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Abstract

Ride-sharing systems contribute to the transition from private cars to a more sus-
tainable utilization of urban traffic infrastructure. To use such systems, travelers
indicate their origin and destination via a mobile application, receive a transporta-
tion offer, and, if they accept it, are transported to their destination, possibly sharing
the vehicle. To ensure long-term acceptance of the service, ride-sharing operators
aim to provide a high percentage of travelers with an acceptable transportation offer.
To this end, they make use of demand management, i.e., the shaping of demand in
its volumes and/or characteristics, and vehicle routing, i.e., routing of the vehicle
fleet in order to fulfill transportation requests. In this regard, ride-sharing operators
face the challenge that corresponding approaches should ensure both high system
performance and fair service conditions, e.g., in terms of traveler fares and driver
compensation.

The aim of this thesis is therefore to develop soft, i.e. non-monetary, approaches
for demand management and vehicle routing in dynamic ride-sharing systems for the
benefit of operators, travelers and drivers. To this end, we first focus on implementing
the computational framework including state-of-the-art vehicle routing heuristics, as
well as on building a comprehensive understanding of controlling demand and its
fulfillment in ride-sharing systems. Secondly, we are developing new approaches that
focus on demand management and vehicle routing to reduce request cancellations
while involving travelers or drivers in the decision-making process. More precisely,
we first design heatmaps to support repositioning decisions of idle drivers to balance
supply and demand in decentralized ride-sharing systems. Secondly, we design multi-
optional transportation offers to manage demand while enabling travelers to choose
a convenient pickup time from a set of options.
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Chapter 1

Introduction

Urban areas suffer from congested transportation infrastructure, causing daily traffic
jams and parking shortages. To make more sustainable use of the limited urban
space, authorities seek a transition away from private cars towards shared mobility
solutions. Contributing to this transition are dynamic ride-sharing systems, which
aim to provide (almost) door-to-door mobility on demand at affordable prices by
consolidating transportation requests.

In this thesis, we understand ride-sharing systems to be services where travelers
indicate their origin and destination via a mobile application to receive a transporta-
tion offer immediately. If they accept the offer, they are picked up accordingly and
transported to their destination, possibly sharing the vehicle with other travelers for
some part of the trip. In contrast, unacceptable offers lead to travelers canceling their
request. Ride-sharing systems strive to minimize such cancellations, i.e., they try to
satisfy a high percentage of travelers in order to ensure the long-term acceptance of
the service.

To achieve this, ride-sharing operators make use of demand management and vehi-
cle routing. Demand management refers to shaping the temporal and spatial demand
volumes and/or characteristics. This can range from basic request acceptance mech-
anisms to sophisticated pricing approaches. Vehicle routing, in turn, refers to the
routing of the vehicle fleet to fulfill new incoming and future expected transportation
requests. This includes updating route plans to accommodate new requests, as well
as proactive routing decisions, such as the repositioning of idle vehicles.

The appropriate implementation of demand management and vehicle routing de-
pends on the business model of the ride-sharing system at hand. Decentralized
ride-sharing platforms like Uber, Lyft or Didi, which outsource transportation to in-
dependent drivers, often apply surge pricing to balance demand and supply volumes.
In terms of vehicle routing, they focus on matching travelers and drivers for direct
transportation, while shared rides are optional for travelers to reduce the fare. In
contrast, centralized systems, such as MOIA, which maintain a fleet of employed
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Chapter 1 Introduction

drivers, may also use pricing to manage demand volumes. However, they also rely
on advanced vehicle routing to consolidate transportation to ensure a high utiliza-
tion of the costly fleet. Other ride-sharing systems, such as Via in Jersey City or
SSB Flex 2.0 in Stuttgart, are operated in cooperation with public transportation
authorities, giving priority to the public interests. Demand management and vehicle
routing thus have to ensure high system performance, e.g., in terms of low costs and
burden on traffic infrastructure, as well as fair service conditions, e.g., in terms of
traveler fares and driver compensation.

Considering the related literature, it can be found that dynamic vehicle routing
has been researched for decades (see, e.g., Psaraftis et al. (2016) and Soeffker et
al. (2022) for overviews). In contrast, integrated demand management and vehicle
routing have only recently gained interest in the literature on dynamic optimization of
transportation services (see Fleckenstein et al. (2023) for an overview). With respect
to dynamic ride-sharing systems, the focus has been particularly on pricing, or surge
pricing, to manage the highly volatile demand (and supply) (see, e.g., Bertsimas et
al. (2019), Guda & Subramanian (2019), Nourinejad & Ramezani (2020), Chen et al.
(2021), Hu et al. (2022), and Ma et al. (2022)). Even though pricing plays a major
role in both research and practice of ride-sharing systems, it is extremely unpopular
among both travelers and (independent) drivers due to the resulting uncertain and
highly fluctuating fares and competition (see, e.g., Bertini & Koenigsberg (2021),
Conger (2021), and Abrams (2022)).

In this thesis, we aim to develop softer, i.e., non-monetary means for demand
management and vehicle routing in dynamic ride-sharing systems that involve trav-
elers or drivers in the decision-making processes. More precisely, we first focus on
implementing the computational framework, along with state-of-the-art vehicle rout-
ing heuristics. Second, we establish a comprehensive understanding of how demand
and its fulfillment can be controlled considering the implications for system perfor-
mance and travelers. Based on this groundwork, we develop two approaches that
integrate demand management and vehicle routing to reduce request cancellations
while involving travelers or drivers in the decision-making process. The first approach
focuses primarily on advanced vehicle routing by designing heatmaps to guide idle
drivers toward balancing supply and demand in decentralized ride-sharing systems.
The second approach focuses more on advanced demand management by designing
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1.1 Challenges in ride-sharing operations

transportation offers that ensure effective fulfillment and allow travelers to choose a
convenient pickup time from a set of options.

In the following, we first discuss the challenges in dynamic ride-sharing operations.
Then, in Section 1.2, we provide a brief overview of the related literature. Finally,
in Section 1.3, we discuss the aim and outline of this thesis.

1.1 Challenges in ride-sharing operations

Ride-sharing systems have to manage a large fleet of vehicles in order to satisfy un-
certain as well as temporal and spatial unbalanced transportation demands while
meeting travelers’ expectations. These expectations include on-demand, affordable,
and reliable transportation with reasonable detours. To satisfy these expectations,
ride-sharing operators must make dynamic decisions that include assigning requests
to vehicles, providing transportation offers to travelers, and repositioning idle vehi-
cles.

The most fundamental decision concerns the assignment of incoming transporta-
tion requests to incumbent vehicle routes, considering vehicle-sharing opportunities.
The challenge is to quickly determine assignments within the large-scale fleet that
satisfy traveler expectations and enable the effective fulfillment of the uncertain
future demand. The assignment decision is thus primarily about dynamic vehicle
routing, with demand management being a secondary concern.

Based on the potential assignment(s), a transportation offer must be made to the
requesting traveler. Such an offer may include information on the fare, driver and
expected time frame for pickup and drop-off. It is thus the basis on which travelers
decide whether to complete or cancel the request. Accordingly, the challenge for
operators is to balance between an offer that satisfies the travelers’ (uncertain) ex-
pectations and a profitable offer that provides flexibility in vehicle routing. The offer
decision is thus primarily a question of demand management, with vehicle routing
considerations playing an important role.

In contrast, repositioning decisions are only indirectly related to the processing of
transportation requests aiming to offset temporal and spatial imbalances in demand
by means of idle vehicles. The challenge for operators is to find a (re)positioning that
maximizes the coverage of the expected future demand. Moreover, the resulting ve-
hicle routing should be comprehensible to the driver or, in decentralized ride-sharing
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Chapter 1 Introduction

systems, support independent drivers in their repositioning decisions. Reposition-
ing decisions are primarily considered as anticipatory vehicle routing, with demand
management being involved by deciding which demand to cover. However, the cor-
responding demand management capabilities are limited by the availability of idle
vehicles and thus by the temporal and spatial imbalance in demand.

1.2 Related literature on ride-sharing systems

In the following, we provide a brief overview of the related literature on demand
management and vehicle routing in ride-sharing systems, focusing on the three op-
erational decisions discussed before. For a more comprehensive classification of how
demand and its fulfillment are controlled in the related literature, see Chapter 3.
Moreover, for an overview of research considering demand management and vehicle
routing in other applications, we refer to Fleckenstein et al. (2023). Most of the cor-
responding papers focus on time window management for next-day attended home
deliveries (see Waßmuth et al. (2023) for a review). In contrast, comparatively few
papers, such as Ulmer (2020) or Klein & Steinhardt (2023), consider dynamic vehi-
cle routing as in ride-sharing systems, where fulfillment is performed simultaneously
with the incoming new requests. However, ride-sharing also differs from same-day
delivery applications due to the immediacy of transportation requests.

Focusing on the literature on ride-sharing systems, the majority of papers primarily
concern dynamic vehicle routing in terms of assignment decisions. Early papers
addressing related problems refer to the dynamic dial-a-ride problem as an extension
of the well-known dynamic vehicle routing problem. For reviews on the static and
dynamic dial-a-ride problem, see, e.g., Molenbruch et al. (2017) and Ho et al. (2018).
For an overview of more recent assignment approaches for large-scale ride-sharing
systems, see Wang & Yang (2019), who cover also repositioning decisions and offer
decisions in terms of pricing.

The repositioning of idle vehicles to compensate for temporal and spatial imbal-
ances in demand has also been explored widely (for a comprehensive overview, see
Chapter 4). For example, queueing-based approaches (see, e.g., Zhang & Pavone
(2016) and Sayarshad & Chow (2017)) and model predictive control approaches (see,
e.g., Iglesias et al. (2018) and Pouls et al. (2022)) have been considered to make com-
pletely centralized repositioning decisions. Furthermore, agent-based reinforcement
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learning has gained interest recently to obtain sophisticated repositioning policies
(see, e.g., Holler et al. (2019) and Jiao et al. (2021)).

In contrast, demand management via comprehensive offer decisions has been ne-
glected for a long time (for a comprehensive overview, see Chapter 5). Earlier papers
considered only feasibility checks to ensure that accepted requests are fulfilled sub-
ject to waiting time and detour constraints (see, e.g., Berbeglia et al. (2011) and
Alonso-Mora et al. (2017a)). More advanced offer decisions have been considered,
particularly with respect to selective acceptance mechanisms and pricing approaches.
Selective acceptance mechanisms aim to accept favorable transportation requests
with regard to current opportunity costs or the expected future demand (see, e.g.,
Hosni et al. (2014) and Heitmann et al. (2023)). In contrast, pricing optimizes trav-
elers’ fares and/or drivers composition to attract drivers (and deter demand, see,
e.g., Bimpikis et al. (2019), Guda & Subramanian (2019)), or to attract demand
(and deter drivers, see, e.g., Hu et al. (2022)). These papers include the approaches
mentioned above for repositioning: the study by Taylor (2018) is based on a queueing-
based approach, Nourinejad & Ramezani (2020) develop a model predictive control
approach, and Chen et al. (2021) rely on reinforcement learning.

1.3 Research questions and thesis outline

In this thesis, we now aim to contribute to the dynamic ride-sharing literature by
developing non-monetary approaches that integrate demand management and vehicle
routing to the benefit of operators, travelers, and drivers. In doing so, we aim to
break away from the sole focus on centralized decision-making and offer alternatives
to pricing, which can be considered the dominant approach to demand (and supply)
management in the recent literature and practice of dynamic ride-sharing systems.
To achieve these aims, we address three main research questions:

RQ1: What constitutes a softer, i.e., non-monetary, approach to demand manage-
ment and vehicle routing in dynamic ride-sharing systems?

RQ2: What are the opportunities and implications of advancing demand management
and/or vehicle routing for operators, travelers, and drivers?

RQ3: How can travelers and drivers be involved in the decision-making process to
their and the operators’ benefit?
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Chapter 1 Introduction

RQ1 is related to both gaining a comprehensive understanding of demand man-
agement and vehicle routing in dynamic ride-sharing systems and the development of
new corresponding approaches. RQ2 refers to the identification of opportunities for
advanced demand management and/or vehicle routing to improve the performance
of ride-sharing systems and the analysis of the (potentially adverse) implications for
travelers and drivers. Finally, RQ3 is about how to involve travelers and drivers in
the decision-making overcoming the purely centralized perspective for the benefit of
all stakeholders.

C4C3C2

Haferkamp & Ehmke (2019): 

Efficient Insertion Heuristic for On-

Demand Ride-Sharing Services.

Haferkamp & Ehmke (2022):

Effectiveness of Demand and Fulfillment 

Control in Dynamic Fleet Management of 

Ride-Sharing Systems. 

Haferkamp et al. (2023):

Heatmap-Based Decision Support for 

Repositioning in Ride-Sharing Systems.

C5

Haferkamp (2023):

Design of Multi-Optional Pickup Time 

Offers in Ride-Sharing Systems.

Implementation of the 

computational framework with 

heuristics for feasibility checks 

and assignment decisions.

Establishing a comprehensive 

understanding of demand 

management and vehicle routing 

in dynamic ride-sharing systems.

Development of a softer means for 

balancing supply and demand by 

supporting (independent) drivers in 

their repositioning decisions. 

Development of a softer means of 

demand management that balances 

convenient pickup options for travelers 

and routing effort in offer decisions.

RQ2 RQ3RQ1

Figure 1.1: Thesis Overview

A comprehensive overview of the structure of the thesis is provided by Figure 1.1.
The circles marked C2 to C5 symbolize the four main chapters. The color differ-
ences in turn show the increasing consideration of the introduced research questions,
reflecting the chronological organization of the thesis. Furthermore, the figure indi-
cates for each chapter the main contribution as well as the title and authors of the
related papers. From the respective contributions, it can be noted that Chapters 2
and 3 are primarily devoted to laying the groundwork for the development of the
solution approaches presented in Chapters 4 and 5.
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1.3 Research questions and thesis outline

More precisely, Chapter 2, titled “An Efficient Insertion Heuristic for On-Demand
Ridesharing Services” and published in Transportation Research Procedia, establishes
the computational framework by implementing efficient heuristics that integrate fea-
sibility check and assignment of dynamically incoming transportation requests. With
respect to RQ1, it thus implements a first non-monetary approach for demand man-
agement and vehicle routing in dynamic ride-sharing systems.

Chapter 3, entitled “Effectiveness of Demand and Fulfillment Control in Dynamic
Fleet Management of Ride-Sharing Systems”, published in Networks, focuses on pro-
viding the fundamental understanding considering RQ1 and RQ2. The contribution
is twofold: (1) to classify how demand and its fulfillment are controlled in the related
literature; (2) to explore the opportunities and implications of advanced demand and
fulfillment control in a comprehensive computational study. The literature classifi-
cation highlights the diversity of potential approaches, whereas the experimental
results indicate that demand and fulfillment control affect the performance and ser-
vice quality of ride-sharing systems quite differently.

Based on the previous two chapters, Chapter 4 titled “Heatmap-Based Decision
Support for Repositioning in Ride-Sharing Systems” and published in Transportation
Science addresses the three research questions by proposing anticipatory heatmaps to
support idle drivers in their repositioning decisions. As such, it is one of the first non-
monetary approaches for balancing demand and supply also in decentralized ride-
sharing systems by highlighting driver-specific repositioning opportunities. However,
as our heatmaps change the future driver distribution and hence demand coverage,
we propose an adaptive learning algorithm that iteratively updates the heatmaps
until the service cancellations cannot be reduced further. We show in comprehen-
sive computational experiments the merits of such carefully designed heatmaps and
investigate several scenarios with non-compliant drivers, analysing the potential for
and against deviating from heatmap recommendations.

Finally, Chapter 5 titled “Design of Multi-Optional Pickup Time Offers in Ride-
Sharing Systems” and currently under review in the EURO Journal on Transporta-
tion and Logistics addresses the three research questions by designing multi-optional
pickup offers for an advanced non-monetary demand management. In this regard,
the work is among the first to address travelers’ uncertain pickup time requirements
by providing a set of options for the traveler to choose from. For the design of these
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pickup time offers, we propose a parametric cost function approximation that bal-
ances acceptance probability and approximated routing effort. The offer design thus
aims to provide travelers with an acceptable pickup option, while maintaining an
effective utilization of the ride-sharing fleet. We demonstrates the effectiveness of
this approach in a comprehensive computational study and provide managerial in-
sights, particularly with respect to the value of information on traveler pickup time
requirements.
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Chapter 2

An efficient insertion heuristic for
on-demand ridesharing services

Abstract In recent years, several ride-sharing operators have launched their services
across the globe. For these services, mobility requests arrive dynamically and have
to be realized with a limited number of vehicles. The problem of request acceptance
and route planning can be modeled as Dynamic Dial-a-Ride Problem (DDRP). Due
to the limited transportation capacity of the shared vehicles, an important objective
of the new service operators is to maximize the number of accepted requests. Since
not all requests can be fulfilled, it is necessary to inform passengers immediately
about the acceptance or rejection of their request. One way to achieve this is via fea-
sibility check of the DDRP, which in this case must be performed within a very short
computing time. The aim of this contribution is to examine the trade-off between
computing time and solution quality as well as the effects of rescheduling during the
feasibility check under realistic conditions of a typical urban on-demand ride-sharing
service. For this purpose, a Large Multiple-Neighborhood Search is proposed as an
efficient approach to solve the DDRP. The analysis of different computing time limi-
tation’s as well as the performance evaluation of the developed heuristic is based on
computational simulation.

Keywords ride-sharing Services, Dynamic Dial-a-Ride Problem, Large Multiple-
Neighborhood Search
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Chapter 2 An efficient insertion heuristic for on-demand ridesharing services

2.1 Introduction

In many countries, on-demand ride-sharing services have become an affordable and
comfortable mobility alternative classified between public transport and taxi ser-
vices. In major German cities, for example, an increasing number of mobility ser-
vice operators has launched their services recently, creating a competitive market.
In Berlin, services like BerlKönig, Clevershuttle, Allygator and MyTaxiMatch offer
shared rides in highly populated parts of the inner city. The increased attractiveness
of this business model can be attributed to improved operations due to digitization
and the expected availability of autonomous driving vehicles in a couple of years,
which is supposed to further increase the flexibility and profitability of on-demand
ride-sharing services.

All recent on-demand ride-sharing services come with mobile applications, which
allow passengers to submit requests on short notice. Therefore, some operators do
not offer the possibility of pre-booking rides. Instead, the next possible pick-up
time is determined and offered at the time of request submission. In this context,
passengers expect to receive an immediate and reliable response to their request. For
a response to be perceived by a user as immediate, the service operator must reply
in less than one second (Nielsen, 1994). Hence, in order to send a reliable request
acceptance confirmation, the service operator must check immediately whether a
request can be fulfilled with their currently available transport capacity, taking into
account the possibility of shared rides. These requirements pose significant challenges
to the service operators.

Evaluation of request acceptance is known in the routing literature as “feasibility
check” (Ehmke & Campbell, 2014) and can, in the considered case, be performed
by solving the Dynamic Dial-a-Ride Problem (DDRP). During the feasibility check,
at least one insertion position for a new request is determined within an existing
solution which does not violate any constraints. If the search is successful, the request
is inserted and therefore accepted. The new solution then serves as a route plan for
fulfilling the accepted requests. Recent examples for literature providing overviews
on solution approaches for the DDRP are Cordeau & Laporte (2007), Berbeglia et al.
(2010) and Hosni et al. (2014).

In most studies, the underlying applications are the transportation of patients or
elderly passengers and not on-demand ride-sharing services. A first contribution ad-
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2.2 Problem description

dressing this application is provided by Horn (2002). In this article, a framework for
the operation of an on-demand mobility service is presented. The feasibility check is
carried out with various minimum-cost insertion heuristics, which differ in the way
they determine the set of insertion positions to be considered. Hosni et al. (2014)
formulate a shared taxi problem and present solution approaches for the static and
dynamic Dial-a-Ride Problem. For the solution of the dynamic variant, the cost-
minimal insertion position of a request is determined by solving a mathematical
program. In order to increase the efficiency of this approach, the cases in which no
feasible solution can be found are identified in advance. Bischoff et al. (2017) examine
the operation of an on-demand ride-sharing service in the city of Berlin, Germany,
using the multi-agent transport simulation framework “MATSim”. A Minimum-Cost
Insertion Heuristic (MCI) is integrated into the simulation framework. For an in-
coming request, this heuristic checks each possible insertion position and selects the
one that is feasible and has the least additional travel time.

So far, the contributions dealing with ride-sharing services focus on the determi-
nation of a feasible and cost-effective insertion position. Extending this work, in our
paper, we propose an advanced, state-of-the-art solution technique, which resched-
ules the already accepted requests very quickly upon potential integration of the
new request. Furthermore, we analyze the performance of our technique under the
demanding computational time constraints of an on-demand ride-sharing service op-
erator. In particular, we introduce a Large Multiple-Neighborhood Search (LMNS)
to carry out the feasibility check of the DDRP.

2.2 Problem description

We model the considered problem as a dynamic and stochastic optimization problem.
Let G “ N ,E be a complete, directed graph mapping the operating area of an on-
demand ride-sharing service. The set of nodes N represents potential locations of
origins and destinations of passengers, and the set of edges E are connections between
these locations weighted according to the expected driving duration from origin to
destination.

A fleet of V identical vehicles, each with a limited capacity cv and a location
lv, is available for the fulfillment of mobility requests. For the operation of the
service, an independent period over a limited number of hours is considered. In
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Chapter 2 An efficient insertion heuristic for on-demand ridesharing services

the course of the period, mobility requests r P R are posed dynamically following a
stochastic distribution while already accepted requests are being fulfilled successively.
Each request is defined by an origin ir P N and a destination jr P N as well as a
capacity requirement qr, which corresponds to the number of passengers per mobility
request, and a duration dr for boarding or alighting. Furthermore, there is a discrete
point in time, sr, at which the request is submitted, as well as a time restriction
given by a latest acceptable time of arrival ar at destination jr. It is assumed that
passengers want to arrive at their destination as soon as possible. Their requests can
therefore only be scheduled in such a way that the arrival time is sufficiently early.
To determine the latest acceptable arrival time ar, a maximal tolerance duration tr
for postponed destination arrivals is added to the earliest possible arrival time, given
by sr and the driving duration from ir to jr. The extent to which the tolerance
duration tr is required depends on how soon a vehicle can pick up the passenger,
i.e., the waiting time as well as the actual ride duration. Increased ride durations
may occur for passengers due to detours as well as boarding and alighting of other
passengers if they share a part of their ride.

For each incoming request, it has to be checked whether its realization is feasible
subject to time and capacity related constraints. This check is performed by attempt-
ing to find a valid route plan that contains the new received request as well as all
previously accepted requests. It must be taken into account that request acceptance
is carried out simultaneously with the ongoing fulfillment of requests. Therefore,
only those parts of a current route plan can be changed which have not yet been
executed, i.e. the parts where the scheduled arrival time is after the current time
of request tr. Moreover, the flexibility in rescheduling is constrained in such a way
that the next stop remains unchanged during the journey. This ensures that drivers
and passengers can be informed reliably about the next stop in order to avoid the
perception of an arbitrary planning.

A new route plan is considered as feasible solution if for all r P R, the origin node
ir and destination node jr belong to the same route, and ir is planned before jr, as
well as time and capacity constraints are satisfied. If this can be accomplished, the
request is accepted and the route plan found is used for the fulfillment of the accepted
requests. The objective is to reject as few passengers as possible, and therefore to
maximize the number of mobility requests accepted.
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2.2 Problem description

2.2.1 Solution approach

We propose the following LMNS to solve the presented problem. Our LMNS is a
variant of the Adaptive Large Neighborhood Search (ALNS), which was proposed
by Ropke & Pisinger (2006) for a static Pickup and Delivery Problem. The general
idea of the approach is to find a new feasible solution by inserting a new mobility
request rnew into a given solution s0. The LMNS is therefore performed within the
booking process whenever a request is received. The given solution s0 is based on
the last returned solution, but contains only those parts for which rescheduling is
possible with regard to the time and operational constraints formulated above.

Figure 2.1: Pseudocode of the Large Multiple-Neighborhood Search

The use of a modified ALNS was inspired by the step of minimization of the
number of vehicles used in Ropke & Pisinger (2006). Within this step, each route
is removed from the current solution once in order to try to insert its requests into
the remaining ones. Our LMNS differs from the original ALNS in several aspects.
First, as shown in line 3 of the pseudocode, only the new request rnew is added to
the requestbank before the iterative search begins.

Second, lines 4 and 7 to 9 show that the termination criteria have been adjusted.
Since only the insertion of rnew has to be accomplished, the search is terminated
as soon as a feasible solution has been found (line 7 to 9). The second termination
criterion is a limit of the computation time, which ensures a maximum response time
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within the booking process for each incoming request (line 4). When this criterion
is fulfilled, the starting solution s0 is returned and the request rejected, since no
feasible solution could be found within the specified computation time.

Third, for our problem, the set and selection of removal and insertion operators
used in lines 5 and 6 has been adapted. For the removal of requests in line 5, the
Random, Worst and Shaw operators are still applied, and for the subsequent insertion
in line 6, only the Regret-2 insertion operator both with and without noise is carried
out. The selection of a removal and insertion operator is made randomly at each
iteration. It is not useful to apply an adaptive selection procedure, since the number
of realizable iterations per function call is too limited due to the short computing
times.

Fourth, also the acceptance criterion in line 9 has been modified. The objective
function value of a solution is determined over the overall driving duration plus a
penalty term β for each unintegrated request. Usually, simulated annealing is used
as acceptance criterion, but its advantages, namely controlling the search process
through decreasing temperature, does not apply in this case, as the number of itera-
tions is too limited. Instead, a similar criterion is applied, where the temperature is
recalculated within each iteration with the formula used in Ropke & Pisinger (2006)
for the calculation of the start temperature. Therefore, solutions with an improved
objective function value are accepted as well as deteriorated solutions with a certain
probability depending on the degree. This degree is controlled by the parameter α,
which specifies the factor of deterioration where the probability of acceptance equals
50%. For factors of deterioration below α, the probability of acceptance increases
and decreases for those above α.

2.3 Computational experiments

Within the scope of this study, computational experiments have been carried out
through simulating and optimizing an on-demand ride-sharing service operating in
the road network of Berlin, Germany. The aim of the computational experiments is
to obtain insights on the performance of the LMNS in the light of the challenging
runtime restrictions of the problem. The results are then benchmarked against the
MCI of Bischoff et al. (2017) to examine the extent to which rescheduling during the
insertion leads to an improvement of the solution quality. The quality of a solution

14



2.3 Computational experiments

is measured by the number of mobility requests accepted and the service quality,
represented by the average waiting time and detour time of the passengers. Before
the results are presented, we describe the parameters of the considered ride-sharing
service and the design of the computational experiments.

2.3.1 Settings

In order to investigate a realistic scenario, a service similar to the recently established
BerlKönig is assumed. BerlKönig is operated by the Berlin public transit authorities
as a field test. Our assumed fleet therefore corresponds to BerlKönig’s launch fleet,
which consists of 50 vehicles with a seat capacity of cv “ 6 (Mercedes-Benz, 2019). It
is further assumed that at the beginning of the planning period, the vehicles are idle
and distributed randomly over the operating area. The area under consideration is
also derived from the launch operating area of BerlKönig (BerlKönig, n.d.). In this
area, 400 addresses (cf. Figure 2.2) were randomly selected as potential origins and
destinations, and the real driving durations between these locations were determined
using OpenStreetMap (OSM).

Figure 2.2: Potential Origin and Destination Locations (created using Leaflet | ©
OpenStreetMap)
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Based on the selected 400 locations, 1600 requests are generated by randomly
drawing a combination of origin ir and destination jr under the restriction that no
combinations are duplicated and that the direct driving durations have a minimum
duration of 5 minutes (i.e., it is therefore assumed that the use of an on-demand
ride-sharing service is not reasonable if the driving duration is below 5 minutes).
In addition, a capacity requirement qr is determined for each request by drawing
a random value from a Poisson distribution with λ “ 1, ensuring that primarily
individual passengers or couples request the service, and qr ď cv for all requests.
Furthermore, a fixed value of 1 minute is assumed for the boarding and alighting
duration dr, and a value of 20 minutes as tolerance duration tr reflecting possible
postponement of destination arrivals. Additionally, a scenario with a less restrictive
service constraint is considered, where tr is set to 40 minutes. Overall, 100 instances
are created, each covering a planning period of 3 hours, for which a constant surplus
demand is assumed. For each instance, 800 out of the 1600 generated requests are
randomly drawn as well as their time of request submission sr.

The parameters of our LMNS have been adjusted on the basis of initial experiments
with a computing time limit of 20 milliseconds. This involves tuning the parameters
of the removal and insertion operators as well as the general search parameters. For
the operators, the noise influence of Worst and Shaw removal as well as Regret-2
insertion have been adjusted; the noise of the Shaw-removal has been set to zero.
For the other two operators, relatively high values have turned out to provide good
solutions. In addition, the weighting of the similarity measurement factors has been
adjusted for the Shaw removal operator. In particular, the planned pick-up and drop-
off times have received a high weighting as a measure of similarity. As further search
parameters, the following parameters were adjusted: α and β for the acceptance
criterion, γ1 and γ2 , representing the minimum and maximum percentage of requests
to be removed per iteration. The resulting values indicate that a higher degree of
diversification is beneficial for the successful application of the developed insertion
heuristic.

2.3.2 Results

The aim of the computational experiments is to obtain insights on the performance of
the LMNS in the light of challenging computing time restrictions. For this purpose,
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computing time limits between one millisecond and one second are examined. We
will analyze the number of the accepted requests as an important metric for the
service operator and try to understand further effects of the computing time limits
on the performance of the LMNS. Then, we will examine the effect of the computing
time limits and the associated changes on quality measures from the customer’s point
of view.

The obtained results are shown in Table 2.1, which gives the computing time limit
in milliseconds, the average number of accepted requests, the average number of
requests available for rescheduling, and the average number of iterations by rejec-
tion/acceptance. The column “requests for rescheduling” provides information about
the average number of requests available for removal in one iteration of the LMNS.
The columns “number of iterations by rejection” and the “number of iterations by
acceptance” show how many iterations of the LMNS were performed on average be-
fore the search was terminated. For “iterations by rejection”, the instances in which
the computing time limit terminates the search are included, while for “iterations by
acceptance”, those in which a new feasible solution has been found.

The obtained results show that on average number of passenger requests between
705.7 and 708.3 can be accepted. The performance is best for a computing time limit
of 40 milliseconds. While the number of accepted customers remains quite stable,
the average number of requests available for rescheduling as well as the average
number of iterations by rejection and acceptance grows continually with an increasing
computing time limit.

While the increasing computing time does not create a performance gain with
the number of accepted requests, the other three metrics show how the additional
computing time effects the search. For instance, the increase of iterations by rejection
and acceptance shows that not only more iterations can be performed, but also that
requests can be accepted in later iterations which would have been rejected with
lower computation time limits. For example, with a limit of 1 millisecond, it is
not possible to accept requests that require more than one iteration, while with a
limit of 100 milliseconds, an average of 2.5 iterations can be performed until a feasible
solution is found. Note that the LMNS spends the same effort for each request so that
the probability of accepting demanding requests increases also with the computing
time limit. Furthermore, the increase in the average number of requests available
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for rescheduling shows that with additional computing time, the number of requests
increases which can be integrated simultaneously into the current planning horizon.
That these do not lead to a higher number of accepted requests can be explained by
the fact that, due to the high demand, there is a sufficient number of easy-to-integrate
mobility requests at hand.

Time limit in
milliseconds

Accepted
requests

Requests for
rescheduling

Iterations by
rejections

Iterations by
acceptance

1 705.7 27.6 1.0 1.0
20 707.4 32.1 7.7 1.4
40 708.3 33.6 14.8 1.7
60 707.2 33.9 21.9 1.9
80 708.0 34.3 28.5 2.2
100 706.5 34.6 35.6 2.5
...

1000 706.8 36.8 300.7 12.3

Table 2.1: Average Statistics for Different Computing Time Limits

Table 2.2 contains the metrics related to the quality of service for the same com-
puting time limits known from Table 2.1. The table contains the “average pooling
rate”, the “average waiting time”, the “average detour” and the value of the overall
“postponement of destination arrivals”. The pooling rate states the percentage of
passengers which share a part of their ride with passengers of another request. The
waiting time corresponds to the average difference between the time of request and
the pick-up time, while the detour corresponds to the average difference between the
time spent by the passenger in the vehicle and the duration of the direct journey.
The postponement of destination arrivals results from the addition of the waiting
time and detour.

Generally, we can see that the metrics seem to evolve consistently with higher
computing time limits. The average number of passengers sharing a part of their
ride as well as the average detour decrease while the average waiting time increase.
These trends reflect the increasing chance of successful rescheduling. This leads, on
the one hand, to an increased probability of accepting requests that are more difficult
to consolidate, resulting in decreasing pooling rates and detours. On the other hand,
it increases waiting times, since the number of simultaneously integrated requests
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Time limit in
milliseconds

Pooling
rate

Waiting time
in minutes

Detour
in minutes

Postponement of
destination arrivals

1 78.4% 11.3 3.88 15.20
20 76.1% 11.91 3.66 15.57
40 75.0% 12.05 3.60 15.66
60 74.7% 12.10 3.59 15.69
80 74.5% 12.12 3.58 15.70
100 74.2% 12.20 3.56 15.76
...

1000 72.7% 12.49 3.51 15.91

Table 2.2: Average Impact of the Computing Time Limits on the Service Quality

increases, too. The values of the average overall postponement of destination arrivals
show that the increasing waiting times cannot be offset by the decreasing detours so
that the quality of service is marginally lower for higher computing times. Overall, in
this scenario, our LMNS works well even for very small computing times, and larger
computing times are neither beneficial for the number of accepted requests nor for
service quality metrics.

We also want to evaluate the performance of our LMNS relative to the MIC heuris-
tic. To this end, we use the results created at a computing time limit of 1 millisecond,
which can be interpreted as the lower performance bound of the developed LMNS.
The results shown in Table 2.3 distinguish between the first scenario with a maxi-
mum tolerance tr for postponed destination arrivals of 20 minutes and the second
less restrictive scenario with tr “ 40 minutes as well as between the MCI and LMNS
approach. The metrics shown in the table correspond to those explained in context
of Table 2.1 or Table 2.2.

Scenario Approach Accepted
requests

Pooling
rate

Waiting
time in
minutes

Detour
in minutes

Postponement
of destination

arrivals

tr “ 20
minutes

MCI 685.0 69.3% 13.05 3.14 16.19
LMNS 705.7 78.4% 11.31 3.88 15.20

tr “ 40
minutes

MCI 740.3 78.9% 26.71 6.47 33.18
LMNS 792.5 91.7% 17.50 9.15 26.65

Table 2.3: Comparison of the Average Results of MCI and LMNS
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First, we compare the results for the short maximal postponement duration of 20
minutes. In this context, LMNS is able to accept 20 requests (or 3%) more than MCI.
Furthermore, the average pooling rate shows that LMNS achieves a 9.1% increase
in the number of shared rides compared to the MCI. The results of MCI and LMNS
also differ in terms of service quality metrics. The average waiting time is higher
for the MCI result, and the average detour is longer in case of the LMNS result.
However, the values of the average postponement of destination arrivals show that
passengers reach their destination faster if the planning is done by the LMNS.

These results show that even with low flexibility due to a restrictive service level
and an extremely limited computing time, the rescheduling of the developed LMNS
enables the acceptance and successful consolidation of more mobility requests as well
as the improvement of the service quality compared to MCI.

Finally, we examine results for a higher maximal postponement value of 40 min-
utes. As expected, the flexibility gained from the relaxation of the service restriction
allows more mobility requests to be accepted on average. The average number of
accepted requests increases by 12.3%{8.1% for LMNS and MCI, respectively. For
LMNS, whereby 99.1% of all requests are accepted. The high flexibility also allows
a more efficient consolidation of rides, so that the average pooling rate increases
by 13.3%{9.6%. These improvements are at the cost of significantly longer average
waiting times and detours. The results show, on average, an increase of the waiting
time by 54.7%{104.7% and the detour by 135.8%{106.1%, which leads to an increase
of the average postponement of destination arrivals by 75.3%{105.4% for LMNS and
MCI, respectively.

The differences observed in the first scenario thus intensify in the second scenario
for all metrics considered. The additional planning flexibility associated with relax-
ation of the service restriction thus increases the advantages of LMNS over MCI.
Hence, a continuous rescheduling of the LMNS seems to be quite beneficial. In con-
clusion, if the design of the ride-sharing service allows for continuous rescheduling,
LMNS can take advantage of that and provide better results than MCI.

2.4 Conclusion

Request acceptance is a core task for on-demand ride-sharing services operators. In
this paper, we proposed an LMNS as a complex feasibility check and rescheduling
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mechanism to solve the DDARP in the context of ride-sharing services. It could
be demonstrated that the developed LMNS can be used for such services under the
demanding requirements of tight computing time constraints. Furthermore, we could
show that the developed LMNS is superior to a standard approach from the literature
both in terms of the average number of requests accepted and in terms of the average
quality of service.

In future work, it is our ambition to integrate the proposed LMNS into the sim-
ulation framework “MatSim” (Horni et al., 2016) to evaluate it under more realistic
conditions. In addition, a comparison with other feasibility checks known from the
literature is planned. Future research will also focus on profit-maximizing imple-
mentation of a ride-sharing service, especially with regards to service quality and
reliability. In particular, the anticipation of future requests will be of interest, since
this could lead to a higher acceptance rate through rejection of unfavorably located
requests and smart relocation of idle vehicles.
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Chapter 3

Effectiveness of demand and fulfillment
control in dynamic fleet management of
ride-sharing systems

Abstract

In recent years, innovative ride-sharing systems have gained significant attention. In
such systems, dynamic fleet management covers demand and fulfillment control to
determine which stochastically incoming requests are to be satisfied and how vehi-
cle resources are utilized for their fulfillment, respectively. Demand and fulfillment
control can be implemented ranging from straightforward myopic to more sophisti-
cated anticipatory. In this paper, our aim is twofold: (1) we want to classify how
policies implement demand and fulfillment control in the related literature on dy-
namic fleet management; (2) we want to explore the effectiveness of demand and
fulfillment control under varying conditions in order to identify benefits and risks for
ride-sharing systems. To this end, we define policies that differ in the optimization
of demand and/or fulfillment control through the exploitation of either confirmed
or complete information. Our experimental results demonstrate that demand and
fulfillment control affect the performance and service quality of ride-sharing systems
quite differently.

Keywords anticipation, dial-a-ride problem, dynamic vehicle routing, large neigh-
borhood search ride-sharing, stochastic requests
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3.1 Introduction

Worldwide increasing congestion in urban traffic networks and the associated air pol-
lution have led to a growing interest in innovative shared mobility solutions. Among
these are on-demand ride-sharing services like Uber Pool (n.d.), which promise to im-
prove the efficiency of traditional taxi services by bundling travelers on the way from
their origin to their destination. This increased level of efficiency allows for lower
fares compared to individual taxi services and enables a more convenient travel ex-
perience compared to traditional local public transport through smaller transport
cabins and direct trips.

Ride-sharing services have emerged in the light of advancing digitization, which
allows travelers to submit requests on-demand. The resulting interaction of request
acceptance and vehicle routing poses a great challenge on operators, as requests arrive
stochastically and decisions have to be made dynamically. In request acceptance, trip
requests submitted by travelers – often in expectation of instant confirmation – are
processed. Here, it must be ensured that all accepted requests can be fulfilled with the
given vehicle resources. Operators may also reject requests due to a lack of resources
or in favor of potential future ones. At the same time, vehicle routing addresses
the utilization of the fleet to fulfill accepted requests as well as those expected to
be accepted in the future. Commonly, accepted requests must be fulfilled at short
notice, which means that planning and execution are performed synchronously.

Dynamic fleet management, which comprises request acceptance and vehicle rout-
ing to control the demand to be satisfied and its fulfillment, is a key factor for a
successful ride-sharing system. To handle the uncertainty caused by the stochastic
nature of requests, demand control as well as fulfillment control can range from sim-
ple exploitation of confirmed information only to more sophisticated exploitation of
information on the stochastic problem elements. Complex strategies for both de-
mand and fulfillment control are reflected in the decision-making policies proposed
in the literature. Given these policies, it remains unclear what extent of demand and
fulfillment control is beneficial under which conditions and how it affects the per-
formance of ride-sharing systems. Understanding the effectiveness of demand and
fulfillment control is important, both for the systematic development of policies as
well as for guiding operators in selecting a policy tailored to the intended service.

24



3.1 Introduction

Our aim is to investigate the effectiveness of demand and fulfillment control in a
ride-sharing system systematically. To this end, first, we define control strategies
and classify the policies proposed in the literature accordingly. Secondly, we present
policies that vary in the complexity of optimization in demand and/or fulfillment
control. Finally, based on a comprehensive computational study, we analyze how
these policies affect the performance metrics of a typical urban ride-sharing system
as well as the quality of service perceived by travelers.

In our computational study, for the most part, we assume complete information to
increase optimization possibilities instead of using truly anticipatory policies. There-
fore, we are able to interpret results independently of anticipation capabilities and the
quality of information on the stochastic demand. However, concerning the stochastic-
dynamic problem, rather upper bounds of effectiveness are investigated than those
obtainable by truly anticipatory policies. Nevertheless, it can be assumed that trends
in performance differences will be reflected through similar patterns by policies that
apply the same strategies towards demand and fulfillment control. Furthermore, to
ensure the comparability of the implemented policies, all acceptance and routing
decisions are obtained by solving variants of the static dial-a-ride problem (DARP)
using a well-known large neighborhood search (LNS).

In summary, we contribute to a better understanding of demand and fulfillment
control in dynamic fleet management. To this end, we give an overview of corre-
sponding policies as proposed in the related literature. Moreover, we provide valu-
able insights into the overall effectiveness of demand and fulfillment control under
various conditions of a ride-sharing system.

The paper is organized as follows. Section §2 defines demand and fulfillment con-
trol in dynamic fleet management, differentiates control strategies, and provides a
classification of the related literature. In Section §3, the dynamic DARP (DDARP)
faced by a ride-sharing system is presented and modeled as a Markov decision pro-
cess. Section §4 covers the framework for investigating the policies as well as the
presentation of the LNS. In Section §5, computational experiments are presented
including study design and computational results. Finally, Section §6 provides a
conclusion and outlines future research directions.
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3.2 Demand and fulfillment control

The differentiation between demand and fulfillment control in dynamic fleet man-
agement is a key aspect of this paper. We define demand control as all dynamic
decisions aimed at controlling which trip requests are to be satisfied. We define
fulfillment control as all dynamic decisions aimed at controlling vehicle resources to
fulfill the trip requests to be satisfied. Apart from this logical differentiation, there
is a strong interdependence between demand and fulfillment control, since demand
control determines the input for fulfillment control and fulfillment control strongly
influences the availability of vehicle resources important for demand control. In the
following, we detail this differentiation and then classify the policies proposed in the
literature.

3.2.1 Control strategies

For both demand and fulfillment control, we begin with differentiating whether these
are reflected in the decision-making process at all. This distinction is rooted in
the few variants of the dynamic vehicle routing problem (DVRP) where either only
demand or only fulfillment is dynamically controlled. Secondly, we distinguish how
uncertainty is handled within the decision process. Uncertainty is a key challenge
in dynamic fleet management caused by the stochastic nature of requests, implying
that decisions are made based on incomplete information. We define anticipatory
decision-making as the consideration of future stochasticity in order to maximize the
expected cumulative reward. Anticipatory decision-making can be based on historical
data, forecasts, or the distribution of the stochastic elements. In contrast, decision-
making that maximizes immediate rewards only based on confirmed information is
referred to as myopic. In the context of dynamic fleet management, a reward refers,
for example, to an accepted request or its monetary compensation. Demand and
fulfillment control can be carried out in a myopic or anticipatory manner. This
differentiation leads to the following super-ordinate demand and fulfillment control
strategies further detailed in the subsections:
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• Demand control:
– None: All requests received during the planning period are accepted.

– Myopic: Requests received during the planning period are accepted if
sufficient vehicle resources are available and this maximizes the immediate
reward.

– Anticipatory : Requests received during the planning period are accepted
if sufficient vehicle resources are available and this maximizes the expected
cumulative reward.

• Fulfillment control:
– None: Requests accepted during the planning period are scheduled and

fulfilled after its completion.

– Myopic: Requests accepted during the planning period are scheduled and
fulfilled synchronously within the period.

– Anticipatory : Requests accepted during the planning period are sched-
uled and fulfilled synchronously within the period, taking into account
expected future acceptances.

3.2.1.1 Demand control

For the scope of demand control, in this section, we detail the meaning of the strate-
gies referred to as “none”, “myopic” and “anticipatory”. “None” means that all in-
coming requests will be accepted. To ensure this, corresponding DDARPs do not
consider hard constraints on the quality of service in terms of maximum waiting time
for travelers. Instead, service quality becomes part of the objective function in order
to achieve a convenient service for all requesting travelers. In practice, however,
the demand is usually still controlled indirectly, either on a strategic level through
determining a suitable service area, or through inconvenient service offers with long
waiting times.

In contrast, myopic and anticipatory demand control accept only a subset of the
incoming requests under the objective of maximizing the number of accepted requests
or the revenue. This is usually accompanied by strict constraints on the quality of
service so that the amount of feasible demand is limited. A key feature of these
demand control strategies are customer acceptance mechanisms through which dy-
namic acceptance decisions are made for each incoming request. The basis for these
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mechanisms is the so-called feasibility check, which ensures that a feasible route plan
can be found at any state of the decision process. In the myopic case, demand con-
trol is often limited to feasibility checks, as any additional accepted request increases
the immediate reward (see, e.g., Coslovich et al. (2006)). Enhanced myopic demand
control additionally proactively rejects requests if they seem unfavorable at the time
of request, e.g., in terms of incremental transportation costs (see, e.g., Xiang et al.
(2008)).

Anticipatory demand control can be implemented in the following ways. The first
is through sophisticated customer acceptance mechanisms, which extend the feasi-
bility check to an anticipatory acceptance decision. This ensures that only requests
that seem favorable with respect to the expected cumulative reward will be accepted.
Whether a request is favorable or not is either reflected in its expected vehicle re-
source consumption (e.g., Ulmer et al. (2018) for a related DVRP) or quantified by
a revenue management approach (e.g., Yang & Strauss (2017) for a related DVRP).
The second way is through the combination of feasibility checks and proactive al-
location of vehicle resources by anticipatory routing decisions. Such decisions may
concern the relocation of idle vehicles (e.g., Horn (2002)) or the incorporation of
dummy requests to reflect future expected ones within a scenario-based approach
(e.g., Ichoua et al. (2006)). As a result, the feasibility check is only successful for
favorable requests to which vehicle resources have been allocated. However, the effec-
tiveness of such demand control is strongly dependent on the extent of anticipatory
routing decisions and the strictness of service quality constraints.

3.2.1.2 Fulfillment control

The classification of fulfillment control into the presented strategies follows the im-
plementation of the routing decisions. Therefore, in case of no control (“none”), no
dynamic routing decisions are made. Such policies can be found in the context of
reservation systems, where the fulfillment is carried out after a booking process has
been completed. Such reservation systems have been investigated in the context of
time slot management for attended home deliveries (e.g., Campbell & Savelsbergh
(2005), Ehmke & Campbell (2014)).

When routing decisions are made dynamically as required in on-demand systems,
fulfillment control is often based on myopic re-optimization of vehicle route plans
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in the event of a newly accepted request. This re-optimization can be achieved by
applying (meta)-heuristics initially developed to solve a static vehicle routing prob-
lem (e.g., in Attanasio et al. (2004)), or through newly developed routing algorithms
(e.g., in Alonso-Mora et al. (2017a)).

Anticipatory fulfillment control enhances myopic strategies by considering ex-
pected future request acceptances in routing decisions. However, the specific ap-
proach can differ greatly in terms of complexity and comprehensiveness. For exam-
ple, waiting strategies determine at which locations vehicles should wait in order to
efficiently accommodate future requests (e.g., Branke et al. (2005)). In relocation
strategies, vehicles are relocated within the service area for the same purpose (e.g.,
Horn (2002)). The first two examples therefore do not interfere directly with the key
task in fulfillment control, namely route planning. In contrast, (multiple)-scenario
approaches often plan anticipatory routes with the help of dummy requests (e.g.,
Ichoua et al. (2006)). Furthermore, for example, approaches of approximate dy-
namic programming (ADP) provide comprehensive anticipatory fulfillment control
for rather small problem instances (e.g., Yu & Shen (2020)).

3.2.2 Classification of the related literature

In this section, we provide an overview of the related research on dynamic fleet man-
agement. In particular, we classify the proposed policies according to the introduced
strategies for demand and fulfillment control (see Table 3.1). To provide a broad
overview, we complement the primarily covered papers dealing with DDARP with
related ones dealing with customer acceptance mechanisms or DVRP. For a compre-
hensive literature review on the DARP, we refer to Molenbruch et al. (2017) and Ho
et al. (2018). For the DVRP, we refer to Psaraftis et al. (2016) and Ritzinger et al.
(2016).

The first studies on dynamic fleet management of a ride-sharing system were con-
ducted by Dial (1995) and Madsen et al. (1995) in 1995. Dial (1995) decomposes
the problem into a set of travelling salesman problems, while Madsen et al. (1995)
suggest an insertion heuristic in order to solve the DDARP. These first contributions
focus on myopic fulfillment control without considering demand control. More con-
firmed policies following this control structure can be found in Ma et al. (2013) and
Riley et al. (2019). Ma et al. (2013) compute solutions for large ride-sharing systems
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by performing a grid-based service area decomposition. Riley et al. (2019) propose a
column generation based policy to satisfy all incoming requests under the objective
of minimizing waiting times.
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Papers dealing with demand and fulfillment control in a dynamic dial-a-ride problem are written in bold.

Table 3.1: Literature Classification

The policy introduced in Riley et al. (2019) was later extended in Riley et al. (2020)
to an anticipatory fulfillment control through a periodic relocation of vehicles in idle
mode by means of demand forecasts. More comprehensive anticipatory fulfillment is
proposed by Schilde et al. (2011) and Hyytiä et al. (2012), again without considering
demand control. Schilde et al. (2011) adapt a multiple-scenario approach, origi-
nally introduced by Bent & van Hentenryck (2004) for the DVRP, using a variable
neighborhood search. Hyytiä et al. (2012) propose a theoretical approach combin-
ing Markov decision processes and M/M/1 queues to develop an anticipatory policy
focusing on fulfillment control for the single-vehicle case.

Anticipatory fulfillment control via waiting time strategies are primarily investi-
gated within the scope of the general DVRP. For example, Mitrović-Minić & Laporte
(2004) analyze waiting time strategies under the objective of minimizing travel times,
while Branke et al. (2005) and Thomas (2007) maximize the number of accepted re-
quests. Both papers establish demand control through a myopic feasibility check
by means of an insertion heuristic. Here, the waiting time strategies themselves are
not considered as anticipatory demand control, since stops along the route at which
waiting is feasible results from the myopic feasibility checks.
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The counterpart to policies that focus only on fulfillment control are customer
acceptance mechanisms that focus only on demand control. These mechanisms are
primarily examined concerning the problem of managing delivery slots in attended
home deliveries. Myopic customer acceptance mechanisms are presented for exam-
ple in Campbell & Savelsbergh (2006), Ehmke & Campbell (2014), and Cwioro et
al. (2019). Campbell & Savelsbergh (2006) examine financial incentives to encour-
age customers to choose a delivery time slot that is favorable in terms of myopi-
cally planned delivery routes. Ehmke & Campbell (2014) compare simple static and
dynamic customer acceptance mechanisms under consideration of stochastic travel
times. Cwioro et al. (2019) propose an adaptive large neighborhood search (ALNS)
for the feasibility check to maximize the number of time slots that can be offered.
Beyond that, several anticipatory demand control approaches have been considered.
Campbell & Savelsbergh (2005) adapt the multiple-scenario approach introduced
by Bent & van Hentenryck (2004) as a customer acceptance mechanism applying
an insertion heuristic. Yang & Strauss (2017) propose a pricing approach based
on approximate dynamic programming using a sophisticated customer choice model
developed in Yang et al. (2016). More confirmedly, Mackert (2019) approximates
opportunity costs using a mixed-integer linear program. Furthermore, the pricing
of individual and shared rides for a ride-sharing system is examined in Qiu et al.
(2018), assuming complete information. Apart from slotting problems, ADP-based
customer acceptance mechanisms have also been investigated by Ulmer et al. (2018)
and extended by Ulmer et al. (2019), taking into account fulfillment control. In
these two examples, demand control assesses incoming requests with respect to their
long-term vehicle resource demand, while fulfillment is myopically controlled using
an insertion heuristic.

The papers reviewed above demonstrate that the implementation of demand and
fulfillment control within and between DVRPs varies greatly. In the following, we list
the variants most relevant for our study, which considers demand and fulfillment con-
trol in the scope of a DDARP. Many of those papers propose purely myopic policies.
In these cases, well-known solution methods are used to perform a quick feasibility
check in demand control as well as to re-optimize route plans in fulfillment control.
Such a policy is proposed by Attanasio et al. (2004) applying a parallel tabu search
(TS) for both tasks, by Coslovich et al. (2006) through a two-stage insertion heuris-
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tic, by Beaudry et al. (2010) through an insertion heuristic for the feasibility check
and a TS for re-optimization, and by Berbeglia et al. (2011) proposing constraint
programming for the feasibility check, which in Berbeglia et al. (2012) is extended
to a combination of TS and constraint programming.

Some papers propose improved myopic demand control in a DDARP context. The
idea is that only cost-effective requests are accepted. This was first discussed for
such a problem by Horn (2002), yet dismissed due to the potential unfairness towards
requests with certain characteristics. Potential discrimination of requests is therefore
one aspect that will be examined in our computational study. Xiang et al. (2008)
and Hosni et al. (2014) proposed a policy that proactively rejects requests that seem
cost-ineffective myopically. To this end, both papers check feasibility and whether
the incremental costs exceed a threshold value. Xiang et al. (2008) implement this
with an insertion heuristic. Hosni et al. (2014) introduce a model-based approach
that integrates each incoming request into the incumbent route plan at minimal
incremental costs. Furthermore, Alonso-Mora et al. (2017a) and Lowalekar & Jaillet
(2019) improve demand control by postponing acceptance decisions until a batch of
requests has been received, even if this does not allow for instant trip confirmations.
Here, all dynamic decisions are made within a two-stage process. In the first step, a
set of potential routes is created, before in the second step an assignment problem
is solved to select the routes to be realized under the objective of maximizing the
number of accepted requests. While Alonso-Mora et al. (2017a) determine all feasible
combinations of unfulfilled requests in the first step, Lowalekar & Jaillet (2019) only
consider promising ones with the help of a zone path construction approach.

For the DDARP, several policies have been proposed that implement anticipatory
demand control and fulfillment control via routing decisions. A first policy presented
by Horn (2002) involves the relocation of idle vehicles. More confirmedly, Pouls et al.
(2020) proposed a policy focusing primarily on anticipatory relocation. In contrast,
Ichoua et al. (2006), Alonso-Mora et al. (2017b), , Shah et al. (2020) and Yu & Shen
(2020) focus on the anticipatory planning of vehicle routes. Ichoua et al. (2006) adapt
a multi-scenario approach using TS. Alonso-Mora et al. (2017b) extends Alonso-
Mora et al. (2017a) by incorporating expected future requests via dummy requests.
Another extension of Alonso-Mora et al. (2017a) towards anticipation is proposed
by Shah et al. (2020), who use ADP for the selection of routes within the allocation
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problem. ADP is also used by Yu & Shen (2020) to solve the DDARP in connection
with a decomposition of the problem.

This literature review summarized the different strategies for demand and fulfill-
ment control and how they are implemented through proposed policies. In contrast
to the presented literature, with our work, we provide a comparative meta-analysis
of demand and fulfillment control to investigate their effectiveness for ride-sharing
systems. Moreover, we show under varying system conditions when and how fleet
management benefits from which degree of control. With all this, we want to con-
tribute to a better understanding of dynamic fleet management in ride-sharing sys-
tems and encourage the systematic development and selection of policies concerning
their intended effectiveness.

3.3 Problem formulation

In this section, we define the components of the DDARP under consideration. Then,
we model the stochastic and dynamic problem as a Markov decision process, enabling
demand and fulfillment control in a ride-sharing system through dynamic acceptance
and routing decisions.

3.3.1 Problem components

Let L be a set of locations in the service area of a ride-sharing system. For each
location l P L, it is assumed that a (deterministic) service time pl for travelers
getting on and off a vehicle is known, as well as for all pairs of locations pi, jq P L,
a (deterministic) travel time of ci,j is defined. The considered ride-sharing system
faces a demand represented by trip requests r P R. Each request is characterized by
its receiving time tr, its origin or P L, its destination dr P L, as well as its fulfillment
time window rbr, ers, which defines the earliest pick-up time br and latest drop-off
time er. We assume that the earliest pick-up time br corresponds to the receiving
time of the request tr. This means that travelers must be ready for departure at the
time when they pose their request, which excludes pre-bookings. The latest drop-off
time er is defined by addition of earliest pickup time br, direct travel time cor,dr , and a
parameter α, which defines the maximum arrival delay tolerated by travelers. Arrival
delays arise from waiting time to be picked up as well as detours caused through the
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bundling of requests. Detours include both additional travel time to reach the origin
or destination of other travelers and the service time required by them for getting on
or off the vehicle. To satisfy the demand, a fleet of identical vehicles V is available.
We assume that the capacity of a vehicle is not constraining, i.e., passenger seats are
never fully occupied due to tight time windows for the request fulfillment.

3.3.2 Markov decision process

The considered decision process consists of a series of decision epochs k P K, covering
a temporally limited planning period of a DDARP. At the beginning of the planning
period, the service is in an initial state s0. For this state, we assume that the vehicles
v P V are waiting in idle mode at an initial location lv P L. Furthermore, it is assumed
that in the initial state s0 no trips are waiting for fulfillment. Accordingly, a degree of
dynamics as defined by Lund et al. (1996) as the ratio of the demand stochastically
received to the total demand, of 100% is assumed. Each decision epoch k P K is
triggered by a stochastically incoming request rk P R leading to a pre-decision state
sk. The pre-decision state reflects all decision-relevant characteristics such as the
activities of the vehicles and pending requests. Formally, the pre-decision state sk
is defined by the time tr at which the service operator has received the new request
rk. Furthermore, it contains the state of the resources described through the tuple
plvk,Ov

k|@v P V q, where lvk P L specifies the current vehicle locations and Ov
k Ă R

for each vehicle the set of accepted requests whose travelers are currently being
transported. Finally, it represents the demand described through the tuple prk,Ukq,
where rk refers to the new request and Uk Ă R to the set of accepted requests whose
travelers still have to be picked up. These three parts result in the state definition
sk “ ptr, plvk,Ov

k|@v P V q, prk,Ukqq.

Based on the pre-decision state sk, an action Aπpskq is derived from a policy
π P Π. A policy π P Π thus defines for each pre-decision state sk all decisions to be
taken and can thus be considered as a solution approach to the stochastic-dynamic
problem. Here, an action consists of two hierarchically dependent decisions. The first
decision is whether to accept or reject the new request rk. This acceptance decision
is represented by the binary decision variable xk P t0, 1u, where xk “ 1 represents
acceptance and xk “ 0 represents the rejection of a request. The second decision is
the selection of a feasible route plan, defining the utilization of all vehicles v P V until

34



3.3 Problem formulation

the next decision epoch. A route plan is considered feasible if all accepted requests
have been assigned to a vehicle subject to the following constraints:

i) For all pending accepted requests r P Uk and the new request rk, in case of
xk “ 1, the pick-up at origin or is planned before the drop-off at destination
dr for the same vehicle v P V.

ii) For all currently executed requests r P Ov
k, the drop-off at destination dr is

planned for the same vehicle v P V.

iii) For all origins, the planned pick-up zo is later or at the same time as the
corresponding earliest pick-up time br.

iv) For all destinations, the planned drop-off zd is earlier or at the same time as
the corresponding latest drop-off time er.

Let yk P Fx be the routing decision variable, with Fx as a finite set of all feasible
route plans under consideration of decision xk. Such a set could for example be
determined heuristically by adapting a solution method developed for a static vehicle
routing problem. The acceptance decision xk requires that the set of all route plans
Fx must not be empty. The execution of action Aπpskq leads to a deterministic
transition from the pre-decision state sk to a post-decision state sak “ pykq. This
state consists of the selected feasible route plan yk, which serves for the routing of the
vehicles until the next decision epoch k`1. This is triggered by a stochastic transition
Wk`1, which reflects that the operator has received the next request rk`1 P R.

Let Bk be the partial reward function for one decision epoch k P K and let
the value of Bk be equal to the acceptance decision xk, so that the cumulative
reward vπps0q corresponds to the number of accepted requests. The objective is
to find an optimal policy π˚ P Π that maximizes the expected cumulative reward
vπps0q “ maxπ Et

řK
k“0Bkpsk,A

πpskq,Wk`1q|s0u over all decision epochs k P K.
Having formally introduced the stochastic-dynamic problem under consideration,
in the next section, we present policies that exploit only confirmed or complete
information to solve the problem with varying degrees of optimization in demand
and/or fulfillment control.
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3.4 Evaluation framework

In this section, we describe our evaluation framework for investigating the effec-
tiveness of demand and fulfillment control within dynamic fleet management of a
ride-sharing system. Using the control strategies discussed in Chapter 2, we detail
the implemented policies in Section 4.1 and discuss an established LNS that we use
to realize them in Section 4.2.

3.4.1 Implementation of policies

From the control strategies defined in Section 2.1, we derive possible combinations
of demand and fulfillment control to define policies for dynamic fleet management.
These policies differ in optimization capabilities in demand and/or fulfillment control
through the exploitation of confirmed information only or complete information.
Table 3.2 summarizes the policies with regard to the related control strategy.

Demand control

Fu
lfi

llm
en

t
co

nt
ro

l Inspired by
myopic strategies

Inspired by
anticipatory strategies

Inspired by
myopic strategies Basic Control Advanced

Demand Control
Inspired by

anticipatory strategies
Advanced

Fulfillment Control Advanced Control

Table 3.2: Investigated Policies

Basic Control refers to policies employing purely myopic demand and fulfillment
control. They are implemented through a feasibility check for demand control and
re-optimization of routes for fulfillment control. In particular, the feasibility check
for the acceptance decision xk is made by an insertion heuristic, checking whether an
incoming request rk P R can be inserted into the incumbent route plan yk´1, where
y0 refers to the initial empty route plan. The route plan obtained is then re-optimized
in the scope of the routing decision yk. For this purpose, a static DARP is solved
considering all accepted, not yet fulfilled requests under the objective of minimizing
total travel time. Note that for both acceptance and routing decisions, already
fulfilled requests as well as locations approached by a vehicle will not be rescheduled.
This means that vehicles are not tracked along the path between two locations i, j P
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L, which reduces the rescheduling opportunities but also the computational effort
related to locating vehicles. Moreover, it allows drivers and travelers to be reliably
informed about the next stop, avoiding frequent diversions of vehicles.

From an operator perspective, Basic Control could be advantageous in case of
highly uncertain conditions, where the inclusion of additional information in opti-
mization does not pay off. Moreover, Basic Control does not require any sophisti-
cated technological and computational resources. The key argument against Basic
Control is the high risk of insufficiently informed decision-making both for demand
and fulfillment control.

Advanced Demand Control aims at improving the performance of a ride-
sharing system through the acceptance of favorable requests in terms of vehicle re-
source occupancy (e.g., requests which can be bundled more easily). It is inspired
by policies that implement anticipatory demand control through sophisticated cus-
tomer acceptance mechanisms while fulfillment is controlled myopically. Therefore,
complete information is exploited to enable enhanced acceptance decisions xk, while
routing decisions yk are made based only on confirmed information.

In particular, the acceptance decision xk is made for each incoming request rk P R
in a two-step procedure. First, a feasibility check is carried out by an insertion heuris-
tic (as in Basic Control). If the feasibility check has been successful, the favorability
of the request is investigated in the second step. To identify favorable requests, a
static team orienteering problem (TOP) with equal scores for each considered request
is solved. The TOP is a well-known variant of the static vehicle routing problem, in
which only the most cost-efficient locations are visited. The objective is to find the
optimal set of visited locations which maximizes the operator’s benefit (Chao et al.,
1996). As input for the TOP serves all requests of the incumbent route plan yk´1,
the current request rk as well as all future requests. All requests have equal scores,
representing that the route plan found maximizes the number of integrated requests.
All requests of the incumbent route plan yk´1 must be covered to identify favorable
requests among current and future requests. In the end, a request rk is accepted if
it is contained in the best route plan found. After the acceptance decision has been
made, a new route plan yk is determined by solving a static DARP without taking
future requests into account, following re-optimization based fulfillment control in
Basic Control.
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In summary, with Advanced Demand Control, a ride-sharing system operates more
efficiently through the controlled selection of the requests to be satisfied. However,
since we assume basic fulfillment control, vehicle resources may be utilized in an unfa-
vorable way making beneficial demand control much more challenging. Furthermore,
there are risks associated with a selective demand control such as incomprehensible
rejections as well as rejections perceived as proactive, leading to dissatisfied travel-
ers. Moreover, the continuous rejection of certain requests identified as unfavorable
may prevent such trips from being requested, regardless of whether their assessment
might change over time.

Advanced Fulfillment Control improves request fulfillment by considering all
future request acceptances in conjunction with basic demand control. It is inspired
by policies that implement anticipatory approaches for fulfillment control only.

In particular, complete information is exploited to obtain a favorable route plan
in advance with respect to a feasibility check based demand control. To this end,
request acceptance decisions are simulated for each future request r P R in order
of appearance through an insertion heuristic. However, the fulfillment of accepted
requests is not simulated, so that the incumbent route plan can be changed flex-
ibly throughout these checks. Once all decisions on request acceptance have been
simulated, a route plan is created from the obtained acceptances as a blueprint for
fulfillment control.

Summarized, Advanced Fulfillment Control enables an optimized fulfillment of the
accepted requests without changing the concept of demand control. The acceptance
of a request therefore depends primarily on the time a request is posed and not, like
in case of Advanced Demand Control, on its characteristics. However, Advanced Ful-
fillment Control may even reinforce the drawbacks of such an basic demand control
by enabling the acceptance of more demanding requests through improved vehicle
routing.

Finally, Advanced Control exploits complete information on future demand for
both demand and fulfillment control allowing all dynamic decisions to be made in
advance. It is inspired by policies in which demand and fulfillment are controlled
through anticipatory approaches. The exploitation of complete information is done
by solving a static TOP with the same score for each request r P R. This results in
a route plan that maximizes the number of integrated requests so that the requests
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to be accepted and the routes to be taken can be selected accordingly. It therefore
naturally outperforms the other three policies.

3.4.2 Large neighborhood search

In the following, we describe how the different policies are implemented based on an
LNS. We apply the same heuristic to all occurring DARPs to ensure the comparability
of policies within computer experiments. The developed LNS is based on the ALNS
proposed by Ropke & Pisinger (2006). It was chosen because it has been applied over
years to a variety of complex vehicle routing problems and has achieved consistently
good results in relatively short run times.

3.4.2.1 Overview

The basic idea of an LNS is to destroy and repair solutions iteratively (Pisinger &
Ropke, 2010). For the problem at hand, a solution w is represented by a route plan
nw and a set of unplanned requests mw P R, whose fulfillment is not yet considered
in route plan nw. A route plan nw consists of a plan for each vehicle v P V, which
specifies the sequence of the locations l P L to be visited as well as their planned
arrival times zvl . The LNS aims to maximize the number of request fulfillments |nw|

and/or to minimize the required total travel time cpnwq. Algorithm 1 presents the
pseudocode of our LNS implementation.

The search is initialized with a solution w0 as input, which is saved as incumbent
solution w and best known solution wbest (line 2 and 3). Next, the iterative search for
a superior solution is performed until a termination criterion is met. As a termination
criterion, the maximum number of iterations β is defined as well as further criteria
depending on the respective purpose of the search. Each iteration of the LNS begins
with the creation of a new solution (lines 5 to 7). For this purpose, the incumbent
solution w is saved as the basis of the new solution wnew. Afterwards, wnew is
destroyed through an operator that moves between γ1 and γ2 percent of the requests
from the route plan nwnew to the set of unplanned requests mwnew . If in the dynamic
environment the origin or has been visited already, the corresponding destination dr
is no longer removable. The exact number of requests to be removed is determined
in each iteration by a random value q1 with tq1 P N | pγ1 ˆ |nwnew |q ď q1 ď pγ2 ˆ

|nwnew |qu. In the next step, a repair operator inserts as many requests from the set
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of unplanned requests mwnew into the route plan nwnew as feasible. For both destroy
and repair operators, in contrast to a classical ALNS, the particular operator is
selected randomly for each iteration. This is a consequence of the implementation
of the LNS in a dynamic environment, where multiple searches are performed over
a few iterations so that automatic adaptation of the operator selection during the
search is neither feasible nor advantageous.

1 Function LNS(w0)
2 w “ w0

3 wbest “ w0

4 while termination criterion is not met do
5 wnew = w
6 remove requests from nwnew to mwnew

7 insert requests from mwnew into nwnew

8 if (wnew is accepted) then
9 w “ wnew

10 if (wnew is an improvement to wbest)
then

11 wbest “ wnew
12 end
13 end
14 end
15 return wbest

Algorithm 1: Large Neighborhood Search

Removal operators correspond to those used in Ropke & Pisinger (2006). We
summarize them as follows:

Random-removal: This operator randomly selects the requests to be removed
and thus provides a maximum diversification in terms of the set of selected requests.

Worst-removal: The aim of this operator is to remove requests that are not
placed well. For this purpose, all requests of a route plan are sorted in descending
order in a list according to the travel time that could be saved if the request was
removed. In order to avoid the repeated removal of similar sets of requests, “noise”
is applied when selecting a request for removal. Following Ropke & Pisinger (2006),
we use the formula qδ12 ˆ |list| to determine the list position of the next request to
be removed. In this formula, q2 stands for a random value with tq2 P Q|0 ď q2 ď 1u

and δ1 for the parameter that controls the degree of noise.
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Shaw-removal: Originally introduced by Shaw (1998), this operator removes
similar requests, since they can be shuffled around more easily so that improved
route plans can be found more likely. In particular, first, a request is randomly
selected. All other requests are then sorted in ascending order according to their
similarity to the selected request and removed corresponding to the sorting. The
similarity between two requests r1 and r2 is calculated by the distances between
origins car1 ,ar2 and destinations cdr1 ,dr2 as well as between their planned arrival times
∆pzar1 , zar2 q `∆pzdr2 , zdr2 q. Before the geographical and temporal values are added
up, they are min-max normalized.

For the subsequent insertion of the removed requests, there is a wide range of
operators. We discuss only those operators that turned out promising in previous
tests, one with and one without noise:

Regret-2-insertion: The regret-insertion heuristic was first proposed by Potvin
& Rousseau (1993) for the vehicle routing problem with time windows. The idea is to
insert requests where the regret would be largest if the best found insertion option was
no longer feasible. An insertion option comprises a position in a route for the origin
and the destination of a request. For the regret-2 variant, the regret is calculated
from the difference between the most and the second most cost-effective feasible
insertion option. The costs correspond to the additional travel time which would
result from the request being inserted. In case that only one feasible insertion option
can be found, the difference to the maximum integer value is calculated instead.
For each selection of the next request to be inserted in the route plan, the regret
value of each unplanned request r P mwnew is calculated and sorted in descending
order. For the operator without noise, the request with the highest regret value is
inserted into the most cost-effective feasible position. For the operator with noise,
the selection of the next request to be inserted is made in the same way as described
for the worst-removal operator. The degree of noise is controlled in this case by the
parameter δ2.

A new generated solution wnew is accepted if the number of planned requests
|nwnew | remains equal or increases relative to the incumbent solution w (see line
8). Since mostly fully utilized services are investigated, which often show limited
routing flexibility, this acceptance criterion has the advantage of allowing a maximum
diversification with respect to the overall travel time and prevents deterioration of the
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number of planned requests. After accepting and saving snew as incumbent solution
w, it is checked whether this solution is superior to the best known solution wbest

(line 10 to 12). This is the case if the number of planned requests |nwnew | is higher
or remains equal with a shorter total travel time cpnwnewq. After evaluating the new
solution wnew, the next iteration is performed until the search is terminated, and the
best known solution wbest is returned (line 15).

3.4.2.2 Execution

In the following, we briefly describe how the LNS is applied to execute the before
outlined acceptance and routing decisions of the four policies under consideration.

Basic Control: In each decision epoch k P K, the LNS is first executed to
perform the feasibility check based acceptance decision xk. To this end, the input
set of unplanned requests mw0 is represented by request rk, while input route plan
nw0 corresponds to an empty plan in case of k “ 0 and route plan yk´1 otherwise, yet
updated with respect to the time of request tk. Through the update, input route plan
nw0 covers only stops at locations whose planned arrival time zvl plus service time pl
is greater or equal to the time of request tk. Furthermore, the first location of each
plan contained in nw0 represents the current respectively next location of a vehicle
and will not be rescheduled. Based on this input, the LNS searches for a solution
wnew that covers all requests in the route plan nwnew . The search is terminated when
either such a solution has been found (xk “ 1) or a maximum of β iterations has
been performed (xk “ 0). Note that in case of an unsuccessful feasibility check,
the returned solution is discarded, while the updated routing decision yk´1 serves
as routing decision yk. In case of a successful feasibility check, the routing decision
yk is determined by re-optimization of the found solution n under the objective of
minimizing the total travel time cpnwq in β iterations.

Advanced Demand Control: This policy requires in each decision epoch k P K
a feasibility check for the acceptance decision xk as well as a re-optimization for
the routing decision yk. It generally corresponds to the procedure of Basic Control.
However, after each successful feasibility check follows the additional favorability
check of the acceptance decision xk. To solve the corresponding TOP, the initial
solution w0 consists of the same route plan as in the feasibility check. The set of
unplanned requestsmw0 contains, besides the new request rk, all trips to be requested
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in the following decision epochs k ` 1, k ` 2, ..., k ` n. Based on this input, the LNS
is executed to maximize the number of planned requests |nw|. For the acceptance of
a new solution wnew as best solution wbest, an additional criterion is applied, which
evaluates if all requests contained in the initial route plan nw0 are as well contained
in nwnew . The search terminates after either finding a solution wnew that contains
all requests considered in the search or after β iterations have been performed. Once
the search has been terminated, it is examined whether the candidate request rk is
contained in the returned route plan nwbest

, which represents that the request has
passed the favorability check.

Advanced Fulfillment Control: In this case, the LNS is primarily executed as a
feasibility check to obtain the future request acceptances. The input of this feasibility
check differs from that presented for Basic Control by omitting time-related updates
of the incumbent route plan so that it remains flexible throughout all checks. After
completion of the last feasibility check, the LNS is executed to determine the route
plan thought of as a blueprint for the decision process. To this end, the solution
returned by the last successful feasibility check is optimized under the objective of
minimizing the total travel time cpnwq in β iterations.

Advanced Control: Here, the LNS is executed to solve a TOP again to obtain a
route plan thought of as a blueprint for the decision process. The initial solution w0

consists of an empty route plan nw0 , and the set of unplanned requests mw0 includes
all requests r P R. The solution w is then optimized in β iterations with respect to
the number of planned requests |nw| and the total travel time cpnwq.

3.5 Computational experiments

In this section, we analyze the impact of the presented policies on the effectiveness of
demand and fulfillment control with respect to the performance of the ride-sharing
system. We introduce our instances and present the results of the computational
study. The description of the parameter tuning of the LNS is given in the appendix.

From the computational results, we first analyze the performance regarding the
achieved solution quality expressed as acceptance rate, defined by the number of
accepted requests divided by the number of received requests. Secondly, further
metrics that describe the operational performance of the ride-sharing system are
discussed. This provides insights into the nature of such systems and contributes to
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a better understanding of the context-related effectiveness of demand and fulfillment
control. Thirdly, we investigate the effect on the service quality perceived by travelers
through a detailed trip-specific evaluation. Last, we analyze how acceptance rates
change when information becomes incomplete.

3.5.1 Experimental design

Our case study is based on taxi trip data collected in the urban area of New York
City, USA. This data set is provided by the City of New York and contains a total of
165,114,361 million trips fulfilled by the Yellow Cab taxi fleet in the year 2014 (NYC
Taxi and Limousine Commission, n.d.). Each record contains the start and end time
of the trip, the distance traveled as well as the origin and destination locations in
terms of geographical coordinates. Figure 3.1 shows the temporal distributions of the
trips. In order to simplify the data handling and to ensure consistent trip patterns,
we only include weekday trips from January 2014 that operate in the evening peak
(as indicated in Figure 3.1 between 17:30 and 20:30) in the area of Manhattan.
Furthermore, only trips with a distance greater than zero are considered.
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Figure 3.1: Pick-up Time Distribution

Given the taxi trip data, we derive the characteristics of our ride-sharing system
as follows. First, potential initial vehicle locations are determined. For this purpose,
40 locations were randomly sampled from the set of locations where a trip ends at
17:30. Second, potential trip requests including origins and destinations are defined.
To this end, of all included trips, 180 were randomly sampled. Thus, we assume one
incoming request per minute on average. A constant set of trip requests is used in all
experiments to enable trip-specific evaluations. The selected locations are visualized
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in Figure 3.2, indicating that there is a centrally located area in Manhattan with
a higher demand density. Next, free-flow travel times between all locations were
computed using the GraphHopper routing engine (GraphHopper, n.d.). Free flow
travel times are multiplied by factor ϵ to provide a simple approximation to the real
travel times during peak hours.

(a) Initial Vehicle Lo-
cations

(b) Origins (c) Destinations

Figure 3.2: Location Distributions (created using Leaflet | © OpenStreetMap)

In summary, we create 110 problem instances as follows: 10 instances are used
for the parameter tuning of the LNS, and 100 for our computational study. These
instances differ in the receiving times of each request as well as in the initial vehicle
locations. Moreover, a baseline scenario is defined for all instances as follows: a fleet
of 10 vehicles, a planning period from 17:30 to 20:30 (180 minutes), a travel time
factor ϵ “ 3, and a maximum arrival delay for each request of 15 minutes. We vary the
baseline scenario as follows. First, we vary the fleet size to analyze varying resource-
demand ratios. Second, we analyze the impact of temporally varying demand density.
To this end, the length of the planning period is varied, and receiving times of requests
are adjusted to the corresponding time frame under investigation, whereby 19:00
always marks the middle of the planning period. Third, we analyze geographically
varying demand densities by adjusting the travel time factor. Fourth, we examine
the impact of the fulfillment time window by varying the allowed maximum arrival
delay.
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For each analysis, four variations of the base value are considered, representing a
decrease of 40% and 80% as well as an increase of 40% and 80% of its parameters
(see Table 3.3). With these parameter intervals, we can cover a wide range of pos-
sible objective function values and at the same time create insights into where and
when the effectiveness of the considered policies is changing. However, to keep the
computational effort manageable, only one parameter is varied at a time, while all
others keep the value highlighted in Table 3.3.

Sensitivity analyses Varying characteristic Values
Resource Demand Ratio Fleet size 2 6 10 14 18
Temporal Demand Density Planning period 36 min 108 min 180 min 252 min 324 min
Geographical Demand Density Factor on travel time 0.6 1.8 3 4.2 5.4
Fulfillment Time Window Maximum arrival delay 3 min 9 min 15 min 21 min 27 min

Table 3.3: Values for the Sensitivity Analyses

In the next section, we will discuss the results of all four sensitivity analyses
concerning their impact on acceptance rates. In the subsequent sections, we focus
on Resource Demand Ratio, while detailed results for the other sensitivity analyses
can be found in the appendix, as the results are structurally similar.

3.5.2 Analysis of acceptance rates

We begin by analyzing the effectiveness of the presented policies with respect to
acceptance rates. We particularly analyze the value of more advanced optimization
in demand and fulfillment control. Overall results are presented in Figure 3.3, which
shows the acceptance rate on the Y-axis and the fleet size on the X-axis. The
acceptance rates are calculated based on the 100 instances solved 5 times with the
varying fleet sizes for each of the four policies. The differently shaped points represent
the numeric results and the trend is highlighted by connecting lines. Additionally,
the standard deviations of the average acceptance rates are illustrated by a lighter
color range around the lines.

Generally, with increasing fleet size, achievable acceptance rates increase as well.
As expected, Basic Control leads to the smallest acceptance rates, while Advanced
Control creates the best acceptance rates with an increase about 10´20% compared
to Basic Control. Interestingly, for smaller fleet sizes, Advanced Demand Control
yields better results, while for larger fleet sizes, Advanced Fulfillment Control can
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create significantly higher acceptance rates. The standard deviations increase with
increasing fleet sizes. They are negligible for Advanced Control. It can be concluded
that the highest potential lies in the advanced control of both demand and fulfillment,
regardless of the resource demand ratio. However, the contribution to this potential
shifts from demand to fulfillment control with an increasing acceptance rate.
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Figure 3.3: Resource Demand Ratio: Average Acceptance Rates with their Standard
Deviation

We now analyze the results of the further sensitivity analyses (see Figure 3.4). We
begin with (a) Temporal Demand Density, where we manipulate the demand through
temporal variation of the planning period. Generally, results are similar to those
obtained for the Resource Demand Ratio analysis. For the same fleet size, a relatively
larger planning period allows accommodating more requests, with a high benefit
of advanced fulfillment control for a large temporal spread of requests and a high
benefit of advanced demand control for a small temporal spread of requests. For (b)
Geographical Demand Density, instead of the time of the planning period, the travel
time factor ϵ is used to vary the geographical density of the service area. As expected,
when the relative travel times become larger and the area of operation becomes more
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“stretched” out, the acceptance rates decrease. The acceptance rate of Advanced
Control is about 20% higher than for Basic Control. Advanced control at either
demand or fulfillment can improve this by about 5% only. Here, a high geographical
density diminishes the benefits of advanced demand control and increases those of
advanced fulfillment control. However, when the geographical density decreases,
unfavorable requests from remote regions may automatically be infeasible to fulfill.
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Figure 3.4: Average Acceptance Rates per Sensitivity Analyses

Finally, we analyze for (c) Fulfillment Time Window how the variation of the
maximum delay, consisting of waiting time and detour, influences the effectiveness
of demand and fulfillment control. As expected, acceptance rates increase for all
policies with an increased maximum delay. However, the gap between Basic Control
and Advanced Control is very large for small maximum delays. In contrast, Ad-
vanced Fulfillment Control yields quite stable results for all maximum arrival delays.
The benefit from enhanced demand control is higher when the maximum delay is
higher. In contrast, the benefit from enhanced fulfillment control is higher when the
maximum delay value is lower.

The above findings demonstrate that the effectiveness of demand and fulfillment
control depends highly on the system characteristics. However, particularly advanced
control of demand and fulfillment shows great potential to increase the acceptance
rate of a ride-sharing system. Furthermore, it becomes clear that the potential for
demand and fulfillment control differs in response to the characteristics of the system
under consideration. The value of advanced demand control is particularly high when
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(1) insufficient resources (due to small fleet size or dense temporal demand) require a
significant proportion of requests to be rejected, and (2) when a sufficiently large and
heterogeneous pool of potentially acceptable demand (due to moderate geographic
demand density and sufficiently wide fulfillment time windows) enables the selection
of more favorable requests. For advanced fulfillment control, the analysis of different
fulfillment time windows demonstrates its importance when offering immediate pick-
up times, while the others highlight the dependency on a sufficiently high acceptance
rate. Hence, with only a few accepted requests, the trips to be fulfilled are so
unfavorable that an increase in performance through advanced fulfillment control
alone is barely achievable. Overall, the results imply that the potential of policies
focusing on an advanced demand or fulfillment control only vary greatly depending
on the nature of the ride-sharing system.

3.5.3 Analysis of operational performance

The aim of this subsection is to gain further insights into how demand and fulfillment
control impact further performance metrics of a ride-sharing system. The following
metrics are considered:

• The average travel time per fulfilled request, defined as the total travel time
divided by the total number of fulfilled requests.

• The pooling rate, which measures the percentage of travelers who shared a part
of their ride with at least one other traveler.

• The percentage share of each vehicle mode, defined by the total time all vehicles
have spent in the mode, is divided by the total time spent by the entire fleet.
The considered modes are:

1. Shared Travel Time: Time a vehicle transports more than one traveler,

2. Single Travel Time: Time a vehicle transports exactly one traveler,

3. Unoccupied Travel Time: Time a vehicle drives without a traveler, i.e.,
empty trips,

4. Service Time: Time required for travelers for getting on or off a vehicle,

5. Waiting Time: Time a vehicle waits at a location for a traveler or the
next request assignment.
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The first metric examined is the average travel time per fulfilled request in minutes,
plotted in Figure 3.5 against the varying fleet size. Basic Control creates constantly
high average travel times per request even with increasing fleet size. Again, Advanced
Control represents the counterpart, with travel time savings of 3 to 10 minutes on
average, highlighting the potential of a combined advanced demand and fulfillment
control for ride-sharing systems. Advanced Demand Control works almost as well
as Advanced Control ; only for the largest fleet size, Advanced Fulfillment Control
becomes more efficient. Hence, the reduction of the average travel time per fulfill-
ment is mainly rooted in demand control. Furthermore, a positive correlation can
be observed between lower average travel times and the previously identified high
acceptance rates, so that the reduction does not seem to be related to an overly
restrictive demand control.
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Figure 3.5: Resource Demand Ratio: Average Travel Time per Fulfilled Request and
Pooling Rate

The second metric of interest is the pooling rate shown in Figure 3.5. Basic
Control and Advanced Control define lower and upper bounds with a gap of 60%.
Here, fulfillment control is the key for a good pooling rate as shown by the results
of Advanced Fulfillment Control ; with increasing fleet size, it almost becomes as
effective as Advanced Control. However, if the fleet size is small, there is a similarly
high potential for improving the pooling rate through demand control.

So far, we have seen that the effectiveness of demand and fulfillment control can
vary quite a bit. Advanced demand control tends to achieve a reduced average travel
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time per fulfillment by accepting a set of favorable requests, while advanced fulfill-
ment control tends to offer higher pooling rates through more successful bundling of
travelers. Finally, we examine the proportion of all modes a vehicle can have for the
four policies (see Figure 3.6).
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Figure 3.6: Resource Demand Ratio: Average Time Share per Vehicle Mode

For all policies and fleet sizes, a rather stable proportion of Unoccupied Travel
Time, as well as the relatively large share of single travel time, is clearly visible.
Interesting differences can be observed with respect to the Shared Travel Time and
Waiting Time. For Shared Travel Time, again, advanced fulfillment control seems to
be the key. Interestingly, even at Advanced Control, only about 25% of the total fleet
time is used for the simultaneous transport of more than one traveler. However, this
is a significantly increased proportion compared to Basic Control. Major differences
are also apparent for the Waiting Time. Especially for Advanced Fulfillment Control
and Advanced Control, lower waiting times can be observed. The lower waiting times
in case of an advanced fulfillment control may root in a proactive approach towards
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future requests. In contrast, the share of the waiting times is highest for Advanced
Demand Control. Here, the higher waiting times arise as an advanced demand control
may have vehicles wait for favorable request instead of accepting unfavorable ones.
Overall, these results show different strategies regarding the handling of waiting time,
whereby a smart combination of both strategies appears to be most promising

3.5.4 Analysis of service quality

Finally, we examine the impact of demand and fulfillment control on the quality of
service experienced by travelers. Service quality metrics are derived for each of the
trips and summarized per policy. The first step is to investigate whether different
service quality levels can be observed and if the trip-specific quality of service varies.
We analyze the following metrics:

• The acceptance probability per trip, defined by the number of times the trip
is requested divided by the number of times the request is accepted.

• The average waiting time per trip, based on the difference between the time of
the request and the time the corresponding traveler is picked-up.

• The average detour duration per trip, defined as the average difference between
the direct travel time of the trip and the actual time between executed pick-up
and drop-off.
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Figure 3.7: Quality of Service per Trip
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The results are shown in Figure 3.7 by means of density plots. With regard to
acceptance probability, there are clear differences in the distributions. For Basic Con-
trol and Advanced Fulfillment Control, the diversification is relatively low, with a high
density at about 50%. Distributions for Advanced Demand Control and Advanced
Control are very flat. This indicates that the probability of being accepted is quite
dissimilar among the trips regardless of the circumstances of their request, indicating
that the acceptance probability depends on trip inherent characteristics. Interest-
ingly, these characteristics seem to have a relatively minor influence on whether it is
feasible to accept a trip.

As seen for the analysis of acceptance probability, the average detour duration
per trip also follows different distributions. What is particularly surprising is the
shape of the distributions, which shows, especially for Advanced Fulfillment Control
and Advanced Control, that the average detour duration varies depending on the
trip. The opposite order of the distribution peaks, compared to those of the average
waiting time, results from the limitation through the maximum delay parameter.
The shorter waiting times achieved by an advanced demand and fulfillment control
are thus partly offset by longer detours.

In the following, trip characteristics are further investigated to find correlations
between acceptance probability and detour duration. To this end, we consider the
location of the origin and destination as well as the distance between them. For a
DVRP, Soeffker et al. (2017) have already shown that anticipatory acceptance dis-
criminates the peripheral regions of the operating area, i.e., the locations there have a
lower probability of acceptance. For Advanced Demand Control, Figure 3.8 illustrates
this correlation separately for origin and destination of all trips, using a color scale
as well as sizes that reflect the acceptance probability. The small, dark dots indicate
trips with a very low acceptance probability and large, bright ones with a very high
acceptance probability. A preference for the regional center and the discrimination of
upper and lower periphery is evident, illustrating, for demand control via enhanced
acceptance decisions, the positive correlation between the acceptance probability of
a trip and the geographical centrality of its origin and destination. In contrast, the
analyses of average detour duration for Advanced Demand Control and Advanced
Fulfillment Control did not reveal any recognizable discrimination patterns.
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Figure 3.8: Acceptance Probability per Trip Depending on Origin and Destination

As a further characteristic, we examine the trip distance in the light of acceptance
probability and detour duration. Results are shown in Figure 3.9. It becomes ev-
ident that there is a distinct negative correlation in the case of Advanced Demand
Control. Implicitly, the advanced demand control utilizes the trip distance as a
further criterion to assess requests. For the average detour per trip, a positive cor-
relation with trip distance is noticeable for both cases. This correlation, however,
is much more pronounced for Advanced Fulfillment Control. Hence, advanced fulfill-
ment control penalizes long-distance trips, yet in a way that limits the usability of
the ride-sharing system for such trip requests not as strict as an advanced demand
control does.

In summary, demand and fulfillment control have a very different impact on the
service quality of ride-sharing systems as experienced by travelers. For advanced
demand control, the quality depends significantly on the nature of the requested
trip. A ride-sharing system applying such a policy would be very suited for short
trips in the center of the service area. However, as their requests would be rejected
frequently, travelers requesting trips with unfavorable characteristics are likely to
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switch to other mobility services. In contrast, for advanced fulfillment control, the
service would be much more balanced in terms of the acceptance probability. Yet, the
increasing average detour in proportion to the distance traveled could diminish the
perceived quality of service, even if this would be perceived as fair by the traveler.
Finally, it should be noted that a policy exploiting the optimization potential in
demand and fulfillment control would not only incorporate the performance benefits
as shown in the previous sections but also the varying quality of service depending
on the characteristics of the trip.
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Figure 3.9: Acceptance Probability and Detour Duration Depending on the Trip
Distances

3.5.5 Analysis of incomplete information

In the following, based on the Resource Demand Ratio sensitivity analysis, we investi-
gate to which extent the above results change when information becomes incomplete.
For this purpose, the average acceptance rates obtained under complete information
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are compared to those obtained for a perfect information horizon limited to the next
10 minutes. This analysis provides insights into the value of information defined by
Mitrović-Minić et al. (2004) as the “performance gap between solving an instance
with incomplete and complete information”.

Limiting the information horizon requires some minor adjustments to the three
policies considering advanced demand and/or fulfillment control. With respect to
Advanced Demand Control, the set of requests considered in the TOP-based favora-
bility check is reduced from all future requests to those that will be received in the
next 10 minutes. Advanced Fulfillment Control is adapted so that for each incoming
request, feasibility checks are performed to determine which requests will be accepted
in the next 10 minutes, to be able to re-optimize the route plan accordingly. In case
of Advanced Control, a TOP is solved for each incoming request, taking into account
the already accepted requests as well as all requests that will be received in the next
10 minutes to decide upon the acceptance as well as the new incumbent route plan.
The results are visualized in Figure 3.10, which shows the acceptance rates for the
four considered policies as a solid line for the unlimited information horizon and as
dashed line for the information horizon limited to 10 minutes. The gap between the
two lines of each policy is further highlighted by the respective color.

For Basic Control, per definition, no difference is visible, since it does not take into
account any information about future demand. As expected, decreased acceptance
rates can be observed in case of the limited information horizon among the other three
policies. Consequently, policies that are most affected by information incompleteness
are those that exploit the information most extensively. However, the structural
differences between the policies implementing advanced demand and/or fulfillment
control remain similar to those obtained under complete information.

These results indicate, on the one hand, that the value of information in demand
and fulfillment control is directly reflected by the acceptance rates and its propor-
tional deterioration. On the other hand, it can be observed that the previously
presented findings are less pronounced in the considered case of incomplete informa-
tion, yet structurally still valid. However, this investigation represents only one of
various possible variations from complete over incomplete to erroneous information.
It would therefore be interesting to investigate in future work under which horizon
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and/or quality of information the structural consistency persists and when and how
it may alter.
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Figure 3.10: Average Acceptance Rates for Unlimited and 10 minute Information
Horizon

3.6 Conclusion

In our paper, we investigated the effectiveness of demand and fulfillment control in
dynamic fleet management of ride-sharing systems. To this end, we first differenti-
ated strategies for demand and fulfillment control and classified the related literature
accordingly. Second, we defined four policies, which differ in the complexity of opti-
mization and the amount of information exploited by demand and/or fulfillment con-
trol. The impact of these policies on dynamic fleet management was investigated in
a comprehensive computational study, highlighting the operator’s perspective as well
as the consequences for travelers. Overall, our results demonstrated great potential
for combined advanced demand and fulfillment control in dynamic fleet management.
Potential benefits range from increased acceptance and pooling rates to decreased
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travel and idle times. However, acceptance probability and detour duration depend
considerably on the nature of the requested trip.

A particular contribution of our paper is the differentiation of dynamic fleet man-
agement according to the effectiveness of demand and fulfillment control. This cre-
ated insights about whether optimization potential can be attributed to either de-
mand or fulfillment control or a reasonable combination of them. This is important
since advanced demand and fulfillment control differ in their requirements as well as
in the effect on the performance of the ride-sharing system. Advanced demand con-
trol is especially beneficial if there is a sufficient surplus of demand, i.e., when there is
a decent subset of favorable requests that can be selected from a larger pool of feasible
requests. Furthermore, advanced demand control can increase the acceptance rate
primarily through a significant decrease of average travel time per fulfilled request.
The acceptance probability is highly correlated with the nature of the requested trip,
leading to an acceptance of short trips that are centrally located in the service area.
The potential of fulfillment control is primarily associated with the acceptance rate
and the promised fulfillment time window. Taking acceptance of future requests into
account, advanced fulfillment control enables a rather stable performance despite
increasingly narrow fulfillment time windows. However, advanced fulfillment control
can only be beneficial if demand control has only a minor impact or is of advanced
nature, too. In particular, performance improvement through advanced fulfillment
control can be traced back to a much more successful bundling of requests. The
consequence for travelers is that the detour duration increases proportionally to the
distance of the trip.

Our paper offers operators of ride-sharing systems an orientation on how to im-
plement demand and fulfillment control. For instance, advanced demand control
could be more suitable for large systems or systems with a few regular travelers,
where the satisfaction of individual travelers is negligible. Furthermore, it could be
implemented in order to efficiently manage a temporary demand surplus on special
occasions. Advanced fulfillment control would be particularly suitable for systems
with stable demand allowing precise anticipation of future acceptances. Moreover,
under the assumption that a selective demand control avoids, the demand target
should be fully operable.
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Moreover, we contribute to research on dynamic fleet management by providing
a more differentiated view of how policies control demand and fulfillment in a ride-
sharing system. We believe that this can be the basis for a better understanding of
the varying effectiveness of existing policies as well as the development of new ones.

In the future, a more detailed overview of anticipatory decision-making in dynamic
fleet management could provide a better understanding of what types of anticipation
are reasonable for ride-sharing systems. Furthermore, for our study, we performed
the evaluation mostly assuming complete information while the implications of in-
complete information were only briefly examined. An intuitive next step would be
to preform demand and fulfillment control under different degrees of incomplete or
imperfect information to investigate the link between information quality and the ex-
ploitation of the identified potentials. Moreover, state-of-the-art policies for demand
and/or fulfillment control could be evaluated to compare their effectiveness with
the results obtained. This would include the development of sophisticated customer
acceptance mechanisms for anticipatory demand control in ride-sharing systems.
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Chapter 4

Heatmap-based decision support for
repositioning in ride-sharing systems

Abstract In ride-sharing systems, platform providers aim to distribute the drivers
in the city to meet current and potential future demand and to avoid service can-
cellations. Ensuring such distribution is particularly challenging in the case of a
crowdsourced fleet, as drivers are not centrally controlled but are free to decide
where to reposition when idle. Thus, providers look for alternative ways to ensure a
vehicle distribution that benefits users, drivers, and the provider.

We propose an intuitive mean to improve idle ride-sharing vehicles’ reposition-
ing: repositioning heatmaps. These heatmaps highlight driver-specific earning op-
portunities approximated based on the expected future demand, current and ex-
pected future fleet distribution, and the location of the specific driver. Based on the
heatmaps, drivers make decentralized yet better-informed repositioning decisions.
As our heatmap policy changes the driver distribution in the future, we propose an
adaptive learning algorithm for designing our heatmaps in large-scale ride-sharing
systems. We simulate the system and generate heatmaps based on the previously
learned policy in every iteration. We then update the policy based on the simula-
tion’s outcome and use it in the next iteration. We test our heatmap design in a
comprehensive case study on New York ride-sharing data. We show that carefully
designed heatmaps reduce service cancellations therefore revenue loss for platform
and drivers significantly while leading to a better service level for the users and to a
fairer treatment of drivers.

Keywords mobility-on-demand, vehicle repositioning, crowdsourced transportation,
heatmap, stochastic dynamic decision making, adaptive learning
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4.1 Introduction

The trend for ride-sharing services like UberXShare and MOIA is unbroken. In this
paper, we understand ride-sharing services as systems where users spontaneously
submit transportation requests online, are picked up a short time afterward, and are
driven to their destination, while possibly sharing parts of their ride with other users.
In some cases, no driver from the ride-sharing fleet may be available in the vicinity
of a user, creating unacceptable high waiting times and, consequently, a poor level
of service. Service cancellations due to insufficient levels of service lead to loss of
revenue and user dissatisfaction. Thus, service providers aim for a good distribution
of the drivers in the city to meet current and potential future demand.

The tools for ensuring such a distribution depend on the type of service provider.
Services like MOIA own a fleet of employed drivers and, therefore, can make reposi-
tioning decisions centrally. Since the future demand is uncertain, efficient reposition-
ing decisions are a challenging task on their own, even if they can be made centrally
(Pouls et al., 2020). Other providers such as UberXShare crowdsource transporta-
tion for their ride-sharing services to private individuals who are paid on a per-job
basis. In that case, drivers are not directly controlled by the service provider but are
free to decide where to reposition in the city when unoccupied. This is an additional
challenge, as decentralized repositioning likely inconveniences users and drivers.

For example, many drivers may prefer waiting in the city center, where new re-
quests are more likely to occur, which may lead to an overflow of resources, while
there is a driver shortage at other locations. Furthermore, new and inexperienced
drivers may be lost in the system without guidance and receive only limited earnings
(Cook et al., 2021). For the platform, all this means poor service availability for some
users on the one hand and frustrated drivers on the other hand. Another challenge
with crowdsourced drivers is that they might be reluctant to follow directions by the
platform if they do not understand them (Möhlmann et al., 2021). Thus, service
providers look for alternative and intuitive ways to ensure a good distribution of
crowdsourced drivers that benefits users, drivers, and the provider.

In this paper, we propose an intuitive mean to improve the repositioning of un-
occupied vehicles in ride-sharing systems: Repositioning Heatmaps (RH). In case a
driver becomes unoccupied, these RH highlight the driver-specific earning opportu-
nities, approximated based on their travel time to areas with a shortage of drivers to
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satisfy the expected demand in the near future. In the RH, repositioning locations
with high expected opportunities are shown in green shades, while repositioning loca-
tions with low expectations are shown in red shades. Both shades can have different
intensities, e.g., dependent on the relative opportunity volumes. Drivers then decide
on repositioning in a decentral and independent manner. Ideally, our RH provide
non-monetary incentives that guide drivers to increase service availability, reduce
cancellations, and improve drivers’ earning opportunities.

Creating RH is challenging for several reasons. As with centralized approaches,
future user demand is uncertain. Therefore, the earning opportunities are unknown.
Furthermore, showing RH changes the repositioning decisions of drivers in the sys-
tem, which in turn may lead again to too many or an insufficient number of drivers
in certain areas. We propose an adaptive learning algorithm for designing our RH to
address this issue. In every iteration, we simulate the system and generate RH based
on previously learned opportunities. We then update the earning opportunities based
on the simulation’s outcome and use the updated opportunities in the next iteration.
Eventually, the expected opportunities and the heatmap design policy converge.

We test our heatmap design in a comprehensive case study on New York ride-
sharing data with 200 drivers and around 6400 expected users per planning period.
We show that carefully designed RH reduce service cancellations, and, therefore,
reduce revenue loss for platform and drivers significantly. Furthermore, providing
heatmaps to drivers increases the average earnings per driver and reduces the volatil-
ity in earnings among the drivers. Even though analyzing these results is beyond
the scope of this paper, such “fair” earnings might be an important factor for the
long-term commitment of a driver to a platform. We also show that RH lead to
a better and more balanced distribution of service availability in the city, another
important factor for long-term user retention. We demonstrate that our strategy
is relatively robust to non-compliant drivers deviating from our recommendations.
Finally, we show that providing RH to new and inexperienced drivers can give them
an easy entry into the system and a more leveled playing-field.

Our paper makes the following contributions: First, we are among the first to
introduce RH for nudging crowdsourced drivers. We show that RH are a powerful,
intuitive tool for managing complex and dynamic systems, which is likely applicable
for other applications such as restaurant meal delivery. Second, we investigate and
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define a new problem and formalize the corresponding sequential decision process.
Third, we present a large-scale, real-time decision policy based on adaptive learning
with very limited calculation efforts. Fourth, we show that our policy is superior to a
variety of benchmark policies and can even compete with a centralized repositioning
heuristic from the literature. And fifth, we provide a comprehensive computational
study including managerial insights on central and decentral management of crowd-
sourced ride-sharing systems and the experience of the involved stakeholders.

We begin with an overview of related literature in Section 4.2. The problem is
stated and formalized in Section 4.3. How we develop RH by adaptive learning is
presented in Section 4.4. The experimental setup is discussed in Section 5.5 and
computational experiments are reported in Section 4.6. We conclude with final re-
marks in Section 4.7. We also present a comprehensive appendix with additional
experiments and details.

4.2 Related literature

Our work addresses the management of crowdsourced drivers for ride-sharing ser-
vices. In the following, we briefly discuss the related work from crowdsourced trans-
portation and then embed our work in the literature on ride-sharing optimization.
Last, we mention related work from the area of shared mobility, where dynamic
repositioning also plays an important role.

4.2.1 Crowdsourced transportation

Crowdsourced transportation service providers outsource jobs to private individu-
als, inducing cost advantages for the service provider on the one hand and flexible
working hours and uncertain earning opportunities for the drivers on the other hand.
Uncertainty in crowdsourced transportation plays a major role for service providers
as well, as it is not clear when, where, and how many drivers will be available.
Moreover, the freedom of choice of the drivers leads to further planning uncertainty,
since they decide on the acceptance of a job assignment and the execution of a repo-
sitioning recommendation. For the improvement of such systems, it is important
to understand the supply market and thus the individual behavior of crowdsourced
drivers. Relevant literature ranges from a detailed description of driver characteris-
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tics (see, e.g., Ashkrof et al. (2020)) across the analysis of differences between driver
segments (see, e.g., Cook et al. (2021)) to empirical market analyses (see, e.g., Rai
et al. (2021)). Several studies focus on the interdependence of driver behavior and
earning potential. For instance, Henao & Marshall (2019) examine how behavior
affects earning potential, while Castillo et al. (2022) study how tipping affects the
behavior of crowdsourced drivers. Optimizing transportation systems in the face of
uncertain driver behavior is a major challenge that has only recently come into the
focus of research. For an overview, we refer to Savelsbergh & Ulmer (2022). The
rather limited work in this area focuses on the uncertain number of drivers being
in the system (see, e.g., Dayarian & Savelsbergh (2020) or Ulmer & Savelsbergh
(2020)), or on hedging against drivers rejecting offered requests (see, e.g., Gdowska
et al. (2018) or Ausseil et al. (2022)).

Uncertainty in repositioning has not been explored much so far. One of the few
works that address repositioning under these conditions is by Alnaggar (2021). Sim-
ilar to our work, Alnaggar (2021) proposes a heatmap to guide drivers, in their
case, towards earning opportunities for crowdsourced last-mile deliveries. They use
a short-term demand forecast to derive global heatmaps with up to three different
levels for systems with up to nine repositioning locations. We differ from their work
as follows. First, the problems vary as in our work, we consider the problem of
ride-sharing with consolidation potential and tighter time commitments. Heatmaps
are provided to an individual driver in real-time while in Alnaggar (2021), heatmaps
are updated every 15 minutes and are globally set. Second, the methodology is dif-
ferent: Alnaggar (2021) suggests a stochastic lookahead method that samples future
demand and creates the heatmaps accordingly. The lookahead rather focuses on the
short-term demand as the lookahead horizon is limited, and future values are dis-
counted. The lookahead model is static, i.e., it does not capture that in the future
new information is revealed and dynamic decisions are made. Our method captures
both as we apply a learning algorithm where values are updated based on future
demand realizations and heatmap decisions. Our method also considers long-term
effects which is very valuable as we show in our experiments. Last, our work dif-
fers in scale with hundreds of repositioning locations and drivers and thousands of
customers.
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4.2.2 Ride-sharing

In the following, we present related work from ride-sharing, which suffers from an
unbalanced driver distribution due to spatial and temporal imbalanced demand (Jiao
et al., 2021). Besides the assignment of transport requests, imbalanced demand is one
of the most considered challenges for the efficient operation of ride-sharing services
(Wang & Yang, 2019). In the following, we examine the extent to which the literature
for large-scale repositioning of unoccupied drivers in ride-sharing services meets the
requirements of a crowdsourced fleet (see Table 4.1).

Supports drivers
in decision making

Indicates multiple
repositioning options

No discrimination against
inconvenient drivers/users

Pavone et al. (2012)

Queueing-based
‘Zhang & Pavone (2016)

Sayarshad & Chow (2017)
Braverman et al. (2019)

Zhang et al. (2016)

Model
predictive control

‘

Iglesias et al. (2018)
Wallar et al. (2018)
Pouls et al. (2020)
Lei et al. (2020)
Li et al. (2021)
Pouls et al. (2022)

Wen et al. (2017)

Reinforcement
learning

‘ ‘

Holler et al. (2019)
Jiao et al. (2021)
Liu et al. (2021)
Xi et al. (2021)
Yu & Hu (2021)
Zhu et al. (2021)

Taylor (2018)

Surge pricing
‘ ‘

Bimpikis et al. (2019)
Guda & Subramanian (2019)
Nourinejad & Ramezani (2020)
Chen et al. (2021)
Hu et al. (2022)

RH (this work) Heatmaps
‘ ‘ ‘

Table 4.1: Literature Classification

With regard to the unique requirements of crowdsourced fleets, four criteria have
been identified as particularly relevant: (1) Pursuing a system-wide balance be-
tween demand and supply in the best interest of provider revenue and driver earning
opportunities; (2) The balance is achieved by supporting drivers in their decision
about when and where to reposition; (3) The recommendations include comprehen-
sive information to enable well-founded decision making (no “take it or leave it”); (4)
Non-compliance is not penalized to ensure long-term driver satisfaction and therefore
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retention. The related approaches can be divided into five main streams: queueing-
based, model predictive control, reinforcement learning, data-based driver guidance,
and surge pricing. Next, we will briefly present the related work per category and
highlight the relationship to our work.

We first consider queueing-based approaches (QBA) and model predictive control
(MPC), as they are similar in their applicability for crowdsourced fleets. QBA for
determining optimal repositioning policies have been widely researched (e.g., Pavone
et al. (2012), Zhang & Pavone (2016), Sayarshad & Chow (2017), and Braverman
et al. (2019)). Sayarshad & Chow (2017) prove that these are also applicable for ser-
vices of real-world size. Braverman et al. (2019) show that, in addition to classical
repositioning, the optimal routing for unoccupied vehicles in search of a next passen-
ger can be determined. MPC typically builds on demand forecasts combined with
mathematical programming to solve the repositioning problem online periodically.
The first contribution in this direction comes from Zhang et al. (2016). Others like
Iglesias et al. (2018), Wallar et al. (2018), Pouls et al. (2020), and Pouls et al. (2022)
focus on large-scale or shared rides. Lei et al. (2020) propose MPC to train a neural
network offline that allows for a quick repositioning policy prediction online. Li et al.
(2021) also propose a neural network but use it to improve the demand prediction
within an MPC approach.

Even though QBA and MPC are based on very different concepts of ride-sharing
systems, related contributions have in common that they focus on the centralized
control of the entire fleet. This makes transferring to the guidance of individual
drivers in a crowdsourced ride-sharing system difficult. In contrast, with our RH,
we provide a decision-support tool at the driver’s request that helps making better-
informed decisions on an individual basis. For our experimental setup, we rely on the
work by Pouls et al. (2020) as a benchmark policy and show that the right heatmap
strategy can compete with a centralized MPC-based policy.

A different approach for repositioning in large-scale ride-sharing services that
gained attention in recent years is agent-based reinforcement learning (e.g., Wen
et al. (2017), Holler et al. (2019), and Jiao et al. (2021)). In agent-based approaches,
decentralized decision-making for individual drivers is considered instead of central-
ized decisions for the entire fleet. While Wen et al. (2017) focus on decentralized
learning of a repositioning policy, Holler et al. (2019) compare the benefits of both
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centralized and decentralized learning. Of particular interest for our work are the
results of Jiao et al. (2021). The results show that policies learned via reinforce-
ment learning can be transferred to the real world and are advantageous over the
intuitive decisions of drivers. It is further shown that driver collaboration is partic-
ularly relevant for large fleets. Moreover, it is argued that driver repositioning may
deviate from central recommendations, but this has not been considered further in
the experiments. This conflict of interest has been addressed by Zhu et al. (2021)
by means of RL, introducing monetary subsidies to nudge drivers to perform the
recommended repositioning. Finally, recent contributions by Liu et al. (2021), Xi
et al. (2021), and Yu & Hu (2021) propose technical innovations for reinforcement
learning of repositioning policies.

As Jiao et al. (2021) have shown, reinforcement learning can be a good founda-
tion for learning recommendations for the repositioning of drivers. However, due
to the nature of reinforcement learning, the recommendations as described in the
above papers are limited to the driving direction to be taken or the neighboring area
to be approached. Furthermore, these are black-box approaches. Drivers therefore
only have the choice of complying with recommendations or making unsupported
repositioning decisions. Our RH differ from this, despite their learning capability,
by providing drivers with an assessment of repositioning locations distributed across
the service area while highlighting the best individual option. Moreover, the infor-
mation used to generate the heatmap as well as the resulting indications can be
communicated in a comprehensible way.

Finally, another way to reposition a crowdsourced fleet while focusing on platforms’
revenue is surge pricing. Here, user fees and driver wages are optimized to attract
drivers (and deter demand, see, e.g., Bimpikis et al. (2019), Guda & Subramanian
(2019)), or to attract demand (and deter drivers, see Hu et al. (2022)). These papers
include the approaches discussed above, e.g., the study by Taylor (2018) is based
on a QBA, Nourinejad & Ramezani (2020) develop an MPC approach, and Chen
et al. (2021) rely on RL. In this context, also heatmaps have already been applied to
inform drivers about the current distribution of prices (Guda & Subramanian, 2019).
Unlike our idea of heatmaps for non-monetary driver guidance, surge pricing relies
on a strong monetary incentive to get drivers to behave as the platform requires.
Surge pricing is usually used to serve peak demand and does not necessarily increase
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service availability in every part of the city (Bimpikis et al., 2019). Moreover, the
value of drivers entering the system or moving towards certain areas is paid for by
the customers. Thus, surge pricing may discourage customers in areas with already
limited demand from ordering service. Another challenge of surge pricing is that
volatile and therefore uncertain prices are often not well received by users and drivers
(see, e.g., Dholakia (2015), Goncharova (2017), and Conger (2021)). As a result,
first cities have begun to ban surge pricing (Spielman, 2021). Our heatmap strategy
does not shift the cost to the users (or drivers), but can rather be a helpful tool to
guide drivers towards earning opportunities, and, as we show in our experiments,
provide better service availability system-wide. With our RH, we, therefore, aim
to provide a less controversial mean supporting ride-sharing service providers in
managing a crowdsourced fleet without inducing disadvantages for particular drivers
or user groups.

4.2.3 Shared mobility

Dynamic repositioning is also well-known for shared mobility services such as bike
sharing, car sharing, or scooter services (see, e.g., Luo et al. (2022), Martin et al.
(2021), and Greening & Erera (2021)). In such systems, rental and return of vehicles
vary over time and in space. Thus, stations (or demand areas in station-free systems)
run out of vehicles while others have more than sufficient vehicles. Measures are
necessary to reposition vehicles in anticipation of future demand. There are two
main differences to our problem. First, in such systems, repositioning is usually
done manually, i.e., a workforce travels through the city to pick up or drop off
shared vehicles. Second, decision-making in such systems can be done centrally by
the service provider. In our problem, drivers decide for themselves if and how they
follow our repositioning recommendation. While the work on shared mobility is
vast, the work likely closest to ours is presented by Brinkmann et al. (2019), where
dynamic decisions are made about repositioning bikes to minimize expected future
cancellations. Similar to Pouls et al. (2020), Brinkmann et al. (2019) propose an
MPC approach where decisions are informed by samples of future demand, carefully
balancing cancellations and travel time. They show that with the right strategy,
improvements of more than 10% can be achieved relative to conventional strategies
ignoring future demand.
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4.3 Problem statement and formulation

In the following, we give a problem narrative to define the system and its dynamics.
We then provide an example and model the problem as a sequential decision process.

4.3.1 Problem narrative

We take the perspective of a ride-sharing service provider that connects transporta-
tion requests with self-employed drivers following the goal of minimizing the overall
number of daily service cancellations. Over the course of the service horizon, users
request instant transportation from an origin to a destination within the city. To
fulfill a transportation request, the service provider can assign a nearby driver that is
either currently idling, or assign an already busy driver who is currently repositioning
or transporting another user. Thus, pooling is possible with respect to a maximum
vehicle capacity. If no driver is nearby, e.g., the user cannot be picked up within 10
minutes, the user cancels the service request. If the transportation request can be
fulfilled, the user pays a fee. This fee is split between driver and service provider. For
simplicity, we assume that the fleet of self-employed drivers work the entire service
horizon1, accept all transportation requests assigned to them, and follow the routing
suggested by the service provider. However, the drivers are free in their decision
where to reposition after finishing a job, which could be an area with high expected
demand (as described by Ermagun & Stathopoulos (2018), for example), or an area
in the driver’s neighborhood (as described by Rai et al. (2021), for example).

We assume decentralized decision-making about the repositioning of the drivers.
The drivers’ repositioning behavior impacts the fleet distribution in the city and
therefore future revenues respectively earning opportunities for service providers and
drivers. Having not enough drivers in one area of the city leads to service cancella-
tions and revenue loss for the service provider. Having too many drivers in another
area leads to fewer earning opportunities for the drivers. Therefore, both service
providers and drivers are interested in the effective distribution of the fleet. However,
research shows that self-employed drivers are reluctant to follow service providers’
directions straightforwardly, especially if their reasoning is not immediately clear
(Möhlmann et al., 2021). Hence, in our problem, we propose an alternative tool

1We note that our proposed methodology can also handle dynamic fleet sizes as analyzed in
Appendix B.5.
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that is both intuitive and leaves drivers with the final repositioning decision: driver
guidance through RH.

Driver-specific RH indicate earning opportunities for the drivers in the city. Earn-
ing opportunities depend on the repositioning duration from the driver’s current to
the repositioning location, the expected demand in the area, as well as how well the
area is already covered by the fleet. Promising repositioning locations imply sig-
nificant opportunities due to short travel times, high expected demand, and/or few
drivers in the surrounding area. These repositioning locations are indicated in shades
of green with different intensities; other, rather unfavorable repositioning locations
are colored in different shades of red. Whenever drivers are without an assignment to
fulfill and consider repositioning, they consult their heatmap to make a well-informed
repositioning decision. This decision may be fully compliant with the platform’s rec-
ommendation or may deviate based on the driver’s personal preferences, e.g., with
respect to travel distance or potential competition.

The service provider aims for a heatmap strategy that nudges drivers towards lu-
crative areas while still maintaining a flexible and effective distribution of the entire
fleet to avoid future service cancellations. Such a strategy creates RH every time
a driver becomes idle, based on the current state information and the expected de-
mand. Besides the design of RH, the provider also faces the operational challenge of
assigning and routing new requests. Since our work aims on investigating effective
heatmap design, we assume that for assignment and routing, the service provider
follows an externally given strategy (details will be provided in Section 5.5.1). How-
ever, we create our RH in a way that it can capture different routing and assignment
strategies, and, in Appendix B.4, we show its effectiveness for a variety of alternative
strategies.

4.3.2 Example

In the following, we give an example to illustrate the dynamics of the system under
consideration (see Figure 4.1). We note that in the example and throughout the
paper, we replace the green and red shadings of the heatmap with different shades
of grey to allow readability in black and white. The darker the shade, the “greener”
the heatmap.
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Figure 4.1: Example for a State, Decision, the Realization of Stochastic Information,
and Transition to the Next State

The system can be described by its state (on the left), potential decisions (in the
center), and a realization of stochastic information including the resulting transition
to a new state (on the right). The example is at time t “ 60 of the service horizon.
The city consists of four regions, each with one repositioning location. For the
purpose of the example, we assume that the expected demand is equal in all regions.
The locations of the three drivers are given. Two of them, drivers two and three,
depicted in light, already have done their repositioning and are now waiting for
new requests to be assigned. Driver one, depicted in dark, just finished a trip and
now needs to make a repositioning decision via a heatmap provided by the service
provider.

A potential heatmap recommendation is shown in the center. The heatmap com-
bines several ideas. As the expected demand is evenly distributed and the two areas
on the right are already covered by a driver, a reasonable decision would be to color
these locations in lighter grey (i.e., red) to indicate fewer earning opportunities. The
areas on the left are both uncovered currently, thus, the heatmap may highlight
them in darker grey (i.e., green), indicating more earning opportunities for these two
locations. Finally, the vehicle’s distance to the regions comes into play, leading to
darker shading for the bottom locations.
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The most right part of Figure 4.1 shows the realization of stochastic information
and the transition to the next state at time t “ 75. This part is relatively complex
for this problem. The stochastic information is twofold:

1. First, the repositioning decision of driver one has been revealed, indicated by
the large white arrow. Here, driver one has been compliant and decided to
reposition to the bottom left.

2. Second, new demand occurs (and is assigned to drivers if possible) between
the current and the new decision epoch, indicated by dark and light customer
icons connected by a thin arrow. In the example, three new requests occurred
between t “ 60 and t “ 75. Two of them could be assigned. The one in the
bottom right was served by driver three, the other in the bottom left was served
by driver one. The request in the center of the city could not be assigned and
was canceled. As the platform aims on minimizing cancellations, cost of one
realize.

The new decision epoch is initialized when the next driver, namely driver three
in this example, requires a repositioning heatmap. As the demand is uncertain, it
is also uncertain when the next decision epoch occurs (t “ 75 in the example). The
transition leads to a new distribution of the fleet, based on the repositioning decision
of driver one, and the assignments of users to drivers and the corresponding trips.

4.3.3 Sequential decision process

The problem at hand is a stochastic dynamic problem where decisions are made
repeatedly and under incomplete information. Furthermore, decisions made now im-
pact the future states of the system. For example, using a specific heatmap strategy
changes the distribution of drivers in the future. To capture these dependencies
in the mathematical model, we rely on the modeling framework by Powell (2022)
on sequential decision processes. This model connects decision states with decisions,
revelation of new information, and a transition function. In the following, we present
the sequential decision process for the problem, i.e., the definition of decision epochs,
states, decisions, stochastic information, and transitions. First, we introduce some
preliminary notations.
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Preliminaries

We assume operations during a time horizon T “ r0, tmaxs, where time units are
discretized by rounding down to minutes. Operations take place in a service area
pN ,E, T q with N being the set of locations in the city, E the set of edges between the
locations, and T the constant travel times on the edges. We define a set of potential
repositioning locations R Ă N . We further assume a fleet of m drivers working all
day with initial idling positions ρ0 “ pρ01, . . . , ρ0mq P Rm and homogeneous capacity
and service duration per stop. There is no termination location, but all operations
end (latest) at time tmax.

Decision epochs

Decision epochs occur whenever a driver has finished service and checks the app for
RH. Thus, the time of the next decision epoch and the overall number of decision
epochs is uncertain. We denote decision epochs as k “ 1, . . . ,K with K being a
random variable.

States

A state Sk at decision point k contains the following information:

• The current point of time tk.

• The location information of the driver currently requesting a heatmap: nk.

• The status of the other drivers: Given the large scale of the underlying prob-
lem in drivers and customers, we refrain from modeling the individual routes
and stops for every driver (and user) in the system. Instead, we focus on
the ok currently unoccupied drivers either idling at or assumed traveling to a
repositioning location.
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We model the corresponding information using vectors ρk “ pr1k, . . . , ρokkq

and χk “ pr1k, . . . ,χokkq to represent the current location and the last rec-
ommended repositioning. Notably, in case of ρjk P R, the driver j is already
at a repositioning location, whereas otherwise it is assumed that the driver is
heading towards the last recommended one χjk P R.

In essence, a state can be summarized as Sk “ ptk,nk, ρk,χkq. The initial state
is at time zero with no driver requesting a heatmap and all drivers idling at their
initial locations, S0 “ p0,´, ρ0,χ0q. There is no decision made in the initial state.

Decisions

A decision xk is the heatmap of repositioning opportunities shown to the driver.
A heatmap decision is a vector xk “ px1k, . . . ,x|R|kq of values xrk P R` for each
repositioning location r P R. Higher values of xrk indicate higher opportunities.
There are no direct costs associated with a decision.

Stochastic information and transition

The stochastic information wk`1 “ prwk`1,Dk`1q is twofold and reflects repositioning
and the occurrence and treatment of new demand:

First, it contains a new repositioning location rwk`1 for the driver requesting a
heatmap in Sk based on heatmap decision xk. In our experiments, we assume that
the probability of location r P R being selected is based on the value xrk (higher
probability with higher value; the full details will be provided in Section 4.5.2). The
exact location selected becomes known with the driver’s arrival.

Second, demand Dk`1 realized and is served via the platform’s assignment and
routing procedure until another driver requests a heatmap. The demand is realized
until a point of time tk`1 where the assignment and routing procedure induces the
next free driver requesting a heatmap and therefore the next decision epoch k ` 1

at time tk`1. It also leads to updated sets ρk`1 and χk`1 in case drivers arrive at a
location or are assigned to a request. Furthermore, cancellationsDc

k`1 between tk and
tk`1 due to insufficient driver availability realize with information about time tp and
the nearest repositioning location lp P R for a cancellation p. The cancellations define
the cost CpSk,xk,Dk`1q “ |Dc

k`1|. In case tk`1 “ tmax, the process terminates.
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Solution and objective function

The solution for the problem is a policy π assigning a heatmap decision X πpSkq to
every state Sk. An optimal policy π˚ minimizes the expected costs (cancellations)
when starting in state S0 and applying policy π˚ throughout the process:

π˚ “ argmin
πPΠ

E

«

K
ÿ

k“0

CpSk,X πpSkqq|S0

ff

. (4.1)

4.4 Repositioning heatmaps

In the following, we present the methodology behind creating RH. We first give a
general motivation for and overview of our method and then present the details.

4.4.1 Motivation and overview

When designing effective RH, several factors come into play. RH should enable many
future earning opportunities for drivers, but it is not self-evident how to capture them
as they are impacted by driver location, future demand, and the behavior of other
drivers. Ideally, the travel from the driver’s current location should be kept at a
minimum to avoid ineffective empty miles. At the same time, drivers should be
guided to an area where significant demand volumes can be expected. These two
goals can be competing and hence need to be carefully balanced as, e.g., Larsen
et al. (2004) have shown for a single vehicle dynamic service routing problem. In our
problem, an additional challenge emerges: the other drivers and their repositioning
decisions. When providing an RH to a driver, the overall success also depends on
the current fleet distribution as well as the future RH provided to other drivers.
For instance, in the worst case, they might all accumulate at the same location.
Thus, instead of only balancing travel time and expected demand, an RH should
rather consider the current fleet distribution as well as the future “net demand”,
i.e., the difference between expected future supply and demand, as other vehicles
may enter the respective region in the future. The latter is equivalent to expected
future cancellations and therefore particularly challenging to evaluate as it depends
on the realized demand, the provided RH, and the driver decisions. We therefore
approximate the net demand iteratively as described later in this section.
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To capture these considerations algorithmically, we base the future earning op-
portunities resp. the utility of a repositioning location r for the driver requesting a
heatmap in k on three factors:

• The net demand that drivers can expect when repositioning to r in the “near”
future. Higher net demand will increase earning opportunities. However, net
demand in the far-away future may be less relevant and may lead to unnecessary
waiting for the driver as well as missed earning opportunities elsewhere.

• The number of unoccupied drivers that are currently idling at or that are
assumed to be on their way to location r. A larger number will decrease earning
opportunities for the drivers. At the same time, sending another driver will
likely lead to driver shortage and future cancellations in other areas of the city.

• The repositioning duration for the driver between nk and r. This prioritizes
quickly reachable locations to minimize inefficient empty miles.

Integrating these intuitive factors in one holistic RH is already difficult as we
discuss in the following section (we will later show that each part is essential for an
effective RH design). However, we face an additional challenge, namely, that the
net demand (and consequently, the future earning opportunities) is also affected by
the policy applied since the policy impacts not only the repositioning location of the
driver in the current state but also the distribution of all drivers in later states.

To this end, we propose an adaptive learning procedure that does not change
the design process of the heatmap itself but carefully adapts its most important
component, the expected net demand. The learning procedure starts with initial
expected net demand values, iteratively applies the corresponding policy, and adapts
the expected net demand based on the observed values. Therefore, the resulting RH
maintain their intuition and integrate the stochastic dynamic developments at the
same time. The details of the learning process are presented later in this section,
after introducing the initial holistic RH design.

4.4.2 Repositioning heatmap design

The intention of our heatmap design is to link state and learned information in a
smart way to provide effective and intuitive repositioning recommendations.
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To achieve this, RH are designed as a combination of three underlying heatmaps:
one reflecting information on the expected net demand, one reflecting the distribution
of unoccupied drivers, and one reflecting the repositioning duration for the driver
under consideration. Before formalizing this process, we illustrate how a heatmap is
created (see Figure 4.2):

(a) Net Demand (b) Unoccupied Drivers (c) Repositioning Duration (d) Repositioning Heatmap

Figure 4.2: Exemplary Repositioning Heatmap (created using Leaflet | © Open-
StreetMap contributors © CARTO)

4.2(a) The first heatmap component shows the distribution of the expected net de-
mand given the current point of time. Consequently, it indicates where oth-
erwise unmet demand in the near future can be covered through proactive
repositioning. In the example, in the northwest, high net demand and there-
fore earning opportunities are highlighted in darker colors, while in the eastern
regions where the requesting driver is located, brighter colors indicate only few
opportunities for the near future.

4.2(b) The second heatmap component is state-dependent. It displays the current
distribution of the unoccupied drivers among the repositioning locations. The
information is partially generated by the idle drivers and partially by the drivers
that were provided with a heatmap recently. Therefore, it indicates where to
expect competing drivers and how many. This is crucial since drivers often
become unoccupied in the same area at about the same time (i.e., they are
interchangeable from the system’s perspective) and yet should be guided to
different repositioning locations to meet the expected net demand. For such
drivers, the platform assumes they are traveling to the most fitting reposi-
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tioning location suggested by the RH. As drivers do not confirm the location
they travel to and may not comply with the heatmap recommendations, the
assumed values might differ from the real values. In the example heatmap
component, vacant repositioning locations are colored in black, and the most
frequented ones are in white.

4.2(c) The third heatmap component indicates the travel duration between the driver’s
current location and the potential repositioning locations. Incorporating repo-
sitioning duration into the heatmap design allocates expected net demand ge-
ographically and personalizes opportunities. Accordingly, the repositioning
locations are colored in the example from black to white with increasing travel
duration.

4.2(d) Based on these three components visualized in (a) to (c), the final RH shown in
Figure 4.2(d) is created. As can be noticed, a well-balanced recommendation
results from the three one-dimensional heatmap components, considering a
trade-off between expected net demand and travel time while avoiding direct
competitors.

After understanding how the RH are constructed, we formalize the generation in
the following. Let us first consider again the net demand shown in Figure 4.2(a).
The information displayed here is based on a learned matrix c “ pcrtqrPR,tPT of values
crt P R` for each repositioning location r P R and each time t P T . The adaptive
learning process applied to obtain reliable estimates of the expected net demand c

forms the core of our approach and is discussed in detail in the next section. While
Figure 4.2(a) is based on learned information, the Figures 4.2(b) and (c) are based on
state information Sk. Figure 4.2(b) is determined by the frequencies brk with which
each repositioning location r P R occurs. This is derived from the vector of current
locations of unoccupied drivers ρk, i.e., the vector of the last recommendations χk
for all drivers j with ρjk R R. Figure 4.2(c) results from the set θk comprising the
travel duration T pnk, rq from the current location nk to the repositioning locations
r P R.

To determine the final RH, shown in Figure 4.2(d), the three input vectors ck, bk,
and θk are min-max normalized to ensure comparable scales. RH are then derived
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according to Equation 4.2, where the signs emphasize that high values for c̄k indicate
high opportunities and for b̄k, θ̄k low ones:

xk “ c̄k ´ b̄k ´ θ̄k . (4.2)

The values b̄k and θ̄k are derived directly from state Sk. Thus, the resulting policy
depends on the parameterization of c. In the following, we will describe how c is
approximated.

4.4.3 Adaptive learning process

In the presented heatmap design, the expected net demand c plays a crucial role since
this reflects the complex interplay of future demand, its routing and assignment, and
future driver repositioning. The challenge in approximating these is that using the
expected net demand in the heatmap design results in shifts in driver distribution
that may affect subsequent states and eventually lead to new net demand in different
areas of the city. We therefore propose a learning process that uses and adapts the
approximated net demand such that, as we show in our experiments, net demand is
stepwise reduced (thus, service availability is increased) until the values converge to
a final matrix c. In the following, we first give an overview of the learning process
based on Figure 4.3 before explaining the algorithmic details. Figure 4.3 shows the
data involved as well the four main steps of the learning process. The data are:

Generate scenarios

Update stored

values
SimulateExpected

Net Demand

Expected 

Demand

A

4

3

2
B

Evaluate 

1

3

Figure 4.3: Adaptive Learning Process
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A: As input the expected demand D. We assume that in practice, the expected
demand can be derived from forecasts or historical booking data. However, for
our experiments, we use a pool of trip requests to sample expected demand
scenarios.

B: The estimated expected net demand values learned from the previous itera-
tion. The values are updated after each iteration and used as the expected net
demand matrix c in the design of the policy applied in the next iteration.

Using this data, the following four process steps are executed iteratively:

1: Generation of multiple scenarios based on the expected demand D. Each de-
mand scenario depicts the demand for the entire service horizon. For this pur-
pose, the demand is sampled (from A) on the basis of varying random seeds.
This implies that the spatial and temporal distribution of demand remains
fairly constant, but the actual trip requests vary.

2: Simulation of the scenarios. In the simulations, RH are determined in each
occurring decision epoch k based on the state information Sk and the expected
net demand c (stored in B).

3: The occurrence of cancellations in time and space is evaluated for all scenarios.

4: The obtained cancellations are then used to update the stored expected net
demand (in B).

In the following, we discuss the details of Algorithm 1. This algorithm processes
observed cancellations, whose temporal and spatial contribution to the expected
net demand must be carefully defined. To this end, we first motivate a temporal
discounting function F ptq as input as well as a spatial discounting matrix ḡ:

• Time: With respect to F ptq, preliminary experiments indicated that the ex-
pected net demand should be estimated uniformly based on the cancellations
observed for the next 60 minutes. Shorter time horizons do not provide suf-
ficient lead times to counteract impending cancellations, while longer ones do
not indicate repositionings currently required.
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• Space: Cancelled demand could have been satisfied not only from the closest
but from several repositioning locations. To integrate this, we define a spatial
discount matrix ḡ. This matrix provides the converted min-max normalized
travel times between all repositioning locations r P R. Thus, neglecting the
temporal aspect, cancellations are factored with a value of 1 for the nearest
repositioning location and with a value of 0 for the most distant one. The
continuously decreasing spatial impact of cancellations favors the balancing of
expected net demand. Moreover, the indirect consideration of travel times also
increases the value of conveniently repositioning locations to a greater extent.

input : Expected demand D, Repositioning Locations R
Temporal-Discount-Function F ptq,
Spatial-Discount-Matrix ḡ

output: Policy πc
1 Function ALP(D,R,F ,Gq

2 cpR, tmaxq Ð 0 ; // Initialize net demand matrix
3 i Ð 0 ; // Initialize learning iterations

/* Perform imax learning iterations: */
4 while pi ă imaxq do
5 πc Ð c ; // Create policy from net demand matrix
6 Pi Ð H ; // Initialize empty set of cancellations
7 j Ð 0 ; // Initialize simulation iterations

/* Simulate jmax scenarios: */
8 while pj ă jmaxq do
9 Dj Ð scenariopDq ; // Generation of a scenario

10 ODj ,πc Ð simulatepDj ,πcq ; // Simulation of the
scenario

11 Pi Ð Pi Y cancellationspODj ,πc q ; // Collecting
the cancellations from the results

12 j Ð j ` 1

13 end
/* Update entries in net demand matrix: */

14 for pr P Rq do
15 for pt P T q do
16 crt Ð

i
i`1

¨ crt ` 1
i`1

¨ getUpdateValuespr, t,Pi,F ,Gq

; // Update of an entry in the net demand
matrix

17 end
18 end
19 i Ð i ` 1

20 end
21 return πc

Algorithm 1: Adaptive Learning Process

In addition to the two discount functions, the input of the algorithm consists of
the expected demand D for sampling scenarios, and the set of repositioning locations
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R. The output is a policy πc that defines a repositioning heatmap for each state Sk
based on the expected net demand matrix c.

The algorithm is initialized in the first three lines. As line 2 indicates, no net
demand matrix is given initially. Repositioning is thus restricted to the nearest repo-
sitioning location in the initial iteration. In line 4 the actual learning process starts
running over imax iterations. Each iteration starts by deriving a heatmap generating
policy πc based on the current expected net demand c (line 5). In addition, an empty
set Pi is defined to collect cancellations to be processed later (line 6). Lines 8 to
13 cover the steps scenario generation, simulation and evaluation. How often these
steps are executed depends on the number of scenarios jmax considered for each
learning iteration. In line 9, a scenario Dj is generated from the expected demand D
by sampling of trip requests (function scenariopDq). The simulation of the scenario
Dj is performed next, applying the incumbent policy πc (function simulatepDj ,πcq).
From line 11, the cancellations are transferred from the simulation result ODj ,πc to
the set Pi (function cancellationspODj ,πcq).

The cancellations collected in Pi are subsequently used in lines 14 to 18 to update
the expected net demand c. For this purpose, it is iterated for each repositioning
location r P R over each time t P T . The update of the matrix entry crt is executed
in line 16. We update via a gradient descent of decreasing step size to ensure con-
vergence of the process. More specific, we rely on the cumulative average over all
previous iterations. Thus, the value crt is updated as shown in line 16 of the algo-
rithm with the function getUpdateValuespr, t,Pi,F ,Gq, returning the updated values
based on the temporally and spatially discounted cancellations in Pi. After the ex-
pected net demand c has been updated, the next iteration of the learning process
begins. For our experiments, we set the number of iterations performed imax “ 10,
as well as a number of simulated scenarios per iteration jmax “ 20, as preliminary
tests indicated that this amount is more then sufficient. As a result, the final policy
is our RH.

4.5 Experimental setup

In this section, we present the main setup for the computational evaluation of the
proposed RH (sensitivity analyses are provided in Appendix B.4). We present the
design of the test instances and the modeling of the drivers’ decentralized reposi-
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tioning decision-making. We also introduce the repositioning policies that serve as
performance benchmarks.

4.5.1 Instances

In the following, we describe how we design the service area from real-world data,
and how we create and assign the demand of the ride-sharing system at hand.

Service area

For the computational evaluation, we investigate ride-sharing systems operating in
the urban area of New York City. More precisely, we analyze the performance of two
systems that operate separately in the boroughs of Manhattan and Brooklyn. The
boroughs differ in size, shape, and demand distribution. Manhattan is comparatively
smaller, characterized by its island shape, and shows a more temporally and spatially
unbalanced demand. In contrast, Brooklyn is much broader and relatively circular,
with a demand concentration north of the center, although demand appears to be
more evenly distributed. In our simulations, the areas are represented by 3000 unique
locations sampled from taxi trip data from January 2014 (NYC Taxi and Limousine
Commission, n.d.). Travel times are based on OpenStreetMap free-flow travel times
which are multiplied by two to obtain a simple approximation of rush-hour traffic
congestion. For the operation of the ride-sharing system, for each service area, 100 of
the 3000 possible locations are defined as taxi rank-like repositioning locations. To
achieve a fairly even distribution of these locations, the selection is made by means
of a k-medians clustering algorithm using latitude and longitude values. The ride-
sharing fleet in our main experiment is assumed to consist of 200 drivers operating
homogeneous vehicles with four passenger seats for the entire service horizon. In
practice, crowdsourced systems may experience drivers entering and exiting the fleet.
Therefore, in Appendix B.5, we further evaluate the effectiveness of our heatmaps in
case of dynamically varying fleet sizes.

Demand creation

The planning period under consideration covers an 8-hour afternoon shift from 14:00
to 22:00. To exclude warm-up and cool-down phases of the simulation, the first and
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last 30 minutes are not taken into account for the evaluation. At the beginning of
the planning period, the drivers are randomly distributed among the repositioning
locations ready to fulfill incoming transportation requests. A number of 6400 in-
coming transportation requests is assumed per simulation run. Precomputational
experiments revealed that a total of 6400 requests would allow for a reasonable re-
lationship between fleet size and transportation requests, so that cancellation rates
range from a minimum of 1.4% to a maximum of 30%. Each transportation request
includes the transportation of one user. For each simulation run, transportation re-
quests are sampled from a pool of 100,000 trips per service area performed by Uber
or Lyft in September 2019 (NYC Taxi and Limousine Commission, n.d.).

We obtain a realistic spatial and temporal distribution following the real demand
as follows. Since information on request times is not provided in the data set and
information on pickup and drop-off locations is only available at zone level, we inter-
pret the pickup times as request times and randomly select the pick-up and drop-off
locations of the sampled trips for each simulation run from the subset of locations
belonging to the respective zones. Each performed simulation run thus differs in the
initial locations of the drivers, the request times, and the pick-up and drop-off loca-
tions of the trips. For the requesting users, it is assumed that a maximum waiting
time of 10 minutes and a maximum travel time of 1.5 times the direct trip’s travel
time is acceptable.

Demand assignment and routing

Our heatmap-policy is not bound to a specific routing and assignment strategy and,
as we show in Appendix B.4, performs well for a set of different strategies. For
our main experiments, we use the most effective assignment and routing strategy
tested. For the assignment of demand, we balance efficiency and flexibility based
on the insights from Ulmer et al. (2021). Efficiency refers to the consolidation of
rides by minimizing the additional travel time, i.e., making use of sharing opportuni-
ties. Flexibility is maintained for the vehicle resources by minimizing pickup times.
This helps meeting demand as quickly as possible, possibly from drivers who would
otherwise be idle. By taking both aspects into account, a more balanced assign-
ment is achieved. The strategy is implemented as follows. When a transportation
request comes in, the assignment is performed instantly. To this end, the routes of
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all vehicles are checked and all feasible assignments are determined subject to time
and capacity-related constraints. If no feasible assignment exists, the transportation
request is cancelled. Otherwise, it is confirmed, and the feasible assignment with
the minimum sum of additional travel time and pickup time is selected. In case of
a tie, the driver who has been waiting longer for an assignment is prioritized. We
assume that drivers always accept both the centralized assignments and correspond-
ing routing. With respect to vehicle routing, it is assumed that drivers either serve
requests via the centrally planned routes or take the shortest path to a self-selected
repositioning location. However, drivers are able to divert from their next stop to
serve a new assignment, i.e., drivers do check the app while driving. To this end, in
the experiments, out of the 3000 locations considered per service area, those located
on a traveled shortest path are considered as possible deviation points.

4.5.2 Modeling driver decisions

In the following, we describe how a driver j in epoch k selects a repositioning lo-
cation given a heatmap value xk. We assume that this selection is made as soon
as a driver becomes unoccupied, and that it is carried out using the shortest path.
The driver decisions are modeled via an additive utility model as presented in Train
(2009). The utility of a location r for the driver j in epoch k is the weighted sum
of the heatmap value xrk and an additional value urjk reflecting driver-specific pref-
erences and experiences, e.g., with respect to repositioning duration and earning
opportunities:

rwk`1 “ argmax
rPR

tαj ˆ xrk ` βj ˆ urjku. (4.3)

The weights αj ,βj determine the overall compliance of the driver with the provided
RH and are unknown to the platform. These weights differ for every driver, but they
are assumed to be constant over time. We assume three value combinations for αj
and βj , resulting in three types of drivers: (1) Fully compliant drivers with αj ,βj “

t1, 0u, relying solely on the heatmap recommendations; (2) Partial non-compliant
drivers with αj ,βj “ t0.75, 0.25u who enrich the RH with their own experiences or
preferences; and (3) Non-compliant drivers with αj ,βj “ t0, 1u who are not willing
to use the RH and thus decide on the basis of their own experience only.
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4.5.3 Benchmarks

In our computational experiments, we will compare RH with the two benchmarks
policies: “Nearest Repositioning” (NR), and an MPC-based method. These two
policies were selected as they feature different degrees of repositioning idle drivers.
NR specifies that drivers always repositions to the nearest repositioning location
as soon as they become idle, which minimizes repositioning efforts. For MPC, we
implement a mixed-integer programming model proposed by Pouls et al. (2020).
This model is periodically solved for centralized repositioning of all idle drivers in
order to maximize the coverage of the predicted demand at the minimal number of
repositionings and minimum travel times. Details of how we adapted this approach
can be found in Appendix B.1.

4.6 Results

We will present the results in two parts. First, we investigate the effectiveness of
RH under “perfect” operating conditions, evaluating the impact of its application
on the different actors of a ride-sharing system. For this purpose, we will assume
compliant drivers who follow the repositioning recommendations provided by our RH.
The evaluation will be made in comparison to the two benchmark policies NR and
MPC. Second, we analyze repositioning under different compliance levels. We first
examine the case that all drivers use RH but deviate from their recommendations.
We compare the performance of cases where only a part of drivers uses the heatmap,
i.e., the case of “experienced” versus “inexperienced” drivers, where the first relying
solely on their own experience of earning opportunities. Then, we assume that
drivers do not have any knowledge and analyze how RH-based guidance changes
their earning opportunities. All results represent the average over 100 simulation
runs, with instances generated based on different random seeds.

4.6.1 Evaluation under compliance

In the following, we will provide an overall analysis of the results for compliant driver
behavior. Based on this, we will demonstrate the learning process of the heatmaps
and show their impact on service availability and driver fairness.
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System performance

For the setting of decision-making with compliant drivers, we first analyze the impact
of heatmap-based repositioning on system performance, focusing mainly on minimiz-
ing cancellations. The idea is to demonstrate the performance of RHs compared to
the benchmark policies and to investigate the impact of the information considered
to create RHs.

(a) Manhattan (b) Brooklyn

NR x x

RH: Repositioning 

Duration
x x x x x x

RH: Unoccupied

Drivers
x x x x x x

RH: Net Demand x x x x x x

MPC x x

13.4% 13.0%

3.9%

6.8%

4.2%

7.5%7.5%
8.2%

3.6%

6.0%

3.7%

6.5%

Figure 4.4: Average Cancellation Rates for Manhattan and Brooklyn

Cancellation rates are shown in Figure 4.4 for the Manhattan and Brooklyn service
areas. The crosses below indicate the corresponding repositioning approach. We
compare the proposed RH to the benchmark policies NR and MPC as well as to
RH variants in which some components have been omitted. Additional results for
alternative setups and further performance metrics can be found in Appendix B.4.
Our RHs yield the lowest cancellation rates for both service areas of 3.6% and 6.0%,
respectively. NR is performing worst, with about 13.4% of transportation requests
being canceled in Manhattan and 13.0% in Brooklyn. The second best results are
obtained with MPC, with slightly higher cancellation rate of 3.7% in Manhattan and
6.5% in Brooklyn. For the other RH variants, neglecting the net demand information
proves especially disadvantageous.
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Insight: RH are a subtle, but powerful tool for the effective repositioning of
drivers, even when compared to an MPC approach. Successful heatmap strate-
gies should consider both the current setup (fleet distribution, driver location)
as well as future demand and fleet movement (represented through net demand).

Learning process

A critical feature of our RH is the adaptive learning process. Our experiments show
that the importance of learning differs for different instance settings. For some,
learning is very important, for others, the first approximation already provides very
effective decisions. To illustrate the learning and analyze when it is particularly
valuable, we show the extreme cases of our experiments. The corresponding learning
curves for Manhattan and Brooklyn are shown in Figure 4.5, with the reduction
of the cancellation rate relative to the first iteration plotted on the y-axis, and the
process iteration plotted on the x-axis. The light gray curve reflects the learning
curve of the setup with the least observed potential to reduce the cancellation rate
through learning, while the dark gray curve refers to the setup with the maximum
observed potential (We discuss the dependency between setup and learning later
in this section). Iteration 1 corresponds to the cancellation rate after the initial
expected net demand has been included in the RH.

Maximum observed potential (routing = stop-based,  repositioning locations = 100,  max. waiting time = 5 min)
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Figure 4.5: Exemplary Learning Curves for Different Instance Settings
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We see convergence in all learning curves. Convergence is usually achieved after 10
iterations for all tested settings. We also see that the learning potential differs with
respect to region and setting. In the case of Manhattan and the smallest learning
value, cancellation rates remain nearly on the same level as in the first iteration.
The high-learning potential example shows an additional reduction of up to 1.5%
compared to the initial cancellation rate. For Brooklyn, the cancellation rates in the
low potential example also remain on the same level. In the high-potential learning
case, however, the iterative process helps to decrease the relative cancellations by
additional 3% compared to the cancellation rate after the first iteration.

The presented learning curves demonstrate that the iterative learning process im-
proves the overall performance of the heatmaps. The difference between the improve-
ment levels shows that the overall setup determines whether the initial net demand
values are already effective. In particular, the learning potential appears to be high
when the destination selection is more complex (more distributed demand in Brook-
lyn, large number of repositioning locations), the commitment of the decision is high
(stop-based routing without deviation vs. flexible routing), and anticipation is more
important since service requests are more urgent (low maximum waiting time).

(a) 1. Iteration (b) 4. Iteration (c) Final

Figure 4.6: Net Demand Heatmaps for Exemplary Learning Process (created using
Leaflet | © OpenStreetMap contributors © CARTO, darker shades reflect higher
values)

In addition to the general benefits of adaptive learning, we want to illustrate the
adjustments of the expected net demand for an exemplary simulation run. For this

90



4.6 Results

purpose, we compare for a fixed point in time the distribution of expected net demand
after one and four iterations as well as after completion of the learning process.
Figure 4.6 shows the corresponding net demand heatmaps for 2:30pm, with the
repositioning locations indicated as circles colored following the normalized expected
net demand from black (high) over grey (medium) to white (low). The first heatmap
(4.6a) shows a clear distribution characterized by decreasing expected net demand
from the east (white) to the west (black) of the service area. After four iterations
of the adaptive learning process, this distribution appears to be diminishing, with
expected net demand increasing, particularly for repositioning locations in the north
and decreasing for those in the east (4.6b). For the final heatmap, this trend is
concluded with service opportunities expected primarily in the north of the service
area (4.6c).

Insight: With our adaptive learning strategy, the distribution of expected
net demand systematically adjusts over the course of the learning process, lead-
ing to better repositioning recommendations and reduced cancellations. Thus,
considering the dynamic interactions between demand development, RH-based
guidance, and driver decision-making is crucial for successful development and
communication of RH strategies.

Service availability

In evaluating the learning process, it became visible that the distribution of expected
net demand can be learned systematically. This poses the question of whether the
associated avoidance of cancellations leads to an improved and more balanced service
availability throughout the service area. This would be critical for user retention, as
insufficient service availability or systematic discrimination against certain parts of
the service areas could induce user dissatisfaction and churn.

To examine regional service availability, we analyze the cancellation rates per
repositioning location compared to those of NR. For this purpose, the requests are
assigned to the repositioning location that is nearest to the pickup location in terms
of travel time. Figure 4.7 shows the corresponding cancellation rates per location by
circles of different shades of grey and their demand volumes using their size. Here,
the scale of cancellation rates ranges from a minimum of 0% (white) to a maximum
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of 50% (black). A small white circle, for instance, indicates a low cancellation rate
for a low demand volume in the vicinity of the repositioning location, while a large
black circle indicates a high cancellation rate for a high demand volume.

RHNR

BrooklynManhattan

NR RH

Figure 4.7: Distribution of Cancellation Rates by Color and Demand by Size (created
using Leaflet | © OpenStreetMap contributors © CARTO)

For Manhattan, the demand center in the middle of the island is clearly visible,
as well as a relatively large region with very low demand in the north. Here, for
NR, the grey circles in the lower part of the demand center are noticeable, indicat-
ing increased cancellation rates. For RH, we do not see big differences, indicating
relatively balanced (and low) cancellation rates. For Brooklyn, the demand center
appears slightly north of the geographic center. Here, for NR, the light to dark grey
circles north of the demand center are particularly prominent, indicating compar-
atively high cancellation rates in this region. Again, in the case of RH, all circles
are colored brightly and thus indicate relatively low cancellation rates, with one
small exception in the southeast, where the size of the circle indicates a very scarce
demand.

From the results of both service areas, it can be concluded that RH greatly con-
tribute to increased and more balanced service availability compared to NR. It is
apparent that RH particularly help to decrease the otherwise high cancellation rates
in high-demand regions. Moreover, these improvements are only slightly detrimental
to regions with very scarce demand located at the outermost corners of the service
area.
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Insight: RH lead to a more balanced and higher service availability not only
in demand hotspots but across the entire service area. Consequently, providers
can serve more users with a constant pool of drivers and ensure a more balanced
and higher service availability. These enhancements are likely to increase user
satisfaction and, therefore, their commitment to the ride-sharing system.

Driver fairness

Having shown that platform providers would benefit from the application of RH, it
remains to be investigated whether the same is true for drivers. To evaluate driver
satisfaction, we focus on the total ride time per driver, which is a proxy for a driver’s
earnings. The corresponding boxplots for Manhattan and Brooklyn are shown in
Figure 4.8 for RH and are compared to those of NR and MPC. Each of these boxplots
represents the total time passengers are transported by a driver, i.e., the time the
driver is paid for by the passengers, for 200 daily drivers ˆ100 simulations “ 20, 000

drivers.

(a) Manhattan (b) Brooklyn

Figure 4.8: Total Passenger Ride Time per Driver

For Manhattan and Brooklyn, the median of the total ride time is about 400 for
all approaches, with slightly higher values for RH and MPC, as they lead to fewer
cancellations. More distinct differences can be observed among the interquartile
ranges. This range is clearly most comprehensive for NR with a total time of about
325 to 475 and decreases to about 375 to 450 for MPC and RH. The same ranking can
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be observed with respect to the length of the whiskers. For NR, outliers indicate that
some drivers cannot earn much. In contrast, the outliers in RH and MPC are less
pronounced and occur both positively and negatively. The decreasing magnitudes
of interquartile ranges illustrate that the distribution of earnings among drivers is
more balanced for RH than NR and, to a lesser extent, for MPC. This involves far
fewer drivers receiving significantly below-average or above-average earnings.

Insight: RH contribute to a more balanced and fairer distribution of earn-
ings among drivers. Thus, it is likely that drivers can be retained more easily.
However, even though the average and minimum earnings increase, an even dis-
tribution of earnings can negatively affect a driver’s personal income. Thus, the
extent to which the equitable distribution contributes to the acceptance of the
proposed heatmaps depends on prior earnings as well as the driver’s personal
mindset toward equal opportunities.

4.6.2 Evaluation under non-compliance

Next, we examine what happens when drivers do not always follow the recommen-
dations indicated by their heatmaps or do not consider them at all. To this end, we
investigate different levels and variants of non-compliance. We first conduct exper-
iments where drivers are only partially non-compliant to see how the performance
of RH depends on strict driver compliance. Second, we analyze what happens when
compliant drivers compete with inexperienced and experienced non-compliant drivers
to further explore the value of our RH.

Partially non-compliant drivers

In the first set of experiments dealing with partial non-compliance, we focus on the
most prominent factors to model the driver specific values urjk, namely repositioning
duration and supply/demand information (Urata et al., 2021). We treat the two
factors individually, and for each factor, we assume that there are two groups of
drivers evaluating repositioning options differently. For the travel duration, some
drivers are called time savers trying to avoid much repositioning. Others are called
time investors traveling more to reach potentially fruitful demand areas. For the
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supply/demand factor, we again consider two groups, separated by how drivers value
supply and demand. Here, some drivers try to avoid areas with many competitors
(supply-driven) while others focus on regions with high demand having competition
only as an afterthought (demand-driven). For more details, we refer to Appendix B.2.

+0.62% +0.40%
+0.97%

Time-savers

only

Split fleet Time-investors

only

+0.03% +0.14% +0.37%

Time-savers

only

Split fleet Time-investors

only

Manhattan Brooklyn

(a) Time-Savers/-Investors

+0.06% +0.10%
+0.58%

Supply-driven

only

Split fleet Demand-driven

only

+0.30% +0.23% +0.58%

Supply-driven

only

Split fleet Demand-driven

only

Manhattan Brooklyn

(b) Supply-/Demand-Driven

Figure 4.9: Cancellation Rates Relative to the Full Compliance Case

Figure 4.9 visualizes the cancellation rates relative to the case of full compliance
for experiments in which all drivers are homogeneously partially non-compliant, as
well as for two split-fleet experiments. For the split fleets, each driver is randomly
assigned to the group of (1) heatmap-compliant ones, (2) time savers, or (3) time
investors. For the second experiment, we have drivers who are either (1) heatmap-
compliant, (2) supply-driven, or (3) demand-driven.

With time savers and time investors, for Manhattan, there is no significant impact
on the overall system performance: cancellation rates increase only slightly (between
+0.03% and +0.58%). They are slightly higher for Brooklyn, with a max increase of
0.97%. With supply-driven and demand-driven drivers, the picture is quite similar
(only slightly increasing cancellation rates). In essence, even when drivers partially
follow their own agenda, the overall performance of our heatmap-policy remains
relatively stable, but the best performance is achieved when all drivers comply.
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Let us now have a look at how compliant and non-compliant driver behavior im-
pacts the different groups’ earnings. In Figure 4.10, we see the differences in the
average total passenger ride time again relative to the case where all drivers are
compliant. For time savers versus time investors, time investors collect assignments
when driving to and at opportunity hotspots, increasing their earnings by +13.3%
and +5.4% for Manhattan and Brooklyn, respectively. Compliant drivers suffer from
this considerably (´5.7% and ´2.3%), and time savers are off even worse (´9.2%

and ´5.1%).

Manhattan Brooklyn
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(a) Time-Savers/-Investors
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Figure 4.10: Split Fleets: Earnings for Compliant Drivers Competing with Partial
Non-Compliant Drivers
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For supply-driven versus demand-driven drivers, again, the general development
for Manhattan and Brooklyn is similar, but variations are larger for Manhattan.
Both supply-driven and demand-driven drivers can increase their earnings (+3.3%
and +0.2% for supply-driven, +2.5% and +1.3% for demand-driven). Meanwhile,
compliant drivers suffer considerably (´8.0% and ´3.3%). However, if we further
analyze the empty travel time, in Manhattan, for instance, earnings increase by
around 30% and 25% for supply-driven and demand-driven drivers, respectively. The
increased earnings are thus indirectly attributable to a very extensive repositioning,
either to escape the competitors, or to reach demand hotspots.

Insight: Our results demonstrate that a ride-sharing system can achieve com-
parable results even if drivers are not completely compliant with RH. However, to
some extent, drivers can “game the system” through more extensive reposition-
ing leading to less earnings for compliant drivers. Such potentially undesirable
behavior could be alleviated by providers through a compliance encouraging as-
signment strategy.

(In)Experienced drivers

We now let compliant drivers compete against inexperienced and experienced non-
compliant drivers. For the inexperienced drivers, it is assumed that they do not
bother much with repositioning and therefore always select a repositioning location
in their vicinity (like partially-compliant time savers but without a heatmap). In
the case of experienced drivers, by contrast, we assume that they have already suc-
cessfully devised their own repositioning strategy. This is modeled by combining
the information from time investors and demand-driven drivers, since this looked
very promising in the previous experiments. For more technical details, we refer to
Appendix B.2.

We first analyze the performance of a system with only inexperienced or expe-
rienced drivers (and no heatmaps). In Figure 4.11, we compare the corresponding
cancellation rates relative to the fully-compliant case. In the case of a split fleet,
cancellations increase for Manhattan and Brooklyn moderately by 1.0% and 1.5%,
respectively. With a fleet of experienced drivers, cancellation rates in Manhattan in-
crease comparably by +0.9%, while in Brooklyn this is more pronounced with +2.0%.
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So even in the ideal case that all drivers are experienced, following the heatmaps lead
to a better system performance. With a fleet of inexperienced drivers, cancellation
rates increase significantly (+4.9% for Manhattan, +4.1% for Brooklyn). Thus,
heatmaps are particularly valuable in case of many new drivers or when entering a
new service area.

+4.1%

+1.5%
+2.0%

Inexperienced only

(non-compliant)

Split fleet Experienced only

(non-compliant)

+4.9%

+1.0% +0.9%

Inexperienced only

(non-compliant)

Split fleet Experienced only

(non-compliant)

Manhattan Brooklyn

Figure 4.11: Cancellation Rates Relative to the Fully-Compliance Case

Now, what happens when compliant drivers have to compete with inexperienced
and experienced drivers? We show the results in the upper part of Figure 4.12. We
see that in case of a split fleet, the results differ for Manhattan and Brooklyn. In
Brooklyn, being compliant is very valuable for inexperienced drivers, but experienced
drivers still earn more. In Manhattan, compliant drivers are even worse off than
inexperienced non-compliant drivers. Given the demand structure in Manhattan,
experienced drivers seek and inexperienced drivers often end up in demand hotspots.
Thus, the compliant drivers have to fulfill the demand in less attractive areas and
essentially suffer from the other drivers being non-compliant.

In that case, the provider needs to ensure that compliant behavior is rewarded. To
control the benefits for compliant and non-compliant drivers, the provider can mod-
ify routing and assignment strategies (see Appendix B.4 for an in-depth analysis).
Here, we slightly modify the provider-controlled assignment strategy, now prioritiz-
ing compliant drivers in tie-breaker cases and in cases where compliant drivers may
require slightly longer travel (ă 10%). This does not change the overall system
performance significantly, but the experience for the non-compliant and compliant
drivers as shown in the bottom part of Figure 4.12. We see that in case of Manhattan,
compliance pays off, at least for inexperienced drivers, and in Brooklyn, compliant
drivers earn even more than experienced ones.
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Figure 4.12: Split Fleets: Earnings for Compliant Drivers Competing with Inexperi-
enced and Experienced Non-compliant Drivers

Insight: Our results demonstrate that RH can enable inexperienced drivers
to close the earning gaps to experienced drivers and that in some cases even
experienced drivers are better off using RH – if the platform ensures assignment
priority for compliant drivers. This may alleviate the severe practical issue of
earning gaps and driver churn of inexperienced drivers as discussed by Cook et
al. (2021). Still, as a profit-maximizing driver’s behavior depends crucially on
the behavior of the other drivers, there is a substantial potential for “gaming”
the system, as also observed by Wang et al. (2023).
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4.7 Final remarks

We have illustrated how RH can lead to improved operations for service providers,
drivers, and users. There are several avenues for future research. First, our ex-
periments have shown that carefully designed heatmaps reduce service cancellations
even in cases that drivers are less compliant with the provider’s recommendation.
Future research may focus on explicitly identifying such non-compliant behavior by
analyzing the drivers’ previous decisions. This analysis could then be used to adapt
the heatmap design accordingly, e.g., by providing “time savers” reluctant to leave
their neighborhood with recommendations nearby and use “time investors” to cover
areas further away. However, as we have seen in our experiments, heterogeneous
driver behavior already leads to imbalances in their earnings even when they are
treated equally by the service provider. The imbalances may increase in case the
provider further differentiates driver preferences. This leads to the question of fair-
ness as very picky drivers may get very lucrative jobs while others do the heavy
lifting. Furthermore, such differentiation may increase the number of drivers gaming
the system once they realize that their behavior influences their recommendations.
Future research may therefore focus on a fair and balanced repositioning given the
heterogeneous driver preferences and ways to disengage drivers from gaming the
system. As we observed, one way providers can control the value of compliance is
through their routing and assignment strategies. Future work may thus focus on
balancing operational efficiency with rewarding compliant behavior.

Another interesting aspect of our experiments is that the impact of driver compli-
ance differs for services areas with different spatio-temporal characteristics. While
in the rather small area of Manhattan, even less compliant drivers can achieve a
good demand coverage, in the larger area of Brooklyn, non-compliance results in an
increase in cancellations. Thus, for larger and more “complex” service areas such as
Brooklyn, future research may focus on a better balance when drivers are not fully
compliant. Potential options could be different driver compensation in different ar-
eas of the city. Alternatively, the provider might complement the crowdsourced fleet
with dedicated drivers. Finding the right balance in the fleet and using the poten-
tially more expensive dedicated drivers effectively may be an interesting challenge
for future research.
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Future research may combine our heatmap strategy with surge pricing. Our RH
has shown to be a powerful tool to steer drivers in the right direction to the benefits
of both drivers and users using non-monetary guidance. Thus, the heatmap policy
does not change the customer demand and fleet size. Still, there might be situations
where even with perfect heatmap-based decisions, the current demand or the fleet size
are too small. In that case, future work may consider adding monetary incentives by
combining our policy with surge pricing strategies. A potential starting point might
be the learned net demand information to measure future demand and demand
coverage and adapt the prices accordingly. In that case, an integrated learning of
heatmap and pricing strategy might be required.

Finally, in our experiments, we have shown that heatmaps lead to more and more
fairly distributed earnings amongst the drivers and better service availability for
the users. Future research may provide empirical evidence for these improvements
by examining driver behavior in response to heatmap information. It could further
analyze the long-term impact in comparison with the status quo, e.g., with respect
to user retention, business growth, and the drivers’ trust in and adoption of the
heatmap-based guidance.
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Chapter 5

Design of multi-optional pickup time
offers in ride-sharing systems

Abstract Ride-sharing systems strive to provide affordable on-demand mobility
in urban areas by effectively consolidating incoming transportation requests. To
ensure that transportation offers meet travelers’ individual time requirements and
constraints, service operators offer multiple pickup times from which travelers can
choose. Designing such pickup time offers is challenging due to the uncertainty of
both the requirements of the requesting traveler and the efficient fulfillment of future
demand. We propose a parametric cost function approximation to balance between
maximizing the probability that a traveler will choose an offered pickup time and
minimizing the expected vehicle routing effort. We demonstrate the effectiveness of
the proposed approach in a comprehensive computational study and provide manage-
rial insights, particularly with respect to the value of information on traveler pickup
time requirements.

Keywords demand management, ride-sharing, stochastic dynamic decision making,
vehicle routing
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5.1 Introduction

To support the transition to a more sustainable use of today’s congested urban traffic
infrastructure, the shift from private cars to shared mobility is publicly subsidized.
In cooperation with local transportation authorities, ride-sharing operators such as
MOIA or VIA are contributing to this change by operating a fleet of vehicles to offer
shared on-demand transportation at affordable prices. Their operational aim is to
maximize the level of service, i.e., to satisfy a high percentage of travelers to ensure
long-term acceptance and financial viability.

To use such ride-sharing systems, travelers request transportation by entering their
preferred pickup and drop-off locations in a mobile application. In turn, they receive
a transportation offer which specifies the assigned vehicle, expected pickup time, and
fare. Depending on the offer, the traveler either completes or cancels the request.
A decisive factor for the offer acceptance is whether the pickup time meets the
traveler’s requirements (Wang et al., 2020). However, these requirements can vary
widely, depending on the circumstances of the request. For example, let us imagine
a traveler requesting transportation home on a rainy night. This traveler would
certainly prefer to be picked up immediately, but in the absence of alternatives may
also accept later pickup times. In contrast, let us think of a traveler who is planning
the last leg of their home journey shortly before arriving at a central train station.
Such a traveler will need some time to get to the pickup location and can resort to
alternative means of transportation if the offered pickup time is infeasible. Lastly, we
can think of a group approaching the end of a restaurant visit. In this scenario, for
one, they are probably not in a hurry to leave, and for another, may prefer to have
similar pickup times. To accommodate such individual pickup time requirements,
often unknown to the ride-sharing system (and perhaps even to the traveler), we are
among the first to explore the benefits of offering multiple pickup time options. Such
offers enable travelers to choose from a set of options the pickup time that suits them
best.

Designing such multi-optional pickup time offers is a challenge, as they need to
satisfy the requirements of travelers and ensure the effective utilization of the ride-
sharing fleet. This is particularly difficult because both traveler requirements and
the effectiveness of fulfillment operations are uncertain. While the requirements
depend on the current request, the effectiveness depends on future ones. However,

104



5.1 Introduction

cleverly designed offers enable ride-sharing systems to maximize the service level
by striking a trade-off between covering a wide range of requirements and offering
the pickup that is deemed most efficient. For example, during low-demand periods
with sufficient vehicle resources, the aim could be to cover potential pickup times
evenly, whereas, in high-demand periods, the focus might be on offering pickup
times that enable the consolidation of transportation requests. The offer design
thus provides a soft means of demand management that integrates dynamic vehicle
routing to evaluate fulfillment opportunities. By incorporating demand management,
i.e., shaping demand in terms of its volume or characteristics, and vehicle routing,
i.e., finding efficient routes to fulfill a given transportation demand, this work is in
line with recent research on dynamic optimization of transportation services (see,
e.g., Fleckenstein et al. (2023)).

For the design of multi-optional pickup time offers, we propose a parametric Cost
Function Approximation (CFA) that balances the acceptance probability and the
associated routing effort. The two design criteria thus reconcile the satisfaction of
the current request and the preservation of vehicle resources in favor of future ones.
Regarding the acceptance probability of an offer, we assume that probabilistic infor-
mation is available based on historical booking data, for example. Vehicle routing
effort, in turn, is approximated by aggregating a rating of the associated pickup time
options. Here, each pickup time option corresponds to a feasible assignment of the
requested transportation to a vehicle route. The rating (following the findings of
Ulmer et al. (2021)) indicates whether the assignment contributes to consolidating
transports and maintaining fleet flexibility. Finally, parameterization enables balanc-
ing the acceptance probability and approximate routing effort to strike the trade-off
that minimizes the rate of canceled requests.

In summary, our paper makes the following contributions: we are among the first
to consider diverse and uncertain pickup time requirements in ride-sharing systems
and, in turn, explore the benefits of multi-optional pickup time offers. To this end,
we first introduce the new dynamic and stochastic problem and formalize the corre-
sponding sequential decision process. Second, we propose a solution approach that
adapts the concept of a parametric CFA recently introduced by Powell & Ghadimi
(2022). Third, we provide a comprehensive computational study that demonstrates
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the effectiveness of the approach particularly in comparison to benchmarks exploring
different levels of information on traveler pickup time requirements.

The paper begins with a discussion of the related literature in Section 2. A compre-
hensive problem description follows in Section 3. Section 4 presents how pickup time
offers are designed via the CFA. The experimental setup and computational results
are discussed in Sections 5 and 6. We conclude with final remarks in Section 7.

5.2 Related literature

In the following, we give an overview of the related literature, focusing, in particular,
on the implementation of demand management and vehicle routing in research on
ride-sharing systems. For an overview of research considering both aspects in other
applications, we refer to Fleckenstein et al. (2023). Most of the corresponding papers
focus on time window management for next-day attended home deliveries (see Waß-
muth et al. (2023) for a respective review). In contrast, comparatively few papers,
such as Ulmer (2020) or Klein & Steinhardt (2023), consider dynamic vehicle routing
as in ride-sharing systems, where fulfillment is performed simultaneously with the
incoming of new requests. However, ride-sharing also differs from such same-day
delivery applications due to the immediacy of transportation requests, which require
flexible availability of vehicle resources throughout the service area.

Focusing on the literature addressing ride-sharing systems, it should be noted that
part of the research refers to the term dynamic dial-a-ride problem as an extension
of the well-known dynamic vehicle routing problem. For reviews on the static and
dynamic dial-a-ride problem see, for example, Molenbruch et al. (2017) and Ho et
al. (2018). General reviews concerning the dynamic vehicle routing problem are
provided by, for example, Psaraftis et al. (2016) and Soeffker et al. (2022). Soeffker
et al. (2022) thereby provides an interesting comparison of the CFA adapted in this
work with other method classes for sequential decision processes. Another related
research stream focuses on shared autonomous vehicles; in this regard, we refer
to Narayanan et al. (2020) for an overview. Furthermore, managing ride-sharing
systems is not limited to processing transportation requests. We thus refer to Wang
& Yang (2019) for a comprehensive review of related optimization problems. This
review covers ride-hailing as well, i.e., matching requests and (independent) drivers
for direct transportation. In the following classification, we focus on work in which a
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ride-sharing system operates a fleet of vehicles aiming to consolidate transportation
requests.

The classification is based on five criteria that are decisive for demand management
in our work: (1) it reflects the possibility of cancellations due to the unavailability
of vehicle resources; (2) it proactively manages demand; (3) it considers uncertain
individual traveler decisions; (4) it provides transportation options for the traveler
to choose from; (5) it considers uncertain pickup time requirements. The relevant
research can be divided into five categories: no demand management, feasibility
checks, acceptance mechanisms, pricing, and mode choice. In the following, we will
provide a brief overview of the related literature organized by these categories and
emphasize the relationship to our work.

Paper Approach Request
cancellations

Proactive demand
management

Traveler’s
choice

Transportation
offer sets

Uncertain pickup
time requirements

Schilde et al. (2011)
No demand
management

Hyytiä et al. (2012)
Ma et al. (2013)
Riley et al. (2019)

Horn (2002)

Feasibility-
check

‘

Attanasio et al. (2004)
Coslovich et al. (2006)
Berbeglia et al. (2011)
Alonso-Mora et al. (2017a)
Simonetto et al. (2019)

Xiang et al. (2008)

Acceptance
mechanism

‘ ‘

Hosni et al. (2014)
Alonso-Mora et al. (2017b)
Lowalekar & Jaillet (2019)
Shah et al. (2020)
Heitmann et al. (2023)

Sayarshad & Chow (2015) Differential
pricing

‘ ‘ ‘

Bimpikis et al. (2019)
Ma et al. (2022)

Jacob & Roet-Green (2021)
Mode choice

‘ ‘ ‘ ‘

Jiao & Ramezani (2022)
Sharif Azadeh et al. (2022)

This work Pickup time choice
‘ ‘ ‘ ‘ ‘

Table 5.1: Literature Classification

First, we consider the no demand management category. The corresponding papers
assume that all requests must be fulfilled promptly to ensure travelers’ satisfaction.
Their objective is therefore to minimize waiting times through improved vehicle rout-
ing. For example, Schilde et al. (2011) and Hyytiä et al. (2012) focus on increasing
effectiveness by anticipating future transportation requests, while Ma et al. (2013)
and Riley et al. (2019) aim at increasing efficiency to manage large-scale ride-sharing

107



Chapter 5 Design of multi-optional pickup time offers in ride-sharing systems

systems. However, this problem setup neglects the traveler’s ability to cancel requests
when pickup offers are inconvenient, which is particularly important because realized
waiting times can vary greatly depending on the requested transportation and the
current system load.

In contrast, papers belonging to the other categories consider that travelers have
the option to decline an unfavorable transportation offer. However, for the sake of
simplicity, most assume that requests are only canceled if the pickup time exceeds a
predefined waiting time threshold. The assumption is based on the image of travelers
waiting at their pickup location and thus being able to be picked up anytime. This
overlooks the advantage of digitized systems that allow travelers to make requests
in advance from any convenient location, resulting in individually varying lead time
requirements. Moreover, the requirements regarding the pickup time depend not
only on the traveler but on the overall circumstances. For example, during periods
of high demand, Wang & Bei (2022) observed that higher average waiting times
correlate with lower average cancellation rates, as alternative transportation options
such as cabs are at capacity as well.

With respect to the given waiting time threshold, the approaches in the second
category only examine the feasibility of a new request without considering anticipa-
tory demand management. However, they have to be further differentiated according
to when requests are processed. Horn (2002), Attanasio et al. (2004), Coslovich et
al. (2006), and Berbeglia et al. (2011) assign new incoming requests immediately
to a vehicle, following a strictly myopic first-come, first-served principle. In con-
trast, Alonso-Mora et al. (2017a) and Simonetto et al. (2019) perform assignments
for batches of requests to alleviate the disadvantage of myopic decisions. This ad-
vantage is offset by the disadvantage that travelers may receive their transportation
offer delayed, which can contribute to their dissatisfaction. Consequently, recent
publications related to crowdsourced systems focus on optimal response delays (for
example, Yang et al. (2020), Ke et al. (2022), or Wang et al. (2022)). In contrast,
we adopt the idea of immediate assignments, assuming that travelers are less willing
to wait for an offer in centralized systems where the availability of vehicles is not
subject to uncertainty.

The third category covers approaches in which, in addition to the feasibility, the
favorability of new incoming requests is evaluated. These so-called selective accep-
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tance mechanisms focus either on the current opportunity cost (as, for example, in
Xiang et al. (2008), Hosni et al. (2014), and Lowalekar & Jaillet (2019)) or antic-
ipate future demand (as, for example, in Alonso-Mora et al. (2017b), Shah et al.
(2020), and Heitmann et al. (2023)). The disadvantages of such selective accep-
tance mechanisms are systematic discrimination against certain requests, as shown
in Haferkamp & Ehmke (2022), and the permanent abandonment of the service by
rejected travelers, as discussed in Geržinič et al. (2023). We, therefore, propose an
approach towards proactive demand management that refrains from the rejection of
transportation requests.

An alternative approach to managing demand in ride-sharing systems proactively
is differential pricing, as proposed, for example, in Bimpikis et al. (2019) and Ma
et al. (2022). They aim to maximize revenue given finite vehicle resources, while
likewise assuming that all travelers require a short-term pickup. Their advantage
is that all requesting travelers receive a transportation offer but on the condition
that a sufficient amount of travelers have to cancel due to a high fare. In contrast
to our work, differential pricing thus aims primarily at the control of the demand
volume and less on shaping the characteristics of the given demand. Moreover, the
implementation of differential pricing is very unpopular among travelers and may also
discourage the use of ride-sharing systems (see, for example, Bertini & Koenigsberg
(2021) or Abrams (2022)).

The papers of the last category assume shared rides to be optional following the
example of services like Uber or Didi. Accordingly, Jacob & Roet-Green (2021),
Jiao & Ramezani (2022) and Sharif Azadeh et al. (2022) focus on offering direct
and/or shared transportation options mostly in conjunction with differentiated pric-
ing. Thus, similar to our approach, travelers are offered multiple transportation
options to choose from. However, their demand management focuses on how rather
than when requests are fulfilled.

Additionally, it should be noted that Sayarshad & Oliver Gao (2018) and Liu et al.
(2019) also consider travelers’ mode choices. While Sayarshad & Oliver Gao (2018)
focus on competing ride-sharing operators, Liu et al. (2019) study alternative means
of transportation. Again, for both papers, minimizing waiting time is assumed to be
the deciding factor for travelers’ choices.
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In summary, to the best of our knowledge, there is no work that has considered
demand management under uncertain pickup time requirements by offering multiple
pickup options to provide an effective and convenient ride-sharing system.

5.3 Problem description

In the following, we present the dynamic and stochastic problem under consideration.
We first outline the problem in a narrative. The underlying sequential decision
process is then illustrated with an example and modeled following the framework of
Powell (2022). With respect to the involved vehicle routing problem, for clarity, we
restrict ourselves to a descriptive presentation inspired by the modeling of Cordeau
& Laporte (2007).

5.3.1 Problem narrative

We envision a ride-sharing system that operates a fleet of homogeneous vehicles to
provide on-demand mobility in an urban area. In the course of a day, travelers request
transportation via a mobile application, specifying pickup and drop-off locations.
Considering the request as well as the incumbent vehicle routes, the service operator
immediately offers a set of pickup time options associated with a feasible assignment.
For determining the options, a maximum lead time, i.e., a maximum time interval
between request and pickup, is assumed in order to comply with the on-demand
nature of the system. Moreover, the number of options is limited to ensure that
they are clearly distinctive and convenient to display in a mobile application. Based
on the offer, the traveler either selects the most suitable pickup time or cancels the
request (for details on traveler’s choice modeling, see Section 5.5.2).

Once a traveler has chosen an offered option, the associated pickup time and
assignment are considered binding to enable reliable planning for both system op-
erators and travelers. This limitation reflects findings from Geržinič et al. (2023)
that travelers rate unexpected pickup delays three times more negatively than an
agreed-upon deviation from their preference. However, minor deviations are consid-
ered tolerable to allow for additional pickups or drop-offs along a planned vehicle
route. Furthermore, on the way from the pickup to the drop-off location, detours in
favor of shared rides are considered tolerable as a function of the direct travel time.
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Accordingly, when choosing a pickup time option, travelers can only be informed
about the current planned and latest feasible arrival time.

The objective of the ride-sharing system is to minimize the number of canceled
requests by designing convenient pickup time offers for currently requesting travelers
while ensuring their effective fulfillment in favor of future ones.

5.3.2 Illustrating example

In the following, we give an example to further illustrate the request processing
(see Figure 5.1). The corresponding sequential decision process can be described by
the system state (depicted on the left), potential decisions (in the center), and a
realization of stochastic information including the resulting transition to a new state
(on the right). The example state is at time t “ 90. The decision is triggered by a
traveler requesting transportation.

x

Transition

o Pickup in approx. 2 Min. 

o Pickup in approx. 12 Minxx

Decision

o Pickup in approx. 2 Min. 

o Pickup in approx. 12 Min

t = 90

State

New
request

 Pickup location

 Drop-off location

Driver A

Driver B

Driver C

t = 90 t = 95

New
request

Figure 5.1: Example for a State, Decision, Stochastic Information, and Transition

In this example, three ride-sharing vehicles are available in the service area. While
vehicle A is currently transporting a traveler to their drop-off location, vehicles B and
C are waiting idle. The decision of the ride-sharing operator consists in determining
and selecting feasible assignments, based on which pickup times are offered to the
traveler. The service operator in this example decides to select an assignment to the
vehicles A and C, which results in offering the traveler to be picked up in approx. 2
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or 12 minutes. On the one hand, this decision ensures a high acceptance probability
due to the heterogeneous pickup time options. On the other hand, it aims at a
resource-efficient assignment, since the assignment to vehicle A allows to consolidate
transports, while the assignment to vehicle C minimizes the duration in which the
request restricts the flexibility of a vehicle. The transition phase following the offer
is twofold. First, it includes the traveler’s decision about the offer. In the example,
the traveler chooses to be picked up in about 12 minutes, which leads to an update
of vehicle A’s route plan. Second, it involves another transportation request being
received by the ride-sharing system, which triggers the next decision epoch.

5.3.3 Sequential decision process

In the following, the underlying sequential decision process is formally modeled by
introducing preliminary notations, decision epochs, states, decisions, stochastic in-
formation, and transitions.

Preliminaries

Let a ride-sharing system offer transportation within a service area during a time
horizon T “ r0, tmaxs discretized in minutes. The area is defined by a set of locations
N , a set of edges E between the locations, and constant travel times T on the edges.
The ride-sharing system operates a fleet of vehicles V with homogeneous capacities
cv. At the beginning of the time horizon, all vehicles are idle at an initial location
M0 “ pm01, . . . ,m0vq P N .

Decision epochs

A decision epoch k occurs whenever a new transportation request rk is received from
a traveler.

States

The state information Sk for a decision epoch k include:

• The current point in time tk with 0 ă tk ă tmax.

• The requested pickup location pk and drop-off location dk P N .
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• The next locations where vehicles can be re-routed Mk.

• The number of travelers currently transported by the vehiclesWk “ pwk1, . . . ,wkvq.

• The incumbent route plans Hk “ pHk1, . . . ,Hkvq, consisting of stop lists Hkv “

phk1, . . . ,hk|Hvk|q. Each stop hk P Hkv is comprised of location, service time
window, number of travelers to be picked up or dropped off, and service time.
The service time window results from the agreed pickup time and, for pickups,
from a maximum delay constant ω resp., for drop-offs, from the direct travel
time multiplied by a maximum transportation duration factor ϵ.

A state can be summarized as Sk “ ptk, pk, dk,Mk,Wk, Hkq. The initial state is at
time tk “ 0 with no requesting traveler and all vehicles idling at their initial location,
S0 “ pO,´,´,M0,W0, H0q.

Decisions

A decision concerns the pickup times to be offered and the assignments to be used.
To this end, we assume that each assignment ak is associated with exactly one
pickup time takpk . We further assume that the number of pickup time options, i.e., the
maximum offer size, is restricted by a constant parameter ζ. A decision can thus be
defined as a vector Xk of maximal ζ feasible assignments ak. An assignment ak is
considered feasible if:

a) The pickup stop hakpk is planned before the drop-off stop hakdk for the same vehicle
route Hvk.

b) The interval between request time tk and pickup time takpk is less than or equal
to a maximum lead time ψ and the interval between pickup time takpk and drop-
off time takdk is less than or equal to the maximum transportation duration
T ppk, dkq ˆ ϵ.

c) The rescheduled arrival time takhk is within the service time window for each
stop hk P Hvk.

d) The vehicle capacity cv will not be exceeded.

113



Chapter 5 Design of multi-optional pickup time offers in ride-sharing systems

Stochastic information and transition

The stochastic information contains two pieces of information. First, the traveler’s
choice yk regarding transportation offer Xk, resulting in the update of the corre-
sponding vehicle route Hkv or a canceled request cpSk,Xkq. Second, the occurrence
of a new transportation request rk`1 leading to the next decision epoch with updated
state information Sk`1.

Solution and objective function

The solution for the problem is a policy π making an offer decision XπpSkq to ev-
ery state Sk. An optimal policy π˚ minimizes the expected request cancellations
cpSk,Xkq when starting in state S0 and applying policy π˚ throughout the process:

π˚ “ argmin
πPΠ

E

«

K
ÿ

k“1

cpSk,X
πpSkqq|S0

ff

. (5.1)

5.4 Offer design

Whenever a new request is received, a transportation offer has to be made immedi-
ately. The aim of designing such offers is to maximize the probability that a pickup
option will be chosen while minimizing the routing effort in favor of future demand.
To achieve this, we present a four-step process summarized in Figure 5.2 that in-
cludes the identification of eligible assignments and the offer design by means of a
parametric CFA.

The identification of eligible assignments is performed in the first two steps, which
are accordingly dedicated to vehicle routing. Steps three and four then comprise the
actual offer design by means of CFA and are thus more closely related to demand
management. The process steps are detailed in the following.

5.4.1 Identification of assignments

The identification of assignments follows the concept of a well-known insertion heuris-
tic. This heuristic evaluates all feasible assignments for a transportation request to
select the best-rated one. Our process follows this approach, with the difference that
we determine among the feasible assignments the best rated for each eligible pickup
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time discretized in minutes. This provides a selection of assignment candidates as
input for the subsequent offer design.

Determine feasible 
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Figure 5.2: Overview of the Offer Design Process

The key to an effective selection is the evaluation of an assignment. We, there-
fore, first define the corresponding evaluation function and then discuss in detail the
identification of assignment candidates according to Algorithm 1. The design of the
evaluation function Epakq follows the insights of Ulmer et al. (2021), according to
which they should balance efficiency and flexibility. Efficiency here refers to minimiz-
ing driving time by consolidating transports, whereas flexibility refers to minimizing
the duration for which a vehicle is restricted by an assignment. Both aspects are
reflected in the evaluation function Epakq by means of a metric: efficiency by the
additional caused travel time of an assignment δak , and flexibility by the fulfillment
duration γak , defined as the interval between request time tk and planned drop-off
time takdk . Finally, to determine the overall rating of an assignment Epakq, we compute
the parameterized sum of both metrics:

Epakq “ α ˆ γak ` β ˆ δak . (5.2)
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In addition to the evaluation function Epaq, the inputs to the assignment identifi-
cation Algorithm 1 are the fleet of vehicles V and the current state SK . The output
is a list of assignments Ak as candidates for the succeeding offer design.

input : Vehicle V , State SK ,
Assignment-evaluation-function Epakq

output: List of assignments Ak

1 Function getListOfAssignments(V ,SK , E)
2 Ak Ð Assignmentrψs

3 for pv P V q do
4 for pi, j P Hkv|i ď jq do
5 ak Ð createAssignmentpi, j, pk, dk,Hkvq

6 if pcheckFeasibilitypak,mkv ,wkvqq then
7 if pAkrt

ak
pk s ““ ∅}EpAkrt

ak
pk sq ą Epakqq then

8 Akrt
ak
pk s Ð ak

9 end
10 end
11 end
12 end
13 return Ak

Algorithm 1: Identification of Assignments

The algorithm works as follows. In the first line, the list of assignments Ak is
initialized. As noted earlier, times are discretized in minutes so that the number
of distinct pickup times, and hence the length of the list, is equal to the maximum
lead time ψ. To fill the list considering all feasible assignments, the first for-loop
iterates over the set of vehicles V . The second for-loop then systematically iterates
over the stops of the corresponding vehicle route Hkv to check all combinations of
insertion positions for the current pickup and drop-off locations. For each of these
combinations, a new assignment ak is created in line 5. We assume that for each
created assignment ak the associated pickup time takpk is the earliest feasible one.
Offering additional pickup times by having vehicles wait has been considered in
preliminary experiments, but without yielding any advantages (see Appendix C.1
for the analysis). The feasibility of a created assignment ak with respect to all
previously defined time and capacity-related constraints is then checked in the if-
clause (line 6). For a feasible assignment, it is next evaluated if no assignment
with the same pickup time takpk has been found yet or if the evaluation function
Epakq constitutes an improvement. If either is true, the assignment becomes part of
the candidate list Ak in line 8. Finally, in the last line, the list of best-evaluated
assignments Ak is returned.

116



5.4 Offer design

5.4.2 Cost function approximation

The design of multi-optional pickup offers requires a decision on the assignments to be
used, taking into account their associated pickup times. Such a decision should ensure
an acceptable offer for the currently requesting traveler and the effective utilization
of the ride-sharing fleet in favor of future ones. To reflect this trade-off, we propose a
parametric CFA following Powell (2022) that allows a deterministic decision objective
to be manipulated to enable anticipatory decision-making. With respect to the
problem at hand, the deterministic objective is to avoid a cancelled request. We
model this objective in the CFA through the probability that a traveler chooses a
pickup option and thus accepts the offer. Moreover, we extend this deterministic
objective towards anticipatory decision-making by adding the approximate routing
effort associated with an offer set. The tuning of an accompanying parameterization
allows the offer design to be balanced between myopic maximization of acceptance
probabilities and anticipatory minimization of routing effort.

The respective offer decision Xk is formally defined in Equation 5.3 given the set of
assignments Ak and the balancing parameter θ. It states that the final pickup time
offer Xk corresponds to the offer OK P Ok that maximizes the balanced sum of the
acceptance probability PpOkq and the routing effort approximated by the function
R̄pOkq.

XkpAk|θq “ arg max
OkPOk

PpOkq ´ θR̄pOkq. (5.3)

To implement the equation, P provides, for each combination of pickup time, the
empirically observed acceptance probability. We assume that corresponding prob-
abilities can be pre-computed, for example, by means of historical booking data
(for the determination in the computational experiments, see Section 5.5.2). The
function R̄, in turn, approximates the routing effort associated with an offer Ok by
computing the weighted sum of the evaluation function Epakq over all assignments
ak P Ok. The weighting reflects the empirically observed probability that a pickup
time takpk will be chosen given the offer set Ok. Finally, the approximated routing
effort is normalized to obtain a scaling comparable to the acceptance probability by
using min-max values observed in preliminary experiments.
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input : Assignments Ak, Balancing-parameter θ,
Acceptance-probabilities PpOkq,
Routing-effort-approximation-function R̄pOkq

output: Offer set Xk

1 Function getOffer(Ak, θ, P, R̄)
2 Xk Ð ∅
3 Ok Ð powersetpAkq

4 for (Ok P Okq do
5 if p|Ok| ď ζq then
6 if pXk ““ ∅ }

7 PpOkq ´ θR̄pOkq ą PpXkq ´ θR̄pXkqq then
8 Xk Ð Ok

9 end
10 end
11 end
12 return Xk

Algorithm 2: Offer Design via CFA

Given the acceptance probabilities P and the routing effort approximation func-
tion R̄, we further detail the offer design implementation in Algorithm 2 with the
assignments Ak and the balancing parameter θ as additional inputs. Based on those
inputs, the algorithm returns the offer set Xk provided to the traveler. In the first
line of the algorithm, the offer Xk is initialized as an empty set. Next, based on the
given set of assignments Ak, the set Ok is created, which contains all potential offer
sets. Afterward, in lines 4-11, the offer decision is made by iterating over all offer sets
Ok P Ok. The first if-clause states that only offers Ok that include a maximum of ζ
assignments, i.e., pickup options, will be considered. Note that this only restricts the
maximum offer size, whereas offers with fewer options are feasible. In the following
loop, an offer Ok is accepted whenever the incumbent offer Xk equals the empty set
or is outperformed with respect to the sum of the acceptance probability PpOkq and
the θ weighted routing effort R̄pOkq. The first condition ensures that, if feasible, at
least one pickup option is provided to avoid the non-service case. The second reflects
the offer decision according to Equation 5.3. Finally, in line 9, the incumbent offer
set Xk is returned.

5.5 Experimental setup

In the computational experiments, we aim to evaluate the performance of the pro-
posed multi-optional offer design by analyzing the capabilities of the CFA and com-
paring its effectiveness with alternative offer concepts. To evaluate the performance,
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we consider the objective function value (i.e., the cancellation rate), as well as metrics
that reflect the routing efficiency from a service operator’s perspective and the offer
quality from the perspective of the transported travelers. With respect to routing
efficiency, we analyze the average driving time per transportation request and the
percentage of travelers sharing part of their transportation. Concerning the offer
quality, we examine the distribution of deviations from agreed and preferred pickup
time. As a basis for these analyses, in the following, we introduce the design of
instances, the traveler’s choice modeling, and the considered benchmark policies.

5.5.1 Instances

The instances were generated in analogy to Haferkamp et al. (2023). The character-
istics of the baseline scenario with regard to the defined service area, transportation
demand, and ride-sharing fleet are presented in the following. Based on this baseline
scenario, several sensitivity analyses were conducted to investigate the robustness of
the results (see Appendix C.3 for details).

Service area

We consider a ride-sharing system operating in Brooklyn New York City (NYC).
Brooklyn is a relatively large urban borough with a high-demand area slightly north
of the center and low-demand areas on the periphery, resembling a prototypical city.
For the simulations, 3000 unique locations in Brooklyn are taken from the January
2014 NYC taxi trip data (NYC Taxi and Limousine Commission, n.d.). Free-flow
travel times between these locations are derived from OpenStreetMap and multiplied
by two to mimic high traffic immanent in this area.

Demand creation

The planning period covers an 8-hour afternoon shift from 14:00 to 22:00. A total of
6400 incoming trip requests is processed per simulation run. Each request involves
the transportation of one traveler. To obtain a realistic temporal and spatial distri-
bution of demand, for each simulation run, samples are drawn from a pool of around
100, 000 trips performed by Uber or Lyft within Brooklyn in September 2019. For
a sampled trip, the reported pickup time is interpreted as the time of the request.
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Furthermore, the exact locations are randomly selected according to the reported
pickup and drop-off zone, subject to a direct travel duration of at least five minutes.

System parameterization

The parameterization of the ride-sharing system comprises the maximum lead time
ψ, the maximum offer size ζ, the maximum pickup delay ω, and the maximum
transportation duration defined by the direct travel time T ppk, dkq times ϵ.

The maximum lead time ψ is assumed to be 30 minutes. This is long enough to
ensure that more than 99% of the requesting travelers receive a pickup offer, while
clearly excluding long-term reservations. Based on the pickup time horizon, the
maximum offer size ζ has been set to 3. This allows for both sufficient coverage and
concise display in a mobile application (see Section 5.6.2 for an analysis).

The service quality is further defined by the maximum pickup time deviation ω

and the maximum transportation duration factor ϵ. Regarding the deviation from
the agreed pickup time, we assume a maximum of ω “ 1 minute. Thus, an additional
stop can only be inserted before a planned pickup if located on the current shortest
path. Finally, for the maximum transportation duration, ϵ “ 1.5 is considered.

Ride-sharing fleet

The ride-sharing system is assumed to operate a fleet of 200 homogeneous vehicles,
with each four traveler seats. At the beginning of the planning period, the vehicles
are randomly distributed among the service area. With respect to vehicle routing,
it is assumed that vehicles are able to divert from their next stop to serve a new
assignment. To this end, in the experiments, out of the 3000 locations considered,
those located on a traveled shortest path are considered as possible deviation points.

5.5.2 Travelers choice modeling

In the following, we describe the modeling of the utility functions for travelers choice
on an offer decision Xk, their characteristics assumed in the baseline scenario, and
the determination of the travelers’ choice probabilities as input for the proposed
CFA.
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Utility function modeling

We assume that a traveler makes a choice upon receiving an offer Xk, based on a
utility function Uk. The function Ukptpkq defines for the requesting traveler the utility
for each expected pickup time tpk P T . For the experiments, we keep the modeling of
the utility functions straightforward by making the following assumptions. First, we
assume that each traveler has exactly one preferred pickup time, which they would
state if they could freely choose. Following this assumption, we secondly assume
that the utility continuously decreases with increasing deviation from the preferred
pickup time until it equals zero. These assumptions yield the following properties of
the utility functions:

(1) Each traveler has one preferred pickup time t˚pk , with Ukpt˚pkq ą Ukptpkq for all
pickup times tpk P T |tpk ‰ t˚pku.

(2) With increasing preference deviation |tpk ´ t˚pk |, the utility Ukptpkq decreases
continuously.

(3) All pickup times with a positive utility Ukptpkq ą 0 are within a time window
rtminpk

, tmaxpk
s.

Given this modeling of the utility functions, determining the pickup time window
rtminpk

, tmaxpk
s as well as the preferred pickup time t˚pk enables the complete definition

of the travelers’ pickup time requirements.

Assumptions on traveler requirements

The distributions of traveler pickup time requirements assumed in the baseline sce-
nario are presented in Figure 5.3. The figure shows the proportion of the requests
for the minute interval between paq request time tk and earliest pickup time tminpk

, pbq

earliest pickup time tminpk
and preferred pickup time t˚pk , and pcq earliest pickup time

tminpk
and latest pickup time tmaxpk

.
Graph paq indicates that most travelers are assumed to be available for pickup

within 10 minutes after requesting transportation, which corresponds to the on-
demand nature of the considered ride-sharing system. Graph pbq illustrates that
the proportion of requests decreases as the time interval between earliest availability
tminpk

and preferred pickup time t˚pk increases, which is consistent with the prevailing
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assumption in the literature that travelers want to be picked up as soon as they
are available. Finally, Graph pcq shows that the length of the pickup time window
rtminpk

, tmaxpk
s is 15 minutes on average. Thus, it is assumed that the majority of

travelers are fairly flexible in terms of their pickup time, which is plausible since
ride-sharing focuses rather on affordable transportation through consolidation than
on an individually tailored service.
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Figure 5.3: Characteristics of Traveler Requirements

Traveler choice probabilities

The traveler choice probabilities are assumed to be pre-computed as inputs to the
CFA. This refers to both the probability that an offer contains an acceptable pickup
time option and the probability that an option will be chosen given a certain set
of pickup time options. To determine these probabilities for the computational ex-
periments, 100 demand scenarios have been evaluated in advance. For each trans-
portation request included in these scenarios, all eligible sets of pickup times were
evaluated to determine if any option would have been chosen and which one so that
the average choice probabilities could be obtained.

5.5.3 Benchmarks

In the computational experiments, we consider three benchmark policies that differ
in the level of information on travelers’ utility function Uk. However, for all three
policies, the considered assignments Ak are determined according to Section 5.4.1.

For the first policy, called no information (NI ), it is assumed that not even proba-
bilistic information on travelers’ utility function Uk is available. Therefore, to max-
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imize the acceptance probability, offer sets Ok are designed to systematically cover
the pickup time horizon. This means for the baseline scenario, with a max offer size
ζ “ 3 and an offer horizon ψ “ 30 minutes, that the three assignments ak P Ak are
selected for which the gap between request time tk and planned pickup time takpk is
closest to 7.5, 15, and 22.5 minutes, respectively.

For the second policy, called preferred pickup information (PPI ), the traveler is
assumed to communicate their favorable pickup time t˚pk . The policy attempts to
accommodate these preferences by selecting the assignment ak P Ak that minimizes
the time gap between the offered pickup time takpk and the preferred pickup time t˚pk .
Consequently, this policy is in a myopic sense traveler-oriented, as routing effort is
neglected to match the preference of the current requesting traveler.

The last policy, perfect information PI, is a theoretical benchmark as it assumes
complete information on travelers utility function Uk. The policy aims at minimiz-
ing cancellations by always selecting the most routing-efficient evaluated assignment
associated with an acceptable pickup time, i.e., the feasible assignment ak P Ak with
tminpk

ď takpk ď tmaxpk
that minimizes evaluation function Epakq.

5.6 Computational results

In presenting the computational results, we first focus on parameter tuning and then
analyze the performance of the proposed CFA against the three benchmark policies.

5.6.1 Parameter tuning

In the following section, we focus on the parameters crucial for the performance of the
CFA: the balancing parameter θ and the maximum offer size ζ. The waiting strategy
and the assignment evaluation parameters α and β are treated in Appendix C.1 and
C.2, since both have only a marginal impact on the performance of the CFA and the
benchmark policies.

Balancing parameter

Tuning the θ parameter is crucial for the well-balanced offer design of the CFA.
A too-low value for θ results in maximizing acceptance probabilities, with initially
very convenient offers at the expense of rapid congestion of the ride-sharing fleet.
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Conversely, a too-high value for θ results in minimizing the approximated routing
effort and thus in an excessive number of cancellations due to unacceptable pickup
time offers.

To find a well-balanced θ, we analyze values between 0 and 4.0 in increments of
0.25. The results in Figure 5.4(a) show the θ-value on the x-axis and on the y-axis as
well as the corresponding average cancellation rates over 100 baseline instances. The
graph shows that between θ “ 0 and θ “ 0.75, the average cancellation rate decreases
significantly from 9.6% to 7.2% and then increases continuously until it reaches a
cancellation rate of 9.2% at θ “ 4.0. The development of the curve illustrates the
importance of the balance parameter θ on the performance of the CFA, with θ “ 0.75

providing the best trade-off with respect to minimizing cancellations.
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Figure 5.4: Tuning of the Balancing Parameter

In addition to the overall cancellation rate, we analyze whether the best value of θ
varies as a function of the demand volume. Accordingly, Figure 5.4(b) illustrates the
cancellation rate over the planning horizon for the minimum, maximum, and best
evaluated θ value.

All three curves clearly show that cancellations, and hence demand, are compar-
atively low at the beginning of the planning horizon and have a peak in the second
half. While the three curves are structurally similar, it is noticeable that at θ “ 0

and θ “ 0.75 the cancellation rates are comparably low at the beginning of the plan-
ning horizon. However, as the planning horizon progresses, they increase less sharply
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at θ “ 0.75 and θ “ 4. This result indicates that a well-chosen balancing param-
eter ensures both acceptable offerings during low-demand periods and the effective
utilization of the fleet to minimize cancellations during high-demand periods.

In summary, balancing acceptance probabilities and routing effort with a fixed
parameter significantly improves the performance of a ride-sharing system even under
temporally varying demand volume.

Offer size

In the following, we analyze how the restriction of the maximal offer size affects
the performance of the CFA. For this purpose, again 100 baseline instances with a
maximum offer size ζ of 1, 2, and 3 have been solved. The results are shown in
Figure 5.5(a) in terms of average cancellation rates and in Figure 5.5(b) for ζ “ 3

in terms of average realized offer sizes across the sensitivity analyses presented in
Appendix C.3.

Focusing first on the average cancellation rates presented in Figure 5.5(a), it can
be observed that an increase of the maximum offer size from one to two options
reduces the cancellation rate by 5.1%, while a further increase to three options only
reduces it by 0.4%. This result indicates that three pickup time options are sufficient
to cover the considered pickup time horizon.
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125



Chapter 5 Design of multi-optional pickup time offers in ride-sharing systems

Turning to the average realized offer sizes for ζ “ 3, shown as a boxplot in Fig-
ure 5.5(b), it becomes apparent that the average provided number of options varies
greatly depending on the scenario. For example, the outlier with only two pickup
time options on average belongs to a scenario assuming more flexible travelers. The
offer design via the CFA thus ensures that fewer options than feasible are offered
when advisable. However, apart from the offer design, the limited availability of
alternative assignments may also contribute to a lower average offer size.

In summary, a maximum of three options is sufficient to cover the considered
pickup time horizon, with the offered number of options often being lower in favor
of better-rated offers or due to a lack of assignment alternatives.

5.6.2 Performance evaluation

In the following, the performance of the proposed CFA is evaluated against the
benchmark policies using 100 newly generated instances of the baseline scenario. The
additionally conducted sensitivity analyses yielded structurally comparable results
and are therefore reported in Appendix C.3.

Regarding the evaluation metrics introduced in Section 5.5, we first analyze the
performance in terms of the objective function value, i.e., the cancellation rate.
Secondly, we focus on the routing efficiency by analysing the average driving time
per transportation request and the average percentage of shared transports. Finally,
we consider the offer quality via the distributions of the deviation of agreed and
preferred pickup time.

Analysis of the objective function values

The objective function value is represented by the average cancellation rate, which in-
dicates how frequent travelers received an inconvenient respectively infeasible pickup
time offer. The corresponding results for the four considered policies are shown in
Figure 5.6(a) for the baseline scenario as well as in Figure 5.6(b) across the sensitivity
analyses presented in Appendix C.3.

Focusing first on the results of the baseline scenario, the average cancellation rate
is lowest for PI at 5.7%. For CFA, it increases by only 1.5%, while for PPI and NI
by 5.4% and 4.2%, respectively. A similar pattern can be observed in Figure 5.6(b)
with respect to the median cancellation rates across the sensitivity analyses. Fur-
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thermore, the interquartile ranges and the whiskers indicate a lower variance in the
average cancellation rate for PI and CFA compared to PPI and NI. These results
demonstrate that PI and CFA outperform PPI and NI with respect to both the
level of cancellations and the robustness to different scenarios.
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Figure 5.6: Comparison of Objective Function Values

Summarized, the results indicate that the CFA performs close to the theoretical
benchmark PI. Moreover, it significantly outperforms both PPI ’s single-option offers
based on preferred pickup time and NI ’s systematic multi-optional offer design. The
results thus highlight the value of state-dependent multi-optional pickup time offers.

Analysis of the vehicle routing efficiency

In the following, we analyze the average driving time per transportation request and
the average percentage of shared transports to evaluate how efficiently the vehicle
resources are utilized by the four policies.

For the average driving time per transportation request shown in Figure 5.7(a),
the PI again performs best with an average of 12.3 minutes per transport. For CFA,
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the value increases by only 0.5 minutes, while for PPI and NI it increases by 1.4 and
2.5 minutes, respectively. This implies that the lower cancellation rates for PI and
CFA are associated with a more time-efficient fulfillment of transportation requests.

Turning to the average percentage of shared transports, shown in Figure 5.7(b),
we can notice that the rate for CFA is the highest being improved by 2% compared
to PI as well as by 3.3% and 4.5% compared to PPI and NI. The CFA thus exploits
given consolidation opportunities in comparison more extensively.
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Figure 5.7: Comparison of the Routing Efficiency

In summary, the proposed CFA ensures a time-efficient vehicle routing by the suc-
cessful consolidation of transportation requests. In contrast, PPI and NI perform
significantly worse on both routing efficiency metrics. This indicates that both offer-
ing preferred pickup times and offering three pickup time options systematically is
very resource-intensive and results in inefficient utilization of the ride-sharing fleet.

Analysis of offer quality

Finally, we analyze to what extent preferred pickup times are met as an indicator of
the offer quality from the perspective of transported travelers. To this end, Figure 5.8
shows the distribution of the deviation between agreed and preferred pickup time in
minutes for the four policies.
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Figure 5.8: Comparison of the Preferred Pickup Time Deviation per Transported
Traveler

First, it is remarkable that for PPI, the overwhelming majority of the travelers
have been offered approx. their preferred pickup time (˘1 minute). In contrast, the
distributions of CFA and NI resemble a normal distribution with a deviation of up to
˘10 minute at the tails. Lastly, for PI, the distribution is again considerably flatter,
with the majority of pickups occurring before the preferred time, with a deviation
of up to 17 minutes.

It can be concluded that accommodating preferred pickup times, as in PPI, results
in travelers receiving either a very convenient pickup time offer or an infeasible one.
In contrast, exploiting information on travelers’ individual pickup time requirements,
as in PI, allows for minimizing cancellations at the expense of more inconvenient
offerings. The proposed CFA offers a trade-off by accommodating travelers’ preferred
pickup time better than PI while offering more travelers an acceptable pickup time
than PPI.
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5.7 Final remarks

In this paper, we have introduced the new stochastic and dynamic problem of de-
signing multi-optional pickup time offers in ride-sharing systems. We have proposed
a CFA to balance offer acceptance probability and the associated routing effort. In
comprehensive computational experiments, we have shown that the CFA provides a
powerful trade-off between minimizing canceled requests and accommodating trav-
elers preferred pickup time. The results further highlight the advantage over a sim-
plistic offer design that systematically covers the pickup time horizon. Moreover,
we have found that exploiting information about travelers’ individual pickup time
requirements either allows for further minimization of the cancellation rate at the
expense of less convenient pickup times or the offering of more convenient pickup
times at the expense of more cancellations in the long run.

In this work, we have addressed the trade-off between acceptance probability and
routing effort and presented an effective method to find their balance. To this end,
we have relied on a straightforward choice model based on utility functions. Future
work may derive more sophisticated discrete choice models from real data, perhaps
considering heterogeneous classes of travelers.

Furthermore, we have focused on pickup times as a decisive feature of transporta-
tion offers. Future work might extend the offer design through dynamic pricing to
nudge travelers’ choice toward resource-efficient options. Alternatively, the offer de-
sign could be enhanced in complexity by additional non-monetary features, such as
different service modes, vehicle types, and long-term reservations.

Finally, in our experiments, we shown the effectiveness of multi-optional pickup
time offers based on probabilistic information about travelers’ pickup time require-
ments compared to benchmarks that exploit different levels of information. Future
research could build on our work by comparing the CFA with other sophisticated ap-
proaches that originate, for example, in the fields of machine learning or assortment
optimization.
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Conclusion

In this thesis, we have developed non-monetary approaches for demand management
and vehicle routing in dynamic ride-sharing systems that involve travelers or drivers
in the decision-making processes of demand management and vehicle routing. In
the following, we summarize the contributions of the chapters and conclude with an
outlook on potential future work.

6.1 Summary

We summarize the four main chapters and highlight their contribution to the three
research questions defined in the introduction.

Chapter 2 focuses on the efficient integration of myopic feasibility checks and re-
optimization by means of a large neighborhood search. The computational results
show that the proposed approach is able to improve the level of service in comparison
to a travel-time minimizing insertion heuristic, even with very limited computational
time. However, the results also reveal that these improvements decrease as the service
quality requirements increase. Moreover, re-optimization has the disadvantage that
travelers and drivers cannot receive reliable information about expected pickup and
drop-off times or the upcoming route plan.

With respect to RQ1, the presented approach provides a first non-monetary means
for demand management and vehicle routing in dynamic ride-sharing systems. While
it shows some merits with respect to an efficient improvement of the system perfor-
mance, the disadvantage of myopic decisions in general and regarding re-optimization
in particular highlight the need for more advanced approaches.

Chapter 3 provides a corresponding classification of the related literature and a
comprehensive computational study to analyze the opportunities and implications
of advancing either demand and/or fulfillment control. The computational results
demonstrate that advanced demand control through selective request acceptance af-
fects ride-sharing systems quite differently than advanced fulfillment control through
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anticipating future transportation requests. With advanced demand control, the
opportunities to reduce request cancellations increase with an increase in demand
surplus. In other words, for selective acceptance to be effective, the number of rejec-
tions must be sufficiently high. In this respect, area-wide improvements come at the
detriment of travelers in peripheral areas, where the availability of service decreases
drastically. In contrast, for advanced fulfillment control, increasing opportunities
have been observed with decreasing demand surplus. It is thus particularly effective
when demand can be largely satisfied. The potential improvements here come at the
cost of longer detours for travelers, i.e., along with a more comprehensive consolida-
tion. The combination of both advancements yields a considerably improved service
level regardless of the demand surplus, however, the disadvantages for travelers are
likewise accumulating.

With respect to RQ1, the literature classification highlights the variety in which
non-monetary demand management and vehicle routing can be integrated. Consid-
ering RQ2, the results of the computational study indicate that opportunities for
operators and the implications for travelers differ considerably between demand and
fulfillment control. In particular, it can be concluded that demand management
through selective acceptance leads to a systematic disadvantage of travelers in cer-
tain areas, while it cannot be effectively applied to satisfy a very high percentage
of demand. In contrast, corresponding opportunities have been identified for ad-
vanced vehicle routing, associated with an improved consolidation of transportation
requests.

Chapter 4 builds on the opportunities identified for advanced vehicle routing in
Chapter 3 by proposing heatmap-based decision support for repositioning in decen-
tralized ride-sharing systems. The heatmaps indicate repositioning opportunities for
individual drivers by combining adaptively learned information about the expected
demand with state-dependent information about the distribution of competing idle
drivers and the location of the requesting driver. In a comprehensive computa-
tional evaluation, the merits of this approach have been demonstrated. In a scenario
with compliant drivers, it was first shown that heatmaps can help minimize cancel-
lations and ensure a more reliable service availability throughout the service area
while reducing variability in driver income. Furthermore, several scenarios with non-
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compliant drivers were investigated, showing potential for and against deviating from
heatmap recommendations.

With respect to RQ1, the carefully designed heatmaps provide a non-monetary ap-
proach to balance supply and demand in decentralized ride-sharing systems. In terms
of RQ2, the computational results demonstrate that the repositioning heatmaps can
be beneficial to operators, travelers, and drivers. Finally, with regard to RQ3, the
results suggest that engaging drivers by providing them with an overview of repo-
sitioning opportunities could in particular benefit inexperienced drivers and could
thus help to keep them operating for the ride-sharing system.

Lastly, Chapter 5 focuses on an alternative to the selective acceptance considered
in Chapter 3 by proposing a non-monetary approach to demand management in
which travelers are offered multiple pickup options to choose from. To design these
offer sets, a parametric cost function approximation has been proposed that balances
acceptance probability with the approximated routing effort. In an extensive com-
putational study, the advantages of this approach were demonstrated in comparison
with benchmarks that exploit different levels of information about travelers’ pickup
time requirements. The results indicate that the proposed offer design provides a
favorable balance between minimizing cancellations and meeting travelers’ pickup
time preferences.

Regarding RQ1, multi-optional pickup offers are proposed as a soft approach to
effectively managing demand in dynamic ride-sharing systems. With respect to RQ2,
it has been shown that those offers are able to improve both system performance and
the service received by travelers. As to RQ3, it highlights the potential benefits of
involving travelers in the decision-making process by offering a well-selected set of
options.

6.2 Outlook

In this thesis, we have shown how non-monetary approaches to advanced demand
management and vehicle routing can help improve both the performance of dy-
namic ride-sharing systems and the service/working conditions experienced by trav-
elers/drivers. The developed approaches thus present alternatives to the related
literature that relies on centralized decision-making ignoring the interests of travel-
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ers and drivers. Based on our findings, three primary areas for potential future work
can be identified.

First, in this thesis, we have modeled traveler and driver decisions based on some
reasonable assumptions. Future work may develop more sophisticated choice models
based on real-world data. Such models, in turn, would create new opportunities for
the design of the decision policies. In this context, it would be interesting to inves-
tigate to what extent the consideration of the circumstances of a request together
with the corresponding choice probabilities allows for individually tailored decisions.
This would in turn raise the question of whether such an advancement would be
used to improve the performance of the ride-sharing system and/or to better meet
the individual preferences of the requesting traveler/driver.

Second, for the sake of clarity, we have restricted ourselves to constant travel
times, a homogeneous fleet, and transportation requests that differ only in terms of
request time and trip. However, future work may further increase the complexity
by considering additional features to better reflect the real-world requirements and
the diverse mobility needs. This could include, for example, stochastic travel times,
multiple vehicle types with, for example, different numbers of seats or spaces for
wheelchairs as well as more diverse transportation requests with respect to vehicle
or transportation requirements. However, given the diverse potential extensions,
future work may also involve analyzing which features actually change the decision
problems to the extent that new innovative solution approaches are required.

Last, like most of the related literature, we focused on the management of ride-
sharing systems facing peak demand in dense urban areas. In contrast, future work
might consider reducing the reliance on private cars in rural areas. The recent fund-
ing of mobility projects with a focus on rural areas by the German Federal Ministry
of Digital and Transport has shown that there is still a great need for correspond-
ing solutions (BMDV, 2022). The emphasis in this research might be less on very
resource-intensive on-demand systems, but rather on increasing flexibility in pub-
lic transport through sophisticated reservation systems, for example. Such systems
would in turn require non-monetary approaches that integrate demand management
and vehicle routing with the aim of providing passengers with reliable and more
flexible public transport in a resource-efficient manner.
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Appendix

A An efficient insertion heuristic for on-demand
ride-sharing services

A.1 Parameter tuning

The parameter tuning of the LNS is based on the Resource Demand Ratio sensitivity
analysis. 10 instances generated for parameter tuning are solved five times, each
time with an adapted fleet size. For feasibility check and re-optimization in the
scope of Basic Control, and Advanced Demand Control the tuning of the parameters
is based on Basic Control. For Advanced Fulfillment Control, a separated tuning is
performed, since considerably more requests have to be handled during a feasibility
check and the final optimization. Regarding the TOP, the parameter tuning is based
on Advanced Control. The resulting values are mostly applied as well to solve the
TOP as favorability check within Advanced Demand Control. However, the number
of required iterations β and thus the computational effort is determined separately.

The number of iterations as termination criterion has a particular impact on the
solution quality and the computing time. We define a reasonable maximum number
of iterations β as follows. We begin with an overly large number and then check
the last iteration yielding a new best solution. The final number of iterations is
then determined in dependence of its magnitude by rounding up to the next number
divisible by 100, 1000, or 10000. The results of this procedure are summarized in
Table A.1. At the beginning, the percentage of trips removed per iteration is set
to γ1 “ 0.3 and γ2 “ 0.4 following Ropke & Pisinger (2006), and the noise for the
operators is set to a medium level of δ1 “ 4 and δ2 “ 4.

Policy Case Final β Test β I Last successful iteration per fleet size
2 6 10 14 18

Basic Control Feasibility check 100 1000 1 2 5 5 11
Re-optimization 200 1000 0 1 8 24 126

Advanced Demand Control TOP 3000 3000 2895 2995 2995 2996 2999

Advanced Fulfillment Control Feasibility check 1000 2000 260 531 728 910 719
Final optimization 10000 10000 3 1245 6283 9713 9778

Advanced Control TOP 30000 40000 4770 15195 15288 27235 15306

Table A.1: Number of Iterations
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It can be observed that the values vary considerably, which is due to the different
number of replannable requests and the differences between single and repeated ex-
ecution. Overall, a reasonable value of β could be determined for most of the cases.
An exception is the TOP in case of Advanced Demand Control. Here, improvements
are still found for all fleet sizes close to the last iteration. A further increase of the
number of iterations was omitted, since the tested β values already induce signifi-
cant computational effort. However, since this check is simply intended to determine
whether a trip is favorable, i.e. whether it can be easily integrated together with
current and future requests, there is no need to focus on exceptional solution quality.

Further parameter values are determined by the acceptance rate calculated across
all instances. The first parameter values are γ1 and γ2, which control the minimum
and maximum percentage of requests to be removed per iteration. To determine
these two parameters, values between γ1 “ 0.1, γ2 “ 0.2 and γ1 “ 0.7, γ2 “ 0.8

were tested for the same LNS cases as before. It turns out that in cases with a
high number of replannable requests, lower values and thus smaller changes in the
solution are advantageous. The acceptance rate for these cases differs up to 4%. In
the opposite case, with only a few replannable requests, higher values are slightly
advantageous, however, the differences are small. Based on these results, for the
insertion and re-optimization in the case of Basic Control and Advanced Demand
Control, γ1 “ 0.7, γ2 “ 0.8 is applied. For both TOP as well as the insertion
and final optimization of Advanced Fulfillment Control, we set γ1 “ 0.1, γ2 “ 0.2.
Regarding the noise parameters δ1 and δ2, which are applied in the worst-removal
and the regret-2 operator, no noise (δ1andδ2 “ 0), medium noise (δ1andδ2 “ 4) and
a high degree of noise (δ1andδ2 “ 8) are examined separately. However, a significant
influence on the acceptance rate could not be determined. Since the results were
best for all examined cases when using a medium noise (δ1andδ2 “ 4), this value is
selected for the experiments. For detailed results of the tuning of γ1, γ2, δ1, and δ2

see Table A.2, A.3, and A.4.
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γ1 ´ γ2
Advanced Control Advanced Fulfillment Control Basic Control

TOP Feasibility check &
final optimization

Feasibility check &
re-optimization

10% - 20% 64.4% 54.0% 44.4%
30% - 40% 63.9% 53.3% 44.5%
50% - 60% 61.8% 51.5% 44.5%
70% - 80% 61.4% 50.5% 44.6%

Table A.2: Percentage of Requests Removed per Iteration

Values
Advanced Control Advanced Fulfillment Control Basic Control

TOP Feasibility check &
final optimization

Feasibility check &
re-optimization

δ1 “ 0 64.2% 53.8% 44.6%
δ1 “ 4 64.4% 54.0% 44.7%
δ1 “ 8 64.3% 53.6% 44.6%

Table A.3: Noise Value Regret-2 Insertion

Values
Advanced Control Advanced Fulfillment Control Basic Control

TOP Feasibility check &
final optimization

Feasibility check &
re-optimization

δ2 “ 0 64.3% 53.7% 44.6%
δ2 “ 4 64.4% 54.0% 44.7%
δ2 “ 8 64.4% 53.8% 44.6%

Table A.4: Noise Value Worst-Removal
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A.2 Computational results
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Figure A.4: Temporal Demand Density: Quality of Service per Trip
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B Heatmap-based decision support for repositioning in
ride-sharing systems

B.1 Details of MPC benchmark

Even though the implementation of MPC is based on Pouls et al. (2020), there are
some differences. The first concerns the representation of the service area: To ensure
comparability with the other policies, we define subareas for each repositioning loca-
tion instead of using a grid. Thereby, each location belongs to the area of the nearest
repositioning location in terms of travel time. Another difference is the prediction
of the expected demand. Instead of reactive or perfect demand, we determine the
expected demand by taking the average of the demand that occurred in preliminary
simulations. Finally, there is a difference in the execution of the repositionings de-
termined by the model. This has been adapted so that drivers always move directly
to the repositioning locations, while the assignment of which driver performs which
repositioning is performed by a second travel-time minimizing model. Regarding the
extensive parameterization of the first model, the original values are used, except for
the two parameters that differ depending on the service area. These two parameters
which indicate how many requests can be fulfilled between two repositioning periods
and the distance over which a repositioning location can cover the demand of another
repositioning location were tuned sequentially for Manhattan and Brooklyn as part
of preliminary simulations.

B.2 Driver decision modeling details

With respect to time savers and time investors, the repositioning duration θ̄rk is
reused for the driver-specific values urjk. Thus, for time investors, urjk “ ⋉rk ˆ θ̄rk.
In contrast, for time savers the normalized repositioning duration θ̄k is converted
resulting in urjk “ ⋉rk ˆ p1 ´ θ̄rkq.

For supply-driven and demand-driven drivers, the urjk values are approximated
in a similar way as the distribution of unoccupied drivers b̄k used in RH. However,
the expected supply distribution prk captures the entire fleet by counting for each
repositioning location r P R how many times it is nearest to a current vehicle loca-
tion nk. Likewise, for the expected demand distribution qrk, it is determined how
many pickup requests are expected in the next 10 minutes in the vicinity of each
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repositioning location r P R. Furthermore, both supply distribution prk and de-
mand distribution qrk are min-max normalized to ensure comparable scales. Thus,
for demand-driven drivers urjk “ ⋉rk ˆ q̄rk, whereas for supply-driven drivers the
normalized values p̄rk are additionally converted, resulting in urjk “ ⋉rk ˆ p1 ´ p̄rkq.

For inexperienced drivers, the urjk values are determined identically as for time
savers purjk “ ⋉rk ˆ p1 ´ θ̄rkqq. In case of experienced drivers, the driver-specific
values are defined based on time investors and demand-driven drivers as follows:
urjk “ ⋉rk ˆ θ̄rk ˆ q̄rk.

B.3 Cancellation rates over time

We have seen that our RH-based guidance reduces the average daily cancellation
rates significantly. In the following, we analyze the rates over time. The average
values are shown in Figure B.1. We observe that both RH and MPC reduce the
cancellation rates at every point of time compared to NR. Furthermore, we see the
high-demand rush-hour peak with increased cancellations around hours 18 to 20.
Compared to NR, RH can reduce the peak substantially. This confirms the particular
value of anticipation to prepare for demand peaks as also observed by Brinkmann
et al. (2019) for ride-sharing systems.
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Figure B.1: Cancellations Rates per Hour
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B.4 Sensitivity analysis

We present a sensitivity analysis for a set of instance parameters. We first analyze
different routing and assignment procedures. We then have a look at different levels of
user patience and conclude with results where the number of repositioning locations
vary. For all settings, we report the cancellation rates, the empty driving time, the
direct rides (without detours), the average waiting time, and the average detour time.

Routing In our experiments, we assumed that drivers can divert from their next
stop to serve a new request. We denote this routing as “flexible”. We compare
this to a routing where drivers can only receive an assignment at a stop, e.g., due
to safety restrictions, and call this “stop-based”. The detailed results are shown in
Table B.1 (bold entries indicate the best values in a setting, italic entries the best
global values). We observe that our policy is superior regardless of the routing.
However, with flexible routing, the cancellation rates can be further decreased, as
expected and also observed by Ulmer et al. (2017). Notably, besides more services,
also the service quality increases as the number of direct rides goes up while waiting
time and detour decrease.

Stop-based Flexible
NR RH MPC NR RH MPC

Manhattan

Cancellation rate 13.6% 4.6% 5.0% 13.4% 3.6% 3.7%
Empty driving time 12.6% 28.2% 22.3% 10.8% 24.9% 20.6%
Direct rides 19.1% 21.3% 19.7% 10.1% 15.8% 13.0%
Avg. waiting time in min 5.7 5.2 5.4 5.4 4.7 4.7
Avg. detour in min 4.3 4.1 4.2 5.0 4.5 4.6

Brooklyn

Cancellation rate 13.8% 8.1% 9.4% 13.0% 6.0% 6.5%
Empty driving time 16.1% 26.1% 24.2% 13.2% 23.3% 21.0%
Direct rides 29.4% 30.2% 28.0% 14.4% 18.9% 16.2%
Avg. waiting time in min 6.0 5.9 6.2 5.4 5.2 5.4
Avg. detour in min 3.5 3.5 3.6 4.6 4.2 4.4

Table B.1: Performance under Alternative Routing Strategies
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Regarding the evaluation under non-compliance, we analyze the impact of the
routing strategy for split fleets with partially non-compliant drivers. Figure B.2
shows the system-wide increase in cancellations and Figure B.3 shows the change in
earnings per driver group, both relative to the respective full-compliance case. In
Figure B.2, it can be observed that the system performance decreases significantly
more for stop-based routing. Furthermore, Figure B.3 shows that advantages and
disadvantages in earnings are reversed depending on the routing strategy. For exam-
ple, time investors benefit greatly from the possibility of deviation, while time savers
do best under a stop-based routing. In summary, routing has a major impact on
how non-compliance affect both system and driver performance.Manhattan Brooklyn

+2.12%

+0.40%

Stop-based  Flexible

+0.38%

+0.14%

Stop-based  Flexible

Rounting: Repositioning Time

(a) Time-Savers/-Investors
Manhattan Brooklyn

Rounting: Demand/Supply

+0.29%
+0.10%

Stop-based  Flexible

+1.67%

+0.23%

Stop-based  Flexible

(b) Supply-/Demand-Driven

Figure B.2: Cancellation Rates under Alternative Routing Strategies Relative to the
Full Compliance Case

Assignment Next, we analyze how our RH performs with different assignment
strategies. In our experiments, we presented an assignment strategy that balances
flexible assignments (minimum pickup time) with consolidation (minimize increase
in travel time). The results can be found in Table B.2. We observe that our RH-
based guidance is superior regardless the assignment. The results further confirm
that assignment strategies should carefully balance a flexible fleet setup with efficient
routes as also observed by Ulmer et al. (2021). Interestingly, the average waiting time
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and the detour time are the smallest with the flexible assignment. The explanation
is twofold. First, we serve fewer customers, thus the relative resources per service
are higher. Second, in the flexible case, we send the nearest vehicle.
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Figure B.3: Split fleets under Alternative Routing Strategies: Earnings for Compliant
Drivers Competing with Partial Non-Compliant Drivers

In addition to full compliance, we evaluate non-compliance under different as-
signment strategies using the example of split fleets with partially non-compliant
drivers. Figure B.4 shows the increase in cancellations relative to the corresponding
full-compliance case. The increase is particularly low for the flexible strategy and
comparable for the balanced and consolidation strategy. This can be attributed to
the already significantly higher cancellation rates for the full-compliance case with
flexible assignment. In addition, Figure B.5 illustrates the change in earnings per
driver group, again relative to the full-compliance cases. Here it can be noticed that
also the earning advantages and disadvantages are less pronounced for flexible assign-
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ment. Moreover, the trend is mostly contrary to consolidation, while, as expected,
balance represents an intermediate strategy. In summary, the assignment strategy
can play an important role in the evaluation of non-compliant decision-making.

Flexible Balanced Consolidation
NR RH MPC NR RH MPC NR RH MPC

Manhattan

Cancellation rate 11.8% 5.8% 5.8% 13.4% 3.6% 3.7% 14.1% 3.8% 3.9%
Empty driving time 11.1% 23.8% 18.6% 10.8% 24.9% 20.6% 10.8% 22.5% 20.0%
Direct rides 15.7% 20.0% 17.4% 10.1% 15.8% 13.0% 7.1% 9.9% 8.6%
Avg. waiting time in min 4.6 4.0 4.1 5.4 4.7 4.7 6.3 6.1 6.1
Avg. detour in min 4.5 4.1 4.2 5.0 4.5 4.6 5.2 4.9 5.0

Brooklyn

Cancellation rate 12.9% 8.5% 8.7% 13.0% 6.0% 6.5% 13.8% 6.2% 6.7%
Empty driving time 13.9% 22.0% 19.5% 13.2% 23.3% 21.0% 13.3% 22.7% 21.3%
Direct rides 17.6% 20.0% 17.8% 14.4% 18.9% 16.2% 12.8% 15.9% 14.8%
Avg. waiting time in min 4.8 4.6 4.8 5.4 5.2 5.4 6.1 6.2 6.2
Avg. detour in min 4.4 4.1 4.3 4.6 4.2 4.4 4.7 4.4 4.5

Table B.2: Performance under Alternative Assignment Strategies

Manhattan Brooklyn

Assignment: Repositioning Time

+0.04%
+0.10% +0.14%

Flexible Balanced Consolidation

+0.01%
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Assignment: Demand/Supply

+0.11%

+0.40% +0.37%
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+0.05%
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Figure B.4: Cancellation Rates under Alternative Assignment Strategies Relative to
the Full Compliance Case
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Figure B.5: Split fleets under Alternative Assignment Strategies: Earnings for Com-
pliant Drivers Competing with Partial Non-Compliant Drivers

Maximum waiting time In our experiments, we assumed that users wait at most
10 minutes to be picked up. In the following, we analyze how the performance of the
RH changes when users are more patient (15 min) or less patient (5 min). The results
are shown in Table B.3. As expected, with increasing patience, the service level goes
up and more users are consolidated. Again, regardless of the level of patience, our
RH performs best and outperforms the NR-strategy significantly.
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5 minutes 10 minutes 15 minutes
NR RH MPC NR RH MPC NR RH MPC

Manhattan

Cancellation rate 27.0% 10.3% 10.2% 13.4% 3.6% 3.7% 5.2% 1.4% 1.4%
Empty driving time 9.6% 26.7% 22.1% 10.8% 24.9% 20.6% 11.7% 23.7% 20.2%
Direct rides 16.5% 22.3% 19.1% 10.1% 15.8% 13.0% 8.6% 13.7% 11.6%
Avg. waiting time in min 3.0 3.0 3.0 5.4 4.7 4.7 7.6 5.9 6.0
Avg. detour in min 4.2 3.7 3.9 5.0 4.5 4.6 5.2 4.7 4.9

Brooklyn

Cancellation rate 31.0% 18.4% 21.3% 13.0% 6.0% 6.5% 6.0% 2.6% 2.7%
Empty driving time 11.4% 26.7% 23.7% 13.2% 23.3% 21.0% 13.6% 22.9% 20.2%
Direct rides 26.9% 32.4% 28.4% 14.4% 18.9% 16.2% 11.3% 15.4% 13.0%
Avg. waiting time in min 3.0 3.0 3.0 5.4 5.2 5.4 7.5 6.9 7.0
Avg. detour in min 3.5 3.1 3.3 4.6 4.2 4.4 5.0 4.6 4.8

Table B.3: Sensitivity Analysis of the Maximum Waiting Time

Number of repositioning locations Finally, we analyze how the number of
repositioning locations impacts the performance of our RH. In our experiments, we
used 100 locations for potential repositioning. Now, we also analyze instances with 60
and 20 locations. The results are shown in Table B.4. Again, our method performs
best regardless the setting. Further, the performance usually increases when the
number of locations go up, as also repositioning flexibility increases.

#20 #60 #100
NR RH MPC NR RH MPC NR RH MPC

Manhattan

Cancellation rate 12.2% 5.0% 6.4% 13.5% 5.4% 6.1% 13.4% 3.6% 3.7%
Empty driving time 11.6% 22.5% 23.0% 10.9% 24.7% 26.1% 10.8% 24.9% 20.6%
Direct rides 10.4% 11.1% 10.2% 10.1% 14.4% 13.4% 10.1% 15.8% 13.0%
Avg. waiting time in min 5.3 5.1 5.4 5.4 4.8 5.1 5.4 4.7 4.7
Avg. detour in min 5.0 4.8 4.9 5.0 4.6 4.6 5.0 4.5 4.6

Brooklyn

Cancellation rate 13.4% 8.0% 15.1% 12.9% 6.1% 7.2% 13.0% 6.0% 6.5%
Empty driving time 13.2% 22.3% 22.4% 13.4% 24.4% 23.0% 13.2% 23.0% 21.0%
Direct rides 14.3% 15.9% 12.9% 14.5% 19.0% 16.8% 14.4% 18.9% 16.2%
Avg. waiting time in min 5.4 5.7 6.2 5.4 5.3 5.4 5.4 5.2 5.4
Avg. detour in min 4.6 4.4 4.7 4.6 4.2 4.4 4.6 4.2 4.4

Table B.4: Sensitivity Analysis of the Number of Repositioning Locations
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B.5 Dynamic fleet size

In our main experiments, we assumed that the size of the fleet stays constant over
the course of the day. This allowed a clean analysis of our methodology and dif-
ferent driver behavior. However, in reality, fleet sizes may change dynamically as
drivers leave or enter the system. To analyze the performance of our algorithm un-
der dynamic fleet size, we run an additional experiment. In this experiment, with a
certain probability, a driver leaves and/or enters every minute. We vary the likeli-
hood between 0% and 80% in steps of 20%. While the expected number of drivers
available for assignments remains the same overall (200), during some times of the
day, we observe significantly more drivers (up to 238 in our experiments) or fewer
drivers (minimum 157 in our experiments). We assume that a driver completes
the remaining assigned services before leaving the system. Furthermore, for a new
driver entering the system, a location is drawn randomly from the set of locations
in the service area. We compare the cancellation rates with the NR-policy and the
MPC-policy.
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Figure B.6: Dynamic Fleet Size

The results for Manhattan and Brooklyn are shown in Figure B.6. The x-axis
depicts the probability of a driver leaving and/or entering per minute. The y-axis
depicts the performance of the three policies. We make two observations. First, the
performance of our RH-policy is superior to NR and comparable to MPC regardless
the instance setting. This indicates that our policy is also suitable for cases when the
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fleet size changes dynamically. Second, the cancellation rate decreases with increasing
probability of drivers leaving or entering the system. This can be explained as follows.
On the one hand, drivers need to finish their assigned services before leaving the
system, while new, unoccupied drivers are joining, resulting in more available driver
resources overall. On the other hand, drivers leave the system at the location of the
last completed service, while new drivers enter the system randomly over the service
area causing a natural balancing of the fleet regardless of the applied policy. While
the former causes performance to improve under all policies, the latter causes the gap
between NR and the two actively repositioning policies MPC and RH to decrease as
fleet volatility increases.
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C Design of multi-optional pickup time offers in
ride-sharing systems

C.1 Evaluation of vehicle waiting strategies

For the determination of potential pickup time offerings for the CFA and the three
benchmark policies, two vehicle waiting strategies have been examined. For the first
one, vehicle waiting is allowed to postpone pickup times, as long as no temporal
constraint is violated. For the second one, vehicle waiting is excluded, so that only
the earliest feasible pickup time is considered.

PI PPI CFA NI
Yes 5.95% 11.04% 7.65% 9.92%
No 6.10% 11.46% 7.25% 9.86%

Table C.1: Waiting to Postpone Pickup Times

The results in terms of the average cancellation rate over 100 instances are com-
pared for both variants in Table C.1. It can be observed that the influence of the
waiting strategy is rather low for all four policies. However, allowing vehicles to wait
to postpone pickups is slightly beneficial for the PI and PPI and slightly detrimental
for the CFA and NI. This can be attributed to the fact that in PI and PPI, vehicles
wait according to reliable information on travelers’ requirements and preferences, re-
spectively. Consistent with the results, waiting is allowed in all further experiments
for PI and PPI, while excluded for CFA and NI.

C.2 Parameter tuning for the assignment evaluation

For the tuning of the assignment evaluation parameters α and β, values between 0
and 1 were tested, respectively.

The average cancellation rates are shown in Table C.2, with the best result high-
lighted in bold for each policy. For PI, α “ 1.0 and β “ 0.5 is the most promising
combination, focusing on a short fulfillment duration rather than on consolidating
transportation requests. For PPI and CFA, the performance is best with an equal
weighting. Finally, NI yields a marginally lower average cancellation rate if the
consolidation of transportation requests is considered slightly more important. The
corresponding parameter values are the basis for further computational experiments.
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PI PPI CFA NI
α “ 0.0 β “ 1.0 6.79% 11.21% 7.60% 9.95%
α “ 0.25 β “ 1.0 6.47% 11.17% 7.43% 9.91%
α “ 0.5 β “ 1.0 6.14% 11.12% 7.36% 9.87%
α “ 0.75 β “ 1.0 6.10% 11.10% 7.27% 9.85%
α “ 1.0 β “ 1.0 5.95% 11.04% 7.25% 9.86%
α “ 1.0 β “ 0.75 5.80% 11.12% 7.26% 9.93%
α “ 1.0 β “ 0.5 5.71% 11.18% 7.47% 9.99%
α “ 1.0 β “ 0.25 5.77% 11.45% 8.04% 10.20%
α “ 1.0 β “ 0.0 6.65% 12.19% 9.55% 10.72%

Table C.2: Tuning of the Assignment Evaluation Parameters

C.3 Sensitivity analyses

Based on the baseline scenario, seven sensitivity analyses were conducted to examine
the reliability of the results and the robustness of the policies under consideration.
These analyses include, firstly, alternative demand scenarios based on a different
service area and an increased respectively decreased average number of requests per
hour. Secondly, they include the design of traveler requirements in terms of the
distribution of the earliest possible pickup time, the pickup time window length,
and the positioning of the preferred pickup time within the time window. Finally,
with the maximum deviation from the agreed pickup time and the maximum travel
duration factor, service quality defining parameters were varied. The results for the
baseline scenario as well as for the sensitivity analyses are summarized in Tables C.3
to C.10. In the tables, the line CR corresponds to the average cancellation rate, DT
to the average driving time per transport, SR to the average percentage of shared
transports, and PD to the average deviation from the preferred pickup time.

PI PPI CFA NI
CR 5.7% 11.1% 7.2% 9.9%
DT 12.3 13.7 12.9 14.8
SR 82.6% 81.3% 84.6% 80.1%
PD 5.2 1.9 3.2 3.0

Table C.3: Baseline Scenario
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Service Area = Manhattan
PI PPI CFA NI

CR 4.7% 9.0% 5.9% 7.4%
DT 10.1 11.2 10.5 12.6
SR 84.9% 83.6% 90.1% 81.7%
PD 5.3 1.7 3.1 2.9

Table C.4: Service Area

700 900
PI PPI CFA NI PI PPI CFA NI

CR 3.0% 7.0% 4.2% 5.4% 9.6% 15.9% 11.5% 14.9%
DT 12.6 14.1 13.2 15.7 12.0 13.3 12.6 14.1
SR 77.6% 75.3% 81.6% 73.0% 86.8% 86.0% 87.5% 85.5%
PD 5.3 1.5 3.0 2.7 5.1 2.3 3.4 3.3

Table C.5: Transportation Requests per Hour

Approx. 10 Minutes Approx. 15 Minutes
PI PPI CFA NI PI PPI CFA NI

CR 5.0% 11.1% 6.6% 9.5% 4.3% 10.6% 6.0% 8.7%
DT 12.4 13.8 13.1 15.0 12.4 13.8 13.1 14.9
SR 82.5% 80.5% 84.8% 80.2% 82.7% 80.7% 85.7% 81.0%
PD 5.2 1.8 3.1 3.0 5.3 1.9 3.1 3.1

Table C.6: Mean Earliest Pickup Time

10 Minutes 20 min
PI PPI CFA NI PI PPI CFA NI

CR 10.7% 15.6% 13.4% 15.7% 3.0% 8.4% 4.4% 7.4%
DT 12.5 13.9 13.7 15.4 12.1 13.5 12.3 14.5
SR 80.0% 77.9% 80.3% 74.7% 84.0% 83.1% 87.6% 82.1%
PD 3.5 1.2 2.2 2.5 6.8 2.9 4.6 3.9

Table C.7: Mean Pickup Time Window Length
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Middle of the Time Window End of the Time Window
PI PPI CFA NI PI PPI CFA NI

CR 5.7% 11.3% 7.4% 5.7% 11.5% 10.2% 7.4% 10.4%
DT 12.3 13.7 12.9 14.9 12.3 13.8 12.9 14.9
SR 82.6% 80.9% 84.6% 79.8% 82.6% 80.6% 84.5% 79.5%
PD 5.2 1.8 3.1 2.9 5.2 1.7 3.1 2.8

Table C.8: Mean Preferred Pickup Time

ω “ 3 Minutes ω “ 5 Minutes
PI PPI CFA NI PI PPI CFA NI

CR 5.2% 10.5% 6.6% 9.1% 5.1% 10.2% 6.4% 8.7%
DT 12.2 13.6 12.7 14.6 12.1 13.5 12.6 14.6
SR 83.0% 81.7% 85.2% 80.6% 83.4% 82.6% 86.1% 81.4%
PD 5.2 1.8 3.1 3.0 5.2 1.7 3.1 2.9

Table C.9: Maximum Pickup Delay

ϵ “ 1.2 ϵ “ 1.8
PI PPI CFA NI PI PPI CFA NI

CR 10.9% 16.5% 12.6% 15.4% 4.0% 9.6% 5.6% 8.4%
DT 14.0 15.2 14.6 16.0 11.8 13.2 12.4 14.5
SR 58.7% 50.7% 57.7% 51.2% 89.2% 90.1% 91.2% 88.8%
PD 5.1 2.6 3.5 3.4 5.2 1.6 3.0 2.9

Table C.10: Maximum Transportation Duration Factor
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