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5
Abstra
tIn this work, the 
orresponden
e between ray (based on geometri
 opti
s) and wave(based on solutions of Maxwell's equations) des
riptions in a parti
ular type of opti
almi
ro
avities, deformed mi
rodisk 
avities, is studied both in 
ases where it 
an besu

essfully applied and in 
ases where it fails. For many appli
ations of mi
ro
avities,su
h as laser resonators, opti
al modes whi
h have dire
ted far �eld emission and longlife-times are desirable. Unfortunately, it is in general di�
ult to a
hieve both thesegoals simultaneously.A spe
ial deformed mi
rodisk shape that supports long-lived modes with dire
tionalemission is presented in this work. It is a mi
rodisk with an ellipti
al 
ross-se
tion anda wavelength-s
ale �not
h� at the boundary. The fa
t that long-lived modes with dire
-tional emission exist here 
an be understood with a ray model: rays whi
h travel alongthe boundary for a long time (
orresponding to so-
alled �whispering gallery� modes)eventually are s
attered by the not
h and re�e
ted to the opposite 
avity boundary,whi
h a
ts like a lens and 
ollimates the rays in the far �eld. The predi
tions of this raymodel agree well with the far �eld of the opti
al modes. Ellipti
al mi
rodisk 
avities witha not
h have been fabri
ated experimentally by our 
ollaborators in Prof. Dr. Federi
oCapasso's group at Harvard, who used them as resonators for quantum 
as
ade lasers;the ray and wave simulations of the far �eld are 
ompared to the measured far �elds,and good agreement is found as well.Ray models 
an be expe
ted to fail if the wavelength of 
avity modes approa
hes the
avity length s
ale; examples for this failure of ray-wave 
orresponden
e are given in thiswork. One solution for this problem, whi
h allows one to retain the simpli
ity of a raymodel, is to extend the ray des
ription by introdu
ing 
orre
tions to it whi
h are basedon the wave des
ription; these 
orre
tions are the Goos-Hän
hen shift (GHS) and theFresnel �ltering e�e
t. The 
al
ulation of su
h 
orre
tions and their in
lusion in the raydes
ription of deformed mi
rodisk 
avities is a main point of this work; the results of thisextended ray dynami
s are 
ompared to wave 
al
ulations and applied to experimentallymeasurable quantities su
h as far �eld patterns.As the results of the extended ray model s
ale with the ratio of the wavelength 
orre-sponding to 
avity modes, it 
an not only be investigated in opti
al mi
ro
avities, butin mi
rowave 
avities as well. This is 
onvenient, be
ause while the ele
tri
 �eld insidea mi
ro
avity 
an not be measured a

urately with 
urrent te
hniques, this 
an easilybe done in mi
rowave 
avities. Su
h measurements of the GHS in mi
rowave 
avities,whi
h have been performed during a visit to Prof. Dr. Hans-Jürgen Stö
kmann's groupat the University of Marburg, are presented in this work. Beams with di�erent in
omingangles are generated by superposition of the plane waves produ
ed by mi
rowave anten-nas; the resulting beams are then re�e
ted at the 
avity boundary and the GHS 
an bemeasured. The results agree well with numeri
al 
al
ulations.
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1. Introdu
tionOpti
al mi
ro
avities 
on�ne light in three dimensions and have sizes ranging from below1 µm to several hundreds of µm. Light 
on�nement 
an be a
hieved by two basi
me
hanisms. The �rst one is total internal re�e
tion at the 
avity walls; this is used inthree-dimensional (e.g., mi
rospheres [CLB+93℄ and -toroids [IGYM01℄) as well as quasi-two-dimensional (e.g., mi
ro
rystals [BIL+00℄ or mi
rodisks [MLS+92℄) stru
tures. Asmi
rodisk 
avities are studied in this thesis, their properties will be reviewed in moredetail in 
hapter 2. The se
ond 
on�nement me
hanism is based on multiple Bragg-re�e
tions whi
h 
reate a photoni
 band gap. This me
hanism is used in photoni

rystal defe
t 
avities [PLS+99℄ and verti
al-
avity surfa
e-emitting lasers (VCSELs)[IKK88, GBM+96℄.Opti
al mi
ro
avities have a variety of appli
ations. They easily 
an be fabri
ated bysemi
ondu
tor te
hnologies in many di�erent shapes and sizes. Mi
rolasers, whi
h usethem as resonators, have advantages over 
onventional lasers: be
ause the 
avity sizeis relatively small, the spa
ing between its opti
al modes is large, and thus single-modelasing 
an be a
hieved easily. Furthermore, the rate of spontaneous emission into thelasing mode to the rate of spontaneous emission into all modes, the so-
alled β fa
tor[DJ88, RC94℄, is modi�ed by the presen
e of a mi
ro
avity, so that it 
an be near one[UGA+07℄. In this 
ase, only a small ex
itation su�
es to start lasing, whi
h makessu
h devi
es e�
ient. Other appli
ations of opti
al mi
ro
avities are sensors [AKF+05℄,�lters [SHKC02℄, and single-photon devi
es [MIM+00℄ whi
h may be used for quantum
omputing appli
ations or quantum 
ryptography [CCF+10℄. Opti
al mi
ro
avities alsoo�er potential for basi
 resear
h, su
h as the study of light-matter intera
tion in 
avities,the so-
alled �
avity quantum ele
trodynami
s� [RSL+04, WGJ+09℄. One su

essful typeof opti
al mi
ro
avities are deformed mi
rodisks, quasi-two-dimensional 
avities withnon-
ir
ular 
ross-se
tions whi
h 
on�ne light by total internal re�e
tion.One drawba
k is that for most appli
ations, not only long mode lifetimes (whi
hopti
al mi
ro
avities generally 
an provide), but also dire
ted light output from the
avity is desirable. A
hieving this in mi
rodisks in 
ombination with long life times isstill a goal whi
h is a
tively resear
hed. In order to optimize both dire
tional output andmode life times, and, perhaps more importantly, in order to gain physi
al insight into howthese goals are a
hieved in a parti
ular 
avity design, ray-dynami
al simulations havebeen very su

essful. In the regime where the mode wavelengths λ are small 
omparedto the 
avity length s
ale R, one is in the geometri
 opti
s limit of wave opti
s, and 
anstudy the s
attering of light rays and the light output be
ause of refra
tion, whi
h 
anpredi
t the output dire
tionality of opti
al mi
ro
avities a

urately in many 
ases (i.e.,[NS97, WH08, WYY+10℄). However, as opti
al mi
ro
avities are fabri
ated with s
ales
R 
omparable to the wavelength [SGS+10℄, it is 
lear that one is far away from the limit



8 1. Introdu
tionof geometri
 opti
s and ray models are expe
ted to fail. In fa
t, deviations from raypredi
tions have been reported in the past. As one does not want to lose the simpli
ityand physi
al insight of ray models 
ompletely, it suggests itself to improve ray modelsby introdu
ing 
orre
tions derived from the wave des
ription.The dynami
s of light rays trapped by total internal re�e
tion inside a mi
rodisk isequivalent to the dynami
s of a 
lassi
al parti
le moving in a two-dimensional area boundby hard walls; su
h a system is 
alled a �billiard� in nonlinear dynami
s. Billiards oftenshow a phenomenon 
alled 
haos, whi
h manifests itself in a sensitive dependen
e on ini-tial 
onditions. The ray dynami
s in a mi
ro
avity thus also often is 
haoti
, and 
an bestudied using methods from nonlinear dynami
s. The mode equation des
ribing opti
almodes in mi
rodisk 
avities, on the other hand, is equivalent to the time-independentS
hrödinger equation des
ribing the quantum dynami
s inside a billiard, whi
h meansthat the opti
al modes of a mi
rodisk 
avity may be studied using methods from the�eld of quantum 
haos [Stö00, Haa10℄ (whi
h studies the quantum dynami
s of systemswith 
haoti
 
lassi
al dynami
s) and on the other hand provide systems in whi
h pre-di
tions from quantum 
haos may be tested experimentally. This is not unimportant,as model systems for quantum 
haos have been relatively s
ar
e for a long time. Oneimportant question in quantum 
haos is the one of �quantum-
lassi
al 
orresponden
e�,i.e., the question of how features of the 
lassi
al dynami
s are re�e
ted in the quantumproperties of a system. This 
orresponds dire
tly to what is 
alled �ray-wave 
orrespon-den
e� in opti
al mi
ro
avities and is often studied in the so-
alled semi
lassi
al limit,whi
h 
orresponds to the limit of small λ/R in mi
ro
avities. With the possibility offabri
ating 
avities in many sizes down to the s
ale of the wavelength, the merits andlimits of semi
lassi
al approximations 
an be dire
tly investigated. Be
ause opti
al mi-
ro
avities, as opposed to billiards, are inherently open systems, they also provide modelsystems for the study of quantum 
haos in open systems.In this thesis, ray-wave 
orresponden
e in 
avities is investigated both in 
ases whereit is su

essful and in 
ases where it fails. It is the basis of a me
hanism for 
ombininglong mode life-times and dire
tional light output in not
hed ellipti
al mi
ro
avities;there, the output dire
tionality 
an be understood well using a ray model, and ray,wave, and experimental results all agree well. On the other hand, the limits of raymodels are investigated as well; better agreement with wave results is possible fartherinto the wave limit if one used an extended ray dynami
s in
luding wave 
orre
tions.The appli
ation of su
h an extended ray model to deformed mi
rodisk 
avities is themain result of this thesis. While the predi
tions of this extended ray model 
an only betested indire
tly (for example by looking at far �eld emission patterns) in experimentsusing opti
al mi
ro
avities, they 
an be tested in mi
rowave 
avities. Su
h mi
rowaveexperiments are presented as well.Stru
ture of this thesisThis thesis is stru
tured as follows. Chapter 2 introdu
es deformed mi
rodisk 
avities.The ray dynami
s in su
h systems is equivalent to the dynami
s of a 
lassi
al parti
le in



9an (open) billiard; the properties of su
h billiard systems and important results on themfrom nonlinear dynami
s are reviewed in 
hapter 3. Opti
al modes in mi
ro
avities aresolutions of a mode equation, the so-
alled Helmholtz equation, whi
h is dis
ussed in
hapter 4. Chapter 4 also reviews the relation to the �eld of quantum 
haos and therelation of wave solutions to the ray des
ription.Chapter 5 introdu
es a 
avity boundary shape whi
h supports modes with high qual-ity fa
tors and unidire
tional emission. These features are explained by using a raymodel, whi
h shows that the dire
tionality arises from a 
ombination of s
attering anda 
ollimation pro
ess similar to the one a lens performs. In 
hapter 6, the 
onventionalray dynami
s is extended, so that it in
ludes �rst-order wave 
orre
tions. These 
orre
-tions are shown to improve the agreement with wave solutions: they 
an explain wavelo
alization (se
tion 6.4), phase-spa
e shifts of periodi
 orbit positions (se
tion 6.5) andthe formation of periodi
 orbits whi
h are di�erent for 
lo
kwise and 
ounter
lo
kwisepropagating rays (se
tion 6.6.1). Measurements of the wave 
orre
tions in a mi
rowave
avity are presented in 
hapter 7 and shown to agree well with numeri
al 
al
ulations.
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2. Deformed mi
rodisk 
avitiesIn mi
rodisk resonators, light 
on�nement is a
hieved by utilizing total internal re�e
-tion (TIR) at a diele
tri
 interfa
e � light hitting this interfa
e with an angle largerthan the 
riti
al angle for total internal re�e
tion will be 
on�ned inside the diele
tri
material, whereas light hitting the interfa
e with a lower angle will be refra
ted out.Su
h resonators are often realized as planar mi
rodisk resonators (not ne
essarily witha 
ir
ular 
ross-se
tion) and are dis
ussed in the following. The light is 
on�ned bothverti
ally and in the disk plane, as sket
hed in Fig. 2.1; emission mainly takes pla
ein the disk plane. Light 
on�ned by TIR 
an only leak out of the 
avity evanes
ently,whi
h leads to long life-times of opti
al modes.Mi
rodisk resonators 
an be fabri
ated as semi
ondu
tor nanostru
tures [MLS+92,GCN+98, KKPV06℄ (with semi
ondu
tor quantum wells or quantum dots as a gainmedium for laser appli
ations), as 
avities made of polymers with dyes as a gain medium[KJD+95, FSVY97, LLHZ06℄, or as liquid jets of ethanol whi
h are eje
ted from a non-
ir
ular hole [YML+06℄ (whi
h are not very pra
ti
al for appli
ations but ni
e as modelsystems as the deformation 
an be pre
isely tuned). Semi
ondu
tor mi
rodisks aretypi
ally fabri
ated by lithographi
 te
hniques, whi
h allow for pre
ise 
ontrol of boththe boundary shape and the 
avity size. Figure 2.2 shows a typi
al example of a deformedmi
rodisk in both a top-view (showing the deformed boundary shape) and a side-view(showing the pedestal on whi
h the 
avity stands). This 
avity is des
ribed in [SFL+09℄.The radius is ≈ 2µm, and the verti
al extension is about 0.2 µm � the 
avity 
an thus beapproximated as a two-dimensional obje
t (the validity of this assumption is dis
ussed inse
tion 4.1). Refra
tive indi
es for semi
ondu
tor materials are ≈ 3 (i.e. 3.3 for GaAs);polymers have refra
tive indi
es around 1.5, and the value for ethanol used in liquid jetsis around 1.3.If the boundary shape of a diele
tri
 mi
rodisk is given, the refra
tive index of thematerial inside it de�nes the opti
al properties. While it is assumed to be pie
ewise
onstant, it may depend on the mode wavelength; light ampli�
ation (gain) 
an be de-s
ribed by introdu
ing a 
omplex refra
tive index. Its imaginary part then des
ribes gain(or losses, if it is positive). Re
ently, modes for 
avities with negative refra
tion [Ves68℄have been 
al
ulated as well [WUS+10a℄. Throughout this thesis, positive refra
tionwithout gain or loss (i.e. a real, positive refra
tive index) will usually be assumed.The frequen
ies ω of opti
al modes are 
omplex numbers (see se
tion 4.1). The wave-length λ is then given by λ = 2πc/Reω (this is the va
uum wavelength; the wavelengthin the 
avity material is given by λ′ = λ/n if n is the refra
tive index). Instead, thewave ve
tor k = ω/c (also a 
omplex number) 
an be used. The imaginary part of ωis related to the life-time τ of a mode by τ = −1/Imω/2. Both the wavelength λ andthe wave number k are often s
aled to a typi
al 
avity length s
ale R (i.e. the radius
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χ

n2
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χ
η

Figure 2.1.: Light 
on�nement in a mi
rodisk resonator with refra
tive index n2. If thelight is not 
on�ned by TIR, part of it 
an be refra
ted out to the regionwith refra
tive index n1 < n2.

Figure 2.2.: Example of a semi
ondu
tor deformed mi
rodisk (made of GaAs). (a) Topview. (b) Side view. The s
ale bar is 2 µm in both 
ases (Pi
ture 
ourtesyof H. Cao).



13

Figure 2.3.: Left panel: example of a whispering-gallery mode in a mi
rodisk with
ir
ular 
ross-se
tion. Right panel: 
orresponding light ray.of a 
ir
ular 
avity). This use of λ/R or the so-
alled �size parameter� kR allows for
omparison between the properties of 
avities with di�erent sizes. Here, mostly kR willbe used to 
hara
terize modes, but in 
hapter 7, the frequen
y ν = ω/2π will be usedas well.One important parameter for a 
avity mode is the so-
alled quality fa
tor (or Q fa
tor)
Q. Q is de�ned as the ratio between the light intensity inside the 
avity and the energy�ow out of the 
avity, multiplied by the mode frequen
y. One �nds

Q = Reωτ = − Reω
2 Imω

= − Re kR
2 Im kR

. (2.1)The life-time τ of a mode is inversely proportional to the mode line-width∆ω = −2Imω;one 
an thus also write Q = ω/∆ω. Another parameter is the free spe
tral range, thespa
ing between mode frequen
ies; usually, this spa
ing is not 
onstant, but depends onthe frequen
y range one 
onsiders. The free spe
tral range is large for small 
avities,whi
h is desirable be
ause it makes single-mode lasing easy to a
hieve.In one wants to use a mi
rodisk as a resonator for a laser, one needs a 
avity whi
hsupports modes with high Q fa
tors. On the other hand, most laser appli
ations requiredire
ted light output; thus, an opti
al mi
rodisk is most useful for appli
ations if issupports high-Q modes whi
h have dire
tional emission. Unfortunately, in many 
asesthere is a trade-o� between the two properties: if one enhan
es the output dire
tionalityof a disk by variation of some parameter, the Q-fa
tor degrades signi�
antly. This trade-o� between Q fa
tor and output dire
tionality is quite general and a�e
ts other typesof mi
ro
avities as well; it is known as �Q-spoiling� [NSC94℄.Mi
rodisk resonators with 
ir
ular 
ross-se
tion support so-
alled whispering-gallerymodes (WGMs; an example is shown in Fig. 2.3). They 
orrespond to light rays whi
htravel along the 
avity boundary; this phenomenon is named after the �whisperinggallery� in St. Paul's 
athedral in London, where a
ousti
 waves travel around a gallery.The �rst mathemati
al des
ription (for waves in elasti
 solids and water waves) is due toLord Rayleigh [Ray85℄. WGMs have large Q-fa
tors, but usually emit light uniformly in
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rodisk 
avitiesall dire
tions. They also exist in deformed mi
rodisks with non-
ir
ular 
ross-se
tions;examples in su
h 
avities are given in 
hapters 5 and 6.Several ways of a
hieving both high-Q modes and dire
tional output have been pro-posed and are reviewed in [BBSN06b℄, [XZL+10℄, and [WUS+10b℄. They range frommode-
oupling between high-Q, low dire
tionality and low-Q, high dire
tionality mode[WH06℄ to the pla
ement of obsta
les within disks [DMSW08, DMSW09℄ and the tailor-ing of the 
avity boundary shape. The most su

essful shapes seem to be quadrupoles[NS97, GCN+98℄ and spirals [CTS+03, HK09℄; limaçons [WH08, YWD+09, SHW+09,SFL+09, YKK09℄ are also be
oming popular. Many of the proposed designs su�er fromthe fa
t that only some of the 
avity modes emit light dire
tionally, whi
h 
an be aproblem in appli
ations be
ause pre
isely the right modes have to be ex
ited. The li-maçon 
avity does not have this problem: there are many modes have the same far�eld and thus output dire
tionality. Another boundary shape with this feature, whi
halso illustrates a new me
hanism for a
hieving output dire
tionality, is introdu
ed in
hapter 5.
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3. Ray dynami
s in mi
ro
avities:billiardsIn this 
hapter, some basi
 results for the nonlinear dynami
s of so-
alled billiard sys-tems are reviewed. Mathemati
al results are only sket
hed and not proved; for a moredetailed overlook see, e.g., [Gas98, TG06, Haa10℄ and the referen
es of this 
hapter. Thenumeri
al 
al
ulation of the billiard dynami
s is des
ribed in appendix A.3.1. De�nition and 
oordinatesIn nonlinear dynami
s, systems with hard boundaries whi
h re�e
t parti
les spe
u-larly are 
alled billiards, be
ause they are obviously similar to a billiard table. Two-dimensional billiards with hard walls 
an, in polar 
oordinates r, φ, be des
ribed by theHamiltonian

H =
1

2m

(

p2r +
p2φ
r2

)

+ V (r, φ), (3.1)with the potential
V (r, φ) =

{

∞, r, φ on boundary
0, elsewhere . (3.2)The motion between re�e
tions at the boundary is for
e-free (the potential (3.2) only hasa non-vanishing derivative at the boundary), the parti
le moves on straight lines betweenboun
es; two parameters are thus su�
ient to des
ribe the dynami
s 
ompletely: aninitial value on the boundary and an initial outgoing angle (see Fig. 3.1) � with these, thestraight line 
onne
ting this initial position to the next re�e
tion point on the boundary
an be found. While the phase spa
e of a billiard is in prin
iple four-dimensional, andthe motion takes pla
e on three-dimensional subspa
es with 
onserved total energy E,the dynami
s, one 
an des
ribe the dynami
s in the so-
alled Poin
aré surfa
e of se
tion(Poin
aré SOS). It is spanned by the Birkho� 
oordinates [Bir27℄. They are given by thear
 length s along the billiard boundary and the sine of the angle of in
iden
e p. Theangle of in
iden
e χ is given as the angle between the parti
le momentum P and the lo
alnormal ve
tor ν at the boun
e point; it ful�lls P sinχ = P · τ with the lo
al tangentve
tor τ . P sinχ is thus the tangential momentum of the parti
le and p = sinχ thenormalized tangential momentum. One 
an distinguish 
lo
kwise and 
ounter-
lo
kwisemotion by the sign of χ (and thus p); here, the 
onvention is adopted that positive χvalues 
orrespond to 
ounter-
lo
kwise motion. s and p are 
onjugate variables [Ber81℄.In the following, s will usually be normalized to the 
ir
umferen
e smax of the billiard.
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r=r(   )φ

ν

χ χ

φ

Figure 3.1.: De�nition and 
hoi
e of 
oordinates in a billiard.Billiards with other wall potentials are also investigated in the literature (billiardswith non-hard boundaries, so-
alled �soft-wall� billiards, and billiards with openings);an opti
al mi
ro
avity 
an thus be seen as an open billiard. However, as the billiardswithout openness des
ribe the light intensity 
on�ned to the 
avity well, only hard-wallbilliards will be 
onsidered in the following.3.2. Dynami
s in billiard systemsIn the Birkho� 
oordinates, the motion in the billiard 
an be des
ribed by a map B whi
hmaps one boun
e point (sj, pj) to the next one (sj+1, pj+1). In general, su
h maps 
annot be written down analyti
ally; an example of a system where this is indeed possibleis given in se
tion 3.3.1. The Ja
obian ĴB de�nes the linearized map (or tangent map;sometimes also 
alled monodromy matrix):
ĴB =

(

∂ sj+1

∂ sj

∂ sj+1

∂ pj
∂ pj+1

∂ sj

∂ pj+1

∂ pj

)

. (3.3)In the Birkho� 
oordinates, the map B is area-preserving if the system is Hamiltonian,whi
h implies det ĴB = 1. An example of a billiard map whi
h is not area-preserving isgiven in 
hapter 6.Di�erent types of motion are distinguished by their stability with respe
t to small
hanges in the initial 
onditions and by the behaviour of the dynami
s in phase spa
e. Ifthe di�eren
e between traje
tories 
orresponding to slightly di�erent initial 
onditionsgrows exponentially, and a traje
tory �lls the whole (apart from a set of measure zero)
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(ray 1)

start
(ray 1 and 2)

end

end
(ray 2)

Figure 3.2.: Two traje
tories performing 
haoti
 motion in a billiard. Their initial 
ondi-tions (open dots) di�er by 0.1 %; after 10 boun
es (end positions marked by�lled dots), they have be
ome un
orrelated and their dynami
s is 
ompletelydi�erent.phase spa
e as time goes to in�nity, the motion is 
alled 
haoti
. In a 
haoti
 billiard, atraje
tory �lls a (two-dimensional) area in the Poin
aré SOS if the dynami
s if followedin�nitely. If the growth of the di�eren
e between traje
tories is slower than exponential,and traje
tories stay restri
ted to 
ertain phase-spa
e regions, the motion is 
alled regu-lar. In the Poin
aré SOS of a billiard, points of the traje
tory lie on a (one-dimensional)line or 
losed 
urve; be
ause su
h lines or 
urves are mapped onto themselves by the bil-liard map B̂, they are 
alled �invariant lines� (or invariant 
urves). Be
ause the Poin
aréSOS with s = 0 and s = smax identi�ed has the topology of a 
ylinder, and and invariantline winds around that 
ylinder as tori, invariant lines are also 
alled invariant tori.Figure 3.2 shows the sensitivity of 
haoti
 motion: the initial 
onditions di�er by0.1 % (both in s and in p), and the traje
tories are un
orrelated after the boundary hasbeen hit only 10 times. Phase spa
e examples of regular and 
haoti
 motion are shownin Fig. 3.3. Systems whi
h show regular motion for all initial 
onditions are 
alled�integrable�; billiard examples are studied in se
tion 3.3.1. Systems whi
h show 
haoti
motion for all but a few initial 
onditions (whi
h �ll a set of measure zero in phasespa
e) are 
alled �
haoti
�. Typi
ally, both regular and 
haoti
 motion is possible in asystem depending on the initial 
onditions; su
h systems are 
alled �mixed�. Examplesare dis
ussed in se
tion 3.3.2.Fixed points (s∗, p∗) of the map B ful�ll (s∗, p∗) = B(s∗, p∗), they are not 
hanged bythe mapping. They are important for the dynami
s be
ause periodi
 orbits, whi
h 
losethemselves after m boun
es, are �xed points of Bm. The motion near su
h a �xed point
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s/smaxFigure 3.3.: Examples for regular (red dots, top panel) and 
haoti
 (blue dots, bottompanel) motion in a billiard with a mixed phase spa
e. The dynami
s isshown both in the Poin
aré SOS (main panel) and in real spa
e (on theright).
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 )χ

Figure 3.4.: The three di�erent types of �xed points (bla
k dots). (a) Stable (ellipti
)�xed point; points nearby the �xed point move around it on ellipses. (b)Unstable (hyperboli
) �xed point; points nearby the �xed point move onhyperbolas. (
) Marginally stable (paraboli
) �xed point. Points nearby itmove on straight lines.is des
ribed by the eigenvalues of M̂ ≡ Ĵm
B . They are given by

λ± =
tr M̂
2

± 1

2

√

(tr M̂)2 − 4. (3.4)The following three 
ases 
an be distinguished and are illustrated in Fig. 3.4.1. λ± 
omplex with λ± = e±iφ (
orresponding to tr M̂ < 2): points nearby the �xedpoint os
illate around it; the �xed point is 
alled stable or ellipti
, be
ause pointsnear the �xed point move around it on ellipses.2. λ± real with λ+ = 1/λ− (
orresponding to tr M̂ > 2): points whi
h lie in thedire
tion of the eigenve
tor (�unstable dire
tion�) 
orresponding to the eigenvaluelarger than one move away from the �xed point at an exponential rate, whilepoints in the dire
tion of the other eigenve
tor move towards the �xed point atan exponential rate. The �xed point is unstable or hyperboli
, as points nearby itmove on hyperbolas.3. λ+ = λ− = λ (implies λ = ±1, 
orresponding to the 
ase tr M̂ = 2): this degener-ate 
ase des
ribes a marginally stable (also 
alled marginally unstable) �xed point.Points nearby the �xed point move towards or away from it at a linear rate. Su
h�xed points are also 
alled paraboli
.3.3. Examples of billiard systems3.3.1. Integrable systemsIn integrable systems with two degrees of freedom, another 
onstant of motion apartfrom the energy E exists, so that the motion in the Poin
aré SOS takes pla
e on one-
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s in mi
ro
avities: billiardsdimensional subspa
es (lines). Two examples are reviewed: the 
ir
le and the ellipse,whi
h is the only smooth and 
onvex deformation of the 
ir
le whi
h remains integrable[Ami97℄.Cir
leIn polar 
oordinates (r, φ), the 
ir
ular billiard is given by the boundary 
urve r(φ) = R,where R is the radius of the 
ir
le. Be
ause of the rotational symmetry in the (x, y)plane, the 
onjugated momentum to φ, pφ = mr2φ̇, is 
onserved in addition to theenergy E. The 
ir
ular billiard is thus an integrable billiard. The angle of in
iden
e χ,whi
h ful�lls sinχ = pφ/(RP ), is 
onserved in this 
ase, as pφ, R and P are all 
onservedquantities (the modulus of the momentum, P , is 
onserved be
ause it is related to the
onserved energy by P =
√
2mE). In a 
ir
ular billiard, the angle of in
iden
e thusdoes not 
hange in the 
ourse of the motion; in the Poin
aré SOS, this means that themotion takes pla
e on lines p = sinχ = 
onst.Two types of motion 
an be distinguished: periodi
 orbits, where the orbits 
lose aftera number of boun
es, and orbits whi
h never 
lose. In order for an orbit to be periodi
,the angle of in
iden
e has to be a rational multiple of 2π. Figure 3.5 shows examples ofboth periodi
 and non-periodi
 motion in the 
ir
ular billiard. The two types of motion
an be des
ribed by the winding number w, whi
h is de�ned as
w =

1

smax lim
j→∞

(

sj − s1
j

)

, (3.5)where sj is the ar
 length at the j-th boun
e, not taken modulo smax: it grows as theorbit winds around the boundary many times. If w is irrational, the orbit never 
loses;if w = ℓ/k is a rational number, the orbit 
loses after k boun
es, having wound aroundthe billiard 
enter ℓ times.Be
ause of the simple geometry, it is possible to write down the map for the 
ir
ularbilliard expli
itly. As the angle of in
iden
e is 
onserved, one dire
tly �nds pj+1 = pj.From Fig. 3.6, one 
an �nd sj+1 = sj+Rα, with α = π−2χ. Appli
ation of trigonometri
identities yields
pj+1 = pj ,

sj+1 = sj + 2R arccos pj.
(3.6)Using Eq. (3.6), the linearized map 
an be easily 
al
ulated:

ĴB =

(

1 2R√
1−p2j

0 1

)

. (3.7)For all �xed points, one �nds tr ĴB = 2; in the 
ir
le, all periodi
 orbits are marginallystable.
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ir
ular billiard. The main panel shows thePoin
aré SOS, and on the left and right, the orbits are depi
ted in realspa
e. In the 
ase of the periodi
 orbits, the winding number w is notedbelow the real-spa
e representation.
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Figure 3.6.: De�nition of the 
ir
le billiard map.
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Figure 3.7.: Ellipti
al billiard shape.EllipseThe ellipse is usually de�ned in Cartesian 
oordinates as
x2

X2
+
y2

Y 2
= 1 (3.8)(see Fig. 3.7). Introdu
ing polar 
oordinates, x = r(φ) cosφ, y = r(φ) sinφ, the bound-ary 
urve 
an also be written as

r(φ) =
1

√

cos2 φ
X2 + sin2 φ

Y 2

. (3.9)Often, ellipses with normalized area A = πXY = π are 
onsidered, whi
h implies
Y = 1/X . In this 
ase, the ellipse 
an be 
hara
terized by two parameters, i.e. thehalf-axis length X and the half-axes ratio ǫ = X/Y (this is used in 
hapter 5) or X andthe e

entri
ity e = √

X2 − Y 2/X (this is used in 
hapter 6).The ellipse has no obvious symmetries whi
h lead to additional 
onstants of motionas in the 
ase of the 
ir
le. However, there is su
h a quantity, whi
h is given by beprodu
t of the angular momenta with respe
t to the two ellipse fo
i. The existen
eof this 
onstant of motion will be derived in the following. Figure 3.8 illustrates thegeometri
al relations that will be used.Let F1 and F2 be the two ellipse fo
i, with positions x ± c, where c = √
X2 − Y 2 isthe distan
e from the fo
i to the origin. The normalized ve
tors pointing from them toa point O = (x, y) on the ellipse are denoted r1 and r2. The lo
al normal ve
tor ν atthe point O is given by

ν =
1

√

x2/X4 + y2/Y 4

(

x/X2

y/Y 2

)

, (3.10)
r1 and r2 are given by

r1 =
1

√

(x− c)2 + y2

(

x− c
y

)

, r2 =
1

√

(x+ c)2 + y2

(

x+ c
y

)

. (3.11)
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x
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α1
α2 χ χ

Figure 3.8.: Geometri
al relations with respe
t to the fo
i F1 and F2 of the ellipse.The angles α1 and α2 ful�ll cosαi = ri · ν. By elimination of y with the ellipse de�ni-tion (3.8), one 
an �nd [Nö
97℄
r1 · ν
r2 · ν

= 1, (3.12)whi
h implies α1 = α2.The angular momenta L1,2 with respe
t to the fo
i F1,2 
an now be 
al
ulated. Forthe in
oming ray, one �nds
L1,in
 = |P× r1| = Pr1 sinα,

L2,in
 = |P× r2| = Pr2 sin(2χ− α).
(3.13)For the outgoing ray, one �nds L1,out = Pr1 sin(2χ − α) and L2,out = Pr2 sinα. Theprodu
t L12 = L1L2 is thus un
hanged by the 
ollision with the boundary, as it is thesame for the in
oming and the outgoing ray. As the angular momenta L1 and L2 arealso 
onserved between 
ollision with the boundary, L12 is a 
onstant of motion.The types of motion in the ellipti
al billiard 
an be 
lassi�ed by the sign of L12. Orbitswith L12 > 0 are of whispering-gallery type, while orbits with L12 < 0 travel betweenthe top and bottom part of the boundary; su
h orbits are 
alled �boun
ing-ball� orbits.In the Poin
aré SOS, both types of motion are separated by a separatrix with L12 = 0;it 
orresponds to an unstable periodi
 orbit going from the left to the right. Apart fromone stable (boun
ing-ball from the top to the bottom) and one unstable (
orrespondingto the separatrix) orbit, all orbits in the ellipse are marginally stable.Figure 3.9 shows the Poin
aré SOS of an ellipti
al billiard; a whispering-gallery orbitand a boun
ing-ball orbit are shown in real spa
e as well.It is interesting to note that while the quantum version of the ellipti
al billiard is, of
ourse, still integrable, the open ellipti
al quantum billiard is not. The impli
ations forray-wave 
orresponden
e in ellipti
al diele
tri
 
avities are dis
ussed in se
tion 6.4.
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aré SOS of an ellipti
al billiard with area π and e

entri
ity e =
0.645. On the right, both a whispering-gallery- and a boun
ing-ball orbitare depi
ted in real spa
e.3.3.2. Systems with a mixed phase spa
eAs an example for a system with a mixed phase spa
e, the family of limaçon billiards,de�ned by the boundary 
urve r(φ) = R(1 + ǫ cosφ), are 
onsidered. They 
an be seenas deformations of the 
ir
le (ǫ = 0); as ǫ cosφ is the �rst (�dipole�) term in a multipoleexpansion of any given boundary, su
h shapes arise quite naturally and have indeedbeen studied intensively both theoreti
ally and experimentally. It should be noted thatthe limaçon boundary shape is not the same as the shape of the family of billiardsintrodu
ed by Robnik [Rob83℄. The Robnik billiards 
an be des
ribed by the boundary
urve r(φ) = R

√
1 + δ cosφ with a deformation parameter δ; their boundary is thusgiven by the square root of the limaçon boundary.In two limiting 
ases the dynami
s in the limaçon is the same for all initial 
onditions.For ǫ = 0, the integrable 
ir
le is re
overed. For ǫ = 1, the shape of the billiard isknows as the 
ardioid, and the dynami
s is proved to be fully 
haoti
 [Woj86, Szá92,Mar93, DB01℄. In between these two 
ases, the phase spa
e be
omes mixed, with both
haoti
 and regular regions. This transition from regular to 
haoti
 behavior with mixeddynami
s in between upon 
hange of one or more parameters is 
ommon in Hamiltoniansystems. It is illustrated in Fig. 3.10, where Poin
aré SOS's for di�erent ǫ values areshown. In Fig. 3.10 (a), the deformation parameter is ǫ = 0.1. The system still is almostintegrable, and most invariant lines are still present, even if slightly deformed from thestraight lines of the 
ir
le. Some have, however, vanished; instead, stable and unstable�xed points are present as well as islands surrounding the stable �xed points.This repla
ement of invariant lines with stable islands and unstable periodi
 orbitsgoes on in in Fig. 3.10 (b) at ǫ = 0.2. More invariant lines have disappeared andare repla
ed by stable and unstable �xed points. In addition, in the region where the
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Figure 3.10.: Phase spa
e of the limaçon billiard for (a) ǫ = 0.1, (b) ǫ = 0.2, (
) ǫ = 0.3,and (d) ǫ = 0.43.
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s in mi
ro
avities: billiardsseparatrix 
orresponding to the unstable period-2 orbit has been at ǫ = 0.1, a region of
haoti
 motion is present: traje
tories started there �ll an area in phase spa
e, insteadof lying on a line.At ǫ = 0.3, as shown in Fig. 3.10 (
), the 
haoti
 region has grown and now �lls alarger part of the SOS. Some stable islands remain, but they have a more 
ompli
atedstru
ture than before, with small islands 
orresponding to periodi
 orbits with windingnumbers ℓ/k with large k surrounding larger ones. At high p, invariant lines are stillpresent as well.Most stable islands have vanished at ǫ = 0.43 in Fig. 3.10 (d). The largest one
orresponds to the period-2 orbit; but there are smaller ones present as well. The
haoti
 regions of phase spa
e haven grown even more, but still some invariant linesremain 
lose to |p| = 1. For even higher ǫ values, this s
enario 
ontinues: the 
haoti
parts grow even further. At ǫ = 0.5, no whispering-gallery-like orbits (invariant linesnear |p| = 1) exist anymore. However, the dynami
s still is not fully 
haoti
: it is knownthat stable periodi
 orbits exist at even higher ǫ values [DB01℄. Only at ǫ = 1, thelimaçon is proved to be fully 
haoti
.Three theorems whi
h are important in nonlinear dynami
s 
an be illustrated in thissystem and are dis
ussed in the following.Poin
aré-Birkho� theoremThe �rst theorem, the Poin
aré-Birkho� theorem [Poi12, Bir13, Bir26℄, des
ribes whathappens to invariant lines upon a small perturbation. An example is shown in Fig. 3.11:on the left, an invariant line 
orresponding to the marginally stable period-3 orbits in the
ir
le billiard is shown. On the right, the 
ir
le has been perturbed, so that is boundaryhas now the shape of the limaçon with ǫ = 0.2. The invariant line no longer exists;instead, a stable �xed point (with an island around it) and an unstable �xed point, both
orresponding to the only period-3 orbits now possible in the system, have formed. ThePoin
aré-Birkho� theorem states that this result is quite general: upon perturbation,invariant lines break up into pairs of stable and unstable periodi
 orbits.KAM theoremThe se
ond important theorem, the Kolmogorov-Arnol'd-Moser (KAM) theorem [Kol54,Arn63, Mos66℄, is 
on
erned with the question when, i.e. for whi
h perturbation strength,this breakup of an invariant torus happens. It is 
lear from Fig. 3.10 that not allinvariant lines are broken right away; some are broken before the others. If an integrableHamiltonian H0 is perturbed so that the Hamiltonian of the perturbed system reads
H = H0 + ǫH1 with a perturbation strength ǫ, orbits with winding numbers w whi
hful�ll

∣

∣

∣
w − r

s

∣

∣

∣
≥ K(ǫ)

s2.5
(3.14)with integer numbers r and s and a 
onstant K(ǫ) whi
h only depends on the pertur-bation strength remain unbroken. Equation (3.14) is ful�lled for orbits with su�
iently
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ir
le. It 
orresponds to theperiod-3 orbits. Right panel: stable (red dots) and unstable (green dots)period-3 orbits in the ǫ = 0.2 limaçon. The motion near the �xed points isshown as well.irrational winding numbers, i.e. orbits whose winding numbers 
an not be approxi-mated well by a rational number r/s. Periodi
 orbits with small periodi
ity are thusmost a�e
ted by a perturbation, whi
h may be expe
ted as the deviations be
ause ofthe perturbation a

umulate as the orbit visits similar positions many times. Orbitswith irrational winding number never visit exa
tly the same spot again, and small per-turbations might average out. The �most irrational� number, whose 
ontinued fra
tionexpansion 
onverges slowest, is the golden mean
γ =

1 +
√
5

2
=

1

1 + 1
1+...

≈ 1.6180 . . . (3.15)
γ does not appear as a winding number in billiards (as winding numbers there arealways smaller than one), but 1/γ, whi
h also has a slowly 
onverging 
ontinued fra
tionexpansion, 
an. For su�
iently high perturbation strengths ǫ, no invariant tori remaininta
t.Lazutkin's theoremThe third theorem, Lazutkin's theorem [Laz73℄, answers the question why some invariantlines persist up to high perturbations, even if they have winding numbers whi
h are�more rational� than, i.e., 1/γ. The reason is that in a billiard, the perturbation whi
his introdu
ed by deforming the boundary is not uniform: it in�uen
es orbits near theboundary less than orbits whi
h venture deep inside the billiard. This is intuitively 
lear,be
ause orbits near the boundary travel only short lengths between boun
es, so that thedeviations from the 
ir
ular boundary they experien
e are small. Lazutkin's theorem
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ε=0.5 ε=0.6

Figure 3.12.: Limaçon billiards for ǫ = 0.5 (still 
onvex), ǫ = 0.6, ǫ = 0.8 and ǫ = 1 (nolonger 
onvex). At ǫ = 1, the boundary is no longer smooth as well.states that a region of invariant lines �lls a small but non-zero phase spa
e area near
|p| = 1 as long as the billiard stays 
onvex. Applied to the limaçon billiard this meansthat invariant tori persist up to ǫ ≤ 0.5, as the limaçon 
eases to be 
onvex at ǫ > 0.5(see Fig. 3.12). Latzutkin's theorem is important for appli
ations be
ause it ensures thatwhispering-gallery modes exist in limaçon-shaped 
avities up to deformations where theray dynami
s is predominantly 
haoti
, whi
h in turn leads to long-lived WG modeses
aping the 
avity by means of 
haoti
 transport, leading to long-lived modes withdire
tional emission [YWD+09℄.In 
on
lusion, one �nds the following generi
 s
enario when perturbing an integrablesystem: �rst, invariant lines are destroyed and, by the Poin
aré-Birkho� theorem, re-pla
ed by stable �xed points (with stable islands around them) and unstable �xed points(with separatri
es near them). Perturbing the system even further, 
haoti
 regions formnear the separatri
es, while stable �xed points 
ease to be stable. The invariant linesare broken up a

ording to their winding numbers, and the 
haoti
 regions grow. ByLazutkin's theorem, however, a region of invariant lines �lls a small but non-zero phasespa
e area near |p| = 1 as long as the billiard stays 
onvex.3.4. Diele
tri
 
avities as open billiardsIf light rays in a 
avity are studied, one also has to 
onsider that the 
avity is open forsome light rays: light 
an be refra
ted out of the open billiard a

ording to Snell's law

n1 sinχ = n2 sin η, (3.16)
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r=r(   )φ
n

n=1Figure 3.13.: Refra
tion and re�e
tion a

ording to Snell's law.if the in
oming angle is below the 
riti
al angle χ
r for total internal re�e
tion (TIR)(see Fig. 3.13)
| sinχ
r| = n2

n1
=

1

n
, (3.17)if the refra
tive index in the 
avity is n and the refra
tive index outside is one. In aPoin
aré SOS, the 
ondition (3.17) means that rays with momenta |p| ≤ 1/n leak out ofthe 
avity; the region |p| ≤ 1/n is thus often 
alled the �leaky region� and the transportof rays from above/below the 
riti
al lines |p| = 1/n to the leaky region determines thelife-time of light rays in the 
avity as well as its emission properties (how emission is
al
ulated ray-dynami
ally is dis
ussed in se
tions 5.3 and A.2).In the 
ir
le, it is 
lear from the Poin
aré SOS that the life-time of light inside the
avity is very high: be
ause the invariant lines are straight lines, rays started above the
riti
al line for TIR always stay above it, and the only way light 
an get out of su
h a
avity is be
ause of surfa
e roughness (i.e., the 
ir
le is not perfe
tly 
ir
ular) or be
auseof evanes
ent leakage, whi
h is a wave e�e
t (the quantum equivalent is tunneling).Figure 3.14 (a) shows the Poin
aré SOS for a 
ir
ular billiard with the leaky regionindi
ated for n = 3.3. One 
ould guess that fully 
haoti
 billiards would also make bad
avities, as almost any ray started outside the leaky region would be transported to itafter some time, be
ause 
haoti
 traje
tories �ll the whole phase spa
e � and the lightwould only be in the 
avity for a short time. However, this is not true if one 
onsiderswaves: in this 
ase, interferen
e 
an lead to long life-times of the rays. These e�e
ts arebrie�y dis
ussed in se
tion 4.2.3. In systems with a mixed phase spa
e, it 
an take along time for 
haoti
 traje
tories to rea
h the leaky region, an example (for the ǫ = 0.3limaçon) is shown in Fig. 3.14 (b). This slow di�usion is due to dynami
al barriers inphase spa
e.
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Figure 3.14.: Poin
aré SOS with the leaky region (blue region) for (a) the 
ir
le, (b)the ǫ = 0.3 limaçon. The insets show the traje
tories indi
ated by the reddots in real spa
e. The refra
tive index is n = 3.3.
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4. Wave equation for mi
rodisk
avitiesIn this 
hapter, the wave equation for mi
rodisks is derived and methods for its numeri
alsolution are reviewed. In se
tion 4.2 the subje
t of �ray-wave 
orresponden
e�, therelation between the wave and ray-dynami
al des
ription of su
h systems, is dis
ussed.4.1. Helmholtz equationIn the quasi-two-dimensional (quasi-2d) geometry of a mi
rodisk 
avity with pie
ewise
onstant index of refra
tion as shown in Fig. 4.1, Maxwell's equations 
an be redu
edto s
alar wave equations for the �elds Ez(x, y) and Hz(x, y), whi
h determine the other�eld 
omponents; the derivation is dis
ussed in appendix B.Of 
ourse, mi
rodisks as introdu
ed in 
hapter 2 are not really two-dimensional; treat-ing them as su
h is an approximation. The validity of this approximation has been tested
arefully in [BDM+09℄ for 
ir
ular mi
rowave resonators. The authors of [BDM+09℄found systemati
 deviations of their experimental data from two-dimensional 
al
ula-tions. If one is only interested in modes at �xed frequen
y or over a small frequen
yrange, these deviations 
an be a

ounted for by introdu
ing a new e�e
tive refra
tive in-dex [GNP+08, WYD+09, YWD+09℄. In semi
ondu
tors, refra
tive indi
es are typi
allynot known more pre
isely than within 1 %; the systemati
 deviations are well below thatvalue. The two-dimensional approximation 
an thus be 
onsidered valid for mi
rodiskresonators. Similar results were also obtained in [Mi
09℄, where two-dimensional andthree-dimensional solutions of Maxwell's equations for a disk geometry were 
ompared.Typi
ally, only solutions with either Hz = 0 for all x, y (so-
alled transverse magneti
(TM) modes) or Ez = 0 (transverse ele
tri
 (TE) modes) are 
onsidered in mi
ro
avities.Figure 4.2 shows how TM and TE polarizations are related to the s and p polarizationsusually 
onsidered when 
al
ulating re�e
tion 
oe�
ients. The Helmholtz equation isthen a s
alar equation for ψ = Ez (TM 
ase) or ψ = Hz (TE 
ase):

(

∆+ n(x, y)2k2
)

ψ(x, y) = 0, (4.1)with the refra
tive index n and the wave number k. ∆ is the Lapla
ian in the (x, y)plane. Equation (4.1) is equivalent to the time-independent S
hrödinger equation. How-ever, while Diri
hlet boundary 
onditions (ψ = 0 on the boundary) are usually used inquantum me
hani
s, the boundary 
onditions in the opti
al 
ase with positive refra
tion
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Figure 4.1.: Quasi-2d geometry. The disk plane is the (x, y)-plane and the z 
omponentsof the �elds determine the opti
al modes.
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rodisks.
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ψ1 = ψ2, ∂νψ1 = ∂νψ2 (TM),
ψ1 = ψ2,

∂νψ1

n2
1

=
∂νψ2

n2
2

(TE), (4.2)where ν is a normal ve
tor on the 
avity boundary and ∂ν = ν ·∇. Often, the refra
tiveindex n1 outside the 
avity is one (va
uum). At in�nity, outgoing-wave 
onditions areassumed, whi
h is reasonable for the des
ription of lasers (light is 
reated in the 
avityand 
an only leak out, but not 
ome ba
k):
ψ(r → ∞) ∼ h(θ, k)

eikr√
r
. (4.3)Outgoing-wave 
onditions expli
itly break the time-reversal invarian
e whi
h the Maxwellequations still has.Opti
al mi
ro
avities des
ribed by Eq. (4.1) 
an be seen as open quantum billiards,just as the ray des
ription of su
h a 
avity is equivalent to the dynami
s of a 
lassi
alparti
le in an open billiard. They are des
ribed by the same wave equation as quantumbilliards, but di�erent boundary 
onditions apply, whi
h leads to the possibility of lightleaking out of the 
avity. They are thus a model system not just for quantum 
haos,but for the study of quantum 
haos in open systems. Be
ause of this openness, the
avity modes ψ are quasi-bound states with a 
omplex wave ve
tor k � with the realpart related to the frequen
y of the mode via ω = cRe k and the imaginary part relatedto the life-time of the mode as dis
ussed in 
hapter 2.When studying mi
ro
avities, the �rst step is to �nd the opti
al modes of the 
avity� the solutions of the Helmholtz equation with the appropriate boundary 
onditions.Often, they 
an be dire
tly related to the lasing modes.4.1.1. Methods for solving the Helmholtz equationAnalyti
al solution of the Helmholtz equation (4.1) with the boundary 
onditions (4.2)is only possible for a 
ir
ular 
ross-se
tion, where the Helmholtz equation is separablein polar 
oordinates. Even for an ellipse, where the Helmholtz equation separates forDiri
hlet boundary 
onditions, an analyti
al solution is not possible [Nö
97℄ for diele
tri
boundary 
onditions. Therefore, numeri
al methods have to be employed; the ones whi
hare most 
ommonly used are brie�y dis
ussed in the following.Wave-mat
hingThe main idea for wave-mat
hing solutions [NS95℄ is to expand the wave fun
tion as aseries of Bessel fun
tions inside the 
avity and Hankel fun
tions outside. Appli
ationof the 
ontinuity 
onditions leads to relation between the 
oe�
ients in this series,and these �mat
hing equations� 
an then be numeri
ally solved. An advantage of themethod is that it is numeri
ally quite 
heap; a signi�
ant drawba
k, however, is that
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rodisk 
avitiesthe assumption that su
h as expansion is always possible (also known as the �Rayleighhypothesis� [Ray07℄) is not valid for too large deformations from the 
ir
le [vF80℄. Wave-mat
hing is thus only useful for mi
ro
avities with small deformations. Furthermore, apie
ewise 
onstant index of refra
tion (whi
h may be 
omplex) is assumed.Finite-di�eren
e time domain methodsFinite-di�eren
e time domain (FDTD) methods [Yee66, TH00℄ solve Maxwell's equa-tions by �brute for
e� on a spatial and temporal grid. While this method is numeri
allyexpensive espe
ially for small wavelengths (�ne dis
retization needed) and high-Q (longtime-integration needed as one waits for the mode to de
ay) 
avities, it has many advan-tages: spatial dependen
e of the refra
tive index 
an be in
luded as well as nonlinearity,i.e. a dependen
e of the refra
tive index on the light intensity. FDTD 
odes are available
ommer
ially and 
an be easily adapted to various geometries.Boundary element methodA boundary element method (BEM) [Wie03℄ has been used for the mode 
al
ulationsin this thesis and is dis
ussed in detail in appendix C. The basi
 idea it to map theHelmholtz equation to an integral equation de�ned on the 
avity boundary and then solvethis integral equation numeri
ally. This method is numeri
ally relatively inexpensive.The refra
tive index, however, has to be pie
ewise 
onstant. As in the wave-mat
hingand FDTD 
ases, it may be 
omplex.4.1.2. Simulation of lasingAll methods des
ribed so far 
onsider intera
tion with the 
avity material only viathe refra
tive index. A 
avity used for lasing needs a gain medium whi
h ampli�eslight. This 
an be in
luded by using a 
omplex refra
tive index whose imaginary part
orresponds to gain (or loss) in the medium. This, of 
ourse, is a very simple materialmodel whi
h 
ompletely ignores the mi
ros
opi
 nature of the gain medium; it alsonegle
ts nonlinear intera
tion between the modes, whi
h modi�es the lasing frequen
ies.The method des
ribed in the following tries to improve on this by introdu
ing a verysimple mi
ros
opi
 model and 
oupling it to the ele
tromagneti
 �eld in a 
avity.In the Maxwell-Blo
h equations approa
h (des
ribed for mi
ro
avities in [HSI05℄),a quantum two-level system is 
oupled to the 
lassi
al ele
tromagneti
 �eld, and theresulting equations are solved. Using this approa
h, mode intera
tion 
an be studied andthe lasing frequen
ies 
an be predi
ted more a

urately. For high pumping power, thenumeri
al solution of the Maxwell-Blo
h equations is numeri
ally expensive; sometimes,it is enough to just 
onsider the slowly varying parts on the �eld amplitudes. In this
ase, the Maxwell-Blo
h equations redu
e to the S
hrödinger-Blo
h equations, whi
h arealso nonlinear (the name 
omes from the fa
t that the equation for the �elds is formallyequivalent to a S
hödinger equation with an potential depending on the wave fun
tion).
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onsistent laser theoryAn interesting way of solving the Maxwell-Blo
h equations in the steady state, the so-
alled self-
onsistent ab initio laser theory (SALT) [TSC06, TSG07, TSG+09℄ uses thefa
t that in the steady state, the Maxwell-Blo
h equations 
an be integrated using aGreen's fun
tion approa
h. In this formalism, multimode lasing and mode 
ompetitionare des
ribed well; the method 
an be applied to a variety of geometries and randomlasers as well.A problem with methods based on the Maxwell-Blo
h equations is that the materialmodel is too simple. Investigations in semi
ondu
tor physi
s have shown (see, e.g.,[GWLJ07℄ for an example using quantum dots as a gain medium) that the dynami
s insemi
ondu
tors is far more 
omplex than the one in a two-level system and that thisfa
t leads to modi�
ations in the emission properties of semi
ondu
tor lasers.4.2. Ray-wave 
orresponden
eAs dis
ussed in the previous se
tion, opti
al mi
ro
avities 
an be seen as open quan-tum billiards (with boundary 
onditions di�erent from the ones usually en
ountered inquantum systems), and be
ause of the analogy between the Helmholtz equation and thetime-independent S
hrödinger equation, methods from the �eld of quantum 
haos 
an beapplied to them. One important question in quantum 
haos is the relation between thequantum and the 
lassi
al properties of a system; this is known as �quantum-
lassi
al
orresponden
e� in the quantum 
haos �eld, where the 
orresponding relation betweenthe ray and the wave des
ription of a 
avity is 
alled �ray-wave 
orresponden
e�. Whileit is 
lear that su
h a 
orresponden
e has to exist � after all, the ray des
ription is foundfrom the wave des
ription in the limit kR → ∞ (λ/R→ 0), where R is a typi
al 
avitylength s
ale, and the 
lassi
al dynami
s follows from quantum me
hani
s in the limit
h̄ → 0 �, the details are less 
lear, in parti
ular in the 
ase of systems with 
haoti
 raydynami
s. It is shown in se
tion 4.2.2 that the standard way of deriving the ray limit ofthe Helmholtz equation in general fails for systems with 
haoti
 dynami
s.Chaos in quantum systems 
an not be de�ned as the exponential divergen
e of tra-je
tories, be
ause there are no traje
tories and the time evolution is linear. Instead, itoften is de�ned via the statisti
s of energy levels (mode frequen
ies in the 
avity 
ase)[Haa10, Stö00℄, whi
h is distin
tively di�erent for regular and 
haoti
 dynami
s. How-ever, it is also possible to relate mode lifetimes and other properties to the ray dynami
sin a 
avity (examples are dis
ussed in se
tion 4.2.3), and modes 
an be proje
ted onto thePoin
aré SOS for 
omparisons with the ray dynami
s (this is dis
ussed in se
tion 4.2.1).If one 
onsiders quantum systems near the 
lassi
al limit (
orresponding to 
avitieswith kR ≫ 1, i.e. the wavelength λ is small 
ompared to the system size R), one 
antry to express quantities like the density of states as a series in h̄ (or, 
orrespondingly,
λ/R). Considering only the �rst terms in su
h an expansion is 
alled semi
lassi
alapproximation; an important result is the so-
alled Gutzwiller tra
e formula [Gut71℄,whi
h links the quantum me
hani
al density of states to a sum over the periodi
 orbits
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rodisk 
avitiesof a system. For opti
al mi
ro
avities, a similar tra
e formula (whi
h takes into a

ountthe re�e
tion 
oe�
ient and the phases a ray a
quires when s
attered at the boundary)has been developed [BDS08℄ and tested experimentally for a mi
rowave 
avity [BBD+10℄.Periodi
 orbits in 
haoti
 mesos
opi
 systems often 
an be dire
tly related to measurablequantities, like magneto-resistan
e os
illations [WRM+93℄. Pairs of traje
tories (the so-
alled �Sieber-Ri
hter-pairs�) [RS02℄ with small a
tion di�eren
es 
an be used to 
al
ulatequantum 
orre
tions to 
ondu
tivities in mesos
opi
 systems as well. Another way todo semi
lassi
s is not to 
ome from the wave (quantum) limit and expand in λ/R (h̄),but to 
ome from the ray (
lassi
al) limit and introdu
e 
orre
tions proportional to λ/R(h̄). One way to do this is des
ribed in detail in 
hapter 6.4.2.1. Husimi distributionOne important tool for the study of ray-wave 
orresponden
e is the so-
alled Husimidistribution, whi
h was introdu
ed by Husimi [Hus40℄, adapted for quantum billiards byCrespi et al. [CPC93℄, and has been generalized to diele
tri
 
avities in [HSS03℄. Thebasi
 idea is to proje
t the wave fun
tion on the 
avity boundary to the Poin
aré SOS.In the Poin
aré SOS, a ray's position at the boundary and momentum are noted. Theprobability of light intensity to be found at the phase spa
e position (s, p) is given by theoverlap of ψ and a 
oherent state lo
alized at (s, p); su
h a 
oherent state most 
loselyresembles the 
lassi
al ray. The 
al
ulation of Husimi distributions in diele
tri
 
avitiesis dis
ussed in se
tion C.3.It is 
lear that 
al
ulating Husimi distributions only makes sense if the wavelength
λ is not too large 
ompared to the typi
al 
avity length s
ale R (i.e. for kR ≫ 1). If
λ ≈ R, the widths of the 
oherent states be
ome large, and there is no good 
orrespon-den
e between the proje
tion and the Poin
aré SOS. The Husimi distribution itself isa semi
lassi
al approximation. However, it seem that even for small kR, Husimi dis-tributions yield sensible results espe
ially when 
ompared not to the 
onventional, butan extended ray dynami
s whi
h in
ludes wave 
orre
tions (see 
hapter 6). Figure 4.3shows an example for the 
orresponden
e of Husimi distributions to the Poin
aré SOS.4.2.2. Eikonal approximationRay dynami
s, whi
h has been dis
ussed in 
hapter 3, is a limiting 
ase of wave dynami
sin the limit λ/R → 0 (or kR → ∞). In this se
tion, it is shown how ray dynami
s
an be derived from wave dynami
s by means of the so-
alled Eikonal ansatz ; it isformally equivalent to the derivation of the 
lassi
al Hamilton-Ja
obi equation from theS
hrödinger equation (see, e.g., [Nol08℄). The dis
ussion here follows [TSS05℄; a similarargument has already been proposed by Einstein [Ein17℄. It will be shown that Eikonaltheory usually fails for systems with 
haoti
 dynami
s.The ansatz in Eikonal theory is to write the wave fun
tion ψ(r) as

ψ(r) = A(r)eikS(r); (4.4)
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Figure 4.3.: Husimi distributions for (top panel) a �regular� state (in the ǫ = 0.2 limaçon
avity) and (bottom panel) a �
haoti
� state (in the ǫ = 0.3 limaçon 
avity).The dots indi
ate the 
orresponding ray dynami
s.



38 4. Wave equation for mi
rodisk 
avitiesthis 
an be seen as the �rst term of an expansion
ψ(r) = eikS(r)

∞
∑

j=0

Aj(r)

kj
(4.5)in 1/k ∼ λ. The fun
tion S(r) is 
alled the �Eikonal� (from the Greek word for �image�)in geometri
 opti
s; it 
orresponds to the a
tion fun
tion in Hamilton-Ja
obi theory.Inserting the ansatz (4.4) into the Helmholtz equation (4.1) yields

∆ψ = ikψ∆S + 2ikeikS∇S · ∇A+ eikS∆A− k2ψ∇S · ∇S
= −k2n2ψ,

(4.6)whi
h 
an be written as the Eikonal equation
(∇S(r))2 = n2(r) (4.7)and the so-
alled �transport equation�

2∇S · ∇A+ A∆S = 0 (4.8)if A only varies weakly with r, so that ∆A ≈ 0 
an be assumed. A wave solution ψthus de�nes a family of light rays des
ribed by the ve
tor �eld ∇S, whi
h de�nes thepropagation dire
tion; the lines of 
onstant S 
an be interpreted as wave fronts. TheEikonal ansatz is justi�ed if the wave fun
tion ψ does not vary signi�
antly on s
alessmaller than the wavelength λ. Only in this 
ase one 
an de�ne wave fronts whi
h arestraight lines on s
ales longer than a wavelength. The assumption that wave fronts exist,and thus that an Eikonal ansatz 
an be made, is usually valid for system with integrabledynami
s. It is, however, usually not valid for systems with 
haoti
 dynami
s; there, thewave fun
tion varies on the s
ale of the wavelength. An example is shown in Fig. 4.4.In general, one Eikonal as in Eq. (4.4) is not su�
ient to ful�ll the diele
tri
 boundary
onditions, and the ansatz has to be improved by superimposing many Eikonal wave-fun
tions,
ψ(r) =

∑

j

Aj(r)e
ikSj(r). (4.9)If a ray de�ned by a momentum∇Sj from the expansion (4.9) 
ollides with the boundary,it 
eases to exist and another ray de�ned by ∇Sj′ from the expansion takes its pla
e,travelling in a di�erent dire
tion. It is su�
ient to take into a

ount a �nite number ofterms in Eq. (4.9) if a ray 
oming from a point r0 with a momentum ∇Sj 
an re-enterthe vi
inity of r0 only with a �nite number of possible momenta ∇Sj′. This is triviallythe 
ase for periodi
 orbits: there, the return momentum is �xed. It is also moregenerally the 
ase for regular motion also on non-periodi
 orbits. If one, however, hasa system with 
haoti
 ray dynami
s, it is no longer the 
ase, as the number of possiblereturn momenta grows in�nitely as time goes to in�nity be
ause of the phase-spa
e�lling property of 
haoti
 traje
tories. Thus, no Eikonal ansatz with a �nite number ofEikonals exists for 
haoti
 systems. An in�nite sum in Eq. (4.9) is used in the so-
alled
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(a) (b)

Figure 4.4.: Wave fun
tions Reψ in (a) a regular state (in the ellipse) and (b) a 
haoti
state (in the limaçon). Wave fronts 
an only be de�ned if the wavefun
tiondoes not vary signi�
antly on s
ales smaller than the wavelength; this is notful�lled in (b).�random superposition of plane waves� models [Ber77℄ for 
haoti
 wave fun
tions, whi
hare used to predi
t statisti
al properties of 
haoti
 systems. However, when the Eikonalansatz is 
onsidered, the amplitudes in the in�nite sum in Eq. (4.9) are not random, but�xed by the transport equation (4.8), and the sum would in general diverge, be
ause theamplitudes Aj 
an not get arbitrarily small. One 
an thus 
on
lude that the Eikonalansatz does not work in 
haoti
 systems; while an ansatz similar to the Eikonal one
an be used when 
onsidering statisti
al properties, it is not useful to 
onstru
t the raydynami
s from the wave fun
tion as it 
an be done in systems with regular dynami
s.How ray and wave properties 
an be linked in 
haoti
 systems is dis
ussed in the nextse
tion.4.2.3. Wave lo
alization and tunnelingIn the following, di�erent me
hanisms leading to the lo
alization of the wave fun
tion ψin 
ertain parts of phase spa
e are dis
ussed as well as me
hanisms whi
h lead to delo-
alization and the leaking of intensity out of a 
avity. Su
h delo
alization me
hanismsare related to the quantum me
hani
al e�e
t of tunneling ; an in-depth dis
ussion 
an befound, e.g., in [Lö
09℄. Evanes
ent leakage, the ele
tromagneti
 analog of quantum tun-neling, has been dire
tly observed in mi
ro
avities, as des
ribed in [TKJVC09℄. There,both the light inside a 
avity and the emitted light outside have been measured, and a�gap� region of small intensity right outside the 
avity boundary was found, providingdire
t eviden
e that the light indeed �tunnels� out of the 
avity.Both wave lo
alization and �tunneling� are dire
tly related to properties of opti
al
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rodisk 
avitiesmi
ro
avities: wave lo
alization above the 
riti
al line for TIR ensures high Q fa
tors,and tunneling rates into the leaky region or to 
haoti
 parts of the phase spa
e in�uen
eboth the Q fa
tor and the output dire
tionality.Lo
alization on stable islandsThe semi
lassi
al eigenfun
tion hypothesis [Per73, Ber77℄ states that although 
haos andregularity in quantum 
haos are de�ned on the basis of the statisti
s of many quantumstates, individual wave fun
tions belonging to regular and 
haoti
 states 
an well bedistinguished by their lo
alization on 
orresponding phase spa
e stru
tures � �regular�states lo
alize on regular phase spa
e stru
tures, i.e. islands or tori, and �
haoti
� stateslo
alize on 
haoti
 parts of phase spa
e (Fig. 4.3 shows an example for this behaviour).While this hypothesis is valid in many 
ases, there are examples where it is wrong: in[HKOS02℄, whi
h 
onsiders a ki
ked system, states with 
ontributions both in regularand 
haoti
 parts of phase spa
e are found. This phenomenon is known as ��ooding ofregular islands� [BKM05, BKM07℄ and the 
orresponding states are sometimes 
alled�amphibious states�.S
arringS
arring [Hel84℄ is a wave interferen
e e�e
t whi
h leads to the lo
alization of states alongunstable periodi
 ray traje
tories. S
arred modes have been observed in opti
al mi
ro-
avities both theoreti
ally and experimentally [RTS+02, LLC+02, LRR+04, FYC05℄;they are important for appli
ations be
ause while they 
an have high Q fa
tors, theystill 
an be subje
t to 
haoti
 transport, whi
h 
an lead to desirable output properties[WH08℄. S
arring has been observed not only in mi
ro
avities; s
arred modes have, i.e.,been dis
overed in opti
al �bers as well [DLMM01℄.Dynami
al lo
alizationAnother wave interferen
e e�e
t is dynami
al lo
alization [FGP82℄. Here, destru
tiveinterferen
e leads to a redu
tion of di�usion through 
haoti
 regions of phase spa
e,whi
h in turn 
an lead to higher life-times of light in a 
avity. Dynami
al lo
alizationhas been observed in opti
al mi
ro
avities with rough boundaries [FS97, FCPN05℄; it is
losely related to Anderson lo
alization [And58℄ known from solid state physi
s.Dynami
al tunnelingIn quantum me
hani
s, tunneling refers to the passing on an energy barrier whi
h 
annot be passed 
lassi
ally. Dynami
al tunneling [DH81℄ means the passing of a barrierin phase spa
e, whi
h also is 
lassi
ally not possible: for example, invariant lines arefollowed for all times and 
an not be left 
lassi
ally, but as wave fun
tions are alwaysdelo
alized in phase spa
e, this is not true quantum me
hani
ally, and the transferfrom an invariant line to another part of phase spa
e is possible. Dynami
al tunnelinghas been investigated not only for quantum systems, but also for opti
al mi
ro
avities
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al tunneling rates have been related to Q fa
tors of a mi
rodisk in the
ase of the Annular mi
ro
avity [BKL+09℄.Chaos-assisted tunnelingChaos-assisted tunneling [TU94℄ refers to the tunneling between regular parts of a mixedphase spa
e not dire
tly, but via an intermediate step into a 
haoti
 part of phase spa
e.Be
ause transport in the 
haoti
 regions is fast, 
haos-assisted tunneling 
an dominateover dynami
al tunneling even though it is a two-step pro
ess. Chaos-assisted tunnel-ing has been observed in mi
rowave 
avities [DGH+00℄ as well as opti
al mi
ro
avities[PN05℄, where it 
an lead to dire
tional emission [SHF+10℄.
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5. Dire
tional emission fromellipti
al resonators with a not
h5.1. Resonators with not
hes and point s
atterersAs dis
ussed in 
hapter 2, �nding resonator shapes whi
h allow for modes with high Qfa
tors and dire
tional light output is interesting for appli
ations. Combination of thesetwo features 
an be a
hieved in many di�erent ways [WUS+10b, XZL+10℄. One of them isstru
turing the 
ir
ular boundary on a wavelenght-size s
ale, i.e. by 
utting one or manynot
hes in it; the Q fa
tors and dire
tionalities resulting from su
h deformations arestudied in [BBSN06a℄ in mi
rodisk resonators. Another way is pla
ing an obsta
le insidea 
ir
ular resonator. This obsta
le 
an be an air hole (so-
alled annular 
avity [HR02,WH06℄; investigated experimentally in [TV07℄) or a small region with a high refra
tiveindex, whi
h a
ts as a point s
atterer [AR04, DMSW08, DMSW09℄. Both deformationsof the 
ir
le lead to the development of modes with high Q fa
tors and dire
tionalemission.In this 
hapter, an ellipti
al mi
ro
avity (whi
h, like the 
ir
le, has high-Q modes,but no dire
tional emission) with a wavelenght-size not
h at the boundary is studiedand shown to have highly dire
tional emission. The not
h a
ts like a point s
atterer; theunidire
tional emission, however, is a
hieved be
ause of the ellipti
al boundary shape,whi
h is shown to 
ollimate light s
attered by the not
h in the far �eld. This not
hedellipti
al resonator has high-Q modes, unidire
tional emission with very low beam di-vergen
e (≈ 5 degrees). Moreover, the far �eld is universal (all even parity modes havethe same far �eld pattern) and the dire
tionality 
an be a
hieved for both TM and TEpolarization.5.2. The Gaussian-not
hed ellipti
al resonatorIn Cartesian 
oordinates, the boundary shape of a not
hed ellipti
al resonator 
an bewritten as

x =

[

ǫ− δ exp

(−2(φ− π)2

ϑ2

)]

cosφ,

y = sin φ.

(5.1)with the major and minor axes Y and X and ǫ = X/Y . This des
ribes an ellipse witha not
h at φ = π. The not
h depth is 
ontrolled by the parameter δ, the not
h opening
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Figure 5.1.: Parameters des
ribing the not
hed ellipse. ǫ = X/Y is the ratio of thehalf-axes, δ and ϑ 
ontrol the not
h depth and width, respe
tively.angle (not
h width) is 
ontrolled by the parameter ϑ (see Fig. 5.1). Equation (5.1)yields a Gaussian-shaped not
h; while other shapes are possible, the results are quiteindependent on the pre
ise form, as will be shown later. The Gaussian shape is here
hosen mostly for numeri
al 
onvenien
e, as no pie
ewise de�ned boundary 
urve has tobe used. In se
tion 5.5, other not
h shapes are studied as well.Figure 5.2 shows a Poin
aré surfa
e of se
tion for the not
hed ellipse. The �not
hing� isa perturbation applied to an integrable system (the ellipti
al billiard, see se
tion 3.3.1).Upon applying this perturbation, the system dynami
s be
omes mixed; there are large
haoti
 regions as well as stable islands, as indi
ated in Fig. 5.2. The feature whi
hwill prove to be most important for the understanding of dire
tional emission from thenot
hed ellipti
al resonator is the existen
e of rays like the one marked green in Fig. 5.2.Su
h rays travel along the boundary, like whispering-gallery rays, for many boun
es;but at some point, they hit the not
h and get re�e
ted into a boun
ing-ball like motion(the opposite, boun
ing-balls getting re�e
ted into whispering-galleries by the not
h,also happens, of 
ourse). As any non-periodi
 whispering-gallery ray will hit the not
hat some point, this type of motion is very 
ommon in this system.5.3. Far �eld emission patterns5.3.1. Cal
ulating far �eld emission from ray dynami
sFar �eld emission patterns 
an be 
al
ulated using the Fresnel-weighted unstable man-ifold of the 
haoti
 repeller [LRK+04, SH07, WH08℄. The 
haoti
 repeller is the set ofphase spa
e points that never visits the leaky region both in forward and ba
kward timeevolution; its unstable manifold is the set of points that 
onverges to it in ba
kwardtime evolution. In open, 
haoti
 systems, the unstable manifold 
ontrols the es
aperoutes out of the system. Consider a ray starting on a phase spa
e point on the unstablemanifold in the leaky region. In forward time evolution, it will refra
t out of the 
avity
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notch position notch positionFigure 5.2.: Poin
aré surfa
e of se
tion for an ellipse with ǫ = 0.83 with a Gaussiannot
h with δ = 2/96 and ϑ = 3/96. Some stable islands (�bowtie� (red)and a period-8 island (blue) whi
h avoids the not
h) are indi
ated as well asa ray (green) following a whispering-gallery stru
ture for a long time untilhitting the not
h whi
h is lo
ated at s/smax = 0 ≡ 1.soon be
ause it starts below the 
riti
al angle for total internal re�e
tion. In ba
kwardtime evolution, it will stay in the 
avity basi
ally forever, be
ause the time evolution ofthe point 
onverges to the 
haoti
 repeller and never visits the leaky region. Thus, theoverlap region of the unstable manifold with the leaky region 
onsists of long-lived raysrefra
ting out of the 
avity eventually. Even though the 
on
ept of es
ape along theunstable manifold was developed for 
haoti
 systems, Altmann [Alt09℄ has only re
entlyshown that it 
an be applied to systems with a mixed phase spa
e as well.The unstable manifold 
an be 
al
ulated as a survival probability [LRK+04℄. Onestarts with an ensemble of rays uniformly distributed in phase spa
e with equal intensity(set to one). They are then subje
ted to the time evolution of the system; at ea
hboun
e, the intensity I of ea
h ray is 
hanged a

ording to the Fresnel laws: |r(χ)|2I forthe re�e
ted ray staying inside the 
avity and |t(χ)|2I for the transmitted ray, whi
h getsrefra
ted out (see Fig. 5.3). r and t are the 
omplex Fresnel re�e
tion and transmission
oe�
ients; they ful�ll |r|2 + |t|2 = 1. The outgoing angle η 
an be 
al
ulated usingSnell's law: if the in
oming ray hits the boundary under the angle χ, then sin η = n sinχwith the refra
tive index n of the 
avity (assuming n = 1 outside). From η, the far �eldemission angle θ 
an be 
al
ulated as the angle between the emission dire
tion and thepositive x axis (see Appendix A for details). Here, θ is taken between −π and 0 (-180degrees and 0 degrees) for emission into the y < 0 half-spa
e, and 0 ≤ θ ≤ π (0 degrees
≤ θ ≤ 180 degrees) otherwise. Adding up the 
ontributions of all rays in the initialensemble to the intensity outside the 
avity, one �nds the far �eld pattern. Figure 5.4
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Figure 5.3.: Cal
ulating far �eld emission from ray dynami
s. A ray with intensity Iis re�e
ted at the boundary; the re�e
ted parts gets the updated intensity
|r|2I with the Fresnel 
oe�
ient r = r(χ), the outgoing part the intensity
|t|2I. The outgoing angle η 
an be 
al
ulated using Snell's law. The far �eldemission angle θ is then the angle between the emission dire
tion and the xaxis.shows an exemplary far �eld pattern for the not
hed ellipse as well as a Fresnel-weightedunstable manifold, both generated by starting 1000 uniformly distributed rays. Thissystem shows highly dire
tional emission.5.3.2. Far �eld of the not
hed ellipseHow is the highly dire
tional emission from the not
hed ellipti
al 
avity ar
hived? Itis not obvious from the unstable manifold alone (Fig. 5.4); while the unstable manifoldonly has small tails into the leaky region (s/smax = 1 and 0.0 ≤ s/smax ≤ 0.6), thisoverlap region 
ontains many di�erent angles χ, whi
h in turn 
ould be naively thoughtto lead to various far �eld angles θ.One part of the answer 
an be found if one studies where the outgoing rays 
omefrom. Starting again with a uniform distribution of rays, they are followed until they getrefra
ted out of the 
avity (i.e., until | sinχ| ≤ 1/n), and the position they are 
omingfrom is noted. Most interesting are long-lived rays es
aping the 
avity. Figure 5.5 showswhere long-lived rays es
aping the 
avity 
ome from in phase spa
e (top panel) andaround the 
avity boundary (bottom panel). The areas right above the 
riti
al line andaround p = 0.5, where some long-lived rays 
ome from, are 
onne
ted to the bowtie-and period-8 stable islands indi
ated in Fig. 5.2. The long, narrow stru
ture around

s/smax ≈ 0.7 
omes from the unstable period-3 orbit, two boun
e points of whi
h areright below the 
riti
al line. But these di�erent stru
tures are not responsible for themajority of the es
aping rays, as 
an be seen from the bottom panel of Fig. 5.5. Themajority of es
aping rays 
omes from s/smax = 0 ≡ s/smax = 1: the not
h position. Thenot
h thus a
ts like a point s
atterer : rays hit it, get s
attered to the other side of the
avity with some new angle of in
iden
e, and then 
an get refra
ted out. When this
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Figure 5.6.: A whispering-gallery-like ray hits the not
h and is refra
ted out of the
avity. The magni�
ation shows to dynami
s near the not
h.

notchFigure 5.7.: S
attering and 
ollimation: rays are started from the not
h position withdi�erent outgoing angles. Rays with small outgoing angles are 
ollimatedin the far �eld; this 
ollimation gets worse as the outgoing angle grows. Atsome point (dashed blue line) the ray no longer es
apes, but travels insidethe 
avity as a whispering-gallery-like ray until it gets s
attered on
e again.
happens to whispering-gallery rays (like the ray marked in green in Fig. 5.2), these rays
an travel along the 
avity boundary for a long time before �nally es
aping. Figure 5.6shows another example of the s
attering of a whispering-gallery-like ray by the not
h.So the es
aping rays mostly are rays whi
h have been s
attered by the not
h. Theythen be
ome parallel rays in the far �eld, as 
an be been in Fig. 5.7: there, rays arestarted at the position of the not
h with di�erent outgoing angles, simulating a s
atteringpro
ess. Rays with small outgoing angles be
ome parallel in the far �eld; this 
ollimationpro
ess gets worse for larger outgoing angles, and at some point the outgoing angle islarge enough for the ray not being refra
ted out, but being laun
hed into a whispering-gallery-like mode. Su
h 
ollimation is known from lenses in geometri
 opti
s [BW59℄.Dire
tional emission from 
avities with point s
atterers and 
ollimation a

ording togeometri
 opti
s has been studied by Dettmann and 
oworkers [DMSW08, DMSW09℄;however, they only 
onsider 
ir
ular resonators with high-refra
tive index s
atterers.Su
h s
atterers are di�
ult to fabri
ate experimentally, and, as will be shown below, the
ir
ular boundary is not optimal for 
ollimation.In the next se
tion, the 
ollimation of rays in an ellipti
al resonator will be studiedusing a geometri
 opti
s approa
h.
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Figure 5.8.: Collimation of light rays in an ellipse. A ray 
oming from point (0, 0) withan angle α is 
ollimated. The parameters X , Y have to be 
hosen su
h thatrays originating from (0, 0) are 
ollimated.5.4. Collimation of rays s
attered by the not
h: a�lens model�5.4.1. Collimation in ellipti
al resonatorsAs seen in the previous se
tion, an ellipti
al 
avity 
an a
t as a �lens� and 
ollimaterays 
oming from a �xed position with small angles. In the not
hed ellipse, this �xedposition 
orresponds to the not
h position, whi
h is approximately the s = 0 positionof the boundary (5.1). The goal of this se
tion is to �nd the parameters of su
h anellipse ar
hiving 
ollimation. Figure 5.8 shows 
ollimation of a ray originating (0, 0); theparameters of the ellipse now have to be 
hosen su
h that this is possible.The ellipti
al boundary is given by
E(x, y) =

(x+X)2

X2
+
y2

Y 2
= 1, (5.2)the normal ve
tor ν at the position (x, y) on the boundary is given by

ν =
1

|∇E|∇E =
1

√

(x+X)2

X4 + y2

Y 4

(

(x+X)/X2

y/Y 2

)

. (5.3)The following relations 
an be found from Fig. 5.8:
tanα =

∆y

∆x
, (5.4)

β = η, (5.5)
α = η − χ, (5.6)
sin η = ν ·

(

0
1

)

; (5.7)



5.4. Collimation of rays s
attered by the not
h: a �lens model� 51the Snell law
sin η = n sinχ (5.8)holds as well. Equation (5.7) leads to

sin η =
y/Y 2

√

(x+X)2

X4 + y2

Y 4

. (5.9)Considering 
ollimation only for small angles (rays with larger angles will get re�e
tedba
k into a whispering-gallery anyway), one 
an set
tanα ≈ α, η ≈ nχ, x ≈ X, and ∆y = y ≪ x. (5.10)One then �nds

∆x ≈ ∆y

α
=

∆y

η − χ
=

∆y

η
(

1− 1
n

)

≈
Y 2

√

(x+X)2

X4 + y2

Y 4

1− 1/n
≈ 1

1− 1/n

Y 2

X
.

(5.11)The requirement that rays originating from (0, 0) are 
ollimated means that ∆x ≈ x ≈
X . This leads to

X

Y
≡ ǫ =

1√
2

1
√

1− 1/n
. (5.12)5.4.2. Collimation for other boundary shapesThe ellipse 
ollimates light s
attered by the not
h with small outgoing angles. Of 
ourse,as rays s
attered by the not
h emerge with all outgoing angles, it is interesting to ask ifthere is a shape whi
h 
ollimates light for all outgoing angles. To answer this question,one 
an 
onsider a 
avity boundary 
urve des
ribed by y = f(x) and look for a fun
tion

f su
h that rays 
oming from (0, 0) are 
ollimated (Fig. 5.9). The following relations
an be read o� the �gure:
tanα =

∆y

x0
=
f(x0)

x0
, (5.13)

tan β = − 1

f ′(x0)
= tan η, (5.14)

sin η = n sinχ, (5.15)
α = η − χ. (5.16)With α = η − χ, one �nds

tanα = tan(η − χ) =
tan η − tanχ

1 + tan η tanχ
; (5.17)
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x0 n=1Figure 5.9.: Relations between di�erent parameters in a 
avity bounded by the 
urve
y = f(x). The refra
tive index inside the 
avity is n; outside, it is 1. A raystarting at (0, 0) with an angle α is 
ollimated after refra
ting out of the
avity.

tanχ 
an be 
al
ulated from Snell's law:
tanχ =

sinχ
√

1− sin2 χ
=

1
n
sin η

√

1− 1
n2 sin

2 η

=
tan η/n

√

1 + tan2 η

1
√

1− 1
n2

(

tan2 η
1+tan2 η

)

≡ G(tan η).

(5.18)
Combining Eq. (5.18) and Eq. (5.17), using tan η = −1/f ′(x0) and inserting in Eq. (5.13)yields

tanα =
tan η − G(tan η)
1 + tan ηG(tan η) =

f(x0)

x0

→
− 1

f ′(x0)
− G

(

− 1
f ′(x0)

)

1− 1
f ′(x0)

G
(

− 1
f ′(x0)

) =
f(x0)

x0
.

(5.19)
This is a di�erential equation for the unknown fun
tion f and 
an be solved numeri
ally.Unfortunately, no solution leading to a 
losed 
avity exists; the solutions do not havetwo interse
tions with the x-axis.However, a solution leading to a 
losed 
avity exists if Eq. (5.13) does not have tobe true for all angles α, but instead only for small angles. Rays originating from (0, 0)with small angles will then be 
ollimated. In this limit, one has tan η ≈ sin η ≈ η and
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e of the far �eld dire
tionality on the system parameters 53orders η2 and higher 
an be negle
ted in Eq. (5.19). This yields
− 1

f ′(x0)

(

1− 1

n

)

=
f(x0)

x0

→ f ′(x0)f(x0) = −x0
(

1− 1

n

)

.

(5.20)This di�erential equation 
an be solved analyti
ally, for example using separation ofvariables, whi
h leads to
f(x0) =

√

2c−
(

1− 1

n

)

x20 with an integration 
onstant c. (5.21)For c > 0, this des
ribes an ellipti
al shape, whi
h is 
losed.5.5. Dependen
e of the far �eld dire
tionality on thesystem parameters5.5.1. Axis ratio ǫ = X/YAs seen in the previous se
tion, far �eld dire
tionality is ar
hived be
ause the ellipti
al
avity boundary a
ts like a lens and 
ollimates the rays s
attered by the not
h. For anygiven refra
tive index n, this works only for one axis ratio ǫ = X/Y (see Eq. (5.12)).Choosing n = 3.2, this optimal axis ratio is
ǫ =

1√
2

1
√

1− 1/n
≈ 0.83. (5.22)Figure 5.10 shows the far �eld pattern of not
hed ellipses with di�erent axis ratios ǫ.Indeed, values near the optimal ǫ lead to the �best� dire
tionality. This is quanti�ed inFig. 5.11, where the ratio of the intensity emitted into 0 ≤ θ ≤ 20 degrees to the overallemitted intensity is plotted for di�erent ǫ's. The full width at half maximum (FWHM)of the θ = 0 peak is also shown. The not
h depth and width are �xed at δ = 5/96 and

ϑ = 2/96, respe
tively.Indeed, one only �nds far �eld dire
tionality near the optimal ǫ; far away, the far �eldpattern is almost uniform, as it 
ould be expe
ted from whispering-gallery-rays in anellipti
al 
avity. Su
h a far �eld is also shown for 
omparison in Fig. 5.10 (blue 
urve).The main peak at the optimal ǫ is very sharp (≈ 5 degrees). This is signi�
antly lessthen what 
an be a
hieved in the limaçon (≈ 20 degrees) and other systems. A drawba
kis that the per
entage of the overall intensity whi
h is emitted in the main peak is rathersmall, i.e. below 50 %. While a laser working with an not
hed ellipti
al resonator mighthave ex
ellent output dire
tionality, it probably will not operate too e�
iently in termsof pumping versus output power.
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Figure 5.10.: Far �eld patterns for varying ǫ values and �xed not
h depth δ = 5/96 andwidth ϑ = 2/96. The red 
urve 
orresponds to the optimal ǫ ≈ 0.83. For
omparison, the far �eld pattern of the ellipse without not
h (blue 
urve)is shown as well.
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e of the far �eld dire
tionality and FWHM of the main far �eldpeak in the not
hed ellipse for various axis ratios ǫ.5.5.2. Not
h depth and widthFigure 5.12 shows the far �eld pattern for a not
hed ellipse with the optimal ǫ ≈ 0.83for di�erent not
h depths δ and not
h widths ϑ.While too large δ's are unfortunate in term of output unidire
tionality (the rays ares
attered too far inside the 
avity for the lens, whi
h is optimized for s
attering at theboundary, to work properly), too small δ's are also not good (the not
h is too small tos
atter the rays e�
iently). There exists a range of 1/96 ≤ δ ≤ 5/96 where the dire
tion-ality is optimized. The not
h width ϑ does not in�uen
e the dire
tionality signi�
antly;however, larger ϑ are favorable, probably be
ause having a broader not
h enhan
es theprobability of a ray getting s
attered by the not
h. Su
h enhan
ed s
attering, on theother hand, leads to faster leakage out of the 
avity and thus to a redu
ed Q fa
tor.5.5.3. PolarizationUnidire
tional emission 
an not only be a
hieved for TM, but also for TE polarization, asshown in Fig. 5.13; the divergen
e angles and the intensity emitted into ±20 degrees are
omparable. This is an advantage of the not
hed ellipti
al resonator: other stru
turesproposed for unidire
tional emission only work well for TE (e.g. the limaçon, [WH08℄)polarization. As only TE or TM polarized emission is possible when using some a
tivematerials in experiments, it is useful to have a shape with whi
h both possibilities 
anbe a

ommodated.While the per
entage of intensity emitted into±20 degrees is higher in the TE 
ase, thedi�eren
e between the two polarizations is very small. The not
hed ellipti
al resonatorthus exhibits unidire
tional light emission in both the TE and the TM 
ases.
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Figure 5.12.: Far �elds for the not
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h widths ϑ (with �xed δ = 2/96). Theper
entage of the intensity emitted into ±20 degrees is noted; red 
olorindi
ates the 
ombination yielding the best dire
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Figure 5.13.: Far �elds for the not
hed ellipse with ǫ = 0.83, not
h depth δ = 2/96 andnot
h width ϑ = 3/96 for TM and TE polarizations. The refra
tive indexis n = 3.2. The per
entage of the intensity emitted into ± 20 degrees isnoted.5.5.4. Refra
tive indexA refra
tive index of n = 3.2 has been used so far in the 
al
ulations. This is a refra
tiveindex typi
al for semi
ondu
tors (e.g., GaAs has n ≈ 3.3, GaN n ≈ 3, AlAs n ≈ 3.2),whi
h are in fa
t often used as 
avity materials in appli
ations. But there are othermaterials, e.g. polymers with n ≈ 1.5, whi
h 
an also be used; in other appli
ations,despite the use of a semi
ondu
tor 
avity, one has a refra
tive index 
ontrast betweenthe 
avity material and the outside be
ause the 
avity is embedded in another material.For example, this is the 
ase in [BRK+08℄, where a mi
ropillar 
avity is embedded in apolymer material. The refra
tive index 
ontrast is around 2 in this 
ase.Be
ause of this wide range of refra
tive indi
es en
ountered in appli
ations, it is rea-sonable to ask if the me
hanism presented so far works for refra
tive indi
es other than
n = 3.2. Naively, one 
ould think that it works for all refra
tive indi
es equally: afterall, Eq. (5.12) shows that for any n, an ǫ 
an be found whi
h optimizes the dire
tionality.But of 
ourse, Eq. (5.12) does not tell how good the dire
tional emission of a 
avity withthis optimal ǫ value a
tually is. As shown in Fig. 5.14, the dire
tionality indeed variessigni�
antly with the refra
tive index.The dire
tionality goes down drasti
ally if n is lowered; at n = 1.2, the emission isalmost uniform and not very di�erent from the one of the ellipse without not
h. Thisis due to the fa
t that at su
h a low index, most of the rays hitting the not
h a
tuallydo so with angles below the 
riti
al angle for total internal re�e
tion, and thus are notre�e
ted to the opposite side where 
ollimation 
an take pla
e, but refra
ted out rightaway. This is shown in Fig. 5.14 (b): there, the per
entage of the overall emission whi
h
omes from transmission of the not
h is plotted. While this transmission is only 2.3 %for n = 4.2, it goes up to almost 10 % for n = 2.2 and n = 1.2. Thus, more and moreintensity is transmitted at the not
h, lowering the emission into ±20 degrees, but also
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Figure 5.14.: (a) Far �eld patterns of the not
hed ellipse with di�erent refra
tive indi
es
n for δ = 2/96, ϑ = 3/96, and TM polarization. The e

entri
ity of ea
hellipse has been optimized with respe
t to n a

ording to (5.12). The per-
entage of the intensity emitted into ±20 degrees is noted. (b) Per
entageof the emitted intensity whi
h 
omes from transmission at the not
h forthe same refra
tive indi
es.diminishing the number of rays whi
h 
an parti
ipate in the 
ollimation pro
ess.For refra
tive indi
es above n = 3.2, the dire
tionality improves slightly (even moreray are s
attered by the not
h without being refra
ted out), but side peaks arise as well.They are 
onne
ted to the �bowtie� island (see Fig. 5.2): the boun
e points with p ≈ 0emit into at ≈ 70 and ≈ 110 degrees. This 
ontribution to the emission is, of 
ourse,always present; but at lower refra
tive indi
es, other 
ontributions are more important.At n = 4.2, most other phase spa
e stru
tures are too far away from the 
riti
al line to
ontribute.As no materials with n > 4 are 
urrently used in appli
ations, one 
an 
on
lude thatunidire
tional far �eld emission in ellipti
al 
avities with a not
h 
an only be a
hievedfor refra
tive indi
es typi
al for semi
ondu
tor materials.5.5.5. Not
h shapeThe 
hoi
e of a Gaussian as the not
h shape is arbitrary and might be di�
ult tofabri
ate experimentally. In this se
tion, two other not
h shapes are studied. The �rstis a Gaussian �double not
h�, de�ned by
x =

[

ǫ− δ
(

e−8(φ−(−π+ϑ/2))2/ϑ2

+ e−8(φ−(π−ϑ/2))2/ϑ2
)]

cosφ,

y = sin φ.
(5.23)This not
h is made of two Gaussians with widths ϑ/2 and depths δ. It thus has ap-proximately the same width and depth as the Gaussian not
h (Eq. (5.1)), as shown inFig. 5.15.
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Figure 5.15.: Gaussian (dashed line) and double-Gaussian (solid line) not
h shapes.The se
ond not
h is a paraboli
 not
h, whi
h is a
hieved by 
utting a parabola outof the ellipti
al boundary su
h that the depth is δ and the overall width is ϑ (seeFig. 5.16). A formula for this pie
ewise de�ned boundary 
an be found by �rst 
on-sidering interse
tions between the ellipti
al boundary (x, y) = (ǫ cos φ, sinφ) and theparabola (x, y) = (αy2 + β, y). Be
ause the not
h depth is δ, β is given by β = ǫ − δ,and be
ause the width is ϑ, the interse
tions happen at the polar angles φ1,2 su
h that
y = sinφ1,2 = ±ϑ/2. From these relations, α 
an be 
al
ulated:

x = ǫ cos φ1,2 = αy2 + β = α sin2 φ1,2 + ǫ− δ

→ α = −ǫ cosφ1,2 − ǫ+ δ

sin2 φ1,2

= −ǫ
√

1− ϑ2/4− ǫ+ δ

ϑ2/4
.

(5.24)In the last step, cos φ1 = cos φ2 = cos[arcsin(ϑ/2)] =
√

1− ϑ2/4 has been used. Theboundary 
urve of an ellipti
al resonator with a paraboli
 not
h is thus given by
x =







[

ǫ− δ − ǫ
√

1−ϑ2/4−ǫ+δ

ϑ2/4
sin2 φ

]

cosφ, | sinφ| ≤ ϑ/2 and cosφ < 0,

ǫ cosφ, otherwise,
y = sinφ.

(5.25)Figure 5.17 shows the far �eld patterns of a Gaussian, a double-Gaussian, and aparaboli
 not
h for δ = 2/96, ϑ = 3/96 and ǫ = 0.83. The dire
tionality of the far �eldpattern is quite insensitive to the pre
ise not
h shape, whi
h adds further 
on�rmationto the interpretation of the not
h as a point s
atterer.5.5.6. Cavity boundary shapeOnly an ellipse 
ollimates rays s
attered by the not
h. But what happens for otherboundary 
urves whose 
urvatures are lo
ally very similar to the one of the optimal
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Figure 5.16.: De�nition of the boundary 
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 not
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 not
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tion of intensity emitted into ±20degrees is noted. On the right, the not
h shapes are shown.
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e of the far �eld dire
tionality on the system parameters 61ellipse? As an example, one 
an look at a not
hed quadrupole with a 
ertain defor-mation. Quadrupolar 
avities also allow for long-lived rays and dire
ted (although notunidire
tional) emission (see, e.g., [NS97℄).The quadrupole is de�ned by the boundary 
urve1
r(φ) = R(1− ǫ̃ cos(2φ)), (5.26)with the deformation parameter ǫ̃ and a length s
ale parameter R.In order to �nd the deformation ǫ̃ whi
h leads to a 
urvature similar to the optimalellipse, one 
an follow [Nö
97℄ and view the ellipse as an �approximate quadrupole�. Theellipse 
an be parametrized by the boundary 
urve
r(φ) =

Y
√

1 + e2 cos2 φ
, (5.27)where the e

entri
ity e2 = (Y 2−X2)/X2 of the ellipse has been introdu
ed. Expansionof the square root in Eq. (5.27) yields

r(φ) ≈ Y

(

1− e2

2
cos2 φ

)

= Y

(

1− e2

2
− e2

4
cos(2φ)

)

. (5.28)This is the boundary 
urve des
ribing a quadrupole with deformation parameter ǫ̃ =
e2/4; ǫ̃ for the optimal not
hed quadrupole 
an be estimated to ǫ̃ ≈ 0.08. The boundary
urve of the not
hed quadrupole in units of the major half-axis Y is given by

x =
[

r(φ)− δ exp(−2(φ− π)2/ϑ2)r(φ)
]

cosφ,

y = r(φ) sinφ,
(5.29)with r(φ) = 1− ǫ̃ cos(2φ)− 2ǫ̃.Figure 5.18 shows the phase spa
e for the quadrupole and the not
hed quadrupoleat ǫ̃ = 0.08. It 
an be seen that also in this system, rays traveling along the boundarysimilar to WGMs until they hit the not
h exist; however, the phase spa
e is not 
hangedas drasti
ally as the one of the ellipse. This is due to the fa
t that the undisturbedquadrupole is already far from being an integrable system at ǫ̃ = 0.08 and the 
haoti
dynami
s does not 
hange drasti
ally. Many islands also persist after �not
hing� theboundary � and as some of them are lo
alized at the 
riti
al line, they 
ontribute to thefar �eld emission.Figure 5.19 shows the resulting far �eld patterns as well as the boundary shapes for theoptimal ǫ and ǫ̃. While the boundary shapes are very similar, the not
hed quadrupoleshows little output dire
tionality. It really is essential to shape the 
avity boundaryellipti
ally. This is due to the fa
t that the quadrupolar boundary does not 
ollimaterays as well as the ellipti
al boundary (see Fig. 5.20).1Usually, the quadrupole is de�ned by r(φ) = R(1 + ǫ̃ cos(2φ)). The 
hoi
e of the other sign ensuresthe same aspe
t ratio as in the ellipse 
onsidered earlier: the major half-axis is oriented along the yaxis.
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Figure 5.18.: Poin
aré surfa
e of se
tion for the quadrupole without not
h (top) and thenot
hed quadrupole (bottom) for ǫ̃ = 0.08 and δ = 2/96, ϑ = 3/96. The
riti
al line for total internal re�e
tion for n = 3.2 is shown in blue. Thepoints marked red in the bottom panel belong to an orbit whi
h travelsWGM-like around the boundary until hitting the not
h.



5.5. Dependen
e of the far �eld dire
tionality on the system parameters 63

 0  20  40  60  80  100  120  140  160  180

fa
r 

fie
ld

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

far field angle (degrees)

ellipse, ε=0.83

quadrupole,

ε=0.08

Figure 5.19.: Far �eld patterns and boundary shapes for the optimal ellipse andquadrupole with not
h parameters δ = 2/96 and ϑ = 3/96. The quadrupoleshape is slightly enlarged in order to make the 
omparison easier.

notch

quadrupoleellipse

Figure 5.20.: Collimation in the ellipse (left, see Fig. 5.7) and quadrupole (right). Raysoriginating from the not
h are not 
ollimated in the quadrupole even forsmall angles.
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tional emission from ellipti
al resonators with a not
h5.6. Comparison with wave 
al
ulationsSo far, all results have been obtained using a ray model. While the rays 
an of 
ourse re-solve an arbitrarily small not
h at the boundary, ele
tromagneti
 waves 
an only resolvestru
tures larger than a wavelength. It is thus ne
essary to 
he
k if the results still holdwhen leaving the ray approximation and solving the wave equation in a not
hed ellipti
al
avity dire
tly. This is done here using the boundary element method (BEM) [Wie03℄(see also Appendix C for details). Figure 5.21 shows far �eld patterns for two di�erentmodes as well as the mode patterns. The modes are labeled A (kR = 60.32 − 0.0062i,
Q = 49 000) and B (kR = 60.59 − 0.055i, Q = 5 500). While the mode pattern is notvery sensitive to the number of boundary elements used for 
al
ulation, the Q fa
tor is;the results shown here have been 
al
ulated using 4000 boundary elements. Choosing ahigher number of boundary elements leads to signi�
antly higher Q fa
tors.The far �eld agrees well with the ray simulations; the intensity emitted into ±20degrees is between 50 and 60 %, whi
h is a bit larger than the ray simulations predi
t.This di�eren
e 
an at least in part be attributed to the di�eren
es between modes ofeven and odd parity. Modes with odd parity have higher Q fa
tors, as they have lessoverlap with the not
h (a node is lo
ated at the not
h position) and thus less leakageout of the 
avity at the not
h position; they also have less dire
tional emission. Evenparity modes, whi
h are more dire
tional, dominate the far �eld be
ause their Q fa
torsare lower (they have an intensity maximum at the not
h position), so that a largerper
entage of the light leaking out 
omes from them. The ray simulation 
orrespondsnot to the far �eld of an individual mode, but to and average over all (even and odd)modes (this kind of 
orresponden
e has been studied in [SHW+09℄). The average raydire
tionality thus has to be lower than the dire
tionality of a single mode.5.7. Comparison to experimental resultsEllipti
al resonators with not
hes have been fabri
ated in F. Capasso's group [WYY+10℄and used as a 
avity for a mi
rolaser. They fabri
ated GaInAs/AlInAs/InP QuantumCas
ade Lasers (QCLs; the working prin
iple is des
ribed in [FCS+94℄) with an e�e
tiverefra
tive index n ≈ 3.2 and a wavelenght in the material of λ ≈ 10µm. The minor half-axis X is X = 80µm, the major half axis Y = 96µm. Di�erent not
h shapes and sizeswere fabri
ated (see Figs. 5.22 and 5.23), in
luding a double and a paraboli
 not
h; theresults shown below are for a paraboli
 not
h with depth d = 2µm and opening angles
o = 3µm. The not
hes are shaped with photo-lithography; the standard a

ura
y ofthis method is around 1µm.The light output of a QCL is always TM polarized due to sele
tion rules for thelasing quantum well intersubband transitions. The devi
es are pumped ele
tri
ally. The
Q-fa
tors are around 1200, whi
h agrees well with the 
al
ulated values if materialabsorption is taken into a

ount. The far �elds are measured a

ording to [YFW+08℄and also agree well with our theoreti
al predi
tions (Fig. 5.24).
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Figure 5.21.: Far �eld patterns for modes A (high Q) and B (low Q). The mode patternsinside and outside the 
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h

Figure 5.22.: S
anning ele
tron mi
ros
ope pi
ture of an ellipti
al 
avity with aparaboli
 not
h with d = 2µm and o = 3µm. The top panel shows theresonator as seen from above (with the gold 
onta
t as its top plate); thebottom panel shows a magni�
ation around the not
h. The not
h param-eters and indi
ated as well as the a
tive region (Pi
ture 
ourtesy of Q. J.Wang).

Figure 5.23.: S
anning ele
tron mi
ros
ope pi
ture of an ellipti
al resonator with a�double not
h� with d = 2µm and o = 3µm (Pi
ture 
ourtesy of Q. J.Wang).
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urve) and theoreti
al (bla
k 
urve)far �eld patterns for a not
hed ellipti
al resonator with X = 80µm, Y =
96µm, d = 2µm, and o = 3µm. The theory 
urve shows the far �eldpattern of mode A from above. Both far �eld patterns are normalized totheir maximum value.





69
6. Extended ray dynami
s:in
luding wave 
orre
tions in theray pi
tureWhile ray-wave 
orresponden
e is very useful for the interpretation of modes and far-�eld patterns, it fails if the wavelength be
omes 
omparable to the 
avity size (λ/Rnear one), i.e. for low kR. As semi
ondu
tor 
avities with sizes 
omparable to the laseremission wavelengths have been build [SGS+10℄, understanding how and when ray-wave
orresponden
e fails and what other ways of interpreting the wave results are possiblebe
omes more and more important. One idea is to �nd �rst-order wave 
orre
tions whi
h�extend� the ray dynami
s; this 
an be seen as a �semi
lassi
al� approa
h: instead of justlooking at the 
lassi
al (ray) limit of a quantum me
hani
al billiard (diele
tri
 
avity),one 
onsiders �rst-order quantum (wave) 
orre
tions to physi
al quantities.How does one design this extensions, what are ��rst-order wave 
orre
tions�? If oneleaves the ray limit, one no longer deals with rays, but with beams whi
h travel, getre�e
ted, and interfere in a 
avity; in the limit of narrow beams with wavelengths small
ompared to the 
avity size, one re
overs the ray limit. Be
ause one deals with beams,whi
h have a di�ra
tive spreading (i.e. 
ontain partial waves with di�erent in
identangles at a point where re�e
tion o

urs), the openness of a diele
tri
 
avity is felt mu
hmore dire
tly than in the ray pi
ture: at ea
h re�e
tion, a part of the beam 
an getrefra
ted out, even if the average angle of in
iden
e is above the 
riti
al angle for TIR.Wave 
orre
tions will thus also mean 
orre
tions due to the openness of a diele
tri

avity.One su
h �rst-order wave 
orre
tion has been found experimentally by Goos andHän
hen [GH47℄: measuring the re�e
tion of beams on a planar interfa
e, they foundthat the re�e
ted ray is not re�e
ted at the position of the in
ident ray, but is shiftedalong the interfa
e (the shift is now 
alled the Goos-Hän
hen shift (GHS)) be
ause ofinterferen
e of the di�erent re�e
ted partial waves, whi
h a

umulate di�erent phasesupon re�e
tion; the theory is dis
ussed in more detail in se
tion 6.1.1. This shift 
anbe easily in
luded in a ray pi
ture: one identi�es the maximum of the beam as a ray,subje
ts it to the usual re�e
tion laws at the boundary, and then applies the GHS asa 
orre
tion. A 
omplementary e�e
t was predi
ted in [TS02℄ and measured experi-mentally in [RTS+02℄: when a beam is re�e
ted at an interfa
e, the partial waves withsmall angles of in
iden
e (whi
h usually exist, even if the average angle of in
iden
e isabove the 
riti
al angle) get (partially) refra
ted out of the 
avity and are missing inthe re�e
ted beam, whi
h thus has an average outgoing angle whi
h is higher than the
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Figure 6.1.: GHS ∆s and FF ∆p = sinχ′ − sinχ as wave 
orre
tions to the ray pi
ture.A beam is not re�e
ted at the same position on the boundary, but theoutgoing beam is shifted by ∆s; the outgoing angle χ′ is not the same asthe in
ident angle χ, but the sine is shifted by ∆p.average angle of in
iden
e. This e�e
t, 
alled Fresnel �ltering (FF), thus manifests itselfas a 
orre
tion of the outgoing angle of a ray, i.e. as a 
orre
tion to Snell's law. If one
onsiders both these e�e
ts and looks at the dynami
s in phase spa
e [SH06℄, the GHSis a 
orre
tion of the position s along the 
avity boundary, and the FF is a 
orre
tionof angle χ, i.e., the momentum p = sinχ. Figure 6.1 shows an illustration of the twoe�e
ts.The wave 
orre
tions lead to modi�
ations of the phase spa
e: breakup of invariantlines into stable and unstable �xed points (see se
tion 6.4 and [UWH08℄), formation ofattra
tors and repellers (see se
tions 6.5, 6.6 and [AGH08, UW10℄) and a momentumshift of phase-spa
e stru
tures (also dis
ussed in se
tion 6.5). Continuing the idea of ray-wave 
orresponden
e, one 
an look at modes for low kR and study how they re�e
t themodi�ed phase spa
e. Altmann et al. [AGH08℄ have studied the formation of attra
torsand repellers in the annular 
avity with wave 
orre
tions, but did not 
onsider modes.6.1. Wave 
orre
tions: Goos-Hän
hen shift andFresnel �ltering6.1.1. Goos-Hän
hen shift: analyti
al resultsA simple analyti
al formula for the GHS is due to Artmann [Art48℄. While it 
an also 
anbe derived from wave opti
s ([Art48, Art51℄; see also se
tion 6.2.1 for another derivation),the simplest approa
h is to 
onsider a beam 
onsisting of two plane waves being re�e
tedat a planar interfa
e (see Fig. 6.2). The plane waves have slightly di�erent in
omingangles χ and χ′ (
orresponding to p = sinχ and p′ = sinχ′), and, upon re�e
tion, gaintwo slightly di�erent phases φ and φ′. One 
an set p′ = p + ∆p and φ′ = φ + ∆φ; ∆pand ∆φ are small numbers. The in
oming beam 
an be written as
ψin(x) = einkpx + einkp

′x = einkpx
(

1 + eink∆px
)

, (6.1)
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n=1

n

x
ν

χ
χ ’

interference

ψout
ψinFigure 6.2.: Derivation of the Artmann result for the GHS using an in
oming beam
onsisting of two plane waves. At the interfa
e, they gain di�erent phaseshifts, whi
h in turn lead to a lateral displa
ement.the outgoing beam as

ψout(x) = exp(inkpx+ iφ) + exp(inkp′x+ iφ′)

= exp(inkpx+ iφ)

(

1 + exp

(

ink∆p

(

x+
1

nk

∆φ

∆p

)))

≈ exp(inkpx+ iφ)

(

1 + exp

(

ink∆p

(

x+
1

nk

∂ φ

∂ p

)))

= exp(iφ)ψin(x+ 1

nk

∂ φ

∂ p

)

.

(6.2)
the re�e
ted beam thus has a lateral shift of

∆s =
1

nk

∂ φ

∂ p
. (6.3)The phase φ is given by the 
omplex Fresnel re�e
tion 
oe�
ient, r = |r|eiφ, with

φTM = −2 arctan

(
√

sin2 χ− n2

cosχ

)

,

φTE = −2 arctan

(
√

sin2 χ− n2

n2 cosχ

)

.

(6.4)One 
an thus write Eq. (6.3) as
∆sTM =

1

nk

1
√

sin2 χ− 1/n2
,

∆sTE =
1

nk

1

n
√

sin2 χ− 1/n2
.

(6.5)
∆s has singularities at p = sinχ = 1/n (the 
riti
al angle) and also at p = 1, both ofwhi
h are unphysi
al for a realisti
 beam. The Artmann result is thus only valid for
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Figure 6.3.: Artmann result (bla
k line) and Lai result for kσ = 30 (red solid line) and
kσ = 4 (red dashed line). The 
riti
al line is marked by the bla
k dashedline. The other parameters are n = 3.3, kR = 8.2; the polarization is TM.not-too-high angles of in
iden
e above the 
riti
al angle, as the square root in Eq. (6.5)gets 
omplex-valued for p < 1/n and the shift 
annot be properly de�ned.Lai et al. [LCT86℄ developed an analyti
al expression for the shift of a Gaussian beamwhi
h gets rid of the singularity at p = 1/n and is also valid for angles of in
iden
ebelow the 
riti
al angle. However, their expression is only valid if the beam width σ ofthe beam is mu
h larger than the wavelength, i.e. in the limit kσ ≫ 1. If one 
onsidersminimal-un
ertainty beams for small k, one has kσ ≈ 1. This is the limit whi
h willbe 
onsidered in the following; the Lai result is no longer valid in this limit be
ause itshows unphysi
al singularities. Figure 6.3 shows both the Artmann result and the Lairesult for di�erent σ values.6.1.2. Fresnel �lteringThe Fresnel �ltering e�e
t was introdu
ed by Ture
i and Stone [TS02℄ in order to de-s
ribe deviations of the measured far-�eld pattern of a quadrupolar 
avity from the ray-dynami
al predi
tions. They developed an analyti
al formula for the far-�eld emissionpattern of a 
avity where Gaussian beams are re�e
ted; from it, an analyti
al expressionfor the shift in the far-�eld emission angles (for in
iden
e at the 
riti
al angle) 
an bederived. However, no analyti
al expressions for the FF itself are given, and none seemto be known. S
homerus and Hents
hel [SH06℄ extra
ted the FF from wave 
al
ulationsin a 
ir
ular 
avity; for other investigations, i.e. the formation of periodi
 orbits in theSpiral 
avity [AGH08℄, for �xed nkR, a 
onstant FF as a fun
tion of p is assumed.
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al 
al
ulation of GHS and FF6.2.1. Cal
ulation s
hemeAs analyti
al formulas for the GHS su�er from unphysi
al singularities and so far, noneare known for the FF, it is ne
essary to 
al
ulate these 
orre
tions numeri
ally as fun
-tions of the angle of in
iden
e, depending on the refra
tive index n, the wavelength(des
ribed by the size parameter kR), and the polarization (TM or TE). The numer-i
al s
heme is des
ribed in the following; the general idea is to 
al
ulate the in
identand re�e
ted beams and extra
t the GHS and FF by 
omparing the average in
om-ing and outgoing re�e
tion positions and angles. Su
h an approa
h has been used in[AW07, AW09℄ and [AMW09℄ as well, and 
ompared to experimental results for theshifts at planar interfa
es (though not in mi
ro
avities).The major approximation here is to treat the interfa
e as planar, thus negle
ting the
urvature of a 
avity boundary. This approximation 
an be justi�ed be
ause lo
ally, anysmooth boundary looks �at; if the radius of 
urvature is larger than the beam width andthe wavelength, it will also look �at to the beam. A generalization to arbitrarily 
urvedboundaries might be desirable if one wants to study kR → 1, but is di�
ult, as thereare no analyti
al formulas for the Fresnel 
oe�
ients at a 
urved interfa
e. Thus, thefollowing 
al
ulations are restri
ted to the planar-interfa
e situation; as the results agreewell with wave results down to kR ≈ 10 (as will be seen later), this seems reasonable.The in
oming wave fun
tion ψin is modeled as a Gaussian beam:
ψin(x) = ∫ 1

−1

dp einkpxfin(p), (6.6)with
fin(p) = e−n2k2(p−pin)2σ2/4. (6.7)This des
ribes a Gaussian beam with width σ 
entered around x = 0 (whi
h is 
hosenas the position where the beam maximum hits the �at interfa
e) and has plane wave
omponents with wave number k whose in
oming angles are 
entered around pin =

sinχin. The width σ 
an be �xed by 
hoosing a minimal-un
ertainty beam where theun
ertainties in nkp and x, nk∆p and ∆x, are of equal size when 
ompared to the typi
allength s
ale R of a 
avity. The minimal-un
ertainty beam is 
hosen be
ause it bestapproximates a 
lassi
al ray and is thus the natural 
hoi
e in a semi
lassi
al approa
h.With the un
ertainty relation for a Fourier transform, whi
h Eq. (6.6) basi
ally is,
nk∆p∆x = nkR∆p

∆x

R
=

1

2
(6.8)one �nds with equal un
ertainties ∆p = ∆x/R

∆x =

√
R√
2nk

. (6.9)The beam width σ is then given by σ =
√
2 ·∆x.
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Figure 6.4.: In
oming and outgoing beams. The in
oming beam ψin in
ludes a variety ofplane wave 
omponents with di�erent in
oming angles; the 
entral in
omingangle is χin. Ea
h 
omponent gets re�e
ted a

ording to Fresnel's and Snell'slaws; the outgoing beam ψout 
onsists of di�erent angles.When the beam hits the boundary, ea
h plane wave 
omponent gets re�e
ted a

ordingto the Fresnel and Snell laws; the wave 
omponents with in
oming angles below the
riti
al angle for total internal re�e
tion get partially refra
ted out. The outgoing beam
an thus be des
ribed as
ψout(x) = ∫ 1

−1

dp r(p)einkpxfin(p), (6.10)with the 
omplex Fresnel re�e
tion 
oe�
ient r applied to ea
h plane wave 
omponent.The resulting beam will, in general, no longer be Gaussian. Figure 6.4 illustrates thepro
ess. When 
onsidering only in
oming angles above the 
riti
al angle for TIR and anarrow angle distribution, the Fresnel 
oe�
ient r 
an be approximated as
r(p) = |r(p)|eiφ(p) = eiφ(p) ≈ exp

(

iφ(pin) + ip
∂ φ

∂ p
|pin) , (6.11)whi
h, put into (6.10), leads to

ψout(x) ≈ ∫ 1

−1

dp einkpxfin exp(iφ(pin) + ip
∂ φ

∂ p
|pin)

= exp(iφ(pin)) ∫ 1

−1

dp exp

(

inkp

(

x+
1

nk

∂ φ

∂ p

))

= eiφ(pin)ψin(x+ 1

nk

∂ φ

∂ p

)

.

(6.12)
One thus re
overs the Artmann result

ψout(x) = eiφ(pin)ψin(x+∆s) (6.13)
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∆s =

1

nk

∂ φ

∂ p
. (6.14)In the general 
ase, the GHS is de�ned as the di�eren
e in the �position expe
tationvalues� of ψout and ψin:

∆s =

∫∞
−∞ dxx|ψout(x)|2
∫∞
−∞ dx |ψout(x)|2 , (6.15)as ψin has a position expe
tation value of zero by 
onstru
tion. The FF 
an be 
al
ulatedusing the Fourier transforms ψ̂in(p), ψ̂out(p) of ψin and ψout:

∆p =

∫ 1

−1
dp p|ψ̂out|2
|ψ̂out|2 − pin, (6.16)as ψin is 
entered around pin. Be
ause fin is a Gaussian, the Fourier transform 
an be
al
ulated, yielding

ψ̂in(p) ∼ fin(p), ψ̂out(p) ∼ r(p)fin(p) (6.17)(the normalization 
onstants do not matter be
ause they 
an
el ea
h other in (6.16)).The integrals in (6.15) and (6.16) have to be done numeri
ally be
ause of the presen
eof the re�e
tion 
oe�
ient r; the x-integral is done from −50σ to 50σ.In prin
iple, one 
ould also extra
t the GHS by 
omparing the positions of the maximaof ψin and ψout; the shift ∆s would then be the di�eren
e of the positions of the maxima.Lai et al. [LCT86℄ use this de�nition. But as ψout need not be Gaussian, this de�nitionmight not be straightforward, as ψout 
an have di�erent lo
al maxima. An example isshown in Fig. 6.5: The top panel shows the in
oming and outgoing wave fun
tions foran in
oming angle of pin = 0.8 (above the 
riti
al angle for n = 3.13) and kR = 50. Theoutgoing wave fun
tion is approximately Gaussian, and the expe
tation value and themaximum give approximately the same result. The bottom panel shows the in
omingand outgoing wave fun
tions for pin = 0.3 (just below the 
riti
al angle), all otherparameters are the same. The outgoing wave fun
tion has two maxima; the higher oneis shifted to the left : de�ning the GHS as the shift of this maximum would yield anegative GHS. But be
ause of the se
ond maximum and a �tail� in the x > 0 region, theGHS extra
ted by the expe
tation value is positive.6.2.2. Dependen
e on Gaussian beam parametersFor high kR, the p dependen
e of the GHS and the FF looks similar to the results ob-tained by Artmann and Lai and also the 
urves extra
ted from wave 
al
ulations [SH06℄.Figure 6.6 shows the GHS and FF for di�erent kR values. For small kR values, the GHShas a very broad maximum above the 
riti
al angle and is never zero; the FF also hasa broad maximum, and instead of vanishing above the 
riti
al angle, it turns negative.This 
an be understood when looking at the wave fun
tion ψ̂(p) in p spa
e (see Fig.6.7). For low kR, this wave fun
tion is very broad. For small pin, the simple pi
tureof the re�e
tion 
oe�
ient 
utting out the small-p partial waves, resulting in a positive
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Figure 6.5.: In
oming (bla
k 
urve) and outgoing (red 
urve) wave fun
tions for kR =
50, TE polarization, n = 3.13, and pin = 0.8 (top panel) resp. pin = 0.3(bottom panel). The outgoing wave fun
tion for pin = 0.8 is approximatelyGaussian, the outgoing wave fun
tion for pin = 0.3 is no longer Gaussian.
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tureshift, remains true (top panel in Fig. 6.7; pin is just below the 
riti
al angle). For larger
pin, the re�e
tion 
oe�
ients 
uts out �intermediate� p values (as it has a minimum atthe Brewster angle), but leaves the smaller p values (bottom panel in Fig. 6.7). Theresulting shift 
an be negative. This does not happen for higher kR, as the beams areless broad in this 
ase and thus |r| only has values below one in regions where ψ̂in ≈ 0for angles of in
iden
e above the 
riti
al angle. One thus only �nds negative FF aroundthe Brewster angle, but not for higher pin; this feature is not present in TM polarization.There, the FF is always positive for high kR.The GHS approximately s
ales with 1/kR (as 
an be expe
ted from the Artmannformula (6.5)), the FF, on the other hand, s
ales approximately as √kR, as predi
tedby Ture
i and Stone [TS02℄.6.3. The extended billiard mappingJust like the usual billiard dynami
s 
an be des
ribed by a mapping (si, pi) → (si+1, pi+1)[Ber81℄, the dynami
s in a billiard in
luding the GHS and FF 
orre
tions 
an be de-s
ribed using another mapping. If one denotes the billiard mapping by

si+1 = f(si, pi), pi+1 = g(si, pi), (6.18)where the fun
tions f and g depend on the shape of the billiard boundary, the billiardmapping in
luding the 
orre
tions is given by
s′i+1 = f(si, pi), p

′
i+1 = g(si, pi),

si+1 = s′i+1 +∆s(s′i+1, p
′
i+1), pi+1 = p′i+1 +∆p(s′i+1, p

′
i+1).

(6.19)Thus, starting from (si, pi), �rst the next interse
tion (s′i+1, p
′
i+1) with the boundary is
al
ulated using the billiard dynami
s, and then the 
orre
tions are applied, leading tothe new position (si+1, pi+1) (see Fig. 6.8). The approximation of 
al
ulating the GHSand FF at a planar interfa
e means that one negle
ts the s′i+1 dependen
e of ∆s and ∆pin (6.19). If ĴB is the Ja
obian of the billiard dynami
s (the linearized mapping),

ĴB =

(

∂ f
∂ s

∂ f
∂ p

∂ g
∂ s

∂ g
∂ p

)

, (6.20)and ĴG the one of the 
orre
tions,
ĴG =

(

∂∆s
∂ s

∂∆s
∂ p

∂∆p
∂ s

∂∆p
∂ p

)

=

(

1 ∂∆s
∂ p

0 1 + ∂∆p
∂ p

)

, (6.21)then the Ja
obian of the extended mapping ĴE is given by ĴE = ĴG◦ĴB. The determinantis given by det ĴE = det ĴG det ĴB = 1 +
∂∆p

∂ p
, (6.22)



6.3. The extended billiard mapping 79

 0

 0.2

 0.4

 0.6

 0.8

 1

10.80.61/n0.20

|ψ
|(

p)
 , 

r(
p)

p=sin(χ)

pin=0.3

|r(p)|
incoming
outgoing

 0

 0.2

 0.4

 0.6

 0.8

 1

10.80.61/n0.20

|ψ
|(

p)
 , 

r(
p)

p=sin(χ)

pin=0.8

|r(p)|
incoming
outgoingFigure 6.7.: In
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tions and re�e
tion 
oe�
ient in p spa
efor kR = 4, TE polarization, and n = 3.13. The top panel shows the 
asefor an angle of in
iden
e pin = 0.3 of the wave pa
ket (
orresponding topositive FF), the bottom panel shows pin = 0.8 (
orresponding to negativeFF).
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tions then yield the newphase spa
e position (si+1, pi+1).
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luding wave 
orre
tions in the ray pi
turewith det ĴB = 1, as billiards are Hamiltonian systems. The extended mapping is thus ingeneral not area-preserving, and this is entirely due to the FF; the GHS is a Hamiltonian
orre
tion. The tra
e is given bytr ĴE = tr ĴB +
∂∆s

∂ p

∂ g

∂ s
+
∂∆p

∂ p

∂ g

∂ s
. (6.23)Using det ĴE and tr ĴE, one 
an dis
uss the stability of any given �xed point. Theeigenvalues λ± of ĴE are given by

λ± =
1

2
tr ĴE ±

√

1

4
(tr ĴE)2 − det ĴE . (6.24)The �xed point is stable if DĴE

= (tr ĴE)2 − 4det ĴE < 0 (
omplex λ±), unstable if
DĴE

> 0 (real λ±) and marginally stable if DĴE
= 0. In �rst order in ∆s, ∆p, one �nds

DĴE
= (tr ĴB)2 − 4det ĴB + 2tr ĴB [∂∆s

∂ s

∂ g

∂ s
+
∂∆p

∂ p

(

∂ g

∂ p
− 4

)]

= DĴB
+ 2tr ĴB [∂∆s

∂ s

∂ g

∂ s
+
∂∆p

∂ p

(

∂ g

∂ p
− 4

)]

.

(6.25)As ∆s and ∆p are small 
orre
tions, they only rarely 
an 
hange a positive DĴB
into anegative one and vi
e versa; the stability of a �xed point will thus be the same in theextended billiard dynami
s. Only in the marginally stable (DĴB

= 0) 
ase, a �xed pointis drasti
ally a�e
ted by the wave 
orre
tions, and an invariant line 
an be broken intostable and unstable �xed points (Poin
aré-Birkho�-theorem). An example is dis
ussedin se
tion 6.4 in the ellipti
al billiard.If ∂∆p/∂p < 0, a stable �xed point will be
ome an attra
tor in the non-Hamiltoniandynami
s; if ∂∆p/∂p > 0, it be
omes a repeller; the stability is in general not 
hanged.This may 
omes as a surprise, as one 
ould assume that stable �xed points 
ould onlybe
ome attra
tors. Stability of a phase spa
e stru
ture and the type of the dynami
s(
ontra
ting or expanding) are, however, not related: just like an attra
tor has a basin ofattra
tion (set of points whi
h 
onverge to the attra
tor in forward-time evolution) whi
h
orresponds to the stable island in the Hamiltonian dynami
s, a repeller has a basinof repulsion (set of points whi
h 
onverge to the repeller in ba
kward-time evolution)whi
h also 
orresponds to the stable island in the Hamiltonian dynami
s. That bothattra
tors and repellers 
an be found is an interesting feature of the p dependen
e ofthe FF. The �pinball billiards� [AMS09℄, for example, only show attra
tors be
ause a
onstant ∂∆p/∂p < 0 is used.The FF breaks the time-reversal symmetry (s, p) → (s,−p) present in the billiardsystem; the partial waves with angles of in
iden
e below the 
riti
al angle get refra
tedout � when reversing the beam, the now in
oming beam has a lot less 
omponents belowthe 
riti
al angle and does not loose as mu
h intensity. This sometimes 
reates 
onfusion,as the wave dynami
s of the system seems to be time-reversal invariant (after all, theMaxwell equations are). This apparent 
ontradi
tion resolves if one notes that in the
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alization of modes in the ellipse 81the wave pi
ture, time-reversal invarian
e is also broken due to the outgoing boundary
onditions whi
h are usually imposed. If light 
an not only get out of the 
avity, butalso 
ome ba
k from in�nity, the wave dynami
s is time-reversal invariant, and so is theextended ray dynami
s.6.4. GHS and lo
alization of modes in the ellipseIn this se
tion, the e�e
t of the wave 
orre
tions on a system whole billiard analog (theellipse) is integrable is studied. One �nds new pairs of stable and unstable periodi
orbits, and mode lo
alization along them. Su
h lo
alization 
an not be explained fromthe point of view of the 
onventional ray dynami
s, as the periodi
 orbits are marginallystable in this 
ase. However, as these orbits turn stable and unstable in the extended raydynami
s, the lo
alization is easily explainable as s
arring or lo
alization on stable is-lands. By 
al
ulating mode frequen
ies for di�erent ellipse e

entri
ities, it is shown thatthe lo
alization of modes along periodi
 orbits happens at avoided resonan
e 
rossings.6.4.1. The open ellipseIn 
ontrast to the ellipti
al billiard, the diele
tri
 ellipse is not integrable, as the Helmholtzequation only separates for hard-wall boundary 
onditions [Nö
97℄. As the wave 
orre
-tions GHS and FF only appear be
ause of the openness of a 
avity, the extended raydynami
s of the ellipse should re�e
t this non-integrability.Figure 6.9 shows the phase spa
e of the ellipse at e = 0.649. Far way from the
riti
al line, where the FF is small, the dynami
s is approximately Hamiltonian, andsome invariant tori persist � thus, WGMs 
an still be found. In the leaky region, thedynami
s is repulsive, but boun
ing-ball stru
tures still exist as transients; as rays followsu
h a line for many boun
es, mode lo
alization on these stru
tures 
an still happen.Be
ause of the 
orre
tions, some invariant lines are broken up, giving rise to the stableand unstable period four orbits. This is an e�e
t of the GHS alone [UWH08℄. It is
onsistent with the Poin
aré-Birkho� theorem, where a Hamiltonian 
orre
tion breaksinvariant tori into pairs of stable and unstable periodi
 orbits.Figure 6.10 shows emerging Husimi fun
tions for two modes in the e = 0.649 ellipsetogether with the 
orresponding periodi
 orbits; the lo
alization 
an be 
learly seen. Asimilar s
enario is valid for the e = 0.845 ellipse. There, an additional stable island(
orresponding to a �bowtie� orbit) and an unstable periodi
 orbit appear; there is alsolo
alization along them, as shown in Fig. 6.11.This lo
alization along periodi
 orbits in the open ellipse would be di�
ult to un-derstand from a 
onventional ray-dynami
al point of view. Basi
ally, there are twome
hanisms whi
h 
an lead to su
h lo
alization: s
arring [Hel84℄, whi
h in 
haoti
 sys-tems leads to lo
alization along unstable periodi
 ray traje
tories, and lo
alization onstable islands (a

ording to the �semi
lassi
al eigenfun
tion hypothesis� [Per73, Ber77℄).Both me
hanisms are not appli
able here, as in the 
losed ellipse, the periodi
 orbits inquestion are marginally stable and thus neither stable nor unstable. The 
onventional
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e for the e = 0.649 ellipse with wave 
orre
tions at n = 3.3, TMpolarization, and kR = 8.2. The red dots mark the stable period-4 islands,the green dots belong to the 
orresponding unstable traje
tory. The blueline marks the 
riti
al line for TIR.ray dynami
s thus 
an not explain this lo
alization, whi
h probably 
ould be expe
tedbe
ause it happens at an ARC whi
h also is not present in the 
losed billiard.The extended ray dynami
s, however, 
an explain the lo
alization, as it implements
orre
tions whi
h also in
lude the openness of this system.6.4.2. S
aling with the wavelengthAs the GHS is a 
orre
tion proportional to the wavelength λ (thus s
aling with 1/kR),one 
ould guess that the size of an island formed by this 
orre
tion also s
ales with 1/kR.The size is measured as the phase spa
e area A =
∮ ds p; it is estimated by overlaying araster on the island and 
al
ulating the area by 
ounting the raster blo
ks inside. Thisonly gives a rough estimate, as there is un
ertainty in the 
hoi
e of the boundary of theisland (one tries to �nd the outermost boundary, but does not always hit it), as well asdeviations depending on the raster parameters. However, the estimate should be enoughfor studying s
aling properties.Figure 6.12 shows the s
aling of the island 
orresponding to the re
tangular orbit ate

entri
ity e = 0.649 (top panel) and the island 
orresponding to the bowtie mode at

e = 0.845 (bottom panel) in a double-logarithmi
 plot. A linear dependen
e on kR withslope −1 would be expe
ted for s
aling with 1/kR, but while the dependen
e in both
ases is linear, the slope is larger than −1, and di�erent in both 
ases. At e = 0.845, aslope of ≈ −0.7 is found, and at e = 0.649, one �nds ≈ −0.3. The inset show the shapeof the bowtie island for di�erent kR values. In the 
ase if the bowtie island, the �rsttwo data points (kR = 6.5 and kR = 13) have not been used in the �t, as the islands in
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Figure 6.10.: Emerging Husimi fun
tions for modes lo
alizing on stable (�re
tangle�,top panel) and unstable (�diamond�, bottom panel) period-4 orbits in the
e = 0.649 ellipse. The blue line marks the 
riti
al line. The stable andunstable orbit positions are shown as green dots; the stable island is shownin red. The real-spa
e mode patterns are shown in the insets; the periodi
orbits are shown as bla
k lines.
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Figure 6.11.: Emerging Husimi fun
tions for modes lo
alizing on stable (�bowtie� toppanel) and unstable (bottom panel) periodi
 orbits in the e = 0.845 el-lipse. The blue line marks the 
riti
al line. The stable and unstable orbitpositions are shown as green dots; the stable island is shown in red. Thereal-spa
e mode patterns are shown in the insets; the periodi
 orbits areshown as bla
k lines.
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Figure 6.12.: Size of the islands 
reated by the GHS as a fun
tion of kR on a double-logarithmi
 s
ale. Top panel: stable period-4 island at e

entri
ity e =
0.649, 
orresponding to the re
tangle orbit; the line is a linear �t withslope −0.7. Bottom panel: bowtie orbit at e = 0.845 with a linear �t withslope −0.3; the �rst two data points have not been used in the �t. Theinsets shows the shape of the bowtie island for di�erent kR values.this 
ase are very near to the 
riti
al line and strongly in�uen
ed by it.Espe
ially in the re
tangle 
ase, but also in the bowtie 
ase, the GHS-
reated islandslook �too small� to support the modes. This 
an be quanti�ed, as the numberm of modes�tting into an island of area A 
an be 
al
ulated semi
lassi
ally. In EBK quantization,the a
tion I ful�lls

I =
1

2π

∮ ds p = mh̄. (6.26)with p = nkh̄ sinχ and thus A =
∮ ds p = 2πnkI, one �nds

m =
I

h̄
=
nkh̄A

2πh̄
=
nkRA

2πR
. (6.27)From Eq. (6.27) and the estimated island areas, one �nds m ≈ 0.04 for the re
tangleisland at kR = 8.2 and m ≈ 0.1 for the bowtie island at kR = 6.5. As m is smaller
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Figure 6.13.: Avoided resonan
e 
rossing in the real (top panel) and imaginary (bottompanel) part of kR in the diele
tri
 ellipse at n = 3.3.than one in both 
ases, one would not expe
t modes to be able to lo
alize on the island.However, small islands a

ommodating modes is a well-known phenomenon; typi
ally,it is possible be
ause there are 
antori 
on�ning the mode, as argued in [WRB05℄ for asoft-wall billiard or in [SLK+08℄ for a deformed mi
ro
avity. Here, the 
on�nement isnot due to 
antori, but to tori : the unbroken invariant lines of the open ellipse.6.4.3. Avoided resonan
e 
rossings in the diele
tri
 ellipseThe stable islands and unstable periodi
 orbits are present at di�erent e

entri
ities e ofthe ellipse, not just at the ones shown in se
tion 6.4.1 (in parti
ular, the period-4 islandseems to be present at all deformations 0 < e ≤ 0.85). However, lo
alization of modesalong them only happens at parti
ular e values. If one 
al
ulates mode frequen
ies fora variety of e values around those with lo
alization along periodi
 orbits, as shown inFigs. 6.13 and 6.14, one �nds that this lo
alization happens at an avoided resonan
e
rossing (ARC) between two 
omplex mode frequen
ies. Integrable systems typi
allydo not show avoided 
rossings; as their nearest-neighbor level distribution is a Poissondistribution [Stö00℄, they allow for mu
h more degenera
y of levels, whi
h leads to level
rossings, not avoided 
rossings. ARCs are thus a strong sign for the non-integrabilityof the open ellipse.ARCs in mi
ro
avities are of interest be
ause they 
an lead to the formation of long-lived states with dire
tional output [WH06℄ by 
oupling a long-lived, non-dire
tionalstate to a short-lived, dire
tional one. This s
enario also happens in the ellipse; anexample is shown in Fig. 6.13. The modes 
orresponding to the points labeled A � Fare shown in Figs. 6.15 and 6.16. The hybridized modes A,B and E,F in Fig. 6.15 areof the boun
ing-ball type. The modes C and D at the ARC are not of this type, butlo
alizing along periodi
 orbits whi
h are stable (mode C) or unstable (mode D) in theextended ray dynami
s. Mode C has a mu
h higher Q fa
tor than mode D.In Fig. 6.16, the modes A, B and E, F are of the whispering-gallery type, but the
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Figure 6.15.: Modes 
orresponding to the points A � F in Fig. 6.13. While A, B and E,F are boun
ing-ball like modes, C and D lo
alize along periodi
 orbits (redlines), whi
h are stable (C) and unstable (D) in the extended ray dynami
s.
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B D F
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Figure 6.16.: Modes 
orresponding to the points A � F in Fig. 6.13. While A, B andE, F are whispering-gallery like modes, C and D lo
alize along periodi
orbits (red lines), whi
h are stable (C) and unstable (D) in the extendedray dynami
s.modes C and D at the ARC are again lo
alizing along periodi
 orbits. As the imaginaryparts of kR 
ross in this 
ase (see bottom panel of Fig. 6.14), the modes C and D havesimilar Q fa
tors.At an ARC, the two modes whose frequen
ies 
ome 
lose hybridize; the modes at theARC then are superpositions of these modes. Su
h a superposition 
an lead to a wavefun
tion whi
h 
an be de
omposed into a rapidly os
illating part and a weakly varyingenvelope. The latter de�nes the lo
alization pattern, whi
h 
an resemble lo
alizationalong a short periodi
 orbit. For example, mode D in Fig. 6.15 resembles the di�eren
eof modes B and A: there is no intensity in the 
enter of the 
avity, only at the top andbottom parts and near the points of highest 
urvature of the boundary.In 
on
lusion, there are two di�erent ways of understanding the formation of modeslo
alized on periodi
 ray traje
tories in the ellipse. One is based only on the wavepi
ture: be
ause of the openness, the ellipse is no longer integrable, ARCs appear, andhybridization of modes leads to the formation of modes lo
alized along periodi
 raytraje
tories. The other way is semi
lassi
al and based on the extended ray dynami
s:be
ause of the openness, the extended ray dynami
s is no longer integrable; the wave
orre
tions lead to the breakup of invariant lines into pair of stable and unstable periodi
orbits, and lo
alization of modes on stable islands and along unstable periodi
 orbitsis possible. The extended ray dynami
s thus 
an give physi
al insight into the wavedynami
s in this 
ase where the 
onventional ray dynami
s 
ould not.6.5. Shift of phase spa
e stru
turesIn this se
tion, the interplay of the GHS and the boundary 
urvature of a 
avity isstudied. It leads to a momentum shift of phase spa
e stru
tures, whi
h is 
al
ulatedanalyti
ally in se
tion 6.5.2 and 
ompared to wave 
al
ulations in se
tion 6.5.3. Whilethis shift appears in all 
avities with non-vanishing boundary 
urvature whi
h support
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e stru
tures 89period orbits when introdu
ing the GHS, the spe
ial 
ase of the ǫ = 0.2 limaçon is
onsidered as am example; the phase spa
e stru
ture in the 
ase with the wave 
orre
tionsis introdu
ed in se
tion 6.5.1. In se
tion 6.5.4, the equivalent of the momentum shift inquantum maps is dis
ussed brie�y.6.5.1. Shift of islands in the limaçonWithout the wave 
orre
tions, the ǫ = 0.2 limaçon is mostly regular, with only small
haoti
 regions. When the 
orre
tions are in
luded, more 
haos appears. Some regularparts persist, in parti
ular the period-3 orbit, whi
h now is a (regular) attra
tor be
auseof the non-Hamiltonian FF. Figure 6.17 shows the phase spa
e of the ǫ = 0.2 limaçonwithout (top panel) and with (bottom panel) the wave 
orre
tions. The refra
tive indexis n = 2, kR = 14, and the polarization is TM. Figure 6.18 shows the di�erent types ofdynami
s present in the system with wave 
orre
tions. A

ording to (6.22),det Ê = 1 +
∂∆p

∂ p
, (6.28)regions with a positive derivative of the FF ∆p are repulsive (phase spa
e volume grows,det Ê > 1), regions with a negative derivative are attra
tive (phase spa
e volume 
on-tra
ts, det Ê < 1). It is interesting to 
ompare the phase spa
e positions of the period-3stru
ture with and without the phase spa
e 
orre
tions. The period-3 island in the
losed limaçon is lo
ated right at the 
riti
al line; it is thus strongly a�e
ted by theGHS and a little less strongly by FF. In Fig. 6.19, the two positions are 
ompared. Itis 
lear that the position of the period-3 attra
tor in the limaçon with GHS and FF isshifted to higher p values, away from the 
riti
al line. The geometri
al origin of thisshift is dis
ussed in se
tion 6.5.2; it is not due to the FF (whi
h of 
ourse also 
hangesthe p value of a given stru
ture) alone, but instead, the main 
ontribution arises fromthe 
ombination of the GHS with a non-vanishing boundary 
urvature.6.5.2. Periodi
 orbit shiftThe verti
al shift of periodi
 orbits in phase spa
e 
an be 
al
ulated analyti
ally for thespe
ial 
ase of an orbit whi
h stays periodi
 with the same periodi
ity and symmetry(as opposed to the �pit
hfork�-type bifur
ation studied in se
tion 6.6.2, where new orbitswith the same periodi
ity but broken symmetry appear). For example, in the limaçonat ǫ = 0.2 the period-3 and period-4 orbits are of this type, as shown in Fig. 6.20).The rays are �pushed outwards� from the unperturbed orbits. The �outwards pushing�means that the dire
tion ve
tors without and with the 
orre
tions (v and v

′) of the raysare parallel. It should be noted that stri
tly speaking, su
h parallelity is not possible ifthe FF is in
luded, as the in
oming and outgoing angles of the perturbed ray still haveto be the same if it is parallel to the unperturbed ray. However, if one studies periodi
orbits far away from the 
riti
al line, where the FF is small, v and v
′ are approximatelyparallel and the reasoning of this se
tion may still be used.
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Figure 6.17.: Phase spa
es for the ǫ = 0.2 limaçon without (top panel) and with (bottompanel) the wave 
orre
tions GHS and FF. The blue line indi
ates the 
riti
alline. The parameters are n = 2, kR = 14, TM polarization.
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Figure 6.18.: Main panel: Phase spa
e for the ǫ = 0.2 limaçon with wave 
orre
tions.Three di�erent types of dynami
s present in this system are indi
ated:near p = 0, the dynami
s is repulsive (green dots) be
ause of the positive
∂∆p/∂p. Above the 
riti
al line, the dynami
s be
omes attra
tive; theperiod-3 attra
tor, whi
h is the strongest one, is indi
ated in red. Foreven higher p, the Fresnel �ltering is almost zero, whi
h leads to almostHamiltonian dynami
s, as seen for example in the period-4 orbit indi
atedin bla
k, whi
h is only very weakly attra
tive. The left panel shows theFF as a fun
tion of p.
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Figure 6.19.: Period-3 island in the limaçon without GHS and FF (bla
k dots) andperiod-3 attra
tor (red dots) in the limaçon with GHS and FF. The 
riti
alline is indi
ated by the blue line, and the inset shows the periodi
 orbits
orresponding to the phase spa
e stru
tures.
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Figure 6.20.: Stable (left 
olumn) and unstable (right 
olumn) period-3 and period-4orbits in the 
losed limaçon at ǫ = 0.2 (bla
k 
urves) and in the limaçonwith kR = 14 in
luding GHS and FF 
orre
tions (red 
urves).Let χ denote the angle of in
iden
e without GHS/FF and χ′ the one with them.Using the lo
al tangent ve
tors τ , τ ′ at the boun
e points with polar angles φ, φ′ (the
orresponding ar
 lenghts s, s′ ful�ll s′ − s = ∆s/2 with the GHS ∆s), and the lo
alnormal ve
tors ν, ν ′ (see Fig. 6.21), one �nds
sinχ′ = v

′ · τ ′ = v · τ ′ (v||v′)

= (sinχτ − cosχν) · τ ′.
(6.29)The verti
al shift 
an then be expressed as

sinχ′ − sinχ = sinχ (τ · τ ′ − 1)− cosχ(ν · τ ′). (6.30)One 
an 
learly see from Eq. (6.30) that the verti
al shift is due to the boundary 
ur-vature: if the 
urvature vanishes, τ = τ
′ and ν = ν

′ ⊥ τ
′, so that the right hand sideof (6.30) vanishes.If one sets τ ′ = τ +∆τ and ν

′ = ν +∆ν, (6.30) simpli�es to
sinχ′ − sinχ = sinχ (τ ·∆τ )− cosχ (ν ·∆τ ) . (6.31)Using κν = −dτ/ds with the 
urvature κ for the outwards pointing normal, one 
anapproximate

∆τ ≈ κ
∆s

2
ν, (6.32)whi
h leads to

sinχ′ − sinχ ≈ κ
∆s

2
cosχ =

∆s

2ρ
cosχ. (6.33)
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tures 93This periodi
 orbit shift (POS),
∆pPOS = ∆s

2ρ
cosχ, (6.34)thus depends on the ratio of the GHS ∆s and the lo
al radius of 
urvature ρ in thisapproximation. The 
urvature κ is in polar 
oordinates given by

κ =
|r(φ)2 + 2r′(φ)2 − r(φ)r′′(φ)|

|r(φ)2 + r′(φ)2|3/2 . (6.35)In the 
ir
le with radius R, ρ = R, and one �nds a POS
sinχ− sinχ′ =

∆s

2R
. (6.36)In [HS02℄ (more in detail in [Hen02℄), it was noted that the in
lusion of the GHS ata 
ir
ular boundary 
an be interpreted as re�e
tion taking pla
e at the boundary withangle of in
iden
e χ, but at an �interfa
e� of larger radius of 
urvature, with an angle χ′with

χ′ = χ− ∆s

2R
. (6.37)This was used to 
al
ulate generalized Fresnel 
oe�
ients for re�e
tion at the 
ir
ularboundary. As the authors did not look at modes and rays in 
avities, but just at Gaussianbeams re�e
ted only on
e at the interfa
e, they did not 
onsider momentum shifts ofphase spa
e stru
tures. By taking the sine of (6.37), one �nds

sinχ′ = sin

(

χ− ∆s

2R

)

= sinχ cos

(

∆s

2R

)

+ sin

(

∆s

2R

)

cosχ

≈ sinχ+
∆s

2R
cosχ.

(6.38)One thus re
overs (6.33) in the limit of small ∆s. This expression for the POS 
an beseen as a generalization of (6.36) for non-
ir
ular boundary shapes.Equation (6.30) 
an also be evaluated dire
tly, without the help of the approxima-tion (6.32). If the boundary is given by r = r(φ) in polar 
oordinates, one 
an 
al
ulatethe lo
al normal and tangent ve
tors at position φ:
τ =

1
√

r(φ)2 + r′(φ)2

(

r′(φ) cosφ− r(φ) sinφ
r′(φ) sinφ+ r(φ) cosφ

)

,

ν =
1

√

r(φ)2 + r′(φ)2

(

−r′(φ) sinφ− r(φ) cosφ
r′(φ) cosφ− r(φ) sinφ

)

.

(6.39)Using (6.39) and addition theorems for the trigonometri
 fun
tions, one �nds
τ · τ ′ =

1
√

r(φ)2 + r′(φ)2
1

√

r(φ′)2 + r′(φ′)2
[cos∆φ (r′(φ)r′(φ′) + r(φ)r(φ′))

+ sin∆φ (r(φ)r′(φ′)− r′(φ)r(φ′))]

(6.40)
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χ′χ

Figure 6.21.: Lo
al tangent and normal ve
tors at a boun
e point of a ray without GHSand FF (bla
k line) and the 
orresponding ray with them. The unperturbedray interse
ts with the boundary at φ ∧
= s, the perturbed one at φ′ ∧

= s′.The GHS ful�lls ∆s/2 = s′ − s, this 
orresponds to a shift in the polarangles of ∆φ.and
ν · τ ′ =

1
√

r(φ)2 + r′(φ)2
1

√

r(φ′)2 + r′(φ′)2
[sin∆φ (r′(φ)r′(φ′) + r(φ)r(φ′))

− cos∆φ (r(φ)r′(φ′)− r′(φ)r(φ′))] .

(6.41)By inserting (6.40) and (6.41) into (6.30), the verti
al shift sinχ′−sinχ 
an be 
al
ulated:
sinχ′ − sinχ = A(φ, φ′)

[(

sinχ
(

R(φ, φ′) cos∆φ+ R̃(φ, φ′) sin∆φ
)

− 1
)

− cosχ
(

R(φ, φ′) sin∆φ− R̃(φ, φ′) cos∆φ
)]

,
(6.42)with

A(φ, φ′) =
1

√

r(φ)2 + r′(φ)2
1

√

r(φ′)2 + r′(φ′)2
,

R(φ, φ′) = r′(φ)r′(φ′) + r(φ)r(φ′),

R̃(φ, φ′) = r(φ)r′(φ′)− r′(φ)r(φ′).

(6.43)(6.43) and (6.33) give results di�ering by less than 1 % for typi
al values of the GHSand the limaçon boundary 
urve.Results for the stable and unstable period-3 orbits are shown in Fig. 6.22. The hori-zontal shift due to the GHS is also indi
ated, as well as the verti
al shift due to the FF.Taken together, these three 
orre
tions des
ribe the phase spa
e shift very well. Fig-ure 6.23 shows the shifted stable and unstable period-4 orbits, where the shift is smallerbe
ause the GHS is smaller, as one is farther away from the 
riti
al line. Also in this
ase, the analyti
al formula des
ribes the shift well.As 
avities with kR ≈ 10 have been studied before, su
h verti
al shifts should also havebeen seen before when 
omparing Husimi fun
tions to period orbit positions. This is, infa
t, true: in [FYC05℄, an ǫ = 0.15 stadium-shaped 
avity with n = 3 was investigated.
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Figure 6.22.: (a) Phase spa
e shifts for the stable period-3 orbit. The boun
e pointsof the orbits with (red 
ir
les) and without (bla
k triangles) GHS andFF are shown. The dashed lines indi
ate the phase spa
e shifts due toGHS and FF; the solid line is the POS 
al
ulated a

ording to (6.42). (b)Magni�
ation of (a). (
) Phase-spa
e shifts for the unstable period-3 orbit.(d) Magni�
ation of (
).
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Figure 6.23.: (a) Phase spa
e shifts for the stable period-4 orbit. The boun
e pointsof the orbits with (red 
ir
les) and without (bla
k triangles) GHS andFF are shown. The dashed lines indi
ate the phase spa
e shifts due toGHS and FF; the solid line is the POS 
al
ulated a

ording to (6.42). (b)Magni�
ation of (a). (
) Phase-spa
e shifts for the unstable period-4 orbit.(d) Magni�
ation of (
).
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tures 97At kR ≈ 3.3, Husimi fun
tions for modes lo
alizing on a re
tangular and a diamond-shaped unstable period orbit are shown. The re
tangular one hits the boundary only atthe half-
ir
le parts, thus ρ = r with the half-
ir
le radius r ≈ 0.9µm; with p ≈ 0.7 one
an estimate a periodi
 orbit shift of ∆p ≈ 0.08. The shift between the maxima of theHusimi fun
tion and the periodi
 orbit position is ≈ 0.1; the estimate is thus quite good.In the 
ase of the diamond orbit, there are two di�erent types of boun
e points: the �rsttype is lo
ated on the straight-line part of the stadium boundary, whi
h has κ = 0 andthus yields no periodi
 orbit shift, as 
an be seen when 
omparing again Husimi maximawith the periodi
 orbit in phase spa
e. The se
ond type is lo
ated on the half-
ir
le.Here, one also 
an estimate ∆p ≈ 0.1 from the Husimi fun
tion and ∆p ≈ 0.08 as thePOS. The agreement is good again. A similar analysis 
an be applied to the ǫ = 1.1stadium with n = 1.5 from [FC07℄; there, evaluation of the Husimi distribution yields
∆p ≈ 0.05, whi
h agrees well with the POS ∆p ≈ 0.04.Another interesting 
ase is the one of a negative-index 
avity. As the GHS is nega-tive there [WUS+10a℄, one �nds a negative POS. As an example, one 
an 
onsider theunstable period-4 orbit in the ǫ = 0.43 limaçon with positive and negative refra
tiveindex (|n| = 1.5). The results are shown in Fig. 6.24. The agreement is not as goodas in the previous 
ases, whi
h 
an be expe
ted, as the approximation of parallel raysfor the orbit without GHS and FF and the one with these 
orre
tions is not valid here.This e�e
t is more pronoun
ed for the negative-index 
ase, whi
h is due to the fa
t thatthe period-4 orbit in this belongs to the leaky region, as the shift is negative. The FFis more pronoun
ed there (it is almost zero for the positive-index 
ase), whi
h leads tonon-parallelity of the rays with and without 
orre
tions. However, the 
al
ulated POSstill agrees qualitatively with the shift seen in phase spa
e.6.5.3. Lo
alization of modes on shifted islandsBe
ause phase spa
e stru
ture are shifted to higher p values by the POS (in 
onventional,positive-index 
avities), modes lo
alizing on them are farther away from the 
riti
al lineas modes lo
alizing on the original stru
tures. In the 
ase of the period-3 attra
tor, amode lo
alizing on the original island would be lo
ated right at the 
riti
al line, whereasa mode lo
alizing on the period-3 attra
tor would be above the 
riti
al line, and thuswould be longer-lived. The POS 
ould thus, in prin
iple, lead to modes lo
alizing on
ertain phase spa
e stru
tures whi
h have a high Q-fa
tor than it 
ould be expe
tedfrom ray dynami
s alone.The pi
ture, however, is not that simple be
ause when 
onsidering the wave 
orre
-tions, one no longer deals with rays but with beams; the 
orre
tions thus 
hange theFresnel 
oe�
ients. In [HS02℄, su
h deviations from the Fresnel laws have been studied.The authors show that the deviations, whi
h are due to the non-vanishing 
urvature ofthe boundary, 
an be explained by taking into a

ount the Goos-Hän
hen e�e
t at a pla-nar interfa
e; the resulting re�e
tion 
oe�
ients show a �broadening� with |r| < 1 evenabove the 
riti
al angle. While no analyti
al formulas exist for su
h 
orre
ted Fresnellaws, the re�e
tion 
oe�
ients 
an be 
al
ulated numeri
ally by re�e
ting a wave pa
ket
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Figure 6.24.: Periodi
 orbit shifts of the period-4 orbit (bla
k triangles) in the ǫ = 0.43limaçon with positive (red 
ir
les) and negative (green squares) refra
tiveindex |n| = 1.5. The POS is shown as the solid bla
k line, the FF as thedashed bla
k line. On the right, the orbits are depi
ted in real spa
e.at the interfa
e:
ψin(x) = ∫ 1

−1

dp einkpxfin(p) → ψout(x) = ∫ 1

−1

dp einkpxfin(p)r(p), (6.44)and 
al
ulating the re�e
tion 
oe�
ient of the wave pa
ket as
|r̃|2 =

∫∞
−∞ dx|ψout(x)|2
∫∞
−∞ dx|ψin(x)|2 . (6.45)

r is the Fresnel 
oe�
ient for a ray at a planar interfa
e, and the wave pa
kets arede�ned as in se
tion 6.2.1. Evaluation of Eq. (6.45) for all in
oming angles yields themodi�ed re�e
tion 
oe�
ient |r̃|. Figure 6.25 shows how the shifted period-3 stru
turerelates to this new re�e
tion 
oe�
ient. It 
an be seen that even when a

ounting forthe deviations, the period-3 attra
tor is still lo
alized in a region with approximate totalinternal re�e
tion (|r̃| ≈ 90%).One 
an thus �nd long-lived modes lo
alizing on the period-3 attra
tor, and, as itturns out, also on the 
orresponding unstable period-3 orbit. Figure 6.26 shows Husimifun
tions and modes patterns (
al
ulated with the BEM) of su
h modes. The �lled dotsindi
ate the orbits in the 
ase with wave 
orre
tions, the open 
ir
les indi
ate the orbitsin the 
ase without wave 
orre
tions. The agreement with the shift is good, whi
h 
analso be seen in the mode pattern itself. The Q fa
tors are 682 (mode lo
alizing on thestable orbit) and 460 (mode lo
alizing on the unstable orbit).Are these Q fa
tors �high�? Certainly not by the standards for laser appli
ations,where typi
ally Q = 104 
an be a
hieved. But they are high 
ompared to what 
an be
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Figure 6.25.: Main panel: period-3 island and attra
tor as given in Fig. 6.19. The 
olors
ale 
orresponds to the value of the modi�ed re�e
tion 
oe�
ient |r̃|. Onthe left, the Fresnel re�e
tion 
oe�
ient |r| (dashed line) and modi�edre�e
tion 
oe�
ient |r̃| (solid line) for kR = 14.expe
ted from the ray dynami
s without 
orre
tions alone. Following [HS02℄, one 
an
al
ulate the Q fa
tor from the re�e
tion probability R̃ of a given ray in a 
ir
ular 
avitywith radius Rc (dire
t tunneling into the leaky region). Re�e
tions happen with a rate
γr =

c

2nRc cosχ
, (6.46)whi
h 
an be related to the intensity de
ay rate γI by

|R|tγr = e−tγI → γI = −γr ln |R| = − c ln |R|
2nRc cosχ

. (6.47)
|R| is the absolute value of the re�e
tion 
oe�
ient. γI in turn is related to the Q fa
torvia

Q =
cRe(k)
γI

= −2n cosχRe(kRc)

ln |R| . (6.48)With n = 2, p = 0.5 (|r̃| ≈ 0.5 at this point), one �nds Q ≈ 72, whi
h is almost tentimes lower than the Q fa
tors for the modes lo
alizing on the period-3 attra
tor. As theperiod-3 attra
tor in the extended ray dynami
s is lo
ated at p ≈ 0.6, one 
an estimatethe Q fa
tor in the extended ray dynami
s as Q ≈ 225, whi
h also is lower than the Qfa
tors of the modes lo
alizing on the period-3 orbits, but 
loser to the a
tual order ofmagnitude. The deviation may be due to the fa
t that one does, in fa
t, not deal witha 
ir
ular boundary here. So, the modes lo
alizing on �shifted� phase spa
e stru
turesare �high� by 
omparison. The period-4 stable and unstable orbits also experien
e ashift; there are also modes lo
alizing on them. An example is shown in Fig. 6.27. The
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Figure 6.26.: Outgoing Husimi distributions for a mode with kR = 13.9−0.01i lo
alizingon the stable period-3 orbit (top panel) and a mode with kR = 13.9−0.015ilo
alizing on the unstable period-3 orbit (bottom panel). The stable andunstable orbits are indi
ated with red �lled dots; bla
k triangles are the
orresponding orbits without wave 
orre
tions. On the right, the modepatterns are shown.
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e stru
tures 101agreement is again good, but harder to see than in the period-3 
ase be
ause the shiftis smaller.6.5.4. �Periodi
 orbit shift� in quantum mapsEven though the POS has been derived for billiards, it also arises in maps whi
h areamended by a 
orre
tion ∆s. The typi
al example of a map is the Chirikov standardmap [Chi79℄, whi
h 
an be written as
pj+1 = pj +K sin qj ,

qj+1 = qj + pj+1.
(6.49)The 
onstant K 
an be varied from zero to in�nity, whi
h leads to a KAM transitionfrom regular behaviour (K = 0) to 
haoti
 dynami
s (K ≈ 1). For K = 0, the standardmap is very similar the motion of a parti
le with mass one in a 
ir
ular billiard, as

p = 
onst.Introdu
ing a 
orre
tion ∆s = ∆s(pj) to the standard map, one �nds the �extendedstandard map�
pj+1 = pj +K sin qj ,

qj+1 = qj + pj+1 +∆s(pj+1).
(6.50)It 
an be already guessed from Eq. (6.50) that ∆s 
an a
t as a 
orre
tion not only of q,but of p: it 
an be rewritten as

p̃j+1 = pj +K sin qj +∆s(pj),

qj+1 = qj + p̃j+1

(6.51)by de�ning an amended new momentum p̃j+1 = pj+1+∆s(pj). This only works be
auseof the simpli
ity of the qj+1 equation; the mapping 
an not be rewritten this easily in abilliard mapping.The standard map 
an be quantised by introdu
ing a Hamiltonian, H(q, p) = T (p) +
V (q), su
h that

pj+1 = pj −
∂ V

∂ q

∣

∣

qj ,

qj+1 = qj +
∂ T

∂ p

∣

∣

pj+1
;

(6.52)one 
an 
hoose T (p) = p2/(2m) and V (q) = K cos q. The time evolution operator of thequantum standard map is then given by
Û = exp(−iĤt/h̄), (6.53)with Ĥ the Hamiltonian operator 
orresponding to the 
lassi
al Hamiltonian ful�ll-ing (6.52). The extended standard map 
an be quantized in the same way, using
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Figure 6.27.: Outgoing Husimi distributions for a mode with kR = 14−0.0003i lo
alizingon the stable period-4 orbit (top panel) and a mode with kR = 14−0.0001ilo
alizing on the unstable period-4 orbit (bottom panel). The stable andunstable orbits are indi
ated with red �lled dots; bla
k triangles are the
orresponding orbits without wave 
orre
tions.
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T ′(p) = T (p) + Φ(p), su
h that

qj+1 = qj +
∂ T ′

∂ p

∣

∣

pj

= qj +
∂ T ′

∂ p

∣

∣

pj+1
+∆s(pj+1).

(6.54)
∆s is thus given by ∆s = ∂Φ/∂p, in 
omplete analogy to the Artmann result (6.14),where∆s also is given as the p-derivative of a fun
tion φ (in this 
ase, the ele
tromagneti
re�e
tion 
oe�
ient phase). In the spe
ial 
ase ∆s = 
onst (not depending on p),Eq. (6.53) 
an be written as
Ûext = exp(−iT ′(p)/h̄) exp(−iV (q)/h̄) = exp(−ip∆s/h̄) exp(−iT (p)/h̄) exp(−iV (q)/h̄).(6.55)Splitting the exponentials is possible be
ause T (p), V (q) 
ommute, as well as p and T (p).The map of the extended standard map is thus given by

Ûext = exp(−ip∆s/h̄)Û , (6.56)with Û the map of the usual standard map. It is thus give by applying the usual standardmap, and then adding the translation operator exp(−ip∆s/h̄). It is thus 
lear also fromthe quantum version why the 
orre
tion ∆s leads to a shift in the momentum dire
tionof phase spa
e. Figure 6.28 shows an example of the phase spa
e of the standard mapwith and without a 
onstant 
orre
tion ∆s = 0.1 · 2π at K = 0.5. Here, the whole phasespa
e stru
ture shifts (down in this 
ase), not just the periodi
 orbits.In the standard map, one �nds ∆pPOS = ∆s by 
omparing Eqs. (6.50) and (6.51). Thisis the 
ase be
ause of the simple dependen
e of qj+1 on pj+1. As the billiard mapping
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ture
an be written down expli
itly in the 
ir
le, one 
an try to extra
t the POS from it in asimilar way. The extended mapping is given as
pj+1 = pj,

qj+1 = qj + 2ρ arccos pj+1 +∆s;
(6.57)(ρ is the 
ir
le radius), rewriting it as

p̃j+1 = pj +∆pPOS,
qj+1 = qj + 2ρ arccos p̃j+1

(6.58)by de�ning a new momentum p̃ = p + ∆pPOS. One 
an insert the equation for p̃j+1 inthe one for qj+1, whi
h yields
qj+1 = qj + 2ρ arccos(pj +∆pPOS) ≈ 2ρ arccos pj +

2ρ∆pPOS
√

1− p2j

. (6.59)In the last step, arccos(pj +∆pPOS) has been Taylor expanded, as ∆pPOS is supposed tobe a small 
orre
tion. Comparing to Eq. (6.57), and using pj = sinχj , one �nds
∆pPOS = ∆s

√

1− p2j

2ρ
= ∆s

cosχj

2ρ
, (6.60)in 
omplete agreement with Eq. (6.34).6.6. E�e
ts of Fresnel �lteringWhile the e�e
ts of the GHS have been studied in the previous se
tions, this se
tioninvestigates the e�e
ts of the FF. In se
tion 6.6.1, a feature of 
haoti
 systems at small

kR values is studied: in this 
ase, a 
haoti
 attra
tor is formed whi
h 
losely resemblesthe Fresnel-weighted unstable manifold of the 
haoti
 repeller of the 
losed system. Inse
tion 6.6.2 it is shown that the FF 
an lead to the formation of periodi
 orbits whi
hare di�erent for 
lo
kwise and 
ounter
lo
kwise travelling rays; this is a 
onsequen
e ofthe time-reversal invarian
e breaking due to the FF.In the last se
tions, the e�e
t of the wave 
orre
tions on regular stru
tures has beeninvestigated. Here, their e�e
t on 
haoti
 stru
tures is studied. As example systems,the limaçon at a higher deformation (ǫ = 0.43, the �standard� value for dire
tionalemission) and a �deformed limaçon� [SFL+09, SGS+10℄, whi
h also has been fabri
atedas a mi
rodisk resonator.6.6.1. Far �eld patterns, the 
haoti
 saddle, and attra
torsIn small (5 < kR < 10) 
avities [SGS+10℄, a 
rossover from dire
tional to bi-dire
tionalemission and ba
k has been observed. One 
ould guess that these deviations from the
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Figure 6.29.: Far �eld patterns for the ǫ = 0.43 limaçon without the wave 
orre
tions,with only the FF in
luded (kR = 7) and with both GHS and FF in
luded.The refra
tive index is n = 3.3.ray-dynami
al predi
tion [WH08℄ are due to the wave 
orre
tions. This assumption isnot 
orre
t, as Fig. 6.29 shows: in
luding the 
orre
tions does not lead to signi�
ant
hanges in the far-�eld patterns, let alone bi-dire
tional emission. As the wave 
orre
-tions typi
ally a�e
t the phase spa
e stru
ture drasti
ally, it is surprising that they donot seem to a�e
t the far �eld patterns signi�
antly � and more so, why in
luding onlythe FF does not seem to 
hange the far �eld pattern at all. Some insight into this isgained by 
omparing the phase spa
e with only the FF with the 
haoti
 saddle withoutthe wave 
orre
tions, as shown in Fig. 6.30. They have almost the same stru
ture, whi
hof 
ourse leads to similar far �eld patterns. Sometimes, stru
tures like the 
haoti
 saddlehave also been referred to as �attra
tors�, as they lead basi
ally to the same result as anattra
tor would: if you wait long enough, all intensity will be lo
alized on it. However,it is important to re
ognize that 
haoti
 saddles arise from Hamiltonian dynami
s; thereare no attra
tors in this 
ase, and the lo
alization of intensity is due to the fa
t thatintensity leaks out of the 
avity over time. The ray dynami
s itself stays Hamiltonian.If, on the other hand, the FF is in
luded, the ray dynami
s be
omes non-Hamiltonian,and attra
tors 
an form. Essentially, one has two di�erent approa
hes leading to similarphase spa
e stru
tures: �rst, the ray dynami
s is Hamiltonian, but the intensity of a rayvaries, leading to the 
haoti
 saddle; the openness is 
ontained in the re�e
tion 
oe�-
ients. Se
ond, the ray dynami
s in non-Hamiltonian, but the intensity of a ray stays
onstant, leading to the formation of attra
tors. In this 
ase, the openness is 
ontainedin the non-Hamiltonian 
orre
tions.That these two approa
hes lead to similar results is not that surprising given thatthe a
tual 
al
ulations done are very similar. When 
al
ulating the 
haoti
 saddle,one starts with a uniform distribution of rays in phase spa
e, and notes the intensityretained; when 
al
ulating attra
tors within the extended ray dynami
s, one starts witha Gaussian distribution of rays 
entered around ea
h phase spa
e point and notes wherethey are s
attered to. I.e., one basi
ally 
al
ulates a �lo
al 
haoti
 saddle� before starting
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Figure 6.30.: (a) Chaoti
 saddle of the limaçon, 
al
ulated using the 
onventional raydynami
s. (b) Phase spa
e stru
ture of the limaçon with FF (kR = 7). (
)Overlay of (a) and (b). The 
haoti
 attra
tor of (b) 
learly has the samestru
ture as the 
haoti
 saddle in (a). The blue lines mark the 
riti
al linesfor n = 3.3.
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s.6.6.2. Chiral symmetry breakingAs noted in [AGH08℄, the FF as a time-reversal symmetry breaking wave 
orre
tion,
an lead to asymmetry between 
lo
kwise (CW) and 
ounter
lo
kwise (CCW) travellingrays, as a CW ray turns into a CCW ray upon time reversal. These e�e
ts will bestudied in the 
ase of a 
avity with the shape of a �deformed limaçon�, whi
h also hasbeen studied experimentally [SGS+10℄.The deformed limaçon is de�ned by the boundary 
urve
r(φ) = R(1 + ǫ cosφ)(1− ǫ1 cos(2φ)) + d; (6.61)in addition to the dipolar limaçon deformation, its boundary also 
ontains a (weaker)quadrupolar deformation. The Poin
aé SOS of the deformed limaçon for the typi
alexperimental parameters

R = 890 nm, ǫ = 0.28, ǫ1 = 0.06, d = 60 nm, (6.62)
al
ulated using the 
onventional ray dynami
s (i.e. no GHS/FF 
orre
tions are in-
luded), is shown in Fig. 6.31. While the phase spa
e is mostly 
haoti
 for these param-eters, it 
ontains more regular stru
tures than the usual limaçon at a similar deformation.The period 3 and 4 orbits are unstable, but bifur
ations of them are stable (see Fig. 6.31);these orbits are interesting be
ause they lie in the region of total internal re�e
tion, butnot far away from the 
riti
al line, and thus 
an in�uen
e output dire
tionality.Figure 6.32 shows the situation for kR = 7. It should be noted that while the 
al-
ulations in this se
tion in
lude both wave 
orre
tions, the breaking of the symmetrybetween CW and CCW rays is an e�e
t of the FF alone, and the formation of pairs ofCW and CCW pseudo-orbits 
an also be observed if only the FF 
orre
tion is in
ludedinto the extended ray dynami
s. One interesting aspe
t of this asymmetry between CWand CCW rays is that in this 
ase, it leads to dire
tional emission whi
h does not happenin the 
ase without FF. In the following, modes lo
alizing on the period-3 orbits will be
onsidered; light thus 
an leak out even if the periodi
 orbits are above the 
riti
al line.Figure 6.33 shows the situation for the symmetri
 period-3 orbit. Most light is emittedfrom positions 2 and 3, as the angles of in
iden
e there are nearer to the 
riti
al line.A CW ray will emit light from position 2 in the ba
kward and from position 3 in theforward dire
tion, while a CCW ray emits light from position 2 in the forward and fromposition 3 in the ba
kward dire
tion. A mode lo
alizing on the symmetri
 period-3 orbitis thus expe
ted to have bi-dire
tional emission.In the symmetry-broken 
ase, the situation is di�erent, as Fig. 6.34 shows. In theCW 
ase, the emission is predominantly from position 2, as the angle of in
iden
e thereis 
onsiderably smaller that at positions 1 or 3. The emission is into the ba
kwarddire
tion. In the CCW 
ase, the emission is predominantly from position 3, and againin the ba
kward dire
tion. The time-reversal symmetry breaking, whi
h translates itself



108 6. Extended ray dynami
s: in
luding wave 
orre
tions in the ray pi
ture
1

0.5

1/n

0

-1/n

-0.5

-1
 0  0.2  0.4  0.6  0.8  1

p=
si

n(
χ)

s/smaxFigure 6.31.: Poin
aré SOS for the deformed limaçon with parameters as de�nedin (6.62), 
al
ulated using the 
onventional ray dynami
s. The blue linesmark the 
riti
al lines for n = 3.13. Stable islands formed by bifur
ationsof the period-3 (red) and period-4 (green) orbits are indi
ated.
1

0.8

0.6

0.4
1/n

0.2

0
 0  0.2  0.4  0.6  0.8  1

p=
si

n(
χ)

s/smax

symmetric
CW

CCW

CCW

CW

2

3

1

2 31
s=0
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 and asymmetri
 period-3 orbits in the deformed limaçon at
kR = 7 with TE polarization. The bla
k line is the symmetri
 period-3orbit without GHS and FF whi
h is the same for CW and CCW travel-ling rays. The red and green 
urves show the asymmetri
 CW and CCWtravelling rays, respe
tively. The orbits are shown in real (left panel) andphase spa
e (right panel). The three boun
e points are labeled 1, 2 and 3.
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Figure 6.33.: Expe
ted light emission pattern from the symmetri
 period-3 orbit. BothCW and CCW rays emit in the ba
kward and forward dire
tions.
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Figure 6.34.: Expe
ted light emission pattern from CW and CCW rays for the asym-metri
 period-3 orbits. Both CW and CCW rays emit in the ba
kwarddire
tion.
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Figure 6.35.: Husimi distribution for a mode with kR = 11 − 0.03i lo
alized an theperiod-3 orbit. The red dots mark the boun
e positions of the CW pseudo-orbit, the blue line the 
riti
al line. On the left, the mode pattern in realspa
e is shown.into an asymmetry between the boun
e points 2 and 3, leads to dire
tional emission inthis 
ase.The asymmetry between CW and CCW rays 
an easily be seen in the Husimi fun
-tions in this 
ase, and even the pseudo-orbits 
an be extra
ted from the maxima of theHusimi distributions [SGS+10℄. An exemplary Husimi fun
tion is shown in Fig. 6.35;the agreement with the boun
e points of the CW pseudo-orbit is quite good.Another interesting feature visible in Fig. 6.32 is that the FF leads to a shift of theperiodi
 (pseudo-) orbit boun
e points along the boundary. Just as it has been shownin se
tion 6.5 that the GHS leads to a periodi
 orbit shift ∆pPOS in the momentumdire
tion of phase spa
e, the FF also leads to a periodi
 orbit shift ∆sPOS in the positiondire
tion. Unfortunately, this shift 
an not be 
al
ulated analyti
ally as easily, as boththe dire
tion ve
tor of the traje
tory and the angle of in
iden
e at the 
orrespondingboun
e point 
hange; an approa
h similar to the one in se
tion 6.5.2 is not possible.
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7. Measuring the Goos-Hän
henshift in mi
rowave 
avitiesSo far, mi
rodisk 
avities, whi
h support modes with frequen
ies from the mid-infraredto ultraviolet ranges, have been dis
ussed. As all relevant quantities only depend on thesize parameter kR, they also apply to larger 
avities and modes with longer wavelengths.One example are mi
rowave 
avities: with sizes of several 10 
m, they support modeswith frequen
ies in the GHz range, 
orresponding to size parameters of the order of
kR ≈ 100. In parti
ular, the e�e
ts of wave 
orre
tions, whi
h have been dis
ussedin 
hapter 6, 
an also be observed in diele
tri
 mi
rowave 
avities. One advantage ofsu
h systems is that the full wavefun
tion inside the 
avity 
an be easily measured;so far, equivalent measurements are not possible in mi
roresonators. In this 
hapter,a setup for the experimental observation of the Goos-Hän
hen e�e
t in a mi
rowavebilliard is introdu
ed. Se
tion 7.1.1 introdu
es mi
rowave 
avities in general, whereasse
tion 7.1.2 dis
usses the measurement te
hnique whi
h allows the extra
tion of thefull wave fun
tion. The experimental setup is introdu
ed in se
tion 7.2.1 and results areshown in se
tion 7.3.All experiments dis
ussed in this se
tion have been performed by the author in 
ollab-oration with the group of Prof. Hans-Jürgen Stö
kmann at the university of Marburg.7.1. Mi
rowave billiard experiments7.1.1. Mi
rowave billiardsMi
rowave billiards (open and 
losed) have been used as model systems for quantum
haos for a long time. The �rst experiments were reported in [SS90℄; similar results arefound in [Sri91℄, [SS92℄, and [GHL+92℄. The �rst two referen
es also feature wavefun
tionmeasurements in addition to resonan
e frequen
ies. Measurements in
luding the phaseof the wave fun
tion are dis
ussed in [SSS95℄.Mi
rowave resonators are typi
ally several tens of 
entimeters in diameter and severalmillimeter high; they are thus nearly two-dimensional. In fa
t, if one 
onsiders frequen-
ies below νmax = c/(2h) (c is the speed of light in the resonator, and h its height),no modes 
an propagate in the z dire
tion, as h < λ/2 with the wavelength λ. For hin the mm range, νmax is around 20 GHz; su
h frequen
ies 
an be easily ex
ited withmi
rowave antennas. Diri
hlet boundary 
onditions are realized by metalli
 (often brassor aluminium; in order to maximize the re�e
tion, super
ondu
ting 
avities, often madeof niobium, 
an be used) boundaries. If one wants to study diele
tri
 
avities, Te�on
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hen shift in mi
rowave 
avitiesis 
ommonly used as a material. It has low absorption for mi
rowaves in the relevantfrequen
y range and a refra
tive index n = 1.44.The main idea of measurements in mi
rowave 
avities 
omes from s
attering theory.There, the amplitudes bj of the outgoing waves are 
onne
ted to the amplitudes of thein
oming waves aℓ by a s
attering matrix Sjℓ:
bj =

∑

ℓ

Sjℓaℓ. (7.1)This s
attering matrix is related to the Green fun
tion of the billiard,
Sjℓ = δjℓ − iγG(rj, rℓ, k)

= δjℓ − iγ
∑resonan
es kn

ψ(rj)ψ(rℓ)

k2 − k2n
.

(7.2)
k is the wave number one is measuring at, kn are the 
omplex wave numbers of theresonan
es of the 
avity, and ψ(ri) are the wave fun
tions at the positions ri. γ isa 
oupling 
onstant related to the geometry of the antenna used for measuring wavefun
tions; it 
an be obtained by measuring the transmission amplitude between theantennas at positions rj and rℓ dire
tly, without s
attering by the billiard.Re�e
tion measurements (measuring Sjj) yield the modulus |ψ(rj)| at the position rjof the measuring antenna. If one wants to measure the phase of ψ as well, an additionaltransmission experiment has to be performed; how the full s
attering matrix is measuredis des
ribed in the next se
tion. Equation (7.2) holds for resonan
es whi
h do not overlapstrongly in frequen
y.If one now ex
ites in
oming waves with an antenna at a �xed position rℓ and measuresre�e
ted and transmitted waves with a movable antenna whi
h is moved to di�erentpositions rj, a spatially resolved wave fun
tion 
an be measured.7.1.2. Ve
torial network analysisBy using a ve
tor network analyzer (VNA; the Marburg group uses an Agilent 8720ESVNA), the full s
attering matrix Sjℓ 
an be measured. The prin
iple is shown in Fig. 7.1.Ea
h of the two 
hannels has a referen
e signal; both the input signal and signal afters
attering are measured with respe
t to this referen
e, whi
h enhan
es a

ura
y. On
hannel one, the signal a1 is used as input. The re�e
ted signal S11a1 is measured as well.On 
hannel two, the transmitted part of a1, S21a1, is measured, but in addition, anothermeasurement with input signal a2 and re�e
ted part S22a2 is done. The transmitted partof a2, S12a2, is measured on 
hannel one. Thus, by doing both re�e
tion and transmissionexperiments on the two 
hannels, all aℓ, bj are measured, and the full s
attering matrix
Sjℓ 
an be extra
ted. Figure 7.2 shows an exemplary measured re�e
tion (top panel)and transmission spe
trum.Systemati
 errors due to phase or frequen
y 
hanges upon re�e
tion, transmission,or dire
tly at the 
onne
tion between 
able and port or 
able and antenna, as well aserrors due to leaking 
an be 
orre
ted by using a 
alibration pro
edure before starting
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a1, a2 are in input signals and b1, b2 the measured signals.

 0

 0.002

 0.004

 6  8  10  12  14

tr
an

sm
is

si
on

 |S
21

|

frequency ν (GHz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
 63  84  105  126  147

re
fle

ct
io

n 
|S

11
|

kR

Figure 7.2.: Measured re�e
tion (top panel) and transmission (bottom panel) spe
tra.The sum of their squares does not equal unity be
ause of absorption in thesystem. Resonan
es 
an be seen as dips in |S11|. The bottom x axis showsthe frequen
y ν, the top x axis shows kR.
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avities
antenna

incoming wave

outgoing wave

dielectric cavity

n

n=1
∆ sFigure 7.3.: Prin
ipal idea for GHS measurements in a re
tangular mi
rowave 
avity.The antenna 
reates a wave pa
ket whi
h is re�e
ted at the bottom 
avityboundary; the GHS ∆s is the shift between the in
oming and outgoing wavepa
kets.measurements. In this 
ase, measurements are performed while 
onne
ting di�erentgauged standards to the VNA. Details of the setup and the 
alibration pro
ess 
an,e.g., be found in [Bar01℄. The 
omputer 
ontrol of the setup and data a
quisition aredes
ribed in [Kuh98℄.7.2. Measurements of the Goos-Hän
hen shift7.2.1. Basi
 idea for measurementsThe most simple way of measuring the GHS in a mi
rowave 
avity is depi
ted in Fig. 7.3.The 
avity is re
tangular in this 
ase; re�e
tion thus happens at a planar interfa
e. Anantenna ex
ites a wave pa
ket, whi
h travels to the bottom part and is re�e
ted. TheGHS ∆s 
an dire
tly be extra
ted as the shift between in
oming and outgoing waves.Figure 7.4 shows the idea of GHS extra
tion from measured data in more detail. Itis possible to extra
t Poynting ve
tors Sin and Sout of the in
oming and outgoing wavefun
tions at ea
h point r = (x, y) in spa
e from the measured wave fun
tions. As wavepa
kets with a 
lear propagation dire
tion should be generated, averaging these overthe full measured wave fun
tions yields average Poynting ve
tors 〈Sin〉, 〈Sout〉 whi
h arerepresentative of the wave fun
tion. They are given by

〈Sin (out)〉 = 1

NxNy

Nx
∑

i=1

Ny
∑

j=1

Sin (out)(xi, yj), (7.3)where the xi, yj are the positions on whi
h Sin (out) values have been measured. Nx(y) isthe number of x(y) positions measured.
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Figure 7.4.: Extra
tion of the GHS ∆s from the measured in
oming and outgoing wavefun
tions. 〈Sin〉 and 〈Sout〉 are averaged Poynting ve
tors of the in
omingand outgoing waves and (xin, yin) and (xout, yout) position averages. x1 and
x2 are interse
tions of the straight lines de�ned by the Poynting ve
tors andaveraged positions with y = y0.The average Poynting ve
tors de�ne the propagation dire
tion of the in
oming andoutgoing waves. Together with the position rin = (xin, yin) on the in
oming wave (rin isthe average over all positions at whi
h the in
oming wave is measured), 〈Sin〉 de�nes astraight line

(

x
y

)

=

(

xin
yin)+ t 〈Sin〉. (7.4)The interse
tion of this straight line with y = y0 yields the position x1 where the in
omingwave hits the 
avity boundary. Analogously, the position x2 where the outgoing wavestarts at the boundary 
an be 
al
ulated by interse
ting the straight line

(

x
y

)

=

(

xout
yout)+ t 〈Sout〉 (7.5)with y = y0. The GHS is then given by ∆s = x2 − x1.7.2.2. Beam generationThe theory for the GHS des
ribed in se
tion 6.1 only applies to Gaussian beams. Mi-
rowave antennas, however, only produ
e spheri
al waves. One thus needs to generatebeams from these spheri
al waves. The generation of plane waves 
an be easily donebe
ause the superposition of N spheri
al waves with wave number k and 
enters (xj , yj)on a straight line 
reates a wave fun
tion

ψ(x, y) =

j=N/2
∑

j=−N/2

exp
[

ik
√

(x− xj)2 + (y − yj)2
]

√

(x− xj)2 + (y − yj)2
(7.6)
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hen shift in mi
rowave 
avitieswhi
h approa
hes a plane wave if N goes to in�nity. Examples for di�erent N values areshown in Fig. 7.5 for k = 5 
m−1 and spheri
al wave 
enters (xj , yj) with xj = x0+jd/
√
2,

yj = y0 − jd/
√
2 with d = 0.5 
m and x0 = 40 
m, y0 = 5 
m. In this 
ase, theresulting plane wave travels with a propagation dire
tion of ∼ 45 degrees to the bottomleft. N = 20 seems to yield a su�
iently plane wave front, whi
h also 
an be seen in themeasured wave fronts in Fig. 7.14 and Poynting ve
tors in Fig. 7.15 in se
tion 7.3.1, eventhough the 
ross-se
tion at x = 30, y = 3.75 shown in the bottom panel of Fig. 7.5 doesnot look 
ompletely like a plane wave. In an experiment, the di�erent spheri
al wavesgenerated by the antennas will not all have the same phases even if the same antennais used to generate them; random phase �u
tuations 
an o

ur be
ause the antenna isnot 
onne
ted in pre
isely the same way, whi
h leads to a di�erent 
apa
ity and thus adi�erent phase. However, this does not perturb the formation of a plane wave mu
h, asFig. 7.6 shows. There, Eq. (7.6) has been used with the same parameters as in Fig. 7.5,but ea
h term in the j-sum has been multiplied with a phase fa
tor exp(iρj), where ρj isa random number between zero and 2π (the phases in the experiment typi
ally will notvary this mu
h, but the �worst 
ase� is studied here). The resulting wave for N = 20still is to a good approximation plane; even random phase �u
tuations do not destroythis property.The propagation dire
tion of a plane wave generated from spheri
al waves 
an bein�uen
ed by adding a phase fa
tor to ea
h spheri
al wave. In this 
ase, the phases arenot random, but fun
tions of the position j of the individual spheri
al wave in the array:
ψ(x, y) =

j=N/2
∑

j=−N/2

exp
[

ik
√

(x− xj)2 + (y − yj)2 + iφ(j)
]

√

(x− xj)2 + (y − yj)2
. (7.7)Figure 7.7 shows plane waves with di�erent phase fun
tions φ(j) and their propagationdire
tions. By varying φ(j), one 
an thus a
hieve propagation dire
tions whi
h lead tore�e
tion under di�erent angles of in
iden
e. I.e., φ(j) = j leads to re�e
tion with anangle below the 
riti
al angle χ
r ≈ 44 degrees for Te�on with n = 1.44, φ(j) = −jleads to re�e
tion with an angle above the 
riti
al angle, and for φ(j) = 0 the re�e
tionhappens 
lose to the 
riti
al angle. Unfortunately, there is no analyti
al formula for therelation of φ(j) and the resulting propagation dire
tion; the 
hoi
e of the φ(j) fun
tionstherefore remains somewhat arbitrary.A plane wave, however, does not experien
e the GHS upon re�e
tion, as the GH e�e
tis a 
onsequen
e of the interferen
e of partial waves with di�erent angles of in
iden
e.Creating a plane wave thus does not su�
e if one wants to measure the GHS. Butby superimposing two plane waves generated a

ording to Eq. (7.7) with di�erent φ(j)fun
tions 
orresponding to a small di�eren
e in their propagation dire
tions leads to abeam just like the one assumed in the derivation of the Artmann result (see se
tion 6.1.1):

ψ(x, y) = ψ1(x, y) + ψ2(x, y) ≈ exp (ikp1x) + exp (ikp2x) , (7.8)with pm = sinχm ∼ Sm,x, where Sm,x is the x 
omponent of the Poynting ve
tor of
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Figure 7.5.: Illustration of the generation of a plane wave-like beam from spheri
alwaves. The number of spheri
al waves 
ontributing varies from N = 1 to
N = 20. The red dots mark the antenna positions. The bottom panel showsa 
ross-se
tion of the N = 10 (red line) and N = 20 (bla
k line) beams at
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Figure 7.6.: Plane wave generated from N = 20 spheri
al waves with random phasefa
tors. The parameters are the same as in Fig. 7.5.
φ φ

φ

j j

j  = −j

 = j  = 0

Figure 7.7.: Plane waves with generated a

ording to Eq. (7.7) with di�erent phase fun
-tions φ(j). The number of spheri
al waves is N = 20, the other parametersare as in Fig. 7.5.
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∆sTM =

1

nkp

1
√

sin2 χ− 1/n2
(7.9)
an be used to predi
t the GHS.As both partial waves of the beam (7.8) are 
al
ulated using the same spheri
al wave
omponents ψj ,

ψ1 =

N/2
∑

j=−N/2

ψje
iφ1(j), ψ2 =

N/2
∑

j=−N/2

ψje
iφ2(j), (7.10)the sum is just given by

ψ = ψ1 + ψ2 =

N/2
∑

j=−N/2

ψj

(

eiφ1(j) + eiφ2(j)
)

. (7.11)It is also possible to 
reate a Gaussian beam from many plane waves generated byEq. (7.7):
ψ =

∫ 1

−1

dp fin(p)einkpx
=

∫ 1

−1

dp fin(p) N/2
∑

j=−N/2

ψje
iφj .

(7.12)The p integration in Eq. (7.12) has to be done numeri
ally, i.e. has to be approximatedas a sum over di�erent p values pm, ea
h 
orresponding to a phase fun
tion φm(j):
ψ ≈

N/2
∑

j=−N/2

ψj

∑

m

∆pmfin(pm)eiφm(j), (7.13)with ∆pm = pm+1− pm. As there is no analyti
al formula relation the phase fun
tion φjto the propagation dire
tion (and thus to p), �nding the required φm fun
tion is tedious.In this thesis, only beams 
onsisting of two plane waves will be 
onsidered.7.2.3. Experimental setupFigure 7.8 shows the 
avity used in the experiments. It is a Te�on plate with dimensions50 
m (length) × 100 
m (width) × 0.5 
m (height); modes with frequen
ies up to
νmax = 30 GHz 
an thus be treated as two-dimensional. All boundaries ex
ept thebottom one, where the re�e
tion of the beams happens, are 
lad with a 
arbon-basedmaterial (ROHACELL from the 
ompany Röhm GmbH) whi
h absorbs mi
rowaves, asto redu
e noise 
reated by multiple re�e
tions. As the plate is glued to an aluminiumplate and pressed to another plate from below in the experiments, bending of the plate is
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50 cm

100 cm

Teflon (n=1.44)

aluminium plate

absorber

Figure 7.8.: Photograph of the re
tangular Te�on billiard used in the experiments. Allboundaries ex
ept the one the re�e
tion happens at are 
lad with an ab-sorbing material. The billiard is glued to an aluminium plate.no issue. The experimental setup is shown in Fig. 7.9. The billiard is pressed from belowto the table on whi
h the wave fun
tions are measured. The �xed antenna (
onne
tedto one port of the VNA) 
reates the spheri
al waves; the wave fun
tion is measured withthe movable antenna (
onne
ted to the other port of the VNA). It is moved by means ofthree step motors, whi
h are 
ontrolled by a 
omputer. Figure 7.10 shows the movableantenna in more detail. The top plate of the table underneath whi
h the billiard is pla
edis made of aluminium and has holes in it whi
h are arranged on a re
tangular grid withdistan
es of 5 mm. Wave fun
tion measurements 
an only be done at the hole positions:the movable antenna holder moves to the position of a hole and then downwards, so thatthe antenna is sunk into the hole. If the measurement at this position is �nished, theantenna holder moves up again and then to the position at whi
h one wishes to measurenext. This of 
ourse limits the spatial resolution of wave fun
tion measurements, whi
h
an not be better than the hole distan
e, but on the other hand, it greatly enhan
es thepre
ision with whi
h the movable antenna 
an be pla
ed on the table.As mi
rowave 
ables are expensive, it is not possible to pla
e about 20 antennas on thetable and measure the spheri
al waves they generate simultaneously � it also would notbe possible to 
onne
t them all to the VNA. Hen
e, only one �xed antenna is pla
ed onthe table, the wavefun
tion is measured, and the antenna is moved to another position.When wave fun
tions at enough di�erent positions are measured, they are superimposed,and the plane wave is generated. Additional phase fa
tors 
an also be added when doingthis superposition. The plane wave is thus given by
ψ(r) =

∑antennas j

ψj(r)e
iφ(j), (7.14)where ψj is the wave fun
tion measured by antenna j and φ(j) is a phase fun
tiondesigned to ensure propagation in the right dire
tion, as des
ribed in se
tion 7.2.2. Fig-ure 7.11 shows the positions of the �xed antennas on the hole raster. In the experiments,
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underneath

Figure 7.9.: Photograph of the experimental setup. Wave fun
tion measurements aremade with an antenna whi
h 
an be moved on a table with three step motors(
ontrolling movement in three dimensions). The movable antenna, as wellas the �xed antenna generating the spheri
al waves, are 
onne
ted to a VNA.The antenna movement and data a
quisition is 
ontrolled by a PC.
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Figure 7.10.: (a) Photograph of the movable antenna holder. (b) Close-up photographof the movable antenna while measuring (antenna is sunk into a hole). (
)Close-up photograph of the movable antenna after measuring (antenna isnow above the table). (d) Photograph of the mi
rowave antenna itself.
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Figure 7.11.: Positioning of the �xed antennas on the hole raster on the measuring table.18 antenna positions were used.Measuring the wave fun
tion at a point in spa
e takes about 2 minutes. If one wouldlike to measure it on the whole billiard, this would take about 48 days for one antennaposition. Measuring 10 positions would take more than a year; this is not feasible.Therefore, wave fun
tions are only measured in parts of the billiard, as shown in Fig. 7.12.These parts are su
h that the in
oming and outgoing wave fun
tions and their Poyntingve
tors 
an be extra
ted. In addition, the wave fun
tion at the interfa
e is measured.One measurement now takes about 36 hours, and the 18 antenna positions are measuredin about a month.7.3. Results7.3.1. Generation of a single plane waveFigure 7.13 shows wave fun
tions Re(ψ) 
al
ulated from the measured data a

ordingto Eq. (7.14) with φj = 0 at ν = 15 GHz, 
orresponding to kR = 157.5. The boundaryof the Te�on billiard is shown, as well as the position of the j = 0 antenna in the middleof the antenna array. It is already 
lear from Fig. 7.13 that both the in
oming and theoutgoing waves have nearly plane wave fronts and travel at an angle of approximately45 degrees to the billiard boundary.As it is di�
ult to see details of the wave fun
tions in the di�erent measured parts ofthe billiard, they are shown individually in Fig. 7.14. From Fig. 7.14, the width of thegenerated plane waves 
an be estimated. The in
oming wave has a width of ≈ 3 
m,whi
h is mu
h smaller than the ≈ 9 
m one would expe
t from an 18-antenna antenna
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Figure 7.12.: De�nition of the parts of the billiard (dark grey) in whi
h the wave fun
-tions are measured for all antennas in the antenna array. In
oming andoutgoing wave fun
tions as well as the wave fun
tion at the interfa
e, wherere�e
tion happens, 
an be extra
ted. The measured parts are not shownto s
ale.
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Figure 7.13.: Wave fun
tions Re(ψ) on the measured parts of the billiard at ν = 15 GHz.The billiard is shown as the gray region; the position of the middle (j = 0)antenna in the antenna array is shown as well.array. The outgoing wave, while less sharply de�ned, has approximately the same width(≈ 4 
m). The spatial resolution of 5 mm, whi
h is given by the hole raster on the table,is 
learly su�
ient to see the stru
ture of the in
oming and outgoing waves. The wavefun
tion on the boundary looks less well de�ned; with an extension of only 3 
m in the
y dire
tion, the de�ned measuring area probably is too small to allow for a distin
tionof the in
oming and outgoing waves and the penetration of the wave into the regionoutside the billiard boundary. The penetration depth is approximately one wavelength,
λ ≈ 2 
m in the 
ase of the Te�on material with ν = 15 GHz, whi
h explains whymu
h intensity is found outside the billiard. Measuring the wave fun
tion mu
h fartheroutside the material would, however, not have been possible be
ause the table endsapproximately 4 
m away from the bottom of the billiard and some spa
e is required forthe movable antenna to �t in. For GHS extra
tion as des
ribed in se
tion 7.2.1, however,only the in
oming and outgoing wave fun
tions are required, and the fa
t that the sizeof the measured boundary wave fun
tion is too small is not relevant.Figure 7.15 shows the Poynting ve
tors extra
ted for the three measured parts of thebilliard. The positions rin and rout are taken as the middle point of the regions markedby the dashed lines in Fig. 7.14; they are given by

rin = (33.5 
m
1.0 
m ) , rout = (−19.0 
m

0.0 
m ) (7.15)for the Poynting ve
tors in this �gure. As 
ould already be expe
ted from the plane wave



126 7. Measuring the Goos-Hän
hen shift in mi
rowave 
avities

x (cm)

y 
(c

m
)

 32  33  34  35  36
-3

-2

-1

 0

 1

 2

 3

 4

x (cm)
y 

(c
m

)
-6 -4 -2  0  2  4  6  8

-27

-26

-25

-24

x (cm)

y 
(c

m
)

-28 -24 -20 -16 -12 -8

-5

-3

-1

 1

 3

(a) (b)

(c)

~ 4 cm 

~  3 cm 

billiard 
boundary

Figure 7.14.: Wave fun
tions Re(ψ) in the three measured parts of the billiard. (a) in-
oming wave fun
tion, (b) wave fun
tion of billiard boundary, (
) outgoingwave fun
tion. The width of the in
oming and outgoing wave fun
tions isnoted.
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Figure 7.15.: Poynting ve
tors (red arrows) for the (a) in
oming wave, (b) wave fun
tionon the billiard boundary, and (
) outgoing wave. In (a) and (
), the averagePoynting ve
tor at rin (out) is shown as well (bla
k arrow). The bla
k linein (b) marks the billiard boundary. The averaging in (
) has been doneover the region marked by the bla
k lines. The Poynting ve
tors are s
aleddi�erently in the three �gures.
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avitiesfronts of the in
oming and outgoing waves, their respe
tive Poynting ve
tors show a 
learpropagation dire
tion. The in
oming angle 
al
ulated from the averaged Poynting ve
toris χ ≈ 47 degrees, the respe
tive outgoing angle is χ ≈ 45 degrees, whi
h further supportsthe 
laim that, in fa
t, a plane wave travelling at an angle of 45 degrees has been 
reated.The Poynting ve
tors of the wave fun
tion at the boundary, perhaps surprisingly giventhat so little 
ould be seen in the wave fun
tion itself, reveal that, in fa
t, there arein
oming and outgoing parts of the wave at the boundary. A part is re�e
ted at theboundary, but another part penetrates outside the billiard. The penetration depth seemsto be a bit larger than the wavelength of 2 
m.The generation of plane waves with one propagation dire
tion thus works, at least forhigh ν values (ν ≥ 10 GHz; below that value, the wave fronts are less well de�ned andthe extra
tion of Poynting ve
tors is thus not possible with high a

ura
y).7.3.2. Superposition of two plane waves and GHS extra
tionTwo plane waves generated a

ording to the s
heme dis
ussed in the previous se
tion 
annow be superimposed. The GHS of the resulting beam 
an be extra
ted and 
omparedto the Artmann result.Table 7.1 shows the di�erent phase fun
tions φ1(j), φ2(j) used in this se
tion andthe angle of in
iden
e χ of the beam 
onstru
ted with them a

ording to Eq. (7.11).The 
hoi
e of the φ(j) is of 
ourse somewhat arbitrary; here, they are 
hosen su
h thatthe j dependen
e is simple, the di�eren
e between φ1(j) and φ2(j) is small (as this isthe approximation in the Artmann result), and su
h that a range of angles of in
iden
eresults.Figure 7.16 shows Poynting ve
tors at ν = 15 GHz for the in
oming (top panel) andoutgoing (bottom panel) waves for φ1(j) = 0 and φ2(j) = −j/4, 
orresponding to anin
oming angle of χ = 47.6 degrees. The propagation dire
tion is still well de�ned.The extra
ted GHS for the in
oming angles given in Table 7.1 is shown in Fig. 7.17for ν = 10 GHz and ν = 15 GHz together with the Artmann result (7.11). The errorshown as the error bar is given by the errors in 〈S〉in (out), whi
h in turn are, as 〈S〉in (out)is an average value, given by the standard deviation. The error δ∆s in ∆s is then givenby error propagation:
δ∆s =

∣

∣

∣

∣

∂∆s

∂ 〈Sin〉x ∣∣∣∣ δ〈Sin〉x + ∣∣∣∣ ∂∆s

∂ 〈Sin〉y ∣∣∣∣ δ〈Sin〉y
+

∣

∣

∣

∣

∂∆s

∂ 〈Sout〉x ∣∣∣∣ δ〈Sout〉x + ∣∣∣∣ ∂∆s

∂ 〈Sout〉y ∣∣∣∣ δ〈Sout〉y. (7.16)The errors are all approximately δ∆s/∆s ≈ 20 % (in
oming angles above the 
riti
alangle) and δ∆s/∆s ≈ 50 % (in
oming angles below 
riti
al angle). As the GHS belowthe 
riti
al angle is small, relatively larger errors are expe
ted. Overall, the errors arequite large, whi
h is mostly due to the un
ertainties in the average Poynting ve
tors
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k arrowsare the average Poynting ve
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φ1(j) φ2(j) χ (degrees)
8j/9 j 22.5
2j/3 3j/4 27.9
j/2 j/3 35.1
0 j/4 41.4
j/10 0 44.9
0 −j/4 47.6
−j/2 −j/3 55.9
−8j/9 −j 68.9Table 7.1.: Phase fun
tions φ1,2(j) and the resulting in
oming angles χ in degrees asextra
ted from the experimental data.
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Figure 7.17.: GHS k∆s as extra
ted from the measured data for ν = 15 GHz (red dots)and ν = 10 GHz (blue triangles). The bla
k solid line is the Artmannresult, the bla
k dashed line marks the 
riti
al angle for n = 1.44.
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Figure 7.18.: GHS k∆s extra
ted from the measured data at ν = 15 GHz (red dots)and ν = 10 GHz (blue triangles). For 
omparison, the 
al
ulated GHS fora Gaussian wave pa
ket with the 
orresponding frequen
y is shown as well(red solid and blue dotted 
urves).� and even a small 
hange in the propagation dire
tion 
an lead to a larger 
hange inthe GHS. But overall, the main features of the Artmann result (zero GHS below the
riti
al angle, maximum GHS at the 
riti
al angle, approximately 
onstant GHS abovethe 
riti
al angle, independen
e on k) 
an be seen quite well in the data. Espe
iallyat ν = 10 GHz, the agreement above the 
riti
al angle is not so good, and the GHS issystemati
ally higher than the Artmann result predi
ts.The deviations at and above the 
riti
al angle 
an be explained as being due todeviations from the Artmann form of the in
oming wave. The individual waves arenot 
ompletely plane waves, as they have a width �xed by the width of the antennaarray. If one approximates them as Gaussian, the resulting GHS ∆s 
an be 
al
ulatednumeri
ally, as shown in se
tion 6.2. In 
ontrast to the 
al
ulations there, no minimal-un
ertainty beam is used, but the width is given by the experimentally extra
ted beamwidth σ ≈ 3 
m. Figure 7.18 shows the results together with the experimental data for
ν = 10 GHz and ν = 15 GHz. The deviations above the 
riti
al angle are explained verywell by a Gaussian beam pro�le. This is not surprising, as it has been shown by Laiet al. [LCT86℄ that the pre
ise form of the beam envelope does not in�uen
e the GHSmu
h: a re
tangle pro�le (whi
h is approximately the form our beams have, as 
an beseen in the bottom panel of Fig. 7.5) results in a GHS whi
h is very similar to the oneof a Gaussian pro�le.For 
omparison, one 
an also extra
t a GHS ∆s from the pure generated �plane waves�without superimposing them a

ording to Eq. (7.11). After all, the generated �planewave� beams only have a width of a 
ouple of wavelengths are thus not really goodplane waves; they 
ould also show a GHS. The phase fun
tions φ(j) used in this 
ase
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φ(j) χ (degrees)
j 20.6
8j/9 27.5
j/4 33.6
j/6 38.8
j/8 41.5
0 46.1
−j/4 53.4
−j 69.0Table 7.2.: Phase fun
tions φ(j) and resulting in
oming angles χ for the GHS extra
tionfrom the generated �plane waves�.are shown in Table 7.2 together with the resulting in
oming angles χ.The resulting GHS k∆s is shown in Fig. 7.19 for ν = 15 GHz. While the extra
ted GHSis not zero, it �ts neither to the Artmann result nor to the result of a Gaussian beam
al
ulation, whi
h is probably due to the fa
t that the beam pro�le (see Fig. 7.5) is toodi�erent from a Gaussian pro�le in this 
ase, and approximately only one propagationdire
tion instead of many is present in the beam. The results for ν = 10 GHz are quitesimilar.
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Figure 7.19.: GHS k∆s as extra
ted from the generated �plane wave� beams withoutsuperposition of two beams for ν = 15 GHz (red dots). The bla
k solid lineshows the Artmann result, the red dashed lines the result of a Gaussianbeam 
al
ulation of the GHS for ν = 15 GHz.
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SummaryIn this work, ray and extended ray models were investigated in spe
ial opti
al mi
ro
av-ities, namely deformed mi
rodisk 
avities; su
h 
avities were introdu
ed in 
hapter 2.As the dynami
s of light rays whi
h stay inside the 
avity is equivalent to the dynami
sof a 
lassi
al parti
le in a billiard, billiard systems and their nonlinear dynami
s weredis
ussed in 
hapter 3. Opti
al modes in mi
rodisk 
avities and ray-wave 
orresponden
ewere reviewed in 
hapter 4.In 
hapter 5, a su

essful ray model was presented for a mi
rodisk 
avity with ellipti
al
ross-se
tion and a wavelength-s
ale �not
h� at the 
avity boundary; this boundary shapesupports long-lived opti
al modes with highly unidire
tional far �eld emission. That thisis the 
ase 
an be understood from the ray model alone: whispering-gallery-like rays,whi
h travel along the boundary for a long time, eventually hit the not
h. It s
attersthem to the opposite 
avity boundary, whi
h for 
ertain 
hoi
es of the e

entri
ity ofthe ellipse, a
ts like a lens and 
ollimates the rays in the far �eld. This 
ombinationof a smooth boundary, allowing long-lived whispering-gallery-like rays, s
attering, and
ollimation leads to the long mode life-times and the dire
ted emission. Chapter 5 alsodealt with optimization of the dire
tionality depending on parameters like 
avity shape,refra
tive index, and not
h size and shape. Ellipti
al 
avities with not
h have beenfabri
ated by 
ollaborators at Harvard university and used as resonators for quantum
as
ade lasers; this work 
ompared their experimental result to the author's own rayand mode 
al
ulations, �nding good agreement between them.Chapter 6 introdu
ed an extended ray model, whi
h in
ludes �rst-order wave 
or-re
tions, the so-
alled Goos-Hän
hen shift (GHS) and the Fresnel �ltering (FF) e�e
t.Both 
orre
tions manifest themselves as phase-spa
e shifts; the GHS is a shift in the sdire
tion, the FF a shift in p dire
tion. Using Gaussian beams, both 
orre
tions were
al
ulated and the in
lusion in the ray dynami
s of a 
avity was dis
ussed. In
lusion ofthem was shown to lead to a variety of phase-spa
e modi�
ations: new stable islands andunstable periodi
 orbits 
an be 
reated, attra
tors and repellers 
an form, periodi
 orbits
an experien
e a phase-spa
e shift 
ompared to their 
ounterparts in the 
onventionalray dynami
s, and there may be asymmetries between 
lo
kwise and 
ounter-
lo
kwisetravelling rays. The dis
ussion of these e�e
ts and the 
omparison of results of theextended ray dynami
s with mode 
al
ulations was the main part of 
hapter 6.Chapter 7 des
ribed the setup and results of experiments performed by the authorduring a stay at the university of Marburg. The aim was to measure the GHS in ami
rowave 
avity; measurements in opti
al mi
ro
avities are di�
ult, be
ause measuringele
tri
al �eld distributions with a high spatial resolution is non-trivial in this 
ase. Asthe results for the GHS s
ale with λ/R (λ being the wavelength and R a typi
al 
avitylength s
ale), su
h measurements 
an also be performed in mi
rowave 
avities (where



136 Summarythe wavelengths are larger as in the opti
al mi
ro
avity 
ase, but the 
avity sizes arelarger as well; in this 
ase, high-resolution �eld measurements 
an be easily managed.In 
hapter 7, the experimental setup was des
ribed, the generation of suitable beamsand the extra
tion of the GHS from the experimental data dis
ussed, and the resultswere 
ompared to numeri
al 
al
ulations of the GHS. Overall, the agreement betweenmeasured GHS values and numeri
al 
al
ulations was quite good.
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A. Numeri
al 
al
ulation of billiarddynami
sA.1. Billiard dynami
s for arbitrary boundary shapesFor a general billiard boundary 
urve r(φ), the mapping (s, p) → (s′, p′) 
an not be 
al
u-lated analyti
ally. Instead, the dynami
s has to be 
al
ulated numeri
ally. Starting withinitial values (φ, χ) ↔ (s, p), the real spa
e position (x0, y0) = r0 = (r(φ) cosφ, r(φ) sinφ)
an be 
al
ulated. The lo
al tangent τ and (outwards pointing) normal ve
tor ν a givenby

τ =
1

|dr/dφ| drdφ =
1

√

r2(φ) + r′2(φ)

(

− sinφ r(φ) + cosφ r′(φ)
cosφ r(φ) + sinφ r′(φ)

)

,

ν =

(

−τy
τx

)

,with r′(φ) = drdφ. (A.1)
τ and ν then are normalized and orthogonal. The ar
 length is given by

s(φ) =

∫ φ

−π

dφ′
∣

∣

∣

∣

d rdφ′

∣

∣

∣

∣

=

∫ φ

−π

dφ′
√

r2(φ′) + r′2(φ′). (A.2)Here, the polar angle φ lies between −π and π. De�nition of φ su
h that it is between0 and 2π is, of 
ourse, also possible; however, values between −π and π are numeri
ally
onvenient, as this is the output range of ar
tan implementations whi
h are needed inthe 
al
ulations (see Eq. (A.4)).One 
an then de�ne a dire
tion ve
tor (�velo
ity�) for the ray or parti
le travelling inthe billiard:
v = v0 [sinχτ − cosχν] ; (A.3)

v0 
an be set as unity. In order to �nd the position where the billiard boundary will behit the next time, one has to �nd interse
tions between the boundary 
urve r(φ) andthe straight line (x(t), y(t)) = (x0, y0) + tv; the parameter t is the elapsed time. Onethus has to solve the equation
F (t) ≡

√

x(t)2 + y(t)2 − r

(

arctan
y(t)

x(t)

)

= 0. (A.4)
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Figure A.1.: Cal
ulating the billiard mapping (s, p) → (s′, p′).This 
an be done using Newton's method, whi
h here needs a reasonable starting value,as t = 0 is always a possible solution ((x0, y0) is on the billiard boundary by de�nition)whi
h has to be avoided. A good starting value is found by 
al
ulating F (ih) for integers
i and a step size h until a sign 
hange of F between in and in+1 is found, and taking
t0 = (in+1+ in)h/2. The step size h has to be 
hosen smaller if the boundary has regionswith high 
urvature or is non-
onvex; for other 
avities with area one, h = 10−5R seemsto be su�
ient, if R is the typi
al billiard length s
ale. In billiards with regions of high
urvature, h = 10−5ρ with the lo
al radius of 
urvature ρ is used. The resulting t0 istaken as a starting point for Newton's method, whi
h yields a solution ts of (A.4). Thenew position on the boundary is then (x1, y1) = (x0, y0) + tsv. With

tanφ′ =
y1
x1
, sinχ′ = v · τ ′ (A.5)(where τ

′ is the tangent ve
tor at the position (x1, y1)), φ′ and χ′ (and 
orrespondingly
s′ and p′) are found. Figure A.1 illustrates the pro
edure.A.2. Cal
ulation of far �eld patternsIn order to 
al
ulate far �eld patterns, one has to �nd the intensity emitted into θ whenstarting from the phase spa
e position (s, p). Starting from this point with the intensity
I = 1, the billiard mapping is applied, leading to (s′, p′) (
orresponding to a polarangle φ and an angle of in
iden
e χ). If χ′ is below the 
riti
al angle for total internalre�e
tion, Snell's law is applied, leading to an angle of refra
tion η via sin η = n sinχ.The dire
tion v

′ of the refra
ted ray is then given by
v
′ = sin ητ + cos ην. (A.6)
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Figure A.2.: Cal
ulation of far �eld patterns from ray dynami
s.(see Fig. A.2). The far �eld angle 
an be 
al
ulated as
tan θ =

v′y
v′x
. (A.7)The intensity of the refra
ted ray is given by I = |t|2I and the intensity of the re�e
tedray, whi
h stays inside the 
avity, is given by |r|2I. r is the 
omplex Fresnel re�e
tion
oe�
ient.

r(χ) =

{

sin(η−χ)
sin(η+χ)

, (TM polarization),
tan(η−χ)
tan(η+χ)

, (TE polarization). (A.8)
η is given by the Snell law, and |t|2 = 1−|r|2. This pro
edure is iterated until a maximumnumber of 
ollisions with the boundary has o

urred or the intensity inside the 
avityhas sunk below a threshold value.One measure of dire
tionality is given by the intensity emitted into the angle region
±∆, i.e.

I±∆ =

∫ ∆

−∆
dθ I(θ)

∫ π

−π
dθ I(θ) (A.9)where I(θ) is the intensity emitted in the θ dire
tion. Another dire
tionality measure,whi
h is sometimes 
alled U3, is given by

U3 =

∫ π

−π
dθ cos θ I(θ)
∫ π

−π
dθ I(θ) . (A.10)
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al 
al
ulation of billiard dynami
sA.3. Implementation: billiard 
lassesThe numeri
al 
al
ulation of billiard dynami
s and far �eld patterns is done using a
olle
tion of C++ 
lasses, all derived from an abstra
t base 
lass, whi
h implement thedi�erent boundary 
urves. In this se
tion, the stru
ture of su
h a boundary 
lass isdes
ribed as well as sele
ted of its fun
tions. The 
lasses proving fun
tions for the
al
ulation of the wave 
orre
tions and for far �eld 
al
ulations are dis
ussed as well.The Boundary 
lass is an abstra
t base 
lass from whi
h the di�erent spe
i�
 boundary
lasses (like Lima
on implementing the limaçon shape) are derived. Any boundary shapewhi
h 
an be des
ribed by a 
urve r(φ) in polar 
oordinates 
an be easily implemented.The boundary 
lasses provide fun
tions des
ribing the boundary itself (BoundaryCurvebeing the boundary 
urve r(φ) itself, TangentVe
tor the lo
al tangent ve
tor τ , et
.),and also pro
edures for the 
al
ulation of the billiard mapping: ConvertToCartesian�nds the real spa
e position (x0, y0) and the velo
ity v from the phase spa
e 
oordinates
φ and χ, StartFinder �nd a starting value for Newton's method, whi
h is implementedin NumtCal
 (the Ellipse 
lass has an analyti
al 
al
ulation of the interse
tion in-stead), and so on. The GoosHaen
henShift pro
edure applies the wave 
orre
tions(Goos-Hän
hen shift and Fresnel �ltering) to φ and χ. As the boundary 
lasses onlyimplement the billiard dynami
s, no refra
tive index has to be provided; if the extendedray dynami
s in
luding GHS and FF 
orre
tions is 
al
ulated, a refra
tive index is of
ourse impli
ated by the 
hoi
e of a GHS/FF data set. The following listing shows the
ontents of the Boundary.h �le; all virtual member fun
tions have to be implementedin the derived boundary 
lasses whi
h de�ne a spe
ial boundary.#ifndef Boundary__H#define Boundary__H
 lass Boundary{publi
: // boundary 
urve and f i r s t d e r i v a t i v evirtual double BoundaryCurve(double phi1)=0;virtual double dBoundaryCurve(double phi1)=0;// t ang en t and normal v e 
 t o r s , ar
 l e n g t h
 a l 
 u l a t i o nvirtual void TangentVe
tor(double phi1 , double *tx1 , double *ty1)=0;virtual void NormalVe
tor(double phi1 , double *nx1 , double *ny1)=0;virtual double Ar
Lenght (double phi1)=0;// f i n d i n g o f i n t e r s e 
 t i o n s w i th boundary , newpo s i t i o n , new in
oming an g l e svirtual double F(double t1, double x1, double y1,double vx1 , double vy1)=0;
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lasses 141virtual double dF(double t1, double x1, double y1, double vx1 , double vy1)=0;virtual void ConvertToCartesian(double phi1 ,double theta1 , double *rho1 , double *x1, double*y1, double *vx1 , double *vy1)=0;virtual double tCal
(double x1,double y1,doublerho1 ,double phi1)=0;virtual double NumtCal
 (double x1, double y1,double vx1 , double vy1)=0;virtual void newPosition(double x1,double y1,double vx1 ,double vy1 ,double *x2,double *y2)=0;virtual void newVelo
ity(double theta1 ,doublerho1 , double phi1 ,double *vx1 , double *vy1)=0;virtual double newTheta (double vx1 ,double vy1 ,double tx1 , double ty1)=0;// Newton ' s method and s t a r t i n g v a l u e f i n d e r f o ri tvirtual double StartFinder(double x1, double y1,double vx1 , double vy1)=0;virtual double Newton(double ts, double x1,double y1, double vx1 , double vy1)=0;// a p p l i 
 a t i o n o f GHS/FF and 
 a l 
 u l a t i o n o f p o l a rang l e from ar
 l e n g t hvirtual double GoosHaen
henPhi(double *phi1 ,double *s1, double ss, int s_len)=0;virtual void GoosHaen
henShift(double phi1 ,double theta1 , double xi1[℄, double yi1[℄,double yi2[℄, int N1, double ys1[℄, double ys2[℄,double *ar
2 , double *theta2)=0;// s t e p s i z e f o r Newton ' s methods ta t i 
 double 
onst h_newton =1e-5;s ta t i 
 double 
onst h_SF=1e-7;};#in
lude "Boundary .
pp"#endifMethods for the numeri
al 
al
ulation of the GHS and FF 
orre
tions are found in theGHSInterpolation 
lass, whi
h also provides the analyti
al GHS formulas of Artmannand Lai. GHSInterpolation also provides methods for reading the GHS/FF values fromgiven data �les and writing them to arrays whi
h 
an be used for interpolation.New boundary 
lasses 
an be written easily by 
hanging the template (Template.
ppand Template.h). After 
hoosing a name (whi
h should be des
riptive) for the new 
lass,
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al 
al
ulation of billiard dynami
sone 
hanges the 
onstru
tor by introdu
ing the parameter(s) des
ribing the boundaryshape (i.e., deformation parameter(s) if the shape is a deformed 
ir
le), if there are any.The boundary 
urve has to be provided to the BoundaryCurve and dBoundaryCurvemethods; the derivative dr/dφ provided by dBoundaryCurve 
an be 
al
ulated numeri-
ally if ne
essary.For example, the 
onstru
tor of the Lima
on 
lass implementing the limaçon boundary
urve looks like this:Lima
on ::Lima
on(double e_parameter){ epsilon=e_parameter;}and the BoundaryCurve method looks like this:double Lima
on :: BoundaryCurve(double phi1){ double r1;r1=1.0+ epsilon*
os(phi1);return(r1);}The dBoundaryCurve method 
an be implemented using an analyti
al expression (whi
his a
tually used in the Lima
on 
lass),double Lima
on :: dBoundaryCurve(double phi1){ double r1;r1=-epsilon *sin(phi1);return(r1);}as well as using a numeri
al 
al
ulation of the derivativedouble Lima
on :: dBoundaryCurve(double phi1){ double r1;double 
onst h1=1e-10;r1=( BoundaryCurve(phi1+h1)-BoundaryCurve(phi1 -h1))/(2.0* h1);return(r1);}Apart from BoundaryCurve and dBoundaryCurve, no other methods in Template.
pphave to be 
hanged.The boundary 
urves implemented are shown in Table A.1. As the boundary 
urves
r(φ) for the ellipse with a double or paraboli
 not
h are quite 
omplex, they are not
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lasses 143displayed in the table; they are given in se
tion 5.5.5. The RoundedSquare and Round-edHexagon 
lasses de�ne �rounded� versions of billiards (the square and the hexagon)whose boundaries are given by polygons. For low deformation parameters n and s, thepolygon edges are rounded; they be
ome less round, and the boundary 
urves approxi-mate the square and hexagon billiards better, if n, s→ ∞.The methods for 
al
ulating far �eld patterns are provided by the FarField 
lass,whi
h takes an obje
t of the Boundary 
lass and a refra
tive index as input. It providesre�e
tion 
oe�
ients (refle
tionTM and refle
tionTE) as well as methods for 
al
u-lating the far �eld emission angle θ (FindFarFieldAngle) and the intensity emitted into
±∆ degrees (Cal
ulateIntensityDegrees, ∆ has to be provided as input) as well asthe dire
tionality measure U3 (Cal
ulateU3). Far �elds 
an then be 
al
ulated usingboth the 
onventional and the extended ray dynami
s.
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lass name boundary 
urve r(φ)Ellipse 1/

√

sin2 φ
a2

+ cos2 φ
b2Lima
on 1 + ǫ cos φDeformedLima
on R(1 + ǫ cos φ)(1− ǫ1 cos(2φ)) + dQuadrupol 1 + ǫ cos(2φ)Multipol 1 + ǫ cos(mφ)ThreePointedEgg 1 + α cos(3φ)RoundedSquare 1/ n

√
cosn φ+ sinn φRoundedHexagon s

√

2/
[(

cosφ− sinφ√
3

)s

+
(

2 sinφ√
3

)s

+
(

cos φ+ sinφ√
3

)s]EllipseNot
h √

sin2 φ+ (ǫ cosφ− δ exp(−2(φ− π)2/ϑ2) cosφ)2EllipseDoubleNot
h see Eq. (5.23)EllipseParaboli
Not
h see Eq. (5.25)QuadrupolNot
h √

r20 sin
2 φ+ (r0 cos φ− δr0 exp(−2(φ− π)2/θ2) cosφ)2with r0 = 1.0− ǫ cos(2φ).Table A.1.: Class names and boundary 
urves r(φ) of the boundary 
urves alreadyimplemented.
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B. Derivation of the HelmholtzequationB.1. Derivation of the mode equationsThe Maxwell equations (in SI units) without free 
harges and 
urrents are given by

∇ ·D = 0, (B.1)
∇ ·B = 0, (B.2)
∇× E = −∂B

∂ t
, (B.3)

∇×H =
∂D

∂ t
. (B.4)

c is the speed of light in va
uum. The ele
tri
 �eld E, the magneti
 �eld H, the ele
tri
displa
ement D, and the magneti
 �ux B are, in linear isotropi
 media, related by
D = ǫ0ǫrE, B = µ0µrH (B.5)with the ele
tri
 sus
eptibility ǫr and the magneti
 permeability µr of the material. Therefra
tive index is then given by n2 = ǫrµr. The 
avity modes are solutions with aharmoni
 time dependen
e eiωt, Eqs. (B.1)�(B.4) simplify to
∇ · ǫ0ǫrE = 0, (B.6)
∇ ·H = 0, (B.7)
∇× E = iωµ0µrH (B.8)
∇×H = −iωǫ0ǫrE. (B.9)For mi
ro
avities, the refra
tive index usually is pie
ewise 
onstant with respe
t to spa
e,i.e. it has one value n2 inside the 
avity and another value n1 outside of it. The 
avitygeometry is then given solely by the fun
tion n(r). For r not on the 
avity boundary,

ǫr and µr are thus 
onstants. By 
al
ulating ∇× (B.8) and ∇ × (B.9), one �nds with
c2 = 1/ǫ0µ0:

∇×∇× E = −∇(∇ · E)−∆E

= −∆E ( as ∇ ·E = 0 with (B.6))
= iωµ∇×H

=
ω2ǫrµr

c2
E, (with (B.9)) (B.10)



146 B. Derivation of the Helmholtz equatione. g.,
∆E = −n2(r)

ω2

c2
E. (B.11)Analogously, one �nds

∆H = −n2(r)
ω2

c2
H. (B.12)At the 
avity boundary with lo
al normal ve
tor ν(r), the 
ontinuity relations

ν(r) ·
(

n2
1E1(r)− n2

2E2(r)
)

= 0, ν(r) · (H1(r)−H2(r)) = 0,

ν(r)× (E1(r)− E2(r)) = 0, ν(r)× (H1(r)−H2(r)) = 0,
(B.13)hold, meaning that the tangential 
omponents of E and H are 
ontinuous a
ross theboundary, as well as the normal 
omponent of H. Equations (B.11) and (B.12), togetherwith the relations (B.13), de�ne the opti
al modes.B.2. Redu
tion of Maxwell's equations in 
ylindri
algeometryWhen dealing with mi
rodisks, one is only interested in the �elds in the disk (x−y) plane;the dependen
e of the �elds on z is not interesting. This means that the two-dimensionaldisk 
an be viewed as an in�nite 
ylinder: if the z dependen
e is not important, one 
anassume about is whatever is most 
onvenient. In su
h a 
ylindri
al geometry, the (x, y)and z 
omponents 
an be regarded as de
oupled. Be
ause of the translational symmetryalong z, the propagation in z dire
tion is given by a plane wave ansatz ∼ e−ikzz, and the�elds 
an be separated as

E(x, y, z) = E(x, y)e−ikzz, H(x, y, z) = H(x, y)e−ikzz. (B.14)Inserting this ansatz into the mode equations (B.11) and (B.12) yields
(

∆⊥ + n2e�k2)E(x, y) = 0,
(

∆⊥ + n2e�k2)H(x, y) = 0.
(B.15)Here, the va
uum wave number k = ω/c and the e�e
tive refra
tive index n2e� = n2− k2zhave been introdu
ed as well as ∇⊥ = ∇− (∂z)ez.In order to simplify things even further, one 
an de
ompose the �elds in 
omponentsparallel and perpendi
ular to z:

E(x, y) = Ez(x, y)ez + E⊥(x, y),

H(x, y) = Hz(x, y)ez +H⊥(x, y).
(B.16)Inserting this ansatz into the Maxwell equations (B.6)�(B.9), one �nds

∇⊥ · E⊥ = ikzEz (B.17)
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Figure B.1.: Geometry with 
ylindri
al symmetry for mi
rodisk 
avities. The disk planeis the (x, y)-plane; ν is a lo
al normal ve
tor to the 
avity boundary. Therefra
tive index inside the disk is n2, the refra
tive index outside n1.and
iωµ0µrH = ∇× (E⊥ + Ezez)

= (∇⊥ × E⊥) + [ikzE⊥ × ez + (∇⊥Ez)× ez] .
(B.18)These relations, split up in z and ⊥ 
omponents, lead to

∇⊥ ·E⊥ = ikzEz, (B.19)
iωµ0µrHz = (∇⊥ ×E⊥)z , (B.20)
iωµ0µrH⊥ = (ikzE⊥ +∇⊥Ez)× ez. (B.21)Similar relations follow from the equations for the magneti
 �eld H:
∇⊥ ·H⊥ = ikzHz, (B.22)
− iωǫ0ǫrEz = (∇⊥ ×H⊥)z , (B.23)
− iωǫ0ǫrE⊥ = (ikzH⊥ +∇⊥Ez)× ez. (B.24)When Eq. (B.24) is used to eliminate H⊥ from Eq. (B.21), one 
an �nd a relationbetween E⊥ and Ez and Hz:
E⊥ =

i

n2e� (kz∇⊥Ez − kez ×∇⊥Hz) . (B.25)Analogously, one 
an �nd a relation between H⊥ and Ez, Hz by eliminating E⊥ fromEq. (B.24) by means of Eq. (B.21):
H⊥ =

i

n2e� (kz∇⊥Hz + kn2
ez ×∇⊥Ez

)

. (B.26)



148 B. Derivation of the Helmholtz equationIt is thus su�
ient to solve Eqs. (B.15) for Ez and Hz, i.e. the s
alar wave equations
(

∆⊥ + n2e�k2)Ez = 0,
(

∆⊥ + n2e�k2)Hz = 0, (B.27)as the other �eld 
omponents then 
an be 
al
ulated from Ez, Hz. As one typi
allydeals either with TM polarization (Hz = 0 for all x, y) or TE polarization (Ez = 0 forall x, y), one only has to solve one s
alar wave equation, the Helmholtz equation
(

∆x,y + ne�(x, y)2k2)ψ(x, y) = 0 (B.28)for a pie
ewise 
onstant refra
tive index ne� and a s
alar fun
tion ψ with ψ = Ez (TM)or ψ = Hz (TE). In this 
ase, the 
ontinuity relations (B.13) simplify to
ψ1 = ψ2, ∂νψ1 = ∂νψ2 (TM),
ψ1 = ψ2,

∂νψ1

n2
1

=
∂νψ2

n2
2

(TE), (B.29)with ∂νψ = ν · ∇x,yψ.While the Helmholtz equation (B.28) is valid not only for 
avities made of positive-index material, but for negative-index 
avities as well, the 
ontinuity relations (B.29)have to be modi�ed in the negative-index 
ase [WUS+10a℄.
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C. Boundary element methodThe boundary element method (BEM) [Wie03℄ is a Green fun
tion-based method for
al
ulating resonan
es of two-dimensional diele
tri
 
avities with spatially homogeneousindex of refra
tion. Resonan
es 
an be 
al
ulated for 
avities of arbitrary shape, whi
hmay be 
oupled. The refra
tive index may be 
omplex, whi
h 
an be used to in
ludethe e�e
ts of a medium with gain or loss in a simple way.The main idea is to map the two-dimensional Helmholtz equation to a (one-dimensional)integral equation whi
h 
an then be solved numeri
ally.C.1. Derivation of boundary integral equationsFigure C.1 shows an exemplary system whose resonan
es 
an be studied using the BEM.It 
onsists of J − 1 
avities with refra
tive indi
es nj , interiors Ωj and boundaries Γj =
∂Ωj (whi
h do not have to be simply 
onne
ted). Ea
h boundary 
an be parametrizedusing an ar
 length s, and on ea
h boundary, a normal ve
tor ν 
an be de�ned at ea
hboundary point. The region outside the 
avities is ΩJ , bounded by a 
ir
le at in�nity
∂ΩJ = I∞. Inside ea
h region Ωj , the Helmholtz equation holds:

(

∆+ n2
jk

2
)

ψ(r) = 0. (C.1)A solution of this equation yields both the 
avity resonan
e wavenumbers k and the
orresponding wavefun
tions ψ. At ea
h 
avity boundary Γj, the following boundary
onditions (quantities with index �in� are inside the region Ωj, quantities with index�out� are outside) hold:
ψin = ψout (both TM and TE polarization),
∂νψin = ∂νψout (TM),
∂νψin/n2in = ∂νψout/n2out (TE). (C.2)

∂ν = ν · ∇
r
is the normal derivative. As modes are often 
al
ulated for the simulationof 
avities for lasers, where only light 
omes out of the 
avity, but no light 
omes in, one
an 
hoose outgoing-wave 
onditions at in�nity:

ψ(r → ∞) ∼ h(θ, k)
eikr√
r
. (C.3)Even though the Helmholtz equation (C.1) is invariant under time reversal, the outgoing-wave 
ondition (C.3) is not, and thus introdu
es solutions whi
h also violate time-reversalinvarian
e.
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Figure C.1.: An exemplary system to be studied using the BEM, 
onsisting of J − 1arbitrarily shaped 
avities with di�erent refra
tive indi
es nj .The Green's fun
tion is the solution of
(

∆+ n2
jk

2
)

G(r, r′, k) = δ(r− r
′). (C.4)The Green's fun
tion is just the Green's fun
tion of an outgoing wave in a mediumwith 
onstant index of refra
tion (i.e., basi
ally the free spa
e solution) and knownanalyti
ally:

G(r, r′, k) = G0(r, r
′, k) = − i

4
H

(1)
0 (njk|r− r

′|), (C.5)with the zeroth-order Hankel fun
tion of the �rst kind H(1)
0 . Cal
ulating

ψ(r)× (C.1)−G0(r, r
′, k)× (C.4), (C.6)one �nds

ψ(r)δ(r− r
′) = ψ(r)∇2G0(r, r

′, k)−G0(r, r
′, k)∇2ψ(r)

= ∇ · (ψ(r)∇G0(r, r
′, k)−G0(r, r

′, k)∇ψ(r)) . (C.7)Integration over the region Ωj and applying Green's theorem yields
ψ(r′) =

∮

Γj

ds [ψ(r(s))∂νG0(r(s), r
′, k)−G0(r(s), r

′, k)∂νψ(r(s))] , (C.8)where s is the ar
 length around the boundary Γj. The normal derivative of the Green'sfun
tion ∂νG0(r(s), r
′, k) 
an be 
al
ulated analyti
ally using properties of the Hankelfun
tions [GR65℄:

∂νG0(r(s), r
′, k) =

injk

4
cosαH

(1)
1 (njk|r(s)− r

′|) (C.9)
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al solution of the boundary integral equations 151with
cosα = ν(r) · r− r

′

|r− r′| . (C.10)The limit r′ → Γj in Eq. (C.8) 
an be performed. The integral has then to be 
al
ulatedas a Cau
hy prin
ipal value integral, yielding
ψ(r′) = 2P

∮

Γj

ds [(ψ(r(s))∂νG0(s, r
′, k)−G0(s, r

′, k)∂νψ(r(s))] . (C.11)It 
an be shown [Wie03℄ that the 
ir
le at in�nity I∞ does not give a 
ontribution. Apartfrom that, there is an equation like (C.11) of ea
h region Ωj . Equation (C.11) 
an berewritten as
∮

Γj

ds [B(s′, s, k)φ(s) + C(s′, s, k)ψ(s)] = 0, (C.12)with the integral kernels
B(s′, s, k) =

{

−2G0(r(s), r(s
′), k), TM polarization,

−2n2
jG0(r(s), r(s

′), k), TE polarization.
C(s′, s, k) = 2∂νG0(r(s), r(s

′), k)− δ(r(s)− r(s′))

(C.13)and
ψ(s) = ψ(r(s)), φ(s) =

{

∂νψ(r(s)), TM polarization,
∂νψ(r(s))/n

2
j , TE polarization. (C.14)The boundary 
onditions, i.e. the fa
t that ψ and φ have to be 
ontinuous a
ross ea
hboundary Γj , are then build in: ea
h equation has two 
ontributions, one from insidethe region Ωj and one from outside the region Ωj (both 
ontributions are 
al
ulated onthe shared boundary Γj); they have the same ψ, φ, but di�erent B and C (be
ause therefra
tive index nj enters the integral operators via the Green's fun
tion). Solution ofEq. (C.12) yields the wavefun
tion on the boundary Γj and the resonan
e wavenumber

k; the full wave fun
tion 
an be 
al
ulated using Eq. (C.8).C.2. Numeri
al solution of the boundary integralequationsC.2.1. Dis
retizationThe boundary is dis
retized into small boundary elements (BEs) with lengths ∆si, su
hthat the length is smaller than the wavelength λ = 2π/(njk) inside the region Ωj , andalso smaller than the lo
al radius of 
urvature. Typi
ally, one 
hooses ∆si/λ ≈ 1/10.Then, the wavefun
tion ψ, its normal derivative φ, and the lo
al normal ve
tor ν 
anbe 
onsidered 
onstant on a BE. The BEs do not have to have equal lengths; in fa
t, itis reasonable to optimize the length distribution su
h that regions of high 
urvature are
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n = 1

s0
1

s1
1 = s0
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s1
2 = s0
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s0
i

s1
i
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i

nj

Figure C.2.: Illustration of a dis
retization of the boundary of a 
avity. The BEs havestarting points s0i , end points s1i , mid points smi , and lengths ∆si.divided into more BEs of smaller length and regions of low 
urvature into 
orrespondinglyless BEs. Figure C.2 illustrates su
h a dis
retization. The BEs have starting points s0i ,end points s1i , and mid points smi . The boundary is divided into Nj BEs. Using thisdis
retization, the boundary integral equations (C.12) 
an be written as
Nj
∑

l=1

(Bilφl + Cilψl) = 0, (C.15)with
Bil =

∫ s1
l

s0
l

dsB(si, s),

Cil =

∫ s1
l

s0
l

dsC(si, s),
ψl = ψ(sml ), φl = φ(sml ).

(C.16)
Be
ause the integral operators are nearly singular, one has to 
al
ulate the diagonalelements Bll, Cll separately. This 
an be done by using the expansion of the Hankelfun
tions for small arguments:

Bll ≈
∆sl
π

[

1− ln

(

njk∆sl
4

)

+ i
π

2
− γ

]

,

Cll ≈ −1 +
κl∆sl
2π

.

(C.17)
κl is the 
urvature at the midpoint sml and γ = 0.577215 . . . is Euler's 
onstant.



C.2. Numeri
al solution of the boundary integral equations 153Equation (C.15) 
an be written in matrix form:










B1
il C1

il

B2
il C2

il... ...
BJ

il CJ
il











·



























φ1
l

φ2
l...
φJ
l

ψ1
l

ψ2
l...

ψJ
l



























= 0, (C.18)
where Bj

il, Cj
il are the integral kernels in regionΩj and φj

l , ψj
l the respe
tive wavefun
tionson the boundary Γj.For the spe
ial (and most 
ommon) 
ase of only one 
avity, Eq. (C.18) reads

(

Binside
il C inside

il

Boutside
il Coutside

il

)

·
(

φl

ψl

)

= 0. (C.19)Denoting the matrix of the integral operators appearing in Eq. (C.18) as M̂(k) and theve
tor of the wavefun
tions and their normal derivatives by (φ, ψ)t, (C.18) reads
M̂(k) ·

(

φ
ψ

)

= 0. (C.20)This equation has to be solved for both the parameter k and the ve
tor (φ, ψ)t. This 
anbe viewed as a singular value or eigenvalue problem: One has to �nd the parameter k su
hthat M̂(k) has a singular value (or eigenvalue) of zero, and then �nd the 
orrespondingsingular or eigenve
tor.C.2.2. Computing resonan
es and wave fun
tionsThe �rst step to the solution of the boundary integral equations is to �nd the reso-nan
e wavenumber kres, i.e., a k value for whi
h M̂(k) has an eigen- or singular value ofzero. The matrix itself is 
al
ulated by 
al
ulating the Bil and Cil blo
ks; the ne
essaryintegration over the BEs 
an be done using a simple integration pro
edure like Numer-i
al Re
ipe's qromb (Romberg integration) [PFTV92℄. Hankel fun
tions for 
omplexarguments are provided by the free slate
 library (zbesh routine).In order for M̂(k) to have a zero singular- or eigenvalue, detM̂(k) has to be zero.This equation 
an be solved using Newton's method, whi
h iteratively improves theapproximate solutions to detM̂(k) = 0 as
kj+1 = kj −

detM̂(kj)

∂[detM̂(kj)]/∂k
. (C.21)
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ause 
al
ulating determinants, parti
ularly small determinants, is hard to do a

u-rately numeri
ally, one 
an use the identity
ln detM̂ = tr ln M̂ → detM̂ = exp(tr ln M̂), (C.22)whi
h yields

∂detM̂
∂k

= exp(tr ln M̂)tr(∂ ln M̂
∂k

)

= detM̂tr(M̂−1 · ∂M̂/∂k
)

,

(C.23)whi
h, put into (C.21), leads to
kj+1 = kj −

1tr(M̂−1 · ∂M̂/∂k
) . (C.24)The inverse matrix M̂−1 and the matrix produ
t 
an be e�
iently 
al
ulated using BLASroutines (zgetri/zgetrf and zgemm).After kres has been found with su�
ient a

ura
y, the ve
tor (φ, ψ)t ful�lling (C.20)with k = kres has to be 
al
ulated. This 
an be done either by �nding the left singularve
tor to the singular value zero of M̂(kres) (e.g., using the zgesvd routine from LA-PACK) or the eigenve
tor 
orresponding to the eigenvalue zero of M̂(kres) (e.g., usingthe zheevd routine). Eigenve
tor 
al
ulation is typi
ally a bit faster, the singular valuede
omposition, on the other hand, is typi
ally numeri
ally more stable. After the wave-fun
tion on the boundary is known, the full wavefun
tion in the region Ωj is 
al
ulateda

ording to

ψ(r′) =

Nj
∑

l=1

ψl

∫ s1
l

s0
l

ds ∂νG0(r(s), r
′, kres)

−
Nj
∑

l=1

φl

∫ s1
l

s0
l

dsG0(r(s), r
′, kres). (C.25)

Far �eld patterns 
an be 
al
ulated by adding up intensities on a 
ir
le
R(θ) =

(

R0 cos θ
R0 sin θ

) (C.26)far away from the 
avities; typi
ally, one 
hooses R0 ≈ 1000 times the radius of theregion 
ontaining the 
avities. The far �eld is then given by
I(θ) = |ψ(R(θ))|2. (C.27)



C.3. Husimi fun
tions 155C.2.3. More a

urate Q-fa
tor 
al
ulationFor long-lived modes with high Q fa
tors, the a

urate 
al
ulation of
Q = − Re(kres)

2Im(kres) (C.28)using the BEM 
an be di�
ult be
ause the imaginary part of kres is very small; evensmall numeri
al errors 
an thus 
hange Q drasti
ally or even lead to the unphysi
al resultof a negative Q value (positive imaginary part of kres). Zou et al. [ZYX+09℄ developed amethod whi
h 
an improve the a

ura
y ofQ fa
tors 
al
ulated by the BEM signi�
antly.As the imaginary part of the wavenumber k de�nes a lifetime of the 
avity mode(and subsequently the energy inside the 
avity and the energy �ow to the exterior) via
τ = −Im(k)/2c, the energy de
ay 
an be des
ribed as
I(t) = I0 exp(−t/τ) = I0 exp [tRe(k)/(Im(k)Re(k)/2c)] = I0 exp(−Qt/Re(ω)), (C.29)with the frequen
y ω = ck. This implies

Q = −Re(ω) I(t)d I/d t . (C.30)The energy de
ay 
an be 
al
ulated using the energy balan
e of the ele
tromagneti
 �eld[Ja
75℄: d Id t =

∮

A

dA · S, (C.31)where S is the Poynting ve
tor S = E × H and the right-hand side is the energy �owthrough a surfa
e A surrounding the 
avity. Combining equations (C.30) and (C.31)yields
Q = k2

∫

Ωj
dV n2

j |ψ|2
∮

A
ds Im(ψ∗∂νψ)

, (C.32)where S = Im(ψ∗∂νψ), whi
h holds for two-dimensional 
avities, has been used.Even if the error in the imaginary part of kres obtained by the BEM is relatively large,the overall error in kres is small, and the extra
ted wave fun
tion ψ is quite insensitiveto small 
hanges in kres and thus also a

urate. Therefore, the Q fa
tor 
al
ulated usingEq. (C.32) 
an be more a

urate than the one 
al
ulated just using kres.C.3. Husimi fun
tionsIt is often useful to proje
t the 
al
ulated mode wave fun
tions to the Poin
aré surfa
eof se
tion; this 
an be done by means of the Husimi distribution. Fortunately, it 
anbe easily 
al
ulated from the wave fun
tion and its normal derivative on the 
avityboundaries, whi
h are 
al
ulated anyway if one uses the BEM to �nd modes.
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oming and emergent Husimi fun
tions inside the 
avity region Ωj are givenby [HSS03℄:
H

in
/em
j (s, p) =

njRe(kres,j)
2π

∣

∣

∣

∣

−Fjhj(s, p)±
i

kres,jFj

h′j(s, p)

∣

∣

∣

∣

2

, (C.33)with1
hj(s, p) =

∫ smax
0

d s′ψj(s
′)ξ(s, s′, p),

h′j(s, p) =

∫ smax
0

d s′∂νψj(s
′)ξ(s, s′, p),

Fj =

√

nj

√

1− p2,

ξ(s, s′, p) =
1

4
√
σπ

∞
∑

l=−∞

e−injkres,jp(s′+lsmax)e−(s′−s+lsmax)2/2σ2

.

(C.34)
One has the freedom to 
hoose the width of the minimal-un
ertainty wave pa
ket ξ;here, σ2 = smax/njkres,j is 
hosen. The l-sum in Eq. (C.33) whi
h ensures the 
orre
tperiodi
ity of ξ is, of 
ourse, numeri
ally only taken from −N to N . N = 1 is mostlysu�
ient; another (yet arbitrary) 
hoi
e is N = 1 + 20σ/smax.Using the dis
retization of se
tion C.2.1, one �nds

hj(s, p) ≈
Nj
∑

l=1

ψl

∫ s1
l

s0
l

ds′ ξ(s, s′, p),
h′j(s, p) ≈

Nj
∑

l=1

φl

∫ s1
l

s0
l

ds′ ξ(s, s′, p); (C.35)
the Husimi fun
tions (C.33) 
an thus be 
al
ulated dire
tly from the wavefun
tion onthe boundary as found from the BEM.C.4. Boundary element method for negative-index
avitiesIn [WUS+10a℄, the boundary element method has been generalized in order to des
ribed
avities made of negative-index metamaterials (NIMs), i.e. materials where both theele
tri
 permeability ǫ and the magneti
 permittivity µ are negative. The Helmholtzequation (C.1) remains un
hanged, but for µin < 0 inside the 
avity and µout > 01Note that [HSS03℄ has a typo in the ξ equation: there, the �rst exponential is written as

exp(−ikres . . . ) without the refra
tive index nj , whi
h is wrong.
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avities 157outside, the boundary 
onditions read
ψin = ψout (both TE and TM polarization),
1

µin∂νψin = 1

µout∂νψout (TM),
1

ǫin∂νψin = 1

ǫout∂νψout (TE). (C.36)If µ = −1 inside the 
avity and µ = 1 outside, the only 
hange in the boundary 
onditions
ompared to (C.2) is a sign in the 
ondition for ∂νψ; this 
an be implemented easily bysetting φ = −∂νψ (TM) or φ = −∂νψ/n2
j (TE) at ea
h boundary dividing a positive-index from a negative-index region. The B integral kernel also gets a sign 
hange in thesame 
ases.However, this is not the only 
hange ne
essary. In order to ensure a positive Q fa
tor(energy de
ay in the passive 
avity), one has to in
lude frequen
y-dispersion of therefra
tive index. When introdu
ing dispersion, the ele
tromagneti
 energy density (in
gs units) reads

W =
1

8π

(

E
2∂(ǫω)

∂ω
+H

2∂(µω)

∂ω

)

, (C.37)whi
h is only positive (and thus physi
al) if
∂(ǫω)

∂ω
,
∂(µω)

∂ω
> 0. (C.38)The frequen
y dispersion in a NIM has to ful�ll (C.38). A simple possibility is found byexpanding ǫ and µ around a resonan
e frequen
y ωr (typi
ally, ωr is near the frequen
yof the 
avity resonan
e one wants to 
al
ulate), whi
h leads to

ǫ ≈ ǫ(ωr)

(

1 + αǫ
ωr − ω

ωr

)

,

µ ≈ µ(ωr)

(

1 + αµ
ωr − ω

ωr

) (C.39)with dimensionless 
onstants αǫ, αµ whi
h have to be larger than one in order to ful-�ll (C.38). The refra
tive index nj 
hanges a

ording to
nj =

√
ǫµ ≈ nj(ωr)

(

1 +
αǫ + αµ

2

ωr − ω

ωr

)

. (C.40)When implementing the BEM for NIMs, one has to update the refra
tive index in ea
hstep of Newton's method when 
al
ulating resonan
es, depending on kj; when 
al
ulatingwavefun
tions or Husimi fun
tions, one has to use the wavenumber-dependent refra
tiveindex nj(kres) as well. ωr 
an be 
hosen as the frequen
y 
orresponding to the startingvalue of Newton's method.
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