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Zusammenfassung

Systeme im Bereich der Mensch-Maschine-Interaktion (MMI) im Allgemeinen,
und im Speziellen aktuelle Sprachdialogsysteme (SDS), die auf automatis-
cher Spracherkennung (ASR) basieren, haben Defizite bei natiirlicher und be-
nutzerfreundlicher Kommunikation. Problematisch dabei ist, dass die meisten
Systeme wichtige Informationsquellen iiber die Aktivitit des Nutzers nicht
in Betracht ziehen. Dies sind unter anderem die Motivation und Inten-
tion sowie der emotionale Zustand des Nutzers. Detaillierte Analysen dieser
Eigenschaften konnen daher bedeutend zu Prinzipien der Entwicklung nutzer-
freundlicherer Systeme beitragen. Die Notwendigkeit der Emotionsanalyse
in der MMI liegt in den Beschriankungen der ASR: aktuelle, automatische
Spracherkennungssysteme kénnen nicht mit flexibler, spontaner, nicht im Vok-
abular eingeschrankter und emotional gefirbter, d.h. allgemein affektbetonter
Sprache umgehen. Daher riickte in den letzten Jahren konsequenterweise die
Analyse emotionaler Sprache in den Fokus der ASR und dariiber hinaus auch
in das Blickfeld der Sprachsynthese. Beide Techniken kdnnen einen Beitrag
fiir eine intelligentere und nutzerbezogenere MMI leisten.

In dieser Arbeit werden neue Ansétze zur nutzerbezogenen Interaktion aus
der Sicht der automatischen Emotions- und Intentionserkennung aus gesproch-
ener Sprache untersucht. Dabei liegt das Hauptziel auf der Bereitstellung einer
effektiven Emotionssprachverarbeitung (Emotionserkennung, Erkennung emo-
tional gefirbter Sprache). Der Beitrag dieser Arbeit ist die Beschreibung affek-
tbetonter Spracherkennungsmethoden auf Basis von Hidden-Markov-Modellen
(HMMs) mit Gauf’schen Mischverteilungsmodellen (GMMSs). Der dazu ver-
wendete Framework enthilt Konzepte der ASR, die auf Aspekten der HMM-
s/GMMs basieren: Auswahl von Wort-Untereinheiten und deren quantita-
tiven und qualitativen Definitionen, dem Erkennunsgsalgorithmus fiir spon-
tane Sprache und einem Sprachmodell, sowie Adaptationsverfahren zur ro-
busten Emotionsspracherkennung. Im Speziellen werden Wort-Untereinheiten
des Deutschen in der ASR beschrieben. Dariiber hinaus werden phonologische
Muster mit detaillierten Spezifikationen fiir Konsonanten, Vokale und Diph-
thonge des Deutschen vorgestellt. Fiir die Beschreibung der Vokale und Diph-
thonge wird das Vokal-Dreieck verwendet, anhand dessen die verschiedenen
Charakteristiken von affektbetonter und neutraler Sprache verdeutlicht wer-
den kénnen. In dieser Arbeit wird gezeigt, dass auf Grund der Ahnlichkeiten
in den Aussprachemustern von affektbetonter und neutraler Sprache, emo-
tionsabhéngige Eigenschaften von existierenden Emotions-Korpora auf andere
Sprachkorpora iibertragen werden konnen. Dabei werden die Modellparam-
eter eines neutralen Modells durch geeignete Transformationen so verdndert,
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dass ein akustisches Modell fiir emotionale Sprache entsteht. Wir haben
die Adaptionsmethoden anhand deutscher Sprachkorpora getestet und einen
beachtenswerten Genauigkeitszuwachs fiir die Emotionsspracherkennung erre-
icht.

Der zweite Teil der Arbeit beschreibt unsere verschiedenen Methoden
zur Klassfikation von Emotionen in detaillierter Weise. In Kapitel 4 geben
wir einen Uberblick iiber existierende Techniken der Emotionserkennung aus
Sprache und besprechen akustische Features, die fiir die Unterscheidung von
emotionalen Ereignissen am geeignetsten erscheinen. Zwei Klassifikation-
stechniken werden dabei ndher vorgestellt: die statische (turn-level) und
die dynamische (frame-level) Methode. Zur Entwicklung der dynamischen
Emotionserkennung verwenden wir Hauptkonzepte der aktuellsten Methoden
der Spracherkennung, die auf HMM/GMM Modellen basiert. Im Speziellen
prisentieren wir verschiedene Methoden der Emotionsklassifikation basierend
auf der Analyse unterschiedlicher Einheiten der Spracherkennung: Auferun-
gen, Satzteilen (Chunks) und Phonemen. Zwei Arten der Analyse auf
Phonem-Ebene werden detailliert vorgestellt: emotionale Phonemklassen und
Formant-Verfolgung von Vokalen. Dariiber hinaus diskutieren wir zwei Arten
der Fusion von Klassifikationsergebnissen. Diese sind: zweistufige Fusion und
Fusion auf mittlerem Abstraktionsniveau. Abschliefend werden die Erken-
nungsleistungen fiir einheitenspezifische (kontextabhingige) und allgemeine
(kontextunabhéngige) Modelle verglichen. Dabei konnen wir zeigen, dass die
Emotionserkennung auf Basis von einheitenspezifischen Modellen solche mit
kontextunabhingigen in der Erkennungsleistung iibertreffen, vorausgesetzt es
steht pro Einheit geniigend Trainingsmaterial zur Verfiigung.

Beide vorgestellten Ansdtze werden auf verschiedenen Sprachkorpora
evaluiert. Fiir die Experimente mit affektbetonter Sprache werden unter-
schiedliche Strategien zur Verifikation verwendet und diverse Erkennungsmafe
benutzt. Durch Verwendung von Formantverfolgung auf Vokalebene kon-
nen wir zeigen, dass unimodale, akustische Merkmale (gemittelte F1 Werte)
stark mit dem Grad der Erregung (arousal) eines Sprechers korreliert sind.
Mit diesen Merkmalen, dem Neyman-Pearson Kriterium und einer kleinen
Menge an Trainingsmaterial (1-2 Auferungen pro Sprecher) zur Adaption er-
halten wir Ergebisse in der Emotionserkennung, die mit den auf affektbeton-
ten Korpora trainierten Klassifikatoren vergleichbar sind. Mit unserer Meth-
ode der Erkennung, basierend auf dynamischer Analyse, und der Verwendung
von spektralen Merkmalen (Mel-Frequency Cepstral Coefficients) konnten wir
eines der besten Klassifikationsergebnisse auf spontaner, emotionaler Sprache
wahrend der INTERSPEECH 2009 Emotion Challenge erreichen.

Einige der Resultate dieser Arbeit wurden in einem prototypischen Di-
alogsystem, welches vom Autor und einigen Kollegen unter fortdauernder Ko-
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operation seit 2005 entwickelt wurde, umgesetzt. Hierbei wurde das Sys-
tem so erweitert, dass es sich an den emotionalen Zustand des Nutzers an-
passen kann. In Nutzertests fanden wir heraus, dass besonders in frustrieren-
den Situationen, ein solches System, mit Adaption an den emotionalen Zu-
stand, erfolgreich Hilfestellungen und Losungsvorschlige im Zusammenhang
mit den aktuellen Aufgaben geben konnte. Sprecheradaptive Sprachdialogsys-
teme basierend auf akustischer Emotionserkennung in Kombination mit einer
affektbetonten Adaption des ASR Modells senken die Zeit, die zur Interaktion
und zur Anpassung an das Vokabular bendtigt wird, signifikant, wodurch die
MMI benutzerfreundlicher und nutzerbezogener wird.






Abstract

General human-machine interaction (HMI) systems, and in particular cur-
rent state-of-the-art spoken dialog systems (SDS) based on automatic speech-
recognition (ASR) technology, have a number of deficiencies in communicating
with a user in a natural and friendly way. One problem is that most of these
systems do not take into account important sources of the user’s activities
such as his/her motivation, intention and emotional state. Detailed analysis
of these activities could, therefore, be an essential feature of a user-friendly
interaction interface. The importance of user’s emotional state analysis dur-
ing HMI lies in existing limitations of ASR: current ASR methods still cannot
deal with flexible, unrestricted user’s language, spontaneous and emotionally
colored speech. Consequentially, emotional speech processing is a topic that
has received a great deal of attention during the last decade within speech
synthesis as well as in ASR. Emotional speech synthesis and recognition of
emotions within HMI can contribute to more intelligent and user-centered
interaction.

In this thesis, new approaches for user-centered interaction are investigated
from the point of view of emotions and intentions automatically estimated
from speech. The main research goal of this thesis is to provide an effective
emotional speech processing (emotion recognition, emotional speech recogni-
tion). The first contribution of this thesis is to describe automatic affective-
speech-recognition methods based on hidden Markov models (HMMs). This
framework presents the main aspects of the HMM-/GMM-based ASR con-
cept: a selection of the sub-word units and their quantitative and qualitative
specification, the decoding algorithm for spontaneous speech, a language mod-
eling and the adaptation techniques for a robust affective speech recognition. In
particular, the sub-word units selection for German ASR is described. After-
wards, a German phonetic pattern with a detailed specification of all conso-
nants, vowels and diphthongs is presented. For specification of the vowels and
diphthongs a vowel triangle is used. By generating vowels triangles for various
speaker’s emotional states we show the different characteristics of the affec-
tive and neutral speech. In this work, we prove that due to the pronunciation
pattern similarity of affective and neutral speech, emotion-specific character-
istics can be captured from existing emotional speech corpora within adaptive
transformation of model parameters of the initial neutral speech model to
obtain an emotional speech acoustic model. We investigate the potency of
adapting emotional speech acoustic models for the German language and we
obtain a considerable performance gain for the emotional speech recognition.



The second contribution of this thesis is to provide a detailed description
of our various emotion-classification techniques. In Chapter 4 we present an
overview of existing speech-based emotion-recognition techniques, and discuss
acoustic feature sets, which are the most informative for emotional events de-
termination. Two different emotion-classification techniques, namely, static
(turn-level) and dynamic (frame-level) are presented. We use the main con-
cepts of state-of-the-art speech recognition based on HMM /GMM models for
developing our dynamic emotion-recognition techniques. In particular, we
present, various emotion-classification techniques with different units of anal-
ysis: utterance, chunk, and phoneme. Two different phoneme-level emotion-
classification techniques, emotional phoneme classes and vowel-level formants
tracking, are described in detail. Two possible combined emotion-classification
methods, two-stage processing and middle-level fusion, are presented. Finally,
we compare emotion-recognition performances for unit-specific (context de-
pendent) and general (context independent) models. We show that the in-
troduced unit-specific emotion-recognition models clearly outperform general
models provided sufficient amount of training material per unit.

The above two contributions are evaluated on various speech corpora. For
the experiments with affective speech corpora we use various types of evalu-
ation strategies and recognition rate measures. With a vowel-level formants
tracing technique we show that the unimodal acoustic features (average F1
values) extracted on a vowel-level are strongly correlated with the level of
arousal of the speaker’s emotional state. With these features, a straightfor-
ward Neyman-Pearson criterion and a small amount of training data (1-2 neu-
tral utterances per speaker) we obtain comparable good emotion-recognition
results. With our emotion-classification technique based on dynamic anal-
ysis we prove that only by using spectral features (Mel-frequency Cepstral
coefficients (MFCC)) can we reach one of the best emotion-recognition per-
formances for spontaneous emotional speech samples evaluated within the
INTERSPEECH 2009 Emotion Challenge.

Some of the findings described in this thesis have been incorporated into
a prototype dialog system specially developed by the author and colleagues
within ongoing funded collaborations (since 2005) in order to demonstrate
adaptation of the system to the user’s emotional state. Within a usability
experiment we find that during frustrating situations in HMI, the SDS with
emotional user state adaptation successfully provides comprehensive help and
exhaustive recommendations in the context of the current state of the task.
The user-behavior-adaptive SDS built upon acoustic emotion recognition in
combination with affective-speech-adapted ASR models significantly decreases
interaction and vocabulary adaptation time, which shows that HMI becomes
more friendly and user-centered.



Table of notations

General Notation:

S a scalar is denoted by a plain lowercase letter

\% a column vector is denoted by a bold lowercase letter
A a matrix is denoted by a bold uppercase letter

Q-]") an auxiliary function

Mathematical notation:

p(+) probability density function

p(-|) conditional probability density function
P(4) probability mass distribution

P(|) conditional probability mass distribution

Standard HMM notation:

M parameter set of HMM

w hypothetical word sequence W = [wy, ws, . . ., wk]

N number of HMM’s states

0, observation vector at time ¢

0] observation vectors sequence O = [01,09,..., 07|

Sy state at discrete time ¢

S state sequence s = [s1, Sg, . .., S7]

g discrete state transition probability from state i to j
b;(o¢) state output distribution given state j at time ¢

bim(0y) state output distribution given state j of m GMM component at time ¢
7} mean vector

by covariance matrix

,, mean vector of the m Gaussian component

a;(t) forward variable in forward-backward algorithm at time ¢

B;(t) backward variable in forward-backward algorithm at time ¢
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ASR
ASU
AVIC
CMS
CSDS
DA
DCT
DES
DPP
EM
EMO-DB
F1

EF2
FFT
FSO
G2P
GBC
GEW
GMM
HMI
HMM
HNR
HTK
IVR
LLD
LOSO
LOSGO
MFCC
ML
MLV
MSL
MV
NIMITEK

OOV
PDF
PE

Acronyms

Airplane behavior corpus, [Schuller et al., 2009b]
Automatic speech recognition

Automatic speech understanding

Audiovisual interest corpus, [Schuller et al., 2009b]
Cepstral mean substraction

Conventional spoken dialog systems

Dialog act

Discrete cosine transform

Danish emotional speech corpus, [Engbert and Hansen, 1996]
Dynamic programming principles

Expectation maximization

Berlin emotional speech database, [Burkhardt et al., 2005]
First formant

Second formant

Fast Fourier transform

Features set optimization
Grapheme-to-phoneme

Global base class

Geneva emotion wheel

Gaussian mixture model

Human-machine interaction

Hidden Markov model

Harmonics-to-noise ratio

Hidden Markov model toolkit

Interactive voice response

Low-level descriptors

Leave-one-speaker-out
Leave-one-speakers-group-out

Mel-frequency cepstral coefficients

Maximum likelihood

Maximum length vote

Maximum classifier prediction score multiplied with the length vote

Majority vote

Neurobiologically inspired multimodal intention recognition
for technical communication systems

Out-of-vocabulary

Probability density functions

Phoneme emotional
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PLOI
PT
RCT
RHS
SAL
SCV
SD
SDS
SER
SI

SN
SUSAS

SVM
TASN
TUM
UA
UASDS
VAD
VAM
WA
WER
WHG
WOZ

Phoneme level of interest

Phonetic transcription

Regression class tree

Right-hand side

Sensitive artificial listener corpus, [Wollmer et al., 2008]
Stratified cross-validation
Speaker-dependent,

Spoken dialog systems

Speech emotion recognition
Speaker-independent

Speaker normalization

Speech under simulated and actual stress,
[Hansen and Bou-Ghazale, 1997]
Support vector machine

Textual associations semantic networks
Technische Universitdat Miinchen
Unweighted average recall

User-adapted spoken dialog systems
Valence-arousal-dominance
Vera-am-mittag corpus, [Grimm et al., 2008|
Weighted average recall

Word error rate

Word hypothesis graph

Wizard of Oz



Glossary

- Explanation of terms as they are used in this thesis.
- Bold words refer to other entries in this glossary.

Acoustic
model

Adaptation

Affective speech
Annotation
Arousal

Basic emotions

Behavior model
Boundary prosody

Chunk

Circumplex

Clustering of
emotions

Companion
Technology

model which maps the acoustic observation vectors
to the phonetic units.

model based compensation of acoustic mismatch.
correction of user’s commands set used during
interaction with a system.

emotional speech.

emotional specification of a speech sample.

excitation level.

primary or fundamental emotions defined by
various psychologist.

a-priory information about user’s emotional state.
phrasing, accentuation or focus of attention, sentence moods.

context-independent acoustic signal segment obtained
within emotional segment detection.

cone-shaped model (3D) or wheel model (2D) of
emotion representation.

clustering of emotions to a binary (positive/negative)
arousal and valence or 4 quadrants discrimination task.

a user-centred dialogic man-machine-interaction techno-
logy, based on fundamental technical, informational,
psychological and neurobiological concepts. Investigated
by an ongoing research project, the Transregional
Collaborative Research Centre SFB/TRR 62.
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Context information about phonetic transcription, word or sentence
(to be understood as emotional context).

Corpus dataset of speech samples and corresponding tran-
scriptions and/or annotations.

Dialog speech based interaction between human and machine.

Domain limited set of textual information which can be
used for language modeling.

Dominance apparent strength of the person. [Grimm et al., 2007]

Dynamic analysis emotion processing on frame level.

Emotion short time user’s reaction bound to a specific stimulus.
Emotion word identifier which specifies an emotional
category user’s state.

Emotion user’s emotional state specification with emotion
descriptor categories or numeric values in an emotion space.
Emotion space two- or three-dimensional (e.g. valence-arousal-

[dominance(potency)]) space, where each emotion can
be defined as a point with corresponding coordinates.

Formant the spectral peaks of the speech spectrum.

Frame segment of acoustic speech signal (e.g. 25 ms length for
automatic speech recognition and utterance-level emotion
classification).

Fusion combination of several classification techniques.

Geneva emotion wheel with 20 spokes (emotion families), each spoke is

wheel associated with a type of emotion (10 negative and 10

positive emotions) arranged on pleasure-dominance space.

Grammar specification of a possible word sequence with
a predefined word occurrence order.
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Human-machine

interaction

Intelligent spoken

dialog system

Intention

Language model

Lexicon
Low-level
descriptors

Mapping of
emotions

Middle-level
fusion

Modality

Motivation

Multimodal
Phoneme
Plutchik’s

emotional
wheel

structured and thematic domain-dependent interaction
between a user and a system.

system which accommodates the speaker’s emotions
im a proper way.

user’s operational goal.

list of words that can follow each word included in the
vocabulary with associated discrete probability.

phonetical transcriptions for all words included in
the vocabulary.

acoustic features applied for static analysis, see
Table 4.2 on page 83.

functional mapping of categorical emotions on
valence-arousal dimensional space.

combination of two classification techniques, which
used classification scores of the first classifier as an
additional feature set of the second classifier.

an information channel used for classification.

process that initiates a reason or an interest that
causes a specific action or certain behavior.

based on several information channels.

smallest acoustic component of speech to form meaning-

ful utterances.

conceptualization of the primary emotions in a color-
wheel fashion — placing similar emotions close together

and opposites 180 degrees apart, like additional colors
[Plutchik, 2001].
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Potency

Robust
Speech

Static analysis
Statistical
functionals
Transcription
Turn
Unimodal
Unit specific

User-behavior
adaptive

Utterance

Valence

Vocabulary

Vowel triangle

Wizard of Oz
experiment

individual’s sense of power or control, for example
"concentrated vs. relared attention”, "dominance vs.
"submissiveness”.

stable enough to be implemented in real-life application.

acoustic signal produced by a speaker.

emotion processing on turn level with statistical
functionals.

functions which project uni-variate time series onto a
scalar feature independent of the length of the turn

(e.g. mean, standard deviation, etc.).

phonetic specification of a speech sample.

word or word sequence within completed speaker’s command.
based on single information channel.

context dependent.

adaptive to the current user’s emotional state.

word or word sequence within completed speaker’s command.

represents the value — positive or negative — of the user’s
emotion.

list of words which can be recognized by the system.

represents the extremes of vowel’s formant location in the
F1/F2 space.

experiments which are based on subjects’ illusion that
they are interacting with a computer driven system,
while a human operator simulates a computing system.
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Introduction
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1.1 Motivation and aim

urrently, automatic recognition of emotions from speech, mimics and
C other modalities has achieved growing interest within the human-
machine interaction research community and spoken dialog system designers.
Emotion recognition is a guiding star on the path to making a communication
between humans and computers more friendly and cooperative. With robust
emotion recognition, we will be able to model a user’s behavior within interac-
tion with a computer. At the same time, automatic assessment of an affective
speech will simplify speech understanding and intention detection tasks.

The importance of human-behavior-based dialog strategies in human-
machine interaction (HMI) lies in an existing limitations of automatic speech-
recognition (ASR) technology. The current state-of-the-art ASR approaches
still cannot deal with flexible, unrestricted user’s language [Lee, 2007], [Benze-
ghiba et al., 2007|. Therefore, problems caused by a misunderstanding of a
user who refuses to follow a predefined, and usually restricting, set of commu-
nicational rules seems to be inevitable.

It has been shown in [Bosch, 2003], that the "linguistic content" of spoken
utterance goes beyond its "text" content. During human-to-human communi-
cation, the listener extracts important information (semantic boundaries, ac-
cents, sentence mood, focus of attention, and emotional state of the user [Nie-
mann et al., 1998]) out of prosodic cues. Detecting and utilizing such cues
as a part of the user-behavior state descriptors is one of the major challenges
in the development of reliable human-machine interfaces. Knowledge of the
user’s emotional states can help to adjust system responses so that the user
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of such a system can be more engaged and have a more effective interaction
with the system [Gnjatovi¢ and Rosner, 2008b].

The speech-recognition task becomes more and more difficult, and enor-
mous challenging problems on acoustic modeling arise. One of the challenges
is the diverse prosodic characteristics of the spontaneous speech data. For
example, different non-lexical events, intonation variability, a speaker mood
change. Most ASR systems are designed not to be receptive to intonation,
user’s emotional state, and loudness variability. It has been shown that ASR
performance depends on speaking style and level of formality [Weintraub et al.,
1996]. Adaptation techniques can be used to increase performance of affective
spontaneous speech recognition. By adapting an ASR model trained on neu-
tral speech on a sparse amount of affective speech samples, we can provide
so-called 'statistical similarity' of training and test material [[jima et al., 2009).

Research by neuroscientists and psychologists showed that a user’s emo-
tional state is closely related to the decision-making process during the human-
to-human communication [Damasio, 1994|, within a human-machine interac-
tion and thus, emotion plays an important role in the sensible human ac-
tions. Realizing the importance of emotions in a human communication and
a decision-making process, it is desirable for an intelligent human-machine
interface to accommodate the human emotions in a proper way.

1.1.1 Applications of automatic emotion recognition

Emotions perform an important function in human communication and in-
teraction, allowing people to express themselves beyond the bounds of the
verbal communication. The ability to understand human emotions within
human-machine interaction is desirable in several applications:

e Expressive speech synthesis, for a new generation of HMI systems which
can be used to increase the naturalness of the human-machine interac-
tion.

e Emotion recognition (e.g., for early miscommunication and frustration
detection in spoken dialog systems, such as commercial telephone-based
dialog systems)

e Safety drive assistance, automatic recognition and control of emotions
for in-car interfaces,

e Opinion mining and level of interest classification which automatically
tracks customer’s attitudes regarding a product across blog comments
(Web 2.0),

e Affective monitoring for "lie detection" systems like polygraph, fear de-
tection for surveillance purposes or anger detection for conflict situations
detection,
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e Character design and interaction control for games and virtual-reality
scenarios,

e Social robots, such as guide robots engaging with visitors (e.g., MEXI
a Robot with Emotions, Fujitsu Service Robot "ENON"),

e Support for people with disabilities, such as educational programs for
people with autism

e Automatic movie genre classification or episodes indexing (comedy, ac-
tion, drama and etc.)

1.1.2 Variety of modalities

Humans-to-human interaction is mainly based on vocal communication, but
also facial mimics and body gesture language. Both are used to emphasize a
certain part of the speech and display of emotions. An analysis of a gaze, a
posture, gestures, facial expressions, an eye contact, face and lip movements
can support a user-behavior modeling. Likewise, the speech signal may con-
vey linguistic as well as paralinguistic information. It has been shown that
linguistic properties can be used as an indicator of miscommunication situa-
tions [Noth et al., 2004]. Furthermore, it has been shown that sentence mood
in German can be indicated by prosody, lexical content, word order, and mor-
phology [Batliner et al., 2003]. Besides prosodic variation, speakers indeed
employ a number of different linguistic features to express their emotions.

There are some physiological responses that can be used for the recogni-
tion of the user’s emotional state. These include blood pressure, blood volume
pulse, respiration rate, heart rate, galvanic skin response, ECG, EMG and oth-
ers. It was proved that emotional states can be recognized automatically from
generic, and efficient physiological feature set design for each physiological sig-
nal [Honig et al., 2009].

It is well-known that using automatic lipreading in combination with au-
tomatic speech recognition leads to higher speech-recognition performance. In
addition, comparable to the silent visual cues from a system, facial expressions
of a user may indicate communication problems even when the person is not
speaking, for instance when the user becomes aware of a miscommunication
situation during the system’s prompts.

Fusion of the user’s speech and visual cues analysis is becoming an ordinary
feature in advanced multimodal spoken dialog systems. Combined audio low-
level descriptors and video low-level descriptors time series analysis approach
to an audiovisual behavior modeling proved to be highly promising [Schuller
et al., 2007c|. The visual information may provide a useful source for detecting
miscommunication or frustration, next to existing sources such as linguistic
and prosodic cues. Automatic facial tracking could be beneficial for improving
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human-to-machine interactions in that audiovisual events indicate problematic
dialog events and allow the system to monitor the level of frustration of a
user [Barkhuysen et al., 2005].

1.1.3 Technical problems in realization

The main problem of user emotional states classification within speech is a dif-
ficulty of data collection. In most cases, actors simulate emotions according to
some certain scenario usually in a perfect acoustic condition. These materials
are good for emotion-classifier developing and the most informative acous-
tic feature set selection in the context of an emotion-recognition task. But
this acted data is not applicable for training robust models for spontaneous
emotion recognition.

An alternative to the prototypical expressions of "pure" emotions is to
use experiments which simulate human-computer conversations with a so-
called Wizard of Oz (WOZ) scenario. A questionnaire study conducted after
some WOZ experiments showed that speakers may first be slightly frustrated,
then become really annoyed, and as they believe they are talking to a com-
puter, they do not attempt to display their emotional state to their artifi-
cial communication partner at all. In most cases, emotional data collected
during WOZ is less emotionally intensive in comparison to acted material.
As a result, in most publications related to emotional speech processing,
performance of emotion classification on acted data outperforms evaluation
results of spontaneous emotions. Acoustically based emotion classification
works quite well for prompted affective speech [Schuller et al., 2009], but is
not sufficient for the more realistic spontaneous emotions which occur in real
systems or WOZ scenarios. It was demonstrated that spontaneous emotion-
classification performance increases if we add more knowledge sources, for
instance, syntactic-morphological parts of speech (POS) information. One
can model and find miscommunication indicators better if one incorporates
higher linguistic-pragmatic information, for instance, by recognizing repeti-
tions [Batliner et al., 2003].

Another significant problem for the analysis of spontaneous emotional data
is emotional chunks delimitation. The problem lies in defining the "reference"
of a study; that is, determining which part of a user’s utterance should be
marked as emotional and which as neutral. In most cases, within human-
machine interaction speakers do not display single, pure, emotions in their
full intensity within one utterance. At the same time, correct detection of
pure saturated anger will certainly be too late for the spoken dialog system
to react in a way so as to fix a miscommunication problem. The main issue
is not a detection of overflow anger, but classification of all forms of slight or
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medium irritation indicating a critical phase in the dialog that may become
real saturated anger if a wrong dialog strategy is applied.

There are ongoing debates in the affective-speech-processing community
concerning how many emotion categories exist and which of them are applica-
ble for intelligent spoken dialog systems, how to submit long-term (utterance,
sentence, dialog act) properties, for example, moods with short-term affective
events such as full-blown emotions. Research aimed at recognizing emotion re-
quires databases that contain as many as possible of the indications by which
a given emotion can be expressed. Most of the publications on acoustic-based
emotion processing is underpinned by "datasets" rather than "databases".
They are relatively small-scale collections of speech samples, usually estab-
lished to examine a single case issue, and not publicly available [Douglas-Cowie
et al., 2003].

One of the problems of automatic emotion-classification research is a non-
standardized annotation methodology. Emotions annotation methodology
needs to be standardized. Afterwards the speech-processing community can
start a joint emotional speech data collection and annotation that solves the
problem of a sparse amount of well-annotated affective speech data.

1.1.4 Research goals

The primary aim of this research is to present new affective speech-processing
methods and their possible application for user-friendly spoken dialog systems.
Recognition of prosodic cues such as emotional state and stress level of the
speaker may be detected and used for an affective-behavior-adaptive dialog
strategy.

An overview of existing affective-speech-processing methods is presented
in this thesis. The advantages and disadvantages of different speech-based
emotion-classification methods are discussed. Also, new methods of acoustic
emotion classification and affective-speech-adapted ASR models are described.
Robustness and usability of the above-mentioned methods have been proved
by evaluations on well-known emotional speech corpora. Results of evaluations
are presented in our publications and this thesis.

1.2 Practical implementation of the research

Within well-known projects like VERBMOBIL and SMARTKOM [Herzog
et al., 2004] a framework for building integrated natural-language understand-
ing with multimodal dialog systems was created. Both projects include the
prosody module for boundary prosody analysis, sentence mood and phrase
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accent classification. The prosody module integrated in the SMARTKOM
demonstrator is based on the Verbmobil prosody module [Batliner et al.,
2000a]. In contrast to the Verbmobil version, few major changes have been
made concerning both implementation and classification models. The most
noticeable is a user state classifier. All existing classification models for the
recognition of prominent words, phrase boundaries, and questions have been
retrained on the actual SMARTKOM Wizard of Oz data [Zeifler et al., 2006].

My research addresses aspects of design and implementation of user-
behavior models in dialog systems for frustration detection and user-intention
recognition, aimed to provide naturalness of human-machine interaction.
For real-life evaluation, acoustic emotion-classification methods, robust af-
fective automatic speech-recognition (ASR) methods, and user emotion cor-
related dialog management, a multimodal human-machine interaction sys-
tem with integrated user-behavior model has been created within the project
"Neurobiologically Inspired, Multimodal Intention Recognition for Technical
Communication Systems" (NIMITEK) [Wendemuth et al., 2008]|. Currently
the NIMITEK demonstration system provides a technical demonstrator to
study user-behavior-modeling principles in a dedicated task, namely solving
the game "Towers of Hanoi". The user-behavior model integrated in the
NIMITEK demonstrator based on emotion-classification methods will be de-
scribed in this thesis. Within a usability test [Vlasenko and Wendemuth,
2009a], we find that our system with user-behavior-adaptive dialog strategy
provides more cooperative human-to-machine interaction and reduces inter-
action time required to complete the game.

1.3 Thesis structure

The thesis is organized as follows.

Chapter 2 presents the fundamental aspects of human-machine interac-
tion including automatic spoken dialog systems, natural speech characteris-
tics (boundary prosody, emotional prosody), user-behavior modeling during
communication, affective speech collection and processing. Then, clustering
of emotions and an adequate annotation strategy are described. Various eval-
uation strategies and recognition rate measures are discussed at the end of
the chapter.

Chapter 3 reviews the fundamental issues of automatic speech recogni-
tion, namely, feature extraction, acoustic modeling with HMMs, maximum
likelihood (ML) training, language modeling and search algorithms within
recognition. Also, sub-word units selection and adaptation on affective speech
samples are described.
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Chapter 4 addresses various speech-based emotion-recognition techniques.
An overview of existing emotion-classification methods, acoustic feature sets
specification concepts and emotion descriptors characteristics are presented
first. This chapter presents dynamic and static emotion-recognition methods
with corresponding acoustic feature sets and possible optimization strategies.
Our developed combined emotion-classification methods are also discussed
in detail. Finally, context-dependent and context-independent models are
evaluated.

Chapter 5 presents experimental results for affective speech recognition
and speaker’s emotional-state classification. Evaluation results for neutral and
affective-speech-recognition experiments are presented first. Also, this chapter
presents evaluation results of various emotion-classification methods described
earlier in Chapter 4. Finally, evaluation results for our emotion-classification
techniques within the INTERSPEECH 2009 Emotion Challenge [Schuller
et al., 2009¢| and cross-corpus acoustic emotion recognition are presented.

Chapter 6 describes a prototype of the user-friendly spoken dialog system
integrated into a NIMITEK demonstrator. The system dynamically selects a
dialog strategy according to the current user’s emotional state. This system
incorporate the findings described in previous chapters into a prototype dialog
system especially developed by the author and colleagues to demonstrate emo-
tional user state adaptation. In this chapter we describe the data collection
strategy within the NIMITEK Wizard of Oz experiments, and the structure of
the conventional and user-behavior-adaptive spoken dialog systems. Finally
we discuss the results of an interactive usability test.

Chapter 7 addresses the conclusions and direction of future research.
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2.1 Introduction

n this chapter we provide an overview of the several topics of interest in
I spoken dialog systems and human-machine interaction. We also provide a
brief description of spontaneous speech characteristics, namely, boundary and
emotional prosody. We also present an introduction to emotion theory, de-
scribe different emotion categorization approaches and survey existing sources
of emotional speech. Finally, we describe different types of evaluation strate-
gies and recognition-rate measures.

2.2 Human-machine interaction

Currently we live in the Age of Information. Information collection, searching,
and structuring are usual activities in the everyday life of modern humans.
We use electronic devices (computers, digital cameras, smartphones, mobile
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phones etc.) for communication, multimedia data collection, entertainment,
educational purposes, information access (Internet web resources, travel as-
sistance, dictionary etc.), online shopping and other services.

Many existing human-machine interfaces within multimedia systems are
far from being user-friendly, and only a few are based on a human-centered ap-
proach [Jaimes and Sebe, 2007]. Nowadays, computers are quickly becoming
integrated into everyday devices, which implies that effective natural human-
machine interaction is becoming critical. To make human-machine interac-
tion more cooperative and productive, intelligent human-centered communi-
cation features have to be integrated into machine interfaces. The success of
human-centered human-machine interfaces has to take into account two joint
aspects [Jaimes et al., 2006]:

e the way humans interact with such systems (speech, prosodic character-
istics, mimic, gestures and etc) to express emotions, mood, attitude, and
attention,

e the human factors that belong to multimedia data (human subjectivity,
levels of interpretation).

Whilst developing our intelligent human-centered human-machine inter-
face we took into account the fact that human-to-human communication is
usually socially situated and that humans use emotion to enhance their com-
munication. However, since emotions are often expressed within communi-
cation, processing them is an important task for intelligent HMI. Our main
aim is the creation of an HMI system that can "feel" the affective states of
the human and is capable of adapting and adequately responding to these
affective states.

2.2.1 Spoken dialog systems

Systems, in which human users use verbal communication to achieve a goal,
are called spoken dialog systems (SDS). Such systems are some of the few re-
alized examples of real-time, goal-oriented humans-to-computer interaction or
humans-to-human communication with participation of computers (real-time
spoken language translation systems, see VERBMOBIL). Commercial auto-
matic spoken dialog systems are quite popular in English-speaking countries.

Still commercial automatic spoken dialog systems have just started to
subjugate the German market. Some large projects like VERBMOBIL and
SMARTKOM [Herzog et al., 2004] created a framework for building inte-
grated natural-language understanding with multimodal dialog systems. The-
matic domain restricted automatic dialog systems were created by Sympalog.
Sixt switchboard, Betri, Filtips represent Sympalog’s conversational dialogue
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technology and today’s standard IVR (Interactive Voice Response) technol-
ogy [N6th et al., 2004]. Unfortunately these dialog systems do not take into
account most of the ideas of human-centered /human-initiative concepts. They
are still task- and machine-centered.

VERBMOBIL is a speaker-independent, speech-to-speech translation sys-
tem. It provides users with a speech-to-speech translation service in mobile
situations with simultaneous dialog interpretation services on restricted top-
ics. The system processes dialogs in three thematic domains, namely ap-
pointment scheduling, travel planning, and remote PC maintenance, and it
provides context-sensitive translations between three languages (German, En-
glish, Japanese) [Batliner et al., 2000a].

SMARTKOM is a mixed-initiative dialog system that provides full sym-
metric multimodality by combining speech, gesture, and facial expressions for
both user input and system output [Reithinger et al., 2003]. The system aims
to provide an anthropomorphic and affective user interface through its per-
sonification of an embodied conversational agent. The interaction metaphor is
based on the so-called situated, delegation-oriented dialog paradigm [Zeifler
et al., 2006].

The Sizt switchboard application handles all incoming calls (approx. 1000
per day) to the Sixt AG’s central telephone number. 90% of the received calls
by Sixt AG are redirected automatically to the correct person, the rest of the
calls are handed over to a human operator. The system’s knowledge database
consists of more than 1000 employee names. Berti, which is a football Bun-
desliga information system, is now commercially operated by a large German
media company on a pay-per-call basis. Filmtips, which is a movie informa-
tion system, is operated by a cinema company in the Nuremberg region [Noth
et al., 2004].

2.2.2 Artificial communication advantages and
disadvantages

Real-life and artificial communication are currently far away from being com-
parable. A natural communication system includes a natural verbal language
with the huge prosodic variability combined with a nonverbal body and gesture
language. On the one hand, a boundary prosody indicates a focus of attention,
a sentence structure, a speaker intention. On the other hand, an emotional
prosody shows a level of interest, a mood and a possible frustration during the
human-to-human interaction. Artificial communications systems are those de-
liberately invented, usually to serve specific functions or tasks, such as booking
tickets, controlling bank accounts, or searching for some information during
human-machine interaction. User-behavior modeling by emotion classifica-
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tion within the human-machine interaction received a great deal of attention
during the last few years in the spoken dialog developers community.

It is highly desirable in most HMI applications such as computer-aided
tutoring and learning, that the response of the computer takes into account
the emotional or cognitive state of the human user. Emotions are displayed by
mimics, body movements, speech, linguistic and paralinguistic means. More
and more research in HMI confirmed that emotional skills modeling is an im-
portant part of the so-called intelligent system. Spoken dialog systems today
can recognize much of what is said, and to some extent, who said it. Still, they
are not able to process the affective channel of information [Jaimes and Sebe,
2007]. Intelligent systems with affective communication features consider how
emotions can be classified and expressed during human-machine interaction.
Three key points have to be applied during developing systems that process
affective information: embodiment (experiencing physical reality), dynamics
(mapping experience and emotional state with its label), and adaptive in-
teraction (conveying emotive response, responding to a recognized emotional
state) |[Bianchi-Berthouze and Lisetti, 2002].

Nowadays, one takes a human-to-human interaction scenario, and replaces
one of the humans with an automated dialog system, then the affective com-
munication will disappear. It happens not because people stop communicating
affectively — e.g., a person expresses anger at dialog systems during miscom-
munication situations. The problem arises because the human-machine inter-
face has no ability to detect when a human is stressed, frustrated, pleased,
interested, or bored. A person ignoring the non-verbal elements in human-
to-human communication would be considered impolite or unintelligent. De-
tection and classification of emotions within artificial communication are key
components of the intelligent system.

Research is therefore needed for new methods to communicate affectively
through automated system controlled environments. Up-to-date spoken-
dialog-system-driven communication almost always has less affective band-
width than natural human-to-human machine interaction. The appearance
of affective wearable dialog systems could change the nature and efficiency of
human-machine interaction.

2.3 Prosodic characteristics of spontaneous
speech

Linguists defined prosody as rhythm, stress and intonation of speech. Prosody
reflects the following features of the speaker or the utterance: the emotional
state; whether an utterance is a statement, a question, or a command; whether
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the speaker is being cooperative or non-cooperative; the use of emphasis,
contrast, and focus; or other elements of language such as paralinguistic events
that may not be encoded by grammar or choice of vocabulary. In terms of
an acoustic theory, the prosody of speech involves variation in syllable length,
loudness, pitch, formant frequencies, poses and word length within the speech
signal.

Prosodic information is encapsulated within vocalized phoneme, syllables,
words, phrases, and whole turns of a speaker. To these units we ascribe
perceived properties such as pitch, loudness, speaking rate, words and pause
duration, voice quality, rhythm, etc. In human-to-human communication, the
listener extracts multiple information from prosodic cues. Due to this fact, we
can define certain functions of the prosody phenomena. The prosodic func-
tions are the marking of boundaries, accents, the sentence mood, an intonation
and the speaker’s emotional state [Batliner and N6th, 2003].

2.3.1 Boundary prosody

An application of prosody analysis is quite popular in automatic speech
processing and dialog understanding. For example, many studies showed
that prosodic information may influence listeners’ analysis of an ambiguous
phrase [Clifton et al., 2002]. In the real-life applications, spoken dialog system
designers try to combine word hypothesis graphs (WHG) with the prosody
analysis for accentuation or prosodic boundaries recognition.

The prosodic units can be very short — e.g. phoneme-level — or they can
constitute a whole utterance. Dialog units are longer than those of semantics.
The first prosody feature is phrasing, i.e., prosodic boundaries that reflect
syntactic boundaries which, in turn, reflect dialog acts (DA) boundaries. As a
second feature comes accentuation or focus of attention, the most important
information in a semantic unit, e.g., in a sentence (focus). The third prosody
feature is an ability to disambiguate between different sentence moods/modal-
ities. For example, prosody can be used to decide whether a sentence is a
statement or a question [N&th et al., 2002].

In the case of miscommunication detection within human-machine inter-
action, Batliner et al. found that some boundary prosodic features indicate
trouble in communication [Batliner et al., 2003]. These indicators are con-
ducted in the following prosodic characteristics:

- pause at phrases;

- strong articulation;

strong emphasis;
pause at words;

- contrastive accent;
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- pause at syllable;

- lengthening of syllable;

- hyperarticulation;

- laughter/sighing.

An evaluation of the SMARTKOM |[Zeikler et al., 2006| prosody module,
which is based on the Verbmobil prosody module [Batliner et al., 2000a],
shows that boundary prosody analysis may provide higher performance of
Automatic Speech Understanding (ASU).

2.3.2 Emotional prosody

While listening to speech, we rely on a variety of congruent prosodic and
verbal-semantic cues upon which to base our interaction inference as to the
communicative intention of others. To interpret the meaning of the speech,
the way something is said may be as important as a linguistic content.

The paralinguistic decoding is an essential issue in the emotional prosody
analysis. The emotion within speech may manifest itself on the semantic and
acoustic levels. A variety of acoustic features were also explored in the context
of speech-based emotion classification and emotional speech synthesis. These
acoustic features are as follows:

- pitch-related features;

- voice level features: signal amplitude, enerqgy;

- formant frequencies;
timing features: phrase, word, phoneme, and feature boundaries;

voice-quality parameters;

- spectral features;
articulation parameters.

Emotion Speech Pitch Pitch Inten- Voice
Rate Average Range sity Quality

Anger slightly very much much wider higher breathy
faster higher

Joy faster or much higher | much wider higher blaring
slower

Sadness slightly slightly slightly lower resonant
slower lower narrower

Fear much faster very much | much wider normal irregular

higher

Disgust very much very much slightly lower grumbled

slower lower wider

Table 2.1: Summary of human vocal characteristics variations of affective
speech. compared to neutral speech [Murray and Arnott, 1993]
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Murray and Arnott [Murray and Arnott, 1993] described emotional voice
characteristics for Ekman (see 2.5.2) basic emotions. Table 2.1 describes
mostly qualitative characteristics associated with the following fundamental
emotions. These specifications are based on a comparison of the affective voice
to the neutral voice characteristics.

Within our research we find out that only by using spectral features (Mel-
frequency Cepstral coefficients (MFCC)) analysis we can reach a good per-
formance of emotion recognition for acted and spontaneous emotions sam-
ples [Schuller et al., 2009, Vlasenko and Wendemuth, 2009b, Hiibner et al.,
2010]. In the case of spontaneous emotions, we have to extend our acoustic
features set and use a multi-level processing paradigm to reach comparable
classification performance on the acted data. Also a combination of acoustic,
linguistic and conversational analysis yielded better results on spontaneous
emotions classification than the pure acoustic analysis [Schuller et al., 2005b].

2.3.3 Interaction

In order to make spoken dialog systems more intelligent and user-friendly we
have to combine automatic speech recognition with a reliable language model,
boundary and emotional prosody analyzers, and a language-understanding
module. In such a way they will be able to detect and classify user intentions.
The basic structure of an intelligent SDS is shown in Figure 2.1.

The first stage of an intelligent spoken dialog system is to recognize the
speech signal and provide a word hypotheses graph (WHG) and corresponding

Language Model
Semantic Networks
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Figure 2.1: General structure and modules interaction of an intelligent spoken
dialog system
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phonetic transcription (PT). This process is known as automatic speech recog-
nition. To attain an acceptable performance of speech recognition, the module
requires language models, for example, n-grams. The WHG is directed to the
boundary prosody analysis module, which later generates the boundary labels,
detects the focus of attention and miscommunication indicators. Semantic
network modules based on the boundary labels and the WHG generate tex-
tual associations semantic networks (TASN). Taking into account TASN, PT,
WHG and boundary labels, the spontaneous-speech-understanding module
estimates the user’s request’s lexical interpretation. The emotional prosody
analysis module based on speech signals, PT, WHG and miscommunication
indicators classifies the current user’s emotional state. An intention recogni-
tion module takes into consideration the detected focus of attention, the user’s
emotional state and lexical interpretation of the user’s request, and provides
user’s intention classification.

2.4 Emotion theory

In summary an emotion is a transitory, valenced experience that is felt with
some intensity as happening to the self, generated in part by a cognitive ap-
praisal of situations, and accompanied by both learned and innate physical
responses. Through emotion, people communicate their internal states and
intentions to others. Emotion often disrupts thought and behavior, but it also
triggers and guides cognitions and organizes, motivates, and sustains behavior
and social relations (adopted from [Bernstein et al., 1997]).

In recent years considerable research was carried out, both theoretical and
empirical, on the perception and production of affective speech. Most of
this research effort is now being made in a field called "affective computing"
[Picard, 1997]. The main goal in affective computing is to design automatic
speech-recognition and text-to-speech algorithms that understand and react
to the human emotions.

Klaus Scherer distinguished the following affective phenomena: emotions,
feelings, moods and attitudes [Scherer, 2005]. Also, he suggested that "feelings
integrate the central representation of appraisal-driven response organization
in emotion" [Scherer, 2004|. The affective states caused by a salient attitude
can be labeled using terms such as desiring, respecting, hating, and loving. In
most cases, attitude is a long-term affective event which can make the occur-
rence of a short-term emotion episode more likely. For example, people in love
usually express positive emotions more often. Generally, mood is considered
a diffuse affect state, characterized by subjective feelings that affect the be-
havior of a person. Moods are generally low-intensity affect states which can



2.4. Emotion theory 17

last for days, weeks, or months. Within our research we use the term affect in
its short-term nature, namely, emotional state. Also, from our point of view,
affective phenomena like feelings, moods and attitudes are the usual cases for
human-to-human communication; in the case of human-machine interaction
most of these phenomena do not occur. As a consequence, terms such as
"affective computing" [Picard, 1997| and "affective speech recognition" are
quite popular in the speech-processing community and human-machine inter-
action research groups. In this thesis, "affective” will in general refer to any
non-neutral short-term expression.

A uniform definition of emotion in psychology is very controversial. Ba-
sically, emotions describe subjective sensations of shorter periods which are
related to certain events, persons or objects. The word "emotion" comes from
Latin and means to move or to stir up. Generally, psychologists use the word
"emotion" to refer to the show of feelings that are produced when important
things happen to us.

Four different theoretical approaches to the origins and nature of human
emotions have primarily crystallized:

e Darwinian approach: According to the Darwinian perspective |[Dar-
win, 1872] emotions are a result of general human evolution. They have
an essential importance for the species survival. As a consequence, cer-
tain behaviors are directly linked to the associated emotional feelings.
Universal facial expression, infants, and basic emotions are evidence
supporting this theory.

e Jamesian approach: This approach is well grounded owing to the
work by James [James, 1884|. James believed that the human per-
ception of feelings are in response to events. Thus, an emotion ap-
pears through the stimulation of sensory organs by an object. The self-
perception takes place through afferent impulses leading to the brain
until they reach the cortex. As a consequence, internal organs and mus-
cles are stimulated by efferent impulses. With the return in the form of
re-afferent impulses from the organs and muscles to the cerebral cortex,
eventually it appears in the described perception of physical change
in the form of an emotion. An emotional feeling is possible only in
combination with a succeeding physical response. Emotion is inferred
or constructed from instinctive peripheral physiological responses. The
following is evidence in support of James:

- patterns of autonomic changes vary with different emotional states;

- people reliving emotional experiences show different patterns of auto-
nomic activity;

- spinal cord injuries reduce peripheral responses — less intense emotion
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(following Hohmann [Hohmann, 1996]).

e Cognitive approach: This theory is similar to the Jamesian theory
as people label emotions using perceptions of their own somatic activ-
ity. But labeling is a cognitive process that reflects the person’s beliefs
about a situation. If people believe they have a reason to be angry they
will perceive their bodily symptoms as anger. The representatives of
this theory Schachter [Schachter and Signer, 1962| and Arnold [Arnold,
1960] assumed that emotions are the cause of body reactions to certain
circumstances and that they are traceable.

e Social constructivist approach: Averill [Averill, 1980] and Harré
[Harré, 1986 argued that feelings reflect the result of learned social
rules of behavior. The decisive factor is the underlying culture, because
it implies significantly the assessment of the circumstances which lead to
an emotion. Hence, the triggers for anger differ inter-culturally and even
interpersonally. Following this model, the cultural context plays an im-
portant role for the assessment of emotions. The social-constructivist
approach is one of the youngest and most controversial psychological
theories about human feelings. It shows that some syndromes in differ-
ent cultures can be detected as unambiguous emotions, while in other
circles this can be only conditionally true. This approach is in conflict
with the others, but within it the emotions are considered a product of
evolution.

After all, we need to establish that although these theories in parts can be
accumulated, not one of them was examined correctly. Besides, a lot of efforts
were made to combine them. Within our research we applied the basic ideas
of Jamesian, cognitive and social constructivist approaches.

2.5 Emotion categorization

An annotation of emotional episodes within affective speech is a non-trivial
task. An essential problem for the analysis of spontaneous emotional speech
is to determine what an emotional episode is, where it starts and where it
ends. Afterwards we have to provide a reference for the following episodes.
Quite often, several emotions can be present at the same episode. There
are two possible emotional annotation approaches based on multi-dimensional
representation and classical emotion categories.
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2.5.1 Multi-dimensional representation

There are few ways of representing emotions in a multi-dimensional emo-
tion space. Emotions can be distinguished by the numeric values in two-
or three-dimensional valence-arousal-(potency or dominance) spaces [Wundt,
1897], [Kehrein, 2002], [Grimm et al., 2007] or by meaning of their basic enti-
ties within circumplez models [Plutchik, 2001], [Scherer, 2005]. This chapter
will describe in detail the most popular existing dimensional valence-arousal-
(potency or dominance) space and circumplexr models.

The first multi-dimensional representation of emotions was proposed by
the German psychologist Wilhelm Wundt [Wundt, 1897]. He proposed to de-
scribe an emotional experience in terms of three dimensions: valence, arousal,
and potency. These dimensions can be interpreted as three orthogonal axes.
Each emotion can be characterized be the three numerical values which cor-
respond to the coordinates within the valence-arousal-potency space. Valence

Figure 2.2: Plutchiks’s two- and three-dimensional circumpler emotional
wheel model describes the relations among emotional classes. Adopted from
[Plutchik, 2001]
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represents the value — positive or negative — of the user’s emotion. Arousal/ac-
tivation represents the user’s degree of excitation — from high to low, like
"active vs. passive", "high vs. low excitation". "Potency" refers to the in-
dividual’s sense of power or control, for example "concentrated vs. relaxed
attention", "dominance vs. submissiveness".

The multi-dimensional description benefits from a higher-level of gener-
ality. It provides a possibility for describing the intensity of emotions. In
the case of mixed emotions within the same semantic unit (dialog act (DA),
sentence, utterance, word), which is quite often the case in spontaneous affec-
tive speech, the emotion space concept allows for a more adequate description
of these affective samples. Nowadays, annotation of emotional events within
speech has led to the multi-dimensional emotion descriptor becoming more
and more popular. Kehrein [Kehrein, 2002] and Grimm et al. [Grimm et al.,
2007| proposed the use of the following dimensions: appraisal (or valence,
evaluation), activation (or arousal, excitation) and dominance (or power).

Another quite popular multi-dimensional representation of emotion is
based on the so-called circumpler model. In 1980, Robert Plutchik created a
wheel of emotions which consisted of 8 basic emotions: joy, acceptance, fear,
surprise, sadness, disqust, anger, and anticipation. Plutchik found that the
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Figure 2.3: Sample of the adapted Geneva emotion wheel applied for annota-
tion purposes within the SEAT project. Adopted from [GEW, 2008]



2.5. Emotion categorization 21

primary emotions can be conceptualized in a color-wheel fashion — placing sim-
ilar emotions close together and opposites 180 degrees apart, like additional
colors. This so-called circumplex model can be used as a tool for represen-
tation of relation and nature of emotional categories. Plutchik extended the
circumpler model into a third dimension, modifying the intensity of emotions
(see, different color intensity in Figure 2.2), so that the complex so-called
structural model of emotions is shaped like a cone.

An alternative circular representation of emotions appears

nowadays, see Figure 2.3. This adapted Geneva emotion wheel
(GEW) was applied for the digital questionnaire within the SEAT
(http://www.wearable.ethz.ch /research /groups/context /seat /) project

by the ETH Zurich research group [GEW, 2008]. The GEW was developed
in 2005 by Klaus Scherer. The GEW is a wheel with 20 spokes. Each spoke
is associated with a type of emotion (10 negative and 10 positive emotions).
The spokes of the wheel are made up of five labels which allow the annotator
to choose the intensity for which they felt that selected emotion.

2.5.2 Classical emotion categories

In English there is an enormous amount of emotion words, some of them
tend to fall into families based on similarity and some can be classified as
opposites [Plutchik, 2001].

How many emotions are present in human-to-human communication? The

| Author | Basic Emotions | Basis |
McDougall (1926) anger, disgust, elation, fear, relation to instincts
subjection, tender-emotion, wonder
Arnold (1960) anger, aversion, courage, dejection, relation to action
desire, despair, fear, hate, hope, tendencies
love, sadness
Plutchik (1980) acceptance, anger, anticipation, relation to adaptive
disgust, joy, fear, sadness, surprise biological processes
Ekman, Friesen& anger, disgust, fear, joy, sadness, universal facial
Ellsworth (1982) surprise expressions
Tomkins (1984) anger, interest, contempt, disgust, distinctive set of
distress, fear, joy, shame, surprise bodily and facial
reactions
Oatley& anger, disgust, anxiety, happiness, do not require
Johnson-Laird sadness propositional content
(1987)

Table 2.2: Basic emotions sets, presented by different emotion psychology
researches [Ortony and Turner, 1990]
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proposers of "classical" discrete emotion theories, inspired by Darwin, have
suggested from 3 to 14 of basic emotions. Those emotions are also called
primary or fundamental. A wide range of research on identification of basic
emotions [Ortony and Turner, 1990] was presented to the emotion research
community, see Table 2.2.

The discrepancy of opinion about the quantity of primary emotions is
matched by the divergence of opinion about their identity. Some of the lists
of basic emotions include categories that are not included in other lists. Only
Arnold included courage, Plutchik included acceptance and anticipation, also
McDougall proposed that subjection and "tender-emotion” are fundamental
emotions. Still, most of the lists include anger, disqust, fear, joy, sadness,
and surprise categories. Currently there is no standard basic emotions list
acknowledged by all emotion psychology researchers. Still, all of these basic
emotions are dialing with "full-blown" [Scherer, 1999| emotions, in contrast
to low emotional saturation events within real-life communication. In this
thesis we do not specify our own basic emotions set. Within our evaluations
presented in Chapter 5 we use different set of emotions presented in public
available emotional corpora.

2.6 Emotional speech data

Collecting and annotating emotional speech corpora is quite a difficult and
expensive task. As a result, we decided to train and test our affective-
speech-processing models on selected well-known emotional corpora. The
chosen set of emotional corpora covers a broad variety of models reaching
from acted (DES, EMO-DB) over induced (ABC, eNTERFACE) to natural
emotion (AVIC, SmartKom, SUSAS, VAM) ranging from strictly limited tex-
tual content (DES, EMO-DB, SUSAS) over more variation (eNTERFACE) to
full variance (ABC, AVIC, SAL, SmartKom, VAM). Further human-to-human
(AVIC, VAM) as well as human-to-computer (SAL, SmartKom) interaction
are contained. References for the earlier-mentioned databases will be given in
section 2.6.2. Three languages (English, German, and Danish) are comprised.
However, these languages belong to the same family of Germanic languages.
The speaker’s ages and backgrounds vary strongly, and so do of course micro-
phones used, room acoustics, and coding (e.g., sampling rate reaching from
8kHz to 44.1kHz) as well as the annotators.
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2.6.1 Data collection

Our main goal is a sufficient modeling of the spontaneous speech of common
human beings in real-life human-computer interaction. Extracting data in
real-life scenarios, usually, faces two main problems: Firstly, it is quite difficult
to control and record such real-life conditions because of ethical restrictions
and due to the point that automatic dialog systems are quite rare in everyday
human life. Secondly, if we change the thematic domain of our dialog system,
this can influence the linguistic and emotional behavior of the user.

To simulate a real-life situation we can use the Wizard of Oz scenario. In
such a scenario, subjects believe they are interacting with a real automated
system while the system’s interaction interface is manipulated by a human
'wizard'. For such kind of simulation, we need 'naive' users. But still, we do
not know the range of the user’s emotional behavior variation in a real-life
scenario. Also, human 'wizards' usually are not able to predict all possible
miscommunication situations in real-life conditions which can provoke frustra-
tion and /or affective user’s behavior. As a result, collected data does not cover
all possible situations, where a dialog strategy can be implemented which is
adaptive to the user’s behavior.

2.6.2 Affective speech corpora

One of the major needs of the community — perhaps even more than in many
related pattern recognition tasks — is the constant need for datasets [Douglas-
Cowie et al., 2003, [Ververidis and Kotropoulos, 2003]. In the late 1990s, the
early days of emotion recognition, there were only a few datasets available,
which were small (500 turns) with few subjects (10), uni-modal, recorded
in studio noise conditions, and acted. Furthermore, the spoken content
was mostly predefined (DES [Engbert and Hansen, 1996|, Berlin Emotional
Speech-Database [Burkhardt et al., 2005], SUSAS [Hansen and Bou-Ghazale,
1997]). These were seldom made public and few annotators — if any at all
— usually labeled exclusively the perceived emotion. Additionally, these were
partly not intended for analysis, but for quality measurement of synthesis
(e.g., DES, Berlin Emotional Speech-Database). However, any data is bet-
ter than none. Today we are happy to see more diverse emotions covered,
more elicited or even spontaneous sets of many speakers, larger amounts of
instances (5k -10k) of more subjects (up to more than 100), multimodal data
that is annotated by more labelers (4 (AVIC [Schuller et al., 2009b]) - 17
(VAM [Grimm et al., 2008])), and that is made publicly available. Thereby
it lies in the nature of collecting acted data that equal distribution among
classes is easily obtainable. In more spontaneous sets this is not given, which
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Corpus Content # Emotion # Arousal | # Valence | # All hh:mm # Sub| Type| Freq
- —+ - —+ [kHz]
ABC German | agr che int ner mneu tir - 104 326 | 213 217 | 431 01:15 4m acted | 16
fixed 95 105 33 93 79 25 4f stud
AVIC English | bor neu joy - - - - 553 2449 | 553 2449 | 3002 | 01:47 11m spon | 44.1
variable | 553 2279 170 10f norm
DES Danish | ang hap neu sad sur - - 169 250 169 250 | 419 | 00:28 2m acted | 20
fixed 8 8 85 84 84 2f norm
EMO- German | ang bor dis fea hap neu sad| 248 246 | 352 142 | 494 | 00:22 5m acted | 16
DB fixed 127 79 38 55 64 78 53 5f stud
eNTER- | English | ang dis fea hap sad sur - 425 852 | 85 422 | 1277 | 01:00 34m | acted| 16
FACE fixed 215 215 215 207 210 215 8f norm
SAL English | ql 92 g3 g4 - - - 884 808 917 779 | 1692 | 01:41 2m spon | 16
variable | 459 320 564 349 2f norm
Smart- German | ang hel joy neu pon sur uni| 3088 735 381 3442 | 3823 | 07:08 32m spont | 16
Kom variable | 220 161 284 2179 643 70 266 47f noisy
SUSAS English | hst mst neu scr - - - 701 2892 | 1616 1977 | 3593 | 01:01 4m mixed| 8
fixed 1202 1276 701 414 3f noisy
VAM German | q1l g2 g3 g4 - - - 501 445 | 875 71 | 946 | 00:47 15m | spon | 16
variable | 21 50 451 424 32f norm

Table 2.3:  Querview of the selected emotion corpora

Content: language, fized/variable (spoken text). Number of turns per emotion category (# Emotion), binary arousal/va-

lence, and overall number of turns (All). hh:mm :

total duration. Number of subjects (Sub), number of female (f) and male

(m) subjects. Type of material (acted/natural/mized) and recording conditions (studio/normal/noisy) (Type). Freq [kHz[: dis-
cretization frequency. Abbreviations: agr - aggressive, ang - angry, bor - boredom, che - cheerful, dis - disqust, hap - happy, hel -
helplessness, hst - high stress, int - intoxicated, joy - joyful, mst - medium stress, ner - nervous, neu - neutral, pon - pondering,
q1-q4 - quadrants in the arousal-valance plane, sad - sadness, sur - surprise, tir - tired, uni - unidentifiable
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forces one to either balance data in the training or to shift from reporting
of simple recognition rates to F-measures or unweighted recall values, best
per class (e.g., FAU AIBO [Batliner et al., 2008|, and the AVIC databases).
However, some acted and elicited datasets with pre-defined content are still
seen (e.g., eNTERFACE [Martin et al., 2006]), yet these also follow the trend
of more instances and speakers. The positive fact is, that transcription is
becoming richer: additional annotation of spoken content and non-linguistic
interjections (e.g., FAU AIBO, AVIC databases), multiple annotator tracks
(e.g., VAM corpus), or even manually corrected pitch contours (FAU AIBO
database) and additional audio tracks in different recordings (e.g., close talk
and room microphone), syllable boundaries and manual syllable labeling (e.g.,
EMO-DB database), different chunking (e.g., FAU AIBO database) levels. At
the same time, these are partly also recorded under more realistic conditions
(or taken from the media). However, in future sets multilinguality and sub-
jects of diverse cultural backgrounds will be needed in addition to all named
positive trends.

For our evaluations, we chose nine corpora amongst the most popular.
Only these available to the research community were considered. These should
cover a broad variety reaching from acted speech (the Danish (DES, [Engbert
and Hansen, 1996]) and the Berlin Emotional Speech (EMO-DB, [Burkhardt
et al., 2005|) databases), over story guided as the eNTERFACE corpus [Mar-
tin et al., 2006| with fixed spoken content and the Airplane Behaviour Corpus
(ABC, [Schuller et al., 2009b]), to spontaneous with fixed spoken content rep-
resented by the Speech Under Simulated and Actual Stress (SUSAS, [Hansen
and Bou-Ghazale, 1997|) database, to more modern corpora with respect to
the number of subjects involved, spontaneity, and free language covered by
the Audiovisual Interest Corpus (AVIC, [Schuller et al., 2009b]), the Sensitive
Artificial Listener (SAL, [Wollmer et al., 2008]), the SmartKom [Steininger
et al., 2002], and the Vera-Am-Mittag (VAM, [Grimm et al., 2008|) datasets.

An overview on properties of the chosen datasets can be found in Table
2.3. Next, we will briefly introduce the datasets.

2.6.2.1 AIBO

It is a corpus with recordings of children interacting with Sony’s pet robot
called Aibo [Batliner et al., 2008]. The corpus consists of spontaneous,
German speech which is emotionally colored. The data was collected at two
different schools, MONT and OHM, from 51 children (age 10 - 13, 21 male, 30
female; about 9.2 hours of speech without pauses). Speech was transmitted
with a high quality wireless head set and recorded with a DAT recorder (16
bit, 48 kHz down-sampled to 16 kHz). Five annotators (advanced students of
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| set | A E N P R [NEG IDL | %
train 881 2,093 5590 674 721 | 3,358 6,601 | 9,959
test 611 1508 5377 215 546 | 2465 5792 | 8,257

Table 2.4:  Number of instances for 2-class and 5-class annotation schema
within AIBO corpus

linguistics) listened to the turns and annotated each word as neutral or as be-
longing to one of ten other classes. The data is labeled on the word-level. We
resort to majority voting (MV): if three or more labelers (five labelers in all)
agreed, the label was attributed to the word. The number of cases with MV
is given in parentheses: joyful (101), surprised (0), emphatic (2,528), helpless
(3), touchy, i. e. irritated (225), angry (84), "motherese" (1,260), bored (11),
reprimanding (310), rest, i. e. non-neutral, but not belonging to the other
categories (3), neutral (39,169); 4,707 words had no MV; all in all, there were
48,401 words.

The whole corpus consisted of 18,216 emotional chunks. The five-class
annotation schema covers the classes Anger (subsuming angry, touchy, and
reprimanding) Emphatic, Neutral, Positive (subsuming motherese and joy-
ful), and Rest and they are to be discriminated. The two-class annotation
schema consists of the covered classes NEGative (subsuming angry, touchy,
reprimanding, and emphatic) and IDLe (consisting of all nonnegative states).

The classes within the whole corpus are highly unbalanced. The transcrip-
tions of spoken content within the training set are provided allowing for ASR
training and linguistic feature computation.

2.6.2.2 Danish Emotional Speech

The Danish Emotional Speech (DES) [Engbert and Hansen, 1996| database
has been chosen as the first set as one of the 'traditional representatives' for
our study, because it is easily accessible and well-annotated. The data used in
the experiments are nine Danish sentences, with two words and chunks that
are located between two silent segments of two passages of the fluent text.
For example: "Nej” (No), "Ja" (Yes), "Hvor skal du hen?" (Where are you
going?). The total amount of data adds up to more than 500 speech utterances
(i. e., speech segments between two silence pauses) which are expressed by four
professional actors, two males and two females. All utterances are equally
separated for each gender. Speech is expressed in five emotional states: anger,
happiness, neutral, sadness, and surprise. Twenty judges (native speakers
from 18 to 58 years old) verified the emotions with a score rate of 67 %.
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2.6.2.3 Berlin Emotional Speech Database

A further well-known set chosen to test the effectiveness of emotion classi-
fication is the popular studio recorded Berlin Emotional Speech Database
(EMO-DB) [Burkhardt et al., 2005|, which covers anger, boredom, disgust,
fear, joy, neutral, and sadness speaker emotions. The spoken content is again
pre-defined by ten German emotionally neutral sentences, such as "Der Lap-
pen liegt auf dem FEisschrank” (The cloth is lying on the fridge.). As with
DES, it thus provides a high number of repeated words in diverse emotions.
Ten (five female) professional actors speak ten German emotionally undefined
sentences. While the whole set comprises of around 800 utterances, only 494
phrases are marked as a minimum 60 % natural and minimum 80 % assignable
by 20 subjects in a listening experiment. 84.3 % mean accuracy is the result
of this perception study for this limited "more prototypical" set.

2.6.2.4 eNTERFACE

The eNTERFACE [Martin et al., 2006| corpus is a further public, yet audiovi-
sual emotion database. It consists of induced anger, disqust, fear, joy, sadness,
and surprise speaker emotions. 42 subjects (eight female) from 14 nations are
included. It consists of office environment recordings of pre-defined spoken
content in English. Each subject was instructed to listen to six successive
short stories, each of them eliciting a particular emotion.

They then had to react to each of the situations by uttering previously read
phrases that fit the short story. Five phrases are available per emotion, such
as "I have nothing to give you! Please don’t hurt me!" in the case of fear. Two
experts judged whether the reaction expressed the emotion in an unambiguous
way. Only if this was the case, the sample was added to database. Overall,
the database consists of 1,170 samples.

2.6.2.5 Airplane Behaviour Corpus

Another audiovisual emotion database is the Airplane Behaviour Corpus
(ABC) [Schuller et al., 2009b|, crafted for the special target application of
public transport surveillance. In order to induce a certain mood, a script
was used, which led the subjects through a guided storyline: prerecorded an-
nouncements by five different speakers were automatically played back and
controlled by a hidden test-conductor. As a general framework a vacation
flight with return flight was chosen, consisting of 13 and 10 scenes as the
start, serving of wrong food, turbulences, falling asleep, conversation with
a neighbor, or touch-down. The general setup consisted of an airplane seat
for the subject, positioned in front of a blue screen. 8 subjects in gender
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balance from 25-48 years (mean 32 years) took part in the recording. The
language throughout the recording is German. A total of 11.5hours video
was recorded and annotated independently after pre-segmentation by three
experienced male labelers within a closed set. The average length of the 396
clips in total is 8.4 seconds.

2.6.2.6 Speech Under Simulated and Actual Stress

The Speech Under Simulated and Actual Stress (SUSAS) database [Hansen
and Bou-Ghazale, 1997 serves as a first reference for spontaneous recordings.
As an additional challenge, speech is partly masked by field noise. We decided
for the 3,663 actual stress speech samples. Seven speakers, three of them
female, in roller coaster and free fall actual stress situations are contained in
this set. Next to neutral speech and fear two different stress conditions have
been collected: medium stress, and high stress, and screaming. SUSAS is also
restricted to a pre-defined spoken text of 35 English air commands, such as
"brake"”, "help"” or "no". Likewise, only single words are contained similar to
DES where this is also mostly the case.

2.6.2.7 Audiovisual Interest Corpus

To add spontaneous emotion samples of non-restricted spoken content, we de-
cided to use the Audiovisual Interest Corpus (AVIC) [Schuller et al., 2009b],
another audiovisual emotion corpus. In its scenario setup, a product presenter
leads one of 21 subjects (10 female) through an English commercial presen-
tation. The level of interest is annotated for every sub-speaker turn reaching
from boredom (subject is bored with listening and talking about the topic,
very passive, does not follow the discourse), over neutral (subject follows and
participates in the discourse, it cannot be recognized, if she/he is interested
or indifferent in the topic) to joyful interaction (strong wish of the subject to
talk and learn more about the topic). Additionally, the spoken content and
non-linguistic vocalisations are labeled in the AVIC set. For our evaluation
we use the 996 phrases as, e.g., employed in [Schuller et al., 2009b].

2.6.2.8 Sensitive Artificial Listener

The Belfast Sensitive Artificial Listener (SAL) data is part of the final HU-
MAINE database [Douglas-Cowie et al., 2007]. We consider the subset used,
e.g., in [Wollmer et al., 2008] which contains 25 recordings in total from 4
speakers (2 male, 2 female) with an average length of 20 minutes per speaker.
The data contains audio-visual recordings from natural human-computer con-
versations that were recorded through an interaction interface designed to let
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users work through a range of emotional states. The data was labeled contin-
uously in real-time by four annotators with respect to valence and activation
using a system based on FEELtrace [Cowie et al., 2000]: the annotators used
a sliding controller to annotate both emotional dimensions separately whereas
the adjusted values for valence and activation were sampled every 10 ms to
obtain a temporal quasi-continuum. To compensate linear offsets that are
present among the annotators, the annotations were normalized to zero mean
globally. Furthermore, to ensure common scaling among all annotators, each
annotator’s labels were scaled so that 98 % of all values are in the range from
-1 to +1. The 25 recordings have been split into turns using an energy-based
Voice Activity Detection. A total of 1,692 turns is accordingly contained in
the database. Labels for each turn are computed by averaging the frame-level
valence and activation labels over the complete turn. Apart from the necessity
to deal with continuous values for time and emotion, the great challenge of
the SAL database is the fact that one must deal with all data — as recorded
— and not only manually pre-selected 'emotional prototypes' as in practically
any other database [Schuller et al., 2009¢]|.

2.6.2.9 SmartKom

We further included a second audiovisual corpus of spontaneous speech
and natural emotion in our tests: the SmartKom [Steininger et al., 2002]
multi-modal corpus consists of Wizard of Oz dialogs in German. For our
evaluations we use German dialogs recorded during a public environment
technical scenario. As with SUSAS, noise is overlaid (street noise). The
database contains multiple audio channels and two video channels (face,
body from side). The primary aim of the corpus was the empirical study
of human-computer interaction in a number of different tasks and technical
setups. It is structured into sessions which contain one recording of ap-
proximately 4.5 minutes length with one person. Utterances are labeled in
seven broader emotional states: neutral, joy, anger, helplessness, pondering,
surprise are contained together with unidentifiable episodes.

2.6.2.10 Vera-Am-Mittag

The Vera-Am-Mittag (VAM) corpus [Grimm et al., 2008] consists of audio-
visual recordings taken from a German TV talk show. The corpus contains 947
spontaneous and emotionally coloured utterances from 47 guests of the talk
show which were recorded from unscripted, authentic discussions. The topics
were mainly personal issues such as friendship crises, fatherhood questions,
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or romantic affairs. To obtain non-acted data, a talk show in which the
guests were not paid to perform as actors was chosen. The speech extracted
from the dialogs contains a large amount of colloquial expressions as well as
non-linguistic vocalisations and partly covers different German dialects. For
annotation of the speech data, the audio recordings were manually segmented
to the utterance-level, whereas each utterance contained at least one phrase.
A large number of human labelers was used for annotation (17 labelers for
one half of the data, six for the other).

The labeling bases on a discrete five-point scale for three dimensions
mapped onto the interval of [-1,1]: the average results for the standard de-
viation are 0.29, 0.34, and 0.31 for valence, activation, and dominance. The
averages for the correlation between the evaluators are 0.49, 0.72, and 0.61,
respectively. The correlation coefficients for activation and dominance show
suitable values, whereas the moderate value for valence indicates that this
emotion primitive was more difficult to evaluate, but may partly also be a
result of the smaller variance of valence.

2.7 Clustering of emotions

Although the ability to recognize a large variety of emotions is attractive, it
may not be necessary or practical in the context of developing algorithms for
conversational interfaces. Based on this assumption, some research groups
favor the notion of an application-dependent, reduced space of emotions. In
particular, negative and non-negative emotions can be used for miscommu-
nication detection tasks within automated spoken dialog systems [Lee and
Narayanan, 2005].

It is possible to map the diverse emotion groups onto the most popular
general dimensions (valence, arousal) borrowed from the dimensional emotion
model: arousal and valence, see Figure 2.4. The chosen mappings [Schuller
et al., 2009] are depicted in Table 2.5. Notably, these mappings are not straight
forward. This would only be exactly true for the neutral emotion, which could
have been chosen as a third state. Sadly, however, not all databases provide
such a state. Thus, the mapping can be seen as a compromise in favor of bet-
ter balance amongst the target classes. We further discretized emotion values
in the arousal-valence plane for the emotional corpora with multi-dimensional
annotation (SAL and VAM). We consider only four quadrants obtained by
discretizing into binary tasks as described above, but now handling the prob-
lem as a four-class problem, see Figure 2.4. The according quadrant’s ql-q4
(counterclockwise, starting in positive quadrant, assuming valence as ordinate
and arousal as abscissa) can also be assigned emotion tags: "happy / excited"
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q3 q4
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very
passive
Figure 2.4: Specification of the quadrant’s q1—q4 in arousal-valence space
Corpus Arousal Valence
Negative | Positive Negative | Positive
ABC neutral, tired aggressive, aggressive, cheerful,
cheerful, nervous, | nervous, tired | intoxicated,
intoxicated neutral
AVIC boredom neutral, joyful boredom neutral, joyful
DES neutral, sad angry, happy, angry, sad happy, neutral,
surprise surprise
EMO- boredom, anger, fear, anger, happiness,
DB disgust, happiness boredom, neutral
neutral, disgust, fear,
sadness sadness
eNTER- | disgust, anger, surprise, anger, disgust, | happiness,
FACE sadness fear, happiness fear, sadness surprise
SAL a2, q3 ql, q4 a3, g4 ql, g2
Smart- neutral, anger, anger, joy, pondering,
Kom pondering, helplessness, joy, | helplessness, neutral, surprise,
unidentifiable surprise unidentifiable
SUSAS neutral high stress, high stress, medium stress,
medium stress, screaming neutral
screaming
VAM a2, q3 ql, q4 a3, g4 ql, g2

Table 2.5:  Mapping of emotions for the clustering to a binary (positive/neg-
ative) arousal and valence discrimination task. Abbreviations: q - quadrants

(ql), "angry / anxious" (q2), "sad / bored" (q3), and "relaxed / serene" (q4).
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2.8 Data assessment

Four main issues need to be considered in acquiring an emotional corpora;
the scope, the level of naturalness and context of the content; and the type of
corresponding descriptors [Douglas-Cowie et al., 2003].

e Scope
It covers the amount of speakers presented in corpora; language spoken;
gender variability of speakers; types of emotional state considered; level
of annotation (word-level, utterance-level, context-independent time
alignment); social/cultural setting (human-to-human interaction, task-
oriented human-machine interaction). Real-life emotions in general are
controlled by strong cultural influences [Harré, 1986]. Since speech is
a cultural human activity, emotional events within speech may be re-
lated to cultural influences. Usually, within real-life verbal interaction,
humans show less expressive emotions rather than full-blown.

e Level of the naturalness
The simplest way to collect affective speech is to ask actors to simulate
emotions within pronounced utterances. The main problem with this
approach is that no in-depth research about relationships between acted
material and spontaneous emotional speech has been done. It is of
course true that preselected actors can generate speech that listeners
classify reliably within a perception test. Still it is hard to measure how
closely the prompted affective speech reflects spontaneous expression of
emotion.
From the other side, the price of high-level naturalness is a lack of con-
trol on the lexical and phonetic content of the material. For induced or
spontaneous emotions it is difficult to collect samples in a target emo-
tional state due to the unpredictability of the collecting process (users
are able to use natural language for system interaction). A lot of appli-
cations (emotional speech synthesis, phoneme-level emotion modeling,
etc.) require phonetically balanced datasets, which is hard to achieve
within a truly natural speech interaction session.

o (Context
Three different types of context can be discriminated [Douglas-Cowie
et al., 2003].
- Semantic context:
Sincere emotional speech is likely to contain words with a different level
of emotionality. And this level of emotionality has a semantic nature.
An example of emotionally significant words are emotive words (like
"good", "lovely", "aggression” , etc.) that are part of some utterance.
- Structural context:
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Emotional events depend on the syntactic structure of the utterance:
focus of attention, sentence stress, intonation variability, etc. Structural
characteristics of the utterances (repetitions, rephrasing, interruptions
and long pauses) can be used as indicators of change in the emotional
state of the user. The sentence "I really, really like this" is an example
of contextual amplification by repetition the word "really".

- Temporal context:

Spontaneous speech contains distinctive characters of change as emotion
ebbs and flows during time. Due to their temporal nature, some words
within an utterance can be more expressive in comparison with their
neighbor words. By interpreting nearby utterances and words we can
resolve local ambiguity in emotional state classification. The sentence
"This was a great failure” contains positive in general but negative in
context the word "great".

Descriptors

Describing the para-linguistic and emotional content on one hand, and
transcribing the speech on the other is an important issue of construct-
ing a high-standard database. The requirements for correct labeling of
emotional events may be a concern to the level of naturalness. Acted
emotions can be adequately described with emotion category labels from
a basic emotions list. Corpora with spontaneous emotions, though, can
require a gradation of the emotion (cold angry, hot angry, etc.) and
indication of the most expressive peaks within an utterance.

There are two main issues in terms of speech descriptors: First, the
full range of features responsible for the vocal expression of emotion
should be taken into account. This range of features should include
at least the prosodic description, non-linguistic features like breathing,
clatter, laughter, and crying. Second, it is important to describe the
attributes that define emotional states and their dynamic specification
(intensity variability in the time domain). As discussed in section 2.5.1
and section 2.5.2, emotions can be described with emotion categories
or numeric values within a two- or three-dimensional space, namely
valence-arousal-(dominance) VA (D).

Providing "ground truth" measures within emotional content annota-
tion is an important issue. Defining "ground truth" measures for emo-
tions described in numerical values in VA(D) space is a non-trivial task.
It can also be problematic to measure "ground truth" for real-life emo-
tions defined with discrete emotion categories which have a mixed nature
or low-intensity.

To be able to measure the quality of the emotional annotation, inter-
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rater reliability measures as an alternative to the "ground truth" have
been introduced. To estimate the inter-rater agreement, it is common
to use the Kappa coefficient x [Carletta, 1996]:

~ Pa—-F

_ a0 2.1
=T h (2.1)

where P, corresponds to the proportion of the raters that assigned the
same class label, F is an estimation of the proportion where raters agree
by chance.

A description of our annotation strategy with an example of the adequate
annotation of spontaneous emotions will be given in section 2.8.1.

2.8.1 An adequate annotation strategy

An annotation process is the most expensive and time-consuming part within
prosodic speech corpora development. Two of the key points identified in the
previous section — scope and level of naturalness — are described in Table 2.3.
This table is designed to provide some brief information about existing emo-
tional speech corpora. Scope describes the language specification, number of
speakers, and emotions considered. Under level of naturalness, we consider
several categories: acted, spontaneous, mixed (contain both acted and spon-
taneous samples); and the type of material (e.g., sentences, utterances, short
commands).

As one can see, just five (AVIC, EMO-DB, ENTERFACE, SmartKom,
VAM) from nine datasets contain the sufficient amount of speakers. To be
able to model inter-subject variability, corpora should contain enough female
and male speakers (at least 5 speakers for each gender).

A good example of a reliable and close to "natural" acted emotional speech
database is the Berlin Emotional Speech Database [Burkhardt et al., 2005].
The emotion recognizability level, and the level of naturalness estimated
within a perception test for each utterance, are presented in this database.
To provide reliable measures, twenty perception-test evaluators took part in
this test. FEach "rater" heard all of the utterances in a random order. They
were allowed to listen to each utterance only once before the perception-test
evaluator had to decide in which emotional state the speaker had been and
how persuasive the performance was. Within our recognition evaluations, see
Chapter 5, we used utterances with a minimum 60 % level of naturalness and
minimum 80 % recognizability level. In practice, the perception test imple-
mented for evaluation of the Berlin Emotional Speech Database |[Burkhardt
et al., 2005] with estimation of the levels of naturalness and recognizability
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I /hm] do <breathing> really like this.
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Figure 2.5: An example of reliable spontaneous affective speech annotation

for each emotional utterance can be used as a "ground truth" measure of the
level of naturalness.

In case of applicable affective speech annotation, two issues stand out:
Firstly, transcription needs to acknowledge the full range of features in-
volved in the acoustic expression of emotion, including voice quality, bound-
ary prosody and non-linguistic features such as laughter, crying, clatter, and
breath. Secondly, it needs to describe the attributes (e.g., linguistic, dialog acts
specification) that are relevant to emotion. An example of reliable affective
spontaneous speech annotation is presented in Figure 2.5.

As one can see, the structural context (focus of attention, sentence stress,
intonation variability, etc.) should be carefully annotated. There is a high
correlation between boundary and emotional prosody. Annotators should be
extremely careful with distinguishing between these two different events. An
example of a possible conflict between focus of attention (boundary prosody
event) and emotional events is presented in Figure 2.5. Each of these ut-
terances have slightly different semantic accents which should be taken into
account by human-distinguishable boundary prosody and emotional prosody
events. Afterwards, we will be able make annotation process faster and reach
higher quality of annotation within the spontaneous affective speech descrip-
tion task [Siegert et al., 2011].

In real-life communication humans use a number of different variations
to denote emphasis in speech. Speakers may render emphasis with different
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combinations and even individuals may change their strategies for various
prosodic cues (boundary prosody and emotional prosody). In the first two
sentences presented in Figure 2.5 the words the "really" and "like" can be
pronounced with emphasis. At the same time only one word is pronounced
emotionally. In the first sentence the speaker points out that his emotions
are real, not simulated. In the second sentence the speaker places an accent
on the action ("like"). Tt is quite important to distinguish emphasis which
represents two different paralinguistic phenomena. As one can see, from the
third sentence these phenomena can be mixed. In this case both words "really"
and "like" are pronounced with emphasis and emotional prosody cue. Correct
interpretation of those sentences can provide system information about the
speaker’s intentions.

Most datasets evaluated in our recognition experiments and described in
Table 2.3 used a description of emotion with defined emotion categories list.
Only two databases (VAM, SAL) implemented the VA(D) dimensional ap-
proach. From our point of few, both types of emotional state descriptors
have advantages and disadvantages. In a case of emotion-categories-based
descriptors, we can model different dialog strategies for different emotional
state subsets in contrast to the emotions defined by VA (D) dimensions. Also,
it is much easier to organize perception evaluation with a defined or "open"
emotion categories list in contrast to emotion perception evaluation with the
VA(D) space, where "raters" should be preliminarily trained to be able to
make reliable emotional annotations. As described earlier, it is easier to pro-
vide "ground measures" for acted emotions annotated with a set of emotion
categories. From the other side, VA(D) dimension-based annotation provides
a higher-level of discrimination. As a consequence, mixed emotions and emo-
tions with light exclusivity can easily be defined with numeric values in VA(D)
space. Of course, standard mapping of categorical emotions on VA(D) di-
mensional space will be appreciated. Due to the huge variability of "rater"-
dependent measures of categorical emotions within VA (D) space, no standard
mapping technique exist. Grimm et al. in [Grimm et al., 2007| proposed
evaluator weighted estimator (EWE). They introduced evaluator-dependent
weights which measure the correlation between the listener’s responses, and
the average ratings of all evaluators. These weights can be used as a possible
normalization technique for the variable "rater"-dependent measures.

Our emotion-classification engine, integrated into the NIMITEK (Neurobi-
ologically Inspired, Multimodal Intention Recognition for Technical Commu-
nication Systems) demonstrator [Wendemuth et al., 2008], has been trained
on the EMO-DB database which is annotated with emotion categories de-
scriptors. A detailed introduction to various types of speech-based emotion-
classification techniques will be given in Chapter 4. A NIMITEK demon-
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strator’s dialog module supports different strategies based on an actual user’s
emotional state. More details on this can be found in Chapter 6.

2.9 Evaluating recognition results

Once the test material has been processed by the recognizer, the next step
is to analyze the results. The main aim of this analysis is a representation
of recognition performance of evaluated classifiers. Also, this analysis can
be used for comparison of recognition performances during iterative classifier
parameters tuning. Within our research we use different measures to char-
acterize performance of ASR and emotion recognition from speech. These
measures will be described in this section.

2.9.1 Automatic speech recognition

For estimating the performance of automatic speech recognition we use stan-
dard measures included in the HTK tool [Young et al., 2009]. The HResults
tool has been used to estimate ASR performance. It compares the transcrip-
tions output from the ASR engine with the original reference transcriptions
and then generates various statistical measures. HResults matches each of
the recognized and reference label sequences by retrieving an optimal string
match using dynamic programming.

Once the optimal alignment has been found, the number of deletion errors
(D), substitution errors (S) and insertion errors (I) can be estimated [Young
et al., 2009]. The percentage of correct recognized labels is called correctness
and is given by

Corr = N_TD_S % 100 % (2.2)
where N is the total number of labels presented in the reference tran-
scriptions. This measure ignores insertion errors. Taking into consideration
insertion errors, the percentage of so-called accuracy is defined as
N-D-S5-1

Ace = N x 100 % (2.3)

which is a more representative figure of ASR performance. For the evalu-
ations of our ASR engine we will use both measures.

2.9.2 Emotion recognition

As classes are often unbalanced in the emotional speech datasets, see Ta-
ble 2.3, we decided to use two different evaluation measures for presenta-
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tion of emotion-recognition performances: unweighted average recall (UA) and
weighted average recall (WA).

Unweighted average recall (UA) is the sum of all class accuracies, divided
by the number of classes, without considering the number of instances per
class. Weighted average recall (WA), also known as accuracy, is the accuracy
per class, including consideration of the number of instances per class. In
other words WA (accuracy) is the number of instances with correctly classified
classes, divided by the total number of classified instances. For estimating WA
we simply calculate Acc presented in equation 2.3. For this purpose we use
the HResults tool.

To show the difference between UA and WA measures, let’s consider an
example. We have an emotional speech dataset with 99 joy samples and 1
anger sample. That is to say, we have heavily unbalanced class distributions
within our dataset. If our classifier recognizes all 100 samples as joy, an
accuracy of emotion recognition WA = 99 %, which is a really good result.
At the same time, our classifier was not able to classify an anger sample. To
show "real" emotion-recognition performance of our classifier it is better to
use UA rate. For our example it can be calculated as

29,0
90 11

UA = x 100 % = 50 % (2.4)

Now we can resume that our classifier has WA = 99 % which is a really
good performance from one side, and has UA = 50 % which is equal to se-
lection "by chance" of a possible emotional state for two emotional classes
recognition task.

While tuning our classifiers we should use the most reliable measures. If
we have balanced class distributions within an emotional speech dataset we
can use WA, in the other case it is better to use UA. If the classifier parameters
are optimized on the measure of WA (number of accurately classified samples
by total number of tested samples), it will likely recognize only a few of the
dominant emotional classes accurately. Unweighted average recall provides a
method for estimating the performance of a classifier in emotionally biased
datasets. For the estimation of UA we use our own Perl script which provides
a detailed comparison of recognized and reference emotional labels.

2.10 Evaluation strategies

The most general parameters for evaluating the performance of a classifier
are its general recognition rates (UA, WA, Ace, Corr), and they have to be
estimated on the source dataset S. Usually the number of class instances



2.10. Evaluation strategies 39

in dataset S is quite small. Limited availability of the data source or high
expenses of data collection are the main reasons for a sparse amount of the
data.

A common methodology for evaluating the recognition rates is to split the
source dataset into two subsets: training and test set. The training set is used
for training purposes and the test set is applied to estimate the recognition rate
of the earlier trained classifier. This process is usually repeated multiple times
(with different random or preselected subunits of the dataset into training and
test sets), and the average of all estimated recognition rates gives an estimation
of the general recognition rate.

2.10.1 Speaker-dependent evaluation

Within a N-fold cross-validation strategy, a dataset S is first randomly di-
vided into n disjoint subsets Si,Ss,..., Sy, which have an equal or quasi-
equal amount of instances per class. Each of the n subsets is then one after
another applied as the test set, while the remaining n — 1 subsets are applied
as the training set. A classifier is then trained on the training set material,
and its accuracy is estimated on the test set material. This process is repeated
n times, with a different subset applied as the test set. The evaluated gen-
eral recognition rates by this method is the average over the n subsets. An
extension to cross-validation is a stratified cross-validation. Within a N-fold
stratified cross-validation strategy, a dataset S is divided into n subsets in
such a way that each class is uniformly distributed among the n subsets [Zeng
and Martinez, 2000].

For our speaker-dependent evaluations we applied a 10-fold stratified cross-
validation (SCV) strategy. Such strategy is used for datasets which have a
small amount of data per class instance and/or per speaker presented in a
corpus (SUSAS, DES).

2.10.2 Speaker-independent evaluation

To address speaker independence (SI) within our evaluations we applied leave-
one-speaker-out (LOSO) or leave-one-speakers-group-out (LOSGO) strategies.
In such a way we simulate close to real-life application conditions. For these
strategies, evaluation material should contain a sufficient amount of instances
(emotional samples, utterances) per each speaker presented in the dataset.
Within LOSO strategy the number of folds n presented in the previous sec-
tion is equal to the number of speakers presented in corpora. In the case of
LOSGO strategy n is a number of speaker groups. In contrast to a random
partitioning process within a cross-validation strategy we divided a dataset S
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into n folds in such a way that each fold contains samples of only one speaker
(within LOSO) or only one speaker group (LOSGO). An additional advantage
of these methods is a possibility to concentrate on inter-speaker variation and
not to deal with acoustic channel changes. For presentation of the recognition
performance within an evaluation based on LOSO strategy we estimate the
average evaluation measures (UA, WA, Corr, Acc). For this purpose we de-
veloped a Perl script which analyzes the recognition results for each speaker
(leave-one-speaker-out trial) within the complete evaluation cycle.

2.10.3 Cross-corpora evaluation

Within the previously described strategies we conclude a simplification that
characterizes that most of the current speech-processing research is that clas-
sifiers are usually trained and tested using the same datasets. By using two
different datasets for training and testing we can simulate that, in particular
development tasks, corpora may not be available which cover all emotions
of speaker in a given application domain. This type of experiments called
cross-corpora evaluation. Speaker-independent evaluations (LOSO, LOSGO)
have become quite common, still other mismatches between training and test
datasets, such as different recording conditions (including different acoustic
environment, acoustic channel characteristics, microphone types, signal-to-
noise ratios, etc.), are often not considered. Addressing such typical sources
of mismatch, however, we believe that an impression about the generalization
ability of speech-based emotion recognition and automatic speech-recognition
engines can be obtained by cross-corpora evaluations. A considerably more
realistic impression can be gathered by interset evaluation: We therefore use a
cross-corpora evaluation experiment, which could also be helpful for learning
about chances to add resources for training and overcoming the typical sparse-
ness in the field. By using cross-corpora evaluation for emotion-recognition
experiments we want to estimate emotion-recognition performance in condi-
tions which are close to real-life development tasks.

2.11 Summary

This chapter reviews the fundamentals of the user-centered human-machine
interaction. The variety of existing spoken dialog systems with German in-
teraction language is described first. Characteristics of the natural human
speech, namely boundary and emotional prosody, are then presented. The
emotion theory and existing emotion-categorization schemes are presented in
detail. Different sources of emotional speech data are then introduced. Also,
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a possible emotion clustering technique is then introduced. Then, the main
issues of adequate annotation of the affective speech are presented. Finally, a
variety of recognition rate measures and evaluation strategies are discussed.

In the next chapter we will describe the general architecture of the au-
tomatic speech-recognition (ASR) system. Some ASR methods will be used
for our phoneme-level emotion-recognition methods. Methods described in
the next chapter have been used to create an ASR module integrated in our
NIMITEK demonstration prototype of a spoken dialog system (SDS). Also,
we need the ASR system for time alignment within phoneme-level emotion
classification. Finally, the ASR module can be used for semi-automatic tran-
scription of the data collected during a Wizard of Oz scenario.
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3.1 Introduction

n this chapter an introduction to automatic spontaneous speech-
I recognition system with acoustic model based on hidden Markov models
(HMMs) is given. Main aspects of the concept presented in Figure 3.1 are
described in this chapter, namely feature extraction, the mathematical de-
scription of an HMMs-based algorithm, a selection of the sub-word units and
their quantitative and qualitative specification, the decoding algorithm for
spontaneous speech, a language modeling and the adaptation techniques for
a robust affective speech recognition.

3.2 General ASR models/architecture

Automatic speech recognition (ASR) is a task of converting acoustic waveform
automatically to a word sequence. The basic structure of an ASR system is
presented in Figure 3.1.

Converting of an acoustic speech signals into stream of acoustic fea-
tures, referred to as observations is the first stage of speech recognition. So-
called, front-end processing or feature extraction have to generate compact
acoustic observation vectors with sufficient information applicable for efficient
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Acoustic
Speech signal Model
Y
Feature Recognition Sequence of words
extraction engine hypothesis
Lexicon Language
Model

Figure 3.1: General structure of a standard ASR system

recognition. Three types of components are required for a standard speech-
recognition system: the lezicon (or dictionary), language model and acoustic
model. The lexicon is usually used to map phonetic units (monophones, tri-
phones, etc), from which the acoustic models are built, to the hypothesis word
present, in the lexicon and language model. The language model represents
a-priory information about syntactic and semantic structure of the uttered
sentences, which include the possibility of each possible word sequence. The
acoustic model maps the acoustic observation vectors to the phonetic units.
A detailed description to various components in Figure 3.1 will be given later
in Chapter 3.

Statistical analysis is the most popular speech-recognition algorithms to
determine word sequence hypothesis given the information presented in Fig-
ure 3.1. The main decision criterion to find the most likely word sequence
hypothesis W for the sequence of observation vectors O = [01...07] is the
Bayesian decision rule [Young, 1995]:

W= argvrglax PW|O) = argvrglax {p(ozz/())];(W) } (3.1)

Take into account that the most likely word sequence is independent of the
likelihood of the observation

~

W= arg;}nax {p(OIW)P(W)} (3.2)

where P(W) is the prior probability of a particular sequence of words pre-
sented by a language model. p(O|W) is estimated by the acoustic model
which is in most cases implemented as hidden Markov models (HMMs).
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3.2.1 Feature extraction

For effective speech recognition, the speech signal is usually converted into a
series of discrete time acoustic features. These acoustic features are supposed
to present speech variability in a compact form. In the speech-processing com-
munity these features are often referred to as feature vectors or observations.
The most widely used feature extraction scheme applied in ASR systems is a
Mel-frequency Cepstral coefficient (MFCC).

The MFCC extraction is based on cepstral analysis. Firstly, the acoustic
signal is split into discrete frames usually with a 10 ms shifting step and a
25 ms window length. These parameters were estimated based on the quasi-
stationarity property of the speech signals [Rabiner and Juang, 1993]. These
discrete fragments are usually referred to as frames. The feature extraction
is applied for each frame. A first-order pre-emphasizing technique in combi-
nation with a Hamming smoothing window are used. The pre-emphasizing is
implemented with high-frequency amplification to compensate for the attenu-
ation produced by the radiation from the lips [Young, 1995|. Using a window
function like Hamming, is useful for a boundary effect reduction. A fast
Fourier transform (FFT) is performed on the time-domain acoustic signal for
each individual frame, generating speech representation in complex frequency

domains. Afterwards, the frequency warping methods are used [Young et al.,
2009]:

e Mel-frequency warping:
Within psychophysical experiments it has been shown that human per-
ception of the frequency content of acoustic signals does not follow a
linear scale. Therefore the frequency is warped using the Mel-frequency
scale, with following frequency axis scaling. Estimation of the magni-
tude of each FF'T complex value will be processed in a scaled magnitude-
frequency domain.

e Down-sampling with triangular filter bank:
By using the mel triangle filter bank we can down-sample the warped
magnitude-frequency domain. The magnitude coefficients are multi-
plied by filter gains, afterwards the results are accumulated as the
amplitude value, see Figure 3.2. As a consequence, one amplitude value
was calculated for each filter. As a next step the logarithm of each
filter amplitude value is calculated, later referred as m;, where j is a
filter number. For our evaluations we used the lower cut-off equal to
300 Hz and the upper cut-offs equal to 3,400 Hz.

e Discrete Cosine transform (DCT):
A DCT is conducted on the log filter-bank amplitudes, to reduce the spa-
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Figure 3.2: Triangular mel-scale filter bank

tial correlation within filter bank amplitudes. The DCT coefficients cal-
culated by equation 3.3 are referred as Cepstral coefficients, also known
as MFCC coefficients.

2 i
C = m; Cos ) — 0.5 3.3
Va2 (-t-09) (33)

where N, is the number of triangle filter bank channels.

Within our evaluations the 12 coefficients and the zero-order Cepstral co-
efficient are used. Hence a 13-dimensional feature vector is constructed for
each frame.

By adding dynamic coefficients the performance of ASR system can be
greatly enhanced. These time derivative features represent the correlation
within static features for the different time instances. The delta coefficients,
Aoy, are computed using the following linear regression formula:

Ac, = T k@?’“ — ) (3.4)
2 Zk:l k?

where Ac; is a delta coefficient at the discrete time ¢ with respect to the static

coefficients ¢;_ and ¢;,; K is the width over which delta coefficients are cal-
culated. Within our evaluations we applied K = 2. The delta-delta coefficient
A(Acy), or so-called acceleration features or second-order delta coefficients,
is defined in equation 3.4. In this case the static coefficients ¢;_; and c¢;yy in
equation 3.4 are replaced by the first-order delta coefficients Ac; j and Acyig.
For our evaluations we used both: delta and acceleration coefficients in addi-
tion to the 13-dimensional MFCC feature vector. As a result a 39-dimensional
acoustic feature vector is constructed for each window of analysis.
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3.2.2 Acoustic model

Now to be able to evaluate on observation vectors sequences, we need an
acoustic model. The most robust and general acoustic technique in automatic
speech recognition are hidden Markov models (HMM). The first applications
of HMMs for the acoustic modeling were used in the mid-1970s [Baker, 1975].
Currently, the HMMs-based acoustic models are presented in the HTK toolkit
[Young et al., 2009] an extremely popular in speech-processing community. For
our evaluations we used this toolkit, to create and test our German acoustic
models.

The main goal of the acoustic model is to supply a method of estimation
of the likelihood of any observation feature vectors sequence O given a hy-
pothetical word sequence V. For small vocabulary speech-recognition tasks,
HMDMs can be used to model single words. However, for speech-recognition
application with large vocabularies, it is impossible to acquire sufficient train-
ing material for each word included in the vocabulary. One possible solution
to this problem is to use HMMs to model sub-word (phonetic) units, instead
the words themselves. More details about this decomposition and type of the
sub-word unit selection can be found in section 3.3.2.

The HMM is a generative statistical model where each sub-word unit is
supposed to be generated by a finite state machine. This state machine, could
change an active state at some discrete time with a predefined probability.
When an emitting state is activated, an observation vector is generated at
that discrete time instance with a defined probability function. A left-right
HMM with three emitting and two non-emitting states is the most popular
topology applied for monophone-based ASR system, see Figure 3.3. The entry
and exit states are produced to facilitate sub-word models connections. The
exit state of one sub-word model can be joined with the entry state of the

aZZ a33 a44

a 12 az3 as4 a a45 e
states ~—_a, T < ayT By

:b,(0,) b,(0,) b,(0,)

observation
vectors
ty

discrete time t

Figure 3.3: Simple left-right HMM with five-state topology
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next sub-word model to arrange composite HMM.
To be able to use a HMM, two assumptions should be true:

e The stationarity assumption:
The speech waveform can be divided into stationary fragments, which
correspond to the same hidden states. It is required that observation
vectors within the same fragments have similar acoustic characteristics.
Transactions from one state to another are supposed to be instanta-
neous.

e The observation independence assumption:
A generation of a current observation is statistically independent of the
previous and following generated observations. From that assumption
the following equation can be formed:

T
p(Olsy, sa,..., s, M) = [ [ plorsi, M) (3.5)
t=1
where O is an observation sequence O = [01,09,...,07], $; is an active

state at the discrete time ¢, M is an HMM’s parameter set.

Suppose O is an observation vectors sequence O = [01,09,...,0r| corre-
sponding to some sample of a particular phonetic unit (monophone, triphone,
etc), where T is the length of the vector sequence or in other words the
duration in discrete time samples. The generation begins from the first non-
emitting state. At each discrete time, an active state can be switched with
the probability given by the model. The transition probability, is defined as
a discrete distribution a,; for the possible transitions from state ¢ to state j.
During the emitting state activation process, an observation vector is gen-
erated at the discrete time with either discrete or continuous density b;(o;),
where j is an active state number. Let’s assume that s = [s1,89,...,S7] is
the state sequence associated with the observation vectors sequence. Within
modeling, only the observation vector sequence can be observed and the cor-
responding state sequence s is unknown. This is the reason why the model is
called the hidden Markov model.

The HMM’s parameter set M consists of the following parameters [Ra-
biner, 1989]:

e 1 - Initial state distribution
The initial state distribution is expressed as:

N
7 = P(s1 = 1), Zﬂ'i =1, 7>0 (3.6)
i=1
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where N is the number of sates, s; is an active state number at the
discrete time t.

e A - State transaction probability matriz
The state-transaction probability matrix A includes the following ele-
ments:

N
a;; = P(st11 = jls: = 1), Zaij =1, a;=>0 (3.7)

Jj=1

e B - Observation generation probability distribution
Every emitting state k is associated with an output probability distri-
bution, which is responsible for the observation vectors generation at
each discrete time instance. The following distribution is expressed as

br(oy) = p(oy]sy = k) (3.8)

The state output probability distribution can be defined with a dis-
crete distribution or a continuous density distribution function. For our
evaluations we use the continuous density distribution case.

In context of the ASR task, there are three following basic problems for
HMMs [Rabiner and Juang, 1993|:

e Probability evaluation
Given the observation vectors sequence O = [01,09,...,07], and a
HMM’s model M = (7, A, B), how can we estimate p(O|W, M). This
problem can be solved with the forward-backward algorithm.

e Optimal state sequence decoding
Given the observation vectors sequence O = [01,09,...,07], and the
model M, what is the optimal state sequence s = [s1, o, ..., s7]. The
Viterbi algorithm can be used to solve this problem [Viterbi, 1967].

e Parameters Estimation
How do we estimate the model parameters M = (7w, A, B) which max-
imize p(O|W, M)? The Baum-Welch re-estimation algorithm can be
used as a solution for the following problem [Baum et al., 1970].

3.2.3 Probability evaluation

Let’s say we have the observation vector O = [01,09,...,07] which cor-
responds to some hypothetical word sequence W . We wish to calculate
the likelihood of the observation vector O = [01,09,...,07], for the given
HMM model M = (7, A,B). As mentioned earlier the state sequence
s = [s1,82,...,s7| is hidden. As a consequence, the most straightforward
way of likelihood p(O|W, M) estimation is through enumerating all possible
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state sequences, which can generate an observation vectors sequence O of
length 7. We should take into account N7 possible state sequences.

Take into account the observations independence assumption (see equation
3.5), the likelihood of the observation vectors sequence O generation by the
given state sequence s may be expressed as:

T
p(Ols1, s2, ..., 87, W, M) = Hbst(ot) (3.9)
t=1
The likelihood of such a state sequence s = [sq, s9, . .., $7] can be estimated
by:
T
p(s1, 82, ..., s7|W, M) =g, H As, s (3.10)
t=2

By using equations 3.9, 3.10 the likelihood p(O|W, M) may be estimated
by accumulating the joint likelihood of O and s over all possible state sequence

S:[817S2,...7ST]

p(O‘W, M) = Zp<07 S‘Wv M)

Vs

= ZP(S|W’ M)p(O|S, M)
Vs

T
- Z Ts1 H bst <Ot)ast—1st (311)
Vs t=1

where a5, 1s an initial transition probability from the first non-emitting state
to the emitting state, is equal to 1.

To estimate the likelihood expressed in equation 3.11, we should be able
to model the distribution b;(0;). One of a possible continuous density HMM
technique is based on a multivariate Gaussian mizture model (GMM). Besides,
the b;(0;) can be represented as a multivariate GMM [Yu, 2006]:

by(0) = 3 Cinbim(0) (3.12)

where M is the number of Gaussian mixture components related to the state
J s Cjm is a weight coefficient of m component of the state j. Each compo-
nent b;,,(0;) is the D-dimensional multivariate Gaussian distribution with the
following parameters N (0¢|ft;,, Zjim)
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1 1 Te -1
o) = —preesp {500y B o= i)} (319

where g, is a mean vector of m component and j HMM’s state, and 3, is
a covariance matrix of m component and j HMM’s state.

3.2.3.1 The forward process

Consider the forward variable «;(t), is defined as the joint likelihood of the
partial observation vectors from corresponding discrete time interval from 1
to t with the final active state s, = j:

Oé](t) :p(01702a"'70t7$t:j|W7M) (3]‘4)
The forward wvariable of the partial observation vectors sequence
01,09,...,0; and an active state ¢ at the discrete time ¢ can be efficiently

calculated using a recursive formula:

a;j(t+1) = bj(0p41) Y ity (3.15)

=1
1<t<T-11<j<N

where N is the total number of HMM’s states (emitting and non-emitting).
The initialization condition for equation 3.15 is:

aj(1) =mbj(o1), 1<j<N (3.16)
By using the forward variable, equation 3.11 in section 3.2.3 can be rewrit-
ten as:

p(O|W, M) Zal (3.17)

Calculation of the forward variable is based on the lattice tracking. The
general model of the lattice an N state HMM is presented in Figure 3.4. At
the initial discrete time ¢ = 1, we need to compute forward variables a;(1),

1 < j < N. Afterwards, we need only compute forward variables o;(t),

1 < 5 < N at the discrete time 2 < ¢t < T'. Each calculation uses just the N
previous forward variables «;(t — 1) because each of N lattice nodes can be
reached from only the N lattice nodes at the previous discrete time slot [Ra-
biner and Juang, 1993]. Calculation of all a;(t) forward variables requires on
the order of N2T calculation, in comparison with 2" N7 calculations required
by the direct computation method.
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| Al

Discrete time

Figure 3.4: General representation of the series of operations required for
estimation forward variable o (t)

3.2.3.2 The backward process

In a similar way, we can can define a backward variable, 5,(j), as

Bj(t) = p(0t11, 012, - . ., 07|81 = j, W, M) (3.18)

that, is the probability of the partial observation vectors sequence from dis-
crete time ¢ + 1 to the end, with an active state 5 at the discrete time .
The backward variable can be calculated using the following recursion:

Bi(t) =) ajibi(0n1)Bilt + 1) (3.19)

i=1

1<t<T-1,1<j<N

An initial condition of recursion 3.19 is:

Bi(T)=1, 1<j<N (3.20)
Hence the conditional probability p(O, s; = j|W, M) can be calculated as:
p(O, St = j‘W, M) = Oéj(t)6]<t> (321)

3.2.4 An optimal state sequence decoding

The second basic problem for the HMM is to find an optimal state sequence
associated with the given observation vectors sequence. There are several
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possible optimality criteria: A simple possible optimality criterion is to choose
the states s;, which are the most likely at each discrete time ¢. This criteria
might be applicable for some simple tasks, but the most suitable criterion is to
find the one optimal state sequence s that is, to maximize p(s|O, M), which
can be interpreted to maximizing p(O, s|M). The Viterbi algorithm [Viterbi,
1967] is one of the possible techniques for finding one optimal state sequence.
It is based on dynamic programming methods. A detailed discretion of the
Viterbi algorithm applied for isolated word recognition will be discussed in
this section. A description of the Viterbi decoding within continuous speech
recognition will be given in section 3.2.8.

3.2.4.1 Viterbi algorithm

To find one optimal state sequence s = [s1, So, . .., $7], for some observation
vectors sequence O = [01,09,...,07|, we have to define the maximum likeli-
hood variable x;(t) of the partial observation vectors sequence [0, 0,. .., 0]
and an active state j at the discrete time ¢:

x;(t) =  max  p(s1,82,...,8-1,5 = J, O(W,M) (3.22)

V51,8258t —1

Take into account dynamic programming principles (DPP) [Bellman,
1957], [Bertsekas, 2000], to find the optimal state sequence from discrete time
1 to discrete time t+ 1 any intermediate state must be the optimal state (local
optima) within the optimal partial state sequences before and after that state.
As the result of the DPP, we can express x;(t 4+ 1) by the induction:

xj(t+1)= { max Xj(t)aij} b;j(0t+1) (3.23)

1<i<N

To determine an optimal state sequence we need an additional variable
¥ (j) to store the argument that maximized equation 3.23. The algorithm of
finding an optimal state sequence can be presented as follows:

o [nitialization

Xi(1) =mbi(o1), 1<i<N (3.24a)
Pi(i) =0, 1<i<N (3.24b)
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o Recursion

X3 (1) = max {x(t — )ai;} bj(or) (3.25a)
2<t<T, 1<j<N
Ui (j) =argmax {x;(t — 1)a;;} (3.25h)
<i<N

2<t<T, 1<j<N

o Termination
sp = argmax {x;(T)} (3.26)

1<i<N

e State sequence backtracking

St = Vri1(S141) (3.27)
t=T—-1.T—2,.. .1

The Viterbi algorithm is almost similar (backtracking step is an exception)
in realization to the forward variable estimation 3.15 - 3.17 within forward-
backward algorithm. The main difference is the maximization in equation
3.25a instead the summing in equation 3.15.

3.2.5 Maximum likelihood training

Mazimum likelihood (ML) training is the most often used approach for es-
timation of the HMM parameters. The main task is to compute the model
parameters that maximize the likelihood of the observation vectors sequence
given the defined transcriptions and the model parameters. The general ML
criterion can be expressed as:

M, = arg max p(O|W, M) (3.28)
M

Where W is the defined training word sequence (or sub-word unit level tran-
scription), M is the HMM parameter set.

It is often more convenient to maximize the logarithm of the likelihood
function in order to decrease required computational power. In this case
equation 3.28 can be expressed as:

My, = arg max log p(O|W, M) (3.29)
M

One possible solution for maximum likelihood training task is an ezpecta-
tion mazimization (EM) algorithm.



3.2. General ASR models/architecture 55

3.2.5.1 Expectation maximization algorithm

The expectation mazimization (EM) is a general statistic method of finding the
maximum likelihood estimate of the parameters of an underlying distribution
from a given data set when the data is incomplete or has missing values.

The EM algorithm has two main applications: The first takes place when
the data has some missing values, due to problems with or restrictions of the
observation process. The second takes place when optimizing the likelihood
function is analytically quite difficult but when the likelihood function can be
simplified by assuming the presence of and values for additional but hidden or
missing parameters. The second case is more common in the computational
pattern recognition field [Bilmes, 1998].

The EM algorithm is a well-known method of finding maximum likelihood
estimates of parameters in various statistical models. The Baum-Welch algo-
rithm [Baum et al., 1970] is a prominent instance of Expectation Maximization
algorithm.

The basic idea of the algorithm is to iteratively compute the maximum
likelihood estimation when the observations can be considered as incomplete
data. Each iteration of the algorithm includes an expectation step followed
by a maximization step. The term "incomplete data" implies the existence
of two sample spaces X and Y. We assumed that observation feature vectors
x are realization from X. The corresponding state sequences y in Y are not
observed directly, but only indirectly through observation feature vectors .
We suppose that a complete data set exists Z = (X,Y). Then the joint
density function p(z| M) can be specified as:

p(zIM) = p(z,y|M) = p(y|z, M)p(z[ M) (3-30)

First, the EM algorithm finds the expected value of the complete data
set log-likelihood log p(X, Y| M) with respect to the hidden data Y given the
observed data X and the actual parameters estimates. We can define the
following auxiliary function (M, Mkfl):

QM, M;_1) = E [zog p<X,Y|M)|X,Mk,1] (3.31)

Where ./\;lk,l are the actual parameters estimates that we used to estimate
the expectation and M, are the new parameters that we optimize to increase
the auxiliary function Q.
To find the optimal parameters estimates, two main steps are taken:
e Expectation: The evaluation of the auxiliary function Q(M,Mk—l).
The first argument M represents the parameters estimates that will
be optimized in an attempt to maximize the likelihood [Bilmes, 1998|.
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The second argument My, represents the current parameters estimates
that have available to estimate the expectation.

e Maximization: The next step of the EM algorithm is to maximize the
expectation we computed in the previous step:

M, = argmax Q(M, M,_,) (3.32)
M

This is the reason why the algorithm is called ezpectation maximization
(EM) algorithm.

3.2.6 Parameters re-estimation

To describe the iterative process for re-estimation of HMM parameters we first
define variables &;;(t) and ~;(t). The variable ;;(¢), is defined the probability
being an active state ¢ at the discrete time ¢, and state j at the discrete time
t+ 1:

&ij(t) = p(si = i, 5001 = §1O, W, M) (3.33)

From the definitions of forward and backward variables, we can express

Sz](t) as:

p(sy =1, 8041 = J, O[W, M)
&j(t) = p(O‘W,M)
_ ai(Dagbi(oe1)B;(t +1)
B p(OW, M)
_ ;(t)aijbj(0p1)B;(t + 1)
Sy Yo ailt)aihi(0pi1) Bi(E + 1)
_ ay(t)aizhj(o1)Bi(t + 1)

Y B

(3.34)

The variable v;(t), is defined as:

5(t) = p(s; = j|O, W, M) (3.35)

It is the probability of being active state j at the discrete time ¢, given
observation vectors sequence O, the word sequence hypothesis W, and the
model M. We can calculate ~,(¢) in such a way:
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5(t) = p(si = j|O, W, M)
. p(oa St = j|W,M)
- p(OW, M)
_ p(O, s; = j|[W, M)
251110(0,& = i|W, M)

(3.36)

Bu using equation 3.21, we can express v,(j) as:

i(t) = (0)251) (3.37)

> iy @i(t)Bi(t)

Re-estimation formulas for HMM parameters M = (7, A, B) can be de-
rived by evaluating equation 3.32. By using variables &;;(t) and v;(t), we can
express re-estimation formulas as:

iy = 2o Gt (3.38b)

S )

GMM is the most popular type of continuous density function within contin-
uous HMM. To calculate parameters of the observation generation continuous
density function b;,,(0;), expressed in equation 3.13, we should define a vari-
able 7;,,(t). The Gaussian component posterior variable ~;,,(t) is related to
the m-th Gaussian component, and the active state j can be estimated by:

Cjmbim(00)B;(8) SN it — 1ay
SN ai(t)Bi(t)

Vim(t) = (3.39)

where b;,,,(0;) is the D-dimensional multivariate Gaussian distribution with
the following parameters N (ot, Hjms Ejm).

The re-estimation equation for GMM parameters for an active state j are
given by [Yu, 2006]:
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T
o = 2um Yim(?) (3.40a)
im = S, T .
Y omit Doy Vim()
T
o = 21 Gm(t)or 3.40b
jm T ( . )
thl ’ij(t)
S Yy Oled i) 0 N 0
ijzl ’ij(t) T
A ; S Yy Ofeh i) 0
E]m — ijzl fy]m(t)
...................... g o
o 0 Ziz om0 “Rum)
ZmJ:I fy]m(t)
(3.40c)

The calculation of the full covariance matrix 2jm requires a lot of computation
power and memory for the second-order statistics. Take into account, that
most ASR systems are using a large number of Gaussian components, only
the estimation of the diagonal elements of covariance matrices are done in
equation 3.40c.

3.2.7 Language modeling

A language model is an important source of priory information, namely, the
probability of a hypothesized sequence of K words, W = w1y, ws, ..., wy. For
each word presented in the vocabulary, the language model defines the list
of words that can follow it with associated discrete probability. Those prior
discrete probabilities can be factorized into a product of conditional probabil-
ities:

POW)

P(wy,ws, ..., wg)
P(wl)P(w2|w1)P(w3|w2,w1)...P(wk|wk,1,...,w1)

K
HP(wk|wk_1,...,w1) (3.41)
k=1

where wy, is the k-th word of the hypothesized word sequence. The estimation
of the discrete probability of any word sequence using equation 3.41 demands
estimating the probability of all of it is possible complete sequences. In the
case of large vocabulary tasks, the number of possible complete sequences is
too big. As a result it is hard to provide an accurate estimate of every pos-
sible word sequence. N-gram language models is a possible solution for this
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problem. This type of language model restricts the length of the complete
sequence required to calculate the conditional probability. This method is
the most widely used for statistical language modeling in automatic speech
recognition. The following simplification of probability estimation of the hy-
pothesized sequence of K words can be expressed as:

PW) = P(wy,ws, ..., wg)

K
HP(wk\wk,l, C, W)
k=1

P(wk|wk_1, ce ,wk_NH) (342)

X
>

T

1

where N is the fixed size of word history. N usually has a small value, for
example: N = 2 so it is called a bigram language model, N = 3 is a trigram
language model. Taking into account this assumption, it is easy to use the
ML estimate for N-gram by using the word sequence frequency counts with
length N

f(wk7 Wg—1y -+, wkaﬂ); (3.43)
f(wkfla .- 7wka+1)

where f(wg, wg_1,...,wx_n11) indicates the number of times the N-gram

P(wgwg—1, ..., W—n41) =

word sequence wg,Wk_1, ..., Wx_n+1 appears in the training dataset and
f(wg_1, ..., wr_n11) is the number of times the (N — 1)-gram word sequence
Wg_1,...,Wk_N+1 appears.

Since the vocabulary of datasets we consider in this thesis is sufficiently
limited, we use back-off bigram language models for evaluation of our ASR
engine. The bigram language model is a table which includes the probability
of a given word being followed by another word. This able is estimated based
on a training dataset.

So-called zero-gram model is the simplest language model, which assumes
P(wg|w;) = 1 for all k and i, so that every word from the vocabulary is
supposedly capable of being followed by any other word from the vocabulary.
Zero-gram language models can be performed as finite state networks, so-
called word networks. In such a form they can be integrated simply into a
recognition decoding process.

For construction of a word network from a specified recognition grammar
we used HParse tool from HTK 3.4 [Young et al., 2009]. HParse format
grammars are an easy way of defining a specific thematic domain grammar
for IVR technologies. An example of a recognition grammar in HParse format
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$simple object = Ring | Scheibe;

$articles = die | der | den | sil;

$typel = kleinste | mittlere | mittelgrosse | grosse |
groesste | naechste;

$type2 = kleinsten | mittelgrossen | mittleren |
grossen | groessten | naechsten;

$1i _rech = links | rechts;

$num = eins | zwei | drei;
$num2 = erste | zweite | dritte;

$object = $articles $typel $simple object |
$articles $type2 $simple object |

$articles $typel | Sarticles S$type2;
$direction = auf die Nummer $num | auf Nummer $num |

auf die $num | auf $num | auf Position $num |

nach $1i _rech | $li_rech | nach ganz $li rech |

zu $num | in die Mitte | auf die Mitte | zur Mitte;

$action = lege | legen | bewege | setzen |
hinlegen | runterlegen | positionieren ;
$input = $object | $direction | $commands | X ;

(< S$input | sil >)

Listing 3.1: Simple Tower of Hanoi task (with 3 disks) grammar

is presented in listing 3.1. This grammar is suitable for an ASR system for
speech-based control within solving a simple logic game "Tower of Hanoi"
with 3 disks.

Listing 3.1 shows an example of a grammar for "Tower of Hanoi" game
with 3 disks. As can be noticed, the grammar contains the following word
groups: object specification (simple object, typel, type2, num, num2, articles,
object), direction specification (1i_rech, num, direction), action specification
(action) and a so-called "garbage"” model (X).

The dictionary entry for X would reference out-of-vocabulary (OOV) words
or a so-called "garbage" model. The simplest way of "garbage" modeling is
to include phonetic transcriptions of the most frequently used task-unrelated
words to the X word-related-lexicon entries.
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3.2.8 Viterbi decoding and continuous speech
recognition

Within recognition, the acoustic score is computed with equation 3.11 which
is presented in section 3.2.3. As described in sections 3.2.3.1 and 3.2.3.2,
the likelihood p(O|W, M) can be estimated using the forward-backward al-
gorithm [Baum et al., 1970]. However, it is unpractical for the real-time
continuous speech recognition since:

e backward iteration is needed, hence the whole utterance has to be buffered
first
e the sum over states takes a lot of time and computational recourses,
hence it is approrimated by the mazrimum
The Viterbi algorithm [Viterbi, 1967|, described in section 3.2.4.1, is the
most widely used approach in the continuous speech recognition applied to find
the single best state sequence that has the highest probability to generate
the observation vectors sequences. In such a way, the maximum likelihood
of the observation vectors sequence uses only one hidden state sequence to
approximate the marginal likelihood over all possible state sequences [Yu,
2006.

p(OW, M) => " p(0,s|W, M)
Vs
~ %axp(O,s\W,M) (3.44)

Taking into account equation 3.25a, the maximum likelihood of the obser-
vation vectors sequence can be expressed as:

PODW, M) ~ (1) = masx {u(T — Daix}blor)  (3.43)

where T is the length of the observation vectors sequence. As one can notice,
in equation 3.45 the backward processing is not applied. Hence, real-time
processing becomes possible.

The Viterbi algorithm can be applied for isolated word recognition tasks.
Continuous speech recognition is a complex task. Since an average continuous-
speech-recognition system deals with a huge number of possible word se-
quences, it is not applicable for such a system to construct a single composite
HMM for each potential word sequence. In this case, a Viterbi-beam search
with a token passing algorithm [Young, 1995] is usually used.

To understand the complexity of the continuous speech-recognition task,
suppose that a branching word network tree is built such that at the start
there is a branch to every possible start word. All start words are linked to all
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possible following words and so forth. At the end, this branching word network
tree will be quite big and represents all of the possible word sequences within
a closed thematic domain. After construction of the word network tree, let
each word be replaced by the sequence of corresponding phonetic models. In
a case of multiple phonetic transcriptions for the same word, these models can
be combined in parallel. As one can notice, the constructed branch network
is very large. As a consequence, a pruning of the search space is required.

Any path from the start point to some node in the network tree can be
presented as a movable token placed in the node at the end of the path [Young,
S. J. et al., 1989|. The token is characterized by the likelihood of the partial
path x;(¢) (token score) and a path history. As a starting point of the token
passing algorithm, a single token is set in the start node of the network tree.
At each discrete time, tokens are duplicated in connected HMM states or
connected network tree nodes and their scores are re-estimated. Within the
words transaction, the language model score is added to the corresponding
token score. When the last observation vector is processed, the token with
the highest score is traced back to show the most likely sequence of HMMs
and corresponding lexical interpretation.

3.2.9 Adaptation techniques in ASR

The training approaches described earlier use an assumption that training
and test datasets have similar acoustic characteristics (speaking rate, acoustic
environment, vocal tracts variability, emotional speech, etc.). However, in
real-life applications, it is usually not the case. The acoustic characteristics
mismatch may significantly decrease the recognition performance compared
to the ASR systems build on data with matched acoustic characteristics. To
compensate the mismatch of acoustic characteristics between test and training
datasets, adaptation techniques are usually applied. A simplified schema, of
the speaker adaptation technique as used in HMM-based speech-recognition
models is presented in Figure 3.5.

As one can see from Figure 3.5, adaptation techniques use information
provided in an adaptation material to adjust the HMM/GMM parameters
(i.e. mean and diagonal elements of the covariance matrix (variance) of the
multivariate Gaussian mixture models) of the basic model to reflect specific
acoustic characteristics (acoustical environment, speaker-dependent modeling,
etc.). In our research we use adaptation approaches for compensation the mis-
match of acoustic characteristics between neutral speech samples and affective
speech material.

One of the most popular adaptation techniques applied within ASR sys-
tems are model-based transforms: Mazimum Likelihood Linear Regression
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Basic HMM/GMM models

a

2 4
\_/
Adaptation data ¢

Adaptation (MLLR/MAP)

¢ Adapted HMM/GMM models

() ®

Figure 3.5: General structure of an adaptation ASR models

(MLLR) and Mazimum a Posteriori (MAP). The Maximum Likelihood Linear
Regression (MLLR) and Maximum a Posteriori (MAP) adaptation techniques
will be described in this section.

3.2.9.1 Maximum a Posteriori (MAP) Adaptation

The Maximum a Posteriori (MAP) [Gauvain and Lee, 1994| approach (some-
times referred as the Bayesian adaptation) maximizes the posteriori probabil-
ity using a prior HMM parameter distribution.

Musap = argj\{tnax{ p(OIW, M) p(M|Oyn, Wipn) (3.46)

where p(M|Oypn, Wip) s the prior distribution of the HMM models param-
eters estimated on training data Oy,., and W;,.,.

To evaluate the HMM model parameter estimate using the MAP trans-
formation, an iterative EM algorithm is applied. If the prior mean estimate
for state 7 and Gaussian mixture component m is &, then the MAP estimate
for the adapted mean of the m Gaussian mixture component f;,, can be
expressed as:

- T a
’ T+ 23:1 /ij(t)
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where 7 is a hyper-parameter which regulates the balance between the max-
imum likelihood estimate of the mean value and its prior value; 0,%¢ is the
adaptation observation feature vector at the discrete time ¢; ;,,(t) is the m
Gaussian component of the probability of being active state j at the discrete
time ¢. Usually the hyper-parameter is in the range 2 < 7 < 20.

The MAP adaptation requires more adaptation data to be present. When
the amount of adaptation data increases, so the MAP estimate converges to
the maximum likelihood estimate. If sufficient amount of adaptation data be-
come available, the MAP approach begins to perform better than the MLLR.

3.2.9.2 Maximum Likelihood Linear Regression (MLLR)

The Maximum Likelihood Linear Regression (MLLR) is the best-known lin-
ear transformation method applied for speaker adaptation. It uses the ML
criterion to estimate a linear transformation which may be applied to adapt
Gaussian parameters of HMMs.

P = Apy, +b = WE, (3.48)

where f1,, is the MAP estimate for the adapted mean of the m Gaussian
mixture component; &,, is an extended mean vector &, = [1 u,,7] and W =
[bA]

Equation 3.48 can be deconstructed as follows:

Wd = Gdilkd (349&)
xS ()

Go=> > ¢ ¢, 7 (3.49D)
m—1 t=1 Om.dd
Cn S () 01

kg=) > -t (3.49¢)
m=1 t=1 Om,dd

where matrix elements W, construct the matrix W = [wy,..., wp|T, Ot,4 1S

the d-th feature value from observation feature vector o:; o0, 4q is the d-th
diagonal element of covariance matrix 3,,.

3.2.9.3 Base class specifications

In the previous section we described the MLLR adaptation technique. Spec-
ifying the set of the HMMs which share the same transformation is the first
requirement to allow adaptation. One of the possible specifications is achieved
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“b ''global "'

<MMFIDMASK> Kiel *

<PARAMETERS> MIXBASE

<NUMCLASSES> 1

<CLASS> 1 {*.state[2—4].mix[1—18]}

Listing 3.2: Global base class (GBC) specification

using a base class. For base class definitions, the HMMs must always be spec-
ified. A global transformation for all HMMS is the simplest form of transfor-
mation used for adaptation. An example of a base class specification for the
global transformation can be found in listing 3.2

The base class specified in listing 3.2 defines a global transformation for
HMDMs which contain up to 3 emitting states and up to 18 Gaussian mixture
components per state.

With base classes specification it is possible to define several classes of
HMMs. An example of a base class specification with three classes can be
found in listing 3.3

b "'global "'
<MMFIDMASK> Kiel *
<PARAMETERS> MIXBASE
<NUMCLASSES> 1

<CLASS> 1 {(sil ,sp).state|[2—4].mix[1—-18]}

<CLASS> 2 {(a,ail ,at,aul ,e,er,el,i,il jo,oe,o0l,oly,u,ul,y).
state |2 —4].mix[1—18]}

<CLASS> 3 {(b,cl,d,f,g,h,j,k,1 ,mn,nl,p,r,s,sl,t,v,x,z).
state[2 —4].mix[1—18]}

Listing 3.3: Three base classes specification

The base class specified in listing 3.3 defines three different classes: classi
which represents long and short pauses, class2 which represents vowels, and
class3 which represents consonants. Also, the HMMs could be grouped into
the broad phone classes: silence, vowels, stops, glides, nasals and fricatives,
ete. [Gales, 1996].

These base classes can be used to define which HMMs share a separate
transformation. A more general approach based on a regression class trees
will be described in the next section.
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3.2.9.4 Regression classes tree scheme

To make an adaptation process more flexible it is possible to specify the con-
venient set of base classes according to the amount of adaptation material
that is obtainable. The global adaptation transformation presented in the
previous section can be used when a small amount of adaptation material
is available. As more adaptation material becomes available, increasing the
number of base classes for advanced adaptation is possible. For each base
class we use a different transformation.

Instead defining static HMMs classes, it is possible to use a dynamic
method for the generation of further transformations as more adaptation ma-
terial becomes available. A regression class tree [Gales, 1996 is used to group
Gaussian components so that the number of transformations to be estimated
can be dynamically selected according to the amount of available adaptation
material. Automatic clustering of Gaussian components which are similar in
acoustic space is used for constructing the regression class tree. The regression
class tree should be extracted before adaptation.

3.3 Construction of robust ASR models for
German spontaneous affective speech

In this section we present the main aspects of developing German sponta-
neous affective speech-recognition methods: sub-word units selection and lex-
icon construction, German phonetic pattern, spontaneous speech variability,
comparison of affective and neutral speech and Emotional speech acoustic mod-
eling.

3.3.1 Emotional neutral German speech dataset

For a natural speech corpus we used part of The Kiel corpus of Read Speech
[KTE, 2002]. The Kiel Corpus is a growing collection of read and spontaneous
German speech which has been collected and labeled segmentally since 1990.
For our evaluation, we used speech samples from 6 female and 6 male speakers.
The list of speakers is k01,...,k10, k61 (also defined as kko), k62 (also defined as
rtd). To reach a qualitative acoustic parameters estimation, selected material
from Kiel’s read speech corpus were manually freed from technical noise and
breathing. 1041 utterances for female speakers and 1033 utterances for male
speakers were used for our experiments presented in this chapter. The number
of vowel instances presented in selected material from the Kiel dataset can be
found in Table 3.3 on page 74.
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3.3.2 Sub-word units selection and lexicon construction

In the real-life application, it is not possible to obtain sufficient training data
for each individual word which can occur during a natural human-machine
interaction. The possible solution to this problem is to use HMMs to model
sub-word units, rather than the whole word included in the vocabulary. The
phoneme is the smallest acoustic component of speech and it is widely used
as the sub-word unit for an automatic speech-recognition task. The main
advantage of using phonemes as the sub-word unit is that there is a standard
set, of phonetic rules to map words to phonemes. In such a way, words can be
represented as a sequence of phonemes. The number of phonemes is usually
considerably smaller than the number of words in a vocabulary. In a state-of-
the-art ASR system used in this work, we use 39 distinct German phonemes
(modified compact SAM-PA list). German phonetic pattern used in our ASR
system will be described in detail in the next section.

To map the word sequence to a phonetic sequence we require a lexicon.
The lexicon, also referred to as the dictionary, is a standard part in an ASR
system. The dictionary maps phonetic units, from which the acoustic mod-
els are built, to the present words included in the vocabulary and language
model. The training and recognition processes are executed at the phonetic
units level. Finally, within the recognition process, the phonetic units se-
quence is transformed back to the word sequence. It is common to use two
different lexicons within he same ASR system. The first is responsible for
mapping the word sequence to the unique phonetic sequence within the train-
ing process, and it contains only one possible phonetic transcription for each
word. The second extracts the word sequence from phonetic sequences within
the recognition process, and it supports variable phonetic transcriptions for
each word included in the vocabulary.

Two main types of phoneme unit sets are widely used in modern ASR
systems: context-independent phonemes, namely mono-phones, and context-
dependent phonemes, such as: bi-phones, tri-phones, and quin-phones. With
a mono-phones set, we do not take into account the context of each particu-
lar phoneme. Still, due to the co-articulation effect, the articulation of most
phonemes is highly dependent on their neighboring phonemes. The most
common context-dependent phoneme unit sets are tri-phones. For example,
with 39 phonemes there are 39° = 59319 possible tri-phones, but not all of
them can have a place due to the phonotactic constrains of the German lan-
guage. To train robust tri-phones-based ASR models we need more data in
comparison to the mono-phones. Also this data should be well-annotated,
because each annotation error will have a triple effect in comparison to the
mono-phone-based model. To the best of our knowledge, to date there is no
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publicly available corpus for the German language which can provide a suffi-
cient amount of training material with a high-standard phonetic transcription
which can be used for effective tri-phones-based HMM modeling. For example,
Kiel, SmartKom, Verbmobil databases do not provide detailed transcription
of paralinguistic cues, also lexicons attached to these corpora contain a lot of
incorrect phonetic transcriptions and do not provide lists of all possible pro-
nunciation forms. An example of incomplete phonetic transcription of German
word "Abend" will be described in the next section. In the case of tri-phone
HMM models each incorrect phoneme will cause us threefold incorrect mod-
eling. Take into account sparse amount of instances for some tri-phones this
threefold error could be crucial. As a result, we use the mono-phone set for
our ASR system.

3.3.2.1 German phonetic pattern

The number of phonetically distinguishable phonemes in a language is often
a matter of judgment. Table 3.2 and Table 3.1 present lists of German vow-
els and consonants, their corresponding TPA and SAM-PA symbols [SAM,
1996]. There are 39 phonemes in the German language, including 13 unre-
duced vowels, 2 reduced vowels, 3 diphthongs, 6 plosive consonants, 9 fricative
consonants, 3 nasal consonants, and 2 liquid consonants.

The German language contains a standard set of strict phonetic rules to
map words to phonemes. The amount of these rules and exceptions are sig-
nificantly smaller in comparison with English. Still there is no rule-based
grapheme-to-phoneme (G2P) open-source toolkit available for the German
speech processing research community. There is a data-driven G2P open-
source toolkit [Bisani and Ney, 2008|] available, but this method requires a
huge amount of training material to train reliable models. Also, it is not able
to generate reliable phonetic transcription alternatives for words which can
be pronounced in different ways.

It is also possible to use existing German lexicons included in publicly
available corpora (Kiel, SmartKom, Verbmobil). Still, there are some over-
sights in existing German lexicons. For example, in phonetics transcriptions
dictionary Duden 6 "Das Ausspracheworterbuch" [Mangold, 1990| the word
"Abend" is transcribed as ['azbnt]. It is the so-called "hochdeutsch" pronun-
ciation standard. On the other hand, Kiel lexicon contains slightly different
transcription [a:bont]. Both versions are acceptable for colloquial German
language. Adequate lexicons included in corpora should contain both vari-
ations of transcription, which is not the case with current publicly available
German speech databases. Hence, even existing lexica need further refinement
before they can be used.
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However, it is possible to determine the actual pronunciations used in the
utterances used to train ASR model with forced alignment. Force alignment
is presented in HTK [Young et al., 2009] toolkit. It is a technique which
can generate the words and phonemes boundaries on utterance-level based on

textual transcriptions of the corresponding utterance and reliable mono-phone
HMM models.

3.3.2.2 Consonants

There are few classes of consonant present in German language: plosives,
fricatives, nasals, liquids [Pompino-Marschall, 1992]. Those classes specify
physical characteristics of the generation process. The list of all German
consonants with their corresponding class description are presented in Table
3.1.

IPA name IPA SAM-PA | IPA name IPA SAM-PA
symbol | symbol symbol | symbol

Plosives
Lower-case P o) P Lower-case B b b
Lower-case T t t Lower-case D d d
Lower-case K k k Lower-case G g

Fricatives

Lower-case F f f Lower-case V v v
Lower-case S s s Lower-case Z Z z
Esh ) S Yogh 3 Z
C Cedilla c C Lower-case J j J
Lower-case X X X Lower-case H h h

Nasals
Lower-case M m m Lower-case N n n
Eng y N

Liquids
Lower-case L | 1 | 1 | Lower-case R | r r

Table 3.1: German Consonants

For our ASR engine based on mono-phones HMM we used all of the con-
sonants presented in Table 3.1. Some of the SAM-PA IDs have been changed
to enable the use of the HTK [Young et al., 2009] toolkit for ASR modeling.
Converting non-acceptable SAM-PA IDs will be described later in this section.

3.3.2.3 Vowels

Most existing ASR systems rely heavily on robust vowel recognition to reach a
high performance. The vowels acoustic segments are usually long in duration
(in comparison to consonants) and are spectrally well represented. As such,
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IPA name IPA SAM-PA | IPA name IPA SAM-PA
symbol | symbol symbol | symbol
Unreduced
Lower-case A a (ax) a (a:) Slashed O A (a2) 2 (2:)
Lower-case E e (e e (e) O-E Digraph 9
Epsilon e (&) E (E:) Lower-case U ur (uw) u (u:)
Lower-case I i(ix) i(i:) Upsilon U
Small Capital I I I Lower-case Y v (y2) v (y2)
Lower-case O o (o1) o (o) Small Capital Y Y
Open O b} (0]
Reduced
Schwa | o | @ | Turned A | D | 6
Diphthongs
Lower-case A, ar al Open O, Small oY oy
Small Capital I Capital Y
Lower-case A, auv aU
Upsilon

l n.n

Table 3.2: German vowels. The symbo corresponds to the Length Mark

they are generally reliably and easily recognized by human beings and by ASR
systems [Rabiner and Juang, 1993|.

There are 18 vowels in the German phonetic alphabet [Pompino-Marschall,
1992|. Three different classes of vowels (unreduced, reduced, diphthongs) and
their representatives SAM-PA and IPA symbols can be found in Table 3.2

For our ASR engine based on mono-phones HMM we used all of the vowels
(unreduced, reduced, diphthongs) presented in Table 3.1. Some of the SAM-PA
IDs have been changed to enable the use of HTK [Young et al., 2009] toolkit
for ASR modeling. Converting non-acceptable SAM-PA 1Ds will be described
later in this section.

There are several ways to classify and characterize vowels, including the
typical articulatory configuration required to produce the sounds, typical spec-
tral representation, etc. In 1952, Gordon Paterson and Harold Barney [Pa-
terson and Barney, 1952] created a classic plot of measured values of the first
(F1) and second (F2) formant for 10 English vowels spoken by a wide range of
male and female talkers. They proposed to represent each vowel by a centroid
in the formant space.

Instead of representing of each vowel by a centroid, we represent each vowel
by the means of the average F1 and F2 values. In Figure 3.6 one can see
German vowels mapped into F1/F2 space and the outline of the general vowel
triangle for male and female speakers which are included in selected material
from Kiel read speech corpus |[KIE, 2002]. To reach a qualitative acoustic
parameters estimation, selected material from Kiel read speech corpus were
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Figure 3.6: The vowel triangle with mean values positions of the all German
vowels. Male speakers (top), female speakers (bottom)

manually freed from technical noise and breathing.

On the vowel triangles presented in Figure 3.6, one can see an absolute
and relative position of 13 unreduced, 2 reduced and 3 diphthongs in the
first (F'1) and second (F2) formants space. The vowel triangle represents
the extremes of formant location in the F1/F2 space, as represented by [i]
(low F1, height F2), [o] (low F1, low F2), [a] (height F1, middle F2), with
the other vowels appropriately disposed with respect to the triangle sides
and vertices. As one can see the relative position of vowels within the vowel
triangle are relatively stable for both genders. Still, female speakers use the
larger frequency scale intervals during vowels articulation 381.2Hz < F1 <
812.5Hz and 1,059.1 Hz < F2 < 2,333.5 Hz in contrast to the male speakers
364.9Hz < F'1 <636.3Hz and 1,073.0Hz < F2 < 2,004.7 Hz.



72 Chapter 3. Spontaneous affective speech recognition

3.3.2.4 Diphthongs

A diphthong is a gliding monosyllabic speech sound, and it refers to two
adjacent vowel sounds occurring within the same syllable. There are three
diphthongs in German, namely [al] (as in "zwei"), [aU] (as in "Bauch"), [OY]
(as in "neun"). Diphthongs are generated by varying the vowel tract shape
smoothly between vowel shapes that are appropriate to the diphthong. This
non-trivial smoothing produces a new set of vocalized phonemes. In support
of the complexity of smoothing one can see that a diphthong could not be
represented as a linear combination of compound vowels, see Figure 3.6.

3.3.2.5 HTK format lexicon generation

To be able to use lexicon encoded in extended SAM-PA symbols for an HTK-
base [Young et al., 2009] ASR system we should provide some modification
of the lexicon files. First of all, HTK do not allow the use of symbols like
[@], ['] for the HMM specification. Also, vowels with an additional symbol [:]
(Length Mark) can be replaced with corresponding vowels without a length
mark. It can be done due to the robust dynamic HMM modeling of the
temporal characteristics of phonemes.

The transformed HTK compatible lexicon format will be used for
our speech-recognition experiments and for our ASR system integrated in
NIMITEK [Wendemuth et al., 2008] demonstrator. More details about
NIMITEK demonstrator can be found in Chapter 6.

3.3.3 Spontaneous speech variability

The speech signal not only represents the linguistic content but also a lot of
additional information about the speaker: age, gender, social status, accent
(foreign accent, dialects, etc.), emotional state, health, level of reliability, etc.
Characterization of the influence of some of these speech signal variations,
together with related methods to improve ASR performance, is an important
research field [Benzeghiba et al., 2007].

It is possible to assign three main classes of effects caused by the sponta-
neous speech variability. The first is the modification of the voice quality by
physiological or behavioral factors. The second is the long-term modulation of
the voice for transmission of non-emotional high level information events like
emphasizing or questioning. The third is pronunciation variability like foreign
accents, dialects, and colloquial speech. A detailed description of spontaneous
speech characteristics has been presented in section 2.3.
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3.3.3.1 Comparison of affective and neutral speech

For the comparison of affective and neutral speech, vowel triangles have been
estimated for selected EMO-DB’s [Burkhardt et al., 2005] utterances. We used
utterances which represent low-arousal emotions (boredom, sadness), neutral,
and high-arousal emotions (anger, fear, and joy).
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Figure 3.7: Classical vowel triangle form for different speaker’s emotional
states. Male speakers (top), female speakers (bottom)

As one can see from Figure 3.7, the vowel triangles form and their position
are different for different emotional states of the speaker. This variability is
one of the reasons why ASR models trained on neutral speech are not able to
provide a reliable performance in affective speech recognition. Adaptation on
affective speech samples of the acoustic model will be presented in the next
section.
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3.3.4 Emotional speech acoustic modeling

The simplest way to achieve emotional speech acoustic modeling for reliable
ASR performance is to train acoustic models for each possible user’s emo-
tional states. Training emotional speech acoustic models for each possible
user emotional state is not feasible because collecting affective speech in large
enough amounts to train a robust ASR acoustic model is quite an expensive
and time-consuming process. Nevertheless, due to the pronunciation pattern
similarity of affective and neutral speech, emotion-specific characteristics can
be captured from existing emotional speech corpora within adaptive transfor-
mation of model parameters of the initial neutral speech model to obtain an
emotional speech acoustic model.

For the neutral speech ASR model we used mono-phones HMM trained on
selected material from Kiel read speech corpus. For adaptation on affective
speech samples we used material from the EMO-DB [Burkhardt et al., 2005]
database. Vowels can be reliably and easily recognized by human beings
and by ASR systems [Rabiner and Juang, 1993|. The total amount of vowel
instances presented in selected speech datasets are presented in Table 3.3.

An interpretation of the emotional class name abbreviations can be found in
Table 2.3 on page 24.

# EMO-DB Kiel
fear joy anger boredom sadness neutral | read
a 144 172 348 211 148 207 3357
e 74 80 166 100 59 105 1239
E 42 55 98 64 46 58 1403
i 73 68 159 89 54 101 1323
I 115 125 244 171 124 146 2315
o 24 24 52 34 22 33 535
O 15 17 40 25 22 24 767
u 4 6 11 9 9 7 674
U 33 42 73 48 31 45 1273
y 12 18 22 14 4 14 363
Y 10 14 30 18 12 16 290
2 0 0 0 0 0 0 188
9 5 7 14 7 6 6 209
@ 177 222 436 274 201 254 4340
6 66 66 138 85 49 91 3462
al 22 25 43 36 22 33 1313
aU 16 15 36 23 15 26 528
(04 5 7 14 7 6 6 289

Table 3.3: Number of instances per vowel in EMO-DB and Kiel datasets
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As one can see from Table 3.3 acoustic form of the vowel [2] is not presented
in EMO-DB recordings. Also, EMO-DB speech material contains quite small
number of instances for some vowels [u, 9, OY|. For adaptation of affective
speech samples we used MAP and MLLR adaptation techniques. Within
MLLR adaptation we used the following HMMs groups specifications:

e Regression class tree
e Two Base classes: phonemes, silence
e Three Base classes: vowels, consonants, silence

Consequently, we investigated the potency of adapting emotional speech
acoustic models for German language and we obtained a considerable perfor-
mance gain as will be discussed in section 5.2.3.

3.4 Summary

This chapter reviews the automatic speech-recognition methods based on
hidden Markov models (HMMs). The feature extraction approach, namely,
MFCC is discussed first. The hidden Markov models (HMMs), the most fre-
quently used acoustic models, are then presented. The maximum likelihood
(ML) training of HMM parameters and the expectation maximization (EM)
algorithm are discussed. In this chapter we presented detailed description of
German phonetic patterns which will be used later for detailed phoneme-level
emotion recognition. N-gram language models and generation word networks
with HParse grammar format are described. Extensively used Viterbi de-
coding for spontaneous speech is presented in detail. Standard adaptation
approaches like MAP and MLLR are presented. Results of the evaluation of
our German ASR models will be presented in Chapter 5. Methods described
in this chapter have been used to create an ASR module integrated in our
NIMITEK spoken dialog system prototype.

In the next chapter we will describe different classification techniques
applied for automatic emotion recognition from speech. The HMM/GMM
models presented in this section will be used for our phoneme-level emotion-
recognition methods. Force alignment presented in section 3.3.2.1 will be
used in the next chapter for time alignment within phoneme-level emotion
classification.
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4.1 Introduction

o be able to design a user-centered spoken dialog system, we set up
T a framework that should be robust enough to detect emotional events
within human-machine interaction. In this chapter we offer an overview of
existing speech-based emotion-recognition techniques, and discuss acoustic
feature sets which are the most informative for emotional events determi-
nation. Two different techniques of emotion classification, namely, static
(turn-level analysis) and dynamic (frame-level analysis) are presented. Af-
terwards, two possible combined emotion-classification methods: two-stage
processing and middle-level fusion are described. Finally, we compare emotion-
recognition performances for unit-specific (context-dependent) and general
(context-independent) models.

4.2 An overview of existing methods

Since the beginning of emotional speech processing [Scripture, 1921], [Skinner,
1935], [Fairbanks and Pronovost, 1939], [Williams and Stevens, 1972], [Scherer,
1986], [Whissell, 1989], the usefulness of automatic recognition of emotion in
speech seems increasingly agreed given the large amount of applications for
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user-centered human-machine interfaces. Most of these expect sufficient ro-
bustness, which may not be given yet [Picard, 1997|, [Cowie et al., 2001],
[Shriberg, 2005], [Lee and Narayanan, 2005, [Schroder et al., 2007|, [Wende-
muth et al., 2008, [Schroder et al., |, [Zeng et al., 2009]. When evaluating
the accuracy of emotion-recognition engines, attainable performances are usu-
ally overrated since usually acted, prompt or elicited emotions are considered
instead of spontaneous, real-life case emotions, which are harder to recognize.

Speech-based emotion classifiers used in the research publications include
a broad variety [Ververidis and Kotropoulos, 2006]. Depending on the type
of acoustic feature extraction level, either dynamic analysis [Fernandez and
Picard, 2003] for processing on a frame-level or static analysis for higher-level
statistical functionals [Ververidis and Kotropoulos, 2004] are established.

Among dynamic analysis, hidden Markov models are dominant (cf., e.
g., [Nwe et al., 2003], [Schuller et al., 2003|, [Lee et al., 2004|, [Vlasenko
et al., 2007al). Also, a "bag-of-frames" approach for multi instance learning
is used within dynamic analysis [Shami and Verhelst, 2006]. A rarely used
alternative is a dynamic time warping, supporting easy adaptation. Also,
dynamic Bayesian network architectures [Lee et al., 2009a| could help to com-
bine features on different time levels as spectral on a frame-level basis and
supra-segmental prosodic.

Relative to static analysis, the list of possible classification techniques
seems endless: Bayes classifier [Ververidis and Kotropoulos, 2004|, multi-layer
perceptrons or other types of neural networks [Schuller et al., 2004|, Baysian
networks |[Fernandez and Picard, 2003], [Cohen et al., 2003|, Gaussian mix-
ture models [Slaney and McRoberts, 1998], [Lugger and Yang, 2007|, random
forests [Iliou and Anagnostopoulos, 2009], decision trees |Lee et al., 2009b], k-
nearest neighbor distance classifiers [Dellaert et al., 1996], and support vector
machines (SVM) [Fernandez and Picard, 2003], [Batliner et al., 2006], [Eyben
et al., 2009] are applied most often.

Also, a selection of ensemble techniques [Schuller et al., 2005a], [Morrison
et al., 2007] has been used, as bagging, boosting, multi-boosting, and stack-
ing with and without confidence scores. New developing techniques as hidden
conditional random fields [Wéllmer et al., 2008], long-short-term-memory re-
current neural networks [Wollmer et al., 2008|, tandem Gaussian mixture
models with support vector machines [Kockmann et al., 2009] could further
be seen more frequently in near future. Table 4.1 presents the most popu-
lar existing classification techniques with representative research publication
references.

In the past, within the speech emotion-classification research community,
the focus was lain on prosodic features extracted on the turn-level. In par-
ticular, these feature sets (from 10-100 features) include durations, intensity
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| Classifier | Selected reference |
Naive Bayes [Dellaert et al., 1996] , [Batliner et al., 2010], [Metze et al.,
2010], [Schuller et al., 2010], [Yildirim et al., 2011]
Bayesian logistic [Lee et al., 2009b]
regression
Decision tree [Yacoub et al., 2003], [Litman and Forbes, 2003]

Support vector machine | [McGilloway et al., 2000], [Yu et al., 2001], [Yacoub et al.,
2003], [Lee et al., 2009b], [Polzehl et al., 2009], [Metze et al.,
2010], [Seppi et al., 2010], [Schuller et al., 2009a], [Yildirim

et al., 2011]
Linear discriminant [McGilloway et al., 2000], [Batliner et al., 2000b], [Litman
classifier and Forbes, 2003], [Lee and Narayanan, 2005]

K-nearest neighborhood | [Dellaert et al., 1996], [Yu et al., 2001], [Yacoub et al.,
2003], [Lee and Narayanan, 2005], [Yildirim et al., 2011]
Gaussian mixture [Breazeal and Aryananda, 2002], [Kockmann et al.,
models 2009], [Dumouchel et al., 2009], [Kim et al., 2010]

Hidden Markov model [Nogueiras et al., 2001], [Schuller, 2002], [Schuller et al.,
2010], [Metallinou et al., 2010]

Artificial neural [McGilloway et al., 2000], [Yu et al., 2001], [Yacoub et al.,
networks 2003], [Polzehl et al., 2009]

Table 4.1: Classification techniques applied for speech emotion classification

and pitch, etc. [Cairns and Hansen, 1994], [Banse and Scherer, 1996], [Li and
Zhao, 1998|, [Zhou et al., 1998], [Nwe et al., 2003], [Schuller et al., 2003|, [Lee
et al., 2004|. Only a few studies applied low-level feature modeling on a frame-
level as an alternative: usually by hidden Markov models (HMM) or Gaussian
mixture models (GMM) [Schuller et al., 2003], [Nwe et al., 2003|, [Vlasenko
and Wendemuth, 2007]. The higher success of static feature vectors derived
by mapping of the low-level contours like energy or pitch by descriptive sta-
tistical functional application like lower order moments (mean, standard de-
viation) or extremal values specification [Ververidis and Kotropoulos, 2004]
is probably proved by the supra-segmental nature of the phenomena appear-
ing with respect to emotional content within a speech signal [Schuller et al.,
2009b], [Schuller et al., 2009¢|. In current speech emotion-classification re-
search, voice quality features such as shimmer, jitter or harmonics-to-noise
ratio (HNR) and spectral and cepstral features such as formants and MFCC
have become the "new standard" feature sets [Barra et al., 2006], [Schuller
et al., 2007a], [Lugger and Yang, 2007|, [Schuller et al., 2009d|. Traditionally
prosodic acoustic features, which can be classified in different ways, have been
applied for affective speech processing. One of the possible emotional prosody
features categorization was proposed by Anton Batliner in [Batliner et al.,
2011].

The first categorization criterion lies in the feature set selection ap-
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proach. The ’selective’ approach is based on phonetic and linguistic knowl-
edge, [Kiekling, 1996]; it is also well-known as 'knowledge-based'. It has a strict
systematic strategy for generating the features; a constant set of functions,
which are applied to time series of different acoustic features. This approach
normally results in more than 1 k features per set. Another approach is based
on brute-forcing of features (1,000 up to 50,000) by analytical feature genera-
tion, partly also in combination with evolutionary generation [Schuller et al.,
2008]. The difference between the two approaches lies in the feature selection
step: in the selective approach, the selection takes place on an empirical level
before putting the features into the classification process; in the brute-force
approach an automatic feature selection is required.

The second categorization criterion is related to feature extraction staging.
There is a "two-layered” approach, where firstly features are computed on the
words level; secondly, functionals such as mean values and the average value
are computed for all words within one utterance. An alternative is a "single-
layered” approach, where features are computed for the complete utterance.
In [Batliner et al., 2006], authors combined for the first time features extracted
at different sites. By combining features from all sites, authors achieved up to
2.1 % absolute improvement for emotion-classification accuracy. These results
will be discussed in more detail in section 4.4.4.

4.3 Emotion descriptors

One of the most important problems for the analysis of emotional speech
is the selection on optimal unit of analysis. It is quite important to segment
spontaneous speech signal into units that are discriminative for emotions [Vogt
et al., 2008|. These are usually linguistically completed speech segments such
as words, turns and/or utterances. However, the approval of the selected unit
of analysis is an open research topic within the emotion-recognition research
community. In most prototypical acted emotional speech datasets, subjects
have to pronounce a complete utterance with some prompted emotional state.
Most emotion-recognition experiments have been realized on datasets which
contain acted emotions. As a result, the choice of an optimal unit of analysis is
obviously just one utterance, a linguistically completed unit with no change of
speaker’s emotional state within this case. However, in spontaneous affective
speech this kind of linguistically completed middle-length unit (utterance) is
quite rare. Even the straight-forward extraction of linguistically completed
segments like utterances do not guarantee a constant emotional state within
the same utterance. An optimal unit of analysis of emotional speech has to
fulfill certain requirements:
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e long enough to provide a sufficient amount of material for the calculation
of acoustic features based on statistical functions

e short enough to provide stable acoustic properties with respect to emo-
tions within the same unit

For most acoustic features calculated from global statistics over an ex-
tracted speech signal, these units should have a minimum length. The emo-
tion units analysis become more explicit as it is used more statistical acoustic
features. On the other hand, all changes of the emotional state within one
speech segment should be distinguishable, so the unit of analysis should be
short enough that no alteration of emotion is likely to occur. Also, it should
be so short that the acoustic properties of the unit of analysis with respect to
speaker’s emotional state are stable, so that informative acoustic features can
be extracted. This is important for the extraction of acoustic features based
on statistical measures, since, e.g., the mean value of a non-uniform unit of
analysis induces an insufficient description. So the length of the optimal unit
of analysis for emotional speech has to be chosen for these two conflicting
requirements.

Just a few research evaluations have been performed to compare different
types of units of analysis of emotional speech. Comparisons of utterances,
words, words in context and fixed time intervals have been presented in [Vogt
and Andre, 2005]. Authors have found that longer, linguistically completed
segments tended to be better. Batliner et al. [Batliner et al., 2003] establish
their acoustic features on words with a different number of context words.
Further to simple word-level emotion recognition, they also mapped word-
level results onto utterances and on chunks within the utterances. Within
their evaluation authors found both advantages and disadvantages of shorter
units than utterances, but they have not further quantitatively analyzed this
aspect of emotional speech processing. In [Vogt et al., 2008| authors pointed
out that the selection of the unit of analysis strongly depends on the type
of emotional speech data. Most commonly dialog acts, utterances and turns
as, e.g., in [Devillers et al., 2005|, [Fernandez and Picard, 2005], [Oudeyer,
2003], [Schuller et al., 2005b| have been used as unit of analysis of emotional
speech, but also words [Batliner et al., 2003|, [Nicholas et al., 2006]. In the
paper of Fragopanagos [Fragopanagos and Taylor, 2005] et. al. it is pointed
out that most research efforts were made in order to investigate the affective
speech processing on complete utterance, word-level or context-independent
chunks. Only a few research groups provided a vowel- or syllable-level anal-
ysis during emotional speech processing. Goudbeek and others [Goudbeek
et al., 2009] presented their investigation of the effect of emotion dimensions
on formant placement in individual vowels. In affective speech synthesis,
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Inanoglu [Inanoglu and Young, 2009] developed a set of fundamental fre-
quency (F0) conversion methods on a syllable-level which utilized a small
amount of expressive training data (approximately 15 minutes) and which
had been evaluated for three target emotions: anger, surprise and sadness.
Furthermore, an emotion-classification test showed that converted utterances
with either FO generation technique were able to convey the desired emotion
above chance level. Research of Busso and others [Busso et al., 2007] showed
that the mean and the variance of the likelihood score for emotional speech
differ from the results observed in neutral speech, especially for emotions with
a high level of arousal and observed in some broad phonetic classes (front
vowels and mid/back vowels) which present stronger differences than others.
Lee and others [Lee et al., 2004] showed quite a good speech-based emotion-
recognition performance by using phoneme-class-dependent HMM classifiers
with short-term spectral features. It has been shown by Vlasenko [Vlasenko
and Wendemuth, 2009a| that a combination of a robust emotion-classification
engine with a user-behavior-adaptive dialog model can make a spoken dialog
system more friendly and user-centered.

4.4 Developed emotion-classification tech-
niques

In this section we describe two pre-dominant paradigms of emotion clas-
sification: modeling on a frame-level by means of hidden Markov models
and suprasegmental modeling by systematic feature brute-forcing. The sec-
ond paradigm which can also be classified as static analysis has been intro-
duced by our research partner Bjorn Schuller from Technische Universitét
Miinchen (TUM). In this section we will provide a detailed description of
the classifiers which have been used for evaluations presented in our com-
mon publications [Vlasenko et al., 2007a|, [Schuller et al., 2007], [Vlasenko
et al., 2008b|, [Vlasenko et al., 2008a|, [Schuller et al., 2008], [Schuller et al.,
2009], [Schuller et al., 2010].

4.4.1 Acoustic features

Within static analysis state-of-the-art emotion recognition we use a set of 1406
systematically generated acoustic features based on 37 low-level descriptors
(LLD) as seen in Table 4.2 and their first-order delta coefficients. These 37 x 2
descriptors are then smoothed by low-pass filtering with a simple moving
average filter. Statistics have been estimated on the turn-level by a projection
of each uni-variate time series of the low-level descriptors onto a scalar feature
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Low-level descriptors | Functionals |

(A) Pitch mean, centroid, standard deviation
(A) Energy Skewness, Kurtosis

(A) Envelope Zero-Crossing-Rate

(A) Formant 1-5 amplitude | quartile 1/2/3

(A) Formant 1-5 bandwidth | quartile 1 — min., quart. 2 — quart. 1
(A) Formant 1-5 position quartile 3 — quart. 2, max. — quart. 3
(A) MFCC 1-16 max./min. value,

(A) HNR max./min. relative position

(A) Shimmer range max. — min.

(A) Jitter position 95 % roll-off-point

Table 4.2: Ouverview of low-level descriptors (2 x 37) and functionals (19) for
static supra-segmental modeling

independent of the length of the turn. This is done by using 19 different
functionals. The list of the functionals can be found in Table 4.2.

Two optimization strategies can be also applied: First, speaker normal-
ization (SN) by feature normalization taking into account speaker context.
Second, feature-space optimization by removing highly correlated acoustic
features (FS).

Within dynamic analysis, speech input is processed using a 25ms Hamming
window, with a frame rate of 10ms. As in typical speech recognition, we
employ a 39-dimensional feature vector per each frame consisting of 12 MFCC
and log frame energy plus speed and acceleration coefficients. Specification of
the MFCC features is discussed in detail in section 3.2.1.

To characterize vowels quality, first two resonant frequencies (formants)
are used. The formants characterize the global shape of the immediate voice
spectrum and are mostly defining the phonetic content and emotional prosody
of the vowels [Benzeghiba et al., 2007|. For our evaluations, formant contours
were extracted using PRAAT speech analysis software [Boersma and Weenink,
2008] and the Burg algorithm with the following parameters: the maximum
number of formants tracked (five), the maximum frequency of the highest
formant (set to 6,000 Hz), the time step between two consecutive analysis
frames (0.01 seconds), the effective duration of the analysis window (0.025
seconds) and the amount of pre-emphasis (50 Hz).

4.4.1.1 Normalization and standardization

To help cope with channel characteristics, the cepstral mean substraction
(CMS) can be applied. In our publication [Vlasenko et al., 2007a] we inves-
tigate the benefits of speaker normalization (SN), as we proposed to analyze
emotion independent of the speaker, herein. SN is realized by a normalization
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of each acoustic feature by its mean and standard deviation for each speaker
individually. Thereby the whole speaker context is used. This has to be seen
as an upper benchmark for ideal cases, where a speaker could be observed
with a variety of emotional states. Yet, it is not essential to know the actual
emotional state of observed utterances at the current moment.

4.4.1.2 Feature set optimization

It is common to use a high number of features for static modeling. A feature
space optimization (FSO) is an important issue for increasing performance and
real-time-capability. In order to optimize a set of acoustic features rather than
combining the attributes of a single high relevance, we use a correlation-based
analysis, herein [Vlasenko et al., 2007a|. Thereby acoustic features of high-
class correlation and low inter-feature correlation are kept [Witten and Frank,
2005]. This does not employ the target static classifier in the loop. Likewise,
it mostly reduces correlation within the acoustic feature space rather than
an evaluation of influences on an improvement of single attributes. Still, this
conducts to a very compact representation of the acoustic feature space which
usually improves accuracy of the emotion classification while reducing feature
extraction effort at the same time.

4.4.2 Static analysis

As pointed out earlier in section 4.2 mapping of the LLD contours by de-
scriptive statistic functionals is justified by the supra-segmental nature of the
emotional content occurring in spontaneous speech [Schuller et al., 2009b,
[Schuller et al., 2009¢|. For suprasegmental modeling of the speaker’s emo-
tional state we use a static analysis in combination with systematic fea-
ture brute-forcing. In order to represent a typical state-of-the-art emotion-
recognition engine operating on a turn level, we use a set of 1,406 acoustic
features basing on 37 low-level descriptors (LLD) as seen in Table 4.2 and
their first-order delta coefficients [Shahin, 2006]. These 37 x 2 LLDs are next
smoothed by low-pass filtering with an SMA filter. The static analysis derives
statistics per utterance by a projection of each uni-variate time series, respec-
tively the low-level descriptors, X onto a scalar feature x independent of the
length of the utterance. This is realized by use of a functional F', as depicted
in equation 4.1.

F:X—zeR (4.1)

19 functionals presented in Table 4.2 are applied to each contour on the
turn-level covering extremes, ranges, positions, first four moments and quar-
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tiles, ete. support vector machines (SVM) with linear kernel and pairwise
multi-class discrimination have been used for classification purposes. One
could consider the use of GMM here, as well. Yet, SVM provides better
modeling of static acoustic feature vectors [Schuller et al., 2007b].

4.4.2.1 OpenEAR

In this section, we describe configuration parameters of a Munich open Affect
Recognition Toolkit (openEAR) [Eyben et al., 2009] which have been used for
our evaluations.

| Feature Group | Features in Group |

Raw Signal Zero-crossing-rate
Signal energy logarithmic
Pitch Fundamental frequency Fy in Hz via Cepstrum and Autocorre-

lation (ACF).
Exponentially smoothed Fy envelope.

Voice Quality Probability of voicing (7‘?4%1;%0)))
Spectral Energy in bands 0-250 Hz, 0- 650 Hz, 250- 650 Hz, 1-4kHz

25 %, 50 %, 75 %, 90 % roll-off point, centroid, flux, and rel. pos.
of spectrum max. and min.

Mel-spectrum Band 1-26

Cepstral MFCC 0-12

Table 4.3: 33 low-level descriptors (LLD) used in acoustic analysis with ope-
nEAR

The OpenEAR is a toolkit for acoustic emotion recognition, which is based
on static analysis. It is publicly available to anybody under the terms of the
GNU General Public License (http://sourceforge.net/projects/openear).

For our evaluations we use the openEAR toolkit with 6,552 acoustic fea-
tures extracted as 39 functionals of 56 acoustic low-level descriptors (LLD)
and corresponding first- and second-order delta regression coefficients.

Table 4.4 lists the statistical functionals, which were applied to the LLD as
shown in Table 4.3 to map a time series of variable length onto a static feature
vector. The classifier of choice is support vector machines with polynomial
kernel and pairwise multi-class discrimination based on sequential minimal
optimization.
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Functionals, etc. |

Respective rel. position of max./min. value

Range (max.-min.)

Max. and min. value - arithmetic mean

Arithmetic mean, Quadratic mean

Number of non-zero values

Geometric, and quadratic mean of non-zero values
Mean of absolute values, Mean of non-zero abs. values
Quartiles and inter-quartile ranges

95 % and 98 % percentile

Std. deviation, variance, kurtosis, skewness

Centroid

Zero-crossing rate

# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks
- overall arth. mean

N L = VI S U U U RS

~

Linear regression coefficients and corresp. approximation error
Quadratic regression coefficients and corresp. approximation error

ot

Table 4.4: 39 functionals applied to LLD contours and regression coefficients
of LLD contours

4.4.3 Dynamic analysis

In our research we also applied a low-level feature modeling on a frame-level for
emotion recognition from speech. The hidden Markov models (HMM) with
Gaussian mixture models (GMM) have been used for this purpose. Three
different units of analysis can by used for dynamic analysis: utterance, chunk,
and phoneme. In this section we describe utterance-, chunk-, and phoneme-
level dynamic analysis models for the recognition of emotions within speech.

4.4.3.1 Utterance-level classification

We consider using a statistical analysis applied for ASR to recognize emotion
from speech in the first place [Vlasenko and Wendemuth, 2009b]|. Likewise,
instead of the usual task to deduce the most likely word sequence hypothesis
Q) from a given vector sequence O of M acoustic observations o, we will
recognize the current speaker’s emotional state. This is solved by a stochastic
approach similar to the approach presented in equation 3.1, with a different
argument interpretation:

PO P(Q)

P0) (4.2)

) = argmax log P(Q2]O) = arg max
Q Q

where P(O|QQ) is called the emotion acoustic model, P(2) is the prior user-
behavior information and €2 is one of all system known emotions.
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In a case of turn-level analysis, the emotion acoustic model is designed by
s state HMMs. Each state is associated with an output probability distri-
bution by(0;) = p(os|s; = k). The model distribution b;(0,) is based on the
multivariate Gaussian mizture model (GMM), see equation 3.13. One emo-
tion is assigned for a complete utterance. In other words within the training
and testing observation feature vectors sequence O contains all feature vectors
extracted within one utterance.

In simple cases the priors in the user-behavior model P(€2) are chosen as an
equal distribution among emotion classes. It is possible to provide context and
an emotional-state-history-dependent complex user-behavior model. Within
our evaluations presented in Chapter 5 we used a simple user-behavior model.
During the recognition phase the emotion that results in the highest GMM
score is chosen.

The HMM/GMM parameters are estimated by the EM-algorithm using
speaker-independent training, namely leave-one-speaker-out strategy (LOSO)
(see section 2.10.2), and a number of 1 to 120 Gaussian mixture components to
approximate the original probability density functions (PDFs) [Young et al.,
2009]. However, we also consider multiple states HMM/GMM s =1,2,...,5
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Figure 4.1: Emotion-recognition accuracy (WA) depending on the number of
Gaussian miztures and number of HMM states, LOSO evaluation, database
EMO-DB
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to better model dynamics. These are trained accordingly.

As can be seen in Figure 4.1 single-state HMM/GMM models show the
most stable and robust results [Vlasenko et al., 2007b]. Within all emotion-
classification evaluations presented in Chapter 5 based on utterance-level and
chunk-level analysis we use single-state HMM /GMM models.

4.4.3.2 Chunk-level classification

This section describes another possible simple conceptual model of dynamic
speaker’s emotional state recognition. For classification purpose we can use
HMM/GMM parameters estimated for utterance-level classification, see pre-
vious section. Instead of using turn-level classification, the time-synchronous
one-pass Viterbi-beam search and the token passing algorithm with direct
context-free grammar are used for decoding [Young et al., 2009]. This method
is an integral component of continuous speech-recognition system based on
HMM models, see section 3.2.8. To apply context-free grammar as constraints
within the token passing scheme, these grammar rules are compiled into a set
of linked syntax networks of the form illustrated in Figure 4.2. There are three
types of the nodes of each syntax network: links, terminals and non-terminals.
Link nodes are used to store tokens and are the points where recognition de-
cisions are recorded. Terminal nodes correspond to emotion acoustic models
and non-terminal nodes refer to separate sub-syntax networks representing the
right-hand side (RHS) of the corresponding grammar rule. For our chunk-level
emotion classification we did not use non-terminal nodes.

anger

boredom

iy

Start disgust End

fear

neutral

sadness

Figure 4.2: Automatic chunking by acoustic properties and one-pass Viterbi
beam search with token passing

The three types of node are merged in such a way that every arc connects
either a terminal or a non-terminal to a link node, or the other way around.
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The syntax network presented in Figure 4.2 has exactly one entry, one exit
and zero or more internal link nodes. Every terminal and non-terminal node
could only have one arc leading into it, whereas each link node may have few
arcs leading into it. Link nodes can thus be considered as filters, which remove
all but lowest cost tokens passing through them [Young, S. J. et al., 1989].
More details about Viterbi-beam search with a token passing algorithm can
be found in section 3.2.8.

The main idea is that tokens propagate through the networks just as in the
finite state case: when a token node enters a terminal node, it is transferred
to the entry node of the corresponding emotional state model.

This method can be used for detection of context-independent emotional
chunks. Also this method can be modified for context-dependent emotional
chunks detection. In this case the syntax network presented in Figure 4.2
should be combined with the user’s emotional-state-driven language model.
In section 4.4.4 we will present the two-stage emotion-classification technique
which uses chunk-level classification as a first step of analysis.

4.4.3.3 Phoneme-level classification

Finally, the smallest possible units of analysis of emotional speech, namely
phonemes have been chosen, as these should provide the most flexible basis
for unit-specific models: if the emotion is feasible on a phoneme basis, then
these sub-word units could be most easily re-used for any further content,
and high numbers of training instances could be obtained [Vlasenko et al.,
2008a], [Schuller et al., 2008]. Two different methods can be used for the
phoneme-level emotion classification: emotional phoneme classes and vowel-
level formants tracking.

Emotional phoneme classes: We use a simple conceptual model of dy-
namic emotional-state recognition on phoneme-level analysis: the full list of
36 phonemes (all phonemes which presented in EMO-DB dataset) is mod-
eled for neutral and anger emotion speaking style, independently. As a first
step of developing an emotion-classification module we decided that recog-
nition of neutral and negative (anger) speaker’s states is appropriate for an
emotion adaptive dialog management. We integrated such speaker’s emotion-
recognition module in a prototype of the NIMITEK demonstrator [Wende-
muth et al., 2008]. Within an interactive usability test we find that modeling
only two speaker’s emotional states, namely negative and neutral, is sufficient
for development a user-friendly spoken dialog system. More details about
an interactive usability test can be found in Chapter 6. Hence 2 x 36 = 72
phoneme emotion (PE) models are trained [Vlasenko et al., 2008a].
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Figure 4.3: Phoneme-level emotion recognition

In the case of phoneme-level emotion analysis we can restate equation 4.2
in such a way:

Q is a possible emotional word (emotional phones sequence) from a defined
vocabulary,

P(X|9) is an emotion acoustic model for word 2,

P(Q) is the affective speech language model.

Emotional phonemes are modeled by training three emitting states HMM
models with 16 Gaussian mixture components. There is not enough material
in a selected part of EMO-DB database to train robust monophone models.
Hence, in contrast to the previous models [Vlasenko et al., 2008a], [Vlasenko
and Wendemuth, 2009a] we are using Kiel-trained monophones models as
a background HMM/GMM model. The HTK toolkit was used for MLLR
adaptation of the background model on two phoneme emotion subsets: neutral
and anger. Neutral and anger samples from EMO-DB database were used for
adaptation. In the case of phoneme-level emotion recognition we are using an
ASR engine adapted for affective speech to recognize on word-level as a start
point.

After this we are generating possible emotional phonetic transcriptions for
sensible utterances by using an emotional phoneme set, see Figure 4.3. In our
case, two transcriptions for neutral and anger speaking styles are generated.
Emotional phoneme models which provide the highest recognition score are
selected.

In the case of the Interspeech 2009 Emotion Challenge we used 72 phoneme
emotion models for two emotional classes evaluation, and 180 phoneme emo-
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tion models for five emotional classes. Results of the Interspeech 2009 Emotion
Challenge will be presented in section 5.3.4.

Vowel-level formants tracking: It is also possible to classify emotions
with an average formants value extracted from vowel segments [Vlasenko et al.,
2011al, [Vlasenko et al., 2011b|. The phoneme boundaries estimation was
based on a forced alignment, see section 3.3.2.1, provided by the HTK [Young
et al., 2009]. Within our evaluation we use a simplified version of a BAS SAM-
PA [SAM, 1996] with a set of 39 phonemes (18 vowels and 21 consonants).
Table 3.2 and Table 3.1 present lists of German vowels and consonants, with
their corresponding IPA and BAS SAM-PA symbols [SAM, 1996]. A list
of vowels with their corresponding instances number can be found in Table
3.3. To receive the most reliable phoneme boundaries alignment mono-phone
HMDMs have been trained on each corpora independently.

Taking into account automatically extracted phoneme borders, we esti-
mate an average first formant (F'1) and second formant (£'2) value for each
vowel instance. Formant contours were extracted by using PRAAT speech
analysis software [Boersma and Weenink, 2008| and the Burg algorithm. As
one can see from Figure 3.7, the vowel triangles form and their position are
different for different emotional states of the speaker. Now we want to find out
if there are any discriminative changes to the average vowel’s formant values
as a function of the level of arousal of the speaker’s emotional state. One can
see that all emotional vowel triangles expand along the F'1 axis more than
along the F'2 axis. As a consequence, we decided to use only the average F'1
values for our evaluations.

Taking into account the central limit theorem, the mean of a sufficiently
large number of vowel-level discrete estimations of first formant values, which
definitely have a finite mean and a finite variance, will be approximately nor-
mally distributed. We define a new variable X which corresponds to an av-
erage F'1 value estimated on vowel-level. The value of X can be calculated
by:

tg
1
X = o Z il (4.3)
=1

where ¢; is a number of discrete estimations of first formant values within
a vowel segment, f;' is an estimation of the first formant value at discrete
time 7. The random variable X can be represented as N (z|u,0?) with the
following probability density function:

o) = —=e 5 (4.4
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Figure 4.4: Mean of the centralized F1 values for high-arousal emotions (fear,
anger, joy). Speakers: male (top), female (bottom,)

To characterize the vowels quality changes under the influence of the dif-
ferent speaker’s emotional state, we estimated the mean of the centralized F'1
values for each vowel individually. For this evaluation, we use all vowels which
contain a sufficient amount of instances for low and high-arousal emotions.

To specify the vowel quality variation, we use the mean of the centralized
F'1 value. The centralized F'1 value shows the difference between the estimated
average I'1 value on an emotional vowel segment, and the mean of the average
F'1 value of the same vowel pronounced in a neutral way. Figures 4.4 and 4.5
display the mean of the centralized F'1 values for the 12 vowels presented in
the EMO-DB database. Due to the sparse amount of instances, we do not
estimate the mean of the centralized F'1 values for the following list of vowels
[2,u,Y,9,0Y] with corresponding ITPA symbols [a,u,v,9,0v].

As one can see from Figures 4.4 and 4.5, the most indicative vowels are |a,
e, E, @, 6, al, aU] with the corresponding IPA symbols [a, e €, o, , a1, av|. Now
we want to find out if it is possible to build a reliable simple emotion classifier
based on the Neyman-Pearson criterion which will use the average F'1 value
as a parameter. This criterion is quite often used for speaker classification,
identification and authorization tasks [Roberts et al., 2005]. The average F'1
value will be extracted within the alignment boundaries of the most indicative
vowels.
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male (bottom,)

We pointed out earlier that the random variable X defined in equation 4.3
is approximately normally distributed. As a result, it can be represented by
N (x|u,0?). Now we shall compute the normal distribution parameters for
each indicative vowel pronounced in a neutral speaking style. Due to the high
variability of speaker vocal tract lengths for male and female voices we decided
to calculate the pair of estimations (u,o) for each gender individually. For
calculating the mean value estimations p, we use two neutral speech sentences
per speaker for the EMO-DB dataset and one utterance per speaker with
the smallest absolute arousal value for the VAM dataset. These sentences
have been removed from the test sets. For gender-dependent o estimations
of seven of the most indicative vowels we use the Kiel corpus. It is clear
that there is not enough material within two sentences to calculate a reliable
standard deviation estimation. To solve this problem, instead of using speaker-
dependent o estimations we use gender-dependent (male,female) estimations
calculated on the Kiel corpus [Vlasenko et al., 2011a]. The list of normal
distribution parameters for indicative vowels can be found in Table 4.5.

For our evaluation we generate male and female (u, ) estimations pools.
Mean and standard deviation values from these pools will be adopted for each
utterance according to speaker’s gender. This can be expressed as follows:
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| Vowel | EMO-DB | VAM | Kiel |
1D male female male female male female
plfa | plH | wlis] | wlis) | o[ | o [Ho]

a 644.1 749.4 658.8 769.8 62.0 119.4
e 443.7 439.1 488.9 607.5 67.6 88.1

E 440.8 439.2 579.2 623.0 66.1 111.1
Q@

6

509.1 475.0 555.2 584.5 123.6 124.6
547.8 584.1 594.6 690.7 89.5 127.1
al 610.6 731.7 615.5 756.0 48.7 78.1
aU 514.7 594.1 684.9 694.4 48.1 77.6

Table 4.5: FEstimations of the normal distribution parameters calculated on
Kiel, EMO-DB and VAM corpus material

Hik = [ig(k)s Tik = Oig(k), Where 7 is an index of an indicative vowel, k is
an utterance index, g(k) is a function which specifies a speaker’s gender of
utterance k.

For classification purposes we use the Neyman-Pearson criterion:

L(©o|U)
AU) = L@ =" (4.5)

In our case, Oq is a hypothesis that all indicative vowels included in ut-
terance U are being pronounced with high-arousal emotion, and ©; is a hy-
pothesis that all vowels included in utterance U are being pronounced with
neutral or low-arousal emotion.

Now we estimate L(O¢|U) and L(©;|U). The cumulative distribution func-
tion (CDF) for the random variable X; which corresponds to the average F'1
value of an indicative vowel i is defined by:

P(X; < 2) = Fy,(z) = /_ " () das (4.6)

Taking into account that the random variable X; has a normal distribution,
equation 4.6 can be expressed as:

z 1 _ (e—py)? 1 T —
Fy = 20,2 oy = —(1 f ! 4.7
(@) /_Oog _. r= 1 +er{w§}> (4.7)

where erf is a Gauss error function:

erf {z} = % /Ozv e dt (4.8)

Taking into account equation 4.6, our conditional likelihoods L(©,|U) and
L(©41]U) can be expressed as:
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LO|U) = > Fx(ign)

1 ij(k) — Hi
-y ! <1+f{<>—#<>}) (492
Vi:l‘ij(k)eUk O-Zg(k)\/§

where i is an index of an indicative vowel, g(k) is a function which specifies
a speaker’s gender of the utterance k, k£ is an index of utterance, and Ny is
the number of indicative vowels in the utterance Uj.

As a consequence, the Neyman-Pearson criterion can be estimated as:

Ny

A(Uy) = ECATAREE (4.10)

Equation 4.10 can be used for estimation of A(Uj) during training and
test stages. During training we should estimate the optimal n value. Also,
the criterion threshold 1 can be estimated with leave-one-speaker-out (LOSO)
strategy or by using some a-priory value n = 1 (it is a case when we simply
select the hypothesis with higher likelihood). Within the test stage all ut-
terances Uy, with A(Uy) < n will be classified as utterances pronounced in
low-arousal emotional or neutral state. In other cases they will be classified
as utterances articulated by the speaker with a high-arousal emotional state.

4.4.4 Combined analysis

Most parts of emotion-classification techniques usually employ static feature
vectors extracted on a turn or linguistically completed sub-turn entities [Bat-
liner et al., 2011]. Dynamic processing on the short-term frame-level is a less
popular technique applied for the emotion recognition from speech [Polzin and
Waibel, 1998|, [Schuller et al., 2003]. In [Schuller et al., 2003], [Schuller et al.,
2009] the latter has also been shown superior to dynamic modeling. This
derives mostly from the fact, that by statistical functional application to the
low-level descriptors (LLD) an important information reduction takes place,
which avoids phonetic (respectively spoken-content) over-modeling. Yet, it is
also considered that thereby important temporal information is lost due to a
high degree of abstraction [Vlasenko et al., 2007a]. This led to the first suc-
cessful attempts to integrate information on different processing levels [Murray
and Arnott, 1993], [Li and Zhao, 1998], [Jiang and Cai, 2004|, [Schuller and
Rigoll, 2006].
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In this section we describe two possible combined speech-based emotion-
classification techniques: two-stage processing and middle-level fusion.

Two-stage processing: As the standard unit of emotional speech analysis
a whole turn can be named [Polzin and Waibel, 1998|, [Li and Zhao, 1998],
[Schuller et al., 2003|, [Jiang and Cai, 2004|, |Batliner et al., 2006]. From
an application point of view, this seems appropriate in most cases: a change
of speaker’s emotional state during a turn seems to occur seldom enough
for many applications. However, from a classification point of view, it was
often reported that sub-timing levels seem to be advantageous [Jiang and Cai,
2004], [Murray and Arnott, 1993], [Schuller and Rigoll, 2006|. Still, apart from
a few attempts to recognize speaker’s emotions within speech dynamically
[Polzin and Waibel, 1998]|, [Schuller et al., 2003|, current approaches usually
employ static feature vectors derived on a utterance-, turn-, word-, or chunk-
level [Schuller et al., 2007b|. In [Schuller et al., 2003] such static modeling has
also been shown superior to dynamic modeling. In this section we therefore
investigate a two-stage approach to acoustic modeling for the recognition of
emotion from speech: a first stage segments utterances into chunks which are
analyzed in detail in a second stage.

The two-stage approach is implemented to provide a higher temporal res-
olution by chunking of utterances according to their acoustic properties, and
multi-instance learning for the turn mapping after an individual chunk analy-
sis. For the chunking fast pre-segmentation into emotionally quasi-stationary
segments the HMMs-/GMM-based one-pass Viterbi beam search with token
passing is used. The chunk analysis is realized by brute-force large feature
space construction with subsequent subset selection, support vector machines
classification, and speaker normalization.

For the first stage we use the chunk-level analysis described in section
4.4.3.2. We train the chunk-level emotion-recognition models in a speaker-
independent manner with LOSO strategy (see section 2.10.2) by using the
Baum-Welch re-estimation algorithm presented in Chapter 3 and 50 Gaus-
sian mixture components. Afterwards each original utterance is chunked by
application of the one-pass Viterbi beam search as described. For the latter
processing, only the obtained chunk boundaries are used from this stage. The
motivation behind this processing is to find an acoustically motivated sub-turn
splitting.

For the second stage we use the turn-level analysis described in section
4.4.2. In order to map the static analysis results of each chunk onto the turn-
level, we consider three strategies known from multi-instance learning for each

chunk:
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e an un-weighted magjority vote (MV),

e a mazimum length vote (MLV),

e a mazimum classifier prediction score multiplied with the length vote
(MSL)

Likewise, we computed the majority label of each turn based on the chunk-
level. In the case of a weighted vote, the length of the chunk in frames is
used as a multiplicative weighting function. In the MSL case we also use
the classifier prediction score for each class as additional weight. Note that
in the case of an unweighted majority vote, turns may occur that cannot
be uniquely assigned to an emotional class. This happens, if two or more
emotional classes, which are the majority of classes, have the same number of
chunks. This case will be separately denoted in the ongoing. In the case of
time-based weighting this case can almost be ignored, as the majority of classes
— if there are several — will rarely have an equal number of frames [Schuller
et al., 2007|. This is even more likely, if length and prediction scores are used
for weighting (MSL). As a disadvantage it has to be mentioned that temporal
information is thereby lost. Alternatively, the duration of each chunk can be
used as weight. Also, the time order of appearance of chunks is lost. However,
we suppose that this information can be neglected under the precondition of
constant emotion throughout an utterance. Employing majority voting (MV)
we can observe two cases: utterances that are clearly assignable, and such
that have two or more emotions assigned due to a draw. In the second case,
a further discrimination can be considered: utterances that have the correct
emotion among the majority classes, and such that are simply incorrectly
assigned. Evaluation results of a two-stage speech-based emotion-classification
technique will be presented and discussed in Chapter 5.

Middle-level fusion: To receive higher classification performance it is pos-
sible to use independent classification results for middle-level fusion. In most
cases, with this method we can obtain a composite classification performance
which is higher than that of the individual classifiers. As presented in [Bat-
liner et al., 2006, with ROVER framework [Fiscus, 1997, authors showed an
absolute improvement of up to 5.8 % of emotion-recognition accuracy on four
class problems on AIBO [Batliner et al., 2008] dataset with respect to the
best independent site result. Within early fusion, when combining acoustic
features from all sites, authors achieved still a 2.1 % absolute improvement.
So far the two individual approaches to emotion recognition based on in-
formation processing directly on the frame level, or on a higher turn level, have
been presented. In order to fuse these two approaches it seems beneficial to
keep utmost amounts of information for the final decision process. However,
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Figure 4.6: Processing flow for the middle-level fusion of frame- and turn-level
analysis

an early fusion (acoustic features fusion) is not feasible, due to the differ-
ent acoustic feature sets (frame-level vs. turn-level) [Vlasenko et al., 2007b].
We therefore decided to include the final HMM/GMM scores (log P(2|X))
within the static acoustic feature vector x, forming an argument vector z’,
and provide a middle-level fusion. The process of speaker normalization and
feature space optimization is extended to the likewise obtained new feature
vector /. Overall feature selection having the HMM /GMM scores within the
space reveals their high importance, as they are kept among high ranks. Fig-
ure 4.6 depicts the overall processing flow from an input speech signal via the
two streams to the final classification result [Vlasenko et al., 2007a].
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4.5 Context-dependent and context-
independent models

Usually emotion recognition from speech uses spoken content independent
acoustic models. One general model per speaker’s emotional state is trained
independent of the phonetic structure of affective speech samples. Given suffi-
cient training samples, this approach provides acceptable emotion-recognition
performance on test material which has similar phonetic content [Schuller
et al., 2009]. This section tries to answer the question of whether emotion
recognition from speech strongly depends on the content, and if models tai-
lored for the spoken unit can lead to higher accuracies [Vlasenko et al., 2008a].
We therefore evaluate phoneme-, word-, utterance-models by use of a large
prosodic, spectral, and voice quality feature space, HMM /GMM models and
SVM.

Practically every approach to the emotion recognition from speech ig-
nores the spoken content when it comes to acoustic modeling (see [Polzin
and Waibel, 1998|, [Li and Zhao, 1998], [Schuller et al., 2003], [Jiang and Cai,
2004], [Batliner et al., 2006]). A general model is trained for each speaker’s
emotional state, and applied on test-utterances which have a similar pho-
netic content. While this is a common practice, it seems surprising how well
this works, especially considering that many acoustic features highly depend
on phonetic structure, such as spectral and cepstral features which have be-
come very popular recently [Batliner et al., 2006|. It is common to provide a
high reduction of information: e.g., rather than using the original time-series,
higher order statistics, such as means, deviations, extremes, etc., are used.
Another possible solution is to use dynamic modeling, e.g., by the HMM,
of low-level descriptors (MFCC, etc.) extracted on the frame-level [Schuller
et al., 2003], [Vlasenko et al., 2007a].

We first investigate the influence of spoken content variation on the turn-
level. We use dynamic analysis (see section 4.4.3) with utterance-level clas-
sification. Test runs on EMODB and SUSAS datasets for utterance mod-
els are carried out speaker independently by leave-one-speaker-out (LOSO)
evaluation. Table 4.6 reports average among all speakers and all utterances
accuracies for three cases to address context-independent evaluation. A total
of 10 different utterances are found in EMODB and 35 in SUSAS databases,
respectively. We included all utterances from training set for general model
training. In other cases we left out all samples with target or non-target
utterance from training set.

From 4.6 it is clear that removal of target utterance from training set
fundamentally reduce accuracy of emotion recognition in comparison with re-
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| WA | EMO-DB | SUSAS |
General model 771 46.0
Non-target utterance left out 75.9 454
Target utterance left out 72.7 44.2

Table 4.6:  Weighted average recalls (WA) [%] for turn-level modeling on
EMODB and SUSAS. Dynamic analysis with utterance-level classification,
LOSO evaluation

moval non-target utterance. Random removal non-target utterances preserves
the context, which results in the higher accuracy than removing the target ut-
terance, which makes the training data context-independent.

Yet, the question is if phonetic content variance influences emotion-
recognition performance negatively, and if models trained specifically on the
phonetic unit at hand, can help. In this section, we aim to shed light on this
question by training phoneme-, syllable-, and word-models for the emotion
recognition in the following application. Unit-definite models require knowl-
edge of the phonetic content, opposing "blind" sub-turn entities, as introduced
in (see [Murray and Arnott, 1993|, [Polzin and Waibel, 1998|, [Li and Zhao,
1998|, [Jiang and Cai, 2004], [Schuller and Rigoll, 2006]).

Likewise, recognition of the spoken content becomes essential, in order to
choose the correct unit-definite model. Facing real-world cases, we do not re-
port on transcribed content, as, e.g., in [Batliner et al., 2006], but do include
the HMM-based state-of-the-art approach to ASR. The HMM of three emit-
ting states and 16 Gaussian mixture components was built for each phoneme
emotion (PE) and phoneme-level of interest (PLOI) models. The HTK toolkit
was used to build these models, using standard techniques such as forward-
backward and Baum-Welch re-estimation algorithms [Young et al., 2009]. We
also use an automatic speech-recognition (ASR) engine adapted with MLLR
and regression class tree on affective speech samples to recognize linguistic
units (sentence, word) [Vlasenko et al., 2008a]. We report results considering
superiority of unit-definite models over general models, and combine speech
and emotion recognition in a real system.

Next, word-definite emotion models have to be selected for emotion recog-
nition. This may lead to a downgrade, if word insertions, deletions or sub-
stitutions occur, provided the spoken content does influence emotion recog-
nition [Vlasenko et al., 2008a]. Therefore, we test emotion recognition in
matched and mismatched word condition (that is picking the correct or any
other word model at a time) in comparison to a general model trained on all
words. Note that for mismatched condition one vs. one training and testing
of each word vs. each other is necessary.
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| Model description | Conditions [ GI G2 [ All |

EMO-DB matched | 57.2 46.9 | 48.9
mismatched | 36.6 37.7 | 37.4
SUSAS matched | 64.6 60.3 | 60.7
mismatched | 52.4 54.4 | 55.2
AVIC matched | 79.7 57.8 | 60.9
mismatched | 49.2 51.3 | 50.1

Table 4.7: Weighted average recalls (WA) [%] at word level for word emotion
models in matched and mismatched condition. Static features, SVM, LOSO.
Investigated are "worth-it" words (G1) and "non-worth-it" candidates (G2),
as well as all (All) terms

In total 73 different words are pronounced in EMO-DB database
[Burkhardt et al., 2005|. From these we select only those that have a minimum
frequency of occurrence of 3 within each emotion (likewise having 50 plus in-
stances per word) comprising a total of 41 words with roughly 200 instances
per word. Then, we employ static acoustic features and SVM classification
for word emotion models after selection of according words by ASR. Table 4.7
visualizes the results received by two groups of frequency of occurrence in the
corpus:

Group 1 (G1) are high frequency of occurrence words. For the EMO-DB
dataset these words (10 out of 41) are "abgeben (give away), am (on), auf (on
top of ), besucht (visits), gehen (walk), ich (I), sein (to be), sich (oneself), sie
(her), and sieben (seven)”. For the AVIC dataset these words (7 out of 50)
are "ah, but, is, it, mh, not, and you". For the SUSAS dataset this word (1
out of 11) is "fifty".

In contrast, group 2 (G2) is "not worth it" due to low occurrence in the
dataset. Likewise emotion unit-definite models for these words cannot be
trained sufficiently. Besides, results of emotion recognition for all words are
shown (All). Our evaluations are realized in a speaker-independent (SI) man-
ner using LOSO strategy (see section 2.10.2). In the following, we stick to
words as unit of analysis, which allow for incremental emotion recognition.

First, matched vs. mismatched conditions are examined: spoken content,
clearly does influence accuracy throughout word-model comparison in any
case, as can be seen in Table 4.7. In fact, detailed analysis of complete results
shows that the length of words and phonetic distance are the main influencing
factors.

Considering results of word-level analysis for acted and spontaneous emo-
tion and spontaneous level of interest, we discovered notable differences be-
tween matched and mismatched condition for words presented in group G1
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| Training size factor | 1% | 2% | 5% [ 10% | 100% |

EMO-DB 43.1 | 44.7 | 49.1 | 51.7 | 55.5
SUSAS 50.6 | 56.1 | 60.7 | 61.5 | 64.7
AVIC 58.0 | 62.6 | 65.2 | 68.6 | 68.6

Table 4.8: Weighted average recalls (WA) [%] at word level for word emotion
models for general models at diverse relative sizes of training corpora. Static
features, SVM, LOSO

and G2. As can be seen from Table 4.7, in matched cases word-definite models
for words from the group G1 provide better performance in comparison with
general emotion models.

As mis-selection of word-definite emotion models would evidently signifi-
cantly downgrade performance, we next address the question of how a general
model trained on the whole dataset would perform.

We set this in relation to the amount of training data available for each
word-definite emotion model by the relative training size factor by random
down-sampling preserving emotion class-balance, see Table 4.8

Acoustic material for the each word correspond from 1.0% to 2.0% of
complete acoustic material presented in EMO-DB, SUSAS, AVIC datasets.
It can be seen that for all databases a general model with that training size
factor will perform between matched and mismatched conditions for all words.
With more training material available, the general model outperforms the
matched case picking "All" and approaches the "G1" matched case. Without
"G1" selection it seems preferable to use the general emotion model, simply
as more training data is available. With "G1" matched cases accuracy of
emotion recognition with word-definite emotion models outperform general
models with a 100% training size factor.

However, the introduced unit-specific emotion-recognition models clearly
outperformed common general models provided sufficient amount of training
material per unit. Appearance of word-level-labeled corporas can improve
current performance of phoneme- and word-level emotion and level of interest
models. We found that emotional and level of interest activity is distributed
irregularly among words within a sentence. For example in AVIC dataset,
accuracy of level of interest recognition for the words "ah, but, is, it, mh, not,
you" by word depended models exceeds accuracy of level of interest detection
by general models. More details about this dataset can be found in section
2.6.2.7 on page 28. This is not the case for other evaluated datasets.
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4.6 Summary

This chapter reviews existing speech-based emotion-recognition methods and
provides a description of our developed emotion-recognition approaches. A va-
riety of emotion descriptors is discussed first. Two different types of emotional
speech analyses are applied for speech-based emotion recognition: frame-
level and turn-level, are then presented. First of all we described the set
of acoustic features which can be applied for different emotion-classification
techniques. Two different optimization techniques applied on feature extrac-
tion level, namely normalization and standardization and feature set optimiza-
tion have been presented afterwards. Static analysis applied for speech-based
emotion-classification developed by our partners from TUM has been pre-
sented first. Then we introduced utterance-, chunk-, phoneme-level dynamic
analysis models for the recognition of emotions within speech. During de-
scription of utterance-level dynamic analysis we determined the optimal HM-
M/GMM architecture. As a result within our evaluations of utterance-, chunk-
level dynamic analysis we will use the single-state HMM/GMM architec-
ture for emotion-classification models. Two different phoneme-level emotion-
classification methods are described. The first is emotional phoneme classes.
It provides context-dependent emotion classification and can be easily com-
bined with automatic speech recognition for a user-behavior-adaptive spoken
dialog system. Results of emotional phoneme classes evaluations can be found
in Chapter 5. Also a prototype spoken dialog system with a user-behavior-
adaptive spoken dialog system created within NIMITEK, which includes this
technique will be discussed in Chapter 6. The second is vowel-level formants
tracking. This method is our new technique, which showed applicable results
of emotion recognition based on an extremely small acoustic feature set.

Within this chapter, we described two possible information integration
techniques which use different processing levels. The first is a two-stage pro-
cessing approach which is used to provide higher temporal resolution by chunk-
ing of utterances according to acoustic properties, and multi-instance learning
for turn mapping after individual chunk analysis. The second is middle-level
fusion. Within this method we integrate important information on tempo-
ral sub-layers as the frame-level within turn-level feature space. Finally, this
chapter addresses the question on which phonetical level there is the onset
of emotions and level of interest. We therefore compare phoneme-, word-
and sentence-level analysis for emotional sentence classification by use of a
large prosodic, spectral, and voice quality feature space for SVM and MFCC
for HMM/GMM. Results of evaluations of our static and dynamic emotion
classifiers will be presented in Chapter 5.
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5.1 Introduction

n this chapter we present results of experiments concerning our emotion-
Irecognition and automatic speech-recognition methods. All experiments
were conducted on The Kiel Corpus of Read Speech [KIE, 2002] and on the
affective speech datasets presented in Table 2.3 on page 24. Building of the
acoustic models and speech-recognition evaluation setup for neutral and affec-
tive speech samples, and adaptation on affective speech samples for acoustic
models trained on neutral speech samples are presented in section 5.2. Sec-
tion 5.3 discusses evaluation results of various emotion-classification methods
presented earlier in Chapter 4. Then, we present our results within INTER-
SPEECH 2009 Emotion Challenge [Schuller et al., 2009¢| and cross-corpus
acoustic emotion recognition.

5.2 Evaluation of our ASR methods

This section presents the development of experiments on the German speech
recognition with HMM/GMM models. All HMM/GMM models presented in
this section are constructed as 18 Gaussian mixture components per state.
ASR models presented in this section are evaluated with the bigram language
model and a grammar scale factor s = 5. A larger number of the Gaussian
mixture components and a higher grammar scale factor could improve perfor-
mance of a defined thematic domain (system known fixed textual content of
the evaluated database) — oriented automatic speech recognition.
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The main issue of this section is to show that training ASR models on
neutral speech, and subsequent adaptation on affective speech samples, does
have an impact on the recognition performance within emotional speech recog-
nition. Two different HMM /GMM models sets are presented and evaluated.
First, we describe our non-adapted HMM/GMM models, trained indepen-
dently on neutral speech samples and affective speech samples. Afterwards,
we describe our affective-speech-adapted ASR models and present evaluation
results on the EMO-DB database.

5.2.1 Corpora

As an emotionally neutral speech corpus we used part of The Kiel Corpus of
Read Speech (PHONDAT90 and PHONDAT92: Kiel-CD #1, 1994) [KIE,
2002]. The Kiel Corpus is a growing collection of read and spontaneous
German speech which has been collected and labeled segmentally since 1990.
For our ASR engine evaluation we used speech samples from 12 female (1801
utterance in all) and 13 male (2000 utterance in all) speakers. The list of
speakers is kO01,....k12, k61 (also defined as kko), k62 (also defined as rtd),
k63,...,k70, dlm, hpt, uga. Within speech recording sessions a Neumann US87
condenser microphone (cardioid settings) was placed approximately 30 cm
from the speaker’s mouth. The microphone signals were amplified by a John
Hardy M1 pre-amplifier and recorded on a SONY PCM 2500 DAT-recorder at
a sampling rate of 44.1 kHz for PHONDAT90 and of 48 kHz for PHONDAT92,
respectively, with 16 bit quantization. Afterwards, collected speech samples
were then digitally transferred to a computer hard disk and downsampled to
16 kHz as well as high-pass filtered at 40 Hz.

For affective speech corpora we decided to use the popular studio recorded
Berlin Emotional Speech Database (EMO-DB) [Burkhardt et al., 2005].
Speech material recordings took place in the anechoic chamber of the Tech-
nical University Berlin, Technical Acoustics Department using a Sennheiser
MKH 40 P 48 microphone and a Tascam DA-P1 portable DAT recorder.
Recordings were taken with a sampling frequency of 48 kHz and later down-
sampled to 16 kHz. The microphone was placed approximately 30 cm from
the speaker’s mouth. 10 professional actors (5 male and 5 female) spoke 10
German emotionally undefined sentences. One of these sentences is "b03: An
den Wochenenden bin ich jetzt immer nach Hause gefahren und habe Agnes
besucht. (At the weekends I have always gone home now and seen Agnes.)".
To provide reliable measures twenty evaluators took part in a perception-test.
Each "rater" heard all of the utterances in a random order. They were allowed
to listen to each utterance only once before the perception-test evaluator had
to decide in which emotional state the speaker had been and how natural the
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performance was. During perception test raters provided rates of naturalness
and recognizability for each performance. An average rates of naturalness and
recognizability have been included in dataset material. In total we used 494
utterances: 416 affective speech samples and 78 neutral speech samples. Each
of these utterances has a level of naturalness not less than 60% and a level of
recognizability not less than 80%.

5.2.2 Evaluation of non-adapted ASR models

In our ASR models, only diagonal covariance GMM matrix systems are con-
sidered where the features in each feature vector are assumed uncorrelated.
The monophone set consists of 39 HMMs including silence and short pause
(sp). Within our ASR evaluations we use a standard 39-dimensional feature
vector which includes 12 MFCC coefficients, zero-order Cepstral coefficients,
and their delta and acceleration coefficients.

The parameters of the models are re-estimated in 2 consecutive runs of the
Baum-Welch algorithm (see section 3.2.6) using the monophone transcription
of the training data. To handle impulsive noises in the training speech samples,
additional transitions are added from state second to forth and from state
forth to second in the silence HMM model. The backward transition provides
a technique to assimilate impulsive noises without exiting the silence model.
Besides, in order to deal with continuous speech, a one state short pause (sp)
model was created whose emitting state is tied to the third state (central
emitting state) of the silence model. This short pause model has a direct
transition from entry to exit state. Then two more iterations of the Baum-
Welch algorithm are run.

Finally, we convert the single-Gaussian component models to 18 mixtures
Gaussian component models. After each mixture component increment, the
resulting HMM models are re-estimated with 4 consecutive iterations of the
Baum-Welch algorithm. During training of our HMM parameters we added
one mixture per 4 consecutive runs of the Baum-Welch algorithm. For lan-
guage modeling we used a bigram language model trained on transcriptions
of the complete training set.

Test-runs on EMO-DB, Kiel for non-adapted ASR models are carried out
in leave-one-speaker-out (LOSO) manner to address speaker independence
(SI), as required by most applications. For each speaker presented in EMO-DB
or Kiel we trained a speaker-independent ASR system based on speech samples
from other speakers presented in the corresponding database. As a result we
trained 10 ASR HMM/GMM models for the EMO-DB database and 25 ASR
HMM/GMM models for the Kiel database. Within our evaluations on non-
adopted models we also used cepstral mean subtraction (CMS), which is the
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Speaker With CMS Without CMS
ID [%] Acc Corr Acc Corr
k01 96.15 96.15 96.72 96.92
k02 92.37 93.32 92.75 93.32
k08 99.00 99.40 98.60 99.20
k61 87.93 90.13 87.78 89.82
k62 87.72 89.86 87.56 89.78
dlm 79.29 81.02 78.73 80.69
hpt 85.38 86.60 85.00 86.41
uga 91.85 93.02 91.61 92.83
Total 90.20 91.58 | 90.04 91.47

Table 5.1: Recognition rates [%] for non-adapted ASR HMM/GMM models
trained and evaluated on the Kiel database with LOSO

simple method applied for the compensation of the long-term spectral effects
such as those induced by different microphones and audio channels [Young
et al., 2009].

Recognition rates of the HMM/GMM models trained on the Kiel dataset
and evaluated with the bigram language model can be found in Table 5.1.
In general, it can be seen that the performance of German affective speech
recognition for speaker-independent models are substantially different. For
example, we obtained the speech-recognition accuracy rate for speaker k08 up
to Acc = 98.6% (acoustic features without CMS) at the same time the accu-
racy rate for speaker dlm was only Acc = 78.73% (acoustic features without
CMS). Such a high performance variation can be explained by low-level tex-
tual content annotation in the Kiel dataset. Some speakers do not pronounce
the corresponding prompted text within recordings, also paralinguistic events
(like breathing and etc.) have not been transcribed. However, we will use Kiel
datasets for training our basic ASR models for German emotionally neutral
speech.

Recognition rates of the HMM /GMM models trained on speech samples
from the EMO-DB dataset and evaluated with bigram language model can be
found in Table 5.2. In general, it can be seen that the performance of German
affective speech recognition for speaker-independent models are comparable.
Only for speaker 10 we obtained a comparable low affective-speech-recognition
accuracy rate Acc = 83.55% (acoustic features without CMS). Such compara-
ble low performance can be explained by very specific vocal tract characteris-
tics of speaker 10 and a high-level of intensity of the simulated emotions.

Recognition rates of the ASR models trained on the Kiel database and eval-
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Speaker With CMS Without CMS
ID [%] Acc Corr Acc Corr
03 98.09 98.09 98.33 98.33
08 98.14  98.52 98.70 99.07
09 97.12 97.12 96.07 96.60
10 84.84 86.77 83.55 86.45
11 97.43 97.82 97.03 97.62
12 97.23 97.63 96.84 97.23
13 98.11 98.11 98.11 98.11
14 98.62 99.23 98.31 98.92
15 97.44 97.44 97.44 97.44
16 95.49 95.80 95.33 95.80
Total 96.70 97.06 | 96.49 96.99

Table 5.2: Recognition rates [%] for non-adapted ASR HMM/GMM models
trained and evaluated on the EMO-DB database with LOSO

Database With CMS Without CMS
[%] Ace Corr Ace Corr
| Kiel | 8599 86.97 | 87.37 88.27 |

Table 5.3: Recognition rates [%] for non-adapted ASR HMM/GMM models
trained on the Kiel database, evaluated on the EMO-DB database

uated with bigram language model on the EMO-DB database can be found in
Table 5.3. As one can see from Table 5.3, HMM/GMM models trained on the
complete Kiel dataset without cepstral mean subtraction (CMS) provides the
best German speech-recognition rates within cross-corpora ASR evaluation.
As a result we decided to use HMM/GMM models trained on acoustic fea-
tures extracted from the Kiel dataset without CMS. In the next section we will
describe affective-speech-adaptation techniques which have been applied for
these ASR models, referred to as basic ASR models for German emotionally
neutral speech.

5.2.3 Evaluation of affective-speech-adapted ASR
models

As one can see from Table 5.3, HMM/GMM models trained on neutral speech
samples from the Kiel database could not provide sufficient recognition perfor-
mance on affective speech material from the EMO-DB database. Therefore,
in order to obtain robust acoustic models that can perform well with affective
speech, we adapted the speaker-independent HMM /GMM models trained on
natural speech data from the Kiel dataset. Various adaptation techniques have
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Speaker GBC 3 base classes RCT
ID [%] Ace Corr Acc Corr Acc Corr
03 94.02 94.50 94.02 94.26 95.22 95.22
08 83.67  84.23 82.93 83.30 85.71 86.09
09 81.15 83.25 83.77 85.86 81.94 84.29
10 82.26 82.90 82.26 83.87 83.23 83.87
11 90.50 90.89 89.70 90.10 90.89 91.29
12 90.12 90.51 89.72 90.12 93.68 93.68
13 92.28 92.45 91.94 92.28 92.97 92.97
14 90.00 90.92 89.69 90.77 90.62 91.69
15 93.29 93.49 93.89 94.08 94.08 94.28
16 73.87 74.34 73.56 74.34 73.72 74.34
Total 86.95 87.56 | 86.91 87.62 | 87.87 88.43

Table 5.4: ASR recognition rates [%] for HMM/GMM models trained on the
Kiel database, MLLR adapted on EMO-DB neutral speech samples, evaluated
on the EMO-DB database with LOSO

been used for this purpose: Maximum Likelihood Linear Regression (MLLR)
(see section 3.2.9.2) with global base class (GBC) presented in listing 3.2 on
page 65, 3 base classes (silence with short pause, vowels and consonants in
three different base classes) presented in listing 3.3 on page 65 and regression
class tree (RCT), Maximum a Posteriori (MAP) (see section 3.2.9.1) and com-
bined MLLR(RCT)+MAP. For the MLLR, optimal performance was obtained
with 39 regression classes where only means are transformed. For the MAP,
optimal performance was obtained with 7 = 10 which is the MAP parameter
which controls the impact of the MAP prior, see equation 3.47 on page 63.

First, we used for adaptation only neutral speech samples from the EMO-
DB database for acoustic channel adaptation. We applied the MLLR adap-
tation technique with global base class (GBC), three base classes and the
regression class tree (RCT).

Recognition rates of the basic ASR models adapted with MLLR on neutral
speech samples and evaluated with bigram language model can be found in
Table 5.4. As one can see from Table 5.4, adaptation on neutral speech samples
from EMO-DB does have an insufficient impact on the recognition of the
affective speech samples from the same database (recorded within the same
acoustic channel). This has been found to yield a slight gain (about 0.5%) over
the basic ASR models (accuracy 87.37%) trained on neutral speech samples
from the Kiel database.

Secondly, we used for adaptation affective samples from the EMO-DB
database. We applied LOSO strategy and the MLLR adaptation technique for
basic ASR models trained on neutral speech samples from the Kiel database.

Recognition rates of the basic ASR models adapted with MLLR on affec-
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Speaker GBC 3 base classes RCT
ID [%] Ace Corr Acc Corr Acc Corr
03 94.50 94.74 94.74 94.74 96.41 96.41
08 87.38 88.13 87.57 87.94 94.25 94.25
09 87.43 88.74 87.96 89.01 93.19 93.98
10 85.16 85.81 85.16 85.81 87.10 87.74
11 90.89 91.29 91.09 91.49 94.85 95.25
12 94.07  94.07 94.07  94.07 96.44 96.44
13 95.20 95.37 94.17 94.17 98.63 98.63
14 90.31 90.92 90.00 90.92 95.69 96.00
15 94.67  94.67 94.28 94.28 95.86 95.86
16 82.12 82.43 82.58 83.83 91.29 91.91
Total 90.00 90.44 | 89.96 90.46 | 94.57 94.84

Table 5.5: ASR recognition rates [%] for HMM/GMM models trained on the
Kiel database, MLLR adapted on EMO-DB affective speech samples, evaluated
on the EMO-DB database with LOSO

tive speech samples and evaluated with the bigram language model can be
found in Table 5.5. As one can see from Table 5.5 adaptation on the affective
speech from EMO-DB does have a sufficient impact on the recognition of the
affective speech samples. In contrast to the ASR models trained on the neu-
tral speech samples from the Kiel database the accuracy of affective speech
recognition with the MLLR (RCT) adapted HMM/GMM models was about
7.2% absolute better than that of the basic ASR models (accuracy 87.37%).
It is well-known that MLLR and MAP can be effectively combined to im-

Speaker MAP MLLR+MAP
1D neutral speech | affective speech | affective speech
[%] Acc Corr Acc Corr Acc Corr
03 94.02 94.26 | 9593 95.93 96.89  96.89
08 84.97  85.71 | 91.28 91.47 96.85  96.85
09 82.98 85.08 | 91.36 91.88 96.60 96.86
10 83.23  83.55 | 83.87 84.52 85.16  86.77
11 92.08 92.08 | 94.46 94.65 95.64 95.84
12 92.89 93.28 | 96.05 96.05 96.84  96.84
13 94.00 94.17 | 96.74 96.74 98.63  98.63
14 88.62 89.69 | 93.54 94.46 98.00 98.62
15 94.48 94.67 | 95.27  95.27 96.25  96.25
16 76.36  77.14 | 87.87 88.65 96.73  96.89

Total 88.10 88.71 | 92.73 93.09 | 96.24 96.49

Table 5.6: ASR recognition rates [%] for HMM/GMM models trained on the
Kiel database, MAP or MLLR(RCT)+MAP adapted on EMO-DB affective
speech samples, evaluated on the EMO-DB database with LOSO
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prove speech-recognition performance [Wong and Mak, 2000] by using MLLR
transformed mean values as the priors for the MAP adaptation method. As
a result we decided to use combined MLLR with regression class tree and the
MAP method for adaptation on affective speech material.

Recognition rates of the basic ASR models adapted with MAP or combined
MLLR(RCT)+MAP on affective speech samples from EMO-DB database and
evaluated with bigram language model can be found in Table 5.6. As one
can see from Table 5.6 the accuracy of affective speech recognition with the
combined MLLR(RCT)+MAP adapted HMM/GMM models was about 8.9%
absolute better than that of the basic ASR models (accuracy 87.37%).

For our ASR engine integrated into the NIMITEK demonstrator we used
the HMM/GMM models trained on the Kiel database material and adapted
with MLLR(RCT) on affective speech samples from the EMO-DB database.
Also, for phoneme-level emotion recognition we use ASR models adapted with
MLLR(RCT). Our first results of affective-speech-recognition evaluations with
ASR models adapted on emotional speech data can be found in [Vlasenko and
Wendemuth, 2009b].

5.3 Emotion-recognition methods evaluation

This section presents the development of experiments on emotion recognition
from speech. We present experiments on all emotion-classification methods
presented earlier in Chapter 4. Speech-based emotion recognition is a com-
parably new research field. In comparison with acoustic segments (words,
phonemes) used as unit of analysis for automatic speech recognition, emo-
tional classes used for speech-based emotion classification do not have so high
discriminative characteristics. Providing "ground truth" measures for emo-
tional content annotation (especially for spontaneous emotions) is a way more
complex task in comparison to the reliable textual transcription of ASR speech
corpora. Hence, in some cases of multi-class emotion classification we obtained
results which are just slightly higher than classification by chance.

5.3.1 Phoneme-level classification

In this section we describe the evaluation results for two different meth-
ods which can be used for phoneme-level emotion classification: emotional
phoneme classes and vowel-level formants tracking.
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5.3.1.1 Emotional phoneme classes

First, we used ASR models adapted on affective speech samples with
MLLR(RCT) to recognize a unit (sentence, word). Secondly, we generated
all possible emotional or level of interest phonetic transcriptions for the rec-
ognized sentence or words by using the corresponding phoneme set (PE or
PLOI), more details can be found in section 4.4.3.3. In the case of EMO-DB
we considered 7 phoneme emotion models (PE) transcriptions, 5 phoneme
emotion models (PE) transcription for SUSAS and 3 phoneme level of inter-
est (PLOI) transcriptions for AVIC. Emotional phoneme or level of interest
models which provide the highest recognition score are chosen.

Test-runs on EMO-DB, SUSAS and AVIC for phoneme-level models are
carried out in leave-one-speaker-out (LOSO) manner to address speaker in-
dependence (SI), as required by most applications. Recognition rates of the

emotional phoneme models evaluated with the bigram language model can be
found in Table 5.7.

| classification unit | EMO-DB [ SUSAS [ AVIC |

word 51.0 49.5 45.8
sentence 66.2 49.5 54.1

Table 5.7:  Weighted average recalls (WA) [%] of emotion and level of interest
recognition on sentence-, word-level applying phoneme-level analysis, MFCC,

HMM/GMM, LOSO. Databases EMO-DB, SUSAS, AVIC

In the case of the SUSAS dataset we have just one word per sentence.
Detailed results from EMO-DB and AVIC evaluations show that some words
within a sentence are classified wrong when the whole sentence is classified
right. This means that emotional and level of interest activity is distributed
irregularly among words inside a sentence. As a result phonemes which belong
to the different words within a sentence have diverse emotions and levels of
interest activity.

In Table 5.8 results are shown for emotion recognition on a word-, and
phoneme-level in diverse constellations. Zero-gram for word-level analysis

| Language model | WA |

word-level zero-gram | 32.1
phoneme-level bigram | 38.8

Table 5.8:  Weighted average recalls (WA) [%] of emotion recognition on
word-, and phoneme-level applying phoneme emotion models, dynamic fea-
tures, HMM, LOSQO. Evaluated on the EMO-DB database
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shows many insertions, hence low accuracy. Bi-gram LM can balance the
insertions by grammar scale factor, hence higher accuracy. This is also the
reason why phoneme-level accuracy is only reported with the bi-gram language
model: zero-gram leads here to too-high insertion rates.

5.3.1.2 Vowel-level formants tracking

For affective speech we decided to use the popular studio recorded Berlin
Emotional Speech Database (EMO-DB) [Burkhardt et al., 2005] and The
Vera am Mittag (VAM) corpus [Grimm et al., 2008]. The EMO-DB contains
acted emotional speech samples. 10 professional actors (5 male and 5 female)
spoke 10 German emotionally undefined sentences. Within our evaluation we
used only 20 neutral utterances for training (2 utterances per speaker). The
EMO-DB test set included neutral (rest 58 utterances), low-arousal emotions
(boredom (79), sadness (53)) and high-arousal emotions (anger (127), fear
(55) and joy (64)). In total we used 456 utterances. Each of these utterances
has a level of naturalness not less than 60% and a level of recognizability not
less than 80%, as indicated by the raters.

The VAM database consists of 12 hours of audio-visual recordings taken
from a German TV talk show. The corpus contains 947 utterances with
spontaneous emotions from 47 guests of the talk show which were recorded
from unscripted, authentic discussions. A large number of human labelers were
used for annotation (17 labelers for one half of the data, six for the other). The
labeling is based on a discrete five-point scale for three dimensions (valence,
arousal, dominance) mapped onto the interval of [-1,1|. For our evaluations
we use only arousal measures received with an evaluator weighted estimator.
For training we selected one utterance per speaker with smallest absolute
arousal value (19 negative and 28 positive arousal emotional utterances at all).
The VAM test set included 483 negative and 417 positive arousal emotional
utterances.

In order to execute a vowel-level analysis a phoneme-level ASR transcrip-
tion is needed, which requires a corresponding lexicon containing phonetic
transcription of words presented in a corpus. Unfortunately, the VAM cor-
pus does not provide such a lexicon, so we created it by ourselves using a
combined approach. The major part of the word transcriptions (1216 items)
was taken from other German corpora, namely Verbmobil [Hess et al., 1995]
and SmartKom [Schiel et al., 2002|. For the rest (688 words) we created
transcriptions using grapheme-to-phoneme conversion with a Sequitur G2P
converter [Bisani and Ney, 2008]. The converter was trained on a joined lexi-
con based on SmartKom and Verbmobil lexicons (12460 German words at all).
Prior to applying the G2P software to the missing VAM lexicon, we tested it
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on the constructed united lexicon, where 1% of randomly selected words were
moved into the test set. The phoneme error rate was 5.33% (56 from 1050),
the word error rate was 29.13% (37 from 127). In later experiments (force
alignment for vowel boundaries extraction) the quality of the vowel bound-
aries specification cannot be expected to be absolutely reliable because of the
word error rate (WER) about 29.13% which is intrinsically due to the tran-
scription process. We decided to use this inaccurate method, because further
transcription improvement required professional phonetician expert to reliable
transcription and additional development expenses. In addition, we use the
Sequitur G2P converter only for one-third of words presented in required lex-
icon, another two-third words transcription have been adopted from available
lexicons.

As evaluation measures we employ the weighted (WA, i.e. accuracy) and
unweighted (UA) average of class-wise recall rates. For estimation of the
n values, which is only one parameter of our classifier, we applied a leave-
one-speaker-out (LOSO) strategy. We used two different optimization crite-
ria: maximum unweighted and maximum weighted average recall. For each
speaker we estimated the optimal 1 values based on utterances from other
speakers presented in the corresponding database.

In Figure 5.1 and Figure 5.2 one can see the UA and WA rates of our two
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Figure 5.1: Recognition rates of the two-class emotion classifier. Black - EMO-
DB, gray - VAM
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Figure 5.2: Receiver operating characteristics curve, for high-arousal emotion
detection task. Black - EMO-DB, gray - VAM

class emotion classifier and receiver operating characteristics (ROC) which
represent the false acceptance (FA) and false rejections (FR) rates for the
high-level arousal emotions detection task as a function of 7.

In Table 5.9 one can see performances of the two class emotion classifier for
n = 1 and 7 values estimated within LOSO (with UA and WA as optimization
criteria).

With LOSO strategy and UA optimization criteria we found the optimal n
value for each speaker; these values are in range 1.01 < n < 1.23 (EMO-DB)
and 1.37 <7 < 1.63 (VAM). In the case of WA optimization criteria optimal
n values are follows: 0.62 < 7 < 1.01 (EMO-DB) and = 1.63 (VAM).

By using gender-dependent models instead of speaker-dependent models

EMO-DB VAM
UA WA | FA FR | UA WA | FA FR

UA 81.3 80.6 | 13.1 24.2 | 60.2 61.8 | 18.7 60.8
WA 794 793 | 195 21.7 | 614 63.0 | 164 60.8
n=1 ]88 81.3 | 142 221 | 587 582 | 489 33.7

Table 5.9: Recognition rates [%] of vowel-level emotion classifier with different
optimization strategies (UA,WA, n = 1) evaluated on EMO-DB and VAM
corpora
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we can provide a statistically sufficient number of instances for the calculation
of fiig) estimations. Due to more accurate mean values estimations we im-
prove our results presented in [Vlasenko et al., 2011a), [Vlasenko et al., 2011b].
The presented results can be compared with the results presented in [Schuller
et al., 2009]. In this article, we presented benchmark evaluation results for
two-class emotion-recognition task (positive/negative arousal) with a HM-
M/GMM general model described in detail in section 4.4.3.1. We reached UA
rates of up to 91.5% for EMO-DB and 76.5% for VAM. In our current research,
instead of using 39 MFCC we used only one average F'1 value. In contrast
to HMM /GMM we used a straightforward Neyman-Pearson criterion. In the
case of a priory defined n our classifier does not require any affective speech
samples for training. Within practical application of our simple method the
1 value can be selected based on task-oriented balance between FA and FR
rates, see Figure 5.2.

These results can be also compared with the results presented earlier in our
paper [Schuller et al., 2008]. In this paper, we reached an emotion-recognition
accuracy rate on EMO-DB database with phoneme-level analysis (see section
4.4.3.3) of up to 66.2%. Instead of using 41 phonemes for emotion recognition,
we used only 7 indicative vowels. In the current approach we used only one
Gaussian for each phoneme model instead of 3 x 32 = 96 Gaussians used
in [Schuller et al., 2008]. Also our results can be improved by using more than
two neutral utterances for the estimation of the mean values. Starting from
our simple classifier, we can develop a more complex classification technique
and provide better results.

We showed that the average F1 values extracted on a vowel-level are
strongly correlated with the speaker’s level of arousal. We estimated the
optimal criteria thresholds for acted and spontaneous emotions. It has been
shown that spontaneous emotions required higher 7 values. Most of the state-
of-the-art emotion recognizers required sufficient amount of affective speech
samples within the training phase. In the case of a priory defined n (for ex-
ample 7 = 1) value within the training phase we require only one or two
neutral (or close to "neutral" for VAM dataset) speaking style samples. As a
result our method can be easily implemented for speaker-independent emotion
classification.

5.3.2 Utterance-level emotion classification with
dynamic and static analysis
In this section we provide results of the benchmark comparison [Schuller et al.,

2009] under equal conditions on nine standard emotional speech corpora in
the field using the two pre-dominant paradigms: dynamic analysis on a frame-
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Corpus All Arousal Valence
UA WA | UA WA | TA WA
ABC 488 57.7 | 71.5 74.7 | 81.1 81.2
AVIC 65.5 66.0 | 74.5 775 | 745 775
DES 453 453 | 82.0 84.2 | 55.6 58.0
EMO-DB 73.2 77.1 915 915 | 78.0 804
eNTERFACE | 67.1 67.0 | 749 76.8 | 78.7 80.5
SAL 340 327|612 61.6 | 57.2 57.0
SmartKom 28.6 479 | 58.2 64.6 | 57.1 68.4
SUSAS 55.0 479 | 56.0 68.0 | 67.3 67.8
VAM 384 70.2 | 76.5 76.5 | 49.2 89.9
Mean 50.7 56.9 | 71.8 75.0 | 66.5 734

Table 5.10:  Recognition rates [%] for benchmark evaluation of the dynamic-
analysis-based emotion-recognition engine

level by means of hidden Markov models and static analysis (supra-segmental)
by systematic feature brute-forcing. The corpora investigated were the ABC,
AVIC, DES, EMO-DB, eNTERFACE, SAL, SmartKom, SUSAS, and VAM
databases. To provide better comparability among sets, we additionally clus-
ter each of the database’s emotions into binary valence and arousal discrimi-
nation tasks, see section 2.7.

For all databases, test-runs are carried out in the leave-one-speaker-out
(LOSO) or leave-one-speakers-group-out (LOSGO) manner to face speaker
independence, as required by most applications. In the case of 10 or fewer
speakers in one dataset we applied the LOSO strategy; otherwise, namely
for the AVIC, eNTERFACE, SmartKom, and VAM databases, we selected 5
speaker groups with almost equal amount of male and female speakers and
samples per group for LOSGO evaluation. For evaluation measures we em-
ployed weighted (WA, i.e. accuracy) and unweighted (UA, thus better reflect-
ing unbalance among classes) average recall.

The results for frame-level (Table 5.10) and supra-segmental modeling (Ta-
ble 5.11) with openEAR toolkit described in section 4.4.2.1 are found for all
emotion classes contained per database and for the clustered two-class tasks
of binary arousal and valence discrimination as described in section 2.7.

Note that for supra-segmental modeling SVM with speaker standardiza-
tion in constant parameterization are used for the given results. The delta of
the mean in Table 5.11 to the mean of the best-performing individual config-
urations is 1.7% (UA) and 0.7 % (WA) for class-wise results, 0.2% (UA) and
1.8% (WA) for arousal and 9.4 % (UA) and 9.5% (WA) for valence (mostly
due to variations on SAL).

Among the two result tables, very similar trends can be observed: the
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Corpus All Arousal Valence
UA WA | UA WA | UA WA
ABC 55.5 614 | 61.1 70.2 | 70.0 70.0
AVIC 56.5 68.6 | 66.4 76.2 | 66.4 76.2
DES 59.9 60.1 | 87.0 874 | 70.6 72.6
EMO-DB 84.6 85.6 | 96.8 96.8 | 87.0 88.1
eNTERFACE | 725 724 | 78.1 793 | 78.6 80.2
SAL 29.9 30.6 | 55.0 55.0 | 50.0 49.9
SmartKom 23.5 39.0 | 59.1 64.1 | 53.1 75.6
SUSAS 614 56.5|63.7 773|677 68.3
VAM 376 65.0 | 724 724|481 854
Mean 53.5 59.9 | 71.1 754 | 64.5 68.3

Table 5.11:  Recognition rates [%] for benchmark evaluation of the static-
analysis-based emotion-recognition engine

best performance is achieved on the datasets containing acted, prototypical
emotions, where only emotions with high inter-labeler agreement were se-
lected (EMO-DB, eNTERFACE datasets). A little exception here is the DES
database, where performance is well behind EMO-DB database, even though
the DES dataset also contains acted, prototypical emotions. This difference is
not so obvious for the arousal task as it is for the full classification task. One
reason for this might be that no selection of high inter-labeler agreements were
done on the DES dataset and labelers may agree more upon arousal than on
the emotion categories. The remaining six corpora are more challenging since
they contain non-acted or induced emotions. On the lower end of recognition
performance the SAL, SmartKom, and VAM corpora can be found, which con-
tain the most spontaneous and naturalistic emotions, which in turn are also
the most challenging to label. However, the SmartKom database contains
long pauses with a high noise level, and it includes system output cross-talk
segments and annotations that are multi-modal, i.e. mimic and audio based,
thus the target emotion might not always be detectable from speech. The
results for the SAL corpus are only marginally above chance level, which is
due to speaker-independent evaluation on highly naturalistic data with only
four speakers in total.

When comparing the dynamic analysis with static analysis an interest-
ing conclusion can be drawn: dynamic analysis seems to be slightly superior
for corpora containing variable content (AVIC, SAL, SmartKom, VAM), i.e.
the subjects were not restricted to a predefined script, while static analysis
outperforms frame-level modeling on corpora where the topic/script is fixed
(ABC, DES, EMO-DB, eNTERFACE, SUSAS), i.e. where there is an overlap
in verbal content between test and training set. This can be explained by the
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nature of supra-segmental modeling: in corpora with non-scripted content,
turn lengths may strongly vary. While frame-level modeling is mostly inde-
pendent of highly varying turn length, in supra-segmental modeling each turn
gets mapped onto one feature vector, which might not always be appropriate.

5.3.3 Combined analysis

In this section we describe evaluation results for two possible combined speech-
based emotion-classification techniques: two-stage processing and middle-level
fusion.

5.3.3.1 Two-stage processing

Within this section we present a number of results for the two-stage pro-
cessing method presented in section 4.4.4. FEvaluation test-runs are realized
in leave-one-speaker-out (LOSO) manner for speaker-independent tests. For
evaluation we used the EMO-DB database.

| WA [%] [ SN FS | EMO-DB |

Turn - - 74.9
Turn O - 79.6
Turn O O 83.2

Table 5.12:  Baseline results by turn-level analysis. Weighted average re-
calls [%] for EMO-DB, turn-wise feature extraction, considering speaker-
normalization (SN), and feature selection (FS) for optimization, speaker-

independent (ST) LOSO evaluation with SVM

In Table 5.12 we present the baseline results for speaker-independent clas-
sification on the turn-level described in section 4.4.2 employing standard turn-
wise derived acoustic features presented in Table 4.2 on page 83.

| [#] | Turns | Chunks | Syllables |
anger 127 269 1,843
boredom 79 225 1,151
disgust 38 173 516
fear 55 160 794
joy 64 179 927
neutral 78 213 1,093
sadness 53 143 823
sum 494 1,362 7,147

Table 5.13:  Distribution among emotions, database EMO-DB. Considered are
turns, automatically extracted chunks and syllables
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[ [#] | Chunks Syllables |

1 167 -
2 86 -
3 95 -
4 65 -
9-9 78 94
10-14 3 135
15-19 - 156
20-29 - 109

Table 5.14:  Number of automatically extracted chunks and syllables per ut-
terance. Database EMO-DB

Table 5.13 presents a detailed number of automatically extracted chunks
and syllables per emotion obtained by HMMs-/GMM-based one-pass Viterbi
beam search with token passing within the first stage of processing. As one
can see, automatically extracted chunks comparably longer than syllables.
Note that an almost constant factor of chunks per emotion resembling 3 is
obtained [Schuller et al., 2007|. Disgust, however, shows a slightly different
behavior. Apart from the mean number of chunks and syllables per emotion,
Table 5.14 depicts their frequencies of appearance in more detail.

Table 5.15 below presents the emotion-recognition results for chunks and
syllables, aimed at sub-turn entities. As for the base-line turn-level features,
speaker normalization and feature space optimization are applied for optimiza-
tion. Finally, we present results for the mapping of chunks or syllables onto
turns by the diverse strategies: an un-weighted majority vote (MV), a max-
imum length vote (MLV), a maximum classifier prediction score multiplied
with the length vote (MSL) introduced in section 4.4.4. The second stage
of processing, based on the chunk analysis, is realized by brute-force large
feature space construction with subsequent subset selection, support vector

| WA [%] | SN FS | EMO-DB |

Chunk - - 42.6
Chunk 0 - 46.7
Chunk 0 0 51.4
Syllable | - - 42.1
Syllable | O - 44.6
Syllable | O O 47.6

Table 5.15:  Results by chunk-level analysis. Weighted average recalls [%] for
EMO-DB, chunk-wise feature extraction, considering speaker-normalization
(SN), and feature selection (FS) for optimization, speaker-independent LOSO
evaluation with second-stage static analysis
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| | Strategy | Correct  Correct™® |

Chunk MV 45.3 64.2
Chunk MLV 60.1 64.2
Chunk MLS 70.6 70.6
Syllable MV 42.8 60.1
Syllable MLV 56.9 60.1
Syllable MLS 67.8 67.8

Table 5.16: Results by turn-level mapping.  Weighted average recalls
[%] for EMO-DB, chunk-wise features with speaker-normalization and fea-
ture selection, considering Correct and Correct® cases, by addition of non-
unique winning-classes, speaker-independent LOSO evaluation with second-
stage static analysis

machines (SVM) classification, and speaker normalization.

Thereby only the optimal cases with speaker normalization and feature
space optimization are considered, as chunk-level accuracy is crucial for the
overall success. First, we describe the speaker-independent evaluation results
presented in Table 5.16. Thereby the three strategies: majority vote (MV),
maximum length (MLV) and maximum length times prediction score (MLS)
are considered.

As can be seen form Table 5.16, we discriminate between correct assign-
ment (column Correct) and cases, where the correct class has been the winning
class among one or more other emotional classes (column Correct). The main
outcomes of these results are that the proposed chunking seems superior to
annotation-based syllable chunking. However, recognition results with turn-
level acoustic features cannot be reached. This holds even after mapping on
the turn-level by the investigated three different strategies.

The introduced two-stage processing approach was superior to syllables
speaker-independent analysis. This may be due to the fact that it produces
roughly 5 times longer segments, though at the same time 5 times fewer in-
stances are obtained for robust training. Still, results for both of these sub-
turn entities clearly fall behind those for turn-level analysis. We secondly
investigated mapping of these context-independent chunks on the turn level
by multi-instance learning. Yet, as a result for the evaluated database no
advantage over direct turn-level acoustic feature extraction can be reported.
However, no turn-level feature information was integrated, which may lead
to an advantage as reported in [Schuller and Rigoll, 2006|, where chunk- and
turn-level features were integrated in one super-vector.
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5.3.3.2 Middle-level fusion

With this combined method we integrated frame-level information within
a state-of-the-art large feature space static analysis for speaker’s emotion
recognition [Vlasenko et al., 2007a]. In order to fuse this information with
turn-based modeling, output scores are added to a super-vector combined
with static acoustic features. Thereby a variety of low-level descriptors and
functionals to cover prosodic, speech quality, and articulatory aspects are
considered. Starting from 1,406 acoustic features presented in Table 4.2 we
selected optimal configurations including and excluding emotion-recognition
scores from HMM-/GMM-based classifier. The final decision task is realized
by use of SVM. Extensive test-runs are carried out on two popular public
databases, namely EMO-DB and SUSAS, to investigate acted and sponta-
neous data.

Emotion-recognition results are presented for each modeling technique in-
dividually (turn-level (TL) and frame-level (FL)), and for the combination
of these two. Thereby the effects of speaker normalization (SN) and feature
space optimization (FS) as described in section 4.4.1 are shown, too. For
the EMODB database, we provide results of a leave-one-speaker-out (LOSO)
evaluation to face the challenge of speaker independence. For the SUSAS
database we used 10-fold stratified cross-validation (SCV), as only 7 speakers
are contained in the chosen spontaneous emotional speech subset. On the
other hand, this is possible, as roughly 500 phrases are available per speaker.

During feature selection the original 1,406 features have been reduced to
76 for the EMODB dataset. For the SUSAS 71 features have been selected
on the whole dataset, and 33-107 features were observed as optimum for the
individual speakers. This underlines the brute-force nature of the creation of
feature space with more than 1,000 acoustic features in order to find a very

| WA [%] | SN FS [ EMO-DB | SUSAS |

TL - - 74.9 80.8
TL u - 79.6 80.8
TL u u 83.2 80.8
FL - - 771 67.1
TL+FL | O - 81.6 81.3
TL+FL | O d 89.9 83.8

Table 5.17:  Combination of turn-level and frame-level analysis, databases
EMODB with LOSO evaluation and speaker-dependent 10-fold SCV for
SUSAS. TL and FL abbreviate turn and frame levels. SN and FS represent
speaker normalization and feature space optimization. (0) indicates that the
technique has been applied
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compact robust final set. Table 5.17 shows the summarized results.

As one can see from Table 5.17, speaker normalization and feature space
optimization both clearly help to improve overall results. Thereby it has
to be noted that less than 10 % of the original feature space suffices to get
an optimum performance. The highest accuracy is however obtained by the
suggested fusion of both approaches. This is particularly true for the EMODB
dataset. For the SUSAS dataset it is not too clear whether the extra effort is
justified or not.

5.3.4 Interspeech 2009 Emotion Challenge

A CEICES initiative [Batliner et al., 2006] was the first cooperative emotion-
recognition experiment, where seven sites compared their classification results
under exactly the same conditions and fused their acoustic features together
for a combined emotion indicative acoustic features selection process. This
challenge was not public, which motivates the INTERSPEECH 2009 Emotion
Challenge [Schuller et al., 2009¢]| to be organized with strict comparability, us-
ing the same emotional speech database. Three sub-challenges are addressed
using non-prototypical five or two emotion classes (including a garbage model):
Open Performance Sub-Challenge, Classifier Sub-Challenge, and the Feature
Sub-Challenge. We participated in the Open Performance Sub-Challenge,
where we evaluated our developed acoustic features and classification algo-
rithm.

Due to the unbalanced number of the emotional class instances included in
training and test sets, the primary emotion-recognition measure to optimize
is unweighted average (UA) recall, and secondly the weighted average (WA)
recall (i.e. accuracy). For tuning our classifier we used affective speech samples
from the training set and the LOSO strategy. Afterwards we used an optimal

Level of analysis | Classes [#] | UA WA |

Utterance 2 69.21 70.36
Phonemes 2 68.09 73.26
Combined 2 68.45 70.35
Baseline 2 67.7 65.5

Utterance 5 41.40 47.44
Phonemes 5 35.21 52.78
Combined 5 40.62 49.38
Baseline 5 38.2 39.2

Table 5.18: Recognition rates [%] on test set of FAU AIBO database within
INTERSPEECH 2009 Emotion Challenge. Baseline results are taken from
[Schuller et al., 2009¢c]
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| [#/%] | NEG IDL |
NEGative | 1,635 830
IDLe 1,617 4,175
NEGative | 66.3% 33.7%
IDLe 27.9% 72.1%
All [#] 2,465 5,792

Table 5.19: Confusion matriz for the two-classes emotion-recognition task and
accuracies for each class individually and complete test set

emotion classifier configuration with corresponding acoustic features set for
challenge trials on test set material. The best results obtained on the challenge
test set and baseline results provided by organizers are presented in Table 5.18.
Baseline results were adopted from [Schuller et al., 2009¢|, they represent the
baseline of emotion-recognition performance for static modeling. Baseline
results for dynamic modeling presented by organizers were comparably lower.

The best results for two classes (NEG ative and IDLe) were achieved with
utterance-level analysis with the feature set which included 12 MFCC coeffi-
cients normalized with gender-dependent vocal tract length normalization, en-
ergy and their deltas and acceleration. For the five classes (Anger, Emphatic,
Neutral, Positive and Rest) emotion-recognition task the best results were
received with 13 MFCC coefficients normalized by gender-dependent vocal
tract length normalization after CMS included zero coefficient instead of en-
ergy and their delta and acceleration. Confusion matrices for the best results
for two-class and five-class task are presented in Tables 5.19 and 5.20.

As one can see from Table 5.19 for NEG class false acceptance error is
quite high. This confusion can be explained by low discriminative acoustic
diversity of some NEG and IDL subclasses (i.e. emphatic vs. motherese). List
of all subclasses covered by emotional categories (NEGative and IDLe) can
be found in section 2.6.2.1.

In the case of the five emotion classes evaluation, classes are unbalanced
in the training set, see Table 2.4 on page 26. As a result, we have to be very
careful with over tuning of sparse emotional classes like Positive, Rest. As
one can see from Table 5.20, there is quite high confusion among the leaders
of the emotion classification: Anger, Emphatic and Neutral. At the same
time Positive and Rest have a high level of confusion with all other emotional
classes. We suppose that the main reason of so a high level of confusion
among all five emotional classes lies in unreliable emotional annotation. We
think that students, like any other adult who is not a natural relative to the
child, could not provide reliable emotional annotation of the child’s emotional
speech even thought they are advanced students of linguistics.



126 Chapter 5. Recognition experiments

[#/% | A E N P R |
Anger 315 189 o7 9 31
Emphatic | 202 944 276 10 76
Neutral | 592 1551 2,485 217 532
Positive | 17 17 90 53 38
Rest 95 108 176 47 120
Anger | 51.6% 309% 11.0% 15%  5.0%

Emphatic | 13.4% 62.6% 18.3%  0.7% 5.0%
Neutral 11.0%  28.8% 46.3%  4.0% 9.9%
Positive 8.0% 8.0% 41.8% 24.6% 17.6%
Rest 17.4%  198%  322%  86%  22.0%
Al 7] 611 1,508 5,377 215 546

Table 5.20: Confusion matriz for the five-classes emotion-recognition task and
accuracies for each class individually and complete test set

The results of the challenge were presented at a special session of the
conference Interspeech 2009. A ranking list of the best results can be found
in Table 5.21.

As one can see from Table 5.21, we got second place for the two emotion
classes task and forth place for the five emotion classes task over 33 research

| Rank | UA[%] WA[%] | Authors |

two emotion classes task

1 70.29 68.68 [Dumouchel et al., 2009]

2 69.21 70.36 [Vlasenko and Wendemuth, 2009b]

3 68.33 65.84 [Kockmann et al., 2009]

4 67.90 63.03 [Bozkurt et al., 2009]

5 67.19 63.26 [Luengo et al., 2009]

6 67.55 72.67 [Polzehl et al., 2009]

7 67.06 62.29 [Barra-Chicote et al., 2009]

8 66.40 66.56 [Vogt and André, 2009]
five emotion classes task

1 41.65 44.17 [Kockmann et al., 2009]

2 41.59 44.17 [Bozkurt et al., 2009]

3 41.57 39.87 [Lee et al., 2009b]

4 41.40 47.44 [Vlasenko and Wendemuth, 2009b]

5 41.38 43.35 [Luengo et al., 2009]

6 39.40 52.08 [Dumouchel et al., 2009]

7 39.40 41.12 [Vogt and André, 2009]

8 38.24 36.68 [Barra-Chicote et al., 2009]

Table 5.21: Results and ranking list for two emotion classes and five emotion
classes INTERSPEECH 2009 Emotion Challenge. Data for ranking list are
taken from [Schuller et al., 2011]
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groups registered to get access to the data [Schuller et al., 2011]. In total our
classification results (sum of unweighted average recalls for two tasks) are the
best. With our emotion-classification technique we prove that only by using
spectral features (Mel-frequency Cepstral coefficients (MFCC)) with dynamic
analysis we can reach one of the best emotion-recognition performances for
spontaneous emotional speech samples [Vlasenko and Wendemuth, 2009b].

5.3.5 Cross-corpus acoustic emotion recognition

A great advantage of cross-corpora evaluations is the well definedness of test
and training datasets and thus the easy reproducibility of the results. Since
most emotion corpora, in contrast to speech corpora for automatic speech
recognition or speaker identification, do not provide fixed training, devel-
opment, and test sets, individual splitting and cross-validation are mostly
found, which makes it hard to reproduce the results under equal conditions.
In contrast to this, cross-corpus experiments are well defined and thus easy
to reproduce and compare.

In Table 5.22 one can find a list of all 23 different training and test set
combinations which have been used for evaluation in our cross-corpus ex-
periments. Affective speech samples from the SUSAS and AVIC databases
are only used for training, since they do not cover the sufficient overlapping
"basic" emotions for the testing. Furthermore, we omitted combinations for
which the number of emotion classes occurring were lower than tree in both
the training and the test dataset (e.g. we did not evaluate training on AVIC
database material and testing on DES database affective speech samples, since
only neutral and joyful occur in both corpora — see also Table 2.3 on page
24). In order to obtain combinations for which up to six emotion classes occur
in the training and test set, we included evaluations in which more than one
dataset was used for training (e.g. we combined eNTERFACE and SUSAS
databases for training in order to be able to model six classes when testing
on the EMO-DB database). Depending on the maximum number of different
emotion classes that can be modeled in a certain experiment, and depending
on the number of classes we actually use (two to six) for evaluation, we got
a certain number of possible emotion class permutations according to Table
5.22. For example, if we aimed to model two emotion classes when testing
on the EMO-DB database and training on the DES dataset, we obtained six
possible permutations. Evaluating all permutations for all of the 23 different
training-test combinations leads to 409 different evaluations (sum of the last
line in Table 5.22). Additionally, we evaluated the discrimination between
positive and negative arousal as well as the discrimination between high and
low valence for all 23 combinations, leading to 46 additional evaluations.
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Test set Training set number of classes
2 3 4 5 6
EMO-DB AVIC 3 1 0 0 0
DES 6 4 1 0 0
eNTERFACE 10 10 5 1 0
SmartKom 3 1 0 0 0
eNTERF.4+-SUSAS 15 20 15 6 1
eNTERF.+-SUSAS+DES | 15 20 15 6 1
DES EMO-DB 6 4 1 0 0
eNTERFACE 6 4 1 0 0
SmartKom 6 4 1 0 0
EMO-DB+SUSAS 6 4 1 0 0
EMO-DB+eNTERFACE | 10 10 5 1 0
eNTERFACE DES 6 4 1 0 0
EMO-DB 10 10 5 1 0
SmartKom 3 1 0 0 0
EMO-DB+SUSAS 10 10 5 1 0
EMO-DB+SUSAS+DES | 15 20 15 6 1
SmartKom DES 6 4 1 0 0
EMO-DB 3 1 0 0 0
eNTERF. 3 1 0 0 0
EMO-DB+SUSAS 3 1 0 0 0
EMO-DB+SUSAS+DES 6 4 1 0 0
eNTERF.4+-SUSAS 6 4 1 0 0
eNTERF.4+SUSAS+DES 6 4 1 0 0
Total 163 146 75 22 3

Table 5.22: Number of emotion class permutations dependent on the used
training and test set combination and the total number of classes used in the
respective erperiment

To summarize the results of permutations over cross-training datasets and
emotion classes groupings, box-plots indicating the unweighted average recall
(UA) are shown (see Figures 5.3(a) to 5.3(d)). All recognition rates are aver-
aged over all constellations of cross-corpus training to provide a raw general
impression of performances to be expected. The plots show the median, the
lower and upper quartile, and the extremes for a varying number (from two
to six) of emotion classes and the binary valence and arousal tasks. In a case
of DES dataset (5 classes evaluation) and eNTERFACE dataset (6 classes
evaluation) we have only one permutation, as a result in the corresponding
box plot’s columns one can see only medians.

First, the DES dataset is chosen for testing, as depicted in Figure 5.3(a).
For training, five different combinations of the remaining datasets are used
(see Table 5.22). As expected the weighted (i.e., accuracy — not shown) and
unweighted recall monotonously drop on average with an increased number of
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Figure 5.3: Boz-plots for unweighted average recall (UA) in % for cross-
corpora testing on four test corpora. Results obtained for varying number
of classes (2-6) and for classes mapped to high/low arousal (A) and posi-
tive/negative valence (V)

classes. For the DES experience holds: arousal discrimination tasks are 'easier’
on average. While the average results are constantly found considerably above
chance level, it also becomes clear that only selected groups are ready for
real-life application — of course allowing for some error tolerance. These are
two-class tasks with an approximate error of 20%. An interpretation of the
results in multi-class recognition is given below.

A very similar overall behavior is observed for the EMO-DB dataset in
Figure 5.3(b). This seems no surprise, as the two databases have very similar
characteristics. For the EMO-DB a more or less additive offset in terms of
recall is obtained, which is owed to the known lower 'difficulty' of this dataset.
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Switching from acted to mood-induced, we provide results on the eNTER-
FACE dataset in Figure 5.3(c). However, the picture remains the same, apart
from lower overall results: again a known fact from experience, as eNTER-
FACE database is not a 'gentle' dataset, partially for being more natural than
the DES corpus or the EMO-DB database.

Finally, considering testing on spontaneous affective speech with non-
restricted varying spoken content and natural emotion, we note the challenge
arising from the SmartKom dataset in Figure 5.3(d): as this set is — due to its
nature of being recorded in a user-study — highly unbalanced, the mean un-
weighted recall is again mostly of interest. Here, rates are found only slightly
above chance level. Even the optimal groups of emotions are not recognized in
a sufficiently satisfying manner for a real-life usage. Though one has to bear
in mind that SmartKom was annotated multimodally, i.e., the emotion is not
necessarily reflected in the speech signal, and overlaid environment noise is
often present due to the setting of the recording, this shows in general that
the reach of our results is so far restricted to acted data or data in well-defined
scenarios: the SmartKom results clearly demonstrate that there is a long way
ahead for emotion recognition in user studies (cf. also [Schuller et al., 2009¢|)
and real-life scenarios. At the same time, this raises the ever-present and in
comparison to other speech analysis tasks unique question on ground truth
reliability: while the labels provided for acted data can be assumed to be
double-verified, as the actors usually wanted to portray the target emotion
which is often additionally verified in perception studies, the level of emotion-
ally valid material found in real-life data is mostly unclear due to the reliance

on few labelers with often high disagreement among them [Schuller et al.,
2010).

5.4 Summary

This chapter reviews results of experiments concerning our developed emotion-
recognition and automatic speech-recognition methods. Afterwards, we
present results of evaluations on non-adapted and adapted ASR models. In
section 5.2, we showed that the combined MLLR(RCT)+MAP adapted HM-
M/GMM models was about 8.9% absolute better than that of the basic ASR
models (accuracy 87.37%) trained on emotionally neutral speech samples.

In section 5.3 we present evaluation results for various speech emotion-
classification techniques. As a starting point for our experiments we chose
phonemes, as these should provide the most flexible basis for unit-specific
models: if emotion recognition is feasible on phoneme basis, these units could
most easily be integrated into a user-behavior-adaptive spoken dialog sys-
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tem [Vlasenko et al., 2008a|. However, the introduced unit-specific (phoneme-,
word-level) emotion models clearly outperformed context-independent gen-
eral models provided enough training material per unit. Appearance of high-
standard word-level-labeled emotional speech corpora can improve the current
performance of phoneme and word-level emotion models. A prototypical spo-
ken dialog system with a user-behavior-adaptive spoken dialog system created
within NIMITEK collaboration, which includes phoneme-level emotion recog-
nition, will be discussed in Chapter 6. With a vowel-level formants tracing
technique we showed that the average F'1 values extracted on a vowel-level are
strongly correlated with the level of arousal of the speaker’s emotional state.
We estimated the optimal criteria thresholds for acted and spontaneous emo-
tions. It was shown that spontaneous emotions required higher n values in
comparison with optimal 7 values for acted emotions. We showed that the
list of the most indicative German vowels [Vlasenko et al., 2011a], [Vlasenko
et al., 2011b] within the task of measuring the level of arousal of the speaker’s
emotional state can be used for spontaneous emotion classification.

When comparing the dynamic analysis with the static analysis an inter-
esting conclusion can be drawn: frame-level modeling seems to be slightly
superior for corpora containing variable content (AVIC, SAL, SmartKom,
VAM), i.e. the subjects were not restricted to a predefined script, while
supra-segmental modeling (turn-level analysis) slightly outperforms frame-
level modeling on corpora where the topic is fixed (ABC, DES, EMO-DB,
eNTERFACE, SUSAS), i.e. where there is an overlap in textual content be-
tween training and test dataset [Schuller et al., 2009]. This can be explained
by the nature of static analysis: in corpora with non-fixed content, turn
lengths may strongly vary. While dynamic analysis is mostly independent
of highly varying turn length, in supra-segmental modeling each turn gets
mapped onto one feature vector, which might not always be appropriate. In
section 5.3.4, we present our results within the INTERSPEECH 2009 Emotion
Challenge [Schuller et al., 2009¢c]. With our emotion-classification technique
based on dynamic analysis we prove that only by using spectral features (Mel-
frequency Cepstral coefficients (MFCC)) we can reach one of the best emotion-
recognition performances for spontaneous emotional speech samples [Vlasenko
and Wendemuth, 2009b].

Finally, in section 5.3.5 we present evaluation results for cross-corpus
acoustic emotion recognition. To sum up, we have shown results for intra-
and inter-corpus speech-based emotion recognition. By that we have learnt
that the recognition rates highly depend on the specific sub-group of emotions
considered. In any case, emotion-recognition performance decreases dramati-
cally when operating cross-corpora-wise. As long as conditions remain similar,
cross-corpus training and testing seems to work to a certain degree: the DES,
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EMO-DB, and eNTERFACE datasets led to partly useful results [Schuller
et al., 2010]. These are all rather prototypical, mood-induced or acted with
pre-defined spoken content. The fact that three different languages — Danish,
English, and German — are contained, seems not to generally disallow inter-
corpus testing: these are all Germanic languages, and a highly similar cultural
background may be assumed. However, the cross-corpus testing on a sponta-
neous dataset (SmartKom) clearly showed limitations of the current systems.
Here only a few groups of emotions stood out in comparison to chance level.
To better cope with the emotional corpora’s differences, we evaluated differ-
ent normalization approaches, whereas speaker normalization led to the best
results. For all experiments we had used static analysis based on a broad
variety of prosodic, voice quality, and articulatory features (see Table 4.3 on
page 85) and SVM classification.
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6.1 Introduction

his chapter is not dealing with the full specification of techniques for

developing a spoken dialog system (SDS). For this topic, the reader is
referred to the excellent survey material [Gnjatovié, 2009, Gnjatovié and Ros-
ner, 2008a, Gnjatovi¢ and Rosner, 2008¢c|. The focus is on the incorporation of
the findings described earlier in this thesis into a prototype dialog system espe-
cially developed by the author and colleagues to demonstrate the adaptation
of the system to the user’s emotional state. In this chapter we present a proto-
type of the user-friendly spoken dialog system integrated into the NIMITEK
demonstrator. The NIMITEK (Neurobiologically inspired, multimodal inten-
tion recognition for technical communication systems) demonstrator is a spo-
ken dialog system prototype which provides an "intelligent" support for users
while they solve tasks in a graphics system interface (e.g., Towers-of-Hanoi
puzzle). The "intelligent" feature of the system is a user-behavior-adaptive
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dialog management. The system dynamically selects a dialog strategy ac-
cording to the current user’s emotional state. In this chapter we describe the
data collection strategy within the NIMITEK Wizard of Oz experiment, and
the structure of the conventional and user’s behavior adaptive dialog systems.
Finally we discuss the results of an interactive usability test.

6.2 Framework: NIMITEK demonstrator

This chapter presents a part of the work in the framework of the NIMITEK
project [Wendemuth et al., 2008| in the period from 2005 to 2010 that includes
an interdisciplinary research on human-machine interaction. Various cogni-
tive aspects of user-friendly interfaces were investigated within the current
project. Also, this interdisciplinary research combines the fields of electrical
engineering, computer science and neuro-biology to carry out the study into
processing of an audio-visual user’s interaction interfaces, the development of
a task-oriented knowledge representation and modeling different dialog situa-
tions.

The NIMITEK project has various research goals: multimodal emotion
recognition from the user’s speech (i.e., prosodic cues and spectral features
analysis), mimic and text-based analysis; developing robust affective-speech-

Figure 6.1: Prototype of a multimodal spoken dialog system, NIMITEK
Demonstrator
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recognition models; analysis of the task-oriented interaction experiments;
modeling of the adaptive dialog management; developing neuro-biological per-
ception, cognitive and behavior models. The NIMITEK spoken dialog sys-
tem prototype presented in Figure 6.1 was developed to demonstrate research
achievements in emotion recognition and user’s emotion adaptive dialog man-
agement.

6.3 Interface, chosen tasks and WOZ experi-
ments

In this section we specify the main issues in developing the NIMITEK spoken
dialog system prototype: flexibility and adaptivity, interface design and task
selection for evoking user’s emotions.

6.3.1 Flexibility and adaptivity

The importance of the user-behavior-driven dialog strategies in human-
machine interaction (HMI) lies in the existing limitations of automatic
speech-recognition technologies. Current state-of-the-art automatic speech-
recognition (ASR) methods still cannot deal with flexible, unrestricted user’s
language and emotionally colored speech [Lee, 2007|. Therefore, problems
caused by misunderstandings of a user during interaction with SDS with a pre-
defined, and usually restricted set of interaction rules seems to be inevitable.
In our spoken dialog system we want to provide a flexible interaction speech-
based interface. In such a way the user will be able to find out suitable
commands by himself.

In the domain of human-machine interaction [Gnjatovi¢ and Rosner,
2008a], we witness the rapid increase of research interest in affective user
behavior. However, some aspects of the affective user behavior during HMI
still turns out to be a challenge for SDS developers. Detecting and utilizing
non-lexical or paralinguistic cues as part of the user-behavior state descriptors
is one of the major challenges in the development of reliable human-machine
interfaces. Knowing the current user’s emotional state can help to adjust sys-
tem responses so that the user of such a system can be more engaged and have
a more effective interaction with the system [Schuller et al., 2007b]|, [Busso
et al., 2007]. To make our system user-centered we implemented an intention
recognition module, which is dealing with motivational intention. Psychol-
ogist also distinguish a functional intention [Anscombe, 2000]. But for our
practical implementation we decided to concentrate on motivational aspects
of intention. Examples will be given in section 6.5 below.
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In this section we present the implementation of adaptive dialog manage-
ment in the NIMITEK prototype spoken dialog system for supporting users
while they solve the Towers-of-Hanoi puzzle which is displayed in Figure 6.1.

Within the human-machine interaction users are able to follow the ASR
recognition results. When the garbage model was not able to encapsulate
out-of-vocabulary words, the users were able to see misrecognized system per-
ceptible commands. We expect that users will try to adapt their commands
vocabulary to contribute to the right system reaction.

6.3.2 Interface design and task selection for evoking
user’s emotions

It is quite difficult to motivate naive users to experience, express and utilize
emotions while using any graphical application. We decided to use a graphical
system with a verbal interaction interface to simulate an intelligence test. In
such a way, we expected to achieve a strong user’s motivation and emotional
involvement. For modeling user behavior during human-machine interaction
we decided to develop a spoken dialog system for simple logical games (i.e.
Towers-of-Hanoi, Tangram) with system users support while they use a graph-
ical tool. This graphical tool has been developed using an existing software
package' that implements visual reflection, alteration and movement of dif-
ferent graphical objects.

In the NIMITEK demonstration system, users are allowed only to use a
verbal interaction interface (i.e., mouse or keyboard interaction interfaces are
not supported by system).

Two different prototypical graphical tasks were implemented in the
NIMITEK demonstrator prototype: Towers-of-Hanoi and Tangram. The
Towers-of-Hanoi puzzle (3-disks version) was introduced by Edouard Lucas
in 1883. The puzzle consists of three pegs and three disks (small, middle and
large). At the beginning of the game, the disks are stacked in order of size
on the left peg, as one can see in Figure 6.2 [Gnjatovi¢ and Rosner, 2008c].
The aim of the game is to move the complete stack to the right peg shifting
disks according to the following rules: only one disk can be shifted at a time,
all three pegs can be used, and no disk can be located on the top of a smaller
disk.

Another prototypical graphical task is the Tangram puzzle. It is a famous
Chinese puzzle. Its origins are lost in time. It was introduced to the western
world by a Captain M. Donaldson in 1815. The goal of this graphical task is

!This graphical engine was developed at the Fraunhofer Institute for Factory Operation
and Automation IFF, Magdeburg, Germany.
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Figure 6.2: Towers-of-Hanoi Puzzle: Screen shot of the NIMITEK demon-
strator
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Figure 6.3: Tangram: Screen shot of the NIMITEK demonstrator

to seamlessly form a specific construction by using seven Tangram two dimen-
sional objects (e.g., triangles, quadrant, rhombus). Two kinds of action over
corresponding objects were possible: relocation and rotation. In Figure 6.3
one can see a screen shot of the desktop representing the NIMITEK demon-
strator with an active Tangram puzzle. These two game applications were
used for the experiments described below.
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6.3.3 NIMITEK Wizard of Oz experiments

Affective speech corpora provide an important empirical foundation for inves-
tigation when researchers aim at implementing emotion-aware spoken dialog
systems [Gnjatovié¢ and Rosner, 2010]. In this section we describe the applied
Wizard of Oz (WOZ) technique in order that a scenario designed to extract
emotional speech within human-machine interaction could result in useful and
natural data. This data can be used for the development of a user-friendly
dialog strategy. Corresponding Wizard of Oz experiments were conducted
in the framework of the NIMITEK project. The schema of the laboratory
settings used for the NIMITEK dataset collection is presented in Figure 6.4.

Subject's Room Wizard's Room
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— wizard's spoken output | Recording
PG [ 5
| e 4 |)
Y | || —
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NP monitor monitor ‘mon itor image video
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Figure 6.4: Schema of the NIMITEK WOZ laboratory settings

As usual for WOZ studies [Fraser and Gilbert, 1991], subjects believe they
are interacting with a real spoken dialog system driven by the computer, while
the assumed instructions and system’s support is actually provided by a hu-
man "wizard". We used two different rooms for our experiment to hide the
"wizard". A simulated spoken dialog system was installed on the subject’s
computer. The "wizard" pretends to have automatic speech recognition, re-
motely controls the interaction interface of the system, and declaims speech
output of the dialog system. The video screen shots from the subject’s com-
puter desktop and the video recordings of subject (facial expressions, gestures
and body movements) are displayed on two different monitors in the wizard’s
room.

Ten native German subjects (7 female, 3 male) aged 18 to 27 (mean 21.7)
participated in the WOZ experiments. None of them had user experience or
engineering knowledge related to state-of-the-art spoken dialog systems. The
NIMITEK corpus contains 15 hours of speech and video recordings collected
during the Wizard-of-Oz experiments specially designed to provoke user’s
emotional reactions. More technical details about affective data collection
strategy can be found in [Gnjatovi¢ and Résner, 2008¢, Gnjatovié, 2009, Gnja-
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tovi¢ and Rosner, 2010]. The used NIMITEK dataset contains approximately
3 hours recordings which are related to the Towers-of-Hanoi game.

Gnjatovi¢ et al. [Gnjatovi¢, 2009] analyzed all 6798 commands presented
in the NIMITEK dataset. They found that users do not follow a predefined
grammar during interaction with the system. Still, by using the grammar-
based language model presented in listing 3.1 on page 60 we developed the
system which can recognize and process users’ commands of different syntac-
tic forms: elliptical commands, verbose commands (i.e., the commands that
were only partially recognized by the speech-recognition module), and context-
dependent commands.

6.4 Architecture I: Conventional spoken dialog
system

In this section we present the possible architecture of a spoken dialog system,
later referred to as the conventional spoken dialog system (CSDS). In Figure
6.5 one can see the interaction of the submodules of the CSDS.

The interaction within CSDS submodules can be presented as follows. The
possible textual meaning of the user’s utterances is delivered to the natural
language understanding module. This module detects the command and for-
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Speech
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Manager Understanding State
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Dialog History of
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Figure 6.5: Schema of the conventional spoken dialog system (CSDS)
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wards it:

e to the attentional state module for updating the focus of attention,

e to the history of the interaction module to save the current values of
other interaction features and process the context-dependent user’s com-
mands,

e to the task manager module (including the graphical platform) for exe-
cuting the detected command, update of the state of the task, and appro-
priate graphical display,

A new entry is added to the history of the interaction, containing: updated

state of the task, the detected command, and the current focus of attention.

For real-time automatic speech recognition (ASR) within the conventional

spoken dialog system, we used the ATK and HTK [Young et al., 2009].
Monophones ASR models are designed by training three emitting state hid-
den Markov models (HMM) with 16 Gaussian mixture components for each
phoneme model. We use a short version of German SAMPA which includes
the 39 phonemes presented in section 3.3.2. ASR models have been trained
on the emotionally neutral speech samples from the Kiel dataset.

6.5 Architecture 1II: User-behavior-adaptive
spoken dialog system

During the WOZ experiments we have seen that users employ several output
modalities (mimics, speech, prosody) to communicate with a computer. In
the NIMITEK demonstrator prototype [Wendemuth et al., 2008|, we include
recognition of the user’s emotional state. The emotion classifier integrated
in the NIMITEK demonstrator prototype uses three modalities: emotional
prosody within spoken communication, literal meaning of user’s utterances
and user mimics. For the current usability test we evaluate the NIMITEK
demonstrator prototype with speech-based emotion classification [Vlasenko
et al., 2010]. We provide two different dialog strategies for two concerned
user’s emotional states (neutral and negative).

In Figure 6.6 one can see a spoken dialog system which is adaptive to
the user’s behavior, later referred to as user-behavior-adaptive spoken dialog
system (UASDS). Figure 6.7 presents an interaction of submodules of the
UASDS.

Phonetic transcriptions and the hypothesis word sequence generated by
the speech-recognition module is transferred to the natural language under-
standing (NLU) and emotion-recognition module. Later, based on phonetic
transcriptions and the speech signal, the emotion classifier recognizes the cur-
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Figure 6.6: Schema of the wuser-behavior-adaptive spoken dialog system
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rent speaker’s emotional state. The NLU module interprets the command and
forwards it:

e to the attentional state module for updating the focus of attention,

e to the history of the interaction module to save the current values of
other interaction features and process the context-dependent user’s com-
mands,

e to the motivational intention recognition module for defining the user’s
motivational intention based on his last command and current state of
the task,

e from motivational intention recognition to the task manager module (in-
cluding the graphical platform) for executing the detected command, up-
date of the state of the task, and appropriate graphical display,

Then, a new entry is added to the history of the interaction, containing: the
updated state of the task, detected command, current focus of attention, and
the detected user’s emotional state. For delimitation of type of frustration
(communication incomprehension or task related) we take into account the
current state of the focus and history of interaction. When the user’s game
manipulations are far away from solving the Towers-of-Hanoi task the system
indicates a task related frustration. Then, the system provides user support
according to the current state of the task, and the emotional and motivational
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Figure 6.7: System support processing within UASDS

intentional state of the user. The processing of a user’s command in the
NIMITEK prototype UASDS is presented in Figure 6.7.

The adaptive dialog management designed to support the user addresses
the negative user state on two tracks: (i) to help a frustrated user to overcome
problems that occur within the interaction, and (ii) to motivate a discouraged
or apathetic user. The recognized user’s motivational intention determines
the direction of system support: for a cooperative user, the next logical step
is explained; for an explorative user, comprehensive coverage of possible steps
is given; for a destructive user, the limitations of the next steps are explained.
Generally, the support information may contain a proposed move, an audio
system support and various animations. In the case when system support
contains only the audio system message or the animation, this information
is delivered to the task manager module for appropriate display. If support
contains also a proposed move, this information is sent:

e to the task manager module for a performance of the proposed command
and an update of the state of the task,
e to the attentional state module for an update of the focus of attention.

More technical details of the dialog management model can be found in [Gn-
jatovi¢ and Rosner, 2008a, Gnjatovi¢, 2009, Gnjatovi¢ and Rosner, 2008¢| and
other publications of Gnjatovi¢.

Like in CSDS, for real-time automatic speech recognition (ASR) within
the user adaptive spoken dialog systems, we used the ATK and HTK [Young
et al., 2009]. Monophones ASR models are designed by training three emitting
state hidden Markov models (HMM) with 16 Gaussian mixture components
for each phoneme model. We use a short version of German SAMPA which
includes the 39 phonemes presented in section 3.3.2. The HMM /GMM models
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have been trained on the Kiel database material and, in addition to CSDS,
adapted with MLLR(RCT) on affective speech samples from the EMO-DB
database. The emotion classifier integrated into UASDS based on emotional
phoneme classes method, the full list of 36 phonemes (all phonemes which
presented in EMO-DB dataset) is modeled for neutral and negative speaker’s
states.

6.6 Experiment

For our experiments we established two different SDS systems: conventional
(CSDS) and user-behavior-adaptive (UASDS) with emotion adaptive dialog
strategy and affective-speech-adapted ASR models. Other systems’ technical
characteristics are identical: vocabulary, language model, and a garbage model
for OOV words.

For the usability test we hired 8 students (4 female and 4 male). Half of
the test persons played the Towers-of-Hanoi game with UASDS including a
behavior-based dialog management strategy and the remaining testers used
the CSDS system with standard support, i.e. repeating the rules of the game
or asking for the command to be repeated. The UASDS varies the answers
depending on the behavior of the user like asking for a specific peg or disk,
repeating the rules, or giving general hints.

All together, we collected audio material which in total lasts 16:21 minutes
for the UASDS system and 27:40 minutes for the CSDS system. These record-
ings also include the time the system support recommendations or provides
help to the user and the silences caused by the user. This data is not related
to the NIMITEK corpus discussed earlier and described in detail in [Gnjatovi¢
and Rosner, 2008c¢].

The main point of interest are interaction time and required number of the
dialog turns to solve the task. Also interesting values which were collected
are measures related to user adaptation (number of the dialog turns required
for adaptation and their total duration) to the systems "command list" as a
response of ASR’s textual output. When the user starts using commands from
the system vocabulary at the beginning of the HMI, we set duration of the
adaptation time to 00:00. As a start point we did not provide any information
to subjects about ASR active vocabulary and grammar structure, other than
the rules of the game. In the case of support requirements, users are able to
ask the SDS system for "help".
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6.7 Results

The experimental results of the spoken dialog systems evaluation are presented
in Table 6.1. Comparing the numbers of dialog turns which are necessary
to solve the puzzle, the UASDS performs better [Vlasenko et al., 2010]. On
average, using the CSDS the user needs ca. 18 dialog turns more (47.4% more)
to finish the game.

Trial UASDS CSDS
Complete task Adaptation Complete task Adaptation
Turns | Time | Turns | Time | Turns | Time | Turns | Time

1. 34 05:43 1 00:00 44 05:40 1 00:00
2. 31 03:37 10 01:36 61 06:05 30 03:43
3. 34 02:44 10 01:04 81 11:48 10 01:51
4. 55 04:17 1 00:00 41 04:07 7 00:52
Mean 38.5 04:05 5.5 00:40 | 56.75 06:55 12 01:37

Table 6.1: Number of turns [#], interaction time [mm:ss| for the complete
task, and number of turns [#] with time intervals [mm:ss| required for user
vocabulary adaptation for CSDS and UASDS

Considering the overall time which includes pauses and the system support,
the UASDS shows the better average results (04:05 vs. 06:55 minutes (40.9%
less) absolute talk time). In the case of CSDS, independently of the user’s
behavior a standard output is given. This provides evidence that behavior
dependent dialog strategies may provide better user support. Also, within
interaction with the UASDS, users are more considerate to the ASR output.
As a result they are adapting their commands vocabulary faster (00:40 vs.
1:37 minutes (58.7% less)).

Finally, we analyzed the dialog turns structure and commands vocabulary.
The adaptation values given in Table 6.1 were counted until the first word,
which is in the system’s vocabulary, occurred. A total adaptation of the
user could not be observed, but we would not expect this. In most cases,
system specific and additional words are combined, e.g., "the smallest disk
up" where "up" is not part of the (hidden) command set. Moreover, almost
all users varied in words, but the longer the experiment lasted, the vocabulary
used became more stable. Due to the behavior-based dialog management the
user could get the right commands faster, because the strategy is directed to
provide adequate information at any time.

In both versions, the user switches between two command forms: complete
statements (e.g., "the smallest disk from one to the right peg") and context-
dependent commands (e.g., "smallest disk" - pause - "to three"). In the
recording we found a significant relation between the system version, dialog
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management type, and the command form. In the UASDS almost all users
uttered complete statements whereas in the CSDS the most common form is
context-dependent separate commands. Moreover, due to the neutral behavior
of the system the testers were not stimulated to change their strategy, because
they mentioned that they thought they were interacting with an artificial
system. In the other case, the users said that they think the system interacts
more intuitively.

6.8 Conclusions and transition to Companion
technology

Within the usability experiment we found out that during human-machine
communication frustration situations, the UASDS provides comprehensive
help and exhaustive recommendations in context of the current state of the
task. The user-behavior-adaptive spoken dialog system built upon acous-
tic emotion recognition in combination with affective-speech-adapted ASR
models decreases interaction time by 40.9%. During usability tests we found
out that the affective-speech-adapted ASR models provide better spontaneous
speech-recognition performance in real applications. At the same time user-
behavior-based dialog management stimulates the user for a more cooperative
interaction with the computer. As a result the user’s commands vocabulary
adaptation time is decreased by 58.7%. Methods developed and investigated
in the NIMITEK project will lay the foundations for a technology which helps
to provide a close to natural way of human-machine interaction.

In Figure 6.8 one can see the main research goals within the ongoing re-
search project, the Transregional Collaborative Research Centre SFB/TRR
62 "A Companion-Technology for Cognitive Technical Systems", started at
01.01.2009 (http://www.informatik.uni-ulm.de/ki/stb-trr-62/).

The SFB/TRR 62 is an interdisciplinary (Computer Science, Electrical
and Information Engineering, Psychology, and Neurosciences) research activ-
ity to investigate and optimize the interaction between human users and tech-
nical systems. It is particularly specialized on the consideration of so-called
Companion-features - properties like adaptivity, accessibility, individuality, co-
operativity, trustworthiness, and the ability to react to the user’s emotional
state appropriately and individually. The research program comprises of the
fundamental and experimental investigation as well as the practical implemen-
tation of advanced cognitive processes in order to achieve Companion - like
behavior of technical systems with an integrated human-centered multimodal
(speech, mimics, gestures, biological signals) interaction interface. Within
this interdisciplinary research activity we will integrate our methods (user-
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Companion technology

v'Individuality
v'Availability
v'Cooperativity
v'Trustworthiness
v'Adaptive Planning
v'"Mobility
v'Reliability

SDS

Figure 6.8: Main research activities in the Transregional Collaborative Re-
search Centre SFB/TRR 62 Companion-Technology for Cognitive Technical
Systems

behavior-adaptive dialog management, multimodal user’s emotion processing)
initiated within the NIMITEK project into a new Companion technology sys-
tem. With that, it will lay the foundations for a technology which opens a
completely new dimension of human-machine interaction.



CHAPTER 7

Conclusion and future work

Emotional speech analysis is a powerful instrument applied for development
of a user-centered spoken dialog system. The fundamentals of the user-
centered human-machine interaction, characteristics of the natural human
speech, namely boundary and emotional prosody and emotion theory have
been reviewed in Chapter 2. The main contributions of this work have been
described in Chapter 3 and Chapter 4. The first contribution, described
in Chapter 3, is to use an adaptation technique to increase the affective-
speech-recognition rate. A concept of the adaptation on emotional speech
samples of the ASR models trained on the emotionally neutral speech with
MLLR(RCT)+MAP methods is proposed. This contribution will be summa-
rized in section 7.1. The second contribution, described in Chapter 4, provides
a detailed description of our various emotion-classification techniques. The
summarized description of our developed emotion-classification techniques is
presented in section 7.2. Phoneme-level user’s emotion recognition has been
integrated into a prototype dialog system especially developed by the author
and colleagues to demonstrate adaptation of the system to the user’s emo-
tional state. Practical application of the previously described contribution
is summarized in section 7.3. Finally, possible future research directions are
discussed in section 7.4.

7.1 ASR model adaptation on affective speech
data

Since we want to develop a spoken dialog system which will be able to pro-
cess flexible, unrestricted user’s language, spontaneous and emotionally col-
ored speech, the acoustic model that is trained on emotionally neutral speech
data is tailored to the vocal variability of the affective speech. In Chapter
3, we investigate the potency of adapting emotional speech acoustic models
for German language. By the comparison of the vowel triangles for affective
and neutral speech, we showed the vowel’s pronunciation pattern similarity
of non emotional read speech and affective speech samples. Within evalua-
tions presented in Chapter 5, we proved that due to the pronunciation pattern
similarity of affective and neutral speech, emotion-specific characteristics can
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be captured from existing emotional speech corpora within adaptive transfor-
mation of model parameters of the initial neutral speech model to obtain an
emotional speech acoustic model. The application of the maximum a posteri-
ori (MAP) adaptation for the maximum likelihood linear regression (MLLR)
transformed models gives a tremendous boost in emotional speech-recognition
performance. The accuracy of affective speech recognition with the combined
MLLR(RCT)+MAP adapted HMM/GMM models was about 8.9% absolute
better than that of the ASR models trained on emotionally neutral speech
samples (baseline accuracy 87.37%). This resulted in remarkable performance
gain.

By using emotional speech adapted ASR methods we can provide better
spontaneous-speech-recognition performance. This assumption has been con-
firmed by the usability experiment. Detailed results of this experiment can
be found in section 6.7.

7.2 Recognition of the user’s emotional state

To be able to design a user-centered spoken dialog system, we set up in Chap-
ter 4 a speech-based emotion-recognition framework that should be robust
enough to detect emotional events within human-machine interaction. A va-
riety of emotion descriptors is discussed first. Two different types of emotional
speech analyses are applied for speech-based emotion recognition: frame-level
(dynamic analysis) and turn-level (static analysis) are presented. First of all
we described the set of acoustic features which can be applied for different
emotion-classification techniques. Two different optimization techniques ap-
plied on feature extraction level, namely normalization and standardization
and feature set optimization have been presented afterwards. Then we in-
troduced wutterance-, chunk-, phoneme-level dynamic analysis models for the
recognition of emotions within speech. Within experimental evaluations of the
utterance-level dynamic analysis we determined the single-state HMM /GMM
as an optimal architecture. In this framework we try to answer the question
if phonetic content variance influences emotion-recognition performance neg-
atively, and if models trained specifically on the phonetic unit at hand can
help. During evaluation experiments we found out that the introduced unit-
specific emotion-recognition models clearly outperformed common context-
independent general models provided sufficient amount of training material
per unit. Appearance of word-level labeled emotional corpora can improve
current, performance of phoneme and word-level emotion-recognition models.

In section 5.3.2 we provide results of the benchmark comparison under
equal conditions on nine standard emotional speech corpora presented in Ta-
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ble 2.3 in the field using the two pre-dominant paradigms: dynamic analysis
on a frame-level by means of hidden Markov models and static analysis (supra-
segmental) by systematic feature brute-forcing. To provide better compara-
bility among sets, we additionally cluster each of the database’s emotions into
binary valence and arousal discrimination tasks (positive, negative), see section
2.7. When comparing the dynamic analysis with static analysis an interesting
conclusion can be drawn: dynamic analysis seems to be slightly superior for
spontaneous speech corpora containing variable textual content (AVIC, SAL,
SmartKom, VAM), i.e. the subjects were not restricted to a predefined script,
while static analysis outperforms frame-level modeling on corpora where the
textual content is fixed (ABC, DES, EMO-DB, eNTERFACE, SUSAS), i.e.
where there is an overlap in verbal content between test and training set. This
can be explained by the nature of supra-segmental modeling: in corpora with
non-scripted content, turn lengths may strongly vary. While frame-level mod-
eling is mostly independent of highly varying turn length, in supra-segmental
modeling each turn gets mapped onto one feature vector, which might not
always be appropriate.

To show the robustness of our emotion-classification techniques, we pre-
sented in section 5.3.4 results of the INTERSPEECH 2009 Emotion Chal-
lenge [Schuller et al., 2009¢|]. With our emotion-classification technique based
on dynamic analysis we proved that only by using spectral features (Mel-
frequency Cepstral coefficients (MFCC)) and utterance-level analysis we can
reach one of the best emotion-recognition performances for spontaneous emo-
tional speech. We got second place for the two emotion classes task and forth
place for the five emotion classes task over 33 research groups registered to
get access to the data.

Finally, in section 5.3.5 we present evaluation results for cross-corpus eval-
uation for intra- and inter-corpus speech-based emotion recognition. We
showed that the recognition rates highly depend on the specific sub-group
of emotions considered. FEmotion-recognition performance decreases dra-
matically when operating cross-corpora-wise. As long as conditions remain
similar, cross-corpus training and testing seems to work to a certain de-
gree: the DES, EMO-DB, and eNTERFACE datasets led to partly useful
results. However, the cross-corpus testing on a spontaneous emotions dataset
(SmartKom) clearly showed limitations of the current context-independent
emotion-recognition systems. As a result, in section 4.4.3.3 we proposed to
use a new context-dependent emotion-classification technique which is based
on vowel-level formants tracking. By evaluating this technique we showed
that the average F'1 values extracted on a vowel-level are strongly correlated
with the level of arousal of the speaker’s emotional state. We defined the list
of the most indicative German vowels within the task of measuring the level
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of arousal of the speaker’s emotional state. Also, we estimated the optimal
Neyman-Pearson’s criteria thresholds for acted and spontaneous emotions. It
has been shown that spontaneous emotions required higher n values in com-
parison with optimal 7 values for acted emotions. We showed that the list of
the most indicative German vowels within the task of measuring the level of
arousal of the speaker’s emotional state can be used for spontaneous emotion
classification.

To summarize the overall results, the best emotion-recognition perfor-
mance is achieved on the databases containing acted, prototypical emotions,
where only emotions with high inter-labeler agreement were selected (EMO-
DB, eNTERFACE, DES). The remaining emotional corpora are more chal-
lenging since they contain non-acted or induced emotions. On the lower end
of recognition performance the SAL, SmartKom, and VAM corpora can be
found, which contain the most spontaneous and naturalistic emotions, which
in turn are also the most challenging to label. In this thesis we presented a va-
riety of task-oriented suitable emotion-recognition methods. For example the
context-independent utterance-level emotion-recognition method can be easily
implemented for HMI systems which do not require textual interpretation of
the user’s speech. In contrast to the "brute-force" emotion-classification tech-
niques we develop methodologically simple methods, which are universally
usable for professional applications.

7.3 Application of the previously described
contributions

A prototypical spoken dialog system with a user-behavior-adaptive spoken
dialog system was created within the NIMITEK? collaboration. This sys-
tem includes phoneme-level emotion recognition and ASR models adapted
with MLLR(RCT) technique on emotional speech data. To prove an appro-
priateness of application of the previously described contributions we orga-
nized interactive usability experiments for our prototype spoken dialog system.
Within the usability experiment we could show that during human-machine
communication frustration situations, the user-behavior-adaptive spoken dia-
log system (UASDS) provides comprehensive help and exhaustive recommen-
dations in context of the current state of the task. The UASDS built upon
acoustic emotion recognition in combination with affective-speech-adapted
ASR models decreases interaction time by 40.9%. During usability tests

2Neurobiologically Inspired, Multimodal Intention Recognition for Technical Communi-
cation Systems, 2005-2010, [Wendemuth et al., 2008]
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we found out that the affective-speech-adapted ASR models provide better
spontaneous-speech-recognition performance in real applications. At the same
time user-behavior-based dialog management stimulates the user for a more
cooperative interaction with the computer. As a result the user’s commands
vocabulary adaptation time is reduced by 58.7%.

7.4 Future work

The research on affective-speech-adapted ASR models and emotion recogni-
tion from speech may be further carried out in a number of directions:

e Collection of emotional speech material with reliable textual
and emotional annotation:
Creation of new well-annotated emotional corpora can help us to make
a more detailed emotional speech analysis. Within the annotation pro-
cess we should take into account two main issues: Firstly, transcription
needs to acknowledge the full range of features involved in the acous-
tic expression of emotion, including voice quality, boundary prosody
and non-linguistic features such as laughter, crying, clatter, breath, etc..
Secondly, it needs to describe the attributes (e.g., linguistic, dialog acts
specification) that are relevant to emotion. Within the Transregional
Collaborative Research Center SFB/TRR, 62 "Companion-Technology
for Cognitive Technical Systems" funded by the German Research Foun-
dation (DFG) we are collecting a new speech corpus with spontaneous
emotions. Well transcribed data with reliable emotion annotation will
be an important dataset for detailed context-dependent spontaneous-
emotion-recognition experiments.

e Improvement of ASR performance by creation of more reliable
lexica:
In this work, the gain of emotion speech adapted ASR and context-
dependent emotion recognition is limited due to the various errors in-
cluded in existing German lexicons. To improve recognition perfor-
mances, the lexica should be modified. All wrong phonetic transcrip-
tions should be corrected; in a case of various phonetic transcriptions
which are representative for the same word, all transcriptions should be
included in the new lexicon.

e More detailed fundamental context-dependent analysis of emo-
tion indicative acoustic features:
Within our research we proved that the vowel can be used as the smallest
emotional unit of analysis. We find out that using vowel-level analysis,
namely formants tracking, can be an important issue during developing
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a robust emotion classifier. We are pretty sure, that there exists some
other qualitative and temporal characteristics of the smallest phonetic
units which can be used for robust context-dependent emotion recogni-
tion. Future research may be carried out to specify this qualitative and
temporal measures.

A Companion-Technology for Cognitive Technical Systems:
Within this interdisciplinary research activity of the Transregional Col-
laborative Research Centre SFB/TRR 62 we will integrate our methods
(user-behavior-adaptive dialog management, multimodal user’s emotion
processing) initiated within the NIMITEK project into a new Compan-
ion technology system.

Dialog-state-dependent emotion recognition:

Combination of the speech-based emotion classification and dialog act
features analysis could improve performance of miscommunication de-
tection during HMI. For example, finding repetitions of the same dialog
might contribute in addition to the acoustic-based emotion classification
to the detection of trouble in communication.

Multimodal emotion recognition:

In future we want to combine audio, video emotion analysis with pro-
cessing of some physiological responses (blood pressure, blood volume
pulse, respiration rate, heart rate, galvanic skin response, ECG, EMG,
etc.). In such a way we want to develop our own multimodal emotion-
classification technique within ongoing Transregional Collaborative Re-
search Center SFB/TRR 62. For fusion of these various processing
streams we should take into account corresponding emotion indicative
responses delays. For example, some physiological responses could in-
dicate an emotional user’s state slightly later than mimic expression.
Selection of suitable emotion categorization technique:

In future we would like to work on essential problems for the analysis of
spontaneous emotional speech. For instance, we want to determine what
an emotional episode is, where it starts and where it ends (emotional
events localization) and which emotional annotation approach (multi-
dimensional representation or classical emotion categories) to choose
for annotation purposes.
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