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Abstract: However, reliability of weather and precipitation forecasting has
been signi�cantly enhanced recently, there is still need for further improve-
ments. In particular, rain formation in non�glaciated clouds remains a mys-
tery. The physical process underlying collision-induced growth of rain droplets
in a turbulent �ow is still poorly understood.
To understand this process, experiments in wind tunnels reproducing key me-
teorological conditions are essential, for instance for a careful investigation of
droplet-droplet interactions typical for turbulent cloud �ows. Such measure-
ments in wind tunnels are still rare in the literature.
In the present work it is detailed how cumulus clouds are modeled through
their most crucial properties in a two�phase wind tunnel. Di�erent con�gu-
rations are created in order to systematically vary turbulence properties and
droplet diameter distributions. It is �nally shown that the crucial �ow prop-
erties are in the required order of magnitude and match those of the cumulus
clouds. Therefore, the investigation of droplet interactions in an environment
similar to that of a cumulus cloud is possible.
Since a careful and complex experimental characterization of the air �ow and
the interacting water spray was necessary, the applied optical, non-intrusive
measurement techniques had to be adapted or improved through modi�cation
of the evaluation software. In this way, the complete experimental charac-
terization of the continuous and disperse phases interacting with each other
has been realized. Results are freely available in a database accessible at the
following link: http://www.ovgu.de/isut/lss/metstroem. The data may
be used for validation purposes of numerical simulations.
Finally, concentrating on the growth gap associated to warm rain initiation,
a method for the quanti�cations of droplet collision rates compared with the-
oretical predictions was developed. Measurements described in the present
work show that the measured collision rates are higher than predicted by the-
ory, typically by a factor of 2 to 6. These results support the idea that model
modi�cations are needed to estimate correctly droplet collision probabilities
in turbulent �ows.

Keywords: meteorological �ow, two-phase wind tunnel, cumulus cloud,
droplet size distribution, droplet number density, collision rate.
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Kurzfassung: Obwohl die Zuverlässigkeit der Wetter- und Niederschlags-
vorhersage sich in letzter Zeit bemerkenswert verbessert hat, es sind noch
weitere Verbesserungen notwendig. Insbesondere die Regenbildung in nicht
vereisten Wolken bleibt ein Rätsel. Die physikalischen Prozesse, die dem kol-
lisionsverursachten Wachstum von Tropfen in einer turbulenten Strömung zu-
grunde liegen, sind bis jetzt unzulänglich verstanden.
Um diese Vorgänge zu verstehen, sind zuverlässige Messdaten unentbehrlich.
Dafür eignen sich vor allem Experimente in Windkanälen, in denen die wichtig-
sten meteorologischen Bedingungen reproduziert werden und somit ungeklärte
Phänomene detailliert untersucht werden können, wie z.B. eine sorgfältige
Untersuchung der Tropfen-Tropfen Wechselwirkungen, wie sie für turbulente
Wolkenströmungen charakteristisch sind. Solche Windkanaluntersuchungen
lassen sich immer noch nur sehr vereinzelt in der wissenschaftlichen Literatur
�nden.
In der vorliegenden Arbeit wird ausführlich darauf eingegangen, wie Kumu-
luswolken und ihre wesentlichsten Eigenschaften in einem Zweiphasenwind-
kanal modelliert werden können. Unterschiedliche Messkon�gurationen wur-
den aufgebaut, um die Turbulenzeigenschaften und die Tropfendurchmesser-
Verteilungsfunktionen systematisch zu variieren. Darüber hinaus wird gezeigt,
dass die entscheidenden Strömungseigenschaften den erforderlichen Gröÿenord-
nungen der Kumuluswolken angepasst sind. Folglich sind Untersuchungen von
Tropfeninteraktionen in einer den Kumuluswolken vergleichbaren Umgebung
möglich.
Die sorgfältige experimentelle Untersuchung einer derart komplexen Luftströ-
mung und des wechselwirkenden Wassersprays stellt eine auÿerordentliche
Herausforderung an die Messmethodik dar. Insofern war es erforderlich, die
verwendeten optischen, berührungslosen Messtechniken an diese Bedingungen
anzupassen und zusätzlich Verbesserungen durch Änderung der Auswerte-
software vorzunehmen. Auf diese Weise konnte die komplette experimentelle
Charakterisierung der aufeinander wirkenden kontinuierlichen und dispersen
Phasen realisiert werden. Die Ergebnisse wurden in eine Datenbank über-
tragen und sind in dieser Form unter der Webadresse http://www.ovgu.de/
isut/lss/metstroem frei verfügbar. Die Daten können unter anderem für die
Validierung numerischer Simulationen verwendet werden.
Abschlieÿend wird auf die Verständnislücke beim Tropfenwachstum verbun-
den mit �warmer Regenbildung� eingegangen. Dazu wird eine Messmethode,
die für die Quanti�zierung der Tropfenkollisionsrate geeignet ist, entwickelt,
und die Ergebnisse werden mit der Theorie verglichen. Die in dieser Arbeit

http://www.ovgu.de/isut/lss/metstroem
http://www.ovgu.de/isut/lss/metstroem


iii

beschriebenen experimentellen Ergebnisse zeigen, dass die gemessenen Kolli-
sionsraten gröÿer sind als die durch die Theorie a priori bestimmten, typischer-
weise um einen Faktor von 2 bis 6. Diese Aussage unterstützt den Gedanken,
dass Modelländerungen dringend nötig sind, um Tropfenkollisionswahrschein-
lichkeiten in turbulenten Strömungen fehlerfrei vorherzusagen.

Schlüsselwörter: Meteorologische Strömung, Zweiphasen-Windkanal, Ku-
muluswolke, Tropfen-Gröÿenverteilung, Tropfen-Anzahldichte, Kollisionsrate
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Nomenclature

Latin symbols

A Area m2

CD Drag coe�cient -

c Speed of sound m/s

cg Correction factor -

D Di�usion coe�cient m2/s

d Diameter m

E Turbulent energy spectrum m2/s2

e Vapor pressure Pa

e∗ Saturation vapor pressure Pa

F Force N

f Frequency Hz

g Gravitational acceleration m/s2

K Thermal conductivity W/K m

k Turbulent kinetic energy m2/s2

kc Mass transfer coe�cient m/s

L Latent heat of condensation kJ/kg

l Length scale m

lk Burst length of class k m

lr Residence length m

ls Width of the projected slit m

M Mesh size of grid m

Mw Molecular weight of water kg/mol

m Mass kg

NS Stokes number of the �uid oscillations -
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Nk Number of drops of the diameter class k -

Nsv Number of validated signals -

Nλ Wave number 1/m

n Droplet number density 1/m3

p Pressure Pa

pλ Droplet occurrence probability -

Q̇ Volume �ow rate m3/s

R Speci�c gas constant J/kg K

< Gas constant J/K mol

S Supersaturation -

s Density ratio -

T Temperature K

t Time s

U Mean velocity m/s

u Instantaneous velocity m/s

u′ RMS velocity m/s

w Relative velocity m/s

xd distance downstream the grid m

Greek symbols

αj,i Index of refraction -

β Phase angle -

γ Particle trajectory angle rad

ε Relative signal presence -

ε Dissipation rate (of TKE) m2/s3

η Amplitude ratio -

ηvi Average number of drops
corresponding to a given validated signal -
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θ Angle of incidence ◦

θ′ Angle of refraction ◦

ϑ Temperature ◦C

λ Taylor length scale m

µ Dynamic viscosity Pa s

ν Kinematic viscosity m2/s

ρ Density kg/m3

σ Surface tension N/m

σs Signal duration s

σf(x) Standard deviation of the function f(x) [f(x)]

τ Time scale s

τi Residence time s

φ Volume fraction -

φoa O� axis angle rad

ϕ Relative humidity -

Indices

a Air

d droplet

E External

e E�ective

f Fluid

g Grid

H Hydraulic

h Humid air

K Kolmogorov

k Size class

M Measurement



viii

o Observation

p Particle

r Rod

sv Validated signal

T Terminal

t Turbulence

tk Detection volume

v Vapor

vort Vorticity

Abbreviations

AMB Acrylonitrile microbubbles

DSD Droplet size distribution

EMS Expanded microspheres

HGB Hollow glass bubbles

LDV Laser-Doppler Velocimetry

LWC Liquid Water Content g/m3

PDA Phase-Doppler Velocimetry

PDF Probability density function

PEG Fog of polyethylene glycol

PIV Particle Image Velocimetry

PTV Particle Tracking Velocimetry

REF Fog of vegetable oil

TKE Turbulent Kinetic Energy m2/s2

WDR Water droplets

Non�dimensional numbers

Fr Froude number -

Re Reynolds number -
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Sc Schmidt number -

Sh Sherwood number -

St Strouhal number -

Stk Stokes number -

We Weber number -
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Chapter 1

Introduction

1.1 Rain formation

Figure 1.1: The rain dance is

out of date. . .1

The mechanism of rain formation remained
a great mystery for a long time. Insu�cient
knowledge about rain formation, dangers due
to drought and the need for rain at speci�c
moments related rain primarily to religion
(rain�gods, thunder�gods or the rain dances
of the Native Americans: Fig. 1.1).

Understanding the mechanism of rain forma-
tion led to the capability of weather predic-
tion. Weather forecasting is based on the
diagnosis of three�dimensional atmospheric
conditions in a given time instance, relying
on geographical properties and other addi-
tional information such as radar or satellite
data. Di�erent meteorological models are available with an input from the
observation stations (e.g., temperature, humidity).

Weather forecasting can be de�ned as a prediction of 3D �ow and thermo-
dynamic �elds. It is particularly important that the applied procedures use
adequate boundary conditions, include all relevant physical models and cor-
rectly describe real physics. However, reliability of weather and precipitation
forecasting has been signi�cantly enhanced recently, there is still need for fur-
ther developments (Kisi and Shiri, 2011). The main problem is the droplet
growth time in non�glaciated clouds. That is why the deviation between pre-
dicted and observed duration of cloud droplet growth (factor of 2 or more
under certain circumstances (Xue et al., 2008)) is investigated. In this work
the discussed discrepancy will be explained to improve existing models.

1Image from http://de.toonpool.com

http://de.toonpool.com


2 Chapter 1. Introduction

The invention of the meteorological radar techniques made a contribution
to the scienti�c explanation for di�erent stages of rain formation (Fig. 1.2).
Formation of cloud droplets occurs on micrometer to millimeter scales. Now,
it is well known that on the surface of natural water storage (mostly in oceans:
97% of Earth's water) liquid water evaporates due to the heating e�ect of the
sun. Then the humid air rises upwards, until the wind takes it over the land.
Warm updrafts coming from the heated land surface take water vapor even
higher, where the air is colder (temperature decrease of ∼ 1 K/100 m).

Cloud droplets of radii less than 10 µm grow e�ciently through di�usion of
water vapor (Kogan, 1993). When the temperature of water vapor decreases
(actual vapor pressure = saturation vapor pressure), it condensates on solid
particles (dust, salt or pollution particles) and water droplets come into ex-
istence (�rst with a size < 10 µm). These droplets act as water traps, and
form cloud drops (up to 20 µm in size) by collecting water. These droplets
are still too small to fall as precipitation, because their fall speed is not large
enough to overcome updrafts.

cloud
droplets

drizzle

raindrops

condensation
nuclei

Droplet diameter
[µm]

10 100 50020 50

106

109

1012

Number
density
[#/cm³]

103

Figure 1.2: Typical number density values belonging to di�erent droplet sizes and

the dominating processes of cloud droplet size development.

Water droplets, in addition to the condensation of water vapor, grow also
when particles collide, which gets signi�cant for droplets > 20 µm (Fig. 1.2).
Droplets larger than 50 µm grow e�ciently through gravitational collisions
(Langmuir, 1948). If enough collisions occur to produce a droplet with a fall
velocity exceeding the cloud updraft speed (approximately associated with a
size > 500 µm), it will fall out of the cloud as precipitation. In the end, falling
droplets return into the ocean. From there it will again continue its cycle (see
Fig. 1.3) into and then out of the clouds.

Summarizing, there are two decisive causes for droplet growth (see also Fig. 1.4):
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Figure 1.3: Water cycle. Image from the U.S. Geological Survey's (USGS) http:

//ga.water.usgs.gov/edu .

1. condensation for smaller droplets

2. collision and coalescence for larger drops (Shaw, 2003).

Condensation takes a relatively long time, and is irrelevant for the later in-
vestigations in our wind tunnel.

Droplets larger than approximately 25 µm grow by collision-/-coales-cence
at a much shorter time scale than by condensation (Fig. 1.4) and can be
enhanced by turbulence�particle interactions. This sudden increase in size is
further accelerated when the droplets

• have a broad size distribution,

• are large enough to be noticeably in�uenced by gravity (typically >

50 µm).

This regime between a droplet size of 20 and of 50 µm in warm rain initiation
is also called the growth gap, where droplet size distribution (DSD) and tur-
bulence have a noticeable in�uence on droplet size development. This is the
most complex region. Therefore, it is of central importance in this thesis.

http://ga.water.usgs.gov/edu
http://ga.water.usgs.gov/edu
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20 µm

50 µm

Time

D
ia

m
et

er

 

 

Dominant growth
through condensation

Growth gap, 
Growth accelerated through 
turbulence and broad DSD

Efficient growth through
gravitational collision

Condensation
Collision

Figure 1.4: Schematic curves of droplet growth time. Regions with dominant

mechanisms are also indicated.

1.1.1 Warm rain initiation

The mechanism of warm (i.e., ice free) rain initiation in cumulus clouds is a
very important and one of the unsolved problems of cloud physics (Xue et al.,
2008; Wang and Grabowski, 2009; Khain, 2009). It is associated with the so�
called growth gap between the condensational growth of the small droplets and
gravity driven collisional growth of larger droplets. To overcome the gap in
the theory between the growth of smaller and larger droplets (20 . . . 50 µm)
discussed in this section, the e�ects of turbulence on warm rain initiation
should be considered. De Almeida (1979) found that collision e�ciency for
smaller cloud droplets may be signi�cantly increased by the small�scale tur-
bulent motions. Pinsky et al. (1999) concluded that coalescence starts being
e�ective even at a drop diameter of 30 µm. Another aspect that has not yet
been satisfactorily explained by theory is the presence of the broad droplet
spectra in cumulus clouds (Warner, 1969). The theory of the broadening of
cloud droplet spectra was reviewed by Beard and Ochs III (1993), who con-
cluded that the process of warm rain initiation due to turbulence remains
largely unanswered:

• the time scale for collision�coalescence is much shorter than that of
condensation and
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• it is generally accepted that condensation by itself is unable to produce
such large droplets that can fall as rain (Johnson, 1993).

There is a lack of agreement between theory and experiments (Shaw et al.,
1998) and experiments show that the droplet spectra is broader than it would
be predicted by theory. Further on, there appears to be a factor of 2 or
more di�erence between the predicted growth time of cloud droplets and the
observed growth time (Xue et al., 2008). This problem is assumed to be
related to the growth gap in the droplet size range of 20− 50 µm, separating
the two main processes of droplet growth. In this region not only the broad
droplet spectra but even turbulence by itself enhances growth rates. Pinsky
and Khain (1996, 1997) showed that preferential concentration signi�cantly
increases the collision�coalescence rate and possibly increases the collection
(coalescence) e�ciency of smaller drops. Pinsky et al. (2008) showed that an
increase in the collision rate between cloud droplets may serve as a triggering
mechanism for raindrop formation. In this work tables for collision e�ciencies
are also presented, with the hint of the authors that the turbulent e�ect on
drop collision is probably underestimated. This corroborates the statement
of Xue et al. (2008). Therefore, systematic and reproducible experimental
investigation of droplet�droplet interactions in turbulent �ows is necessary.
The most suitable way to carry out such measurements is to apply a two�
phase wind tunnel with �ow conditions similar to that of clouds.

1.2 Two-phase wind tunnels: state of the art

In the following, a literature overview is presented, where two�phase wind
tunnels have been used for cloud physics investigations.

In Fessler et al. (1994) the distributions of solid particles are investigated in a
turbulent channel �ow. This is particularly important for the investigation of
atmospheric pollutant transport. The particle concentration is measured by
means of an imaging method with laser illumination and individual particle
identi�cation. Several hints are given about the preferential concentration
of particles larger than the viscous length scales of the �ow. The Reynolds
number in the channel of 40 mm width and with an aspect ratio of 11.4 is
Re = 13 800, based on the half width of the channel and on the mean velocity
(10.5 m/s).

Korczyk et al. (2006) attempted to quantify the in�uence of turbulence in
an unsaturated air/water-mixture using Particle�Image Velocimetry (PIV).
Water mist of drop diameters below 10 µm is generated in a chamber of
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1× 1× 1.8 m3, where the liquid water content (LWC) is found to be 20 g/kg.
During these PIV measurements only the properties of the disperse phase has
been measured, the continuous phase has not been considered.

Probably the �rst wind tunnel for cloud physics research has been established
at the Swiss Federal Institute for Snow and Avalanche Research (List, 1959).
It is a vertical wind tunnel used to study suspended particles. The velocity
can be varied up to 25 m/s, and water droplets can be generated between 1

and 200 µm. LWC can be set up to 10 g/m3 and the temperature down to
−40◦C. Experiments conducted in this facility are mainly dedicated to the
growth of ice particles as relevant to environmental conditions.

The UCLA wind tunnel (Pruppacher and Neiburger, 1968) is probably the
most well�known wind tunnel speci�cally employed for cloud physics research.
Within this wind tunnel, it is possible to suspend water droplets for a long
time. Many investigations have been carried out with this setup: water
droplets falling at terminal velocity, drag measurements as a function of
the Reynolds number (Beard and Pruppacher, 1969), internal circulation
and shape of falling droplets (Pruppacher and Beard, 1970) and evaporation
rate (Beard and Pruppacher, 1971). In this installation, the air humidity can
be varied from 0% up to saturation and droplets have been investigated with
a diameter from 20 to 900 µm. During the experiments the air can also be
temperature�controlled within a relatively broad region. Using this setup it is
possible to deliver �rst�class information for a variety of meteorological pro-
cesses. However, all the employed measurement methods at that time have
been intrusive, possibly impacting �ow behavior. The interaction between
droplet behavior and turbulent �ow is not investigated systematically. As a
consequence, these seminal measurements do not really allow a validation of
today's numerical models and simulations.

The I.C.E. wind tunnel (Gabriels et al., 1997) in Belgium is a closed circuit,
low�speed wind tunnel. Di�erent velocities can be adjusted by changing the
pitch angle of 16 adjustable blades, while the fan is constantly driven by a
150 kW electric motor. The measurement section is 12 m long, 1.2 m wide and
the height can be varied from 1.8 . . . 3.2 m. The e�ect of simulated rainfall,
soil erosion and transport processes in wind�driven rain was studied by Erpul
et al. (1998, 2002, 2004, 2005). The investigated rain drop size is in the
range of 0.2 . . . 3 mm. The wind speeds are set in the region of 0 . . . 15 m/s

and measured in the center of the wind tunnel by means of a vane�type
anemometer. The nozzles are placed on the top of the tunnel and inject water
droplets downwards. The experiments in this wind tunnel do not speci�cally
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consider rain initiation. The employed droplets are too large and hence outside
the relevant range for rain initiation.

In the DeFrees Hydraulics Laboratory at Cornell University a tilting wind�
water tunnel with a test�section of 20 × 1 × 0.9 m is applied for air�water
interface experiments. Here, Lagrangian particle acceleration measurements
in active grid�generated turbulence (Ayyalasomayajula et al., 2006) are car-
ried out and spatial particle clustering at high Re�numbers is experimentally
investigated (Saw et al., 2008) by means of a Phase�Doppler Anemometry
(PDA) system. Dilute water droplets with a Stokes number of approximately
0.1 are generated by means of several water spray injectors, downstream of the
active grid. These experiments are very important for an initial understanding
of droplet evolution controlled by cloud turbulence. However, only a single
set of conditions has been considered, highlighting the need for systematic
parameter variations.

For the issues considered in the present work the measurements presented
by Vohl et al. (1999) are also particularly interesting. Collision and coales-
cence processes of droplets have been investigated in the vertical wind tunnel
of Mainz (an improved model of the UCLA tunnel in Los Angeles) both for
laminar and turbulent �ows. In this study, the global properties of turbulence
and droplets are examined. It is established that there is a tendency toward
faster droplet growth under turbulent conditions. A good agreement is found,
compared to theoretical calculations using collision e�ciencies, in the litera-
ture. As a consequence, these measurements cannot explain the discrepancies
found between theory and observations concerning warm rain initiation. This
might be due to the fact that the �ow velocity is only measured at selected
locations and using hot wire anemometry, an intrusive technique di�cult to
employ with a high accuracy in two�phase �ows. The authors of this work
underline in the conclusions that further, systematic wind tunnel experiments
are clearly required.

In the recent times, numerical simulations for meteorological problems (Seifert,
2008; Woittiez et al., 2009; Stevens and Seifert, 2008) including relevant the-
oretical models (Seifert and Stevens, 2010), become increasingly essential and
play already an enormous role in weather forecasting. Such numerical simu-
lations can deliver proper predictions only when the boundary conditions of
the system are known in space and time; when the accuracy of the numerical
procedure is su�cient; and if all relevant physical models are implemented
and describe correctly real physics.
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The boundary conditions should be experimentally determined to generate
conditions according to reality. For experimental investigations, there is a
possibility to carry out airborne measurements (Glantz et al., 2003; Fugal
et al., 2004; Siebert et al., 2006, 2007), but it should be noted that they
are limited by lack of control over boundary conditions and reproducibility.
Ground-based measurements (Paluch et al., 1996; Calbó and Sabburg, 2008)
are good alternatives to avoid intrusion into the cloud and its environment,
but the large distances do not allow an investigation with an appropriate
resolution of all turbulent scales. The complementary use of both methods
(Protat et al., 2009) is also possible, but highly complex and costly. Though
there are numerous promising calculations in the literature (Grabowski, 2001;
Siebesma et al., 2003; Fan et al., 2007), there is a lack of experimental valida-
tion data. Warhaft (2009) reviewed the recent developments in the study of
droplet motion in turbulent �ows, and pointed out that there are several key
questions in this �eld, which constitute the main experimental challenges in
this work as well:

a) �The particle concentrations need to be systematically varied so that
collisions can be introduced into the experiments�;

b) �Experiments in inhomogeneous �ows are also needed. We have no
evidence of how the inertial particle acceleration PDF and the radial
distribution vary in inhomogeneous �ows�;

c) �Classical theory is unable to explain the rapid rain initiation time ob-
served in clouds�.

Using controlled experiments in a two�phase wind tunnel, we will try to con-
tribute to all of these open questions with useful information. In order to
carry out meaningful experiments, several basic concepts of meteorology are
needed. The next section summarizes �rst the most important properties of
humid air.

1.3 Properties of humid air

1.3.1 Viscosity

The viscosity of suspensions has been predicted by Einstein (Landau and
Lifschitz, 1966) for the case of spherical particles. If the dimensions of the
particles involved are small compared with the characteristic length of the
�uid �ow, the suspension may be regarded as a homogeneous medium and
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its e�ective viscosity νe, which is di�erent from the viscosity ν of the original
�uid, is given by

νe = ν(1 + 2.5φ) , (1.1)

In clouds, φ can be given by the ratio of the liquid water content (LWC) to
the particle density ρp; thus Einstein's e�ective viscosity can be written as

νe = ν

(
1 + 2.5

LWC
ρp

)
, (1.2)

according to De Almeida (1979). Since the value of water volume fraction
φ in clouds is about 10−6, the correction for the e�ective viscosity is very
small and the added mechanism of energy dissipation is negligible. In further
calculations the viscosity of air will hence be directly used.

1.3.2 Density

The density of the �ow medium is a fundamental property for further cal-
culations, as it is a required input parameter for e.g., the calculation of the
equation of motion or the velocity calculation in the wind tunnel. An accu-
rate determination of the density of the air in the wind tunnel requires the
consideration of the humidity, as the speci�c gas constant is in�uenced by the
latter. After adapting the speci�c gas constant, the equation

ρ =
p

RhT
(1.3)

is used further. The speci�c gas constant of humid air can be calculated by
the following equation:

Rh =
Ra

(1− ϕe∗p )(1− Ra
Rv

)
, (1.4)

whereRa = 287.1 J/kg K is the speci�c gas constant of dry air, Rv = 461.5 J/kg K

is the speci�c gas constant of vapor, e∗ is the saturation vapor pressure of water
in air empirically calculated with the help of the Magnus formula, Eq. (1.6).

1.3.3 Vapor pressure

Vapor pressure ev is the partial pressure of the water vapor. In the atmosphere,
the range for ev is from slightly over 0 up to approximately 40 hPa (Kraus,
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2004). As the concentration of water vapor is quite low, it can be handled as
an ideal gas:

ev = ρvRvT , (1.5)

where Rv = R
Mv

= 461.5 J/kg K, with R = 8.314472 J/mol K (Mohr et al., 2008)
and Mv = 18.016 10−3 kg/mol. The vapor pressure cannot exceed the satura-
tion vapor pressure e∗, which can be expressed as a function of temperature.

To compute the saturation vapor pressure, the empirical formula of Magnus
was retained:

e∗ = 6.1078 exp

(
17.08085ϑ

234.175 + ϑ

)
hPa , (1.6)

which is simpler than that of the World Meteorological Organization (Go�
and Gratch, 1946), internationally accepted in 1947. Since the deviation is
minimal in the region relevant for meteorological experiments (max. 0.22%

for 0 − 100◦C, compared to the values of a saturated vapor table), Eq. (1.6)
is applied for all calculations in the following.

1.3.4 Relative humidity

This is a relative quantity, de�ned as the ratio of the actual vapor pressure ev
to the saturation vapor pressure of water e∗w at the ambient air temperature
Ta:

ϕ =
ev

e∗w(Ta)
. (1.7)

Thus, ϕ is not an absolute measure for the water vapor content but it measures
the degree of saturation. Airplane experiments showed that in most cases the
relative humidity in clouds is between 95 and 100% (Pruppacher and Klett,
1997), though the lower end of the range can be sometimes as low as 81%.
Warner (1969) showed as well that the observed range in small to moderate
cumuli is rarely outside 98− 102%.

1.3.5 Condensational droplet growth

Condensation is the change from the gaseous phase of an element (here: water
vapor) into liquid droplets of the same element. Since the condensing water
molecules su�er from reduced degrees of freedom and ranges of motion, their
prior kinetic energy must be lost or transferred to adsorbing colder water
molecules or centers of condensation within the gas volume. Under realis-
tic atmospheric conditions, condensation takes place on preexisting, soluble
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aerosol particles. Absorption into the surface of a liquid is reversible, like
evaporation (McNaught and Wilkinson, 1997). Condensation commonly oc-
curs when a vapor is cooled to its saturation limit and when the molecular
density in the gas phase reaches its maximal threshold.

To quantify condensation and express the results in terms of droplet growth,
the mass transfer between water vapor and water droplets should be charac-
terized. This can be deduced from Fick's law, as described in Pruppacher and
Klett (1997):

dm
dt

=
2πdDvMw

<

(
e∞
T∞
− ea
Ta

)
. (1.8)

Since it is not the temperature of the droplets that is directly measured, but
the relative humidity of the �ow in the wind tunnel, the above equation can
be expressed in terms of the supersaturation (Fukuta and Walter, 1970):

dm
dt

=
2πd(S − 1)

L2
vMw

Ka<T 2
∞

+ <T∞
DvMwp∞,sat

, (1.9)

where S = p∞/p∞,sat is the saturation ratio. The di�erential equation is solved
with the help of a Matlab R© script and the diameter vs. time diagram is pre-
sented in Fig. 1.5, for d0 = 12.5 µm and 1% supersaturation (S = 1.01),
which is obviously an overestimation. The resulting volume increase of 8%

over 400 mm of the wind measurement section (axial length) corresponds to
the one found also in Celani et al. (2005).

However, the droplets considered by Celani et al. (2005) do not move. That is
why the equations are extended following Tokar' et al. (1981), where the mass
transfer coe�cient is corrected. Thus, the in�uence of the relative velocity
between the continuous and disperse phase is taken into account and the
corrected mass transfer coe�cient is calculated by means of the Sherwood
number:

kc =
Sh Dv

d
, (1.10)

where the Sherwood number itself can be calculated from the Schmidt and
Reynolds numbers:

Sh = 2 + 0.6Re1/2Sc1/3 (1.11)

The di�erence in volume increase between stationary and moving droplets
is visible in Fig. 1.5. Result of the calculations shows that after 0.133 s,
which is necessary for a droplet with a velocity of 3 m/s to transit through
the measurement section of the wind tunnel (400 mm) the mass or volume
increase of a droplet is around 7%. It will be shown later in Chapter 5 that the



1.4. Theory of droplet collisions 13

0 0.1 0.2 0.3 0.4 0.5
1

1.1

1.2

1.3

1.4

Time [s]

m
/m

0 [−
]

Condensational droplet growth

 

 

 x = 400 mm,
U = 3 m/s →

  x = 1200 mm,
 U = 3 m/s →

u
rel

=0 m/s

u
rel

=0.3 m/s

Figure 1.5: Condensational water droplet volume growth with S = 101% and

d0 = 12.5 µm .

droplet volume increase in the test section is around 60%, thus con�rming that
growth through condensation is not the dominant mechanism in the present
measurement con�guration, as expected.

The following section deals with the calculation of theoretical droplet colli-
sion rates, since one of the main objectives of this thesis is the experimental
investigation of droplet collision rates in turbulent �ows.

1.4 Theory of droplet collisions

In order to compare experimental collision rates to theoretical ones, the most
suitable approach will be selected in this section after an overview about the
collision theory of small droplets in turbulent �ows.

In the article of Kruis and Kusters (1997) an overview is presented about the
development of collision theory in turbulent �ows. Limits of the theoretical
approaches are discussed and a general derivation is given, containing the in-
ertia of particles and the density di�erences between continuous and disperse
phases. A universal solution for the relative velocity of two particles caused
by the turbulent acceleration is also introduced. Camp and Stein (1943) were
the �rst, who applied the concept of the simple shear �ow (von Smoluchowski,
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1917) from the turbulent coagulation process to this problem. They argued
that the shear �eld causes a relative motion between the particles leading to
collisions. In the article of Sa�man and Turner (1956) the collision theory is
presented for small particles in a turbulent �ow. Nevertheless, only droplets
of the same diameter are regarded. The considered droplets must be smaller
by at least one order of magnitude compared to the length scale of the small
turbulent eddies. When the scales of motions are su�ciently small compared
to the energy�containing eddies, the motion is isotropic and the mean values
will depend only on the kinematic viscosity and on the rate of the energy
dissipation per unit mass. Therefore, in order to use this theory, the en-
ergy dissipation rate must be known. Taylor (Sa�man and Turner, 1956)
deduced a value for that quantity of 0.1 m2/s3 in clouds. Laboratory experi-
ments by Batchelor and Townsend (1948) showed that the dissipation rate is
in the order of u′3/l. Considering the subsequent discussion in Chapter 5 and
the values in Table 5.1 on page 100, this would lead to typical values around
0.01 m2/s3. According to the literature, a larger value of up to 0.1 m2/s3 appears
to be a better estimation for conditions in turbulent cumulus clouds.

There are two ways in which turbulence causes collisions between neighboring
droplets:

1. collisions due to the motion of the droplets with the air;

2. due to the motion relative to the air.

The formula giving the collision rate of two drops with di�erent size and
number density moving with the air according to Sa�man and Turner (1956)
reads:

N = 1.30(r1 + r2)3n1n2

(
ε

ν

)1/2

, (1.12)

where ri is the radius of the interacting droplets [m] and ni is the number
density [#/m3] of droplets of a given radius.

The authors of this publication also discuss that �the motion of the drops
with the air will a�ect the mean properties of a cloud rather slowly, except
under conditions of vigorous turbulence�. Hence, a further model is presented
to quantify collision, where the motion of the drops with and relative to the
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air are considered together with the relative motion due to gravity. After
integration, the resulting equation can be written:

N =
(

8π

3

) 1
2

(r1 + r2)2n1n2·[
3

(
1−

ρf
ρp

)2

(τ1 − τ2)2

(
Dvf
Dt

)2

+
1

3
(r1 + r2)2 ε

ν

] 1
2

(1.13)

This equation can be simpli�ed using the assumption that the drops are iden-
tical (radius R), leading to:

N = 1.67R3n1n2

(
ε

ν

)1/2

. (1.14)

It can be seen that the di�erence with Eq. (1.12) is only in the constant. Note
that the collision frequency depends only on particle size and concentration
apart from dissipation and viscosity. For this equation to be valid, the parti-
cles should be smaller than the Kolmogorov microscale of turbulence, lK and
their relaxation times need to be smaller than the characteristic time scale
of the dissipating eddies, τK . In a more vigorous turbulence the approach-
ing particles may no longer be entrained completely by the smallest eddies
and they will have less�correlated velocities. If the particles are assumed to
be randomly positioned with an independent, Maxwellian velocity distribu-
tion, it can be shown that the relative velocity is Maxwellian, too (Sundaram
and Collins, 1997). If the variance of the velocity distribution is considered,
the following form of the collision rate can be written following Abrahamson
(1975). However, it is valid for larger particles (Stkp > 1), or for �ows with
high energy dissipation rates:

N = n1n2(r1 + r2)2π(uT,2 − uT,1) . (1.15)

Since collision e�ciency is a function of droplet size and more importantly of
droplet relative velocity, Williams and Crane (1983) took into account more
precisely the di�erence between gas and particle velocities. A universal so-
lution was found, where isotropy is assumed and the collision frequency can
�nally be determined from:

N =

√
8π

3
(r1 + r2)2n1n2

√
3w2 , (1.16)

where w2 is the RMS relative velocity between air and particles due to the
accelerative mechanism (inertia). Independently, Yuu (1984) also derived an
equation, where the relative velocity was de�ned by two separate terms:
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N =

√
8π

3
(r1 + r2)2n1n2

√
w2
inertia + w2

shear . (1.17)

The relative RMS-velocities can be obtained by:

w2
inertia = (A1 − 2B + A2)u2

f (1.18)

w2
shear = (A1r

2
1 + 2Br1r2 + A2r

2
2)
(
ε

3ν

)
,

with:

Ai =
αiTL + b2

αiTL + 1
(1.19)

B =
C

(α1 + α2)(1− α2
1T

2
L)(1− α2

2T
2
L)

C = α1α2TL(2− (α1 + α2)TL − (α2
1 + α2

2)T 2
L + α1α2(α1 + α2)T 3

L

+b(α1 − α2)2TL(1− (α1 + α2)TL + α1α2T
2
L)

+b2((α1 + α2)− (α2
1 + α2

2)TL − α1α2(α1 + α2)T 2
L + 2α2

1α
2
2T

3
L)

The added mass coe�cient b, which is called buoyancy coe�cient by Yuu
(1984), was de�ned as

b =
3ρf

2ρp + ρf
(1.20)

and the reciprocal particle relaxation time αi is:

αi = 1/τp,i . (1.21)

All the above equations take into account only collisions induced by the local
di�erences in �uid velocities. Kruis and Kusters (1997) stated that calcula-
tions based on the local di�erence in �uid velocities lead to an overestimation
of the relative velocity of the two colliding particles and to unrealistic values of
the collision frequencies. They proposed instead for the RMS relative velocity
of two particles a dimensionless equation divided by the air �ow velocity and
considering dimensionless particle relaxation times:

w2
inertia

u2
f

= (1− b)2 γ

γ − 1

(θ1 + θ2)2 − 4θ1θ2

√
1+θ1+θ2

(1+θ1)(1+θ2)

θ1 + θ2

 (1.22)

×
{

1

(1 + θ1)(1 + θ2)
− 1

(1 + γθ1)(1 + γθ2)

}
,
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where γ ≈ 0.183 Re1/2
l is the turbulence constant, in which the Reynolds

number corresponding to the large scale eddies is de�ned as usual:

Rel =
u′ l

ν
. (1.23)

The longitudinal integral length scale is l = u′ tl. The dimensionless particle
relaxation time is θi = τp,i/tl , which is the ratio between the particle relax-
ation time and the Lagrangian integral time scale, while u′ is the RMS �uid
velocity. It is also shown in Kruis and Kusters (1997) that for particles in the
viscous subrange of turbulence, the universal equation reduces to the solution
originally derived by Sa�man and Turner (1956). It is similar to the case of
turbulent cumulus clouds, where the viscous e�ects are preponderant, since
the droplet diameter is well below the Kolmogorov length scale.

Pinsky et al. (1999) suggested a mathematical approach to the calculation
of the collision e�ciency between droplets within a turbulent �ow and also
con�rmed that turbulence enhances droplet collision e�ciencies. They also
showed that the maximum values of collision e�ciency can be several times
larger than the mean values.

Table 1.2 summarizes the introduced equations and the associated assump-
tions. Finally, Eq. (1.12) is rejected, because it is only valid for very small
particles, moving together with the air. This is not the case for cloud droplets
which are large enough (> 20 µm) to grow e�ciently through collision/coalescence.
As discussed earlier in this section, relative velocities between air and drops
play an enormous role in the development of intense collision e�ciencies.
Therefore relative velocities should be included in any case, thus Eqs. (1.13)
and (1.14) are also excluded. Equation (1.15) by Abrahamson (1975) is, on the
other hand valid for high energy dissipation rates typical in cumulus clouds.
Nevertheless, the condition of larger particles is not ful�lled in the range of
the growth gap, shaping the primary focus of this work.

In the equation by Williams and Crane (1983), the collision rate is calcu-
lated based on the RMS of local relative velocities between air and droplets.
This leads to overestimation of collision rates according to Kruis and Kusters
(1997). Independently, Yuu (1984) derived a similar equation de�ning the
RMS relative velocity separately for inertia and shear. Later Kruis and
Kusters (1997) improved the theory and stated that the equations consid-
ering local di�erences in the �uid overestimate collision rates. These both
equations (1.17) and (1.22) require the energy dissipation rate, which is chal-
lenging to measure. It is only available as a global mean value in the measure-
ment section of the wind tunnel in our measurements. Therefore, Eq. (1.16)
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Table 1.2: Summary and hints for the equations of the collision theory based on

those of Mersmann (2001).

Validity Assumptions Equation

Droplets moving
with the air

• Particles follow �uid motion com-
pletely,
• Relaxation time� smallest time scale,
• (r1 + r2) is small compared to smallest
turbulent eddies.

1.12

Relative motion
to the air

Only turbulent �ow and gravity. 1.13
Only turbulent �ow and gravity, identical
particles.

1.14

Turbulent �ow with high energy dissipation
or large particles.

1.15

Collisions described by local di�erences

in �uid velocities, isotropy assumed.

1.16

RMS relative velocity de�ned by separate
terms for inertia and shear processes.

1.17

RMS relative velocity de�ned depending on
�ow velocity and dimensionless particle re-
laxation time.

1.22

from Williams and Crane (1983) is used later in Chapter 5, where the exper-
imentally determined collision rates are compared with those of the theory.
The equation is applied in a form, allowing the calculation of collision rate of
droplets belonging to di�erent size classes. This is particularly important in
the context of broad droplet size distributions as in our case. Note �nally:

• that all terms of the selected equation are measured or can be directly
derived and

• that this equation should overestimate collision rates, according to the
statement of Kruis and Kusters (1997).

1.5 Conclusions and summary of goals

Scienti�c literature reports about the underestimation of collision rates by
theory, especially in the range of 20 . . . 50 µm droplets, the so�called growth
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gap. This is the transition regime between the two main processes of droplet
growth: condensation and gravity�driven collision. In order to investigate
droplet�droplet interactions in the growth gap, careful measurements at lab-
oratory conditions are required.

There are numerous experimental investigations concerning two�phase, air/water
�ows in the literature, also regarding meteorological aspects, but many impor-
tant questions have not been answered in a satisfactory way yet. The aim of
this work is to reproduce all important properties in a two�phase wind tunnel,
where exact and non�intrusive investigations of droplet�droplet interactions
with conditions similar to that in cumulus clouds are possible.

Properties of humid air have been introduced, corresponding calculations are
included in the control software of the wind tunnel so that the �ow can be
characterized in a suitable way. The condensational droplet growth has been
quanti�ed and it is shown that growth through condensation is not the dom-
inant mechanism in present measurement con�gurations, as expected.

Flow properties as well as particle concentrations will be systematically var-
ied, so that their in�uence on collisions can be examined experimentally. The
theory of droplet collisions has been reviewed and a suitable equation has
been selected for comparison with experimental results. The in�uence of the
probability density function (PDF) and of the number distribution can also
be assessed in this manner. All experimental data are made freely available in
a structured database at http://www.ovgu.de/isut/lss/metstroem for dif-
ferent �ow con�gurations. In this way, boundary conditions can be delivered
for numerical simulations and those can be validated by comparisons with
high quality and structured experimental data.

The thesis is organized as follows. Fundamental considerations are �rst dis-
cussed in Chapter 2, followed by the details of experimental setup and mea-
surement con�gurations in Chapter 3. Chapter 4 describes the improvements
of di�erent experimental techniques in order to adapt them for the challeng-
ing measurement conditions in the two�phase wind tunnel. The experimental
results are then discussed in Chapter 5 including consequences for rain for-
mation models. Finally conclusions and an outlook are proposed. At the end
of this work the speci�cations of the wind tunnel and selected experimental
results are presented.

http://www.ovgu.de/isut/lss/metstroem




Chapter 2

Fundamental considerations

concerning optical �ow

measurements and tracers

In this chapter the basics of light refraction will be introduced. Furthermore,
two possibilities will be considered to eliminate or avoid the limitation due to
this phenomenon. Another common problem, the selection of suitable tracer
particles will also be discussed and the �ow response of di�erent tracers will be
quanti�ed and compared. The suitability of water droplets as tracer particles
will be analyzed as well.

2.1 Problem of light refraction

Light refraction is a physical phenomenon that often limits the quality or
even the practicability of optical measurements. This is the reason why it is
considered here. Some possibilities are shown to avoid or to correct its e�ect.

Objects become visible through the re�ected or emitted light from their sur-
face. When a ray of light reaches the boundary of two media with di�erent
optical density, it is either re�ected or enters the new medium and is refracted.
The cause for the refraction is the di�erent light speed in the two media. A
normal should be placed onto the boundary of the two media into the point
of the incident ray of light (Fig. 2.1). The angle between the incident ray and
the normal is the angle of incidence θ, the angle between the refracted and
the normal is the angle of refraction θ′ (see Fig. 2.1). The Snell�Descartes law
states that the opposite ratio of the indices of refraction is a constant that
depends on the media and is equivalent to the ratio of velocities in the two
media

α2,1 =
c1
c2

(2.1)
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Figure 2.1: Representation of ligth refraction.

or equivalently to the sines of the angles of incidence and of refraction:

α2,1 =
sin θ

sin θ′
. (2.2)

The following statements should be considered:

• The incident and the re�ected rays and the placed normal lie in the
same plane.

• The two rays pass along di�erent sides of the normal.

• The direction of the ray is reversible, i.e., the ray arriving to the bound-
ary from the second medium with the angle θ′ passes with the angle θ
into the �rst medium.

• Rays of di�erent wavelengths with the same angle of incidence refract
with di�erent angles. A prism decomposing white light into its compo-
nents works in this way.
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• A ray of light arriving normal to the boundary of the media passes
without refraction through the plane.

• When the ray of light enters a medium of higher optical density, the
angle of incidence is greater than that of the refraction (θ > θ′). When
the ray enters a medium of lower optical density, the angle of refraction
is greater than that of incidence (θ′ > θ).

The index of refraction of a medium can be obtained from the ratio of the
light speed in vacuum to that of the given medium.

The fact that a light ray refracts on the boundary of di�erent media, causes er-
rors during optical measurements, such as Laser�Doppler Velocimetry (LDV),
Phase�Doppler Anemometry (PDA) or Particle Image Velocimetry (PIV).
Therefore, these errors should be considered and if necessary, corrected. This
is not always possible. E.g., when laser beams are extremely refracted, the
measurement volume cannot be created at all (LDV/PDA). A further limi-
tation is the critical angle. If it is reached by the incident beam, it is not
refracted any more, but re�ected. However, in case of LDV and PDA the
correction is simple: the position of the measurement volume can be calcu-
lated in most cases and the receiving optics can also be adjusted so that the
scattered light in the measurement volume can be recorded. Nevertheless,
this correction is only useful if the position of the measurement volume is not
in�uenced by the geometrical conditions when traversing the measurement
volume. In case of PIV it is more complicated, as it is a planar measurement
method and the distortion is not always regular as in the case of single ray
refraction. There are then two possible methods to solve the latter problem,
as explained next.

2.1.1 Refraction index matching

One solution method is to match the index of refraction of the �owing medium
to that of the surrounding material. In this way the incident and refracting
angles are the same, there is no refraction, as shown in Fig. 2.2. The limitation
here is that it is not always possible to match the index of the �owing medium
to that of the surroundings. Further on, mostly salts or oils are applied to
modify the index of refraction, which can be harmful to the environment. As
temperature in�uences the index of refraction as well, small di�erences in the
index of refraction may be corrected by changing the temperature. Then, the
set temperature should remain constant during the measurements (Wunder-
lich et al., 2007).
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(a) without liquid (b) with water (c) RI - matched

Figure 2.2: Image of an aorta model, in which the refractive index of the liquid

has been matched to that of the silicon block in order to carry out

LDV measurements. Left, without liquid �lling, in the middle �lled

with water and on the right when �lling with refractive index matched

liquid (Wunderlich et al., 2007).

2.1.2 Image correction

The other solution is to apply image correction, which is a post processing
tool, where the geometrical path of light rays is calculated a posteriori and a
computational correction is then executed. In the work of Pap et al. (2009),
an overview was presented about image correction methods and a practical
solution (see Fig. 2.3) was introduced for a non�linear transformation using
digital image processing.

(a) original (b) distorted (c) corrected

Figure 2.3: Left: original calibration pattern; middle: distorted image behind a

curved surface; right: corrected image reconstructed from that in the

middle (Pap et al., 2009).
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In the present work, during PIV measurements of the velocity vectors lying
in the plane normal to the �ow direction in the two phase wind tunnel, such a
correction is needed, as the camera axis and the normal of the measurement
plane show an extremely large angle. Thus, dewarping the raw images by a
commercial PIV software is insu�cient to get proper results. The solution for
this problem was presented in Bordás et al. (2009) and will be discussed later
in Chapter 4.

2.2 Tracer particles for �uid measurement

The main problem when selecting proper tracer particles for optical measure-
ment techniques, is that they should follow the �ow accurately and be large
enough to be detected by the cameras, or give su�cient signal for the photo-
multiplier of a LDV/PDA system. The latter problem appears especially in
the application of the Particle Tracking Velocimetry (PTV) technique, since
the particles might be illuminated by simple halogen lamps instead of a laser.
In addition to the reduced illumination intensity, the tracers should be at
least a few pixels large on the camera image, since the correspondence prob-
lem should be minimized by using colored tracer particles, and the cameras
equipped with a Bayer pattern need at least 5 pixels to recognize the color of
a particle in a reliable way (Tarlet et al., 2009, 2010).

2.2.1 Flow response

In an extensive theoretical and experimental investigation, the �ow response
of di�erent tracer particles was compared with a conventional oil fog. Water
droplets (WDR) of 10 µm are also selected in this comparison to investigate
their response to changes in the �ow of the continuous phase.

Note that the diameter of tracer particles is larger than the oil or water
droplets but their density is approximately one order of magnitude smaller.
Both quantities have a decisive in�uence on the �ow response of the particles,
as will be shown later. The properties of all investigated tracers are collected
in Table 2.1. Melling (1997) showed that oil droplets applied as tracer parti-
cles should have a diameter smaller than 3 µm to be suitable. This value can
be found as a reference value for polyethylene glycol (PEG)-droplets as well
(e.g., von Dantec Dynamics). However, our own measurements by means of
PDA showed a real mean diameter of 6.89 µm when using commercial particle
generators (see Fig. 2.4). Corresponding properties are included in Table 2.1
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Figure 2.4: Droplet size distribution of the PEG fog, measured in the wind tunnel

by means of PDA.

(PEG), together with ideal values of fog of vegetable oil, used as reference
(REF).

For optical measurements of the �ow velocity, tracer particles are needed. As
the velocity of the tracer particles is measured instead of that of the �ow �eld,
it is most important that the particles follow the �ow very accurately. The
�ow response of these particles is discussed in what follows.

Settling velocity

One measure of the particle response in a �uid �ow is the sinking velocity of
the particle in the gravity �eld. The motion of the particle depends on the
forces acting on it. The equation of motion for a single tracer can be given as
(Ruck and Makiola, 1990):

du
dt

=

(
1−

ρf
ρp

)
g − 3

4

CD
d

ρf
ρp
· u2 . (2.3)

The force balance equation in Eq. (2.3) considers gravity, lift, drag and iner-
tia. As the relative velocity should be the smallest possible, we can assure a
laminar �ow around the tracer and the drag coe�cient can hence be written:
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Table 2.1: Properties of potential tracer particles for gas �ows. Both theoretically

available and practically considered.

Material Density [kg/m3] Diameter [µm]

EMS (Expancel R©) 24 . . . 70 / 70 15 . . . 120 / 15 . . . 25 (20)

HGB (3M R©) >100 / 125 30 . . . 120 / 30 . . . 40 (35)

AMBa 40 35 / 35
WDR 1000 1 . . . 2 000 / 10
PEG 1 130 2 . . . 9 / 6.89
REF 970 2 . . . 9 / 3b

asee Reeves et al. (2000)
baccording to theoretical calculations by Melling (1997) for a frequency limit of 1 kHz.

CD =
24

Re
. (2.4)

Substituting Eq. (2.4) in Eq. (2.3), we get

du
dt

=

(
1−

ρf
ρp

)
g − 18

ρf
ρp

ν

d2
u . (2.5)

It is a linear di�erential equation, which can be written after integration:

u(t) =
1

18

ρpd
2

ρfν

(
1−

ρf
ρp

)
g

[
1− exp

(
−18

ρfν

ρpd2
t

)]
. (2.6)

The forces acting on the particle are in equilibrium, when the initial acceler-
ation is �nished. The terminal velocity uT in case of a laminar �ow around a
spherical body can be written:

uT =
1

18

ρpd
2

ρfν

(
1−

ρf
ρp

)
g . (2.7)

Table 2.2 contains the calculated terminal velocity values uT of all tracer
particles listed in Table 2.1. The time values tT , needed to reach 99.9% of the
terminal velocity are also given. The calculation of these values is based on the
di�erential equation Eq. (2.5), integrated with the help of a Matlab R© script.
The temporal course of the velocities is presented graphically in Fig. 2.6.
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Table 2.2: Terminal velocity values for di�erent tracer particles (ϑ = 20◦C, p =

1 bar).

AMB EMS HGB PEG WDR REF

ρf [kg/m3] 1.188

ν[m2/s] 1.535 10−5

ρp[kg/m3] 40 70 125 1 130 1 000 970

dp[µm] 35 20 35 6.89 10 3

vT [mm/s] 1.40 0.81 4.46 1.58 2.94 0.257

tT [ms] 0.745 0.458 1.770 0.791 1.290 0.152

As already shown, the settling velocity of particles depends on the density of
both media, on the diameter of the particles and on the viscosity of the �uid.
The application of the previous equations is only valid for a density ratio of
ρp
ρf
> 1 (e.g., particles in air �ow), otherwise the direction of the forces should

be checked.
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Figure 2.5: Settling velocity of the considered particles in air as a function of time.

The oil droplets, selected as reference (REF) have the smallest terminal ve-
locity and reach it fastest. After REF, with a diameter of 3 µm, the expanded
microspheres (EMS)�particles with a diameter of 20 µm have the best �ow
response. The PEG�droplets with the measured mean diameter of 6.89 µm
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have approximately the same �ow response as the acrylonitrile microbubbles
(AMB)�particles with 35 µm diameter. The worst particles are the water
droplets with a diameter of 10 µm and the hollow glass bubbles, illustrating
the quadratic in�uence of the diameter on the settling velocity. Thus, water
droplets cannot be used directly as tracer particles of the air �ow; additional
tracers are needed for the measurement of the continuous phase.

Relaxation time

The �rst part of Eq. (2.7) is a characteristic time and can be used to measure,
how fast the particles react to changes in �ow velocity (Crowe, 2006):

τp =
1

18

ρpd
2

ρfν
. (2.8)

The relaxation time τp corresponds to the time, which is needed for a particle
to reach 63% of its terminal velocity (Kussin, 2004) after a sudden acceleration
of the �uid.

Inserting Eq. (2.8) in Eq. (2.7):

u(t) = uT

[
1− exp

(
− t

τp

)]
. (2.9)

Both Fig. 2.6 and Eq. (2.9) show that the particle velocities approach expo-
nentially their terminal velocities, i.e., a particle with a good �ow response
has got a low relative velocity compared to the continuous �ow and reaches it
rapidly as well. This corresponds to a small relaxation time τp (see calculated
values in Table 2.3).

Stokes number

The Stokes number is the ratio of the particle relaxation time, τp (see Eq. (2.8))
and of the Kolmogorov time scale τK (see Eq. (3.8) later in Chapter 3). It
measures the �ow response of particles in a turbulent �ow in case of a Stokes
�ow around the particle:

Stk =
τp
τK

. (2.10)
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If Stk� 1 the particle reacts with a small time lag to the changes in the �ow
velocities � it follows the pathlines of the �uid. If Stk� 1, the particle velocity
is no more in�uenced by the changes in �ow velocities, i.e., the pathlines
deviate from each other (Crowe et al., 1998).

Shaw (2003) deduces the divergence of the droplet velocity

∇up = −(τp/4)(4eijeij − rijrij) (2.11)

from the solution of a simpli�ed form of the droplet equation of motion. Here,
eij is the strain rate tensor and rij the rotation tensor. The droplet velocity
�eld is divergent for large vorticity and is convergent for large strain rate. This
allows to understand Maxey's conclusion (Maxey, 1987): �particles will tend
to accumulate in regions of high strain rate or low vorticity�. Qualitatively, it
can be said that particles with very small Stk tend to follow �uid streamlines
and particles with very large Stk do not respond to the �uid signi�cantly
during the lifetime of an eddy. Therefore, particles with Stokes numbers ' 1

are e�ectively resonant with dissipation-scale eddies in turbulent �ows.

Table 2.3: Characteristic timescale of the �ow and calculated relaxation times and

Stokes numbers.

AMB EMS HGB PEG WDR REF

τp[ms] 0.152 0.088 0.458 0.163 0.307 0.027

τK [ms] 7.313
Stk (×10−2) 2.08 1.20 6.26 2.23 4.20 0.37

Table 2.3 contains the calculated Stokes numbers, based on the values in Ta-
ble 2.1 and in Table 3.6 on page 62. The values in Table 2.3 are suitable
to compare the �ow response of di�erent particles. The order of the �ow
responses is consistent with that of the settling velocities (Table 2.2): REF,
EMS, PEG, AMB, water droplets (WDR) and �nally the hollow glass bub-
bles (HGB). All values are in the order of magnitude of 10−2. Nevertheless,
HGB and WDR have the largest values and thus are the worst passive trac-
ers (Ouellette et al., 2006). This means that the water droplets are not small
enough to follow the air �ow properly and cannot be used directly as tracer
particles.

2.2.2 Equation of motion for spherical particles

Originally Basset (1888) and later Boussinesq (1903) and Oseen (1927) in-
vestigated the motion of a sinking sphere in a steady gravitational �ow �eld.
Tchen (1947) extended this work for unsteady inhomogeneous �ow �elds:
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Figure 2.6: Illustration of the normalized deviation between di�erent particle and

�uid trajectories (Bordás et al., 2008).

π

6
d3
pρp

dup
dt

= 3πµfdp(uf − up) +
π

6
d3
pρf

duf
dt

+
π

12
d3
pρf

d(uf − up)
dt

+

3

2
d2
p
√
πρfµf

∫ t

t0

d
dt′ (duf − dup)

(t− t′) 1
2

dt′ (2.12)

The resultant force acting on a particle consists of following components:
Stokes drag, acceleration due to unsteady �uid motion, acceleration due to
pressure and virtual mass and the Basset time history force. The Basset�
Boussinesq�Oseen (BBO) equation, based on the terms in Eq. (2.12) and ex-
tended with the external forces (FE) such as gravity or lift force, was described
in details by Hinze (1975):

dup
dt

=
18ν

(ρpρf + 1
2)d2

p

(uf − up) +
3

2(ρpρf + 1
2)

duf
dt

+

9

(ρpρf + 1
2)dp

√
uf
π

∫ t

t0

d
dt′ (duf − dup)

(t− t′) 1
2

dt′ + FE (2.13)

Later, Tchen extended the equation for application in inhomogeneous turbu-
lent �ows. Since then, several works correcting or modifying single terms of the
equation have been published. These are discussed in great detail by Maxey
and Riley (1983) and the up to date motion equation can be written:
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mp
dup
dt

= (mp −mf )g +mf
duf
dt
− 1

2
mf

d

dt

(
up − uf −

1

10
d2
p∇2uf

)
− 6πdpµf

(
up − uf −

1

6
d2
p∇2uf

)
− 6πd2

pµ

∫ t

0

d
dt′ (up − uf −

1
6d

2
p∇2uf )

[πν(t− t′)] 12
dt′

(2.14)

This equation is valid in turbulent clouds as well, including interaction be-
tween particles. The in�uence of collision-coalescence should be considered,
but the typical drop volume fraction in clouds (φ = nd

3π
6 ≈ 10−6) is su�-

ciently small, so that these interactions can �rst be neglected. To understand
the origin of particle clustering in turbulent �ows, it is especially interesting
to deal with the terms containing the relative particle-�uid velocity.

Shaw (2003) de�ned the relative velocity by w = up − uf and divided the
equation of motion by the droplet mass:

dw

dt
= −w

τp
−
ρf
ρp

ẇ

2
−
(

9

2πτp

ρf
ρp

)1/2 ∫ t

0

ẇ(t′)√
t− t′

dt′

+

(
1−

ρf
ρp

)
g −
(

1−
ρf
ρp

)
u̇, (2.15)

where the dotted symbols are the derivatives of the variables with respect to
time t.

He pointed out that the terms without the relative velocities are only the
non�homogeneous terms in the di�erential equation and can therefore be con-
sidered as the external driver for droplet motion.

Further on it is necessary to introduce characteristic scales τK and u0 for
the �uid and w0 for the relative velocity. Then, the droplet acceleration
can be written in a dimensionless form (unknowns marked with a �∗�). The
relative droplet acceleration scale ẇ = (w0/τK)ẇ0

∗, the �uid acceleration scale
u̇ = (u0/τK)u̇0

∗ and the gravitational acceleration can be written: g = |g|g∗.
In this form three natural, dimensionless parameters arise from the equation
of motion:

• The density ratio s = ρf/ρd,

• The droplet Stokes number Stkd = τp/τK ,
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• and the acceleration ratio (Froude number) Fr = gτK/u0.

Using these de�nitions and neglecting terms of order 10−3 and smaller, Eq. (2.15)
can be rewritten (Manton, 1977):

w∗+Stkdẇ
∗+
(

9s

2π
Stkd

)1/2
∫ t∗

0

ẇ√
t∗ − t∗′

dt∗
′
= −Stkd

u0

w0
(u̇∗−Frg∗) . (2.16)

Assuming that the acceleration ratio Fr � 1, the solution of the equation
represents a simple relaxation of the relative velocity to the terminal fall speed.
However, it has been pointed out that even in moderately turbulent clouds
the Lagrangian �uid acceleration u̇ can be of the same order of magnitude as
g. In localized regions it can even greatly exceed it (La Porta et al., 2001). As
a consequence, the full equation must be used, but clearly much of the physics
of droplet motion in a turbulent cloud is included in the Stokes number Stkd
and the acceleration ratio Fr.

Response frequency

Hjelmfelt and Mockros (1966) solved the BBO di�erential equation by means
of the Fourier integral method according to Hinze (1975). Then, the amplitude
ratio between particle and �uid velocity can be de�ned as

η =

√
(1 + f1)2 + f2

2 . (2.17)

The phase angle of both velocities is

β = arctan

(
f2

1 + f1

)
. (2.18)

Here, f1 and f2 are written in dimensionless form, for easier handling

f1 =

[
1 + 9√

2(s+ 1
2
)
NS

] [
1−s
s+ 1

2

]
81

(s+ 1
2
)2

[
2N2

S + NS√
2

]2

+
[
1 + 9√

2(s+ 1
2
)
NS

]2
(2.19)

and
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f2 =

9(1−s)
(s+ 1

2
)2

[
2N2

S + NS√
2

]
81

(s+ 1
2
)2

[
2N2

S + NS√
2

]2

+
[
1 + 9√

2(s+ 1
2
)
NS

]2
, (2.20)

where

s =
ρp
ρf

(2.21)

is the density ratio and

NS =

√
ν

ωd2
p

(2.22)

is the Stokes number of the �uid oscillations (not identical with that of
Eq. (2.10)).
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Figure 2.7: Amplitude ratio η between particle and �uid velocity against oscilla-

tion frequency of the �ow.

The relation between η and the oscillation frequency of the �ow for the consid-
ered tracer particles is presented in Fig. 2.7. The dependency of the frequency
limit on diameter is shown in Fig. 2.8, where the calculated frequency limits for
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Figure 2.8: Limit frequency versus particle diameter. The amplitude ratio η is

�xed to a value of 95% .

the applied diameters are marked in the diagram with a �?� and summarized
in Table 2.4.

Table 2.4: Frequency limits of a �ow, in which the particles can react to changes

with an amplitude ratio of 95% .

Diameter [µm] flimit [Hz]

AMB 35 283

EMS 20 514

HGB 35 98

PEG 6.89 294

WDR 10 163

REF 3 1 857

In Table 2.4, it can be seen that the oil fog with a diameter of 3 µm has got
the best �ow response. The second best particles are EMS-particles, even if
they have a diameter one order of magnitude larger. EMS-particles are able
to follow �ow oscillations of over 500 Hz. The real oil fog tracer particles are
the second worst particles in the comparison. Only HGB and WDR are even
worse and are hence non�suitable as tracer particles for the gas �ow.
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2.2.3 Computational comparison

Beyond solving transport equations for a continuous phase, CFD softwares are
also capable of simulating a discrete, second phase by means of Lagrangian
particle tracking, dispersed in the continuous �ow medium. In the present
case, the particle trajectories are computed by means of the CFD software
Fluent R©. Drag, virtual mass and gravity are considered. In addition the
acceleration due to unsteady motion of the �uid is also taken into account
for the dispersion of the particles.

The Lagrangian discrete phase model in Fluent R© follows the Euler�Lagrange
approach. The �uid phase is treated as a continuum, for which the time
averaged Navier�Stokes equations are solved. Whereas the disperse phase in
form of particles, bubbles or droplets is tracked in the already computed �ow
�eld. The disperse phase can exchange momentum, mass and energy with the
�uid phase.

A Fluent R© simulation was started to numerically investigate the �ow response
of the considered tracer particles. The steady air �ow was �rst computed
using a standard k − ε turbulence model. The di�erent tracer particles were
then injected at the same position (0, 0, 90) mm, with an initial velocity of
the air �ow at that position. Inlet boundary condition was de�ned by the
measured x-velocities and the corresponding turbulent kinetic energy at each
measurement point. Outlet boundary condition was a �xed pressure. The
remaining four sides of the rectangular volume were de�ned as slip walls,
since only the measurement section was modeled, without any in�uence of
the walls of the test section. After convergence the resulting velocity �eld is
presented in Fig. 2.9.

Trajectories of individual particles are then calculated on top of the continuous
phase. The applied model is suitable for the current case as long as the number
density of the particles is so low that there is no interaction among the particles
and no in�uence of the particles on the gas phase.

Motion equation for the particles

Fluent R© computes the trajectory of a particle of the disperse phase by integra-
tion of the force equilibrium on the particle considering a Lagrangian frame
of reference. This force equilibrium equates particle impulse with the forces
acting on the particle and can be written (for instance in the x�direction) as:

dup
dt

= FD(uf − up) +
gx(ρp − ρf )

ρp
+ Fx , (2.23)
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Figure 2.9: Iso�surfaces of the simulated �ow �eld in the test section of the wind

tunnel.

where Fx is an additional acceleration term and FD(uf −up) is the drag force
acting on the particle per unit mass.

FD =
18µ

ρpd2
p

CDRe
24

. (2.24)

Here Re is the relative Reynolds number, de�ned by

Re ≡
ρdp|uf − up|

µ
. (2.25)

Equation (2.23) includes gravity as well as external forces (Fx), which might
be signi�cant for special conditions.

Fx =

(
ρf
ρp

)
up
∂uf
∂x

(2.26)

Further forces may be important in the case of submicron particles, rotat-
ing reference frames or strong thermal e�ects. Hjelmfelt and Mockros (1966)
investigated the in�uence of neglecting the history term. For the present
Stokes numbers, calculated from particle properties and frequency limit (Ta-
ble 2.4), the di�erence between the original and the simpli�ed model is negli-
gible. Therefore, the history term can be safely neglected in the equation of
motion. The simpli�ed BBO-equation (without the time history term) can be
written

dup
dt

= a(uf − up) + b
duf
dt

, (2.27)
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measurements and tracers

where

a =
18ν

d2
p(
ρp
ρf

+ 1
2)

(2.28)

b =
3

2(ρpρf + 1
2)
. (2.29)

Only a part of this equation (see Eq. (2.26)) can be activated by default in
Fluent R©. The remaining part, which reads

Fx =
3

2(s+ 1)

duf
dt
− 9ν

s(s+ 1)d2
p
(uf − up) , (2.30)

has been additionally implemented in form of a user de�ned function (UDF),
so that an accurate computation of the particle trajectories becomes possible.
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Figure 2.10: Dimensionless deviation of trajectories from the ideal one for the

considered tracer particles.

Figure 2.10 depicts the dimensionless deviation of particle trajectories from
the ideal, gas �ow pathline. x values are normalized by the length of the
measurement section (0.4 m) and the deviation from the ideal trajectory by
the length of the already covered path. Simulation results are in agreement
with the previously found order of �ow response, showing the large deviations
of water droplets and HGB particles.

Final conclusions from this section, with regard to future wind tunnel exper-
iments, are that water droplets with a mean diameter of ≥ 10 µm are clearly
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unsuitable to measure any �ow property of the continuous gas phase. Flow ve-
locities should be measured separately by means of dedicated tracer particles
with good �ow response.

Conclusions

In this chapter basics of light refraction and two possible solutions for its
correction or elimination have been presented, including practical applications
as well. Another important topic, the selection of suitable tracer particles
has also been discussed. Flow response of several tracer materials has been
quanti�ed and it can be concluded that

• the Stokes number is useful for a �rst comparison, but not enough for a
quantitative statement concerning �ow response;

• the �ow frequency de�nes whether a particle is a suitable tracer or not;

• water droplets larger than 10 µm are not suitable tracers. Therefore,
the velocity of the continuous phase should be measured with separate
tracer particles;

• most suitable tracers would be the REF particles used as reference in
the comparison presented in this chapter. However, own measurements
showed that the actually generated particles (PEG) have larger diame-
ter. Considering cost, cleaning and disposal problems, the PEG tracers
(with the smallest possible diameter) are found to be the most suitable
as tracer particles and are still appropriate for the present conditions.
Therefore, these tracers are used for both PIV and LDV measurements
during further measurements.

Chapter 3 now describes the wind tunnel with the injection system, the four
measurement con�gurations (M1�M4) considered in this work and the ap-
plied measurement methods.





Chapter 3

Experimental setup

In this chapter the experimental setup is introduced in details:

• the two�phase wind tunnel with its control and injection system includ-
ing our newly developed software;

• the di�erent con�gurations used for the generation of controlled �ow
structures and turbulence

• and the applied optical, non�intrusive measurement techniques.

3.1 Two�phase wind tunnel

For the investigation of disperse two�phase (water droplets in air) �ows, a spe-
cial two�phase wind tunnel is available in the laboratory of Fluid Dynamics &
Technical Flows (Fig. 3.1). It is a fully computer�controlled, Göttingen�type
wind tunnel. Operation with a closed test section enables the investigation
of two�phase (air/liquid) mixtures in the test section (see Fig. 3.2) with the
following dimensions (H × W × L): 500 × 600 × 1 500 mm. In the region
of the measurement section, the walls of the closed test section are optically
transparent (450 × 500 mm) in the visible spectrum. These windows made
non�intrusive measurements possible, which was indispensable for a high qual-
ity experimental investigation of such �ows.

Air �ow velocity can be adjusted from 0.3 to over 50 m/s, with an incremental
increase of 0.03 m/s, limited by the electronic regulation. Turbulence intensity
of the undisturbed air �ow in the measurement section was below 0.5%. Op-
eration with pulsating velocity is also possible up to a frequency of a few Hz.
This enables the arti�cial increase of turbulent kinetic energy through larger
�uctuating velocities with a relatively long time scale (several 100 ms up to
several seconds). A detailed summary about wind tunnel parameters can be
found in Appendix A on page 123.
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Figure 3.1: Göttingen�type two�phase wind tunnel with closed test section. The

test section is shown in Fig. 3.2 in detail.

3.1.1 Injection system

The disperse phase can be injected as sprays through di�erent nozzles by
means of eccentric pumps, type MD 006�24, of which the RPM was set with
the help of a frequency regulator. The maximal volume �ow rate of the pumps
was 50 l/h, which could be reduced by manually adjusting the bypass valves
to the required volume �ow rate. Finally, the values are electronically set to
a certain value with a programmed Proportional�Integral�Di�erential (PID)
regulation in LabView R©. Both pressure atomizers for larger drops and air�
assisted atomizers for smaller droplets can be used to generate the required
droplet spectra. The system can also accommodate a double atomizer con�gu-
ration. Thus, not only monomodal but also bimodal droplet size distributions
may be generated. Air�assisted atomizers are systematically used to investi-
gate cloud droplet interactions.

First measurements showed that placing the nozzle farther from the entrance
of the test section leads to a reduced in�uence of the injection system on
the velocity distribution. The farther the nozzle is, the smaller the deviation
is from the undisturbed �ow velocity. Therefore, to decrease the in�uence
of the injection system (the wake of the supporting cylinder), the farthest
hatch was selected, with a distance between nozzle and position x = 0 (inlet
of the measurement section) of 630 mm. Since the in�uence of the support
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Figure 3.2: Transparent test section with optional passive grid and cylindrical blu�

body. The coordinate system and measurement planes are marked as

well.

of the injection system could be noticed especially in the upper half of the
measurement section, the measurement area is �nally limited to the lower
half of the cross�section (see Fig. 3.4).

Originally, the selected nozzle had got a marked six�hole spray pattern caused
by the six ori�ces (Fig. 3.3). To reduce this e�ect, the water was injected in
counter��ow direction. In this way the droplets were more homogeneously
distributed, the relative velocity between continuous and disperse �ow was
minimized, and the six�hole pattern was reduced before entering the mea-
surement section. Finally, the velocity inhomogeneity of the air �ow without
droplet injection at the entrance of the measurement section was then below
±5%, with a turbulence intensity below 7% (mean value of 2.4%).

To create the relatively small droplets found in cumulus clouds, an air�assisted
atomizer was required. After several tests, this requirement could be �nally
realized successfully by means of a full cone pneumatic atomizing nozzle
166.208.16.12 with liquid pressure principle from the co. Lechler, applying
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(a) spray head (b) injected spray

Figure 3.3: Close view of the spray head (left) and injected spray (right).

Figure 3.4: Mean axial velocity (left) and turbulence intensity (right) distribu-

tion of the air �ow, without droplet injection at the entrance of the

measurement section � 630 mm behind the nozzle (x = 0 mm). The

circles show the in�uence of the injection and the dashed rectangle the

selected measurement section, with minimal in�uence of the injection

system.

an air gauge pressure of 1.2 bar. To keep the inlet values constant, a PID�
controller was programmed. In this way it was possible to create a steady
water volume �ow rate, through which the droplet diameter remained con-
stant during full�day measurements.

Measurements by means of PDA showed that the mean droplet diameter (d10)
of the generated water spray was around 12.5 µm as shown in Fig. 3.5. This
is a typical value in cumulus clouds. Bhatia et al. (1988) showed that a
log�hyperbolic (LH) distribution is suitable for the characterization of sprays,
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though the stability of parameter estimation using the four�parameter�LH
distribution was limited. This problem was discussed by Xu et al. (2008),
and explanations were given for its causes. It was concluded that the three�
parameter�LH distribution circumvents these problems, while yielding a nearly
equally good representation of the data for a large variety of applications. For
the reconstruction of the present DSD a log�normal distribution function ap-
peared perfectly suitable, as discussed in Hagemeier et al. (2008) (Fig. 3.5).
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Figure 3.5: Droplet size distribution and suitable log�normal distribution function

at x = 0, y = −5, z = 90, measured by PDA.

If one estimates the surface integral of the velocity at the inlet plane of the
measurement section (cross�section of the wind tunnel: 0.3 m2), the volume
�ow rate of the air phase can be calculated. Q̇air =

∫
A
udA = U A = 0.75 m3/s

The product of the required LWC (2 g/m3) and the volume �ow rate of the
air phase in the wind tunnel divided by the water density gives the water
amount per unit time that should be injected (0.09 l/min in this case). As
the injection took place in counter �ow direction, not all the droplets could
turn around with the air �ow and some of them deposited on the walls before
reaching the measurement section. This fact should also be taken into account
in order to inject the right amount of water. During a measurement duration
of 10 hours, 6 liters of extracted water could be found in the water vessel right
before the test section. This means a water �ow of 0.01 l/min. Summing up
these two values, the required water amount was 0.1 l that should be injected
in a minute. This value has been used in practice for all measurements.
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3.1.2 Control system

The wind tunnel is originally equipped with the measurement instruments
listed in the following and with a control software. However, in order to
improve �exibility and to take into account our special requirements (two�
phase measurements, possibly pulsatile �ows) the commercial control software
was replaced by our own, programmed in LabView R©.

Table 3.1: Main properties of the AK4a A/D converter and ADA2 A/D�D/A con-

verter.

AK4a A/D converter

Voltage source: 24 V

Output: RS232 port
Connected probes: Ambient pressure transducer

Temperature
Relative humidity
∆pV K (Pressure in stabilization chamber)
ADA2 A/D, D/A converter

Voltage source: 24 V

Output: RS232 port
Connected probes: pdiff (Pressure drop in the venturi)

Analog out (0 . . . 10 V) for the frequency regulator

The A/D�D/A system (see properties in Table 3.1.) read out the probes and
controlled the RPM of the fan by means of a frequency regulator through an
RS�232 port. Using the probe information, the velocity could be calculated
with Eq. (3.1). An additional USB A/D�D/A converter (type NI�6008 USB)
was mounted to read the volume �ow rate of the injected water and to set
the frequency regulator of the water supply pumps of the nozzles. A PID�
controller was programmed to continuously control the RPM of the pumps
according to the required volume �ow rate. The PID�controller of the pumps
was a part of the wind tunnel control software, programmed in LabView R©.
Properties of the electric motor can be found in Table A.1 on page 126.

The ambient pressure p∞ was measured by a PTB�100�A pressure trans-
ducer (properties are summarized in Table 3.2). It is a Si�capacitive abso-
lute pressure transducer, with high accuracy and durability. The pressure
(800 . . . 1 060 hPA) could be read out through an analog output of 0 . . . 5 V.

The converging part before the measurement section of the wind tunnel could
be assumed as a venturi. Thus, the mean velocity was determined from the
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Table 3.2: Main properties of the pressure transducer and the hygro�thermometer.

Pressure transducer � Type 3.1158.00.073

Measuring range: 800 . . . 1 060 hPA

Electric output: 0 . . . 5 V

Temperature range: −40 . . .+ 60◦C
Humidity range: non�condensing

accuracy

Linearity: ±0.25 hPa

Hysteresis: ±0.03 hPa

Reproducibility: ±0.03 hPa

Calibration error: ±0.15 hPa

Total accuracy at 20◦C: ±0.3 hPa

Hygro�thermometer � Type: 1.1005.54.161

Humidity

Electric output: 0 . . . 10 V

Measuring range: 0 . . . 100% relative humidity
Deviation: ±2% rel. humidity (5 . . . 95%)
Setting time: < 90 s

Temperature

Electric output: 0 . . . 10 V

Measuring range: −30 . . . 70◦C
Deviation: ±0.2 K

Setting time: < 90 s

standard working principles of a venturi, using two pressure transducers (type
SETRA) with the parameters presented in Table 3.3:

Ua =

√
2∆pdiff

p∞
T Rh

, (3.1)

where the speci�c gas constant of the humid air is calculated using

Rh =
Ra

(1− ϕ e∗

p∞
)(1− Ra

Rv
)
, (3.2)

with

e∗ = 610.78 exp

(
17.08085 ϑ

234.175 + ϑ

)
. (3.3)

The properties of humid air were computed as already described in Sec-
tion 1.3. All required values for these equations are measured by means of the
previously described sensors of the wind tunnel.
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Table 3.3: Main properties of the SETRA pressure transducers.

Typ: SET�D239�2KP�U

Measuring range: 0 . . . 2 kPa

Electric output: 0 . . . 5 V

Accuracy: ±0.14%

Pulsating �ow

Using the software developed to control the wind tunnel, it was possible to
change the velocity in time, using a periodical (e.g., sinusoidal) �uctuation.
The response function of the velocity of the wind tunnel was, however, di�erent
from that of the input voltage function of the electric motor (see Fig. 3.6).
For low frequencies (f < 0.1 Hz), except from the phase shift, a good response
function was obtained (Fig. 3.6).

(a) square input signal (b) sinusoidal input signal

Figure 3.6: Measured velocity at the entrance of the wind tunnel test section for

di�erent input voltage functions vs. time during pulsed operation.

Using this feature, the velocity �uctuation could be increased in a controlled
manner, which was useful to reach the targeted values for �uctuations and
dissipation rate ε. Turbulence levels are characteristically moderate in cu-
mulus clouds, with a turbulent kinetic energy (TKE) in the order of 1 m2/s2.
This means typical �uctuation velocities around 0.8 m/s. The dissipation rate
varies by several orders of magnitude in turbulent clouds but is still relatively
small (ε = 0.01 . . . 0.1 m2/s3) compared to many engineering �ows. It would be
appropriate to obtain similar properties in the test section of our wind tunnel
for the di�erent con�gurations discussed next.
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3.2 Generation of controlled structures

and turbulence properties

The experiments discussed in this work were based on four di�erent con�gu-
rations, with various properties: M1 � without any turbulence modi�cation;
M2 � with a passive grid; M3 � with a blu� body and M4 � with both grid
and blu� body and a dual spray con�guration (see Figs. 3.7 and 3.8). The
passive grid applied in M2 was a rectangular one, with a grid size of 25 mm

and rod thickness of 5 mm (Fig. 3.7). The solidity ratio was 36%. The blu�
body in M3 was a cylinder with a diameter of 20 mm (Fig. 3.7), �xed at the
height of z = +90 mm perpendicular to the main �ow, 150 mm upstream of
the measurement section (see also Fig. 3.2 on page 43).

(a) grid and cylinder (b) double injection head

Figure 3.7: Photos of the grid, of the cylinder and of the dual spray injection

mounted in the test section of the wind tunnel.

All measurements carried out here were optical and non�intrusive so that the
�ow was not in�uenced by the measurement instruments.

In the measurement section di�erent measurement planes were investigated:
three perpendicular (x = 0, 200 and 400 mm) and one parallel (y = 0) to
the main �ow direction, as shown in Fig. 3.2 on page 43. The �rst plane
(x = 0, 540 mm downstream the entrance of the test section) was measured
particularly thoroughly, since this is the most important one to set boundary
conditions (�ow inlet) for associated numerical simulations (Bordás et al.,
2011b).
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Figure 3.8: Schematics of con�gurations M1�M4, respectively.

3.2.1 Con�guration M1 � Without turbulence modi�ca-

tion

The con�guration M1 was the basic con�guration, without any turbulence
modi�cation. However, the spray injection still occurred in counter �ow di-
rection, thus generating higher velocity �uctuations compared to a pure air-
�ow. The measured mean velocity of the air �ow in this con�guration was
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Figure 3.9: Con�guration M1.

U = 2.45 m/s. The Reynolds number calculated with the hydraulic diameter
of the wind tunnel was

Re =
U dH
ν

= 8.7 104 , (3.4)

The measured �uctuation of the air �ow velocity in main �ow direction is
u′ = 0.25 m/s. With this, the calculated mean turbulence intensity is 10.9%.
The mean kinetic energy of the �ow is:

k =
3

2
u2 = 0.09 m2/s2 , (3.5)

assuming isotropy. The length scale characterizing the largest eddies is as-
sumed to be l = 1

6dH
∼= 0.1 m, deduced from the boundaries of the energy�

containing range of the turbulent cascade (Pope, 2000) and involving the
hydraulic diameter dH of the wind tunnel. With that, the turbulent Reynolds
number can be calculated:

Rel =
u′l

ν
= 2 000 . (3.6)
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The dissipation rate of the turbulent kinetic energy can be estimated using
theoretical relations (Sreenivasan, 1995):

ε =
k3/2

l
= 0.287 m2/s3 . (3.7)

The smallest time scale of the �uid turbulence, the Kolmogorov time scale

τK =
(
ν

ε

)1/2

= 7.31 10−3 s (3.8)

can be de�ned with the help of the �uid viscosity and of the average rate of
turbulent energy dissipation per unit mass. The associated microscale is the
Kolmogorov length scale

lK =

(
ν3

ε

)1/4

= 3.35 10−4 m , (3.9)

which is the smallest length scale in a turbulent �ow.

For the complete characterization of a �uid �ow it is important to de�ne
further the Taylor length scale and turbulent Reynolds number. The Reynolds
number calculated by means of the Taylor scale λg can be written according
to Voth et al. (2002)

Reλ =
u′ λg
ν

=

(
15u′l

ν

)1/2

= 120 , (3.10)

where λg could be estimated using (Pope, 2000):

λg =
√

10l
2/3
K l1/3 = 7.08 10−3 m . (3.11)

The previously calculated values are based on theoretical assumptions. They
will be compared later in Chapter 5 with those that could be measured.

3.2.2 Con�guration M2 � Passive grid

The main objective of the con�guration M2 (Fig. 3.8) was to generate as far
as possible homogeneous isotropic turbulence in the test section of the two�
phase wind tunnel, with well de�ned �uctuation velocities, kinetic energy,
dissipation rate and turbulent scales, approaching the conditions in clouds.
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These typical values could be found in the literature, e.g., in Shaw (2003) or
in Pruppacher and Klett (1997).

The most signi�cant variables that also determined the turbulent scales were
the turbulent kinetic energy (TKE) and its dissipation rate ε. The typical
Kolmogorov length (lK ∼= 10−3 m) and time (τK ∼= 10−2 s) scales can be
calculated from the energy dissipation rate and the kinematic viscosity of air,
which is in the order of ν = 10−5 m2/s. To achieve these values a square mesh
grid was the most appropriate, which should be mounted upstream the test
section of the wind tunnel. In the literature it was found that this kind of
grid was an e�ective tool to create the required �ow conditions. However, to
plan the proper geometry, a relatively high e�ort was necessary as discussed
next. The results of these estimations remained questionable, as they were
based on homogeneous inlet velocity distribution.

Figure 3.10: Con�guration M2.

Turbulent kinetic energy and its dissipation

Homogeneous and isotropic turbulence and its decay are regarded as one of
the fundamental problems of �uid dynamics and has been the subject of ex-
tensive theoretical and experimental studies for most of the last century. Ex-



54 Chapter 3. Experimental setup

periments usually studied grid�generated turbulence in wind tunnels as it de-
cayed downstream (e.g., Mohamed and Larue (1990); Mydlarski and Warhaft
(1996); Comte-Bellot and Corrsin (1966)). Homogeneous, isotropic turbulence
is found when each of the three �uctuating velocity components are invariant
during an arbitrary rotation of the principal axis (McComb, 1992):

u′2 = v′2 = w′2 , while u′v′ = v′w′ = u′w′ = 0 . (3.12)

Homogeneity indicates that mean properties do not vary with absolute posi-
tion in a particular direction. The additional restriction to isotropy implies
independence of orientation as well as independence of position in the �uid.

The skewness of the velocity

S(u) =
1
n

∑n
i=1(ui − U)3(

1
n

∑n
i=1(ui − U)2

)3/2
(3.13)

can be used as the main indicator for the homogeneous isotropic turbulence
as it was described in the work of Mohamed and Larue (1990). It is the
statistical indicator for asymmetry or tendency for a particular �uctuating
value to be greater or less than the mean. In theory the value of skewness
should approach zero in homogeneous isotropic turbulence.

It is well known that decaying grid turbulence leads to di�erent regimes (Skr-
bek et al., 2000). For small wave numbers the turbulent energy spectrum, E
is generally considered as being in the form of

E(Nλ) = A N2
λ , (3.14)

where Nλ is the wave number and A can be assumed to remain constant (Stalp
et al., 1999). For large wave numbers the relation for the velocity �eld can be
written, according to the Kolmogorov�Obukhov�Corrsin argument (Warhaft,
2000):

E(Nλ) = Cε2/3N
−5/3
λ , (3.15)

where C is the dimensionless Kolmogorov constant and ε = −dE/dt is the
energy dissipation rate. The limiting wave number between the two regions
is Nλe(t) = 2π/le(t), where le(t) is the energy�containing eddy length scale,
around which most of the turbulent energy resides. It is assumed by Skrbek
and Stalp (2000) that for homogeneous isotropic turbulence the integral length
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scale is equivalent to the energy containing length scale, le = l. As the turbu-
lence decays, the energy containing length scale grows (Von Kármán and Lin,
1987) until it saturates roughly at the size of the channel (Borue and Orszag,
1995) and remains constant thereafter as it was shown by Stalp et al. (1999)
as well. Here, it is also proven that the initial energy containing length scale
le0, is typically much smaller than the size of the channel. The saturation of
the energy containing eddies in wind tunnel experiments is unlikely, as the
required distance (several meters) is noticeably longer than the test section of
most wind tunnels (∼=1 m). In our case, this can be calculated from the mean
velocity in the �ow: 2.5 m/s and the saturation time

ts =
11

5

(
dH
2π

)5/2

C
3/2
3D A

−1/2 ∼= 13 s , (3.16)

using the equation derived from the model described by Stalp et al. (1999).
Here dH is the hydraulic diameter of the wind tunnel, C3D = 1.3 is the three�
dimensional Kolmogorov constant (�prefactor in three�dimensional spectrum� (Sreeni-
vasan, 1995)) and the constant A = 3 10−7 m5/s2, which is estimated from the
energy spectrum, with Eq. (3.14). It comes to ts 2.5 m/s = 33 m � 1 m, so
that no saturation can be observed in our case.

The turbulent motion is sometimes clearly statistically homogeneous 20 mesh
lengths (M) downstream of the grid (Hinze, 1975) but a factor of 40 is con-
sidered as a safer limit (Corrsin, 1963). In the case of our wind tunnel ex-
periments, it must be assured that the ratio is between 20 and 80, as also
chosen by Antonia et al. (1998). The lower limit was also con�rmed to be
adequate by the measurements of Mohamed and Larue (1990), using the cal-
culated skewness. The downstream length x/M is the ratio between the axial
distance behind the grid x and the grid mesh M . The actual measurement
section was located between 520 and 1 000 mm downstream the grid in the
current case. Thus the minimum value of x is 520 mm. The minimum x/M

value allowed here was 20, with a high probability of homogeneous turbulence,
thanks to the selected grid type. The maximum measurement distance was
1 000 mm, where the ratio should not be higher than 80. So the grid mesh
should be between 1 000

80 < M < 520
20 , i.e., 12 < M < 26 mm.

There are standard sizes available on the commercial market, with the follow-
ing mesh sizes: 25, 20, 15, 14 mm, all in the mentioned region. The Reynolds
numbers based on the mesh length ReM and the values required to calculate
it are summarized in Table 3.4, for a mean velocity of 2.93 m/s, corresponding
to the con�guration M2 (Table 3.6).
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Table 3.4: Main properties of the considered passive grids. The �nally selected

one is marked as bold.

Grid Rod Solidity Mesh Minimum Maximum
size thickness ratio Re-number distance

M [mm] dr [mm] σ [−] ReM [−] x/M [−]

14 3.2 0.40 2 672 37 71

15 5.0 0.56 2 863 35 67

20 5.0 0.44 3 818 26 50

25 5.0 0.36 4 772 21 40

The mesh with M = 15 mm was excluded, since its solidity ratio is not in
the proposed region of 0.34 to 0.44 (Mohamed and Larue, 1990) and a higher
solidity value would possibly lead to instabilities (Comte-Bellot and Corrsin,
1966). The grid with M = 25 mm was �nally selected, because it should lead
to the highest velocity �uctuation and thus dissipation rate (see Table 3.5).

In the published literature, nearly homogeneous and isotropic �ow is usually
assumed to be reached behind a grid, where the created wakes merge together
after an initial region of high inhomogeneity and anisotropy. The point of
separation on the grid is sensitive to very small changes in the geometry of
the intersections, or to surface roughness (Grant and Nisbet, 1956). This is
probably why the anisotropy of square grids is much lower than that of other
types (Comte-Bellot and Corrsin, 1966). Besides that, when the mesh spacing
M multiplied with the solidity ratio σ becomes larger, the turbulence intensity
behind the grid is increased. For these reasons a rectangular grid is preferred
here.

As described by Tennekes and Lumley (1972), in the homogeneous and isotropic
region the equation for the mean turbulent kinetic energy (TKE) can be sim-
pli�ed as follows:

U

(
dq2

dx

)
= −ε , (3.17)

where q2 = 1
2(u′2 + v′2 +w′2) ∼= 3

2u
′2 is the TKE per unit mass. The equation

can also be written using U = dx/dt (George, 1992):

d
dt

(
3

2
u′2
)

= −ε . (3.18)
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The validity of Eq. (3.18) has also been checked and a very good agreement
was found by Ducci et al. (2002). Nevertheless, it is expected that this form of
the TKE equation will yield inaccurate estimates of the dissipation rate (Mo-
hamed and Larue, 1990), owing to the anisotropy and inhomogeneity near
the grid. A second and independent estimate of the dissipation rate, ε was
obtained using the measured time derivative of the downstream velocity, Tay-
lor's hypothesis and the assumption of local isotropy (Mohamed and Larue,
1990; George, 1992):

ε =
15ν

U2

(
∂u

∂t

)2

= 15ν
u2

λ2
g
. (3.19)

Since the �ow is not locally isotropic near the grid, this estimate is again
expected to be inaccurate in the grid region. Varying the Reynolds number
by changing the �ow velocity or grid size directly a�ects the dissipation of
TKE and ultimately the location where the �ow approaches homogeneity and
isotropy. For a �xed grid size, higher Reynolds numbers produce eddy sizes
with larger characteristic time scales that decay over a greater period of time.
In contrast, decreasing the Reynolds number produces smaller characteristic
time scales, which require less time to decay. Based on this argument, it
may be implied that the onset of homogeneous isotropic �ow is related to the
dissipation rate of TKE.

In the work of Ducci et al. (2002) a dimensionless dissipation rate εMU3 also
appears, which is presented in a diagram considering previous works as well.
From this the dissipation rate can be predicted for di�erent types of grids.

Other approaches, especially for �ows behind a grid where the solidity is
considered are published in Özyilmaz et al. (2009). Here a porosity�dependent
correction factor motivated by Laws and Livesey (1978) can be found:

cg =
β2

1− β2
, (3.20)

where β = (1−d/M)2 is the mesh porosity. The solidity ratio can be written,
using the porosity: σ = (1−β). Özyilmaz (2010) presented another correction
built with the mesh spacing, M and rod diameter, dr:

cg =

(
1− dr

M

)−2.6

. (3.21)
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These correction factors can be used to correct the predicted energy dissi-
pation rates due to geometrical properties of the considered passive grids.
The two equations deliver correction factors of the same order of magnitude.
Since Eq. (3.21) has been recently presented, it is used for the calculations in
Table 3.5.

Table 3.5: Predicted mean values for the considered passive grids at the entrance

of the test section.

Grid Integral r.m.s. Energy

size length scale velocity dissipation rate

M [mm] l [mm] u′ [m/s] ε [m2/s3]

(3.24) (3.25) (3.23) (3.7) with ref.a correctedb

14 7.5 8.7 7.0 10−2 4.0 10−2 4.1 10−2 2.0 10−2

15 7.8 11.0 7.4 10−2 3.7 10−2 4.9 10−2 1.3 10−2

20 9.1 10.0 8.9 10−2 7.2 10−2 7.1 10−2 3.4 10−2

25 10.0 9.3 1.0 10−1 1.2 10−1 9.3 10−2 6.8 10−2

afrom Ducci et al. (2002)
bwith Eq. (3.21)

Decay of turbulence

To characterize the turbulence and its decay behind the grid as a function of
the distance from the grid divided by the mesh spacing, the following equation
can be written according to Taylor (1935):

u′2

U2
= A

(
x

M
− x0

M

)n
, (3.22)

with x0 being the so�called virtual origin. The coe�cients A and n depend
on the properties of the grid, and n de�nes the decay of turbulence. In the
literature, most of the values for n are around 1.3 (e.g.: Mohamed and Larue
(1990); Zhou et al. (2000)) and the virtual origin x0 can be assumed to be
equal to the x�position of the grid, possibly plus a few times M . The value of
the coe�cient A is mostly between 0.04 and 0.06. A wind tunnel experiment
by Sreenivasan et al. (1980), very similar in dimensions to the existing one in
our group, identi�ed the following relations for the energy and the longitudinal
integral length scale, l:

u′2

U2
= 0.04

(
xd
M
− 3
)−1.2

(3.23)
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and

l

M
= 0.13

(
xd
M
− 3
)0.4

. (3.24)

From Eq. (3.23), the value of the �uctuation velocities can be computed and a
value below 0.1 m/s is predicted at x = 0, where xd = 520 mm. With Eq. (3.24)
the length scale can be calculated at the beginning of the measurement section
(x = 0), which is around l ∼= 10−2 m for the meshes considered in Table 3.4.
The length scale should be considerably larger than the maximum diameter of
the droplets. This condition is ful�lled here. The integral scale of turbulence
generated by di�erent grids has been experimentally measured in the work
of Mikhailova et al. (2001). Here, a general equation is given for the calculation
of the integral scale depending on the mesh properties:

l

d
= 1.95

x

dr

0.5
Re−0.28 . (3.25)

Values predicted by these equations for the grids mentioned before can be
found in Table 3.5, considering a mean velocity of 2.93 m/s (Case M2).

The two approaches for the calculation of the energy dissipation rate showed a
relatively high deviation. However, for the �nally selected grid (M = 25 mm)
both values are approximately in the right order of magnitude, as observed in
clouds (ε ∼= 0.001 . . . 0.1 m2/s3). Note that the measured values are expected to
be di�erent, as these theoretical estimations assume a homogeneous inlet �ow,
which was not the case in the wind tunnel experiments. Further properties
based on theoretical assumptions are collected in Table 3.6 on page 62.

3.2.3 Con�guration M3 � Blu� body

The con�guration M3 contains, additionally to the con�guration M1, a blu�
body. The cylinder, with a diameter of 20 mm is located horizontally at the
height of z = 90 mm, and at x = −150 mm perpendicular to the main �ow
direction (see layout in Fig. 3.11). The eddy length scale is assumed to be
0.1 m, similar to that of the con�guration M1.

Measurements were carried out with a main �ow velocity of U = 2.32 m/s,
corresponding to a cylinder�based Reynolds number of

Re =
U D

ν
= 2 960 . (3.26)
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Figure 3.11: Con�guration M3.

The Strouhal number, or non�dimensional shedding frequency (Norberg, 2001),

St =
fs D

U
(3.27)

can be used to predict the frequency of the detaching vortices behind the
cylinder. The predicted frequency is 24.36 Hz, according to the equation
above (using St = 0.21, according to Baranyi et al. (2009)). The distance
between two shedding vortices is expected to be

lv =
U

fs
= 9.52 cm . (3.28)

The shedding vortices should increase locally the velocity �uctuations and
thus may increase the e�ect of preferential concentration (Shaw et al., 1998).
In this way an increased collision rate is expected in the wake of the cylinder.

All calculated properties based on theoretical assumptions are collected in
Table 3.6.
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Figure 3.12: Con�guration M4.

3.2.4 Con�guration M4 � Double injection

This con�guration contains both the passive grid and the blu� body and addi-
tionally an air assisted atomizer in a symmetrical double con�guration (both
spray heads are installed at the height of z = 0 mm, y = −150 and y =

+150 mm, respectively). One atomizer was the same as in case of the con�g-
urations M1�M3 and the additional one was a Lechler 154.104.16.14, with
20◦ cone angle and an ori�ce diameter of 0.7 mm. The droplets produced
by this atomizer are expected to be larger than those of the other atomizer.
Each nozzle had an own supply pump allowing to set an individual volume
�ow rate. The aim of this con�guration was besides the simultaneous appli-
cation of grid and blu� body to create a broader droplet size distribution and
increase droplet collision events. The integral length scale is here expected
to be smaller than in case of the con�gurations M1 and M3, because of the
smoothing e�ect of the grid. The eddy length scale is nevertheless chosen to
be larger, because of the shedding vortices in the wake of the cylinder. Thus
the length scale is assumed to be the diameter of the cylinder l = 0.02 m.

Calculated properties of all con�gurations are summarized in Table 3.6. Here,
the in�uence of di�erent turbulence modi�cation tools can be noticed.
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Table 3.6: Summary of theoretically predicted values for the con�gurations M1�

M4.

Property Cfg. M1 Cfg. M2 Cfg. M3 Cfg. M4

U [m/s] 2.45* 2.93* 2.32* 2.92*

u′ [m/s] 0.25* 0.1** 0.33* 0.35*

k [m2/s2] 0.09 0.02 0.16 0.18

l [m] 0.1 0.01 0.1 0.02

ε [m2/s3] 0.287 0.068 0.66 3.94

lK [m] 3.35 10−4 4.80 10−4 2.72 10−4 1.74 10−4

τK [s] 7.31 10−3 1.50 10−2 4.82 10−3 1.97 10−3

λg [m] 7.08 10−3 4.18 10−3 6.16 10−3 2.68 10−3

ReH 8.7 104 1.0 105 8.2 104 1.0 105

Rel 2.0 103 80 2.6 103 1.3 103

Reλ 120 30 130 60

3.3 Measurement techniques

3.3.1 LDV/PDA system for velocity and droplet diame-

ter measurements

During this project di�erent non�intrusive optical measurement techniques
were applied to determine the properties of both phases. A LDV/PDA sys-
tem was used to measure the instantaneous velocity of the air and for the
instantaneous velocity and the diameter of the disperse phase, respectively.
LDV is a well�established technique that gives information about �ow velocity.
Its non�intrusive principle and directional sensitivity make it very suitable for
applications, where sensors with physical contact are di�cult or impossible
to use. However, it requires tracer particles in the �ow. Brie�y described,
LDV requires that two laser beams cross at their focal point. In the created
measurement volume, they interfere and generate a set of fringes. As tracer
particles pass through these fringes, they re�ect light into a photodetector.
By measuring the frequency of the scattered light, the velocity of the tracer
particles can be obtained, which is identical with the �ow velocity of the �uid
in case of suitable tracer particles; fog of PEG, as discussed in Chapter 2.

Main advantages of a LDV/PDA system:

*Measured values
**from Table 3.5
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Figure 3.13: Schematic of an LDV system1

• non�intrusive measurement,

• high spatial and temporal resolution,

• instantaneous and time�averaged information,

• velocity range from zero to supersonic,

• particle size range from sub�micron up to several millimeters,

• no need for calibration,

• ability to measure in reversing �ows.

PDA is an optical technique to measure the size and velocity of spherical
particles simultaneously, based on the working principles of LDV. The mea-
surements are performed on single particles, thus allowing detailed analysis of
particulate �ows. The di�erence to LDV is in the receiving optics, placed at
a well�chosen o��axis location. The scattered light is projected onto multiple
detectors. Each detector converts the optical signal into a Doppler burst with

1Image from Dantec Dynamics, http://www.dantecdynamics.com

http://www.dantecdynamics.com
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a frequency linearly proportional to the particle velocity. The phase shift be-
tween the Doppler signals from di�erent detectors is a direct measure of the
particle diameter.

Figure 3.14: Schematic of a PDA system2

Working principles of LDV/PDA can be found in detail in the literature (e.g.,
in Tropea et al. (2007)).

Main properties of the employed LDV/PDA system can be found in Table 3.7.
Here, the selected beam power is also listed, which was set according to the
hints discussed in Sultan et al. (2000) and in Kapulla and Najera (2006).
However, some adaption of the PDA�system was necessary to carry out the
measurements in the �ows considered in this work.

To improve the measurement quality, the �ow and fringe direction should be
opposite, where the fringe direction is positive from the shifted to the non�
shifted beam. The polarization of the beam pairs were set on the U (green)
channels to parallel, which means that the polarization of the laser beams
was parallel with the scattering plane. The scattering plane was de�ned as the
optical axis of the transmitting and receiving optics. In general, the scattering

2Image from Dantec Dynamics, http://www.dantecdynamics.com

http://www.dantecdynamics.com
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Table 3.7: Properties of the LDV/PDA system.

Component Property Value

Laser Type Ar-Ion, water-cooled
Output power 6.0 W

Output wavelength 455 . . . 515 nm

Used wavelength 514.5 nm

Beam power 2× 250 mW

Sending Optics Type Dantec/2D, 1D used
Focal length 600 mm

Beam diameter 1.35 mm

Expander ratio 2.97

Beam Spacing 19.5 mm

Frequency shift 40 MHz

Receiving Optics Type Dantec/Fiber PDA
Focal length 800 mm

Scattering angle 160◦

Scattering mode 2nd order refraction
Expander ratio 1.00

Fringe direction Positive
Aperture Mask Mask A
Phase factor P12 1.012 ◦/µm

Phase factor P13 0.506 ◦/µm

Max. diameter 513.8 µm

E�ective slit width 0.64

Table 3.8: Hints for PDA settings of di�erent orders of refractions (Dantec Dy-

namics, 2002).

Order of Polarization Preferable angle Remarks

refraction

2nd order parallel 143 . . . 148◦ 150 . . . 170◦ should be
refraction (φr + 5 . . . 10◦) avoided, if possible
Refraction parallel 30 . . . 75◦, High intensity

optimum at 73.5◦

Re�ection perpendicular 83◦ . . . 115◦ Not for small droplets
(φc1 . . . φr3 − 15◦)

angle and the polarization should be selected in a way that the con�dence
linearity should be over 90% and �at (see Fig. 3.15). Since access to the
measurement section of the wind tunnel was limited and both the receiving
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and sending optics of the LDV/PDA system should have been traversed, a
scattering angle in backward direction (160◦) was selected. It is generally
accepted that PDAmeasurements in backscatter show limitations (Damaschke
et al., 2002). According to the low con�dence of linearity (18.43% in this case,
due to ambiguities of di�erent scattering orders) this region should be avoided
if possible (see hints in Table 3.8). However, preliminary comparisons showed
no noticeable deviations both in mean diameter and in spherical validation
when comparing forward scatter and backward scatter, so that the previously
discussed con�guration was systematically used. Nevertheless, measurement

                                Phase-Doppler Linearity vs Scattering Angle

Input
Enter relative refractive index: Valid range 0.6 - 2.0 1,334
Enter scattering angle: Valid range 2 - 180 160 deg.

Select polarisation:
Output:
Confidence: 18,43 % (Confidence of linearity)
Dominant scattering order: 2nd order refraction
For the above configuration, the best scattering angle was: 68 deg.
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Figure 3.15: Con�dence of Phase�Doppler linearity vs. scattering angle3

by means of PDA in optically dense sprays is a challenge, as also shown
by Sultan et al. (2000), and would require di�erent settings.

3.3.2 PIV system for velocity �eld measurements of both

phases

Particle Image Velocimetry (PIV) is an optical method to measure velocity
and related properties of �uids. The �uid should be seeded with tracer parti-
cles, similarly to LDV. In case of PIV measurements, PEG droplets are used
as discussed previously in Chapter2. However, the number density of tracer
particles plays in case of PIV an important role. The main di�erence between
PIV and LDV is that PIV produces two (or three) dimensional vector �elds,
while LDV measures velocity components at a single position.

3Screenshot from the PDA optical con�guration plug�in of the BSA software.
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To perform PIV analysis on the �ow, two exposures of laser light are required
upon the camera from the �ow (i.e., two images). For recordings, digital cam-
eras using CCD chips are used that can capture two frames at high speed
with a few hundred nanoseconds delay between the frames. The frames are
then split into a large number of interrogation areas (IA). It is then possible
to calculate a displacement vector for each IA with help of signal processing
and cross�correlation techniques. This is �nally converted to a velocity using
the time between laser shots and the physical size of each pixel on the camera.
Further details on the PIV method can be found in Adrian (1991). Here, dif-

Figure 3.16: Schematic of a PIV system4

ferent operation modes like Laser�Speckle�Mode or Particle�Tracking�Mode
are also discussed. The current status and development of PIV is summarized
by Adrian (2005). The optically transparent windows of the wind tunnel
made the non�intrusive PIV measurements possible, as described in the next
chapter. Large��eld velocity measurements were carried out to determine
both transversal and longitudinal velocity components (Bordás et al., 2009;
Bordás and Thévenin, 2009) of the disperse and continuous phases. Charac-
teristic for the diagonal PIV measurements was the application of droplets
directly as PIV particles and the relatively large angle between the camera
axis and the normal of the measurement plane (see Fig. 3.17.).

4Image from Dantec Dynamics, http://www.dantecdynamics.com

http://www.dantecdynamics.com
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Figure 3.17: Sketch of the PIV measurement setup for the measurement in a

transversal plane.

The resulting angle between camera axis and normal of the laser sheet was
45◦. This angle was imposed by the local conditions at the wind tunnel. The
light sheet was perpendicular to the main �ow direction.

PIV measurements have been carried out with the system described in Ta-
ble 3.9. Calibration, evaluation and results are presented in the next chapter.
It will also be shown there that a special post processing of the measurement
data was needed to get proper results.

Table 3.9: PIV hardware components.

Component / property Description

Laser Double�pulsed Spectra Physics PIV�200
Laser energy @ wavelength 120 mJ at 532 nm

Repetition rate 10 Hz

Beam transmission High power Dantec light guiding arm
with LaVision sheet optics (f = −20)

Camera Double frame Dantec FlowSense 2M
Resolution 1 600× 1 186 pixels at 8 bit

Camera optics 1 : 2.8D 60 mm AF Micro Nikkor
Wavelength �lter 532 nm
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3.3.3 Shadowgraphy system for the detection of droplet

collision rates

Shadowgraphy, applied here for the investigation of droplet�droplet interac-
tions is an imaging measurement method, relying on a CCD�camera, a far�
�eld microscope, and a background illumination (see Fig. 3.18). Using a
double frame camera, the velocity values can be determined as well. The
employed camera is an Imager Intense camera with a 2/3” CCD�sensor from
the Co. LaVision (resolution: 1376 × 1040 pixel; pixel size: 6.45 × 6.45 µm)
mounted with a Questar QM1 far��eld microscope.

The illumination has been provided by a double pulsed Nd:YAG laser (Litron)
with a pulse energy of 300 mJ at a wavelength of 532 nm. With the help of the
pulsed laser beams a �uorescence disc has been excited to get a homogeneous
and powerful background illumination. High intensity is required especially
for the case of small droplets and corresponding small measurement volumes.

The camera and the illumination lie on the same optical axis. As the droplets
are illuminated from behind, their shadow image is recorded by the camera
and the diameter of the droplets can be obtained with the help of a previously
calibrated µm/pixel value (Bordás et al., 2006; Kapulla et al., 2006).

Figure 3.18: Schematic of a Shadowgraphy system5

Since the expected collision rate is usually moderate in disperse �ows, and
considering that the recording frequency of the applied laser/camera�system
is limited to 10 Hz, measurements leading to meaningful statistics must be
carried out for a long period of time at a given position.

The standard postprocessing of the recorded images has been conducted using
the commercial Shadowgraphy software DaVis 7.2 (LaVision). The settings
listed in Table 3.10 and hardware properties given in Table 3.11 have been
used during batch processing.

5Image from LaVision, http://www.lavision.de

http://www.lavision.de
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Table 3.10: Batch processing settings in DaVis.

Property Value

Intensity correction

Mean value 3 000 counts

Threshold for droplets 1 700 counts

Set above/below constant

Lower level 2 000 counts

Upper level 3 000 counts

Particle recognition

Global threshold 30%

Low level threshold 30%

High level threshold 50%

AOI expansion 50%

Table 3.11: Shadowgraphy hardware components.

Component Property Description

Camera Imager Intense, double frame Co. LaVision
Chip size 2/3” CCD
Resolution at 12 bit 1 376× 1 040 pixels

Pixel size 6.45× 6.45 µm

Max. recording rate 10 Hz at max. resolution
Camera optics Questar QM1 Co. LaVision

Far��eld microscope
Illumination Double�pulse Nd:YAG Laser Litron 300

Laser pulse energy at 532 nm 300 mJ

Max. repetition rate 15 Hz

Beam transmission High power mirrors,
co. CVI Melles Griot

Fluorescence disc co. LaVision

Conclusions

This chapter has introduced the setup used for the later described experi-
ments. In the �rst part, the two�phase wind tunnel with its control and
injection system including the developed software has been described. Then,
the di�erent con�gurationsM1�M4 used for the generation of controlled �ow
structures and turbulence have been introduced. The measured and derived
�ow properties have been summarized. Finally, the applied measurement
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techniques were introduced, together with their most important hardware
components and software settings.

Optical measurements in such two�phase �ows are still highly challenging.
Therefore, adaption and improvement were necessary concerning these mea-
surement techniques before being able to carry out meaningful and high�
quality experimental measurements, as described in the next chapter.





Chapter 4

Speci�c adaption of measurement

methods

For an accurate and quantitative investigation of the �ow conditions associ-
ated with di�erent con�gurations in the wind tunnel, a very careful adjustment
of the applied optical measurement techniques was required. Therefore, the
measurement techniques had to be adapted to these di�cult measurement
environment. For this purpose the existing post�processing was improved or
even completely replaced by our newly developed post�processing tool. These
improvements are described in the present chapter.

4.1 Laser-Doppler methods

The LDV/PDA measurements and post�processing discussed in this work
were �rst started by means of a commercial software (BSA Flow Software
V2.12, from the Co. Dantec Dynamics). However, certain necessary changes
to meet our speci�c needs, could not be taken into account. Therefore, a
completely new in�house code was developed in LabView R© as a complement.
In this manner it was possible to simplify and speed up the measurement
procedure and to improve its quality.

4.1.1 Laser�Doppler Velocimetry

Improved traversing and grid generation

One of these speci�c needs was the interruption criterion during measure-
ments. In the commercial software, there were two conditions to stop the
measurement at a certain grid position and to move to the next one

1. the measurement time and

2. the number of acquired samples.
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These two conditions were connected by an OR operand. Was the data rate
very low or even zero (e.g., near�wall measurements), the measurement time
had to be passed, before the traverse was moved to the next position. This
led to a signi�cant and unnecessary loss of time. Therefore, the following
conditions were implemented in our own LDV-software extension:
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(a) swimming dummy (b) hollow cone

Figure 4.1: Exemplary applications of the advanced grid generation tool, left

from Witte et al. (2006), right cross section in the wind tunnel.

• Threshold value to de�ne the minimal burst amplitude: this
function could be helpful for such measurements, where the outline of the
cross-section was irregular and the generation of the measurement grid
was complicated, especially along the wall region of the cross-section,
as discussed, e.g., in Wunderlich et al. (2007). An e�cient grid genera-
tion consisted of creating a rectangular measurement grid including the
whole cross�section, or even with a signi�cant number of points outside
the cross�section. Using the commercial software, these measurements
would have taken an unacceptably long time, waiting for the prede�ned
measurement time to pass at each position. Using our own software
extension, grid points associated with insu�cient burst amplitude could
be identi�ed and excluded almost immediately. Thus, the loss of time
was minimized, since the traverse moved very rapidly to the next de�ned
position.

• Minimal data rate: Nevertheless, it could happen that the burst
amplitude did not get below the prede�ned threshold value (e.g., due to
re�ections). In this case, the traverse would have stayed at the actual
measurement position for the whole preset time, without delivering any
result. In order to avoid this problem, the real mean data rate was
checked for a time period of 1 second. If the data rate was zero, or below
a prede�ned threshold, the data acquisition was stopped immediately
and the traverse moved to the next position.
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Applying both conditions simultaneously, the loss of time could be signi�-
cantly reduced in particular for complex, non�rectangular cross�sections.

A further limitation was the grid generation process. The commercial software
could only generate rectangular or cylindrical grids, while our own extension
could handle arbitrary geometrical functions. In Fig. 4.1 a special grid around
a swimmer dummy is exempli�ed, as applied in Witte et al. (2006) for LDV
measurements in a water channel.

Furthermore, the direction and sequence of the traversing could be prescribed
as well. This was helpful, e.g., for the investigation of sprays where a spherical
(or ellipsoidal) cross�section was measured, starting with the middle position
and spiraling toward the external wall. In this way the data rate was continu-
ously decreasing (starting with the highest value) and the end of the measure-
ment could be decided during the measurement, when the data rate became
insu�cient. This add�on can be used independently from the in�house LDV
software and the corresponding grid positions can be exported to any further
software.

Measurement of periodic �ows

In case of periodic �ows phase decomposition is an essential issue. Using
phase�locked acquisition, the time resolution of a single period can be signi�-
cantly increased and the mean value and standard deviation can be determined
safer as well (Fig. 4.2).

Using the available commercial LDV software, triggering is only possible with
an external TTL�signal. In our own software, a further option was imple-
mented, enabling a software�based in�situ triggering. In this way, the phase
decomposition was possible with a de�ned period time and a phase angle, or
with a digital signal and a de�ned threshold value, e.g., using a measured pres-
sure curve (Mátrai, 2009). Fig. 4.2 shows an example for a phase�averaged
measurement. On the left, the pressure curve is presented, measured by a
pressure transducer. A user�de�ned threshold (red line, still on the left) is
then used for the phase�decomposition. The phase time of the velocity is
always set to zero if there is a trigger event (threshold value is crossed by a
positive edge pressure value). The obtained instantaneous (and from now on
phase�decomposed) velocity values are shown in Fig. 4.2 on the right. Finally
a curve is �tted on these time/velocity point pairs, representing the phase�
averaged mean curve. The standard deviation of the instantaneous values
compared to the mean curve is the uncertainty (Seshadhri et al., 2011).
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Figure 4.2: Example for a phase�averaged measurement in a medical model by

means of LDV and a pressure transducer. The threshold for phase�

averaging is applied on the instantaneous pressure values. The re-

sulting phase decomposed velocities are presented on the right with a

�tted velocity curve.

Simultaneous Laser-Doppler Diameter and Velocity Measurements

Laser Doppler Velocimetry is generally used to obtain information about local
velocities. However, the LDV�signals of particles contain often more informa-
tion that can be used to determine other properties of the �ow as well.

First, signals associated with di�erent particles, such as bubbles or droplets
and tracer particles might be distinguished. Thus, we are able to measure
simultaneously (but separately) the velocity of both continuous and disperse
phases (Bordás, 2005). This distinction is based on the amplitude of the
pedestal signal, proportional to the scattered light from a particle passing the
measurement volume.

Since the signals in the two�phase �ow considered in this work are very similar,
as the diameter of the tracer particles and water droplets was in the same order
of magnitude, it was not possible to reliably separate the velocity information
of air and droplets.

The in�house software extension can be used to carry out simultaneous ve-
locity and size measurements. The principle limitation of LDV (only velocity
measurements) can be compensated with a special technique, called LDDV,
developed in our group (Wunderlich et al., 2006). The fundamental princi-
ple of this special LDV extension lies in the signal characteristics of particles
passing through the measurement volume. Due to the fact that a burst can be
separated into a low frequency part (pedestal signal) and a high frequency part
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(Doppler signal), it provides more than only the velocity information (Wun-
derlich et al., 2009). The particle size measurement with the new software
works in consecutive steps. During these steps the signals are acquired, sepa-
rated into their pedestal and Doppler parts and evaluated online. Figure 4.3
provides an overview of the signal processing for the velocity and diameter
estimation using a commercial LDV system and the complementary, in�house
software for LDDV (Wunderlich et al., 2006).

Figure 4.3: Flow chart of the LDDV working principle.

The velocity estimation is carried out as usual by means of a Fast�Fourier�
Transformation (FFT) and the particle size is determined in a separate way
through the LDDV software. The pedestal samples run through a special
algorithm, which starts with the de�nition of a �high threshold�-value. This
value is adapted to the maximum signal peak, generated by the re�ection
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of the passing particle (glance point), which is larger than the measurement
volume of the LDV system for this application. From the intersection points
of the threshold level on the signal peak, it is possible to �nd the center of
the pedestal signal. Another �low threshold� value is chosen, to get rid of the
background noise in the signal. This threshold value should be higher than the
noise, but the smallest possible. When a particle larger than the measuring
volume �ows through this volume, the special structure of the pedestal shows
two further signal peaks beside the maximum one. One is located before and
one after the signal maximum, respectively, as exempli�ed in Fig. 4.4.
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Figure 4.4: Typical pedestal signal of a passing droplet.

The two smaller peaks are intersected by the low threshold level. By this
procedure, the middle of each peak can be found, which corresponds to two
values for a certain time. The middle of the front peak de�nes the time at
which the phase boundary at the front side of the particle (droplet or bubble)
enters the measuring volume. This is the starting time t1. The peak at the
back of the pedestal signal occurs when the phase boundary at the end of the
particle leaves the measurement volume. This yields the end time t3. From
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the di�erence of the two times one can exactly calculate the transition time
tt of the particle through the measuring volume:

tt = t3 − t1 .. (4.1)

It is then easy to calculate the diameter of the passing particle. Multiplying
the transition time tt with the velocity u gives the particle diameter dp.

dp = u tt (4.2)

A validation by comparison with other non�intrusive measurement methods
(for single droplets by means of Shadowgraphy (Bordás, 2005) and even for
spray, generated by a pressure atomizer, by means of both PDA and Shad-
owgraphy methods (Hagemeier et al., 2008)) was already carried out, with an
acceptable accuracy. Since LDDV does not require any additional hardware,
it is extremely attractive to obtain simultaneously velocity and particle size.

Unfortunately, there is a practical limitation for the lowest measurable diam-
eter, speci�ed in the LDDV software during the signal processing, associated
to the width of the middle peak. Using the LDV�system with test condi-
tions (Hagemeier et al., 2008), the lowest diameter limit that can be measured
accurately was found to be around 150 µm. This is suitable for large droplets
generated typically by pressure atomizers or sprinkler systems, but not for the
droplet diameters considered further in the present conditions.

4.1.2 Phase�Doppler Velocimetry

Calculation of the droplet concentration

Preliminary measurements showed that droplet number density values, as
determined by the commercial software employed at �rst (BSA Flow V4.10)
were considerably overestimated. The values were up to 3 orders of magnitude
higher, than the expectation. In the recent literature some newer proposals
could be found concerning the correction of the droplet concentration and �ux
measured with PDA.

Therefore, an additional post�processing of the PDA measurements was im-
plemented by means of a MATLAB R© script using the previously exported
measurement raw data, following the method by Roisman and Tropea (2001).
In this publication it is explained that �ux and concentration measurements
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can exhibit large errors, which can be reexamined to compensate the measure-
ment uncertainty. Here, a simpli�ed description is proposed, which is suitable
for our conditions. Let us consider the particle number density n. During
calculations in cloud physics it is one of the most important quantities:

n =
1

tM

Nsv∑
i=1

ηvi
Aγ(di, γi)ui

, (4.3)

where di is the diameter of the ith drop, γi is the particle trajectory angle and
ηvi is the average number of drops corresponding to a given validated signal.

A proposed algorithm for calculating the drop distribution is also presented
in the article of Hardalupas and Horender (2000). First, the average value of
the burst length of the class k should be calculated.

lk =
1

Nk

Nk∑
i=1

lr,i (4.4)

Here, lr,i = ui τi, where τi is the residence time of a particle in the measure-
ment volume. As PDA�measurements in the present work were carried out
by means of a 1D-PDA system, the angle was always γi = 0, so the average
angle presented in the article has not been calculated. The detection volume
should be a non�truncated ellipsoid, which can be checked by the following
condition:

lk <
2ls

3µ2 sinφ
. (4.5)

For theses droplets, the largest aperture mask (mask �A�)was used with a
slit width of 9 mm. φ is the o��axis angle, which was set to 160◦ during all
measurements. µ2 = az/ax � 1 is the ratio of the half axis of the detection
volume, which can be represented as an ellipsoid. Depending on whether this
condition is ful�lled or not, the diameter of the detection volume dtk and the
reference area Aγi can be calculated according to the equations presented in
Table 4.1.

Now,

• the total number of signals Ns,

• the total number of validated signals Nsv,
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• the duration of the signal σi,

• the relative signal presence ε = 1
t

∑Ns
i=1 σi,

• and the relative presence of validated signals εv = 1
t

∑Nsv
i=1 σi

are available. With the help of the relative signal presence ε, the droplet
occurrence probability pλ can be calculated:

pλ = − ln(1− ε) . (4.6)

From here, the total number of drops Nd appearing in the detection volume
in the observation time, to can be calculated using

Nd =
Ns

1− pλ
. (4.7)

Finally, the average number of drops corresponding to a given validated signal
ηvi can be calculated from the average number of drops corresponding to one
signal ηi by multiplying with a correction factor r according to count errors due
to multiple particles occurring in the detection volume or to non�validation
of particles:

ηvi = r ηi =
2 + pλ

ε
Nd
t σi

2NsvNd
+ pλεv

ε

. (4.8)

All data are now available to calculate the concentration with Eq. (4.3). Com-
parative measurements showed that much better results can be obtained using
this method (Roisman and Tropea, 2000) instead of the original implementa-
tion in the commercial software.

Table 4.1: Calculation of detection volume diameter and reference area.

Condition ful�lled Condition not ful�lled

Diameter of the
detection volume

dtk = 3
2 lk dtk = 4

π lk

Reference area Aγi = πµ2d
2
tk

4 Aγi = dtkls
sinφ
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The determination of the probability density function nk(dk) is the key link
between experimental data and numerical simulations. The corresponding
post�processing was performed again with a MATLAB R© script, using the pre-
viously exported PDA�measurement raw data, and allowing the computation
of both the probability density function of the droplet number density (nk(dk))
and of its standard deviation (σn,k). The droplets are divided into classes (dk)
with a diameter resolution of 2 µm (freely selectable). The number density
is computed separately for each size class using Eq. (4.3). In addition, the
number density was calculated for di�erent time scales by dividing the whole
acquisition time Tacq into time intervals ∆t. In this manner, the standard
deviation σn,k can be calculated with

σn,k =

√√√√√
 1

Tacq

Tacq/∆t∑
j=1

n2
k,j ∆t

− n2
k . (4.9)

The input data for the simulations (as described in Bordás et al. (2011b)) are
then the droplet concentration as a function of the droplet diameter, together
with the corresponding standard deviation, as exempli�ed in Fig. 4.5 for the
entrance plane, x = 0 mm.

Figure 4.5: Probability density function of the measured droplet number density at

the entrance of the test section as a function of the size class, including

the measured standard deviation as an error bar.
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4.2 Imaging methods

4.2.1 Shadowgraphy

Experimental measurement of the collision probability

The accurate determination of collision rates in turbulent �ows is an essential
task. Theoretical models often do not deliver correct estimations of the results
observed in clouds (Xue et al., 2008). For this reason, an experimental, non�
intrusive measurement of the collision rate is important to check this issue.

Its experimental determination in the two�phase wind tunnel is based on the
Shadowgraphy imaging technique (Bordás et al., 2006; Kapulla et al., 2006).
The evaluation process follows a speci�c algorithm (Bordás et al., 2010), which
starts with the user-speci�c de�nition of a threshold value (see Table 3.10 on
page 70) and the automatic segmentation of the shadow regions on every
image. Subsequently, the dimensions of the shadow regions are measured, in
particular the smallest and largest axis length values as well as the segmented
shadow area. From these quantities a diameter equivalent to the segmented
area and the centricity (ratio of minimum to maximum axes) are obtained.
The latter one is of central interest to further process and quantify collision
events.

Collision events have been identi�ed automatically in this way by batch post�
processing of a considerable quantity of single images (typically 10 000) at
each position. In order to get �nally the collision probability, the resulting
number of collision events has been divided by the total number of evaluated
droplets during post�processing.

In order to identify collision events, the main idea is to use the centricity of
the observed particles, as de�ned previously. The deformation of the droplets
due to aerodynamic forces can be calculated theoretically as a function of the
dimensionless Weber number:

We =
u2
p,reldpρf

σ
. (4.10)

Considering a linear correlation between the Weber number value and the
degree of aerodynamic droplet deformation (Pilch and Erdman, 1987), a cor-
rection of the centricity values has been carried out. The correction factor ac-
counts for increased droplet deformation due to oscillations for higher droplet
diameters and therefore allows lower centricity values to be accepted as valid
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Figure 4.6: Distribution of droplet centricity for the con�guration M3 at x =

0, y = 0, z = 0.

for corresponding conditions. If the centricity falls outside of the tolerance
range, this is an indication of a collision event.

In case of small droplets, the Weber number is small as well and there is no
signi�cant droplet deformation. As a consequence, the correction procedure
described previously is without e�ect. The axis ratio of a single droplet should
again be theoretically very close to 1.0. However, the measured values for
centricity return a normal distribution between values of 0.7 and 1.0 (Fig. 4.6).
This is due to slightly deformed droplets and even more to measurement
uncertainties, in particular associated with the �nite pixel resolution. The
error induced by discretizing the true droplet boundaries on the pixels and
thresholding is particularly important for the smallest droplets.

The probability distribution of the centricity (built using 10 000 images with
0.6 droplet per image in average) is presented in Fig. 4.6 for the con�gu-
ration M3 at (x, y, z) = (0, 0, 0) mm position. In the density distribution
function two regions can be recognized, corresponding to droplets with and
without collision.

The upper limit for the identi�cation of collision events should be set according
to the distribution obtained for non�colliding droplets. In the present case,
the corresponding threshold has been set to 0.7, as depicted in Fig. 4.6. As
a result of this automatic batch processing, a list of Shadowgraphy images
containing promising candidates for collision events is produced. In order to
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avoid artifacts and maximize accuracy, these candidate images are examined
manually to exclude unsure events.

Figure 4.7: Example for an unsure collision event: particle partly out of focus.

A typical unsure collision event is exempli�ed in Fig. 4.7. It is di�cult to
develop reliable automatic procedures to take care of those. Most of these
unsure events are associated with particle(s) not in focus or to two droplets
partly hiding each other in the depth of the image. Nevertheless, let us stress
that the automatic batch processing is a very e�cient and absolutely nec-
essary help to analyze collision events. Typically, less than 50 images must
be manually analyzed from 10 000 recorded images. Some exemplary true
collision events are presented in Fig. 4.8.

Figure 4.8: Some exemplary collision events.

4.2.2 Particle Image Velocimetry

There are di�erent error sources in�uencing the velocity results of PIV mea-
surements, for details see, e.g., Pap et al. (2009). The correction of velocity
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vectors of two�dimensional PIV images is often discussed as well. In Tropea
et al. (2007), the errors a�ecting the exact spatial description of the recorded
images are considered.

Let us consider a simple case, when the system consists of planar surfaces with
a good optical access. For such a case, correction with a linear transformation
was already solved by Grant et al. (1994) and is also available in commercial
softwares nowadays. The correction is easier when the optical axis of the
camera is normal to the light sheet. The authors of this article converted the
coordinates, using intercept theorems. For this purpose the distance between
lens center and CCD-chip was used.

Nevertheless, in many applications the camera has got a signi�cant angle to
the light sheet, thus the light signi�cantly refracts due to the perspective view.
Reeves and Lawson (2004) used cross�correlation and a quadratic distortion
mapping function to correct perspective errors of their single lens system. It
was also found here that the single lens system has signi�cant in�plane�errors,
caused by perspective e�ects.

In case of stereoscopic PIV with more than one camera, such a correction
is indispensable (Heineck et al., 2000; Willert, 1997). Scarano (2002) pub-
lished a review article specially dedicated to iterative methods for processing
PIV images. It can be summarized that the various methods only di�er in
their implementations but are fundamentally similar. Nogueira et al. (1997)
presented post�processing steps that could enhance PIV performance. These
steps consisted of the detection of erroneous vectors, correction and calculation
of derived �ow magnitudes, respectively, such as the �rst spatial derivative,
�ow divergence or vorticity.

In the following the correction of 2D�PIV measurements of the disperse phase
in a two�phase air/droplet �ow is described. Velocity components normal to
the main �ow were measured in the two�phase wind tunnel. It was found
that the main �ow components were at least one order of magnitude larger
than those of the transversal ones. It was furthermore shown that post�
processing of the measurement data was indispensable to get proper results,
as the angle between the camera axis and the normal of the measurement
plane was constrained by the local conditions at the wind tunnel: the used
angle was 45◦. The light sheet was perpendicular to the main �ow direction.
Properties of the PIV�system can be found in the previous chapter (Table 3.9
on page 68).
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Figure 4.9: Recording of the calibration plate (left) and the dewarped image

(right).

Distortion correction

For the calibration, a large�area (450 × 250 mm) calibration plate with dot
pattern (see Fig. 4.9 on the left) has been machined and placed into the test
section of the wind tunnel. The diameter of each dot is 3 mm and the distance
between the neighboring dots is 11 mm. The origin is marked by a dot with a
diameter of 4 mm. Positive and negative y− and z−directions are marked by
four dots of 2 mm, respectively in each direction. The plate is always aligned
into the middle of the plane x = 0, so that its origin is 630 mm downstream
the nozzle, in 250 mm height and 300 mm from each side�wall. Calibration
and dewarping of the camera image occurs automatically by the software,
whereas a direct linear transformation is applied.

The evaluation of the recorded 4 × 250 double frame images have been cor-
rected at �rst with the Flow Manager R© software from the co. Dantec Dynamics
with the built�in dewarping tool. This correction should eliminate the error
caused by the perspective view. Thereafter an adaptive correlation with an
interrogation area of 64 × 64 pixels and an overlap of 75% was carried out.
The resulting vector maps were �ltered by range validation of the vector com-
ponents within the range of ±1 m/s. Finally, 250 images of each set were
averaged and one of the results of the four sets is shown in Fig. 4.10. It can
be seen that all original vectors point toward the positive y�direction, which
does not correspond to reality, since it would mean that the �ow impacts the
back wall of the test section.

To understand the source of error, a schematic drawing is presented in Fig. 4.11
on page 90. The angle between sheet normal and camera axis was 45◦. d was
the distance between the camera optics and the middle of the laser plane. On
the bottom, the area of interest has been magni�ed. A tracer in two di�erent
moments (1st and 2nd frame) was marked by (X1,Y1) and (X2,Y2), respectively.
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Though the marked tracer moves parallel with the channel axis, the result-
ing vector will have both x� and y�components. The applied direct linear
transformation corrects the perspective error, the distance between (X0i,Y0i)
and (X1i,Y1i), respectively. The aim of the additional correction described
here is to eliminate as well the y�components in this example. The essence
of the correction method is to subtract the projection of the x-component of
the velocity vector (pointing from (X01,Y01) to (X02,Y02) in Fig. 4.11) from
the resulting velocity vectors.

This means that complementary velocity information was needed in the main
�ow direction. Now, a correction was applied using this mean value of the
velocities in main �ow direction � which was already available from previous
LDV measurements, see www.ovgu.de/isut/lss/metstroem and the PIV�
vectors were corrected by the projection of those. The LDV measurement
information was interpolated such that the velocity information was avail-

www.ovgu.de/isut/lss/metstroem
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able at each interrogation area of the cross�correlation evaluation of the PIV
measurements.

The corrected image can be seen in Fig. 4.10 (right). It corresponds to the
expected results, demonstrating the high quality of the developed correction
process. In this manner, it became possible to measure velocity components
transverse to the main �ow direction by PIV with a good accuracy.

Conclusions

This chapter introduced the adaption and improvement of the applied optical
measurement methods, from an advanced measurement grid generation and
traversing method to the geometrical correction of 2D�PIV images. Most of
these improvements were implemented as a post�processing of the raw mea-
surement data. In this manner, further quantities could be derived, such as the
corrected droplet number density for di�erent size classes and its �uctuation.
The method developed for the experimental determination of collision prob-
ability and the derived collision rate was also discussed. The measurement
results and the database are now described in the next chapter.
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Figure 4.11: Illustration of the distortion, caused by an oblique view on the laser

plane.



Chapter 5

Experimental results and analysis

In this chapter, the results of the measurements in the two�phase wind tunnel
and of the post�processing are presented. Considerably higher droplet col-
lision rates are observed and consequences for rain initiation are discussed.
The online database is also introduced brie�y, together with the structured
experimental data. Finally, companion numerical simulations are discussed.
Part of this chapter has been submitted as journal article to Physics of Fluids
(experimental part) and to Computers and �uids (simulations).

5.1 Measurement uncertainty and repeatability

5.1.1 Measurement uncertainty of LDV/PDA

It is essential to determine and quantify the uncertainty of given measure-
ments. One possibility would be to take another measurement method as ref-
erence for the veri�cation of the measured quantities. Another measurement
method was indeed available to characterize the particles (Shadowgraphy).
However, this method had got a limitation concerning the lowest measurable
diameter (about 5 µm). As a signi�cant number of droplets are expected to
be around and even below this value, a direct comparison is not possible.

For this reason a theoretical approach has been used instead. Kapulla and
Najera (2006) made a theoretical estimation for the diameter measurement
uncertainty by means of a PDA system. According to these calculations, the
diameter values could be measured with an error of ±3.6%. Note that a
second, independent PDA system was also available for a short time in our
group. Comparing the results from both systems and exchanging systemati-
cally single hardware components the deviation concerning particle diameter
was indeed found to be around ±3% in agreement with Kapulla and Najera
(2006).

After a systematic inspection of the convergence of the measured data, 10 000

samples were used as condition to �nish measuring at the actual position
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Figure 5.1: Convergence of the arithmetic mean and volume mean diameters mea-

sured by PDA. The volume mean diameter converges at around 8 000

samples.

with PDA, as shown in Fig. 5.1. From the literature (Lefebvre, 1989), a
recommendation of 5 500 samples can be found. In the light of our own results,
this value is too low to obtain converged statistics and all results presented
afterwards have been obtained based on 10 000 samples.

5.1.2 Measurement repeatability of LDV/PDA

Measurement repeatability delivers information on the �uctuations of the mea-
sured quantity due to the whole system, including the injection and atomiza-
tion (air and water pressure �uctuations, temperature in�uence) additionally
to that of the measurement system.

To get information concerning measurement reproducibility and repeatability,
some pro�le measurements have been repeated with the same conditions but
on di�erent days. These measurements were in�uenced both by the �uctua-
tions caused by building the mean value (small time scale) and the long time
�uctuations of the system. The statistical error has been calculated with the
ratio of the maximal deviation and the mean value, as
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max(| d10,i − d10 |)
d10

(5.1)

for both mean diameters (Fig. 5.2) as well as for mean velocities (Fig. 5.3)
at each and every point along a transversal pro�le. The obtained error was
below ±3.4 % and ±5.0 %, respectively.
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Figure 5.2: Mean diameter pro�le across the measurement section at x = 0, z = 0,

measured by means of PDA.

5.2 Measurements of the continuous (air) phase

As the measurements were carried out by means of non�intrusive measurement
techniques, tracer particles had to be added to the gas �ow. It has already
been shown in Chapter 2, how to select appropriate tracer particles for such
investigations. Since the disperse (water) phase did not follow exactly the air
�ow, the velocity of both phases were �nally measured separately.
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Figure 5.3: Mean longitudinal velocity pro�le of the droplets across the measure-

ment section at x = 0, z = 0, measured by means of PDA.

5.2.1 Velocity measurements

LDV�measurements

The velocity distribution of the air phase at the inlet plane (x = 0) has
been measured by means of LDV. During the measurements of the continuous
phase, the nozzle was operating only with air at the same pressure as in normal
operation, but without water. In this way, the measurement of the air phase
was possible, since the selected tracer particles (fog of PEG) followed the �ow
accurately (see Chapter 2). The mass �ow rate of the air and water in normal
nozzle operation was in the same order of magnitude (ṁw

ṁa
= 2.5), thus a very

similar �ow condition was assured as in case of the droplet injection.

In order to de�ne the locations of the measurement points for the LDV and
the PDA techniques, a measurement plane has been generated with 874 (19 in
z�direction and 46 in y�direction) measurement points, with 10 mm distance
in each direction between them.

LDV measurements are capable of a high temporal resolution. Thus, the ve-
locity components measured in the mean �ow direction (see Fig. 5.4) included
the temporal �uctuations as well. In this way the determination of turbulence
intensity was also possible (Fig. 5.6).
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Figure 5.4: Mean longitudinal velocity distribution of the air phase at x = 0,

measured by means of LDV.

Both LDV and PIV measurements showed that the other two velocity com-
ponents (within the cross section of the test section) are at least one order
of magnitude smaller than those of the main �ow direction, as shown also in
Figs. 4.10 and 5.5.

PIV�measurements

For the air phase a longitudinal plane (y = 0) was measured as well by means
of PIV. The air �ow was seeded by fog of PEG, since these particles were se-
lected previously in Chapter 2. 300 image pairs were acquired with a recording
frequency of 15 Hz. After applying a cross correlation method to the raw im-
ages, with interrogation areas of 32 × 32 pixels and an overlap of 50%, an
average vector �eld could be determined for the complete y = 0 plane. The
resulting 2D�velocity vector �eld is presented in Fig. 5.5 together with an
instantaneous plot.

Here, the vertical velocity (z) components were directly measured as well.
It could be shown that they are one order of magnitude smaller than those
in the main �ow direction, in agreement with previous LDV measurements.
Furthermore, the energy dissipation rate could also be calculated, with the
help of a MATLAB R© script, as described later.

5.2.2 Derived values

The mentioned measurement techniques can only deliver the magnitude of
the velocity components (either spatially or temporally resolved). To obtain
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Figure 5.5: Instantaneous (top) and averaged (bottom) velocity vector �elds and

contour plots of the air phase at y = 0 for the con�guration M3,

measured by means of PIV.

further information, post�processing of the measured data is necessary. In
the following, the calculated values are presented, deduced form those of the
measured ones.

Turbulence intensity

Due to the high temporal resolution of the LDV measurements, the calcula-
tion of the RMS�velocity was possible. From this, the turbulence intensity
could be calculated using Eq. (5.2) for the whole measurement plane, with
a spatial resolution according to the measurement grid. The distribution of
the turbulence intensity for the con�guration M1 at x = 0 is presented in
Fig. 5.6.



5.2. Measurements of the continuous (air) phase 97

The turbulence intensity is calculated by the ratio of the RMS velocity and
of the local mean velocity for each position of the measurement grid:

Tu =
u′

U
. (5.2)

The mean value of the turbulence intensity was around 10%, which is a usual
boundary condition for numerical simulations of industrial �ows as well. More-
over, the inhomogeneous distribution of Tu visible in Fig. 5.6 was adequate
for the investigation of the in�uence of di�erent turbulence conditions on the
local droplet�droplet interactions as discussed later.
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Figure 5.6: Mean turbulence intensity distribution of the air phase in x-direction

at x = 0, measured by means of LDV.

Turbulent kinetic energy

Assuming isotropy of the velocity �uctuations, the TKE can be calculated
using

k =
3

2

(
u′2
)
. (5.3)

The calculated values for all con�gurations are summarized in Table 5.1 on
page 100.

Energy dissipation rate

Calculation of the energy dissipation rate was based on PIV�measurements,
in the longitudinal middle plane (y = 0) as shown in Fig. 5.5. The following
equation
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ε = ν
∂v

∂x

(
∂u

∂y
+
∂v

∂x

)
, (5.4)

simpli�ed from that of Hinze (1975) was applied for the two dimensional
vector �elds of 300 images in each con�guration, as described by Saarenrinne
and Piirto (2000). The dissipation rate was averaged for every vector �eld
and represented as a histogram. The peak of the normal distribution was
determined and the other values outside the Gaussian distribution were �nally
�ltered out, as shown in Fig. 5.7. The resulting mean dissipation rate was in
the required order of magnitude, found in the literature. Typical for cumulus
clouds are values between 0.001 . . . 0.1 m2/s3, according to Rogers and Yau
(1996).
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Figure 5.7: Distribution of the calculated energy dissipation rate from 300 PIV

vector �elds in the y = 0 plane.

Another MATLAB R© script was used to determine the energy cascade of the
�ow from the PIV vector �eld, as shown in Fig. 5.8. From this, the longitudinal
integral length scale could be calculated and from that the energy dissipation
rate (Eq. (3.7)), as a further comparison with the previously calculated values.
The results of this second method were in the same order of magnitude and
thus showed a good agreement:
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Figure 5.8: Calculated energy cascade of the �ow. Post processing of a PIV mea-

surement in the y = 0 plane.

Turbulent kinetic energy: k = 0.0146 m2/s2

Longitudinal integral length scale: l11 = 0.0656 m
RMS of velocity �uctuations: u′ = 0.1710 m/s

Energy dissipation rate: ε = 0.0761 m2/s3

However, the available �ow information in the entrance plane (x = 0) is more
complete and will be used for the calculation of energy dissipation rates in the
following. The energy dissipation rate and the deduced turbulence scales are
summarized in Table 5.1 for all con�gurations.

Turbulence scales

The obtained time scale and length scale for the Kolmogorov (or dissipation)
scale can now be calculated by Eqs. (3.8) and (3.9) using the measured en-
ergy dissipation rate, determined from PIV measurements, with the help of
Eq. (5.4). The values obtained for τK and lK are listed in Table 5.1 and
correspond to typical values in cumulus clouds.
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Table 5.1: Measured and deduced values of the continuous phase for all the con�g-

urations in the wind tunnel at x = 0. The turbulent energy dissipation

rates were calculated by means of PIV measurements, as described in

this Chapter and the turbulence scales were deduced from those.

Quantity M1 M2 M3 M4 Cumulus
clouds

Ua [m/s] 2.45 2.93 2.32 2.92 1 . . . 8

u′a [m/s] 0.25 0.18 0.33 0.35 ≈ 0.8

k [m2/s2] 0.11 0.05 0.18 0.22 ≈ 1

l [m] 0.1 0.01 0.1 0.02 100

ε [m2/s3] 2.5 10−2 1.2 10−2 2.6 10−2 5.5 10−2 10−2 . . . 10−1

τK [s] 2.5 10−2 3.5 10−2 2.4 10−2 1.7 10−2 ≈ 10−2

lK [m] 6.2 10−4 7.4 10−4 6.1 10−4 5.1 10−4 ≈ 10−3

λg [m] 1.1 10−2 5.6 10−3 4.9 10−3 9.3 10−3 ≈ 10−1

Reλ [-] 170 70 60 200 ≈ 105

5.3 Measurements of the disperse (droplet) phase

Properties of the disperse phase have been measured separately from those
of the continuous one for each con�guration in three transversal (x = 0,
x = 200 and x = 400) and a longitudinal (y = 0) plane, of course using the
same measurement grid as in case of the continuous phase. Lefebvre (1989)
summarized the common mean diameters and their range of applications (see
Table 5.2). For the characterization of the two�phase �ow investigated in
the wind tunnel, the arithmetic (d10) and volume mean (d30) diameters were
relevant. Therefore, these values are considered in the following. Note that
in the meteorology the mean masses are commonly calculated (which can be
then converted to diameters), using the moments of the mass distribution
function q. E.g., a number weighted mean mass x10 can be calculated by the
ratio of the �rst (LWC) and zeroth (total number of droplets) moment of the
mass distribution function:

x10 =

∫
x
q(x)dx∫

x
x q(x)dx

=
LWC
N

. (5.5)
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Table 5.2: Mean diameters and their applications, following Lefebvre (1989). The

order can be determined by summing the numbers in the index of d.

E.g., for Sauter mean diameter, the order is 3 + 2 = 5 .

Symbol Name Application

d10 Arithmetic mean Comparison

d20 Surface mean Surface area controlling
d30 Volume mean Volume controlling

d21 Length mean (surface area) Absorption
d31 Length mean (volume) Evaporation, molecular di�usion
d32 Sauter mean Mass transfer, reaction
d43 Herdan mean/de Brouckere Combustion equilibrium

5.3.1 Velocity and diameter measurements

Velocities measured by PDA are based on the same principles as LDV. How-
ever, using PDA, the simultaneous measurement of diameter and velocity
values is possible. This allowed the investigation of the velocity�diameter cor-
relation (Fig. 5.9). The projection of the scatter plot onto the y-axis shows
the Gaussian distribution of the droplet velocities, while the projection onto
the x-axis represents the log�normal DSD.
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Figure 5.9: Velocity-diameter correlation of the water droplets for the con�gura-

tion M1 at the x = 0, y = 5, z = 0 mm position.



102 Chapter 5. Experimental results and analysis

The response of the droplets to the �ow can also be noticed in this scatter
plot. Smaller droplets have a higher velocity �uctuation, while the larger ones
converge toward the mean velocity value.

Having the measurement results of both phases, the relative velocity of the
droplets could be calculated, which was found to be 0.3 m/s in average for the
con�guration M1 at x = 0. This value reduced to 0.15 m/s as the droplets
reached the x = 400 plane. It can be concluded that in this con�guration, the
droplets were still accelerating within the measurement section.

Selecting the �rst (x = 0) measurement plane as a boundary condition for a
numerical simulation, the suitability of the applied model and parameters can
be validated with further measurement results, as shown in Section 5.6.1. As
an example, the mean velocity results of the droplets, measured by means of
PDA in the con�guration M1 for the planes x = 0, x = 200 and x = 400 mm

are presented in Fig. 5.10.

Figure 5.10: Mean droplet velocity distribution in the planes x = 0, x = 200 and

x = 400 of the con�guration M1, measured by means of PDA.

5.3.2 Derived values

Further properties could be deduced by post�processing the measurement
data, such as the number of droplets per unit volume, the number of droplets
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of certain radii per unit volume, or the collision rate per unit volume, as
explained in Chapter 4.

Droplet number density

Measurements of droplet concentration have already been discussed by other
groups (Roisman and Tropea, 2000, 2001; Sommerfeld and Qiu, 1995; Tro-
pea et al., 1996). In the present work and based on PDA measurements, the
droplet number density calculations by Roisman and Tropea (2001) were ap-
plied in a slightly modi�ed manner, as described in Chapter 4, allowing the
calculation of the standard deviation and of the probability density function.
This PDF was the main interface between the experiments and the simulations
(boundary conditions) as discussed later in Section 5.6.

The average mean droplet number density per unit volume was found to be
2 000 1/cm3 for the con�guration M1 at x = 0. The associated spatial dis-
tribution is presented in Fig. 5.11. Theoretically, calculating with a droplet
injection rate of 0.1 l/min and a mean droplet diameter of 12.5 µm, the cor-
responding droplet number density per unit volume should indeed approx-
imately be 2 000 1/cm3, con�rming experimental measurements. This value
corresponds to the typical values in cumulus clouds (Kampe, 1950), as listed
in Table 5.5.
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Figure 5.11: Droplet number density per unit volume in 1/cm3 at x = 0 calculated

from the PDA results as described by Roisman and Tropea (2001)

and discussed in Chapter 4.

Droplet collision rate

The employed evaluation algorithm, as described previously in Chapter 4,
was based on droplet shape recognition and discriminates collision events from
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aerodynamic droplet deformation, which is an essential issue when considering
large droplet diameters, where the We�number is larger than 1. Di�erent
theoretical predictions of collision probability can be found in the literature
for corresponding conditions, as discussed in Chapter 1 and summarized in
Table 1.2 on page 18. The calculation of theoretical collision rates was done
in this chapter according to the equation from Williams and Crane (1983):

N = n2d2
1,2(8πu′2)1/2 . (5.6)
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Figure 5.12: In�uence of the discretization resolution on the calculated theoretical

collision rate.

Nevertheless, it should be kept in mind that this equation is originally valid
for single droplet sizes and not for a droplet size distribution. Therefore, the
theoretical collision rate was calculated by the above equation for each size
class pair obtained by discretizing the distribution with a resolution of 2 µm

(a �ner resolution does not change the obtained results, see Fig. 5.12):

N =
∑
i,j

Ni,j =
∑
i,j

ninjdidj
(
8π(u′2i,p,rel + u′2j,p,rel)

)1/2
. (5.7)

The resulting matrix is graphically presented in Fig. 5.13. Due to symmetry
(Ni,j = Nj,i), only half of the matrix has to be considered. Finally, the
elements of one triangular part of the resulting matrix were then summed up,
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Figure 5.13: Collision rate matrix of the discretized droplet size distribution.

to consider each collision event exactly once (including the matrix principal
diagonal) (Bordás et al., 2011).

Table 5.3: Properties required for the calculation of theoretical collision rates at

the discussed measurement points, as measured by PDA.

d10 [µm] n [1/m3] u′2p,rel [m/s]

Con�guration M3, x = 0 mm, y = 0 mm

z = 0 14.50 5.74 109 0.31

z = 40 14.20 5.50 109 0.36

z = 90 13.70 6.83 109 0.43

z = 140 14.00 4.74 109 0.33

Con�guration M4, x = 0 mm, y = 150 mm

z = 0 9.70 2.57 109 0.22

z = 20 10.10 2.31 109 0.23

z = 40 9.70 2.59 109 0.25

z = 60 9.60 2.31 109 0.40

z = 90 8.05 3.21 109 0.67

z = 120 7.50 2.40 109 0.61

z = 140 7.75 1.92 109 0.40
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The theoretical droplet collision rates Nth calculated in this manner are pre-
sented in Table 5.4. For comparison with them, collision rates ND and Nn
estimated experimentally by Shadowgraphy following the procedure described
in Chapter 4 (see also Bordás et al. (2010)) are also listed.

Di�erent pro�les were selected for the Shadowgraphy measurements in the
Con�gurationsM3 andM4, each in the x = 0 plane at y = 0 and y = 150 mm,
respectively. The z-coordinates were in the range of z = 0 down to 140 mm.

The experimental collision rate has been determined in two di�erent manners.
Either using the data rate, subscript D or the concentration, subscript n re-
spectively, both obtained from PDA measurements. The two results are nearly
identical, con�rming the robustness of the procedure. Furthermore the stan-
dard deviation of the collision rates is given here as σ, using again the same
indices for concentration or data rate based values. After post�processing the
experimental results of Shadowgraphy, a local collision probability pcoll was
measured as described in Chapter 4. This should be converted to collision
rate, with the usual units of 1/m3s. This could be realized by either using
the data rate D or the droplet number density n. In Table 5.4, the experi-
mental collision rate has been calculated using both the data rate D and the
concentration n, obtained from previous PDA measurements. The results are
also presented in Fig. 5.14. The theoretical collision probability, calculated by
Eq. (5.7) is plotted as well in Fig. 5.14 for the considered positions.

Table 5.4: Experimentally determined collision rates together with their standard

deviation σ and comparison with theoretical predictions.

z Nth ND σN,D Nn σN,n
ND
Nth

Nn
Nth

[mm] [1/m3s] [−]

Con�guration M3, x = 0 mm, y = 0 mm

0 9.66 109 4.33 1010 3.84 109 4.47 1010 7.05 109 4.49 4.63

40 6.77 109 4.44 1010 3.81 109 4.52 1010 6.89 109 6.59 6.71

90 1.26 1010 6.07 1010 4.10 109 7.56 1010 9.10 109 4.83 6.02

140 5.22 109 3.20 1010 3.85 109 2.96 1010 6.34 109 6.14 5.68

Con�guration M4, x = 0 mm, y = 150 mm

0 1.85 109 5.58 109 6.32 108 4.96 109 5.56 108 3.02 2.68

20 1.66 109 5.48 109 7.02 108 5.05 109 6.40 108 3.30 3.05

40 1.72 109 4.97 109 6.40 108 5.02 109 6.40 108 2.89 2.92

60 2.68 109 5.37 109 8.64 108 6.08 109 9.67 108 2.01 2.27

90 6.62 109 1.11 1010 1.98 109 1.70 1010 2.99 109 1.67 2.57

120 4.28 109 7.75 109 1.21 109 9.70 109 1.49 109 1.81 2.27

140 1.37 109 4.12 109 6.53 108 4.11 109 6.40 108 3.02 3.01
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Figure 5.14: Comparison of the measured (blue, green) and theoretical (red) col-

lision rates per unit volume for the con�guration M3 (left) and M4

(right) at di�erent z-heights.

Finally, the comparison between theoretical predictions and measured results
shows qualitatively a good agreement for the present case (Fig. 5.14). The
in�uence of the blu� body is remarkable: PDA measurements showed that for
this position (Table 5.3, z = 90) the droplet number density was increased,
which can be explained by the preferential concentration of the droplets (Shaw
et al., 1998). The experimental droplet collision rate shows also an increase in
the wake of the cylinder in agreement with the theoretical prediction (Table 5.4
and Fig. 5.14).

However, quantitatively the experimental �ndings lead again systematically to
an increased collision rate, typically by a factor of 2 to 6, compared to theory.
The noticeably increased collision rate measured in all con�gurations would
support the �ndings of other groups, for instance the observations discussed
by Xue et al. (2008), showing that the theory underestimates the collision
rate in turbulent �ows. It should be noted that the conversion by means of
the droplet number density n, showed a larger deviation for this measurement
con�guration. Since the determination of n is rather complicated, as shown
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before, the reliability of the values based on D is higher. These values (ND)
are therefore preferred in the following.

The collision rates measured by Shadowgraphy for the con�guration M3 also
showed a good agreement with PDAmeasurements of droplet growth, as exem-
pli�ed in Fig. 5.15. PDA shows an increase in diameter by 18%, corresponding
to a volume growth of 63% during travel time within the measurement sec-
tion. The collision rates measured by Shadowgraphy would lead to a typical
volume increase of about 60%, assuming that each collision event successfully
leads to coalescence. This agreement demonstrates that

• growth by collisions was the dominating process for the present measure-
ments, in which condensation and evaporation play a negligible role.

• the experimentally measured collision rates are validated indirectly by
an independent measurement technique, PDA.
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Figure 5.15: Mean and volume mean diameter development along the x-axis for

the con�guration M3, measured by means of PDA. The increase in

mean droplet sizes can be recognized.

5.4 Consequences for rain formation in clouds

In this section the in�uence of the di�erent turbulent conditions on rain for-
mation (Bordás et al., 2011a) is discussed.
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5.4.1 Reproducing cloud turbulence at small scales

In con�guration M1 the turbulent kinetic energy generation occurred with-
out any arti�cial in�uence of the turbulence properties, as mentioned before.
However, the injection in counter-�ow direction already caused relatively high
turbulence intensities. In this way the objective (generate more energetic
turbulence structures) was already ful�lled. For the project the variation of
di�erent turbulence and spray properties was furthermore required, which was
assured by the con�gurations M2, M3 and M4.

The velocity distribution was remarkably in�uenced by the geometrical con-
ditions in the di�erent con�gurations. A comparison of the inlet velocities
is presented in Fig. 5.16, where the inlet plane for each of four con�gura-
tions is shown. The di�erence to the con�guration M1, without any arti�cial
turbulence except for the injection in counter��ow direction, can be easily
recognized. In case of the con�guration M2, the velocity distribution was
smoother, i.e., the velocity distribution narrower, due to the grid. The results
of the con�guration M3 showed the in�uence of the blu� body, �xed hori-
zontally in the middle of the measurement section at z = 90 mm. In case
of the con�guration M4, both phenomena could be noticed and additionally
the in�uence of the double injection-head could be observed, though this was
noticeably suppressed by the passive grid.

The characteristic values describing turbulence in cumulus clouds can be found
in the literature (Pruppacher and Klett, 1997; Shaw, 2003). Most signi�cant
values, which determine the turbulent scales, are the turbulent kinetic energy
(TKE) k and its dissipation rate ε. TKE is a measure of the velocity �uctu-
ations, which is typically moderate in cumulus clouds. Thus, the TKE value
should be in the order of magnitude of 0.8 m2/s2 (see Table 5.1 on page 100).
This means velocity �uctuations of approx. 1 m/s. During our measurements,
velocity �uctuations of up to approx. 0.35 m/s were measured. This means a
TKE of around k = 3/2u′2 = 0.22 m2/s2, which is already in the right order
of magnitude. The energy dissipation rate, ε can vary over several orders of
magnitude in turbulent clouds, but is relatively low compared to lots of other
engineering �ows (ε = 0.01 . . . 0.1 m2/s3 (Rogers and Yau, 1996)).

The typical values found in clouds and those of the �ow in our wind tunnel are
summarized in Tables 5.1 and 5.5. It can be seen that all properties relevant
for rain initiation are in the right order of magnitude. As a consequence, all
�ndings of this study should be applicable as well to rain formation in cumulus
clouds.
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Table 5.5: Typical values in cumulus clouds and the corresponding ones in the

wind tunnel.

Denomination Cumulus clouds Wind tunnel

Relative humidity saturated air saturated air
LWC 0.1 . . . 7 g/m3 2 g/m3

Number density 1 . . . 7 000 1/cm3 2 000 1/cm3

5.4.2 Passive grid

The passive grid had a homogenizing e�ect in this case (see the velocity distri-
bution in Fig. 5.16 for the con�gurationM2), thus causing a narrower velocity
distribution and lower velocity �uctuations, remarkably suppressing the in�u-
ence of the injection system. Therefore, the standard deviation of velocity
was also moderate. The passive grid globally decreased the turbulent kinetic
energy and its dissipation rate. However, comparing theoretical predictions
in Table 3.6 on page 62 (Chapter 3) with the measured values (Table 5.1 on
page 100), it is clear that the theory strongly underpredicts turbulence level,
probably due to the inhomogeneous �ow upstream of the grid.

5.4.3 Blu� body

The blu� body increased the velocity �uctuations behind the cylinder due to
shedding vortices, as expected (see the velocity distribution in Figs. 5.16 and
5.5 for the con�guration M3). As it can be seen in Fig. 5.16, the droplet
velocities were also noticeably in�uenced, since they could partly follow the
changes in the continuous �ow. Therefore, the droplet concentration also
increased in the cylinder wake, due to preferential concentration, leading to an
increased collision rate. The expected mean distance between two subsequent
vertices (about 10 cm) was also observed, as it can bee noticed in Fig. 5.5.
However, the vortex street was relatively irregular, probably due to the high
Reynolds number and the non�uniform inlet �ow, as already discussed in
Chapter 3.

5.4.4 Conclusions

As consequences for rain formation it is shown that the aim of this work was
achieved, through carrying out experimental measurement in a two�phase
wind tunnel applying di�erent �ow con�gurations, of which properties were



5.4. Consequences for rain formation in clouds 111

0

50

100

150

M1

z−
co

or
di

na
te

s

0

50

100

150

M2

z−
co

or
di

na
te

s

0

50

100

150

M3

z−
co

or
di

na
te

s

−200 −100 0 100 200

0

50

100

150

M4

z−
co

or
di

na
te

s

y−coordinates

 

 

1

1.5

2

2.5

3

3.5

4
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droplets at x = 0, measured by means of PDA, for
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adapted to that of cumulus clouds. Flow properties were systematically varied
and their in�uence was examined, including particle concentration, which was
also compared with theoretical predictions. The experimental data were col-
lected systematically in a database, which serves mainly the aim of validation
of companion numerical simulations.

It is also con�rmed here apparently by the �rst systematical experimental
investigation of collision events in the world that measured collision rates are
underestimated by theory in certain circumstances, in agreement with theo-
retical and numerical �ndings of other groups. This means that model im-
provements are necessary for the prediction of collision rates in turbulent �ows
in the size regime associated to the growth gap. The signi�cant role of turbu-
lence on preferential concentration and on collision rates is also supported by
the measurements in the wake of the cylinder.

5.5 Online experimental database

Results of all the measured con�gurations are freely available in a structured
online database at the address http://www.ovgu.de/iust/lss/metstroem.
The database was prepared in an Open Source Content Management System,
Plone R© CMS and its contents are continuously updated. The starting page
of the database contains a login system, which does not limit the access, but
creates an obstacle for unauthorized use of the database. The registration
can be done by sending a request e�mail to the webmaster, who manually
registers the new user, generating automatically an account with a login and
a password. After logging in, the database user gets to the starting page.
This page contains general information about the wind tunnel, measurement
planes and spray injection.

The structure of the database is based on the experimental con�gurations:

• M1 - without any arti�cial turbulence modi�cation,

• M2 - with a passive grid,

• M3 - with a blu� body and

• M4 - with both grid and blu� body and a double spray con�guration.

Schematics of the di�erent con�gurations simplify the understanding of the
measurement setup. By clicking on a certain con�guration (see Fig. 5.17),

http://www.ovgu.de/iust/lss/metstroem
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the associated web page can be reached. Each page of a certain con�guration
contains the full measurement data in ASCII format, ready for download.

Figure 5.17: Screenshot of the database: navigation page containing the di�erent

experimental con�gurations.

Every experimental subfolder includes:

• the time�averaged measurement data,

• the instantaneous values compressed in a zip��le,

• and a contour or vector plot to simplify data presentation, mainly for
the validation of companion numerical simulations.

The experimental data are structured according to three di�erent properties
that can be combined in a search:

• the di�erent measurement con�gurations,

• the measurement planes,

• and the measurement methods.

The measurement con�gurations are characterized by their �ow properties,
collected in a table. The measurement methods are also brie�y described.
For a better overview, contour plots of the measured quantities and tabular
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values are included as well. The database has also got a search function to
ease data access in the database (e.g., �look for measurement data at the plane
x = 0 of every con�guration�).

An automatic report is generated as well about the actual updates and a
mailing list is available to inform database users. In order to exemplify the
content of this database, Appendix B to E contain selected examples of the
results.

5.6 Companion numerical simulations

As part of a collaboration with the Free University of Berlin, con�guration
M1 has been simulated based on a population balance approach to describe
the droplet population. A detailed description can be found in Bordás et al.
(2011b).

The inlet boundary condition of the air �ow is directly based on LDV�measurements
of the continuous phase, while the initial droplet properties are determined
from PDA experiments, as presented previously in Chapter 4 (Fig. 4.5 on
page 82).

The behavior of the droplet population is modeled by means of a population
balance system, consisting of the Navier�Stokes equations describing the air
�ow together with an additional equation for the DSD. This equation takes
into account the transport, the growth, and the aggregation of droplets. The
DSD describes the spatial evolution of the droplet diameters (so�called inter-
nal coordinate) such that the equation for the DSD is �nally de�ned in a 4D
domain.

In the applied method, the turbulent �ow �eld is simulated fully implicitly.
A variational multiscale (VMS) method is applied for turbulence modeling.
The backward and forward Euler schemes are used as temporal discretization
for the population balance equation. A preprocessing approach was applied
to compute the aggregation integrals. The robustness of the prediction with
respect to varying numerical methods has been furthermore demonstrated.

5.6.1 Numerical models

Only the lower half of the test section is simulated, in agreement with the
experiments described previously in Chapter 3.
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Boundary conditions for the �ow �eld have to be prescribed at the whole
boundary of the domain used in the simulations. It is not clear if the used
out�ow boundary condition, associated with zero normal stresses, could in-
troduce a noticeable modeling error. For this reason, the domain for the
simulations was chosen to be somewhat longer than the real measurement
domain, so that the out�ow boundary condition did not in�uence the com-
putational results at the locations where comparisons are possible. Thus, the
�nal computational domain in x�direction was set from 0 . . . 500 mm, while
the rest was identical with the experiments.

The inlet condition at the x = 0 mm plane was directly prescribed using the
time-averaged experimental velocity and its standard deviation. The second
and third components of the inlet velocity are set to be zero.

On all other boundaries, free slip with penetration conditions were used. This
kind of boundary condition models �uctuations on the boundaries, which are
directed inside and outside the domain. This corresponds to the experimental
setup, since the boundaries of the measured volume are slightly away from
the walls of the wind tunnel.

The complete domain was triangulated with a 50× 45× 18 hexahedral grid,
equidistant in each direction. With this grid, the positions of the measurement
points were located at computational nodes, allowing a direct comparison. In
addition, the mesh for the internal coordinate was chosen in such a way that a
direct �tting of the experimental data was possible. Since the data were given
for equidistributed diameters, the grid for the internal coordinate was de�ned
in the same way. To obtain an initial condition, the �ow was simulated until
it was fully developed (Fig. 5.18). An instantaneous �ow �eld was then saved
and used as initial �ow �eld in all simulations. The DSD was modeled by a
population balance equation, including transport, growth, and agglomeration
of droplets.

As previously discussed, experimental data are available for the time-averaged
�rst component of the droplet velocity at the planes x = 0 mm, x = 200 mm

and x = 400 mm (see Fig. 5.10). These values are subtracted from the ex-
perimental data of the time�averaged velocity of air, giving a time�averaged
velocity di�erence between the dilute (water droplets) and continuous (air)
phases. This di�erence was interpolated in x = 0 . . . 400 mm and the val-
ues at the plane x = 400 mm were used for the extrapolation in the domain
x = 400 . . . 500 mm, extending beyond the measured region. Then, this dif-
ference was subtracted from the �rst component of the velocity computed by
the Navier�Stokes equations to de�ne the �rst (longitudinal) component of
the droplet velocity ud. The other components of the droplet velocity were
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just prescribed as the velocity components acquired from the solution of the
Navier�Stokes equations.

A model for the growth rate due to condensation was derived in Rogers and
Yau (1996), similar to that of Eq. (1.9). In all present simulations, a constant
supersaturation of 1% (S = 1.01) was assumed, which is a typical value for
clouds and corresponds to an estimation of the maximum value found in the
wind tunnel experiments (see Chapter 2). The model employed for the aggre-
gation follows Hulburt and Katz (1964) and Mersmann (2001), consisting of
two terms:

• the �rst one models the production of droplets of diameter d due to the
agglomeration of smaller droplets, while

• the second term in the model accounts for the disappearance of droplets
of diameter d because of their agglomeration with other droplets.

For the aggregation kernel two physical processes (Brownian motion and
shear) are combined:

κagg(d, d
′) = Cbrown

2kBT

3µ
(d+ d′)

(
1

d
+

1

d′

)
+ Cshear

√
2∇u : ∇u(d+ d′)3 ,

(5.8)
where kB = 1.38065 10−23 J/K is the Boltzmann constant. The two dimen-
sionless model parameters, Cbrown and Cshear, are calibrated by �tting the
numerical results to experimental data.

The experimental data obtained for the droplet number density n (in 1/cm3),
see Eq. (4.3), have to be converted �rst to a DSD q (in 1/m4).

qin,exp(x, di+1/2) = 1012 ni
di+1 − di

(5.9)

For the conversion of the experimental number density ni to the DSD q,
equality in Eq. (5.9) is assumed and the DSD is linearly interpolated. The
standard deviation is scaled in the same way:

σq,i(x, di+1/2) = 1012 σn,i
di+1 − di

. (5.10)

The corresponding numerical methods are described in detail in Bordás et al.
(2011b).
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5.6.2 Numerical results

All simulations were performed with the codeMooNMD (John and Matthies,
2004). Figure 5.18 presents an example for an instantaneous view of the
computed air velocity �eld. It can be clearly seen that the �ow in the center
of the channel is slower due to the nozzle mount placed upstream of the
measurement section, similar to Fig. 2.9. The residence time of a droplet in
the measurement section is typically below 0.2 s.

Figure 5.18: Instantaneous velocity �eld obtained from the simulation, with the

out�ow boundary of the measurement section (x = 400 mm) on the

right hand side.

The �rst purpose of these numerical studies was the calibration of the unknown
Brownian and shear parameters in the aggregation kernel. The calibration was
performed by �tting the computed DSD to the experimental data. The DSD
was available from the experiments at each measurement point of the outlet
plane (x = 400 mm). Due to the turbulent character of the �ow, the experi-
mental data, which are already time�averaged, are rather di�erent at di�erent
measurement points. For this reason, an averaging in space was applied to the
data, leading to one space�time�averaged curve to compare with. The same
space�time�averaging was applied for the computational results as well, were
the time averaging was performed for an interval of 0.5 s.

Figure 5.19 presents results for the calibration of the required parameters. For
small droplets, the aggregation associated to Brownian motion dominates, as
expected from the physics. On the other hand, for larger droplets (typi-
cally for d & 7 µm), shear�induced aggregation and hence the shear param-
eter becomes essential to �t the experimental data correctly (Fig. 5.19). It
should be noted that the used model for the DSD possesses only one direction,
namely that larger droplets are created from smaller ones, by aggregation or
by growth. Hence, a good prediction of the small droplets is a necessary basis
for a good prediction of the large droplets. From the experimental setup it can
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be expected that aggregation is the dominating mechanism. This dominance
was numerically veri�ed by comparing results without the growth term and
with including this term using a realistic value for the supersaturation. As
expected, the impact of the growth term on the simulated DSDs is negligible
for the present conditions.

Figure 5.19: Calibration of the model parameters Cbrown and Cshear. The green

curves are the averaged experimental data at the outlet of the mea-

surement volume, all other curves are simulation results.

Finally, it has been found that for appropriately chosen aggregation parame-
ters, the change of the droplet size distribution observed in the experiments
from the inlet to the outlet is very well reproduced by the numerical simula-
tions.

Conclusions

This chapter has presented the experimental results in the two�phase wind
tunnel. All experimental data have been collected in a clearly structured
database, accessible online. In order to get further information about the �ow
properties, post�processing of the measurement data is needed, which has
also been discussed for both phases separately. Finally, companion numerical
simulations have been brie�y presented, showing a very promising agreement
in �rst comparisons.



Chapter 6

Conclusions and outlook

6.1 Conclusions

The present work deals with optical measurements in disperse two�phase �ows
with a focus on meteorological problems. The main motivation is to create an
experimental database, suitable for a quantitative validation of corresponding
numerical simulations. Further on, the growth gap during warm rain initia-
tion in cumulus clouds has been also considered, which process is not clearly
understood yet. The experimental characterization of droplet collision rates
in turbulent �ows should help to improve existing theoretical and numerical
models.

After a short introduction in rain formation and especially warm rain initia-
tion, studies based on two�phase wind tunnels are reviewed. It is established
that there is no single work dealing with systematic, non�intrusive investiga-
tion of cloud droplet interactions, where the results are collected in an online
database with a free access. Then, an overview is presented about the theory
of droplet collisions valid for cloud conditions. A suitable model is selected to
calculate theoretical collision rates for later comparison.

Next, fundamentals of optical �ow measurements are considered. Especially,
di�erent tracer particles for �uid measurements are investigated and compared
with each other. Finally, a suitable seeding material (fog of polyethylene
glycol (PEG)) has been selected for the measurement methods employed in
this thesis.

For the experiments a two�phase wind tunnel has been speci�cally adapted
to simulate all relevant conditions found in cumulus clouds. All important
properties for the continuous phase (air mean velocity, velocity �uctuation,
relevant turbulence parameters) as well as for the disperse phase (droplet size,
droplet number density, liquid water content (LWC)) are �nally very close to
values typically found in cumulus clouds. Turbulent kinetic energy (TKE)
and its dissipation rate are also adjusted to those typical for cumulus clouds.
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Results obtained in a free �ow, in a �ow with turbulence modi�ed by a passive
grid, and in a �ow perturbed by a cylindrical blu��body inducing large�
scale structures have been compared. A dual spray con�guration has been
considered as well, to enhance droplet collision probability and to broaden
the involved droplet diameter spectrum. In this way a systematic variation of
turbulence properties and of droplet diameter distributions have been realized.

For an accurate and quantitative investigation of the �ow conditions associ-
ated with di�erent con�gurations in the wind tunnel, a very careful adjust-
ment of the applied optical measurement techniques is required. Therefore,
the measurement techniques have been adapted to this di�cult measurement
environment. For this purpose the existing post�processing have been im-
proved or even completely replaced by our newly developed post�processing
tool.

Detailed measurements based on non�intrusive optical diagnostics have been
used to characterize both the continuous and the disperse phase at di�erent
cross�sections. Velocity of both phases and diameter of the droplets have been
measured as a function of time. Thus, some further �ow properties could
be deduced as well in order to characterize turbulence, such as turbulence
intensity, TKE and its dissipation rate or the turbulence scales. Derived values
of the disperse phase are important for the investigation of meteorological
�ows, such as droplet number density or collision rate per unit volume.

The calculation of droplet number density of de�ned droplet radii and its
temporal �uctuation is especially an important issue, since it is the interface
between experiments and numerical simulations as pointed out in this work.
The boundary conditions are delivered in this manner, allowing a direct vali-
dation by comparisons.

The optimization of the Shadowgraphy technique for a quantitative investiga-
tion of droplet�droplet interactions is a major contribution of this work, since
we appear to be the �rst group in the world able to characterize such collisions
experimentally in a systematic, non�intrusive manner. Using the developed
method the collision probability, i.e., the number of colliding droplets divided
by the number of droplets in a unit volume can be determined experimen-
tally. After measuring all parameters it becomes possible to calculate the
collision rate from the measured collision probabilities combined with results
from PDA and to compare with theoretical predictions.

Such a comparison with theoretical models shows a good agreement concerning
the order of magnitude. Nevertheless, measured collision probabilities for the
conditions used in the present work are systematically higher by a factor of 2
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to 6 compared to theory, corroborating observations from other groups. For
the present conditions, collisions dominate the droplet growth process rather
than condensation.

All experimental results are summarized in a database, freely accessible through
Internet, at the address http://www.ovgu.de/isut/lss/metstroem. The
structure of the database is based on the di�erent experimental con�gura-
tions involving turbulence modi�cation, as described in this work. With the
help of the database, which is updated continuously, an exact investigation of
droplet�droplet interaction is possible. The aim is to better understand mete-
orological �ow processes, with emphasis on rain formation in cumulus clouds.
Using this database it should become possible to validate in a quantitative
manner simulation models and procedures needed to predict meteorological
�ows of interest.

The companion numerical simulations are also presented, using the experi-
mental results of the measurements described in this work. First comparisons
between experimental and numerical results showed a very promising agree-
ment.

6.2 Outlook

At present, even more complex con�gurations are considered, in particular
to check the possible in�uence of further parameters on droplet collision fre-
quency. Time�dependent �ows are used to investigate the impact of such
gusts on the �ndings, which would increase the TKE of the �ow. This can be
achieved, either by varying the rotation speed of the fan in the wind tunnel
as a function of time, or by deploying active or semi�active grids to gener-
ate even higher velocity �uctuations, leading ultimately to the desired TKE
around 1 m2/s2.

Furthermore, further injection heads associated with di�erent droplet sizes
should be considered to enhance collision events within the test section while
involving collision partners of di�erent sizes, taking into consideration droplet
size distributions and droplet number densities typical for cumulus clouds. In
this manner, it should become ultimately possible to test theoretical predic-
tions in a more systematic manner and to improve available models if needed.

Further on, solid particles should also be introduced into the �ow, to check
the e�ect on collision e�ciency and droplet growth rate, as aerosols or ice
particles do in cumulus clouds.

http://www.ovgu.de/isut/lss/metstroem
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In future measurements the droplet temperature will be controlled, which is
a cost�e�ective method to impose temperature di�erences between the con-
tinuous and the disperse phases. In this manner, the in�uence of evapora-
tion/condensation will be also investigated and compared to numerical pre-
dictions.



Appendix A

Wind tunnel speci�cations
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Appendix B

Selected experimental results,

Con�guration M1
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Figure B.1: Mean air velocity distribution of con�guration M1 at x = 0 mm,

measured by LDV.
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Figure B.2: Air turbulence intensity of con�guration M1 at x = 0 mm, measured

by LDV.
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Figure B.3: Turbulence intensity distribution of the disperse phase of con�gura-

tion M1 at x = 0 mm, measured by PDA.
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Figure B.4: Turbulence intensity distribution of the disperse phase of con�gura-

tion M1 at x = 200 mm, measured by PDA.
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Figure B.5: Turbulence intensity distribution of the disperse phase of con�gura-

tion M1 at x = 400 mm, measured by PDA.
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Selected experimental results,

Con�guration M2
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Figure C.1: Mean air velocity distribution of con�guration M2 at x = 0 mm,

measured by LDV.
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Figure C.2: Air turbulence intensity of con�guration M2 at x = 0 mm, measured

by LDV.
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Figure C.3: Mean droplet velocity distribution of con�guration M2 at x = 0 mm,

measured by PDA.
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Figure C.4: Mean droplet velocity distribution of con�guration M2 at x =

200 mm, measured by PDA.
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Figure C.5: Mean droplet velocity distribution of con�guration M2 at x =

400 mm, measured by PDA.
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Selected experimental results,

Con�guration M3
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Figure D.1: Mean air velocity distribution of con�guration M3 at x = 0 mm,

measured by LDV.
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Figure D.2: Air turbulence intensity of con�guration M3 at x = 0 mm, measured

by LDV.
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Figure D.3: Droplet volume mean diameter (D30) distribution of con�guration

M3 at x = 0 mm, measured by PDA.
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Figure D.4: Droplet volume mean diameter (D30) distribution of con�guration

M3 at x = 200 mm, measured by PDA.
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Figure D.5: Droplet volume mean diameter (D30) distribution of con�guration

M3 at x = 400 mm, measured by PDA.
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Selected experimental results,

Con�guration M4
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Figure E.1: Mean air velocity distribution of con�guration M4 at x = 0 mm,

measured by LDV.
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Figure E.2: Air turbulence intensity of con�guration M4 at x = 0 mm, measured

by LDV.
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Figure E.3: Droplet mean diameter (D10) distribution of con�gurationM4 at x =

0 mm, measured by PDA.
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Figure E.4: Droplet mean diameter (D10) distribution of con�gurationM4 at x =

200 mm, measured by PDA.
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Figure E.5: Droplet mean diameter (D10) distribution of con�gurationM4 at x =

400 mm, measured by PDA.



List of Figures

1.1 The rain dance is out of date. . . . . . . . . . . . . . . . . . . . 1
1.2 Typical number density values belonging to di�erent droplet

sizes and the dominating processes of cloud droplet size devel-
opment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Water cycle. Image from the U.S. Geological Survey's (USGS)
http://ga.water.usgs.gov/edu . . . . . . . . . . . . . . . . 3

1.4 Schematic curves of droplet growth time. Regions with domi-
nant mechanisms are also indicated. . . . . . . . . . . . . . . . 4

1.5 Condensational water droplet volume growth with S = 101%

and d0 = 12.5 µm . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Representation of ligth refraction. . . . . . . . . . . . . . . . . 22
2.2 Image of an aorta model, in which the refractive index of the

liquid has been matched to that of the silicon block in order to
carry out LDV measurements. Left, without liquid �lling, in
the middle �lled with water and on the right when �lling with
refractive index matched liquid (Wunderlich et al., 2007). . . . 24

2.3 Left: original calibration pattern; middle: distorted image be-
hind a curved surface; right: corrected image reconstructed
from that in the middle (Pap et al., 2009). . . . . . . . . . . . 24

2.4 Droplet size distribution of the PEG fog, measured in the wind
tunnel by means of PDA. . . . . . . . . . . . . . . . . . . . . . 26

2.5 Settling velocity of the considered particles in air as a function
of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Illustration of the normalized deviation between di�erent par-
ticle and �uid trajectories (Bordás et al., 2008). . . . . . . . . 31

2.7 Amplitude ratio η between particle and �uid velocity against
oscillation frequency of the �ow. . . . . . . . . . . . . . . . . . 34

2.8 Limit frequency versus particle diameter. The amplitude ratio
η is �xed to a value of 95% . . . . . . . . . . . . . . . . . . . . 35

2.9 Iso�surfaces of the simulated �ow �eld in the test section of the
wind tunnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Dimensionless deviation of trajectories from the ideal one for
the considered tracer particles. . . . . . . . . . . . . . . . . . . 38

3.1 Göttingen�type two�phase wind tunnel with closed test section.
The test section is shown in Fig. 3.2 in detail. . . . . . . . . . 42

http://ga.water.usgs.gov/edu


136 List of Figures

3.2 Transparent test section with optional passive grid and cylin-
drical blu� body. The coordinate system and measurement
planes are marked as well. . . . . . . . . . . . . . . . . . . . . 43

3.3 Close view of the spray head (left) and injected spray (right). . 44
3.4 Mean axial velocity (left) and turbulence intensity (right) dis-

tribution of the air �ow, without droplet injection at the en-
trance of the measurement section � 630 mm behind the nozzle
(x = 0 mm). The circles show the in�uence of the injection and
the dashed rectangle the selected measurement section, with
minimal in�uence of the injection system. . . . . . . . . . . . . 44

3.5 Droplet size distribution and suitable log�normal distribution
function at x = 0, y = −5, z = 90, measured by PDA. . . . . . 45

3.6 Measured velocity at the entrance of the wind tunnel test
section for di�erent input voltage functions vs. time during
pulsed operation. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Photos of the grid, of the cylinder and of the dual spray injec-
tion mounted in the test section of the wind tunnel. . . . . . . 49

3.8 Schematics of con�gurations M1�M4, respectively. . . . . . . 50
3.9 Con�guration M1. . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 Con�guration M2. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.11 Con�guration M3. . . . . . . . . . . . . . . . . . . . . . . . . 60
3.12 Con�guration M4. . . . . . . . . . . . . . . . . . . . . . . . . 61
3.13 Schematic of an LDV system . . . . . . . . . . . . . . . . . . . 63
3.14 Schematic of a PDA system . . . . . . . . . . . . . . . . . . . 64
3.15 Con�dence of Phase�Doppler linearity vs. scattering angle . . 66
3.16 Schematic of a PIV system . . . . . . . . . . . . . . . . . . . . 67
3.17 Sketch of the PIV measurement setup for the measurement in

a transversal plane. . . . . . . . . . . . . . . . . . . . . . . . . 68
3.18 Schematic of a Shadowgraphy system . . . . . . . . . . . . . . 69

4.1 Exemplary applications of the advanced grid generation tool,
left from Witte et al. (2006), right cross section in the wind
tunnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Example for a phase�averaged measurement in a medical model
by means of LDV and a pressure transducer. The threshold for
phase�averaging is applied on the instantaneous pressure val-
ues. The resulting phase decomposed velocities are presented
on the right with a �tted velocity curve. . . . . . . . . . . . . 76

4.3 Flow chart of the LDDV working principle. . . . . . . . . . . . 77
4.4 Typical pedestal signal of a passing droplet. . . . . . . . . . . 78



List of Figures 137

4.5 Probability density function of the measured droplet number
density at the entrance of the test section as a function of the
size class, including the measured standard deviation as an er-
ror bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Distribution of droplet centricity for the con�guration M3 at
x = 0, y = 0, z = 0. . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Example for an unsure collision event: particle partly out of
focus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Some exemplary collision events. . . . . . . . . . . . . . . . . . 85
4.9 Recording of the calibration plate (left) and the dewarped im-

age (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.10 Averaged vector �elds before (top left) and after (top right) cor-

rection. The corrected vector �eld is shown again in the bottom
with the same aspect ratio in both coordinate directions and a
contour plot in the background with color coding, representing
the vector lengths. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.11 Illustration of the distortion, caused by an oblique view on the
laser plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Convergence of the arithmetic mean and volume mean diame-
ters measured by PDA. The volume mean diameter converges
at around 8 000 samples. . . . . . . . . . . . . . . . . . . . . . 92

5.2 Mean diameter pro�le across the measurement section at x =

0, z = 0, measured by means of PDA. . . . . . . . . . . . . . . 93
5.3 Mean longitudinal velocity pro�le of the droplets across the

measurement section at x = 0, z = 0, measured by means of
PDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Mean longitudinal velocity distribution of the air phase at x =

0, measured by means of LDV. . . . . . . . . . . . . . . . . . . 95
5.5 Instantaneous (top) and averaged (bottom) velocity vector �elds

and contour plots of the air phase at y = 0 for the con�guration
M3, measured by means of PIV. . . . . . . . . . . . . . . . . 96

5.6 Mean turbulence intensity distribution of the air phase in x-
direction at x = 0, measured by means of LDV. . . . . . . . . 97

5.7 Distribution of the calculated energy dissipation rate from 300

PIV vector �elds in the y = 0 plane. . . . . . . . . . . . . . . . 98
5.8 Calculated energy cascade of the �ow. Post processing of a PIV

measurement in the y = 0 plane. . . . . . . . . . . . . . . . . . 99
5.9 Velocity-diameter correlation of the water droplets for the con-

�guration M1 at the x = 0, y = 5, z = 0 mm position. . . . . 101



138 List of Figures

5.10 Mean droplet velocity distribution in the planes x = 0, x = 200

and x = 400 of the con�guration M1, measured by means of
PDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.11 Droplet number density per unit volume in 1/cm3 at x = 0

calculated from the PDA results as described by Roisman and
Tropea (2001) and discussed in Chapter 4. . . . . . . . . . . . 103

5.12 In�uence of the discretization resolution on the calculated the-
oretical collision rate. . . . . . . . . . . . . . . . . . . . . . . . 104

5.13 Collision rate matrix of the discretized droplet size distribution. 105
5.14 Comparison of the measured (blue, green) and theoretical (red)

collision rates per unit volume for the con�guration M3 (left)
and M4 (right) at di�erent z-heights. . . . . . . . . . . . . . . 107

5.15 Mean and volume mean diameter development along the x-
axis for the con�guration M3, measured by means of PDA.
The increase in mean droplet sizes can be recognized. . . . . . 108

5.16 Mean longitudinal velocity distribution of the droplets at x = 0,
measured by means of PDA, for the con�gurations M1, M2,
M3 and M4, respectively. . . . . . . . . . . . . . . . . . . . . 111

5.17 Screenshot of the database: navigation page containing the dif-
ferent experimental con�gurations. . . . . . . . . . . . . . . . 113

5.18 Instantaneous velocity �eld obtained from the simulation, with
the out�ow boundary of the measurement section (x = 400

mm) on the right hand side. . . . . . . . . . . . . . . . . . . . 117
5.19 Calibration of the model parameters Cbrown and Cshear. The

green curves are the averaged experimental data at the outlet
of the measurement volume, all other curves are simulation
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.1 Mean air velocity distribution of con�guration M1 at x =

0 mm, measured by LDV. . . . . . . . . . . . . . . . . . . . . 127
B.2 Air turbulence intensity of con�guration M1 at x = 0 mm,

measured by LDV. . . . . . . . . . . . . . . . . . . . . . . . . 127
B.3 Turbulence intensity distribution of the disperse phase of con-

�guration M1 at x = 0 mm, measured by PDA. . . . . . . . . 128
B.4 Turbulence intensity distribution of the disperse phase of con-

�guration M1 at x = 200 mm, measured by PDA. . . . . . . . 128
B.5 Turbulence intensity distribution of the disperse phase of con-

�guration M1 at x = 400 mm, measured by PDA. . . . . . . . 128

C.1 Mean air velocity distribution of con�guration M2 at x =

0 mm, measured by LDV. . . . . . . . . . . . . . . . . . . . . 129



List of Figures 139

C.2 Air turbulence intensity of con�guration M2 at x = 0 mm,
measured by LDV. . . . . . . . . . . . . . . . . . . . . . . . . 129

C.3 Mean droplet velocity distribution of con�guration M2 at x =

0 mm, measured by PDA. . . . . . . . . . . . . . . . . . . . . 130
C.4 Mean droplet velocity distribution of con�guration M2 at x =

200 mm, measured by PDA. . . . . . . . . . . . . . . . . . . . 130
C.5 Mean droplet velocity distribution of con�guration M2 at x =

400 mm, measured by PDA. . . . . . . . . . . . . . . . . . . . 130

D.1 Mean air velocity distribution of con�guration M3 at x =

0 mm, measured by LDV. . . . . . . . . . . . . . . . . . . . . 131
D.2 Air turbulence intensity of con�guration M3 at x = 0 mm,

measured by LDV. . . . . . . . . . . . . . . . . . . . . . . . . 131
D.3 Droplet volume mean diameter (D30) distribution of con�gura-

tion M3 at x = 0 mm, measured by PDA. . . . . . . . . . . . 132
D.4 Droplet volume mean diameter (D30) distribution of con�gura-

tion M3 at x = 200 mm, measured by PDA. . . . . . . . . . . 132
D.5 Droplet volume mean diameter (D30) distribution of con�gura-

tion M3 at x = 400 mm, measured by PDA. . . . . . . . . . . 132

E.1 Mean air velocity distribution of con�guration M4 at x =

0 mm, measured by LDV. . . . . . . . . . . . . . . . . . . . . 133
E.2 Air turbulence intensity of con�guration M4 at x = 0 mm,

measured by LDV. . . . . . . . . . . . . . . . . . . . . . . . . 133
E.3 Droplet mean diameter (D10) distribution of con�gurationM4

at x = 0 mm, measured by PDA. . . . . . . . . . . . . . . . . 134
E.4 Droplet mean diameter (D10) distribution of con�gurationM4

at x = 200 mm, measured by PDA. . . . . . . . . . . . . . . . 134
E.5 Droplet mean diameter (D10) distribution of con�gurationM4

at x = 400 mm, measured by PDA. . . . . . . . . . . . . . . . 134





List of Tables

1.1 Summary of the wind tunnels described in the present section,
including the wind tunnel of the University of Magdeburg, de-
scribed later in Chapter 3. . . . . . . . . . . . . . . . . . . . . 8

1.2 Summary and hints for the equations of the collision theory
based on those of Mersmann (2001). . . . . . . . . . . . . . . . 18

2.1 Properties of potential tracer particles for gas �ows. Both the-
oretically available and practically considered. . . . . . . . . 27

2.2 Terminal velocity values for di�erent tracer particles (ϑ = 20◦C, p =

1 bar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Characteristic timescale of the �ow and calculated relaxation
times and Stokes numbers. . . . . . . . . . . . . . . . . . . . . 30

2.4 Frequency limits of a �ow, in which the particles can react to
changes with an amplitude ratio of 95% . . . . . . . . . . . . . 35

3.1 Main properties of the AK4a A/D converter and ADA2 A/D�
D/A converter. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Main properties of the pressure transducer and the hygro�
thermometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Main properties of the SETRA pressure transducers. . . . . . 48

3.4 Main properties of the considered passive grids. The �nally
selected one is marked as bold. . . . . . . . . . . . . . . . . . . 56

3.5 Predicted mean values for the considered passive grids at the
entrance of the test section. . . . . . . . . . . . . . . . . . . . 58

3.6 Summary of theoretically predicted values for the con�gura-
tions M1�M4. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Properties of the LDV/PDA system. . . . . . . . . . . . . . . 65

3.8 Hints for PDA settings of di�erent orders of refractions (Dantec
Dynamics, 2002). . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 PIV hardware components. . . . . . . . . . . . . . . . . . . . . 68

3.10 Batch processing settings in DaVis. . . . . . . . . . . . . . . . 70

3.11 Shadowgraphy hardware components. . . . . . . . . . . . . . . 70

4.1 Calculation of detection volume diameter and reference area. . 81



142 List of Tables

5.1 Measured and deduced values of the continuous phase for all
the con�gurations in the wind tunnel at x = 0. The turbu-
lent energy dissipation rates were calculated by means of PIV
measurements, as described in this Chapter and the turbulence
scales were deduced from those. . . . . . . . . . . . . . . . . . 100

5.2 Mean diameters and their applications, following Lefebvre (1989).
The order can be determined by summing the numbers in the
index of d. E.g., for Sauter mean diameter, the order is 3+2 = 5 .101

5.3 Properties required for the calculation of theoretical collision
rates at the discussed measurement points, as measured by PDA.105

5.4 Experimentally determined collision rates together with their
standard deviation σ and comparison with theoretical predictions.106

5.5 Typical values in cumulus clouds and the corresponding ones
in the wind tunnel. . . . . . . . . . . . . . . . . . . . . . . . . 110

A.1 Wind tunnel data sheet. . . . . . . . . . . . . . . . . . . . . . 126



Bibliography

J. Abrahamson. Collision rates of small particles in a vigorously turbulent
�uid. Chemical Engineering Science, 30(11):1371�1379, 1975.

R. J. Adrian. Particle-imaging techniques for experimental �uid mechanics.
Annual Reviews in Fluid Mechanics, 23(1):261�304, 1991.

R. J. Adrian. Twenty years of particle image velocimetry. Experiments in

Fluids, 39(2):159�169, 2005.

R. A. Antonia, T. Zhou, and Y. Zhu. Three-component vorticity measure-
ments in a turbulent grid �ow. Journal of Fluid Mechanics, 374:29�57,
1998.

S. Ayyalasomayajula, A. Gylfason, L. R. Collins, E. Bodenschatz, and
Z. Warhaft. Lagrangian measurements of inertial particle accelerations in
grid generated wind tunnel turbulence. Physical Review Letters, 97(14):
144507, 2006.

L. Baranyi, S. Szabó, B. Bolló, and R. Bordás. Analysis of �ow around a
heated circular cylinder. Journal of Mechanical Science and Technology,
23:1829�1834, 2009.

A. B. Basset. Treatise on Hydrodynamics, volume 2. Deighton, Bell & Co.,
Cambridge, 1888.

G. Batchelor and A. Townsend. Decay of turbulence in the �nal period.
Proceedings of the Royal Society of London. Series A, Mathematical and

Physical Sciences, pages 527�543, 1948.

K. V. Beard and H. T. Ochs III. Warm-rain initiation: An overview of mi-
crophysical mechanisms. Journal of Applied Meteorology, 32(4):608�625,
1993.

K. V. Beard and H. R. Pruppacher. A determination of the terminal velocity
and drag of small water drops by means of a wind tunnel. Journal of

Atmospheric Sciences, 26(5):1066�1072, 1969.

K. V. Beard and H. R. Pruppacher. A wind tunnel investigation of the rate of
evaporation of small water drops falling at terminal velocity in air. Journal
of the Atmospheric Sciences, 28(8):1455�1464, 1971.



144 Bibliography

J. Bhatia, J. Domnick, F. Durst, and C. Tropea. Phase-Doppler-anemometry
and the log-hyperbolic distribution applied to liquid sprays. Particle &

Particle Systems Characterization, 5(4):153�164, 1988.

R. Bordás. Separate LDA velocity measurement of simultaneously existing

tracer particles and air bubbles in a water �ow. Diploma Thesis, Budapest
University of Technology and Economics, 2005.

R. Bordás, A. Öncül, K. Zähringer, and D. Thévenin. Optical measurements
in two-phase �ows involving particles. In G. Kompenhans and A. Schröder,
editors, 12th International Symposium on Flow Visualization, pages 025/1�
025/10, Göttingen, Germany, 2006.

R. Bordás, T. Hagemeier, and D. Thévenin. Experimental quanti�cation of
droplet collision rates in turbulent sprays. In 7th International Sympo-

sium on Turbulence and Shear Flow Phenomena, Ottawa, Canada, 2011.
accepted for presentation.

R. Bordás and D. Thévenin. Modeling cumulus clouds in a two-phase wind
tunnel. In European Geosciences Union General Assembly EGU 2009, Vi-
enna, Austria, 2009.

R. Bordás, C. Bendicks, R. Kuhn, B. Wunderlich, D. Thévenin, and
B. Michaelis. Coloured tracer particles employed for 3D-PTV in gas �ows.
In J. Prenel and Y. Bailly, editors, 13th International Symposium on Flow

Visualization, pages 093.1�12, Nice, France, 2008.

R. Bordás, K. Hanke, P. Bencs, and D. Thévenin. 2D-PIV measurements
in a two-phase wind tunnel normal to the main �ow. In L. Lehoczky,
editor, XXIII. microCAD International Scienti�c Conference, pages 39�46,
Miskolc, Hungary, 2009.

R. Bordás, T. Hagemeier, and D. Thévenin. Experimental investigation of
droplet-droplet interactions. In 23rd European Conference on Liquid Atom-

ization and Spray Systems, pages 198.1�6, Brno, Czech Republic, 2010.

R. Bordás, T. Hagemeier, B. Wunderlich, and D. Thévenin. Droplet collisions
and interaction with the turbulent �ow within a two-phase wind tunnel.
Physics of Fluids, 2011a. accepted for publication.

R. Bordás, V. John, E. Schmeyer, and D. Thévenin. Measurement and sim-
ulation of a droplet population in a turbulent �ow �eld. Computers and

Fluids, 2011b. submitted.



Bibliography 145

V. Borue and S. A. Orszag. Self-similar decay of three-dimensional homoge-
neous turbulence with hyperviscosity. Physical Review E, 51(2):856�859,
1995.

J. Boussinesq. Théorie analytique de la chaleur, mise en harmonie avec la

thermodynamique et avec la théorie mécanique de la lumière, volume 2.
Gauthier-Villars, Paris, 1903.

J. Calbó and J. Sabburg. Feature extraction from whole-sky ground-based
images for cloud-type recognition. Journal of Atmospheric and Oceanic

Technology, 25(1):3�14, 2008.

T. R. Camp and P. C. Stein. Velocity gradients and internal work in �uid
motion. Journal of the Boston Society of Civil Engineers, 85:219�37, 1943.

A. Celani, G. Falkovich, A. Mazzino, and A. Seminara. Droplet condensation
in turbulent �ows. EPL (Europhysics Letters), 70:775�781, 2005.

G. Comte-Bellot and S. Corrsin. The use of a contraction to improve the
isotropy of grid-generated turbulence. Journal of Fluid Mechanics, 25(04):
657�682, 1966.

S. Corrsin. Turbulence: experimental methods, volume 8 of Handbuch der

Physik. Springer, Berlin, 1963.

C. Crowe. Multiphase Flow Handbook. Taylor and Francis Group, 2006.

C. Crowe, M. Sommerfeld, and Y. Tsujinaka. Multiphase Flows with Droplets

and Particles. CRC Press, 1998.

N. Damaschke, H. Nobach, N. Semidetnov, and C. Tropea. Optical particle
sizing in backscatter. Applied optics, 41(27):5713�5727, 2002.

Dantec Dynamics. BSA Flow Software Installation and User's guide, Ver.
4.10, 2002.

F. C. De Almeida. The collisional problem of cloud droplets moving in a
turbulent environment-Part II: Turbulent collision e�ciencies. Journal of

the Atmospheric Sciences, 36(8):1564�1576, 1979.

A. Ducci, E. Konstantinidis, S. Balabani, and M. Yianneskis. Direct measure-
ment of the turbulent kinetic energy viscous dissipation rate behind a grid
and a circular cylinder. In Proc. 11th Int. Symp. on Applications of Laser

Techniques to Fluid Mechanics, Lisbon, Portugal, pages 1�12, 2002.



146 Bibliography

G. Erpul, D. Gabriels, and D. Janssens. Assessing the drop size distribution
of simulated rainfall in a wind tunnel. Soil & Tillage Research, 45(3-4):
455�463, 1998.

G. Erpul, L. D. Norton, and D. Gabriels. Raindrop-induced and wind-driven
soil particle transport. CATENA, 47(3):227�243, 2002.

G. Erpul, L. D. Norton, and D. Gabriels. Splash-saltation trajectories of soil
particles under wind-driven rain. Geomorphology, 59(1-4):31�42, 2004.

G. Erpul, D. Gabriels, and L. D. Norton. Sand detachment by wind-driven
raindrops. Earth Surface Processes and Landforms, 30(2):241�250, 2005.

J. Fan, R. Zhang, G. Li, W. Tao, and X. Li. Simulations of cumulus clouds
using a spectral microphysics cloud-resolving model. Journal of Geophysical
Research-Atmospheres, 112(D4):D04201, 2007.

J. R. Fessler, J. D. Kulick, and J. K. Eaton. Preferential concentration of
heavy particles in a turbulent channel �ow. Physics of Fluids, 6(11):3742�
3749, 1994.

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev. Airborne digital
holographic system for cloud particle measurements. Applied Optics, 43
(32):5987�5995, 2004.

N. Fukuta and L. Walter. Kinetics of hydrometeor growth from a vapor-
spherical model. Journal of the Atmospheric Sciences, 27(8):1160�1172,
1970.

D. Gabriels, W. Cornelis, I. Pollet, T. Van Coillie, and M. Ouessar. The I.C.E.
wind tunnel for wind and water erosion studies. Soil Technology, 10(1):1�8,
1997.

W. George. The decay of homogeneous isotropic turbulence. Physics of Fluids
A, 4(7):1492�1509, 1992.

P. Glantz, K. J. Noone, and S. R. Osborne. Comparisons of airborne CVI
and FSSP measurements of cloud droplet number concentrations in marine
stratocumulus clouds. Journal of Atmospheric and Oceanic Technology, 20
(1):133�142, 2003.

J. Go� and S. Gratch. Low-pressure properties of water from -160 to 212 F.
Transactions of the American Society of Heating and Ventilating Engineers,
51:95�122, 1946.



Bibliography 147

W. Grabowski. Coupling cloud processes with the large-scale dynamics using
the cloud-resolving convection parameterization (CRCP). Journal of the

Atmospheric Sciences, 58(9):978�997, 2001.

H. L. Grant and I. C. T. Nisbet. The inhomogeneity of grid turbulence.
Journal of Fluid Mechanics, 2(3):263�272, 1956.

I. Grant, X. Pan, X. Wang, and N. Stewart. Correction for viewing angle ap-
plied to PIV data obtained in aerodynamic blade vortex interaction studies.
Experiments in Fluids, 18(1):95�99, 1994.

T. Hagemeier, R. Bordás, P. Bencs, B. Wunderlich, and D. Thévenin. De-
termination of droplet size and velocity distributions in a two-phase wind
tunnel. In P. Bailly and J. P. Prenel, editors, ISFV13 - 13th International

Symposium on Flow Visualization, pages 094/1�094/10, Nice, France, 2008.

Y. Y. Hardalupas and S. Horender. Phase Doppler anemometer for instan-
taneous measurements of droplet concentration. In Proceedings of the 10th

International Symposium on Application of Laser Techniques to Fluid Me-

chanics, pages 23.1/1�13, Lisboa, Portugal, 2000.

J. T. Heineck, G. K. Yamauchi, A. J. Wadcock, L. M. Lourenco, and
A. Abrego. Application of three-component PIV to a hovering rotor wake.
In American Helicopter Society, volume 56, pages 375�390, 2000.

J. O. Hinze. Turbulence. McGraw-Hill Book Company, 1975.

A. T. Hjelmfelt and L. F. Mockros. Motion of discrete particles in a turbulent
�uid. Applied Scienti�c Research, 16(1):149�161, 1966.

H. Hulburt and S. Katz. Some problems in particle technology � a statistical
mechanical formulation. Chemical Engineering Science, 19:555�574, 1964.

V. John and G. Matthies. MooNMD - a program package based on mapped
�nite element methods. Computing and Visualization in Science, 6:163�170,
2004.

D. B. Johnson. The onset of e�ective coalescence growth in convective clouds.
Quarterly Journal of the Royal Meteorological Society, 119(513):925�933,
1993.

H. J. Kampe. Visibility and liquid water content in clouds in the free atmo-
sphere. Journal of the Atmospheric Sciences, 7(1):54�57, 1950.

R. Kapulla and S. Najera. Operation conditions of a phase Doppler anemome-
ter: droplet size measurements with laser beam power, photomultiplier volt-



148 Bibliography

age, signal gain and signal-to-noise ratio as parameters. Measurement Sci-

ence and Technology, 17:221�227, 2006.

R. Kapulla, M. Trautmann, S. Güntay, A. Dehbi, and D. Suckow. Compar-
ison between phase-Doppler anemometry and shadowgraphy systems with
respect to solid-particle size distribution measurements. In D. Dopheide,
H. Müller, V. Strunck, B. Ruck, and A. Leder, editors, Lasermethoden in

der Strömungsmesstechnik, pages 3/1�3/6, Braunschweig, Germany, GALA,
2006.

A. P. Khain. Notes on state-of-the-art investigations of aerosol e�ects on pre-
cipitation: a critical review. Environmental Research Letters, 4(1):015004,
2009.

O. Kisi and J. Shiri. Precipitation forecasting using wavelet-genetic program-
ming and wavelet-neuro-fuzzy conjunction models. Water Resources Man-

agement, pages 1�18, 2011.

Y. Kogan. Drop size separation in numerically simulated convective clouds
and its e�ect on warm rain formation. Journal of the Atmospheric Sciences,
50(9):1238�1253, 1993.

P. M. Korczyk, T. A. Kowalewski, and S. P. Malinowski. Investigations of
turbulence statistics in the laboratory model of an atmospheric cloud. In
G. Kompenhans and A. Schröder, editors, 12th International Symposium

on Flow Visualization, pages 1�10, Göttingen, Germany, 2006.

H. Kraus. Die Atmosphäre der Erde: Eine Einführung in die Meteorologie.
Springer, 2004.

F. E. Kruis and K. A. Kusters. The collision rate of particles in turbulent
�ow. Chemical Engineering Communications, 158(1):201�230, 1997.

J. Kussin. Experimentelle Studien zur Partikelbewegung und Turbulenz-

modi�kation in einem horizontalen Kanal bei unterschiedlichen Wan-

drauhigkeiten. Ph.D. Thesis, Martin-Luther-Universität Halle-Wittenberg,
2004.

A. La Porta, G. Voth, A. Crawford, J. Alexander, and E. Bodenschatz. Fluid
particle accelerations in fully developed turbulence. Nature, 409(6823):
1017�1019, 2001.

L. D. Landau and E. M. Lifschitz. Lehrbuch der theoretischen Physik, Band

VI, Sect. 59: Hydrodynamik. Akademie-Verlag, Berlin, 1966.



Bibliography 149

I. Langmuir. The production of rain by a chain reaction in cumulus clouds
at temperatures above freezing. Journal of the Atmospheric Sciences, 5(5):
175�192, 1948.

E. M. Laws and J. L. Livesey. Flow through screens. Annual Reviews in Fluid

Mechanics, 10(1):247�266, 1978.

A. Lefebvre. Atomization and sprays. CRC Press, 1989.

R. List. Der Hagelversuchskanal. Zeitschrift für Angewandte Mathematik und

Physik (ZAMP), 10(4):381�415, 1959. ISSN 0044-2275.

M. Manton. The equation of motion for a small aerosol in a continuum. Pure
and Applied Geophysics, 115(3):547�559, 1977.

Z. Mátrai. Laser-Doppler-Velocimetry Measurements in Arti�cial Medical

Models. B.Sc. Thesis, University of Miskolc, 2009.

M. Maxey and J. Riley. Equation of motion for a small rigid sphere in a
nonuniform �ow. Physics of Fluids, 26:883�889, 1983.

M. R. Maxey. The gravitational settling of aerosol particles in homogeneous
turbulence and random �ow �elds. Journal of Fluid Mechanics, 174:441�
465, 1987.

W. McComb. The physics of �uid turbulence. Oxford University Press, USA,
1992.

A. McNaught and A. Wilkinson. Compendium of Chemical Terminology - The

Gold Book. IUPAC. Blackwell Science, 1997.

A. Melling. Tracer particles and seeding for Particle Image Velocimetry. Mea-

surement Science and Technology, 8(12):1406�1416, 1997.

A. Mersmann. Crystallization technology handbook. Marcel Dekker Inc, 2001.

N. P. Mikhailova, E. U. Repik, and Y. P. Sosedko. Scales of grid and
honeycomb-generated turbulence. Fluid Dynamics, 36(1):69�79, 2001.

M. S. Mohamed and J. C. Larue. The decay power law in grid-generated
turbulence. Journal of Fluid Mechanics, 219:195�214, 1990.

P. Mohr, B. Taylor, and D. Newell. CODATA recommended values of the
fundamental physical constants: 2006. Reviews of Modern Physics, 80(2):
633�730, 2008.



150 Bibliography

L. Mydlarski and Z. Warhaft. On the onset of high-Reynolds-number grid-
generated wind tunnel turbulence. Journal of Fluid Mechanics, 320:331�
368, 1996.

J. Nogueira, A. Lecuona, and P. A. Rodriguez. Data validation, false vectors
correction and derived magnitudes calculation on PIV data. Measurement

Science and Technology, 8(12):1493�1501, 1997.

C. Norberg. Flow around a circular cylinder: aspects of �uctuating lift. Jour-
nal of Fluids and Structures, 15(3-4):459�469, 2001.

C. W. Oseen. Hydrodynamik. Akademische Verlagsgesellschaft m. b. H.,
Leipzig, 1927.

N. T. Ouellette, H. Xu, M. Bourgoin, and E. Bodenschatz. An experimental
study of turbulent relative dispersion models. New Journal of Physics, 8
(6):109, 2006.

N. Özyilmaz. Lattice Boltzmann Computations of Grid-Generated Turbulence.
Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2010.

N. Özyilmaz, K. N. Beronov, and A. Delgado. Characterization of the dissipa-
tion tensor from DNS of grid-generated turbulence. In S. Wagner, M. Stein-
metz, A. Bode, and M. Brehm, editors, High Performance Computing in

Science and Engineering, pages 315�323. Springer, 2009.

I. R. Paluch, C. A. Knight, and L. J. Miller. Cloud liquid water and radar
re�ectivity of nonprecipitating cumulus clouds. Journal of the Atmospheric
Sciences, 53(11):1587�1603, 1996.

E. Pap, G. Janiga, and R. Bordás. Möglichkeiten zur rechnerischen Korrek-
tur der optischen Abbildungsverzerrungen bei PIV. In L. Lehoczky, ed-
itor, XXIII. microCAD International Scienti�c Conference, pages 77�86,
Miskolc, Hungary, 2009.

M. Pilch and C. Erdman. Use of breakup time data and velocity history data
to predict the maximum size of stable fragments for acceleration-induced
breakup of a liquid drop. International Journal of Multiphase Flow, 13(6):
741�757, 1987.

M. Pinsky and A. Khain. Formation of inhomogeneity in drop concentration
induced by the inertia of drops falling in a turbulent �ow, and the in�uence
of the inhomogeneity on the drop-spectrum broadening. Quarterly Journal
of the Royal Meteorological Society, 123(537):165�186, 1997.



Bibliography 151

M. Pinsky, A. Khain, and M. Shapiro. Collisions of small drops in a turbu-
lent �ow. Part I: Collision e�ciency. Problem formulation and preliminary
results. Journal of the Atmospheric Sciences, 56(15):2585�2600, 1999.

M. Pinsky, A. Khain, and H. Krugliak. Collisions of cloud droplets in a
turbulent �ow. Part V: Application of detailed tables of turbulent collision
rate enhancement to simulation of droplet spectra evolution. Journal of the
Atmospheric Sciences, 65(2):357�374, 2008.

M. B. Pinsky and A. P. Khain. Simulations of drop fall in a homogeneous
isotropic turbulent �ow. Atmospheric Research, 40(2-4):223�259, 1996.

S. Pope. Turbulent �ows. Cambridge Univ. Press, 2000.

A. Protat, D. Bouniol, J. Delanoë, E. O'Connor, P. May, A. Plana-Fattori,
A. Hasson, U. Görsdorf, and A. Heyms�eld. Assessment of CloudSat re-
�ectivity measurements and ice cloud properties using ground-based and
airborne cloud radar observations. Journal of Atmospheric and Oceanic

Technology, 26:1717�1741, 2009.

H. R. Pruppacher and K. V. Beard. A wind tunnel investigation of the in-
ternal circulation and shape of water drops falling at terminal velocity in
air. Quarterly Journal of the Royal Meteorological Society, 96(408):247�256,
1970.

H. R. Pruppacher and J. D. Klett. Microphysics of Clouds and Precipitation,
volume 18. Kluwer Academic Publishers, 1997.

H. R. Pruppacher and M. Neiburger. The UCLA cloud tunnel. In Proc.

International Conference on Cloud Physics, pages 389�392, 1968.

M. Reeves and N. J. Lawson. Evaluation and correction of perspective errors
in endoscopic PIV. Experiments in Fluids, 36(5):701�705, 2004.

M. Reeves, D. Towers, B. Tavender, and C. Buckberry. A technique for rou-
tine, cycle-resolved 2-D �ow measurement and visualisation within SI en-
gine cylinders in an engine development environment. In 10th International

Symposium on Applications of Laser Techniques to Fluid Mechanics, Lis-
boa, Portugal, 2000.

R. R. Rogers and M. K. Yau. A short course in cloud physics. International
series in natural philosophy. Butterwoth-Heinemann, Oxford, 1996.

I. V. Roisman and C. Tropea. Drops distribution and �ux measurements
in sprays using the phase Doppler technique. In Proceedings of the 10th



152 Bibliography

International Symposium on Application of Laser Techniques to Fluid Me-

chanics, pages 23.2/1�12, Lisboa, Portugal, 2000.

I. V. Roisman and C. Tropea. Flux measurements in sprays using phase
Doppler techniques. Atomization and Sprays, 11(6):667�700, 2001.

B. Ruck and B. Makiola. Ein�uss der Teilchengröÿe auf die Signalinformation
in der Laser-Doppler-Anemometrie. Technisches Messen, 57:284�295, 1990.

P. Saarenrinne and M. Piirto. Turbulent kinetic energy dissipation rate es-
timation from PIV velocity vector �elds. Experiments in Fluids, 29(7):
300�307, 2000.

P. G. Sa�man and J. S. Turner. On the collision of drops in turbulent clouds.
Journal of Fluid Mechanics, 1(1):16�30, 1956.

E. W. Saw, R. A. Shaw, S. Ayyalasomayajula, P. Y. Chuang, and Á. Gylfason.
Inertial clustering of particles in high-Reynolds-number turbulence. Physical
Review Letters, 100(21):214501, 2008.

F. Scarano. Iterative image deformation methods in PIV. Measurement Sci-

ence and Technology, 13(1):1�19, 2002.

A. Seifert. On the parameterization of evaporation of raindrops as simulated
by a one-dimensional rainshaft model. Journal of the Atmospheric Sciences,
65(11):3608�3619, 2008.

A. Seifert and B. Stevens. Microphysical scaling relations in a kinematic model
of isolated shallow cumulus clouds. Journal of the Atmospheric Sciences,
67(5):1575�1590, 2010.

S. Seshadhri, R. Bordás, G. Janiga, M. Skalej, and D. Thévenin. Experimental
validation of numerical simulations on a cerebral aneurysm phantom model.
Medical Engineering and Physics, 2011. submitted.

R. A. Shaw. Particle-turbulence interactions in atmospheric clouds. Annual

Review of Fluid Mechanics, 35:183�227, 2003.

R. A. Shaw, W. C. Reade, L. R. Collins, and J. Verlinde. Preferential con-
centration of cloud droplets by turbulence: E�ects on the early evolution
of cumulus cloud droplet spectra. Journal of the Atmospheric Sciences, 55
(11):1965�1976, 1998.

H. Siebert, H. Franke, K. Lehmann, R. Maser, E. Wei Saw, D. Schell, R. A.
Shaw, and M. Wendisch. Probing �nescale dynamics and microphysics
of clouds with helicopter-borne measurements. Bulletin of the American

Meteorological Society, 87(12):1727�1738, 2006.



Bibliography 153

H. Siebert, K. Lehmann, and R. A. Shaw. On the use of hot-wire anemometers
for turbulence measurements in clouds. Journal of Atmospheric and Oceanic
Technology, 24(6):980�993, 2007.

A. P. Siebesma, C. S. Bretherton, A. Brown, A. Chlond, J. Cuxart, P. G.
Duynkerke, H. Jiang, M. Khairoutdinov, D. Lewellen, C.-H. Moeng,
E. Sanchez, B. Stevens, and D. E. Stevens. A Large Eddy Simulation
intercomparison study of shallow cumulus convection. Journal of the At-

mospheric Sciences, 60(10):1201�1219, 2003.

L. Skrbek and S. R. Stalp. On the decay of homogeneous isotropic turbulence.
Physics of Fluids, 12(8):1997�2019, 2000.

L. Skrbek, J. J. Niemela, and R. J. Donnelly. Four regimes of decaying grid
turbulence in a �nite channel. Physical Review Letters, 85(14):2973�2976,
2000.

M. Sommerfeld and H. Qiu. Particle concentration measurements by phase-
Doppler anemometry in complex dispersed two-phase �ows. Experiments

in Fluids, 18(3):187�198, 1995.

K. Sreenivasan, S. Tavoularis, R. Henry, and S. Corrsin. Temperature �uctu-
ations and scales in grid-generated turbulence. Journal of Fluid Mechanics,
100:597�621, 1980.

K. R. Sreenivasan. On the universality of the Kolmogorov constant. Physics
of Fluids, 7(11):2778�2784, 1995.

S. R. Stalp, L. Skrbek, and R. J. Donnelly. Decay of grid turbulence in a �nite
channel. Physical Review Letters, 82(24):4831�4834, 1999.

B. Stevens and A. Seifert. Understanding macrophysical outcomes of micro-
physical choices in simulations of shallow cumulus convection. Journal of

the Meteorological Society of Japan, 86A:143�162, 2008.

G. Sultan, G. Schulte, and K. Bauckhage. PDA-Messungen von Tropfen-
groÿenverteilungen in optisch dichten Sprays. In A. Delgado, F. Werner,
B. Ruck, A. Leder, and D. Dopheide, editors, Lasermethoden in der Strö-

mungsmesstechnik, 8. Fachtagung, GALA, pages 50/1�50/7, München,
2000. Shaker Verlag.

S. Sundaram and L. R. Collins. Collision statistics in an isotropic particle-
laden turbulent suspension. Part 1. Direct numerical simulations. Journal
of Fluid Mechanics, 335:75�109, 1997.



154 Bibliography

D. Tarlet, C. Bendicks, R. Bordás, B. Wunderlich, D. Thévenin, and
B. Michaelis. Coloured tracer particles employed for 3-D Particle Track-
ing Velocimetry (PTV) in gas �ows. In Imaging Measurement Methods for

Flow Analysis, volume 106, pages 93�102. Springer, 2009.

D. Tarlet, C. Bendicks, C. Rolo�, R. Bordás, B. Wunderlich, B. Michaelis, and
D. Thévenin. Gas �ow measurements by 3-D Particle Tracking Velocimetry
using coloured tracer particles. Flow, Turbulence and Combustion, 2010.
submitted.

G. I. Taylor. Statistical theory of turbulence. Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences (1934-1990), 151
(873):421�444, 1935.

C. Tchen. Mean Values and Correlation Problems Connected with the Motion

of Small Particles Suspended in a Turbulent Fluid. Ph.D. Thesis, University
of Delft, 1947.

H. Tennekes and J. L. Lumley. A First Course in Turbulence. MIT Press,
1972.

I. Tokar', V. Sirenko, and N. Yurchenko. Calculation of droplet condensation.
Journal of Engineering Physics and Thermophysics, 41(1):691�696, 1981.

C. Tropea, T. Xu, F. Onofri, G. Géhan, P. Haugen, and M. Stieglmeier.
Dual-mode phase-Doppler anemometer. Particle & Particle Systems Char-

acterization, 13(2):165�170, 1996.

C. Tropea, L. Yarin, and J. F. Foss. Handbook of Experimental Fluid Mechan-

ics. Springer, 2007.

O. Vohl, S. K. Mitra, S. C. Wurzler, and H. R. Pruppacher. A wind tunnel
study of the e�ects of turbulence on the growth of cloud drops by collision
and coalescence. Journal of the Atmospheric Sciences, 56(24):4088�4099,
1999.

T. H. Von Kármán and C. C. Lin. On the statistical theory of isotropic
turbulence. Selected Papers of CC Lin, page 142, 1987.

M. von Smoluchowski. Versuch einer mathematischen Theorie der Koagula-
tionskinetik kolloider Lösungen. Zeitschrift für physikalische Chemie, 92:
129�168, 1917.

G. A. Voth, A. La Porte, A. M. Crawford, J. Alexander, and E. Bodenschatz.
Measurement of particle accelerations in fully developed turbulence. Journal
of Fluid Mechanics, 469:121�160, 2002.



Bibliography 155

L.-P. Wang and W. W. Grabowski. The role of air turbulence in warm rain
initiation. Atmospheric Science Letters, 10:1�8, Jan. 2009.

Z. Warhaft. Passive scalars in turbulent �ows. Annual Reviews in Fluid

Mechanics, 32(1):203�240, 2000.

Z. Warhaft. Laboratory studies of droplets in turbulence: towards under-
standing the formation of clouds. Fluid Dynamics Research, 41(1):011201
(20pp), 2009.

J. Warner. The microstructure of cumulus cloud. Part I. General features of
the droplet spectrum. Journal of the Atmospheric Sciences, 26(5):1049�
1059, 1969.

C. Willert. Stereoscopic digital particle image velocimetry for application in
wind tunnel �ows. Measurement Science and Technology, 8(12):1465�1479,
1997.

J. J. E. Williams and R. I. Crane. Particle collision rate in turbulent �ow.
International Journal of Multiphase Flow, 9(4):421�435, 1983.

K. Witte, B. Wunderlich, N. Betzler, D. Thévenin, R. Bordás, and
J. Edelmann-Nusser. Examination of a swimming dummy's �ow �eld by
using Laser Doppler Velocimetry. In The Engineering of Sport 6: Develop-

ments for Disciplines, pages 75�80. Springer, New York, 2006.

E. Woittiez, H. Jonker, and L. Portela. On the combined e�ects of turbulence
and gravity on droplet collisions in clouds: A numerical study. Journal of
the Atmospheric Sciences, 66(7):1926�1943, 2009.

B. Wunderlich, T. Hagemeier, D. Thévenin, and R. Bordás. LDV signals
provide more information than used before. In T. Lajos and J. Vad, editors,
Conference on Modelling Fluid Flow (the 13th International Conference on

Fluid Flow Technologies), pages 730�735, Budapest, Hungary, 2006.

B. Wunderlich, R. Bordás, S. Seshadri, T. Bölke, D. Thévenin, and M. Skalej.
LDA-Messungen in Blutgefäÿen mittels Brechungsindex-Anpassung. In
A. Leder, M. Brede, F. Hüttmann, B. Ruck, and D. Dopheide, editors, 15.
Fachtagung "Lasermethoden in der Strömungsmesstechnik" GALA, pages
47/1�47/7, Rostock, Germany, 2007.

B. Wunderlich, R. Bordás, D. Thévenin, and M. Dues. Verfahren zur Bestim-
mung der Geschwindigkeit und der Gröÿe von Teilchen mittels einer für die
Laser-Doppler-Velocimetrie geeigneten Anordnung, 2009. Patent.



156 Bibliography

T. Xu, F. Durst, and C. Tropea. The three-parameter log-hyperbolic distri-
bution and its application to particle sizing. Journal of Porous Media, 11
(4):109�124, 2008.

Y. Xue, L. P. Wang, and W. W. Grabowski. Growth of cloud droplets by
turbulent collision-coalescence. Journal of the Atmospheric Sciences, 65(2):
331�356, 2008.

S. Yuu. Collision rate of small particles in a homogeneous and isotropic tur-
bulence. AIChE Journal, 30(5):802�807, 1984.

T. Zhou, R. A. Antonia, L. Danaila, and F. Anselmet. Transport equations
for the mean energy and temperature dissipation rates in grid turbulence.
Experiments in Fluids, 28(2):143�151, 2000.





Róbert Bordás

Date of birth: 27/01/1981
Place of birth: Miskolc (Hungary)
Citizenship: Hungarian
Marital status: Married, 2 children

Personal Data

Optical measurements, data acquisition and post�processing in turbulentResearch

Interests �ows, especially the application to two�phase �ows.

08/2005 - presentEducation

University of Magdeburg �Otto von Guericke� , Germany

Ph.D. Degree in Technical Sciences, anticipated 2011

Thesis topic: �Optical measurements in disperse two�phase �ows: appli-
cation to rain formation in cumulus clouds�

09/2000 - 06/2005
Budapest University of Technology and Economics, Hungary

Diploma Degree in Mechanical Engineering, 2005

Thesis topic: �Separate LDV measurements of simultaneously existing
tracer particles and air bubbles in a water �ow�

08/2005 - 01/2006Work

Experience University of Magdeburg �Otto von Guericke� , Germany

PRO3 scholarship �Optical measurements in two-phase �ows involving
particles and emulsions�

01/2006 - 10/2007
University of Magdeburg �Otto von Guericke� , Germany

Research Assistant �Measurement of section detachments by means of
improved Particle Tracking Velocimetry (PTV) using colored tracer particles
and developed prediction methods�, part of the priority programme DFG
1147.

10/2007 - present
University of Magdeburg �Otto von Guericke� , Germany

Research Assistant �Reference experiments in the multiphase wind tun-
nel, numerical simulation and validation�, part of the priority programme
DFG 1276, �MetStröm�.

Teaching

Experience Supervision of various B.Sc./M.Sc theses in the �eld of application of
optical measurement techniques in the �uid dynamics.

Measurement Technology, lecture: LabView, Constant Temperature
Anemometry, Data acquisition, Signal processing.

Measurement Technology, supervision of laboratory: Constant Tem-
perature Anemometry, pressure measurements



Own publications

Journal

publications

Bendicks, C., Tarlet, D., Rolo�, C., Bordás, R., Wunderlich, B., Michaelis,
B., and Thévenin, D. Improved 3-D Particle Tracking Velocimetry with
Colored Particles. Journal of Signal and Information Processing, 2011 in
press.

Bordás, R., Hagemeier, T., Wunderlich, B. and Thévenin, D. Droplet col-
lisions and interaction with the turbulent �ow within a two-phase wind
tunnel. Physics of Fluids, 2011 accepted for publication.

Bordás, R., John, V., Schmeyer, E. and Thévenin, D. Measurement and sim-
ulation of a droplet population in a turbulent �ow �eld. Computers and

Fluids, (2011) submitted.

Seshadhri, S., Bordás, R., Janiga, G., Skalej, M. and Thévenin, D. Experi-
mental validation of numerical simulations on a cerebral aneurysm phantom
model. Medical Engineering and Physics, (2011) submitted.

Baranyi, L., Szabó, Sz., Bolló, B. and Bordás, R. Analysis of �ow around a
heated circular cylinder. Journal of Mechanical Science and Technology,
23, 1829�1834, 2010.

Öncül, A., Bordás, R., Thévenin, D., Genzel, Y., and Reichl, U. CFD-
Modellierung der Zellkultivierung in Wave-Bioreaktoren. Chemie Ingenieur
Technik, 82(9), 1512-1513, 2010.

Kalmbach, A., Bordás, R., Öncül, A.A., Thévenin, D., Genzel, Y., and Re-
ichl, U. Experimental characterization of �ow conditions in 2 L and 20 L
bioreactors with wave-induced motion. Biotechnology Progress, (2010) in
press.

Tarlet, D., Bendicks, C., Rolo�, C., Bordás, R., Wunderlich, B., Michaelis,
B. and Thévenin, D. Gas �ow measurements by 3-D Particle Tracking Ve-
locimetry using coloured tracer particles. Flow, Turbulence and Combus-

tion, (2010) submitted.

Wunderlich, B., Bordás, R., Thévenin, D. and Dues, M. Verfahren zur Bes-
timmung der Geschwindigkeit und der Gröÿe von Teilchen mittels einer
für die Laser-Doppler-Velocimetrie geeigneten Anordnung. Patent No. 10

2007 052 795 2-52, 2009.

Proceedings

and

conference

publications

Bencs, P., Szabó, S., Bordás, R., Zähringer, K. and Thévenin, D.: Simulta-
neous measurement of velocity and temperature downstream of a heated
cylinder. In: ASME Pressure Vessels & Piping Conference, Baltimore,
Maryland, PVP2011-57789, 1-6, 2011.

Bordás, R., Hagemeier, T. and Thévenin, D.: Experimental quanti�cation of
droplet collision rates in turbulent sprays. In: 7th International Symposium
on Turbulence and Shear Flow Phenomena, Ottawa, Canada, accepted for
presentation, 2011.

Bordás, R., Hagemeier, T. and Thévenin, D.: Experimental investigation
of droplet-droplet interactions. In: ILASS2010, 23rd Annual Conference

on Liquid Atomization and Spray Systems, Brno, Czech Republic, 198.1-6,
2010.



Bencs, P., Szabó, S., Bordás, R., Thévenin, D., Zähringer, K. and Wunderlich,
B.: Investigation of the velocity (PIV) and temperature �eld (BOS) of a
heated cylinder in a low Re-number �ow. In: 14th International Symposium
on Flow Visualization, Daegu, Korea, 1-8, 2010.

Mátrai, Z., Bordás, R., Janiga, G. and Thévenin, D.: Laser-Doppler-Velocimetry
measurements in arti�cal medical models. In: microCAD'10 International

Scienti�c Conference, (Bikfalvi, P., Ed.), Miskolc, Hungary, ISBN 978-963-
661-910-7, 45-50, 2010.

Öncül, A., Bordás, R., Thévenin, D., Genzel, Y. and Reichl, U.: CFD
modeling and validation of cell cultivation in wave bioreactors. In: 28.

DECHEMA-Jahrestagung der Biotechnologen, paper 5042, Aachen, Ger-
many, 2010.

Bordás, R. and Thévenin, D.: Modeling cumulus clouds in a two-phase wind
tunnel. In: European Geosciences Union General Assembly EGU, Vienna,
Austria, poster session, 2009.

Bencs, P., Bordás, R., Zähringer, K., Szabó, S. and Thévenin, D.: Towards
the application of a Schlieren measurement technique in a wind-tunnel.
In: microCAD'09 International Scienti�c Conference, (Lehoczky, L., and
Kalmár, L., Eds.), Miskolc, Hungary, ISBN 978-963-661-866-7, 13-20, 2009.

Bordás, R., Hanke, K., Bencs, P. and Thévenin, D.: 2D-PIV measurements
in a two-phase wind-tunnel normal to the main �ow. In: microCAD'09

International Scienti�c Conference, (Lehoczky, L., and Kalmár, L., Eds.),
Miskolc, Hungary, ISBN 978-963-661-866-7, 39-46, 2009.

Pap, E., Janiga, G. and Bordás, R.: Möglichkeiten zur rechnerischen Kor-
rektur der optischen Abbildungsverzerrungen bei PIV. In: microCAD'09

International Scienti�c Conference, (Lehoczky, L., and Kalmár, L., Eds.),
Miskolc, Hungary, ISBN 978-963-661-866-7, 77-86, 2009.

Tarlet, D., Bendicks, C., Bordás, R., Wunderlich, B., Thévenin, D. and
Michaelis, B.: Mesures par �Particle Tracking Velocimetry� (3-D PTV)
gazeuse avec traceurs multicolores. In: 13ème Congrès Français de Visu-

alisation et de Traitement d'Images en Mécanique des Fluides, (Polidori,
G. and Smigielski, P., Eds.), Reims, France, ISBN 978-2-918241-01-0, 1-8,
2009.

Tarlet, D., Bendicks, C., Bordás, R., Wunderlich, B., Thévenin, D. and
Michaelis, B., Coloured tracer particles employed for 3-D Particle Tracking
Velocimetry (PTV) in gas �ows, in Imaging measurement methods for �ow

analysis, (Nitsche, W. and Dobrilo�, C., Eds.), Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, Vol. 106, Springer, 93-102 (2009).

Tarlet, D., Bendicks, C., Bordás, R., Wunderlich, B., Thévenin, D. and
Michaelis, B., 3-D Particle Tracking Velocimetry (PTV) in gas �ows us-
ing coloured tracer particles, in Advances in Turbulence XII, (Eckhardt,
B., Ed.), Springer Proceedings in Physics 132, 43-46 (2009).

Bolló, B., Baranyi, L., Bordás, R., Tolvaj, B., Bencs, P., Daróczy, L. and
Szabó, S.: Numerical and experimental investigation of momentum and



heat transfer from a heated circular cylinder. In: microCAD'08 Interna-

tional Scienti�c Conference, (Lehoczky, L., and Kalmár, L., Eds.), Miskolc,
Hungary, ISBN 978-963-661-816-2, 1-8, 2008.

Hagemeier, T., Bordás, R. and Janiga, G.: Numerical modeling of aerody-
namics around a half cylinder. In: microCAD'08 International Scienti�c

Conference, (Lehoczky, L., and Kalmár, L., Eds.), Miskolc, Hungary, ISBN
978-963-661-816-2, 9-14, 2008.

Seshadhri, S., Janiga, G., Bordás, R., Preim, B., Rose, G., Skalej, M. and
Thévenin, D.: Internal �ow dynamics of aneurysms: validation of numer-
ical simulations and impact of stent. In: EUROMECH Fluid Mechanics

Conference EFMC7, Manchester, U.K., 302, 2008.

Bordás, R., Bendicks, C., Kuhn, R., Wunderlich, B., Thévenin, D. and
Michaelis, B.: Coloured tracer particles employed for 3D-PTV in gas �ows.
In: 13th International Symposium on Flow Visualization, (Prenel, J.P. and
Bailly, Y., Eds.), Nice, France, 093/1-12, 2008.

Hagemeier, T., Bordás, R., Bencs, P., Wunderlich, B. and Thévenin, D.:
Determination of droplet size and velocity distributions in a two-phase wind
tunnel. In: 13th International Symposium on Flow Visualization, (Prenel,
J.P. and Bailly, Y., Eds.), Nice, France, 094/1-10, 2008.

Bordás, R., Fellegi, G., Wunderlich, B., Kuhn, R., Thévenin, D. and Michaelis,
B.: Appropriate tracers to measure velocities in particle-laden gas �ows us-
ing optical techniques. In: International Conference on Multiphase Flow,
(Sommerfeld, M., Ed.), Leipzig, Germany, B66/1-7, 2007.

Bordás, R. and Janiga, G.: Numerical simulation of �ow instabilities in an
axial-�ow compressor. In: microCAD'07 International Scienti�c Confer-

ence, (Lehoczky, L. and Kalmár, L., Eds.), Miskolc, Hungary, ISBN 978-
963-661-746-2, 21-28, 2007.

Janiga, G., Seshadhri, S., Bordás, R., Bade, R., Preim, B., Bölke, T., Gürvit,
Ö., Skalej, M. and Thévenin, D.: Experimental validation of CFD results
in the model of an arti�cial aortic aneurysm. In: ANSYS Conference,
Dresden, Germany, 2.2.8, 2007.

Wunderlich, B., Bordás, R., Santhosh, S., Bölke, T., Thévenin, D. and Skalej,
M.: LDA-Messungen in Blutgefäÿen mittels Brechungsindexanpassung. In:
Lasermethoden in der Strömungsmesstechnik, (Leder, A., Brede, M., Hüttmann,
F., Ruck, B. and Dopheide, D., Eds.), Rostock, Germany, GALA, 47/1-7,
2007.

Kuhn, R., Bordás, R., Wunderlich, B., Michaelis, B. and Thévenin, D.:
Colour class identi�cation of tracers using arti�cial neural networks. In:
10th International Conference on Engineering Applications of Neural Net-

works, Thessaloniki, Greece, 13/2/1-8, 2007.

Wunderlich, B., Bordás, R., Thévenin, D., Michaelis, B. and Kuhn, R.: Suit-
able tracer particles for optical velocity measurements in gas �ows. In:
8th International Conference on Optical Particle Characterization, Graz,
Austria, poster session, 2007.



Bordás, R., Kuhn, R., Michaelis, B., Thévenin, D. and Wunderlich, B.: To-
wards the investigation of vortex structures in gas �ows with 3D-highspeed
Particle Tracking using coloured tracers. In: 12th International Symposium
on Flow Visualization, (Kompenhans, G. and Schröder, A., Eds), Göttin-
gen, Germany, ISBN 0-9533991-8-4, 251/1-9, 2006.

Bordás, R., Hagemeier, T., Thévenin, D. and Wunderlich, B.: LDV-Signale
beinhalten mehr Informationen als nur die Geschwindigkeit. In: Lasermeth-
oden in der Strömungsmesstechnik, (Dopheide, D., Müller, H., Strunck, V.,
Ruck, B. and Leder, A., Eds.), Braunschweig, Germany, GALA , ISBN
3-9805613-3-X, 23/1-23/7, 2006.

Bordás, R., Öncül, A., Zähringer, K. and Thévenin, D.: Optical measure-
ments in two-phase �ows involving particles. In: 12th International Sym-

posium on Flow Visualization, (Kompenhans, G. and Schröder, A., Eds),
Göttingen, Germany, ISBN 0-9533991-8-4, 025/1-10, 2006.


	Nomenclature
	Contents
	Introduction
	Rain formation
	Warm rain initiation

	Two-phase wind tunnels: state of the art
	Properties of humid air
	Viscosity
	Density
	Vapor pressure
	Relative humidity
	Condensational droplet growth

	Theory of droplet collisions
	Conclusions and summary of goals

	Fundamental considerations concerning optical flow measurements and tracers
	Problem of light refraction
	Refraction index matching
	Image correction

	Tracer particles for fluid measurement
	Flow response
	Equation of motion for spherical particles
	Computational comparison


	Experimental setup
	Two–phase wind tunnel
	Injection system
	Control system

	Generation of controlled structures and turbulence properties
	Configuration M1 – Without turbulence modification
	Configuration M2 – Passive grid
	Configuration M3 – Bluff body
	Configuration M4 – Double injection

	Measurement techniques
	LDV/PDA system for velocity and droplet diameter measurements
	PIV system for velocity field measurements of both phases
	Shadowgraphy system for the detection of droplet collision rates


	Specific adaption of measurement methods
	Laser-Doppler methods
	Laser–Doppler Velocimetry
	Phase–Doppler Velocimetry

	Imaging methods
	Shadowgraphy
	Particle Image Velocimetry


	Experimental results and analysis
	Measurement uncertainty and repeatability
	Measurement uncertainty of LDV/PDA
	Measurement repeatability of LDV/PDA

	Measurements of the continuous (air) phase
	Velocity measurements
	Derived values

	Measurements of the disperse (droplet) phase
	Velocity and diameter measurements
	Derived values

	Consequences for rain formation in clouds
	Reproducing cloud turbulence at small scales
	Passive grid
	Bluff body
	Conclusions

	Online experimental database
	Companion numerical simulations
	Numerical models
	Numerical results


	Conclusions and outlook
	Conclusions
	Outlook

	Wind tunnel specifications
	Selected experimental results, Configuration M1
	Selected experimental results, Configuration M2
	Selected experimental results, Configuration M3
	Selected experimental results, Configuration M4
	List of Figures
	List of Tables
	Bibliography

