
JAVADAPTOR: Unrestricted Dynamic
Updates of Java Applications

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von Dipl.-Inform. Mario Pukall

geb. am 4. September 1978 in Salzwedel

Gutachter:
Prof. Dr. Gunter Saake
Prof. Dr. Walter Cazzola
Prof. Dr. Uwe Aßmann

Ort und Datum des Promotionskolloquiums Magdeburg, den 22.03.2012

Pukall, Mario:
JavAdaptor: Unrestricted Dynamic Updates of Java Applications
Dissertation, Otto-von-Guericke-Universität
Magdeburg, Germany, 2012.

Abstract

Software is changed frequently during its life cycle. New requirements come and bugs must
be fixed. To update a deployed application, it usually must be stopped, patched, and restarted.
This update strategy causes different problems. For instance, frequent program restarts to
test newly added functionality or debug applications consume time and thus render software
development processes ineffective. Another issue is that the application and its provided
services are unavailable during the update. This conflicts with highly available applications,
because downtimes of those applications are usually costly.

Because of the described problems, we aim at another update strategy – namely dynamic
software updates. The idea of dynamic software updates is to update applications during
their execution, which prevents time consuming restarts and costly service downtimes.

There is a large body of research on dynamic software updates, but so far, existing
approaches are too restrictive. Some of them are inflexible (i.e., they do not support all
updates that are possible with program updates based on restarts), whereas others cause
significant performance penalties, require specific runtime environments, dictate the program
architecture, or offer coarse-grained updates only. With the arrival of virtual machines,
which abstract the runtime environment from the operating system and thus offer new
starting points for the development of DSU approaches, the situation slightly relaxed and less
restrictive approaches came up. However, unrestricted dynamic software updates remain to
be provided only by dynamically typed languages (which are less performant than statically
typed languages), whereas DSU approaches for statically typed languages are still restrictive.

With this work, we present JAVADAPTOR, the first dynamic software update approach
based on statically typed Java, which is highly flexible, performant, platform independent,
architecture independent, and applies updates at a fine level of granularity. Conceptually,
JAVADAPTOR combines schema changing class reloadings with caller updates through Java
HotSwap, containers, and proxies. We detail the concepts and implementation of JAVADAP-
TOR. In addition, we demonstrate the practicability of JAVADAPTOR with different non-trivial
case studies. We further evaluate whether JAVADAPTOR fulfills the above mentioned criteria.
That is, we analyze whether JAVADAPTOR hits the targeted high level of update flexibility, is
performant, does not cause platform or architecture dependencies, and performs updates at a
fine granularity level.

iii

Zusammenfassung

Computerprogramme unterliegen während ihres Lebenszyklus ständigen Änderungen. Häu-
fig müssen neue Anforderungen erfüllt oder Fehler beseitigt werden. Zum Ändern des
Programms, muss dieses gestoppt, aktualisiert und neu gestartet werden. Aus dieser Art
der Programmaktualisierung ergeben sich vielfältige Probleme. Auf der einen Seite senken
zeitaufwendige Neustarts, zum Testen hinzugefügter Funktionen oder zur Fehlerbeseitigung,
die Effizienz des Entwicklungsprozesses. Auf der anderen Seite beeinträchtigt diese Form
der Aktualisierung die Verfügbarkeit des Programms und der durch das Programm bereit-
gestellten Dienste, was insbesondere in Bezug auf hochverfügbare Systeme problematisch
ist, da deren Ausfall oft hohe Kosten verursacht.

Aufgrund der genannten Probleme, zielt die vorliegende Arbeit auf Lösungsansätze ab,
die keinen Programmneustart erfordern und die Verfügbarkeit nicht einschränken. Genauer
beschäftigt sich die Arbeit mit Lösungen, die die Aktualisierung von Programmen zur
Laufzeit ermöglichen.

Wenngleich zu diesem Thema bereits viele verschiedene Lösungen existieren, so sind
diese zumeist mehr oder weniger starken Einschränkungen unterlegen. Einige der Lösun-
gen sind nicht flexibel genug, um alle Programmänderungen, die mittels Neustart möglich
sind, zu bewerkstelligen. Andere Ansätze wiederum verlangsamen zumeist deutlich die
Programmausführung, verursachen Plattformabhängigkeiten, sind nicht zu allen Programmar-
chitekturen kompatibel oder erfordern den (ineffizienten) Austausch großer Programmteile.
Mit der Einführung virtueller Maschinen änderten sich die Vorraussetzungen und weniger
eingeschränkte Lösungen kamen auf. Nichtsdestotrotz bieten bisher nur dynamische Pro-
grammiersprachen die Möglichkeit zur uneingeschränkten Laufzeitaktualisierung von Pro-
grammen (wobei dynamische Sprachen im Vergleich zu statisch getypten Sprachen eine
geringere Performanz aufweisen). Statisch getypte Sprachen unterliegen diesbezüglich
weiterhin nicht zu unterschätzenden Einschränkungen.

In dieser Arbeit wird mit JAVADAPTOR ein Ansatz präsentiert, der die statisch getypte
Programmiersprache Java um die Möglichkeit erweitert, Programme zur Laufzeit und ohne
die genannten Einschränkungen zu aktualisieren. Das vorgestellte Konzept kombiniert das
schemaverändernde Nachladen von Klassen mit Referenzaktualisierungen auf der Basis
von Java HotSwap, Containern und Proxies. Zentrale Beiträge der Arbeit sind detaillierte
Beschreibungen der Konzepte und deren Implementierung, sowie der Nachweis der Prax-

v

istauglichkeit der Lösung anhand verschiedener Fallstudien. Weiterhin wird untersucht,
ob die präsentierte Lösung Einschränkungen bezüglich Flexibilität, Performanz, Plattform,
Programmarchitektur oder Änderungsgranularität unterliegt.

vi

Acknowledgement

Doing good research and finally sum up the research results within a doctoral thesis means
a lot of hard work. You have to solve many issues, which is often fun but sometimes pain.
During my journey to this thesis, I got a lot of help from many different people.

First of all, I would like to thank my family for their support. Especially, I thank my
beloved wife Ivonne and our beloved son Marek. Your love gave me the power to pursue my
big goal. I further thank my parents and my sister for believing in me and supporting me and
my little family when times were tough.

Moreover, I thank my best friends Michael Soffner, Lothar Schlesier, Stephan Vornholt,
Karin Ranft, Jan Erdtmann, and Alexander Seitz. Laughing with you always cheered me up
and helped me to relax and recover.

Next, I would like to thank Gunter Saake, who was always in when advice was needed or
when my position was at risk.

I also owe a lot to Walter Cazzola, who partly founded me and gave me valuable advice as
well. Thank you for your support.

The here presented work consists of many different partial solutions which, put together,
result in a dynamic software update approach with high practical and scientific relevance.
The resulting tool, i.e., JAVADAPTOR, would have been not as half as good without the
help of my students Alexander Grebhahn and Reimar Schröter. Thank you for intensive
discussions and for helping me with the implementation of JAVADAPTOR.

Furthermore, I thank Christian Kästner, who gave me a lot of invaluable feedback on my
research and helped to improve not only my papers, but also this thesis.

Finally, I thank all my colleagues for their support/advice and for treating me as one of
theirs. I simply could not ask for better colleagues.

vii

Contents

Contents ix

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1

1.1 Exploratory Focus . 2

1.2 Goals . 3

1.2.1 Flexibility . 3

1.2.2 Performance . 5

1.2.3 Platform Independence . 5

1.2.4 Architecture Independence . 6

1.2.5 Update Granularity . 6

1.2.6 Other Criteria . 7

1.3 Contributions . 7

1.4 Thesis Structure . 8

2 Dynamic Software Updates 11

2.1 Terms and Definition . 11

2.2 Dynamic Software Updates vs. Type System 12

2.3 The Java Virtual Machine . 14

2.3.1 Architecture . 14

2.3.2 Class Loading . 15

2.4 Dynamic Software Updates and the JVM 17

2.4.1 Java HotSwap . 18

2.4.2 Java Platform Debugger Architecture 21

2.5 Summary . 22

ix

CONTENTS

3 Concepts of JAVADAPTOR 25

3.1 A Running Example: Weather Station . 25

3.2 Architectural Design of JAVADAPTOR . 26

3.3 Updates without Affecting the Class Schema 27

3.4 Class Reloading . 28

3.5 Reference Updates . 29

3.5.1 Caller-Side Detection . 29

3.5.2 State Mapping . 29

3.5.3 Class References and References to Local Variables 31

3.5.4 References to Long-Living Objects 31

3.6 Concurrent Updates of Multiple Classes 34

3.7 Special Cases . 35

3.7.1 Inheritance Hierarchies . 35

3.7.2 Nested Classes . 37

3.8 Summary . 39

4 Implementation 41

4.1 Tool Description . 42

4.2 Applied Libraries . 43

4.3 Overview . 44

4.4 Application Preparation . 45

4.5 Class Update Preparation . 48

4.5.1 Identification of Changed Classes 48

4.5.2 Identification of Classes with Changed Schemas 50

4.5.3 Class Reference Identification . 53

4.6 Class Update Proceeding . 55

4.6.1 Declaration Updates . 55

4.6.2 Container Creation Phase . 58

4.6.3 Proxy Creation Phase . 59

4.6.4 Method Body Definition Updates 60

4.6.5 Class Reloading and HotSwapping 64

4.7 State Mapping Preparation . 65

4.8 State Mapping Proceeding . 68

4.8.1 State Mapping . 69

4.8.2 State Update of Referring Program Parts 70

4.9 Summary . 74

x

CONTENTS

5 Evaluation 75

5.1 Case Studies . 75
5.1.1 HyperSQL . 75
5.1.2 Snake . 78
5.1.3 Refactorings . 79

5.2 Performance . 82
5.2.1 Statistical Significance . 83
5.2.2 Execution Speed . 83
5.2.3 Update Speed . 88

5.3 Platform Independence . 89
5.4 Architecture Independence . 90
5.5 Memory Consumption . 91
5.6 Summary . 92

6 Enhancements and Optimizations 93

6.1 Update-Speed Improvements . 93
6.2 Solutions Toward Consistent Program Updates 97

6.2.1 Thread-Safe Updates . 97
6.2.2 State-Loss Prevention . 98
6.2.3 Handling of Binary-Incompatible Updates 102
6.2.4 Reflection Support . 104

6.3 Bridging the Gap between Practicability and Consistency 104
6.4 Application to other Languages . 105
6.5 Discussion . 105
6.6 Summary . 106

7 Related Work 107

7.1 Dynamic Software Updates for Java . 107
7.1.1 Language Level . 107
7.1.2 JVM Patches . 114

7.2 DSU Across Different Languages . 115
7.3 Summary . 118

8 Summary and Concluding Remarks 119

8.1 Summary . 119
8.2 Contributions . 120
8.3 Conclusion and Outlook . 122

Bibliography 125

xi

List of Figures

2.1 The internal architecture of the Java Virtual Machine. 15
2.2 Class loading. 16
2.3 Class loader hierarchy. 16
2.4 Internal class object representation. 19
2.5 Java HotSwap mechanism. 20
2.6 Java Platform Debugger Architecture. 22

3.1 Running example. 26
3.2 The architectural design of JAVADAPTOR. 27
3.3 Updates solely using Java HotSwap. 28
3.4 Class renaming. 28
3.5 Caller-side updates regarding references to classes and local variables. . . . 31
3.6 Reference updates through containers. 32
3.7 Schema-preservation through proxies. 33
3.8 Concurrent multiple class updates. 35
3.9 Implicit inheritance hierarchy updates. 35
3.10 Explicit inheritance hierarchy changes. 36
3.11 Inheritance hierarchies and reference updates. 37
3.12 Dynamic updates of nested classes. 38

4.1 Usage of JAVADAPTOR. 42
4.2 Architecture of JAVADAPTOR. 43
4.3 Overview of JAVADAPTOR. 44
4.4 Prestart application preparation. 46
4.5 JAVADAPTOR specific standard class modifications. 47
4.6 Identification of changed classes. 49
4.7 Test class for schema change. 50
4.8 Identify class references. 54
4.9 Update of class, field, and method declarations. 56
4.10 Class versioning. 57
4.11 Container class creation. 58

xiii

LIST OF FIGURES

4.12 Proxy class creation. 59
4.13 Update process of method body definitions. 61
4.14 Bytecode modifications processed by ExpressionEditor. 62
4.15 Application of the program update. 65
4.16 Gain mapping information. 66
4.17 State mapping of ¬hotswappable classes. 68
4.18 Assignment of new instances to referring classes/instances. 71
4.19 Subprocess "Reassign caller field value". 72

5.1 Dynamic update of Snake. 78
5.2 Method execution times in the presence of proxies. 85
5.3 Method execution times in the presence of proxies and workload. 86
5.4 Recurring class reloadings and subclass resolution. 87
5.5 HyperSQL: Update speed. 88
5.6 Memory consumption vs. recurring updates. 91

6.1 Lazy state mapping. 94
6.2 Update speed HyperSQL: Lazy vs. busy state mapping. 95
6.3 Update speed dependent on the number of objects to be updated. 96
6.4 Deadlocks because of dynamic software updates. 98
6.5 Deadlock prevention through shared synchronization objects. 99
6.6 State losses because of dynamic software updates. 100
6.7 State-loss prevention. 101
6.8 Binary-incompatible updates. 102
6.9 Support for binary-incompatible updates. 103

7.1 Object wrapping. 108
7.2 Caller update. 108
7.3 Wrapping of long-living objects. 109

xiv

List of Tables

1.1 Language constructs of Java 1.6. 4

2.1 Type system impact on dynamic software updates. 13

5.1 HyperSQL: Required class reloadings because of schema changes. 76
5.2 Runtime refactorings using JAVADAPTOR. 82
5.3 Tested platforms. 90

7.1 Comparison: JAVADAPTOR vs. related work. 117

xv

List of Abbreviations

DSU Dynamic Software Updates

JVM Java Virtual Machine

OS Operating System

JPDA Java Platform Debugger Architecture

JVMTI Java Virtual Machine Tool Interface

JDWP Java Debug Wire Protocol

JDI Java Debug Interface

JIT just-in-time

xvii

1 Introduction

When thinking about software development and software maintenance there is just one
thing which is predictable – alteration. Once a program goes live and works in productive
mode its development is not completed. Well-known reasons for program updates are new
requirements and incorrect program code. To update a program, it is usually necessary to
stop the program, apply a patch and to start it again. Unfortunately, this software update
strategy causes different problems.

A major problem is, that frequent program restarts to test newly added functionality and to
debug applications consume time and thus render software development processes ineffective.
However, applying updates through application restarts is not only a pain regarding software
development, but also regarding software execution. What is characteristically for the
described update strategy is that the application and its provided services are unavailable
during the update. The problem is that unavailability conflicts with applications which
must be highly available, e.g., security applications, web applications, and banking systems.
Downtimes of those applications are usually costly. Furthermore, updates through restarts
cause problems regarding end-user desktop applications, because end-users prefer update
approaches that do not interrupt their tasks.

One may think that updating a program the described way (i.e., stopping, updating,
restarting) is no problem during software development or software execution, because
updates could be prepared beforehand and program restarts take not more than few seconds.
This may be true for simple applications but it is not for complex systems. Complex systems
often need a considerable startup, time until they run with desired performance, or time until
they are at the point of execution where they were when shut down, e.g., because caches
first need to be filled or program state must be recovered. Particularly, highly available
applications are well-known to be stateful and to generate a lot of data during execution.
That is, possibilities are high that updating complex applications in the described way
results in time consuming restarts, which render development processes ineffective and cause
problematic time periods of unavailability.

A strategy to face the unavailability problem is to postpone the update until it is appropriate
to take the service provided by the application offline (e.g., at night, on weekend). Even if
this strategy might be acceptable in some cases it may be not in others. In terms of highly
available applications which provide their services globally (24 hours), nightly updates are

1

1 Introduction

no longer reasonable. When it comes to services which have to be available the whole week
(e.g., market platforms) it is no longer reasonable to postpone the update until weekend.
However, even in cases where update postponing is possible, problems arise. For instance
bugs, e.g., relevant to security, which must be fixed immediately conflict the postponing
strategy.

Another reasonable approach to face the unavailability problem is to use backup systems.
That is, multiple instances of one and the same application are executed at the same time.
In order to update the application, one instance is stopped and updated while another
instance still provides the application’s service. Then the updated application is restarted
and continues to provide the service. Even if common practice in industry, this strategy
does not come without issues. On the one hand, certain time is required to synchronize
data and state between old and updated program instances to produce valid results when the
updated application instance continues to provide the service. On the other hand, the strategy
increases the requirements to be met in order to execute the application (e.g., in terms of
memory consumption, cpu power, network bandwidth, power consumption, etc.).

However, update postponing and backup systems might help to decrease service downtimes
under certain conditions. But, these strategies do not prevent developers from the burden of
time consuming restarts during development to check the correctness of the recent program
changes.

Because of the problems described above, we aim at a different program update strategy
– namely Dynamic Software Updates (DSU). The idea of dynamic software updates is to
update programs during their execution, which prevents us from time consuming restarts and
costly service downtimes.

1.1 Exploratory Focus

Research in the field of dynamic software updates (DSU) has a long tradition and a lot of
approaches and solutions have been proposed over the years. Nevertheless, DSU is still an
active field of research, because most of the existing DSU approaches are too restrictive.
Some of them are inflexible (i.e., they do not support all updates that are possible when
statically changing the program code) whereas others require specific runtime environments,
cause significant performance penalties, or dictate the program architecture. With the
arrival of virtual machines, which abstract the runtime environment from the Operating
System (OS) and thus offer new starting points for DSU approach development, the situation
slightly relaxed and less restrictive DSU approaches came up. However, unrestricted DSU
remained to be provided only by dynamic languages like Smalltalk, Python, or Ruby (with
a typical associated performance loss compared to statically typed languages [FG11]). By
contrast, DSU support for statically typed languages is still restrictive. But, there is a growing

2

1.2 Goals

class of complex (potentially highly available) applications which are written in statically
typed languages. Thus, with this work, we address the shortcomings of statically typed
languages regarding unrestricted dynamic software updates. In particular, we address Java
for several reasons. First, it is frequently used to implement complex (potentially highly
available) applications. Examples are Apache Tomcat,1 Java DB,2 JBoss Application Server,3

and HyperSQL.4 Second, Java is the most popular programming language according the
TIOBE Programming Community Index,5 which allows us to assume that the number of Java
applications will further grow in the future. Third, with place number three in Oracle’s current
request for enhancement (RFE) list,6 unrestricted DSU is one of the top-most requested
features for Java.

1.2 Goals

Our goal is to provide the state-of-the-art regarding dynamic software updates for statically
typed programming language Java. In particular, we aim to overcome the restrictions of
current DSU approaches. We further aim to demonstrate that our solutions to overcome the
restrictions do not conflict each other and can be integrated coexistent in one solution. In a
nutshell our goal is:

To design, implement, and evaluate an approach for dynamic software updates in Java
that is (1) highly flexible, (2) performant, (3) platform independent, (4) architecture
independent, and (5) fine-grained, at the same time.

After outlining the big picture of this work, we give an explanation of the stated goal and
its inherent aspects.

1.2.1 Flexibility

We regard a DSU approach as flexible, if it allows the developer to change the running
program in an unanticipated way, i.e., if it permits the application of functions for which the
program was not prepared. With respect to Java, the level of flexibility offered by a DSU
approach can be determined by answering the following three questions:

1. Can already loaded (executed) classes/interfaces be changed (note that changing not
yet loaded classes/interfaces is no problem in Java)?

1http://tomcat.apache.org/index.html
2http://www.oracle.com/technetwork/java/javadb/overview/index.html
3http://www.jboss.org/jbossas/
4http://hsqldb.org/
5http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
6http://bugs.sun.com/top25_rfes.do

3

http://tomcat.apache.org/index.html
http://www.oracle.com/technetwork/java/javadb/overview/index.html
http://www.jboss.org/jbossas/
http://hsqldb.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://bugs.sun.com/top25_rfes.do

1 Introduction

Construct to be changed Related Elements

C
la

ss
es

(1) Class Declaration Modifiers, Generic, Inner Classes, Superclass, Sub-
classes, Superinterfaces, Class Body, Member Declara-
tions

(2) Class Members Fields, Methods

(3) Field Declarations Modifiers, Field Initialization, Field Type

(4) Method Declarations Modifiers, Signature (Name, Parameters), Return Type,
Throws, Method Body

(5) Constructor Declarations Modifiers, Signature (Name, Parameter), Throws, Con-
structor Body

(6) Blocks Statements

(7) Enums Enum Declaration, Enum Body

In
te

rf
ac

es

(8) Interface Declaration Modifiers, Generic, Superinterfaces, Subinterfaces, Inter-
face Body, Member Declarations

(9) Interface Members Fields, Method Declarations

(10) Field (Constant) Declarations Field Initialization, Field Type

(11) Abstract Method Declarations Signature (Name, Parameters), Return Type, Throws

(12) Blocks Statements

(13) Annotations Annotation Type, Annotation Element

Table 1.1: Language constructs of Java 1.6 [GJSB05].

2. Can classes/interfaces be changed at runtime to the same extent as possible when
changed statically (i.e., are changes to all elements listed in Table 1.1 possible)?

3. Is the program state kept beyond the update?

DSU approaches for which the aforementioned questions can be answered with yes can be
considered as highly flexible.

We aim at highly flexible DSU approaches for different reasons. First, we believe that
it is impossible to prepare an application for all potential upcoming requirements before
program start, thus, unanticipated program changes must be supported. Second, only offering
modifications of not previously executed program parts while disregarding the executed parts
(e.g., already loaded classes/interfaces) restricts the application of unanticipated program
changes. Third, we think that DSU approaches must support all changes that are possible
with static software development in order to cover all update scenarios occurring at program
runtime. Fourthly, in our opinion, dynamic software updates are only valuable if they do

4

1.2 Goals

not cause program state losses. Consequently, DSU approaches which do not fulfill the
mentioned requirements fail in scenarios they do not cover, i.e., they will cause program
stops.

1.2.2 Performance

What comes to mind first is that performance corresponds to the speed of program execution.
However, in the context of dynamic software updates it additionally corresponds to the time
required to perform a runtime update. That is, we consider a DSU approach as performant if:

1. it does not introduce significant program execution overhead.

2. the time period required to apply the update is acceptable.

We argue that DSU approaches should not cause significant performance overhead for
different reasons. One reason is that if a program gets slow and unresponsive because of
dynamic updates, program restarts (instead of dynamic updates) may be the better strategy.
In addition, dynamic languages such as Smalltalk, Python, or Ruby already support dynamic
software updates. On the contrary, Java performs better in terms of program execution speed
compared to dynamic languages (a comparison can be found at [FG11]). Ending up with an
updated Java program whose execution speed is worse than the execution speed of the same
updated program based on a dynamic language might be a good reason to prefer dynamic
languages. Last but not least, dynamic software updates that cause comparable or even
longer time periods of application unavailability than updates through program restarts are
of no avail. Generally, users virtually always prefer a good performing approach over a
comparable but worse performing one (particularly when the program is supposed to be used
in production).

1.2.3 Platform Independence

In general, software needs a platform on which it can be executed. Java programs are typically
executed on-top of a Java Virtual Machine (JVM). Today, many different JVM implemen-
tations exist. Examples are the Oracle (formerly Sun) HotSpot JVM,7 the Oracle JRockit
JVM,8 and IBM JVM.9 We consider a dynamic update approach as platform independent, if
it can be applied to different execution platforms, i.e., different Java virtual machines, while
avoiding expensive adjustments to the Java-specific interpretation of platform independence.

In our opinion, DSU approaches should not cause dependencies to specific JVM imple-
mentations because platform independence is one of the reasons for the success of Java. For

7http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
8http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
9http://www.ibm.com/developerworks/java/jdk/

5

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.ibm.com/developerworks/java/jdk/

1 Introduction

instance, it may be no good idea to force the customer to use the IBM JVM (which is not
available for Windows) even though the customer only runs Windows-based machines. Other
customers may prefer a specific JVM, e.g., for performance reasons, and may miss out when
the DSU approach does not support this specific JVM.

1.2.4 Architecture Independence

Software can be designed in many different ways. Garlan et al. [GBI+10] describe the term
software architecture (design) as follows:

The software architecture of a system is the set of structures needed to reason about
the system, which comprise software elements, relations among them, and properties
of both.

In correspondence to this description, we characterize a dynamic software update approach
as architecture independent if it:

1. can be combined with every program no matter what software architecture it bases on.

2. has no influence on the set of structures needed to reason about the system, which
comprise software elements, relations among them, and properties of both.

We pick up architecture independence, because in software development there is no such
thing like “one architecture fits all scenarios”, i.e., different scenarios may require different
architectures. Thus, DSU approaches should not restrict the usage of different architectures,
i.e., they should be capable of being integrated into the program’s natural architecture.

1.2.5 Update Granularity

There is a big difference between the granularity of the program changes made and the
granularity of the corresponding update that have to be performed in order to apply the
changes to the running program. For instance component-based DSU approaches require to
update whole components even if only one class has changed. We consider a DSU approach
as fine-grained if:

1. it requires to update only the program parts that have changed.

Generally, we aim at fine-grained DSU approaches for efficiency reasons. Coarse-grained
DSU approaches require to not only map the state of changed program parts but also of
unchanged program parts. Those additional state mappings are time consuming and thus
increase the time required to perform the update.

6

1.3 Contributions

However, different criteria may be of different importance to different stakeholders. For
instance, users may emphasize high flexibility, whereas administrators may attach great
importance to platform independence. Furthermore, companies may set value on architecture
independence, because they offer products for different domains which require different
software architectures. That is, in order to satisfy all stakeholders, a DSU approach must
fulfill all mentioned criteria.

All in all, the goal of this work is to develop a dynamic software update approach which
offers the most complete package and is useful in real-world scenarios, i.e., a solution with
the best possible practical benefit. In our opinion particularly the chosen criterions and
optimal solutions regarding them are crucial to achieve this goal.

1.2.6 Other Criteria?

With the previous section, we explained the goals of this work and justified our criteria
selection. But, there are other criteria which are just as important as the criteria central
to this work. One example are consistent program updates – in a nutshell, the ability to
update applications in such way that they most certainly do not produce wrong results after
the update. We chose the above mentioned criteria above other criteria such as consistent
program updates, because we think that the chosen criteria must be fulfilled before we
can go on solving other issues. Put simply, if a program cannot be dynamically updated,
there is no need to think about how to ensure the program’s consistency beyond dynamic
updates. However, even if not central part of our considerations, we will discuss possible
(partial) solutions for the consistency problem and their applicability in our DSU approach
in Chapter 6.

1.3 Contributions

After we detailed our main objectives, we summarize the contributions of the here presented
work.

Goals at Design Level. We develop a novel and dynamic software update approach for
Java, which:

• allows the developer to flexibly update a program.
• does not significantly decrease the performance of the program.
• works with all major standard Java virtual machines (without modifications).
• does not depend on specific software architectures.
• only updates the program parts scheduled for an update.

7

1 Introduction

Tool Support. We provide tool support for the developed concepts:
• We provide a tool, which is useful in practice.
• We provide a tool, which is easy to use.
• We detail our implementation.

Case Studies. We apply our tool to different non-trivial (real-world) case studies:
• We demonstrate the practicability of our solution.
• We show the usefulness of the tool.

Empirically Goals. We evaluate the fulfillment of our main objectives:
• We demonstrate the flexibility of our tool.
• We measure the performance of our solution on the basis of different case studies and

micro benchmarks.
• We apply our approach to all major Java runtime environments demonstrating its

platform independence.
• We give reasons for why our solution is architecture independent.
• We show that our tool only updates the program parts that must be updated and thus

hits the targeted fine level of update granularity.

1.4 Thesis Structure

In the following chapters, we will reveal the details of our approach for unrestricted dynamic
software updates of Java applications. The chapters are structured as follows:

With Chapter 2, we provide background information on the field of research, i.e., dy-
namic software updates. We introduce basic terms and definitions and argue why DSU for
statically typed languages are challenging. We further describe the internals of Java’s runtime
environment (i.e., the Java Virtual Machine).

Within Chapter 3, we present the conceptual core of our DSU approach. We describe
how JAVADAPTOR integrates with the JVM and detail how our approach combines class
reloadings, Java HotSwap, containers, and proxies to hit the targeted high level of update
flexibility.

Chapter 4 reveals the implementational details of our DSU approach. We first describe
our tool from the users point of view. Then, we go through every part of the tool’s workflow
and detail its implementation including possible pitfalls.

In Chapter 5, we evaluate if our solution meets the thesis goals, i.e., if the approach offers
highly flexible, performant, platform independent, architecture independent, and fine-grained
dynamic software updates.

8

1.4 Thesis Structure

Within Chapter 6, we summarize ongoing and future work to extend and improve the
presented DSU approach and present first results of our efforts.

In Chapter 7, we discuss the related work and review it with respect to our evaluation
criteria.

With Chapter 8 we sum up the presented work, list our contributions, and finally conclude
the thesis.

9

2 Dynamic Software Updates

With this chapter, we provide background information necessary to understand the domain
of dynamic software updates and its challenges. Furthermore, we impart the fundamentals
required to understand our solution to overcome the challenges regarding Java.

We start with an abstract of terms and definitions regarding the field of research. Next, we
outline why dynamic software updates for statically typed languages are challenging. Last
but not least, we detail the characteristics of the Java Virtual Machine and discuss how it
prevents and supports dynamic software updates.

2.1 Terms and Definition

Research in the field of dynamic software updates has a long tradition and a lot of approaches
and solutions have been proposed over the years. Gupta et al. [GJB96] define dynamic
software updates (i.e., on-line program changes) as followed:

Definition. An on-line change from program Π to Π’ at time t using the state mapping S, in
process P (executing Π) is equivalent to the following sequence of steps:

1. P is stopped at time t in state s (say).

2. The code of P (which, till now, was the program Π) is replaced by the program Π’, its
state is mapped by S and P is then continued (from state S(s) and with code Π’).

However, even if precisely defined what this field of research is about, there is no standard
phrase for it commonly used by the community. That is, Gupta et al. [GJB96], for instance,
call it on-line program change, whereas researchers such as Gustavsson et al. [GSA04],
Ebraert et al. [EVDB05], Di Stefano et al. [SPT04], Malabarba [MPG+00], Oriol [Ori04],
Würthinger et al. [WWS10], or Dmitriev [Dmi01a] prefer the term runtime/dynamic (soft-
ware) evolution. Fabry, as one of the pioneers of the research area, was talking about on
the fly module changes [Fab76]. Other synonyms for dynamic software updates are dy-
namic adaptation [RC02] or runtime adaptation, e.g., used by Griffith and Kaiser [GK06]
and Morin et al. [MLH+09]. In this thesis, we conform to researchers such as Previtali and
Gross [PG06], Orso et al. [ORH02], Hicks and Nettles [HN05], Shen et al. [SSH+05], Zhang
and Huang [ZH06], Hayden et al. [HSHF11], or Bialek [Bia06] and use the term dynamic
(software) updates.

11

2 Dynamic Software Updates

2.2 Dynamic Software Updates vs. Type System

Because most modern dynamic languages widely support dynamic software updates, research
efforts of the (recent) past regarding DSU have been focussed mainly on statically typed
languages. But, what makes dynamic software updates based on statically typed languages
such challenging that most of those languages still do not have the same runtime update
capabilities modern dynamic languages have?

As Vandewoude et al. describe in [VEBD05], the main reason are the constraints the
type system of statically typed languages imposes. In statically typed languages, types are
assigned to variables in early stages of the program build process (e.g., at compile time),
whereas types in dynamic languages are bound at runtime and thus can be changed even if
the program is already executed. Listing 2.1 illustrates the situation. In dynamically typed
Smalltalk, variables could be declared independent from any type (see Line 2), whereas
statically typed languages such as Java require to specify the name as well as the type of a
variable (see Line 5). That is, variable declarations such as depicted in Line 6 of Listing 2.1
are not possible.

Listing 2.1: Variable declaration in Smalltalk and Java.
1 //variable declaration in Smalltalk

2 |varX varY| 4

3
4 //variable declaration in Java

5 TypeA varX; 4

6 varY; 8

Another fact that hinders DSU in statically typed languages is static type checking, i.e.,
the process to verify whether the operands of an operator are type compatible or not. As
a result, it is impossible to arbitrarily alter operand and operator types in statically typed
languages (see Line 9 of Listing 2.2).

Listing 2.2: Type compatibility in Smalltalk and Java.
1 //type compatibility in Smalltalk

2 |varX|

3 varX := TypeA new. 4

4 varX := TypeB new. 4

5
6 //type compatibility in Java

7 TypeA varX;

8 varX = new TypeA(); 4

9 varX = new TypeB(); 8

12

2.2 Dynamic Software Updates vs. Type System

Group Dimension Static Both Dynamic

Weak Strong Weak Strong Weak Strong

Temporal (when) Time of change

Offline changes ++ ++ ++ ++ + +

Online changes - - - - +/- - ++ +

Change history ++ + ++ + + +/-

Change frequency - - - - - - ++ +

Object of change (where) Anticipation - - +/- +/- + +

Granularity

Coarse-grained ++ ++ ++ ++ + +

Fine-grained - - - - ++ ++

Impact + ++ +/- + - - -

Change propagation +/- +/- +/- +/- ++ +

System properties (what) Availability - - +/- +/- + +

Openness +/- - + +/- ++ +

Safety +/- + +/- + - - -

Change support (how) Automation degree - - +/- +/- +/- +/-

Formality degree + ++ + ++ - +/-

Change type + + + + +/- +/-

Table 2.1: Type system impact on dynamic software updates [VEBD05].

Furthermore, in statically typed languages, type conversions are rather restricted. They
must be either explicitly declared (through type casts) or must comply with language features
such as polymorphism (if any supported). That is, type conversions such as depicted in
Line 9 of Listing 2.2 would be only valid if both types are members of the same inheritance
hierarchy.

In addition to the mentioned constraints imposed by static typing, chances to establish DSU
support rely on how good a language (its type system) prevents type errors. Weakly typed
languages (i.e., languages with poor type error prevention) offer possibilities to circumvent
the type system (i.e., to run unsafe code) which opens the door to establish DSU support,
while strongly typed languages (i.e., languages with good type error prevention) do not.

Buckley et al. proposed in [BMZ+05] a taxonomy regarding different aspects meaningful

13

2 Dynamic Software Updates

to software updates, i.e., a list of questions and subsequent questions about the when, the
where, the what, and the how of software updates. Vandewoude et al. [VEBD05] put this tax-
onomy and summarized how the type system affects the taxonomy’s aspects (see Table 2.1).
As shown in Table 2.1, the best possible basis for dynamic software updates is offered by
weakly and dynamically typed languages. On the contrary, chances are low to provide
strongly and statically typed languages with substantial dynamic software update capabilities.
In terms of Java, as a strongly and statically typed language with few features known from
dynamic languages such as limited support for late type binding (i.e., polymorphism) or basic
reflection capabilities, chances are only slightly better (compared to strongly and statically
typed languages) to establish wide DSU support (see gray colored Column 6 of Table 2.1). A
priori, Vandewoude et al. [VEBD05] rate the chances to apply dynamic update capabilities
to Java as very low (see dark-gray colored Row 5 Column 6 of Table 2.1). However, even if a
DSU approach can be established, they only give coarse-grained runtime updates (e.g., based
on components) good chances to be realized (see dark-gray colored Row 10 Column 6 of
Table 2.1) but not those we aim at in this work, i.e., fine-grained dynamic software updates.

2.3 The Java Virtual Machine

In order to understand what is provided or possible in Java and what challenges remain
regarding dynamic software updates, it is necessary to understand the standard design of
Java’s runtime environment – the Java Virtual Machine (JVM). In this section, we summarize
all JVM specific information relevant to our update approach. We first describe the basic
components and the class loading concept of a JVM, which are specified in The Java Virtual
Machine Specification [LY99] and thus are standard for all certified JVM implementations.
Afterwards, we detail the internals of Java HotSwap and describe the Java Platform Debugger
Architecture (JPDA), which, even if not part of the specification, are standard for all major
certified JVMs.

2.3.1 Architecture

Modern JVMs are highly complex programs which are composed of many different com-
ponents. Figure 2.1 shows the most important parts of a JVM. It is a matter of common
knowledge that Java programs consist of classes. In order to execute a Java program, the
program specific classes have to be loaded into the JVM, which is done by the class loader
subsystem. After a class is loaded into the JVM, the program code (i.e., the bytecode)
it contains may be scheduled for execution. The bytecode-execution job is done by the
execution engine. In order to execute a Java program, memory to store information, such as
bytecodes, intermediate results of computation, local variables, etc., is needed. This memory

14

2.3 The Java Virtual Machine

class loader
subsystemclass files

runtime data areas

method
area heap Java

stacks
pc

registers

native
method
stacks

execution
engine

native method
interface

Native
method

libraries

Figure 2.1: The internal architecture of the Java virtual machine [Ven00].

area is called runtime data area, which basically consists of the method area, the heap, the
Java stacks, pc registers, and the native method stacks.

The method area is shared among all JVM threads and stores all class (type) specific data
of a loaded class, e.g., the runtime constant pool, field and method data, and the code for
methods and constructors [LY99]. The heap is the memory area which stores the runtime
data of all class instances and arrays. Like the method area, the heap is shared by all JVM
threads. The next parts of the runtime data area are the Java stacks. Each Java stack belongs
to one specific JVM thread and stores information relevant to method invocations/executions,
e.g., intermediate calculations, local variables, parameters, or return values. Dedicated to
each stack is a pc register which contains the address of the currently executed bytecode
instruction. Different from the Java stacks and the pc registers, which are responsible for
executing bytecodes, native method stacks get involved if the Java program requires to
execute native methods. Like with the Java stacks, each JVM thread gets its own native
method stack. To manage the execution of native methods a native method interface is
provided.

For further information about the standard JVM architecture (i.e., the components and
their tasks) see the work of Venners [Ven00] and Lindholm and Yellin [LY99].

2.3.2 Class Loading

As mentioned above, to run a Java program, the JVM must at first load the program’s classes,
which is done by the class loader subsystem. In order to avoid long program startup times,

15

2 Dynamic Software Updates

Load class

Li
nk

 c
la

ss

Verify class

Prepare class

Resolve class

Initialize class

2.1

1

2

2.2

2.3

3

Figure 2.2: Class loading.

the JVM never loads classes other than the classes it right now needs to execute the program,
i.e., the JVM loads the required classes lazily. If the JVM must load a class, it performs the
class loading steps depicted in Figure 2.2. But, before the JVM processes the class loading
steps described in the following, it will check whether the class is already loaded or not. In
case the class is already loaded, the class loading process will be aborted.

Mandatory Class Loaders

Bootstrap Class Loader

Extension Class Loader

Application Class Loader

Optional Class Loaders

User-defined Class
Loaders

Request
Class Loading loadClass()

Process
Class Loading

request

request

request can't load class

can't load class

can load
class

Figure 2.3: Class loader hierarchy.

If the class was not previously loaded, the JVM reads in the binary representation of the
class, i.e., the class file (see Action 1 of Figure 2.2). This is either done by the bootstrap
class loader (loads system classes), the extension class loader (loads classes of the extension
library), the application class loader (loads classes from classpath), or user-defined class
loaders (load classes from user-defined locations). As shown in Figure 2.3, the class loaders

16

2.4 Dynamic Software Updates and the JVM

are hierarchically ordered with the bootstrap class loader acting as root. To load the class
file, the class loader that received the request for class loading delegates this request to its
predecessors (see Figure 2.3). The first class loader that really tries to load the class file, is
the bootstrap class loader. If the bootstrap class loader is not able to load the class file, it will
ask its successor to load the class and so forth. The next class loader in the hierarchy that
is able to load the class file (e.g., the application class loader, see Figure 2.3) processes the
class loading and creates the class object for the loaded class. We point out that the class will
be finally bounded to the class loader and none of the other class loaders is allowed to load
or reload this class afterwards.

With the next step, the loaded class will be linked (see Figure 2.2, Action 2). The
class linking process consists of three substeps. At first, the loaded class will we verified
(Action 2.1). That is, the JVM checks whether the loaded class file is structurally valid
or not. The preparation phase (Action 2.2) triggers the creation of static fields and their
initialization with standard default values (note that the class’s static initializers will be
executed in later class loading steps). The class resolution step (Action 2.3 of Figure 2.2)
concludes the linking process. Here, the symbolic references in the runtime constant pool of
the class object will be resolved to concrete values (e.g., a symbolic class reference will be
transformed to a reference to the concrete class, which triggers to load the referenced class
as well if not already done).

To complete the class loading process, the successfully linked class must be initialized
(see Figure 2.2, Action 3). That is, the static initializers of the class are executed. If this is
done, the class is fully applied to the running program and thus ready to be executed.

Further information on the class loading concept of Java are given by Venners [Ven00],
Lindholm and Yellin [LY99], and Gosling et al. [GJSB05].

2.4 Dynamic Software Updates and the JVM

Having described the basic architecture and the class loading concept of the JVM, it is time
to have a look into how dynamic software updates are supported or restricted by the JVM.

Changing a program during its execution in the JVM requires to modify the data within
the heap, the method area, and on the stacks. For instance, program updates, which include
method replacements, field removals, or inheritance hierarchy changes, require to extensively
change the data of a class. In general, they require to modify the class schema. Unfortunately,
the JVM does not permit class schema changes, because class schema changes may let
the data on the stack, on the heap, and the class data stored in the method area become
inconsistent, while the JVM does not provide functions to synchronize them.

Moreover, the class loading concept described above makes it difficult to circumvent the
restrictions of the JVM regarding class schema changing dynamic software updates. One

17

2 Dynamic Software Updates

problem is that we could not simply reload already loaded classes in order to update the class
schema, because an already loaded class cannot be reloaded by any of the systems class
loaders.

Nevertheless, there are two ways to reload (update) a class with a changed schema. First,
we could unload the old class version before we load its up-to-date counterpart. However, a
class could be only unloaded if the owning class loader can be garbage collected. Unfortu-
nately, a class loader can only be garbage collected if all classes (even the unchanged ones)
loaded by this class loader are dereferenced, which is equivalent to a (partial) application stop.
This fact disqualifies class unloadings for DSU purposes. Alternatively, we could reload
an already loaded class with a customized class loader [LB98]. But, in order to efficiently
handle dynamic software updates on the basis of customized class loaders, components are
required, which have major disadvantages compared to single class updates. Amongst others,
component-based dynamic software updates require to partially stop the program and result
in extensive state mappings. For all these reasons, customized class loaders are not in our
scope as well.

2.4.1 Java HotSwap

Despite the insufficient native dynamic software update support of the JVM, there is one
feature that provides some simple runtime update capabilities – called Java HotSwap. It
allows the developer to dynamically replace method bodies (which partly covers points 4 – 6
of Table 1.1 presented in Section 1), but restricts class schema changes and thus highly
flexible dynamic software updates. Even if HotSwap is not a standard feature, it is imple-
mented by all major certified Java virtual machines commonly used in production, i.e., the
HotSpot JVM,1 the JRockit JVM,2 and IBM’s JVM.3 In the following we will describe the
basic mechanism of Java HotSwap. Because Java HotSwap was originally developed by
Dmitriev [Dmi01a], we describe the mechanism on the basis of his implementation for the
HotSpot JVM.4 Note that HotSwap may be implemented in a different way in other JVMs.

Central to Java HotSwap is the class object, which the JVM creates during class loading.
Figure 2.4 shows the basic elements of the class object. The most important part of the class
object is object InstanceClass, which is the entry point for requests for all instances of the
class. Another part of the class object is the constantPoolOop object. It conforms to the
constant pool structure and maps indexes to the corresponding constants. Because accesses to
elements such as fields or methods solely through object constantPoolOop would be slow,
which is due to the fact that those accesses require to obtain additional indexes, the access

1http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
2http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
3http://www.ibm.com/developerworks/java/jdk/
4Java HotSwap officially debuted in version 1.4.2 of the HotSpot JVM.

18

http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
http://www.ibm.com/developerworks/java/jdk/

2.4 Dynamic Software Updates and the JVM

Class Object

E
m

be
dd

ed

st
at

ic
s

E
m

be
dd

ed
C

la
ss

V
Ta

bl
e

E
m

be
dd

ed
C

la
ss

IT
ab

le

InstanceClass constantPoolOop constantPoolCacheOop

objArrayOop

methodOop
nmethod

constants() cache()

methods()

code()

constants()

pool_holder()

method()

Figure 2.4: Internal class object representation [Dmi01a].

information is cached in object constantPoolCacheOop. The next important part of the
class object is object methodOop, which stores the class’s bytecode. The corresponding
binary code produced by the just-in-time (JIT) compiler is stored in object nmethod. Not
less important for Java HotSwap are the virtual method table (ClassVTable), the interface
method table (ClassITable), and the representations of the static fields (statics), which
are used to invoke the methods and static fields of the class.

In order to redefine an already loaded class, Java HotSwap proceeds as follows. First of
all, the new version of the class to be redefined is loaded into the JVM and the class object
for this class is created. Next, the class must successfully pass the verification phase. If this
is done, it is checked if new and old class share the same class schema, i.e., if both classes
have the same methods, fields, interfaces, super types, etc. If the class schemas differ, the
JVM rejects the update request. In case the changes within the new class version do only
affect the method bodies but not the class schema, the JVM starts the class transformation
process.

With the first step of the class transformation process, all compiled methods of the class
scheduled for redefinition and all compiled code that relates to the class are deoptimised, i.e.,
the JVM quits the execution of binaries and resumes to execute the corresponding bytecode.
To ensure that every call to a compiled method, will be redirected to the corresponding
bytecode-based method, traps will be installed inside the compiled methods (see Marker 1
in Figure 2.5). Next, the indexes into the constant pool (i.e., object constantPoolOop)
are updated, because the layouts of the constant pools of the old and new class object

19

2 Dynamic Software Updates

Old Class Object
E

m
be

dd
ed

st

at
ic

s
E

m
be

dd
ed

C
la

ss
V

Ta
bl

e
E

m
be

dd
ed

C
la

ss
IT

ab
le

InstanceClass constantPoolOop constantPoolCacheOop

objArrayOop

methodOop
nmethod

trap

New Class Object

E
m

be
dd

ed

st
at

ic
s

E
m

be
dd

ed
C

la
ss

V
Ta

bl
e

E
m

be
dd

ed
C

la
ss

IT
ab

le

InstanceClass constantPoolOop constantPoolCacheOop

objArrayOop

methodOop

Redirected
Reference
because of
HotSwap

Ordinary
Reference

1

2 3

4

5

6

7

Figure 2.5: Java HotSwap mechanism [Dmi01a].

20

2.4 Dynamic Software Updates and the JVM

may differ, which may let the indexes point to wrong constants. After this is done, the
pointer from old InstanceClass to old constantPoolOop will be redirected to the
new constantPoolOop, while the new constantPoolOop object now points to the old
InstanceClass object (see Figure 2.5, Markers 2 and 3). Furthermore, the HotSwap
mechanism lets the new InstanceClass object point to old constantPoolOop and
objArrayOop (see Markers 4 and 5). This is done, to keep the latter two objects from
being garbage collected. In the next step, the methods of the old class object will be replaced
by the methods of the new class object. Therefore, the HotSwap mechanism lets the old
InstanceClass refer to the new method pointer array (i.e., objArrayOop, see Marker 6).
After method replacement, all old methods are marked as obsolete, which prevents the
recompilation of those methods. In the last step, the virtual and interface method tables (i.e.,
ClassVTable and ClassITable) of the old InstanceClass object are re-initialized,
which is necessary to let the method tables point to the new methods, i.e., to new methodOop

(see Figure 2.5, Marker 7). This step must be processed for possible subclasses of the
redefined class as well. To conclude the class redefinition process, the HotSwap mechanism
iterates over all Java classes that belong not to the core and searches the classes constant pool
caches (i.e., object constantPoolCacheOop) for pointers to old methods and if found,
updates those pointers so that they point to the corresponding new methods.

Ones the class is redefined, the new (updated) methods can be executed. That is, all new
method calls will go to the up-to-date method and not to the outdated method. But, what
happens with old methods active on the stack? In the current Java HotSwap implementation,
old methods active on the stack will remain on the stack until their execution has finished.
That is, old and new method versions may coexist in the JVM. We will discuss in Chapter 6
what problems may arise from this fact and how those problems could be solved.

All in all, Java HotSwap is a valuable feature supporting dynamic software updates. It does
not enable highly flexible dynamic updates, but it is a good starting point for the development
of DSU approaches aiming at high update flexibility.

For deeper insights into the above sketched Java HotSwap mechanism, see Dmitriev’s
original descriptions [Dmi01a, Dmi01b].

2.4.2 Java Platform Debugger Architecture

As mentioned above, there is limited support for DSU natively provided by all major JVMs –
namely Java HotSwap – which allows the developer to redefine method bodies, i.e., to apply
class-schema-retaining program updates. The HotSwap feature is part of the Java Platform
Debugger Architecture (JPDA) [Ora11b], which constitutes the framework to debug Java
applications. The JPDA is standard for all major certified JVMs. As depicted in Figure 2.6,
the JPDA consists of two interfaces and one protocol.

21

2 Dynamic Software Updates

Debugger Target JVM

JPDA

JDI

Application

JVMTI

Debugger Logic

Invoke JVMTI to: debug, monitor, and
profile applications

JDWP

Figure 2.6: Java Platform Debugger Architecture.

The central part of the JPDA is the Java Virtual Machine Tool Interface (JVMTI) [Ora11c]
which is integral part of the JVM. It extends the Java Native Interface [Lia99] and provides
functions that allow the developer, e.g., to inspect the currently executed code, to request
loaded classes and all their existing instances, to pause and resume individual program
threads, or to trigger class redefinitions based on Java HotSwap. That is, it provides functions
to inspect and control applications during their runtime. Those functions can be invoked
from outside the JVM executing the application to be debugged.

The communication between debugger and targeted JVM bases on the Java Debug Wire
Protocol (JDWP). The exchange of JDWP messages between debugger and target JVM is
either based on Socket Transports (OS independent) or Shared Memory Transports (which
are only available for Windows). Even if the JDWP is optional and might be not available in
some JVM implementations (in which case a proprietary protocol must be implemented in
order to invoke the JVMTI), all major JVMs implement it. That is, a once written debugger
works with all JVMs which implement the JDWP.

Basically, JVMTI and JDWP are sufficient to implement debuggers for Java applications. A
debugger has only to implement the JDWP and thus would be able to debug Java applications.
However, the JPDA additionally provides the Java Debug Interface (JDI),5 which implements
the JDWP and provides an easy to use interface to let debugger and target JVM communicate
with each other.

2.5 Summary

Within this chapter, we imparted crucial knowledge on the field of research, i.e., dynamic
software updates. We introduced basic terms and definitions and argued why dynamic
software updates on the basis of statically typed languages are challenging. Since we are

5http://download.oracle.com/javase/6/docs/jdk/api/jpda/jdi/index.html

22

http://download.oracle.com/javase/6/docs/jdk/api/jpda/jdi/index.html

2.5 Summary

aiming at DSU solutions for statically typed Java, we further detailed how Java, respectively
its runtime environment (i.e., the JVM), enables or prevents dynamic software updates. To
sum up, DSU in Java is severely limited. Due to the limitations, approaches are required,
which provide Java with highly flexible DSU.

23

3 Concepts of JAVADAPTOR

This chapter shares material with the SPE’2011 paper "JavAdaptor – Flexible Runtime
Updates of Java Applications" [PKC+12].

As already stated, the primary goal of this work is to provide Java with highly flexible,
performant, platform independent, architecture independent, and fine-grained dynamic
software updates. In this chapter, we present the design and basic concepts of our approach
fulfilling these criteria – namely JAVADAPTOR.

At first, we present a small program building the base of our explanations. Next, we
introduce the basic architecture of JAVADAPTOR. Afterwards, we discuss the mechanisms
and concepts of JAVADAPTOR which allow us to dynamically update running programs.
In this regard, we proceed in a bottom-up manner starting with descriptions of concepts
for simple program updates followed up by descriptions of advanced concepts for complex
program updates.

3.1 A Running Example: Weather Station

The following sections and chapters are filled with detailed descriptions on our DSU approach,
i.e., JAVADAPTOR. To minimize confusions because of the amount of details, we decided to
describe JAVADAPTOR on the basis of a running example.

As the central theme of our descriptions, we chose the small weather station program
depicted in Figure 3.1. The weather station consists of two classes. One class (TempSensor)
measures the air temperature while the other class (TempDisplay) is responsible for dis-
playing the measured temperature.

Consider a maintenance task: the actual measuring algorithm (average temperature) must
be replaced by another measuring algorithm (current temperature). Because the service
provided by the weather station must be non-stop available, stopping the program in order to
apply the necessary changes is no option; we want to change it at runtime. The application
of the new functionality requires to change different parts of the program. First, we must
replace method averageTemp of class TempSensor by method currentTemp, which
requires to change the class schema. Second, we must redefine method displayTemp of
class TempDisplay in order to execute the new measuring algorithm.

25

3 Concepts of JAVADAPTOR

Short time after updating the measuring algorithm, it was also decided to let TempSensor
inherit from class Sensor in order to add new functions to TempSensor while avoiding to
implement them again. Therefore, we have to apply statement extends Sensor to class
TempSensor. Additionally, we must remove member s from class TempSensor, because
superclass Sensor let it become useless.

TempSensor

Sensor {
...

currentTemp() {

}

}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.currentTemp();

...

}

}

TempSensor {

Sensor s;

...

currentTemp() {

}
}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.currentTemp();

...

}

}

TempSensor {

Sensor s;

...

averageTemp() {

}

}

TempDisplay {

TempSensor ts;

...

displayTemp() {

ts.averageTemp();

...

}

}

1st DSU 2nd DSU

Figure 3.1: Weather station. The depicted example spans updates which replace methods,
remove fields, and change inheritance hierarchies. That is, the updates require
class schema changes.

Even if the required program changes seem to be simple, they affect many different parts
of the program (i.e., see points 1-6, Table 1.1 in Section 1). The updates particularly require
to change the schema of already loaded classes, which is not supported by the Java runtime.
Therefore, we search for a new mechanism in Java that allows us to change every part of a
program at runtime without anticipating the changes.

3.2 Architectural Design of JAVADAPTOR

As aforementioned, there is severely limited support for DSU natively provided by all major
JVMs – namely Java HotSwap. Because HotSwap is an integral part of JAVADAPTOR,
the architectural design of JAVADAPTOR must be geared to the natural working environ-
ment of HotSwap, i.e., the Java Platform Debugger Architecture we already described in
Section 2.4.2.

Because the JPDA is for debugging, profiling, or monitoring and not for dynamic software
update purposes, we have to modify it to our needs. The lower part of Figure 3.2 shows
how we changed the JPDA to host our DSU approach. We simply replace the debugger by

26

3.3 Updates without Affecting the Class Schema

Target JVMJavAdaptor

Target JVMDebugger

JPDA

JPDA

JDI

Application

JVMTI

Debugger Logic

Invoke JVMTI to: debug, monitor, and
profile applications

JDWP

JDI

Application

JVMTI

Update Logic

Invoke JVMTI to: update applications on
the basis of Java HotSwap

JDWP

JPDA Reutilization

Figure 3.2: The architectural design of JAVADAPTOR.

JAVADAPTOR, which contains update logic instead of debugging logic and uses the JPDA for
dynamic software update purposes and not for debugging, profiling, or monitoring purposes.1

3.3 Updates without Affecting the Class Schema

After describing the architecture of JAVADAPTOR, we go on explaining the concepts of our
approach. The simplest kind of update we must support with JAVADAPTOR are updates
which have no influence on the class schema, i.e., method body redefinitions such as depicted
in Figure 3.3.

However, there is no trick at providing this kind of update with JAVADAPTOR, because
class-schema-retaining runtime updates (i.e., method body redefinitions) are already sup-
ported by the JVM through feature Java HotSwap. That is, within JAVADAPTOR we simply
make use of Java HotSwap in order to apply class-schema-retaining dynamic software
updates.

1JAVADAPTOR can be of course combined with an existing debugger to provide debugging as well as DSU
functionality.

27

3 Concepts of JAVADAPTOR

9 TempDisplay {

10 TempSensor ts;

11 ...

12 displayTemp() {

13 System.out.println("Temperature: ");

14 ts.averageTemp();

15 ...

16 }

17 }

1 TempDisplay {

2 TempSensor ts;

3 ...

4 displayTemp() {

5 ts.averageTemp();

6 ...

7 }

8 }

Java HotSwap

Figure 3.3: Updates solely using Java HotSwap.

3.4 Class Reloading

In Section 2.3, we discussed why the JVM does not permit class schema changing dynamic
software updates. We further identified the mechanisms within the JVM which ensure
that the schema of a loaded class cannot be changed, i.e., the strict class loading that
irreversibly bounds a class to a specific class loader. However, we found that customized
class loaders [LB98] could be used to flexibly update a running application, i.e., they could
be used to reload classes with changed class schemas. But, in order to passably handle
dynamic software updates on the basis of customized class loaders components are required,
which have major disadvantages compared to single class updates (e.g., they are invasive,
they partially stop and restart programs, they require extensive state mappings, etc.) and
thus are not in our scope. Design patterns such as proxies and wrappers/decorators are
no alternative to customized class loaders because they do not even achieve their level of
flexibility, which amongst others is because those patterns do not allow to remove methods
and complicate inheritance changing program updates.

TempSensor_v2 { ... }TempSensor { ... } Replacement

Figure 3.4: Class renaming.

Because of the disadvantages of the above mentioned approaches, we use another strategy
to update the schema of an already loaded class – namely class renaming. As exemplified
in Figure 3.4, the key idea is that, while we cannot load a new class version with the same
name, we rename the new version and load it under a fresh name. Since the resulting class
name is not registered in any class loader, the updated class can be loaded by the same class
loader that also loaded the original class.

28

3.5 Reference Updates

3.5 Reference Updates

While class renamings allow us to load a new version of an already loaded class even if the
class schema has changed, the mechanism only triggers the loading of the updated class, but
not its deployment, i.e., its usage within the application (up to now the old class version is
still deployed). To let the new class version become part of program execution, the references
to the original class have to be changed to point to the new class version. The primary goal
regarding the reference update step is to update the references without changing the schemas
of the referring classes, because this would cause additional class replacements and at the
worst require to essentially replace all classes of the system and thus let our DSU approach
become inefficient. For the sake of clarity, in the following, we will name the classes which
hold references to classes to be reloaded (updated) caller classes and the classes subject to
updates callee classes. In addition, the terms caller side and callee side cover the class itself
as well as all its instances.

3.5.1 Caller-Side Detection

Before a newly loaded class version can be deployed, we have to identify all program parts
referring the old class version. In this regard, we first parse all class files of the system
and look for outdated references within the bytecode. However, parsing the bytecode is not
enough because we can only gain information about static references within the bytecode,
but no such information as the number of objects, the relationships between specific objects,
the values of fields, etc. (i.e., the current program state). That is, in a second step, we
additionally identify all instances from type of the old class and ask the JVM for the caller
side of them (i.e., for the classes and instances that refer to the outdated instances).

3.5.2 State Mapping

One of the central goals we aim at with JAVADAPTOR is to preserve the program state beyond
updates, which (as we described in Section 2.3) is fully supported by Java HotSwap (i.e.,
updates solely using Java HotSwap do not cause state losses). But, what could cause program
state losses are our class reloadings. Since the JVM considers the new class version just as
another class to be loaded without any relation to the old class version, we have to manually
map all state from old class to new class. First, we begin with the mapping of the class
specific state. That is, we map the values currently assigned to the class fields of the outdated
class to the corresponding class fields of the new class, which of course not only includes the
declared fields but the inherited fields, too. Then, we continue to map the instance specific
state. That is, we create for each outdated instance, identified during caller-side detection,

29

3 Concepts of JAVADAPTOR

an instance from type of the up-to-date class version and map the state field by field (again
including the inherited fields) from old to new instance.

One-to-one Mappings. The simplest state mappings supported by JAVADAPTOR are one-
to-one mappings. JAVADAPTOR considers state mappings as one-to-one mappings if each
field of the old class has its counterpart (i.e., a field with same name, type, and modifiers)
in the new class and the number of fields is the same in both classes. In case of one-to-one
mappings, JAVADAPTOR automatically maps the state field by field to the newly created
instances. However, there may be updates which require more complex state mappings
than one-to-one mappings. In order to even cover those updates, we extended our mapping
mechanism.

Removed Fields. To support mappings where the update removes fields, we have to
modify the basic one-to-one mapping mechanism only slightly. Fields existing in both
classes (i.e., fields with same name, type, and modifiers) are mapped by JAVADAPTOR as
described above. Fields that are only present in the old class are simply ignored.

Added Fields. What we have to support in addition, are updates that add fields to the new
class. In this case user input is required. The user has to decide whether JAVADAPTOR

should ignore the fields, gives them default values, or initializes them as specified by the
user. In case the user wants to specify how the fields are initialized, she has to write an
initialization method that JAVADAPTOR then executes.

Moved Fields. Moved fields can be considered as a combination of removed and added
fields. Whereas, moved fields are ignored during the state mapping between the former
field owner and its updated counterpart, they must be taken into account during the mapping
involving the new field owner. What field of the one class maps to what field of the other
class must be specified by the user.

Changed Fields. Another scenario that requires user input, are updates that change fields.
We consider a field as changed if either its name, type, or modifier has changed. Like moved
fields, changed fields can be considered as a combination of removed and added fields. In
case the name has changed, the user has to specify which fields in the old and new class
correspond to each other. Because changes to the static modifier shift fields between
instance and class level (note that each instance has its own field value, whereas at class
level only one value exists), the user has to specify how the fields should be initialized. Type
changes require user-specified mapping functions.

30

3.5 Reference Updates

3.5.3 Class References and References to Local Variables

Having mapped the state and gained the static and runtime information regarding the ref-
erences to outdated classes, we process the reference updates. First, we update the class
references and references to local variables.

15 TempDisplay {

16 ...

17 copy() {

18 ...

19 TempSensor v2 local =

20 TempSensor v2();

21 ...

22 }

23
24 displayProducer() {

25 System.out.println(

26 TempSensor v2.getProducer());

27 }

28 }

1 TempDisplay {

2 ...

3 copy() {

4 ...

5 TempSensor local =

6 TempSensor();

7 ...

8 }

9
10 displayProducer() {

11 System.out.println(

12 TempSensor.getProducer());

13 }

14 }

Java HotSwap

Figure 3.5: Caller-side updates regarding class references and references to local variables.

When it comes to local variables, such as variable local in method copy of class
TempDisplay (Figure 3.5, Lines 5 – 6), only method body redefinitions via Java HotSwap
are required to refer to the new class version. State mappings are not necessary because with
each new method execution the local variables are newly created and local variables from
previous method executions are garbage collected. Thus, after redefining a method, such as
depicted in Figure 3.5 (Lines 19 – 20), the local variables created during method execution
will be of type of the updated class (here of class TempSensor v2).

Similar to reference updates regarding local variables, we also update class references
(such as depicted in Figure 3.5, Line 12) through method body redefinitions (see Figure 3.5,
Line 26). Because we have previously mapped the class specific state from the outdated to
the updated class, no additional update step is required.

Finally, we could update the references without touching the schema of the caller class,
i.e., without replacing the caller class as well.

3.5.4 References to Long-Living Objects

Different from references to local variables, references to long-lived objects (such as class or
instance field references) are vital beyond method executions, i.e., they are inherent parts of
the caller side. Thus, caller-side updates because of references to long-lived objects of type
of the callee (updated class) must be handled in a different way. We already described the
first step to handle those updates (i.e., the state mapping) in Section 3.5.2. In this section, we

31

3 Concepts of JAVADAPTOR

go on describing how JAVADAPTOR updates the references in order to deploy the updated
class and its instances.

Containers. Suppose, we updated a class through class reloading (such as for instance
class TempSensor, depicted in Figure 3.6). What we now have to do is to update the field
references of type of the reloaded class (here of class TempSensor) at caller side (in our
example of class TempDisplay and its instances). Unfortunately, up-to-date version (here
version TempSensor_v2) and outdated version (here version TempSensor) of the replaced
class are not type compatible, thus, objects of the up-to-date class version cannot be assigned
to fields of type of the outdated class version (such as required to update field ts of example
caller class TempDisplay).

1 TempDisplay {

2 TempSensor ts;

3 ...

4 TempDisplay() {

5 ...

6 ts = TempSensor();

7 ...

8 }

9
10 displayTemp() {

11 ts.averageTemp();

12 ...

13 }

14 }

Program Start

15 TempDisplay {

16 TempSensor ts;

17 IContainer cont;

18 ...

19 TempDisplay() {

20 ...

21 ts = TempSensor();

22 ...

23 }

24
25 displayTemp() {

26 ts.averageTemp();

27 ...

28 }

29 }

30 TempDisplay {

31 TempSensor ts;

32 IContainer cont;

33 ...

34 TempDisplay() {

35 ...

36 cont = Container();

37 ((Container) cont).ts =

38 TempSensor v2();

39 ...

40 }

41
42 displayTemp() {

43 ((Container) cont).ts

44 .currentTemp();

45 ...

46 }

47 }

48 Container

49 IContainer {

50 TempSensor v2 ts;

51 ...

52 }

DSU

+averageTemp(): int
TempSensor

+currentTemp(): float
TempSensor_v2

+averageTemp(): int
TempSensor

Figure 3.6: Reference updates through containers.

To solve the type-incompatibility problem while avoiding to change the caller class
schema, we use containers whose usage is exemplified in Figure 3.6. Before program
start, JAVADAPTOR prepares the program for the container approach, i.e., it adds field
cont (Line 17) to each class in the program. The container field does not affect program
execution as long as no callee of the caller class has to be replaced. To replace callees
referenced by the caller class, the program has to be changed as depicted in the right part of
Figure 3.6. First, JAVADAPTOR creates a container class (see Figure 3.6, Lines 48 – 52) used

32

3.5 Reference Updates

to store instances of the new callee class (here of class TempSensor_v2). Second, our tool
assigns the up-to-date counterpart of an outdated object (such as referenced by field ts in
Figure 3.6) to an instance of the container. The container instance containing the up-to-date
object is then assigned to field cont within the caller class (here class TempDisplay). Third,
the tool redirects all accesses of the old callee instance to the updated callee instance located
in the container (see Figure 3.6, Lines 36 – 38 and Lines 43 – 44), i.e., the tool redefines all
method bodies in which the old callee instance is accessed and swaps the resulting method
bodies via Java HotSwap (for more details see [Sch10]). Note that we, for clarity reasons,
will remove the necessary downcasts to the specific container type (as shown in Lines 37
and 43 of Figure 3.6) from the following code examples.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 TempSensor getSensor() {

6 ts;

7 }

8
9 setSensor(TempSensor ts) {

10 .ts = ts;

11 }

12 }

DSU

13 TempDisplay {

14 TempSensor ts;

15 IContainer cont;

16 ...

17 TempSensor getSensor() {

18 Proxy(cont.ts);

19 }

20
21 setSensor(TempSensor ts) {

22 cont.ts = ((Proxy)ts).update;

23 }

24 }

25 Proxy TempSensor {

26 TempSensor_v2 update;

27 ...

28 }

Figure 3.7: Schema-preservation through proxies.

Proxies. The basic container approach described above is sufficient in many cases. How-
ever, it fails when the caller class to be updated contains methods whose parameters or
returned objects are of type of the old callee class (such as shown in Figure 3.7, Line 5
and 9). One workaround would be to replace the caller class as well. But, this strategy may
result in additional class replacements, which at the worst require to essentially replace all
classes of the system and thus let our DSU approach become inefficient. In order to avoid
cascading class replacements, we extend our approach by proxies (see Figure 3.7). Caller
updates work in the same manner as described above. Only difference is, that, in addition to
the container class a proxy class is generated.

The idea of proxies is to guide objects of an updated callee class through the caller
methods that require or return objects of type of the old callee class. The usage of proxies
is exemplified on the basis of method getSensor of class TempDisplay which returns an
instance of callee class TempSensor (Line 6). After replacing callee class TempSensor by

33

3 Concepts of JAVADAPTOR

class TempSensor_v2, method getSensor has to return an instance of the new callee class,
which is not possible because TempSensor and TempSensor_v2 are not type compatible.
To achieve type compatibility, we wrap the instance of TempSensor_v2 with an instance of
class Proxy (Line 18). Since the proxy extends class TempSensor, it can be returned by
method getSensor. In order to use the returned object wrapped by the proxy at receiver
side (i.e., within the class that called method getSensor) the object is unwrapped. That is,
the proxy is only used to guide instances of the new callee class through type-incompatible
methods. The receiver will finally work with the new callee object and not with the proxy
object. How to propagate instances of the updated callee class back to the caller (more
precisely to the container) is exemplarily shown in Figure 3.7 (Line 22). Before method
setSensor is called, its parameter (i.e, an instance of TempSensor v2) is wrapped by a
proxy. In order to unwrap and use the received instance of class TempSensor_v2, proxy ts
must be cast to type Proxy.

3.6 Concurrent Updates of Multiple Classes

So far, we described the mechanisms and concepts of JAVADAPTOR on the basis of the very
simple weather station example given in Section 3.1. This example only consists of one
single class update and the corresponding caller-side update. However, JAVADAPTOR must
not only allow the developer to update a single class but multiple classes in one step, which is
essential to flexibly update complex real-world applications. On the one hand, this is because
updates of real-world applications normally span many different classes. On the other hand,
concurrent updates of multiple classes is essential for inheritance hierarchy updates, because
superclass updates implicitly require to update and reload corresponding subclasses, too.

Figure 3.8 sketches how JAVADAPTOR handles concurrent updates of multiple classes. At
first, JAVADAPTOR reloads all classes with changed schemas (as described in Section 3.4).
Afterwards, it identifies all classes (callers) with references to the classes to be reloaded (see
Section 3.5.1). This information is gained in one atomic step for efficiency reasons. That
is, having an overview about all changes required to update the running program allows
us to create possible containers and proxies in one single step. In addition, we only have
to touch each class one-time in order to modify its bytecode. However, in the next two
steps, JAVADAPTOR creates the new callee instances and maps the state (as we described
in Section 3.5.2). If this is done, JAVADAPTOR updates all references conform to the
workflow described in Sections 3.5.3 and 3.5.4. Since we already gained information about
all dependencies between callers and callees, this can be efficiently done in one atomic step,
too. In the last update step, we update all modified and hotswapable classes at once using
Java HotSwap. This includes not only all callers of reloaded classes, but also classes which
are explicitly changed by the developer.

34

3.7 Special Cases

Class Reloading

Caller-Side Updates

Class 1 Class 3Class 2 Class n...

Class 1
State

Mapping

Reference Updates

HotSwap

Class 2
State

Mapping

Class 3
State

Mapping

Class n
State

Mapping

Caller-Side Detection

...

Figure 3.8: Concurrent multiple class updates.

3.7 Special Cases

After we described how JAVADAPTOR handles concurrent updates of multiple classes, one
can possibly imagine that JAVADAPTOR is capable to support a wide range of complex
update scenarios. In order to further confirm the capabilities of JAVADAPTOR, we explain
how the tool supports special cases such as dynamic updates of inheritance hierarchies and
nested classes. As we will reveal in the following, support for these scenarios can be entirely
traced back to the already described concepts.

3.7.1 Inheritance Hierarchies

Inheritance is one of the basic principles of the object-oriented paradigm and thus must be
considered by a DSU approach aiming at flexible dynamic software updates. Therefore, we
go on describing how JAVADAPTOR supports program updates which change inheritance
hierarchies (for deeper insights into our solution see [Gre10a]).

+temp: float
TempSensor_v2

+id: int

SolarSensor_v2

+bat: Battery
+s: Sensor

DSU

+temp: float
TempSensor

SolarSensor

+bat: Battery
+s: Sensor

Figure 3.9: Implicit inheritance hierarchy updates.

35

3 Concepts of JAVADAPTOR

Implicit Updates. Let us remind that the basic concept to support class schema changes
with JAVADAPTOR is to load the updated class under a new name into the JVM, which works
as described above in case the reloaded class is no superclass. That is, as a result of our
class reloading approach, reloading superclasses such as class SolarSensor depicted in
Figure 3.9 requires to reload the classes downwards the inheritance hierarchy (here class
TempSensor) as well. This is due to the fact, that the subclasses have to extend the new
superclass version in order to get access to the changes made upwards the inheritance
hierarchy.

Explicit Changes. Explicit changes to the inheritance hierarchy are triggered through
changes to the optional parts (in brackets) of the following language constructs:

class X [extends Y] [implements IZ, ...] (3.1)

abstract class X [extends Y] [implements IZ, ...] (3.2)

interface IX [extends IY, IZ, ...] (3.3)

The goal of course is to support any kind of changes to the language constructs declared
above. Furthermore, eligible solutions must be conform to the already introduced concepts.
Fortunately, explicit inheritance hierarchy changes can be handled the same way as every
other class schema affecting update. We just reload the class in order to change its inheritance
hierarchy and implicitly update possible subclasses (see Figure 3.10).

Implicit

Explicit

+s: SolarSensor
TempSensor

+temp: float
TempSensor_v2

SolarSensor

+bat: Battery
+s: Sensor

DSU

+temp: float
TempSensor_v3

+bat: Battery
SolarSensor_v2

+id: int
Sensor

DSU

Figure 3.10: Explicit inheritance hierarchy changes.

Inheritance and State Mapping. As we described above, the reloading of classes with
modified inheritance hierarchies conforms to the basic concepts of JAVADAPTOR, which
is true for the state mappings as well. That is, one-to-one mappings and mappings with
removed fields are automated by JAVADAPTOR. Newly added fields must be initialized based
on user input. Moving and changing fields requires user input as well.

36

3.7 Special Cases

6 TempDisplay {

7 TempSensor ts;

8 TempSensor tmps;

9 IContainer cont;

10 ...

11 }

23 SuperCallerContainer

24 IContainer {

25 TempSensor v2 ts;

26 ...

27 }

DSU

+currentTemp(): float
TempSensor_v2

1 Display {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 }

12 Display {

13 TempSensor ts;

14 IContainer cont;

15 ...

16 }

17 TempDisplay {

18 TempSensor ts;

19 TempSensor tmps;

20 IContainer cont;

21 ...

22 }

+averageTemp(): int
TempSensor

28 SubCallerContainer

29 IContainer {

30 TempSensor v2 ts;

31 TempSensor v2 tmps;

32 ...

33 }

Figure 3.11: Inheritance hierarchies and reference updates.

Inheritance and Reference Updates. However, so far we only discussed how we handle
inheritance hierarchy modifications at callee side (i.e., of reloaded classes and their instances).
What we have to consider in addition is how we must update the references to the class
to be reloaded when the caller itself is bound to inheritance relationships. Figure 3.11
exemplifies such a scenario. Here, class TempDisplay inherits from class Display and
thus owns three fields of class TempSensor scheduled for an update. In order to update the
references, both classes get their own container class whereby each container only manages
the fields its corresponding caller class declares, which is crucial, because putting all fields
in one container would render field overriding (such as denoted by fields ts of our example)
impossible.

3.7.2 Nested Classes

Object-oriented programming is all about objects and how they relate to each other. The Java
language originally provides many constructs to describe complex relationships between
different classes and objects. One well-known construct to describe dependencies between
classes and their objects are nested classes. Gossling et al. [GJSB05] define nested classes
as follows:

A nested class is any class whose declaration occurs within the body of another class
or interface. A top-level class is a class that is not a nested class.

According to this definition, a nested class is a class which depends on its declaring
top-level class. The left part of Figure 3.12 shows how nested classes (here member class
Sensor) are declared. In order to create and use an instance of nested class Sensor, the top-
level class TempSensor must be vital, i.e., the top-level class must be loaded and an instance

37

3 Concepts of JAVADAPTOR

1 TempSensor {

2 Sensor sensor;

3 id = 1;

4
5 TempSensor() {

6 sensor = Sensor();

7 id = 1;

8 }

9 ...

10
11
12
13
14
15
16
17
18
19
20 Sensor {

21
22
23 Sensor() {

24
25 }

26
27 setId(i) {

28 id = i;

29 }

30
31 getID() {

32 id;

33 }

34 }

35 }

20 TempSensor$Sensor {

21 TempSensor $0;

22
23 TempSensor$Sensor(TempSensor ts) {

24 $0 = ts;

25 }

26
27 setID(i) {

28 TempSensor.access$0($0, i);

29 }

30
31 getID() {

32 TempSensor.access$1($0);

33 }

34 }

1 TempSensor {

2 TempSensor$Sensor sensor;

3 id;

4
5 TempSensor() {

6 sensor = TempSensor$Sensor();

7 id = 1;

8 }

9
10 access$0 (TempSensor ts, id) {

11 ts.id = id;

12 }

13
14 access$1 (TempSensor ts) {

15 ts.id;

16 }

Figure 3.12: Dynamic updates of nested classes.

of it must exist. In order to support dynamic software updates affecting nested classes, it
is crucial to get to know how top-level class and depending nested class are represented at
the bytecode level. As depicted at the right part of Figure 3.12, top-level class (here class
TempSensor) and nested class (i.e., class Sensor) are translated into two different class
files. The nested class is bound to the top-level class through this references (e.g., right part
of Figure 3.12, Line 21), which is nothing different than a special kind of composition. One
feature unique to nested classes is that they can access even private elements of the top-level
class from within the nested class, which is realized through common getter and setter
methods (such as method access$0 depicted at the right part of Figure 3.12, Lines 10 – 12)
just generated by the compiler.

Generally, top-level and nested class act as usual caller and callee on another. Due to this
fact, we can apply updates affecting nested classes in the same manner as described in Sec-
tion 3.4 and 3.5. That is, we basically reload the class whose schema has changed (no matter

38

3.8 Summary

if top-level or nested class) and update the references at caller side (detailed descriptions of
the approach can be found in [Sch10]).

To sum up, JAVADAPTOR allows us to flexibly change applications during their runtime.
The update granularity can vary from minor changes (i.e., of single classes) to system-wide
changes (i.e., of multiple classes). In addition, JAVADAPTOR will only update the changed
classes and the corresponding caller classes. All other classes (except from subclasses of
reloaded classes) remain untouched, which minimizes the influence of the update on the
running program.

3.8 Summary

Within this chapter, we presented the conceptual core of JAVADAPTOR. We detailed how we
hook JAVADAPTOR into the JPDA and thus integrate it with the Java runtime. In addition,
we described how we change class schemas through class reloadings and update the referring
program parts using Java HotSwap, containers, and proxies to hit the targeted high level
of update flexibility. We further detailed how we keep the program state through state
mappings. Last but not least, we exemplified on the basis of inheritance hierarchy changes
and nested class updates that the concepts are generally applicable and cover even special
update scenarios.

39

4 Implementation of JAVADAPTOR

This chapter shares material with the SPE’2011 paper "JavAdaptor – Flexible Runtime
Updates of Java Applications" [PKC+12] and the ICSE’2011 paper "JavAdaptor:
Unrestricted Dynamic Software Updates for Java" [PGS+11].

JAVADAPTOR accomplishes flexible dynamic software updates using class replacements
(i.e., class reloadings) and updates of the references pointing to an outdated class. Through
combining Java HotSwap, containers, and proxies those reference updates can be applied
without replacing the referring classes (i.e., the caller side) as well. However, even if the
concepts of JAVADAPTOR are comprehensible, their implementation is challenging for
different reasons. One reason is the polymorphism of updates. Some updates require special
treatment at implementation level (e.g., inheritance hierarchy changes require not only to
update the changed class but all its subclasses as well). In order to demonstrate the general
applicability of the concepts of JAVADAPTOR and in order to provide a tool which is usable
in practice, our goal is to support as many kinds of updates as possible.

In this chapter, we detail the implementation of JAVADAPTOR. We do this for two major
reasons. First, we want to get people, interested in our solution, the chance to reproduce
the implementation. It may be a good starting point for their own research and may prevent
them from making the same (time consuming) mistakes we made on our way to the current
implementation. Second, a detailed implementation description reveals the preconditions
that must be fulfilled by a language and its runtime environment to be able to host our DSU
approach. This knowledge builds the base to apply the approach to other languages than
Java. However, people not interested in the implementational details of JAVADAPTOR may
skip this chapter or may only read the first paragraph of each section which briefly describes
the current update step.

The structure of this chapter is as follows. For a better understanding of the implemen-
tational details, we first describe the usage and architecture of JAVADAPTOR. Then, we
give an overview about the used external libraries and sketch the update steps JAVADAPTOR

internally processes. Afterwards, we continue revealing the details of each of those update
steps.

41

4 Implementation

Implement updates via IDE

Connect to running
application

Update running application

Disconnect from running
application

connected?

more
updates?

no

yes

no

yes

Figure 4.1: Usage of JAVADAPTOR.

4.1 Tool Description

The current implementation of our tool comes as a plug-in which smoothly integrates into
the Eclipse1 IDE (conceptually JAVADAPTOR could be integrated into any other IDE or even
used without an IDE).

The implementation of the required program updates conforms to the usual software
development process, i.e., the developer implements the required functions using the Eclipse
IDE and compiles the changed program sources. When the developer is done with the
program changes and wants to apply the changes to the running application, she connects
JAVADAPTOR with the JVM executing the application, pushes the update button of JAVADAP-
TOR, and the tool immediately applies the update. After the update, JAVADAPTOR can be
disconnected from the application. The described process can be repeated as often as required
(see Figure 4.1). A demo video showing JAVADAPTOR in action and demonstrating its usage,
can be found on YouTube.2

From the architectural point of view, JAVADAPTOR establishes a connection, via the Java
Debug Interface (JDI), to the Java Virtual Machine Tool Interface (JVMTI) of the targeted
JVM (see Figure 4.2). Once the update is triggered, JAVADAPTOR prepares the classes

1http://www.eclipse.org/
2http://www.youtube.com/watch?v=jZm0hvlhC-E

42

http://www.eclipse.org/
http://www.youtube.com/watch?v=jZm0hvlhC-E

4.2 Applied Libraries

IDE

JavAdaptor

JDI

Target JVM

Application

JVMTI

Update Thread Class Loaders
Update Logic

Class
Class_v1

Class_v2
Class_v3

Class_v4
Class_v5

code change

update classes, create containers/proxies, and so forth, using Javassist

Invoke JVMTI to: load new class versions,
update callers, and hotswap method body

implementations

Developer

load

Figure 4.2: Architecture of JAVADAPTOR.

changed within Eclipse and applies them using the functions provided by the JVMTI. In
order to load and instantiate new class versions, a special update thread is added to the target
application. This thread is only active when the running program is updated and, thus, causes
no performance penalties during normal program execution.

4.2 Applied Libraries

As described above, JAVADAPTOR makes use of the JVMTI, which is standard for all major
Java virtual machines. All requests of JAVADAPTOR to the JVMTI of the virtual machine
executing the application to be updated are carried out via the Java Debug Interface, which is
provided as an external library.

The second library vital to JAVADAPTOR is Javassist3 (for further information see [CN03,
Chi00, TSCI01]). Through Javassist, we carry out the bytecode modifications our update
approach requires. Javassist is an easy to use bytecode modification tool, which allows us to
modify the program’s bytecode in any possible way and at different abstraction levels, i.e.,
at source level and at bytecode level. Using the source level API, bytecode modifications
can be processed without any knowledge of the Java bytecode and its structure. However,
even if the source level API is easy to use, it does not cover the whole bandwidth of possible
bytecode modifications. In order to process bytecode modifications not possible with the
source-level API, the developer can make use of the bytecode level API.

3http://www.csg.is.titech.ac.jp/~chiba/javassist/

43

http://www.csg.is.titech.ac.jp/~chiba/javassist/

4 Implementation

4.3 Overview

JAVADAPTOR processes different steps in order to dynamically update an application (as
depicted in Figure 4.3). First, JAVADAPTOR prepares (note that preparation in this context
means to anticipate the possibility of an update and not to anticipate specific updates) the
application for dynamic software udpates (see Action 1.1 of Figure 4.3). Afterwards, the
application can be started. Every other JAVADAPTOR workflow step (i.e., Actions 1.2 – 1.5,
Figure 4.3) belongs to the update of the running application.

R
un

tim
e

Prepare application (Section 4.4)

1.1

Prepare class update (Section 4.5)
1.2

Process class update (Section 4.6)
1.3

Prepare state mapping (Section 4.7)
1.4

Process state mapping (Section 4.8)
1.5

Figure 4.3: Overview of JAVADAPTOR.

For the update, JAVADAPTOR connects to the application and begins to gain information
about what classes have changed, what classes must be reloaded, and what classes are
due for reference updates because of the class reloadings (Action 1.2, Figure 4.3). Based
on the gained information, JAVADAPTOR goes on to process the bytecode modifications
required to update the program and finally loads/reloads the changed classes into the JVM
(see Action 1.3, Figure 4.3).

If all class specific updates are applied to the JVM, JAVADAPTOR continues to map the
state from outdated classes (and their instances) to their up-to-date counterparts (i.e., the
updated classes and their instances) and updates the caller side (i.e., the referring classes
and their instances), where with Action 1.4 (see Figure 4.3), we gain the required mapping
information and with Action 1.5, we process the state mappings and the corresponding
caller-side updates.

Within the following sections, we will detail each update step depicted in Figure 4.3.

44

4.4 Application Preparation

4.4 Application Preparation

Before we can dynamically update an application using our concepts, we have to slightly
change the application. In a nutshell, we have to add to each application class a container field
and change the launch configuration such that the application is started with JVMTI/HotSwap
enabled. Both actions, i.e., adding the container fields as well as enabling JVMTI including
the HotSwap feature are central to our approach.

Figure 4.4 sketches the implementational details of the preparation process. The JVMTI
including HotSwap is automatically loaded when debugging is enabled. That is, we have
to change the original launch configuration in such way that the application is started in
debug mode (Action 2.1 of Figure 4.4). The corresponding option we add to the launch
configuration is:

agentlib:jdwp=transport=dt_socket, suspend=n, server = y, address="port number"

The option jdwp constitutes the loading of the debugging library (i.e., the JVMTI). For
reasons of platform independence we choose option dt_socket (socket-based communication)
for communication between JAVADAPTOR and the target JVM instead of dt_shmem (windows
specific communication via shared memory) . Option suspend=n ensures that the application
executes no matter whether JAVADAPTOR is connected to the target JVM or not. The
server=y option lets the target JVM listen for incoming debug requests. With option address,
we define the port used for communication. All other JVM and program options remain the
same as defined in the original launch configuration.

JAVADAPTOR then gives the user the opportunity to decide whether to store the new
launch configuration in an IDE specific format or as a script which allows the user to start
the application independent from any IDE (Decision 2.2, Figure 4.4).

After launch configuration modification, JAVADAPTOR creates a properties file storing
information about the project related to the application, such as project name, classpath, or
location of the modified launch script (Action 2.4, Figure 4.4).

Next, JAVADAPTOR copies the binaries (class files, configuration files, required li-
braries, etc.) of the application into a new directory from where the program is executed
later on (Action 2.5, Figure 4.4). Through Action 2.5, we decouple application development
from the actually executed program and its binaries. That is, the developer (user) modifies
the application according the usual static software development process (i.e., modifying
the sources and compiling the program) while the changes do not influence the running
program and its binaries until the user triggers the update. Another reason for organizing the
application into development and execution location is that we want to keep JAVADAPTOR

transparent to the developer. That is, if the developer explores the sources or class files of
the project from within the IDE, she should not find any JAVADAPTOR related stuff, which

45

4 Implementation

Change launch configuration

Create launch scriptAdditional IDE independend
launch script?

Create properties file

yes

no

Copy application binaries into execution directory

Process JavAdaptor specific standard class preparation (see Figure 4.5)

Wrap main method

Store class information in xml file

Copy prepared application binaries into working directory

Add worker thread logic

2.1

2.2 2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Figure 4.4: Prestart application preparation.

otherwise could confuse her. Last but not least, keeping the sources and binaries of the
development location untouched, gives us a clean starting point for each program update no
matter if first or consecutive update.

Having copied the application binaries into the execution location, we prepare all ap-
plication class files stored in the execution location for our update approach (Action 2.6,
Figure 4.4). The required class file preparation steps are depicted in Figure 4.5. First, we
check whether the class is an interface or not (Decision 3.2, Figure 4.5). If the class is not an
interface, we add the container field vital to our container concept and required to access the
new version of a class due for an update (Action 3.3, Figure 4.5) to the application class.

The remaining application class modifications are not essential to our update approach, but
improve the efficiency of the update process. At first, we remove possible final modifiers
from static fields (Actions/Decision 3.4 – 3.6, Figure 4.5). This is because static fields are
initialized at class load time and in case they are final, their values can only be changed
through class reloading. The reason why we do not remove the final modifier from non-
static fields is that the Java reflection API permits us to change the values of those fields even

46

4.4 Application Preparation

FOR each class file DO

yes

no

yes

Is class interface?

Add container field

no

FOR each field DO

Remove modifier final

Is field final static?

Is parameter final?

yes

no

Remove modifier final

FOR each method DO

Is class final?

Remove modifier final

yes

no

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Figure 4.5: JAVADAPTOR specific standard class modifications (subpart of Figure 4.4).

after initialization. Next, JAVADAPTOR checks for each application class whether the class
owns methods whose parameters are final and if true removes the final modifiers, which
is done to efficiently implement our proxy concept (Actions/Decision 3.7 – 3.9). Last but not
least, we remove possible final modifiers (Decision/Action 3.10 – 3.11) from the currently
processed class, which is necessary to extend the class (note that our proxy concept requires
to extend classes scheduled for reloadings).

Once the class files are prepared for our update approach, JAVADAPTOR creates a new
main method that wraps the original main method of the application (Action 2.7, Figure 4.4).
This is done because the JVM disallows the developer to redefine main methods via Java
HotSwap. But, through creating a new main method, the JVM recognizes the original
main method as an ordinary method and thus no longer declines to hotswap it. In a next

47

4 Implementation

step (see Action 2.8, Figure 4.4), JAVADAPTOR adds the worker thread required for our
runtime updates to the newly created main method. Next (see Action 2.9, Figure 4.4), we
store all class information (such as class name, superclasses, implemented interfaces, class
version, etc.) gained during prestart phase. In a final step, we copy the prepared application
binaries of the execution location into another location called working directory (Action 2.10,
Figure 4.4). All class file modifications specific to our update approach will be processed in
the working directory and not in the execution directory. Doing so, no intermediate results of
our update process will be stored in the execution directory which otherwise could have side
effects on the running application.

With finishing the last application preparation step, the application is prepared for dynamic
software updates and could be started immediately through executing the changed launch
configuration.

4.5 Class Update Preparation

Once the prepared application is started, the developer can modify the program’s source code
and apply the changes to the running application via JAVADAPTOR. To dynamically update
the application, JAVADAPTOR connects to the Java Virtual Machine Tool Interface (JVMTI)
of the JVM executing the application due for an update (such as we already described
in Section 4.1). If the connection between JAVADAPTOR and the running application is
established, JAVADAPTOR gains information about the program parts that must be updated.
That is, the tool identifies the class files changed by the developer, identifies the classes that
have to be reloaded because of changed class schemas, and looks for references to those
classes. The information will be used later on to rename the classes that must be reloaded
and to update their referring classes using HotSwap, containers, and/or proxies.

In the following sections, we will reveal the implementational details of the class update
preparation process.

4.5.1 Identification of Changed Classes

When the developer triggers the update, JAVADAPTOR first identifies what classes have
changed. Changed classes are those that are explicitly changed by the developer and those
that the Java compiler recompiled because they depend on the explicitly changed classes.
The goal of JAVADAPTOR is to apply these changed classes to the running application on the
basis of the concepts described in Chapter 3 .

To simplify matters, we currently ask Eclipse for the changed classes (see Action 4.1,
Figure 4.6). We point out that for reasons of platform independence, we could easily identify
the changed classes on the basis of timestamps, checksums, and so forth. In the next

48

4.5 Class Update Preparation

yes

List "changedClasses"
empty?

Remove and
process first

element from list
"changedClasses"

Copy corresponding class
file into working directory

Add class to list
"allChangedClass

es"
Currently processed
subclass either in list
"changedClasses" or in list
"allChangedClasses"?

Identify all subclasses of
the currently processed
class and store them in

list "subClasses"

List "subClasses"
empty? Remove and process

first element from list
"subClasses"

Add subclass to list
"changedClasses"

no

no

no

yes

yes

Get list "changedClasses" from Eclipse

4.1

4.2

4.3

4.4

4.5

4.6 4.7

4.8

4.9

4.10

Figure 4.6: Identification of changed classes.

step (Action 4.2, Figure 4.6), we check whether the requested list of changed classes is empty
or not. If not empty, we remove the first element of this list (Action 4.3, Figure 4.6) and copy
the class file related to the list element to the working directory (Action 4.4, Figure 4.6).

However, we do not only have to identify the classes explicitly and implicitly changed by
the developer. Additionally, we must identify all subclasses of those changed classes (see
Actions/Decisions 4.6 – 4.10), which (as we already described in Section 3.7.1) is due to
the fact that, if the changed classes must be reloaded (because their schema has changed),
we have to reload the subclasses as well. In this context, we characterize every class as a
subclass if it extends and/or implements a changed class. Once JAVADAPTOR identified
all subclasses, it has all information required to proceed with the next update step, i.e., the
identification of classes with changed schemas.

49

4 Implementation

4.5.2 Identification of Classes with Changed Schemas

After obtaining the changed classes and their subclasses, we identify the classes whose
schema has changed. Of course, we could update even classes with unchanged schemas
through class reloading, but updating those classes via Java HotSwap is far more efficient.
This is because with HotSwap, class versions remain the same and as a result, no state
mappings and class reference updates through containers and proxies are required.

Get list "allChangedClasses"

Are class declarations equal?

yes
no

FOR each class of list "allChangedClasses" DO

Process JavAdaptor specific standard
class preparation (see Figure 4.5)

Get class, method, and field declaration
information of changed class

Get class, method, and field declaration
information of original class version

Mark changed class as
¬hotswappable

Mark all subclasses of changed class as
¬hotswappable

Are method declarations equal?

Are field declarations equal?

yes

yes

no

no

Store superclass/
interface information

superclass or
interfaces changed?

no

yes

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Figure 4.7: Test class for schema change.

However, before we start identifying classes with changed schemas, we prepare the
changed classes for our update approach (Action 5.3, Figure 4.7), i.e., we add the container
fields and possibly remove final modifiers (as previously described in Section 4.4). This
must be done, because otherwise we could not update those classes with later program
updates. However, there is also another reason for preparation. That is, in the following,
we check whether changed class and original class share the same class schema. In earlier

50

4.5 Class Update Preparation

update process steps we already prepared the original class for our update approach. If we
now compare prepared original class and unprepared changed class, JAVADAPTOR would
detect a schema change, because the unprepared changed class misses the container field
and may own some final modifiers not present in the prepared original class. That is,
JAVADAPTOR would schedule the class for an update through class reloading, even if the
changes to the class did not change the class schema. This is inefficient and thus must be
avoided.

Ones prepared, we retrieve schema information of the changed class and the original
class (Actions 5.4 and 5.5, Figure 4.7) and check whether they share the same class schema
or not, i.e., we test whether the changed class must be reloaded or could be updated using
Java HotSwap.

But, what elements of a class determine the class schema? The basic element of every
class is the class declaration, which constitutes the general class schema. According the
Java Language Specification, a class declaration is of the following form [GJSB05]:

ClassDeclarations = Modifiersopt class/interface/enum Identifier TypeParametersopt

Superopt Interfacesopt Body

Modifiers = {Modifier, Modifiers Modifier}

Modifier = {Annotation, public, protected, private, abstract, static, final,

strictfp}

Mandatory to every class declaration are keywords class/interface/enum, the class name
(Identifier), and the body of the class (Body). Optional elements are the modifiers (Modifiers),
TypeParameters, superclass (Super), and implemented interfaces (Interfaces). Every change
to the class declaration changes the class schema.

Other elements relevant to the class schema are method declarations, which according the
Java Language Specification have the following form [GJSB05]:

MethodDeclaration = MethodHeader MethodBody

MethodHeader = MethodModifiersopt TypeParametersopt ResultType

MethodDeclarator Throwsopt

MethodBody = {{ }, ; }

ResultType = {Type, void}

MethodDeclarator = Identifier (FormalParameterListopt)

MethodModifiers = {MethodModifier, MethodModifiers, MethodModifier}

MethodModifier = {Annotation, public, protected, private, abstract, static,

final, synchronized, native, strictfp}

51

4 Implementation

Here, the return type (ResultType) and MethodDeclarator are mandatory to every method
declaration. Like with class declarations, changes to the elements of a method declaration
change the class schema. Interestingly, Java HotSwap permits to add or remove element
throws for which reason we do not consider a class schema as changed if throws was
added/removed.

Finally, declarations of instance or class fields are vital to the class schema as well. Their
form is specified as followed [GJSB05]:

FieldDeclaration = FieldModifiersopt Type VariableDeclarators ;

VariableDeclarators = {VariableDeclarator,

{VariableDeclarators, VariableDeclarator}}

VariableDeclarator = {VariableDeclaratorId,

VariableDeclaratorId = VariableInitializer}

VariableDeclaratorId = {Identifier, VariableDeclaratorId []}

VariableInitializer = {Expression, ArrayInitializer}

FieldModifiers = {FieldModifier, {FieldModifiers FieldModifier}}

FieldModifier = {Annotation, public, protected, private, static,

final, transient, volatile}

Only optional elements of field declarations are field modifiers (FieldModifiers). All
modifications of field declarations will cause class schema changes. Exceptions are vari-
able initializers (VariableInitializer), which are automatically moved by the compiler into
constructors or static blocks and thus could be changed and updated at runtime via Java
HotSwap.

After JAVADAPTOR retrieved the class, method, and field declaration information for both,
original class and changed class, it compares the declarations pair-wise and checks whether
they are equal or not. JAVADAPTOR first compares the class declarations (Decision 5.6,
Figure 4.7), goes on checking the method declarations (Decision 5.7, Figure 4.7), and finally
analyzes the field declarations (Decision 5.8, Figure 4.7).

With the first check that indicates a class schema change, we are allowed to terminate
the test and mark the changed class and all its subclasses as ¬hotswappable (Actions 5.11
and 5.12, Figure 4.7). In case the class declaration has changed, JAVADAPTOR checks
whether the changed class extends a different superclass or implements different interfaces
than the original class and if true stores this information (Decision/Action 5.9 and 5.10,
Figure 4.7). The information will be used in later update steps such as the state mapping.

If we know whether the class schema has changed or not, we continue to analyze the next
class’s schema.

52

4.5 Class Update Preparation

4.5.3 Class Reference Identification

With the previous update step, we found out what classes can be updated through Java
HotSwap and what classes must be reloaded under a fresh name to update them. With
this update process step, we identify all references to classes that must be reloaded. This
is necessary, because we must update the references such that they point to the new class
versions to let the new class versions become part of program execution (see Section 3.5).

To identify the references to classes scheduled for reloading, we have to go through all
application classes (Action 6.2, Figure 4.8) and check whether they reference classes with
changed schemas or not. But, before we parse a class for class references due for an update,
we check if the processed class itself is going to be replaced (reloaded) because its schema
has changed (note that those classes will be handled different than classes with unchanged
schemas). If this is not the case (i.e., if the class is not marked as ¬hotswappable, see
Decision 6.3 of Figure 4.8), JAVADAPTOR retrieves all class references occurring in the
class via Javassist method getRefClasses (Action 6.4, Figure 4.8) and analyzes each
element of the resulting list (Action 6.5, Figure 4.8). First, JAVADAPTOR checks whether the
referenced class is marked as ¬hotswappable (Action 6.6, Figure 4.8) or not. In case it is
¬hotswappable, we put the currently analyzed application class in list allChangedClasses if
not already done (Decision/Action 6.7 – 6.8, Figure 4.8).

However, generally knowing that the application class’s references must be updated is
not enough. In addition, we must figure out if the class only refers to short-lived instances
of ¬hotswappable classes (those references could be easily updated through method body
redefinitions) or if it needs containers (to update references to long-living instances of
¬hotswappable classes) and/or proxies in addition. Classes that only hold references to
short-lived instances of ¬hotswappable classes do not require containers or proxies.

In order to get to know if we need proxies (remember that in order to keep the method
owner’s schema, we use proxies to guide up-to-date objects through methods that expect
objects of outdated class versions, see Section 3.5.4), we check the application class’s method
declarations for references to the currently considered class and related array classes (Deci-
sion 6.10, Figure 4.8). In case JAVADAPTOR finds references, it may create a proxy for the
referenced (array) class (Decision/Action 6.11 – 6.12, Figure 4.8).

To check whether the processed application class needs a container, JAVADAPTOR tests if
any of the declared fields are of type of the referenced class or related array classes. If so,
the tool may create a container and puts all fields of (array) type of the referenced class into
this container (Actions/Decisions 6.13 – 6.17, Figure 4.8).

Once we identified all references to classes that must be reloaded, we are done with the
class update preparation step and can immediately process the class updates on the basis of
the up-to-now gained information.

53

4 Implementation

Get classes with changed schema

Application class marked
as ¬hotswappable?

yes

no

FOR all application classes DO

Get referenced classes and store
result in list "referencedClasses"

FOR each class listed in "referencedClasses" DO

Referenced class marked
as ¬hotswappable?

FOR each method declaration of the processed application class DO

Are returned objects or parameters
of (array) type referenced class?

FOR each class field and instance field of the processed application class DO

Is field of (array) type referenced class?

Container for application class created?

Put field of (array) type referenced
class with new version in container

Create container for application class

yes

no

yes

no

yes

no

no

yes

Create Proxy for referenced classProxy for referenced class
created?

no

yes

Put application class in
list "allChangedClasses"

Application class in list
"allChangedClasses"?

no

yes

6.1

6.2

6.3

6.4

6.5

6.6

6.7 6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

Figure 4.8: Identify class references.

54

4.6 Class Update Proceeding

4.6 Class Update Proceeding

In the previous update process steps, we found out what classes have changed, what classes
must be reloaded, and what references we have to update in order to execute the reloaded
classes. That is, we exactly know what classes we have to modify in order to update the
running application with our DSU approach. Within the following sections, we describe how
JAVADAPTOR modifies the bytecode of the classes to be updated. That is, we show how
JAVADAPTOR updates class, field, and method declarations, creates container and proxy
classes, and updates method bodies. Finally, we detail how JAVADAPTOR gets the modified
class files into the JVM.

4.6.1 Declaration Updates

The first bytecode modification step aims at updating the class, field, and the method declara-
tions of all classes to be updated, i.e., all classes listed in allChangedClasses (see Figure 4.9).
For that purpose, JAVADAPTOR creates a Javassist ClassMap which contains all class names
we must update. But, before JAVADAPTOR updates the class names and declarations using
Javassist method replaceClassName, it checks whether the currently processed class is
an interface or not (Decision 7.3, Figure 4.9). In the latter case, JAVADAPTOR buffers the
method body definitions (note that interfaces only declare methods but never contain method
body definitions and thus must be not considered) of the methods declared in the class and
removes the method’s body definitions (Actions 7.4 and 7.5, Figure 4.9). This is done for
one important reason. Method replaceClassName would update even the class names
occurring in the method bodies, which we have to prevent because those names must be
updated in a different way. Through buffering the method body definitions and removing
them from the currently processed class, we can apply method replaceClassName to the
currently processed class while keeping the method bodies untouched.

Next (Decision 7.6, Figure 4.9), we figure out whether the currently processed class’s
schema has changed (i.e., the class is marked as ¬hotswappable) or not (i.e., the class is
marked as hotswappable) .

¬Hotswappable Classes. In case the class is ¬hotswappable and must be reloaded with
a new version, JAVADAPTOR applies the previously created ClassMap, which converts the
class name and all occurrences of the class name to the new version (Action 7.7, Figure 4.9),
such as illustrated in Figure 4.10 where with Update 2 the name of class TempDisplay
is converted to TempDisplay v2. Afterwards, JAVADAPTOR retrieves all ¬hotswappable
referenced (array) classes and updates the corresponding references to the new version (Ac-
tion 7.10), which is also illustrated with Update 2 of Figure 4.10. Furthermore, JAVADAPTOR

must update all remaining class references to their current version (Action 7.12, Figure 4.9).

55

4 Implementation

Get list "allChangedClasses"

Is interface?
yes

no

FOR each class listed in "allChangedClasses" DO

Is class ¬hotswappable?

Convert all occurrences of
class name to new version

Get list of referenced classes

Convert all names of ¬hotswappable referenced
(array) classes to new version

Buffer method body definitions

Remove method body definitions

yes no

Convert all occurrences of
class name to current version

Convert all names of referenced (array)
classes to schema keeping version

Convert all names of remaining referenced
(array) classes to current version

Is interface?

Restore method body definitions

7.1

7.2

7.3

7.4

7.5

7.6

7.7 7.8

7.9

7.10 7.11

7.12

7.13

7.14

no

yes

Figure 4.9: Update of class, field, and method declarations.

56

4.6 Class Update Proceeding

TempSensor v3 { ... }

TempDisplay {

TempSensor ts;

IContainer cont;

...

TempSensor getSensor() {

Proxy(cont.ts);

}

setSensor(TempSensor ts) {

cont.ts = ((Proxy) ts).update;

}

}

TempSensor v2 { ... }

TempDisplay_v2 {

TempSensor_v3 ts;

IContainer cont;

...

TempSensor_v3 getSensor() {

Proxy(cont.ts);

}

setSensor(TempSensor_v3 ts) {

cont.ts = ((Proxy) ts).update;

}

}

TempSensor v4 { ... }

t

Update 1 Update 2 Update 3

Class reloaded with new version

TempDisplay v2 {

TempSensor v3 ts;

IContainer cont;

...

TempSensor v3 getSensor() {

ts;

}

setSensor(TempSensor v3 ts){

.ts = ts;

}

}

Figure 4.10: Class versioning.

This must be done, because we retrieve the class files to be updated from the application’s
development location (i.e., the eclipse project location) where the classes have their original
names without any version add-on.

HotSwappable Classes. Hotswappable classes must be handled in a different way than
¬hotswappable classes. Different from ¬hotswappable classes, we do not have to rename
hotswappable classes. Another difference is, that in those classes we could not simply update
the references to ¬hotswappable classes to new versions, because this would change the
referring classes’s schemas and thus render themselves ¬hotswappable. That is, in order
to keep the classes hotswappable, we convert all references occurring in field or method
declarations to versions, which are already part of the declarations of the currently loaded
class (Action 7.11, Figure 4.9). This is exemplified by means of Update 3 shown in Fig-
ure 4.10. Here, class TempSensor must be reloaded with a new version (i.e., with version
TempSensor v4). However, referring class TempDisplay was previously loaded with ver-
sion TempDisplay v2. Thus, in order to keep the schema of class TempDisplay v2, we
must not update the references to version TempSensor v4 but to version TempSensor v3

instead.

Once possible class, field, and method declarations are up-to-date, we restore the method
body definitions. That is, we put the buffered definitions back into their origin class (Deci-
sion 7.13 and Action 7.14, Figure 4.9), which concludes the current update process step.

57

4 Implementation

4.6.2 Container Creation Phase

In Section 3.5.4, we described how we update long-living references to classes to be reloaded
using our container concept. This section reveals how JAVADAPTOR creates the container
classes belonging to the concept.

yes

Is modifier of outdated field
private?

Create empty container class file

no

Implement interface "IFieldContainer"

FOR each field of (array) type "OldClass" DO

Set field modifier protected

yes

Is modifier of outdated field
final?

no

Remove field modifier final

Add field of (array) type "UpdatedClass"
to container class

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Figure 4.11: Container class creation.

First, JAVADAPTOR creates an empty container class file (Action 8.1, Figure 4.11). Next,
the tool lets the container class implement the interface IFieldContainer (Action 8.2,
Figure 4.11), which is the standard type of every application classes’s container field added
during prestart phase (note that the container must implement this interface in order to be type
compatible to those container fields, i.e., in order to allow us to assign container instances to
those container fields). Then, JAVADAPTOR adds for each field of type of the outdated class
a field of type of the corresponding up-to-date class version to the container (Action 8.4,
Figure 4.11) and changes the field modifier from private to protected if necessary (De-
cision 8.5 and Action 8.6, Figure 4.11). This must be done in order to access those container

58

4.6 Class Update Proceeding

fields from within the corresponding referring class. Finally, JAVADAPTOR removes possible
final modifiers from the container fields, which is required to render subsequent state
mappings possible (Decision 8.7 and Action 8.8, Figure 4.11).

yes

Is old class interface?

Create empty proxy class file

no
Add "extends OldClass"Implement interface

Add static field of type "Class"

Add field of type "UpdatedClass"

Arrays of type "OldClass" existing?

Add for each array dimension an
array field of type "UpdatedClass"

Add for each array dimension method
"newProxyArray(UpdatedClassArray obj)"

Add method "newProxy(UpdatedClass obj)"

yes

no

9.1

9.2
9.3 9.4

9.5

9.6

9.7

9.8

9.9

9.10

Figure 4.12: Proxy class creation.

4.6.3 Proxy Creation Phase

Within previous update process steps, we figured out which ¬hotswappable classes require
proxies (remember that ¬hotswappable classes need a proxy if at least one hotswappable
class owns a method which returns and/or takes objects of type of the ¬hotswappable class).
With this update process step, we create the proxies for those classes.

We start with creating an empty proxy class file (Action 9.1, Figure 4.12). Next, we
check whether the class for which we create the proxy is an interface or not (Decision 9.2,

59

4 Implementation

Figure 4.12). If it is an interface, we let the proxy class implement this interface (Action 9.3,
Figure 4.12). Otherwise, we extend the OldClass class (Action 9.4, Figure 4.12). Then,
JAVADAPTOR adds a static field of type Class to the proxy, which is internally used later on
to create the proxy instances (Action 9.5, Figure 4.12).

Now, we go on adding the fields of type UpdatedClass whose instances we want to
guide through outdated methods using the proxy (Action 9.6, Figure 4.12). Furthermore, we
add method newProxy to the proxy class, which is responsible for creating a proxy instance
(using method allocateInstance of class sun.misc.Unsafe) and for wrapping the
passed up-to-date instance (Action 9.7, Figure 4.12).

In order to enable the proxy for guiding even array instances of type of up-to-date classes
through outdated methods, we must add for each array class (i.e., for each array dimension)
the corresponding field and proxy creation method to the proxy (Action 9.9 and 9.10,
Figure 4.12). Those array related fields and methods do the same job and work in the
same manner as their corresponding standard counterparts created with Actions 9.6 and 9.7
depicted in Figure 4.12 .

4.6.4 Method Body Definition Updates

In Section 4.6.1, we pointed out that method body definitions must be updated in a different
way than class, method, and field declarations in order to update the references to classes to be
reloaded. Therefore, we paid attention to keep them untouched during the declaration update
phase. Within this update process step, we go on to update the method body definitions of
the classes to be updated according to our update approach.

Therefore, we go through all changed classes and check whether they are interfaces or
not (Actions/Decision 10.1 – 10.3, Figure 4.13). This is, because interfaces only declare
methods but do not include method body definitions and thus must not be considered. With
the next step, we create a Javassist ExpressionEditor4 (Action 10.4, Figure 4.13). The
ExpressionEditor is responsible for updating the method body definitions.

Ones the ExpressionEditor is created, we go through each method of the currently
processed class, check whether the methods are abstract or not, and apply the Expression-
Editor to all non-abstract methods (Decision/Actions 10.6 – 10.8, Figure 4.13). The
ExpressionEditor updates every method call (with and without proxies), field access,
constructor call (i.e., method call in combination with keyword new), this call, and super

call occurring in the method bodies according to our update approach.
An abstract of the bytecode modifications processed by the ExpressionEditor, here

to update method calls and field accesses, is shown in Figure 4.14. At its heart, the

4The real class name in Javassist is ExprEditor. But, for clarity reasons, we use class name
ExpressionEditor.

60

4.6 Class Update Proceeding

Get list "allChangedClasses"

Is interface?
yes

no

FOR all classes listed in "allChangedClasses" DO

Create ExpressionEditor

yes

yes

no

FOR each method DO

Is method abstract?
no

Modify method using
ExpressionEditor (see Figure 4.14)

Get list of referenced classes

Is class hotswappable?

yes

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Apply proxies to method definition

Needs method proxies as
parameters or returned object?

no

10.9

10.10

10.11

Is method constructor &&
requires class container?

yes

no
10.12

Initialize container field
10.13

Figure 4.13: Update process of method body definitions.

61

4 Implementation

ExpressionEditor redirects all references occurring in the method body to the up-to-date
class versions and, if necessary, applies our container and proxy approach. In doing so, the
ExpressionEditor does not only consider the references to classes that must be reloaded
with a new version in the current update step, but also the references to classes reloaded in
earlier application update steps.

4 Implementation

foreach expression in method body do
if expression is MethodCall then

call method of up-to-date class version;
if method has parameters then

change parameter types to current class versions;
if parameters require proxies then

wrap parameters in proxies;
end
if method returns an object then

if object is proxy then
unwrap object wrapped in proxies;

end
change object reference type to current class version;

end
end

end
else if expression is FieldAccess then

change type of reference to declaring class to up-to-date class version;
change field reference type to up-to-date class version;
if field is in container then

access field through container of up-to-date declaring class;
end

end
else if expression is ... then...
end

end

72

Figure 4.14: Bytecode modifications processed by ExpressionEditor.

After ExpressionEditor application, we are done with the method body updates of
the ¬hotswappable classes. But, to finish the method body updates of the hotswappable
classes, JAVADAPTOR may have to process additional tasks (Decisions/Actions 10.9 – 10.13,
Figure 4.13). First, JAVADAPTOR must check whether methods of the currently processed
class receive or return proxies, because the methods parameter/return types are outdated. If
this is true, the tool adds routines to unwrap the up-to-date parameters and/or to wrap the
up-to-date returned objects to every method in need (Action 10.11, Figure 4.13).

62

4.6 Class Update Proceeding

Listing 4.1: Unwrapping of up-to-date instances.
1 void setSensor(TempSensor ts) {

2 0 aload 1

3 1 checkcast #23 <TempSensor Proxy 1>

4 4 getfield #34 <TempSensor Proxy 1.call>

5 7 astore 1

6 8 aload_0

7 9 aload_1

8 10 astore_3

9 11 astore_2

10 12 aload_2

11 13 getfield #36 <TempDisplay.fieldContainer1265725244704>

12 16 checkcast #17 <TempDisplay_Cont_1>

13 19 aload_3

14 20 putfield #38 <TempDisplay_Cont_1.ts>

15 23 return

16 }

How to modify the bytecode in order to unwrap proxy-based parameters (here of method
setSensor of example class TempDisplay) is depicted in Listing 4.1 (Lines 2-5). First,
we load the parameter stored in a local variable (Line 2). Second, we cast the parameter
to the related proxy type (Line 3). Third, we unwrap the up-to-date instance (here of
class TempSensor v2) stored in field call of the proxy object (Line 4). Fourth, to avoid
recurring unwrappings, the unwrapped instance is stored in the local variable that previously
stored the proxy (Line 5).

Listing 4.2 shows the bytecode modifications (here of method getSensor of example
class TempDisplay) required to wrap returned up-to-date instances. First, we call method
newProxy (Line 12) of the proxy class which takes as parameter an instance of the reloaded
class (here of class TempSensor v2), wraps the instance by a newly created proxy instance,
and returns the proxy. Second, the returned proxy is casted to the type of the old callee class
(here of example class TempSensor, Line 13).

After we applied the proxies to all methods in need, JAVADAPTOR checks whether
the currently processed hotswappable class requires containers or not (Decision 10.12,
Figure 4.13). In case containers are needed, we initialize the container field within every
constructor of the class (Action 10.13, Figure 4.13). That is, we make sure that during class
instantiation a container instance is created and all up-to-date instances of ¬hotswappable
classes owned by the instantiated class are assigned to the container. Doing so, we apply our
container approach even to not yet created instances.

Once we are done with the method body updates, all changed classes are prepared for our
update approach and could be loaded into the JVM.

63

4 Implementation

Listing 4.2: Wrapping of up-to-date instances.
1 TempSensor getSensor() {

2 0 aload_0

3 1 astore_1

4 2 aconst_null

5 3 astore_2

6 4 aload_1

7 5 getfield #15 <TempDisplay.fieldContainer1265725244704>

8 8 checkcast #17 <TempDisplay_Cont_1>

9 11 getfield #21 <TempDisplay_Cont_1.ts>

10 14 astore_2

11 15 aload_2

12 16 invokestatic #27 <TempSensor Proxy 1.newProxy>

13 19 checkcast #29 <TempSensor>

14 22 areturn

15 }

4.6.5 Class Reloading and HotSwapping

In previous update process steps, we figured out what classes must be updated, considered in-
heritance hierarchy changes, identified hotswappable and not hotswappable classes, updated
class versions (and the corresponding references) regarding compatibility and up-to-dateness,
and, if necessary, created container and proxy classes. That is, we modified the classes’s
bytecode in such way that we could apply the program changes, made by the developer, to
the running application.

With this update process step, we load the new class versions into the JVM and update
all changed classes with an untouched schema via Java HotSwap. After retrieving list
allChangedClasses, we sort its elements according their hotswappability (Actions 11.1
and 11.2, Figure 4.15). Next, we pause the application (Action 11.3, Figure 4.15). We do
this in order to ensure that all updated class files are loaded into the JVM before resuming it
and to avoid state losses during state mapping because the JVM concurrently produces new
objects not considered to be mapped.

Then, we proceed to load the new versions of ¬hotswappable classes and their possible
proxy classes (Actions 11.5 and 11.6, Figure 4.15). Through loading those classes before
hotswapping the others, we ensure that the classes are already present within the JVM and
thus could be referenced by the hotswappable classes without problems. Next, we load
the new class versions in order to process the state mappings. After loading the new class
versions, we go on to load their possible container classes and hotswap the hotswappable
classes (Actions 11.8 and 11.9, Figure 4.15), which concludes the update process step.

64

4.7 State Mapping Preparation

Get list "allChangedClasses"

FOR each ¬hotswappable class DO

Sort classes according their hotswappability

Load the new class version using the
class loader that loaded the original class

FOR each hotswappable class DO

Update the class using Java HotSwap

Load possible proxy class with the same class
loader that loaded the new class version

Load possible container classes with the same
class loader that loaded the hotswappable class

11.1

11.2

11.4

11.5

11.6

11.7

11.8

Pause Application
11.3

11.9

Figure 4.15: Application of the program update.

4.7 State Mapping Preparation

At this stage of our update process, all classes affected by the scheduled runtime program
update are prepared for the update and already present within the JVM. Now it is time to
map the state from the outdated class versions to their up-to-date counterparts and for the
assignment of the latter ones to the referring program parts.

However, before we can process the state mapping, we need to know what state must
be mapped. For this purpose, we retrieve all ¬hotswappable classes, go through the re-
sulting list of ¬hotswappable classes, and request their instances from the JVM via the
JVMTI (Actions 12.1 – 12.3, Figure 4.16). Furthermore, we retrieve for each instance of the
¬hotswappable class the referring instances (Action 12.5, Figure 4.16) using JVMTI method

65

4 Implementation

getReferringObjects. With Decision 12.7, JAVADAPTOR then checks for each referring
instance if it belongs to an application class or not. If this is true, we store the referring
instance in list allInstances (Action 12.8, Figure 4.16).

Get all ¬hotswappable classes

no

yes

FOR each ¬hotswappable class DO

yes

no

Retrieve all instances of this class

FOR each instance DO

Referring instance of
type of application class?

Get referring instances

FOR each referring instance DO

Had container?

Store referring instance
in list "allInstances"

Create MapInfoObject
for referring class

Store container instance
in list "allInstances"

Store referring instance in
list "allLibraryInstances"

Create MapInfoObject for
¬hotswappable class

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

12.10

12.11

12.12

12.13

Figure 4.16: Gain mapping information.

Next, we retrieve the possible previous container instance for the referring instance
and store it in list allInstances, too (Decision 12.9 and Action 12.10, Figure 4.16). This is
necessary, because otherwise the state assigned to the container instance would be ignored and
thus be lost. Once JAVADAPTOR identified all instances (including container instances) that
belong to the currently processed referring application class, it creates a MapInfoObject
object for this class (Action 12.11, Figure 4.16). The MapInfoObject object will be used

66

4.7 State Mapping Preparation

in later state mapping steps and contains information like:

• information about possible containers.

• container class name.

• fields stored in the old container.

• fields that will be stored in the new container.

With Actions/Decision 12.8 – 12.11 (see Figure 4.16), JAVADAPTOR collected all instances
of application classes including containers that refer to instances of ¬hotswappable classes.
Anyway, ¬hotswappable classes cannot only be referred by application classes, but also
by the Java standard library or external libraries. Those libraries are not aware of the
actual type of the ¬hotswappable class, but could refer to it through variables of super
type of the ¬hotswappable class (also known as polymorphism). This is illustrated in
Listing 4.3, where instance field obj of class LibraryClass is initialized with an instance
of ApplicationClass (see Line 11).

Listing 4.3: References in library classes.
1 class LibraryClass {

2 Object obj;

3
4 LibraryClass(Object obj) {

5 this.obj = obj;

6 }

7 ...

8 }

9
10 class ApplicationClass {

11 LibraryClass lib = new LibraryClass(new ApplicationClass());

12 ...

13 }

If the currently processed referring instance belongs to a library class, we store it in
list allLibraryInstances (Action 12.12, Figure 4.16). Afterwards, we create for the cur-
rently processed ¬hotswappable class the corresponding MapInfoObject (Action 12.13,
Figure 4.16), which will be used later on and stores information such as:

• information about possible containers.

• container class name.

• fields stored in the container.

• class version history.

• superclasses shared by old and new class version.

• fields (including superclass fields) owned by old as well as new class version.

67

4 Implementation

4.8 State Mapping Proceeding

With the information gained in the previous update process step, we have all pieces together
to process the state mapping, which concludes the update process.

The state mapping consists of two different steps. First, we must map the (class and
instance specific) state from old to new version of a ¬hotswappable class. Second, we have
to update the state of the referring program parts. That is, the (class and instance specific)
state of the new ¬hotswappable class version must be assigned to the referring classes and
instances to let the new ¬hotswappable class version become part of program execution.

Get ¬hotswappable classes

FOR each ¬hotswappable class DO

Get MapInfoObject

Get all instances of the class

FOR each class field DO

Reassign callee field value

FOR each instance DO

FOR each instance field
including superclass fields DO

Reassign callee field value

Reassign callee field value

no

yes

Field previously
in container?

Assign container field value to
corresponding field of new

¬hotswappable class version

Assign field value of old
¬hotswappable class version
to corresponding field of new
¬hotswappable class version

Create an instance of new
¬hotswappable class version

Store instance of new
¬hotswappable class version
in InstanceHashMap with key

OldObjectID

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

13.10

13.14

13.11

13.12

13.13

Figure 4.17: State mapping of ¬hotswappable classes.

68

4.8 State Mapping Proceeding

4.8.1 State Mapping of ¬HotSwappable Classes

In Figure 4.17, we sketch the first state mapping step, i.e., the state mapping from old to new
¬hotswappable class version. For each ¬hotswappable class version, JAVADAPTOR retrieves
the corresponding MapInfoObject (Action 13.3, Figure 4.17). Next, JAVADAPTOR maps
the class specific state field by field to the new ¬hotswappable class version (Actions 13.4
and 13.5, Figure 4.17).

The concrete mapping of a value assigned to a field is sketched by subdiagram “Reassign
callee field value” of Figure 4.17. First, JAVADAPTOR checks whether the field was previ-
ously outsourced to a container (Decision 13.11, Figure 4.17). If true, we assign the value of
the container field to the corresponding field of the new ¬hotswappable class version (Ac-
tion 13.12, Figure 4.17). In case the field was regularly owned by the old ¬hotswappable
class version, JAVADAPTOR assigns the field’s value to the corresponding newly created
¬hotswappable class version’s field (Action 13.13, Figure 4.17).

When we are done with the class specific state mapping, we go on mapping the instance
specific state from old to new ¬hotswappable class version. Therefore, we retrieve all
instances of the old ¬hotswappable class version and create for each instance an instance of
the new ¬hotswappable class version (Actions 13.6 – 13.8, Figure 4.17).

The instantiation is triggered by JAVADAPTOR. The corresponding code is depicted in
Listing 4.4. Method mapCalleeWithMappingObject of JAVADAPTOR invokes method
mapAllObjects of class Mapping in the target application which in turn calls method
createNewObject of the same class. Listing 4.5 shows a code snippet of this method.
Via method forName, we retrieve the class object of the new ¬hotswappable class version
(Line 22, Listing 4.5). In the next step, we create the new class version’s objects. For this
purpose, we could have used method newInstance of the retrieved class object. However,
the problem with method newInstance is that it initializes the object fields during object
creation, which is both, time consuming and unnecessary, because we will overwrite the
values in later state mapping steps. Therefore, we call method allocateInstance of class
sun.misc.Unsafe instead of method newInstance (Line 22, Listing 4.5). It creates the
object, but does not initialize any field, which reduces the time required for object creation.

After creating the up-to-date instance for an outdated instance, we map the state field
by field from old instance to the newly created one (Actions 13.9 and 13.10, Figure 4.17).
The concrete state mapping is sketched by subdiagram “Reassign callee field value” of
Figure 4.17 and works the same way as for class fields, whose state mapping procedure
we already described above. Finally, we store the newly created instance in data struc-
ture InstanceHashMap (Action 13.14, Figure 4.17). The newly created instance can be
afterwards retrieved from InstanceHasMap using the object ID of the outdated instance.

69

4 Implementation

Listing 4.4: JAVADAPTOR – instantiation.
1 class Saver {

2 ClassObjectReference mappingClass;

3 ...

4 void mapCalleeWithMappingObject(...) {

5 ...

6 mappingClass.invokeMethod(threadRef, ’’mapAllObjects’’, parameterList, options);

7 ...

8 }

9
10 }

Listing 4.5: Target VM – instantiation.
11 class Mapping extends Thread {

12 Unsafe unsafe;

13 ...

14 void mapAllObjects(Object[] oldCallees, Object[] caller, String msg){

15 ...

16 createNewObject(mapInfo.getNewName(), oldCallee.getClass().getClassLoader());

17 ...

18 }

19
20 Object createNewObject(String className, ClassLoader classLoader) {

21 ...

22 return unsafe.allocateInstance(classObj));

23 }

24 }

4.8.2 State Update of Referring Program Parts

Once we are done with the state mappings, we continue with the assignment of the new
¬hotswappable class versions and their instances to the referring classes and instances,
i.e., we update the state of the caller side. The state-update strategy of JAVADAPTOR

strongly depends on the type of the referring program part, i.e., it depends on whether an old
¬hotswappable class version is referenced by an application class or a library class (Deci-
sion 14.3, Figure 4.18).

Different from state updates of application classes, state updates of referring library
classes require no containers. This is, because library class fields that refer to ¬hotswappable
classes are normally of super type of the ¬hotswappable classes (see Listing 4.3). Thus,
we can directly assign instances of the new ¬hotswappable class version to those fields
without any container. Only requirement is that old and new ¬hotswappable class version
share the superclass through which the library class accesses the ¬hotswappable class. By
contrast, application class fields may be of type of the ¬hotswappable class and thus require
container-based reference updates.

70

4.8 State Mapping Proceeding

Get referring classes

Get MapInfoObject

Get all instances of the class
from list "allInstances"

FOR each class field DO

Reassign caller field value
(Figure 4.19)

FOR each instance DO

FOR each instance field
(including superclass fields) DO

Reassign caller field value
(Figure 4.19)

Is application class?

Get all instances of the class
from list "allLibraryInstances"

FOR each class field DO

yes

no

FOR each instance DO

FOR each instance field
(including superclass fields) DO

Assign instance of new ¬hotswappable class
version which belongs to object ID to field

no

yes

Is object ID of instance
assigned to field key in
InstanceHashMap?

Is object ID of
instance assigned to

field key in
InstanceHashMap?

Assign instance of new ¬hotswappable class
version which belongs to object ID to field

no

yes

FOR each referring class DO

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10

14.11

14.12

14.13

14.14

14.15

14.16

14.17

14.18

Resume Application
14.19

Figure 4.18: Assignment of new instances to referring classes/instances.

71

4 Implementation

Application-Class-Specific State Updates. If the currently processed referring class is
an application class, JAVADAPTOR updates the state as sketched by Actions 14.4 – 14.10 of
Figure 4.18. First, we retrieve the MapInfoObject that belongs to the currently processed
class (Action 14.4, Figure 4.18). Next, we begin with the update of possible class fields of
type of ¬hotswappable classes (Actions 14.5 and 14.6, Figure 4.18). The corresponding
subprocess “Reassign caller field value” (Action 14.6, Figure 4.18) is sketched in Figure 4.19
and works as follows:

In subprocess “Reassign caller field value”, JAVADAPTOR first checks whether
the currently processed field was outsourced into a container or not (Deci-
sion 15.1, Figure 4.19).

If the field was not outsourced, the tool retrieves the object ID of the object as-
signed to the field and checks if the ID is a key value in InstanceHashMap (De-
cision 15.2, Figure 4.19), i.e., JAVADAPTOR tests if the referenced object is
outdated (of type of an old ¬hotswappable class version). In case the referenced
object is outdated, we get its up-to-date counterpart from InstanceHashMap

and, depending on Decision 15.3 (see Figure 4.19), assign the up-to-date in-
stance either to the currently processed (caller) field (Action 15.4, Figure 4.19)
or to the corresponding field of the new container (Action 15.8, Figure 4.19).

Reassign caller field value

Assign instance of new
¬hotswappable class
version which belongs
to object ID to field of

old container

yes

no

Is object ID of
instance assigned to

container field key in
InstanceHashMap?

Requires
class new

container?

Field
previously

in container?

Assign instance of new
¬hotswappable class

version which belongs to
object ID to caller field

Is object ID of
instance assigned to

caller field key in
InstanceHashMap?

Assign instance of new
¬hotswappable class version
which belongs to object ID to

field of new container
yes

no

yes

Requires class
new container?

yes

no

yes
no

no

Requires class
new container?

Assign field
value to field of
new container

yes

no

15.2

15.1

15.3

15.4

15.5 15.6

15.7

15.10

15.8

15.9

Figure 4.19: Subprocess "Reassign caller field value" of Figure 4.18.

Decisions/Actions 15.5 – 15.9 (see Figure 4.19) sketch how to update the
currently processed field if it was (as a result of earlier program updates) shifted

72

4.8 State Mapping Proceeding

into a container. Different from Decision 15.2, we do not have to check the object
ID of the instance assigned to the class field, but of the instance assigned to the
corresponding container field (Decision 15.5, Figure 4.19). If JAVADAPTOR

finds out that the instance’s object ID is a key value in InstanceHashMap,
i.e., if the instance is outdated, it (as a function of Decision 15.7, Figure 4.19)
assigns the compatible up-to-date instance either to the corresponding field
of the new container (Action 15.8, Figure 4.19) or to the currently processed
old container field (Action 15.9, Figure 4.19). However, we must not only
handle fields which refer to outdated instances. Additionally, we have to assign
the unchanged instances referenced by the old container to the possible new
container (Decision 15.6 and Action 15.10, Figure 4.19).

If JAVADAPTOR is done with the class specific state updates of the currently processed
application class, it continues to update the state of the class’s instances. Therefore, the tool
retrieves all instances of the currently processed application class (Action 14.7, Figure 4.18).
Next, it updates the state instance by instance and field by field (Actions 14.8 – 14.10,
Figure 4.18). The corresponding field update process is depicted in Figure 4.19, which we
already described above.

Library-Class-Specific State Updates. As mentioned at the beginning of this section,
state updates of referring library classes differ from state updates of referring application
classes. The big difference is that state updates of referring library classes require no
containers.

Actions/Decisions 14.11 – 14.18 of Figure 4.18 describe how JAVADAPTOR updates the
state of referring library classes and their instances. First, the tool updates the static fields of
the currently processed library class (Actions/Decision 14.11 – 14.13, Figure 4.18). In case
the object assigned to the currently processed field is outdated (i.e., its object ID appears to
be a key value in InstanceHashMap), JAVADAPTOR assigns the corresponding up-to-date
instance to this field. Next, we retrieve all instances of the library class (Action 14.14,
Figure 4.18) and update them instance by instance and field by field the same way we
updated the static fields of the library class (Decision/Action 14.15 – 14.18, Figure 4.18).

Ones we have updated the state of all referring classes and their instances, JAVADAPTOR is
done with the application of the program update, i.e., the program changes are fully applied to
the running program and JAVADAPTOR resumes the application (Action 14.19, Figure 4.18).
This last step concludes the application update.

73

4 Implementation

4.9 Summary

This chapter revealed the internals of our current JAVADAPTOR implementation. We first
described JAVADAPTOR from the developers/users point of view. We further went through
every part of JAVADAPTOR’s update workflow, detailed its implementation, and described
possible implementational pitfalls. The information given in this chapter may help people,
interested in JAVADAPTOR, to reproduce our solution. The chapter further imparts the
knowledge required to apply our approach to languages different from Java.

74

5 Evaluation

This chapter shares material with the SPE’2011 paper "JavAdaptor – Flexible Runtime
Updates of Java Applications" [PKC+12] and the ICSE’2011 paper "JavAdaptor:
Unrestricted Dynamic Software Updates for Java" [PGS+11].

Our goal was to develop a dynamic software update approach that is highly flexible, per-
formant, platform independent, architecture independent, and fine-grained. In this chapter,
we evaluate whether JAVADAPTOR meets the stated goals. We will start with the presen-
tation of some non-trivial case studies showing the flexibility and fine update granularity
of JAVADAPTOR. Next, we measure the runtime and update performance of JAVADAP-
TOR and demonstrate that our tool can be applied to runtime environments different from
the environment used during implementation and testing (i.e, we demonstrate its platform
independence). Furthermore, we discuss why JAVADAPTOR is architecture independent
and present some results underpinning our arguments. In addition to the evaluation of the
stated goals, we analyze the memory consumption of JAVADAPTOR, because large memory
footprints may hinder the usage of JAVADAPTOR on systems with less (main) memory.

5.1 Case Studies

In order to demonstrate that JAVADAPTOR offers highly flexible and fine-grained updates,
we applied it to three non-trivial case studies. With the first two case studies (HyperSQL and
Snake), we simulated real-world update scenarios. With the third case study (Refactorings),
we give evidence of the generality of our update approach.

5.1.1 HyperSQL

In our first case study, we dynamically updated HyperSQL1 (amongst others used by Open
Office) from version 1.8.0.9 to version 1.8.0.10. We chose HyperSQL, because it is a database
management system for which runtime adaptation promises benefits of no downtime. To
ensure that we do not deliberately choose an application for which we a priori know that
JAVADAPTOR is capable to dynamically update it, we did not previously check what kinds
of updates would be required. This is even true for the HyperSQL version we decided to

1http://hsqldb.org/

75

5 Evaluation

update (note that we chose to update HyperSQL version 1.8.0.9 to version 1.8.0.10 because
they were the freshest versions available at the time we performed the case study).

Replaced Class Reference Updates

Kind of Update Short-Lived Obj. (# of Ref.) Container (# of Ref.) Proxy (# of Ref.)

FontDialogSwing
8 (9) 0 (-) 0 (-)

structural update

HsqlDatabaseProperties
11 (98) 2 (25) 11 (23)

functional update

LockFile
1 (9) 10 (5×) 11 (47)

functional update

LockFile$HeartbeatRunner
2 (2) 0 (-) 0 (-)

functional update

Logger
22 (93) 3 (93) 3 (4)

structural update

NIOLockFile
0 (-) 0 (-) 0 (-)

changed inherit. hierarchy

ScriptReaderZipped
3 (3) 0 (-) 0 (-)

functional update

SimpleLog
9 (105) 3 (27) 0 (-)

structural update

Token
5 (671) 0 (-) 0 (-)

structural update

Trace
80 (1306) 0 (-) 0 (-)

structural update

Transfer
4 (6) 0 (-) 0 (-)

structural update

View
3 (37) 3 (13) 3 (16)

functional update

Table 5.1: HyperSQL: Required class reloadings because of schema changes. The table lists
all classes to be reloaded. It furthermore provides information on the required
caller updates, i.e., how many referring classes are updated in the context of
short-lived objects, containers, or proxies. The number of updated references is
given as well (in brackets).

We downloaded HyperSQL version 1.8.0.9, as well as version 1.8.0.10, from the website
and started version 1.8.0.9. After program start, we ran the open-source database benchmark
PolePosition2 in order to generate and query some data, which ensured that HyperSQL was
fully activated and deployed. Afterwards, we applied all changes required to evolve the

2http://polepos.sourceforge.net/

76

5.1 Case Studies

running application from version 1.8.0.9 to version 1.8.0.10 without shutting it down.
The new version of HyperSQL (released 9 month after version 1.8.0.9) comes with a

bunch of changes. It fixes major bugs that cause null-pointer exceptions, problems with
views, timing issues, corrupted data files, and deadlocks. Additionally, new and improved
functionality such as new lock-file implementations and performance improvements to
the web server are included. To lift the running program from version 1.8.0.9 to the new
version 1.8.0.10, we had to update 33 of 353 classes. In case of 21 out of 33 classes, the
changes did not affect the class schema, i.e., JAVADAPTOR could apply the changes solely
using Java HotSwap. Apart from that, 12 classes were affected by schema-changing program
modifications. JAVADAPTOR replaced them using class reloadings. The corresponding state
mappings span one-to-one mappings, added, and removed fields, i.e., they were automated
by our tool. Table 5.1 lists all classes that had to be replaced. Note that updating class
NIOLockFile also included changes to the inheritance hierarchy. In addition, with class
LockFile$HeartbeatRunner, we had to update even a nested class. Table 5.1 provides
also information about the required caller updates, i.e., how many caller classes are updated
in the context of short-lived objects, containers, or proxies. The number of references within
method bodies that have to be changed to update the caller classes is given as well (in
brackets). In 148 out of 197 cases (75.1 %), we had to update callers because of references
to short-lived callee objects (via Java HotSwap). In case of 21 caller classes (10.7 %)
JAVADAPTOR was forced to apply containers. 28 caller class updates (14.2 %) required
proxies.

In order to verify that HyperSQL was still correctly working (in a consistent state) after the
update, we reran the PolePosition benchmark. In the result, HyperSQL passed the benchmark
without errors, i.e., all database operations were correctly executed after the update. In a
second test, we checked whether the updates were applied and active. Therefore, we hooked
the JVM profiler VisualVM3 into the running application and checked what classes/methods
were executed during the PolePosition benchmark. We found out that 5 of the 12 replaced
classes were active and central part of program execution during the PolePosition benchmark
which confirms that they were updated correctly. The remaining 7 classes were correctly
loaded into the JVM, but inactive during the benchmark. Thus, we could not verify their
correct execution.

To get to know whether JAVADAPTOR solely updated the classes we identified to be due
for updates (via comparing the source code of both HyperSQL versions), we proceeded as
follows. We let JAVADAPTOR log the names of the classes it reloaded and the names of
the classes whose references it updated. Afterwards, we compared the log files with the
results derived from our source code reviews and even reviewed the bytecode of the class
files changed by JAVADAPTOR. The outcome of the comparison was, that JAVADAPTOR

3https://visualvm.dev.java.net/

77

5 Evaluation

only updated the classes we expected to be updated and nothing else. That is, JAVADAPTOR

applied the updates at the desired fine level of granularity.

5.1.2 Snake

As the second case study, we update the well-known arcade game Snake [PGS+11]. With
this case study, we demonstrate that JAVADAPTOR is not only beneficial in terms of updates
of highly available applications but also during development. Note that, typically, developers
stepwisely enhance a program and test whether the added code is correct or not, which
could be an annoying task if for each test the program must be restarted. In addition, we
chose a graphical application because in Java, graphical functions are strongly coupled with
the API and changes to those functions influence wide parts of the system. This renders
proper updates of graphical applications difficult and lets incomplete DSU approaches fail in
such scenarios. That is, graphical applications are predestinated to substantiate that a DSU
approach is capable to correctly update program parts which affect many different parts of
the system.

DSU

Figure 5.1: Dynamic update of Snake.

Different from our HyperSQL case study, we did not update Snake from one version to
another version. Instead, we aimed at successively updating the application in a developer
scenario. In order to not bias the case study, we proceeded as follows. First, we predefined
the number of update steps, which (arbitrarily) was 4. Next, we predefined for each update
step what functionality it should add to the running program, while we avoided to figure
out the program parts affected by the updates. That is, at the time of predefinition, we
had no clue what program parts must be changed in order to apply the new functionality.
After predefining the program enhancements, we identified the source code sections which

78

5.1 Case Studies

constitute the enhancements, commented them out, and started the now very basic Snake
program.

In the update process, we made updates from small changes that only change a method
body (that would already been supported by Java HotSwap) to massive changes that introduce
new methods, fields, or even change inheritance hierarchies (which is not possible with any
standard JVM). Figure 5.1 illustrates Snake before (left side) and after (right side) the 4
update steps. A video, showing the update steps we processed using JAVADAPTOR, is
available on YouTube.4

As a result of our Snake case study, all updates could be successfully applied to the running
program, which demonstrates the usefulness of JAVADAPTOR during development and its
capability to update program parts that have a deep impact on the system.

To get evidence of the update granularity, we proceeded in the same manner as we did
in our HyperSQL case study. That is, we let JAVADAPTOR log what classes it reloads and
what classes it updates because of references to the reloaded classes. Next, we compared the
log file with the results from our source code reviews and additionally checked the bytecode
of the changed class files. As with our HyperSQL case study, JAVADAPTOR only updated
the classes we previously identified to be due for updates, i.e., we achieved the desired fine
update granularity.

5.1.3 Refactorings

The HyperSQL as well as the Snake case study show the flexibility and practicability of
JAVADAPTOR. However, we could continue indefinitely making such case studies demon-
strating the capabilities of our tool and would end up each time with just another case study.
The problem with case studies such as HyperSQL and Snake is that they present specific
update scenarios, which may not cover all eventualities and thus do not allow us to draw
conclusions on the general applicability of JAVADAPTOR.

To get a better understanding of JAVADAPTOR’s general applicability, we followed a
different path and checked if the tool would be able to dynamically apply common program
updates, i.e, updates, that frequently occur in practice and do not rely on certain application
scenarios. But, what are common program updates and how could we unbiased test if
JAVADAPTOR is able to apply them to running applications? We found Refactorings [OJ90]
to be appropriate for our analysis. Actually, Dig and Johnson [DJ06] found out that:

Refactorings cause more than 80 % of API changes that were not backwards-
compatible.

4http://www.youtube.com/watch?v=jZm0hvlhC-E

79

http://www.youtube.com/watch?v=jZm0hvlhC-E

5 Evaluation

Once we decided to demonstrate the general applicability of JAVADAPTOR on the basis of
refactorings, we had to reason about a test setup which ensures the tests to be unbiased. Our
tests base on the refactorings presented by Fowler [Fow06], which is the standard reference
regarding refactorings. To achieve an unbiased test setup, we simply took the example
programs from Fowler and refactored them at runtime. JAVADAPTOR was able to process all
refactorings including possible state mappings. Table 5.2 lists all 72 Refactorings presented
by Fowler and gives information about possible class reloadings (column Requirements),
what kinds of Reference Updates were required (i.e., HotSwap, Containers, and/or Proxies),
and whether we could automatically map the state or had to define Mapping methods.

In a nutshell, JAVADAPTOR was able to successfully apply all 72 refactorings at runtime.
Class reloadings were necessary in 61 out of 72 cases. That is, approximately 84 % of the
refactorings required class schema changes and thus were way beyond the capabilities of
Java HotSwap. Reference updates because of class reloadings, required containers in 57 out
of 61 cases (ca. 93 %) and proxies in 3 out of 61 cases (ca. 5 %). State mappings could
be automatically processed in 41 out of 61 cases (ca. 67 %), while mapping methods were
required in 20 out of 61 cases (ca. 33 %).

Refactoring Requirements Ref. Update Mapping

Add Parameter Class Reloading Container Automatic

Change Bidirectional Association to Unidirectional Class Reloading Container Automatic

Change Reference to Value Class Reloading HotSwap Automatic

Change Unidirectional Association to Bidirectional Class Reloading Container Automatic

Change Value to Reference Class Reloading HotSwap Automatic

Collapse Hierarchy HotSwap – –

Consolidate Conditional Expression Class Reloading Container Automatic

Consolidate Duplicate Conditional Expression HotSwap – –

Convert Procedural Design to Objects Class Reloading Container Automatic

Decompose Conditional Class Reloading Container Automatic

Duplicate Observed Data Class Reloading, New Class Container Method

Encapsulate Collection Class Reloading Container Automatic

Encapsulate Downcast Class Reloading Container Automatic

Encapsulate Field Class Reloading Container Automatic

Extract Class Class Reloading, New Class Container Automatic

Extract Hierarchy Class Reloading Container Method

Extract Interface Class Reloading, New Class Container Method

Extract Method Class Reloading Container Automatic

Extract Subclass Class Reloading, New Class Container Automatic

80

5.1 Case Studies

Refactoring Requirements Ref. Update Mapping

Extract Superclass Class Reloading, New Class Container Automatic

Form Template Method Class Reloading Container Automatic

Hide Delegate Class Reloading Container Automatic

Hide Method Class Reloading Container Automatic

Inline Class Class Reloading, New Class Container Method

Inline Method Class Reloading Container Automatic

Inline Temp HotSwap – –

Introduce Assertion HotSwap – –

Introduce Explaining Variable Class Reloading Container Automatic

Introduce Foreign Method Class Reloading Container Automatic

Introduce Local Extension Class Reloading, New Class HotSwap Automatic

Introduce Null Object Class Reloading, New Class Container Automatic

Introduce Parameter Object Class Reloading Container, Proxy Automatic

Move Field Class Reloading Container Method

Move Method Class Reloading Container, Proxy Automatic

Parameterize Method Class Reloading Container Automatic

Preserve Whole Object Class Reloading Container, Proxy Automatic

Pull Up Constructor Body Class Reloading Container Method

Pull Up Field Class Reloading Container Method

Pull Up Method Class Reloading Container Method

Push Down Field Class Reloading Container Method

Push Down Method Class Reloading Container Method

Remove Assignments to Parameters HotSwap – –

Remove Control Flag HotSwap – –

Remove Middle Man Class Reloading Container Automatic

Remove Parameter Class Reloading Container Automatic

Remove Setting Method Class Reloading Container Automatic

Rename Method Class Reloading Container Automatic

Replace Array with Object Class Reloading, New Class Container Method

Replace Conditional with Polymorphism Class Reloading Container Automatic

Replace Constructor with Factory Method Class Reloading, New Class Container Automatic

Replace Data Value with Object Class Reloading, New Class HotSwap Method

Replace Delegation with Inheritance Class Reloading Container Method

Replace Error Code with Exception HotSwap – –

Replace Exception with Test HotSwap – –

81

5 Evaluation

Refactoring Requirements Ref. Update Mapping

Replace Inheritance with Delegation Class Reloading Container Method

Replace Magic Number with Symbolic Constant Class Reloading Container Automatic

Replace Method with Method Object Class Reloading, New Class Container Automatic

Replace Nested Conditional with Guard Clauses HotSwap – –

Replace Parameter with Explicit Methods Class Reloading Container Automatic

Replace Parameter with Method Class Reloading Container Automatic

Replace Record with Data Class Class Reloading, New Class Container Method

Replace Subclass with Fields Class Reloading, New Class Container Method

Replace Temp with Query Class Reloading Container Automatic

Replace Type Code with Class Class Reloading, New Class Container Method

Replace Type Code with State/Strategy Class Reloading, New Class Container Method

Replace Type Code with Subclasses Class Reloading, New Class Container Method

Self Encapsulate Field Class Reloading Container Automatic

Separate Domain from Presentation Class Reloading Container Automatic

Separate Query from Modifier Class Reloading Container Automatic

Split Temporary Variable HotSwap – –

Substitute Algorithm HotSwap – –

Tease Apart Inheritance Class Reloading Container Method

Table 5.2: Runtime refactorings using JAVADAPTOR.

To sum up, the results of our refactoring case study show that JAVADAPTOR covers a large
bandwidth of different update scenarios and chances are high that the tool performs well in
most real-world scenarios.

5.2 Performance

Having demonstrated JAVADAPTOR’s ability to update complex real-world applications at a
fine level of granularity, it is time to take a look at possible performance penalties induced by
our approach, i.e., its impact on the program execution speed and the time it needs to apply
the update. For our performance examinations, we use the previous studies and synthetic
benchmarks. All benchmarks are performed on a machine hosting an Intel 2,2 GHz i7 Quad
Core CPU and running Windows 7 64 bit. As Java Runtime Environment, we use officially
released Java 7 (version 1.7.0) based on Oracle’s HotSpot VM (64 bit).

82

5.2 Performance

5.2.1 Statistical Significance

Benchmarking of Java applications is a difficult task, because the benchmark results could
be influenced in many different ways. As Goerges et al. [GBE07] state, one problem is, that
the operating system may or may not favor tasks over the benchmarked Java task, which lets
the benchmark numbers differ from run to run. Furthermore, the just-in-time compiler of the
JVM requires some time to optimize the program (referred to as warm-up time) and on top
of that may optimize method A in one run and method B in another run, resulting in varying
benchmark numbers, too. Another interference factor are concurrent threads that may be
scheduled differently during the runs.

In order to eliminate the impact of the interference factors described above, i.e., to get
statistical significant results, we proceed with our benchmarks as follows. First of all, we
warm-up the program before we benchmark it, in order to avoid varying results because
benchmark and JIT compiler compete for CPU cycles. Furthermore, we run the benchmarks
several times and on different program instances and compare the results (note that we in the
following present only the numbers of a representative benchmark run, which is for clarity
reasons). This reduces the impact of prioritized processes, different JIT compiler results, and
differently scheduled threads.

5.2.2 Execution Speed

To measure possible execution speed penalties, we took the following actions. We ran the
PolePosition benchmark on HyperSQL immediately after runtime updating the application
to version 1.8.0.10 and compared the results with the benchmark results of HyperSQL
version 1.8.0.10 not updated at runtime. We could not measure any statistically significant
difference (we run the test as described in Section 5.2.1 and always got comparable results),
i.e, the benchmark results of the HyperSQL instance updated at runtime were as good as
the results of the HyperSQL instance not updated at runtime. In other words, the dynamic
updates performed by us did not affect the execution speed of HyperSQL in a measurable
way.

Execution Speed in the Presence of Containers and Local References. Even if we
did not measure runtime performance penalties because of our update approach in a real-
world scenario, we assumed that our approach does not come entirely without runtime
performance overhead. For instance, our container approach adds one level of indirection
between reloaded class and caller and thus may cause performance penalties. To get evidence
about this assumption, we additionally implemented a synthetic benchmark that is able to
detect even minimal performance penalties. It measures the costs of crossing the version
barrier from old program parts (i.e., callers) to the new ones (i.e., callees). In other words, the

83

5 Evaluation

micro benchmark measures the time required to access the fields and methods of a reloaded
callee. The complete set of callee accesses we measured is as follows:

Access = {void meth(), void meth(primitive), primitive meth(),

primitive meth(primitive), void meth(Object), Object meth(),

Object meth(Object), void meth(Callee), Callee meth(),

Callee meth(Callee), write Callee field, read Callee field}

To get reliable results, we repeatedly ran ten samples of one million invocations of all
invocation types of set Access and for each calculated the average access time in nanoseconds.
As a result, for none of the invocation types (which require containers and/or updates of
references addressing short-lived objects) a statistically significant performance overhead
was measurable, i.e., programs updated using containers and/or Java HotSwap perform as
fast as the original program. One reason for the good results is the just-in-time compiler of
the JVM that is able to optimize the code used to instrument the containers.

Execution Speed and Proxies. In Section 3.5.4, we described the need for proxies to
avoid implicit caller replacements in case the callee appears to be an argument of a caller
method, is returned by a caller method, or both. To figure out possible statistically significant
execution speed penalties due to our proxy approach, we again repeatedly ran ten samples of
one million (get-, set-, and set&get-) method invocations and recorded the method access
times. Next, we analyzed the measured access times and found that the median access
time was fast 0 nanoseconds, which is due to the optimizations done by the excellent JIT
compiler of the JVM. But, we also noticed that in some cases accesses were not optimized
and produced access times beyond the median. Moreover, we found those unoptimized
accesses to be the reason why proxies cause performance penalties. Therefore, we did not
only calculate the median and mean for the measured access times, but aimed at visualizing
the unoptimized accesses (i.e., outliers), too, which in our case could be done best with
box plots. In order to additionally visualize the concentration of overlapping outliers, we
combine the box plots with sunflower plots.

Figure 5.2 shows the results of our proxy performance benchmark (in nanoseconds). With
No Update (left part of Figure 5.2), we measured mean access times that range from 13,73 ns
to 13,93 ns, with a median access time value of 0 ns and only 2,7 % to 3 % outliers. When
we reload the Callee and thus have to use proxies, the average method access times in-
crease (middle of Figure 5.2), now ranging from 38 ns to 53,5 ns, while the median is still
at 0 ns. The reason for the increased mean values is that our proxy approach causes more
outliers (i.e., 7,3 % – 9,4 %) and above that slower unoptimized accesses (see the box plots
depicted in the middle of Figure 5.2). That is, dynamic updates involving proxies introduce
slight execution speed penalties.

84

5.2 Performance

No Update Callee Caller

Callee

Caller

No Update

19,790set&get 4,2
set 3,30 15,61

0 12,79get 2,9

7,3
9,4

2,7
3

Outliers in %

9,1

2,9

Method

38set
46

0

13,8
13,93

Median in ns

set 0

Mean in ns
0

53,5

get

set&get
0

get

13,73

0

0
set&get

20
00

00
40

00
00

0
60

00
00

80
00

00
10

00
00

0

Figure 5.2: Method execution times in the presence of proxies. Meaning of the plotted
elements: —— = box plot, = outlier, | = low concentration of overlapping
outliers, = high concentration of overlapping outliers.

In order to get to know how the results scale, we put some workload on the methods
and let them process statement System.out.println("Hello JavAdaptor!"). The
results are shown in Figure 5.3. As one can see, the times to execute the method bodies
are much higher than the pure method access times, which results in similar overall method
execution times with and without proxies, ranging from 8892 ns to 11210 ns on average.

To sum up, performance penalties because of proxies are measurable, but workload
on methods (which should be the common scenario) renders the performance penalties
negligible. In addition, reloading the referring class (i.e., the Caller) as well, almost recovers
the original method access times (see right part of Figure 5.2).

85

5 Evaluation

No Update Callee Caller

Callee

Caller

No Update

10730set&get
set 10730

10729get

Method

10729set
10730

11196
10729set

Median in ns

10729

get

set&get

get

10729set&get

11168
11134
8892

10922
10897

11210
10811
10805
11094

Mean in ns

7,1
5,5
0,2
46
3

1,3
2,9
0,9
4,7

Outliers in %

0
20

00
00

0
40

00
00

0
60

00
00

0
80

00
00

0
10

00
00

00

Figure 5.3: Method execution times in the presence of proxies and workload. Meaning
of the plotted elements: —— = box plot, = outlier, | = low concentration of
overlapping outliers, = high concentration of overlapping outliers.

Execution Speed and Recurring Updates. So far, we only examined the program execu-
tion speed after one single update step. But, in most real-world scenarios an application must
be updated more than one time. One of the characteristics of our dynamic software update
approach is, that we reload new class versions under a fresh name and with the same class
loader that already loaded the original class. That is, older class versions remain in the JVM.
Thus, we suspected the times to access reloaded classes to be growing with every update
because the JVM has to manage the relationships between an increasing number of classes.
Therefore, we additionally checked whether recurring dynamic software updates on the basis
of JAVADAPTOR cause performance penalties.

To come to the point, times to access reloaded classes even after many updates remain

86

5.2 Performance

+getSensor(): Sensor
TempSensor_v2

+getSensor(): Sensor
SolarSensor

Recurring
DSU

+getSensor(): Sensor
TempSensor

+getSensor(): Sensor
SolarSensor

+getSensor(): Sensor
TempSensor_v3

+getSensor(): Sensor
TempSensor_vn

...

TempDisplay TempDisplay

TempDisplay

+getSensor(): Sensor
TempSensor

Recurring
DSU

TempDisplay

+getSensor(): Sensor
TempSensor_v2

+getSensor(): Sensor
TempSensor_v3

+getSensor(): Sensor
TempSensor_vn

...

Container_v2

Container_v3

Container_vn

a)

b)

directed callee access
with max. 1 indirection

time consuming
subclass resolution?

Figure 5.4: Recurring class reloadings and subclass resolution.

comparable to the access times with no update. The reason why the access times remain
comparable is, that at any point in time and no matter how often the program was updated,
the referring classes (such as class TempDisplay depicted in Figure 5.4a) can access the
reloaded classes (such as class TempSensor, Figure 5.4a) directly with at most one additional
indirection (caused by possible containers or proxies). Furthermore, references to outdated
classes will be completely replaced with references to the up-to-date class, i.e., even if still
loaded, the outdated classes will be not referenced anymore which reduces the effort to
manage them.

Despite the above mentioned reasons for why JAVADAPTOR does not decrease the program
execution speed after many updates, we assumed scenarios causing performance penalties
where referring classes access reloaded classes via the reloaded classes’s super type. Fig-
ure 5.4b sketches such a scenario. Here, referring class TempDisplay accesses method
getSensor of class TempSensor via superclass SolarSensor. What seems to be prob-
lematic is that every class replacement (here of class TempSensor) adds a new subclass to
the superclass (in our example to class SolarSensor), which may render the resolution
of the up-to-date subclass version time-consuming after many class reloadings. In order to
confirm our assumption, we repeatedly ran a benchmark accessing method getSensor of
class TempSensor through superclass SolarSensor after 0, 1, 10, 100, 1000, and 10000
reloadings of class TempSensor (again with ten samples of one million invocations to get
statistically significant results) and measured the method access times. As a result, the

87

5 Evaluation

method access times remained unchanged even after 10000 class replacements confirming
the JVMs capability to efficiently resolve up-to-date classes from a large set of possible
candidates.

All in all, the results of the PolePosition benchmark on HyperSQL and our additional
synthetic benchmarks confirm that dynamic software updates by JAVADAPTOR produce
only minimal runtime performance overhead. Only proxies produce a measurable overhead.
Whereas reference updates through local changes and containers do not cause measurable
performance drops. Last but not least, the program execution speed remains unchanged even
after many program updates.

5.2.3 Update Speed

Having evaluated how JAVADAPTOR affects the program execution speed, we measure how
much time the tool needs to apply updates. As we already described, with our current
JAVADAPTOR version we pause the application, while we apply the update. We do this for
consistency reasons, i.e., in order to ensure that all classes within the JVM are up-to-date
before we resume the application and to avoid state losses during state mapping because the
JVM concurrently produces new objects not considered to be mapped. In order to figure out
the update speed of JAVADAPTOR, we simply measure the time period the application must
be paused. To get statistically significant results, we reran our tests 10 times and compared
the measured update times. All runs produced comparable update times, which is why we
subsequently discuss the results of one representative run.

0

1500

3000

4500

6000

0 671 6710 67100 671000

5346

1809154015181407

Ti
m

e
A

pp
lic

at
io

n
Pa

us
ed

 (i
n

m
s)

Number of Data Objects

NO OBJECT 100X 1000X 10000X 100000X

REIHE 1 1407 1518 1540 1809 5346

Figure 5.5: HyperSQL: Update speed.

At first, we measured the time required to update our HyperSQL case study under different
conditions. With our first test, we measured the time period required to update HyperSQL
with an empty database (i.e., without any data object stored), which was 1407 milliseconds
(see Figure 5.5). In further tests, we ran the PolePosition benchmark creating 671, 6710,
67100, and 671000 of data objects before the update (note that the standard configuration
of PolePosition creates 671000 data objects and we simply decreased those numbers step-

88

5.3 Platform Independence

wise by factor 10). As shown in Figure 5.5, the corresponding update times ranged from
1518 milliseconds to 5346 milliseconds. This seems to be not extremely fast but sufficient in
many scenarios. By contrast, restarts and reinitializations of HyperSQL (e.g., filling caches,
reloading data objects, creating views, creating users, etc.), as we simulated them using
PolePosition, took more time. More precisely, the times ranged from 4339 ms (for 671 data
objects) to 88067 ms (for 671000 data objects).

The other application for which we measured the update times, was Snake. Compared to
the update of HyperSQL, which affects wide parts of the system (the update spans changes
made during 9 months of development), each Snake update step consists only of small
changes to few classes. Thus, the Snake updates represent scenarios common to the software
development process, i.e., frequent minor changes and immediate application of the changes.
As our demo video (available on YouTube5) suggests, the update times are rather short. The
exact update times for one representative run (we again reran the update ten times and always
got similar results) ranged from 28 milliseconds to 142 milliseconds.

All in all, the update times we measured suggest that our current JAVADAPTOR imple-
mentation could be beneficial in many different scenarios. The bottleneck of the current
implementation is JVMTI method referringObjects, which JAVADAPTOR uses dur-
ing state mapping to identify the callers of an outdated object. The execution times of
this method notably increase the more objects are present in the JVM, even if the num-
ber of objects to be updated remains unchanged. We do not know if the performance of
method referringObjects will be improved with future JVM versions. Therefore, we
are currently working on a JAVADAPTOR version which avoids to use this method and
thus offers dramatically improved update speeds (we will discuss possible improvements of
JAVADAPTOR and first benchmark results in Chapter 6).

5.3 Platform Independence

In Section 1, we argued that platform independence is crucial because forcing developers to
use specific JVMs contradicts the idea of Java (i.e., its platform independence). Even if the
case studies and the implementational details given in Section 4 suggest that JAVADAPTOR

satisfies this criterion, we want to underpin this impression with some data and arguments.
To confirm that JAVADAPTOR meets the platform independence criterion, we ran JAVADAP-

TOR on top of all major standard (certified) JVM versions publicly available and successfully
updated Snake at runtime. We preferred Snake over HyperSQL and our refactoring case
study, because it gives immediate (visual) feedback about the correctness of the update and
(even if a small case study) covers all kinds of updates essential to flexibly update running
applications. Table 5.3 lists all tested JVMs and the Java version we used to confirm that

5http://www.youtube.com/watch?v=jZm0hvlhC-E

89

http://www.youtube.com/watch?v=jZm0hvlhC-E

5 Evaluation

JVM Name Availability Java Version

JDK 6 JDK 7

Oracle HotSpot VM 32/64-bit Windows, Linux, Solaris confirmed confirmed

OpenJDK HotSpot VM 32/64-bit Windows, Linux, Solaris, Mac OS confirmed confirmed

Apple HotSpot VM 32/64-bit Mac OS confirmed confirmed

Oracle JRockit VM 32/64-bit Windows, Linux, Solaris confirmed not available

IBM VM 32/64-bit Linux, AIX, z/OS confirmed confirmed

Table 5.3: Tested platforms.

JAVADAPTOR works properly. We point out that JAVADAPTOR straightaway worked with all
JVMs without any modification.

5.4 Architecture Independence

The last criterion we claimed to support with JAVADAPTOR is architecture independence,
which is important because different application scenarios require different program archi-
tectures.

Similar to the flexibility criterion, it is virtually impossible to conclude the discussion
regarding JAVADAPTOR’s architecture independence. Nevertheless, our case studies already
gave some insights to this question. For example, with Snake and our refactoring programs we
successfully updated standalone applications. By contrast, with HyperSQL we successfully
updated an application which is part of a server client architecture, whereas HyperSQL was
the server and PolePosition the client. We point out that we neither prepared JAVADAPTOR

for the one or the other architecture, i.e., JAVADAPTOR naturally supports both architectures.
JAVADAPTOR was even able to successfully update a component-based version of Snake (i.e.,
a version engaging different class loaders). The reason why JAVADAPTOR supports many
different architectures is that at JVM level it is all about class loaders, classes, methods,
fields, objects, and how they relate to each other, which is the same for all programs no
matter what architecture they base on. There are of course borderline cases not (yet) fully
supported by JAVADAPTOR, such as program architectures that may engage not only Java
but other languages, too (e.g., CORBA). However, we do not see general problems with the
concept of JAVADAPTOR which may circumvent support for specific architectures.

90

5.5 Memory Consumption

5.5 Memory Consumption

Even if not part of the thesis goals, we additionally analyzed the memory consumption of
JAVADAPTOR.

Our current JAVADAPTOR implementation loads a new class version with the same class
loader that already loaded the original class. That is, even if we do no longer need the original
class to be present within the JVM, we cannot unload it, because the class’s loader responsible
for the original class is still deployed (as we explained in Section 2.4, class unloading requires
the corresponding class loader to be undeployed). In earlier sections, we already examined
if the outdated classes still present within the JVM degenerate program execution speed
after many updates, which is not the case. Even if we did not measure any execution speed
penalties, we cannot ignore the fact that the still loaded outdated class versions waste the
JVM’s memory space and large memory footprints because of this may hinder the usage
of JAVADAPTOR on systems with less (main) memory. Therefore, we analyzed the JVM’s
memory consumption after many updates. Our evaluation is based on the same benchmark
that we used to figure out possible execution speed penalties due to frequent subclassing (see
Figure 5.4). That is, we reload class TempSensor of our benchmark 1, 10, 100, 1000, and
10000 times and for each test check how much memory the JVM consumes. The class-file
size of class TempSensor, was 1098 Bytes. To get statistically significant results, we reran
the tests 10 times and compared the measured memory consumption numbers. The measured
memory footprint remained comparable across all runs.

NO UPDATE X1 X10 X100 X1000 X10000

PERMANENT
GENERATION

SIZE
HEAP SIZE

13,30 13,31 13,30 13,32 17,42 54,28

14,81 15,36 15,34 15,37 15,59 13,79

0

17,5

35

52,5

70

0 1 10 100 1000 10000

13,79

15,59
15,3715,3415,3614,81

54,28

17,42
13,3213,313,3113,3

DIAGRAMM 24

M
em

or
y

C
on

su
m

pt
io

n
(in

 M
B

)

Number of Updates
Permanent Generation Size Heap Size

Figure 5.6: Memory consumption vs. recurring updates.

In Figure 5.6, we show the memory consumption of one representative run. The size of the
heap (amongst others, responsible for storing objects) remains virtually unchanged (15,04 MB
on average) which is no surprise, because JAVADAPTOR does only restrict the unloading of
outdated classes but not the deletion of unused objects. By contrast, the size of the Permanent
Generation (stores all class related information) was increased by 40,98 MB after 10000
reloadings of class TempSensor.

91

5 Evaluation

Even if in many real-world scenarios the classes scheduled for reloadings may have
larger file sizes and thus consume more memory, we classify the memory consumption of
JAVADAPTOR after recurring updates to be no problem, because modern JVMs are able to
handle very large storage capacities.

5.6 Summary

Our goal was the development of a highly flexible, performant, platform independent,
architecture independent, and fine-grained approach for dynamic software updates. Within
this chapter, we evaluated whether JAVADAPTOR meets the goal. We demonstrated the
practicability, flexibility, generality, and fine update granularity of our tool on the basis of
three different non-trivial case studies (i.e., HyperSQL, Snake, and the Refactoring case
study). We further measured the runtime performance of JAVADAPTOR. As a result, solely
our proxies to avoid schema changes of referring classes introduce slight performance
penalties. The runtime performance remains unchanged even after many updates (i.e., class
reloadings). Furthermore, we evaluated the update speed of our current JAVADAPTOR

implementation and found that it could be improved, but is sufficient in many different
scenarios. In order to illustrate JAVADAPTOR’s platform independence, we applied it to all
publicly available standard JVM’s. JAVADAPTOR instantly worked with all tested JVM’s
without any modification. Next, we argued why JAVADAPTOR is architecture independent.
Even if not central part of our contribution, we last but not least measured the memory
consumption of JAVADAPTOR after many updates. Our measurements show that the footprint
is acceptable.

92

6 Enhancements and Optimizations

This chapter shares material with the SPE’2011 paper "JavAdaptor – Flexible Runtime
Updates of Java Applications" [PKC+12].

Within the previous chapter, we analyzed whether JAVADAPTOR meets the thesis goals.
Even if the results of our evaluation confirm the fulfillment of the goals, there is still space
for improvements.

With this chapter, we summarize work in progress to improve JAVADAPTOR. We point
out that most of the here discussed improvements are inspired by existing work, such as
presented by Kim [Kim09], or Gregersen [Gre10b]. However, we do not simply discuss
related work, but describe how to combine it with the existing JAVADAPTOR concept. We
start with descriptions on how to improve the update speed of our tool and present preliminary
results of our efforts regarding this. Furthermore, we discuss possible tool enhancements
towards consistent dynamic software updates. More precisely, we sketch how to achieve
thread-safe updates, prevent (rarely) possible state losses, deal with binary-incompatible
updates and improve support for reflective calls. Last but not least, we summarize the
long-term objectives we pursue with JAVADAPTOR.

6.1 Update-Speed Improvements

In Section 5.2.3, we evaluated the update speed of JAVADAPTOR on the basis of our Hy-
perSQL and Snake case studies. We found the current JAVADAPTOR implementation
acceptable fast in this regard but stated that it could be further improved. From what we
found out, the bottleneck of our current JAVADAPTOR implementation is JVMTI method
referringObjects, which helps us to identify all objects referring to outdated objects.
The problem with method referringObjects is, that it performs a full heap search every
time we request the referring objects of an outdated object, which causes long program
update times and thus long time periods of program unavailability if the program heap is
large and/or many requests must be processed.

One naive solution to reduce the time periods of program unavailability might be to not
pause the application and update the caller side while the program still provides its services.
However, this may lead to wrong program behavior because objects of an old class created
after the execution of method getReferringObjects may be not updated or objects to be

93

6 Enhancements and Optimizations

updated may be garbage collected meanwhile. Due to the fact that wrong program behavior
would challenge the benefits of dynamic software updates, we have to look for another
solution.

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 TempDisplay() {

6 ...

7 ts = TempSensor();

8 ...

9 }

10
11 displayTemp() {

12 ts.averageTemp();

13 }

14 }

15 TempDisplay {

16 TempSensor ts;

17 IContainer cont;

18 ...

19 TempDisplay() {

20 ...

21 cont = Container();

22 cont.ts = TempSensor_v2();

23 ...

24 }

25
26 displayTemp() {

27 (cont == || cont.upToDate()) {
28 cont = Container.mapState(ts);

29 }
30 cont.ts.currentTemp();

31 }

32 }

33 Container IContainer {

34 TempSensor v2 ts;

35 ...

36 Container mapState

37 (TempSensor old) {
38 Container cont = Container();

39
40 // initialize ts

41 // map state from old -> ts

42
43 cont;

44 }
45 }

DSU

+currentTemp(): float
TempSensor_v2

+averageTemp(): int
TempSensor

Figure 6.1: Lazy state mapping. Different from the state mappings through method
getReferringObjects, we now map the state on a per-access basis.

The better alternative to the previously sketched solution are lazy state mappings as
Kim [Kim09] and Gregersen [Gre10b] use them in their DSU approaches. Different from
our current implementation, in which we map the state and update the referring program
parts in one atomic step, lazy state mappings operate on a per-access basis. That is, the state
transfer between the outdated and up-to-date object and the update of the referring program
parts is carried out from within the program if and only if an outdated object is accessed.

Figure 6.1 exemplifies how lazy state mappings work and how we are going to inte-
grate them into JAVADAPTOR. In order to dynamically change our small weather station
program such that it computes and displays current instead of the average temperatures,

94

6.1 Update-Speed Improvements

JAVADAPTOR updates the running program as follows. It processes all update steps we
described in Chapters 3 and 4, but applies additional code to the program, which carries
out the state mapping and updates the referring program parts without the need of method
referringObjects. More precisely, JAVADAPTOR modifies the program code in such
way that before each access to a potentially outdated object, it will be checked whether
the object must be updated or not. In the example depicted in Figure 6.1, this applies to
all references to field ts, which we must update using our container approach because
we replaced class TempSensor with class version TempSensor_v2 in order to add new
method currentTemp. Concretely, before we access the up-to-date object (here of class
TempSensor_v2) stored in the container, we check whether the container object already
exists and is up-to-date or not (see Figure 6.1, Line 27). In the latter case, a mapping
method (in our example method mapState) of the container class will be called (Figure 6.1,
Line 28). This method maps the state from outdated object (here of type TempSensor) to
the up-to-date object (i.e., of type TempSensor_v2), applies the newly created object to a
container instance, and returns the container instance (see Figure 6.1, Lines 36 – 44). After
the state mapping, the newly created object can be accessed as usual, i.e., via the container
instance (see Line 30).

NO OBJECT 100X 1000X 10000X 100000X

NO UPDATE
ACCESS TIME

680 861 878 895 916
1407 1518 1540 1809 5346

0

1500

3000

4500

6000

0 671 6710 67100 671000

5346

1809154015181407
916895878861680

DIAGRAMM 20

Ti
m

e
A

pp
lic

at
io

n
Pa

us
ed

 (i
n

m
s)

Number of Data Objects

Lazy State Mapping Busy State Mapping

Figure 6.2: Update speed of HyperSQL: Lazy vs. busy state mapping.

After we described how we could provide our tool with lazy state mappings, let us present
some update-speed numbers confirming that lazily mapping the state and thus avoiding to use
method referringObjects significantly improves the update speed of JAVADAPTOR. In
Section 5.2.3 we measured the update times of JAVADAPTOR regarding our HyperSQL case
study with zero, hundreds, thousands, ten thousands, and hundred thousands of data objects.
The numbers ranged from 1407 to 5346 milliseconds. With a JAVADAPTOR prototype which
provides lazy state mappings as we sketched them in Figure 6.1, we were able to significantly
reduce the update-speed times. Figure 6.2 contrasts the old update-speed times with the
new ones based on lazy state mappings. What can be seen is that the update-speed numbers

95

6 Enhancements and Optimizations

remain somewhat comparable as long as only few objects are on the heap of the JVM. But,
in case of many objects on the heap (here hundred thousands of data objects), JAVADAPTOR

based on lazy state mappings clearly outperforms our current (i.e., busy) state mapping
implementation, i.e, the prototype requires to pause the application only 916 milliseconds,
whereas current JAVADAPTOR causes an application pause time of 5346 milliseconds.

1 10 100 1000 10000 100000

LAZY STATE
MAPPING

BUSY STATE
MAPPING

17 16 18 18 15 15

377 441 1369 10169 214072 18595330

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000

18595330

214072

10169

1369
441377

151518181617

Ti
m

e
A

pp
lic

at
io

n
Pa

us
ed

 (i
n

m
s)

Number of Objects scheduled for an Update

Lazy State Mapping Busy State Mapping

Figure 6.3: Update speed in dependence to the number of objects to be updated: Lazy vs.
busy state mapping.

The numbers presented in Figure 6.3 further underpin the benefit of lazy state mappings.
Different from our HyperSQL case study, where the number of objects to be updated remained
unchanged with each benchmark configuration, the here presented results outline how the
application pause times develop depending on the number of objects scheduled for an update.
As shown in Figure 6.3, the application pause times caused by our current JAVADAPTOR

implementation further increase dependent on the number of objects to be updated, which
is because with each object update JAVADAPTOR must call method referringObjects.
By contrast, the application pause times of our JAVADAPTOR prototype based on lazy state
mappings are significantly shorter and moreover, remain virtually unchanged regardless of
the number of objects that require an update.

Because the tests with our prototype show significant update-speed improvements, we
are currently working to complete the integration of lazy state mappings into JAVADAPTOR.
What is still missing, is support for lazy state mappings within the Java system classes.
Nevertheless, we are optimistic to provide a fully working JAVADAPTOR version with lazy
state mappings soon.

96

6.2 Solutions Toward Consistent Program Updates

6.2 Solutions Toward Consistent Program Updates

The HyperSQL as well as the Snake case study show that JAVADAPTOR could update
programs without compromising their correctness, i.e., the programs consistency. This is,
because JAVADAPTOR already includes mechanisms aiming at consistent program updates.
For instance, JAVADAPTOR permits updates only if the program sources compile without
errors. Another example is, that JAVADAPTOR pauses the application during the update in
order to ensure that all changed program parts are present within the JVM. However, as
other DSU approaches, the current JAVADAPTOR implementation does not ensure program
consistency at all beyond the update. Therefore, we discuss how to improve our tool in this
regard.

6.2.1 Thread-Safe Updates

One issue, we plan to tackle with future JAVADAPTOR versions is the lack of support for
thread-safe updates of multi-threaded applications. Currently, updates of multi-threaded
applications may cause deadlocks and thus inconsistencies under certain conditions. Such a
scenario is depicted in Figure 6.4. In the example, two different threads alternately access
TempSensor ts of class TempDisplay of our small weather station. The first thread
periodically instructs ts to measure the temperature (by calling method measureTemp),
whereas the second thread is responsible for displaying the measured temperature (by
calling method displayTemp). Because measuring and displaying the temperature at the
same time would cause unexpected program behavior, access to TempSensor ts must be
synchronized (see Figure 6.4 Lines 6 – 10 and Lines 14 – 17).

What could happen when JAVADAPTOR updates a multi-threaded application such as
shown in Figure 6.4 (note that for clarity reasons the lazy state mapping related code is
hidden) is that for some methods the necessary method body redefinitions already took
effect, while other methods remain unaffected, which is due to the principles of Java
HotSwap (remember that method body redefinitions would not affect methods active on
the stack at the moment of redefinition). In our example (see right side of Figure 6.4),
method measureTemp (Lines 32 – 37) is already redefined and thus refers to an object of
up-to-date class version TempSensor_v2, whereas method displayTemp (Lines 24 – 30)
is still active on the stack with the old method body referring to outdated TempSensor ts.
What appears to be the problem here is that method notify (Figure 6.4, Line 35) would not
activate the thread executing method displayTemp because method notify is executed on
a different object. In other words, we have a deadlock.

One solution for the described problem would be to postpone the update until no method
scheduled for redefinition is active on the stack. However, particularly when it comes to
updates of long-running methods, this condition may be never fulfilled or it takes a long time

97

6 Enhancements and Optimizations

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() InterruptedException {

6 (ts) {

7 ts.wait();

8 ts.requestTemp();

9 ...

10 }

11 }

12
13 measureTemp() {

14 (ts){

15 ts.averageTemp();

16 ts.notify();

17 }

18 }

19 }

20 TempDisplay {

21 TempSensor ts;

22 IContainer cont;

23 ...

24 displayTemp() InterruptedException {
25 (ts) {
26 ts.wait();

27 ts.requestTemp();

28 ...

29 }
30 }
31
32 measureTemp() {

33 (cont.ts){

34 cont.ts.currentTemp();

35 cont.ts.notify();

36 }

37 }

38 }

39 Container IContainer {

40 TempSensor v2 ts;

41 ...

42 }

+currentTemp(): float
+requestTemp(): float

TempSensor_v2

+averageTemp(): int
+requestTemp(): int

TempSensor

 Deadlock

DSU

Figure 6.4: Deadlocks because of dynamic software updates.

until it comes true. Therefore, we have to find another strategy.
To prevent deadlocks in multi-threaded applications such as sketched above, Gregersen

proposes special synchronization objects that could be shared beyond different class ver-
sions [Gre10b]. Figure 6.5 shows how those synchronization objects could be applied
to JAVADAPTOR. Here, we add an additional field syncObj of type Object to class
TempSensor, which, instead of the TempSensor object itself, is used for synchroniza-
tion (see Figure 6.5, Lines 6 and 14). If the application must be updated and the neces-
sary method body redefinitions take effect for one method (in our example for method
measureTemp, see Figure 6.5, Lines 32 – 37), but not for the other (compare method
displayTemp, Figure 6.5, Lines 24 – 30), no deadlock occurs. This is, because the outdated
object (here of type TempSensor) and its up-to-date counterpart (in our example an object
of type TempSensor_v2) share the same synchronization object (i.e., object syncObj).

6.2.2 State-Loss Prevention

Another shortcoming of our current JAVADAPTOR implementation (even true for our pro-
totype based on lazy state mappings) is that it may cause program inconsistencies because
of state losses. To illustrate the problem, we use a slightly different version of our small
weather station program to be updated at runtime (see Figure 6.6). Here, we again have

98

6.2 Solutions Toward Consistent Program Updates

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() InterruptedException {

6 (ts.syncObj){

7 ts.syncObj.wait();

8 ts.requestTemp();

9 ...

10 }

11 }

12
13 measureTemp() {

14 (ts.syncObj){

15 ts.averageTemp();

16 ts.syncObj.notify();

17 }

18 }

19 }

20 TempDisplay {

21 TempSensor ts;

22 IContainer cont;

23 ...

24 displayTemp() InterruptedException {
25 (ts.syncObj) {
26 ts.syncObj.wait();

27 ts.requestTemp();

28 ...

29 }
30 }
31
32 measureTemp() {

33 (cont.ts.syncObj){

34 cont.ts.currentTemp();

35 cont.ts.syncObj.notify();

36 }

37 }

38 }

39 Container IContainer {

40 TempSensor v2 ts;

41 ...

42 }

 No Deadlock

+averageTemp(): int
+requestTemp(): int
+syncObj: Object

TempSensor

+currentTemp(): float
+requestTemp(): float
+syncObj: Object

TempSensor_v2

DSU

Figure 6.5: Deadlock prevention through shared synchronization objects.

the situation that, for one method (i.e., method measureTemp) the necessary method body
redefinition through Java HotSwap took effect, while the other method (in our example
method displayTemp) is still active on the stack with the old method body. Now it could be
the case, that the outdated method remains active on the stack while the state of the referred
outdated object (in our case the TempSensor object referred by ts) is already mapped to an
object of the new class version (here of type TempSensor v2), because another thread exe-
cuted the redefined method including the state mapping related code (see Figure 6.6, method
measureTemp, Lines 31 – 33). The problem is that the still active outdated method may
change the state of the outdated referred object (such as sketched in Line 25 of Figure 6.6)
and because the state transfer already happened, those state changes would be lost on the
new object.

A first naive solution for the problem depicted in Figure 6.6 would be to manually pop all
active methods to be redefined from the stack before redefinition, which is supported by the
JVM. This would prevent executions of old method versions and thus accesses to outdated
objects after the state transfer causing state losses. Unfortunately, the JVM only allows us to
manually pop the outdated methods from the stack, but not to manually push their up-to-date
(redefined) counterparts back on the stack. Because we cannot push the redefined methods

99

6 Enhancements and Optimizations

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 ts.tempUnit = "Celsius";

8 ...

9 }

10 }

11
12 measureTemp() {

13
14
15
16 ts.averageTemp();

17 }

18 }

19 TempDisplay {

20 TempSensor ts;

21 IContainer cont;

22 ...

23 displayTemp() {
24 () {
25 ts.tempUnit = "Celsius";

26 ...

27 }
28 }
29
30 measureTemp() {

31 (cont == || cont.upToDate()) {
32 cont = Container.mapState(ts));

33 }
34 cont.ts.currentTemp();

35 }

36 }

37 Container IContainer {

38 TempSensor v2 ts;

39 ...

40 }

DSU

+averageTemp(): int
+tempUnit: String
TempSensor

+currentTemp(): float
+tempUnit: String
TempSensor_v2

Figure 6.6: State losses because of dynamic software updates.

back on the stack, the program’s natural control flow will be disordered, which potentially
results in wrong program behavior.

What may be the better strategy compared to pop operations is to intercept the access to
an outdated object and to redirect this access to the corresponding up-to-date object. The
challenge is, that the interception and redirection of direct object accesses (such as depicted
in Line 25 of Figure 6.6) is not possible, because of the missing indirection between caller
and callee required to hook into the access path. The solution for this problem is delivered
by Fowler [Fow06] who argues that, compared to direct accesses, getter and setter methods
allow us to flexibly manage accesses to objects.

Figure 6.7 shows how we plan to use getter and setter methods to prevent state losses
because of redefinitions of active methods. Here, again method displayTemp scheduled for
redefinition is active on the stack (see Lines 43 – 48 of Figure 6.7), while the redefinition of
method measureTemp already took effect (Lines 50 – 56). Only difference to the example
depicted in Figure 6.6 is that we now access all objects, especially the outdated object of
type TempSensor referenced by field ts, via getter and setter methods (e.g., see Line 45 of
Figure 6.7). To redirect object accesses from within outdated active methods to the up-to-date
object, we redefine all methods of old class versions (in our example method setTempUnit

of old class version TempSensor, Line 45) referenced by the outdated method as follows (see

100

6.2 Solutions Toward Consistent Program Updates

39 TempDisplay {

40 TempSensor ts;

41 IContainer cont;

42 ...

43 displayTemp() {
44 () {
45 getTS().setTempUnit("Celsius");

46 ...

47 }
48 }
49
50 measureTemp() {

51 (getCont() == || getCont().upToDate()) {
52 setCont(Container.mapState(getTS()));

53 getTS().setNewTS(getCont().getTS());

54 }
55 getCont().getTS().currentTemp();

56 }

57
58
59 TempSensor getTS() {

60 ts;

61 }

62 ...

63 }

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 getTS().setTempUnit("Celsius");

8 ...

9 }

10 }

11
12 measureTemp() {

13
14
15
16
17 getTS().averageTemp();

18 }

19
20
21 TempSensor getTS() {

22 ts;

23 }

24 ...

25 }

DSU

64 Container IContainer {

65 TempSensor v2 ts;

66 ...

67
68 ...

69 }

70 TempSensor {

71 String tempUnit;

72 Object newTS;

73 ...

74
75 setTempUnit(String unit) {

76 (newTS == || newTS.upToDate()) {
77 //map state from -> up-to-date object

78 //assign up-to-date object to

79 }
80 ((TempSensor v2) newTS).setTempUnit(unit);

81 }

82 ...

83 }

26 TempSensor {

27 String tempUnit;

28 Object newTS;

29 ...

30
31 setTempUnit(String unit) {

32
33
34
35 tempUnit = unit;

36 }

37 ...

38 }

84 TempSensor_v2 {

85 ...

86
87 setTempUnit(String unit) {

88 tempUnit = unit;

89 }

90 ...

91 }

DSU

2

1

Figure 6.7: State-loss prevention.

101

6 Enhancements and Optimizations

Lines 76 – 80, Figure 6.7). First of all, we check whether the state mapping already took
place (Line 76), e.g., because of the execution of an up-to-date method (such as in our
example method measureTemp, see Lines 51 – 54). In case the state mapping is pending,
we process the state mapping (Line 77). Next, we couple the outdated and the up-to-date
object by assigning the up-to-date object to a field of the outdated object (Line 78). Note that
the field refers to the same object as the applied container, which ensures that outdated active
method as well as up-to-date method access the same object. Finally, we forward the method
call to the method of the up-to-date object (Line 80). After this is done, every access to a field
of an outdated object from within an active outdated method (e.g., see Access 1, Figure 6.7)
will be redirected to the corresponding up-to-date object (such as through Access 2 shown in
Figure 6.7) and no state will be lost.

6.2.3 Handling of Binary-Incompatible Updates

So far, we discussed how getter and setter methods in conjunction with redefinitions of
methods of outdated class version can help us to prevent state losses because of active
methods scheduled for redefinition. But, getters, setters, and redefinitions of old methods
could do a lot more for us. Coming back to our motivating example, where we are going
to remove method averageTemp by method currentTemp and therefore have to replace
class TempSensor and update calling class TempDisplay, conflicts such as depicted in
Figure 6.8 can occur. As in the previous examples, method displayTemp to be redefined is
active on the stack with the old method body. What is the problem here is that the method
continues to call method averageTemp even if this method is removed in new class version
TempSensor v2, which is referred to as a binary-incompatible update [GJSB05].

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 ts.averageTemp();

8 ...

9 }

10 }

11 }

12 TempDisplay {

13 TempSensor ts;

14 IContainer cont;

15 ...

16 displayTemp() {
17 () {
18 ts.averageTemp();

19 ...

20 }
21 }
22 }

35 Container IContainer {

36 TempSensor_v2 ts;

37 ...

38 }

DSU

+averageTemp(): int
TempSensor

+currentTemp(): float
TempSensor_v2

Figure 6.8: Binary-incompatible updates.

102

6.2 Solutions Toward Consistent Program Updates

Currently, we allow caller related methods such as method displayTemp to refer to
removed methods, fields, or super types, which is no big deal as long as those accesses are
read only and thus do not result in program state changes. However, read only accesses may
be the exception and methods such as removed method averageTemp may alter the program
state, which possibly results in wrong program behavior (e.g., method averageTemp could
overwrite the temperature computed by up-to-date method currentTemp with average
temperatures). To avoid inconsistencies because of binary-incompatible updates, we must
somehow invalidate accesses to removed methods, fields, and super types.

29 TempDisplay {

30 TempSensor ts;

31 IContainer cont;

32 ...

33 displayTemp() {
34 () {
35 getTS().averageTemp();

36 ...

37 }
38 }
39
40
41 TempSensor getTS() {

42 ts;

43 }

44 ...

45 }

DSU

46 Container IContainer {

47 TempSensor_v2 ts;

48 ...

49
50 ...

51 }

52 TempSensor {

53 String tempUnit;

54 Object newTS;

55 ...

56 averageTemp() {

57 {

58 NoSuchMethodException("Method Removed");

59 } (NoSuchMethodException e) {

60 ...

61 }

62 }

63
64
65 ...

66 }

DSU

1

1 TempDisplay {

2 TempSensor ts;

3 IContainer cont;

4 ...

5 displayTemp() {

6 () {

7 getTS().averageTemp();

8 ...

9 }

10 }

11
12
13 TempSensor getTS() {

14 ts;

15 }

16 ...

17 }

18 TempSensor {

19 String tempUnit;

20 Object newTS;

21 ...

22 averageTemp() {

23
24 }

25
26
27 ...

28 }

Figure 6.9: Support for binary-incompatible updates.

In Figure 6.9, we show how we intend to invalidate accesses to the removed elements. Just
like for state-loss prevention purposes, we redefine the methods within the old class versions.
But, we do not add state mapping code and forward the calls to the up-to-date class version.
We simply remove the original method bodies and corresponding to whether the removed
element is a field or a method, throw NoSuchMethodException (see Figure 6.9, Line 58)

103

6 Enhancements and Optimizations

or NoSuchFieldException, which does not cause unwanted program-state changes and
thus has no influence on the program’s consistency.

6.2.4 Reflection Support

We do not only focus on improved update speeds, thread-safe updates, state-loss prevention,
and the handling of binary-incompatible updates. Additionally, we are working on solutions
to overcome several problems the different versions of a class present in the JVM may
cause. The main issue to overcome is the limited support of our current JAVADAPTOR

implementation for reflective calls of reloaded (updated) classes. Under certain conditions,
those calls may address old versions of a reloaded class and not the latest class version,
which may result in wrong program behavior. This would be for instance the case when the
class object of the class to be reloaded was cached before the update. Each reflective call
based on this cached class object would access the old class version.

With our solutions for state-loss prevention and binary-incompatible updates, which
basically forward all requests (including the reflective ones) to the most recent version of
a class/instance, we already cover many different kinds of reflective requests. What the
approaches not yet fully cover are string-based reflective calls in combination with type
checks (e.g., via instanceof). Those calls could be supported with two different strategies.
First, we could modify the Reflection API in such way that it redirects even string-based
reflective calls to the most recent class version. Second, we could parse the class files for
occurrences of string-based reflective calls and change the strings representing a class name
to the up-to-date class name. However, further investigations are necessary to find an optimal
solution for the described problem.

6.3 Bridging the Gap between Practicability and Consistency

So far, we discussed solutions for issues already solved by other DSU approaches such as
Kim’s proxy-based DSU approach [Kim09] or Javeleon [Gre10b]. What remains an open
question to the whole research community is how to reliably (immediately) apply updates
and fully ensure program consistency beyond the updates. Gupta et al. state in [GJB96] that
the consistency problem is undecidable. Nevertheless, a lot of related work exists facing
the problem (see [VEBD07, KM90, SHB+05, HN05, MBJ06, BAM+09, KB02, Mak09,
Wür11]). But, to our best knowledge, some approaches provide approximated solutions
only, whereas others are not applicable in real-world scenarios (e.g., due to the lack of tool
support, etc.) or may reject the scheduled update. That is, our big goal with JAVADAPTOR

is to provide an update mechanism which fully ensures program consistency, is useful in
practice, and reliably applies updates.

104

6.4 Application to other Languages

6.4 Application to other Languages

Within this work, we discussed the benefits of unrestricted dynamic software update ca-
pabilities and presented JAVADAPTOR which brings those capabilities to Java. However,
unrestricted DSU are not only beneficial for Java. They are beneficial in general. Therefore,
we plan to apply our solution to other popular languages and platforms. One candidate is
Microsoft’s .NET platform, which could execute programs written in languages such as C#,
C++, J#, or Visual Basic. The .NET platform is ideal, because the underlying runtime (i.e.,
the Common Language Runtime) supports dynamic method body redefinitions as we use
them in our DSU approach to update references to reloaded classes [EF05]. Another possible
candidate is the C++ programming language. It does not offer the required method body
redefinitions. However, Hjálmtÿsson and Gray described in [HG98] how proxies could be
used to enable method body redefinitions in C++ and thus prepare the language for our
update approach.

6.5 Discussion

When looking at the enhancements that we are going to integrate into JAVADAPTOR, one may
wonder if those enhancements would compromise one of the contributions of JAVADAPTOR

claimed in this paper, e.g., its performance. Particularly, the system-wide usage of getter and
setter methods (note that the getters and setters have to be created for all class and instance
fields of all classes including the system classes of Java) would probably cause significant
performance penalties. But, contrary to expectations, first benchmark results show that this
is virtually not the case, which is because of the excellent optimization capabilities of the
JVM and its just-in-time compiler (we found that the JVM is able to optimize getter- and
setter-based field accesses to such an extent, that they are as fast as direct field accesses).
In addition, other DSU approaches such as Kim’s proxy-based DSU approach [Kim09]
and Javeleon [Gre10b], which base on lazy state mappings and use system-wide getter and
setter methods for similar purposes as we will do, show that those kinds of enhancements
must not cause significant performance drops. For instance Gregersen estimates in [GJ11]
the performance overhead of Javeleon at moderate 15 % and we see no reason why future
JAVADAPTOR versions should introduce bigger performance penalties (we rather expect the
performance penalties to be significantly below those 15 %).

All in all, we are optimistic to provide a stable version of JAVADAPTOR with fast
and thread-safe updates, improved state-loss prevention, optimized handling of binary-
incompatible changes, and better support for reflective calls, soon. As already mentioned,
preliminary results of experiments with JAVADAPTOR prototypes suggest that the planned en-
hancements must not heavily compromise the performance of the updated program. Another

105

6 Enhancements and Optimizations

fact that makes us confident to fit JAVADAPTOR with high quality solutions for the mentioned
issues is that we can (to some extent) build on solutions of related DSU approaches (such as
presented in [Kim09] and [Gre10b]) facing similar problems.

6.6 Summary

In this chapter, we discussed work in progress and future work to improve JAVADAPTOR.
We detailed how we are going to improve the update speed of JAVADAPTOR and presented
first benchmark results showing significant improvements in this regard. We additionally
described our plans to push JAVADAPTOR further toward consistent program updates. That
is, we detailed how we could ensure thread-safety through special synchronization objects
and exploit getters and setters to prevent state losses, deal with binary-incompatible updates,
and provide full reflection support. We, last but not least, discussed long-term objectives such
as full support for consistent updates and the application of our DSU approach to languages
different from Java.

106

7 Related Work

Within this chapter, we give an overview of other work done in the domain of dynamic
software updates. We consider such an overview as important, because it helps us to
highlight the benefits of our solution compared to already existing work. At first, we provide
an overview of recent work to overcome Java’s limitations regarding dynamic software
updates. Next, we summarize dynamic software update approaches for languages different
from Java, e.g. C, C++, or SmallTalk.

Furthermore, we evaluate the quality of the related approaches regarding the criteria
central to our work, i.e., update flexibility, performance, platform independence, architecture
independence, and update granularity. We could not test every approach against the criteria
by ourself, because some approaches are not freely available, do only support outdated
runtime environments, or require specific program architectures (which renders the usage of
one and the same benchmark impossible). However, we searched the literature and found
detailed information on the capabilities of the related work regarding our criteria.

7.1 Dynamic Software Updates for Java

Researchers spent a lot of time to overcome Java’s shortcomings regarding dynamic software
updates. For better comparability and because of the broad range of related work ranging from
theoretical to practical solutions, we predominantly focus on practice-oriented approaches
which, like JAVADAPTOR and in contrast to theoretical solutions, can be directly applied in
real-world scenarios. We group the related work into two groups which reflect the level of
the approach’s application, i.e., the group of approaches established at Language Level and
the approaches aiming at JVM Patches.

7.1.1 Language Level

The Java language, respectively the object-oriented paradigm, naturally offers different entry
points to approximate dynamic software updates, e.g., the decorator pattern or the proxy
pattern [GHJV04]. In the following, we will discuss DSU approaches that perform runtime
updates at language level and exploit those entry points.

107

7 Related Work

Object Wrappings

This section shares material with the APSEC’08 paper "Towards Unanticipated Runtime
Adaptation of Java Applications" [PKS08] and the RAM-SE’08 paper "Object Roles
and Runtime Adaptation in Java" [Puk08].

In previous work, we presented a DSU approach, which combines object wrappings with
interfaces and, similar to JAVADAPTOR, uses Java HotSwap to update referring program
parts [PKS08, Puk08].

Wrappee

1 TempSensorWrap {

2 TempSensor ts;

3 ...

4 averageTemp() {

5 ts.averageTemp();

6 }

7
8 currentTemp() {
9

10 }
11 }

12 TempSensor {

13 Sensor s;

14 ...

15 averageTemp() {

16
17 }

18 }

Wrapper

Figure 7.1: Object wrapping.

Figure 7.1 shows how this approach deals with class schema changing program up-
dates. To apply new methods, such as method currentTemp of our small weather station
example (see Section 3.1), we use object wrappings. That is, we create a wrapper (see
Figure 7.1, class TempSensorWrap) which applies the new functionality (in the example
method currrentTemp, Lines 8 – 10) to the program, whereas other methods are delegated
to the original class (here class TempSensor) to preserve the original behavior.

1 TempDisplay {

2 TempSensor ts;

3 ...

4 displayTemp() {

5 ts.averageTemp();

6 ...

7 }

8 }

9 TempDisplay {

10 TempSensor ts;

11 ...

12 displayTemp() {

13 TempSensorWrap tsw = TempSensorWrap(ts);

14 tsw.currentTemp();

15 ...

16 }

17 }

Java HotSwap

Figure 7.2: Caller update.

To use the newly added functionality, the referring program parts must be updated such as
shown in Figure 7.2. That is, the methods (such as method displayTemp) of all referring
classes (here class TempDisplay) must be redefined using Java HotSwap. The reimple-
mentation consists of two parts. First, an instance of the wrapper that introduces the new
functionality (in our case class TempSensorWrap) is created (Line 13). Second, the newly
added method is called (Line 14).

108

7.1 Dynamic Software Updates for Java

We note that the mechanism described above only provides temporary wrappings. In order
to make the wrapping persistent, we combined our approach with interfaces (see Figure 7.3).
The static type of all class and instance fields (such as in Figure 7.3 instance field ts of
class TempDisplay) is changed (before program start) to an interface type (in our example
of type ITempSensor), which enables the fields (such as field ts, Line 2) for late binding.
Thus, it is possible to assign objects different from the original type (in the example of class
TempSensor) to those fields during runtime. The application of program changes itself
also bases on method redefinitions via Java HotSwap and works as depicted down to the
left of Figure 7.3. First, an instance of the wrapper (here of class TempSensorWrap) is
created (Line 14). It takes the original value assigned to the field (here of field ts) to be
updated as input (in our case an instance of TempSensor). Second, the wrapper instance
is assigned to the field (e.g., in the example depicted in Figure 7.3 the runtime type of
field ts switches from TempSensor to TempSensorWrap (Line 14). To call methods not
declared in the interface (such as method currentTemp of class TempSensorWrap), the
object referenced by the updated field (in the example field ts) must be casted to the current
runtime type (Line 16).

1 TempDisplay {

2 ITempSensor ts;

3 ...

4 displayTemp() {

5 ts.averageTemp();

6 ...

7 }

8 }

9 TempDisplay {

10 ITempSensor ts;

11 ...

12 displayTemp() {

13 (ts TempSensor) {
14 ts = TempSensorWrap(ts);

15 }
16 ((TempSensorWrap) ts).currentTemp();

17 ...

18 }

19 }

+averageTemp(): int

<<interface>>
ITempSensor

+averageTemp(): int
+s: Sensor

TempSensor

+averageTemp(): int

<<interface>>
ITempSensor

+averageTemp(): int
+s: Sensor

TempSensor

+currentTemp: float
+averageTemp(): int
+ts: TempSensor
TempSensorWrap

DSU

Figure 7.3: Wrapping of long-living objects.

Even if we demonstrated the practicability of object wrappings in [PKS08], we observed
different problems. One problem the approach comes with is the self-problem, which de-
scribes situations that require to call the wrapper from within the wrapped object [Lie86].
Since Java does not support such kind of delegations, object wrappings fail in such situ-
ations, which influences the approach’s flexibility. Next, the interface approach used to
enable late bindings renders removals of interface methods impossible, which further reduces

109

7 Related Work

the flexibility of the approach. In addition, wrappers cause significant performance penal-
ties [GHJV04]. In [GP09], we measured the performance penalties caused by long wrapping
chains, which raise by up to 50 percent compared to the same program without wrappers.
Nevertheless, our solution was (to our best knowledge) the first approach based on object
wrappings, which offered unanticipated dynamic software updates for Java programs. Other
wrapper-based approaches, such as presented by Truyen et al. [TVJ+01], Kniesel [Kni99],
Pawlak et al. [PDFS01], Hunt and Sitaraman [HS04], Büchi and Weck [BW00], or Bettini et
al. [BCG07], require to predefine the object wrappings (i.e., updates) before program start
and thus offer only anticipated dynamic software updates.

DSU for Parallel High Performance Applications

Kim et al. [KTR11, Kim09] present a DSU approach, which uses the proxy pattern [GHJV04].
That is, referring classes and referred classes do not communicate directly with each other,
but access special proxy classes and let those proxies manage the communication, which
permits to dynamically update the classes behind the proxies. To add or remove methods or
fields, i.e., to change class schemas, they load helper classes which contain the newly added
elements. Those new elements are accessed through generic invoke methods, which are part
of every program class. To keep the invoke methods up-to-date, i.e., to let the invoke methods
refer the newly added elements of the helper classes, they also use Java HotSwap. State
migration between objects of old and new helper classes is carried out by special mapping
methods.

The strength of the approach is its performance, which Kim et al. achieve through uti-
lization of bytecode instructions invokespecial and invokeinterface (note that those
bytecode instructions are optimized by the JIT compiler, which results in proxy access times
comparable to the access times of direct calls). On the contrary, the proxy approach prevents
inheritance hierarchy updates and hinders removals of methods that are part of a proxy,
which contradicts our flexibility criterion.

DUSC

Orso et al. [BCG07] present DUSC (Dynamic Updating through Swapping of Classes),
which, similar to the approach of Kim et al. [KTR11, Kim09], bases on proxy classes. That
is, classes and their instances communicate with each other through proxies, which manage
the communication. The basic elements of DUSC are the implementation classes (which
correspond to the original classes), interface classes (responsible for accessing different
versions of a class), wrapper classes (manage the inter-class communication and trigger the
update), and the state classes (do the state migration job). DUSC allows the developer to

110

7.1 Dynamic Software Updates for Java

add, remove, or change already loaded classes. To change a class, the tool simply swaps the
corresponding implementation class.

Like Kim’s proxy-based DSU approach, DUSC causes only minimal performance drops.
However, it is less flexible than other DSU approaches. DUSC could only update a class if
old and new class version share the same public interface, which renders inheritance changes
and additions/removals of public or protected methods impossible. The only way to change
the public interface of a class with DUSC is to remove the old class version and introduce
the up-to-date class version as an entirely new class, which results in state losses (i.e, all
instances of the old class version would be deleted).

JRebel

The next proxy-based DSU approach is JRebel [Kab11]. It is a Java agent which is loaded
into the JVM at program start. Once loaded, it scans the program’s class path for changed
classes and, if found, loads the up-to-date classes with a new version into the JVM. JRebel
allows the developer to add or remove fields and methods and could be integrated with many
different program architectures.

Even if beneficial in many update scenarios, JRebel fails when it comes to updates that
require inheritance hierarchy changes, which is due to the usage of proxies. Moreover,
JRebel introduces performance penalties of up to 60 percent.

FastSwap

Another proxy-based dynamic software update approach is FastSwap [Ora11a], which is
integral part of Oracle’s WebLogic Server1 (since WebLogic Server version 10.3). FastSwap
supports additions and removals of fields and methods and preserves the state of existing
objects.

Similar to our approach, FastSwap keeps the original class loader and reloads changed
classes with new versions, which enables the approach for fine-grained updates. However,
FastSwap does not support inheritance hierarchy changes and thus offers not the desired
level of flexibility. In addition, the WebLogic Server which provides FastSwap only executes
component-based applications.

OSGi

The Open Services Gateway initiative (OSGi) offers a framework which uses customized
class loaders to dynamically update component-based Java applications [All11]. The frame-
work consists of five layers which are of different importance for dynamic software updates.

1http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

111

http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

7 Related Work

The layers crucial for DSU are the module layer (defines the modularization model), the life
cycle layer (defines how the components are deployed, updated, or undeployed), and the
service layer (constitutes the developer’s entry point for the development and deployment of
components).

OSGi serves all kinds of class schema changes, i.e., it allows the user to update virtually all
parts of a running program in an unanticipated way. However, one issue of the framework is
that component updates cause state losses, which is a big constraint regarding our flexibility
criterion. Next, OSGi causes architecture dependencies, because it requires the applications
that run on top of it to be refactored into components. Furthermore, even small changes
require to replace whole components which may be inefficient.

Javeleon

As the OSGi framework and FastSwap show, components are a good basis for the de-
velopment of dynamic software update approaches, which is something the developers of
Javeleon [Gre10b] realized, too. Javeleon builds up on the NetBeans framework2 and extends
it with flexible dynamic software update capabilities. The core of Javeleon constitutes the
In-Place Proxification mechanism, which basically delegates calls of outdated methods to
their up-to-date counterparts.

Javeleon offers the whole bandwidth of possible class schema changes including inheri-
tance hierarchy updates. It even preserves the program state. Furthermore, Gregersen et al.
claim in [GJ11] that Javeleon comes with a moderate performance overhead of only 15 %.
But, Javeleon needs components to act and thus introduces architecture dependencies. Fur-
thermore, even minimal program changes require to replace whole components. That is,
Javeleon offers only coarse-grained updates.

In October 2011, the developers of Javeleon came out with a separate tool version, which
offers fine-grained dynamic software updates for standalone applications. However, we
could not find any information on whether both tool versions base on the same concepts
and thus could be integrated into one single tool tackling the architecture-dependency issue.
So far, developers have to use the one or the other tool version depending on whether
they want to update component-based applications or standalone applications. That is, the
architecture dependency problem remains. In addition, we used the standalone version
of Javeleon to replay our HyperSQL case study presented in Section 5.1.1 and measured
runtime performance penalties of approximately 80 percent.

2http://netbeans.org/features/platform/index.html

112

http://netbeans.org/features/platform/index.html

7.1 Dynamic Software Updates for Java

Dynamic Update Transactions

Zhang and Huang propose Dynamic Update Transactions (DUT) [ZH07], which make use of
customized class loaders. They use special update classes to process updates and load every
class scheduled for an update with a new customized class loader instance. Method and field
invocations are processed through reflective calls. The state transfer between outdated and
up-to-date objects is performed by state mapping methods which must be applied to every
application class before program start.

The major issue the approach suffers from is performance degeneration, which is caused
by the fact that every method and field must be accessed using Java’s reflection API. Caz-
zola [Caz04] found out that even simple reflective method invocations slow down method
invocations with a factor of up to 6.5 compared to direct method invocations. More complex
reflective calls might cause even higher performance penalties.

Iguana/J

Iguana/J3 is another framework which offers dynamic software updates for Java applica-
tions [RC02]. It was developed by Barry Redmond and bases on the language independent
Iguana reflective programming model [Gow97]. The basic principle of Iguana/J is to use
so called meta objects to enhance standard Java objects with new functionality. Central
elements of the approach are special meta classes and meta protocols. The meta classes
contain the update and the meta protocols are responsible for grouping and managing the
meta classes.

The framework is highly flexible, but it significantly slows down program execution,
which is due to the reflective programming model Iguana/J bases on. The authors state that
the reflective programming model slows down object creations and method invocations by a
factor of about 25.

UpgradeJ

UpgradeJ is an extension to the Java language, which allows the developer to plan and define
dynamic and type-safe class upgrades [BPN08]. The language extension supports three
different kinds of upgrades: a) new class upgrades, b) revision upgrades, and c) evolution
upgrades. The new class upgrades add new classes to the running program. Like Java
HotSwap, revision upgrades offer class schema keeping updates, i.e., they allow the developer
to redefine the method bodies of already loaded classes. The most powerful upgrade form
is the evolution upgrade. It enables program updates, which add fields or methods to the
running program.

3http://www.compeng.dit.ie/staff/bredmond/iguanaj/

113

http://www.compeng.dit.ie/staff/bredmond/iguanaj/

7 Related Work

As previously mentioned, adding fields or methods using UpgradeJ is no problem. But,
the update approach prevents removals of fields and methods, which affects the approach’s
flexibility. Even Tempero et al. [TBNP08] found out that UpgradeJ could not be applied to
all update scenarios they considered.

7.1.2 JVM Patches

As mentioned in Section 2.4, the JVM disallows the developer to reload a class whose schema
has changed and thus forbids flexible dynamic software updates. Therefore, researchers
suggest virtual machine patches that enable to reload classes with changed schemas. In this
section, we will discuss different approaches which build up on JVM modifications.

DCEVM

Würthinger’s Dynamic Code Evolution VM (DCEVM) [Wür11, WBA+10] builds up on
the work of Dmitriev [Dmi01a] and provides the OpenJDK HotSpot VM with extended
dynamic update capabilities. The patch allows the developer to add or remove methods
and fields. It even permits inheritance hierarchy updates. Central part of the DCEVM is a
modified garbage collector, which exchanges outdated class versions with their up-to-date
counterparts, maps the state, and redirects all existing references to the new class versions
and their instances.

The DECVM does not only fulfill our flexibility criterion. It additionally, offers fine-
grained DSU and causes virtually no performance penalties (tested against our HyperSQL
case study). Furthermore, the DECVM is not restricted to specific program architectures.
However, as all JVM patches, it relies on a specific JVM implementation (i.e. the HotSpot
JVM) and thus causes platform dependencies.

JVolve

Subramanian et al. present JVolve [SHM09], an alternative JVM patch also aiming at dynamic
software updates. JVolve extends the Jikes RVM4 (Jikes Research Virtual Machine), which
is a testbed for alternative JVM implementations. Similar to the DCEVM, JVolve consists of
a modified garbage collector that enables to load new versions of an already loaded class.
During class reloading, JVolve generates special transformer classes, which transfer the state
from old to new class versions. The patch allows the developer to add and remove fields and
methods.

4http://jikesrvm.org/

114

http://jikesrvm.org/

7.2 DSU Across Different Languages

JVolve was developed with performance in mind. That is, updates do not slow down the
updated application. The problem with JVolve is, that it does not support inheritance hierarchy
updates. Moreover, it relies on the Jikes RVM and thus causes platform dependencies.

JDrums

The Java Distributed Run-Time Update Management System (JDrums) [RA00] is another
DSU approach, which belongs to the class of JVM patches. It decouples classes and
objects from each other through indirection layers. Because of the indirections, outdated
class versions could be easily replaced by their up-to-date counterparts. The state migration
between old and new class (including their instances) is accomplished by so called conversion
classes.

One major drawback of JDrums is its poor performance, which is caused by the fact that
JDrums disables the JIT compiler and lets programs run in interpreted mode. In addition,
JDrums does not map inherited state (i.e., the state that belongs to superclasses) and thus
comes short regarding our flexibility criterion. As with every other so far considered JVM
patch, JDrums, on the one hand, offers fine-grained dynamic updates and, on the other hand,
causes platform dependencies.

DVM

The next JVM patch was proposed by Malabarba et al. [MPG+00]. It is called Dynamic
Virtual Machine (DVM) and modifies Oracle’s HotSpot VM (version 1.2) for Solaris. The
patch basically consists of two parts. The first part is the dynamic class loader, which
(different from the standard class loaders) permits to replace already loaded classes. The
second part of the patch builds the program logic that maps the state between old and new
class versions (including their instances) and resolves/modifies the dependencies between
updated classes and their callers.

DVM serves all possible kinds of program updates. That is, the patch even permits to
change inheritance hierarchies. Furthermore, DVM enables fine-grained runtime updates
and does not require specific program architectures to act. Unfortunately, the patch prevents
method inlinings and disables the JIT (i.e., programs run in interpreted mode only), which
heavily affects the program execution speed. On top of that, DVM relies on a specific version
of Oracle’s HotSpot VM and thus causes platform dependencies.

7.2 DSU Across Different Languages

Research regarding dynamic software updates does not only target Java and its runtime
environment. In fact, DSU capabilities are in great demand across many different languages.

115

7 Related Work

Within this section, we briefly discuss how dynamic software updates are supported in
languages different from Java.

As we already mentioned in Section 2.2, dynamic type systems provide best conditions for
runtime program updates. In fact, dynamically typed languages such as SmallTalk [GR83],
CLOS [Ste90, GWB91], or Python [Bea09] natively support all possible kinds of dynamic
software updates. Ruby [TFH05] only forbids inheritance hierarchy changes. All that update
flexibility comes free of platform and architecture dependencies and at a fine level of update
granularity. However, normally Java programs execute faster than the same programs based
on dynamic languages. According to Fulgham and Gouy [FG11], Java is 10 times faster than
SmallTalk and approximately 41 times faster than Python or Ruby. Thus, Java may be the
better choice in performance critical application scenarios.

Whereas, dynamic languages come with build in support for dynamic software updates,
statically typed languages C and C++ do not. Neamtiu et al. developed Ginseng [NHSO06] to
provide C with dynamic update capabilities. Ginseng builds up on function indirections and
type wrappers. It allows the developer to add and remove fields and methods, but introduces
performance penalties of up to 32 % compared to the same non-updatable program.

Another DSU approach for the C programming language is proposed by Makris et
al. [Mak09, MB09]. It is called UpStare and, similar to Ginseng, uses pointer indirec-
tions to enable runtime program updates. UpStare supports additions and removals of fields
and methods. Makris et al. evaluated how UpStare affects the system’s execution speed and
measured performance penalties of at least 30 percent.

Hjálmtÿsson and Gray propose Dynamic C++ Classes [HG98] to overcome the limitations
regarding dynamic software updates in C++. The approach uses proxies and enables additions
and removals of private fields and methods. Additions or removals of public members are not
possible, because the proxy interfaces are immutable. Moreover, Hjálmtÿsson’s and Gray’s
solution causes performance penalties of up to 4872 % regarding object creation. Method
invocations come with an overhead of up to 611 percent.

Dynamically Evolvable C++ Classes [SKNCN06] is another DSU approach for the C++
language. Central to this approach are smart pointers (which could be redirected to new
class versions) and state transformation functions. Dynamically Evolvable C++ Classes
permit additions and removals of fields and methods. Inheritance hierarchy updates are not
supported. Object creation times in the presence of this approach are increased by up to 80
percent. Furthermore, method invocations using smart pointers cause significantly longer
access times than direct method invocations.

Edit-and-Continue5 is a feature of Microsoft’s .NET runtime environment, i.e., the Com-
mon Language Runtime (CLR). Edit-and-Continue offers the same DSU capabilities as
Java HotSwap, i.e., it allows developers to redefine method bodies. Its usage was origi-

5http://msdn.microsoft.com/en-us/library/bcew296c%28v=vs.80%29.aspx

116

http://msdn.microsoft.com/en-us/library/bcew296c%28v=vs.80%29.aspx

7.2 DSU Across Different Languages

DSU Approach Flexibility Performance Plat. Indep. Arch. Indep. Fine Gran.

JAVADAPTOR

L
an

gu
ag

e
L

ev
el

Object Wrapping [PKS08] # #

Kim et al. [Kim09] #

DUT [ZH07] #

Iguana/J [RC02] #

UpgradeJ [BPN08] # –

DUSC [ORH02] #

JRebel [Kab11] # #

OSGi [All11] # # #

FastSwap [Ora11a] # #

Javeleon (NetBeans)
[Gre10b]

 # #

Javeleon (Standalone) # #

JV
M

Pa
tc

he
s

DECVM [Wür11] #

JVolve [SHM09] # #

JDrums [RA00] # # #

DVM [MPG+00] # #

O
th

er
L

an
gu

ag
es

SmallTalk [GR83] #

CLOS [Ste90, GWB91] –

Python [Bea09] #

Ruby [TFH05] # #

Ginseng [NHSO06] #

UpStare [Mak09, MB09] #

Dyn. C++ Classes [HG98] # #

Dynamically Evolvable C++
Classes [SKNCN06]

Edit-and-Continue [EF05] # #

Table 7.1: Comparison: JAVADAPTOR vs. related work (based on our evaluation criteria).
Meaning of the symbols: = criterion fulfilled, # = criterion not fulfilled, – = no
information available.

117

7 Related Work

nally restricted to the .NET version of C++. In 2005 Eaddy and Feiner proposed a general
Edit-and-Continue approach [EF05], which enables method body redefinitions across all pro-
gramming languages provided by the .NET platform. However, even if meanwhile language
independent, Edit-and-Continue only works properly on Windows platforms.

7.3 Summary

Within this chapter, we gave an overview of other work done in our field of research and
compared the related work with JAVADAPTOR on the basis of our evaluation criteria, i.e.,
update flexibility, performance, platform independence, architecture independence, and
update granularity. We mainly focussed on DSU approaches for Java, because JAVADAPTOR

targets Java, too. However, we even considered DSU for languages different from Java, i.e.,
C, C++, SmallTalk, Python, Ruby, and CLOS. An overview of the related work including
their strengths and weaknesses regarding our evaluation criteria can be found in Table 7.1.

What we have learned from our studies, different from JAVADAPTOR, none of the related
DSU approaches fulfills all evaluation criterions, which underpins the novelty, originality,
and benefits of our solution.

118

8 Summary and Concluding Remarks

With this chapter, we aim to recall and sum up the central parts and contributions of the
presented work and draw conclusions.

8.1 Summary

Chapter 2. In Chapter 2, we provided background information on the field of research,
i.e., dynamic software updates. We introduced basic terms and definitions and detailed why
dynamic software updates on the basis of statically typed languages are challenging. In
addition, we described the internals of Java’s runtime environment (i.e., the Java Virtual
Machine) and detailed how it supports and restricts dynamic software updates.

Chapter 3. Within Chapter 3, we presented the conceptual core of JAVADAPTOR. We
described how JAVADAPTOR integrates with the runtime environment of Java, i.e., with the
Java Platform Debugger Architecture of the JVM. In addition, we detailed how our tool
combines class reloadings, Java HotSwap, containers, and proxies to hit the targeted high
level of update flexibility. We further gave explanations on JAVADAPTOR’s state mapping
mechanisms. Having described the core concepts of JAVADAPTOR, we exemplified on the
basis of inheritance hierarchy changes and nested class updates why the concepts cover even
complex update scenarios.

Chapter 4. Chapter 4 details the implementation of JAVADAPTOR. The main purposes of
revealing the implementational details of JAVADAPTOR were to help developers to reproduce
our solution and to impart the knowledge required to apply our approach to languages
different from Java. We first described JAVADAPTOR from the users point of view. Then,
we went through every part of JAVADAPTOR’s workflow and detailed its implementation
including possible pitfalls.

Chapter 5. Our vision was the development of a highly flexible, performant, platform
independent, architecture independent, and fine-grained approach for dynamic software
updates. In Chapter 5, we evaluated whether JAVADAPTOR meets the stated goals. We
demonstrated the flexibility and fine update granularity of our tool on the basis of three

119

8 Summary and Concluding Remarks

different case studies, i.e., HyperSQL, Snake, and the Refactorings case study. Furthermore,
we measured the runtime performance. In a nutshell, solely our proxy concept to avoid
schema changes of referring classes introduces slight performance penalties. The runtime
performance remains the same even after many updates. We additionally evaluated the
update speed of our current JAVADAPTOR version and found that it could be improved, but
is sufficient in many different scenarios. Moreover, we successfully applied JAVADAPTOR to
all publicly available standard JVM’s and thus were able to demonstrate the tools platform
independence. Next, we gave reasons for why JAVADAPTOR is architecture independent.
Even if not central part of our contribution, we last but not least measured the memory
consumption of JAVADAPTOR after many updates and found the footprint acceptable.

Chapter 6. In Chapter 6, we summarized ongoing and future work to improve JAVADAP-
TOR. The chapter consists of three different parts. Within the first part of Chapter 6, we
detailed how we are going to improve the update speed of JAVADAPTOR and presented first
benchmark results showing significant improvements in this regard. The second part of the
chapter consists of descriptions on tool enhancements, which aim at consistent program
updates. We detailed how we are going to support thread-safe updates, prevent poten-
tial state losses, handle binary-incompatible updates, and provide full reflection support.
Within part three of Chapter 6, we discussed long-term objectives such as our plans to apply
JAVADAPTOR to languages different from Java.

Chapter 7. Within Chapter 7, we discussed the related work and reviewed it with respect
to our evaluation criteria. Unlike JAVADAPTOR, none of the discussed approaches fulfills all
evaluation criterions, which underpins the novelty, originality, and benefits of our solution.

8.2 Contributions

The contributions of the presented work are manifold. Primarily, we aimed at the develop-
ment of concepts that fulfill the five criterions justified in Chapter 1, i.e., at concepts for
highly flexible, performant, platform independent, architecture independent, and fine-grained
dynamic software updates for Java. Besides, we contributed a tool which implements our
concepts. Using the tool, we were able to demonstrated the practicability of our solution,
and could substantiate the fulfillment of the thesis goals. In the following, we list our
contributions in detail.

Goals at Design Level. We developed novel concepts that provide Java with highly flexi-
ble, performant, platform independent, architecture independent, and fine-grained dynamic
update capabilities:

120

8.2 Contributions

• We hit the targeted high level of update flexibility through combining schema changing
class reloadings with caller-side updates on the basis of Java HotSwap, containers, and
proxies.

• JAVADAPTOR fulfills the performance criterion, because we designed the containers
and proxies in such a way that they introduce only few indirections and thus execute
fast.

• We achieved platform independence, because we established most of our concepts
at language level. JAVADAPTOR only requires Java HotSwap to be provided by the
targeted JVM, which is fulfilled by all major standard JVMs.

• We fulfilled the architecture independence criterion, because neither our container nor
our proxy approach requires specific program architectures to act.

• Our approach performs fine-grained program updates. It only changes the program
parts (i.e., the classes) scheduled for an update. In case of schema changing updates of
superclasses, we must replace all subclasses in addition.

Tool Support. We fully implemented the presented concepts of JAVADAPTOR:

• We show that the described concepts are implementable.

• We provide our implementation as an easy to use eclipse plugin. Doing so, developers
can take advantage of unrestricted dynamic software updates for Java applications.

• We detailed our implementation. The description may help developers to reproduce
our solution and imparts the knowledge required to apply the solution to languages
different from Java.

Case Studies. We applied JAVADAPTOR to three different non-trivial case studies:

• With HyperSQL and Snake, we demonstrated the practicability of JAVADAPTOR by
two complementary real-world examples. The HyperSQL case study confirms the
usefulness of JAVADAPTOR with respect to maintenance tasks, while the Snake case
study reveals the tool’s benefits during development.

• We showed the general applicability of JAVADAPTOR with the help of our Refactoring
case study.

121

8 Summary and Concluding Remarks

Empirically Goals. We substantiated that JAVADAPTOR fulfills the thesis goals:

• We demonstrated the flexibility of JAVADAPTOR on the basis of our HyperSQL, Snake,
and Refactoring case study. Because the case studies cover many different kinds of
dynamic software updates, chances are high that JAVADAPTOR performs well when it
must update applications different from the ones subject to our studies.

• We confirmed that JAVADAPTOR is performant. We dynamically updated Hyper-
SQL and could not measure any performance overhead. We further created micro
benchmarks and measured the performance of our containers and proxies. To sum
up, containers do not decrease program performance, while proxies cause only slight
performance penalties. Moreover, we measured the update speed of two different
JAVADAPTOR versions, i.e., with and without lazy state mappings. We found that
the version based on lazy state mappings updates programs quickly, while the update
speed of the other version is not outstanding high but sufficient in many cases.

• We demonstrated JAVADAPTOR’s platform independence. We successfully applied
JAVADAPTOR to all major standard JVMs without any modification.

• We sketched why JAVADAPTOR is architecture independent. On the one hand, we
successfully updated programs with different architectures. On the other hand, we
gave reasons why our container and proxy approaches do not rely on specific program
architectures.

• We confirmed that JAVADAPTOR enables fine-grained dynamic software updates on
the basis of our case studies. In all cases, the tool solely updated the program parts
that must be really updated, while it kept the remaining program parts untouched.

8.3 Conclusion and Outlook

Dynamic software updates are a often requested approach to update applications while
improving the user experience and avoiding down times. Furthermore, DSU support software
developers during development, because they do not need to restart their applications to test
the changed program parts. Even if in great demand, particularly statically typed languages
lack extensive dynamic update capabilities. Therefore, there is a large body of research on
dynamic software updates for statically typed languages. But so far, existing approaches
have shortcomings either in terms of update flexibility, performance, platform independence,
architecture independence, and/or update granularity. With JAVADAPTOR, we have shown
that dynamic software updates must not come with the mentioned restrictions. Conceptually,
JAVADAPTOR combines schema changing class replacements with reference updates based

122

8.3 Conclusion and Outlook

on Java HotSwap, containers, and proxies. We detailed the concepts of JAVADAPTOR and
their implementation. In addition, we demonstrated the practicability of JAVADAPTOR within
different non-trivial case studies and substantiated that the tool fulfills the thesis goals.

With JAVADAPTOR, we improved the state of the art regarding dynamic software updates.
Nevertheless, there is still space for enhancements and optimizations. As we detailed in
Chapter 6, our short-term objectives are improvements regarding the update speed, improved
deadlock and state-loss prevention, and full support for binary-incompatible updates and
reflective calls. We further aim to apply our solution to languages different from Java.
However, our big goal is to provide a JAVADAPTOR version, which fully ensures program
consistency, is useful in practice, and reliably applies updates and thus once again improves
the state of the art. All in all, we feel confident that the here presented work builds a strong
base to meet the big goal.

123

Bibliography

[All11] The OSGi Alliance. OSGi Service Platform Core Specification, Decem-
ber 2011. http://www.osgi.org/Download/File?url=/download/

r4v42/r4.core.pdf.

[BAM+09] R. Bazzi, A., K. Makris, P. Nayeri, and J. Shen. Dynamic Software Updates:
the State Mapping Problem. In Proceedings of the International Workshop on
Hot Topics in Software Upgrades, pages 7:1–7:2. ACM, 2009.

[BCG07] L. Bettini, S. Capecchi, and E. Giachino. Featherweight Wrap Java. In
Proceedings of the Symposium on Applied computing, pages 1094 – 1100.
ACM, 2007.

[Bea09] D.M. Beazley. Python Essential Reference. Addison-Wesley, 4. edition, 2009.

[Bia06] R. P. Bialek. Dynamic Updates of Existing Java Applications. PhD thesis,
University of Copenhagen, 2006.

[BMZ+05] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a Taxon-
omy of Software Change. Journal of Software Maintenance and Evolution:
Research and Practice, 17(5):309–332, 2005.

[BPN08] G. Bierman, M. Parkinson, and J. Noble. UpgradeJ: Incremental Typechecking
for Class Upgrades. In Proceedings of the European Conference on Object-
Oriented Programming, pages 235 – 259. Springer, 2008.

[BW00] M. Büchi and W. Weck. Generic Wrappers. In Proceedings of the European
Conference on Object-Oriented Programming, pages 201 – 225. Springer,
2000.

[Caz04] W. Cazzola. SmartReflection: Efficient Introspection in Java. Journal of
Object Technology, 3(11):117–132, 2004.

[Chi00] S. Chiba. Load-Time Structural Reflection in Java. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming, pages 313–336. Springer,
2000.

125

http://www.osgi.org/Download/File?url=/download/r4v42/r4.core.pdf
http://www.osgi.org/Download/File?url=/download/r4v42/r4.core.pdf

BIBLIOGRAPHY

[CN03] S. Chiba and M. Nishizawa. An Easy-to-Use Toolkit for Efficient Java Byte-
code Translators. In Proceedings of the International Conference on Genera-
tive Programming and Component Engineering, pages 364 – 376. Springer,
2003.

[DJ06] D. Dig and R. Johnson. How do APIs Evolve? A Story of Refactoring. Journal
of Software Maintenance and Evolution: Research and Practice, 18:83–107,
2006.

[Dmi01a] M. Dmitriev. Safe Class and Data Evolution in Large and Long-Lived Java
Applications. PhD thesis, University of Glasgow, 2001.

[Dmi01b] M. Dmitriev. Towards flexible and safe Technology for Runtime Evolution of
Java Language Applications. In Proceedings of the Workshop on Engineering
Complex Object-Oriented Systems for Evolution, pages 1 – 7, 2001.

[EF05] M. Eaddy and S. Feiner. Multi-Language Edit-and-Continue for the Masses.
Technical Report CUCS-015-05, Columbia University, 2005. http://www.
cs.columbia.edu/techreports/cucs-015-05.pdf.

[EVDB05] P. Ebraert, Y. Vandewoude, T. D’Hondt, and Y. Berbers. Pitfalls in Unan-
ticipated Dynamic Software Evolution. In Proceedings of the Workshop on
Reflection, AOP and Meta-Data for Software Evolution, pages 41–49. Univer-
sity of Magdeburg, 2005.

[Fab76] R. S. Fabry. How to Design a System in which Modules can be hanged on the
Fly. In Proceedings of the International Conference on Software Engineering,
pages 470–476. IEEE, 1976.

[FG11] B. Fulgham and I. Gouy. The Computer Language Benchmarks Game, De-
cember 2011. http://shootout.alioth.debian.org/.

[Fow06] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 2006.

[GBE07] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous Java Per-
formance Evaluation. In Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages
57–76. ACM, 2007.

[GBI+10] D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P. Clements, and
P. Merson. Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2010.

126

http://www.cs.columbia.edu/techreports/cucs-015-05.pdf
http://www.cs.columbia.edu/techreports/cucs-015-05.pdf
http://shootout.alioth.debian.org/

BIBLIOGRAPHY

[GHJV04] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstrac-
tion and Reuse of Object-Oriented Design. Addison-Wesley, 2004.

[GJ11] A. R. Gregersen and B. N. Jørgensen. Run-time Phenomena in Dynamic
Software Updating: Causes and Effects. In Proceedings of the Workshop on
Principles of Software Evolution and ERCIM Workshop on Software Evolution,
pages 6–15. ACM, 2011.

[GJB96] D. Gupta, P. Jalote, and G. Barua. A Formal Framework for On-line Software
Version Change. IEEE Transactions on Software Engineering, 22(2):120–131,
1996.

[GJSB05] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification,
The (3rd Edition). Addison-Wesley, 2005.

[GK06] R. Griffith and G. Kaiser. A Runtime Adaptation Framework for Native C and
Bytecode Applications. In Proceedings of the International Conference on
Autonomic Computing, pages 93–104. IEEE, 2006.

[Gow97] B. Gowing. A Reflective Programming Model and Language for Dynamically
Modifying Compiled Software. PhD thesis, University of Dublin, 1997.

[GP09] S. Götz and M. Pukall. On Performance of Delegation in Java. In Proceedings
of the International Workshop on Hot Topics in Software Upgrades, pages 1–6.
ACM, 2009.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: the Language and its Implementa-
tion. Addison-Wesley, 1983.

[Gre10a] A. Grebhahn. JavAdaptor - vererbungshierarchiebeeinflussende Programmän-
derungen zur Laufzeit. Bachelor thesis, University of Magdeburg, 2010.

[Gre10b] A. R. Gregersen. Extending Netbeans with Dynamic Update of Active Modules.
PhD thesis, University of Southern Denmark, 2010.

[GSA04] J. Gustavsson, T. Staijen, and U. Assmann. Runtime Evolution as an Aspect.
In Proceedings of the Workshop on Foundations of Unanticipated Software
Evolution, pages 1–10. Elsevier, 2004.

[GWB91] R. P. Gabriel, J. L. White, and D. G. Bobrow. CLOS: Integrating Object-
Oriented and Functional Programming. Communications of the ACM, 34:29–
38, 1991.

127

BIBLIOGRAPHY

[HG98] G. Hjálmtÿsson and R. Gray. Dynamic C++ Classes – A Lightweight Mecha-
nism to Update Code in a Running Program. In Proceedings of the USENIX
Annual Technical Conference, pages 65–76. USENIX Association, 1998.

[HN05] M. Hicks and S. Nettles. Dynamic Software Updating. ACM Transactions on
Programming Languages and Systems, 27(6):1049–1096, 2005.

[HS04] J. Hunt and M. Sitaraman. Enhancements: Enabling Flexible Feature and
Implementation Selection. In Proceedings of the International Conference on
Software Reuse, pages 86 – 100. Springer, 2004.

[HSHF11] C. M. Hayden, E K. Smith, M. Hicks, and J. S. Foster. State Transfer for
Clear and Efficient Runtime Upgrades. In Proceedings of the Workshop on
Hot Topics in Software Upgrades, pages 1–6. IEEE, 2011.

[Kab11] J. Kabanov. JRebel Tool Demo. Electronic Notes in Theoretical Computer
Science, 264:51–57, 2011.

[KB02] F. Karablieh and R. A. Bazzi. Heterogeneous Checkpointing for Multithreaded
Applications. In Proceedings of the Symposium on Reliable Distributed Sys-
tems, pages 140–149. IEEE, 2002.

[Kim09] D. K. Kim. Applying Dynamic Software Updates to Computationally-Intensive
Applications. PhD thesis, Virginia Polytechnic Institute and State University,
2009.

[KM90] J. Kramer and J. Magee. The Evolving Philosophers Problem: Dy-
namic Change Management. IEEE Transactions on Software Engineering,
16(11):1293 –1306, 1990.

[Kni99] G. Kniesel. Type-Safe Delegation for Run-Time Component Adaptation. In
Proceedings of the European Conference on Object-Oriented Programming,
pages 351–366. Springer, 1999.

[KTR11] D. K. Kim, E. Tilevich, and C. J. Ribbens. Dynamic software updates for par-
allel high performance applications. Concurrency and Computation: Practice
and Experience, 23:415–434, 2011.

[LB98] S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine.
In Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 36 – 44. ACM, 1998.

128

BIBLIOGRAPHY

[Lia99] S. Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, 1999.

[Lie86] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior
in Object-Oriented Systems. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 214–223.
ACM, 1986.

[LY99] T. Lindholm and F. Yellin. The Java Virtual Machine Specification – Second
Edition. Prentice Hall, 1999.

[Mak09] K. Makris. Whole-Program Dynamic Software Updating. PhD thesis, Arizona
State University, 2009.

[MB09] K. Makris and R. A. Bazzi. Immediate Multi-Threaded Dynamic Software
Updates Using Stack Reconstruction. In Proceedings of the USENIX Annual
Technical Conference, pages 1–14. USENIX Association, 2009.

[MBJ06] Y. Murarka, U. Bellur, and R. K. Joshi. Safety Analysis for Dynamic Update
of Object Oriented Programs. In Proceedings of the Asia Pacific Software
Engineering Conference, pages 225–232. IEEE, 2006.

[MLH+09] B. Morin, T. Ledoux, M.B. Hassine, F. Chauvel, O. Barais, and J.-M. Jezequel.
Unifying Runtime Adaptation and Design Evolution. In Proceedings of the
International Conference on Computer and Information Technology, pages
104–109. IEEE, 2009.

[MPG+00] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime Sup-
port for Type-safe dynamic Java Classes. In Proceedings of the European
Conference on Object-Oriented Programming, pages 337 – 361. Springer,
2000.

[NHSO06] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical Dynamic Software
Updating for C. In Proceedings of the Conference on Programming Language
Design and Implementation, pages 72–83. ACM, 2006.

[OJ90] W. F. Opdyke and R. E. Johnson. Refactoring: An Aid in Designing Appli-
cation Frameworks and Evolving Object-Oriented Systems. In Proceedings
of the Symposium on Object-Oriented Programming Emphasizing Practical
Applications, pages 145 – 161. ACM, 1990.

129

BIBLIOGRAPHY

[Ora11a] Oracle. BEA WebLogic Server Using FastSwap to Minimize Redeployment,
December 2011. http://download.oracle.com/docs/cd/E13222_

01/wls/essex/TechPreview/pdf/FastSwap.pdf.

[Ora11b] Oracle. Java Platform Debugger Architecture, December 2011. http://

download.oracle.com/javase/6/docs/technotes/guides/jpda/.

[Ora11c] Oracle. Java Virtual Machine Tool Interface Version 1.2, December
2011. http://download.oracle.com/javase/6/docs/platform/

jvmti/jvmti.html.

[ORH02] A. Orso, A. Rao, and M. Harrold. A Technique for Dynamic Updating of
Java Software. In Proceedings of the International Conference on Software
Maintenance, pages 649–658. IEEE, 2002.

[Ori04] M. Oriol. An Approach to the Dynamic Evolution of Software Systems. PhD
thesis, University of Geneva, 2004.

[PDFS01] R. Pawlak, L. Duchien, G. Florin, and L. Seinturier. Dynamic Wrappers:
Handling the Composition Issue with JAC. In Proceedings of the Conference
on Technology of Object-Oriented Languages and Systems, pages 56–65. IEEE,
2001.

[PG06] S. C. Previtali and T. R. Gross. Dynamic Updating of Software Systems
Based on Aspects. In Proceedings of the International Conference on Software
Maintenance, pages 83–92. IEEE, 2006.

[PGS+11] M. Pukall, A. Grebhahn, R. Schröter, C. Kästner, W. Cazzola, and S. Götz.
JavAdaptor: Unrestricted Dynamic Software Updates for Java. In Proceedings
of the International Conference on Software Engineering, pages 989–991.
ACM, 2011.

[PKC+12] M. Pukall, C. Kästner, W. Cazzola, S. Götz, A. Grebhahn, R. Schröter, and
G. Saake. JavAdaptor – Flexible Runtime Updates of Java Applications.
Software: Practice and Experience, 2012. early view.

[PKS08] M. Pukall, C. Kästner, and G. Saake. Towards Unanticipated Runtime Adap-
tation of Java Applications. In Proceedings of the Asia-Pacific Software
Engineering Conference, pages 85–92. IEEE, 2008.

[Puk08] M. Pukall. Object Roles and Runtime Adaptation in Java. In Proceedings
of the Workshop on Reflection, AOP and Meta-Data for Software Evolution,
pages 33 – 37. University of Madeburg, 2008.

130

http://download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.pdf
http://download.oracle.com/docs/cd/E13222_01/wls/essex/TechPreview/pdf/FastSwap.pdf
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html

BIBLIOGRAPHY

[RA00] T. Ritzau and J. Andersson. Dynamic Deployment of Java Applications. In
Proceedings of Java for Embedded Systems Workshop, pages 1–9, 2000.

[RC02] B. Redmond and V. Cahill. Supporting Unanticipated Dynamic Adaptation
of Application Behaviour. In Proceedings of the European Conference on
Object-Oriented Programming, pages 205–230. Springer, 2002.

[Sch10] R. Schröter. JavAdaptor - Programmänderungen zur Laufzeit in Bezug auf this
Referenzen und Verschachtelte Klassen in Java. Bachelor thesis, University of
Magdeburg, 2010.

[SHB+05] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis:
Safe and Flexible Dynamic Software Updating. In Proceedings of the ACM
Conference on Principles of Programming Languages, pages 183–194. ACM,
2005.

[SHM09] S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic Software Updates:
A VM-Centric Approach. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 1–12. ACM, 2009.

[SKNCN06] J. Stanek, S. Kothari, T. N. Nguyen, and C. Cruz-Neira. Online Software
Maintenance for Mission-Critical Systems. In Proceedings of the International
Conference on Software Maintenance, pages 93–103. IEEE, 2006.

[SPT04] A. Di Stefano, G. Pappalardo, and E. Tramontana. An Infrastructure for
Runtime Evolution of Software Systems. In Proceedings of the Symposium on
Computers and Communications, pages 1129–1135. IEEE, 2004.

[SSH+05] J. Shen, X. Sun, G. Huang, W. Jiao, Y. Sun, and H. Mei. Towards a Unified
Formal Model for Supporting Mechanisms of Dynamic Component Update.
In Proceedings of the European Software Engineering Conference held jointly
with the International Symposium on Foundations of Software Engineering,
pages 80–89. ACM, 2005.

[Ste90] G. L. Steele. Common LISP: The Language. Digital Press, 2. edition, 1990.

[TBNP08] E. Tempero, G. Bierman, J. Noble, and M. Parkinson. From Java to UpgradeJ:
an empirical study. In Proceedings of the International Workshop on Hot
Topics in Software Upgrades, pages 1–5. ACM, 2008.

[TFH05] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The Pragmatic
Programmers’ Guide. Pragmatic Bookshelf, 2. edition, 2005.

131

BIBLIOGRAPHY

[TSCI01] M. Tatsubori, T Sasaki, S. Chiba, and K. Itano. A Bytecode Translator for Dis-
tributed Execution of "Legacy" Java Software. In Proceedings of the European
Conference on Object-Oriented Programming, pages 236–255. Springer, 2001.

[TVJ+01] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. Nørregaard Jørgensen.
Dynamic and Selective Combination of Extensions in Component-Based Ap-
plications. In Proceedings of the International Conference on Software Engi-
neering, pages 233–242. IEEE, 2001.

[VEBD05] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Influence of
type systems on dynamic software evolution. Technical Report CW 415,
Katholieke Universiteit Leuven, 2005. http://www.cs.kuleuven.be/

publicaties/rapporten/cw/CW415.pdf.

[VEBD07] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Tranquility: A Low
Disruptive Alternative to Quiescence for Ensuring Safe Dynamic Updates.
IEEE Transactions on Software Engineering, 33(12):856 –868, 2007.

[Ven00] B. Venners. Inside the Java 2 Virtual Machine. Computing McGraw-Hill.,
2000.

[WBA+10] T. Würthinger, W. Binder, Danilo Ansaloni, P. Moret, and H. Mössenböck.
Improving Aspect-Oriented Programming with Dynamic Code Evolution in an
Enhanced Java Virtual Machine. In Proceedings of the Workshop on Reflection,
AOP and Meta-Data for Software Evolution, pages 25–29. ACM, 2010.

[Wür11] T. Würthinger. Dynamic Code Evolution for Java. PhD thesis, Johannes Kepler
University Linz, 2011.

[WWS10] T. Würthinger, C. Wimmer, and L. Stadler. Dynamic Code Evolution for Java.
In Proceedings of the International Conference on the Principles and Practice
of Programming in Java, pages 10–19. ACM, 2010.

[ZH06] S. Zhang and L. Huang. Formalizing Class Dynamic Software Updating.
In Proceedings of the International Conference on Quality Software, pages
403–409. IEEE, 2006.

[ZH07] S. Zhang and L. Huang. Type-Safe Dynamic Update Transaction. In Proceed-
ings of the Computer Software and Applications Conference, pages 335–340.
IEEE, 2007.

132

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW415.pdf
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW415.pdf

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Exploratory Focus
	Goals
	Flexibility
	Performance
	Platform Independence
	Architecture Independence
	Update Granularity
	Other Criteria

	Contributions
	Thesis Structure

	Dynamic Software Updates
	Terms and Definition
	Dynamic Software Updates vs. Type System
	The Java Virtual Machine
	Architecture
	Class Loading

	Dynamic Software Updates and the JVM
	Java HotSwap
	Java Platform Debugger Architecture

	Summary

	Concepts of JavAdaptor
	A Running Example: Weather Station
	Architectural Design of JavAdaptor
	Updates without Affecting the Class Schema
	Class Reloading
	Reference Updates
	Caller-Side Detection
	State Mapping
	Class References and References to Local Variables
	References to Long-Living Objects

	Concurrent Updates of Multiple Classes
	Special Cases
	Inheritance Hierarchies
	Nested Classes

	Summary

	Implementation
	Tool Description
	Applied Libraries
	Overview
	Application Preparation
	Class Update Preparation
	Identification of Changed Classes
	Identification of Classes with Changed Schemas
	Class Reference Identification

	Class Update Proceeding
	Declaration Updates
	Container Creation Phase
	Proxy Creation Phase
	Method Body Definition Updates
	Class Reloading and HotSwapping

	State Mapping Preparation
	State Mapping Proceeding
	State Mapping
	State Update of Referring Program Parts

	Summary

	Evaluation
	Case Studies
	HyperSQL
	Snake
	Refactorings

	Performance
	Statistical Significance
	Execution Speed
	Update Speed

	Platform Independence
	Architecture Independence
	Memory Consumption
	Summary

	Enhancements and Optimizations
	Update-Speed Improvements
	Solutions Toward Consistent Program Updates
	Thread-Safe Updates
	State-Loss Prevention
	Handling of Binary-Incompatible Updates
	Reflection Support

	Bridging the Gap between Practicability and Consistency
	Application to other Languages
	Discussion
	Summary

	Related Work
	Dynamic Software Updates for Java
	Language Level
	JVM Patches

	DSU Across Different Languages
	Summary

	Summary and Concluding Remarks
	Summary
	Contributions
	Conclusion and Outlook

	Bibliography

