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Zusammenfassung

Die vorliegende kumulative Habilitationsschrift befasst sich zum einen mit Willmoreflachen,
die vorgegebene Randbedingungen erfiillen, zum anderen mit dem Hartree-Fock Atommodell fiir
pseudorelativistische Atome. In beiden Féllen untersuchen wir dazu ein Minimierungsproblem
und die qualitativen Eigenschaften der Losung. Im ersten Teil dieser Habilitationsschrift, der aus
den folgenden Artikeln besteht, werden die Resultate zu Randwertproblemen fiir Willmoreflachen
vorgestellt.

[1] A. Dall’Acqua, K. Deckelnick, H.-Ch. Grunau, Classical solutions to the Dirich-
let problem for Willmore surfaces of revolution, Adv. Calc. Var. 1 (2008) 379-397.

[2] A. Dall’Acqua, S. Frohlich, H.-Ch. Grunau, F. Schieweck, Symmetric Willmore
surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var. 4
(2011) 1-81.

[3] M. Bergner, A. Dall’Acqua, S. Frohlich, Symmetric Willmore surfaces of revolu-
tion satisfying natural boundary conditions, Calc. Var. PDE 39 (2010) 361-378.

[4] M. Bergner, A. Dall’Acqua, S. Frohlich, Willmore surfaces of revolution bounding
two prescribed circles, Preprint Nr. 13/2010, Universitdt Magdeburg, eingereicht.

[5] A. Dall’Acqua, Uniqueness for the homogeneous Dirichlet Willmore boundary
value problem, Preprint Nr. 06/2011, Universitiat Magdeburg, eingereicht.

Gegenstand des zweiten Teils dieser Habilitationsschrift ist die Hartree-Fock-Theorie pseudore-
lativistischer Atome, welche in den folgenden Artikeln behandelt wird.

[6] A. Dall’Acqua, T. Ostergaard Sgrensen, E. Stockmeyer, Hartree-Fock theory for
pseudorelativistic atoms, Ann. Henri Poincaré 9 (2008), no. 4, 711-742.

[7] A. Dall’Acqua, S. Fournais, T. Ostergaard Sgrensen, E. Stockmeyer, Real Ana-
lyticity away from the nucleus of pseudorelativistic Hartree-Fock orbitals, Preprint Nr.
9/2011, Universitat Magdeburg, eingereicht.

[8] A. Dall’Acqua, J.P. Solovej, Excess charge for pseudo-relativistic atoms in Hartree-
Fock theory, Doc. Math. 15 (2010) 285-345.

Randwertprobleme fir Willmoreflaichen Eine Willmoreflache ist ein kritischer Punkt des Will-
morefunktionals, welches jeder hinreichend glatten zweidimensionalen Flache das Integral der
quadrierten mittleren Krimmung iiber die Flache zuordnet. Dieses Funktional modelliert die
elastische Energie diinner Zellen oder Biomembranen. Die Willmoregleichung (d.h. die zum Will-
morefunktional gehoérende Euler-Lagrangegleichung) ist eine nichtlineare Gleichung von vierter
Ordnung. IThr Studium ist anspruchsvoll, da viele der fiir elliptische Differentialgleichungen zweiter
Ordnung entwickelten Methoden nicht funktionieren. Wahrend viele Fortschritte zur Existenz und
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Regularitat geschlossener Willmoreflachen erzielt wurden, ist viel weniger bekannt iiber Flachen
mit Rand, welche Gegenstand dieser Habilitationsschrift sind. In diesem Fall miissen zur Will-
moregleichung noch geeignete Randbedingungen hinzugefiigt werden. Wir betrachten zwei Arten
von Randbedingungen: Dirichletsche Randbedingungen und natiirliche Randbedingungen. Unter
Dirichletschen Randbedingungen verstehen wir, dass sowohl der Rand als auch die Tangentialraume
der Flache am Rand vorgeschrieben sind. Im Falle natiirlicher Randbedingungen wird die Position
des Randes festgeschrieben sowie die Tatsache, dass die mittlere Kriimmung am Rand null sein
muss.

Um ein Verstandnis zu gewinnen fiir die Art der Phanomene, welche auftreten kénnen oder
welche Art von Resultaten erwartet werden koénnen, untersuchen wir das Willmorerandwertpro-
blem in der Klasse der Rotationsflichen. In [1] und [2] beginnen wir mit der Untersuchung des
Dirichletschen Randwertproblems fiir Rotationsflichen, die vom Graphen einer symmetrischen po-
sitiven Funktion auf dem Intervall [—1,1] erzeugt werden. Der Rand dieser Flachen besteht aus
zwei Kreislinien, die in zur y, z-Ebene parallelen Ebenen liegen und Mittelpunkte (—1,0,0) bzw.
(1,0,0) besitzen. In diesem Fall werden die Randwerte durch die Hohe des Graphen am Rand
(d.h. durch die Radien der beiden Kreislinien welche den Rand beschreiben) mittels eines Pa-
rameters a > 0, und der Wert der Ableitung der Funktion am Rand mittels eines Parameters
8 € R vorgeschrieben. Das Hauptresultat besagt, dass es zu jeder Wahl von Parametern o > 0
und § € R glatte Rotationsflachen gibt, welche die Willmoregleichung und die Randbedingungen
erfilllen. Hierbei wird der Fall § = 0 in [1] gelost, wiahrend andere Werte fiir 4 in [2] untersucht
werden. Die Existenz einer Losung wird durch die Losung eines Minimierungsproblems mithilfe der
direkten Methode der Variationsrechnung gezeigt. Beginnend mit einer Minimalfolge wird diese
modifiziert um eine neue Folge zu erhalten, welche den Schranken gentiigt die benotigt werden, um
ein Kompaktheitsargument anzuwenden. Dies wird durch sehr explizite geometrische Konstruk-
tionen erreicht, die nicht nur die Existenz eines Minimierers zeigen, sondern auch viele qualitative
Informationen tiber ihn liefern. In der Konstruktion wird der Graph in geeignete Teilstiicke un-
terteilt und mit Stiicken expliziter Graphen glatt (C'!) verklebt, die nicht nur eine bessere, sondern
sogar optimale Willmoreenergie besitzen. Diese Graphen sind zum einen die, welche Minimalrota-
tionsflichen erzeugen (die Katenoiden), zum anderen Bogenstiicke von Kreislinien mit Mittelpunkt
auf der z-Achse. Hierbei wird benutzt, dass fiir den Fall von Dirichlet-Randbedingungen, die Mi-
nimierung des Willmorefunktionals fiir Rotationsflachen auf das Gleiche wie die Minimierung des
elastischen Funktionals in der hyperbolischen Halbebene hinauslauft. Desweiteren wird gezeigt,
dass die Minimierer C*°-glatt sind. Fiir das asymptotische Verhalten der Losung mit festem § € R
und gegen null strebendem a wird gezeigt, dass die Losungen gegen die Oberfliche der Einheit-
skugel mit Mittelpunkt im Ursprung konvergieren.

In [3] und [4] wird das Problem mit natiirlichen Randwertbedingungen fiir Rotationsflichen un-
tersucht. Dabei wird in [3] eine Verallgemeinerung des Willmorefunktionals betrachtet, in der das
mit einem Parameter v € [0, 1] multiplizierte totale Integral der GauBkrimmung vom Willmore-
funktional abgezogen wird. Die kritischen Punkte dieses verallgemeinerten Willmorefunktionals
erfiillen immer noch die Willmoregleichung, da das Integral iiber die Gaulkriimmung nur Beitrége
zu den Randtermen liefert. In [3] beschrinken wir uns auf Rotationsflachen, die von symmetrischen
Graphen erzeugt werden. Als Randbedingungen schreiben wir den Radius o > 0 der den Rand
beschreibenden Kreislinien vor sowie die Forderung, dass die mittlere Kriimmung am Rand gleich
dem Parameter v multipliziert mit der Normalkriimmung am Rand ist. Diese zweite Randbedin-
gung tritt natiirlich auf, wenn das verallgemeinerte Willmorefunktional {iber Flachen minimiert
wird, fiir die nur die Position des Randes festgelegt ist. Es wird zu jedem o > 0 und ~ € [0, 1]
die Existenz einer Willmorerotationsflache, welche die vorgeschriebenen Randbedingungen erfiillt,
gezeigt. Die Beweisidee ist es, dass falls ein Minimierer des Randwertproblems mit den natiirlichen
Randbedingungen ein Graph ist, dass dieser dann auch die Dirichletschen Randwertbedingungen
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fiir einen gewissen Wert der Ableitung am Rand erfiillt, so dass wir zum Dirichletschen Randwert-
problem zuriickgefiihrt werden. Der Beweis, dass der Minimierer tatsachlich ein Graph ist, gelingt
durch Betrachtungen von Stetigkeits- und Monotonieeigenschaften der Energie. In [4] werden
wieder natiirliche Randbedingungen betrachtet, allerdings fiir das Willmorefunktional, nicht das
verallgemeinerte. Die Randwertbedingungen sind in diesem Fall durch das Vorschreiben zweier
Kreislinien, welche die Rénder der Flache bilden, und der Tatsache, dass die mittlere Kriimmung
am Rand null sein muss, gegeben. Im Vergleich zum in [3] betrachteten Problem brauchen hier
die beiden Kreislinien nicht den gleichen Radius zu haben. Desweiteren beschrianken wir uns
weder auf Graphen noch auf symmetrische Kurven. Fiir alle positiven Werte der die Rénder
beschreibenden Kreisradien zeigen wir die Existenz eines Minimierers. Dazu wird zunéchst ein
Minimierungsproblem mit Zwangsbedingungen gelost und danach gezeigt, dass es einen Minimierer
im Inneren der Menge gibt, iiber die minimiert wird. In diesem Fall ist das Minimum der Energie
iiber Rotationsflachen, die von Kurven erzeugt werden, gleich dem Minimum der Energie iiber
Rotationsflachen, die von Graphen erzeugt werden. Wir zeigen weiterhin, dass die Losungen gegen
die Einheitskugel mit Mittelpunkt im Ursprung konvergieren, wenn die Radiien der beiden Rand-
kreislinien gegen null streben.

In [5] wird eine zweidimensionale Flidche betrachtet, welche eine Parametrisierung als Graph
iiber ein striktes sternférmiges Gebiet erlaubt. Als Randbedingung betrachten wird das folgende
Dirichletsche Randwertproblem: der Rand wird durch den Rand des Gebietes, iiber den die Fliche
als Graph definiert ist, festgelegt, und die Tangentialebene ist in jedem Punkt des Randes gleich
der Ebene, die das sternférmige Gebiet enthilt. Dann wird ein Eindeutigkeitsresultat bewiesen, in
dem gezeigt wird, dass die einzige glatte Willmoreflache, welche diesem Randwertproblem geniigt,
ein Stiick der Ebene ist. Im ersten Teil des Beweises wird gezeigt, dass die mittlere Kriimmung
am Rand identisch null sein muss. Der Beweis ist inspiriert von der Beweisidee der Identitat
von Pohozaev, unter Benutzung der konformen Invarianz des Problems. Die Schlussfolgerung,
dass die Flache ein Teilstlick der Ebene sein muss, folgt dann aus dem Klassifikationssatz fiir
Willmorefldchen von Bryant.

Hartree-Fock-Theorie fiir pseudorelativistische Atome Ein Model fiir ein pseudorelativistisches
Atom mit N Elektronen und einem Atomkern der festen Ladung Z (im Ursprung) ist in der
Schrodingertheorie durch den Hamiltonoperator

N

H=) (T;- %) + D ﬁlxy

j=1 J 1<i<j<N 't J
gegeben. Hierbei ist die kinetische Energie T} des j-ten Elektrons gegeben durch T; = T, j =
1,...,N, wobei T = vV—a2A + a=* — a2 und a die Sommerfeldsche Feinstrukturkonstante ist,
welche physikalisch den Wert a ~ 1/137.036 hat. Der Operator Z/|x;| beschreibt die Anziehung,
die das j-te Elektron vom Atomkern erfihrt, wohingegen die Operatoren 1/|x; — x;| die gegen-
seitige Abstofung der Elektronen beschreiben. Die Wahl der kinetischen Energie als Pseudodif-
ferentialoperator der Ordnung eins gewahrleistet die Einbeziehung einiger relativistischer Effekte,
weshalb auch von pseudorelativistischen Atomen gesprochen wird. Um Beschrénktheit von unten
des Hamiltonoperators zu gewéhrleisten, muss man sich auf Atomkernladungen Z beschrinken,
welche Za < 2/7 erfiillen. Die Elektronen werden durch “Wellenfunktionen” ¥ € AY  L%(R3)
beschrieben, wobei |¥|? als Wahrscheinlichkeitsdichte zu verstehen ist, d.h. das Integral von |¥|?
iiber eine Menge im R3V ergibt die Wahrscheinlichkeit, die N Elektronen in dieser Menge zu
finden. Die Antisymmetrie wird wegen dem pauli’schen Ausschlussprinzip benétigt. Die (Quan-
ten) Grundzustandsenergie ist das Infimum des Spektrums von H, wenn H als Operator auf dem
Raum der Wellenfunktionen betrachtet wird:

EM(N, Z) .= inf oy, (H) = inf{ (¥, HV) | ¥ € AN, L2(R3), (¥, T) =1}.



Hierbei bezeichnet (-,-) das Skalarprodukt im L?(R3"). Ein Ziel der Quantenmechanik ist das
Studium der Grundzustandsenergie und, wenn sie existiert, der Wellenfunktion welche die Energie
minimiert. Wegen der hohen Dimensionalitidt des Problems werden viele Approximationen be-
trachtet. Eine der bekanntesten ist die Hartree-Fock-Approximation. Hierbei beschrankt man sich
im Minimierungsproblem auf die Minimierung iiber die einfachsten antisymmetrischen Funktionen.
Dies sind die reinen Wedgeprodukte (auch Slaterdeterminanten genannt), d.h. Wellenfunktionen ¥
welche eine Darstellung der Form ¥(x1,xa,...,Xy) = \/% det(ui(xj))f-yj:l mit {u; }}¥., orthonor-
mal in L?(R3) erlauben.

In [6] zeigen wir die Existenz eines Hartree-Fock-Minimierers fiir das oben beschriebene Model
eines pseudorelativistischen Atoms, unter der Bedingung, dass die ganzzahlige Anzahl N der Elek-
tronen der Bedingung N < Z + 1 geniigt. Diese Schranke an die Anzahl der Elektronen ist die
gleiche wie im klassischen nichtrelativistischen Fall, in dem die kinetische Energie durch —%A
gegeben ist. Das Minimierungsproblem wird dadurch gelost, indem man die Menge iiber die mini-
miert wird erweitert, um sie zunéchst konvex zu machen und dann sogar noch weiter erweitert um
einen moglichen Kompaktheitsverlust, der eine Reduktion der Teilchenzahlen bewirken konnte, zu
berticksichtigen. Die Hauptschwierigkeit besteht darin, dass das Potenzial des Atomkerns nicht
relativ kompakt beziiglich der kinetischen Energie ist. Wir zeigen weiterhin die Regularitat der
Orbitale. Genauer wird gezeigt, dass sie C*° auflerhalb einer beliebigen Umgebung des Ursprungs
sind, und dass sie exponentiell abfallen. Die Schwierigkeit kommt von der Nichtlokalitdt der
kinetischen Energie, durch welche die Singularitdt des Atomkernpotenzials tiberall Einfluss hat.
In [7] untersuchen wir die Regularitdt der Orbitale weiter und zeigen, dass sie auflerhalb einer
beliebigen Umgebungen des Ursprungs reell-analytisch sind. Abgesehen vom mathematischen In-
teresse an dieser Fragestellung erwarten wir Anwendungen dieses Ergebnisses fiir die Theorie von
Atommodellen. Im Falle der nichtrelativistischen Energie ist die reelle Analytizitdt der Orbitale
entscheidend, um zu zeigen, dass der reale quantenmechanische Grundzustand niemals ein Hartree-
Fock-Grundzustand sein kann.

In [6] wurde die Existenz eines Hartree-Fock-Minimierers unter der Bedingung N < Z + 1
bewiesen. Das heifit, in der Hartree-Fock-Theorie kann man Atome beschreiben, deren totale
Ladung fast bei —1 liegt. Ein lange offenstehendes Problem ist die Charakterisierung der maxi-
malen Anzahl N an Elektronen, die ein Atomkern der Ladung Z binden kann. Dies ist bekannt
als die Ionisierungsvermutung und kann wie folgt formuliert werden: Betrachtet man Atome mit
beliebig grofler Atomkernladung, kann dann die maximale Anzahl an Elektronen, die ein Atomkern
binden kann, durch die Atomkernladung plus einer universellen Konstante beschriankt werden? Die
Antwort auf diese Frage hangt natiirlich vom betrachteten Modell ab. Im Jahr 2003 hat Solovej die
Ionisierungsvermutung fiir nichtrelativistische Atome im Hartree-Fock-Modell bewiesen. In [8] er-
weitern wir Solovejs Resultat auf den Fall von pseudorelativistischen Atomen. Dies geschieht durch
Vergleich des Hartree-Fock-Minimierers mit dem Minimierer eines anderen Atommodells, ndmlich
dem Thomas-Fermi-Minimierer. Das Ergebnis wird erzielt, indem man iterativ zeigt, dass bis auf
einen Abstand der Ordnung 1 = ZY verschiedene Thomas-Fermi-Modelle gefunden werden kénnen,
welche den Hartree-Fock-Minimierer gut approximieren. In jedem Schritt berticksichtigt das neue
Modell die Tatsache, dass Elektronen in einem gewissen Abstand vom Atomkern eine Ladung
spiiren, die durch die am Atomkern ndheren Elektronen abgeschirmt ist. Die Beweismethode liefert
ebenso eine Abschétzung fiir die Ionisierungsenergie als auch fiir den Hartree-Fock Atomradius.
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Summary

This dissertation is a cumulative one concerned on the one hand with Willmore surfaces satisfy-
ing prescribed boundary conditions and on the other hand with the Hartree-Fock atomic model for
pseudo-relativistic atoms. In both cases we study some minimisation problem and the qualitative
properties of the solutions. In the first part of this dissertation, which consists of the following
papers, we present the results concerning boundary value problems for Willmore surfaces.

[1] A. Dall’Acqua, K. Deckelnick, H.-Ch. Grunau, Classical solutions to the Dirich-
let problem for Willmore surfaces of revolution, Adv. Calc. Var. 1 (2008) 379-397.

[2] A. Dall’Acqua, S. Frohlich, H.-Ch. Grunau, F. Schieweck, Symmetric Willmore
surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var. 4
(2011) 1-81.

[3] M. Bergner, A. Dall’Acqua, S. Frohlich, Symmetric Willmore surfaces of revolu-
tion satisfying natural boundary conditions, Calc. Var. PDE 39 (2010) 361-378.

[4] M. Bergner, A. Dall’Acqua, S. Frohlich, Willmore surfaces of revolution bounding
two prescribed circles, Preprint Nr. 13/2010, Universitdt Magdeburg, submitted.

[5] A. Dall’Acqua, Uniqueness for the homogeneous Dirichlet Willmore boundary
value problem, Preprint Nr. 06/2011, Universitat Magdeburg, submitted.

The Hartree-Fock theory of pseudo-relativistic atoms is the subject of the second part of this
dissertation and is treated in the following papers.

[6] A. Dall’Acqua, T. Ostergaard Sgrensen, E. Stockmeyer, Hartree-Fock theory for
pseudorelativistic atoms, Ann. Henri Poincaré 9 (2008), no. 4, 711-742.

[7] A. Dall’Acqua, S. Fournais, T. Ostergaard Sgrensen, E. Stockmeyer, Real Ana-
lyticity away from the nucleus of pseudorelativistic Hartree-Fock orbitals, Preprint Nr.
09/2011, Universitiat Magdeburg, submitted.

[8] A. Dall’Acqua, J.P. Solovej, Excess charge for pseudo-relativistic atoms in Hartree-
Fock theory, Doc. Math. 15 (2010) 285-345.

Boundary value problems for Willmore surfaces A Willmore surface is a critical point for the
Willmore functional which associates to a sufficiently smooth two-dimensional surface the integral
over the surface of its mean curvature squared. This functional models the elastic energy of
thin cells or biological membranes. The Willmore equation (i.e. the Euler-Lagrange equation
corresponding to the Willmore functional) is a fourth order nonlinear equation and its study is
challenging since many methods developed for the study of nonlinear elliptic equations of second
order fail. While much progress has been achieved concerning existence and regularity of closed
Willmore surfaces, much less is known concerning surfaces with boundary which is the subject of
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this dissertation. In this case appropriate boundary conditions have to be added to the Willmore
equation. We consider two kinds of boundary conditions: Dirichlet and natural. By Dirichlet
boundary conditions we mean that the boundary of the surface and its tangential spaces at the
boundary are prescribed. In the case of natural boundary conditions the position of the boundary
is fixed and the mean curvature has to be zero at the boundary.

In order to have an understanding of which kind of phenomena may occur or of which kind
of results one may expect, we investigate the Willmore boundary value problem in the class of
surfaces of revolution. In [1] and [2] we start by studying the Dirichlet boundary value problem for
surfaces of revolution generated by graphs of positive symmetric functions defined on the interval
[—1,1]. The boundary of such surfaces consists of two circles on planes parallel to the y, z-plane
and centered at (—1,0,0) and (1,0, 0), respectively. In this case, the boundary conditions are given
prescribing the height of the graph at the boundary (i.e. the radii of the circles constituting the
boundary) via a parameter o > 0 and the value of the derivative of the function at the boundary via
a parameter § € R. The main result states that for any choice of the parameters a > 0 and § € R
there exists a smooth surface of revolution solution of the Willmore equation and satisfying the
boundary conditions. The case 5 = 0 is solved in [1] while the other values of 3 are studied in [2].
The existence is achieved solving a minimisation problem via the direct method in the calculus of
variations. Starting from a minimising sequence we modify it to get to a new sequence satisfying
the bounds needed for the compactness argument. This is achieved by very explicit geometric
constructions yielding not only the existence of a minimiser but many qualitative informations on
it. In the construction, we suitably cut the graph and smoothly (C*!) glue to it pieces of explicit
graphs with not only better but optimal Willmore energy. These graphs are, on one hand the ones
generating minimal surfaces of revolution (the catenoids) and on the other hand arcs of circles with
center in the z-axis. Here one uses that, in the case of Dirichlet boundary conditions, minimising
the Willmore functional for surfaces of revolution is the same as minimising the elastic functional
in the hyperbolic half-plane. Further, the minimisers are shown to be C°°-smooth. Concerning
the asymptotic behavior of the solutions for 8 € R fixed and « going to zero, convergence to the
unit sphere centered at the origin is proven.

In [3] and [4] the natural boundary value problem for surfaces of revolution is studied. In [3] a
generalisation of the Willmore functional is considered. In this case from the Willmore functional
we subtract the total integral of the Gauss-curvature multiplied by a parameter v € [0,1]. Critical
points of this generalised Willmore functional still satisfy the Willmore equation since the integral
over the Gauss curvature only contributes to the boundary terms. In [3] we restrict to the case
of surfaces of revolution generated by symmetric graphs. As boundary conditions we prescribe
the radius > 0 of the circles constituting the boundary and that the mean curvature at the
boundary has to be equal to the parameter v times the normal curvature of the boundary. This
second boundary condition is the one that naturally appears when minimising this generalised
Willmore functional among surfaces where only the position of the boundary is fixed. For any
a > 0 and v € [0,1] existence of a Willmore surface of revolution satisfying the boundary value
problem is proven. The idea of the proof is that if a minimiser for this natural value problem is
a proper graph, it solves the Dirichlet boundary value problem for some value of the derivative
at the boundary, and so we are lead back to the Dirichlet boundary value problem. The proof
that the minimiser is a graph is achieved by studying continuity and monotonicity properties of
the energy. In [4] we consider again natural boundary conditions but simply for the Willmore
functional, not the generalised one. The boundary conditions are in this case given by prescribing
the two circles that constitute the boundary and that the mean curvature has to be equal to zero
at the boundary. Comparing the problem to the one studied in [3] here the two circles do not need
to have the same radius. Moreover, we do not restrict to graphs, neither to symmetric curves.
For all positive values of the radii of the circles constituting the boundary we have existence of



a minimiser. First a constrained minimisation problem is solved and then it is proven that a
minimiser is in the interior of the set over which we minimise. In this case the minimum of the
energy over surfaces of revolution generated by curves is equal to the minimum of the energy over
surfaces of revolution generated by graphs. We further prove that the solutions converge to the
unit sphere centered at the origin when the radii of the two circles constituting the boundary go
to zero.

In [5] a two-dimensional surface that admits a parametrisation as a graph over a strict star-
shaped two-dimensional domain is considered. As boundary condition we study the following
Dirichlet boundary value problem: the boundary is given by the boundary of the domain over
which the surface is given as a graph, and the tangent planes along the boundary are given by the
plane containing the star-shaped domain. What we prove is a uniqueness result. That is, the only
smooth Willmore surface satisfying this boundary value problem is a piece of the plane. In the
first part of the proof it is shown that the mean curvature has to be equal to zero at the boundary.
This is done in the spirit of the proof of Pohozaev’s identity using the conformal invariance of
the problem. The conclusion that the surface is a piece of a plane is then obtained using the
classification theorem for Willmore surfaces of Bryant.

Hartree-Fock theory for pseudo-relativistic atoms A model for a pseudo-relativistic atom with
N electrons and a nucleus of charge Z fixed (at the origin) is in Schrodinger theory given by the
Hamiltonian (operator)

1
D~

N
H = -

; ’XJ‘ 1<i<;<N Ixi — %]
where the kinetic energy 7 of the j-th electron is given by T; = T, j = 1,..., N, with T' =
V—a2A +a* — a2 with a Sommerfeld’s fine structure constant; physically, a ~ 1/137.036.
The operator Z/|x;| gives the attraction that the j-th electron feels from the nucleus while the
operators 1/|x; — x;| describe the mutual repulsion of the electrons. The choice of the kinetic
energy as a pseudo-differential operator of order one is done to take into account some relativistic
effects. This is the reason for speaking of pseudo-relativistic atoms. In order to have boundedness
from below of the Hamiltonian one needs to restrict to values of the nuclear charge Z satisfying
Za < 2/m. The electrons are described by a “wavefunction” ¥ € AN L?(R3), where |¥|? has to
be understood as a probability density. That is, its integral over a region in R3N gives us the
probability of finding the N electrons in that region of space. The antisymmetry is needed because
of Pauli’s exclusion principle. The (quantum) ground state energy is the infimum of the spectrum
of H considered as an operator acting on the space of wavefunctions:

EM(N, Z) .= inf oy, (H) = inf{ (¥, HV) | ¥ € AN, L2(R3), (¥, T) =1},

where (-,-) denotes the scalar product in L?(R3"). One of the aims of quantum mechanics is
the study of the ground state energy and, if it exists, of the wavefunction minimising it. Due
to the high dimension of the problem, many approximations are studied. One of the most fa-
mous is the Hartree-Fock approximation. In this approximation, one restricts the minimisation
problem minimising only over the simplest antisymmetric wavefunctions. These are pure wedge
products (also called Slater determinants), i.e. wavefunctions ¥ that admit a representation as
U (X1,X2,...,XN) = \/% det(ui(xj))f-vd 1 with {u;}YY, orthonormal in L?(R3).

In [6] we prove the existence of a Hartree-Fock minimiser for the model of a pseudo-relativistic
atom given above, under the condition that the number N of electrons is an integer satisfying
N < Z + 1. This bound on the number of electrons is the same as the one in the classical non-
relativistic case where the kinetic energy is given by —%A. The minimisation problem is solved
by extending the set over which we minimise making it convex and then extending it even further
in order to take into account some possible loss of compactness that could cause a reduction of
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the number of particles. The main difficulty is due to the fact that the nuclear potential is not
relatively compact with respect to the kinetic energy. We further prove regularity of the orbitals.
These are shown to be C'™ outside of the origin and exponentially decreasing. The challenge
here is due to the non-locality of the kinetic energy through which the singularity of the nuclear
potential can be felt everywhere. In [7] we study further the regularity of the orbitals proving
that these are real analytic away from the origin. Apart from the mathematical interest, we
expect that this information may have applications in the theory of atomic models. In the case of
non-relativistic kinetic energy, the real-analyticity of the orbitals is crucial to show that the real
quantum mechanical ground state is never a Hartree-Fock ground state.

In [6] the existence of a Hartree-Fock minimiser under the condition N < Z 4 1 was proved.
That is, in the Hartree-Fock theory one can describe atoms with total charge almost equal to minus
one. A long standing open problem is the characterisation of the maximal number of electrons
N that a nucleus of charge Z can bind. This is known as the ionization conjecture that can be
formulated as follows. Consider atoms with arbitrarily large nuclear charge, is it true that the
maximal number of electrons that a nucleus can bind is bounded by the charge of the nucleus plus
a universal constant? The answer to this question depends of course on the model one considers.
In 2003 Solovej proved the ionization conjecture in the Hartree-Fock theory for non-relativistic
atoms. In [8] we extend Solovej’s result to the case of pseudo-relativistic atoms. The result is
achieved comparing the Hartree-Fock minimiser with the minimiser for another atomic model: the
Thomas-Fermi minimiser. The result follows showing, iteratively, that up to a distance of order
1 = Z° we can find several Thomas-Fermi models that are a good approximation of the Hartree-
Fock minimiser. At each step, the model we consider takes into account that electrons at a certain
distance from the nucleus feel a charge that is screened by the electrons nearer to the nucleus. The
method of proof yields also an estimate on the ionization energy and on the Hartree-Fock atomic
radius.

Hereby I declare that I have significantly contributed to each paper constituting this disser-
tation. All my coauthors as well as all the sources I have used are listed. I have produced this
dissertation as a whole entirely myself.

Magdeburg, 30th of March 2011

(Dr. Anna Dall’Acqua)
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Introduction

This dissertation is a cumulative one concerned on the one hand with Willmore surfaces satisfy-
ing prescribed boundary conditions and on the other hand with the Hartree-Fock atomic model for
pseudo-relativistic atoms. In the following introduction we shall describe the two topics separately.
For both the main tools of the underlying mathematical theory are variational methods and reg-
ularity theory for partial differential equations. Here we give a short introduction to the subjects
and an overview of the results. The results concerning boundary value problems for Willmore
surfaces are proved in the papers [3] [4, [7, 8, [10], which constitute the first part of this dissertation.
The ones on the Hartree-Fock theory of pseudo-relativistic atoms, which form the second part of
this dissertation, are in [9, 11} [I2]. For a more thorough discussion of the results and of their
proofs we refer to the papers themselves.

1 Boundary value problems for Willmore surfaces

The Willmore functional associates to a sufficiently smooth two-dimensional immersed surface I"
the value

w(T) ::/ZHQ ds,

with H = (k1 + k2)/2 the mean curvature (k1, k2 denote the principal curvatures of I') and dS
the area form induced on I' by the canonical metric in R3. This functional models the elastic
energy of thin cells or biological membranes (see e.g. [I7, B3, 56, 67]) and it appeared already
in the 19th century in the first studies in elasticity of Germain and Poisson (see e.g. [29] 59]).
It was forgotten during the first half of the twentieth century and it was Willmore’s work [76]
which popularised again its investigation. In more recent years other applications of the Willmore
functional in image processing (for problems of surface restoration and image in-painting), and
even in string theory have been discovered (see e.g. [35] 40]). In these applications one is usually
concerned with minima, or more generally with critical points of the Willmore functional. Such a
critical point I' C R? has to satisfy the Willmore equation

AJH+2H(H?* —-K) =0 on T, (1.1)

where A, denotes the Laplace-Beltrami operator on I' with respect to the induced metric g and
K = Kikg is the Gauss curvature (see [76, Sec. 7.4]). This equation is highly non-linear since A,
depends on the unknown surface. Moreover, the equation is of fourth order. A solution of the
differential equation (L)) is called a Willmore surface. Classical examples of Willmore surfaces
include spheres, minimal surfaces and stereographic projections of the Clifford Torus in R3. This
is a circular torus in R? with the ratio of the radii given by 1/1/2. Spheres are the absolute minima
of the Willmore functional among all compact surfaces (see [76, Sec. 7.2]). The famous Willmore
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conjecture states that the stereographic projection of the Clifford Torus is the minimum of the
Willmore functional among compact surfaces of genus 1.

An important characteristic of the Willmore functional is its conformal invariance. Indeed, it
is trivially invariant under Euclidean transformations as well as under scaling. If I is an inversion
in R? with center at a point not in the surface (p ¢ T') then W(I o f) = W(f) (see [76], Sec. 7.3] or
Weiner [75]). In fact, the Willmore functional appears also in conformal differential geometry as
the simplest conformally invariant variational problem (see [74]). In this field Willmore surfaces
are known as conformal minimal surfaces.

Various existence and regularity results for closed Willmore surfaces of prescribed genus are
extensively discussed in the literature. In [67] Simon proves that the minimum of the Willmore
functional among compact surfaces of arbitrary prescribed genus is attained when the genus is
equal to one or, for higher genus, a certain condition is satisfied. Bauer and Kuwert in [I] prove
that this condition is indeed always satisfied. We also wish to mention the works of Kuwert and
Schiétzle [42),[43] and of Leschke, Pedit and Pinkall [46] for existence of constrained closed Willmore
surfaces of fixed conformal class and Bryant [5] for a classification theorem. The best regularity
result on solutions to (ILI]) is that proved by Riviere in [61] stating that a suitably defined weak
solution of (L)) is the image of a real-analytic immersion. This extends a previous regularity
result of Kuwert and Schétzle [41]. In all these works the conformal invariance of the Willmore
functional plays a key role. Results on local and global existence of the L?-gradient flow associated
with the Willmore functional (the Willmore flow) as well as numerical algorithms and numerical
analysis on Willmore surfaces and Willmore flow are available in the literature. We refer to [10]
for a short discussion and some references.

In the present dissertation we are interested in surfaces with boundaries. Then, appropriate
boundary conditions should be added to (I.I]). Since this equation is of fourth order one requires
two sets of conditions. A discussion of possible choices can be found in Nitsche’s survey article
[56]. We are interested mainly in two kinds of boundary conditions: Dirichlet and natural. By
Dirichlet boundary conditions we mean that the boundary OI' of the surface and the tangential
spaces of I at OI" are prescribed. In the case of natural boundary conditions the position of the
boundary O is fixed and the mean curvature H must be zero at the boundary. This kind of
boundary condition is the natural one when considering critical points of the Willmore functional
when only the position at the boundary is fixed.

Nitsche’s work [56] contains some existence results for several kinds of boundary conditions.
These are based on perturbation arguments and hence require smallness conditions on the data.
The question arises whether it is possible to specify more general conditions on the boundary data
that will guarantee the existence of a solution to (ILI)). Such a task seems to be quite difficult
since the problem is highly nonlinear and of fourth order and so, lacking any form of a general
maximum or comparison principle. Most of the well established techniques from second order
problems seem to break down completely in higher order problems. A first result without any
smallness condition is the one of Palmer in [58] where he proves that a Willmore surface of disk
type which has its boundary on a circle and which intersects the plane of the circle at a constant
angle is a spherical cap or a flat disk. In [I4] Deckelnick and Grunau prove existence of solutions
to the one-dimensional Willmore problem for arbitrary Dirichlet boundary conditions and without
assumptions on symmetry. (The Navier one-dimensional boundary value problem is studied in
[14,[15].) Schatzle [62], using methods from geometric measure theory, proved an important general
result concerning existence and regularity of branched Willmore immersions in S with boundary
which satisfy Dirichlet boundary conditions. By working in S™, some compactness problems could
be overcome. Assuming the boundary data to obey some explicit geometrically motivated smallness
condition Schatzle’s solutions can even be shown to be connected and embedded.

In order to start working on a theory of classical bounded smooth solutions for the Willmore
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boundary value problem it seems to be a good and appropriate strategy to investigate situations
enjoying symmetry. A natural class to start with is the class of surfaces of revolution. Although
there, one has an underlying ordinary differential equation, understanding solvability of the cor-
responding boundary value problems is by no means straightforward. In [3], 4, [8 [10] existence
and qualitative properties of Willmore surfaces of revolution with Dirichlet and natural boundary
conditions are studied. These studies indicate which phenomena and results concerning compact
embedded solutions in R? of boundary value problems for the Willmore equation might be ex-
pected. The obtained results are in some cases surprising and indicate some unexpected behavior.
In [7] a Willmore surface given by a graph over a strictly star-shaped two-dimensional domain
and satisfying homogeneous Dirichlet boundary conditions is shown to be necessarily a piece of a
plane.

1.1 Willmore surfaces of revolution

For ai,az € R, a1 < ag, let ¢ : [a1,a2] — R x Ry, ¢(t) = (2(t),y(t)), be some smooth regular
curve. Here and in the following Ry := (0, +00). Rotating the curve ¢ about the z-axis generates
a surface of revolution I' C R? which can be parametrised by

L:f(t,p) = (x(t),y(t) cos(¢), y(t) sin(gp)) eR3, t € lay,as], ¢ €[0,27). (1.2)

The term surface always refers to the mapping f as well as to the set I'. The condition on the
second component of the curve ¢ = y > 0 implies that f is embedded.

The boundary of I' consists of two circles on planes parallel to the y, z-plane and centered at
(x(al),O, 0) and (x(ag), 0,0) respectively. In this case, Dirichlet boundary conditions means that
we prescribe the two circles that give the boundary of T" and the values of the derivatives (2/,v")
at the boundary. In the case of natural boundary conditions, only the two circles constituting the
boundary are prescribed.

The principal curvatures of I' are respectively

x/ly/ _ x/y/l x/

Kl =——" and K9 = ——x—.
Y /x/2+y/2

(22 + ylz)%
Notice that s is the (Euclidean) curvature of the plane curve ¢. The Willmore energy of I' is
given by

(1.3)

T [ a2y’ =2y ! 2 12\1/2

Wi(e) = 5/(11 ((x’2+y’2)3/2 o y(:r’2+y’2)1/2) y(a® +y=) " dt (1.4)
From this formula we see that W(c) € [0,00) if ¢ is a W?2curve (i.e. ¢ = (x,y) with z,y €
W22(ay,as)) with ¢ = y > 0 in [a1,az]. If the curve ¢ is in fact a graph over the x-axis, i.e.
c(t) = (t,u(t)) for some smooth function u : [a1,az] — Ry, then we obtain

W(c) = T /(:2 <( u - ! )1/2>2uv 1+u?dx = W(u). (1.5)

2 L+uw?)3/2 a1+ u?

A natural approach to prove existence of Willmore surfaces of revolution satisfying prescribed
boundary conditions is the variational one. That is, we find a solution to (ILT) with the prescribed
boundary conditions by proving the existence of a minimiser for the Willmore functional in an
appropriate class, via the direct method in the calculus of variation. It is convenient now to
restrict the discussion to the case of surfaces of revolution generated by graphs. Indeed, these are
the surfaces we consider in [3, 8, [I0]. In [4] we consider the case of natural boundary conditions
and start by considering surfaces of revolution generated by curves, but we prove that, in the
minimisation problem, one may restrict oneself to the study of graphs.
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For fixed o > 0 let us consider the following minimisation problem
M, = inf{W(u) : v € W*?(a1,az), u > 0 in (a1,as) and u(a;) = u(az) = a} .

Let (uz)ren be a minimising sequence, that is, a sequence of positive functions in W22(ay, az) such
that limg_oo W(ug) = M, and ug(a1) = ug(ag) = « for all k. From formula (LH]) it is clear that
the uniform bound for the Willmore energy W(uy) of the elements of the sequence does not give
a bound for their W22-norm. From the same formula one may see that uniform estimates from
below and from above for the functions uj (i.e. of the form 0 < C7 < u, < Cy in [—1,1]) and
from above for |u}| (i.e. |u}| < C3) would yield a uniform bound in W#2-norm. The existence
of a W22-minimiser would then follow by standard arguments. Therefore, the crucial point is to
prove that we can restrict to minimising sequences satisfying the needed a priori estimates. We
do this by very explicit geometric constructions substituting, when necessary, the elements of the
minimising sequences by others with a very precise qualitative behavior. As a consequence, we do
not only get existence of a minimiser but also qualitative informations on it.

A key observation for the geometric constructions yielding an a priori bounded minimising
sequence is the correspondence between the Willmore functional on surfaces of revolution and a
curvature functional (which we call the hyperbolic Willmore functional) on curves in the hyperbolic
half plane. This observation goes back to Bryant and Griffiths [6] and Langer and Singer [45]. It
is convenient at this point to present the transformation in some details. The hyperbolic half
plane RZ := {(z,y) : y > 0} is equipped with the metric ds; = (dz* + dy?)/y*>. A graph
la1,a2] > x — (z,u(x)) € R% has (hyperbolic) curvature (see [8, Sec.2.2])

B _u(x)Qi 1 _ u(z)u” (x) 1
kp(x) = W (z) d (u(x) 1—|—u’(:1:)2> (1+u'(x)2)3/2 + 1+u’(:1:)2' (1.6)

Geodesics are circular arcs centered on the z-axis and lines parallel to the y-axis; the first (together
with minimal surfaces) will play a crucial role in choosing suitable minimising sequences for the
Willmore functional. Notice that the two terms on the right hand side of (L) differ from those
inside the brackets in the integral in (LI by a factor v and in (L6 these are summed while in
(LH) the two terms are subtracted. With this in mind, concerning the elastic energy in this metric,
that we call hyperbolic Willmore energy and denote with Wy, (u), we find

Wh(u) = /a2 kop(x)? dsp(x) = /a2 Hh(x)inl—i—u’Q dx

1 a1 u
2 ag u// 2 ul az

= —W(u +4/ ——dr=-W(u +4[7} . 1.7
W@ [t de = W@ | | (L7)

This shows that the Willmore energy W(u) and the hyperbolic Willmore energy Wy, (u) differ only
by a boundary term. One can see this also via the Theorem of Gauss-Bonnet since

a ’LL” a 1
/ 73dx:—/ mngux/l-l—u’de:—/KdA,
a )5 a 27 by

1 (1—|—Ul2 1

with k1, ko given by ([L3) (for (x(¢t),y(t)) = (t,u(t))), K = kiko the Gauss curvature of I' and
¥ = (a1,a2) x (0,27). The same transformation and similar formulas hold in the more general case
of surfaces of revolution generated by curves. It is interesting to notice that the parametrisation
given in (L2) is conformal if the curve ¢ is parametrised by the hyperbolic arc-length.

As described above, the strategy to prove the needed a priori estimates is to substitute, when
necessary, the elements of the minimising sequence with elements satisfying the same boundary
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conditions, with better energy and with quite a precise qualitative behavior. This is achieved by
suitably cutting the graph and smoothly gluing to it pieces of explicit graphs with not only better
but optimal Willmore energy. First of all, since the problem is of fourth order, for the gluing it is
not sufficient to have continuity but continuity also of the first derivative is needed. Also because of
this, we consider the minimisation problem in C1([a1, as]) C W?2(ay,az). Secondly, one needs to
find which are the graphs with optimal Willmore energy. Since the Willmore energy is equal to the
total integral over the mean curvature squared, it is natural to look for axially symmetric surfaces
with mean curvature identically equal to zero. These are the so called catenoids: a two-parameter
family of surfaces generated by rotating the graph of the function x — % cosh(bx + a) (for b € R4
and a € R) around the z-axis. These are the only minimal surfaces of revolution. The second
family of optimal graphs is to be found looking at the hyperbolic Willmore functional given in
(I70). Indeed, for the gluing the values of the function and its first derivative need to be preserved
and are therefore given at the end-points. Formula (7)) shows then that minimising the Willmore
functional is equivalent to minimising the hyperbolic Willmore functional in this case. Therefore,
the other family of optimal graphs are the (pieces of) spheres with arbitrary radius and center on
the x-axis, since these are the geodesics of the hyperbolic half-plane which are also graphs. There
are constructions where one cannot use the gluing just described. However, also in this situation
the understanding of the graphs with optimal Willmore energy is crucial.

The conformal invariance is a key feature of the Willmore functional of which we make frequent
use in the geometric constructions. Rotation and translation are frequently employed, and scale
invariance is very important. On the other hand, inversions are not addressed since in most cases
they do not preserve the particular shape of surfaces of revolution generated by graphs.

The critical points of the hyperbolic Willmore functional parametrised by arc-length satisfy
the ordinary differential equation

d? 1 3
@/@h(s) — Kkp(s) + Efﬁh(s) =0. (1.8)

This equation is discussed in detail in [44] [45] where a classification of possible curvature functions
in terms of elliptic functions is given. However, we did not see any possibility to solve directly and
explicitly the Willmore boundary value problem based upon this classification.

1.1.1 Symmetric Dirichlet boundary conditions

In this paragraph we present the results proved in [8] [10]. In these works surfaces of revolution
generated by graphs with prescribed symmetric Dirichlet boundary conditions are considered. Due
to the scaling and rotational invariance of the problem it is sufficient to consider positive functions
u defined on [—1,1]. In this case, the boundary conditions are given prescribing the height of the
graph at the boundary (i.e. the radii of the circles constituting the boundary) and the value of
the derivative at the boundary. So, we may consider two parameters: a positive parameter « for
the height at the boundary and a parameter 3 € R for the value of the derivative at the boundary.
Then the boundary value problem we wish to solve is

{ AyH +2H(H? - K)=0 in (-1,1), 1.9)

uw(=1) =u(+1) =a,  W(=1) =—u(+1) =5,

with Ay the Laplace-Beltrami operator on the surface of revolution generated by the graph of u.
Formula (7)) gives that for all smooth u : [—1, 1] — Ry satisfying the boundary condition in (L9,

g
Vel

W(u) = g Wh(u) + 47 (1.10)
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This equality shows that in the case of Dirichlet boundary conditions for the study of the min-
imisation problem we may switch between the Willmore functional and the hyperbolic Willmore
functional choosing in each situation that which is more convenient.

For a > 0 and 8 € R we introduce the function space

Nop = {v e CM([-1,1],R,), v is even, positive, v(—1) = a, v/(=1) = 3 and,
if 0 > 8 > —« and aarsinh(—f3) > /1 + 32, (1.11)

v satisfies the extra condition v/(z) < a in [0,1]} .

This is the space where we study the minimisation problem. The main result concerning the
existence of solutions to (L)) is the following theorem.

Theorem 1.1 (Cf. Theorem 4 in [§] and Theorem 1.1 in [10]). For each a > 0 and each § € R,
there exists a positive even functionu € H?((—1,1))NCY([~1,1]) satisfying u(—1) = a, v/(—1) = 8
such that

Wi(u) = My d:efinf{Wh(v) :v € Nogle

This minimum is such that the corresponding surface of revolution T C R3 is a weak solution of
the Dirichlet problem (L9). Moreover, u is smooth, i.e. u € C*>([—1,1]).
The solution has the following additional properties:

1. If aff > 1, then v/ < 0 in (0,1] and |u'(x)| < B for all z € [-1,1].

2. Ifaf <1 and B3>0, then v’ <0 in (0,1) and [u/'(z)| < L for all x € [-1,1].

3. If 3 < 0 and ccarsinh(—B) > /1 + (2, then v’ > 0 in (0,1].

4. If B <0 and aarsinh(—f) < m, then u has at most one critical point in (0,1).

In the previous theorem, the case a > 0 and § = 0 is proven in [§] while all the other cases are
proven in [10].

The reader familiar with the theory of minimal surfaces might be surprised that in the theorem
above existence of axially symmetric solutions to (9] for all values of @ > 0 and 5 € R is stated.
Axially symmetric critical points of the area functional are the catenoids. The ones symmetric
with respect to zero are obtained for any b € (0,00) by rotating the curve z — %cosh(bx) around
the z-axis. One may see that catenoids satisfying u(£1) = « exist only for a > a* where

cosh(b)

a* :=inf{ 7

:be Ry} =1.5088795. .. (1.12)

Not only do these catenoids cease to exist for boundary data « € (0, o), but there is no connected
minimal surface solution at all for a@ < 1.

To prove Theorem [[1] we consider positive symmetric functions in C1([—1,1]) satisfying the
given boundary conditions and study the minimisation problem in this class. As described above
the idea is to pass from arbitrary to suitable minimising sequences satisfying strong a priori bounds.
These bounds are obtained by explicit geometric constructions which lower the Willmore energy.
We describe here the main ideas of the constructions.

As can be seen from the statement of Theorem [[LI] the behaviour of those solutions of the
Willmore equation constructed there depends not only on whether 3 > 0 or 8 < 0. In both cases
we have to make further distinctions. The switch between the different cases occurs at the values
of the parameters for which spheres or catenoids are solutions. These solutions mark the values of
the parameters where the qualitative behaviour of solutions changes.
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In the case § > 0 it is convenient to study the reformulation of the minimisation problem in
the hyperbolic half plane. If a8 = 1 then a solution is given by an arc of the circle with center
at the origin and passing through the point (1, «) which we denote by S,. This is a geodesic in
the hyperbolic half plane. The corresponding surface of revolution is part of a sphere which is the
simplest possible closed Willmore surface. It is then convenient to distinguish the cases a8 > 1
and af < 1. In the case a8 > 1 a graph satisfying the boundary conditions starts above S,. By
gluing pieces of spheres and using the conformal invariance of the Willmore functional we prove
that one can restrict to minimising sequences for which the functions are increasing on (—1,0) and
the maximum of the derivative is attained at the boundary. Further, S, is a strong barrier from
below for the modified minimising sequence. This property follows from the following result.

Lemma 1.2 (Cf. Lemma 3.9 in [I0]). Let o and (3 be strictly positive and such that o3 > 1. For
each positive even function u € C1H([—1,1]) with u(—1) = o and u'(—1) = 3 there exists a positive
even function v € CY1([—1,1]) with Willmore energy smaller than or equal to the Willmore energy
of u, satisfying the same boundary conditions as u and such that

x4+ v(z)v (x) <0 in [0,1]. (1.13)

We give the idea of the proof of this lemma since its proof requires only one geometric construction
and it gives the opportunity to give an example of the gluing procedure described above. Let ¢
be defined by ¢(x) := z + u(x)u/(z) for x € [0,1] and u as in the lemma. The function ¢ gives
the z-coordinate of the center of the semicircle with center in the z-axis and tangent to the graph
of win (x,u(x)). Since af > 1, p(1) < 0 and by the symmetry of u, ©(0) = 0. If there exists
zo € (0,1) with p(z9) = 0, a new symmetric function with smaller Willmore energy than u is
constructed as follows. On [0,zo] we take the arc of the semicircle with center at the origin and
tangent to the graph of w in (xg,u(zg)), while on [zg, 1] we take u. Extending by symmetry the
function to [~1,1] we get a Cl!-even positive function satisfying the same boundary conditions
as u. Moreover, the Willmore energy of the new function is at worst equal to the Willmore energy
of u. Indeed, thanks to formula (LI0) it is enough to look at the hyperbolic Willmore energy.
The function u is changed only on [—z¢, o] where we have substituted its graph with an arc of a
geodesic of the hyperbolic half-plane which does not contribute to the hyperbolic Willmore energy.
Finally, by construction the new function satisfies (LI3]).

The case af < 1 and # > 0 is in some sense dual to the one just described. Indeed, again
the graph is increasing on (—1,0) while S, (the arc of semicircle explicit solution of the boundary
value problem for a5 = 1) is now a barrier from above and the satisfied differential inequality is
z + u(x)u/(z) > 0in [0, 1].

As we have seen, the geodesics of the hyperbolic half plane play an important role when studying
the case # > 0. In some sense, spheres are the dominating shapes. When studying the case § < 0,
both catenoids and spheres influence the shape of minimisers. For || large, numerical calculations
clearly display almost catenoidal and almost spherical (hyperbolically geodesic) parts of solutions.
A catenoid symmetric with respect to zero is obtained rotating around the z-axis the graph of
x — cosh(bx)/b for b € R4 which is called a catenary. In the following the word catenary refers
both to the function z + cosh(bz)/b, for some b > 0, as well as to its graph. In the geometric
constructions with 3 < 0 catenaries come into play in addition to the hyperbolic geodesics. For

B < 0 given and o = ag with
V1+p2
= —"— 1.14
as arsinh(—03)’ (1.14)
an explicit solution is given by the catenary x — cosh(bx)/b with b = arsinh(—/). This explicit

solution plays for # < 0 the role that the semicircle S, plays for 3 > 0. Then, we distinguish the
cases a > ag and o < ag. These are cases 3. and 4. in Theorem [T For o > ag there exist
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two catenaries ¢; and co with height a at the boundary. Concerning the slopes at the extrema
of the interval, one finds ¢} (—1) < 8 < c,(—1) (see [10, Figure 4]). In this case, the boundary
conditions force the graph to remain initially between the two catenaries. Notice that one catenary
is relatively flat while the other is quite deep, i.e. it gets near to the z-axis. In analogy with the
case 0 > 0 and the behavior of the ‘good’ graphs with respect to the spheres, one may expect
that these catenaries could serve as barriers: one from above and the other from below. However
the situation is more complicated than this. One can prove that the flatter of the two catenaries
is a barrier from above for the elements of the modified minimising sequence, while the deep
catenary is only on a subset of [—1,1] (not containing 0) a barrier from below (see [10, Lemma
4.7]). Similarly as in the case § > 0 this observation follows from the fact that the elements of
the modified minimising sequence satisfy an ordinary differential inequality (see [10, Lemma 4.5]).
Still, the solutions we obtain resemble these catenaries since they satisfy «’ > 0 in (0, 1]. Further
the fact that the graph starts between two catenaries suggests that compactness problems may
arise. Indeed, we need further to distinguish the case —3 > « and —f < a. The parameter range
—0B > «a can be studied with ideas similar to the case § > 0 using catenaries instead of geodesic
semicircles. The case —f < « is special since we can prevent loss of compactness only by further
restricting the class of functions over which we minimise (see the definition of the space N, 3 in
(LII)). The fact that for parameters in this range something special is happening is suggested
also by numerical computations. Indeed, for a value of 3 in this range there is numerical evidence
of the existence of two graphs both minimising the Willmore energy and with comparatively very
different qualitative behavior. These numerical experiments suggest also that in general we cannot
expect uniqueness of the minimiser in the class of surfaces we consider.

The case a < ag is not simply the dual of the case o > ag. We need to further differentiate
between the cases a* < o < ag and a < o*. Here o* defined in (LIZ) is the smallest boundary
height where for some boundary angle one may have a catenoid as solution. Notice that ag > a*
for all 8 < 0. In the case a < ag in order to achieve a priori information on suitably modified
minimising sequences both hyperbolic geodesics and catenaries are used in the constructions. This
interplay between these two prototypes of Willmore surfaces gives rise to some technical difficulties.

The case o < a < ag is in some sense dual to a > ag. Here we still have the two catenaries
c1 and ¢ with height o at the boundary. If —3 < « the graph starts above both catenaries and
these are barriers from below. This follows again from a differential inequality (see [10, Lemma
4.28]). For —f > « the graph starts below both catenaries and these are in general not barriers
from above. The constructions leading to minimising sequences satisfying strong a priori bounds
are similar to those for o > ag. The case a = a* is special since there is only one catenary with
height « but the constructions still work. As can be seen from the statement of Theorem [ILT], the
first order derivative of the elements of the modified minimising sequence could be chosen to be of
a fixed sign on [—1,0] for 8 > 0 and for 5 < 0 but a > ag. This is not the case for the range of
parameters such that 8 < 0 and o < ag. In this case the elements of the modified sequence satisfy
either «/ > 0 in (0, 1] or that v/ has a change of sign on (0, 1]. Numerical experiments indicate that
both phenomena occur. We do not have a good understanding on when which occur. For g < 0
and small values of a, we can prove that the first order derivative changes sign in [—1,0]. Due to
the boundary conditions the graph is, starting from x = —1, at first approaching the z-axis but
when this becomes energetically too expensive (as can be seen looking at the second term inside
the brackets in (LH])), the graph tends to move away from the z-axis causing a change of sign of
the derivative. From the studies of the case 8 > 0, we then know that there is no further change
of sign of the first order derivative (see [10, Lemma 3.20]).

It remains to discuss the case a < «*. This turns out to be the most complicated range of
parameters. The main problem is that here we do not have natural comparison functions since
there are no catenaries with height a at the boundary. The quantity we study in this case is the
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quotient u(x)/x for x € (0,1]. When this quotient is bigger than or equal to a*, we are in the
situation already studied in the case a* < a < ag and we can derive bounds for the function
and its derivative. For the other values of z, the quotient is below the corresponding quotient of
any catenary centered at 0 (i.e. u(z)/z < cosh(bz)/(bx) for any b € Ry). This is energetically
expensive since the only way to approach the z-axis with small Willmore energy and bounded
derivative is as a catenary. With this observation, we prove that on the set x € (0,1] where
u(z)/x < o the quotient u(x)/x is increasing moving from the right to the left starting at z = 1
(see [10, Proposition 4.43]). In these constructions we need to further restrict the space over which
we minimise (see [10, Definition 4.26]). Also in this case the constructions are different for the cases
a > —f and o < —f. The quotient u(x)/x is particularly important due to the scale invariance
of the Willmore functional.

Via the strong a priori bounds for the elements of the modified minimising sequence, we obtain
not only the existence of a minimiser, but also a qualitative description of it. Further, starting
from a weak formulation of the Euler-Lagrange equation the regularity of the minimiser is obtained
by a clever choice of test functions. The details of the proof of regularity are given in [8, Proof of
Theorem 4, Step 2].

In the geometric constructions we have used the conformal invariance of the Willmore functional
via reflections, translations, rotations and scaling. We do not employ inversions. However, for
certain choices of the boundary conditions inversion could have been employed but it would not
have covered all the cases. Considering inversions of the Willmore surfaces of revolution generated
by graphs constructed in Theorem [Tl yield parametric Willmore surfaces of revolution which are
not necessarily generated by graphs.

Via the geometric constructions we also have a good understanding of the monotonicity be-
havior of the energy.

Proposition 1.3 (Cf. Propositions 3.12, 3.19, 4.18, 4.40 and 4.49 in [10]). For o > 0 and § € R,
let My g be as defined in Theorem [L1] and, for 3 <0, let ag be defined as in (LI4).

(i) For >0 the energy M, g is strictly monotonically increasing in o for aff > 1 and strictly
monotonically decreasing in o for a8 <1 .

(i1) For 3 =0 the energy M, g is strictly monotonically decreasing in .

111) For B < 0 the energy M, g is strictly monotonically increasing in o for a > ag and strictly
B B
monotonically decreasing in o for o < ag.

The explicit solutions given by the spheres for a3 = 1 and by the catenary for v = ag mark the
values of the parameters where there is a change in the monotonicity behavior of the energy. A
natural question is if the minimiser in the class of symmetric graphs is also a minimiser in the
bigger class of surfaces of revolution generated by (symmetric) curves. That this is in general not
the case can be seen from the asymptotic behavior of the energy. For 3 # 0 the energy M, g
diverges when « grows to infinity while one can construct surfaces of revolution generated by
(symmetric) curves with bounded energy.

Solutions of (L) for £;(0) given and &} (0) = 0 are oscillating for |k, (0)] # 2 and with a
fixed sign if |k, (0)| < 2. Solutions with |x;(0)| = 2 are the catenaries. Concerning the hyperbolic
curvature of minimisers for M, 3, defined in Theorem [T we have the following result.

Theorem 1.4 (Cf. Theorems 6.4, 6.7, 6.9 and 6.11 in [10]). For o > 0 and # € R let ua 3 be a
smooth positive even function minimiser for My g (defined in Theorem [I1]) with u(—1) = a and
u'(—1) = . Let kpluqa,g| denote the hyperbolic curvature of the graph of uqs g as defined in (ILG).
Then we have
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1. For >0 and a3 > 1: either kpluqg) < 0 in [0,1) or there exists an a € (0,1) such that
Khltag) <0 in [0,a) and kplueg) > 0 in (a,1).

2. For 3> 0 and af < 1: Kplua ] > 0 in (—1,1).

3. For 8 <0 and o > ag: either kpluqg] > 0 in [0,1) or there exists an a € (0,1) such that
Knlta,g] >0 in [0,a) and kplua,g) < 0 in (a,1).

4. For 3 <0 and a < ag: kpluag) >0 in (—1,1).

Concerning the asymptotic behavior of the solutions constructed in Theorem [[LT] when 5 € R
is fixed and « goes to 0, we prove that they converge to the unit sphere centered at the origin.

Theorem 1.5 (Cf. Theorem 5.8 in [I0]). Fiz § € R. For o > 0 let uq be a minimiser for M, g.
Then, uq converges for a\, 0 to x — /1 — 22 in C" (—1,1) for any m € N.

loc

In a recent paper [30], Grunau presents a more refined study of the asymptotic behavior of the
minimisers near to x = 1 as « goes to zero. In a boundary layer the properly rescaled minimisers
are shown to converge to a piece of a catenary. The two results together confirm the numerical
computations showing that for o small the solutions have almost a catenoidal part and almost a
spherical part. It is here worth remarking how useful the numerical computations have been in
understanding the behavior of the solutions.

Scholtes in [63] studies the functional obtained by adding to the Wilmore functional the area
functional. Using also the geometric constructions just described above, he proves the existence of
minimisers in the class of surfaces of revolution generated by symmetric graphs satisfying prescribed
(but not arbitrary) Dirichlet boundary data.

1.1.2 Natural boundary conditions

In this paragraph we discuss the results proved in [3| [4]. In these works surfaces of revolution with
only the position of the boundary fixed are considered. That is, only the two circles constituting the
boundary are prescribed. The second boundary condition arises then naturally when considering
critical points of the Willmore functional in this class of surfaces. This can be seen by looking at
the first variation of W. Given a smooth function u : [-1,1] — R which is a critical point of the
Willmore functional one finds for any ¢ € H?(—1,1) N H3(—1,1)

d / (@) (@)]'
0= Wuttp)| =Wy = —2r [H@;)HTM} -

1

—27T/ up (A9H+2H3 — 2HK) dr
~1

(See [3, Appendix A].) where A, denotes the Laplace-Beltrami operator on I', the surface of

revolution generated by u. Hence, it is necessary that I' is solution of (LI]) and that its mean

curvature is equal to zero at the boundary (H(£1) = 0) in order that (W'(u),¢) = 0 for all

admissible test functions ¢. These (and more general) boundary conditions are discussed in [56].

With symmetry In [3] we study the existence of Willmore surfaces of revolution satisfying
symmetric natural boundary conditions and generated by symmetric graphs. In this work a more
general functional than the Willmore functional is considered. For a smooth, immersed two-
dimensional surface I' C R? and a real parameter vy € [0, 1] we study the functional

W,(T):= | H*dS —~ | KdS, (1.15)
[
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with, as before, H = (k1 + k2)/2 the mean curvature of the immersion (ki,k2 the principal
curvatures of I'), K = k1Ko its Gauss curvature, and dS its area element. This is a special choice
of the functional proposed by Nitsche in [56] that to a two-dimensional surface I' associates the
value

F(T) = /(I)(H, K)dS  with ®(H, K) = ji+ (H — Ho)? — 7K, (1.16)
I

with real parameters p, v and Hy satisfying p > 0,0 < v < 1 and yHZ < p(1—+). These conditions
on the parameters are needed for the definiteness of the functional. That is, the existence of a
constant C' > —oo such that F(I') > C holds true for all connected and orientable surfaces of
regularity class C?. In 1973, Helfrich [33] studied a functional quite similar to F in (LI6) as a
model for biological bilayer membranes. Since then, F is often referred to as Helfrich functional.
The functional W, is non-negative for vy € [0, 1] since

4(H?* = yK) = (1 = 7)(k1 + K2)? + v(k1 — K2)2 >0 for v €[0,1]. (1.17)

Moreover, the strict inequality W, (I') > 0 holds for every non-planar surface I" if 0 < v < 1.
As in the case of Dirichlet boundary conditions we study surfaces of revolution generated by
symmetric graphs. Let I' be the surface of revolution generated by the graph of an even smooth

function u : [-1,1] — R4. The Gauss curvature of I" and the energy are given respectively by
u’(z) [ () } '
K=———"— and W, (u) :=W,(I') =Wy(u) + 27y | ——= , 1.18
(1 —|—u’2)% y(w) () o(u) v T+u2|_, ( )

with Wh(u) = W(u) the Willmore energy of u defined in (LE]). Identity (LIS) shows that also the
case v = 1 is special. Indeed, up to some constant, Wi (u) equals Wy, (u), the hyperbolic Willmore
energy of u defined in (7). Thus, varying « within [0, 1], we interpolate between the “Euclidean”
Willmore functional with v = 0, and the “hyperbolic” Willmore functional for v = 1.

Critical points of W, satisfy the Willmore equation (ILI)). The Euler-Lagrange equation of W,
is independent of the value of v since the integral over the Gauss curvature only contributes to the
boundary terms on account of the Gauss-Bonnet Theorem. The boundary value problem under
consideration is then

AgH+2H(H? - K)=0 onT,
5 (1.19)

/14 u/(£1)2]

with Ay the Laplace-Beltrami operator on the surface of revolution generated by the graph of u.
Here, as for the case of Dirichlet boundary conditions, the parameter o > 0 gives the radius of
the circles constituting the boundary. The derivation of the second boundary condition is given
in [3, Appendix A] together with a geometric interpretation. The second boundary condition
can be rewritten as H(£1) = yk,(£1) with £,(1) the normal curvature of the boundary curve
¢ — (1,u(1) cos(p),u(1)sin(y)) and similarly for x,(—1).

The main result is the following.

u(£l) =a and H(£l) =

Theorem 1.6 (Cf. Theorem 1.1 in [3]). For each oo > 0 and for each vy € [0, 1], there exists a posi-

tive and symmetric function u € C*°([—1, 1], R,) satisfying u(£1) = « such that the corresponding
surface of revolution T C R? solves (LI9).

For special values of a and -, explicit solutions of problem (LLI9]) are known. For example,
if v = 1 then the piece of sphere described by the circular arc u(z) = Va2 +1— 22, z € [-1,1],
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provides an explicit solution of (LI9) for arbitrary e > 0. When v = 0 the second boundary
condition is H(£1) = 0. Then for o > o, with a* defined as in (L.I2), there exist two catenoid
solutions of (LI9]) generated by catenaries x +— cosh(bx)/b with b > 0 suitably chosen. These
explicit examples show that the solutions of problem (.19 are, in general, not unique. Theorem
becomes particularly interesting for v = 0 and @ < o, as minimal surface solutions do no longer
exist. For v = 0 and o = 1 there still exists an explicit solution given by u(z) = 2 — V2 — 22, a
piece of the well-known Clifford torus.

Existence of rotationally symmetric Willmore surfaces solutions of (ILI9) for v = 0 and for all
values of a was observed numerically in [28]. In [3§] the presence of a third solution for o > a* was
numerically observed, suggesting that o* is a bifurcation point on the branch of minimal surface
solutions. In [I6] Deckelnick and Grunau prove that o* is indeed a bifurcation point and so, at
least locally, the existence also of a non-minimal solution for o near to o is settled. In the same
paper, using a linearisation around the Clifford torus they prove existence of a solution to (LI9])
for v = 0 and « close to 1. Theorem states existence of solutions for the same boundary value
problem for all a € (0,a*). Without some uniqueness results on the minimisers, we cannot say
that these solutions are on the numerically computed branch. Uniqueness is a delicate issue since
for a > o* it is not valid.

A natural approach to prove existence of solutions to (LIJ) is by solving a minimisation
problem. The set over which we minimise is given by geg Na,s With Ny g defined as in (LII]).
That is, we minimise among symmetric smooth graphs satisfying u(+£1) = « and with arbitrary
slope at the boundary. Then, if a minimiser is a graph, the corresponding surface of revolution is a
solution of the Willmore Dirichlet boundary value problem (I.9]) for some value 3 of the derivative
at the boundary. For the last problem we have already proven existence, estimates and regularity.

The crucial part in the proof of Theorem consists then in showing that a minimiser is a
proper graph. This follows from the study of the monotonicity and continuity property of the
energy

T’y,(a,ﬁ) := inf {Wy(u) Tuc Naﬁ},
for v € [0,1], @« > 0 and 8 € R. The fact that this energy is attained and a minimiser exists is a
direct consequence of Theorem [Tl and (I8]).

Lemma 1.7 (Cf. Corollary 3.3 in [3]). Let v € [0,1] and o > 0 be fived. Then 3 +— T, 4 g) is
continuous in R if a < o while for a > a* it is continuous in R\{—a}.

The energy is not necessarily continuous in —« for a > o since for 0 > > —« and a arsinh(—3) >
/1 + (32 we restrict the set over which we minimise (see the definition of N, g in (III])). Numerical
experiments indicate that the energy M, g has a discontinuity at this point. That is, for 8 > —a
but near to —«, numerically we observe two branches of solutions to (L9)): one branch of solutions
that are qualitatively as the solutions we construct in Theorem [[.T]and a second branch of solutions
not satisfying the extra condition and with lower energy. The energy appears to be continuous
along this second branch.

Having informations on the continuity of the energy in 3, we now need to show that we may
restrict to a compact subset of 3 containing in its interior the slope that the minimisers have at
the boundary. This we reach by studying the monotonicity behavior of the energy in 3. Before
stating the result we need to introduce some notation. For a > a* there exist by < ba, b; = b;(«x)
for i = 1,2, real numbers such that
_ cosh(by)  cosh(by)

b by
These are the two parameters that describe the two catenoids with height a at the boundary. In

the following 31 = (1 («) and B2 = [B2(«) give the slope at the boundary of the catenoid associated
to by and be respectively; that is 51 := —sinh(by) and [ := — sinh(bs).
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Lemma 1.8 (Cf. Corollary 3.13 and 3.14 in [3]). For v € [0,1] and o < o the mapping § —
T, (a,p) 1s decreasing for —oo < 8 < —a and increasing for a ! < B < 4o0.

For v € [0,1] and a > o* the mapping B — T, ) is decreasing on (—oo,Ba()] and
(—a, B1()] while it is increasing on [a~!, 00).

In the particular cases v = 0 and v = 1 the monotonicity behavior in § of the energy can be
described more precisely. The mapping 8 — Tj (4,3 achieves its global minimum at § = —a for
a < of. For o > o, the catenoids are the obvious minima that are attained at § = (2(«) and
B = pi(a). For a > 0, the mapping 8 — T (o,5) achieves its global minimum at 3 = a~!'. The
proof of Lemma [[[8 is based on gluing pieces of semicircles and catenaries (as for the Dirichlet
boundary value problem), the monotonicity behavior of the energy in « and the scale invariance
of the energy. For v € (0,1) the monotonicity behavior of the energy in 3 is not completely
characterised. One may conjecture that there exists some 3 = ((a,v) € [B1(a),a™1] such that
B+ T, (ap) is decreasing on (—a, B] and increasing on [B, +00). The difficulty lies in the fact that
for v € (0,1) there do no exist graphs (or even curves) such that the energy W, is equal to zero
(see (LID)).

It is interesting that for a < o* and v = 0 the monotonicity property of the energy in 3 yields
that the constructed solution of (ILI9)) satisfies u/(—1) = —« for each . This confirms to a certain
extent that the case § = —a is special as already observed in the study of the Dirichlet boundary
value problem. The asymptotic behavior of the solutions for a going to 0 in the case v = 0 has
been studied in [37] where convergence to the sphere is proven.

The general case In [4] we construct connected annular type Willmore surfaces of revolution
spanned by two concentric circles contained in two parallel planes by minimising the Willmore
functional in this class of surfaces. The first boundary condition is that the boundary of the
surface is given by these circles, while the second one is that the mean curvature is equal to zero
at the boundary. Comparing the problem to the one studied in [3] here the two circles do not need
to have the same radius. Moreover, we do not restrict to graphs, neither to symmetric curves. On
the other hand, here we study only the Willmore functional and not the more general one studied
in [3] (see (LIH)).

Let S, := {re®? : ¢ € R} be a circle of radius r centered at the origin. Given two positive
parameters o and o, we consider the circles Cy, 1= {1} x Sy, and C,, = {1} x S,, centered at
(—=1,0,0) and (1,0,0) and with radii ; and a., respectively. The boundary problem we consider
is
(1.20)

ArH+2H(H?-K)=0 onT,
Ol = Cp, U Cy,, H=0ondl,

with Ar the Laplace-Beltrami operator on I'. We first observe for which values of the parameters
there exists a minimal surface solution. Piece of catenoids having C,, as boundary components
are those generated by rotating the graphs

s — 2 cosh cosh(y)
cosh(7) oY)

(:c+1)+'y> , xe€[-1,1], (1.21)
for arbitrary v € R. Studying this function one sees that there exists v € R such that the catenoid
generated by (2] is a solution to (L20) if and only if o, > af(ay) with

inf aq
WHGIR cosh(y)

(1.22)

ar(ap) ==

cosh (72 COZI?(’Y) + ’y) .

Notice that o (oy) > 0. One can further say that for a,, > a(ay) there are two such minimal
surfaces, while for o, = a*(«;) there is only one.
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The main result is the following.

Theorem 1.9. For each oy, > 0 there exists some smooth, annular type Willmore surface
I' C R3 minimising the Willmore energy among all rotationally symmetric, annular type surfaces
with boundary Cq, U Cy,.. The surface I is embedded into R3 and admits the representation

' = {(z,u(z)cos p,u(x)siny) : x € [-1,1], p € R}

with some function u € C*°([—1,1],Ry). The surface I' is a solution of the boundary value problem

2.

Finally, one of the following three alternatives holds:
a) If o > a(oy), there exist precisely two such solutions I', both being catenoids with H = 0.
b) If a, = o (ay), there exists precisely one such solution I', a catenoid with H = 0.

c) If a, < a(ay), there exists at least one such solution I'. Its mean curvature satisfies H =0

on Cq, UCy, and H #0 on T'\(Cy, U Cy,.).

Naturally, alternative ¢) is the interesting part of this result as the constructed Willmore surface
is not a minimal surface (as it corresponds to the case where no annular type minimal surface
spanning the two concentric circles exists). Also note that the solution from part ¢) minimises under
rotationally symmetric, annular type variations but is only stationary under general variations.
Presently, we do not know whether there exists some non-rotationally symmetric, annular type
surface spanning C,, U C,, with smaller Willmore energy than that constructed in Theorem [L9

Theorem [[.9]is proven by solving a minimisation problem. Let fal,w denote the set of all regular
curves ¢ € W%2([—1,1],R x R, ) connecting the points (—1, ;) and (1, ), i.e. ¢(—1) = (1, q),
c(1) = (1,04). Let Ty, o, denote the set of all functions u € W?2([-1,1],R;) with boundary
conditions u(—1) = aq, u(1) = a,. The minimisation problems we consider are

Mgy o, = inf W(e) and My, = inf W(u). (1.23)

CETal,ar ueTo‘l’o"r

It is of course clear that Mal’ar < My, .- Of greatest interest is that the two infima are actually
equal.

Lemma 1.10 (Cf. Corollary 1 in [4]). The equality Mal,ar = May,.q, holds for any oy, > 0,
i.e. any munimiser within the small class Ty, o, 15 also a minimiser in the larger class Ty, q, -

By an explicit construction (see [4, Lemma 2.3]), for any given curve in 7, oy, ONE can construct a
curve admitting a non-parametric representation with almost the same Willmore energy and lower
boundary values. The lemma above then follows from the fact that the energy M, o, is decreasing
in o with «, fixed and vice-versa. It is here worth noticing that the construction in [4, Lemma
2.3] could also be applied to the Dirichlet boundary value problem studied in [§, 10]. So that, in
studying the minimisation problem for general curves with Dirichlet boundary conditions one may
restrict to graphs whenever the energy is decreasing in the boundary height oe. On the other hand,
this reduction is not always possible. In the case of Dirichlet boundary conditions the energy of the
minimiser in the class of graphs becomes unbounded when the boundary height grows to infinity
and the boundary slope is kept fixed and different from zero, while the energy remains bounded if
one considers the minimisation problem in the larger class of curves.

In order to prove existence of a minimiser for the minimisation problem for graphs in (I.23]) we
use a different approach than that used for Dirichlet boundary conditions. Instead of starting from
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a minimising sequence and modifying it so that strong a priori bounds are satisfied, we begin by
first restricting further the set over which we minimise. That is for L > 0 we consider the subset
of Ty, «, defined by

Ty anL = {u €To 0 + ulz)> L~ and |u/(z)] < Lin [-1, 1]}

and the energy
My, o, p = inf  W(u).

UETO&l»Oé'r»L

Choosing L sufficiently large, T, o, is non-empty and hence My, q, 1 well-defined. The reason
for working within the smaller class Ty, q,,r is that it is relatively simple to construct minimisers
u = uy, in this class. By definition the elements in Ty, , 1 already satisfy the estimates needed
for the compactness argument, thus yielding the existence of a minimiser. The main task consists
then in proving a priori estimates on these minimisers uy, that are independent of L. This ensures
that the minimiser is a point in the “interior” of T, 4, 1 and hence that the corresponding surface
of revolution is a solution of the boundary value problem (L20]).

In the proof of the a priori estimates on the minimisers the relation between the Willmore
functional and the hyperbolic Willmore functional is again useful. As a first step we prove that
the hyperbolic curvature of minimisers satisfies the pointwise bound 0 < kp(z) < 2 for z € [—1,1].
This is obtained using semicircles (geodesics of the hyperbolic half-plane) as barriers from below
and catenaries as barriers from above. Notice that semicircles have hyperbolic curvature identically
equal to zero, while the hyperbolic curvature of catenaries is equal to two at the center of symmetry
of the catenary and decreases to zero on both sides. This pointwise estimate yields a bound from
above for the minimiser. Moreover, it shows that the values of the (first order) derivative on the
interval (—1,1) are bounded by the values of the derivative in x = +1 and by a bound from below
of the minimiser. These other bounds are obtained with more refined geometric constructions
using catenaries as barriers from above. Another property of which we make use is that the energy
M, a1, is bounded by 47 for L sufficiently large. This smallness of the energy gives direct and
explicit bounds on the length of an interval where the graph could approach the z-axis. In the
constructions we have more freedom than in the Dirichlet boundary value problem since we may
change the slope of the derivative at the boundary. This method cannot therefore be directly
applied to the study of the Dirichlet boundary value problem with non-symmetric boundary data.

In the case of symmetric boundary conditions @ = «a; = «, and minimising only among
symmetric graphs ([3]) we could prove that for & < o* with o* defined in ([LI2]) the minimisers
satisfy u/(—1) = —u/(1) = —a. We cannot expect the same behavior in this more general case,
but we can still show the following.

Lemma 1.11. Given o > 0 and o, > 0 such that o, < f(ay), let w be a minimiser of the
Willmore energy in T, o,. Then v'(=1) <0 and uv'(1) > 0.

A second main result considers the limit case when both «; and «,. converge to zero, i.e. the
bounding circles C,, and C,, collapse to the points (—1,0,0) and (1,0,0) respectively.

Theorem 1.12 (Cf. Theorem 5.4 in []). For aq, a, > 0 let uq,.q, be a minimiser of My, q, -
Then uq, o, converges uniformly to the function x — V1 —z? on [—1,1].

Comparing to [10, Theorem 5.8] we obtain here uniform convergence up to the boundary. This we

prove by showing that ¢q, q, = 22 + uil,ar converges uniformly to ¢ = 1.
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1.2 A uniqueness result for graphs

In [7] a two-dimensional surface I' that admits a parametrisation as a graph over a two-dimensional
domain is considered. As boundary condition we study the zero Dirichlet boundary value problem:
the boundary of I' is given by the boundary of the domain over which the surface is given as a
graph, and the tangent planes along the boundary are given by the plane containing the domain.
The surface I' C R? can then be parametrised by f(z,y) = (z,y,u(z,y)) for (z,3) € Q, the two-
dimensional domain, and v :  — R a smooth function. The boundary conditions require that
ulpn = 0 and Vulgpn = 0. The question we address is the following. Is it true that I" is a Willmore
surface if and only if ' is a subset of the plane {(z1,72,23) € R? : x3 = 0}? Or in other words,
does I' being a Willmore surface imply and require u being constant? A uniqueness result of this
kind has been studied by Palmer in [58]. He proves that a Willmore surface of disk type which
has its boundary on a circle and which intersects the plane of the circle in a constant angle is a
spherical cap or a flat disk. We extend the result of Palmer in the case of zero Dirichlet boundary
data.
The result is the following.

Theorem 1.13 (Cf. Theorem 1.1 [7]). Let Q C R? be a smooth bounded strictly star-shaped
domain with respect to zp € Q. Let u : Q — R be a smooth function with ulgg = 0 and Vu|sgo = 0
and let T C R3 be the surface given by the graph of w.

Then I' is a Willmore surface if and only if u =0 in Q.

We recall that a domain € is strictly star-shaped with respect to zg (29 € 2) when (z—2p)-v > 0
for every z € 002 with v the exterior normal to 9€) in z. Of course, due to the conformal invariance
of the equation, it is not a restriction that we consider the plane {z = 0} C R3. The result of
Palmer in [58] is for general parametrised surfaces of disk type, while here we have so far to restrict
to graphs.

In general we do not expect uniqueness for the Willmore Dirichlet boundary value problem, not
even in the presence of some extra symmetries. Indeed, in the case of surfaces of revolution gener-
ated by symmetric graphs with symmetric boundary data one can numerically find two different
minimisers. Therefore, there is numerical evidence not only of two solutions to the boundary value
problem but also of two different Willmore surfaces satisfying the same boundary value problem
and having both minimal Willmore energy in a certain class. On the other hand, it is not yet clear
what to expect in the case of graphs.

The proof of Theorem consists of two steps. In the first we prove that if I' is a Willmore
surface, the mean curvature and all second order derivatives of u are zero at the boundary. This is
done in the spirit of Pohozaev’s identity (see [71, Chapter I1I, Sect.1]). Starting from the fact that I’
is a solution to (I.I]) one multiplies the equation by test functions and then integrates. The first test
function is the function w itself, while the second is ¢(z) := (z — zo)uz + (¥ — yo)uy = (2 — 20) - Vu
in the case that the domain  is strictly star-shaped with respect to zg = (zo,y0). The test
functions we choose are related to the conformal invariance of the problem (see [60]). Integrating
by parts twice and using the boundary conditions yields two integral identities that combined give
the crucial identity

H*((x — o)z + (y — yo)vy) dw = 0,
o0
involving only a boundary term. Here v = (v, 1,) denotes the exterior normal field to 992. This
is where the assumption that 2 is strictly star-shaped with respect to zg is used.

Since the Willmore equation is an elliptic partial differential equation of fourth order the
Dirichlet boundary conditions together with the information that also all the second derivatives
of u vanish at the boundary is not sufficient to conclude that ©v = 0 in 2. We would also need
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that the third derivatives of u are zero at the boundary and this seems to be difficult to prove
via suitable choices of test functions. In the second step of the proof we follow the ideas in [58].
By a result of Bryant [5] we may associate to an immersed Willmore surface in R? a holomorphic
function ¢ (or a quartic holomorphic differential ¢(z)dz?). This is similar to the case of surfaces
of constant mean curvature to which one can associate a holomorphic function (or a quadratic
holomorphic differential), the so-called Hopf function (or Hopf differential). From the fact that
the mean curvature is equal to zero at the boundary it follows that also the holomorphic function
q is equal to zero at the boundary. Hence, ¢ is identically equal to zero. Then, the classification
theorem of Bryant ([5]) yields that either I' is a piece of a sphere or it is, after a conformal
transformation, a minimal surface. By the boundary conditions the first alternative is excluded.
The fact that I' after a conformal transformation cannot be a non-planar minimal surface is due
to the fact that, by the first step of the proof, the boundary of I' consists only of umbilic points
and this is a conformal invariant. Here we use concepts derived from the correspondence between
Willmore surfaces in R? and harmonic maps with values in the unit sphere in a suitably defined
five-dimensional Minkowski space. These ideas from conformal differential geometry seem to be
very useful in the study of Willmore surfaces and are sketched in [7, Appendix].

2 Hartree Fock theory for pseudo-relativistic atoms

A model for an atom with N electrons and a nucleus of charge Z fixed (at the origin) is in
Schrodinger theory given by the Hamiltonian (operator)

1

H= S
x; — x|

.N (T -Vi)+ )

j=1 1<i<j<N

(2.1)

The operator T; — V; is the one-particle operator acting on the j-th electron. Since the electrons
are all identical particles, the one-particles operators are all equal, that is T; — V; =T — V for all
j€{l,...,N} with T and V some operators. Here T' denotes the kinetic energy of an electron,
while V' describes the nuclear potential, i.e. the attraction that the electron feels to the nucleus.
Usually, V(x) = Z/|x|. For the sake of the presentation, we defer the discussion of the choice of
the kinetic energy and of the nuclear potential until after the presentation of the Hartree-Fock
approximation. The operators 1/|x; — x;| describe the repulsion between the electrons. For a
description of this model and an explanation of the Born-Oppenheimer approximation we refer
to [50]. Here and in the following we use units where the reduced Planck constant & = 1 and
e =m = 1 with e and m the charge and the mass of an electron, respectively.

The electrons are described by a “wavefunction” ¥ : R3*V — C. For the sake of clear presenta-
tion we do not consider the spin although all that we are going to say holds also with a number
g € N of spin-states. (In nature ¢ = 2.) Since by the Heisenberg uncertainty principle, we cannot
know at the same time the position and the speed of the electrons the function |¥|? has to be
interpreted as a probability density. That is for a (measurable) region S C R3" the quantity

/ ‘\II(X17X2,. . ,XN)‘Q dX1 .. .dXN,
S

gives the probability of finding the N electrons in S. In particular, we have the normalisation
[¥]|p2 s~y = 1. Due to the Pauli exclusion principle the wavefunctions have also to be antisym-
metric, that is

U(X1,...,Xj,.., X4, ..., XN) = —U(x1,...,X;,...,Xj,...,xy) forallije{l,.. N},
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so that the N-particle Hilbert space (the space of wavefunctions) is Hp = AN | L*(R3).

The operator H defined in (2.J]) acts on a dense subspace of the N-particle Hilbert space Hp
and, by appropriate choices of the kinetic energy and of the nuclear potential, it is bounded from
below on this subspace. The (quantum) ground state energy is the infimum of the spectrum of H
considered as an operator acting on Hp:

EM(N, Z) := inf o3y, (H) = inf{ (¥, HV) | ¥ € D(H) C Hp, (¥, ) =1}, (2.2)

where (-,-) denotes the scalar product in L?(R3") and D(H) is the domain of the Hamiltonian.
One of the aims of quantum mechanics is the study of the ground state energy and, if there are
any, of the wavefunctions minimising it. Unfortunately this task turns out to be too complicated
and so many approximations have been studied since the beginning of the theory.

In a first class of approximations instead of considering wavefunctions the objects over which
one minimises are the so-called densities. A density is a non-negative function p : R*> — R such
that ||p||11(rs) = N. To a wavefunction ¥ € Hp there is a natural way to associate a density:

p(x):=N |W(x,%2,...,xN)|% dxo..dxy .
R3(N—1)
The art then consists in finding a functional acting on densities such that its infimum of the energy
gives a good approximation of the quantum ground state energy. This approach is often used in
numerical computations since it reduces considerably the dimension of the problem. It is known
under the name density functional theory. One of the first models in this class is the well known
Thomas-Fermi model. One minimises the functional (called Thomas-Fermi functional)

& (p) = 071 |

o ol dx 4 L pP(y) o
[ oeotax— [ veopeoix+d [ [ 200 dxay.

over the set Ry = {p € L*3(R3) : p > 0 and Jgsp = N}. The Thomas-Fermi energy is then
given by
EyT(N) :==mf{ &} (p) |p € Ry}

This is an approximation for the quantum ground state energy defined in (2.2]) when the kinetic
energy of the electrons in the Hamiltonian H is given by T; = —%Aj. This method was introduced
at the same time and separately by Fermi and Thomas in 1927 [24] [73]. The mathematical theory
of the model has been developed in 1977 by Lieb and Simon in [52]. In this fundamental work,
among other results, it is proven the existence of a minimiser under the relaxed condition ng p <N
and the assumption that the nuclear potential satisfies V € L2(R3) + L>°(R?). By this we mean
that V may be written as V =V} + Vo with V; € L%2(R3) of compact support and Va € L®(R?).
In the case that the nuclear potential is the standard one given by V(x) = Z/|x|, they can prove
existence and uniqueness of the minimiser under the condition ng p=NZ<Z For N> Z
(and f]R3 p = N) the minimum is not attained. Although the results are very nice, a limitation
of the model is already evident. The Thomas-Fermi theory cannot describe negative ions (atoms
negatively charged) that are present in nature. Moreover, it turns out that the model cannot
describe molecules. That is, it is energetically more convenient for two atoms to stay at an infinite
distance to each other than to link and form a molecule. On the other hand, Lieb and Simon [52]
also prove that developing the quantum ground state energy in powers of Z one finds

EM(Z.2) = E™(2,2) + o(Z73) for Z — o,

with E™F(Z,Z) = E™(1,1)Z27/3 and ETF(1,1) the energy of a neutral Thomas-Fermi atom of
unit nuclear charge. That is, this model gives the leading order term of the real quantum ground
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state energy. Here, we use the usual convention ETF (N, Z) = ELF(N) and T8 (p) = &L (p) for
V(x) = Z/|x|. For completeness, we recall that so far the known expansion of the energy is

1
EM(z,72)=E"™1,1)Z27® + gZ2 + ¢, 253 4 0(25/3) for Z — .

The first correction term to the Thomas Fermi energy is known as the Scott correction. In the case
of kinetic energy given by —3A it was proven by Hughes [36] and Siedentop and Weikard [65] (6]
while the last correction is due to Fefferman and Seco (see the announcement [22]). These results
are for neutral atoms and have been generalised to ions and molecules as also to other choices of
the kinetic energy, see e.g. [25] [70].

In other approximations to (2.2)) the minimisation problem is restricted to subsets of the N-
particle Hilbert space Hp. One of the most famous and the one we are interested in is the
Hartree-Fock approximation. In this approximation, one restricts the minimisation problem given
in (2:2) minimising only over the simplest antisymmetric wavefunctions. These are pure wedge
products (also called Slater determinants), i.e. wavefunctions ¥ that admit a representation as

1
‘I’(Xl,Xg,...7XN) = ﬁ det(ui(xj))f\fj:l, (23)

with {u;} | orthonormal in L?(R?). These functions u; are called orbitals. Notice that this way,
¥ € Hp and [|¥|| p2gsvy = 1. For ¥ a Slater determinant as in (23], ¥ € D(H) and H as in (2.1)
one finds that

N

(U, HY) = Z/RSM(T—V(X))W(X)CJX

s (30) |2 () 12 — wi () (y )ui (y)u; (%)
2 /R3 /R3 dxdy .

x -yl
The Hartree-Fock ground state energy is defined by
EUF(N) :=inf{ (¥, HU) | ¥ Slater determinant and ¥ € D(H)}. (2.4)

This approximation and its generalisation are frequently used in quantum chemistry. A generalisa-
tion of this model is the multiconfiguration method of rank K where linear combinations of Slater
determinants built with up to K orthonormal orbitals are considered (see e.g. [26] [47]).

Another way of defining the Hartree-Fock approximation is via projections. One makes use of
the one-to-one correspondence between Slater determinants and projections onto finite dimensional
subspaces of L%(R3). This correspondence is given associating to W given in (Z3)), with {u;}Y,
orthonormal in L?(R?), the projection v onto the subspace spanned by uy, ..., uy and vice-versa.
Notice that the (integral) kernel of such a projection v is given by v(x,y) = Zj\f: L (%) (y). Tts
one-particle density is given by p,(x) = Z;VZI luj(x)[%, py € L*(R?). What is crucial is that the
energy expectation of a Slater determinant depends only on v: (U, HU) = EF(v) where EIF is
the Hartree-Fock energy functional defined by

EVY () = Te[TH] — Tx[VA] + D(v) — Ex(v), (2.5)

where, with ¢ the quadratic form associated to the kinetic energy,

N
= ; t(ui,wi) , Tr[VAy] = /RS py(x)V(x) dx,
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D(~) is the direct Coulomb energy,

//p“Y dxdy, (2.6)
RS JRs X — Y|

and Ez(7) is the ezchange Coulomb energy,

// d dy .
R3 JR3 \X—Y’

ESF(N) = inf{ M (v) | v : L*(R?;C) — L*(R3;C) a projection with Tr[y] = N} .

This way,

This reformulation will be useful in the minimisation problem.

In the works [9, 11l 12] we study the Hartree-Fock theory for pseudo-relativistic atoms. The
term pseudo-relativistic refers to the fact that we wish to take into account some relativistic
effects. The classical choice of the kinetic energy T in (2] is T = —%A (i.e. the kinetic energy
is quadratic in the momentum). In this case, u; € H'(R?), for all i € {1,..., N}, ensures that
EHY () is bounded from above. Moreover, the inequality D(y) > Ex(y) (see [T, Top of page 5])
and Hardy inequality imply the boundedness from below in the case of a nuclear potential given
by V(x) = Z/|x|. For this model Lieb and Simon in [53] prove the existence of a Hartree-Fock
minimiser when Z < N + 1. Furthermore they prove the regularity of the orbitals away from the
origin. The existence of infinitely many other critical points was proven by Lions in [55].

When taking into account some relativistic effects (due to the high speed of the electrons), the
kinetic energy should be linear in the momentum, that is a (pseudo-)differential operator of order
one. In the literature several choices are made. One, and the one we make, is to consider the
kinetic energy given by the operator

T=vV-a?2A+a4—a2,

with o Sommerfeld’s fine structure constant; physically, o ~ 1/137.036 . This operator is defined

in Fourier spaces as the multiplication operator v/2ra—2p]2 + =% — a2, i.e.:

(V=028 +a71f) (p) = V2ra2pP + o~ f(p),

for any f € C§°(R3) where f denotes the Fourier transform of f. The domain of the operator is
H'(R3) and its quadratic form domain is H'/?(R?). This operator is non-local in the sense that
it does not necessarily preserve the support of a function.

Another possible choice is to consider the Dirac operator Dy = a - (—iV) + Ba~! with a@ =
(a1, a9,a3),B the Dirac matrices and o Sommerfeld’s fine structure constant (see [72]). This
operator is local but it has a negative continuous spectrum which is not bounded from below. The
analogue of the Hartree-Fock approximation in this model is called the Dirac-Fock model. Esteban
and Séré in [19] proved that the Dirac-Fock functional has infinitely many critical points. In this
model the rigorous definition of a ground state is a delicate problem since the energy functional is
not bounded from below; see [20, 21]. Nevertheless, there are Hartree-Fock-type models, coming
from the Dirac operator, that do have a minimiser. We refer to [2, 31} 32], and the references
therein, for the description of these models.

Here we study the Hartree-Fock functional defined in (2.5]) with the following choices of kinetic
energy T' and nuclear potential V'

T=vV-a?2A+a*—a? and V(x) = —, (2.7)

]
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with Z > 0. The minimisation problem we study is then
FEUY(N, Z,a) = inf{ €8 (v) | v : L*(R3;C) — L*(R?;C) a projection with Tr[y] = N}, (2.8)

where £HF () denotes the Hartree-Fock functional defined in (Z.5)) with the choice of kinetic energy
and nuclear potential given in (2.7]). Concerning the one-particle operator T'— Z/|x| Herbst in [34]
shows that it is bounded from below if and only if Za < 2/7. This follows from the inequality
[39, Formula (5.33) p. 307]

2
[ i< 2 [ plliwiPdp for 5 e ). (29)
R3 ’X’ 2 R3
Similarly, the operator H defined in (2I]) is bounded from below if Za < 2/7 (see [34] for N =1,
[13] and [54] for N > 1), so that there is a bound on the nuclear charges that we can describe.
Let us notice here that to define the one-particle operator T — V' there is an issue. Indeed while
for Za < % the nuclear potential V is a small operator perturbation of the kinetic energy T, for
1/2 < Za < 2/7 the nuclear potential is only a small form perturbation of the kinetic energy and
hence one needs to work with forms to define the operator H. For the sake of the presentation we

do not give the correct definition of the operators and of their domains here. This has been done
in detail in [IT].

2.1 Existence of the Hartree-Fock minimiser and regularity of the orbitals

We present here the results in [II]. The aim in this work is to prove the existence of a minimiser
for the minimisation problem given in (2.8]). Further, regularity is established.

We first extend the definition of the Hartree-Fock energy functional £%F in order to turn the
minimisation problem (2.8)) (that is, (2.4))) into a convex problem. A density matriz~ : L?>(R3;C) —
L?(R3; C) is a self-adjoint trace class operator that satisfies the operator inequality 0 < v < Id. A
density matrix v has integral kernel

Yo y) =D Aju(x)us(y), (2.10)
j

where A;,u; are the eigenvalues and corresponding eigenfunctions of . We choose the u;’s to be
orthonormal in L?(R3;C). As before, py € L'(R3) denotes the one-particle density associated to
7y given by py(x) = >, Aj |u; (x)|*>. We consider then the set

A := {7 density matrix : Tr [Ty] < 400}, (2.11)

where, by definition, for v written as in 2.I0), Tr[T] := >_; A;t(u;, u;) with ¢ the quadratic form
associated to the kinetic energy 7'. This condition implies that the orbitals u; are elements of
H'Y2(R3). One may see that all the terms in EF () (see (ZH))) are finite if v € A. For the details
we refer to the introduction in [IT].

Thanks to this first extension we may consider the study of the minimisation problem for the
Hartree-Fock functional over the conver set {y € A: Tr[y] = N}. Still, the conservation of the
number of particles (i.e. the condition Tr[y] = N) could be violated in the limit procedure due to
some possible loss of compactness. It is then convenient to extend further the set over which we
minimise considering the set {y € A: Tr[y] < N}.

The following theorem states the existence of the Hartree-Fock minimiser.

Theorem 2.1 (Cf. Theorem 1 in [I1]). Let Za < 2/, and let N > 2 be a positive integer such
that N < Z + 1.
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Then there exists an N -dimensional projection ¥ = YU (N Z o) minimising the Hartree-
Fock energy functional ENY given by ([B3) with the choice of kinetic energy and nuclear potential
given in (Z0). That is, EYY (N, Z,«) in (ZX)) (and therefore, in (Z4)) is attained. In fact,

gHF(FYHF) = EHF(N7 Z, a) = inf {gHF(V) | v E A772 = 77Tr[7] = N}
= inf {SHF(’y) | ve A, Trly]=N}
=inf {EM(y) |y € A, Tt[y] < N}. (2.12)

The statements of Theorem 2] (appropriately modified) also hold for molecules. More ex-
plicitely, for a molecule with K nuclei of charges Z1,. .., Zk, fixed at Ry, ..., Rg € R3, the nuclear
potential is given by V(x) = S.p_, Zya/|x — Ry|. Then a Hartree-Fock minimiser exists for
N <1435 | Z; under the condition Zya < 2/, k=1,...,N.

As discussed above, in the proof of existence it is convenient to start considering the minimisa-
tion problem as in the last equation in (ZI2]). That is, one minimises the Hartree-Fock functional
over the class of density matrices with trace satisfying Tr[y] < N. Given a minimising sequence
{Vn}nen the idea is to associate to it a (uniformly bounded) sequence of Hilbert-Schmidt opera-
tors, in order to use the compactness theorem available for this class of operators. The condition
Tr[T7,] < N and moreover the fact that Tr[T"y,]| are uniformly bounded yield naturally candidates
for the Hilbert-Schmidt operators to consider. This construction gives a candidate for the min-
imiser. What is left to prove is the lower semicontinuity of the functional. In the pseudo-relativistic
context one faces the problem that the Coulomb potential is not relatively compact with respect
to the kinetic energy. This has been already addressed in [2]. A way to overcome the problem is to
consider the one-particle operator hg := T — V together with the projections onto the pure points
spectrum and the absolutely continuous spectrum, respectively. This splitting allows the passage
to the limit. The assumption Za < 2/7 is needed in the proof when showing that Tr[E(p)~y,]
is uniformly bounded for a minimising sequence {7y, }nen. The idea of establishing existence of
Hartree-Fock minimisers by solving the minimisation problem on the set of density matrices was
introduced in [48] [68]. The same method was used in [2] in the Dirac-Fock case.

So far we have proved the existence of a minimiser for the Hartree-Fock functional in the
class of density matrices with Tr[y] < N. To get back to the original problem, we need to show
that a minimiser satisfies Tr[y] = N (possibly under some extra hypothesis) and moreover that a
minimiser can be choosen to be a projection (instead of a general density matrix). Let v be a
minimiser under the condition Tr[y] < N. This density matrix may be written as

K
Y y) =) Moe(®)er(y)
k=1

with 1 > )\, > 0 and ¢}, orthonormal in L2(R?). Since 4!'F is a minimiser, the orbitals ¢ may be
chosen to be eigenfunctions of the Hartree-Fock operator h,yHF w; = €;p; with

HF HF x
(horu)(x) = (Tw)(x) — (V) (x) + u(x) /R 3 % dy — /R 3 Hu(y) dy,  (2.13)

for u € C°(R3) (See the construction in [IT}, Introduction]. Notice that the definition given here
for the operator h.ur differs by a factor a from the one given in [I1].). Here the eigenvalues ¢; are
ordered in increasing order: €; < eo < .... A useful observation at this point is that writing

K
YY) =D Mo (X)er(y) + Mpr(x)er(y) = % (x,y) + Mpr ()@ y) (2.14)
k=2
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for the Hartree-Fock energy one finds EMF (yHF) = EHF(AHE ) 4 o=\ ¢, Similar formulas hold
isolating the other orbitals. Being 4"F a minimiser this immediately shows that the eigenvalues €,
need to be non-positive and that it is convenient to choose A, = 1. The lower energy values should
be filled before going to higher energy values. In order to prove that the minimiser is a projection,
it is then important to study how many negative eigenvalues h ur has. By [11, Lemma 2] we see
that A ue has infinitely many negative eigenvalues if Tr[y] < Z. This result together with some
more refined reasonings similar to the one in ([ZI4]) yield that if N < Z + 1 the minimiser 7'F of
the problem inf {€M¥(v) : v € A, Tr[y] < N} satisfies Tr[y] = N and it can be chosen to be a
projection.

The minimisers of the Hartree-Fock functional are in generally not unique. The existence of
infinitely many distinct critical points of the functional EMF was proved recently (under the same
conditions) in [18].

In the next result some regularity properties of the orbitals are given.

Theorem 2.2 (Cf. Theorem 1 in [I1]). Let Za < 2/, and let N > 2 be a positive integer such

that N < Z 4+ 1. Let ¥ = A1 (N Z a) be the projection with Tr[y'¥] = N minimising the
Hartree-Fock energy constructed in Theorem [Z. One can write

N
YY) =) eix)ei(y)

i=1
with p; € HY/?(R3,C),i = 1,..., N, orthonormal in L*(R3), such that the Hartree-Fock orbitals

{0}, satisfy:
(i) With hone as defined in (2.13)),
thFgoizsigoi s 1= 1,...,N, (2.15)
with 0 > en > ... >¢e1 > —a~ ! the N lowest eigenvalues of h .

(ii) Fori=1,...,N, ¢; € C®(R*\ {0};C).

(ii) For all R > 0 and 8 < v.y = \/—en(2a~1 + ey), there exists a constant C = C(R,3) > 0
such that fori=1,...,N, |g;(x)| < Ce P™ for |x| > R.

Theorem can be extended also to molecules. Of course, in this case the orbitals are smooth
away from each of the nuclei. The proof of the regularity result (i7) works for any eigenfunction
¢ of h,ur. Further, the proof of the exponential decay (iii) yields the same claim for those
corresponding to negative eigenvalues €. More precisely, if h. urp = e for some € € [en,0), then
lp(x)| < Ce X for all B < v, == y/—e(2a~1 +¢) for some C = C(R,3) > 0. Note that, in
general, eigenfunctions of i ur can be unbounded at x = 0 and hence the regularity can only be
expected to hold away from the origin. Both the regularity and the exponential decay above are
similar to the results in the non-relativistic case (see [53]). However, the proof of Theorem 2.2]
part (ii) — (i4i), is considerably more complicated due to the non-locality of the kinetic energy
operator, the fact that the kinetic energy is a pseudo-differential operator of order one, and the
fact that the Hartree-Fock operator h.ur is only given as a form sum for Za € [1/2,2/7).

In the non-relativistic case the regularity of the orbitals follows from the elliptic regularity
theory for systems. Indeed the system of equations h nrp; = €;¢; may be rewritten as

N

—Ap;i = Vi + > (D550 — ijoj) = epi, forie{l,...,N},

= (2.16)

—A®;; = dmnpp;, fori,je{l,...,N},
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introducing new variables ®; ; defined by

P; i(x) := / Mdy for all x € R® and i, € {1,...,N}.
R [xX =Yl

In the case of pseudo-relativistic atoms, this transformation does not yield immediately regularity.
In this case the system is a mixed system: some of the equations have leading term —A (a
differential operator of order two) while the others have as leading term the kinetic energy and
hence a pseudo-differential operator of order one. We prove regularity working directly with the
eigenvalue equations and showing that ¢; € H¥(Q) for all k € N and Q C R3\ {0}. This we
do by induction. The main difficulty is due to the non-locality of the kinetic energy. For this
several localisations are needed in order to use the smoothing properties of the pseudo-differential
operators of the kind x7'n with x, n localisation functions with disjoint supports. In [11, Appendix|
the needed properties of pseudo-differential operators are presented shortly.

The exponential decay of the orbitals in L?-sense is proven via perturbation theory (see [I1]
Proposition 1]). Already at this point the upper bound on the rate of the exponential decay
appears. Starting from the eigenvalue equation h.ury; = €;; we get to a pointwise exponential
decay for the ¢; inverting the operator T — ey. The information on the decay of the kernel of
(T — en)~! and the exponential decay in L? of the orbitals, yield then the pointwise estimate.

2.2 Real-Analyticity of the orbitals

In [9] we continue the study of the regularity of the Hartree-Fock orbitals (see Theorem [Z2]) by
showing that all of these orbitals are, in fact, real analytic away from the origin. Apart from
inherent mathematical interest, analyticity of solutions has important consequences. For example,
in the non-relativistic case, the analyticity of the orbitals and the regularity properties of the true
quantum mechanical eigenfunction was used in [27] to prove that the quantum mechanical ground
state is never a Hartree-Fock state. We expect the same kind of result in this situation.

The main theorem is the following, which completely settles the question of regularity away
from the origin of solutions to the equations (2.I5]).

Theorem 2.3 (Cf. Theorem 1.1 in [9]). Let Za < 2/m, and let N > 2 be a positive integer such
that N < Z+1. Let p1,...,oN, @i € H1/2(]R3) fori=1,...,N, be solutions to the pseudo-relativistic
Hartree-Fock equations in (ZI5) with v1Y the projection onto span{es,..., N}, a minimiser for
the Hartree-Fock functional. Then, for i =1,..,N, p; € C*(R3\ {0}), that is, the Hartree-Fock
orbitals are real analytic away from the origin in R3.

Although in this theorem regularity is only stated for the orbitals giving a Hartree-Fock min-
imiser, the proof works also for the infinitely many critical points of the Hartree-Fock functional
constructed in [I§] and for all the eigenfunctions of the corresponding Hartree-Fock operators.
Also, the proof yields real-analyticity of any H'/2(R?)-solution ¢ : R? — C to equations of the
kind 7
V-A+1¢ - mwiw!*\-!‘lwzw-

(see [9, Remark 1.2] for more general equations.). In Theorem 2.3 the restrictions Za < 2/7
and N > 2 are only made to ensure existence of a Hartree-Fock minimiser and hence of solutions
to (2I8). Of course, this does not play a role in the proof of regularity and in fact, our proof
proves analyticity away from x = 0 for H'/?-solutions to (ZI5) for any Za. In particular, in
the case N = 1, the Hartree-Fock equations reduce to T — V¢ = ep and our result also holds
for HY2-solutions to this equation. As for Theorems 1] and 222, the statement of Theorem 23]
(appropriately modified) also holds for molecules. In fact, the only assumption needed on the
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nuclear potential is its analyticity away from finitely many points in R, and certain (possibly
different) integrability properties in the vicinity of each of these points, and at infinity; for more
details, see [9, Remark 4.19]. The results hold also for other choices of the kinetic energy, see [9]
Remark 1.2(vi)].

The proof of Theorem is inspired by the classical Morrey-Nirenberg proof of analyticity of
solutions to elliptic partial differential equations with real analytic coefficients by ‘nested balls’.
We first present the ideas of Morrey and Nirenberg’s proof. We then discuss the difficulties in our
situation, and the way we solve those.

The aim is to prove L?-bounds on derivatives of order k of the solution in a ball of some radius r
around a given point. These bounds should behave suitably in k£ in order to make the Taylor series
of the solution converge locally, thereby proving analyticity. The proof of these bounds is inductive.
In fact, for some ball Bg with R > r, one proves the bounds on all balls B, with r < p < R,
with the appropriate (with respect to k) behaviour in the distance to the boundary R — p. The
induction basis is provided by standard elliptic estimates. In the induction step, one has to bound
k 4 1 derivatives of the solution in the ball B,. To do so, one divides the difference Bg \ B, into
k + 1 nested balls using k + 1 localization functions with successively larger supports. Commuting
m of the k derivatives (in the case of an operator of order m) with these localization functions
produces (local) differential operators of order m — 1, with support in a larger ball. These local
commutator terms are controlled by the induction hypothesis, since they contain one derivative
less. For the last term (the term where no commutators occur) one then uses the equation.

This method of Morrey and Nirenberg poses new technical difficulties in our case, due to the
non-locality of the kinetic energy and the presence of the terms

HF(

HF <
(R0 = [ S%dyw) and (K yue) () i= [ Hw(y) dy

The non-locality of the operator v —A + a~2 implies that, as opposed to the case of a differential
operator, the commutator of the kinetic energy with a localization function is not localized in the
support of the localization function. That is, when resorting to prove analyticity by differentiating
the equation, the localization argument described above introduces commutators which are (non-
local) pseudo-differential operators. Now the induction hypothesis does not provide control of
these terms. Furthermore, it is far from obvious that the singularity of the potential V' outside Bgr
does not influence the regularity in Bg of the solution through these operators. Loosely speaking,
the singularity of the nuclear potential can be felt everywhere. We overcome this problem by a
new localization argument which enables us to capture in more detail the action of high order
derivatives on nested balls, [0, Lemma B.1]. We present the ideas considering, for the sake of
presentation, the equation E(p)y — Vi = 0 with E(p) = vV—A + a2 and V a potential that is
real-analytic in Bgr. Notice that T = o~} (E(p) —a~!) (7). We choose to invert E(p) (turning
the equation into an integral operator equation). One starts from the equation ¢ = E(p)~'V¢ and
in order to get, in the induction step, estimates for the (k+ 1)-derivative of ¢ in B, we differentiate
the equation and localise it. The term on the right hand side of the equation is then given by
®E(p) ' DPV; with |3| = k + 1 and ® a smooth function with support in Br and satisfying
® =1 in B,. Due to the non-locality of E(p)~', the behavior of D°Vu over all of R? influences
this term. We can control the derivatives of ¢; only where we have the induction hypothesis (i.e.
inside Bg) and the estimate becomes singular when approaching 0Bpg. Let p be such that ® has
support on B, r < p < R. We divide B in k + 1 nested balls

k
Br = LJBR,]-6 with € such that p < R — ke.
§=0
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To this covering of Br we associate a partition of unity with k£ + 1-localisation functions x;,
Jj €10,...,k}. The function x,_; has support on Br_jc (see [9, Figure 1 and 2|) and, by the
induction hypothesis, in this ball we can control up to i-derivatives of the solution, with the right
order in ¢ and 4. Lemma B.1 in [J] gives that ®E(p)~' DV y; can be written as a sum of terms
(also) of the following kind

QE(p) 1Dty DI,

M-

J=0

By this special localisation, on the j-th term of the sum we take only as many derivatives on
¢; as we can bound on the support of x;. When j is big we are (relatively) far away from the
boundary and we can control more derivatives. Then, the terms X]-Dﬁ_j ~1V; can be estimated
directly via the induction hypothesis. Here one uses that the potential V is real-analytic in Bg.
The term ®FE(p)~'D/T1y; is taken care of with very explicit bounds (see [9, Lemma C.2]). In-
deed, by construction ® and x; have disjoint supports for j € {1,...,k} and hence the operator
®E(p)~' DTy, can be bounded by a constant depending on j (the number of derivatives) and
the distance between the supports of the localisation functions to the power j. Notice that, for
proving analyticity it is not sufficient to know that the operator ®E(p)~' D71y, is smoothing,
but one needs a quantified estimate on the smoothing effect.

The second major obstacle is due to the presence of the terms R urp; and K nmrg; that are
morally cubic in the ¢;’s. To illustrate the problem, we discuss proving analyticity by the above
method (local L2-estimates) for solutions u to the equation —Awu = u3. When differentiating this
equation, the application of Leibniz rule introduces a sum of terms on the right hand side. After
using Holders inequality on each term (the product of three factors, each a number of derivatives
on u), one needs to use a Sobolev inequality to ‘get back to L?’ in order to use the induction
hypothesis. Summing the many terms, the needed estimate does not come out. For the equation
—Awu = u? this problem does not occur, but in the cubic case, one looses too many derivatives when
using Sobolev inequality. This problem of loss of derivatives may be overcome by characterizing
analyticity by growth of derivatives in some LP with p > 2. By choosing p sufficiently large the loss
of derivatives in the Sobolev inequality mentioned above is less and allows us to prove the needed
estimate. Additional technical difficulties occur due to the fact that the cubic terms, R urp; and
K. urg; are actually non-local. Note that in the proof that non-relativistic Hartree-Fock orbitals
are analytic away from the positions of the nuclei (see [26], 47]), these terms are dealt with by
cleverly re-writing the Hartree-Fock equations as a system as done in (2.I6]). This eliminates the
terms R urp; and K mr; turning these into quadratic products in the functions ¢;, ®; ;. One
then obtains a non-linear system of elliptic second order equations with coefficients analytic away
from the positions of the nuclei. This idea cannot readily be extended to our case as already
observed at the end of the previous section.

2.3 The ionization conjecture

In Theorem [Z.]] the existence of a pseudo-relativistic Hartree-Fock minimiser under the condition
N < Z + 1 is proved. The same condition is needed in the case of non-relativistic atoms. In
the Hartree-Fock theory one can then describe atoms with total charge almost equal to minus
one. These are negatively charged ions. As we have already observed, the Thomas-Fermi theory
(see page [I8) does not describe negatively charged atoms. A long standing open problem in the
mathematical physics literature is the characterisation of the mazimal number of electrons IV that
a nucleus of charge Z can bind. This is known as the Ionization conjecture and the number N — Z
is called the maximal negative ionization. The conjecture can be formulated as follows. Consider
atoms with arbitrarily large nuclear charge Z, is it true that the maximal negative ionization
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remain bounded? That is, is it true that there exists a universal constant ) such that the number
N of electrons that a nucleus of charge Z can bind is bounded by Z + ()7 In nature negative ions
with charge minus one are present. In the theory of atomic structures, the answer to the question
depends of course on the model one considers. For the Thomas-Fermi model, the answer is trivially
yes. For the full Schrédinger model the answer is still open. Lieb in [49] with a very elegant and
short proof shows that N < 27 + 1 is necessary for the existence of a ground state both for the
problem (2.2) as for the Hartree-Fock approximation. In [51] the authors prove that, denoting by
N (Z) the number of electrons that a nucleus of charge Z binds in non-relativistic quantum theory,
the quotient N(Z)/Z approaches one at the limit Z to infinity. This result was then improved in
[23], [64], where it is shown that N(Z) < Z + CZ'~* with a = 9/56.

Finally in 2003 Jan Philip Solovej [69] proved the ionization conjecture in the non-relativistic
Hartree-Fock model. In [I2] the result is extended to the pseudo-relativistic Hartree-Fock theory.
One of the main results is the following.

Theorem 2.4 (Cf. Theorem 1.1 in [12]). Let Z > 1 and a > 0. Let Za = k and assume that
0 < Kk < 2/m. There is a constant @ > 0 depending only on k such that if N, the number of
electrons, is such that a Hartree-Fock minimiser for [2.8) exists, then N < Z + Q.

As in Theorem 2] the condition kK = Za < 2/7 is needed to control with the kinetic energy
the nucleus potential and to have still a bit of the kinetic energy left (see (2.9)). The case kK = 0
corresponds to the non-relativistic limit.

We present the basic idea for the proof of Theorem 24l Let N, the numbers of electrons,
satisfy N > Z and be such that a Hartree-Fock minimiser exists. That is, there exists a density
matrix 71 € A (defined in (ZII]) such that Tr[y!F] = N and

EHF (V) = inf {EMF(7) 1 vy € A and Tr[y] = N} .

At this point, we consider pTF the Thomas-Fermi minimiser with potential V(x) = Z/|x| and
under the condition [ p™ = Z. (See the description of the Thomas-Fermi model at page [I8l)
Existence and uniqueness of the minimiser are proved in [52]. Denoting by p''F the density of the
minimiser Y7, we find for all > 0

N = /RSpHF(x)dX
_ HF () _ TF (5] dx TR () g - |
— /|X<T[P (x)—p " (x)]d +/|X<Tp (x) d +/ PP (x) d (2.17)

|x|>r

By the equalities above and since f\XI < pF(x)dx < Z, Theorem [Z4] follows from the following
result.

Theorem 2.5 (Cf. Theorem 1.16 in [12]). There exist r > 0 and positive constants c¢; and cy
independent of N and Z but possibly depending on k such that

|x|>r

/| ‘ [P (x) — p™(x)] dx <1 and / P (x) dx < co.

As can be seen from the statement of Theorem 2.5 and the formula in ([2.I7), the main idea is
to compare the Hartree-Fock minimiser to the Thomas-Fermi minimiser for the neutral atom. It
turns out that for this comparison the following functions are important. For v1F a Hartree-Fock
minimiser, the function

dy for x € R3,

HF _ 4 PHF(Y)
e ( /R

X) = — —
V=R e Ky
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is called the Hartree-Fock-mean field potential and

7 HF
dHF (x) .= = —/ P (y)dy for x € R?,
x| Jiy<r X =¥

is the Hartree-Fock-screened nuclear potential. Similarly, one defines the Thomas-Fermi mean field
potential ¥ and the Thomas-Fermi-screened nuclear potential CI%F. Notice that the screened
nuclear potential describes the charge that an electron feels at a distance larger than R from the
nucleus. The following theorem is the principal ingredient in the proof of Theorem and is the
main technical estimate in [12].

Theorem 2.6 (Cf. Theorem 1.17 in [12]). Let Za =k, 0 < k < 2/m. Assume N > Z > 1.
Then there exist universal constants ag > 0, 0 < & < 4 and Cy; and Cp depending on k such
that for all a < aqg
@E}r(x) - <I>|Tx$(x) < Cop|x|™4 4+ Cyy for all x € R3.
The meaning of the estimate above can be understoood when comparing it to the Sommerfeld’s
estimate for the Thomas-Fermi screened nuclear potential

oIl (x) < 3%272|x|™* for all x € R?

x|

(see [12), Corollary 1.14]). Theorem gives that the Thomas-Fermi screened nuclear potential is
a good approximation to the Hartree-Fock screened nuclear potential near to the nucleus.

The main estimate in Theorem is proven by an iterative procedure. Near the nucleus we
expect the Thomas-Fermi minimiser to be a good approximation to the Hartree-Fock minimiser.
By a direct comparison and via some semiclassical estimates, the claim of Theorem follows
for small x, or, more precisely, up to a distance of order Z~1/3. At a bigger distance, a direct
comparison between the two minimisers does not give the needed behavior. Then for bigger
distances, but still not too far away, one compares the Hartree-Fock minimiser with the minimiser
of an ‘ad hoc’ chosen Thomas-Fermi model. This model differs from the previous one on the choice
of the nuclear potential. It takes into account that, being at a certain distance from the nucleus,
the nuclear charge is screened by the electrons nearer to the nucleus. This construction yields the
estimate in an intermediate zone (i.e. up to a fixed distance independent of Z). At a unitary
distance estimates of the exterior integral of the density yield that the number of electrons can be
bounded independently of Z. In all the steps, the estimates are proved by semiclassical methods.

The main steps of the proof of the results above are as in [69]. What is interesting here is
the proof that, up to a unitary distance (in Z) to the nucleus, the Thomas-Fermi model is a good
approximation of the Hartree-Fock model also in the case of pseudo-relativistic atoms. This was
known for the leading order (in Z) of the energy but not for the mean field and screened nuclear
potential. In this case the proof is technically considerably more complicated due to the non-
locality of the kinetic energy. Several difficulties poses the fact that, while in the non-relativistic
case the density p"F is in L%/3(R3), in our case p'F € L*¥3(R3) + L5/3(R3). This is in fact the
point where some relativistic effects appear. This is taken care of with Theorem 2.10 in [12]. This
result is an improved Daubechies-Lieb-Yau inequality which allows us to bound the term

/ P (y) dy
|

x—y|<R ‘X - y‘

via the kinetic energy and a sum of terms depending on k, Z and R. Choosing, at each step, R
appropriately the right order is obtained.
By proving Theorem we also get the following interesting results.
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Theorem 2.7 (Cf. Theorem 1.19 in [12]). Let Zao =k, 0 < k < 2/7 and Z > 1. The ionization
energy of a neutral atom EWY(Z —1,7Z,a) — EMY(Z, Z,a) is bounded by a universal constant.

Here as in (Z8) EM (N, Z,a) denotes the Hartree-Fock energy for a system of N electrons and a
nucleus of charge Z.

Theorem 2.8 (Cf. Theorem 1.20 in [12]). Let Za =k, 0 < k < 2/w. For all Z > 1 and N with
N > Z for which a HF minimiser exists with prF = N, we have

677 (30) — P ()| < Ayl 1 A,
with Ag, A1 and g9 universal constants.

The method of proof gives also an asymptotic formula for the atomic radius. The Hartree-
Fock-radius REFN(V) to the v last electrons is defined by

/ P (x) dx = v.
|x|>R5  (v)

It describes the radius of the ball in R? outside of which v electrons are present.

Theorem 2.9 (Cf. Theorem 1.18 in [12]). Let Za =k, 0 < k < 2/m. Both liminfz_, R%FZ(I/)
and limsupg_, REFZ(V) are bounded and behave asymptotically as

4.1 2 1 _1
332273173 4 0o(v”3) as v — 0.
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Abstract

We consider the Willmore equation with Dirichlet boundary conditions for a surface of
revolution obtained by rotating the graph of a positive smooth even function. We show ex-
istence of a regular solution by minimisation. Instead of minimising the Willmore functional
we reformulate the problem in the hyperbolic half plane and we minimise the corresponding
“hyperbolic Willmore functional”.

Keywords. Dirichlet boundary conditions, Willmore surfaces of revolution.
AMS Classification. 49Q10; 53C42, 35J65, 34L30.

1 Introduction

Recently, the Willmore functional and the associate L?-gradient flow, the so—called Willmore flow,
have attracted a lot of attention. Given a smooth immersed surface f : M — R3, the Willmore
functional is defined by
W(f) := H?dA,
f(M)

where H = (k1 + K2)/2 denotes the mean curvature of f(M). Apart from being of geometric
interest, the functional W is a model for the elastic energy of thin shells or biological membranes.
Furthermore, it is used in image processing for problems of surface restoration and image inpaint-
ing. In these applications one is usually concerned with minima, or more generally with critical
points of the Willmore functional. It is well-known that the corresponding surface I' has to satisfy

the Willmore equation
AGH+2H(H? - K)=0 on T, (1)

where A, denotes the Laplace-Beltrami operator on I' and K its Gauss curvature with respect to
the induced metric g. A particular difficulty arises from the fact that A, depends on the unknown
surface so that the equation is highly nonlinear. Moreover, it is of fourth order where many of
the established techniques do not apply. A solution of (1) is called a Willmore surface. Existence
of closed Willmore surfaces of prescribed genus has been proved by Simon [19] and Bauer-Kuwert
[1]. Recently, Riviere [I7] proved a far reaching regularity result. Also, local and global existence
results for the Willmore flow of closed surfaces are available, see e.g. [9] [10} 11} 20]. On the other
hand, Mayer and Simonett [I5] gave a numerical example providing evidence that the Willmore

'This paper is a version of the article “Classical solutions to the Dirichlet problem for Willmore surfaces
of revolution” by A. Dall’Acqua, K. Deckelnick and H.-Ch. Grunau published in Advances in calculus of
variations, Berlin, de Gruyter, 1, 379-397, 2008. The on-line version is available at http://www.reference-
global.com/doi/abs/10.1515/ACV.2008.016. The current version may differ slightly from the published one.

2Present address (March 2011): Otto-von-Guericke-Universitit Magdeburg, Institut fiir Analysis und Numerik,
Universitatsplatz 2, Postfach 4120, 39106 Magdeburg, Germany. Klaus.Deckelnick@ovgu.de and grunau@ovgu.de
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flow may develop singularities in finite time. An analytic proof for occurence of a singularity in
finite or infinite time for particular initial data was given by Blatt [3]. The Willmore flow for one
dimensional closed curves was studied by [7, [16].

If one is interested in surfaces with boundaries, then appropriate boundary conditions have to
be added to ([Il). Since this equation is of fourth order one requires two sets of conditions and
a discussion of possible choices can be found in [I4] along with corresponding existence results.
These results, however, are based on perturbation arguments and hence require severe smallness
conditions on the data, which are by no means explicit. Thus the question arises whether it is
possible to specify more general conditions on the boundary data that will guarantee the existence
of a solution to ([I]). Such a task seems to be quite difficult since the problem is highly nonlinear and
in addition lacks a maximum principle. Quite recently, Schatzle [I8] proved an important general
result concerning existence of branched Willmore immersions in S with boundary which satisfy
Dirichlet boundary conditions. Assuming the boundary data to obey some explicit geometrically
motivated smallness condition these immersions can even be shown to be embedded. By working
in S, some compactness problems could be overcome; on the other hand, when pulling pack these
immersions to R" it cannot be excluded that they contain the point co. Moreover, in general,
the existence of branch points cannot be ruled out, and due to the generality of the approach,
it seems to us that no topological information about the solutions can be extracted from the
existence proof. We think that it is quite interesting to identify situations where it is possible to
work with a-priori-bounded minimising sequences or where solutions with additional properties
like e.g. being a graph or enjoying certain symmetry properties can be found. In order to outline
possible directions of further research and to see, which kind of phenomena and results concerning
compact embedded solutions in R3 of boundary value problems for the Willmore equation might
be expected, we investigate boundary value problems for () in a specific symmetric situation.
More precisely, we look at surfaces of revolution, which are obtained by rotating a graph over the
x = z1-axis in R? around the z;-axis. These are described by a sufficiently smooth function

u:[—1,1] — (0, 00)
and are parametrised as follows:
(z,0) = f(z,0) = (z,u(x) cos p,u(z)sinp), xe€[-11], ¢e]0,2n].

Numerical experiments concerning such kind of Willmore surfaces were performed by Frohlich
[8]. In the present article we consider the Willmore problem under Dirichlet boundary conditions,
where the height u(£+1) = a > 0 and a horizontal angle u/(£1) = 0 are prescribed at the boundary:

Theorem 1. For every o > 0, there exists a smooth function u € C*°([—1,1],(0,00)) such that
the corresponding surface of revolution solves the Dirichlet problem for the Willmore equation

(2)

AgH+2H(H? - K)=0 in (—1,1),
{ u(£l) = a, uw'(£1) =0.

This solution u is even and has the following additional properties:

Vo e[0,1]: 0<a+u(z)u(x), u'(z) <0.

1
Ve e [-1,1]: a<u(r)<a+l, [ (z)] < —.
a

When comparing this result with the situation for minimal surfaces of revolution one may be
surprised that existence holds true even for a ™\, 0.
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We solve (2)) by minimising the Willmore functional in the class of surfaces of revolution, which
are given by even functions u : [—1,1] — (0,00). In the following section we reformulate this
problem in the hyperbolic half plane. In Section B, taking advantage of using geodesic arcs in
the hyperbolic half plane and refined energy reducing constructions, we show that one may pass
to suitable minimising sequences satisfying quite strong a-priori-estimates. The latter ensure the
required compactness. Further interesting properties of minimising sequences and the minimal
Willmore energy as e.g. monotonicity in « are also proved in Section [Bl In developing these
techniques we benefit from previous works on related one-dimensional problems [5], [6].

Langer and Singer [12] gave explicit expressions for the curvature of elastic curves in the hy-
perbolic half plane in terms of the arclength of the unknown curve. However, there does not seem
to be a direct way to use these results for the question being studied in the present article. More-
over, we think that the constructions made below in order to improve the properties of minimising
sequences are of independent interest and explain to a good extent the shape of solutions.

2 Geometric background

2.1 Geometric quantities for surfaces of revolution

The calculations below are based on the formulas given in [2]. Let
u:[—1,1] — (0, 00)
be a sufficiently smooth function. We consider the surface generated by the graph of u, the
parametrisation of which is given by
(@,¢) = f(z,0) = (z,u(z) cos ¢, u(z) sin ).

Here, we consider « = x; as first and ¢ = 2 as second parameter. First and second fundamental
form and the interior normal on the surface of revolution are given as follows:

o (z)?
@) = (0L 00) am e i)

(Lij) = m(—ug(@ u(orv)>

1 p .
v(z,p) = ——————=—(u'(z),—cosp,—siny).
14+ u'(x)? ( )
We use the sign convention that the mean curvature H is positive if the surface is mean convex
and negative if it is mean concave with respect to the interior normal v. The mean curvature and

Gauss curvature are then given respectively by

L u(x) 1 _ 1 u(x) ,
H = 2 (1 + ' (z)2)%/? T 2u(x)\/1+u ()2 2u(z)v/(z) < 1 —|—u’(:1:)2> ' .
u//(x) .
u(z) (1 + u'(2)?)?

The Laplace-Beltrami operator on the surface of revolution acts on smooth functions h as follows

2
1 g
Agh = — E 0i (v/99” 0;h

g \/giijI (\/_ J )

1 u(x) 1+ /()2
Cu(@) 1+ (2)? (8”” ( 1+ u/(z)2 M) 9% ( u(x) WL)) ’
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where g% are the entries of the inverse of (9ij)ij- The terms in the Willmore equation (II) for a
surface of revolution are then

1
A H

w(z)y/1+ v (x)?
u(z) 1 B u’(x)
Or < 1+ u/(x)? Or <2u(:c) L+u/(z)?2 2(1+ u’(x)2)3/2>> ’

e L) YL ) Y’
PHHE=K) = w@) <u<x> 1+u/<x>2>(u<x>+1+u'<w>2> |

So, for surfaces I' of revolution as described above, the Willmore functional reads as follows

1 u// T 2
wit) = /FH2 a5 = g/_1 (u(:c) 1 - u ( )2)3/2> w1

L+u/(z)2 (1+u/(2)

2.2 Surfaces of revolution as elastic curves in the hyperbolic half plane

The following formulae and calculations are mainly based on [I3]. We will recall a different and
for our purposes more suitable interpretation and reformulation of the Willmore functional.
The hyperbolic half plane R% := {(z,y) : y > 0} is equipped with the metric

1
ds? = ?(ala:2 + dy?).

Geodesics are circular arcs centered on the x-axis and lines parallel to the y-axis; the first will play

a crucial role in choosing suitable minimising sequences for the modified Willmore functional.
Let s — v(s) = (71(s),72(s)), where we do not raise the indices, be a curve in R parametrised

with respect to its arclength, i.e.

71(5)* +75(5)°

! Y2(s)?

Then, its curvature is given by

n(#) = ‘fg(i;;% (2ep) - fi(i;; (o () ®)

We think that this is the most frequently used sign convention. However, our arguments would
not be affected by choosing the opposite sign. For graphs [-1,1] 3 z — (z,u(z)) € R2, formula

) yields
B _u(x)Qi 1 _ u(@)u(x) 1
kp(z) = o' (z) da (u(x) 1+u’(:):)2> - (1 —|—u’(x)2)3/2 + 1—|—u’(:);’)2' (6)

Concerning the Willmore energy (in this metric) we find:

Wi(u) = /1 kn(x)? dsp(z) = /_11 Hh@ﬁ% dx

-1

1 u//x 1 2
-/ ( ())2)3/2_u(:c) <x>2> w1+ ) da

g\ A+ (z 1+
1 "
u ()
4 — = d
" / T+ ()i ™

= E/H2dS—E/KdS:g/H2dS+4
™Jr T Jr T Jr

u'(z)
1+ u’(m)2] 71’
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with H and K as given in (3)). This means that
@ |
T u'(x
WIT) = Wp(u) — 27 | ——— ,
) 2 @) 14+ (x)2]
-1

where W(I') is defined in () and I' is the surface of revolution generated by u. In our situation
where we assume Dirichlet data

u(£1) = a, u'(£1) =0,

we even have

WD) = ZWa(u). (7)

In proving Theorem 1, we benefit a lot from considering W, instead of WW. We do not only take
technical advantage from this point of view, but we think that it is geometrically more suitable as
the constructions in Section B will make clear.

Concerning the Euler-Lagrange equation for critical points of the “hyperbolic Willmore func-
tional” W, one has:
Lemma 1. Assume that u € C*([~1,1]) is such that that Wy (u + tp)|i=o = 0 for all ¢ €
C3°(—1,1). Then u satisfies the following Euler-Lagrange equation:

%% (%mux))—nh<x>+§mh<x>3—0, ve(=Ln),  (§

with kp, as defined in ().

This observation was formulated in [12] [13] and goes back to U. Pinkall and R. Bryant, P.
Griffiths [4]. For the reader’s convenience and because it will be used in the proof of regularity, we
present the proof of Lemma 1 in Appendix A.

3 Minimisation of the Willmore functional
For a € (0,00) we denote
N, = {u € CH([~1,1]),u is even and positive, u(1) = a, /(1) = 0}, (9)
and
My = inf{Wy(u) : v € Ny} (10)

In this section, we will show that M, is attained: i.e there exists u, € N,, which is even in
C*>([-1,1]), such that Wy (ua) = M,.
According to (7)) we have for all u € N,

1 m
W) =5 [ (o) dsu(e) = W (w),

with I' the surface of revolution generated by the graph u. Hence, the surface of revolution
generated by the graph of u, is a minimizer of the Willmore functional in the class of surfaces of
revolution generated by the graph of functions in N,. The corresponding Willmore equation is the
following Dirichlet problem

AgH +2H? —2HK =0 in (—1,1),
(11)

u(£1) = a, u'(£1) = 0.



42 A. Dall’Acqua, K. Deckelnick, H.-Ch. Grunau

By minimising the functional W), on N, we construct a symmetric solution to ().
Remark 1. We will use the following rescaling property. If u is a positive function in C*'([—r,r]),
for some r >0, then the function v € CY([—1,1]) defined by v(z) = Lu(rz) is such that

Wh(v) = / w3 [u]dsp [u).
Here and in the following kp[u] denotes the curvature of the graph of w in the hyperbolic half plane
(defined in () ) and dsplu] denotes the corresponding line element.
3.1 Upper bound for M,
Lemma 2. Let M, be defined as in (I0). Then

arctan(1/(2a))

M, <8 / _de 16 40
0 2 —cosp 9

In particular,

lim M, = 0.

a—00

Figure 1: Comparison functions

Proof. Let r > 0 to be suitably chosen. On the circle centered at (1, + r) with radius r we
consider the shortest arc starting at P, point of intersection between the circle and the segment
from (0,0) to (1, +r), and ending in (1, ). This arc has opening angle arctan(1/(« +r)). Then
we extend the curve in a C'!'-way by considering on the geodesic circle centered at the origin and
going through the point P the arc that starts at the intersection point between the circle and the
y-axis and ends in P. Notice that the geodesic arc touches the original arc tangentially. Then we
extend the curve on [—1,0] by symmetry. This yields a curve u,, in N, with equation

1
2 _ 2 2 2 : < . r
((VIF @2 =2 —Ja?) 0 <] <1t
Cl+r—\/T2—(|$|_1)2’ 1f1—\/177)2§|:c|§1

Uar(T) = )
+(a+r

The part of the curve given by the geodesic circular arc does not contribute to the Willmore energy.
The graph of the other circular arcs has hyperbolic curvature
a—+r

Rp = ;
T

and line element .

a+r(l—cosyp)

dsp = de.
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Then uq, has Willmore energy:

(a + 74)2 /arctan(l/(a-i-r)) 1
ar) =2——— de,
Wa(ttar) r 0 a+r(l—cosp) 7
and the claim follows choosing r = a. O

3.2 Monotonicity of the optimal Willmore energy

We show that M, < M, for o/ > «.

Lemma 3. Fiza > 0. Assume that u € CY'([—a,a]) has only finitely many critical points and it

is positive and symmetric with u'(a) = 0 and such that u'(x) <0 for all z € [0,a]. Then, for each

p € (0,a], there exists a positive symmetric function u, € CY1([—p,p]) such that u,(p) = u(a),
/

u,(p) =0, up, has at most as many critical points as u and

a

win[up)? dsplu,] < / rop[u)? dsp[ul.

—a

p
Vo € [0,p] : uy(z) <0 as well as /
—p

In particular if a =1

/p /ﬁh[up]2dsh[up] < Wh(u).
—p

Proof. Let r € (0,a) be a parameter. The normal to the graph of w in (r,u(r)) has direction
(—u/(r),1). The straight line generated by the normal intersects the x-axis left of r, since u is
decreasing. We take this intersection point (¢(r),0) as center for a geodesic circular arc, where the
radius is chosen such that the arc is tangential to the graph of w in (r,u(r)) (i.e. the radius is given
by the distance between (¢(r),0) and (r,u(r))). We build a new symmetric function with smaller
curvature integral as follows. On [¢(r), 7] we take this geodesic arc, which has horizontal tangent
in ¢(r), while on [r,a] we take u. By construction, this function is C11([e(r),a]) and decreasing.
We shift it such that c(r) is moved to 0, and extend this to an even function, which is again C1!,
now on a suitable interval [—¢(r), £(r)]. This function has the same boundary values as u, at most
as many critical points as v and, by construction, a smaller curvature integral. This construction
yields the claim since r +— £(r) is continuous and lim,\ o ¢(r) = a, lim, ~, £(r) = 0. O

Lemma 4. Fiza > 0. Assume that u € CYY([~a,a)) has only finitely many critical points and
it is symmetric, positive with u'(a) = 0 and such that u'(z) > 0 for all x € [0,a]. Then there
exists a positive symmetric function v € CH1([—a,a]) with v(a) = u(a), v'(a) = 0, v has at most
as many critical points as u and

a a

nlu]2 dsnlv] < / pnlu]? dsp .

—a

Vz € [0,a] : v'(z) <0 as well as /

—a

In particular if a = 1, Wy (v) < Wp(u).
Proof. We may assume that u(0) < u(a). We consider

v [ ulx+a), ifze[-a,0]
@) = { w(r —a), ifz€|0,al.

We apply the procedure of Lemma 3 to @ and find for all p € (0,a] a symmetric positive function
i, € CH([—p, p]) with lower Willmore energy, at most as many critical point as @ and such that
tp(p) = u(a) = u(0), @,(p) = 0 and @j,(x) < 0 for all € [0,p]. Let pg € (0,a] be such that
i(a) = u(0) = 22u(a). Then, by rescaling (Remark 1), the function v(z) = <, (22x) defined on

u
PO a
[—a,a] is the desired decreasing function with smaller Willmore energy. O
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Lemma 5. Fiza > 0. Assume that u € C1Y([—a,d]) is a symmetric, positive function having
only finitely many critical points and satisfying u'(a) = 0. Then, for each p € (0,a|, there exists
a symmetric positive function u, € C([—p, p]) with uy,(p) = 0 and uy(p) = u(a) with at most as
many critical points as u such that

/l; Hh[up]2 dspup) < /Z Hh[u]Q dsnlul.

If u/(z) < 0 for z close to a, the same may be achieved for u,

a=1

(x) for x close to p. In particular if

o
[ gl dsifu) < Witw)
—p

Proof. We may assume that u is not a constant. Let xg > 0 be such that [—zg, z¢] is the smallest
possible symmetric interval with «’(zg) = 0. In [0,z0] the derivative of u has a fixed sign. If
u/(x) > 0 in [0,20] then by Lemma 4 there is a positive symmetric function v € C1!([—zg, 20])
with lower Willmore energy such that v(xg) = u(z), v'(z9) = 0 and v'(x) < 0 in [0,z0]. Hence
we may assume that u/(z) < 0 in [0, z0]. By Lemma 3 for all » € (0, (] there exists a positive
symmetric function v, € C11([~r,r]) such that v,(r) = u(zo) and v.(r) = 0 and v.(x) < 0 in [0,7].
Hence the function

ulx+xzo—r), if r<z<a+4r-—xg,
up(x) =< vp(x), if —r<z<r,
uwlx—xzo+r), if —a—r+zy<z<-—r,

is in CYY([—a — r + 20, a + 1 — 2¢]), is symmetric , ul.(a +7r — x9) = 0, ur(a + r — 79) = u(a) and

a+r—xg a

/ ol dsnlu) < [ o[l d ]
—(a+r—=zo) —a

With this construction the claim is proved for p > a — xg.

For p < a — xg we start from the function just constructed obtained at the limit for r going to
zero. That is v(z) = u(x + x¢) for z € [0,a — xp] and extended by symmetry on [—a + x¢,0]. This
function is in C%!([—a+xg,a—x¢]), positive and symmetric. We can repeat the same construction
just done. We continuously decrease the interval of definition and, at the same time, the curvature
integral. Since we have only finitely many critical points and at each iteration step we do not
increase the number of critical points, this procedure is well defined and terminates after finitely
many iterations.

If v’ < 0 close to a the same may be achieved for u;, since in the construction we do not change
the function near the end-points of the interval of definition. O

Corollary 1. Fiz a > 0 and o > 0. For each positive symmetric u € C1Y([—a,a]) having only
finitely many critical points and satisfying

u(+a) = «, W' (a) =0
and for each 3 > a, we find a symmetric v € CYY([—a, a]) having at most as many critical points

as u, satisfying
v(+a) = 5, v'(+a) =0

and

| b dsfel < [ wful dsyful
If W/(x) < 0 for x close to a, the same may be achieved for v'. In particular if a = 1, Wy(v) <
Wh,(u).
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Proof. By Lemma 5 for each p € (0, a], there exists a symmetric positive function u, € C*!([—p, p])
having at most as many critical points as u with u;,(p) = 0 and u,(p) = u(a) = « such that

[ el dsnlug) < [ naful® syl

—p —a

Choosing po such that -ta = the function v(z) = ,%Upo(%oﬂ”) for x € [—a, a] yields the claim. [

Theorem 2. Let M, for a € RT be as defined in (I0). Then for 0 < a < & we have that
M, < M,

Proof. Since the polynomials are dense in H?, a minimising sequence for M, may be chosen (in
N,,), which consists of symmetric positive polynomials. Corollary 1 yields the claim. O

3.3 Properties of minimising sequences

The first main step consists in finding a procedure which does not increase the Willmore energy
but allows to restrict to functions v in N, (defined in (@) such that ¢'(z) < 0 for all z € [0, 1].
Here, the techniques developed in subsection are used essentially.

Theorem 3. Let N, be as defined in [@l). For each uw € N, having only finitely many critical
points, we find v € N, having at most as many critical points as u, satisfying

V() <0 for all z € [0,1] and Wy (v) < Wh(u).

Proof. If u does not have the claimed property then there exist zg,z1 € [0,1], g < x1, with
uw'(x) > 0in (zg,21), v (x0) = v/(z1) = 0 and «/(z) < 0 in [x1,1]. Using that u(xg) < u(zy), we
construct a positive symmetric function v; € CH!([—w1,21]) such that v; has at most as many
critical points as ul[_z, 4,1, v1(z) < 0 in [xg,71] and

1 1

mmfwwas/ nlul2dsplul. (12)

—x1

vi(z1) =0, wvi(z1) = u(xy), /

.
The claim will then follow by finitely many iterations proceeding from the boundary points towards
the central point 0.

We consider u|[_y, 5, and apply Corollary 1 with 8 = u(z1). If 29 = 0 one simply skips this
first step. There exists a symmetric positive function wy; € C1Y([—x, 7o]) with w(zg) = u(z1),
w) (z9) = 0, having no more critical points than u|[_g ., and satisfying

o o
/ fop[wi]2dsp[w] S/ Ko [u]?dsp [u).
—x0 —x0
We define on [—z1, 2]

u(z +x1 +x9), ifx €[z, —x0),
01(x) =< wi(x), if x € [—xo, zo],
u(x —xy —xg), if x € [xg,x1].

Certainly, 9; € CbY([—x1,21]) is positive, symmetric and it does not have more critical points

than ul(_,, 5, Moreover, ) (z) < 0 for x € [z, 21] and

1 1
/ kplo1 )2 dsp 1] < / kplu)®dsp[u],  01(x1) = u(zo), o) (z1) =0.
—x1 —T1
Corollary 1 now yields a positive symmetric function v; € C1([—z1, 21]), having no more critical
points than u|_,, ,,) and satisfying (I2), with vj(z) < 0 in [zg,z1]. The last property is verified
first close to x1; it holds on the whole interval since no further critical points arise. U
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Moreover, in choosing a minimising sequence for M, we may restrict to functions in N, satisfying
Vz e [0,1]: 0 <+ v(z) (). (13)

For x = 0 and x = 1, this inequality is trivially satisfied. If for some zy € (0,1) we have that
0 = 29 + v(xg)v'(x0), then the normal in (zg,v(zg)) to the graph of v goes through the origin.
Hence, with the same construction as in Lemma 2 we could substitute over [—xg, xg] the original
graph by a geodesic circular arc lowering the Willmore energy. Observe that this procedure, applied
to a positive symmetric C''!-function with v’(x) < 0 for all z € [0, 1] preserves all these properties.

Combining ([3]) with Theorem 3 we may restrict ourselves to minimising sequences (v)y for M,
(defined in ([I0)) having the following properties:

vp € CHY([~1,1]) are positive, symmetric and s.t. Vo € [0,1] 1 0 <z + v (x)v}(z), vi(z) <O0.
(14)
This implies immediately the following a-priori-estimates for this suitably chosen minimising se-

quence:
2|

Vee[-11:  a<uy@<Val+l-a?<a+l  |ylr) <= (15)
«

3.4 Attainment of the minimal Willmore energy
We are now able to state and to prove a more precise result than the main existence result Theorem
1 from the introduction:

Theorem 4. For each o > 0, there exists a positive symmetric function uw € H?*(—1,1) N
CY([-1,1)) satisfying
u(£l) = a, u'(£1) =0,

such that

Wh(u) = M, & inf(Wj,(v) : v € CHY([=1,1]),v is even, v(£1) = o, v'(£1) = 0}.

This minimum is a weak solution to the Dirichlet problem ([I1l) satisfying
Vz €[0,1]: 0<z+u(z)u(v), u'(x) < 0. (16)

|z]

Vo e [-1,1]: a<u(z)<vVal+l-a22<a+l |u/ ()] < —. (17)
a
Moreover, u is a classical solution, i.e. u € C*>°([—1,1]).

Proof. Stepl. Existence and quantitative properties of a minimiser.
Let (vg)r C N, be a minimizing sequence for M, satisfying (I4] — [[3]). By the uniform bounds
in (I5) we find

Wh(vg) = /1Mda€+/l ! dx

_1 (1 + v (x)2)5/2 —1 () /1 + v} (2)?
1
1
(1+5)"" /= (@+1)y/1+ %

This shows uniform boundedness of (v3); in H?(—1,1). After passing to a subsequence, we find a
positive symmetric function u € H?(—1,1) such that

vy — uin H3(—=1,1), v — u € CY([-1,1]),
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and satisfying (16 —[I7)). Since

L (z)?u(x 1 1
My +o0(1) = Wh(v) = /_1 % dx + /_1 )L dz + o(1)

/1 deJr/l 1 dx + o(1),

1 (14 u/(x)?)5/2 1 u(z)\/1 + /()2

it follows that u minimises the hyperbolic Willmore functional Wj, in the class of all positive
symmetric H?(—1,1)-functions v, satisfying v(£1) = a, v'(£1) = 0. So, u weakly solves (II)) and
hence, also (8) in the sense of (I8]) below (see also (I9])).

Step 2. Regularity of the minimiser.
From the calculations in the Appendix A, concerning the derivation of the Euler-Lagrange equation,
we see that for any even o € C?([—1,1]) with (1) =0, ¢/(1) = 0 one has that

1 1 /
1 \/1—|—u’2
-2 " dx / K2 d:):—5/ K2 " dx 18
/1 1+ T ¥ hT 5 ¥ - hu /71_’_“,2‘/9 (18)

1 1 1 u/ ,
-2 —opd 4 ——y'd
/_1 ﬁhlﬁ@ v /—1 ﬁhu(l‘i‘u&)gp !

First, we observe that (I8) is still true for any ¢ € C?([—1,1]) with ¢(£1) = 0 and ¢'(+1) = 0.
This follows by decomposition of ¢ in its even and odd part and using that they satisfy the
same boundary conditions and that integrals over odd functions vanish. We take for arbitrary

ne Cgo(_lvl)
/ / s)dsdy — Bz +1)* — y(z +1)3,

8 = —%/ s)ds + — // s) dsdy
No= i/ ds——// s) dsdy

are chosen such that p(+1) =0 and ¢'(£1) = 0. Since Wy, (u) is finite, u obeys (7)) and since

1B, ] lleller < Clinll

we can conclude from (I8) that for each n € C§°(—1,1),

1 1
— nd
[

By the bounds on v in (7)), the inequality above shows that xj;, is bounded and so,

where

< C)nlz-

u € W (-1,1).

Next, for arbitrary n € C3°(—1,1) we choose

o) = /in(s) ds — 2 (/11 n(s) ds) (@ +1)? +i (/11 n(s) ds) (@ +1)°

p(*1) =0, L F1) =0, llelco <Cllnllzr, ¢l < Clinllzr-

so that
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Since we already know that xj, is bounded, we conclude from (I8)) that for each n € C§°(—1,1),

1
1
[ @) ) < c@ll.

This proves that

1

1,00 1,00 _ 0,1
’ihl +ul2 € W (_1’ 1)’ Kn € W ([_17 1]) - C ([_17 1])7

and hence u € W*°([-1,1]) = C*([-1,1)).
Finally, rewriting (&) as follows
d u(x V14 (x)?
el %,ﬁ;}(l«) — V1tu(z)? (kn(x)
dx 1+d/(z) u(x)

we get an equation for xy, with W -coefficients and right hand side. Hence, xj, € W3 ([-1 =
C*([-1,1]), u € C+1([~1,1]) and finally, by straightforward bootstrapping, u € C*([-1,1]). O

— () in (~1,1),

A  Proof of Lemma 1

In order to calculate the Euler-Lagrange equation for the functional W, we observe first that for
arbitrary ¢ € C3°(—1,1):

Dt tglpey = Lt d !
™M T T T v e \ ()11t )

_ e d 1 Luy d 1
B v de \ uy/1+ u? u? dr \ uy/1 + u?2

t=0

u dr \ 21 + 2 u' dr \ u(l +u/2)3/2

and writing it in terms of ky,

/ /
%Hh[u +tplli=0 = 2%/% - %F»’h — T Ny % (%)
B UIQO, . U ( ’LL/SO, >/
T+u2 " T+ u? \1+u?
_» ¢ u'y! ¢ @
I A WTC AV, ey Y
U QO”/U/, SO"U/” QO/U/2 U”
+u’\/1+7 <1+u’2 T 1+ u? _2(1+ux2)2)

As for the last large bracket we have

QO”/U/, QO//U/” S0/,11112,“// B SO”'U/ SO”U/” QO//U/” B
T+u?2  1+u? “(14+42)?2) 1+u?2 1+u?2 “(1+u?)?2
",,! /
@ , K 1 2¢ Kh 1
= I—+ \/1+u’2<——+ )— (——+7
T+u? 7 U w1+ u? VIitu? \ v u/T+u?
/lu/ K / / 2K/ / 2 /
_ ¥ . Ly e @/2
1+u U v u/1+u?  u(l+u?)
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so that J .y ol "
YK, uwQ K % U + up

el toll_g = —3 - .

girelettell-o == T+u?  wira? | (L+u2)n

So, in view of the assumptions on u we have for all ¢ € C§°(—1,1) that

1
14+ (v 4 ty)?
= tol? ‘
le=0 = dt Hh[u—i_ | U+t xt:O

d

u T+u?  u/i+d?  (1+u?)32
1 9 u'! oV1+u?
+ Iih — D) d.’E
uv1+ u'? u

-1

/ SETH

1 1
1
-5 K2 2/ kp—pdz
/_ hu\/1+u’2 -1 "z
+4/1 Y a +2/1 L e
Kh———5<¢ dx K
L w)? T

integrating by parts first in the last integral and then in the second one

/ 9 V1 + u?
"éh

/ 1
o V14 u? / 9 4 ( 1 > /
= Ky ————odr + KU | ——— dr + 2 KhK)
/1 g F 1 h uv'1 +u'? 4 _ huvl + u’2
1 9 U” 1 1 1 1
+ Ky ——— dx—2/ Kh—= dx—2/ K}
/_1 hux/l—l—u’Q(p 1 ke PR R
/1 ) m u/2 ul2u// N u//
P _ _
Y u? u?V1 4 u'? U(l +u'?)3/2 " u/1 4 u?

o' dx

1

1 1 1
1 U 1
-2 Kh— dx—|—2/ KhK dx / K} !
/1 w2? - hux/1+u’2(p 1 V1I+u? hu\/1+u’2(p

and, finally, integrating by parts in the last integral

1

V1+u? ok u'¢ Ky, © 2u' ¢ + up”
2/<ah -3 dx
1 u

= /1 /ﬁ%i@dx—Q/l /ﬁhi@dx—l—Q/l Y i Y Ky, | = dx.
1 w2 1 u? V1 +u2de \ V1 + 2 u2
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/
5P dx

dr — K Rp— T — Rpy—5
i humw e M T

O
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Abstract

We consider the Willmore boundary value problem for surfaces of revolution where, as
Dirichlet boundary conditions, any symmetric set of position and angle may be prescribed. Us-
ing direct methods of the calculus of variations, we prove existence and regularity of minimising
solutions. Moreover, we estimate the optimal Willmore energy and prove a number of qualita-
tive properties of these solutions. Besides convexity-related properties we study in particular
the limit when the radii of the boundary circles converge to 0, while the “length” of the surfaces
of revolution is kept fixed. This singular limit is shown to be the sphere, irrespective of the
prescribed boundary angles.

These analytical investigations are complemented by presenting a numerical algorithm based
on C'-elements and numerical studies. They intensively interact with geometric constructions
in finding suitable minimising sequences for the Willmore functional.
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1 Introduction

1.1 The Willmore problem

Given a smooth and immersed surface I' C R3, the Willmore functional is defined by

W) := [ H*dA (1.1)
/

with H the mean curvature of the immersion and dA its area element.

The functional W is of geometric interest, and it models the elastic energy of thin shells or
biological membranes. It applies further in image processing and even in string theory (see e.g.
[13, 15, 22] 16, 23]). In these applications one is usually concerned with minima or, more generally,
with critical points of the Willmore functional. Such a critical point I' C R? has to satisfy the
Willmore equation

ArH +2H(H?* - K)=0 onT, (1.2)

where Ar denotes the Laplace-Beltrami operator on I', and K is the Gauss curvature of the surface.
A solution of this non-linear fourth-order differential equation is called Willmore surface.

Although introduced already in the 19th century (see e.g. [24]), it was Willmore’s work [29]
which popularised again the investigation of the Willmore functional. Various existence and reg-
ularity results for closed Willmore surfaces of prescribed genus were extensively discussed in the
literature. We want to mention in particular Bauer-Kuwert and Simon [1I, 27] for existence of closed
Willmore surfaces of prescribed genus, Kuwert-Schétzle and Leschke-Pedit-Pinkall [17], 18] 21] for
constrained closed Willmore surfaces of fixed conformal class and Riviere [25] for a far reaching
regularity result. We refer to [4] for a more extensive survey.

In the present paper we are interested in surfaces with boundaries. Therefore, we need to
add to (L2) appropriate boundary conditions. A discussion of possible choices can be found in
Nitsche’s survey article [22]. In the present article we prescribe Dirichlet boundary conditions, i.e.
OI' and the tangential spaces of I" at OI'. Nitsche’s work [22] contains also some existence results
for several kinds of boundary conditions. These are based on perturbation arguments and require
severe smallness conditions on the boundary data, which are by no means explicit. Furthermore,
using methods from geometric measure theory, Schétzle proved in [26] existence and regularity of
branched Willmore immersions in S with prescribed Dirichlet boundary conditions. By working
in S™, some compactness problems could be overcome. On the other hand, when pulling back these
immersions to R™ it cannot be excluded that they contain the point co. Due to the generality
of his approach it seems to us that, in general, only little topological information of the solution
can be extracted from the existence proof. However, under some explicit smallness condition on
the Willmore energy of suitable extensions of the Dirichlet boundary data, Schatzle’s solutions
are shown to be even connected and embedded. For numerical algorithms and numerical analysis
for boundary value problems for the Willmore equation and the corresponding parabolic flow we
mention Deckelnick, Droske, Rumpf and Dziuk (see [5], [0} [1I] and references therein).

To prove existence of a priori bounded solutions to boundary value problems for the Willmore
equation ([2]) with some specified further properties like e.g. the topological type or being a graph
without imposing smallness conditions on the data seems to be a quite difficult task. Equation
(L2) is highly nonlinear and of fourth order and so, lacking any form of a general maximum or
comparison principle. Most of the well established techniques from second order problems like
e.g. the De Giorgi-Nash-Moser theory seem to break down completely in higher order problems.
In order to start working on a theory of classical bounded smooth solutions for the Willmore
boundary value problem we think that it is a good and appropriate strategy to investigate situ-
ations enjoying symmetry. Although then, one has an underlying ordinary differential equation,
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understanding solvability of the corresponding boundary value problems is by no means straight-
forward. In this spirit the one-dimensional Willmore problem or so called elastica were studied in
[6, [7]. Klaus Deckelnick and two of the authors investigated in [4] symmetric Willmore surfaces
of revolution where the position and zero slope were prescribed on the boundary. By a number
of refined geometric constructions it was possible to work with a priori bounded minimising se-
quences. Although the differential equation is one-dimensional, the geometry is to a large extent
two-dimensional: Great difficulties arising from the interaction between the principal curvatures
of the unknown surface are already present.

The previous work [4] was devoted to special Dirichlet boundary data. While the position
at the boundary could be prescribed arbitrarily, one had to restrict to a zero boundary angle.
Arbitrary boundary angles are subject of the present paper.

1.2 Main results

In the present paper we will investigate a particular Dirichlet boundary value problem for (L2]).
Namely, we consider surfaces of revolution I' C R? which are generated by rotating a smooth
function u: [-1,1] — (0,00) about the z = zj-axis. Then, I' can be parametrised as follows:

(x,0) — f(z,0) = (x,u(x)cos p,u(x)sing), xe[-1,1], ¢ €][0,2n]. (1.3)

We consider the Willmore problem under symmetric Dirichlet boundary conditions where the
height u(+1) = @ > 0 and an arbitrary angle v/(—1) = 8 = —u/(1), § € R, are prescribed at the
boundary. The case § = 0 has been studied in [4]. Our main result is the following.

Theorem 1.1 (Existence and regularity). For each o > 0 and each 3 € R, there exists a positive
symmetric function u € C*([-1,1],(0,00)), i.e. u(z) > 0 and u(x) = u(—=x), such that the
corresponding surface of revolution T' C R? solves the Dirichlet problem for the Willmore equation

{ ArH 4+ 2H(H? - K)=0 in (—1,1), 14)
u(—1) =u(+1) = «, u'(—1) = =/ (+1) = 6.
The solution we find has the following additional properties:

1. If aff > 1, then v/ < 0 in (0,1] and |u'(x)| < B for all z € [-1,1].

2. IfaB <1 and B3>0, then ' <0 in (0,1) and [u/'(z)| < L for all z € [-1,1].

3. If B < 0 and ccarsinh(—B) > /1 + (2, then v’ > 0 in (0,1].

4. If B <0 and cvarsinh(—f3) < \/m, then u has at most one critical point in (0,1).

The proof is obtained by combining Theorems B.1T], B.I8], .17, 4.24] (139, [1.48 and Lemmas [3.1]
and {11

It may appear surprising that we find axially symmetric solutions of the Willmore boundary
value problem for all values of @ > 0 and 3 € R. For example, axially symmetric critical points of
the area functional (i.e. minimal surfaces)

1
AT = QW/U(CC)\/ 1+ (z)?dx
~1

exist only for u(1) = a > a* where

1
o = > cosh(b*) = 1.5088795.. . . (1.5)
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and b* > 0 is the solution of the equation cosh(b*) = b*sinh(b*), b* = 1.1996786.... Minimal
surfaces of revolution, so called catenoids, are obtained for any b € (0,00) by rotating the curve
x % cosh(bx) around the z-axis. Not only for boundary data « € (0, a*) these catenoids cease to
exist, but according to [9, Chapter 6.1, Theorem 3], there is no connected minimal surface solution
at all — whether symmetric or not — for a < 1.

According to our result, for any set of symmetric Dirichlet boundary data, we always find at
least one solution to the Willmore boundary value problem. For non-symmetric Dirichlet data —e.g.
u(1) # u(—1) — we expect a different picture. Analytical and numerical experiments suggest that
one may be forced to impose conditions on the data u(—1),u(1),u'(—=1),4/(1) which deviate not
too much from the symmetric setting. We feel that it might be even possible to prove nonexistence
within the class of surfaces of revolutions generated by graphs for quite unsymmetric sets of data.
For these data, however, existence may possibly still hold true in the class of parametric surfaces
of revolution.

In order to prove our existence result Theorem LIl as in [4], we consider symmetric C1:!-
functions satisfying the boundary conditions and we study the minimisation problem in this
class. In this setting, we prove that we may pass from arbitrary to suitable minimising sequences
satisfying strong a priori bounds. We obtain these bounds by explicit geometric constructions
which lower the Willmore energy. A key observation in doing so is the correspondence between the
Willmore functional on surfaces of revolution and a curvature functional (which we call hyperbolic
Willmore functional) on curves in the hyperbolic half plane. The geometric constructions use
geodesics of the hyperbolic half plane as well as catenoids, i.e. minimal surfaces of revolution. The
obtained a priori bounds on the elements of the suitably modified minimising sequence ensure the
required compactness and yield the desired existence result. In the setting of the hyperbolic half
plane a classification of possible curvature functions in terms of elliptic functions of the arc length
of the unknown curves is available, see [19, 20]. However, we did not see a possibility to develop
these results towards explicit formulae for boundary value problems (I.4]). Moreover, we think that
the geometric constructions performed in the present paper help to a good extent to understand
the geometric shape of minimisers.

It remains as an interesting question whether these solutions minimise the Willmore energy
also in the class of all immersed surfaces satisfying the same Dirichlet boundary conditions. For
8 # 0 and o — oo the energy bounds of Chapter [f] indicate that presumably this will not be the
case. We expect that there might be parametric Willmore surfaces of revolution with much smaller
Willmore energy.

Uniqueness is a further issue we have to leave open.

As can be seen from the statement of Theorem [[LI] the behaviour of those solutions of the
Willmore equation constructed there depends not only on whether 3 > 0 or 8 < 0. In both cases
we have to make further distinctions. It seems that we have to treat all these cases separately. The
switch between the different cases occurs when having explicit solutions. These solutions mark
the values of the parameters where the qualitative behaviour of solutions changes. If a8 = 1 then
a solution is given by an arc of the circle with centre in the origin and going through the point
(1,«). This is a geodesic in the hyperbolic half plane. The corresponding surface of revolution
is part of a sphere which is the simplest possible closed Willmore surface. These geodesics of
the hyperbolic half plane play an important role when studying the case 8 > 0. For § < 0 and
aarsinh(—3) = /1 4 (32, the catenoid u(x) = cosh(bz)/b with b = arsinh(—(3) is a minimal surface
solution. Catenoids come into play in our constructions in addition to the hyperbolic geodesics
when studying the case § < 0. This interplay between two prototype Willmore surfaces gives rise
to some technical difficulties. For § < 0 and || large, numerical calculations clearly display almost
catenoidal and almost spherical (hyperbolically geodesic) parts of solutions.

Conformal invariance is a key feature of the (hyperbolic) Willmore functional and of Willmore
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surfaces. Rotation and translation are frequently employed, and scaling invariance is most impor-
tant throughout the whole paper. On the other hand, inversions are not addressed here since in
most cases they do not preserve the particular shape (I3]) of surfaces of revolution generated by
graphs. Within this framework, only the relatively simple case a3 > 1 could have been reduced to
results in parts of the complementing cases, which are much more involved especially when § < 0.
In particular, boundary data with g < 1532 cannot be reduced to different cases because here,
inversion does not yield graphs. But inversions are nevertheless quite interesting also here. De-
pending on «, they may yield parametric Willmore surfaces of revolution which are not generated
by graphs because they approach the left boundary from the left and the right boundary from the
right. This is remarkable in so far as the general discussion of parametric surfaces of revolution is
expected to be more difficult than that in the present paper.

Besides existence we also study further qualitative and asymptotic properties of solutions. A
natural question is what happens to the solutions constructed in Theorem [[.J] when 8 € R is fixed
and a goes to 0. We prove that they converge to the sphere centered at the origin with radius 1.

Theorem 1.2. Fiz § € R. For o > 0 let uy be a solution to problem (L) as constructed in
Theorem [I1. Then, u, converges for a\, 0 to x — /1 — 22 in C" (—1,1) for any m € N.

loc

For a proof see Theorem 5.8

With our method of proving existence of solutions we get also information on the qualitative
behaviour of the solutions. In particular, we can characterise the sign of the first derivative as
stated in Theorem [Tl Looking at the graph of a solution u : [-1,1] — (0,00) as a curve in the
hyperbolic half plane, we study also the sign of its hyperbolic curvature. In Section we recall
some basic facts from hyperbolic geometry. However, the meaning of the sign of the hyperbolic
curvature rp[ul(x) in (z,u(x)) is easily explained. One compares the graph of w in (z,u(z)) with
the tangential geodesic circle centered on the z-axis. Negative kp[u|(x) means that the graph is
locally inside this circle while sp,[u](z) > 0 means that the graph of u is locally outside this circle.
Concerning the sign of the hyperbolic curvature of our solutions we have the following result. We
skip the case a8 = 1, where the solution is a geodesic circle.

Theorem 1.3. For a > 0 and € R let u € C*([—1,1],(0,00)) be a solution to problem (L4l
as constructed in Theorem [I1l Let kpu] denote the hyperbolic curvature of the curve {(x,u(x)) :
x € [—1,1]}. Then, ky[u] has the following sign properties:

1. If af > 1, then kp[u](0) < 0 and kpu] has at most one change of sign in (0,1).
2. IfaB <1 and > 0, then kp[u] >0 in (—1,1).

3. If B <0 and aarsinh(—f) > /1 + (32, then kx[u](0) > 0 and ki[u] has at most one change
of sign in (0,1).

4. If B <0 and avarsinh(—3) < \/1+ 2, then kp[u] >0 in (—1,1).

The proof is obtained by combining Theorems [6.4] [6.7, 6.9 and B.1T1

Numerical calculations give evidence to our feeling that in the case a8 > 1 the hyperbolic
curvature may indeed have a change of sign.

It is not only in this respect that the analytical investigations of the present paper benefit
a lot from numerical simulations. Numerically calculated solutions help in finding qualitative
properties of suitable minimising sequences while, at the same time, analytical insights help to
identify suitable initial data such that the numerical gradient flow method indeed converges. In
Chapter [0, we explain a C'-finite element method, which we think is natural in order to deal
with Dirichlet boundary conditions. It seems that so far, no Cl-finite element algorithms are
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available for Willmore surfaces. Like in the analytic part we consider the present paper as a first
step also in numerical investigations of Dirichlet problems. We are confident that, basing upon
these experiences, we may develop C'-finite element algorithms also for graphs e.g. over general
two-dimensional domains. This will be subject of future research.

We remark that in particular the Navier boundary value problem is numerically well investi-
gated, where the position of the surface and its mean curvature are prescribed at the boundary.
See e.g. [0, [IT] and references therein. In this case the Willmore boundary value problem may be
written as a second order system for the position and the mean curvature and continuous finite
elements may be used.

Droske and Rumpf [10] proposed a level set formulation for the Dirichlet problem and for
closed Willmore surfaces and developed a corresponding piecewise linear continuous finite element
algorithm.

1.3 Organisation of the paper

In Chapter 2] we recall some basic geometric notions which are relevant for our analysis, and
formulate the minimisation problem for the Willmore functional as we shall study it. We explain
that the Willmore functional for surfaces of revolution I' as in ([3]) corresponds to a functional
defined on curves in the hyperbolic half plane. We call this second functional the “hyperbolic
Willmore functional”. This observation was already made by Pinkall and Bryant-Griffiths and
used in [2] 3 20, [4].

In Chapter Bl we prove Theorem [[T] in the case 5 > 0 taking advantage of the reformulation
of the minimisation problem in the hyperbolic half plane. For a8 = 1 we have a part of a sphere
as an explicit solution. We distinguish then the cases o > 1 and a8 < 1. In both cases we first
prove monotonicity of the energy. The energy is increasing in « for a8 > 1, while it is decreasing
in o for a8 < 1. By geometric constructions we prove that we can restrict ourselves to minimising
sequences satisfying strong a priori bounds, which are as in Theorem [T Properties 1 and 2
respectively. The key ingredient is to insert suitable parts of hyperbolic geodesic circles. The case
aff < 1 may be viewed as a direct generalisation of the result for 8 = 0 from [4]. As for estimates
and existence we proceed exactly like there and are quite brief here for this reason. However, we
improve it by showing that our solution even satisfies v’ < 0 in (0, 1). Obtaining a priori estimates
in the case a8 > 1 is more involved since the geodesic circle through the boundary points does no
longer serve as a comparison function.

In Chapter @ we prove Theorem [[T] in the case § < 0. For a = ag := /1 + [3?/arsinh(—03)
a solution is the catenoid = — cosh(bz)/b with b = arsinh(—f). Then, we distinguish the cases
a > ag and a < ag. Here, the requisite geometric constructions in order to achieve strong enough
a priori information on suitably modified minimising sequences do not only involve the hyperbolic
geodesics but also the catenoids as minimal surfaces of revolution. These constructions are different
not only according to the cases a > ag and a < ag, but depend also on whether —3 > aor -8 < «
and whether @ > a* or @ < «*. The parameter o* = min{cosh(b)/b : b € (0,00)} refers to the
smallest boundary height where for some boundary angle one may have a catenoid as solution. If
|3| becomes large and « small it turns out to be somehow delicate to prevent minimising sequences
from getting too close to 0 and to obtain bounds from below. Surprisingly, the case where a > ag
and —f3 < « is special, because here we can prevent a possible loss of compactness only by further
restricting the class of admissible functions.

In Chapter B we study the behaviour of minimisers for a \, 0. We prove that our minimisers
converge locally uniformly in (—1, 1) to the sphere. In Chapter [6] we prove bounds on the Willmore
energy and we study the sign of the hyperbolic curvature of the constructed solutions.

Chapter [0 gives a description of a C'-finite element algorithm for the underlying Willmore



58 A. Dall’Acqua, S. Fréhlich, H.-Ch. Grunau, F. Schieweck

gradient flow. Moreover, numerical studies are performed, and we provide a series of pictures
illustrating typical shapes of solutions within different parameter regimes.

2 Geometric background

2.1 Surfaces of revolution

We consider any function u € C4([~1,1],(0,00)). Rotating the curve (z,u(x)) C R? about the
r-axis generates a surface of revolution ' C R3 which can be parametrised by

T f(z,¢) = (z,u(z)cosp,u(z)sing) € R®, =z €[-1,1], ¢ € [0,2m).

The term “surface” always refers to the mapping f as well as to the set I'. The condition u > 0
implies that f is embedded in R? and in particular immersed.

Let k1 and ko denote the principal curvatures of the surface I' C R3, that is k; = —u/(2)(1 +
u’(x)Q)_% and ko = (u(z)/1 + v/ (x)2)~L. Its mean curvature H and Gaussian curvature K are

_ kitke u’(x) 1 _ 1 u(z)
H o= 2 21 +ul(x)2)3/? * u(z)\/1+u/(z)2  2u(z)v/(x) ( I+ U'($)2> ’
K = R1kR2 = — u”(x)

u(l 4+ u'(x)2)2"
The Willmore energy of I' defined in (I.1) is the integral over the surface of the mean curvature

squared. In particular, written in terms of the function u it has the form

1

2
W) = % / <(1 +Z’((z))2)3/2 - 1 ) u(z)V/ 1+ u'(2)? de. (2.1)

J u(@) T+ (a)?

2.2 Surfaces of revolution as elastic curves in the hyperbolic half plane

Following [2, 3], the construction of axially symmetric critical points I' of the Willmore functional
can be transformed to finding elastic curves in the upper half-plane R% := {(z,y) € R? : y > 0}
equipped with the hyperbolic metric ds,% = y% (dz? + dy?). Geodesics are circular arcs centered
on the z-axis and lines parallel to the y-axis; the first will play a crucial role in this work.

Let s — v(s) = (71(s),72(s)), where we do not raise the indices, be a curve in R% parametrised
with respect to its arc length, i.e.
()% +75(s)°

! Y2(s)?

Then, its curvature is given by

n(s) = ‘fg(i;;% (27) - fi(i;; (s (%)) 22)

For graphs [—1,1] > z — (z,u(z)) € RZ, formula Z2) yields

B _u(:c)2i 1 u(x)u(x) 1
rplul(x) = u(z) dx <u(:1:) 1—|—u’(:1:)2> - (1+u’(:1:)2)3/2 + 1—|—u’(x)2' (2.3)
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Using identity (2.3), we compute for the squared hyperbolic curvature times the hyperbolic line
element:

el IE {( v ! }um

U 1 +ul2)3/2 + U /1 +’LL/2
u// //
= - uV14+u?+4——m—
{(1+u’2)3/2 um} 1—|—u’2)%
— aBu/Tru? 4 —
(1 +u’2)5

We define the hyperbolic Willmore energy as the elastic energy of the graph of w in the hyperbolic
half plane and compare it with the original Willmore functional W(I") defined in (21).

1 1
M@wy:/kﬂ@m%my:/@dﬂﬂiggf@p:%mmu+g/a:%ﬁﬁﬁm; (2.4)
v -1 -1

where I' is the surface of revolution obtained by rotating the graph of .

Lemma 2.1 (Duality of Wj,(u) and W(T')). The hyperbolic energy Wi(u) of a curve u € R% and
the Willmore energy of the corresponding surface of revolution T' C R3 satisfy

1
u'(z)
L+u/(2)?| | '

This observation goes back to Pinkall (mentioned e.g. in [I4]) and Bryant-Griffiths [2 [3], see
also [I9] 20]. The present derivation is adapted from [4, Section 2.2].

Wi () = 2 W(T) + 4

s

In proving Theorem [Tl we benefit a lot from this duality between the Willmore functional
and the hyperbolic Willmore energy. We do not only take technical advantage from this result,
but we think that switching between both functionals helps to a good extent in understanding
underlying geometric features.

Concerning the Euler-Lagrange equation for critical points of the hyperbolic Willmore func-
tional W), one has:

Lemma 2.2. Assume that u € C*([—1,1],(0,00)) is such that for all p € C$°([—1,1],(0,00)) one
has that 0 = & GWh(u+to)|i=o. Then, u satisfies the following Euler-Lagrange equation

it i(—z?@)a% ( 11(3@)2”2(@) )4 gm@)=0 re(-LY, @9

with kp, = kplu] as defined in (23]).

When parametrised by the hyperbolic arc length s, equation (23] takes the simple form
j—;/ﬁh(s) — kp(s) + 3rn(s)® = 0. This equation was discussed in detail in [I9] and curvatures
of solutions were classified in terms of elliptic functions of the hyperbolic arc length s. However,
we do not see any possibility to solve directly and explicitly our Willmore boundary value problem
(L)) basing upon this classification.
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2.3 Statement of the Willmore problem

The Willmore boundary value problem (L.4) will be solved by minimising the hyperbolic Willmore
functional within the following class of functions:

Definition 2.3. For a > 0 and 8 € R we introduce the function space
Nog:={uc Ch1([~1,1],(0,00)) : u positive, symmetric, u(1) = a and u'(—1) = B} (26)

as well as

My g :=inf {Wj(u) : u€ Nog}. (2.7)

Lemma 2] gives that
g

it P
for the surface I' of revolution generated by u € N, g. Since we are working with Dirichlet boundary
conditions we may switch between the two functionals depending on which one is more convenient.
In the following sections we will prove existence of solutions uq g € No g N C*>([—1,1],R) such
that Wi, (uqa,8) = My g. Only in the case of parameters treated in Subsection B.2.3] N, s has for
technical reasons to be replaced by a smaller set of admissible functions. The axially symmetric
surface I'y g which is generated by w4, g is solution of the Willmore boundary value problem (I.4]).
See [8, Lemma A.1] for an elementary calculation of the Euler-Lagrange equation in this particular
setting. For a general survey on the Willmore functional, corresponding Euler-Lagrange equations
and natural boundary conditions we refer to the survey article by Nitsche [22], cf. also [28] p.
56]. The Euler-Lagrange equation for the Willmore functional in nonparametric form was already
discussed by Poisson [24] p. 224].

W(T) = g Wi (u) + 4

Remark 2.4. The Willmore energy is invariant under rescaling. Il.e. if u is a positive function
in CH1([—r,r],(0,00)) for some r > 0, then the function v € CH1([-1,1],(0,00)) defined by
v(x) = u(rz)/r has the same hyperbolic Willmore energy as u, that is,

1 r
Wh(v) = /Fa%[v] dsplv] = /Ii%[u] dspu].
-1 -r

Here, kp[u] is the hyperbolic curvature of u as defined in (2.3)) and Wy, (v) is the hyperbolic Willmore
energy of v as defined in (2.4)).

3 Existence result: The case 3 > 0

In this section we consider 8 > 0 and keep it fixed, while « varies in the positive real numbers.

For the value of « such that a3 = 1 we have an explicit solution of (IL4]). This is the arc of the
circle with centre at the origin and going through the point (1, ). This solution is in particular
a geodesic curve in the hyperbolic half plane. It marks the point where there is a change in the
behaviour of the energy. For a3 > 1 the energy M, g, defined in ([2.1)), is monotonically increasing
in «, while for a8 < 1 it is monotonically decreasing in «.

Minimising sequences are suitably modified by means of parts of geodesic circles in order to
achieve strong enough a priori estimates ensuring compactness. In this respect the case a8 > 1
is more involved than the case a3 < 1, because here there is no canonical comparison function
from above. However, one can pass to minimising sequences where the derivative is maximal in
x = —1. The case a8 < 1 is quite similar to and contains the main result Theorem 1.1 from
the previous work [4] as a special case. However, this simplicity is due to referring to its main
geometric construction. Here, a geodesic circle provides an obvious upper bound. Moreover, we
prove an extra property of the solution u constructed there, namely that u/(x) < 0 on (0,1).
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3.1 The case af = 1: The circle
Here, we have an explicit solution.

Lemma 3.1. For each o > 0 and 3 such that a3 = 1, the part of the sphere I C R® generated
as a surface of revolution by the function u(x) = V1+ a? — 22, x € [—1,1] solves the Dirichlet
problem ([L4).

Moreover, the corresponding surface of revolution is the unique minimiser of the Willmore

functional (LI)) among all axially symmetric surfaces generated by graphs of symmetric functions
in CY1([—1,1],(0,00)) such that v(£1) = a and v'(1) = —f.

Proof. Since kp[u] = 0 in [—1,1], the claim follows from Lemma 2] and the definition of the
hyperbolic Willmore functional in (2.4]). O

3.2 The case af > 1
3.2.1 Monotonicity of the optimal energy

In this paragraph we prove that the Willmore energy is increasing in «. The proof is divided
into the next four lemmas. First, we prove that it is enough to consider functions in N, g which
are decreasing in [0,1]. The proof will refer to a main result of the previous work [4, Theorem
3.8], which involves a number of refined geometric constructions. We emphasise that obvious
constructions like reflections do not yield the following result.

Lemma 3.2. For each u € N, g with only finitely many critical points, we find a function v € N, g
having at most as many critical points as w, with lower Willmore energy than u and satisfying
V' (x) <0 for all x € [0,1].

Proof. Assume that u does not have the claimed property. Then, there exists zg € (0,1) such that
[—20, 0] is the largest possible symmetric interval with the property u/(zp) = 0 and u/(z) < 0
in (wo,1]. Using a rescaled version of [4, Theorem 3.8] we substitute u|(_y,,, by a symmetric
positive C1!-function defined on the same interval, having the same boundary values as u in z,
having lower Willmore energy than u][,xo,xo}, having at most as many critical points as u“,xo,xo}
and decreasing in [0,zo]. The so obtained function v is element of N, g, it has at most as many
critical points as u, Wy (v) < Wh(u) and v'(z) < 0 in [0, 1]. O

In the proof we need only that 3 > 0. Notice further that one could substitute u[j_, ,,; With
an appropriately rescaled solution of the Willmore problem with = 0 and height u(xg)/z¢ as
constructed in [4, Theorem 1.1]. This statement, however, does not give control of the number
of critical points. With arguments introduced below we shall see — a posteriori — that we could
indeed achieve u' < 0 on (0, zg).

In the next lemma, we construct for any u € N, g which is decreasing in [0, 1] a function with
the same boundary values having lower Willmore energy than u and being defined in a larger
interval.

Lemma 3.3. Assume that u € N, g has only finitely many critical points and satisfies u'(z) < 0
for all x € [0,1]. Then, for each o € [1,af), there exists a positive and symmetric function
uy € CH1([—0, 0], (0,00)) such that uy(0) = o, ul(0) = =B, uh(x) <0 for all x € [0, 0], u, has at
most as many critical points as u, and, furthermore, one has

/nh[ug]Q dsplug] < Wh(u).
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Proof. The construction is similar to the one of [4, Lemma 3.3]. The situation there differs from
the present one in the non-vanishing boundary conditions for /. There we decrease the energy by
shortening the interval, while here it is elongated.

Let r € (0,1) be a parameter. The (euclidian) normal to the graph of w in (r, u(r)) has direction
(—u/(r),1). The straight line generated by this normal intersects the x-axis left of r, since u is
decreasing. We take this intersection point (¢(r),0) as centre for a geodesic circular arc, where
the radius is chosen such that this arc is tangential to the graph of w in (r,u(r)). In particular,
the radius is given by the distance between (c(r),0) and (r,u(r)). We build a new symmetric
function with smaller hyperbolic curvature integral as follows: On [c(r),r] we take this geodesic
arc, which has horizontal tangent in ¢(r), while on [r, 1] we take u. By construction, this function
is C11([e(r), 1], (0,00)) and decreasing. We shift it such that ¢(r) is moved to 0, and extend this to
an even function, which is again C*!, now on a suitable interval [—£(r), £(r)], with £(r) = 1 — ¢(r)
and ¢(r) = r + u(r)u/(r). This new function has the same boundary values as u, at most as many
critical points as u, and, by construction, a smaller curvature integral. Our construction yields the
claim since 7 +— £(r) is continuous and such that lim,\ o £(r) = 1 and lim, ~ {(r) = af3. O

Re[ma]rk 3.4. Notice that, by concavity of the geodesic circles, u),(x) > —~ in [0, o] if u'(x) > —v
w0, 1].

m

| geodesic

‘ circle

\ \

| | o

\ \ \

| | | | |

\ \ \ | |

\ \ \ \ \

\ \ \ \ \

\ \ \ \ \
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a) c(r) 0 r 1 b 0 -1

Figure 2: Proof of Lemma 3.3l

By Lemma B.2] we can remove the assumption that «/(z) < 0 in [0, 1] from Lemma B3]

Lemma 3.5. Assume that uw € Ny g has only finitely many critical points. Then, for each o €
[1, ), there exist a positive and symmetric function u, € CH1([—g, 0], (0,00)) such that u,(0) = «,
uy(0) = =B, up(x) < 0 for all x € [0,0], u, has at most as many critical points as u, and,
furthermore, it holds that

/ tonl1ag)? dsnlug] < Wi(u).

Proof. By Lemma there exists v in N, g having at most as many critical points as u, with
lower Willmore energy than u and satisfying v'(x) < 0 in [0, 1]. The claim follows from Lemma B3]
applied to v. O

By rescaling we obtain:

Lemma 3.6. For each u € N, g having only finitely many critical points and for each v € |37,
there exists a symmetric function v € C1([—1,1],(0,00)) having at most as many critical points
as u and satisfying: v(+£1) =, v'(1) = =8, v'(x) <0 in [0,1] and Wx(v) < Wh(u).
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Proof. If v € (871,a] the claim follows from Lemma by rescaling. If v = S~! we choose

v(x) = /1+~2 — 22 O

The previous lemma gives that the optimal Willmore energy M, g, defined in (Z7)), is increasing
in a.

Proposition 3.7. We have Mgz g > M, g for all o, o such that a > o > %

Proof. Since polynomials are dense in H 2(—1, 1), a minimising sequence for My g may be chosen in
Ng, g, which consists of symmetric and positive polynomials. Lemma, proves the statement. [

In Proposition we prove that even limg—.oo My g = +00.

3.2.2 Properties of minimising sequences

In the next two lemmas we introduce geometric constructions and show that on minimising
sequences, by possibly inserting parts of geodesic circles and rescaling, we may assume that
0> (x) > —p and = + u(z)u'(x) <0 for z € [0,1].

We first employ the elongation procedure of Lemma [3.3] and rescaling to achieve the derivative
bounds.

Lemma 3.8. For each u € N, g with only finitely many critical points there exists v € N, g having
at most as many critical points as u, with lower Willmore energy than u and such that

—B < (x) <0 for all z € [0,1].

Proof. By Lemma there exists w € N, g having at most as many critical points as u with
lower Willmore energy than u and such that w'(z) < 0 in [0,1]. If moreover, w'(x) > —f the
claim follows with v = w. Otherwise there exists a first 1 € (0,1) with w'(x1) = —f3 such
that in particular w'(z) > —f on [0,z1] . By using a scaled version of Lemma [33] we dilate the
function w||_,, 5, by inserting an arc of a geodesic circle. For each ¢ € (71, w(z1)3) there exists
w, € C ([0, 0], (0,00)) with lower Willmore energy than wl[_,, ], with at most as many critical
points as wl[_,, 5] and such that wy(+0) = w(z1) and wj(¢) = —3. Notice that by concavity of
the geodesic circles wj,(x) > —f in [0, ¢]. We choose ¢ = w(x1)/a and v to be equal to w, being
rescaled to the interval [—1,1]. The choice of ¢ is such that we dilate the graph of w|g ;) until we
reach the line y — ay. This construction is illustrated in Figure Bl U

We now add the property = + u(z)u/(x) < 0 for x € [0,1] to those of the previous lemma by
possibly inserting a suitable part of a geodesic circle.

Lemma 3.9. For each u € N, g having only finitely many critical points, there exists v € Ny g
having at most as many critical points as u, with lower Willmore energy than u and satisfying

0> (z) > =B and 0 > z + v(x)v'(x) for all x € [0,1].

Proof. By Lemma [3.8 there exists w € N, g with lower Willmore energy than u, having at most
as many critical points as u and such that —f < w'(z) < 0 in [0,1]. We consider the function ¢
defined in [0, 1] by

o(x) ==z + w(z)w' (z).
Note that ¢(0) = 0 and ¢(1) < 0. If ¢ <0 in [0, 1] then the claim follows with w = v. Otherwise,

there exists zp € (0,1) such that ¢(xg) = 0 and ¢ £ 0 in a left neighbourhood of xy. Then, the
normal line at (zg,w(zg)) to the graph of w passes through the origin and we can substitute w over
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first point with
w'(z) = —f

1. w,, ie.
wl[p 5, elongate

EN— - — '}

2. v,
by rescaling

\
\
\
\
\
\
\
\
|
|
a) 0Oz 1 by Oz 1 o ¢ 0 1 0

Figure 3: Proof of Lemma [3.8

[—x0, o] by a geodesic circular arc lowering the hyperbolic Willmore energy. This new function
yields the claim. Notice that with this construction, due to the concavity of circles, the property
—fB < w' <0 is preserved and that we do not add critical points. ]

The following proposition summarises how by making use of Lemmas .8 and 3.9 we may pass
to minimising sequences satisfying suitable a priori bounds.

Proposition 3.10. Let (ux)ren be a minimising sequence for My g in Ny g such that each uy has
only finitely many critical points. Then, there exists a minimising sequence (vg)gen C Nog such
that for all k € N it holds: v has at most as many critical points as ug, Wh(vg) < Wh(ug),

0>z +v(x)vp(x) and — B < v (x) <0 for all x € [0, 1] -
and 1+ a? — 2?2 <wvg(x) < /(a4 B)2 — 22 for all x € [-1,1]. 3.1)

3.2.3 Proof of the existence theorem

The proof of the following theorem follows the lines of the proof of [4, Theorem 3.9].

Theorem 3.11 (Existence and regularity). For each a > 0 and [ such that a3 > 1 there exists
a function u € C*([—1,1],(0,00)) such that the corresponding surface of revolution T C R? solves
the Dirichlet problem (L4l). This solution is positive and symmetric, and it has the following
properties:

—B<d(z) <0 and x + u(x)u'(z) <0 in (0,1]

(3.2)
as well as V1+a? —2? <wu(z) </ (a+p)?—22 in[-1,1].

Proof. Let (ux)ren € Na,g be a minimising sequence for M, g such that Wy (ug) < My g+ 1 for
all k € N. By the density of polynomials in H?(—1,1) and Proposition B.I0 we may assume that
each element uy of the minimising sequence satisfies (8I]). We can estimate the Willmore energy
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from below as follows:

1 1 1
_ @@ o [ @) 1 N
Wh(uk)—/( d+2/( §d+/1 d

ug(z)\/1 4w ()

1
> a ")\ do — 45 .
1+ )} /1%(%) LV

Thus, (ug)rey is uniformly bounded in H?(—1,1), and, eventually, after passing to a subsequence,
Rellich’s embedding theorem ensures the existence of u € H?(—1,1) such that

up —u in H*(=1,1) and u — u € CY([-1,1],(0,00)).

Making use of the strong convergence in C*([—1,1]) and the weak convergence in H?(—1,1) of the
sequence (uy)ken, we have

1

uu 1 43
Myg+o0(l) = Wy(u :/kidx—k dx — + o(1
8 ( ) h( k) (1—|—’u,/2)% : U\/W m ( )

v

/ W L4 B 4 o(1) = Wi(u) + o(1)
Jarei T wiraE T e e
Thus, u minimises W, in the class of all positive and symmetric H?(—1, 1)-functions v satisfying
v(£1l) = o, v'(+1) = —f, and, therefore, u weakly solves (Z3]). Moreover, since the elements of
the minimising sequence satisfy (B then u satisfies  + u(z)u/(z) < 0 and —F < v/(z) < 0 in
(0,1]. From the first inequality it follows that v’ < 0 in (0, 1].

The proof of smoothness of the solution is exactly as in [4, Theorem 3.9, Step 2].

Finally we show that u satisfies  + u(z)u/(z) < 0 in (0,1]. Indeed, if z¢ 4+ u(xo)u'(x9) = 0
for some xy € (0,1] then reasoning as in Lemma 3.9 and using that M, g = W, (u), we see that u
equals an arc of a geodesic circle in [—xg, zo]. But u being a solution of (Z3]) implies by uniqueness
of the initial value problem that u is a geodesic circular arc on [—1,1]. But such an arc cannot
satisfy the boundary conditions when a3 > 1. O

In Lemma [6.3] we prove further that «’ is a decreasing function in [0, 1].
Proposition 3.12. Let a3 > 1. Then, Mg g > M, g for all a such that o > a.

Proof. Let ug be a solution of (L4]) for boundary values & and 3 as constructed in Theorem [B.111
By proceeding as in Lemma [3.0] i.e. inserting an appropriately chosen circular arc, we get a
function v € N, g such that Wy, (v) < Wh(ug). We prove that this inequality is in fact strict. As
we have seen in the proof of Theorem B.ITl ug cannot be equal to an arc of a geodesic circle in
an interval. Hence, by introducing a piece of a geodesic circle the energy strictly decreases. The
claim follows since Wy, (v) > M, 3. Notice that, for the same reason, also this last inequality is
strict. ]

3.3 The case aff < 1

The method of proof is related to that for the case a3 > 1 but much simpler. The results are,
in some sense, dual. For the monotonicity of the energy in the case a8 > 1, we have constructed



66 A. Dall’Acqua, S. Fréhlich, H.-Ch. Grunau, F. Schieweck

a function with lower Willmore energy and defined in a bigger interval. Now, with the same
construction, the function is defined in a shorter interval. Moreover, we show that in this case we
can confine ourselves to functions satisfying x + w(z)u/(x) > 0 in (0,1]. A lower bound for the
derivative follows directly from this inequality. We proceed quite similarly as in the case g = 0,
which was discussed in the previous paper [4] and which is included here.

3.3.1 Monotonicity of the optimal energy

In this case the Willmore energy is decreasing in a. The proof is as in paragraph B.2.Il For the
sake of conciseness we formulate only the results.

Lemma 3.13. Assume that v € N, g has only finitely many critical points. Then, for each
o € [ap,1], there exist a positive and symmetric function u, € CY([—p, 0], (0,00)) such that
ug(0) = a, uy(0) = =B, u,(z) <0 for all x € [0, 0], u, has at most as many critical points as u,

and, furthermore, one has
0

/nh[ug]Q dsplug] < Wh(u).
-0
In the next two results, for 5 = 0 we interpret 1/ as oc.
Lemma 3.14. For eachu € N, g having only finitely many critical points and for eachy € [a, 371]

there exists a symmetric function v € Ct1([—1,1],(0,00)) having at most as many critical points
as u and satisfying: v(+£1) =, v'(1) = =8, v'(x) <0 in [0,1] and Wy(v) < Wh(u).

Proposition 3.15. It holds that Mz 3 > My for all o, & such that 0 < a < a <

R

3.3.2 Properties of minimising sequences

In the next lemma we show that we can restrict ourselves to functions which are decreasing in (0, 1]
and satisfy x + u(z)u/(x) > 0 in (0,1]. A priori bounds follow directly from these observations.

Lemma 3.16. For each u € N, g with only finitely many critical points there exists v € N, g with
lower Willmore energy than u, having at most as many critical points as u and such that

0 <z+v(x)(z) and v'(x) <0 for all x € [0,1].

Proof. By Lemma [3.2 and the following remark there exists w € N, g with lower Willmore energy
than u, having at most as many critical points as u and such that w'(x) < 0 in [0,1]. Let us
consider the function ¢ defined in [0,1] by ¢(z) := 2 + w(z)w’(z). Note that ¢(0) = 0 and
©(1) > 0. If ¢ > 0 in [0, 1] then the claim follows with w = v. Otherwise, there exists z¢ € (0,1)
such that ¢(xg) = 0 and ¢ > 0 in (xo,1]. Then, the normal line at (zg,w(zg)) to the graph
of w passes through the origin and we can substitute w over [—zg, z¢] by a geodesic circular arc
lowering the hyperbolic Willmore energy. The new function so obtained yields the claim. With
this construction we do not add critical points. O

The following proposition characterises suitably modified minimising sequences.

Proposition 3.17. Let (ux)ren be a minimising sequence for My g in Ny g such that each uy has
only finitely many critical points. Then, there exists a minimising sequence (vg)ken C Nog such
that for all k € N: vy has at most as many critical points as ug, Wh(vi) < Wy(ug) and satisfying:

0 <z +vp(x)vp(z), vi(z) <0 and vy (x) > o = —a forallz e [0, 1],

3.3
and a < vg(x) < V1+a? —2? for all z € [-1,1]. (3.3)
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3.3.3 Proof of the existence theorem

Thanks to Proposition B.17] we prove now existence of a solution. The following result is a direct
generalisation of [4, Theorem 1.1]. Its proof appears to be relatively simple but one should observe
that via Lemma [3.2] the main constructions of [4, Theorem 3.8] are essentially used.

Theorem 3.18 (Existence and regularity). For each o > 0 and each $ > 0 such that aff < 1
there exists a function u € C*([—1,1],(0,00)) such that the corresponding surface of revolution
I' C R3 solves the Dirichlet problem (IL4)). This solution is positive and symmetric, and it has the
following properties:

-« u'(z) <0 and x+u(z)u'(z) > 0 in (0,1], and o < u(x) < V1+a? —22 in [-1,1]. (3.4)
a

Proof. Let (ug)ren € Nq,g be a minimising sequence for M, g such that Wy (uy) < My g + 1 for
all k € N. By Proposition B.I7 and the density of polynomials in H?(—1,1) we may assume that
each element u of the minimising sequence satisfies (B.3]). The rest of the proof is on the same
line as that of Theorem B.111 O

Proceeding as in the proof of Proposition [3.12] one can show that the energy is strictly de-
creasing.

Proposition 3.19. Let a >0, 8 > 0 and o8 < 1. Then, Mz g > M, g for all @ € (0,a).

Also in this case, we can prove an additional qualitative information on our solution of (L.4])
constructed in Theorem [B.I8 namely that ' < 0 in (0,1). This property is expected but here, it
is slightly more involved to prove it when compared with the dual case a8 > 1. It will prove to
be helpful also for the constructions in the case 8 < 0.

Lemma 3.20. Let u be a solution of (L4) minimising the hyperbolic Willmore energy in N, g as
constructed in the proof of Theorem [318. Then, u satisfies v’ < 0 in (0,1).

Proof. We assume by contradiction that there exists zp € (0,1) such that u/(zg) = 0. This zero
of v’ is isolated because otherwise, by reflection and uniqueness for the initial value problem for
(Z3), u were even about xg. In view of v/ < 0 on [0, 1] this would imply that u/(z) = 0 for z close
to zg. This, however, is impossible since constants do not solve (2.5)).

Then there exist a,b € (0,1) such that a < zy < b, v/(a) = «/(b), v/(x) > u/(a) for all
x € (a,b). Finally, by choosing a,b close enough to 2y and |u/(a)| small enough we may achieve
that (u(b) + «/(b)(a — b))(—u/(b)) < a which will be used to insert a piece of a solution according
to Theorem B.I8 on [—a,al.

We construct a function v € N, with lower Willmore energy than w and with non-zero
derivative in xg as follows. v|y 1) is equal to |y 1). Then v], ;) equals the line starting at (b, u(b))
with derivative u/(b) and ending at (a,u(b) + u/(b)(a — b)). It remains to define v on [0,a).
Here v equals a solution of (L) in the interval [—a,a] with boundary values w(+a) = v(a) and
w'(a) = u/(a) obtained by a rescaled version of Theorem [3.I8 Here we use that, by construction,
v(a)(—u/(a)) < a. See Figure [

It remains to show that v has strictly lower Willmore energy than u. We first compare the
energies in [—a,a]. Since v(a) > u(a) and v'(a) = u/(a) by a rescaled version of Proposition B.19]
we see that the Willmore energy of v][,(w} is strictly lower than the Willmore energy of u\[,a,a].
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Now we compare the energies in [a,b]. From the definition of v and since u/(a) = u/(b) we have

b b
Q/ﬁh[u]2ds[u] —Q/Rh[v]2ds[v]
a a
/ u"u / 1 / u” / 1
= 2 7dx+2/7dx+4/7dx—2/7d:r
/ (1—|—u’2)% uy1+ u? (1—|—u’2)% o1+ 02
a a a a
b b
> 2/ 1 d 2/ 1 dx >0
—dx — —dx
- uvV'1+ u’? vwWl+0?2 7
a a
where in the last step we used that v(z) > u(x) in [-1,1] and |v'| > |«/| in [a,b]. Comparing the
total Willmore energies we then have Wy (u) > Wy (v). A contradiction since u is the minimiser
for M, g in Ny g. O

1. straight line

2. v[g,q) solution
according to Theorem [B.18]

c) a xg b

Figure 4: Proof of Lemma 3.201

4 Existence result: The case § <0

In this section we consider 8 < 0 fixed, while « varies in the positive real numbers.

The case B < 0 is quite different from G > 0. In the latter, our constructions were based on
inserting parts of geodesic circles. Here, also catenoids will play an important role. Each of these
minimal surfaces is generated by the graph of u(z) := cosh(bz)/b, = € [—1,1], for some b > 0.
They are solutions of (L4]) for particular values of o and . Given 5 < 0 we denote

= cosh(b) with b = arsinh(—/). (4.1)

Oéﬁ:
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Notice that agarsinh(—g) = /1 + 2. We comment on these particular solutions in some more
detail in the next subsection. Then, the cases a > ag and a < ag have to be treated separately.
In the first case the energy is increasing for « increasing, while in the second case it is decreasing
for « increasing. Moreover, the behaviour of the solution we construct is different in the two cases.
If & > ag the solution satisfies v’ > 0 in (0,1] while for & < ag a further critical point could
in principle appear in (0,1). An intuition for this is given by looking for a function of the kind
v(z) = cosh(A(x — d))/\ choosing A and d suitably such that v satisfies v(1) = @ and v'(1) = —f.
If @ > ag, then d < 0. This tell us that, in some sense, there is not enough space for a catenoid.
On the other hand, if & < ag, then d > 0 so there is too much space for a catenoid. One could
think that a further critical point should show up in (0,1) together with a solution for 5 = 0 in
the inner part. By Lemma this will certainly happen for a close enough to 0. However, we
are not able to determine the precise range of « € (0, «g) where this extra local minimum may be
observed. The function ucy(z) =2 — V2 — 22 for z € [—1,1] (part of the — projected — Clifford
torus) solves the Willmore equation (L4 for o« = 1 and 8 = —1 (a < ag) and has no critical point
in (0,1).

4.1 The case a = ag: The catenoid

We summarise the main properties of the catenoids as explicit minimal surface solutions.

Lemma 4.1. For § < 0 and « such that o = cosh(b)/b with b = arsinh(—/), the part of the
catenoid T' C R3 generated by the function u(x) = cosh(bx)/b, x € [~1,1], solves the Dirichlet
problem (4.

Moreover, the corresponding surface of revolution is the minimiser of the Willmore functional

(CI) among all axially symmetric surfaces generated by graphs of symmetric positive functions in
CLY([=1,1],(0,00)) with v(£1) = o and v'(1) = — 8.

Proof. Rotating the graph of w around the x-axis generates a minimal surface, i.e. a surface
such that H = 0. Moreover, by the choice of b the function u satisfies the boundary conditions
u(£1) = ag and v/(1) = —F. For any v € N, 3 we have

1
"

1 2
Wy(v) = 2/(( ! - ! 2) v(x)y/1+ v (x)? dx+8/07dx
0

1—1—1/2)% v(z)\/1+ v (x) J (1—1—1}’2)%

—8——= = Wh(u). (4.2)

This shows that  minimises M, g and, by Lemmal[2.T], that the axially symmetric surface generated
by u minimises the Willmore functional among axially symmetric surfaces generated by graphs of
symmetric functions satisfying the prescribed boundary conditions. O

Remark 4.2. Notice that given 3 < 0, there exist unique associated b and ag defined as in ([EI).
When (3 varies in the negative real numbers, ag is bounded from below. Indeed, the function
b— %cosh(b) has precisely one minimum at b* > 0 which is the solution of the equation

cosh(b*) = b* sinh(b*), b* =1.1996786....

The value o defined in (LE) denotes the minimal value of (0,00) > b +— cosh(b)/b. For a < o,

.. . . h(b* . ..
there are no minimal surfaces of revolution solving (IL4). If a = o, then %(*x) s a minimal
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surface solution for the boundary datum [ = — sinh(b*). In the case a > o, there are two positive
real numbers by (a), ba(a) such that
h(b h(b
bi(a) < b* <by(er) and cosh(by) =a= M. (4.3)
b1 bo
Two different minimal surfaces with the same height o in 1 and different boundary slopes correspond
to these two values. These two catenoids play an important role in what follows.

4.2 The case a > ag

In this case the height prescribed at the boundary is bigger than the height of the catenoid centered
at 0 and having derivative —3 at x = 1. As observed in Remark 4.2 there are two catenoids that
in 1 have the height . These are cosh(byz)/b; and cosh(baz)/be with by = by () and be = ba(cv)
defined in ([@.3]). Since av = cosh(by)/b; = cosh(bs)/ba > ag = cosh(b)/b, it follows that by < b < by
and sinh(b;) < —@ = sinh(b) < sinh(bz). So, close to x = 1, the graph of u € N, g is between the
graphs of the two catenoids (see Figure[]). In the following we use this observation to characterise
functions in N, g with low Willmore energy.

cos};](lblx) o sinh(bl) o
— (3 = sinh(b)
u < Na,g
sinh(by)
cosh(bax
% ag
/ Qg
—( = sinh(b)
cosh(bx)

b

Figure 5: Comparison between u € N, g and the catenoids cosh(bix)/b; and cosh(bax)/bs.

We explain first how to lower the Willmore energy by inserting C'''-smoothly suitable parts of
catenoids. This construction also yields that we may restrict ourselves to functions increasing in
[0,1]. To proceed we have to distinguish between o < —( and a > —f. The line y — ay is crucial
for rescaling and the different positions of curves in IV, g relative to this line close to x = 1 require
different geometric constructions. If —3 > «, these constructions allow for suitably modifying
minimising sequences so that strong enough a priori bounds are available. If —3 < «, we need to
pass to a smaller class of admissible functions instead of N, g in order to avoid a possible loss of
compactness.

4.2.1 First observations

In this subsection we introduce some geometric constructions which lower the Willmore energy
and will be used repeatedly in the rest of this section. In the next lemma we formulate a criterion



Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data 71

which allows for inserting a piece of a catenoid in a C'*'-smooth way. This criterion is dual to the
condition 0 = x + v(zo)v'(z¢) which allows for inserting C''-smoothly a part of a geodesic circle
on [—xo, xo].

Lemma 4.3. Fiza > 0. Let f € CY1(]0,a], (0,+00)) be such that f'(0) = 0. Furthermore assume
that there is xg € (0,a) such that f'(xo) >0 and

B 1 cos L+ f(zo)? 1\ _
1 NiESIchE h<—f(x0) 0) 0. (4.4)

Then, the function

1
(@) =4 5 cosh(yz) for x € [0, zo] with ~ = VIt (o)
f(x) for z € [xo, a f(zo)

is in C11([0,a], (0, +00)), and it satisfies v'(0) = 0.

Proof. 1t is sufficient to study the behaviour in xy. We see that

. B f (o) cos 1+f'(900)2x _ ot
0= A h( en ) ol

using (4.4]). For the derivative we find

xli/{g() v'(x) = sinh (%(;(;60)2%) = | cosh? (M x0> -1 = f(x),

using (&4)) again and the fact that f'(zg) > 0. O

Remark 4.4. Notice that, by the convexity of cosh, if f'(x) < 6 for all x € [0,a] then also v'(xz) < §
for all z € [0, al.

In the case 8 > 0 we could without loss of generality consider only functions satisfying = +
uw(z)u'(x) > 0 (or < 0). In the next lemma we deduce a dual condition in the case f < 0 and
a > ag. Here we use that an arc of catenoid gives the lowest Willmore energy when connecting one
point with prescribed positive derivative to another with prescribed and bigger positive derivative.
As a consequence we see that without loss of generality it is sufficient to consider functions u € N, g
such that v > 0 in (0, 1].

Lemma 4.5. For each u € N, g there exists v € Ny g such that Wy (v) < Wy(u), v > 0 in (0,1]

and v satisfies

1 1 ! 2

1 — ——cosh L(x)x >0 in[0,1]. (4.5)
V14 (x)? v(z)

Proof. Let u € N, g be arbitrary. For easy reference we here denote by g(x) the function on the

left hand side of inequality (£ with v replaced by u. Obviously, g(0) = 0. Since b = arsinh(—(3),

we find in x = 1:

N VIEAY 1 cosh(b)
g(1) =1 mcosh( - >—1 COSh(b)COSh( - )

= L (ag — %cosh (%b)> = bi (cosh(b) — cosh (%b)) >0,

(8% « a3
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using (AJ) and that o > ag. If g(x) is negative at some point in (0, 1), there exists a largest
zo € (0,1) such that g(z¢) = 0 and g(z) > 0 in (xo,1]. We first observe that u’(xg) > 0. This
follows from u/(1) > 0, the continuity of v’ and the fact that u'(x) # 0 for x > 0 where g(z) > 0.
Then by Lemma L3 with ¢ = 1 and f = u we can define a new function v that coincides with u on
[0, 1] and with a cosh on [0, 2] (see Figure[fl a)). Since v'(0) = 0 we may extend it by symmetry
to a Cbl-function on [—1,1]. For this new function (&) is always satisfied. Moreover v has lower
Willmore energy than u. Indeed, we have

1 o) 2
u) = kplul?dsp[u u(z) — L u(x u'(x)*dx
Wiw) = 2 [ hudh[]w/((lﬂ,(xp)g e Hu,(x)Q) @V @Pd

x0 0

xo 1

—u//(x) X K u2 Shp|U —UI(xO) = v
*8/<1+u/<x>2>%d >2 [ kaluldsnfu] + 8 Wi(v),

o

by definition of v and since x +— cosh(bx)/b satisfies H(z) = 0.
Finally, v/(x) > 0 in (0,1) since v satisfies (£5)) in [0,1] and v'(1) = —3 > 0. O

Remark 4.6. Notice that if u'(x) < § for all x € [0,1] then also v'(z) < ¢ for all x € [0,1]. This
s due to the converity of cosh.

catenoid

\
\
catenoid \
\
|

0 ) 1 ‘

Figure 6: Proof of Lemma [£5] (left) and of Lemma [L.1T] (right).
In what follows we consider functions having the following property:

1 1 / 2
u satisfies: 1 — —————= cosh +7u(x):c >0in [0,1] and v’ > 0 in (0, 1]. (4.6)
1+ (x)? u(z)

We first remark that this condition is scaling invariant, i.e. it is also satisfied for u,(z) = fu(rz),
z € [-1,1]. The fact that u € N, g satisfies ([Z6) gives us information on the behaviour of the

r’r

graph of u with respect to the two catenoids going through the point (1,«) and centered at the
origin. We recall that these are the functions
cosh(by) cosh(bg)

h(b h(b
cosh(bz) and &% (ba) with by < b* < by such that ———2 = @ = ——=2 (4.7)
bl b2 bl b2
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Here b* is the unique solution of cosh(b*) = b*sinh(b*), b* = 1.1996786.... We recall that also
b1 < b < bs.

One might expect that z +— %cosh(blx) and = +—
functions. Unfortunately this works out only partially.

1

5> cosh(bax) could serve as comparison

Lemma 4.7. Let u € N, g satisfy ([A6). For x € [0,1) we have:

u(z) = %cosh(blx) = W/(z) > sinh(biz).
More restrictively, if x € [b*/ba, 1], then

u(z) = écosh(bﬂ) = W/(2) < sinh(bo).

Proof. Tt is convenient to rewrite the inequality (&G by means of cosh(arsinh(y)) = /1 + y? as
follows
arsinh(u/(z)) > cosh(arsinh(u/(z)))

e in [0, 1],

u(zx) _ cosh(arsinh(v/(z)))
x = arsinh(u/(x))

in (0, 1].

We already know — see Figure 5] - that in a left neighbourhood of 1 we have cosh(b1z)/b1 > u(x) >
cosh(baz)/ba. Let x € (0,1) be such that u(z) = cosh(b;z)/b;, i = 1 or 2. Then from (LG it
follows that

cosh(b;) - cosh(arsinh(u/(x)))
bix  —  arsinh(u/(z))

We consider first i = 1. Since z € (0,1), by < b* which is the minimum of g(b) = 7 cosh(d), it
follows that byx is left from this minimum. Hence, an argument with a smaller g-value than byx
must be right from bz, i.e. arsinh(v/(x)) > bz, v/(x) > sinh(bix).

For i = 2 and = > b* /by we have that byx is right of the g-minimum b*. Smaller g-values than
g(bax) are attained at most left from box, i.e. if arsinh(v/(2)) < boz, u/(x) < sinh(box). O

(4.8)

Remark 4.8. 1. If a function u € N, g satisfying ([A0]) intersects x — % cosh(byz) in a largest
point xo € (0,1), then left of xq, it is below the cosh so that u/'(zo) < sinh(byzg). The previous
lemma shows that, on the other hand, u'(xg) > sinh(bixo) so that u'(x¢) = sinh(byxg). The
function u is in xg tangent to x +— % cosh(b1z) so that the latter may replace C1:'-smoothly
u\[,xo,xo]. This new function v is again in Ny g, has lower Willmore energy, satisfies (.G
and in addition

(@) < %ﬁbm in [0,1]. (4.9)

2. Analogously we may achieve on minimising sequences that

cosh(byx)

u(x) > by in [b* /by, 1].

Unfortunately there is no obvious mechanism to achieve a lower bound also on [—b* /by, b* /b].

3. Analogously one may also achieve on minimising sequences that v(x) > o*|x|. Again, this
bound is not sufficient in order to ensure compactness.

In order to prove strong enough lower bounds on suitable minimising sequences, we first achieve
uniform derivative bounds. Then, the following lemma will prove to be useful.
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Lemma 4.9. Let o > 0 and < 0 be arbitrary and u € No g such that there exists xg € [0,1) so
that u'(zg) = 0, v’ > 0 in (2, 1] and v’ < 0 in [0,z0]. Let v 1= max,¢[y, 1% (). Then it holds

that
1— i)

gy ) =) 2 25,

where C' > 0 a constant depending monotonically on Wy(u),y and (.

Proof. We estimate the Willmore energy from below as follows

1 2
o 1 1+ u/(x)?
Wh(u) = 2/ <(1+ulg)% * 1+u’(:c)2> u(z) o

o

"
u
—— dx

1 1
1
2/— d:c+4/
uy/1 4/ (x)? (1+u?)2
o xo

\Y

1
1 p
S S M - A
2m/u\/1+u’(:c)2 ! 4\/1+52

We recall here that from ([£2]) it follows that W, (v) > —88/+/1 + 2 for all v € N, g. Since v/ <~y
and, hence, u(z) < u(zg) + v(x — xo) for x € [xg, 1] we get

1
2 1
Wi (u) / dx — 4L
V1+42 ) u(zo) +y(z — x0) 1+ 32
o
2 71— xo)) p
= log <1 + —4
TV 1492 u(zo) V1+ 3
that gives
14 YA —=m0) _ ¢
u(zo)
with C' depending monotonically (increasing) on Wy,(u), 5 and «. The claim follows. O

Later we show by possibly inserting a rescaled solution with zero boundary slope that the
assumption just made on u € N, g is not restrictive.

In the following remark we collect some conclusions which can be drawn for bounds on the
derivatives of functions satisfying (4.6]).

Remark 4.10. Let u € N, g satisfy (@G) in [0,1]. Let by = bi() and by = ba() be as defined in
(&T)). Then, one has the following inequalities:

1. u/(x) = —f implies u(x) > agx with ag defined in [@.I);
2. u/(z) = sinh(b;), i = 1,2, implies u(z) > ax;

3. u(x) < ax implies sinh(by) < u/(z) < sinh(by). (In general u(x) < vz, v > o, implies
bounds for the value of the derivative).

As explained at the beginning of this section we proceed now by discussing the cases a < —f3
and o > —f separately. This distinction requires to study the minimisation process in different
classes of admissible functions.
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4.2.2 The case —( > «

We first prove that the energy is monotonically increasing in . Then, using that u satisfies (4.0]),
we get a priori bounds on the derivative leading to an existence theorem.

Monotonicity of the optimal energy

For 8 > 0, when studying monotonicity of the energy we constructed new functions with lower
Willmore energy by inserting a suitable arc of a circle. Here we do an analogous construction
inserting arcs of catenoids.

Lemma 4.11. Assume that u € Ny g satisfies [L8). Then for each o € (1, /ag) there exists
u, € CH([—0,0],(0,00)) positive, symmetric and such that uy(+o) = a, u,(o) = —3, [EH) is
satisfied in [0, o] and u, >0 in (0, o] as well as

e

/ pnlug]? dsifug] < Wi(u).

-0

Proof. The idea of the construction is to change the graph of u|(g | for some r > 0 by inserting C L1
smoothly an arc of a catenoid, see Figure [6] b). Then, translating and extending it by symmetry
we find an even function. Choosing r appropriately depending on g, we obtain a function defined
in the bigger interval [—p, o] and satisfying (AH) in [0, o]. We give now the technical details of the
construction.

For p € (1,a/ag) let r € (0,1) be the biggest element in (0, 1) such that ¢(r) = 0 where ¢ is
defined by

u(z)

1+ u/(x)?

Such an element exists since we have ¢(0) > 0 and, by recalling arsinh(—£3)/+/1 + 82 = 1/ag, that
©(1) < 0. Let X\ be defined by A = /1 + «/(r)?/u(r). Then the function u, defined in [0,1] by

o(z) =x — 1+ o — arsinh(v'(z)) for z€[0,1]. (4.10)

(@) wz+l-9) ifr—1+e<z<y,
u,(x) ==
¢ %cosh()\:r) fo<z<r—1+p,

and symmetrically extended to [—1,1] is in C1([=1,1],(0,00)). It satisfies uy(+0) = @, u,(0) =
—3, uw, >0 in (0, o] and has a smaller curvature integral than u.
It remains to prove that u, satisfies ([AH) in [0, o]. For easy notation let consider 1 defined by

1 1+ u’g(x)2
Y(x) = ———=cosh | —— =« for x€]0,0].
1+ ul)(x)2 ()

We need to show that ¢(xz) < 1 in [0, ¢]. By construction, i(x) = 1 in [0,7 — 1 + g] and from
V14 3?/ag = arsinh(—/3) we conclude that 1(0) < 1. The claim follows since, by choice of r, the
biggest point in [0, o] such that ¢(z) =1lisz=r—1+ p. O

By rescaling we obtain:

Corollary 4.12. For each u € N, g such that u satisfies ([.6]) and for each v € [ag, o) there exists
a positive symmetric v € CH1([—1,1],(0,00)) such that v satisfies [&8), v(£l) =, /(1) = -3
and Wp(v) < Wh(u).
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Proof. 1f v = ag the claim follows choosing v(z) = cosh(bx)/b with b = —arsinh(—/3). If v € (ag, a)
the claim follows from Lemma [£.11] by rescaling. O

Proposition 4.13. Let M, g be defined as in 20). Then for & > a > ag we have Mg g > M, 3.

Proof. Let (uy)ren be a minimising sequence for Mg g in N5 g. By Lemma for all k € N there
exists v, € Ng, g such that Wy (vg) < Wh(u) and vy, satisfies ([d.6). Then Corollary .12 yields the
claim. O

Properties of minimising sequences

In the next two lemmas we achieve bounds on the derivative. We first observe that we can assume
that when the graph of u is above the line y — ay the derivative cannot be equal to —3. On the
other hand, condition (4.6)) (in particular (£3])) gives bounds on the derivatives when the graph
of u is below the line y — ay.

Lemma 4.14. Let u € N, g satisfy [L8). Then, there exists v € No g with lower Willmore energy
than u satisfying ([@0) and v(x) < ax for all x € (0,1) with v'(x) = —pf.

1

2. v, l.e.
w, rescaled

first point
with
u = — . } }
line y — ay \ u\[O@O] elongated e
‘ \
‘ \
‘ \
‘ \
T 1 ‘ 1
a) 0 o 1 b) 0 To 1 c) 0 o) 1

Figure 7: Proof of Lemma [£.141

Proof. Let zp be the smallest element in [0, 1] such that u'(z¢) = = and u(zg) > axg. Iif g =1
the claim follows with v = w. If 9 < 1 and u(xg) = axzo the function v(z) = u(zxoz)/x0,
x € [—1,1], yields the claim. On the other hand, if g < 1 and u(xg) > axg by using a scaled
version of Lemma LT we “extend” the function u|_, . by inserting a cosh (see Figure [T]). For
each o € (zo,u(zo)/ag) there exists w, € C11([—p, 0], (0,00)) with lower Willmore energy than
U|[—30,20) SUch that wy(£0) = u(wo) and w,(0) = —B. We then choose ¢ = u(z)/a and v to be
equal to the function w, rescaled to the interval [—1,1]. The choice of p is such that we extend
u|[0,4:0) Until we touch the line y — ay. Notice that v € N, g and that v satisfies (L.6). It remains
to check that if v'(z) = —f for some x € (0,1) then v(z) < ax. By construction, the function w,
is given by
u(x+x0—0) fr—zo+o<z<o,

wy(x) : =14 1
¢ Xcosh()\x) fo<z<r—uz+ o,
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for some r € (0,29) and A = A(r) > 0. If there exists x € (0,1) such that v'(z) = —f then
wy(ox) = —B. If px € [0,7 — 20 + 0] then w)(0x) = —B implies \ox = b and hence
v(z)  wy(ox)  cosh(Aow)

= =ag < a.
x ox Aox A

If instead oz € (r+ 0 — xo, 0] then u/(ox + 29 — 0) = —F and hence u(px 4+ x¢ — 0) < a0z + o — 0)
from which it follows

v(xz)  uloxr+x0—0)  u(or+x0—0) 0T+ T0— 0 _

x ox 0x + g — 0 ox
The claim follows. O

[

In the proof we use only that a > ag.

We recall the definition ([471) of the positive real numbers by = ba(a) and by = b1(«) such
that cosh(by)/be = o = cosh(b1)/b1 and by > b* > by, with b* being the solution of cosh(b*) =
b* sinh(b*).

Lemma 4.15. Let u € N, g satisfy [@0) and u/'(x) # —f for all x € (0,1) with u(x) > ax. Then,
u'(x) < sinh(bg) in [0, 1].

Proof. We assume first in addition that there exists a left neighbourhood of 1 such that there we
have u(x) < ax. Such a neighbourhood always exists if —3 > a. By 3) in Remark .10l we have
that u/(z) < sinh(bg) for all z such that u(z) < ax. Hence, when the graph of u is below the
line y — ay we have a bound for the derivative. Let now z € (0,1) be such that u(z) > az. We
show that u/(z) < —@. Let xo be the smallest element in (x,1) such that u(xg) = axg. Then
uw(zg) < a < —f. If we assume that u/(z) > —3 then, by continuity, there exists y € [z, x| such
that u/(y) = —3. A contradiction. Hence v/(z) < —f < sinh(bs).

It remains to consider the case where there is no left neighbourhood of 1 such that there we
have u(x) < ax. Then, necessarily —3 = «a, and we have a sequence = /' 1 with u(zy) > axg.
Looking at the first point right from xp, where u reaches y — ay shows that u(x) > ax on
[0,2%]. Otherwise the mean value theorem would yield a point £ € (0,1) with u(§) > «& and
uw'(§) = a = —f, a contradiction. Letting k& — oo yields u(z) > az on [0,1). By «/(0) = 0 we
conclude that 0 < «/(z) < —f < sinh(bz) on [0, 1) in this case. O

The following proposition characterises suitably modified minimising sequences.

Proposition 4.16. Let (uy)ren be a minimising sequence for Mg g in Nq g such that Wh(uy) <
Mypg+1 for all k € N. Let by = ba(a) and by = bi(«v) be as defined in (&T). Then, there exists
a minimising sequence (vi)gen C Nog such that for all k € N the function vy satisfies (A8,
Wi (vi) < Wh(ug),

1
sinh(bg) > vi(z) > 0 for allz € (0,1] and Cup < vi(x) < ™ cosh(byz) in[-1,1], (4.11)
1

with a constant Co 3 > 0 depending on M, g, sinh(by) and —f.

Proof. By Lemmas[4.5] E.14 and A.I5lfor each uy, there exists v, € N, g with lower Willmore energy
than uy, such that vy, satisfies (£.0) and sinh(by) > v;. > 01in (0, 1]. According to Remark .8 we may
also achieve that vy (z) < é cosh(byz). The estimate from below for vy follows from Lemma (4.9
The constant C,, 3 denotes the term on the right hand side of Lemma with v = sinh(by) and
xo = 0. Notice that by the assumption Wy (ux) < M, 3 + 1 the constant C, g depends only on
M, g, sinh(bs) and —f. O
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Proof of the existence theorem

The real numbers by = be() and b; = by(«) are defined in ([£7]) and such that cosh(bs)/be = o =
cosh(by)/by and by > b* > by, with b* the solution of cosh(b*) = b* sinh(b*).

Theorem 4.17 (Existence and regularity). For § <0 and « such that o > ag and —f3 > « there
exists a function u € C°°([—1,1],(0,00)) such that the corresponding surface of revolution I' C R3
solves the Dirichlet problem (LA4l). This solution is positive and symmetric, and it has the following
properties:

1
sinh(by) > u/(x) > 0 in (0,1]  and ™ cosh(biz) > u(x) > Cy g in [—1,1]
1

with a constant Co. 3 > 0 depending on M, g, sinh(by) and —f.

Proof. Let (ug)ren € Nq,g be a minimising sequence for M, g such that Wy (uy) < My g + 1 for
all £ € N. By Proposition we may assume that each element uj of the minimising sequence
satisfies (£.6]) and (£I1]). The rest of the proof is on the same line as that of Theorem .11l Notice
that since wuy, satisfies (4.0]) for all k € N then also u satisfies (£6) and so v’ > 0 in (0, 1]. O

We can improve Proposition [£.13] by showing that the energy is strictly increasing in «.

Proposition 4.18. Let M, g be defined as in (Z7) and o > ag. Then, for —3 > & > a we have
M@ﬁ > Ma”g.

Proof. Let u € Nz g be a solution of (L4) with boundary values &, 3 as constructed in Theo-
rem [£I7 Then W), (u) = Mgz 3 and u satisfies (4.6]). We first notice that v satisfies (4.6)) with a
strict inequality. Indeed, if there exists xg € (0,1) such that

1 [ 2
L Y VA A GOV B
1+ u/(20)? u(zo)

reasoning as in Lemma and using that u is the minimiser in Ng g, it follows that u|_. 4] is
equal to a catenoid. Then, u being a solution of (2.5l), it follows that u is a catenoid in [—1,1].
This is not possible since o > ag. Hence, applying the procedure of Corollary to a minimiser
u € Ng g yields a v € N, g with strictly lower energy Wh(u) > Wy (v). Since Wh(v) > M, 3 the
claim follows. Notice that the same reasoning shows that also this last inequality is strict. U

4.2.3 The case —( < «

In this case we are not able to obtain a bound from above for the derivative for minimising sequences
in N, g. Possibly, a loss of compactness could occur. To avoid this problem we restrict the set on
which we minimise by adding a constraint. We require the derivative to be bounded by «.
We consider
Na,ﬁ ={u€N,p: v'(z) <aforall z € 0,1},
and

Myg= inf Wy(u). (4.12)
ueNa”g

The assumption —3 < « ensures that ]\Nfa”g is not empty.
Also in this case, by Lemma [£.5 and the subsequent remark, it is sufficient to consider functions

u € Naﬁ satisfying (4.0]).
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Monotonicity of the optimal energy

Proceeding as in the previous section we find:

Lemma 4.19. Assume that u € Naﬁ satisfies ([E8). Then for each o € (1,0 /ag) there exists
u, € CHH[—p,0],(0,00)) positive and symmetric such that uy(£0) = a, ul(o) = —3, @) is
satisfied in [0, o] and a > uj, >0 in (0, o] as well as

[ kel dsufus) < Wi

Proof. The proof is exactly as in Lemma [£11] By the explicit expression of u, and the convexity
of cosh, we see that v/ < o implies u’g < a. O

Corollary 4.20. For each u € Naﬁ such that u satisfies (&8 and for each vy € [ag, c) there exists
a positive symmetric v € CH1([—1,1],(0,00)) such that v satisfies [EG), v(£1l) =, V(1) = -3,
a>v'(x) >0 for x € (0,1] and Wy(v) < Wy (u).

Proposition 4.21. Let Maﬁ be defined as in (£I12)). Then for & > a we have ]\7@75 > Maﬁ.

Properties of minimising sequences

The following lemma is the analogue of Lemma [£14] in the case o < —f.

Lemma 4.22. Let u € Naﬁ satisfy (L6l). Then there exists v € Naﬁ with lower Willmore energy
than w satisfying (L8) and v(z) > ax as well as v'(z) < —f in (0,1).

Proof. We first notice that u(z) > ax in (0,1). If «/(z) < —F in (0,1) then the claim follows
with v = u. Otherwise let zy € (0,1) be the smallest element in (0,1) such that u/(zo) = —p.
We repeat then the construction in Lemma T4l By using a scaled version of Lemma [£19] we
elongate the function u|[_z, . by inserting a cosh. For each o € (wo,u(zo)/ap) there exists
w, € CH1([—0,0],(0,00)) with lower Willmore energy than u|[_y, ., such that w,(£0) = u(xo)
and w),(¢) = —B. We then choose ¢ = u(xg)/a and v to be equal to the function w, rescaled to
the interval [—1, 1]. The choice of g is such that we extend uljg 5, until we touch the line y — ay.
Notice that v € N, g, v satisfies (6] and that by convexity of cosh we have v'(z) < —f in [0, 1).
In particular v € Naﬁ. Compared with Lemma [£.14], the proof in this case is simpler since we
are always above the line y — ay. In [0, xg) there are no points with derivative > —(3. With this
construction we do not add such points. ]

The following proposition characterises suitably modified minimising sequences.

Proposition 4.23. Let (ug)ken be a minimising sequence for Ma”g in Na”g such that Wy (ug) <
Mg g+1 for allk € N. Let by = b1 () as defined in (&71). Then, there exists a minimising sequence
(vk)ken C Nag such that for all k € N, vy, satisfies @G), Wh(vi) < Wh(uk) and

1
—B>v(x) >0 forallz € (0,1] and 0<a+ 8 <uv(z) < b—cosh(blx) in [-1,1]. (4.13)
1

Proof. By Lemmas and [£.22] for each wuy there exists vy € Naﬁ with lower Willmore energy

than uy such that v, satisfies (8] and —3 > v}, > 0 in (0,1]. According to Remark A8 we may

also achieve that vg(z) < i cosh(byz). The estimate from below of vy follows directly. O
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Proof of the existence theorem

We recall that by = by («) is defined in (4.7 and it is such that cosh(b1)/b; = o and by < b*, with
b* solution of cosh(b*) = b* sinh(b*).

Theorem 4.24 (Existence and regularity). For 3 <0 and « such that o > ag and o > —f3 there
exists a function u € C°°([—1,1],(0,00)) such that the corresponding surface of revolution T' C R3
solves the Dirichlet problem ([L4)). This solution is positive and symmetric, and it has the following
properties:

—B>d(z)>014n (0,1 and blcosh(blx) >u(z) > a+p in[-1,1]. (4.14)
1

Proof. As in the proof of Theorem B.11] we find a minimiser u € ]\Nfa”g of Wy. This means that u
minimises W}, in the class of all positive and symmetric H2(—1, 1)-functions v satisfying v(+1) = «,
v'(+1) = —f, and having first derivative bounded pointwise by a.. Moreover, since the elements of
the minimising sequence satisfy ([A6]) and (ZI3) then u satisfies also (£0) and hence ([@I4]). Since
uw(z) < —f < «a for z € [0,1], then for [t| sufficiently small u + ty € Naﬁ for p € H?(—1,1) with
p(+1) = 0 = ¢/(£1). Therefore, u is an interior point of N, 5 in H2(—1,1) and u weakly solves
(Z3).

The proof of smoothness of the solution is as in [4, Theorem 3.9, Step 2]. O

Proceeding as in the proof of Proposition .18 one can show that the energy also in this case
is strictly increasing in «.

Proposition 4.25. Let —3 < o and o > ag. Let ]\7&75 be as defined in (EI12). Then M&ﬁ > ]\7&75
for all a such that a > «.

4.3 The case a < ag

In this case the height prescribed at the boundary is smaller than the height of the catenoid
centered at 0 and having derivative —03 at x = 1. This case is not simply the dual of the case
a > ag. The function b — cosh(b)/b has a unique minimum at b* = 1.1996786 ... and its minimal
value is o = 1.5088795... (see (LA))). Hence, when considering oo < ag we have to consider two
different cases: when o > o and when o < o*. The first case is, in some sense, the dual to the
case o > ag. The constructions and the methods of proof are similar. On the other hand, the
case o < a* is completely different. Here, only parts of the functions u € N, g close to x = 1 can
be compared with catenoids.

It is useful to restrict further the functions we consider. This restriction is technically important
for the case a < o but, for the sake of a uniform presentation, we use it in the entire section. We
restrict our study to, what we call, admissible functions. These admissible functions are, however,
dense in the space of all symmetric H2((—1,1), (0, c0))-functions and so, one can stick to them in
minimising the Willmore functional without any loss of generality.

Definition 4.26 (Admissible functions). A function u € CYY([~a,a],(0,0)), a > 0, is called
admissible if it is positive, symmetric and if there exist finitely many points 0 = xo < 1 < T2 <
- < Xy = a such that U|[xj,xj+1}; 7=0,...,m—1, is a polynomial of degree at least two, or equal
to cosh(Ax — d))/A for some X € (0,00), d € R, or an arc of a circle with centre on the x-axis or
an arc of a solution of (LAl) with B =0 as constructed in Theorem [318.

In what follows, we only perform constructions for admissible functions which yield again
admissible functions. In most cases the starting point will be polynomials.



Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data 81

In this section we first show that it is sufficient to consider functions having at most one
critical point in (0, 1) and satisfying a condition dual to (A6]). Moreover, we employ the catenoids
as comparison functions. We then show that the energy is monotonically decreasing in . To
proceed we need to distinguish the cases a > a* and a < a*. We explain later the strategy of
proof in the two cases.

4.3.1 First observations

The next two lemmas correspond to Lemma for a > ag. There we could restrict ourselves
to functions satisfying v’ > 0 in (0,1). Here we show that we can restrict ourselves to functions
having at most one critical point in (0, 1).

Lemma 4.27. Let u € N, g be an admissible function in the sense of Definition[{.26, Then, there
exists an admissible function v € Ny g with lower Willmore energy than u and having at most one
critical point in (0,1), i.e. either v' > 0 in (0,1] or there exists xo € (0,1) such that v'(z) = 0,
v >0 in (xg,1] and v" <0 in (0,x0).

Proof. If u does not satisfy u/ > 0 in (0,1] there exists ¢ € (0,1) such that u/(zp) = 0 and
u'(z) > 0 in (29, 1]. We then replace ul[_,, 5,] With an appropriately rescaled solution of (LZ]) with
boundary data u(zg) and 0 as constructed in Theorem B.I8 This rescaled function has strictly
negative derivative in (0,zg) by Lemma The obtained function v yields the claim. O

In the next result we give a condition corresponding to (4.5 in this case. Here we use both
catenoids and geodesic circles. The condition = + u(z)u’(z) > 0 was a consequence of (£3]) for
a > ag but this is not the case here.

Lemma 4.28. Let u € N, g be an admissible function in the sense of Definition[{.26, Then, there
exists an admissible function v € Ny g and xg € [0,1) with v' < 0 in (0,z0), v'(xzg) =0, v/ > 0 in
(x0,1] and Wy (v) < Wy(u). Moreover, v satisfies

1 1+ v/ (x)2 .
1-— W cosh (Tac> <0 in [z, 1] (4.15)
and
z+v(z)v'(x) >0 in[0,1]. (4.16)

Proof. Let w € N, g be the function constructed in Lemma 271 One has Wy (w) < Wy (u). We
denote by 1 € [0,1) the point such that w’ > 0 in (z1,1], w'(z1) =0 and v’ < 0 in (0, z1).
This function w satisfies (£I5]) in # = 1 and in 2. Indeed, in = 1 we find

\/1:——52008}1 ( : 1;ﬂ2> = ai (Oéﬁ_ %cosh (%b)) <0
8

since 3 = — sinh(b), g = 7 cosh(b), using @) and a < ag. In 21 we get 1 — cosh(z1/w(z1)) <0
and equality holds only if ;7 = 0. If w satisfies ({.I5]) in [z1,1] we define in [0,1] the function
h(z) := z4+w(z)w'(x). The function h is strictly positive in [x1, 1] since w’ > 0 in [z1, 1]. Moreover,
h(0) = 0. If A > 0 in (0, ;] the claim follows with v = w and xy = z1. Otherwise there exists a
biggest element Z € (0,z7) with h(Z) = 0. Then we may substitute w in [~Z,z] in a C''-smooth
way by an arc of a circle lowering the Willmore energy. This new function gives the claim.

It remains to treat the case when w does not satisfy (LI5]) in [x1,1]. For easy reference we
denote here by g the function on the left hand side of (£I0) with v replaced by w. Let x4 be the

1—
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biggest element in [x1, 1] such that g(z2) = 0 and g(x) < 0 in [x2,1]. By Lemma 3 with a = 1
and f = w we can define a new function v coinciding with u on [x2, 1] and being a cosh on [0, z3].
Since v/(0) = 0 we may extend it by symmetry to a Cl!-function on [~1,1]. This new function
always satisfies (4.15]) and has lower Willmore energy. Notice that in this case g = 0 and hence,
(4.10)) is certainly satisfied in [0, 1]. O

In what follows we consider only admissible functions u € N, g satisfying the following condi-
tions.
There exists xg € [0,1) such that «' > 0 in (x0, 1], v/(z9) =0, v’ < 0 in (0, ),
1 / 2
1+ (x)? u(z)
and z + u(z)u'(x) >0 in [0, 1].

:c) <0 in [zg,1], (4.17)

Before proceeding by proving monotonicity of the energy, we first compare functions in N, g
with arcs of catenoids. In the next lemma we show that without loss of generality we may assume
that functions satisfying (£.17)) with z¢ > 0 satisfies also an uniform bound from below for u(xg)/xo.

Lemma 4.29. Let u € N, g be an admissible function in the sense of Definition [{.26 satisfying
@ID) for some xo > 0. Then, there exists an admissible function v € Ny g such that Wy (u) >
Wh(v), v satisfies ([@I1) for some 1 >0 and v(xy) > le.

— arst

Proof. We recall that b = arsinh(—0). If u(zg) > mxo the claim follows with v = u. Other-

wise we can construct a function satisfying the claim and with lower Willmore energy than u. We
consider, starting from 1 and going towards 0, the arc of the catenoid going through (1,«) and
having derivative —@ in 1. This is z — «a cosh(bag(z — 1+ a/ag)/a)/bag. We follow the catenoid
up to its minimum. Since av < ag, the minimum is achieved in the point 1 — o/ag € (0,1). In
this point, we attach to this catenoid a suitably rescaled solution of (L)) as constructed in Theo-
rem [3.I8 with boundary data ab/ag and 0. Finally, extending the graph by symmetry, we obtain
a function v. Notice that v satisfies (I7) with 1 = 1 —a/ag and that v(z;) = mxl. By the
monotonicity property of the energy in the case 8 = 0 (see Proposition 3.19]) one sees that v has
lower Willmore energy than u. Notice that the cosh-part has the lowest possible energy among all
curves connecting the boundary point o with slope —3 and any point with horizontal tangent. [J

The next lemma corresponds to Remark [£.10] in the case a > ag. We recall here that for
o/ > o, the real numbers by = ba(a’) and by = by(a’) are defined in ([@7) by cosh(b2)/bs = o/ =
cosh(by)/by and be > b* > by, where b* is the solution of cosh(b*) = b* sinh(b*).

Lemma 4.30. Let uw € N, be an admissible function in the sense of Definition [{.26] and let u
satisfy [EIT) for some zg € [0,1). Consider o' > a*. Then for all x € (xq, 1] such that u(z) > o’z
we have that either u/(z) < sinh(by(a’)) or u/(x) > sinh(be(a)).

Proof. The claim follows directly using that w satisfies in particular (4.I5]). O

The previous lemma shows that when the graph of u € N, g is above the line y — o'y, o/ > o,
we have a bound on the derivative. For this reason it is natural to distinguish below the cases
a> o and o < oF.
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o «
\ piece of |
| catenoid / |
\
‘ b(a[?—a) | b(a,?fa)
| u(zo) | u(zo)
| "o | o
u | minimiser
| | for =0 | |
| | | |
€T I I
a) 0 b) 0

Figure 8: The construction in Lemma On the left: a function u € N, with u(zg) <
axo/(b(ag — ). On the right: a function v € N, g with lower Willmore energy than u satisfying
v(z1) = oz /(blag — ) with 1 =1 — o/ ag.

4.3.2 Monotonicity of the optimal energy

We prove here that M, g decreases when « increases to ag. For later use we work in a more general
setting.

We start by showing that we can construct functions defined in a smaller interval, with the
same boundary values and with lower Willmore energy. We first prove the result for functions
satisfying (4.I7) with o = 0 and then extend it to the general case.

Lemma 4.31. Fiz t < 0. Assume that u € CH([-1,1],(0,00)) is an admissible function in
the sense of Definition [[-26] satisfying u(1) < o, /(1) = —t and (@EIT) with xo = 0. Then
for each o € (u(1)/at,1) there exists an admissible function u, € CH1([—p, 0], (0,00)) such that

up(£0) = u(1), uy(o) = —t, u, > 0 in (0, 0], u, satisfies @EIT) in [0, o] (with xo =0) as well as

[ alual dsufus) < Wi

Proof. One uses the same construction as in Lemma ETIIl Since o < ag, this procedure now
shortens the original function. O

Lemma 4.32. Fizt < 0. Assume that u € CT([-1,1],(0,00)) is an admissible function in the
sense of Definition [{.20] satisfying v’ (1) = —t, u(1) < oy and [@IT) for some xy € [0,1).

Then for each o € (u(1)/ay,1) there exists an admissible function u, € C1([—p, 0], (0,0))
such that uy(+0) = u(1), u,(0) = —t. Moreover, there exists an x1 € [0, 0) with u},(x1) =0, v’ >0
in (x1,0] and u, <0 in (0,71), u, satisfies ([EID) in [x1, 0], = +up(w)ul(x) > 0 in [0, o] as well as

[ alual dsufus) < Wi

Proof. It combines the constructions of Lemmas B3] and B.I6] (inserting circular arcs) and those
of Lemma [£37] (inserting catenoidal parts). See Figure @ We emphasise that these constructions
preserve the strict inequalities for the derivatives. The additional properties of u, are ensured by
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possibly inserting once more a circular arc or a cosh, respectively, into the shortened function.
Observe that (£15) is certainly satisfied in x = p for any shortened function. O

Notice that if u(xg) > pxg then also u,(z1) > pa;.

Case 0> 1 — xp: « Case o <1 — xp: «

insert an arc of a insert an arc of a catenoid

geodesic circle

\
|
1 b) 0 o r 1

Figure 9: Proof of Lemma

Corollary 4.33. Assume that u € N, g satisfies [EIT) for some xy € [0,1) and that u is an
admissible function in the sense of Definition[{.26] Then for all v € (o, ag] we find an admissible
function v € CY1([—1,1],(0,00)) satisfying @EIT) for some z1 € [0,1), v(£1) =, v'(1) = -3 as
well as Wi(v) < Wh(u).

Proof. The claim follows from Lemma by rescaling and taking t = 5 and u(1) = a. O

Before showing monotonicity of the optimal Willmore energy, we prove a result being dual to

Lemma (.14

Lemma 4.34. Let u € N, g be an admissible function in the sense of Definition [{.26 satisfying
@ID) for some xqg € [0,1). Then, there exists an admissible function v € Ny g with lower Willmore
energy than u satisfying ([AIT) for some z1 € [0,1) and v(x) > ax for all x € (0,1) with V'(z) =
—B.

Proof. Let Z be the smallest element in [0, 1] such that «/(z) = —§ and u(z) < az. If =1 the
claim follows with v = w and 1 = zp. If £ < 1 and w(Z) = az the function v(z) = u(zx)/z,
x € [—1,1], yields the claim with x; = xo/Z. Finally, if z < 1 and u(Z) < aZ by using a scaled
version of Lemma we shorten the function u|_zz by inserting a cosh or an arc of a circle.
For each ¢ € (u(Z)/ag, ) there exists w, € CM([—p, ¢], (0, 00)) with lower Willmore energy than
u|[_z,7 such that wy(+e) = u(Z) and wj,(0) = —B. We then choose ¢ = u(Z)/a such that the
graph of u|_z 5 is shortened until we touch the line y +— ay. We define v to be equal to the
function w, rescaled to the interval [—1,1]. Notice that v € N, g is an admissible function and
satisfies (L.I7) for some x1 € [0,1). It remains to check that if v'(x) = —f for some z € (0,1) then

v(z) > ax. The function w, is given by

_Julxr+z—-0p) ifr<az<o,
wo(w) '_{ g(x) ifo<z<r,

for some r € (0, 0), and either g(z) = cosh(Az)/A for some A > 0 or g is an arc of a geodesic
circle and g’ < 0. If there exists = € (0,1) such that v'(x) = —f then wj(ox) = —3. Then, either
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ox € [r,0) and w,(ox) = u(oxr + = — ), or px € [0,7) and w,(px) = cosh(Apx)/A. In the first case,
since pr + T — o < T and T is the smallest element such that «/(Z) = —( and u(Z) < oz, then
we(ox) = u(or +7 — ) > a(oxr + T — p) and so, by 0o < T

v(x) _ wplor) _

uloxr +x — alpr +T —
(o 9)> (0 9)>

x or ox ox @
In the second case, if w;(gx) = —f then necessarily oAz = b and so
v(z)  wy(oxr)  cosh(Aox) -
= = = Q.
T ox Aoz A
The claim follows. O
Note that u(xg) > pxo implies that v(z1) > pxy.
@ Q o
U U 2. v, ie.
w, rescaled
First /
ot Y T O Y
/ | gvith CLowy, e |
W =3 | U0,z shortened |
\ t —_— | | ‘
\ ‘ \ \ \ \
[— - -
a) 0 T 1 0 o T 1 ¢) 0 o T 1

Figure 10: The three main steps of the proof of Lemma .31

Proposition 4.35. Let M, g be defined as in 1) and o < ag. Then, for & < « we have

Mg g > Mqg.

Proof. By density, we may choose a minimising sequence (uy)ren C Nop for Mg g consisting of
positive symmetric polynomials of degree at least two. These functions are in particular admissible
in the sense of Definition Then, by Lemma there exists a sequence (vi)ren C Na,g of
admissible functions such that vy satisfies (LI7)) for some 3 € [0,1) and Wy (vk) < Wh(ug).
Corollary then yields the claim. O

4.3.3 The case a > o*

In this case we can compare u € N, 3 with the catenoids centered at 0 and going through (1, ).
As observed in Remark 2] these are the functions x +— cosh(biz)/b; and = — cosh(bax) /by with
by = bi(a) and by = ba(a) the positive real numbers such that by < b* < by and cosh(by)/b; =
a = cosh(by) /by, with b* the solution of cosh(b*) = b*sinh(b*). Since o < ap one sees that or
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Case —3 > sinh(bo): ag Case —(3 < sinh(b;):
ag
cosh(bz)
b
cosh(bx)
b
u€ Nyg
«
coslz(blz) « cosh(biz)
1 b1 *
I«
coslngzl“) 1 o cos};)(ng)
2
a) u < Na76 b)

Figure 11: Two possibilities for the behaviour near 1 of the graph of u € N, g when o < a < ag.
Compare with Figure [l

—( < sinh(by) or —(3 > sinh(bs) (see Figure [II]). Notice that since sinh(b;) < a < sinh(bs), these
two cases correspond to the two cases —3 < a and —f > « that we have treated separately also
in the case a > ag.

By comparing u € N, g with the catenoids we show that in the case —@ < sinh(b;) < o it is
sufficient to consider functions u € N, g such that u(xz) > cosh(biz)/bi, i.e. remaining above the
larger of the two catenoids. This in particular implies u(x) > az. This together with Lemma [2.30]
gives bounds on the derivative. In the case —(3 > sinh(by) > « we first prove bounds on the
derivative using Lemmas and [£334l Then, by Lemma 4.9 we get a bound from below for the
function.

Properties of minimising sequences

In the next lemmas it is convenient to distinguish the cases —(3 < sinh(b;) and —(3 > sinh(bs)
because of the different behaviour with respect to the line y — ay. Recall that b; = b;(«) and
by = ba() are the positive real numbers such that b; < b* < by and cosh(by)/by = a = cosh(ba)/ba,
with b* being the solution of cosh(b*) = b* sinh(b*).

Lemma 4.36. We assume in addition that —( < sinh(b1). Let u € N, be an admissible function
in the sense of Definition[]-26] Assume furthermore that [LIT) is satisfied for some zo € [0,1) and
that u'(z) # = for allx € [0,1) with u(z) < ax. Then, u(x) > cosh(biz)/by and u/'(x) < sinh(bix)
in [0,1).

Proof. Since —( < sinh(b;) < «, u(x) > cosh(biz)/b; in a left neighbourhood of 1. Moreover,
since u satisfies (I7)) (in particular (ZI5]) in [z, 1]) one sees as long as u(x) > cosh(byz)/b; in
[CC(], 1] that

cosh (b ) < u(x) < cosh(arsinh(u/(x)))
biz.  — x —  arsinh(v/(2))
Since arsinh(u/(1)) < b1 < b*, we conclude by continuity that u/(z) < sinh(b;x). Hence, u(z) >
% cosh(byz) on [zg,1) and so, also in [0, 1). O

Lemma 4.37. We assume in addition that —( > sinh(by). Let u € N4 g be an admissible function
in the sense of Definition [{.26] Assume furthermore that (AI1) is satisfied for some xo € [0,1)
and that u'(z) # — 3 for all x with uw(xz) < ax. Then, there exists an admissible function v € Ny 3
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with lower Willmore energy than u, which satisfies [EIT) for some x1 € [0, 2z0] and v'(z) < —f in
[0,1].

Proof. Since —f > sinh(be) > %2@2) = a, u(z) < ax in a left neighbourhood of 1. Let x; be
the biggest element in (0, 1) such that u(z1) = axq and v/(z1) < . Such an element exists since
u(0) > 0. Since v/(z1) < a < —f and v/ # —fF in (z1,1) we have v’ < —f in [z1,1].

If v/(z1) < « then u/(x) < « also in a left neighbourhood of x; and u(x) > az in this
neighbourhood. Hence by Lemma[Z30 for these points u/(z) < sinh(by). Since sinh(b;) < Cosgl(bl) =
a, then, by continuity, u(z) > ax and u/(z) < sinh(b;) < —f for all z € [0, 24].

From Lemma it follows also that «/(z1) = a can hold only if & = a* since sinh(by) < a <
sinh(b) for @ # o*. Hence for o > a* the claim is proved with u = v. If « = o* and v/(z1) = o*
then we substitute u in [—z1,21] by the function cosh(Az)/\ with A = b*/x; and b* defined in
(L3). We get a new function v € N, g with lower Willmore energy than v and such that v satisfies
[@TI7) with 21 =0, v'(2) < o* and v(z) > a*z in [0, 21]. O

The following proposition characterises suitably modified minimising sequences.

Proposition 4.38. Let (uy)ren be a minimising sequence for My g of admissible functions in the

sense of Definition[{.26)in Nq g such that Wp(u) < My g+ 1 for all k € N. Then, there ezists a

minimising sequence (Vg)ken C Nog of admissible functions satisfying (@IT), Wh(vi) < Wh(ux)

and

arsinh(—/3)
«

(ag—a) and Cup < vp(z) < V14 a?— 22, (4.18)

in [0,1] with a constant Co 3 > 0 depending on o, —f and M, g.

Proof. By Lemmas 28] .34 if —3 < sinh(b1) or 3T if —F > sinh(b2), and Lemma 29| for
each uy, there exists v, € N, g with lower Willmore energy than wy, such that vy, satisfies ({.17) for
some zj € [0,1) and

max { —3,sinh(by)} > v (z) > —

v).(z) < max{—p,sinh(b;)} and wvg(xy) > arsinh(—g)(aﬁ —a)

Since vy, satisfies ([AI6) we get vg(z) < V1 4+ a? — 22 in [0, 1] and

. (4.19)

ag — «

vy, (z) > — T o> Tk > —arsinh(—/)

= for x € |0, zg],
@ = oalan) o 0, ]

while v;, > 0 in [z, 1]. The estimate from below for vy, follows from the second estimate in (4I9)
if zp > 1/2 and from Lemma [L9if z; < 1/2. O

Proof of the existence theorem

We recall here that for & > a*, by = b;(a) denotes the positive real number such that cosh(b1)/b; =
a and by < b* with b* being the solution of cosh(b*) = b* sinh(b*).

Theorem 4.39 (Existence and regularity). For 3 <0 and « such that o* < a < ag there exists
a function u € C*([—1,1],(0,00)) such that the corresponding surface of revolution T C R? solves
the Dirichlet problem (LA4l). This solution is positive and symmetric, has at most one critical point
in (0,1), and satisfies

max{sinh(bl), —ﬁ} >u'(z) > —(a— %)M

and V14 a? — 2?2 >u(z) > Chp in [—1,1],

with a constant Co 3 > 0 depending on M, g, o and —f3.

in (0,1]
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Proof. By density of polynomials in H%(—1,1) a minimising sequence (uy)ren for M, s may be
chosen in N, g which consists of positive symmetric polynomials of degree at least two and such
that Wy, (ug) < M, g+1 for all k € N. By Proposition .38 we may assume that each element uy, of
the minimising sequence satisfies ({.I8]). The rest of the proof is along the lines of Theorem B.1T1
Moreover, with the construction of Lemma, one can prove that v has at most one critical point
in (0,1). O

Reasoning as in the proof of Propositions[3.12] and L.I8] one can prove that the energy is strictly
decreasing in a.

Proposition 4.40. Let M, 3 be as defined in (L) and o < o < ag. Then Mz g > M, g for all
a € (af, a).

4.3.4 The case a < o*

In this case no catenoid is going through the points (£1,«) which v € N, g can be compared
with. However, the results from the previous subsection will be useful also here. Since u € N, g
is strictly positive, going from the right to the left, there exists certainly a first point Z where
u(Zz) = o*z. From here on, we may refer to the geometric constructions which led to suitable
minimising sequences as described in Proposition

The difficulty is now to understand how the graph of a suitable function v € N, g should
behave or should be suitably modified before reaching the line y — a*y. By Lemma [£34] it is
sufficient to consider functions where u’' # —(3 when we are below the line y — ay. This result
gives a bound on the derivative when the graph of u is below the line y — ay. Hence, it remains to
get an estimate on u’ on the set {z : ax < u(x) < a*x}. To this end we study the function u(z)/z.
In order to ensure that u(x)/z has only finitely many oscillations in [0, 1] we restrict ourselves to
admissible functions as defined in Definition Going from the left to the right, we prove that
the function u(z)/z is decreasing from the first and only point where the graph of u crosses the
line y — a*y to the point where it crosses or touches the line y — «y. This leads to bounds for
the derivative on suitably modified minimising sequences.

Properties of minimising sequences

We start by showing that, going from the right to the left, once the graph of w reaches the line
y — oy, then one may achieve that it remains above this line.

Lemma 4.41. Let u € N, g be an admissible function in the sense of Definition [{.20 satisfying
(ETD) for some xg € [0,1). Let T be such that u(Z) = o*T and u(z) < o*z in (Z,1].

Then there exists an admissible functionv € No g with Wp(u) > Wh(v) and satisfying [@17) for
some 1 € [0,1). Moreover, v(Z) = o*Z, v(z) < o’z in (z,1] and v(z) > cosh(b*z/Z)z/b* > a*x
as well as v'(z) < a* in [0,Z).

Proof. We have u/(z) < o. If v/(Z) < o* then u(x) > cosh(b*xz/z)Z/b* in a left neighbourhood of
Z. Since u satisfies (£I7)) one sees as in the proof of Lemma that u(z) > cosh(b*z/z)z /b* >
a*z and v/ (z) < o* for all z € [0,Z]. The claim then follows with v = w.

If instead «/(Z) = a* then we substitute w in [—Z,Z] by cosh(b*z/z)z/b*. We get a new
admissible function v € N, g with lower Willmore energy than u and v(z) > a*z as well as
V'(z) < o in (0, ). O

Notice that in the previous lemma if u(z) > ax then also v(z) > ax. Moreover, if u(xg) > uxo
then also v(z1) > ux;.
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a) 0 T 1 1

Figure 12: Proof of Lemma [£.41] in the case where u € N, s is tangent in Z to the line y — a*y.

The aim of the next constructions is to show for functions u as in Lemma .4T] one may achieve
that u(z)/x is decreasing for x € (0,1) where az < u(r) < o*z. As in Lemma 32 they are
based on inserting parts of geodesic circles and catenoids to shorten the intervals and decrease
the Willmore energy. Assuming u(1) < o we study now additional properties inherited by the
shortened function u,.

In the next result we prove that if u(x)/z is decreasing in {z € (0,1) : u(1)z < u(z) < o*x}
and u(z) > u(l)x then, when p > u(l)/a*, also u,(z)/z is decreasing in {z € (0,p) : u(l)x <
up(z) < oz} and uy(x) > u(l)x/o. Notice that the result holds when we shorten the graph of u
until we reach the line y — oy but not until y — agy.

Proposition 4.42. Fizt < 0. Let u € CH1([-1,1],(0,00)) be an admissible function in the sense

of Definition [{.26 satisfying [@IT) for some x¢ € [0,1), u(x) > u(1l)z in [0,1], v/(1) = —t and

u(l) < a*. Moreover, for o € [u(1)/a*, 1], let u, be the function constructed in Lemma[{.32 Then
u(1)

up(x) > 7:1: for all x €10, g]

and u, satisfies (AIT) on [0, ) for some & € [0, o).

Furthermore, if there exists T € (0,1) such that u(x) > a*z for all x € [0,Z], u(x) < o*x for
all z € (z,1] and u(x)/x is decreasing in [T,1], then there exists T € (0, 0) such that uy(z) > a*x
for all z € [0,7], up(z) < oz for all x € (z, 0] and uy(x)/x is decreasing in [T, ].

Proof. For p € [u(1)/a*, 1] there exists r’ € [0, o) such that u, is given in [0, g| by

Ju(l4+z—p) ifr'<z<op,
Uo(®) = { f(2) if0<z<r,
where f is either an arc of a circle (and u),(r') < 0) or a cosh(Az)/X for A € R*. The first claim is
satisfied in [0, '] since if f is a cosh then u,(x) > a*z and oz > u(1)x/e by assumption. On the
other hand if f is a circular arc then

u(@) _ f@) , f0) _ut'+1-0) 0

7“’—1—1—g>u(1)
x x r! '

r! - 0
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For = € [r', o] we have

up(r) u(z+1-—0) zu(1)x+1_9 S ud)

x T x I,

For the second claim let = be the biggest element in [0, o] such that u,(x) > a*z in [0, z]. We first
treat the case when f(z) = cosh(A\x)/\. Since cosh(Ax)/\ > a*z then T > r/. Moreover, since
w(@+1—0) =u,(Z) = a*T < o*(z + 1 — p) we necessarily have z + 1 — o > z. So, for z > z we
have

w41 - o’z

1 —
z -0

. 1—9) <o’z (4.20
e < (@+1-0)<a's, (120)

up(x) =
giving u,(z) < oz in (7, ]. Since u(z)/x is decreasing in (z,1] then u/(z) < w(x)/z in (z,1].
Using that Z <z + 1 — p we find for z € (z, o]
u(r+1-0) uy(x) x up(x)

! = 1—po) < = 4.21
(@) =W(wt1 -0 S T B =T < (4.21)

showing that u,(z)/x is decreasing in [z, g].

If instead f(x) is a circular arc of a circle we need to distinguish two cases. If > r/ then we
reason as in (A20) and (£2I). If instead T < 7’ then u,(x) < a*z and u,(z)/z is decreasing in
(z,7'] since u, <0 in [0,7']. In particular u(r’ +1 — 0) = u,(r') < a*r’ and so ' +1— o > Z. It
then follows for = € [r’, o] that

u(x+1— o) u(r’'+1—p) r(z 41— o)
T e 1)< T-7¢ l-g)<a* 278 <o
and proceeding as in (£2I)) one shows that u,(x)/x is decreasing also in [/, g]. O

Thanks to the previous proposition we may now show that if u(x) > wu(1)z in [0,1] and
u(1l) < o, then we can also assume that u(x)/z is decreasing on the set {x € (0,1] : u(z) < a*z}.

Proposition 4.43. Let u € CY1([—1,1],(0,00)) be a admissible function in the sense of Definition
[£:20 satisfying (AI7) for some zo € [0,1), u/(1) > 0 and u(1l) < o*. We assume further that
u(z) > u(l)z in (0,1) and that there exists T € (0,1) with u(z) > oz in [0,Z] and u(x) < a*z in
(z,1].

Then, there exists a admissible function v € CY1([—1,1],(0,00)) with v'(1) = u'(1 ) u(l) =
v(1), Wh(u) > Wh(v) and satisfying (AIT) for some & € [0,1). Moreover, there exists T € (0,1)
so that v(x) > a*z in [0,7] and v(z) < a*z for all x € (z,1] and v(x)/x is decreasing in [T, 1].

Proof. By assumption u(z)/z < w(Z)/Z in a right neighbourhood of z and w(z)/x > u(1)/1 in a
left neighbourhood of 1. If u(z)/x is decreasing in [z, 1] the claim follows with v = u. Otherwise
there exists a first local minimum z; of w(z)/z in [Z,1]. By our definition of admissibility this
minimum is strict. For easy notation let o’ denote u(z1)/21. Notice that u(1) < o/ < o* and that
u'(x1) = . Let x3 be the smallest element in (z1,1] with u(xz3) = /x5 and x5 be the largest
element in (z1,x3) with «/(x2) = /. Then u(x) > &’z for © € (x1,23). For x € (z2,x3) we see
that 2%(%) = zu/ —u < 2o/ —xza’ =0, i.e. & — % is strictly decreasing on (z2,23) so that it has
a local maximum on (x1,x2).

The idea is to replace u| [—a2,22] Dy the appropriately shortened and rescaled u][,xl,m according
to Proposition For this new function v the number of local extrema of x +— v(x)/x below
the line y — a*y has decreased by at least two. Since z — wu(x)/x has only finitely many local
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Figure 13: Proof of Proposition 43l In x1 and x5 the tangents are parallel. u|_, ,,] is shortened
and rescaled. So, we avoid oscillations of x — u(z)/z decreasing the Willmore energy.

extrema, after finitely many iterations we obtain the claim. We present this argument now in
detail.

By using a scaled version of Proposition we shorten the function u|[_,, ,,] by inserting
a cosh or an arc of a circle. For each p € [u(z1)/a*,z1] there exists a symmetric admissible
w, € CH([—0, 0], (0,00)) with w,(£0) = u(z1), w)(e) = o = /(1) and lower Willmore energy
than ul_;, ,,]- We choose ¢ = u(z1)z2/u(z2) so that we shorten the graph of u|_,, ., until

the line y — wu(ze)y/zo is reached. By %ﬁm) > ) and u(z2) < o*xra we see that indeed

0 € [u(z1)/a*, x1]. Moreover, since u(z) > a*z in [Ole:f] and u(z)/z is decreasing in [z, x| then
by Proposition [£.42] there exists x’ such that w,(z) > a*z in [0,2'] and w,(x)/x is decreasing in
[z, 0]. The function v equal to u in [z2,1] and to the rescaled w, in [0, x2] is admissible and has
the same boundary values as u. Finally, v satisfies ([@I7]) for some & € [0,1) and there exists &
such that v(z) > o*z in [0,7] and v(z) < o’z in [7,1] and v(x)/x has on [z, 1] at least two local
extrema less than u(x)/z in [z, 1].

Since u(z)/z has only finitely many local extrema, the claim is proved by finitely many itera-
tions. O

Notice that if u(xg) > pxo then also v(z) > uz.

The previous proposition is the main ingredient which allows us to pass to functions with
uniformly bounded derivatives. For this purpose, we distinguish again the cases o > —f and
a < —pf.

The case a > —f3

In the next lemma we prove that in the case a > — [ it is sufficient to consider functions satisfying
u(z) > ax in [0, 1].

Lemma 4.44. We assume in addition that o« > —f3. Let u € Ny g be an admissible function in
the sense of Definition [{.20 satisfying (A1) for some xp € [0,1) and u'(z) # —f for all x € [0,1)
with u(z) < ax.

Then, there exists an admissible function v € Ny g with lower Willmore energy than u, satis-
fying v(x) > ax for all z € [0,1) and [@IT) for some ' € [0,1).

Proof. We assume first that even o > —f so that u(z) > ax in a left neighbourhood of 1. If
u(z) < ax for some z € (0, 1) then there exists a smallest element z; in [0, 1] such that u(z1) = ax;.
Let x5 > x1 be the smallest element such that v/(z2) = @ and u(zg) < axs. If u(z)/x > u(xs) /9
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for all x € (0, z2] we denote xo by Z. Otherwise, Z denotes the largest element in (0, z2) such that
w(z)/xz > uw(x)/z for all z € (0,Z]. Then u(z) < aZ, v/(Z) < o and, by assumption, u/(z) > —f.
Let Z € [z2,1] be the biggest element such that «/(Z) = «/(Z) and u(Z) > ax. Such an element
exists since —( < a.

We notice first that u(Z) < o*Z. Indeed, if u(Z) > o*Z since v/'(Z) < o < o* then u(z) > o*x
in a left neighbourhood of z and by Lemma for these points u/(x) < o* and by continuity of
u and of its derivative then u(x) > o*x for all z € [0,Z]. This contradicts the assumption that
u(x) < ax in some interval.

The construction is now done similarly to Proposition 443 By using a scaled version of
Proposition we shorten the function u|_zz by inserting a cosh or an arc of a circle. We
shorten it until we reach the line y +— u(z)y/Z. That is, we consider the function w, with
0 = u(Z)x/u(x) constructed by a rescaled version of Proposition applied to u||_z . Since
u(x)/z > w(Z)/Z in (0,Z] then by the first claim in Proposition £.42], we have w,(x) > wy(0)x/0
in (0, o]. Hence, the function v which is equal to u in [z, 1] and equal to the rescaled w, in [0, Z]
yields the claim.

If « = —0, let € (0,1] be the smallest element such that v(Z) = az. By the assumptions it
follows that Z = 1. Indeed, if < 1 then, «/(Z) < a = —3 and the assumption gives v/(Z) < —f =
a. But there exists then 2/ > T such that v'(2') = a = —f and v(2’) < a2’, a contradiction. O

We may now assume that u(x) > oz in [0,1]. In the next corollary, we first observe that the
set {z € ]0,1] : ax < wu(z) < a*z} is an interval and then, by using Proposition [4.43] we show that
we may assume that in this interval u(z)/z is decreasing. This yields suitable a priori bounds.

Corollary 4.45. Let o be such that o > —3. Let u € Nog be an admissible function in the
sense of Definition [.20] satisfying @IT) for some x¢ € [0,1), u/(x) # —F for all x € [0,1) with
u(z) < ax.

Then, there exists an admissible function v € Ny g with lower Willmore energy than u and
satisfying v'(x) < o* in [0,1] and v(x) > az in [0,1) as well as (AIT) for some x; € [0,1).

Proof. By Lemmas .44 and £.41] and the following remark, there exists w € N, g with lower
Willmore energy than u such that w(z) > ax in [0, 1), w satisfies ([II7)) for some z’ € [0,1) and so
that there exists Z € (0, 1) such that w(z) > a*z in [0, ] and w(z) < oz in (Z, 1]. By Proposition
.43 there exists v € N, g with lower Willmore energy than w such that v satisfies ([@I7) for
some z1 € [0,1) and so that there exists xo € (0,1) such that v(z) > a*z in [0, z2] and v(z)/x is
decreasing in [r9,1]. This shows in particular that v(z) > ax in [0,1). Since v'(z) < v(x)/z in
[z2,1] we find v/(x) < a* in [x2,1]. Reasoning as in Lemma 4T we get v'(z) < o* in [0, 1]. O

The case o < —f3

The next result corresponds to Corollary [4.45. We first observe that we have a bound on the
derivative when the graph of u is below the line y — ay. Then, when the graph of u crosses this
line, we are back in the previous case.

Corollary 4.46. We assume in addition that —3 > o. Let u € N, g be an admissible function in
the sense of Definition[.26 satisfying (LIT) for some x¢ € [0,1) and u/(z) # =03 for all x € [0,1)
with u(z) < ax.

Then, there exists an admissible function v € Ny g with lower Willmore energy than u, satis-
fying @IT) for some x1 € [0,1) and v'(z) < max{—03,a*} on [0,1].

Proof. Let w € N, be the function constructed in Lemma EAT] such that Wy (w) < Wh(u),
w satisfies [@IT) for some = € [0,1) and there exists z € (0,1) with w(z) > o*x in [0,z] and
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w(x) < oz in (z,1]. Notice that by the construction also w satisfies that w'(xz) # —f for all
x € [0,1) with w(z) < ax. Let z2 be the biggest element in (0, 1) such that w(x2) = axs. Then
for all x € (22,1) we have w(z) < ax and w'(z) < —f.

If £ > x5 the claim follows with v = w and z; = z. Otherwise, since w(z2) = axrs < a*zy
and w'(z2) < « then w(zy)/x2 > w'(x2). Hence, applying a rescaled version of Lemma [£44] and
of Corollary BB to wl[_y, ,,] we find an admissible function v € CH([—z2, 22], (0, 00)) with lower
Willmore energy than wl[_, ,,) With the same boundary values and such that v(z) > ax in [0, z2)
and v'(z) < o* in [0,22). Defining v(z) = w(x) for x € [x2,1] and extending v by symmetry to
the interval [—1, 1] yields the claim. O

Characterisation of suitable minimising sequences

The following proposition characterises suitably modified minimising sequences. We do not need
to distinguish the cases a > —( and o < —(.

Proposition 4.47. Let (uy)ren be a minimising sequence for My g in No g of admissible functions
in the sense of Definition [{.20 such that Wy (uy) < My g + 1 for all k € N. Then, there exists
a minimising sequence (vi)ken C No,g of admissible functions having lower Willmore energy and

satisfying (L17) as well as

arsinh(—/)

max{—(,a"} > vj(z) > — -

(ag—a) and Cop <wvg(z) < V1+a?2—22,  (4.22)

in [0,1] with a constant Co 5 > 0 depending on o, —f and M, g.

Proof. By Lemmas 28] [1.29] 1.34] [£.44] and Corollary .45l if —3 < a or Corollary 46 if —3 > «,
for each wuy, there exists an admissible vy € N, g with lower Willmore energy than wuy satisfying

(Z17) for some xy, € [0,1) and

(0%

arsinh(—0)(ag — @)

v.(z) < max{—3,a*} and vg(z) > Tk (4.23)

Since vy, satisfies ([EI6) we get vg(z) < V1 + a? — 22 for x € [0,1] and

/ r Tk
vh(w) = _Uk(f)?) = _Uk(xk)

> —arsinh(—ﬁ)w for x € [0, ],
a

while v}, > 0 in [z}, 1]. The estimate from below for v, follows from the second estimate in (£23)
if 2, > 1/2 and from Lemma .9 if z; < 1/2. O

Proof of the existence theorem

Theorem 4.48 (Existence and regularity). For § < 0 and a < «o* there exists a symmetric
function u € C*°([—1,1],(0,00)) such that the corresponding surface of revolution T' C R3 solves
the Dirichlet problem (L4). This solution w has at most one critical point in (0,1) and obeys the
following estimates:

max{a*, —ﬁ} >/ (x) > —(a— ag)w

and V14 a? — 2?2 >u(z) > Chp in [—1,1],

in (0,1]

with a constant C, g > 0 depending on M, g, o and —[3.
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Proof. By density of polynomials in H%(—1,1) a minimising sequence (uy)ren for M, s may be
chosen in N, g which consists of positive symmetric polynomials of degree at least 2 and obeys
Wh(ug) < Myp+ 1 for all £ € N. By Proposition £47], there exists a minimising sequence
(vk)ken C Ng,g such that Wy (vi) < Wh(ux) and each element v, of the minimising sequence
satisfies (£.22]). The rest of the proof is along the lines of Theorem 311l Moreover, Lemma
shows that « has at most one critical point in (0, 1). O

Reasoning as in the proof of Propositions B.12] and [£.18] one can prove that also in this case
the energy is strictly decreasing in «.

Proposition 4.49. Let M, g be as defined in (7)) and oo < o*. Then Mg g > M, for all & < a.

5 Convergence to the sphere for o\, 0

In this section, we choose any 3 € R, keep it fixed and study the singular limit a N\, 0, where the
“holes” {£1} x B,(0) in the cylindrical surfaces of revolution disappear.

The aim of this chapter is to show that if u, € N, g is an energy minimising solution to (.4,
ie. Wh(ua) = My, then u, converges for  \, 0 to the semicircle v'1 — 2. So, the surface
of revolution generated by the graph of u, converges to the sphere, which shows up as a limit
irrespective of the prescribed boundary slope £4.

We first show that for a small, any minimiser uq € Ny g of Wh, i.e. Wh(ua) = M, g, has the
same qualitative properties as the solution we have constructed.

Lemma 5.1. We assume that o < min{a*,1/6} if >0 and o < o* if 3 < 0. Let u € Nopg
be such that Wy(u) = My g. Then, u € C*([—-1,1],(0,00)) and w has the following additional
properties:

1. If >0, then v <0 in (0,1) and
a<u(r) <V1+a2—22in[-1,1], z +u(z)d'(z) > 0 in (0,1).

2. If B <0, then u has at most one critical point in (0,1), i.e. there exists xo € [0,1) such that
u' >0 in (xg, 1], v'(z9) =0 and v’ < 0 in (0,z9). Moreover,

r+u(x)u (x) > 04n (0,1], o'(z) <v:=max{—8,a"} in [z, 1]

1 o 1 v )
> min 4 - - 1,1
and u(x) 2 min { 2 arsinh(—3)(ag — )’ 2eC — 1} in [=1,1,

. /12 48

Proof. Since uw minimises W), and hence, weakly solves the Euler-Lagrange equation (Z.5]), the
argument in [4, Theorem 3.9, Step 2| yields u € C*°([—1,1],(0,00)). Whenever zg € (0,1) is a
critical point of u one may insert on [—x, zg] a rescaled energy minimising solution v according to
Theorem [3.18 and Lemma .20 satisfying v" < 0 on (0,2¢). Putting together v and u|{_1 1]\ [—z0,z0]
yields a further minimiser in N, g and so, a solution to (2.5]). By uniqueness of the initial value
problem, this new solution coincides with the original w. This shows that u has at most one critical
point. Exploiting this observation, one proves that u satisfies the estimate in the claim by the same
constructions as in the proof of the respective existence theorems. ]
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The assumption on « excludes in particular the case 0 < —3 < a and a > ag, where “our”
solution was constructed in a much smaller set than NV, g.

In what follows, when considering minimisers u of W}, in N, g, we make use of the qualitative
properties of u stated in Lemma [5.1] without further notice. In particular, we restrict ourselves
always to the case a < min{a*,1/|5|}.

5.1 An upper bound for the energy as a \, 0

For o small we first construct a function f, € IV, g such that its Willmore energy converges to the
one of the sphere for o \, 0. We consider the symmetric function:

.
\/ﬁWCOSh(Vl;ﬁQ(x—m)) ifzg <a<1,

fa(z) = r? — x? if —x0 <z <o, (5.1)

\/ﬁWCOSh (\/I;Lﬁ2 (z +:c1)) if —1<z<—x,
\

where 71 = 1 — carsinh(—3)/v/1+ 32, r? = 23 + fa(70)? and, for o small enough, zo € (0,1) is

solution of
/1 2
sinh (27—'_&(3@0 - a:l)) . (5.2)

T = —F—7—7—
2¢/1 + 32 e’

Assuming « to be small enough ensures the existence of 2y € (0,1). We remark that this zy should
not be mixed with the one in Condition (4.I7). The function f, has Willmore energy

1 1
(1 / 2
Wh(fa) = Q/Hh[fa]2 L&() der = / L 1+ﬁ dx

o fale) o COShQ(ITJFﬁQ(fU — 1)) “
= 8tanh(arsinh(—f)) — 8tanh (mo(éxo - :1:1)>

+38

ite a it P

This particular function shows that M, g is uniformly bounded for a going to 0 . Since M, g is
increasing for a \, 0 for all 8 € R, it follows that

_ %—JL—+Mmh0J+W@rﬂm>§—8 b

_B
Ve

lim M, 3 <8 — :
lim Mo, <88 (5.3)

5.2 The limit of the energy

In this section we prove that the limit of the energy is equal to the upper bound given in the
previous section.

We start by proving that when 8 < 0 and « is small the minimiser has precisely one critical
point in (0,1) and this point approaches 1 for « going to 0.

Lemma 5.2. Let 8 < 0. We assume that u, € Nopg minimises the Willmore energy, i.e.
Whi(ua) = My g. Let x4 € [0,1) be such that ul(xq) =0 and ul, > 0 in (x4,1]. Then,

lim 4 = 1.
N
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Proof. Let us assume that there exist a sequence oy, \, 0 and § > 0 such that z,, <1 —9 for all
k € N. For each o > 0, the measure of the set A := {z € [1 —4,1] : ul,(xz) > 2a/d} is bounded by
0/2, since u, is strictly positive. Then looking at the energy we find

1

1 ul, (z 1
Ma, 5= Wi(ta,) > dx—|—2a’“—()‘ 1
2t @)1+ R (@) Tt (o) -
1 p
> dr —4——
B ’ 2 1 2
1-d1)\A 1L+, (v) V1453
> 2—4 b 2—>oof0r k — oo,
204,1C \/1 + 450[—2’“ \/1 + ﬂ
a contradiction to (B.3]). O
We show that the gradient of any minimiser is unbounded near x = —1 in the limit a \, 0.

From now on, 3 is a fixed element of R.

Lemma 5.3. We fiz 6y € (0,1). For a> 0, let uq € Ny g be a minimiser of the Willmore energy,
i.e. Wh(ua) = My g. Then,

lim max  u, (z) = +oo.

a\0 z€[-1,—1+50]
Proof. We assume by contradiction that there exist a sequence oy \, 0 and a positive constant K
such that

a ! < K forall keN. 5.4
pe A o ta (z) < r (5.4)

Let 2o, = 1if 8 > 0. If B <0, let x4, € [0,1) be the element such that uy, (zq,) = 0 and u, >0
in (zq,,1]. By Lemma [5.21 we have 1 — z,, — 0 for kK — co. Notice that uq, (x4, ) < ai. Then, we
estimate the Willmore energy from below as follows

1
1 8
Wi(te,) > —dy —A———
e _fu%mxr+%gm%zx 1+ 7
—1+dg
> 9 ! dp—4—5 (5.5)

(NI

Ugy, () (1 + uly, (2)?) 1+ 62

—Tay

By ([&4) we have uq, (z) < uq, (2o, ) + K(z + 1) for € [—z4,, —1 + 6] and hence from (B.5]) we
conclude for k large enough

—1+46o ﬁ
2 1
Wiltiay) > ——o— /’ e 4D
h(tay,) 1+ K2 U, (Za,,) + K(x +1) 1+ 32
e

2 60_1+xa B
- 2 (14K k )
KV1+K2 g( uak(xak) xak 1+ﬁ2

2 K
——— o
K1+ K? g( 2 uak(xak)—i—K — Zay)

Since uq, (zq,) < ar \, 0 and z,, — 1 for £ — oo, the energy Wy (uq, ) diverges to +oo, thereby
contradicting estimate (B.3]). O
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Theorem 5.4 (Limit of the energy for o ™\, 0). For a > 0 let uq € Ny g be such that Wy (uq) =
M, g. Then, it holds that

_ 86
Vi+p

li =lim M, 3=8—
Oll{%Wh(ua) al{‘% ap =8

Proof. For any u € N, g and dy > 0 to be chosen we have

1 —1+d¢ ”() 1 2
—Wh(u) = ol 5 — - u(z)y/1+ W/ (x)? da
2 Vel / <<1+u'<x>2>5 u<x><1+u'<x>2>a> @ )

—1+0d¢

0
+4 / %dm—k / nh[u]Qde

-1 —1+30
) (@) e
> 4 uAr dr = 4 vy o
) / @i JEr T
_ g 1+ %) R (5.6)

VITd (14602 1+

Let aj \, 0 be any sequence. By Lemmal5.3 we find 0, € [0,1/2] with limy_, o ug,, (—14-0q, ) = 0.
From (B.6)) it follows with dy = dq,

ul, (=144
Wi (tgy) > 8 o w g P =
\/1+u;k(—1+5ak)2 V145
and hence 3
lim W >8 -8 ——.
QL Whltten) 28 =8 T
This estimate together with (B.3]) yields the claim. O

Corollary 5.5. For a > 0 let uq € Ny g be such that Wh(ua) = My g. Then,

1—do
. o V1tup(z)®
il{_‘r%) Kplto] () dr =0 for all 6y € (0,1).
—1+4d¢

Proof. For any sequence oy, \, 0, by Lemma [5.3] there exist d,, € [0,dg] with
k:lggo g, (=1 + day,) = +o00. (5.7)

Proceeding similarly as in the proof of Theorem [£.4] we have

150,

o V1 e ()7 ), (—1+ ba,) 8
Wh(uay,) ZH/(S% K [Uay) (@) dr +8 \/1 PR 8 T
Since L s
0< /Olih[uak]dex< / kﬁh[ua ]Qde
_—1+5O o (‘T) __1+5ak k o (:C)

the claim follows from the inequalities above, Theorem 5.4 and (5.7). O
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5.3 The minimiser converges to the sphere

Lemma 5.6. Fiz 6y € (0,1). For a > 0 let uq € Ny g solve Wy(uq) = My g. Then, there exists
e > 0 such that uq(z) > € in [—=1+ dp, 1 — do] for all o < 1.

Proof. We assume by contradiction that there is a sequence 1 > aj \, 0 and that there are points
zp € [0,1 — dg] with 1 > ug, (k) = mingejo1-5,] Uay, (¥) =t my \, 0. The energy of this sequence
of minimisers is bounded from below as follows

1
B
Wh(uak) Z dx — 2
Y Uy, (7)) 1+ ufy, (@ 1‘1‘5
> d:r — ﬂ .
25 Uay, (2)4/1 + uly, (2 1 + 5
_ —_——dr — 4 —. (5.8)
ma‘x{mkuak‘} 1\40 /1+u{1k(gj)2 \/1+ﬂ2
In order to estimate the integral in (5.8]), we apply the Cauchy-Schwarz inequality
1
o= [ s, @)
0o = T Uy, (L r
S, (02);
1 3 1 3
< / ————dx / L+, (r)?dx |
2
5 1 + ul, ) 175
which implies
(5.9)

62 < 50"’/‘“% )| dx /
o ,/1—|—uak

We estimate the first integral. Let z,, = 1if 3> 0 and if 5 <0 let zo, €[0,1) be the element
such that uj, (za,) =0 and u, > 0in (z,,,1]. Lemmal5.2lshows that z,, > 1—d for sufficiently
large k. Splitting the integral we find

1
(677 lf/BZOa
< —
/’ak )| dx /]uak \dx—l—/’uak ) dx = {mk_2uak(‘rak)+ak if 3 <0.
1—d¢

Estimating the right hand side in the 1nequahty above by my + ax, we then conclude from (5.9])
that

50 (50 + mg + Ozk /
1+, (@
Inserting this into (5.8]) yields for k sufficiently 1arge

203 B
—4
max{mg, ar} (0o +mp +ar)  /1+ 3

Wh (uak)

263 B
max{'mk,ak} (50 + 2) 1+ 52

— o0 for k — oo,
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contradicting Theorem [5.4] O

Corollary 5.7. Fiz 6y € (0,1). For a > 0 small enough let uq € Nog solve Wp(ua) = My .
Then, there exists € > 0 such that

1
—C <ul(r) <max{a*,—B} forall z€[0,1— 5],
where o* = min{cosh(b)/b : b > 0}.
Proof. The first inequality is a consequence of Lemma and the inequality 0 < z + u(z)u/(z) in
[0,1]. The second one follows from the estimates on the minimiser in Lemma [5.11 O

Theorem 5.8 (Convergence to the sphere). For a > 0 sufficiently small let ua, € Nop be a
minimiser of the Willmore energy, i.e. Wy(ua) = My g. Let ug denote the semicircle ug(x)

V1—2a2, z €[-1,1]. Then, for any m € N,

Olli{rbua =wuy n CJ.(—1,1).

Proof. We choose any 0y € (0,1). Let (ax)ren be any sequence with ag N\, 0. By Lemma and
Corollary (.7 there exists a € > 0 such that

1
€ <Uq,(z) <y/1+ai —2% and - < uy, ()

for x € [—1 + dg, 1 — &g} and k sufficiently large. By these uniform bounds, the monotonicity in «
of the energy, and Theorem [£.4] we find

IN
™ | =

)

QR > Wh(ue,)
V1+p2
1= 2 1=
o 1

> / —uak(x3 : ki’”ﬁ d + do—4—L

~1+60 (14 ug, (2)%)2 sy Yon () /14 ug, (2)? 1+6
o 2 1 g
€ "2

D Uy, dx + -4 .

A+ S flrap ) VIR

Hence, (uq,)ken is uniformly bounded in H 2(=1 4+ 60,1 — &) So, there exists a subsequence
(ag,)jen and a function @y € H?*(—1+ &y, 1 — &y) such that

ugk —qg in L*(=1+dg,1 — &) and Uay, = o in CH[~1 + 60,1 — 8], (0,00)).
Moreover, iy satisfies: € < Gg(z) < V1 —22, |aH(z)| < L for all z € [~1+ do,1 — o] and by
Corollary B3

1-6 1-46
o 0 /1+Uak 0 V1T (@)?
0 = liminf / Kh uak —dr > / Kpltg)* ~———dx.
ua,C

o ()

j—o0

—1+46p —1+6¢

Hence, rp[tio] =0 on [~1+ do,1 — dg| and, therefore, o|[—145,,1—5,) is an arc of a geodesic circle,
i.e., since @ is also symmetric around 0, it exists a radius r > 0 such that @y(z) = Vr? — 22 in
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[—14dp,1 — dg]. Necessarily r > 1 — 0y and by the arbitrariness of o we have r > 1. On the other
hand, since 4g(z) < v/1 — 22 we have r < 1. Hence, r = 1 and g = up.

Since for any sequence (aj)ren there exists a subsequence (ay;)jen such that Uay,, converges
to up, we have that also u,, converges to ug. The sequence being arbitrary, convergence in
Cl' N H?([~1 + 60,1 — o)) follows. Proceeding as in the proof of regularity in [4, Theorem 3.9]
we conclude from the weak form of the differential equation (Z3]) that u, — ug for a \, 0 also in
C" (—1,1) for any m € N. O

loc

6 Qualitative properties of minimisers and estimates of the en-
ergy

In this section we give upper and lower bounds of the energy and we study the sign of the hyper-
bolic curvature of our minimiser. We have to distinguish the cases as in the proof of existence.
We remark that any minimiser in the respective class of admissible functions has the qualitative
properties mentioned in the existence theorems, since our geometric constructions apply also to
these minimisers.

6.1 The case af > 1

6.1.1 Bounds on the energy

Proposition 6.1 (Upper bound of the energy). We have
2(aB —1) B
V1+ 2 V1+ 2

Proof. We consider the arc w € N, g of the circle with centre in (0,« — 1/3) and radius /1 + %

w(x):za—%—l—y/l-i—%—ﬁ for x € [-1,1]. (6.1)

Its hyperbolic curvature is

M, < arcsin

which is given by

[w]( )__ﬂ
kplw](x) = m

The previous identity for xp[w] implies

for all z € [-1,1].

1

-1 1 1
Wh(w) = ab - dx
\/1+5271 ,/1—1—%—352 a—%—l—,/l—i—%—:ﬂ
1
aﬂ—l/ 1
= dx.
V145 Y \/l—l—ﬁ—lz—ﬂc2
The claim follows computing the integral. O

The previous proposition indicates that possibly lim,_.o, M, g = co. To prove this, we establish
a lower bound for M, g for large . In what follows G' denotes the function G : R — (—co/2,¢o/2),

t
1 1
G(t) = / ————— dr with ¢ := /75 dr = B(1/2,3/4) = 2.39628.... ., (6.2)
5 (I+72)a (1472)4
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with B(., .) the Beta-Function. The G-function played an important role in the study of the
one-dimensional Willmore problem, i.e. of so called elastica, see [12, pp. 233-234] and [6] [7].
The following estimate from below holds true for any 8 # 0, irrespective of its sign.

Proposition 6.2 (A lower bound for the energy). Let § € R\ {0}. For a > 2|f| it holds that

B
Ve

where the function G is defined in (€2). In particular, limg_.oc My g = 00

Moy = amin {G(=)%, (G(a/2) + G(8)* } -

Proof. For any u € N, g we have

If u(z) > a/2 for all z € [—1, 1] then

1
Wa(u) > Q/nydx_gl p

vV
>~ Q
\
&
g8
|
@

m

Otherwise, there exists z1 € (0,1) such that u(z) > «/2 in [21,1] and ¥/(z1) > /2. Proceeding
similarly as before, Cauchy’s inequality yields

a u// T 2

B
—
o
_|_
S
—~
S
N~—
el
[—
+
e
[N}

V
°
~
N
+
{2
=

One should observe that the function G is strictly increasing. In both cases we have that

g

Wi(w) > amin {G(6)", (G(o/2) + GO | —4—mep.

O

According to Propositions and[6.2] M, g grows linearly in a — oco. We recall that for 5 =0
the situation is different since M, 9 — 0, see [4, Lemma 3.2] and also Proposition below.
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6.1.2 On the sign of the hyperbolic curvature of minimisers

From Proposition [B.7] we infer the following convexity property for minimisers of the Willmore
functional.

Lemma 6.3. Let u € Ny g be a minimiser for My g. Then, x — u'(x) is strictly decreasing on
[0, 1].

Proof. Since each minimiser satisfies x + u(z)u/(xz) < 0 in (0, 1], the function v’ is decreasing in a
right neighbourhood of 0. We assume by contradiction that «’ is not strictly decreasing on (0, 1].
Then, there exist 0 < x1 < w2 < 1 such that u'(z1) = u'(x2). We consider ul{_,, »,) and rescale it
to a function w € C1([—xq, 22, (0,0)). This function satisfies w(xg) = 2u(z1) > u(rr) > u(x2)
and w'(x2) = u/(x2). Moreover, by Remark 24 we conclude that

/ ] dsyfw] = / o lu]? dspfu] < / ol ds ], (6.3)

since kp[u] is not identically zero in [x1,x2]. This follows since u solves the differential equation
(25) and is not part of a geodesic circle. On the other hand, exploiting that u is a minimiser, we
find

x2 T2
/ kplu)? dspu] = inf{ / kp[v)? dsp[v] v € CYY([—x9, 29), (0,00)), symmetric,
—xo —Io

v(z2) = u(wg) and v/ (z2) = u’(xg)}

< / pon[w]? dsp[w],

—T2

where in the last step we used that w(z2) > u(z2) and Proposition B7l One should observe that
the condition 0 > x 4+ u(x)u'(x) is the rescaled version of a3 > 1 on the interval [0, z]. We have
achieved a contradiction to (6.3]). O

Theorem 6.4. We assume that o > 1. Let u € N, be a minimiser for M, g. Then, either
kplu]l < 0 in [0,1), or there exists a € (0,1) such that kp[u] < 0 in [0,a) and kp[u] > 0 in (a,1).

Proof. We consider the auxiliary function ¢: [0,1] — R defined by ¢(z) := = + u(x)u/(z), where
(p(x),0) is the centre and r(x) := u(x)\/1 + v/'(z)?, x € [0, 1] the radius of the geodesic circle being
tangential to the graph of w in (z,u(z)). From (B2) we know that ¢(x) < 0 in (0, 1], and ¢(0) = 0.

Hence, ¢(z) is decreasing for # > 0 sufficiently small. Since ¢'(z) = {1 + u’(x)Q}%/ﬁh[u](x), it
follows that kp[u] < 0 in a right neighbourhood of 0. Viewing at (Z5]) now as a second order
equation for rplu] satisfying a strong maximum / minimum principle provided that maxima /
minima are equal to zero yields that it suffices to show that x[u] has at most one sign change in
[0,1).

We assume by contradiction that there exist 0 < x1 < z¢9 < x3 < 1 such that kp[u] > 0 in
(x1,0), kp[u] < 0in (29, x2) and @(x1) = @(x2). We construct a new function with lower Willmore
energy. This new function equals the original one on [0, z1]. Then we take the arc of the circle with
centre (¢(x1),0) and radius r(xy), starting at (1, u(x1)) and ending where this arc intersects the
straight line which connects (p(z1),0) = (¢(x2),0) and (z2, u(x2)). Finally, we attach the suitably
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rescaled original function u/(, ;). More precisely, with the scaling factor ¢ = r(x1)/r(x2) the new
function is

u(z) if0<z <a,

(z) = Vr)?—(z—p(@))?  if <o <o+ (z2)u(@)(l - o), (6.4)
ou (3= (1= 0)p(22)) if @2+ W/ (w2)u(w2)(1 - 0) < & < 0+ (1= 0)p(w),

and extended by symmetry to [—£(o), ()], setting £(o) := 0 + (1 — 0)p(z2). See Figure 4l The
function v satisfies v € CY1([—£(0), £(0)], (0,0)), v(£(0)) = oa and v'(£(0)) = —p.

radius to (¢(x1),0)

radius to (p(x2),0)
a)

|

\

|

|

|

|

\
12Xy T b)
Figure 14: Proof of Theorem

Note that o < 1. Indeed, one may write

r(ze) = r(xy) t)dt. (6.5)

e

By our assumption on ¢ and since u/(z) < 0 in [0, 1], the integrand in (G.3]) is negative in [z1, x¢]
and positive in [xg, z2]. Moreover, since p — —£— is strictly increasing and, by Lemma [6.3] «' is

Vitp?

strictly decreasing in [0, 1], also ﬁ is monotonically decreasing. Hence, splitting the integral

in ([©.0) and using that ¢(z1) = ¢(z2) we get
xQ X2

@l(t) dt + ’U,/(Zlfo)

1+ u/(x0)? V1+u(zg)?
1 xo

r(zg) > r(x1) + O (t)dt = r(z).

By scaling, the function w(z) = @ v(l(0)x) defined in [—1, 1], satisfies
W)= -3, w(l)= % and Wi, (w) < Wi (u). (6.6)
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On the other hand, o < 1, p(z2) < 0 give p > I(p), and so w(1) > a = u(1). By monotonicity of
the hyperbolic Willmore energy (see Proposition 3.12) we conclude that Wy (w) > Wy (u). This
contradicts (6.6]). O

6.2 The case af<1land >0
6.2.1 Bounds on the energy

Proposition 6.5 (Upper bound for the energy). We have

L f2(l—af) 1 V145 : B
Mo < mln{ ST " —,8tanh <T + arsmh(ﬁ)) - SW}

Proof. For B > 0, the first estimate follows with the same construction as in Proposition

considering the function w € N, g given by (E1)); w(z) = a — % +.,/1+ % — x2. Computing its

Willmore energy we find

1

W) af —1 1 1
h(w -
VIHE S 14+ g -2 a—F+,/1+ 5 —a?

1—ap 1—af 2

1

1
dr < —.
\/1"1'52_/104—%-1—\/14-%—%2 V1t pra

If 3 = 0, the function w(z) = « directly gives My < 2. Let f, the function defined in (G.).
Notice that it is well defined since we assume that 8 > 0 and af < 1. From the calculations on

p. O8] we see that
V146 B
—n | — 88—,
[e% 1+ ﬁQ

arsinh(3). O

Mg < Wh(fa) < 8tanh <

where xr1 =1+ \/101?

In the special case = 0 we may now characterise the asymptotic behaviour of M, ¢ for a — 0.
This is completely different from the case 8 # 0, cf. Proposition

Proposition 6.6. We assume that o > 0 and 6 = 0. Then, one has

2c 1
< My < 8tanh
(a+1)V1+a? 0 (a)

Proof. Let un € Noo be a minimiser for W, in N, o as constructed in Theorem [3.I8] . It satisfies
ua(z) < a+1 and |u, (z)| <1/, which yields

1
Moo = Wal( >2/ do > 2a
= U X ;
%0 = Waltia) 2 S ua(@) T+ up(@? T (a+ VI +a?

which is the estimate from below. The estimate from above was just proved in Proposition O



Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data 105

6.2.2 On the sign of the hyperbolic curvature of minimisers

Theorem 6.7. We assume that 3 > 0 and that o < 1. Let uw € No g be a minimiser for M, 3.
Then, kp[u] >0 in (—1,1).

Proof. The proof is along the lines of Theorem We recall the main points and emphasise on
what is different. We associate to u the auxiliary function ¢(z) := z+u(z)u'(z), z € [-1,1]. From
B4) we know that ¢(0) = 0 and ¢(x) > 0 in (0,1]. Since ¢ cannot be constant in an interval,
¢(x) increases in a right neighbourhood of 0 and hence kp[u](x) > 0 in a right neighbourhood of
0.

We now prove that ¢’ > 0 in [0,1]. If ¢/ < 0 in some interval then there exist points 0 <
zog < ' < 1 such that ¢’ > 0 (i.e. kp[u] > 0) in [0,z0] and ¢’ < 0 (i.e. kplu] < 0) in (xg,2’). In
particular, u” < 0 in [zg, 2']. Let «* € [0,2z¢) be such that u”(z) < 0 in (z*,2']. Then, there exist
z1 € [2%,20) and x2 € (z9,2'] such that p(z1) = ¢(z2).

Then, with the same notation as in the proof of Theorem [6.4] we consider the function v €
CLY([—£(0),£(0)], (0,00)) defined as in ([6.4]). Then, w(x) := ng)v(ﬁ(,g)x), x € [—1,1], satisfies

W)= -8, wl)=-22 and Wy(w) < Wi(u). (6.7)

(o)

Since u” < 0 in [z1, x2] and proceeding as in (6.0]) one sees that ¢ < 1. Here, in contrast with the
proof of Theorem[6.4], ¢ > 0in (0,1) and so ¢ < £(p). Hence, w(1) < u(1) and Wy (w) > Wy (u) by
the strict monotonicity of the energy (Proposition [3.19), which contradicts the inequality in ([G.1]).
Then, ¢ being increasing in [0, 1] implies that xj[u] > 0 in [—1,1]. The strong minimum principle
for (2.5) considered as a second order equation for rj[u] and applied to a possible minimum 0
yields that xp[u] > 0in (—1,1). O

6.3 The case <0 and a > ag

6.3.1 Bounds on the energy
Proposition 6.8 (Upper bound of the energy). We have

(=88)
V1+ 52
Proof. If a = ag, the minimiser is u.(x) = cosh(bx)/b, b = arsinh(—#3), which has vanishing mean
curvature in [—1,1] and hyperbolic Willmore energy

M, 5 < (1 + arsinh(—f) (o — ag))

83
VI+32
If instead o > ag, we consider the function u := u. + d, where d, := a — ag > 0. Notice that
u € Nog. Since uc > 7 >0 and u > 0 we have

Wh (uc) = -

1

2
"
Wh(uc + 601) - / (( uc + 1 > (uc + 60[) \V 1 + U? d$
—1

1—|—U::2)% (uc+5a) \ 1+u::2

1 2
ul! 1
< Wi(u —I-/ < + da/1 + u2 dx
h(te) 1 ((1+u’62)?2) uc\/l—l-u’CQ) “ ¢
1 2
W (ue) b(S/ ve o 1 VI+uZd
< Ue) + U u'= dx
R L N R - A
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which proves the proposition. U

The previous result together with Proposition 6.2 shows that also for 5 < 0, M, 3 grows linearly
for a — o0.

6.3.2 On the sign of the hyperbolic curvature of minimisers

Here we prefer a slightly less general formulation of the curvature statement and refer only to
solutions as we have constructed. The reason is that we have to restrict the set of admissible
functions in the case —f3 < a.

Theorem 6.9. We assume that 8 < 0 and that o > ag. Let u € Nog be an energy minimising
solution of (L4) as constructed in the proofs of Theorems[{.17 and[{.2]]. Then, either ky[u] > 0
in [0,1), or there exists a point a € (0,1) such that kp[u] > 0 in [0,a) and kplu] < 0 in (a,l).

Proof. We have u/ > 0 in (0, 1]. We associate to u the function ¢(z) := z + u(x)v/(z), z € [-1,1],
which satisfies ¢(0) = 0 and ¢(z) > 0 in (0, 1]. Hence, ¢(z) increases in a right neighbourhood of
0 and so, kp[u](z) > 0 in a right neighbourhood of 0. In view of the strong maximum /minimum
principle for (2.3]) as a second order equation for ky[u] applied to maximum /minimum equal to 0,
we only need to exclude that there is a sign change from rp[u] < 0 to xp[u] > 0.

We assume by contradiction that there exist 0 < & < 9 < 2’ such that kp[u] < 0 (i.e. ¢’ <0)
in (Z,z9) and kplu] > 0 (i.e. ¢ > 0) in (xg,2'). In particular, v’ < 0 in [Z,z0] and so, also
on a slightly larger interval [z,z") D [Z,z0]. Then, we find 21 € (Z,20) and z3 € (z9,2”) with
p(x1) = p(x2).

We consider the function v € CH([—£(p),£(0)],(0,00)) as defined in (6.4]). Using the same
notation as in the proof of Theorem [6.4], one should notice that in this case ¢ > 1. Indeed, one
starts from (6.5). By our assumption on ¢ and since u/(x) > 0 in (0, 1], the integrand in (6.5)) is
strictly I}egative in (z1,x0) and positive in (xg,x2). Moreover since u’ is decreasing in (z1,z3),

u

also BT is monotonically decreasing. Hence, splitting the integral in (6.5) and using that
o(z1) = p(x2) wWe get

Zo z2

u'(z0) () dt + /()

V14w (x)? 4 V 1+ (zg)? v
1 xo

Notice that even though ¢ > 1, o + u(xe)u'(z2)(1 — 0) > 1.
By scaling, the function w(z) = ng) v(¢(0)x) defined in [—1,1] satisfies

r(zxe) < r(zxi) + "(t)dt = r(z).

W'(1) = -3, w(1):;z—(;‘) and Wi, (w) < Wi (u). (6.8)

On the other hand, since ¢ > 0 on (0,1] we have o > (o), w(1) > wu(1) and hence Wy (w) >
Wi (u) by monotonicity of the hyperbolic Willmore energy (see Propositions .18 and [£.25]), which
contradicts the inequality in (G.8]). O

6.4 The case 3 <0 and o < ag
6.4.1 Bounds on the energy
Proposition 6.10 (Upper bound of the energy). The following estimate holds

8 inh(—
ng__iln%mm<%ﬂiﬁl
1+ 32 @

(@2 -a)).
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Proof. For < 0 and a < ag the function f, defined in (51]) is well defined. As usual we denote
b = arsinh(—/). The claim follows then from

b
Ma,ﬁ < Wh(foz) = _\/%—QQ — 8tanh (%(mo -1+ aiﬁ))

873 bag «

6.4.2 On the sign of the hyperbolic curvature of minimisers

Theorem 6.11. Let u € N, g be a minimiser for My g. Then, kplu] >0 in (—1,1).

Proof. We know that there exists zg € [0,1) such that u/(z¢) = 0, v’ > 0 in (29,1] and v’ < 0
n (0,70). Then, u|_g, 4, is the rescaled minimiser of M, o and hence, by Theorem [6.7]
kplu] > 0 in (—z9, x0).

It remains to study the sign of the curvature in [z, 1]. Again, we consider p(x) := z+u(z)u'(z),
x € [z9,1]. Since v’ > 0 in (zo, 1], ¢(x0) = x0 and @(z) > g in (29, 1], p(z) increases in a right
neighbourhood of xy and hence, kp,[u](z) > 0 also in a right neighbourhood of xy.

In view of the strong minimum principle of (2.5]) considered as a second order equation for
kplu] and applied to a possible minimum 0, is suffices to show that kp[u] > 0 everywhere. We
assume by contradiction that there exist xg < 2’ < 2” < 1 such that sp[u] > 0 (ie. ¢’ > 0) in
[0,2') and kpu] < 0 (ie. ¢’ < 0)in (2/,2”). In particular, v” < 0 in [2/,2") and so, also on a
slightly larger interval (z*,z”) D [2/,2”). Finally, we may find z; € (z*,2') and z2 € (2/,2”) with
p(x1) = p(x2).

Then, with the same notation as in the proof of Theorem [6.4] we consider the function v €
CLY([—£(0),£(0)], (0,00)) defined as in (6.4]). Notice that in this case o < 1. Indeed, by our
assumption on ¢ and since u'(z) > 0 in (x¢, 1], the integrand in (63]) is strictly positive in
[z1,2') and negative in (2/,x2]. Moreover since v’ is strictly decreasing in [z1, 2], also \/17‘/7,2

+u
is monotonically decreasing. Splitting the integral in (G.5]) and using that ¢(x1) = p(x2) we get

zo)/zo0,

r(ze) > r(x1) + \/HT/ dt+\/1+u7/ t)dt = r(z1).
Then, w(z) := @ (L(0)x), [—1, 1], satisfies
/ . o«
w'(l)=-p6, w()= @ and Wy (w) < Wh(u). (6.9)

Since ¢ > 0 on (0,1] we have ¢ < ¢(p) and w(1) < u(l). Therefore, Wy(w) > Wp(u) by
monotonicity of the energy (see Propositions [£.40] and [£.49), which contradicts the inequality

in (G.9). O

7 Numerical studies and algorithms

We will try to approximate a solution u(x) of the Willmore equation (L4]) by approximating the
stationary limit @(z) = limy_o U(x,t) of the solution U(x,t) of the Dirichlet problem of the
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Willmore flow equation
V =ArH +2H? -2HK  Vze(-1,1),t >0,
U1t =ULt) =a, Uy(~1,6) = —Uy(L,) =5  V¥t>0, (7.10)

U(z,0) = up(x) Vo e [-1,1],

for a family (I'(f));c(0,00) Of axially symmetric surfaces parametrised by

[(t) :={(z,U(x,t) cos p,U(x,t)sing) : x € [—1,1],¢ € [0,27]} .

Here H, K denote the quantities related to the surface I'(t) generated by the function U(x,t) and

V' the normal velocity of I'(t) given by
C v o

In order to derive the variational formulation of (7I0) we exploit the fact that the right hand
side of (ZI0) is linked with the derivative of the Willmore functional

:/HQdA.
I

In fact, writing W(U) instead of W(T"), we can show that

-~ B
U) =2nW(U 2m—— 7.11
W) =2aW{U) + WW (7.11)
where e - .
W= [ {<1+Uf%m>5/2 * U<1+U§>1/2}dx

Thus, for the derivative in direction ¢ € H3(—1,1), we obtain

(W'(U),¢) = %W<U+e¢>\5:0
_ 1 UUsybua Uz.¢ UU U2, ¢,
a 1/ {2(1 +U2)%/2 - (1+U2)52 5(1 + U2)7/? (7.12)
¢ Uz 9 }d
X

DA UDYE UL+ U2)RR
Under the smoothness assumption U € H*(—1,1) one can prove (see §2.3) that

N +1
(W'(U),¢) = —/1 U¢<AFH+2H3—2HK)dx Vo € H2(—1,1).

(7.13)

Multiplying (ZI0) with the test function U¢ and integrating over [—1,1] yields the following

variational formulation :

For ¢t > 0 find U(+,t) € X such that U(.,0) = up and
(7.14)

+1 . . .
[t o secaiun. oo
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where (W/(U(-,1)), ¢ ) is defined by (ZI1Z) and
X :={ve H*(-1,1): v(-1) =v(1) = a, V(1) = —'(1) = }.

For the numerical solution of (7Z.14]), we use the finite element method to get a finite dimensional
nonlinear system of ODEs. To this end, we decompose the space interval I = [—1,1] into elements
K; = [zi-1,2;],i=1,...,N, and define the finite element space X}, C X as

Xp={veX:v|, ePs Vi=1,...,N}, (7.15)

where P3 denotes the space of polynomials with degree less or equal to 3. Note that X;, C C'(I,R),
i.e. we use C'-elements of third order. The degrees of freedom are the values of the function and
of the first derivative at the nodes x; where the values at the boundary points xo = —1 and zy = 1
are prescribed by the values « and 3 due to X C X. Thus, the semi-discrete solution U (-, t) € X},
of problem (.I4]) can be represented as

2N+2

Un(z,t) = Y ¢;(t)p;(), (7.16)

j=1

where the basis functions ¢; € C!(I,R) are defined as follows. For each element K;, it holds
goj‘ . € Pg for all j. The first set of basis functions ¢4, ¢ = 0,..., N, is responsible for the point
values of the discrete function at the nodes z;, i.e., it holds

0 .
<P1+i(xk) :(51'7]{, %golﬂ-(xk) =0 VkZO,...,N, ’LZO,...N.

The second set ¢n4o4; is responsible for the values of the z-derivatives at the nodes z;, i.e., it
holds

0 .
pnr2+i(te) =0, o-pniori(zy) =6k VE=0,...,N, i=0,...N.

These conditions for the definition of the basis functions ¢; imply the following meaning of the
coefficients ¢;(t) in (ZI8)

clJri(t) :Uh(:ci,t), CN+2+i(t) = %Uh(.’bi,t) VizO,...,N,

where ¢1(t) = eny1(t) = a and cy42(t) = —can42(t) = B for all t > 0 due to the Dirichlet
boundary conditions of Uy (x,t). Note that the support of the basis functions ¢14; and @n424; 1S
local; it consists of the (at most two) elements that contain the node z;. The initial condition is
discretised as Uy (z,0) = ug p(x) = 2351” co,jj(x), where ug , € X, is a suitable interpolant of u
in X}, which can be defined, for instance, by the choice ¢y 14 1= uo(z;) and co nN42+4i = %uo(aci)
for i =0,...,N. Therefore, we have the initial conditions ¢;(0) = co; for the unknown coefficient
functions ¢;(t). For the discrete problem, we need the test space

Xpo={veHj(-1,1): v|, €P3 Vi=1,...,N}

K

Then, the semi-discrete variational problem reads :

For t > 0 find Uy (-, t) € X}, such that Uy(.,0) = ugp, and

i Uh('vt)Uht('7t)¢h YA/ o (7'17)
/1 (1+ Uhx(.7t)2)1/2dx + (WA UR( 1), ) =0 Véu € X, £>0.
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Using the ansatz (ZI6]) for Up(-,t) and taking the test functions ¢, = ¢; € Xp o for i € Jj =
{1,...,.2N+2}\{1,N+1,N +2,2N + 2}, we see that (TI7)) is equivalent to a nonlinear (2N —2)-
dimensional system of ODEs for the coefficient functions ¢;(t), j € Jj, .

In the time discretisation, we calculate for a discrete time level ¢,, an approximation U™ € X},
of Up(-,ty). Starting with ¢y = 0 and U0 .= ug,p, we assume that U" is known. We choose a time
step k, > 0 and compute U at the time level ¢, 1 := t, + k,, from (ZI7) by approximating the
time derivative Uy; at t = t,, by the first order backward difference formula

UnJrl —_yun
Uht(tn) ~ ki

In order to get a linear system of equations for U"™! we replace in (ZI7) several nonlinear terms
of Ux(-,t) by the known function U™ € X}, i.e., we compute U"+! € X}, from

+ ur _
/ 1 W(U"H—U")%dw + bW (U, 00) =0 Vop €8, (T8)

where W,/ (U™1) is the following linear approximation of W/(U"1) :

—, 1 +1 UnUn+l¢hx;c (Un )2¢h Un(Un )2Un+1¢h;v

n+1 . Tz T o T T

e = 5 [ i G e ophE s G
B on UM Lo
U+ U7 Un(+ U2 S

Note that the places, where we have taken U™ and where U"t!, have been chosen heuristically.
Other choices are possible and will be studied in future.

Numerical experiments have shown that the choice of a constant time step k, = At for all
n=0,1,..., does not lead to satisfying results. If the time step is too large the sequence {U"}
can be divergent and if it is too small one needs a very large computing time to reach a stationary
limit. Therefore, we have developed an adaptive time step control which is presented in Figure
In the step (b2) we discard the computed solution U™T! if its energy has increased compared with
U™ or if the relative change of the energy was too large. We divide the time step size by two and
compute Ut again. In all other cases we accept the solution U™*!. Moreover, we double the size
for the next time step if the relative change of the energy was at least in two previous time steps
too small and the doubled size is not larger than a prescribed value k-

In our numerical experiments, we have chosen the control parameters wy,q; = 0.1, Wyin = 0.01,
Emaz = 0.01 (see Figure [[5) and the initial time step size kg = h* where h := maxj<;<n |2; — zi_1]
denotes the mesh-size. We accept U™T! to be the stationary limit of our time marching algorithm
if

EAWO™Y —W(U™)| <eyy  and kUM — U)o < ev, (7.19)
where the norm || - ||« is defined as
2N+2
[Uhllos := | _max  le;|  for  Un= z; cjt0j € Xn,
=

and eyy, ey are some prescribed tolerances which have been chosen as ey = ey = 1074, We stop
the time iteration if the criterion (7.19)) is satisfied or if, in case (b2) of the adaptive time step
control (Figure [I5]), for the halved time step size it holds k,/2 < ,/eps, where eps is the relative
floating-point accuracy, or if a maximum number 7,4, of iteration steps is reached (we have used
Nomaz = 360000).
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Computation of (tni1,kny1, UMY from (tn, kn,U™) :

(a) initialize: Wy := W(U™) (formula (TII))); TPt :=0; Ntoo-small .— (),
(b) while T =0 do

(1) compute: U™ by solving (TI8); W := WU );
(2) if W>Wy or |[W—Wy| > wmaz|Wo| then
kp :=kn/2;
(3) else if |W —Wh| < wminWo| and 2k, < ke, then
Taccept = 1;
if Ntoo_small > 92 then
kn = 2kn . Ntoo_small =0

else
Ntoo_small = Ntoo_small 4 1;
endif
(4) else
Taccept pp— 1;
endif

enddo

(€) kpnt1:=kn; tpy1:=tn+kn;

Figure 15: Time marching algorithm with control parameters wy,qz, Wmin and kpaz-

In the following, we describe our numerical results for three different settings of the boundary
data a and (. In the first case, we combine the value a = 0.5 with the three negative values
g € {-1,-5,—10}, see Figure In the second case, we consider o = 0.5 and the positive values
B € {1,5,10}, see Figure [I7 Finally, in the third case, we study the situations where § = 0 and
a € {0.5,0.1,0.01}, see Figure I8 The finite element mesh depends on the data « and ( and is
locally adapted near the boundary in the following way. The interval I = [—1,1] is decomposed
into the three subintervals €y = [-1, -1+ 6], Q2 = [-1 46,1 — 6] and Q3 = [1 — J, 1] where

o2 . 1
= mm{g,wo min{|a/, W}}

with wp = 2 except for the case (a, ) = (0.01,0) where wy = 8. Then the mesh is created by
subdividing each subinterval 2; into Ny = 40 equidistant elements. In each picture of Figures [I6] -
I8, the mesh is shown on the z-axis, the initial solution U at ¢y = 0 is presented by the dotted
line and the final solution U™ at the end ¢, of the time iteration is given by the solid line. The
parameters at the headline of the picture have the following meaning. n denotes the number of
the last time step, dt the last time step size k,,, NEL the number of the finite elements and W the
value of the Willmore functional W(U™).

For nearly all cases, our numerical algorithm produced a discrete solution satisfying the approx-
imate “stationarity” criterion (ZI9) with the tolerances ey, = ey = 10~*. The first exceptional
case was (a, 3) = (0.5, —10) where the algorithm at a time t,, could not find a next function U"*!
at a time t, + k, with k, > ,/eps such that W(U" ') < W(U™). The other critical case was
(o, 8) = (0.01,0) where for all n a new U"™! with a smaller value of the Willmore functional
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dt = 5.06e—03, NEL = 120, n = 116, t = 3.209e—-01, W = 5.535e+00
0.8

dt = 5.24e—03, NEL = 120, n = 262, t = 7.671e—01, W = 8.523e+00

dt = 2.00e—08, NEL = 120, n= 2864, t = 4.683e—01, W = 9.258e+00

0.5

B=-10: kYU —U"||s ~ 1.67e — 02, stopped by k,/2 < \/eps

Figure 16: o =0.5and g <0
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dt = 5.06e—03, NEL = 120, n = 261, t = 1.092e+00, W = 9.430e+00
1.5
1+
0.5
-1 70‘5 6 0‘5 i

dt = 5.24e—03, NEL = 120, n = 642, t = 3.083e+00, W = 1.270e+01
1.5
1+
0.5
fo) i | i I
-1 —0.5 o 0.5 1

dt = 5.24e—03, NEL = 120, n = 863, t = 4.179e+00, W = 1.320e+01
1.5
1+
0.5
-1 —0.5 6 0.5 1

Figure 17: aa=0.5and g > 0
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dt = 5.06e—03, NEL = 120, n = 185, t = 7.029e—-01, W = 5.861e+00
1-

0.9+
0.8
0.7+
0-6;///,/—\‘
0.5

0.4
0.3

0.2r-

0.1

dt = 5.24e—03, NEL = 120, n = 372, t = 1.604e+00, W = 1.113e+01
1-

0.9r-

0.8

dt = 5.24e—07, NEL = 120, n = 360000, t = 1.447e—01, W = 1.244e+01
1r .

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

fo) i i ;
-1 —0.5 o 0.5 1

a=0.01: stopped by n = npaz, U — U"||o =~ 2.75e — 04

Figure 18: =0



Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data 115

could be found but where the maximum number of 7,,,, = 360000 time steps was reached with-
out satisfying the criterion (Z.I9). On the other hand, the change of the graph of the discrete
solution as well as the time step size over the last 99% of all time steps was very small. Here,
further research is necessary to figure out the reason for this behaviour. Could it be that the first
order time discretisation is not accurate enough or that the semi-implicit backward Euler exhibits
some instabilities which lead to very small time steps? Another reason could be that the “exact”
continuous Willmore flow is really creeping very slowly to the stationary limit. Let us finally note
that, for such critical cases, a suitable choice of the initial function U° = ug,, is important for the
convergence of the numerical solution to the stationary limit. Here a good analytical feeling is
very helpful. We construct g € X}, as the interpolant of a suitable function ug € X as described
above. In the case 8 < 0, we use ug = f, with f, defined in (51]) which is a catenoid at the
boundary fitted with an arc of a circle centered at the origin. For 8 > 0, we choose ug = w with
w defined in (6.1)) which is an arc of a circle centered at (0, — 1/3).
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Symmetric Willmore surfaces of revolution
satisfying natural boundary conditions'

Matthias Bergner?, Anna Dall’Acqua?, Steffen Frohlich?

Abstract

We consider the Willmore-type functional

W, (T) ::/FHQ dA—'y/FKdA,

where H and K denote mean and Gaussian curvature of a surface I', and v € [0,1] is a real
parameter. Using direct methods of the calculus of variations, we prove existence of surfaces of
revolution generated by symmetric graphs which are solutions of the Euler-Lagrange equation
corresponding to ¥/, and which satisfy the following boundary conditions: the height at the
boundary is prescribed, and the second boundary condition is the natural one when considering
critical points where only the position at the boundary is fixed. In the particular case v = 0
these boundary conditions are arbitrary positive height o and zero mean curvature.

Keywords. Natural boundary conditions, Willmore surfaces of revolution.
AMS classification. 49Q10; 53C42, 35J65, 34L30.

1 Introduction

For a smooth, immersed surface I' C R? and real parameters ~, i1, Hy, Nitsche in [14, [15] considered
the functional

F(I) = /(I)(H, K)dA  with ®(H, K) = p+ (H — Ho)? — 7K, (1.1)
I

where H is the mean curvature of the immersion, K its Gauss curvature, and dA its area element.
In many applications, I' is an idealised model for the interface occurring in real materials. The
energy JF(I') then reflects the surface tension and, therefore, elastic properties of this interface.
Similar versions of this functional as model for elastic energies of thin plates were already studied
by Poisson [17] in 1812, or Germain [7] in 1821. For a concise presentation we refer to Love’s
textbook [13]. In 1973, Helfrich [§] studied a functional quite similar to F from (LI as a model

!This paper is a version of the article “Symmetric Willmore surfaces of revolution satisfying natu-
ral boundary conditions” by M. Bergner, A. Dall’Acqua and S. Frohlich published in Calculus of Varia-
tions and Partial Differential Equations, Springer, 39, 361-378, 2010. The on-line version is available at
http://www.springerlink.com/content/88313323p433812j/. The current version may differ slightly from the pub-
lished one.

2Present address (March 2011): Institut fiir Differentialgeometrie, Gottfried Wilhelm Leibniz Universitit Han-
nover, Welfengarten 1, 30167 Hannover, Germany, bergner@math.uni-hannover.de

3Financial support of “Deutsche Forschungsgemeinschaft” for the project “Randwertprobleme fiir Willmoreflichen
- Analysis, Numerik und Numerische Analysis” (DE 611/5.1) is gratefully acknowledged

4Present address (March 2011): Institute of Mathematics, Johannes Gutenberg-University Mainz, Staudingerweg
9, 55099 Mainz, Germany. sfroehliQuni-mainz.de
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for biological bilayer membranes, see also [16] for a more recent survey on this subject. Therefore,
F is sometimes referred to as Helfrich functional. Detailed historical information can also be found
in Nitsche [14, 15].

From the mathematical point of view it is natural to assume a certain definiteness condition for
the functional F. More precisely, we require existence of a constant C' > —oo such that F(T") > C
holds true for all connected and orientable surfaces of regularity class C2. As shown in [14], this
condition imposes the following restrictions on the parameters

p>0, 0<vy<1, ~HF<pul-7).

In the present work we study the special case Hy = p = 0, where F takes the form

W, (L) = /H2 dA—y/KdA, 0<y<1. (1.2)
I r

This functional models the elastic energy of thin shells. Willmore in [22] studied and popularised
the functional Wy, by now called Willmore functional.

Note that for v € [0, 1], the functional 1, is non-negative. To see this, let x1,x2 € R denote
the principal curvatures of the surface. Then we compute

4(H2 —vK) = (k1 + /@'2)2 —dykike = (1 — ) (k1 + H2)2 + (k1 — /@'2)2 >0 for~yel0,1]

proving the non-negativity of W,. Moreover, strict inequality W, (I') > 0 holds for every non-
planar surface I' if 0 < v < 1.

We are mainly interested in minima or critical points of W,. Such critical points I' C R3 have
to satisfy the Willmore equation

ArH +2H(H* - K)=0 onT, (1.3)

where Ar denotes the Laplace-Beltrami operator on I', see e.g. [22]. A solution of this non-linear
fourth-order differential equation is called Willmore surface. Note that the Euler-Lagrange equa-
tion is independent of the value of v since the integral over the Gauss curvature only contributes
to the boundary terms on account of Gauss-Bonnet Theorem.

Existence and regularity results for closed Willmore surfaces of prescribed genus are extensively
studied in the literature (see e.g., [1l 10, 11l 12| 20} [I8]), while existence of Willmore surfaces with
prescribed boundaries is by far less studied. In the presence of boundaries the partial differential
equation (3] has to be accompanied by appropriate boundary conditions. Possible choices for
them are presented in [14] and [I5] along with corresponding existence results. Nitsche’s results are
based on perturbation arguments and require certain smallness conditions on the boundary data.
On the other hand, Schétzle in [19] recently proved existence and regularity of branched Willmore
immersions in S” satisfying prescribed boundary conditions. By working in S” some compactness
problems could be overcome.

To present a complete analysis of at least special Willmore surfaces satisfying prescribed bound-
ary conditions, we restrict ourselves to surfaces of revolution generated by rotating a symmetric
graph in the [z, y]-plane about the z-axis. Existence and classical regularity of those axially sym-
metric Willmore surfaces with arbitrary symmetric Dirichlet boundary conditions were recently
proved in [3| 4]. With the paper at hand we continue these studies. We solve the existence problem
for Willmore surfaces of revolution with prescribed position at the boundary, and with a second
boundary condition, which is the natural one when considering critical points of the Willmore
functional in the class of surfaces of revolution generated by symmetric graphs where only the
position at the boundary is fixed.
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1.1 Main result

We consider surfaces of revolution I' C R? generated by rotating the graph of a smooth symmetric
function w: [—1,1] — (0,00) about the z-axis. Within this class of surfaces we look for solutions
of the Willmore equation (L3]) under the boundary conditions

gl

ay/1+u/(£1)?

u(xl)=a>0 and H(xl)= for v € [0,1].

Our main result is the following.

Theorem 1.1 (Existence and regularity). For each a > 0 and for each -y € [0,1], there exists a
positive and symmetric function u € C*°([—1,1],(0,00)), i.e. u(xz) > 0 and u(z) = u(—=x), such
that the corresponding surface of revolution T' C R3 solves

ArH +2H(H? -K)=0 onT,

gl (1.4)
/T4 W/ (£1)2
This fourth-order system along with its natural boundary conditions can be found e.g. in [14],

[15], or von der Mosel [2I]. In Appendix A we recall how the second boundary condition in (4]
arises as natural boundary condition for the functional W,.

u(£l) =a and H(£l) =

For special values of « and -y, explicit solutions of problem (I.4]) are known. For example, if v = 1
then the circular arc u(xz) = Va2 + 1 — 22 provides an explicit solution of (I4)) for arbitrary « > 0.
Next, let us define some real number o* by

cosh(y)  cosh(b*)

a® := min = = sinh b* ~ 1.5088795. .. (1.5)
y>0 Y b*
with 5" ~ 1.1996786... solving b*tanh(b*) = 1. (1.6)

In case of v = 0 and o > a, there exist two catenoid solutions of (L4) of the form u(x) =
cosh(bx)/b, b > 0 suitably chosen. These two solutions yield surfaces with vanishing mean curva-
ture, i.e. minimal surfaces. Moreover, these explicit examples show that the solutions of problem
(L4) are, in general, not unique. Theorem [[T] becomes particularly interesting for v = 0 and
o < o, as catenoid solutions do no longer exist under this assumption. For v = 0 and a = 1 there
still exists an explicit solution given by u(x) = 2 — v/2 — 22, a piece of the well-known Clifford
torus.

So for v = 0 we have the following rough picture:

— non-minimal solutions for a < a*;

— exactly one minimal surface solution for a = a*;

— two minimal surface solutions for o > o*.

Existence of rotationally symmetric Willmore surfaces solution of (L4]) for v = 0 and for all
values of o was observed numerically by Frohlich [6] in 2004, and by Kastian [9] as well as Grunau
and Deckelnick [5]. Moreover, in [9] the presence of a third solution for o > o* was numerically
observed, suggesting that «o* is a bifurcation point on the branch of minimal surface solutions.
Recently, in [5] Deckelnick and Grunau proved that o is indeed a bifurcation point and so, at
least locally, the existence also of a non-minimal solution for a@ > «a* is settled. In the same paper,
by a linearisation around the Clifford torus they prove existence of a solution to (L4]) for v = 0
and « close to 1. Here we prove existence of solutions for the same boundary value problem for
all a € (0,a%).
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Also the case v = 1 is special. Up to some constant, Wi (u) equals the total elastic energy of u
considered as a curve in the hyperbolic half-plane R? := {(z,y) € R? : y > 0} equipped with the
metric ds} = y% (dz®+dy?) (see e.g. [2], [3]). Thus, varying v within [0, 1], we interpolate between
the “Euclidean” Willmore functional with v = 0, and the “hyperbolic” Willmore functional for
v =1

The proof of Theorem [IT] is based on the existence results from [4] for symmetric Willmore
surfaces of revolution satisfying Dirichlet boundary conditions u(+1) = « and Fu/(+1) = 3 for
a > 0 and § € R arbitrary. We construct a solution of (I4]) by minimising the Willmore energy
for fixed o and variable 5. Essential tools are the continuity and the monotonicity of the Willmore
energy in f3.

2 Notation. Dirichlet boundary value problem

2.1 Surfaces of revolution

We consider functions u € C?([a,b], (0,00)), a < b. Rotating the curve (x,u(z)) C R? about the
r-axis generates a surface of revolution ' C R3 which can be parametrised by

T f(z,¢) = (z,u(z)cos p,u(z)sing) € R*, € [a,b], ¢ € [0,2m). (2.1)

The term “surface” always refers to the mapping f as well as to the set I'. The condition v > 0
implies that f is embedded in R? and in particular immersed.

Let x1 and ko denote the principal curvatures of I' C R?, i.e. k1 = —u”(z)(1 + u’(x)Q)_% and
ke = (u(z)\/1+ v/ (x)2)~L. Tts mean curvature H and Gaussian curvature K are
K1+ K2 u’(x) 1
H = = — s
2 21+ (2)2)3%2  2u(x)\/1 + ' (2)2
u//(x)
K = = — .
T T u@) O @)y
For the total Gauss curvature we have
b u//(x) u/(x) b
/KdA_—27r/ U gp= o (2.2)
" o (14 u(2)?)} EerH)

i.e. the Gauss-Bonnet theorem in our special situation. The integral is already determined by
the boundary values u/(a) and u/(b). This fact will become essential for the Dirichlet problem
discussed in Section 2.3. Furthermore, W, (I") takes the form

//x 2
W= w0) = 5 [ (e - o) VTR

u(z)y/1+u(x)

+27y (2.3)

/ 2
1+u/(z)?|
An important property of the energy W, is the following

Lemma 2.1. (Invariance of W., under rescaling)

Given some function u € H*([-1,1],(0,+0c0)) and r > 0, let u, € H?*([-1/r,1/r],(0,+00)),
ur(x) := u(rz)/r denote the rescaling of w by 1/r. Then the mapping r — W, (u,) is constant for
r € (0,+00).
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Proof. We note ul.(x) = u/(rz) and u//(xz) = ru”(rz), in particular u,.(+1/r) = «/(£1). Then we
obtain

1/r

2
W) = 5 | < rulra) - (m)Q) Sufra) /T (R da

’ (L+/(rz)?)32  wu(ra)y/1+u
—1/r

1/r
=W, (u)

u'(rx)

+2TY ————
7 1+ u/(rz)?

—1/r

using formula (Z3]) twice (first for W, (u,) and then for W, (u)) and the change of variables & = rx
in the integral. O

2.2 Notation

For o > o, o* defined in ([L3)), the following two numbers

cosh b

hb
by () := inf {b >0 : < a} and ba(a) := sup {b >0 : COZ < a} (2.4)

are well-defined and satisfy the inequality 0 < b1(a) < b* < ba(a) < 400 with b* from (LGI).
Together with (LE) we deduce

sinh(b; (a)) < sinh(b*) = o™ < sinh(by(v)). (2.5)
Definition 2.2. For a > 0 and 3 € R we introduce the space of functions
Nog:={ue H*([-1,1]) : u(z) >0, u(x) =u(-z) , u(*l) =a and v'(-1) = 3}

along with
T%(aﬁ) = inf {Ww(u) Tue Na,ﬂ} fory€[0,1].

Due to technical reasons we shall not work within Naﬂ, but within the smaller space
Nop:={u€Nyp :ifa>a* and —a<f then u'(z)<ainl0,1]} (2.6)

with
T, (ap) = nf {Wy(u) : u € Nog} for v €[0,1]. (2.7)

One easily sees that the space N, g is never empty and hence T, (, g) is well-defined. In
Corollary in the next section we show that the minimal energy T, (, g) is actually attained for
all« >0, € R and v € [0,1].

2.3 The Dirichlet boundary value problem

In this section we recall the existence result for the Dirichlet boundary value problem (2.8]) below
from [4]. First, this result holds true for v = 0 and v = 1. At the same time a solution to this
problem is a critical point for W, independently of v because, on account of (Z2]), the total Gauss
curvature is a constant depending only on 3. Furthermore, we state monotonicity properties of
the minimal energy T, ) in a.
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Theorem 2.3. ([4, Th.1.1]) For each o > 0 and for each § € R, there exists a positive and
symmetric function uw € C*°([—1,1],(0,00)) such that the corresponding surface of revolution I' C
R3 solves

ArH +2H(H? - K)=0 onT,
(2.8)

u(£l) = a, u(=1)=—-d'(1)=0
Moreover, u has the following properties:
1) Wi(u) =T (a,8)
2) if B>0, then v’ >0 in (—1,0),
3) if B <0, then u has at most three critical points in [—1,1].

Property 1), which is not mentioned in [4, Th.1.1], holds due to the construction of u as
minimiser of the functional W; in the class N, g. The monotonicity behaviour of T (, ) in «
for fixed 8 was also studied in [4]. Those values of o and 3, for which a catenoid or an arc of
a circle solve (Z8), mark points where the monotonicity of this optimal energy w.r.t. « changes
qualitatively. In particular, for 3 > 0 and o = 37}, a solution to (Z8) is an arc of the circle with
center at the origin and going through (1, a), while for 5 < 0 and o = ag with

VIHS o (2.9)

o= arsinh(—3) —
the catenoid u(z) = cosh(bx)/b, b = arsinh(—/) is a minimal surface solution to (2.8]). Because of

g
Ty ap) = Tiap +47(1 =) \/T—ﬂy

the minimal energies T, g) and T (4,3 show the same monotonicity behaviour w.r.t. « as long
as we keep 7 and (3 fixed. Thus, the monotonicity results from [4] and [3] on T} (4 ) are carried
over to the case v € [0,1]. We recall the results here and will give the proofs in Appendix C.

Proposition 2.4. Let v € [0,1] be fized.
(i) For 3 >0 and % <o < ait holds Ty (o1 gy < Ty (a,8)-
(i1) For 3>0and 0 <o <a< % it holds T, (o 8y > Ty (a,3)-
(i) For =0 and 0 < o' < a it holds T, (o1 gy > T (a,8)-
(iv) For f <0 and 0 <o <a < ag it holds T, (o gy > Ty (a,3)-
(v) For <0 and ag < o < a it holds T, (o 5) < Ty (a,)-

In order to prove Theorem [Tl we require various important a priori estimates for solutions to
(2:8) established in [4]. We recall them here and give the proofs in Appendix B. The real numbers
b1, by are defined in (2Z4]) and «o* is defined in (3.

Proposition 2.5. Leta > 0, f € R and u € C*°([—1,1],(0,00)) be the function from Theorem[2.3
such that the corresponding surface of revolution T' C R3 solves 28). Then u has the following
qualitative properties:
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1. If a < o then

|u/(z)] < max ,

{W,’a*,LW}
o

1 « 1 max{|3|, a*}
2,/1+p52°2 e2-1

V(o + max{1,|8]})2 — 22 > u(z) > min {—

with Cy = 8(1 + max{|B], a*}?).

2. If a > a* then

o ()] < max {sinh(bg(a)), 9, VL5 } ,

o

.1« sinh(by()) 1max{|f],a*} 1
Wa*m“{l"ﬂ'})Q“”Qz“("’”)2‘“‘“{5 O 12 1 ’bQ(a)}

with Co = 8(1 + max{|3|,a*}?) and C; = 2cosh(2bz())(1 + arsinh(|3|)(a — a*)).
(2.i) If —sinh(b;(ev)) > B > —a, we have
0<d(z) < -B<a inl01].

(2.7) If B > —sinh(b1(«)), we have

—% < /(z) < sinh(by()) in [0,1] and Va2 +1 — 22 > u(z) > @ cosh(by (@)z).

Corollary 2.6. Given any v € [0,1], a > 0 and 3 € R, there exists some function u €

C*>([-1,1]) N Nop such that the corresponding surface of revolution solves [2.8) and moreover
W, (u) = T (a,3) holds.

Corollary is an immediate consequence of Theorem 23] and Proposition (2.7) and (2.ii)
(the proposition gives that u € N, g since for o > o, sinh(b1 (o)) < o by (Z3))).

3 Continuity and monotonicity of the energy in (3

Throughout the following sections we consider fixed real numbers o > 0 and v € [0,1]. In this
section we analyse the behaviour of the optimal energy T, o g) w.r.t. 3. The results we obtain are
the main ingredients for the proof of Theorem 1.1.

3.1 Continuity in

Lemma 3.1. Let v € [0,1] be fized. If a < o, then B — T, (4 p) is upper semi-continuous for
BeR. Ifa>a*, then B T, 4 p) is upper semi-continuous for 3 € R\{—a}.

Proof. Given u € N, g and £ € R consider the symmetric function u.(z) = u(z) + 5(1 — z?)
with the properties u.(£1) = a, u.(—1) = f+ €. Then u. € N, gt will hold for |e| < e,
go > 0 sufficiently small (to have u.(x) > 0 in [—1,1]). If either o < a* or —(3 > « this implies
us € Ny gye for |e| sufficiently small (see Definition [Z2)). If, on the other hand, o > o* and 8 > —«
then u € N, g implies v/(z) < « in [0, 1] by Definition This implies u.(z) < « in [0,1] for
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le| < &1 and thus u. € Ny gy, if 0 < €1 < g is chosen sufficiently small. The continuity of the
mapping € — W, (u:) gives

Ty = Juf [l Wy (ue)] > inf [lmsupT, o 4] = lmsap T o pre),

which just means that 8 — T, (, g) is upper semi-continuous. ]

The proof of lower semi-continuity of 3 +— T’ (, g) is more involved and requires the a priori
estimates from Proposition

Lemma 3.2. Let v € [0,1] be fized. If o < o, then 3 +— T, o ) is lower semi-continuous for
BeR. Ifa>a”, then B+ T, 4 p) is lower semi-continuous for € R\{—a}.

Proof. Because of

p
Ty (0,8) = Ty (a8) T 47 (v =) m
it suffices to prove the result for one particular v, we take vy := % Let (Bk)ren C R be some

sequence converging to some 3 € R. Moreover, let ux be the function from Corollary satisfying
ug € Nag, and Wa, (ur) = Tog (a,,)-

Since (Ok)ken is uniformly bounded, Proposition yields positive constants ¢;, 1 = 1,2,3, de-
pending only on « such that

0<c <ug(x) <eo and |up(z)] <es in [—1,1] (3.10)
holds true for all & € N. If moreover a > o and —a < (3, then Proposition yields additionally
uj,(z) < max { — B, sinh(b ()} in [0,1]. (3.11)

From the upper semi-continuity of Lemma 3.1l we deduce that T, (4 3,) = Wao(ur) < c4 holds
with some constant c4. This is true since upper semi-continuous functions achieve a maximum on
compact sets. These estimates imply

o> Woolug) = E/l (ug(x)Quk(x) N 1 )d:c

2 )0\ (1 +u(2)?)s  wk(@)y/1+ up(x)?

v

1
r_a / Wl (2)? da. (3.12)
2 (1+ cg)i —1

Note that due to the choice vy = % the boundary terms cancel each other. From (B.I2]) we obtain
uniform boundness of the sequence in H2([—1,1]), and, after passing to a subsequence, Rellich’s
embedding theorem ensures the existence of u € H?([—1,1]) such that

up — u in H2([~1,1]) and ug — u in CY([—1,1]).
The convergence in C*([—1,1]) ensures that also u satisfies the bounds in (B.I0), in particular
u(z) > 0 in [-1,1]. If either « < a* or —a > B then u € N,z = Nu g holds. If, on the other
hand, @ > o and —a < 8 holds then estimate (B.I1]) and inequality (Z3]) yield

u'(z) < max { — 3,sinh(bi(e))} <a in[0,1]
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and thus u € N, g also in this case. The strong convergence in C'!([—1,1]) and the weak conver-
gence in H2([—1,1]) yield

7 V() u(x) 1
Waoluw) = 2 /1 ( 2)% " u(z) 1+u’(:1:)2> dz +o(1)

E 1 u//(x)Qu x) 1 o B . )
- 2 /1 ((l—l—u’(x 2)% " u(x) 1+’U/(gj)2) dz + 0(1) = Wy(u) + o(1).

Together with u € N, g this shows

Ty (0,8) < Wao(u) < Hminf Wy, (ug) = h,ﬂij.}f Ty ()

k—o0

proving the claimed lower semi-continuity. U
The combination of the above two results now yields

Corollary 3.3. Let v € [0,1], o > 0 be fized. Then B+ T, 4 ) is continuous in R if a < o
while for a > o it is continuous in R\{—a}.

3.2 Monotonicity results for large and small

In this section we show that 5 — T , ) is an increasing function for sufficiently large positive
values of # and a decreasing function for sufficiently small negative values of 5. This allows us to
restrict to ‘bounded’ values of 3 when looking for the absolute minimiser.

Lemma 3.4. If v € [0,1] and 8> ' > o™, then T, (o.5) > Ty (a,5)-

Proof. By Corollary there exists some u € Ng g such that W, (u) = T, 3. Because of
uw'(—=1) = p > ' and /(0) = 0 the following number

¥ :=inf{z € [-1,0] : v/(x) < 3}

is well-defined and satisfies 2* € (—1,0), v/(z*) = ' and /() > ' > 0 for all x € [—1,2%].
Hence, the function w is increasing on [—1,2*] and we deduce u(z*) > u(—1) = a > afz*|. Now
let w € C*°([~1,1]) be the function obtained by rescaling ulj,« _,+ to the interval [-1,1], i.e.
w(x) := u(rz)/r, r = |z*|. By construction, w'(—1) = " and w(+1) > «a. By the rescaling
invariance of the energy (Lemma 1)) and Proposition 24l(3) (note w(£1) > a > #'~1) we finally
get

Ty (0,8) = Wy(u) 2 Wy (ulfps —pv) = Wy (w) 2 T (w(z1),51) > Ty (a,8)-

Here we have used W, (u) > W, (w) which follows from ~ € [0, 1]. O

Remark 3.5. Actually, this result can be generalised to the case —oo < v < 1. Using Corollary[2.4,
23) and Lemma we find

I8 B
m - T%(aﬁ/)’

Ty,(@[’ﬂ) - T17(a7ﬂ) + 47T(1 — ")/) > le(ayﬂl) + 47‘(‘(1 — P)/)

s
1432

sincel—y>0and 3> 3 >a > 0.
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In the following, we set

0 if a < a*,

Bo(a) := { ~sinh(by) if @ > a* with by = ba(a) defined in ([2.4]). (3.13)

A simple computation shows that, for § < 0, @ > ag implies § > [(a2(c), where ag is defined by
Z9).
Lemma 3.6. Let v € [0,1] be fived. If #' < 8 < min{—a, B2(a)}, then T, (o,3) < T (a,3")-

Proof. By Corollary there exists some u € Ny g such that W, (u) = T, , g Because of
[’ < —a there exists T € (—1,0) the smallest element such that w(Z) = —aZ. Since v/(—1) = ' <
B < —a, u/(T) > —a, and ' is continuous, there exists z* € (—1,T) such that «/(z*) = 8 and
u(z*) < alr*|. We consider the function w € C*°([—~1,1]) obtained by rescaling u|;« _,+ to the
interval [—1,1]. By construction there hold w’(—1) = 8 and w(+£1) < a. If @ > o* the assumption
B < B2(a) gives a < ag with ag defined in (23). In case of @ < o* then clearly a < ag is also
true. In both cases, Lemma 2.1l and Proposition 2.4l(iv) (noting that w(£1) < o < ag) yield

T oy = Wylu) 2 Wy (w) 2 T u),8) > T ()
Here we have used W, (u) > W, (w) due to v € [0, 1]. O

Remark 3.7. This result still holds for all v > 0 because

/

p
T (081 = To,(a,p) — 4”7m
which holds for v > 0 and 3 < 3 < min{—a, B2(c)}.

> To,(a,8) — 47y

B
Jii =15 (a,8)

3.3 The case 7 =0

For this case we give a complete description of the monotonicity behaviour of 5 — Tj (4 g) for all
values of 3. For a < o* this mapping is decreasing on (—oo, —a] while it is increasing on [—a;, 00).
For o > o™ the behaviour is more complicated due to the presence of the two catenoid solutions
whose energy W) is zero.

Similarly to (2(«), let us introduce

—a* if a < a*,

Bi(a) = { _sinh(b) if > a* with by = b1 (a) defined in ([2:4]). (3.14)

Lemma 3.8. If o' > 3> ' > max{—a, f1(a)}, then Ty (4.8 > To,(a,5)-

Proof. Given > (3 we first define b := —arsinh(3), ¥’ := —arsinh(f’) and note b < V. By
Corollary there exists some u € N, g such that Wy(u) = Ty (4,8)- Let f(z) be the catenary
with initial data f(—1) = «, f/(—1) = 3, i.e. the function

@ cosh b
= h 1)—0b]. 1
f(2) o <% ( - (x+1) b> (3.15)
At the point
!
=1 b—b 3.16
v + coshb( ) ( )

we have f/(z*) = . Note that #* < —1 since b < V'. Let v € Cb([z*, —2*]) be the symmetric
function equal to f on [z*,—1] and equal to u in (—1,0]. Furthermore, let w € CY1([-1,1]) be
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v rescaled to [—1,1]. By construction it holds w'(—1) = 3’. In order to apply the monotonicity
property of the energy in a we need to show w(+1) < a. Since 8 > ' > —a we have sinh(z) < «
for all € (b,0), and hence

cosh(b') — cosh(b) cosh(b')

ivalentl 1.
b < a or equivalently cosh(b) —a(b—¥) <
From this inequality we see
v(z*)  acosh(b) 1 cosh(V)
:l:l = = = . 3.17
wED = 75T = Teosh(0) 12 b= 0) ~ “eosh(b) —alb— ) " (3:17)

Since the piece of catenoid has zero energy for v = 0, and the energy W, is invariant under rescaling
(Lemma [2.1]), we obtain

To,(a,8) = Wolu) = Wo(w) > Tp (w(+1)w (1)) = To,(w(-1),8)-

Now, if 3 > 0, then, using w(41) < a < 3’71, Proposition Z4l(ii) yields T, (w(1),8") > To,(a,8)-
On the other hand, if 5" < 0 we claim a < ag. This is clear if o < o, while if & > o* it is assured
by the assumption 3 > — sinh(b;) which follows from the definition of 31(«). Proposition 24l(iv)
now yields again Tg ((+1),8') > T0,(a,8)- In both cases we obtain Ty (o,5) > T (a,8)- O

Combining our Lemmata [3.4] and 3.8 with Corollary B3] for a@ < o* we obtain:

Corollary 3.9. If 0 < a < o, then Ty (4,) is increasing in (3 for 3 € [~a,00) and decreasing for
B € (=00, —al. The mapping [ — Ty (a,p) achieves its global minimum at 8 = —a.

We still have to discuss the case o > o* and § € [f2(«),B1(cv)]. Here, the monotonicity
behaviour becomes more involved due to the presence of the two catenoids corresponding to the
two values (1(«) and () for the boundary datum £.

Lemma 3.10. If a > o* and —a > 3> (' > Ba(a), then Tp (o5 > To, (a,8')-

Proof. Note that the assumption —a > 3" > fa(c) yields @ > ag. The claim is proven quite
similarly as Lemma B8 By Corollary there exists some u € N, g such that Wy(u) = Tj (4 3)-
Let f(x) be the function from ([BI5). At z* defined as in ([BI0]), we have f'(z*) = (. Now
consider the symmetric function v € CY1([z*, —2*]) which is equal to f in [2*,—1] and to u in
(—1,0]. Furthermore, let w € CY1([—1,1]) be its rescaling to [~1, 1]. By construction, w’(—1) = 3’
and w(+1) > a. Indeed, since —a > 3 > ' we have sinh(z) > « for all x € (b,’) and also

cosh(b') — cosh(b)
b —b

cosh(b')
cosh(b) — a(b — )

> « or equivalently > 1.

This inequality implies w(%1) > « which is proven just like (B.I7]). We then obtain the inequality
To,(ap) = Wolu) = Wo(w) 2 To,(wx1),5) > .0,
using Proposition 24](v) together with w(+1) > o > ag. O

For o > o and § € (—a, f1 ()] the elements u € N, g have the additional restriction v'(z) < «
in [0, 1] (compare Definition 2.2]). This property shall be used now in order to prove monotonicity

in B € (—a,fi(a)].
Lemma 3.11. If a > o* and Bi(a) > 8> ' > —a, then T (o, 5) < To,(a,8')-
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Proof. Note that the assumption —a < < fi(«) yields o > ag. By Corollary there exists
some u € Ng g such that Wo(u) = Tp (4,3 Moreover, ' < /(x) < 0in [~1,0] by Proposition 25l
From this estimate together with 3 > —a« it follows that w(z) > alz| for x € (—1,1). Since
w(—1)=p" < <0, (0) =0 and v is continuous, there exists * € (—1,0) such that v'(z*) =
and u(z*) > alz*|. Now let w € C°°([~1,1]) be the rescaling of u|f,+ _,+ to the interval [-1,1].
By construction, w'(—1) = 8 and w(%1) > «. Proposition [Z4l(v) yields

T, (a,3) = Wolu) = Wo(w) > Tp (w+1),8) > To,(a,8)-

Combining the previous results we have:

Corollary 3.12. For fized o > a, the function 8 +— Tp (4,3 is decreasing on the intervals
(—o0, f2()] and (—a, B1(a)] while it is increasing on the intervals [B2(a), —a] and [ (a), +00).

3.4 The case v € [0,1]

A combination of Lemmata [3.4] and yields:

Corollary 3.13. Fory € [0,1] and a < o* the mapping 3 — T, 4,y is decreasing for —oo < 3 <
—a and increasing for o' < 3 < +o0.

This result does not give us any information about the monotonicity if —a < 8 < a~t We
may expect that there exists a unique 8 = 3(«,7) € [~a, a~!] such that 3 T (a,p) is decreasing

on (—oo,ﬁ] and increasing on [B, +00). In fact, this claim is true for v = 0 with 8 = —a, due to

Corollary 3.9 It is also true for v = 1 where we can take = a~ 1.

Corollary 3.14. For vy € [0,1] and a > o™ the mapping B +— T, (o gy is decreasing on (—o0, B2(c)]
and (—a, B1(a)], and increasing on [a~ !, 00).
Proof. For B > a~! and 8 < fa(a) the claim follows from Lemmata [B4] and For g €
(_aaﬁl (Oé)], we note

T p

(a8 = To,(a,p) — 47T7\/T7ﬁ2'

Since T (q,g) is decreasing by Corollary B.I2lon (—a, 81 ()] and 2 — —x/+/1 + 22 is also decreasing
for x < 0, for B1(a) > 8> ' > —a we obtain

/

B
T%(a,ﬁ’) = TOv(aﬂ’) - 47”’\/@ > TOv(aﬂ) m = T%(Om@)'
The claim follows. O

— 47y

Similarly to Corollary [3.14} this result does not yield information on the monotonicity if 41 («) <
B < a~'. One may conjecture that there exists some 3 = B(a,v) € [B1(a),a™1] such that
BT, (a,p) is decreasing on (—a, 8] and increasing on [3, +00).

Remark 3.15. Similarly to the case v = 0 treated in in Section [3.3, we can completely discuss
the monotonicity behaviour of B +— Ty () for v = 1. It is decreasing on (—oo,—a] and on
(—a, a1 and increasing on [a~!,+00). The global minimum 3 = a~! corresponds to the circular
arc u(r) = Va2 +1—x2, u € N, o1 which has zero energy Wi(u) = 0.

The proof is quite similar to the case v = 0. Instead of adding a piece of a catenoid, as done
in the proof of Lemmata [3.8 and (310, we now add a circular arc. While for v = 0 adding a piece
of catenoid does not change the energy Wy, in the case of v = 1 adding a circular arc does not
change the energy Wi. We point out that the procedure of adding ‘pieces’ with zero energy cannot
be used for 0 <y < 1 since for this range of v the energy W, is always larger than zero.
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4 Proof of Theorem [1.1]

We first study the case a < o*. Setting 3~ := min{—a, B2()}, 3T := a~!, Corollary implies

T%a := inf T, (a,8) = inf T (a,3)+

Ber™ T p-<p<pr
The continuity of the energy in 3, proven in Corollary B3] yields some 3* € [3~, 37| such that
Tyo =Ty (ap+) By Corollary there exists some u € N, g« N C*>°([—1,1]) such that W, (u) =
T (a,8+)- Since u minimises the energy W, within the class Uger Nq g, it solves the boundary value
problem (L4).
Let us now study the case o > a*. Here we set 8~ := B1(a) > —a, 87 := a~!. Corollary B.14]
yields

Tho =0, Toon =, 0 Tries

Again, Corollary B.3] gives some §* € [, 3] such that T o = T} (o,3+). Corollary 2@ yields some
u € Ngg N C([~1,1]) such that W, (u) = T (a,p+)- This function v minimises the energy W,
within the class U_q<g<+00Na,g and hence is solution of the boundary value problem (L4]). Here
it is crucial that g* > —a.

Remark 4.1. In the particular case o < o and v = 0 the monotonicity property of the energy
in B (Corollary [39) yields that the constructed solution of (LA4) satisfies u'(—1) = —a. One can
verify this for the values of a for which an explicit solution to (L) is known. For o = 1 this
solution is a piece of the Clifford torus, i.e. the surface of revolution corresponding to f(x) :=
2 — V2 — 22, One sees that f(—1) =1 and f'(—1) = —1. Another explicit solution is the catenoid
x — g(x) := cosh(b*z)/b* with b* defined in ([LG). This function has boundary value g(—1) = a*
with o* defined in (L) and ¢'(—1) = —sinh(b*) = —a* by definition of b* and o*.

A Natural boundary conditions

The following lemma yields the first variation of the functional W,.
Lemma A.1. Letu € C*([—1,1],(0,00)). Then for all ¢ € H*([-1,1]) N H}([-1,1]), we have

— —or [H(x)iu(’:)“’/(x) ] 1_1

d
— | H 2dA
G [ At dfu v o)

t=0

1
—27 /1 u(z)p(z) (ArH(z) +2H(H? - K)) daz,

and .
¢'(2)
1+ (2)2)*?]

= 27

d
— / Ku+to] dAJu + ty]
dt Jr =0

I' being the surface of revolution generated by u + tp.

The first statement was proved in [5, Lemma 6]. The second identity follows directly if we
write the Gauss curvature K in coordinates. Thus, the first variation of the composed functional
W, (u) can be written as

1
) o e
T W, (u+tp) — 2 [(H(:c) w(@) /T + u’(x)2> 1+ u’(:v)2] B

1
—2r / up (ArH + 2H? — 2HK) dx
-1
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for all p € H?([—1,1]) N H{ ([~1,1]). The corresponding boundary value problem is given by (4.
In order to provide a geometric interpretation of this boundary value problem, we observe

Lemma 2.2. Let x € (—1,1) be fized, and consider the curve ¢ — X (x,p) on I'. Then it holds

1
u(z)y/ 1+ u/(x)?

kin(z) =

for its normal curvature w.r.t. the surface unit normal vector

1

v(z, @) = (u'(z), — cos g, —sinyp) T’(IB)Q .

Proof. Parametrising the curve by arclength s € [0, 27u(x)] gives

X(s) = <x,u(g;)cosﬁ,u(x)sm %)

X'(s) = (o,—smﬁ,ms u(‘;))

X6 = (0 o i )

Thus, the normal curvature w.r.t. v is given by

k(@) = (X"(s), v (,

O

On account of this lemma, the natural boundary data can be expressed in terms of the geometric
quantity x, at the boundary of the surface: We can write (I4]) in the form

ArH +2H3 —2HK =0 onT,
u(£l) = a, H(£1) = vk, (£1).

A detailed computation of natural boundary conditions even for Helfrich’s functional can be found
in the literature. We want to mention e.g. Nitsche [I4], [15], and von der Mosel [21].

B Proof of Proposition

Here we collect the results from [4] needed to prove the a priori estimates for the function u of
Theorem 2.3

Proof of Proposition 2. We use the following facts. First, o < o* implies a < ag for all § < 0.
For o < o*, the equality o = ag holds only when o = o* and 8 = —a*. For a > «a* there
exist by = bi(«a) and by = ba(a) defined in (2.4]) such that by < b* < be, with b* defined in (L.6)),
and a = cosh(by)/bi = cosh(bz)/be. Finally, o > ag implies sinh(b;) < —f < sinh(bs), while
a < ag implies —( < sinh(b1) or —3 > sinh(bs). Notice that sinh(b;) < o < av < sinh(by) for all
a > o. These observations follow directly from the definition of ag in ([2.9) and the properties of
the functions y — cosh(y)/y and y — sinh(y).

Proof of 1. This is the case a < a*. We start by estimating u'. If a8 > 1, u satisfies v’ < 0

in [0,1] and |[v/(z)| < B for all x € [—1,1] ([4, Th.3.11]). When «f = 1, then we have the explicit
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solution u(x) = 1+ a2 — 22 ([4, Lem.3.1]) and |[v/(z)| < o~ L. If 3 > 0 and af < 1, u satisfies
z+u(z)u (z) > 0 and v/(x) < 01in [0,1] ([4, Th.3.18]). It follows |u/(z)| < a~!. In the case 3 < 0,
following [4, Lem.4.27], u has at most three critical points in [—1,1]. Moreover, for z € [0,1] we
have u/(z) < max{—03,a*} ([4, Th. 4.48] if « < o*, [4, Th.4.39] if & = o* and § # —a* (using
sinh(b;) < o), and [ Lem.4.1] if @« = o* and 8 = —«*). If u has exactly one critical point
n [—1,1], then ' > 0 in [0,1]. Otherwise, there is zg € (0,1) so that u/(xg) = 0, ' > 0 in
(x0,1], ' < 0in (0,20). With the same construction as in Lemma 3.16 in [4] we may assume that
z +u(x)u/(z) > 01in [0, 1]. Since
«
ulwo) 2 arsinh(—03)(ag — a)

20 (2.18)

by Lemma 4.29 from [4], we get by definition of ag (see (29)))

ol (z) > — arsinh(—0)(ag — a) > cosh(arsinh(—/3)) _ @

(e (e (e

We now estimate u from above. If a3 > 1, u satisfies z + u(x)u/(z) < 0 in [0,1] (see [4, Lem.3.9]),
and integrating this inequality from 0 to x € (0, 1] gives

u(z) < Vu(0)?2 — 22 with u(0) <a+p

where the last inequality follows from |u'(z)| < 8 for z € [-1,1] (4, Th.3.11]). When af = 1,
then u(z) = vV1+ o? — 22. If a3 < 1, the function u satisfies z + u(z)u/(z) > 0 in [0,1] (for 8 > 0
[4, Lem.3.16], and the same inequality holds by the same reasoning for 5 < 0). Thus, integrating
the inequality from x to 1 we find

wz) <vVi4+a?2—22</(1+a)?—22 in[-1,1]

It remains to prove the estimate of u from below. If 3 > 0, then « < 0 in [0,1] (J4, Th.3.11] for
af > 1, [, Lem.3.1] when a8 = 1, and [4, Th.3.18] for a5 < 1 and 8 > 0). It directly follows
u(xz) > u(l) = . We consider now the case § < 0. If a = a* = ag, then § = —a* and u(z) =
cosh(b*z)/b* with b* defined in (L6). In this case, u(z) > 1/b* and therefore u(z) > 2a/\/1 + 32.
In all the other cases, we have a < ag. We recall Lemma 4.9 from [4]: Let v := max,¢[oj{u/(7)}
and zo > 0 so that v/(z9) =0 and v’ > 0 in (z0, 1]. Then,

. 1-— Zo . 1 4ﬂ
xren[énl]u(x) = u(xp) > Vo with C' = 7V 1+v2 (Wl(u) + \/T—m> . (2.19)

We distinguish between zo < 1/2 and g > 1/2. In the first case, by the estimate on u’ just proved
(v () < max{—03,a*} in [0,1]), and taking the following energy estimate into account (see [4
Prop.6.10])

Wiw) < — 4 Stanh <arsinh(—ﬂ) i O‘) < 16, (2.20)
1+ 32 @
inequality (ZI9) gives us
1 _ *
min (o) > 3 25 wien €, = 801+ max{-p, 7)),

If xg > 1/2, it follows from Lemma 4.29 in [4] (see (2.I]])) that

« «

1 1
2cosh(arsinh(—3))  2,/1+ 32

u(x) > u(zg) > 1 a

- §arsinh(—ﬁ)(a5 —a) =
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Proof of 2. This is the case o > a*. We start by estimating the derivative. The case § > 0
can be treated as the case a < o*. Indeed, the distinction between a < o and a > «a* is relevant
only for § < 0. If 3 < 0, a > ag and —3 < «, then 0 < «/(z) < —f in [0,1] by Theorem 4.24
in [4]. While if 8 < 0, @ > ag and —f > «, then 0 < «/(z) < sinh(bs), = € [0,1], ([, Th.4.17]).
It remains to consider the case a* < a < ag. We proceed as in the case a < o and § < 0.
By [4, Lem.4.27] u has at most three critical points in [—1,1]. Moreover, for z € [0,1] we have
o (x) < max{—0,sinh(b1)} < max{—0,sinh(by)} ([4, Th.4.39]). If u has exactly one critical point
n [—1,1], then «' > 0 in [0,1]. Otherwise, let zg € (0,1) be so that «/(z¢) = 0. By Lemma 3.16
in [4] we may assume that = + u(z)u/(z) > 0 in [0, 1] and by Lemma 4.29 in [4] that u(zg) satisfies
(ZI8). Hence, we get by definition of ag (see (2.9))

o (z) > — T o T arsinh(—ﬁ)(aﬂ_a)__m.

— u(z) T u(wm) « «
The estimate from above for u are proved with the same arguments used in the case a < a*. The
same is true for the estimate from below for u in the case 0 > 0. However, we need some new
arguments for the estimate of u from below in the case § < 0. If & > ag, we have v/ > 0in [0, 1] and
u'(z) < sinh(be(«r)) for x € [0,1] ([4, Th.4.17 and Th.4.24]). Here we use that —( < sinh(ba(«)) if
—f < a. Then by (2.19) and the energy estimate ([4, Prop.6.8]):

Wi(u) < %(1 + arsinh(—08) (o — ag)) < 8(1 + arsinh(—3)(a — o)),
we get '
xrg[glu u(z) > 861211}1(_1)21) with C7 = 2 cosh(2b2)(1 + arsinh(—f)(a — a™)).

If o = ag, the solution is u(x) = cosh(biz)/b1 or u(x) = cosh(bax)/by with by < by. Therefore
u(z) > 1/by for all x € [—1,1]. When a < ag, the idea is to use the estimate in (2.I9). Let
zo € [0,1) be such that v/(z9) = 0 and v’ > 0 in (zo, 1]. If 29 < 1/2 we proceed as for a > ag. By
the estimate on u’ just established (u/ < max{—03,sinh(b;)} < max{—/3,a*}), and by the energy

estimate in (2.20)), inequality (219 gives us

1 _ *
min () > L2d=AaT)
z€[0,1] 2 et2-1

If 29 > 1/2, the estimate u(z) > 1a/+/1 + 2 follows directly from (ZIS).

Proof of (2.i) The estimate is proven in Theorem 4.24 in [4].

Proof of (2.1i) In the special case § > — sinh(b; («)), Lemma 4.36 in [4] gives u(z) > cosh(bix)/b;
and u/(z) < sinh(by) in [0,1]. If &/ > 0 in [0, 1], then u(z) < a. Otherwise by Lemma 4.27 in [4]
there exists ¢ € (0,1) such that v/(x¢) = 0 and ' < 0 in (0, z9). We see that u(z) > cosh(biz)/b
implies u(zg) > a*xg. Since z + u(x)u/(z) > 0 in [0,1] (proceeding as in [4, Lem. 3.16]), we find
u'(x) > —1/a* for x € [0,1], and also u(z) < V1 + a? — z2. O

with Cy = 8(1 + max{—3,a*}?).

C  Monotonicity of the energy in «

Here we prove the monotonicity behaviour of the function (0,00) > a + T (4, g) for v € [0, 1] and
8 € R fixed.

Proof of Proposition [2.4] By the definition of N, 5 in (2.6]), the one of T, (, 5) given in ([2.1]) and
formula ([Z3)) (see also ([2:2])) we find

g

Ty = Thap) +47(1 =) i (2.21)
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for all v € [0,1], # € R and o > 0. Hence, the minimal energies T, (5, 3) and T} (, g) have the same
monotonicity behaviour with respect to « as long as we keep v and [ fixed. In [4] and [3] the

monotonicity behaviuor in a of T (, g) has been studied. In the notation of those papers M, g
denotes T} (o ) for a > a* and —sinh(b;) > 8 > —a, while M, g denotes T} (, gy for all the other
values of @ and #. With our notation, we may rewrite the monotonicity results in [4] and [3] as

follows:

(i) For > 0 and % <o < ait holds Ty (o gy < T' (a,) by 4 Prop.3.12].

(17) For f>0and 0 < o/ <a < % it holds T} (o, 3) > Ti,(a,) by [4, Prop.3.19].

(i4i) For =0 and 0 < o/ < « it holds Ty (o gy > T (a,5) by [B) Th.2].

(iv) For B <0 and 0 < o/ < a < ag it holds Ty (o g) > Ti (a,5) by [, Prop. 4.40 and 4.49].

(v) For 8 < 0and ag <o < a it holds Ty (o gy < T1,(a,3) by [4, Prop.s 4.18 and 4.25].

The claim follows directly from the estimates above and (2.27]). O
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Willmore surfaces of revolution bounding two prescribed circles!

Matthias Bergner®, Anna Dall’Acqua?, Steffen Frohlich?

Abstract

We consider the family of smooth embedded rotationally symmetric annular type surfaces
in R3 having two concentric circles contained in two parallel planes of R? as boundary. Min-
imising the Willmore functional within this class of surfaces we prove the existence of smooth
axi-symmetric Willmore surfaces having these circles as boundary. When the radii of the circles
tend to zero we prove convergence of these solutions to the round sphere.

Keywords. Natural boundary conditions, Willmore surface, surface of revolution.
AMS classification. 49Q10; 53C42, 35J65, 34L30.

1 Introduction and main results

A smooth, immersed two-dimensional surface I' C R? is a Willmore surface if it is stationary with
respect to compactly supported variations for the Willmore functional

W(T) ::/FH2 dA. (1)

Here H is the mean curvature of I'. The Willmore functional is a special case of the more general
Helfrich functional. These functionals are of geometric interest. They appear, in particular, in
the theory of elasticity as models for the elastic energy of thin planes (see [7], [12] and [13]). The
Euler-Lagrange equation (called Willmore equation) associated to () is

AH+2H(H* - K)=0 onT (2)

where A denotes the Laplace-Beltrami operator on the surface I'.

Many results concerning existence and regularity of closed Willmore surfaces are present in
the literature, see for instance [II, 9, 14} [16]. We are interested in studying existence of Willmore
surfaces with boundary and satisfying prescribed boundary conditions. Even though already in
1993 Nitsche in [12] attracted the attention to this problem not much is yet known. One of the
main difficulties is that equation (2]) is of fourth order and not uniformly elliptic. Moreover, the
Willmore functional is not convex. Schétzle in [I5] proved existence of Willmore immersions in

!This paper is a version of the preprint “Willmore surfaces of revolution bounding two prescribed circles” by M.
Bergner, A. Dall’Acqua and S. Frohlich, Preprint Nr. 13/2010 Universitat Magdeburg
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4Present address (March 2011): Institute of Mathematics, Johannes Gutenberg-University Mainz, Staudingerweg
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S™ satisfying Dirichlet boundary conditions. Working on S™ some compactness problems could
be overcome. Another approach to the problem is to study existence of solutions to ([2) with
boundary conditions under certain symmetry assumptions. This leads to the study of Willmore
surfaces of revolution. Existence of Willmore surfaces of revolution generated by symmetric graphs
satisfying arbitrary symmetric Dirichlet boundary conditions has been proven in [5] (see also [4])
by solving a minimisation problem. Scholtes in [I7] studied the functional obtained by adding
an additional area term to the Willmore functional. He could prove existence of minimisers in
the class of surfaces of revolution generated by graphs satisfying prescribed (but not arbitrary)
Dirichlet boundary data.

Another challenging boundary value problem is obtained by fixing only the boundary of the
surfaces among which to vary. Since the problem is of fourth order, a second boundary condition
‘arises’ , the so-called ‘natural’ boundary condition. In the considered case the natural boundary
condition is that the mean curvature has to be zero at the boundary (see [2, App.A] or [18]). This
boundary value problem for surfaces of revolution generated by symmetric graphs has been studied
in [2] and [6]. In this paper we extend the results from [2]. Here we consider surfaces of revolution
generated by rotating a regular smooth curve along the z-axis. The boundary consists of two
circles on planes parallel to the y, z-plane and centered at (—1,0,0) and (1,0,0) respectively. The
radii are arbitrary, in particular the two circles do not necessarily have the same radius. Moreover,
we do not restrict ourselves to graphs and neither to symmetric curves.

Before stating the main theorem we introduce for some parameter «; > 0 the number

2 cosh(7)

ar(ap) := inf M cosh(
&%)

~veR cosh(7y) * W) >0 (3)

Denoting by S, := {re’? : ¢ € R} the circle of radius 7 centered at the origin, our main result is
the following:

Theorem 1.1. Let Cy, := {—1} x Sy, Cq, = {1} X S,, denote two concentric circles in parallel
planes of R3 with radii oy, o, > 0. Then there exists some smooth, annular type Willmore surface
I' C R3 minimising the Willmore energy among all rotationally symmetric, annular type surfaces
with boundary Cq, U Cy,.. The surface I' is embedded into R3 and admits the representation

I' = {(z,u(z)cos p,u(x)siny) : x € [-1,1], p € R} (4)

with some function u € C*°([—1,1], (0, +00)). The surface I is solution of the following boundary
value problem

AH+2H(H?-K)=0 onT, 5

{8F:CalUCar, H =0 ondl. (5)

Finally, one of the following three alternatives holds:
a) If . > af(oy), there exist precisely two such solutions ', both being catenoids with H = 0.
b) If a, = & («y), there exists precisely one such solution T', a catenoid with H = 0.

c) If a, < a(ay), there exists at least one such solution I'. Its mean curvature satisfies H =0

on Cqo, UCy, and H #0 on T'\(Cy, U Cy,.).

Naturally, alternative c¢) is the most interesting part of this result as the constructed Willmore
surface is not a minimal surface. Alternative ¢) corresponds precisely to the case where no annular
type minimal surface spanning the two concentric circles exists (see Proposition 21]). Also note
that the solution from part ¢) minimises under axi-symmetric variations but is only stationary
under general (i.e. not necessarily axi-symmetric) variations. Presently, we do not know whether
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there exists some non-rotationally symmetric, annular type surface spanning C,, UC,,, with smaller
Willmore energy than the one constructed in Theorem [Tl

Our second result concerns the limit case when both «; and «, converge to zero, i.e. the
bounding circles C,, and C,, collapse to the points (—1,0,0) and (1,0,0) respectively.

Theorem 1.2. For aj, o, > 0 let I' =Ty, o, be the surface from Theorem 11l above and uq, q, be
the positive function generating the surface 'y, o, as in [@l). Then Ty, o, converges to the round
sphere S C R3 as both oy, — 0 in the sense that the functions Uay,a, cOnverge uniformly to the

function V1 — 2 in [-1,1].

The asymptotic behavior of the minimisers in case of Willmore surfaces of revolution generated
by symmetric graphs with prescribed Dirichlet boundary conditions is studied in [5]. In that paper
it is proven that the functions generating the minimisers converge to the function v/1 — 22 in
C™([=1 4+ do,1 — dg]) for any &y > 0. More precisely, in case of symmetric Dirichlet boundary
conditions one has two parameters. One prescribes the same radius o > 0 for both boundary
circles. Another parameter 5 € R describes the contact angle between the surface and the two
planes containing the bounding circles. In the limit procedure in [5], 3 is kept fixed while «
is converges to zero. A similar result is proven in [8] in case of symmetric natural boundary
conditions.

1.1 Notation and structure of the paper
For a,b € R, a < b, let ¢(t) = (z(t),y(t)) : [a,b] — R x (0,4+00) be some smooth regular curve and

I ={(x(t),y(t) cosp,y(t)sing) : t € [a,b] , ¢ € [0,27)}

be the surface of revolution corresponding to c¢. The Willmore energy of I' is given by

b Io ) / 2
_T Ty Ty z 2 12N1/2
W(e) = §/a <(:1:’2+y’2)3/2 - y(x’2+y’2)1/2) y(a” +y?)'? dt.

If the curve c is in fact a graph over the z-axis, i.e. ¢(t) = (¢, u(t)), then we obtain

o u” 1 2 ,
W =W =5 [ (e — ) w0 ®)

Definition 1.3. Let fawr denote the set of all regular curves ¢ € W2([-1,1],R x (0, +00))
connecting the points (—1,qa;) and (1,c,.), i.e. c(—1) = (=1,qp), ¢(1) = (1,4). Moreover, let
Tw, 0, denote the set of all functions u € W22([—1,1], (0, +00)) with boundary conditions u(—1) =
oy, u(l) = .. Finally, we define

My, o, = inf W(c) and My, = inf W(u).

c€Tay ar u€Toy,ar
In order to show that My, q, is attained it is convenient to work in a smaller class than T}, o,
Definition 1.4. Given parameters oy, o, >0, L > 0 we define the space
Toyon,t i={u € Taya, * u(z) > LY and |v/(z)| < L in [-1, 1]}
as well as the numbers

Mal,ar,L = inf W(u) .

ueTal,ar,L



138 M. Bergner, A. Dall’Acqua, S. Frohlich

Remark 1.5. The set Ty, o, 15 empty if L > 0 is too small. However, Ty, o1 15 non-empty and
hence My, o, 1, well-defined for sufficiently large L, see Lemma[31] below.

The reason for working within the smaller class T, o,z is that it is relatively simple to construct
minimisers v = wuy, in this class. The main task consists in proving a priori estimates for these
minimisers vy, independent of L.

The paper is organised as follows. In Section [21 we prove the equality Mal’ar = Mg, o, Hence
it is sufficient to study the minimisation problem in the class of graphs. In Section [3] we show
a priori estimates for minimisers in the smaller class T}, ,.;, and prove that these estimates are
independent of L for L sufficiently large. This is the key point in the proof of Theorem [Tl presented
in Section [l Finally in Section [§ we study the behavior of minimisers for «;, o, — 0 and prove
Theorem

2 Reduction to the case of graphs and monotonicity property of
the energy

Identifying some function u € Ty, q, with its graph parametrisation c(t) := (t,u(t)) € T, a0 W
obtain the inclusion T, o, C Tal,w and hence ]\7@17% < Mg, q,- The goal of this section is to prove
the equality ]\7%% = My, a,-

We start by determining for which data «ag, @, > 0 a minimal surface actually is a solution of
the boundary value problem (). For this purpose we consider the catenaries through (—1, o), i.e.
the one-parameter family

Q)

cosh (cosill(’y) (x+1)+ ’y) , z€R (7)

(@) = cosh(y)
with a parameter v € R. We have u,(—1) = oy, u/,(—1) = sinh(y) and vanishing Willmore energy
W(u,) = 0. The surface of revolution corresponding to . is a minimal surface, called catenoid.
A catenary belongs to Ty, o, whenever there is a v € R such that u(1) = a,. One can see that
this is equivalent to o, > () with o () defined in (@) in the introduction. We first prove the
following result, which we already mentioned in the introduction.

Proposition 2.1. For oy, a, > 0 let Cy,, C,, denote the two circles from Theorem[L1. Then one
of the following three alternatives holds:

a) If o, > i (oy), then there are precisely two annular type minimal surfaces spanning Co,UCl, .,
both being catenoids.

b) If o = (), there exists precisely one annular type minimal surface spanning Cq, U C,,.,
a catenoid.

c) If on < af(oy), no annular type minimal surface spanning Cy, U Cy,. exists.

Proof. Due to [11 Theorem 1.1] there exist at most two such minimal surfaces. In particular, all
annular type minimal surfaces spanning C,, U C,, must be surfaces of revolution, since otherwise
one might produce infinitely many of them simply by rotation. However, catenoids (and planes)
are the only minimal surfaces of revolution and the claim follows from definition of o} (ay). O

A simple consequence is

Lemma 2.2. Given a; > 0 let o (oq) be defined as in [@B). A catenary belongs to the space Ty, q,
whenever a, > o (oq). In particular, My, o, = Ma, o, = 0 is satisfied for any o, > o (oy).
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This lemma and a simple study of the function w, defined in (7) immediately yield part a)
and b) of Theorem [T Our next result describes a construction to replace a regular curve by a
curve admitting a non-parametric representation with almost the same Willmore energy but lower
boundary values.

Lemma 2.3. Given oy, . > 0, any curve ¢ € Tal,w and 0 > 0 there exist o) € (0, ), o € (0, )
and some function u € Ty o with W(u) < W(c) + 6.

Proof. For € > 0 we define the curve c.(t) = (z(t), y=(t)) by

ye(t) = %y(t) Coa(t) = _1+§/1 (J2/(7)| + &)dr fort e [-1,1]

with the rescaling factor

1
0= o(¢) :—%/1 (J2/(7)] +e)dr > 1+e>1.

Note that c. is a regular curve, c. € W22([-1,1],R x (0,4+0)), zc(—1) = —1 and z.(1) = 1 are
satisfied. Due to the conformal invariance of the Willmore functional, in particular the invariance
with respect to translations and reflections, one finds W(c) = W(cp). Together with the continuity
of € — W(c.) one deduces the convergence W(c:) — W(c) as € — 0. Because of 2{(t) > £ > 0 in
[—1,1] the curve c. has a non-parametric representation u. := y. ozt € W22([-1,1], (0, +00)).
The claim follows noting that u.(—1) = y(;gl) < y(—=1) = aq, u(1) = %1) < y(1) = o, (since
0> 1) as well as W(u.) = W(c.) — W(c) for ¢ — 0. O

Lemma 2.4. Given aj, o, > 0, any u € Ty, o, and o, > «, there exists some v € Toy o with

W(v) < W(u).

Proof. We need to study only the case o < af(«y) since otherwise there exists some catenary
v € Ty o With W(v) = 0. For some parameter 7 € [~1, 1] consider the function

o u(x) fOI' S [_177—]
vr(x) = { w(x) forz e (1,1]

where w(x) denotes the catenary with initial data w(r) = w(r), w'(7) = u/(r). Note that v,
depends continuously on 7 and satisfies v.(—1) = u(—1) = ;. The function v_; coincides with
some catenary and thus v_1(1) > () > o/ > «, must hold. The function v; coincides
with u € Ty, o, and hence vi(1) = u(l) = a,. The intermediate value theorem yields some
7 =7(a).) € [-1,1] such that v, (1) = a;., i.e. v; € Ty, o . From the estimate

W(u) = W(ul(-1,7) = W(vr)
the claim follows with v = v. O

Lemmas and [2.4] yield Mal,ar = M, .q, (see Definition [[3) and the monotonicity of the
energy.

Corollary 2.5 (Mg, ., = Ma,.a,). The equality ]\7%% = Mgy,.q, holds for any oy, > 0, i.e.
any minimiser within the small class Ty, o, 18 also a minimiser in the larger class Ty, o, -
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Proof. Because of Ty, o, C Tal,w we only need to prove ]\7%% > My, .o, Given any c € fal,a,«
and § > 0 Lemma 23 yields some o € (0, ), o). € (0,07) and u € Tiy o such that W(u) <
W(c) + 0. Applying Lemma [24] twice one obtains some v € Ty, q, with W(v) < W(u). We
conclude W(v) < W(c) + 6 and hence My, o, < W(c)+ 6 for any ¢ € fawr and & > 0. This yields

MOtl,Otr S MOél,Otr‘ D

Corollary 2.6 (Monotonicity of the energy). Let My, o, be defined as in Definition[L.3 for oy, o,y >
0. Then Mg, q, s monotonically decreasing in oy for each fized ., and monotonically decreasing
i a, for each fized og.

By Corollary the above result is also valid for ]\7@1,%.

3 A priori estimates for the constrained minimisers

In this section we prove a priori estimates for the minimisers in T}, o, 1, (see Definition [[.4]).
We start with establishing an upper bound on the energy My, 4,1, from Definition [[4] assuming
L to be sufficiently large.

Lemma 3.1. For a;,a, > 0 there exists a constant Ly depending only on «p, «, such that the
energy satisfies My, o, 1 < 4m whenever L > Ly.

Proof. Consider the circular arc

2 2 2 _ A2
v(z) == \/M—i—l—ﬂ—l—%x for x € [-1,1] (8)

which belongs to T, o, and hence also to T4, a,,r, provided L > Ly with

Lo = Lo(ay, ) := a:g[l—alxl] (v(z) ™t + ' (2)]) .

The surface of revolution corresponding to v is a piece of a sphere and hence W(v) < 4, as the
Willmore energy of a sphere is 47. We conclude My, q, 1, < 47 whenever L > L. O
3.1 Estimates on the hyperbolic curvature of the minimisers

As already observed by Bryant and Griffiths [3] and Langer and Singer [10], there is an interesting
relation between the Willmore energy of surfaces of revolution and the elastic energy of curves in
the hyperbolic half-plane. Indeed, for u € Ty, o, and a,b € [-1,1], a < b, one has

b 1 + 12 ! b
T v (; u
W(ul(qp) = 5/ Fﬂ%(f’f)iu dz — 2”[ A+ o u/2L ©)
where uu” 1 uu// 4+ 1 + u12
Kp(a) o= - 10)

1+ w2)3/2 + 1+ u'2)1/2 1+ w2)3/2
( ) ( ) ( )

denotes the curvature of the planar curve x — (z,u(z)) with respect to the hyperbolic half-plane
metric. Curves with x,(x) = 0 are precisely the geodesics of the hyperbolic half-plane. These are
semi-circles whose center lie on the x-axis or semi-lines parallel to the y-axis. These curves play
an essential role in studying Willmore surfaces of revolution (see [4], [5] and [2]).

Using circles as barriers from below and catenaries as barriers from above we prove pointwise
bounds on the hyperbolic curvature of any minimiser in Tj,, o, 1
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Lemma 3.2. For oy, o > 0 let Lg be the constant from Lemmal3 . Then the hyperbolic curvature
of any minimiser uw € Ty, o,.1, L > Lo, satisfies 0 < kp(z) < 2, x € [—1,1]. Moreover, the
inequality u(x) < v(x) holds in [—1,1], v denoting the circular arc from (8).

Proof.

)

We first prove the lower bound rp(x) > 0. For parameters z € R, o > 0 define the function

Sp2(x) := \/max{,92 —(x—2)2,0} ,z€eR.

Note that s, , restricted to [z — o,z + o] is simply a semi-circle centered at (z,0) of radius p.
For z € R we next define

r(z) = sup{o>0 : s,.(z) <u(x)forallz € [-1,1]} and
9(z) = {ze[-L1] : u(@) = s:):(2)} -

Then g(z) is a nonempty, closed subset of [—1,1] for any z € R. We prove that g(z) is
actually a closed interval. Setting x; := inf g(z), xo := supg(z) and I := [x1,z2] we have
g(z) € I. We are done if z; = x9 or g(z) = I. Otherwise, let v be the function equal to
u on [~1,1]\I and equal to s,(;), on I. We first observe that v € Tg, a, . Indeed since
u = v on Ol and v|; is a piece of a semicircle, v(z) > infu(z) > L~! holds on [-1,1].
Moreover, v € W22([—1,1],(0,4+0oc)) and [v'(x)| < L since, by construction, u'(z1) > v’ (1)
with equality if 1 € (—1,1) and u/(z3) < v'(x2) with equality if o € (—1,1). Now, we
compare the Willmore energies of u and v. Since v|; is a piece of a semicircle, its hyperbolic
curvature vanishes there. Using formula () we estimate

/ /

‘/L r2 2 L/L r2 =0
— — T | Y/ )
L+ w21z L+o2 e =

using once again that u/(x2) < v'(2z3) and u/(z1) > v'(x1) which follows from v > v in I and
u=v on 0] = {z1,x2}. This shows W(v) < W(u). Furthermore, u|; = v|; must hold since
otherwise we would obtain the strict inequality W(v) < W(u), contradicting the assumption
of u being a minimiser in Ty, q, 1. This proves I = g(z) for all z € R.

W(v) = W(u) = W(olr) = W(ulr) < 2|

Now we can find some constant A/ > 0 such that g(z) = {—1} for all z < —M and g(z) = {1}
for all z > M. By continuity of the radius r(z) in z and of the function u in z, the graph of
the multi-mapping ¢ is closed. It follows that, writing g(z) = [z1(2), z2(2)] for z € [-M, M],
the function z; is lower semi-continuous (z7 : R — R), while x5 is upper semi-continuous.
Then, given any z,. € [—1,1], an intermediate value argument (i.e. a bisection argument)
yields some z. € R such that z. € g(z«). This means s,,,).,(z) < u(x) in [-1,1] and
Sp(2.),2 (Tx) = (), i.e. the graph of u lies above the circle s,(.,) ., while it touches the circle
at the point (74, u(x.)). The circle s,(,,) ., has vanishing hyperbolic curvature everywhere
and hence kp(z.) > 0.

To prove that u(z) < v(z) in [—1,1], let us write v given in ([§) as v(z) = \/r? — (z — x¢)?
for r > 0 and z¢p € R choosen appropriately. We recall that v(—1) = o and v(1) = a;.
The inequality #(z) > 0 proven in part 1) together with (IQ) imply 0 < 2(1 + u? + vu) =
[(z — @0)? + u2(x)]”. Thus the mapping = — ¢(z) := (z — z0)? + u?(x) is convex. Noting
o(—1) = (1) = r2, we deduce p(z) < r?in [~1,1] or equivalently u(z) < /72 — (x — 19)2 =
v(x) in [-1,1].
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3) We now derive the upper bound xj(x) < 2. The idea is similar to part 1). Instead of
using semicircles from below, we approach the graph of u from above by suitable catenaries.
Choose some function v € T, o, such that u(z) < v(z) holds for x € (—1,1), for example
v(z) := u(x) + 1 — 2%, For parameters v € R, z € [~1,1] let

o v(z) cosh(7)
c(x) = ¢y (x) = ] cosh (

cosh(y v(z)

denote the catenary with initial data ¢(z) = v(z), ¢(z) = sinh(y). For z € R we also define

(:c—z)+7> forx € R

Y(z) = sup{y€eR : u(z) <cy.(z)forallz € [-1,2] and 7' <} and
g(z) = {:1: €[-1,z2] : u(z) = CW(Z)VZ(QU)} .
As in part 1), we prove that g(z) is some closed interval by setting z; := inf g(2), zo =

supg(z) and I := [x1,z2]. If 21 < 29, then let w € Ty, q, 1, denote the function equal to u on
[—1,1]\I and equal to ¢ on I. Here we note x2 < z, u/(x2) = w'(z2) and v'(z1) < w'(z1).
Then the equation

v(2),%

W(w) = W(w|_11\1) = W(ul—11p\1) = W(w) — W(ulr)

together with W(u) < W(w) imply W(u|r) = 0. However, this is only possible if u|; = v|s
proving I = g(z). We have 1 € g(1) and g(—1) = {—1}. The continuity of the function v(z)
in z and the continuity of the function u in x give that the graph of the multi-mapping ¢
is closed. An intermediate value argument (as in part 1)) yields for any z, € (—1,1) some
zx € (T4, 1) with the properties u(z) < ¢y, ., () in [=1, z:] and u(z«) = cy(z,),2, (74). The
graph of u lies locally below the catenary c,(.,) ., while it touches the catenary at the point
(74, u(x4)). The hyperbolic curvature of the catenary c,(,,) ., is bounded from above by 2
and we obtain rp(x,) < 2.

O

Thanks to the pointwise estimates on the hyperbolic curvature of the minimiser we find that
it is sufficient to get estimates on the minimiser from below and of the derivative at the boundary
in order to get pointwise estimates of the first and second order derivative of the function in the
interior of the interval.

Corollary 3.3. For o,,a; > 0 let Lo be the constant from Lemmal3 1l Letu € Ty, o,.1., L > Lo, be
a minimiser for the Willmore energy in this class. Let K > 0 and € > 0 be such that v'(—1) > — K,
uw'(1) < K as well as u(x) > e >0 in [—1,1]. Then u satisfies the estimates

W/ (2)] < Cin[-1,1] and |[u"(z)] <214 C?)*2e™' ae in[-1,1]

with the constant C = C(K,¢) = (24+max{ay, ;- } K)e~t. In particular, u € W% ([—1,1], (0, +o0))
18 true.

Proof. The inequality rp(z) > 0 from Lemma together with (I0) imply 1 + u? + wu” =
(x +uu’)’ > 0. Therefore the mapping = + x + u(x)u’(x) is increasing. In particular

—1+ o/ (1) <z +ul@)v(r) <1+ apu/(1) forall z € [-1,1], (11)

and that gives
lu/(z)| < (2 + max{oy,a,}K)e™t = C forall z € [-1,1] .
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The inequality 0 < kp(z) < 2 from Lemma B2 together with (I0]) also yield

uu//

<——=~+ <
S A u2)p2

2 ae. in [—1,1]

and we conclude
W (2)] < 2(1 +C?)*2e™ " ae. in [-1,1] and u € W>*®([—1,1], (0, 400)) .
O

In order to prove Theorem[II]it remains to show the a priori estimates u/(—1) > —K, u/(1) < K
and u(z) > ¢ with constants K, e only depending on «; and «, but not on L. These estimates are
proved in the following section.

3.2 The remaining a priori estimates

We start by proving some estimates on the Willmore energy from below. This yields (see Corollary
B below) a bound on the length of the interval where a function with Willmore energy bounded
by 4 is allowed to become small.

Lemma 3.4. Consider a,b € [~1,1], a < b. The Willmore energy of u € W?2([a,b], (0, +00))
satisfies the two lower bounds

u b T [P 1 u b
v S S BRI T
vV1+u?la 2 Jo uv1+u'? vV1+u?la

Proof. Starting from (@) and using the inequality (p — q)? > —4pq one gets

W(u) > —277{ and W(u

b u u b
> _ S — = — R —— .
W(u) > 27r/a el 2r | Tru/?]a

Similarly, we get another estimate from below on the energy starting again from formula (@) and
using the inequality (p — q)? > ¢* — 2pq:

!/

b b " b b
W(u) > T / ! dx / Y de =T / *1 dx [7iu ]
_ - — T _ = — —_—— — T .
T2 a uV1+ u’? a (1 + ul2)3/2 2 a uvl+ u? L+ u/?Ja

Lemma 3.5. Let u € W%%([0,1], (0, 400)) satisfy 0 < u(z) < 55. Then W(u) > .
Proof. Set I := [i, %] and € := %. One of the following three cases will apply.

a) If [u/(z)] <1 for all x € I, Lemma [3.4] then yields

T 1 u ] 3/4 T 2m 3r

W(u) > = — P
(u)_Q/ju\/l—i—u’Q 7T[\/1+u’2 14~ 462 V2 V2 i

b) If «'(z1) > 1 for some x; € I, then the mean value theorem yields some z2 € (3/4,1) such
u'(x9) < 4e (since 0 < u(x) < e in [0,1]). Together with Lemma B.4] we deduce

/

W) 2 Wtlap ) 2 2| mems |2 20| 25— s >
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c¢) The remaining case v/(z1) < —1 for some z1 € I can be treated as case b).

O

Remark 3.6. The smallness condition 0 < u(z) < % 1s surely not optimal. However, note that

the constant function u(x) = % has Willmore energy W(u) = w. Lemma [33 will be false if one

only requires 0 < u(z) < % instead.

Corollary 3.7. Let u € W22([a,b], (0,+0)), a,b € [~1,1] with a < b, satisfy W(u) < 47 and
0 <u(x) <einla,b] for somee >0. Then b— a < 80 must hold.

Proof. The claim is proved by contradiction. Let us assume that bS_—Oa > ¢. Then the functions

4
b—a

b—a
4

ug(z) : u<a+ (ac+k)) forz €0,1], k=0,...,3,
satisfy 0 < ug(z) < o in [0,1]. Lemma 3.5 yields W(uy) > 7 and together with the invariance of

the Willmore energy under translations and rescaling one obtains

3 3

W(u) = ZW(Uk) > ZTI‘ =dr

k=0 k=0
contradicting the assumption W(u) < 4. O

Comparing the minimisers with catenaries from above, we now obtain an estimate on the
derivative at the boundary of the interval and then an estimate from below independent of L.
The following lemma gives a bound on the slope of the catenaries that lie completely above the
minimiser. The idea is that if the slopes of these catenaries become very large, the catenaries
get arbitrarily close to the x-axis and so does the graph of u, lying completely below all these
catenaries. Applying Corollary 3.7l we show that this costs too much Willmore energy.

Lemma 3.8. For a € [0,1] and A\ > 0 let u € W?%([—1,4], (0,+00)) satisfy W(u) < 4w and
u(a) < A. Assume furthermore that there exists v, € R such that
w(x) < cy(x) forallz € [-1,a] and v < 7.

where ¢, denotes the catenary with initial data c(a) = A and c,(a) = sinh(y), i.e.

cy(z) = cosﬁ(fy) cosh (@(w —a)+ fy) : (12)

Then 7, < max{162,\} must hold.

Proof. Denote 7 := max{160, A\ — 2}. We may assume v, > 7 since otherwise we are done. For

arbitrary v € [, 7] we define z :=a — CO:‘hW(W) € (—1,a) with the property

u(zy) < cy(zy) = ﬁ .

For all € [a — Ay/cosh(¥),a — M./ cosh(vs)] there exists v € [¥,7.] such that z = x,. We
conclude

A A M A
< < for all — — .
uz) < cosh(¥) — 160 cosh(¥) orafiwe ja cosh("y)’a cosh('y*)]
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Then Corollary B yields
N N
cosh(y)  cosh(y.) = 2cosh(¥)

We conclude

gl < Y < Y — 2
2cosh(¥)  cosh(y.) = 2cosh(y. —2)
and hence v, <7 4+ 2, proving the claim. O

Theorem 3.9 (Boundary gradient estimate). Consider a,-,aq > 0 and let Ly be the constant from
Lemma (3. Any minimiser u for the Willmore energy in the class Ty, a, 1, L > Lo, satisfies the
estimates

u'(—1) > —sinh (max{162,y}) and /(1) <sinh (max{162,a,}) .

Proof. We only prove the upper bound for u/(1) as the proof of the lower bound for u/(—1) is
similar. For v € R let ¢, (z) denote the catenary with initial data c,(1) = o, ¢/ (1) = sinh(y) (i.e.
¢y is the catenary given in (I2) with A = o, and @ = 1). We define the number

Yo i=sup{y €R : u(z) < cy(x)forallz € [-1,1] and 7' <~} .

From ¢, (1) = u(1) one easily deduces u'(1) > ¢, (1) = sinh(v.). We proceed by proving the
equality u/(1) = ¢, (1). Tt is convenient to distinguish two cases. If the function u satisfies
u(r) < ¢y, () for all x € [~1,1), the definition of . yields v'(1) < ¢, (1), proving the equality. If
instead u(xy) = ¢, (v«) for some z, € [-1,1), we consider the function v € Ty, q,,r that is equal
to w on [—1,z,] and equal to ¢,, on [z4,1]. The inequality

W(u) < W) = W(ol-12.)) = W(ul-1,2.)) = W(w) = Wt 1)

implies W(ul,, 1)) = 0. However, this is only possible if u(,, 1) = v|[z,,1) holds, proving u'(1) =

v'(1) = ¢, (1) = sinh(v,) also in the second case. Now Lemma 3.8 with a = 1 and A = u(1) = o,

yields v, < max{162, o, } and hence v/(1) = sinh(v,) < sinh (max{162, a, }).

O

In the next result we construct at every point z € [—1,1] a catenary lying completely above
the graph of u, while touching the graph at the point (z,u(x)). Using Lemma B.8 we can control
the slope of this catenary and hence also the distance of the catenary to the z-axis (see inequality
(I3) below). The catenaries are constructed with the same idea as in Lemma

Theorem 3.10 (Estimate from below). For a,,a; > 0 let Ly be a constant as in Lemmal31l Any
minimiser u of the Willmore energy in T, o, 1, with L > Lg large enough, satisfies

min{oy, oy }
cosh (max{162, oy + 2, o, + 2})

u(z) > for allz € [—1,1] .

Proof. We proceed as in the proof of Lemma part 3). Let v € Ty, 4,1 denote the circular
arc defined by (§). Consider ¥ € Ty, 4, 1 defined by 9(z) = v(z) + 1 — 2%, z € [-1,1]. We have
min{ay, @, } < 9(z) < max{a, o} +2 in [—1,1]. It follows from Lemma that u(z) < o(x)
holds in (—1,1) and u(£1) = 9(£1). For parameters v € R, z € [0, 1] let

0(2) cosh(7)
cosh(7) cosh ( 0(z)

denote the catenary with initial data ¢(z) = 0(z) and ¢/(z) = sinh(y). Next we define

c(x) = ¢y (x) = (r—2)+ 'y) forx e R

V() :==sup {7 € R : u(z) < ¢y (z) for allz € [-1,2] and 7/ <~} .
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Lemma [3.8] applied to ulj_; . with A = §(z), yields the upper bound
Y:(2) < max{162,(z)} < max {162, max{ay, a,} + 2} = max{162, oy + 2, o, + 2}

and hence

i(2) min{a, o}
cosh(v,) ~ cosh (max{162, a; + 2, o, + 2})

Cy(2),2(T) 2 for all z € [-1,z] and z € [0,1] . (13)
To finish the proof, we show that for any = € [0, 1] we can find z € [0, 1] such that u(z) = ¢, ;) .(7).
This together with (I3]) yields the claim. For z € [—1, 1] we define the set valued function

g(z) = {.Cl? € [_172] : ’U,(.’/U) = C%(z),z(x)}

and note that g(z) is non-empty and closed. Moreover, proceeding as in the proof of Lemma
part 3) we find that g(z) is a closed interval for any z € [—1,1] and since 1 € g(1), g(—1) = {—1},
an intermediate value argument yields for any z, € [—1, 1] some z, € [z4,1] such that z, € g(z),
ie. u(74) = €y, (2,),2 (T+), holds. Together with (I3) we conclude

min{oy, oy }

>
u) 2 cosh (max{162, a; + 2, a, + 2})

for all z € [0,1] .

Note that ([I3]) is valid only for z € [0,1] so that the above reasoning only works for z € [0, 1].
However, by considering the reflection @(x) := u(—x), which is a minimiser in the class Ty, o1,
one obtains the same estimate also for z € [—1,0]. O

Combining Corollary B.3], Theorems [3.9] and BI0] we obtain the desired estimates.
Theorem 3.11. Given oy, > 0 there exists some constant C = C(ay, ) > 0 such that any
minimiser u for the Willmore energy in the class Ty, o,,1., L > C, satisfies the estimates

1
u(z) > ol and |u'(z)] < C in[-1,1].

Remark 3.12. [t is important to note that the constant C of this result depends only on «; and
a, but is independent of L.

4 Construction of a minimiser

Proof of Theorem [ Lemma and a simple study of the function wu, defined in (@) yield
immediately part a) and b) of the claim. We divide the proof of part ¢) into three steps.

1) Let Lo be a constant from Lemma B.Jl For L > Lg the set Ty, q, 1 from Definition [[.4] is
non-empty and My, o, < 47 holds. We now prove the existence of a minimiser for the
Willmore energy in T4, o,.1., L > Lo. Fix some u € T}, 4, . Starting from (@) and using the
inequality (p — ¢)? > %pQ — ¢° we compute

T 1 (u”)2u 1
> 0 _
W(u) > B /1 (2(1—|—u’2)5/2 u(1+u’2)1/2)dx

1
™ 11\2
AL(1 + L2)5/2 /_1(“ Jdw =L .

In particular, a bound on W(u) implies a bound on «” in L?([—1,1]) and hence a bound
on u in the space W22([—1,1], (0, +00)). Now let {uy}ren be a minimising sequence for the
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Willmore energy in Ty, o1, i.e. W(ug) — My, a,.1 for kK — oco. By the argument above
ug, is then uniformly bounded in W22([—1,1], (0, +00)). A subsequence uj converges weakly
in W22([-1,1], (0, +o0)) and, by compact embedding, also strongly in C''([-1,1], (0, +00))
to some limit function u € W22([-1,1],(0,+00)). From the strong convergence in C! we
deduce u(—1) = ay, u(1) = o, u(z) > LY, |u/(z)] < L in [-1,1] and hence u € Ty, o, A
lower semi-continuity argument yields

W(’u,) < IIkIHIHfW(’U,]g) = Mal,ar,L .

On the other hand, u € Ty, o, 1, implies W(u) > My, q, 1, and hence W(u) = My, q, 1. Thus,
u is indeed a minimiser of the Willmore energy in the class T4, a,,.. Moreover, Corollary [3.3]
yields u € W2 ([-1,1], (0, +00)) = CH1([-1,1], (0, +00)).

2) Let C = C(ay, o) denote the constant from Theorem B.IT]and u = u¢ be a minimiser for the
Willmore energy in the class Ty, «,,c. We prove that this u is a minimiser in the large class
T, 0. Given v € T, q,, choose some constant L > C' large enough such that v € Ty, o, L
If w € Ty, q,,1 denotes a minimiser in the class Ty, q, 1, then Theorem B.I1] shows in fact
w € Ty, a,,c- Because of L > C, w is also a minimiser in the class T}, o,,c and we obtain
W(u) = W(w) < W(v). Since v € Ty, q, is arbitrary, u must be a minimiser in the class
T4, ., proving the claim. Moreover, u also provides a minimiser in the even larger space

T4, .o, of immersed regular curves by Corollary

3) With the same arguments as in |4, Thm.3.9 Step 2] one can prove u € C*([—1,1]). Let
I' = I'(u) denote the surface of revolution corresponding to . The Euler-Lagrange equation
satisfied by I is given by AH+2H(H?—K) = 0 on I, where A denotes the Laplace-Beltrami
operator on the surface I'. Moreover, H = 0 on C,, U C,, arises as the natural boundary
condition for our variational problem (see [2, App.A] or [18]). In Lemma [3.2] we have proven
that the solution I' lies locally on one side of the catenoid, in particular H > 0 or H < 0
everywhere on I', the sign depending on the choice of the normal vector. From the strong
maximum principle, applied to the second order elliptic equation AH + 2H(H? — K) = 0
we deduce either H =0 on I' or H # 0 on I'\(Cy, U C,,.). The case H = 0 corresponds to
o, > o when the minimiser is a minimal surface of revolution, i.e. some catenoid.

O

Corollary 4.1. For oy, > 0 let My, o, be defined as in Definition [L.3 and o (oy) be defined as
in @). Then o, — My, o, is strictly monotonically decreasing in (0, a;(oy)).

Proof. Let a,, o satisfy 0 < o < @, < (). Let u € Ty, o, be a minimiser for the Willmore
energy in Ty, o,. Then u solves the corresponding Euler-Lagrange equation, that is u is solution
of the fourth order ordinary differential equation given in [5, Lemma 2.2]. In particular, v does
not coincide locally with a catenary. With the construction in Lemma 2.4 we find a v € Ty, o/
such that W(v) < W(u) and v coincides with a catenary on [z, 1] for some z, € (—1,1). Hence
W(v) < W(u) and also My, o1 < My, a,- O

In [2] we studied the case of symmetric boundary conditions @ = a; = «,, minimising there

only within the class symmetric graphs. We could prove that for a < o* = in% cosh() ~ 1.5089
vE

the minimisers satisfy u/(—1) = —u/(1) = —a. We cannot expect the same behavior in the more
general case studied in this paper, but still we can show the following.

Lemma 4.2. Giwen aj,a, > 0, let u be a minimiser for the Willmore energy in Ty, .. Then
uw'(—=1) <0 and u/(1) > 0 must hold.
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Proof. We prove only that «/(1) > 0 since the proof of u/(—1) < 0 is similar. We proceed by
contradiction. If u/(1) < 0, let ¢ be the catenary such that ¢(1) = u(1) = o, and /(1) = «/(1) and
xo > 1 be such that c(z¢) = a,. We take the function @ € W22([—1, 0], (0, +00)) that is equal
to w on [—1, 1] and equal to ¢ on (1,zg]. We denote by w the function defined on [—1, 1] obtained
from w by appropriate translation and rescaling. By construction, w(—1) < o and w(l) < a;.
Lemma [2.4] applied twice yields a function v € Ty, o, such that

W) < W(w) = W(d) = W(u).

Hence v is also a minimiser in Ty, o,. By construction v coincides with a catenary on an interval
of positive length and therefore v is equal to a catenary on the entire interval [—1, 1], since both v
and the catenary are solutions of the fourth order Euler-Lagrange equation with the same initial
values. We obtain W(v) = 0, a contradiction to the assumption o, < a(ay).

In the case u/(1) = 0 the construction is the same as above with the only difference that the
point xg is chosen so that cosh((zg — 1)/ay) < (xg +1)/2. O

5 Convergence to a sphere for o;,a, — 0

Here we study the behavior of the minimisers, which admits a representation as in (4), as both o
and o, converge to zero. In this situation the two circles defining the boundary of the surface Iy, q,
collapse to points. We will show that Iy, ,, the surface of revolution generated by the graph of
the positive function g, ,, converges to the round sphere S? in the sense that the functions Uay,ar
converge uniformly to the function v/1 — 2?2 in [—1,1] as a;,, — 0. In the case of symmetric
boundary conditions a; = «, this result was proved in [§].

We start by proving that the energy of I' converges to the energy of a round sphere, i.e. to 4.

Lemma 5.1. For a,b € [~1,1], a < b, let u € W?2([a,b],(0,+00)) satisfy W(u) < 47 and
max {u(a),u(b)} <e? fore < min{b_T“, 8—106*12}. Then the following estimates are satisfied

b—e

1 ! 2
W(u) > 4n (1 —06(g)) and / ﬁ%(:c)—i_(iu)(x)dx < 84(e)
u(z
a+te
with Ky, the hyperbolic curvature of u as defined in (I0) and
12
oe)=1—4/1+ ——— . 14
(©) T loggoe) 7 (14)

Proof. We first prove the following: Close to each boundary point there is a point with large
derivative (in absolute value). Applying Corollary B.7] to u restricted to the interval [a,a + €] we
get that there exist some x, € [a, a+¢] such that u(z,) > 5. Weset L := sup{v/(z) : = € [a,a+e]}
and [ := {z € [a,a+¢] : v/(x) > 0}. Notice that, due to the assumption on €, L is strictly positive.
Moreover, I is not necessarily an interval but it is a closed set, by the continuity of ’. We choose
some 1 € [a,a + €] with «/(21) = L. From Lemma [B4] we first deduce

4 > W(u

r — 27

b
T 1
)25 [
2 Jo uv1+u?

and continue by estimating

b / Tw ./
12 > / LI >/ L >/ Y > / Y
———aX —————aXx ———AaX D E——— —axr
T Jo w1+ u? T T Jru1+4? T Jiul 1+ L2 T 1+L2 ), w
1 u(zy) N 1 e —log(80¢)

= 1 1 =
1122 % ufa) “1+L2 %802 1+L2
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After suitably rearranging one obtains

u' (1) L 12
= Y
V1t (z)2 V14 L2 log(80¢)

where we use 0 < € < gse~'?. In a similar way we can find some x5 € [b — €, b] such that

! 12
o wlw) 12
V14 (x9)? log(80¢)
From Lemma [3.4] applied to ulf, ,,] We obtain

u’ T2
W(u) > Wuliy, z—%[i] > dn(1— 6(¢)) ,
()— (‘[1,2]) \/1—1—7381 ( ())
with d(e) defined in (I4]). Moreover, using x; < a+¢, x2 > b — ¢ together with formula (@) for the
Willmore energy one deduces

/ #2

= W(ulfg, 4)) + 27| < 4w(e)

1 —|—u’2]x1

b—e
T o V1+u? T [P o V14 u?
— [ kj———dz < - K ————dz
2 U 2 Juy U
ate

proving the second estimate in the claim. O
An immediate consequence is the convergence of the energy to the one of the sphere.
Corollary 5.2. The energy My, o, from Definition[L.3 converges to 4w as ay, o — 0.

Lemma 5.3. Let gy > 0 be such that 6(gg) = 1 with §(¢) defined in (I4). For oy, > 0 such that
min{cy, oy } < €? with e < min{eg, gse ™12} let u be a minimiser for the Willmore energy in Ty, o, .
Then u satisfies

u(r) >e® and |u' ()] < (2+ &*sinh(162))e™?  for allz € [~1 + 35,1 — 3¢] .

Proof. We have W(u) = My, o, < 47 by Lemma [B.Il We prove the first claim by contradiction.
Let us assume that there exist ¢ < min{eg, gs¢ 2} and some x, € [—1+3e,1—3e] with u(z,) < £
Then Lemma[B.T] applied on the intervals [~1, z.] and [, 1], proves W(u|[_ ,1) > 47(1—d(¢g)) >
2m as well as W(ulj, 1)) > 2m. This implies W(u) > 27 + 27 = 4, contradicting W(u) < 47
and proving the first claim. To prove the second inequality we first deduce from Theorem
that «/(—1) > —sinh(162) and u/(1) < sinh(162) must hold. These estimates and u(x) > €2 in
[—1+ 3e,1 — 3¢], just proved, combined with the estimate (1) in the proof of Corollary give

[u'(2)] < (2 4+ max{ay, o, } sinh(162))e ™2 < (2 + £ sinh(162))e 72 .

We are now ready to prove Theorem

Theorem 5.4. Let {oypn}neN, {Qrnnen be two strictly positive sequences converging to zero. For
eachn € N let u,, be a minimiser for the Willmore energy in T, Then u, converges uniformly

on [—1,1] to the function ug(z) == v1 — 22.

1, ,%®r,mn *
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Proof. Without loss of generality we may assume that aj,,a;, < 1 for all n € N. Defining the
sequence ¢, (r) := x? + u2(x), it suffices to show that ¢, converge uniformly to ¢y = 1. From
Lemma [32]it follows that u,(z) < max{ayy,a,,}+1 for all n, and hence ¢, is uniformly bounded
from above. If k,, denotes the hyperbolic curvature of u,,, then we have the relation
. Uput + 1+ ul? B o (15)
R e e T

Lemma implies k,,(z) > 0 and hence ¢! > 0 in [—1,1]. From (II)) together with Theorem
we conclude for all n € N

1
—1 — ay,sinh(162) < z 4 uy (@), (z) = 590;(30) <1+ ay,sinh(162) forz € [-1,1].

Hence ¢/, (z) is uniformly bounded in [—1, 1] and, after passing to some subsequence, ¢,, converges
uniformly in [—1, 1] to some limit function ¢g € C%'([-1,1],R). From ¢,(-1) =1 +O‘l2,nv on(1) =
1+ a7, we deduce go(—1) =1 = ¢y(1). We prove now that ¢q is a linear function. Fixing 6 > 0,
we first observe that Lemma [5.1] yields

1-46 2
1+
&ig dz

0= lim
while Lemma [5.3] shows
. /
inf  wup(x)=m>0 |, sup  |uy(z)] =L < 400
©€[~1+6,1-5] e€[~146,1-4]
neN neN

From ([I3)), u, < 2 for all n € N together with the estimate above we reach

1-6 1-6
/1 2
n—oo [ 1.5 Up, 8(1 + L )5/ n—00 J_146

The sequence ¢! converges to zero in L?(—1+6, 1—4§) and we obtain ¢y € W22([—~1+8,1-4], (0, 0))
with ¢f = 0 in (=1 + 6,1 — 0) for any § > 0. Thus, ¢ is a linear function and because of
wo(—1) =1 = ¢o(1) we finally obtain ¢y = 1, as claimed. O
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Uniqueness for the Homogeneous Dirichlet
Willmore boundary value problem?

Anna Dall’Acqua?

Abstract

We prove that a Willmore surface which has its boundary on a strict star-shaped two-
dimensional domain and which intersects the plane of the domain with a zero angle, along the
boundary, is necessarily a piece of the plane.

Keywords. Willmore surfaces, Dirichlet boundary conditions, Pohozaev identity, conformal Gauss
map.
AMS classification. 35G25, 49Q10, 53A30, 53C42.

1 Introduction

A Willmore surface is a critical point for the Willmore functional, that for an immersed surface
d: ¥ — R3 is given by

W(@(E)):/ZHQ ds,

with H the mean-curvature and dS the area form induced on ®(X) by the canonical metric in R3.
Here H = %()\1 + A2) with A1, A the principal curvature of ®(3). The Willmore functional models
the elastic energy of thin cells or biological membranes. It has also applications in image processing.
It is well known that for closed surfaces without boundary the Willmore functional is invariant
under conformal transformations. The Euler-Lagrange equation (called Willmore equation) is

AH +2H(H* - K)=0, (1.1)

with A the Laplace-Beltrami operator on ®(X) and K the Gauss curvature of ®(X). For surfaces
with boundary we consider only interior variations. Equation () is of fourth order and, since A
depends on ®(X), it is a quasilinear one. Moreover, the ellipticity is not uniform.

Existence of closed (without boundary) Willmore surfaces of prescribed genus has been proved
in [18] and [I]. The regularity issue has been solved in [16] establishing that any Willmore surface
is real analytic. In all these works the conformal invariance of the Willmore functional plays a key
role.

In part of the literature, the functional

W((%)) = /E(H2 — K)dS, (1.2)

!This paper is a version of the preprint “Uniqueness for the Homogeneous Dirichlet Willmore boundary value
problem” by A. Dall’Acqua submitted for publication and registered as preprint 06/11 of the Faculty of Mathematics
of the Otto-von-Guericke Universitat Magdeburg.

2Financial support of “Deutsche Forschungsgemeinschaft” for the project “Randwertprobleme fiir Willmoreflichen
- Analysis, Numerik und Numerische Analysis” (DE 611/5.1) is gratefully acknowledged
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is referred to as the Willmore functional. This is well behaving under conformal transformations
in R3. Indeed, it is trivially invariant under Euclidean transformations as well as under scaling. If
I is an inversion with center a point p ¢ ®(X) then W (I(®(X))) = W(®(X)) (see Willmore, Ch.7.3
[21] or Weiner [20]). For surfaces without boundary the difference between W (® (X)) and W (®(%))
is the total Gauss curvature that is equal to the Euler Characteristic of the surface. Instead for
surfaces with boundary, with the Gauss-Bonnet Theorem we get

/K dsS = 2mx(®(X)) —/ kg ds, (1.3)
by 0%

with x(®(X)) the Euler charachteristik of ®(X) and 4 the geodesic curvature of the boundary.

We are interested in studying Willmore surfaces with boundary satisfying prescribed boundary
conditions. The first to study boundary value problems for Willmore surfaces was Nitsche in [13].
He describes several choices of boundary value problems for the Willmore equation and established
existence results for small data. Most of the works in the literature concerns Dirichlet boundary
data. By this we mean that the boundary of the surface is fixed and also that the tangent space
of the surface along the boundary is fixed. (See [3], [4] and [§] for results on natural boundary
conditions.) Notice that due to (I3)) the difference between W (®(X)) and W (®(X)) (defined in
(I2)) is a fixed constant for surfaces satisfyng the same Dirichlet boundary conditions and of the
same topological type.

The studies of Willmore surfaces with boundary in the literature follow two streams. On one
side, there are existence results under special symmetries. In [6] and [7] existence of Willmore
surfaces of revolution generated by graphs satisfying arbitrary symmetric Dirichlet boundary con-
ditions has been proved. In this case, the boundary consists of two circles with the same radius
and center on the axis with respect to which we rotate. The second boundary condition prescribes
the derivative of the function at the boundary. One has existence of Willmore surfaces for all
choices of the radius and for all values of the derivative at the boundary. This is in great contrast
with the correspondent results for minimal surface, where there is a critical value of the radius
under which there do not exists minimal surfaces having the two circles as boundary. More general
approaches are in [I7] and [14]. Schétzle in [I7] proves existence of Willmore immersions in S"
satisfying Dirichlet boundary conditions. Under certain smallness assumptions on the energy, he
can then project these surfaces into R” to get embedded Willmore surfaces. Palmer in [I4] proves
(among other results) that a Willmore surface of disk type which has its boundary on a circle and
which intersects the plane of the circle in a constant angle is a spherical cap or a flat disk.

In this work we extend the result of Palmer in [14] concerning the case of zero Dirichlet boundary
data. Let Q C R? be a smooth bounded domain which is strictly star-shaped with respect to
xo € Q. Given u :  — R a sufficiently smooth function with u|sq = 0 and Vu|sg = 0, we consider
the surface I' in R? given by the graph of . Is it true that I' is a Willmore surface if and only if
[ is a subset of the plane {(x1,22,73) € R3 : 23 = 0}? Or in other words, I' being a Willmore
surface, does it imply and require u being constant and v = 0?7 The answer is yes and this is the
main result of this work.

Theorem 1.1. Let Q C R? be a smooth bounded strictly star-shaped domain. Let u:Q — R be a
smooth function with ulpg = 0 and Vulsg = 0 and let T' C R? be the surface given by the graph of
u.

Then I' is a Willmore surface if and only if u =0 in Q.

Of course, due to the conformal invariance of the equation, it is not a restriction that we
consider the plane {z = 0} C R3.

In general we do not expect uniqueness for the Willmore Dirichlet boundary value problems.
Even in the presence of some extra symmetries. Indeed, in the case of surfaces of revolution gen-
erated by symmetric graphs with symmetric boundary data one can numerically find two different
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minimisers. So there is numerical evidence not only of two solutions of the Euler-Lagrange equa-
tion but also two different surfaces with the same Willmore energy. On the other hand, the author
does not know what to expect in the case of graphs.

The proof of Theorem [[LT] consists of two steps. In the first we prove that, under the assump-
tions, I' being a Willmore surface implies that the mean curvature and all second order derivative
of u are zero at the boundary. This is done in the spirit of Pohozaev identity, i.e. multiplying the
equation by test functions (the choice of which is due to the invariances of the equations) and then
integrate. The second step is as in [14]. By a result of Bryant [2] we may associate to the Willmore
surface a holomorphic function via the conformal Gauss map. By the first step of the proof this
function is zero at the boundary and therefore identically zero. Then a classification theorem of
Bryant yields the result. In the appendices we recall the definition of the conformal Gauss map
and the results of Bryant.

1.1 Willmore graphs with Dirichlet boundary conditions

Let © C R? be a smooth bounded domain which is strictly star-shaped with respect to xo € €.
We recall that a domain (2 is strictly starshaped with respect to z¢ (zo € ) when (z —zg) -v > 0
for every z € 92 with v the exterior normal to 02 in z. Without loss of generality, we assume
from this point on that 2 is strictly star-shaped with respect to 0.

We consider u € C*(; R) satisfying homegeneous Dirichlet boundary conditions, i.e. such that
ulog = 0 and Vu|pq = 0. The graph of u parametrises the surface I':

I:Q5(z,y) — (z,y,u(z,y) €T CR%.

The first fundamental form and the normal are given as follows:

. 1+’U,;2E Ug; Uy . . 2 2 2
(gu)_( wguy 142 » g =det(giy) = 1+ [Vul" = 1+ ug +uy

1
n=—(—ug, —uy,1),

V9

while the mean curvature and the Gauss curvature are

1
H= 2572 ((1+ uf/)um — 2UpUyUgy + (1 + ui)uyy) ,
1
K= g_g(umuyy - ancy) )

and finally the Laplace-Beltrami operator is given by

191 2) 0 o
5 = e (G0 g s )
1 0 /1 0 2y 0

-y (v + 0+ i)

Hypothesis 1.2. Q2 C R2_i8 a C**, o € (0,1), bounded domain which is strictly star-shaped with
respect to 0 € R2. u € C*(Q;R) is such that u|gpq = 0 and Vu|pq = 0. The surface T’ parametrised
by the graph of w is a Willmore surface, that is a solution of (L))
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2 H=0on o

In this section we prove that all second order derivatives of u are zero at the boundary. Due to
the boundary conditions, the smoothness of u and of the domain 2, the second order tangential
derivative and also the second order mixed derivative of u are zero. It remains to show that the
second order normal derivative is zero.

The main result is the following.

Proposition 2.1. Assume Hypothesis[I.2 and let v denote the exterior normal to 9Q C R2. Then,
Uyy = 0 on Q. In particular, H the mean curvature of I satisfies H = 0 on 0f).

Corollary 2.2. Assume Hypothesis [[.2. Then, D = 0 on 98 for all « € N} with |a| < 2. In
particular, H the mean curvature of I' satisfies H = 0 on 0S2.

We prove Proposition 2ZIlin the spirit of Pohozaev identity. Due to the conformal invariance of
the Willmore functional, we expect to find invariant quantities. By testing the Willmore equation
(1)) with appropriate test functions we get two integral identities (Lemmas2.3]and [2.4]) from which
Proposition 2] follows directly. At this point we use that the domain  is strictly star-shaped.

Lemma 2.3. Assume Hypothesis[[.2. Then we have

H? H
049 Q

2 V9
Proof. Multiplying (LI]) by u and integrating over Q we get
/uAHdz+2/H3udz—2/HKudz_O. (2.1)
Q Q Q

Using that « = 0 on 0f2, we integrate by parts in the first integral obtaining

/ uAH dz
Q

1 U
= — | —[uHy+u,H dz+/—ux(9$H2+u8H2 dz
= JH)de+ | 2 0, 7]

U
+/ E[Hx(uyuxy — Uplyy) + Hy(UgUzy — Uylsze)] dz.
Q

Integrating by parts once more we find

/ ulAH dz
Q

H H
= +/ g(um + uyy) dz — 2/ ?(uium + 2Uy U Uy + uguyy) dz
Q Q

H2

—/—(ui—i—ui)dz—Q/ngdz
a9 Q

+2/H2\/§dz—/ E(ummu%y) dz+2/uHK dz
Q Q49 Q

H? H
= 5/—dz—2/—(um—|—uyy)dz
Q V9 QJ
—2/H3udz+/H2\/§dz+2/uHKdz.
Q Q Q

The claim follows from the formula above and (2.1)). O
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Lemma 2.4. Assume Hypothesis[1.2. Then we have

H? H
/(5_+\/§H2_2_(um+uyy)) dz — HQ(xVx‘i‘yVy) dw =10,
Q V9 g o0

with v = (Vg, 1) the exterior normal to the boundary.

Proof. We multiply (LI)) by z - Vu = 2u, + yu, and integrate over 2. We obtain three terms as
in (2.0)). Integrating by parts the first term we get

/(mux + yuy)AH dz
Q
Ty + YUy (8 < 1 ) 9 >>
= ——= 2|0 | —m((1 +uw)H; — ugu, H dz

) L\Ey“y (8y (%(—uxuny +(1+ ui)Hy)>> dz

Hyu, + H
- / w dz — / (20, H? + yo,H?) dz
Q Q

TUg + YUy 2 2
+/7 Uy O H” + u, 0, H”) dz
Q \/g (xx Y~y )

H H
—/ — (YUzy — TUyy) dz — / -, (TUgy — YUgy) d2 .
() Q49

Integrating once more by parts we get also some boundary terms

/(:cux + yuy)AH dz
Q
H? H
= 5/—dz+/ gHde—2/—um—|—u dz
Q \/g Q \/— a9 ( yy)
—2/ H? (2uy + yuy) dz + 2/ HK (zuy + yuy) dz
Q Q
—/ (zvy + yvy)H? do — Hvy(yuzy — xuyy) do
o0

o0N

— Huy(zugy — yugs) do (2.2)
o0

with v the exterior normal to d€). Here we also use that g = 1 on 92. We concentrate on the

boundary terms. At the boundary, u., = u%uw, Ugy = Vglyly, and Uy, = yguw. Therefore,

- /89(33% +yvy)H? do

— H (v (Yuzy — TUyy) + Vy(TUzy — YUsze)) do
o0

= —/ (zvy + yvy)H? do
o0N
-/, Huy,, (yviv, — xuxuj + xuxuj —yviy,) do

= — H?(zv, + yv,) do .
o0
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From the equation above and (2.2)) we get
0 = / (zuy + yuy ) (AH + 2H(H? — K)) dz
Q

H? H
=5 —dz—l—/ gHde—Q/—um—l—u dz
0 Vo Q\/_ Qg( uy)

- H*(zv, + yvy) do .
oN

Proof of Proposition[2Z.1. Combining the results of Lemmas 23] and 2.4l we get

H?*(zv, + yvy) do = 0.
o0N

This yields H = 0 on 99 since u € C*(Q) and Q is strictly starshaped. We have also u,, = 0 on
0f) since H = w,,, /2 at the boundary. O

Since the Willmore equation is a fourth order elliptic p.d.e. the Dirichlet boundary conditions
together with the information that also all the second derivatives of u vanish at the boundary is
not sufficient to conclude that © = 0 in ). We would also need that the third derivatives of u are
zero at the boundary. Instead of this, in the next section we prove that w is identically zero using
that the graph of u is a smooth Willmore surface with a boundary component made of umbilics.

Remark 2.5. By integrating directly equation (L)) over Q, we get a third integral equation

VH - -vdo=0. (2.3)
o0
Unfortunately, in general from this integral equality does not follow VH =0 on 02. If Q is a ball
and u is rotationally symmetric, we infer from 23)) that VH = 0 on 0. Together with H = 0
on 09 this would imply H =0 in Q and hence u =0 in §2.

3 Proof of the main result

In the previous section we have proved that all second order derivatives of u vanishes at the
boundary. In particular, that the boundary of the surface given by the graph of w is made of
umbilic points. Theorem [l follows from this observation together with some deep results of
Bryant. We present in the appendix a brief survey of the concepts and results we need.

Proof of Theorem[I1. Let ® denote the parametrisation of I given by the graph of u, i.e.
Q=R (2,y) = (2,y,u(z,y)).

By the Riemann mapping theorem there exists a conformal map ¢ from the unit disk B1(0) C R?
into Q such that 1(B1(0)) = Q. Moreover, by the regularity assumption on 9, ¥ : B1(0) — Q is
of class C*®, the same regularity as 9 as in Hypothesis [L2(See [I5, Theorem 3.6]).

Further, by the theorem on existence of conformal (or isothermal) coordinates (see [12, Theorem
9.3.1]) there exists & : B1(0) — B1(0) an homeomorphismus of class C*® up to the boundary such
that

f:Bl(O)—>R3, fi=®ovof,
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is a conformal parametrisation for ®(12).

Let (u,v) denote the coordinates in B;(0) and z = u + v be the associated complex structure.
Let n denote a unit normal vector field on ®(Q2) = f(B1(0)). Let ¢ denote the Hopf differential
associated to f, i.e.

Y = %((fuupn) - (fvvun) - 2Z(fuvun)) = Q(fzzan)a

with 0, = %((% —1i0,) and 0z = %(8u +i0y).

We first show that ¢ = 0 on 9B1(0). From Corollary it follows that D*® = 0 on 02 for
all € N3 with |a] = 2. Therefore, D*f -n = 0 on dB;(0) for all a € N3 with |a| = 2 and,
consequently, ¢ = 0 on 9B1(0). In Proposition 2] we had already that also the mean curvature
satisfies H = 0 on ®(9€?) = f(0B1(0)). To prove the theorem we proceed now as in [I4, page
1587].

Differentiating the Hopf differential and the mean curvature along the boundary 0B;(0) in the
tangential direction one finds 0 = dgp and 0 = dyH. Since Jp = i(z0, — Z0z) we get

29, = Z¢z and zH, = ZHz on 9B1(0). (3.1)

Let now ¢ be defined by
= 1% (H* 4+ Alogy) if p#0,
—p.H, if =0,

with A = ie”@zﬁg and e” the conformal factor (i.e. e# = 2f, - fz = fu - fu = fuv - fu). Since f
is a Willmore immersion, ¢ is a holomorphic function by Lemma B.4 and Proposition B.5 in the
appendix. Since ¢ =0 on 0B;(0) using (B.1)) we have

—q=.H, =220, H, = (2)%pzH, on dB(0).
By the Codazzi equation ¢z = e/ H, (see (B3] in the appendix) and using (B.I]) we get
—q = (2)%"H.H, = (2)%c*2H,H, = ()" H;H, on B(0).

Hence, z*q is a holomorphic function that is real valued on B;(0). By the maximum principle,
Zg=a€Rin Bj1(0). Since g is holomorphic, we get that necessarily a = 0 and hence ¢ = 0 in
B1(0). By the classification theorem of Bryant (see Theorem C.3 in the appendix), it follows that
®(Q) = f(B1(0)) is a piece of a sphere or, after a Mobius transformation, a piece of a minimal
surface.

Due to the boundary conditions, the surface cannot be a piece of a proper sphere. Then,
there exists a conformal transformation h in R3 such that (h o ®)(Q2) is a minimal surface with
a boundary component made of umbilic points. Here we use that the set of umbilic points is a
conformal invariant, see [2, page 32] or [I1, Lemma P6.7]. Then, the Hopf differential of (ho ®)(£2)
is holomorphic, zero at the boundary and therefore it is identically zero. Here we use that the
Hopf differential of surfaces with constant mean curvature is holomorphic (see (B3])). The claim
follows. O

A The conformal Gauss map

The conformal Gauss map associates to each point of a two-dimensional surface its central sphere
which can be considered as a point in the unit sphere S‘ll in the five dimensional Minkowski space.
This map is important in the study of Willmore surfaces since by this transformation, a Willmore
surface corresponds (away from its umbilic points) to a minimal surface in S{. This observation
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goes back to Thomsen, [19]. In this section we describe the geometric constructions that lead to
the definition of the conformal Gauss map. We follow the presentation in [9].

Let f : ¥ — R? be a smooth immersion of a two-dimensional orientable surface 3. Let
n : Y — S? be a normal vectorfield. We consider the central sphere of f at f(s), s € ¥. This is
the 2-dimensional sphere in R? going through f(s) € R3 and with mean curvature equal to the
mean curvature of f in f(s). We denote the central sphere by S,(p) with r = r(s) € RU {£o0}
the ‘radius’ and p = p(s) € R? the center. If H(s) denotes the mean curvature of f in f(s), then
r=1/H(s) and p = f(s) + rn(s).

Let ® denote the inverse of the stereographic projection into R3 given by ® : R3 — S3\
{(0,0,0,1)"} with
1

— (29", 242, 243 2t

o((y', 9% %)) =
Since ® is conformal, ®(S,.(p)) C S? is a two-dimensional sphere. There exists a unique three-
dimensional sphere that intersects S? orthogonally along ®(S,(p)). We denote its center by
Z(®(Sr(p))). In this way we get a mapping

fi: ¥ — R4U{Oo},

s = Z(@(S(p) = (2p, lIpI* —r* = 1) (A1)

Ipll* =72+ 17
where, as before, 7 = r(s) = 1/H(s) and p = p(s) = f(s) +rn(s) € R?. Here | - | is the Euclidean
norm in R3. (For this formula it is convenient to see ® as the restriction to R? of G : R* — R*
with G the inversion with respect to the 3-sphere of radius v/2 and center (0,0,0,1)*. If ®(S,(p))
is an equatorial sphere in S3, then fi(s) = co. This is the case if ||p[|? + 1 = r2.)

Notice that in (AI]) we write a vector in R* via two components. The first is a vector in R3,
while the second is a real number. Similarly, in the following we write elements in R® via three
components. The first is a vector in R3, while the other two components are real numbers. The
formulas become nicer with this convention.

Now, to take care of the points sent to oo, we look at R* as the subset {[y, 1] : y € R*} of RP*.
We get then the map

fa: Y — RP4,

1 1
s o [p5Upl — 72 =1, 50l = 2+ 1))

As a final step we consider as a target R® with the Lorentzian metric

4
g(X,Y) =) XV - X°YV? X YEeR’, (A2)
=1

signature (+,+,+,+, —), and the map

Y:% — (R%yg),
s o (g (lpl? = = 1), 5l — 2+ 1)

This is the conformal Gauss map associated to f : ¥ — R3. The normalisation factor 1/r is chosen
in such a way that

Y(E) CSti={Y € (R%g): g(Y,Y) =1},
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i.e. the image of Y is a subset of the unit sphere in (R® g). Since r = r(s) = 1/H(s) and
p=p(s) = f(s) +rn(s) we have

V() = #6501 05061 1)
+(n(s), (F(5),n(s)), (F(5)(4))

with (-,-) the Euclidean scalar product in R3. Tt is convenient to write the conformal Gauss map
as

s +— Y(s)=H(s)X(s)+T(s) with
X6 = (e 505OR - D507+ 1) (43)
and T(s) = (n(s), (F(s),n(s)), (F(s), n(s)) -

Notice that g(X(s), X(s)) = 0 while g(T'(s),T(s)) = 1.

We will see in the next section that the conformal Gauss map is (indeed) conformal with
degeneracies at the umbilic points of . Further, we study the properties of the conformal Gauss
map associated to a Willmore surface.

Remark A.1. Notice that if f : ¥ — R? is a sphere than the image of the associated conformal
Gauss map is a fixed point in Sj.

Remark A.2. The name conformal Gauss map has been used by Bryant. Thomsen in [19]
used instead the concept of sphere congruence. A sphere congruence is a smooth mapping S :
¥ — {spheres in R3} with ¥ a two-dimensional manifold. This mapping induces a new mapping
Y : ¥ — S} which assigns to each sphere in R? a point in S} with the same construction as above.
That is, to a sphere in R? with center p and radius r we associate the vector

1, 1 1
(b, §(Hp||2 —r?=1), §(IIPH2 —r?+1)) €R’. (A4)

In the same way we may associate to points in R? a vector in R®. Renormalizing (A4]) by multiplying
it by r and taking » — 0 we see that

1 1
R39$*—>X=(%E(IIHCHZ—1),§(H~’Ull2+1)) €R®. (A5)

Notice that the images of points in R? are X € L with L := {X € R® such that g(X,X) =
0 and X° — X% = 1}. The mapping given in (AF) is an isometry from R? to L.

We need also the concept of enveloping surface of a sphere congruence S. This is a map
f: ¥ — R3 such that for all s € ¥ it holds

f(s) € S(s) and df(s)(Ts%) C Tys)S(s) - (A6)

Equivalent relations may be stated in (R?,g). Indeed, denoting by X (s) the representative in R®
of f(s) according to (A%, the formulas in (A€ are equivalent to

9(X(s),Y(s)) =0 and g¢(X(s),dY (s)) =0. (AT)

In the proof of the classification theorem of Bryant in Appendix @ we will see that if f is a
Willmore surface and a certain holomorphic differential is identically zero, then f is an enveloping
surface for its own conformal Gauss map.

For more informations on sphere congruence and conditions on the existence of a enveloping
surface we refer to [I1] and the references therein.
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B A holomorphic differential for Willmore surfaces

The results we collect here are due to Thomsen [19] and Bryant [2]. We follow the presentation in
[9].

Let f: Y — R? (with the standard scalar product) be a smooth immersion of an orientable
surface. We have thus fixed a conformal structure on .. Locally there exists conformal coordinates.
Let denote this conformal coordinates by uw and v. We associate a complex coordinate to this
conformal structure by considering z = u + iw. The first fundamental form of f is given by
I = etdzdz with e* the conformal factor. Let n be a unit normal field along the surface. For the
second fundamental form we have the representation

IT = Re{pdz* + He'dzdz}

with H the mean curvature of f, e# the conformal factor and ¢ the Hopf differential given by

o= 5 () = (ows) = 26 us) = 2(fos, ). B1)

Notice that 9, = %(&L —1i0,) and 0z = %((% +i0,).
We also have . )
fzz:Hzfz+§SOna szZQHeuna

(B2)
and  n, =—Hf. —pe'fz,
and the integrability conditions
vz = e!H, (Equation of Codazzi), (83)
|p|?e™2# = H? - K (Equation of Gauss),

with K the Gaussian curvature of f.
With the same choice of complex coordinate, we find for the conformal Gauss map associated
to f as given in (A3)) that

Yz :HZX_(peiMXEa
g(Y27}/z) =0 and g(YZ7Y2) = (H2 - K)(fzaf2)7

with ¢g the metric given in (A2). Here we have used the formula for n, in (B2) and (B3). The
induced metric is given by ds?. = (H? — K )ds?. Thus Y is a conformal map (with degeneracies
at the umbilic points of f) with respect to the conformal structure induced on ¥ by f and an
immersion away from the umbilic points of f.

For Willmore immersions (i.e. solutions to (II])) the formulas in (B4)) imply immediately the
following.
Proposition B.1. Let f : & — R3 be a Willmore surface and Y : X — S} be the conformal Gauss
map associated to f. Then,

(B4)

Area(Y)—/ds%—/(H2—K)ds?c.
2 2

Moreover, if Y is a minimal surface, then f : ¥ — R3 is a Willmore immersion.

Remark B.2. We call Willmore surface a solution to equation (LII). Notice that these are also
critical points for the functional [(H? — K)dS with respect to interior variations. In our setting,
J K dS is equal to a constant. See the discussion in the introduction.

Further, the converse of Proposition B.1 is also true.
Proposition B.3. An immersion f : ¥ — R3 is a Willmore immersion if and only if the associated
conformal Gauss map is an harmonic map.
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Idea of the proof. One first shows that
AY +2(H? - K)Y = (AH +2(H*> - K)H)X . (B5)

with X as defined in ([A3)). Since Y € S}, Y is normal to S} and therefore taking the tangential
component in (BY]) we find

(AY)1C = [(AH +2(H? - K)H)X]T.

If fis Willmore, we directly get (AY)T@ = 0 and so Y is a harmonic map. On the other hand if
Y is an harmonic map, Y is a critical point for the Dirichlet energy. Being Y conformal, it is also
a critical point for the area functional. Proposition B.1 yields that f is a Willmore immersion. [J

We consider now the quartic differential
Q: g(Y..,Y..)det.
Lemma B.4. The quartic differential g(Y,., Yzz)dz4 can be written as gdz* with
ing(HQ + Arlogy) where ¢ #0,
= { —p.H, where ¢ = 0,
with Ay = 4e™"9,0; and ¢ the Hopf differential given in (BI)).
Proof. Starting from the formula for Y, given in (B4)) and differentiating it once again we find
Y. = Hoo X + HX, — (pe ™). Xz — pe "X (B6)
For the last term starting from the formula for X given in (A3)) and using (B2]) one gets
X.; = %H@“T + %(0, 1,1). (B7)
Using that ¢(X,X) = 0, ¢(X,X,) =0, 9(X,,X,) =0, 9(X,,X5) = %e“, g9(X,T) = 0 and
9(X.,T) =0, formulas (B6) and (B7) yield

_ 1
g(YZZ7}/zz) :@sz_Hz(SOe N)ZeM+ZH2¢2.
The claim follows using the equation of Codazzi (B3)). O

Proposition B.5. If f : ¥ — R3 is a Willmore surface, then Q is a holomorphic quartic differ-
ential.

Proof. Let Y : M — S} be the conformal Gauss map associated to f. Recalling (B4) we have
1
9(Yz,Y2) =0 and g(Yz,Yz) = S (H? = K)e'.

Let o denote the second fundamental form of Y, i.e. a;; = (Y;;)* and n denote the mean curvature

vector, i.e.

n:% with B = (H? — K)e!.

Being f a Willmore immersion, Proposition B.3 gives us that Y is an harmonic map. On the other
hand,

1
Yoz = §E"7
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and so we get that the mean curvature vector 7 is normal to S‘ll C R>. Since S‘ll is the unit sphere
in (R, g), n = BY for some 3 € R and, by a direct computation, one finds = —Y. Therefore, we
have

1
ng — —§EY .

This is the crucial information for showing that () is holomorphic. Indeed,

afg(YZZa}/zz) = 29((YZZ)Z7YZZ)
= _Ezg(Y7 Yzz) - Eg(}/zu }/zz) = 07

since g(Y,Y,) =0 and ¢(Y,Y.) = 0. O

C  The classification theorem of Bryant

We follow once again the presentation in [9].

Let f : ¥ — R? be a Willmore surface that is not totally umbilic. By Theorem C in [2] the set
of umbilic points of f is closed and it has no interior. Let ¥\ ¥/ be the preimages of the umbilic
points of f. Eschenburg, Tribuzy [10] prove that one can smoothly define on each point of Y (X)
the tangent space. More precisely, the map ¥/ 5 s +— dY;5(TsX) can be smoothly extended to all of
Y. Therefore the normal bundle is defined everywhere. The induced metric on the normal bundle
has signature (4, —) and so we may find two real normal vectors N; and Ny such that

g(NuNz) = O, = 1,2, and g(Nl,NQ) =1. (Cl)
Lemma C.1. One has
g(Yzzayzz) = 29(Y227N1)9(Yzz7N2)7 (02)
and 829(Yzz7Nz) = (_1)iilg(N1,EaNQ)g(YzzaNi)7

fori=12.

Proof. Since ¢g(Y,,Y) = 0 and g(Y,,Y.) = 0 one sees that Y., lies in the span of Y, N; and Nj.
The first claim follows from (B4]) and (CTJ).

For the second equality one first notices that
829(Yzz7 Nz) = g(Yzza Ni,Z) 5
and that [V; > lies in the span of Y, and N;. O

Notice that this lemma gives another proof of Proposition B.5. The next result gives a crucial
observation for the proof of Bryant’s classification theorem.
Proposition C.2. If ¢(Y..,Y..) = 0, then g(Y..,N;) = 0 and Nj, = A(2)N; for j =1 or 2 and
some scalar function .

Proof. Since the functions (Y., N;) satisfy the differential equation given in (C2)) and g(Ni z, N2)
is bounded on compact subsets of ¥, it follows from Carleman’s theorem [5] that each g(Y.., N;)
has isolated zeroes or it is identically zero. Therefore from the first equality in Lemma C.1 and
9(Y..,Y..) = 0, we infer that g(Y..,N;) = 0 for j = 1 or 2. This implies that g(Y.,N;.) = 0.
Further, g(Y,N;.) =0, g(Nj,Yz) = 0 and g(N;, N;.) = 0. The claim follows. O
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We are now ready to state the classification theorem of Bryant.
Theorem C.3.(Bryant classification theorem) Let f : ¥ — R3 be a Willmore immersion and
Y : ¥ — S} the associated conformal Gauss map. Assume further that g(Y,.,Y,.) =0. Then f is
either totally umbilic or f is the Mdbius transform of a minimal immersion.

Proof. If f is not totally umbilic, by the discussion at the beginning of the section we have two real
normal vectors N7 and Na such that g(NV;, N;) =0, g(N;,Y) =0, g(N;,Y,) =0 = g(V;, Yz), fori =
1,2, and g(N1, N2) = 1. According to the definition given in Remark 5.2 and the characterisation
in (A7) [N1] and [Na] ([NV;] € RP*) are enveloping surfaces for the conformal Gauss map associated
to f. Even more, we may choose

Nils) = X(s) = (F(5), 5 (FGI 1), 356 +1)).

That is, one of the enveloping surfaces is the Willmore immersion itself. The other normal direction
Ny = X is called the conformal transform of X.

Since ¢(Y,Y,.) = 0, Na, = A(2)Na by Proposition C.2. This differential equation and the
fact that Ny is a real vector imply that [Ny] is a well defined fixed vector. Therefore [Ny] = [X]
can be identified with a point in S* and as such it is the image of a fixed point # in R3 U {oo}.
Via an inversion h in R? we can send & to infinity. Accordingly all the spheres that passes through
Z are sent to planes. These planes are, by construction, the central spheres of the immersion
ho f:¥ — R3. Therefore ho f is a minimal immersion. O
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Hartree-Fock theory for pseudorelativistic atoms!

Anna Dall’Acqua?, Thomas @stergaard Sgrensen?, Edgardo Stockmeyer?

Abstract

We study the Hartree-Fock model for pseudorelativistic atoms, that is, atoms where the
kinetic energy of the electrons is given by the pseudorelativistic operator /(|p|c)? + (mc?)? —
mc?. We prove the existence of a Hartree-Fock minimizer, and prove regularity away from the
nucleus and pointwise exponential decay of the corresponding orbitals.

1 Introduction and results

We consider a model for an atom with N electrons and nuclear charge Z, where the kinetic energy
of the electrons is described by the expression /(|p|c)2 + (mc2)2 — mc?. This model takes into
account some (kinematic) relativistic effects; in units where 4 = e = m = 1, the Hamiltonian
becomes

N
H:Hrel(Nazaa):Z{\/—Oé_2Aj+Oé_4—Oé72—i}—|— Z —— 1
j=1

il ey i X
N 1
=3 o TEv) Vo) + X &)
j=1 1<i<j<N 7" J

with T(p) = E(p) —a~ ! = /[p|? + a2 —a~! and V(x) = Za/|x|. Here, a is Sommerfeld’s fine
structure constant; physically, o ~ 1/137.036.

The operator H acts on a dense subspace of the N-particle Hilbert space Hp = /\i]i 1L2(R3; C9)
of antisymmetric functions, where ¢ is the number of spin states. It is bounded from below on this
subspace (more details below).

The (quantum) ground state energy is the infimum of the spectrum of H considered as an
operator acting on ‘Hp:

EM(N, Z, ) := inf oy, (H) = inf{ q(¥, ) | ¥ € Q(H), (¥, V) =1},

where ¢ is the quadratic form defined by H, and Q the corresponding form domain (see below);
(, ) is the scalar product in Hp C L2(R3N;C").

!This paper is a version of the article “Hartree-Fock theory for pseudorelativistic atoms” by A. Dall’Acqua, T.
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In the Hartree-Fock approximation, instead of minimizing the functional q in the entire V-
particle space Hp, one restricts to wavefunctions W which are pure wedge products, also called
Slater determinants:

1
\I/(Xl,al;XQ,O'Q; ce ;XN,O'N) = \/—N_l det(ui(xj,aj))%-:l, (2)

with {u;}Y, orthonormal in L%(R3;CY) (called orbitals). Notice that this way, ¥ € Hp and
H\I/HL2(R3N;(CqN) =L

The Hartree-Fock ground state energy is the infimum of the quadratic form q defined by H over
such Slater determinants:

EYY(N, Z,a) ;= inf{ q(¥, ¥) | ¥ Slater determinant} . (3)

For the non-relativistic Hamiltonian,

a 1 Z 1
HCI(N’Z)_Z{_EAj_@}—i_ Z m, (4)

j=1 1<i<j<N

the mathematical theory of this approximation has been much studied, the groundbreaking work
being that of Lieb and Simon [19]; see also [2I] for work on excited states. For a comprehensive
discussion of Hartree-Fock (and other) approximations in quantum chemistry, and an extensive
literature list, we refer to [16].

The aim of the present paper is to study the Hartree-Fock approximation for the pseudorela-
tivistic operator H in ().

We turn to the precise description of the problem. The one-particle operator hy = T'(—iV) —
V (x) is bounded from below (by o~ ![(1 - (7Za/2)?)"/? —1]) if and only if Za < 2/7 (see [13], [15,
5.33 p. 307], and [33]; we shall have nothing further to say on the critical case Za = 2/m). More
precisely, if Za < 1/2, then V is a small operator pertubation of T'. In fact [I3] Theorem 2.1 c)],
| 1x|~H(T(-iV) + 1)*1HB(L2(R3)) = 2. As a consequence, hq is selfadjoint with D(hg) = H'(R3; CY)
when Za < 1/2. It is essentially selfadjoint on C§°(R3;C?) when Za < 1/2.

If, on the other hand, 1/2 < Za < 2/7, then V is only a small form pertubation of 7": Indeed
[15, 5.33 p. 307],

X 2 s ~
/ &) dX§§/ pllf ()P dp for fe HYAR?), (5)
R3 R3

]|
where f denotes the Fourier transform of f. Hence, the quadratic form v given by
ofu,v] := (VY2u, V/%0) for u,v e HY?(R3;CY) (6)

(multiplication by V'/2 in each component) is well defined (for all values of Za). Here, ( , )
denotes the scalar product in L?(R3;C9). Let ¢ be the quadratic form with domain H 1/2(R3; C7)
given by

e[u, v] := (E(p)"?u, E(p)"/?v) for u,v e HY/?(R3;C). (7)

By abuse of notation, we write E(p) for the (strictly positive) operator E(—iV) = v—-A 4+ a2
Then, using (@) and that |p| < E(p),

olu,u] < efu,u] for uwe HV?(R3CY) if Za<2/7. (8)
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Hence, by the KLMN theorem [25, Theorem X.17], there exists a unique self-adjoint operator hg
whose quadratic form domain is H'/2(R?; C9) such that (with t = ¢ —a~')

(u, hov) = t{u,v] — v[u,v] for u,v € HY/?R3CY), 9)

and hq is bounded below by —a~!. Moreover, if Za < 2/7 then the spectrum of hg is discrete in
[~a~1,0) and absolutely continuous in [0, 00) [I3, Theorems 2.2 and 2.3].
As for the N-particle operator in (Il), when Za < 2/7, (B]) implies that the quadratic form

N
q(v, @) = Z {<E( )1/2\11 E(p )1/2(I)> o <\I/,(I>> _ <V(X])1/2\I/ V(x )1/2(I’>}
=1

N
+ > (xi xR x - x| TV0) . we e \ HYA(RRCY),
1<i<j<N i=1

is well-defined, closed, and bounded from below. The operator H can then be defined as the
corresponding (unique) self-adjoint operator. It satisfies

N
/\ H'(R*;CY) ¢ D(H) c Q(H /\ HY2(R3; CY),
=1 =1

q(U,®) = (U, H®), ®ecD(H), Ve Q(H).

For Za < 1/2, D(H) = AN H(R3;CY). All this follows from (the statements and proofs of) [25
Theorem X.17] and [24, Theorem VIII.15]. See [20] for further references on H. We shall not have
anything further to say on H in this paper, however, but will only study the Hartree-Fock problem
mentioned above. We now discuss this in more detail.

It is convenient to use the one-to-one correspondence between Slater determinants and projec-
tions onto finite dimensional subspaces of L?(R3;CY). Indeed, if ¥ is given by (@) with {u;}}Y, C
H'Y?(R?;C9), orthonormal in L?(R3;C%), and ~ is the projection onto the subspace spanned by
u1,...,uy, then the kernel of v is given by

N

7(X70§y77_) - Zuj(xva)uj(va) : (10)

j=1

Let py € L'(R?) denote the 1-particle density associated to ~ given by

q
g (x,0;%,0) g E|ujxo
o=1

o=1j5=1

p~y(x)

Then the energy expectation of ¥ depends only on -y, more precisely,

q(\pv \I/) = <\Ilv H\Il> = gHF('Y)a

EHF is the Hartree-Fock energy functional defined by

where

EM(y) = a Y Tx[E(p)y] — o' Tr[y] — Tr[VA]} + D(v) — Ex(y). (11)

Here,

3 3 P2 (%)
Zeu],u] , Tr[VA] ::ZU[uj,uj] :Za/ 1 dx
= = R x|
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D(~) is the direct Coulomb energy,

//,O»Y dxdy, (12)
R3 JR3 \X—Y’

and Ez(7) is the ezchange Coulomb energy,

R3 JR3 ’X—

This way,

EUY(N, Z o) =inf{ W (7) |y € P}, (13)
P = {y: L*(R*C%) — L*(R* C?) |~ projection onto span{u, ... ,ux},
ui € H'Y2 (R CY), (us,uy) = bi 3}

(Notice that if one of the orbitals u; of v is not in H'/2(R3;C9), then EM¥(y) = 400 (since
Za < 2/m).)

We now extend the definition of the Hartree-Fock energy functional £%¥ in order to turn the
minimization problem (I3]) (that is, (B])) into a convex problem.

A density matriz v : L*(R3;C?) — L?(R3;CY) is a self-adjoint trace class operator that satisfies
the operator inequality 0 <« < Id. A density matrix v has the integral kernel

v(x,0;y,T Z)\ujxo JT) (14)

where Aj,u; are the eigenvalues and corresponding eigenfunctions of v. We choose the u;’s to be
orthonormal in L?(IR3;CY%). As before, let Py € L'(R3) denote the 1-particle density associated to

v given by
q
o=1 j
Define
A= {~ density matrix | Tr [E(p)y] < +00 }, (16)

where, by definition, for v written as in (I4)),

W => Ajeluy, ). (17)
J
Notice that if v € A then all the terms in £"F () (see (II) are finite. Indeed, for v € A and
written as in (I4]),
=S Noofus ] = £y (X)
VAl = Ajoluj,us] = Za dx (18)
Z R |X]|

is finite, due to (). In particular,
uj € HY2(R?;C9) ¢ L3(R3;CY), (19)

the last inclusion by Sobolev’s inequality [18, Theorem 8.4].
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On the other hand, if v € A then
py € LYR?) N LY3(RY). (20)

This follows from Daubechies’ inequality, see [6], pp. 519-520]. By Holder’s inquality, p, € LY/5(R3).
The Hardy-Littlewood-Sobolev inequality [I8, Theorem 4.3] then implies that D(y) (see (I2)) is
finite. Finally, £x(v) < D(7), since

D(v) — Ex(v)
:_Z)\)\ Z / / \uzxau](y, ) uj(xao_)ui(Y77—)‘2 dxdyZO
3 JR3

o,m=1 |X Y|

Therefore, £ defined by (1) extends to v € A. This way, with hg defined as in (@),
Ti[hoy] = Te[E(p)y] — o™ ' Tr[y] — Tr[VA],
and so
M (y) = a7 Tr[hoy] + D(y) — €2(7), v € A. (21)

Consider v € A and define, with p, as in (I3)),

R, (x) = /R P o (22)

s [x —yl

We have that
R, € L®(R*) N L*(R?). (23)

This follows from (8) (for L*°), and (20) and the weak Young inequality [I8, p. 107] (for L?). Next,
define the operator K, with integral kernel

K’Y(X70_§y77_) = (24)

The operator K, is Hilbert-Schmidt; we prove this fact in Lemma 2 below.
Note that, using (I4]) and the Cauchy-Schwarz inequality, (u, Ryu) > (u, Kyu) (multiplication
by R, is in each component). Denote by b, the (non-negative) quadratic form given by

b, [u,v] := a(u, Ryv) — a(u, K,v) for u,v e HY2(R3CY).

Then, using (u, K u) > 0 and (&),

q
2
0 <b,u,ul Sa(u,}%u)—aZ/3 /R3 ] |X\u );|0)’ dxdy<a Trly] efu, u] .

Therefore (by the statements and proofs of [25] Theorem X.17] and [24, Theorem VIII.15]), there
exists a unique self-adjoint operator h. (called the Hartree-Fock operator associated to ), which
is bounded below (by — a~!), with quadratic form domain H'/?(R?;C?) and such that

(u, hyv) = t{u,v] — vfu,v] + b,y [u,v] for u,v € HY2(R3CY). (25)

The operator h, has infinitely many eigenvalues in [-a~!,0) (when N < Z), and 0ess(hy) = [0, 00);
both of these facts will be proved in Lemma 2 below.
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The main result of this paper is the following theorem.

Theorem 1. Let Za < 2/m, and let N > 2 be a positive integer such that N < Z + 1.

Then there exists an N -dimensional projection Y& = yH¥ (N, Z «) minimizing the Hartree-
Fock energy functional EMF given by (), that is, EYY (N, Z, ) in (I3) (and therefore, in @) is
attained. In fact,

gHF(FYHF) - EHF(Na Z, a) = inf {gHF(FY) | v E Aa 72 = 77Tr[7] = N}
= inf {SHF('y) | ve A, Tr[y]=N}

=inf {E"(y) |7 € A, Tr[y] < N}. (26)
Moreover, one can write
N
’YHF (Xu ayy, 7—) = Z Pi (Xu O-)SOZ (yu T) ) (27)
i=1

with ¢; € HY2(R3;CY9),i = 1,...,N, ortnonormal, such that the Hartree-Fock orbitals {oi},
satisfy:

(i) With hyur as defined in ([23]),
h,YHFQOi:EiQOi, iZl,...,N, (28)
with 0 >en > ... > e > —a~ ! the N lowest eigenvalues of h,yHF.
(ii) Fori=1,...,N,

@i € CP(R*\ {0};CY). (29)

(iii) For all R > 0 and B < vey = \/—en(2a~1 +en), there exists C = C(R,3) > 0 such that
fori=1,...,N,

lps(x)| < Ce X for  |x| > R. (30)

Remark 1.

(i) In fact, we prove that [29) holds for any eigenfunction ¢ of h.ur, and [B0) for those corre-
sponding to negative eigenvalues €. More precisely, if hourp = €@ for some € € [en,0), then

BQ) holds for ¢ for all < ve :=\/—e(2a~1 + ) for some C = C(R, () > 0.

(ii) Note that, in general, eigenfunctions of h.ur can be unbounded at x = 0; therefore (29) and
B0l) can only be expected to hold away from the origin.

(iii) Both the regularity and the exponential decay above are similar to the results in the non-
relativistic case (i.e., for the operator in (@); see [19]). However, the proof of Theorem 1
1s considerably more complicated due to, on one hand, the non-locality of the kinetic energy
operator E(p), and, on the other hand, the fact that the Hartree-Fock operator hur is only
given as a form sum for Za € [1/2,2/m).

(iv) We show the existence of the Hartree-Fock minimizer by solving the minimization problem
on the set of density matrices. This method was introduced in [30]. The same method was
used in [H] in the Dirac-Fock case (see Remark 2 below).
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(v) Notice that nothing is known on the question of uniqueness of the minimizer of the Hartree-
Fock functional defined on density matrices (up to the trivial invariance properties of the
HartreeFock energy functional) [16]. The Hartree-Fock functional is not convex. This is
a magjor difference compared to the reduced (restricted) HartreeFock theory. The reduced
HartreeFock functional has no exchange term and so the uniqueness of the minimizer is
assured by the convezity of the functional; see [30)].

(vi) For any eigenfunction of the HartreeFock operator that is orthogonal to the HartreeFock
orbitals p1,...,pN the corresponding eigenvalue € satisfies € > ¢;, i = 1,...,N. In other
words, there are no unfilled shells. This follows from the result in [4] since the only crucial
assumption is that the two-body interaction is repulsive (i.e., positive definite). The particular
choice of the one-particle operator does not play any role.

(vil) As mentioned earlier, we have to assume that Zo < 2/w; the reason is that our proof that
Tr[E(p)yn] is uniformly bounded for a minimizing sequence {7y, }tnen does not work in the
critical case Za = 2/.

(viii) For simplicity of notation, we give the proof of Theorem 1 only in the spinless case. It will
be obvious that the proof also works in the general case.

(ix) As will be clear from the proofs, the statements of Theorem 1 (appropriately modified) also
hold for molecules. More explicitely, for a molecule with K nuclei of charges Z1,...,Zk,
fized at Ry,..., Rk € R3, replace v in (@) by

K
olu,v] == Z(Vkl/Qu, Vkl/Qv) for u,v € HY?(R? CY), (31)
k=1

with Vi(x) = Zpa/|x — Ry, Zya < 2/7. Then, for N < 1+ Y1, Z, there exists a Hartree-
Fock minimizer, and the corresponding Hartree-Fock orbitals have the reqularity and decay
properties as stated in Theorem 1, away from each nucleus.

Remark 2. In our model the kinetic energy of the (relativistic) electrons is given by a non-local
operator. Another choice would be to consider the Dirac operator: Dy = a - (iV) + Ba™! with
a = (a1,a9,a3),B the Dirac matrices (« is still the fine structure constant); see [32]. The Dirac
operator is local but it has a negative continuous spectrum which is not bounded from below. The
analogue of the HartreeFock approximation in this model is called the Dirac-Fock model. Esteban
and Séré in [7] proved that the Dirac-Fock functional has infinitely many critical points, giving rise
to infinitely many solutions to the Dirac-Fock equations; see also [23]. In this model the rigorous
definition of a ground state is a delicate problem since the energy functional is not bounded from
below; see [8,[9]. Nevertheless, there are HartreeFock-type models, coming from the Dirac operator,
that do have a minimizer. We refer to [3, (11, [12], and the references therein, for the description
of these models.

2 Proof of Theorem 1

2.1 Existence of the Hartree-Fock minimizer

The proof of the existence of an N-dimensional projection 4"¥ minimizing 1, the equalities in
(26)), and that the corresponding Hartree-Fock orbitals {¢;}Y, solve the Hartree-Fock equations
([28)), will be a consequence of the following two lemmas.
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Lemma 1. Let Za < 2/m and N € N. Then
EZY(N, Z,0) :=inf {7 (y) |y € A, Tr[y] < N}

18 attained.

Lemma 2. Let v € A. Then the operator K., defined by (24), is Hilbert-Schmidt. If Zoo < 2/m
then the operator h., defined in [28), satisfies oess(hy) = [0,00). If furthermore Tr[y] < Z, then
h., has infinitely many eigenvalues in [—a~1,0).

Before proving these two lemmas, we use them to prove the parts of Theorem 1 mentioned
above.

Proof. For computational reasons we first state and prove a lemma in the spirit of [3, Lemma 1].

Lemma 3. Let v € A, ui,uy € HY/?(R3), and let €1, €3 € R be such that 5 given by

(%, y) =% y) + (%), (32)
Yu(X,¥) = Yur e (X, y) = €1ur (%) ur (y) + e2ua(x)uz(y) (33)

s again an element of A.
Then we have that

EHF(’?) = EHF(’y) + oz_lel(ul, hyur) + a_162(u2, hyug) + €162 Ry, (34)

where hy is given in 28), and

B 2
Ruim Rups =5 [ [ 12000y 20 CIIE gy (3)
R3 JR3

\X—YI

Proof of Lemma 3. We have that

EMF(5) = £MF () 4+ 0 Tl + / / PP Y) 4 gy
R3 JR3 \X—Y’

// (% ¥)7u(x,y) ,yddy+ //p% )Py, )dxdy
R3 JR3 ’X— R3 JR3 x —y]

R3 JR3 \X—Y’

= EHF (v)+a~ el(ul,h ul) + o tey( (u2, hyus) (36)
//m ,0% //’YquﬂYqu)ddy'
r3 Jrs X — R3 JR3 x =yl
Using ([B3), that p,, (x) = €1|u1 (x)|* + e2|ua(x)|?, and (B5), we obtain (34). O

By Lemma 1 a minimizer v"'F € A, with Tr[y!F] < N, exists. We may write

x,y) =Y er®)er(y) (37)
B

with 1 > Ay > --- > 0 and {@r}x € HY?(R3) an orthonormal (in L?(R?)) system (it might be
finite). Extend {y}x to an orthonormal basis {@y }r U {ug}een for L2(R3), with u, € HY2(R3).
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Let K +1 be the first index such that Agy1 < 1. Fix j € {1,..., K}, choose u € {¢g tk>Kx+1U
{u¢}ren, and consider, for € to be chosen,

79 (x,y) Z ek (X) e (y) + T me (05 (x) + eu(x)) (¢, (y) + euly) ) -

k#j

Choosing m > 1 assures that Tr[ve U )] < N. Then 0 < %(j ) < 1d for le| small enough (depending on
u). Since v1¥ minimizes £F and ’y((]]) = ~HF
d  HF\ (. () 1 -1
0= a((‘: )(’}’6 ) O:a (@j,h,yHFu)—i-Oé (u,thFng).
e=

Repeating the computation for iu we get that (u, h.ur ;) = 0, from which it follows that i ur maps
span{1, ..., ¢k} into itself. Diagonalising the restriction of h. ur to span{¢,..., ¢k}, we can
choose ¢1,...,pK to be eigenfunctions of h.ur with eigenvalues ey, ,...,&n,, nj € N (numbering
the eigenvalues of h,yHF in increasing order, —a~! < g < gy < --+). Since \; = -+ = Ag = 1, this

does not change (37).
To show that, for j > K, ¢; is also an eigenfunction of h. ur (corresponding to an eigenvalue
€n,) one repeats the argument above, with u € {pk fr21, ..k U {ue}een, and

N(x,y) = 3 Meor()on®) + —L— (50 + eu(x)) (7503) + () ) -

2
Py 14 me

Moreover, the eigenvalues €, (of h,yHF) corresponding to the eigenfunctions ¢ are non-positive.
In fact, if £,, > 0, then we could lower the energy: Define (x,y) = Y (x,y) — Apor (%) ok (y),
then, using Lemma 3, we get that 1 () = EUF (HHF) — o= )\ e, < EHF (1),

It remains to show that Tr[y¥] = N, that v is a projection, and that the {cpj} ', are
eigenfunctions corresponding to the lowest (negative) eigenvalues of h ur (that is, to g1 < &9 <

-<en <0).

Consider first the case N < Z. Assume, for contradiction, that Tr[y"F] < N. Let K € N be
the multiplicity of the eigenvalue 1 in (7). Since (by Lemma 2), for N < Z, h,nr has infinitely
many eigenvalues in [—a~!,0) we can find a (normalized) eigenfunction w, corresponding to a
negative eigenvalue of h ur, and orthogonal to ¢1,...,px. Let € > 0 be sufficiently small that
v(x,y) := Y (x,y) + eu(x)u(y) defines a density matrix satisfying Tr[y] < N. By Lemma 3 (with
u; = u,€; = € and €2 = 0) we get that

EMF(y) = EMF (AU e~ (u, houru) < EHF (HEY (38)

leading to a contradiction. Hence, Tr[y"¥] = N. That ¥ is a projection follows from Lieb’s
Variational Principle (see [17]) which we prove for completeness. If this is not the case, there exist
indices p, ¢ such that 0 < Ay, A, < 1. Consider J(x,y) := Y (x,y) + €y (x) 0, (y) — €0p(X)0p(y)
with e such that 0 <4 < Id. Choose € > 0 if ,,, < &5, and € < 0 otherwise. By Lemma 3, we get
that U () < EHF(4HF),

Consider now the case Z < N < Z+1 (and N > 2), so that N —1 < Z. Let ’y}gf}il denote the
density matrix where

inf {EM () [y € A, Trh] <N -1}

is attained. By the above, Tr[y{¥ ] = N — 1 and 1, is a projection, so its integral kernel is
given by

N (%, y) = Z $i(x)i(y) ,
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where the ¢;’s are eigenfunctions of A e
We first prove that
inf {EM7(7) [y € A, Tr}y] < N} (39)

is not attained at the density matrix 7iF' | by constructing a density matrix § with Tr[§] < N such
that M (3) < EUF (A ). Indeed, since h%%Fi ) has infinitely many strictly negative eigenvalues
(by Lemma 2; N — 1 < Z) there exists a (normalized) eigenfunction u of h e - corresponding to

a negative eigenvalue, and orthogonal to span{¢i,...,¢n_1}. Let 4 be defined by

7 y) = I (%, y) +ulx)uly).
Then Tr[¥] = N and, by a computation like in (38]),
£ (3) = €M (ONEL) + o (s e w) < ET R,
Hence,
inf {EWF (y) |7 € A, Te[y] < N} < inf {E8F(y) |y € A, Te[y] < N —1}. (40)

Let yn be a density matrix where ([39) is attained (the existence of such a minimizer follows,
as before, from Lemma 1). By the above it follows that N — 1 < Tr[yy] < N. We now show that
there exists a minimizer 4''F with Tr[y!F] = N.

The integral kernel of v is given by

IN(xY) = Z AjPj (X)Wa
J

where 1 > Ay > --- > 0 and the ¢;’s are (orthonormal) eigenfunctions of h.,. If Tr[yy] < N we
can define a new density matrix 4 with Tr[y] < N and E9F(3) < EHF(yy). Indeed, if Tr[yny] < N
(and bigger than N — 1) then there exists a (first) jo such that 0 < X\j, < 1. We define 4 with
integral kernel

75 y) = w3 ¥) + e ()24 (¥) | (41)
with r = min{1 — Aj;, N — Tr[yn]} > 0. Recall that h,,¢; = ;) €y, <0, for all j. By Lemma
3 we have that

EMF(3) = 97 (yy) + oflrsnjo .
If £, < 0, it follows that ENF(3) < €M (yy). On the other hand, if €nj, = 0, then EHF(3) =

EMY (), and Tr[yn] < Tr[§] < N. Either Tr[y] = N, in which case we let ¥y := 7, and, as
above, we are done. Or, we repeat all of the above argument on

F,y) =D eix)ei(y) + D A (x)e;(y)
j=1

J>jo

Since the trace stays bounded by N, this procedure has to stop eventually. Hence, with ¥ the
resulting density matrix, Tr[y"'F] = N and by Lieb’s Variational Principle it follows (as above)
that v1F is a projection.

Finally, let {¢;} be the eigenfunctions of A ur, now numbered corresponding to the eigenvalues
g1 <&y <---, where €1 is the lowest eigenvalue of h ur. We know that, for some ji,...,jv € N,

N
YY) = 05 ()i (y) -
k=1
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Suppose for contradiction that {e;,,..., ey} # {e1,...,en}. Then there exists a k € {1,...,N}
with €, > eg. For 6 € (0,1) define

F(x,y) =" (x,y) + dor(x)er(y) — 695, ()05, (y) -
By Lemma 3,
gHF(’?) = EHF(’YHF) + 50[71(616 - Ejk) - 52R¢jv¢jk < EHF(’YHF) )

where the last inequality follows by choosing é small enough.

It remains to prove that e1,...,en are strictly negative. For N < Z this follows directly from
Lemma 2. In the case Z < N < Z + 1, assume, for contradiction, that ey = 0; then the density
matrix

F(x,y) =" (x,y) — on(x)en(y)

satisfies EHY(7) = EUF (yHY) (by Lemma 3) and Tr[] = N — 1. This is a contradiction to (@0).
This finishes the proof of the first part of Theorem 1. U

It remains to prove Lemma 1 and Lemma 2.

Proof of Lemma 1. We minimize on density matrices following the method in [30]. In the pseu-
dorelativistic context one faces the problem that the Coulomb potential is not relatively compact
with respect to the kinetic energy. This problem has been adressed in [5] and we follow the idea
therein.

The quantity EYF (N, Z, @) is finite since for any density matrix v, with Tr[y] < N,

EM(y) > a Y { Tr[E(p)7y] — a !N — Tr[V4]} > —a ?N.

Here we used that D(y) — £x(y) > 0, and (8) (see also (I7)) and (IJ])).

Let {7,}5%; be a minimizing sequence for EXF (N, Z, «), more precisely, v, € A (with A as
defined in (I6)), Tr[y,] < N, and E9F(v,,) < EYY(N, Z,a) + 1/n.

The sequence Tr[E(p)~y,] is uniformly bounded. Indeed, for every n € N, using (8],

E"(N, Z,a) + 1> M () > a7 { TY[E(p)yn) — o7 'N — Tr[V,]}
>a M1 - Zag) Tr[E(p)Ym] — a 2N

The claim follows since Za < 2/7. It is this argument that prevents us from proving Theorem 1
for the critical case Za = 2/.

Define 7, := E(p)'/?v,E(p)'/?. Then, by the above, {7, }nen is a sequence of Hilbert-Schmidt
operators with uniformly bounded Hilbert-Schmidt norm. Hence, by Banach-Alaoglu’s theorem,
there exist a subsequence, which we denote again by ¥;, and a Hilbert-Schmidt operator 7.,
such that for every Hilbert-Schmidt operator W,

Tr[WH,] — Tr[WHee)] , n— 00.

Let V(o) = E(p)_1/2’}/(oo)E(p)_1/2. We are going to show that 7(,) is a minimizer of EUY (in
fact, of a&MY, which is equivalent). We first prove that V(o) € A, then that EMF is weak lower

semicontinuous on \A.
Let {t }ren be a basis of L2(R3) with vy, € H'/2(R3). Then, for all k € N,

T}i_{go(%ﬂn%) = nli_)rr;o(wk, E(p)"?3,E(p)~Y?yy)
= (V> V(o0) Vk) -
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From this follows, by Fatou’s lemma, that

k k

and
Tr[E(p)"/* (00 B(p)!/?] < lim inf Tr[E(p) /%y, E(p)"/?] < .

n—~oo

Since also 0 < (o) < Id we see that () € A.

To reach the claim it remains to show the weak lower semicontinuity of the functional £HF.
As mentioned in the introduction, the spectrum of the one-particle operator hg, defined in (@), is
discrete in [~a~!,0) and purely absolutely continuous in [0,00). Let A_(a) denote the projection
on the pure point spectrum of hg and Ay (a) :=1d — A_(a). We write

O‘gHF(’Yn) = Tl (FYn) + T2(7n) + O‘T3(7n) ) (42)
with

Ti(n) = Tr[Ag (@) oA (@) ym] 5 To(yn) = Tr[A_()hoA— () n] ,
T3(7n) - D(’Yn) - gx(’)/n) :
We consider these three terms separately.

For the first term in @), fix (as above) a basis {1y }xen of L2(R3), with {1 }peny € HY2(R3).
Defining

Fi = (Ap(@)hoA s (),

we have that

T (1) = Tt [(As(@)hoA+ ()7 (A (@)hoA s () 7]
= (frsmfe) = Y _(E@) 7 fr, mE®) ™ fi)

k k

Since the projection

Hy = |E(p) 2 1) (E(p) V2 fi

is a non-negative Hilbert-Schmidt operator, we find, by Fatou’s lemma, that

lim inf 73 (FYn) = hnniloréf Z Tr[Hk:Yn] > Z TI'[HIC:Y(OO)] =T (7(00)) .
k k

n—~oo

As for the second term in ([@2), we have lim,, . 72(vn) = T2(V(c0)) since the operator A_(a)hoA ()
is Hilbert-Schmidt; see Lemma 7 in Appendix A.

Finally, for the last term in (42), following the reasoning in [5, pp.142-143] (here we need that
N € N), we get that

lim inf T3 (7,) > T3(7(c0)) -

n—oo

This finishes the proof of Lemma 1. O
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Proof of Lemma 2. In order to prove that K., is Hilbert-Schmidt it is enough to prove that its
integral kernel belongs to L?(R%). We have that (see (24 and (I4))

2
K 2 axdy — [ Y 4y 4
ey sy = [ T axay (43)
=3 A / e ()5 () (V) (Y) 0o S MMk
T R6 x —yl|? T ’

The last integral can be estimated using the Hardy-Littlewood-Sobolev, Holder, and Sobolev in-
equalities (in that order), to get
2 2 2 2 2
Iik < ||Uk“j”3/2 < ||Uk:||3HUJH3 < CHUk||H1/2||uj||H1/2 . (44)
Inserting (@) in ([3]) we obtain (since v € A)

2
[ 1oy axdy <€ S AN s e = € (A s
gk J

= C’(TY[E(p)’y])2 < 00.

To prove the statement on the essential spectrum, define BW = h, +akK,. Since K, is Hilbert-
Schmidt, and gess(hg) = [0, 00) (see the introduction), it is enough to prove that (h, +1)~" — (ho+
n)~1 is compact for some 1 > 0 large enough [27, Theorem XIII.14]. Since D(hg) = D(ﬁy) C D(R,),
we have that

(hy )~ = (ho+m) ™" = = (hy +m) " aRy (ho +1) 7" (45)
From Tiktopoulos’s formula (see [29] (I1.8), Section I1.3]), it follows that
(ho+n)~"
= (T(p) +n)*[L = (T(p) +n) " PV(T(p) + )~ /2171 (T(p) +n) /2. (46)

Since, by @), ||(T'(p) + 1)~ /2V¥/?|| <1 for Za < 2/7 and 7 > o', the right side of (@B) is well
defined. Inserting (@) in ([@5) one sees that it suffices to prove that R. (T (p) +n)~'/? is compact.
That this is indeed the case follows by using [26, Theorem XI.20] together with the observation
that, for ¢ > 0 and n > o~ ', R, and (T(p) +7)~"/? (as a function of p) belong to the space
L5TE(R3) (for R, see (23)).

Finally, we show that if Tr[y] = N < Z then h, has infinitely many eigenvalues in [—~a~!,0). By
the min-max principle [27, Theorem XIII.1] and since oess(hy) = [0, 00), it is sufficient to show that
for every n € N we can find n orthogonal functions uy,...,u, in L?(R3) such that (u;, hyu;) < 0
fori=1,...,n.

Let n € N. Fix 6 := 1 - N/Z and let hgs be the unique self-adjoint operator whose quadratic
form domain is H'/?(R3) such that

(u, ho 5v) = t{u,v] — d vlu,v] for u,v € HY3(R?).
By [13, Theorems 2.2 and 2.3], gess(hos) = [0,00). Moreover, hg s has infinitely many eigenvalues
in [-a~',0). This follows by the min-max principle and the inequality hos < a/2(—A) —6Za/|x].
Hence, we can find uy, ..., u, spherically symmetric and orthonormal such that (u;, ho su;) < 0 for
i =1,...,n. Then, by the positivity of K., by Newton’s Theorem [I8| p. 249], and since Tr[y] = N
we get, for i = 1,...,n, that
(wiy hywi) < tug, ws) — vfug, us] + o(ui, Ryu;)
N
< t[uz,uz] — U[’LLZ',’U,Z'] + 7 U[ui,ui] = (ui, h075ui) <0.

The claim follows. O
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2.2 Regularity of the Hartree-Fock orbitals
Here we prove that any eigenfunction of . ur is in C*°(R?\ {0}).

Proof. Let ¢ be a solution of h ur¢ = ey for some € € R. Then ¢ belongs to the domain of the

operator and in particular to H'/2(R3; C?). We are going to prove that ¢ € H*(Q) for all bounded
smooth Q C R?\ {0} and all kK € N. The claim will then follow from the Sobolev imbedding
theorem [2, Theorem 4.12]. We will use results on pseudodifferential operators; see Appendix B.
We briefly summarize these here.

1) For all k,¢ € R, E(p)’ maps H*(R?) to H*~“(R?).
2) Forall k, £ € R, and any x € C§°(R3), the commutator [y, E(p)‘] maps H*(R?) to HF¥—T1(R3).

3) For all k,£,m € R and x1, x2 € C§°(R) with supp x1 Nsupp x2 = 0, x1E(p)*x2 maps H*(R3)
to H™(R?). Such an operator is called ‘smoothing’.

Fix Q a bounded smooth subset of R?\ {0}. We proceed by induction on k € N. Assume that
¢ € H¥(Q) for some k > 0, i.e., xo € H¥(R3) for all x € C$°(Q). Notice that H*(R?) = D(E(p)*).

Since xp € H¥1(R3) is equivalent to x¢ € D(E(p)k*!), and D(E(p)k*t!) = D((E(p)F*1)*),
it is sufficient to prove that xp € D((E(p)**1)*), or equivalently, that there exists v € L%(R3)
such that

(xp, E()**'f) = (v, f) for all f € H*'(R?).
Let f € HFT1(R3). Then

(xe, B(p)**1f) = e(¢, BE(p) 'xE(P)*'f)
= (e +a ) (p, E(p)"'XE(P)"f) + v(p, E(p) X E(p)*f)
—byur (0, B(p) "X E(P)"), (47)
where we use that h,ur¢ = ep. We study the terms in (7)) separately. In the following, ¥ denotes
a function in C§°(2) with x =1 on supp x.
For the first term in (47)) we find that
(. E()'XE®)*1f) = (xE(p) '@, E(p)* f)
= (v E(p) e, E(p)* 1 1) + (E(p) " xp, E(R)*' ). (48)
Since xy¢ € H¥(R?) by the induction hypothesis, we have that F(p)~'ye € H*¥T1(R?) and hence
there exists w; € L?(R?) such that

(E(p)""x¢, E(p)*™f) = (w1, f).
It remains to study the first term in ([48). We have that
(6, E(p) e, E(p)** f)
= (I E@) 7' xe, E@)" ) + (I E(p) 1 = Xe, B(p) ).

Since Y € H¥(R?) by the induction hypothesis, it follows from Proposition 2 that [x, E(p)~']x¢e
belongs to H¥T2(R3). On the other hand since the supports of y and Y are disjoint the operator
[x, E(p)~](1 — ¥) is a smoothing operator. Hence there exists a wo € L?(R3) such that

(b B(0) e, ()1 f) = (w2, f).
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As for the second term in (47), we find, with y as before,

(e, E(p) "' xE(P)*'f) = (¢, VE(p) 'XE(p)"*'f)
= (X, VE(p) " 'XE(P)* ' f) (49)
+((1 =X, VEP)'xE@)"f).

Since ¥ has support away from zero, VYo € H¥(R?) and hence there exists w3 € L?(R?) such that

(X, VE(p) 'xE(P)* ' f) = (ws, f) .

For the second term in ([Ad) we proceed via an approximation. Let {¢,}°2; C C§°(R3) such that
©n — @,n — 0o, in L2(R3). Since (1 — X)VE(p) 'xE(p)**'f belongs to L*(R?), we have that

(o, 1= )VEP) 'xE@E) ' f)= lim (on, (1 - )VEP) 'xE@) ).

n—-+00

For each n € N, V(1 — X)p,, € H™(R3) for all m, since p,, € C*(R?), and V maps H¥(R?) into
HE=1(R3) for all k. Therefore, E(p)**1xE(p)~ 1V(l — X)n € L*(R3), and so

(on, (1= )VE(p)'xE(P)"'f)
= (E()*"'xE(p)"'V(1 = X)¢n, f)
= (E(@)"'xE(P) " (1 - )EM®)E®D) Ven f).

Here E(p)~'V is bounded by (), and xE(p) (1 — x) is a smoothing operator by the choice of
the supports of x and Y. It then follows that {E(p)**1xE(p)~ (1 — Y)E(MP)E®P) 'V, ey is a
uniformly bounded sequence in L?(R3) and hence there exists wy € L?(R?) such that

Hm (¢n, (1= X)VE®P) 'XE@) ' f) = (w4, f).

n—-+00

For the third term in ([47), we have to separate the cases k =0 and k > 1.
Let k = 0. The terms R nrp and K nrg belong to L?(R?), since R ur € L®(R?) (see (23))
and K ur is Hilbert-Schmidt (see Lemma 2), and therefore

b'yHF (()07 E(p)_IXE(p)f) = (E(p)XE(p)_l(R'yHF - K’yHF)(pa f) .

Assume now k > 1. With x as before,

b'yHF((va(p)_IXE(p)k-H) a (Y(Ryur — K ue)p, E(p) "' xE(p)* "' f) (50)
a((1 = X)(Ryur — K ur)p, E(p)~ ' xE(p) ' f).

By the induction hypothesis and Lemma 6 (see Appendix A) we have that XR e and XK urp
belong to H¥(R?). Therefore there exists ws € L?(R?) such that

(X(Ryur — K)o, E(p) " 'XE(p)* ! f) = (ws, f).

For the second term in (50) we find, since R urep, K nrp € L?(R?), that

(1= X)(Ryur — K ue)p, E(p) " XE(p)*™ f)
= (xE(p) ' (1 = X)(Ryur — K ur ), E(p)*'f),

and the result follows since YE(p)~!(1 — x) is a smoothing operator. O
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2.3 Exponential decay of the Hartree-Fock orbitals

The pointwise exponential decay (B30) will be a consequence of Proposition 1 and Lemma 4 below.

Proposition 1. Let 1Y be a Hartree-Fock minimizer, let h.ue be the corresponding Hartree-Fock
operator as defined in [B8)), and let {p;}I¥.| be the Hartree-Fock orbitals, such that

h,YHFQOZ':QgOi, izl,...,N,

with 0 >en > ...>e1 > —a~! the N lowest eigenvalues of h,YHF.

(i) Let vey := /—en(2a 1 +en). Then p; € D(e?I']) for every B < vy andi € {1,...,N}.

(ii) Assume h.urp = e for some € € [en,0), and let ve := \/—e(2a7! +¢). Then ¢ € D(efl)
for every 8 < vg.

Lemma 4. Let E <0 and vg := /| - EQa ' + E)| = /|]a=2 — (E + o 1)2|.
Then the operator T(—iV) — E = vV—=A+ a2 —a~! — E is invertible and the integral kernel
of its inverse is given by

_ E+a e eyl o VK (a7l x —y))
T-E)! — Gpx—y) =\

_ ail Kl ail . ) eiVE"|

where K is a modified Bessel function of the second kind [1)].

Moreover,
e vEXl o1 K (a7t X))
0< G < C, 52
< Gp(x) < Cap 47 |x| + 272 x| ’ (52)
Allag e LYR3) forall B <wvg and g€ [1,3/2). (53)

Proof of Lemma 4. The formula (5I]) for the kernel of (T — E)~! can be found in [22], eq. (35)].
The estimate (52]) is a consequence of the bound
Ki(a7Y-|) e vell e VElX|

<C,p—.
T ] ) S G

This estimate, on the other hand, follows from Newton’s theorem (see e. g. [18§]),

Ki(a'x —yl) e

dy
R3 Ix —y] drly|
-1 - - -1
el [ Kl kg e Ko ) g
R3 |x — y] 4rly| Ar|x| Jgs |z

The last integral is finite since vg < o', using the following properties of K (see [10], 8.446,

8.451.6]):
1
Kq(t) < o for all ¢ >0, (54)
and for every r > 0 there exists ¢, such that
ot
Ki(t) <e¢p—= forall t>r. (55)

Vit
The estimate (53) is a consequence of (52)), (54]), and (B5). O
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Before proving Proposition 1, we apply it, and Lemma 4, to prove the pointwise exponential
decay, i.e., the estimate in (30).

Proof of Theorem 1 (iii). Fix i € {1,...,N}. If Za < 1/2 we can rewrite the Hartree-Fock equa-
tion (28)) as

Z
(V-A+a2—a )y =cp + ﬁ

The idea of the proof is to study the elliptic regularity of the corresponding parametrix. By Lemma
4 we find that

©w; — OéR,YHF w; + OéK,YHF ©i - (56)

_ Zo
e = [ (= en) ey ende + T3 i — Ry + a9 dy

In the case 1/2 < Za < 2/m, on the other hand, the operator of which we are studying the
eigenfunctions cannot be written as a sum of operators acting on L?(R®) and hence we cannot
write directly the equation (28]) as in (B6). However, since the eigenfunctions are smooth away
from the origin we are able to write a pointwise equation for a localized version of ;. In fact, let
x € C*(R3?) be such that 0 < y <1 and

PSRt

=00 if x| < 1/2,

and let, for R > 0, xr(x) = x(x/R). We will derive an equation (similar to (56)) for T'(—iV)(xryi)-
Indeed, for every u € H'/2(R3) we have that

(u, hopr (XRi)) = e(u, XRPi) — o Hu, xrei) — o(u, XRrei) + b.,ur (u, XRP:)
= (XRU, hyur ;) + e(u, XrPi) — e(XRY, ;)
+ bur (u, XRPi) — bour (XRU, ;) -

Note that
e(u, xrpi) — e(xrU, i) = (u, [E(P), XR]®i) ,

where [E(p), xr] is a bounded operator in L?(R3) (see Appendix B), and
b'yHF (u) XRSOZ) - b'yHF (XRU) QO’L) - (u) ’CQO’L) )

with IC the bounded operator on L?(R?) given by the kernel

N

Xr(X) = Xr(Y)

K(xy) =a)_ ¢j(x)p;(y) T xoy| (57)
j=1

Therefore there exists w € L?(R3) such that

e(u, xrepi) = (g + o ) (u, xrei) + 0(u, xrei) — byur (u, XrE:)
+ (u’ [E(p), XR]SOZ‘) + (u’ ’CQOZ) = (uv w) :

Hence xry; € H'(R?) and we can write the pointwise equation
_ Za
(V=A+a2—a ")xrei = cixrpi + HXR‘Pi — aR wr XRPi

+ oK ur (XRpi) + [E(P), XR]pi + K . (58)
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This is the substitute for (B6]) in the case 1/2 < Za < 2/7; if Za < 1/2, the proof below simplifies
somewhat, using (B6) directly.
By Lemma 4, (58]) implies that

_ Za
XR(X)pi(x) = /RS (T —en) ' (xy) [WXRSOZ' — aR urXRpi + oK nr (XRP:)

+ (ei — en)XrYi + [E(P), XR)pi + Kei] (y) dy - (59)
We will first show that, for all R > 0 and § < v,
xreie?l'l € LP(R3) + L®(R?) for p € [2,6), (60)

and then, by a bootstrap argument, that yrp;e’l'| € L=(R3), which is the claim of Theorem 1
(i)

We multiply (B9) by XR/Q(X)emx‘. Using that [(Za/|y|)xr(y)| < (Za)/R for all y € R3, (23)),
&4), and (7)) (recall @), that ¢; € H'/2(R3), and (H)) we get, for some constant C' = Cr 4 > 0,
that

N
IXr(x)pi(x)e”™ | < Cxpo(x)e’™ (T~ en) Y [l + D Lo (v)]] dy
j=1

0| [ (= en)™ ) (1B0). xaler) (v) (61)

We will show that the first term on the right side of () belongs to LP(R?) for p € [2,6), and that
the second belongs to L°(R?). This will prove (60).
The first term on the right side of (€1l) is a sum of terms of the form

hp(x) = X gya(x)e’ (T en) T xy) If(y)ldy, (62)

with f such that, by Proposition 1, fefl'l € L?(R?). By Lemma 4 we have, using el*I=IVl < elx=¥|,
that

) <€ [ G -y )l dy

From Young’s inequality it follows that hy € LP(R3) for all p € [2,6), since 8 < vep, so (by
Proposition 1) fefl'l € L2(R3) and (by Lemma 4) ¢’l"|G., € LI(R?) for all ¢ € [1,3/2).

We now prove that the second term on the right side of (B1I)) is in L°°(R?). This follows from
Young’s inequality once we have proved that

" [E(p), xrlpi € LP(R?) for p € [2,00), (63)
since

oA

/Rs (T —en) ™' (x,¥) ([E(p), xrl¢:) (¥) dy‘
S/ PPylg,  (x — y)eﬁ\Y\HE(p)’XR](pi‘(y) dy |
R3

and e°I'1G., € LI(R?) for q € [1,3/2).
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To prove (60) it therefore remains to prove (63)). To do so, we consider a new localization
function. Let n € C§°(R3) be such that 0 <7 < 1 and

(x) = 1 if R/4 <|x| <3R/2
T =Y 0 x| < R/8 or x| > 2R,
and consider the following splitting

EP), xrlpi = ¢V In[Ep), xrl(ne:) + M In[E®), xr]((1 = n)¢s)
+ (1 = n)[Ep), xr](ne:) + 111 = n)[E(p), xr] (L —n)ei - (64)
Since np; € H¥(R3) for all k € N (as proved earlier), [E(p), xr](np;) belongs to H¥(R?) for all
k € N. Hence, since n has compact support away from x = 0, the first term on the right side of
©4) is in LP(R3) for p € [1,00] by Sobolev’s imbedding theorem (the term is smooth).
For the second term in (64]) we proceed by duality: We will prove that
b(x) = (" In[E(p), xr]((1 = n)¢:)) (x)

defines a bounded linear functional on L?(R3) for any ¢ € (1,2]. It then follows that 1 € LP(R3)
for all p € [2,00).
Note that [18, 7.12 Theorem (iv)]

(9.[V-A+a2—a"']g)

a”? l9(x) —9(¥)I” 1
=& W) Z IV ey (0L x — f R3
2 [ ] I Ko™ - yl)dxdy for g € S(R). (65)
where K5 is a modified Bessel function of the second kind (in fact, Ky(t) = —t%[t_lKl(t)]),
satisfying [1]
Ky(t) < Ct7te™ for t>1. (66)

Let f € C$°(R?). Using (65) and polarization, we have that
[, ToT00) dx = (7,2 @) xrl(1 = )
o2 // XR(X) — XR(y) K2(a71‘x o y‘)

- prsl |x—y|>R/4 x — }’\2
x [ F)e™n(x) (1 = n(y)ei(y) = F&)e™Yny) (1 = n(x))ei(x)] dxdy
by the properties of x and 7. Hence,
| [ o900 ix]
R3
C x)[eBx—l “lix — Blyl| o, xdy ,
<On [ RO o7 ey oy sy

< Cu [ [ 176 Koo b = ylmyalix — DMty dxdy. (67)

Note that, since 8 < v.y < a~!, ([66) implies that e’l"[Ko(a™t] - |)xg/4 is in L"(R?) for all r > 1.
Since (by Proposition 1) e”l*lp; € L?(R3), Young’s inequality therefore gives that

(e Koa(a™ |- Dxaya) * (% iil) € L (B®) for all s € [2,00).
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This, (67), and Holder’s inequality (with 1/q + 1/s = 1) imply that, for all f € C§°(R?) and all
q€(1,2]

| [ Tt dx| < Call " Koo Dxaye) (€ i, 11

By density of C§°(R3) in L4(R3), it follows that ¢ defines a bounded linear functional on L?(R3)
for any ¢ € (1,2], and therefore, that ¢ € LP(R?) for all p € [2,c0).

Proceeding similarly one shows that the two remaining terms in (64)) are also in LP(R3) for all
p € [2,00).

This finishes the proof of (63), and therefore of (G0).

Finally we prove that yrpse?l'| € L%°(R3). We start again from (GI). We already know that
the second term is in L>(R3). The first term is a sum of terms of the form (see also (62)))

0 = xrpp ()™ [ (7 ) )13 dy

with f € L?(R?) and XR/4em If € LP(R3) + L®(R3) for p € [2,6) by what just proved, replacing
R by R/4 in ([60). We find that

() < a0 [T = )7 ) (313 dy

+ Xp/a(x) /RS PPINT — en) T (%, y)eP (1L = xpya) (9)1£(y)l dy |

and, again by Young’s inequality, we see that both terms are in L°°(IR?). Notice that in the second
integrand |x —y| > R/4.
This finishes the proof of Theorem 1 (iii). O

It therefore remains to prove Proposition 1.

Proof of Proposition 1. We start by proving (i). It will be convenient to write the Hartree-Fock
equations h.urp; = €05, 1 =1,..., N, (see ([28)) as a system.
Let t be the quadratic form with domain [H'/2(R)]V defined by

N
t(u,v) =) t(u;,v;) for all u,v € [H/2(RH)V
=1

where u; denotes the i-th component of u € [H'/?(R*)]Y and t is the quadratic form defined in
(). Similarly we define the quadratic forms v, r, and k, all with domain [H 2R3N, by

N
v(n,v) =Y 0w, vi), ry(v) =ad (0, Ryvi), ky(1,v) = o, K,v),
=1

~
[y

with v defined in (@), Ry defined in ([22]), and K, the N x N-matrix given by

(K)is = /Rg 0i(¥)e;i(y) dy

x -yl

The effect of writing the Hartree-Fock equations as a system is that K, is a (non-diagonal) multi-
plication operator. This idea was already used in [19]. Note that (K,);; € L3(R3) N L% (R3); the
argument is the same as for (22)).
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Let finally E be the N x N matrix defined by (E); ; = —&;d; ;.
We then define the quadratic form q by

a(u,v) = t(u,v) —v(u,v) + ry(u,v) — ky(u,v) + (u,Ev) . (68)

One sees that the quadratic form domain of q is [HY/?(R?)]"V, that q is closed (since t is closed),
and that there exists a unique selfadjoint operator H with D(H) € [HY/2(R?)]N such that

(0, Hv) = q(u,v) for all ue [H2R)HN,veDH).

Notice that the vector ® = (¢1,...,pnN) satisfies HP = 0.

Let W (k), k € C3, denote the multiplication operator from a subset of [L?(R3)]" to [L?(R3)]™
given by f(x) — "X f(x). Instead of proving directly the claim of the proposition, we are going
to prove the following statement, which implies the proposition:

O € D(W(k)) for |Im(k)|rs < vey » (69)

where ® = (1,...,¢n). Here, kK = Re(k) + ilm(x) with Re(x), Im(x) € R3.
We know that W (x)® is well defined on [L?(R3)]Y for x € R3 and we need to show that it has
a continuation into the ‘strip’ ¥, , where

Sy = {x € C*| | Im(k)|gs < t}.

We shall also need ¥,-1; note that ¥,-1 D ¥, . The idea is to use O’Connor’s Lemma (see
Lemma 5 below).
Starting from the quadratic form q defined in (68)) we define the following family of quadratic
forms on [HY2(R3)]V:
a(k)(u, 1) = q(W (—)u, W (—r)u)

depending on the real parameter x € R?. From the definition,
a(k)(u,u) = t(k)(u,u) — v(u,u) + ry(u,u) — ky(u,u) + (u,Eu),
where
N 3 s
o) (wu) = ) /R (a7 + 320y — #)") Plas(p) P dp — o (). (70)
i=1 j=1

One sees that q(x) extends to a family of sectorial forms with angle § < T, and that q(k) is
holomorphic in the strip ¥,-1 (indeed, ||[Im(k)|gs < o' is needed to assure that the complex
number under the square root in (70) has non-negative real part for all p € R3). Moreover, q(k) is

closed. Indeed, it is sufficient to prove that the real part of q(x) is closed, which will follow from
v(u,u) + ry(u,u) + ky(u,u) + (u,Eu) < bRe(t(x))(u,u) + K(u,u), (71)
with b < 1, K > 0 and Re(t(k)) closed. We now prove ([7I]). We already know that
r,(u,u) + ky(u,u) + (u,Eu) < K'(u,u) for K’ > 0. (72)
By (®)) we find

N
T oy 2
< (Za)g 3 [ ipliue)dp

< (Za)gRY [/

@R dp+ [ lpllae) dp]. (73)
pI<R

[pI>R
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Let 6 > 0 be such that ZaZ(1 —6)~' < 1. Since

N 3
Re(t(5))(w,u) = 3 / 072+ 3 5y — 12|72 cos(0(p, ) [i(p) [ dp
i—1 Y R?

j=1
— o Hu,u),
with
a™? + Z] 1(pj — Re(r;))? — (Im(r))?)
o 2+Zj:1(17j_"5j)2| ’
there exists R > 0 such that cos((p, )) > (1 — 0) for |p| > R. Hence we find that

2cos’(A(p, k) — 1 =

N 3 1/2
Re(t(k))(u,u) > (1 -6 i — Kj) (p)2d
(s ) = (1) /p|>R g () dp
— o Hu,u)
N
z<1—6>2/ (Ipl — C)| () dp — o~ {u, ), (74)
i—1 7 IPI>R

with C' > ||[Re(x)||gs. The estimate in (7)) follows combining (72)) with (73]) and (7).
The fact that Re(t(x)) is closed follows from

N
IZ/ bl — ©) [(p)? dp < Relt(x Z/ p| + O)li(p) dp .

with C > 2a~! + Re(k).

Hence, q(k) is an analytic family of forms of type (a) ([I5, p. 395]). The associated family
H(k) of sectorial operators is a holomorphic family of operators of type (B) and has domain in a
subset of [H1/2(R?)|Y

We are interested now in locating the essential spectrum of H(x). Since K, is a Hilbert-Schmidt
operator, the essential spectrum of H(k) coincides with the essential spectrum of the operator
associated to

t(k)(u,u) —v(u,u) + ar,(u,u) + (u,Eu).

Notice that the operator associated to this quadratic form is diagonal. Proceeding as in the
proof of oess(hy) = [0,00) (Lemma 2), one sees that gess(H(k)) C 0ess(T' (k) — en) with T'(k) :=

\/a 24 Zj 1(pj — kj)? — ™. Hence we find that

Gess(H(r)) C {2 € C|Re(z) > \/or2 — [tm(k)[|2s — ot —en}.

Hence 0, eigenvalue of H(0), remains disjoint from the essential spectrum of H(x) for all k € ¥,
(recall that ¥, C ¥,-1) .

Since H(k) is an analytic family of type (B) [27, p.20] in 3,_, 0 is an eigenvalue of H(0) and
moreover, 0 remains disjoint from the essential spectrum of H(k), it follows that 0 is an eigenvalue
in the pure point spectrum of H(k) for all k € ¥,_  (reasoning as in [27, page 187]). Let P(x) be
the projection onto the eigenspace corresponding to the eigenvalue 0 of the operator H(k). Then
P(k) is an analytic function in ¥, and for k € ¥,, =~ and kg € R we have

P(k + ko) = W (ko)P(r)W (—ko) -
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Here we used that W(—mo) is a unitary operator. The result of the lemma follows by applying
Lemma 5 below to W (6) := e X with k € R3, ||k||gs = vey, and 6 € {z € C||Im(2)| < 1}. Notice
that W(0) = W (0x) and that the projection B(f) := P(fk) is analytic and satisfies B(0 + 6y) =

W (60)B(0)W (—0) for 6y € R.

This finishes the proof of (i).

To prove (ii), we can work directly with the Hartree-Fock equation, since, from (i), the function
K. nro is exponentially decaying. Therefore, let

q[u, v] = (u, hyurv) — e(u,v) for w,v € H'?(R3), (75)

and note that, by assumption, 0 is an eigenvalue for the corresponding operator (p is an eigen-
function). Define, for x € R3,

q(k)[u, v] = q[W (=r)u, W(=r)v]
= t(k)[u, v] — vfu,v] + b ur (k)[u, v] — (u,v), (76)
with W (k) and t(k) as before (but now on H'/?(R3)), see (Z0), and
bur (k) [u,v] = a(u, Roprv) — a(u, K pr (k)v), (77)

where

(X)€" e pi(y)
x —y|

N
K,YHF (H) (X, y) = Z L4 (78)
j=1

Using (i) of the proposition (exponential decay of the Hartree-Fock orbitals {@j}é\]zl) one now
proves that ([8) extends to a holomorphic family of Hilberts-Schmidt operators in Y. .- One can
now repeat the reasoning in the proof of (i) to obtain the stated exponential decay of . O

Lemma 5. ([27, p. 196]) Let W (k) = ™4 be a one-parameter unitary group (in particular, A is
self-adjoint) and let D be a connected region in C with 0 € D. Suppose that a projection-valued
analytic function P(k) is given on D with P(0) of finite rank and so that

W (ko) P(k)W (ko) ™t = P(k + ko) for ko € R and k,k + kg € D

Let 1p € Ran(P(0)). Then the function ¥(k) = W (k)Y has an analytic continuation from D NR
to D.

A Some useful lemmata

Lemma 6. Let Q2 be an open subset of R?\ {0} with smooth boundary and let f1, fo € H*(Q) for
some k > 1.

Then the function
_ [ Afb)

R3 ’X—Y’

belongs to C*(Y) if k > 2, while if k = 1, it belongs to WP(Q) for all p > 1, and hence to C(Q).

F(x): dy

Proof. We are going to prove the following equivalent statement. If k& > 2, YF € C*(R3) for all
X € C§°(Q), while if k =1, xF' € WHP(R3) for all p > 1 and x € C§(R).
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Fix y € C3°(2) and take x € C§°(Q2) verifying ¥ = 1 on supp x and such that there is a strictly
positive distance between supp x and supp (1 — x). We write xF'(x) = xF1(x) + xFa(x) with

-ﬂ@%=4;«wﬁWwadyami&@ﬁzA;ﬂ—XWDﬁ@wxwdy

Ix -yl x -y

The term yFb is clearly in C*°(R3). For the other term we use Young’s inequality: if f € LP(R3)
and g € LI(R?) then
. 1 1 1
1f*gllr < Cllfllpllglly with 14 ===+~ (79)
r P 9
Moreover, if 1/p+1/q = 1 then f g is continuous (see [31, Lemma 2.1]). Let a € N with |a| < k.
Then

D (xF) ()| < DA [ g DA )y (50)

ﬁ1+52 a,

B1,02€N3

If f1, fo € H*(Q), k > 2, then D% (xf1f2) € L5/3(R?) for all B as in (80). From (79), (80) and
X/|-| € L?/%(R3) it follows that D®(xF}) is continuous and, since « is arbitrary, that yF' € C*(R?).
If f1, fo € HY(Q) then d(x f1f2) € L¥?(R?) and from (T9) we get (only) that d(xF) € LP(R?)
for all p > 1. It then follows that F € WHP(Q) for all p > 1 and therefore (by the Sobolev
imbedding theorem) F € C(2). O

x — w

Lemma 7. Let, for Za < 2/m, hgy be the self-adjoint operator defined in (9), and let A_(«) be the
projection onto the pure point spectrum of hg.

Then the operator A_(a)hoA_(a) is Hilbert-Schmidt.

Proof. Let € > 0 be such that Za(1 +¢€) < 2/m(1 —€). We are going to prove that there exists a
constant M = M (e) such that
1 C

A

hg > ————P(—A — P 81
O_M—|—2a—1 ( ") ) ( )

with ¢ = Za(M +2a71)(1 4 1/€) and P = xjo,0(T(p)). The claim will then follow from (1)
since

1 C, 2
Tr ([ho]-)* < a;g;jqﬂPA—r#)<m~

The last inequality follows since the eigenvalues of —A — C/| - | are — C?/4n?,n € N, with
multiblicity n?.
We now prove (8I)). For ¢ > 0 and any projection P (with P+ =1 — P), we have that

A A
ho:meP4—PimJﬂ-—PT%fﬂ-PLT%P
17 VA
> P(ho — —ﬁ)P + PL(hg — eﬁ)Pl . (82)
6 .
By a direct computation one sees that there exists a constant M = M(e) such that T'(p) > M
implies T'(p) > (1 —¢)|p| and T'(p) < M implies T'(p) > m(—A). Hence, with this choice of
M and P = xjo(T(p)), (82) implies that

ho 2 P &) -+ e 2P P - gvEE - 0+ 0 2P

The inequality (81 follows directly by the choice of e. O

M +2a-1
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B Pseudodifferential operators

In this appendix we collect facts needed from the calculus of pseudodifferential operators (¢do’s)
(for references, see e.g. [14] or [28]).

Define the standard (Hoérmander) symbol class S#(R"™), p € R, to be the set of functions
a € C*(RY x RY) satisfying

0200 a(x,€)] < Cap(1+ €% P7IP0/2 for all (z,£) € RE x Ry (83)

Here, o, 3 € N” and |a| = oy + - + a,,. Furthermore, S*(R") c S*(R™) for p < /. We
denote S™(R") = U,erS*(R™) and S™°(R") = N,erS*(R™). Finally, note that ab € SHF#2(R™),
020¢a € SM~IPI(R") when a € $#1(R"), b € SH2(R™).

A symbol a € S#(R"™) defines a linear operator A = Op(a) €: ¥* (‘pseudodifferential operator
of order p’) by

(Op(a)u](x) = (27)" / ¢ Sa(z, €)al€) de (34)

n

where @ is the Fourier-transform of w. The operator A is well-defined on the space S(R") of
Schwartz-functions; it extends by duality to S’(R™), the space of tempered distributions. Note
that for

a8 = Y aa(x)s” (85)
0<|al<p
(with a, smooth and with all derivatives bounded, i.e., a, € B(R™)), A = Op(a) € ¥* is the
partial differential operator given by
[Op(a)u](z) = D aa(z)Du(x). (86)
0<|a|<p

Note also that, with a = a(x) and b = b(§),

—

[Op(a)ul(z) = a(z)u(z) and [Op(b)u](§) = b(E)a(E) .

If a € S*(R™), then Op(a), defined this way, maps H*(R") continuously into H*¥~#(R") for all
k € R. Here, H*(R") is the Sobolev-space of order k, consisting of u € S’(R™) for which

e = [ TP+ ) de (s7)
is finite; this defines the norm on H*(R™). We denote
H*R") = (H*®R"), H>®R") =] H'R".
keR keR

In particular, symbols in S°(R™) define bounded operators on L?(R") = HY(R"). Furthermore,
operators defined by symbols in S™°(R™) maps any H¥(R") into H>(R"); such operators are
called ‘smoothing’.

We need to compose ©¥do’s. There exists a composition # of symbols,

# . SF(R™) x §H2(R™) — SH1tH2(R™) (88)
(a,b) — a#tb, (89)
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such that Op(a)Op(b) = Op(a#d). It is given by

(@), = e [ e alan —n)bla — y.n) dydy. (90)

(2m)"
Here, the integral is to be understood as an oscillating integral.
The symbol a#b has the expansion

i~ lal
aftb ~ Y — - (92a)(9ED). (91)

(63
Here, ‘~’ means that for all j € N,
;= lal

atb — Y —(07a)(980) € SHLtHz=] (RM) (92)

|l <j

(recall that (97a)(9¢'b) € Stuz—laly  One easily sees that the composition is associative.

Proposition 2. Ifa € S™(R"), b € S"™2(R"™) then the symbol associated to [Op(a), Op(b)] belongs
to Smitm2—l(Rn),

In particular, if ¢1,¢2 € B*°(R™) (the smooth functions with bounded derivatives) with
supp ¢1Nsupp 2 = @ and a € SH(R™), a(x, &) = a(§), then ¢1#a#p2 ~ 0, and so, with A := Op(a),

$1Ap2 = Op(¢1)Op(a)Op(k2)

is smoothing.
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Real analyticity away from the nucleus
of pseudorelativistic Hartree-Fock orbitals

Anna Dall’Acqua, Sgren Fournais?,

Thomas Ostergaard Sgrensen®, Edgardo Stockmeyer?

Abstract

We prove that the Hartree-Fock orbitals of pseudorelativistic atoms, that is, atoms
where the kinetic energy of the electrons is given by the pseudorelativistic operator
v —A+41—1, are real analytic away from the origin.

Our proof is inspired by the classical proof of analyticity by nested balls of Morrey
and Nirenberg [27]. However, the technique has to be adapted to take care of the
non-local pseudodifferential operator, the singularity of the potential at the origin, and
the non-linear terms in the equation.

1 Introduction and results

In a recent paper [5], three of the present authors studied the Hartree-Fock model for pseudorel-
ativistic atoms, and proved the existence of Hartree-Fock minimizers. Furthermore, they proved
that the corresponding Hartree-Fock orbitals (solutions to the associated Euler-Lagrange equa-
tion) are smooth away from the nucleus, and that they decay exponentially. In this paper we
prove that all of these orbitals are, in fact, real analytic away from the origin. Apart from intrin-
sic mathematical interest, analyticity of solutions has important consequences. For example, in
the non-relativistic case, the analyticity of the orbitals and the regularity properties of the true
quantum mechanical eigenfunction was used in [14] to prove that the quantum mechanical ground
state is never a Hartree-Fock state. Our proof also shows that any H'/2-solution ¢ : R3 — C to
the non-linear equation

(\/7—A+1)<p—%<pi(\<p\2*\~\l)w—w (1)

which is smooth away from x = 0, is in fact real analytic there. As will be clear from the proof,
our method yields the same result for solutions to equations of the form

(—A+m)o+Ve+lplfo=Ap, (2)

where V has a finite number of point singularities (but is analytic elsewhere), under certain condi-
tions on m, s, V', and k (see Remark below). We believe this result is of independent interest,
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but stick concretely to the case of pseudorelativistic Hartree-Fock orbitals, since this was the
original motivation for the present work.

We consider a model for an atom with N electrons and nuclear charge Z (fixed at the origin),
where the kinetic energy of the electrons is described by the expression /(|p|c)? + (ch)2 —mc?.
This model takes into account some (kinematic) relativistic effects; in units where h =e =m = 1,
the Hamiltonian becomes

N
H = Za { (—iV;) — V(xj)}—F Z ﬁ, (3)

j=1 1<i<j<N

with T(p) = E(p) —a~! = \/Ip2+ a2 —a ! and V(x) = Za/|x|. Here, a is Sommerfeld’s fine
structure constant; physically, o ~ 1/137.

The operator H acts on a dense subspace of the N-particle Hilbert space Hp = /\Z-]LLQ(RZS)
of antisymmetric functions. (We will not consider spin since it is irrelevant for our discussion.) It
is bounded from below on this subspace if and only if Za < 2/7 (see [25]; for a number of other
works on this operator, see [3], 6, 9], 16, 23] 28] 311, 32]).

The (quantum) ground state energy is the infimum of the quadratic form q defined by H, over
the subset of elements of norm 1 of the corresponding form domain. Hence, it coincides with the
infimum of the spectrum of H considered as an operator acting in Hg.

In the Hartree-Fock approximation, instead of minimizing the quadratic form q in the entire
N-particle space ‘Hp, one restricts to wavefunctions ¥ which are pure wedge products, also called
Slater determinants:

U(xi, ... xy) = \/% det (1 (3¢;)) Vs (4)

with {u;}V; orthonormal in L?(IR®) (called orbitals). Notice that this way, ¥ € Hp and || ¥|| 2 (R3N) =
1.

The Hartree-Fock ground state energy is the infimum of the quadratic form q defined by H over
such Slater determinants:

EUY(N, Z,a) := inf{ q(¥, ¥) | ¥ Slater determinant }. (5)
Inserting ¥ of the form in () into q formally yields

EM(uy, . uy) = q(\IJ U)

‘12 Aw G (=), (0) = V)l ()} dx

R3 JR3 ’X -

In fact, u; € H'/2(R?), 1 < i < N, is needed for this to be well-defined (see Section [ for a detailed
discussion), and so ([@)—(@) can be written

1<z ]<N

1<z ]<N

EM"(N, Z,0) = inf{ E"F (w1, ..., un) | (w1, ..., un) € My}, ()
My = { (un,.,ux) € [HY RN | (us,05) = 535 } ®)
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Here, (, ) denotes the scalar product in L?(R3). The existence of minimizers for the problem (7))
®) was proved in [5] when Z > N — 1 and Za < 2/7. (Note that such minimizers are generally
not unique since EM is not convex; see [I0]). The existence of infinitely many distinct critical
points of the functional £ on M was proved recently (under the same conditions) in [7].

The Euler-Lagrange equations of the problem ()-8 are the Hartree—Fock equations,

[(T(=iV) = V)@i] (%) + a Z/ M dy i (x) 9)

ai(/ ﬂdy)goj(x):ei@i(x), 1<i<N.

— /RS x =yl

Here, the ¢;’s are the Lagrange multipliers of the orthonormality constraints in (). (Note that the
naive Euler-Lagrange equations are more complicated than (@), but can be transformed to ([)); see
[10].) Note that (@) can be re-formulated as

hcp@i =&Y, 1 < 7 < N, (10)
with hy the Hartree-Fock operator associated to ¢ = {¢1,...,on}, formally given by
hou = [T'(=iV) — V]u + aRyou — aKu, (11)

where R,u is the direct interaction, given by the multiplication operator defined by

|90J
Z/Rs x — yl 12)

and K,u is the exchange term, given by the integral operator

ivj (/ %dy)w(ﬂ (13)

j=1 /R

The equations (@) (or equivalently (I0)) are called the self-consistent Hartree-Fock equations. One
has that oess(hy) = [0,00) and that, when in addition N < Z, the operator hy, has infinitely
many eigenvalues in [—a~!,0) (see [5, Lemma 2]; the argument given there holds for any ¢ =
{©1,...,on}, @i € HY/?2(R3), as long as Za < 2/7). If (¢1,...,on) € My is a minimizer for the
problem (7)), then the ¢;’s solve ([IO) with &1 < ey < --- < ey <0 the N lowest eigenvalues of
the operator hy, [5].

In [5] it was proved that solutions {¢1,...,on} to ([@)—and, more generally, all eigenfunc-
tions of the corresponding Hartree-Fock operator h,—are smooth away from x = 0 (the singu-
larity of V'), and that (for the ¢;’s for which ¢; < 0) they decay exponentially. (The solutions
studied in [5] came from a minimizer of EMY, but the proof trivially extends to the solutions
{entnen = {{eT,. .. ,cp?v}}neN to (@) found in [7], and to all the eigenfunctions of the correspond-
ing Hartree-Fock operators mentioned above). The main theorem of this paper is the following,
which completely settles the question of regularity away from the origin of solutions to the equa-

tions (3.

Theorem 1.1. Let Za < 2/w, and let N > 2 be a positive integer such that N < Z 4+ 1. Let
e={p1,..., 0N}, @i € Hl/Q(R?’), i=1,...,N, be solutions to the pseudorelativistic Hartree-Fock
equations in ().
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Then, fori=1,...,N,
pi € C¥(R*\ {0}), (14)
that is, the Hartree-Fock orbitals are real analytic away from the origin in R3.

Remark 1.2. (i) The restrictions Za < 2/m, N < Z + 1, and N > 2 are only made to ensure
ezistence of HY?-solutions to @). In fact, our proof proves analyticity away from x = 0 for HY/2.
solutions to @) for any Za. For the case N = 1, Q) reduces to (T — V)¢ = ep and our result
also holds for H'/?-solutions to this equation (see also () and (v) below about more general V
for which the result also holds for the linear equation). More interestingly, the result also holds for
H'Y?_solutions to (M) (which, strictly speaking, cannot be obtained from @) by any choice of N).

(i) The statement also holds for any eigenfunction of the associated Hartree-Fock operator
given by ().

(iii) It is obvious from the proof that the theorem holds true if we include spin.

(iv) As will also be clear from the proof, the statement of Theorem[11] (appropriately modified)
also holds for molecules. More explicitely, for a molecule with K nuclei of charges Zy,...,Zx,
fired at Ry, ..., Rk € R3, replace V in (@) by Zszl Vi with Vi(x) = Zra/|x — Ry, Zra < 2/7.
Then, for N < 1+ Zle Zy, Hartree-Fock minimizers exist (see [5, Remark 1 (viii)]), and the
corresponding Hartree-Fock orbitals are real analytic away from the positions of the nuclei, i.e.,
belong to C¥(R3\ {Ry,..., Rk }).

(v) In fact, for V we only need the analyticity of V away from finitely many points in R3, and
certain integrability properties of V; in the vicinity of each of these points, and at infinity; for
more details, see Remark [{.]]

(vi) As will be clear from the proof, the statement of Theorem [I1 also holds for other non-
linearities than the Hartree-Fock term in @), namely |¢|*¢ as in @) (for k even; for k odd, one
needs to take (pkﬂ). The LP-space in which one needs to study the problem (see Proposition 2]
and the description of the proof below for details) needs to be chosen depending on k in this case
(the larger the k, the larger the p).

(vii) Also, as will be clear from the proof, the result holds if T(—iV) = |V| (i.e., T(p) = |p|) in
@). In @B3) below, E(p)~* should then be replaced by (|p|+1)~! (and 1°added to ‘a='+e;’). The
only properties of E(p)~! used are in Lemmas C.1 and C.2, which follow also for (|p|+1)~! from
the same methods with minor modifications. Similarly, one can replace T(p) with (—A + a=2)%,
s €[1/2,1].

(viii) The result of Theorem [I1l in the non-relativistic case (I (—iV) replaced by —aA in (3]))
was proved in [13, [22]; see also the discussion below. In this case, it is furthermore known [10]

that, for x € B.(0) for some r > 0, p;(x) = gogl)(x) + |X|30Z(~2) (x) with gpgl), 3052) € C¥(B,(0)).
Description of the proof: The proof of Theorem [[T]is inspired by the standard Morrey-Nirenberg
[27] proof of analyticity of solutions to general (linear) elliptic partial differential equations with
real analytic coefficients by ‘nested balls’. A good presentation of this technique can be found in
[17]. (Other proofs using a complexification of the coordinates also exist and have been applied to
both linear and non-linear equations; see [26] and references therein.)

In [I7] one proves L?-bounds on derivatives of order k of the solution in a ball B, (of some
radius r) around a given point. These bounds should behave suitably in k& in order to make the
Taylor series of the solution converge locally, thereby proving analyticity.

The proof of these bounds is inductive. In fact, for some ball Br with R > r, one proves
the bounds on all balls B, with r < p < R, with the appropriate (with respect to k) behaviour
in R — p. The induction basis is provided by standard elliptic estimates. In the induction step,
one has to bound k + 1 derivatives of the solution in the ball B,. To do so, one divides the
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difference Bg\ B, into k+ 1 nested balls using &+ 1 localization functions with successively larger
supports. Commuting m of the k derivatives (in the case of an operator of order m) with these
localization functions produces (local) differential operators of order m—1, with support in a larger
ball. These local commutator terms are controlled by the induction hypothesis, since they contain
one derivative less. For the last term—the term where no commutators occur—one then uses the
equation.

This approach poses new technical difficulties in our case, due to the non-locality of the kinetic
energy T(p) = vV — A+ a=2 — a~! and the non-linearity of the terms Ryp; and Kp;.

The non-locality of the operator v — A + o2 implies that, as opposed to the case of a differ-
ential operator, the commutator of the kinetic energy with a localization function is not localized
in the support of the localization function. That is, when resorting to proving analyticity by
differentiating the equation, the localization argument described above introduces commutators
which are (non-local) pseudodifferential operators. Now the induction hypothesis does not provide
control of these terms. Furthermore, it is far from obvious that the singularity of the potential
V outside Br does not influence the regularity in Br of the solution through these operators (or
rather, through the non-locality of v — A + a=2). Loosely speaking, the singularity of the nuclear
potential ‘can be felt everywhere’. (Note that if we would not have a (singular) potential V' one
could proceed as in [I1] and prove global analyticity by showing exponential decay of the solutions
in Fourier space.)

We overcome this problem by a new localization argument which enable us to capture in more
detail the action of high order derivatives on nested balls (manifested in Lemma B.1 in Appendix
B below). This, together with very explicit bounds on the (smoothing) operators ¢.E(p) = D% for
x and ¢ with disjoint supports (see Lemma C.2), are the main ingredients in solving the problem
of nonlocality. The estimates are on ¢E(p)~'DPx (not ¢E(p)D?y), since we invert E(p) (turning
the equation into an integral operator equation, see (35])). Our method of proof would also work
in the non-relativistic case, since the integral operators (—A + 1)~! and E(p)~! enjoy similar
properties.

The second major obstacle is the (morally cubic) non-linearity of the terms R,p; and K ;.

To illustrate the problem, we discuss proving analyticity by the above method (local L2-
estimates) for solutions u to the equation Au = w3. When differentiating this equation (and
therefore u?), the application of Leibniz’ rule introduces a sum of terms. After using Holder’s in-
equality on each term (the product of three factors, each a number of derivatives on u), one needs
to use a Sobolev inequality to ‘get back down to L?’ in order to use the induction hypothesis. Sum-
ming the many terms, the needed estimate does not come out (in fact, some Gevrey-regularity
would follow, but not analyticity).

In the quadratic case this can be done (that is, for the equation Au = u? this problem does
not occur), but in the cubic case, one looses too many derivatives.

The second insight of our proof is that this problem of loss of derivatives may be overcome
by characterizing analyticity by growth of derivatives in some LP with p > 2. When working in
L? for p > 2, the loss of derivatives in the Sobolev inequality mentioned above is less (as seen in
Theorem D.1. Choosing p sufficiently large allows us to prove the needed estimate. The operator
estimates on ¢E(p)~' D’y mentioned above therefore have to be LP-estimates. In fact, using
LP — L9 estimates, one can also deal with the problem that the singularity of the nuclear potential
V ‘can be felt everywhere’.

Note that taking p = oo would avoid using a Sobolev inequality altogether (L°° being an
algebra), but the needed estimates on ¢pF(p) ' DB cannot hold in this case. For local equations
an approach to handle the loss of derivatives (due to Sobolev inequalities) exists. This was carried
out in [I2], where analyticity of solutions to elliptic partial differential equations with general
analytic non-linearities was proved. Friedman works in spaces of continuous functions. In this
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approach, one needs to have a sufficiently high degree of regularity of the solution beforehand (it
is not proved along the way). Also, since the elliptic regularity in spaces of continuous functions
have an inherent loss of derivative, one needs to work on a sufficiently small domain in order for
the method to work. We prefer to work in Sobolev spaces since this is the natural setting for our
equation and since the needed estimates on the resolvent are readily obtained in these spaces.

For an alternative method of proof (one fized localization function, to the power k, and es-
timating in a higher order Sobolev space (instead of in L?) which is also an algebra), see Kato
[19] (for the equation Au = u?) and Hashimoto [15] (for general second order non-linear analytic
PDEs).

Additional technical difficulties occur due to the fact that the cubic terms, R,p; and K,p;,
are actually non-local.

Note that in the proof that non-relativistic Hartree-Fock orbitals are analytic away from the
positions of the nuclei (see [I3], 22]), the non-linearities are dealt with by cleverly re-writing the
Hartree-Fock equations as a system. One introduces new functions ¢;; = [¢:i;] * | - |7}, which
satisfy —Ad¢; ; = 4mp;p;. This eliminates the terms R,p;, K,p;, turning these into quadratic
products in the functions ¢;, ¢; j, hence one obtains a (quadratic and local) non-linear system of
elliptic second order equations with coeflicients analytic away from the positions of the nuclei. The
result now follows from the results cited above [19] 26]. (In fact, this argument extends to solutions
of the more general multiconfiguration self-consistent field equations, see [13], 22].)

This idea cannot readily be extended to our case. The operator E(p) is a pseudodifferential
operator of first order, so when re-writing the Hartree-Fock equations as described above, one
obtains a system of pseudodifferential equations. This system is, as before, of second (differential)
order in the auxiliary functions ¢; ;, but only of first (pseudodifferential) order in the original
functions ¢;. Hence, the leading (second) order matrix is singular elliptic. Hence (even if we
ignore the fact that the square root is non-local) the above argument does not apply.

To summarize, our approach is as follows. We invert the kinetic energy in the equation for
the orbitals thereby obtaining an integral equation to which we apply successive differentiations.
The localization argument of Lemma B.1 together with the smoothing estimates on ¢E(p)~' Dy
handle the non-locality of this equation. By working in LP for suitably large p one can afford the
necessary loss of derivatives from using Sobolev inequalities when treating the non-linear terms.

2 Proof of analyticity

In order to prove that the ;’s are real analytic in R3\ {0} it is sufficient [21, Proposition 2.2.10]
to prove that for every xo € R3\ {0} there exists an open set U C R3\ {0} containing xq, and
constants C, R > 0, such that

|
10%pi(x)| < C % for all x € U and all 3 € N3. (15)

Let xg € R?\ {0}, and let w be the ball Br(xg) with center xo and radius R := min{1, |[xo|/4}.
For § > 0 we denote by ws the set of points in w at distance larger than § from dw, i.e.,

ws = {x € w|d(x,0w) > d}. (16)

By our choice of w we have ws = Bg_5(xg). Therefore ws = ) for 6 > R. In particular, by our
choice of R,

ws=0 for §>1. (17)
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For Q@ CR™ and p > 1 we let LP(2) denote the usual LP-space with norm

) = ([ 17617 ax) "

We write | f|, = || f]|zrw3)- In the following we equip the Sobolev space W™P(Q), Q C R", m € N
and p € [1,00), with the norm

[ullwmri) = > D7l Lo - (18)

lo|<m
Theorem [I.T] follows from the following proposition.

Proposition 2.1. Let Za < 2/w, and let N > 2 be a positive integer such that N < Z + 1. Let
p={p1,..., 0N}, @i € Hl/Q(R?’), i=1,...,N, be solutions to the pseudorelativistic Hartree-Fock
equations in ([@). Let xo € R3\ {0}, R = min{1, |xo|/4}, and w = Br(xo). Define ws = Br_s(x0)
ford > 0.

Then for all p > 5 there exist constants C,B > 1 such that for all j € N, for all € > 0 such
that €j < R/2, and for alli € {1,...,N} we have

NDO i 1o,y < CBY! for all B e NG with |8 <. (19)

Wej

Given Proposition 2] the proof that the ;’s are real analytic is standard, using Sobolev
embedding. We give the argument here for completeness. We then give the proof of Proposition 211
in the next section.

Let U = Bp/a(x0) = wr2 C w. Using Theorem D.5 and ([[d) we have ¢; € C(U). Therefore
it suffices to prove ([H) for |3| > 1. Fix i € {1,...,N} and consider 3 € N3\ {0} an arbitrary
multiindex. Setting j = |3| and € = (R/2)/j it follows from Proposition 2] (since €j = R/2) that
there exists constants C, B > 1 such that

B\ 18l 2B\ 18]
1D%Gillinons < €(=) " =C(5) 1817, (20)

with C, B independent of the choice of 3. By Theorem D.5 (see also Remark D.6) there exists a
constant K4 = K4(p, o) such that, for all 3’ € N3 \ {0},

sug\Dﬁ i(x)] < Ky Z |DP +U<Pz‘”Lp(wR/2)
XE

lo|<1
2B\ lol+5'] ol+|8’
lo|<1

using (20). Using that R < 1 < B, that #{o € N} ||o| = 1} = 3, and that, from (A7),
1+]8'| e 2184
1+ |5 < e !,
(1+187) S U |15']

this implies that for all 3’ € N§ \ {0},

/ 8eK4CBY (2e*B\ |7
sup | D% ;(x <( )( ) din 21
sup D% i) < (A2 (22E) 7 21
Since |o|! < 3l9lo! for all o € N (see (Ad) in Appendix A below), this implies that
, 3
sup |[D” i (x)| < € = (22)

el - RIS
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for some C, R > 0. This proves (I5)). Hence ¢; is real analytic in R\ {0}. This finishes the proof
of Theorem [T1]
It therefore remains to prove Proposition 211

Remark 2.2. We here give explicit choices for the constants C and B in Proposition [2.1. Let

= max H/ "p“ L gy H (23)
1<a,b<N Il Jp3 —y\

Note that by @9) below, this is finite since ¢; € H'/?(R3), i=1,...,N.
Furthermore, let A = A(xg) > 1 be such that, for all o € N},

sup |[D7V (x)| < A7 o1 (24)

Xew

The existence of A follows from the real analyticity in w = Br(xg) (recall that R = min{1, |xo|/4})
of V.= Za|-|7! (see e. g. [21, Proposition 2.2.10]). Assume without restriction that A > a~* +
maxi<i<nN ‘EZ‘ .

Let K1 = Ki(p), Ko = Ka(p), and K3 = K3(p) be the constants in Lemma C.1, Corollary D.2,
and Corollary D./, respectively (see Appendices C and D below). Then let

Cy = max { Ky, 256v2/7 }, (25)
C3 = max {4m(1 + 201 /R*)K3,160r K3 K3 } . (26)
Choose
768
C>Z€{r{1aXN {1 lpillwrwys (9l L3e (B (x0)) —!Xo\3(2 /)| |,

48+/2 1536+/2
" Nepills}. 27
[ T + 7T2’X0’ ]H‘p H3} ( )

That C < oo follows from the smoothness away from x = 0 of the ¢;’s [5, Theorem 1 (ii)] and
the fact that, since p; € Hl/Q(RS), 1 <i< N, we have p; € L3(R3), 1 < i < N, by Sobolev’s
inequality. Then choose

1
B > max {48AC'2, Cs, %,
0

where Cy is the constant (related to a smooth partition of unity) introduced in (B3). In particular,
B > 48. We will prove Proposition [21] with these choices of C' and B.

4C7, (160C*K,C3)?, (24N C» /Z)? 16 K3}, (28)

3 Proof of the main estimate

We first make (@) more precise, thereby also explaining the choice of My in (§). By Kato’s
inequality [20] (5.33) p. 307],

X 2 T ~
[ i< 2 [ plliwiPdp or 5 e ) (29)
R3 R3

|

(where f(p) = (2m)3/2 Jgs € XPf(x) dx denotes the Fourier transform of f), and the KLMN
theorem [29, Theorem X.17] the operator hg given as

ho =T (—iV) -V (30)
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is well-defined on H'/?(R?) (and bounded below by —a~!) as a form sum when Za < 2/, that
is,

(u, hov) = (E(p)"?u, E(p)"/?v) — a~ ' (u,v) — (VY?u, V%) for u,v € H'/?(R?). (31)
By abuse of notation, we write E(p) for the (strictly positive) operator E(—iV) = v—-A 4+ a2
For (¢1,...,pN) € My, the function R, given in (I2)) belongs to L>°(R?) (using Kato’s inequality
above), and the operator K, given in (I3]) is Hilbert-Schmidt (see [5, Lemma 2]). As a consequence,

when Zo < 2/, the operator hy, in ([[IJ) is a well-defined self-adjoint operator with quadratic form
domain H'/2(R3) such that

(u, hv) = (u, hov) + a(u, Ryv) — au, K,v) for u,v e H'Y2(RY). (32)

Since (u, Ryu) — (u, Kpu) > 0 for any u € L%(R3), also he, is bounded from below by —a 1.
Then, for (uq,...,uny) € My, the precise version of (@) becomes

gHF(ul, .. ,uN)

N
i (3) PP ()
Za (uj, houj) + Z /RS/RS Xyl dxdy

j=1 1<z

(%) us (%) ui (y)u; (y) N
Z /RB/RB ’X_y’ dxdy . (33)

1<z

The considerations on R, and K, above imply that also the non-linear terms in (33)) are finite for
u; € HY/2(R%), 1 <i < N.

If (¢1,...,0N8) € My is a critical point of EF in (@3], then ¢ = {¢1,..., N} satisfies the
self-consistent HF-equations (I]) with the operator h, defined above.

Note that E(p) is a bounded operator from H'/2(R3) to H~1/2(R3), and recall that ([29) shows
that V also defines a bounded operator from H'/2(R3) to H~'/?(R?) (for any Za). As noted above,
both R, and K, are bounded operators on L*(R?) when (¢1,...,¢n) € My. In particular, this
shows that if (¢1,...,¢n) € My solves (I0), then

E(p)pi —a o, — Vi + aRppi — aKpp; = eipi , L<i< N, (34)

hold as equations in H~/2(R3). Using that E(p)~! is a bounded operator from H~2(R?) to
H'/2(R®), this implies that, as equalities in H'/2(R3) (and therefore, in particular, in L?(R?)),

@i = BE(p) 'V — aE(p) ' Ryp;
+aE(P) ' Kepi+ (a7 +6)EP) e, 1<i<N, (35)

Proof of Proposition[2Z.1. The proof of Proposition 1] is by induction on j € Ny. More precisely:

Definition 3.1. For p > 1 and j € Ny, let P(p, j) be the statement:
For all e > 0 with ej < R/2, and alli € {1,...,N} we have

N D%l o,y < C B for all B e Ny with 8] < j, (36)

with C, B > 1 the constants in Remark [2.2.

Then Proposition 2.T]is equivalent to the statement: For all p > 5, P(p, ) holds for all j € Ny.
This is the statement we will prove by induction on j € Np.
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Induction start: For convenience, we prove the induction start for both j =0 and j = 1.
Note that P(p,0) trivially holds since (see Remark [2.2])

C=Clp) > max [lillzee) - (37)
Also P(p,1) holds by the choice of C, since

C=C(p)> max [ Dyillre) - (38)
1<i<N,
vef{l1,2,3}

Namely, since w. C w, ([36) holds for |3| = 0 (and alle > 0) using 7). For 5 € Ng with |5]|=1=j
(i.e., B = e, for some v € {1,2,3}), and all e > 0 with e = €¢j < R/2 < 1,
PN Dol 1o o) = €llDvill Lo (o) < 1 Dvill o)

<C<CB=CBW". (39)

Here we again used that we C w, (38), and that B > 1 (see Remark 2.2]).
We move on to the induction step.

Induction hypothesis:
Let p > 5 and j € Ny, j > 1. Then P(p,j) holds for all j < j. (40)

We now prove that P(p,j + 1) holds. Note that to prove this, it suffices to study 5 € Ng with
|8] = j + 1. Namely, assume ¢ > 0 is such that ¢(j + 1) < R/2 and let 3 € N3 with |3] < j + 1.
Then |G| < j and €j < R/2 so, by the definition of ws and the induction hypothesis,

MNDO G| Loy < €PND5 il Loy < CBI (41)

e(j+1

It therefore remains to prove that
ND il Lo, sy < CBPI forall €>0 with €(j+1) < R/2

and all 3 € N§ with 8] =7 +1. (42)

Remark 3.2. To use the induction hypothesis in its entire strength, it is convenient to write, for
¢>0, € >0 such that e/ < R/2, and o € N3 with 0 < |o| < j,

. ~ el -
“DJWi“LP(wGZ) = HDJ%HLP(W%;) with € = Ha J= ’0’7

so that, by the induction hypothesis (applied on the term with € and j) we get that

1D @il oy < C(B)\U\ _ (%)Iﬂ(ﬁ)lﬂl (43)

é €
Compare this with [B8). With the convention that 0° = 1, {@3)) also holds for |o| = 0.
We choose a function ® (depending on j) satisfying
D € O (we(jgs/ay), 0@ <1, with =1 on weiyqy- (44)
Then
1D gill g ) < 18D il (5)

The estimate ([@2))—and hence, by induction, the proof of Proposition ZJFnow follows from the
equations (B0) for the ¢;’s, [@0) and the following two lemmas.
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Lemma 3.3. Assume ([@Q) (the induction hypothesis) holds. Let ® be as in [@4). Then for all
i€{l,...,N}, alle >0 with e(j+1) < R/2, and all B € N3 with |3| = j+1, both ®DPE(p) ™1V,
and ®DPE(p)~'¢; belong to LP(R?), and

lon By Ve, < < (2)", (16)
(o= +e)en ) g, < S (2)" (a7)

where C, B > 1 are the constants in ([B0]) (see also Remark[2.2).

Lemma 3.4. Assume ([d0) (the induction hypothesis) holds. Let ® be as in ([@4). Then for all
i€ {l,...,N}, alle > 0 with e(j+1) < R/2, and all B € N3 with |8 = j+1, both ®DPE(p) ' Ryp;
and ®DPE(p) 1 K,p; belong to LP(R3), and

C 18|
B (v —1 il
la ®DE(p) ™" Rywillp < 4< ) ,

— C 18]
o ®DB(p) Kporll, < S (2)",

where C, B > 1 are the constants in ([30) (see also Remark[2.2).
Remark 3.5. Fora,be {1,...,N}, let Uy denote the function
Vst = [ 202 gy e, (48)
R: XY

In particular, |Ugplloc < C1 for all a,b e {1,...,N} (see [23])). Note that (see (I2)) and ([13))

<p§0z Z Us L0 cp‘Pz Z U; LPL - (49)

Hence Lemma [3.7) follows from the following lemma and the fact that Zoo < 2/m < 1.

Lemma 3.6. Assume (@Q) (the induction hypothesis) holds. Let ® be as in [@dl). For a,b €
{1,...,N}, let Uy be given by @8). Then for alla,b,i € {1,...,N}, alle > 0 withe(j+1) < R/2,
and all B € N3 with |B| = j+ 1, ®DPE(p) " U, s belong to LP(R?), and

_ cZz 18]
207 B () Uasoilly < S () (50)

where C, B > 1 are the constants in ([B30]) (see also Remark[2.3).

It therefore remains to prove Lemmas [3.3] and B.6l This will be done in the two following
sections. U

4 Proof of Lemma
We prove Lemma B3] by proving (@8] and (47) separately.

Proof of ({@G). Let o € N} and v € {1,2,3} be such that 3 = o + e, so that D’ = D, D°. Notice
that |o| = j. Choose locahzatlon functions {Xk}k o and {nk}k o as in Appendix B below. Since
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Vi € H/2(R?), and E(p)~! maps H*(R?) to H*t'(R?) for all s € R, Lemma B.1 (with ¢ = })
implies that

dDPE(p) V] :Z@ VE(p) LDy D7 PE [V ;]
k=0
1

4+ Z ®D,E(p IDﬁk [, D] DO~ ﬁk+1[v¢ ]

J

Jj—
k=0
+®D,E(p)” ' D7[n;Veil, (51)

as an identity in H~1P71/2(R3) (we have also used that F(p)~' commutes with derivatives on any
H*(R?)). Here, [-, -] denotes the commutator. Also, |8x| =k, |ux| = 1, and 0 < g, xx < 1. (For
the support properties of 7y, x, see the mentioned appendix.) We will prove that each term on
the right side of (EI]) belong to LP(R?), and bound their norms. The proof of (@8] will follow by
summing these bounds.

The first sum in ([B1]). Let 6 be the characteristic function of the support of xj (which is contained
in w). Since V is smooth on the closure of w it follows from the induction hypothesis that the
D7 P [Vp]’s belong to LP(w') for any w’ CC w. Also, the operator ®D, E(p)~' D%y, is bounded
on LP(R3) (as we will observe below). Therefore we can estimate, for k € {0,...,j},

1D, E(p)~' DX DT [V ]|
= (@E(p) ™' D, D% xx)0: D7~ [Vipi]||
< |®E(p)~' Dy D * x5, 10 D7 P Vil - (52)
Here, || - |3, is the operator norm on B, := B(LP(R?)), the bounded operators on LP(R?).

For k = 0, the first factor on the right side of (52)) can be estimated using Lemma C.1 (since
|Bo| = 0). This way, since ||xo0llco = [|®P]|co = 1,

|®E(p) ' Duxolls, < K1, (53)

with K1 = K7 (p) the constant in (CIJ).
For k > 0, the first factor on the right side of (52)) can be estimated using (C4) in Lemma C.2
(with v =1, g* = p = p). Since

dist(supp xx,supp ®) > e(k — 1+ 1/4)

and || xklloo = [|®]lco = 1, this gives (since (Bx + e,)! < (|Bk| + 1)! = (k + 1)!) that

- 32v2 (k+1)! 8 k
OF 1D, DB <
1P E(p) Xills, < T k <e(k —1+ 1/4))

2561/2 (8 k
< —
- T <e> (54)
It follows from (B3) and (B4) that, for all & € {0,...,5}, v € {1,2,3},
i 8\
|®E(p) D, D xills, < Ca(=) (55)

with Cy as defined in (25).
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It remains to estimate the second factor in (52). Recall the definition of the constant A in (24]).
It follows from ([24)) and (I7) that, for all € > 0, £ € Ng, and o € Ng,

ol sup D7V (x)| < Al gt g7lol (56)

XEWeyp

with wey C w as in defined in (I6]).
For k = j, since 3; = o, we find, by (56) and the choice of C' (see Remark 22]), that

10;V@illp < IV | zoo () lill Lr(w) < CA. (57)
The estimate for k € {0,...,7 — 1} is a bit more involved. We get, by Leibniz’s rule, that
16x D7 [Voill,
o—0 B
< > ( k) 105DV oo 1105 D7~ 04 . (58)
n<o—p > N
Now, supp 0 = supp xx C We(j—k41/4), S0 by (B8], for all u < o — Gy,
16DV ]joo < sup  [DFV(x)] < e WA (G — &)k (59)

XEWe(j—k+1/4)
By the induction hypothesis (in the form discussed in Remark [3.2),
165D~ pillp < [[D7= 03 Lo, ;1)

lo — B — w|\lo—Be—nl lo—Br—ul
< _ .
- C( Jj—k ) ( € ) (60)
It follows from (B8], (B9), and (60) that (using that |o| = j,|8k| = k, and (AG), summing over
= |ul)
165D [V pi] |
- ‘
Byi—k = [(j—kK\m!(j —k—m)i~km s A\m
< CA(— . - . 1
<ea(D) "X (L) s () @
Note that, by (A1), for 0 <m < j — k,
§—E\ml(j —k—m)i—km < V12 Tk 1 (62)
m (j —k)i—Fk “Vi—k—mem —

To see the last inequality, look at the cases 0 < m < (j—k)/2 and j—k > m > (j —k)/2 separately.
Hence (since B > 2A, see Remark 2.2]), for any k£ € {0,...,j — 1},

oDl < 0a(2) S (4)" <aca(B) 7 )

m=0

Note that, by (57)), the same estimate holds true if k = j.
So, from (52), (55), (63), the fact that € < 1 (since e(j +1) < R/2 < 1/2), and the choice of B
(in particular, B > 16; see Remark 2.2]), it follows that

| i ®D, B(p) ' Dy, D7V ] Hp

<20A02< )]i< ) <C4Ac2)<B)j§1_C2(§)j+l. (64)
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The second sum in (BIl). Note first that [ng, DMt = —(D#*kny) (recall that |ug| = 1; see Lemma
B.1).

Comparing the second sum in (5I) with the first sum in (5IJ), one sees that the second sum is
the first one with j replaced by j — 1 and xj replaced by —D*#kn,. Having now a derivative on
the localization functions we have one derivative less falling on the term V ;. More precisely, the
operator D?~Pk+1 contains |0 — Bry1| = j— (k+1) = (j—1)—k derivatives instead of |0 — G| = j—k
in DA, Then, to control D7 Pk+1[V ;] (with the same method used above for D75 [V p;]) we
need that supp D**ny is contained in we(j_1)—g+1/4)- Indeed we have much more: as for xj we
have supp D**ny, C We(j—kt1/4) © We((j—1)—k+1/4)- Finally, [[D*en|le < Ci/e, with Cx > 0 the
constant in (B.3) in Appendix B below.

It follows that the second sum in (BIl) can be estimated as the first one, up to one extra factor
of C\ /e and up to replacing j by j — 1 in the estimate (64]). Hence, using that € < 1, and the choice
of B (see Remark 2.2)), we get that

j—1
| YoeD. B D o, DD Vool
k=0

P
. B\i-1 B\J C rB\itl
s comac)(c) scwae)(T) =5 () (65)
The last term in (B1). It remains to study
®D E(p)” Vil (66)

We split V' in two parts, one supported around x = 0, and one supported away from x = 0, and
study the two terms separately. We will prove below that this way, 1;V¢; is actually a function
in L'(R?) + L3(R3). Upon using suitable operator bounds on ®D’E(p)~!y (for some suitable
smooth x’s), combined with bounds on the norms of the two parts of 1;V;, we will finish the
proof.

Let p = [xo|/4, and let 6, and 60,5 be the characteristic functions of the balls B,(0) and
B,5(0), respectively. Choose X, € C5°(R?) with supp X, € B,(0), 0 < X, < 1, and X, = 1 on
B,/5(0). Note that then

. ~ < Xl _
dist(supp @, supp x,) > - = 2p, (67)
by the choice of w = Br(xp), R = min{1, [xo[/4}, since supp ® C w(; 1) C w.
Now,

®D E(p) "' n;V il = €DE(p) ' I,V X,0i]
+ @D E(p) " V(1 - Xp)pi - (68)

For the first term in (68]), we use Lemma C.2 , with p =1, ¢ = p/(p — 1), and v = p. Then
p,r€[l,00) and g > 1, and g~ +p~ 1 = 1. We get that (recall (67) and that X,0, = X,),

12D E(p)~ I,V Xppillly < 12D E(D) ™ Xlly , 10V il

2 0 (2 2y (o1 + 2 3) VBl (69)

< =
= 2

™
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Here we used that ||®||oc = ||Xpllec = 1 and that n; = 1 where 6, # 0. Note that j +1 < ¢!
(since, by assumption, €(j + 1) < R/2 < 1/2). Therefore,
BBl =G+ D<@+ < =L (70)
Note furthermore that since || =35+ 1> 2 and t > 1,
(18] +2)—3) <1, (71)
independently of 8. It follows that
1eD7E()~ IV Xpeillp
< A2 (Bly O g (RO ™)

Using Schwarz’s inequality and that Za < 2/,

2
IVOopilli < IVO,ll2llwille = Zav/|xolm||will2 < ﬁ\/ 1xo|ll¢ill2 - (73)

(Note that |[V8,]|; < oo & t < 3.) It follows from (2)), (Z3)), and the choice of B and C (see
Remark 2.2]) that

|@DPE(P) " i VX,ppillly

32 3(9— 16/|xo |\ 18l C rB\i+1
< 22 (2=p)/(2P) || ;|| [ L1201 <2 (2 )
- om [xol H%HQ( € ) - 24 ( € ) (74)

We now consider the second term in (G8). Recall that ® is supported in w41y and
dist(supp ®, suppn;) > €(j + 1/4). (75)
Again, we use Lemma C.2, this time with p = 3, q = p/(p — 1), and v = 3p/(2p + 3). Then

pl+gt+et=2pe[l,c0),g>1,te[1,3/2) (since p>3), and g~ +p~! = 1. This gives
that

1eD?E(p) [,V (1 = Xp)¢illly < 19D E(0) ™~ 055, IV (1 = Xp)pills

< V() e ) e 2 )

X V(A = Xp)llollills -

As before, we used that ||®| o = ||7;]lcc = 1. Note that

8 NP ot _IBIY_ ooip G+ 8
5!<j+1/4) =32 (j+1)\ﬁ|_32 (j+1)j+1§32 ' (76)

Since e(j 4+ 1) < R/2 < 1 and ¢ < 3/2 it follows that (e(j + 1/4))%/*=2 < 1. Also, by the choice of
p, the definition of V', and since Za < 2/,

x € R3. (77)

(1= 0,)V)(x)| < 82—5 < 10

[xo| ~ 7lxol’
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It follows from (7)) (and that 0 <1 —X, < 1-0,,), (1)), (@), and the choice of C' and B (see
Remark [2.2]), that for all i = 1,..., N (recall that |3| = j+ 1)

12D E(p) ™" [n;V (1 = Xp) i llp
B2 () < E By (78)

T T|Xo] © - 24

It follows from (68)), ((74), and (78) that

. C (B\i+1
leDEm) " mVeils < 15(=) - (79)
The estimate (6] now follows from (5I)) and the estimates (64)), (G5]), and (79). O

Proof of ([@T). Note that the constant functions W;(x) = a~! + ¢; trivially satisfies the condi-
tions on V (= Za| - |7!) needed in the proof above. In fact, having assumed A > o~ ! +
max;<;<n |&i| (See Remark 2.2)), (24) (and therefore (Bf)) trivially holds for W;. Also, for the
term ®DPE(p) 1 [n;Wip;] we proceed directly as for the term ®DPE(p)~ [n;V (1 — X,)¢i] above
(but without any splitting in X, and 1 — X,), using that |[W;(x)| < A, x € R3. The proof of (@7
therefore follows from the proof of ({6l above, by the choice of C' and B (see Remark 2.2)).

This finishes the proof of Lemma [3.3] ]

Remark 4.1. In fact, with a simple modification the arguments above (the local LP-bound on the
two terms in (68])) can be made to work just assuming that, for all s > 0,

Vi, € Ll(Bs(O)) , Vi € LS(RB \ Bs(0)) . (80)

5 Proof of Lemma

Proof of (B0). Similarly to the case of the term with V' in LemmaB.3] we here use the localization
functions introduced in Appendix B below. With the notation as in the previous section (in
particular, § = o + e, with |o| = j), Lemma B.1 (with ¢ = j) implies that

J
©DPE(p) [Uappil = > _ @D, E(p)” ' DX, D (U 401]
k=0

7—1
+Y @D, E(p)~ D% [ni, DD U, 1]
k=0
+ @D, E(p) ™' D7 [n;Uapepil (81)

as an identity in H~!8/(R3). As in the proof of Lemma[33] [-, -] denotes the commutator, |G| = k,
|uk| = 1, and 0 < g, xx < 1. (For the support properties of 7y, xx, see the mentioned appendix.)
As in the previous section, we will prove that each term on the right side of (81) belong to LP(R3),
and bound their norms. The claim of the lemma will follow by summing these bounds.

The first sum in (81). We first proceed like for the similar sum in the proof of Lemma 33l (see (52)),
and after). Let 6 be the characteristic function of the support of x. It follows from the induction
hypothesis, using that —AU,, = 47, P, and Theorems D.5 and D.3, that the DB Uappil’s
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belong to LP(w') for any w' CC w. As before, the operator ®D,F(p)~' Dy is bounded on
LP(R?). Then, for k € {0,...,5}
19D, E(p) ™ D% x. D [Un ppilll
= [(@E(p) " Dy D x1)0: D [Uappil
< |[®E(p)~" Dy D x5, |0k D7 [Ua,p0i] - (82)

The first factor on the right side of (82 was estimated in the proof of Lemma B3] (see (B3)):
For all k € {0,...,j}, v € {1,2,3},

1 3 8\ *
|®EP) D, D% xills, < Cao(=) (83)
with Co the constant in (25).

It remains to estimate the second factor in ([82)). For k£ = j, since 8; = o, we find that, by (23))
and the choice of C' and B (see Remark [2.2]),

16;Unsilly < [Uaploliilline < G0 < o(2)7 (34)
In the last inequality we also used that € <1 (since ¢(j + 1) < R/2 < 1).
The estimate for k € {0,...,7 — 1} is more involved. We get, by Leibniz’s rule, that
164D [Ua ppil [l
33 (" f’“) 10k (DHTap) (D7) (85)

pu<o—PB

We estimate separately each term on the right side of (85]).
We separate into two cases.
If 4 = 0 then, using the induction hypothesis (i.e., P(p,j — k); recall that supp 0y C we(j_r))

and (23),

||‘9kUa,bDoiﬁks01Hp < Chc(g)j*k < g<B)jfk+1/2.

In the last inequality we used the choice of B (see Remark 2.2]) and that ¢ < 1.
If 0 < o < 0 — B, then (since supp xx € we(j—k41/4)) HOlder’s inequality (with 1/p = 1/(3p) +
2/(3p)) and Corollary D.2 give that

(86)

€

165(D"Ua ) (D7~ He0y)
< 164D Uapllapa 11657 Hepy]3,
< Kol | D*Uapll Law/2(

we(j7k+1/4))
—Bk— 0 —Bk— -0
X D il s 127 0 (87)

We(j—kt1/4))
Here, K3 is the constant in Corollary D.2, and 6 = 2/p < 1. Note that w,(;_g41/4) = Br(x0) with
r € [R/2,1], since €(j + 1) < R/2 and R = min{1, |x¢|/4}
We will use Lemma [5:3] below to bound the first factor in (87). The last two factors we now
bound using the induction hypothesis.
If p e Ng is such that 0 < p < 0 — (B, then the induction hypothesis (in the form discussed in
Remark B2]) gives (recall here (I8) and that |o| = j,|8k| = k) that for the last two factors in (87
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we have

1D~ il

LP(we(j—k+1/4))

e Ol 8

and (using that B > 1 (see Remark Z2) and e(j —k+1/4) <e(j+1) < R/2< 1)
j —k — J=k=|ul r BN Ji—k=|ul
107 il s ay) S [ (%) (?)
Gk — |pg| + 1\I—h—lul+1 BN i—k—lul+170
j—k+1/4 ) <_> ]
G—k — |p| + 1\G—k—lul+1 s BN i—k—lul+170
j—k+1/4 ) <_> } ‘

+SC<

€

< [

€

It follows from (88) and (89) that for all u € N} with 0 < u < o — S,

Do |11

—Br—p, . 110
HDU k NSOZHWLP( Lp(we(j—k+1/4))

We(j—k+1/4)) |

BN\i—k=lul40 j — k — |p| + 1\i—Fk—Iul+0
<c4f(2 A L B .
<c(T) T (o) (00)

From (87), Lemma 5.3, and ([@0) (using (A.6) in Appendix [ below, summing over m = |u|), it
follows that

o — A B\ j—k+0
> (7 i o), < cocara(F)
0<pu<Lo—Py H
ik s R A j—k—m+0 m
XZ49(3 k)(] k-m+1) ‘_éin6+1/4) "
— m (j—k+1/4)
1 \m B(m +1/4) \20-2
— —_— . 91
X [(\/E) +m<e(j—k—|—1/4)) } (1)
Here, C3 is the constant from (26). Recall also that 8 = 2/p.
We prove that for m € {1,...,7 — k},
—k\ (j — k—m+ 1)I7k=m+0(m 4 1/4)m N 1
49 J ' <1 1/246 ~ . 9
O ) =0T 2
Note first that, since €(j —k +1/4) <e(j+1) <1,
(G—k—+1/4)1/270 < =1/240 (93)

This shows that the inequality in ([02) is true for m = j — k > 0, since § < 1. For m < j — k, we
use (A.8) in Appendix [{ below, and ([@3]), to get that (since (1 +1/n)" <e)

<j — k> (j—k—m+ 1)I7F=m+0 (i - 1/4)™

(J =k +1/4)i=k+0

S Ver Gokem)P O Um
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Since # < 1/2 and m < j — k — 1, we have that

s - m 9
U(j. . m;g <2 <V (95)

The estimate @2) for m € {1,...,j —k — 1} now follows from @4)-(@5) (since 4%¢®/12/,/7 < 10).
Inserting ([©2]) in (@I (and using again €(j — k +1/4) <1 and 20 — 2 < 0) we find that

> (" _f k) 164(D* Uy ) (D7 H0)) |,

0<p<o—Py

j—k
B i—k+0 8 1y\m 1 1
<tocteuis (T | (75) |
< 10C°Cs K | — € mz:; 5 T 5220 ;220

B)j*kJrl/? 1
—(246), 96
=240 (96

where we used that § < 2/5, B > 4 (see Remark [22)), and Y °_, m=6/5 <1+ floo 785 dr = 6 to

estimate

< 1OC3C;3K2<

€

/1 \m 2 I = 1 6
Z(ﬁ) S\/E’ B2—20mz::1m2—20§\/§' (97)

m=1

This is the very essential reason for needing p > 5.
By the choice of B (see Remark 2.2)) it follows that

> (U ;ﬁk) 104 (D* Uy ) (D P Hepy)|,, < : (E)jikﬂm' %)

2 \e
0<pu<o—py

From , (85)), (86)), and (@8)) it follows that for all k € {0,...,5 — 1},

o B\ j—k+1/2
1007 Uappillly < C(Z) (99)
Using (82), (83]), (&4), and (@9)) it follows for the first sum in (8I]) that
J
H > ®D,E(p)~ DM D7 Uy pipi]
k=0 P
J . J
B\i+1/2 8\F
k_—k o—pf . - —_

< o Y8 IDT P Ul < 20 (=) > (5) (100)

Since B > 16 (see Remark [22]) the last sum is less than 2 and so for the first term in (&I]) we
finally get, by the choice of B (see Remark 2.2]) that

p

CocZY L EBT

J
|>° @D, E(p) ™ Do DU 51
k=0

The second sum in (8I]). By the same arguments as for the second sum in (BI) (see after (64])),
it follows that the second sum in (8] can be estimated as the first one, up to one extra factor of
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Cy /e (with Cy > 0 the constant in (B3] in Appendix B below) and up to replacing j by j — 1 in
the estimate (I0I]). Hence, by the choice of B (see Remark 2.2])

Jj—1
| X" @D, E@) ' D[, 1D (U ip]
p

C’ CZ( )J’ < cz (E)J’Jrl' (102)

~ € 12N — 12N
The last term in (81]). Since o + e, = 3, the last term in (&) equals
D E(p) " niUapepil -

We proceed exactly as for the term ®DPE(p)~1[n;V (1 — X,)¢;] in B8) (but without any splitting
in x, and 1 — X,), except that the estimate in (7)) is replaced by [|Ugpllcc < C1 (see @3)). It

follows, from the choice of B and C' (see Remark 2.2)) that (recall that |5] = j + 1)

leD?E(p)~ n;Uapeillly < 12D E(D) ™ 0jll5,., | Uapi0ills

42 bl _ Cz it
< — .
ClHSOzHS( ) < 12N( ) (103)
The estimate (B0 now follows from (8I]) and the estimates (I01]), (I02]), and (I03)).
This finishes the proof of Lemma O

It remains to prove Lemma [5.3] below (L3p/ 2_bound on derivatives of the Newton potential Uap
of products of orbitals, @,vp).

In the next lemma we first give an L3/2-estimate on the derivatives of the product of the
orbitals ¢;, needed for the proof of the bound in Lemma [5.3] below.

Lemma 5.1. Assume (@Q) (the induction hypothesis) holds. Then, for all a,b € {1,...,N}, all
B e N with |B| <j—1, and all € > 0 with (|3| +1) < R/2,

. |61+26
D% (00 /20, ) < WOKZC2 4 VBN () (104)

with Ko from Corollary D.2 , C' from Remark[22, and 0 = 0(p) = 2/p.

Proof. By Leibniz’s rule and the Cauchy-Schwarz inequality we get that

HDﬁ((pa@)HLsp/Q E(WHU)
< Z < > |Duwa||L3p(w6(‘ﬂ‘+1))‘|Dﬁ_H¢b‘|L3p(w5(‘m+l))'
n<p

We use Corollary D.2 (with we(gj41) = Br(x0), 7 = R — €(|8] + 1); note that r € [R/2,1], since
€(|8] +1) < R/2 and R = min{1,|x¢|/4}). This gives that, with Ky from Corollary D.2, and

0 =2/p,

|’Dﬁ((pa%) HL31’/2(L«J5(‘/@‘+1))

p— ;
MQ%JWMWWMN%Mwm (105)
p<

(- 0
X ”D u(pb“wl!P(we(‘g\+1))|’D (PbHLp (We(p1+1)) ”
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We now use the induction hypothesis (in the form discussed in Remark B2)) on each of the four
factors in the sum on the right side of (I05). Note that, by assumption, €(|3] + 1) < €j < R/2 and
lp| < |p|+1<|8]+ 1< (similarly, |8 — u| < |8 —p| +1 < j). Recalling ([I8]), we therefore get
that, for all p € Ng such that u < g3,

1" eallw o P all oo g 1)

< eti)" ()"

. [C<|5||H+|1)N (g)u +3C(:Z:E>u+1(§)u+1r

§>|M|+9 (|| + 1)9(|u|+1)|ﬂ|\u\(1—9)
(18] + 1)kl ’

since (recall that €(|5] +1) < R/2 <1 and B > 1)

§490(

€

|M|‘“‘

Proceeding similarly for the other two factors in (I05H]), we get (using (AL6) in Appendix [ and
summing over m = |u|) that

g _
> (u 1D Pall 2w 1) 10770 232 141
u<pB

B 181+20
) X (106)

< 169(CK2)2(—

18l m+1 —m+119 m —m]1-0
1B [(m + )™ (1] — m + 1) (6] — m) 7]
2 (m) (18] + 1)lAl+20 '

m=0

We simplify the sum in m. Note that for m = 0 and m = ||, the summand is bounded by 1.
Therefore, for |3| < 1 the estimate (T04)) follows from (I06)), since 2-16 < 7. It remains to consider
|B] > 2. For m > 1, m < |3], we can use (A.8) in Appendix [l to get (since (1 + 1/n)™ < e) that

B _
> (u 1D all ey 1) 1277 @0l 32 141

o<u<p
ol/12 B\ 181+20 | g|1A1+1/2
< K)2(16e2)0 (= N Lol S
= Vor (CF)(16¢7) (e) (5] + 1)51+20

6|1 0
S [(m +1)(I8l —m + D"

m=1 VGEV’ﬁ‘_7n

Since the function

f@)=(@+D)(f -z +1), =zell,|f]-1],
has its maximum (which is (|3]/2 + 1)?) at = = |3|/2, and since
1811 1 18] 1

_ ———drx=m,
L= S h =
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we get that

3 _
> ( 10" Gall o0 1) 0720l 20 551

0<pu<p
B\ |81+26
< ey 5 omVE(2) " (107
€
The estimate (I04) now follows from (I05]), (I06]), and (I07), since (as p > 5),

e1/12(16e2)9\/§ <10, 2-16°<7.

This finishes the proof of Lemma [5.11 O

The next two lemmas, used in the proof above of Lemma [3.6], control the L3/2-norm of deriva-
tives of Ugp,.

Lemma 5.2. Define Uy, by @R). Then for all a,b € {1,...,N}, and all p € N§ with |u| < 2,
I D#Uapll o2y < 4mK3(C? 4+ 2C1/R?), (108)
with K3 from Corollary D.4 , C from Remark[22, Cy from [23]), and R = min{l1, |x¢|/4}.

Proof. Recall that w = Br(xp), R = min{1, |x¢|/4}. Using ([I8)), and Corollary D.4 | we get that,
for all p € NJ with |u| < 2,

[ D*Uapll Lsvr2 () < 1Uapllw20/2 (B (xo)) (109)
< K {|AUatll v/2(Bantroy + 2 1Uat 1172 B -
By the definition of U, (see ([A8)) we have
— AUup(x) = 47 0o (x)5(x) for x € R?, (110)

and [[Ugplloo < C1 (see ([23). Hence, from (I09), Holder’s inequality, and the choice of C' (see
Remark 2.2} recall also that p > 5)

”DuUa,bHL&U/Q(w) S 47TK3{ HSDCIHLSP(BQR(X())) ”gpb”L?’p(BgR(Xo))
1
+ ﬁHUa,bHoo\BzR(Xo)\Q/i)’p}
< 4rK3(C* +201/R?).
This finishes the proof of the lemma. U

Lemma 5.3. Assume Q) (the induction hypothesis) holds, and define Uyy by @8]). Then for
all a,b € {1,...,N}, all k € {0,...,5 — 1}, all p € N} with |u| < j —k, and all € > 0 with
€(j+1) <R/2,

VBl 7| + 174\ lul
2
N A ( € ) <j—k+1/4)
BN Iul+20=2 7 |u| +1/4 \|pl+20-2
2 = Ll L 111
+ ¢ ’“’(g) (j—k:+1/4) ’ (111)

with @ = 0(p) = 2/p, C and B from Remark[2.2, and Cs the constant in (26]).
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Proof. If m := |pu| < 2, (II1)) follows from Lemma and the definition of C5 in (28], since
€(j—k+1/4)<e(j+1) <R/2<1,and C,B > 1 (see Remark 2.2)).

If m := |u| > 3 then we write u = piy—2 + ey, +e,, with v; € {1,2,3},i = 1,2, |ym—2| = m — 2.
Then by the definition of the W23/2-norm (recall (I¥)) we find that

| D*Uapll Lov/r2 e, DFm=2Uq bl w2072

Ght1/n) = | We(j—k+1/4))
— ”Z).U'm—2 Ua’bHW2’3p/2(wél(m—1+1/4))’ (112)
with €; such that
Eim—1+1/4)=€(j —k+1/4). (113)

To estimate the norm in (I12]) we will again use that U, satisfies (I10). Applying D#m2 to (I10)

and using the elliptic a priori estimate in Corollary D.4 (with r =7 = R — & (m — 1+ 1/4) and

0 = 61 = €1/4; recall that w, = Br_,(x0)) we get that

< A K| DF 2 (0a @)l p3v/2
16K3

&
with K3 = K3(p) the constant in (D.9). Notice that for this estimate we needed to enlarge the
domain, taking the ball with a radius €; /4 larger.

We now iterate the procedure (on the second term on the right side of (I14)), with & (i =
2,...,[%]) such that

10" Uapll poor2 o,

(—k+1/4)) = Wey (m—1))

[1DF=2Ua bl Lov/2 o, (114)

(mfl)) ’

Gm—2i+1+1/4) =& 1(m—23G—1)+1), (115)
and with r =r; = R—&(m —2i+1+1/4) and § = 0; = €;/4. Note that (II3) and (II3]) imply
that, for i = 2,..., %],

Eizéi_lz...zel_e%, (116)
and
Gm—2i+1) <& _1(m—23G—1)+1)
<.<am-1)<e(-k+1/4). (117)

We get that (with ngl =1 and |gm—2i| = m — 21),

10" Uap |l psor2 e

e(j—k+1/4))
[5] =1 6k
3
<anks Y (1072 (eai)lwra oy iy 1L ()]
i=1 =1 £

13
16 K m
|: H 3] ’Dum72[2J UabHL3p/2(w

(118)

) (m— 202 +1)

Using (16]), and Lemma[5.Il for each i = 1,..., | % | fixed (note that &(m—2i+1) < R/2 by (I17)
since €(j + 1) < R/2) we get that

16 K3
[ DF =2 (@app) | L30/2 i(m— MU)H( & )

B\ m+20-2 _1_|_1/4 m+20-2 116K i—1
22
SQOK?C\/E(?) (j—k—|—1/4) (32) ’

(119)
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with K5 from Corollary D.2, and 6§ = 0(p) = 2/p. Here we also used that 1+ vm — 2i < 2y/m.
Note that Z}flJ(lﬁKg/BQ)i_l < 2 since B? > 32K3 (see Remark [Z2)). It follows that

]

o3

i—1
o 16 K3
A K3 |:HDMm721((pa(pb)HLs”/Q(wgi(m—zz‘H)) H ( &2 )]
i=1 =1 ¢

B

m+20—2 1/4 \m+20—2
§1607TK22K302\/m(—) ( m+1/ )
€

j—k+1/4
We now estimate the last term in (II8]). Let 6 = m —2|%%] € {0,1} (depending on whether m
is even or odd). Then, using (II6]) and Lemma [5.2] we get that

[L J16K3

=2
€
=1 ¢

(120)

|3

Nm—Q\_mJ
} | DHm21% Ua,bHL?’P/Q(ng%J(m72L%J+1>)

VI6K3\™m rm — 1+ 1/4\m
=) G=rvam)
" (e(j—k+1/4))5
m—1+1/4
VB\m/ m+1/4 \m
) )
Here we also used that m > 3 and K3 > 1 (See Corollary D.4), that C > 1 and B > 16K3 (see
Remark 2.2]), and that ¢(j — k+ 1/4) < 1.

Combining (I18), (I20), and (I2I]) finishes the proof of (I1I]) in the case m = |u| > 3.
This finishes the proof of Lemma [5.3] O

< 4nK5(C? + 20y /R2)<

< drK3(1 + 201/R2)02< (121)

€

A Multiindices and Stirling’s Formula

We denote Ng = NU {0}. For o = (01,02,03) € N3 we let |o| := 01 + 02 + 03, and

D° :=D{'D3?D5* , D, := —i ? = —id,, v=1273. (A.1)
ox,
This way,
Hlol glol
07 = = = (-i)l7lpe.
ox° Oz x5?xS? (=1)
We let o! := g1loslos!, and, for n € Ny,
n n! n!
<0> ol oqloglog! (A-2)
With this notation we have the multinomial formula, for x = (x1,z2,23) € R? and n € Ny,
n
(.’/Ul +ao+ax3)" = Z < )X”. (A.3)
L \M
pENG,|ul=n

Here, x/ := 2" zh>x4®. Tt follows that

o]t < 3llg! for all o € N3, (A.4)
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since, using (A2), that (1,1,1)* =1 for all 4 € N3, and (A3),

% - ('Z') < ¥ ('Z')(m, 1) = (1+1+ 1)l =3l

peNS,|pl=|o]

We also define

(Z) - maailm' (A5)

for o, € N3 with p < o, that is, g, < 0, v = 1,2,3. Note that for all o € N3 and k € Ny (see

[19, Proposition 2.1]),
5.0-()

Finally, by [I 6.1.38], we have the following generalization of Stirling’s Formula: For m € N,

0
m! = V2rm™tz exp(—m + ?) for some ¥ =4J(m) € (0,1), (A.7)
m

and so for n,m € N, m < n,

<n> 1 nt1/2 p(ﬁ(n) d(m)  I(n—m)

m) = Var mm 2 (n — m)yn—m 2 P T T Tom T 12(n — m))
ol/12 nnt1/2

< .
- \/% mm+1/2(n _ m)n7m+1/2

B Choice of the localization

Recall that, for xo € R3\{0} and R = min{1, |xq|/4}, we have defined w = Br(x¢), ws = Br_s(X0),
and that € > 0 is such that €(j + 1) < R/2. Also, recall (see ([44))) that we have chosen a function
® (depending on j) satisfying

S Cgo(we(j+3/4)), 0<Pd <1, with ® =1 on We(j+1) - (Bl)

For j € N we choose functions {Xk‘}i;:ov and {nk}izo (all depending on j) with the following
properties (for an illustration, see figures 1 and 2). The functions {xx};,_, are such that

Xo € Cgo(we(j+1/4)) with xo =1 on we;y1/2),
and, for k=1,...,7,

Xk €057 (We(j—kt1/4))

with { Xk =1 00 We(jkt1/2) \ We(j—k+1+41/4)
Xk =0 on R%\ (We(j—k+1/4) \ We(i—k+1+1/2))

Finally, the functions {nk}i;:o are such that for k =0,..., 7,

n € C°(R?)  with {nkzl on R¥\we(j_pr1/1)
me =0 on we;ky1/2)-
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Moreover we ask that
X0 —+ Mo = 1 on Rg,
Xkt =1 on R\ we(j_pqr41/a) for k=1,....7, (B.2)
Mk = Xkl +Mhe1 on R3 for k=0,...,5—1.

Furthermore, we choose these localization functions such that, for a constant C, > 0 (independent
of €, k,j,3) and for all 8 € N} with |3] = 1, we have that

C* *
[D7xx(x)| < == and [D7(x)| < =, (B.3)

for k=0,...,7, and all x € R3.

Ow
w = Br(xq) wep = BR—ek(%0) C w

X0 R/2 e(j+1) 2e €

Figure 19: The geometry of w = Bgr(xg) and the we, = Br—ck(x0)’s.

0] Xj
- 1 1 1
ej+1) €j € Ow
o m Nj—1 nj
R | IR | |
1 T 1 T 1 T 1 1
e(j+1) €j e(j—1) € Ow

Figure 20: The localization functions.

The next lemma shows how to use these localization functions.

Lemma B.1. For j € N fized, choose functions {Xk}izo’ and {nk}izo as above, and let o € NJ
with |o| = j. For £ € N with £ < j, choose multiindices {B}4_, such that:

1Bkl =k for k=0,...,0, Bp_1 < B for k=1,...,0, and By <o.
Then for all g € S'(R3),

V4
D7g=> Dy D7 Prg (B.4)
k=0
-1
+ 37 D[, DPF DIkt g - Dy Do e
k=0
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with pg = Bes1 — Br for k=0,...,0—1 (hence, || =1).

Proof. We prove the lemma by induction on ¢ from ¢ =1 to £ = j. We start by proving the claim
for ¢ = 1. By using property (B.2)) of the localization functions and that 81 = By + po = po (since
Bo = 0) we find that

D?g = xoD%g+nD%g = xoDg +no D7 F1Hog. (B.5)

The first term on the right side of (B.5) is the term corresponding to k = 0 in the first sum in
(B4). In the second term in (B.E), commuting the derivative through 79, we find that

D7 HH0 g = Doy D7 P 4 g, D] D7 F1g
Since ng = x1 + m by property (B.2), this implies that
UODU*ﬁl +ho g
— DﬁlxlDG—ﬁlg + DﬁlmDG—ﬁlg + [0, DNO]DO'_,Blg. (B.6)

The identity (B.4]) for £ =1 follows from (B.E) and (B.6).
We now assume that (B.4) holds for £ — 1 for some £ > 2, i.e.,

-1
Dg = Z DBy, D7 Pk g (B.7)
k=0
-2
+ 3" D[y, DPF Dokt g 4 Dty D7 e,
k=0

and prove it then holds for £. Since §By,_1 = B¢ — ue—1 we can rewrite the last term on the right

side of (B.7) as
D’g‘f—lm,lDU_ﬁ‘f—lg — Dﬁé—lnzilDo'_ﬁe'Hié—lg ]
Again, commuting the py_1-derivative through 7,_; this implies that

D’g“—lm,lDU_’g‘f—lg
— Dﬁ‘*1+’“’*177@,1Dafﬂ‘g + DBe—1 [774—17 DM@A]DU*ﬁzg

— DB (e + XZ)DU—ﬁeg + DB [e_1, DN@—I]DU_ﬁZg’ (B.8)
using (B.2)). Collecting together (B.7) and (B.Y)) proves that (B.4) holds for £.
The claim of the lemma then follows by induction. O

C Norms of some operators on LP(R?)

In this section we prove two lemmas on bounds on certain operators involving the operator E(p) =

V—A+ a2,

Lemma C.1. Let the operators S, = E(p)~'D,, v € {1,2,3}, be defined for f € S(R3) by
(5.0)00) = (2m) 7 | *PE)pfp) dp,

RS

with f(p) = (2m)~3/2 Jgs € XPf(x) dx the Fourier transform of f. (Here, p = (p1,p2,p3)-)
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Then, for all p € (1,00), S, extend to bounded operators, S, : LP(R3) — LP(R3), v € {1,2,3}.
Clearly, ||Sy||5, = [1SullB,, v # 1. We let

K1 = Kl(p) = ”Sl”[j’p . (Cl)

Proof. This follows from [30, Theorem 0.2.6] and the Remarks right after it. In fact, since (by
induction),

DY (p,E(p)™) = Pyu(p)E(p) 2, v e N,

for some polynomials P, , of degree |y| + 1, the functions m,(p) = p,E(p)
satisfy the estimates

—1 are smooth and

|DYmy,(p)| < Cyulpl ™, v €N,

for some constants C.,,, > 0, which is what is needed in the reference above. ]
For p,q € [1,00], denote by || - [|5,, the operator norm on bounded operators from LP(R?) to
LA(R?).

Lemma C.2. For all p,t € [1,00), q € (1,00), withp™* +q '+t =2, all a > 0, all 3 € N}
(with |B] > 1 ift = 1), and all ®,x € C>®(R3) N L>®(R3) with

dist(supp(x),supp(®)) > d, (C.2)
the operator ®E(p)~'DPy is bounded from LP(R®) to (LY(R%))" = L9 (R3) (with q~' +q* "1 =1),
and

IeE(p) ' DXl|3, - (C.3)

_Mﬂ'( ) e(18] +2) )7 @l e

In particular, (when v =1, i.e., ¢* =p),

322 p 18]
515 1elellee,

leE(p) ' D xlls, < (C4)

for all 3 € N3 with |3] > 1.

Proof. We use duality. Let f,g € S(R?). Note that, since ®f, D?(xg) € L*(R?), the spectral
theorem, and the formula

dt
imply that ~ g
(f,®E(p)~"Dxg) = - g feA +a 72 4+1)7'Dxg).

By using the formula for the kernel of the operator (—A +a~2+¢)~! [29, (IX.30)], and integrating
by parts, we get that

(f.®E(p)”'D"xg)

1 dt [ e Ve
= - /0 7 |, T /R iy P Ollly) dxdy

18l o—Va Tt x—y|
:%/0 \d/t Rsf( x)®(x )/R3 (ng>x(y)g(y)dxdy.



Real analyticity away from the nucleus of pseudorelativistic Hartree-Fock orbitals® 225

Notice that the integrand is different from zero only for |x —y| > d, due to the assumption (C2).
Hence, by Fubini’s theorem,

(1oBE) Do) = [ [ FeoHG = y)Gy) dxdy. (o)

H(z) = Hyp.4(2)

(=1)I8l o0 e—Vaittlal\ gt
L N sy

infal )i

™

Now, by (C9) in Lemma C.3 below, uniformly for a > 0,

18\ al2 4
H(z)| < 1. |50 (2 )ZT;FZ'('Z') /0 eV /27%

V2 B!/ 8\ I8l
21{|~2d}(z)pw<g> )

and so, for all @ > 0, v € [1,00), and all 8 € N} (with |3] > 1 if v = 1),

Il <m0 [ (2o ale])
— ( )1/:\/_5'( )‘ﬁ|d3/t72(t(‘ﬁ’ n 2) _ 3)—1/17.

From this, (C.6), and Young’s inequality [24, Theorem 4.2] (notice that Cy < 1), follows that,
with p,g,v € [1,00), p~t +q7 vt =2,

|(f, ®E(p) ' D7xg)| < |F|lollH || Glls
< ( )l/t\/_

18l v
<iﬂ'( )2 (w181 +2) = 3) N @os Il £l -

Ie] ~1/¢
o1(5) a2 (181 4+ 2) - 3) I F Gl

Since S(R?) is dense in both LP(R3) and L% (R3), this finishes the proof of the lemma. O

Lemma C.3. Forall s >0, x € R®\ {0}, and 3 € N3,

v
IXI |x|ﬂ (|x|>ﬁ|’ (C.8)
‘a’él%mg \/Ej!(yxy)m b, (C.9)

Proof. We will use the Cauchy inequalities [I8, Theorem 2.2.7]. To avoid confusion with the
Euclidean norm | - | (in R? or in C?), we denote by |- |c the absolut value in C.
Let, for w = (w1, ws,w3) € C3 and r > 0,

Pdw)={ze€C®| |z, —w|c<r, v=1,2,3} (C.10)
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be the poly-disc with poly-radius r = (r,r,r). The Cauchy inequalities then state that if u is
analytic in P3(w) and if SUP,ep3(w) [U(z)|lc < M, then

1%u(w)|c < MB!r~181 for all B e N3. (C.11)

We take w = x € R3\ {0} C C? and choose r = |x|/8. We prove below that then we have (with
z2:=%3_ 22¢cQ)

v=1"~v
2 Lo 3
Re(z*) > §|x| for z € P’(x). (C.12)
It follows that vz2 := exp(%Log z2) is well-defined and analytic on P23(x) with Log being the
principal branch of the logarithm.
We will also argue below that

Re(Vz2) > %]x] for z € P3(x). (C.13)

Then (by (C12) for all z € P3(x),

V22l = V]2l > VIRe#?| > [x|/V2, (C.14)
and (by (C13)), for all s >0 and all z € P3(x),
|exp(—sVz2)|c = exp(—sRe(Vz2)) < exp(—s|x|/2). (C.15)

Therefore, (C.8)) and ([C3) follow from (CIT]), (CI4), and (CIT).
It remains to prove (C12) and (C.I3).

For z € P3(x), write z = x + a + ib with a, b € R3 satisfying |2, — z,,|% = a2 + b2 < (]x[/8)*.
Then

7’ =[x+ o> — |b* +2i(x+a) - b,
so, with e = 1/8,

Re(z?) = [x* + |a|* +2x - a — |b|?
> (1= e)x* + 2~ e lal® = (Jaf* + b])
L o2

> k2 > S |x[?.
2 g 1xI° > 5l

This establishes (C.12]) .
It follows from (C.I2)) that, with Arg the principal branch of the argument,

< —Arg(z?) < % for z € P3(x). (C.16)

N —

il
4
Furthermore (still for z € P3(x)), because of (C.16),
Vz2) = |z2|Y/2 1 2 21/2
Re(Vz2) = |2°|¢ " cos(3Arg(z?)) > |22 7/V2. (C.17)

Combining with (CI2) we get (CI3]).

This finishes the proof of the lemma. O
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D Needed results

In this section we gather some results from the literature which are needed in our proofs.

Theorem D.1. [2, Theorem 5.8] Let Q be a domain in R™ satisfying the cone condition. Let
m € Njp € (1,00). If mp >n, letp < q<oo; ifmp=mn,letp <q<oo; if mp<n, let
p < q < p* =np/(n—mp). Then there exists a constant K depending on m,n,p,q and the
dimensions of the cone C' providing the cone condition for §, such that for all w € W™P(Q),

el za ) < Kllullfyms oy lull (o) (D.1)

where 0 = (n/mp) — (n/mq).

We write K = K(m,n,p,q,2). We always use Theorem D.1 withn =3, m=1,and p =p,q =
3p for some p > 3. Hence mp > n, p < q < oo, and = 0(p) = 2/p < 1. Moreover, we always use
it with  being a ball, whose radius in all cases is bounded from above by 1 and from below by
R/2 for some R > 0 fixed.

Let Ko = Ko(p) = K(1,3,p,3p, B1(0)) with B1(0) C R? the unit ball (which does satisfy the
cone condition). Note that then, by scaling, (D.I)) implies that for all » < 1 and all xq € R?,

leallzso (8, x01) < Ko™ luallyn s, ooy 15, e (D.2)

with 6 = 2/p.
To summarize, we therefore have the following corollary.

Corollary D.2. Let p > 3 and R € (0,1]. Then there exists a constant K, depending only on p
and R, such that for all r € [R/2,1], xo € R3, and all u € W'P(B,(xq)),

lallzso 8y xa1) < Kl s, ooy 101 0, e (D.3)

with 0 = 2/p.
Here,

Ky = Ks(p, R) = (2/R)PKo(p), (D4)

where Ky(p) = K(1,3,p,3p, B1(0)) in Theorem D.1 above.
Theorem D.3. [, Theorem 4.2] Let Q be a bounded domain in R™ and let a¥ € C(Q), b, c €
L>®(Q) i,5 € {1,...,n}, with A\, A > 0 such that

n

S g > NeP, forall z€Q, £ R, (D-5)
ijfl
Z HG,Z]HLOO(Q + Z Hbz ’LOO(Q + ”C”L‘><> > A (D'6)
,j=1

Suppose u € Wlicp(Q) satisfies

n n
Lu= Z — aijDiDju + Z V'Dju+cu=f. (D.7)
ij=1 i=1

Then for any ' CC €,

1
ullw2p @y < C{foHLP(Q) + llull o) } (D.8)
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where C' depends only on n,p, A/\, dist{Q, 00}, and the modulus of continuity of the a ’s.

We use Theorem D.3 in the case where ' and Q are concentric balls (and with n = 3, p = 3p/2,
a¥ = dij, b' = ¢ = 0; hence A = A\ = 1). Reading the proof of the theorem above with this case
in mind (see [4, Lemma 4.1] in particular), one can make the dependence on dist{€?, 92} explicit.
More precisely, we have the following corollary.

Corollary D.4. For all p > 1 there exists a constant K3 = Ks(p) > 1 such that for all
u € W23/2(B,,5(xq)) (with xog € R®,r,6 >0)

HUHW2»3P/2(B,«(XO))
< Ka{|Au o, , 5000 T 0 Nl ovrz (s, , 500 ) - (D.9)

Theorem D.5. [8, Theorem 5, Section 5.6.2 (Morrey’s inequality)] Let Q0 be a bounded, open
subset in R™, n > 2, and suppose 98 is C'. Assume n < p < oo, and u € WHP(Q). Then u has a
version u* € C%(Q), for v =1 —n/p, with the estimate

l*llgon @y < Kallulwo o) - (D.10)

The constant K4 depends only on p,n, and €.

Here, u* is a version of the given u if u = u* a.e.. Above,

uw(x) —u(y
fullons @ = supluo)] + sup LI (D.11)

X,yEQ, XAy |X - Y|’Y
Of course, supycq [u(x)| < [|ullcoq @)

Remark D.6. Note that [8, p. 245] uses a definition of the W™P-norm which is slightly different
from ours (see (I8) ), but which is an equivalent norm by equivalence of norms in finite dimensional
vectorspaces. Therefore, (D.I0Q)) holds with our definition of the norm (but the constant Ky is not
the same as the one in [8, Theorem 5, Section 5.6.2]).
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Abstract
We prove within the Hartree-Fock theory of pseudo-relativistic atoms that the maximal

negative ionization charge and the ionization energy of an atom remain bounded independently
of the nuclear charge Z and the fine structure constant « as long as Za is bounded.
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B Large Z-behavior of the energy 272

1 Introduction

A long standing open problem in the mathematical physics literature is the Ionization conjecture.
It can be formulated as follows. Consider atoms with arbitrarily large nuclear charge Z, is it
true that the radius (see Definition [[L8]) and the maximal negative ionization remain bounded? A
positive answer to this question in the non-relativistic Hartree-Fock model has been given by the
second author in [23]. One of the aims of the present paper is to extend the result taking into
account some relativistic effects. The ionization conjecture for the full Schrédinger theory is still
open both in the non-relativistic and relativistic case. See [13], [L6], [I7], [6], [7] and [22] for some Z-
dependent bounds on the maximal negative ionization. The best result is that N(Z) = Z 4+ O(Z%)
with a = 47/56 where N(Z) denotes the maximal number of electrons a nucleus of charge Z binds
(see [6], [7] and [22]).

As a model for an atom with nuclear charge Z and N electrons we consider (in units where
h =m = e = 1) the operator

N

H:Zofl(\/—Ai—i-oFQ—ofl—Zé)—i— Z 1 (1)

b
i—1 [xil 1<i<j<N [xi — x|

where « is Sommerfeld’s fine structure constant. The operator H acts on a dense subset of the N
body Hilbert space Hp := AN, L?(R?; C9) of antisymmetric wave functions, where ¢ is the number
of spin states. The operator H is bounded from below on this subspace if Za < 2/7 (see [9] for
N =1, [5] and [19] for N > 1). In this paper we will consider the sub-critical case Za < 2/m. Let
us notice here that to define the operator H there is an issue. Indeed for Za < 2/m the nuclear
potential is only a small form perturbation of the kinetic energy and hence one needs to work with
forms to define the operator H. This has been done in detail in [2].

The quantum ground state energy is the infimum of the spectrum of H considered as an operator
acting on Hp. In the Hartree-Fock approximation one restricts to wave-functions 1 which are pure
wedge products, also called Slater determinants:

Y(x1,01,%X2,02,...,XN,0N) = ﬁ det(ui(xjaaj))z]‘yj:h (2)

with {u; }¥ | orthonormal in L?(R3; C?). The u;’s are also called orbitals. Notice that ||¢)]| 2 (RSN CaN) =
1. The Hartree-Fock ground state energy is

EUY(N, Z, ) .= inf{q(¥, )| € Q(H) and ¢ a Slater determinant},

with q the quadratic form defined by H and Q(H) the corresponding form domain.
One of the main result of the paper is the following.

Theorem 1.1. Let Z > 1 and o > 0. Let Za = k and assume that 0 < k < 2/m. There is a
constant Q > 0 depending only on k such that if N is such that a Hartree-Fock minimizer exists
then N < Z 4+ Q.

The idea of the proof is the same as in [23]. One shows that the Thomas-Fermi model is a good
approximation of the Hartree-Fock model except in the region far away from the nucleus. We first
introduce some notation in order to introduce the Hartree-Fock and Thomas-Fermi models.
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1.1 Notation

Let e be the quadratic form with domain H?2 (R3,CY) such that

=

e(u,v) = (E(p)2u, E(p)2v) for all u,v € Hz(R3,CY), (3)

where FE(p) denotes the operator E(iV) = v—A + a~2. As usual (u, v) denotes the scalar product
of u and v in L?(R3,C%). Let V(x) := Za/|x| and v be the quadratic form with domain H? (R3,C9)
defined by

v(u,v) = (V%u,V%v) for all u,v € H%(Ri)’,@q). (4)

From [10] 5.33 p.307] we have

X 2 ; ;
/ SO g < g/ [p[|f(p)|* dp for f € H= (R C) (5)
RS T JRs

|

with f the Fourier transform of f. Thus since Za < 2/ and E(p) > |p| it follows that v(u, u) <
e(u,u) for all u € H%(R:S, C9).

In thle following t denotes the quadratic form associated to the kinetic energy; i.e. for all
u,v € H2(R3,C9)

t(u,v) = a te(u,v) — a"2(u,v) = a " (T(p)2u, T(p)2v), (6)

with T'(p) := E(p) — o™ L.
A density matriz v is a self-adjoint trace class operator that satisfies the operator inequality
0 <« < Id. A density matrix v : L2(R?;C9) — L?(R3;CY) has an integral kernel

0 (Xa UaYvT) - Z)‘juj(xv J)“j(YaT)*v (7)
J

where \j,u; are the eigenvalues and corresponding eigenfunctions of 7. We choose the u;’s to be
orthonormal in L?(R3, C?). Let p, € L'(R3) denote the 1-particle density associated to v given by

Py (%) =D > Ajluy(x,0) .
o=1 j

We define
A := {7 density matrix: Tr[T'(p)y] < +oo}, (8)

where for v € A written as in (7)) Tr[T(p)y] := Tr[E(p)y] — a~! Tr[y] and

Tr[E(p)y] = Z Aje(us, uj). (9)

Similarly we use the following notation Tr [V7] := 3, Ajv(uj, uj).

Remark 1.2. Ify € A then p, € L'(R3) since v is trace class and p, € L/3(R3). The second
inclusion follows from Daubechies’ inequality, a generalization of the Lieb-Thirring inequality (see
Theorem [2.3).
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1.2 Hartree-Fock theory

In Hartree-Fock theory one considers wave functions that are pure wedge products and that satisfy
the right statistics: determinantal wave functions as in (2]). To define the HF-energy functional it is
convenient to use the one to one correspondence between Slater determinants and projections onto
finite dimensional subspaces of L?(R3,C?). Indeed if ¢ is given by (@) and + is the projection onto
the space spanned by ug, ..., uy the energy expectation depends only on v: (¢, Hip) = EHF(y).
Here EMF defines the HF-energy functional

EM(y) =a ' TX[(T(p) = VW] + D(y) — Ex (7)), (10)

where D(7) is the direct Coulomb energy

//p7 dxdy,
R JR3 |X — Y‘

and Ex(7) is the exchange Coulomb energy

Tr
/ / co [[v(x,¥)I?] ixdy.
R3 JR3 ’X Y‘

where we think of the integral kernel v(z,y) as a ¢ X ¢ matrix.
Using projections we can define as follows the HF-ground state.

Definition 1.3 (The HF-ground state). Let Z > 0 be a real number and N > 0 be an integer.
The HF-ground state energy is

E"(N,Z,a) = inf {M (1) :v* =7, y € A, Tr[y] = N}.
If a minimizer exists we say that the atom has a HF ground state described by ¥

We may extend the definition of the HF-functional from projections to density matrices in A.
We first notice that if v € A, then all the terms in £F () are finite. From (&) it follows that

] = Z Ajv(ug, uj) < Z)\je(uj,uj) = Tr[E(p)7].

On the other hand if v € A then p, € L}(R?) N L%(R?’) (see Remark [[.2)). By Hoélder’s inequality

p~y € L: (R?) and hence D(7) is bounded by Hardy-Littlewood-Sobolev’s inequality. The boundness
of the exchange term follows from 0 < £x(y) < D(7). On the other hand if 7 is a density matrix
with v ¢ A then E1(y) = co. Here we use also that Za < 2/7.

Extending the set where we minimize, we could have lowered the ground state energy and/or
changed the minimizer. That this is not the case follows from Lieb’s variational principle.

Theorem 1.4 (Lieb’s variational principle, [12]). For all N non-negative integers it holds that
nf{EM(7) 17 € A, 7? =7, Tly] = N} =imf{€M(7) 1y € A, Tr[y] = N},
and if the infimum over all density matrices is attained so is the infimum over projections.

The following existence theorem for the HF-minimizer in the pseudo-relativistic case has been
recently proved in [2].
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Theorem 1.5. Let Za < 2/m and let N > 2 be a positive integer such that N < Z + 1.
Then there exists an N -dimensional projection Y5 = AMF(N, Z «) minimizing the HF-energy
functional EMY given by (@), that is, EYY (N, Z,«a) is attained. Moreover, one can write

N
FYHF(Xv 0,Y, 7_) = Z ui(X7 J)u’i (y7 7_)*7
=1

with u; € LA(R3,C9), i = 1,..., N, orthonormal, such that the HF-orbitals {u;}Y_, satisfy:

1. h,YHF’LLZ‘ =y, with 0 > ey > en_1 > - > e > —a "' and
Z
hoye = T(p) — ﬁ e (11)

where pt'¥ denotes the density of the HF-minimizer and for f € H%(R?’)
N q
K )3, 0) = S ui(x,0) 3 /R wi(y, 7Y f 3, )% — y| - Ldy.
i=1 =1

2. u; € C®(R3\ {0},C9) fori=1,...,N;
3. u; € HY(R?\ Bgr(0)) for all R >0 andi=1,...,N.
In the opposite direction the following result gives an upper bound on the excess charge.

Theorem 1.6. Let aZ < % If N is a positive integer such that N > 27 + 1 there are no
minimizers for the HF-energy functional.

This theorem for Za < 1/2 was proved by Lieb in [I3]. With an improved approximation
argument the proof can be extended to Za < 2/7 (see [3]). Notice that both proofs work not only
in the Hartree-Fock approximation but for the minimization problem on AN L2(R3).

Definition 1.7. Let v be the HF-minimizer. The function

7 HF
O (x) = = — / P v) dy for x € R3,
x| Jrs [x— vl

1s called the HF-mean field potential and

7 HF
M (x) .= = —/ P y) dy for x € R?,
x| Jy<r X =Y

is the HF-screened nuclear potential.

Definition 1.8. We define the HF-radius R3Y(v) to the v last electrons by

/ P (x) dx = v.
|x|>RYFy (v)



236 A. Dall’Acqua, J.P. Solovej

1.3 A bit of Thomas-Fermi theory

In this subsection we present briefly the Thomas-Fermi theory and especially the result that will
be used in the rest of the paper. We refer the interested reader to [11].
Let U be a potential in L%2(R?) + L>(R3) with

inf{|[Wlleo : U — W € L3(R?)} = 0.

Then the TF-energy functional is defined by

TR\ _ 3 (6222 O dx ol dx - L PPy) o
e (0) = (57 [ obiax— [ Ubptoax+g [ [ L0 axay

on non-negative functions p € L%3(R?) N L' (R?). As before, ¢ denotes the number of spin states.
We recall some properties of the TF-model, see [1§].

Theorem 1.9. Let U be as above. For all N' > 0 there ewists a unique non-negative pEF
L33(R3) such that [ piF < N’ and

(V) =t () p € LPE), [ plx)ix < V)

There exists a unique chemical potential ur (N'), with 0 < piF(N') < supU, such that pj¥ is
uniquely characterized by

e B) + V) [l ) dx
= infE] () + POV [ o) dx 0 < pe LR LR
Moreover pli¥ is the unique solution in L3 (R®) N LY(R3) to the TF-equation
L(5)5 (pfF (%))

If ufF(N') > 0 then [ pf¥ = N'. For all > 0 there is a unique minimizer 0 < p € L>/3(R3) N
LYR3) to EFF(p) + [ p.

[U(x) = pi" # x| 7 = " (NT)]

One defines the TF-mean field potential @EF, the TF-screened nuclear potential @E n and

the TF-radius R, () to the v last-electron similarly as in Definitions [7] and [ replacing the
HF-density with the TF-density.

Theorem 1.10. If U(x) = Z/|x| (the Coulomb potential), then the minimizer of ELY, under the
condition [ p < N, exists for every N. Moreover, ¥ (N) = 0 if and only if N > Z.

When U(x) = Z/|x| we denote the minimizer of the TF-functional, under the condition [ p < Z,
simply by p™F and i p™ = Z. Correspondingly ¢™F and CI%F denote, respectively, its mean field
and screened nuclear potential. With this notation

ETF(pTF) = —eyZ3, (12)

where eq is the total binding energy of a neutral TF-atom of unit nuclear charge.
We recall here a result due to Sommerfeld on the asymptotic behavior of the TF-mean field
potential, see [23, Th. 4.6].
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Theorem 1.11 (Sommerfeld asymptotics). Assume that the potential U is continuous and har-
monic for [x| > R and that it satisfies lim|y o U(x) = 0.
Consider the corresponding TF-mean field potential <pEF and assume that u F < 11r{ 111;1f inf (p ( ).

|x|=r
With ¢ = (=7 +/73)/2 define

. o (%) ~3 ¢
alR) = h&lﬁfi?fr[(m) -1y
TF\ . Ti: Pu () MEF ¢
Al pg7) = Hmipf sup [W 1]re.

Then we find for all |x| > R
4.2 — —
pi (%) < BE (1 AR u" x|+ pf” and

47'('2 _ — _ —
o (%) > max{?;qz (1+ a(R)x| =) 2~ w(udF) < 1},

where

vug') = (R[] =) 21|72, s e[ }-

|x |>R

For easy reference we give here the estimate on the TF-mean field potential corresponding to
the Coulomb potential.

Theorem 1.12 (Atomic Sommerfeld estimate, [23, Thm 5.2-5.4]). The atomic TF-mean field
potential satisfies the bound

4
A '{Z Z§} TF ,{3421 Z}
— —minq—,— ¢ < X)) <minqSH——, — ¢, 13
I g £ = SR g "
with 2By = 73373273¢" 3, and for x| >R >0

o (x) = 5 (14 a(R)|x[ ") 2 |x|
where ¢ and a(R) are defined in Theorem [L11l.

Corollary 1.13. Let ¢ and [y be defined as in Theorem [L.11 and [I.12 respectively. Then the
TF-mean field potential satisfies the bound

4
A Z3 ) _1
- =~ 2% if |x| < BoZ™3
A R
v

o (L az =) ™ x| > oz,

3
with a = B§(3%n/(qB2) —1).
Corollary 1.14. The TF-screened nuclear potential satisfies
Py |( x) < 342” x|~ for all x € R3.

Corollary 1.15. The following estimate holds

TF (1) 2 285 4,1
(0% () < 42 38 23,
R3

Proof. By the TF-equation and since ¥ = 0 we find
[ o) iax =2k ) [ (6 60)bax
R3 R3

The estimate follows from the atomic Sommerfeld upper bound. U
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1.4 Construction and main results

We present the basic idea for the proof of Theorem [Tl Let us consider an atomic system with
N > 2 fermionic particles and a nucleus of charge Z > 1 with Za = k and 0 < k < 2/m. We
assume that N > Z and that N is such that a HF-minimizer exists. That is: there exists a density
matrix 71 € A such that Tr[y¥] = N and

EM (M) =inf (€M (7) 17 =7%,0 <y < L, Te[y] = N}

Let p™" be the TF-minimizer with potential U(x) = Z/|x| and under the condition [pT¥ = Z.
We know that such a minimizer exists and that the corresponding chemical potential is zero (see

Theorem [L.10]).

Denoting by p''F the density of the minimizer v¥, we find for all » > 0

N = /RBpHF(X)dx
= HFX—TFX X TFX X HFX X.
- /lm[p (%) - P ()] d +/|x<rp (x) d +/ P (x) d

|x|>r
By the equalities above and since fIX\ < pF(x)dx < Z, Theorem [T follows from the following
result.

Theorem 1.16. There exist v > 0 and positive constants ¢y and co independent of N and Z but
possibly depending on k such that

/ | [,OHF(X) - pTF(x)] dx < c; and / P (x)dx < cy.

|x|>r
The following theorem is the principal ingredient in the proof of the previous one and is the
main technical estimate in the paper.

Theorem 1.17. Let Za =k, 0 < k < 2/7. Assume N > Z > 1.
Then there exist universal constants ag > 0, 0 < e < 4 and Cy; and Cp depending on k such
that for all a < ag

o (x) — oY (x)| < Calx|™ + Cur.

x| x|
This main estimate is proven by an iterative procedure. We first prove the estimate for small
x (le. |x] < ﬁOZ_%), then for intermediate x (i.e. up to a fixed distance independent of Z) and
finally for big x.
By proving Theorem [[.T7] we also get the following interesting results. The proofs of those are
given in Section [B

Theorem 1.18 (Asymptotic formula for the radius). Let Zao =k, 0 < k < 2/m. Bothliminfz_ REFZ(V)
and limsupg_, REFZ(V) are bounded and behave asymptotically as

N
wlN

227 1

+o(v73) as v — oo.

1%

ol
o=

3

win

q

Theorem 1.19 (Bound on the ionization energy of a neutral atom). Let Za =k, 0 < k < 2/7
and Z > 1. The ionization energy of a neutral atom EWY(Z —1,2) — EM¥(Z,Z) is bounded by a
universal constant.

Theorem 1.20 (Potential estimate). Let Za =k, 0 < k < 2/w. For all Z > 1 and N with N > Z
for which a HF minimizer exists with [ P = N, we have

67 (0) — (o) < Al 0+ Ay,

with Ag, A1 and g9 universal constants.
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2 Prerequisites

In this section we recall some results that will be used in the rest of the paper.
Localization of the kinetic energy. The following is the IMS formula corresponding to the
operator T'(p).

Theorem 2.1 ([19]). Let x;, i = 0,..., K, be real valued Lipschitz continuous functions on R?
such that Zfio X7 (x) =1 for all x € R®. Then for every f € HY/?(R3)

K K
0, ) = _thaf.xif) —a D (f. Lif),
=0 1=0

where L; is a bounded operator with kernel

a2 Xi(%) = xi(y)l?

Li(x,y) = A2 |X—y|2 KQ(a71|X_y|)7 (14)

where Ko is a modified Bessel function of the second kind.

Remark 2.2. Asin [2], App.A, pages 94-98] we use the following integral formula for the modified
Bessel function

Ky(t) = t/ eI ds 1> 0.
0

We recall that this function is decreasing and smooth in RY. Moreover,

+o0
/ 2K, (t) dt =35 and Ko (1) <16 t 272" for t > 0. (15)
0

The integral is computed in [21, (A6)] while the estimate follows directly from the integral formula
for Ky by estimating Vs2 +1 > 5 + 1s.

Generalization of the Lieb-Thirring inequality. This result due to Daubechies generalizes the
Lieb-Thirring inequality to the pseudo-relativistic case.

Theorem 2.3 (Daubechies’ inequality, [4]). For v € A
TN = [ Galp, )i,

where Go(p) = %of‘ng(a(p/C)%) — o 'p with C = .163q, q the number of spin states and
g(t) = t(1+2)2(1 4 2¢2) — In(t + (1 +2)2).

Remark 2.4. The function G defined in the previous theorem is convex and it has the following

behavior:
2% min {%aC'*%p%, %Ciép%} < Gy (p) < 3min {%acfgpg, Ciépg} . (16)

(The proof of the estimate above is in Appendiz A.) Notice that when o\, 0 then a~'G4(p) tends
to a constant times p5/3.

N[

Theorem 2.5 (Generalization of the Lieb-Thirring inequality, [4]). Let f=! be the inverse of the
Junction f(t) := V2 +a2—a ', t >0, and define F(s) = [ dt [f~'(t)]>. Then for any density
matriz v it holds

Tr[(T(p) —UN] = —Cq . F(U(x)|)dx,
with C < 0.163.
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Remark 2.6. Since f~1(t) = (t* + 2a~'t)'/? we find for F

F(s) = 2ha72 [ 82 (s ba)V dt fors 20, (7)
0

and since by convexity (1 + %at)% <V2+ %(at)% we have

,é
2

F(s) <2

m|l°

s%+2\/—s for s > 0.

Hence for any density matriz v and potential U € L3 (RS) nL* (RS)

T[(T(p) — U)y] > —~Cq /

_3 5
[ (Fo 3 UeIE + 510691 e (18)

Coulomb norm estimate. We present here only the definition of Coulomb norm and the result

we need. For a more complete presentation we refer to [23, Sec.9].

Definition 2.7. For f,g € Lg(R3) we define the Coulomb inner product

1 f(X)m %
2/11@3 rs X — Yl ey,

and the corresponding norm ||g||c = D(g,g)%.

In the following we write the direct term in the HF-energy functlonal using the Coulomb scalar
product: i.e. D(v) = D(py, py) = D(py). Similarly, for p € Ll(RS)ﬂLs (R3) the term D(p) denotes

D(p, p).
The next proposition follows as Corollary 9.3 in [23].

Proposition 2.8. For s >0, x € R? and f € Lg(]R3) it holds

s [ O (Ve e

x —y|

Moreover, for k >0

/| /) dyg/ T 4y 1 93k £l

<lx| X =Vl A(x k) X =Y

where A(|x|, k) denotes the annulus

A(lx], k) = {y € B : (1 - 2k)|x| < |y| < |x]} .

2.1 Improved relativistic Lieb-Thirring inequalities

A major difference between the pseudo-relativistic HF-model and the non- relat1v1stlc one studied
in [23] is that the boundness of the functional does not yield a bound on the L3 norm of the
HF-density p"'F in the pseudorelativistic case. By Theorem 3 and Remark 2.4 we see that we can
control only the Ls-norm of p¥. Therefore one cannot estimate the term p'Y  |x|~! in L!'-norm
simply by Holder’s inequality with p = 5/2 and ¢ = 5/3. To estimate it we are going to use a
combined Daubechies-Lieb-Yau inequality.

The following lemma can be found in [24] pages 98799].

!The result of the lemma and the proof given in [24] are actually due to us, but we communicated the result to
the authors of [24], where it is referred to as a a private communication.
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Lemma 2.9. For f € S(R3),

e—hlxl® T 1
[, Sl < o= (1T,

]

1 2

with p =m" "™ ~.

The following is a slight generalization of the Daubechies-Lieb-Yau inequality formulated in
Theorem 2.8 in [24].

Theorem 2.10 (Daubechies-Lieb-Yau inequality). Assume that the potential U € L}, (R3) satis-
fies
0> -U(x) > —rlx|™" for |x| < max{a, R}, (19)

fora, R >0 and 0 < k < 2/m. Then we have

Te[T(p) — Ul- > —Cx*2a73?RY? — Ck*a™' - C (™
|x|>R

Proof. If (V2 —1)/m < k < 2/ then k%20 32RY? 4 k*a~! > Ck/2a~"! and the result follows
immediately from Theorem 2.8 in [24] observing that for R > « the two integrals of the potential
on {a < |x| < R} are bounded by the constants.

If 0 <k < (V2 —1)/m we write

_ LUQ _ LUQ
Uz) = e " U(@)xxj<r + (1 — e ") U (@)X 1xj<r + U@)Xx> R

with u = a=27~!. Using (I9) and Lemma 2.9 we find that

T(p) — U(x) = 5T(p) — (1 — e M) x| x e — U)X i &-

N | —

Hence from the generalization of the Lieb-Thirring inquality Theorem (see (I8])) we obtain

5
2

Tr[T(p)—U]- > —C a2 (k(1 — e ") |x[ 1)) 2 dx

N x|<R

—C (r(1 — e ) x| =) dx

|x|<R

—C (@ 2 |UX)|3 + |UX)[Y) dx.

|x|>R

Since the two first integrals above are estimated below by —Ck5/2a3/2RY2 — Ck*a~! we get the
result in the theorem. O

By Theorem 210 we find

HF
K/ P W) 4o <« T[T (p)HF] + CiiZi RE + Con®2, (20)
|x—y|<R |X - y|

with x € [0,2/7], kK = Za and R > 0 parameters to be chosen. This is the inequality that we use
to estimate p'f x [x|~! (see proof of Lemma 32 below).
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2.1.1 Bound on the Hartree-Fock energy
As a first application of Theorem 210l we can give a lower bound to the HF-energy.

Theorem 2.11 (Bound on the HF-energy). Let N > 0, Z > 0 and such that Zao = k with
0<k<2/m. Then

EYF(N,Z) > 2035 Z2N3 — Cr222,
with C the constant in Theorem [2.10

Proof. Let v be a N-dimensional projection. Since the electron-electron iteraction is positive we
see that

() = o 'TY(T(p) — T

= @ I(T(P) — rer)] — @7 (= Xg<n)

with R > 0 a parameter to be choosen. By Theorem 210 we find
EMF(y) > —203Z2Ns — Cr2Z2,

using that k = Za and by choosing R = C—5Z71Ns. U

3 Near the nucleus

In this section we prove the estimate in Theorem [[.I7] in the region near the nucleus (i.e. at
distance of Z_%).

We again assume that N > Z and that an HF-minimizer v1F exists for this N and Z. We
denote the density of 4! by p''F. We assume throughout that aZ = & is fixed with 0 < x < 2/7
and Z > 1.

Lemma 3.1. Let Za = k be fivzed with 0 < k < 2/m and Z > 1. Let G, be the function defined in
Theorem [2.3. Then, there exists g > 0 such that for all o < ap
ol [ Ga(pF(x)dx < CZ7B3, o ' Te[T(p)yHF] < 273
= (21)
and o™ = "Il < 27,
with C' a universal constant depending only on k.

Proof. Let u € (0,1) be such that u~'x < 2/7. Notice that here we need x < 2/7. Splitting the
kinetic energy into two parts we find

EMHITY = (1 - pa ' T (p)YF] + D) — Ex(xF)
T[0T (p) - %WHF] _—

and introducing p € L%(RS) N LY(R3), p > 0, to be chosen

= (1-pa ' TTEW] + plp - G + (1= )DET) (22)
—~Ex(y") — uD(p) + pTr[(a*T(p) — (% —px ﬁ))’YHF]
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Here || - [|¢ denotes the Coulomb norm defined in Definition [Z7] and we used that

HEF x
o~ 12 = Do) - [ % dxdy + D(').

The estimates in the claim will follow from (22]) with different choices of ;1 and p. The main idea
is to relate, up to lower order term, the last term on the right hand side of ([22)) to the TF-energy
of a neutral atom of nuclear charge Zu~!. This has been done in [21]. For completeness and easy
reference we repeat the reasoning in Propositions B.1 and B.2 in Appendix B.

To prove the first inequality in (2I]) we choose p as the minimizer of the TF-energy functional of
a neutral atom with charge y=1Z. Since the corresponding TF-mean field potential is Z/(u|x|) —
p * 1/|x| by Proposition B.2 in Appendix B we find

Z 1
*

I S
plx| |

Tr[(a ™ T(p) — ( NAHE] > —Cy ZF + D(p). (23)

Here we use ([2). Since EMF(yH1F) < 0 from ([22)) and (23] leaving out the positive terms we find
0 > (1-pa 'T[T(p)yF] - x(F) — 0175, (24)

From (24]) and Theorem 23] we get

(1=wa™ | Ga(p"(x))dx < (1 - wa™ T (p)] < (") + 128 (25)

It remains to estimate the exchange term. By the exchange inequality (see [15])

Ex(y7F) < 1.68 /]R3 (pHF(x))% dx.

To proceed we separate R3 into two regions. Let us define
1
PIES {X€R3 :a(C'_l,oHF(X))§ > 51, (26)

with the same notation as in (I6). By Remark 24, G,(p"(x)) > Cg(pHF(x))% in ¥ and
a 1Go (MM (%)) > Cg(pHF(x))g in R?\ ¥. Hence by Hélder’s inequality we find

+
—_
D
co
/
T
)=
™
)
jus)
=
—~
>
=
wlot
ISH
»
N—
ol
/
=
=
™
)
jus)
=
>
ISH
>
N—
[SIES

1
2

< O [ Galp" () dx o+ Cs / Nt (27)

07! Ga (7 (%)) dx)
R3

Choosing ag such that 1 — u > 2Csa for a < g, from 25]) and 27) we find

1
St [ Ga(p () dx < 0125 + s / 07 Ga (" (x)) dx) N2,

R3 R3

The first estimate in (ZI]) follows from the estimate above using that x? — bx — ¢ < 0 implies
22 < b? +2c and that N < 2Z + 1 (Theorem [[6). The second inequality in (ZI]) follows then from
(25) and the bound on the exchange term.
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To prove the third inequality in (ZI]) we estimate from above and from below &M (4H1F). For
the one from below we choose in (22)) ¢ = 1 and p = p'¥ the TF-minimizer of a neutral atom with
nucleus of charge Z. We find

N

EMF(YTT) = (us, (7' T(p) — @™ )us) + [|p"F = p"F )& = D(p™F) = Ex(y"T). (28)
=1

From (28)) and the proof of Proposition B.2 (see (B37])), we find

3 5
R . / da(p™ (q)2 — CZ*H1° (29)
=D(p™") + [|p"T = p & — Ex ().
To estimate from above EMF(yHY) we may proceed exactly as in [23, page 543] using that
a~!'T(p) < %|p|2. For completeness we repeat the main ideas. We consider « the density matrix
that acts identically on each of the spin components as

»yj:%// IIp g dgdp for j=1,...,q.
R G

Here I, 4 is the projection onto the space spanned by hY%(x) := hs(x — q)e’P* where hy is the
ground state (normalized in L?(R3)) for the Dirichlet Laplacian on the ball of radius Z~* with
s € (1/3,2/3) to be chosen. One sees that Tr[y] = Z < N since

3/2
py(x) = 2102w B2 (%) = p % B2 (x),

where we have used the TF-equation. Hence EF(vy) > HF (41 Now we estimate from above
EUF(~). Since o~ 'T(p) < %\p]Q and Ex(v) > 0 we find

EMF (7) < Tr{(—3A — 2]+ Dlp,) = ...

and proceeding as in [23], page 543|)

2 o0 Z
= e /ﬁ 3|pl* dpdq — 5 Z*N — | = py(x)dx + D(p,).
LIp|2<¢TF (q) R3 ’X’

Computing the integral and summing and subtracting the term [ pTFOTE we get
1 5 )
e < & (@ @) da— T2 N = | o™ (x)p™ () dx
Z
- [ 60 = ™ (x)dx = 2D + D). (30)

By Newton’s theorem one sees that D(p,) < D(p™F) and that

TF(o\ TF
R x|<z-+

| |

In the last step we use Holder’s inequality and Corollary [LI5l From (B0) using the TF-equation,
that N <2Z + 1 (Theorem [L.0]) and optimizing in s we find

3 5 1 7
EM(y) < —fr)%q/]RS(SOTF(OD)5 dq + CZE02=F) _ p(,TF). (31)
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Hence from (29) and (BII) we obtain
2
HpHF _ pTFHC < 07 + Ex(y1F).
The last estimate in (21]) follows from the estimate above since x(y1Y) < CZ 3 using (27) and
the estimate just proved on a~! [ G, (p"F (x)) dx. O

Lemma 3.2. Let Za = k be fized with 0 < k < 2/7 and Z > 1. Then, there exists an oy > 0
such that for all a < ap, p > 0 and x € R3 with |x| < BZfHT# we have

BTF (x) — BHF (x)| < CTH (1 4+ B0 [x| 22004 ) x| ~4F T

x| x|

Proof. By the definition of screened nuclear potential we have

HF () _ TF
lyl<Ix] x —yl
and for all £ > 0 by Proposition 2.8
s HF (1) 1 ,TF
< 2k 1]x] X H'OHF_pTFHC—i_/ P (y)+p (Y)dy. (32)
A(x),k) Ix -yl
Since H,OTFHL%(Rg) < CZ3 (Corollary [I5) and
1 1 1
/ ——dy < 8n|x|2(2k)>2. (33)
A(lxlR) [x —y|2
(see [23] page 549) one finds
TF
/ P W)y < oz et (34)
Allxlk) X =¥

Tl%e term with the HF-density has to be treated differently since we do not have a bound for
the L3-norm of pH¥. For a R € RT to be chosen later we consider the splitting

HF HF HF
/ P 4 /A( " p (Y)dy+/A(| " P 4 (35)
A(lxlk) X =¥ k) Ix —yl -, Ix —yl

|x x
[x—y| Ix—y|

We consider these two terms separately. Let ¥ be defined as in (28]); i.e. the region where G, (p"")
behaves like (pMY )% (Remark 2.4). By Hoélder’s inequality we find

HF 1
pr(y) / 1 i / HF (o \y 4
—=dy < ——dy (P (y)3dy
A(lx],k — A(|x],k —vl]4
(1 |>l)LZ |x — y] ( (|y‘\>3{ |x —y] ) ( yey )

[x—y| |x—

2
+</A(|X,k) |x —1yy% dy) 5 </yeR3\E (?" ) %dy>

From the inequality above, Remark [2.4] and estimate (2I) we get

W

[S[S5)

HF
P e < cRIxiEiZ 4 Ok 21 (36)
|A(|X|\J’<¢])R |x —y]
X—y|>
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On the other hand for the second term on the right hand side of (B3] by ([20) and Lemma [B1] we
find

HF
PO g < (24 + REZY). (37)
|x—y|<R x —y|
Hence from ([B2), Lemma B.1] (B4), (36) and [B7), we get
Z1+22
|21 (x) — &1F (x)| <C(| |1/2k+z5\x\5k5 + RORX|$kSZ + R2Z2 4 Z3). (38)

Ch()()SiIlg k‘ Sll(?h tllat Zé = Zg|x|ék‘é, i.e. k‘ = |X| 1 7 ; all(] Fi such that Fi g 217714 — %’ ie.
]E—Z 1 weiind =/ e
|I|x‘ (][) |x‘( )| <C(|X|2ZS 22 —+ 23)

The claim follows using that |x| < 52~ ) O

Theorem 3.3. Let Za = k be fized with 0 < k < 2/7 and Z > 1. Then there exists an oy > 0
such that for all a« < ag and x € R3 with |x| < BZ73 we have

@1 (x) — BN ()] < €25 (1 + 2 + 52 + F2F 1586 || 556 ) [x| 1+ 5. (39)
Moreover if |x| < ﬁZ for W< %% then
T8 (x) — B[N (x)] < CAW (14 B2 + B3 + BP9 x|l x| =l (40)
; 1 49 3 24-24p— H+2u 1 3 3494
with a(p) = GO 12(1ﬁu)’ b(u) = 2+ 15 i and c(n) = 17 — 215(828 y strictly

positive constants.

Proof. Proceeding as in the proof of Lemma up to (36) we get
B () — R )| < C(x[22"F 2 4 Z5|x|5ks + RT3 [x|sks2)
HF
+ / P (y) dy. "
\

x—y|<R |X - y|

for R € R to be chosen. It remains to estimate the last term on the right hand side of (&IJ). For
‘small’ R which is relevant for small x we already did it in Lemma[3.2] for ‘big’ R which is relevant
for big x we use Proposition B.1 in Appendix B

Take v < 1/263 to be chosen. If |x| < 8Z~ 3 then by Lemma B2

4 9 2lly 4y
\@\xl (%) — @3 (x)| < CHTH (1 + FZ077 [x| 2057 ) ||~ 755 (42)
If instead |x| > 375" let Hy be the Hamiltonian defined in (B2)) with P = x and v = Z. Then
by the definition of H and taking the HF-minimizer as a trial wave function we have
HF
inf (), Hyt) < EMF(I) — 7 / ),
YeAl | L2(R3) x—y|<R |X — ¥l
lll2=1
HF
yEA x—y|<R X =¥l
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Since 3|p|* > o 'T(p), inf,c4 EMF(7) is estimated from above by the HF-ground state energy of
the non-relativistic model (i.e. when the kinetic energy is given by —%A). Moreover, this last one

can be estimated from above by £TF(pTF) 4 CNs 22 (see [18] and [11]). Hence we find

HF(

SETF(pTF)+CNéZQ—Z/ ) e
|x—y|<R |X_Y|

On the other hand since |x| > 32~ = choosing for some [ > 1;”, R < $Z7'/4 from Propo-

sition B.1 it follows that there exists a constant depending only on k such that for ¢ € ((1 +
v)/3,min{l,3/5}), and for every 1 € AN, L?(R3) with |[¢|ls = 1 we have

(W Hxt) = €M) - 0B + 5728,

Hence combining the two inequalities above we find

PHF( ) 1/2 l (3—t)
P W)y < o(aV2 4 522360, (13)
|lx—y|<R |X Y|
From ({I]) and the inequality above we get
@ (x) — @R (x)| < ChTUx[TTZE + CZF[x|Fk
+COR™$|x[sks Z + C(BY% + p2) 2261,
Choosing k such that 7361 — Z§|x|%ké, ie k = |x|_lZ%(175t) and R such that Z263-0 ~
R™57%160-5) e R = 32 672! /4 we find
1
[P (0 — P (0] < Cx|2 27073 4 (82 + 572 22670), (44)

Notice that R < 3Z7!/4 is satisfied choosing I = 4t/3. Then for x such that ﬂZ T < x| < BZ~3
we find

15 3
t 2

@1 (x) — T (x)| < CO(jx|" =2t 4 (812 4 p72) 320 x| 72 670),

Optimizing in t gives t = 1/3 + 1/99. For this value of ¢ we get
Loga L
@ (x) — B (x)] < C(1+ 52)5% 5 x| 5. (45)

Inequality ([39) follows from ([42) and (@5]) choosing v such that 4v/(1+~) = 1/66, i.e. v = 1/263.
On the other hand from (@) for x such that 8Z~ "5 < |x| < 8Z~"3" we find

B (x) — B[P (x)| < Clxfp 30 grs(i 3y
+C(BY2 + g72) g &0 x| 00,
Optimizing in ¢ gives ¢ = 1/3 4+ 1/99 — . For this value of ¢ we get
DEF (x) — OF (0] < C(1+ 546700 1205 x|~ o 10,

Inequality (@Q) follows from the one above and ([42]) choosing 7 such that 4v/(1 + ) = Wl—u) -

49
- =
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4 The exterior part

In this section we complete the proof of Theorem [LT7l We first estimate the exterior integral of
the density and study the minimization problem that the exterior part of the minimizer satisfies.
Then we prove the main estimate in Theorem [[LI7] in an intermediate zone, i.e. far from the
nucleus but not further than a fixed distance independent of Z. To study this area we need first
to construct a TF-model that gives a good approximation of the HF-density in this intermediate
zone. By the estimate on the exterior integral of the density we can then also prove Theorem [L.17]
in the region far away from the nucleus.

4.1 The exterior integral of the density

The main result of this section is the following lemma.

Lemma 4.1 (The exterior integral of the density). Assume that for some R,0,e' >0

@] (x) = B ()| < x| (46)

x| x|

holds for |x| < R. Then for 0 <r < R
|60 =) x| < o (47)
x| <r

and
[ pTax < cr o)) (48)
|x|>r

with C a universal constant.

We proceed similarly as in the proof of Lemma 10.5 in [23]. Since we need to localize we
first present some technical lemmas that will take care of the error terms due to the localization.
The localization error that will appear in the argument below (see (58))) will be in the form of an
operator L similar to the error (I4]) in the IMS formula. We estimate this error in Lemma [£.3]

Remark 4.2. Let 0 < 1 < .. < B4 be real numbers with possibly B4 = oo. Let us denote
(B, B5) = {x € R®: Bir < |x| < Bjr}. Then we have

1 2 (437r)2 ﬁ% - ﬁ? 4,2 —a"tr(B3—P2)
I e sy Koo eyl iy < B e |
yc E7‘(/83754)

The proof of this estimate is given in Appendiz A.

Lemma 4.3. Let r >0 and \,v € (0,1). Let x— be the characteristic function of B,(;_,)(0) and
Xo be the characteristic function of the sector {x € R3 : r(1 —v) < |x| < r(1+v)/(1 — \)}. Let
n be a Lipschitz function such that 0 < n(x) <1 for all x € R, n(x) =0 if [x| <7, n(x) =1 if
x| > (1 —A)"! and |[Vn|o is bounded. Let L denote the operator with integral kernel

Lixy) = Z; (n(x) — n(y)|))§77_(>2||2x| —n(y)lyl) Koo~ — y]). (49)

Then for every function f € L*(R3) we have

1 _

oY (f, LA < 3D, A7) Ixo fIIF + DOn, A r)e 2% I 13 + o7 (f, QF)],
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with D(n, A, r) = ||Vn|leo (% + 1) and Q a positive semi-definite operator such that

1

Tr[Q] < CD(n, A, r)a™tre 2% T,
with C' depending only on A and v.

Proof. As a first step we decompose the operator L. We introduce a third cut-off function x such
that 1 = x_(x) + x0(x) + x4 (x) for all x € R3. We decompose the operator L with respect to
these characteristic functions as follows:

L = x_L(xo+ x+) + (xo + x+)Lx- + xoLx+ + x+Lxo + xoLxo-

We proceed similarly as in [24] Proof of Theorem 2.6 (Localization error)]. For I'y,I's bounded
operators from (I'; — I'9)(I'y — I'2)* > 0 it follows

T'\T% + Tl < 4T + DT, (50)

We are going to use several times this inequality with different choices of I'y and I's.
As a first choice we consider I'y = /e1x— and I'y = 1/,/e1(x0 + x+)Lx— with €1 > 0 to be
chosen. Using (B0) we get

(f, (x=L(xo0 + x+) + (xo + x4 ) Lx) )| < erllx-fl3 + = (f, Q/), (51)

1
€1
with @1 = (XO + X+)LX2_L(XO + X+)- We estimate now the trace of Q1. By the definition of
7, X—, Xo and x4 it follows that

1

Tr[Q:] = / / L(x,y) dxdy < %@D(n’ A, ) 2r2ee ',
x|<r(1—v) Jly|zr

In the last step we use the definition of L, Remark L2l and the definition of the constant D(n, A, )
given in the statement of the lemma.

Now we choose I'y = {/g2x0 and I'y = 1/,/g2x+Lxo with €2 > 0 to be chosen. Proceeding as
above we get

(F, (e Lo + xoLxa) )] < eallxof I3 + é(f, Q1) (52)

with Q9 = X+LX(2)LX+ and such that

2 1 (1—1)3(1=)\)3 —alpv_
Tr[Qq] < U AN iy ) )2 267 T

It remains to study the term ygLyo. This one has to be treated differently. By Schwartz’s
inequality one gets

(o) < £ [ xallr (53)
since [ps |L(x,y)|dxdy < 22D(n,\,r).

1
The claim follows from (EI), (52) and (53)) choosing e1 = D(n, A, r)ae™ 2% ™ ey = 22D (n, A, r)
and with @Q := éQl + éQQ O

Definition 4.4 (The localization function). Fiz 0 < A < 1 and let G : R3 — R be given by

0 if x| <1,
G(x) = 5 (x| = 1)(1,)\)%1,1 if 1< x| < (1—X)71,
2 if =171 < |x|.

Let v > 0 and define the outside localization function 0,(x) := sin(G(‘iT')).
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Remark 4.5. From the definition it follows that ||V, |ls < 352771
Lemma 4.6. For all v > 0 and \,v € (0,1) the density p'¥ of the minimizer satisfies
/ PF(x)dx < 14+2+2 sup ]x]@?g#\) (x) + R2
|x|>r(1—A) x|=r(1-A)
with

1

_ —1 HF —1 -2 —lof rv
R =6D(\)r p i (x)dx+2DN)(r7 "N+ Cra™“)e” 2 ,
(1-v)

with D(A) == (1 +7/(2A1 — \))7/(2\) and C = C(\,v).

Proof. Let v"F be the minimizer. By the variational principle, YH¥ is a projection onto the
subspace spanned by u1, ..., uy. These functions u; satisfy the Euler Lagrange equations h. nru; =
gitj, €; < 0, for i =1,..., N, with h ur defined in (IIJ).

Given 7 a function in C1(R?) with support away from zero, we find

0>ZEZ/ i (x)]2|x|n? (x dx—Z/ ui (x)*]x[n%(x) h JHE Ui (X)dX.

Since nT(p)u; € L*(R3) (Theorem [LH (3)), using the Euler-Lagrange equations and treating all
the terms, except the kinetic energy, as in [23, Formula (63)] we get

1Zumr | 7T (p)us) — / P ()1 (x) dx

R3
1— 2 x 2
/ / y) — Treq ‘,YHF(X’Y)‘Q] |y|( n ( ))77 (y) dxdy
R3 JR3 Ix -yl
2
([ oo <x>dx) 4 [ PG o (54)
R3 R3
Now we look at the kinetic energy term. For each i € {1,..., N} we may write
Re(uin| - [,nT(p)us) = Re(uin| - |, T(p)(nuq)) + Re(uin] - |, [, T(p)]ui), (55)

where [A, B] denotes the commutator of the operators A and B. The first term on the right
hand side of (B3] is non-negative by the result of Lieb in [I3]. Notice that here we may use that
nu; € HY(R3) (see Theorem [T (3)).

Hence, from (54]) and (55]) we find

12Re wl | 0. T@)w) - Z [ |60 )

R3
/ / y) — Treq ")/HF(X, y)‘2] ’y‘(l _‘772_(3())772(}’) dxdy
R3 JR3 X y‘
2
+§</RS PHF(X)U2(X)dx) - %/RS P (x)n? (x)dx. (56)

By a density argument we may choose n = 6,. the localization function defined in Definition [£4l
Reasoning as on page 541 of [23], we get

N
@™ 3 Re(wl- | n T o)) + ([ 0" 0P <))

2

(3w el 00) [ TG0 (57)
x|=r(1-X) R3
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It remains to estimate the first term on the right hand side of (57)). With the same arguments
used in the proof of the IMS formula, it can be rewritten as

N

N
o™ty Re(ug| - |, [0, T(p)|u;) = —a~ Y (ui, Lug), (58)
i=1

i=1

where L is the operator defined in (49). Using LemmaA3] and since ||[V7||oo = [|VOr|loco < 7/ (2A7)
we find, with D()\) defined as in the statement,

_1ru|

1
< 3D Hixop™ i + D)~ te 2 T

N
Ofl‘ > (i, Lu;) [X-p
=1

—1

1
+CD(Nra~2e 2% 7V, (59)

where xo, x— and C are as defined in the statement of Lemma 3l Hence combining (&7) with
(59), using the definition of yo and that ||x_p'F|l; < N we have

1
0 > —3D(\)r / P (x) dx — D(A)r—le= 2N

r(l—v)<|x|<r }fi

1 _ 2
~epOyra~?e 3 4| T 0n (x)ax)
RS

(3w el 00) [ TG0
|x|=r(1-X) R3

The claim follows using that 2 —Bxr—C<0 implies x < B + V. O

Proof of Lemma[{.1 We proceed as in [23], page 551]. The first estimate follows directly from the
equality

/ (PMF (x) — pTF (x)) dx = L / (BHF (1) — BT (1)) dov,
|x|<r 52

and Q). To prove ([8]) we use Lemma We first notice that for 0 < 8 < 7 and + such that
rvy<R

[ w5
rB<ly|<ry lyl<ry

e ey [ ay

< Or 38731+ or%). (60)

Here we used (7)) and that by the TF-equation and (I3])
4 2 _
/ p"F(y) dy < EZ=p%r 0,
ly[>rB

Since f‘ P < f‘x|>2r /3 pF to prove the claim we estimate this second integral. By Lemma Z.6]
1

with r replaced by 7/2, A = % and v = 5 we get

x|>r

/ PP (x)dx <9+ 3r sup <I>§IT,F/8(X) +R3,
|x|>2r/3 |x|=3r/8
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with R defined as in the statement of Lemma By (&) and Corollary [LT4] we find

sup B (x) < Cor™™ + sup 3l (x) < O(L+or%)r ",
|x|=3r/8 |x|=3r/8

Moreover, from (60) with 3 = 1/4 and v = 1, since N < 2Z + 1 and the boundness of Rt > z —
xPe™* for all p > 0, we find
R<Cr 1 +o0r)+r7h).

The claim follows directly. O

4.2 Separating the inside from the outside

We consider the exterior part of the minimizer, i.e. the density matrix
71I:IF = HT’YHFHN (61)

with 6, as defined in Definition £l This density matrix almost minimizes a new energy functional
where there is no exchange term. Indeed sufficiently far away from the nucleus the electrons are
far apart and hence their mutual interaction is small.

We define an auxiliary energy functional on A (see (®))) given by

£4(7) = "Tr[(a™'T(p) — ©;")7] + D(p,). (62)

Theorem 4.7. Letr > 0 and \,v € (0,1). Let x;" denote the characteristic function of R*\ B,.(0).
The density matriz Y5 defined in ([G1)) satisfies

EAT) < {5A(7) :v € A,supp(p,) C R*\ B,(0), [|p]l1 < HpHFxrlh} +R,

where

a~lrd

1
R = (55 + %Tfl)rfl / ,OHF(X) dx +cda (1 +ar?)e 2
r(1-A)(1-v)<|x]

[(“1’?54) (X)) : +a (q)ilg*)\) (X))ﬂ dx,

r
1—-X

+Ex(vIF) + C/
r(1-M)<x|<

and c,d are positive constants depending only on v and M.

Proof. We proceed as in [23] pages 532-6]. The first step of the proof is a localization. Once again
we have to treat carefully the localization error coming from the kinetic energy. This is the main
difference with [23]. For completeness we repeat the main ideas of the reasoning.

We consider the following partition of unity of R3: 1 = 02(x) + 63(x) + 62 (x) with 6, defined
as in Definition [£4] and

() = (62_y)(%) — 02(x))? and 0_(x) := (1 — 62,5 (x))>.

Associated to this partition of unity we define

S

Y = 09y, and HHF .= 9_HFg_

We prove the claim by showing that for all density matrices v € A such that supp(py) C
R3\ B,(0) and ||py[|1 < [lp™x;F[|1 it holds that

EAT) + EM(RET) = R < €M (Y1) < €4(y) + €MF (/). (63)
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The proof of the upper bound in (63)) is as in [23], page 533].
To prove the lower bound as a first step we localize. By Theorem 2.1l we find

N
o ' T[T (p)y™] = o T[T (P) (3 + 0 + AR —a Z(Ui, (Ly + Lo+ L-)u;),  (64)

where L,, Ly and L_ are defined as the L;’s in (I4]).

We first estimate the error term. The procedure is similar to the one used in the proof of
LemmalL3l We introduce three cut-off functions: x_ be the characteristic function of B,.(;_x)1-,)(0),
Xr the characteristic function of R3\ B, Lty (0) and xo defined by xo(x) =1 — xr(x) — x—(x) for

all x € R?. Notice that y_ and Y, are the characteristic functions of sets where 6_, 6, and 6, are
constants. For k € {—,0,r} we have the following splitting

Ly = x-Lk(xo + xr) + (X0 + Xr)Lex— + xrLiXo + XoLkxr + XoLrXo,
and proceeding as in the proof of Lemma .3 with €} , €21 to be chosen we find
(f,Lef) < erxllx—fl3+ 5;;1€(f7 Q1 f) +earllxofII3 + 55,/1g(fa Q2f)
+VORZ Ixo £ 13-

with operators @)1 and )2 being positive semi-definite operators with

Q] < (16)% (1=1)? (1 v) Hv9k||4 r2e—o (1=

= 372

=
&
A

—1,._v_
= e VO loor?e™ Tx.

Choosing then

_1 B
o = 22| V0|25 and g1 = af| VO|Z e 2 rv(1=3),
since (V0 2, + [Veo|% + [V0_|2) < 372/(432)r—2 and. o[l < N we get

N
I G
a ! Z(Ui,(Lr—i—Lo—FL,)ui) < 4/\27" 2||,o Xo||1+4/\27” 2,~go rv(1-X)

L1000
+ 604_26 o try(l )\)'

Here c is a constant that depends only on v and .
Hence from (64]), the inequality above and since N < 2Z + 1 we find

ET () > | (a7'T(p) - E)(%HF 0 +950) |+ D)

||
_ PN P
—Ex(y"™) - 4>\2 2o xolli — da”?(1 + ar e 2% "

The constants ¢’,d depend only on A and v. Proceeding as in [23] we get
1
e = MM 4 e — Ex (") — daTP (1 ar e 2
+Tr | (a7'T(p) — @y ()"

(& 4 BTyt P (x) dx.
G+ X >r(1-A)(1-) (

The claim follows using Theorem O
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4.3 Comparing with an Outside Thomas Fermi

At this point we introduce an “Outside Thomas Fermi”: a TF-energy functional whose minimizer
approximates the HF-density at a certain distance from the nucleus.
Let r > 0 such that
HF TF —44¢’
|} (%) = Py ()] < x|, (65)
for all |x| < r for some o > 0 and & > 0. Let V,. be the potential defined by

Vi) = G000 = { Qi = o (66)

Here and in the following x;F(x) := 1 — x,(x), x € R3, where y, is the characteristic function of
the ball of radius r centered at 0. Notice that V, € Lg(]l@) + L>®(R3) with

inf{||[Wllo : V;, — W € L2 (R3)} = 0.

Let £9TF be the TF-functional E‘EF corresponding to the potential V. defined in (G6). Let pOTF

T
EOTF under the condition

/R _p(x)dx < / P (y)dy,

ly|>r

be the unique minimizer of

(see Theorem [LA). Then pOTF is solution to the OTF-equation

2
L)% (pOT)E = [p0TF — T (67)

where

OTF
r Yy
PO (x) = V() - / )y
R3 \X—Y‘

is the OTF-mean field potential and pOTF is the corresponding chemical potential. From ©7)

r

(and uOTF > 0) we see that the support of p9TF is contained in R3\ B,.(0).

r

In the intermediary zone instead of comparing directly @IE(IT and <I>|T)£ we compare first the HF-

density with the OTF-density and then the OTF-density with the TF-density. When comparing
the TF and OTF there is no difference with the non-relativistic case and for brevity we refer for
the proofs to [23].

We start by studying the behavior of the minimizer and mean field potential of the OTF. The
proof of the following bounds is in [23 page 557-558] in the case ¢ = 2 and it can be directly
generalised to the other values of q.

Lemma 4.8 ([23) Lem.12.1]). For all y € R3 we have
P!t (y) <3727 rPy| ™ and p™ (y) < 3°27 ¢ Py 0.
Let By be as defined in Theorem [L.12, then for all |y| > ﬂtoé we have
0" (y) = Cly|™ and p™" (y) > Cly|™".
With r,0,€' such that B8) holds and or¢ < 1 we have for all |y| > r

pX ™ (y) < Cr78 and QM (y) < |Vi(y)| < Cr .

r
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Lemma 4.9 (|23, Lem.12.2]). With r,0,&’ such that (GBl) holds for all |x| < r we have
[ ) =y < o
yY-or

For x € R3 with |[x| > r we may write

@E}r(x) - @Eﬁ(x) = Ay (r,x) + Az(r, x) + As(r,x), (68)
where
Ai(rx) = TP (x) — o™ (x),
OTF(y _ TF
Ao(rx) = / pr o (y) =P (y) dy
yI> x| Ix —y]
and
OTF(y\ _ HF
Ay(r,x) = / pr () =P () dy.
r<ly|<|x| Ix -yl

4.3.1 Estimate on 4; and A,

Lemma 4.10 ([23, Lem.12.4]). Let N > Z. Given ',0 > 0 there exists a constant D > 0 such
that for all r with BoZ73 <r<D for which 8) holds for all |x| <, then u®TF =0 and

4,2 _ N — O 4.2 — _
2 x| 741+ ar x| ) 72 < 0T (x) < SR [x| 71+ ArC|x| ) for [x| > 7,

where a, A are universal constants and ¢ = (=74 /73)/2.

Lemma 4.11 ([23| Lem.12.5]). Let N > Z. Given €',0 > 0 there exists a constant D > 0

depending only on €', o such that for all r with 50Z_% <r < D for which [©3) holds for |x| < r,
then for all |x| > r

|AL(r,x)| < Clx|7*r¢ and | Ay(r,x)| < CJx|~*5,
with ¢ = (=7 + \/ﬁ)/Q and C' a universal constant.

The proof of the previous lemmas is in [23, p. 558-564].

4.3.2 Estimate on ||x;pF — pOTF| ¢

Lemma 4.12. Let G, be the function defined in Theorem and pH¥(x) be the one-particle
density of the density matriz v1¥ defined in (61)). Let Za = k fized, 0 < k < 2/7 and Z > 1.

Given constants €', > 0 there exists D < % such that for all r with ﬁoZ_% <r <D for which
[65)) holds for |x| < r, it follows that

ot / Go(plF (%)) dx < o™ ' TY[T(p)yiF] < 2R + Cr 7 + C'?“_4/ P (x) dx,
R3 R3

with C' a universal positive constant and R as defined in Theorem [[.7]
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Proof. The first inequality follows directly from Theorem [Z3l To prove the second inequality we
proceed as in Lemma[3.Jl In this case we are interested only in the exterior part of the minimizer.

Hence, instead of considering the HF-energy functional we consider the auxiliary functional £4,

defined in (62)), applied to the “exterior part of the minimizer” .

Splitting the kinetic energy in two terms we find
EAT) = 5o T[T (p) ] + D(p)'") + 5 Trl(a™ T (p) — 28,77, ]. (69)
Since ®!¥(x) is harmonic for |x| > r and going to zero at infinity

B (x) < —

m |sup oM (y) for |x| > .

yl=r

Hence, since supp(p¥) € R3\ B,.(0) we find

Tr[(a™'T(p) — 2€,")y,"" ] = Tr[(a™'T(p) — W S e (y) ] =

Adding and subtracting 2D(p, p!'¥') for p € L}(R3) N L3 (R3?), p >0, to be chosen

= Tr[(a T (p) — /RS /R3 ]x y‘ dxdy. (70)

where for simplicity of notation here and in the following V), is defined as V,,(x) := % SUP|y |y QI (y)—
1
From (70), ([69) and the definition of the Coulomb norm and scalar product (Definition [2.7])
we find

) = s T[T ()] + 3D (o)) + 2||P F iz
—3D(p) + 3 Tr[(a”'T(p) = Vp)»'"] (71)
> % - Tr[T'( ‘|‘ % Z (Orui, T(p) — Vp)bruwi) — %D(p)u
=1

denoting by u; the HF-orbitals.

We now choose p as the minimizer of the TF-energy functional of a neutral atom with Coulomb
potential and nuclear charge 2rsupjy|_, ¥ (y). Then V, is the corresponding TF-mean field
potential and we see that the last two terms on the right hand side of (I]) are like the ones in the
claim of Proposition B.2. The only difference is due to the presence of the localization function 6,.
We now prove that these terms give the TF-energy modulo lower order terms. The method is the
same as that of Proposition B.2. 1VVe repeat the main steps since in this case the scaling depends
on 7. Notice that since r > GpZ~3 the contribution is coming only from the “outer zone”.

Let g € C5°(R3) be spherically symmetric, normalized in L?(R3) and with support in Bj(0).
Let us define g,(x) := r~3g(xr~2) and 1, := g2. Since V,, is subharmonic on |x| > 0, we see from
the support properties of v, and 6, that

N

N
Z(Hrui, (a1 T(p) — V,)0,u;) > Z (Orui, ( (p) =V, * y)0ru;) =

i=1
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For p,q € R? we define the coherent states gF'(x) := g.(x — q)e’P*. By the formulas (BI6]) and
(BI7) with Lq the operator defined in the equation below (BIT) we get

= (2;)3a—1/R3/R3dpdq( ) —aV,(q ZZ| Gul,gr

=1 j=1

N
-1 (x u; ) (x
Ca ;/}R /}R dxda (0r) (%) (L s () (72)

where uf denotes the j-th spin component of the orbital u;. By the choice of the function g, and
with the same arguments that led to (BI) in the appendix we find

N
—1 N (x w; ) (x
o ;{;jgsjésdxdq<9Tu»< )(Lafyui)(x)

N

< 3) 16:uill3IVerliZVol(supp(gr) < Cr=*p) 1. (73)
=1

In the first term on the right hand side of () the integrand is zero if |q| < 172 since in this
case supp(f,) N supp(gP) = O (by the choice D < 4/5). To estimate it further from below we
consider only the negative part of the integrand

(74)

IV
™
3 [
‘a
Q\
IS
i
QU
Q
3
i
|
Q
=
2

where we have used that 0 < ZZ 1106 uZ', gr1)|? <1 (Bessel’s inequality). We split the domain
of integration in p as follows

{pe R3: T(p) <aV,(q)} =% U

with £1,% disjoint and %1 = {p € R® : 3|p|> < V,(q)}. We treat these two contributions
separately. We have

_1//|>1 ,dpdq (T(p) — aV,(q //>1 , dpdq [V,(q)] 4

PEXs pPEXa

3
2

and computing the integral, using that (1 +z)2 <1+ %:c + %:cQ

) > —Ca?r™% — Catr= . (75)

—+ o

z-of | da@N@l el

In the last step we used that [V,(q)]l+ < 217 SUP|x|=r ®!F(x) and that by the hypothesis and
Corollary [[LT4]
r sup & (x) < Cr 3, (76)

|x|=r

choosing D such that ore’ < 1.
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Since T'(p) > $ap|? — §a?|p[* we find

0 [ [, AP (T(0) — aVi(a)

Pezl
> dpda (2[p[? - V,(q)) — Lo’ dpdq [p|* (77)
= ‘q|>ir2 paq 2 P p\a g |q\>%r2 paq [p| -
Ip2<V,(a) Lp2<V,(q)

Computing the last integral we find

2

a \ o dpdq |p|* < Ca®r71(2r sup @?F(x))% <Co’r =, (78)

la|>37 -
|x|=r

1|1D\2<Vp(01)

While for the first term on the right hand side of (1), computing the integral with respect to p,
we get

5
/ la|>1r2 dpdq (%’P\Q - V,(q)) = _47r% /
3IpI2<Vy(a) la|>

Hence collecting together (72), (73)), (74)) (73]), (78) and the inequality above we find

_ 3 5 _ u
Tei(o™T(p) = Vot = ~ 2% [ ax V00)} — Cr ¥ — o =
since By Z -3 < r implies Gy« 5 < k3r. From the TF-equation that p satisfies it follows that

722 5 _ _1
= [ ot [ pGove0 dx— O - Cr
= £ (p) + D(p) — Cr 4oy — O
Hence from (1)) and the inequality above we get using (I2) and (76])

EARTEY > fa' T[T (p)yMF) - CrTT — Cr Yo .

The claim follows since £4(yH¥) < R by the result of Theorem 7] considering as a trial density
matrix v = 0. O

Lemma 4.13. Let N € N and Za = k be fized, 0 < k < 2/m and Z > 1. Let e be the

first N' negative eigenvalues of the operator a= T (p) — pOTF acting on functions with support on
{xeR3: x| >r}.

Given constants €',0 > 0 there exists D < 4/5 such that for all r with BoZ~ % r < D for
which ([65]) holds for |X| <, for all p € (0,1) and s < r we have

N/

3 5 g _3 3 _
Se = (e [ ) da- Ot - ot
j=1 |q\>r

with C' a positive constant.
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Proof. Let f; be the eigenfunctions (normalized in L?(R3, CY)) corresponding to the eigenvalues e;,
j=1,.,N'". Let g € C°(R?) with support in B1(0) and define gs(x) = sfgg(x/s) for a positive

parameter s, s < r. We then write for u € (0,1)

N/
Ze] ij, 'T(p) — 2T f;) = B1 + Ba,
7=1

where

N/

Bi = Y (i (1=wa™Tm®) — o™ x g2 f7),
=1
JN,

By = > (fjs(na ' T(p) — 0™ + o™ 5 g2) f;).
j=1

We estimate these two terms separately. Considering for p,q € R? the coherent states g

eiP-x

gs(x — q) using (BIG) and (BIT), we find
N
Bi = o [[ (1= pa™'T(p) — P |(f5, 929 dadp
_— wn
N/
—(1— -1 xdq f;(x) )(x).
(1 - wa g/R |, dxda B (Laf,) )

Estimating the error term as done in (B32]) and previous inequalities we get

.
— ot xdq f;(x) i)(x — p)s 2N’
(1-p) Z/R/Rd Aaf; (%) (Laf;)(x) < C(1 = p)s 2N

Ux) :=

Since we are interested in an estimate from below and 99T (q) < 0 for |q| < r, from () we find

N
1 > (Qﬂ.)s // 1_ T( OTF Z| f]a dqdp
lq|>r =1

—C(1—p)s 2N,

(80)

We estimate now the first term on the right hand side of (80). Considering only the negative part

of the integrand and since Zjvz/l 1(f5,95M)]? <1 we get

o //qbr((l—malz’( 0T Zm, % dadp

> o [ e (= wanTE) -0 (@) dpda

(1-p)a™1T(p)<ePTF (q)

Now we split the domain of integration in p as follows

{PeR:a ' (1-pT(p) < "M (@)} =T1 ULy,
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with 1, ¥y disjoint and X1 = {p € R?: (1 — p)|p|?/2 < vO9TF(q)}. We treat these two contribu-
tions separately. Then

e // (1~ W™ T(p) ~ 9™ (a))dpi
PEZQ
// q|>r oy (q))+dpdq = ..
pEXs

and since in the domain of integration

2l (@) < Ipl” < 2[00 T (@] (1 + ool (@)+)

we get

7 o2 9
> o /qu (O™ (@) + 52 00" (a))2)
_ o2
N ! 1)
using Lemma 410 in the last step.
Since V1 +12 > 1+ (1/2)t? — (1/8)t*, we get
2 [ [ (0= 001 T(0) — 0™ (@)ipda
pEX:
> o [ / Ypl? — 07 (@) 31— wo’lpl*)dpda.
Pezl
The last term gives by Lemma [£.10]
7 z 7
o | / o 0 bl = a2z / AT @ s o bt @)
la|>r
While for the other terms computing the integral with respect to p, we get
3 5
255 [ [ (L= dP = P @)ipda = ~(Z) ks [l @l ()
pGEl ‘q|>7'

For the term By using Theorem and Remark we find

By > —Caq(p™2 o™ - OTF*QS]+H5 + i [T — o x gl ).

From the choice of g; it follows that @OTF @9TF * gg <V,—V,.x gg and the term V,. — V, * gg is
non-zero only for r — s < |x| <r+s. Hence by Lemma [A.§ and since s < r

H [ OTF OTF

5
Pr - Pr * gg]-ﬁ-” < / <xl< [‘/T’(X) — Vi g2(X)]idX < C’I”_8S, (84)
r—s<|x|<r+s

[Nl S

and similarly H[(p?TI: — %?TF % g%4 |1 < Or~'s. The claim follows from (80), [&1), (82), (83) and
([®4) using that fyas < k3r. O
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Lemma 4.14. Let G, be the function defined in Theorem 23 and pi¥ (x) the one-particle density
of the density matriz Y15 defined in (©1). Let Za = k be fived, 0 < k < 2/7 and Z > 1.

There exists ag > 0 such that given €', 0 > 0 there exists D < 1/4 such that for all o < ag and
r with ﬁtoé <r < D for which [©3) holds for |x| <r, we have

i — pOTF|| o < Or—5+3 and

Xr
85
1/ Gl + HF (x))dx < Cr77, a ! Tr[T(p)’y,In{F] < C’r77, (85)

with C' a universal positive constant.

Proof. The idea of the proof is the same as that of Lemma B.Il In this case we are interested only
in the exterior part of the minimizer. Hence, instead of considering the HF-energy functional we
estimate from above and below the auxiliary one £4, defined in (62)), applied on the “exterior part
of the minimizer” ¥

Step 1. Estimate from above on EA(’yfF). Let us consider v the density matrix that acts

identically on the spin components and on each as

Y = POl // p,q dpdq,
(em) %\pIQSwQTF(q)

where j € {1,...,q} is the spin index, Il 4 is the projection onto the space spanned by h9(x) =
hs(x — q)e’P> where h is the ground state for the Dirichlet Laplacian on the ball of radius s
for 0 < s < r. By the OTF-equation (67) and since uTF = 0 (see Lemma EI0) we see that
pr (%) = pOTF % |hg|?(x). Moreover, by Lemma 10

Tr{-4a0) = 51 [ (096 dxr 57, (36)

Since [®IF], € Lloc( 3), by [23| Lemma 8.5] for N € (0,1) we may find 7 such that supp(ps) C
{x:|x| >r}, p3(x) < py(x) for x € R? and

Te[(~3A — 8F)5] < Te[(—1A — xFEHT)] 4 I, / Vo ()2 dx

‘X 1=\

WP [ meodx (87)

Since [ ps < [ py = [ pPTF < [ x;F "' we may choose 7 as a trial density matrix in Theorem A7
and we find for A\, v to be chosen

EAT) < €4(F) + R < Tr[(—3A — 27 )3] + R+ D(ps),

since a~1T(p) < |p[%. Notice that R depends on A and v. From (87) it follows that

NG £ T(-EA N O Ly [ ) dx

WP [ ) dx R4 D). (59)

From the OTF-equation (67) and Lemma .10 we get
py(x) dx < / pOTF (x) dx < Cr=3,
- x|<{

/ 2—
|X‘§ 11—\

)JT
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While since V,(y) < Cr~* (Lemma[8) and is non-zero only for |y| > r

5 /
/|x< [Vr(x)]j— dx < C"”77(1_)\>\/)3'

T
1-)

2
3

Hence, from (86]) and (88]) and the inequalities above we find choosing \' = r

2.2 5 _ B
) < [T dx— [ Vi, () dxt €57

Here we used that A < 1/2 which follows by the bound on D. Since p5 < py, D(py) < D(py).
Moreover by Newton’s Theorem D(p,) < D(p®™F). Hence we get
< SO 4 [ V(T x) — py () dx O
R3

+OrTTHE 4R, (89)

OTF

We study now the second term on the right hand side of (89). Since p, = p * |hs|?, rewriting

/ V() (T (x) — py (x)) dx = / POTE () (Vi () — Vo # [ () dx.
R3 R3

Since s < 7, V; is harmonic on |x| > 7 and pOT" vanishes for x| < r one sees that the integrand on

the right hand side of the equation above is non-zero only for r < |x| < r+s. Hence by Lemma [1.§]

[ V6T <o) xS [ TV ) dx < O
R?’

r<|x|<r+s

Choosing s = r3 we find from (R9)) that
EA ) < €9 (P + Or TS R, (90)

It remains to estimate R. From Lemma 4] choosing A, v < 1/2 and D such that or? <1 we find

(33 + )\26;2)/ P (x) dx < Cr=5\2.
x[=r(1-A)(1-v)
By Lemma [4.8] (60) and since A < 1/2 we get

/(1 A)<|x|< (@fg_/\)(x))g dx < Cr7 7\,

T
1-X

and similarly

a3/ (@E(}I_/\) (x))* dx < Cr=4),
r(l-N)<|x|<-L

1—-X

since r > (o4 -3 implies ar~—3 < By 3k. Hence from the expression of R and the boundness of
tPe~t for t > 0, we find
R < Ex(vF) + Cr®A72 + Cr 7. (91)
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We estimate now the exchange term. By the exchange inequality ([I5] or [23] Th.6.4]) and pro-
ceeding as in (27)) we find by Lemma [£.J] and Lemma [4.12]

1
C/ Gl ))dx + Cr—3 /G dx)2

< CaR+Car” —i—Cr_%(R—i—r )%

Ex(1)

IN

Hence choosing « such that 1 — Ca > 1/2 for all o < o we get from the inequality above and

1) \ 1
IR<Cr2(R+7"7)2+0r 22+ Cr A,

that gives
R<COEDPAZHNTT). (92)

The second two inequalities in (8] follow from the estimate above and lemmas ] and
choosing A = 1/2 and replacing r with r/2.

Step II. Estimate from below on £4(yHF). Adding and subtracting D(pQTF) and Tr[pQTF «
‘—1"}/,{{}?] we write

EAT) = Te[(a™ T (p) — &) ]+ 10 = o NG — D), (93)

using that V, = ®I on the support of p!I¥. The first term on the right hand side of (@3) is
estimated from below by the sum of the first N’ eigenvalues of the operator o 'T(p) — ¢OTF
acting on the functions with support on {x : |x| > r}. Here N’ denotes the smallest integer bigger

than Tr[y!'¥]. Hence by Lemma I3 we find for p € (0,1) and s < r

) 2 (2 [ P @) da - Ot - ot s
-C(1 - N)_%T_5 -C(1— ,u)s_2</RS pTI,{F(x) dx + 1)
Hip? ™ =l = DT =
Notice the factor ¢ due to spin. Choosing D such that or <1, by lemmas (1] and 110 we find

5
[ e ax < crtand [ [0 (@) da < or

Hence considering p < 1/2

5
> _93 1512 / [gogTF( )3 dg — Cr~" — C’r_8su_% — Cpu=3r5s

-2, - O O
—Cs7r 2 4+ o™ = TG = D) =
By the OTF-equation (7)) and since pQTF has support where pOTF > 0 we find

— gOTF(pOTF) —Cr 7+3 + HpOTF

T

HF
T HC?

choosing p = %7*%5% and s =775 .
Hence combining the inequality above with (Q0) and ([@2) we find

1pOTF — pHF |12, < Cr— T3 + Cr>A 2+ M77). (94)
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+pHF

We study now ||y, pH¥||c. By Hardy-Littlewood-Sobolev inequality we find

5
It 1 = e < Clgh o - iy < o [ e PCOR dx)”. (95)
X

To estimate the last term in (95]) we are going to use the second estimate in (85]) that we have just
proved. With 3 defined as in (26]) we find by Holder’s inequality

9
HF < HF ()4 1—0/
[ et < ([ 0ot a) (|
==X xex =

18

+(/r<x|, P03 dx>ﬁ </r<x|<L ! dx)275
SIX[ST=X

x€R3\Z

alo

1 dx)l_o

< Cr A 4+ Cr s A%,
From the estimate above, (@4]) and ([@3]) it then follows

o™ = e < It = oo 4 o — pOTF |

<COr 3t £ O A2 4 A )2 4 C(r™ T A1 417 2A),

that gives the claim choosing A = r7 O

4.3.3 Estimate on Aj

Lemma 4.15. Let G,, be the function defined in Theorem [2.3 Let Za = k fizred, 0 < k < 2/
and Z > 1.

There exists ag > 0 such that given £',0 > 0 there exists a constant D < 1/4 depending only
on €' and o such that if (65) holds for all |x| < D, then for all o < g

041/ Ga(,oHF(y))dy < C’\x\*7 for all |x| < D,
ly|>]x]

with C' a universal positive constant.

Proof. If |x| < 8023 we find by Lemma Bl

o[ Gl Ty <t [ Gl )iy < 028 < O
ly|>|x] R3

While if D > |x| > (0Z 3 the claim follows from the second estimate in (&5). O

Lemma 4.16. Let Za = k fized, 0 S k<2/m, Z>1and 0 < pu < ng.
There exists o such that given €',0 > 0 there emists a constant D < 1/4 depending only on

e’ and o such that for all o < ag and for all r with BoZ~ = <r<D for which [G3)) holds for
|x| <7, then for all x with |x| > r

Aalr] < ()i,

r

with C > 0 a universal constant.
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Proof. We proceed similarly as in Theorem B3l By the formula for Aj, Proposition 2.8 and
Lemma [.14] we get

OTF HF
Al < [ o) W gy ot (96)
A(lx].) x —y]
By Holder’s inequality, Lemma 10} the OTF-equation (67) and (33)) we find
OTF
/ o) g < o % x|t (97)
A(lxlk) X =Y
Once again, to estimate fA(|x\ %) % dy we have to proceed differently than in [23, Lem.12.7]
since pF is not in L%(RS). We consider the following splitting
HF HF HF
+p(y)d_/ ry) / r oy, 08
S O = s ey v vor oyl O

|x—y|>R,|y|>r |x—

for R > 0 to be chosen. By Hélder’s inequality, Theorem 2.3 Remark 2.4] (83) and Lemma [£.14]

we get
HF( ) 21

& dy < CaiR™8|x|§ksr— 7 + Cr=s [x|5ks. (99)

A(]x],k) X —
eyl 7Y
It remains to study the second term on the right hand side of ([@8). Let v € R* be such that
va < 2/m. We consider the density matrix v /2 Y defined in (6I) with A = 1/2. From Theorem ZI0

it follows that for x such that |x| > r

14

_ 51
Tr[(a'T(p) - WXBR(x)('))’YE/g] > —C(v2R? +v'a?),

Hence we find
HF pHF y
V/ xf(Y)wdy < V/ rj2 )dy
ly—x|<R ‘X - y‘ ly—x|<R ’X - y‘

Tr[ailT(p)’y?/};] + C(v2R2 + 140?)

IN

and by Lemma [£.14]

P (y) 1 S p3 3,2
| 0Ty < T O RS ) (100)
ly—x|<R -

Hence from ([@6)), [@7), (Q9) and (I00) it follows that

As(r,x)] < CV?1T77+C(V%R% +V3042)+C'a%R |X|8k§ -
+Cr~ 5 |x|5k5 4+ Ck~ Vx| 2r 55,

IS

So choosing v = 1/2(Byr~ )1 # (that glves va < 2/7), k such that r_%\x\%k% = killx]_%r_%‘ké,
ie. k=|x|" 12718 and R such that o1 R~ \x\§ﬁ7“__+%_g = 'r_4_1_8\x\1_12, ie. R= oﬂx]_l_lw_lis

As(r,x)| < Cr T 4 x|~ 3ir 56 w4 1 TR a? x|,

. . R e 13 1 1w .
Finally since r~'a™3 < B, k73 , the claim follows for x| > r and p < 1/(109). O
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4.4 The intermediate region

Here we prove the main estimate in Theorem [[.T7] up to a fixed distance independent of Z.

Lemma 4.17 (Iterative step). Let Za = k fized with 0 < k < 2/m. Consider p = + 4 and
assume N > Z > 1.

Then there exists g > 0 such that for all 0,¢',0 > 0 with 6 < dy, where &g is some universal
constant, there exists constants EQ,C(; > 0 depending only on § and a constant D = D(e',0) > 0
dependz'ng only on &', o with the following property. For all o < ag and Ry < D satisfying that
ﬂtoi < R and that ([B3) holds for all |x| < Ry, there exists R}y > Ry such that

©

|l (x) — Py (x)] < Cgfx| 7=
for all x with Ry < |x| < RY.

Proof. Let D > 0 depending on o,¢’ be the smaller of the values of D occurring in Lemma 1Tl
1—

and Lemma [£T6l Given § > 0. We consider Ry < D satisfying Gy Z —3 < Ré+5 and such that

(@8] holds for all |x| < Ry.

Set R{, = R(l)_é and r = R(1)+5. Then we have 50Z_% < 50Z_1;3“ <r < Ry < D we can
therefore apply Lemma [.11] and Lemma From (68]) we obtain that for all [x| > r and all
a < ag

3
B2 ) — D ()| < x50 4 () B

Since for Ry < |x| < R{, we have

|X| 1 5 < — < |X|6
x|
and thus
DFF () — @ (0] < O]+ 4 O] 49755 x|~ 5%,
Hence choosing dy sufficiently small there are C&> and &5 such that the claim holds. 0

Lemma 4.18. Let Za = k fized with 0 < k < 2/w. Assume N > Z > 1.
Then there exist universal constants o, € € (0,4) and D,Cg > 0, D < 1/4, such that for all
a < ag and x with |x| < D we have

|(I>IX\( X) — (I>|x\( x)| < COp|x| 4.

Proof. We fix i = -4 as in Lemma 17l Since y < & 45, by Theorem B3] we know that there

exists constants a,b,c > 0 such that for all |x| < 52*1_7”
B () — B ()| < C(L+ 57 + 7/ + B[ ) 5> x| 4+, (101)

We first show that we may choose ¢ small enough such that if we choose R = 3,7 ~%5* we have
for all |x| < R that

B (x) — Qﬂ(HSC®ﬂ4%. (102
Let 8 > 0 be such that (5Z‘177u)1+5 = 50Z_ ,Le. B = 50Z‘S . Hence from (I0T]) we find

1—p
for all |x| < BZ~ 75

O (x) — BLF(x)| < C(L+ 52 + B2 + B[x|) 325 778 3" x| =4+,
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and by the choice of 3 (and Gy < 1)

@1 (x) — 0 (x)] < C(1+4 22755 4 Z3T 5 4z 5 (0Fe) z—el3t)

x| x|

1—p 5 1—
7@ DS ez x|,

Hence if § is small enough we may choose a universal constant Cy such that (I02) holds.

Let now ¢ be small enough so that we may apply Lemma [AI71 This give constant 2 and C},
(depending only on 4) and for all o,¢’ > 0 a constant D < 1/4. Now choose 0 = max{C},Cg}
and ¢’ = min{a/2,e2}. Now o,&’ and D are universal constants. To prove the claim we shall prove
that for all |x| < D

Bl (x) — P (x)] < ofx| 7+, (103)

x|

We have to prove that D belongs to the set
M ={0< R <1/4: Inequality (I03) holds for all x| < R}.

We reason by contradiction. If this was not true then D > Ry = sup M and in particular Ry < 1/4.
From (I02)) and the choice of o and & it follows that either R > 1/4 or R € M. In the first case
then Ry = supM = 1/4 > D that contradicts our hypothesis. On the other hand if R € M,
then R{T® > R0 = 3,7 —*3" . It then follows from Lemma EZI7 that there exists Rj € M with
R{, > Ry. This contradicts also our hypothesis. O

4.5 The outer zone and proof of Theorem [I.17
The proof of Theorem [[LT7] follows directly from Lemma [£.I8] and the following result.

Lemma 4.19. Let Za =k, 0 < k < 2/m. Assume N > Z > 1. Let D,e and Cg be the constants
introduced in Lemma[{.18
Then there exist ag > 0 and a universal constant Cyy > 0 such that for all a < agy and x with
|x| > D we have
\@E(}l?(x) — @TF(X)] < Cum.

x|

Proof. Here C;, i =1,...,6 denote positive universal constants. We write
TF HF
B0 — O )| < o ) — afGol + [ L Dy oy
D<ly|<[x| x — |

Since ®8F (x) —®TF (x) is harmonic for x| > D and tends to zero at infinity we have by Lemma [Z18

25" (%) — 2p' (x)] < st |95 (%) = @p' (x)] < Cp D™, (105)

For the second term on the right hand side of (I04]) we write

TF HF
/ P (y) + 7 (y) dy
D<|y|<|x|

x —yl
TF HF
p(y)+p(y) 4 TF HF
Jrseon e g [ @ oy o)

ly|>D

By Lemma 1] Lemma [£18] estimate (I3)) and the TF-equation we find

/D ) ) dy < Cu(L 4 CoD) (14 D7) 4 D7 (107)
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It remains to estimate the first term on the right hand side of (I06). By Holder’s inequality,
estimate (I3]) and the TF-equation we get

TF 5
P (y) TF 5 5.1 _4
< < '
/xy><]133/4 Ix —y] dy < 02(/y>D(P ()3 dY> Ds <C3D (108)
y

To estimate the term with the HF-density we use Theorem 2.0l Let v5Y be the exterior HF-density
matrix as defined in (61]) with r = D/2 and A = 1/2. Then by Theorem 210 with v = 85D ~3

_ rvo 15
a~ L Tr[(T(p) — EXB%(X)(-))%%%] > —Cy(Dz2vz + 1/4a2)7
and thus - )
p y
/ D" dy < CsDPa™ Te[T(p)7 ) + Ce D,
x—yl<D/a X =l

Here we use that D > 26073 (for @ < ap) and D < 1/4. By Lemma [A.14] we conclude

HF P (¥)
/ xB(Y)w dy < / PR 4y < oD, (109)
|x—y|<D/4 |X - Y| |x—y|<D/4 |X - Y|

The claim follows collecting together formula (I04]) to formula (I09). O

5 Proofs of Theorems I.7], 1.18, .79 and .20}

In this section we always assume the following: Za =k with 0 < k <2/7 and N > Z > 1.

Proof of Theorem [I1. Assume that a HF-minimizer exists with [p1* = N. Let pI¥ be the
minimizer of the TF-energy functional of the neutral atom with nuclear charge Z. Then for R > 0
to be chosen

N= [ eoaxs [

(P60~ o) dxk [ ok (110)
|x|<R |x|<R

|x|>R

By Theorem [[.T7] we know that there exist universal positive constants ¢, ag, C; and Cg such that
for all @ < ap and x € R3
10 (x) — @I (x)| < Co|x|7*T 4 Cy. (111)

x| x|

Let Zy be such that Zyay = k. Then a < ag corresponds to Z > Zjy. Let us choose R such that
CeR~4¢ = C)y. Then from (II0), (ITI) and Lemma &I for all Z > Z, we find

N < / Pt (x) dx + 206 R3 + C(1 + CoR)(R34+1) < Z + Q.
|x|<R

The claim follows choosing @ = max{Q, Zo + 1}. O

Proof of Theorem [LI8. Let p"'F be the density of the HF-minimizer in the neutral case N = Z.
We have

‘/|X>R(pHF(X) _pTF(X))dx‘ = ‘/|X<R(pHF(X) _pTF(X))dx‘

- |2 /S | dw(@ (Rw) — BFF (Rw))|

< C<1>R73Jrs +CuR,
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where in the last step we have used Theorem [[T7l Notice that for Z sufficiently big o < oy where
ay is the constant given in Theorem [[I7l By the TF-equation, Theorem [[.T2] we then find

2
4iR— — CoR™3 — OyR < / HF () dx < 3127 R4 CoR M 4 CuR,
q \x|>R q
from which the claim follows directly by the definition of HF-radius. O

Proof of Theorem [I.19. Since EM¥(Z —1,7) > EM"F(Z, Z) the ionization energy is bounded from
below by zero. If Z is smaller than a universal constant then we can also bound the ionization
energy with a universal constant using Theorem 2111

It remains to estimate from above the ionization energy when Z is larger than a universal
constant. We first construct a density matrix « such that Tr[y] < Z — 1. Let 0_ := (1 — 03(17 )\))%
for r, A positive parameters and 6, defined in Definition 4l We consider the density matrix

AHF = 9_~HF9_ where v1F is the HF-minimizer in the neutral case. By an opportune choice of r
we will then have Tr[y"¥] < Z — 1. Indeed,

T[] = /R3 P (x) dx — /}R3 93(1—X) (x)p (x)dx < Z — / | P (x) dx.
X|>r

We now choose A\ = % Let R > 0 be such that Cyy = CeR~*T¢ where Cys, Cp, € are the constants
in Theorem [[LT7] Then R is a universal constant. We consider Z large enough so that GyZ 3 <R

where (3 is the constant in Theorem This gives that Z has to be larger than some universal
constant. For r such that Gy Z~ s<r<R by Theorem [[L.T7] we find

|(I>|x\ (x) — ‘I)|x‘ (x)] < 20<1>|X|74Jrs for all |x| <.

Since [ p™ = [ pH¥ by the choice of r and Lemma El we get

HE (Vdx = TF (%) dx TF () — pHF (%)) dx
Amp<> Aw”()+ﬂm“()p(”

> / pIF(x)dx — 2Cer ™31 > Cr3 — 2Cpr 3¢, (112)
|x|>r

In the last step we used the TF-equation, Corollary [[L13] and that r > Gy Z -3, Finally, it follows
from (II12)) by choosing r sufficiently small that f|x‘>T pMF > 1 and hence that Tr[y'F] < Z—1. We
may choose r sufficiently small by taking Z large enough. Notice that r can be choosen universally
and so Z has to be larger than some universal constant.

By the last estimate in the proof of Theorem 7] we find

EM(IF) < €M (1) — e4(3") + R,

with R and v1'¥" as defined in the statement of Theorem &7l Since ENF(yHF) > EH¥ (7 1) 7) and
EHF(HHFY — pHE (7 7) it remains to prove that —&4(4F) 4 R is bounded from above by some
universal constant. Here we use repeteadly that r is a universal constant. By estimate (02) we
see that R < Cr~7 a universal constant. To estimate from below 4 (/) we first leave out the
kinetic energy term and the direct term since these are positive. Moreover, since ®HF
for |x| > r and tends to zero at infinity we see that

is harmonic

o (x) < —

\mww?m<—wmﬁu+—wm@W>@FML

yl=r | ‘Iyl T | ’\y\ T
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which is bounded by C’/|x|, C" a universal constant, by Theorem [[LT7] and Corollary [LT4l It then
follows that

!/

li
AT > e[y > / T (x) dx,
|x|>r

T | . | T
that is bounded from below by a universal constant using Lemma [4.1]. U

Proof of Theorem [I.20. Let ag be the constant appearing in Theorem [[L.I7] and Z; be such that
apZp = k. The claim follows directly for Z < Zj since both functions are bounded for |x| large,
while for |x| small the functions are bounded by a constant times |x| 1.

The case Z > Z; corresponds to a < «g and for such values of a we can use the result in
Theorem [[.T7l We separate the case small x, intermediate x and large x. Once again, comparing
with the proof in the non-relativistic case ([23]) we have to do an extra splitting for small x.

By the definition of the mean field potential and Proposition 2.8 we find

TF HF TF HF 1 1 \/§ TF HF
00— < [T ) (g ) T e

Since p'" is bounded in L%—norm, we find using Holder’s inequality, Corollary [L15] and Lemma B.1]
that

1 1 1.7 1,943
7——)+C(35Z5+s 271 %), (113)
x—yl s

00 - ) <

s P (y) (

For the integral with the HF-density we need to syht the region where the HF-density is bounded in
L-norm from the one where it is bounded in L3-norm. Proceeding as in the proof of Lemma
(from (B5) to (B7) replacing the integrals on A(|x|, k) with integrals on |[x — y| < s) using the
results of Lemma [3.I] we get with R € (0, s) to be chosen

1 1

/ pHF(y)< __) < C(Z%s5 + R1(aZ3)t + Z3 + R223). (114)
|x—y|<s ’X - y, S

Recall that Za = & is fixed. Choosing s such that Z5s5 = 73 (ie. s = Zfé) and R such that

R 1Z=R:Z: (ie R= Z73; notice that R < s) we get from (I13]) and (I14])

o™ (x) — ¢ (x)| < C(Z5 + Z3).

The clalm follows from this inequality for x € R? such that |x| < ﬂOZ " for ~v > 0. We consider
7 < 73

If |x| > ﬁOZ " then proceeding as for very small x and as in the proof of Theorem 3.3 up to
inequality (@3] we get for t € (1+7 3),l>tand R < By Z~"

loTF (%) — oF (x)] < C(S%Z% 4517 L REsEZ 4+ Z%(3—t)).

Here we have also used that Zo is a constant So choosing s such that 5525 = 7331 (ie.
s =773 2%), R such that R~ sZV 16t = 73 (ie. R=2" o3 t) and optimizing in t (i.e.
t =1+ 22+) we obtain
TF i-zL
o' (%) — " (x)| < CZ5737 (115)
Notice that t > 1+ij R < s by the choice of ¢ and that R satisfies the condition R < BoZ %, 1 > t,

for Z sufficiently big. The claim then follows from (IIH) for x € R? such that |x|'*9 < 3,2 5 for
§ < 135- We fix § = 15
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We turn now to study intermediate x. Let D < 1 be such that Cy; < CoD~4te with Cyy, Co, €
the constants in Theorem [[LT7l Then for all x such that |x| < D

B (x) — BT (x)] < 200 |x| 4.
)
Moreover we choose D such that Lemma BT holds. Let x be such that SoZ 3 < x|1H9 < DT

with 0 < pu < 6. We set » = |x|'T#. Then BoZ73 < r < D. We write e (x) — (%) =

T (x) — T (x) + pOTF (x ) P (x) with pOTF the mean field potential of the OTF-problem

defined in Subsection @3l By the choice of r and D and Lemma FIT we get since |x| > r = |[x|'T#
o™ (%) — T ()] < Clx| 74, (116)
for |x| > r with ¢ = (7 + +/73)/2. For the other two terms we see

OTF + HF
p — X Y)p Y
(PHF( ) (P?TF( ) / T ( ) r( ) ( )dy,
x -yl
and proceeding as for small x with the Coulomb-norm estimate Proposition 2.8 by Lemma [£T14]
and inequality (I0Q)

1

S5 T
1 () = 2T ()| < O (S + T
rs S2

741
—27T%

+ Rfi(ozrq)% +v T VIR u3a2).

7,1 1 5
Choosing v = B3r~ 1+# so that va < k < 2/7, s such that s3r~% =7 3t5573 (ie. s=rltar),

S—
and choosing R such that the two terms where it appears are equal (i.e. R = r2+9ﬁ; notice that

R < s) we get
[
M (x) — 0T (x)| < C(r—t*ar 00,

146

since ar” “1+¢ is bounded and r < 1. Collectmg together the mequahty above and (II6]) and using
that 7 = [x|1*# the claim follows for GyZ 3 < |x|!+ < D1+, We fix w=24/2.

It remains to study the case of large x, i.e. |x| > D% with D, d, i universal constants. For
simplicity of notation we fix the universal constant A := D%. We first notice that

HF _TF p(y)—p
P00~ 00 = offf 0o~ el + [ P

TF( HF(

y) dy.

The difference of the first two terms is bounded by a universal constant for |x| > A by the result
in Theorem [L.T7l To estimate the last integral we split it as follows

/ P =W, o /
ly|>|x| |x — ] - ||)'|>|\X| |x y| \.V\>|X\ |x - y|

dy.
T /|y|>x|(” (v) + P () dy

Since |x| > A the third term on the right hand side is bounded by a universal constant by
Lemma ] (for p''¥) and Corollary [LT3 (for p*F). We estimate the first term by Holder’s inequality
and Corollary [[LT5l We get a bound on the second term proceeding as in (I00) (using Theorem 210
and choosing v = % and R = 1. We obtain

TF HF
/ P HPT) g oA E AT 4 a?),
‘IYI>‘\X|1 |x —y]

xX—-y|<

Then there exists a universal contant A’ such that [p'F (x) — ¢TF(x)| < A’ for x| > A. O
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A Technical lemmas

Proof of (I6) By the definition of the function G, the inequalities in (I6]) are equivalent to the
following ones

3tYmin{2t,1} < g(t) — 5¢* < 2t*min{2¢,1} for t > 0. (A1)
1
3

As before we use the substitution ¢t = a(p/C)s.

The estimates in (AJ]) follow directly from the study of the function g separating the cases
t<3andt>3.

Proof of Remark Using the estimate on K3 given in (I3]) we find

[ e 531, Kala 1) sty
y € 2(Bs, B4)

atx—y|

e

< 1

< (167 //XGE (B, B2)  x—y|t dxdy
y € X.(83,54)

(16)%ate™" (ﬁS_ﬁ2)47r/ p_2dp/ dx,
r(B3—02) 2r(B1,62)

since |x —y| > (03 — B2)r. The claim follows computing the two integrals.

IN

A.l Fourier transform

In the present sub-section we present our notation for the Fourier transform (as in [20]). Given
f € L*(R3) we denote its Fourier transform by

Let f,g € L?*(R3). The following formulas hold:
F(f *9)(p) = (2m)2 f(P)3(P);
2. F(fg)(p) = (2m)72(f + ) (p);
3. if g(x) = e A* then §(p) = (2\) "2~ IPI*/(4V),

4. |x|7* = 72 (0(9) erOO e~IXPANT 1N for 0 < o < o (see [14] page 130)).

2
- 5

B  Large Z-behavior of the energy

Moreover,

In [21] the author studies the large Z-behavior of the ground state energy for problem (). In this
work we are going to use the same construction in several points (Lemmas B.I], .12l Theorem B3]
...) and with, in certain cases, a slightly different Hamiltonian. For convenience we repeat here
the main ideas of the proof. We do it as it is needed in the proof of Theorem since in this
case the proof is more involved. We remark that in our proof we use a localisation less than in
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[21]. Thanks to Theorem 210 and [24], Theorem 2.8] it is sufficient to consider the region near the
nuclei and the one far away from the nuclei. There is no need for an intermediate region.

Proposition B 1 Let Za = k be fized with 0 < k < 2/7 and Z > 1. Let us consider P € R3,
with |P| > BZ~ 5 for >0 and pu € (0,4/5). Let Z > v >0 and R > 0 be such that R < 3Z~'/4

for some 1+“ < 1. Moreover, let p™F denote the minimizer of the TF-energy functional of a neutral
atom with nucleus of charge Z. Consider the Hamiltonian

N
Z v 1
Hp = 17(p) - — — _ B2
P Z(Oé (P:) x| % P‘XBR(P (i) +Z K — ;] (B2)
=1 1<J
acting on AN, L?(R3; C9).
Then for all t € (£5£, min{l,2}) and ¢ € AV L3(R3), with |[¢[s = 1,
(6, Hpth) = €™ (p"F) — C(57 + 5727
with C' depending only on q and k.
Proof. Since ETF(p™F) = —egZ 5 (see (I2))) to prove the claim it is sufficient to show that the

TF-energy gives a lower bound to the quantum energy modulo lower order terms. In the proof we
first reduce to a one-particle operator. Then we localize the energy separating the contribution
from the regions near the nuclei from the contribution from the region far away from them. Finally
we study the contribution of each of these terms. The main contribution to the energy is given by
the region far away from the nuclei. This region will give the TF-energy.

In the following, s = (3 —t)/4 (t < s < 2/3).

In the proof C' denotes a generic positive constant depending only on ¢ and k.

Reduction to a one-particle problem. We are going to estimate from below Hp by a one-particle
operator. This allows us to consider only Slater determinants when minimizing the energy.

Let g € C§°(R3), g > 0 be spherically symmetric with supp(g) C B1(0) and such that ||g||2 = 1.
Starting from these g we define ®4(x) := (8/(82%))3¢*(8Z°x/3). Then by Newton’s theorem

Z\Xz—x]y Z// XZ_‘X_Y(’XJ )dxdy:

1<) 1<)

Z// ’X y(‘xj—}’)dxdy—%//%dxdy_m

4,j=1

and introducing p € L'(R?) N L%(RS), p > 0, to be chosen

o (O, @alxi — %) — p(x)) (301 Pu(x; — y) — p(y))

B 2/]1@3 /Rs x —y| ey
( )

+Z/Rg/Rg ’X_ dxdy — D(p ——/RB/Rg ’X y‘ dxdy

> prs*ﬁ—D(p)—cufngm—lzs. (B3)

In the last inequality we use that the first term on the left hand side of (B3] is non-negative and

that
P P 2 2
r3 Jrs X — Yl r3 Jrs X~

< CBZ% 97135
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by definition of ®; and Hardy-Littlewood-Sobolev’s inequality. Hence

A v )

Hp > —1T NEEE .
P ZZI pl) ’XZ’ ’ P‘XBR(P (Xz) +p>k * ’ Z‘)

—D(p) - C|lg? ||2%Nﬂflzs, 5

Choice of the localization. The localization will be given by the following functions x1, x2 €
CS(R3):

1 if x| < 18271, 1 if |x—P|< 127,
= = B5
xa(x) { 0 if x| > 18z, 2(x) if |x — P| > 18z (B5)

and x3 € C®(R3) such that Z?:l x?(x) = 1 for all x € R3. Moreover we ask that
VX1 ll0 VX200, [V xslloo < 26712 (B6)

Here t is the parameter given in the statement of the proposition. Notice that by the assump-
tions on R and P the functions defined above give a well defined partition of unity of R®. Moreover,
Bgr(P) is a subset of {x € R : ya(x) = 1}.

The localization in the energy expectation. We insert now the localization in the energy expec-
tation. As already observed, since we reduced the operator to a one-particle operator in the energy
expectation it is sufficient to consider Slater determinants: i.e. ¥ = u; A --- A uy with {uz}f\;l
orthonormal functions in L?(R3,C%). We may assume that u; € H%(R:)’, Ci) fori=1,...,N.

From (B4]) and Theorem 2.1l we find with ¢ = u3 A -+ Auy

N 3
(. Hpw) > D (xjui hxjus) = D(p) = Cllg?|[EN 5~ 2°

i=1 ]=1
—at Z Z(Ui, Lju;), (B7)
i=1 j—=1

with

_ Z v XBre)() 1
hi=a 'T(p) - 2 — ~XBrB®)) By
S B T N

and L; is the operator (defined in Theorem [ZT]) that gives the error due to the localization in

the kinetic energy. We first estimate this error term. Using the definition of L; we find for all
je{1,2,3},ie{l,...,N}

oz_2 _
(u;, Lju;) < 4—7r2HVXjHio/ Ko(a ' x = y|)|ui(y)|ui(x)| dxdy.

We then obtain by using Schwarz’s inequality

3 N
— o _ -
122 wi, Ljw) < Z |vxj\|goZ/K2(a lz|)dz < CNB~2 2%, (B8)
7=1 i=1

i=1 j=1

since from ([I5])

/ Ko(a™Y|z|) dz = a3/ Ks(|z|) dz = 471'&3/ t2Ko(t) dt = 672>, (B9)
R3 R3 0
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Collecting together (B7)) and (B8] we get
N 3
(¢, Hpy) > Z Z Xjti, hjui) — D(p) — CB~2 2" — Cp=t ZT/4-14, (B10)

Here we used that N < 2Z + 1, the choice of s and that we may choose g such that ||Vgl|]3 < 27.
Near the nuclei. When j = 1 in the summation in the first term on the right hand side of

(B1QO) we find

N

N
Z
> (awi, hxaui) > Z x1ui, (@' T(p) — ’.‘)Xlui)a

i=1

since xpgpP)x1 = 0 by the choice of x1, and the term @, * p * |—1| is non-negative. Then by
Theorem 210 we find

N Z
> Gaus, hxaw) > Trfa™'T(p) — WX|X\<%5Z—t]f
i=1
Z _051/225/2—t/2 —CH2Z2. (Bll)

To estimate from below the term corresponding to 5 = 2 in the sum on the right hand side
of (BIO) we use [24, Theorem 2.8]. Here we need the result in [24] (instead of Theorem [2.10)
because of the presence of the two nuclei. Notice that Theorem [ZI0] can be extended to include
also different nuclei. We have

N N

D (xauis hxows) = Y (xoui, (o' T(p) -

i=1 =1

Z v ) )
_ Wi
x] 7 o Bt
Z v
-1
> TI‘[O[ T(p) — HX|X*P\<%ﬁZ_t - |X — P|XBR(P)]*3

and by [24] Theorem 2.8] we get

al 5/2 4
> (xoui hxous) > —CZ°al/? - C/ z +a3Z_> dx
i=1

1BZ—t>|x—P|>a <|X|5/2 |X|4

5/2 A
- +a? dx
R>|x—P|>a (|X_P|5/2 Ix — P

> —CrY?7% - Ccp\Rzo2t? _ 0k? 72, (B12)

Here we used that t <! and Za = k.
The outer zone. This region gives the main contribution to the energy. The term in (BIQ) that

we still have to study is
N

> (xsui, hxsus) — D(p) (B13)
i=1

We start by estimating the first term in (BI13]) using coherent states.
We consider again the function g € C§° (R3) introduced at the beginning of the proof and we

define the function )

9s(x) == (8/(82°))"29(82°x/B) = 2 (x), (B14)
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with s the same parameter as before. For simplicity of notation we write V := Z/|x| — p* 1/|x].

Then 1 ) 7
—p*q)s*—:f/*q)s—Zq)S*——i——.
x| x| [x|

Since supp(gs) Nsupp(xs) = @ by Newton’s Theorem we find

|

N N

> Oaui hxus) =Y (xui, (@7 T(p) = V # @) xaui). (B15)
=1 =1

We consider the coherent states g5'? defined for p,q € R? by
—ip.X

g2 (x) = gs(x — q)e

The following formulas hold for f € Hz(R3,C)

(f.f) = (2;)3 dp

R3

(fvv*ng) = (271r)3 dp
R3

dq (f,989) (929, f),

RS

dqV(q) (f,989) (989, f) (B16)

]R3

and

FT®)N) = gy [ dp [ daT(m) (029 62,1

- i [ a0, (B17)
R3 R3

where L, has integral kernel

a? Ka(a™'x —yl)
L = —- — - - 2 .
¢(%,y) A2 l9s(x —q) — gs(y — a) x — y[2

Using these formulas we can rewrite (BIH) as follows

N
Z(X3Ui, (@™'T(p) =V * ®y) x3us)

N
— e [ dp [ da(T(p) -~ aV(@) 33 a2

N
04_1; /R o /R , da xsui(x) (Laxsui) (%), (B18)

Here uf is the j-th spin component of u;. We start by estimating the error term, the last term on
the right hand side of (BIf]). From the definition of Lq it follows

2
(6% _
Lq(X, Y) = 42 vaSHgoKQ(O‘ 1|X - y|)(Xsupp(g5)(X - CI) + Xsupp(gs)(y - CI)),

and by the definition of the function g,

[, Lalx.y) da < CIVgla52 2% Kaa x v,
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By the estimate above, Schwarz’s inequality, (B9) and the choice of s we find

N
0‘12/ dX/ da x3ui(x)(Laxsui)(x) < C||Vg|[3,6722°*/2N. (B19)
X 3 R3

It remains to study the first term on the right hand side of (BIf]). In order to get an estimate
from below we consider only the negative part of the integrand. Moreover, since if |q| < 3Z7!/8
then supp(x3g5™@) = 0 (because Z~t > Z~° since s > t) we find

q N
ol
dp | d —aV(q
/Rg p/RS q( V(@) D> |esul, g2

Jj=111=1

> et [ / @) -al@)=...  (B)
la|>58Z T(p) (a)<0

where we also use that ZZ 1 |(><3uZ , g5 D)2 < 1 (Bessel’s inequality). We split now the integral as
a sum of two terms

= @ _1/ L p2— 7 (<0 4P (T(P) — oV ()
la/>332~

+ et [, eriqzrip 000 (T(B) ~a¥ (@) (B21)
la|>332~1

We consider these two terms separately. The second term in (B2I]) gives a lower order contribution.
Indeed

1 ~
e // \pl2>aV (@>7(p) 4adp (T'(p) —aV(q))

la|>§82~"
> _L o o i % = oo
= e / %a?[V(qniw[V(q)n)%ap2(2[V<q>}+>% dadp V(@) =
la|>382~1
and computing the p-integral
~ § aQ ~ 3
=-C dq [V(@IE (A + - [V(g)l+)2 —1) =....

la|>382-1
Using (1 + x)% <1+ 3z + 32? and that [V(q)]+ < Z/|d| we get computing the integral
.1 5 ~
= O fr s da V(@14 LV (@))

(B22)
OB R2Z3/2H/2 _ CRAg—3 Z1/2+43t/2,

AV

Here we use that Za = k.
Since 1+ 2z > 1+ /2 — 23/8 for all z > 0, we have

T(p) = aglp|” — a’glp[",
and, for the first term on the right hand side of (B21), we obtain

@ //%IPQ—V(q)so dqdp (T(p) — aV(q)) 2
lal>562"

@5 [ [0 dadp GIpF ~ felpl! = V() = ...
laj>382~"

Y
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Computing now the integral with respect to p, we find

3 _ 5 R
=i wallda-ce [ Wi (B23)
la|>382— la|>282—

+ ol

We see that the second term on the right hand side of (B23]) gives a lower order contribution since
it is of the same order as the one in (B22]).

Collecting together (BI0), (BII), (B12), (BT5), (BI8), (BI9), (B2 and (BZ3)
W Het) = ~C(st+ 522 = 2 | Walida-Dlp).  (B21)

Here we used also that N < 2Z + 1, the choice of s and that ¢t < 3/5.
Now we choose p = p'F the minimizer of the TF-energy functional of a neutral atom with
Coulomb potential and nuclear charge Z. Hence p'" satisfies the TF-equation
2\ 2 2 ~
3(55)3 T ()% = V)l

since V is the TF-mean field potential. Notice that here we use that the chemical potential of a
neutral atom is zero. By the choice of p from the TF-equation it follows from (B24]) that

wlot

WPy = —C(5+ 527 () [ )

TF
_Z/ P (X) dX+D(pTF)
rs x|

_ gTF(pTF) . C(ﬂ% + 5—2)25/2—t/2 .
The claim follows. O

Proposition B.2. Let p'F be the minimizer of the TF-energy functional of a neutral atom with
nuclear charge Z. Let Za = k be fized with 0 < k < 2/m and Z > 1.

Then there is a constant depending only on r and q such that for all {u;}Y, C H%(R?’;Cq)
orthonormal in L*(R3) we have

N
> (i, (a7 T(p) — ™ )us) — D(p™) = €T (pT) — €273
=1

with D(-) = D(-,-) the Coulomb scalar product.

Proof. Since ETF(p™F) = —egZ 5 (see [I2))) to prove the claim it is sufficient to show that the
TF-energy gives a lower bound to the quantum energy modulo lower order terms. In the proof
we localize the energy separating the contribution from the region near the nucleus to the one far
away. The region far away from the nuclei will give the TF-energy.

In the proof C' denotes a generic universal positive constant.

Choice of the localization. The localization will be given by the functions x; € C§°(R3) and
X2 € C®(R3) such that: 0 < x1,x2 < 1, x4+ x3 =1 in R3,

1 if x| <2273/,
X (x) = { 0 if |x| > 3273/5, (B25)

Moreover we ask that
1VX1loos [|VX2lloo < 222375 (B26)
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The localization in the energy expectation. We insert now the localization in the energy expec-
tation. From Theorem 2.1 we find

N
Z(ui, (a™'T(p) = ¢ )u;) = D(p™") (B27)

.
Il
—

2 N 2
Z Xjui, (@ T() — ¢ )xjus) — D(P™F) —a ™t Y (ui, Lijug),

i=1 j=1

||Mz

with L; is the operator (defined in Theorem 2.1]) that gives the error due to the localization in the
kinetic energy. We first estimate this error term. Since N < 2Z 4 1 we find as in (B8] that

N 2
a 'Y (wi, Lyjug) < CZ5°N < cZ241/5 (B28)
i=1 j=1
Near the nucleus. Since

N

> Gaws (@' T(p) — ¢ )xaw) > Trla ' T(p) — ¢ Xy <sz-9/5] -
i=1

by Theorem 210 with R = 3Z%/> we find

N
> Gaus, (@ T(p) — 9™ )xawi) > ~CZ*5 — Ck2 22, (B29)
i=1
Here we use that Za = k.
The outer zone. This region gives the main contribution to the energy.
Let g € C§°(R3), g > 0 be spherically symmetric with supp(g) C B1(0) and such that | g2 = 1.
Starting from these g we define ®z(x) := (Z~3/5)73¢%(xZ%/%) and

02(x) = (Z273%) "3 g(x2%/5) = D3(x).

Since supp(gz) Nsupp(x2) = @ by Newton’s Theorem we find

N N
D Ous (@7'T(P) = ¢ xow) = Y (xoui, (7' T(P) = ™ # Bz)x2u5). (B30)
im1 i=1

We consider the coherent states g5 defined for p,q € R? by

—ip.X

97%(x) = gz(x — q)e
Using formulas (BI6) and (BIT) we can rewrite (B30) as follows

N
> (ous, (@' T(P) = ™" * g7 )x2ui)

q N
—1/RB dp/R3 dq(T(p) — ap™(a)) > > lceud, g5

j=1i=1

N
—a” ; /R3 dx /R3 dq x2ui (%) (Laxaui) (%), (B31)
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Here uf is the j-th spin component of u;. We start by estimating the error term, the last term on
the right hand side of (B31)). We find as in (BI9) that

N
o3 [ ax [ da utLaxau) ) < CIVgIRZN, (B32)
; R3 R3

It remains to study the first term on the right hand side of (B3T). In order to get an estimate
from below we consider only the negative part of the integrand. Moreover, since if |q| < Z —3/5
then supp(x29%®) = 0 we find

N .
a! /R3 dp /}R3 dq (T(p) — ap™(q)) ZZ’ xaul, &%) )2

=11:=1

> (2z)3 Oé_l/ dq/ dp (T(p) — ap™™(q)) = ..., (B33)
la|>Z—3/5 T(p)—ap™ (q)<0

where we also use that ZZ 1 |(><3uZ L g7 N)|? <1 (Bessel’s inequality). We split now the integral as
a sum of two terms

<.

= q ! //|p2 ©TF (q)<0 daqdp (T'(p )_O‘SOTF(q))

la|>2-3/5

t oo _1// pPag T (@2 7(p) 494P (T(P) — a0™(a)). (B34)
lq|>Z—3/5

We consider these two terms separately. The second term in (B34) gives a lower order contribution.
Indeed

250 [ st o dadp (T(0) — ™ (@)

la|>Z-3/°
2 Twp // ST 2T ) D 2lpl e 3 PATP BT (Wl =
Iq\>Z 3/5
and computing the integral in p
TF 3 o’ pp 3
=-C da [p " (@3 (1 + e (@)]+)? = 1) =
la|>Z—3/5

Using (1 + x)% <1+ 22+ 322 and that [p™"(q)]+ < Z/|q| we get computing the integral
2 TF|3 o® rr
= —Ca da [p™ 1 (1+ e (a)l+)
=235 (B35)
> —Cr2Z% 5 — OKZS,
Since V1 +2z > 1+ /2 — 23/8 for all z > 0, we have
T'(p) > azlpl* — o’glp[*,
and, for the first term on the right hand side of (B34]), we obtain

2fr>30‘_1//|p2 10 (<0 4adP (T(p) — o' (q)) >

la|>Z~ 3/5

27r //p|2 ©TF (q)<0 dqdp ( ’p‘Q 042’p‘4 — (pTF(q)) =

la|>Z~3/°

Y
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Computing now the integral with respect to p, we find

3 5 7
e [ T@lid-cat [ M@lida (B36)
|q|>Z—3/5 |q|>Z—3/5

We see that the second term on the right hand side of (B36]) gives a lower order contribution since
it is of the same order as the one in (B33]).

Starting from (B27), by (B2S), (B29), (B32), (B33) and (B36) we find

N
> (ui, (@7 (P) — ¢ )uwi) — D(p™) (B37)
i=1
3 5
> _C(ZQ+1/5 + 72 + Z2—1/5 + Z7/5) _ 1252_ﬂ-% /R?’[QOTF(q)]i dq — D(pTF)
The result follows from the TF-equation. O
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