied

estimators.

4.2.1 Maximum Likelihood Estimation

Maximum likelihood estimators are desirable for estimating the unknown parameter θ as they

yield under appropriate regularity conditions asymptotically efficient normally distributed

estimates of the parameter θ. Note that the maximum likelihood estimator is generally not

unbiased, but in dependence on the numbers of individuals N asymptotically unbiased.

The score function for β results with the proposed model 4.2 of the individual vectors βi with

the log-likelihood function l(θ; yi) and the assumption on interchangeability of differentiation
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and integration in

∂l(θ; yi)

∂β
=

1

fYi(yi)

∫
Rp
φYi|βi(yi)

∂φβi(βi)

∂β
dβi

=
1

fYi(yi)

∫
Rp
φYi|βi(yi)φβi(βi)

1

σ2
D−1(βi − β)dβi

=
1

σ2
D−1

(
E(βi|Yi = yi)− β

)
.

Analogously the score functions for σ2 and α are with D = D(α) obtained as

∂l(θ; yi)

∂σ2
= E

[
1

2σ4
l̃(βi, θ; yi)|Yi = yi

]
− mi + p

2σ2
and

∂l(θ; yi)

∂αj
= E

[
1

2σ2
(βi − β)TD−1 ∂D

∂αj
D−1(βi − β)|Yi = yi

]
− 1

2
tr D−1 ∂D

∂αj
, j = 1, ..., ν.

The missing closed form representation of the likelihood function carries forward to the score

functions, such that maximum likelihood estimates cannot be obtained straightforwardly.

Kuhn and Lavielle (2001) propose a stochastic version of the expectation maximization algo-

rithm for the estimation and state the convergence of the proposed algorithm under some con-

ditions. Alternatively, Pinheiro and Bates (1995) propose approximations of the log-likelihood

function by importance sampling, Gaussian quadrature rules and Laplace approximations for

estimating the parameters of interest. Unfortunately Gaussian quadrature rules tend to be

inefficient if accurate results for the likelihood-approximation are sought.

Approximations of the likelihood based on linearizations of the penalized least squares term l̃

in empirical Bayes estimates for βi were proposed by Beal and Sheiner (1998) and yield simi-

lar results to an algorithm presented by Lindstrom and Bates (1990), which will be discussed

in subsection 4.2.3. Note that the properties of estimators based on approximated likelihood

functions, generally not coincide with the asymptotic properties of the maximum likelihood

estimator. The convergence rates of maximum likelihood estimators and approximated maxi-

mum likelihood estimators in mixed effects models were described by Nie (2007). Demidenko

(2005, ch. 8.9) presents an example of a one-parametric exponential decay model and shows

the relative asymptotic bias of the Lindstrom and Bates estimator for small individual sample

sizes.

4.2.2 Two-Stage Estimation

As the model is build in two stages, the estimation of the population parameters can be

conducted in two stages as well. Let β̂i here describe the individual ordinary least squares

estimates:

β̂i := argmin
βi∈Rp

(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
.

Then a naive first estimator of β is obtained by the mean of the individual estimates

β̂ =
1

N

N∑
i=1

β̂i,
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what is similar to the weighted least squares estimators in the case of identical individual

designs in section 3.2.1.

The inter-individual variance can be analogously estimated by

σ̂2D =
1

N − 1

N∑
i=1

(β̂i − β̂)(β̂i − β̂)T ,

what yields in the special case of mixed effects models without observation errors efficient

estimates for the inter-individual variance. Davidian and Giltinan (1995) state that these

estimators do not require normally distributed random effects and that the estimator for

the matrix D is generally upwardly biased. Alternatively, the uncertainty in the individual

estimates can be included in the estimation of the population parameters, what leads to

the global two-stage method. Therefore the asymptotic theory on nonlinear least squares

estimators (Jennrich (1969)) provides an approximation of the marginal distribution of the

individual estimates. Since β̂i is for an observation vector yi with the true, but unknown

individual parameter vector βi, a root of the score function

0 = F T
β̂i

(
yi − η(β̂i, ξi)

)
≈ F T

β̂i

(
yi − η(βi, ξi) + F

β̂i
(βi − β̂i)

)
⇒ β̂i ≈ βi + (F T

β̂i
F
β̂i

)−1F T
β̂i
εi,

the individual estimators β̂i are considered to be normally distributed (Demidenko (2005)):

β̂i
app.∼ N

(
β,Cov(β̂i)

)
, i = 1, ..., N,

where the covariance of the estimator β̂i is approximated by the matrix

Cov(β̂i) ≈ Cov
(
βi + (F T

β̂i
F
β̂i

)−1F T
β̂i
εi

)
= σ2[(F T

β̂i
F
β̂i

)−1 +D].

The observed individual estimates β̂i are for the estimation of the population parameters

assumed to be realizations of normally distributed random variables. The intra-individual

variance parameter σ2 is estimated by

σ̂2 =
1∑
mi − p

N∑
i=1

(
yi − η(β̂i, ξi)

)T (
yi − η(β̂i, ξi)

)
and is in the following assumed to be given.

The parameters β and α can then be estimated by maximum likelihood estimation under the

distribution assumption on the individual estimates β̂i. The two-stage maximum likelihood

estimator of the parameter vector β results in

β̂TS =
( N∑
i=1

[(F T
β̂i
F
β̂i

)−1 +D]−1
)−1

N∑
i=1

[(F T
β̂i
F
β̂i

)−1 +D]−1β̂i

and the two-stage likelihood function is then profiled on β̂TS and maximized with respect to

the vector α parameterizing D. Alternatively a restricted likelihood version or methods of
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moments can be applied for the estimation of the inter-individual variance D. The Fisher

information for the assumed distribution of the individual parameter estimates is obtained,

yielding the asymptotic independence of the estimates β̂TS and D̂, since for α parameterizing

D holds:

E

(
∂2l(θ; β̂i)

∂αj∂β

)
= − 1

σ2
[(F T

β̂i
F
β̂i

)−1 +D(α)]−1∂D(α)

∂αj
[(F T

β̂i
F
β̂i

)−1 +D(α)]−1E(β̂i − β) = 0.

Hence the variance matrix for the estimation of β is approximated by

̂
Cov(β̂TS) = σ̂2

( N∑
i=1

[(F T
β̂i
F
β̂i

)−1 + D̂(α)]−1
)−1

,

with estimates σ̂2 and D̂(α) as described.

The quality of two stage estimators heavily depends on the individual sampling schemes,

as the presented two-stage likelihood approach is based on the normality assumption of the

individual estimates β̂i, which for small individual sample sizes is generally not given. Two

stage estimators are asymptotically efficient, when the number of individual observations mi

and the number of individuals N tend to infinity.

4.2.3 Generalized Least Squares Estimation

If the individual nonlinear least squares problems cannot be uniquely solved, generalized

least squares estimation might be applied for estimating the population parameter β. For a

given vector of observations y = (yT1 , ..., y
T
N )T of N individuals and a given inter-individual

variance matrix D, the penalized nonlinear least squares objective function (Pinheiro and

Bates (2000))

LPNLS(β̃i, β,D; y) =
N∑
i=1

l̃(βi, θ; yi)

=

N∑
i=1

(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
+ (βi − β)TD−1(βi − β)

has to be minimized with respect to the individual parameter vectors β̃i = (βT1 , ...,β
T
N )T and

the population parameter β. Note that the minimization of the objective function LPNLS is

equivalent to the maximization of the integrand in the likelihood function for the observation

vector y.

For unknown variance parameters σ2 and D, the penalized least squares estimates β∗i and

β̂ yield the first step of the Lindstrom and Bates Algorithm (Lindstrom and Bates (1990)).

The algorithm consists of two alternating steps:

1.) Penalized least squares: Minimization of LPNLS(β̃i, β,D; y) with respect to β̃i and β

for fixed D.
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2.) Linear mixed effects approximation: The pseudo observation wi is assumed to follow a

normal model:

wi = yi − η(β∗i , ξi) + Fβ∗i
β∗i

app.∼ N
(
Fβ∗i

β, σ2(Imi + Fβ∗i
DF Tβ∗i )

)
.

Application of maximum (restricted) likelihood estimation for the parameters σ2, D

and β in the proposed model.

The likelihood function in the second step of the Lindstrom and Bates algorithm can be pro-

filed to be a function of the D parameterizing vector α only. Note that the final estimates β̂LB
of β at convergence coincide in the two different steps of the algorithm (Demidenko (2005)).

The original algorithm was generalized by Davidian and Giltinan (1995) to models with in-

dividual parameter vectors as nonlinear functions d(ai, β, bi) of the population parameter β

and the individual random effects bi. Also the intra-individual model was allowed to include

covariance matrices depending on the unknown individual parameters. The proposed algo-

rithm can be interpreted as a generalized least squares algorithm, yielding for large N under

the assumption of negligible linearization errors to an asymptotically normally distributed

estimator for β (Davidian and Giltinan (1995)):

√
N(β̂LB − β)

L−→ N
(
0, σ2 lim

N→∞
(

1

N

N∑
i=1

F Tβ∗i [Imi + Fβ∗i
DF Tβ∗i ]

−1Fβ∗i
)−1
)
.

Note however, that an example on the exponential decay by Demidenko (2005, ch. 8.9) shows

that the linearization error is generally not negligible, as the estimator is for small individual

sample sizes biased.

Wolfinger (1993) and Vonesh (1996) state that the Lindstrom and Bates algorithm can be

alternatively derived by an application of Laplacian approximations, what fits the observation

of Beal and Sheiner (1998) of the similar results, which are produced by the FOCE method

in the program NONMEM and the Lindstrom and Bates algorithm. Other generalized least

squares algorithms for nonlinear mixed effects models are described by Vonesh and Carter

(1992) and Davidian and Giltinan (1995). The main difference of these algorithms consists

in the inclusion of individual estimates.

4.3 Information under Linearization

In the previous chapters the information matrices for linear and linear mixed effects models

were presented. Linearizations of the response function η are applied in the literature in order

to circumvent the problem of the missing closed form representation of the Fisher information

in nonlinear mixed effects models. Different models, which lead to different information

matrices, are obtained in dependence on the support point of the Taylor approach. In the

first part of this section we describe the information resulting from a linearization in a guess

β0 of the true parameter vector β, as it was presented in Retout et al. (2001) and Schmelter

(2007a). Topic of the second subsection is the information obtained from a linearization in

the true parameter vector β. This approach yields results as in Retout and Mentré (2003).



36 4 Nonlinear Mixed Effects Models

The difference of the resulting information matrices is shown on a small example in the third

subsection.

4.3.1 Linear Mixed Effects Approximation

A common approach for approximating the Fisher information in nonlinear mixed effects

models is based on linear mixed effects models. With a first order Taylor approach in a guess

β0 of the true population location parameter β follows under the assumption of negligible

linearization errors

Yi = η(βi, ξi) + εi

≈ η(β0, ξi) + Fβ0(β − β0) + Fβ0(βi − β) + εi,

as proposed in Schmelter (2007a). The distribution assumptions on βi and εi then yield a

linear mixed effects model:

Yi
app.∼ N

(
η(β0, ξi) + Fβ0(β − β0), σ2(Imi + Fβ0DF

T
β0)
)
.

The theory developed in the chapter on linear mixed effects models straightforwardly leads to

the information matrix in the approximated model, such that the Fisher information is with

variance parameters σ2 and α and a matrix

Vβ0 := Imi + Fβ0DF
T
β0

approximated by

M1 :=

 M1,β M1,β,σ2 M1,β,α

MT
1,β,σ2 M1,σ2 M1,σ2,α

MT
1,β,α MT

1,σ2,α M1,α


with entries

M1,β :=
1

σ2
F Tβ0V

−1
β0
Fβ0(

M1,β,σ2

)
j

:= 0, j = 1, ..., p

(M1,β,α)j,k := 0, j = 1, ..., p, k = 1, ...ν

M1,σ2 :=
mi

2σ4(
M1,σ2,α

)
j

:=
1

2σ2
tr

[
F Tβ0V

−1
β0
Fβ0

∂D

∂αj

]
, j = 1, ..., ν

(M1,α)j,k :=
1

2
tr

[
F Tβ0V

−1
β0
Fβ0

∂D

∂αj
F Tβ0V

−1
β0
Fβ0

∂D

∂αk

]
, j, k = 1, ..., ν.

Specially the Fisher information for the location parameter vector β under assumed knowledge

of the variance parameters σ2 and α is approximated by

M1,β :=
1

σ2
F Tβ0V

−1
β0
Fβ0 ,

with β0 = β for planning purposes. A second motivation for this approximation will be

presented in the next chapter.
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4.3.2 Nonlinear Heteroscedastic Model Approximation

Instead of linearizing the response function in a guess β0, a Taylor approach in the true

location parameter vector β as described by Davidian and Giltinan (1995) yields

Yi = η(βi, ξi) + εi

≈ η(β, ξi) + Fβ(βi − β) + εi

and with the assumption of negligible linearization errors, the nonlinear mixed effects model

is approximated by a nonlinear heteroscedastic normal model:

Yi
app.∼ N

(
η(β, ξi), σ

2(Imi + FβDF
T
β )
)
.

The Fisher information is in this nonlinear model of the same form as in section 3.3.3, such

that for the information of the location parameter vector under assumed knowledge of the

variance parameters follows

M2,β :=
1

σ2
F Tβ V

−1
β Fβ +

1

2
S where

Sj,k = tr

[
V −1
β

∂Vβ
∂βj

V −1
β

∂Vβ
∂βk

]
, j, k = 1, ..., p.

Notice that location and variance parameter estimates are not uncorrelated under the non-

linear heteroscedastic model approximation. The complete information matrix is of the form

M2 :=

 M2,β M2,β,σ2 M2,β,α

MT
2,β,σ2 M2,σ2 M2,σ2,α

MT
2,β,α MT

2,σ2,α M2,α

 ,

where only the entries M2,β and(
M2,β,σ2

)
j

:=
1

2σ2
tr

[
V −1
β

∂Vβ
∂βj

]
, j = 1, ..., p,

(M2,β,α)j,k :=
1

2
tr

[
V −1
β

∂Vβ
∂βj

V −1
β Fβ

∂D

∂αk
F Tβ

]
, j = 1, ..., p, k = 1, ..., ν

differ from the information matrix of the linear mixed effects approximation. Specially the

additional non-negative definite matrix term 1
2S is in the approximation of the Fisher infor-

mation by the nonlinear heteroscedastic model approximation of big interest. The effect of

this additional term will be studied on a small example in the next subsection.

Note that both here presented information matrices are based on the statistical models, which

are obtained after similar linearizations of the model equation. The difference in the infor-

mation matrices is generally not negligible.

4.3.3 Influence of the Linearization

Mielke and Schwabe (2010) discussed the difference of the proposed approximations and

showed in an example problems of the nonlinear heteroscedastic model approximation for a

nonlinear mixed effects model without observation errors:

εij ∼ N (0, σ2
ε ), σ

2
ε → 0, while βi ∼ N (β, σ2

βi
D), σ2

βi
D = const.
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In the proposed example of a log-normally distributed vector of observations, this led to the

conclusion that the nonlinear heteroscedastic model approximation systematically generates

information by missspecifying the observations by a normal model. Note however, that the

presented example illustrated just a boundary case. We here assume the variance parameters

to be known and show the difference of the approximations M1,β and M2,β in dependence on

the inter-individual variance in a simple example:

Example 4.1. Let the individual observations be described by

Yi = exp(βi) + εi

with scalar valued random effects:

βi ∼ N (β, d) and εi ∼ N (0, σ2).

Then the approximated informations for β result in

M1,β =
exp(2β)

σ2 + d exp(2β)
and

M2,β =
exp(2β)

σ2 + d exp(2β)
+

2d2 exp(4β)

σ4 + 2dσ2 exp(2β) + d2 exp(4β)
.

In figure 4.1 the ratios of the deduced informations are plotted for 5 different parameters

β in dependence on the intra-individual variance σ2 and the inter-individual variance d, which

are here parameterized by the ratios

σ2 =
ρσ

1− ρσ
⇒ ρσ =

σ2

1 + σ2
, ρσ ∈ [0, 1) and

d =
ρd

1− ρd
⇒ ρd =

d

1 + d
, ρd ∈ [0, 1).

On the left hand side of figure 4.1, the observation errors are assumed to follow a standard

normal distribution and the variance of the individual parameter βi is varied. The right hand

side illustrates the ratios of the information in dependence on the variance of the observation

errors for the case of normally distributed individual parameters βi with variance d = 1.

The ratio of the information converges for all β ∈ R and inter-individual variances d ≥ 0:

M1,β

M2,β
−→ 1

1 + 2d
as σ2 −→ 0.

This describes the earlier mentioned gain in information, which is also obtained for ρd → 1. It

will be seen in the next chapter that the information M1,β coincides in these boundary cases

with the true Fisher information. Although both approximations are similarly motivated, the

observed differences show the need of further investigations of information approximations.
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Figure 4.1: Ratios of M1,β and M2,β in dependence on β;

solid: β = −2, dashed: β = −1, dotted: β = 0, dot-dash: β = 1, longdash: β = 2
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5 Approximation of the Fisher Information

The numerical and analytical calculation of the Fisher information is in nonlinear mixed ef-

fects models generally only possible for given experimental settings and is computationally

very intensive, such that approximations are applied for optimizing designs in the literature.

The linear mixed effects approximation to nonlinear mixed effects models, as described in

the preceding section, was developed in Retout et al. (2001). This linearization of the model

equation was applied already earlier in Mentré et al. (1995, 1997) and Tod et al. (1998). Merlé

and Tod (2001) studied the impact of the linearization on the accuracy of the information

matrix and on optimal designs in a pharmacodynamic and a pharmacokinetic model. In the

appendix to this article a method for the stochastic computation of the Fisher information

based on conditional moments is mentioned.

Approximations of the Fisher information for the parameter vector β, which are based on

conditional moments are deduced in this chapter. In the first section the needed represen-

tation of the Fisher information is therefor derived. The Laplace approximation and an

approach invented by Tierney and Kadane (1986) for approximating posterior densities and

conditional moments are presented in the second section. A similar approach is applied for

obtaining approximations of the Fisher information in two subsections of the second section.

All proposed approximations of the Fisher information are compared on an example in the

third section. The final section presents further considerations on the Fisher information for

singular inter-individual variance matrices.

5.1 Fisher Information for β

Throughout this chapter we assume the model of the observations of the i-th individual to

follow the structure as in the preceding chapter:

Yi = η(βi, ξi) + εi

with an exact individual design ξi = (xi1, ..., ximi) ∈ Xmi and normally distributed random

effects

βi ∼ N (β, σ2D), εi ∼ N (0, σ2Imi),

with a positive definite matrix D and σ2 > 0. The vector valued response function η is

considered to be differentiable in βi and continuous on the mi-dimensional design region
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Xmi . The design matrix is defined in dependence on a vector β0 ∈ Rp by the matrix of

derivatives:

Fβ0 :=
∂η(βi, ξi)

∂βTi
|βi=β0 .

Under certain regularity conditions, the Fisher information was defined in the second chapter

as the covariance of the score function:

M := E

(
∂l(θ;Y )

∂θ

∂l(θ;Y )

∂θT

)
,

with a parameter θ, which in nonlinear mixed effects models comprises the location and

variance parameters θ = (βT , σ2, αT )T , for a vector α parameterizing the matrix D. The

Fisher information was for linear mixed effects models introduced in two stages in the third

chapter. Note that the representation depends on the intra and inter-individual statistical

model and can be analogously deduced for nonlinear mixed effects models such that the

normalized population information

Mpop(ζ) :=
1

N
E

(
∂l(θ;Y )

∂θ

∂l(θ;Y )

∂θT

)
describes the normalized Fisher information in dependence on the population design ζ, whereas

the individual Fisher information is defined as

Mind(ξi) := E

(
∂l(θ;Yi)

∂θ

∂l(θ;Yi)

∂θT

)
,

for exact individual designs ξi ∈ Xmi . As the population Fisher information matrix consists

of the weighted sum of the individual Fisher information matrices, knowledge of the structure

of the individual Fisher information matrices is sufficient for designing experiments. We thus

concentrate in this chapter on the approximation of the individual Fisher information matrix

for an exact design ξi of sample size mi, as the results for the population information matrix

readily follow by the summation of individual information matrices.

The likelihood function is with known variance parameters σ2 and α a function of the popula-

tion location parameter β only and the individual Fisher information for an exact individual

design ξi then results in

Mβ
ind(ξi) = E

(
∂l(θ;Yi)

∂β

∂l(θ;Yi)

∂βT

)
.

The score function is obtained with the assumption on interchangeability of differentiation

and integration as in chapter 4 by

∂l(θ; yi)

∂β
=

1

σ2
D−1

(
E(βi|Yi = yi)− β

)
.
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Hence for the individual Fisher information of the parameter vector β follows:

Mβ
ind(ξi) = E

(
∂l(θ;Yi)

∂β

∂l(θ;Yi)

∂βT

)
=

1

σ4
D−1E

[(
E(βi|Yi)− β

)(
E(βi|Yi)− β

)T ]
D−1

=
1

σ4
D−1Cov

(
E(βi|Yi)

)
D−1

=
1

σ2
D−1 − 1

σ4
D−1E

(
Cov(βi|Yi)

)
D−1,

where the last equality is a direct consequence of the distribution assumptions on the indi-

vidual parameter vector βi, since:

Cov(βi) = E
(
Cov(βi|Yi)

)
+ Cov

(
E(βi|Yi)

)
= σ2D,

such that knowledge of the conditional moments of the individual parameter vector is needed

for gaining an insight in the Fisher information matrix.

An alternative representation of the Fisher information can be obtained by taking another

representation of the score function into account. The score function results with the proba-

bility density for the individual parameter vector βi

φβi(βi) =
√

2πσ2
−p√

‖ D ‖
−1

exp

[
− 1

2σ2
(βi − β)TD−1(βi − β)

]
and the application of partial integration in

∂l(θ; yi)

∂β
=

1

fYi(yi)

∫
Rp
φYi|βi(yi)

∂φβi(βi)

∂β
dβi

=
1

fYi(yi)

∫
Rp
φYi|βi(yi)φβi(βi)

1

σ2
D−1(βi − β)dβi

= − 1

fYi(yi)

∫
Rp
φYi|βi(yi)

∂φβi(βi)

∂βi
dβi

=
1

fYi(yi)

∫
Rp

∂φYi|βi(yi)

∂βi
φβi(βi)dβi

=
1

fYi(yi)

∫
Rp

1

σ2
F Tβi [yi − η(βi, ξi)]φYi|βi(yi)φβi(βi)dβi

=
1

σ2
E
(
F Tβi [yi − η(βi, ξi)]|Yi = yi

)
.

This form of the score function alternatively results when modeling the individual parameter

vector as βi = β + bi, where the individual random effects bi have mean zero and variance
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σ2D. For the Fisher information follows with this structure of the score function:

Mβ
ind(ξi) = E

(
∂l(θ;Yi)

∂β

∂l(θ;Yi)

∂βT

)
=

1

σ4
Cov

[
E
(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
=

1

σ2
E(F TβiFβi)−

1

σ4
E
[
Cov

(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
.

Note that upper bounds of the Fisher information can be constructed with the illustrated

representations of the Fisher information:

Lemma 5.1. Let Yi = η(βi, ξi)+ εi, with βi ∼ N (β, σ2D) and εi ∼ N (0, σ2Imi) stochastically

independent. Then

Mβ
ind(ξi) ≤ min{ 1

σ2
D−1,

1

σ2
E(F TβiFβi)}

holds with respect to the Loewner partial ordering of symmetric non-negative definite matrices.

Proof: Since

1

σ2
D−1 = Mβ

ind(ξi) +
1

σ4
D−1E

(
Cov(βi|Yi)

)
D−1 and

1

σ2
E(F TβiFβi) = Mβ

ind(ξi) +
1

σ4
E
[
Cov

(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
follows with

E
(
Cov(βi|Yi)

)
≥ 0 and E

[
Cov

(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
≥ 0

the inequality Mβ
ind(ξi) ≤ min{ 1

σ2D
−1, 1

σ2E(F TβiFβi)}. 2

Specially the effect of very small and big inter-individual variances can be well illustrated

with the use of the above presented representations of the Fisher information. Let therefor

the inter-individual variance matrix be additionally scaled by a scalar τ : Cov(βi) = τσ2D.

In dependence on τ then easily follows

Mβ
ind(ξi)→

1

σ2
F Tβ Fβ for τ → 0 and Mβ

ind(ξi)→ 0 for τ →∞,

where the first result is a consequence of the resulting distribution of the observation vector

Yi for τσ2D = 0. The regression problem then collapses to an ordinary nonlinear regression

problem. The second behavior is provided with the upper bound of the Fisher information

in the Lemma:

Mβ
ind(ξi) ≤

1

τσ2
D−1 → 0, τ →∞.

The assumption on the normality of the individual parameter vectors βi is often not realistic.

In pharmacokinetics the individual parameters describe volumes, elimination rates and ab-

sorption rates, which generally cannot take negative values, such that they are alternatively
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modeled by multiplicative log-normally distributed random individual effects. Schmelter

(2007a) describes how the response function and parameters have to be transformed to return

to the nonlinear mixed effects model as defined in the preceding chapter. The mean of the

resulting individual parameter vectors βi might then depend on some differentiable function

γi of the population location parameters β:

βi = γi(β) + bi, bi ∼ N (0, σ2D)

with a differentiable function γi. The presented results can be straightforwardly generalized

for this case as in Mielke (2011a):

Corollary 5.2. Let for j = 1, ...,mi

Yij = η(βi, xij) + εij , with εij ∼ N (0, σ2) and βi ∼ Np
(
γi(β), σ2D

)
,

where γi is a differentiable function γi : Rp1 → Rp with (p × p1)-Jacobi-Matrix Gi(β). The

Fisher information for the location parameter β then results in

Mβ
ind(ξi) =

1

σ4
Gi(β)TD−1Cov

(
E(βi|Yi)

)
D−1Gi(β)

=
1

σ2
Gi(β)T

(
D−1 − 1

σ2
D−1E

(
Cov(βi|Yi)

)
D−1

)
Gi(β).

Proof: Note that now

φβi(βi) =
√

2πσ2
−p√

‖ D ‖
−1

exp[− 1

2σ2

(
βi − γi(β)

)T
D−1

(
βi − γi(β)

)
],

what yields

∂φβi(βi)

∂β
=

1

σ2
Gi(β)TD−1

(
βi − γi(β)

)
φβi(βi).

For the score function readily follows

∂l(θ; yi)

∂β
=

1

σ2
Gi(β)TD−1

(
E(βi|Yi = yi)− γi(β)

)
,

such that

Mβ
ind(ξi) =

1

σ4
Gi(β)TD−1E[

(
E(βi|Yi)− γi(β)

)(
E(βi|Yi)− γi(β)

)T
]D−1Gi(β). 2

Reliable approximations of the conditional moments might lead with the above description

of the Fisher information to reliable approximations of the information. For estimating con-

ditional moments often Monte-Carlo methods and quadrature rules are applied, which un-

fortunately already for small sample sizes and small dimensions of the parameter vector are

computationally intensive and hence practicable only in few cases, such that analytic approx-

imations of the Fisher information are of big interest. Tierney and Kadane (1986) propose an

approximation of conditional moments by applications of the Laplace approximation. This

approximation is computationally less intensive and yields under a slight modification ap-

proximations of the Fisher information in a closed form.
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5.2 Laplace Approximation

The Laplace approximation is generally used for approximating integrals with an exponential

integrand by applying a second order Taylor approach in the mode of the integrand. In non-

linear mixed effects models with normally distributed random effects, the probability density

of the observations Yi can be expressed as an integral depending on the parameter vector

θ = (βT , σ2, αT )T with an appropriate parameterization α of the inter-individual variance

matrix D:

fYi(yi) =

∫
Rp
φYi|βi(yi)φβi(βi)dβi,

as in the preceding chapter. The exponent of the integrand in fYi(yi) is for nonlinear mixed

effects models with normally distributed random effects proportional to the penalized sum of

squares:

l̃(βi, θ; yi) :=
(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
+ (βi − β)TD−1(βi − β),

such that the support point of the Taylor approach in the Laplace approximation is chosen

as the individual penalized least squares estimate β∗i :

β∗i := argmin
βi∈Rp

l̃(βi, θ; yi).

Since β∗i fulfills

∂l̃(βi, θ; yi)

∂βi
|βi=β∗i

= 0,

the linear term in the Taylor approach vanishes, yielding

l̃(βi, θ; yi) ≈ l̃(β∗i , θ; yi) +
1

2
(βi − β∗i )

∂2 l̃(βi, θ; yi)

∂βi∂βTi
|βi=β∗i

(βi − β∗i ).

This quadratic form of βi leads to the approximation of the probability density by∫
Rp
φYi|βi(yi)φβi(βi)dβi ≈

1
c · exp[− 1

2σ2 l̃(β
∗
i , θ; yi)], where

c =
√

2πσ2
mi
√
‖ D ‖‖ 1

2
∂2 l̃(βi,θ;yi)

∂βi∂βTi
|βi=β∗i

‖.

The Hesse matrix of l̃ is in the literature (e.g. Wolfinger and Lin (1997)) often approximated

by ignoring the term induced by the second derivatives of the response function η:

∂2 l̃(βi, θ; yi)

∂βi∂βTi
= −2

∂2η(βi, ξi)

∂βi∂βTi

(
yi − η(βi, ξi)

)
+ 2

∂η(βi, ξi)
T

∂βi

∂η(βi, ξi)

∂βTi
+ 2D−1

≈ 2
∂η(βi, ξi)

T

∂βi

∂η(βi, ξi)

∂βTi
+ 2D−1.
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5.2.1 Second Order Approximation

For approximating conditional moments of positive functions h(βi):

E
(
h(βi)|Yi = yi

)
=

∫
h(βi) exp[− 1

2σ2 l̃(βi, θ; yi)]dβi∫
exp[− 1

2σ2 l̃(βi, θ; yi)]dβi
, (5.1)

Tierney and Kadane (1986) propose the application of Laplace approximations to both, the

numerator and the denominator integrals. If the function h(βi) is not positive on the whole

space Rp, Tierney et al. (1989) suggest the addition of a big constant to h(βi), in order to

make the resulting function positive. Notice that the derivation of the mode β∗i for numerator

and denominator is generally not possible in a closed form, such that this heuristic cannot be

readily applied for approximating the Fisher information.

Alternatively a similar approach can be applied to the conditional density of βi for given

observations yi:

fβi|Yi=yi(βi) :=
φYi|βi(yi)φβi(βi)

fYi(yi)
. (5.2)

With Taylor approaches in different support points for the denominator and numerator, ap-

proximations of the conditional density can be obtained. However, it is not guaranteed that

the resulting expressions are probability densities. For applications of the Taylor approach

in the same support points β̂i for the numerator and denominator, approximations of the

conditional density of βi for given observations yi by normal densities are obtained in Mielke

(2011a):

Theorem 5.3. Let Yi = η(βi, ξi) + εi, with βi ∼ N (β, σ2D) and εi ∼ N (0, σ2Imi) stochasti-

cally independent and let for yi ∈ Rmi and βi ∈ Rp

l̃(βi, θ; yi) :=
(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
+ (βi − β)TD−1(βi − β),

F̃
β̂i

:=
1

2

∂l̃(βi, θ; yi)

∂βi
|
βi=β̂i

, and

M̃
β̂i

:=
1

2

∂2 l̃(βi, θ; yi)

∂βi∂βTi
|
βi=β̂i

.

The approximation of l̃ by a second order Taylor expansion in an estimate β̂i of βi yields as

an approximation for the conditional distribution of βi given yi

βi|Yi=yi
app.∼ N

(
β̂i − M̃−1

β̂i
F̃
β̂i
, σ2M̃−1

β̂i

)
.

Proof: The second order Taylor approximation of l̃ in β̂i yields

l̃(βi, θ; yi) ≈ l̃(β̂i, θ; yi) + 2F̃
β̂i

(βi − β̂i) + (βi − β̂i)T M̃β̂i
(βi − β̂i)

= l̃(β̂i, θ; yi)− F̃ Tβ̂iM̃
−1

β̂i
F̃
β̂i

+
(
βi − M̃−1

β̂i
(M̃

β̂i
β̂i − F̃β̂i)

)T
M̃
β̂i

(
βi − M̃−1

β̂i
(M̃

β̂i
β̂i − F̃β̂i)

)
.
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This approximation in the integrand of the probability density of Yi implies with a constant

c :=
√

2πσ2
mi+p√‖ D ‖:∫

Rp
φYi|βi(yi)φβi(βi)dβi

≈ exp
(
− 1

2σ2
[l̃(β̂i, θ; yi)− F̃ Tβ̂iM̃

−1

β̂i
F̃
β̂i

]
)

×
∫
Rp

1

c
· exp

(
− 1

2σ2
[βi − M̃−1

β̂i
(M̃

β̂i
β̂i − F̃β̂i)]

T M̃
β̂i

[βi − M̃−1

β̂i
(M̃

β̂i
β̂i − F̃β̂i)]

)
dβi

=
1

√
2πσ2

mi
√
‖ D ‖‖ M̃

β̂i
‖

exp
(
− 1

2σ2
[l̃(β̂i, θ; yi)− F̃ Tβ̂iM̃

−1

β̂i
F̃
β̂i

]
)
.

An analogue approximation to the numerator of the conditional density (5.2) yields

fβi|Yi=yi(βi) ≈
√

2πσ2
−p√

‖ M̃
β̂i
‖ ×

exp
(
− 1

2σ2
[βi − M̃−1

β̂i
(M̃

β̂i
β̂i − F̃β̂i)]

T M̃
β̂i

[βi − M̃−1

β̂i
(M̃

β̂i
β̂i − F̃β̂i)]

)
,

such that βi|Yi=yi
app.∼ N (β̂i − M̃−1

β̂i
F̃
β̂i
, σ2M̃−1

β̂i
). 2

The individual parameter vectors under given observations are generally not normally dis-

tributed. The presented theorem yields just an approximation of the true conditional density

for given observations yi by a normal density.

As the point β∗i maximizing the function l̃ depends on the observations yi and the parameter

θ, it usually cannot be presented in a closed form. Another problem is met for sparse indi-

vidual sampling schemes as the function l̃ might then be multimodal. However, the following

approximation is given when applying the Taylor approach in a mode β∗i of l̃:

Remark 5.4. The approximated conditional distribution of βi given yi is for the Laplacian

approximation of the form

βi|Yi=yi
app.∼ N

(
β∗i , σ

2M̃−1
β∗i

)
.

Proof: The result readily follows, since

F̃β∗i
:=

1

2

∂l̃(βi, θ; yi)

∂βi
|βi=β∗i

= 0.
2

The conditional mean of the individual parameter vector βi is for the maximum likelihood es-

timation and for the approximation of the Fisher information of interest. Remark 5.4 presents

an approximation of the conditional mean by the conditional mode. The nonlinearity of the

response function η implies that the conditional density of βi for given observations yi is

not symmetrical around β∗i . Hence mode and mean need not coincide, such that maximum

likelihood estimation based on this approximation may become biased.

The conditional expectation and variance might be used for the calculation of the Fisher
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information. Note however, that a second level of approximations is needed for deriving the

expectation or variance of the conditional moments, as the mode β∗i generally nonlinearly

depends on yi.

The method presented by Tierney and Kadane (1986) for accurate approximations of poste-

rior moments is based on Laplace approximations with different support points of the Taylor

approaches in the numerator and denominator of (5.1). The benefit of using similar approxi-

mations to numerator and denominator is that the leading terms of the errors implied by the

Taylor expansion cancel when the ratio is taken.

5.2.2 First Order Approximation

First-Order Taylor expansions might be alternatively used for approximating the function

l̃. Instead of the application of a second order Taylor expansion of l̃, only the function η is

linearly approximated around an estimate β̂i of the individual parameter vector βi:

Theorem 5.5. Let Yi = η(βi, ξi) + εi, with βi ∼ N (β, σ2D) and εi ∼ N (0, σ2Imi) stochasti-

cally independent, and let for yi ∈ Rmi and βi ∈ Rp

l̃(βi, θ; yi) :=
(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
+ (βi − β)TD−1(βi − β),

F
β̂i

:=
∂η(βi, ξi)

∂βTi
|
βi=β̂i

, and

M
β̂i

:= F T
β̂i
F
β̂i

+D−1.

The approximation of l̃ by a first order Taylor expansion of η(βi, ξi) in an estimate β̂i of βi
yields

βi|Yi=yi
app.∼ N

(
µ(yi, β̂i, β), σ2M−1

β̂i

)
, with

µ(yi, β̂i, θ) := M−1

β̂i

(
F T
β̂i

(
yi − η(β̂i, ξi) + F

β̂i
β̂i
)

+D−1β
)
.

Proof: With the first order Taylor expansion of the response function η around the estimate

β̂i one obtains

η(βi, ξi) ≈ η(β̂i, ξi) + F
β̂i

(βi − β̂i).

Let ỹi := yi − η(β̂i, ξi) + F
β̂i
β̂i. Then

l̃(βi, θ; yi) ≈ (ỹi − Fβ̂iβi)
T (ỹi − Fβ̂iβi) + (βi − β)TD−1(βi − β)

= ỹTi ỹi + βTD−1β − (F T
β̂i
ỹi +D−1β)TM−1

β̂i
(F T

β̂i
ỹi +D−1β)

+
(
βi −M−1

β̂i
(F T

β̂i
ỹi +D−1β)

)T
M
β̂i

(
βi −M−1

β̂i
(F T

β̂i
ỹi +D−1β)

)
.

As in the proof of theorem 5.3 one obtains for the approximation of the integral with a
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constant c :=
√

2πσ2
mi+p√‖ D ‖:∫

Rp
φYi|βi(yi)φβi(βi)dβi

≈ exp
(
− 1

2σ2
[ỹTi ỹi − µ(yi, β̂i, β)TM

β̂i
µ(yi, β̂i, β) + βTD−1β]

)
×
∫
Rp

1

c
· exp

(
− 1

2σ2
[βi − µ(yi, β̂i, β)]TM

β̂i
[βi − µ(yi, β̂i, β)]

)
dβi

=

√
2πσ2

−mi√
‖ D ‖‖M

β̂i
‖

exp
(
− 1

2σ2
[ỹTi ỹi − µ(yi, β̂i, β)TM

β̂i
µ(yi, β̂i, β) + βTD−1β]

)
Applying the same approximation to the numerator of (5.2) yields for the conditional density

fβi|Yi=yi(βi) ≈

√
‖M

β̂i
‖

√
2πσ2

p exp
(
− 1

2σ2
[βi − µ(yi, β̂i, β)]TM

β̂i
[βi − µ(yi, β̂i, β)]

)
such that βi|Yi=yi

app.∼ N
(
µ(yi, β̂i, θ), σ

2M−1

β̂i

)
. 2

A specific result for an approximation of the conditional distribution is obtained by taking a

look at the penalized least squares estimate β∗i of βi:

Remark 5.6. The approximated conditional distribution of βi given yi resulting from a First-

Order-Linearization in β∗i is of the form

βi|Yi=yi
app.∼ N

(
β∗i , σ

2M−1
β∗i

)
.

Proof: With β∗i minimizing l̃(βi, θ; yi) follows

−F Tβ∗i
(
yi − η(β∗i , ξi)

)
+D−1(β∗i − β) = 0

⇔ D−1β∗i = F Tβ∗i

(
yi − η(β∗i , ξi)

)
+D−1β,

such that

M−1
β∗i

(
F Tβ∗i

(
yi − η(β∗i , ξi) + Fβ∗i

β∗i
)

+D−1β
)

= M−1
β∗i

(
F Tβ∗i

(
yi − η(β∗i , ξi)

)
+D−1β + F Tβ∗i Fβ∗i

β∗i

)
= M−1

β∗i
(D−1β∗i + F Tβ∗i Fβ∗i

β∗i ) = β∗i . 2

The only difference between remark 5.4 and remark 5.6 is the resulting approximation of the

conditional variance. This result motivates the earlier presented simplified approximation of

the Hesse matrix of l̃. The nonlinear dependence of β∗i on yi carries forward to a nonlinear

dependence of the conditional moments on yi, such that estimates of the information still

cannot be obtained straightforwardly without yet another approximation.

Besides the big advantage that just first derivatives have to be derived for the First-Order

approximation, the second advantage compared to the complete Laplacian approximation is

the possibility to specify two approximations of the Fisher information in nonlinear mixed

effects models with normally distributed random effects in a closed form:
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Remark 5.7. The approximated conditional distribution of βi given yi resulting from a First-

Order-Linearization in β is of the form

βi|Yi=yi
app.∼ N

(
β +M−1

β F Tβ
(
yi − η(β, ξi)

)
, σ2M−1

β

)
.

With Vβ := Imi + FβDF
T
β an approximation of the Fisher information by an approximation

of the conditional mean results in:

1

σ4
D−1Cov

(
E(βi|Yi)

)
D−1 ≈ 1

σ4
F Tβ V

−1
β Cov(Yi)V

−1
β Fβ.

Proof: The result for the approximated conditional distribution is a direct consequence of

theorem 5.5 with β̂i = β and the approximation of the Fisher information follows since

1

σ4
D−1Cov

(
E(βi|Yi)

)
D−1 ≈ 1

σ4
D−1M−1

β F Tβ Cov(Yi)FβM
−1
β D−1

=
1

σ4
F Tβ V

−1
β Cov(Yi)V

−1
β Fβ,

where the equation follows since for Vβ regular and Mβ as in theorem 5.5:

D−1(F Tβ Fβ +D−1)−1F Tβ = (Ip − F Tβ V −1
β FβD)F Tβ

= F Tβ (V −1
β Vβ − V −1

β FβDF
T
β ) = F Tβ V

−1
β .

2

The approximation of the variance of the conditional expectation will be here denoted by

M3,β:

M3,β(ξi) :=
1

σ4
F Tβ V

−1
β Cov(Yi)V

−1
β Fβ.

A further approximation of the Fisher information matrix is obtained by approximating the

conditional variance of the individual parameters for given observations:

Remark 5.8. The approximated conditional distribution of βi given yi resulting from a First-

Order-Linearization in β is of the form

βi|Yi=yi
app.∼ N

(
β +M−1

β F Tβ
(
yi − η(β, ξi)

)
, σ2M−1

β

)
.

With Vβ := Imi + FβDF
T
β an approximation of the Fisher information by an approximation

of the conditional variance results in:

1

σ4
D−1

[
Cov(βi)− E

(
Cov(βi|Yi)

)]
D−1 ≈ 1

σ2
F Tβ V

−1
β Fβ.

Proof: The result for the approximated conditional distribution is a direct consequence of

theorem 5.5 with β̂i = β and the approximation is given by

1

σ4
D−1

[
Cov(βi)− E

(
Cov(βi|Yi)

)]
D−1 ≈ 1

σ2
D−1 − 1

σ2
D−1(F Tβ Fβ +D−1)−1D−1

=
1

σ2
F Tβ V

−1
β Fβ,
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with an application of a matrix inversion formula for Mβ in the last equation. 2

Remark 5.8 yields an alternative motivation for the linear mixed effects model approximation:

M1,β(ξi) :=
1

σ2
F Tβ V

−1
β Fβ

of the preceding chapter, as the obtained information matrices for β0 = β coincide. Further

approximations can be deduced by other support points of the Taylor approach. However,

closed form representations of the approximations are generally only possible, if the support

point of the approach does not depend on the observations yi.

A possibly more refined approximation can be derived by taking the distribution of the

observations into account:

E
(
Cov(βi|Yi)

)
=

∫
Rmi

Cov(βi|Yi = yi)

∫
Rp
φYi|βi(yi)φβi(βi)dβidyi

=

∫
Rp

∫
Rmi

Cov(βi|Yi = yi)φYi|βi(yi)φβi(βi)dyidβi.

The covariance of βi for given observations yi was with a support point β̂i in theorem 5.5

approximated by

Cov(βi|Yi = yi) ≈ σ2M−1

β̂i
:= σ2(F T

β̂i
F
β̂i

+D−1)−1,

such that this approximation in the support point β̂i = βi yields for integrable M−1
βi

:

E
(
Cov(βi|Yi)

)
=

∫
Rp

∫
Rmi

Cov(βi|Yi = yi)φYi|βi(yi)φβi(βi)dyidβi

≈
∫
Rp
σ2M−1

βi
φβi(βi)dβi = σ2E(M−1

βi
),

where the approximation holds by the argument, that the solution of the penalized least

squares problems should be not too far located from the true individual parameter vector,

which in the integration is given by βi. With the same transformations as in remark 5.8 then

follows

1

σ4
D−1

[
Cov(βi)− E

(
Cov(βi|Yi)

)]
D−1 ≈ 1

σ4
D−1[Cov(βi)− σ2E(M−1

βi
)]D−1

=
1

σ2
E
(
D−1 −D−1M−1

βi
D−1

)
=

1

σ2
E(F TβiV

−1
βi
Fβi)

and this approximation will be here defined as M4,β:

M4,β(ξi) :=
1

σ2
E(F TβiV

−1
βi
Fβi).

This approximation has to be calculated in nonlinear mixed effects models numerically, as

the expectation generally cannot be represented in a closed form. The information approxi-

mation M4,β might be of special interest with regard to the two-stage and Lindstrom-Bates
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estimators, discussed in the fourth chapter. The covariance matrices of these two estimators

behave as

σ2

(
N∑
i=1

F T
β̂i
V −1

β̂i
F
β̂i

)−1

for some estimates β̂i of the individual parameter vectors. For population studies with big

numbers of individuals N , the covariance should hence behave similar to the expectation of

the individual information matrices with the distribution of the individual estimates.

The accuracy of the proposed approximations generally depends on the individual sample size

mi and the variance of the individual parameter vectors σ2D. For a bounded inter-individual

variance matrix σ2D and big individual sample sizes mi, Tierney et al. (1989) state in their

work on the fully exponential Laplace approximation to ratios of integrals that the accuracy

for the approximation of the posterior mean E
(
h(βi)

∣∣Yi = yi) of a function function h(βi) is of

order O(m−2
i ), while the accuracy for the approximation of the posterior variance is of order

O(m−3
i ). Following Tierney and Kadane (1986), the proposed accuracy for sufficiently large

individual sample sizes mi is attained already, when using two steps of a Newton iteration

for localizing β∗i instead of the fully exponential Laplace approximation.

The penalized sum of squares:

l̃(βi, θ; yi) =
(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
+ (βi − β)TD−1(βi − β),

is for individual sample sizes mi →∞ dominated by the least squares term(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
,

what causes the decreasing influence of the distribution of the individual parameter vector

βi on the likelihood of observations yi for a growing sample size mi. The approximation of

the conditional variance of βi for given realizations yi results for an individual experimental

design ξi = (xi1, ..., ximi), a corresponding design matrix F
β̂i

of full column rank with a given

vector β̂i and n→∞ replications of this experimental design ξi within one individual in:

1

n
(F T

β̂i
F
β̂i

+
1

n
D−1)−1 → 0 (n→∞),

such that for the approximation of the Fisher information matrix by the approximation of

the conditional variance as in remark 5.8 follows

1

σ2
D−1 − 1

nσ2
D−1(F T

β̂i
F
β̂i

+
1

n
D−1)−1D−1 → 1

σ2
D−1 (n→∞).

The individual parameter vectors βi are in the population normally distributed with variance

σ2D and can be identified for n→∞. The approximation M1,β and the Fisher information

coincide in this limiting case. The same result can be derived for the information approxima-

tion M4,β. Unfortunately a generalization of the limiting behavior for M3,β does not hold.

Further problems regarding the information approximation M3,β will occur in an example in

the next section.
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In practical scenarios bounded individual sample sizes mi are met. For small sample sizes mi,

the impact of the inter-individual variance σ2D might yield relatively poor approximations,

what will be illustrated in the next section.

Notice that all presented approximations coincide for linear response functions η with the

true Fisher information.

5.3 Example

Three different approximations of the Fisher information matrix were presented in this chap-

ter. Analytical results on the accuracy of the proposed approximations can unfortunately only

be obtained in specific situations. In this section we illustrate the behavior of five different

approximations of the Fisher information in the case of the nonlinear mixed effects model

presented in example 4.1:

Example 5.9. Let the individual observations be described by

Yi = exp(βi) + εi

with scalar valued random effects:

βi ∼ N (β, d) and εi ∼ N (0, σ2).

5.3.1 Approximations in the Example

The response function in this example is the exponential function η(βi) = exp(βi), such that

the design matrix is given by

Fβ0 :=
∂η(βi, ξi)

∂βTi
|βi=β0 = exp(β0)

and the linear approximation of the variance results with mi = 1 and D = d in

Vβ := Imi + FβDF
T
β = σ2 + d exp(2β).

The approximations M1,β and M2,β of the Fisher information were introduced in the preceding

chapter based on linearizations of the model functions and the resulting statistical model under

the assumption of negligible linearization errors:

M1,β := F Tβ V
−1
β Fβ =

exp(2β)

σ2 + d exp(2β)
and

M2,β := F Tβ V
−1
β Fβ +

1

2
V −1
β

∂Vβ
∂β

V −1
β

∂Vβ
∂β

=
exp(2β)

σ2 + d exp(2β)
+

2d2 exp(4β)

σ4 + 2dσ2 exp(2β) + d2 exp(4β)
.

The first approximation M1,β was alternatively motivated in remark 5.8 by an approximation

of the conditional variance of the individual parameter vector βi for given observations yi. A

third approximation was given in remark 5.7 by

M3,β = F Tβ V
−1
β Cov(Yi)V

−1
β Fβ.
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The distribution assumptions on βi and εi yield:

Cov(Yi) = Cov
(

exp(βi)
)

+ Cov(εi) = exp(2β + d)
(

exp(d)− 1
)

+ σ2,

such that with Fβ = exp(β) follows:

M3,β =
exp(2β)

(
exp(2β + d)[exp(d)− 1] + σ2

)(
σ2 + d exp(2β)

)2 .

For the approximation

M4,β := E(F TβiV
−1
βi
Fβi)

it was stated in the last section, that no closed form representation exists. We thus used

Monte-Carlo integration for displaying the dependence of M4,β on the variance parameters.

A fifth and not yet discussed approximation of the Fisher information is given by the quasi-

information. Quasi-likelihood functions are used in generalized linear models if not enough

information on the probabilistic model of observations Yi is given to construct the likelihood

function. When the analytical dependence of the first two moments of the observation vector

Yi on the parameter β is known, the quasi-score function for observations yi is defined by

∂E(Yi)
T

∂β
Cov(Yi)

−1
(
yi − E(Yi)

)
,

as described by Wedderburn (1974) and McCullagh and Nelder (1997). The covariance matrix

of the quasi-score function is defined as the quasi-information and results in

M5,β :=
∂E(Yi)

T

∂β
Cov(Yi)

−1∂E(Yi)

∂βT
.

For the present example this yields with E(Yi) = exp(β + 1
2d) the fifth approximation:

M5,β =
exp(2β + d)

exp(2β + d)[exp(d)− 1] + σ2
.

5.3.2 Evaluation of the Fisher information

The influence of different parameter values β, d and σ2 on the accuracy of the approximations

was in this example of interest. The Fisher information was examined for 5 different values of

the location parameter: β ∈ {−2,−1, 0, 1, 2}. The variance parameters were parameterized

by ρd and ρσ ∈ (0, 1) in order to observe the dependence of the quality of approximations on

the variance parameter d and σ2 ∈ R+:

σ2 =
ρσ

1− ρσ
⇒ ρσ =

σ2

1 + σ2
, ρσ ∈ (0, 1),

d =
ρd

1− ρd
⇒ ρd =

d

1 + d
, ρ ∈ (0, 1)

and the Fisher information was simulated for 1250 different values each of ρd for given σ2 = 1

and ρσ for given d = 1 on the interval (0, 1) with 10000 simulated observations per experi-

mental setting ρd, ρσ ∈ (0, 1).
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Figure 5.1: Fisher information in dependence on the variance parameters.

Solid: M1,β; Dashed: M2,β; Light-blue: M3,β; Dark-blue: M4,β; Green: M5,β; Red: Mβ
ind.
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5.3.3 Results

Figure 5.1 illustrates the dependence of the Fisher information in this example on the variance

of the random effects. The figure shows that all approximations yield for small inter-individual

variances d similar results and that no approach approximates the Fisher information satis-

factory on the whole positive real line for d.

Specially the often used linear mixed effects approximation M1,β poorly approximates the

true Fisher information for moderate values of the inter-individual variance and a negative

population parameter β in this example. The linear mixed effects approximation M1,β seems

only on the borders of the design region to work well. The results of the approximation M1,β

in dependence on the variance parameter σ2 are more promising.

The approximation M2,β of the Fisher information by the information matrix of a nonlinear

heteroscedastic normal model behaves still worse than the approximation M1,β. Note that

specially the limit for d→∞ is bigger than zero:

lim
d→∞

M2,β = 2 > 0 = lim
d→∞

Mβ
ind,

where the last limit follows with lemma 5.1 on the upper bound of the Fisher information.

The behavior of the Fisher information matrix in dependence on the intra-individual variance

σ2 is not well described by this approximation.

A similar problem is met for the approximation of the Fisher information by the approximation

of the conditional mean M3,β. The numerator of

M3,β =
exp(2β)

(
exp(2β + d)[exp(d)− 1] + σ2

)(
σ2 + d exp(2β)

)2 .

causes the divergence of this approximation for d→∞.

In this example the best approximation was given by the mean of the information matrices:

M4,β := E(F TβiV
−1
βi
Fβi).

Problematic for this approximation is the missing closed form representation, such that the

use for experimental design would be restricted to numerical design optimization or optimiza-

tion based on approximations of this mean information. The approximation M4,β tends to

overestimate the Fisher information, similarly to the nonlinear heteroscedastic information

M2,β, such that it should be used with caution.

The quasi-information M5,β yields reasonable approximations for moderate inter-individual

variances, but poorly approximated the Fisher information matrix for big inter-individual

variances. However, it can be seen as an robust alternative approach for approximating the

Fisher information in nonlinear mixed effects models, as estimators of β based on the quasi-

score function should be asymptotically unbiased (Niaparast (2010)) and hence a lower bound

of the Fisher information is given by the quasi-information. Note that the quasi-information

can only be constructed, when the first two moments of the observation vector are known.

This is in most nonlinear mixed effects model not the case, such that one usually would use

linear approximations of the response functions in order to approximate the expectation and

variance, what leads one back to an information approximation similar to M1,β.
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5.4 Further Considerations on the Fisher Information

The considerations in the preceding sections were based on the assumptions of a known

observation error variance σ2 and positive definite variance matrix D. Further considerations

for the case of non-negative definite variance matrices D and unknown variance parameters

σ2 and α will be briefly undertaken in this section.

5.4.1 Non-negative Definite Matrix D

With the assumption on the positive definiteness of the matrix D the score function for β

was calculated as:

∂l(θ; yi)

∂β
=

1

σ2
D−1

(
E(βi|Yi = yi)− β

)
,

This representation cannot straightforwardly be generalized for singular covariance matrices

D. Note that a symmetric matrix D of rank r < p can be expressed with orthogonal matrices

H of eigenvectors and the diagonal matrix of corresponding eigenvalues Λ by:

D = HΛHT and HTDH = Λ,

such that:

HT (βi − β) ∼ N (0, σ2Λ), with Λj,j = 0, j > r.

By splitting the matrix H = (H1, H2) in a p × r matrix H1 and p × (p − r) matrix H2, the

individual parameter vector can be characterized as

βi = β +H1bi where bi ∼ N (0, σ2Λ̃) and Λ̃ = diag(Λ1,1, ...,Λr,r). (5.3)

The probability density of the observation vector Yi then results in

fYi(yi) =

∫
Rr
φYi|bi(yi)φbi(bi)dbi

with normal densities

φYi|bi(yi) =
√

2πσ2
−mi

exp

[
− 1

2σ2

(
yi − η(β +H1bi, ξi)

)T (
yi − η(β +H1bi, ξi)

)]
and

φbi(bi) =
√

2πσ2
−r
√
‖ Λ̃ ‖

−1

exp

[
− 1

2σ2
bTi Λ̃−1bi

]
.

The representation of the score function as the conditional expectation of βi cannot be ob-

tained for singular matrices D, since with

∂η(βi, ξi)
T

∂bi
= HT

1

∂η(βi, ξi)
T

∂β

follows

∂l(θ; yi)

∂β
=

1

σ2
E
(
F Tβi [yi − η(βi, ξi)]|Yi = yi

)
=

1

σ2
H1Λ̃−1E(bi|Yi = yi) +

1

σ2
H2H

T
2 E
(
F Tβi [yi − η(βi, ξi)]|Yi = yi

)
.
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This representation of the score function otherwise motivates the earlier derived form of the

Fisher information matrix

Mβ
ind(ξi) =

1

σ4
Cov

[
E
(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
=

1

σ2
E(F TβiFβi)−

1

σ4
E
[
Cov

(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
with individual parameter vectors as in (5.3). The equality

1

σ2
E(F TβiFβi)−

1

σ4
E
[
Cov

(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
=

1

σ4
D−1V ar(E(βi|Yi))D−1

was given in section 5.1 for regular matrices D. The applicability of the proposed approx-

imations M1, M2 and M3 in section 5.2 does however not depend on the regularity of the

matrix D and might hence be applied for the approximation of

1

σ2
E(F TβiFβi)−

1

σ4
E
[
Cov

(
F Tβi [Yi − η(βi, ξi)]|Yi

)]
in the case of singular inter-individual variance matrices D as well.

Notice that the nonlinear mixed effects model might collapse in dependence on the inter-

individual variance matrix to a simpler model, as described in the following example:

Example 5.10. Let the individual observations be described by

Yi = βi;1 exp(βi;2) + εi

with random effects:

βi = (βi;1, βi;2)T ∼ N
(
(β1, β2)T , D

)
D = diag(d1, 0) and εi ∼ N (0, σ2).

Then

Yi ∼ N
(
β1 exp(β2), σ2 + d1 exp(2β2)

)
.

The true Fisher information matrix Mβ
ind and the information approximation M2,β in this

example coincide:

Mβ
ind = M2,β =

exp(2β2)

σ2 + d1 exp(2β2)

(
1 β1

β1 β2
1 +

2d21 exp(2β2)
σ2+d1 exp(2β2)

)
.

The approximations M1,β, M3,β and M5,β take here identical values and result in

M1,β = M3,β = M5,β =
exp(2β2)

σ2 + d1 exp(2β2)

(
1 β1

β1 β2
1

)
,

and the approximation given by the expectation of the linear mixed effects approximation is

calculated as

M4,β =
exp(2β2)

σ2 + d1 exp(2β2)

(
1 β1

β1 β2
1 + d1

)
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Figure 5.2: Ratios of informations in dependence on β2;

solid: β2 = −2, dashed: β2 = −1, dotted: β2 = 0, dot-dash: β2 = 1, longdash: β2 = 2

Only the component for the parameter β2 of the information matrices differs and specially

for β1 = 1, example 4.1 illustrates the difference of the components. In figure 5.2 the ratios

(M1,β)2,2

(M2,β)2,2

and
(M4,β)2,2

(M2,β)2,2

for the component β2 were plotted with β1 = 1 and the parameterizations ρd = d1
1+d1

(left)

and ρσ = σ2

1+σ2 (right). The information approximation M4,β tends to overestimate the true

Fisher information in the present example, whereas the linear mixed effects information M1,β

underestimates it. This example seemingly contradicts the considerations on the influence of

the individual sample size mi on the accuracy of the information approximations M1,β and

M4,β given at the end of section 5.2. These findings were however based on the identifiability

of the individual parameter vectors, which in the present example of one observation per

individual is not given. Example 5.10 illustrates that approximations of the Fisher information

have to be used with caution if the inter-individual variance matrix σ2D is singular.
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5.4.2 Information for the Variance Parameters

The variance parameters σ2 and α were in the first subsections of the recent chapter considered

to be known. Approximations of the variance components of the Fisher information were given

by the linear mixed effects and the heteroscedastic normal model approximations in section

4.3. Both approximations yield the same information matrices for the variance parameters:

Mi,σ2 := mi
2σ4(

Mi,σ2,α

)
j

:= 1
2σ2 tr

[
F Tβ V

−1
β Fβ

∂D

∂αj

]
, j = 1, ..., ν

(Mi,α)j,k := 1
2tr

[
F Tβ V

−1
β Fβ

∂D

∂αj
F Tβ V

−1
β Fβ

∂D

∂αk

]
, j, k = 1, ..., ν,

for i = 1, 2. Estimates of the location parameter β and variance parameters σ2 and α are in

linear mixed effects models uncorrelated:(
M1,β,σ2

)
j

:= 0, j = 1, ..., p

(M1,β,α)j,k := 0, j = 1, ..., p, k = 1, ...ν.

The nonlinear heteroscedastic normal approximation additionally takes the estimated depen-

dence of the location parameter vector β on the variance with the components(
M2,β,σ2

)
j

:= 1
2σ2 tr

[
V −1
β

∂Vβ
∂βj

]
, j = 1, ..., p,

(M2,β,α)j,k := 1
2tr

[
V −1
β

∂Vβ
∂βj

V −1
β Fβ

∂D

∂αk
F Tβ

]
, j = 1, ..., p, k = 1, ..., ν

into account.

A generalization of the score-function based approach is for the variance parameters possi-

ble, but results in complicated functionals of conditional terms for which the applications of

Laplace approximations generally yields no closed form representation. Alternatively, con-

siderations on the distributions of the obtained conditional terms might be undertaken. One

example for this case is given by the information matrix component for the variance parameter

σ2. The score function for the parameter σ2 results in

∂l(θ; yi)

∂σ2
= E

[
1

2σ4
l̃(βi, θ; yi)|Yi = yi

]
− mi + p

2σ2

= E

[
1

2σ4

(
yi − η(βi, ξi)

)T (
yi − η(βi, ξi)

)
|Yi = yi

]
+E

[
1

2σ4
(βi − β)TD−1(βi − β)|Yi = yi

]
− mi + p

2σ2

= E

[
1

2σ4

(
yi − η(βi, ξi) + Fβi(βi − β)

)T (
yi − η(βi, ξi)

)
|Yi = yi

]
− mi

2σ2
,

such that the approximation given in the last chapter

M1,σ2 =
mi

2σ4
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can be obtained by assuming the conditional expectation

E

[
1

σ2

(
Yi − η(βi, ξi) + Fβi(βi − β)

)T (
Yi − η(βi, ξi)

)
|Yi = yi

]
to be χ2

mi-distributed. This idea is motivated by the expectation of the conditional expression:

E

(
E

[
1

σ2

(
Yi − η(βi, ξi) + Fβi(βi − β)

)T (
Yi − η(βi, ξi)

)
|Yi
])

= mi

and the term in the conditional expectation, which looks similar to a sum of squared devia-

tions. For the variance of the score function under the distribution assumption then follows(
1

2σ2

)2

Cov

(
E

[
1

σ2

(
Yi − η(βi, ξi) + Fβi(βi − β)

)T (
Yi − η(βi, ξi)

)
|Yi
])
≈
Cov(χ2

mi)

4σ4
=

mi

2σ4
.

This approach depends heavily on the assumed distribution of the conditional term, such that

further considerations on the appropriateness of the χ2
mi-assumptions have to be undertaken.

Similar approaches might be of interest for approximating other variance components of

the information matrix. However, as the linear mixed effects approximation and nonlinear

heteroscedastic normal approximation of the components for the variance parameters coincide,

we will approximate in the following the components of the Fisher information matrix for the

variance parameters by the form given in section 4.3.



6 Optimal Designs in Mixed Effects Models

Optimal experimental designs for mixed effects models are discussed in the literature under

various aspects. The designs in mixed effects models depend on the measurement replication

structure, the optimality criteria, the variance model of the individual parameter vectors, the

variance model of the individual observation vectors and the design region. An additional

complexity is introduced in nonlinear mixed effects models by the non-satisfactory knowl-

edge of the distribution of the parameter estimates. Designs are in these models based on

approximations of the Fisher information and hence additionally depend on the used approx-

imations.

The equivalence theorems as presented in the second chapter are the key instruments for

optimizing experimental designs on convex design sets. The population designs and sets of

information matrices will be introduced in the first section of this chapter in order to gener-

alize the equivalence theorems to mixed effects models. Special emphasis is laid in subsection

6.1.2 on the properties of the sets of information matrices for different approximations of

the Fisher information. Topic of the second section are optimality criteria and equivalence

theorems in mixed effects models. The chapter closes with a brief description of numerical

approaches for designing experiments in mixed effects models.

6.1 Population Designs and Information Matrices

The observations in the considered mixed effects models depend on individual wise varying

parameter vectors, such that two design stages are of interest for the optimization of designs.

The individual experimental settings are here described by exact individual designs

ξi = (xi1, ..., ximi), with xij ∈ X , j = 1, ...,mi,

where the design space X is assumed to be a compact set. The proportions ωi of different

individual designs ξi in the population are described by the population designs ζ:

ζ =

(
ξ1 ... ξk
ω1 ... ωk

)
.

We will here concentrate on population designs with identical individual sample sizes mi = m,

i = 1, ..., N . The population designs can then be defined analogously to approximate designs

in ordinary regression models:
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Definition 6.1. The measure ζ =
k∑
i=1

ωiδξi with support points ξi ∈ Xm and weights ωi ≥ 0,

i = 1, ..., k;
k∑
i=1

ωi = 1, for some k ∈ N; is called population design on Xm.

The set of all population designs with identical individual sample size m is denoted by Ξm.

The set Ξm results as the convex hull of the set Xm of exact individual designs of size

m and with the compactness of Xm follows the compactness of Ξm. The sets of population

designs with m observation under which certain aspects are identifiable might be similarly

defined as in definition 2.5. Note however, that the identifiability of aspects depends on the

used estimators and the resulting information matrices. This problem will be illustrated by

an example in the next chapter.

6.1.1 The Set of Population Information Matrices

The inverse of the covariance matrix of an estimator will be called the information matrix, such

that the definition of the term information matrix always depends on the applied estimators.

The Fisher information is used for planning experiments, when only few knowledge of the

stochastic behavior of estimators is given, as its inverse yields under some regularity conditions

a lower bound of the variance of any unbiased estimator. The weighted sum of approximations

of the individual Fisher information matrices can be applied for approximating the population

Fisher information in mixed effects models:

Mpop(ζ) =

k∑
i=1

ωiMind(ξi) ≈
k∑
i=1

ωiM·;ind(ξi) =: M·;pop(ζ),

with the index “·” representing the used information approximation. The sets of all population

information matrices are defined by

M·;m := {M·;pop(ζ), ζ ∈ Ξm},

where the index (·;m) now illustrates the dependence on the individual sample size and the

representation of the information matrices M·;pop. With the assumption on the compactness

of the sets of individual information matrices

{M·;ind(ξ), ξ ∈ Xm}

follows the compactness and the convexity of the setsM·;m, since for matrices M·;pop(ζ1) and

M·;pop(ζ2) ∈M·;m with population designs ζ1 and ζ2 holds for arbitrary α ∈ [0, 1]

(1− α)M·;pop(ζ1) + αM·;pop(ζ2) = (1− α)

k1∑
i=1

ωi,1M·;ind(ξi,1) + α

k2∑
i=1

ωi,2M·;ind(ξi,2)

=

k3∑
i=1

ωi,3M·;ind(ξi,3) = M·;pop(ζ3),
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where the population design ζ3 is of the form

ζ3 =

(
ξ1,1 ... ξk1,1 ξ1,2 ... ξk2,2

(1− α)ω1,1 ... (1− α)ωk1,1 αω1,2 ... αωk2,2

)
.

Hence the compactness of the set of individual information matrices is the critical point for

the generalization of the design theory from the second chapter to mixed effects models.

Specially the continuity of individual information matrices as vector valued functions from

the compact design region Xm is sufficient for the compactness of the set M·;m.

6.1.2 Information Matrices in Mixed Effects Models

Throughout this subsection we assume the observations Yi of individuals i to follow a mixed

effects model:

Yi = η(βi, ξ) + εi, βi ∼ N (β, σ2D) and εi ∼ N (0, σ2Im)

with known variance parameters σ2 > 0 and D and a vector valued response function η, which

is differentiable for βi ∈ Rp. The design matrix Fβ(ξ) and the approximation Vβ(ξ) of the

true observation variance Cov(Yi) are defined as in the preceding chapters by

Fβ(ξ) :=
∂η(βi, ξ)

∂βTi
|βi=β and Vβ(ξ) := Im + Fβ(ξ)DFβ(ξ)T .

The properties of the response function η can imply the continuity of the individual informa-

tion matrices and with this the compactness of the set M·;m. The function η has therefor to

fulfill characteristics depending on the used approximations of the information matrix.

Corollary 6.2. Let η(βi, ξ) be differentiable in βi = β and let Fβ(ξ) be continuous on Xm.

Then the components of the matrix

M1,β(ξ) :=
1

σ2
Fβ(ξ)TVβ(ξ)−1Fβ(ξ)

are continuous functions of ξ ∈ Xm.

Proof: The result readily follows since Vβ(ξ) is regular and Vβ(ξ)−1 is continuous on Xm,

such that all components of M1,β(ξ) are sums of products of continuous functions on Xm. 2

For the matrix M2,β(ξ) additionally the second derivatives of η(βi, ξ) with respect to βi have

to be continuous functions on Xm:

Corollary 6.3. Let η(βi, ξ) be twice differentiable in βi = β and let

∂2η(βi, ξ)

∂βi;j∂βi;k
|βi=β and Fβ(ξ)

be continuous on Xm. Then the components

(M2,β(ξ))j,k := (M1,β(ξ))j,k +
1

2
tr

[
Vβ(ξ)−1∂Vβ(ξ)

∂βj
Vβ(ξ)−1∂Vβ(ξ)

∂βk

]
, j, k = 1, ..., p

of the matrix M2,β(ξ) are continuous functions of ξ ∈ Xm.
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Proof: With corollary 6.2 follows the continuity of (M1,β(ξ))j,k. The second term is contin-

uous as

∂Vβ(ξ)

∂βj
=
∂Fβ(ξ)

∂βj
DFβ(ξ)T + Fβ(ξ)D

∂Fβ(ξ)T

∂βj

is with the conditions of the corollary a continuous function on Xm. 2

The continuity of the conditional expectation based approximation M3,β(ξ) additionally de-

pends on the continuity of the covariance of observations Yi:

Corollary 6.4. Let η(βi, ξ) be differentiable in βi and square integrable with respect to

N (β, σ2D) on Xm. For Fβ(ξ) and η(βi, ξ) continuous on Xm, the components of the matrix

M3,β(ξ) :=
1

σ4
Fβ(ξ)TVβ(ξ)−1Cov(Yi)Vβ(ξ)−1Fβ(ξ)

are continuous functions of ξ ∈ Xm.

Proof: The continuity of Cov(Yi) follows, since η(βi, ξ) is square integrable and a continuous

function on Xm. With the same arguments as in corollary 6.2 then follows the continuity of

M3,β(ξ) on Xm. 2

For the approximation M4,β(ξ) the integrability of the matrix Fβi(ξ)
TVβi(ξ)

−1Fβi(ξ) is needed

for the desired continuity:

Corollary 6.5. Let η(βi, ξ) be differentiable in βi and Fβi(ξ) be continuous on Xm. If

Fβi(ξ)
TVβi(ξ)

−1Fβi(ξ)

is on Xm N (β, σ2D) integrable, the components of the expectation with respect to the indi-

vidual parameter vectors βi:

M4,β(ξ) :=
1

σ2
E
(
Fβi(ξ)

TVβi(ξ)
−1Fβi(ξ)

)
are continuous functions of ξ ∈ Xm.

Proof: The continuity of Fβi(ξ)
TVβi(ξ)

−1Fβi(ξ) follows with corollary 6.2 and with the inte-

grability then follows the continuity of M4,β(ξ). 2

The quasi-information is continuous under the assumption of continuous covariance matrices

of observations and a continuous matrix of derivatives of the expectation of observations:

Corollary 6.6. Let η(βi, ξ) be square integrable with respect to N (β, σ2D) on Xm and the

expectation be differentiable in β. For η(βi, ξ) and

∂

∂β
E
(
Yi
)T

continuous on X , the components of the matrix

M5,β(ξ) :=
∂E
(
Yi
)T

∂β
Cov(Yi)

−1∂E
(
Yi
)

∂βT
.

are continuous functions of ξ ∈ Xm.
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Proof: With the continuity and the square integrability of η(βi, ξ) follows the continuity of

the covariance matrix. The covariance matrix is positive definite, since with σ2 > 0

Cov(Yi) = E [Cov(Yi|βi)] + Cov
[
E
(
Yi|βi

)]
= σ2Im + Cov

(
η(βi, ξ)

)
> 0.

The result follows, as ∂
∂βE

(
Yi
)T

is continuous on Xm. 2

Similar results can be deduced for an unknown intra-individual variance σ2 and by α pa-

rameterized inter-individual variance matrix D, which additionally depend on the partial

derivatives of the inter-individual variance matrix D with respect to α.

With the compactness of the set of information matrices, every population information ma-

trix M·;pop ∈ M·;m can be represented as a convex combination of information matrices

of population designs consisting of one supporting individual design ξ ∈ Xm only. Hence

Caratheodory’s theorem can be applied for limiting the number of supporting individual de-

signs as in ordinary regression models. In the special case of mixed effects models with known

variance parameters σ2 and α, every population information matrix can be represented as

the weighted sum of at most 1
2p(p+ 1) + 1 individual information matrices.

6.2 Optimality Criteria

The same optimality criteria as in ordinary linear and nonlinear regression models can be

applied in mixed effects models for comparing the quality of population designs. Generally the

information matrix for the whole parameter vector θ = (βT , σ2, αT )T is of interest. If however

the variance parameters σ2 and α are assumed to be known and β is the only parameter to

be estimated, one can reduce the optimization problem to the information matrix for the

parameter vector β.

The Fisher information matrix in mixed effects models is often approximated with matrices

of block diagonal structure, as described in section 4.3.1:

Mpop(·) ≈

Mβ
pop(·) 0 0

0 Mσ2

pop(·) Mσ2,α
pop (·)

0 Mσ2,α
pop (·)T Mα

pop(·)

 , (6.1)

what simplifies the design optimization. The true Fisher information in nonlinear mixed

effects models will generally be not of a block diagonal structure, such that the whole infor-

mation matrix has to be taken into account in the case of unknown variance parameters σ2

and α, even if interest lies only in the estimation of β.

The optimality criteria in linear models were defined with respect to some sets Ξ on which

some aspects ψ(β) = Lψ(β) were identifiable. The same definitions can be applied in linear

mixed effects models with the parameter vector θ. In nonlinear mixed effects models the

identifiability of aspects ψ(θ) in general depends on the identifiability of the parameter vec-

tors θ and with this on the used approximation M·;ind of the Fisher information matrix. One

particular example of this dependence is given for the case of known variance parameters in
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chapter 7, where a D-optimal design with respect to the approximation M4,β is singular with

respect to the approximation M1,β.

Definition 6.7. Ξm(M·;pop) denotes the set of all population designs ζ on Ξm with positive

definite information matrix M·;pop(ζ).

6.2.1 Optimality Criteria in Mixed Effects Models

All optimality criteria in nonlinear mixed effects models depend on the used approximations

M·;pop of the Fisher information matrix. The D-optimality criterion in mixed effects models

is of the same form as for ordinary regression models in chapter 2:

Definition 6.8. A design ζ∗ is called locally D-optimal with respect to a certain approximation

if

‖M·;pop(ζ
∗) ‖ ≥ ‖M·;pop(ζ) ‖, ∀ ζ ∈ Ξm.

The design ζ∗ minimizes ΦD;·
(
M·;pop(ζ)

)
:= − log

(
‖M·;pop(ζ) ‖

)
on Ξm.

D-optimal designs maximize the determinant of the whole information matrix, even if

only the location parameter vector β is of interest. This problem might be circumvented with

the DA-optimality as given in Silvey (1980). A design is called DA-optimal for the estimation

of some linear combinations AT θ of the parameter vector θ, if it minimizes the expression

ΦDA;·
(
M·;pop(ζ)

)
:= log

(
‖ ATM·;pop(ζ)−1A ‖

)
on Ξm(M·;pop).

With the approximation of the Fisher information matrix by a block-diagonal matrix as

in (6.1), the optimality criterion ΦDA;· with a matrix AT = (Ip, 0) corresponds to the D-

optimality criterion for the reduced information matrix ATM·;popA. These criteria however

differ, if the block-diagonality of the information matrix is not given.

Schmelter (2007a) minimizes with the G-criterion the maximal variance of the prediction of

the response of a typical individual. The response function of typical individuals is given

by η
(
E(βi), x

)
, x ∈ X and generally does not coincide with the mean response over the

population:

η
(
E(βi), x

)
6= E

(
η(βi, x)

)
, x ∈ X .

The prediction of the response is for the typical individual given by η(β̂, x), where β̂ is an

estimate of the true population location parameter vector β. For consistent and asymptotic

normally distributed estimates θ̂N of θ and N observed individuals under a population design

ζ with population information matrix Mpop(ζ):

√
N(θ̂N − θ) L−→ N

(
0,Mpop(ζ)−1

)
(N →∞),

the Delta-method (Rao (1973, pp. 385)) can be applied if η(β, x) is differentiable in β with

the gradient:

fθ(x) :=
η(β, x)

∂θ
=

(
η(β, x)

∂βT
, 0, 0 · 1Tν

)T
6= 0,



6.2 Optimality Criteria 69

yielding

√
N
(
η(β̂, x)− η(β, x)

) L−→ N
(
0, fθ(x)TMpop(ζ)−1fθ(x)

)
(N →∞).

The derivatives of η with respect to the variance parameters σ2 and α vanish, as the response

function η depends only on the experimental settings and the location parameter vector. The

G-criterion is with an information matrix M·;pop(ζ) hence defined as follows:

Definition 6.9. A design ζ∗ is called locally G-optimal with respect to a certain approximation

if

max
x∈X

fθ(x)TM·;pop(ζ
∗)−1fθ(x) ≤ max

x∈X
fθ(x)TM·;pop(ζ)−1fθ(x), ∀ζ ∈ Ξm(M·;pop).

The design ζ∗ minimizes ΦG;·
(
M·;pop(ζ)

)
:= max

x∈X
fθ(x)TM·;pop(ζ)−1fθ(x) on Ξm(M·;pop).

Linear criteria were introduced in chapter 2 and based on symmetric non-negative definite

matrices L. The size of the symmetric non-negative definite matrix L in the here proposed

mixed effects models depends on the size of the information matrix. Generally (p+ 1 + ν)×
(p+ 1 + ν) matrices L have to be considered for an unknown intra-individual variance σ2 and

a ν-dimensional parametrization α of the matrix D. In the case of known variance parameters

σ2 and α, the information matrix and with this the matrix L are given by p× p matrices.

Definition 6.10. A design ζ∗ is called locally L-optimal with respect to a certain approxima-

tion if

tr
(
LM·;pop(ζ

∗)−1
)
≤ tr

(
LM·;pop(ζ)−1

)
, ∀ ζ ∈ Ξm(M·;pop).

The design ζ∗ minimizes ΦL;·
(
M·;pop(ζ)

)
:= tr

(
LM·;pop(ζ)−1

)
on Ξm(M·;pop).

The Delta-method has to be applied for the derivation of the matrix L in the IMSE-

criterion. For consistent and asymptotically normally distributed estimators θ̂ of θ with

population information matrix Mpop(ζ) then follows:∫
X
E
(
[η(β̂, x)− η(β, x)]2

)
µ(dx) ≈

∫
X
fθ(x)TMpop(ζ)−1fθ(x)µ(dx)

= tr
( ∫
X
fθ(x)fθ(x)Tµ(dx)Mpop(ζ)−1

)
,

such that the matrix L is given by

L :=

∫
X
fθ(x)fθ(x)Tµ(dx).

The reliable estimation of the response function of the typical individual may be not the only

aim of designing experiments. Examples of other functions of interest in the particular case of

pharmacokinetics are the area under the curve and the time point of maximal concentration

(Holland-Letz (2009, p. 35)). The Delta-method may be applied for arbitrary measurable

and differentiable functions of the location parameter θ. The G-criterion and IMSE-criterion
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can be generalized to criteria depending on some real valued and differentiable functions h.

This leads in some special cases with

cθ :=
∂h(θ)

∂θ

to the cθ-optimality criterion:

Definition 6.11. A design ζ∗ is called locally cθ-optimal with respect to a certain approxi-

mation if

cTθ M·;pop(ζ
∗)−1cθ ≤ cTθ M·;pop(ζ)−1cθ, ∀ ζ ∈ Ξm(M·;pop).

The design ζ∗ minimizes Φcθ;·
(
M·;pop(ζ)

)
:= cTθ M·;pop(ζ)−1cθ on Ξm(M·;pop).

All here presented criteria are convex optimality criteria and monotone with respect to

the Loewner partial ordering on non-negative definite matrices. Moreover the presented D-,

L- and cθ-optimality criteria are differentiable and can be generalized to criteria minimizing

the variance matrix of estimators of aspects ψ(θ) in some sense. Optimal designs however not

necessarily exist with the above definitions. One particular example is given by a straight line

regression with one observation per individual on the design region X = [0, 1] and random

intercepts, where the optimal design for the estimation of the intercept proposes all observa-

tions to be taken with individual designs ξi = 0, what breaks the rule of identifiability of all

parameters. A slight modification of the proposed design with a small weight and support

point ω > 0 of the design ζ:

ζ =

(
(0) (ω)

1− ω ω

)

yields in this example high efficiencies and satisfies for all ω ∈ (0, 1) the condition of identifi-

ability.

Analogue definitions for designs in mixed effects models can be given for optimality criteria

as the MV - and E-optimality. Note that the G-, MV - and E-optimality criteria are in gen-

eral not differentiable, what complicates the construction of optimal designs (Torsney and

López-Fidalgo (1995), Kiefer (1974)).

6.2.2 Equivalence Theorems in Mixed Effects Models

The assumptions on the convexity and compactness of the sets of population information

matrices M·;m allow the generalization of the design theory from ordinary regression models

to designs in mixed effects models. With the Fréchet derivative of optimality criteria Φ of

information matrices M1 in the direction of M2:

FΦ(M1,M2) := lim
ε→0

1

ε

(
Φ[(1− ε)M1 + εM2]− Φ[M1]

)
,

equivalence theorems can be deduced for proving the optimality of information matrices and

the corresponding designs in mixed effects models:
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Theorem 6.12. (Silvey (1980)) For convex criteria Φ on M·;m, the design ζ∗ is Φ-optimal

if and only if

FΦ

(
M·;pop(ζ

∗),M·;pop(ζ)
)
≥ 0 for all ζ ∈ Ξm.

This equivalence theorem does not depend on the differentiability of the optimality crite-

rion Φ in the design ζ∗, such that it can be applied for G-, MV - and E-optimality as well.

The linearity of the Fréchet derivative in the second argument for differentiable optimality

criteria simplifies the verification of optimal designs:

Theorem 6.13. (Silvey (1980)) If Φ is convex on M·;m and differentiable in a design ζ∗ ∈
Ξm, then ζ∗ is Φ-optimal if and only if

FΦ

(
M·;pop(ζ

∗),M·;ind(ξ)
)
≥ 0 for all ξ ∈ Xm.

Optimal population designs ζ∗ with supporting individual designs ξ∗i and corresponding

positive proportions ω∗i attain for in ζ∗ differentiable criteria Φ this lower bound, since by

FΦ

(
M·;pop(ζ

∗),M·;ind(ξ)
)
≥ 0 for all ξ ∈ Xm

and the linearity of the Fréchet derivative in ζ∗ it holds:

0 = FΦ

(
M·;pop(ζ

∗),M·;pop(ζ
∗)
)

=
k∑
i=1

ω∗i FΦ

(
M·;pop(ζ

∗),M·;ind(ξ
∗
i )
)
.

The computation of the Fréchet derivative is for the most frequently used optimality criteria

easily done with the representation:

FΦ(M1,M2) :=
∂

∂ε
Φ[(1− ε)M1 + εM2]|ε=0.

The results for derivatives of the determinant, the trace and the inverse of a matrix are given

in the work on vector differential calculus by Wand (2002):

∂

∂ε
‖M(ε) ‖ = ‖M(ε) ‖ tr M(ε)−1 ∂

∂ε
M(ε)

∂

∂ε
tr M(ε) = tr

∂

∂ε
M(ε) and

∂

∂ε
M(ε)−1 = −M(ε)−1 ∂

∂ε

(
M(ε)

)
M(ε)−1.

The equivalence theorems for the standard criteria as D- and L-optimality readily follow with

the above representation of the Fréchet derivative and were first stated by Fedorov (1972, pp.

209) for designs in the case of simultaneous observations of several random quantities:

Theorem 6.14. (Fedorov (1972)) The population design ζ∗ with p′ × p′ information matrix

M·;pop(ζ
∗) minimizes ΦD;· on Ξm if and only if

gD;·;ζ∗(ξ) := tr
(
M·;pop(ζ

∗)−1M·;ind(ξ)
)
− p′ ≤ 0 for all ξ ∈ Xm.
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Proof: Since

FΦD;·

(
M·;pop(ζ

∗),M·;ind(ξ)
)

= − ∂

∂ε
log[‖ (1− ε)M·;pop(ζ

∗) + εM·;ind(ξ) ‖]|ε=0

= −tr
(
M·;pop(ζ

∗)−1 ∂

∂ε
[(1− ε)M·;pop(ζ

∗) + εM·;ind(ξ)]
)

= −tr
(
M·;pop(ζ

∗)−1[M·;ind(ξ)−M·;pop(ζ
∗)]
)
,

the equivalence follows with theorem 6.13:

tr
(
M·;pop(ζ

∗)−1M·;ind(ξ)
)
− p′ ≤ 0 ⇔ FΦD;·

(
M·;pop(ζ

∗),M·;ind(ξ)
)
≥ 0. 2

Notice that the equivalence of D- and G-optimal designs is in mixed effects models because

of the correlation structure and the heteroscedasticity of the observation vector generally not

satisfied. Schmelter (2007a) discusses this issue on the example of a straight line regression

model with random slopes. In nonlinear mixed effects models this seems additionally appar-

ent, since the gradient fθ(x) has not necessarily a similar connection to the Fisher information

as in linear models.

For linear optimality criteria the equivalence theorem takes the following form:

Theorem 6.15. (Fedorov (1972)) The population design ζ∗ minimizes ΦL;· on Ξm(M·;pop)

if and only if

gL;·;ζ∗(ξ) := tr
(
M·;pop(ζ

∗)−1LM·;pop(ζ
∗)−1[M·;ind(ξ)−M·;pop(ζ

∗)]
)
≤ 0 for all ξ ∈ Xm.

Proof: Since

FΦL;·

(
M·;pop(ζ

∗),M·;ind(ξ)
)

=
∂

∂ε
tr
(
[(1− ε)M·;pop(ζ

∗) + εM·;ind(ξ)]
−1L

)
|ε=0

= −tr
(
LM·;pop(ζ

∗)−1 ∂

∂ε
[(1− ε)M·;pop(ζ

∗) + εM·;ind(ξ)]M·;pop(ζ
∗)−1

)
= −tr

(
M·;pop(ζ

∗)−1LM·;pop(ζ
∗)−1[M·;ind(ξ)−M·;pop(ζ

∗)]
)
,

the equivalence follows with theorem 6.13:

tr
(
M·;pop(ζ

∗)−1LM·;pop(ζ
∗)−1[M·;ind(ξ)−M·;pop(ζ

∗)]
)
≤ 0

⇔ FΦL;·

(
M·;pop(ζ

∗),M·;ind(ξ)
)
≥ 0. 2

Designs with singular information matrices have to be taken into account for the c-optimality

criterion in linear models. An equivalence theorem based on results of Elfving (1952) was

for certain structures of the information matrices presented by Holland-Letz (2009). Silvey

(1978) states a sufficient condition for the optimality of approximate designs with singu-

lar information matrices. Pukelsheim and Titterington (1983) proved that this condition

yields an equivalence theorem for designs with singular information matrices, which takes

for cθ-optimality in linear mixed effects models the form as in theorem 6.15, however with a

particular generalized inverse of M·;pop(ζ
∗):
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Theorem 6.16. (Silvey (1978)) A design ζ∗ in Ξmcθ(M·;pop) with p′ × p′-information matrix

M·;pop(ζ
∗) of rank r < p′ is cθ-optimal in Ξmcθ(M·;pop) if and only if there exists a p′× (p′− r)

matrix H, such that (
M·;pop(ζ

∗) +HTH
)

is regular and for all ξ ∈ Xm holds

cTθ
(
M·;pop(ζ

∗) +HTH
)−1(

M·;ind(ξ)− [M·;pop(ζ
∗) +HTH]

)(
M·;pop(ζ

∗) +HTH
)−1

cθ ≤ 0.

For regular population designs ζ∗, this equivalence theorems simplifies to theorem 6.15,

as the matrix M·;pop(ζ
∗) is then of rank p′.

Equivalence theorems in mixed effects models can be applied for optimizing population designs

based on the behavior of the functions gD;·;ζ∗ and gL;·;ζ∗ . Some examples on the use of the

equivalence theorems for analytically solving optimal design problems in mixed effects models

can be found under the assumption of known variance parameters σ2 and α in the publications

by Cheng (1995), Graßhoff et al. (2012) or Mielke (2009).

6.2.3 Design Algorithms in Mixed Effects Models

The representation of population designs as approximate designs on the design space Xm

allows the application of the optimization procedures mentioned in the second chapter. The

population design ζn ∈ Ξm is improved by adding weight αn ∈ (0, 1) to an individual design

ξn ∈ Xm fulfilling g·;·;ζn(ξn) > 0:

ζn+1 := (1− αn)ζn + αnδξn .

Typically the individual design ξ∗n with

ξ∗n := argmax
ξ∈Xm

g·;·;ζn(ξ)

is chosen in order to approach the steepest decent. Note that in every step an m-dimensional

optimization problem has to be solved for localizing the optimal individual design ξ∗n. The

algorithm might be quickened by considering other sequences of individual designs ξn.

A second numerical approach is based on the design space and given by ordinary optimization

algorithms minimizing

Φ
(
M·;pop(ζ)

)
→ min

ζ∈Ξ̃m
with Ξ̃m :=

{
X km × [0, 1]k−1,

k−1∑
i=1

ωi ≤ 1

}
,

where the number of supporting individual designs k can be limited by the dimension of the

information matrix with an application of Caratheodory’s theorem:

k ≤ 1

2
p′ × (p′ + 1) + 1.
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Derivatives of optimality criteria and of the approximations M1;ind(ξ) and M2;ind(ξ) of the

Fisher information matrix with respect to the experimental settings can be readily computed,

as was shown on the approximation M1;β of the Fisher information for the parameter vector

β by Mielke (2011a). In comparison to the Fedorov and Wynn algorithms, the there applied

BFGS-algorithm omits the computation of local maxima in each iteration. Weights and de-

sign points in the BFGS-algorithm are updated together in each iteration. This optimization

algorithm might however stop in a local maximum. Equivalence theorems can after conver-

gence of the algorithm be used in order to verify the optimality of designs.

An optimization algorithm based on information matrices instead of designs was proposed

for approximate designs in linear regression models by Gaffke and Heiligers (1996), which

might be generalized to mixed effects models. Note however, that the algorithm returns at

convergence an optimal information matrix and the corresponding design then has to be de-

termined.

Throughout this chapter we assumed the individual sample size to be given by some number

m. One of the biggest problems for the determination of optimal designs in mixed effects

models is this individual sample size. The derivation of optimal individual sample sizes m

depends on cost constraints, physical limitations and ethical considerations. Moreover, the

efficiency of population designs with respect to the invented optimality criteria depends for a

given number of total measurements mT heavily on the number of samples m per individual.

Designs with many observations m >> p on few individuals tend under these settings to be

less efficient for the estimation of the population location parameter than designs with few

observations on many individuals. Another problem is the verification of optimal designs,

which is for big individual sample sizes and convex design regions X not trivial. The optimal-

ity results of Schmelter (2007b) on approximate individual designs might help finding good

initial population designs for arbitrary individual sample sizes m.
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Different approximations of the Fisher information matrix in nonlinear mixed effects models

were discussed in the fifth chapter. In the preceding chapter optimality criteria and equiv-

alence theorems for mixed effects models were derived, which will be applied in the present

chapter for illustrating the influence of different information approximations on designs of

population studies.

Optimal experimental designs in nonlinear mixed effects models are in the literature usually

derived either with the linear mixed effects approximation (e.g. Schmelter (2007a)) or with

the nonlinear heteroscedastic normal approximation as in Retout and Mentré (2003). The

impact of information approximations on the design is however not well discussed in the liter-

ature. Merlé and Tod (2001) and Bazzoli et al. (2009) discuss the appropriateness of certain

approximations, but implications to the design of population studies and comparisons with

other information approximations are not given by the authors. Recently, Mielke (2011a, b)

computes optimal designs and compares the resulting sampling schemes for different approx-

imations in pharmacokinetic models.

Optimal experimental designs are deduced in this chapter for two pharmacokinetic models.

Compartment models are briefly introduced in the first section with the here used information

approximations. Topic of the second section is the one-compartment model without absorp-

tion. Designs are computed for different Fisher information approximations and compared to

the optimal design resulting from a simulation-based approximation of the Fisher informa-

tion matrix. In the third section the impact of information approximations on designs in a

one-compartment model with first-order absorption is examined.

7.1 Compartment Models

Pharmacokinetics describes the absorption, distribution, metabolism and excretion of a drug

in a body. Compartmental models are often applied in order to estimate the time-course of

a drug concentration in a body. Seber and Wild (2003, ch. 8) and Schmelter (2007a) present

the ideas and theory of compartment models, such that we will not go into the details of

compartment-modeling for pharmacokinetic studies. The concentration-time profile in one-

compartment models is defined by the three parameters:

- ka: the absorption rate constant, here β1;
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- Cl: clearance, as the amount of plasma, which is cleared within one unit of time, here β2;

- Vc: the volume of distribution in the central compartment, here β3.

The one-compartment model without absorption is used in pharmacokinetic studies with

intravenous bolus administrations of the drug. The drug is immediately injected into the

compartment, such that the model for the concentration-time profile is given by an exponential

decay depending on an elimination rate ke and the volume Vc of distribution in the central

compartment, where the elimination rate ke is defined in terms of the clearance Cl and the

volume of distribution by

ke =
Cl

Vc
.

The concentration-time profile is given in dependence on the dose D by

η1(β, x) :=
D

β3
exp

(
−β2

β3
x

)
with the location parameter vector β := (β2, β3)T .

Additionally the absorption of the drug in the body has to be taken into account for orally

administered drugs, such that the one compartment model with first order absorption depends

on an absorption rate constant ka. The concentration-time profile is described by the bi-

exponential model:

η2(β, x) :=
Dβ1

β3β1 − β2

[
exp

(
−β2

β3
x

)
− exp (−β1x)

]
, where β := (β1, β2, β3)T .

Observations of the concentration are in general obtained by taking blood samples at a time

x after the drug administration. The observations are influenced by sample-wise varying

errors and individual-wise varying parameter vectors. Complicated variance structures for

the individual observation errors as in Bazzoli et al. (2009) may be assumed. However, we

will restrict ourselves in this chapter to intra-individual models as in Mentré et al. (1997):

Yij = ηk(βi, xij) exp(εij) with εij ∼ N (0, σ2), k = 1, 2,

as even for these simpler error structures no sufficient results are known.

The individual parameter vectors are assumed to be log-normally distributed with

βi;l = βl exp(bi;l), l = 1, 2, 3 where bi = (bi;1, bi;2, bi;3)T ∼ N (0, σ2D), D = diag(d1, d2, d3).

Figure 7.1 illustrates possible time-concentration profiles of six different individuals in the

presented one-compartment models with the according model of the individual parameter

vectors.

The log-concentration Ỹij := log(Yij) follows with β̃i := log(β) + bi and with the response

function

η̃k(β̃i, x) := log
[
ηk
(

exp(β̃i), x
)]
, x ∈ X (7.1)
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Figure 7.1: Concentration-Time profiles in one-compartment models:

Left: η1 - without absorption; Right: η2 - with absorption

a nonlinear mixed effects models as in corollary 5.2. The design matrix is denoted as in

chapter 5 for an exact individual design ξi = (xi1, ..., xim) and with the now vector valued

response function η̃k by

Fβ0(ξi) :=
∂η̃k(β̃i, ξi)

∂β̃Ti
|
β̃i=β0

and the approximation Vβ0 of the variance matrix is given by

σ2Vβ0(ξi) := σ2
(
Imi + Fβ0(ξi)DFβ0(ξi)

T
)
.

We apply the approximations presented in chapter 5 in order to approximate the Fisher

information matrix. The resulting information approximation M1,β is with an application of

corollary 5.2 for the function γ(β) :=
(

log(β1), log(β2), log(β3)
)T

and the matrix

G(β) :=


1
β1

0 0

0 1
β2

0

0 0 1
β3


of the form

M1,β(ξi) =
1

σ2
G(β)Fγ(β)(ξi)

TVγ(β)(ξi)
−1Fγ(β)(ξi)G(β).

The information approximation M2,β for an individual design ξi is derived as described in

section 4.3.2 with an application of a first order Taylor approach:

Ỹi = η̃k(β̃i, ξi) + εi ≈ η̃k
(
γ(β), ξi

)
+ Fγ(β)(ξi)

(
β̃i − γ(β)

)
+ εi,
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and for the model of Ỹi under the assumption of negligible linearization errors follows

Ỹi
app.∼ N

(
η̃k
(
γ(β), ξi

)
, σ2Vγ(β)

(
ξi
))
.

The information approximation is hence of the form

M2,β(ξi) = M1,β(ξi) +
1

2
S(ξi) with

(S(ξi))j,l = tr

[
Vγ(β)(ξi)

−1∂Vγ(β)(ξi)

∂βj
Vγ(β)(ξi)

−1∂Vγ(β)(ξi)

∂βl

]
, j, l = 1, ..., 3.

For the approximations M3,β, M4,β and M5,β the moments of interest generally have to be

approximated numerically. Specially for M3,β and M4,β the function γ(β) has to be taken

into account:

M3,β(ξi) =
1

σ4
G(β)Fγ(β)(ξi)

TVγ(β)(ξi)
−1Cov(Yi)Vγ(β)(ξi)

−1Fγ(β)(ξi)G(β) and

M4,β(ξi) =
1

σ2
G(β)E

[
F
β̃i

(ξi)
TV

β̃i
(ξi)
−1F

β̃i
(ξi)
]
G(β).

The Quasi-information is obtained with the derivatives of the expectation and the variance

matrix of the observation vector:

M5,β(ξi) =
∂E(Yi)

T

∂β
Cov(Yi)

−1∂E(Yi)

∂βT
.

Specific results on locally optimal designs for the introduced information approximations in

two one-compartment models are given in the two following sections.

7.2 One Compartment Without Absorption

The model of the log-concentration in the one compartment model without absorption results

with the transformations of the preceding section for the j-th observation of the i-th individual

in

Ỹij = η̃1(β̃i, xij) + εij

= log(D)− β̃i;3 − xij exp(β̃i;2 − β̃i;3) + εij

where the random effects are assumed to be normally distributed:

β̃i = (β̃i;2, β̃i;3)T ∼ N
(
(log[β2], log[β3])T , σ2diag(d2, d3)

)
and εij ∼ N (0, σ2).

Expectation and variance are for the j-th observation of the i-th individual under experimental

settings xij specified in a closed form by

E(Ỹij) = log(D)− log(β3)− xij
β2

β3
exp

(1

2
σ2(d2 + d3)

)
,

V ar(Ỹij) = σ2(1 + d3) + x2
ij

β2
2

β2
3

exp
(
σ2(d2 + d3)

)(
exp[σ2(d2 + d3)]− 1

)
−2xijσ

2d3
β2

β3
exp

(1

2
σ2(d2 + d3)

)
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and observations within one individual at experimental settings xij and xij′ are correlated:

Cov(Ỹij , Ỹij′) = σ2d3 + xijxij′
β2

2

β2
3

exp
(
σ2(d2 + d3)

)(
exp[σ2(d2 + d3)]− 1

)
−(xij + xij′)σ

2d3
β2

β3
exp

(1

2
σ2(d2 + d3)

)
,

such that the information approximations M3,β and M5,β can be readily calculated.

For analyzing the influence of the approximations on the design, we assume the variance

parameters to be known and optimize the population designs in the model with the numbers

for the parameters as given in Schmelter (2007a, exp. 8.7):

β2 = 25, β3 = 88, σ2 = 0.01, d2 = 12.5, d3 = 9.0.

The individual experimental design in this model describes the time-points xij ∈ X after drug

administration at which blood samples are to be taken from individuals. D- and IMSE-

optimal designs for the information approximations M1,β, M2,β, M3,β and M5,β were nu-

merically derived on the design region X = [0.1, 24] in Mielke (2011a) for individual designs

consisting of m = 1, 2, 3 and 4 observations per individual. D-optimal designs for the approx-

imations M1,β and M5,β can alternatively be analytically constructed for individual sampling

schemes with one observation per individual:

Theorem 7.1. Let the information matrix for an individual design ξ = (x) with x ∈ [xl, xu] ⊆
R be given by

M(x) :=
1

a2 + b2x+ c2x2

(
x2a2

1 xa1(b1 + c1x)

xa1(b1 + c1x) (b1 + c1x)2

)

and let the polynomial v(x) := a2 + b2x + c2x
2 be positive for all x ∈ [xl, xu]. Then every

population design

ζ∗ :=

(
(x1) (x2)

0.5 0.5

)

with support points x1, x2 in [xl, xu] fulfilling

κ(x1, x2) := 2a2 + b2(x1 + x2) + 2c2x1x2 = 0 (7.2)

is D-optimal on Ξ1.

If no such pair of supports points exists, the design ζ∗ with x1 = xl and x2 = xu is D-optimal

on Ξ1.

Proof: Let Mpop(ζ) define the population information for a regular population design ζ and

g̃ζ;D(x) define a modified sensitivity function:

g̃ζ;D(x) := (a2 + b2x+ c2x
2)
(
tr [Mpop(ζ)−1M(x)]− 2

)
‖Mpop(ζ) ‖ .



80 7 Information Approximation and Designs

For D-optimal designs ζ and arbitrary individual designs ξ = (x) ∈ [xl, xu] with information

matrices M(x) holds with theorem 6.14:

tr Mpop(ζ)−1M(x) ≤ 2 ⇐⇒ g̃ζ;D(x) ≤ 0.

Assume that the population designs consists of two different supporting individual designs

(x1) and (x2). Then the optimal weight is 0.5 on each individual design. The modified

sensitivity function results in

g̃ζ;D(x) =
a2

1b
2
1

(
2a2 + 2c2x1x2 + b2(x2 + x1)

)
(x− x2)(x− x1)

2(a2 + b2x1 + c2x2
1)(a2 + b2x1 + c2x2

1)
,

such that the population design with supporting individual designs (xl) and (xu) is D-optimal

if

κ(xl, xu) := 2a2 + 2c2xlxu + b2(xl + xu) ≥ 0.

The following equivalence holds with v(x) := a+ bx+ cx2 > 0 for all x ∈ [xl, xu] in the case

of negative κ(xl, xu):

κ(xl, xu) = 2a2 + 2c2xlxu + b2(xl + xu) < 0⇐⇒ v(xl) + v(xu)− c(xu − xl)2 < 0.

Further note that κ(xl, xl) = 2v(xl) > 0 and that κ(xl, ·) is a continuous function in the

second argument. Hence a point x∗ ∈ (xl, xu] exists with

κ(xl, x
∗) = 0 =⇒ g̃ζ∗;D(x) = 0 ∀x ∈ [xl, xu]

for the population design ζ∗ with weights 0.5 on individual designs (xl) and (x∗). 2

Optimal designs for the approximations M1,β and M5,β with one observation per individual

can with the above theorem easily be constructed as the solutions of the equations

σ2 + σ2Fγ(β)(x1)DFγ(β)(x2)T = 0 for M1,β and

σ2 + Cov(Ỹi1, Ỹi2) = 0 for M5,β.

The Fisher information matrix was approximated in the example of one observation per

individual based on 10000 simulated observations in 1000 different experimental settings on

the design region X = [0.1, 24]. Similarly the matrix M4,β was approximated on the design

region X . The resulting dependences of the components of the information matrices on the

experimental settings are illustrated in figure 7.2. The simulation results were used for a

nonlinear least squares fit of the individual Fisher information matrix Mβ
ind and the matrix

M4,β by a matrix M(x) of the form as in theorem 7.1. The Fisher information matrix is with

a population design

ζ =

(
ξ1 ... ξk
ω1 ... ωk

)
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Figure 7.2: Components of the Fisher information in dependence on the time:

Solid: M1,β; Dashed: M2,β; Light-blue: M3,β; Dark-blue: M4,β; Green: M5,β; Red: Mβ
ind.

for the location parameters β then given by the weighted sum of the individual information

matrices:

Mβ
pop(ζ) =

k∑
i=1

ωiM
β
ind(ξi).

D- and IMSE-optimal designs were computed for the estimated dependence of the informa-

tion matrices on the experimental settings. The resulting designs with one observation per

individual and the D- and IMSE-efficiency in terms of the Fisher information:

δF ;D(ζ) :=

(
‖Mβ

pop(ζ) ‖
‖Mβ

pop(ζ∗) ‖

)1/2

, δF ;IMSE(ζ) :=

(
tr Mβ

pop(ζ∗)−1L

tr Mβ
pop(ζ)−1L

)

are given in table 7.1. The designs in the table were derived numerically. Notice that the

D-optimal designs for the approximations M1,β and M5,β are with theorem 7.1 not uniquely

defined. The design

ζ̃∗1 :=

(
(0.10) ( 4.09)

0.50 0.50

)

is in the class of D-optimal designs with respect to M1,β the most efficient in terms of δF ;D:

δF ;D(ζ̃∗1 ) = 0.9962.

Although the information matrices M2,β and M3,β poorly approximate the Fisher informa-

tion in this example, the resulting designs are not inefficient. The similar dependence of the

components of the information matrix on the experimental settings here causes similar de-

signs and relatively high efficiencies. However, this example shows as well, that designs with

the usual information approximations M1,β and M2,β should be handled with care. As all
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Table 7.1: D- and IMSE-optimal Designs for the proposed information approximations
ζ∗j;D δF ;D(·) ζ∗j;IMSE δF ;IMSE(·)

M1,β

(
(1.13) (11.98)

0.50 0.50

)
0.9336

(
(2.16) (23.82)

0.09 0.91

)
0.9918

M2,β

(
(0.96) ( 6.00)

0.47 0.53

)
0.9264

(
(0.62) ( 9.35)

0.08 0.92

)
0.8953

M3,β

(
(1.70) (24.00)

0.50 0.50

)
0.9136

(
(2.49) (24.00)

0.10 0.90

)
0.9894

M4,β

(
(0.10) ( 2.70) (24.00)

0.35 0.46 0.19

)
0.9871

(
(0.10) (2.70) (24.00)

0.03 0.09 0.88

)
0.9974

M5,β

(
(0.93) (11.99)

0.50 0.50

)
0.9409

(
(1.98) (23.99)

0.10 0.90

)
0.9902

Mβ
ind

(
(0.10) ( 4.10)

0.45 0.55

)
1.0000

(
(0.10) (4.14) (24.00)

0.04 0.11 0.85

)
1.0000

proposed designs are locally optimal designs and based on approximations of the Fisher in-

formation matrix, efficiency in the proposed approximations not necessarily implies efficiency

with respect to the true Fisher information. Possible problems regarding the computation of

the efficiency of approximations of the matrices M4,β and Mβ
ind will be met in the following

example on designs in compartment models with absorption.

7.3 One Compartment With First Order Absorption

In the one compartment model with first order absorption, the j-th observation of the log-

concentration of the i-th individual is modeled by

Ỹij = η̃2(β̃i, xij) + εij

= log(D) + log

(
exp(−x exp[β̃i;2 − β̃i;3])− exp(−x exp[β̃i;1])

exp(β̃i;3)− exp(β̃i;2 − β̃i;1)

)
+ εij .

with normally distributed random variables

β̃i ∼ N
(
(log[β1], log[β2], log[β3]), σ2diag(d1, d2, d3)

)
and εij ∼ N (0, σ2).

Mean and covariance of observations within one individual cannot be represented in a closed

form, what complicates the derivation of the approximations M3,β and M5,β. The Fisher

information matrix Mβ
ind can in the case of one observation per individual again be approx-

imated using simulations. Simulations are also applied for computing the dependence of the

matrices M3,β, M4,β and M5,β on the experimental settings. The results for the components

of the Fisher information in this model are illustrated in figure 7.3 for the numbers given in

Schmelter (2007a, exp. 8.7):

β1 = 0.61, β2 = 25, β3 = 88, σ2 = 0.01, d1 = 89.3, d2 = 12.5, d3 = 9.0.
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Figure 7.3: Components of the Fisher information in dependence on the time:

Solid: M1,β; Dashed: M2,β; Light-blue: M3,β; Dark-blue: M4,β; Green: M5,β; Red: Mβ
ind.
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Table 7.2: D- and IMSE-optimal Designs for the proposed information approximations
ζ∗j;D ζ∗j;IMSE

M1,β

(
(0.10) ( 4.18) (24.00)

0.33 0.33 0.33

) (
(0.10) ( 5.12) (24.00)

0.16 0.16 0.68

)

M2,β

(
(3.10) ( 5.18) (24.00)

0.61 0.09 0.30

) (
(2.98) ( 5.39) (24.00)

0.08 0.25 0.67

)

M3,β

(
(0.10) ( 3.28) ( 4.47) (24.00)

0.21 0.20 0.28 0.31

) (
(0.10) ( 4.80) (24.00)

0.19 0.13 0.68

)

M4,β

(
(2.85) (24.00)

0.41 0.59

) (
(3.26) (24.00)

0.12 0.88

)

M5,β

(
(0.10) ( 4.47) (22.20)

0.32 0.35 0.33

) (
(0.10) ( 4.73) (22.02)

0.16 0.16 0.68

)

Mβ
ind

(
(2.32) ( 6.40) (24.00)

0.61 0.01 0.38

) (
(2.24) (24.00)

0.17 0.83

)

Continuously differentiable quadratic regression splines were fitted to the observed data in

order to approximately describe the dependence of the simulated information matrices on

the experimental settings. With the restriction on continuous approximations of the Fisher

information matrix, the design theory of the preceding chapter is applicable for the derivation

of D- and IMSE-optimal design with one observation per individual. The resulting designs

are given in table 7.2. Table 7.3 illustrates the D- and IMSE-efficiencies of the proposed

designs, compared to each other with the definitions:

δj;D(ζ) :=

(
‖Mj;pop(ζ) ‖
‖Mj;pop(ζ∗j ) ‖

)1/3

, j = 1, ..., 5 , δF ;D(ζ) :=

(
‖Mβ

pop(ζ) ‖
‖Mβ

pop(ζ∗) ‖

)1/3

and

δj;IMSE(ζ) :=

(
tr Mj;pop(ζ

∗)−1L

tr Mj;pop(ζ)−1L

)
, j = 1, ..., 5 , δF ;IMSE(ζ) :=

(
tr Mβ

pop(ζ∗)−1L

tr Mβ
pop(ζ)−1L

)
.

Of special interest are here the designs with respect to the approximation M4,β. The high

efficiency of optimal designs for the approximation M4,β in terms of the simulation based

Fisher information motivates the use of this approximation for the construction of optimal

designs, as already in the preceding section. One disadvantage is however given by the small

number of supporting individual designs, what leads to zero efficiency in terms of the in-

formation approximation M1,β. Although the simulated Fisher information matrix for the

proposed design is positive definite, the estimation cannot be done straightforwardly with the

in 4.2 presented estimators. Another problem is apparent for the spline-approximations. The

resulting information matrices are with the proposed approximations not guaranteed to be

non-negative definite. Negative efficiencies were in the table 7.3 set to zero and highlighted

with an asterisk. All information approximations theoretically provide non-negative definite

matrices, such that the observed failures are based on the simulations and spline approxima-

tions. Note specially, that the true efficiency of the designs ζ∗4;· with respect to the criteria
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Table 7.3: D- and IMSE-efficiencies of the proposed designs

ζ∗1;D ζ∗2;D ζ∗3;D ζ∗4;D ζ∗5;D ζ∗F ;D

δ1;D 1.00 0.66 0.96 0.00 0.97 0.37

δ2;D 0.55 1.00 0.75 0.95 0.59 0.77

δ3;D 0.96 0.79 1.00 0.35 0.94 0.00∗

δ4;D 0.84 0.98 0.91 1.00 0.83 0.98

δ5;D 0.98 0.00∗ 0.90 0.00∗ 1.00 0.53

δF ;D 0.83 0.88 0.87 0.95 0.82 1.00

ζ∗1;IMSE ζ∗2;IMSE ζ∗3;IMSE ζ∗4;IMSE ζ∗5;IMSE ζ∗F ;IMSE

δ1;IMSE 1.00 0.83 0.99 0.00 0.97 0.37

δ2;IMSE 0.85 1.00 0.79 0.68 0.83 0.59

δ3;IMSE 0.99 0.90 1.00 0.03 0.97 0.00∗

δ4;IMSE 0.88 0.91 0.87 1.00 0.87 0.98

δ5;IMSE 0.95 0.13 0.95 0.00∗ 1.00 0.00∗

δF ;IMSE 0.91 0.87 0.90 0.95 0.86 1.00

of the approximations M1,β, M3,β and M5,β is equal to zero, as these approximations are

defined as products of matrices with rank one.

The approximations M1,β and M2,β are usually applied for optimizing experimental designs

in the literature. Although the supporting individual designs and optimal weights for the

approximations M1,β and M2,β differ, the comparison of the presented results shows no big

difference in the efficiency with respect to the Fisher information.

Similar considerations might be undertaken for bigger individual sampling schemes m > 1.

The computational effort for accurate approximations of the dependence of the Fisher infor-

mation matrix on the experimental settings makes the problem for growing individual sample

sizes m however intractable. The computation of the matrix M4,β is less complex than the

computation of the Fisher information matrix, but the approximation of the dependence of

M4,β on the experimental settings is for big individual sample sizes also not readily possible.

The problematic term in the derivation of the information approximation M3,β and the quasi

information matrix M5,β is given by the covariance matrix of the observation vector. Even

for individual sample sizes m > 3 only the covariance of pairs of observations has to be ap-

proximated for gaining an insight in the dependence of the matrix M3,β on the experimental

settings. For the quasi-information M5,β additionally the derivative of the expectation has

to be calculated, such that both approximations might be applied for optimizing designs.

The big benefit of the approximations M1,β and M2,β remains their closed from dependence

on the experimental settings, which readily allows the computation of optimal designs. The
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most efficient designs in terms of the simulated Fisher information were however obtained

with the novel approximation M4,β. Both examples show that efficiencies of derived opti-

mal designs can and should be compared with respect to an evaluated Fisher information

under the according experimental settings, in order to gain more insight in the quality of the

proposed designs.



8 Discussion and Outlook

Locally optimal experimental designs for the estimation of population parameters in models

with nonlinear mixed effects were introduced and discussed within this thesis. The presented

results were however bound to some prior knowledge of the parameters of interest, such that

derived design might be inefficient, when the parameters are not correctly specified in the

planning stage of the experiment. Different approaches on optimal designs of experiments are

briefly described in this chapter before a short summary and discussion of the derived results

closes this thesis.

8.1 Further Considerations

Aim of this thesis was the construction of optimal designs in nonlinear mixed effects models.

Different approximations of the Fisher information matrix were proposed in order to approach

this aim. These approximations were mainly based on the assumptions of normally distributed

random effects with known variances and some prior knowledge of the true location parameter

β. All these assumptions are in practice not necessarily fulfilled and should be taken into

account when designing experiments.

Information for the Variance parameters

The design optimization in mixed effects models was for known variance parameters based

on p × p information matrices with the dimension p of the parameter vector β. In chapter

6 it was stated that the whole information matrix has to be taken into account for planning

experiments in the case of unknown variance parameters. We here approximated the Fisher

information for the variance parameters by the information matrix resulting from linear mixed

effects models. The construction of optimal designs for the estimation of aspects of the

parameter vector β then simplifies with the block-diagonality of the given approximation to

the design problem with respect to the reduced information matrix of the case with known

variance parameters. Although estimators for θ = (βT , σ2, αT )T with the desired block-

diagonal structure of the information matrix might exist, further work is needed in order to

gain more insight in the Fisher information for the variance parameters.

One particular approximation of the Fisher information matrix without this block-diagonal

structure is given by the nonlinear heteroscedastic normal model approximation as presented

in section 4.3.2. Optimal designs for the estimation of β in the case of unknown variance



88 8 Discussion and Outlook

parameters then depend on the whole information matrix. The DA-optimal design with

AT = (Ip, 0) for the estimation of β in the case of unknown variance parameters results in

the example of the one-compartment model without absorption in chapter 7 in:

ζ∗DA;2 :=

(
(0.10) (2.30) (24.00)

0.33 0.36 0.31

)

and hence differs from the optimal design in the case of known variance parameters:

ζ∗D;2 :=

(
(0.96) (6.00)

0.47 0.53

)
.

The efficiencies of both designs are calculated as 0.93 in comparison to each other. Further

studies and approximations on the off-diagonal elements of the Fisher information are for

the construction of optimal designs in nonlinear mixed effects models with unknown variance

parameters of big interest.

Local Optimality

One problem for the here studied locally optimal designs of experiments in nonlinear models

is the dependence of the information matrices on the prior unknown parameters θ. Bayesian

and minimax approaches might alternatively be applied in order to compute designs, which

are more robust with respect to parameter misspecifications. The uncertainty on the true

value of the parameter θ is modeled in Bayesian optimality criteria with the help of probabil-

ity distributions (Pronzato and Walter (1985)). Schmelter (2007a) briefly describes different

possible optimality criteria for the construction of Bayesian optimal designs. Minimax ap-

proaches are applied in order to minimize the maximum value of a criterion over a set of

possible parameter values. The main problem for both approaches remains the missing closed

form representation of the Fisher information. For the construction of locally optimal designs

the functional dependence of the Fisher information on the design settings was of interest.

Insight in the dependence of the information matrices on the parameter values is additionally

needed for optimally designing experiments with Bayesian and minimax approaches. This

closed form relationship is in nonlinear mixed effects models generally only given by the in-

formation approximations M1,β and M2,β.

Often some prior knowledge on the true underlying distribution of the individual parameters

is present in clinical trials. A third alternative for reducing the loss of efficiency in the case of

misspecified parameter values is given by adaptively designed studies. The study designs are

then stage-wise applied and optimized, making it possible to use estimation results of earlier

study stages for the design of recent stages. Problems for adaptive designs in nonlinear mixed

effects models are given by the non-satisfactory knowledge of the distribution of estimates

in the case of bounded samples sizes and by the individual wise varying parameter vectors,

which imply correlated observations within each individual. Examinations of the convergence

behavior of estimators in stage-wise planned designs are necessary for the study of adaptive

designs in nonlinear mixed effects models.
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Locally optimal designs propose the observation of different individuals under certain spec-

ified experimental settings. It is practically not possible to take samples exactly under the

designed settings and it will be generally not possible to observe all individuals the same

number of times. Pronzato (2002) includes random effects in the design settings in order to

address the uncertainty on the exact experimental settings, whereas Bogacka et al. (2008)

propose the construction of sampling windows, which are based on the sensitivity function of

D-optimal designs. Other approaches on sampling windows are based on a prior defined effi-

ciency which is to be achieved with respect to locally optimal designs (Duffull et al. (2001)).

Optimal sampling windows for nonlinear mixed effects models can be constructed with the

proposed information approximations M1,β and M2,β. Considerations for the other here pre-

sented information approximations and studies on the appropriateness of different sampling

window approaches should be undertaken in order to design studies more robust with respect

to the realized sampling times.

Further Approximations

The problem of the missing closed form representation of the Fisher information for the de-

sign of experiments in nonlinear mixed effects models was in this work circumvented by the

use of different approximations of the Fisher information matrix. The computed designs for

different approximations were relatively efficient, although no proposed information matrix

approximated the Fisher information matrix entirely well. The presented approximations

were mainly based on the normality of the random effects, such that further considerations

on the quality of approximations in models with other than normal distributions would be of

interest. Insight in the quasi-information M5,β is for general models of the observation vector

Y desired, as it is not based on distributional assumptions, but on the first two moments of

the observation vector Y , making it more robust with respect to distribution misspecifica-

tions. Another problem was given in chapter 7.3 by the missing closed form representations

of the information approximations M3,β, M4,β and M5,β. Reliable analytical approximations

of these matrices should be derived and examined for the construction of locally and Bayesian

optimal designs with respect to these approximations.

8.2 Summary and Discussion

The foundations of the optimal design theory in mixed effects models were built in the second

chapter with the introduction on optimal experimental designs in ordinary regression models.

This topic is well developed in the literature and generalizations of the design theory from or-

dinary regression models to linear mixed effects models readily follow with the considerations

in Schmelter (2007a) and the equivalence theorems of Fedorov (1972, ch. 5). The linear mixed

effects model results as a linear model with a special covariance structure, making it possible

to apply the same estimation theory as in ordinary linear models. A similar generalization of

nonlinear models to nonlinear mixed effects models unfortunately does not hold. The proper-

ties of estimators in nonlinear mixed effects models with bounded individual sample sizes are

not sufficiently known, such that the Fisher information is of interest for optimally planning



90 8 Discussion and Outlook

experiments, which however cannot be represented in a closed form in the examined models.

Linearizations of the model are in the literature usually applied in order to transform the

complicated nonlinear mixed effects models, to models of a simpler structure, such as lin-

ear mixed effects (Schmelter (2007a)) or nonlinear normal models with heteroscedastic errors

(Retout and Mentré (2003)). The Fisher information in the resulting models is then used for

the construction of optimal designs. Examples in section 4.3 and in the publication by Mielke

and Schwabe (2010) illustrated the difference of in the literature proposed approximations

and motivated further studies on the behavior of the Fisher information matrix in nonlinear

mixed effects models.

The representation of the Fisher information as the covariance of the conditional expectation

for given observations implied in chapter 5 novel approximations of the Fisher information

matrix in nonlinear mixed effects models. Five different approximations of the Fisher infor-

mation matrix in nonlinear mixed effects models with individual observation vectors:

Yi = η(βi, ξi) + εi,

exact individual designs ξi = (xi1, ..., ximi) ∈ Xmi and normally distributed random effects

βi ∼ N (β, σ2D), εi ∼ N (0, σ2Imi),

were examined in the following. The design matrix Fβ and the linear approximation of the

covariance matrix of the observation vector Yi were defined by

Fβ :=
∂η(βi, ξi)

∂βTi
|βi=β and Vβ := Imi + FβDF

T
β .

An example on the sum of a log-normally and a normally distributed random variable pro-

vided some insight in the accuracy of the proposed approximations in dependence on the

variance parameters in section 5.3. The generalization of the design theory in chapter 6 to

mixed effects models allowed the application of the convex design theory for the introduced

approximations in two pharmacokinetic models in the seventh chapter. All approximations

implied in these examples relatively efficient designs when compared to a simulation based

Fisher information matrix. Differences where however given by the specification of the de-

pendence of the approximations on the experimental settings and model parameters, what

carries forward to the applicability of the approximations in studies with more observations.

Approximation M1,β

The approximation M1,β is probably the most frequently used approximation in the literature

on designs of experiments in nonlinear mixed effects models. The matrix

M1,β :=
1

σ2
F Tβ V

−1
β Fβ

results either as the Fisher information matrix of an approximating linear mixed effects model

or as an approximation of the Fisher information via an approximation of the expectation

of the conditional variance of individual parameter vectors for given observations. The big



8.2 Summary and Discussion 91

benefit of this approximation is the known dependence of the matrix M1,β on the experimen-

tal settings and the parameter vector θ, such that the convex design theory can be readily

applied for the design construction. In section 5.3 it could be seen that the accuracy of the

approximation might be not entirely satisfying in dependence on the inter-individual vari-

ance matrix. Therefor, the Fisher information was not overestimated and in dependence on

the value of the location parameter vector reasonable approximations were obtained. Small

problems occurred in an example on a singular inter-individual variance matrix in section

5.4, where the Fisher information matrix was correctly specified by the approximation M2,β.

The limiting behavior of M1,β for big inter-individual variances coincides for positive definite

inter-individual variance matrices with the behavior of the Fisher information, what was ev-

ident with the construction of an upper bound of the Fisher information matrix.

Approximation M2,β

The approximation M2,β is based on a linearization of the model function and the assump-

tions of negligible linearization errors, which shall imply the normality of the observation

vector:

M2,β(ξi) := M1,β(ξi) +
1

2
S(ξi) with

(S(ξi))j,k = tr

[
Vγ(β)(ξi)

−1∂Vγ(β)(ξi)

∂βj
Vγ(β)(ξi)

−1∂Vγ(β)(ξi)

∂βk

]
, j, k = 1, ..., p.

The limiting behavior of the approximation does generally not coincide with that of the

Fisher information matrix. An example by Mielke and Schwabe (2010) and the example in

section 5.3 illustrated this problem, which carries forward to the overestimation of the Fisher

information, as illustrated in the plots of the dependence of the Fisher information on the

experimental settings in chapter 7. Note that the additional matrix term 1
2S is a consequence

of the assumed normality of the observation vector Yi and the dependence of the linearized

variance matrix Vβ on the population parameter vector β. Two misspecifications of the model

are hence committed in order to increase the information by the term 1
2S. The information

approximation M2,β is nevertheless of big interest for design purposes, as the dependence on

the experimental settings and parameters is given in a closed form, what makes the design

theory readily applicable.

Approximation M3,β

The approximation M3,β was motivated as an approximation of the variance of the conditional

expectation of the individual parameters for given observations:

M3,β :=
1

σ4
F Tβ V

−1
β Cov(Yi)V

−1
β Fβ.

The results for the approximation M3,β in the presented example of section 5.3 where not sat-

isfactory. The divergence of the approximation M3,β in dependence on the inter-individual

variance caused a complete misspecification of the asymptotic behavior of the true Fisher

information. Further inaccuracies of the approximation were obvious in the examples on

pharmacokinetic models, what however did not lead to inefficient designs in these examples.
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An additional problem is given by the missing closed form representation of the matrix M3,β in

the case of a one compartment model with absorption. The approximations of the matrix by

regression splines did not solve this problem entirely. Although designs could be constructed

with the so calculated dependence of the information on the experimental settings, new prob-

lems occurred as the resulting information matrices were not necessarily non-negative definite.

For the construction of optimal designs in nonlinear mixed effects models we hence do not

recommend to use only the matrix M3,β.

Approximation M4,β

Two possible motivations were given for the approximation M4,β:

M4,β :=
1

σ2
E(F TβiV

−1
βi
Fβi).

The matrix M4,β follows as an approximation of the expectation of the conditional variance

of individual parameter vectors for given observations. Otherwise it was mentioned, that the

matrix M4,β behaves similar to the theoretical information matrix of two-stage and Lindstrom

and Bates estimators in nonlinear mixed effects models. The approximation M4,β modeled the

behavior of the Fisher information matrix in dependence on the variance and the experimental

settings in all presented examples relatively well. Two problems were however evident when

working with the matrix M4,β. The Fisher information was overestimated in some cases and

no closed form representation of the dependence of the approximation on the experimental

settings or the parameter vector exists, what complicates the constructions of optimal designs.

Optimal designs were computed in the examples on pharmacokinetic models with the help

of simulation based approximations of the matrix M4,β and resulted in both examples as

the most efficient designs in terms of the computed Fisher information matrix. Despite this

efficiency with respect to the Fisher information, further problems occurred with respect to

the information matrices M1,β, M3,β and M5,β in the example of a one compartment model

with absorption. The number of different supporting individual designs of the optimal design

with respect to M4,β fell below the number of parameters to be estimated, such that the

estimation might be problematic with these sparse sampling schemes. Further note that

the approximation of the dependence of the matrix M4,β on the experimental settings is for

big individual sample sizes not easily done. Numerical algorithms for the computation of

optimal designs can however circumvent this problem of the missing complete knowledge of

the functional dependence of M4,β on the design settings.

Approximation M5,β

The quasi-information was briefly described in section 5.3 and motivated the approximation

M5,β :=
∂E(Yi)

T

∂β
Cov(Yi)

−1∂E(Yi)

∂βT
.

The theory on quasi-likelihood estimation in nonlinear mixed effects models is not well de-

veloped and further studies are needed in order to verify the asymptotic theory on quasi-

likelihood estimators in nonlinear mixed effects models. The quasi-likelihood estimation goes
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here back to an iteratively reweighted nonlinear least squares problem for a vector of obser-

vations Y = (Y T
1 , ..., Y

T
N )T with realizations y = (yT1 , ..., y

T
N )T :

LQL(β; y) :=
N∑
i=1

(yi − Eβ(Yi))
TCovβ0(Yi)

−1(yi − Eβ(Yi))→ min
β∈Rp

,

where β0 is chosen as the minimizing argument β̂. The quasi-information M5,β serves with

the asymptotic results on nonlinear least squares estimators and the unbiasedness of the es-

timating equation as a lower bound of the Fisher information matrix and is hence for the

construction of optimal designs of interest. The generally missing closed form representation

of the information matrix M5,β as a function of the experimental settings is here not as prob-

lematic as for the matrix M4,β. Only the covariance function of two observations and the

derivative of the mean with respect to the individual parameter vectors have to be approxi-

mated in order to specify a dependence of the matrix M5,β on arbitrary experimental designs

ξ ∈ Xm. The quasi-information provided in the presented examples reasonable approxima-

tions of the simulation based Fisher information matrix. Moreover, the quasi-information is

of big interest for planning experimental designs in nonlinear mixed effects models, as it is not

based on the normality of the random effects and might be hence more robust with respect

to distribution misspecifications.

The Fisher information Mβ
·

The examples in section 5.3 and chapter 7 illustrated the influence of the variance parameters

and the experimental settings on the Fisher information matrix. Optimal designs could be

constructed for samples sizes of one observation per individual with the help of simulations

in chapter 7. The results might theoretically be generalized to bigger individual sample sizes,

what is practically relatively intractable. The computational burden for the evaluation of the

Fisher information and approximation of its dependence on the experimental settings grows

quickly with the individual sample size, such that optimal designs with respect to the true

Fisher information remain an unsolved area of interest for future studies. However, the Fisher

information can be used as a benchmark for the computation of efficient designs in nonlin-

ear mixed effects models. Optimal designs for different information approximations should

be compared with respect to the computed Fisher information matrix in order to determine

efficient sampling schemes.

Although no overall optimal approximation was presented in this thesis, new motivations for

approximations and more insight in the Fisher information in nonlinear mixed effects mod-

els were given. All approximations provided in the illustrative examples relatively efficient

designs. Specially the resulting approximations and designs with respect to the novel approx-

imation M4,β show great promise for the computation of experimental designs in nonlinear

mixed effects models. We recommend the construction of optimal designs with the here pre-

sented approximations and the comparison of resulting candidate designs with respect to a

common criteria.
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Nomenclature

X design region 5

x; xj ; xij elements of the design region 5

Ξm set of approximate designs on Xm 64

mi; m individual sample size 6

mT total sample size 21

N number of individuals 17

ξi individual design i 23

ζ population design 24

δξ one-point measure on ξ ∈ Xm 10

ωi weight of design settings i in approximate designs 10

ε; εi observation errors 5

Y vector of all observations 6

Yi vector of observations in the i-th individual 18

Yij j-th observation in the i-th individual 17

E(·); E(·|∗) expectation of · (conditional on given ∗) 6

Cov(·); Cov(·|∗) covariance matrix of · (conditional on given ∗) 6

η response function 5

l̃(βi, θ; yi) penalized sum of squares 30

L·(·; y) least squares objective functions 6

L(θ; y); l(θ; y) (log)-likelihood function 8

Fβ0(ξ) design matrix evaluated at design ξ and βi = β0 7

Im m-dimensional identity matrix 6

Vβ := Im + F Tβ DFβ covariance matrix in the linearized model 18

β (population) location parameter vector 18
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βi location parameter vector of i-th individual 18

βi;l l-th component of the vector βi 18

bi individual random effects 18

β̂· estimator for β 6

β̂·,i; β̂i estimator for βi 20

β∗i penalized least squares estimate for βi 34

σ2 variance of observation errors 5

σ2D variance of individual parameter vectors 18

α ν-dimensional parameterization of D 21

θ = (βT , σ2, αT ) whole parameter vector 21

σ̂2; σ̂2D; α̂ estimates of variance parameters 21

ψ; ψ̂ linear aspect of β and estimate 7

Φ· optimality criterion 11

FΦ·(·, ·) Fréchet derivative 14

g·(·) sensitivity function 15

φ density of the normal distribution 30

a
app.∼ N(·, ·) distribution of a is approximated by a normal distribution 33

M Fisher information matrix 8

Mpop normalized population Fisher information matrix 25

Mind individual Fisher information matrix 25

Mβ
ind individual Fisher information matrix for the parameter vector β 42

M
β̂i

approximation of the conditional variance 49

M not necessarily closer specified information matrices 10

M1,β approximation of the individual Fisher information for β 36

M2,β approximation of the individual Fisher information for β 37

M3,β approximation of the individual Fisher information for β 51

M4,β approximation of the individual Fisher information for β 52

M5,β approximation of the individual Fisher information for β 55
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