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ZusammenfassungSysteme im Berei
h der Mens
h-Mas
hine-Interaktion (MMI) im Allgemeinen,und im Speziellen aktuelle Spra
hdialogsysteme (SDS), die auf automatis-
her Spra
herkennung (ASR) basieren, haben De�zite bei natürli
her und be-nutzerfreundli
her Kommunikation. Problematis
h dabei ist, dass die meistenSysteme wi
htige Informationsquellen über die Aktivität des Nutzers ni
htin Betra
ht ziehen. Dies sind unter anderem die Motivation und Inten-tion sowie der emotionale Zustand des Nutzers. Detaillierte Analysen dieserEigens
haften können daher bedeutend zu Prinzipien der Entwi
klung nutzer-freundli
herer Systeme beitragen. Die Notwendigkeit der Emotionsanalysein der MMI liegt in den Bes
hränkungen der ASR: aktuelle, automatis
heSpra
herkennungssysteme können ni
ht mit �exibler, spontaner, ni
ht im Vok-abular einges
hränkter und emotional gefärbter, d.h. allgemein a�ektbetonterSpra
he umgehen. Daher rü
kte in den letzten Jahren konsequenterweise dieAnalyse emotionaler Spra
he in den Fokus der ASR und darüber hinaus au
hin das Bli
kfeld der Spra
hsynthese. Beide Te
hniken können einen Beitragfür eine intelligentere und nutzerbezogenere MMI leisten.In dieser Arbeit werden neue Ansätze zur nutzerbezogenen Interaktion ausder Si
ht der automatis
hen Emotions- und Intentionserkennung aus gespro
h-ener Spra
he untersu
ht. Dabei liegt das Hauptziel auf der Bereitstellung einere�ektiven Emotionsspra
hverarbeitung (Emotionserkennung, Erkennung emo-tional gefärbter Spra
he). Der Beitrag dieser Arbeit ist die Bes
hreibung a�ek-tbetonter Spra
herkennungsmethoden auf Basis von Hidden-Markov-Modellen(HMMs) mit Gauÿ's
hen Mis
hverteilungsmodellen (GMMs). Der dazu ver-wendete Framework enthält Konzepte der ASR, die auf Aspekten der HMM-s/GMMs basieren: Auswahl von Wort-Untereinheiten und deren quantita-tiven und qualitativen De�nitionen, dem Erkennunsgsalgorithmus für spon-tane Spra
he und einem Spra
hmodell, sowie Adaptationsverfahren zur ro-busten Emotionsspra
herkennung. Im Speziellen werden Wort-Untereinheitendes Deuts
hen in der ASR bes
hrieben. Darüber hinaus werden phonologis
heMuster mit detaillierten Spezi�kationen für Konsonanten, Vokale und Diph-thonge des Deuts
hen vorgestellt. Für die Bes
hreibung der Vokale und Diph-thonge wird das Vokal-Dreie
k verwendet, anhand dessen die vers
hiedenenCharakteristiken von a�ektbetonter und neutraler Spra
he verdeutli
ht wer-den können. In dieser Arbeit wird gezeigt, dass auf Grund der Ähnli
hkeitenin den Ausspra
hemustern von a�ektbetonter und neutraler Spra
he, emo-tionsabhängige Eigens
haften von existierenden Emotions-Korpora auf andereSpra
hkorpora übertragen werden können. Dabei werden die Modellparam-eter eines neutralen Modells dur
h geeignete Transformationen so verändert,



vidass ein akustis
hes Modell für emotionale Spra
he entsteht. Wir habendie Adaptionsmethoden anhand deuts
her Spra
hkorpora getestet und einenbea
htenswerten Genauigkeitszuwa
hs für die Emotionsspra
herkennung erre-i
ht.Der zweite Teil der Arbeit bes
hreibt unsere vers
hiedenen Methodenzur Klass�kation von Emotionen in detaillierter Weise. In Kapitel 4 gebenwir einen Überbli
k über existierende Te
hniken der Emotionserkennung ausSpra
he und bespre
hen akustis
he Features, die für die Unters
heidung vonemotionalen Ereignissen am geeignetsten ers
heinen. Zwei Klassi�kation-ste
hniken werden dabei näher vorgestellt: die statis
he (turn-level) unddie dynamis
he (frame-level) Methode. Zur Entwi
klung der dynamis
henEmotionserkennung verwenden wir Hauptkonzepte der aktuellsten Methodender Spra
herkennung, die auf HMM/GMM Modellen basiert. Im Speziellenpräsentieren wir vers
hiedene Methoden der Emotionsklassi�kation basierendauf der Analyse unters
hiedli
her Einheiten der Spra
herkennung: Äuÿerun-gen, Satzteilen (Chunks) und Phonemen. Zwei Arten der Analyse aufPhonem-Ebene werden detailliert vorgestellt: emotionale Phonemklassen undFormant-Verfolgung von Vokalen. Darüber hinaus diskutieren wir zwei Artender Fusion von Klassi�kationsergebnissen. Diese sind: zweistu�ge Fusion undFusion auf mittlerem Abstraktionsniveau. Abs
hlieÿend werden die Erken-nungsleistungen für einheitenspezi�s
he (kontextabhängige) und allgemeine(kontextunabhängige) Modelle vergli
hen. Dabei können wir zeigen, dass dieEmotionserkennung auf Basis von einheitenspezi�s
hen Modellen sol
he mitkontextunabhängigen in der Erkennungsleistung übertre�en, vorausgesetzt essteht pro Einheit genügend Trainingsmaterial zur Verfügung.Beide vorgestellten Ansätze werden auf vers
hiedenen Spra
hkorporaevaluiert. Für die Experimente mit a�ektbetonter Spra
he werden unter-s
hiedli
he Strategien zur Veri�kation verwendet und diverse Erkennungsmaÿebenutzt. Dur
h Verwendung von Formantverfolgung auf Vokalebene kön-nen wir zeigen, dass unimodale, akustis
he Merkmale (gemittelte F1 Werte)stark mit dem Grad der Erregung (arousal) eines Spre
hers korreliert sind.Mit diesen Merkmalen, dem Neyman-Pearson Kriterium und einer kleinenMenge an Trainingsmaterial (1-2 Äuÿerungen pro Spre
her) zur Adaption er-halten wir Ergebisse in der Emotionserkennung, die mit den auf a�ektbeton-ten Korpora trainierten Klassi�katoren verglei
hbar sind. Mit unserer Meth-ode der Erkennung, basierend auf dynamis
her Analyse, und der Verwendungvon spektralen Merkmalen (Mel-Frequen
y Cepstral Coe�
ients) konnten wireines der besten Klassi�kationsergebnisse auf spontaner, emotionaler Spra
hewährend der INTERSPEECH 2009 Emotion Challenge errei
hen.Einige der Resultate dieser Arbeit wurden in einem prototypis
hen Di-alogsystem, wel
hes vom Autor und einigen Kollegen unter fortdauernder Ko-



viioperation seit 2005 entwi
kelt wurde, umgesetzt. Hierbei wurde das Sys-tem so erweitert, dass es si
h an den emotionalen Zustand des Nutzers an-passen kann. In Nutzertests fanden wir heraus, dass besonders in frustrieren-den Situationen, ein sol
hes System, mit Adaption an den emotionalen Zu-stand, erfolgrei
h Hilfestellungen und Lösungsvors
hläge im Zusammenhangmit den aktuellen Aufgaben geben konnte. Spre
heradaptive Spra
hdialogsys-teme basierend auf akustis
her Emotionserkennung in Kombination mit einera�ektbetonten Adaption des ASR Modells senken die Zeit, die zur Interaktionund zur Anpassung an das Vokabular benötigt wird, signi�kant, wodur
h dieMMI benutzerfreundli
her und nutzerbezogener wird.





Abstra
tGeneral human-ma
hine intera
tion (HMI) systems, and in parti
ular 
ur-rent state-of-the-art spoken dialog systems (SDS) based on automati
 spee
h-re
ognition (ASR) te
hnology, have a number of de�
ien
ies in 
ommuni
atingwith a user in a natural and friendly way. One problem is that most of thesesystems do not take into a

ount important sour
es of the user's a
tivitiessu
h as his/her motivation, intention and emotional state. Detailed analysisof these a
tivities 
ould, therefore, be an essential feature of a user-friendlyintera
tion interfa
e. The importan
e of user's emotional state analysis dur-ing HMI lies in existing limitations of ASR: 
urrent ASR methods still 
annotdeal with �exible, unrestri
ted user's language, spontaneous and emotionally
olored spee
h. Consequentially, emotional spee
h pro
essing is a topi
 thathas re
eived a great deal of attention during the last de
ade within spee
hsynthesis as well as in ASR. Emotional spee
h synthesis and re
ognition ofemotions within HMI 
an 
ontribute to more intelligent and user-
enteredintera
tion.In this thesis, new approa
hes for user-
entered intera
tion are investigatedfrom the point of view of emotions and intentions automati
ally estimatedfrom spee
h. The main resear
h goal of this thesis is to provide an e�e
tiveemotional spee
h pro
essing (emotion re
ognition, emotional spee
h re
ogni-tion). The �rst 
ontribution of this thesis is to des
ribe automati
 a�e
tive-spee
h-re
ognition methods based on hidden Markov models (HMMs). Thisframework presents the main aspe
ts of the HMM-/GMM-based ASR 
on-
ept: a sele
tion of the sub-word units and their quantitative and qualitativespe
i�
ation, the de
oding algorithm for spontaneous spee
h, a language mod-eling and the adaptation te
hniques for a robust a�e
tive spee
h re
ognition. Inparti
ular, the sub-word units sele
tion for German ASR is des
ribed. After-wards, a German phoneti
 pattern with a detailed spe
i�
ation of all 
onso-nants, vowels and diphthongs is presented. For spe
i�
ation of the vowels anddiphthongs a vowel triangle is used. By generating vowels triangles for variousspeaker's emotional states we show the di�erent 
hara
teristi
s of the a�e
-tive and neutral spee
h. In this work, we prove that due to the pronun
iationpattern similarity of a�e
tive and neutral spee
h, emotion-spe
i�
 
hara
ter-isti
s 
an be 
aptured from existing emotional spee
h 
orpora within adaptivetransformation of model parameters of the initial neutral spee
h model toobtain an emotional spee
h a
ousti
 model. We investigate the poten
y ofadapting emotional spee
h a
ousti
 models for the German language and weobtain a 
onsiderable performan
e gain for the emotional spee
h re
ognition.



x The se
ond 
ontribution of this thesis is to provide a detailed des
riptionof our various emotion-
lassi�
ation te
hniques. In Chapter 4 we present anoverview of existing spee
h-based emotion-re
ognition te
hniques, and dis
ussa
ousti
 feature sets, whi
h are the most informative for emotional events de-termination. Two di�erent emotion-
lassi�
ation te
hniques, namely, stati
(turn-level) and dynami
 (frame-level) are presented. We use the main 
on-
epts of state-of-the-art spee
h re
ognition based on HMM/GMM models fordeveloping our dynami
 emotion-re
ognition te
hniques. In parti
ular, wepresent various emotion-
lassi�
ation te
hniques with di�erent units of anal-ysis: utteran
e, 
hunk, and phoneme. Two di�erent phoneme-level emotion-
lassi�
ation te
hniques, emotional phoneme 
lasses and vowel-level formantstra
king, are des
ribed in detail. Two possible 
ombined emotion-
lassi�
ationmethods, two-stage pro
essing and middle-level fusion, are presented. Finally,we 
ompare emotion-re
ognition performan
es for unit-spe
i�
 (
ontext de-pendent) and general (
ontext independent) models. We show that the in-trodu
ed unit-spe
i�
 emotion-re
ognition models 
learly outperform generalmodels provided su�
ient amount of training material per unit.The above two 
ontributions are evaluated on various spee
h 
orpora. Forthe experiments with a�e
tive spee
h 
orpora we use various types of evalu-ation strategies and re
ognition rate measures. With a vowel-level formantstra
ing te
hnique we show that the unimodal a
ousti
 features (average F1values) extra
ted on a vowel-level are strongly 
orrelated with the level ofarousal of the speaker's emotional state. With these features, a straightfor-ward Neyman-Pearson 
riterion and a small amount of training data (1-2 neu-tral utteran
es per speaker) we obtain 
omparable good emotion-re
ognitionresults. With our emotion-
lassi�
ation te
hnique based on dynami
 anal-ysis we prove that only by using spe
tral features (Mel-frequen
y Cepstral
oe�
ients (MFCC)) 
an we rea
h one of the best emotion-re
ognition per-forman
es for spontaneous emotional spee
h samples evaluated within theINTERSPEECH 2009 Emotion Challenge.Some of the �ndings des
ribed in this thesis have been in
orporated intoa prototype dialog system spe
ially developed by the author and 
olleagueswithin ongoing funded 
ollaborations (sin
e 2005) in order to demonstrateadaptation of the system to the user's emotional state. Within a usabilityexperiment we �nd that during frustrating situations in HMI, the SDS withemotional user state adaptation su

essfully provides 
omprehensive help andexhaustive re
ommendations in the 
ontext of the 
urrent state of the task.The user-behavior-adaptive SDS built upon a
ousti
 emotion re
ognition in
ombination with a�e
tive-spee
h-adapted ASR models signi�
antly de
reasesintera
tion and vo
abulary adaptation time, whi
h shows that HMI be
omesmore friendly and user-
entered.



Table of notationsGeneral Notation:
s a s
alar is denoted by a plain lower
ase letter
v a 
olumn ve
tor is denoted by a bold lower
ase letter
A a matrix is denoted by a bold upper
ase letter
Q(·|·) an auxiliary fun
tionMathemati
al notation:
p(·) probability density fun
tion
p(·|·) 
onditional probability density fun
tion
P (·) probability mass distribution
P (·|·) 
onditional probability mass distributionStandard HMM notation:
M parameter set of HMM
W hypotheti
al word sequen
e W = [w1, w2, . . . , wK ]

N number of HMM's states
ot observation ve
tor at time t
O observation ve
tors sequen
e O = [o1, o2, . . . , oT ]

st state at dis
rete time t
s state sequen
e s = [s1, s2, . . . , sT ]

aij dis
rete state transition probability from state i to j
bj(ot) state output distribution given state j at time t
bjm(ot) state output distribution given state j of m GMM 
omponent at time t
µ mean ve
tor
Σ 
ovarian
e matrix
µm mean ve
tor of the m Gaussian 
omponent
αj(t) forward variable in forward-ba
kward algorithm at time t
βj(t) ba
kward variable in forward-ba
kward algorithm at time t





A
ronymsABC Airplane behavior 
orpus, [S
huller et al., 2009b℄ASR Automati
 spee
h re
ognitionASU Automati
 spee
h understandingAVIC Audiovisual interest 
orpus, [S
huller et al., 2009b℄CMS Cepstral mean substra
tionCSDS Conventional spoken dialog systemsDA Dialog a
tDCT Dis
rete 
osine transformDES Danish emotional spee
h 
orpus, [Engbert and Hansen, 1996℄DPP Dynami
 programming prin
iplesEM Expe
tation maximizationEMO-DB Berlin emotional spee
h database, [Burkhardt et al., 2005℄F1 First formantF2 Se
ond formantFFT Fast Fourier transformFSO Features set optimizationG2P Grapheme-to-phonemeGBC Global base 
lassGEW Geneva emotion wheelGMM Gaussian mixture modelHMI Human-ma
hine intera
tionHMM Hidden Markov modelHNR Harmoni
s-to-noise ratioHTK Hidden Markov model toolkitIVR Intera
tive voi
e responseLLD Low-level des
riptorsLOSO Leave-one-speaker-outLOSGO Leave-one-speakers-group-outMFCC Mel-frequen
y 
epstral 
oe�
ientsML Maximum likelihoodMLV Maximum length voteMSL Maximum 
lassi�er predi
tion s
ore multiplied with the length voteMV Majority voteNIMITEK Neurobiologi
ally inspired multimodal intention re
ognitionfor te
hni
al 
ommuni
ation systemsOOV Out-of-vo
abularyPDF Probability density fun
tionsPE Phoneme emotional



xivPLOI Phoneme level of interestPT Phoneti
 trans
riptionRCT Regression 
lass treeRHS Right-hand sideSAL Sensitive arti�
ial listener 
orpus, [Wöllmer et al., 2008℄SCV Strati�ed 
ross-validationSD Speaker-dependentSDS Spoken dialog systemsSER Spee
h emotion re
ognitionSI Speaker-independentSN Speaker normalizationSUSAS Spee
h under simulated and a
tual stress,[Hansen and Bou-Ghazale, 1997℄SVM Support ve
tor ma
hineTASN Textual asso
iations semanti
 networksTUM Te
hnis
he Universität Mün
henUA Unweighted average re
allUASDS User-adapted spoken dialog systemsVAD Valen
e-arousal-dominan
eVAM Vera-am-mittag 
orpus, [Grimm et al., 2008℄WA Weighted average re
allWER Word error rateWHG Word hypothesis graphWOZ Wizard of Oz



Glossary- Explanation of terms as they are used in this thesis.- Bold words refer to other entries in this glossary.A
ousti
 model whi
h maps the a
ousti
 observation ve
torsmodel to the phoneti
 units.Adaptation model based 
ompensation of a
ousti
 mismat
h.
orre
tion of user's 
ommands set used duringintera
tion with a system.A�e
tive spee
h emotional spee
h.Annotation emotional spe
i�
ation of a spee
h sample.Arousal ex
itation level.Basi
 emotions primary or fundamental emotions de�ned byvarious psy
hologist.Behavior model a-priory information about user's emotional state.Boundary prosody phrasing, a

entuation or fo
us of attention, senten
e moods.Chunk 
ontext-independent a
ousti
 signal segment obtainedwithin emotional segment dete
tion.Cir
umplex 
one-shaped model (3D) or wheel model (2D) ofemotion representation.Clustering of 
lustering of emotions to a binary (positive/negative)emotions arousal and valen
e or 4 quadrants dis
rimination task.Companion a user-
entred dialogi
 man-ma
hine-intera
tion te
hno-Te
hnology logy, based on fundamental te
hni
al, informational,psy
hologi
al and neurobiologi
al 
on
epts. Investigatedby an ongoing resear
h proje
t, the TransregionalCollaborative Resear
h Centre SFB/TRR 62.



xviContext information about phoneti
 trans
ription, word or senten
e(to be understood as emotional 
ontext).Corpus dataset of spee
h samples and 
orresponding tran-s
riptions and/or annotations.Dialog spee
h based intera
tion between human and ma
hine.Domain limited set of textual information whi
h 
an beused for language modeling.Dominan
e apparent strength of the person. [Grimm et al., 2007℄Dynami
 analysis emotion pro
essing on frame level.Emotion short time user's rea
tion bound to a spe
i�
 stimulus.Emotion word identi�er whi
h spe
i�es an emotional
ategory user's state.Emotion user's emotional state spe
i�
ation with emotiondes
riptor 
ategories or numeri
 values in an emotion spa
e.Emotion spa
e two- or three-dimensional (e.g. valen
e-arousal-[dominan
e(poten
y)℄) spa
e, where ea
h emotion 
anbe de�ned as a point with 
orresponding 
oordinates.Formant the spe
tral peaks of the spee
h spe
trum.Frame segment of a
ousti
 spee
h signal (e.g. 25 ms length forautomati
 spee
h re
ognition and utteran
e-level emotion
lassi�
ation).Fusion 
ombination of several 
lassi�
ation te
hniques.Geneva emotion wheel with 20 spokes ( emotion families), ea
h spoke iswheel asso
iated with a type of emotion (10 negative and 10positive emotions) arranged on pleasure-dominan
e spa
e.Grammar spe
i�
ation of a possible word sequen
e witha prede�ned word o

urren
e order.



xviiHuman-ma
hine stru
tured and themati
 domain-dependent intera
tionintera
tion between a user and a system.Intelligent spoken system whi
h a

ommodates the speaker's emotionsdialog system in a proper way.Intention user's operational goal.Language model list of words that 
an follow ea
h word in
luded in thevo
abulary with asso
iated dis
rete probability.Lexi
on phoneti
al trans
riptions for all words in
luded inthe vo
abulary.Low-level a
ousti
 features applied for stati
 analysis, seedes
riptors Table 4.2 on page 83.Mapping of fun
tional mapping of 
ategori
al emotions onemotions valen
e-arousal dimensional spa
e.Middle-level 
ombination of two 
lassi�
ation te
hniques, whi
hfusion used 
lassi�
ation s
ores of the �rst 
lassi�er as anadditional feature set of the se
ond 
lassi�er.Modality an information 
hannel used for 
lassi�
ation.Motivation pro
ess that initiates a reason or an interest that
auses a spe
i�
 a
tion or 
ertain behavior.Multimodal based on several information 
hannels.Phoneme smallest a
ousti
 
omponent of spee
h to form meaning-ful utteran
es.Plut
hik's 
on
eptualization of the primary emotions in a 
olor-emotional wheel fashion � pla
ing similar emotions 
lose togetherwheel and opposites 180 degrees apart, like additional 
olors[Plut
hik, 2001℄.



xviiiPoten
y individual's sense of power or 
ontrol, for example"
on
entrated vs. relaxed attention", "dominan
e vs."submissiveness".Robust stable enough to be implemented in real-life appli
ation.Spee
h a
ousti
 signal produ
ed by a speaker.Stati
 analysis emotion pro
essing on turn level with statisti
alfun
tionals.Statisti
al fun
tions whi
h proje
t uni-variate time series onto afun
tionals s
alar feature independent of the length of the turn(e.g. mean, standard deviation, et
.).Trans
ription phoneti
 spe
i�
ation of a spee
h sample.Turn word or word sequen
e within 
ompleted speaker's 
ommand.Unimodal based on single information 
hannel.Unit spe
i�
 
ontext dependent.User-behavior adaptive to the 
urrent user's emotional state.adaptiveUtteran
e word or word sequen
e within 
ompleted speaker's 
ommand.Valen
e represents the value � positive or negative � of the user'semotion.Vo
abulary list of words whi
h 
an be re
ognized by the system.Vowel triangle represents the extremes of vowel's formant lo
ation in theF1/F2 spa
e.Wizard of Oz experiments whi
h are based on subje
ts' illusion thatexperiment they are intera
ting with a 
omputer driven system,while a human operator simulates a 
omputing system.
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Chapter 1Introdu
tion
Contents1.1 Motivation and aim . . . . . . . . . . . . . . . . . . . . 11.2 Pra
ti
al implementation of the resear
h . . . . . . . 51.3 Thesis stru
ture . . . . . . . . . . . . . . . . . . . . . . 6
1.1 Motivation and aimCurrently, automati
 re
ognition of emotions from spee
h, mimi
s andother modalities has a
hieved growing interest within the human-ma
hine intera
tion resear
h 
ommunity and spoken dialog system designers.Emotion re
ognition is a guiding star on the path to making a 
ommuni
ationbetween humans and 
omputers more friendly and 
ooperative. With robustemotion re
ognition, we will be able to model a user's behavior within intera
-tion with a 
omputer. At the same time, automati
 assessment of an a�e
tivespee
h will simplify spee
h understanding and intention dete
tion tasks.The importan
e of human-behavior-based dialog strategies in human-ma
hine intera
tion (HMI) lies in an existing limitations of automati
 spee
h-re
ognition (ASR) te
hnology. The 
urrent state-of-the-art ASR approa
hesstill 
annot deal with �exible, unrestri
ted user's language [Lee, 2007℄, [Benze-ghiba et al., 2007℄. Therefore, problems 
aused by a misunderstanding of auser who refuses to follow a prede�ned, and usually restri
ting, set of 
ommu-ni
ational rules seems to be inevitable.It has been shown in [Bos
h, 2003℄, that the "linguisti
 
ontent" of spokenutteran
e goes beyond its "text" 
ontent. During human-to-human 
ommuni-
ation, the listener extra
ts important information (semanti
 boundaries, a
-
ents, senten
e mood, fo
us of attention, and emotional state of the user [Nie-mann et al., 1998℄) out of prosodi
 
ues. Dete
ting and utilizing su
h 
uesas a part of the user-behavior state des
riptors is one of the major 
hallengesin the development of reliable human-ma
hine interfa
es. Knowledge of theuser's emotional states 
an help to adjust system responses so that the user



2 Chapter 1. Introdu
tionof su
h a system 
an be more engaged and have a more e�e
tive intera
tionwith the system [Gnjatovi¢ and Rösner, 2008b℄.The spee
h-re
ognition task be
omes more and more di�
ult, and enor-mous 
hallenging problems on a
ousti
 modeling arise. One of the 
hallengesis the diverse prosodi
 
hara
teristi
s of the spontaneous spee
h data. Forexample, di�erent non-lexi
al events, intonation variability, a speaker mood
hange. Most ASR systems are designed not to be re
eptive to intonation,user's emotional state, and loudness variability. It has been shown that ASRperforman
e depends on speaking style and level of formality [Weintraub et al.,1996℄. Adaptation te
hniques 
an be used to in
rease performan
e of a�e
tivespontaneous spee
h re
ognition. By adapting an ASR model trained on neu-tral spee
h on a sparse amount of a�e
tive spee
h samples, we 
an provideso-
alled 'statisti
al similarity' of training and test material [Ijima et al., 2009℄.Resear
h by neuros
ientists and psy
hologists showed that a user's emo-tional state is 
losely related to the de
ision-making pro
ess during the human-to-human 
ommuni
ation [Damasio, 1994℄, within a human-ma
hine intera
-tion and thus, emotion plays an important role in the sensible human a
-tions. Realizing the importan
e of emotions in a human 
ommuni
ation anda de
ision-making pro
ess, it is desirable for an intelligent human-ma
hineinterfa
e to a

ommodate the human emotions in a proper way.1.1.1 Appli
ations of automati
 emotion re
ognitionEmotions perform an important fun
tion in human 
ommuni
ation and in-tera
tion, allowing people to express themselves beyond the bounds of theverbal 
ommuni
ation. The ability to understand human emotions withinhuman-ma
hine intera
tion is desirable in several appli
ations:� Expressive spee
h synthesis, for a new generation of HMI systems whi
h
an be used to in
rease the naturalness of the human-ma
hine intera
-tion.� Emotion re
ognition (e.g., for early mis
ommuni
ation and frustrationdete
tion in spoken dialog systems, su
h as 
ommer
ial telephone-baseddialog systems)� Safety drive assistan
e, automati
 re
ognition and 
ontrol of emotionsfor in-
ar interfa
es,� Opinion mining and level of interest 
lassi�
ation whi
h automati
allytra
ks 
ustomer's attitudes regarding a produ
t a
ross blog 
omments(Web 2.0),� A�e
tive monitoring for "lie dete
tion" systems like polygraph, fear de-te
tion for surveillan
e purposes or anger dete
tion for 
on�i
t situationsdete
tion,



1.1. Motivation and aim 3� Chara
ter design and intera
tion 
ontrol for games and virtual-realitys
enarios,� So
ial robots, su
h as guide robots engaging with visitors (e.g., MEXIa Robot with Emotions, Fujitsu Servi
e Robot "ENON"),� Support for people with disabilities, su
h as edu
ational programs forpeople with autism� Automati
 movie genre 
lassi�
ation or episodes indexing (
omedy, a
-tion, drama and et
.)1.1.2 Variety of modalitiesHumans-to-human intera
tion is mainly based on vo
al 
ommuni
ation, butalso fa
ial mimi
s and body gesture language. Both are used to emphasize a
ertain part of the spee
h and display of emotions. An analysis of a gaze, aposture, gestures, fa
ial expressions, an eye 
onta
t, fa
e and lip movements
an support a user-behavior modeling. Likewise, the spee
h signal may 
on-vey linguisti
 as well as paralinguisti
 information. It has been shown thatlinguisti
 properties 
an be used as an indi
ator of mis
ommuni
ation situa-tions [Nöth et al., 2004℄. Furthermore, it has been shown that senten
e moodin German 
an be indi
ated by prosody, lexi
al 
ontent, word order, and mor-phology [Batliner et al., 2003℄. Besides prosodi
 variation, speakers indeedemploy a number of di�erent linguisti
 features to express their emotions.There are some physiologi
al responses that 
an be used for the re
ogni-tion of the user's emotional state. These in
lude blood pressure, blood volumepulse, respiration rate, heart rate, galvani
 skin response, ECG, EMG and oth-ers. It was proved that emotional states 
an be re
ognized automati
ally fromgeneri
, and e�
ient physiologi
al feature set design for ea
h physiologi
al sig-nal [Hönig et al., 2009℄.It is well-known that using automati
 lipreading in 
ombination with au-tomati
 spee
h re
ognition leads to higher spee
h-re
ognition performan
e. Inaddition, 
omparable to the silent visual 
ues from a system, fa
ial expressionsof a user may indi
ate 
ommuni
ation problems even when the person is notspeaking, for instan
e when the user be
omes aware of a mis
ommuni
ationsituation during the system's prompts.Fusion of the user's spee
h and visual 
ues analysis is be
oming an ordinaryfeature in advan
ed multimodal spoken dialog systems. Combined audio low-level des
riptors and video low-level des
riptors time series analysis approa
hto an audiovisual behavior modeling proved to be highly promising [S
hulleret al., 2007
℄. The visual information may provide a useful sour
e for dete
tingmis
ommuni
ation or frustration, next to existing sour
es su
h as linguisti
and prosodi
 
ues. Automati
 fa
ial tra
king 
ould be bene�
ial for improving



4 Chapter 1. Introdu
tionhuman-to-ma
hine intera
tions in that audiovisual events indi
ate problemati
dialog events and allow the system to monitor the level of frustration of auser [Barkhuysen et al., 2005℄.1.1.3 Te
hni
al problems in realizationThe main problem of user emotional states 
lassi�
ation within spee
h is a dif-�
ulty of data 
olle
tion. In most 
ases, a
tors simulate emotions a

ording tosome 
ertain s
enario usually in a perfe
t a
ousti
 
ondition. These materialsare good for emotion-
lassi�er developing and the most informative a
ous-ti
 feature set sele
tion in the 
ontext of an emotion-re
ognition task. Butthis a
ted data is not appli
able for training robust models for spontaneousemotion re
ognition.An alternative to the prototypi
al expressions of "pure" emotions is touse experiments whi
h simulate human-
omputer 
onversations with a so-
alled Wizard of Oz (WOZ) s
enario. A questionnaire study 
ondu
ted aftersome WOZ experiments showed that speakers may �rst be slightly frustrated,then be
ome really annoyed, and as they believe they are talking to a 
om-puter, they do not attempt to display their emotional state to their arti�-
ial 
ommuni
ation partner at all. In most 
ases, emotional data 
olle
tedduring WOZ is less emotionally intensive in 
omparison to a
ted material.As a result, in most publi
ations related to emotional spee
h pro
essing,performan
e of emotion 
lassi�
ation on a
ted data outperforms evaluationresults of spontaneous emotions. A
ousti
ally based emotion 
lassi�
ationworks quite well for prompted a�e
tive spee
h [S
huller et al., 2009℄, but isnot su�
ient for the more realisti
 spontaneous emotions whi
h o

ur in realsystems or WOZ s
enarios. It was demonstrated that spontaneous emotion-
lassi�
ation performan
e in
reases if we add more knowledge sour
es, forinstan
e, synta
ti
-morphologi
al parts of spee
h (POS) information. One
an model and �nd mis
ommuni
ation indi
ators better if one in
orporateshigher linguisti
-pragmati
 information, for instan
e, by re
ognizing repeti-tions [Batliner et al., 2003℄.Another signi�
ant problem for the analysis of spontaneous emotional datais emotional 
hunks delimitation. The problem lies in de�ning the "referen
e"of a study; that is, determining whi
h part of a user's utteran
e should bemarked as emotional and whi
h as neutral. In most 
ases, within human-ma
hine intera
tion speakers do not display single, pure, emotions in theirfull intensity within one utteran
e. At the same time, 
orre
t dete
tion ofpure saturated anger will 
ertainly be too late for the spoken dialog systemto rea
t in a way so as to �x a mis
ommuni
ation problem. The main issueis not a dete
tion of over�ow anger, but 
lassi�
ation of all forms of slight or



1.2. Pra
ti
al implementation of the resear
h 5medium irritation indi
ating a 
riti
al phase in the dialog that may be
omereal saturated anger if a wrong dialog strategy is applied.There are ongoing debates in the a�e
tive-spee
h-pro
essing 
ommunity
on
erning how many emotion 
ategories exist and whi
h of them are appli
a-ble for intelligent spoken dialog systems, how to submit long-term (utteran
e,senten
e, dialog a
t) properties, for example, moods with short-term a�e
tiveevents su
h as full-blown emotions. Resear
h aimed at re
ognizing emotion re-quires databases that 
ontain as many as possible of the indi
ations by whi
ha given emotion 
an be expressed. Most of the publi
ations on a
ousti
-basedemotion pro
essing is underpinned by "datasets" rather than "databases".They are relatively small-s
ale 
olle
tions of spee
h samples, usually estab-lished to examine a single 
ase issue, and not publi
ly available [Douglas-Cowieet al., 2003℄.One of the problems of automati
 emotion-
lassi�
ation resear
h is a non-standardized annotation methodology. Emotions annotation methodologyneeds to be standardized. Afterwards the spee
h-pro
essing 
ommunity 
anstart a joint emotional spee
h data 
olle
tion and annotation that solves theproblem of a sparse amount of well-annotated a�e
tive spee
h data.1.1.4 Resear
h goalsThe primary aim of this resear
h is to present new a�e
tive spee
h-pro
essingmethods and their possible appli
ation for user-friendly spoken dialog systems.Re
ognition of prosodi
 
ues su
h as emotional state and stress level of thespeaker may be dete
ted and used for an a�e
tive-behavior-adaptive dialogstrategy.An overview of existing a�e
tive-spee
h-pro
essing methods is presentedin this thesis. The advantages and disadvantages of di�erent spee
h-basedemotion-
lassi�
ation methods are dis
ussed. Also, new methods of a
ousti
emotion 
lassi�
ation and a�e
tive-spee
h-adapted ASR models are des
ribed.Robustness and usability of the above-mentioned methods have been provedby evaluations on well-known emotional spee
h 
orpora. Results of evaluationsare presented in our publi
ations and this thesis.1.2 Pra
ti
al implementation of the resear
hWithin well-known proje
ts like VERBMOBIL and SMARTKOM [Herzoget al., 2004℄ a framework for building integrated natural-language understand-ing with multimodal dialog systems was 
reated. Both proje
ts in
lude theprosody module for boundary prosody analysis, senten
e mood and phrase



6 Chapter 1. Introdu
tiona

ent 
lassi�
ation. The prosody module integrated in the SMARTKOMdemonstrator is based on the Verbmobil prosody module [Batliner et al.,2000a℄. In 
ontrast to the Verbmobil version, few major 
hanges have beenmade 
on
erning both implementation and 
lassi�
ation models. The mostnoti
eable is a user state 
lassi�er. All existing 
lassi�
ation models for there
ognition of prominent words, phrase boundaries, and questions have beenretrained on the a
tual SMARTKOM Wizard of Oz data [Zeiÿler et al., 2006℄.My resear
h addresses aspe
ts of design and implementation of user-behavior models in dialog systems for frustration dete
tion and user-intentionre
ognition, aimed to provide naturalness of human-ma
hine intera
tion.For real-life evaluation, a
ousti
 emotion-
lassi�
ation methods, robust af-fe
tive automati
 spee
h-re
ognition (ASR) methods, and user emotion 
or-related dialog management, a multimodal human-ma
hine intera
tion sys-tem with integrated user-behavior model has been 
reated within the proje
t"Neurobiologi
ally Inspired, Multimodal Intention Re
ognition for Te
hni
alCommuni
ation Systems" (NIMITEK) [Wendemuth et al., 2008℄. Currentlythe NIMITEK demonstration system provides a te
hni
al demonstrator tostudy user-behavior-modeling prin
iples in a dedi
ated task, namely solvingthe game "Towers of Hanoi". The user-behavior model integrated in theNIMITEK demonstrator based on emotion-
lassi�
ation methods will be de-s
ribed in this thesis. Within a usability test [Vlasenko and Wendemuth,2009a℄, we �nd that our system with user-behavior-adaptive dialog strategyprovides more 
ooperative human-to-ma
hine intera
tion and redu
es inter-a
tion time required to 
omplete the game.1.3 Thesis stru
tureThe thesis is organized as follows.Chapter 2 presents the fundamental aspe
ts of human-ma
hine intera
-tion in
luding automati
 spoken dialog systems, natural spee
h 
hara
teris-ti
s (boundary prosody, emotional prosody), user-behavior modeling during
ommuni
ation, a�e
tive spee
h 
olle
tion and pro
essing. Then, 
lusteringof emotions and an adequate annotation strategy are des
ribed. Various eval-uation strategies and re
ognition rate measures are dis
ussed at the end ofthe 
hapter.Chapter 3 reviews the fundamental issues of automati
 spee
h re
ogni-tion, namely, feature extra
tion, a
ousti
 modeling with HMMs, maximumlikelihood (ML) training, language modeling and sear
h algorithms withinre
ognition. Also, sub-word units sele
tion and adaptation on a�e
tive spee
hsamples are des
ribed.



1.3. Thesis stru
ture 7Chapter 4 addresses various spee
h-based emotion-re
ognition te
hniques.An overview of existing emotion-
lassi�
ation methods, a
ousti
 feature setsspe
i�
ation 
on
epts and emotion des
riptors 
hara
teristi
s are presented�rst. This 
hapter presents dynami
 and stati
 emotion-re
ognition methodswith 
orresponding a
ousti
 feature sets and possible optimization strategies.Our developed 
ombined emotion-
lassi�
ation methods are also dis
ussedin detail. Finally, 
ontext-dependent and 
ontext-independent models areevaluated.Chapter 5 presents experimental results for a�e
tive spee
h re
ognitionand speaker's emotional-state 
lassi�
ation. Evaluation results for neutral anda�e
tive-spee
h-re
ognition experiments are presented �rst. Also, this 
hapterpresents evaluation results of various emotion-
lassi�
ation methods des
ribedearlier in Chapter 4. Finally, evaluation results for our emotion-
lassi�
ationte
hniques within the INTERSPEECH 2009 Emotion Challenge [S
hulleret al., 2009
℄ and 
ross-
orpus a
ousti
 emotion re
ognition are presented.Chapter 6 des
ribes a prototype of the user-friendly spoken dialog systemintegrated into a NIMITEK demonstrator. The system dynami
ally sele
ts adialog strategy a

ording to the 
urrent user's emotional state. This systemin
orporate the �ndings des
ribed in previous 
hapters into a prototype dialogsystem espe
ially developed by the author and 
olleagues to demonstrate emo-tional user state adaptation. In this 
hapter we des
ribe the data 
olle
tionstrategy within the NIMITEK Wizard of Oz experiments, and the stru
ture ofthe 
onventional and user-behavior-adaptive spoken dialog systems. Finallywe dis
uss the results of an intera
tive usability test.Chapter 7 addresses the 
on
lusions and dire
tion of future resear
h.
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2.1 Introdu
tionIn this 
hapter we provide an overview of the several topi
s of interest inspoken dialog systems and human-ma
hine intera
tion. We also provide abrief des
ription of spontaneous spee
h 
hara
teristi
s, namely, boundary andemotional prosody. We also present an introdu
tion to emotion theory, de-s
ribe di�erent emotion 
ategorization approa
hes and survey existing sour
esof emotional spee
h. Finally, we des
ribe di�erent types of evaluation strate-gies and re
ognition-rate measures.2.2 Human-ma
hine intera
tionCurrently we live in the Age of Information. Information 
olle
tion, sear
hing,and stru
turing are usual a
tivities in the everyday life of modern humans.We use ele
troni
 devi
es (
omputers, digital 
ameras, smartphones, mobile
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.) for 
ommuni
ation, multimedia data 
olle
tion, entertainment,edu
ational purposes, information a

ess (Internet web resour
es, travel as-sistan
e, di
tionary et
.), online shopping and other servi
es.Many existing human-ma
hine interfa
es within multimedia systems arefar from being user-friendly, and only a few are based on a human-
entered ap-proa
h [Jaimes and Sebe, 2007℄. Nowadays, 
omputers are qui
kly be
omingintegrated into everyday devi
es, whi
h implies that e�e
tive natural human-ma
hine intera
tion is be
oming 
riti
al. To make human-ma
hine intera
-tion more 
ooperative and produ
tive, intelligent human-
entered 
ommuni-
ation features have to be integrated into ma
hine interfa
es. The su

ess ofhuman-
entered human-ma
hine interfa
es has to take into a

ount two jointaspe
ts [Jaimes et al., 2006℄:� the way humans intera
t with su
h systems (spee
h, prosodi
 
hara
ter-isti
s, mimi
, gestures and et
) to express emotions, mood, attitude, andattention,� the human fa
tors that belong to multimedia data (human subje
tivity,levels of interpretation).Whilst developing our intelligent human-
entered human-ma
hine inter-fa
e we took into a

ount the fa
t that human-to-human 
ommuni
ation isusually so
ially situated and that humans use emotion to enhan
e their 
om-muni
ation. However, sin
e emotions are often expressed within 
ommuni-
ation, pro
essing them is an important task for intelligent HMI. Our mainaim is the 
reation of an HMI system that 
an "feel" the a�e
tive states ofthe human and is 
apable of adapting and adequately responding to thesea�e
tive states.2.2.1 Spoken dialog systemsSystems, in whi
h human users use verbal 
ommuni
ation to a
hieve a goal,are 
alled spoken dialog systems (SDS). Su
h systems are some of the few re-alized examples of real-time, goal-oriented humans-to-
omputer intera
tion orhumans-to-human 
ommuni
ation with parti
ipation of 
omputers (real-timespoken language translation systems, see VERBMOBIL). Commer
ial auto-mati
 spoken dialog systems are quite popular in English-speaking 
ountries.Still 
ommer
ial automati
 spoken dialog systems have just started tosubjugate the German market. Some large proje
ts like VERBMOBIL andSMARTKOM [Herzog et al., 2004℄ 
reated a framework for building inte-grated natural-language understanding with multimodal dialog systems. The-mati
 domain restri
ted automati
 dialog systems were 
reated by Sympalog.Sixt swit
hboard, Betri, Filtips represent Sympalog's 
onversational dialogue



2.2. Human-ma
hine intera
tion 11te
hnology and today's standard IVR (Intera
tive Voi
e Response) te
hnol-ogy [Nöth et al., 2004℄. Unfortunately these dialog systems do not take intoa

ount most of the ideas of human-
entered/human-initiative 
on
epts. Theyare still task- and ma
hine-
entered.VERBMOBIL is a speaker-independent spee
h-to-spee
h translation sys-tem. It provides users with a spee
h-to-spee
h translation servi
e in mobilesituations with simultaneous dialog interpretation servi
es on restri
ted top-i
s. The system pro
esses dialogs in three themati
 domains, namely ap-pointment s
heduling, travel planning, and remote PC maintenan
e, and itprovides 
ontext-sensitive translations between three languages (German, En-glish, Japanese) [Batliner et al., 2000a℄.SMARTKOM is a mixed-initiative dialog system that provides full sym-metri
 multimodality by 
ombining spee
h, gesture, and fa
ial expressions forboth user input and system output [Reithinger et al., 2003℄. The system aimsto provide an anthropomorphi
 and a�e
tive user interfa
e through its per-soni�
ation of an embodied 
onversational agent. The intera
tion metaphor isbased on the so-
alled situated, delegation-oriented dialog paradigm [Zeiÿleret al., 2006℄.The Sixt swit
hboard appli
ation handles all in
oming 
alls (approx. 1000per day) to the Sixt AG's 
entral telephone number. 90% of the re
eived 
allsby Sixt AG are redire
ted automati
ally to the 
orre
t person, the rest of the
alls are handed over to a human operator. The system's knowledge database
onsists of more than 1000 employee names. Berti, whi
h is a football Bun-desliga information system, is now 
ommer
ially operated by a large Germanmedia 
ompany on a pay-per-
all basis. Filmtips, whi
h is a movie informa-tion system, is operated by a 
inema 
ompany in the Nuremberg region [Nöthet al., 2004℄.2.2.2 Arti�
ial 
ommuni
ation advantages anddisadvantagesReal-life and arti�
ial 
ommuni
ation are 
urrently far away from being 
om-parable. A natural 
ommuni
ation system in
ludes a natural verbal languagewith the huge prosodi
 variability 
ombined with a nonverbal body and gesturelanguage. On the one hand, a boundary prosody indi
ates a fo
us of attention,a senten
e stru
ture, a speaker intention. On the other hand, an emotionalprosody shows a level of interest, a mood and a possible frustration during thehuman-to-human intera
tion. Arti�
ial 
ommuni
ations systems are those de-liberately invented, usually to serve spe
i�
 fun
tions or tasks, su
h as bookingti
kets, 
ontrolling bank a

ounts, or sear
hing for some information duringhuman-ma
hine intera
tion. User-behavior modeling by emotion 
lassi�
a-
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hine intera
tion re
eived a great deal of attentionduring the last few years in the spoken dialog developers 
ommunity.It is highly desirable in most HMI appli
ations su
h as 
omputer-aidedtutoring and learning, that the response of the 
omputer takes into a

ountthe emotional or 
ognitive state of the human user. Emotions are displayed bymimi
s, body movements, spee
h, linguisti
 and paralinguisti
 means. Moreand more resear
h in HMI 
on�rmed that emotional skills modeling is an im-portant part of the so-
alled intelligent system. Spoken dialog systems today
an re
ognize mu
h of what is said, and to some extent, who said it. Still, theyare not able to pro
ess the a�e
tive 
hannel of information [Jaimes and Sebe,2007℄. Intelligent systems with a�e
tive 
ommuni
ation features 
onsider howemotions 
an be 
lassi�ed and expressed during human-ma
hine intera
tion.Three key points have to be applied during developing systems that pro
essa�e
tive information: embodiment (experien
ing physi
al reality), dynami
s(mapping experien
e and emotional state with its label), and adaptive in-tera
tion (
onveying emotive response, responding to a re
ognized emotionalstate) [Bian
hi-Berthouze and Lisetti, 2002℄.Nowadays, one takes a human-to-human intera
tion s
enario, and repla
esone of the humans with an automated dialog system, then the a�e
tive 
om-muni
ation will disappear. It happens not be
ause people stop 
ommuni
atinga�e
tively � e.g., a person expresses anger at dialog systems during mis
om-muni
ation situations. The problem arises be
ause the human-ma
hine inter-fa
e has no ability to dete
t when a human is stressed, frustrated, pleased,interested, or bored. A person ignoring the non-verbal elements in human-to-human 
ommuni
ation would be 
onsidered impolite or unintelligent. De-te
tion and 
lassi�
ation of emotions within arti�
ial 
ommuni
ation are key
omponents of the intelligent system.Resear
h is therefore needed for new methods to 
ommuni
ate a�e
tivelythrough automated system 
ontrolled environments. Up-to-date spoken-dialog-system-driven 
ommuni
ation almost always has less a�e
tive band-width than natural human-to-human ma
hine intera
tion. The appearan
eof a�e
tive wearable dialog systems 
ould 
hange the nature and e�
ien
y ofhuman-ma
hine intera
tion.2.3 Prosodi
 
hara
teristi
s of spontaneousspee
hLinguists de�ned prosody as rhythm, stress and intonation of spee
h. Prosodyre�e
ts the following features of the speaker or the utteran
e: the emotionalstate; whether an utteran
e is a statement, a question, or a 
ommand; whether
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hara
teristi
s of spontaneous spee
h 13the speaker is being 
ooperative or non-
ooperative; the use of emphasis,
ontrast, and fo
us; or other elements of language su
h as paralinguisti
 eventsthat may not be en
oded by grammar or 
hoi
e of vo
abulary. In terms ofan a
ousti
 theory, the prosody of spee
h involves variation in syllable length,loudness, pit
h, formant frequen
ies, poses and word length within the spee
hsignal.Prosodi
 information is en
apsulated within vo
alized phoneme, syllables,words, phrases, and whole turns of a speaker. To these units we as
ribeper
eived properties su
h as pit
h, loudness, speaking rate, words and pauseduration, voi
e quality, rhythm, et
. In human-to-human 
ommuni
ation, thelistener extra
ts multiple information from prosodi
 
ues. Due to this fa
t, we
an de�ne 
ertain fun
tions of the prosody phenomena. The prosodi
 fun
-tions are the marking of boundaries, a

ents, the senten
e mood, an intonationand the speaker's emotional state [Batliner and Nöth, 2003℄.2.3.1 Boundary prosodyAn appli
ation of prosody analysis is quite popular in automati
 spee
hpro
essing and dialog understanding. For example, many studies showedthat prosodi
 information may in�uen
e listeners' analysis of an ambiguousphrase [Clifton et al., 2002℄. In the real-life appli
ations, spoken dialog systemdesigners try to 
ombine word hypothesis graphs (WHG) with the prosodyanalysis for a

entuation or prosodi
 boundaries re
ognition.The prosodi
 units 
an be very short � e.g. phoneme-level � or they 
an
onstitute a whole utteran
e. Dialog units are longer than those of semanti
s.The �rst prosody feature is phrasing, i.e., prosodi
 boundaries that re�e
tsynta
ti
 boundaries whi
h, in turn, re�e
t dialog a
ts (DA) boundaries. As ase
ond feature 
omes a

entuation or fo
us of attention, the most importantinformation in a semanti
 unit, e.g., in a senten
e (fo
us). The third prosodyfeature is an ability to disambiguate between di�erent senten
e moods/modal-ities. For example, prosody 
an be used to de
ide whether a senten
e is astatement or a question [Nöth et al., 2002℄.In the 
ase of mis
ommuni
ation dete
tion within human-ma
hine inter-a
tion, Batliner et al. found that some boundary prosodi
 features indi
atetrouble in 
ommuni
ation [Batliner et al., 2003℄. These indi
ators are 
on-du
ted in the following prosodi
 
hara
teristi
s:- pause at phrases;- strong arti
ulation;- strong emphasis;- pause at words;- 
ontrastive a

ent;



14 Chapter 2. State of the art- pause at syllable;- lengthening of syllable;- hyperarti
ulation;- laughter/sighing.An evaluation of the SMARTKOM [Zeiÿler et al., 2006℄ prosody module,whi
h is based on the Verbmobil prosody module [Batliner et al., 2000a℄,shows that boundary prosody analysis may provide higher performan
e ofAutomati
 Spee
h Understanding (ASU).2.3.2 Emotional prosodyWhile listening to spee
h, we rely on a variety of 
ongruent prosodi
 andverbal-semanti
 
ues upon whi
h to base our intera
tion inferen
e as to the
ommuni
ative intention of others. To interpret the meaning of the spee
h,the way something is said may be as important as a linguisti
 
ontent.The paralinguisti
 de
oding is an essential issue in the emotional prosodyanalysis. The emotion within spee
h may manifest itself on the semanti
 anda
ousti
 levels. A variety of a
ousti
 features were also explored in the 
ontextof spee
h-based emotion 
lassi�
ation and emotional spee
h synthesis. Thesea
ousti
 features are as follows:- pit
h-related features;- voi
e level features: signal amplitude, energy;- formant frequen
ies;- timing features: phrase, word, phoneme, and feature boundaries;- voi
e-quality parameters;- spe
tral features;- arti
ulation parameters.Emotion Spee
hRate Pit
hAverage Pit
hRange Inten-sity Voi
eQualityAnger slightlyfaster very mu
hhigher mu
h wider higher breathyJoy faster orslower mu
h higher mu
h wider higher blaringSadness slightlyslower slightlylower slightlynarrower lower resonantFear mu
h faster very mu
hhigher mu
h wider normal irregularDisgust very mu
hslower very mu
hlower slightlywider lower grumbledTable 2.1: Summary of human vo
al 
hara
teristi
s variations of a�e
tivespee
h 
ompared to neutral spee
h [Murray and Arnott, 1993℄
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hara
teristi
s of spontaneous spee
h 15Murray and Arnott [Murray and Arnott, 1993℄ des
ribed emotional voi
e
hara
teristi
s for Ekman (see 2.5.2) basi
 emotions. Table 2.1 des
ribesmostly qualitative 
hara
teristi
s asso
iated with the following fundamentalemotions. These spe
i�
ations are based on a 
omparison of the a�e
tive voi
eto the neutral voi
e 
hara
teristi
s.Within our resear
h we �nd out that only by using spe
tral features (Mel-frequen
y Cepstral 
oe�
ients (MFCC)) analysis we 
an rea
h a good per-forman
e of emotion re
ognition for a
ted and spontaneous emotions sam-ples [S
huller et al., 2009, Vlasenko and Wendemuth, 2009b, Hübner et al.,2010℄. In the 
ase of spontaneous emotions, we have to extend our a
ousti
features set and use a multi-level pro
essing paradigm to rea
h 
omparable
lassi�
ation performan
e on the a
ted data. Also a 
ombination of a
ousti
,linguisti
 and 
onversational analysis yielded better results on spontaneousemotions 
lassi�
ation than the pure a
ousti
 analysis [S
huller et al., 2005b℄.2.3.3 Intera
tionIn order to make spoken dialog systems more intelligent and user-friendly wehave to 
ombine automati
 spee
h re
ognition with a reliable language model,boundary and emotional prosody analyzers, and a language-understandingmodule. In su
h a way they will be able to dete
t and 
lassify user intentions.The basi
 stru
ture of an intelligent SDS is shown in Figure 2.1.The �rst stage of an intelligent spoken dialog system is to re
ognize thespee
h signal and provide a word hypotheses graph (WHG) and 
orresponding
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 trans
ription (PT). This pro
ess is known as automati
 spee
h re
og-nition. To attain an a

eptable performan
e of spee
h re
ognition, the modulerequires language models, for example, n-grams. The WHG is dire
ted to theboundary prosody analysis module, whi
h later generates the boundary labels,dete
ts the fo
us of attention and mis
ommuni
ation indi
ators. Semanti
network modules based on the boundary labels and the WHG generate tex-tual asso
iations semanti
 networks (TASN). Taking into a

ount TASN, PT,WHG and boundary labels, the spontaneous-spee
h-understanding moduleestimates the user's request's lexi
al interpretation. The emotional prosodyanalysis module based on spee
h signals, PT, WHG and mis
ommuni
ationindi
ators 
lassi�es the 
urrent user's emotional state. An intention re
ogni-tion module takes into 
onsideration the dete
ted fo
us of attention, the user'semotional state and lexi
al interpretation of the user's request, and providesuser's intention 
lassi�
ation.2.4 Emotion theoryIn summary an emotion is a transitory, valen
ed experien
e that is felt withsome intensity as happening to the self, generated in part by a 
ognitive ap-praisal of situations, and a

ompanied by both learned and innate physi
alresponses. Through emotion, people 
ommuni
ate their internal states andintentions to others. Emotion often disrupts thought and behavior, but it alsotriggers and guides 
ognitions and organizes, motivates, and sustains behaviorand so
ial relations (adopted from [Bernstein et al., 1997℄).In re
ent years 
onsiderable resear
h was 
arried out, both theoreti
al andempiri
al, on the per
eption and produ
tion of a�e
tive spee
h. Most ofthis resear
h e�ort is now being made in a �eld 
alled "a�e
tive 
omputing"[Pi
ard, 1997℄. The main goal in a�e
tive 
omputing is to design automati
spee
h-re
ognition and text-to-spee
h algorithms that understand and rea
tto the human emotions.Klaus S
herer distinguished the following a�e
tive phenomena: emotions,feelings, moods and attitudes [S
herer, 2005℄. Also, he suggested that "feelingsintegrate the 
entral representation of appraisal-driven response organizationin emotion" [S
herer, 2004℄. The a�e
tive states 
aused by a salient attitude
an be labeled using terms su
h as desiring, respe
ting, hating, and loving. Inmost 
ases, attitude is a long-term a�e
tive event whi
h 
an make the o

ur-ren
e of a short-term emotion episode more likely. For example, people in loveusually express positive emotions more often. Generally, mood is 
onsidereda di�use a�e
t state, 
hara
terized by subje
tive feelings that a�e
t the be-havior of a person. Moods are generally low-intensity a�e
t states whi
h 
an



2.4. Emotion theory 17last for days, weeks, or months. Within our resear
h we use the term a�e
t inits short-term nature, namely, emotional state. Also, from our point of view,a�e
tive phenomena like feelings, moods and attitudes are the usual 
ases forhuman-to-human 
ommuni
ation; in the 
ase of human-ma
hine intera
tionmost of these phenomena do not o

ur. As a 
onsequen
e, terms su
h as"a�e
tive 
omputing" [Pi
ard, 1997℄ and "a�e
tive spee
h re
ognition" arequite popular in the spee
h-pro
essing 
ommunity and human-ma
hine inter-a
tion resear
h groups. In this thesis, "a�e
tive" will in general refer to anynon-neutral short-term expression.A uniform de�nition of emotion in psy
hology is very 
ontroversial. Ba-si
ally, emotions des
ribe subje
tive sensations of shorter periods whi
h arerelated to 
ertain events, persons or obje
ts. The word "emotion" 
omes fromLatin and means to move or to stir up. Generally, psy
hologists use the word"emotion" to refer to the show of feelings that are produ
ed when importantthings happen to us.Four di�erent theoreti
al approa
hes to the origins and nature of humanemotions have primarily 
rystallized:� Darwinian approa
h: A

ording to the Darwinian perspe
tive [Dar-win, 1872℄ emotions are a result of general human evolution. They havean essential importan
e for the spe
ies survival. As a 
onsequen
e, 
er-tain behaviors are dire
tly linked to the asso
iated emotional feelings.Universal fa
ial expression, infants, and basi
 emotions are eviden
esupporting this theory.� Jamesian approa
h: This approa
h is well grounded owing to thework by James [James, 1884℄. James believed that the human per-
eption of feelings are in response to events. Thus, an emotion ap-pears through the stimulation of sensory organs by an obje
t. The self-per
eption takes pla
e through a�erent impulses leading to the brainuntil they rea
h the 
ortex. As a 
onsequen
e, internal organs and mus-
les are stimulated by e�erent impulses. With the return in the form ofre-a�erent impulses from the organs and mus
les to the 
erebral 
ortex,eventually it appears in the des
ribed per
eption of physi
al 
hangein the form of an emotion. An emotional feeling is possible only in
ombination with a su

eeding physi
al response. Emotion is inferredor 
onstru
ted from instin
tive peripheral physiologi
al responses. Thefollowing is eviden
e in support of James:- patterns of autonomi
 
hanges vary with di�erent emotional states;- people reliving emotional experien
es show di�erent patterns of auto-nomi
 a
tivity;- spinal 
ord injuries redu
e peripheral responses � less intense emotion



18 Chapter 2. State of the art(following Hohmann [Hohmann, 1996℄).� Cognitive approa
h: This theory is similar to the Jamesian theoryas people label emotions using per
eptions of their own somati
 a
tiv-ity. But labeling is a 
ognitive pro
ess that re�e
ts the person's beliefsabout a situation. If people believe they have a reason to be angry theywill per
eive their bodily symptoms as anger. The representatives ofthis theory S
ha
hter [S
ha
hter and Signer, 1962℄ and Arnold [Arnold,1960℄ assumed that emotions are the 
ause of body rea
tions to 
ertain
ir
umstan
es and that they are tra
eable.� So
ial 
onstru
tivist approa
h: Averill [Averill, 1980℄ and Harré[Harré, 1986℄ argued that feelings re�e
t the result of learned so
ialrules of behavior. The de
isive fa
tor is the underlying 
ulture, be
auseit implies signi�
antly the assessment of the 
ir
umstan
es whi
h lead toan emotion. Hen
e, the triggers for anger di�er inter-
ulturally and eveninterpersonally. Following this model, the 
ultural 
ontext plays an im-portant role for the assessment of emotions. The so
ial-
onstru
tivistapproa
h is one of the youngest and most 
ontroversial psy
hologi
altheories about human feelings. It shows that some syndromes in di�er-ent 
ultures 
an be dete
ted as unambiguous emotions, while in other
ir
les this 
an be only 
onditionally true. This approa
h is in 
on�i
twith the others, but within it the emotions are 
onsidered a produ
t ofevolution.After all, we need to establish that although these theories in parts 
an bea

umulated, not one of them was examined 
orre
tly. Besides, a lot of e�ortswere made to 
ombine them. Within our resear
h we applied the basi
 ideasof Jamesian, 
ognitive and so
ial 
onstru
tivist approa
hes.
2.5 Emotion 
ategorizationAn annotation of emotional episodes within a�e
tive spee
h is a non-trivialtask. An essential problem for the analysis of spontaneous emotional spee
his to determine what an emotional episode is, where it starts and where itends. Afterwards we have to provide a referen
e for the following episodes.Quite often, several emotions 
an be present at the same episode. Thereare two possible emotional annotation approa
hes based on multi-dimensionalrepresentation and 
lassi
al emotion 
ategories.



2.5. Emotion 
ategorization 192.5.1 Multi-dimensional representationThere are few ways of representing emotions in a multi-dimensional emo-tion spa
e. Emotions 
an be distinguished by the numeri
 values in two-or three-dimensional valen
e-arousal-(poten
y or dominan
e) spa
es [Wundt,1897℄, [Kehrein, 2002℄, [Grimm et al., 2007℄ or by meaning of their basi
 enti-ties within 
ir
umplex models [Plut
hik, 2001℄, [S
herer, 2005℄. This 
hapterwill des
ribe in detail the most popular existing dimensional valen
e-arousal-(poten
y or dominan
e) spa
e and 
ir
umplex models.The �rst multi-dimensional representation of emotions was proposed bythe German psy
hologist Wilhelm Wundt [Wundt, 1897℄. He proposed to de-s
ribe an emotional experien
e in terms of three dimensions: valen
e, arousal,and poten
y. These dimensions 
an be interpreted as three orthogonal axes.Ea
h emotion 
an be 
hara
terized be the three numeri
al values whi
h 
or-respond to the 
oordinates within the valen
e-arousal-poten
y spa
e. Valen
e

Figure 2.2: Plut
hiks's two- and three-dimensional 
ir
umplex emotionalwheel model des
ribes the relations among emotional 
lasses. Adopted from[Plut
hik, 2001℄



20 Chapter 2. State of the artrepresents the value � positive or negative � of the user's emotion. Arousal/a
-tivation represents the user's degree of ex
itation � from high to low, like"a
tive vs. passive", "high vs. low ex
itation". "Poten
y" refers to the in-dividual's sense of power or 
ontrol, for example "
on
entrated vs. relaxedattention", "dominan
e vs. submissiveness".The multi-dimensional des
ription bene�ts from a higher-level of gener-ality. It provides a possibility for des
ribing the intensity of emotions. Inthe 
ase of mixed emotions within the same semanti
 unit (dialog a
t (DA),senten
e, utteran
e, word), whi
h is quite often the 
ase in spontaneous a�e
-tive spee
h, the emotion spa
e 
on
ept allows for a more adequate des
riptionof these a�e
tive samples. Nowadays, annotation of emotional events withinspee
h has led to the multi-dimensional emotion des
riptor be
oming moreand more popular. Kehrein [Kehrein, 2002℄ and Grimm et al. [Grimm et al.,2007℄ proposed the use of the following dimensions: appraisal (or valen
e,evaluation), a
tivation (or arousal, ex
itation) and dominan
e (or power).Another quite popular multi-dimensional representation of emotion isbased on the so-
alled 
ir
umplex model. In 1980, Robert Plut
hik 
reated awheel of emotions whi
h 
onsisted of 8 basi
 emotions: joy, a

eptan
e, fear,surprise, sadness, disgust, anger, and anti
ipation. Plut
hik found that the

Figure 2.3: Sample of the adapted Geneva emotion wheel applied for annota-tion purposes within the SEAT proje
t. Adopted from [GEW, 2008℄



2.5. Emotion 
ategorization 21primary emotions 
an be 
on
eptualized in a 
olor-wheel fashion � pla
ing sim-ilar emotions 
lose together and opposites 180 degrees apart, like additional
olors. This so-
alled 
ir
umplex model 
an be used as a tool for represen-tation of relation and nature of emotional 
ategories. Plut
hik extended the
ir
umplex model into a third dimension, modifying the intensity of emotions(see, di�erent 
olor intensity in Figure 2.2), so that the 
omplex so-
alledstru
tural model of emotions is shaped like a 
one.An alternative 
ir
ular representation of emotions appearsnowadays, see Figure 2.3. This adapted Geneva emotion wheel(GEW) was applied for the digital questionnaire within the SEAT(http://www.wearable.ethz.
h/resear
h/groups/
ontext/seat/) proje
tby the ETH Zuri
h resear
h group [GEW, 2008℄. The GEW was developedin 2005 by Klaus S
herer. The GEW is a wheel with 20 spokes. Ea
h spokeis asso
iated with a type of emotion (10 negative and 10 positive emotions).The spokes of the wheel are made up of �ve labels whi
h allow the annotatorto 
hoose the intensity for whi
h they felt that sele
ted emotion.2.5.2 Classi
al emotion 
ategoriesIn English there is an enormous amount of emotion words, some of themtend to fall into families based on similarity and some 
an be 
lassi�ed asopposites [Plut
hik, 2001℄.How many emotions are present in human-to-human 
ommuni
ation? TheAuthor Basi
 Emotions BasisM
Dougall (1926) anger, disgust, elation, fear,subje
tion, tender-emotion, wonder relation to instin
tsArnold (1960) anger, aversion, 
ourage, deje
tion,desire, despair, fear, hate, hope,love, sadness relation to a
tiontenden
iesPlut
hik (1980) a

eptan
e, anger, anti
ipation,disgust, joy, fear, sadness, surprise relation to adaptivebiologi
al pro
essesEkman, Friesen&Ellsworth (1982) anger, disgust, fear, joy, sadness,surprise universal fa
ialexpressionsTomkins (1984) anger, interest, 
ontempt, disgust,distress, fear, joy, shame, surprise distin
tive set ofbodily and fa
ialrea
tionsOatley&Johnson-Laird(1987) anger, disgust, anxiety, happiness,sadness do not requirepropositional 
ontentTable 2.2: Basi
 emotions sets, presented by di�erent emotion psy
hologyresear
hes [Ortony and Turner, 1990℄



22 Chapter 2. State of the artproposers of "
lassi
al" dis
rete emotion theories, inspired by Darwin, havesuggested from 3 to 14 of basi
 emotions. Those emotions are also 
alledprimary or fundamental. A wide range of resear
h on identi�
ation of basi
emotions [Ortony and Turner, 1990℄ was presented to the emotion resear
h
ommunity, see Table 2.2.The dis
repan
y of opinion about the quantity of primary emotions ismat
hed by the divergen
e of opinion about their identity. Some of the listsof basi
 emotions in
lude 
ategories that are not in
luded in other lists. OnlyArnold in
luded 
ourage, Plut
hik in
luded a

eptan
e and anti
ipation, alsoM
Dougall proposed that subje
tion and "tender-emotion" are fundamentalemotions. Still, most of the lists in
lude anger, disgust, fear, joy, sadness,and surprise 
ategories. Currently there is no standard basi
 emotions lista
knowledged by all emotion psy
hology resear
hers. Still, all of these basi
emotions are dialing with "full-blown" [S
herer, 1999℄ emotions, in 
ontrastto low emotional saturation events within real-life 
ommuni
ation. In thisthesis we do not spe
ify our own basi
 emotions set. Within our evaluationspresented in Chapter 5 we use di�erent set of emotions presented in publi
available emotional 
orpora.
2.6 Emotional spee
h dataColle
ting and annotating emotional spee
h 
orpora is quite a di�
ult andexpensive task. As a result, we de
ided to train and test our a�e
tive-spee
h-pro
essing models on sele
ted well-known emotional 
orpora. The
hosen set of emotional 
orpora 
overs a broad variety of models rea
hingfrom a
ted (DES, EMO-DB) over indu
ed (ABC, eNTERFACE) to naturalemotion (AVIC, SmartKom, SUSAS, VAM) ranging from stri
tly limited tex-tual 
ontent (DES, EMO-DB, SUSAS) over more variation (eNTERFACE) tofull varian
e (ABC, AVIC, SAL, SmartKom, VAM). Further human-to-human(AVIC, VAM) as well as human-to-
omputer (SAL, SmartKom) intera
tionare 
ontained. Referen
es for the earlier-mentioned databases will be given inse
tion 2.6.2. Three languages (English, German, and Danish) are 
omprised.However, these languages belong to the same family of Germani
 languages.The speaker's ages and ba
kgrounds vary strongly, and so do of 
ourse mi
ro-phones used, room a
ousti
s, and 
oding (e.g., sampling rate rea
hing from
8 kHz to 44.1 kHz) as well as the annotators.



2.6. Emotional spee
h data 232.6.1 Data 
olle
tionOur main goal is a su�
ient modeling of the spontaneous spee
h of 
ommonhuman beings in real-life human-
omputer intera
tion. Extra
ting data inreal-life s
enarios, usually, fa
es two main problems: Firstly, it is quite di�
ultto 
ontrol and re
ord su
h real-life 
onditions be
ause of ethi
al restri
tionsand due to the point that automati
 dialog systems are quite rare in everydayhuman life. Se
ondly, if we 
hange the themati
 domain of our dialog system,this 
an in�uen
e the linguisti
 and emotional behavior of the user.To simulate a real-life situation we 
an use the Wizard of Oz s
enario. Insu
h a s
enario, subje
ts believe they are intera
ting with a real automatedsystem while the system's intera
tion interfa
e is manipulated by a human'wizard'. For su
h kind of simulation, we need 'naive' users. But still, we donot know the range of the user's emotional behavior variation in a real-lifes
enario. Also, human 'wizards' usually are not able to predi
t all possiblemis
ommuni
ation situations in real-life 
onditions whi
h 
an provoke frustra-tion and/or a�e
tive user's behavior. As a result, 
olle
ted data does not 
overall possible situations, where a dialog strategy 
an be implemented whi
h isadaptive to the user's behavior.2.6.2 A�e
tive spee
h 
orporaOne of the major needs of the 
ommunity � perhaps even more than in manyrelated pattern re
ognition tasks � is the 
onstant need for datasets [Douglas-Cowie et al., 2003℄, [Ververidis and Kotropoulos, 2003℄. In the late 1990s, theearly days of emotion re
ognition, there were only a few datasets available,whi
h were small (500 turns) with few subje
ts (10), uni-modal, re
ordedin studio noise 
onditions, and a
ted. Furthermore, the spoken 
ontentwas mostly prede�ned (DES [Engbert and Hansen, 1996℄, Berlin EmotionalSpee
h-Database [Burkhardt et al., 2005℄, SUSAS [Hansen and Bou-Ghazale,1997℄). These were seldom made publi
 and few annotators � if any at all� usually labeled ex
lusively the per
eived emotion. Additionally, these werepartly not intended for analysis, but for quality measurement of synthesis(e.g., DES, Berlin Emotional Spee
h-Database). However, any data is bet-ter than none. Today we are happy to see more diverse emotions 
overed,more eli
ited or even spontaneous sets of many speakers, larger amounts ofinstan
es (5k -10k) of more subje
ts (up to more than 100), multimodal datathat is annotated by more labelers (4 (AVIC [S
huller et al., 2009b℄) - 17(VAM [Grimm et al., 2008℄)), and that is made publi
ly available. Therebyit lies in the nature of 
olle
ting a
ted data that equal distribution among
lasses is easily obtainable. In more spontaneous sets this is not given, whi
h



24
Chapter2.

Stateofth
eart Corpus Content #Emotion #Arousal #Valen
e #All hh:mm #Sub Type Freq- + - + [kHz℄ABC German�xed agr95 
he105 int33 ner93 neu79 tir25 - 104 326 213 217 431 01:15 4m4 f a
tedstud 16AVIC Englishvariable bor553 neu2279 joy170 - - - - 553 2449 553 2449 3002 01:47 11m10 f sponnorm 44.1DES Danish�xed ang85 hap86 neu85 sad84 sur84 - - 169 250 169 250 419 00:28 2m2 f a
tednorm 20EMO-DB German�xed ang127 bor79 dis38 fea55 hap64 neu78 sad53 248 246 352 142 494 00:22 5m5 f a
tedstud 16eNTER-FACE English�xed ang215 dis215 fea215 hap207 sad210 sur215 - 425 852 855 422 1277 01:00 34m8 f a
tednorm 16SAL Englishvariable q1459 q2320 q3564 q4349 - - - 884 808 917 779 1692 01:41 2m2 f sponnorm 16Smart-Kom Germanvariable ang220 hel161 joy284 neu2179 pon643 sur70 uni266 3088 735 381 3442 3823 07:08 32m47 f spontnoisy 16SUSAS English�xed hst1202 mst1276 neu701 s
r414 - - - 701 2892 1616 1977 3593 01:01 4m3 f mixednoisy 8VAM Germanvariable q121 q250 q3451 q4424 - - - 501 445 875 71 946 00:47 15m32 f sponnorm 16Table 2.3: Overview of the sele
ted emotion 
orporaContent: language, �xed/variable (spoken text). Number of turns per emotion 
ategory (# Emotion), binary arousal/va-len
e, and overall number of turns (All). hh:mm : total duration. Number of subje
ts (Sub), number of female (f) and male(m) subje
ts. Type of material (a
ted/natural/mixed) and re
ording 
onditions (studio/normal/noisy) (Type). Freq [kHz℄: dis-
retization frequen
y. Abbreviations: agr - aggressive, ang - angry, bor - boredom, 
he - 
heerful, dis - disgust, hap - happy, hel -helplessness, hst - high stress, int - intoxi
ated, joy - joyful, mst - medium stress, ner - nervous, neu - neutral, pon - pondering,q1-q4 - quadrants in the arousal-valan
e plane, sad - sadness, sur - surprise, tir - tired, uni - unidenti�able



2.6. Emotional spee
h data 25for
es one to either balan
e data in the training or to shift from reportingof simple re
ognition rates to F-measures or unweighted re
all values, bestper 
lass (e.g., FAU AIBO [Batliner et al., 2008℄, and the AVIC databases).However, some a
ted and eli
ited datasets with pre-de�ned 
ontent are stillseen (e.g., eNTERFACE [Martin et al., 2006℄), yet these also follow the trendof more instan
es and speakers. The positive fa
t is, that trans
ription isbe
oming ri
her: additional annotation of spoken 
ontent and non-linguisti
interje
tions (e.g., FAU AIBO, AVIC databases), multiple annotator tra
ks(e.g., VAM 
orpus), or even manually 
orre
ted pit
h 
ontours (FAU AIBOdatabase) and additional audio tra
ks in di�erent re
ordings (e.g., 
lose talkand room mi
rophone), syllable boundaries and manual syllable labeling (e.g.,EMO-DB database), di�erent 
hunking (e.g., FAU AIBO database) levels. Atthe same time, these are partly also re
orded under more realisti
 
onditions(or taken from the media). However, in future sets multilinguality and sub-je
ts of diverse 
ultural ba
kgrounds will be needed in addition to all namedpositive trends.For our evaluations, we 
hose nine 
orpora amongst the most popular.Only these available to the resear
h 
ommunity were 
onsidered. These should
over a broad variety rea
hing from a
ted spee
h (the Danish (DES, [Engbertand Hansen, 1996℄) and the Berlin Emotional Spee
h (EMO-DB, [Burkhardtet al., 2005℄) databases), over story guided as the eNTERFACE 
orpus [Mar-tin et al., 2006℄ with �xed spoken 
ontent and the Airplane Behaviour Corpus(ABC, [S
huller et al., 2009b℄), to spontaneous with �xed spoken 
ontent rep-resented by the Spee
h Under Simulated and A
tual Stress (SUSAS, [Hansenand Bou-Ghazale, 1997℄) database, to more modern 
orpora with respe
t tothe number of subje
ts involved, spontaneity, and free language 
overed bythe Audiovisual Interest Corpus (AVIC, [S
huller et al., 2009b℄), the SensitiveArti�
ial Listener (SAL, [Wöllmer et al., 2008℄), the SmartKom [Steiningeret al., 2002℄, and the Vera-Am-Mittag (VAM, [Grimm et al., 2008℄) datasets.An overview on properties of the 
hosen datasets 
an be found in Table2.3. Next, we will brie�y introdu
e the datasets.2.6.2.1 AIBOIt is a 
orpus with re
ordings of 
hildren intera
ting with Sony's pet robot
alled Aibo [Batliner et al., 2008℄. The 
orpus 
onsists of spontaneous,German spee
h whi
h is emotionally 
olored. The data was 
olle
ted at twodi�erent s
hools, MONT and OHM, from 51 
hildren (age 10 - 13, 21 male, 30female; about 9.2 hours of spee
h without pauses). Spee
h was transmittedwith a high quality wireless head set and re
orded with a DAT re
order (16bit, 48 kHz down-sampled to 16 kHz). Five annotators (advan
ed students of



26 Chapter 2. State of the artset A E N P R NEG IDL Σtrain 881 2,093 5,590 674 721 3,358 6,601 9,959test 611 1,508 5,377 215 546 2,465 5,792 8,257Table 2.4: Number of instan
es for 2-
lass and 5-
lass annotation s
hemawithin AIBO 
orpuslinguisti
s) listened to the turns and annotated ea
h word as neutral or as be-longing to one of ten other 
lasses. The data is labeled on the word-level. Weresort to majority voting (MV): if three or more labelers (�ve labelers in all)agreed, the label was attributed to the word. The number of 
ases with MVis given in parentheses: joyful (101), surprised (0), emphati
 (2,528), helpless(3), tou
hy, i. e. irritated (225), angry (84), "motherese" (1,260), bored (11),reprimanding (310), rest, i. e. non-neutral, but not belonging to the other
ategories (3), neutral (39,169); 4,707 words had no MV; all in all, there were48,401 words.The whole 
orpus 
onsisted of 18,216 emotional 
hunks. The �ve-
lassannotation s
hema 
overs the 
lasses Anger (subsuming angry, tou
hy, andreprimanding) Emphati
, Neutral, Positive (subsuming motherese and joy-ful), and Rest and they are to be dis
riminated. The two-
lass annotations
hema 
onsists of the 
overed 
lasses NEGative (subsuming angry, tou
hy,reprimanding, and emphati
) and IDLe (
onsisting of all nonnegative states).The 
lasses within the whole 
orpus are highly unbalan
ed. The trans
rip-tions of spoken 
ontent within the training set are provided allowing for ASRtraining and linguisti
 feature 
omputation.2.6.2.2 Danish Emotional Spee
hThe Danish Emotional Spee
h (DES) [Engbert and Hansen, 1996℄ databasehas been 
hosen as the �rst set as one of the 'traditional representatives' forour study, be
ause it is easily a

essible and well-annotated. The data used inthe experiments are nine Danish senten
es, with two words and 
hunks thatare lo
ated between two silent segments of two passages of the �uent text.For example: "Nej" (No), "Ja" (Yes), "Hvor skal du hen?" (Where are yougoing?). The total amount of data adds up to more than 500 spee
h utteran
es(i. e., spee
h segments between two silen
e pauses) whi
h are expressed by fourprofessional a
tors, two males and two females. All utteran
es are equallyseparated for ea
h gender. Spee
h is expressed in �ve emotional states: anger,happiness, neutral, sadness, and surprise. Twenty judges (native speakersfrom 18 to 58 years old) veri�ed the emotions with a s
ore rate of 67%.



2.6. Emotional spee
h data 272.6.2.3 Berlin Emotional Spee
h DatabaseA further well-known set 
hosen to test the e�e
tiveness of emotion 
lassi-�
ation is the popular studio re
orded Berlin Emotional Spee
h Database(EMO-DB) [Burkhardt et al., 2005℄, whi
h 
overs anger, boredom, disgust,fear, joy, neutral, and sadness speaker emotions. The spoken 
ontent is againpre-de�ned by ten German emotionally neutral senten
es, su
h as "Der Lap-pen liegt auf dem Eiss
hrank" (The 
loth is lying on the fridge.). As withDES, it thus provides a high number of repeated words in diverse emotions.Ten (�ve female) professional a
tors speak ten German emotionally unde�nedsenten
es. While the whole set 
omprises of around 800 utteran
es, only 494phrases are marked as a minimum 60% natural and minimum 80% assignableby 20 subje
ts in a listening experiment. 84.3% mean a

ura
y is the resultof this per
eption study for this limited "more prototypi
al" set.2.6.2.4 eNTERFACEThe eNTERFACE [Martin et al., 2006℄ 
orpus is a further publi
, yet audiovi-sual emotion database. It 
onsists of indu
ed anger, disgust, fear, joy, sadness,and surprise speaker emotions. 42 subje
ts (eight female) from 14 nations arein
luded. It 
onsists of o�
e environment re
ordings of pre-de�ned spoken
ontent in English. Ea
h subje
t was instru
ted to listen to six su

essiveshort stories, ea
h of them eli
iting a parti
ular emotion.They then had to rea
t to ea
h of the situations by uttering previously readphrases that �t the short story. Five phrases are available per emotion, su
has "I have nothing to give you! Please don't hurt me!" in the 
ase of fear. Twoexperts judged whether the rea
tion expressed the emotion in an unambiguousway. Only if this was the 
ase, the sample was added to database. Overall,the database 
onsists of 1,170 samples.2.6.2.5 Airplane Behaviour CorpusAnother audiovisual emotion database is the Airplane Behaviour Corpus(ABC) [S
huller et al., 2009b℄, 
rafted for the spe
ial target appli
ation ofpubli
 transport surveillan
e. In order to indu
e a 
ertain mood, a s
riptwas used, whi
h led the subje
ts through a guided storyline: prere
orded an-noun
ements by �ve di�erent speakers were automati
ally played ba
k and
ontrolled by a hidden test-
ondu
tor. As a general framework a va
ation�ight with return �ight was 
hosen, 
onsisting of 13 and 10 s
enes as thestart, serving of wrong food, turbulen
es, falling asleep, 
onversation witha neighbor, or tou
h-down. The general setup 
onsisted of an airplane seatfor the subje
t, positioned in front of a blue s
reen. 8 subje
ts in gender
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e from 25�48 years (mean 32 years) took part in the re
ording. Thelanguage throughout the re
ording is German. A total of 11.5 hours videowas re
orded and annotated independently after pre-segmentation by threeexperien
ed male labelers within a 
losed set. The average length of the 396
lips in total is 8.4 se
onds.2.6.2.6 Spee
h Under Simulated and A
tual StressThe Spee
h Under Simulated and A
tual Stress (SUSAS) database [Hansenand Bou-Ghazale, 1997℄ serves as a �rst referen
e for spontaneous re
ordings.As an additional 
hallenge, spee
h is partly masked by �eld noise. We de
idedfor the 3,663 a
tual stress spee
h samples. Seven speakers, three of themfemale, in roller 
oaster and free fall a
tual stress situations are 
ontained inthis set. Next to neutral spee
h and fear two di�erent stress 
onditions havebeen 
olle
ted: medium stress, and high stress, and s
reaming. SUSAS is alsorestri
ted to a pre-de�ned spoken text of 35 English air 
ommands, su
h as"brake", "help" or "no". Likewise, only single words are 
ontained similar toDES where this is also mostly the 
ase.2.6.2.7 Audiovisual Interest CorpusTo add spontaneous emotion samples of non-restri
ted spoken 
ontent, we de-
ided to use the Audiovisual Interest Corpus (AVIC) [S
huller et al., 2009b℄,another audiovisual emotion 
orpus. In its s
enario setup, a produ
t presenterleads one of 21 subje
ts (10 female) through an English 
ommer
ial presen-tation. The level of interest is annotated for every sub-speaker turn rea
hingfrom boredom (subje
t is bored with listening and talking about the topi
,very passive, does not follow the dis
ourse), over neutral (subje
t follows andparti
ipates in the dis
ourse, it 
annot be re
ognized, if she/he is interestedor indi�erent in the topi
) to joyful intera
tion (strong wish of the subje
t totalk and learn more about the topi
). Additionally, the spoken 
ontent andnon-linguisti
 vo
alisations are labeled in the AVIC set. For our evaluationwe use the 996 phrases as, e.g., employed in [S
huller et al., 2009b℄.2.6.2.8 Sensitive Arti�
ial ListenerThe Belfast Sensitive Arti�
ial Listener (SAL) data is part of the �nal HU-MAINE database [Douglas-Cowie et al., 2007℄. We 
onsider the subset used,e.g., in [Wöllmer et al., 2008℄ whi
h 
ontains 25 re
ordings in total from 4speakers (2 male, 2 female) with an average length of 20 minutes per speaker.The data 
ontains audio-visual re
ordings from natural human-
omputer 
on-versations that were re
orded through an intera
tion interfa
e designed to let
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h data 29users work through a range of emotional states. The data was labeled 
ontin-uously in real-time by four annotators with respe
t to valen
e and a
tivationusing a system based on FEELtra
e [Cowie et al., 2000℄: the annotators useda sliding 
ontroller to annotate both emotional dimensions separately whereasthe adjusted values for valen
e and a
tivation were sampled every 10 ms toobtain a temporal quasi-
ontinuum. To 
ompensate linear o�sets that arepresent among the annotators, the annotations were normalized to zero meanglobally. Furthermore, to ensure 
ommon s
aling among all annotators, ea
hannotator's labels were s
aled so that 98% of all values are in the range from-1 to +1. The 25 re
ordings have been split into turns using an energy-basedVoi
e A
tivity Dete
tion. A total of 1,692 turns is a

ordingly 
ontained inthe database. Labels for ea
h turn are 
omputed by averaging the frame-levelvalen
e and a
tivation labels over the 
omplete turn. Apart from the ne
essityto deal with 
ontinuous values for time and emotion, the great 
hallenge ofthe SAL database is the fa
t that one must deal with all data � as re
orded� and not only manually pre-sele
ted 'emotional prototypes' as in pra
ti
allyany other database [S
huller et al., 2009
℄.2.6.2.9 SmartKomWe further in
luded a se
ond audiovisual 
orpus of spontaneous spee
hand natural emotion in our tests: the SmartKom [Steininger et al., 2002℄multi-modal 
orpus 
onsists of Wizard of Oz dialogs in German. For ourevaluations we use German dialogs re
orded during a publi
 environmentte
hni
al s
enario. As with SUSAS, noise is overlaid (street noise). Thedatabase 
ontains multiple audio 
hannels and two video 
hannels (fa
e,body from side). The primary aim of the 
orpus was the empiri
al studyof human-
omputer intera
tion in a number of di�erent tasks and te
hni
alsetups. It is stru
tured into sessions whi
h 
ontain one re
ording of ap-proximately 4.5 minutes length with one person. Utteran
es are labeled inseven broader emotional states: neutral, joy, anger, helplessness, pondering,surprise are 
ontained together with unidenti�able episodes.2.6.2.10 Vera-Am-MittagThe Vera-Am-Mittag (VAM) 
orpus [Grimm et al., 2008℄ 
onsists of audio-visual re
ordings taken from a German TV talk show. The 
orpus 
ontains 947spontaneous and emotionally 
oloured utteran
es from 47 guests of the talkshow whi
h were re
orded from uns
ripted, authenti
 dis
ussions. The topi
swere mainly personal issues su
h as friendship 
rises, fatherhood questions,
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 a�airs. To obtain non-a
ted data, a talk show in whi
h theguests were not paid to perform as a
tors was 
hosen. The spee
h extra
tedfrom the dialogs 
ontains a large amount of 
olloquial expressions as well asnon-linguisti
 vo
alisations and partly 
overs di�erent German diale
ts. Forannotation of the spee
h data, the audio re
ordings were manually segmentedto the utteran
e-level, whereas ea
h utteran
e 
ontained at least one phrase.A large number of human labelers was used for annotation (17 labelers forone half of the data, six for the other).The labeling bases on a dis
rete �ve-point s
ale for three dimensionsmapped onto the interval of [-1,1℄: the average results for the standard de-viation are 0.29, 0.34, and 0.31 for valen
e, a
tivation, and dominan
e. Theaverages for the 
orrelation between the evaluators are 0.49, 0.72, and 0.61,respe
tively. The 
orrelation 
oe�
ients for a
tivation and dominan
e showsuitable values, whereas the moderate value for valen
e indi
ates that thisemotion primitive was more di�
ult to evaluate, but may partly also be aresult of the smaller varian
e of valen
e.2.7 Clustering of emotionsAlthough the ability to re
ognize a large variety of emotions is attra
tive, itmay not be ne
essary or pra
ti
al in the 
ontext of developing algorithms for
onversational interfa
es. Based on this assumption, some resear
h groupsfavor the notion of an appli
ation-dependent redu
ed spa
e of emotions. Inparti
ular, negative and non-negative emotions 
an be used for mis
ommu-ni
ation dete
tion tasks within automated spoken dialog systems [Lee andNarayanan, 2005℄.It is possible to map the diverse emotion groups onto the most populargeneral dimensions (valen
e, arousal) borrowed from the dimensional emotionmodel: arousal and valen
e, see Figure 2.4. The 
hosen mappings [S
hulleret al., 2009℄ are depi
ted in Table 2.5. Notably, these mappings are not straightforward. This would only be exa
tly true for the neutral emotion, whi
h 
ouldhave been 
hosen as a third state. Sadly, however, not all databases providesu
h a state. Thus, the mapping 
an be seen as a 
ompromise in favor of bet-ter balan
e amongst the target 
lasses. We further dis
retized emotion valuesin the arousal-valen
e plane for the emotional 
orpora with multi-dimensionalannotation (SAL and VAM). We 
onsider only four quadrants obtained bydis
retizing into binary tasks as des
ribed above, but now handling the prob-lem as a four-
lass problem, see Figure 2.4. The a

ording quadrant's q1�q4(
ounter
lo
kwise, starting in positive quadrant, assuming valen
e as ordinateand arousal as abs
issa) 
an also be assigned emotion tags: "happy / ex
ited"
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Arousal

Valence

very

active

very

passive

very

positive

very

negative

q1q2

q3 q4

happy

excited
angry 

anxious

sad

bored

relaxed 

sereneFigure 2.4: Spe
i�
ation of the quadrant's q1�q4 in arousal-valen
e spa
eCorpus Arousal Valen
eNegative Positive Negative PositiveABC neutral, tired aggressive,
heerful, nervous,intoxi
ated aggressive,nervous, tired 
heerful,intoxi
ated,neutralAVIC boredom neutral, joyful boredom neutral, joyfulDES neutral, sad angry, happy,surprise angry, sad happy, neutral,surpriseEMO-DB boredom,disgust,neutral,sadness anger, fear,happiness anger,boredom,disgust, fear,sadness happiness,neutraleNTER-FACE disgust,sadness anger, surprise,fear, happiness anger, disgust,fear, sadness happiness,surpriseSAL q2, q3 q1, q4 q3, q4 q1, q2Smart-Kom neutral,pondering,unidenti�able anger,helplessness, joy,surprise anger,helplessness, joy, pondering,neutral, surprise,unidenti�ableSUSAS neutral high stress,medium stress,s
reaming high stress,s
reaming medium stress,neutralVAM q2, q3 q1, q4 q3, q4 q1, q2Table 2.5: Mapping of emotions for the 
lustering to a binary (positive/neg-ative) arousal and valen
e dis
rimination task. Abbreviations: q - quadrants(q1), "angry / anxious" (q2), "sad / bored" (q3), and "relaxed / serene" (q4).



32 Chapter 2. State of the art2.8 Data assessmentFour main issues need to be 
onsidered in a
quiring an emotional 
orpora;the s
ope, the level of naturalness and 
ontext of the 
ontent; and the type of
orresponding des
riptors [Douglas-Cowie et al., 2003℄.� S
opeIt 
overs the amount of speakers presented in 
orpora; language spoken;gender variability of speakers; types of emotional state 
onsidered; levelof annotation (word-level, utteran
e-level, 
ontext-independent timealignment); so
ial/
ultural setting (human-to-human intera
tion, task-oriented human-ma
hine intera
tion). Real-life emotions in general are
ontrolled by strong 
ultural in�uen
es [Harré, 1986℄. Sin
e spee
h isa 
ultural human a
tivity, emotional events within spee
h may be re-lated to 
ultural in�uen
es. Usually, within real-life verbal intera
tion,humans show less expressive emotions rather than full-blown.� Level of the naturalnessThe simplest way to 
olle
t a�e
tive spee
h is to ask a
tors to simulateemotions within pronoun
ed utteran
es. The main problem with thisapproa
h is that no in-depth resear
h about relationships between a
tedmaterial and spontaneous emotional spee
h has been done. It is of
ourse true that presele
ted a
tors 
an generate spee
h that listeners
lassify reliably within a per
eption test. Still it is hard to measure how
losely the prompted a�e
tive spee
h re�e
ts spontaneous expression ofemotion.From the other side, the pri
e of high-level naturalness is a la
k of 
on-trol on the lexi
al and phoneti
 
ontent of the material. For indu
ed orspontaneous emotions it is di�
ult to 
olle
t samples in a target emo-tional state due to the unpredi
tability of the 
olle
ting pro
ess (usersare able to use natural language for system intera
tion). A lot of appli-
ations (emotional spee
h synthesis, phoneme-level emotion modeling,et
.) require phoneti
ally balan
ed datasets, whi
h is hard to a
hievewithin a truly natural spee
h intera
tion session.� ContextThree di�erent types of 
ontext 
an be dis
riminated [Douglas-Cowieet al., 2003℄.- Semanti
 
ontext:Sin
ere emotional spee
h is likely to 
ontain words with a di�erent levelof emotionality. And this level of emotionality has a semanti
 nature.An example of emotionally signi�
ant words are emotive words (like"good", "lovely", "aggression" , et
.) that are part of some utteran
e.- Stru
tural 
ontext:
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ti
 stru
ture of the utteran
e:fo
us of attention, senten
e stress, intonation variability, et
. Stru
tural
hara
teristi
s of the utteran
es (repetitions, rephrasing, interruptionsand long pauses) 
an be used as indi
ators of 
hange in the emotionalstate of the user. The senten
e "I really, really like this" is an exampleof 
ontextual ampli�
ation by repetition the word "really".- Temporal 
ontext:Spontaneous spee
h 
ontains distin
tive 
hara
ters of 
hange as emotionebbs and �ows during time. Due to their temporal nature, some wordswithin an utteran
e 
an be more expressive in 
omparison with theirneighbor words. By interpreting nearby utteran
es and words we 
anresolve lo
al ambiguity in emotional state 
lassi�
ation. The senten
e"This was a great failure" 
ontains positive in general but negative in
ontext the word "great".� Des
riptorsDes
ribing the para-linguisti
 and emotional 
ontent on one hand, andtrans
ribing the spee
h on the other is an important issue of 
onstru
t-ing a high-standard database. The requirements for 
orre
t labeling ofemotional events may be a 
on
ern to the level of naturalness. A
tedemotions 
an be adequately des
ribed with emotion 
ategory labels froma basi
 emotions list. Corpora with spontaneous emotions, though, 
anrequire a gradation of the emotion (
old angry, hot angry, et
.) andindi
ation of the most expressive peaks within an utteran
e.There are two main issues in terms of spee
h des
riptors: First, thefull range of features responsible for the vo
al expression of emotionshould be taken into a

ount. This range of features should in
ludeat least the prosodi
 des
ription, non-linguisti
 features like breathing,
latter, laughter, and 
rying. Se
ond, it is important to des
ribe theattributes that de�ne emotional states and their dynami
 spe
i�
ation(intensity variability in the time domain). As dis
ussed in se
tion 2.5.1and se
tion 2.5.2, emotions 
an be des
ribed with emotion 
ategoriesor numeri
 values within a two- or three-dimensional spa
e, namelyvalen
e-arousal-(dominan
e) VA(D).Providing "ground truth" measures within emotional 
ontent annota-tion is an important issue. De�ning "ground truth" measures for emo-tions des
ribed in numeri
al values in VA(D) spa
e is a non-trivial task.It 
an also be problemati
 to measure "ground truth" for real-life emo-tions de�ned with dis
rete emotion 
ategories whi
h have a mixed natureor low-intensity.To be able to measure the quality of the emotional annotation, inter-



34 Chapter 2. State of the artrater reliability measures as an alternative to the "ground truth" havebeen introdu
ed. To estimate the inter-rater agreement, it is 
ommonto use the Kappa 
oe�
ient κ [Carletta, 1996℄:
κ =

PA − P0

1− P0
(2.1)where PA 
orresponds to the proportion of the raters that assigned thesame 
lass label, P0 is an estimation of the proportion where raters agreeby 
han
e.A des
ription of our annotation strategy with an example of the adequateannotation of spontaneous emotions will be given in se
tion 2.8.1.2.8.1 An adequate annotation strategyAn annotation pro
ess is the most expensive and time-
onsuming part withinprosodi
 spee
h 
orpora development. Two of the key points identi�ed in theprevious se
tion � s
ope and level of naturalness � are des
ribed in Table 2.3.This table is designed to provide some brief information about existing emo-tional spee
h 
orpora. S
ope des
ribes the language spe
i�
ation, number ofspeakers, and emotions 
onsidered. Under level of naturalness, we 
onsiderseveral 
ategories: a
ted, spontaneous, mixed (
ontain both a
ted and spon-taneous samples); and the type of material (e.g., senten
es, utteran
es, short
ommands).As one 
an see, just �ve (AVIC, EMO-DB, ENTERFACE, SmartKom,VAM) from nine datasets 
ontain the su�
ient amount of speakers. To beable to model inter-subje
t variability, 
orpora should 
ontain enough femaleand male speakers (at least 5 speakers for ea
h gender).A good example of a reliable and 
lose to "natural" a
ted emotional spee
hdatabase is the Berlin Emotional Spee
h Database [Burkhardt et al., 2005℄.The emotion re
ognizability level, and the level of naturalness estimatedwithin a per
eption test for ea
h utteran
e, are presented in this database.To provide reliable measures, twenty per
eption-test evaluators took part inthis test. Ea
h "rater" heard all of the utteran
es in a random order. Theywere allowed to listen to ea
h utteran
e only on
e before the per
eption-testevaluator had to de
ide in whi
h emotional state the speaker had been andhow persuasive the performan
e was. Within our re
ognition evaluations, seeChapter 5, we used utteran
es with a minimum 60% level of naturalness andminimum 80% re
ognizability level. In pra
ti
e, the per
eption test imple-mented for evaluation of the Berlin Emotional Spee
h Database [Burkhardtet al., 2005℄ with estimation of the levels of naturalness and re
ognizability
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I   [hm]   do   <breathing>  really  like  this.

focus of 

intention

emotional

expression 

I   [hm]   do   <breathing>  really  like  this.

focus of 

intention

emotional

expression 

neutral

neutral

joy

joy

I   [hm]   do   <breathing>  really  like  this.

focus of 

intention

emotional

expression 

neutral       joyFigure 2.5: An example of reliable spontaneous a�e
tive spee
h annotationfor ea
h emotional utteran
e 
an be used as a "ground truth" measure of thelevel of naturalness.In 
ase of appli
able a�e
tive spee
h annotation, two issues stand out:Firstly, trans
ription needs to a
knowledge the full range of features in-volved in the a
ousti
 expression of emotion, in
luding voi
e quality, bound-ary prosody and non-linguisti
 features su
h as laughter, 
rying, 
latter, andbreath. Se
ondly, it needs to des
ribe the attributes (e.g., linguisti
, dialog a
tsspe
i�
ation) that are relevant to emotion. An example of reliable a�e
tivespontaneous spee
h annotation is presented in Figure 2.5.As one 
an see, the stru
tural 
ontext (fo
us of attention, senten
e stress,intonation variability, et
.) should be 
arefully annotated. There is a high
orrelation between boundary and emotional prosody. Annotators should beextremely 
areful with distinguishing between these two di�erent events. Anexample of a possible 
on�i
t between fo
us of attention (boundary prosodyevent) and emotional events is presented in Figure 2.5. Ea
h of these ut-teran
es have slightly di�erent semanti
 a

ents whi
h should be taken intoa

ount by human-distinguishable boundary prosody and emotional prosodyevents. Afterwards, we will be able make annotation pro
ess faster and rea
hhigher quality of annotation within the spontaneous a�e
tive spee
h des
rip-tion task [Siegert et al., 2011℄.In real-life 
ommuni
ation humans use a number of di�erent variationsto denote emphasis in spee
h. Speakers may render emphasis with di�erent
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ombinations and even individuals may 
hange their strategies for variousprosodi
 
ues (boundary prosody and emotional prosody). In the �rst twosenten
es presented in Figure 2.5 the words the "really" and "like" 
an bepronoun
ed with emphasis. At the same time only one word is pronoun
edemotionally. In the �rst senten
e the speaker points out that his emotionsare real, not simulated. In the se
ond senten
e the speaker pla
es an a

enton the a
tion ("like"). It is quite important to distinguish emphasis whi
hrepresents two di�erent paralinguisti
 phenomena. As one 
an see, from thethird senten
e these phenomena 
an be mixed. In this 
ase both words "really"and "like" are pronoun
ed with emphasis and emotional prosody 
ue. Corre
tinterpretation of those senten
es 
an provide system information about thespeaker's intentions.Most datasets evaluated in our re
ognition experiments and des
ribed inTable 2.3 used a des
ription of emotion with de�ned emotion 
ategories list.Only two databases (VAM, SAL) implemented the VA(D) dimensional ap-proa
h. From our point of few, both types of emotional state des
riptorshave advantages and disadvantages. In a 
ase of emotion-
ategories-baseddes
riptors, we 
an model di�erent dialog strategies for di�erent emotionalstate subsets in 
ontrast to the emotions de�ned by VA(D) dimensions. Also,it is mu
h easier to organize per
eption evaluation with a de�ned or "open"emotion 
ategories list in 
ontrast to emotion per
eption evaluation with theVA(D) spa
e, where "raters" should be preliminarily trained to be able tomake reliable emotional annotations. As des
ribed earlier, it is easier to pro-vide "ground measures" for a
ted emotions annotated with a set of emotion
ategories. From the other side, VA(D) dimension-based annotation providesa higher-level of dis
rimination. As a 
onsequen
e, mixed emotions and emo-tions with light ex
lusivity 
an easily be de�ned with numeri
 values in VA(D)spa
e. Of 
ourse, standard mapping of 
ategori
al emotions on VA(D) di-mensional spa
e will be appre
iated. Due to the huge variability of "rater"-dependent measures of 
ategori
al emotions within VA(D) spa
e, no standardmapping te
hnique exist. Grimm et al. in [Grimm et al., 2007℄ proposedevaluator weighted estimator (EWE). They introdu
ed evaluator-dependentweights whi
h measure the 
orrelation between the listener's responses, andthe average ratings of all evaluators. These weights 
an be used as a possiblenormalization te
hnique for the variable "rater"-dependent measures.Our emotion-
lassi�
ation engine, integrated into the NIMITEK (Neurobi-ologi
ally Inspired, Multimodal Intention Re
ognition for Te
hni
al Commu-ni
ation Systems) demonstrator [Wendemuth et al., 2008℄, has been trainedon the EMO-DB database whi
h is annotated with emotion 
ategories de-s
riptors. A detailed introdu
tion to various types of spee
h-based emotion-
lassi�
ation te
hniques will be given in Chapter 4. A NIMITEK demon-
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ognition results 37strator's dialog module supports di�erent strategies based on an a
tual user'semotional state. More details on this 
an be found in Chapter 6.2.9 Evaluating re
ognition resultsOn
e the test material has been pro
essed by the re
ognizer, the next stepis to analyze the results. The main aim of this analysis is a representationof re
ognition performan
e of evaluated 
lassi�ers. Also, this analysis 
anbe used for 
omparison of re
ognition performan
es during iterative 
lassi�erparameters tuning. Within our resear
h we use di�erent measures to 
har-a
terize performan
e of ASR and emotion re
ognition from spee
h. Thesemeasures will be des
ribed in this se
tion.2.9.1 Automati
 spee
h re
ognitionFor estimating the performan
e of automati
 spee
h re
ognition we use stan-dard measures in
luded in the HTK tool [Young et al., 2009℄. The HResultstool has been used to estimate ASR performan
e. It 
ompares the trans
rip-tions output from the ASR engine with the original referen
e trans
riptionsand then generates various statisti
al measures. HResults mat
hes ea
h ofthe re
ognized and referen
e label sequen
es by retrieving an optimal stringmat
h using dynami
 programming.On
e the optimal alignment has been found, the number of deletion errors(D), substitution errors (S) and insertion errors (I) 
an be estimated [Younget al., 2009℄. The per
entage of 
orre
t re
ognized labels is 
alled 
orre
tnessand is given by
Corr =

N −D − S

N
× 100% (2.2)where N is the total number of labels presented in the referen
e tran-s
riptions. This measure ignores insertion errors. Taking into 
onsiderationinsertion errors, the per
entage of so-
alled a

ura
y is de�ned as

Acc =
N −D − S − I

N
× 100% (2.3)whi
h is a more representative �gure of ASR performan
e. For the evalu-ations of our ASR engine we will use both measures.2.9.2 Emotion re
ognitionAs 
lasses are often unbalan
ed in the emotional spee
h datasets, see Ta-ble 2.3, we de
ided to use two di�erent evaluation measures for presenta-
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ognition performan
es: unweighted average re
all (UA) andweighted average re
all (WA).Unweighted average re
all (UA) is the sum of all 
lass a

ura
ies, dividedby the number of 
lasses, without 
onsidering the number of instan
es per
lass. Weighted average re
all (WA), also known as a

ura
y, is the a

ura
yper 
lass, in
luding 
onsideration of the number of instan
es per 
lass. Inother words WA (a

ura
y) is the number of instan
es with 
orre
tly 
lassi�ed
lasses, divided by the total number of 
lassi�ed instan
es. For estimatingWAwe simply 
al
ulate Acc presented in equation 2.3. For this purpose we usethe HResults tool.To show the di�eren
e between UA and WA measures, let's 
onsider anexample. We have an emotional spee
h dataset with 99 joy samples and 1anger sample. That is to say, we have heavily unbalan
ed 
lass distributionswithin our dataset. If our 
lassi�er re
ognizes all 100 samples as joy, ana

ura
y of emotion re
ognition WA = 99%, whi
h is a really good result.At the same time, our 
lassi�er was not able to 
lassify an anger sample. Toshow "real" emotion-re
ognition performan
e of our 
lassi�er it is better touse UA rate. For our example it 
an be 
al
ulated as
UA =

99
99

+ 0
1

2
× 100% = 50% (2.4)Now we 
an resume that our 
lassi�er has WA = 99% whi
h is a reallygood performan
e from one side, and has UA = 50% whi
h is equal to se-le
tion "by 
han
e" of a possible emotional state for two emotional 
lassesre
ognition task.While tuning our 
lassi�ers we should use the most reliable measures. Ifwe have balan
ed 
lass distributions within an emotional spee
h dataset we
an useWA, in the other 
ase it is better to use UA. If the 
lassi�er parametersare optimized on the measure of WA (number of a

urately 
lassi�ed samplesby total number of tested samples), it will likely re
ognize only a few of thedominant emotional 
lasses a

urately. Unweighted average re
all provides amethod for estimating the performan
e of a 
lassi�er in emotionally biaseddatasets. For the estimation of UA we use our own Perl s
ript whi
h providesa detailed 
omparison of re
ognized and referen
e emotional labels.2.10 Evaluation strategiesThe most general parameters for evaluating the performan
e of a 
lassi�erare its general re
ognition rates (UA, WA, A

, Corr), and they have to beestimated on the sour
e dataset S. Usually the number of 
lass instan
es



2.10. Evaluation strategies 39in dataset S is quite small. Limited availability of the data sour
e or highexpenses of data 
olle
tion are the main reasons for a sparse amount of thedata.A 
ommon methodology for evaluating the re
ognition rates is to split thesour
e dataset into two subsets: training and test set. The training set is usedfor training purposes and the test set is applied to estimate the re
ognition rateof the earlier trained 
lassi�er. This pro
ess is usually repeated multiple times(with di�erent random or presele
ted subunits of the dataset into training andtest sets), and the average of all estimated re
ognition rates gives an estimationof the general re
ognition rate.2.10.1 Speaker-dependent evaluationWithin a N-fold 
ross-validation strategy, a dataset S is �rst randomly di-vided into n disjoint subsets S1, S2, . . . , SN , whi
h have an equal or quasi-equal amount of instan
es per 
lass. Ea
h of the n subsets is then one afteranother applied as the test set, while the remaining n− 1 subsets are appliedas the training set. A 
lassi�er is then trained on the training set material,and its a

ura
y is estimated on the test set material. This pro
ess is repeated
n times, with a di�erent subset applied as the test set. The evaluated gen-eral re
ognition rates by this method is the average over the n subsets. Anextension to 
ross-validation is a strati�ed 
ross-validation. Within a N-foldstrati�ed 
ross-validation strategy, a dataset S is divided into n subsets insu
h a way that ea
h 
lass is uniformly distributed among the n subsets [Zengand Martinez, 2000℄.For our speaker-dependent evaluations we applied a 10-fold strati�ed 
ross-validation (SCV) strategy. Su
h strategy is used for datasets whi
h have asmall amount of data per 
lass instan
e and/or per speaker presented in a
orpus (SUSAS, DES).2.10.2 Speaker-independent evaluationTo address speaker independen
e (SI) within our evaluations we applied leave-one-speaker-out (LOSO) or leave-one-speakers-group-out (LOSGO) strategies.In su
h a way we simulate 
lose to real-life appli
ation 
onditions. For thesestrategies, evaluation material should 
ontain a su�
ient amount of instan
es(emotional samples, utteran
es) per ea
h speaker presented in the dataset.Within LOSO strategy the number of folds n presented in the previous se
-tion is equal to the number of speakers presented in 
orpora. In the 
ase ofLOSGO strategy n is a number of speaker groups. In 
ontrast to a randompartitioning pro
ess within a 
ross-validation strategy we divided a dataset S
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h a way that ea
h fold 
ontains samples of only one speaker(within LOSO) or only one speaker group (LOSGO). An additional advantageof these methods is a possibility to 
on
entrate on inter-speaker variation andnot to deal with a
ousti
 
hannel 
hanges. For presentation of the re
ognitionperforman
e within an evaluation based on LOSO strategy we estimate theaverage evaluation measures (UA, WA, Corr, A

). For this purpose we de-veloped a Perl s
ript whi
h analyzes the re
ognition results for ea
h speaker(leave-one-speaker-out trial) within the 
omplete evaluation 
y
le.2.10.3 Cross-
orpora evaluationWithin the previously des
ribed strategies we 
on
lude a simpli�
ation that
hara
terizes that most of the 
urrent spee
h-pro
essing resear
h is that 
las-si�ers are usually trained and tested using the same datasets. By using twodi�erent datasets for training and testing we 
an simulate that, in parti
ulardevelopment tasks, 
orpora may not be available whi
h 
over all emotionsof speaker in a given appli
ation domain. This type of experiments 
alled
ross-
orpora evaluation. Speaker-independent evaluations (LOSO, LOSGO)have be
ome quite 
ommon, still other mismat
hes between training and testdatasets, su
h as di�erent re
ording 
onditions (in
luding di�erent a
ousti
environment, a
ousti
 
hannel 
hara
teristi
s, mi
rophone types, signal-to-noise ratios, et
.), are often not 
onsidered. Addressing su
h typi
al sour
esof mismat
h, however, we believe that an impression about the generalizationability of spee
h-based emotion re
ognition and automati
 spee
h-re
ognitionengines 
an be obtained by 
ross-
orpora evaluations. A 
onsiderably morerealisti
 impression 
an be gathered by interset evaluation: We therefore use a
ross-
orpora evaluation experiment, whi
h 
ould also be helpful for learningabout 
han
es to add resour
es for training and over
oming the typi
al sparse-ness in the �eld. By using 
ross-
orpora evaluation for emotion-re
ognitionexperiments we want to estimate emotion-re
ognition performan
e in 
ondi-tions whi
h are 
lose to real-life development tasks.2.11 SummaryThis 
hapter reviews the fundamentals of the user-
entered human-ma
hineintera
tion. The variety of existing spoken dialog systems with German in-tera
tion language is des
ribed �rst. Chara
teristi
s of the natural humanspee
h, namely boundary and emotional prosody, are then presented. Theemotion theory and existing emotion-
ategorization s
hemes are presented indetail. Di�erent sour
es of emotional spee
h data are then introdu
ed. Also,



2.11. Summary 41a possible emotion 
lustering te
hnique is then introdu
ed. Then, the mainissues of adequate annotation of the a�e
tive spee
h are presented. Finally, avariety of re
ognition rate measures and evaluation strategies are dis
ussed.In the next 
hapter we will des
ribe the general ar
hite
ture of the au-tomati
 spee
h-re
ognition (ASR) system. Some ASR methods will be usedfor our phoneme-level emotion-re
ognition methods. Methods des
ribed inthe next 
hapter have been used to 
reate an ASR module integrated in ourNIMITEK demonstration prototype of a spoken dialog system (SDS). Also,we need the ASR system for time alignment within phoneme-level emotion
lassi�
ation. Finally, the ASR module 
an be used for semi-automati
 tran-s
ription of the data 
olle
ted during a Wizard of Oz s
enario.
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3.1 Introdu
tionIn this 
hapter an introdu
tion to automati
 spontaneous spee
h-re
ognition system with a
ousti
 model based on hidden Markov models(HMMs) is given. Main aspe
ts of the 
on
ept presented in Figure 3.1 aredes
ribed in this 
hapter, namely feature extra
tion, the mathemati
al de-s
ription of an HMMs-based algorithm, a sele
tion of the sub-word units andtheir quantitative and qualitative spe
i�
ation, the de
oding algorithm forspontaneous spee
h, a language modeling and the adaptation te
hniques fora robust a�e
tive spee
h re
ognition.3.2 General ASR models/ar
hite
tureAutomati
 spee
h re
ognition (ASR) is a task of 
onverting a
ousti
 waveformautomati
ally to a word sequen
e. The basi
 stru
ture of an ASR system ispresented in Figure 3.1.Converting of an a
ousti
 spee
h signals into stream of a
ousti
 fea-tures, referred to as observations is the �rst stage of spee
h re
ognition. So-
alled, front-end pro
essing or feature extra
tion have to generate 
ompa
ta
ousti
 observation ve
tors with su�
ient information appli
able for e�
ient
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Sequence of words 

hypothesis

Speech signal

Figure 3.1: General stru
ture of a standard ASR systemre
ognition. Three types of 
omponents are required for a standard spee
h-re
ognition system: the lexi
on (or di
tionary), language model and a
ousti
model. The lexi
on is usually used to map phoneti
 units (monophones, tri-phones, et
), from whi
h the a
ousti
 models are built, to the hypothesis wordpresent in the lexi
on and language model. The language model representsa-priory information about synta
ti
 and semanti
 stru
ture of the utteredsenten
es, whi
h in
lude the possibility of ea
h possible word sequen
e. Thea
ousti
 model maps the a
ousti
 observation ve
tors to the phoneti
 units.A detailed des
ription to various 
omponents in Figure 3.1 will be given laterin Chapter 3.Statisti
al analysis is the most popular spee
h-re
ognition algorithms todetermine word sequen
e hypothesis given the information presented in Fig-ure 3.1. The main de
ision 
riterion to �nd the most likely word sequen
ehypothesis Ŵ for the sequen
e of observation ve
tors O = [o1 . . .oT ] is theBayesian de
ision rule [Young, 1995℄:
Ŵ = argmax

W

P (W|O) = argmax
W

{

p(O|W)P (W)

p(O)

} (3.1)Take into a

ount that the most likely word sequen
e is independent of thelikelihood of the observation
Ŵ = argmax

W

{p(O|W)P (W)} (3.2)where P (W) is the prior probability of a parti
ular sequen
e of words pre-sented by a language model. p(O|W) is estimated by the a
ousti
 modelwhi
h is in most 
ases implemented as hidden Markov models (HMMs).
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hite
ture 453.2.1 Feature extra
tionFor e�e
tive spee
h re
ognition, the spee
h signal is usually 
onverted into aseries of dis
rete time a
ousti
 features. These a
ousti
 features are supposedto present spee
h variability in a 
ompa
t form. In the spee
h-pro
essing 
om-munity these features are often referred to as feature ve
tors or observations.The most widely used feature extra
tion s
heme applied in ASR systems is aMel-frequen
y Cepstral 
oe�
ient (MFCC).The MFCC extra
tion is based on 
epstral analysis. Firstly, the a
ousti
signal is split into dis
rete frames usually with a 10 ms shifting step and a25 ms window length. These parameters were estimated based on the quasi-stationarity property of the spee
h signals [Rabiner and Juang, 1993℄. Thesedis
rete fragments are usually referred to as frames. The feature extra
tionis applied for ea
h frame. A �rst-order pre-emphasizing te
hnique in 
ombi-nation with a Hamming smoothing window are used. The pre-emphasizing isimplemented with high-frequen
y ampli�
ation to 
ompensate for the attenu-ation produ
ed by the radiation from the lips [Young, 1995℄. Using a windowfun
tion like Hamming, is useful for a boundary e�e
t redu
tion. A fastFourier transform (FFT) is performed on the time-domain a
ousti
 signal forea
h individual frame, generating spee
h representation in 
omplex frequen
ydomains. Afterwards, the frequen
y warping methods are used [Young et al.,2009℄:� Mel-frequen
y warping:Within psy
hophysi
al experiments it has been shown that human per-
eption of the frequen
y 
ontent of a
ousti
 signals does not follow alinear s
ale. Therefore the frequen
y is warped using the Mel-frequen
ys
ale, with following frequen
y axis s
aling. Estimation of the magni-tude of ea
h FFT 
omplex value will be pro
essed in a s
aled magnitude-frequen
y domain.� Down-sampling with triangular �lter bank:By using the mel triangle �lter bank we 
an down-sample the warpedmagnitude-frequen
y domain. The magnitude 
oe�
ients are multi-plied by �lter gains, afterwards the results are a

umulated as theamplitude value, see Figure 3.2. As a 
onsequen
e, one amplitude valuewas 
al
ulated for ea
h �lter. As a next step the logarithm of ea
h�lter amplitude value is 
al
ulated, later referred as mj , where j is a�lter number. For our evaluations we used the lower 
ut-o� equal to300 Hz and the upper 
ut-o�s equal to 3,400 Hz.� Dis
rete Cosine transform (DCT):ADCT is 
ondu
ted on the log �lter-bank amplitudes, to redu
e the spa-
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Figure 3.2: Triangular mel-s
ale �lter banktial 
orrelation within �lter bank amplitudes. The DCT 
oe�
ients 
al-
ulated by equation 3.3 are referred as Cepstral 
oe�
ients, also knownas MFCC 
oe�
ients.
ci =

√

2

Nch

Nch
∑

j=1

mj cos

(

πi

Nch

(j − 0.5)

) (3.3)where Nch is the number of triangle �lter bank 
hannels.Within our evaluations the 12 
oe�
ients and the zero-order Cepstral 
o-e�
ient are used. Hen
e a 13-dimensional feature ve
tor is 
onstru
ted forea
h frame.By adding dynami
 
oe�
ients the performan
e of ASR system 
an begreatly enhan
ed. These time derivative features represent the 
orrelationwithin stati
 features for the di�erent time instan
es. The delta 
oe�
ients,
∆ot, are 
omputed using the following linear regression formula:

∆ct =

∑K
k=1 k(ct+k − ct−k)

2
∑K

k=1 k
2

(3.4)where ∆ct is a delta 
oe�
ient at the dis
rete time t with respe
t to the stati

oe�
ients ct−k and ct+k; K is the width over whi
h delta 
oe�
ients are 
al-
ulated. Within our evaluations we applied K = 2. The delta-delta 
oe�
ient
∆(∆ct), or so-
alled a

eleration features or se
ond-order delta 
oe�
ients,is de�ned in equation 3.4. In this 
ase the stati
 
oe�
ients ct−k and ct+k inequation 3.4 are repla
ed by the �rst-order delta 
oe�
ients ∆ct−k and ∆ct+k.For our evaluations we used both: delta and a

eleration 
oe�
ients in addi-tion to the 13-dimensional MFCC feature ve
tor. As a result a 39-dimensionala
ousti
 feature ve
tor is 
onstru
ted for ea
h window of analysis.
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hite
ture 473.2.2 A
ousti
 modelNow to be able to evaluate on observation ve
tors sequen
es, we need ana
ousti
 model. The most robust and general a
ousti
 te
hnique in automati
spee
h re
ognition are hidden Markov models (HMM). The �rst appli
ationsof HMMs for the a
ousti
 modeling were used in the mid-1970s [Baker, 1975℄.Currently, the HMMs-based a
ousti
 models are presented in the HTK toolkit[Young et al., 2009℄ an extremely popular in spee
h-pro
essing 
ommunity. Forour evaluations we used this toolkit, to 
reate and test our German a
ousti
models.The main goal of the a
ousti
 model is to supply a method of estimationof the likelihood of any observation feature ve
tors sequen
e O given a hy-potheti
al word sequen
e W. For small vo
abulary spee
h-re
ognition tasks,HMMs 
an be used to model single words. However, for spee
h-re
ognitionappli
ation with large vo
abularies, it is impossible to a
quire su�
ient train-ing material for ea
h word in
luded in the vo
abulary. One possible solutionto this problem is to use HMMs to model sub-word (phoneti
) units, insteadthe words themselves. More details about this de
omposition and type of thesub-word unit sele
tion 
an be found in se
tion 3.3.2.The HMM is a generative statisti
al model where ea
h sub-word unit issupposed to be generated by a �nite state ma
hine. This state ma
hine, 
ould
hange an a
tive state at some dis
rete time with a prede�ned probability.When an emitting state is a
tivated, an observation ve
tor is generated atthat dis
rete time instan
e with a de�ned probability fun
tion. A left-rightHMM with three emitting and two non-emitting states is the most populartopology applied for monophone-based ASR system, see Figure 3.3. The entryand exit states are produ
ed to fa
ilitate sub-word models 
onne
tions. Theexit state of one sub-word model 
an be joined with the entry state of the
1 2 3 4 5

a22 a33 a44

a23 a34 a45

a13 a24 a35

a12

t1 tN

states

observation

vectors

discrete time

b (o )2          t b (o )3          t b (o )4          t

Figure 3.3: Simple left-right HMM with �ve-state topology
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h re
ognitionnext sub-word model to arrange 
omposite HMM.To be able to use a HMM, two assumptions should be true:� The stationarity assumption:The spee
h waveform 
an be divided into stationary fragments, whi
h
orrespond to the same hidden states. It is required that observationve
tors within the same fragments have similar a
ousti
 
hara
teristi
s.Transa
tions from one state to another are supposed to be instanta-neous.� The observation independen
e assumption:A generation of a 
urrent observation is statisti
ally independent of theprevious and following generated observations. From that assumptionthe following equation 
an be formed:
p(O|s1, s2, . . . , sT ,M) =

T
∏

t=1

p(ot|st,M) (3.5)where O is an observation sequen
e O = [o1, o2, . . . , oT ], st is an a
tivestate at the dis
rete time t, M is an HMM's parameter set.Suppose O is an observation ve
tors sequen
e O = [o1, o2, . . . , oT ] 
orre-sponding to some sample of a parti
ular phoneti
 unit (monophone, triphone,et
), where T is the length of the ve
tor sequen
e or in other words theduration in dis
rete time samples. The generation begins from the �rst non-emitting state. At ea
h dis
rete time, an a
tive state 
an be swit
hed withthe probability given by the model. The transition probability, is de�ned asa dis
rete distribution aij for the possible transitions from state i to state j.During the emitting state a
tivation pro
ess, an observation ve
tor is gen-erated at the dis
rete time with either dis
rete or 
ontinuous density bj(ot),where j is an a
tive state number. Let's assume that s = [s1, s2, . . . , sT ] isthe state sequen
e asso
iated with the observation ve
tors sequen
e. Withinmodeling, only the observation ve
tor sequen
e 
an be observed and the 
or-responding state sequen
e s is unknown. This is the reason why the model is
alled the hidden Markov model.The HMM's parameter set M 
onsists of the following parameters [Ra-biner, 1989℄:� π - Initial state distributionThe initial state distribution is expressed as:
πi = P (s1 = i),

N
∑

i=1

πi = 1, π ≥ 0 (3.6)
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ture 49where N is the number of sates, st is an a
tive state number at thedis
rete time t.� A - State transa
tion probability matrixThe state-transa
tion probability matrix A in
ludes the following ele-ments:
aij = P (st+1 = j|st = i),

N
∑

j=1

aij = 1, aij ≥ 0 (3.7)� B - Observation generation probability distributionEvery emitting state k is asso
iated with an output probability distri-bution, whi
h is responsible for the observation ve
tors generation atea
h dis
rete time instan
e. The following distribution is expressed as
bk(ot) = p(ot|st = k) (3.8)The state output probability distribution 
an be de�ned with a dis-
rete distribution or a 
ontinuous density distribution fun
tion. For ourevaluations we use the 
ontinuous density distribution 
ase.In 
ontext of the ASR task, there are three following basi
 problems forHMMs [Rabiner and Juang, 1993℄:� Probability evaluationGiven the observation ve
tors sequen
e O = [o1, o2, . . . , oT ], and aHMM's model M = (π,A,B), how 
an we estimate p(O|W,M). Thisproblem 
an be solved with the forward-ba
kward algorithm.� Optimal state sequen
e de
odingGiven the observation ve
tors sequen
e O = [o1, o2, . . . , oT ], and themodel M, what is the optimal state sequen
e s = [s1, s2, . . . , sT ]. TheViterbi algorithm 
an be used to solve this problem [Viterbi, 1967℄.� Parameters EstimationHow do we estimate the model parameters M = (π,A,B) whi
h max-imize p(O|W,M)? The Baum-Wel
h re-estimation algorithm 
an beused as a solution for the following problem [Baum et al., 1970℄.3.2.3 Probability evaluationLet's say we have the observation ve
tor O = [o1, o2, . . . , oT ] whi
h 
or-responds to some hypotheti
al word sequen
e W . We wish to 
al
ulatethe likelihood of the observation ve
tor O = [o1, o2, . . . , oT ], for the givenHMM model M = (π,A,B). As mentioned earlier the state sequen
e

s = [s1, s2, . . . , sT ] is hidden. As a 
onsequen
e, the most straightforwardway of likelihood p(O|W,M) estimation is through enumerating all possible
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h re
ognitionstate sequen
es, whi
h 
an generate an observation ve
tors sequen
e O oflength T . We should take into a

ount NT possible state sequen
es.Take into a

ount the observations independen
e assumption (see equation3.5), the likelihood of the observation ve
tors sequen
e O generation by thegiven state sequen
e s may be expressed as:
p(O|s1, s2, . . . , sT ,W,M) =

T
∏

t=1

bst(ot) (3.9)The likelihood of su
h a state sequen
e s = [s1, s2, . . . , sT ] 
an be estimatedby:
p(s1, s2, . . . , sT |W,M) = πs1

T
∏

t=2

ast−1st (3.10)By using equations 3.9, 3.10 the likelihood p(O|W,M) may be estimatedby a

umulating the joint likelihood ofO and s over all possible state sequen
e
s = [s1, s2, . . . , sT ]

p(O|W,M) =
∑

∀s

p(O, s|W,M)

=
∑

∀s

p(s|W,M)p(O|s,M)

=
∑

∀s

πs1

T
∏

t=1

bst(ot)ast−1st (3.11)where as0s1 is an initial transition probability from the �rst non-emitting stateto the emitting state, is equal to 1.To estimate the likelihood expressed in equation 3.11, we should be ableto model the distribution bj(ot). One of a possible 
ontinuous density HMMte
hnique is based on a multivariateGaussian mixture model (GMM). Besides,the bj(ot) 
an be represented as a multivariate GMM [Yu, 2006℄:
bj(ot) =

Mj
∑

m=1

cjmbjm(ot) (3.12)where Mj is the number of Gaussian mixture 
omponents related to the state
j , cjm is a weight 
oe�
ient of m 
omponent of the state j. Ea
h 
ompo-nent bjm(ot) is the D-dimensional multivariate Gaussian distribution with thefollowing parameters N (

ot|µjm,Σjm

) :
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bjm(ot) =

1
√

(2π)D|Σjm|
exp{−1

2
(ot − µjm)

T
Σjm

−1(ot − µjm)

} (3.13)where µjm is a mean ve
tor of m 
omponent and j HMM's state, and Σjm isa 
ovarian
e matrix of m 
omponent and j HMM's state.3.2.3.1 The forward pro
essConsider the forward variable αj(t), is de�ned as the joint likelihood of thepartial observation ve
tors from 
orresponding dis
rete time interval from 1to t with the �nal a
tive state st = j:
αj(t) = p(o1, o2, . . . , ot, st = j|W,M) (3.14)The forward variable of the partial observation ve
tors sequen
e

o1, o2, . . . , ot and an a
tive state i at the dis
rete time t 
an be e�
iently
al
ulated using a re
ursive formula:
αj(t+1) = bj(ot+1)

N
∑

i=1

αi(t)aij (3.15)
1 ≤t ≤ T − 1, 1 ≤ j ≤ Nwhere N is the total number of HMM's states (emitting and non-emitting).The initialization 
ondition for equation 3.15 is:

αj(1) = πjbj(o1), 1 ≤ j ≤ N (3.16)By using the forward variable, equation 3.11 in se
tion 3.2.3 
an be rewrit-ten as:
p(O|W,M) =

N
∑

i=1

αi(T ) (3.17)Cal
ulation of the forward variable is based on the latti
e tra
king. Thegeneral model of the latti
e an N state HMM is presented in Figure 3.4. Atthe initial dis
rete time t = 1, we need to 
ompute forward variables αj(1),
1 ≤ j ≤ N . Afterwards, we need only 
ompute forward variables αj(t),
1 ≤ j ≤ N at the dis
rete time 2 ≤ t ≤ T . Ea
h 
al
ulation uses just the Nprevious forward variables αj(t − 1) be
ause ea
h of N latti
e nodes 
an berea
hed from only the N latti
e nodes at the previous dis
rete time slot [Ra-biner and Juang, 1993℄. Cal
ulation of all αj(t) forward variables requires onthe order of N2T 
al
ulation, in 
omparison with 2TNT 
al
ulations requiredby the dire
t 
omputation method.
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Figure 3.4: General representation of the series of operations required forestimation forward variable αi(t)3.2.3.2 The ba
kward pro
essIn a similar way, we 
an 
an de�ne a ba
kward variable, βt(j), as
βj(t) = p(ot+1, ot+2, . . . , oT |st = j,W,M) (3.18)that, is the probability of the partial observation ve
tors sequen
e from dis-
rete time t+ 1 to the end, with an a
tive state j at the dis
rete time t.The ba
kward variable 
an be 
al
ulated using the following re
ursion:

βj(t) =
N
∑

i=1

ajibi(ot+1)βi(t+ 1) (3.19)
1 ≤t ≤ T − 1, 1 ≤ j ≤ NAn initial 
ondition of re
ursion 3.19 is:
βj(T ) = 1, 1 ≤ j ≤ N (3.20)Hen
e the 
onditional probability p(O, st = j|W,M) 
an be 
al
ulated as:

p(O, st = j|W,M) = αj(t)βj(t) (3.21)3.2.4 An optimal state sequen
e de
odingThe se
ond basi
 problem for the HMM is to �nd an optimal state sequen
easso
iated with the given observation ve
tors sequen
e. There are several
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riteria: A simple possible optimality 
riterion is to 
hoosethe states st, whi
h are the most likely at ea
h dis
rete time t. This 
riteriamight be appli
able for some simple tasks, but the most suitable 
riterion is to�nd the one optimal state sequen
e s that is, to maximize p(s|O,M), whi
h
an be interpreted to maximizing p(O, s|M). The Viterbi algorithm [Viterbi,1967℄ is one of the possible te
hniques for �nding one optimal state sequen
e.It is based on dynami
 programming methods. A detailed dis
retion of theViterbi algorithm applied for isolated word re
ognition will be dis
ussed inthis se
tion. A des
ription of the Viterbi de
oding within 
ontinuous spee
hre
ognition will be given in se
tion 3.2.8.3.2.4.1 Viterbi algorithmTo �nd one optimal state sequen
e s = [s1, s2, . . . , sT ], for some observationve
tors sequen
e O = [o1, o2, . . . , oT ], we have to de�ne the maximum likeli-hood variable χj(t) of the partial observation ve
tors sequen
e [o1, o2, . . . , ot]and an a
tive state j at the dis
rete time t:
χj(t) = max

∀s1,s2,...,st−1

p(s1, s2, . . . , st−1, st = j,O|W,M) (3.22)Take into a

ount dynami
 programming prin
iples (DPP) [Bellman,1957℄, [Bertsekas, 2000℄, to �nd the optimal state sequen
e from dis
rete time
1 to dis
rete time t+1 any intermediate state must be the optimal state (lo
aloptima) within the optimal partial state sequen
es before and after that state.As the result of the DPP, we 
an express χj(t+ 1) by the indu
tion:

χj(t+ 1) =

{

max
1≤i≤N

χj(t)aij

}

bj(ot+1) (3.23)To determine an optimal state sequen
e we need an additional variable
ψt(j) to store the argument that maximized equation 3.23. The algorithm of�nding an optimal state sequen
e 
an be presented as follows:� Initialization

χi(1) = πibi(o1), 1 ≤ i ≤ N (3.24a)
ψ1(i) = 0, 1 ≤ i ≤ N (3.24b)
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ognition� Re
ursion
χj(t) = max

1≤i≤N
{χi(t− 1)aij} bj(ot) (3.25a)

2 ≤t ≤ T, 1 ≤ j ≤ N

ψt(j) = argmax
1≤i≤N

{χi(t− 1)aij} (3.25b)
2 ≤t ≤ T, 1 ≤ j ≤ N� Termination
ŝT = argmax

1≤i≤N

{χi(T )} (3.26)� State sequen
e ba
ktra
king
ŝt = ψt+1(ŝt+1) (3.27)
t = T − 1, T − 2, . . . , 1The Viterbi algorithm is almost similar (ba
ktra
king step is an ex
eption)in realization to the forward variable estimation 3.15 - 3.17 within forward-ba
kward algorithm. The main di�eren
e is the maximization in equation3.25a instead the summing in equation 3.15.3.2.5 Maximum likelihood trainingMaximum likelihood (ML) training is the most often used approa
h for es-timation of the HMM parameters. The main task is to 
ompute the modelparameters that maximize the likelihood of the observation ve
tors sequen
egiven the de�ned trans
riptions and the model parameters. The general ML
riterion 
an be expressed as:

M̂ML = argmax
M

p(O|W,M) (3.28)Where W is the de�ned training word sequen
e (or sub-word unit level tran-s
ription), M is the HMM parameter set.It is often more 
onvenient to maximize the logarithm of the likelihoodfun
tion in order to de
rease required 
omputational power. In this 
aseequation 3.28 
an be expressed as:
M̂ML = argmax

M

log p(O|W,M) (3.29)One possible solution for maximum likelihood training task is an expe
ta-tion maximization (EM) algorithm.
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ture 553.2.5.1 Expe
tation maximization algorithmThe expe
tation maximization (EM) is a general statisti
 method of �nding themaximum likelihood estimate of the parameters of an underlying distributionfrom a given data set when the data is in
omplete or has missing values.The EM algorithm has two main appli
ations: The �rst takes pla
e whenthe data has some missing values, due to problems with or restri
tions of theobservation pro
ess. The se
ond takes pla
e when optimizing the likelihoodfun
tion is analyti
ally quite di�
ult but when the likelihood fun
tion 
an besimpli�ed by assuming the presen
e of and values for additional but hidden ormissing parameters. The se
ond 
ase is more 
ommon in the 
omputationalpattern re
ognition �eld [Bilmes, 1998℄.The EM algorithm is a well-known method of �nding maximum likelihoodestimates of parameters in various statisti
al models. The Baum-Wel
h algo-rithm [Baum et al., 1970℄ is a prominent instan
e of Expe
tation Maximizationalgorithm.The basi
 idea of the algorithm is to iteratively 
ompute the maximumlikelihood estimation when the observations 
an be 
onsidered as in
ompletedata. Ea
h iteration of the algorithm in
ludes an expe
tation step followedby a maximization step. The term "in
omplete data" implies the existen
eof two sample spa
es X and Y . We assumed that observation feature ve
tors
x are realization from X . The 
orresponding state sequen
es y in Y are notobserved dire
tly, but only indire
tly through observation feature ve
tors x.We suppose that a 
omplete data set exists Z = (X, Y ). Then the jointdensity fun
tion p(z|M) 
an be spe
i�ed as:

p(z|M) = p(x, y|M) = p(y|x,M)p(x|M) (3.30)First, the EM algorithm �nds the expe
ted value of the 
omplete dataset log-likelihood log p(X, Y |M) with respe
t to the hidden data Y given theobserved data X and the a
tual parameters estimates. We 
an de�ne thefollowing auxiliary fun
tion Q(M,M̂k−1):
Q(M,M̂k−1) = E

[

log p(X, Y |M)|X,M̂k−1

] (3.31)Where M̂k−1 are the a
tual parameters estimates that we used to estimatethe expe
tation and M̂k are the new parameters that we optimize to in
reasethe auxiliary fun
tion Q.To �nd the optimal parameters estimates, two main steps are taken:� Expe
tation: The evaluation of the auxiliary fun
tion Q(M,M̂k−1).The �rst argument M represents the parameters estimates that willbe optimized in an attempt to maximize the likelihood [Bilmes, 1998℄.
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ognitionThe se
ond argument M̂k−1 represents the 
urrent parameters estimatesthat have available to estimate the expe
tation.� Maximization: The next step of the EM algorithm is to maximize theexpe
tation we 
omputed in the previous step:
M̂k = argmax

M

Q(M,M̂k−1) (3.32)This is the reason why the algorithm is 
alled expe
tation maximization(EM) algorithm.3.2.6 Parameters re-estimationTo des
ribe the iterative pro
ess for re-estimation of HMM parameters we �rstde�ne variables ξij(t) and γj(t). The variable ξij(t), is de�ned the probabilitybeing an a
tive state i at the dis
rete time t, and state j at the dis
rete time
t+ 1:

ξij(t) = p(st = i, st+1 = j|O,W,M) (3.33)From the de�nitions of forward and ba
kward variables, we 
an express
ξij(t) as:

ξij(t) =
p(st = i, st+1 = j,O|W,M)

p(O|W,M)

=
αi(t)aijbj(ot+1)βj(t+ 1)

p(O|W,M)
(3.34)

=
αi(t)aijbj(ot+1)βj(t + 1)

∑N

i=1

∑N

j=1 αi(t)aijbj(ot+1)βj(t+ 1)

=
αi(t)aijbj(ot+1)βj(t+ 1)

∑N

i=1 αi(t)βi(t)The variable γj(t), is de�ned as:
γj(t) = p(st = j|O,W,M) (3.35)It is the probability of being a
tive state j at the dis
rete time t, givenobservation ve
tors sequen
e O, the word sequen
e hypothesis W, and themodel M. We 
an 
al
ulate γj(t) in su
h a way:
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γj(t) = p(st = j|O,W,M)

=
p(O, st = j|W,M)

p(O|W,M)
(3.36)

=
p(O, st = j|W,M)

∑N
i=1 p(O, st = i|W,M)Bu using equation 3.21, we 
an express γt(j) as:

γj(t) =
αj(t)βj(t)

∑N
i=1 αi(t)βi(t)

(3.37)Re-estimation formulas for HMM parameters M̂ = (π̂, Â, B̂) 
an be de-rived by evaluating equation 3.32. By using variables ξij(t) and γj(t), we 
anexpress re-estimation formulas as:
π̂j = γj(1) (3.38a)
âij =

∑T−1
t=1 ξij(t)

∑T−1
t=1 γi(t)

(3.38b)GMM is the most popular type of 
ontinuous density fun
tion within 
ontin-uous HMM. To 
al
ulate parameters of the observation generation 
ontinuousdensity fun
tion bjm(ot), expressed in equation 3.13, we should de�ne a vari-able γjm(t). The Gaussian 
omponent posterior variable γjm(t) is related tothe m-th Gaussian 
omponent, and the a
tive state j 
an be estimated by:
γjm(t) =

cjmbjm(ot)βj(t)
∑N

i=1 αi(t− 1)aij
∑N

i=1 αi(t)βi(t)
(3.39)where bjm(ot) is the D-dimensional multivariate Gaussian distribution withthe following parameters N (

ot,µjm,Σjm

).The re-estimation equation for GMM parameters for an a
tive state j aregiven by [Yu, 2006℄:
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ĉjm =

∑T

t=1 γjm(t)
∑Mj

m=1

∑T
t=1 γjm(t)

(3.40a)
µ̂jm =

∑T
t=1 γjm(t)ot
∑T

t=1 γjm(t)
(3.40b)

Σ̂jm =



















∑T
t=1 γjm(t)(o1t−µ̂1

jm)2

∑Mj
m=1 γjm(t)

0 . . . 0

0
∑T

t=1 γjm(t)(o2t−µ̂2
jm)2

∑Mj
m=1 γjm(t)

0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . 0
∑T

t=1 γjm(t)(o
Mj
t −µ̂

Mj
jm )2

∑Mj
m=1 γjm(t)

















(3.40
)The 
al
ulation of the full 
ovarian
e matrix Σ̂jm requires a lot of 
omputationpower and memory for the se
ond-order statisti
s. Take into a

ount, thatmost ASR systems are using a large number of Gaussian 
omponents, onlythe estimation of the diagonal elements of 
ovarian
e matri
es are done inequation 3.40
.3.2.7 Language modelingA language model is an important sour
e of priory information, namely, theprobability of a hypothesized sequen
e of K words, W = w1, w2, . . . , wk. Forea
h word presented in the vo
abulary, the language model de�nes the listof words that 
an follow it with asso
iated dis
rete probability. Those priordis
rete probabilities 
an be fa
torized into a produ
t of 
onditional probabil-ities:
P (W) = P (w1, w2, . . . , wk)

= P (w1)P (w2|w1)P (w3|w2, w1) . . . P (wk|wk−1, . . . , w1)

=
K
∏

k=1

P (wk|wk−1, . . . , w1) (3.41)where wk is the k-th word of the hypothesized word sequen
e. The estimationof the dis
rete probability of any word sequen
e using equation 3.41 demandsestimating the probability of all of it is possible 
omplete sequen
es. In the
ase of large vo
abulary tasks, the number of possible 
omplete sequen
es istoo big. As a result it is hard to provide an a

urate estimate of every pos-sible word sequen
e. N-gram language models is a possible solution for this
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ture 59problem. This type of language model restri
ts the length of the 
ompletesequen
e required to 
al
ulate the 
onditional probability. This method isthe most widely used for statisti
al language modeling in automati
 spee
hre
ognition. The following simpli�
ation of probability estimation of the hy-pothesized sequen
e of K words 
an be expressed as:
P (W) = P (w1, w2, . . . , wk)

=
K
∏

k=1

P (wk|wk−1, . . . , w1)

≈
K
∏

k=1

P (wk|wk−1, . . . , wk−N+1) (3.42)where N is the �xed size of word history. N usually has a small value, forexample: N = 2 so it is 
alled a bigram language model, N = 3 is a trigramlanguage model. Taking into a

ount this assumption, it is easy to use theML estimate for N-gram by using the word sequen
e frequen
y 
ounts withlength N
P (wk|wk−1, . . . , wk−N+1) =

f(wk, wk−1, . . . , wk−N+1)

f(wk−1, . . . , wk−N+1)
; (3.43)where f(wk, wk−1, . . . , wk−N+1) indi
ates the number of times the N-gramword sequen
e wk, wk−1, . . . , wk−N+1 appears in the training dataset and

f(wk−1, . . . , wk−N+1) is the number of times the (N − 1)-gram word sequen
e
wk−1, . . . , wk−N+1 appears.Sin
e the vo
abulary of datasets we 
onsider in this thesis is su�
ientlylimited, we use ba
k-o� bigram language models for evaluation of our ASRengine. The bigram language model is a table whi
h in
ludes the probabilityof a given word being followed by another word. This able is estimated basedon a training dataset.So-
alled zero-gram model is the simplest language model, whi
h assumes
P (wk|wi) = 1 for all k and i, so that every word from the vo
abulary issupposedly 
apable of being followed by any other word from the vo
abulary.Zero-gram language models 
an be performed as �nite state networks, so-
alled word networks. In su
h a form they 
an be integrated simply into are
ognition de
oding pro
ess.For 
onstru
tion of a word network from a spe
i�ed re
ognition grammarwe used HParse tool from HTK 3.4 [Young et al., 2009℄. HParse formatgrammars are an easy way of de�ning a spe
i�
 themati
 domain grammarfor IVR te
hnologies. An example of a re
ognition grammar in HParse format
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ognition$s imple_obje
t = Ring | S
heibe ;$ a r t i 
 l e s = d i e | der | den | s i l ;$type1 = k l e i n s t e | m i t t l e r e | m i t t e l g r o s s e | g r o s s e |g r o e s s t e | nae
hste ;$type2 = k l e i n s t e n | m i t t e l g r o s s en | m i t t l e r en |g ro s s en | g r o e s s t en | nae
hsten ;$ l i_re
h = l i n k s | r e 
h t s ;$num = e in s | zwei | d r e i ;$num2 = e r s t e | zwe i te | d r i t t e ;$ob j e 
 t = $ a r t i 
 l e s $type1 $s imple_obje
t |$ a r t i 
 l e s $type2 $s imple_obje
t |$ a r t i 
 l e s $type1 | $ a r t i 
 l e s $type2 ;$ d i r e 
 t i o n = auf d i e Nummer $num | auf Nummer $num |auf d i e $num | auf $num | auf Pos i t i on $num |na
h $ l i_re
h | $ l i_re
h | na
h ganz $ l i_re
h |zu $num | in d i e Mitte | auf d i e Mitte | zur Mitte ;$a
 t i on = l e g e | l e g en | bewege | s e t z en |h in l egen | runte r l egen | p o s i t i o n i e r e n ;$ input = $ob j e 
 t | $ d i r e 
 t i o n | $
ommands | X ;(< $input | s i l >)Listing 3.1: Simple Tower of Hanoi task (with 3 disks) grammaris presented in listing 3.1. This grammar is suitable for an ASR system forspee
h-based 
ontrol within solving a simple logi
 game "Tower of Hanoi"with 3 disks.Listing 3.1 shows an example of a grammar for "Tower of Hanoi" gamewith 3 disks. As 
an be noti
ed, the grammar 
ontains the following wordgroups: obje
t spe
i�
ation (simple_obje
t, type1, type2, num, num2, arti
les,obje
t), dire
tion spe
i�
ation (li_re
h, num, dire
tion), a
tion spe
i�
ation(a
tion) and a so-
alled"garbage" model (X).The di
tionary entry for X would referen
e out-of-vo
abulary (OOV) wordsor a so-
alled "garbage" model. The simplest way of "garbage" modeling isto in
lude phoneti
 trans
riptions of the most frequently used task-unrelatedwords to the X word-related-lexi
on entries.
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ture 613.2.8 Viterbi de
oding and 
ontinuous spee
hre
ognitionWithin re
ognition, the a
ousti
 s
ore is 
omputed with equation 3.11 whi
his presented in se
tion 3.2.3. As des
ribed in se
tions 3.2.3.1 and 3.2.3.2,the likelihood p(O|W,M) 
an be estimated using the forward-ba
kward al-gorithm [Baum et al., 1970℄. However, it is unpra
ti
al for the real-time
ontinuous spee
h re
ognition sin
e:� ba
kward iteration is needed, hen
e the whole utteran
e has to be bu�ered�rst� the sum over states takes a lot of time and 
omputational re
ourses,hen
e it is approximated by the maximumThe Viterbi algorithm [Viterbi, 1967℄, des
ribed in se
tion 3.2.4.1, is themost widely used approa
h in the 
ontinuous spee
h re
ognition applied to �ndthe single best state sequen
e that has the highest probability to generatethe observation ve
tors sequen
es. In su
h a way, the maximum likelihoodof the observation ve
tors sequen
e uses only one hidden state sequen
e toapproximate the marginal likelihood over all possible state sequen
es [Yu,2006℄.
p(O|W,M) =

∑

∀s

p(O, s|W,M)

≈ max
∀s

p(O, s|W,M) (3.44)Taking into a

ount equation 3.25a, the maximum likelihood of the obser-vation ve
tors sequen
e 
an be expressed as:
p(O|W,M) ≈ χN(T ) = max

1≤i≤N
{χi(T − 1)aiN} bj(oT ) (3.45)where T is the length of the observation ve
tors sequen
e. As one 
an noti
e,in equation 3.45 the ba
kward pro
essing is not applied. Hen
e, real-timepro
essing be
omes possible.The Viterbi algorithm 
an be applied for isolated word re
ognition tasks.Continuous spee
h re
ognition is a 
omplex task. Sin
e an average 
ontinuous-spee
h-re
ognition system deals with a huge number of possible word se-quen
es, it is not appli
able for su
h a system to 
onstru
t a single 
ompositeHMM for ea
h potential word sequen
e. In this 
ase, a Viterbi-beam sear
hwith a token passing algorithm [Young, 1995℄ is usually used.To understand the 
omplexity of the 
ontinuous spee
h-re
ognition task,suppose that a bran
hing word network tree is built su
h that at the startthere is a bran
h to every possible start word. All start words are linked to all
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h re
ognitionpossible following words and so forth. At the end, this bran
hing word networktree will be quite big and represents all of the possible word sequen
es withina 
losed themati
 domain. After 
onstru
tion of the word network tree, letea
h word be repla
ed by the sequen
e of 
orresponding phoneti
 models. Ina 
ase of multiple phoneti
 trans
riptions for the same word, these models 
anbe 
ombined in parallel. As one 
an noti
e, the 
onstru
ted bran
h networkis very large. As a 
onsequen
e, a pruning of the sear
h spa
e is required.Any path from the start point to some node in the network tree 
an bepresented as a movable token pla
ed in the node at the end of the path [Young,S. J. et al., 1989℄. The token is 
hara
terized by the likelihood of the partialpath χj(t) (token s
ore) and a path history. As a starting point of the tokenpassing algorithm, a single token is set in the start node of the network tree.At ea
h dis
rete time, tokens are dupli
ated in 
onne
ted HMM states or
onne
ted network tree nodes and their s
ores are re-estimated. Within thewords transa
tion, the language model s
ore is added to the 
orrespondingtoken s
ore. When the last observation ve
tor is pro
essed, the token withthe highest s
ore is tra
ed ba
k to show the most likely sequen
e of HMMsand 
orresponding lexi
al interpretation.3.2.9 Adaptation te
hniques in ASRThe training approa
hes des
ribed earlier use an assumption that trainingand test datasets have similar a
ousti
 
hara
teristi
s (speaking rate, a
ousti
environment, vo
al tra
ts variability, emotional spee
h, et
.). However, inreal-life appli
ations, it is usually not the 
ase. The a
ousti
 
hara
teristi
smismat
h may signi�
antly de
rease the re
ognition performan
e 
omparedto the ASR systems build on data with mat
hed a
ousti
 
hara
teristi
s. To
ompensate the mismat
h of a
ousti
 
hara
teristi
s between test and trainingdatasets, adaptation te
hniques are usually applied. A simpli�ed s
hema ofthe speaker adaptation te
hnique as used in HMM-based spee
h-re
ognitionmodels is presented in Figure 3.5.As one 
an see from Figure 3.5, adaptation te
hniques use informationprovided in an adaptation material to adjust the HMM/GMM parameters(i.e. mean and diagonal elements of the 
ovarian
e matrix (varian
e) of themultivariate Gaussian mixture models) of the basi
 model to re�e
t spe
i�
a
ousti
 
hara
teristi
s (a
ousti
al environment, speaker-dependent modeling,et
.). In our resear
h we use adaptation approa
hes for 
ompensation the mis-mat
h of a
ousti
 
hara
teristi
s between neutral spee
h samples and a�e
tivespee
h material.One of the most popular adaptation te
hniques applied within ASR sys-tems are model-based transforms: Maximum Likelihood Linear Regression



3.2. General ASR models/ar
hite
ture 63
Adaptation data

1 2 3 4 5

1 2 3 4

Basic HMM/GMM models

Adapted HMM/GMM models

Figure 3.5: General stru
ture of an adaptation ASR models(MLLR) andMaximum a Posteriori (MAP). The Maximum Likelihood LinearRegression (MLLR) and Maximum a Posteriori (MAP) adaptation te
hniqueswill be des
ribed in this se
tion.3.2.9.1 Maximum a Posteriori (MAP) AdaptationThe Maximum a Posteriori (MAP) [Gauvain and Lee, 1994℄ approa
h (some-times referred as the Bayesian adaptation) maximizes the posteriori probabil-ity using a prior HMM parameter distribution.
M̂MAP = argmax

M

{ p(O|W,M) p(M|Otrn,Wtrn)} (3.46)where p(M|Otrn,Wtrn) is the prior distribution of the HMM models param-eters estimated on training data Otrn and Wtrn.To evaluate the HMM model parameter estimate using the MAP trans-formation, an iterative EM algorithm is applied. If the prior mean estimatefor state j and Gaussian mixture 
omponent m is µ̃, then the MAP estimatefor the adapted mean of the m Gaussian mixture 
omponent µ̂jm 
an beexpressed as:
µ̂jm =

τ µ̃jm +
∑T

t=1 γjm(t)ot
ad

τ +
∑T

t=1 γjm(t)
(3.47)
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tive spee
h re
ognitionwhere τ is a hyper-parameter whi
h regulates the balan
e between the max-imum likelihood estimate of the mean value and its prior value; ot
ad is theadaptation observation feature ve
tor at the dis
rete time t; γjm(t) is the mGaussian 
omponent of the probability of being a
tive state j at the dis
retetime t. Usually the hyper-parameter is in the range 2 ≤ τ ≤ 20.The MAP adaptation requires more adaptation data to be present. Whenthe amount of adaptation data in
reases, so the MAP estimate 
onverges tothe maximum likelihood estimate. If su�
ient amount of adaptation data be-
ome available, the MAP approa
h begins to perform better than the MLLR.3.2.9.2 Maximum Likelihood Linear Regression (MLLR)The Maximum Likelihood Linear Regression (MLLR) is the best-known lin-ear transformation method applied for speaker adaptation. It uses the ML
riterion to estimate a linear transformation whi
h may be applied to adaptGaussian parameters of HMMs.

µ̂m = Aµm + b = Wξm (3.48)where µ̂m is the MAP estimate for the adapted mean of the m Gaussianmixture 
omponent; ξm is an extended mean ve
tor ξm = [1µm
T ] and W =

[bA]Equation 3.48 
an be de
onstru
ted as follows:
ŵd = Gd

−1
kd (3.49a)

Gd =

Mj
∑

m=1

T
∑

t=1

γm(t)

σm,dd

ξm ξm
T (3.49b)

kd =

Mj
∑

m=1

T
∑

t=1

γm(t) ot,d
σm,dd

ξm (3.49
)where matrix elements ŵd 
onstru
t the matrix W = [w1, . . . ,wD]
T , ot,d isthe d-th feature value from observation feature ve
tor ot; σm,dd is the d-thdiagonal element of 
ovarian
e matrix Σm.3.2.9.3 Base 
lass spe
i�
ationsIn the previous se
tion we des
ribed the MLLR adaptation te
hnique. Spe
-ifying the set of the HMMs whi
h share the same transformation is the �rstrequirement to allow adaptation. One of the possible spe
i�
ations is a
hieved



3.2. General ASR models/ar
hite
ture 65~b ' ' g loba l ' '<MMFIDMASK> Kie l *<PARAMETERS> MIXBASE<NUMCLASSES> 1<CLASS> 1 {* . s t a t e [2 −4 ℄ .mix [1−18℄}Listing 3.2: Global base 
lass (GBC) spe
i�
ationusing a base 
lass. For base 
lass de�nitions, the HMMs must always be spe
-i�ed. A global transformation for all HMMS is the simplest form of transfor-mation used for adaptation. An example of a base 
lass spe
i�
ation for theglobal transformation 
an be found in listing 3.2The base 
lass spe
i�ed in listing 3.2 de�nes a global transformation forHMMs whi
h 
ontain up to 3 emitting states and up to 18 Gaussian mixture
omponents per state.With base 
lasses spe
i�
ation it is possible to de�ne several 
lasses ofHMMs. An example of a base 
lass spe
i�
ation with three 
lasses 
an befound in listing 3.3~b ' ' g loba l ' '<MMFIDMASK> Kie l *<PARAMETERS> MIXBASE<NUMCLASSES> 1<CLASS> 1 {( s i l , sp ) . s t a t e [2 −4 ℄ .mix [1−18℄}<CLASS> 2 {(a , ai1 , at , au1 , e , er , e1 , i , i1 , o , oe , o1 , o1y , u , u1 , y ) .s t a t e [2 −4 ℄ .mix [1−18℄}<CLASS> 3 {(b , 
1 , d , f , g , h , j , k , l ,m, n , n1 , p , r , s , s1 , t , v , x , z ) .s t a t e [2 −4 ℄ .mix [1−18℄}Listing 3.3: Three base 
lasses spe
i�
ationThe base 
lass spe
i�ed in listing 3.3 de�nes three di�erent 
lasses: 
lass1whi
h represents long and short pauses, 
lass2 whi
h represents vowels, and
lass3 whi
h represents 
onsonants. Also, the HMMs 
ould be grouped intothe broad phone 
lasses: silen
e, vowels, stops, glides, nasals and fri
atives,et
. [Gales, 1996℄.These base 
lasses 
an be used to de�ne whi
h HMMs share a separatetransformation. A more general approa
h based on a regression 
lass treeswill be des
ribed in the next se
tion.
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tive spee
h re
ognition3.2.9.4 Regression 
lasses tree s
hemeTo make an adaptation pro
ess more �exible it is possible to spe
ify the 
on-venient set of base 
lasses a

ording to the amount of adaptation materialthat is obtainable. The global adaptation transformation presented in theprevious se
tion 
an be used when a small amount of adaptation materialis available. As more adaptation material be
omes available, in
reasing thenumber of base 
lasses for advan
ed adaptation is possible. For ea
h base
lass we use a di�erent transformation.Instead de�ning stati
 HMMs 
lasses, it is possible to use a dynami
method for the generation of further transformations as more adaptation ma-terial be
omes available. A regression 
lass tree [Gales, 1996℄ is used to groupGaussian 
omponents so that the number of transformations to be estimated
an be dynami
ally sele
ted a

ording to the amount of available adaptationmaterial. Automati
 
lustering of Gaussian 
omponents whi
h are similar ina
ousti
 spa
e is used for 
onstru
ting the regression 
lass tree. The regression
lass tree should be extra
ted before adaptation.3.3 Constru
tion of robust ASR models forGerman spontaneous a�e
tive spee
hIn this se
tion we present the main aspe
ts of developing German sponta-neous a�e
tive spee
h-re
ognition methods: sub-word units sele
tion and lex-i
on 
onstru
tion, German phoneti
 pattern, spontaneous spee
h variability,
omparison of a�e
tive and neutral spee
h and Emotional spee
h a
ousti
 mod-eling.3.3.1 Emotional neutral German spee
h datasetFor a natural spee
h 
orpus we used part of The Kiel 
orpus of Read Spee
h[KIE, 2002℄. The Kiel Corpus is a growing 
olle
tion of read and spontaneousGerman spee
h whi
h has been 
olle
ted and labeled segmentally sin
e 1990.For our evaluation, we used spee
h samples from 6 female and 6 male speakers.The list of speakers is k01,...,k10, k61 (also de�ned as kko), k62 (also de�ned asrtd). To rea
h a qualitative a
ousti
 parameters estimation, sele
ted materialfrom Kiel's read spee
h 
orpus were manually freed from te
hni
al noise andbreathing. 1041 utteran
es for female speakers and 1033 utteran
es for malespeakers were used for our experiments presented in this 
hapter. The numberof vowel instan
es presented in sele
ted material from the Kiel dataset 
an befound in Table 3.3 on page 74.
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tion of robust ASR models for German spontaneousa�e
tive spee
h 673.3.2 Sub-word units sele
tion and lexi
on 
onstru
tionIn the real-life appli
ation, it is not possible to obtain su�
ient training datafor ea
h individual word whi
h 
an o

ur during a natural human-ma
hineintera
tion. The possible solution to this problem is to use HMMs to modelsub-word units, rather than the whole word in
luded in the vo
abulary. Thephoneme is the smallest a
ousti
 
omponent of spee
h and it is widely usedas the sub-word unit for an automati
 spee
h-re
ognition task. The mainadvantage of using phonemes as the sub-word unit is that there is a standardset of phoneti
 rules to map words to phonemes. In su
h a way, words 
an berepresented as a sequen
e of phonemes. The number of phonemes is usually
onsiderably smaller than the number of words in a vo
abulary. In a state-of-the-art ASR system used in this work, we use 39 distin
t German phonemes(modi�ed 
ompa
t SAM-PA list). German phoneti
 pattern used in our ASRsystem will be des
ribed in detail in the next se
tion.To map the word sequen
e to a phoneti
 sequen
e we require a lexi
on.The lexi
on, also referred to as the di
tionary, is a standard part in an ASRsystem. The di
tionary maps phoneti
 units, from whi
h the a
ousti
 mod-els are built, to the present words in
luded in the vo
abulary and languagemodel. The training and re
ognition pro
esses are exe
uted at the phoneti
units level. Finally, within the re
ognition pro
ess, the phoneti
 units se-quen
e is transformed ba
k to the word sequen
e. It is 
ommon to use twodi�erent lexi
ons within he same ASR system. The �rst is responsible formapping the word sequen
e to the unique phoneti
 sequen
e within the train-ing pro
ess, and it 
ontains only one possible phoneti
 trans
ription for ea
hword. The se
ond extra
ts the word sequen
e from phoneti
 sequen
es withinthe re
ognition pro
ess, and it supports variable phoneti
 trans
riptions forea
h word in
luded in the vo
abulary.Two main types of phoneme unit sets are widely used in modern ASRsystems: 
ontext-independent phonemes, namely mono-phones, and 
ontext-dependent phonemes, su
h as: bi-phones, tri-phones, and quin-phones. Witha mono-phones set, we do not take into a

ount the 
ontext of ea
h parti
u-lar phoneme. Still, due to the 
o-arti
ulation e�e
t, the arti
ulation of mostphonemes is highly dependent on their neighboring phonemes. The most
ommon 
ontext-dependent phoneme unit sets are tri-phones. For example,with 39 phonemes there are 393 = 59319 possible tri-phones, but not all ofthem 
an have a pla
e due to the phonota
ti
 
onstrains of the German lan-guage. To train robust tri-phones-based ASR models we need more data in
omparison to the mono-phones. Also this data should be well-annotated,be
ause ea
h annotation error will have a triple e�e
t in 
omparison to themono-phone-based model. To the best of our knowledge, to date there is no
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tive spee
h re
ognitionpubli
ly available 
orpus for the German language whi
h 
an provide a su�-
ient amount of training material with a high-standard phoneti
 trans
riptionwhi
h 
an be used for e�e
tive tri-phones-based HMM modeling. For example,Kiel, SmartKom, Verbmobil databases do not provide detailed trans
riptionof paralinguisti
 
ues, also lexi
ons atta
hed to these 
orpora 
ontain a lot ofin
orre
t phoneti
 trans
riptions and do not provide lists of all possible pro-nun
iation forms. An example of in
omplete phoneti
 trans
ription of Germanword "Abend" will be des
ribed in the next se
tion. In the 
ase of tri-phoneHMM models ea
h in
orre
t phoneme will 
ause us threefold in
orre
t mod-eling. Take into a

ount sparse amount of instan
es for some tri-phones thisthreefold error 
ould be 
ru
ial. As a result, we use the mono-phone set forour ASR system.3.3.2.1 German phoneti
 patternThe number of phoneti
ally distinguishable phonemes in a language is oftena matter of judgment. Table 3.2 and Table 3.1 present lists of German vow-els and 
onsonants, their 
orresponding IPA and SAM-PA symbols [SAM,1996℄. There are 39 phonemes in the German language, in
luding 13 unre-du
ed vowels, 2 redu
ed vowels, 3 diphthongs, 6 plosive 
onsonants, 9 fri
ative
onsonants, 3 nasal 
onsonants, and 2 liquid 
onsonants.The German language 
ontains a standard set of stri
t phoneti
 rules tomap words to phonemes. The amount of these rules and ex
eptions are sig-ni�
antly smaller in 
omparison with English. Still there is no rule-basedgrapheme-to-phoneme (G2P) open-sour
e toolkit available for the Germanspee
h pro
essing resear
h 
ommunity. There is a data-driven G2P open-sour
e toolkit [Bisani and Ney, 2008℄ available, but this method requires ahuge amount of training material to train reliable models. Also, it is not ableto generate reliable phoneti
 trans
ription alternatives for words whi
h 
anbe pronoun
ed in di�erent ways.It is also possible to use existing German lexi
ons in
luded in publi
lyavailable 
orpora (Kiel, SmartKom, Verbmobil). Still, there are some over-sights in existing German lexi
ons. For example, in phoneti
s trans
riptionsdi
tionary Duden 6 "Das Ausspra
hewörterbu
h" [Mangold, 1990℄ the word"Abend" is trans
ribed as [’a:bnt℄. It is the so-
alled "ho
hdeuts
h" pronun-
iation standard. On the other hand, Kiel lexi
on 
ontains slightly di�erenttrans
ription [’a:b@nt℄. Both versions are a

eptable for 
olloquial Germanlanguage. Adequate lexi
ons in
luded in 
orpora should 
ontain both vari-ations of trans
ription, whi
h is not the 
ase with 
urrent publi
ly availableGerman spee
h databases. Hen
e, even existing lexi
a need further re�nementbefore they 
an be used.
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tion of robust ASR models for German spontaneousa�e
tive spee
h 69However, it is possible to determine the a
tual pronun
iations used in theutteran
es used to train ASR model with for
ed alignment. For
e alignmentis presented in HTK [Young et al., 2009℄ toolkit. It is a te
hnique whi
h
an generate the words and phonemes boundaries on utteran
e-level based ontextual trans
riptions of the 
orresponding utteran
e and reliable mono-phoneHMM models.3.3.2.2 ConsonantsThere are few 
lasses of 
onsonant present in German language: plosives,fri
atives, nasals, liquids [Pompino-Mars
hall, 1992℄. Those 
lasses spe
ifyphysi
al 
hara
teristi
s of the generation pro
ess. The list of all German
onsonants with their 
orresponding 
lass des
ription are presented in Table3.1. IPA name IPAsymbol SAM-PAsymbol IPA name IPAsymbol SAM-PAsymbolPlosivesLower-
ase P p p Lower-
ase B b bLower-
ase T t t Lower-
ase D d dLower-
ase K k k Lower-
ase G g gFri
ativesLower-
ase F f f Lower-
ase V v vLower-
ase S s s Lower-
ase Z z zEsh S S Yogh Z ZC Cedilla C C Lower-
ase J j jLower-
ase X x x Lower-
ase H h hNasalsLower-
ase M m m Lower-
ase N n nEng N N LiquidsLower-
ase L l l Lower-
ase R r rTable 3.1: German ConsonantsFor our ASR engine based on mono-phones HMM we used all of the 
on-sonants presented in Table 3.1. Some of the SAM-PA IDs have been 
hangedto enable the use of the HTK [Young et al., 2009℄ toolkit for ASR modeling.Converting non-a

eptable SAM-PA IDs will be des
ribed later in this se
tion.3.3.2.3 VowelsMost existing ASR systems rely heavily on robust vowel re
ognition to rea
h ahigh performan
e. The vowels a
ousti
 segments are usually long in duration(in 
omparison to 
onsonants) and are spe
trally well represented. As su
h,
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tive spee
h re
ognitionIPA name IPAsymbol SAM-PAsymbol IPA name IPAsymbol SAM-PAsymbolUnredu
edLower-
ase A a (a:) a (a:) Slashed O 2 (2:) 2 (2:)Lower-
ase E e (e:) e (e:) O-E Digraph 9 9Epsilon E (E:) E (E:) Lower-
ase U u: (u:) u (u:)Lower-
ase I i (i:) i (i:) Upsilon U USmall Capital I I I Lower-
ase Y y (y:) y (y:)Lower-
ase O o (o:) o (o:) Small Capital Y Y YOpen O O O Redu
edS
hwa @ � Turned A 6 6DiphthongsLower-
ase A,Small Capital I aI aI Open O, SmallCapital Y OY OYLower-
ase A,Upsilon aU aUTable 3.2: German vowels. The symbol ":" 
orresponds to the Length Markthey are generally reliably and easily re
ognized by human beings and by ASRsystems [Rabiner and Juang, 1993℄.There are 18 vowels in the German phoneti
 alphabet [Pompino-Mars
hall,1992℄. Three di�erent 
lasses of vowels (unredu
ed, redu
ed, diphthongs) andtheir representatives SAM-PA and IPA symbols 
an be found in Table 3.2For our ASR engine based on mono-phones HMM we used all of the vowels(unredu
ed, redu
ed, diphthongs) presented in Table 3.1. Some of the SAM-PAIDs have been 
hanged to enable the use of HTK [Young et al., 2009℄ toolkitfor ASR modeling. Converting non-a

eptable SAM-PA IDs will be des
ribedlater in this se
tion.There are several ways to 
lassify and 
hara
terize vowels, in
luding thetypi
al arti
ulatory 
on�guration required to produ
e the sounds, typi
al spe
-tral representation, et
. In 1952, Gordon Paterson and Harold Barney [Pa-terson and Barney, 1952℄ 
reated a 
lassi
 plot of measured values of the �rst(F1) and se
ond (F2) formant for 10 English vowels spoken by a wide range ofmale and female talkers. They proposed to represent ea
h vowel by a 
entroidin the formant spa
e.Instead of representing of ea
h vowel by a 
entroid, we represent ea
h vowelby the means of the average F1 and F2 values. In Figure 3.6 one 
an seeGerman vowels mapped into F1/F2 spa
e and the outline of the general voweltriangle for male and female speakers whi
h are in
luded in sele
ted materialfrom Kiel read spee
h 
orpus [KIE, 2002℄. To rea
h a qualitative a
ousti
parameters estimation, sele
ted material from Kiel read spee
h 
orpus were



3.3. Constru
tion of robust ASR models for German spontaneousa�e
tive spee
h 71

350 400 450 500 550 600 650 700 750 800 850

1,000

1,500

2,000 ae Ei I
o Ou UyY2 9� 6 aIaUOY

F1(Hz)

F2(Hz)

350 400 450 500 550 600 650 700 750 800 850

1,000

1,500

2,000 a
e Ei I
o Ou UyY2 9� 6 aIaUOY

F1(Hz)

F2(Hz)

unredu
ed redu
ed diphthongsFigure 3.6: The vowel triangle with mean values positions of the all Germanvowels. Male speakers (top), female speakers (bottom)manually freed from te
hni
al noise and breathing.On the vowel triangles presented in Figure 3.6, one 
an see an absoluteand relative position of 13 unredu
ed, 2 redu
ed and 3 diphthongs in the�rst (F1) and se
ond (F2) formants spa
e. The vowel triangle representsthe extremes of formant lo
ation in the F1/F2 spa
e, as represented by [i℄(low F1, height F2), [o℄ (low F1, low F2), [a℄ (height F1, middle F2), withthe other vowels appropriately disposed with respe
t to the triangle sidesand verti
es. As one 
an see the relative position of vowels within the voweltriangle are relatively stable for both genders. Still, female speakers use thelarger frequen
y s
ale intervals during vowels arti
ulation 381.2Hz ≤ F1 ≤
812.5Hz and 1, 059.1Hz ≤ F2 ≤ 2, 333.5Hz in 
ontrast to the male speakers
364.9Hz ≤ F1 ≤ 636.3Hz and 1, 073.0Hz ≤ F2 ≤ 2, 004.7Hz.
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tive spee
h re
ognition3.3.2.4 DiphthongsA diphthong is a gliding monosyllabi
 spee
h sound, and it refers to twoadja
ent vowel sounds o

urring within the same syllable. There are threediphthongs in German, namely [aI℄ (as in "zwei"), [aU℄ (as in "Bau
h"), [OY℄(as in "neun"). Diphthongs are generated by varying the vowel tra
t shapesmoothly between vowel shapes that are appropriate to the diphthong. Thisnon-trivial smoothing produ
es a new set of vo
alized phonemes. In supportof the 
omplexity of smoothing one 
an see that a diphthong 
ould not berepresented as a linear 
ombination of 
ompound vowels, see Figure 3.6.3.3.2.5 HTK format lexi
on generationTo be able to use lexi
on en
oded in extended SAM-PA symbols for an HTK-base [Young et al., 2009℄ ASR system we should provide some modi�
ationof the lexi
on �les. First of all, HTK do not allow the use of symbols like[�℄, ['℄ for the HMM spe
i�
ation. Also, vowels with an additional symbol [:℄(Length Mark) 
an be repla
ed with 
orresponding vowels without a lengthmark. It 
an be done due to the robust dynami
 HMM modeling of thetemporal 
hara
teristi
s of phonemes.The transformed HTK 
ompatible lexi
on format will be used forour spee
h-re
ognition experiments and for our ASR system integrated inNIMITEK [Wendemuth et al., 2008℄ demonstrator. More details aboutNIMITEK demonstrator 
an be found in Chapter 6.3.3.3 Spontaneous spee
h variabilityThe spee
h signal not only represents the linguisti
 
ontent but also a lot ofadditional information about the speaker: age, gender, so
ial status, a

ent(foreign a

ent, diale
ts, et
.), emotional state, health, level of reliability, et
.Chara
terization of the in�uen
e of some of these spee
h signal variations,together with related methods to improve ASR performan
e, is an importantresear
h �eld [Benzeghiba et al., 2007℄.It is possible to assign three main 
lasses of e�e
ts 
aused by the sponta-neous spee
h variability. The �rst is the modi�
ation of the voi
e quality byphysiologi
al or behavioral fa
tors. The se
ond is the long-term modulation ofthe voi
e for transmission of non-emotional high level information events likeemphasizing or questioning. The third is pronun
iation variability like foreigna

ents, diale
ts, and 
olloquial spee
h. A detailed des
ription of spontaneousspee
h 
hara
teristi
s has been presented in se
tion 2.3.
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tion of robust ASR models for German spontaneousa�e
tive spee
h 733.3.3.1 Comparison of a�e
tive and neutral spee
hFor the 
omparison of a�e
tive and neutral spee
h, vowel triangles have beenestimated for sele
ted EMO-DB's [Burkhardt et al., 2005℄ utteran
es. We usedutteran
es whi
h represent low-arousal emotions (boredom, sadness), neutral,and high-arousal emotions (anger, fear, and joy).
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fea joy ang bor sad neuFigure 3.7: Classi
al vowel triangle form for di�erent speaker's emotionalstates. Male speakers (top), female speakers (bottom)As one 
an see from Figure 3.7, the vowel triangles form and their positionare di�erent for di�erent emotional states of the speaker. This variability isone of the reasons why ASR models trained on neutral spee
h are not able toprovide a reliable performan
e in a�e
tive spee
h re
ognition. Adaptation ona�e
tive spee
h samples of the a
ousti
 model will be presented in the nextse
tion.
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tive spee
h re
ognition3.3.4 Emotional spee
h a
ousti
 modelingThe simplest way to a
hieve emotional spee
h a
ousti
 modeling for reliableASR performan
e is to train a
ousti
 models for ea
h possible user's emo-tional states. Training emotional spee
h a
ousti
 models for ea
h possibleuser emotional state is not feasible be
ause 
olle
ting a�e
tive spee
h in largeenough amounts to train a robust ASR a
ousti
 model is quite an expensiveand time-
onsuming pro
ess. Nevertheless, due to the pronun
iation patternsimilarity of a�e
tive and neutral spee
h, emotion-spe
i�
 
hara
teristi
s 
anbe 
aptured from existing emotional spee
h 
orpora within adaptive transfor-mation of model parameters of the initial neutral spee
h model to obtain anemotional spee
h a
ousti
 model.For the neutral spee
h ASR model we used mono-phones HMM trained onsele
ted material from Kiel read spee
h 
orpus. For adaptation on a�e
tivespee
h samples we used material from the EMO-DB [Burkhardt et al., 2005℄database. Vowels 
an be reliably and easily re
ognized by human beingsand by ASR systems [Rabiner and Juang, 1993℄. The total amount of vowelinstan
es presented in sele
ted spee
h datasets are presented in Table 3.3.An interpretation of the emotional 
lass name abbreviations 
an be found inTable 2.3 on page 24.# EMO-DB Kielfear joy anger boredom sadness neutral reada 144 172 348 211 148 207 3357e 74 80 166 100 59 105 1239E 42 55 98 64 46 58 1403i 73 68 159 89 54 101 1323I 115 125 244 171 124 146 2315o 24 24 52 34 22 33 535O 15 17 40 25 22 24 767u 4 6 11 9 9 7 674U 33 42 73 48 31 45 1273y 12 18 22 14 4 14 363Y 10 14 30 18 12 16 2902 0 0 0 0 0 0 1889 5 7 14 7 6 6 209� 177 222 436 274 201 254 43406 66 66 138 85 49 91 3462aI 22 25 43 36 22 33 1313aU 16 15 36 23 15 26 528OY 5 7 14 7 6 6 289Table 3.3: Number of instan
es per vowel in EMO-DB and Kiel datasets
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an see from Table 3.3 a
ousti
 form of the vowel [2℄ is not presentedin EMO-DB re
ordings. Also, EMO-DB spee
h material 
ontains quite smallnumber of instan
es for some vowels [u, 9, OY℄. For adaptation of a�e
tivespee
h samples we used MAP and MLLR adaptation te
hniques. WithinMLLR adaptation we used the following HMMs groups spe
i�
ations:� Regression 
lass tree� Two Base 
lasses: phonemes, silen
e� Three Base 
lasses: vowels, 
onsonants, silen
eConsequently, we investigated the poten
y of adapting emotional spee
ha
ousti
 models for German language and we obtained a 
onsiderable perfor-man
e gain as will be dis
ussed in se
tion 5.2.3.3.4 SummaryThis 
hapter reviews the automati
 spee
h-re
ognition methods based onhidden Markov models (HMMs). The feature extra
tion approa
h, namely,MFCC is dis
ussed �rst. The hidden Markov models (HMMs), the most fre-quently used a
ousti
 models, are then presented. The maximum likelihood(ML) training of HMM parameters and the expe
tation maximization (EM)algorithm are dis
ussed. In this 
hapter we presented detailed des
ription ofGerman phoneti
 patterns whi
h will be used later for detailed phoneme-levelemotion re
ognition. N-gram language models and generation word networkswith HParse grammar format are des
ribed. Extensively used Viterbi de-
oding for spontaneous spee
h is presented in detail. Standard adaptationapproa
hes like MAP and MLLR are presented. Results of the evaluation ofour German ASR models will be presented in Chapter 5. Methods des
ribedin this 
hapter have been used to 
reate an ASR module integrated in ourNIMITEK spoken dialog system prototype.In the next 
hapter we will des
ribe di�erent 
lassi�
ation te
hniquesapplied for automati
 emotion re
ognition from spee
h. The HMM/GMMmodels presented in this se
tion will be used for our phoneme-level emotion-re
ognition methods. For
e alignment presented in se
tion 3.3.2.1 will beused in the next 
hapter for time alignment within phoneme-level emotion
lassi�
ation.





Chapter 4Emotion re
ognition from spee
h
Contents4.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . 774.2 An overview of existing methods . . . . . . . . . . . . 774.3 Emotion des
riptors . . . . . . . . . . . . . . . . . . . . 804.4 Developed emotion-
lassi�
ation te
hniques . . . . . 824.5 Context-dependent and 
ontext-independent models 994.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1 Introdu
tionT o be able to design a user-
entered spoken dialog system, we set upa framework that should be robust enough to dete
t emotional eventswithin human-ma
hine intera
tion. In this 
hapter we o�er an overview ofexisting spee
h-based emotion-re
ognition te
hniques, and dis
uss a
ousti
feature sets whi
h are the most informative for emotional events determi-nation. Two di�erent te
hniques of emotion 
lassi�
ation, namely, stati
(turn-level analysis) and dynami
 (frame-level analysis) are presented. Af-terwards, two possible 
ombined emotion-
lassi�
ation methods: two-stagepro
essing and middle-level fusion are des
ribed. Finally, we 
ompare emotion-re
ognition performan
es for unit-spe
i�
 (
ontext-dependent) and general(
ontext-independent) models.4.2 An overview of existing methodsSin
e the beginning of emotional spee
h pro
essing [S
ripture, 1921℄, [Skinner,1935℄, [Fairbanks and Pronovost, 1939℄, [Williams and Stevens, 1972℄, [S
herer,1986℄, [Whissell, 1989℄, the usefulness of automati
 re
ognition of emotion inspee
h seems in
reasingly agreed given the large amount of appli
ations for
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ognition from spee
huser-
entered human-ma
hine interfa
es. Most of these expe
t su�
ient ro-bustness, whi
h may not be given yet [Pi
ard, 1997℄, [Cowie et al., 2001℄,[Shriberg, 2005℄, [Lee and Narayanan, 2005℄, [S
hröder et al., 2007℄, [Wende-muth et al., 2008℄, [S
hröder et al., ℄, [Zeng et al., 2009℄. When evaluatingthe a

ura
y of emotion-re
ognition engines, attainable performan
es are usu-ally overrated sin
e usually a
ted, prompt or eli
ited emotions are 
onsideredinstead of spontaneous, real-life 
ase emotions, whi
h are harder to re
ognize.Spee
h-based emotion 
lassi�ers used in the resear
h publi
ations in
ludea broad variety [Ververidis and Kotropoulos, 2006℄. Depending on the typeof a
ousti
 feature extra
tion level, either dynami
 analysis [Fernandez andPi
ard, 2003℄ for pro
essing on a frame-level or stati
 analysis for higher-levelstatisti
al fun
tionals [Ververidis and Kotropoulos, 2004℄ are established.Among dynami
 analysis, hidden Markov models are dominant (
f., e.g., [Nwe et al., 2003℄, [S
huller et al., 2003℄, [Lee et al., 2004℄, [Vlasenkoet al., 2007a℄). Also, a "bag-of-frames" approa
h for multi instan
e learningis used within dynami
 analysis [Shami and Verhelst, 2006℄. A rarely usedalternative is a dynami
 time warping, supporting easy adaptation. Also,dynami
 Bayesian network ar
hite
tures [Lee et al., 2009a℄ 
ould help to 
om-bine features on di�erent time levels as spe
tral on a frame-level basis andsupra-segmental prosodi
.Relative to stati
 analysis, the list of possible 
lassi�
ation te
hniquesseems endless: Bayes 
lassi�er [Ververidis and Kotropoulos, 2004℄, multi-layerper
eptrons or other types of neural networks [S
huller et al., 2004℄, Baysiannetworks [Fernandez and Pi
ard, 2003℄, [Cohen et al., 2003℄, Gaussian mix-ture models [Slaney and M
Roberts, 1998℄, [Lugger and Yang, 2007℄, randomforests [Iliou and Anagnostopoulos, 2009℄, de
ision trees [Lee et al., 2009b℄, k-nearest neighbor distan
e 
lassi�ers [Dellaert et al., 1996℄, and support ve
torma
hines (SVM) [Fernandez and Pi
ard, 2003℄, [Batliner et al., 2006℄, [Eybenet al., 2009℄ are applied most often.Also, a sele
tion of ensemble te
hniques [S
huller et al., 2005a℄, [Morrisonet al., 2007℄ has been used, as bagging, boosting, multi-boosting, and sta
k-ing with and without 
on�den
e s
ores. New developing te
hniques as hidden
onditional random �elds [Wöllmer et al., 2008℄, long-short-term-memory re-
urrent neural networks [Wöllmer et al., 2008℄, tandem Gaussian mixturemodels with support ve
tor ma
hines [Ko
kmann et al., 2009℄ 
ould furtherbe seen more frequently in near future. Table 4.1 presents the most popu-lar existing 
lassi�
ation te
hniques with representative resear
h publi
ationreferen
es.In the past, within the spee
h emotion-
lassi�
ation resear
h 
ommunity,the fo
us was lain on prosodi
 features extra
ted on the turn-level. In par-ti
ular, these feature sets (from 10�100 features) in
lude durations, intensity
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ted referen
eNaive Bayes [Dellaert et al., 1996℄ , [Batliner et al., 2010℄, [Metze et al.,2010℄, [S
huller et al., 2010℄, [Yildirim et al., 2011℄Bayesian logisti
regression [Lee et al., 2009b℄De
ision tree [Ya
oub et al., 2003℄, [Litman and Forbes, 2003℄Support ve
tor ma
hine [M
Gilloway et al., 2000℄, [Yu et al., 2001℄, [Ya
oub et al.,2003℄, [Lee et al., 2009b℄, [Polzehl et al., 2009℄, [Metze et al.,2010℄, [Seppi et al., 2010℄, [S
huller et al., 2009a℄, [Yildirimet al., 2011℄Linear dis
riminant
lassi�er [M
Gilloway et al., 2000℄, [Batliner et al., 2000b℄, [Litmanand Forbes, 2003℄, [Lee and Narayanan, 2005℄K-nearest neighborhood [Dellaert et al., 1996℄, [Yu et al., 2001℄, [Ya
oub et al.,2003℄, [Lee and Narayanan, 2005℄, [Yildirim et al., 2011℄Gaussian mixturemodels [Breazeal and Aryananda, 2002℄, [Ko
kmann et al.,2009℄, [Dumou
hel et al., 2009℄, [Kim et al., 2010℄Hidden Markov model [Nogueiras et al., 2001℄, [S
huller, 2002℄, [S
huller et al.,2010℄, [Metallinou et al., 2010℄Arti�
ial neuralnetworks [M
Gilloway et al., 2000℄, [Yu et al., 2001℄, [Ya
oub et al.,2003℄, [Polzehl et al., 2009℄Table 4.1: Classi�
ation te
hniques applied for spee
h emotion 
lassi�
ationand pit
h, et
. [Cairns and Hansen, 1994℄, [Banse and S
herer, 1996℄, [Li andZhao, 1998℄, [Zhou et al., 1998℄, [Nwe et al., 2003℄, [S
huller et al., 2003℄, [Leeet al., 2004℄. Only a few studies applied low-level feature modeling on a frame-level as an alternative: usually by hidden Markov models (HMM) or Gaussianmixture models (GMM) [S
huller et al., 2003℄, [Nwe et al., 2003℄, [Vlasenkoand Wendemuth, 2007℄. The higher su

ess of stati
 feature ve
tors derivedby mapping of the low-level 
ontours like energy or pit
h by des
riptive sta-tisti
al fun
tional appli
ation like lower order moments (mean, standard de-viation) or extremal values spe
i�
ation [Ververidis and Kotropoulos, 2004℄is probably proved by the supra-segmental nature of the phenomena appear-ing with respe
t to emotional 
ontent within a spee
h signal [S
huller et al.,2009b℄, [S
huller et al., 2009
℄. In 
urrent spee
h emotion-
lassi�
ation re-sear
h, voi
e quality features su
h as shimmer, jitter or harmoni
s-to-noiseratio (HNR) and spe
tral and 
epstral features su
h as formants and MFCChave be
ome the "new standard" feature sets [Barra et al., 2006℄, [S
hulleret al., 2007a℄, [Lugger and Yang, 2007℄, [S
huller et al., 2009d℄. Traditionallyprosodi
 a
ousti
 features, whi
h 
an be 
lassi�ed in di�erent ways, have beenapplied for a�e
tive spee
h pro
essing. One of the possible emotional prosodyfeatures 
ategorization was proposed by Anton Batliner in [Batliner et al.,2011℄.The �rst 
ategorization 
riterion lies in the feature set sele
tion ap-
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ognition from spee
hproa
h. The 'sele
tive' approa
h is based on phoneti
 and linguisti
 knowl-edge, [Kieÿling, 1996℄; it is also well-known as 'knowledge-based'. It has a stri
tsystemati
 strategy for generating the features; a 
onstant set of fun
tions,whi
h are applied to time series of di�erent a
ousti
 features. This approa
hnormally results in more than 1 k features per set. Another approa
h is basedon brute-for
ing of features (1,000 up to 50,000) by analyti
al feature genera-tion, partly also in 
ombination with evolutionary generation [S
huller et al.,2008℄. The di�eren
e between the two approa
hes lies in the feature sele
tionstep: in the sele
tive approa
h, the sele
tion takes pla
e on an empiri
al levelbefore putting the features into the 
lassi�
ation pro
ess; in the brute-for
eapproa
h an automati
 feature sele
tion is required.The se
ond 
ategorization 
riterion is related to feature extra
tion staging.There is a "two-layered" approa
h, where �rstly features are 
omputed on thewords level; se
ondly, fun
tionals su
h as mean values and the average valueare 
omputed for all words within one utteran
e. An alternative is a "single-layered" approa
h, where features are 
omputed for the 
omplete utteran
e.In [Batliner et al., 2006℄, authors 
ombined for the �rst time features extra
tedat di�erent sites. By 
ombining features from all sites, authors a
hieved up to2.1 % absolute improvement for emotion-
lassi�
ation a

ura
y. These resultswill be dis
ussed in more detail in se
tion 4.4.4.4.3 Emotion des
riptorsOne of the most important problems for the analysis of emotional spee
his the sele
tion on optimal unit of analysis. It is quite important to segmentspontaneous spee
h signal into units that are dis
riminative for emotions [Vogtet al., 2008℄. These are usually linguisti
ally 
ompleted spee
h segments su
has words, turns and/or utteran
es. However, the approval of the sele
ted unitof analysis is an open resear
h topi
 within the emotion-re
ognition resear
h
ommunity. In most prototypi
al a
ted emotional spee
h datasets, subje
tshave to pronoun
e a 
omplete utteran
e with some prompted emotional state.Most emotion-re
ognition experiments have been realized on datasets whi
h
ontain a
ted emotions. As a result, the 
hoi
e of an optimal unit of analysis isobviously just one utteran
e, a linguisti
ally 
ompleted unit with no 
hange ofspeaker's emotional state within this 
ase. However, in spontaneous a�e
tivespee
h this kind of linguisti
ally 
ompleted middle-length unit (utteran
e) isquite rare. Even the straight-forward extra
tion of linguisti
ally 
ompletedsegments like utteran
es do not guarantee a 
onstant emotional state withinthe same utteran
e. An optimal unit of analysis of emotional spee
h has toful�ll 
ertain requirements:



4.3. Emotion des
riptors 81� long enough to provide a su�
ient amount of material for the 
al
ulationof a
ousti
 features based on statisti
al fun
tions� short enough to provide stable a
ousti
 properties with respe
t to emo-tions within the same unitFor most a
ousti
 features 
al
ulated from global statisti
s over an ex-tra
ted spee
h signal, these units should have a minimum length. The emo-tion units analysis be
ome more expli
it as it is used more statisti
al a
ousti
features. On the other hand, all 
hanges of the emotional state within onespee
h segment should be distinguishable, so the unit of analysis should beshort enough that no alteration of emotion is likely to o

ur. Also, it shouldbe so short that the a
ousti
 properties of the unit of analysis with respe
t tospeaker's emotional state are stable, so that informative a
ousti
 features 
anbe extra
ted. This is important for the extra
tion of a
ousti
 features basedon statisti
al measures, sin
e, e.g., the mean value of a non-uniform unit ofanalysis indu
es an insu�
ient des
ription. So the length of the optimal unitof analysis for emotional spee
h has to be 
hosen for these two 
on�i
tingrequirements.Just a few resear
h evaluations have been performed to 
ompare di�erenttypes of units of analysis of emotional spee
h. Comparisons of utteran
es,words, words in 
ontext and �xed time intervals have been presented in [Vogtand Andre, 2005℄. Authors have found that longer, linguisti
ally 
ompletedsegments tended to be better. Batliner et al. [Batliner et al., 2003℄ establishtheir a
ousti
 features on words with a di�erent number of 
ontext words.Further to simple word-level emotion re
ognition, they also mapped word-level results onto utteran
es and on 
hunks within the utteran
es. Withintheir evaluation authors found both advantages and disadvantages of shorterunits than utteran
es, but they have not further quantitatively analyzed thisaspe
t of emotional spee
h pro
essing. In [Vogt et al., 2008℄ authors pointedout that the sele
tion of the unit of analysis strongly depends on the typeof emotional spee
h data. Most 
ommonly dialog a
ts, utteran
es and turnsas, e.g., in [Devillers et al., 2005℄, [Fernandez and Pi
ard, 2005℄, [Oudeyer,2003℄, [S
huller et al., 2005b℄ have been used as unit of analysis of emotionalspee
h, but also words [Batliner et al., 2003℄, [Ni
holas et al., 2006℄. In thepaper of Fragopanagos [Fragopanagos and Taylor, 2005℄ et. al. it is pointedout that most resear
h e�orts were made in order to investigate the a�e
tivespee
h pro
essing on 
omplete utteran
e, word-level or 
ontext-independent
hunks. Only a few resear
h groups provided a vowel- or syllable-level anal-ysis during emotional spee
h pro
essing. Goudbeek and others [Goudbeeket al., 2009℄ presented their investigation of the e�e
t of emotion dimensionson formant pla
ement in individual vowels. In a�e
tive spee
h synthesis,
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ognition from spee
hInanoglu [Inanoglu and Young, 2009℄ developed a set of fundamental fre-quen
y (F0) 
onversion methods on a syllable-level whi
h utilized a smallamount of expressive training data (approximately 15 minutes) and whi
hhad been evaluated for three target emotions: anger, surprise and sadness.Furthermore, an emotion-
lassi�
ation test showed that 
onverted utteran
eswith either F0 generation te
hnique were able to 
onvey the desired emotionabove 
han
e level. Resear
h of Busso and others [Busso et al., 2007℄ showedthat the mean and the varian
e of the likelihood s
ore for emotional spee
hdi�er from the results observed in neutral spee
h, espe
ially for emotions witha high level of arousal and observed in some broad phoneti
 
lasses (frontvowels and mid/ba
k vowels) whi
h present stronger di�eren
es than others.Lee and others [Lee et al., 2004℄ showed quite a good spee
h-based emotion-re
ognition performan
e by using phoneme-
lass-dependent HMM 
lassi�erswith short-term spe
tral features. It has been shown by Vlasenko [Vlasenkoand Wendemuth, 2009a℄ that a 
ombination of a robust emotion-
lassi�
ationengine with a user-behavior-adaptive dialog model 
an make a spoken dialogsystem more friendly and user-
entered.4.4 Developed emotion-
lassi�
ation te
h-niquesIn this se
tion we des
ribe two pre-dominant paradigms of emotion 
las-si�
ation: modeling on a frame-level by means of hidden Markov modelsand suprasegmental modeling by systemati
 feature brute-for
ing. The se
-ond paradigm whi
h 
an also be 
lassi�ed as stati
 analysis has been intro-du
ed by our resear
h partner Björn S
huller from Te
hnis
he UniversitätMün
hen (TUM). In this se
tion we will provide a detailed des
ription ofthe 
lassi�ers whi
h have been used for evaluations presented in our 
om-mon publi
ations [Vlasenko et al., 2007a℄, [S
huller et al., 2007℄, [Vlasenkoet al., 2008b℄, [Vlasenko et al., 2008a℄, [S
huller et al., 2008℄, [S
huller et al.,2009℄, [S
huller et al., 2010℄.4.4.1 A
ousti
 featuresWithin stati
 analysis state-of-the-art emotion re
ognition we use a set of 1406systemati
ally generated a
ousti
 features based on 37 low-level des
riptors(LLD) as seen in Table 4.2 and their �rst-order delta 
oe�
ients. These 37×2des
riptors are then smoothed by low-pass �ltering with a simple movingaverage �lter. Statisti
s have been estimated on the turn-level by a proje
tionof ea
h uni-variate time series of the low-level des
riptors onto a s
alar feature
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lassi�
ation te
hniques 83Low-level des
riptors Fun
tionals(∆) Pit
h mean, 
entroid, standard deviation(∆) Energy Skewness, Kurtosis(∆) Envelope Zero-Crossing-Rate(∆) Formant 1�5 amplitude quartile 1/2/3(∆) Formant 1�5 bandwidth quartile 1 � min., quart. 2 � quart. 1(∆) Formant 1�5 position quartile 3 � quart. 2, max. � quart. 3(∆) MFCC 1�16 max./min. value,(∆) HNR max./min. relative position(∆) Shimmer range max. � min.(∆) Jitter position 95% roll-o�-pointTable 4.2: Overview of low-level des
riptors (2× 37) and fun
tionals (19) forstati
 supra-segmental modelingindependent of the length of the turn. This is done by using 19 di�erentfun
tionals. The list of the fun
tionals 
an be found in Table 4.2.Two optimization strategies 
an be also applied: First, speaker normal-ization (SN) by feature normalization taking into a

ount speaker 
ontext.Se
ond, feature-spa
e optimization by removing highly 
orrelated a
ousti
features (FS).Within dynami
 analysis, spee
h input is pro
essed using a 25ms Hammingwindow, with a frame rate of 10ms. As in typi
al spee
h re
ognition, weemploy a 39-dimensional feature ve
tor per ea
h frame 
onsisting of 12 MFCCand log frame energy plus speed and a

eleration 
oe�
ients. Spe
i�
ation ofthe MFCC features is dis
ussed in detail in se
tion 3.2.1.To 
hara
terize vowels quality, �rst two resonant frequen
ies (formants)are used. The formants 
hara
terize the global shape of the immediate voi
espe
trum and are mostly de�ning the phoneti
 
ontent and emotional prosodyof the vowels [Benzeghiba et al., 2007℄. For our evaluations, formant 
ontourswere extra
ted using PRAAT spee
h analysis software [Boersma and Weenink,2008℄ and the Burg algorithm with the following parameters: the maximumnumber of formants tra
ked (�ve), the maximum frequen
y of the highestformant (set to 6,000 Hz), the time step between two 
onse
utive analysisframes (0.01 se
onds), the e�e
tive duration of the analysis window (0.025se
onds) and the amount of pre-emphasis (50 Hz).4.4.1.1 Normalization and standardizationTo help 
ope with 
hannel 
hara
teristi
s, the 
epstral mean substra
tion(CMS) 
an be applied. In our publi
ation [Vlasenko et al., 2007a℄ we inves-tigate the bene�ts of speaker normalization (SN), as we proposed to analyzeemotion independent of the speaker, herein. SN is realized by a normalization
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ognition from spee
hof ea
h a
ousti
 feature by its mean and standard deviation for ea
h speakerindividually. Thereby the whole speaker 
ontext is used. This has to be seenas an upper ben
hmark for ideal 
ases, where a speaker 
ould be observedwith a variety of emotional states. Yet, it is not essential to know the a
tualemotional state of observed utteran
es at the 
urrent moment.4.4.1.2 Feature set optimizationIt is 
ommon to use a high number of features for stati
 modeling. A featurespa
e optimization (FSO) is an important issue for in
reasing performan
e andreal-time-
apability. In order to optimize a set of a
ousti
 features rather than
ombining the attributes of a single high relevan
e, we use a 
orrelation-basedanalysis, herein [Vlasenko et al., 2007a℄. Thereby a
ousti
 features of high-
lass 
orrelation and low inter-feature 
orrelation are kept [Witten and Frank,2005℄. This does not employ the target stati
 
lassi�er in the loop. Likewise,it mostly redu
es 
orrelation within the a
ousti
 feature spa
e rather thanan evaluation of in�uen
es on an improvement of single attributes. Still, this
ondu
ts to a very 
ompa
t representation of the a
ousti
 feature spa
e whi
husually improves a

ura
y of the emotion 
lassi�
ation while redu
ing featureextra
tion e�ort at the same time.4.4.2 Stati
 analysisAs pointed out earlier in se
tion 4.2 mapping of the LLD 
ontours by de-s
riptive statisti
 fun
tionals is justi�ed by the supra-segmental nature of theemotional 
ontent o

urring in spontaneous spee
h [S
huller et al., 2009b℄,[S
huller et al., 2009
℄. For suprasegmental modeling of the speaker's emo-tional state we use a stati
 analysis in 
ombination with systemati
 fea-ture brute-for
ing. In order to represent a typi
al state-of-the-art emotion-re
ognition engine operating on a turn level, we use a set of 1, 406 a
ousti
features basing on 37 low-level des
riptors (LLD) as seen in Table 4.2 andtheir �rst-order delta 
oe�
ients [Shahin, 2006℄. These 37× 2 LLDs are nextsmoothed by low-pass �ltering with an SMA �lter. The stati
 analysis derivesstatisti
s per utteran
e by a proje
tion of ea
h uni-variate time series, respe
-tively the low-level des
riptors, X onto a s
alar feature x independent of thelength of the utteran
e. This is realized by use of a fun
tional F , as depi
tedin equation 4.1.
F : X → x ∈ R

1 (4.1)19 fun
tionals presented in Table 4.2 are applied to ea
h 
ontour on theturn-level 
overing extremes, ranges, positions, �rst four moments and quar-
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ation te
hniques 85tiles, et
. support ve
tor ma
hines (SVM) with linear kernel and pairwisemulti-
lass dis
rimination have been used for 
lassi�
ation purposes. One
ould 
onsider the use of GMM here, as well. Yet, SVM provides bettermodeling of stati
 a
ousti
 feature ve
tors [S
huller et al., 2007b℄.4.4.2.1 OpenEARIn this se
tion, we des
ribe 
on�guration parameters of a Muni
h open A�e
tRe
ognition Toolkit (openEAR) [Eyben et al., 2009℄ whi
h have been used forour evaluations.Feature Group Features in GroupRaw Signal Zero-
rossing-rateSignal energy logarithmi
Pit
h Fundamental frequen
y F0 in Hz via Cepstrum and Auto
orre-lation (ACF).Exponentially smoothed F0 envelope.Voi
e Quality Probability of voi
ing (ACF (T0)
ACF (0) )Spe
tral Energy in bands 0 - 250Hz, 0 - 650Hz, 250 - 650Hz, 1 - 4 kHz25%, 50%, 75%, 90% roll-o� point, 
entroid, �ux, and rel. pos.of spe
trum max. and min.Mel-spe
trum Band 1-26Cepstral MFCC 0-12Table 4.3: 33 low-level des
riptors (LLD) used in a
ousti
 analysis with ope-nEARThe OpenEAR is a toolkit for a
ousti
 emotion re
ognition, whi
h is basedon stati
 analysis. It is publi
ly available to anybody under the terms of theGNU General Publi
 Li
ense (http://sour
eforge.net/proje
ts/openear).For our evaluations we use the openEAR toolkit with 6,552 a
ousti
 fea-tures extra
ted as 39 fun
tionals of 56 a
ousti
 low-level des
riptors (LLD)and 
orresponding �rst- and se
ond-order delta regression 
oe�
ients.Table 4.4 lists the statisti
al fun
tionals, whi
h were applied to the LLD asshown in Table 4.3 to map a time series of variable length onto a stati
 featureve
tor. The 
lassi�er of 
hoi
e is support ve
tor ma
hines with polynomialkernel and pairwise multi-
lass dis
rimination based on sequential minimaloptimization.
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ognition from spee
hFun
tionals, et
. #Respe
tive rel. position of max./min. value 2Range (max.-min.) 1Max. and min. value - arithmeti
 mean 2Arithmeti
 mean, Quadrati
 mean 2Number of non-zero values 1Geometri
, and quadrati
 mean of non-zero values 2Mean of absolute values, Mean of non-zero abs. values 2Quartiles and inter-quartile ranges 695% and 98% per
entile 2Std. deviation, varian
e, kurtosis, skewness 4Centroid 1Zero-
rossing rate 1# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks- overall arth. mean 4Linear regression 
oe�
ients and 
orresp. approximation error 4Quadrati
 regression 
oe�
ients and 
orresp. approximation error 5Table 4.4: 39 fun
tionals applied to LLD 
ontours and regression 
oe�
ientsof LLD 
ontours4.4.3 Dynami
 analysisIn our resear
h we also applied a low-level feature modeling on a frame-level foremotion re
ognition from spee
h. The hidden Markov models (HMM) withGaussian mixture models (GMM) have been used for this purpose. Threedi�erent units of analysis 
an by used for dynami
 analysis: utteran
e, 
hunk,and phoneme. In this se
tion we des
ribe utteran
e-, 
hunk-, and phoneme-level dynami
 analysis models for the re
ognition of emotions within spee
h.4.4.3.1 Utteran
e-level 
lassi�
ationWe 
onsider using a statisti
al analysis applied for ASR to re
ognize emotionfrom spee
h in the �rst pla
e [Vlasenko and Wendemuth, 2009b℄. Likewise,instead of the usual task to dedu
e the most likely word sequen
e hypothesis
Ωk from a given ve
tor sequen
e O of M a
ousti
 observations o, we willre
ognize the 
urrent speaker's emotional state. This is solved by a sto
hasti
approa
h similar to the approa
h presented in equation 3.1, with a di�erentargument interpretation:

Ωk = argmax
Ω

logP (Ω|O) = argmax
Ω

P (O|Ω)P (Ω)
P (O)

(4.2)where P (O|Ω) is 
alled the emotion a
ousti
 model, P (Ω) is the prior user-behavior information and Ω is one of all system known emotions.
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lassi�
ation te
hniques 87In a 
ase of turn-level analysis, the emotion a
ousti
 model is designed by
s state HMMs. Ea
h state is asso
iated with an output probability distri-bution bk(ot) = p(ot|st = k). The model distribution bj(ot) is based on themultivariate Gaussian mixture model (GMM), see equation 3.13. One emo-tion is assigned for a 
omplete utteran
e. In other words within the trainingand testing observation feature ve
tors sequen
e O 
ontains all feature ve
torsextra
ted within one utteran
e.In simple 
ases the priors in the user-behavior model P (Ω) are 
hosen as anequal distribution among emotion 
lasses. It is possible to provide 
ontext andan emotional-state-history-dependent 
omplex user-behavior model. Withinour evaluations presented in Chapter 5 we used a simple user-behavior model.During the re
ognition phase the emotion that results in the highest GMMs
ore is 
hosen.The HMM/GMM parameters are estimated by the EM-algorithm usingspeaker-independent training, namely leave-one-speaker-out strategy (LOSO)(see se
tion 2.10.2), and a number of 1 to 120 Gaussian mixture 
omponents toapproximate the original probability density fun
tions (PDFs) [Young et al.,2009℄. However, we also 
onsider multiple states HMM/GMM s = 1, 2, . . . , 5

Figure 4.1: Emotion-re
ognition a

ura
y (WA) depending on the number ofGaussian mixtures and number of HMM states, LOSO evaluation, databaseEMO-DB
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ognition from spee
hto better model dynami
s. These are trained a

ordingly.As 
an be seen in Figure 4.1 single-state HMM/GMM models show themost stable and robust results [Vlasenko et al., 2007b℄. Within all emotion-
lassi�
ation evaluations presented in Chapter 5 based on utteran
e-level and
hunk-level analysis we use single-state HMM/GMM models.4.4.3.2 Chunk-level 
lassi�
ationThis se
tion des
ribes another possible simple 
on
eptual model of dynami
speaker's emotional state re
ognition. For 
lassi�
ation purpose we 
an useHMM/GMM parameters estimated for utteran
e-level 
lassi�
ation, see pre-vious se
tion. Instead of using turn-level 
lassi�
ation, the time-syn
hronousone-pass Viterbi-beam sear
h and the token passing algorithm with dire
t
ontext-free grammar are used for de
oding [Young et al., 2009℄. This methodis an integral 
omponent of 
ontinuous spee
h-re
ognition system based onHMM models, see se
tion 3.2.8. To apply 
ontext-free grammar as 
onstraintswithin the token passing s
heme, these grammar rules are 
ompiled into a setof linked syntax networks of the form illustrated in Figure 4.2. There are threetypes of the nodes of ea
h syntax network: links, terminals and non-terminals.Link nodes are used to store tokens and are the points where re
ognition de-
isions are re
orded. Terminal nodes 
orrespond to emotion a
ousti
 modelsand non-terminal nodes refer to separate sub-syntax networks representing theright-hand side (RHS) of the 
orresponding grammar rule. For our 
hunk-levelemotion 
lassi�
ation we did not use non-terminal nodes.

Figure 4.2: Automati
 
hunking by a
ousti
 properties and one-pass Viterbibeam sear
h with token passingThe three types of node are merged in su
h a way that every ar
 
onne
tseither a terminal or a non-terminal to a link node, or the other way around.
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lassi�
ation te
hniques 89The syntax network presented in Figure 4.2 has exa
tly one entry, one exitand zero or more internal link nodes. Every terminal and non-terminal node
ould only have one ar
 leading into it, whereas ea
h link node may have fewar
s leading into it. Link nodes 
an thus be 
onsidered as �lters, whi
h removeall but lowest 
ost tokens passing through them [Young, S. J. et al., 1989℄.More details about Viterbi-beam sear
h with a token passing algorithm 
anbe found in se
tion 3.2.8.The main idea is that tokens propagate through the networks just as in the�nite state 
ase: when a token node enters a terminal node, it is transferredto the entry node of the 
orresponding emotional state model.This method 
an be used for dete
tion of 
ontext-independent emotional
hunks. Also this method 
an be modi�ed for 
ontext-dependent emotional
hunks dete
tion. In this 
ase the syntax network presented in Figure 4.2should be 
ombined with the user's emotional-state-driven language model.In se
tion 4.4.4 we will present the two-stage emotion-
lassi�
ation te
hniquewhi
h uses 
hunk-level 
lassi�
ation as a �rst step of analysis.4.4.3.3 Phoneme-level 
lassi�
ationFinally, the smallest possible units of analysis of emotional spee
h, namelyphonemes have been 
hosen, as these should provide the most �exible basisfor unit-spe
i�
 models: if the emotion is feasible on a phoneme basis, thenthese sub-word units 
ould be most easily re-used for any further 
ontent,and high numbers of training instan
es 
ould be obtained [Vlasenko et al.,2008a℄, [S
huller et al., 2008℄. Two di�erent methods 
an be used for thephoneme-level emotion 
lassi�
ation: emotional phoneme 
lasses and vowel-level formants tra
king.Emotional phoneme 
lasses: We use a simple 
on
eptual model of dy-nami
 emotional-state re
ognition on phoneme-level analysis: the full list of36 phonemes (all phonemes whi
h presented in EMO-DB dataset) is mod-eled for neutral and anger emotion speaking style, independently. As a �rststep of developing an emotion-
lassi�
ation module we de
ided that re
og-nition of neutral and negative (anger) speaker's states is appropriate for anemotion adaptive dialog management. We integrated su
h speaker's emotion-re
ognition module in a prototype of the NIMITEK demonstrator [Wende-muth et al., 2008℄. Within an intera
tive usability test we �nd that modelingonly two speaker's emotional states, namely negative and neutral, is su�
ientfor development a user-friendly spoken dialog system. More details aboutan intera
tive usability test 
an be found in Chapter 6. Hen
e 2 × 36 = 72phoneme emotion (PE) models are trained [Vlasenko et al., 2008a℄.
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Figure 4.3: Phoneme-level emotion re
ognitionIn the 
ase of phoneme-level emotion analysis we 
an restate equation 4.2in su
h a way:
Ω is a possible emotional word (emotional phones sequen
e) from a de�nedvo
abulary,
P (X|Ω) is an emotion a
ousti
 model for word Ω,
P (Ω) is the a�e
tive spee
h language model.Emotional phonemes are modeled by training three emitting states HMMmodels with 16 Gaussian mixture 
omponents. There is not enough materialin a sele
ted part of EMO-DB database to train robust monophone models.Hen
e, in 
ontrast to the previous models [Vlasenko et al., 2008a℄, [Vlasenkoand Wendemuth, 2009a℄ we are using Kiel-trained monophones models asa ba
kground HMM/GMM model. The HTK toolkit was used for MLLRadaptation of the ba
kground model on two phoneme emotion subsets: neutraland anger. Neutral and anger samples from EMO-DB database were used foradaptation. In the 
ase of phoneme-level emotion re
ognition we are using anASR engine adapted for a�e
tive spee
h to re
ognize on word-level as a startpoint.After this we are generating possible emotional phoneti
 trans
riptions forsensible utteran
es by using an emotional phoneme set, see Figure 4.3. In our
ase, two trans
riptions for neutral and anger speaking styles are generated.Emotional phoneme models whi
h provide the highest re
ognition s
ore aresele
ted.In the 
ase of the Interspee
h 2009 Emotion Challenge we used 72 phonemeemotion models for two emotional 
lasses evaluation, and 180 phoneme emo-
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hniques 91tion models for �ve emotional 
lasses. Results of the Interspee
h 2009 EmotionChallenge will be presented in se
tion 5.3.4.Vowel-level formants tra
king: It is also possible to 
lassify emotionswith an average formants value extra
ted from vowel segments [Vlasenko et al.,2011a℄, [Vlasenko et al., 2011b℄. The phoneme boundaries estimation wasbased on a for
ed alignment, see se
tion 3.3.2.1, provided by the HTK [Younget al., 2009℄. Within our evaluation we use a simpli�ed version of a BAS SAM-PA [SAM, 1996℄ with a set of 39 phonemes (18 vowels and 21 
onsonants).Table 3.2 and Table 3.1 present lists of German vowels and 
onsonants, withtheir 
orresponding IPA and BAS SAM-PA symbols [SAM, 1996℄. A listof vowels with their 
orresponding instan
es number 
an be found in Table3.3. To re
eive the most reliable phoneme boundaries alignment mono-phoneHMMs have been trained on ea
h 
orpora independently.Taking into a

ount automati
ally extra
ted phoneme borders, we esti-mate an average �rst formant (F1) and se
ond formant (F2) value for ea
hvowel instan
e. Formant 
ontours were extra
ted by using PRAAT spee
hanalysis software [Boersma and Weenink, 2008℄ and the Burg algorithm. Asone 
an see from Figure 3.7, the vowel triangles form and their position aredi�erent for di�erent emotional states of the speaker. Now we want to �nd outif there are any dis
riminative 
hanges to the average vowel's formant valuesas a fun
tion of the level of arousal of the speaker's emotional state. One 
ansee that all emotional vowel triangles expand along the F1 axis more thanalong the F2 axis. As a 
onsequen
e, we de
ided to use only the average F1values for our evaluations.Taking into a

ount the 
entral limit theorem, the mean of a su�
ientlylarge number of vowel-level dis
rete estimations of �rst formant values, whi
hde�nitely have a �nite mean and a �nite varian
e, will be approximately nor-mally distributed. We de�ne a new variable X whi
h 
orresponds to an av-erage F1 value estimated on vowel-level. The value of X 
an be 
al
ulatedby:
X =

1

tk

tk
∑

i=1

fi
1 (4.3)where tk is a number of dis
rete estimations of �rst formant values withina vowel segment, fi1 is an estimation of the �rst formant value at dis
retetime i. The random variable X 
an be represented as N (x|µ, σ2) with thefollowing probability density fun
tion:

f(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 (4.4)
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e E i � I U o 6 aU O aI a100Hz200Hz

i I e aI � E 6 o a U aU O100Hz200Hz
Figure 4.4: Mean of the 
entralized F1 values for high-arousal emotions (fear,anger, joy). Speakers: male (top), female (bottom)To 
hara
terize the vowels quality 
hanges under the in�uen
e of the dif-ferent speaker's emotional state, we estimated the mean of the 
entralized F1values for ea
h vowel individually. For this evaluation, we use all vowels whi
h
ontain a su�
ient amount of instan
es for low and high-arousal emotions.To spe
ify the vowel quality variation, we use the mean of the 
entralized
F1 value. The 
entralized F1 value shows the di�eren
e between the estimatedaverage F1 value on an emotional vowel segment, and the mean of the average
F1 value of the same vowel pronoun
ed in a neutral way. Figures 4.4 and 4.5display the mean of the 
entralized F1 values for the 12 vowels presented inthe EMO-DB database. Due to the sparse amount of instan
es, we do notestimate the mean of the 
entralized F1 values for the following list of vowels[2,u,Y,9,OY℄ with 
orresponding IPA symbols [2,u,Y,9,OY℄.As one 
an see from Figures 4.4 and 4.5, the most indi
ative vowels are [a,e, E, �, 6, aI, aU℄ with the 
orresponding IPA symbols [a, e E, @, 6, aI, aU℄. Nowwe want to �nd out if it is possible to build a reliable simple emotion 
lassi�erbased on the Neyman-Pearson 
riterion whi
h will use the average F1 valueas a parameter. This 
riterion is quite often used for speaker 
lassi�
ation,identi�
ation and authorization tasks [Roberts et al., 2005℄. The average F1value will be extra
ted within the alignment boundaries of the most indi
ativevowels.
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Figure 4.5: Mean of the 
entralized F1 values for low-arousal emotions (bore-dom, sadness) in 
omparison with neutral spee
h. Speakers: male (top), fe-male (bottom)We pointed out earlier that the random variable X de�ned in equation 4.3is approximately normally distributed. As a result, it 
an be represented by
N (x|µ, σ2). Now we shall 
ompute the normal distribution parameters forea
h indi
ative vowel pronoun
ed in a neutral speaking style. Due to the highvariability of speaker vo
al tra
t lengths for male and female voi
es we de
idedto 
al
ulate the pair of estimations (µ, σ) for ea
h gender individually. For
al
ulating the mean value estimations µ, we use two neutral spee
h senten
esper speaker for the EMO-DB dataset and one utteran
e per speaker withthe smallest absolute arousal value for the VAM dataset. These senten
eshave been removed from the test sets. For gender-dependent σ estimationsof seven of the most indi
ative vowels we use the Kiel 
orpus. It is 
learthat there is not enough material within two senten
es to 
al
ulate a reliablestandard deviation estimation. To solve this problem, instead of using speaker-dependent σ estimations we use gender-dependent (male,female) estimations
al
ulated on the Kiel 
orpus [Vlasenko et al., 2011a℄. The list of normaldistribution parameters for indi
ative vowels 
an be found in Table 4.5.For our evaluation we generate male and female (µ, σ) estimations pools.Mean and standard deviation values from these pools will be adopted for ea
hutteran
e a

ording to speaker's gender. This 
an be expressed as follows:
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ognition from spee
hVowel EMO-DB VAM KielID male
µ [Hz℄ female

µ [Hz℄ male
µ [Hz℄ female

µ [Hz℄ male
σ [Hz℄ female

σ [Hz℄a 644.1 749.4 658.8 769.8 62.0 119.4e 443.7 439.1 488.9 607.5 67.6 88.1E 440.8 439.2 579.2 623.0 66.1 111.1� 509.1 475.0 555.2 584.5 123.6 124.66 547.8 584.1 594.6 690.7 89.5 127.1aI 610.6 731.7 615.5 756.0 48.7 78.1aU 514.7 594.1 684.9 694.4 48.1 77.6Table 4.5: Estimations of the normal distribution parameters 
al
ulated onKiel, EMO-DB and VAM 
orpus material
µik = µig(k), σik = σig(k), where i is an index of an indi
ative vowel, k isan utteran
e index, g(k) is a fun
tion whi
h spe
i�es a speaker's gender ofutteran
e k.For 
lassi�
ation purposes we use the Neyman-Pearson 
riterion:

Λ(U) =
L(Θ0|U)
L(Θ1|U)

≤ η (4.5)In our 
ase, Θ0 is a hypothesis that all indi
ative vowels in
luded in ut-teran
e U are being pronoun
ed with high-arousal emotion, and Θ1 is a hy-pothesis that all vowels in
luded in utteran
e U are being pronoun
ed withneutral or low-arousal emotion.Now we estimate L(Θ0|U) and L(Θ1|U). The 
umulative distribution fun
-tion (CDF) for the random variable Xi whi
h 
orresponds to the average F1value of an indi
ative vowel i is de�ned by:
P (Xi ≤ x) = FXi

(x) =

∫ x

−∞

f(xi)dxi (4.6)Taking into a

ount that the random variableXi has a normal distribution,equation 4.6 
an be expressed as:
FXi

(x) =

∫ x

−∞

1

σ
√
2π
e
−

(x−µi)
2

2σi
2 dx =

1

2
(1 + erf

{

x− µi

σi
√
2

}

) (4.7)where erf is a Gauss error fun
tion:
erf {x} =

2√
π

∫ x

0

e−t2dt (4.8)Taking into a

ount equation 4.6, our 
onditional likelihoods L(Θ0|U) and
L(Θ1|U) 
an be expressed as:
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L(Θ0|Uk) =

∑

∀i :xij(k)∈Uk

FX(xig(k))

=
∑

∀i :xij(k)∈Uk

1

2

(

1 + erf

{

xij(k) − µig(k)

σig(k)
√
2

}) (4.9a)
L(Θ1|Uk) = Nk − L(Θ0|Uk) (4.9b)where i is an index of an indi
ative vowel, g(k) is a fun
tion whi
h spe
i�esa speaker's gender of the utteran
e k, k is an index of utteran
e, and Nk isthe number of indi
ative vowels in the utteran
e Uk.As a 
onsequen
e, the Neyman-Pearson 
riterion 
an be estimated as:

Λ(Uk) =
Nk

P (Θ1|Uk)
− 1 ≤ η (4.10)Equation 4.10 
an be used for estimation of Λ(Uk) during training andtest stages. During training we should estimate the optimal η value. Also,the 
riterion threshold η 
an be estimated with leave-one-speaker-out (LOSO)strategy or by using some a-priory value η = 1 (it is a 
ase when we simplysele
t the hypothesis with higher likelihood). Within the test stage all ut-teran
es Uk with Λ(Uk) ≤ η will be 
lassi�ed as utteran
es pronoun
ed inlow-arousal emotional or neutral state. In other 
ases they will be 
lassi�edas utteran
es arti
ulated by the speaker with a high-arousal emotional state.4.4.4 Combined analysisMost parts of emotion-
lassi�
ation te
hniques usually employ stati
 featureve
tors extra
ted on a turn or linguisti
ally 
ompleted sub-turn entities [Bat-liner et al., 2011℄. Dynami
 pro
essing on the short-term frame-level is a lesspopular te
hnique applied for the emotion re
ognition from spee
h [Polzin andWaibel, 1998℄, [S
huller et al., 2003℄. In [S
huller et al., 2003℄, [S
huller et al.,2009℄ the latter has also been shown superior to dynami
 modeling. Thisderives mostly from the fa
t, that by statisti
al fun
tional appli
ation to thelow-level des
riptors (LLD) an important information redu
tion takes pla
e,whi
h avoids phoneti
 (respe
tively spoken-
ontent) over-modeling. Yet, it isalso 
onsidered that thereby important temporal information is lost due to ahigh degree of abstra
tion [Vlasenko et al., 2007a℄. This led to the �rst su
-
essful attempts to integrate information on di�erent pro
essing levels [Murrayand Arnott, 1993℄, [Li and Zhao, 1998℄, [Jiang and Cai, 2004℄, [S
huller andRigoll, 2006℄.
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ognition from spee
hIn this se
tion we des
ribe two possible 
ombined spee
h-based emotion-
lassi�
ation te
hniques: two-stage pro
essing and middle-level fusion.Two-stage pro
essing: As the standard unit of emotional spee
h analysisa whole turn 
an be named [Polzin and Waibel, 1998℄, [Li and Zhao, 1998℄,[S
huller et al., 2003℄, [Jiang and Cai, 2004℄, [Batliner et al., 2006℄. Froman appli
ation point of view, this seems appropriate in most 
ases: a 
hangeof speaker's emotional state during a turn seems to o

ur seldom enoughfor many appli
ations. However, from a 
lassi�
ation point of view, it wasoften reported that sub-timing levels seem to be advantageous [Jiang and Cai,2004℄, [Murray and Arnott, 1993℄, [S
huller and Rigoll, 2006℄. Still, apart froma few attempts to re
ognize speaker's emotions within spee
h dynami
ally[Polzin and Waibel, 1998℄, [S
huller et al., 2003℄, 
urrent approa
hes usuallyemploy stati
 feature ve
tors derived on a utteran
e-, turn-, word-, or 
hunk-level [S
huller et al., 2007b℄. In [S
huller et al., 2003℄ su
h stati
 modeling hasalso been shown superior to dynami
 modeling. In this se
tion we thereforeinvestigate a two-stage approa
h to a
ousti
 modeling for the re
ognition ofemotion from spee
h: a �rst stage segments utteran
es into 
hunks whi
h areanalyzed in detail in a se
ond stage.The two-stage approa
h is implemented to provide a higher temporal res-olution by 
hunking of utteran
es a

ording to their a
ousti
 properties, andmulti-instan
e learning for the turn mapping after an individual 
hunk analy-sis. For the 
hunking fast pre-segmentation into emotionally quasi-stationarysegments the HMMs-/GMM-based one-pass Viterbi beam sear
h with tokenpassing is used. The 
hunk analysis is realized by brute-for
e large featurespa
e 
onstru
tion with subsequent subset sele
tion, support ve
tor ma
hines
lassi�
ation, and speaker normalization.For the �rst stage we use the 
hunk-level analysis des
ribed in se
tion4.4.3.2. We train the 
hunk-level emotion-re
ognition models in a speaker-independent manner with LOSO strategy (see se
tion 2.10.2) by using theBaum-Wel
h re-estimation algorithm presented in Chapter 3 and 50 Gaus-sian mixture 
omponents. Afterwards ea
h original utteran
e is 
hunked byappli
ation of the one-pass Viterbi beam sear
h as des
ribed. For the latterpro
essing, only the obtained 
hunk boundaries are used from this stage. Themotivation behind this pro
essing is to �nd an a
ousti
ally motivated sub-turnsplitting.For the se
ond stage we use the turn-level analysis des
ribed in se
tion4.4.2. In order to map the stati
 analysis results of ea
h 
hunk onto the turn-level, we 
onsider three strategies known from multi-instan
e learning for ea
h
hunk:
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hniques 97� an un-weighted majority vote (MV),� a maximum length vote (MLV),� a maximum 
lassi�er predi
tion s
ore multiplied with the length vote(MSL)Likewise, we 
omputed the majority label of ea
h turn based on the 
hunk-level. In the 
ase of a weighted vote, the length of the 
hunk in frames isused as a multipli
ative weighting fun
tion. In the MSL 
ase we also usethe 
lassi�er predi
tion s
ore for ea
h 
lass as additional weight. Note thatin the 
ase of an unweighted majority vote, turns may o

ur that 
annotbe uniquely assigned to an emotional 
lass. This happens, if two or moreemotional 
lasses, whi
h are the majority of 
lasses, have the same number of
hunks. This 
ase will be separately denoted in the ongoing. In the 
ase oftime-based weighting this 
ase 
an almost be ignored, as the majority of 
lasses� if there are several � will rarely have an equal number of frames [S
hulleret al., 2007℄. This is even more likely, if length and predi
tion s
ores are usedfor weighting (MSL). As a disadvantage it has to be mentioned that temporalinformation is thereby lost. Alternatively, the duration of ea
h 
hunk 
an beused as weight. Also, the time order of appearan
e of 
hunks is lost. However,we suppose that this information 
an be negle
ted under the pre
ondition of
onstant emotion throughout an utteran
e. Employing majority voting (MV)we 
an observe two 
ases: utteran
es that are 
learly assignable, and su
hthat have two or more emotions assigned due to a draw. In the se
ond 
ase,a further dis
rimination 
an be 
onsidered: utteran
es that have the 
orre
temotion among the majority 
lasses, and su
h that are simply in
orre
tlyassigned. Evaluation results of a two-stage spee
h-based emotion-
lassi�
ationte
hnique will be presented and dis
ussed in Chapter 5.Middle-level fusion: To re
eive higher 
lassi�
ation performan
e it is pos-sible to use independent 
lassi�
ation results for middle-level fusion. In most
ases, with this method we 
an obtain a 
omposite 
lassi�
ation performan
ewhi
h is higher than that of the individual 
lassi�ers. As presented in [Bat-liner et al., 2006℄, with ROVER framework [Fis
us, 1997℄, authors showed anabsolute improvement of up to 5.8 % of emotion-re
ognition a

ura
y on four
lass problems on AIBO [Batliner et al., 2008℄ dataset with respe
t to thebest independent site result. Within early fusion, when 
ombining a
ousti
features from all sites, authors a
hieved still a 2.1 % absolute improvement.So far the two individual approa
hes to emotion re
ognition based on in-formation pro
essing dire
tly on the frame level, or on a higher turn level, havebeen presented. In order to fuse these two approa
hes it seems bene�
ial tokeep utmost amounts of information for the �nal de
ision pro
ess. However,
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Figure 4.6: Pro
essing �ow for the middle-level fusion of frame- and turn-levelanalysisan early fusion (a
ousti
 features fusion) is not feasible, due to the di�er-ent a
ousti
 feature sets (frame-level vs. turn-level) [Vlasenko et al., 2007b℄.We therefore de
ided to in
lude the �nal HMM/GMM s
ores (logP (Ω|X))within the stati
 a
ousti
 feature ve
tor x, forming an argument ve
tor x′,and provide a middle-level fusion. The pro
ess of speaker normalization andfeature spa
e optimization is extended to the likewise obtained new featureve
tor x′. Overall feature sele
tion having the HMM/GMM s
ores within thespa
e reveals their high importan
e, as they are kept among high ranks. Fig-ure 4.6 depi
ts the overall pro
essing �ow from an input spee
h signal via thetwo streams to the �nal 
lassi�
ation result [Vlasenko et al., 2007a℄.



4.5. Context-dependent and 
ontext-independent models 994.5 Context-dependent and 
ontext-independent modelsUsually emotion re
ognition from spee
h uses spoken 
ontent independenta
ousti
 models. One general model per speaker's emotional state is trainedindependent of the phoneti
 stru
ture of a�e
tive spee
h samples. Given su�-
ient training samples, this approa
h provides a

eptable emotion-re
ognitionperforman
e on test material whi
h has similar phoneti
 
ontent [S
hulleret al., 2009℄. This se
tion tries to answer the question of whether emotionre
ognition from spee
h strongly depends on the 
ontent, and if models tai-lored for the spoken unit 
an lead to higher a

ura
ies [Vlasenko et al., 2008a℄.We therefore evaluate phoneme-, word-, utteran
e-models by use of a largeprosodi
, spe
tral, and voi
e quality feature spa
e, HMM/GMM models andSVM.Pra
ti
ally every approa
h to the emotion re
ognition from spee
h ig-nores the spoken 
ontent when it 
omes to a
ousti
 modeling (see [Polzinand Waibel, 1998℄, [Li and Zhao, 1998℄, [S
huller et al., 2003℄, [Jiang and Cai,2004℄, [Batliner et al., 2006℄). A general model is trained for ea
h speaker'semotional state, and applied on test-utteran
es whi
h have a similar pho-neti
 
ontent. While this is a 
ommon pra
ti
e, it seems surprising how wellthis works, espe
ially 
onsidering that many a
ousti
 features highly dependon phoneti
 stru
ture, su
h as spe
tral and 
epstral features whi
h have be-
ome very popular re
ently [Batliner et al., 2006℄. It is 
ommon to provide ahigh redu
tion of information: e.g., rather than using the original time-series,higher order statisti
s, su
h as means, deviations, extremes, et
., are used.Another possible solution is to use dynami
 modeling, e.g., by the HMM,of low-level des
riptors (MFCC, et
.) extra
ted on the frame-level [S
hulleret al., 2003℄, [Vlasenko et al., 2007a℄.We �rst investigate the in�uen
e of spoken 
ontent variation on the turn-level. We use dynami
 analysis (see se
tion 4.4.3) with utteran
e-level 
las-si�
ation. Test runs on EMODB and SUSAS datasets for utteran
e mod-els are 
arried out speaker independently by leave-one-speaker-out (LOSO)evaluation. Table 4.6 reports average among all speakers and all utteran
esa

ura
ies for three 
ases to address 
ontext-independent evaluation. A totalof 10 di�erent utteran
es are found in EMODB and 35 in SUSAS databases,respe
tively. We in
luded all utteran
es from training set for general modeltraining. In other 
ases we left out all samples with target or non-targetutteran
e from training set.From 4.6 it is 
lear that removal of target utteran
e from training setfundamentally redu
e a

ura
y of emotion re
ognition in 
omparison with re-
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ognition from spee
hWA EMO-DB SUSASGeneral model 77.1 46.0Non-target utteran
e left out 75.9 45.4Target utteran
e left out 72.7 44.2Table 4.6: Weighted average re
alls (WA) [%℄ for turn-level modeling onEMODB and SUSAS. Dynami
 analysis with utteran
e-level 
lassi�
ation,LOSO evaluationmoval non-target utteran
e. Random removal non-target utteran
es preservesthe 
ontext, whi
h results in the higher a

ura
y than removing the target ut-teran
e, whi
h makes the training data 
ontext-independent.Yet, the question is if phoneti
 
ontent varian
e in�uen
es emotion-re
ognition performan
e negatively, and if models trained spe
i�
ally on thephoneti
 unit at hand, 
an help. In this se
tion, we aim to shed light on thisquestion by training phoneme-, syllable-, and word-models for the emotionre
ognition in the following appli
ation. Unit-de�nite models require knowl-edge of the phoneti
 
ontent, opposing "blind" sub-turn entities, as introdu
edin (see [Murray and Arnott, 1993℄, [Polzin and Waibel, 1998℄, [Li and Zhao,1998℄, [Jiang and Cai, 2004℄, [S
huller and Rigoll, 2006℄).Likewise, re
ognition of the spoken 
ontent be
omes essential, in order to
hoose the 
orre
t unit-de�nite model. Fa
ing real-world 
ases, we do not re-port on trans
ribed 
ontent, as, e.g., in [Batliner et al., 2006℄, but do in
ludethe HMM-based state-of-the-art approa
h to ASR. The HMM of three emit-ting states and 16 Gaussian mixture 
omponents was built for ea
h phonemeemotion (PE) and phoneme-level of interest (PLOI) models. The HTK toolkitwas used to build these models, using standard te
hniques su
h as forward-ba
kward and Baum-Wel
h re-estimation algorithms [Young et al., 2009℄. Wealso use an automati
 spee
h-re
ognition (ASR) engine adapted with MLLRand regression 
lass tree on a�e
tive spee
h samples to re
ognize linguisti
units (senten
e, word) [Vlasenko et al., 2008a℄. We report results 
onsideringsuperiority of unit-de�nite models over general models, and 
ombine spee
hand emotion re
ognition in a real system.Next, word-de�nite emotion models have to be sele
ted for emotion re
og-nition. This may lead to a downgrade, if word insertions, deletions or sub-stitutions o

ur, provided the spoken 
ontent does in�uen
e emotion re
og-nition [Vlasenko et al., 2008a℄. Therefore, we test emotion re
ognition inmat
hed and mismat
hed word 
ondition (that is pi
king the 
orre
t or anyother word model at a time) in 
omparison to a general model trained on allwords. Note that for mismat
hed 
ondition one vs. one training and testingof ea
h word vs. ea
h other is ne
essary.



4.5. Context-dependent and 
ontext-independent models 101Model des
ription Conditions G1 G2 AllEMO-DB mat
hed 57.2 46.9 48.9mismat
hed 36.6 37.7 37.4SUSAS mat
hed 64.6 60.3 60.7mismat
hed 52.4 54.4 55.2AVIC mat
hed 79.7 57.8 60.9mismat
hed 49.2 51.3 50.1Table 4.7: Weighted average re
alls (WA) [%℄ at word level for word emotionmodels in mat
hed and mismat
hed 
ondition. Stati
 features, SVM, LOSO.Investigated are "worth-it" words (G1) and "non-worth-it" 
andidates (G2),as well as all (All) termsIn total 73 di�erent words are pronoun
ed in EMO-DB database[Burkhardt et al., 2005℄. From these we sele
t only those that have a minimumfrequen
y of o

urren
e of 3 within ea
h emotion (likewise having 50 plus in-stan
es per word) 
omprising a total of 41 words with roughly 200 instan
esper word. Then, we employ stati
 a
ousti
 features and SVM 
lassi�
ationfor word emotion models after sele
tion of a

ording words by ASR. Table 4.7visualizes the results re
eived by two groups of frequen
y of o

urren
e in the
orpus:Group 1 (G1) are high frequen
y of o

urren
e words. For the EMO-DBdataset these words (10 out of 41) are "abgeben (give away), am (on), auf (ontop of), besu
ht (visits), gehen (walk), i
h (I), sein (to be), si
h (oneself), sie(her), and sieben (seven)". For the AVIC dataset these words (7 out of 50)are "ah, but, is, it, mh, not, and you". For the SUSAS dataset this word (1out of 11) is "�fty".In 
ontrast, group 2 (G2) is "not worth it" due to low o

urren
e in thedataset. Likewise emotion unit-de�nite models for these words 
annot betrained su�
iently. Besides, results of emotion re
ognition for all words areshown (All). Our evaluations are realized in a speaker-independent (SI) man-ner using LOSO strategy (see se
tion 2.10.2). In the following, we sti
k towords as unit of analysis, whi
h allow for in
remental emotion re
ognition.First, mat
hed vs. mismat
hed 
onditions are examined: spoken 
ontent
learly does in�uen
e a

ura
y throughout word-model 
omparison in any
ase, as 
an be seen in Table 4.7. In fa
t, detailed analysis of 
omplete resultsshows that the length of words and phoneti
 distan
e are the main in�uen
ingfa
tors.Considering results of word-level analysis for a
ted and spontaneous emo-tion and spontaneous level of interest, we dis
overed notable di�eren
es be-tween mat
hed and mismat
hed 
ondition for words presented in group G1
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ognition from spee
hTraining size fa
tor 1% 2% 5% 10% 100%EMO-DB 43.1 44.7 49.1 51.7 55.5SUSAS 50.6 56.1 60.7 61.5 64.7AVIC 58.0 62.6 65.2 68.6 68.6Table 4.8: Weighted average re
alls (WA) [%℄ at word level for word emotionmodels for general models at diverse relative sizes of training 
orpora. Stati
features, SVM, LOSOand G2. As 
an be seen from Table 4.7, in mat
hed 
ases word-de�nite modelsfor words from the group G1 provide better performan
e in 
omparison withgeneral emotion models.As mis-sele
tion of word-de�nite emotion models would evidently signi�-
antly downgrade performan
e, we next address the question of how a generalmodel trained on the whole dataset would perform.We set this in relation to the amount of training data available for ea
hword-de�nite emotion model by the relative training size fa
tor by randomdown-sampling preserving emotion 
lass-balan
e, see Table 4.8A
ousti
 material for the ea
h word 
orrespond from 1.0% to 2.0% of
omplete a
ousti
 material presented in EMO-DB, SUSAS, AVIC datasets.It 
an be seen that for all databases a general model with that training sizefa
tor will perform between mat
hed and mismat
hed 
onditions for all words.With more training material available, the general model outperforms themat
hed 
ase pi
king "All" and approa
hes the "G1" mat
hed 
ase. Without"G1" sele
tion it seems preferable to use the general emotion model, simplyas more training data is available. With "G1" mat
hed 
ases a

ura
y ofemotion re
ognition with word-de�nite emotion models outperform generalmodels with a 100% training size fa
tor.However, the introdu
ed unit-spe
i�
 emotion-re
ognition models 
learlyoutperformed 
ommon general models provided su�
ient amount of trainingmaterial per unit. Appearan
e of word-level-labeled 
orporas 
an improve
urrent performan
e of phoneme- and word-level emotion and level of interestmodels. We found that emotional and level of interest a
tivity is distributedirregularly among words within a senten
e. For example in AVIC dataset,a

ura
y of level of interest re
ognition for the words "ah, but, is, it, mh, not,you" by word depended models ex
eeds a

ura
y of level of interest dete
tionby general models. More details about this dataset 
an be found in se
tion2.6.2.7 on page 28. This is not the 
ase for other evaluated datasets.



4.6. Summary 1034.6 SummaryThis 
hapter reviews existing spee
h-based emotion-re
ognition methods andprovides a des
ription of our developed emotion-re
ognition approa
hes. A va-riety of emotion des
riptors is dis
ussed �rst. Two di�erent types of emotionalspee
h analyses are applied for spee
h-based emotion re
ognition: frame-level and turn-level, are then presented. First of all we des
ribed the setof a
ousti
 features whi
h 
an be applied for di�erent emotion-
lassi�
ationte
hniques. Two di�erent optimization te
hniques applied on feature extra
-tion level, namely normalization and standardization and feature set optimiza-tion have been presented afterwards. Stati
 analysis applied for spee
h-basedemotion-
lassi�
ation developed by our partners from TUM has been pre-sented �rst. Then we introdu
ed utteran
e-, 
hunk-, phoneme-level dynami
analysis models for the re
ognition of emotions within spee
h. During de-s
ription of utteran
e-level dynami
 analysis we determined the optimal HM-M/GMM ar
hite
ture. As a result within our evaluations of utteran
e-, 
hunk-level dynami
 analysis we will use the single-state HMM/GMM ar
hite
-ture for emotion-
lassi�
ation models. Two di�erent phoneme-level emotion-
lassi�
ation methods are des
ribed. The �rst is emotional phoneme 
lasses.It provides 
ontext-dependent emotion 
lassi�
ation and 
an be easily 
om-bined with automati
 spee
h re
ognition for a user-behavior-adaptive spokendialog system. Results of emotional phoneme 
lasses evaluations 
an be foundin Chapter 5. Also a prototype spoken dialog system with a user-behavior-adaptive spoken dialog system 
reated within NIMITEK, whi
h in
ludes thiste
hnique will be dis
ussed in Chapter 6. The se
ond is vowel-level formantstra
king. This method is our new te
hnique, whi
h showed appli
able resultsof emotion re
ognition based on an extremely small a
ousti
 feature set.Within this 
hapter, we des
ribed two possible information integrationte
hniques whi
h use di�erent pro
essing levels. The �rst is a two-stage pro-
essing approa
h whi
h is used to provide higher temporal resolution by 
hunk-ing of utteran
es a

ording to a
ousti
 properties, and multi-instan
e learningfor turn mapping after individual 
hunk analysis. The se
ond is middle-levelfusion. Within this method we integrate important information on tempo-ral sub-layers as the frame-level within turn-level feature spa
e. Finally, this
hapter addresses the question on whi
h phoneti
al level there is the onsetof emotions and level of interest. We therefore 
ompare phoneme-, word-and senten
e-level analysis for emotional senten
e 
lassi�
ation by use of alarge prosodi
, spe
tral, and voi
e quality feature spa
e for SVM and MFCCfor HMM/GMM. Results of evaluations of our stati
 and dynami
 emotion
lassi�ers will be presented in Chapter 5.
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5.1 Introdu
tionIn this 
hapter we present results of experiments 
on
erning our emotion-re
ognition and automati
 spee
h-re
ognition methods. All experimentswere 
ondu
ted on The Kiel Corpus of Read Spee
h [KIE, 2002℄ and on thea�e
tive spee
h datasets presented in Table 2.3 on page 24. Building of thea
ousti
 models and spee
h-re
ognition evaluation setup for neutral and a�e
-tive spee
h samples, and adaptation on a�e
tive spee
h samples for a
ousti
models trained on neutral spee
h samples are presented in se
tion 5.2. Se
-tion 5.3 dis
usses evaluation results of various emotion-
lassi�
ation methodspresented earlier in Chapter 4. Then, we present our results within INTER-SPEECH 2009 Emotion Challenge [S
huller et al., 2009
℄ and 
ross-
orpusa
ousti
 emotion re
ognition.5.2 Evaluation of our ASR methodsThis se
tion presents the development of experiments on the German spee
hre
ognition with HMM/GMM models. All HMM/GMM models presented inthis se
tion are 
onstru
ted as 18 Gaussian mixture 
omponents per state.ASR models presented in this se
tion are evaluated with the bigram languagemodel and a grammar s
ale fa
tor s = 5. A larger number of the Gaussianmixture 
omponents and a higher grammar s
ale fa
tor 
ould improve perfor-man
e of a de�ned themati
 domain (system known �xed textual 
ontent ofthe evaluated database) � oriented automati
 spee
h re
ognition.
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ognition experimentsThe main issue of this se
tion is to show that training ASR models onneutral spee
h, and subsequent adaptation on a�e
tive spee
h samples, doeshave an impa
t on the re
ognition performan
e within emotional spee
h re
og-nition. Two di�erent HMM/GMM models sets are presented and evaluated.First, we des
ribe our non-adapted HMM/GMM models, trained indepen-dently on neutral spee
h samples and a�e
tive spee
h samples. Afterwards,we des
ribe our a�e
tive-spee
h-adapted ASR models and present evaluationresults on the EMO-DB database.5.2.1 CorporaAs an emotionally neutral spee
h 
orpus we used part of The Kiel Corpus ofRead Spee
h (PHONDAT90 and PHONDAT92: Kiel-CD #1, 1994) [KIE,2002℄. The Kiel Corpus is a growing 
olle
tion of read and spontaneousGerman spee
h whi
h has been 
olle
ted and labeled segmentally sin
e 1990.For our ASR engine evaluation we used spee
h samples from 12 female (1801utteran
e in all) and 13 male (2000 utteran
e in all) speakers. The list ofspeakers is k01,...,k12, k61 (also de�ned as kko), k62 (also de�ned as rtd),k63,...,k70, dlm, hpt, uga. Within spee
h re
ording sessions a Neumann U87
ondenser mi
rophone (
ardioid settings) was pla
ed approximately 30 
mfrom the speaker's mouth. The mi
rophone signals were ampli�ed by a JohnHardy M1 pre-ampli�er and re
orded on a SONY PCM 2500 DAT-re
order ata sampling rate of 44.1 kHz for PHONDAT90 and of 48 kHz for PHONDAT92,respe
tively, with 16 bit quantization. Afterwards, 
olle
ted spee
h sampleswere then digitally transferred to a 
omputer hard disk and downsampled to16 kHz as well as high-pass �ltered at 40 Hz.For a�e
tive spee
h 
orpora we de
ided to use the popular studio re
ordedBerlin Emotional Spee
h Database (EMO-DB) [Burkhardt et al., 2005℄.Spee
h material re
ordings took pla
e in the ane
hoi
 
hamber of the Te
h-ni
al University Berlin, Te
hni
al A
ousti
s Department using a SennheiserMKH 40 P 48 mi
rophone and a Tas
am DA-P1 portable DAT re
order.Re
ordings were taken with a sampling frequen
y of 48 kHz and later down-sampled to 16 kHz. The mi
rophone was pla
ed approximately 30 
m fromthe speaker's mouth. 10 professional a
tors (5 male and 5 female) spoke 10German emotionally unde�ned senten
es. One of these senten
es is "b03: Anden Wo
henenden bin i
h jetzt immer na
h Hause gefahren und habe Agnesbesu
ht. (At the weekends I have always gone home now and seen Agnes.)".To provide reliable measures twenty evaluators took part in a per
eption-test.Ea
h "rater" heard all of the utteran
es in a random order. They were allowedto listen to ea
h utteran
e only on
e before the per
eption-test evaluator hadto de
ide in whi
h emotional state the speaker had been and how natural the



5.2. Evaluation of our ASR methods 107performan
e was. During per
eption test raters provided rates of naturalnessand re
ognizability for ea
h performan
e. An average rates of naturalness andre
ognizability have been in
luded in dataset material. In total we used 494utteran
es: 416 a�e
tive spee
h samples and 78 neutral spee
h samples. Ea
hof these utteran
es has a level of naturalness not less than 60% and a level ofre
ognizability not less than 80%.5.2.2 Evaluation of non-adapted ASR modelsIn our ASR models, only diagonal 
ovarian
e GMM matrix systems are 
on-sidered where the features in ea
h feature ve
tor are assumed un
orrelated.The monophone set 
onsists of 39 HMMs in
luding silen
e and short pause(sp). Within our ASR evaluations we use a standard 39-dimensional featureve
tor whi
h in
ludes 12 MFCC 
oe�
ients, zero-order Cepstral 
oe�
ients,and their delta and a

eleration 
oe�
ients.The parameters of the models are re-estimated in 2 
onse
utive runs of theBaum-Wel
h algorithm (see se
tion 3.2.6) using the monophone trans
riptionof the training data. To handle impulsive noises in the training spee
h samples,additional transitions are added from state se
ond to forth and from stateforth to se
ond in the silen
e HMM model. The ba
kward transition providesa te
hnique to assimilate impulsive noises without exiting the silen
e model.Besides, in order to deal with 
ontinuous spee
h, a one state short pause (sp)model was 
reated whose emitting state is tied to the third state (
entralemitting state) of the silen
e model. This short pause model has a dire
ttransition from entry to exit state. Then two more iterations of the Baum-Wel
h algorithm are run.Finally, we 
onvert the single-Gaussian 
omponent models to 18 mixturesGaussian 
omponent models. After ea
h mixture 
omponent in
rement, theresulting HMM models are re-estimated with 4 
onse
utive iterations of theBaum-Wel
h algorithm. During training of our HMM parameters we addedone mixture per 4 
onse
utive runs of the Baum-Wel
h algorithm. For lan-guage modeling we used a bigram language model trained on trans
riptionsof the 
omplete training set.Test-runs on EMO-DB, Kiel for non-adapted ASR models are 
arried outin leave-one-speaker-out (LOSO) manner to address speaker independen
e(SI), as required by most appli
ations. For ea
h speaker presented in EMO-DBor Kiel we trained a speaker-independent ASR system based on spee
h samplesfrom other speakers presented in the 
orresponding database. As a result wetrained 10 ASR HMM/GMM models for the EMO-DB database and 25 ASRHMM/GMM models for the Kiel database. Within our evaluations on non-adopted models we also used 
epstral mean subtra
tion (CMS), whi
h is the
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ognition experimentsSpeaker With CMS Without CMSID [%℄ A

 Corr A

 Corrk01 96.15 96.15 96.72 96.92k02 92.37 93.32 92.75 93.32. . . . . . . . . . . . . . .k08 99.00 99.40 98.60 99.20. . . . . . . . . . . . . . .k61 87.93 90.13 87.78 89.82k62 87.72 89.86 87.56 89.78. . . . . . . . . . . . . . .dlm 79.29 81.02 78.73 80.69hpt 85.38 86.60 85.00 86.41uga 91.85 93.02 91.61 92.83Total 90.20 91.58 90.04 91.47Table 5.1: Re
ognition rates [%℄ for non-adapted ASR HMM/GMM modelstrained and evaluated on the Kiel database with LOSOsimple method applied for the 
ompensation of the long-term spe
tral e�e
tssu
h as those indu
ed by di�erent mi
rophones and audio 
hannels [Younget al., 2009℄.Re
ognition rates of the HMM/GMM models trained on the Kiel datasetand evaluated with the bigram language model 
an be found in Table 5.1.In general, it 
an be seen that the performan
e of German a�e
tive spee
hre
ognition for speaker-independent models are substantially di�erent. Forexample, we obtained the spee
h-re
ognition a

ura
y rate for speaker k08 upto Acc = 98.6% (a
ousti
 features without CMS) at the same time the a

u-ra
y rate for speaker dlm was only Acc = 78.73% (a
ousti
 features withoutCMS). Su
h a high performan
e variation 
an be explained by low-level tex-tual 
ontent annotation in the Kiel dataset. Some speakers do not pronoun
ethe 
orresponding prompted text within re
ordings, also paralinguisti
 events(like breathing and et
.) have not been trans
ribed. However, we will use Kieldatasets for training our basi
 ASR models for German emotionally neutralspee
h.Re
ognition rates of the HMM/GMM models trained on spee
h samplesfrom the EMO-DB dataset and evaluated with bigram language model 
an befound in Table 5.2. In general, it 
an be seen that the performan
e of Germana�e
tive spee
h re
ognition for speaker-independent models are 
omparable.Only for speaker 10 we obtained a 
omparable low a�e
tive-spee
h-re
ognitiona

ura
y rate Acc = 83.55% (a
ousti
 features without CMS). Su
h 
ompara-ble low performan
e 
an be explained by very spe
i�
 vo
al tra
t 
hara
teris-ti
s of speaker 10 and a high-level of intensity of the simulated emotions.Re
ognition rates of the ASR models trained on the Kiel database and eval-



5.2. Evaluation of our ASR methods 109Speaker With CMS Without CMSID [%℄ A

 Corr A

 Corr03 98.09 98.09 98.33 98.3308 98.14 98.52 98.70 99.0709 97.12 97.12 96.07 96.6010 84.84 86.77 83.55 86.4511 97.43 97.82 97.03 97.6212 97.23 97.63 96.84 97.2313 98.11 98.11 98.11 98.1114 98.62 99.23 98.31 98.9215 97.44 97.44 97.44 97.4416 95.49 95.80 95.33 95.80Total 96.70 97.06 96.49 96.99Table 5.2: Re
ognition rates [%℄ for non-adapted ASR HMM/GMM modelstrained and evaluated on the EMO-DB database with LOSODatabase With CMS Without CMS[%℄ A

 Corr A

 CorrKiel 85.99 86.97 87.37 88.27Table 5.3: Re
ognition rates [%℄ for non-adapted ASR HMM/GMM modelstrained on the Kiel database, evaluated on the EMO-DB databaseuated with bigram language model on the EMO-DB database 
an be found inTable 5.3. As one 
an see from Table 5.3, HMM/GMM models trained on the
omplete Kiel dataset without 
epstral mean subtra
tion (CMS) provides thebest German spee
h-re
ognition rates within 
ross-
orpora ASR evaluation.As a result we de
ided to use HMM/GMM models trained on a
ousti
 fea-tures extra
ted from the Kiel dataset without CMS. In the next se
tion we willdes
ribe a�e
tive-spee
h-adaptation te
hniques whi
h have been applied forthese ASR models, referred to as basi
 ASR models for German emotionallyneutral spee
h.5.2.3 Evaluation of a�e
tive-spee
h-adapted ASRmodelsAs one 
an see from Table 5.3, HMM/GMM models trained on neutral spee
hsamples from the Kiel database 
ould not provide su�
ient re
ognition perfor-man
e on a�e
tive spee
h material from the EMO-DB database. Therefore,in order to obtain robust a
ousti
 models that 
an perform well with a�e
tivespee
h, we adapted the speaker-independent HMM/GMM models trained onnatural spee
h data from the Kiel dataset. Various adaptation te
hniques have
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ognition experimentsSpeaker GBC 3 base 
lasses RCTID [%℄ A

 Corr A

 Corr A

 Corr03 94.02 94.50 94.02 94.26 95.22 95.2208 83.67 84.23 82.93 83.30 85.71 86.0909 81.15 83.25 83.77 85.86 81.94 84.2910 82.26 82.90 82.26 83.87 83.23 83.8711 90.50 90.89 89.70 90.10 90.89 91.2912 90.12 90.51 89.72 90.12 93.68 93.6813 92.28 92.45 91.94 92.28 92.97 92.9714 90.00 90.92 89.69 90.77 90.62 91.6915 93.29 93.49 93.89 94.08 94.08 94.2816 73.87 74.34 73.56 74.34 73.72 74.34Total 86.95 87.56 86.91 87.62 87.87 88.43Table 5.4: ASR re
ognition rates [%℄ for HMM/GMM models trained on theKiel database, MLLR adapted on EMO-DB neutral spee
h samples, evaluatedon the EMO-DB database with LOSObeen used for this purpose: Maximum Likelihood Linear Regression (MLLR)(see se
tion 3.2.9.2) with global base 
lass (GBC) presented in listing 3.2 onpage 65, 3 base 
lasses (silen
e with short pause, vowels and 
onsonants inthree di�erent base 
lasses) presented in listing 3.3 on page 65 and regression
lass tree (RCT), Maximum a Posteriori (MAP) (see se
tion 3.2.9.1) and 
om-bined MLLR(RCT)+MAP. For the MLLR, optimal performan
e was obtainedwith 39 regression 
lasses where only means are transformed. For the MAP,optimal performan
e was obtained with τ = 10 whi
h is the MAP parameterwhi
h 
ontrols the impa
t of the MAP prior, see equation 3.47 on page 63.First, we used for adaptation only neutral spee
h samples from the EMO-DB database for a
ousti
 
hannel adaptation. We applied the MLLR adap-tation te
hnique with global base 
lass (GBC), three base 
lasses and theregression 
lass tree (RCT).Re
ognition rates of the basi
 ASR models adapted with MLLR on neutralspee
h samples and evaluated with bigram language model 
an be found inTable 5.4. As one 
an see from Table 5.4, adaptation on neutral spee
h samplesfrom EMO-DB does have an insu�
ient impa
t on the re
ognition of thea�e
tive spee
h samples from the same database (re
orded within the samea
ousti
 
hannel). This has been found to yield a slight gain (about 0.5%) overthe basi
 ASR models (a

ura
y 87.37%) trained on neutral spee
h samplesfrom the Kiel database.Se
ondly, we used for adaptation a�e
tive samples from the EMO-DBdatabase. We applied LOSO strategy and the MLLR adaptation te
hnique forbasi
 ASR models trained on neutral spee
h samples from the Kiel database.Re
ognition rates of the basi
 ASR models adapted with MLLR on a�e
-



5.2. Evaluation of our ASR methods 111Speaker GBC 3 base 
lasses RCTID [%℄ A

 Corr A

 Corr A

 Corr03 94.50 94.74 94.74 94.74 96.41 96.4108 87.38 88.13 87.57 87.94 94.25 94.2509 87.43 88.74 87.96 89.01 93.19 93.9810 85.16 85.81 85.16 85.81 87.10 87.7411 90.89 91.29 91.09 91.49 94.85 95.2512 94.07 94.07 94.07 94.07 96.44 96.4413 95.20 95.37 94.17 94.17 98.63 98.6314 90.31 90.92 90.00 90.92 95.69 96.0015 94.67 94.67 94.28 94.28 95.86 95.8616 82.12 82.43 82.58 83.83 91.29 91.91Total 90.00 90.44 89.96 90.46 94.57 94.84Table 5.5: ASR re
ognition rates [%℄ for HMM/GMM models trained on theKiel database, MLLR adapted on EMO-DB a�e
tive spee
h samples, evaluatedon the EMO-DB database with LOSOtive spee
h samples and evaluated with the bigram language model 
an befound in Table 5.5. As one 
an see from Table 5.5 adaptation on the a�e
tivespee
h from EMO-DB does have a su�
ient impa
t on the re
ognition of thea�e
tive spee
h samples. In 
ontrast to the ASR models trained on the neu-tral spee
h samples from the Kiel database the a

ura
y of a�e
tive spee
hre
ognition with the MLLR (RCT) adapted HMM/GMM models was about
7.2% absolute better than that of the basi
 ASR models (a

ura
y 87.37%).It is well-known that MLLR and MAP 
an be e�e
tively 
ombined to im-Speaker MAP MLLR+MAPID neutral spee
h a�e
tive spee
h a�e
tive spee
h[%℄ A

 Corr A

 Corr A

 Corr03 94.02 94.26 95.93 95.93 96.89 96.8908 84.97 85.71 91.28 91.47 96.85 96.8509 82.98 85.08 91.36 91.88 96.60 96.8610 83.23 83.55 83.87 84.52 85.16 86.7711 92.08 92.08 94.46 94.65 95.64 95.8412 92.89 93.28 96.05 96.05 96.84 96.8413 94.00 94.17 96.74 96.74 98.63 98.6314 88.62 89.69 93.54 94.46 98.00 98.6215 94.48 94.67 95.27 95.27 96.25 96.2516 76.36 77.14 87.87 88.65 96.73 96.89Total 88.10 88.71 92.73 93.09 96.24 96.49Table 5.6: ASR re
ognition rates [%℄ for HMM/GMM models trained on theKiel database, MAP or MLLR(RCT)+MAP adapted on EMO-DB a�e
tivespee
h samples, evaluated on the EMO-DB database with LOSO



112 Chapter 5. Re
ognition experimentsprove spee
h-re
ognition performan
e [Wong and Mak, 2000℄ by using MLLRtransformed mean values as the priors for the MAP adaptation method. Asa result we de
ided to use 
ombined MLLR with regression 
lass tree and theMAP method for adaptation on a�e
tive spee
h material.Re
ognition rates of the basi
 ASR models adapted with MAP or 
ombinedMLLR(RCT)+MAP on a�e
tive spee
h samples from EMO-DB database andevaluated with bigram language model 
an be found in Table 5.6. As one
an see from Table 5.6 the a

ura
y of a�e
tive spee
h re
ognition with the
ombined MLLR(RCT)+MAP adapted HMM/GMM models was about 8.9%absolute better than that of the basi
 ASR models (a

ura
y 87.37%).For our ASR engine integrated into the NIMITEK demonstrator we usedthe HMM/GMM models trained on the Kiel database material and adaptedwith MLLR(RCT) on a�e
tive spee
h samples from the EMO-DB database.Also, for phoneme-level emotion re
ognition we use ASR models adapted withMLLR(RCT). Our �rst results of a�e
tive-spee
h-re
ognition evaluations withASR models adapted on emotional spee
h data 
an be found in [Vlasenko andWendemuth, 2009b℄.5.3 Emotion-re
ognition methods evaluationThis se
tion presents the development of experiments on emotion re
ognitionfrom spee
h. We present experiments on all emotion-
lassi�
ation methodspresented earlier in Chapter 4. Spee
h-based emotion re
ognition is a 
om-parably new resear
h �eld. In 
omparison with a
ousti
 segments (words,phonemes) used as unit of analysis for automati
 spee
h re
ognition, emo-tional 
lasses used for spee
h-based emotion 
lassi�
ation do not have so highdis
riminative 
hara
teristi
s. Providing "ground truth" measures for emo-tional 
ontent annotation (espe
ially for spontaneous emotions) is a way more
omplex task in 
omparison to the reliable textual trans
ription of ASR spee
h
orpora. Hen
e, in some 
ases of multi-
lass emotion 
lassi�
ation we obtainedresults whi
h are just slightly higher than 
lassi�
ation by 
han
e.5.3.1 Phoneme-level 
lassi�
ationIn this se
tion we des
ribe the evaluation results for two di�erent meth-ods whi
h 
an be used for phoneme-level emotion 
lassi�
ation: emotionalphoneme 
lasses and vowel-level formants tra
king.



5.3. Emotion-re
ognition methods evaluation 1135.3.1.1 Emotional phoneme 
lassesFirst, we used ASR models adapted on a�e
tive spee
h samples withMLLR(RCT) to re
ognize a unit (senten
e, word). Se
ondly, we generatedall possible emotional or level of interest phoneti
 trans
riptions for the re
-ognized senten
e or words by using the 
orresponding phoneme set (PE orPLOI), more details 
an be found in se
tion 4.4.3.3. In the 
ase of EMO-DBwe 
onsidered 7 phoneme emotion models (PE) trans
riptions, 5 phonemeemotion models (PE) trans
ription for SUSAS and 3 phoneme level of inter-est (PLOI) trans
riptions for AVIC. Emotional phoneme or level of interestmodels whi
h provide the highest re
ognition s
ore are 
hosen.Test-runs on EMO-DB, SUSAS and AVIC for phoneme-level models are
arried out in leave-one-speaker-out (LOSO) manner to address speaker in-dependen
e (SI), as required by most appli
ations. Re
ognition rates of theemotional phoneme models evaluated with the bigram language model 
an befound in Table 5.7.
lassi�
ation unit EMO-DB SUSAS AVICword 51.0 49.5 45.8senten
e 66.2 49.5 54.1Table 5.7: Weighted average re
alls (WA) [%℄ of emotion and level of interestre
ognition on senten
e-, word-level applying phoneme-level analysis, MFCC,HMM/GMM, LOSO. Databases EMO-DB, SUSAS, AVICIn the 
ase of the SUSAS dataset we have just one word per senten
e.Detailed results from EMO-DB and AVIC evaluations show that some wordswithin a senten
e are 
lassi�ed wrong when the whole senten
e is 
lassi�edright. This means that emotional and level of interest a
tivity is distributedirregularly among words inside a senten
e. As a result phonemes whi
h belongto the di�erent words within a senten
e have diverse emotions and levels ofinterest a
tivity.In Table 5.8 results are shown for emotion re
ognition on a word-, andphoneme-level in diverse 
onstellations. Zero-gram for word-level analysisLanguage model WAword-level zero-gram 32.1phoneme-level bigram 38.8Table 5.8: Weighted average re
alls (WA) [%℄ of emotion re
ognition onword-, and phoneme-level applying phoneme emotion models, dynami
 fea-tures, HMM, LOSO. Evaluated on the EMO-DB database



114 Chapter 5. Re
ognition experimentsshows many insertions, hen
e low a

ura
y. Bi-gram LM 
an balan
e theinsertions by grammar s
ale fa
tor, hen
e higher a

ura
y. This is also thereason why phoneme-level a

ura
y is only reported with the bi-gram languagemodel: zero-gram leads here to too-high insertion rates.5.3.1.2 Vowel-level formants tra
kingFor a�e
tive spee
h we de
ided to use the popular studio re
orded BerlinEmotional Spee
h Database (EMO-DB) [Burkhardt et al., 2005℄ and TheVera am Mittag (VAM) 
orpus [Grimm et al., 2008℄. The EMO-DB 
ontainsa
ted emotional spee
h samples. 10 professional a
tors (5 male and 5 female)spoke 10 German emotionally unde�ned senten
es. Within our evaluation weused only 20 neutral utteran
es for training (2 utteran
es per speaker). TheEMO-DB test set in
luded neutral (rest 58 utteran
es), low-arousal emotions(boredom (79), sadness (53)) and high-arousal emotions (anger (127), fear(55) and joy (64)). In total we used 456 utteran
es. Ea
h of these utteran
eshas a level of naturalness not less than 60% and a level of re
ognizability notless than 80%, as indi
ated by the raters.The VAM database 
onsists of 12 hours of audio-visual re
ordings takenfrom a German TV talk show. The 
orpus 
ontains 947 utteran
es withspontaneous emotions from 47 guests of the talk show whi
h were re
ordedfrom uns
ripted, authenti
 dis
ussions. A large number of human labelers wereused for annotation (17 labelers for one half of the data, six for the other). Thelabeling is based on a dis
rete �ve-point s
ale for three dimensions (valen
e,arousal, dominan
e) mapped onto the interval of [-1,1℄. For our evaluationswe use only arousal measures re
eived with an evaluator weighted estimator.For training we sele
ted one utteran
e per speaker with smallest absolutearousal value (19 negative and 28 positive arousal emotional utteran
es at all).The VAM test set in
luded 483 negative and 417 positive arousal emotionalutteran
es.In order to exe
ute a vowel-level analysis a phoneme-level ASR trans
rip-tion is needed, whi
h requires a 
orresponding lexi
on 
ontaining phoneti
trans
ription of words presented in a 
orpus. Unfortunately, the VAM 
or-pus does not provide su
h a lexi
on, so we 
reated it by ourselves using a
ombined approa
h. The major part of the word trans
riptions (1216 items)was taken from other German 
orpora, namely Verbmobil [Hess et al., 1995℄and SmartKom [S
hiel et al., 2002℄. For the rest (688 words) we 
reatedtrans
riptions using grapheme-to-phoneme 
onversion with a Sequitur G2P
onverter [Bisani and Ney, 2008℄. The 
onverter was trained on a joined lexi-
on based on SmartKom and Verbmobil lexi
ons (12460 German words at all).Prior to applying the G2P software to the missing VAM lexi
on, we tested it



5.3. Emotion-re
ognition methods evaluation 115on the 
onstru
ted united lexi
on, where 1% of randomly sele
ted words weremoved into the test set. The phoneme error rate was 5.33% (56 from 1050),the word error rate was 29.13% (37 from 127). In later experiments (for
ealignment for vowel boundaries extra
tion) the quality of the vowel bound-aries spe
i�
ation 
annot be expe
ted to be absolutely reliable be
ause of theword error rate (WER) about 29.13% whi
h is intrinsi
ally due to the tran-s
ription pro
ess. We de
ided to use this ina

urate method, be
ause furthertrans
ription improvement required professional phoneti
ian expert to reliabletrans
ription and additional development expenses. In addition, we use theSequitur G2P 
onverter only for one-third of words presented in required lex-i
on, another two-third words trans
ription have been adopted from availablelexi
ons.As evaluation measures we employ the weighted (WA, i.e. a

ura
y) andunweighted (UA) average of 
lass-wise re
all rates. For estimation of the
η values, whi
h is only one parameter of our 
lassi�er, we applied a leave-one-speaker-out (LOSO) strategy. We used two di�erent optimization 
rite-ria: maximum unweighted and maximum weighted average re
all. For ea
hspeaker we estimated the optimal η values based on utteran
es from otherspeakers presented in the 
orresponding database.In Figure 5.1 and Figure 5.2 one 
an see the UA and WA rates of our two

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
45%50%55%60%65%70%75%80%

ηweighted average re
all unweighted average re
allFigure 5.1: Re
ognition rates of the two-
lass emotion 
lassi�er. Bla
k - EMO-DB, gray - VAM
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0%20%40%60%80%100%

ηfalse a

eptan
e false reje
tionFigure 5.2: Re
eiver operating 
hara
teristi
s 
urve, for high-arousal emotiondete
tion task. Bla
k - EMO-DB, gray - VAM
lass emotion 
lassi�er and re
eiver operating 
hara
teristi
s (ROC) whi
hrepresent the false a

eptan
e (FA) and false reje
tions (FR) rates for thehigh-level arousal emotions dete
tion task as a fun
tion of η.In Table 5.9 one 
an see performan
es of the two 
lass emotion 
lassi�er for
η = 1 and η values estimated within LOSO (with UA and WA as optimization
riteria).With LOSO strategy and UA optimization 
riteria we found the optimal ηvalue for ea
h speaker; these values are in range 1.01 ≤ η ≤ 1.23 (EMO-DB)and 1.37 ≤ η ≤ 1.63 (VAM). In the 
ase of WA optimization 
riteria optimal
η values are follows: 0.62 ≤ η ≤ 1.01 (EMO-DB) and η = 1.63 (VAM).By using gender-dependent models instead of speaker-dependent modelsEMO-DB VAMUA WA FA FR UA WA FA FRUA 81.3 80.6 13.1 24.2 60.2 61.8 18.7 60.8WA 79.4 79.3 19.5 21.7 61.4 63.0 16.4 60.8

η = 1 81.8 81.3 14.2 22.1 58.7 58.2 48.9 33.7Table 5.9: Re
ognition rates [%℄ of vowel-level emotion 
lassi�er with di�erentoptimization strategies (UA,WA, η = 1) evaluated on EMO-DB and VAM
orpora



5.3. Emotion-re
ognition methods evaluation 117we 
an provide a statisti
ally su�
ient number of instan
es for the 
al
ulationof µig(k) estimations. Due to more a

urate mean values estimations we im-prove our results presented in [Vlasenko et al., 2011a℄, [Vlasenko et al., 2011b℄.The presented results 
an be 
ompared with the results presented in [S
hulleret al., 2009℄. In this arti
le, we presented ben
hmark evaluation results fortwo-
lass emotion-re
ognition task (positive/negative arousal) with a HM-M/GMM general model des
ribed in detail in se
tion 4.4.3.1. We rea
hed UArates of up to 91.5% for EMO-DB and 76.5% for VAM. In our 
urrent resear
h,instead of using 39 MFCC we used only one average F1 value. In 
ontrastto HMM/GMM we used a straightforward Neyman-Pearson 
riterion. In the
ase of a priory de�ned η our 
lassi�er does not require any a�e
tive spee
hsamples for training. Within pra
ti
al appli
ation of our simple method the
η value 
an be sele
ted based on task-oriented balan
e between FA and FRrates, see Figure 5.2.These results 
an be also 
ompared with the results presented earlier in ourpaper [S
huller et al., 2008℄. In this paper, we rea
hed an emotion-re
ognitiona

ura
y rate on EMO-DB database with phoneme-level analysis (see se
tion4.4.3.3) of up to 66.2%. Instead of using 41 phonemes for emotion re
ognition,we used only 7 indi
ative vowels. In the 
urrent approa
h we used only oneGaussian for ea
h phoneme model instead of 3 × 32 = 96 Gaussians usedin [S
huller et al., 2008℄. Also our results 
an be improved by using more thantwo neutral utteran
es for the estimation of the mean values. Starting fromour simple 
lassi�er, we 
an develop a more 
omplex 
lassi�
ation te
hniqueand provide better results.We showed that the average F1 values extra
ted on a vowel-level arestrongly 
orrelated with the speaker's level of arousal. We estimated theoptimal 
riteria thresholds for a
ted and spontaneous emotions. It has beenshown that spontaneous emotions required higher η values. Most of the state-of-the-art emotion re
ognizers required su�
ient amount of a�e
tive spee
hsamples within the training phase. In the 
ase of a priory de�ned η (for ex-ample η = 1) value within the training phase we require only one or twoneutral (or 
lose to "neutral" for VAM dataset) speaking style samples. As aresult our method 
an be easily implemented for speaker-independent emotion
lassi�
ation.5.3.2 Utteran
e-level emotion 
lassi�
ation withdynami
 and stati
 analysisIn this se
tion we provide results of the ben
hmark 
omparison [S
huller et al.,2009℄ under equal 
onditions on nine standard emotional spee
h 
orpora inthe �eld using the two pre-dominant paradigms: dynami
 analysis on a frame-
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ognition experimentsCorpus All Arousal Valen
eUA WA UA WA UA WAABC 48.8 57.7 71.5 74.7 81.1 81.2AVIC 65.5 66.0 74.5 77.5 74.5 77.5DES 45.3 45.3 82.0 84.2 55.6 58.0EMO-DB 73.2 77.1 91.5 91.5 78.0 80.4eNTERFACE 67.1 67.0 74.9 76.8 78.7 80.5SAL 34.0 32.7 61.2 61.6 57.2 57.0SmartKom 28.6 47.9 58.2 64.6 57.1 68.4SUSAS 55.0 47.9 56.0 68.0 67.3 67.8VAM 38.4 70.2 76.5 76.5 49.2 89.9Mean 50.7 56.9 71.8 75.0 66.5 73.4Table 5.10: Re
ognition rates [%℄ for ben
hmark evaluation of the dynami
-analysis-based emotion-re
ognition enginelevel by means of hidden Markov models and stati
 analysis (supra-segmental)by systemati
 feature brute-for
ing. The 
orpora investigated were the ABC,AVIC, DES, EMO-DB, eNTERFACE, SAL, SmartKom, SUSAS, and VAMdatabases. To provide better 
omparability among sets, we additionally 
lus-ter ea
h of the database's emotions into binary valen
e and arousal dis
rimi-nation tasks, see se
tion 2.7.For all databases, test-runs are 
arried out in the leave-one-speaker-out(LOSO) or leave-one-speakers-group-out (LOSGO) manner to fa
e speakerindependen
e, as required by most appli
ations. In the 
ase of 10 or fewerspeakers in one dataset we applied the LOSO strategy; otherwise, namelyfor the AVIC, eNTERFACE, SmartKom, and VAM databases, we sele
ted 5speaker groups with almost equal amount of male and female speakers andsamples per group for LOSGO evaluation. For evaluation measures we em-ployed weighted (WA, i. e. a

ura
y) and unweighted (UA, thus better re�e
t-ing unbalan
e among 
lasses) average re
all.The results for frame-level (Table 5.10) and supra-segmental modeling (Ta-ble 5.11) with openEAR toolkit des
ribed in se
tion 4.4.2.1 are found for allemotion 
lasses 
ontained per database and for the 
lustered two-
lass tasksof binary arousal and valen
e dis
rimination as des
ribed in se
tion 2.7.Note that for supra-segmental modeling SVM with speaker standardiza-tion in 
onstant parameterization are used for the given results. The delta ofthe mean in Table 5.11 to the mean of the best-performing individual 
on�g-urations is 1.7% (UA) and 0.7% (WA) for 
lass-wise results, 0.2% (UA) and1.8% (WA) for arousal and 9.4% (UA) and 9.5% (WA) for valen
e (mostlydue to variations on SAL).Among the two result tables, very similar trends 
an be observed: the



5.3. Emotion-re
ognition methods evaluation 119Corpus All Arousal Valen
eUA WA UA WA UA WAABC 55.5 61.4 61.1 70.2 70.0 70.0AVIC 56.5 68.6 66.4 76.2 66.4 76.2DES 59.9 60.1 87.0 87.4 70.6 72.6EMO-DB 84.6 85.6 96.8 96.8 87.0 88.1eNTERFACE 72.5 72.4 78.1 79.3 78.6 80.2SAL 29.9 30.6 55.0 55.0 50.0 49.9SmartKom 23.5 39.0 59.1 64.1 53.1 75.6SUSAS 61.4 56.5 63.7 77.3 67.7 68.3VAM 37.6 65.0 72.4 72.4 48.1 85.4Mean 53.5 59.9 71.1 75.4 64.5 68.3Table 5.11: Re
ognition rates [%℄ for ben
hmark evaluation of the stati
-analysis-based emotion-re
ognition enginebest performan
e is a
hieved on the datasets 
ontaining a
ted, prototypi
alemotions, where only emotions with high inter-labeler agreement were se-le
ted (EMO-DB, eNTERFACE datasets). A little ex
eption here is the DESdatabase, where performan
e is well behind EMO-DB database, even thoughthe DES dataset also 
ontains a
ted, prototypi
al emotions. This di�eren
e isnot so obvious for the arousal task as it is for the full 
lassi�
ation task. Onereason for this might be that no sele
tion of high inter-labeler agreements weredone on the DES dataset and labelers may agree more upon arousal than onthe emotion 
ategories. The remaining six 
orpora are more 
hallenging sin
ethey 
ontain non-a
ted or indu
ed emotions. On the lower end of re
ognitionperforman
e the SAL, SmartKom, and VAM 
orpora 
an be found, whi
h 
on-tain the most spontaneous and naturalisti
 emotions, whi
h in turn are alsothe most 
hallenging to label. However, the SmartKom database 
ontainslong pauses with a high noise level, and it in
ludes system output 
ross-talksegments and annotations that are multi-modal, i.e. mimi
 and audio based,thus the target emotion might not always be dete
table from spee
h. Theresults for the SAL 
orpus are only marginally above 
han
e level, whi
h isdue to speaker-independent evaluation on highly naturalisti
 data with onlyfour speakers in total.When 
omparing the dynami
 analysis with stati
 analysis an interest-ing 
on
lusion 
an be drawn: dynami
 analysis seems to be slightly superiorfor 
orpora 
ontaining variable 
ontent (AVIC, SAL, SmartKom, VAM), i.e.the subje
ts were not restri
ted to a prede�ned s
ript, while stati
 analysisoutperforms frame-level modeling on 
orpora where the topi
/s
ript is �xed(ABC, DES, EMO-DB, eNTERFACE, SUSAS), i.e. where there is an overlapin verbal 
ontent between test and training set. This 
an be explained by the



120 Chapter 5. Re
ognition experimentsnature of supra-segmental modeling: in 
orpora with non-s
ripted 
ontent,turn lengths may strongly vary. While frame-level modeling is mostly inde-pendent of highly varying turn length, in supra-segmental modeling ea
h turngets mapped onto one feature ve
tor, whi
h might not always be appropriate.5.3.3 Combined analysisIn this se
tion we des
ribe evaluation results for two possible 
ombined spee
h-based emotion-
lassi�
ation te
hniques: two-stage pro
essing and middle-levelfusion.5.3.3.1 Two-stage pro
essingWithin this se
tion we present a number of results for the two-stage pro-
essing method presented in se
tion 4.4.4. Evaluation test-runs are realizedin leave-one-speaker-out (LOSO) manner for speaker-independent tests. Forevaluation we used the EMO-DB database.WA [%℄ SN FS EMO-DBTurn - - 74.9Turn ✓ - 79.6Turn ✓ ✓ 83.2Table 5.12: Baseline results by turn-level analysis. Weighted average re-
alls [%℄ for EMO-DB, turn-wise feature extra
tion, 
onsidering speaker-normalization (SN), and feature sele
tion (FS) for optimization, speaker-independent (SI) LOSO evaluation with SVMIn Table 5.12 we present the baseline results for speaker-independent 
las-si�
ation on the turn-level des
ribed in se
tion 4.4.2 employing standard turn-wise derived a
ousti
 features presented in Table 4.2 on page 83.[#℄ Turns Chunks Syllablesanger 127 269 1,843boredom 79 225 1,151disgust 38 173 516fear 55 160 794joy 64 179 927neutral 78 213 1,093sadness 53 143 823sum 494 1,362 7,147Table 5.13: Distribution among emotions, database EMO-DB. Considered areturns, automati
ally extra
ted 
hunks and syllables



5.3. Emotion-re
ognition methods evaluation 121[#℄ Chunks Syllables1 167 -2 86 -3 95 -4 65 -5-9 78 9410-14 3 13515-19 - 15620-29 - 109Table 5.14: Number of automati
ally extra
ted 
hunks and syllables per ut-teran
e. Database EMO-DBTable 5.13 presents a detailed number of automati
ally extra
ted 
hunksand syllables per emotion obtained by HMMs-/GMM-based one-pass Viterbibeam sear
h with token passing within the �rst stage of pro
essing. As one
an see, automati
ally extra
ted 
hunks 
omparably longer than syllables.Note that an almost 
onstant fa
tor of 
hunks per emotion resembling 3 isobtained [S
huller et al., 2007℄. Disgust, however, shows a slightly di�erentbehavior. Apart from the mean number of 
hunks and syllables per emotion,Table 5.14 depi
ts their frequen
ies of appearan
e in more detail.Table 5.15 below presents the emotion-re
ognition results for 
hunks andsyllables, aimed at sub-turn entities. As for the base-line turn-level features,speaker normalization and feature spa
e optimization are applied for optimiza-tion. Finally, we present results for the mapping of 
hunks or syllables ontoturns by the diverse strategies: an un-weighted majority vote (MV), a max-imum length vote (MLV), a maximum 
lassi�er predi
tion s
ore multipliedwith the length vote (MSL) introdu
ed in se
tion 4.4.4. The se
ond stageof pro
essing, based on the 
hunk analysis, is realized by brute-for
e largefeature spa
e 
onstru
tion with subsequent subset sele
tion, support ve
torWA [%℄ SN FS EMO-DBChunk - - 42.6Chunk ✓ - 46.7Chunk ✓ ✓ 51.4Syllable - - 42.1Syllable ✓ - 44.6Syllable ✓ ✓ 47.6Table 5.15: Results by 
hunk-level analysis. Weighted average re
alls [%℄ forEMO-DB, 
hunk-wise feature extra
tion, 
onsidering speaker-normalization(SN), and feature sele
tion (FS) for optimization, speaker-independent LOSOevaluation with se
ond-stage stati
 analysis
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ognition experimentsStrategy Corre
t Corre
t*Chunk MV 45.3 64.2Chunk MLV 60.1 64.2Chunk MLS 70.6 70.6Syllable MV 42.8 60.1Syllable MLV 56.9 60.1Syllable MLS 67.8 67.8Table 5.16: Results by turn-level mapping. Weighted average re
alls[%℄ for EMO-DB, 
hunk-wise features with speaker-normalization and fea-ture sele
tion, 
onsidering Corre
t and Corre
t* 
ases, by addition of non-unique winning-
lasses, speaker-independent LOSO evaluation with se
ond-stage stati
 analysisma
hines (SVM) 
lassi�
ation, and speaker normalization.Thereby only the optimal 
ases with speaker normalization and featurespa
e optimization are 
onsidered, as 
hunk-level a

ura
y is 
ru
ial for theoverall su

ess. First, we des
ribe the speaker-independent evaluation resultspresented in Table 5.16. Thereby the three strategies: majority vote (MV),maximum length (MLV) and maximum length times predi
tion s
ore (MLS)are 
onsidered.As 
an be seen form Table 5.16, we dis
riminate between 
orre
t assign-ment (
olumn Corre
t) and 
ases, where the 
orre
t 
lass has been the winning
lass among one or more other emotional 
lasses (
olumn Corre
t). The mainout
omes of these results are that the proposed 
hunking seems superior toannotation-based syllable 
hunking. However, re
ognition results with turn-level a
ousti
 features 
annot be rea
hed. This holds even after mapping onthe turn-level by the investigated three di�erent strategies.The introdu
ed two-stage pro
essing approa
h was superior to syllablesspeaker-independent analysis. This may be due to the fa
t that it produ
esroughly 5 times longer segments, though at the same time 5 times fewer in-stan
es are obtained for robust training. Still, results for both of these sub-turn entities 
learly fall behind those for turn-level analysis. We se
ondlyinvestigated mapping of these 
ontext-independent 
hunks on the turn levelby multi-instan
e learning. Yet, as a result for the evaluated database noadvantage over dire
t turn-level a
ousti
 feature extra
tion 
an be reported.However, no turn-level feature information was integrated, whi
h may leadto an advantage as reported in [S
huller and Rigoll, 2006℄, where 
hunk- andturn-level features were integrated in one super-ve
tor.
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ognition methods evaluation 1235.3.3.2 Middle-level fusionWith this 
ombined method we integrated frame-level information withina state-of-the-art large feature spa
e stati
 analysis for speaker's emotionre
ognition [Vlasenko et al., 2007a℄. In order to fuse this information withturn-based modeling, output s
ores are added to a super-ve
tor 
ombinedwith stati
 a
ousti
 features. Thereby a variety of low-level des
riptors andfun
tionals to 
over prosodi
, spee
h quality, and arti
ulatory aspe
ts are
onsidered. Starting from 1,406 a
ousti
 features presented in Table 4.2 wesele
ted optimal 
on�gurations in
luding and ex
luding emotion-re
ognitions
ores from HMM-/GMM-based 
lassi�er. The �nal de
ision task is realizedby use of SVM. Extensive test-runs are 
arried out on two popular publi
databases, namely EMO-DB and SUSAS, to investigate a
ted and sponta-neous data.Emotion-re
ognition results are presented for ea
h modeling te
hnique in-dividually (turn-level (TL) and frame-level (FL)), and for the 
ombinationof these two. Thereby the e�e
ts of speaker normalization (SN) and featurespa
e optimization (FS) as des
ribed in se
tion 4.4.1 are shown, too. Forthe EMODB database, we provide results of a leave-one-speaker-out (LOSO)evaluation to fa
e the 
hallenge of speaker independen
e. For the SUSASdatabase we used 10-fold strati�ed 
ross-validation (SCV), as only 7 speakersare 
ontained in the 
hosen spontaneous emotional spee
h subset. On theother hand, this is possible, as roughly 500 phrases are available per speaker.During feature sele
tion the original 1,406 features have been redu
ed to76 for the EMODB dataset. For the SUSAS 71 features have been sele
tedon the whole dataset, and 33�107 features were observed as optimum for theindividual speakers. This underlines the brute-for
e nature of the 
reation offeature spa
e with more than 1,000 a
ousti
 features in order to �nd a veryWA [%℄ SN FS EMO-DB SUSASTL - - 74.9 80.8TL ✓ - 79.6 80.8TL ✓ ✓ 83.2 80.8FL - - 77.1 67.1TL+FL ✓ - 81.6 81.3TL+FL ✓ ✓ 89.9 83.8Table 5.17: Combination of turn-level and frame-level analysis, databasesEMODB with LOSO evaluation and speaker-dependent 10-fold SCV forSUSAS. TL and FL abbreviate turn and frame levels. SN and FS representspeaker normalization and feature spa
e optimization. (✓) indi
ates that thete
hnique has been applied
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ompa
t robust �nal set. Table 5.17 shows the summarized results.As one 
an see from Table 5.17, speaker normalization and feature spa
eoptimization both 
learly help to improve overall results. Thereby it hasto be noted that less than 10% of the original feature spa
e su�
es to getan optimum performan
e. The highest a

ura
y is however obtained by thesuggested fusion of both approa
hes. This is parti
ularly true for the EMODBdataset. For the SUSAS dataset it is not too 
lear whether the extra e�ort isjusti�ed or not.5.3.4 Interspee
h 2009 Emotion ChallengeA CEICES initiative [Batliner et al., 2006℄ was the �rst 
ooperative emotion-re
ognition experiment, where seven sites 
ompared their 
lassi�
ation resultsunder exa
tly the same 
onditions and fused their a
ousti
 features togetherfor a 
ombined emotion indi
ative a
ousti
 features sele
tion pro
ess. This
hallenge was not publi
, whi
h motivates the INTERSPEECH 2009 EmotionChallenge [S
huller et al., 2009
℄ to be organized with stri
t 
omparability, us-ing the same emotional spee
h database. Three sub-
hallenges are addressedusing non-prototypi
al �ve or two emotion 
lasses (in
luding a garbage model):Open Performan
e Sub-Challenge, Classi�er Sub-Challenge, and the FeatureSub-Challenge. We parti
ipated in the Open Performan
e Sub-Challenge,where we evaluated our developed a
ousti
 features and 
lassi�
ation algo-rithm.Due to the unbalan
ed number of the emotional 
lass instan
es in
luded intraining and test sets, the primary emotion-re
ognition measure to optimizeis unweighted average (UA) re
all, and se
ondly the weighted average (WA)re
all (i.e. a

ura
y). For tuning our 
lassi�er we used a�e
tive spee
h samplesfrom the training set and the LOSO strategy. Afterwards we used an optimalLevel of analysis Classes [#℄ UA WAUtteran
e 2 69.21 70.36Phonemes 2 68.09 73.26Combined 2 68.45 70.35Baseline 2 67.7 65.5Utteran
e 5 41.40 47.44Phonemes 5 35.21 52.78Combined 5 40.62 49.38Baseline 5 38.2 39.2Table 5.18: Re
ognition rates [%℄ on test set of FAU AIBO database withinINTERSPEECH 2009 Emotion Challenge. Baseline results are taken from[S
huller et al., 2009
℄
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ognition methods evaluation 125[#/%℄ NEG IDLNEGative 1,635 830IDLe 1,617 4,175NEGative 66.3% 33.7%IDLe 27.9% 72.1%All [#℄ 2,465 5,792Table 5.19: Confusion matrix for the two-
lasses emotion-re
ognition task anda

ura
ies for ea
h 
lass individually and 
omplete test setemotion 
lassi�er 
on�guration with 
orresponding a
ousti
 features set for
hallenge trials on test set material. The best results obtained on the 
hallengetest set and baseline results provided by organizers are presented in Table 5.18.Baseline results were adopted from [S
huller et al., 2009
℄, they represent thebaseline of emotion-re
ognition performan
e for stati
 modeling. Baselineresults for dynami
 modeling presented by organizers were 
omparably lower.The best results for two 
lasses (NEGative and IDLe) were a
hieved withutteran
e-level analysis with the feature set whi
h in
luded 12 MFCC 
oe�-
ients normalized with gender-dependent vo
al tra
t length normalization, en-ergy and their deltas and a

eleration. For the �ve 
lasses (Anger, Emphati
,Neutral, Positive and Rest) emotion-re
ognition task the best results werere
eived with 13 MFCC 
oe�
ients normalized by gender-dependent vo
altra
t length normalization after CMS in
luded zero 
oe�
ient instead of en-ergy and their delta and a

eleration. Confusion matri
es for the best resultsfor two-
lass and �ve-
lass task are presented in Tables 5.19 and 5.20.As one 
an see from Table 5.19 for NEG 
lass false a

eptan
e error isquite high. This 
onfusion 
an be explained by low dis
riminative a
ousti
diversity of some NEG and IDL sub
lasses (i.e. emphati
 vs. motherese). Listof all sub
lasses 
overed by emotional 
ategories (NEGative and IDLe) 
anbe found in se
tion 2.6.2.1.In the 
ase of the �ve emotion 
lasses evaluation, 
lasses are unbalan
edin the training set, see Table 2.4 on page 26. As a result, we have to be very
areful with over tuning of sparse emotional 
lasses like Positive, Rest. Asone 
an see from Table 5.20, there is quite high 
onfusion among the leadersof the emotion 
lassi�
ation: Anger, Emphati
 and Neutral. At the sametime Positive and Rest have a high level of 
onfusion with all other emotional
lasses. We suppose that the main reason of so a high level of 
onfusionamong all �ve emotional 
lasses lies in unreliable emotional annotation. Wethink that students, like any other adult who is not a natural relative to the
hild, 
ould not provide reliable emotional annotation of the 
hild's emotionalspee
h even thought they are advan
ed students of linguisti
s.
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ognition experiments[#/%℄ A E N P RAnger 315 189 67 9 31Emphati
 202 944 276 10 76Neutral 592 1,551 2,485 217 532Positive 17 17 90 53 38Rest 95 108 176 47 120Anger 51.6% 30.9% 11.0% 1.5% 5.0%Emphati
 13.4% 62.6% 18.3% 0.7% 5.0%Neutral 11.0% 28.8% 46.3% 4.0% 9.9%Positive 8.0% 8.0% 41.8% 24.6% 17.6%Rest 17.4% 19.8% 32.2% 8.6% 22.0%All [#℄ 611 1,508 5,377 215 546Table 5.20: Confusion matrix for the �ve-
lasses emotion-re
ognition task anda

ura
ies for ea
h 
lass individually and 
omplete test setThe results of the 
hallenge were presented at a spe
ial session of the
onferen
e Interspee
h 2009. A ranking list of the best results 
an be foundin Table 5.21.As one 
an see from Table 5.21, we got se
ond pla
e for the two emotion
lasses task and forth pla
e for the �ve emotion 
lasses task over 33 resear
hRank UA[%℄ WA[%℄ Authorstwo emotion 
lasses task1 70.29 68.68 [Dumou
hel et al., 2009℄2 69.21 70.36 [Vlasenko and Wendemuth, 2009b℄3 68.33 65.84 [Ko
kmann et al., 2009℄4 67.90 63.03 [Bozkurt et al., 2009℄5 67.19 63.26 [Luengo et al., 2009℄6 67.55 72.67 [Polzehl et al., 2009℄7 67.06 62.29 [Barra-Chi
ote et al., 2009℄8 66.40 66.56 [Vogt and André, 2009℄�ve emotion 
lasses task1 41.65 44.17 [Ko
kmann et al., 2009℄2 41.59 44.17 [Bozkurt et al., 2009℄3 41.57 39.87 [Lee et al., 2009b℄4 41.40 47.44 [Vlasenko and Wendemuth, 2009b℄5 41.38 43.35 [Luengo et al., 2009℄6 39.40 52.08 [Dumou
hel et al., 2009℄7 39.40 41.12 [Vogt and André, 2009℄8 38.24 36.68 [Barra-Chi
ote et al., 2009℄Table 5.21: Results and ranking list for two emotion 
lasses and �ve emotion
lasses INTERSPEECH 2009 Emotion Challenge. Data for ranking list aretaken from [S
huller et al., 2011℄
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ess to the data [S
huller et al., 2011℄. In total our
lassi�
ation results (sum of unweighted average re
alls for two tasks) are thebest. With our emotion-
lassi�
ation te
hnique we prove that only by usingspe
tral features (Mel-frequen
y Cepstral 
oe�
ients (MFCC)) with dynami
analysis we 
an rea
h one of the best emotion-re
ognition performan
es forspontaneous emotional spee
h samples [Vlasenko and Wendemuth, 2009b℄.5.3.5 Cross-
orpus a
ousti
 emotion re
ognitionA great advantage of 
ross-
orpora evaluations is the well de�nedness of testand training datasets and thus the easy reprodu
ibility of the results. Sin
emost emotion 
orpora, in 
ontrast to spee
h 
orpora for automati
 spee
hre
ognition or speaker identi�
ation, do not provide �xed training, devel-opment, and test sets, individual splitting and 
ross-validation are mostlyfound, whi
h makes it hard to reprodu
e the results under equal 
onditions.In 
ontrast to this, 
ross-
orpus experiments are well de�ned and thus easyto reprodu
e and 
ompare.In Table 5.22 one 
an �nd a list of all 23 di�erent training and test set
ombinations whi
h have been used for evaluation in our 
ross-
orpus ex-periments. A�e
tive spee
h samples from the SUSAS and AVIC databasesare only used for training, sin
e they do not 
over the su�
ient overlapping"basi
" emotions for the testing. Furthermore, we omitted 
ombinations forwhi
h the number of emotion 
lasses o

urring were lower than tree in boththe training and the test dataset (e.g. we did not evaluate training on AVICdatabase material and testing on DES database a�e
tive spee
h samples, sin
eonly neutral and joyful o

ur in both 
orpora � see also Table 2.3 on page24). In order to obtain 
ombinations for whi
h up to six emotion 
lasses o

urin the training and test set, we in
luded evaluations in whi
h more than onedataset was used for training (e.g. we 
ombined eNTERFACE and SUSASdatabases for training in order to be able to model six 
lasses when testingon the EMO-DB database). Depending on the maximum number of di�erentemotion 
lasses that 
an be modeled in a 
ertain experiment, and dependingon the number of 
lasses we a
tually use (two to six) for evaluation, we gota 
ertain number of possible emotion 
lass permutations a

ording to Table5.22. For example, if we aimed to model two emotion 
lasses when testingon the EMO-DB database and training on the DES dataset, we obtained sixpossible permutations. Evaluating all permutations for all of the 23 di�erenttraining-test 
ombinations leads to 409 di�erent evaluations (sum of the lastline in Table 5.22). Additionally, we evaluated the dis
rimination betweenpositive and negative arousal as well as the dis
rimination between high andlow valen
e for all 23 
ombinations, leading to 46 additional evaluations.
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ognition experimentsTest set Training set number of 
lasses2 3 4 5 6EMO-DB AVIC 3 1 0 0 0DES 6 4 1 0 0eNTERFACE 10 10 5 1 0SmartKom 3 1 0 0 0eNTERF.+SUSAS 15 20 15 6 1eNTERF.+SUSAS+DES 15 20 15 6 1DES EMO-DB 6 4 1 0 0eNTERFACE 6 4 1 0 0SmartKom 6 4 1 0 0EMO-DB+SUSAS 6 4 1 0 0EMO-DB+eNTERFACE 10 10 5 1 0eNTERFACE DES 6 4 1 0 0EMO-DB 10 10 5 1 0SmartKom 3 1 0 0 0EMO-DB+SUSAS 10 10 5 1 0EMO-DB+SUSAS+DES 15 20 15 6 1SmartKom DES 6 4 1 0 0EMO-DB 3 1 0 0 0eNTERF. 3 1 0 0 0EMO-DB+SUSAS 3 1 0 0 0EMO-DB+SUSAS+DES 6 4 1 0 0eNTERF.+SUSAS 6 4 1 0 0eNTERF.+SUSAS+DES 6 4 1 0 0Total 163 146 75 22 3Table 5.22: Number of emotion 
lass permutations dependent on the usedtraining and test set 
ombination and the total number of 
lasses used in therespe
tive experimentTo summarize the results of permutations over 
ross-training datasets andemotion 
lasses groupings, box-plots indi
ating the unweighted average re
all(UA) are shown (see Figures 5.3(a) to 5.3(d)). All re
ognition rates are aver-aged over all 
onstellations of 
ross-
orpus training to provide a raw generalimpression of performan
es to be expe
ted. The plots show the median, thelower and upper quartile, and the extremes for a varying number (from twoto six) of emotion 
lasses and the binary valen
e and arousal tasks. In a 
aseof DES dataset (5 
lasses evaluation) and eNTERFACE dataset (6 
lassesevaluation) we have only one permutation, as a result in the 
orrespondingbox plot's 
olumns one 
an see only medians.First, the DES dataset is 
hosen for testing, as depi
ted in Figure 5.3(a).For training, �ve di�erent 
ombinations of the remaining datasets are used(see Table 5.22). As expe
ted the weighted (i. e., a

ura
y � not shown) andunweighted re
all monotonously drop on average with an in
reased number of
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(a) DES, UA (b) EMO-DB, UA

(
) eNTERFACE, UA (d) SMARTKOM, UAFigure 5.3: Box-plots for unweighted average re
all (UA) in % for 
ross-
orpora testing on four test 
orpora. Results obtained for varying numberof 
lasses (2�6) and for 
lasses mapped to high/low arousal (A) and posi-tive/negative valen
e (V)
lasses. For the DES experien
e holds: arousal dis
rimination tasks are 'easier'on average. While the average results are 
onstantly found 
onsiderably above
han
e level, it also be
omes 
lear that only sele
ted groups are ready forreal-life appli
ation � of 
ourse allowing for some error toleran
e. These aretwo-
lass tasks with an approximate error of 20%. An interpretation of theresults in multi-
lass re
ognition is given below.A very similar overall behavior is observed for the EMO-DB dataset inFigure 5.3(b). This seems no surprise, as the two databases have very similar
hara
teristi
s. For the EMO-DB a more or less additive o�set in terms ofre
all is obtained, whi
h is owed to the known lower 'di�
ulty' of this dataset.
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ognition experimentsSwit
hing from a
ted to mood-indu
ed, we provide results on the eNTER-FACE dataset in Figure 5.3(
). However, the pi
ture remains the same, apartfrom lower overall results: again a known fa
t from experien
e, as eNTER-FACE database is not a 'gentle' dataset, partially for being more natural thanthe DES 
orpus or the EMO-DB database.Finally, 
onsidering testing on spontaneous a�e
tive spee
h with non-restri
ted varying spoken 
ontent and natural emotion, we note the 
hallengearising from the SmartKom dataset in Figure 5.3(d): as this set is � due to itsnature of being re
orded in a user-study � highly unbalan
ed, the mean un-weighted re
all is again mostly of interest. Here, rates are found only slightlyabove 
han
e level. Even the optimal groups of emotions are not re
ognized ina su�
iently satisfying manner for a real-life usage. Though one has to bearin mind that SmartKom was annotated multimodally, i. e., the emotion is notne
essarily re�e
ted in the spee
h signal, and overlaid environment noise isoften present due to the setting of the re
ording, this shows in general thatthe rea
h of our results is so far restri
ted to a
ted data or data in well-de�neds
enarios: the SmartKom results 
learly demonstrate that there is a long wayahead for emotion re
ognition in user studies (
f. also [S
huller et al., 2009
℄)and real-life s
enarios. At the same time, this raises the ever-present and in
omparison to other spee
h analysis tasks unique question on ground truthreliability: while the labels provided for a
ted data 
an be assumed to bedouble-veri�ed, as the a
tors usually wanted to portray the target emotionwhi
h is often additionally veri�ed in per
eption studies, the level of emotion-ally valid material found in real-life data is mostly un
lear due to the relian
eon few labelers with often high disagreement among them [S
huller et al.,2010℄.5.4 SummaryThis 
hapter reviews results of experiments 
on
erning our developed emotion-re
ognition and automati
 spee
h-re
ognition methods. Afterwards, wepresent results of evaluations on non-adapted and adapted ASR models. Inse
tion 5.2, we showed that the 
ombined MLLR(RCT)+MAP adapted HM-M/GMM models was about 8.9% absolute better than that of the basi
 ASRmodels (a

ura
y 87.37%) trained on emotionally neutral spee
h samples.In se
tion 5.3 we present evaluation results for various spee
h emotion-
lassi�
ation te
hniques. As a starting point for our experiments we 
hosephonemes, as these should provide the most �exible basis for unit-spe
i�
models: if emotion re
ognition is feasible on phoneme basis, these units 
ouldmost easily be integrated into a user-behavior-adaptive spoken dialog sys-



5.4. Summary 131tem [Vlasenko et al., 2008a℄. However, the introdu
ed unit-spe
i�
 (phoneme-,word-level) emotion models 
learly outperformed 
ontext-independent gen-eral models provided enough training material per unit. Appearan
e of high-standard word-level-labeled emotional spee
h 
orpora 
an improve the 
urrentperforman
e of phoneme and word-level emotion models. A prototypi
al spo-ken dialog system with a user-behavior-adaptive spoken dialog system 
reatedwithin NIMITEK 
ollaboration, whi
h in
ludes phoneme-level emotion re
og-nition, will be dis
ussed in Chapter 6. With a vowel-level formants tra
ingte
hnique we showed that the average F1 values extra
ted on a vowel-level arestrongly 
orrelated with the level of arousal of the speaker's emotional state.We estimated the optimal 
riteria thresholds for a
ted and spontaneous emo-tions. It was shown that spontaneous emotions required higher η values in
omparison with optimal η values for a
ted emotions. We showed that thelist of the most indi
ative German vowels [Vlasenko et al., 2011a℄, [Vlasenkoet al., 2011b℄ within the task of measuring the level of arousal of the speaker'semotional state 
an be used for spontaneous emotion 
lassi�
ation.When 
omparing the dynami
 analysis with the stati
 analysis an inter-esting 
on
lusion 
an be drawn: frame-level modeling seems to be slightlysuperior for 
orpora 
ontaining variable 
ontent (AVIC, SAL, SmartKom,VAM), i.e. the subje
ts were not restri
ted to a prede�ned s
ript, whilesupra-segmental modeling (turn-level analysis) slightly outperforms frame-level modeling on 
orpora where the topi
 is �xed (ABC, DES, EMO-DB,eNTERFACE, SUSAS), i.e. where there is an overlap in textual 
ontent be-tween training and test dataset [S
huller et al., 2009℄. This 
an be explainedby the nature of stati
 analysis: in 
orpora with non-�xed 
ontent, turnlengths may strongly vary. While dynami
 analysis is mostly independentof highly varying turn length, in supra-segmental modeling ea
h turn getsmapped onto one feature ve
tor, whi
h might not always be appropriate. Inse
tion 5.3.4, we present our results within the INTERSPEECH 2009 EmotionChallenge [S
huller et al., 2009
℄. With our emotion-
lassi�
ation te
hniquebased on dynami
 analysis we prove that only by using spe
tral features (Mel-frequen
y Cepstral 
oe�
ients (MFCC)) we 
an rea
h one of the best emotion-re
ognition performan
es for spontaneous emotional spee
h samples [Vlasenkoand Wendemuth, 2009b℄.Finally, in se
tion 5.3.5 we present evaluation results for 
ross-
orpusa
ousti
 emotion re
ognition. To sum up, we have shown results for intra-and inter-
orpus spee
h-based emotion re
ognition. By that we have learntthat the re
ognition rates highly depend on the spe
i�
 sub-group of emotions
onsidered. In any 
ase, emotion-re
ognition performan
e de
reases dramati-
ally when operating 
ross-
orpora-wise. As long as 
onditions remain similar,
ross-
orpus training and testing seems to work to a 
ertain degree: the DES,
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ognition experimentsEMO-DB, and eNTERFACE datasets led to partly useful results [S
hulleret al., 2010℄. These are all rather prototypi
al, mood-indu
ed or a
ted withpre-de�ned spoken 
ontent. The fa
t that three di�erent languages � Danish,English, and German � are 
ontained, seems not to generally disallow inter-
orpus testing: these are all Germani
 languages, and a highly similar 
ulturalba
kground may be assumed. However, the 
ross-
orpus testing on a sponta-neous dataset (SmartKom) 
learly showed limitations of the 
urrent systems.Here only a few groups of emotions stood out in 
omparison to 
han
e level.To better 
ope with the emotional 
orpora's di�eren
es, we evaluated di�er-ent normalization approa
hes, whereas speaker normalization led to the bestresults. For all experiments we had used stati
 analysis based on a broadvariety of prosodi
, voi
e quality, and arti
ulatory features (see Table 4.3 onpage 85) and SVM 
lassi�
ation.
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e, 
hosen tasks and WOZ experiments . . . . 1356.4 Ar
hite
ture I: Conventional spoken dialog system . 1396.5 Ar
hite
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lusions and transition to Companion te
hnology 145
6.1 Introdu
tionThis 
hapter is not dealing with the full spe
i�
ation of te
hniques fordeveloping a spoken dialog system (SDS). For this topi
, the reader isreferred to the ex
ellent survey material [Gnjatovi¢, 2009,Gnjatovi¢ and Rös-ner, 2008a,Gnjatovi¢ and Rösner, 2008
℄. The fo
us is on the in
orporation ofthe �ndings des
ribed earlier in this thesis into a prototype dialog system espe-
ially developed by the author and 
olleagues to demonstrate the adaptationof the system to the user's emotional state. In this 
hapter we present a proto-type of the user-friendly spoken dialog system integrated into the NIMITEKdemonstrator. The NIMITEK (Neurobiologi
ally inspired, multimodal inten-tion re
ognition for te
hni
al 
ommuni
ation systems) demonstrator is a spo-ken dialog system prototype whi
h provides an "intelligent" support for userswhile they solve tasks in a graphi
s system interfa
e (e.g., Towers-of-Hanoipuzzle). The "intelligent" feature of the system is a user-behavior-adaptive
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ally sele
ts a dialog strategy a
-
ording to the 
urrent user's emotional state. In this 
hapter we des
ribe thedata 
olle
tion strategy within the NIMITEK Wizard of Oz experiment, andthe stru
ture of the 
onventional and user's behavior adaptive dialog systems.Finally we dis
uss the results of an intera
tive usability test.6.2 Framework: NIMITEK demonstratorThis 
hapter presents a part of the work in the framework of the NIMITEKproje
t [Wendemuth et al., 2008℄ in the period from 2005 to 2010 that in
ludesan interdis
iplinary resear
h on human-ma
hine intera
tion. Various 
ogni-tive aspe
ts of user-friendly interfa
es were investigated within the 
urrentproje
t. Also, this interdis
iplinary resear
h 
ombines the �elds of ele
tri
alengineering, 
omputer s
ien
e and neuro-biology to 
arry out the study intopro
essing of an audio-visual user's intera
tion interfa
es, the development ofa task-oriented knowledge representation and modeling di�erent dialog situa-tions.The NIMITEK proje
t has various resear
h goals: multimodal emotionre
ognition from the user's spee
h (i.e., prosodi
 
ues and spe
tral featuresanalysis), mimi
 and text-based analysis; developing robust a�e
tive-spee
h-

Figure 6.1: Prototype of a multimodal spoken dialog system, NIMITEKDemonstrator
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ognition models; analysis of the task-oriented intera
tion experiments;modeling of the adaptive dialog management; developing neuro-biologi
al per-
eption, 
ognitive and behavior models. The NIMITEK spoken dialog sys-tem prototype presented in Figure 6.1 was developed to demonstrate resear
ha
hievements in emotion re
ognition and user's emotion adaptive dialog man-agement.6.3 Interfa
e, 
hosen tasks and WOZ experi-mentsIn this se
tion we spe
ify the main issues in developing the NIMITEK spokendialog system prototype: �exibility and adaptivity, interfa
e design and tasksele
tion for evoking user's emotions.6.3.1 Flexibility and adaptivityThe importan
e of the user-behavior-driven dialog strategies in human-ma
hine intera
tion (HMI) lies in the existing limitations of automati
spee
h-re
ognition te
hnologies. Current state-of-the-art automati
 spee
h-re
ognition (ASR) methods still 
annot deal with �exible, unrestri
ted user'slanguage and emotionally 
olored spee
h [Lee, 2007℄. Therefore, problems
aused by misunderstandings of a user during intera
tion with SDS with a pre-de�ned, and usually restri
ted set of intera
tion rules seems to be inevitable.In our spoken dialog system we want to provide a �exible intera
tion spee
h-based interfa
e. In su
h a way the user will be able to �nd out suitable
ommands by himself.In the domain of human-ma
hine intera
tion [Gnjatovi¢ and Rösner,2008a℄, we witness the rapid in
rease of resear
h interest in a�e
tive userbehavior. However, some aspe
ts of the a�e
tive user behavior during HMIstill turns out to be a 
hallenge for SDS developers. Dete
ting and utilizingnon-lexi
al or paralinguisti
 
ues as part of the user-behavior state des
riptorsis one of the major 
hallenges in the development of reliable human-ma
hineinterfa
es. Knowing the 
urrent user's emotional state 
an help to adjust sys-tem responses so that the user of su
h a system 
an be more engaged and havea more e�e
tive intera
tion with the system [S
huller et al., 2007b℄, [Bussoet al., 2007℄. To make our system user-
entered we implemented an intentionre
ognition module, whi
h is dealing with motivational intention. Psy
hol-ogist also distinguish a fun
tional intention [Ans
ombe, 2000℄. But for ourpra
ti
al implementation we de
ided to 
on
entrate on motivational aspe
tsof intention. Examples will be given in se
tion 6.5 below.



136 Chapter 6. User-behavior-adaptive dialog managementIn this se
tion we present the implementation of adaptive dialog manage-ment in the NIMITEK prototype spoken dialog system for supporting userswhile they solve the Towers-of-Hanoi puzzle whi
h is displayed in Figure 6.1.Within the human-ma
hine intera
tion users are able to follow the ASRre
ognition results. When the garbage model was not able to en
apsulateout-of-vo
abulary words, the users were able to see misre
ognized system per-
eptible 
ommands. We expe
t that users will try to adapt their 
ommandsvo
abulary to 
ontribute to the right system rea
tion.6.3.2 Interfa
e design and task sele
tion for evokinguser's emotionsIt is quite di�
ult to motivate naïve users to experien
e, express and utilizeemotions while using any graphi
al appli
ation. We de
ided to use a graphi
alsystem with a verbal intera
tion interfa
e to simulate an intelligen
e test. Insu
h a way, we expe
ted to a
hieve a strong user's motivation and emotionalinvolvement. For modeling user behavior during human-ma
hine intera
tionwe de
ided to develop a spoken dialog system for simple logi
al games (i.e.Towers-of-Hanoi, Tangram) with system users support while they use a graph-i
al tool. This graphi
al tool has been developed using an existing softwarepa
kage1 that implements visual re�e
tion, alteration and movement of dif-ferent graphi
al obje
ts.In the NIMITEK demonstration system, users are allowed only to use averbal intera
tion interfa
e (i.e., mouse or keyboard intera
tion interfa
es arenot supported by system).Two di�erent prototypi
al graphi
al tasks were implemented in theNIMITEK demonstrator prototype: Towers-of-Hanoi and Tangram. TheTowers-of-Hanoi puzzle (3-disks version) was introdu
ed by Édouard Lu
asin 1883. The puzzle 
onsists of three pegs and three disks (small, middle andlarge). At the beginning of the game, the disks are sta
ked in order of sizeon the left peg, as one 
an see in Figure 6.2 [Gnjatovi¢ and Rösner, 2008
℄.The aim of the game is to move the 
omplete sta
k to the right peg shiftingdisks a

ording to the following rules: only one disk 
an be shifted at a time,all three pegs 
an be used, and no disk 
an be lo
ated on the top of a smallerdisk.Another prototypi
al graphi
al task is the Tangram puzzle. It is a famousChinese puzzle. Its origins are lost in time. It was introdu
ed to the westernworld by a Captain M. Donaldson in 1815. The goal of this graphi
al task is1This graphi
al engine was developed at the Fraunhofer Institute for Fa
tory Operationand Automation IFF, Magdeburg, Germany.
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Figure 6.2: Towers-of-Hanoi Puzzle: S
reen shot of the NIMITEK demon-strator

Figure 6.3: Tangram: S
reen shot of the NIMITEK demonstratorto seamlessly form a spe
i�
 
onstru
tion by using seven Tangram two dimen-sional obje
ts (e.g., triangles, quadrant, rhombus). Two kinds of a
tion over
orresponding obje
ts were possible: relo
ation and rotation. In Figure 6.3one 
an see a s
reen shot of the desktop representing the NIMITEK demon-strator with an a
tive Tangram puzzle. These two game appli
ations wereused for the experiments des
ribed below.



138 Chapter 6. User-behavior-adaptive dialog management6.3.3 NIMITEK Wizard of Oz experimentsA�e
tive spee
h 
orpora provide an important empiri
al foundation for inves-tigation when resear
hers aim at implementing emotion-aware spoken dialogsystems [Gnjatovi¢ and Rösner, 2010℄. In this se
tion we des
ribe the appliedWizard of Oz (WOZ) te
hnique in order that a s
enario designed to extra
temotional spee
h within human-ma
hine intera
tion 
ould result in useful andnatural data. This data 
an be used for the development of a user-friendlydialog strategy. Corresponding Wizard of Oz experiments were 
ondu
tedin the framework of the NIMITEK proje
t. The s
hema of the laboratorysettings used for the NIMITEK dataset 
olle
tion is presented in Figure 6.4.

Figure 6.4: S
hema of the NIMITEK WOZ laboratory settingsAs usual for WOZ studies [Fraser and Gilbert, 1991℄, subje
ts believe theyare intera
ting with a real spoken dialog system driven by the 
omputer, whilethe assumed instru
tions and system's support is a
tually provided by a hu-man "wizard". We used two di�erent rooms for our experiment to hide the"wizard". A simulated spoken dialog system was installed on the subje
t's
omputer. The "wizard" pretends to have automati
 spee
h re
ognition, re-motely 
ontrols the intera
tion interfa
e of the system, and de
laims spee
houtput of the dialog system. The video s
reen shots from the subje
t's 
om-puter desktop and the video re
ordings of subje
t (fa
ial expressions, gesturesand body movements) are displayed on two di�erent monitors in the wizard'sroom.Ten native German subje
ts (7 female, 3 male) aged 18 to 27 (mean 21.7)parti
ipated in the WOZ experiments. None of them had user experien
e orengineering knowledge related to state-of-the-art spoken dialog systems. TheNIMITEK 
orpus 
ontains 15 hours of spee
h and video re
ordings 
olle
tedduring the Wizard-of-Oz experiments spe
ially designed to provoke user'semotional rea
tions. More te
hni
al details about a�e
tive data 
olle
tionstrategy 
an be found in [Gnjatovi¢ and Rösner, 2008
,Gnjatovi¢, 2009,Gnja-



6.4. Ar
hite
ture I: Conventional spoken dialog system 139tovi¢ and Rösner, 2010℄. The used NIMITEK dataset 
ontains approximately3 hours re
ordings whi
h are related to the Towers-of-Hanoi game.Gnjatovi¢ et al. [Gnjatovi¢, 2009℄ analyzed all 6798 
ommands presentedin the NIMITEK dataset. They found that users do not follow a prede�nedgrammar during intera
tion with the system. Still, by using the grammar-based language model presented in listing 3.1 on page 60 we developed thesystem whi
h 
an re
ognize and pro
ess users' 
ommands of di�erent synta
-ti
 forms: ellipti
al 
ommands, verbose 
ommands (i.e., the 
ommands thatwere only partially re
ognized by the spee
h-re
ognition module), and 
ontext-dependent 
ommands.6.4 Ar
hite
ture I: Conventional spoken dialogsystemIn this se
tion we present the possible ar
hite
ture of a spoken dialog system,later referred to as the 
onventional spoken dialog system (CSDS). In Figure6.5 one 
an see the intera
tion of the submodules of the CSDS.The intera
tion within CSDS submodules 
an be presented as follows. Thepossible textual meaning of the user's utteran
es is delivered to the naturallanguage understanding module. This module dete
ts the 
ommand and for-Spee
h InputSpee
hRe
ognitionTaskManager Natural LanguageUnderstanding AttentionalStatestate ofthe task user's
ommand fo
us ofattentionDialogStrategy History ofIntera
tionSystem outputFigure 6.5: S
hema of the 
onventional spoken dialog system (CSDS)



140 Chapter 6. User-behavior-adaptive dialog managementwards it:� to the attentional state module for updating the fo
us of attention,� to the history of the intera
tion module to save the 
urrent values ofother intera
tion features and pro
ess the 
ontext-dependent user's 
om-mands,� to the task manager module (in
luding the graphi
al platform) for exe-
uting the dete
ted 
ommand, update of the state of the task, and appro-priate graphi
al display,A new entry is added to the history of the intera
tion, 
ontaining: updatedstate of the task, the dete
ted 
ommand, and the 
urrent fo
us of attention.For real-time automati
 spee
h re
ognition (ASR) within the 
onventionalspoken dialog system, we used the ATK and HTK [Young et al., 2009℄.Monophones ASR models are designed by training three emitting state hid-den Markov models (HMM) with 16 Gaussian mixture 
omponents for ea
hphoneme model. We use a short version of German SAMPA whi
h in
ludesthe 39 phonemes presented in se
tion 3.3.2. ASR models have been trainedon the emotionally neutral spee
h samples from the Kiel dataset.6.5 Ar
hite
ture II: User-behavior-adaptivespoken dialog systemDuring the WOZ experiments we have seen that users employ several outputmodalities (mimi
s, spee
h, prosody) to 
ommuni
ate with a 
omputer. Inthe NIMITEK demonstrator prototype [Wendemuth et al., 2008℄, we in
ludere
ognition of the user's emotional state. The emotion 
lassi�er integratedin the NIMITEK demonstrator prototype uses three modalities: emotionalprosody within spoken 
ommuni
ation, literal meaning of user's utteran
esand user mimi
s. For the 
urrent usability test we evaluate the NIMITEKdemonstrator prototype with spee
h-based emotion 
lassi�
ation [Vlasenkoet al., 2010℄. We provide two di�erent dialog strategies for two 
on
erneduser's emotional states (neutral and negative).In Figure 6.6 one 
an see a spoken dialog system whi
h is adaptive tothe user's behavior, later referred to as user-behavior-adaptive spoken dialogsystem (UASDS). Figure 6.7 presents an intera
tion of submodules of theUASDS.Phoneti
 trans
riptions and the hypothesis word sequen
e generated bythe spee
h-re
ognition module is transferred to the natural language under-standing (NLU) and emotion-re
ognition module. Later, based on phoneti
trans
riptions and the spee
h signal, the emotion 
lassi�er re
ognizes the 
ur-
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hite
ture II: User-behavior-adaptive spoken dialog system141Spee
h InputSpee
hRe
ognitionTaskManager Natural LanguageUnderstanding AttentionalState EmotionClassi�erstate ofthe task user's
ommand fo
us ofattention emotional stateof the userMotivationalIntentionRe
ognition DialogManagement History ofIntera
tionSystem outputFigure 6.6: S
hema of the user-behavior-adaptive spoken dialog system(UASDS)rent speaker's emotional state. The NLU module interprets the 
ommand andforwards it:� to the attentional state module for updating the fo
us of attention,� to the history of the intera
tion module to save the 
urrent values ofother intera
tion features and pro
ess the 
ontext-dependent user's 
om-mands,� to the motivational intention re
ognition module for de�ning the user'smotivational intention based on his last 
ommand and 
urrent state ofthe task,� from motivational intention re
ognition to the task manager module (in-
luding the graphi
al platform) for exe
uting the dete
ted 
ommand, up-date of the state of the task, and appropriate graphi
al display,Then, a new entry is added to the history of the intera
tion, 
ontaining: theupdated state of the task, dete
ted 
ommand, 
urrent fo
us of attention, andthe dete
ted user's emotional state. For delimitation of type of frustration(
ommuni
ation in
omprehension or task related) we take into a

ount the
urrent state of the fo
us and history of intera
tion. When the user's gamemanipulations are far away from solving the Towers-of-Hanoi task the systemindi
ates a task related frustration. Then, the system provides user supporta

ording to the 
urrent state of the task, and the emotional and motivational
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ontent ofsupport fo
us ofattentionemotional state,motivational intention DialogStrategy History ofintera
tionSystem supportFigure 6.7: System support pro
essing within UASDSintentional state of the user. The pro
essing of a user's 
ommand in theNIMITEK prototype UASDS is presented in Figure 6.7.The adaptive dialog management designed to support the user addressesthe negative user state on two tra
ks: (i) to help a frustrated user to over
omeproblems that o

ur within the intera
tion, and (ii) to motivate a dis
ouragedor apatheti
 user. The re
ognized user's motivational intention determinesthe dire
tion of system support: for a 
ooperative user, the next logi
al stepis explained; for an explorative user, 
omprehensive 
overage of possible stepsis given; for a destru
tive user, the limitations of the next steps are explained.Generally, the support information may 
ontain a proposed move, an audiosystem support and various animations. In the 
ase when system support
ontains only the audio system message or the animation, this informationis delivered to the task manager module for appropriate display. If support
ontains also a proposed move, this information is sent:� to the task manager module for a performan
e of the proposed 
ommandand an update of the state of the task,� to the attentional state module for an update of the fo
us of attention.More te
hni
al details of the dialog management model 
an be found in [Gn-jatovi¢ and Rösner, 2008a,Gnjatovi¢, 2009,Gnjatovi¢ and Rösner, 2008
℄ andother publi
ations of Gnjatovi¢.Like in CSDS, for real-time automati
 spee
h re
ognition (ASR) withinthe user adaptive spoken dialog systems, we used the ATK and HTK [Younget al., 2009℄. Monophones ASR models are designed by training three emittingstate hidden Markov models (HMM) with 16 Gaussian mixture 
omponentsfor ea
h phoneme model. We use a short version of German SAMPA whi
hin
ludes the 39 phonemes presented in se
tion 3.3.2. The HMM/GMM models



6.6. Experiment 143have been trained on the Kiel database material and, in addition to CSDS,adapted with MLLR(RCT) on a�e
tive spee
h samples from the EMO-DBdatabase. The emotion 
lassi�er integrated into UASDS based on emotionalphoneme 
lasses method, the full list of 36 phonemes (all phonemes whi
hpresented in EMO-DB dataset) is modeled for neutral and negative speaker'sstates.
6.6 ExperimentFor our experiments we established two di�erent SDS systems: 
onventional(CSDS) and user-behavior-adaptive (UASDS) with emotion adaptive dialogstrategy and a�e
tive-spee
h-adapted ASR models. Other systems' te
hni
al
hara
teristi
s are identi
al: vo
abulary, language model, and a garbage modelfor OOV words.For the usability test we hired 8 students (4 female and 4 male). Half ofthe test persons played the Towers-of-Hanoi game with UASDS in
luding abehavior-based dialog management strategy and the remaining testers usedthe CSDS system with standard support, i.e. repeating the rules of the gameor asking for the 
ommand to be repeated. The UASDS varies the answersdepending on the behavior of the user like asking for a spe
i�
 peg or disk,repeating the rules, or giving general hints.All together, we 
olle
ted audio material whi
h in total lasts 16:21 minutesfor the UASDS system and 27:40 minutes for the CSDS system. These re
ord-ings also in
lude the time the system support re
ommendations or provideshelp to the user and the silen
es 
aused by the user. This data is not relatedto the NIMITEK 
orpus dis
ussed earlier and des
ribed in detail in [Gnjatovi¢and Rösner, 2008
℄.The main point of interest are intera
tion time and required number of thedialog turns to solve the task. Also interesting values whi
h were 
olle
tedare measures related to user adaptation (number of the dialog turns requiredfor adaptation and their total duration) to the systems "
ommand list" as aresponse of ASR's textual output. When the user starts using 
ommands fromthe system vo
abulary at the beginning of the HMI, we set duration of theadaptation time to 00:00. As a start point we did not provide any informationto subje
ts about ASR a
tive vo
abulary and grammar stru
ture, other thanthe rules of the game. In the 
ase of support requirements, users are able toask the SDS system for "help".



144 Chapter 6. User-behavior-adaptive dialog management6.7 ResultsThe experimental results of the spoken dialog systems evaluation are presentedin Table 6.1. Comparing the numbers of dialog turns whi
h are ne
essaryto solve the puzzle, the UASDS performs better [Vlasenko et al., 2010℄. Onaverage, using the CSDS the user needs 
a. 18 dialog turns more (47.4% more)to �nish the game.Trial UASDS CSDSComplete task Adaptation Complete task AdaptationTurns Time Turns Time Turns Time Turns Time1. 34 05:43 1 00:00 44 05:40 1 00:002. 31 03:37 10 01:36 61 06:05 30 03:433. 34 02:44 10 01:04 81 11:48 10 01:514. 55 04:17 1 00:00 41 04:07 7 00:52Mean 38.5 04:05 5.5 00:40 56.75 06:55 12 01:37Table 6.1: Number of turns [#℄, intera
tion time [mm:ss℄ for the 
ompletetask, and number of turns [#℄ with time intervals [mm:ss℄ required for uservo
abulary adaptation for CSDS and UASDSConsidering the overall time whi
h in
ludes pauses and the system support,the UASDS shows the better average results (04:05 vs. 06:55 minutes (40.9%less) absolute talk time). In the 
ase of CSDS, independently of the user'sbehavior a standard output is given. This provides eviden
e that behaviordependent dialog strategies may provide better user support. Also, withinintera
tion with the UASDS, users are more 
onsiderate to the ASR output.As a result they are adapting their 
ommands vo
abulary faster (00:40 vs.1:37 minutes (58.7% less)).Finally, we analyzed the dialog turns stru
ture and 
ommands vo
abulary.The adaptation values given in Table 6.1 were 
ounted until the �rst word,whi
h is in the system's vo
abulary, o

urred. A total adaptation of theuser 
ould not be observed, but we would not expe
t this. In most 
ases,system spe
i�
 and additional words are 
ombined, e.g., "the smallest diskup" where "up" is not part of the (hidden) 
ommand set. Moreover, almostall users varied in words, but the longer the experiment lasted, the vo
abularyused be
ame more stable. Due to the behavior-based dialog management theuser 
ould get the right 
ommands faster, be
ause the strategy is dire
ted toprovide adequate information at any time.In both versions, the user swit
hes between two 
ommand forms: 
ompletestatements (e.g., "the smallest disk from one to the right peg") and 
ontext-dependent 
ommands (e.g., "smallest disk" - pause - "to three"). In there
ording we found a signi�
ant relation between the system version, dialog
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lusions and transition to Companion te
hnology 145management type, and the 
ommand form. In the UASDS almost all usersuttered 
omplete statements whereas in the CSDS the most 
ommon form is
ontext-dependent separate 
ommands. Moreover, due to the neutral behaviorof the system the testers were not stimulated to 
hange their strategy, be
ausethey mentioned that they thought they were intera
ting with an arti�
ialsystem. In the other 
ase, the users said that they think the system intera
tsmore intuitively.6.8 Con
lusions and transition to Companionte
hnologyWithin the usability experiment we found out that during human-ma
hine
ommuni
ation frustration situations, the UASDS provides 
omprehensivehelp and exhaustive re
ommendations in 
ontext of the 
urrent state of thetask. The user-behavior-adaptive spoken dialog system built upon a
ous-ti
 emotion re
ognition in 
ombination with a�e
tive-spee
h-adapted ASRmodels de
reases intera
tion time by 40.9%. During usability tests we foundout that the a�e
tive-spee
h-adapted ASR models provide better spontaneousspee
h-re
ognition performan
e in real appli
ations. At the same time user-behavior-based dialog management stimulates the user for a more 
ooperativeintera
tion with the 
omputer. As a result the user's 
ommands vo
abularyadaptation time is de
reased by 58.7%. Methods developed and investigatedin the NIMITEK proje
t will lay the foundations for a te
hnology whi
h helpsto provide a 
lose to natural way of human-ma
hine intera
tion.In Figure 6.8 one 
an see the main resear
h goals within the ongoing re-sear
h proje
t, the Transregional Collaborative Resear
h Centre SFB/TRR62 "A Companion-Te
hnology for Cognitive Te
hni
al Systems", started at01.01.2009 (http://www.informatik.uni-ulm.de/ki/sfb-trr-62/).The SFB/TRR 62 is an interdis
iplinary (Computer S
ien
e, Ele
tri
aland Information Engineering, Psy
hology, and Neuros
ien
es) resear
h a
tiv-ity to investigate and optimize the intera
tion between human users and te
h-ni
al systems. It is parti
ularly spe
ialized on the 
onsideration of so-
alledCompanion-features - properties like adaptivity, a

essibility, individuality, 
o-operativity, trustworthiness, and the ability to rea
t to the user's emotionalstate appropriately and individually. The resear
h program 
omprises of thefundamental and experimental investigation as well as the pra
ti
al implemen-tation of advan
ed 
ognitive pro
esses in order to a
hieve Companion - likebehavior of te
hni
al systems with an integrated human-
entered multimodal(spee
h, mimi
s, gestures, biologi
al signals) intera
tion interfa
e. Withinthis interdis
iplinary resear
h a
tivity we will integrate our methods (user-
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Figure 6.8: Main resear
h a
tivities in the Transregional Collaborative Re-sear
h Centre SFB/TRR 62 Companion-Te
hnology for Cognitive Te
hni
alSystemsbehavior-adaptive dialog management, multimodal user's emotion pro
essing)initiated within the NIMITEK proje
t into a new Companion te
hnology sys-tem. With that, it will lay the foundations for a te
hnology whi
h opens a
ompletely new dimension of human-ma
hine intera
tion.



Chapter 7Con
lusion and future work
Emotional spee
h analysis is a powerful instrument applied for developmentof a user-
entered spoken dialog system. The fundamentals of the user-
entered human-ma
hine intera
tion, 
hara
teristi
s of the natural humanspee
h, namely boundary and emotional prosody and emotion theory havebeen reviewed in Chapter 2. The main 
ontributions of this work have beendes
ribed in Chapter 3 and Chapter 4. The �rst 
ontribution, des
ribedin Chapter 3, is to use an adaptation te
hnique to in
rease the a�e
tive-spee
h-re
ognition rate. A 
on
ept of the adaptation on emotional spee
hsamples of the ASR models trained on the emotionally neutral spee
h withMLLR(RCT)+MAP methods is proposed. This 
ontribution will be summa-rized in se
tion 7.1. The se
ond 
ontribution, des
ribed in Chapter 4, providesa detailed des
ription of our various emotion-
lassi�
ation te
hniques. Thesummarized des
ription of our developed emotion-
lassi�
ation te
hniques ispresented in se
tion 7.2. Phoneme-level user's emotion re
ognition has beenintegrated into a prototype dialog system espe
ially developed by the authorand 
olleagues to demonstrate adaptation of the system to the user's emo-tional state. Pra
ti
al appli
ation of the previously des
ribed 
ontributionis summarized in se
tion 7.3. Finally, possible future resear
h dire
tions aredis
ussed in se
tion 7.4.7.1 ASR model adaptation on a�e
tive spee
hdataSin
e we want to develop a spoken dialog system whi
h will be able to pro-
ess �exible, unrestri
ted user's language, spontaneous and emotionally 
ol-ored spee
h, the a
ousti
 model that is trained on emotionally neutral spee
hdata is tailored to the vo
al variability of the a�e
tive spee
h. In Chapter3, we investigate the poten
y of adapting emotional spee
h a
ousti
 modelsfor German language. By the 
omparison of the vowel triangles for a�e
tiveand neutral spee
h, we showed the vowel's pronun
iation pattern similarityof non emotional read spee
h and a�e
tive spee
h samples. Within evalua-tions presented in Chapter 5, we proved that due to the pronun
iation patternsimilarity of a�e
tive and neutral spee
h, emotion-spe
i�
 
hara
teristi
s 
an
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lusion and future workbe 
aptured from existing emotional spee
h 
orpora within adaptive transfor-mation of model parameters of the initial neutral spee
h model to obtain anemotional spee
h a
ousti
 model. The appli
ation of the maximum a posteri-ori (MAP) adaptation for the maximum likelihood linear regression (MLLR)transformed models gives a tremendous boost in emotional spee
h-re
ognitionperforman
e. The a

ura
y of a�e
tive spee
h re
ognition with the 
ombinedMLLR(RCT)+MAP adapted HMM/GMM models was about 8.9% absolutebetter than that of the ASR models trained on emotionally neutral spee
hsamples (baseline a

ura
y 87.37%). This resulted in remarkable performan
egain.By using emotional spee
h adapted ASR methods we 
an provide betterspontaneous-spee
h-re
ognition performan
e. This assumption has been 
on-�rmed by the usability experiment. Detailed results of this experiment 
anbe found in se
tion 6.7.7.2 Re
ognition of the user's emotional stateTo be able to design a user-
entered spoken dialog system, we set up in Chap-ter 4 a spee
h-based emotion-re
ognition framework that should be robustenough to dete
t emotional events within human-ma
hine intera
tion. A va-riety of emotion des
riptors is dis
ussed �rst. Two di�erent types of emotionalspee
h analyses are applied for spee
h-based emotion re
ognition: frame-level(dynami
 analysis) and turn-level (stati
 analysis) are presented. First of allwe des
ribed the set of a
ousti
 features whi
h 
an be applied for di�erentemotion-
lassi�
ation te
hniques. Two di�erent optimization te
hniques ap-plied on feature extra
tion level, namely normalization and standardizationand feature set optimization have been presented afterwards. Then we in-trodu
ed utteran
e-, 
hunk-, phoneme-level dynami
 analysis models for there
ognition of emotions within spee
h. Within experimental evaluations of theutteran
e-level dynami
 analysis we determined the single-state HMM/GMMas an optimal ar
hite
ture. In this framework we try to answer the questionif phoneti
 
ontent varian
e in�uen
es emotion-re
ognition performan
e neg-atively, and if models trained spe
i�
ally on the phoneti
 unit at hand 
anhelp. During evaluation experiments we found out that the introdu
ed unit-spe
i�
 emotion-re
ognition models 
learly outperformed 
ommon 
ontext-independent general models provided su�
ient amount of training materialper unit. Appearan
e of word-level labeled emotional 
orpora 
an improve
urrent performan
e of phoneme and word-level emotion-re
ognition models.In se
tion 5.3.2 we provide results of the ben
hmark 
omparison underequal 
onditions on nine standard emotional spee
h 
orpora presented in Ta-
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ognition of the user's emotional state 149ble 2.3 in the �eld using the two pre-dominant paradigms: dynami
 analysison a frame-level by means of hidden Markov models and stati
 analysis (supra-segmental) by systemati
 feature brute-for
ing. To provide better 
ompara-bility among sets, we additionally 
luster ea
h of the database's emotions intobinary valen
e and arousal dis
rimination tasks (positive, negative), see se
tion2.7. When 
omparing the dynami
 analysis with stati
 analysis an interesting
on
lusion 
an be drawn: dynami
 analysis seems to be slightly superior forspontaneous spee
h 
orpora 
ontaining variable textual 
ontent (AVIC, SAL,SmartKom, VAM), i.e. the subje
ts were not restri
ted to a prede�ned s
ript,while stati
 analysis outperforms frame-level modeling on 
orpora where thetextual 
ontent is �xed (ABC, DES, EMO-DB, eNTERFACE, SUSAS), i.e.where there is an overlap in verbal 
ontent between test and training set. This
an be explained by the nature of supra-segmental modeling: in 
orpora withnon-s
ripted 
ontent, turn lengths may strongly vary. While frame-level mod-eling is mostly independent of highly varying turn length, in supra-segmentalmodeling ea
h turn gets mapped onto one feature ve
tor, whi
h might notalways be appropriate.To show the robustness of our emotion-
lassi�
ation te
hniques, we pre-sented in se
tion 5.3.4 results of the INTERSPEECH 2009 Emotion Chal-lenge [S
huller et al., 2009
℄. With our emotion-
lassi�
ation te
hnique basedon dynami
 analysis we proved that only by using spe
tral features (Mel-frequen
y Cepstral 
oe�
ients (MFCC)) and utteran
e-level analysis we 
anrea
h one of the best emotion-re
ognition performan
es for spontaneous emo-tional spee
h. We got se
ond pla
e for the two emotion 
lasses task and forthpla
e for the �ve emotion 
lasses task over 33 resear
h groups registered toget a

ess to the data.Finally, in se
tion 5.3.5 we present evaluation results for 
ross-
orpus eval-uation for intra- and inter-
orpus spee
h-based emotion re
ognition. Weshowed that the re
ognition rates highly depend on the spe
i�
 sub-groupof emotions 
onsidered. Emotion-re
ognition performan
e de
reases dra-mati
ally when operating 
ross-
orpora-wise. As long as 
onditions remainsimilar, 
ross-
orpus training and testing seems to work to a 
ertain de-gree: the DES, EMO-DB, and eNTERFACE datasets led to partly usefulresults. However, the 
ross-
orpus testing on a spontaneous emotions dataset(SmartKom) 
learly showed limitations of the 
urrent 
ontext-independentemotion-re
ognition systems. As a result, in se
tion 4.4.3.3 we proposed touse a new 
ontext-dependent emotion-
lassi�
ation te
hnique whi
h is basedon vowel-level formants tra
king. By evaluating this te
hnique we showedthat the average F1 values extra
ted on a vowel-level are strongly 
orrelatedwith the level of arousal of the speaker's emotional state. We de�ned the listof the most indi
ative German vowels within the task of measuring the level



150 Chapter 7. Con
lusion and future workof arousal of the speaker's emotional state. Also, we estimated the optimalNeyman-Pearson's 
riteria thresholds for a
ted and spontaneous emotions. Ithas been shown that spontaneous emotions required higher η values in 
om-parison with optimal η values for a
ted emotions. We showed that the list ofthe most indi
ative German vowels within the task of measuring the level ofarousal of the speaker's emotional state 
an be used for spontaneous emotion
lassi�
ation.To summarize the overall results, the best emotion-re
ognition perfor-man
e is a
hieved on the databases 
ontaining a
ted, prototypi
al emotions,where only emotions with high inter-labeler agreement were sele
ted (EMO-DB, eNTERFACE, DES). The remaining emotional 
orpora are more 
hal-lenging sin
e they 
ontain non-a
ted or indu
ed emotions. On the lower endof re
ognition performan
e the SAL, SmartKom, and VAM 
orpora 
an befound, whi
h 
ontain the most spontaneous and naturalisti
 emotions, whi
hin turn are also the most 
hallenging to label. In this thesis we presented a va-riety of task-oriented suitable emotion-re
ognition methods. For example the
ontext-independent utteran
e-level emotion-re
ognitionmethod 
an be easilyimplemented for HMI systems whi
h do not require textual interpretation ofthe user's spee
h. In 
ontrast to the "brute-for
e" emotion-
lassi�
ation te
h-niques we develop methodologi
ally simple methods, whi
h are universallyusable for professional appli
ations.7.3 Appli
ation of the previously des
ribed
ontributionsA prototypi
al spoken dialog system with a user-behavior-adaptive spokendialog system was 
reated within the NIMITEK2 
ollaboration. This sys-tem in
ludes phoneme-level emotion re
ognition and ASR models adaptedwith MLLR(RCT) te
hnique on emotional spee
h data. To prove an appro-priateness of appli
ation of the previously des
ribed 
ontributions we orga-nized intera
tive usability experiments for our prototype spoken dialog system.Within the usability experiment we 
ould show that during human-ma
hine
ommuni
ation frustration situations, the user-behavior-adaptive spoken dia-log system (UASDS) provides 
omprehensive help and exhaustive re
ommen-dations in 
ontext of the 
urrent state of the task. The UASDS built upona
ousti
 emotion re
ognition in 
ombination with a�e
tive-spee
h-adaptedASR models de
reases intera
tion time by 40.9%. During usability tests2Neurobiologi
ally Inspired, Multimodal Intention Re
ognition for Te
hni
al Communi-
ation Systems, 2005-2010, [Wendemuth et al., 2008℄



7.4. Future work 151we found out that the a�e
tive-spee
h-adapted ASR models provide betterspontaneous-spee
h-re
ognition performan
e in real appli
ations. At the sametime user-behavior-based dialog management stimulates the user for a more
ooperative intera
tion with the 
omputer. As a result the user's 
ommandsvo
abulary adaptation time is redu
ed by 58.7%.7.4 Future workThe resear
h on a�e
tive-spee
h-adapted ASR models and emotion re
ogni-tion from spee
h may be further 
arried out in a number of dire
tions:� Colle
tion of emotional spee
h material with reliable textualand emotional annotation:Creation of new well-annotated emotional 
orpora 
an help us to makea more detailed emotional spee
h analysis. Within the annotation pro-
ess we should take into a

ount two main issues: Firstly, trans
riptionneeds to a
knowledge the full range of features involved in the a
ous-ti
 expression of emotion, in
luding voi
e quality, boundary prosodyand non-linguisti
 features su
h as laughter, 
rying, 
latter, breath, et
..Se
ondly, it needs to des
ribe the attributes (e.g., linguisti
, dialog a
tsspe
i�
ation) that are relevant to emotion. Within the TransregionalCollaborative Resear
h Center SFB/TRR 62 "Companion-Te
hnologyfor Cognitive Te
hni
al Systems" funded by the German Resear
h Foun-dation (DFG) we are 
olle
ting a new spee
h 
orpus with spontaneousemotions. Well trans
ribed data with reliable emotion annotation willbe an important dataset for detailed 
ontext-dependent spontaneous-emotion-re
ognition experiments.� Improvement of ASR performan
e by 
reation of more reliablelexi
a:In this work, the gain of emotion spee
h adapted ASR and 
ontext-dependent emotion re
ognition is limited due to the various errors in-
luded in existing German lexi
ons. To improve re
ognition perfor-man
es, the lexi
a should be modi�ed. All wrong phoneti
 trans
rip-tions should be 
orre
ted; in a 
ase of various phoneti
 trans
riptionswhi
h are representative for the same word, all trans
riptions should bein
luded in the new lexi
on.� More detailed fundamental 
ontext-dependent analysis of emo-tion indi
ative a
ousti
 features:Within our resear
h we proved that the vowel 
an be used as the smallestemotional unit of analysis. We �nd out that using vowel-level analysis,namely formants tra
king, 
an be an important issue during developing
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lusion and future worka robust emotion 
lassi�er. We are pretty sure, that there exists someother qualitative and temporal 
hara
teristi
s of the smallest phoneti
units whi
h 
an be used for robust 
ontext-dependent emotion re
ogni-tion. Future resear
h may be 
arried out to spe
ify this qualitative andtemporal measures.� A Companion-Te
hnology for Cognitive Te
hni
al Systems:Within this interdis
iplinary resear
h a
tivity of the Transregional Col-laborative Resear
h Centre SFB/TRR 62 we will integrate our methods(user-behavior-adaptive dialog management, multimodal user's emotionpro
essing) initiated within the NIMITEK proje
t into a new Compan-ion te
hnology system.� Dialog-state-dependent emotion re
ognition:Combination of the spee
h-based emotion 
lassi�
ation and dialog a
tfeatures analysis 
ould improve performan
e of mis
ommuni
ation de-te
tion during HMI. For example, �nding repetitions of the same dialogmight 
ontribute in addition to the a
ousti
-based emotion 
lassi�
ationto the dete
tion of trouble in 
ommuni
ation.� Multimodal emotion re
ognition:In future we want to 
ombine audio, video emotion analysis with pro-
essing of some physiologi
al responses (blood pressure, blood volumepulse, respiration rate, heart rate, galvani
 skin response, ECG, EMG,et
.). In su
h a way we want to develop our own multimodal emotion-
lassi�
ation te
hnique within ongoing Transregional Collaborative Re-sear
h Center SFB/TRR 62. For fusion of these various pro
essingstreams we should take into a

ount 
orresponding emotion indi
ativeresponses delays. For example, some physiologi
al responses 
ould in-di
ate an emotional user's state slightly later than mimi
 expression.� Sele
tion of suitable emotion 
ategorization te
hnique:In future we would like to work on essential problems for the analysis ofspontaneous emotional spee
h. For instan
e, we want to determine whatan emotional episode is, where it starts and where it ends (emotionalevents lo
alization) and whi
h emotional annotation approa
h (multi-dimensional representation or 
lassi
al emotion 
ategories) to 
hoosefor annotation purposes.
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