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1 Introduction

Electromagnetic fields are ubiquitous in nature, many sciences, and engineering, as they are
the forces underlying the principles of electricity, magnetism, and optics. These fields are in
turn described by a set of four partial differential equations, named “Maxwell equations”
or “Maxwell system” after James Clerk Maxwell; it was the effort of Maxwell in the late
nineteenth century (for example, [Max65]) that was significant in unifying the latter theories,
namely electricity, magnetism, and optics, into one theory of electromagnetism and that
ultimately led to the current formulation ((1.2.1), (1.2.2)) of these equations.

From the point of view of engineering, the ability of these forces to propagate in vacuum
and in various media makes the transmission and processing of information possible and
has brought forth a large number of technological advancements, creating and shaping the
‘digital age’ we currently live in.

From a mathematician’s perspective, Maxwell’s equations continue to offer interesting and
challenging opportunities for study, varying both in scope as well as in method. Relevant
questions include the local existence and numerical approximation of solutions, long-time
stability, and ill-posed problems, see [DHK"23].

Electromagnetic surface waves are a field in physics that is more than a century old, [Zen07].
Today, the most prominent instance of such waves is perhaps the surface plasmon polariton
(SPP), which is an evanescent wave propagating along the interface of a metal (the ‘plasmonic
material’) and a dielectric. It has seen numerous applications, typically on the nanoscale,
ranging from biochemical sensing [CK21], microscopy [RK88], to laser technology [AKM™20];
see also [ZSMO05], [JML13, Chapter 6]. While the SPP is not the only type of surface wave
(we refer to Table 1.1 in [JML13] for an overview), it is arguably the simplest to derive
explicitly, at least in the case of a planar interface and linear scalar permittivity, see [Rae88].
Nonlinear SPP have been considered in [KZ12].

In this work, we are interested in the study of electromagnetic waves, especially wavepackets,
localized to and propagating along the interface between two different optical or magnetic
media. Specifically, the primary aim of this thesis is the justification of a modulation equation
for nonlinear Maxwell systems with memory. This is done by showing that the approximation
of a solution of Maxwell’s equations with a suitable model function (or “ansatz”), determined
by a solution of the amplitude equation, is valid on a large time scale. Among the distinctive
features of the Maxwell equations governing this setup are the following:

(a) discontinuities of the fields due to distinct media,

(b) materials with memory, i.e., a nonlocal behavior in time due to a delayed material response
(temporal dispersion), as well as a nonlocal behavior in space (spatial dispersion),

(c) the presence of nonlinear, especially quadratic, terms.



Introducing any of these features into a partial differential equation usually complicates
matters and requires different approaches (for instance, nonlinear equations cannot, in
general, be dealt with using linear methods, such as the Fourier transform).

Before we lay out our strategy and the structure of this thesis, let us collect a sample of
related works.

A solution theory (or well-posedness, i.e., existence, uniqueness, and continuous dependence
of the solution on the given data) is the prerequisite for any analysis of differential equations.
For Maxwell equations, such theories fall into various categories, that may also overlap.
Among those, an analysis in ‘low regularity’ spaces (i.e., based on L? and first-order Sobolev
spaces) is well-suited for linear, anisotropic equations (in particular, with or without an
interface) and for numerical problems. In this respect, general functional analytic aspects
and a ‘classical’ treatment of linear Maxwell equations (without memory) can be found in
the monographs [DL90a, DLI0b, Lei86, Mon03].

Many results deal with linear time-harmonic Maxwell equations, e.g. [PWWO01]. In
[CHJ17, CHJ22], time-harmonic linear Maxwell equations with memory are considered, with
a focus on interface problems for plasmonic waves and metamaterials; see also [CJK17] and
the references therein. A general approach to linear Maxwell equations for materials with
(non-)continuous memory, based on an abstract theory of integro-differential equations, is
shown in Sections 9.6 and 13.3 of [Priil2].

For time-harmonic nonlinear problems, variational techniques can yield the existence of
specific solutions (like ground states), see for instance [BM17, BDPR16], sometimes requiring
a compactness argument (see Section 3.3.2).

Function spaces with higher regularity are used especially for nonlinear problems. In [SS22],
a local well-posedness theory in H™ (m > 3) for quasilinear Maxwell systems with interface
and without memory was developed. [BF03] contains a solution theory for continuous
nonlinear materials with memory; see also [BS22] for a recent approach to quasilinear
Maxwell equations with memory. The analysis in [SS22] displays some of the difficulties
when dealing with interface problems in the context of higher spatial regularity, see also
[Web81, DITW23].

Asymptotic methods for electromagnetic nonlinear waves, in particular for proving the
validity of modulation equations, have been employed in [Sch00, SU03] for the analysis
of modulating pulses in optical fiber, in [DR21b] concerning the existence of solitons in
photonics crystals, and in [DST22, DR21a] for surface waves; see also [HH16]. We remark
that in many instances, the leading-order nonlinearity is of cubic Kerr-type. Quadratic
nonlinearities can lead to failure of the validity, e.g. [Sch05], and the analysis usually involves
a set of non-resonance conditions, cf. [Kal88, vH91, DHSZ16].

Similar to the results in [SU03, DST22, DR21b], we want to derive an amplitude equation for
interface wave packets in nonlinear media with memory and prove its validity. This specific
problem is motivated by two factors: the usual dependence of plasmons on the frequency,
i.e., the material response is in general dispersive (as noted in [KZ12]), and quadratic effects
created at least by the interface setup (see the discussion in Section 4.4). We will address
the difficulties (a), (b), (c) above by

(a") working in function spaces of low regularity,



(b’) use of the framework of evolutionary equations, which explicitly permits nonlocal
operators modelling materials with memory and spatial dispersion, for the linearized
problem,

(c’) use of perturbative approaches to tackle the nonlinear problem.

These strategies will prove fruitful in answering questions regarding well-posedness, stability,
and specific approximations related to Maxwell’s equations.

This document is structured as follows.

Section 1.3 contains a first analysis of linear Maxwell systems under the simplifying
assumptions of a planar interface and scalar material laws. As a result we obtain the linear
dispersion relation and a family of transverse-magnetic or transverse-electric evanescent
waves, which serve as building blocks for the wavepacket ansatz in Chapter 4. Although
inspired by linear SPP, this derivation is more general, as we do not necessarily assume a
metal-dielectric setup, and moreover, a possibly nontrivial magnetization is included.

The remaining part of this introductory chapter is devoted to a short review of the
framework of (linear) evolutionary equations (in the sense of Picard, e.g. [Pic00, Pic09,
STW22]) and their solution theory (Theorem 1.4.11) in exponentially weighted function
spaces that is used throughout this paper.

In Chapter 2 we consider abstract nonlinear evolutionary equations as perturbations of
the linear case. Our focus lies on (local) Lipschitz nonlinearities and Volterra-type nonlinear
operators, for which we derive local or global (depending on the weight) well-posedness of
the associated equation. This includes an equation of Ginzburg-Landau type that appears as
an effective amplitude equation in Chapter 4. In addition, we take a look at the connection
between evolutionary equations and Cauchy problems with memory, see Section 2.4; Here
we observe that, in many cases, the transition from the Cauchy problem to an evolutionary
formulation (and back) is seamless.

The first parts of Chapter 3 deal specifically with the well-posedness of nonlinear Maxwell
systems with memory, featuring nonlinear operators used in Chapter 2. In Section 3.3 we
study exponential stability for linear Maxwell systems without dispersive magnetization. We
focus on two cases: materials with explicit electric conductivity, which in turn provides the
exponential damping, and those sharing some characteristics with the Lorentz permittivity
model. The transition to nonlinear systems, Section 3.3.3, is made possible through a
fixed-point argument, obtaining global existence of small solutions. Large parts of this
section are based on the paper [DITW23].

The subject of Chapter 4 is an amplitude approximation of wavepacket solutions to
nonlinear Maxwell systems on the whole domain R3. We construct a multiple-scale ansatz U,
(0 < € < 1) based on the linear modes obtained in Section 1.3, which is effectively described
by its amplitude, a solution of the Ginzburg—Landau equation mentioned above. The ansatz
is constructed in such a way that, after inserting U, into the Maxwell system, the remaining
terms (the residual) are asymptotically small for € — 0.

Following this formal analysis, more rigorous estimates are able to justify this approxi-
mation; this means that the ansatz U, remains close to an exact solution U of the Maxwell
system. This is done by showing that the equation for the error R = U — U; is well-posed
and admits a small (and, in fact, exponentially decaying) solution (Theorem 4.3.3).



Finally, Chapter 5 contains some discussion on the (Drude—)Lorentz model of electric
permittivity. Specifically, we check the compatibility of the model with the spectral conditions
established in Section 3.3, as well as with the assumptions on the dispersion curves needed
for the amplitude formalism in Chapter 4.

1.1 Some notation and preliminaries

Most objects used in this work are defined in-place. For convenience, we list some frequent
pieces of notation.

Throughout, R™ and C" (n € N) denote the real, respectively complex, n-dimensional
Euclidean space. In C" we have the inner product (z,y) — z -y = Z?:l z;YJ;, and the
induced norm |z| = vz -Z. In R, as a subset of C", the inner product is inherited and
simplifies to (z,y) — z -y. More generally, we write (u,v)x for the inner product of
u,v € X, and ||u||x for the norm of u, if X is an inner product space or a normed space,
respectively. The imaginary unit is denoted by i = /—1. We define the positive and
negative half-lines Rt = {t e R: ¢t > 0}, R~ = {t € R : ¢t < 0}, and the right half-plane
CRre>o = {2 € C:Rez > p}.

For x € C™, § > 0 we denote by B(z,d) = {y € C": |z —y| < §} the open ball with radius
0 around z, and by Bz, d] = B(0,6) = {y € C": |z — y| < d} its closure.

A domain is a nonempty open and connected subset 2 C R™. Various attributes of a
domain, such as ‘smooth’ or ‘Lipschitz’, refer to its boundary. In particular, a bounded
Lipschitz domain is an open subset {2 C R™, for which its boundary is locally the graph of a
Lipschitz-continuous function.

Function spaces

Unless otherwise specified, all functions are complex-valued. If the function f is real-valued
(for instance, a physically relevant solution of Maxwell’s equations) it is customary to write
f =u+c.c., where u = %Re f and c.c. stands for the complex conjugate, f = u + u.

For a domain Q we denote by LP(Q2)" = LP(§2,C™) the usual Lebesgue space of measurable
functions u: 2 — C™, for which the norm

_J( u@lde) ", ifpeL,o0)

lulze =
ess Sup,cq |u(z)|, ifp=oo

is finite, and where functions equal almost everywhere (a.e.) are identified. LP(Q)" is a
Banach space, and a Hilbert space for p = 2 with inner product given by

(u,v) 2 = /Q w(@)o(@) dz.

We mostly deal with p =1, p =2 and p = .

For functions u: I C R — C™ on the line defined on an open interval I C R, we denote by
Oyu the weak, or more generally, the distributional derivative. In three (spatial) variables,
for a domain  C R? and smooth functions u: Q — C, v: Q — C3,

gradu = Vu, curlv=V xwv, divv=V-.v
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denote the gradient, curl, and divergence, respectively. Weak, closed versions of these
operators are introduced in Chapter 3.

The notation H'(2) = H(grad,Q) = {u € L?(Q) : gradu € L*(Q)3}, and similarly
H(div,Q), H(curl,Q), for L?-based Sobolev spaces is common. In general, the Sobolev space
H*(Q) (= Wk2(Q), k € N) is defined as the set of functions u € L2(f2) for which all partial
derivatives 9%u (with o € N a multiindex with |a| < k) belong to L?(Q2). For standard
properties of Lebesgue and Sobolev spaces (such as density results, embeddings, and trace
theorems) we refer to [AF03].

Fourier and Laplace transforms

Throughout this work, we make use of several equivalent, but subtly different versions of
the Fourier transform (see also [AF03, Kat04, Eval0]). While it is possible to unify them
all into a single transform, we chose to use different notation and restrict each variant to
specific use cases. This decision comes at a cost, namely when two transforms need to be
compared that are defined on the same domain, notably in Chapter 5. We introduce these
transforms in the following.

In optics, a time-delayed linear response R(u) to an applied field u is often modeled using
a real-valued susceptibility function x (e.g. x € L!(R)) as

R(u) = /RX(T)’U,( - —71)dr.

We introduce
Hw) = / (1) dr (1.1.1)
R

where w € R, and consider a 1-dimensional, time-harmonic, monochromatic wave u(t,z) =
Aeikz=wt) travelling in positive z-direction. The response to such a field is then given by

R(u)(t) = /RX(T) Aetkr—w(t=7)) g7 = /Rx(T)ei‘” dru(t, z) = x(w)u(t, ).

The transform (1.1.1) is mainly used in Section 1.3 and Chapter 4. In the latter, we also
make use of a related Fourier transform in space, denoted by

Fospul(k) = (k) = /]R w(z)e** da. (1.1.2)

In Section 1.4 we consider a weighted version, called the (unitary) Fourier-Laplace

transform,

Lou(€) = \/%_W /R w(t)e (@Ot gt (1.1.3)

which is used mainly for the transition of operator-valued functions between the time and
complex frequency domain.

There should be no confusion between x and L,x(§), as different notation for the functions
and variables are used. However, when we extend (1.1.1) to the complex domain, the two

are evidently related by
X(iz) = V2rLox(§), z=o+ik.

All three transforms, (1.1.1), (1.1.2), and (1.1.3), extend naturally to (weighted) L2-spaces.
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Functions with values in a Banach space

Bochner spaces are a generalization of the Lebesgue spaces above. The following definitions
and results can be found in [Eval0, Yos80]; see also [Boc33|. Let I C R be an interval and
X a Banach space. A simple function s: I — X is one that can be written in the form

n
s(t) = ZlEj(t) vj, a.e. tel,
j=1

where E; C I is of finite Lebesgue measure |E;| and v; € X for each j € {1,...,n}. Its
integral is given by the sum

n n
/IZ]'EJ'(t)Uj dt = Z\Eﬂvj € X.
=1

j=1

A function u: I — X is said to be (Bochner) measurable, if it can be approximated by
simple functions, i.e., if there exists a sequence (s, )nen of simple functions such that

lsn(t) —u(®)|lx =0 (n—o00), ae tel.

Such function u is called Bochner integrable, write u € L!(I, X), if in addition
/I||sn(t) —u()lxdt =0 (n— o).

In this case, [;u(t)dt :=lim, o [; Sn(t) dt € X is well-defined. By a theorem of Bochner
(see [Yos80, Theorem V.5.1]), u € L*(I, X) if and only if the map ¢ — ||u(t)||x belongs to
L(I). Analogous to the finite-dimensional case above, we define for p € [1, c0)

1
LP(I,X) ={u: I - X measurable : ||u|zr = (/I l|u(t)|% dt) " < oo}

(and the analogous modification for p = o0), and denote by L (R,X) the set of all

loc

measurable u: R — X such that u|; € LP(I, X) for all relatively compact subsets I CC R.

Bounded and unbounded linear operators in Hilbert spaces

If X is a Banach space, B(X) denotes the space of bounded (equivalently: continuous) linear
operators from X to itself. B(X) is again a Banach space, indeed, a Banach algebra. The
norm in B(X) will occasionally be denoted by || - [|gx) or || - [[x—x, or for example by
|- |22 if X = L2(2)3, or simply by || - || if clear from the context.

If H1,H2 are Hilbert spaces, we write T': dom(T") C H; — Hz to denote a linear operator,
not necessarily bounded, defined on a (dense) subspace dom(T"). We collect some results
regarding unbounded operators on a Hilbert space, see [Kat80, §3.V.10], [Yos80, Chapters
VII, VIII], [Brell, §2.6].

A densely defined operator T': dom(T") C H — H on a Hilbert space H is called accretive,
if Re(T'v,v)y > 0 for all v € dom(T') (equivalently, the operator —T is dissipative). Since
dom(T) is dense in H, the adjoint T™ is well-defined and closed with dom(7") C dom(T™).

12



With the help of the symmetric operator

ReT := %(T +7T*), dom(ReT) = dom(T),

the condition of accretivity can be formulated as
ReT >0

in the sense of positive definiteness. T is called strictly accretive, if T — c is accretive for
some positive number ¢ > 0, i.e.,

Re (Tv,v)y > ¢ ”””3—1 for all v € dom(T);

or in short, ReT > c. Strictly accretive operators are useful due to their invertibility, as the
following result reveals.

Lemma 1.1.1. Suppose T: dom(T) C H — H is a closed, densely defined operator with
dense range, which satisfies
ReT > c¢> 0.

Then T is boundedly invertible with ||T~|| < 1/c.

Proof. Using the strict accretivity and the Cauchy—Schwarz inequality,
[Tol|l|lv]] = Re (Tw,v) > c|v]],

which shows that T is injective, hence can be inverted on its range, and substituting w = Av
we have |7~ w| < ¢7!||w]| for all w € ran(T). Moreover, since T is closed and ran(T) is
dense, in fact ran(T") = ran(T) = H, so T~ € B(H). O

There are multiple variants of this result, some using the closed range theorem. For a
densely defined and closed operator T, recall that ker(T) = ran(T*)* and ker(T*) = ran(T)+
are closed subspaces (where X' denotes the orthogonal complement of the subspace X).
The closed range theorem ([Yos80, VIL.5]) states that ran(T) is closed if and only if ran(7™)
is closed, in which case ran(T) = ker(T*)* and ran(T*) = ker(T)" .

Lemma 1.1.2. Let T be densely defined, closed, and such that
(i) T and T* are strictly accretive, or
(ii) T 1is bounded and strictly accretive, or
(iii) T is bounded, selfadjoint and strictly positive definite.
Then T is boundedly invertible.

Proof. (i) The condition ReT,ReT™* > ¢ > 0 implies that both T" and T™ are injective and
thus ran(T)® = ker(T*) = 0. Hence, T is boundedly invertible on its range, which is dense
by ran(T) = ker(T*)* = 0+ = H. Lemma 1.1.1 gives the conclusion.

(ii) If T € B(H), then also T* € B(H) and Re T = 3(T+T*) = ReT* is defined everywhere.
Thus, both T" and T™ are strictly accretive; the claim follows with (i).
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(iii) If T* = T € B(H), then ran(T) = ker(A*)* = ker(A) = H and the claim follows
again with Lemma 1.1.1. (Alternatively, the claim follows directly from (ii).) O

The assumption of selfadjointness and strict positivity will be used multiple times, notably
for stationary material functions, out of simplicity.

If T is accretive and T + X is onto for some (and thereby for all) A\ > 0, then T is
called m-accretive. Note in particular that skew-selfadjoint operators are m-accretive, since
T* = —T implies ReT = (T — T) = 0 and thus Re(T 4+ A) = A = I is onto for all A > 0. If
T is closed and m-accretive, then T+ ) is boundedly invertible for Re A > 0 by Lemma 1.1.1,
with ||[(T + )7 < (Re X)L

Example 1.1.3. Examples of skew-selfadjoint operators are the derivative d;: H'(R) C
L?(R) — L2(R) on the line, as well as the Maxwell operator A: (E, H) — (— curl H, curl E)
with domain Hy(curl,) x H(curl, Q) in L?(Q)° (see Lemma 3.1.1).

The Laplace operator

—A = —divgrad: H*(R?%) C L?(R?) — L*(R%)

is selfadjoint and m-accretive (as can be seen, for example, by considering the Fourier-
representation of (A + A)~! for A > 0). More generally, if a1, ...,aq € C®°(R?) are smooth
bounded functions with bounded derivatives and Rea; > 0 for j € {1,...,d}, then setting
a = diag (a1, . ..,aq), the operator

d
D, = —div(agrad) = — 95,a;0s,: dom(D,) C L*(R?) — L*(R?)
j=1

with maximal domain dom(D,) is m-accretive by Lemma 1.1.2; indeed, for A > 0 we have

Re((Dg + N)u, u) = Re((Dy + A)*u, u)

2 d 2
= Allu +;/Rd(Reaj(x))|8xju(:c)| dz

> A ful*
A
More examples of accretive operators arise from bilinear forms, see [McI70].
1.2 Maxwell equations in linear and nonlinear media
The macroscopic Maxwell equations (see Equation (6.2.8) on page 218 in [Jac75])
oD -V xH=-J V-D=p
(1.2.1)
0B+V xE=0 V-B=0

describe the relationship between the electric field E, magnetic field H, displacement field
D, and magnetic induction B in the presence of given functions J and p, the latter being
the current density and charge density, respectively. The fields D, B constitute the material

14



response to the intrinsic fields E, H. All fields in (1.2.1) are functions of time ¢ € R and
position x = (21,2, 23) € R3 and take values in R3.

The differential form (1.2.1) of Maxwell’s equations provides a full description of the
electromagnetic fields for continuous materials. However, in the presence of defects or sharp
interfaces, the correct! description is provided by the integral form

8t/D—/an:—/J /n-D:/p
Q [2/9) Q o0 Q

Bt/B+ nx E=0 / n-B=0
Q oN oN

of (1.2.1), where 2 is an arbitrary volume with (smooth) boundary 02 and outward normal

(1.2.2)

field n. If I is an interface, also sufficiently smooth, between two different, but otherwise
continuous, media and if Jr, pr are current and charge densities at the interface, then the
integral form (1.2.2) gives rise to the transmission conditions

[nx Elp =0, [pnxH|p=-Jp, [n-D]p=-pr, [n-B]p=0. (1.2.3)

Here, with 1, Q9 denoting the different parts of 2 on each side of ', and ni,n9 denoting
the unit normal to 9Q;, 0€2, the tangential jump

[nXF]Fz(nl X F)la, + (n2 x F)lo, =n1 x (Fla, — Flg,),
and similarly the normal jump
[n'F]F:nl'(F|Q1 — Flg,)

across I' are understood in the distributional sense (usually in the sense of traces). Following
[DL90a, §4.2], these relations can be derived from the assumption that (1.2.2) must be valid
for any domain. Thus we also have, for example,

/8tD— an=_/ J o (ie{L2).

Now since
/atD— nx H= 0:D — nx H+ oD — an+/ [n x H]p
Q (2,9} Q1 o Qo 2,92 Qnr
is equal to
—/Jz—/J—/J— Jr
Q (95} Qo Qnr
and, assuming the integrals above are well-defined, we may conclude that [n x H| = —Jp.

The remaining conditions in (1.2.3) are obtained analogously.

We have thus two versions of the Maxwell equations: the integral formulation (1.2.2), which
is ‘self-contained’, and the differential formulation (1.2.1) supplemented by the transmission
conditions (1.2.3). The equivalence “(1.2.2) <= (1.2.1) & (1.2.3)” depends on the functional

!This form is also more natural from a physical standpoint, as the current f J and charge f p are directly
measurable quantities.
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setting together with an application of Gauf3’ theorem, cf. Section 3.1.

The fields (D, B) and (E, H) are related through constituent relations, and we assume
throughout the direct functional dependence

D=D(E)=eE+ Py(E), B=B(H)=pH + Pu(H), (1.2.4)

where €, po > 0 are positive numbers (the permittivity and permeability in vacuum), and
where P, P, are the electric and magnetic polarization (density), respectively. In non-
idealized materials, the material response given by P, Py, is non-instantaneous: there is a
delay between the change of the applied field and the material response. In other terms, the
material responds differently at different frequencies; this leads to the notion of dispersion.
For P € {P,, Py}, our focus will lie on operators with continuous memory, either linear,
such as

P(u)(t) = / () ult — ) dr, (1.2.5)
0
or nonlinear, such as

P(u)(t) = /0 (1) Q(ult — 7)) dr (1.2.6)

or a linear combination of (1.2.5) and (1.2.6), with a time-independent nonlinearity (). Here
we have omitted the spatial variable z, and the evaluation u(t) is understood as an element
in some function space H. In this vein, @ is a map on H and may also depend nonlocally on
its argument. In most cases, the operator x(7) = x(7, z) is just a scalar- or matrix-valued
map for 7 > 0; in general, each x(7) is a bounded linear operator on H. We like to point out
that, by construction, every such operator of the form (1.2.6) is causal (or non-anticipative),
i.e., P(u)(t) depends on past values u(7), 7 < t, of its argument, but not on future times
7 > t. This property makes sense not only from a physical point of view, but plays an
important part mathematically in the solution theory reviewed in Section 1.4.

One further example of such material operators is studied in Section 2.3 and is given by
multilinear Volterra-type operators P(™) with

P(")(u)(t):/Ooo--~/Ooox(”)(7'1,...,Tn)Q(")(u(t—ﬁ),...,u(t—Tn))dTl-~~d7'n (1.2.7)

for n € N, where Q™ is n-linear and x(™ (71,...,7n) is again a bounded linear operator.
Similar models are used in the field of nonlinear optics, see [Boy08], the idea being that
a given nonlinearity P is approximated by a Volterra series P(u) = 3.2, P(™(u). This
will also be the heuristic adopted in this work, although we will not deal with questions of
convergence (mainly because we will work with finite sums) or for which operators such a
series exists. For a slightly more detailed heuristic for functions in one time variable, see
Appendix 1.2 in [Rug81] and [BC85]. As it turns out, and as a rule of thumb, the more
compact model (1.2.6) is better suited for questions of (global) well-posedness, if @ and x
are subjected to suitable Lipschitz- and integrability conditions, respectively (see Section 2).
On the other hand, the form (1.2.7) is practical for concrete computation and approximation
of solutions, due to its multilinear nature, and will be used extensively in Chapter 4.

We will treat Maxwell’s equations as an evolutionary system in the unknowns E, H. This
means, starting with values of E, H at initial time ¢ = 0, one is interested in the evolution
of the fields for positive time ¢ > 0. In fact, due to the nonlocality of the polarization, the
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whole history of the fields E, H, i.e., their values for ¢t < 0, is assumed to be prescribed.

1.3 Linear, evanescent surface modes and dispersion relation

We now want to derive explicit, classical solutions to the linear Maxwell equations at a
planar interface, in the form of travelling surface waves. This derivation is motivated by
surface plasmon polaritons and other surface wave phenomena in the physics literature, and
is similar to that in [JML13, §2.2] and [Rae88].

Let T ={z € R3:n-z =0} (n € R3, |n| =1) be a plane between the disjoint domains
QF,Q~. We consider the homogeneous Maxwell system

O:D —curl H =0 divD =0

(1.3.1)
OB +curlE =0 divB=0
with the transmission conditions
[n X Elp = [nx Hlp =0, [n- D]y =[n-B]p =0, (1.3.2)

and with linear constituent relations given by

D(E)(t,7) = eoB(t,z) + /R XE(DE(t — 7, 2) dr
z e Ot
B(H)(t, z) = noH(t, z) + /]R E(DH(E = 7,7) dr

where €9, 1o € R* and X7, X, Xih, Xm: R — R satisfy x35(7) = x&(7) = 0 for 7 < 0. For
(nontrivial) solutions E, H of (1.3.1) in the form of surface waves, propagating in direction
parallel to the interface I, we make the (complex) ansatz

E(t,z) = &(n-z)e®1*=“) and  H(t,z) = ((n - z)e!FIra—wt) (1.3.3)

with profile functions &,(: R — C3, where n - k) =0, and Rew > 0. Due to the exponential
terms in our ansatz we then obtain

S
&
I

E:I: (w)f(n . x)ez’(k” - T—wt)

pE @) - )e 1z,

ey
3
!

having defined the frequency-dependent permittivity e*(w) and permeability p*(w) by
+ i + ® i
€ (w) =€+ /O Xa(t)e“tdt,  pF(w) = po+ /0 X (t)e™* dt
on each domain Q. We assume nontrivial material jumps, thus

W) Fe (W) or pt(w)#p ()

Let us fix coordinates and assume w.l.o.g. that z1 = n -z and k| - ¢ = kx2, k > 0. Now
the only spatial dependence is on the variables x1, z3. Inserting our ansatz into (1.3.1) we
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obtain the systems

iwpt ()¢ = ikés —iwet (w)é1 = ik(3
iwpt (W) = —& and —iweT ()& = —¢4 (1.3.4)
iwp® (w)¢s = & — k& —iwe® (w)és = (5 — kG

understood for 1 > 0 and z; < 0 separately. (Listed are only the dynamic equations on the
left-hand side of (1.3.1); note that the div-equations are obtained by summation of the first
two lines in each block and taking derivatives.) Solving the first lines in (1.3.4) for

=
k

&3 = @G and (3= _we W)

& (1.3.5)

these equations can be decoupled, and with

GF(w, k) == ( iwzeg(w)ui(w) _Zk)
ik — 2 0

SRR 0, &1 Gy _ (0 C1
(&) -cen (). a(f)-cwn(d) s

Diagonalizing G*(w, k) yields the eigenvectors (k, A*) and (k, —A*), corresponding to eigen-

we find

values iA* and —iAT; the latter are the complex roots of z+ = k% — w?eT (w)ut(w). If
z+ ¢ Ry, we can select AT, A~ such that

Reid™ <0 and Reid™ >0, (1.3.7)

and the general bounded solutions of (1.3.6) are evanescent waves given by

E1(m1)\ | 4 ointe (K @)\ u inie, (K
(52(%)) =ate” <)\i) and <<2(m1)> = b¥e™ (Ai) , (1.3.8)

where z; € R* and a*, b € C. Now taking into account the jump conditions (1.3.2), these
translate to [§2] = [&3] = [¢2]p = [(3] = 0, so with (1.3.5) and (1.3.8) we obtain

atAT —a A" =0
atet(w)—a e (w) =0
bPAT —b" A" =0
brut(w) —b p (w) =0.

(1.3.9)

Since A%, e (w), u*(w) are all nonzero, either a*,a~ are both nonzero or vanish identically;
the same is true for b*,b~. This leads to the following characterization.

1. Transverse-magnetic (TM) modes: If b© = b~ =0 and a™,a™ # 0, then E = (E}, E2,0)
and H = (0,0, H3). From (1.3.9) we obtain et (w)A\™ = e (w)A" (so that et (w) #
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€~ (w), since At # A7), and taking the square yields the dispersion relation

s W) | @) -~ (@)
Pt @@ o

2. Transverse-electric (TE) modes: If at = a~ = 0 and b*,b~ # 0, then E = (0,0, E3)
and H = (Hy, Hs,0). From (1.3.9) we get ut(w)A\™ = p~ (w)AT (so p(w) # p~ (w))
and taking the square yields the dispersion relation

2_ 2 MWW  wpmw) - Wpt W)
A ) T ) R T 00 700 R

There are no other cases; indeed, suppose that a™,a~,b", b~ are all nonzero, then

eN(WAT —e (WAt =0
p (WA —p~ (w)AT =0.

But since A, A\~ # 0, this implies €' (w)p~ (w) — € (w)u(w) = 0. The dispersion relation
(either of (1.3.10) or (1.3.11)) is reduced to k? = 0, contradicting the assumption on k. In
conclusion, linear modes of the form (1.3.3) are only possible if k,w fulfill either (1.3.10) or
(1.3.11).

Remark 1.3.1. The non-magnetic setting where ut = p~ = pg € Rsq is covered by the
TM-setting: In this case b = b~ = 0 follows directly from (1.3.9), and (1.3.10) simplifies to

2 _ 2 e (w)e” (w)
= et(w) + e (w)’

which is the known dispersion relation governing the existence of surface plasmon polaritons,
see [Rae88]. Like in the general TM-setting, the dispersion relation is derived from the more
basic condition

€A = AT, (1.3.12)

This condition is the basis for the often cited requirement that Reet and Ree™ must have
different signs (for instance, [JML13, §1.3.1], [BDE03]). Indeed, this follows from (1.3.12),
but only if the imaginary parts of €™, e~, A\, A\~ are neglected. Among other cases, this
approximation is assumed for metal-dielectric interfaces In general, the relationship between

+ A% is more complex; writing et = 6 + ze , AE = )\i + z)\i with real parameters
ef, :*L, ME )\i then comparing real and imaginary parts in (1.3.12) we obtain

AT —e;r)\i_ =e,?)\ﬂ'—ei_)\:r

A +efA = M+ e A

Recall that the assumption (1.3.7) needed for evanescent waves was that /\;L >0and A\, <0,

which is compatible even with €, € > 0 by suitable choice of the other parameters. O

Finally, we remark that in the derivation above we have assumed that e*, e~ are homoge-
neous and scalar-valued. There are other settings in which the existence of linear surface
waves can be derived, for instance at the interface between a homogeneous dielectric and a
uniaxial crystal, with optical axis parallel to the interface. In this case, surface waves exist
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(introduced in [Dya88] and now called Dyakonov waves) that can propagate in certain angles
to the optical axis. For other examples we refer to [JML13].

1.4 The framework of evolutionary equations

The Maxwell equations with memory will be embedded into a functional analytic framework
of operator equations over exponentially weighted function spaces (an explicit connection is
established in Section 2.4). For such problems, the term evolutionary equations has been
established. A well-posedness theory has been developed for linear equations, which, to
some extent, can be applied to nonlinear problems. Recall that a (differential) equation
is well-posed, in the sense of Hadamard, if it admits a unique solution, which depends
continuously on the given data.

This section aims to provide an overview and some background regarding evolutionary
equations. Some of the basic results needed for the solution theory are reviewed without
proof. For more insight into the subject and further details we refer to [STW22], specifically
Chapters 3, 5, 6, and 8.

Throughout, let ‘H be a Hilbert space. For H-valued functions u: R — H, we write
u € C(R,H) if u is continuous, and u € L (R, H) if u is Bochner measurable and square
integrable over compact intervals. For a real parameter o € R exponentially weighted variants
of these spaces are defined as

2 2 2 _opt 1,\/2
LQ(R, H):={ueLi (R,H): ||u||L29 - (/R lu(t)|2, e dt) < oo}.

The latter is a Hilbert space with the Hermitian product (u,v) 2= S (u(t), v(t))ne2et dt.
Analogously, L5(R,H) C L} (R,H) can be defined for 1 < p < oo, where ||u||L;; =
[lw- eXp(_Q’)HL:D(R,H)'

The space C°(R,H) of smooth H-valued functions with compact support in R is dense
in LH(R,H) for all p > 1 and g € R. For u € C°(R,H) we denote by dru(t) = u(t) € H
the pointwise derivative with respect to the time variable ¢t. Furthermore, we define its
(weighted) Fourier—Laplace transform L,u = L,[u] by the integral

1 —(o+i€)t
(L)€ = = [ u(eterorat

Notice that if u(t) = 0 for ¢ < 0, the integral (L,u)(§) is the (unitary) Laplace transform
of u in the complex parameter z = ¢ + i£. For o = 0, Ly is the standard unitary Fourier
transform.

Lemma 1.4.1. The following statements hold.

(i) The time-derivative is a closable operator in Lz(R, H); its closure, denoted again by O,
is the weak time-derivative

8: dom(8;) C L2(R,H) — L2(R, H)

with mazimal domain dom(8;) = H}(R,H) := {u € L3(R, H) : dyu € L2(R, H)}.
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%) The transform L, extends to a unitary operator L,: L2(R,H) — L3(R,H) via the
e e o 0
Plancherel identity
<[’Qu7£9v>Lg = (u, v)Lg'

(iii) The derivative rule
Lo[0ru](§) = (e +i€)Lo[ul (§)
holds for uw € Hy(R,H), thus L,[H}(R,H)] = {v € L*(R,H) : (e +i-)v(-) € L*(R,H)}.
(iv) The convolution theorem
Lolu * v] = V2m(Lyu)(L40)
holds for u € Ly(R,H), v € L2(R,H).
(v) For ¢ > 0, the operator 3y is boundedly invertible; its inverse d; * : L2(R,H) — L3(R,H)

satisfies |6, BUARA) S o~ and is given by the causal integral

¢
u(T) dr.
o0

0w = [

Proof. Most assertions are analogous to the unweighted case ¢ = 0, where L?,(]R,’H) =
L3(R,H) = L?(R,H), and can be reduced to this case by making use of the unitary operator

exp_,: L2(R,H) = L*(R,H), uws (t— u(t)e™?).

For instance, since the diagram

exp_,
LR, H) ————— L*(R,H)

\\\\ EO
EQ \\\ ‘[
tA

L?(R,H)

is commutative, £, is indeed unitary. In the same vein, the diagram

) exp_, ) Lo ,
LQ(R,’H) —— L/ (R,H) ———— > L*(R,H)

J(&eﬂ)) l(gﬂ'-)

Lg(R,H) (T Lz(R, H) <£—* L2(R,H)
e 0

O

is commutative and we have 0; = exp,(0; + 0) exp_, (in the sense of the diagram, i.e., 9; on
the right denotes the weak derivative in L?(R,?); the identity is valid on a dense subspace
and defines a closed operator). Realizing that 0;+ ¢ = L{(0+i-)Lo is boundedly invertible in
L?(R,H) yields the bounded invertibility of 9, in L2(R,H), together with the norm estimate.
The formula for 8; ' follows from the variation of constants formula. O
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Remark 1.4.2. Since 0; is skew-selfadjoint in L?(R), the proof gives the formula
O = (exp,(0; + 0) exp_,)" = exp,(—0; + o) exp_, = —0; + 2.

Thus, 0; + 0 = 29, or (0; — 0)* = —(0: — 0). Put differently, the operator J; — p is
skew-selfadjoint in LZ(R, ‘H), but not boundedly invertible. O

Remark 1.4.3. In fact, ||8{1||L3_,L3 = 1/]o| for ¢ # 0. For p > 0, this can be seen with

uy(t) := /2(0 — v)0(t)e’t, v < o, where we have ||u,,||L;; = 1 and lim, », ||0; 'u, || = 1/e.
Analogously for ¢ < 0; here the bounded inverse is given by (9; 'u)(t) = — [° u(7) dr and
is thus anti-causal, i.e., depending only on future times 7 > t. O

Remark 1.4.4. Although 0; and its inverse, as operators in Lf,, depend formally on p, we
will not make this dependence explicit. This is further justified in a more general case, see
Lemma 1.4.10 below. Furthermore, we will always denote by 0, ! the causal operator above
for some o > 0. O

Proposition 1.4.5 (Sobolev embedding). Let ¢ > 0 and define

Coo(R,H) 1= {u € Co(R H) : lim_ [u(t)ly e~ = 0}.
—00

Then for all u € H}(R,H) we have u € Cpo(R,H) and
lulle, , = sup [u(®)ll e < —= [l
20 4eR V20 e

Proof. We refer to [STW22, Theorem 4.1.2] or [Trol8, Proposition 1.1.8] for the proof. [

Linear material laws

Abstract material functions, in particular convolution operators, are introduced by the
following notion.

Definition 1.4.6. A linear material law on H is a complex-analytic map M: dom(M) C
C — B(H) which is uniformly bounded in a right half-plane, i.e.,

Joo€R:  sup [[M(z)|pny < oo (1.4.1)
Rez>p0

For such M we define M(0;) := LM (o +1i-)L, for o > go.

Remark 1.4.7. Introducing the multiplication operator m by (mu)(¢) = &u(§), Lemma 1.4.1
(iii) can be formulated as £,0; = (¢+im)L,. From this one derives the spectral representation
ot = Lo+ im)~1L,. For analytic maps f: dom(f) C C — C this formula readily
generalizes to

FO71) = F(Lyle+im)™'Ly) = Lyf((o+im)™H)L,.

In this respect, a linear material law can be understood as a holomorphic functional calculus
for the bounded operator 8; ! on Lg(R,’H) for ¢ > 0 by viewing f(9;) = M(8;) as a
function of 8, !. This is the approach to linear material laws initially established in [Pic09].
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On a small note, a prerequisite for defining f(0; 1) is that f be well-defined and holomorphic
around the spectrum o(8; ') of 9, . We find that

16z =07 lsiuz) = sup iz = (0 + ™)l < 00
— égﬂ'z —(e+i€)7' > 0.

1 1 1

Since the inversion w — w™" maps ¢+ ¢R onto the circle 0B (2_9, 2—9) around % with radius QLQ,
we obtain o(9; 1) = BB(%Q, 2%) Thus, to define f(8; ') on L2(R,H) for all o > go, the map
f should be at least holomorphic on the disc B [%, ﬁ] (the closure of |J,>,, 0B (%}, %)) O

We will also need a slightly more general definition of what it means for a—possibly
nonlinear—operator to be causal.

Definition 1.4.8. A map f: dom(f) C L2 (R,H;) — L?

loc loc

(R, H2) is causal, if for all ¢y € R
and u,v € dom(f), the condition v = v in (—o0, tg] implies f(u) = f(v) in (—o0, to).

Causality and complex analyticity (holomorphy) in L?-spaces are intimately related by
the Paley—Wiener theorem (e.g. [Kat04, VI.7]). Consider the following weighted version.

Theorem 1.4.9 (Paley—Wiener, [STW22, Corollary 8.1.3]). Let o € R. There is an isometric
isomorphism between L2(RT,H) = {u € L*(R,H) : ul(—c00] = 0} and the Hardy space

H2((CRe>e7H) = {C (CRe>g — H analytic, sup ”C(Ql +1 )HLg < OO}
o'>0

on the right half-plane Cres, = {z € C : Rez > p}, given by u — (0 + i — (Lou)(§)).

Lemma 1.4.10. Let M be a linear material law satisfying (1.4.1) with g9 € R. Then, for
0 > 0o the operator M (0;): LE(R,'H) — Lg(]R{,’H) is bounded, causal, and independent of o,
i.e., for all 1,02 > 0o and u € Lgl (R,H)N ng (R,H) we have

Ele(Ql + Z .)ﬁglu = ‘CZQM(Qz + 7’ ')‘cQQU'

Proof. Boundedness: Since L, is unitary and (1.4.1) holds, M(0;) = LM (¢ +i- )L, is
bounded on Lg(R, ‘H), uniformly in g > go.

Causality: Let ui,uy € LZ(R,’H) with u := u3 — ug = 0 on (—o00,%p]. We can assume
w.l.o.g. that t9 = 0 (else consider u( - + tp) instead of u in the following). We have thus
u € LZ(RJF, ‘H) and obtain successively

Lou € Hy(Cresp, H) by Theorem 1.4.9,
M(o+i-)Lou € Hy(Cre>p,H) by uniform boundedness of M,
LoM(o+i-)Lou € LA(RT, H) again by Theorem 1.4.9.

This shows that M (9;)u; = M (0;)uz on (—o0,0].
Independence of p: First, let u € CP(R,H) with suppu C [0,00). Then we have
u € L3(R,H) and Lyu € Ha(CReso, M) for all ¢ > go. Defining (formally) the translations

nf(€)=fE-w) (»EeR),
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we obtain for o1, 02 > 00,

Lo M(or+i-)Lou= Ly M(02+ (01— 02) +7-)Lou
= 5217'91—92M(Q2 +i )Tp—01 Loy
— £, M(02 +i-)Lggu,
which follows from manipulation of the integral representation of L, u (j € {1,2}), i.e., all
expressions are well-defined pointwise. By substituting @ = u( - + tp), the identity extends

to suppu C [tg,00), and finally to u € ng (R,H), j € {1,2}, by density? of C°(R,H) in
LS(R, ‘H). This concludes the proof. O

Solution theory for linear evolutionary equations

A linear evolutionary equation is an operator equation of the form
(8:M () + Au =g € L2(R,H) (1.4.2)

with a given inhomogeneity g, where M is a linear material law and A: dom(A) CH — H
is a densely defined operator, which is extended pointwise to L2(R, dom(A)) via (Au)(t) =
A(u(t)). The sum 8;M () + A is defined on Hy (R, H) N L2(R, dom(A)) for ¢ > go. The idea
underlying the solution theory for such equations is to establish the inverse of ;M (9;) + A
in a suitable sense. To this end, recall the discussion about accretive operators in Section 1.1.

Theorem 1.4.11 (Picard’s Theorem). Let A: dom(A) C H — H be skew-selfadjoint and
M a linear material law. Let oo € R be such that on the half plane Cresp,, M is uniformly
bounded and z — zM(z) is uniformly strictly accretive, i.e.,

dc > 0Vz € Cresgy @ RezM(z) > c. (1.4.3)
Then for all o > oo the operator O, M (0;) + A is closable and
Sp = (B M@y) + A): L2(R,H) — L2(R, H)

is well-defined and bounded, with ||S,|| 212 < c1. Moreover, S, is causal and for all
0,0 > oo the following implications hold:

(i) If g € Ly(R,H) N L2 (R, H), then S,g = Syg € L3(R,H) N L2 (R, H).
(it) If g € H}(R,H), then Sog = (8:;M(8;) + A)~'g € H}(R,H) N L2(R, dom(A)).

Remark 1.4.12. We comment briefly on the proof of Picard’s theorem (cf. [STW22, Theo-
rem 6.2.1]). The strategy consists in establishing the operator S(z) := (zM(z) +.A)~! as a
linear material law on Cges,; it then follows from Lemma 1.4.10 that

S(8) = So = L3((o +im)M(o + im) + A) 'L, = (0, M(8;) + A) ™

21t follows by standard smoothing and cutoff arguments that for each element u € Lgl (R,H)N Lzz (R, H)
there exists a sequence (u,) in CZ° (R, H) such that simultaneously u,, — w in L2, and in L2,. Alternatively,
one can perform the approximation over the set of simple functions with compact support, cf. [STW22,
Lemma 4.2.1].
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is bounded and causal on LE(R, H) for ¢ > go, and independent of p. Here the uniform
boundedness of S follows from the skew-selfadjointness of A and strict accretivity of zM(z)
for Rez > go. Together with the holomorphy of M, this also shows that S is holomorphic.
Moreover, this method makes it clear that the result can be generalized to m-accretive
operators A. O

Remark 1.4.13. To be more exact, Theorem 1.4.11 provides a sufficient condition for the
spectral operator

S: dom(M) N CRresgy — B(H), 2+ (zM(z) +A)7"

to possess an analytic and bounded extension to Cres,. If such an extension exists for some

00, we say that problem (1.4.2) is well-posed in |J LZ(R,H), or simply well-posed®. ¢

0>00
In general, the operator sum 9;M(9;) + A is not closed, even if 9;M(0;) and A are closed.
For g € LZ(R, H), the solution u of (1.4.2) yielded by Theorem 1.4.11 thus satisfies

(0:M(8) + A)u = g.
By (ii), however, it is seen that the closure can be omitted if g € H}(R,#), in which case
(0 M(0r) + A)u = O M (O)u + Au =g

holds in L2(R,H) with v € H}(R,H) N dom(A), and moreover,  is also continuous by the
Sobolev embedding, Proposition 1.4.5. Since S, = S(0) is analytic, 9; commutes with S,
and we have dyu = S,0:g. In general, S,: HY(R,H) — HF(R,H) is also bounded for k € Z,
where H~*(R,H) denotes the dual space of H*(R,#). Thus, the issue of time-regularity
is already built into the solution theory provided by Theorem 1.4.11. For later reference,
we summarize this fact with the following result, see [PM11, Section 3.1] and [STW22,
Section 6.3].

Proposition 1.4.14. Let (8;M(9;) + A)u = g be well-posed in s ,, LA(R, H) with gy € R.
If o> oo and g € H}(R,H), then u = (8;M(9;) FA) 'ge H}(R,H), with continuous
dependence on the data:

lullzz < llgllzz,  9sullrz < 110egllrs-

In fact, Oyu = (0, M(0;) +A)_16tg. Moreover, u € Cp(R,H) by the Sobolev embedding
theorem.

The framework reviewed in this section provides a unified solution theory for a large
class of equations in mathematical physics. These include the classical equations (namely
those with trivial material laws M (9;) = id), such as the heat and wave equation, as well
as integro-differential equations and equations with delay, see for example Section 6.2 and
Chapter 7 in [STW22].

3This is the definition of well-posedness in [Tro18].
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2 Nonlinear evolutionary equations

In this chapter we turn our attention to various equations of the form
(0:M () + A)u = f(u), (2.0.1)

where f is now a nonlinear function, defined on some subspace of LIQOC(]R, H). We assume

that M (0;) and A satisfy the conditions of Picard’s theorem 1.4.11, i.e., A is skew-selfadjoint
in H and M (8;) is a linear material law satisfying

Rez> o = RezM(z) >¢c>0

for some g9 € R, ¢ > 0. Thus, the linear equation induced by 9; M (9;) + A is well-posed, i.e.,
the operator

So= (BM(3) + A) ' L2(R, M) — L2(R, H)

is uniformly bounded with || S,|| 2oz < ¢! and causal for all o > go. Hence we can
reformulate (2.0.1) as a fixed-point equation,

u=S,f(u). (2.0.2)

Of course, the latter expression is only meaningful if dom(f) N LZ(R, H) # @ # ran(f) N
L2(R, H).
Q )

2.1 Lipschitz and locally Lipschitz nonlinearities

The case of uniformly Lipschitz continuous f is one of the simplest, and will serve as a basis
for dealing with other settings.

Definition 2.1.1. A (continuous) map f: dom(f) C L (R,H) — L2 (R,H) is called

uniformly Lipschitz continuous in |J LE(R, H), if f maps each Lg(R, ‘H) into itself and

©2>00
satisfies

Vu,v € LR, M)+ [|f(w) = f(0)llz2 < Lllw = vl 2 (2.1.1)
for all p > gg, with L independent of p.

Remark 2.1.2. In the more ‘interior’ definition of uniform Lipschitz continuity in [STW22],
the map f is defined a priori on the (dense) subset of simple functions with compact support
in leo -(R,#), and then uniquely extended to each LZ(R, ‘H). Defined in this way, causality
is in fact a consequence of uniform Lipschitz continuity, see [STW22, Theorem 4.2.5].

We will ignore this technicality (also because we want to consider maps that are not
uniformly Lipschitz continuous) and instead always assume causality as a prerequisite, for

instance by considering Volterra-type operators which are causal by definition. O
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Proposition 2.1.3. Let f: dom(f) C L2 (R,H) — L?

e (R, H) be a causal map and let
00 € R be such that

1. f is uniformly Lipschitz continuous on |J LZ(R, H), and

0>00

2. Rez > p> 00 = RezM(z) > cp for some ¢ > 0.

Then, there ezists p1 > 0 such that the equation (2.0.2) admits a unique solution in LZ(R, H)
for all o > 01, which is independent of o.

Proof. The second condition implies the that ||S,|| 2oz < (co)™! by Theorem 1.4.11.
Together with the uniform Lipschitz continuity of f we have

152 (w) = Sof @)z = 1Sl (@) = SOz < ool ) = Sz < énu —ollz-

Hence, S, o f is Lipschitz continuous, with Lipschitz constant L/(cg) < 1 for large ¢ > 0.
This shows that S, o f becomes a contraction on LZ(R,’H) for large o, and consequently,
by the Banach fixed-point theorem, (2.0.2) has a unique solution. Since S,u = Syu for
0,0 > 0o, this solution is independent of o. O

Remark 2.1.4. If the Lipschitz constant

b e 10 = g MO0

Tu—vllzz

of f is allowed to vary with g, the result can be generalized in two ways. First, notice that
the contraction argument remains valid if

L(o)

limsup —= < 1.
g—oo 0

Second, if instead we have

limsup L(p) = o(1),

0—00

then the norm estimate on S, can be relaxed by allowing

zu]gll(@ +i€+A) " Hluon = 0(1), as o — co.
S

An example of such f is given in [MP02] for a time-shift operator. O

Example 2.1.5. For Maxwell’s equations we will be mainly interested in the case % = L?(Q)"
for some domain  C R3. Two relevant examples of uniformly Lipschitz continuous mappings
f: LA(R,H) — L2(R,H) are given in the following.

(a) (Instantaneous saturable nonlinearities) Let n: R — R be continuously differentiable and
bounded, with bounded derivative such that |’(r)| = O(r~!) for » — oo (for instance
n(r) =rP/(1+r°%), 0 < p < 5), and consider Q: R3 — R” given by

Q(v) = n(lv[)v.
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Then @ is pointwise Lipschitz continuous, since for v,w € R? (assuming |v| > |w| and
using the mean-value inequality),

n(ol)o —n(lwlywl < Inlol)o — n(folywl + (lol)w — n(hulul
< sup [n(r)| [v — w| + [n(jv]) = n(jwl)] ]
< sup [n(r)| v — w| + (rszu|E| | (r)] [wl) [[v] = |wl]
< (sup|n(r)| + sup 7' ()| 7) Jv — wl
<Clv—ul.

The pointwise extension of @ (first to #, and then) to Lg (R,H) is uniformly Lipschitz
continuous for all o € R.

(b) (Saturable Volterra operator) A nonlocal version of the above is given by the Volterra-type
operator

F)®) =90+ [ #(t=1)Qu(r) dr,

where k € L, (R,B(H)) with g, € R and supp C [0,00), g € L, (R, H), and Q: H —

loc

H is Lipschitz continuous. Taking ¢ > g, we compute for u,v € L2(R,H) (cf. [MP02])

1£(u) ~ £@)I23
< [ st~ ) (@(u(s)) — Q(o(s))) dsff e dt

2
<1l [ ([ 16t = 9l 1u(s) = ()l ds) e
()
< 1@l Iy, (1 = 9l lu(s) = wlo)] et~ ds ) et

= 10 el =l e <~ 200 it () = w20
<1for t—s>0

< 1@l Iy, [ Inlr e ar [ ) = (o)l 722

2 2 2
= 1@ 812, llu— vl

using Tonelli’s theorem, where (x) follows from the Cauchy—Schwarz inequality after
1,1

writing ||K(t — 5)|| = [|(t — 5)[|2T2e72¢=9(G3). For fixed g € N5y, L2(R,H), this

shows the uniform Lipschitz continuity of f in U,smax{es,e0} L2(R,H). A

A refinement of the fixed-point argument in Proposition 2.1.3 yields well-posedness for
nonlinearities that satisfy only a local Lipschitz estimate. We remark that, unlike the
linear solution operator .S,, for which uniform boundedness in U, ,, Lg(R, ‘H) is a necessary
consequence of causality, the nonlinear map need not satisfy the Lipschitz estimate for all
0 > 0o, if one is interested in solving the nonlinear equation only in some LZ(R, H).

Proposition 2.1.6. Let A: dom(A) C H — H be a densely defined and closed operator
and M a linear material law, such that the linear equation (0;M(0;) + A)u = g is well-
posed in U,s ,, L2(R,H) and ||(8;M(9;) + A)_1||Lf,—>L§ < c7! withc > 0. Let o > oo and
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f: LA(R,H) — L2(R,H) be a nonlinear map satisfying f(0) = 0 and, for some d,a > 0,
1£w) - F@)lzz < dllullzz + ol )" — oll 3

for all u,v € L2(R,H). Then, for all g € L2(R,H) with lgllzz < g(§)1+é(1 —27%), the
nonlinear equation (8;M (8;) + A)u = f(u) + g admits a unique solution u € L2(R,H) with

enl
lullzz < 5(9)"°.
Proof. Denote by T,: L2(R,H) — L2(R,H) the operator given by
Ty(u) = (B:M(@) + A) " (f(u) +9)-

Then, on an arbitrary closed ball B, := {u € L2(R,H) : |lu]| 2 < r} the Lipschitz constant
of T, can be estimated by
1To(w) = To)lzz _ d

Loy:= sup < Z(2r)°
o, w,vE By utv ”’u — U”Lg c ( ) )

thus L,, < 1ifr < %(fi)l/a. Now to have T,(u) € B, if u € B,, we demand that

o=

1 !
[ Te(w)llz < E(ClllftlliéH +lgllzz) < =(dr**t +|lgllzz) <
4

Replacing r with %(5)1/ % in the last inequality leads to the condition

) -GG =30 e

which, if fulfilled, establishes T, as a contraction on B, for some r < %(5)1/ “. The Banach

fixed-point theorem gives the conclusion. O

2.2 Small solutions of a cubic Ginzburg—Landau equation

We will apply Proposition 2.1.6 in the following to treat an evolutionary problem without
memory. A particular instance of this problem appears in Chapter 4 as an amplitude
equation. Consider the evolutionary problem

Oyu + ou + Du = y|u|?u + g, (2.2.1)

where 0 € Rt, v € C, and D: dom(D) C H*(RY) — H*¥(R?), with k > d/2 fixed, is an
m-accretive operator. We demonstrate how to obtain solutions u: R x R? — C of (2.2.1)
subject to some smoothness and decay. Substituting v(t) = u(t)e’® transforms the equation
into

(3 + D)v = ve 2 w|?v 4+ g = f(v) + g. (2.2.2)

We will show that this evolutionary equation is well-posed in the space

Ho={u€ H;(Ra Hk(Rd)) tu=01in (—oo,0]}, ||||sz, = ”'”H;(R,H’“(Rd)) (2.2.3)
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for p € (0,0]. To this aim, first observe from the general solution theory, Theorem 1.4.11,
and time-regularity, Proposition 1.4.14, that for all g > 0 the linear equation (0; + D)u = g
is well-posed in U5 ,, Hy (R, H*(R?)), with

IA
S

H(at + D)_IHH;_,H;

Moreover, due to causality, (8; + D) ™! leaves ¢, invariant for all o > 0. For the nonlinear
equation we employ again a fixed-point argument. Note that since k > d/2, the space
HF(R9) is a multiplication algebra, i.e., in particular

lu-vllgs < ar llullge ol (w0 € HYR?) (2.2.4)

for some ay > 0, see [AF03, Theorem 4.39].

Lemma 2.2.1. For all o € (0,0] there exists dy > 0 such that the map f: 7, — I,
F(u)(t) = ye~ 2 u(t)Pu(t), fulfills

£ () = £(0)llr, < do(llullr, + lullg) Il = vl (2.2.5)

for all u,v € 7.

Proof. The value of v plays no role in the following argument; we set v = 1. We will use the

notation
I1le = NIl e

||U||Lg = ||U||L§(R,Hk(Rd))

lullc, = sup e lu(t) g -

Now let g € (0, 0]. For the map N defined by
N (u, v, w)(t) = e 2 u(t)v(t)w(t)
we show that || N (u, v, w)| ., Skee Ul ||Vl l|w| 7. Recalling the Sobolev inequality
< 1 0
ulle, < \/—2—Q||U||H; (e>0),
together with (2.2.4) we compute
2 * 2_—2(20+0)t
NG, w)l3 = [ fu®oiyufe e+t ar
o0
<@ [ IO oI (@) 2o at

o0
2 2 2 _9(20—
< at Jull?, o], /0 lw(®)| e-22-0 4t

4 0o
ag 2 2 2 —2(20—p)t
< g Il Il [ @)} 22— at
Se—2gt
4
< Tk

2 2 2
@02 1Mz, vl llvwllzs
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4
Qg

2 2 9
S (29)2 “u”in, ”’U”Jé7 ”w”in; s
and similarly for the time-derivative, using (37— b;)* <n37_; b2

18N (u, v, 0)]17
= / [/ (B)o(£yw (@) + u(@)o (w(t) + u@)u(E)w’ (¢) - 20u()o@w(E)|; e 70" dt
< a / (I @l e @ 1l @l + @l o' @l lw @)l
@l @)l [ @) + 20 lu@oEw|) e 22+ at
< 3af (I3 0113, lwllE, + lul, 1172 lwlZ,

2 2 2 2 2 2
+ lullg, IollE, [w'll7z + 402 lullg, ToliE, lwl?s)

4 2
< 2D Ly, oy, il
Thus,
IV G, ), < T ol ol (226
Finally,
1£0) = F@ g, < l(Jul®u ~ foPo)e=2"] .

(
< || (fulP(w = ) + (= [oPyo)e >,
<[\ (uf? ju = o] + (ul + Jol) o] [l = [el e,
<[l (jul + o) fu = ol 72,

= |N(lul + |v], [ul + [v], |u = v])[| ,
a%\/ 10 4 402

2
< B (g, + el )’ e =)

20
Hp

2./
where the last estimate follows from (2.2.6). We obtain (2.2.5) with d, = #. O

Theorem 2.2.2. For all ¢ € (0,0] there exists c, > 0 such that if ||g||.r, < c,, then
(2.2.2) admits a unique solution v € #, = {v € H(R, H*(R%)) : v =0 in (—o0,0]}. Thus,
u € H} (R, H*(RY)), where u(t) = v(t)e™ "

Proof. By the observations made earlier, (9; + D)~! € B(J%,) with ||(8; + D)~ !|.», < 1/0.
Since f satisfies the conditions of Lemma 2.2.1, the fixed-point argument underlying the
proof of Proposition 2.1.6 is valid in .77, with ¢ = g, d = 7d,, a = 2. Hence, we only need to
take

"Yd 0 l'f‘l _
lollr, < 52 (54) (-2

small enough to have a unique solution v € /%, with ||v||.», < 3 (7 dg)l/ ? O
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Remark 2.2.3. In view of the application in Chapter 4, the result of Theorem 2.2.2 can

be applied to the operator D = —ad? with maximal domain dom(D) in H*(R?), where
a € Cre>o- As such, D is densely defined and closed. Recall from Example 1.1.3 that D
(= D,, where a = diag (0, ...,0)) is m-accretive in H*(R?). O

The results in this section are not intended as an optimal strategy for analysis of Equa-
tion (2.2.1). For instance, much more is known about one its most prominent variants, the
nonlinear Ginzburg-Landau equation

Oyu + ou — alu + y|u|Tlu =0 (CGL)

in R x RY, where o € R, o, € C; see [AK02, LO96] for an overview.
Local and global well-posedness of (CGL) was studied in [SYY16] (and the references
therein), and the bound
lu|lze < e_at”uOHLp (2.2.7)

was proved for Rea > 0 and v € R™ for a range of parameters p, ¢, d, for arbitrary initial
values ug € LP(R%) and o € R. Similar estimates were obtained for v > 0. The existence of
special solutions such as traveling pulses is known for d = 1 in some cases (notably depending
on the sign of v), see [KS98, vH92]. The existence of such solutions and decay estimates is
important for the amplitude formalism reviewed and applied in Chapter 4.

In contrast, the method for the proof of Theorem 2.2.2 cannot produce the decay estimate
(2.2.7) due to the singularity of the Lipschitz constant for ¢ — 0 (thus, the bound for ||g|| »,
vanishes as ¢ — 0). In turn, the proof of the stability result is independent of the sign of -,
and also valid for any m-accretive operator D in H¥(R%). To obtain finer-grained results,
the method would need to be adapted to take these parameters into account.

2.3 Multilinear Volterra operators: local and global well-posedness

We now study nonlinearities that cannot be expected to fulfill the Lipschitz estimate in
Proposition 2.1.6. This is particularly the case with multilinear operators ¥ of Volterra-type,

V(u)(t)=/R---/Rﬁ(t—'rl,...,t—Tn)Q(u(Tl),...,u(Tn))dTl---d'rn, (2.3.1)

where Q: (H)" — # is a multilinear and bounded map. We use an estimate similar to
(2.1.1) to derive the following mapping property.

Lemma 2.3.1. Let g, € R and let k: R™ — B(H) be causal, measurable and such that

Ly = / o / HK(Tla e ,Tn)” e_QH(Tl+~~-+Tn) dry ---dm, (232)
R R

= sup / Kt = T1,. .., t —7p)| €7@t ... gmen(t=Tn) gy (2.3.3)
R

T1,...,Tn €ER

are finite. Let Q: (H)" — H be a multilinear bounded map. Then, for all o > g, the
nonlinear operator defined by (2.3.1) maps L2(R,H) continuously into L2 (R, H).

Proof. Let Cy denote the constant in ||Q(v1,...,vn)|ly < Cqllvilly - - - |vnlly- We compute
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for u € L2(R, H),

—2npt dt

n 2
K,(t—7'1,...,t—Tn)Q(U(Tl),---au(Tn))Hde e
R j=1 H

<L} [ (/ e == e Z Tt ||dea) eIt
R

7j=1

<13 [ [([ e =iyt = mllgy e o o 2B ).

<lfor7; <t
n
i (oo )
i =
< LubeCy [T Iull7: -
j=1
Thus, V(W) 3, < VEECy Jullfs. .

Lemma 2.3.1 makes it clear that a fixed-point argument in Lf,(R, ‘H) for the equation
(8:M (8;)+A)u = V(u)+g cannot be performed in general for o > 0, as L3 (R, H) € L2(R,H).
However, this becomes possible if the linear solution operator leaves L? (R, ) N LZ(R, H)
invariant for some v, o > 0 (more generally, if the linear equation is exponentially stable, see
Definition 3.3.1): As in the previous section, we restrict ourselves to functions supported on
the positive number line. Letting

={ue LZ(]R,’H) :u=01in (—o0,0]},

the continuous inclusion W_,, C W_,, holds for 0 < v < v/ since |ul| 2, < lul] r2 for
u € W_,. This in turn implies, if x satisfies the conditions in Lemma 2.3.1 with ox < 0, that

Yvel0,—ox]: VW_,) CW_y CW_,. (2.3.4)

We summarize this fact assuming that the problem is well-posed for gg < 0.
Theorem 2.3.2. Let A: dom(A) C H — H be m-accretive and M a linear material law
with

Iy >0: Rez>-1vy = RezM(2) >c>0.
Let V be a n-linear Volterra operator with kernel k satisfying the conditions in Lemma 2.5.1
with g9, = —v, < 0. Then there exist v1 € (0,min{vy,vx}), co, > 0 such that for each

v € (0,v1) and g € W, with ||g||;2 < cor the equation (0:M () + A)u = V(u) + g admits
a unique solution w € W_,, with ||lul|2 <.

Proof. The assumptions on M imply that the linear solution operator is boundedly and
causally invertible in L2 ,(R,#H), uniformly for small v. As such, it leaves the space W_,

invariant. By the same argument as in (2.3.4), so does V, and thus the map
T(u) == (@M (@) +A) " (V(u) +9)

is a self-mapping on W_,,. Moreover, due to multilinearity and by Lemma 2.3.1 we obtain
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the local Lipschitz estimate
-1
IT(w) = T()llg2 <IT(w) =TIz Swq (lullz +lvllzz )" llu—vlze

Thus, the restriction of T' to a small ball with radius 7 in L? (R, ) becomes a contraction,
provided that r and ||g|| < r are small enough. O

Local well-posedness

The argument can be adapted for o > 0 using a cutoff in time. This will produce a local
existence and uniqueness result. For T > 0, define V1 by

Vr(u)(t) := 1p,1) )V (u)(?).
Note that Vr is equivalently obtained from V by replacing « in (2.3.1) with
Kr(t, 71, .-y Tn) = o) () K(T1, - - -, Tn)-
In addition to finiteness of Ly, £, in (2.3.2) and (2.3.3), we assume that

de = esssup ||k(rL,..., )| e (MHFm) < o0, (2.3.5)

T1yeeesTn €

We then observe for t > 0, o, T > 0 that

/. .. / “KIT(t,Tl’ . )T’n)” e—Qn(T1+...+Tn) dTl o dTn S Lh‘, (236)

T
/ Kz (t, 71, - )| €04 o0 4t < g, / et <d.TeT.  (23.7)
0

Now modifying the estimate in the proof of Lemma 2.3.1 we obtain for uq,...,u, € Lz(R, H),

2
/ /.../nT(t,t—n,...,t—Tn)Q(ul(n),...,un(Tn))dﬁ...dTn o2t gy
R R R i
(2.3.6) T o
< LKC(?/Q (/Rn-/R”K,(t—Tl,...,t—Tn)” egan(t ])H”Uj(Tj)Hg.Lde)@_%tdt

j=1

T
<L [ [l == et e L) ey et gy,
R RJO
n

Tl ()13, €297 dry
j=1

T
=L~03/"'// I/t =71, ..yt — )| €2 25 (079) G20700) 25 (75) 2m1eT gy
R RJO ~ > -~

n
Tl ()113, €297 dry
i=1

(2.3.7)
<4y L, C2 TeX=DeT IIU1II%g o ||“n||ig .
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By multilinearity we can again deduce
-1
Ve (w) = Vel < Lk, 0, T) (lull gz + ol )" = ol 2

with L(k,q,T) < V/dxLxCyV/Ten=1eT,

Theorem 2.3.3. Let A: dom(A) CH — H be m-accretive and M a linear material law
with
Rez > 09 = RezM(z) >c¢>0,

where g9 € R. Let V be an n-linear Volterra operator with V(0) = 0, whose kernel satisfies
the conditions in Lemma 2.3.1. Then, for given ¢ > oo there exist co,r,T > 0 such that
for all g € L2(R,H) with ||g||L§ < cor the equation (0:M(0;) + A)u = Vr(u) + g admits a
unique solution u € L2(R,H) with ||u||L3 <r.

Proof. Consider the fixed-point equation u = S,(Vr(u) + g) =: Fr(u). For o > g it follows
from || Sp||;2_,;2 < ¢! and the estimates above that
e e

I1Fr(w)ll gz Sqm V™™D Jlul7z + llgll 2
— -1
1Fr(u) = Fr(v)llgz Sex VTe™ D (lullz + vll2)" " llu = vl 2 -

Thus, smallness of ||g|| 12T, is sufficient to establish Fr as a contraction on B, = {u e
LZ(R,'H) : ||u||Lg <r} O

2.4 Initial values for problems with memory

We close this chapter with a discussion on how a given initial value problem (with memory)
can be formulated as a single evolutionary equation in L2(R, ). Already in [Pic00], initial
value problems were considered in the distributional sense. Our strategy in dealing with
initial values and memory is more akin to [Trol8, Trol3], although we follow a more ad hoc
approach, at the expense of generality and for a selected class of nonlinear problems that
are relevant to the Maxwell equations (see also [MP02]). The idea is, starting from an initial
value problem, to transform the unknown part of the solution, using smooth cutoff functions,
to obtain an evolutionary formulation without distributional terms.

Suppose A is a densely defined and closed operator in the Hilbert space H and M a
nonlinear operator (specified below). We consider the Cauchy problem

{atM(U)(t)JrAU(t):g(t)a t>0} (2.41)

Ut)=o(t), t<0

for U: R — H, where the inhomogeneity g: R — 7 and the history ¢: R — H are given
functions satisfying

supp g C (0, 00), supp ¢ C (—o0,0].

For simplicity, we assume that

M) = MU +6(0), with G(U) = [ x(r)QU(- - )dr,
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where M is selfadjoint and uniformly positive definite, x is causal, i.e., supp x C [0, 00),
rapidly decaying, and smooth on [0,00), and @: H — H is Lipschitz continuous with
Q(0) = 0. We want to convert (2.4.1) into a nonlinear evolutionary equation in L3(R, ).

To this end, suppose U € C(R,H) is a continuous solution of (2.4.1) and also that
f e C(R,H). Let § =1y, denote (multiplication with) the Heaviside step function. We
then separate the ‘unknown’ part

Ut :=60U

of the solution, with suppU* C [0,00), from the given history ¢ = (1 — 6)p. With
U=U"+ ¢ we also have Q(U(t)) = Q(U(t)) + Q(¢(t)) for all t € R, and therefore in fact
MU) () = MUT)(t) + M(p)(t). Interpreting now d; in the distributional sense, we use
the formula

01(0h) = 00:h + h(0T)dy  (h € CY(R,H))

with dy denoting the §-distribution, to extract from (2.4.1) an equation for U on the whole
real line:

g=0g=0[0M(U)+ AU]
= 8,(OM(U)) — M(U)(0")do + ABU
= S (OM(U™)) + 8,(0M () — M(p)(07)do + AU
= M(U™) + AU + 8,(6G(¢)) — Mop(07)do — G()(07)do
= HM(U™) + AU +00:G() + G()(0%)0 — Mow(07)do — G()(07)do
= MU + AU + 08,6 () — Mo(0™)6o, (2.4.2)

where we used G(¢)(07) = G(¢)(0") due to continuity of the convolution.

The Jop-term in the last equation can be removed by smoothing the jump of U™ at ¢ = 0:
Choose n € C(R) with n(0) =1, '(0) = 0, and set

¢t =p(07)0n, u=U"-p",
see Figure 2.1. Then,

IMUT) = GM(u+ ¢T) = 8 (Mou + Mop™ + G(u + ¢™))
= 0y (Mou + G(u + 1)) + 00:Mop™ + Mop™ (0™)éo.

Thus, using that 1 (07) = ¢(07), (2.4.2) becomes

g=M(u+ o)+ Au+ Apt + 00,G(p) — Mop(07)do
= 0 (Mou + G(u + 1)) + Au + 00;: Mop™ + 08:G(¢) + Ap™.

Finally, the last identity can be written as
(0eMo + A)u = —0:G(u + ¢™) + gy, (2.4.3)
where

9o =g — 0[0:(Mop™ +G(p)) + Ap™].
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Now (2.4.3) is a proper reformulation of (2.4.1) as an operator equation in L2(R,?). The
well-posedness of (2.4.3) follows by Proposition 2.1.3 from the Lipschitz continuity of
u > 0:G(u+ ¢™1). Since ¢ =0 on (—o0, 0], the causality of the solution operator and the
fixed-point iteration implies v = 0 on (—o0, 0].

supp 0n

Figure 2.1: Schematic for the conversion of the Cauchy problem to an evolutionary
equation.

Remark 2.4.1 (A posteriori justification). If g, € Hy(R,H), then solutions of (2.4.3) generate
continuous solutions of (2.4.1); indeed, in this case Proposition 1.4.14 justifies u € H ; (R, H),
and since ¢ — T is continuous, U = u + (¢ — ¢p1) € C(R,H). Assuming the history ¢ is
sufficiently regular, i.e., o € H}((—00,0],H) with ¢(0~) € dom(A), then g, € H;((0,0), H).
In this case, since g, = 0 on (—00,0], a necessary and sufficient condition for g, € H}(R,H)
is the continuity of g, in ¢t =0, i.e.,

90(0%) = lim[g(t) — %Moy (8) + G(¢) 1)) + Ap* (1)) = 0. (2.4.4)

Under the additional assumption that (0;p)(07) = lim; ~ O;¢(t) exists, we propose the
following modification of ¢*. Let n,v € C(R), where n(0) = 1, /(0) = 0, v(0) = 0,
7'(0) = 1, and set

o = (07)0n + (Bep) (07)0v + My ' x(0)Q((07))6r.

The last term here is connected to the expression

S0 X't — 7) Qp(r)) dr, >0

oG t) =
e {X(O) Qlp®) + [T X (t —7) Q(p(r))dr, T <0.

Now with g, defined as before, (2.4.4) becomes

9,(0%) = A [9(t) — 0:Mo(p(07)n(t) + (Be) (07 )(t))

+x(0) Q(¢(t) + 0:G () (t) + Ap(07)n(?)]
= g(0%) — [Mo(3:)(07) + 3:G () (0F) + Ap(07)]
=g(0") - lim [0: M(¢)(t) + Ap(®)] = 0. (2.4.5)

We can interpret this by saying: If the history solves the equation at initial time, then there
exists an evolutionary formulation equivalent to the Cauchy problem. O

The above derivation is also valid for pure initial value problems without history. Take for
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example G = 0, My = id and consider the linear evolution equation
Or+ Au(t)y=0 (t>0), u(t =0) = ug.
Analogous to (2.4.3), an evolutionary formulation of this problem reads
(0 + A)u = —0[0pud + Auf] =: go

with ug (t) = uof(t)n(t), n(0) = 1, where we assume that gy € H}(R,H) (i.e., no further
corrections are necessary for ug). Since n € C°(R) is arbitrary as long as n(0) = 1, in
particular this means that suppn can be made arbitrarily small. The conclusion is that
perturbative arguments requiring smallness of the data gy € LZ(R, H) can be satisfied
independently of ug. This is not an oversight, however, as instead the H ;—norm of uff will
depend sensitively on ug. Indeed, the previous discussion suggests that H; (R,H), instead of
LE(R, H), is the proper space to consider initial value problems. Nevertheless, the fixed-point
arguments we provide will be formulated mainly with respect to the Lz—norm.

2.5 Comments and open problems

In the case of positive weights ¢ > 0, we have used a time cutoff in Theorem 2.3.3 to derive
local well-posedness for nonlinear problems involving Volterra operators. The mapping
property V(™ : Lg — L?LQ ¢ Lg renders a contraction mapping for the equation without
cutoff impossible in Lg.

It may be interesting to see how other fixed-point theorems, such as Schauder’s theorem,

fare in this respect. If % = R™ is finite dimensional and V: dom(V) C L2 (R,R") —

loc
L2

ioc(R,R™) is a compact Volterra operator, global existence of solutions to the equation

u=V(u)

: 2
in Lloc

bound, see Theorem 3.2.2 in [Cor91]. Two immediate questions arise; first, whether this

(R,H) can be been obtained (by excluding blowup) if V satisfies a certain growth

result can be extended to evolutionary equations
u = (0 M(d;) + A~V (u)

on L%(R,R™) (for example, by restricting, once again, to a compact interval [0,7] (but
T arbitrary) and noting that L ([0,T],H) = L2([0,T],7) with equivalent norms; the

loc
boundedness of the linear solution operator should then preserve the compactness of V).

Second, how restrictive is the compactness assumption? In finite dimensions, the result

provided works for linear Volterra operators on L2 ([0, T), R™) of the form

V(u)(t) = g(t) + /Ot k(t,s) u(s)ds

for g € L2 ([0,T),R™) and generic matrix-valued kernels « (the extension to multilinear
Volterra operators poses no great difficulty) by virtue of the Kolmogorov—Riesz compactness

criterion, see [Brell, Theorem 4.26]:
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Lemma 2.5.1 (Kolmogorov—Riesz). M C L?([0,T],R™) is compact, if and only if

T
sup |lulj» < 00 and lim sup / [u(t+h) —u(t)Pdt =0
ueM h—=0ueM Jo

(i.e., M is bounded and equicontinuous).

In infinite dimensions, e.g. H = L?(Q), this criterion has to be supplemented by the condition
that the set
{/f(t) dt:feM}CH (2.5.1)
I

be relatively compact for all bounded intervals I, cf. [Fei84]. Thus to impose compactness
on a Volterra operator V, say

V(u) = /]R /R k(1 72) Q(ult — 1), ul(t — 7)) dry o,

thus verifying the compactness of M = {V(u) : u € S} for a bounded set S C L?([0,T],H),
the condition (2.5.1) amounts to checking that

{/I/R/Rﬂ(ﬁ’ﬁ) Q(u(t —71),u(t — m2)dridredt: u € S}

is relatively compact in H.
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3 Well-posedness and exponential stability for
Maxwell systems

In this chapter we take an evolutionary perspective to Maxwell’s equations, utilizing the
theory established in Chapter 2 to be able to deal with the equations in nonlinear optics.
A special focus is placed in Section 3.3 on exponential stability for systems with simple
permeability, for two distinct classes of electric susceptibilities—with and without explicit

conduction terms’.

3.1 Maxwell operator, interface and boundary conditions

In order to formulate a Cauchy problem for the Maxwell equations as an evolutionary system
on some domain 2 C R3, we have to specify the underlying Hilbert space . Here # = L?(Q)3
is a natural choice. We start by establishing the differential operators grad, div, curl as closed
operators in L%(Q)3. There are several variants of these operators. Recall that the spaces

C>(Q) = {u € C®°(R?) : suppu C N compact}
and
C>°(Q) = {u|q : u € C(R3)}
(in particular C*°(R3) = C°(R?)) are dense in L2(2). For ¢ € C°(12), we have the gradient
01 p

grado =V = | 05,p
600399

and for ¢ = (ip1, g2, p3) € C(Q)? the divergence and curl, respectively,

div =V - ¢ = 0z,01 + Og, 02 + Oz, 03
6:172903 - aa:3802
Curl(p =V x w= 6:173901 - a$1§03
ax1902 - 6:1:2901

!The presence of a uniformly positive internal conductivity is known to lead to exponential stability in
various setups, see [LPS19].
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These operators, defined on CS°, are closable? in L?(£2)3; their closures will be denoted by

grady: H} (Q) C L*(Q) — L*(Q)3
divo: Ho(div,Q) C L*(Q)® — L*(Q)
curly: Ho(curl, Q) C L2(Q)3 — L%(Q)3.

The adjoints of these operators give rise to the usual weak gradient, divergence, and curl,
grad := — divy, div := — grady, curl := curly,

with maximal domains

HY(Q) = {u e L*(Q) : Vu € L2(Q)3}
H(div,Q) = {u € L*(Q)®: V-u € L*(Q)}
H(curl,Q) = {u € L*(Q)® : V x u € L*(Q)}.

We note that the inclusions C°(Q) C H}(Q), C(Q)3 C Hy(div, ), C= ()3 C Hy(curl, Q)
as well as C®(Q) C H'(Q), C*(Q)? C H(div,Q), and C®(Q)? C H(curl, ), are dense
with respect to each graph norm. If Q = R3, the corresponding spaces coincide; we have
grad, = grad, divp = div, curlp = curl.

If Q is a Lipschitz domain, then grad,, divy, curly are the weak operators with zero (overall,
normal, or tangential) boundary conditions in the sense of traces; in this case, let n denote
the outward normal field on 92, then

HY(Q) = {u e L*(Q) : Vu € L}(Q)3, u|sq = 0}

Hy(div,Q) = {u € L3(Q)® : V-u € L%(Q), (n-u)|oq = 0}

Hy(curl, Q) = {u € L}(Q)3 : V x u € L2(Q)3, (n x u)|sq = 0}.
For domains with less regular boundary these spaces can be defined nonetheless; in that case
the boundary conditions are to be interpreted in a generalized sense. For references of the
aforementioned facts, see for instance [STW22, §6.1], [DL9I0b, Chapter IX].

In L?(2)3 we consider the Maxwell system
OD(E) —curlH = —J divD(E)=p

(3.1.1)
O:B(H) + curl E =0 divo B(H) =0

and introduce the Maxwell operator

0 —curl
A=
(curlo 0 >

defined on Hy(curl, Q) x H(curl, Q).

?Indeed, consider for instance C = curl|cgo (2)3- Since C is densely defined, C* is well-defined and, by the

divergence theorem (see the proof of Lemma 3.1.1) C*° ()% C dom(C™), thus also densely defined. Hence
curlp := C = C** is well-defined and closed. In fact, Hg (curl, ) is the closure of CZ°(Q2) with respect to
the graph norm u = ||ul g (curr) = (lul|?2 + ||curlu||?,)*/2. Similarly for grad and div.
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Lemma 3.1.1. Let Q = Q; UQy = Q1 U, be the disjoint union of nonempty domains
Q1,Q C R3 with connected interface T = Q1 N Q.

(i) The operator A: Hy(curl, Q) x H(curl, Q) C L?(Q)% — L?(Q) is skew-selfadjoint.

(i) If Q1,Q9 have Lipschitz boundaries and (ug,uy) € dom(A) are such that ug,uy €
C(ﬁl) @ C(ﬁz), then

[nxuplp=[nXxug]p=0 and (nxug)lag=0. (3.1.2)

Proof. (i) Since curlp, curl = curlj are closed operators,

A — 0 ) curly _ 0 curl\ _ A
—curl 0 —curly O

follows by construction.

(ii) Using the divergence theorem on Q; and Q5 separately, we have for all vy € C°(Q),
vy € C® (ﬁ)
/ (curlpug - vy — ug - curlvy) = div(ug x vg) + div(ug X vgy)
Q 9J1 Q2

(ug X vg) - n+/ (ug X vg)-n
o0

—/ ug X V) —I—/ (ug X vgr)-n
=/nqu]F~'UH+/ (n X ug) - vy,
N o0N

and similarly,

/Q(curluH -vg —ug - curlpvg) = / [ x uH]F vE —I—/ (n X ug) - vp.

—/nqu

By skew-selfadjointness of A, the left-hand sides must vanish for arbitrary vg, vg. Therefore,
[n X uglp = [n X uglp = 0 and (n X ug)|sq = 0. 0

Using the traces in H(curl, Q) and Hy(curl, §2), equations (3.1.2) can be shown to hold for
ug € Ho(curl,Q), ug € H(curl,Q) in the sense of traces, see also [Lei86, BDPW22]. The
domain of A thus encodes the interface and boundary conditions (3.1.2). If Q;, Q9 are less
regular, these conditions still hold in a generalized sense.

For the divergence equations
div D = p, divo B =0 (3.1.3)

one finds that they are a rather direct consequence of (3.1.1) together with suitable initial
values. Indeed (cf. [DL90a, Chapter I Part A §4.1]), applying div to 8;D(t) — curl H(t) =
—J(t) and using divcurl H = 0, we can simply define p := div D and realize that p and J
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are related by the continuity equation
Op +divd =0, (3.1.4)

thus, p can be computed from a given J and initial value p(0) as

o(t) = p(0) — /0 " div J(s) ds.

Similarly, it follows from 0;B(t) + curly E(t) = 0 that div B(t) is constant for all ¢ > 0, so
div B = 0 reduces to the condition div B(0) = 0 at initial time.

Now suppose J is integrable in time and J(t) € H(div,2) for all t > 0. We then have
p(t) € L*(Q) and the equations (3.1.3) imply D(¢) € H(div,Q) and B(t) € Hy(div,Q) for
all £ > 0. Similarly to Lemma 3.1.1 the interface conditions

[”'D]F:[n'B]PZO

follow. Summarizing these observations we have the following result.

Lemma 3.1.2. Let I = [0,T), let J: I — H(div,) be continuous and for given py € L?(R)
define

¢
p(t) = po —/ div J(7) dr.
0
Suppose E: I — Hy(curl,Q), H: I — H(curl,Q), D,B: I — L?(Q)3 are (continuous)

solutions of
0D —curl H = —J

8tB + CU.I‘].() E=0
with div D(0) = po, div B(0) = 0. Then for allt € I the following holds:
« D(t) € H(div, ), B(t) € Ho(div, Q) with div D(¢) = p(t), divo B(t) = 0

(3.1.5)

o (nX E(t)|ag=[nxE@)|r=[nxH()r=0and[n-D(t)]r =[n-B(t)r=0.

This result shows that for Cauchy problems at an interface we can focus on the ‘dynamic’
part (3.1.5) of the Maxwell system, as the remaining equations and (zero) interface conditions
can be viewed as a mere statement about regularity, incorporated into the domains of the
spatial operators, and initial conditions. In this consideration we thus assume, in view
of (1.2.3), that both surface densities pr and Jr vanish. This assumption will be made
throughout this paper, but the following comments provide a heuristic to generalize this.

Distributions and Sobolev chains

Let C: H'(C) C H1 — H2 be a linear, densely defined and closed operator with max-
imal domain H(C) = {u € H; : Cu € Hy}. Then H!(C) is itself a Hilbert space
endowed with the graph inner product (u,v)p1(c) = (u,v)#, + (Cu,Cv)3,. The adjoint
C*: H(C*) C Ha — H; is also closed, and we assume that H'(C*) is dense in H2. Then,
both (H(C),H1, H}(C)*) and (H'(C*), H2, H'(C*)*) are Gelfand triples, i.e., after identi-
fying H1 = H], Ha = H5 with their duals, the embeddings

HY(C)CH, CHY (C), HYC*)CHyCH(C**
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are dense. Using these, C also manifests as an operator C: H; C H(C)* — H'(C*)* ,
acting weakly by
H1 > v (Cv: HY(C*) 3 u s (v,C*u)y,),

thus Cv € H'(C*)* is well-defined for all v € H;. We claim that the operator is again
closed. First, it is easy to see that every v € H'(C)* can be identified with a pair
(h1, hg) € H1 x Ha such that vf(u) = (h1,u)s, + (h2, Cu)yy, for all u € HY(C). At the same
time, every v € H; C H'(C)* simply acts by v(u) = (v,u)3;,. Now suppose

H1 3 v, = ol in HY(C)* and Cuv, — w' in HY(C*)*.
Then we have with vT = (hy, hg) € Hy x Hz and lull 71y = 1,

|(Un - ’UT)(U‘)‘ = |<vnau>7'l1 - <h17u>H1 - <h2’ Cu>7—t2|
> ||<vn - h1,U>’H1| - |<h2’Cu>'H2||
> ‘<h2,0U>’H2|

Since
l|lvn — UT||H1(C)* = sup |(vp—o')(u)] =0 asn— oo,
||u||H1(C)=1
it follows that hy = 0, thus v’ = h; € H; and Cv! = w'. This proves the claim. Replacing
C by C* yields that C*: Hy C HY(C*)* — H'(C)* is densely defined and closed.
Remark 3.1.3. These constructions can be made to arbitrary order: For k£ € N we can define
recursively
H*(C) :={u e H*Y(C): Cu e H*}(C*)}
H*(C*) :={u e H*'(C*): C*uw € H*1(C)}

(of course, H°(C) = H1, H*(C*) = Hz), and H~*(C) = H*(C)*, H™*(C*) = H*(C*)*. The
resulting sequences (H*(C))rez, (H*(C*))rez, which are totally ordered by dense embedding,
are called Sobolev chains. Moreover, C becomes a closed operator C: H*(C) C H*1(C) —
H*=1(C*) for all k € Z, indeed, C can be viewed as an operator on the chain (H*(C))xez
itself.

For more details about Sobolev chains, for the case H; = Ha, we refer to [PM11, Chap-
ter 2.1]. In fact, the above construction is only apparently more general; considering instead

(e ) = (o)

in H := Ha x H; allows one to reduce to the base case detailed in [PM11]. O

one of the operators

Inhomogeneous transmission conditions

Using the notation above for C € {grad g, div(g), curlg)} we will write
H'(grad(g)) = Hy (), H'(div(g) = Hg)(div,2), H'(curlg)) = Hy(curl, Q).

One way to incorporate nontrivial surface densities pr and Jr is by introducing them as
distributions supported on the surface; this is similar to [SS22], where nontrivial interface
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charges and currents are considered explicitly. Suppose that the interface is given in local,
flat coordinates as I' = {z; = 0}, and

J= Jvol + Jsurf

where Jy1 € L?(2)3 is a bulk density (which can be neglected in the following) and Jgt is
given by

Jsurf(ta x) = Jr(tv z2, '7;3)60(:1;1)
with Jr € L?(I")? and &y denoting the Dirac J-distribution on the line. From Maxwell’s

equations we demand that
[n x H ]p = —JF,

which yields that Jr must be tangential to I', i.e., it must coincide with its tangential
projection: Jr = n x (Jpr X n)|p. We claim that, if Jo = n x (Jr x n) is such that
(Jp xn) € HY2(T)3, then Jyys defines an element in H'(curlp)*. Indeed, taking u € C°(Q)3
we obtain

<Jsurf,u> = <JF, U>L2(P)3 = <Jr Xn,u X n>L2(p)3
= (Jp Xn,u X n>H1/2(1—\)3><H—1/2(1—\)3.
By density of C°(2)3 in H'(curlp), the last expression is well-defined for u € H*(curlp),
since then (n x u)|r € H=Y/2(T")3, thus Jout € H'(curlp)*.

The surface charge density pr for ¢ > 0 can be derived from the initial value pr(0) using a
relation similar to (3.1.4), resulting in

pr(t) := [n- D]r = pr(0) + /Ot divp Jr(7) — [n - Jyol(7)]r dT,

see [SS22], where divr denotes the surface divergence.

In conclusion, surface densities can be incorporated into the system by adding a corre-
sponding distributional term to the bulk densities. After changing the underlying function
space from H = L?(Q2)® x L?(Q2)3 to, e.g., H = H'(curly)* x H'(curl)*, the spatial operator
is still skew-selfadjoint and the solution theory can be applied analogously.

3.2 Well-posedness of nonlinear evolutionary Maxwell systems

As hinted in the introduction, D = D(E) and B = B(H) are nonlinear material functions

with memory, which we write as

D(E) = eoE + Pe(E) = €oE + €1(0;) E + Poyn(E)
B(H) = uoH + Pm(H) = uoH + ,ul(Bt)H + Pm,nl(H)-

Here we will assume that

e €, o are positive numbers, or in more generality, linear, bounded, selfadjoint, and

strictly positive definite operators on L2(Q)3.

o €1(0;), u1(0;) are linear material laws on L?(Q2)? according to Definition 1.4.6, hence,
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SO are
G(at) =€y + 61(8t) and /,1,(8,5) = o + 1251 (8t)

e 2z 2€1(z) and z — zp1(2) are uniformly bounded for Rez > g1 € R.

Explicit conditions for the nonlinear maps FPe n1, Pmn1 typically involve Lipschitz continuity
and will be specified depending on the situation. In view of the previous section our primary
focus is a Cauchy problem for the dynamic equations (3.1.5), i.e.,

O:D(E) —curlH = —J
t>0
O:B(H) + curlp E =0

E(t) = Eo(t)
H(t) = Ho(t)

where the history (Eo(t), Ho(t)) for ¢ < 0 is assumed to be known. After making the
substitutions as in Section 2.4 for the initial values we have the evolutionary formulation

€(0) 0 0 —curl FE Ot Pei n1(E) (¢
<8t ( 0 H(at)) + (curlo 0 )) (H) + <8tpm,nl(H)> = (1/)) (3.2.1)

for the nonlinear system, or respectively

€@) 0 0 —curl E\ (¢
(@:( 0 ,U«(at)> + <cur10 0 )) (H) - <¢> (3.2.2)

for the linear (or linearized) system. Here the history is encoded into ¢, and we may assume
E(t)=H(t) =0 for t < 0; (3.2.2) and (3.2.1) are understood as systems in L2(R, L*(€2)*)?.
Setting

_(E _ €(0r) 0 _ 0t Pej n1(E) _ 0 —curl
U‘(H)’ M(at)‘( 0 u(at))’ N (U)‘<atpm,n1<H>>’ A‘<cur10 0 )

the system (3.2.1) can be written in the more concise form
M (0)U+ AU + N(U) = f,

as an equation in L2(R,H) with H = L2()® x L*(Q)3. As such, the solution theory for
evolutionary equations in Sections 1.4 and Chapter 2 can be applied directly, if uniform
conditions on the material functions M (9;) and N(-) are imposed.

Proposition 3.2.1. Let €1(0;), p1(0;) be material laws on H = L*() and o1 € R be
such that z — ze1(z) and z — zui(z) are bounded for Rez > p1. Let €y, up > 0 and set
€(0) = €0 + €1(0:) and u(8;) = o + u1(0:). Then the following holds.

(i) There exists po > 0 such that the linear system (3.2.2) is well-posed in |J L2(R,H)2.

0>00

(it) Suppose OyPejn1, O¢tPmni: LZ(IR{,’H) — Lg(R, H) are causal and Lipschitz continuous,
uniformly in ¢ > gg, then the nonlinear system (3.2.1) is well-posed, i.e., for some

02 > 0o and for each 9 > g2 and ¢, € LZ(R,’H) there exists a unique solution
(E,H) € L2(R,H)?, which depends continuously and causally on (¢,).
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(iit) Let o > go and suppose each F € {0t Peinl, 0¢Pmni} is such that

1F@) — POz < (el +loll)” s — ol
for some a,d > 0 and all u,v € L2(R,H). Then, for ¢,¢ € L2(R,H) sufficiently small,
(3.2.1) admits a unique solution (E,H) € L(R,H)>.

e(z) 0

Proof. With M(2) =( 0 ()

) we have the equivalence
Reze(z), Rezu(z) > ¢ <= RezM(z) > c.

By boundedness of €1, Re z¢(z) > € Re z — |[2€1(2)|| (3 is uniformly and strictly positive for
large Re z > 0, and similarly for Re zu(z). Thus, for g9 > 0 large enough, Re zM(z) > ¢ > 0.
Since A is skew-selfadjoint by Lemma 3.1.1, (i) then follows by application of Picard’s

theorem 1.4.11 to the evolutionary equation (9;M(0) + A)u = f = (¢, ). (ii) and (iii) are
the statements of Proposition 2.1.3 and Proposition 2.1.6, respectively. O

Example 3.2.2. As an admissible nonlinearity Py(U) = (Peini(E), Pmni(H)) satisfying the
conditions in (ii) we may take

Pa©)(®) = [ #(r) Q- ) dr
and assume that

Q: L%(Q)% — L2(0)8 is Lipschitz continuous,

k: R — B(L?(Q)%) with x(t) = 0 for t < 0,

k is differentiable and £’ € L} (R, B(L*()?)),

k(01) = 11{‘1(1) k(1) € B(L?(Q)®) exists.

In this case,
8, Pu(U)(t) = k(07) Q(U(£)) + / QU(t — 7)) dr

is Lipschitz continuous in U, with

10 Par (D)l ip(z2 e 2oy < I(O)lIszaiey + 151l s  r2@9) 1@NLin(2@ye) -
This follows analogously as in Example 2.1.5. A

Example 3.2.3. Let Py = (Peinl, Pmni) be a n-linear Volterra operator

Pu(U)(t / /K(n, ) QU =11),. Ut — 7)) [T dre.

=1

Here we assume that
e Q: [L2(Q)]" — L?(Q2) is n-linear

o k:R™ — B(L%(Q)%) with supp x C (0, 00)™.
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o k is (Fréchet) differentiable, and there exists g, € R such that the quantities

L. :=/ / 101 + ...+ Bp)k(re, . .., 7o) || €0+ dry - dry,
R R

L, = sup / [(B1 4 ...+ Bkt — 71, ..., t — 7| e &) ... gmen(t=mn) 4y
R

T1y.y TR ER

are finite.

Then we compute

n

8, P (U)(2) =Z[/Rn-/R[;g(q-l,...,Tn)Q(U(t—Tl),...,U(t—Tn))]TFOHdTg

J=1 £#j

+/R~--/R(9j/<;(7'1,...,Tn)Q(U(t—7'1),--.,U(t—7'n))£_[jd7'e]

= Xn:ajﬁ (7-1""7Tn)Q(U(t_T1)""’U(t_Tn))HdTe
R R
j=1

U]

and have the following,.

1. If g, > 0, this nonlinearity satisfies the conditions of Proposition 2.3.3 of local well-
posedness, i.e., defining for 7' > 0 the cutoff

Pu,r(U) = 1)1 PuU),

the nonlinear system (3.2.1) with Py replaced by Py r, admits a unique solution for
small data ¢, and small T

2. If oo = —1p < 0 (meaning the smallest such go in (i)), and g, < —wp, then Theorem 2.3.2
applies, and if @, 1 are small in L? (R, L?(Q)3) for some v € (0, 1), then the nonlinear
system (3.2.1) without cutoff admits a solution (E, H) € L2 (R, L?(Q)3)2. A

3.3 Exponential stability

Among one of the strongest forms of stability for a dynamical system is that of exponential
stability, which states that each (global) solution with initial values in a neighborhood of an
equilibrium approaches it exponentially in time. We assume here that the equilibrium is
zero. Similar notions exist for evolutionary equations and systems. A basic definition for
linear equations is as follows, cf. [STW22, 11.1].

Definition 3.3.1. The equation (0;M(0;) + A)u = g is called ezponentially stable with
decay rate vo > 0 if, for some go € R, it is well-posed in U,s,, LZ(R, H) and for all
0 > 0o and v < vy, the solution operator (8;M(9;) +.A)~': L2(R,H) — L2(R,H) maps
L2(R,H) N L? (R, H) continuously into itself.

Exponential stability thus means that the implication

ge XR,H)NL2,(R,H) = u= (8,M(3)+A)'ge L2, (R,H)
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holds for all p > gy and v < vy. Note that requiring g € L? 5(R,H) makes sense, since the
equation might still be uniquely solvable in all Lg(]R, H), o0 # 0, but this solution might not
depend causally on the data.

Imposing more time regularity on the data, g € Hy(R,H)NH! (R, H), v € (0,vp), one can
show ([STW22, Proposition 11.1.2]) that u € H! (R, %), and using the Sobolev embedding
(Proposition 1.4.5) H (R,H) C C_,o(R,H) we have

lu@)lly e =0, [t = oco.

Hence in this case, the continuous trajectory t — u(t) decays exponentially in time.

It turns out that Definition 3.3.1 is quite rigid; indeed (see [Trol8, Theorem 2.1.3]), if
CRe>—1, ~ dom(M) is discrete for some vy > 0, then the equation (M (8;) + A)u = g is
exponentially stable with decay rate v if and only if it is well-posed in J LZ(R, H) (cf.

Remark 1.4.13).

e>—vo

Example 3.3.2. Suppose

_ ez) O _ N I 0
M(z)_(o u(2)> (0 uo>+§1 2 (0 ua>

where €, ug and €;, p1; are selfadjoint and strictly positive operators in L?(Q)3 and zj € R<,
for all j € {1,...,N}. If z; = 0 for some j € {1,..., N}, then the system

€ O 0 —curl E\ (¢
(0 o) e 07)) ()= ()

is exponentially stable. Indeed, suppose z; = 0, then

Reze()—eoRez+61+2:eJ 1—0>0

for Rez > 0 (here even with § = 0), and for Re z < 0 (for some § > 0) small. Analogously
Re zp(z) > p1 — 6 > 0. Consequently, the system is well-posed in U,s_,, L3(R, L?(2)?)? for
some vy > 0. Here €1, 41 may be called damping terms, since they are apparently the main
source of exponential decay of solutions. A

The notion of exponential stability becomes meaningful especially when dealing with
equations that are not well-posed for negative weights gg < 0, but for which one can isolate
exponentially stable subsystems in order to obtain exponential decay of the solution to the
initial problem. We explore this idea for the Maxwell system.

3.3.1 Exponential stability in the non-magnetic case

If the main source for stability in the system is only due to the damping occurring in one
component, then it is not obvious why to expect overall exponential stability. The idea here
is to find an equivalent formulation of the system which is exponentially stable. We will
consider only hyperbolic problems here, as our Maxwell system falls into this category, but
similar criteria exist for parabolic systems, for example the heat equation with memory, see
[STW22, 11.2].
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Linear hyperbolic equations are typically given in the second-order “wave-like” formulation
(6tM(8t) + C*C)U =f, (331)

with a given function f, a densely defined and closed operator C: dom(C) C Ho — H; and
a linear material law M : dom(M) — B(Hyp). Thus, (3.3.1) is understood as an equation in
L2(R,Ho). Suppose M is of the form

M(z) = Mo(2) + 2 * M (2)

and assume that C is boundedly invertible. Then, introducing a parameter d > 0 and the
variables
q:=—Cu, vq:=du+ dwu,

the equation (3.3.1) can be equivalently written as a system

M@) 0\, (~Mo(@) (Mi(d)—dMp(@)C ) (0 ~C*\\ (va) _ (f
(o (57 1)+ (71 o) (@) ()= 0)
(3.3.2)

in L2(R,Ho x H1) (see [STW22, §2.2]). This motivates to call the second-order equation
(3.3.1) exponentially stable, if there exists d > 0 such that the first-order system (3.3.2) is

exponentially stable. In this case, assuming well-posedness in | J LZ(R, Ho x Hi) and an

2>00
exponential decay rate vy > 0, we have
f e L3R, Ho) N L2, (R, Ho) = g€ L2,(R,H1), vg € L2, (R, Ho)
= Cue€ L?,(R,H1), u,0u € L2 (R, Ho)

for all p > go and v € (0,v9). Here the latter implication follows since C is boundedly
invertible, with Cu = —q, u = —C~1q, Oyu = vq + dC1q.

Theorem 3.3.3 ([STW22, Theorem 11.5.4]). Let C: dom(C) C Ho — Hi be densely
defined, closed, and boundedly invertible. Let M be a material law of the form M(z) =
My (2) + 271 My (2) with My, My: dom(M) C C — B(Ho) analytic and uniformly bounded.
Suppose there ezists vy > 0 such that Cres—y, ~ dom(M) is discrete and

Vz € Cre>—v, Ndom(M) : RezM(z) >c¢>0.

Then, there exists d > 0, v1 > 0 such that (3.3.2) is exponentially stable with decay rate v;.

Theorem 3.3.4 ([Trol8, Proposition 2.2.5]). Let C': dom(C) C Ho — Hi be densely defined,
closed, and boundedly invertible. Let M be given by M(z) := My(z) + 271 Mi(2), where
Moy, My : dom(M) C C — B(Ho) are analytic and bounded, Cres_,, ~ dom(M) is discrete
for some vy > 0, and lim,_,o M;1(z) = 0. If the condition

V6 >0 Jv,c>0Vz e dom(M)NCres—y ~ B[0,6] : RezM(z) >c

is met, then there exist d,vq > 0 such that system (3.3.2) is exponentially stable with decay
rate vy.

In the following, we use these two criteria, Theorem 3.3.3 and Theorem 3.3.4, to study
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exponential stability for the Maxwell system

(@) 0 0 —curl E\ (¢
(at< 0 u) * (curlo 0 )) (H) = <¢> (3.3.3)

where p € B(L%(Q)3) is boundedly invertible. We refer to this system as “non-magnetic”,
meaning that the material law p©(8;) = p does not introduce memory effects or other
time-dependence. Using the fact that 8, commutes with any of u, curl, curly, we obtain

01p = Oy (01€(0r)E — curl H)

= 02¢(04)E — curl O, H
= 02¢(8y)E — curl (19 — p~! curly E)

and can thus convert (3.3.3) into the second-order system
(8%¢(0;) + curl p™ curlg) E = 84 + curl p1ep =: g, (3.3.4)

which is the wave equation for the electric field. This derivation is justified and g €
L?(R, L?(Q)3) if ¢, are regular enough; for instance if ¢, € H; (R, L?(Q)3) and p~ 19 €
L2(R, H(curl)).

As it stands, the criteria above cannot be applied to (3.3.4) directly, since deriving the
system (3.3.2) would require that curl u~!curly = C*C with C invertible. This cannot
be expected, as curlgrad o = 0 for all ¢ € C°(Q)3, in particular, curl and curly are not
invertible. Our strategy will be to work with invertible versions of these operators.

The subsequent arguments will require that the ranges ran(curl), ran(curlp) are closed® in
L?(2)3, thus, for the moment, we will assume just that. A more detailed discussion follows
in Section 3.3.2. Setting

Ho := ker(curly)® = ran(curl), H; := ker(curl)! = ran(curly)
(the orthogonal complement being taken in L?(£2)3) we have the decompositions
H = L*(Q)® = Ho @ Hy = H1 0 Hi.
Definition 3.3.5. For a closed subspace U C H of a Hilbert space H we denote by
w:U<—=H, v = (w)" - H->U

the canonical embedding of U in #, and the canonical projection of ‘H onto U, respectively.

Lemma 3.3.6. Let 7%, .7 be Hilbert spaces and T': dom(T) C ) — J4 a linear, densely
defined, and closed operator with closed range. Suppose A € B(.74) is selfadjoint and strictly
positive. Then,

S = Tyer(r) L T* AT tyeer ()1 : dom(S) C ker(T)t — ker(T)*

3In fact, since curl, curly are densely defined, closed, and adjoint operators, ran(curl) is closed if and only if
ran(curlp) is closed. This is a consequence of the closed range theorem, see [Brell, Theorem 2.19].
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is selfadjoint, boundedly invertible, and strictly positive. Moreover, there exists a boundedly
invertible operator C: dom(C) C ker(T)* — ker(T)* with S = C*C.

Proof. Let tf := tyey(1yL and tp = tran(T) = lger(r+)L- Then we have v.i;T = T and, since
tr, L} are bounded, also T*i,t = (4r0:T)* = T*. Hence,

S =T AT = T trty Atrty Tk

Now ¢ Tu: dom(T) Nker(T)L C ker(T)' — ran(T) is injective, surjective, and closed,
hence boundedly invertible by the closed graph theorem. The same is true for its ad-
joint ¢;T*¢,: dom(T*) N ker(T*)* C ker(T*)* — ran(T*) = ker(T)*. Consequently,
S = (t;T*1,)(trAtr)(;Tey) is the composition of boundedly invertible operators and it-
self boundedly invertible; that ¢;A¢, is boundedly invertible follows from the selfadjointness
and strict positivity of A, which shows that S is also selfadjoint and strictly positive. As
a consequence of the spectral theorem for selfadjoint operators, there exists a closed and
strictly positive operator C' such that S = C*C. Indeed, with v/A being the unique positive
operator such that \/Z2 = A, we can choose C' = VATu. O

Lemma 3.3.7. Let H be a Hilbert space, Hyo C H a closed subspace, and vo: Ho — H,
11: Hy — H the canonical embeddings. Let T € B(H) be a bounded linear operator and
define

Tij == 1;Tv; fori,j€{0,1}.

Suppose ReT = (T + T*) > d for some d > 0. Then also
Re T].l 2 d, R,e(TOO - TO].Tl_]_lTl()) Z d.
Proof. For ¢ € ’H& we compute

Re(Ti1¢, ¢) = Re(Tt1,119) > d(116,11¢) = d||¢|?,

confirming ReT1; > d. In particular, 717 is boundedly invertible. As an operator on H GB’HOl

Too Ti
7 (foo fo1 ,
Tio Tn
and setting

Q_( 1 v cy_(l—%ﬂﬁ) R_(I&—%ﬂfﬂo 0)
_(T01T1_11)* 1 0 1 TlO_Tll(Tl_ll)*Tgl Tll

we have the factorization

we can identify

R =Q'TQ.

Now we compute for ¢ € H,

Re((Tyo — TouTy;' Tro)#: ) = Re(R <¢> ) (d)))
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— Re(Q'TQ (‘5) , <§>>
— Re(TQ (ﬁ) Q (f)’>> > d(Q (ﬁ) Q <‘§>> 1

We now focus on two classes of material laws, for which one can obtain exponentially
decaying solutions for non-magnetic Maxwell systems.

Definition 3.3.8. Let ¢: dom(e) C C — B(H) be a material law on a Hilbert space H. We
call € a permittivity of conductivity-type (C-type), if

o €(2) = M(2) + 2z 'o, where 0 € B(H) (the electric conductivity tensor) is strictly
accretive, and M : dom(e) C C — B(H) is analytic and bounded.

o There exist v1,c1,¢ > 0 such that Cres—_,, ~ dom(e) is discrete and

Vz € Cre>—v, Ndom(e) : Re M(z) > c; and Reze(z) > c.

Similarly, € is called a permittivity of Lorentz-type (L-type), if

o €(2) = €9+ €1(2), where €y € B(H) is strictly accretive and €;: dom(e) C C — B(H) is
analytic and bounded.

e There exists v; > 0 such that Cres_,, . dom(e) is discrete and on Cges—,, N dom(e)
the map z — ze;1(2) is bounded, Ree(z) > ¢; > 0, and lim,_,o z€1(2) = 0.

e for all § > 0 there exist v,c > 0 with

Vz € Cre>—y Ndom(e) \ B[0,d] : Reze(z) > c.

Remark 3.3.9. (i) The attribute ‘Lorentz-type’ is chosen due to similarities to the Lorentz

model, see Section 5.1.

(ii) For all further applications, the conductivity may be a more general material law,
o = 0(z), as long as it is uniformly bounded and strictly accretive on Cres—y, . O

Lemma 3.3.10. Let € be a material law on the Hilbert space H, let Ho, H1 be closed subspaces
such that H = Ho © Hi1, and write €;5(2) = 5, €(2)in;. If € is of C- or L-type, then the
operators

€01 (8t)611(6t)_1: L2_V(R,'H1) — LZ_V(]R, Ho)

511(&)_1610(@): LEV(R, 7‘[0) — LZ_V(R, 7‘[1)
are uniformly bounded and causal for v < v;.
Proof. If € is of L-type, for z € Cres—,, Ndom(e) we have Reej1(2) > ¢; > 0 by Lemma 3.3.7,
thus €;11(2) is boundedly invertible. Since € is also uniformly bounded on Cgres—,, N dom(e),

the uniform boundedness of €g1(2)€11(2) ™! and €11(2) te10(2) on Cres_,, follows by analytic
continuation.
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If €(2) = M(2) + 2710 is of C-type, then for z € Cres_,, Ndom(e) and with 7 > 0 we can
write

eor(2)en(2) ™" = (ze1(2))(zen1(2)) !
= (2Muo1(2) + o01) (zMi1(2) + 011) 7"
= 001(2M11(2) + o11) !
+ 2Mo1 (2)(2Ma1(2) + 011) " g0 (2)
+ Mo1(2) M (2) (1 + 27 Mua(2) "ro11) TH(L = 1pj,1(2))-

Here the first two terms are uniformly bounded by Lemma 3.3.7 and boundedness of o, and
since zMy1(z) is bounded on the compact set B[0,r]. For the third term, choose r large
enough so that

lz7 M (2) " onllsay < v 1M1 (2) s llonllpay < 1,

then 1+ z~'Mj1(2) o1 is boundedly invertible through a Neumann series. Again, the
uniform boundedness follows by analytic continuation. The argument for e11(z)teio(2) is
analogous.

In both cases, the inverse Fourier—Laplace transform yields the uniform boundedness of
€01(04)e11(8) ! on L2 (R, H1) and €11(8) Le10(8) on L2 (R, Hp) for v < vy. O

Remark 3.3.11. Suppose €(z) = € + €1(2) is of L-type, with 4 > 0 as above, and let
Ho,H1 be closed subspaces such that H = Ho @& Hi. Denote €;;(z) = ¢3, €(2)iy,;. For
z € Cre>—1, Ndom(e) we have Ree(z) > ¢, and invoking Lemma 3.3.7, also Reej1(2) > ¢,
€11(2)~! is uniformly bounded, and with

€(z) = €go(2) — €01 (z)ell(z)_lelg(z)
also Reé(z) > c. Moreover, we find that &(2) = Mo(2) + 271 M;(z), where

My(z) = €000 — €0,01€11(2) " "€0,10

Mi(2) = z(e1,00(2) — €0,01€11(2) " e1,10(2) — €1,01(2)e11(2) Leo.10 — €1,01(2)e11(2) Ler10(2))

are analytic and bounded, and lim, ,o M;(z) = 0. Again by Lemma 3.3.7, Rezé(z) > ¢
whenever Re ze(z) > c. O
We are now able to state a first result concerning exponential decay of the E-field in the

non-magnetic setting, based on the second-order formulation (3.3.4).

Theorem 3.3.12. Let Q C R3, H = L?(Q)3 and suppose Ho = ran(curl) C H is closed. Let
p € B(H) be selfadjoint and strictly positive and let e: dom(e) C C — B(H) be a permittivity
of C- or L-type. For (¢,%) € U,sg, Lg(R, H)? let (E,H) € U0 LZ(R,H)2 denote the
unique solution of the linear first-order system (3.3.3) and define

g:= at¢ + curl ,u_l’lb, h:= 7Tker(curlo)at_lgb'

Then, there exists vy > 0 such that if v < vy and ¢,v € L? (R, H) the following holds.
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(i) If € is of C-type and g € L2, (R,H), then E € L2, (R,H) and ||E|l2 < llgllz +
Illz2 -

(i) If € is of L-type, g € L2 ,(R,H), and h € L? (R, ker(curly)), then E € L? (R, H) and
1Bl < Nl + Il -

Proof. We consider first ¢, € C°(R,H), so that g,h € L2(R,H) N L? (R, H) for o,v > 0.
Due to this time-regularity, (3.3.3) holds in L2(R,#) and E is a solution of the second-order
system (3.3.4). With respect to the decomposition H = Ho @ ’Hj, this system can be written
equivalently as

o €00(0:) €01(0t) e curl u=teurlp gy, 0\ ] (Ep _ (90} (3.3.5)
€10(0:) €11(0h) 0 0/] \E1 9
Since p € B(H) is selfadjoint and strictly positive, it is boundedly invertible. Moreover, the

inverse is also strictly positive. By Lemma, 3.3.6, there exists a boundedly invertible operator
C,: dom(C,) C Ho — Ho such that

-1 v
Tyl curl =" curlg L3y, = C,Cy,.

Now applying the operator €o1(;)e11(0;)! to the second line of (3.3.5) and subtracting
from the first we obtain

€(0r) 0 C;C 0 B\ _ (do
L‘a? <€10(8t) 611(@)) + ( 0 # 0)] <E1> - (gl), (3.3.6)

&(8;) = €00(0) — €01(Or)e11(0r) " Le10(Or)
o == go — €01()€11(8) g1

where

By Lemma 3.3.7 we have Reé(z) > ¢ whenever Ree(z) > ¢, and Rezé(z) > ¢ whenever
Re ze(z) > c. If € is of C-type, € satisfies the conditions of Theorem 3.3.3. Instead, if € is of
L-type, € satisfies the conditions of Theorem 3.3.4, see Remark 3.3.11. Hence, the system

(07€(0) + CCL)E = o (3.3.7)

is exponentially stable with some decay rate vy > 0. By Lemma 3.3.10, €01(0;)e11(0;) !
maps L% (R, Hg) into L2 (R, Ho) for v < v4. If v < min{wp, 1} and g € L2 (R, H), then
do € L? ,(R,H,), which by exponential stability of (3.3.7) gives Ey € L? ,(R,Hy), and Ey
depends continuously on g via

[Eollzz S Nlgollzz ) < llgllzez -
Now the second line in (3.3.6) reads
8?(610(815)1?0 + €11(0,)Er) = 91, (3.3.8)

and we want to solve for E1. Here we consider two cases: First, suppose € is of C-type. Then
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from (3.3.8) we obtain
E = (atell(at))_lat_lgl — 611(8t)_1610(8t)E0 € LEV(R, Hl),

which follows from the uniform boundedness of €11(z) te19(2) and of (ze11(2)) ™! on Cres—_;,
and since 9; 'g; = my, ¢ € L2 (R, H1) by assumption. We conclude that

1Bl <107 0l e+ 1Boll, < lmdllza, + lalze,
Suppose now e is of L-type and h = 9; 2g; € L2 (R, H). Then,
E1 = e11(0:) 710, %g1 — €11(8;) e10(8:) Eo € L2 (R, H1),

and
1Bz, < 167%ule +1Bollzz, < Iklle, + lollzz,

by boundedness of 611(6‘t)_1. In both cases we obtain the desired estimate. The general
statement follows now by density of C®°(R,H) in L2 (R, H). O

Remark 3.3.13. Since the proof of Theorem 3.3.12 relies on Theorems 3.3.3 and 3.3.4,
exponential decay is not only implied for E = Eg + E1, but also for 6;Ey, 0;E1, and C,Ey,
together with the estimates

10:Bollzz ICuEoll 2 < llallzz,

0Bl S el +lgllze
the latter following from 0, F; = ell(at)_lat_lgl + 611(6t)—1610(8t)6tE0. O

To obtain exponential decay of the H-field, we must consider again the full first-order
system (3.3.3). Assuming still that

Ho = ran(curl) = ker(curly)t, H; = ran(curlp) = ker(curl)t

are closed in H = L?(Q)3, we then observe that, by the same argument as in the proof of
Lemma 3.3.6, the operator

C :=my, curly ey, : Ho — Ha

and its adjoint
C* = my, curl vy, : H1 — Ho

are boundedly invertible. The curl operators can then be identified with the matrices

curly = (g 8) cHo®Hy — Hi1 ®HT

c* 0
curl = (0 0) cH1 @ HL — Ho ® Hi,

o7



and we can rewrite (3.3.3) in the form

€00(0r) €01(6) 0 0 0 0 -C* 0 Ey do
0 0 0 0 00 0 O E
5, €10(0:) €11(0%) n | . (3.3.9)
0 0  poo Mot ¢co 0 O Hy %o
0 0 K10 M1l 00 0 O H, 1

where E = Eg+ E1, ¢ = ¢o + ¢1 € Ho ® Hy and H = Ho + Hy, 1 = ho + 91 € H1 & Hy.

Theorem 3.3.14. Let Q C R3, H = L?(Q)3 and suppose Ho = ran(curl) C H is closed. Let
p € B(H) be selfadjoint and strictly positive and let e: dom(e) C C — B(H) be a permittivity
of C- or L-type. Then, there exists vg > 0 such that if v < 1y and

¢, 0,9 :=0hp+curlp ' € L2 (R, H)
Wker(curl)at_lw € L2_,,(R, ker(curl)),

then either of the conditions
(i) € is of C-type, or
(i) € is of L-type and Tyer(curly)0; 1 € L2 (R, ker(curlp))

imply that
E, H, O;E, 0;H, curly E, curl H € L? (R, H).

Proof. Since the conditions of Theorem 3.3.12 are satisfied by the material laws and the data,
we obtain Eg € L2 (R, Ho), E1 € L%, (R,Hg). Moreover, in view of Remark 3.3.13, also
O.Ey € L%, (R,Ho) and C,Ey € L2 (R, H1). The latter implies that CEy € L? (R, H1);

indeed, since
CiiCu =ty curl " curly 1y, = 4y, curl gy, Gy, w™ g, 0y, curlg iy, = C*pil'C
(cf. the proof of Lemma 3.3.6) and puj' > d > 0 is strictly positive by Lemma 3.3.7, we have
||C;LE0||%2_V = (CLCuEo, Eo)r2 = <C*N1_110EOaE0>L2_V
= (u1; CEo, CEo)z > d||CE0||iz_V-
To obtain the statement for H, we solve for the corresponding terms in (3.3.9) to obtain

Hy = (C*)71(0:&(0,)Eo — ¢)
8:Ho = —fi "' (CEy + 9)
Hy = pi7 (87 "1 — paoHo)
O Hy = pii (Y1 — p100:Ho)
curl H = CHy = 8;&(8;)Eo — ¢.

By boundedness of (C*)~1, , ul_ll, [i, €, the right-hand sides can be controlled recursively by
[Eollz2 + 10:Eollz2 + ICEollz2 - O
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3.3.2 On the closedness of the range of the curl operator

The strategy for deriving exponential stability for the non-magnetic Maxwell system (The-
orem 3.3.12 and Theorem 3.3.14) relies on a formulation using the boundedly invertible
operator C' = tran(curl) CUIl lier(curn) - This requires ran(curl) = ran(curl) to be a closed
subspace: If ran(curl) is not closed, tan(curt) and C' are not well-defined; defining instead
C= Lan(our]) curl tyep(curt)L, this operator is no longer onto, and the argument equally breaks
down. The closedness of ran(curl) C H = L?(Q)3 depends largely on the regularity and
boundedness of the domain §2. We outline two methods by means of which the closedness of
ran(curl) can be obtained in the case in which Q has a (local) Lipschitz boundary and falls
into one of the following categories:

(a) Q is a bounded domain, or

(b) Q is an unbounded, cylindrical domain.

Curl operator on bounded domains

The first method is based on the following compactness result, sometimes called the Picard-
Weber—Weck selection theorem, cf. [Pic84, Web80, Wec74].

Theorem 3.3.15. Let Q C R3 be a bounded domain with local Lipschitz boundary. Then
the embeddings

Ho(curl, Q) N H(div,Q) < L*(Q)3, H(curl, Q) N Hy(div, Q) < L*(Q)3

are compact.

Remark 3.3.16. Under some smoothness or convexity assumptions on  (e.g. 9 € C?), the
spaces above are equal to

Hy(curl, Q) N H(div, Q) = {u € H}(Q)3: (n x u)|sn = 0}
H(curl, Q) N Hy(div, Q) = {u € H}(Q)3 : (n-u)|sq = 0},

and moreover, we can identify

H'(€) = {u € H(curl, Q) N H(div, Q) : (n x u)|sq € H/?(Q)%}
= {u € H(curl, Q) N H(div, Q) : (n-u)|sq € H/3(Q)},

which hints at a deeper connection between the Sobolev spaces based on grad, div, and curl.
We refer to Theorem 3 and Corollary 1 in [DLI0b, Chapter IX, §1] for these facts. O

Lemma 3.3.17. Let Q C R3 be a bounded domain with local Lipschitz boundary.

(i) There exists C > 0 such that
for all w € H(curl, Q) Nker(curl)t :  ||ul|;2 < C|lcurlu|s -

An analogous statement holds for curly.

(43) ran(curl) = {curlwu : u € H(curl)} is closed in L?(Q2)3.
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The second statement is a consequence of the first; see [Pic84, Lemmata 6, 7] or [DITW23,
Theorems B.1, B.2] for a proof of the Lemma.

Spectrum of the Maxwell operator in cylindrical domains

A more complete picture is provided by the following characterization, see [KNRO0S].

Theorem 3.3.18. Let T': dom(T") C H1 — Ha be a densely defined and closed operator
between Hilbert spaces Hi, Ha. Then the following are equivalent.

(i) ran(T) is closed.
(it) ran(T*T) is closed.
(#ii) 0 is not an accumulation point of the spectrum o(T*T) of T*T.

Together with the next result concerning the spectrum of the Maxwell operator, this
criterion becomes applicable in the case of unbounded cylindrical domains.

Lemma 3.3.19. Let Q = X x R, where ¥ C R? is a bounded and simply connected Lipschitz
domain and let A; denote the selfadjoint Mazwell operator defined on divergence-free fields
in L2(Q)3, i.e., Ay = iA with

dom(A;) = (Hp(curl, Q) Nker(div)) x (H(curl, Q) Nker(divy)).
Then there exists r > 0 such that 0(A1) C (—o0, —r] U [r,00).

For the proof of Lemma 3.3.19 we refer to [Fil20, Corollary 1.6]. In fact, in [Fil20] more
general selfadjoint Maxwell operators are considered. Similar results about the spectrum in
non-selfadjoint settings are available, see [Las98], [ABMW19].

Proposition 3.3.20. Let Q = ¥ x R be given as in Lemma 3.3.19. Then ran(curl) and
ran(curly) are closed in L?(2)3.

Proof. The inclusions ran(curl) C ker(div) and ran(curly) C ker(divp) imply that

ker(div)® C ran(curl)t = ker(curlp),

ker(divg)t C ran(curlp)® = ker(curl),

i.e., dom(.A) and dom(.A;) differ only by elements in ker(4). By Lemma 3.3.19 we conclude
that the spectrum o(.A) contains 0 as an isolated point. Since A is closed, for the operator
A? we have 0(A?) = {\2: A € 0(A)} (see [KNRO8, Theorem 2.15]), which shows that 0 is

also an isolated point in the spectrum of

A2 — 0 — curl 2 (- curl curly 0
~ \curlo 0 B 0 curlpcurl /

In particular, 0 is an isolated point of o(curly curl). By Theorem 3.3.18 this is equivalent to
the closedness of ran(curl) and ran(curly). O
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3.3.3 Nonlinear perturbations

We conclude this section with a discussion of exponential decay of solutions to nonlinear
Maxwell systems, with an emphasis on Volterra-type operators. In essence, such operators
have already been dealt with in Section 2.3, but for completeness’ sake, we formulate a
corresponding result for the non-magnetic case, where the linearized system is exponentially
stable.

Theorem 3.3.21. Let Q C R3, set H = L?(Q) and suppose that ran(curl) C H is closed.
Let €: dom(e) C C — B(H) be a permittivity of C-type or of L-type. With vy > 0 given
as in Theorem 3.3.14, fit v < vy and let Py be a nonlinear operator such that each
Fe {8{Pel,n1 : j €{0,1,2}} maps L2 (R, H) into itself, fulfills F(0) = 0, and satisfies the
estimate

IF() = POz, < ellullz, + ol ) lu—vlz2, (33.10)

for all u,v € L2 (R, H) with |lullz2 ,llullz < eo, where c,e0 >0 and o> 0 are constants.
Then, if € € (0,e9) is sufficiently small and if

¢7 ¢ € LZ—V(R9 H) n LZ(Ra H) (Q > QO)
g:=0p+curlp™ly € L2 (R, H)
h := Tier(curly)O; 1 e L2 (R, ker(curlp))
[ = Ter(curl) 05 Ly € L? (R, ker(curl))

are such that |||z +|lgllpz. +|Rllz +Ifllz2 < €/2, then the nonlinear Mazwell system

8, €0 0 + 0 —curl E\ _ —0¢Pej n1(E) + )
0 u curlp 0 H 0 Y
admits a unique solution (E,H) € L? ,(R,H)? with |EllL2 s [[H|l2 <e.

Proof. Consider first the linearized system

€(d) 0 0 —curl E @
O + = .
0 u curlp 0 H P
Theorem 3.3.12 provides the estimate

1Bl S I6lle, + lgllze, +IAlzz (3.3.11)

and moreover, adopting the notation of the proof of Theorem 3.3.14, we know that

|Hll2 = | Ho+ Hillz2 = (C*) ™ (8@ Bo — &) + w0 "vr — waoHo) 2,
< |Bollzz, + 10:Eollzz +11dlzz, + 1z
<Ngllzz, + gz, +Rllzz + 11512 (3.3.12)

assuming the norms on the right are finite. Here we have used the estimate from Re-
mark 3.3.13, the boundedness of &(;) or 8;&(;) (depending on L- or C-type), and ||@|| 2 S
|¢llzz . Now to pass to the nonlinear system, we formally define the nonlinear solution
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operator by

T(B)\ _ (5 (<) 0, (0 —cul (6 — 8, Pa(E)
nE)) Lo u curly 0 W

and we will show that T} is a contraction on B, := {u € L2 ,(R,H) : |jul|;2 < €} for small
€ < g9. To this end, after performing the substitution ¢ — ¢ — 8tPel,nl(-éS and using the
smallness assumption, we obtain from (3.3.11) and (3.3.12) the following estimates for T, T,
if e € (0,¢0):

2
I Bz, S Nlz, + gz, +lallz, + D10/ Pam Bz
=0

E a+l __ l a
S2+3cs —<2+3cs )E

2

1T (B2, < l9llzz, + llgllze, +Wallzz, + 111z + 318 Pasa(B)llgz,
§=0

E a+l __ l o
S2+3cs —<2+3cs )s

and moreover,

3
IT2(u) = Ty ()2, < D110 Petna(w) — O Peam(v)ll 2,
=0

<3c(lullgz + 0l )*llu— vz,
< 3¢(26)°Ju vl 2 .

The constants appearing in these estimates do not depend on €; we assume without loss that
they are equal to unity. Since o > 0, we can choose £ so small that simultaneously

3ce® < % and 3c(2e)* <1,

in which case T; becomes a contraction on B.. Thus, E = T;(F) possesses a fixed point in
B, together with H = T5(FE) € Be. O

Remark 3.3.22. Since Theorem 3.3.21 relies on the second-order formulation (3.3.4), nonlinear
magnetic polarizations Py, ni(H), cannot, in general, be treated in the same manner. The
reason is that g = 0;¢ — curl 4! appears on the right-hand side of (3.3.11) and (3.3.12) for
the linear system, thus performing the analogous substitution ¢ — ¢ — 8; Py n1(H) creates
an extra term curl p9; ! Py n(H). If the mapping property

H € H(curl,Q) = p ' Ppu(H) € ker(curl),

is imposed, this term vanishes and one can derive an analogous result in this case. In general
however, the additional term leads to a loss of spatial regularity for the nonlinear solution
operator, prohibiting a direct application of the fixed-point theorem. O

Example 3.3.23 (Nonlinear materials with spatial dispersion and fading memory). We
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take the opportunity to revisit Example 3.2.3; for simplicity we look at a quadratic Volterra
operator,

Pon(E) = /R /]R (11, 79) QE(t — 1), E(t — 7)) dry dro.

with @Q: [L?(R2)3]?> — L2(Q)3 bilinear and bounded. Relevant instances of such @ are
nonlinear operators exhibiting spatial dispersion (see [LL84, §103]| for the linear case), for
example we can take Q = (Q1,Q2,Q3), where

3
Qulwr)@) = 3 [ M ) dyd, ke {1,2,3)

and with Ay, € L?(93). Clearly, Q is bilinear, and the boundedness follows via

JI - iy )i dydy’ < e, - lzacen luilzz gl

from the Cauchy—Schwarz inequality. Thus ||Q(u,v)||r2 < Callu||z2||v]|z2 with Cy > 0, and
Q is indeed bounded. To apply Theorem 3.3.21 we require that x(?) is smooth, supp x(?) C
(0,00)2, and that

Lij = //”8'{)((2)(7—19T2)||B(L2(Q)3) ev(7'1+7'2) dridm <oo, i€ {la 2}7 JE {09 1, 2}a

for some v > 0. Then, each 62 Pem (for j € {0,1,2}) fulfills the conditions of Lemma 2.3.1,
and thus maps LZ(R, ) continuously and causally into L2 o(R,H) for ¢ > —v. In particular,
each F € {0] Py : j € {0,1,2}} maps

W_,={ueL?,(R,H):u=0in (—o0,0]}

into itself, since W_g, C W_,. On this space, F' also satisfies the estimate (3.3.10) with
a = 1 and some constant ¢ depending on @, X(z), v. Consequently, we can perform the same
fixed-point argument as in Theorem 3.3.21, if L% , is replaced by W_,. A

3.4 Comments and open problems

A note on higher regularity

When working with multilinear Volterra operators, such as

Pa(u) = /]R /]R @ (11, 72) Q(ult — 1), ult — 7)) dri dr

in Example 3.3.23, we have excluded instantaneous nonlinearities explicitly from the right-
hand side of the system
(atM(Bt) + .A)u =g— 8tPn1(u)

by imposing the condition supp x® C (0,00)2. This restriction can be removed by working
instead in H!

Lemma 2.2.1, to derive the necessary estimates in the perturbation arguments (Example 3.2.3).

and using the Sobolev inequality (Proposition 1.4.5) as in the proof of

v

Note however, that higher derivatives (as they occur in Theorem 3.3.21) pose a problem,
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since estimating terms such as [ X (0, 72) 3;Q(u(t), u(t — 72) d7 in the H 2-1OTM requires a
priori more regularity of w.

The following consideration leads to a similar difficulty: Oftentimes, the effect of spatial
dispersion is neglected, thus removing the non-locality from the spatial nonlinearity. If
Q: [R%)? — R® is merely taken as a matrix-valued bilinear operator, then it is desired to
work in some variant of H*-Sobolev spaces® due to their algebra property (2.2.4). It is
generally not possible to infer this required additional spatial regularity of the solution from
regular data (in contrast to temporal regularity, Proposition 1.4.14). Instead, one can use the
structure of the Maxwell system and “trade” temporal for spatial regularity, if the boundary
and the interface are smooth enough (cf. [Web81, DITW23, DST22]; see also Remark 3.3.16).

The conclusion we can draw from these remarks is that considering seemingly simpler,
instantaneous and local nonlinear material laws (or nonlinear magnetization as in Re-
mark 3.3.22) introduces additional problems that usually require more regularity of the
solution. Quasilinear systems (i.e., nonlinearities involving derivatives) are, at present,
difficult to impossible to handle in the evolutionary Lf,-setting?

We mention that a loss of temporal regularity has been considered, e.g., in [Pic00], for
linear equations, still leading to a well-defined and bounded solution operator, albeit mapping
into a different space. It is unclear if such a regularity loss can be incorporated into the
theory for nonlinear systems.

Weighted Maxwell systems over exterior domains

We comment briefly on an idea for tackling exponential stability for the non-magnetic
Maxwell system on the whole space R3, based again on the compactness result from case
(a) in Section 3.3.2. It turns out that Theorem 3.3.15 generalizes to weighted spaces over
unbounded, exterior domains. Let 2 = R3 and for some r > 0 consider the weight function

1, |z| <r
v7: Q= R, y(z)=
r/lz|, |z|>r.

Let H = L?(Q)% and H, = {u € L2 ()3 : ||yu||;2 < oo}, then ., equipped with the inner

loc
product (u,v)s., = (yu,yv)3 is again a Hilbert space. Define the extended curl operator by

curl,: H(curl,,Q) C H, = H, H(curl,,Q):={ueH,:curlu e H}.
Lemma 3.4.1. The following statements are true.

(i) There ezists C > 0 such that

for all u € H(curl,,R%) Nker(curl,)" : lully, = llvull 2 < Clleurlu| 2 .

“on each side of the interface, i.e., H = H*(Q1) ® H*(Qs)

50f course, we can argue that the nonlinearities in Maxwell systems in nature are at their core always of
continuous memory type; a generalization to quasilinear systems is still an interesting problem from a
mathematical perspective.
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(4) The space ran(curl,) = {curlu : u € H(curl,,R3)} is closed in L?(Q)3.
Proof. We refer to Lemmata 8,9 in [Pic90]. O

To make use of the operator curl,, we may consider each of the two weighted versions

A= 0 —curly or AT 0 —cuwl]
curl 0 curl, 0

of the Maxwell operator. Note that for a sequence (u,), € C(R3®)3 approximating
u € H(curl,,R%) in H(curl,,R?) (with norm u — [|ull g(curL, rs) = lyull32 + [l curl, u|%,)
and ¢ € C°(R3)3 we have

(curly u, @)y = Jl)ngo (curl up, p)n

Jim (un, curl )y

. 1 1
= Jim (i, 3 curl o) = (yu, ~ curl g = (u, 5 curl g,

which, by density of C°(R3)3, shows that

curl} = %curl, dom(curl}) = {v e H : %curlv e H}.

Now if €(0;), 4 are material laws simultaneously defined on H and #, (say, scalar or matrix-

valued) then with
M(0) = (dat) 0)
0 pu

we may consider three versions of the Maxwell system, namely

(0:M(0:) + AU =g in L2(R,H x H)
(0:M(8:) + Ay)Uy =gy in LZ(R,'H X Hy)
(0:M(8y) + ANUY = g7 in L2(R,H, x H).
Here, since v|p(,») = 1, all three are the same locally, i.e., after fixing ' C B(0,7) C R3
and applying the spatial projection 1¢: on all sides, the equations coincide. What is still

missing is a global mechanism linking all solutions U.,,,U",U to each other, in order to infer
decay properties of U from that of U, or U”.
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4 Approximation of broad surface
wavepackets in nonlinear magnetooptics

Our aim for this chapter is to derive and justify a wavepacket approximation for a nonlinear
Maxwell system on = R3 at a planar interface, thereby proving the existence of wavepackets
in the nonlinear case. The building blocks for the ansatz are the 2-dimensional linear surface
modes in Section 1.3. First we illustrate the general idea.

Consider a nonlinear Cauchy problem

HM(D)U + AU + N(U) =0, t> 0} (4.0.1)

U=V, t<0

with a given history V. We want to find a suitable asymptotic ansatz U which is close to
an actual solution U of (4.0.1). This can mean different things. One quantity that comes to
mind when trying to measure the quality of a given approximation U, is the residual

Res(Ug) = 8tM(at)U5 + .AUg + N(Ug)

After all, Res(U) = 0 (for ¢t > 0) if and only if U is an actual solution of the equation. But
to infer certain (long time) behaviour of U from the properties of U, requires control of the

error
R:=U-U. (t>0)

itself. An equation for R can be derived from (4.0.1) for ¢ > 0, namely

0=08:M(8;)U+ AU + N(U)
=M (8)(R+U.) + A(R+U.)+ N(R+U.) — gv
= O;M(0;))R+ AR+ N(R+ U.) — N(U.) + 0;M(8;)U. + AU. + N(U.) — gv
=OM(0y)R+ AR+ N(R+U;) — N(U;) + Res(U¢) — gv, (4.0.2)

where gy is related to the history'. The task now consists in obtaining a “small” (in a
suitable norm) solution R to (4.0.2). Apart from smallness of the residual and the data,
the existence of small solutions depends on the form and properties of the nonlinearity
N(-—U.) — N(U.), which are largely inherited by those of N. We will subsequently assume

'1f U. and R are supported in (0, 0), then in fact gy = —0[8:M(8;)V + N(V)]. Like in Section 2.4, we
assume here the compatibility condition N(fu + (1 — 6)u) = N(0u) + N((1 — 0)u) for u € L (R, H),
which holds e.g. for continuous Volterra integral operators. However, positive support only makes sense
for R; the ansatz should ideally be an approximation of U also for (some) negative times. We will thus
assume gy is small and neglect its role for now.
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N(U) to be a sum of symmetric, multilinear terms, say,
N(U) = No(U,U) + N3(U,U, U).

In this case

N(R+U.) — N(U.) = No(R, R) + 2N3(R, U.)
+ N3(R, R, R) + 3N3(R, U., Us) + 3N3(R, R, U.),

thus, the genuinely nonlinear terms are given by
F.(R) := N2(R,R) + N3(R, R, R) + 3N3(R, R, U,),
while the additional linear terms can be collected into
M_(8;)R := M(8;)R+ 8; ' (2N2(R, U:) + 3N3(R, U., U.)).
The error equation (4.0.2) now becomes
M. (0;)R+ AR + F.(R) + Res(U) = gv (t>0). (4.0.3)

This can be treated as a nonlinear evolutionary equation as in Section 2, provided that

o M.(0;) is again a linear material law—or a small perturbation of such—and the
linearized equation (9;M. () + A)R = g is well-posed in U, ,, L2(R,H) for some
00 € R.

e [, is compatible with the perturbation results, i.e., there exists o > gg such that
F.: L2(R,H) — L2(R,H) is causal and (locally) Lipschitz continuous.

e Res(Us) is small in L2(R, H).

Ideally, these assumptions should hold with g9 < ¢ < 0, since otherwise R may still grow
exponentially with time, even if it is small in Lg(R, ‘H). Thus, our aim will be to ensure that

e The linearized error equation is exponentially stable with some decay rate vy > 0.

o There exist v € (0,19) and a closed subset W_,, contained in a small ball in L2 (R, #),
such that F; is a contraction on W_,.

o Res(U;) is small in W_,,.

A fixed-point argument in W_,, then yields a small solution in L? ,(R,#) for small data.

To some extent, the three points above can be treated independently. We will begin by
constructing a first ansatz, which will then be refined using several correction terms to
produce a small residual, and will then deal with the error equation.

amplitude equations

Asymptotic and multiple-scale methods are frequently employed in studying nonlinear
differential equations. Specifically, the formalism of amplitude equations, or modulation
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equations, is a prominent tool in describing wavetrain- and wavepacket-like solutions to
dispersive equations, by deriving an effective equation for the envelope of the wave, typically
a variant of the nonlinear Schrédinger equation

10, A+ AA+~|A|PA =0, (NLS)
or of the complex Ginzburg—Landau equation
HA+ oA —aAA+v|APA=0, (CGL)

where a,7 € C, 0 € R, which can be viewed as a generalized version of (NLS). The
underlying mechanism (see, for instance, [vH91, Kal88]) relies on the perturbation of a
ground state (in our case = 0) near the critical (with respect to stability) value of a (spectral)
control parameter in the linear problem. This perturbation results in the creation of a band
of solutions, in the form of linear modes (the carrier waves) modulated by a slowly varying
amplitude (see Figure 4.1). As a consequence, one expects the dynamics of solutions of the
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Figure 4.1: One-dimensional wavepacket of the form
u(t, z) = eA(%, e(x — cgt))ef*® ) cc. (t,z € R).

The carrier wave e/~ js modulated by the localized and slowly varying
amplitude A (blue dashed). The resulting wavepacket (red solid) moves to
the right with group velocity ¢;. For 0 < ¢ < 1, the scaling determines the
height and width of u as being of order O(e) and O(1/¢), respectively.

problems in this spectral regime to be influenced mainly by those of the amplitude, which is
a solution of (NLS) or (CGL) or (in the general case) a system of coupled equations of this
form.

The structure of these equations and the behavior of solutions are generally well-studied.
For example, in the focusing case v > 0, (NLS) is known to possess analytical solutions, such
as the traveling sech-soliton

A(t, z) = V2asech(vVa(z — 2rt — ) )e T —st+v0) (a=1r%—-5>0).

with constants ¢o € R, z0,7,s € R, 7,5 > 0 (see [SS99, §1.3.2]). Solutions for (CGL) have
been discussed in Section 2.2.

Early applications of this formalism can be found in hydrodynamic problems (e.g. [NW69,
IMD89]), followed by numerous uses in other fields, such as chemistry, biology and electrody-
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namics. For applications close to our use case, we mention here [SU03|, where an amplitude
approximation is justified for a Maxwell system with memory (see the last section of this
chapter for a short summary), and [DST22], where the justification of surface wavepackets
is proved using a full quasilinear Maxwell system.

It was shown in [KSM92] that the Ginzburg-Landau approximation is valid in many cases
in which the leading nonlinearity is cubic. In contrast, as mentioned in the introductory
chapter, resonant quadratic nonlinearities in combination with low regularity of initial values
can lead to wrong predictions of the amplitude approximation, see [Sch05, SSZ15].

4.1 Ansatz, residual, and amplitude equation

We will base the analysis in the present section on a model problem, with a multiple-scale
ansatz constructed from the linear 2D-modes in Section 1.3.

The asymptotic analysis in this section and the smallness of expressions in terms of
O(e™)-terms (as € — 0) is to be understood, at first, in a purely formal way (or pointwise, if
the functions involved in the ansatz are continuous and uniformly bounded). The justification
is given a posteriori through rigorous norm estimates.

4.1.1 Setup and basic ansatz

As in Section 1.3, consider the interface
I'={zcR:2;,=0} in Q=R3
and let €(0;), u(0¢) be material laws given by
€(O)E = ¢F +/RX$(T) E(- —7)dr

u(B)H = poH + /R XE(T) H(- —7)dr

and €, o > 0, where X:ﬁ, X are scalar, causal kernels, with + depending on the side of the
interface. Let N be a bilinear Volterra operator of the form

NOGVO = [ [ XO(r,7) QU(E—m), Vit = m2)) dry dr,

where x(2 = xf ). R? s R6%6 with x® (71, 72) = 0 whenever 7, < 0 or 75 < 0, and where
we assume that Q: [R%2 — RS is bilinear. For ease of notation, we also take N® to be
symmetric, specifically, that X(z) and @ are symmetric. Now with

= (4 8). 4= (5 T (3

0w
we consider the quadratically nonlinear Maxwell system

A (M(8)U + NA(U,U))+ AU =0, t>0. (4.1.1)
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Remark 4.1.1. Strictly speaking, we do not yet have well-posedness of the latter nonlinear
system for this type of nonlinearity, as a multilinear map Q: [Q]? — Q will typically not
extend to a bilinear map Q: [L2(Q)%]?> — L?(Q)5. Indeed, N® (U, U) should be viewed as
a local approximation of a nonlocal operator P(Q)(U), given as in Example 3.3.23, after
the spatial convolution is replaced by suitable effective coefficients. This is done out of
convenience, making the explicit computation of the residual easier without having to work
in Fourier space (where the convolution is transformed into a product).

In principle, this poses no difficulty, as we will only use equation (4.1.1) to refine the ansatz
functions, which are fixed and well-behaved. Similar to Lemma 4.2.1 which is concerned
with a convolution in time, this approximation can be justified if the spatial convolution
kernel is sufficiently regular. O

Recall from Section 1.3 that if k,w € C \ {0} satisfy

. _ o €W (W) e (Wptw) —ef(w)p(w)
either k? = w? @) + e () @) — @) (4.1.2)

Lo 2 W) wpT (W) - W)pt W)
S o 7 ) R 0 752 %) B

with €F(w) = € + X5 (W), pF(w) = po + X&E(w), where X(w) = [x(t)etdt. Then the
linearized system admits a family of solutions

Usp(t, z) = ®(z1)e**2~D 4 ¢,

constant in z3, with ®: R — RS smooth on each half-space and having exponential decay
away from the interface. In either of the two cases, the field Usp is transverse magnetic or
transverse electric, respectively. On the other hand, if neither of the dispersion relations
(4.1.2) or (4.1.3) are fulfilled, then the linear system resulting for ® admits only the trivial
solution ® = 0.

We reformulate this fact using a more compact notation. With the matrices

00 O 0 01 0 -1 0
Si=|0 0 -1, S2=|0 0 0], S3=(1 0 O
01 0 -1 00 0 0 O

we have curl = 5§10z, + 520z, + 5305, and introducing the family of operators

A(k,w): (LA(R) x HY(R) x H'(R))? ¢ L*(R)® — L*(R)®,

(e +XE(w) 0 0 -5 0 —S). (414
Alk,w) = — e Oy k,
(kyw) i= —iw ( 0 wrxtw)) T\s 0 )%™t \s 0 )°

we observe that
(atM(at) + .A) @(xl)ei(km—wt) — A(k,w)@(a;l)ei(km_“’t)_
The characterization in Section 1.3 gives proof of the following.

Lemma 4.1.2. Let k,w # 0 be such that €*(w), u*(w) # 0 and k% — w?e* (w)put(w) ¢ Ry .
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Then,
1, if k,w satisfy either (4.1.2) or (4.1.3
dimker A(k,w) = { f k, fy (4.1.2) or (4.1.3)
0, else.

Although solutions k,w of the dispersion relation given by either (4.1.2) or (4.1.3) are
in general complex, we will restrict our attention to k € R to avoid exponential growth as
xy — +00. We also assume that e*, y* are rational functions such that solving the dispersion
relation for w with k € R yields a finite set of complex-valued curves k — w(k). For the
subsequent approximation we will assume that one can isolate one (smooth) dispersion curve
and an open interval I C (0,00) containing a ‘critical’ wavenumber k. > 0 such that

(D1) Rew(k) > 0 and Imw(k) <0 for all k € I.
(D2) Imw(-) attains a local maximum in k., thus ¢z := w'(k;) € R and Imw”(k.) < 0.

The first property means that for all k € I the wavetrain e“(k22=w(k)) hag a positive phase
velocity w(k)/k in xe-direction and is exponentially damped for ¢ > 0. The second ensures
that this damping attains a local minimum in k., see Figure 4.2.

4

Rew(k)

ke
i Imw(k)

N

Figure 4.2: Dispersion curve k — w(k) satisfying conditions (D1), (D2) with a critical
wavenumber k.

For k € I we write ®; to denote an arbitrary but fixed nonzero element in ker A(k, w(k))
and assume that the mapping k — ®;, is smooth (e.g. as a map I — L?(R)®). We write
Fz,—k to denote the Fourier transform

(Faasiw) (k) = (k) = [ ula)e da,

and .F,c__l)zz for its inverse. By superposition, integrating over multiple linear modes,

1

% k‘—).’l:2

/ a(k)@x(@1)e **2 700 dk = FL | a(k)@r(@r)e @] (2)
R

—iw(k)t

yields again a solution of Maxwell’s equations, thus ®(z1)e can be regarded as a

linear mode in Fourier space.

We now introduce a perturbation parameter € by the properties (D1), (D2) of the dispersion
curve (Figure 4.2): we write

W(kc) = Wc — i€207 We, 0 > 0, 0<exl. (415)

72



Based on this, the approximation will employ a multiple-scale ansatz of the form
U.(t,z) = eA(T, Xa, X3) By, (z1)e!F®279b) L cc. + O(e?) (e —0),
where A is a complex-valued amplitude which depends only on the slow variables
Xo =¢e(x2 —cgt), X3= ez, T = ¢t

For a spatially localized amplitude A, the result is a wavepacket travelling with group velocity
¢z and phase velocity w./kc, see Figure 4.1. Changes in the overall shape occur on the scale
of O(¢~2) in time and in z3-direction.

However, due to quadratic self-interaction, a modulated linear mode with a single frequency
w, is not suitable to approximate a solution of the nonlinear system: Take for instance a
time-harmonic field U (t, z) = ¥(z)e~™°! oscillating with a base frequency wy and insert it
into the nonlinearity N®. The resulting field is of the form

NO®W,U)(¢) = /R /R X (1, 1) QU — 1), U(t — 7)) dry dr

= (/ / X(Z) (11, 72)Q(Y, \I;)eiwo(n—i-m) dr d7‘2) o~ 2iwot
RJR

and oscillates with doubled frequency 2wg. To account for this interaction we work with an
extended ansatz

Ue(t, :I}) = EAl(T, XQ,X3)¢1(w1)61 + EA_l(T, XQ,X3)¢_1(371)6_1
+ €2A2(T, Xo, X3)¢2 (.’1:1)62 + €2A_2 (T, Xo, X3)¢_2 (.’1:1)8_2 (416)
+ &2 Ao (T, X2, X3)¢o(z1)eo + O(%),

where for all j € {-2,-1,0,1,2},
Aj=45, ¢-;=6; e =ej(azt) =il

Here ¢; should still be (an approximation of) an evanescent profile ®;, € ker A(k.,w(ke)),
while e2-terms serve as higher-order corrections; they will depend on A; and ¢; in such a
way that Res(U.) is formally of order O(e*). We will subsequently provide a reasoning to
refine this ansatz further; a more involved approximation is given in (4.1.27).

Introducing
\Ifj(T, XQ, X3; t,x1, xg) =£ Aj(T, X2, X3) (]5]' (wl)ej, (4.1.7)

the expression (4.1.6) can be shortened to
U =01 +T_1+ 6(\1’2 +U_ o+ ‘I/o) + 0(63).

Furthermore, it will be convenient to work with the Fourier transform F,,_,;. With

k—jk e
K;:= %, fi = fi(k,t) := exp{—it(jwe + ecg K;)}
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we have the correspondence
E/ a(XZ)ej(ant) dze = 5/ a(Xz)eij(kczQ_wct)—ikxz dzsy
R R
=€ / a(Xp)e H(k=ike)zatiwet) qp,
R
:/a(Xz)e—i((k_jkc)(Cgt-i-Xz/E)—l—jwct) dX2
R

=/a(X2)e_i(X2(k_jkc)/5) d X, e~ tcs(k—dke)+jwe)
R

( k—jkc ) e—it(jwc+scg(k—jkc)/5)
€

I
>

= a(K;) f;(k, t). (4.1.8)

Consequently, we can express the Fourier transformed ansatz U, (t, ) = Fp,—x[Us(t, 2)](k),
& = (z1,k,x3), in (4.1.6) as

Us(t,2) = Ai(T, K1, X3)¢1(z1) fr + A1 (T, K_1, X3)p_1(21) f—1
+ eAy(T, Ko, X3) b2 (1) f2 + €A_o(T, K_o, X3)¢_o(z1) f 2
+ €Ay (T, Ko, X3)do(21) fo + O(e?)
= U (T, K1, X3;t,21) + U_1 (T, K_1, X3;t, 1)
+eUy(T, Ko, X3 t,21) + eV _o(T, K_3, X3, 71)
+ ey (T, Ko, X3;t, 1) + O(e?).

(4.1.9)

We assume that the amplitudes satisfy the asymptotic A\j (T,K;, X3) = 0 as |K;| = oo to
ensure that A\j (T, K, X3) is small unless |k — jko| = O(e). This means that the function

A

Ue is concentrated around integer multiples of k., which enables us to treat each f;-term
separately by localizing k = jk. + €K around jk. (and assuming bounded values for Kj),
since then U, is very small elsewhere. The same will be true for the Fourier-transformed
residual Res(U,) := Fr,—kRes(Ue). To compute Res(U.) we make some observations.

Recalling that curl = Z?:1 S;0z;, we have for the spatial Maxwell operator
A= 0 —curl —iSﬁ where S, = 0 =5
~ \curl 0 _j=1 I T S; 0 )
Prepending the Fourier transform F,,_,; we have

J:x2_>k./4 = Slaml +3kSqo + 838,,3

9 (4.1.10)
= 810;, +i(jkc +€K;)S2 +€“S30x,

for any j € {—2,—1,0,1,2}. Formally, this identity determines the action of A on every ¥;

in Fourier space, i.e.,
I;L-Z—)k (.A\I/J) = (Slazl + ’L(jkc + 8Kj)Sz + 62838)(3){1\/]'. (4.1.11)
Introducing

2 == jwe + ecg K},
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we observe for the time-derivative that
.7"1-2_% [6t\I/j] = (915\/1\/]' = (—in + 62(9T)\/I}J

The strategy for dealing with convolutions in time will rely on Taylor expansions of the
integrands. For sufficiently regular a,x: R — R (that is, integrable up to some derivative, cf.
Lemma 4.2.1) we have

[ e - ) s -ar / () a3t — 7)) e
k(1) [a(T) — e27d/(T) + O(e*72)] €% dr =%

2,)a(T) f; + i’k (2;)d (T) f; + O(e*)

E\%\

where we used [ 7k(7)e™” dT = —ik/(w). Taking derivatives and using
8 [a(T) f;(t)] = (—if2; + €*dr)a(T) f; (4.1.12)
we obtain
o [ w(r)a(e(t— )yt ) dr

= (—if2j + %0r) [k(2;)a(T) f; + i’k (2;)d (T) f; + O(e*)]
= —i82k(82;)a(T) f; + €2 (k(8;) + ;% (2)))a’ (T) f; + O(e*).

M, := e O ’ _ Xe O
0 wo 0 Xm

Frosk [5,5 (0r)¥; ] Frosk [&, (MO\Ifj + x * \IJJ)]
= O Fuy—k [ (Mo + x * T;)]
= —if;[Mo + X(£2;)]¥;(T, K;)
+ 2 [Mo + X(925) + 2% (£2))]00%(T, K;) + O(e*)

Thus, setting

we can formally write

(4.1.13)

Now combining (4.1.11) and (4.1.13) we obtain for the linear part

Foast[(OeM (D)) + A)U;] = Foy k[0 (Mo¥; + x % W) + AT

= —if2; [Mo + ()] ¥; + & [Mo + x(£2;) + ;X' (12;))0r%;
+ [Slam + Z(]kc + EKj)Sz + 62533)(3]\113' + 0(64)

= [—Z'.Qj (Mo + )2(93)) + Slazl + Z(]k‘c + EKj)Sz] \Ilj
+ 2 [My + xX(£2;) + 2;X (2;)]07Y; + €°S30x, ¥; + O(e*)

= A(jke +eK;, Q)0 + 23(Q;)0rP; + 2830x, ¥ + O(eh),
(4.1.14)
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where
J(£2) == Mo + X(£2;) + 2;X (1)),

and where A(k,w) was defined in (4.1.4), hence

—i.Qj (M() + )v((.Q])) + Slam + Z(]kc + €Kj)SQ = A(_]kc + EK]', .QJ)
= A(jkc + €K, jw. + ecgKj).

For future reference, we note that the latter expression can be expanded in two ways. The
first consists of a localization around (jk., jw.) we will use in the case j # +1. Here we find
for k = jk. + eKj, £2; = jw. + ecg K,

A(k, 2;) = A(jkc + €K, jwe + ecgKj)
= —i(jwe + ecg Kj) (Mo + X(jwe + €cgKj)) + 810z, + i(jkc +€K;)So
= —ijwe(Mo + X(jwe)) + 8105, + ijkcS2
— iecg(Mo + X(jwe) + jweX' (jwe)) K + ieS2 K + O(e%)
= A(jke, jwe) — iecgK;I (jwe) + ieK ;S + O(?). (4.1.15)

For j =1 (and similarly for j = —1 by complex conjugation) we argue that if k = k. + K3,
then (21 = w, + ecg K is O(e)-close to w(k). Recalling from (4.1.5) that w(k.) = w. — e%ic
we obtain the following consecutive expansions:

w(k) = w(ke +eKi1) = w(ke) + ew' (ko) K1 + 2w (ke) K3 + O(%)
= we + ecgK1 + €2 (30" (ko)K7 — io) + O(e%)
Ak, 21) = —if21(Mo + %(£21)) + S10,, + ikSy
= —iw(k)(Mo + X(w(k))) + 810z, + ikS2
+&2(0 + 3iw" (ko) KT) (Mo + X(w(k)) + w(k)X' (w(k))) + O(e®)
= A(k,w(k)) + *(0 + 2iw" (ko) K7) I (w(k)) + O(e?)
= A(k,w(k)) + *(0 + 3iw" (ke) K7)I(we) + O(?). (4.1.16)

4.1.2 Sum-frequency generation and correction

For the nonlinear terms N (2)(\Ilj, ¥,) we approximate the double convolution in time using

A(sQ(t —7T),e(x2 —cg(t — 7)) = A(T — 21, Xo + ECgT)

= (1 — 2707 + £cgT0x,) A(T, X2) + O(e*7? 4 £272).
(4.1.17)

Introducing
X®) (wr, w2) / / X (11, 72) €122 4y dy,

we find for a;(t) := eA4;(T, X2)e; = cAj(e%,e(x2 — cgt))eker2=wet) | yging (4.1.17) and
(4.1.8),

Frook /R /R X(2) (11, 72)a;(t — 71)ae(t — m2) dr dm
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= e(A;A0)(T, Kj+ )X (jwe, we) five
— ig?cg (AeDx, A7) (T, K1) (01X (juwe, bwe) f v (4.1.18)
— ie%cg (A70x, A0)(T, Kje) (02X2) (e, twe) fipe + O(E).

Here the higher-order powers of 71, 75 occurring in the remainder terms of (4.1.17) have been
converted into derivatives of ¥(), according to

/R/RT]-X(Q) (11, 7o) eI TIT W22 4y Ay = —iajg@) (wi,we) (5 €{1,2})

and similar formulas for the higher derivatives. Next, thanks to the bilinearity of @), we

obtain an approximation of
N (W, @) := Fp s NO (T, )

by multiplying this last expression by Q(¢;, ¢¢). For the time-derivative we use again (4.1.12)

and obtain
FyskO: N (0, 0,) = ;NP (1, ¥))
= —iR2;1 e NP (T, ) + O(%)
= —A.;o(T,Kj1+0)Q(¢j, b0) fire + O(E?), (4.1.19)
where

Acj (T, Kjpe) = ie(j + Owe(A; A7) (T, K4 )X (jeve, bue)
+ i g Ko A Ag) (T, K. 0) X (jwe, beoe)
+ €2(j + wecg(AeDx, A7) (T, K;42) (01X D) (jwe, beve)
€25+ O)uccg (A0, 40) (T, K1) (25 (e, o)
Here (4.1.19) illustrates the mechanism of sum-frequency generation; the interaction of two
fields with frequencies jw. and fw, creates a field with the frequency w = (j +£)w,, expressed

by the f;y,-term in (4.1.19). We can now sort the residual in Fourier space by these different
fj+e-terms.

Second-harmonic generation

The nonlinear fo-terms in the residual are given by the interaction of ¥, with itself, and
should be compensated by W,. In detail we consider k = 2k. + K2, 22 = 2w, + ecg K> and
have, using (4.1.14) for the linear and (4.1.19) for the nonlinear part,
Res(Us; f2) = Fay o | (M (30) + A)eWs + SN (1, 0y)]
= A2k, + Ko, 2w, + ecgKo)eWg — i NP (U1, 01) + O(e®)

= 51?{2(K2)A(2ka 2wc)¢2f2 - 527:0)0)2(2) (wc, WC)A\%(KQ) Q(¢1, ¢1)f2 + 0(52)'
(4.1.20)
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Setting Ay := A? allows us to extract a common amplitude, and the last expression becomes
Res(Us; fa) = eA2(K2) [A(2ke, 2we)pa — 2iweX (we, we)Q(61, ¢1)] fa + O(e2).  (4.1.21)

A sufficient condition to eliminate the bracket is given below. Recall that ¢, is an evanescent
field, i.e., |¢1(x1)| < et (x1 € R), for some A > 0, which is continuous outside the interface.
As such, |Q(¢1, ¢1)| < €221, in particular we may assume Q(¢1,¢1) € L2(R)S.

Proposition 4.1.3. Let j € Z and assume the non-resonance condition
w(jke) + jwe # 0, (4.1.22)

in the sense that the pair (jk., —jw.) does not fulfill the dispersion relation. Then, for every
§ >0 and ¢ € L2(R)® there ezists ¢ € dom A with || A(jke, jwe)d — |12 < 8.

Proof. Since x(t) = x(t) we have e(w) = e(—w) for all w € R, from which it easily follows
that A(jke, jwe)* = —A(jke, —jwe). Now (4.1.22) yields

{0} = ker A(jke, —jwe) = ker A(jke, jwe)* = (ran A(jke, jwe))

by Lemma 4.1.2. Thus, the range of A(jk.,jw.) is dense in L?(R)®, which proves the
claim. O

By an appropriate choice of ¢2 we can therefore assume that the fa-residual ﬁ\es(UE; f2) is
formally of order O(e?), provided that the point (—2k.,2w.) does not lie on any dispersion
curve, i.e., (4.1.22) holds for j = 2. To make it even smaller, we expand the nonlinear terms
up to order O(g?), using (4.1.19) and @(K) = %’LK;{E(K), and find

—iQN® (0, 0;) = —z’s2wc;1\f(K2)>2(2)(wc,wc)Q(QSl,¢1)f2
— ie%g Ky A2(K3) (1 + we(@1 + 02))XP (we, we) Q(¢1, 61) fo + O(E%).

To compensate these higher-order terms, U, must be extended by an additional correction.
This can be done by replacing ¥y with g1 + W3 2, where

U i (T, Xo, X35t, 21, %2) = €A2j(T, X2, X3)p2,j(x1)e2  (j € {1,2}). (4.1.23)

After setting A1 = A2, As o = —i0x,A? and using the expansion A(k, 22) = A(2kc, 2w.) —
iecg Ko (2w,) + ieK2S2 + O(£?) from (4.1.15), the fo-residual (4.1.20) takes the form
Res(Us; f2) = Faaosk [(0:M(8) + A) (€U, + €2 U32) + NP (T, Uy)]
= A(2kc + €K2, 02)(8{1\12,1 + 62{1\/2,2) — iﬂgﬁ(z)(\l’l, ‘Ifl) + 0(83)
= e A} (K3) [A(2ke, 2we) 2,1 — 2iweX D (we, we) Q(b1, $1)] fo
+ €2K2A% (KQ) [A(2kc, 2wc)¢2,2 — (icgJ(ch) — 7:82)(]5271
—icg(1+ we(B1 + 02))X® (we, we)Q(¢1, 61)] f2 + O(E?).

We can apply the previous argument recursively and find ¢2 1, ¢2 2 such that the fo-residual

is of order O(e3); indeed, this process can be repeated to arbitrary order, since it only
depends on the same non-resonance condition. The case for the f_»-residual is conjugate.
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Optical rectification

The case of the fo-residual is special since the resonance w(0) = 0 in the dispersion relation
cannot be avoided. Thus, we cannot use Proposition 4.1.3. Nonetheless, this case can be
treated similarly.

Since 29 = 0 + €Ky, the nonlinear fy-terms given by the interaction of ¥; with ¥_,
Fapsk [B:N® (01, 0_1)] = —i2eNP (01,0 _1) + O(e®)

= —’L'EzcholA/lﬁ)v((Q) (wc; _wC)Q(¢17 ¢—1)f0 + 0(53)’

are of order O(e?), suggesting that a correction of the same order might be sufficient to
compensate these terms. However, it becomes apparent below that this is not so. Instead,
similar to the fs-correction, we replace e¥ with e¥q 1 + 82\110,2, where

\IJO’]'(T, XQ, X3; t, I, xg) = {:‘A()’j (T, X2, X3)d)07j($1)60 (] € {1, 2}) (4.1.24)

Setting Ag1 = |A1|%, Ao = Ox,|A1|? and using again the expansion (4.1.15), the fo-residual
amounts to

Res(Us; fo) = Faaork[(0:M(8:) + A)(e¥o1 + 2 W 2) + 20,( NP (U1, ¥_y)]
= €(A(0, 0) — iéKo(CgJ(O) — Sg)){f’o,l + €2A(0, O){I;o,z
— 2iecg KoN@ (U1, 0_1) + O(e®)

= e[A12(Ko) [A(0, 0)d0,1] fo

+ e%iKo| A12(Ko) [A(0,0)¢o2 — (cgd (0) — S2)o.1 — cgtho] fo + O(E?),
(4.1.25)

where 9 = 2X® (we, —we) Q(d1, p—1) = XP (we, —we)Q(¢1, 9-1) + X (—we, we) Q(B—1, $1).

Equating the brackets to zero results in the two equations

A(0, 0)¢0,1 =0
A(0,0)¢0,2 = (cgI(0) — S2)¢0,1 + cg%o

which we want to solve recursively. First, from A(0,0) = 8;S; we obtain
ker A(0,0) = {v € L2(R)® : vy = v3 = v5 = v = 0},
and A(0,0)* = —A(0,0) implies further
ran A(0,0) = (ker A(0,0)*)" = {w € L*(R)® : w; = wy = 0}.
Setting v = ¢ 1 € ker A(0,0) we have
(cgJ(0) — Sa)v = (cge(O)'ul, 0, —v4, cgpt(0)vy, 0,1)1) .
Thus, assuming €(0), 4(0) are invertible, v1,v4 can be adjusted in such a way that

w := (cgJ(0) — S2)Po,1 + cgtho € ran A(0,0).
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Consequently, we find ¢ 2 € dom(A) with ||A(0,0)¢o 2 — w|z 2 = O(e), obtaining that the
fo-residual (4.1.25) is O(e?)-small.

Remark 4.1.4. As mentioned, the derivation just shown only works if €(0), £(0) are invertible.
In some cases however, this cannot be expected. Notably, this is the case if the accretivity
condition

Rez > —1p = RezM(z) > c >0, M(z) = (6(;) ,u?z))

is imposed, since then M (z) must have a singularity in z = 0, so €(0), x(0) are not even
well-defined. (Recall that this is a sufficient condition for exponential stability of the linear
system, cf. Example 3.3.2.) Still, recalling that

A(k,w) = —iwM (—iw) + S10;, + ikSa,

it turns out that A(0,0) is in fact boundedly invertible; this follows since S10;, is skew-
selfadjoint and
Re(—iwM (—iw))y=0 = Re(zM(2)),=0 > 0

by the accretivity assumption. Thus ker A(0,0)* = ker A(0,0) = {0} and we have ¢9; = 0.
Then, (4.1.25) simplifies to

Fraosk [(O:M (8y) + A) (€1 + 2T ) + (N (W1, _1) + NO(T_y,y))]
— £%iKo| A1 [2(Ko) [A(0,0)¢o,2 — cgtbo] fo + O(?).

In this case, the equation A(0,0)¢o2 = cg)p is solvable in ¢g o for all right-hand sides

The amplitude equation

To determine the amplitude A = A; we now turn to the fi- and f_;-terms of the residual.
We start with the main contribution to the residual (the sum of terms of lowest e-order),
which is the linear part of the Maxwell system applied to ¥;. In Fourier space we consider
only the fi-terms (since the setting for f_; is conjugate). By (4.1.14) and the expansion in
(4.1.16), these are given by

Fogsk[(0:M(0r) + A)T4]
= A(k, Ql)\i\’l + 62-](.91)0'1"\/1\/1 + 52836)(3\/1\’1
= Ak, w(k) ¥ + &2 (0 + biw” (ko) KT + Or) I (we) + S30x,| U1 + O(%). (4.1.26)
Since A(k,w(k))U1 = A1 (K1)A(k,w(k))py f1, this term vanishes if ¢1 = ®, € ker A(k, w(k))

(by Lemma 4.1.2, ®; is unique up to scaling). Alternatively, we may replace ¢; with an
approximation of ®(k,-) := ®; given by the first terms in the expansion

B(k,-) = Oy, + eK1(01®)(ke, ) + 362 K7 (01®) (e, ) + O(3).
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This leads to a further refinement of our ansatz:

U.=V10+e07 +° Ty
+U_g0+eV_1;+2T_,
+eWy1 + 62Uy (4.1.27)
+e¥ o1 +2T_yy
+eWo1 + 2T

where ¥, are again of the form
Uit 2) = U 0(T, Xo, X338, 1, 22) = e4;0(T), X2, X3)$j0(21)e;

Setting Al,O = A, Al,l = i6X2A, A1’2 = —6§2A, and @1’0 = (ch, (I>1,1 = (81<I>)(kc,-),
@19 = 3(82®)(ke,-), we have thus Fp,x[U1,0 + V11 + 2Tq 5] = A(K1)®rf1 + O(®).
Using (4.1.26), the linear part of the fi-residual is then

lin
Res Res' )(Usyfl) Froosk[(O:M(85) + A) (1,0 + e¥1 1 + 2T 5)]
= &2 [(0 + i (ke) KT + Or)I(we) + S30x, | ¥1,0 + O(?)
= &2 [(0 + i (ke) K3 + ) A(K1)J (we) B + Ox, A(K1)Ss®s] f1 + O(e?)
Further f;-terms are generated by nonlinear interaction of e; with ey and of es with e_j.

Recalling that Ag1 = |A|2 and As; = A? and using (4.1.19), we see that these terms are
given by

Foook[0r D (NO(W1_j0,6%;1) + N (W1, 01 _j0))]
j€{0,2}
= —27:01 (N(Q) (\111,0, 8‘1’0,1) + N(Q) (\11_170, 8‘1’2,1)) + 0(83)

= —€2iw0@(K1)¢1f1 +0(e%)

where
P1 = 2% (we, 0)Q($1,0, #0.1) + 2% (—we, 20e) Q(h—1,0, B2,1)-

Now the smallness of Res(Us; f1) = Res' " (UE, fi) +Re Ros." 1)(UE; f1) is obtained in two steps.

First, we consider a ﬁnite—dimensional reduction. Fix ®} € ker A(k,w(k))* and define?

Q= 1iw”(k ) B = (Ss®r, B 12 yi= iwe(y1, Pf) 2
2 c)s (J(wc)q)k,¢> >L2 < (wc)ék, k>L

Then, projecting Res(Uy; f1) onto ®} and equating the e2-terms to zero yields

O7A + oA + aK2A + BOx, A — y|Al2A = 0. (4.1.28)

2provided of course that (J(w:)®x, ®})r2 # 0, which we will assume throughout. Recalling that J(w) =
Mo + x(w) + wX'(w), this condition depends on the function ¥ as much as on the frequency range of we.
Multiplying instead (4.1.28) with (J(w.)®k, ®})r2 and then setting it to zero, the amplitude equation, in
view of 8 = 0, trivially yields A = 0.
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In fact, since
(S3v) - w = vsw; — vawe — Vowy + V1Ws,

and since the linear modes are either transverse-magnetic or transverse-electric, for v := @y,

w = @} we have
either v3=wvy=v5=wg=wg=ws=0 or v =vy=1vg=w =ws=wg=0.
In each case it follows that (S3v) - w = 0, which implies
B =0.

Thus, after taking the inverse Fourier transform, (4.1.28) reduces to the Ginzburg-Landau
equation

OrA+ oA —ady A—v|APA=0. (4.1.29)

Remark 4.1.5. We note that by the assumptions (D1), (D2) on the dispersion relation,
Rew” (k.) is small and Im w” (k) < 0, thus

Rea = %Reiw"(kc) = —%Imw"(kc) >0

and Im « is small. By Theorem 2.2.2, equation (4.1.29) admits solutions A which are small
in H! (R, H*(R?)), where s > 1, v € (0,0). O

Suppose subsequently that A solves (4.1.29). Then, by construction, I/{e\s(UE; f1) is O(e?)-
small in ker A(k,w(k))*. In order to make the residual small on the whole space, we extend
the ansatz U, by a final correction 52\111,0 + 52\11_1,0, where ¥_; . = ¥; . and

\Ifl’c(T, X2, X3; t, Z1, :L‘Q) = —88X3A(T, X2, X3)¢1’C(£L‘1)€1 - €|A|2A(T, X2, X3)¢1,C(w1)61.
(4.1.30)
This O(g?)-correction only changes the linear part ﬁ\eS(Ug; f1) of the fi-residual; analogous
to the above we have

Res(Us; f1) = €2 [(a + Liw" (ko) K2 + 87) A(K1)J (we) @, + axsz(Kl)sgq>k] f

+ Ak, w(k) Ty e+ Res " (Us; f1) + O(E3).

Now using (4.1.28) and 8 = 0, we may replace (o + 3iw" (kc)K? + dr)A(K1) by 'ym(Kl).
Hence, the above simplifies to

Res(Us; f1) = e2[APA(KY) [y (we) Bk — iweth — Ak, w(k))1e] fi
+ £20x, A(K1) [S3®), — A(k,w(k))¢1.c] fr + O(E3),

and the smallness requirement leads to the two equations

Ak, w(k))p1ec = 1 (we) Pk — iwethr
A(k,w(k))¢1,c = S3<I)k.

But now the fact that (yJ(we)®x — iweth1, F) = (S3P, @) = 0 shows that the right-hand
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sides in this system both lie in ker(A(k,w(k))*)* = ran(A(k,w(k))). Consequently, we find
$1.c,%1,c € dom A such that

A(k,w(k))Y1c = I (we)Px — twep1 + O(€)
A(k,w(k))¢1,c = S3®; + O(e),

yielding Res(Us; f1) = O(e3).

Summary

Starting with a slowly varying amplitude modulating a linear 2D-mode in Fourier space, we
have shown that, imposing non-resonance conditions on the dispersion curve, corrections
can be made in such a way that the residual P/{\eS(UE) is overall (formally) of order O(g3),
respectively Res(U:) = O(e*). To summarize, our final and corrected ansatz is

Ues=(V10+eP11+W10) + (W_10+eV_11+2T_19) + (62U +2T_1 )
+ (eWa1 4+ %Ws2) + (¥_g1 +£°T_35) (4.1.31)
+ (8\110,1 + 621110,2).

Here the symmetry ¥_; ; = \I/_zJ holds, and with
T=¢e%, Xy=¢c(zs— cgt), Xz = e2x3,
the individual terms in the parentheses are given by
e The main term (approximation of a modulated 2D-mode):
(T1,0 + V1,1 + €21 )(t,z) = eA(T, Xo, X3) B, (1) €274 4 O(e3),
where @y € ker A(k.,w(k.)) and A is a solution of (4.1.29).
 The correction (4.1.30) on (ker A(k,w(k)))*:

82‘111,c(t, z) = e(0x, A)(T, X2, X3) ¢1,c(21) ilkea—wet)
_ 5(|A|2A)(T, X, X3) 1/,1’(:(%) pilkeaa—wet)

o The correction (4.1.23) due to second-harmonic generation:

6\112,1(75, ac) = 52A2(T, Xg, X3) ¢2,1(:L'1) eQi(kg.’L‘Q—wct)
€2l11272(t, .’L‘) = ’[:52(8X2A2)(T’ XQ,Xg) ¢2’2(£L‘1) eQi(kc.Z'Q—wct)'

o The correction (4.1.24) due to optical rectification:

eWo,1(t,z) = *|A]*(T, X2, X3) ¢0,1(21)
2o (t, z) = e(0x,|A1*) (T, X2, X3) do,2(21).

The profiles ¢; j, ¢1,c,%1,c € L2(R)® all have exponential decay towards infinity.
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4.2 Norm estimates for the residual

The aim of this section is to justify the previous formal expansions, showing that under
suitable conditions the higher order terms are indeed small in L2, for some v > 0.
We focus on convolutions in time involving amplitudes depending on long time scales.

Lemma 4.2.1. Let v > 0 and let x € L2, be a causal kernel for which X' is bounded on the
strip S, := R+ i[-v,0]. Then for alla € H! ,(R), w € R, and é € (0,1), the function Js
with

Js(t) = /R X(P)e“Ta(5(t — 7)) dr — ¥(w)a(6t)

fulfills Js € L? s, With
1slze,, <6 sup|X'(2)| '] 2 -
—ov 2€Sy v

Proof. Recalling that x(w) = [ x(7)e™7™ dr and (L,x)(£) = \/%Tr [ x(1)e= (@7 47 we have
the correspondence (L,x)(§) = \/%7)2(—(5 —1p)) for p,& € R. Together with the convolution
theorem L,(u *v) = v/2m(L,u)(L,v), the scaling property Ls,[u(d-)](6¢) = §~1L,[u](£), and
the derivative rule L£,[u'](§) = (0 + i€)L,[u](€) we compute
L_5u[J5](8€) = V28 L5 [xe™ ](66) L5 [a(8 )] (5€) — 6X(w)L—s0[a(6-)](5€)
= X(w — 8(§ +iv))(L-va)(§) — X(w)(L-va)(E)
= (X(w = 6(¢ + ) — X(w)) (£-va)(§)-

Due to the boundedness of X’ we can estimate this last term by

|(X(w = 6§ + i) = X(w)) (£-va)(§)] < sup |X'(w — A6(§ +iw))|6(§ + iv)| [(£L-va)(E)]

A€[0,1]
<46 sup X' (2)] 1(€ +iv)(L_va)(€)].

Setting C) := sup,cs, |X'(2)|, with a € H!,, and Plancherel’s theorem we conclude

Wsllgz,, = 1E-suTsllzz = 16£ s [75) (6 ) 2 < 6 Cul(€ + ) (L) 5
= 5Ll
= 5Cx||al||L2_u,
which yields the assertion. O

Remark 4.2.2. The assumptions can be weakened to x Lipschitz continuous on the strip S,
and a € L? (R, H), in which case we have the estimate

152, < 0Ly llallzz

with L, , denoting the Lipschitz constant of x on S,. O

With § = €2, Lemma 4.2.1 shows that for functions ¢ — ea(e?t) changing on the long
time scale T' = 2t, the time convolution with a well-behaved kernel x can be approximated
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with instantaneous terms up to an error of O(¢®) in L? , (R). To take into account the
remaining long scales Xy = e(z2 — cgt), X3 = €23, we replace a(et) by a generic term

\Ifj(t, .’L‘) = &‘Aj(T, X2, X3)¢j (wl)ej(t, .’L‘2)

occurring in the ansatz U.. Here A; is a polynomial expression in A, A and their spatial
derivatives, with A being a solution of the amplitude equation (4.1.29). Recall from Theo-
rem 2.2.2 that for such a solution we may assume A € H! (R, H*(R?)) (s > 3). It is easy to
see that due to the scaling dzy dzs = e 73 d X, d X3 the error

1/2
”X * \I’J - )v((]wc)\IJJHLz ) = (// |X * \I/J(t, w) _ X(]wc)\PJ(t, $)|2 d$2 d.’L'3 6—2621175 dt)

—E&“V

5 636_3/2 ||aTAj”L2_V ”(Z)j”[g

becomes of order O(e3/2). The terms in Res(U.) which are not related to time convolution
can be estimated in a similar way, since those are of the form "¥; with n > 3. For such
terms, dzg das dt = e° d X, dX3dT gives

"Wl , S e Al e 16, = O,
Overall we can conclude that
[Res(U)ll;2 | = O(),

which will turn out to be sufficient for a rigorous approximation.

4.3 Small solutions of the error equation

As mentioned in the introduction to this chapter, our ultimate goal is to be able to perform
a fixed-point argument for the error equation on a subset of L2 ,(R,H) for some v > 0.
This includes the exponential stability of the linearized equation and the smallness of the
Lipschitz constant of the nonlinearity on small sets in L2 (R, H).

As before, we consider a Maxwell system

(B:M(8;) + AU + N@ WU, U) =0  (t>0),

with a quadratic and (w.l.0.g.) symmetric nonlinearity N @) of the form

N, )(®) = [[ XDt -m,t =) Qu(n), o(rm)) dry dra
Recall from (4.0.3) that the error equation takes the form
(O:M:(0:) + A)R + F.(R) + Res(U,) =0 (¢t > 0),

with M.(8;)R = M(8;)R +2N@(R,U.), F.(R) = F(R) = N®(R, R), and U. is the ansatz
established in (4.1.31). In order to put the error equation in the framework of evolutionary
equations, we make a few observations. We first note that M. need not be a linear material
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law in the strict sense of the definition. For even if the kernel x(?) is causal in each variable
and @ is a bilinear operator in L2(R3)®, writing Q(U.(71), R(2)) =: Q(71)R(72) gives rise
to

NO@LR)®) = [[ X2t =11, - ) QUL(), R(m) dm d

=/[/X(z)(t_Tl,t—7'2)Q6(7'1)d7'1}R(7'2)d7'2
= /Ke(t,TQ)R(TQ) dro,

with k.(t,72) :== [ x? (t — 71,t — 72) Q<(11) dm1. This non-autonomous convolution operator
cannot be described by a linear material law. However, the contribution of N (2)(UE, R) can
be viewed as a small Lipschitz perturbation, under some conditions on x(?) and U..

Lemma 4.3.1. Let x?: R2 — R be measurable and causal such that the map k with
k(t) = [IxP(t,7)|dr fulfills & € L, (R) for some go € R. Let G € L™(R, B(H)). Then, the
operator

U /R /RX(2) (t — 71,t — 12) G(11)u(72) dmi dT2

is causal and bounded on L2(R,H) for ¢ > go.

Proof. The boundedness follows from an estimate completely analogous to those established
previously for Lipschitz maps (cf. Example 2.1.5 (b)):

2

/R/RX@)(t —T71,t— 7'2) G(Tl)’u,(Tg) dr dm

Ly
2
< /R(/R/Rb(@)(t — 71,8 = T2)| [|G(T1) | g(ag) lw(72) I3, A1 d7'2> 20t g

<Gl el [ [ (e = ra)em ool g=2ee)tm) at u(ry) 2 €267 dry
<1

2 2 2
<G 2y Tl

The causality is obvious. O

Consider again a generic term ¥;(t,z) = ¢A;(T, X2, X3)¢;j(x1)e;(t, z2) in the expression
for U(t,z). Assume that A; = A;(T, X2, X3) is bounded as a function A € L°°(R?), and
that ¢; € L°(R)S. Then the map

G(r) := Q(e™1¥y(7), -)

fulfills G € L®(R, B(L?(R?)%)), and under suitable decay assumptions on x(?, Lemma 4.3.1
yields the boundedness of the operator

R e IN®(¥; R) = // XD (=71, — 1) Qe ™1, (m), R(7)) dry dry
on U o L2(R, L*(R?)®). By linearity, the operator R e N@(U,, R) is also bounded,

showing that
8tM€(8t) = 3tM(at) + 0(6), Il<ekl,
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in B(L2(R, L*(R3)%)) for ¢ > go. In particular, taking gy = —p < 0 we can conclude the
following.

Lemma 4.3.2. Let x?) be measurable and causal, with [|x?(-,7)|dr € L, (R), and let
U. be a uniformly bounded ansatz such that Res(Uc) = o(g) in L? (R, L?(R3)8) for some
v > 0. Then, the linearized error equation is exponentially stable for small e < 1 if the
original linearized Maxwell system is exponentially stable.

What remains is to perform the fixed-point argument for the nonlinear error equation. To
this end, the nonlinearity must be established as a mapping on a small and closed space
W_, C L% ,(R,H), H = L?(R3)%. We can formulate our main approximation result.

Theorem 4.3.3 (Justification of the Ginzburg—Landau approximation for fully nonlocal
quadratic nonlinearities). Let €, u be (scalar) linear material laws satisfying the following.

1. There exists vo > 0 and ¢ > 0 such that Cres—_,, ~ (dom(e) Ndom(u)) is discrete and
Rez > -1y = Reze(z),Rezu(z) >c

for all z € dom(e) Ndom(u). In particular, the linearized Mazwell system is well-posed
and exponentially stable.

2. €,u admit dispersion curves satisfying (D1) and (D2). Hence, the system admits a
family of linear (TM) or (TE) surface modes.

Let N®@ be a quadratic nonlinearity of Volterra type,
NO@, V) (t) = / @ (11, 75) QU(t — 1), V(E — 7)) dry dr

with Q: H2 — H bilinear, suppx? C (0,00)2, and k = (81 + d)x? satisfying the

integrability conditions of Lemma 4.3.1 and Lemma 2.3.1 with o, = —uy, i.e.,
/ / |5(71,72)|| €2 +™) dry drp < 00 (4.3.1)
R JR
sup / ||'f(t —T1,t— T2)|| e (t=T)gr0(t=72) qt < oo, (4.3.2)
71,2€ERJR

Finally, let U, be an ansatz of the form (4.1.31), i.e
U.(t, ) = eA(e%t, (g — cgt), e2x3) B(x1) e'Fem27wet) 4 c.c. + O(e?),

such that U, is uniformly bounded and ||Res(U;)|| 2, = = O(e%/?) for small e > 0. Then,

there exist €9 > 0 such that for all € € (0,&9),v € (0, Vo) the following holds: for small data
g€ LQ_EZV(R, H)2, suppg C [0,00), |Igll 2 , < g, the error equation (in evolutionary form)

(0:M:(0¢) + A)R + F(R) + Res(Uz) = g,

where M. (8;)R = M(8;)R+2N @ (R, U.) and F(R) = 8; N® (R, R), admits a unique solution
ReL?_, (R,H)* with ||R| 2 , Se

~
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Proof. Since Res(U:) = o(e) in L? ; (R,H)?, the exponential stability of the linearized
Maxwell system implies by Lemma 4.3.2 that 20, N® (U, R) is small in L? ; (R,H)? and
that the linearly perturbed error equation

(8, M(8)R+ AR = g — Res(U,) — 20,N®(U., R)

is again exponential stable for small € > 0. The conditions imposed on F' establish the local
Lipschitz estimate

IP@) = PV, <d(Ullzz , +IViiz )0 =Viigz

with d > 0, see Lemma 2.3.1 and the subsequent comments. The statement follows by a

fixed-point argument as in Theorem 2.3.2. O

Remark 4.3.4. Note that to achieve Res(U.) = O(¢%/?) we have to impose at least Lipschitz
continuity of €, on a strip {z € dom(e) Ndom(y) : Rez € (—wp,0)}, cf. Lemma 4.2.1,
Remark 4.2.2. O

4.4 Comments

It is reasonable, to some extent, to compare the approximation result in the preceding section
to that in [SU03] dealing with electric fields in optical fiber. There, nonlinear Maxwell’s
equations are considered, in the form of the wave equation

atzE = 8§E - 8tQPel(E)

for the E-field in one spatial dimension, featuring materials with continuous memory, modeled

by a cubic-quintic electric polarization

PE)®) = [ XD (DB - r)dr
te / O (B¢ - 7)PE( — 1) dr

+ [xO@IEE - ) B - ) dr,

and where X(l), X(?’)’ X(5) are susceptibilities of a generalized Lorentz-type analogous to
the model discussed in Chapter 5. A pair of coupled-mode equations is derived for the
amplitudes of an ansatz consisting of right and left travelling wavepackets, which is then
simplified (assuming a spatial localization) to a single cubic-quintic Ginzburg-Landau
equation. Families of pulse solutions for this equation are used to construct the wavepacket
approximation.

The justification result in [SU03] (Theorems 2.8 and 2.9) is similar in spirit to Theorem 4.3.3,
albeit with a slightly different scaling: For an ansatz of the order ¢!/2 and smallness
assumptions on the initial data, one obtains the error bound

”R(t)”Hk(]R3) 5 81/2e_ba2ta t> 07
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for fixed k£ > 1 and for some b > 0, The method for obtaining this justification is to convert
the Maxwell equation into an extended system without memory, made possible by the
assumption on the susceptibilities.

Interface effects and centrosymmetric media

We want to highlight another difference between the result in [SU03] and Theorem 4.3.3,
that lies in the assumptions on the physical setting. In [SU03], the cubic-quintic electric
polarization, in particular, the absence of nonlinearities of even order, is a consequence
of inversion symmetry imposed on the underlying lattice structure of the material (cf.
Figure 4.3): Shifting the origin to the center of symmetry, the material structure looks
the same under the inversion x — —x, which means the material response to the field —F
(at the point —z) is the same as the response to the field E (at the point z), but modulo
the inversion itself. Consequently, the polarization must commute with this inversion, i.e.,
P(—E) = —P(E). Assuming that the polarization is given as a sum P = 3_, -, P, with

Figure 4.3: Lattice with inversion symmetry around a point o.

P™ Dbeing a tensor of order n — 1, this means that under inversion symmetry, the even-order
polarizations P(?*) (k € N) must vanish identically. Thus, the lowest-order nonlinearity in
the Maxwell system is cubic, and this leads to a main cubic nonlinearity, and otherwise small
nonlinear terms, in the error equation. In turn, this makes the general method in [KSM92]
applicable, see [SU03, Lemma A.4].

In contrast, the assumption of inversion symmetry is generally not valid in our case, as
this symmetry is broken at the interface. The resulting nonlinear effect can be modeled by
an effective quadratic polarization and is expected to be concentrated within a thin region
of the interface (cf. [Boy08, 2.11], [She89)).

It might be reasonable to assume an overall smallness on this localized interface polarization,
while assuming otherwise centrosymmetric, nonlinear media. In this case, the result in
Theorem 4.3.3 can be improved as follows. Recall that ¢ was introduced in (4.1.5) as a
perturbation parameter featured in the linear material relations. Now suppose additionally
that € is featured in the nonlinear susceptibility as

a.PAU)(t) = e / / X (r1,72) QU(t — 1), U(t — 73)) dr1 dr (4.4.1)

with & > 0 and a suitably regular kernel () (in the sense of the integrability conditions in
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Theorem 4.3.3 and the assumption supp & C (0, 00)?). This smallness assumption leads to
a smaller Lipschitz constant (from O(e) to o(¢)) of the nonlinearity over balls with small
radius in L2_62V(R, H). Under similar assumptions as in Theorem 4.3.3, this provides the
improved estimate

IRl , et

with § > 0. In this respect, this estimate is more in line with the results established in
[DST22], where the lowest-order nonlinearities are of cubic Kerr-type. However, recalling
that the ansatz U, is itself exponentially localized around the interface, it is not clear if the
smallness assumption in (4.4.1) can be made.
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5 The Drude—Lorentz model of electric
permittivity

In this part we consider a variant of the Lorentz oscillator model describing the material
response of bound electrons to an electric field, and we want to verify the assumptions in
Definition 3.3.8.

The basic model for a dipole (cf. [Fox10, §2.2.1]) relies on two assumptions: First, that
the polarization' P is proportional to the driving force, which in turn is a multiple of the
internal field E. Second, regarding the bound electrons as a spring-damper system, that this
field obeys the equation of a damped oscillator, i.e., an equation of the form

O}P + 0P + wiP = oF.

By Newton’s law of motion, 2P is related to the acceleration, 79;P to the damping, w2P is
proportional to the restoring force of the “spring”, and aF is the forcing term. After taking
the Fourier-Laplace transform we obtain that

P= XL(at)Ea

with the material law x|, the Lorentz susceptibility, which in frequency space is given by

(07

)= —5———.
xu(2) w + vz + 22

The macroscopic model of x is usually more involved and consists in a finite sum of such
terms, or even more generally,

x(2) = Xn: M (5.0.1)

: 2°
20w + vz + 2

The parameters are determined in order to fit the experimental data. A similar model is
employed in [SUO03] for nonlinear Maxwell equations in an optical fiber. If the parameters
w(z), j and +; are real and positive, the corresponding operator x(d;) acts by convolution of a
sum of exponentially damped sine and cosine functions with resonant frequencies wy j; this
becomes clear after recalling the following identities for the Laplace transform,

F(t) = 6(t)e " sin(wt) — /R fOe bt = s
—t —2t 14 w+z
9(t) = 0(t)e " cos(wt) => /R JOe = 25

Lor electron displacement, or dipole moment. All these notions differ only by constant factors, like positive
or negative charge, volume, etc.
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for Rez > —vy and w,y > 0, where 0(t) = 1(g «)(t) denotes the Heaviside step function.

5.1 Accretivity
We take for simplicity » =1 in (5.0.1) and consider the material laws x, € given by

a+ Bz

2) =,
x(2) wg + vz + 22

€(2) = €0 + x(2). (5.1.1)
We want to check the positivity conditions of Definition 3.3.8 on half-planes containing the
imaginary axis.
Remark 5.1.1. Setting wy = 8 = 0 one obtains the Drude model, or free electron model, as a
special case of (5.1.1). Here o(z) = ;% takes the role of a frequency-dependent conductivity.
Since lim|,|_, 0(2) = 0, the positivity condition Re ze(z) > ¢ > 0 on a right half-plane is not
Z z+7) : M(2) + z_l 2 with a strictly
positive “conductivity” £, the material law M (z ) =€ — 7(z ) can satisfy Re M(z)>¢>0
only for Rez > p with p > 0 large enough. As such, none of the conditions in Definition 3.3.8
are fulfilled by this model. O

We will assume that wp # 0. In this case, the zeros of the denominator are

satisfied. Even when Writing instead €(2) =€y + £ (— -

, %:I:%wélwg— 2 if 2wp > v
—1+ 1 /v2 — 4w}, if 2wo <7,

and are contained in Cre<q. Thus, the susceptibility x and the permittivity e(z) = €9 + x(2)
are linear material laws with Cre>_,, € dom(x) = dom(e), where

%7 2wy > Y
0<v:= ) 5
3~V — 4w, 2wo <.

Moreover, it is clear that for o > 0 large enough we have Rez > ¢ = Ree(z) > cRez > 0,
L2(R,H) of

(5.1.2)

meaning the theorems in Sections 1.4 and 3.2 regarding well-posedness in U, ,,

the corresponding linear or (Lipschitz-)nonlinear systems are applicable.
If B =0, then lim,|_,o(2Xx(2)) = 0, thus Re ze(z) = Re (02 + 2x(2)) > ¢ > 0 cannot hold
unless Re z > p for some ¢ > 0. We will thus assume subsequently that «, 3,7, wo > 0.

Lemma 5.1.2. Let o, 3,7v,wp > 0 and suppose that oy > ﬂw%. Then for all 6 > 0 there
exist v1 > 0 and ¢ > 0 such that

Vz € CRe>—u, ™ B[0,6] : Reze(z) >ec. (5.1.3)

Proof. With 79 > 0 defined in (5.1.2), g(v,€) := Re (v + i€)x(v + i§) is well-defined and
continuous in (v,§) € Rs_,, x R. Moreover, we find
B +€ + (202 + ay — BuR)® + v(a+ BY) (V2 + € + v + wi)

(@f + 12— €+ )" + (2 +7)°

g(v, &) =

and obtain that if » > 0 and (v, £) is bounded away from (0, 0), then g(v,£) is uniformly posi-
tive, since due to ay— w2 > 0 it is a sum of strictly positive terms and limy(,, ¢)|—00 9(¥, €) = B-
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For v = 0 we have
_ BE' + (ay — BuR)E?
F - @R+ ey

which is uniformly positive for £ bounded away from (0,0). Now let § > 0. By continuity of

9(0,¢) (5.1.4)

the map

— _inf
ver L inf 290n8)

there exist vp > 0 and ¢y > 0 such that g(v,£) > ¢p > 0 for all v > —1y. Choosing
v1 € (0, min{vp, co||€o]|*}), we have

Reze(z) > egRez +cop > co — |leo]|v1 =: ¢ >0
for Rez > —u;. O

Remark 5.1.3. It follows from (5.1.4) above that the condition oy > 5w3 is not only sufficient
but also necessary for uniform positivity of Re ze(z) on some Cgres—y,; indeed, assuming
otherwise, we find 0 # & € R such that g(0,+&y) = 0, and an interval (—d,d) such that
9(0,&) = Re(ie(i€)) < 0. Hence, Re ze(z) > 0 does not hold for z € iR \ B[0,§/2]. O

Lemma 5.1.4. Let o, 8,7v,wp > 0 and suppose that a < Bvy. Then there exist v; > 0 and
¢ > 0 such that
Vz € CRre>—1, : Ree(z) >c. (5.1.5)

Proof. Since Cre>o C dom(x) and lim,|_,, X(2) = 0, we know that x is uniformly bounded
on Cre>o. With 2 = v + 4§, v > 0 we find

(Bv + By — )&% + Br® + (a + By)v2 + (ay + Buwd)v + aw?

R €) =
ex(v + i) W + 12— €2+ )" + (2w +7)°

(5.1.6)

Together with the non-negativity of the parameters and with 8y — o > 0, this yields
Re x(v +i§) > 0 for v > 0. Now by continuity of v — infs Re x(v +i£) and since g > d > 0,
there exists 1 > 0 and ¢ € (0, d] such that

Re(eo + x(v +i)) > ¢ >0
also for small v € (—v4,0). O

We may immediately combine Lemma 5.1.2 and Lemma 5.1.4 to conclude that €(z) =
€0 + x(z) with x as in (5.1.1) is of Lorentz-type according to Definition 3.3.8, provided that

<

2 |&,

<~ (5.1.7)

™R

is satisfied. The disadvantage, however, is that this condition is satisfiable only for wg < ~2
This means that the damping of the oscillator must be stronger than the resonant frequency
determining the restoring force. Note that while the leftmost estimate is indeed necessary
(see Remark 5.1.3), positivity of Re e(z) = €p + Re x(z) can still be achieved for a/8 > 7, for
example by simultaneously choosing o and £ small, such that, by uniform boundedness of
X(z), the positive term €y dominates.
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In order to remove the restriction wZ < 42, we can make this last comment (slightly) more
precise by providing a rough estimate of

1/2
|X(V + 7/£)| — ((a + ﬂl/)z 1'16252) / 7 (518)
(W3 +02 - +)" + (20 +)°)
in the case of small damping coefficient . Specifically, we assume
0<v<1<uw, —%<<y<<1, w2B < ary (5.1.9)

(the last inequality being the accretivity condition of Lemma 5.1.2). Squaring the denominator
in (5.1.8), we find that the minimum of

h(€?) = (wg + V2 — €24+ W) 4+ €2(2v +7)?

is located at £2 = & := wd + v? — 7, and thus

((a+Bv)? + B2(WE + 2 - 1)"/?
(F+ w2+ (Wi +rv2-3C2r+9)?)

sup [x (v +i€)| < [x(v + )| = 12"
geR

Now using the assumptions (5.1.9), i.e., the smallness of 7, v and the bound 8 < ary/w?, the
last expression can be estimated to yield

sup [x(v +i€)| S — + O(jv|) as v — 0. (5.1.10)
£€R wo?Y
Thus, we may take
2
<2 and L <e (5.1.11)
v B wo"y
as a plausible replacement for (5.1.7).

5.2 Dispersion relation

Next we turn our attention to the conditions (D1) and (D2) imposed on the dispersion
relation. For this purpose, we consider p(w) = o € R and € a permittivity of Lorentz-type
on each side of the interface. Recall from Section 1.3 that with

€T (W) == o —i—/ xE(t)e™t dt
R

the dispersion relation was formulated in terms of the angular frequency w € RT as

_ 2 €W ()

K =w R (5.2.1)

Recall that the material law €(z) and €™ (w) are related by (neglecting a factor of v/27)

€(z = iw) = - (w).
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Now if €*(w), e (w) are given by

wE, o, g4 > 0, (5.2.2)

then for suitable parameters (5.2.1) gives rise to a dispersion curve satisfying (D1) and (D2),
see Figure 5.1.

Rew(k)

Imw(k)

02} \

—-03

B

Figure 5.1: Numerically computed dispersion curves k — w;(k) with positive real part
in the transverse-magnetic setting with u(w) = po and € (w), e~ (w) both
given by (5.2.2), where pp =1 and

2-3, o =04, B =003, ~ =05

Conditions (D1) and (D2) are satisfied by the green curve. In this example,
the parameters satisfy (5.1.11); otherwise, the choice is arbitrary.

5.3 Comments

The preceding discussion shows that the positivity conditions introduced by permittivities of
Lorentz type (Definition 3.3.8 are, in principle, compatible with the properties (D1), (D2) for
the dispersion relation.

Here we have assumed the non-magnetic setting and a ‘single-oscillator’ model for simplicity.
As a general model is usually determined to fit a curve to experimental measurements (from
the refractive index of the material), and consists of multiple ‘oscillator’ terms, in theory
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there are more degrees of freedom for tuning the desired properties, cf. [SLM17, SLM18].
We make no physical considerations about exact values for the model, nevertheless, we
remark that strict positivity of Ree(z) and Re ze(z) for small Rez does not seem to be
compatible with permittivities of metals in particular, as these usually contain a pure Drude
susceptibility term of the form

(2) = -~
XD = oz +7)
which can become negative for small values of w = —iz € R* (this is responsible for the

reflection in metals at optical frequencies, see [Jac75, §7.5]).
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6 Discussion

We take the opportunity to give a short summary of the results in this thesis and present
some directions for future work.

Summary

In this paper, a functional analytic perspective to evolutionary equations was adapted to
nonlinear Maxwell systems with various types of nonlinear material functions with memory.
We explored known criteria for exponential stability and derived new ones for specific linear
material laws. The emphasis on Volterra-type nonlinearities allowed to extend known criteria
for exponential stability to nonlinear settings for small data.

In the setting of a planar interface and scalar material functions, evanescent surface modes
can be derived explicitly and analytically as solutions of the linearized system. A wavepacket
ansatz can be constructed from these functions using a slowly-varying amplitude. Accounting
for quadratic resonances makes the addition of correction functions necessary; in the end, the
wavepacket is determined by a scalar perturbation parameter (in the critical wavenumbers)
and by a solution of the amplitude equation.

A rigorous justification of the amplitude approximation was performed for a model problem
by showing that the error equation admits a small, exponentially decaying solution. This
was done using the stability results established before, imposing sufficient conditions on the
data (smallness), the material laws (spectral positivity), and the nonlinearity (compatibility).
Under these assumptions, the justification proves the existence and stability of ‘broad’ surface
wavepackets.

Outlook

Apart from the open problems presented in Sections 2.5 and 3.4, the following selected topics
can be of interest.

The non-magnetic setting. While frequency-dependent behavior of the linear magnetization
(permeability) is well known ([LL35]), and surface waves analogous to surface plasmon
polaritons exist in magnetic settings (surface magnon polaritons, [MC19]), the magnetization
is often assumed trivial in nonlinear optics. It is thus desirable to study non-magnetic
settings, or at least weaken the assumptions on u.

Under the assumption of exponential stability (in the sense of the results in Section 3.3)
for the non-magnetic Maxwell system on the whole domain 2 = R3, a corresponding result to
Theorem 4.3.3 could be formulated, with minimal change (apart from additional regularity
conditions on the nonlinear kernel x(?) in Example 3.3.23). The (open) problem of deriving
exponential stability on exterior domains was discussed in Section 3.4.
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Another approach would consist in working on a cylindrical domain, with the unbounded
direction being the direction of propagation of the ansatz (the zs-axis) in (4.1.31). In this
case, boundary conditions should be taken into consideration.

Working with(out) exponential stability. If metals are involved the setup, it is known that the
permittivity has a negative real part in a wide range of frequencies, see Section 5.3. Even
without metals, one would like to consider cases in which the uniform accretivity conditions

Reze(z),Rezu(z) > ¢>0

are violated at least in some region of the complex half-plane, hence, where the criteria in
Section 3.3 are not able to yield exponential stability. We can address this issue from two
directions: either work without exponential stability, or try to derive it in another way.
Following the first idea, the existence of small solutions R € Lg (R, #)? to the error equation
with ¢ > 0 would still be useful, if o = O(£?), say o = £2b. Under the same assumptions of
Theorem 4.3.3, this latter assumption would produce, assuming R is continuous, the estimate

IR(@)|| 2 S e,

Thus, the error would still remain pointwise of order O(g) over an interval of length O(1/€?).
One of the main problems with this approach is that Volterra-type operators can only be used
with a cutoff over an interval [0, Tp/e?] of the same length scale. Applying Theorem 2.3.3
(local existence), the Lipschitz constant of the nonlinearity gets multiplied with a factor of
O(1/e), and smallness may not be guaranteed.

We expect that the second approach will require other methods than the ones presented in
Section 3.3. For instance, assuming that Re ze(z), Re zuu(z) > ¢ > 0 holds only on B(L?(£4)¢),
i.e., when restricted to one side of the interface. The task is to infer (exponential) decay on
the other side, L?(2)® from this condition. We suspect that some progress can be made in
this direction using boundary control methods, see [AP19, FM96, KMO01, PN07].
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