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1 Introduction

Electromagnetic fields are ubiquitous in nature, many sciences, and engineering, as they are
the forces underlying the principles of electricity, magnetism, and optics. These fields are in
turn described by a set of four partial differential equations, named “Maxwell equations”
or “Maxwell system” after James Clerk Maxwell; it was the effort of Maxwell in the late
nineteenth century (for example, [Max65]) that was significant in unifying the latter theories,
namely electricity, magnetism, and optics, into one theory of electromagnetism and that
ultimately led to the current formulation ((1.2.1), (1.2.2)) of these equations.

From the point of view of engineering, the ability of these forces to propagate in vacuum
and in various media makes the transmission and processing of information possible and
has brought forth a large number of technological advancements, creating and shaping the
‘digital age’ we currently live in.

From a mathematician’s perspective, Maxwell’s equations continue to offer interesting and
challenging opportunities for study, varying both in scope as well as in method. Relevant
questions include the local existence and numerical approximation of solutions, long-time
stability, and ill-posed problems, see [DHK+23].

Electromagnetic surface waves are a field in physics that is more than a century old, [Zen07].
Today, the most prominent instance of such waves is perhaps the surface plasmon polariton
(SPP), which is an evanescent wave propagating along the interface of a metal (the ‘plasmonic
material’) and a dielectric. It has seen numerous applications, typically on the nanoscale,
ranging from biochemical sensing [CK21], microscopy [RK88], to laser technology [AKM+20];
see also [ZSM05], [JML13, Chapter 6]. While the SPP is not the only type of surface wave
(we refer to Table 1.1 in [JML13] for an overview), it is arguably the simplest to derive
explicitly, at least in the case of a planar interface and linear scalar permittivity, see [Rae88].
Nonlinear SPP have been considered in [KZ12].

In this work, we are interested in the study of electromagnetic waves, especially wavepackets,
localized to and propagating along the interface between two different optical or magnetic
media. Specifically, the primary aim of this thesis is the justification of a modulation equation
for nonlinear Maxwell systems with memory. This is done by showing that the approximation
of a solution of Maxwell’s equations with a suitable model function (or “ansatz”), determined
by a solution of the amplitude equation, is valid on a large time scale. Among the distinctive
features of the Maxwell equations governing this setup are the following:

(a) discontinuities of the fields due to distinct media,

(b) materials with memory, i.e., a nonlocal behavior in time due to a delayed material response
(temporal dispersion), as well as a nonlocal behavior in space (spatial dispersion),

(c) the presence of nonlinear, especially quadratic, terms.
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Introducing any of these features into a partial differential equation usually complicates
matters and requires different approaches (for instance, nonlinear equations cannot, in
general, be dealt with using linear methods, such as the Fourier transform).
Before we lay out our strategy and the structure of this thesis, let us collect a sample of

related works.
A solution theory (or well-posedness, i.e., existence, uniqueness, and continuous dependence

of the solution on the given data) is the prerequisite for any analysis of differential equations.
For Maxwell equations, such theories fall into various categories, that may also overlap.
Among those, an analysis in ‘low regularity’ spaces (i.e., based on L2 and first-order Sobolev
spaces) is well-suited for linear, anisotropic equations (in particular, with or without an
interface) and for numerical problems. In this respect, general functional analytic aspects
and a ‘classical’ treatment of linear Maxwell equations (without memory) can be found in
the monographs [DL90a, DL90b, Lei86, Mon03].
Many results deal with linear time-harmonic Maxwell equations, e.g. [PWW01]. In

[CHJ17, CHJ22], time-harmonic linear Maxwell equations with memory are considered, with
a focus on interface problems for plasmonic waves and metamaterials; see also [CJK17] and
the references therein. A general approach to linear Maxwell equations for materials with
(non-)continuous memory, based on an abstract theory of integro-differential equations, is
shown in Sections 9.6 and 13.3 of [Prü12].
For time-harmonic nonlinear problems, variational techniques can yield the existence of

specific solutions (like ground states), see for instance [BM17, BDPR16], sometimes requiring
a compactness argument (see Section 3.3.2).

Function spaces with higher regularity are used especially for nonlinear problems. In [SS22],
a local well-posedness theory in Hm (m ≥ 3) for quasilinear Maxwell systems with interface
and without memory was developed. [BF03] contains a solution theory for continuous
nonlinear materials with memory; see also [BS22] for a recent approach to quasilinear
Maxwell equations with memory. The analysis in [SS22] displays some of the difficulties
when dealing with interface problems in the context of higher spatial regularity, see also
[Web81, DITW23].
Asymptotic methods for electromagnetic nonlinear waves, in particular for proving the

validity of modulation equations, have been employed in [Sch00, SU03] for the analysis
of modulating pulses in optical fiber, in [DR21b] concerning the existence of solitons in
photonics crystals, and in [DST22, DR21a] for surface waves; see also [HH16]. We remark
that in many instances, the leading-order nonlinearity is of cubic Kerr-type. Quadratic
nonlinearities can lead to failure of the validity, e.g. [Sch05], and the analysis usually involves
a set of non-resonance conditions, cf. [Kal88, vH91, DHSZ16].

Similar to the results in [SU03, DST22, DR21b], we want to derive an amplitude equation for
interface wave packets in nonlinear media with memory and prove its validity. This specific
problem is motivated by two factors: the usual dependence of plasmons on the frequency,
i.e., the material response is in general dispersive (as noted in [KZ12]), and quadratic effects
created at least by the interface setup (see the discussion in Section 4.4). We will address
the difficulties (a), (b), (c) above by

(a′) working in function spaces of low regularity,
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(b′) use of the framework of evolutionary equations, which explicitly permits nonlocal
operators modelling materials with memory and spatial dispersion, for the linearized
problem,

(c′) use of perturbative approaches to tackle the nonlinear problem.

These strategies will prove fruitful in answering questions regarding well-posedness, stability,
and specific approximations related to Maxwell’s equations.

This document is structured as follows.
Section 1.3 contains a first analysis of linear Maxwell systems under the simplifying

assumptions of a planar interface and scalar material laws. As a result we obtain the linear
dispersion relation and a family of transverse-magnetic or transverse-electric evanescent
waves, which serve as building blocks for the wavepacket ansatz in Chapter 4. Although
inspired by linear SPP, this derivation is more general, as we do not necessarily assume a
metal-dielectric setup, and moreover, a possibly nontrivial magnetization is included.
The remaining part of this introductory chapter is devoted to a short review of the

framework of (linear) evolutionary equations (in the sense of Picard, e.g. [Pic00, Pic09,
STW22]) and their solution theory (Theorem 1.4.11) in exponentially weighted function
spaces that is used throughout this paper.
In Chapter 2 we consider abstract nonlinear evolutionary equations as perturbations of

the linear case. Our focus lies on (local) Lipschitz nonlinearities and Volterra-type nonlinear
operators, for which we derive local or global (depending on the weight) well-posedness of
the associated equation. This includes an equation of Ginzburg–Landau type that appears as
an effective amplitude equation in Chapter 4. In addition, we take a look at the connection
between evolutionary equations and Cauchy problems with memory, see Section 2.4; Here
we observe that, in many cases, the transition from the Cauchy problem to an evolutionary
formulation (and back) is seamless.

The first parts of Chapter 3 deal specifically with the well-posedness of nonlinear Maxwell
systems with memory, featuring nonlinear operators used in Chapter 2. In Section 3.3 we
study exponential stability for linear Maxwell systems without dispersive magnetization. We
focus on two cases: materials with explicit electric conductivity, which in turn provides the
exponential damping, and those sharing some characteristics with the Lorentz permittivity
model. The transition to nonlinear systems, Section 3.3.3, is made possible through a
fixed-point argument, obtaining global existence of small solutions. Large parts of this
section are based on the paper [DITW23].
The subject of Chapter 4 is an amplitude approximation of wavepacket solutions to

nonlinear Maxwell systems on the whole domain R3. We construct a multiple-scale ansatz Uε

(0 < ε≪ 1) based on the linear modes obtained in Section 1.3, which is effectively described
by its amplitude, a solution of the Ginzburg–Landau equation mentioned above. The ansatz
is constructed in such a way that, after inserting Uε into the Maxwell system, the remaining
terms (the residual) are asymptotically small for ε→ 0.
Following this formal analysis, more rigorous estimates are able to justify this approxi-

mation; this means that the ansatz Uε remains close to an exact solution U of the Maxwell
system. This is done by showing that the equation for the error R = U − Uε is well-posed
and admits a small (and, in fact, exponentially decaying) solution (Theorem 4.3.3).
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Finally, Chapter 5 contains some discussion on the (Drude–)Lorentz model of electric
permittivity. Specifically, we check the compatibility of the model with the spectral conditions
established in Section 3.3, as well as with the assumptions on the dispersion curves needed
for the amplitude formalism in Chapter 4.

1.1 Some notation and preliminaries

Most objects used in this work are defined in-place. For convenience, we list some frequent
pieces of notation.
Throughout, Rn and Cn (n ∈ N) denote the real, respectively complex, n-dimensional

Euclidean space. In Cn we have the inner product (x, y) 7→ x · y = ∑n
j=1 xjyj , and the

induced norm |x| =
√
x · x. In Rn, as a subset of Cn, the inner product is inherited and

simplifies to (x, y) 7→ x · y. More generally, we write ⟨u, v⟩X for the inner product of
u, v ∈ X, and ∥u∥X for the norm of u, if X is an inner product space or a normed space,
respectively. The imaginary unit is denoted by i =

√−1. We define the positive and
negative half-lines R+ = {t ∈ R : t > 0}, R− = {t ∈ R : t < 0}, and the right half-plane
CRe>ϱ = {z ∈ C : Re z > ϱ}.

For x ∈ Cn, δ > 0 we denote by B(x, δ) = {y ∈ Cn : |x− y| < δ} the open ball with radius
δ around x, and by B[x, δ] = B(0, δ) = {y ∈ Cn : |x− y| ≤ δ} its closure.
A domain is a nonempty open and connected subset Ω ⊆ Rn. Various attributes of a

domain, such as ‘smooth’ or ‘Lipschitz’, refer to its boundary. In particular, a bounded
Lipschitz domain is an open subset Ω ⊆ Rn, for which its boundary is locally the graph of a
Lipschitz-continuous function.

Function spaces

Unless otherwise specified, all functions are complex-valued. If the function f is real-valued
(for instance, a physically relevant solution of Maxwell’s equations) it is customary to write
f = u+ c.c., where u = 1

2 Re f and c.c. stands for the complex conjugate, f = u+ u.
For a domain Ω we denote by Lp(Ω)n = Lp(Ω,Cn) the usual Lebesgue space of measurable

functions u : Ω → Cn, for which the norm

∥u∥Lp :=


(∫

R
|u(x)|p dx

)1/p
, if p ∈ [1,∞)

ess supx∈Ω |u(x)|, if p = ∞

is finite, and where functions equal almost everywhere (a.e.) are identified. Lp(Ω)n is a
Banach space, and a Hilbert space for p = 2 with inner product given by

⟨u, v⟩L2 =
∫
Ω
u(x)v(x) dx.

We mostly deal with p = 1, p = 2 and p = ∞.
For functions u : I ⊆ R → Cn on the line defined on an open interval I ⊆ R, we denote by

∂tu the weak, or more generally, the distributional derivative. In three (spatial) variables,
for a domain Ω ⊆ R3 and smooth functions u : Ω → C, v : Ω → C3,

gradu = ∇u, curl v = ∇× v, div v = ∇ · v
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denote the gradient, curl, and divergence, respectively. Weak, closed versions of these
operators are introduced in Chapter 3.
The notation H1(Ω) = H(grad,Ω) = {u ∈ L2(Ω) : gradu ∈ L2(Ω)3}, and similarly

H(div,Ω), H(curl,Ω), for L2-based Sobolev spaces is common. In general, the Sobolev space
Hk(Ω) (=W k,2(Ω), k ∈ N) is defined as the set of functions u ∈ L2(Ω) for which all partial
derivatives ∂αu (with α ∈ Nd a multiindex with |α| ≤ k) belong to L2(Ω). For standard
properties of Lebesgue and Sobolev spaces (such as density results, embeddings, and trace
theorems) we refer to [AF03].

Fourier and Laplace transforms

Throughout this work, we make use of several equivalent, but subtly different versions of
the Fourier transform (see also [AF03, Kat04, Eva10]). While it is possible to unify them
all into a single transform, we chose to use different notation and restrict each variant to
specific use cases. This decision comes at a cost, namely when two transforms need to be
compared that are defined on the same domain, notably in Chapter 5. We introduce these
transforms in the following.

In optics, a time-delayed linear response R(u) to an applied field u is often modeled using
a real-valued susceptibility function χ (e.g. χ ∈ L1(R)) as

R(u) =
∫
R
χ(τ)u( · − τ) dτ.

We introduce
χ̌(ω) =

∫
R
χ(τ)eiωτ dτ (1.1.1)

where ω ∈ R, and consider a 1-dimensional, time-harmonic, monochromatic wave u(t, x) =
Aei(kx−ωt) travelling in positive x-direction. The response to such a field is then given by

R(u)(t) =
∫
R
χ(τ)Aei(kx−ω(t−τ)) dτ =

∫
R
χ(τ)eiωτ dτ u(t, x) = χ̌(ω)u(t, x).

The transform (1.1.1) is mainly used in Section 1.3 and Chapter 4. In the latter, we also
make use of a related Fourier transform in space, denoted by

Fx→ku(k) = û(k) =
∫
R
u(x)e−ikx dx. (1.1.2)

In Section 1.4 we consider a weighted version, called the (unitary) Fourier–Laplace
transform,

Lϱu(ξ) =
1√
2π

∫
R
u(t)e−(ϱ+iξ)t dt, (1.1.3)

which is used mainly for the transition of operator-valued functions between the time and
complex frequency domain.

There should be no confusion between χ̌ and Lϱχ(ξ), as different notation for the functions
and variables are used. However, when we extend (1.1.1) to the complex domain, the two
are evidently related by

χ̌(iz) =
√
2πLϱχ(ξ), z = ϱ+ iξ.

All three transforms, (1.1.1), (1.1.2), and (1.1.3), extend naturally to (weighted) L2-spaces.
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Functions with values in a Banach space

Bochner spaces are a generalization of the Lebesgue spaces above. The following definitions
and results can be found in [Eva10, Yos80]; see also [Boc33]. Let I ⊆ R be an interval and
X a Banach space. A simple function s : I → X is one that can be written in the form

s(t) =
n∑

j=1
1Ej (t) vj , a.e. t ∈ I,

where Ej ⊆ I is of finite Lebesgue measure |Ej | and vj ∈ X for each j ∈ {1, . . . , n}. Its
integral is given by the sum

∫
I

n∑
j=1

1Ej (t) vj dt =
n∑

j=1
|Ej |vj ∈ X.

A function u : I → X is said to be (Bochner) measurable, if it can be approximated by
simple functions, i.e., if there exists a sequence (sn)n∈N of simple functions such that

∥sn(t)− u(t)∥X → 0 (n→ ∞), a.e. t ∈ I.

Such function u is called Bochner integrable, write u ∈ L1(I,X), if in addition∫
I
∥sn(t)− u(t)∥X dt→ 0 (n→ ∞).

In this case,
∫
I u(t) dt := limn→∞

∫
I sn(t) dt ∈ X is well-defined. By a theorem of Bochner

(see [Yos80, Theorem V.5.1]), u ∈ L1(I,X) if and only if the map t 7→ ∥u(t)∥X belongs to
L1(I). Analogous to the finite-dimensional case above, we define for p ∈ [1,∞)

Lp(I,X) = {u : I → X measurable : ∥u∥Lp =
(∫

I
∥u(t)∥pX dt

)1/p
<∞}

(and the analogous modification for p = ∞), and denote by Lp
loc(R, X) the set of all

measurable u : R → X such that u|I ∈ Lp(I,X) for all relatively compact subsets I ⊂⊂ R.

Bounded and unbounded linear operators in Hilbert spaces

If X is a Banach space, B(X) denotes the space of bounded (equivalently: continuous) linear
operators from X to itself. B(X) is again a Banach space, indeed, a Banach algebra. The
norm in B(X) will occasionally be denoted by ∥ · ∥B(X) or ∥ · ∥X→X , or for example by
∥ · ∥L2→L2 if X = L2(Ω)3, or simply by ∥ · ∥ if clear from the context.

If H1,H2 are Hilbert spaces, we write T : dom(T ) ⊆ H1 → H2 to denote a linear operator,
not necessarily bounded, defined on a (dense) subspace dom(T ). We collect some results
regarding unbounded operators on a Hilbert space, see [Kat80, §3.V.10], [Yos80, Chapters
VII, VIII], [Bre11, §2.6].

A densely defined operator T : dom(T ) ⊆ H → H on a Hilbert space H is called accretive,
if Re⟨Tv, v⟩H ≥ 0 for all v ∈ dom(T ) (equivalently, the operator −T is dissipative). Since
dom(T ) is dense in H, the adjoint T ∗ is well-defined and closed with dom(T ) ⊆ dom(T ∗).
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With the help of the symmetric operator

ReT := 1
2(T + T ∗), dom(ReT ) = dom(T ),

the condition of accretivity can be formulated as

ReT ≥ 0

in the sense of positive definiteness. T is called strictly accretive, if T − c is accretive for
some positive number c > 0, i.e.,

Re ⟨Tv, v⟩H ≥ c ∥v∥2H for all v ∈ dom(T );

or in short, ReT ≥ c. Strictly accretive operators are useful due to their invertibility, as the
following result reveals.

Lemma 1.1.1. Suppose T : dom(T ) ⊆ H → H is a closed, densely defined operator with
dense range, which satisfies

ReT ≥ c > 0.

Then T is boundedly invertible with ∥T−1∥ ≤ 1/c.

Proof. Using the strict accretivity and the Cauchy–Schwarz inequality,

∥Tv∥∥v∥ ≥ Re ⟨Tv, v⟩ ≥ c∥v∥,

which shows that T is injective, hence can be inverted on its range, and substituting w = Av

we have ∥T−1w∥ ≤ c−1∥w∥ for all w ∈ ran(T ). Moreover, since T is closed and ran(T ) is
dense, in fact ran(T ) = ran(T ) = H, so T−1 ∈ B(H).

There are multiple variants of this result, some using the closed range theorem. For a
densely defined and closed operator T , recall that ker(T ) = ran(T ∗)⊥ and ker(T ∗) = ran(T )⊥
are closed subspaces (where X⊥ denotes the orthogonal complement of the subspace X).
The closed range theorem ([Yos80, VII.5]) states that ran(T ) is closed if and only if ran(T ∗)
is closed, in which case ran(T ) = ker(T ∗)⊥ and ran(T ∗) = ker(T )⊥.

Lemma 1.1.2. Let T be densely defined, closed, and such that

(i) T and T ∗ are strictly accretive, or

(ii) T is bounded and strictly accretive, or

(iii) T is bounded, selfadjoint and strictly positive definite.

Then T is boundedly invertible.

Proof. (i) The condition ReT,ReT ∗ ≥ c > 0 implies that both T and T ∗ are injective and
thus ran(T )⊥ = ker(T ∗) = 0. Hence, T is boundedly invertible on its range, which is dense
by ran(T ) = ker(T ∗)⊥ = 0⊥ = H. Lemma 1.1.1 gives the conclusion.
(ii) If T ∈ B(H), then also T ∗ ∈ B(H) and ReT = 1

2(T+T ∗) = ReT ∗ is defined everywhere.
Thus, both T and T ∗ are strictly accretive; the claim follows with (i).
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(iii) If T ∗ = T ∈ B(H), then ran(T ) = ker(A∗)⊥ = ker(A)⊥ = H and the claim follows
again with Lemma 1.1.1. (Alternatively, the claim follows directly from (ii).)

The assumption of selfadjointness and strict positivity will be used multiple times, notably
for stationary material functions, out of simplicity.

If T is accretive and T + λ is onto for some (and thereby for all) λ > 0, then T is
called m-accretive. Note in particular that skew-selfadjoint operators are m-accretive, since
T ∗ = −T implies ReT = 1

2(T −T ) = 0 and thus Re(T +λ) = λ = λI is onto for all λ > 0. If
T is closed and m-accretive, then T +λ is boundedly invertible for Reλ > 0 by Lemma 1.1.1,
with ∥(T + λ)−1∥ ≤ (Reλ)−1.

Example 1.1.3. Examples of skew-selfadjoint operators are the derivative ∂t : H1(R) ⊂
L2(R) → L2(R) on the line, as well as the Maxwell operator A : (E,H) 7→ (− curlH, curlE)
with domain H0(curl,Ω)×H(curl,Ω) in L2(Ω)6 (see Lemma 3.1.1).

The Laplace operator

−∆ = −div grad: H2(Rd) ⊆ L2(Rd) → L2(Rd)

is selfadjoint and m-accretive (as can be seen, for example, by considering the Fourier-
representation of (∆ + λ)−1 for λ > 0). More generally, if a1, . . . , ad ∈ C∞(Rd) are smooth
bounded functions with bounded derivatives and Re aj ≥ 0 for j ∈ {1, . . . , d}, then setting
a = diag (a1, . . . , ad), the operator

Da = −div(a grad) = −
d∑

j=1
∂xjaj∂xj : dom(Da) ⊆ L2(Rd) → L2(Rd)

with maximal domain dom(Da) is m-accretive by Lemma 1.1.2; indeed, for λ > 0 we have

Re⟨(Da + λ)u, u⟩ = Re⟨(Da + λ)∗u, u⟩

= λ ∥u∥2 +
d∑

j=1

∫
Rd
(Re aj(x)) |∂xju(x)|2 dx

≥ λ ∥u∥2 .

▲

More examples of accretive operators arise from bilinear forms, see [McI70].

1.2 Maxwell equations in linear and nonlinear media

The macroscopic Maxwell equations (see Equation (6.2.8) on page 218 in [Jac75])

∂tD −∇×H = −J ∇ ·D = ρ

∂tB +∇× E = 0 ∇ ·B = 0
(1.2.1)

describe the relationship between the electric field E, magnetic field H, displacement field
D, and magnetic induction B in the presence of given functions J and ρ, the latter being
the current density and charge density, respectively. The fields D,B constitute the material
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response to the intrinsic fields E,H. All fields in (1.2.1) are functions of time t ∈ R and
position x = (x1, x2, x3) ∈ R3 and take values in R3.
The differential form (1.2.1) of Maxwell’s equations provides a full description of the

electromagnetic fields for continuous materials. However, in the presence of defects or sharp
interfaces, the correct1 description is provided by the integral form

∂t

∫
Ω
D −

∫
∂Ω
n×H = −

∫
Ω
J

∫
∂Ω
n ·D =

∫
Ω
ρ

∂t

∫
Ω
B +

∫
∂Ω
n× E = 0

∫
∂Ω
n ·B = 0

(1.2.2)

of (1.2.1), where Ω is an arbitrary volume with (smooth) boundary ∂Ω and outward normal
field n. If Γ is an interface, also sufficiently smooth, between two different, but otherwise
continuous, media and if JΓ, ρΓ are current and charge densities at the interface, then the
integral form (1.2.2) gives rise to the transmission conditions

[n× E]Γ = 0, [n×H]Γ = −JΓ, [n ·D]Γ = −ρΓ, [n ·B]Γ = 0. (1.2.3)

Here, with Ω1,Ω2 denoting the different parts of Ω on each side of Γ, and n1, n2 denoting
the unit normal to ∂Ω1, ∂Ω2, the tangential jump

[n× F ]Γ = (n1 × F )|Ω1 + (n2 × F )|Ω2 = n1 × (F |Ω1 − F |Ω2),

and similarly the normal jump

[n · F ]Γ = n1 · (F |Ω1 − F |Ω2)

across Γ are understood in the distributional sense (usually in the sense of traces). Following
[DL90a, §4.2], these relations can be derived from the assumption that (1.2.2) must be valid
for any domain. Thus we also have, for example,∫

Ωi

∂tD −
∫
∂Ωi

n×H = −
∫
Ωi

J (i ∈ {1, 2}).

Now since∫
Ω
∂tD −

∫
∂Ω
n×H =

∫
Ω1
∂tD −

∫
∂Ω1

n×H +
∫
Ω2
∂tD −

∫
∂Ω2

n×H +
∫
Ω∩Γ

[n×H]Γ

is equal to
−
∫
Ω
J = −

∫
Ω1
J −

∫
Ω2
J −

∫
Ω∩Γ

JΓ

and, assuming the integrals above are well-defined, we may conclude that [n×H]Γ = −JΓ.
The remaining conditions in (1.2.3) are obtained analogously.

We have thus two versions of the Maxwell equations: the integral formulation (1.2.2), which
is ‘self-contained’, and the differential formulation (1.2.1) supplemented by the transmission
conditions (1.2.3). The equivalence “(1.2.2) ⇐⇒ (1.2.1) & (1.2.3)” depends on the functional

1This form is also more natural from a physical standpoint, as the current
∫
J and charge

∫
ρ are directly

measurable quantities.
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setting together with an application of Gauß’ theorem, cf. Section 3.1.
The fields (D,B) and (E,H) are related through constituent relations, and we assume

throughout the direct functional dependence

D = D(E) = ϵ0E + Pel(E), B = B(H) = µ0H + Pm(H), (1.2.4)

where ϵ0, µ0 > 0 are positive numbers (the permittivity and permeability in vacuum), and
where Pel, Pm are the electric and magnetic polarization (density), respectively. In non-
idealized materials, the material response given by Pel, Pm is non-instantaneous: there is a
delay between the change of the applied field and the material response. In other terms, the
material responds differently at different frequencies; this leads to the notion of dispersion.
For P ∈ {Pel, Pm}, our focus will lie on operators with continuous memory, either linear,
such as

P (u)(t) =
∫ ∞

0
χ(τ)u(t− τ) dτ, (1.2.5)

or nonlinear, such as
P (u)(t) =

∫ ∞

0
χ(τ)Q(u(t− τ)) dτ (1.2.6)

or a linear combination of (1.2.5) and (1.2.6), with a time-independent nonlinearity Q. Here
we have omitted the spatial variable x, and the evaluation u(t) is understood as an element
in some function space H. In this vein, Q is a map on H and may also depend nonlocally on
its argument. In most cases, the operator χ(τ) = χ(τ, x) is just a scalar- or matrix-valued
map for τ > 0; in general, each χ(τ) is a bounded linear operator on H. We like to point out
that, by construction, every such operator of the form (1.2.6) is causal (or non-anticipative),
i.e., P (u)(t) depends on past values u(τ), τ ≤ t, of its argument, but not on future times
τ > t. This property makes sense not only from a physical point of view, but plays an
important part mathematically in the solution theory reviewed in Section 1.4.
One further example of such material operators is studied in Section 2.3 and is given by

multilinear Volterra-type operators P (n) with

P (n)(u)(t) =
∫ ∞

0
· · ·
∫ ∞

0
χ(n)(τ1, . . . , τn)Q(n)(u(t− τ1), . . . , u(t− τn)) dτ1 · · · dτn (1.2.7)

for n ∈ N, where Q(n) is n-linear and χ(n)(τ1, . . . , τn) is again a bounded linear operator.
Similar models are used in the field of nonlinear optics, see [Boy08], the idea being that
a given nonlinearity P is approximated by a Volterra series P (u) = ∑∞

n=1 P
(n)(u). This

will also be the heuristic adopted in this work, although we will not deal with questions of
convergence (mainly because we will work with finite sums) or for which operators such a
series exists. For a slightly more detailed heuristic for functions in one time variable, see
Appendix 1.2 in [Rug81] and [BC85]. As it turns out, and as a rule of thumb, the more
compact model (1.2.6) is better suited for questions of (global) well-posedness, if Q and χ
are subjected to suitable Lipschitz- and integrability conditions, respectively (see Section 2).
On the other hand, the form (1.2.7) is practical for concrete computation and approximation
of solutions, due to its multilinear nature, and will be used extensively in Chapter 4.

We will treat Maxwell’s equations as an evolutionary system in the unknowns E,H. This
means, starting with values of E,H at initial time t = 0, one is interested in the evolution
of the fields for positive time t > 0. In fact, due to the nonlocality of the polarization, the
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whole history of the fields E,H, i.e., their values for t ≤ 0, is assumed to be prescribed.

1.3 Linear, evanescent surface modes and dispersion relation

We now want to derive explicit, classical solutions to the linear Maxwell equations at a
planar interface, in the form of travelling surface waves. This derivation is motivated by
surface plasmon polaritons and other surface wave phenomena in the physics literature, and
is similar to that in [JML13, §2.2] and [Rae88].
Let Γ = {x ∈ R3 : n · x = 0} (n ∈ R3, |n| = 1) be a plane between the disjoint domains

Ω+,Ω−. We consider the homogeneous Maxwell system

∂tD − curlH = 0 divD = 0
∂tB + curlE = 0 divB = 0

(1.3.1)

with the transmission conditions

[n× E]Γ = [n×H]Γ = 0, [n ·D]Γ = [n ·B]Γ = 0, (1.3.2)

and with linear constituent relations given by

D(E)(t, x) = ϵ0E(t, x) +
∫
R
χ±
el(τ)E(t− τ, x) dτ

B(H)(t, x) = µ0H(t, x) +
∫
R
χ±
m(τ)H(t− τ, x) dτ

 x ∈ Ω±,

where ϵ0, µ0 ∈ R+ and χ+
el , χ

−
el , χ

+
m, χ

−
m : R → R satisfy χ±

el(τ) = χ±
m(τ) = 0 for τ < 0. For

(nontrivial) solutions E,H of (1.3.1) in the form of surface waves, propagating in direction
parallel to the interface Γ, we make the (complex) ansatz

E(t, x) = ξ(n · x)ei(k∥·x−ωt) and H(t, x) = ζ(n · x)ei(k∥·x−ωt), (1.3.3)

with profile functions ξ, ζ : R → C3, where n · k∥ = 0, and Reω > 0. Due to the exponential
terms in our ansatz we then obtain

D(E)(t) = ϵ±(ω)ξ(n · x)ei(k∥·x−ωt)

B(H)(t) = µ±(ω)ζ(n · x)ei(k∥·x−ωt),

having defined the frequency-dependent permittivity ϵ±(ω) and permeability µ±(ω) by

ϵ±(ω) := ϵ0 +
∫ ∞

0
χ±
el(t)e

iωt dt, µ±(ω) := µ0 +
∫ ∞

0
χ±
m(t)eiωt dt

on each domain Ω±. We assume nontrivial material jumps, thus

ϵ+(ω) ̸= ϵ−(ω) or µ+(ω) ̸= µ−(ω).

Let us fix coordinates and assume w.l.o.g. that x1 = n · x and k∥ · x = kx2, k > 0. Now
the only spatial dependence is on the variables x1, x2. Inserting our ansatz into (1.3.1) we
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obtain the systems
iωµ±(ω)ζ1 = ikξ3

iωµ±(ω)ζ2 = −ξ′3
iωµ±(ω)ζ3 = ξ′2 − ikξ1

 and


−iωϵ±(ω)ξ1 = ikζ3

−iωϵ±(ω)ξ2 = −ζ ′3
−iωϵ±(ω)ξ3 = ζ ′2 − ikζ1

 (1.3.4)

understood for x1 > 0 and x1 < 0 separately. (Listed are only the dynamic equations on the
left-hand side of (1.3.1); note that the div-equations are obtained by summation of the first
two lines in each block and taking derivatives.) Solving the first lines in (1.3.4) for

ξ3 =
ωµ±(ω)

k
ζ1 and ζ3 = −ωϵ

±(ω)
k

ξ1 (1.3.5)

these equations can be decoupled, and with

G±(ω, k) :=

 0 −ik
ik − iω2ϵ±(ω)µ±(ω)

k
0


we find

∂x1

(
ξ1

ξ2

)
= G±(ω, k)

(
ξ1

ξ2

)
, ∂x1

(
ζ1

ζ2

)
= G±(ω, k)

(
ζ1

ζ2

)
. (1.3.6)

Diagonalizing G±(ω, k) yields the eigenvectors (k, λ±) and (k,−λ±), corresponding to eigen-
values iλ± and −iλ±; the latter are the complex roots of z± = k2 − ω2ϵ±(ω)µ±(ω). If
z± /∈ R−

0 , we can select λ+, λ− such that

Re iλ+ < 0 and Re iλ− > 0, (1.3.7)

and the general bounded solutions of (1.3.6) are evanescent waves given by(
ξ1(x1)
ξ2(x1)

)
= a±eiλ

±x1

(
k

λ±

)
and

(
ζ1(x1)
ζ2(x1)

)
= b±eiλ

±x1

(
k

λ±

)
, (1.3.8)

where x1 ∈ R± and a±, b± ∈ C. Now taking into account the jump conditions (1.3.2), these
translate to

[
ξ2
]
Γ =

[
ξ3
]
Γ =

[
ζ2
]
Γ =

[
ζ3
]
Γ = 0, so with (1.3.5) and (1.3.8) we obtain

a+λ+ − a−λ− = 0
a+ϵ+(ω)− a−ϵ−(ω) = 0

b+λ+ − b−λ− = 0
b+µ+(ω)− b−µ−(ω) = 0.

(1.3.9)

Since λ±, ϵ±(ω), µ±(ω) are all nonzero, either a+, a− are both nonzero or vanish identically;
the same is true for b+, b−. This leads to the following characterization.

1. Transverse-magnetic (TM) modes: If b+ = b− = 0 and a+, a− ̸= 0, then E = (E1, E2, 0)
and H = (0, 0, H3). From (1.3.9) we obtain ϵ+(ω)λ− = ϵ−(ω)λ+ (so that ϵ+(ω) ̸=
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ϵ−(ω), since λ+ ̸= λ−), and taking the square yields the dispersion relation

k2 = ω2 ϵ+(ω)ϵ−(ω)
ϵ+(ω) + ϵ−(ω) ·

ϵ−(ω)µ+(ω)− ϵ+(ω)µ−(ω)
ϵ−(ω)− ϵ+(ω) . (1.3.10)

2. Transverse-electric (TE) modes: If a+ = a− = 0 and b+, b− ≠ 0, then E = (0, 0, E3)
and H = (H1, H2, 0). From (1.3.9) we get µ+(ω)λ− = µ−(ω)λ+ (so µ+(ω) ̸= µ−(ω))
and taking the square yields the dispersion relation

k2 = ω2 µ+(ω)µ−(ω)
µ+(ω) + µ−(ω) ·

ϵ+(ω)µ−(ω)− ϵ−(ω)µ+(ω)
µ−(ω)− µ+(ω) . (1.3.11)

There are no other cases; indeed, suppose that a+, a−, b+, b− are all nonzero, then

ϵ+(ω)λ− − ϵ−(ω)λ+ = 0
µ+(ω)λ− − µ−(ω)λ+ = 0.

But since λ+, λ− ̸= 0, this implies ϵ+(ω)µ−(ω)− ϵ−(ω)µ+(ω) = 0. The dispersion relation
(either of (1.3.10) or (1.3.11)) is reduced to k2 = 0, contradicting the assumption on k. In
conclusion, linear modes of the form (1.3.3) are only possible if k, ω fulfill either (1.3.10) or
(1.3.11).
Remark 1.3.1. The non-magnetic setting where µ+ = µ− ≡ µ0 ∈ R>0 is covered by the
TM-setting: In this case b+ = b− = 0 follows directly from (1.3.9), and (1.3.10) simplifies to

k2 = ω2 ϵ+(ω)ϵ−(ω)
ϵ+(ω) + ϵ−(ω) ,

which is the known dispersion relation governing the existence of surface plasmon polaritons,
see [Rae88]. Like in the general TM-setting, the dispersion relation is derived from the more
basic condition

ϵ+λ− = ϵ−λ+. (1.3.12)

This condition is the basis for the often cited requirement that Re ϵ+ and Re ϵ− must have
different signs (for instance, [JML13, §1.3.1], [BDE03]). Indeed, this follows from (1.3.12),
but only if the imaginary parts of ϵ+, ϵ−, λ+, λ− are neglected. Among other cases, this
approximation is assumed for metal-dielectric interfaces. In general, the relationship between
ϵ±, λ± is more complex; writing ϵ± = ϵ±r + iϵ±i , λ± = λ±r + iλ±i with real parameters
ϵ±r , ϵ

±
i , λ

±
r , λ

±
i , then comparing real and imaginary parts in (1.3.12) we obtain

ϵ+r λ
−
r − ϵ+i λ

−
i = ϵ−r λ

+
r − ϵ−i λ

+
i

ϵ+i λ
−
r + ϵ+r λ

−
i = ϵ−i λ

+
r + ϵ−r λ

+
i .

Recall that the assumption (1.3.7) needed for evanescent waves was that λ+i > 0 and λ−i < 0,
which is compatible even with ϵ+r , ϵ−r > 0 by suitable choice of the other parameters. ♢

Finally, we remark that in the derivation above we have assumed that ϵ+, ϵ− are homoge-
neous and scalar-valued. There are other settings in which the existence of linear surface
waves can be derived, for instance at the interface between a homogeneous dielectric and a
uniaxial crystal, with optical axis parallel to the interface. In this case, surface waves exist
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(introduced in [Dya88] and now called Dyakonov waves) that can propagate in certain angles
to the optical axis. For other examples we refer to [JML13].

1.4 The framework of evolutionary equations

The Maxwell equations with memory will be embedded into a functional analytic framework
of operator equations over exponentially weighted function spaces (an explicit connection is
established in Section 2.4). For such problems, the term evolutionary equations has been
established. A well-posedness theory has been developed for linear equations, which, to
some extent, can be applied to nonlinear problems. Recall that a (differential) equation
is well-posed, in the sense of Hadamard, if it admits a unique solution, which depends
continuously on the given data.
This section aims to provide an overview and some background regarding evolutionary

equations. Some of the basic results needed for the solution theory are reviewed without
proof. For more insight into the subject and further details we refer to [STW22], specifically
Chapters 3, 5, 6, and 8.
Throughout, let H be a Hilbert space. For H-valued functions u : R → H, we write

u ∈ C(R,H) if u is continuous, and u ∈ L2
loc(R,H) if u is Bochner measurable and square

integrable over compact intervals. For a real parameter ϱ ∈ R exponentially weighted variants
of these spaces are defined as

Cϱ(R,H) := {u ∈ C(R,H) : ∥u∥Cϱ
:= sup

t∈R
∥u(t)∥H e−ϱt <∞}

L2
ϱ(R,H) := {u ∈ L2

loc(R,H) : ∥u∥L2
ϱ
:=
(∫

R
∥u(t)∥2H e−2ϱt dt

)1/2
<∞}.

The latter is a Hilbert space with the Hermitian product ⟨u, v⟩L2
ϱ
=
∫
R⟨u(t), v(t)⟩He−2ϱt dt.

Analogously, Lp
ϱ(R,H) ⊆ Lp

loc(R,H) can be defined for 1 ≤ p ≤ ∞, where ∥u∥Lp
ϱ
=

∥u · exp(−ϱ ·)∥Lp(R,H).
The space C∞

c (R,H) of smooth H-valued functions with compact support in R is dense
in Lp

ϱ(R,H) for all p ≥ 1 and ϱ ∈ R. For u ∈ C∞
c (R,H) we denote by ∂tu(t) = u̇(t) ∈ H

the pointwise derivative with respect to the time variable t. Furthermore, we define its
(weighted) Fourier–Laplace transform Lϱu = Lϱ[u] by the integral

(Lϱu)(ξ) =
1√
2π

∫
R
u(t)e−(ϱ+iξ)t dt.

Notice that if u(t) = 0 for t < 0, the integral (Lϱu)(ξ) is the (unitary) Laplace transform
of u in the complex parameter z = ϱ + iξ. For ϱ = 0, L0 is the standard unitary Fourier
transform.

Lemma 1.4.1. The following statements hold.

(i) The time-derivative is a closable operator in L2
ϱ(R,H); its closure, denoted again by ∂t,

is the weak time-derivative

∂t : dom(∂t) ⊆ L2
ϱ(R,H) → L2

ϱ(R,H)

with maximal domain dom(∂t) = H1
ϱ (R,H) := {u ∈ L2

ϱ(R,H) : ∂tu ∈ L2
ϱ(R,H)}.
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(ii) The transform Lϱ extends to a unitary operator Lϱ : L2
ϱ(R,H) → L2

0(R,H) via the
Plancherel identity

⟨Lϱu,Lϱv⟩L2
0
= ⟨u, v⟩L2

ϱ
.

(iii) The derivative rule
Lϱ[∂tu](ξ) = (ϱ+ iξ)Lϱ[u](ξ)

holds for u ∈ H1
ϱ (R,H), thus Lϱ[H1

ϱ (R,H)] = {v ∈ L2(R,H) : (ϱ+ i ·)v(·) ∈ L2(R,H)}.

(iv) The convolution theorem
Lϱ[u ∗ v] =

√
2π(Lϱu)(Lϱv)

holds for u ∈ L1
ϱ(R,H), v ∈ L2

ϱ(R,H).

(v) For ϱ > 0, the operator ∂t is boundedly invertible; its inverse ∂−1
t : L2

ϱ(R,H) → L2
ϱ(R,H)

satisfies
∥∥∂−1

t

∥∥
B(L2

ϱ(R,H)) ≤ ϱ−1 and is given by the causal integral

(∂−1
t u)(t) =

∫ t

−∞
u(τ) dτ.

Proof. Most assertions are analogous to the unweighted case ϱ = 0, where L2
ϱ(R,H) =

L2
0(R,H) = L2(R,H), and can be reduced to this case by making use of the unitary operator

exp−ϱ : L2
ϱ(R,H) → L2(R,H), u 7→ (t 7→ u(t)e−ϱt).

For instance, since the diagram

L2
ϱ(R,H) L2(R,H)

L2(R,H)

exp−ϱ

L0Lϱ

is commutative, Lϱ is indeed unitary. In the same vein, the diagram

L2
ϱ(R,H) L2(R,H)

L2(R,H)L2
ϱ(R,H)

L2(R,H)

L2(R,H)

exp−ϱ

(∂t + ϱ)

expϱ

∂t

L0

L∗
0

(ϱ+ i · )

is commutative and we have ∂t = expϱ(∂t + ϱ) exp−ϱ (in the sense of the diagram, i.e., ∂t on
the right denotes the weak derivative in L2(R,H); the identity is valid on a dense subspace
and defines a closed operator). Realizing that ∂t+ϱ = L∗

0(ϱ+ i ·)L0 is boundedly invertible in
L2(R,H) yields the bounded invertibility of ∂t in L2

ϱ(R,H), together with the norm estimate.
The formula for ∂−1

t follows from the variation of constants formula.
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Remark 1.4.2. Since ∂t is skew-selfadjoint in L2(R), the proof gives the formula

∂∗t = (expϱ(∂t + ϱ) exp−ϱ)∗ = expϱ(−∂t + ϱ) exp−ϱ = −∂t + 2ϱ.

Thus, ∂t + ∂∗t = 2ϱ, or (∂t − ϱ)∗ = −(∂t − ϱ). Put differently, the operator ∂t − ϱ is
skew-selfadjoint in L2

ϱ(R,H), but not boundedly invertible. ♢

Remark 1.4.3. In fact, ∥∂−1
t ∥L2

ϱ→L2
ϱ
= 1/|ϱ| for ϱ ̸= 0. For ϱ > 0, this can be seen with

uν(t) :=
√
2(ϱ− ν)θ(t)eνt, ν < ϱ, where we have ∥uν∥L2

ϱ
= 1 and limν↗ϱ ∥∂−1

t uν∥ = 1/ϱ.
Analogously for ϱ < 0; here the bounded inverse is given by (∂−1

t u)(t) = − ∫∞t u(τ) dτ and
is thus anti-causal, i.e., depending only on future times τ > t. ♢

Remark 1.4.4. Although ∂t and its inverse, as operators in L2
ϱ, depend formally on ϱ, we

will not make this dependence explicit. This is further justified in a more general case, see
Lemma 1.4.10 below. Furthermore, we will always denote by ∂−1

t the causal operator above
for some ϱ > 0. ♢

Proposition 1.4.5 (Sobolev embedding). Let ϱ > 0 and define

Cϱ,0(R,H) := {u ∈ Cϱ(R,H) : lim
|t|→∞

∥u(t)∥H e−ϱt = 0}.

Then for all u ∈ H1
ϱ (R,H) we have u ∈ Cϱ,0(R,H) and

∥u∥Cϱ,0
= sup

t∈R
∥u(t)∥ e−ϱt ≤ 1√

2ϱ
∥u∥H1

ϱ
.

Proof. We refer to [STW22, Theorem 4.1.2] or [Tro18, Proposition 1.1.8] for the proof.

Linear material laws

Abstract material functions, in particular convolution operators, are introduced by the
following notion.

Definition 1.4.6. A linear material law on H is a complex-analytic map M : dom(M) ⊆
C → B(H) which is uniformly bounded in a right half-plane, i.e.,

∃ϱ0 ∈ R : sup
Re z>ϱ0

∥M(z)∥B(H) <∞. (1.4.1)

For such M we define M(∂t) := L∗
ϱM(ϱ+ i ·)Lϱ for ϱ > ϱ0.

Remark 1.4.7. Introducing the multiplication operator m by (mu)(ξ) = ξu(ξ), Lemma 1.4.1
(iii) can be formulated as Lϱ∂t = (ϱ+im)Lϱ. From this one derives the spectral representation
∂−1
t = L∗

ϱ(ϱ + im)−1Lϱ. For analytic maps f : dom(f) ⊆ C → C this formula readily
generalizes to

f(∂−1
t ) = f(L∗

ϱ(ϱ+ im)−1Lϱ) = L∗
ϱf((ϱ+ im)−1)Lϱ.

In this respect, a linear material law can be understood as a holomorphic functional calculus
for the bounded operator ∂−1

t on L2
ϱ(R,H) for ϱ > 0 by viewing f(∂−1

t ) = M(∂t) as a
function of ∂−1

t . This is the approach to linear material laws initially established in [Pic09].
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On a small note, a prerequisite for defining f(∂−1
t ) is that f be well-defined and holomorphic

around the spectrum σ(∂−1
t ) of ∂−1

t . We find that
∥∥(z − ∂−1

t )−1∥∥
B(L2

ϱ)
= sup

ξ∈R

∥∥(z − (ϱ+ iξ)−1)−1∥∥
L2
0
<∞

⇐⇒ inf
ξ∈R

∣∣z − (ϱ+ iξ)−1∣∣ > 0.

Since the inversion w 7→ w−1 maps ϱ+iR onto the circle ∂B( 1
2ϱ ,

1
2ϱ) around

1
2ϱ with radius 1

2ϱ ,
we obtain σ(∂−1

t ) = ∂B( 1
2ϱ ,

1
2ϱ). Thus, to define f(∂−1

t ) on L2
ϱ(R,H) for all ϱ > ϱ0, the map

f should be at least holomorphic on the disc B[ 1
2ϱ ,

1
2ϱ ] (the closure of ⋃ϱ≥ϱ0 ∂B( 1

2ϱ ,
1
2ϱ)). ♢

We will also need a slightly more general definition of what it means for a—possibly
nonlinear—operator to be causal.

Definition 1.4.8. A map f : dom(f) ⊆ L2
loc(R,H1) → L2

loc(R,H2) is causal, if for all t0 ∈ R
and u, v ∈ dom(f), the condition u = v in (−∞, t0] implies f(u) = f(v) in (−∞, t0].

Causality and complex analyticity (holomorphy) in L2-spaces are intimately related by
the Paley–Wiener theorem (e.g. [Kat04, VI.7]). Consider the following weighted version.

Theorem 1.4.9 (Paley–Wiener, [STW22, Corollary 8.1.3]). Let ϱ ∈ R. There is an isometric
isomorphism between L2

ϱ(R+,H) = {u ∈ L2(R,H) : u|(−∞,0] = 0} and the Hardy space

H2(CRe>ϱ,H) = {ζ : CRe>ϱ → H analytic, sup
ϱ′>ϱ

∥∥ζ(ϱ′ + i ·)
∥∥
L2
0
<∞}

on the right half-plane CRe>ϱ = {z ∈ C : Re z > ϱ}, given by u 7→ (ϱ+ iξ 7→ (Lϱu)(ξ)).

Lemma 1.4.10. Let M be a linear material law satisfying (1.4.1) with ϱ0 ∈ R. Then, for
ϱ > ϱ0 the operator M(∂t) : L2

ϱ(R,H) → L2
ϱ(R,H) is bounded, causal, and independent of ϱ,

i.e., for all ϱ1, ϱ2 > ϱ0 and u ∈ L2
ϱ1(R,H) ∩ L2

ϱ2(R,H) we have

L∗
ϱ1M(ϱ1 + i ·)Lϱ1u = L∗

ϱ2M(ϱ2 + i ·)Lϱ2u.

Proof. Boundedness: Since Lϱ is unitary and (1.4.1) holds, M(∂t) = L∗
ϱM(ϱ + i · )Lϱ is

bounded on L2
ϱ(R,H), uniformly in ϱ > ϱ0.

Causality: Let u1, u2 ∈ L2
ϱ(R,H) with u := u1 − u2 = 0 on (−∞, t0]. We can assume

w.l.o.g. that t0 = 0 (else consider u( · + t0) instead of u in the following). We have thus
u ∈ L2

ϱ(R+,H) and obtain successively

Lϱu ∈ H2(CRe>ϱ,H) by Theorem 1.4.9,
M(ϱ+ i · )Lϱu ∈ H2(CRe>ϱ,H) by uniform boundedness of M ,

L∗
ϱM(ϱ+ i · )Lϱu ∈ L2(R+,H) again by Theorem 1.4.9.

This shows that M(∂t)u1 =M(∂t)u2 on (−∞, 0].
Independence of ϱ: First, let u ∈ C∞

c (R,H) with suppu ⊆ [0,∞). Then we have
u ∈ L2

ϱ(R,H) and Lϱu ∈ H2(CRe>ϱ,H) for all ϱ > ϱ0. Defining (formally) the translations

τνf(ξ) := f(ξ − iν) (ν, ξ ∈ R),
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we obtain for ϱ1, ϱ2 > ϱ0,

L∗
ϱ1M(ϱ1 + i · )Lϱ1u = L∗

ϱ1M(ϱ2 + (ϱ1 − ϱ2) + i · )Lϱ1u

= L∗
ϱ1τϱ1−ϱ2M(ϱ2 + i · )τϱ2−ϱ1Lϱ1u

= L∗
ϱ2M(ϱ2 + i · )Lϱ2u,

which follows from manipulation of the integral representation of Lϱju (j ∈ {1, 2}), i.e., all
expressions are well-defined pointwise. By substituting ũ = u( · + t0), the identity extends
to suppu ⊆ [t0,∞), and finally to u ∈ L2

ϱj (R,H), j ∈ {1, 2}, by density2 of C∞
c (R,H) in

L2
ϱ(R,H). This concludes the proof.

Solution theory for linear evolutionary equations

A linear evolutionary equation is an operator equation of the form

(∂tM(∂t) +A)u = g ∈ L2
ϱ(R,H) (1.4.2)

with a given inhomogeneity g, where M is a linear material law and A : dom(A) ⊆ H → H
is a densely defined operator, which is extended pointwise to L2

ϱ(R, dom(A)) via (Au)(t) =
A(u(t)). The sum ∂tM(∂t)+A is defined on H1

ϱ (R,H)∩L2
ϱ(R, dom(A)) for ϱ > ϱ0. The idea

underlying the solution theory for such equations is to establish the inverse of ∂tM(∂t) +A
in a suitable sense. To this end, recall the discussion about accretive operators in Section 1.1.

Theorem 1.4.11 (Picard’s Theorem). Let A : dom(A) ⊆ H → H be skew-selfadjoint and
M a linear material law. Let ϱ0 ∈ R be such that on the half plane CRe>ϱ0 , M is uniformly
bounded and z 7→ zM(z) is uniformly strictly accretive, i.e.,

∃c > 0 ∀z ∈ CRe>ϱ0 : Re zM(z) ≥ c. (1.4.3)

Then for all ϱ > ϱ0 the operator ∂tM(∂t) +A is closable and

Sϱ := (∂tM(∂t) +A)−1 : L2
ϱ(R,H) → L2

ϱ(R,H)

is well-defined and bounded, with ∥Sϱ∥L2
ϱ→L2

ϱ
≤ c−1. Moreover, Sϱ is causal and for all

ϱ, ϱ′ > ϱ0 the following implications hold:

(i) If g ∈ L2
ϱ(R,H) ∩ L2

ϱ′(R,H), then Sϱg = Sϱ′g ∈ L2
ϱ(R,H) ∩ L2

ϱ′(R,H).

(ii) If g ∈ H1
ϱ (R,H), then Sϱg = (∂tM(∂t) +A)−1g ∈ H1

ϱ (R,H) ∩ L2
ϱ(R, dom(A)).

Remark 1.4.12. We comment briefly on the proof of Picard’s theorem (cf. [STW22, Theo-
rem 6.2.1]). The strategy consists in establishing the operator S(z) := (zM(z) +A)−1 as a
linear material law on CRe>ϱ0 ; it then follows from Lemma 1.4.10 that

S(∂t) = Sϱ = L∗
ϱ((ϱ+ im)M(ϱ+ im) +A)−1Lϱ = (∂tM(∂t) +A)−1

2It follows by standard smoothing and cutoff arguments that for each element u ∈ L2
ϱ1(R,H) ∩ L2

ϱ2(R,H)
there exists a sequence (un) in C∞

c (R,H) such that simultaneously un → u in L2
ϱ1 and in L2

ϱ2 . Alternatively,
one can perform the approximation over the set of simple functions with compact support, cf. [STW22,
Lemma 4.2.1].
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is bounded and causal on L2
ϱ(R,H) for ϱ > ϱ0, and independent of ϱ. Here the uniform

boundedness of S follows from the skew-selfadjointness of A and strict accretivity of zM(z)
for Re z > ϱ0. Together with the holomorphy of M , this also shows that S is holomorphic.
Moreover, this method makes it clear that the result can be generalized to m-accretive
operators A. ♢

Remark 1.4.13. To be more exact, Theorem 1.4.11 provides a sufficient condition for the
spectral operator

S̃ : dom(M) ∩ CRe>ϱ0 → B(H), z 7→ (zM(z) +A)−1

to possess an analytic and bounded extension to CRe>ϱ0 . If such an extension exists for some
ϱ0, we say that problem (1.4.2) is well-posed in

⋃
ϱ>ϱ0 L

2
ϱ(R,H), or simply well-posed3. ♢

In general, the operator sum ∂tM(∂t) +A is not closed, even if ∂tM(∂t) and A are closed.
For g ∈ L2

ϱ(R,H), the solution u of (1.4.2) yielded by Theorem 1.4.11 thus satisfies

(∂tM(∂t) +A)u = g.

By (ii), however, it is seen that the closure can be omitted if g ∈ H1
ϱ (R,H), in which case

(∂tM(∂t) +A)u = ∂tM(∂t)u+Au = g

holds in L2
ϱ(R,H) with u ∈ H1

ϱ (R,H) ∩ dom(A), and moreover, u is also continuous by the
Sobolev embedding, Proposition 1.4.5. Since Sϱ = S(∂t) is analytic, ∂t commutes with Sϱ
and we have ∂tu = Sϱ∂tg. In general, Sϱ : Hk

ϱ (R,H) → Hk
ϱ (R,H) is also bounded for k ∈ Z,

where H−k(R,H) denotes the dual space of Hk(R,H). Thus, the issue of time-regularity
is already built into the solution theory provided by Theorem 1.4.11. For later reference,
we summarize this fact with the following result, see [PM11, Section 3.1] and [STW22,
Section 6.3].

Proposition 1.4.14. Let (∂tM(∂t) +A)u = g be well-posed in
⋃

ϱ>ϱ0 L
2
ϱ(R,H) with ϱ0 ∈ R.

If ϱ > ϱ0 and g ∈ H1
ϱ(R,H), then u =

(
∂tM(∂t) +A)−1

g ∈ H1
ϱ(R,H), with continuous

dependence on the data:

∥u∥L2
ϱ
≲ ∥g∥L2

ϱ
, ∥∂tu∥L2

ϱ
≲ ∥∂tg∥L2

ϱ
.

In fact, ∂tu = (∂tM(∂t) +A)−1
∂tg. Moreover, u ∈ Cϱ(R,H) by the Sobolev embedding

theorem.

The framework reviewed in this section provides a unified solution theory for a large
class of equations in mathematical physics. These include the classical equations (namely
those with trivial material laws M(∂t) = id), such as the heat and wave equation, as well
as integro-differential equations and equations with delay, see for example Section 6.2 and
Chapter 7 in [STW22].

3This is the definition of well-posedness in [Tro18].

25





2 Nonlinear evolutionary equations

In this chapter we turn our attention to various equations of the form

(∂tM(∂t) +A)u = f(u), (2.0.1)

where f is now a nonlinear function, defined on some subspace of L2
loc(R,H). We assume

that M(∂t) and A satisfy the conditions of Picard’s theorem 1.4.11, i.e., A is skew-selfadjoint
in H and M(∂t) is a linear material law satisfying

Re z > ϱ0 =⇒ Re zM(z) ≥ c > 0

for some ϱ0 ∈ R, c > 0. Thus, the linear equation induced by ∂tM(∂t) +A is well-posed, i.e.,
the operator

Sϱ =
(
∂tM(∂t) +A)−1 : L2

ϱ(R,H) → L2
ϱ(R,H)

is uniformly bounded with ∥Sϱ∥L2
ϱ→L2

ϱ
≤ c−1 and causal for all ϱ > ϱ0. Hence we can

reformulate (2.0.1) as a fixed-point equation,

u = Sϱf(u). (2.0.2)

Of course, the latter expression is only meaningful if dom(f) ∩ L2
ϱ(R,H) ̸= ∅ ̸= ran(f) ∩

L2
ϱ(R,H).

2.1 Lipschitz and locally Lipschitz nonlinearities

The case of uniformly Lipschitz continuous f is one of the simplest, and will serve as a basis
for dealing with other settings.

Definition 2.1.1. A (continuous) map f : dom(f) ⊆ L2
loc(R,H) → L2

loc(R,H) is called
uniformly Lipschitz continuous in

⋃
ϱ>ϱ0 L

2
ϱ(R,H), if f maps each L2

ϱ(R,H) into itself and
satisfies

∀u, v ∈ L2
ϱ(R,H) : ∥f(u)− f(v)∥L2

ϱ
≤ L∥u− v∥L2

ϱ
(2.1.1)

for all ϱ > ϱ0, with L independent of ϱ.

Remark 2.1.2. In the more ‘interior’ definition of uniform Lipschitz continuity in [STW22],
the map f is defined a priori on the (dense) subset of simple functions with compact support
in L2

loc(R,H), and then uniquely extended to each L2
ϱ(R,H). Defined in this way, causality

is in fact a consequence of uniform Lipschitz continuity, see [STW22, Theorem 4.2.5].
We will ignore this technicality (also because we want to consider maps that are not

uniformly Lipschitz continuous) and instead always assume causality as a prerequisite, for
instance by considering Volterra-type operators which are causal by definition. ♢
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Proposition 2.1.3. Let f : dom(f) ⊆ L2
loc(R,H) → L2

loc(R,H) be a causal map and let
ϱ0 ∈ R be such that

1. f is uniformly Lipschitz continuous on
⋃

ϱ>ϱ0 L
2
ϱ(R,H), and

2. Re z ≥ ϱ > ϱ0 =⇒ Re zM(z) ≥ cϱ for some c > 0.

Then, there exists ϱ1 > 0 such that the equation (2.0.2) admits a unique solution in L2
ϱ(R,H)

for all ϱ ≥ ϱ1, which is independent of ϱ.

Proof. The second condition implies the that ∥Sϱ∥L2
ϱ→L2

ϱ
≤ (cϱ)−1 by Theorem 1.4.11.

Together with the uniform Lipschitz continuity of f we have

∥Sϱf(u)− Sϱf(v)∥L2
ϱ
= ∥Sϱ(f(u)− f(v))∥L2

ϱ
≤ 1
cϱ

∥f(u)− f(v)∥L2
ϱ
≤ L

cϱ
∥u− v∥L2

ϱ
.

Hence, Sϱ ◦ f is Lipschitz continuous, with Lipschitz constant L/(cϱ) < 1 for large ϱ > 0.
This shows that Sϱ ◦ f becomes a contraction on L2

ϱ(R,H) for large ϱ, and consequently,
by the Banach fixed-point theorem, (2.0.2) has a unique solution. Since Sϱu = Sϱ′u for
ϱ, ϱ′ > ϱ0, this solution is independent of ϱ.

Remark 2.1.4. If the Lipschitz constant

L = L(ϱ) = inf
u̸=v

∥f(u)− f(v)∥L2
ϱ

∥u− v∥L2
ϱ

of f is allowed to vary with ϱ, the result can be generalized in two ways. First, notice that
the contraction argument remains valid if

lim sup
ϱ→∞

L(ϱ)
ϱ

< 1.

Second, if instead we have
lim sup
ϱ→∞

L(ϱ) = o(1),

then the norm estimate on Sϱ can be relaxed by allowing

sup
ξ∈R

∥(ϱ+ iξ +A)−1∥H→H = O(1), as ϱ→ ∞.

An example of such f is given in [MP02] for a time-shift operator. ♢

Example 2.1.5. For Maxwell’s equations we will be mainly interested in the caseH = L2(Ω)n
for some domain Ω ⊆ R3. Two relevant examples of uniformly Lipschitz continuous mappings
f : L2

ϱ(R,H) → L2
ϱ(R,H) are given in the following.

(a) (Instantaneous saturable nonlinearities) Let η : R → R be continuously differentiable and
bounded, with bounded derivative such that |η′(r)| = O(r−1) for r → ∞ (for instance
η(r) = rp/(1 + rs), 0 ≤ p ≤ s), and consider Q : R3 → Rn given by

Q(v) = η(|v|)v.
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Then Q is pointwise Lipschitz continuous, since for v, w ∈ R3 (assuming |v| ≥ |w| and
using the mean-value inequality),

|η(|v|)v − η(|w|)w| ≤ |η(|v|)v − η(|v|)w|+ |η(|v|)w − η(|w|)w|
≤ sup

r
|η(r)| |v − w|+ |η(|v|)− η(|w|)| |w|

≤ sup
r

|η(r)| |v − w|+ ( sup
r≥|w|

∣∣η′(r)∣∣ |w|) ||v| − |w||

≤ (sup
r

|η(r)|+ sup
r≥|w|

∣∣η′(r)∣∣ r) |v − w|

≤ C |v − w| .

The pointwise extension of Q (first to H, and then) to L2
ϱ(R,H) is uniformly Lipschitz

continuous for all ϱ ∈ R.

(b) (Saturable Volterra operator) A nonlocal version of the above is given by the Volterra-type
operator

f(u)(t) = g(t) +
∫
R
κ(t− τ)Q(u(τ)) dτ,

where κ ∈ L1
ϱκ(R,B(H)) with ϱκ ∈ R and suppκ ⊆ [0,∞), g ∈ L2

loc(R,H), and Q : H →
H is Lipschitz continuous. Taking ϱ > ϱκ we compute for u, v ∈ L2

ϱ(R,H) (cf. [MP02])

∥f(u)− f(v)∥2L2
ϱ

≤
∫
R
∥κ(t− s) (Q(u(s))−Q(v(s))) ds∥2H e−2ϱt dt

≤ |Q|2Lip
∫
R

(∫
R
∥κ(t− s)∥B(H) ∥u(s)− v(s)∥H ds

)2
e−2ϱt dt

(⋆)
≤ |Q|2Lip ∥κ∥L1

ϱκ

∫
R

(∫
R
∥κ(t− s)∥B(H) ∥u(s)− v(s)∥2H eϱκ(t−s) ds

)
e−2ϱt dt

= |Q|2Lip ∥κ∥L1
ϱκ

∫
R

∫
R
∥κ(t− s)∥B(H) e

−ϱκ(t−s) e−2(ϱ−ϱκ)(t−s)︸ ︷︷ ︸
≤1 for t−s≥0

dt ∥u(s)− v(s)∥2H e−2ϱs ds

≤ |Q|2Lip ∥κ∥L1
ϱκ

∫
R
∥κ(r)∥B(H) e

−ϱκr dr
∫
R
∥u(s)− v(s)∥2H e−2ϱs ds

= |Q|2Lip ∥κ∥2L1
ϱκ

∥u− v∥2L2
ϱ

using Tonelli’s theorem, where (⋆) follows from the Cauchy–Schwarz inequality after
writing ∥κ(t − s)∥ = ∥κ(t− s)∥ 1

2+
1
2 e−ϱκ(t−s)( 12−

1
2 ). For fixed g ∈ ⋂ϱ>ϱ0 L

2
ϱ(R,H), this

shows the uniform Lipschitz continuity of f in ⋃ϱ>max{ϱκ,ϱ0} L
2
ϱ(R,H). ▲

A refinement of the fixed-point argument in Proposition 2.1.3 yields well-posedness for
nonlinearities that satisfy only a local Lipschitz estimate. We remark that, unlike the
linear solution operator Sϱ, for which uniform boundedness in ⋃ϱ>ϱ0 L

2
ϱ(R,H) is a necessary

consequence of causality, the nonlinear map need not satisfy the Lipschitz estimate for all
ϱ > ϱ0, if one is interested in solving the nonlinear equation only in some L2

ϱ(R,H).

Proposition 2.1.6. Let A : dom(A) ⊂ H → H be a densely defined and closed operator
and M a linear material law, such that the linear equation (∂tM(∂t) + A)u = g is well-
posed in

⋃
ϱ>ϱ0 L

2
ϱ(R,H) and ∥(∂tM(∂t) +A)−1∥L2

ϱ→L2
ϱ
≤ c−1 with c > 0. Let ϱ > ϱ0 and
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f : L2
ϱ(R,H) → L2

ϱ(R,H) be a nonlinear map satisfying f(0) = 0 and, for some d, α > 0,

∥f(u)− f(v)∥L2
ϱ
≤ d

(∥u∥L2
ϱ
+ ∥v∥L2

ϱ

)α∥u− v∥L2
ϱ

for all u, v ∈ L2
ϱ(R,H). Then, for all g ∈ L2

ϱ(R,H) with ∥g∥L2
ϱ
< d

2
( c
d

)1+ 1
α (1 − 2−α), the

nonlinear equation (∂tM(∂t) +A)u = f(u) + g admits a unique solution u ∈ L2
ϱ(R,H) with

∥u∥L2
ϱ
≤ 1

2
( c
d

)1/α.
Proof. Denote by Tϱ : L2

ϱ(R,H) → L2
ϱ(R,H) the operator given by

Tϱ(u) =
(
∂tM(∂t) +A

)−1(f(u) + g).

Then, on an arbitrary closed ball Br := {u ∈ L2
ϱ(R,H) : ∥u∥L2

ϱ
≤ r} the Lipschitz constant

of Tϱ can be estimated by

Lϱ,r := sup
u,v∈Br,u̸=v

∥Tϱ(u)− Tϱ(v)∥L2
ϱ

∥u− v∥L2
ϱ

≤ d

c
(2r)α ,

thus Lϱ,r < 1 if r < 1
2
( c
d

)1/α. Now to have Tϱ(u) ∈ Br if u ∈ Br, we demand that

∥Tϱ(u)∥L2
ϱ
≤ 1
c

(
d∥u∥α+1

L2
ϱ

+ ∥g∥L2
ϱ

) ≤ 1
c
(drα+1 + ∥g∥L2

ϱ
)

!
≤ r.

Replacing r with 1
2
( c
d

)1/α in the last inequality leads to the condition

∥g∥L2
ϱ

d

!
<

1
2
c

d

( c
d

) 1
α −

(1
2
( c
d

) 1
α
)α+1

= 1
2
( c
d

)1+ 1
α (1− 2−α),

which, if fulfilled, establishes Tϱ as a contraction on Br for some r < 1
2
( c
d

)1/α. The Banach
fixed-point theorem gives the conclusion.

2.2 Small solutions of a cubic Ginzburg–Landau equation

We will apply Proposition 2.1.6 in the following to treat an evolutionary problem without
memory. A particular instance of this problem appears in Chapter 4 as an amplitude
equation. Consider the evolutionary problem

∂tu+ σu+Du = γ|u|2u+ g, (2.2.1)

where σ ∈ R+, γ ∈ C, and D : dom(D) ⊂ Hk(Rd) → Hk(Rd), with k > d/2 fixed, is an
m-accretive operator. We demonstrate how to obtain solutions u : R × Rd → C of (2.2.1)
subject to some smoothness and decay. Substituting v(t) = u(t)eσt transforms the equation
into

(∂t +D)v = γe−2σt|v|2v + g =: f(v) + g. (2.2.2)

We will show that this evolutionary equation is well-posed in the space

Hϱ := {u ∈ H1
ϱ (R, Hk(Rd)) : u = 0 in (−∞, 0]}, ∥·∥Hϱ

:= ∥·∥H1
ϱ(R,Hk(Rd)) (2.2.3)
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for ϱ ∈ (0, σ]. To this aim, first observe from the general solution theory, Theorem 1.4.11,
and time-regularity, Proposition 1.4.14, that for all ϱ0 > 0 the linear equation (∂t +D)u = g

is well-posed in ⋃ϱ>ϱ0 H
1
ϱ (R, Hk(Rd)), with

∥∥(∂t +D)−1∥∥
H1

ϱ→H1
ϱ
≤ 1
ϱ
.

Moreover, due to causality, (∂t +D)−1 leaves Hϱ invariant for all ϱ > 0. For the nonlinear
equation we employ again a fixed-point argument. Note that since k > d/2, the space
Hk(Rd) is a multiplication algebra, i.e., in particular

∥u · v∥Hk ≤ ak ∥u∥Hk ∥v∥Hk (u, v ∈ Hk(Rd)) (2.2.4)

for some ak > 0, see [AF03, Theorem 4.39].

Lemma 2.2.1. For all ϱ ∈ (0, σ] there exists dϱ > 0 such that the map f : Hϱ → Hϱ,
f(u)(t) = γe−2σt|u(t)|2u(t), fulfills

∥f(u)− f(v)∥Hϱ ≤ dϱ
(∥u∥Hϱ + ∥u∥Hϱ

)2∥u− v∥Hϱ (2.2.5)

for all u, v ∈ Hϱ.

Proof. The value of γ plays no role in the following argument; we set γ = 1. We will use the
notation

∥·∥k = ∥·∥Hk

∥u∥L2
ϱ
= ∥u∥L2

ϱ(R,Hk(Rd))

∥u∥Cϱ = sup
t
e−ϱt ∥u(t)∥Hk .

Now let ϱ ∈ (0, σ]. For the map N defined by

N(u, v, w)(t) := e−2σtu(t)v(t)w(t)

we show that ∥N(u, v, w)∥Hϱ ≲k,σ,ϱ ∥u∥Hϱ∥v∥Hϱ∥w∥Hϱ . Recalling the Sobolev inequality

∥u∥Cϱ ≤ 1√
2ϱ

∥u∥H1
ϱ

(ϱ > 0),

together with (2.2.4) we compute

∥N(u, v, w)∥2L2
ϱ
=
∫ ∞

0
∥u(t)v(t)w(t)∥2ke−2(2σ+ϱ)t dt

≤ (a2k)2
∫ ∞

0
∥u(t)∥2k ∥v(t)∥2k ∥w(t)∥2k e−2(2σ+ϱ)t dt

≤ a4k ∥u∥2Cϱ
∥v∥2Cϱ

∫ ∞

0
∥w(t)∥2k e−2(2σ−ϱ)t dt

≤ a4k
(2ϱ)2 ∥u∥

2
Hϱ

∥v∥2Cϱ

∫ ∞

0
∥w(t)∥2k e−2(2σ−ϱ)t︸ ︷︷ ︸

≤e−2ϱt

dt

≤ a4k
(2ϱ)2 ∥u∥

2
Hϱ

∥v∥2Hϱ
∥w∥2L2

ϱ
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≤ a4k
(2ϱ)2 ∥u∥

2
Hϱ

∥v∥2Hϱ
∥w∥2Hϱ

,

and similarly for the time-derivative, using (∑n
j=1 bj)2 ≤ n

∑n
j=1 b

2
j :

∥∂tN(u, v, w)∥2L2
ϱ

=
∫ ∞

0

∥∥u′(t)v(t)w(t) + u(t)v′(t)w(t) + u(t)v(t)w′(t)− 2σu(t)v(t)w(t)
∥∥2
k e

−2(2σ+ϱ)t dt

≤ a4k

∫ ∞

0

(∥∥u′(t)∥∥k ∥v(t)∥k ∥w(t)∥k + ∥u(t)∥k
∥∥v′(t)∥∥k ∥w(t)∥k

+ ∥u(t)∥k ∥v(t)∥k
∥∥w′(t)

∥∥
k + 2σ ∥u(t)v(t)w(t)∥2k

)2
e−2(2σ+ϱ)t dt

≤ 3a4k
(∥∥u′∥∥2L2

ϱ
∥v∥2Cϱ

∥w∥2Cϱ
+ ∥u∥2Cϱ

∥∥v′∥∥2L2
ϱ
∥w∥2Cϱ

+ ∥u∥2Cϱ
∥v∥2Cϱ

∥∥w′∥∥2
L2
ϱ
+ 4σ2 ∥u∥2Cϱ

∥v∥2Cϱ
∥w∥2L2

ϱ

)
≤ 3a4k(3 + 4σ2)

(2ϱ)2 ∥u∥2Hϱ
∥v∥2Hϱ

∥w∥2Hϱ
.

Thus,

∥N(u, v, w)∥Hϱ ≤ a2k
√
10 + 12σ2
2ϱ ∥u∥Hϱ

∥v∥Hϱ
∥w∥Hϱ

. (2.2.6)

Finally,

∥f(u)− f(v)∥Hϱ
≤
∥∥(|u|2u− |v|2v)e−2σ·∥∥

Hϱ

≤
∥∥(|u|2(u− v) + (|u|2 − |v|2)v)e−2σ·∥∥

Hϱ

≤
∥∥(|u|2 |u− v|+ (|u|+ |v|) |v|

∣∣|u| − |v|
∣∣)e−2σ·∥∥

Hϱ

≤
∥∥(|u|+ |v|)2 |u− v| e−2σ·∥∥

Hϱ

= ∥N(|u|+ |v|, |u|+ |v|, |u− v|)∥Hϱ

≤ a2k
√
10 + 4σ2
2ϱ

(∥u∥Hϱ
+ ∥u∥Hϱ

)2 ∥u− v∥Hϱ
,

where the last estimate follows from (2.2.6). We obtain (2.2.5) with dϱ = a2
k

√
10+4σ2

2ϱ .

Theorem 2.2.2. For all ϱ ∈ (0, σ] there exists cϱ > 0 such that if ∥g∥Hϱ ≤ cϱ, then
(2.2.2) admits a unique solution v ∈ Hϱ = {v ∈ H1

ϱ(R, Hk(Rd)) : v = 0 in (−∞, 0]}. Thus,
u ∈ H1

ϱ−σ(R, Hk(Rd)), where u(t) = v(t)e−σt.

Proof. By the observations made earlier, (∂t +D)−1 ∈ B(Hϱ) with ∥(∂t +D)−1∥Hϱ ≤ 1/ϱ.
Since f satisfies the conditions of Lemma 2.2.1, the fixed-point argument underlying the
proof of Proposition 2.1.6 is valid in Hϱ with c = ϱ, d = γdϱ, α = 2. Hence, we only need to
take

∥g∥Hϱ <
γdϱ
2
( ϱ

γdϱ

)1+ 1
2 (1− 2−2)

small enough to have a unique solution v ∈ Hϱ with ∥v∥Hϱ ≤ 1
2
( ϱ
γdϱ

)1/2.
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Remark 2.2.3. In view of the application in Chapter 4, the result of Theorem 2.2.2 can
be applied to the operator D = −α∂2x1 with maximal domain dom(D) in Hk(Rd), where
α ∈ CRe>0. As such, D is densely defined and closed. Recall from Example 1.1.3 that D
(= Da, where a = diag (α, 0, . . . , 0)) is m-accretive in Hk(Rd). ♢

The results in this section are not intended as an optimal strategy for analysis of Equa-
tion (2.2.1). For instance, much more is known about one its most prominent variants, the
nonlinear Ginzburg–Landau equation

∂tu+ σu− α∆u+ γ|u|q−1u = 0 (CGL)

in R× Rd, where σ ∈ R, α, γ ∈ C; see [AK02, LO96] for an overview.
Local and global well-posedness of (CGL) was studied in [SYY16] (and the references

therein), and the bound
∥u∥Lp ≤ e−σt∥u0∥Lp (2.2.7)

was proved for Reα > 0 and γ ∈ R− for a range of parameters p, q, d, for arbitrary initial
values u0 ∈ Lp(Rd) and σ ∈ R. Similar estimates were obtained for γ ≥ 0. The existence of
special solutions such as traveling pulses is known for d = 1 in some cases (notably depending
on the sign of γ), see [KS98, vH92]. The existence of such solutions and decay estimates is
important for the amplitude formalism reviewed and applied in Chapter 4.

In contrast, the method for the proof of Theorem 2.2.2 cannot produce the decay estimate
(2.2.7) due to the singularity of the Lipschitz constant for ϱ→ 0 (thus, the bound for ∥g∥Hϱ

vanishes as ϱ→ 0). In turn, the proof of the stability result is independent of the sign of γ,
and also valid for any m-accretive operator D in Hk(Rd). To obtain finer-grained results,
the method would need to be adapted to take these parameters into account.

2.3 Multilinear Volterra operators: local and global well-posedness

We now study nonlinearities that cannot be expected to fulfill the Lipschitz estimate in
Proposition 2.1.6. This is particularly the case with multilinear operators V of Volterra-type,

V(u)(t) =
∫
R
· · ·
∫
R
κ(t− τ1, . . . , t− τn)Q(u(τ1), . . . , u(τn)) dτ1 · · · dτn, (2.3.1)

where Q : (H)n → H is a multilinear and bounded map. We use an estimate similar to
(2.1.1) to derive the following mapping property.

Lemma 2.3.1. Let ϱκ ∈ R and let κ : Rn → B(H) be causal, measurable and such that

Lκ :=
∫
R
· · ·
∫
R
∥κ(τ1, . . . , τn)∥ e−ϱκ(τ1+...+τn) dτ1 · · · dτn (2.3.2)

ℓκ := sup
τ1,...,τn∈R

∫
R
∥κ(t− τ1, . . . , t− τn)∥ e−ϱκ(t−τ1) · · · e−ϱκ(t−τn) dt (2.3.3)

are finite. Let Q : (H)n → H be a multilinear bounded map. Then, for all ϱ ≥ ϱκ the
nonlinear operator defined by (2.3.1) maps L2

ϱ(R,H) continuously into L2
nϱ(R,H).

Proof. Let Cq denote the constant in ∥Q(v1, . . . , vn)∥H ≤ Cq ∥v1∥H · · · ∥vn∥H. We compute
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for u ∈ L2
ϱ(R,H),

∫
R

∥∥∥∥∫
R
· · ·
∫
R
κ(t− τ1, . . . , t− τn)Q(u(τ1), . . . , u(τn))

n∏
j=1

dτj
∥∥∥∥2
H
e−2nϱt dt

≤ LκC
2
q

∫
R

∫
R
· · ·
∫
R
∥κ(t− τ1, . . . , t− τn)∥B(H)e

ϱκ
∑

j
(t−τj)

n∏
j=1

∥u(τj)∥2H dτj

 e−2nϱt dt

≤ LκC
2
q

∫
R
· · ·
∫
R

(∫
R
∥κ(t− τ1, t− τ2)∥B(H) e

−ϱκ
∑

j
(t−τj) e

−2(ϱ−ϱκ)
∑

j
(t−τj)︸ ︷︷ ︸

≤1 for τj ≤ t

dt
)
·

·
n∏

j=1

(
∥u(τj)∥2H e−2ϱτj dτj

)

≤ LκℓκC
2
q

n∏
j=1

∥u∥2L2
ϱ
.

Thus, ∥V(u)∥L2
nϱ

≤ √
LκℓκCq ∥u∥nL2

ϱ
.

Lemma 2.3.1 makes it clear that a fixed-point argument in L2
ϱ(R,H) for the equation

(∂tM(∂t)+A)u = V(u)+g cannot be performed in general for ϱ > 0, as L2
2ϱ(R,H) ⊈ L2

ϱ(R,H).
However, this becomes possible if the linear solution operator leaves L2

−ν(R,H) ∩ L2
ϱ(R,H)

invariant for some ν, ϱ > 0 (more generally, if the linear equation is exponentially stable, see
Definition 3.3.1): As in the previous section, we restrict ourselves to functions supported on
the positive number line. Letting

Wϱ := {u ∈ L2
ϱ(R,H) : u = 0 in (−∞, 0]},

the continuous inclusion W−ν ⊆ W−ν′ holds for 0 ≤ ν ≤ ν ′ since ∥u∥L2
−ν′

≤ ∥u∥L2
−ν

for
u ∈W−ν . This in turn implies, if κ satisfies the conditions in Lemma 2.3.1 with ϱκ < 0, that

∀ν ∈ [0,−ϱκ] : V(W−ν) ⊆W−2ν ⊆W−ν . (2.3.4)

We summarize this fact assuming that the problem is well-posed for ϱ0 < 0.

Theorem 2.3.2. Let A : dom(A) ⊆ H → H be m-accretive and M a linear material law
with

∃ν0 > 0 : Re z > −ν0 =⇒ Re zM(z) ≥ c > 0.

Let V be a n-linear Volterra operator with kernel κ satisfying the conditions in Lemma 2.3.1
with ϱκ = −νκ < 0. Then there exist ν1 ∈ (0,min{ν0, νκ}), c0, r > 0 such that for each
ν ∈ (0, ν1) and g ∈W−ν with ∥g∥L2

−ν
≤ c0r the equation (∂tM(∂t) +A)u = V(u) + g admits

a unique solution u ∈W−ν with ∥u∥L2
−ν

≤ r.

Proof. The assumptions on M imply that the linear solution operator is boundedly and
causally invertible in L2

−ν(R,H), uniformly for small ν. As such, it leaves the space W−ν

invariant. By the same argument as in (2.3.4), so does V, and thus the map

T (u) :=
(
∂tM(∂t) +A)−1(V(u) + g)

is a self-mapping on W−ν . Moreover, due to multilinearity and by Lemma 2.3.1 we obtain
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the local Lipschitz estimate

∥T (u)− T (v)∥L2
−ν

≤ ∥T (u)− T (v)∥L2
−nν

≲κ,Q
(∥u∥L2

−ν
+ ∥v∥L2

−ν

)n−1 ∥u− v∥L2
−ν
.

Thus, the restriction of T to a small ball with radius r in L2
−ν(R,H) becomes a contraction,

provided that r and ∥g∥ ≲ r are small enough.

Local well-posedness

The argument can be adapted for ϱ > 0 using a cutoff in time. This will produce a local
existence and uniqueness result. For T > 0, define VT by

VT (u)(t) := 1[0,T )(t)V(u)(t).

Note that VT is equivalently obtained from V by replacing κ in (2.3.1) with

κT (t, τ1, . . . , τn) = 1[0,T )(t)κ(τ1, . . . , τn).

In addition to finiteness of Lκ, ℓκ in (2.3.2) and (2.3.3), we assume that

dκ := ess sup
τ1,...,τn∈R

∥κ(τ1, . . . , τn)∥ e−ϱκ(τ1+...+τn) <∞. (2.3.5)

We then observe for t ≥ 0, ϱ, T > 0 that∫
· · ·
∫

∥κT (t, τ1, . . . , τn)∥ e−ϱκ(τ1+...+τn) dτ1 · · · dτn ≤ Lκ (2.3.6)∫
∥κT (t, τ1, . . . , τn)∥ e−ϱκ(τ1+...+τn)eϱt dt ≤ dκ

∫ T

0
eϱt dt ≤ dκ Te

ϱT . (2.3.7)

Now modifying the estimate in the proof of Lemma 2.3.1 we obtain for u1, . . . , un ∈ L2
ϱ(R,H),

∫
R

∥∥∥∥ ∫
R
· · ·
∫
R
κT (t, t− τ1, . . . , t− τn)Q(u1(τ1), . . . , un(τn)) dτ1 · · · dτn

∥∥∥∥2
H
e−2ϱt dt

(2.3.6)
≤ LκC

2
q

∫ T

0

(∫
R
· · ·
∫
R
∥κ(t− τ1, . . . , t− τn)∥ eϱκ

∑
j
(t−τj)

n∏
j=1

∥uj(τj)∥2H dτj
)
e−2ϱt dt

≤ LκC
2
q

∫
R
· · ·
∫
R

∫ T

0
∥κ(t− τ1, . . . , t− τn)∥ e−ϱκ

∑
j
(t−τj)e

2ϱκ
∑

j
(t−τj)e

2ϱ
∑

j
τje−2ϱt dt ·

·
n∏

j=1
∥uj(τj)∥2H e−2ϱτj dτj

= LκC
2
q

∫
R
· · ·
∫
R

∫ T

0
∥κ(t− τ1, . . . , t− τn)∥ e−ϱκ

∑
j
(t−τj) e

2(ϱ−ϱκ)
∑

j
(t−τj)︸ ︷︷ ︸

≤1

e2(n−1)ϱT dt ·

·
n∏

j=1
∥uj(τj)∥2H e−2ϱτj dτj

(2.3.7)
≤ dκLκC

2
q Te

2(n−1)ϱT ∥u1∥2L2
ϱ
· · · ∥un∥2L2

ϱ
.
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By multilinearity we can again deduce

∥VT (u)− VT (v)∥L2
ϱ
≤ L(κ, q, T )

(∥u∥L2
ϱ
+ ∥v∥L2

ϱ

)n−1 ∥u− v∥L2
ϱ

with L(κ, q, T ) ≤ √
dκLκCq

√
Te(n−1)ϱT .

Theorem 2.3.3. Let A : dom(A) ⊆ H → H be m-accretive and M a linear material law
with

Re z > ϱ0 =⇒ Re zM(z) ≥ c > 0,

where ϱ0 ∈ R. Let V be an n-linear Volterra operator with V(0) = 0, whose kernel satisfies
the conditions in Lemma 2.3.1. Then, for given ϱ > ϱ0 there exist c0, r, T > 0 such that
for all g ∈ L2

ϱ(R,H) with ∥g∥L2
ϱ
≤ c0r the equation (∂tM(∂t) +A)u = VT (u) + g admits a

unique solution u ∈ L2
ϱ(R,H) with ∥u∥L2

ϱ
≤ r.

Proof. Consider the fixed-point equation u = Sϱ(VT (u) + g) =: FT (u). For ϱ > ϱ0 it follows
from ∥Sϱ∥L2

ϱ→L2
ϱ
≤ c−1 and the estimates above that

∥FT (u)∥L2
ϱ
≲q,κ

√
Te(n−1)ϱT ∥u∥nL2

ϱ
+ ∥g∥L2

ϱ

∥FT (u)− FT (v)∥L2
ϱ
≲q,κ

√
Te(n−1)ϱT (∥u∥L2

ϱ
+ ∥v∥L2

ϱ

)n−1 ∥u− v∥L2
ϱ
.

Thus, smallness of ∥g∥L2
ϱ
, T, r is sufficient to establish FT as a contraction on Br = {u ∈

L2
ϱ(R,H) : ∥u∥L2

ϱ
< r}.

2.4 Initial values for problems with memory

We close this chapter with a discussion on how a given initial value problem (with memory)
can be formulated as a single evolutionary equation in L2

ϱ(R,H). Already in [Pic00], initial
value problems were considered in the distributional sense. Our strategy in dealing with
initial values and memory is more akin to [Tro18, Tro13], although we follow a more ad hoc
approach, at the expense of generality and for a selected class of nonlinear problems that
are relevant to the Maxwell equations (see also [MP02]). The idea is, starting from an initial
value problem, to transform the unknown part of the solution, using smooth cutoff functions,
to obtain an evolutionary formulation without distributional terms.
Suppose A is a densely defined and closed operator in the Hilbert space H and M a

nonlinear operator (specified below). We consider the Cauchy problem∂tM(U)(t) +AU(t) = g(t), t > 0
U(t) = ϕ(t), t ≤ 0

 (2.4.1)

for U : R → H, where the inhomogeneity g : R → H and the history ϕ : R → H are given
functions satisfying

supp g ⊆ (0,∞), suppϕ ⊆ (−∞, 0].

For simplicity, we assume that

M(U) =M0U + G(U), with G(U) =
∫
R
χ(τ)Q(U( · − τ)) dτ,
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where M0 is selfadjoint and uniformly positive definite, χ is causal, i.e., suppχ ⊆ [0,∞),
rapidly decaying, and smooth on [0,∞), and Q : H → H is Lipschitz continuous with
Q(0) = 0. We want to convert (2.4.1) into a nonlinear evolutionary equation in L2

ϱ(R,H).

To this end, suppose U ∈ C(R,H) is a continuous solution of (2.4.1) and also that
f ∈ C(R,H). Let θ = 1(0,∞) denote (multiplication with) the Heaviside step function. We
then separate the ‘unknown’ part

U+ := θU

of the solution, with suppU+ ⊆ [0,∞), from the given history ϕ = (1 − θ)ϕ. With
U = U+ + ϕ we also have Q(U(t)) = Q(U+(t)) +Q(ϕ(t)) for all t ∈ R, and therefore in fact
M(U)(t) = M(U+)(t) +M(ϕ)(t). Interpreting now ∂t in the distributional sense, we use
the formula

∂t(θh) = θ∂th+ h(0+)δ0 (h ∈ C1(R,H))

with δ0 denoting the δ-distribution, to extract from (2.4.1) an equation for U+ on the whole
real line:

g = θg = θ
[
∂tM(U) +AU]

= ∂t(θM(U))−M(U)(0+)δ0 +AθU
= ∂t(θM(U+)) + ∂t(θM(ϕ))−M(ϕ)(0−)δ0 +AU+

= ∂tM(U+) +AU+ + ∂t(θG(ϕ))−M0ϕ(0−)δ0 − G(ϕ)(0−)δ0
= ∂tM(U+) +AU+ + θ∂tG(ϕ) + G(ϕ)(0+)δ0 −M0ϕ(0−)δ0 − G(ϕ)(0−)δ0
= ∂tM(U+) +AU+ + θ∂tG(ϕ)−M0ϕ(0−)δ0, (2.4.2)

where we used G(ϕ)(0−) = G(ϕ)(0+) due to continuity of the convolution.

The δ0-term in the last equation can be removed by smoothing the jump of U+ at t = 0:
Choose η ∈ C∞

c (R) with η(0) = 1, η′(0) = 0, and set

ϕ+ := ϕ(0−)θη, u := U+ − ϕ+,

see Figure 2.1. Then,

∂tM(U+) = ∂tM(u+ ϕ+) = ∂t
(
M0u+M0ϕ

+ + G(u+ ϕ+)
)

= ∂t
(
M0u+ G(u+ ϕ+)

)
+ θ∂tM0ϕ

+ +M0ϕ
+(0+)δ0.

Thus, using that ϕ+(0+) = ϕ(0−), (2.4.2) becomes

g = ∂tM(u+ ϕ+) +Au+Aϕ+ + θ∂tG(ϕ)−M0ϕ(0−)δ0
= ∂t

(
M0u+ G(u+ ϕ+)

)
+Au+ θ∂tM0ϕ

+ + θ∂tG(ϕ) +Aϕ+.

Finally, the last identity can be written as

(
∂tM0 +A)u = −∂tG(u+ ϕ+) + gϕ, (2.4.3)

where
gϕ := g − θ

[
∂t
(
M0ϕ

+ + G(ϕ))+Aϕ+].
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Now (2.4.3) is a proper reformulation of (2.4.1) as an operator equation in L2
ϱ(R,H). The

well-posedness of (2.4.3) follows by Proposition 2.1.3 from the Lipschitz continuity of
u 7→ ∂tG(u+ ϕ+). Since ϕ+ = 0 on (−∞, 0], the causality of the solution operator and the
fixed-point iteration implies u = 0 on (−∞, 0].

t

ϕ

U+

u

supp θη

Figure 2.1: Schematic for the conversion of the Cauchy problem to an evolutionary
equation.

Remark 2.4.1 (A posteriori justification). If gϕ ∈ H1
ϱ (R,H), then solutions of (2.4.3) generate

continuous solutions of (2.4.1); indeed, in this case Proposition 1.4.14 justifies u ∈ H1
ϱ (R,H),

and since ϕ− ϕ+ is continuous, U = u+ (ϕ− ϕ+) ∈ C(R,H). Assuming the history ϕ is
sufficiently regular, i.e., ϕ ∈ H1

ϱ ((−∞, 0],H) with ϕ(0−) ∈ dom(A), then gϕ ∈ H1
ϱ ((0,∞),H).

In this case, since gϕ = 0 on (−∞, 0], a necessary and sufficient condition for gϕ ∈ H1
ϱ (R,H)

is the continuity of gϕ in t = 0, i.e.,

gϕ(0+) = lim
t↘0

[
g(t)− ∂t(M0ϕ

+(t) + G(ϕ)(t)) +Aϕ+(t)
]
= 0. (2.4.4)

Under the additional assumption that (∂tϕ)(0−) = limt↗0 ∂tϕ(t) exists, we propose the
following modification of ϕ+. Let η, γ ∈ C∞

c (R), where η(0) = 1, η′(0) = 0, γ(0) = 0,
γ′(0) = 1, and set

ϕ+ := ϕ(0−)θη + (∂tϕ)(0−)θγ +M−1
0 χ(0)Q(ϕ(0−))θγ.

The last term here is connected to the expression

∂tG(ϕ)(t) =

∫ 0
−∞ χ′(t− τ)Q(ϕ(τ)) dτ, τ > 0
χ(0)Q(ϕ(t)) +

∫ t
−∞ χ′(t− τ)Q(ϕ(τ)) dτ, τ ≤ 0.

Now with gϕ defined as before, (2.4.4) becomes

gϕ(0+) = lim
t↘0

[
g(t)− ∂tM0(ϕ(0−)η(t) + (∂tϕ)(0−)γ(t))

+ χ(0)Q(ϕ(t)) + ∂tG(ϕ)(t) +Aϕ(0−)η(t)]
= g(0+)− [M0(∂tϕ)(0−) + ∂tG(ϕ)(0+) +Aϕ(0−)]
= g(0+)− lim

t↗0

[
∂tM(ϕ)(t) +Aϕ(t)] = 0. (2.4.5)

We can interpret this by saying: If the history solves the equation at initial time, then there
exists an evolutionary formulation equivalent to the Cauchy problem. ♢

The above derivation is also valid for pure initial value problems without history. Take for
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example G = 0, M0 = id and consider the linear evolution equation

(∂t +A)u(t) = 0 (t > 0), u(t = 0) = u0.

Analogous to (2.4.3), an evolutionary formulation of this problem reads

(∂t +A)u = −θ[∂tu+0 +Au+0
]
=: g0

with u+0 (t) = u0θ(t)η(t), η(0) = 1, where we assume that g0 ∈ H1
ϱ(R,H) (i.e., no further

corrections are necessary for u+0 ). Since η ∈ C∞
c (R) is arbitrary as long as η(0) = 1, in

particular this means that supp η can be made arbitrarily small. The conclusion is that
perturbative arguments requiring smallness of the data g0 ∈ L2

ϱ(R,H) can be satisfied
independently of u0. This is not an oversight, however, as instead the H1

ϱ -norm of u+0 will
depend sensitively on u0. Indeed, the previous discussion suggests that H1

ϱ (R,H), instead of
L2
ϱ(R,H), is the proper space to consider initial value problems. Nevertheless, the fixed-point

arguments we provide will be formulated mainly with respect to the L2
ϱ-norm.

2.5 Comments and open problems

In the case of positive weights ϱ > 0, we have used a time cutoff in Theorem 2.3.3 to derive
local well-posedness for nonlinear problems involving Volterra operators. The mapping
property V(n) : L2

ϱ → L2
nϱ ⊈ L2

ϱ renders a contraction mapping for the equation without
cutoff impossible in L2

ϱ.
It may be interesting to see how other fixed-point theorems, such as Schauder’s theorem,

fare in this respect. If H = Rn is finite dimensional and V : dom(V) ⊆ L2
loc(R,Rn) →

L2
loc(R,Rn) is a compact Volterra operator, global existence of solutions to the equation

u = V(u)

in L2
loc(R,H) can be been obtained (by excluding blowup) if V satisfies a certain growth

bound, see Theorem 3.2.2 in [Cor91]. Two immediate questions arise; first, whether this
result can be extended to evolutionary equations

u = (∂tM(∂t) +A)−1V(u)

on L2
ϱ(R,Rn) (for example, by restricting, once again, to a compact interval [0, T ] (but

T arbitrary) and noting that L2
loc([0, T ],H) ∼= L2

ϱ([0, T ],H) with equivalent norms; the
boundedness of the linear solution operator should then preserve the compactness of V).

Second, how restrictive is the compactness assumption? In finite dimensions, the result
provided works for linear Volterra operators on L2

loc([0, T ),Rn) of the form

V(u)(t) = g(t) +
∫ t

0
κ(t, s)u(s) ds

for g ∈ L2
loc([0, T ),Rn) and generic matrix-valued kernels κ (the extension to multilinear

Volterra operators poses no great difficulty) by virtue of the Kolmogorov–Riesz compactness
criterion, see [Bre11, Theorem 4.26]:
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Lemma 2.5.1 (Kolmogorov–Riesz). M ⊆ Lp([0, T ],Rn) is compact, if and only if

sup
u∈M

∥u∥Lp <∞ and lim
h→0

sup
u∈M

∫ T

0
|u(t+ h)− u(t)|p dt = 0

(i.e., M is bounded and equicontinuous).

In infinite dimensions, e.g. H = L2(Ω), this criterion has to be supplemented by the condition
that the set {∫

I
f(t) dt : f ∈M

}
⊆ H (2.5.1)

be relatively compact for all bounded intervals I, cf. [Fei84]. Thus to impose compactness
on a Volterra operator V, say

V(u) =
∫
R

∫
R
κ(τ1, τ2)Q(u(t− τ1), u(t− τ2)) dτ1 dτ2,

thus verifying the compactness of M = {V(u) : u ∈ S} for a bounded set S ⊆ L2([0, T ],H),
the condition (2.5.1) amounts to checking that

{∫
I

∫
R

∫
R
κ(τ1, τ2)Q(u(t− τ1), u(t− τ2) dτ1 dτ2 dt : u ∈ S

}
is relatively compact in H.
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3 Well-posedness and exponential stability for
Maxwell systems

In this chapter we take an evolutionary perspective to Maxwell’s equations, utilizing the
theory established in Chapter 2 to be able to deal with the equations in nonlinear optics.
A special focus is placed in Section 3.3 on exponential stability for systems with simple
permeability, for two distinct classes of electric susceptibilities—with and without explicit
conduction terms1.

3.1 Maxwell operator, interface and boundary conditions

In order to formulate a Cauchy problem for the Maxwell equations as an evolutionary system
on some domain Ω ⊆ R3, we have to specify the underlying Hilbert spaceH. HereH = L2(Ω)3
is a natural choice. We start by establishing the differential operators grad,div, curl as closed
operators in L2(Ω)3. There are several variants of these operators. Recall that the spaces

C∞
c (Ω) = {u ∈ C∞(R3) : suppu ⊆ Ω compact}

and
C∞(Ω) = {u|Ω : u ∈ C∞

c (R3)}

(in particular C∞(R3) = C∞
c (R3)) are dense in L2(Ω). For ϕ ∈ C∞

c (Ω), we have the gradient

gradϕ = ∇ϕ =


∂x1ϕ

∂x2ϕ

∂x3ϕ


and for ϕ = (ϕ1, ϕ2, ϕ3) ∈ C∞

c (Ω)3 the divergence and curl, respectively,

divϕ = ∇ · ϕ = ∂x1ϕ1 + ∂x2ϕ2 + ∂x3ϕ3

curlϕ = ∇× ϕ =


∂x2ϕ3 − ∂x3ϕ2

∂x3ϕ1 − ∂x1ϕ3

∂x1ϕ2 − ∂x2ϕ1

 .

1The presence of a uniformly positive internal conductivity is known to lead to exponential stability in
various setups, see [LPS19].
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These operators, defined on C∞
c , are closable2 in L2(Ω)3; their closures will be denoted by

grad0 : H1
0 (Ω) ⊆ L2(Ω) → L2(Ω)3

div0 : H0(div,Ω) ⊆ L2(Ω)3 → L2(Ω)
curl0 : H0(curl,Ω) ⊆ L2(Ω)3 → L2(Ω)3.

The adjoints of these operators give rise to the usual weak gradient, divergence, and curl,

grad := −div∗0, div := − grad∗0, curl := curl∗0,

with maximal domains

H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)3}
H(div,Ω) = {u ∈ L2(Ω)3 : ∇ · u ∈ L2(Ω)}
H(curl,Ω) = {u ∈ L2(Ω)3 : ∇× u ∈ L2(Ω)3}.

We note that the inclusions C∞
c (Ω) ⊆ H1

0 (Ω), C∞
c (Ω)3 ⊆ H0(div,Ω), C∞

c (Ω)3 ⊆ H0(curl,Ω)
as well as C∞(Ω) ⊆ H1(Ω), C∞(Ω)3 ⊆ H(div,Ω), and C∞(Ω)3 ⊆ H(curl,Ω), are dense
with respect to each graph norm. If Ω = R3, the corresponding spaces coincide; we have
grad0 = grad, div0 = div, curl0 = curl.

If Ω is a Lipschitz domain, then grad0, div0, curl0 are the weak operators with zero (overall,
normal, or tangential) boundary conditions in the sense of traces; in this case, let n denote
the outward normal field on ∂Ω, then

H1
0 (Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)3, u|∂Ω = 0}

H0(div,Ω) = {u ∈ L2(Ω)3 : ∇ · u ∈ L2(Ω), (n · u)|∂Ω = 0}
H0(curl,Ω) = {u ∈ L2(Ω)3 : ∇× u ∈ L2(Ω)3, (n× u)|∂Ω = 0}.

For domains with less regular boundary these spaces can be defined nonetheless; in that case
the boundary conditions are to be interpreted in a generalized sense. For references of the
aforementioned facts, see for instance [STW22, §6.1], [DL90b, Chapter IX].

In L2(Ω)3 we consider the Maxwell system

∂tD(E)− curlH = −J divD(E) = ρ

∂tB(H) + curl0E = 0 div0B(H) = 0
(3.1.1)

and introduce the Maxwell operator

A :=
(

0 − curl
curl0 0

)

defined on H0(curl,Ω)×H(curl,Ω).

2Indeed, consider for instance C = curl|C∞
c (Ω)3 . Since C is densely defined, C∗ is well-defined and, by the

divergence theorem (see the proof of Lemma 3.1.1) C∞(Ω)3 ⊆ dom(C∗), thus also densely defined. Hence
curl0 := C = C∗∗ is well-defined and closed. In fact, H1

0 (curl,Ω) is the closure of C∞
c (Ω) with respect to

the graph norm u 7→ ∥u∥H(curl) = (∥u∥2L2 + ∥curlu∥2L2)1/2. Similarly for grad and div.
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Lemma 3.1.1. Let Ω = Ω1 ⊔ Ω2 = Ω1 ⊔ Ω2 be the disjoint union of nonempty domains
Ω1,Ω2 ⊆ R3 with connected interface Γ = Ω1 ∩ Ω2.

(i) The operator A : H0(curl,Ω)×H(curl,Ω) ⊆ L2(Ω)6 → L2(Ω)6 is skew-selfadjoint.

(ii) If Ω1,Ω2 have Lipschitz boundaries and (uE , uH) ∈ dom(A) are such that uE , uH ∈
C(Ω1)⊕ C(Ω2), then[

n× uE
]
Γ =

[
n× uH

]
Γ = 0 and (n× uE)|∂Ω = 0. (3.1.2)

Proof. (i) Since curl0, curl = curl∗0 are closed operators,

A∗ =
(

0 curl∗0
− curl∗ 0

)
=
(

0 curl
− curl0 0

)
= −A

follows by construction.
(ii) Using the divergence theorem on Ω1 and Ω2 separately, we have for all vE ∈ C∞

c (Ω),
vH ∈ C∞(Ω)∫

Ω

(
curl0 uE · vH − uE · curl vH

)
=
∫
Ω1

div(uE × vH) +
∫
Ω2

div(uE × vH)

=
∫
∂Ω1

(uE × vH) · n+
∫
∂Ω2

(uE × vH) · n

=
∫
Γ

[
(uE × vH) · n]Γ +

∫
∂Ω

(uE × vH) · n

=
∫
Γ

[
n× uE

]
Γ · vH +

∫
∂Ω

(n× uE) · vH ,

and similarly,∫
Ω

(
curluH · vE − uH · curl0 vE

)
=
∫
Γ

[
n× uH

]
Γ · vE +

∫
∂Ω

(n× uH) · vE .

=
∫
Γ

[
n× uH

]
Γ · vE .

By skew-selfadjointness of A, the left-hand sides must vanish for arbitrary vE , vH . Therefore,
[n× uE ]Γ = [n× uH ]Γ = 0 and (n× uE)|∂Ω = 0.

Using the traces in H(curl,Ω) and H0(curl,Ω), equations (3.1.2) can be shown to hold for
uE ∈ H0(curl,Ω), uH ∈ H(curl,Ω) in the sense of traces, see also [Lei86, BDPW22]. The
domain of A thus encodes the interface and boundary conditions (3.1.2). If Ω1,Ω2 are less
regular, these conditions still hold in a generalized sense.
For the divergence equations

divD = ρ, div0B = 0 (3.1.3)

one finds that they are a rather direct consequence of (3.1.1) together with suitable initial
values. Indeed (cf. [DL90a, Chapter I Part A §4.1]), applying div to ∂tD(t)− curlH(t) =
−J(t) and using div curlH = 0, we can simply define ρ := divD and realize that ρ and J
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are related by the continuity equation

∂tρ+ div J = 0, (3.1.4)

thus, ρ can be computed from a given J and initial value ρ(0) as

ρ(t) = ρ(0)−
∫ t

0
div J(s) ds.

Similarly, it follows from ∂tB(t) + curl0E(t) = 0 that divB(t) is constant for all t > 0, so
divB = 0 reduces to the condition divB(0) = 0 at initial time.
Now suppose J is integrable in time and J(t) ∈ H(div,Ω) for all t ≥ 0. We then have

ρ(t) ∈ L2(Ω) and the equations (3.1.3) imply D(t) ∈ H(div,Ω) and B(t) ∈ H0(div,Ω) for
all t ≥ 0. Similarly to Lemma 3.1.1 the interface conditions

[n ·D]Γ = [n ·B]Γ = 0

follow. Summarizing these observations we have the following result.

Lemma 3.1.2. Let I = [0, T ], let J : I → H(div,Ω) be continuous and for given ρ0 ∈ L2(Ω)
define

ρ(t) = ρ0 −
∫ t

0
div J(τ) dτ.

Suppose E : I → H0(curl,Ω), H : I → H(curl,Ω), D,B : I → L2(Ω)3 are (continuous)
solutions of

∂tD − curlH = −J
∂tB + curl0E = 0

(3.1.5)

with divD(0) = ρ0, divB(0) = 0. Then for all t ∈ I the following holds:

• D(t) ∈ H(div,Ω), B(t) ∈ H0(div,Ω) with divD(t) = ρ(t), div0B(t) = 0

• (n× E(t))|∂Ω = [n× E(t)]Γ = [n×H(t)]Γ = 0 and [n ·D(t)]Γ = [n ·B(t)]Γ = 0.

This result shows that for Cauchy problems at an interface we can focus on the ‘dynamic’
part (3.1.5) of the Maxwell system, as the remaining equations and (zero) interface conditions
can be viewed as a mere statement about regularity, incorporated into the domains of the
spatial operators, and initial conditions. In this consideration we thus assume, in view
of (1.2.3), that both surface densities ρΓ and JΓ vanish. This assumption will be made
throughout this paper, but the following comments provide a heuristic to generalize this.

Distributions and Sobolev chains

Let C : H1(C) ⊆ H1 → H2 be a linear, densely defined and closed operator with max-
imal domain H1(C) = {u ∈ H1 : Cu ∈ H2}. Then H1(C) is itself a Hilbert space
endowed with the graph inner product ⟨u, v⟩H1(C) = ⟨u, v⟩H1 + ⟨Cu,Cv⟩H2 . The adjoint
C∗ : H1(C∗) ⊆ H2 → H1 is also closed, and we assume that H1(C∗) is dense in H2. Then,
both (H1(C),H1, H

1(C)∗) and (H1(C∗),H2, H
1(C∗)∗) are Gelfand triples, i.e., after identi-

fying H1 = H∗
1, H2 = H∗

2 with their duals, the embeddings

H1(C) ⊆ H1 ⊆ H1(C)∗, H1(C∗) ⊆ H2 ⊆ H1(C∗)∗
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are dense. Using these, C also manifests as an operator C : H1 ⊆ H1(C)∗ → H1(C∗)∗ ,
acting weakly by

H1 ∋ v 7→ (Cv : H1(C∗) ∋ u 7→ ⟨v, C∗u⟩H1),

thus Cv ∈ H1(C∗)∗ is well-defined for all v ∈ H1. We claim that the operator is again
closed. First, it is easy to see that every v† ∈ H1(C)∗ can be identified with a pair
(h1, h2) ∈ H1 ×H2 such that v†(u) = ⟨h1, u⟩H1 + ⟨h2, Cu⟩H2 for all u ∈ H1(C). At the same
time, every v ∈ H1 ⊆ H1(C)∗ simply acts by v(u) = ⟨v, u⟩H1 . Now suppose

H1 ∋ vn → v† in H1(C)∗ and Cvn → w† in H1(C∗)∗.

Then we have with v† = (h1, h2) ∈ H1 ×H2 and ∥u∥H1(C) = 1,
∣∣(vn − v†)(u)| = |⟨vn, u⟩H1 − ⟨h1, u⟩H1 − ⟨h2, Cu⟩H2

∣∣
≥
∣∣|⟨vn − h1, u⟩H1 | − |⟨h2, Cu⟩H2 |

∣∣
≥
∣∣⟨h2, Cu⟩H2

∣∣.
Since ∥∥vn − v†

∥∥
H1(C)∗ = sup

∥u∥H1(C)=1

∣∣(vn − v†)(u)| → 0 as n→ ∞,

it follows that h2 = 0, thus v† = h1 ∈ H1 and Cv† = w†. This proves the claim. Replacing
C by C∗ yields that C∗ : H2 ⊆ H1(C∗)∗ → H1(C)∗ is densely defined and closed.

Remark 3.1.3. These constructions can be made to arbitrary order: For k ∈ N we can define
recursively

Hk(C) := {u ∈ Hk−1(C) : Cu ∈ Hk−1(C∗)}
Hk(C∗) := {u ∈ Hk−1(C∗) : C∗u ∈ Hk−1(C)}

(of course, H0(C) = H1, H0(C∗) = H2), and H−k(C) = Hk(C)∗, H−k(C∗) = Hk(C∗)∗. The
resulting sequences (Hk(C))k∈Z, (Hk(C∗))k∈Z, which are totally ordered by dense embedding,
are called Sobolev chains. Moreover, C becomes a closed operator C : Hk(C) ⊆ Hk−1(C) →
Hk−1(C∗) for all k ∈ Z, indeed, C can be viewed as an operator on the chain (Hk(C))k∈Z
itself.
For more details about Sobolev chains, for the case H1 = H2, we refer to [PM11, Chap-

ter 2.1]. In fact, the above construction is only apparently more general; considering instead
one of the operators (

0 C

C∗ 0

)
or

(
0 −C
C∗ 0

)
in H := H2 ×H1 allows one to reduce to the base case detailed in [PM11]. ♢

Inhomogeneous transmission conditions

Using the notation above for C ∈ {grad(0),div(0), curl(0)} we will write

H1(grad(0)) = H1
(0)(Ω), H1(div(0)) = H(0)(div,Ω), H1(curl(0)) = H(0)(curl,Ω).

One way to incorporate nontrivial surface densities ρΓ and JΓ is by introducing them as
distributions supported on the surface; this is similar to [SS22], where nontrivial interface
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charges and currents are considered explicitly. Suppose that the interface is given in local,
flat coordinates as Γ = {x1 = 0}, and

J = Jvol + Jsurf

where Jvol ∈ L2(Ω)3 is a bulk density (which can be neglected in the following) and Jsurf is
given by

Jsurf(t, x) = JΓ(t, x2, x3)δ0(x1)

with JΓ ∈ L2(Γ)3 and δ0 denoting the Dirac δ-distribution on the line. From Maxwell’s
equations we demand that

[n×H]Γ = −JΓ,

which yields that JΓ must be tangential to Γ, i.e., it must coincide with its tangential
projection: JΓ = n × (JΓ × n)|Γ. We claim that, if JΓ = n × (JΓ × n) is such that
(JΓ×n) ∈ H1/2(Γ)3, then Jsurf defines an element in H1(curl0)∗. Indeed, taking u ∈ C∞

c (Ω)3
we obtain

⟨Jsurf , u⟩ = ⟨JΓ, u⟩L2(Γ)3 = ⟨JΓ × n, u× n⟩L2(Γ)3

= ⟨JΓ × n, u× n⟩H1/2(Γ)3×H−1/2(Γ)3 .

By density of C∞
c (Ω)3 in H1(curl0), the last expression is well-defined for u ∈ H1(curl0),

since then (n× u)|Γ ∈ H−1/2(Γ)3, thus Jsurf ∈ H1(curl0)∗.
The surface charge density ρΓ for t ≥ 0 can be derived from the initial value ρΓ(0) using a

relation similar to (3.1.4), resulting in

ρΓ(t) := [n ·D]Γ = ρΓ(0) +
∫ t

0
divΓ JΓ(τ)− [n · Jvol(τ)]Γ dτ,

see [SS22], where divΓ denotes the surface divergence.
In conclusion, surface densities can be incorporated into the system by adding a corre-

sponding distributional term to the bulk densities. After changing the underlying function
space from H = L2(Ω)3 × L2(Ω)3 to, e.g., H = H1(curl0)∗ ×H1(curl)∗, the spatial operator
is still skew-selfadjoint and the solution theory can be applied analogously.

3.2 Well-posedness of nonlinear evolutionary Maxwell systems

As hinted in the introduction, D = D(E) and B = B(H) are nonlinear material functions
with memory, which we write as

D(E) = ϵ0E + Pel(E) = ϵ0E + ϵ1(∂t)E + Pel,nl(E)
B(H) = µ0H + Pm(H) = µ0H + µ1(∂t)H + Pm,nl(H).

Here we will assume that

• ϵ0, µ0 are positive numbers, or in more generality, linear, bounded, selfadjoint, and
strictly positive definite operators on L2(Ω)3.

• ϵ1(∂t), µ1(∂t) are linear material laws on L2(Ω)3 according to Definition 1.4.6, hence,
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so are
ϵ(∂t) := ϵ0 + ϵ1(∂t) and µ(∂t) := µ0 + µ1(∂t).

• z 7→ zϵ1(z) and z 7→ zµ1(z) are uniformly bounded for Re z > ϱ1 ∈ R.

Explicit conditions for the nonlinear maps Pel,nl, Pm,nl typically involve Lipschitz continuity
and will be specified depending on the situation. In view of the previous section our primary
focus is a Cauchy problem for the dynamic equations (3.1.5), i.e.,

∂tD(E)− curlH = −J
∂tB(H) + curl0E = 0

 t > 0

E(t) = E0(t)
H(t) = H0(t)

 t ≤ 0

where the history (E0(t), H0(t)) for t ≤ 0 is assumed to be known. After making the
substitutions as in Section 2.4 for the initial values we have the evolutionary formulation(

∂t

(
ϵ(∂t) 0
0 µ(∂t)

)
+
(

0 − curl
curl0 0

))(
E

H

)
+
(
∂tPel,nl(E)
∂tPm,nl(H)

)
=
(
φ

ψ

)
(3.2.1)

for the nonlinear system, or respectively(
∂t

(
ϵ(∂t) 0
0 µ(∂t)

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
φ

ψ

)
(3.2.2)

for the linear (or linearized) system. Here the history is encoded into φ, ψ and we may assume
E(t) = H(t) = 0 for t ≤ 0; (3.2.2) and (3.2.1) are understood as systems in L2

ϱ(R, L2(Ω)3)2.
Setting

U =
(
E

H

)
, M(∂t) =

(
ϵ(∂t) 0
0 µ(∂t)

)
, N(U) =

(
∂tPel,nl(E)
∂tPm,nl(H)

)
, A =

(
0 − curl

curl0 0

)
,

the system (3.2.1) can be written in the more concise form

∂tM(∂t)U +AU +N(U) = f,

as an equation in L2
ϱ(R,H) with H = L2(Ω)3 × L2(Ω)3. As such, the solution theory for

evolutionary equations in Sections 1.4 and Chapter 2 can be applied directly, if uniform
conditions on the material functions M(∂t) and N(·) are imposed.

Proposition 3.2.1. Let ϵ1(∂t), µ1(∂t) be material laws on H = L2(Ω)3 and ϱ1 ∈ R be
such that z 7→ zϵ1(z) and z 7→ zµ1(z) are bounded for Re z > ϱ1. Let ϵ0, µ0 > 0 and set
ϵ(∂t) = ϵ0 + ϵ1(∂t) and µ(∂t) = µ0 + µ1(∂t). Then the following holds.

(i) There exists ϱ0 > 0 such that the linear system (3.2.2) is well-posed in
⋃

ϱ>ϱ0 L
2
ϱ(R,H)2.

(ii) Suppose ∂tPel,nl, ∂tPm,nl : L2
ϱ(R,H) → L2

ϱ(R,H) are causal and Lipschitz continuous,
uniformly in ϱ > ϱ0, then the nonlinear system (3.2.1) is well-posed, i.e., for some
ϱ2 ≥ ϱ0 and for each ϱ > ϱ2 and φ, ψ ∈ L2

ϱ(R,H) there exists a unique solution
(E,H) ∈ L2

ϱ(R,H)2, which depends continuously and causally on (φ, ψ).
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(iii) Let ϱ > ϱ0 and suppose each F ∈ {∂tPel,nl, ∂tPm,nl} is such that

∥F (u)− F (v)∥L2
ϱ
≤ d

(∥u∥L2
ϱ
+ ∥v∥L2

ϱ

)α ∥u− v∥L2
ϱ

for some α, d > 0 and all u, v ∈ L2
ϱ(R,H). Then, for φ, ψ ∈ L2

ϱ(R,H) sufficiently small,
(3.2.1) admits a unique solution (E,H) ∈ L2

ϱ(R,H)2.

Proof. With M(z) =
(
ϵ(z) 0
0 µ(z)

)
we have the equivalence

Re zϵ(z), Re zµ(z) ≥ c ⇐⇒ Re zM(z) ≥ c.

By boundedness of ϵ1, Re zϵ(z) ≥ ϵ0Re z−∥zϵ1(z)∥B(H) is uniformly and strictly positive for
large Re z > 0, and similarly for Re zµ(z). Thus, for ϱ0 > 0 large enough, Re zM(z) ≥ c > 0.
Since A is skew-selfadjoint by Lemma 3.1.1, (i) then follows by application of Picard’s
theorem 1.4.11 to the evolutionary equation (∂tM(∂t) +A)u = f = (φ, ψ). (ii) and (iii) are
the statements of Proposition 2.1.3 and Proposition 2.1.6, respectively.

Example 3.2.2. As an admissible nonlinearity Pnl(U) = (Pel,nl(E), Pm,nl(H)) satisfying the
conditions in (ii) we may take

Pnl(U)(t) =
∫
R
κ(τ)Q(U(t− τ)) dτ

and assume that

• Q : L2(Ω)6 → L2(Ω)6 is Lipschitz continuous,

• κ : R → B(L2(Ω)6) with κ(t) = 0 for t < 0,

• κ is differentiable and κ′ ∈ L1
ϱκ(R,B(L2(Ω)6)),

• κ(0+) = lim
τ↘0

κ(τ) ∈ B(L2(Ω)6) exists.

In this case,
∂tPnl(U)(t) = κ(0+)Q(U(t)) +

∫ ∞

0
κ′(τ)Q(U(t− τ)) dτ

is Lipschitz continuous in U , with

∥∂tPnl(U)∥Lip(L2
ϱ(R,L2(Ω)6)) ≤

(∥κ(0)∥B(L2(Ω)6) +
∥∥κ′∥∥L1

ϱκ (R,L2(Ω)6)
) ∥Q∥Lip(L2(Ω)6) .

This follows analogously as in Example 2.1.5. ▲

Example 3.2.3. Let Pnl = (Pel,nl, Pm,nl) be a n-linear Volterra operator

Pnl(U)(t) =
∫
R
· · ·
∫
R
κ(τ1, . . . , τn)Q(U(t− τ1), . . . , U(t− τn))

n∏
ℓ=1

dτℓ.

Here we assume that

• Q : [L2(Ω)6]n → L2(Ω)6 is n-linear

• κ : Rn → B(L2(Ω)6) with suppκ ⊆ (0,∞)n.
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• κ is (Fréchet) differentiable, and there exists ϱκ ∈ R such that the quantities

Lκ :=
∫
R
· · ·
∫
R
∥(∂1 + . . .+ ∂n)κ(τ1, . . . , τn)∥ e−ϱκ(τ1+...+τn) dτ1 · · · dτn

ℓκ := sup
τ1,...,τn∈R

∫
R
∥(∂1 + . . .+ ∂n)κ(t− τ1, . . . , t− τn)∥ e−ϱκ(t−τ1) · · · e−ϱκ(t−τn) dt

are finite.

Then we compute

∂tPnl(U)(t) =
n∑

j=1

[∫
R
· · ·
∫
R

[
κ(τ1, . . . , τn)Q(U(t− τ1), . . . , U(t− τn))

]
τj=0

∏
ℓ ̸=j

dτℓ

+
∫
R
· · ·
∫
R
∂jκ(τ1, . . . , τn)Q(U(t− τ1), . . . , U(t− τn))

∏
ℓ̸=j

dτℓ
]

=
∫
R
· · ·
∫
R

( n∑
j=1

∂jκ
)
(τ1, . . . , τn)Q(U(t− τ1), . . . , U(t− τn))

∏
ℓ̸=j

dτℓ

and have the following.

1. If ϱκ > 0, this nonlinearity satisfies the conditions of Proposition 2.3.3 of local well-
posedness, i.e., defining for T > 0 the cutoff

Pnl,T (U) = 1[0,T )Pnl(U),

the nonlinear system (3.2.1) with Pnl replaced by Pnl,T , admits a unique solution for
small data φ, ψ and small T .

2. If ϱ0 = −ν0 < 0 (meaning the smallest such ϱ0 in (i)), and ϱκ ≤ −ν0, then Theorem 2.3.2
applies, and if φ, ψ are small in L2

−ν(R, L2(Ω)3) for some ν ∈ (0, ν0), then the nonlinear
system (3.2.1) without cutoff admits a solution (E,H) ∈ L2

−ν(R, L2(Ω)3)2. ▲

3.3 Exponential stability

Among one of the strongest forms of stability for a dynamical system is that of exponential
stability, which states that each (global) solution with initial values in a neighborhood of an
equilibrium approaches it exponentially in time. We assume here that the equilibrium is
zero. Similar notions exist for evolutionary equations and systems. A basic definition for
linear equations is as follows, cf. [STW22, 11.1].

Definition 3.3.1. The equation (∂tM(∂t) + A)u = g is called exponentially stable with
decay rate ν0 > 0 if, for some ϱ0 ∈ R, it is well-posed in ⋃

ϱ>ϱ0 L
2
ϱ(R,H) and for all

ϱ > ϱ0 and ν < ν0, the solution operator (∂tM(∂t) +A)−1 : L2
ϱ(R,H) → L2

ϱ(R,H) maps
L2
ϱ(R,H) ∩ L2

−ν(R,H) continuously into itself.

Exponential stability thus means that the implication

g ∈ L2
ϱ(R,H) ∩ L2

−ν(R,H) =⇒ u = (∂tM(∂t) +A)−1g ∈ L2
−ν(R,H)
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holds for all ϱ > ϱ0 and ν < ν0. Note that requiring g ∈ L2
ϱ(R,H) makes sense, since the

equation might still be uniquely solvable in all L2
ϱ(R,H), ϱ ̸= 0, but this solution might not

depend causally on the data.
Imposing more time regularity on the data, g ∈ H1

ϱ (R,H)∩H1
−ν(R,H), ν ∈ (0, ν0), one can

show ([STW22, Proposition 11.1.2]) that u ∈ H1
−ν(R,H), and using the Sobolev embedding

(Proposition 1.4.5) H1
−ν(R,H) ⊆ C−ν,0(R,H) we have

∥u(t)∥H eνt → 0, |t| → ∞.

Hence in this case, the continuous trajectory t 7→ u(t) decays exponentially in time.
It turns out that Definition 3.3.1 is quite rigid; indeed (see [Tro18, Theorem 2.1.3]), if

CRe>−ν0 ∖ dom(M) is discrete for some ν0 > 0, then the equation (∂tM(∂t) +A)u = g is
exponentially stable with decay rate ν0 if and only if it is well-posed in ⋃ϱ>−ν0 L

2
ϱ(R,H) (cf.

Remark 1.4.13).

Example 3.3.2. Suppose

M(z) =
(
ϵ(z) 0
0 µ(z)

)
=
(
ϵ0 0
0 µ0

)
+

N∑
j=1

(z − zj)−1
(
ϵj 0
0 µj

)

where ϵ0, µ0 and ϵj , µj are selfadjoint and strictly positive operators in L2(Ω)3 and zj ∈ R≤0,
for all j ∈ {1, . . . , N}. If zj = 0 for some j ∈ {1, . . . , N}, then the system(

∂t

(
ϵ(∂t) 0
0 µ(∂t)

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
φ

ψ

)

is exponentially stable. Indeed, suppose z1 = 0, then

Re zϵ(z) = ϵ0Re z + ϵ1 +
N∑
j=1

ϵj
|z|2 − zj Re z

|z − zj |2
≥ ϵ1 − δ > 0

for Re z ≥ 0 (here even with δ = 0), and for Re z < 0 (for some δ > 0) small. Analogously
Re zµ(z) ≥ µ1 − δ > 0. Consequently, the system is well-posed in ⋃ϱ>−ν0 L

2
ϱ(R, L2(Ω)3)2 for

some ν0 > 0. Here ϵ1, µ1 may be called damping terms, since they are apparently the main
source of exponential decay of solutions. ▲

The notion of exponential stability becomes meaningful especially when dealing with
equations that are not well-posed for negative weights ϱ0 < 0, but for which one can isolate
exponentially stable subsystems in order to obtain exponential decay of the solution to the
initial problem. We explore this idea for the Maxwell system.

3.3.1 Exponential stability in the non-magnetic case

If the main source for stability in the system is only due to the damping occurring in one
component, then it is not obvious why to expect overall exponential stability. The idea here
is to find an equivalent formulation of the system which is exponentially stable. We will
consider only hyperbolic problems here, as our Maxwell system falls into this category, but
similar criteria exist for parabolic systems, for example the heat equation with memory, see
[STW22, 11.2].
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Linear hyperbolic equations are typically given in the second-order “wave-like” formulation

(∂tM(∂t) + C∗C)u = f, (3.3.1)

with a given function f , a densely defined and closed operator C : dom(C) ⊆ H0 → H1 and
a linear material law M : dom(M) → B(H0). Thus, (3.3.1) is understood as an equation in
L2
ϱ(R,H0). Suppose M is of the form

M(z) =M0(z) + z−1M1(z)

and assume that C is boundedly invertible. Then, introducing a parameter d > 0 and the
variables

q := −Cu, vd := du+ ∂tu,

the equation (3.3.1) can be equivalently written as a system(
∂t

(
M(∂t) 0

0 1

)
+ d

(
−M0(∂t) (M1(∂t)− dM0(∂t))C−1

0 1

)
+
(
0 −C∗

C 0

))(
vd
q

)
=
(
f

0

)
(3.3.2)

in L2
ϱ(R,H0 ×H1) (see [STW22, §2.2]). This motivates to call the second-order equation

(3.3.1) exponentially stable, if there exists d > 0 such that the first-order system (3.3.2) is
exponentially stable. In this case, assuming well-posedness in ⋃ϱ>ϱ0 L

2
ϱ(R,H0 ×H1) and an

exponential decay rate ν0 > 0, we have

f ∈ L2
ϱ(R,H0) ∩ L2

−ν(R,H0) =⇒ q ∈ L2
−ν(R,H1), vd ∈ L2

−ν(R,H0)
=⇒ Cu ∈ L2

−ν(R,H1), u, ∂tu ∈ L2
−ν(R,H0)

for all ϱ > ϱ0 and ν ∈ (0, ν0). Here the latter implication follows since C is boundedly
invertible, with Cu = −q, u = −C−1q, ∂tu = vd + dC−1q.

Theorem 3.3.3 ([STW22, Theorem 11.5.4]). Let C : dom(C) ⊆ H0 → H1 be densely
defined, closed, and boundedly invertible. Let M be a material law of the form M(z) =
M0(z) + z−1M1(z) with M0,M1 : dom(M) ⊆ C → B(H0) analytic and uniformly bounded.
Suppose there exists ν0 > 0 such that CRe>−ν0 ∖ dom(M) is discrete and

∀z ∈ CRe>−ν0 ∩ dom(M) : Re zM(z) ≥ c > 0.

Then, there exists d > 0, ν1 > 0 such that (3.3.2) is exponentially stable with decay rate ν1.

Theorem 3.3.4 ([Tro18, Proposition 2.2.5]). Let C : dom(C) ⊆ H0 → H1 be densely defined,
closed, and boundedly invertible. Let M be given by M(z) := M0(z) + z−1M1(z), where
M0,M1 : dom(M) ⊆ C → B(H0) are analytic and bounded, CRe>−ν0 ∖ dom(M) is discrete
for some ν0 > 0, and limz→0M1(z) = 0. If the condition

∀δ > 0 ∃ν, c > 0 ∀z ∈ dom(M) ∩ CRe>−ν ∖B[0, δ] : Re zM(z) ≥ c

is met, then there exist d, ν1 > 0 such that system (3.3.2) is exponentially stable with decay
rate ν1.

In the following, we use these two criteria, Theorem 3.3.3 and Theorem 3.3.4, to study
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exponential stability for the Maxwell system(
∂t

(
ϵ(∂t) 0
0 µ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
φ

ψ

)
(3.3.3)

where µ ∈ B(L2(Ω)3) is boundedly invertible. We refer to this system as “non-magnetic”,
meaning that the material law µ(∂t) = µ does not introduce memory effects or other
time-dependence. Using the fact that ∂t commutes with any of µ, curl, curl0, we obtain

∂tφ = ∂t (∂tϵ(∂t)E − curlH)
= ∂2t ϵ(∂t)E − curl ∂tH
= ∂2t ϵ(∂t)E − curl (µ−1ψ − µ−1 curl0E)

and can thus convert (3.3.3) into the second-order system

(∂2t ϵ(∂t) + curlµ−1 curl0)E = ∂tφ+ curlµ−1ψ =: g, (3.3.4)

which is the wave equation for the electric field. This derivation is justified and g ∈
L2(R, L2(Ω)3) if φ, ψ are regular enough; for instance if φ, ψ ∈ H1

ϱ(R, L2(Ω)3) and µ−1ψ ∈
L2
ϱ(R, H(curl)).
As it stands, the criteria above cannot be applied to (3.3.4) directly, since deriving the

system (3.3.2) would require that curlµ−1 curl0 = C∗C with C invertible. This cannot
be expected, as curl gradϕ = 0 for all ϕ ∈ C∞

c (Ω)3, in particular, curl and curl0 are not
invertible. Our strategy will be to work with invertible versions of these operators.

The subsequent arguments will require that the ranges ran(curl), ran(curl0) are closed3 in
L2(Ω)3, thus, for the moment, we will assume just that. A more detailed discussion follows
in Section 3.3.2. Setting

H0 := ker(curl0)⊥ = ran(curl), H1 := ker(curl)⊥ = ran(curl0)

(the orthogonal complement being taken in L2(Ω)3) we have the decompositions

H := L2(Ω)3 = H0 ⊕H⊥
0 = H1 ⊕H⊥

1 .

Definition 3.3.5. For a closed subspace U ⊆ H of a Hilbert space H we denote by

ιU : U ↪→ H, πU = (ιU )∗ : H → U

the canonical embedding of U in H, and the canonical projection of H onto U , respectively.

Lemma 3.3.6. Let H0,H1 be Hilbert spaces and T : dom(T ) ⊆ H0 → H1 a linear, densely
defined, and closed operator with closed range. Suppose A ∈ B(H1) is selfadjoint and strictly
positive. Then,

S := πker(T )⊥T
∗ATιker(T )⊥ : dom(S) ⊆ ker(T )⊥ → ker(T )⊥

3In fact, since curl, curl0 are densely defined, closed, and adjoint operators, ran(curl) is closed if and only if
ran(curl0) is closed. This is a consequence of the closed range theorem, see [Bre11, Theorem 2.19].
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is selfadjoint, boundedly invertible, and strictly positive. Moreover, there exists a boundedly
invertible operator C : dom(C) ⊆ ker(T )⊥ → ker(T )⊥ with S = C∗C.

Proof. Let ιk := ιker(T )⊥ and ιr := ιran(T ) = ιker(T ∗)⊥ . Then we have ιrι∗rT = T and, since
ιr, ι

∗
r are bounded, also T ∗ιrι

∗
r = (ιrι∗rT )∗ = T ∗. Hence,

S = ι∗kT
∗ATιk = ι∗kT

∗ιrι
∗
rAιrι

∗
rTιk.

Now ι∗rTιk : dom(T ) ∩ ker(T )⊥ ⊆ ker(T )⊥ → ran(T ) is injective, surjective, and closed,
hence boundedly invertible by the closed graph theorem. The same is true for its ad-
joint ι∗kT ∗ιr : dom(T ∗) ∩ ker(T ∗)⊥ ⊆ ker(T ∗)⊥ → ran(T ∗) = ker(T )⊥. Consequently,
S = (ι∗kT ∗ιr)(ι∗rAιr)(ι∗rTιk) is the composition of boundedly invertible operators and it-
self boundedly invertible; that ι∗rAιr is boundedly invertible follows from the selfadjointness
and strict positivity of A, which shows that S is also selfadjoint and strictly positive. As
a consequence of the spectral theorem for selfadjoint operators, there exists a closed and
strictly positive operator C such that S = C∗C. Indeed, with

√
A being the unique positive

operator such that
√
A

2 = A, we can choose C =
√
ATιk.

Lemma 3.3.7. Let H be a Hilbert space, H0 ⊆ H a closed subspace, and ι0 : H0 ↪→ H,
ι1 : H⊥

0 ↪→ H the canonical embeddings. Let T ∈ B(H) be a bounded linear operator and
define

Tij := ι∗iTιj for i, j ∈ {0, 1}.

Suppose ReT = 1
2(T + T ∗) ≥ d for some d > 0. Then also

ReT11 ≥ d, Re
(
T00 − T01T

−1
11 T10

) ≥ d.

Proof. For φ ∈ H⊥
0 we compute

Re⟨T11φ, φ⟩ = Re⟨Tι1φ, ι1φ⟩ ≥ d⟨ι1φ, ι1φ⟩ = d∥φ∥2,

confirming ReT11 ≥ d. In particular, T11 is boundedly invertible. As an operator on H0⊕H⊥
0

we can identify

T =
(
T00 T01

T10 T11

)
,

and setting

Q =

 1 0

−(T01T−1
11
)∗ 1

 , Q∗ =

1 −T01T−1
11

0 1

 , R =

 T00 − T01T
−1
11 T10 0

T10 − T11
(
T−1
11
)∗
T ∗
01 T11


we have the factorization

R = Q∗TQ.

Now we compute for φ ∈ H0,

Re⟨(T00 − T01T
−1
11 T10)φ, φ⟩ = Re⟨R

(
φ

0

)
,

(
φ

0

)
⟩
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= Re⟨Q∗TQ

(
φ

0

)
,

(
φ

0

)
⟩

= Re⟨TQ
(
φ

0

)
, Q

(
φ

0

)
⟩ ≥ d⟨Q

(
φ

0

)
, Q

(
φ

0

)
⟩ ≥ d∥φ∥2.

We now focus on two classes of material laws, for which one can obtain exponentially
decaying solutions for non-magnetic Maxwell systems.

Definition 3.3.8. Let ϵ : dom(ϵ) ⊂ C → B(H) be a material law on a Hilbert space H. We
call ϵ a permittivity of conductivity-type (C-type), if

• ϵ(z) = M(z) + z−1σ, where σ ∈ B(H) (the electric conductivity tensor) is strictly
accretive, and M : dom(ϵ) ⊆ C → B(H) is analytic and bounded.

• There exist ν1, c1, c > 0 such that CRe>−ν1 ∖ dom(ϵ) is discrete and

∀z ∈ CRe>−ν1 ∩ dom(ϵ) : ReM(z) ≥ c1 and Re zϵ(z) ≥ c.

Similarly, ϵ is called a permittivity of Lorentz-type (L-type), if

• ϵ(z) = ϵ0 + ϵ1(z), where ϵ0 ∈ B(H) is strictly accretive and ϵ1 : dom(ϵ) ⊆ C → B(H) is
analytic and bounded.

• There exists ν1 > 0 such that CRe>−ν1 ∖ dom(ϵ) is discrete and on CRe>−ν1 ∩ dom(ϵ)
the map z 7→ zϵ1(z) is bounded, Re ϵ(z) ≥ c1 > 0, and limz→0 zϵ1(z) = 0.

• for all δ > 0 there exist ν, c > 0 with

∀z ∈ CRe>−ν ∩ dom(ϵ)∖B[0, δ] : Re zϵ(z) ≥ c.

Remark 3.3.9. (i) The attribute ‘Lorentz-type’ is chosen due to similarities to the Lorentz
model, see Section 5.1.

(ii) For all further applications, the conductivity may be a more general material law,
σ = σ(z), as long as it is uniformly bounded and strictly accretive on CRe>−ν1 . ♢

Lemma 3.3.10. Let ϵ be a material law on the Hilbert space H, let H0,H1 be closed subspaces
such that H = H0 ⊕ H1, and write ϵij(z) = ι∗Hi

ϵ(z)ιHj . If ϵ is of C- or L-type, then the
operators

ϵ01(∂t)ϵ11(∂t)−1 : L2
−ν(R,H1) → L2

−ν(R,H0)
ϵ11(∂t)−1ϵ10(∂t) : L2

−ν(R,H0) → L2
−ν(R,H1)

are uniformly bounded and causal for ν < ν1.

Proof. If ϵ is of L-type, for z ∈ CRe>−ν1∩dom(ϵ) we have Re ϵ11(z) ≥ c1 > 0 by Lemma 3.3.7,
thus ϵ11(z) is boundedly invertible. Since ϵ is also uniformly bounded on CRe>−ν1 ∩ dom(ϵ),
the uniform boundedness of ϵ01(z)ϵ11(z)−1 and ϵ11(z)−1ϵ10(z) on CRe>−ν1 follows by analytic
continuation.
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If ϵ(z) =M(z) + z−1σ is of C-type, then for z ∈ CRe>−ν1 ∩ dom(ϵ) and with r > 0 we can
write

ϵ01(z)ϵ11(z)−1 = (zϵ01(z))(zϵ11(z))−1

= (zM01(z) + σ01)(zM11(z) + σ11)−1

= σ01(zM11(z) + σ11)−1

+ zM01(z)(zM11(z) + σ11)−11B[0,r](z)
+M01(z)M11(z)−1(1 + z−1M11(z)−1σ11)−1(1− 1B[0,r](z)).

Here the first two terms are uniformly bounded by Lemma 3.3.7 and boundedness of σ, and
since zM01(z) is bounded on the compact set B[0, r]. For the third term, choose r large
enough so that

∥z−1M11(z)−1σ11∥B(H) ≤ r−1 ∥M11(z)−1∥B(H) ∥σ11∥B(H) < 1,

then 1 + z−1M11(z)−1σ11 is boundedly invertible through a Neumann series. Again, the
uniform boundedness follows by analytic continuation. The argument for ϵ11(z)−1ϵ10(z) is
analogous.
In both cases, the inverse Fourier–Laplace transform yields the uniform boundedness of

ϵ01(∂t)ϵ11(∂t)−1 on L2
−ν(R,H1) and ϵ11(∂t)−1ϵ10(∂t) on L2

−ν(R,H0) for ν < ν1.

Remark 3.3.11. Suppose ϵ(z) = ϵ0 + ϵ1(z) is of L-type, with ν1 > 0 as above, and let
H0,H1 be closed subspaces such that H = H0 ⊕ H1. Denote ϵij(z) = ι∗Hi

ϵ(z)ιHj . For
z ∈ CRe>−ν1 ∩ dom(ϵ) we have Re ϵ(z) ≥ c, and invoking Lemma 3.3.7, also Re ϵ11(z) ≥ c,
ϵ11(z)−1 is uniformly bounded, and with

ϵ̃(z) := ϵ00(z)− ϵ01(z)ϵ11(z)−1ϵ10(z)

also Re ϵ̃(z) ≥ c. Moreover, we find that ϵ̃(z) =M0(z) + z−1M1(z), where

M0(z) = ϵ0,00 − ϵ0,01ϵ11(z)−1ϵ0,10

M1(z) = z
(
ϵ1,00(z)− ϵ0,01ϵ11(z)−1ϵ1,10(z)− ϵ1,01(z)ϵ11(z)−1ϵ0,10 − ϵ1,01(z)ϵ11(z)−1ϵ1,10(z)

)
are analytic and bounded, and limz→0M1(z) = 0. Again by Lemma 3.3.7, Re zϵ̃(z) ≥ c

whenever Re zϵ(z) ≥ c. ♢

We are now able to state a first result concerning exponential decay of the E-field in the
non-magnetic setting, based on the second-order formulation (3.3.4).

Theorem 3.3.12. Let Ω ⊆ R3, H = L2(Ω)3 and suppose H0 = ran(curl) ⊆ H is closed. Let
µ ∈ B(H) be selfadjoint and strictly positive and let ϵ : dom(ϵ) ⊆ C → B(H) be a permittivity
of C- or L-type. For (φ, ψ) ∈ ⋃

ϱ>ϱ0 L
2
ϱ(R,H)2 let (E,H) ∈ ⋃

ϱ>ϱ0 L
2
ϱ(R,H)2 denote the

unique solution of the linear first-order system (3.3.3) and define

g := ∂tφ+ curlµ−1ψ, h := πker(curl0)∂
−1
t φ.

Then, there exists ν0 > 0 such that if ν < ν0 and φ, ψ ∈ L2
−ν(R,H) the following holds.
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(i) If ϵ is of C-type and g ∈ L2
−ν(R,H), then E ∈ L2

−ν(R,H) and ∥E∥L2
−ν

≲ ∥g∥L2
−ν

+
∥φ∥L2

−ν
.

(ii) If ϵ is of L-type, g ∈ L2
−ν(R,H), and h ∈ L2

−ν(R, ker(curl0)), then E ∈ L2
−ν(R,H) and

∥E∥L2
−ν

≲ ∥g∥L2
−ν

+ ∥h∥L2
−ν
.

Proof. We consider first φ, ψ ∈ C∞
c (R,H), so that g, h ∈ L2

ϱ(R,H) ∩ L2
−ν(R,H) for ϱ, ν > 0.

Due to this time-regularity, (3.3.3) holds in L2
ϱ(R,H) and E is a solution of the second-order

system (3.3.4). With respect to the decomposition H = H0⊕H⊥
0 , this system can be written

equivalently as[
∂2t

(
ϵ00(∂t) ϵ01(∂t)
ϵ10(∂t) ϵ11(∂t)

)
+
(
πH⊥

0
curlµ−1 curl0 ιH0 0

0 0

)](
E0

E1

)
=
(
g0

g1

)
. (3.3.5)

Since µ ∈ B(H) is selfadjoint and strictly positive, it is boundedly invertible. Moreover, the
inverse is also strictly positive. By Lemma 3.3.6, there exists a boundedly invertible operator
Cµ : dom(Cµ) ⊆ H0 → H0 such that

πH⊥
0
curlµ−1 curl0 ιH0 = C∗

µCµ.

Now applying the operator ϵ01(∂t)ϵ11(∂t)−1 to the second line of (3.3.5) and subtracting
from the first we obtain[

∂2t

(
ϵ̃(∂t) 0
ϵ10(∂t) ϵ11(∂t)

)
+
(
C∗
µCµ 0
0 0

)](
E0

E1

)
=
(
g̃0

g1

)
, (3.3.6)

where
ϵ̃(∂t) := ϵ00(∂t)− ϵ01(∂t)ϵ11(∂t)−1ϵ10(∂t)
g̃0 := g0 − ϵ01(∂t)ϵ11(∂t)−1g1.

By Lemma 3.3.7 we have Re ϵ̃(z) ≥ c whenever Re ϵ(z) ≥ c, and Re zϵ̃(z) ≥ c whenever
Re zϵ(z) ≥ c. If ϵ is of C-type, ϵ̃ satisfies the conditions of Theorem 3.3.3. Instead, if ϵ is of
L-type, ϵ̃ satisfies the conditions of Theorem 3.3.4, see Remark 3.3.11. Hence, the system

(∂2t ϵ̃(∂t) + C∗
µCµ)E = g̃0 (3.3.7)

is exponentially stable with some decay rate ν0 > 0. By Lemma 3.3.10, ϵ01(∂t)ϵ11(∂t)−1

maps L2
−ν(R,H⊥

0 ) into L2
−ν(R,H0) for ν < ν1. If ν < min{ν0, ν1} and g ∈ L2

−ν(R,H), then
g̃0 ∈ L2

−ν(R,H0), which by exponential stability of (3.3.7) gives E0 ∈ L2
−ν(R,H0), and E0

depends continuously on g via

∥E0∥L2
−ν

≲ ∥g̃0∥L2
−ν

≲ ∥g∥L2
−ν
.

Now the second line in (3.3.6) reads

∂2t (ϵ10(∂t)E0 + ϵ11(∂t)E1) = g1, (3.3.8)

and we want to solve for E1. Here we consider two cases: First, suppose ϵ is of C-type. Then
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from (3.3.8) we obtain

E1 = (∂tϵ11(∂t))−1∂−1
t g1 − ϵ11(∂t)−1ϵ10(∂t)E0 ∈ L2

−ν(R,H1),

which follows from the uniform boundedness of ϵ11(z)−1ϵ10(z) and of (zϵ11(z))−1 on CRe>−ν1 ,
and since ∂−1

t g1 = πH1φ ∈ L2
−ν(R,H1) by assumption. We conclude that

∥E1∥L2
−ν

≲
∥∥∂−1

t g1
∥∥
L2
−ν

+ ∥E0∥L2
−ν

≲ ∥πH1φ∥L2
−ν

+ ∥g∥L2
−ν
.

Suppose now ϵ is of L-type and h = ∂−2
t g1 ∈ L2

−ν(R,H). Then,

E1 = ϵ11(∂t)−1∂−2
t g1 − ϵ11(∂t)−1ϵ10(∂t)E0 ∈ L2

−ν(R,H1),

and
∥E1∥L2

−ν
≲
∥∥∂−2

t g1
∥∥
L2
−ν

+ ∥E0∥L2
−ν

≲ ∥h∥L2
−ν

+ ∥g∥L2
−ν

by boundedness of ϵ11(∂t)−1. In both cases we obtain the desired estimate. The general
statement follows now by density of C∞

c (R,H) in L2
−ν(R,H).

Remark 3.3.13. Since the proof of Theorem 3.3.12 relies on Theorems 3.3.3 and 3.3.4,
exponential decay is not only implied for E = E0 + E1, but also for ∂tE0, ∂tE1, and CµE0,
together with the estimates

∥∂tE0∥L2
−ν
, ∥CµE0∥L2

−ν
≲ ∥g∥L2

−ν

∥∂tE1∥L2
−ν

≲ ∥φ∥L2
−ν

+ ∥g∥L2
−ν
,

the latter following from ∂tE1 = ϵ11(∂t)−1∂−1
t g1 + ϵ11(∂t)−1ϵ10(∂t)∂tE0. ♢

To obtain exponential decay of the H-field, we must consider again the full first-order
system (3.3.3). Assuming still that

H0 = ran(curl) = ker(curl0)⊥, H1 = ran(curl0) = ker(curl)⊥

are closed in H = L2(Ω)3, we then observe that, by the same argument as in the proof of
Lemma 3.3.6, the operator

C := πH1 curl0 ιH0 : H0 → H1

and its adjoint
C∗ = πH0 curl ιH1 : H1 → H0

are boundedly invertible. The curl operators can then be identified with the matrices

curl0 =
(
C 0
0 0

)
: H0 ⊕H⊥

0 → H1 ⊕H⊥
1

curl =
(
C∗ 0
0 0

)
: H1 ⊕H⊥

1 → H0 ⊕H⊥
0 ,
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and we can rewrite (3.3.3) in the form∂t

ϵ00(∂t) ϵ01(∂t) 0 0
ϵ10(∂t) ϵ11(∂t) 0 0

0 0 µ00 µ01

0 0 µ10 µ11

+


0 0 −C∗ 0
0 0 0 0
C 0 0 0
0 0 0 0




E0

E1

H0

H1

 =


φ0

φ1

ψ0

ψ1

 , (3.3.9)

where E = E0 + E1, φ = φ0 + φ1 ∈ H0 ⊕H⊥
0 and H = H0 +H1, ψ = ψ0 + ψ1 ∈ H1 ⊕H⊥

1 .

Theorem 3.3.14. Let Ω ⊆ R3, H = L2(Ω)3 and suppose H0 = ran(curl) ⊆ H is closed. Let
µ ∈ B(H) be selfadjoint and strictly positive and let ϵ : dom(ϵ) ⊆ C → B(H) be a permittivity
of C- or L-type. Then, there exists ν0 > 0 such that if ν < ν0 and

φ, ψ, g := ∂tφ+ curlµ−1ψ ∈ L2
−ν(R,H)

πker(curl)∂
−1
t ψ ∈ L2

−ν(R, ker(curl)),

then either of the conditions

(i) ϵ is of C-type, or

(ii) ϵ is of L-type and πker(curl0)∂
−1
t φ ∈ L2

−ν(R, ker(curl0))

imply that
E, H, ∂tE, ∂tH, curl0E, curlH ∈ L2

−ν(R,H).

Proof. Since the conditions of Theorem 3.3.12 are satisfied by the material laws and the data,
we obtain E0 ∈ L2

−ν(R,H0), E1 ∈ L2
−ν(R,H⊥

0 ). Moreover, in view of Remark 3.3.13, also
∂tE0 ∈ L2

−ν(R,H0) and CµE0 ∈ L2
−ν(R,H1). The latter implies that CE0 ∈ L2

−ν(R,H1);
indeed, since

C∗
µCµ = ι∗H0 curlµ

−1 curl0 ιH0 = ι∗H0 curl ιH1ι
∗
H1µ

−1ιH1ι
∗
H1 curl0 ιH0 = C∗µ−1

11 C

(cf. the proof of Lemma 3.3.6) and µ−1
11 ≥ d > 0 is strictly positive by Lemma 3.3.7, we have

∥CµE0∥2L2
−ν

= ⟨C∗
µCµE0, E0⟩L2

−ν
= ⟨C∗µ−1

11 CE0, E0⟩L2
−ν

= ⟨µ−1
11 CE0, CE0⟩L2

−ν
≥ d ∥CE0∥2L2

−ν
.

To obtain the statement for H, we solve for the corresponding terms in (3.3.9) to obtain

H0 = (C∗)−1(∂tϵ̃(∂t)E0 − φ̃)
∂tH0 = −µ̃−1(CE0 + ψ̃)
H1 = µ−1

11 (∂
−1
t ψ1 − µ10H0)

∂tH1 = µ−1
11 (ψ1 − µ10∂tH0)

curlH = CH0 = ∂tϵ̃(∂t)E0 − φ̃.

By boundedness of (C∗)−1, µ, µ−1
11 , µ̃, ϵ̃, the right-hand sides can be controlled recursively by

∥E0∥L2
−ν

+ ∥∂tE0∥L2
−ν

+ ∥CE0∥L2
−ν
.
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3.3.2 On the closedness of the range of the curl operator

The strategy for deriving exponential stability for the non-magnetic Maxwell system (The-
orem 3.3.12 and Theorem 3.3.14) relies on a formulation using the boundedly invertible
operator C = ιran(curl) curl ιker(curl)⊥ . This requires ran(curl) = ran(curl) to be a closed
subspace: If ran(curl) is not closed, ιran(curl) and C are not well-defined; defining instead
C = ιran(curl) curl ιker(curl)⊥ , this operator is no longer onto, and the argument equally breaks
down. The closedness of ran(curl) ⊆ H = L2(Ω)3 depends largely on the regularity and
boundedness of the domain Ω. We outline two methods by means of which the closedness of
ran(curl) can be obtained in the case in which Ω has a (local) Lipschitz boundary and falls
into one of the following categories:

(a) Ω is a bounded domain, or

(b) Ω is an unbounded, cylindrical domain.

Curl operator on bounded domains

The first method is based on the following compactness result, sometimes called the Picard–
Weber–Weck selection theorem, cf. [Pic84, Web80, Wec74].

Theorem 3.3.15. Let Ω ⊆ R3 be a bounded domain with local Lipschitz boundary. Then
the embeddings

H0(curl,Ω) ∩H(div,Ω) ↪→ L2(Ω)3, H(curl,Ω) ∩H0(div,Ω) ↪→ L2(Ω)3

are compact.

Remark 3.3.16. Under some smoothness or convexity assumptions on Ω (e.g. ∂Ω ∈ C2), the
spaces above are equal to

H0(curl,Ω) ∩H(div,Ω) = {u ∈ H1(Ω)3 : (n× u)|∂Ω = 0}
H(curl,Ω) ∩H0(div,Ω) = {u ∈ H1(Ω)3 : (n · u)|∂Ω = 0},

and moreover, we can identify

H1(Ω)3 = {u ∈ H(curl,Ω) ∩H(div,Ω) : (n× u)|∂Ω ∈ H1/2(Ω)3}
= {u ∈ H(curl,Ω) ∩H(div,Ω) : (n · u)|∂Ω ∈ H1/2(Ω)},

which hints at a deeper connection between the Sobolev spaces based on grad, div, and curl.
We refer to Theorem 3 and Corollary 1 in [DL90b, Chapter IX, §1] for these facts. ♢

Lemma 3.3.17. Let Ω ⊆ R3 be a bounded domain with local Lipschitz boundary.

(i) There exists C > 0 such that

for all u ∈ H(curl,Ω) ∩ ker(curl)⊥ : ∥u∥L2 ≤ C ∥curlu∥L2 .

An analogous statement holds for curl0.

(ii) ran(curl) = {curlu : u ∈ H(curl)} is closed in L2(Ω)3.
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The second statement is a consequence of the first; see [Pic84, Lemmata 6, 7] or [DITW23,
Theorems B.1, B.2] for a proof of the Lemma.

Spectrum of the Maxwell operator in cylindrical domains

A more complete picture is provided by the following characterization, see [KNR08].

Theorem 3.3.18. Let T : dom(T ) ⊆ H1 → H2 be a densely defined and closed operator
between Hilbert spaces H1,H2. Then the following are equivalent.

(i) ran(T ) is closed.

(ii) ran(T ∗T ) is closed.

(iii) 0 is not an accumulation point of the spectrum σ(T ∗T ) of T ∗T .

Together with the next result concerning the spectrum of the Maxwell operator, this
criterion becomes applicable in the case of unbounded cylindrical domains.

Lemma 3.3.19. Let Ω = Σ×R, where Σ ⊆ R2 is a bounded and simply connected Lipschitz
domain and let A1 denote the selfadjoint Maxwell operator defined on divergence-free fields
in L2(Ω)3, i.e., A1 = iA with

dom(A1) = (H0(curl,Ω) ∩ ker(div))× (H(curl,Ω) ∩ ker(div0)).

Then there exists r > 0 such that σ(A1) ⊂ (−∞,−r] ∪ [r,∞).

For the proof of Lemma 3.3.19 we refer to [Fil20, Corollary 1.6]. In fact, in [Fil20] more
general selfadjoint Maxwell operators are considered. Similar results about the spectrum in
non-selfadjoint settings are available, see [Las98], [ABMW19].

Proposition 3.3.20. Let Ω = Σ × R be given as in Lemma 3.3.19. Then ran(curl) and
ran(curl0) are closed in L2(Ω)3.

Proof. The inclusions ran(curl) ⊂ ker(div) and ran(curl0) ⊂ ker(div0) imply that

ker(div)⊥ ⊆ ran(curl)⊥ = ker(curl0),
ker(div0)⊥ ⊆ ran(curl0)⊥ = ker(curl),

i.e., dom(A) and dom(A1) differ only by elements in ker(A). By Lemma 3.3.19 we conclude
that the spectrum σ(A) contains 0 as an isolated point. Since A is closed, for the operator
A2 we have σ(A2) = {λ2 : λ ∈ σ(A)} (see [KNR08, Theorem 2.15]), which shows that 0 is
also an isolated point in the spectrum of

A2 =
(

0 − curl
curl0 0

)2

=
(
− curl curl0 0

0 curl0 curl

)
.

In particular, 0 is an isolated point of σ(curl0 curl). By Theorem 3.3.18 this is equivalent to
the closedness of ran(curl) and ran(curl0).
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3.3.3 Nonlinear perturbations

We conclude this section with a discussion of exponential decay of solutions to nonlinear
Maxwell systems, with an emphasis on Volterra-type operators. In essence, such operators
have already been dealt with in Section 2.3, but for completeness’ sake, we formulate a
corresponding result for the non-magnetic case, where the linearized system is exponentially
stable.

Theorem 3.3.21. Let Ω ⊆ R3, set H = L2(Ω)3 and suppose that ran(curl) ⊆ H is closed.
Let ϵ : dom(ϵ) ⊆ C → B(H) be a permittivity of C-type or of L-type. With ν0 > 0 given
as in Theorem 3.3.14, fix ν < ν0 and let Pel,nl be a nonlinear operator such that each
F ∈ {∂jtPel,nl : j ∈ {0, 1, 2}} maps L2

−ν(R,H) into itself, fulfills F (0) = 0, and satisfies the
estimate

∥F (u)− F (v)∥L2
−ν

≤ c
(∥u∥L2

−ν
+ ∥v∥L2

−ν

)α∥u− v∥L2
−ν

(3.3.10)

for all u, v ∈ L2
−ν(R,H) with ∥u∥L2

−ν
, ∥u∥L2

−ν
≤ ε0, where c, ε0 > 0 and α > 0 are constants.

Then, if ε ∈ (0, ε0) is sufficiently small and if

φ, ψ ∈ L2
−ν(R,H) ∩ L2

ϱ(R,H) (ϱ > ϱ0)
g := ∂tφ+ curlµ−1ψ ∈ L2

−ν(R,H)
h := πker(curl0)∂

−1
t φ ∈ L2

−ν(R, ker(curl0))
f := πker(curl)∂

−1
t ψ ∈ L2

−ν(R, ker(curl))

are such that ∥φ∥L2
−ν

+ ∥g∥L2
−ν

+ ∥h∥L2
−ν

+ ∥f∥L2
−ν

≤ ε/2, then the nonlinear Maxwell system

(
∂t

(
ϵ(∂t) 0
0 µ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
−∂tPel,nl(E)

0

)
+
(
φ

ψ

)

admits a unique solution (E,H) ∈ L2
−ν(R,H)2 with ∥E∥L2

−ν
, ∥H∥L2

−ν
≤ ε.

Proof. Consider first the linearized system(
∂t

(
ϵ(∂t) 0
0 µ

)
+
(

0 − curl
curl0 0

))(
E

H

)
=
(
φ

ψ

)
.

Theorem 3.3.12 provides the estimate

∥E∥L2
−ν

≲ ∥φ∥L2
−ν

+ ∥g∥L2
−ν

+ ∥h∥L2
−ν
, (3.3.11)

and moreover, adopting the notation of the proof of Theorem 3.3.14, we know that

∥H∥L2
−ν

= ∥H0 +H1∥L2
−ν

= ∥(C∗)−1(∂tϵ̃(∂t)E0 − φ̃) + µ−1(∂−1
t ψ1 − µ10H0)∥L2

−ν

≲ ∥E0∥L2
−ν

+ ∥∂tE0∥L2
−ν

+ ∥φ̃∥L2
−ν

+ ∥f∥L2
−ν

≲ ∥φ∥L2
−ν

+ ∥g∥L2
−ν

+ ∥h∥L2
−ν

+ ∥f∥L2
−ν
, (3.3.12)

assuming the norms on the right are finite. Here we have used the estimate from Re-
mark 3.3.13, the boundedness of ϵ̃(∂t) or ∂tϵ̃(∂t) (depending on L- or C-type), and ∥φ̃∥L2

−ν
≲

∥φ∥L2
−ν
. Now to pass to the nonlinear system, we formally define the nonlinear solution
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operator by
(
T1(E)
T2(E)

)
:=
(
∂t

(
ϵ(∂t) 0
0 µ

)
+
(

0 − curl
curl0 0

))−1(
φ− ∂tPel,nl(E)

ψ

)

and we will show that T1 is a contraction on Bε := {u ∈ L2
−ν(R,H) : ∥u∥L2

−ν
≤ ε} for small

ε < ε0. To this end, after performing the substitution φ 7→ φ − ∂tPel,nl(E) and using the
smallness assumption, we obtain from (3.3.11) and (3.3.12) the following estimates for T1, T2,
if ε ∈ (0, ε0):

∥T1(E)∥L2
−ν

≲ ∥φ∥L2
−ν

+ ∥g∥L2
−ν

+ ∥h∥L2
−ν

+
2∑

j=0
∥∂jtPel,nl(E)∥L2

−ν

≤ ε

2 + 3cεα+1 =
(1
2 + 3cεα

)
ε

∥T2(E)∥L2
−ν

≲ ∥φ∥L2
−ν

+ ∥g∥L2
−ν

+ ∥h∥L2
−ν

+ ∥f∥L2
−ν

+
2∑

j=0
∥∂jtPel,nl(E)∥L2

−ν

≤ ε

2 + 3cεα+1 =
(1
2 + 3cεα

)
ε

and moreover,

∥T1(u)− T1(v)∥L2
−ν

≲
3∑

j=0
∥∂jtPel,nl(u)− ∂jtPel,nl(v)∥L2

−ν

≤ 3c
(∥u∥L2

−ν
+ ∥v∥L2

−ν

)α∥u− v∥L2
−ν

≤ 3c(2ε)α∥u− v∥L2
−ν
.

The constants appearing in these estimates do not depend on ε; we assume without loss that
they are equal to unity. Since α > 0, we can choose ε so small that simultaneously

3cεα < 1
2 and 3c(2ε)α < 1,

in which case T1 becomes a contraction on Bε. Thus, E = T1(E) possesses a fixed point in
Bε, together with H = T2(E) ∈ Bε.

Remark 3.3.22. Since Theorem 3.3.21 relies on the second-order formulation (3.3.4), nonlinear
magnetic polarizations Pm,nl(H), cannot, in general, be treated in the same manner. The
reason is that g = ∂tφ− curlµ−1ψ appears on the right-hand side of (3.3.11) and (3.3.12) for
the linear system, thus performing the analogous substitution ψ 7→ ψ − ∂tPm,nl(H) creates
an extra term curlµ−1∂−1

t Pm,nl(H). If the mapping property

H ∈ H(curl,Ω) =⇒ µ−1Pm,nl(H) ∈ ker(curl),

is imposed, this term vanishes and one can derive an analogous result in this case. In general
however, the additional term leads to a loss of spatial regularity for the nonlinear solution
operator, prohibiting a direct application of the fixed-point theorem. ♢

Example 3.3.23 (Nonlinear materials with spatial dispersion and fading memory). We
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take the opportunity to revisit Example 3.2.3; for simplicity we look at a quadratic Volterra
operator,

Pel,nl(E) :=
∫
R

∫
R
χ(2)(τ1, τ2)Q(E(t− τ1), E(t− τ2)) dτ1 dτ2.

with Q : [L2(Ω)3]2 → L2(Ω)3 bilinear and bounded. Relevant instances of such Q are
nonlinear operators exhibiting spatial dispersion (see [LL84, §103] for the linear case), for
example we can take Q = (Q1, Q2, Q3), where

Qk(u, v)(x) =
3∑

i,j=1

∫∫
Ω×Ω

Λijk(x, y, y′)ui(y)vj(y′) dy dy′, k ∈ {1, 2, 3},

and with Λijk ∈ L2(Ω3). Clearly, Q is bilinear, and the boundedness follows via∫∫
Ω×Ω

Λijk(x, y, y′)ui(y)vj(y′) dy dy′ ≤ ∥Λijk(x, · , · )∥L2(Ω2)∥ui∥L2∥vj∥L2

from the Cauchy–Schwarz inequality. Thus ∥Q(u, v)∥L2 ≤ CΛ∥u∥L2∥v∥L2 with CΛ > 0, and
Q is indeed bounded. To apply Theorem 3.3.21 we require that χ(2) is smooth, suppχ(2) ⊆
(0,∞)2, and that

Lij :=
∫∫

∥∂ji χ(2)(τ1, τ2)∥B(L2(Ω)3) e
ν(τ1+τ2) dτ1 dτ2 <∞, i ∈ {1, 2}, j ∈ {0, 1, 2},

for some ν > 0. Then, each ∂jtPel,nl (for j ∈ {0, 1, 2}) fulfills the conditions of Lemma 2.3.1,
and thus maps L2

ϱ(R,H) continuously and causally into L2
2ϱ(R,H) for ϱ ≥ −ν. In particular,

each F ∈ {∂jtPel,nl : j ∈ {0, 1, 2}} maps

W−ν = {u ∈ L2
−ν(R,H) : u = 0 in (−∞, 0]}

into itself, since W−2ν ⊆ W−ν . On this space, F also satisfies the estimate (3.3.10) with
α = 1 and some constant c depending on Q,χ(2), ν. Consequently, we can perform the same
fixed-point argument as in Theorem 3.3.21, if L2

−ν is replaced by W−ν . ▲

3.4 Comments and open problems

A note on higher regularity

When working with multilinear Volterra operators, such as

Pnl(u) =
∫
R

∫
R
χ(2)(τ1, τ2)Q(u(t− τ1), u(t− τ2)) dτ1 dτ2

in Example 3.3.23, we have excluded instantaneous nonlinearities explicitly from the right-
hand side of the system

(∂tM(∂t) +A)u = g − ∂tPnl(u)

by imposing the condition suppχ(2) ⊆ (0,∞)2. This restriction can be removed by working
instead in H1

−ν and using the Sobolev inequality (Proposition 1.4.5) as in the proof of
Lemma 2.2.1, to derive the necessary estimates in the perturbation arguments (Example 3.2.3).
Note however, that higher derivatives (as they occur in Theorem 3.3.21) pose a problem,
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since estimating terms such as
∫
R χ

(2)(0, τ2) ∂tQ(u(t), u(t− τ2) dτ in the H1
ϱ -norm requires a

priori more regularity of u.

The following consideration leads to a similar difficulty: Oftentimes, the effect of spatial
dispersion is neglected, thus removing the non-locality from the spatial nonlinearity. If
Q : [R6]2 → R6 is merely taken as a matrix-valued bilinear operator, then it is desired to
work in some variant of Hk-Sobolev spaces4 due to their algebra property (2.2.4). It is
generally not possible to infer this required additional spatial regularity of the solution from
regular data (in contrast to temporal regularity, Proposition 1.4.14). Instead, one can use the
structure of the Maxwell system and “trade” temporal for spatial regularity, if the boundary
and the interface are smooth enough (cf. [Web81, DITW23, DST22]; see also Remark 3.3.16).

The conclusion we can draw from these remarks is that considering seemingly simpler,
instantaneous and local nonlinear material laws (or nonlinear magnetization as in Re-
mark 3.3.22) introduces additional problems that usually require more regularity of the
solution. Quasilinear systems (i.e., nonlinearities involving derivatives) are, at present,
difficult to impossible to handle in the evolutionary L2

ϱ-setting5.
We mention that a loss of temporal regularity has been considered, e.g., in [Pic00], for

linear equations, still leading to a well-defined and bounded solution operator, albeit mapping
into a different space. It is unclear if such a regularity loss can be incorporated into the
theory for nonlinear systems.

Weighted Maxwell systems over exterior domains

We comment briefly on an idea for tackling exponential stability for the non-magnetic
Maxwell system on the whole space R3, based again on the compactness result from case
(a) in Section 3.3.2. It turns out that Theorem 3.3.15 generalizes to weighted spaces over
unbounded, exterior domains. Let Ω = R3 and for some r > 0 consider the weight function

γ : Ω → R, γ(x) =

1, |x| ≤ r

r/|x|, |x| > r.

Let H = L2(Ω)3 and Hγ = {u ∈ L2
loc(Ω)3 : ∥γu∥L2 <∞}, then Hγ equipped with the inner

product ⟨u, v⟩Hγ = ⟨γu, γv⟩H is again a Hilbert space. Define the extended curl operator by

curlγ : H(curlγ ,Ω) ⊆ Hγ → H, H(curlγ ,Ω) := {u ∈ Hγ : curlu ∈ H}.

Lemma 3.4.1. The following statements are true.

(i) There exists C > 0 such that

for all u ∈ H(curlγ ,R3) ∩ ker(curlγ)⊥ : ∥u∥Hγ
= ∥γu∥L2 ≤ C ∥curlu∥L2 .

4on each side of the interface, i.e., H = Hk(Ω1)⊕Hk(Ω2)
5Of course, we can argue that the nonlinearities in Maxwell systems in nature are at their core always of
continuous memory type; a generalization to quasilinear systems is still an interesting problem from a
mathematical perspective.
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(ii) The space ran(curlγ) = {curlu : u ∈ H(curlγ ,R3)} is closed in L2(Ω)3.

Proof. We refer to Lemmata 8, 9 in [Pic90].

To make use of the operator curlγ , we may consider each of the two weighted versions

Aγ :=
(

0 − curlγ
curl∗γ 0

)
or Aγ :=

(
0 − curl∗γ

curlγ 0

)

of the Maxwell operator. Note that for a sequence (un)n ∈ C∞
c (R3)3 approximating

u ∈ H(curlγ ,R3) in H(curlγ ,R3) (with norm u 7→ ∥u∥H(curlγ ,R3) = ∥γu∥2
L2 + ∥ curlγ u∥2L2)

and ϕ ∈ C∞
c (R3)3 we have

⟨curlγ u, ϕ⟩H = lim
n→∞

⟨curlun, ϕ⟩H
= lim

n→∞
⟨un, curlϕ⟩H

= lim
n→∞

⟨γun, 1γ curlϕ⟩H = ⟨γu, 1
γ
curlϕ⟩H = ⟨u, 1

γ2
curlϕ⟩Hγ

which, by density of C∞
c (R3)3, shows that

curl∗γ = 1
γ2

curl, dom(curl∗γ) = {v ∈ H : 1
γ curl v ∈ H}.

Now if ϵ(∂t), µ are material laws simultaneously defined on H and Hγ (say, scalar or matrix-
valued) then with

M(∂t) =
(
ϵ(∂t) 0
0 µ

)
we may consider three versions of the Maxwell system, namely

(∂tM(∂t) +A)U = g in L2
ϱ(R,H×H)

(∂tM(∂t) +Aγ)Uγ = gγ in L2
ϱ(R,H×Hγ)

(∂tM(∂t) +Aγ)Uγ = gγ in L2
ϱ(R,Hγ ×H).

Here, since γ|B(0,r) ≡ 1, all three are the same locally, i.e., after fixing Ω′ ⊆ B(0, r) ⊆ R3

and applying the spatial projection 1Ω′ on all sides, the equations coincide. What is still
missing is a global mechanism linking all solutions Uγ , U

γ , U to each other, in order to infer
decay properties of U from that of Uγ or Uγ .
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4 Approximation of broad surface
wavepackets in nonlinear magnetooptics

Our aim for this chapter is to derive and justify a wavepacket approximation for a nonlinear
Maxwell system on Ω = R3 at a planar interface, thereby proving the existence of wavepackets
in the nonlinear case. The building blocks for the ansatz are the 2-dimensional linear surface
modes in Section 1.3. First we illustrate the general idea.
Consider a nonlinear Cauchy problem

∂tM(∂t)U +AU +N(U) = 0, t > 0
U = V, t ≤ 0

 (4.0.1)

with a given history V . We want to find a suitable asymptotic ansatz Uε which is close to
an actual solution U of (4.0.1). This can mean different things. One quantity that comes to
mind when trying to measure the quality of a given approximation Uε is the residual

Res(Uε) := ∂tM(∂t)Uε +AUε +N(Uε).

After all, Res(U) = 0 (for t > 0) if and only if U is an actual solution of the equation. But
to infer certain (long time) behaviour of U from the properties of Uε requires control of the
error

R := U − Uε (t > 0)

itself. An equation for R can be derived from (4.0.1) for t > 0, namely

0 = ∂tM(∂t)U +AU +N(U)
= ∂tM(∂t)(R+ Uε) +A(R+ Uε) +N(R+ Uε)− gV

= ∂tM(∂t)R+AR+N(R+ Uε)−N(Uε) + ∂tM(∂t)Uε +AUε +N(Uε)− gV

= ∂tM(∂t)R+AR+N(R+ Uε)−N(Uε) + Res(Uε)− gV , (4.0.2)

where gV is related to the history1. The task now consists in obtaining a “small” (in a
suitable norm) solution R to (4.0.2). Apart from smallness of the residual and the data,
the existence of small solutions depends on the form and properties of the nonlinearity
N(· − Uε)−N(Uε), which are largely inherited by those of N . We will subsequently assume

1If Uε and R are supported in (0,∞), then in fact gV = −θ[∂tM(∂t)V +N(V )]. Like in Section 2.4, we
assume here the compatibility condition N(θu + (1 − θ)u) = N(θu) + N((1 − θ)u) for u ∈ L2

loc(R,H),
which holds e.g. for continuous Volterra integral operators. However, positive support only makes sense
for R; the ansatz should ideally be an approximation of U also for (some) negative times. We will thus
assume gV is small and neglect its role for now.
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N(U) to be a sum of symmetric, multilinear terms, say,

N(U) = N2(U,U) +N3(U,U, U).

In this case

N(R+ Uε)−N(Uε) = N2(R,R) + 2N2(R,Uε)
+N3(R,R,R) + 3N3(R,Uε, Uε) + 3N3(R,R,Uε),

thus, the genuinely nonlinear terms are given by

Fε(R) := N2(R,R) +N3(R,R,R) + 3N3(R,R,Uε),

while the additional linear terms can be collected into

Mε(∂t)R :=M(∂t)R+ ∂−1
t

(
2N2(R,Uε) + 3N3(R,Uε, Uε)

)
.

The error equation (4.0.2) now becomes

∂tMε(∂t)R+AR+ Fε(R) + Res(Uε) = gV (t > 0). (4.0.3)

This can be treated as a nonlinear evolutionary equation as in Section 2, provided that

• Mε(∂t) is again a linear material law—or a small perturbation of such—and the
linearized equation

(
∂tMε(∂t) + A)R = g is well-posed in ⋃ϱ>ϱ0 L

2
ϱ(R,H) for some

ϱ0 ∈ R.

• Fε is compatible with the perturbation results, i.e., there exists ϱ > ϱ0 such that
Fε : L2

ϱ(R,H) → L2
ϱ(R,H) is causal and (locally) Lipschitz continuous.

• Res(Uε) is small in L2
ϱ(R,H).

Ideally, these assumptions should hold with ϱ0 < ϱ < 0, since otherwise R may still grow
exponentially with time, even if it is small in L2

ϱ(R,H). Thus, our aim will be to ensure that

• The linearized error equation is exponentially stable with some decay rate ν0 > 0.

• There exist ν ∈ (0, ν0) and a closed subset W−ν contained in a small ball in L2
−ν(R,H),

such that Fε is a contraction on W−ν .

• Res(Uε) is small in W−ν .

A fixed-point argument in W−ν then yields a small solution in L2
−ν(R,H) for small data.

To some extent, the three points above can be treated independently. We will begin by
constructing a first ansatz, which will then be refined using several correction terms to
produce a small residual, and will then deal with the error equation.

amplitude equations

Asymptotic and multiple-scale methods are frequently employed in studying nonlinear
differential equations. Specifically, the formalism of amplitude equations, or modulation

68



equations, is a prominent tool in describing wavetrain- and wavepacket-like solutions to
dispersive equations, by deriving an effective equation for the envelope of the wave, typically
a variant of the nonlinear Schrödinger equation

i∂tA+∆A+ γ|A|2A = 0, (NLS)

or of the complex Ginzburg–Landau equation

∂tA+ σA− α∆A+ γ|A|2A = 0, (CGL)

where α, γ ∈ C, σ ∈ R, which can be viewed as a generalized version of (NLS). The
underlying mechanism (see, for instance, [vH91, Kal88]) relies on the perturbation of a
ground state (in our case = 0) near the critical (with respect to stability) value of a (spectral)
control parameter in the linear problem. This perturbation results in the creation of a band
of solutions, in the form of linear modes (the carrier waves) modulated by a slowly varying
amplitude (see Figure 4.1). As a consequence, one expects the dynamics of solutions of the

x

cg

Figure 4.1: One-dimensional wavepacket of the form

u(t, x) = εA(ε2t, ε(x− cgt))ei(kx−ωt) + c.c. (t, x ∈ R).

The carrier wave ei(kx−ωt) is modulated by the localized and slowly varying
amplitude A (blue dashed). The resulting wavepacket (red solid) moves to
the right with group velocity cg. For 0 < ε≪ 1, the scaling determines the
height and width of u as being of order O(ε) and O(1/ε), respectively.

problems in this spectral regime to be influenced mainly by those of the amplitude, which is
a solution of (NLS) or (CGL) or (in the general case) a system of coupled equations of this
form.

The structure of these equations and the behavior of solutions are generally well-studied.
For example, in the focusing case γ > 0, (NLS) is known to possess analytical solutions, such
as the traveling sech-soliton

A(t, x) =
√
2α sech(

√
α(x− 2rt− x0))ei(rx−st+ϕ0) (α = r2 − s > 0).

with constants ϕ0 ∈ R, x0, r, s ∈ R, r, s > 0 (see [SS99, §1.3.2]). Solutions for (CGL) have
been discussed in Section 2.2.

Early applications of this formalism can be found in hydrodynamic problems (e.g. [NW69,
IMD89]), followed by numerous uses in other fields, such as chemistry, biology and electrody-
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namics. For applications close to our use case, we mention here [SU03], where an amplitude
approximation is justified for a Maxwell system with memory (see the last section of this
chapter for a short summary), and [DST22], where the justification of surface wavepackets
is proved using a full quasilinear Maxwell system.

It was shown in [KSM92] that the Ginzburg–Landau approximation is valid in many cases
in which the leading nonlinearity is cubic. In contrast, as mentioned in the introductory
chapter, resonant quadratic nonlinearities in combination with low regularity of initial values
can lead to wrong predictions of the amplitude approximation, see [Sch05, SSZ15].

4.1 Ansatz, residual, and amplitude equation

We will base the analysis in the present section on a model problem, with a multiple-scale
ansatz constructed from the linear 2D-modes in Section 1.3.
The asymptotic analysis in this section and the smallness of expressions in terms of

O(εn)-terms (as ε→ 0) is to be understood, at first, in a purely formal way (or pointwise, if
the functions involved in the ansatz are continuous and uniformly bounded). The justification
is given a posteriori through rigorous norm estimates.

4.1.1 Setup and basic ansatz

As in Section 1.3, consider the interface

Γ = {x ∈ R3 : x1 = 0} in Ω = R3

and let ϵ(∂t), µ(∂t) be material laws given by

ϵ(∂t)E = ϵ0E +
∫
R
χ±
el(τ)E( · − τ) dτ

µ(∂t)H = µ0H +
∫
R
χ±
m(τ)H( · − τ) dτ

and ϵ0, µ0 > 0, where χ±
el , χ±

m are scalar, causal kernels, with ± depending on the side of the
interface. Let N (2) be a bilinear Volterra operator of the form

N (2)(U, V )(t) =
∫
R

∫
R
χ(2)(τ1, τ2)Q(U(t− τ1), V (t− τ2)) dτ1 dτ2,

where χ(2) = χ
(2)
± : R2 → R6×6 with χ(2)(τ1, τ2) = 0 whenever τ1 < 0 or τ2 < 0, and where

we assume that Q : [R6]2 → R6 is bilinear. For ease of notation, we also take N (2) to be
symmetric, specifically, that χ(2) and Q are symmetric. Now with

M(∂t) =
(
ϵ(∂t) 0
0 µ(∂t)

)
, A =

(
0 − curl

curl 0

)
, U =

(
E

H

)

we consider the quadratically nonlinear Maxwell system

∂t(M(∂t)U +N (2)(U,U)) +AU = 0, t > 0. (4.1.1)
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Remark 4.1.1. Strictly speaking, we do not yet have well-posedness of the latter nonlinear
system for this type of nonlinearity, as a multilinear map Q : [Ω]2 → Ω will typically not
extend to a bilinear map Q : [L2(Ω)6]2 → L2(Ω)6. Indeed, N (2)(U,U) should be viewed as
a local approximation of a nonlocal operator P (2)(U), given as in Example 3.3.23, after
the spatial convolution is replaced by suitable effective coefficients. This is done out of
convenience, making the explicit computation of the residual easier without having to work
in Fourier space (where the convolution is transformed into a product).

In principle, this poses no difficulty, as we will only use equation (4.1.1) to refine the ansatz
functions, which are fixed and well-behaved. Similar to Lemma 4.2.1 which is concerned
with a convolution in time, this approximation can be justified if the spatial convolution
kernel is sufficiently regular. ♢

Recall from Section 1.3 that if k, ω ∈ C∖ {0} satisfy

either k2 = ω2 ϵ+(ω)ϵ−(ω)
ϵ+(ω) + ϵ−(ω) ·

ϵ−(ω)µ+(ω)− ϵ+(ω)µ−(ω)
ϵ−(ω)− ϵ+(ω) (4.1.2)

or k2 = ω2 µ+(ω)µ−(ω)
µ+(ω) + µ−(ω) ·

ϵ+(ω)µ−(ω)− ϵ−(ω)µ+(ω)
µ−(ω)− µ+(ω) , (4.1.3)

with ϵ±(ω) = ϵ0 + χ̌±
el(ω), µ±(ω) = µ0 + χ̌±

m(ω), where χ̌(ω) =
∫
χ(t)eiωt dt. Then the

linearized system admits a family of solutions

U2D(t, x) = Φ(x1)ei(kx2−ωt) + c.c.,

constant in x3, with Φ: R → R6 smooth on each half-space and having exponential decay
away from the interface. In either of the two cases, the field U2D is transverse magnetic or
transverse electric, respectively. On the other hand, if neither of the dispersion relations
(4.1.2) or (4.1.3) are fulfilled, then the linear system resulting for Φ admits only the trivial
solution Φ = 0.
We reformulate this fact using a more compact notation. With the matrices

S1 =


0 0 0
0 0 −1
0 1 0

 , S2 =


0 0 1
0 0 0
−1 0 0

 , S3 =


0 −1 0
1 0 0
0 0 0


we have curl = S1∂x1 + S2∂x2 + S3∂x3 , and introducing the family of operators

Λ(k, ω) :
(
L2(R)×H1(R)×H1(R)

)2 ⊂ L2(R)6 → L2(R)6,

Λ(k, ω) := −iω
(
ϵ0 + χ̌±

el(ω) 0
0 µ0 + χ̌±

m(ω)

)
+
(
0 −S1
S1 0

)
∂x1 +

(
0 −S2
S2 0

)
ik,

(4.1.4)

we observe that

(∂tM(∂t) +A) Φ(x1)ei(kx2−ωt) = Λ(k, ω)Φ(x1)ei(kx2−ωt).

The characterization in Section 1.3 gives proof of the following.

Lemma 4.1.2. Let k, ω ̸= 0 be such that ϵ±(ω), µ±(ω) ̸= 0 and k2 − ω2ϵ±(ω)µ±(ω) /∈ R−
0 .
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Then,

dim kerΛ(k, ω) =

1, if k, ω satisfy either (4.1.2) or (4.1.3)
0, else.

Although solutions k, ω of the dispersion relation given by either (4.1.2) or (4.1.3) are
in general complex, we will restrict our attention to k ∈ R to avoid exponential growth as
x2 → ±∞. We also assume that ϵ±, µ± are rational functions such that solving the dispersion
relation for ω with k ∈ R yields a finite set of complex-valued curves k 7→ ω(k). For the
subsequent approximation we will assume that one can isolate one (smooth) dispersion curve
and an open interval I ⊂ (0,∞) containing a ‘critical’ wavenumber kc > 0 such that

(D1) Reω(k) > 0 and Imω(k) < 0 for all k ∈ I.

(D2) Imω(·) attains a local maximum in kc, thus cg := ω′(kc) ∈ R and Imω′′(kc) < 0.

The first property means that for all k ∈ I the wavetrain ei(kx2−ω(k)t) has a positive phase
velocity ω(k)/k in x2-direction and is exponentially damped for t > 0. The second ensures
that this damping attains a local minimum in kc, see Figure 4.2.

0
kc

k

Reω(k)

−ε2σ

Imω(k)

Figure 4.2: Dispersion curve k 7→ ω(k) satisfying conditions (D1), (D2) with a critical
wavenumber kc.

For k ∈ I we write Φk to denote an arbitrary but fixed nonzero element in kerΛ(k, ω(k))
and assume that the mapping k 7→ Φk is smooth (e.g. as a map I → L2(R)6). We write
Fx2→k to denote the Fourier transform

(Fx2→k u)(k) = û(k) =
∫
R
u(x2)e−ikx2 dx2,

and F−1
k→x2

for its inverse. By superposition, integrating over multiple linear modes,

1
2π

∫
R
â(k)Φk(x1)ei(kx2−ω(k)t) dk = F−1

k→x2

[
â(k)Φk(x1)e−iω(k)t

]
(x2)

yields again a solution of Maxwell’s equations, thus Φk(x1)e−iω(k)t can be regarded as a
linear mode in Fourier space.

We now introduce a perturbation parameter ε by the properties (D1), (D2) of the dispersion
curve (Figure 4.2): we write

ω(kc) = ωc − iε2σ, ωc, σ > 0, 0 < ε≪ 1. (4.1.5)
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Based on this, the approximation will employ a multiple-scale ansatz of the form

Uε(t, x) = εA(T,X2, X3) Φkc(x1)ei(kcx2−ωct) + c.c.+O(ε2) (ε→ 0),

where A is a complex-valued amplitude which depends only on the slow variables

X2 = ε(x2 − cgt), X3 = ε2x3, T = ε2t.

For a spatially localized amplitude A, the result is a wavepacket travelling with group velocity
cg and phase velocity ωc/kc, see Figure 4.1. Changes in the overall shape occur on the scale
of O(ε−2) in time and in x3-direction.

However, due to quadratic self-interaction, a modulated linear mode with a single frequency
ωc is not suitable to approximate a solution of the nonlinear system: Take for instance a
time-harmonic field U(t, x) = Ψ(x)e−iω0t oscillating with a base frequency ω0 and insert it
into the nonlinearity N (2). The resulting field is of the form

N (2)(U,U)(t) =
∫
R

∫
R
χ(2)(τ1, τ2)Q(U(t− τ1), U(t− τ2)) dτ1 dτ2

=
(∫

R

∫
R
χ(2)(τ1, τ2)Q(Ψ,Ψ)eiω0(τ1+τ2) dτ1 dτ2

)
e−2iω0t

and oscillates with doubled frequency 2ω0. To account for this interaction we work with an
extended ansatz

Uε(t, x) := εA1(T,X2, X3)φ1(x1)e1 + εA−1(T,X2, X3)φ−1(x1)e−1

+ ε2A2(T,X2, X3)φ2(x1)e2 + ε2A−2(T,X2, X3)φ−2(x1)e−2

+ ε2A0(T,X2, X3)φ0(x1)e0 +O(ε3),
(4.1.6)

where for all j ∈ {−2,−1, 0, 1, 2},

A−j = Aj , φ−j = φj , ej = ej(x2, t) := eij(kcx2−ωct).

Here φ1 should still be (an approximation of) an evanescent profile Φkc ∈ kerΛ(kc, ω(kc)),
while ε2-terms serve as higher-order corrections; they will depend on A1 and φ1 in such a
way that Res(Uε) is formally of order O(ε4). We will subsequently provide a reasoning to
refine this ansatz further; a more involved approximation is given in (4.1.27).

Introducing
Ψj(T,X2, X3; t, x1, x2) := εAj(T,X2, X3)φj(x1)ej , (4.1.7)

the expression (4.1.6) can be shortened to

Uε = Ψ1 +Ψ−1 + ε(Ψ2 +Ψ−2 +Ψ0) +O(ε3).

Furthermore, it will be convenient to work with the Fourier transform Fx2→k. With

Kj :=
k − jkc

ε
, fj = fj(k, t) := exp{−it(jωc + εcgKj)}
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we have the correspondence

ε
∫
R
a(X2)ej(x2, t) dx2 = ε

∫
R
a(X2)eij(kcx2−ωct)−ikx2 dx2

= ε
∫
R
a(X2)e−i((k−jkc)x2+jωct) dx2

=
∫
R
a(X2)e−i((k−jkc)(cgt+X2/ε)+jωct) dX2

=
∫
R
a(X2)e−i(X2(k−jkc)/ε) dX2 e

−it(cg(k−jkc)+jωc)

= â
(k−jkc

ε

)
e−it(jωc+εcg(k−jkc)/ε)

= â(Kj)fj(k, t). (4.1.8)

Consequently, we can express the Fourier transformed ansatz Ûε(t, x̂) = Fx2→k[Uε(t, x)](k),
x̂ = (x1, k, x3), in (4.1.6) as

Ûε(t, x̂) = Â1(T,K1, X3)φ1(x1)f1 + Â−1(T,K−1, X3)φ−1(x1)f−1

+ εÂ2(T,K2, X3)φ2(x1)f2 + εÂ−2(T,K−2, X3)φ−2(x1)f−2

+ εÂ0(T,K0, X3)φ0(x1)f0 +O(ε2)

= Ψ̂1(T,K1, X3; t, x1) + Ψ̂−1(T,K−1, X3; t, x1)
+ εΨ̂2(T,K2, X3; t, x1) + εΨ̂−2(T,K−2, X3; t, x1)
+ εΨ̂0(T,K0, X3; t, x1) +O(ε2).

(4.1.9)

We assume that the amplitudes satisfy the asymptotic Âj(T,Kj , X3) → 0 as |Kj | → ∞ to
ensure that Âj(T,Kj , X3) is small unless |k − jk0| = O(ε). This means that the function
Ûε is concentrated around integer multiples of kc, which enables us to treat each fj-term
separately by localizing k = jkc + εKj around jkc (and assuming bounded values for Kj),
since then Ûε is very small elsewhere. The same will be true for the Fourier-transformed
residual R̂es(Uε) := Fx2→kRes(Uε). To compute R̂es(Uε) we make some observations.

Recalling that curl =∑3
j=1 Sj∂xj , we have for the spatial Maxwell operator

A =
(

0 − curl
curl 0

)
=

3∑
j=1

Sj∂xj , where Sj =
(
0 −Sj
Sj 0

)
.

Prepending the Fourier transform Fx2→k we have

Fx2→kA = S1∂x1 + ikS2 + S3∂x3

= S1∂x1 + i(jkc + εKj)S2 + ε2S3∂X3

(4.1.10)

for any j ∈ {−2,−1, 0, 1, 2}. Formally, this identity determines the action of A on every Ψj

in Fourier space, i.e.,

Fx2→k (AΨj) =
(
S1∂x1 + i(jkc + εKj)S2 + ε2S3∂X3

)
Ψ̂j . (4.1.11)

Introducing
Ωj := jωc + εcgKj ,
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we observe for the time-derivative that

Fx2→k [∂tΨj ] = ∂tΨ̂j =
(−iΩj + ε2∂T

)
Ψ̂j .

The strategy for dealing with convolutions in time will rely on Taylor expansions of the
integrands. For sufficiently regular a, κ : R → R (that is, integrable up to some derivative, cf.
Lemma 4.2.1) we have∫

R
κ(τ) a(ε2(t− τ)) fj(t− τ) dτ =

∫
R
κ(τ) a(ε2(t− τ)) e−i(t−τ)Ωj dτ

=
∫
R
κ(τ)

[
a(T )− ε2τa′(T ) +O(ε4τ2)

]
eiτΩj dτ e−itΩj

= κ̌(Ωj)a(T )fj + iε2κ̌′(Ωj)a′(T )fj +O(ε4)

where we used
∫
R τκ(τ)eiωτ dτ = −iκ̌′(ω). Taking derivatives and using

∂t
[
a(T )fj(t)

]
= (−iΩj + ε2∂T )a(T )fj (4.1.12)

we obtain

∂t

∫
R
κ(τ)a(ε2(t− τ))fj(t− τ) dτ

= (−iΩj + ε2∂T )
[
κ̌(Ωj)a(T )fj + iε2κ̌′(Ωj)a′(T )fj +O(ε4)

]
= −iΩj κ̌(Ωj)a(T )fj + ε2(κ̌(Ωj) +Ωj κ̌

′(Ωj))a′(T )fj +O(ε4).

Thus, setting

M0 :=
(
ϵ0 0
0 µ0

)
, χ :=

(
χel 0
0 χm

)
we can formally write

Fx2→k
[
∂tM(∂t)Ψj

]
= Fx2→k

[
∂t
(
M0Ψj + χ ∗Ψj

)]
= ∂tFx2→k

[(
M0Ψj + χ ∗Ψj

)]
= −iΩj

[
M0 + χ̌(Ωj)

]
Ψ̂j(T,Kj)

+ ε2
[
M0 + χ̌(Ωj) +Ωjχ̌

′(Ωj)
]
∂T Ψ̂j(T,Kj) +O(ε4)

(4.1.13)

Now combining (4.1.11) and (4.1.13) we obtain for the linear part

Fx2→k
[(
∂tM(∂t) +A)Ψj

]
= Fx2→k

[
∂t
(
M0Ψj + χ ∗Ψj

)
+AΨj

]
= −iΩj [M0 + χ̌(Ωj)] Ψj + ε2

[
M0 + χ̌(Ωj) +Ωjχ̌

′(Ωj)
]
∂TΨj

+
[
S1∂x1 + i(jkc + εKj)S2 + ε2S3∂X3

]
Ψj +O(ε4)

=
[−iΩj

(
M0 + χ̌(Ωj)

)
+ S1∂x1 + i(jkc + εKj)S2

]
Ψj

+ ε2
[
M0 + χ̌(Ωj) +Ωjχ̌

′(Ωj)
]
∂TΨj + ε2S3∂X3Ψj +O(ε4)

= Λ(jkc + εKj ,Ωj)Ψj + ε2J(Ωj)∂TΨj + ε2S3∂X3Ψj +O(ε4),
(4.1.14)
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where
J(Ωj) :=M0 + χ̌(Ωj) +Ωjχ̌

′(Ωj),

and where Λ(k, ω) was defined in (4.1.4), hence

−iΩj(M0 + χ̌(Ωj)) + S1∂x1 + i(jkc + εKj)S2 = Λ(jkc + εKj , Ωj)
= Λ(jkc + εKj , jωc + εcgKj).

For future reference, we note that the latter expression can be expanded in two ways. The
first consists of a localization around (jkc, jωc) we will use in the case j ̸= ±1. Here we find
for k = jkc + εKj , Ωj = jωc + εcgKj ,

Λ(k,Ωj) = Λ(jkc + εKj , jωc + εcgKj)
= −i(jωc + εcgKj)(M0 + χ̌(jωc + εcgKj)) + S1∂x1 + i(jkc + εKj)S2

= −ijωc(M0 + χ̌(jωc)) + S1∂x1 + ijkcS2

− iεcg(M0 + χ̌(jωc) + jωcχ̌
′(jωc))Kj + iεS2Kj +O(ε2)

= Λ(jkc, jωc)− iεcgKjJ(jωc) + iεKjS2 +O(ε2). (4.1.15)

For j = 1 (and similarly for j = −1 by complex conjugation) we argue that if k = kc + εK1,
then Ω1 = ωc + εcgK1 is O(ε)-close to ω(k). Recalling from (4.1.5) that ω(kc) = ωc − ε2iσ

we obtain the following consecutive expansions:

ω(k) = ω(kc + εK1) = ω(kc) + εω′(kc)K1 + 1
2ε

2ω′′(kc)K2
1 +O(ε3)

= ωc + εcgK1 + ε2
(1
2ω

′′(kc)K2
1 − iσ

)
+O(ε3)

Λ(k,Ω1) = −iΩ1(M0 + χ̌(Ω1)) + S1∂x1 + ikS2

= −iω(k)(M0 + χ̌(ω(k))) + S1∂x1 + ikS2

+ ε2
(
σ + 1

2 iω
′′(kc)K2

1
)
(M0 + χ̌(ω(k)) + ω(k)χ̌′(ω(k))) +O(ε3)

= Λ(k, ω(k)) + ε2
(
σ + 1

2 iω
′′(kc)K2

1
)
J(ω(k)) +O(ε3)

= Λ(k, ω(k)) + ε2
(
σ + 1

2 iω
′′(kc)K2

1
)
J(ωc) +O(ε3). (4.1.16)

4.1.2 Sum-frequency generation and correction

For the nonlinear terms N (2)(Ψj ,Ψℓ) we approximate the double convolution in time using

A(ε2(t− τ), ε(x2 − cg(t− τ))) = A(T − ε2τ,X2 + εcgτ)
= (1− ε2τ∂T + εcgτ∂X2)A(T,X2) +O(ε4τ2 + ε2τ2).

(4.1.17)
Introducing

χ̌(2)(ω1, ω2) :=
∫
R

∫
R
χ(2)(τ1, τ2)eiω1τ1+iω2τ2 dτ1 dτ2,

we find for aj(t) := εAj(T,X2)ej = εAj(ε2t, ε(x2 − cgt))eij(kcx2−ωct), using (4.1.17) and
(4.1.8),

Fx2→k

∫
R

∫
R
χ(2)(τ1, τ2)aj(t− τ1)aℓ(t− τ2) dτ1 dτ2
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= ε(ÂjAℓ)(T,Kj+ℓ)χ̌(2)(jωc, ℓωc)fj+ℓ

− iε2cg ( ̂Aℓ∂X2Aj)(T,Kj+ℓ) (∂1χ̌(2))(jωc, ℓωc)fj+ℓ

− iε2cg ( ̂Aj∂X2Aℓ)(T,Kj+ℓ) (∂2χ̌(2))(jωc, ℓωc)fj+ℓ +O(ε3).

(4.1.18)

Here the higher-order powers of τ1, τ2 occurring in the remainder terms of (4.1.17) have been
converted into derivatives of χ̌(2), according to∫

R

∫
R
τjχ

(2)(τ1, τ2)eiω1τ1+iω2τ2 dτ1 dτ2 = −i∂jχ̌(2)(ω1, ω2) (j ∈ {1, 2})

and similar formulas for the higher derivatives. Next, thanks to the bilinearity of Q, we
obtain an approximation of

N̂ (2)(Ψj ,Ψℓ) := Fx2→kN
(2)(Ψj ,Ψℓ)

by multiplying this last expression by Q(φj , φℓ). For the time-derivative we use again (4.1.12)
and obtain

Fx2→k∂tN
(2)(Ψj ,Ψℓ) = ∂tN̂

(2)(Ψj ,Ψℓ)
= −iΩj+ℓN̂

(2)(Ψj ,Ψℓ) +O(ε3)
= −Âε,j,ℓ(T,Kj+ℓ)Q(φj , φℓ)fj+ℓ +O(ε3), (4.1.19)

where

Âε,j,ℓ(T,Kj+ℓ) = iε(j + ℓ)ωc(ÂjAℓ)(T,Kj+ℓ)χ̌(2)(jωc, ℓωc)

+ iε2cgKj+ℓ(ÂjAℓ)(T,Kj+ℓ)χ̌(2)(jωc, ℓωc)

+ ε2(j + ℓ)ωccg( ̂Aℓ∂X2Aj)(T,Kj+ℓ)(∂1χ̌(2))(jωc, ℓωc)

+ ε2(j + ℓ)ωccg( ̂Aj∂X2Aℓ)(T,Kj+ℓ)(∂2χ̌(2))(jωc, ℓωc).

Here (4.1.19) illustrates the mechanism of sum-frequency generation; the interaction of two
fields with frequencies jωc and ℓωc creates a field with the frequency ω = (j+ ℓ)ωc, expressed
by the fj+ℓ-term in (4.1.19). We can now sort the residual in Fourier space by these different
fj+ℓ-terms.

Second-harmonic generation

The nonlinear f2-terms in the residual are given by the interaction of Ψ1 with itself, and
should be compensated by Ψ2. In detail we consider k = 2kc + εK2, Ω2 = 2ωc + εcgK2 and
have, using (4.1.14) for the linear and (4.1.19) for the nonlinear part,

R̂es(Uε; f2) := Fx2→k

[(
∂tM(∂t) +A)εΨ2 + ∂tN

(2)(Ψ1,Ψ1)
]

= Λ(2kc + εK2, 2ωc + εcgK2)εΨ2 − iΩ2N̂
(2)(Ψ1,Ψ1) +O(ε3)

= εÂ2(K2)Λ(2kc, 2ωc)φ2f2 − ε2iωcχ̌
(2)(ωc, ωc)Â2

1(K2)Q(φ1, φ1)f2 +O(ε2).
(4.1.20)
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Setting A2 := A2
1 allows us to extract a common amplitude, and the last expression becomes

R̂es(Uε; f2) = εÂ2
1(K2)

[
Λ(2kc, 2ωc)φ2 − 2iωcχ̌

(2)(ωc, ωc)Q(φ1, φ1)
]
f2 +O(ε2). (4.1.21)

A sufficient condition to eliminate the bracket is given below. Recall that φ1 is an evanescent
field, i.e., |φ1(x1)| ≲ e−λx1 (x1 ∈ R), for some λ > 0, which is continuous outside the interface.
As such, |Q(φ1, φ1)| ≲ e−2λx1 ; in particular we may assume Q(φ1, φ1) ∈ L2(R)6.

Proposition 4.1.3. Let j ∈ Z and assume the non-resonance condition

ω(jkc) + jωc ̸= 0, (4.1.22)

in the sense that the pair (jkc,−jωc) does not fulfill the dispersion relation. Then, for every
δ > 0 and ψ ∈ L2(R)6 there exists φ ∈ domΛ with ∥Λ(jkc, jωc)φ− ψ∥L2 < δ.

Proof. Since χ(t) = χ(t) we have ϵ(ω) = ϵ(−ω) for all ω ∈ R, from which it easily follows
that Λ(jkc, jωc)∗ = −Λ(jkc,−jωc). Now (4.1.22) yields

{0} = kerΛ(jkc,−jωc) = kerΛ(jkc, jωc)∗ =
(
ranΛ(jkc, jωc)

)⊥
by Lemma 4.1.2. Thus, the range of Λ(jkc, jωc) is dense in L2(R)6, which proves the
claim.

By an appropriate choice of φ2 we can therefore assume that the f2-residual R̂es(Uε; f2) is
formally of order O(ε2), provided that the point (−2kc, 2ωc) does not lie on any dispersion
curve, i.e., (4.1.22) holds for j = 2. To make it even smaller, we expand the nonlinear terms
up to order O(ε2), using (4.1.19) and Â∂X2A(K) = 1

2 iKÂ
2(K), and find

−iΩ2N̂
(2)(Ψ1,Ψ1) = −iε2ωcÂ2

1(K2)χ̌(2)(ωc, ωc)Q(φ1, φ1)f2
− iε2cgK2Â2

1(K2) (1 + ωc(∂1 + ∂2))χ̌(2)(ωc, ωc)Q(φ1, φ1)f2 +O(ε3).

To compensate these higher-order terms, Uε must be extended by an additional correction.
This can be done by replacing Ψ2 with Ψ2,1 + εΨ2,2, where

Ψ2,j(T,X2, X3; t, x1, x2) = εA2,j(T,X2, X3)φ2,j(x1)e2 (j ∈ {1, 2}). (4.1.23)

After setting A2,1 = A2
1, A2,2 = −i∂X2A

2
1 and using the expansion Λ(k,Ω2) = Λ(2kc, 2ωc)−

iεcgK2J(2ωc) + iεK2S2 +O(ε2) from (4.1.15), the f2-residual (4.1.20) takes the form

R̂es(Uε; f2) = Fx2→k
[
(∂tM(∂t) +A)(εΨ2,1 + ε2Ψ2,2) + ∂tN

(2)(Ψ1,Ψ1)
]

= Λ(2kc + εK2, Ω2)(εΨ̂2,1 + ε2Ψ̂2,2)− iΩ2N̂
(2)(Ψ1,Ψ1) +O(ε3)

= εÂ2
1(K2)

[
Λ(2kc, 2ωc)φ2,1 − 2iωcχ̌

(2)(ωc, ωc)Q(φ1, φ1)
]
f2

+ ε2K2Â2
1(K2)

[
Λ(2kc, 2ωc)φ2,2 − (icgJ(2ωc)− iS2)φ2,1
− icg(1 + ωc(∂1 + ∂2))χ̌(2)(ωc, ωc)Q(φ1, φ1)

]
f2 +O(ε3).

We can apply the previous argument recursively and find φ2,1, φ2,2 such that the f2-residual
is of order O(ε3); indeed, this process can be repeated to arbitrary order, since it only
depends on the same non-resonance condition. The case for the f−2-residual is conjugate.
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Optical rectification

The case of the f0-residual is special since the resonance ω(0) = 0 in the dispersion relation
cannot be avoided. Thus, we cannot use Proposition 4.1.3. Nonetheless, this case can be
treated similarly.

Since Ω0 = 0 + εK0, the nonlinear f0-terms given by the interaction of Ψ1 with Ψ−1,

Fx2→k
[
∂tN

(2)(Ψ1,Ψ−1)
]
= −iΩ0N̂

(2)(Ψ1,Ψ−1) +O(ε3)

= −iε2cgK0 |̂A1|2χ̌(2)(ωc,−ωc)Q(φ1, φ−1)f0 +O(ε3),

are of order O(ε2), suggesting that a correction of the same order might be sufficient to
compensate these terms. However, it becomes apparent below that this is not so. Instead,
similar to the f2-correction, we replace εΨ0 with εΨ0,1 + ε2Ψ0,2, where

Ψ0,j(T,X2, X3; t, x1, x2) = εA0,j(T,X2, X3)φ0,j(x1)e0 (j ∈ {1, 2}). (4.1.24)

Setting A0,1 = |A1|2, A0,2 = ∂X2 |A1|2 and using again the expansion (4.1.15), the f0-residual
amounts to

R̂es(Uε; f0) = Fx2→k
[
(∂tM(∂t) +A)(εΨ0,1 + ε2Ψ0,2) + 2∂t(N (2)(Ψ1,Ψ−1)

]
= ε

(
Λ(0, 0)− iεK0(cgJ(0)− S2)

)
Ψ̂0,1 + ε2Λ(0, 0)Ψ̂0,2

− 2iεcgK0N̂
(2)(Ψ1,Ψ−1) +O(ε3)

= ε|̂A1|2(K0)
[
Λ(0, 0)φ0,1

]
f0

+ ε2iK0 |̂A1|2(K0)
[
Λ(0, 0)φ0,2 − (cgJ(0)− S2)φ0,1 − cgψ0

]
f0 +O(ε3),

(4.1.25)
where ψ0 = 2χ̌(2)(ωc,−ωc)Q(φ1, φ−1) = χ̌(2)(ωc,−ωc)Q(φ1, φ−1) + χ̌(2)(−ωc, ωc)Q(φ−1, φ1).
Equating the brackets to zero results in the two equationsΛ(0, 0)φ0,1 = 0

Λ(0, 0)φ0,2 =
(
cgJ(0)− S2

)
φ0,1 + cgψ0

which we want to solve recursively. First, from Λ(0, 0) = ∂1S1 we obtain

kerΛ(0, 0) = {v ∈ L2(R)6 : v2 = v3 = v5 = v6 = 0},

and Λ(0, 0)∗ = −Λ(0, 0) implies further

ranΛ(0, 0) = (kerΛ(0, 0)∗)⊥ = {w ∈ L2(R)6 : w1 = w4 = 0}.

Setting v = φ0,1 ∈ kerΛ(0, 0) we have

(cgJ(0)− S2)v =
(
cgϵ(0)v1, 0,−v4, cgµ(0)v4, 0, v1

)
.

Thus, assuming ϵ(0), µ(0) are invertible, v1, v4 can be adjusted in such a way that

w :=
(
cgJ(0)− S2

)
φ0,1 + cgψ0 ∈ ranΛ(0, 0).
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Consequently, we find φ0,2 ∈ dom(Λ) with ∥Λ(0, 0)φ0,2 − w∥L2 = O(ε), obtaining that the
f0-residual (4.1.25) is O(ε3)-small.

Remark 4.1.4. As mentioned, the derivation just shown only works if ϵ(0), µ(0) are invertible.
In some cases however, this cannot be expected. Notably, this is the case if the accretivity
condition

Re z > −ν0 =⇒ Re zM(z) ≥ c > 0, M(z) =
(
ϵ(z) 0
0 µ(z)

)
is imposed, since then M(z) must have a singularity in z = 0, so ϵ(0), µ(0) are not even
well-defined. (Recall that this is a sufficient condition for exponential stability of the linear
system, cf. Example 3.3.2.) Still, recalling that

Λ(k, ω) = −iωM(−iω) + S1∂x1 + ikS2,

it turns out that Λ(0, 0) is in fact boundedly invertible; this follows since S1∂x1 is skew-
selfadjoint and

Re(−iωM(−iω))ω=0 = Re(zM(z))z=0 > 0

by the accretivity assumption. Thus kerΛ(0, 0)∗ = kerΛ(0, 0) = {0} and we have φ0,1 = 0.
Then, (4.1.25) simplifies to

Fx2→k
[
(∂tM(∂t) +A)(εΨ0,1 + ε2Ψ0,2) + ∂t(N (2)(Ψ1,Ψ−1) +N (2)(Ψ−1,Ψ1))

]
= ε2iK0 |̂A1|2(K0)

[
Λ(0, 0)φ0,2 − cgψ0

]
f0 +O(ε3).

In this case, the equation Λ(0, 0)φ0,2 = cgψ0 is solvable in φ0,2 for all right-hand sides
cgψ0 ∈ L2(R)6. ♢

The amplitude equation

To determine the amplitude A = A1 we now turn to the f1- and f−1-terms of the residual.
We start with the main contribution to the residual (the sum of terms of lowest ε-order),
which is the linear part of the Maxwell system applied to Ψ1. In Fourier space we consider
only the f1-terms (since the setting for f−1 is conjugate). By (4.1.14) and the expansion in
(4.1.16), these are given by

Fx2→k
[(
∂tM(∂t) +A)Ψ1

]
= Λ(k,Ω1)Ψ̂1 + ε2J(Ω1)∂T Ψ̂1 + ε2S3∂X3Ψ̂1

= Λ(k, ω(k))Ψ̂1 + ε2
[(
σ + 1

2 iω
′′(kc)K2

1 + ∂T
)
J(ωc) + S3∂X3

]
Ψ̂1 +O(ε3). (4.1.26)

Since Λ(k, ω(k))Ψ̂1 = Â1(K1)Λ(k, ω(k))φ1f1, this term vanishes if φ1 = Φk ∈ kerΛ(k, ω(k))
(by Lemma 4.1.2, Φk is unique up to scaling). Alternatively, we may replace φ1 with an
approximation of Φ(k, ·) := Φk given by the first terms in the expansion

Φ(k, ·) = Φkc + εK1(∂1Φ)(kc, ·) + 1
2ε

2K2
1 (∂21Φ)(kc, ·) +O(ε3).
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This leads to a further refinement of our ansatz:

Uε = Ψ1,0 + εΨ1,1 + ε2Ψ1,2

+Ψ−1,0 + εΨ−1,1 + ε2Ψ−1,2

+ εΨ2,1 + ε2Ψ2,2

+ εΨ−2,1 + ε2Ψ−2,2

+ εΨ0,1 + ε2Ψ0,2

(4.1.27)

where Ψj,ℓ are again of the form

Ψj,ℓ(t, x) = Ψj,ℓ(T,X2, X3; t, x1, x2) = εAj,ℓ(T,X2, X3)φj,ℓ(x1)ej .

Setting A1,0 = A, A1,1 = i∂X2A, A1,2 = −∂2X2
A, and Φ1,0 = Φkc , Φ1,1 = (∂1Φ)(kc, ·),

Φ1,2 = 1
2(∂21Φ)(kc, ·), we have thus Fx2→k

[
Ψ1,0 + εΨ1,1 + ε2Ψ1,2

]
= Â(K1)Φkf1 + O(ε3).

Using (4.1.26), the linear part of the f1-residual is then

R̂es(lin)(Uε; f1) := Fx2→k
[(
∂tM(∂t) +A)(Ψ1,0 + εΨ1,1 + ε2Ψ1,2)

]
= ε2

[(
σ + 1

2 iω
′′(kc)K2

1 + ∂T
)
J(ωc) + S3∂X3

]
Ψ̂1,0 +O(ε3)

= ε2
[(
σ + 1

2 iω
′′(kc)K2

1 + ∂T
)
Â(K1)J(ωc)Φk + ∂X3Â(K1)S3Φk

]
f1 +O(ε3).

Further f1-terms are generated by nonlinear interaction of e1 with e0 and of e2 with e−1.
Recalling that A0,1 = |A|2 and A2,1 = A2 and using (4.1.19), we see that these terms are
given by

Fx2→k

[
∂t

∑
j∈{0,2}

(
N (2)(Ψ1−j,0, εΨj,1) +N (2)(εΨj,1,Ψ1−j,0)

)]
= −2iΩ1

(
N̂ (2)(Ψ1,0, εΨ0,1) + N̂ (2)(Ψ−1,0, εΨ2,1)

)
+O(ε3)

= −ε2iωc |̂A|2A(K1)ψ1f1 +O(ε3)

where
ψ1 := 2χ̌(2)(ωc, 0)Q(φ1,0, φ0,1) + 2χ̌(2)(−ωc, 2ωc)Q(φ−1,0, φ2,1).

Now the smallness of R̂es(Uε; f1) = R̂es(lin)(Uε; f1) + R̂es(nl)(Uε; f1) is obtained in two steps.
First, we consider a finite-dimensional reduction. Fix Φ∗

k ∈ kerΛ(k, ω(k))∗ and define2

α := 1
2 iω

′′(kc), β :=
⟨S3Φk,Φ∗

k⟩L2

⟨J(ωc)Φk,Φ∗
k⟩L2

, γ :=
iωc⟨ψ1,Φ∗

k⟩L2

⟨J(ωc)Φk,Φ∗
k⟩L2

.

Then, projecting Res(Uε; f1) onto Φ∗
k and equating the ε2-terms to zero yields

∂T Â+ σÂ+ αK2
1 Â+ β∂X3Â− γ |̂A|2A = 0. (4.1.28)

2provided of course that ⟨J(ωc)Φk,Φ∗
k⟩L2 ̸= 0, which we will assume throughout. Recalling that J(ω) =

M0 + χ̌(ω) + ωχ̌′(ω), this condition depends on the function χ̌ as much as on the frequency range of ωc.
Multiplying instead (4.1.28) with ⟨J(ωc)Φk,Φ∗

k⟩L2 and then setting it to zero, the amplitude equation, in
view of β = 0, trivially yields A = 0.
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In fact, since
(S3v) · w = v5w1 − v4w2 − v2w4 + v1w5,

and since the linear modes are either transverse-magnetic or transverse-electric, for v := Φk,
w := Φ∗

k we have

either v3 = v4 = v5 = w3 = w4 = w5 = 0 or v1 = v2 = v6 = w1 = w2 = w6 = 0.

In each case it follows that (S3v) · w ≡ 0, which implies

β = 0.

Thus, after taking the inverse Fourier transform, (4.1.28) reduces to the Ginzburg-Landau
equation

∂TA+ σA− α∂2X2A− γ|A|2A = 0. (4.1.29)

Remark 4.1.5. We note that by the assumptions (D1), (D2) on the dispersion relation,
Reω′′(kc) is small and Imω′′(kc) < 0, thus

Reα = 1
2 Re iω′′(kc) = −1

2 Imω′′(kc) > 0

and Imα is small. By Theorem 2.2.2, equation (4.1.29) admits solutions A which are small
in H1

−ν(R, Hs(R2)), where s > 1, ν ∈ (0, σ). ♢

Suppose subsequently that A solves (4.1.29). Then, by construction, R̂es(Uε; f1) is O(ε3)-
small in kerΛ(k, ω(k))∗. In order to make the residual small on the whole space, we extend
the ansatz Uε by a final correction ε2Ψ1,c + ε2Ψ−1,c, where Ψ−1,c = Ψ1,c and

Ψ1,c(T,X2, X3; t, x1, x2) = −ε∂X3A(T,X2, X3)φ1,c(x1)e1 − ε|A|2A(T,X2, X3)ψ1,c(x1)e1.
(4.1.30)

This O(ε2)-correction only changes the linear part R̂es(Uε; f1) of the f1-residual; analogous
to the above we have

R̂es(Uε; f1) = ε2
[(
σ + 1

2 iω
′′(kc)K2

1 + ∂T
)
Â(K1)J(ωc)Φk + ∂X3Â(K1)S3Φk

]
f1

+Λ(k, ω(k))Ψ1,c + R̂es(nl)(Uε; f1) +O(ε3).

Now using (4.1.28) and β = 0, we may replace
(
σ+ 1

2 iω
′′(kc)K2

1 + ∂T
)
Â(K1) by γ |̂A|2A(K1).

Hence, the above simplifies to

R̂es(Uε; f1) = ε2 |̂A|2A(K1)
[
γJ(ωc)Φk − iωcψ1 −Λ(k, ω(k))ψ1,c

]
f1

+ ε2∂X3Â(K1)
[
S3Φk −Λ(k, ω(k))φ1,c

]
f1 +O(ε3),

and the smallness requirement leads to the two equations

Λ(k, ω(k))ψ1,c = γJ(ωc)Φk − iωcψ1

Λ(k, ω(k))φ1,c = S3Φk.

But now the fact that ⟨γJ(ωc)Φk − iωcψ1,Φ∗
k⟩ = ⟨S3Φk,Φ∗

k⟩ = 0 shows that the right-hand
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sides in this system both lie in ker(Λ(k, ω(k))∗)⊥ = ran(Λ(k, ω(k))). Consequently, we find
φ1,c, ψ1,c ∈ domΛ such that

Λ(k, ω(k))ψ1,c = γJ(ωc)Φk − iωcψ1 +O(ε)
Λ(k, ω(k))φ1,c = S3Φk +O(ε),

yielding R̂es(Uε; f1) = O(ε3).

Summary

Starting with a slowly varying amplitude modulating a linear 2D-mode in Fourier space, we
have shown that, imposing non-resonance conditions on the dispersion curve, corrections
can be made in such a way that the residual R̂es(Uε) is overall (formally) of order O(ε3),
respectively Res(Uε) = O(ε4). To summarize, our final and corrected ansatz is

Uε = (Ψ1,0 + εΨ1,1 + ε2Ψ1,2) + (Ψ−1,0 + εΨ−1,1 + ε2Ψ−1,2) + (ε2Ψ1,c + ε2Ψ−1,c)
+ (εΨ2,1 + ε2Ψ2,2) + (εΨ−2,1 + ε2Ψ−2,2)
+ (εΨ0,1 + ε2Ψ0,2).

(4.1.31)

Here the symmetry Ψ−i,j = Ψi,j holds, and with

T = ε2t, X2 = ε(x2 − cgt), X3 = ε2x3,

the individual terms in the parentheses are given by

• The main term (approximation of a modulated 2D-mode):

(Ψ1,0 + εΨ1,1 + ε2Ψ1,2)(t, x) = εA(T,X2, X3) Φkc(x1) ei(kcx2−ωct) +O(ε3),

where Φkc ∈ kerΛ(kc, ω(kc)) and A is a solution of (4.1.29).

• The correction (4.1.30) on (kerΛ(k, ω(k)))⊥:

ε2Ψ1,c(t, x) = ε(∂X3A)(T,X2, X3)φ1,c(x1) ei(kcx2−ωct)

− ε(|A|2A)(T,X2, X3)ψ1,c(x1) ei(kcx2−ωct).

• The correction (4.1.23) due to second-harmonic generation:

εΨ2,1(t, x) = ε2A2(T,X2, X3)φ2,1(x1) e2i(kcx2−ωct)

ε2Ψ2,2(t, x) = iε2(∂X2A
2)(T,X2, X3)φ2,2(x1) e2i(kcx2−ωct).

• The correction (4.1.24) due to optical rectification:

εΨ0,1(t, x) = ε2|A|2(T,X2, X3)φ0,1(x1)
ε2Ψ0,2(t, x) = ε3(∂X2 |A|2)(T,X2, X3)φ0,2(x1).

The profiles φi,j , φ1,c, ψ1,c ∈ L2(R)6 all have exponential decay towards infinity.

83



4.2 Norm estimates for the residual

The aim of this section is to justify the previous formal expansions, showing that under
suitable conditions the higher order terms are indeed small in L2

−ν for some ν > 0.
We focus on convolutions in time involving amplitudes depending on long time scales.

Lemma 4.2.1. Let ν > 0 and let χ ∈ L2
−ν be a causal kernel for which χ̌′ is bounded on the

strip Sν := R+ i[−ν, 0]. Then for all a ∈ H1
−ν(R), ω ∈ R, and δ ∈ (0, 1), the function Jδ

with

Jδ(t) :=
∫
R
χ(τ)eiωτa(δ(t− τ)) dτ − χ̌(ω)a(δt)

fulfills Jδ ∈ L2
−δν with

∥Jδ∥L2
−δν

≤ δ sup
z∈Sν

∣∣χ̌′(z)
∣∣ ∥∥a′∥∥L2

−ν
.

Proof. Recalling that χ̌(ω) =
∫
χ(τ)eiωτ dτ and (Lϱχ)(ξ) = 1√

2π
∫
χ(τ)e−(ϱ+iξ)τ dτ , we have

the correspondence (Lϱχ)(ξ) = 1√
2π χ̌(−(ξ − iϱ)) for ϱ, ξ ∈ R. Together with the convolution

theorem Lϱ(u ∗ v) =
√
2π(Lϱu)(Lϱv), the scaling property Lδϱ[u(δ ·)](δξ) = δ−1Lϱ[u](ξ), and

the derivative rule Lϱ[u′](ξ) = (ϱ+ iξ)Lϱ[u](ξ) we compute

δL−δν [Jδ](δξ) =
√
2πδL−δν [χeiω ·](δξ)L−δν [a(δ ·)](δξ)− δχ̌(ω)L−δν [a(δ ·)](δξ)

= χ̌(ω − δ(ξ + iν))(L−νa)(ξ)− χ̌(ω)(L−νa)(ξ)
=
(
χ̌(ω − δ(ξ + iν))− χ̌(ω)

)
(L−νa)(ξ).

Due to the boundedness of χ̌′ we can estimate this last term by
∣∣(χ̌(ω − δ(ξ + iν))− χ̌(ω)

)
(L−νa)(ξ)

∣∣ ≤ sup
λ∈[0,1]

∣∣χ̌′(ω − λδ(ξ + iν))
∣∣ |δ(ξ + iν)| |(L−νa)(ξ)|

≤ δ sup
z∈Sν

|χ̌′(z)| |(ξ + iν)(L−νa)(ξ)| .

Setting Cχ := supz∈Sν

∣∣χ̌′(z)
∣∣, with a ∈ H1

−ν and Plancherel’s theorem we conclude

∥Jδ∥L2
−δν

= ∥L−δνJδ∥L2
0
=
∥∥δL−δν [Jδ] (δ ·)

∥∥
L2
0
≤ δ Cχ

∥∥(ξ + iν)(L−νa)
∥∥
L2
0

= δ Cχ

∥∥L−ν [a′]
∥∥
L2
0

= δ Cχ∥a′∥L2
−ν
,

which yields the assertion.

Remark 4.2.2. The assumptions can be weakened to χ̌ Lipschitz continuous on the strip Sν

and a ∈ L2
−ν(R,H), in which case we have the estimate

∥Jδ∥L2
−δν

≤ δLχ,ν ∥a∥L2
−ν
,

with Lχ,ν denoting the Lipschitz constant of χ̌ on Sν . ♢

With δ = ε2, Lemma 4.2.1 shows that for functions t 7→ εa(ε2t) changing on the long
time scale T = ε2t, the time convolution with a well-behaved kernel χ can be approximated
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with instantaneous terms up to an error of O(ε3) in L2
−ε2ν(R). To take into account the

remaining long scales X2 = ε(x2 − cgt), X3 = ε2x3, we replace εa(ε2t) by a generic term

Ψj(t, x) = εAj(T,X2, X3)φj(x1)ej(t, x2)

occurring in the ansatz Uε. Here Aj is a polynomial expression in A, Ā and their spatial
derivatives, with A being a solution of the amplitude equation (4.1.29). Recall from Theo-
rem 2.2.2 that for such a solution we may assume A ∈ H1

−ν(R, Hs(R2)) (s ≥ 3). It is easy to
see that due to the scaling dx2 dx3 = ε−3 dX2 dX3 the error

∥χ ∗Ψj − χ̌(jωc)Ψj∥L2
−ε2ν

=
(∫∫∫

|χ ∗Ψj(t, x)− χ̌(jωc)Ψj(t, x)|2 dx2 dx3 e−2ε2νt dt
)1/2

≲ ε3ε−3/2 ∥∂TAj∥L2
−ν

∥φj∥L2

becomes of order O(ε3/2). The terms in Res(Uε) which are not related to time convolution
can be estimated in a similar way, since those are of the form εnΨj with n ≥ 3. For such
terms, dx2 dx3 dt = ε−5 dX2 dX3 dT gives

∥εnΨj∥L2
−ε2ν

≲ εn+1ε−5/2 ∥Aj∥L2
−ν

∥φj∥L2 = O(ε3/2).

Overall we can conclude that

∥Res(Uε)∥L2
−ε2ν

= O(ε3/2),

which will turn out to be sufficient for a rigorous approximation.

4.3 Small solutions of the error equation

As mentioned in the introduction to this chapter, our ultimate goal is to be able to perform
a fixed-point argument for the error equation on a subset of L2

−ν(R,H) for some ν > 0.
This includes the exponential stability of the linearized equation and the smallness of the
Lipschitz constant of the nonlinearity on small sets in L2

−ν(R,H).
As before, we consider a Maxwell system

(
∂tM(∂t) +A)U + ∂tN

(2)(U,U) = 0 (t > 0),

with a quadratic and (w.l.o.g.) symmetric nonlinearity N (2) of the form

N (2)(u, v)(t) =
∫∫

χ(2)(t− τ1, t− τ2)Q(u(τ1), v(τ2)) dτ1 dτ2.

Recall from (4.0.3) that the error equation takes the form

(
∂tMε(∂t) +A)R+ Fε(R) + Res(Uε) = 0 (t > 0),

with Mε(∂t)R =M(∂t)R + 2N (2)(R,Uε), Fε(R) = F (R) = N (2)(R,R), and Uε is the ansatz
established in (4.1.31). In order to put the error equation in the framework of evolutionary
equations, we make a few observations. We first note that Mε need not be a linear material
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law in the strict sense of the definition. For even if the kernel χ(2) is causal in each variable
and Q is a bilinear operator in L2(R3)6, writing Q(Uε(τ1), R(τ2)) =: Qε(τ1)R(τ2) gives rise
to

N (2)(Uε, R)(t) =
∫∫

χ(2)(t− τ1, t− τ2)Q(Uε(τ1), R(τ2)) dτ1 dτ2

=
∫ [∫

χ(2)(t− τ1, t− τ2)Qε(τ1) dτ1
]
R(τ2) dτ2

=
∫
κε(t, τ2)R(τ2) dτ2,

with κε(t, τ2) :=
∫
χ(2)(t− τ1, t− τ2)Qε(τ1) dτ1. This non-autonomous convolution operator

cannot be described by a linear material law. However, the contribution of N (2)(Uε, R) can
be viewed as a small Lipschitz perturbation, under some conditions on χ(2) and Uε.

Lemma 4.3.1. Let χ(2) : R2 → R be measurable and causal such that the map κ with
κ(t) =

∫ |χ(2)(t, τ)| dτ fulfills κ ∈ L1
ϱ0(R) for some ϱ0 ∈ R. Let G ∈ L∞(R,B(H)). Then, the

operator
u 7→

∫
R

∫
R
χ(2)(t− τ1, t− τ2)G(τ1)u(τ2) dτ1 dτ2

is causal and bounded on L2
ϱ(R,H) for ϱ > ϱ0.

Proof. The boundedness follows from an estimate completely analogous to those established
previously for Lipschitz maps (cf. Example 2.1.5 (b)):

∥∥∥∥∫
R

∫
R
χ(2)(t− τ1, t− τ2)G(τ1)u(τ2) dτ1 dτ2

∥∥∥∥2
L2
ϱ

≤
∫
R

(∫
R

∫
R
|χ(2)(t− τ1, t− τ2)| ∥G(τ1)∥B(H) ∥u(τ2)∥H dτ1 dτ2

)2
e−2ϱt dt

≤ ∥G∥2L∞ ∥κ∥L1
ϱ0

∫
R

∫
R
κ(t− τ2)e−ϱ0(t−τ2) e−2(ϱ−ϱ0)(t−τ2)︸ ︷︷ ︸

≤1

dt ∥u(τ2)∥2H e−2ϱτ2 dτ2

≤ ∥G∥2L∞ ∥κ∥2L1
ϱ0
∥u∥2L2

ϱ
.

The causality is obvious.

Consider again a generic term Ψj(t, x) = εAj(T,X2, X3)φj(x1)ej(t, x2) in the expression
for Uε(t, x). Assume that Aj = Aj(T,X2, X3) is bounded as a function A ∈ L∞(R3), and
that φj ∈ L∞(R)6. Then the map

G(τ) := Q(ε−1Ψj(τ), · )

fulfills G ∈ L∞(R,B(L2(R3)6)), and under suitable decay assumptions on χ(2), Lemma 4.3.1
yields the boundedness of the operator

R 7→ ε−1N (2)(Ψj , R) =
∫∫

χ(2)(· − τ1, · − τ2)Q(ε−1Ψj(τ1), R(τ2)) dτ1 dτ2

on ⋃ϱ>ϱ0 L
2
ϱ(R, L2(R3)6). By linearity, the operator R 7→ ε−1N (2)(Uε, R) is also bounded,

showing that
∂tMε(∂t) = ∂tM(∂t) +O(ε), 0 < ε≪ 1,
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in B(L2
ϱ(R, L2(R3)6)) for ϱ > ϱ0. In particular, taking ϱ0 = −ν0 < 0 we can conclude the

following.

Lemma 4.3.2. Let χ(2) be measurable and causal, with
∫
R|χ(2)(·, τ)|dτ ∈ L1

−ν0(R), and let
Uε be a uniformly bounded ansatz such that Res(Uε) = o(ε) in L2

−ν(R, L2(R3)6) for some
ν > 0. Then, the linearized error equation is exponentially stable for small ε ≪ 1 if the
original linearized Maxwell system is exponentially stable.

What remains is to perform the fixed-point argument for the nonlinear error equation. To
this end, the nonlinearity must be established as a mapping on a small and closed space
W−ν ⊆ L2

−ν(R,H), H = L2(R3)6. We can formulate our main approximation result.

Theorem 4.3.3 (Justification of the Ginzburg–Landau approximation for fully nonlocal
quadratic nonlinearities). Let ϵ, µ be (scalar) linear material laws satisfying the following.

1. There exists ν0 > 0 and c > 0 such that CRe>−ν0 ∖ (dom(ϵ) ∩ dom(µ)) is discrete and

Re z > −ν0 =⇒ Re zϵ(z),Re zµ(z) ≥ c

for all z ∈ dom(ϵ)∩ dom(µ). In particular, the linearized Maxwell system is well-posed
and exponentially stable.

2. ϵ, µ admit dispersion curves satisfying (D1) and (D2). Hence, the system admits a
family of linear (TM) or (TE) surface modes.

Let N (2) be a quadratic nonlinearity of Volterra type,

N (2)(U, V )(t) =
∫∫

χ(2)(τ1, τ2)Q(U(t− τ1), V (t− τ2)) dτ1 dτ2

with Q : H2 → H bilinear, suppχ(2) ⊆ (0,∞)2, and κ := (∂1 + ∂2)χ(2) satisfying the
integrability conditions of Lemma 4.3.1 and Lemma 2.3.1 with ϱκ = −ν0, i.e.,∫

R

∫
R

∥∥κ(τ1, τ2)∥∥ eν0(τ1+τ2) dτ1 dτ2 <∞ (4.3.1)

sup
τ1,τ2∈R

∫
R

∥∥κ(t− τ1, t− τ2)
∥∥ eν0(t−τ1)eν0(t−τ2) dt <∞. (4.3.2)

Finally, let Uε be an ansatz of the form (4.1.31), i.e.,

Uε(t, x) = εA(ε2t, ε(x2 − cgt), ε2x3) Φ(x1) ei(kcx2−ωct) + c.c.+O(ε2),

such that Uε is uniformly bounded and ∥Res(Uε)∥L2
−ε2ν

= O(ε3/2) for small ε > 0. Then,
there exist ε0 > 0 such that for all ε ∈ (0, ε0), ν ∈ (0, ν0) the following holds: for small data
g ∈ L2

−ε2ν(R,H)2, supp g ⊆ [0,∞), ∥g∥L2
−ε2ν

≲ ε, the error equation (in evolutionary form)

(∂tMε(∂t) +A)R+ F (R) + Res(Uε) = g,

whereMε(∂t)R =M(∂t)R+2N (2)(R,Uε) and F (R) = ∂tN
(2)(R,R), admits a unique solution

R ∈ L2
−ε2ν(R,H)2 with ∥R∥L2

−ε2ν
≲ ε.
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Proof. Since Res(Uε) = o(ε) in L2
−ε2ν(R,H)2, the exponential stability of the linearized

Maxwell system implies by Lemma 4.3.2 that 2∂tN (2)(Uε, R) is small in L2
−ε2ν(R,H)2 and

that the linearly perturbed error equation

(∂tM(∂t)R+A)R = g − Res(Uε)− 2∂tN (2)(Uε, R)

is again exponential stable for small ε > 0. The conditions imposed on F establish the local
Lipschitz estimate

∥F (U)− F (V )∥L2
−ε2ν

≤ d
(∥U∥L2

−ε2ν
+ ∥V ∥L2

−ε2ν

)∥U − V ∥L2
−ε2ν

with d > 0, see Lemma 2.3.1 and the subsequent comments. The statement follows by a
fixed-point argument as in Theorem 2.3.2.

Remark 4.3.4. Note that to achieve Res(Uε) = O(ε3/2) we have to impose at least Lipschitz
continuity of ϵ, µ on a strip {z ∈ dom(ϵ) ∩ dom(µ) : Re z ∈ (−ν0, 0)}, cf. Lemma 4.2.1,
Remark 4.2.2. ♢

4.4 Comments

It is reasonable, to some extent, to compare the approximation result in the preceding section
to that in [SU03] dealing with electric fields in optical fiber. There, nonlinear Maxwell’s
equations are considered, in the form of the wave equation

∂2tE = ∂2xE − ∂2t Pel(E)

for the E-field in one spatial dimension, featuring materials with continuous memory, modeled
by a cubic-quintic electric polarization

P (E)(t) =
∫
χ(1)(τ)E(t− τ) dτ

+ ε
∫
χ(3)(τ)|E(t− τ)|2E(t− τ) dτ

+
∫
χ(5)(τ)|E(t− τ)|4E(t− τ) dτ,

and where χ(1), χ(3), χ(5) are susceptibilities of a generalized Lorentz-type analogous to
the model discussed in Chapter 5. A pair of coupled-mode equations is derived for the
amplitudes of an ansatz consisting of right and left travelling wavepackets, which is then
simplified (assuming a spatial localization) to a single cubic-quintic Ginzburg–Landau
equation. Families of pulse solutions for this equation are used to construct the wavepacket
approximation.

The justification result in [SU03] (Theorems 2.8 and 2.9) is similar in spirit to Theorem 4.3.3,
albeit with a slightly different scaling: For an ansatz of the order ε1/2 and smallness
assumptions on the initial data, one obtains the error bound

∥R(t)∥Hk(R3) ≲ ε1/2e−bε2t, t ≥ 0,
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for fixed k ≥ 1 and for some b > 0, The method for obtaining this justification is to convert
the Maxwell equation into an extended system without memory, made possible by the
assumption on the susceptibilities.

Interface effects and centrosymmetric media

We want to highlight another difference between the result in [SU03] and Theorem 4.3.3,
that lies in the assumptions on the physical setting. In [SU03], the cubic-quintic electric
polarization, in particular, the absence of nonlinearities of even order, is a consequence
of inversion symmetry imposed on the underlying lattice structure of the material (cf.
Figure 4.3): Shifting the origin to the center of symmetry, the material structure looks
the same under the inversion x 7→ −x, which means the material response to the field −E
(at the point −x) is the same as the response to the field E (at the point x), but modulo
the inversion itself. Consequently, the polarization must commute with this inversion, i.e.,
P (−E) = −P (E). Assuming that the polarization is given as a sum P =∑

n≥1 P
(n), with

o

−E

E

Figure 4.3: Lattice with inversion symmetry around a point o.

P (n) being a tensor of order n− 1, this means that under inversion symmetry, the even-order
polarizations P (2k) (k ∈ N) must vanish identically. Thus, the lowest-order nonlinearity in
the Maxwell system is cubic, and this leads to a main cubic nonlinearity, and otherwise small
nonlinear terms, in the error equation. In turn, this makes the general method in [KSM92]
applicable, see [SU03, Lemma A.4].
In contrast, the assumption of inversion symmetry is generally not valid in our case, as

this symmetry is broken at the interface. The resulting nonlinear effect can be modeled by
an effective quadratic polarization and is expected to be concentrated within a thin region
of the interface (cf. [Boy08, 2.11], [She89]).

It might be reasonable to assume an overall smallness on this localized interface polarization,
while assuming otherwise centrosymmetric, nonlinear media. In this case, the result in
Theorem 4.3.3 can be improved as follows. Recall that ε was introduced in (4.1.5) as a
perturbation parameter featured in the linear material relations. Now suppose additionally
that ε is featured in the nonlinear susceptibility as

∂tP
(2)(U)(t) = εα

∫∫
χ(2)(τ1, τ2)Q(U(t− τ1), U(t− τ2)) dτ1 dτ2 (4.4.1)

with α > 0 and a suitably regular kernel χ(2) (in the sense of the integrability conditions in
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Theorem 4.3.3 and the assumption suppκ ⊆ (0,∞)2). This smallness assumption leads to
a smaller Lipschitz constant (from O(ε) to o(ε)) of the nonlinearity over balls with small
radius in L2

−ε2ν(R,H). Under similar assumptions as in Theorem 4.3.3, this provides the
improved estimate

∥R∥L2
−ε2ν

≲ ε1+δ

with δ > 0. In this respect, this estimate is more in line with the results established in
[DST22], where the lowest-order nonlinearities are of cubic Kerr-type. However, recalling
that the ansatz Uε is itself exponentially localized around the interface, it is not clear if the
smallness assumption in (4.4.1) can be made.
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5 The Drude–Lorentz model of electric
permittivity

In this part we consider a variant of the Lorentz oscillator model describing the material
response of bound electrons to an electric field, and we want to verify the assumptions in
Definition 3.3.8.
The basic model for a dipole (cf. [Fox10, §2.2.1]) relies on two assumptions: First, that

the polarization1 P is proportional to the driving force, which in turn is a multiple of the
internal field E. Second, regarding the bound electrons as a spring-damper system, that this
field obeys the equation of a damped oscillator, i.e., an equation of the form

∂2t P + γ∂tP + ω2
0P = αE.

By Newton’s law of motion, ∂2t P is related to the acceleration, γ∂tP to the damping, ω2
0P is

proportional to the restoring force of the “spring”, and αE is the forcing term. After taking
the Fourier–Laplace transform we obtain that

P = χL(∂t)E,

with the material law χL, the Lorentz susceptibility, which in frequency space is given by

χL(z) =
α

ω2
0 + γz + z2

.

The macroscopic model of χ is usually more involved and consists in a finite sum of such
terms, or even more generally,

χ(z) =
n∑

j=0

αj + βjz

ω2
0,j + γjz + z2

. (5.0.1)

The parameters are determined in order to fit the experimental data. A similar model is
employed in [SU03] for nonlinear Maxwell equations in an optical fiber. If the parameters
ω2
0,j and γj are real and positive, the corresponding operator χ(∂t) acts by convolution of a

sum of exponentially damped sine and cosine functions with resonant frequencies ω0,j ; this
becomes clear after recalling the following identities for the Laplace transform,

f(t) = θ(t)e−γt sin(ωt) =⇒
∫
R
f(t)e−zt dt = ω

(z + γ)2 + ω2

g(t) = θ(t)e−γt cos(ωt) =⇒
∫
R
f(t)e−zt dt = ω + z

(z + γ)2 + ω2

1or electron displacement, or dipole moment. All these notions differ only by constant factors, like positive
or negative charge, volume, etc.
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for Re z > −γ and ω, γ > 0, where θ(t) = 1(0,∞)(t) denotes the Heaviside step function.

5.1 Accretivity

We take for simplicity n = 1 in (5.0.1) and consider the material laws χ, ϵ given by

χ(z) = α+ βz

ω2
0 + γz + z2

, ϵ(z) = ϵ0 + χ(z). (5.1.1)

We want to check the positivity conditions of Definition 3.3.8 on half-planes containing the
imaginary axis.
Remark 5.1.1. Setting ω0 = β = 0 one obtains the Drude model, or free electron model, as a
special case of (5.1.1). Here σ(z) = α

z+γ takes the role of a frequency-dependent conductivity.
Since lim|z|→∞ σ(z) = 0, the positivity condition Re zϵ(z) ≥ c > 0 on a right half-plane is not
satisfied. Even when writing instead ϵ(z) = ϵ0 + α

γ

(1
z − 1

z+γ

)
=:M(z) + z−1 α

γ with a strictly
positive “conductivity” α

γ , the material law M(z) = ϵ0 − α
γ(z+γ) can satisfy ReM(z) ≥ c > 0

only for Re z ≥ ϱ with ϱ > 0 large enough. As such, none of the conditions in Definition 3.3.8
are fulfilled by this model. ♢

We will assume that ω0 ̸= 0. In this case, the zeros of the denominator are

z =

−γ
2 ± i

2

√
4ω2

0 − γ2, if 2ω0 > γ

−γ
2 ± 1

2

√
γ2 − 4ω2

0, if 2ω0 ≤ γ,

and are contained in CRe<0. Thus, the susceptibility χ and the permittivity ϵ(z) = ϵ0 + χ(z)
are linear material laws with CRe≥−γ0 ⊆ dom(χ) = dom(ϵ), where

0 < γ0 :=


γ
2 , 2ω0 > γ
γ
2 − 1

2

√
γ2 − 4ω2

0, 2ω0 ≤ γ.
(5.1.2)

Moreover, it is clear that for ϱ > 0 large enough we have Re z > ϱ =⇒ Re ϵ(z) ≥ cRe z > 0,
meaning the theorems in Sections 1.4 and 3.2 regarding well-posedness in ⋃ϱ>ϱ0 L

2
ϱ(R,H) of

the corresponding linear or (Lipschitz-)nonlinear systems are applicable.
If β = 0, then lim|z|→∞(zχ(z)) = 0, thus Re zϵ(z) = Re (ϵ0z + zχ(z)) ≥ c > 0 cannot hold

unless Re z ≥ ϱ for some ϱ > 0. We will thus assume subsequently that α, β, γ, ω0 > 0.

Lemma 5.1.2. Let α, β, γ, ω0 > 0 and suppose that αγ ≥ βω2
0. Then for all δ > 0 there

exist ν1 > 0 and c > 0 such that

∀z ∈ CRe>−ν1 ∖B[0, δ] : Re zϵ(z) ≥ c. (5.1.3)

Proof. With γ0 > 0 defined in (5.1.2), g(ν, ξ) := Re (ν + iξ)χ(ν + iξ) is well-defined and
continuous in (ν, ξ) ∈ R>−γ0 × R. Moreover, we find

g(ν, ξ) = β(ν4 + ξ4) + (2ν2 + αγ − βω2
0)ξ2 + ν(α+ βγ)(ν2 + ξ2 + γν + ω2

0)
(ω2

0 + ν2 − ξ2 + γν)2 + ξ2(2ν + γ)2

and obtain that if ν > 0 and (ν, ξ) is bounded away from (0, 0), then g(ν, ξ) is uniformly posi-
tive, since due to αγ−βω2

0 ≥ 0 it is a sum of strictly positive terms and lim|(ν,ξ)|→∞ g(ν, ξ) = β.
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For ν = 0 we have
g(0, ξ) = βξ4 + (αγ − βω2

0)ξ2
(ω2

0 − ξ2)2 + ξ2γ2
, (5.1.4)

which is uniformly positive for ξ bounded away from (0, 0). Now let δ > 0. By continuity of
the map

ν 7→ inf
ν2+ξ2≥δ2

g(ν, ξ)

there exist ν0 > 0 and c0 > 0 such that g(ν, ξ) ≥ c0 > 0 for all ν ≥ −ν0. Choosing
ν1 ∈ (0,min{ν0, c0∥ϵ0∥−1}), we have

Re zϵ(z) ≥ ϵ0Re z + c0 ≥ c0 − ∥ϵ0∥ν1 =: c > 0

for Re z > −ν1.

Remark 5.1.3. It follows from (5.1.4) above that the condition αγ ≥ βω2
0 is not only sufficient

but also necessary for uniform positivity of Re zϵ(z) on some CRe>−ν1 ; indeed, assuming
otherwise, we find 0 ̸= ξ0 ∈ R such that g(0,±ξ0) = 0, and an interval (−δ, δ) such that
g(0, ξ) = Re(iξϵ(iξ)) < 0. Hence, Re zϵ(z) > 0 does not hold for z ∈ iR∖B[0, δ/2]. ♢

Lemma 5.1.4. Let α, β, γ, ω0 > 0 and suppose that α ≤ βγ. Then there exist ν1 > 0 and
c > 0 such that

∀z ∈ CRe>−ν1 : Re ϵ(z) ≥ c. (5.1.5)

Proof. Since CRe≥0 ⊆ dom(χ) and lim|z|→∞ χ(z) = 0, we know that χ is uniformly bounded
on CRe≥0. With z = ν + iξ, ν ≥ 0 we find

Reχ(ν + iξ) = (βν + βγ − α)ξ2 + βν3 + (α+ βγ)ν2 + (αγ + βω2
0)ν + αω2

0

(ω2
0 + ν2 − ξ2 + γν)2 + ξ2(2ν + γ)2

. (5.1.6)

Together with the non-negativity of the parameters and with βγ − α ≥ 0, this yields
Reχ(ν + iξ) ≥ 0 for ν ≥ 0. Now by continuity of ν 7→ infξ Reχ(ν + iξ) and since ϵ0 ≥ d > 0,
there exists ν1 > 0 and c ∈ (0, d] such that

Re (ϵ0 + χ(ν + iξ)) ≥ c > 0

also for small ν ∈ (−ν1, 0).

We may immediately combine Lemma 5.1.2 and Lemma 5.1.4 to conclude that ϵ(z) =
ϵ0 + χ(z) with χ as in (5.1.1) is of Lorentz-type according to Definition 3.3.8, provided that

ω2
0
γ

≤ α

β
≤ γ (5.1.7)

is satisfied. The disadvantage, however, is that this condition is satisfiable only for ω2
0 ≤ γ2.

This means that the damping of the oscillator must be stronger than the resonant frequency
determining the restoring force. Note that while the leftmost estimate is indeed necessary
(see Remark 5.1.3), positivity of Re ϵ(z) = ϵ0 +Reχ(z) can still be achieved for α/β > γ, for
example by simultaneously choosing α and β small, such that, by uniform boundedness of
χ(z), the positive term ϵ0 dominates.
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In order to remove the restriction ω2
0 ≤ γ2, we can make this last comment (slightly) more

precise by providing a rough estimate of

|χ(ν + iξ)| = ((α+ βν)2 + β2ξ2)1/2(
(ω2

0 + ν2 − ξ2 + γν)2 + ξ2(2ν + γ)2
)1/2 (5.1.8)

in the case of small damping coefficient γ. Specifically, we assume

0 < γ < 1 < ω0, −γ2 ≪ ν ≪ 1, ω2
0β ≤ αγ (5.1.9)

(the last inequality being the accretivity condition of Lemma 5.1.2). Squaring the denominator
in (5.1.8), we find that the minimum of

h(ξ2) = (ω2
0 + ν2 − ξ2 + γν)2 + ξ2(2ν + γ)2

is located at ξ2 = ξ20 := ω2
0 + ν2 − γ

2 , and thus

sup
ξ∈R

|χ(ν + iξ)| ≤ |χ(ν + iξ0)| =
(
(α+ βν)2 + β2(ω2

0 + ν2 − γ
2 )
)1/2(

(γ2 + γν)2 + (ω2
0 + ν2 − γ

2 )(2ν + γ)2
)1/2 .

Now using the assumptions (5.1.9), i.e., the smallness of γ, ν and the bound β ≤ αγ/ω2, the
last expression can be estimated to yield

sup
ξ∈R

|χ(ν + iξ)| ≲ α

ω0γ
+O(|ν|) as ν → 0. (5.1.10)

Thus, we may take
ω2
0
γ

≤ α

β
and α

ω0γ
≪ ϵ0 (5.1.11)

as a plausible replacement for (5.1.7).

5.2 Dispersion relation

Next we turn our attention to the conditions (D1) and (D2) imposed on the dispersion
relation. For this purpose, we consider µ(ω) = µ0 ∈ R and ϵ a permittivity of Lorentz-type
on each side of the interface. Recall from Section 1.3 that with

ϵ±(ω) := ϵ0 +
∫
R
χ±(t)eiωt dt

the dispersion relation was formulated in terms of the angular frequency ω ∈ R+ as

k2 = ω2 ϵ+(ω)ϵ−(ω)
ϵ+(ω) + ϵ−(ω) . (5.2.1)

Recall that the material law ϵ(z) and ϵ±(ω) are related by (neglecting a factor of
√
2π)

ϵ(z = iω) = ϵ±(ω).
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Now if ϵ+(ω), ϵ−(ω) are given by

ϵ±(ω) = ϵ0 +
α± − iβ±ω

ω±
0 − 2iγ±ω − ω2 , ω±

0 , α
±, β±, γ± > 0, (5.2.2)

then for suitable parameters (5.2.1) gives rise to a dispersion curve satisfying (D1) and (D2),
see Figure 5.1.
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Figure 5.1: Numerically computed dispersion curves k 7→ ωj(k) with positive real part
in the transverse-magnetic setting with µ(ω) = µ0 and ϵ+(ω), ϵ−(ω) both
given by (5.2.2), where µ0 = 1 and

ϵ+0 = 1, (ω+
0 )

2 = 11, α+ = 0.5, β+ = 0.025, γ+ = 0.6
ϵ−0 = 1, (ω−

0 )
2 = 3, α− = 0.4, β− = 0.03, γ− = 0.5.

Conditions (D1) and (D2) are satisfied by the green curve. In this example,
the parameters satisfy (5.1.11); otherwise, the choice is arbitrary.

5.3 Comments

The preceding discussion shows that the positivity conditions introduced by permittivities of
Lorentz type (Definition 3.3.8 are, in principle, compatible with the properties (D1), (D2) for
the dispersion relation.

Here we have assumed the non-magnetic setting and a ‘single-oscillator’ model for simplicity.
As a general model is usually determined to fit a curve to experimental measurements (from
the refractive index of the material), and consists of multiple ‘oscillator’ terms, in theory
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there are more degrees of freedom for tuning the desired properties, cf. [SLM17, SLM18].
We make no physical considerations about exact values for the model, nevertheless, we
remark that strict positivity of Re ϵ(z) and Re zϵ(z) for small Re z does not seem to be
compatible with permittivities of metals in particular, as these usually contain a pure Drude
susceptibility term of the form

χD(z) =
σ

z(z + γ)

which can become negative for small values of ω = −iz ∈ R+ (this is responsible for the
reflection in metals at optical frequencies, see [Jac75, §7.5]).
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6 Discussion

We take the opportunity to give a short summary of the results in this thesis and present
some directions for future work.

Summary

In this paper, a functional analytic perspective to evolutionary equations was adapted to
nonlinear Maxwell systems with various types of nonlinear material functions with memory.
We explored known criteria for exponential stability and derived new ones for specific linear
material laws. The emphasis on Volterra-type nonlinearities allowed to extend known criteria
for exponential stability to nonlinear settings for small data.

In the setting of a planar interface and scalar material functions, evanescent surface modes
can be derived explicitly and analytically as solutions of the linearized system. A wavepacket
ansatz can be constructed from these functions using a slowly-varying amplitude. Accounting
for quadratic resonances makes the addition of correction functions necessary; in the end, the
wavepacket is determined by a scalar perturbation parameter (in the critical wavenumbers)
and by a solution of the amplitude equation.

A rigorous justification of the amplitude approximation was performed for a model problem
by showing that the error equation admits a small, exponentially decaying solution. This
was done using the stability results established before, imposing sufficient conditions on the
data (smallness), the material laws (spectral positivity), and the nonlinearity (compatibility).
Under these assumptions, the justification proves the existence and stability of ‘broad’ surface
wavepackets.

Outlook

Apart from the open problems presented in Sections 2.5 and 3.4, the following selected topics
can be of interest.

The non-magnetic setting. While frequency-dependent behavior of the linear magnetization
(permeability) is well known ([LL35]), and surface waves analogous to surface plasmon
polaritons exist in magnetic settings (surface magnon polaritons, [MC19]), the magnetization
is often assumed trivial in nonlinear optics. It is thus desirable to study non-magnetic
settings, or at least weaken the assumptions on µ.
Under the assumption of exponential stability (in the sense of the results in Section 3.3)

for the non-magnetic Maxwell system on the whole domain Ω = R3, a corresponding result to
Theorem 4.3.3 could be formulated, with minimal change (apart from additional regularity
conditions on the nonlinear kernel χ(2) in Example 3.3.23). The (open) problem of deriving
exponential stability on exterior domains was discussed in Section 3.4.
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Another approach would consist in working on a cylindrical domain, with the unbounded
direction being the direction of propagation of the ansatz (the x2-axis) in (4.1.31). In this
case, boundary conditions should be taken into consideration.

Working with(out) exponential stability. If metals are involved the setup, it is known that the
permittivity has a negative real part in a wide range of frequencies, see Section 5.3. Even
without metals, one would like to consider cases in which the uniform accretivity conditions

Re zϵ(z),Re zµ(z) ≥ c > 0

are violated at least in some region of the complex half-plane, hence, where the criteria in
Section 3.3 are not able to yield exponential stability. We can address this issue from two
directions: either work without exponential stability, or try to derive it in another way.

Following the first idea, the existence of small solutions R ∈ L2
ϱ(R,H)2 to the error equation

with ϱ > 0 would still be useful, if ϱ = O(ε2), say ϱ = ε2b. Under the same assumptions of
Theorem 4.3.3, this latter assumption would produce, assuming R is continuous, the estimate

∥R(t)∥L2 ≲ εeε
2bt.

Thus, the error would still remain pointwise of order O(ε) over an interval of length O(1/ε2).
One of the main problems with this approach is that Volterra-type operators can only be used
with a cutoff over an interval [0, T0/ε2] of the same length scale. Applying Theorem 2.3.3
(local existence), the Lipschitz constant of the nonlinearity gets multiplied with a factor of
O(1/ε), and smallness may not be guaranteed.

We expect that the second approach will require other methods than the ones presented in
Section 3.3. For instance, assuming that Re zϵ(z),Re zµ(z) ≥ c > 0 holds only on B(L2(Ω1)6),
i.e., when restricted to one side of the interface. The task is to infer (exponential) decay on
the other side, L2(Ω2)6 from this condition. We suspect that some progress can be made in
this direction using boundary control methods, see [AP19, FM96, KM01, PN07].
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