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5
AbstratIn this work, the orrespondene between ray (based on geometri optis) and wave(based on solutions of Maxwell's equations) desriptions in a partiular type of optialmiroavities, deformed mirodisk avities, is studied both in ases where it an besuessfully applied and in ases where it fails. For many appliations of miroavities,suh as laser resonators, optial modes whih have direted far �eld emission and longlife-times are desirable. Unfortunately, it is in general di�ult to ahieve both thesegoals simultaneously.A speial deformed mirodisk shape that supports long-lived modes with diretionalemission is presented in this work. It is a mirodisk with an elliptial ross-setion anda wavelength-sale �noth� at the boundary. The fat that long-lived modes with dire-tional emission exist here an be understood with a ray model: rays whih travel alongthe boundary for a long time (orresponding to so-alled �whispering gallery� modes)eventually are sattered by the noth and re�eted to the opposite avity boundary,whih ats like a lens and ollimates the rays in the far �eld. The preditions of this raymodel agree well with the far �eld of the optial modes. Elliptial mirodisk avities witha noth have been fabriated experimentally by our ollaborators in Prof. Dr. FederioCapasso's group at Harvard, who used them as resonators for quantum asade lasers;the ray and wave simulations of the far �eld are ompared to the measured far �elds,and good agreement is found as well.Ray models an be expeted to fail if the wavelength of avity modes approahes theavity length sale; examples for this failure of ray-wave orrespondene are given in thiswork. One solution for this problem, whih allows one to retain the simpliity of a raymodel, is to extend the ray desription by introduing orretions to it whih are basedon the wave desription; these orretions are the Goos-Hänhen shift (GHS) and theFresnel �ltering e�et. The alulation of suh orretions and their inlusion in the raydesription of deformed mirodisk avities is a main point of this work; the results of thisextended ray dynamis are ompared to wave alulations and applied to experimentallymeasurable quantities suh as far �eld patterns.As the results of the extended ray model sale with the ratio of the wavelength orre-sponding to avity modes, it an not only be investigated in optial miroavities, butin mirowave avities as well. This is onvenient, beause while the eletri �eld insidea miroavity an not be measured aurately with urrent tehniques, this an easilybe done in mirowave avities. Suh measurements of the GHS in mirowave avities,whih have been performed during a visit to Prof. Dr. Hans-Jürgen Stökmann's groupat the University of Marburg, are presented in this work. Beams with di�erent inomingangles are generated by superposition of the plane waves produed by mirowave anten-nas; the resulting beams are then re�eted at the avity boundary and the GHS an bemeasured. The results agree well with numerial alulations.





7
1. IntrodutionOptial miroavities on�ne light in three dimensions and have sizes ranging from below1 µm to several hundreds of µm. Light on�nement an be ahieved by two basimehanisms. The �rst one is total internal re�etion at the avity walls; this is used inthree-dimensional (e.g., mirospheres [CLB+93℄ and -toroids [IGYM01℄) as well as quasi-two-dimensional (e.g., mirorystals [BIL+00℄ or mirodisks [MLS+92℄) strutures. Asmirodisk avities are studied in this thesis, their properties will be reviewed in moredetail in hapter 2. The seond on�nement mehanism is based on multiple Bragg-re�etions whih reate a photoni band gap. This mehanism is used in photonirystal defet avities [PLS+99℄ and vertial-avity surfae-emitting lasers (VCSELs)[IKK88, GBM+96℄.Optial miroavities have a variety of appliations. They easily an be fabriated bysemiondutor tehnologies in many di�erent shapes and sizes. Mirolasers, whih usethem as resonators, have advantages over onventional lasers: beause the avity sizeis relatively small, the spaing between its optial modes is large, and thus single-modelasing an be ahieved easily. Furthermore, the rate of spontaneous emission into thelasing mode to the rate of spontaneous emission into all modes, the so-alled β fator[DJ88, RC94℄, is modi�ed by the presene of a miroavity, so that it an be near one[UGA+07℄. In this ase, only a small exitation su�es to start lasing, whih makessuh devies e�ient. Other appliations of optial miroavities are sensors [AKF+05℄,�lters [SHKC02℄, and single-photon devies [MIM+00℄ whih may be used for quantumomputing appliations or quantum ryptography [CCF+10℄. Optial miroavities alsoo�er potential for basi researh, suh as the study of light-matter interation in avities,the so-alled �avity quantum eletrodynamis� [RSL+04, WGJ+09℄. One suessful typeof optial miroavities are deformed mirodisks, quasi-two-dimensional avities withnon-irular ross-setions whih on�ne light by total internal re�etion.One drawbak is that for most appliations, not only long mode lifetimes (whihoptial miroavities generally an provide), but also direted light output from theavity is desirable. Ahieving this in mirodisks in ombination with long life times isstill a goal whih is atively researhed. In order to optimize both diretional output andmode life times, and, perhaps more importantly, in order to gain physial insight into howthese goals are ahieved in a partiular avity design, ray-dynamial simulations havebeen very suessful. In the regime where the mode wavelengths λ are small omparedto the avity length sale R, one is in the geometri optis limit of wave optis, and anstudy the sattering of light rays and the light output beause of refration, whih anpredit the output diretionality of optial miroavities aurately in many ases (i.e.,[NS97, WH08, WYY+10℄). However, as optial miroavities are fabriated with sales
R omparable to the wavelength [SGS+10℄, it is lear that one is far away from the limit



8 1. Introdutionof geometri optis and ray models are expeted to fail. In fat, deviations from raypreditions have been reported in the past. As one does not want to lose the simpliityand physial insight of ray models ompletely, it suggests itself to improve ray modelsby introduing orretions derived from the wave desription.The dynamis of light rays trapped by total internal re�etion inside a mirodisk isequivalent to the dynamis of a lassial partile moving in a two-dimensional area boundby hard walls; suh a system is alled a �billiard� in nonlinear dynamis. Billiards oftenshow a phenomenon alled haos, whih manifests itself in a sensitive dependene on ini-tial onditions. The ray dynamis in a miroavity thus also often is haoti, and an bestudied using methods from nonlinear dynamis. The mode equation desribing optialmodes in mirodisk avities, on the other hand, is equivalent to the time-independentShrödinger equation desribing the quantum dynamis inside a billiard, whih meansthat the optial modes of a mirodisk avity may be studied using methods from the�eld of quantum haos [Stö00, Haa10℄ (whih studies the quantum dynamis of systemswith haoti lassial dynamis) and on the other hand provide systems in whih pre-ditions from quantum haos may be tested experimentally. This is not unimportant,as model systems for quantum haos have been relatively sare for a long time. Oneimportant question in quantum haos is the one of �quantum-lassial orrespondene�,i.e., the question of how features of the lassial dynamis are re�eted in the quantumproperties of a system. This orresponds diretly to what is alled �ray-wave orrespon-dene� in optial miroavities and is often studied in the so-alled semilassial limit,whih orresponds to the limit of small λ/R in miroavities. With the possibility offabriating avities in many sizes down to the sale of the wavelength, the merits andlimits of semilassial approximations an be diretly investigated. Beause optial mi-roavities, as opposed to billiards, are inherently open systems, they also provide modelsystems for the study of quantum haos in open systems.In this thesis, ray-wave orrespondene in avities is investigated both in ases whereit is suessful and in ases where it fails. It is the basis of a mehanism for ombininglong mode life-times and diretional light output in nothed elliptial miroavities;there, the output diretionality an be understood well using a ray model, and ray,wave, and experimental results all agree well. On the other hand, the limits of raymodels are investigated as well; better agreement with wave results is possible fartherinto the wave limit if one used an extended ray dynamis inluding wave orretions.The appliation of suh an extended ray model to deformed mirodisk avities is themain result of this thesis. While the preditions of this extended ray model an only betested indiretly (for example by looking at far �eld emission patterns) in experimentsusing optial miroavities, they an be tested in mirowave avities. Suh mirowaveexperiments are presented as well.Struture of this thesisThis thesis is strutured as follows. Chapter 2 introdues deformed mirodisk avities.The ray dynamis in suh systems is equivalent to the dynamis of a lassial partile in



9an (open) billiard; the properties of suh billiard systems and important results on themfrom nonlinear dynamis are reviewed in hapter 3. Optial modes in miroavities aresolutions of a mode equation, the so-alled Helmholtz equation, whih is disussed inhapter 4. Chapter 4 also reviews the relation to the �eld of quantum haos and therelation of wave solutions to the ray desription.Chapter 5 introdues a avity boundary shape whih supports modes with high qual-ity fators and unidiretional emission. These features are explained by using a raymodel, whih shows that the diretionality arises from a ombination of sattering anda ollimation proess similar to the one a lens performs. In hapter 6, the onventionalray dynamis is extended, so that it inludes �rst-order wave orretions. These orre-tions are shown to improve the agreement with wave solutions: they an explain waveloalization (setion 6.4), phase-spae shifts of periodi orbit positions (setion 6.5) andthe formation of periodi orbits whih are di�erent for lokwise and ounterlokwisepropagating rays (setion 6.6.1). Measurements of the wave orretions in a mirowaveavity are presented in hapter 7 and shown to agree well with numerial alulations.
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2. Deformed mirodisk avitiesIn mirodisk resonators, light on�nement is ahieved by utilizing total internal re�e-tion (TIR) at a dieletri interfae � light hitting this interfae with an angle largerthan the ritial angle for total internal re�etion will be on�ned inside the dieletrimaterial, whereas light hitting the interfae with a lower angle will be refrated out.Suh resonators are often realized as planar mirodisk resonators (not neessarily witha irular ross-setion) and are disussed in the following. The light is on�ned bothvertially and in the disk plane, as skethed in Fig. 2.1; emission mainly takes plaein the disk plane. Light on�ned by TIR an only leak out of the avity evanesently,whih leads to long life-times of optial modes.Mirodisk resonators an be fabriated as semiondutor nanostrutures [MLS+92,GCN+98, KKPV06℄ (with semiondutor quantum wells or quantum dots as a gainmedium for laser appliations), as avities made of polymers with dyes as a gain medium[KJD+95, FSVY97, LLHZ06℄, or as liquid jets of ethanol whih are ejeted from a non-irular hole [YML+06℄ (whih are not very pratial for appliations but nie as modelsystems as the deformation an be preisely tuned). Semiondutor mirodisks aretypially fabriated by lithographi tehniques, whih allow for preise ontrol of boththe boundary shape and the avity size. Figure 2.2 shows a typial example of a deformedmirodisk in both a top-view (showing the deformed boundary shape) and a side-view(showing the pedestal on whih the avity stands). This avity is desribed in [SFL+09℄.The radius is ≈ 2µm, and the vertial extension is about 0.2 µm � the avity an thus beapproximated as a two-dimensional objet (the validity of this assumption is disussed insetion 4.1). Refrative indies for semiondutor materials are ≈ 3 (i.e. 3.3 for GaAs);polymers have refrative indies around 1.5, and the value for ethanol used in liquid jetsis around 1.3.If the boundary shape of a dieletri mirodisk is given, the refrative index of thematerial inside it de�nes the optial properties. While it is assumed to be pieewiseonstant, it may depend on the mode wavelength; light ampli�ation (gain) an be de-sribed by introduing a omplex refrative index. Its imaginary part then desribes gain(or losses, if it is positive). Reently, modes for avities with negative refration [Ves68℄have been alulated as well [WUS+10a℄. Throughout this thesis, positive refrationwithout gain or loss (i.e. a real, positive refrative index) will usually be assumed.The frequenies ω of optial modes are omplex numbers (see setion 4.1). The wave-length λ is then given by λ = 2πc/Reω (this is the vauum wavelength; the wavelengthin the avity material is given by λ′ = λ/n if n is the refrative index). Instead, thewave vetor k = ω/c (also a omplex number) an be used. The imaginary part of ωis related to the life-time τ of a mode by τ = −1/Imω/2. Both the wavelength λ andthe wave number k are often saled to a typial avity length sale R (i.e. the radius
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Figure 2.1.: Light on�nement in a mirodisk resonator with refrative index n2. If thelight is not on�ned by TIR, part of it an be refrated out to the regionwith refrative index n1 < n2.

Figure 2.2.: Example of a semiondutor deformed mirodisk (made of GaAs). (a) Topview. (b) Side view. The sale bar is 2 µm in both ases (Piture ourtesyof H. Cao).
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Figure 2.3.: Left panel: example of a whispering-gallery mode in a mirodisk withirular ross-setion. Right panel: orresponding light ray.of a irular avity). This use of λ/R or the so-alled �size parameter� kR allows foromparison between the properties of avities with di�erent sizes. Here, mostly kR willbe used to haraterize modes, but in hapter 7, the frequeny ν = ω/2π will be usedas well.One important parameter for a avity mode is the so-alled quality fator (or Q fator)
Q. Q is de�ned as the ratio between the light intensity inside the avity and the energy�ow out of the avity, multiplied by the mode frequeny. One �nds

Q = Reωτ = − Reω
2 Imω

= − Re kR
2 Im kR

. (2.1)The life-time τ of a mode is inversely proportional to the mode line-width∆ω = −2Imω;one an thus also write Q = ω/∆ω. Another parameter is the free spetral range, thespaing between mode frequenies; usually, this spaing is not onstant, but depends onthe frequeny range one onsiders. The free spetral range is large for small avities,whih is desirable beause it makes single-mode lasing easy to ahieve.In one wants to use a mirodisk as a resonator for a laser, one needs a avity whihsupports modes with high Q fators. On the other hand, most laser appliations requiredireted light output; thus, an optial mirodisk is most useful for appliations if issupports high-Q modes whih have diretional emission. Unfortunately, in many asesthere is a trade-o� between the two properties: if one enhanes the output diretionalityof a disk by variation of some parameter, the Q-fator degrades signi�antly. This trade-o� between Q fator and output diretionality is quite general and a�ets other typesof miroavities as well; it is known as �Q-spoiling� [NSC94℄.Mirodisk resonators with irular ross-setion support so-alled whispering-gallerymodes (WGMs; an example is shown in Fig. 2.3). They orrespond to light rays whihtravel along the avity boundary; this phenomenon is named after the �whisperinggallery� in St. Paul's athedral in London, where aousti waves travel around a gallery.The �rst mathematial desription (for waves in elasti solids and water waves) is due toLord Rayleigh [Ray85℄. WGMs have large Q-fators, but usually emit light uniformly in



14 2. Deformed mirodisk avitiesall diretions. They also exist in deformed mirodisks with non-irular ross-setions;examples in suh avities are given in hapters 5 and 6.Several ways of ahieving both high-Q modes and diretional output have been pro-posed and are reviewed in [BBSN06b℄, [XZL+10℄, and [WUS+10b℄. They range frommode-oupling between high-Q, low diretionality and low-Q, high diretionality mode[WH06℄ to the plaement of obstales within disks [DMSW08, DMSW09℄ and the tailor-ing of the avity boundary shape. The most suessful shapes seem to be quadrupoles[NS97, GCN+98℄ and spirals [CTS+03, HK09℄; limaçons [WH08, YWD+09, SHW+09,SFL+09, YKK09℄ are also beoming popular. Many of the proposed designs su�er fromthe fat that only some of the avity modes emit light diretionally, whih an be aproblem in appliations beause preisely the right modes have to be exited. The li-maçon avity does not have this problem: there are many modes have the same far�eld and thus output diretionality. Another boundary shape with this feature, whihalso illustrates a new mehanism for ahieving output diretionality, is introdued inhapter 5.
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3. Ray dynamis in miroavities:billiardsIn this hapter, some basi results for the nonlinear dynamis of so-alled billiard sys-tems are reviewed. Mathematial results are only skethed and not proved; for a moredetailed overlook see, e.g., [Gas98, TG06, Haa10℄ and the referenes of this hapter. Thenumerial alulation of the billiard dynamis is desribed in appendix A.3.1. De�nition and oordinatesIn nonlinear dynamis, systems with hard boundaries whih re�et partiles speu-larly are alled billiards, beause they are obviously similar to a billiard table. Two-dimensional billiards with hard walls an, in polar oordinates r, φ, be desribed by theHamiltonian

H =
1

2m

(

p2r +
p2φ
r2

)

+ V (r, φ), (3.1)with the potential
V (r, φ) =

{

∞, r, φ on boundary
0, elsewhere . (3.2)The motion between re�etions at the boundary is fore-free (the potential (3.2) only hasa non-vanishing derivative at the boundary), the partile moves on straight lines betweenbounes; two parameters are thus su�ient to desribe the dynamis ompletely: aninitial value on the boundary and an initial outgoing angle (see Fig. 3.1) � with these, thestraight line onneting this initial position to the next re�etion point on the boundaryan be found. While the phase spae of a billiard is in priniple four-dimensional, andthe motion takes plae on three-dimensional subspaes with onserved total energy E,the dynamis, one an desribe the dynamis in the so-alled Poinaré surfae of setion(Poinaré SOS). It is spanned by the Birkho� oordinates [Bir27℄. They are given by thear length s along the billiard boundary and the sine of the angle of inidene p. Theangle of inidene χ is given as the angle between the partile momentum P and the loalnormal vetor ν at the boune point; it ful�lls P sinχ = P · τ with the loal tangentvetor τ . P sinχ is thus the tangential momentum of the partile and p = sinχ thenormalized tangential momentum. One an distinguish lokwise and ounter-lokwisemotion by the sign of χ (and thus p); here, the onvention is adopted that positive χvalues orrespond to ounter-lokwise motion. s and p are onjugate variables [Ber81℄.In the following, s will usually be normalized to the irumferene smax of the billiard.
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Figure 3.1.: De�nition and hoie of oordinates in a billiard.Billiards with other wall potentials are also investigated in the literature (billiardswith non-hard boundaries, so-alled �soft-wall� billiards, and billiards with openings);an optial miroavity an thus be seen as an open billiard. However, as the billiardswithout openness desribe the light intensity on�ned to the avity well, only hard-wallbilliards will be onsidered in the following.3.2. Dynamis in billiard systemsIn the Birkho� oordinates, the motion in the billiard an be desribed by a map B whihmaps one boune point (sj, pj) to the next one (sj+1, pj+1). In general, suh maps annot be written down analytially; an example of a system where this is indeed possibleis given in setion 3.3.1. The Jaobian ĴB de�nes the linearized map (or tangent map;sometimes also alled monodromy matrix):
ĴB =

(

∂ sj+1

∂ sj

∂ sj+1

∂ pj
∂ pj+1

∂ sj

∂ pj+1

∂ pj

)

. (3.3)In the Birkho� oordinates, the map B is area-preserving if the system is Hamiltonian,whih implies det ĴB = 1. An example of a billiard map whih is not area-preserving isgiven in hapter 6.Di�erent types of motion are distinguished by their stability with respet to smallhanges in the initial onditions and by the behaviour of the dynamis in phase spae. Ifthe di�erene between trajetories orresponding to slightly di�erent initial onditionsgrows exponentially, and a trajetory �lls the whole (apart from a set of measure zero)
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(ray 1)

start
(ray 1 and 2)

end

end
(ray 2)

Figure 3.2.: Two trajetories performing haoti motion in a billiard. Their initial ondi-tions (open dots) di�er by 0.1 %; after 10 bounes (end positions marked by�lled dots), they have beome unorrelated and their dynamis is ompletelydi�erent.phase spae as time goes to in�nity, the motion is alled haoti. In a haoti billiard, atrajetory �lls a (two-dimensional) area in the Poinaré SOS if the dynamis if followedin�nitely. If the growth of the di�erene between trajetories is slower than exponential,and trajetories stay restrited to ertain phase-spae regions, the motion is alled regu-lar. In the Poinaré SOS of a billiard, points of the trajetory lie on a (one-dimensional)line or losed urve; beause suh lines or urves are mapped onto themselves by the bil-liard map B̂, they are alled �invariant lines� (or invariant urves). Beause the PoinaréSOS with s = 0 and s = smax identi�ed has the topology of a ylinder, and and invariantline winds around that ylinder as tori, invariant lines are also alled invariant tori.Figure 3.2 shows the sensitivity of haoti motion: the initial onditions di�er by0.1 % (both in s and in p), and the trajetories are unorrelated after the boundary hasbeen hit only 10 times. Phase spae examples of regular and haoti motion are shownin Fig. 3.3. Systems whih show regular motion for all initial onditions are alled�integrable�; billiard examples are studied in setion 3.3.1. Systems whih show haotimotion for all but a few initial onditions (whih �ll a set of measure zero in phasespae) are alled �haoti�. Typially, both regular and haoti motion is possible in asystem depending on the initial onditions; suh systems are alled �mixed�. Examplesare disussed in setion 3.3.2.Fixed points (s∗, p∗) of the map B ful�ll (s∗, p∗) = B(s∗, p∗), they are not hanged bythe mapping. They are important for the dynamis beause periodi orbits, whih losethemselves after m bounes, are �xed points of Bm. The motion near suh a �xed point
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Figure 3.4.: The three di�erent types of �xed points (blak dots). (a) Stable (ellipti)�xed point; points nearby the �xed point move around it on ellipses. (b)Unstable (hyperboli) �xed point; points nearby the �xed point move onhyperbolas. () Marginally stable (paraboli) �xed point. Points nearby itmove on straight lines.is desribed by the eigenvalues of M̂ ≡ Ĵm
B . They are given by

λ± =
tr M̂
2

± 1

2

√

(tr M̂)2 − 4. (3.4)The following three ases an be distinguished and are illustrated in Fig. 3.4.1. λ± omplex with λ± = e±iφ (orresponding to tr M̂ < 2): points nearby the �xedpoint osillate around it; the �xed point is alled stable or ellipti, beause pointsnear the �xed point move around it on ellipses.2. λ± real with λ+ = 1/λ− (orresponding to tr M̂ > 2): points whih lie in thediretion of the eigenvetor (�unstable diretion�) orresponding to the eigenvaluelarger than one move away from the �xed point at an exponential rate, whilepoints in the diretion of the other eigenvetor move towards the �xed point atan exponential rate. The �xed point is unstable or hyperboli, as points nearby itmove on hyperbolas.3. λ+ = λ− = λ (implies λ = ±1, orresponding to the ase tr M̂ = 2): this degener-ate ase desribes a marginally stable (also alled marginally unstable) �xed point.Points nearby the �xed point move towards or away from it at a linear rate. Suh�xed points are also alled paraboli.3.3. Examples of billiard systems3.3.1. Integrable systemsIn integrable systems with two degrees of freedom, another onstant of motion apartfrom the energy E exists, so that the motion in the Poinaré SOS takes plae on one-



20 3. Ray dynamis in miroavities: billiardsdimensional subspaes (lines). Two examples are reviewed: the irle and the ellipse,whih is the only smooth and onvex deformation of the irle whih remains integrable[Ami97℄.CirleIn polar oordinates (r, φ), the irular billiard is given by the boundary urve r(φ) = R,where R is the radius of the irle. Beause of the rotational symmetry in the (x, y)plane, the onjugated momentum to φ, pφ = mr2φ̇, is onserved in addition to theenergy E. The irular billiard is thus an integrable billiard. The angle of inidene χ,whih ful�lls sinχ = pφ/(RP ), is onserved in this ase, as pφ, R and P are all onservedquantities (the modulus of the momentum, P , is onserved beause it is related to theonserved energy by P =
√
2mE). In a irular billiard, the angle of inidene thusdoes not hange in the ourse of the motion; in the Poinaré SOS, this means that themotion takes plae on lines p = sinχ = onst.Two types of motion an be distinguished: periodi orbits, where the orbits lose aftera number of bounes, and orbits whih never lose. In order for an orbit to be periodi,the angle of inidene has to be a rational multiple of 2π. Figure 3.5 shows examples ofboth periodi and non-periodi motion in the irular billiard. The two types of motionan be desribed by the winding number w, whih is de�ned as
w =

1

smax lim
j→∞

(

sj − s1
j

)

, (3.5)where sj is the ar length at the j-th boune, not taken modulo smax: it grows as theorbit winds around the boundary many times. If w is irrational, the orbit never loses;if w = ℓ/k is a rational number, the orbit loses after k bounes, having wound aroundthe billiard enter ℓ times.Beause of the simple geometry, it is possible to write down the map for the irularbilliard expliitly. As the angle of inidene is onserved, one diretly �nds pj+1 = pj.From Fig. 3.6, one an �nd sj+1 = sj+Rα, with α = π−2χ. Appliation of trigonometriidentities yields
pj+1 = pj ,

sj+1 = sj + 2R arccos pj.
(3.6)Using Eq. (3.6), the linearized map an be easily alulated:

ĴB =

(

1 2R√
1−p2j

0 1

)

. (3.7)For all �xed points, one �nds tr ĴB = 2; in the irle, all periodi orbits are marginallystable.
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Figure 3.6.: De�nition of the irle billiard map.
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Figure 3.7.: Elliptial billiard shape.EllipseThe ellipse is usually de�ned in Cartesian oordinates as
x2

X2
+
y2

Y 2
= 1 (3.8)(see Fig. 3.7). Introduing polar oordinates, x = r(φ) cosφ, y = r(φ) sinφ, the bound-ary urve an also be written as

r(φ) =
1

√

cos2 φ
X2 + sin2 φ

Y 2

. (3.9)Often, ellipses with normalized area A = πXY = π are onsidered, whih implies
Y = 1/X . In this ase, the ellipse an be haraterized by two parameters, i.e. thehalf-axis length X and the half-axes ratio ǫ = X/Y (this is used in hapter 5) or X andthe eentriity e = √

X2 − Y 2/X (this is used in hapter 6).The ellipse has no obvious symmetries whih lead to additional onstants of motionas in the ase of the irle. However, there is suh a quantity, whih is given by beprodut of the angular momenta with respet to the two ellipse foi. The existeneof this onstant of motion will be derived in the following. Figure 3.8 illustrates thegeometrial relations that will be used.Let F1 and F2 be the two ellipse foi, with positions x ± c, where c = √
X2 − Y 2 isthe distane from the foi to the origin. The normalized vetors pointing from them toa point O = (x, y) on the ellipse are denoted r1 and r2. The loal normal vetor ν atthe point O is given by

ν =
1

√

x2/X4 + y2/Y 4

(

x/X2

y/Y 2

)

, (3.10)
r1 and r2 are given by

r1 =
1

√

(x− c)2 + y2

(

x− c
y

)

, r2 =
1

√

(x+ c)2 + y2

(

x+ c
y

)

. (3.11)
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Figure 3.8.: Geometrial relations with respet to the foi F1 and F2 of the ellipse.The angles α1 and α2 ful�ll cosαi = ri · ν. By elimination of y with the ellipse de�ni-tion (3.8), one an �nd [Nö97℄
r1 · ν
r2 · ν

= 1, (3.12)whih implies α1 = α2.The angular momenta L1,2 with respet to the foi F1,2 an now be alulated. Forthe inoming ray, one �nds
L1,in = |P× r1| = Pr1 sinα,

L2,in = |P× r2| = Pr2 sin(2χ− α).
(3.13)For the outgoing ray, one �nds L1,out = Pr1 sin(2χ − α) and L2,out = Pr2 sinα. Theprodut L12 = L1L2 is thus unhanged by the ollision with the boundary, as it is thesame for the inoming and the outgoing ray. As the angular momenta L1 and L2 arealso onserved between ollision with the boundary, L12 is a onstant of motion.The types of motion in the elliptial billiard an be lassi�ed by the sign of L12. Orbitswith L12 > 0 are of whispering-gallery type, while orbits with L12 < 0 travel betweenthe top and bottom part of the boundary; suh orbits are alled �bouning-ball� orbits.In the Poinaré SOS, both types of motion are separated by a separatrix with L12 = 0;it orresponds to an unstable periodi orbit going from the left to the right. Apart fromone stable (bouning-ball from the top to the bottom) and one unstable (orrespondingto the separatrix) orbit, all orbits in the ellipse are marginally stable.Figure 3.9 shows the Poinaré SOS of an elliptial billiard; a whispering-gallery orbitand a bouning-ball orbit are shown in real spae as well.It is interesting to note that while the quantum version of the elliptial billiard is, ofourse, still integrable, the open elliptial quantum billiard is not. The impliations forray-wave orrespondene in elliptial dieletri avities are disussed in setion 6.4.
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0.645. On the right, both a whispering-gallery- and a bouning-ball orbitare depited in real spae.3.3.2. Systems with a mixed phase spaeAs an example for a system with a mixed phase spae, the family of limaçon billiards,de�ned by the boundary urve r(φ) = R(1 + ǫ cosφ), are onsidered. They an be seenas deformations of the irle (ǫ = 0); as ǫ cosφ is the �rst (�dipole�) term in a multipoleexpansion of any given boundary, suh shapes arise quite naturally and have indeedbeen studied intensively both theoretially and experimentally. It should be noted thatthe limaçon boundary shape is not the same as the shape of the family of billiardsintrodued by Robnik [Rob83℄. The Robnik billiards an be desribed by the boundaryurve r(φ) = R

√
1 + δ cosφ with a deformation parameter δ; their boundary is thusgiven by the square root of the limaçon boundary.In two limiting ases the dynamis in the limaçon is the same for all initial onditions.For ǫ = 0, the integrable irle is reovered. For ǫ = 1, the shape of the billiard isknows as the ardioid, and the dynamis is proved to be fully haoti [Woj86, Szá92,Mar93, DB01℄. In between these two ases, the phase spae beomes mixed, with bothhaoti and regular regions. This transition from regular to haoti behavior with mixeddynamis in between upon hange of one or more parameters is ommon in Hamiltoniansystems. It is illustrated in Fig. 3.10, where Poinaré SOS's for di�erent ǫ values areshown. In Fig. 3.10 (a), the deformation parameter is ǫ = 0.1. The system still is almostintegrable, and most invariant lines are still present, even if slightly deformed from thestraight lines of the irle. Some have, however, vanished; instead, stable and unstable�xed points are present as well as islands surrounding the stable �xed points.This replaement of invariant lines with stable islands and unstable periodi orbitsgoes on in in Fig. 3.10 (b) at ǫ = 0.2. More invariant lines have disappeared andare replaed by stable and unstable �xed points. In addition, in the region where the
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Figure 3.10.: Phase spae of the limaçon billiard for (a) ǫ = 0.1, (b) ǫ = 0.2, () ǫ = 0.3,and (d) ǫ = 0.43.



26 3. Ray dynamis in miroavities: billiardsseparatrix orresponding to the unstable period-2 orbit has been at ǫ = 0.1, a region ofhaoti motion is present: trajetories started there �ll an area in phase spae, insteadof lying on a line.At ǫ = 0.3, as shown in Fig. 3.10 (), the haoti region has grown and now �lls alarger part of the SOS. Some stable islands remain, but they have a more ompliatedstruture than before, with small islands orresponding to periodi orbits with windingnumbers ℓ/k with large k surrounding larger ones. At high p, invariant lines are stillpresent as well.Most stable islands have vanished at ǫ = 0.43 in Fig. 3.10 (d). The largest oneorresponds to the period-2 orbit; but there are smaller ones present as well. Thehaoti regions of phase spae haven grown even more, but still some invariant linesremain lose to |p| = 1. For even higher ǫ values, this senario ontinues: the haotiparts grow even further. At ǫ = 0.5, no whispering-gallery-like orbits (invariant linesnear |p| = 1) exist anymore. However, the dynamis still is not fully haoti: it is knownthat stable periodi orbits exist at even higher ǫ values [DB01℄. Only at ǫ = 1, thelimaçon is proved to be fully haoti.Three theorems whih are important in nonlinear dynamis an be illustrated in thissystem and are disussed in the following.Poinaré-Birkho� theoremThe �rst theorem, the Poinaré-Birkho� theorem [Poi12, Bir13, Bir26℄, desribes whathappens to invariant lines upon a small perturbation. An example is shown in Fig. 3.11:on the left, an invariant line orresponding to the marginally stable period-3 orbits in theirle billiard is shown. On the right, the irle has been perturbed, so that is boundaryhas now the shape of the limaçon with ǫ = 0.2. The invariant line no longer exists;instead, a stable �xed point (with an island around it) and an unstable �xed point, bothorresponding to the only period-3 orbits now possible in the system, have formed. ThePoinaré-Birkho� theorem states that this result is quite general: upon perturbation,invariant lines break up into pairs of stable and unstable periodi orbits.KAM theoremThe seond important theorem, the Kolmogorov-Arnol'd-Moser (KAM) theorem [Kol54,Arn63, Mos66℄, is onerned with the question when, i.e. for whih perturbation strength,this breakup of an invariant torus happens. It is lear from Fig. 3.10 that not allinvariant lines are broken right away; some are broken before the others. If an integrableHamiltonian H0 is perturbed so that the Hamiltonian of the perturbed system reads
H = H0 + ǫH1 with a perturbation strength ǫ, orbits with winding numbers w whihful�ll

∣

∣

∣
w − r

s

∣

∣

∣
≥ K(ǫ)

s2.5
(3.14)with integer numbers r and s and a onstant K(ǫ) whih only depends on the pertur-bation strength remain unbroken. Equation (3.14) is ful�lled for orbits with su�iently
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s/smaxFigure 3.11.: Left panel: invariant line at p = 0.5 in the irle. It orresponds to theperiod-3 orbits. Right panel: stable (red dots) and unstable (green dots)period-3 orbits in the ǫ = 0.2 limaçon. The motion near the �xed points isshown as well.irrational winding numbers, i.e. orbits whose winding numbers an not be approxi-mated well by a rational number r/s. Periodi orbits with small periodiity are thusmost a�eted by a perturbation, whih may be expeted as the deviations beause ofthe perturbation aumulate as the orbit visits similar positions many times. Orbitswith irrational winding number never visit exatly the same spot again, and small per-turbations might average out. The �most irrational� number, whose ontinued frationexpansion onverges slowest, is the golden mean
γ =

1 +
√
5

2
=

1

1 + 1
1+...

≈ 1.6180 . . . (3.15)
γ does not appear as a winding number in billiards (as winding numbers there arealways smaller than one), but 1/γ, whih also has a slowly onverging ontinued frationexpansion, an. For su�iently high perturbation strengths ǫ, no invariant tori remainintat.Lazutkin's theoremThe third theorem, Lazutkin's theorem [Laz73℄, answers the question why some invariantlines persist up to high perturbations, even if they have winding numbers whih are�more rational� than, i.e., 1/γ. The reason is that in a billiard, the perturbation whihis introdued by deforming the boundary is not uniform: it in�uenes orbits near theboundary less than orbits whih venture deep inside the billiard. This is intuitively lear,beause orbits near the boundary travel only short lengths between bounes, so that thedeviations from the irular boundary they experiene are small. Lazutkin's theorem
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ε=1ε=0.8

ε=0.5 ε=0.6

Figure 3.12.: Limaçon billiards for ǫ = 0.5 (still onvex), ǫ = 0.6, ǫ = 0.8 and ǫ = 1 (nolonger onvex). At ǫ = 1, the boundary is no longer smooth as well.states that a region of invariant lines �lls a small but non-zero phase spae area near
|p| = 1 as long as the billiard stays onvex. Applied to the limaçon billiard this meansthat invariant tori persist up to ǫ ≤ 0.5, as the limaçon eases to be onvex at ǫ > 0.5(see Fig. 3.12). Latzutkin's theorem is important for appliations beause it ensures thatwhispering-gallery modes exist in limaçon-shaped avities up to deformations where theray dynamis is predominantly haoti, whih in turn leads to long-lived WG modesesaping the avity by means of haoti transport, leading to long-lived modes withdiretional emission [YWD+09℄.In onlusion, one �nds the following generi senario when perturbing an integrablesystem: �rst, invariant lines are destroyed and, by the Poinaré-Birkho� theorem, re-plaed by stable �xed points (with stable islands around them) and unstable �xed points(with separatries near them). Perturbing the system even further, haoti regions formnear the separatries, while stable �xed points ease to be stable. The invariant linesare broken up aording to their winding numbers, and the haoti regions grow. ByLazutkin's theorem, however, a region of invariant lines �lls a small but non-zero phasespae area near |p| = 1 as long as the billiard stays onvex.3.4. Dieletri avities as open billiardsIf light rays in a avity are studied, one also has to onsider that the avity is open forsome light rays: light an be refrated out of the open billiard aording to Snell's law

n1 sinχ = n2 sin η, (3.16)
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n=1Figure 3.13.: Refration and re�etion aording to Snell's law.if the inoming angle is below the ritial angle χr for total internal re�etion (TIR)(see Fig. 3.13)
| sinχr| = n2

n1
=

1

n
, (3.17)if the refrative index in the avity is n and the refrative index outside is one. In aPoinaré SOS, the ondition (3.17) means that rays with momenta |p| ≤ 1/n leak out ofthe avity; the region |p| ≤ 1/n is thus often alled the �leaky region� and the transportof rays from above/below the ritial lines |p| = 1/n to the leaky region determines thelife-time of light rays in the avity as well as its emission properties (how emission isalulated ray-dynamially is disussed in setions 5.3 and A.2).In the irle, it is lear from the Poinaré SOS that the life-time of light inside theavity is very high: beause the invariant lines are straight lines, rays started above theritial line for TIR always stay above it, and the only way light an get out of suh aavity is beause of surfae roughness (i.e., the irle is not perfetly irular) or beauseof evanesent leakage, whih is a wave e�et (the quantum equivalent is tunneling).Figure 3.14 (a) shows the Poinaré SOS for a irular billiard with the leaky regionindiated for n = 3.3. One ould guess that fully haoti billiards would also make badavities, as almost any ray started outside the leaky region would be transported to itafter some time, beause haoti trajetories �ll the whole phase spae � and the lightwould only be in the avity for a short time. However, this is not true if one onsiderswaves: in this ase, interferene an lead to long life-times of the rays. These e�ets arebrie�y disussed in setion 4.2.3. In systems with a mixed phase spae, it an take along time for haoti trajetories to reah the leaky region, an example (for the ǫ = 0.3limaçon) is shown in Fig. 3.14 (b). This slow di�usion is due to dynamial barriers inphase spae.
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Figure 3.14.: Poinaré SOS with the leaky region (blue region) for (a) the irle, (b)the ǫ = 0.3 limaçon. The insets show the trajetories indiated by the reddots in real spae. The refrative index is n = 3.3.



31
4. Wave equation for mirodiskavitiesIn this hapter, the wave equation for mirodisks is derived and methods for its numerialsolution are reviewed. In setion 4.2 the subjet of �ray-wave orrespondene�, therelation between the wave and ray-dynamial desription of suh systems, is disussed.4.1. Helmholtz equationIn the quasi-two-dimensional (quasi-2d) geometry of a mirodisk avity with pieewiseonstant index of refration as shown in Fig. 4.1, Maxwell's equations an be reduedto salar wave equations for the �elds Ez(x, y) and Hz(x, y), whih determine the other�eld omponents; the derivation is disussed in appendix B.Of ourse, mirodisks as introdued in hapter 2 are not really two-dimensional; treat-ing them as suh is an approximation. The validity of this approximation has been testedarefully in [BDM+09℄ for irular mirowave resonators. The authors of [BDM+09℄found systemati deviations of their experimental data from two-dimensional alula-tions. If one is only interested in modes at �xed frequeny or over a small frequenyrange, these deviations an be aounted for by introduing a new e�etive refrative in-dex [GNP+08, WYD+09, YWD+09℄. In semiondutors, refrative indies are typiallynot known more preisely than within 1 %; the systemati deviations are well below thatvalue. The two-dimensional approximation an thus be onsidered valid for mirodiskresonators. Similar results were also obtained in [Mi09℄, where two-dimensional andthree-dimensional solutions of Maxwell's equations for a disk geometry were ompared.Typially, only solutions with either Hz = 0 for all x, y (so-alled transverse magneti(TM) modes) or Ez = 0 (transverse eletri (TE) modes) are onsidered in miroavities.Figure 4.2 shows how TM and TE polarizations are related to the s and p polarizationsusually onsidered when alulating re�etion oe�ients. The Helmholtz equation isthen a salar equation for ψ = Ez (TM ase) or ψ = Hz (TE ase):

(

∆+ n(x, y)2k2
)

ψ(x, y) = 0, (4.1)with the refrative index n and the wave number k. ∆ is the Laplaian in the (x, y)plane. Equation (4.1) is equivalent to the time-independent Shrödinger equation. How-ever, while Dirihlet boundary onditions (ψ = 0 on the boundary) are usually used inquantum mehanis, the boundary onditions in the optial ase with positive refration
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Figure 4.1.: Quasi-2d geometry. The disk plane is the (x, y)-plane and the z omponentsof the �elds determine the optial modes.
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4.1. Helmholtz equation 33read
ψ1 = ψ2, ∂νψ1 = ∂νψ2 (TM),
ψ1 = ψ2,

∂νψ1

n2
1

=
∂νψ2

n2
2

(TE), (4.2)where ν is a normal vetor on the avity boundary and ∂ν = ν ·∇. Often, the refrativeindex n1 outside the avity is one (vauum). At in�nity, outgoing-wave onditions areassumed, whih is reasonable for the desription of lasers (light is reated in the avityand an only leak out, but not ome bak):
ψ(r → ∞) ∼ h(θ, k)

eikr√
r
. (4.3)Outgoing-wave onditions expliitly break the time-reversal invariane whih the Maxwellequations still has.Optial miroavities desribed by Eq. (4.1) an be seen as open quantum billiards,just as the ray desription of suh a avity is equivalent to the dynamis of a lassialpartile in an open billiard. They are desribed by the same wave equation as quantumbilliards, but di�erent boundary onditions apply, whih leads to the possibility of lightleaking out of the avity. They are thus a model system not just for quantum haos,but for the study of quantum haos in open systems. Beause of this openness, theavity modes ψ are quasi-bound states with a omplex wave vetor k � with the realpart related to the frequeny of the mode via ω = cRe k and the imaginary part relatedto the life-time of the mode as disussed in hapter 2.When studying miroavities, the �rst step is to �nd the optial modes of the avity� the solutions of the Helmholtz equation with the appropriate boundary onditions.Often, they an be diretly related to the lasing modes.4.1.1. Methods for solving the Helmholtz equationAnalytial solution of the Helmholtz equation (4.1) with the boundary onditions (4.2)is only possible for a irular ross-setion, where the Helmholtz equation is separablein polar oordinates. Even for an ellipse, where the Helmholtz equation separates forDirihlet boundary onditions, an analytial solution is not possible [Nö97℄ for dieletriboundary onditions. Therefore, numerial methods have to be employed; the ones whihare most ommonly used are brie�y disussed in the following.Wave-mathingThe main idea for wave-mathing solutions [NS95℄ is to expand the wave funtion as aseries of Bessel funtions inside the avity and Hankel funtions outside. Appliationof the ontinuity onditions leads to relation between the oe�ients in this series,and these �mathing equations� an then be numerially solved. An advantage of themethod is that it is numerially quite heap; a signi�ant drawbak, however, is that



34 4. Wave equation for mirodisk avitiesthe assumption that suh as expansion is always possible (also known as the �Rayleighhypothesis� [Ray07℄) is not valid for too large deformations from the irle [vF80℄. Wave-mathing is thus only useful for miroavities with small deformations. Furthermore, apieewise onstant index of refration (whih may be omplex) is assumed.Finite-di�erene time domain methodsFinite-di�erene time domain (FDTD) methods [Yee66, TH00℄ solve Maxwell's equa-tions by �brute fore� on a spatial and temporal grid. While this method is numeriallyexpensive espeially for small wavelengths (�ne disretization needed) and high-Q (longtime-integration needed as one waits for the mode to deay) avities, it has many advan-tages: spatial dependene of the refrative index an be inluded as well as nonlinearity,i.e. a dependene of the refrative index on the light intensity. FDTD odes are availableommerially and an be easily adapted to various geometries.Boundary element methodA boundary element method (BEM) [Wie03℄ has been used for the mode alulationsin this thesis and is disussed in detail in appendix C. The basi idea it to map theHelmholtz equation to an integral equation de�ned on the avity boundary and then solvethis integral equation numerially. This method is numerially relatively inexpensive.The refrative index, however, has to be pieewise onstant. As in the wave-mathingand FDTD ases, it may be omplex.4.1.2. Simulation of lasingAll methods desribed so far onsider interation with the avity material only viathe refrative index. A avity used for lasing needs a gain medium whih ampli�eslight. This an be inluded by using a omplex refrative index whose imaginary partorresponds to gain (or loss) in the medium. This, of ourse, is a very simple materialmodel whih ompletely ignores the mirosopi nature of the gain medium; it alsoneglets nonlinear interation between the modes, whih modi�es the lasing frequenies.The method desribed in the following tries to improve on this by introduing a verysimple mirosopi model and oupling it to the eletromagneti �eld in a avity.In the Maxwell-Bloh equations approah (desribed for miroavities in [HSI05℄),a quantum two-level system is oupled to the lassial eletromagneti �eld, and theresulting equations are solved. Using this approah, mode interation an be studied andthe lasing frequenies an be predited more aurately. For high pumping power, thenumerial solution of the Maxwell-Bloh equations is numerially expensive; sometimes,it is enough to just onsider the slowly varying parts on the �eld amplitudes. In thisase, the Maxwell-Bloh equations redue to the Shrödinger-Bloh equations, whih arealso nonlinear (the name omes from the fat that the equation for the �elds is formallyequivalent to a Shödinger equation with an potential depending on the wave funtion).



4.2. Ray-wave orrespondene 35Self-onsistent laser theoryAn interesting way of solving the Maxwell-Bloh equations in the steady state, the so-alled self-onsistent ab initio laser theory (SALT) [TSC06, TSG07, TSG+09℄ uses thefat that in the steady state, the Maxwell-Bloh equations an be integrated using aGreen's funtion approah. In this formalism, multimode lasing and mode ompetitionare desribed well; the method an be applied to a variety of geometries and randomlasers as well.A problem with methods based on the Maxwell-Bloh equations is that the materialmodel is too simple. Investigations in semiondutor physis have shown (see, e.g.,[GWLJ07℄ for an example using quantum dots as a gain medium) that the dynamis insemiondutors is far more omplex than the one in a two-level system and that thisfat leads to modi�ations in the emission properties of semiondutor lasers.4.2. Ray-wave orrespondeneAs disussed in the previous setion, optial miroavities an be seen as open quan-tum billiards (with boundary onditions di�erent from the ones usually enountered inquantum systems), and beause of the analogy between the Helmholtz equation and thetime-independent Shrödinger equation, methods from the �eld of quantum haos an beapplied to them. One important question in quantum haos is the relation between thequantum and the lassial properties of a system; this is known as �quantum-lassialorrespondene� in the quantum haos �eld, where the orresponding relation betweenthe ray and the wave desription of a avity is alled �ray-wave orrespondene�. Whileit is lear that suh a orrespondene has to exist � after all, the ray desription is foundfrom the wave desription in the limit kR → ∞ (λ/R→ 0), where R is a typial avitylength sale, and the lassial dynamis follows from quantum mehanis in the limit
h̄ → 0 �, the details are less lear, in partiular in the ase of systems with haoti raydynamis. It is shown in setion 4.2.2 that the standard way of deriving the ray limit ofthe Helmholtz equation in general fails for systems with haoti dynamis.Chaos in quantum systems an not be de�ned as the exponential divergene of tra-jetories, beause there are no trajetories and the time evolution is linear. Instead, itoften is de�ned via the statistis of energy levels (mode frequenies in the avity ase)[Haa10, Stö00℄, whih is distintively di�erent for regular and haoti dynamis. How-ever, it is also possible to relate mode lifetimes and other properties to the ray dynamisin a avity (examples are disussed in setion 4.2.3), and modes an be projeted onto thePoinaré SOS for omparisons with the ray dynamis (this is disussed in setion 4.2.1).If one onsiders quantum systems near the lassial limit (orresponding to avitieswith kR ≫ 1, i.e. the wavelength λ is small ompared to the system size R), one antry to express quantities like the density of states as a series in h̄ (or, orrespondingly,
λ/R). Considering only the �rst terms in suh an expansion is alled semilassialapproximation; an important result is the so-alled Gutzwiller trae formula [Gut71℄,whih links the quantum mehanial density of states to a sum over the periodi orbits



36 4. Wave equation for mirodisk avitiesof a system. For optial miroavities, a similar trae formula (whih takes into aountthe re�etion oe�ient and the phases a ray aquires when sattered at the boundary)has been developed [BDS08℄ and tested experimentally for a mirowave avity [BBD+10℄.Periodi orbits in haoti mesosopi systems often an be diretly related to measurablequantities, like magneto-resistane osillations [WRM+93℄. Pairs of trajetories (the so-alled �Sieber-Rihter-pairs�) [RS02℄ with small ation di�erenes an be used to alulatequantum orretions to ondutivities in mesosopi systems as well. Another way todo semilassis is not to ome from the wave (quantum) limit and expand in λ/R (h̄),but to ome from the ray (lassial) limit and introdue orretions proportional to λ/R(h̄). One way to do this is desribed in detail in hapter 6.4.2.1. Husimi distributionOne important tool for the study of ray-wave orrespondene is the so-alled Husimidistribution, whih was introdued by Husimi [Hus40℄, adapted for quantum billiards byCrespi et al. [CPC93℄, and has been generalized to dieletri avities in [HSS03℄. Thebasi idea is to projet the wave funtion on the avity boundary to the Poinaré SOS.In the Poinaré SOS, a ray's position at the boundary and momentum are noted. Theprobability of light intensity to be found at the phase spae position (s, p) is given by theoverlap of ψ and a oherent state loalized at (s, p); suh a oherent state most loselyresembles the lassial ray. The alulation of Husimi distributions in dieletri avitiesis disussed in setion C.3.It is lear that alulating Husimi distributions only makes sense if the wavelength
λ is not too large ompared to the typial avity length sale R (i.e. for kR ≫ 1). If
λ ≈ R, the widths of the oherent states beome large, and there is no good orrespon-dene between the projetion and the Poinaré SOS. The Husimi distribution itself isa semilassial approximation. However, it seem that even for small kR, Husimi dis-tributions yield sensible results espeially when ompared not to the onventional, butan extended ray dynamis whih inludes wave orretions (see hapter 6). Figure 4.3shows an example for the orrespondene of Husimi distributions to the Poinaré SOS.4.2.2. Eikonal approximationRay dynamis, whih has been disussed in hapter 3, is a limiting ase of wave dynamisin the limit λ/R → 0 (or kR → ∞). In this setion, it is shown how ray dynamisan be derived from wave dynamis by means of the so-alled Eikonal ansatz ; it isformally equivalent to the derivation of the lassial Hamilton-Jaobi equation from theShrödinger equation (see, e.g., [Nol08℄). The disussion here follows [TSS05℄; a similarargument has already been proposed by Einstein [Ein17℄. It will be shown that Eikonaltheory usually fails for systems with haoti dynamis.The ansatz in Eikonal theory is to write the wave funtion ψ(r) as

ψ(r) = A(r)eikS(r); (4.4)
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Figure 4.3.: Husimi distributions for (top panel) a �regular� state (in the ǫ = 0.2 limaçonavity) and (bottom panel) a �haoti� state (in the ǫ = 0.3 limaçon avity).The dots indiate the orresponding ray dynamis.



38 4. Wave equation for mirodisk avitiesthis an be seen as the �rst term of an expansion
ψ(r) = eikS(r)

∞
∑

j=0

Aj(r)

kj
(4.5)in 1/k ∼ λ. The funtion S(r) is alled the �Eikonal� (from the Greek word for �image�)in geometri optis; it orresponds to the ation funtion in Hamilton-Jaobi theory.Inserting the ansatz (4.4) into the Helmholtz equation (4.1) yields

∆ψ = ikψ∆S + 2ikeikS∇S · ∇A+ eikS∆A− k2ψ∇S · ∇S
= −k2n2ψ,

(4.6)whih an be written as the Eikonal equation
(∇S(r))2 = n2(r) (4.7)and the so-alled �transport equation�

2∇S · ∇A+ A∆S = 0 (4.8)if A only varies weakly with r, so that ∆A ≈ 0 an be assumed. A wave solution ψthus de�nes a family of light rays desribed by the vetor �eld ∇S, whih de�nes thepropagation diretion; the lines of onstant S an be interpreted as wave fronts. TheEikonal ansatz is justi�ed if the wave funtion ψ does not vary signi�antly on salessmaller than the wavelength λ. Only in this ase one an de�ne wave fronts whih arestraight lines on sales longer than a wavelength. The assumption that wave fronts exist,and thus that an Eikonal ansatz an be made, is usually valid for system with integrabledynamis. It is, however, usually not valid for systems with haoti dynamis; there, thewave funtion varies on the sale of the wavelength. An example is shown in Fig. 4.4.In general, one Eikonal as in Eq. (4.4) is not su�ient to ful�ll the dieletri boundaryonditions, and the ansatz has to be improved by superimposing many Eikonal wave-funtions,
ψ(r) =

∑

j

Aj(r)e
ikSj(r). (4.9)If a ray de�ned by a momentum∇Sj from the expansion (4.9) ollides with the boundary,it eases to exist and another ray de�ned by ∇Sj′ from the expansion takes its plae,travelling in a di�erent diretion. It is su�ient to take into aount a �nite number ofterms in Eq. (4.9) if a ray oming from a point r0 with a momentum ∇Sj an re-enterthe viinity of r0 only with a �nite number of possible momenta ∇Sj′. This is triviallythe ase for periodi orbits: there, the return momentum is �xed. It is also moregenerally the ase for regular motion also on non-periodi orbits. If one, however, hasa system with haoti ray dynamis, it is no longer the ase, as the number of possiblereturn momenta grows in�nitely as time goes to in�nity beause of the phase-spae�lling property of haoti trajetories. Thus, no Eikonal ansatz with a �nite number ofEikonals exists for haoti systems. An in�nite sum in Eq. (4.9) is used in the so-alled
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(a) (b)

Figure 4.4.: Wave funtions Reψ in (a) a regular state (in the ellipse) and (b) a haotistate (in the limaçon). Wave fronts an only be de�ned if the wavefuntiondoes not vary signi�antly on sales smaller than the wavelength; this is notful�lled in (b).�random superposition of plane waves� models [Ber77℄ for haoti wave funtions, whihare used to predit statistial properties of haoti systems. However, when the Eikonalansatz is onsidered, the amplitudes in the in�nite sum in Eq. (4.9) are not random, but�xed by the transport equation (4.8), and the sum would in general diverge, beause theamplitudes Aj an not get arbitrarily small. One an thus onlude that the Eikonalansatz does not work in haoti systems; while an ansatz similar to the Eikonal onean be used when onsidering statistial properties, it is not useful to onstrut the raydynamis from the wave funtion as it an be done in systems with regular dynamis.How ray and wave properties an be linked in haoti systems is disussed in the nextsetion.4.2.3. Wave loalization and tunnelingIn the following, di�erent mehanisms leading to the loalization of the wave funtion ψin ertain parts of phase spae are disussed as well as mehanisms whih lead to delo-alization and the leaking of intensity out of a avity. Suh deloalization mehanismsare related to the quantum mehanial e�et of tunneling ; an in-depth disussion an befound, e.g., in [Lö09℄. Evanesent leakage, the eletromagneti analog of quantum tun-neling, has been diretly observed in miroavities, as desribed in [TKJVC09℄. There,both the light inside a avity and the emitted light outside have been measured, and a�gap� region of small intensity right outside the avity boundary was found, providingdiret evidene that the light indeed �tunnels� out of the avity.Both wave loalization and �tunneling� are diretly related to properties of optial



40 4. Wave equation for mirodisk avitiesmiroavities: wave loalization above the ritial line for TIR ensures high Q fators,and tunneling rates into the leaky region or to haoti parts of the phase spae in�ueneboth the Q fator and the output diretionality.Loalization on stable islandsThe semilassial eigenfuntion hypothesis [Per73, Ber77℄ states that although haos andregularity in quantum haos are de�ned on the basis of the statistis of many quantumstates, individual wave funtions belonging to regular and haoti states an well bedistinguished by their loalization on orresponding phase spae strutures � �regular�states loalize on regular phase spae strutures, i.e. islands or tori, and �haoti� statesloalize on haoti parts of phase spae (Fig. 4.3 shows an example for this behaviour).While this hypothesis is valid in many ases, there are examples where it is wrong: in[HKOS02℄, whih onsiders a kiked system, states with ontributions both in regularand haoti parts of phase spae are found. This phenomenon is known as ��ooding ofregular islands� [BKM05, BKM07℄ and the orresponding states are sometimes alled�amphibious states�.SarringSarring [Hel84℄ is a wave interferene e�et whih leads to the loalization of states alongunstable periodi ray trajetories. Sarred modes have been observed in optial miro-avities both theoretially and experimentally [RTS+02, LLC+02, LRR+04, FYC05℄;they are important for appliations beause while they an have high Q fators, theystill an be subjet to haoti transport, whih an lead to desirable output properties[WH08℄. Sarring has been observed not only in miroavities; sarred modes have, i.e.,been disovered in optial �bers as well [DLMM01℄.Dynamial loalizationAnother wave interferene e�et is dynamial loalization [FGP82℄. Here, destrutiveinterferene leads to a redution of di�usion through haoti regions of phase spae,whih in turn an lead to higher life-times of light in a avity. Dynamial loalizationhas been observed in optial miroavities with rough boundaries [FS97, FCPN05℄; it islosely related to Anderson loalization [And58℄ known from solid state physis.Dynamial tunnelingIn quantum mehanis, tunneling refers to the passing on an energy barrier whih annot be passed lassially. Dynamial tunneling [DH81℄ means the passing of a barrierin phase spae, whih also is lassially not possible: for example, invariant lines arefollowed for all times and an not be left lassially, but as wave funtions are alwaysdeloalized in phase spae, this is not true quantum mehanially, and the transferfrom an invariant line to another part of phase spae is possible. Dynamial tunnelinghas been investigated not only for quantum systems, but also for optial miroavities



4.2. Ray-wave orrespondene 41[HN97℄; dynamial tunneling rates have been related to Q fators of a mirodisk in thease of the Annular miroavity [BKL+09℄.Chaos-assisted tunnelingChaos-assisted tunneling [TU94℄ refers to the tunneling between regular parts of a mixedphase spae not diretly, but via an intermediate step into a haoti part of phase spae.Beause transport in the haoti regions is fast, haos-assisted tunneling an dominateover dynamial tunneling even though it is a two-step proess. Chaos-assisted tunnel-ing has been observed in mirowave avities [DGH+00℄ as well as optial miroavities[PN05℄, where it an lead to diretional emission [SHF+10℄.





43
5. Diretional emission fromelliptial resonators with a noth5.1. Resonators with nothes and point satterersAs disussed in hapter 2, �nding resonator shapes whih allow for modes with high Qfators and diretional light output is interesting for appliations. Combination of thesetwo features an be ahieved in many di�erent ways [WUS+10b, XZL+10℄. One of them isstruturing the irular boundary on a wavelenght-size sale, i.e. by utting one or manynothes in it; the Q fators and diretionalities resulting from suh deformations arestudied in [BBSN06a℄ in mirodisk resonators. Another way is plaing an obstale insidea irular resonator. This obstale an be an air hole (so-alled annular avity [HR02,WH06℄; investigated experimentally in [TV07℄) or a small region with a high refrativeindex, whih ats as a point satterer [AR04, DMSW08, DMSW09℄. Both deformationsof the irle lead to the development of modes with high Q fators and diretionalemission.In this hapter, an elliptial miroavity (whih, like the irle, has high-Q modes,but no diretional emission) with a wavelenght-size noth at the boundary is studiedand shown to have highly diretional emission. The noth ats like a point satterer; theunidiretional emission, however, is ahieved beause of the elliptial boundary shape,whih is shown to ollimate light sattered by the noth in the far �eld. This nothedelliptial resonator has high-Q modes, unidiretional emission with very low beam di-vergene (≈ 5 degrees). Moreover, the far �eld is universal (all even parity modes havethe same far �eld pattern) and the diretionality an be ahieved for both TM and TEpolarization.5.2. The Gaussian-nothed elliptial resonatorIn Cartesian oordinates, the boundary shape of a nothed elliptial resonator an bewritten as

x =

[

ǫ− δ exp

(−2(φ− π)2

ϑ2

)]

cosφ,

y = sin φ.

(5.1)with the major and minor axes Y and X and ǫ = X/Y . This desribes an ellipse witha noth at φ = π. The noth depth is ontrolled by the parameter δ, the noth opening
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Figure 5.1.: Parameters desribing the nothed ellipse. ǫ = X/Y is the ratio of thehalf-axes, δ and ϑ ontrol the noth depth and width, respetively.angle (noth width) is ontrolled by the parameter ϑ (see Fig. 5.1). Equation (5.1)yields a Gaussian-shaped noth; while other shapes are possible, the results are quiteindependent on the preise form, as will be shown later. The Gaussian shape is herehosen mostly for numerial onveniene, as no pieewise de�ned boundary urve has tobe used. In setion 5.5, other noth shapes are studied as well.Figure 5.2 shows a Poinaré surfae of setion for the nothed ellipse. The �nothing� isa perturbation applied to an integrable system (the elliptial billiard, see setion 3.3.1).Upon applying this perturbation, the system dynamis beomes mixed; there are largehaoti regions as well as stable islands, as indiated in Fig. 5.2. The feature whihwill prove to be most important for the understanding of diretional emission from thenothed elliptial resonator is the existene of rays like the one marked green in Fig. 5.2.Suh rays travel along the boundary, like whispering-gallery rays, for many bounes;but at some point, they hit the noth and get re�eted into a bouning-ball like motion(the opposite, bouning-balls getting re�eted into whispering-galleries by the noth,also happens, of ourse). As any non-periodi whispering-gallery ray will hit the nothat some point, this type of motion is very ommon in this system.5.3. Far �eld emission patterns5.3.1. Calulating far �eld emission from ray dynamisFar �eld emission patterns an be alulated using the Fresnel-weighted unstable man-ifold of the haoti repeller [LRK+04, SH07, WH08℄. The haoti repeller is the set ofphase spae points that never visits the leaky region both in forward and bakward timeevolution; its unstable manifold is the set of points that onverges to it in bakwardtime evolution. In open, haoti systems, the unstable manifold ontrols the esaperoutes out of the system. Consider a ray starting on a phase spae point on the unstablemanifold in the leaky region. In forward time evolution, it will refrat out of the avity
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notch position notch positionFigure 5.2.: Poinaré surfae of setion for an ellipse with ǫ = 0.83 with a Gaussiannoth with δ = 2/96 and ϑ = 3/96. Some stable islands (�bowtie� (red)and a period-8 island (blue) whih avoids the noth) are indiated as well asa ray (green) following a whispering-gallery struture for a long time untilhitting the noth whih is loated at s/smax = 0 ≡ 1.soon beause it starts below the ritial angle for total internal re�etion. In bakwardtime evolution, it will stay in the avity basially forever, beause the time evolution ofthe point onverges to the haoti repeller and never visits the leaky region. Thus, theoverlap region of the unstable manifold with the leaky region onsists of long-lived raysrefrating out of the avity eventually. Even though the onept of esape along theunstable manifold was developed for haoti systems, Altmann [Alt09℄ has only reentlyshown that it an be applied to systems with a mixed phase spae as well.The unstable manifold an be alulated as a survival probability [LRK+04℄. Onestarts with an ensemble of rays uniformly distributed in phase spae with equal intensity(set to one). They are then subjeted to the time evolution of the system; at eahboune, the intensity I of eah ray is hanged aording to the Fresnel laws: |r(χ)|2I forthe re�eted ray staying inside the avity and |t(χ)|2I for the transmitted ray, whih getsrefrated out (see Fig. 5.3). r and t are the omplex Fresnel re�etion and transmissionoe�ients; they ful�ll |r|2 + |t|2 = 1. The outgoing angle η an be alulated usingSnell's law: if the inoming ray hits the boundary under the angle χ, then sin η = n sinχwith the refrative index n of the avity (assuming n = 1 outside). From η, the far �eldemission angle θ an be alulated as the angle between the emission diretion and thepositive x axis (see Appendix A for details). Here, θ is taken between −π and 0 (-180degrees and 0 degrees) for emission into the y < 0 half-spae, and 0 ≤ θ ≤ π (0 degrees
≤ θ ≤ 180 degrees) otherwise. Adding up the ontributions of all rays in the initialensemble to the intensity outside the avity, one �nds the far �eld pattern. Figure 5.4
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|t|2I. The outgoing angle η an be alulated using Snell's law. The far �eldemission angle θ is then the angle between the emission diretion and the xaxis.shows an exemplary far �eld pattern for the nothed ellipse as well as a Fresnel-weightedunstable manifold, both generated by starting 1000 uniformly distributed rays. Thissystem shows highly diretional emission.5.3.2. Far �eld of the nothed ellipseHow is the highly diretional emission from the nothed elliptial avity arhived? Itis not obvious from the unstable manifold alone (Fig. 5.4); while the unstable manifoldonly has small tails into the leaky region (s/smax = 1 and 0.0 ≤ s/smax ≤ 0.6), thisoverlap region ontains many di�erent angles χ, whih in turn ould be naively thoughtto lead to various far �eld angles θ.One part of the answer an be found if one studies where the outgoing rays omefrom. Starting again with a uniform distribution of rays, they are followed until they getrefrated out of the avity (i.e., until | sinχ| ≤ 1/n), and the position they are omingfrom is noted. Most interesting are long-lived rays esaping the avity. Figure 5.5 showswhere long-lived rays esaping the avity ome from in phase spae (top panel) andaround the avity boundary (bottom panel). The areas right above the ritial line andaround p = 0.5, where some long-lived rays ome from, are onneted to the bowtie-and period-8 stable islands indiated in Fig. 5.2. The long, narrow struture around

s/smax ≈ 0.7 omes from the unstable period-3 orbit, two boune points of whih areright below the ritial line. But these di�erent strutures are not responsible for themajority of the esaping rays, as an be seen from the bottom panel of Fig. 5.5. Themajority of esaping rays omes from s/smax = 0 ≡ s/smax = 1: the noth position. Thenoth thus ats like a point satterer : rays hit it, get sattered to the other side of theavity with some new angle of inidene, and then an get refrated out. When this



5.3. Far �eld emission patterns 47

s/smax

p=
si

n(
χ)

 0  0.2  0.4  0.6  0.8  1

1

1/n

0.5

0

 0  20  40  60  80  100  120  140  160  180

fa
r 

fie
ld

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

far field angle θ (degrees)Figure 5.4.: Top panel: Fresnel-weighted unstable manifold for the nothed ellipse with
ǫ = 80/96, δ = 2/96, ϑ = 3/96. The refrative index is n = 3.2, thepolarization TM. Bottom panel: the resulting far �eld pattern.



48 5. Diretional emission from elliptial resonators with a noth

s/smax

p=
si

n(
χ)

# Collisions
< 10

> 10 and < 100
> 100 and < 500

> 500

 0  0.2  0.4  0.6  0.8  1

1

1/n

0.5

0

 0

 100

 200

 300

 400

 500

 600

 700

 0  0.2  0.4  0.6  0.8  1

# 
lo

ng
-li

ve
d 

ou
tg

oi
ng

 r
ay

s 
 c

om
in

g 
fr

om
 p

os
iti

on
 s

/s
m

ax

s/smaxFigure 5.5.: Top panel: phase spae positions of the origins of esaping rays. Bottompanel: positions along the avity boundary of long-lived (> 500 ollisionsbefore esaping) esaping rays at the position right before the one they arerefrated out at.



5.3. Far �eld emission patterns 49
Figure 5.6.: A whispering-gallery-like ray hits the noth and is refrated out of theavity. The magni�ation shows to dynamis near the noth.

notchFigure 5.7.: Sattering and ollimation: rays are started from the noth position withdi�erent outgoing angles. Rays with small outgoing angles are ollimatedin the far �eld; this ollimation gets worse as the outgoing angle grows. Atsome point (dashed blue line) the ray no longer esapes, but travels insidethe avity as a whispering-gallery-like ray until it gets sattered one again.
happens to whispering-gallery rays (like the ray marked in green in Fig. 5.2), these raysan travel along the avity boundary for a long time before �nally esaping. Figure 5.6shows another example of the sattering of a whispering-gallery-like ray by the noth.So the esaping rays mostly are rays whih have been sattered by the noth. Theythen beome parallel rays in the far �eld, as an be been in Fig. 5.7: there, rays arestarted at the position of the noth with di�erent outgoing angles, simulating a satteringproess. Rays with small outgoing angles beome parallel in the far �eld; this ollimationproess gets worse for larger outgoing angles, and at some point the outgoing angle islarge enough for the ray not being refrated out, but being launhed into a whispering-gallery-like mode. Suh ollimation is known from lenses in geometri optis [BW59℄.Diretional emission from avities with point satterers and ollimation aording togeometri optis has been studied by Dettmann and oworkers [DMSW08, DMSW09℄;however, they only onsider irular resonators with high-refrative index satterers.Suh satterers are di�ult to fabriate experimentally, and, as will be shown below, theirular boundary is not optimal for ollimation.In the next setion, the ollimation of rays in an elliptial resonator will be studiedusing a geometri optis approah.



50 5. Diretional emission from elliptial resonators with a noth

E(x,y)=1

x

y

α

χ

η

β

∆ x

∆ y

ν

X

Y

Figure 5.8.: Collimation of light rays in an ellipse. A ray oming from point (0, 0) withan angle α is ollimated. The parameters X , Y have to be hosen suh thatrays originating from (0, 0) are ollimated.5.4. Collimation of rays sattered by the noth: a�lens model�5.4.1. Collimation in elliptial resonatorsAs seen in the previous setion, an elliptial avity an at as a �lens� and ollimaterays oming from a �xed position with small angles. In the nothed ellipse, this �xedposition orresponds to the noth position, whih is approximately the s = 0 positionof the boundary (5.1). The goal of this setion is to �nd the parameters of suh anellipse arhiving ollimation. Figure 5.8 shows ollimation of a ray originating (0, 0); theparameters of the ellipse now have to be hosen suh that this is possible.The elliptial boundary is given by
E(x, y) =

(x+X)2

X2
+
y2

Y 2
= 1, (5.2)the normal vetor ν at the position (x, y) on the boundary is given by

ν =
1

|∇E|∇E =
1

√

(x+X)2

X4 + y2

Y 4

(

(x+X)/X2

y/Y 2

)

. (5.3)The following relations an be found from Fig. 5.8:
tanα =

∆y

∆x
, (5.4)

β = η, (5.5)
α = η − χ, (5.6)
sin η = ν ·

(

0
1

)

; (5.7)



5.4. Collimation of rays sattered by the noth: a �lens model� 51the Snell law
sin η = n sinχ (5.8)holds as well. Equation (5.7) leads to

sin η =
y/Y 2

√

(x+X)2

X4 + y2

Y 4

. (5.9)Considering ollimation only for small angles (rays with larger angles will get re�etedbak into a whispering-gallery anyway), one an set
tanα ≈ α, η ≈ nχ, x ≈ X, and ∆y = y ≪ x. (5.10)One then �nds

∆x ≈ ∆y

α
=

∆y

η − χ
=

∆y

η
(

1− 1
n

)

≈
Y 2

√

(x+X)2

X4 + y2

Y 4

1− 1/n
≈ 1

1− 1/n

Y 2

X
.

(5.11)The requirement that rays originating from (0, 0) are ollimated means that ∆x ≈ x ≈
X . This leads to

X

Y
≡ ǫ =

1√
2

1
√

1− 1/n
. (5.12)5.4.2. Collimation for other boundary shapesThe ellipse ollimates light sattered by the noth with small outgoing angles. Of ourse,as rays sattered by the noth emerge with all outgoing angles, it is interesting to ask ifthere is a shape whih ollimates light for all outgoing angles. To answer this question,one an onsider a avity boundary urve desribed by y = f(x) and look for a funtion

f suh that rays oming from (0, 0) are ollimated (Fig. 5.9). The following relationsan be read o� the �gure:
tanα =

∆y

x0
=
f(x0)

x0
, (5.13)

tan β = − 1

f ′(x0)
= tan η, (5.14)

sin η = n sinχ, (5.15)
α = η − χ. (5.16)With α = η − χ, one �nds

tanα = tan(η − χ) =
tan η − tanχ

1 + tan η tanχ
; (5.17)
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tanχ an be alulated from Snell's law:
tanχ =

sinχ
√

1− sin2 χ
=

1
n
sin η

√

1− 1
n2 sin

2 η

=
tan η/n

√

1 + tan2 η

1
√

1− 1
n2

(

tan2 η
1+tan2 η

)

≡ G(tan η).

(5.18)
Combining Eq. (5.18) and Eq. (5.17), using tan η = −1/f ′(x0) and inserting in Eq. (5.13)yields

tanα =
tan η − G(tan η)
1 + tan ηG(tan η) =

f(x0)

x0

→
− 1

f ′(x0)
− G

(

− 1
f ′(x0)

)

1− 1
f ′(x0)

G
(

− 1
f ′(x0)

) =
f(x0)

x0
.

(5.19)
This is a di�erential equation for the unknown funtion f and an be solved numerially.Unfortunately, no solution leading to a losed avity exists; the solutions do not havetwo intersetions with the x-axis.However, a solution leading to a losed avity exists if Eq. (5.13) does not have tobe true for all angles α, but instead only for small angles. Rays originating from (0, 0)with small angles will then be ollimated. In this limit, one has tan η ≈ sin η ≈ η and
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− 1

f ′(x0)

(

1− 1

n

)

=
f(x0)

x0

→ f ′(x0)f(x0) = −x0
(

1− 1

n

)

.

(5.20)This di�erential equation an be solved analytially, for example using separation ofvariables, whih leads to
f(x0) =

√

2c−
(

1− 1

n

)

x20 with an integration onstant c. (5.21)For c > 0, this desribes an elliptial shape, whih is losed.5.5. Dependene of the far �eld diretionality on thesystem parameters5.5.1. Axis ratio ǫ = X/YAs seen in the previous setion, far �eld diretionality is arhived beause the elliptialavity boundary ats like a lens and ollimates the rays sattered by the noth. For anygiven refrative index n, this works only for one axis ratio ǫ = X/Y (see Eq. (5.12)).Choosing n = 3.2, this optimal axis ratio is
ǫ =

1√
2

1
√

1− 1/n
≈ 0.83. (5.22)Figure 5.10 shows the far �eld pattern of nothed ellipses with di�erent axis ratios ǫ.Indeed, values near the optimal ǫ lead to the �best� diretionality. This is quanti�ed inFig. 5.11, where the ratio of the intensity emitted into 0 ≤ θ ≤ 20 degrees to the overallemitted intensity is plotted for di�erent ǫ's. The full width at half maximum (FWHM)of the θ = 0 peak is also shown. The noth depth and width are �xed at δ = 5/96 and

ϑ = 2/96, respetively.Indeed, one only �nds far �eld diretionality near the optimal ǫ; far away, the far �eldpattern is almost uniform, as it ould be expeted from whispering-gallery-rays in anelliptial avity. Suh a far �eld is also shown for omparison in Fig. 5.10 (blue urve).The main peak at the optimal ǫ is very sharp (≈ 5 degrees). This is signi�antly lessthen what an be ahieved in the limaçon (≈ 20 degrees) and other systems. A drawbakis that the perentage of the overall intensity whih is emitted in the main peak is rathersmall, i.e. below 50 %. While a laser working with an nothed elliptial resonator mighthave exellent output diretionality, it probably will not operate too e�iently in termsof pumping versus output power.
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n for δ = 2/96, ϑ = 3/96, and TM polarization. The eentriity of eahellipse has been optimized with respet to n aording to (5.12). The per-entage of the intensity emitted into ±20 degrees is noted. (b) Perentageof the emitted intensity whih omes from transmission at the noth forthe same refrative indies.diminishing the number of rays whih an partiipate in the ollimation proess.For refrative indies above n = 3.2, the diretionality improves slightly (even moreray are sattered by the noth without being refrated out), but side peaks arise as well.They are onneted to the �bowtie� island (see Fig. 5.2): the boune points with p ≈ 0emit into at ≈ 70 and ≈ 110 degrees. This ontribution to the emission is, of ourse,always present; but at lower refrative indies, other ontributions are more important.At n = 4.2, most other phase spae strutures are too far away from the ritial line toontribute.As no materials with n > 4 are urrently used in appliations, one an onlude thatunidiretional far �eld emission in elliptial avities with a noth an only be ahievedfor refrative indies typial for semiondutor materials.5.5.5. Noth shapeThe hoie of a Gaussian as the noth shape is arbitrary and might be di�ult tofabriate experimentally. In this setion, two other noth shapes are studied. The �rstis a Gaussian �double noth�, de�ned by
x =

[

ǫ− δ
(

e−8(φ−(−π+ϑ/2))2/ϑ2

+ e−8(φ−(π−ϑ/2))2/ϑ2
)]

cosφ,

y = sin φ.
(5.23)This noth is made of two Gaussians with widths ϑ/2 and depths δ. It thus has ap-proximately the same width and depth as the Gaussian noth (Eq. (5.1)), as shown inFig. 5.15.
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Figure 5.15.: Gaussian (dashed line) and double-Gaussian (solid line) noth shapes.The seond noth is a paraboli noth, whih is ahieved by utting a parabola outof the elliptial boundary suh that the depth is δ and the overall width is ϑ (seeFig. 5.16). A formula for this pieewise de�ned boundary an be found by �rst on-sidering intersetions between the elliptial boundary (x, y) = (ǫ cos φ, sinφ) and theparabola (x, y) = (αy2 + β, y). Beause the noth depth is δ, β is given by β = ǫ − δ,and beause the width is ϑ, the intersetions happen at the polar angles φ1,2 suh that
y = sinφ1,2 = ±ϑ/2. From these relations, α an be alulated:

x = ǫ cos φ1,2 = αy2 + β = α sin2 φ1,2 + ǫ− δ

→ α = −ǫ cosφ1,2 − ǫ+ δ

sin2 φ1,2

= −ǫ
√

1− ϑ2/4− ǫ+ δ

ϑ2/4
.

(5.24)In the last step, cos φ1 = cos φ2 = cos[arcsin(ϑ/2)] =
√

1− ϑ2/4 has been used. Theboundary urve of an elliptial resonator with a paraboli noth is thus given by
x =







[

ǫ− δ − ǫ
√

1−ϑ2/4−ǫ+δ

ϑ2/4
sin2 φ

]

cosφ, | sinφ| ≤ ϑ/2 and cosφ < 0,

ǫ cosφ, otherwise,
y = sinφ.

(5.25)Figure 5.17 shows the far �eld patterns of a Gaussian, a double-Gaussian, and aparaboli noth for δ = 2/96, ϑ = 3/96 and ǫ = 0.83. The diretionality of the far �eldpattern is quite insensitive to the preise noth shape, whih adds further on�rmationto the interpretation of the noth as a point satterer.5.5.6. Cavity boundary shapeOnly an ellipse ollimates rays sattered by the noth. But what happens for otherboundary urves whose urvatures are loally very similar to the one of the optimal
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Figure 5.16.: De�nition of the boundary urve of an ellipse with a paraboli noth.
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Figure 5.17.: Far �eld patterns for a nothed ellipse with ǫ = 0.83, δ = 2/96, and
ϑ = 3/96 for a Gaussian (blak urve), a double Gaussian (red urve) anda paraboli noth (red urve). The fration of intensity emitted into ±20degrees is noted. On the right, the noth shapes are shown.



5.5. Dependene of the far �eld diretionality on the system parameters 61ellipse? As an example, one an look at a nothed quadrupole with a ertain defor-mation. Quadrupolar avities also allow for long-lived rays and direted (although notunidiretional) emission (see, e.g., [NS97℄).The quadrupole is de�ned by the boundary urve1
r(φ) = R(1− ǫ̃ cos(2φ)), (5.26)with the deformation parameter ǫ̃ and a length sale parameter R.In order to �nd the deformation ǫ̃ whih leads to a urvature similar to the optimalellipse, one an follow [Nö97℄ and view the ellipse as an �approximate quadrupole�. Theellipse an be parametrized by the boundary urve
r(φ) =

Y
√

1 + e2 cos2 φ
, (5.27)where the eentriity e2 = (Y 2−X2)/X2 of the ellipse has been introdued. Expansionof the square root in Eq. (5.27) yields

r(φ) ≈ Y

(

1− e2

2
cos2 φ

)

= Y

(

1− e2

2
− e2

4
cos(2φ)

)

. (5.28)This is the boundary urve desribing a quadrupole with deformation parameter ǫ̃ =
e2/4; ǫ̃ for the optimal nothed quadrupole an be estimated to ǫ̃ ≈ 0.08. The boundaryurve of the nothed quadrupole in units of the major half-axis Y is given by

x =
[

r(φ)− δ exp(−2(φ− π)2/ϑ2)r(φ)
]

cosφ,

y = r(φ) sinφ,
(5.29)with r(φ) = 1− ǫ̃ cos(2φ)− 2ǫ̃.Figure 5.18 shows the phase spae for the quadrupole and the nothed quadrupoleat ǫ̃ = 0.08. It an be seen that also in this system, rays traveling along the boundarysimilar to WGMs until they hit the noth exist; however, the phase spae is not hangedas drastially as the one of the ellipse. This is due to the fat that the undisturbedquadrupole is already far from being an integrable system at ǫ̃ = 0.08 and the haotidynamis does not hange drastially. Many islands also persist after �nothing� theboundary � and as some of them are loalized at the ritial line, they ontribute to thefar �eld emission.Figure 5.19 shows the resulting far �eld patterns as well as the boundary shapes for theoptimal ǫ and ǫ̃. While the boundary shapes are very similar, the nothed quadrupoleshows little output diretionality. It really is essential to shape the avity boundaryelliptially. This is due to the fat that the quadrupolar boundary does not ollimaterays as well as the elliptial boundary (see Fig. 5.20).1Usually, the quadrupole is de�ned by r(φ) = R(1 + ǫ̃ cos(2φ)). The hoie of the other sign ensuresthe same aspet ratio as in the ellipse onsidered earlier: the major half-axis is oriented along the yaxis.
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Figure 5.18.: Poinaré surfae of setion for the quadrupole without noth (top) and thenothed quadrupole (bottom) for ǫ̃ = 0.08 and δ = 2/96, ϑ = 3/96. Theritial line for total internal re�etion for n = 3.2 is shown in blue. Thepoints marked red in the bottom panel belong to an orbit whih travelsWGM-like around the boundary until hitting the noth.
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Figure 5.20.: Collimation in the ellipse (left, see Fig. 5.7) and quadrupole (right). Raysoriginating from the noth are not ollimated in the quadrupole even forsmall angles.



64 5. Diretional emission from elliptial resonators with a noth5.6. Comparison with wave alulationsSo far, all results have been obtained using a ray model. While the rays an of ourse re-solve an arbitrarily small noth at the boundary, eletromagneti waves an only resolvestrutures larger than a wavelength. It is thus neessary to hek if the results still holdwhen leaving the ray approximation and solving the wave equation in a nothed elliptialavity diretly. This is done here using the boundary element method (BEM) [Wie03℄(see also Appendix C for details). Figure 5.21 shows far �eld patterns for two di�erentmodes as well as the mode patterns. The modes are labeled A (kR = 60.32 − 0.0062i,
Q = 49 000) and B (kR = 60.59 − 0.055i, Q = 5 500). While the mode pattern is notvery sensitive to the number of boundary elements used for alulation, the Q fator is;the results shown here have been alulated using 4000 boundary elements. Choosing ahigher number of boundary elements leads to signi�antly higher Q fators.The far �eld agrees well with the ray simulations; the intensity emitted into ±20degrees is between 50 and 60 %, whih is a bit larger than the ray simulations predit.This di�erene an at least in part be attributed to the di�erenes between modes ofeven and odd parity. Modes with odd parity have higher Q fators, as they have lessoverlap with the noth (a node is loated at the noth position) and thus less leakageout of the avity at the noth position; they also have less diretional emission. Evenparity modes, whih are more diretional, dominate the far �eld beause their Q fatorsare lower (they have an intensity maximum at the noth position), so that a largerperentage of the light leaking out omes from them. The ray simulation orrespondsnot to the far �eld of an individual mode, but to and average over all (even and odd)modes (this kind of orrespondene has been studied in [SHW+09℄). The average raydiretionality thus has to be lower than the diretionality of a single mode.5.7. Comparison to experimental resultsElliptial resonators with nothes have been fabriated in F. Capasso's group [WYY+10℄and used as a avity for a mirolaser. They fabriated GaInAs/AlInAs/InP QuantumCasade Lasers (QCLs; the working priniple is desribed in [FCS+94℄) with an e�etiverefrative index n ≈ 3.2 and a wavelenght in the material of λ ≈ 10µm. The minor half-axis X is X = 80µm, the major half axis Y = 96µm. Di�erent noth shapes and sizeswere fabriated (see Figs. 5.22 and 5.23), inluding a double and a paraboli noth; theresults shown below are for a paraboli noth with depth d = 2µm and opening angles
o = 3µm. The nothes are shaped with photo-lithography; the standard auray ofthis method is around 1µm.The light output of a QCL is always TM polarized due to seletion rules for thelasing quantum well intersubband transitions. The devies are pumped eletrially. The
Q-fators are around 1200, whih agrees well with the alulated values if materialabsorption is taken into aount. The far �elds are measured aording to [YFW+08℄and also agree well with our theoretial preditions (Fig. 5.24).
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Figure 5.21.: Far �eld patterns for modes A (high Q) and B (low Q). The mode patternsinside and outside the avity are also shown.
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Figure 5.22.: Sanning eletron mirosope piture of an elliptial avity with aparaboli noth with d = 2µm and o = 3µm. The top panel shows theresonator as seen from above (with the gold ontat as its top plate); thebottom panel shows a magni�ation around the noth. The noth param-eters and indiated as well as the ative region (Piture ourtesy of Q. J.Wang).

Figure 5.23.: Sanning eletron mirosope piture of an elliptial resonator with a�double noth� with d = 2µm and o = 3µm (Piture ourtesy of Q. J.Wang).
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Figure 5.24.: Comparison of the experimental (red urve) and theoretial (blak urve)far �eld patterns for a nothed elliptial resonator with X = 80µm, Y =
96µm, d = 2µm, and o = 3µm. The theory urve shows the far �eldpattern of mode A from above. Both far �eld patterns are normalized totheir maximum value.





69
6. Extended ray dynamis:inluding wave orretions in theray pitureWhile ray-wave orrespondene is very useful for the interpretation of modes and far-�eld patterns, it fails if the wavelength beomes omparable to the avity size (λ/Rnear one), i.e. for low kR. As semiondutor avities with sizes omparable to the laseremission wavelengths have been build [SGS+10℄, understanding how and when ray-waveorrespondene fails and what other ways of interpreting the wave results are possiblebeomes more and more important. One idea is to �nd �rst-order wave orretions whih�extend� the ray dynamis; this an be seen as a �semilassial� approah: instead of justlooking at the lassial (ray) limit of a quantum mehanial billiard (dieletri avity),one onsiders �rst-order quantum (wave) orretions to physial quantities.How does one design this extensions, what are ��rst-order wave orretions�? If oneleaves the ray limit, one no longer deals with rays, but with beams whih travel, getre�eted, and interfere in a avity; in the limit of narrow beams with wavelengths smallompared to the avity size, one reovers the ray limit. Beause one deals with beams,whih have a di�rative spreading (i.e. ontain partial waves with di�erent inidentangles at a point where re�etion ours), the openness of a dieletri avity is felt muhmore diretly than in the ray piture: at eah re�etion, a part of the beam an getrefrated out, even if the average angle of inidene is above the ritial angle for TIR.Wave orretions will thus also mean orretions due to the openness of a dieletriavity.One suh �rst-order wave orretion has been found experimentally by Goos andHänhen [GH47℄: measuring the re�etion of beams on a planar interfae, they foundthat the re�eted ray is not re�eted at the position of the inident ray, but is shiftedalong the interfae (the shift is now alled the Goos-Hänhen shift (GHS)) beause ofinterferene of the di�erent re�eted partial waves, whih aumulate di�erent phasesupon re�etion; the theory is disussed in more detail in setion 6.1.1. This shift anbe easily inluded in a ray piture: one identi�es the maximum of the beam as a ray,subjets it to the usual re�etion laws at the boundary, and then applies the GHS asa orretion. A omplementary e�et was predited in [TS02℄ and measured experi-mentally in [RTS+02℄: when a beam is re�eted at an interfae, the partial waves withsmall angles of inidene (whih usually exist, even if the average angle of inidene isabove the ritial angle) get (partially) refrated out of the avity and are missing inthe re�eted beam, whih thus has an average outgoing angle whih is higher than the



70 6. Extended ray dynamis: inluding wave orretions in the ray piture

outgoing

outgoing(extendedray dynamics)

(conventional

ray dynam
ics)

χ
χχ

’

s∆

incid
ent

Figure 6.1.: GHS ∆s and FF ∆p = sinχ′ − sinχ as wave orretions to the ray piture.A beam is not re�eted at the same position on the boundary, but theoutgoing beam is shifted by ∆s; the outgoing angle χ′ is not the same asthe inident angle χ, but the sine is shifted by ∆p.average angle of inidene. This e�et, alled Fresnel �ltering (FF), thus manifests itselfas a orretion of the outgoing angle of a ray, i.e. as a orretion to Snell's law. If oneonsiders both these e�ets and looks at the dynamis in phase spae [SH06℄, the GHSis a orretion of the position s along the avity boundary, and the FF is a orretionof angle χ, i.e., the momentum p = sinχ. Figure 6.1 shows an illustration of the twoe�ets.The wave orretions lead to modi�ations of the phase spae: breakup of invariantlines into stable and unstable �xed points (see setion 6.4 and [UWH08℄), formation ofattrators and repellers (see setions 6.5, 6.6 and [AGH08, UW10℄) and a momentumshift of phase-spae strutures (also disussed in setion 6.5). Continuing the idea of ray-wave orrespondene, one an look at modes for low kR and study how they re�et themodi�ed phase spae. Altmann et al. [AGH08℄ have studied the formation of attratorsand repellers in the annular avity with wave orretions, but did not onsider modes.6.1. Wave orretions: Goos-Hänhen shift andFresnel �ltering6.1.1. Goos-Hänhen shift: analytial resultsA simple analytial formula for the GHS is due to Artmann [Art48℄. While it an also anbe derived from wave optis ([Art48, Art51℄; see also setion 6.2.1 for another derivation),the simplest approah is to onsider a beam onsisting of two plane waves being re�etedat a planar interfae (see Fig. 6.2). The plane waves have slightly di�erent inomingangles χ and χ′ (orresponding to p = sinχ and p′ = sinχ′), and, upon re�etion, gaintwo slightly di�erent phases φ and φ′. One an set p′ = p + ∆p and φ′ = φ + ∆φ; ∆pand ∆φ are small numbers. The inoming beam an be written as
ψin(x) = einkpx + einkp

′x = einkpx
(

1 + eink∆px
)

, (6.1)
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ψinFigure 6.2.: Derivation of the Artmann result for the GHS using an inoming beamonsisting of two plane waves. At the interfae, they gain di�erent phaseshifts, whih in turn lead to a lateral displaement.the outgoing beam as

ψout(x) = exp(inkpx+ iφ) + exp(inkp′x+ iφ′)

= exp(inkpx+ iφ)

(

1 + exp

(

ink∆p

(

x+
1

nk

∆φ

∆p

)))

≈ exp(inkpx+ iφ)

(

1 + exp

(

ink∆p

(

x+
1

nk

∂ φ

∂ p

)))

= exp(iφ)ψin(x+ 1

nk

∂ φ

∂ p

)

.

(6.2)
the re�eted beam thus has a lateral shift of

∆s =
1

nk

∂ φ

∂ p
. (6.3)The phase φ is given by the omplex Fresnel re�etion oe�ient, r = |r|eiφ, with

φTM = −2 arctan

(
√

sin2 χ− n2

cosχ

)

,

φTE = −2 arctan

(
√

sin2 χ− n2

n2 cosχ

)

.

(6.4)One an thus write Eq. (6.3) as
∆sTM =

1

nk

1
√

sin2 χ− 1/n2
,

∆sTE =
1

nk

1

n
√

sin2 χ− 1/n2
.

(6.5)
∆s has singularities at p = sinχ = 1/n (the ritial angle) and also at p = 1, both ofwhih are unphysial for a realisti beam. The Artmann result is thus only valid for
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Figure 6.3.: Artmann result (blak line) and Lai result for kσ = 30 (red solid line) and
kσ = 4 (red dashed line). The ritial line is marked by the blak dashedline. The other parameters are n = 3.3, kR = 8.2; the polarization is TM.not-too-high angles of inidene above the ritial angle, as the square root in Eq. (6.5)gets omplex-valued for p < 1/n and the shift annot be properly de�ned.Lai et al. [LCT86℄ developed an analytial expression for the shift of a Gaussian beamwhih gets rid of the singularity at p = 1/n and is also valid for angles of inidenebelow the ritial angle. However, their expression is only valid if the beam width σ ofthe beam is muh larger than the wavelength, i.e. in the limit kσ ≫ 1. If one onsidersminimal-unertainty beams for small k, one has kσ ≈ 1. This is the limit whih willbe onsidered in the following; the Lai result is no longer valid in this limit beause itshows unphysial singularities. Figure 6.3 shows both the Artmann result and the Lairesult for di�erent σ values.6.1.2. Fresnel �lteringThe Fresnel �ltering e�et was introdued by Turei and Stone [TS02℄ in order to de-sribe deviations of the measured far-�eld pattern of a quadrupolar avity from the ray-dynamial preditions. They developed an analytial formula for the far-�eld emissionpattern of a avity where Gaussian beams are re�eted; from it, an analytial expressionfor the shift in the far-�eld emission angles (for inidene at the ritial angle) an bederived. However, no analytial expressions for the FF itself are given, and none seemto be known. Shomerus and Hentshel [SH06℄ extrated the FF from wave alulationsin a irular avity; for other investigations, i.e. the formation of periodi orbits in theSpiral avity [AGH08℄, for �xed nkR, a onstant FF as a funtion of p is assumed.



6.2. Numerial alulation of GHS and FF 736.2. Numerial alulation of GHS and FF6.2.1. Calulation shemeAs analytial formulas for the GHS su�er from unphysial singularities and so far, noneare known for the FF, it is neessary to alulate these orretions numerially as fun-tions of the angle of inidene, depending on the refrative index n, the wavelength(desribed by the size parameter kR), and the polarization (TM or TE). The numer-ial sheme is desribed in the following; the general idea is to alulate the inidentand re�eted beams and extrat the GHS and FF by omparing the average inom-ing and outgoing re�etion positions and angles. Suh an approah has been used in[AW07, AW09℄ and [AMW09℄ as well, and ompared to experimental results for theshifts at planar interfaes (though not in miroavities).The major approximation here is to treat the interfae as planar, thus negleting theurvature of a avity boundary. This approximation an be justi�ed beause loally, anysmooth boundary looks �at; if the radius of urvature is larger than the beam width andthe wavelength, it will also look �at to the beam. A generalization to arbitrarily urvedboundaries might be desirable if one wants to study kR → 1, but is di�ult, as thereare no analytial formulas for the Fresnel oe�ients at a urved interfae. Thus, thefollowing alulations are restrited to the planar-interfae situation; as the results agreewell with wave results down to kR ≈ 10 (as will be seen later), this seems reasonable.The inoming wave funtion ψin is modeled as a Gaussian beam:
ψin(x) = ∫ 1

−1

dp einkpxfin(p), (6.6)with
fin(p) = e−n2k2(p−pin)2σ2/4. (6.7)This desribes a Gaussian beam with width σ entered around x = 0 (whih is hosenas the position where the beam maximum hits the �at interfae) and has plane waveomponents with wave number k whose inoming angles are entered around pin =

sinχin. The width σ an be �xed by hoosing a minimal-unertainty beam where theunertainties in nkp and x, nk∆p and ∆x, are of equal size when ompared to the typiallength sale R of a avity. The minimal-unertainty beam is hosen beause it bestapproximates a lassial ray and is thus the natural hoie in a semilassial approah.With the unertainty relation for a Fourier transform, whih Eq. (6.6) basially is,
nk∆p∆x = nkR∆p

∆x

R
=

1

2
(6.8)one �nds with equal unertainties ∆p = ∆x/R

∆x =

√
R√
2nk

. (6.9)The beam width σ is then given by σ =
√
2 ·∆x.
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Figure 6.4.: Inoming and outgoing beams. The inoming beam ψin inludes a variety ofplane wave omponents with di�erent inoming angles; the entral inomingangle is χin. Eah omponent gets re�eted aording to Fresnel's and Snell'slaws; the outgoing beam ψout onsists of di�erent angles.When the beam hits the boundary, eah plane wave omponent gets re�eted aordingto the Fresnel and Snell laws; the wave omponents with inoming angles below theritial angle for total internal re�etion get partially refrated out. The outgoing beaman thus be desribed as
ψout(x) = ∫ 1

−1

dp r(p)einkpxfin(p), (6.10)with the omplex Fresnel re�etion oe�ient r applied to eah plane wave omponent.The resulting beam will, in general, no longer be Gaussian. Figure 6.4 illustrates theproess. When onsidering only inoming angles above the ritial angle for TIR and anarrow angle distribution, the Fresnel oe�ient r an be approximated as
r(p) = |r(p)|eiφ(p) = eiφ(p) ≈ exp

(

iφ(pin) + ip
∂ φ

∂ p
|pin) , (6.11)whih, put into (6.10), leads to

ψout(x) ≈ ∫ 1

−1

dp einkpxfin exp(iφ(pin) + ip
∂ φ

∂ p
|pin)

= exp(iφ(pin)) ∫ 1

−1

dp exp

(

inkp

(

x+
1

nk

∂ φ

∂ p

))

= eiφ(pin)ψin(x+ 1

nk

∂ φ

∂ p

)

.

(6.12)
One thus reovers the Artmann result

ψout(x) = eiφ(pin)ψin(x+∆s) (6.13)
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∆s =

1

nk

∂ φ

∂ p
. (6.14)In the general ase, the GHS is de�ned as the di�erene in the �position expetationvalues� of ψout and ψin:

∆s =

∫∞
−∞ dxx|ψout(x)|2
∫∞
−∞ dx |ψout(x)|2 , (6.15)as ψin has a position expetation value of zero by onstrution. The FF an be alulatedusing the Fourier transforms ψ̂in(p), ψ̂out(p) of ψin and ψout:

∆p =

∫ 1

−1
dp p|ψ̂out|2
|ψ̂out|2 − pin, (6.16)as ψin is entered around pin. Beause fin is a Gaussian, the Fourier transform an bealulated, yielding

ψ̂in(p) ∼ fin(p), ψ̂out(p) ∼ r(p)fin(p) (6.17)(the normalization onstants do not matter beause they anel eah other in (6.16)).The integrals in (6.15) and (6.16) have to be done numerially beause of the preseneof the re�etion oe�ient r; the x-integral is done from −50σ to 50σ.In priniple, one ould also extrat the GHS by omparing the positions of the maximaof ψin and ψout; the shift ∆s would then be the di�erene of the positions of the maxima.Lai et al. [LCT86℄ use this de�nition. But as ψout need not be Gaussian, this de�nitionmight not be straightforward, as ψout an have di�erent loal maxima. An example isshown in Fig. 6.5: The top panel shows the inoming and outgoing wave funtions foran inoming angle of pin = 0.8 (above the ritial angle for n = 3.13) and kR = 50. Theoutgoing wave funtion is approximately Gaussian, and the expetation value and themaximum give approximately the same result. The bottom panel shows the inomingand outgoing wave funtions for pin = 0.3 (just below the ritial angle), all otherparameters are the same. The outgoing wave funtion has two maxima; the higher oneis shifted to the left : de�ning the GHS as the shift of this maximum would yield anegative GHS. But beause of the seond maximum and a �tail� in the x > 0 region, theGHS extrated by the expetation value is positive.6.2.2. Dependene on Gaussian beam parametersFor high kR, the p dependene of the GHS and the FF looks similar to the results ob-tained by Artmann and Lai and also the urves extrated from wave alulations [SH06℄.Figure 6.6 shows the GHS and FF for di�erent kR values. For small kR values, the GHShas a very broad maximum above the ritial angle and is never zero; the FF also hasa broad maximum, and instead of vanishing above the ritial angle, it turns negative.This an be understood when looking at the wave funtion ψ̂(p) in p spae (see Fig.6.7). For low kR, this wave funtion is very broad. For small pin, the simple pitureof the re�etion oe�ient utting out the small-p partial waves, resulting in a positive



76 6. Extended ray dynamis: inluding wave orretions in the ray piture

-1 -0.5  0  0.5  1

|ψ
| (

ar
b.

 u
ni

ts
)

x

pin=0.8 incoming
outgoing

-1 -0.5  0  0.5  1

|ψ
| (

ar
b.

 u
ni

ts
)

x

pin=0.3 incoming
outgoing

Figure 6.5.: Inoming (blak urve) and outgoing (red urve) wave funtions for kR =
50, TE polarization, n = 3.13, and pin = 0.8 (top panel) resp. pin = 0.3(bottom panel). The outgoing wave funtion for pin = 0.8 is approximatelyGaussian, the outgoing wave funtion for pin = 0.3 is no longer Gaussian.
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78 6. Extended ray dynamis: inluding wave orretions in the ray pitureshift, remains true (top panel in Fig. 6.7; pin is just below the ritial angle). For larger
pin, the re�etion oe�ients uts out �intermediate� p values (as it has a minimum atthe Brewster angle), but leaves the smaller p values (bottom panel in Fig. 6.7). Theresulting shift an be negative. This does not happen for higher kR, as the beams areless broad in this ase and thus |r| only has values below one in regions where ψ̂in ≈ 0for angles of inidene above the ritial angle. One thus only �nds negative FF aroundthe Brewster angle, but not for higher pin; this feature is not present in TM polarization.There, the FF is always positive for high kR.The GHS approximately sales with 1/kR (as an be expeted from the Artmannformula (6.5)), the FF, on the other hand, sales approximately as √kR, as preditedby Turei and Stone [TS02℄.6.3. The extended billiard mappingJust like the usual billiard dynamis an be desribed by a mapping (si, pi) → (si+1, pi+1)[Ber81℄, the dynamis in a billiard inluding the GHS and FF orretions an be de-sribed using another mapping. If one denotes the billiard mapping by

si+1 = f(si, pi), pi+1 = g(si, pi), (6.18)where the funtions f and g depend on the shape of the billiard boundary, the billiardmapping inluding the orretions is given by
s′i+1 = f(si, pi), p

′
i+1 = g(si, pi),

si+1 = s′i+1 +∆s(s′i+1, p
′
i+1), pi+1 = p′i+1 +∆p(s′i+1, p

′
i+1).

(6.19)Thus, starting from (si, pi), �rst the next intersetion (s′i+1, p
′
i+1) with the boundary isalulated using the billiard dynamis, and then the orretions are applied, leading tothe new position (si+1, pi+1) (see Fig. 6.8). The approximation of alulating the GHSand FF at a planar interfae means that one neglets the s′i+1 dependene of ∆s and ∆pin (6.19). If ĴB is the Jaobian of the billiard dynamis (the linearized mapping),

ĴB =

(

∂ f
∂ s

∂ f
∂ p

∂ g
∂ s

∂ g
∂ p

)

, (6.20)and ĴG the one of the orretions,
ĴG =

(

∂∆s
∂ s

∂∆s
∂ p

∂∆p
∂ s

∂∆p
∂ p

)

=

(

1 ∂∆s
∂ p

0 1 + ∂∆p
∂ p

)

, (6.21)then the Jaobian of the extended mapping ĴE is given by ĴE = ĴG◦ĴB. The determinantis given by det ĴE = det ĴG det ĴB = 1 +
∂∆p

∂ p
, (6.22)
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80 6. Extended ray dynamis: inluding wave orretions in the ray piturewith det ĴB = 1, as billiards are Hamiltonian systems. The extended mapping is thus ingeneral not area-preserving, and this is entirely due to the FF; the GHS is a Hamiltonianorretion. The trae is given bytr ĴE = tr ĴB +
∂∆s

∂ p

∂ g

∂ s
+
∂∆p

∂ p

∂ g

∂ s
. (6.23)Using det ĴE and tr ĴE, one an disuss the stability of any given �xed point. Theeigenvalues λ± of ĴE are given by

λ± =
1

2
tr ĴE ±

√

1

4
(tr ĴE)2 − det ĴE . (6.24)The �xed point is stable if DĴE

= (tr ĴE)2 − 4det ĴE < 0 (omplex λ±), unstable if
DĴE

> 0 (real λ±) and marginally stable if DĴE
= 0. In �rst order in ∆s, ∆p, one �nds

DĴE
= (tr ĴB)2 − 4det ĴB + 2tr ĴB [∂∆s

∂ s

∂ g

∂ s
+
∂∆p

∂ p

(

∂ g

∂ p
− 4

)]

= DĴB
+ 2tr ĴB [∂∆s

∂ s

∂ g

∂ s
+
∂∆p

∂ p

(

∂ g

∂ p
− 4

)]

.

(6.25)As ∆s and ∆p are small orretions, they only rarely an hange a positive DĴB
into anegative one and vie versa; the stability of a �xed point will thus be the same in theextended billiard dynamis. Only in the marginally stable (DĴB

= 0) ase, a �xed pointis drastially a�eted by the wave orretions, and an invariant line an be broken intostable and unstable �xed points (Poinaré-Birkho�-theorem). An example is disussedin setion 6.4 in the elliptial billiard.If ∂∆p/∂p < 0, a stable �xed point will beome an attrator in the non-Hamiltoniandynamis; if ∂∆p/∂p > 0, it beomes a repeller; the stability is in general not hanged.This may omes as a surprise, as one ould assume that stable �xed points ould onlybeome attrators. Stability of a phase spae struture and the type of the dynamis(ontrating or expanding) are, however, not related: just like an attrator has a basin ofattration (set of points whih onverge to the attrator in forward-time evolution) whihorresponds to the stable island in the Hamiltonian dynamis, a repeller has a basinof repulsion (set of points whih onverge to the repeller in bakward-time evolution)whih also orresponds to the stable island in the Hamiltonian dynamis. That bothattrators and repellers an be found is an interesting feature of the p dependene ofthe FF. The �pinball billiards� [AMS09℄, for example, only show attrators beause aonstant ∂∆p/∂p < 0 is used.The FF breaks the time-reversal symmetry (s, p) → (s,−p) present in the billiardsystem; the partial waves with angles of inidene below the ritial angle get refratedout � when reversing the beam, the now inoming beam has a lot less omponents belowthe ritial angle and does not loose as muh intensity. This sometimes reates onfusion,as the wave dynamis of the system seems to be time-reversal invariant (after all, theMaxwell equations are). This apparent ontradition resolves if one notes that in the



6.4. GHS and loalization of modes in the ellipse 81the wave piture, time-reversal invariane is also broken due to the outgoing boundaryonditions whih are usually imposed. If light an not only get out of the avity, butalso ome bak from in�nity, the wave dynamis is time-reversal invariant, and so is theextended ray dynamis.6.4. GHS and loalization of modes in the ellipseIn this setion, the e�et of the wave orretions on a system whole billiard analog (theellipse) is integrable is studied. One �nds new pairs of stable and unstable periodiorbits, and mode loalization along them. Suh loalization an not be explained fromthe point of view of the onventional ray dynamis, as the periodi orbits are marginallystable in this ase. However, as these orbits turn stable and unstable in the extended raydynamis, the loalization is easily explainable as sarring or loalization on stable is-lands. By alulating mode frequenies for di�erent ellipse eentriities, it is shown thatthe loalization of modes along periodi orbits happens at avoided resonane rossings.6.4.1. The open ellipseIn ontrast to the elliptial billiard, the dieletri ellipse is not integrable, as the Helmholtzequation only separates for hard-wall boundary onditions [Nö97℄. As the wave orre-tions GHS and FF only appear beause of the openness of a avity, the extended raydynamis of the ellipse should re�et this non-integrability.Figure 6.9 shows the phase spae of the ellipse at e = 0.649. Far way from theritial line, where the FF is small, the dynamis is approximately Hamiltonian, andsome invariant tori persist � thus, WGMs an still be found. In the leaky region, thedynamis is repulsive, but bouning-ball strutures still exist as transients; as rays followsuh a line for many bounes, mode loalization on these strutures an still happen.Beause of the orretions, some invariant lines are broken up, giving rise to the stableand unstable period four orbits. This is an e�et of the GHS alone [UWH08℄. It isonsistent with the Poinaré-Birkho� theorem, where a Hamiltonian orretion breaksinvariant tori into pairs of stable and unstable periodi orbits.Figure 6.10 shows emerging Husimi funtions for two modes in the e = 0.649 ellipsetogether with the orresponding periodi orbits; the loalization an be learly seen. Asimilar senario is valid for the e = 0.845 ellipse. There, an additional stable island(orresponding to a �bowtie� orbit) and an unstable periodi orbit appear; there is alsoloalization along them, as shown in Fig. 6.11.This loalization along periodi orbits in the open ellipse would be di�ult to un-derstand from a onventional ray-dynamial point of view. Basially, there are twomehanisms whih an lead to suh loalization: sarring [Hel84℄, whih in haoti sys-tems leads to loalization along unstable periodi ray trajetories, and loalization onstable islands (aording to the �semilassial eigenfuntion hypothesis� [Per73, Ber77℄).Both mehanisms are not appliable here, as in the losed ellipse, the periodi orbits inquestion are marginally stable and thus neither stable nor unstable. The onventional
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Figure 6.11.: Emerging Husimi funtions for modes loalizing on stable (�bowtie� toppanel) and unstable (bottom panel) periodi orbits in the e = 0.845 el-lipse. The blue line marks the ritial line. The stable and unstable orbitpositions are shown as green dots; the stable island is shown in red. Thereal-spae mode patterns are shown in the insets; the periodi orbits areshown as blak lines.
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I =
1

2π

∮ ds p = mh̄. (6.26)with p = nkh̄ sinχ and thus A =
∮ ds p = 2πnkI, one �nds

m =
I

h̄
=
nkh̄A

2πh̄
=
nkRA

2πR
. (6.27)From Eq. (6.27) and the estimated island areas, one �nds m ≈ 0.04 for the retangleisland at kR = 8.2 and m ≈ 0.1 for the bowtie island at kR = 6.5. As m is smaller
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Figure 6.13.: Avoided resonane rossing in the real (top panel) and imaginary (bottompanel) part of kR in the dieletri ellipse at n = 3.3.than one in both ases, one would not expet modes to be able to loalize on the island.However, small islands aommodating modes is a well-known phenomenon; typially,it is possible beause there are antori on�ning the mode, as argued in [WRB05℄ for asoft-wall billiard or in [SLK+08℄ for a deformed miroavity. Here, the on�nement isnot due to antori, but to tori : the unbroken invariant lines of the open ellipse.6.4.3. Avoided resonane rossings in the dieletri ellipseThe stable islands and unstable periodi orbits are present at di�erent eentriities e ofthe ellipse, not just at the ones shown in setion 6.4.1 (in partiular, the period-4 islandseems to be present at all deformations 0 < e ≤ 0.85). However, loalization of modesalong them only happens at partiular e values. If one alulates mode frequenies fora variety of e values around those with loalization along periodi orbits, as shown inFigs. 6.13 and 6.14, one �nds that this loalization happens at an avoided resonanerossing (ARC) between two omplex mode frequenies. Integrable systems typiallydo not show avoided rossings; as their nearest-neighbor level distribution is a Poissondistribution [Stö00℄, they allow for muh more degeneray of levels, whih leads to levelrossings, not avoided rossings. ARCs are thus a strong sign for the non-integrabilityof the open ellipse.ARCs in miroavities are of interest beause they an lead to the formation of long-lived states with diretional output [WH06℄ by oupling a long-lived, non-diretionalstate to a short-lived, diretional one. This senario also happens in the ellipse; anexample is shown in Fig. 6.13. The modes orresponding to the points labeled A � Fare shown in Figs. 6.15 and 6.16. The hybridized modes A,B and E,F in Fig. 6.15 areof the bouning-ball type. The modes C and D at the ARC are not of this type, butloalizing along periodi orbits whih are stable (mode C) or unstable (mode D) in theextended ray dynamis. Mode C has a muh higher Q fator than mode D.In Fig. 6.16, the modes A, B and E, F are of the whispering-gallery type, but the
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Figure 6.15.: Modes orresponding to the points A � F in Fig. 6.13. While A, B and E,F are bouning-ball like modes, C and D loalize along periodi orbits (redlines), whih are stable (C) and unstable (D) in the extended ray dynamis.
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Figure 6.16.: Modes orresponding to the points A � F in Fig. 6.13. While A, B andE, F are whispering-gallery like modes, C and D loalize along periodiorbits (red lines), whih are stable (C) and unstable (D) in the extendedray dynamis.modes C and D at the ARC are again loalizing along periodi orbits. As the imaginaryparts of kR ross in this ase (see bottom panel of Fig. 6.14), the modes C and D havesimilar Q fators.At an ARC, the two modes whose frequenies ome lose hybridize; the modes at theARC then are superpositions of these modes. Suh a superposition an lead to a wavefuntion whih an be deomposed into a rapidly osillating part and a weakly varyingenvelope. The latter de�nes the loalization pattern, whih an resemble loalizationalong a short periodi orbit. For example, mode D in Fig. 6.15 resembles the di�ereneof modes B and A: there is no intensity in the enter of the avity, only at the top andbottom parts and near the points of highest urvature of the boundary.In onlusion, there are two di�erent ways of understanding the formation of modesloalized on periodi ray trajetories in the ellipse. One is based only on the wavepiture: beause of the openness, the ellipse is no longer integrable, ARCs appear, andhybridization of modes leads to the formation of modes loalized along periodi raytrajetories. The other way is semilassial and based on the extended ray dynamis:beause of the openness, the extended ray dynamis is no longer integrable; the waveorretions lead to the breakup of invariant lines into pair of stable and unstable periodiorbits, and loalization of modes on stable islands and along unstable periodi orbitsis possible. The extended ray dynamis thus an give physial insight into the wavedynamis in this ase where the onventional ray dynamis ould not.6.5. Shift of phase spae struturesIn this setion, the interplay of the GHS and the boundary urvature of a avity isstudied. It leads to a momentum shift of phase spae strutures, whih is alulatedanalytially in setion 6.5.2 and ompared to wave alulations in setion 6.5.3. Whilethis shift appears in all avities with non-vanishing boundary urvature whih support



6.5. Shift of phase spae strutures 89period orbits when introduing the GHS, the speial ase of the ǫ = 0.2 limaçon isonsidered as am example; the phase spae struture in the ase with the wave orretionsis introdued in setion 6.5.1. In setion 6.5.4, the equivalent of the momentum shift inquantum maps is disussed brie�y.6.5.1. Shift of islands in the limaçonWithout the wave orretions, the ǫ = 0.2 limaçon is mostly regular, with only smallhaoti regions. When the orretions are inluded, more haos appears. Some regularparts persist, in partiular the period-3 orbit, whih now is a (regular) attrator beauseof the non-Hamiltonian FF. Figure 6.17 shows the phase spae of the ǫ = 0.2 limaçonwithout (top panel) and with (bottom panel) the wave orretions. The refrative indexis n = 2, kR = 14, and the polarization is TM. Figure 6.18 shows the di�erent types ofdynamis present in the system with wave orretions. Aording to (6.22),det Ê = 1 +
∂∆p

∂ p
, (6.28)regions with a positive derivative of the FF ∆p are repulsive (phase spae volume grows,det Ê > 1), regions with a negative derivative are attrative (phase spae volume on-trats, det Ê < 1). It is interesting to ompare the phase spae positions of the period-3struture with and without the phase spae orretions. The period-3 island in thelosed limaçon is loated right at the ritial line; it is thus strongly a�eted by theGHS and a little less strongly by FF. In Fig. 6.19, the two positions are ompared. Itis lear that the position of the period-3 attrator in the limaçon with GHS and FF isshifted to higher p values, away from the ritial line. The geometrial origin of thisshift is disussed in setion 6.5.2; it is not due to the FF (whih of ourse also hangesthe p value of a given struture) alone, but instead, the main ontribution arises fromthe ombination of the GHS with a non-vanishing boundary urvature.6.5.2. Periodi orbit shiftThe vertial shift of periodi orbits in phase spae an be alulated analytially for thespeial ase of an orbit whih stays periodi with the same periodiity and symmetry(as opposed to the �pithfork�-type bifuration studied in setion 6.6.2, where new orbitswith the same periodiity but broken symmetry appear). For example, in the limaçonat ǫ = 0.2 the period-3 and period-4 orbits are of this type, as shown in Fig. 6.20).The rays are �pushed outwards� from the unperturbed orbits. The �outwards pushing�means that the diretion vetors without and with the orretions (v and v

′) of the raysare parallel. It should be noted that stritly speaking, suh parallelity is not possible ifthe FF is inluded, as the inoming and outgoing angles of the perturbed ray still haveto be the same if it is parallel to the unperturbed ray. However, if one studies periodiorbits far away from the ritial line, where the FF is small, v and v
′ are approximatelyparallel and the reasoning of this setion may still be used.
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∂∆p/∂p. Above the ritial line, the dynamis beomes attrative; theperiod-3 attrator, whih is the strongest one, is indiated in red. Foreven higher p, the Fresnel �ltering is almost zero, whih leads to almostHamiltonian dynamis, as seen for example in the period-4 orbit indiatedin blak, whih is only very weakly attrative. The left panel shows theFF as a funtion of p.
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Figure 6.19.: Period-3 island in the limaçon without GHS and FF (blak dots) andperiod-3 attrator (red dots) in the limaçon with GHS and FF. The ritialline is indiated by the blue line, and the inset shows the periodi orbitsorresponding to the phase spae strutures.
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Figure 6.20.: Stable (left olumn) and unstable (right olumn) period-3 and period-4orbits in the losed limaçon at ǫ = 0.2 (blak urves) and in the limaçonwith kR = 14 inluding GHS and FF orretions (red urves).Let χ denote the angle of inidene without GHS/FF and χ′ the one with them.Using the loal tangent vetors τ , τ ′ at the boune points with polar angles φ, φ′ (theorresponding ar lenghts s, s′ ful�ll s′ − s = ∆s/2 with the GHS ∆s), and the loalnormal vetors ν, ν ′ (see Fig. 6.21), one �nds
sinχ′ = v

′ · τ ′ = v · τ ′ (v||v′)

= (sinχτ − cosχν) · τ ′.
(6.29)The vertial shift an then be expressed as

sinχ′ − sinχ = sinχ (τ · τ ′ − 1)− cosχ(ν · τ ′). (6.30)One an learly see from Eq. (6.30) that the vertial shift is due to the boundary ur-vature: if the urvature vanishes, τ = τ
′ and ν = ν

′ ⊥ τ
′, so that the right hand sideof (6.30) vanishes.If one sets τ ′ = τ +∆τ and ν

′ = ν +∆ν, (6.30) simpli�es to
sinχ′ − sinχ = sinχ (τ ·∆τ )− cosχ (ν ·∆τ ) . (6.31)Using κν = −dτ/ds with the urvature κ for the outwards pointing normal, one anapproximate

∆τ ≈ κ
∆s

2
ν, (6.32)whih leads to

sinχ′ − sinχ ≈ κ
∆s

2
cosχ =

∆s

2ρ
cosχ. (6.33)



6.5. Shift of phase spae strutures 93This periodi orbit shift (POS),
∆pPOS = ∆s

2ρ
cosχ, (6.34)thus depends on the ratio of the GHS ∆s and the loal radius of urvature ρ in thisapproximation. The urvature κ is in polar oordinates given by

κ =
|r(φ)2 + 2r′(φ)2 − r(φ)r′′(φ)|

|r(φ)2 + r′(φ)2|3/2 . (6.35)In the irle with radius R, ρ = R, and one �nds a POS
sinχ− sinχ′ =

∆s

2R
. (6.36)In [HS02℄ (more in detail in [Hen02℄), it was noted that the inlusion of the GHS ata irular boundary an be interpreted as re�etion taking plae at the boundary withangle of inidene χ, but at an �interfae� of larger radius of urvature, with an angle χ′with

χ′ = χ− ∆s

2R
. (6.37)This was used to alulate generalized Fresnel oe�ients for re�etion at the irularboundary. As the authors did not look at modes and rays in avities, but just at Gaussianbeams re�eted only one at the interfae, they did not onsider momentum shifts ofphase spae strutures. By taking the sine of (6.37), one �nds

sinχ′ = sin

(

χ− ∆s

2R

)

= sinχ cos

(

∆s

2R

)

+ sin

(

∆s

2R

)

cosχ

≈ sinχ+
∆s

2R
cosχ.

(6.38)One thus reovers (6.33) in the limit of small ∆s. This expression for the POS an beseen as a generalization of (6.36) for non-irular boundary shapes.Equation (6.30) an also be evaluated diretly, without the help of the approxima-tion (6.32). If the boundary is given by r = r(φ) in polar oordinates, one an alulatethe loal normal and tangent vetors at position φ:
τ =

1
√

r(φ)2 + r′(φ)2

(

r′(φ) cosφ− r(φ) sinφ
r′(φ) sinφ+ r(φ) cosφ

)

,

ν =
1

√

r(φ)2 + r′(φ)2

(

−r′(φ) sinφ− r(φ) cosφ
r′(φ) cosφ− r(φ) sinφ

)

.

(6.39)Using (6.39) and addition theorems for the trigonometri funtions, one �nds
τ · τ ′ =

1
√

r(φ)2 + r′(φ)2
1

√

r(φ′)2 + r′(φ′)2
[cos∆φ (r′(φ)r′(φ′) + r(φ)r(φ′))

+ sin∆φ (r(φ)r′(φ′)− r′(φ)r(φ′))]

(6.40)
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Figure 6.21.: Loal tangent and normal vetors at a boune point of a ray without GHSand FF (blak line) and the orresponding ray with them. The unperturbedray intersets with the boundary at φ ∧
= s, the perturbed one at φ′ ∧

= s′.The GHS ful�lls ∆s/2 = s′ − s, this orresponds to a shift in the polarangles of ∆φ.and
ν · τ ′ =

1
√

r(φ)2 + r′(φ)2
1

√

r(φ′)2 + r′(φ′)2
[sin∆φ (r′(φ)r′(φ′) + r(φ)r(φ′))

− cos∆φ (r(φ)r′(φ′)− r′(φ)r(φ′))] .

(6.41)By inserting (6.40) and (6.41) into (6.30), the vertial shift sinχ′−sinχ an be alulated:
sinχ′ − sinχ = A(φ, φ′)

[(

sinχ
(

R(φ, φ′) cos∆φ+ R̃(φ, φ′) sin∆φ
)

− 1
)

− cosχ
(

R(φ, φ′) sin∆φ− R̃(φ, φ′) cos∆φ
)]

,
(6.42)with

A(φ, φ′) =
1

√

r(φ)2 + r′(φ)2
1

√

r(φ′)2 + r′(φ′)2
,

R(φ, φ′) = r′(φ)r′(φ′) + r(φ)r(φ′),

R̃(φ, φ′) = r(φ)r′(φ′)− r′(φ)r(φ′).

(6.43)(6.43) and (6.33) give results di�ering by less than 1 % for typial values of the GHSand the limaçon boundary urve.Results for the stable and unstable period-3 orbits are shown in Fig. 6.22. The hori-zontal shift due to the GHS is also indiated, as well as the vertial shift due to the FF.Taken together, these three orretions desribe the phase spae shift very well. Fig-ure 6.23 shows the shifted stable and unstable period-4 orbits, where the shift is smallerbeause the GHS is smaller, as one is farther away from the ritial line. Also in thisase, the analytial formula desribes the shift well.As avities with kR ≈ 10 have been studied before, suh vertial shifts should also havebeen seen before when omparing Husimi funtions to period orbit positions. This is, infat, true: in [FYC05℄, an ǫ = 0.15 stadium-shaped avity with n = 3 was investigated.
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Figure 6.22.: (a) Phase spae shifts for the stable period-3 orbit. The boune pointsof the orbits with (red irles) and without (blak triangles) GHS andFF are shown. The dashed lines indiate the phase spae shifts due toGHS and FF; the solid line is the POS alulated aording to (6.42). (b)Magni�ation of (a). () Phase-spae shifts for the unstable period-3 orbit.(d) Magni�ation of ().
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Figure 6.23.: (a) Phase spae shifts for the stable period-4 orbit. The boune pointsof the orbits with (red irles) and without (blak triangles) GHS andFF are shown. The dashed lines indiate the phase spae shifts due toGHS and FF; the solid line is the POS alulated aording to (6.42). (b)Magni�ation of (a). () Phase-spae shifts for the unstable period-4 orbit.(d) Magni�ation of ().



6.5. Shift of phase spae strutures 97At kR ≈ 3.3, Husimi funtions for modes loalizing on a retangular and a diamond-shaped unstable period orbit are shown. The retangular one hits the boundary only atthe half-irle parts, thus ρ = r with the half-irle radius r ≈ 0.9µm; with p ≈ 0.7 onean estimate a periodi orbit shift of ∆p ≈ 0.08. The shift between the maxima of theHusimi funtion and the periodi orbit position is ≈ 0.1; the estimate is thus quite good.In the ase of the diamond orbit, there are two di�erent types of boune points: the �rsttype is loated on the straight-line part of the stadium boundary, whih has κ = 0 andthus yields no periodi orbit shift, as an be seen when omparing again Husimi maximawith the periodi orbit in phase spae. The seond type is loated on the half-irle.Here, one also an estimate ∆p ≈ 0.1 from the Husimi funtion and ∆p ≈ 0.08 as thePOS. The agreement is good again. A similar analysis an be applied to the ǫ = 1.1stadium with n = 1.5 from [FC07℄; there, evaluation of the Husimi distribution yields
∆p ≈ 0.05, whih agrees well with the POS ∆p ≈ 0.04.Another interesting ase is the one of a negative-index avity. As the GHS is nega-tive there [WUS+10a℄, one �nds a negative POS. As an example, one an onsider theunstable period-4 orbit in the ǫ = 0.43 limaçon with positive and negative refrativeindex (|n| = 1.5). The results are shown in Fig. 6.24. The agreement is not as goodas in the previous ases, whih an be expeted, as the approximation of parallel raysfor the orbit without GHS and FF and the one with these orretions is not valid here.This e�et is more pronouned for the negative-index ase, whih is due to the fat thatthe period-4 orbit in this belongs to the leaky region, as the shift is negative. The FFis more pronouned there (it is almost zero for the positive-index ase), whih leads tonon-parallelity of the rays with and without orretions. However, the alulated POSstill agrees qualitatively with the shift seen in phase spae.6.5.3. Loalization of modes on shifted islandsBeause phase spae struture are shifted to higher p values by the POS (in onventional,positive-index avities), modes loalizing on them are farther away from the ritial lineas modes loalizing on the original strutures. In the ase of the period-3 attrator, amode loalizing on the original island would be loated right at the ritial line, whereasa mode loalizing on the period-3 attrator would be above the ritial line, and thuswould be longer-lived. The POS ould thus, in priniple, lead to modes loalizing onertain phase spae strutures whih have a high Q-fator than it ould be expetedfrom ray dynamis alone.The piture, however, is not that simple beause when onsidering the wave orre-tions, one no longer deals with rays but with beams; the orretions thus hange theFresnel oe�ients. In [HS02℄, suh deviations from the Fresnel laws have been studied.The authors show that the deviations, whih are due to the non-vanishing urvature ofthe boundary, an be explained by taking into aount the Goos-Hänhen e�et at a pla-nar interfae; the resulting re�etion oe�ients show a �broadening� with |r| < 1 evenabove the ritial angle. While no analytial formulas exist for suh orreted Fresnellaws, the re�etion oe�ients an be alulated numerially by re�eting a wave paket
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Figure 6.24.: Periodi orbit shifts of the period-4 orbit (blak triangles) in the ǫ = 0.43limaçon with positive (red irles) and negative (green squares) refrativeindex |n| = 1.5. The POS is shown as the solid blak line, the FF as thedashed blak line. On the right, the orbits are depited in real spae.at the interfae:
ψin(x) = ∫ 1

−1

dp einkpxfin(p) → ψout(x) = ∫ 1

−1

dp einkpxfin(p)r(p), (6.44)and alulating the re�etion oe�ient of the wave paket as
|r̃|2 =

∫∞
−∞ dx|ψout(x)|2
∫∞
−∞ dx|ψin(x)|2 . (6.45)

r is the Fresnel oe�ient for a ray at a planar interfae, and the wave pakets arede�ned as in setion 6.2.1. Evaluation of Eq. (6.45) for all inoming angles yields themodi�ed re�etion oe�ient |r̃|. Figure 6.25 shows how the shifted period-3 struturerelates to this new re�etion oe�ient. It an be seen that even when aounting forthe deviations, the period-3 attrator is still loalized in a region with approximate totalinternal re�etion (|r̃| ≈ 90%).One an thus �nd long-lived modes loalizing on the period-3 attrator, and, as itturns out, also on the orresponding unstable period-3 orbit. Figure 6.26 shows Husimifuntions and modes patterns (alulated with the BEM) of suh modes. The �lled dotsindiate the orbits in the ase with wave orretions, the open irles indiate the orbitsin the ase without wave orretions. The agreement with the shift is good, whih analso be seen in the mode pattern itself. The Q fators are 682 (mode loalizing on thestable orbit) and 460 (mode loalizing on the unstable orbit).Are these Q fators �high�? Certainly not by the standards for laser appliations,where typially Q = 104 an be ahieved. But they are high ompared to what an be
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Figure 6.25.: Main panel: period-3 island and attrator as given in Fig. 6.19. The olorsale orresponds to the value of the modi�ed re�etion oe�ient |r̃|. Onthe left, the Fresnel re�etion oe�ient |r| (dashed line) and modi�edre�etion oe�ient |r̃| (solid line) for kR = 14.expeted from the ray dynamis without orretions alone. Following [HS02℄, one analulate the Q fator from the re�etion probability R̃ of a given ray in a irular avitywith radius Rc (diret tunneling into the leaky region). Re�etions happen with a rate
γr =

c

2nRc cosχ
, (6.46)whih an be related to the intensity deay rate γI by

|R|tγr = e−tγI → γI = −γr ln |R| = − c ln |R|
2nRc cosχ

. (6.47)
|R| is the absolute value of the re�etion oe�ient. γI in turn is related to the Q fatorvia

Q =
cRe(k)
γI

= −2n cosχRe(kRc)

ln |R| . (6.48)With n = 2, p = 0.5 (|r̃| ≈ 0.5 at this point), one �nds Q ≈ 72, whih is almost tentimes lower than the Q fators for the modes loalizing on the period-3 attrator. As theperiod-3 attrator in the extended ray dynamis is loated at p ≈ 0.6, one an estimatethe Q fator in the extended ray dynamis as Q ≈ 225, whih also is lower than the Qfators of the modes loalizing on the period-3 orbits, but loser to the atual order ofmagnitude. The deviation may be due to the fat that one does, in fat, not deal witha irular boundary here. So, the modes loalizing on �shifted� phase spae struturesare �high� by omparison. The period-4 stable and unstable orbits also experiene ashift; there are also modes loalizing on them. An example is shown in Fig. 6.27. The
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Figure 6.26.: Outgoing Husimi distributions for a mode with kR = 13.9−0.01i loalizingon the stable period-3 orbit (top panel) and a mode with kR = 13.9−0.015iloalizing on the unstable period-3 orbit (bottom panel). The stable andunstable orbits are indiated with red �lled dots; blak triangles are theorresponding orbits without wave orretions. On the right, the modepatterns are shown.



6.5. Shift of phase spae strutures 101agreement is again good, but harder to see than in the period-3 ase beause the shiftis smaller.6.5.4. �Periodi orbit shift� in quantum mapsEven though the POS has been derived for billiards, it also arises in maps whih areamended by a orretion ∆s. The typial example of a map is the Chirikov standardmap [Chi79℄, whih an be written as
pj+1 = pj +K sin qj ,

qj+1 = qj + pj+1.
(6.49)The onstant K an be varied from zero to in�nity, whih leads to a KAM transitionfrom regular behaviour (K = 0) to haoti dynamis (K ≈ 1). For K = 0, the standardmap is very similar the motion of a partile with mass one in a irular billiard, as

p = onst.Introduing a orretion ∆s = ∆s(pj) to the standard map, one �nds the �extendedstandard map�
pj+1 = pj +K sin qj ,

qj+1 = qj + pj+1 +∆s(pj+1).
(6.50)It an be already guessed from Eq. (6.50) that ∆s an at as a orretion not only of q,but of p: it an be rewritten as

p̃j+1 = pj +K sin qj +∆s(pj),

qj+1 = qj + p̃j+1

(6.51)by de�ning an amended new momentum p̃j+1 = pj+1+∆s(pj). This only works beauseof the simpliity of the qj+1 equation; the mapping an not be rewritten this easily in abilliard mapping.The standard map an be quantised by introduing a Hamiltonian, H(q, p) = T (p) +
V (q), suh that

pj+1 = pj −
∂ V

∂ q

∣

∣

qj ,

qj+1 = qj +
∂ T

∂ p

∣

∣

pj+1
;

(6.52)one an hoose T (p) = p2/(2m) and V (q) = K cos q. The time evolution operator of thequantum standard map is then given by
Û = exp(−iĤt/h̄), (6.53)with Ĥ the Hamiltonian operator orresponding to the lassial Hamiltonian ful�ll-ing (6.52). The extended standard map an be quantized in the same way, using
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Figure 6.27.: Outgoing Husimi distributions for a mode with kR = 14−0.0003i loalizingon the stable period-4 orbit (top panel) and a mode with kR = 14−0.0001iloalizing on the unstable period-4 orbit (bottom panel). The stable andunstable orbits are indiated with red �lled dots; blak triangles are theorresponding orbits without wave orretions.
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Figure 6.28.: Chirikov standard map for K = 0.5 without (left panel) and with (rightpanel) a onstant orretion ∆s = 0.1 · 2π.
T ′(p) = T (p) + Φ(p), suh that

qj+1 = qj +
∂ T ′

∂ p

∣

∣

pj

= qj +
∂ T ′

∂ p

∣

∣

pj+1
+∆s(pj+1).

(6.54)
∆s is thus given by ∆s = ∂Φ/∂p, in omplete analogy to the Artmann result (6.14),where∆s also is given as the p-derivative of a funtion φ (in this ase, the eletromagnetire�etion oe�ient phase). In the speial ase ∆s = onst (not depending on p),Eq. (6.53) an be written as
Ûext = exp(−iT ′(p)/h̄) exp(−iV (q)/h̄) = exp(−ip∆s/h̄) exp(−iT (p)/h̄) exp(−iV (q)/h̄).(6.55)Splitting the exponentials is possible beause T (p), V (q) ommute, as well as p and T (p).The map of the extended standard map is thus given by

Ûext = exp(−ip∆s/h̄)Û , (6.56)with Û the map of the usual standard map. It is thus give by applying the usual standardmap, and then adding the translation operator exp(−ip∆s/h̄). It is thus lear also fromthe quantum version why the orretion ∆s leads to a shift in the momentum diretionof phase spae. Figure 6.28 shows an example of the phase spae of the standard mapwith and without a onstant orretion ∆s = 0.1 · 2π at K = 0.5. Here, the whole phasespae struture shifts (down in this ase), not just the periodi orbits.In the standard map, one �nds ∆pPOS = ∆s by omparing Eqs. (6.50) and (6.51). Thisis the ase beause of the simple dependene of qj+1 on pj+1. As the billiard mapping



104 6. Extended ray dynamis: inluding wave orretions in the ray piturean be written down expliitly in the irle, one an try to extrat the POS from it in asimilar way. The extended mapping is given as
pj+1 = pj,

qj+1 = qj + 2ρ arccos pj+1 +∆s;
(6.57)(ρ is the irle radius), rewriting it as

p̃j+1 = pj +∆pPOS,
qj+1 = qj + 2ρ arccos p̃j+1

(6.58)by de�ning a new momentum p̃ = p + ∆pPOS. One an insert the equation for p̃j+1 inthe one for qj+1, whih yields
qj+1 = qj + 2ρ arccos(pj +∆pPOS) ≈ 2ρ arccos pj +

2ρ∆pPOS
√

1− p2j

. (6.59)In the last step, arccos(pj +∆pPOS) has been Taylor expanded, as ∆pPOS is supposed tobe a small orretion. Comparing to Eq. (6.57), and using pj = sinχj , one �nds
∆pPOS = ∆s

√

1− p2j

2ρ
= ∆s

cosχj

2ρ
, (6.60)in omplete agreement with Eq. (6.34).6.6. E�ets of Fresnel �lteringWhile the e�ets of the GHS have been studied in the previous setions, this setioninvestigates the e�ets of the FF. In setion 6.6.1, a feature of haoti systems at small

kR values is studied: in this ase, a haoti attrator is formed whih losely resemblesthe Fresnel-weighted unstable manifold of the haoti repeller of the losed system. Insetion 6.6.2 it is shown that the FF an lead to the formation of periodi orbits whihare di�erent for lokwise and ounterlokwise travelling rays; this is a onsequene ofthe time-reversal invariane breaking due to the FF.In the last setions, the e�et of the wave orretions on regular strutures has beeninvestigated. Here, their e�et on haoti strutures is studied. As example systems,the limaçon at a higher deformation (ǫ = 0.43, the �standard� value for diretionalemission) and a �deformed limaçon� [SFL+09, SGS+10℄, whih also has been fabriatedas a mirodisk resonator.6.6.1. Far �eld patterns, the haoti saddle, and attratorsIn small (5 < kR < 10) avities [SGS+10℄, a rossover from diretional to bi-diretionalemission and bak has been observed. One ould guess that these deviations from the
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Figure 6.29.: Far �eld patterns for the ǫ = 0.43 limaçon without the wave orretions,with only the FF inluded (kR = 7) and with both GHS and FF inluded.The refrative index is n = 3.3.ray-dynamial predition [WH08℄ are due to the wave orretions. This assumption isnot orret, as Fig. 6.29 shows: inluding the orretions does not lead to signi�anthanges in the far-�eld patterns, let alone bi-diretional emission. As the wave orre-tions typially a�et the phase spae struture drastially, it is surprising that they donot seem to a�et the far �eld patterns signi�antly � and more so, why inluding onlythe FF does not seem to hange the far �eld pattern at all. Some insight into this isgained by omparing the phase spae with only the FF with the haoti saddle withoutthe wave orretions, as shown in Fig. 6.30. They have almost the same struture, whihof ourse leads to similar far �eld patterns. Sometimes, strutures like the haoti saddlehave also been referred to as �attrators�, as they lead basially to the same result as anattrator would: if you wait long enough, all intensity will be loalized on it. However,it is important to reognize that haoti saddles arise from Hamiltonian dynamis; thereare no attrators in this ase, and the loalization of intensity is due to the fat thatintensity leaks out of the avity over time. The ray dynamis itself stays Hamiltonian.If, on the other hand, the FF is inluded, the ray dynamis beomes non-Hamiltonian,and attrators an form. Essentially, one has two di�erent approahes leading to similarphase spae strutures: �rst, the ray dynamis is Hamiltonian, but the intensity of a rayvaries, leading to the haoti saddle; the openness is ontained in the re�etion oe�-ients. Seond, the ray dynamis in non-Hamiltonian, but the intensity of a ray staysonstant, leading to the formation of attrators. In this ase, the openness is ontainedin the non-Hamiltonian orretions.That these two approahes lead to similar results is not that surprising given thatthe atual alulations done are very similar. When alulating the haoti saddle,one starts with a uniform distribution of rays in phase spae, and notes the intensityretained; when alulating attrators within the extended ray dynamis, one starts witha Gaussian distribution of rays entered around eah phase spae point and notes wherethey are sattered to. I.e., one basially alulates a �loal haoti saddle� before starting
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Figure 6.30.: (a) Chaoti saddle of the limaçon, alulated using the onventional raydynamis. (b) Phase spae struture of the limaçon with FF (kR = 7). ()Overlay of (a) and (b). The haoti attrator of (b) learly has the samestruture as the haoti saddle in (a). The blue lines mark the ritial linesfor n = 3.3.



6.6. E�ets of Fresnel �ltering 107the ray dynamis.6.6.2. Chiral symmetry breakingAs noted in [AGH08℄, the FF as a time-reversal symmetry breaking wave orretion,an lead to asymmetry between lokwise (CW) and ounterlokwise (CCW) travellingrays, as a CW ray turns into a CCW ray upon time reversal. These e�ets will bestudied in the ase of a avity with the shape of a �deformed limaçon�, whih also hasbeen studied experimentally [SGS+10℄.The deformed limaçon is de�ned by the boundary urve
r(φ) = R(1 + ǫ cosφ)(1− ǫ1 cos(2φ)) + d; (6.61)in addition to the dipolar limaçon deformation, its boundary also ontains a (weaker)quadrupolar deformation. The Poinaé SOS of the deformed limaçon for the typialexperimental parameters

R = 890 nm, ǫ = 0.28, ǫ1 = 0.06, d = 60 nm, (6.62)alulated using the onventional ray dynamis (i.e. no GHS/FF orretions are in-luded), is shown in Fig. 6.31. While the phase spae is mostly haoti for these param-eters, it ontains more regular strutures than the usual limaçon at a similar deformation.The period 3 and 4 orbits are unstable, but bifurations of them are stable (see Fig. 6.31);these orbits are interesting beause they lie in the region of total internal re�etion, butnot far away from the ritial line, and thus an in�uene output diretionality.Figure 6.32 shows the situation for kR = 7. It should be noted that while the al-ulations in this setion inlude both wave orretions, the breaking of the symmetrybetween CW and CCW rays is an e�et of the FF alone, and the formation of pairs ofCW and CCW pseudo-orbits an also be observed if only the FF orretion is inludedinto the extended ray dynamis. One interesting aspet of this asymmetry between CWand CCW rays is that in this ase, it leads to diretional emission whih does not happenin the ase without FF. In the following, modes loalizing on the period-3 orbits will beonsidered; light thus an leak out even if the periodi orbits are above the ritial line.Figure 6.33 shows the situation for the symmetri period-3 orbit. Most light is emittedfrom positions 2 and 3, as the angles of inidene there are nearer to the ritial line.A CW ray will emit light from position 2 in the bakward and from position 3 in theforward diretion, while a CCW ray emits light from position 2 in the forward and fromposition 3 in the bakward diretion. A mode loalizing on the symmetri period-3 orbitis thus expeted to have bi-diretional emission.In the symmetry-broken ase, the situation is di�erent, as Fig. 6.34 shows. In theCW ase, the emission is predominantly from position 2, as the angle of inidene thereis onsiderably smaller that at positions 1 or 3. The emission is into the bakwarddiretion. In the CCW ase, the emission is predominantly from position 3, and againin the bakward diretion. The time-reversal symmetry breaking, whih translates itself
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Figure 6.35.: Husimi distribution for a mode with kR = 11 − 0.03i loalized an theperiod-3 orbit. The red dots mark the boune positions of the CW pseudo-orbit, the blue line the ritial line. On the left, the mode pattern in realspae is shown.into an asymmetry between the boune points 2 and 3, leads to diretional emission inthis ase.The asymmetry between CW and CCW rays an easily be seen in the Husimi fun-tions in this ase, and even the pseudo-orbits an be extrated from the maxima of theHusimi distributions [SGS+10℄. An exemplary Husimi funtion is shown in Fig. 6.35;the agreement with the boune points of the CW pseudo-orbit is quite good.Another interesting feature visible in Fig. 6.32 is that the FF leads to a shift of theperiodi (pseudo-) orbit boune points along the boundary. Just as it has been shownin setion 6.5 that the GHS leads to a periodi orbit shift ∆pPOS in the momentumdiretion of phase spae, the FF also leads to a periodi orbit shift ∆sPOS in the positiondiretion. Unfortunately, this shift an not be alulated analytially as easily, as boththe diretion vetor of the trajetory and the angle of inidene at the orrespondingboune point hange; an approah similar to the one in setion 6.5.2 is not possible.



111
7. Measuring the Goos-Hänhenshift in mirowave avitiesSo far, mirodisk avities, whih support modes with frequenies from the mid-infraredto ultraviolet ranges, have been disussed. As all relevant quantities only depend on thesize parameter kR, they also apply to larger avities and modes with longer wavelengths.One example are mirowave avities: with sizes of several 10 m, they support modeswith frequenies in the GHz range, orresponding to size parameters of the order of
kR ≈ 100. In partiular, the e�ets of wave orretions, whih have been disussedin hapter 6, an also be observed in dieletri mirowave avities. One advantage ofsuh systems is that the full wavefuntion inside the avity an be easily measured;so far, equivalent measurements are not possible in miroresonators. In this hapter,a setup for the experimental observation of the Goos-Hänhen e�et in a mirowavebilliard is introdued. Setion 7.1.1 introdues mirowave avities in general, whereassetion 7.1.2 disusses the measurement tehnique whih allows the extration of thefull wave funtion. The experimental setup is introdued in setion 7.2.1 and results areshown in setion 7.3.All experiments disussed in this setion have been performed by the author in ollab-oration with the group of Prof. Hans-Jürgen Stökmann at the university of Marburg.7.1. Mirowave billiard experiments7.1.1. Mirowave billiardsMirowave billiards (open and losed) have been used as model systems for quantumhaos for a long time. The �rst experiments were reported in [SS90℄; similar results arefound in [Sri91℄, [SS92℄, and [GHL+92℄. The �rst two referenes also feature wavefuntionmeasurements in addition to resonane frequenies. Measurements inluding the phaseof the wave funtion are disussed in [SSS95℄.Mirowave resonators are typially several tens of entimeters in diameter and severalmillimeter high; they are thus nearly two-dimensional. In fat, if one onsiders frequen-ies below νmax = c/(2h) (c is the speed of light in the resonator, and h its height),no modes an propagate in the z diretion, as h < λ/2 with the wavelength λ. For hin the mm range, νmax is around 20 GHz; suh frequenies an be easily exited withmirowave antennas. Dirihlet boundary onditions are realized by metalli (often brassor aluminium; in order to maximize the re�etion, superonduting avities, often madeof niobium, an be used) boundaries. If one wants to study dieletri avities, Te�on



112 7. Measuring the Goos-Hänhen shift in mirowave avitiesis ommonly used as a material. It has low absorption for mirowaves in the relevantfrequeny range and a refrative index n = 1.44.The main idea of measurements in mirowave avities omes from sattering theory.There, the amplitudes bj of the outgoing waves are onneted to the amplitudes of theinoming waves aℓ by a sattering matrix Sjℓ:
bj =

∑

ℓ

Sjℓaℓ. (7.1)This sattering matrix is related to the Green funtion of the billiard,
Sjℓ = δjℓ − iγG(rj, rℓ, k)

= δjℓ − iγ
∑resonanes kn

ψ(rj)ψ(rℓ)

k2 − k2n
.

(7.2)
k is the wave number one is measuring at, kn are the omplex wave numbers of theresonanes of the avity, and ψ(ri) are the wave funtions at the positions ri. γ isa oupling onstant related to the geometry of the antenna used for measuring wavefuntions; it an be obtained by measuring the transmission amplitude between theantennas at positions rj and rℓ diretly, without sattering by the billiard.Re�etion measurements (measuring Sjj) yield the modulus |ψ(rj)| at the position rjof the measuring antenna. If one wants to measure the phase of ψ as well, an additionaltransmission experiment has to be performed; how the full sattering matrix is measuredis desribed in the next setion. Equation (7.2) holds for resonanes whih do not overlapstrongly in frequeny.If one now exites inoming waves with an antenna at a �xed position rℓ and measuresre�eted and transmitted waves with a movable antenna whih is moved to di�erentpositions rj, a spatially resolved wave funtion an be measured.7.1.2. Vetorial network analysisBy using a vetor network analyzer (VNA; the Marburg group uses an Agilent 8720ESVNA), the full sattering matrix Sjℓ an be measured. The priniple is shown in Fig. 7.1.Eah of the two hannels has a referene signal; both the input signal and signal aftersattering are measured with respet to this referene, whih enhanes auray. Onhannel one, the signal a1 is used as input. The re�eted signal S11a1 is measured as well.On hannel two, the transmitted part of a1, S21a1, is measured, but in addition, anothermeasurement with input signal a2 and re�eted part S22a2 is done. The transmitted partof a2, S12a2, is measured on hannel one. Thus, by doing both re�etion and transmissionexperiments on the two hannels, all aℓ, bj are measured, and the full sattering matrix
Sjℓ an be extrated. Figure 7.2 shows an exemplary measured re�etion (top panel)and transmission spetrum.Systemati errors due to phase or frequeny hanges upon re�etion, transmission,or diretly at the onnetion between able and port or able and antenna, as well aserrors due to leaking an be orreted by using a alibration proedure before starting
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∆ sFigure 7.3.: Prinipal idea for GHS measurements in a retangular mirowave avity.The antenna reates a wave paket whih is re�eted at the bottom avityboundary; the GHS ∆s is the shift between the inoming and outgoing wavepakets.measurements. In this ase, measurements are performed while onneting di�erentgauged standards to the VNA. Details of the setup and the alibration proess an,e.g., be found in [Bar01℄. The omputer ontrol of the setup and data aquisition aredesribed in [Kuh98℄.7.2. Measurements of the Goos-Hänhen shift7.2.1. Basi idea for measurementsThe most simple way of measuring the GHS in a mirowave avity is depited in Fig. 7.3.The avity is retangular in this ase; re�etion thus happens at a planar interfae. Anantenna exites a wave paket, whih travels to the bottom part and is re�eted. TheGHS ∆s an diretly be extrated as the shift between inoming and outgoing waves.Figure 7.4 shows the idea of GHS extration from measured data in more detail. Itis possible to extrat Poynting vetors Sin and Sout of the inoming and outgoing wavefuntions at eah point r = (x, y) in spae from the measured wave funtions. As wavepakets with a lear propagation diretion should be generated, averaging these overthe full measured wave funtions yields average Poynting vetors 〈Sin〉, 〈Sout〉 whih arerepresentative of the wave funtion. They are given by

〈Sin (out)〉 = 1

NxNy

Nx
∑

i=1

Ny
∑

j=1

Sin (out)(xi, yj), (7.3)where the xi, yj are the positions on whih Sin (out) values have been measured. Nx(y) isthe number of x(y) positions measured.
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x2 are intersetions of the straight lines de�ned by the Poynting vetors andaveraged positions with y = y0.The average Poynting vetors de�ne the propagation diretion of the inoming andoutgoing waves. Together with the position rin = (xin, yin) on the inoming wave (rin isthe average over all positions at whih the inoming wave is measured), 〈Sin〉 de�nes astraight line

(

x
y

)

=

(

xin
yin)+ t 〈Sin〉. (7.4)The intersetion of this straight line with y = y0 yields the position x1 where the inomingwave hits the avity boundary. Analogously, the position x2 where the outgoing wavestarts at the boundary an be alulated by interseting the straight line

(

x
y

)

=

(

xout
yout)+ t 〈Sout〉 (7.5)with y = y0. The GHS is then given by ∆s = x2 − x1.7.2.2. Beam generationThe theory for the GHS desribed in setion 6.1 only applies to Gaussian beams. Mi-rowave antennas, however, only produe spherial waves. One thus needs to generatebeams from these spherial waves. The generation of plane waves an be easily donebeause the superposition of N spherial waves with wave number k and enters (xj , yj)on a straight line reates a wave funtion

ψ(x, y) =

j=N/2
∑

j=−N/2

exp
[

ik
√

(x− xj)2 + (y − yj)2
]

√

(x− xj)2 + (y − yj)2
(7.6)



116 7. Measuring the Goos-Hänhen shift in mirowave avitieswhih approahes a plane wave if N goes to in�nity. Examples for di�erent N values areshown in Fig. 7.5 for k = 5 m−1 and spherial wave enters (xj , yj) with xj = x0+jd/
√
2,

yj = y0 − jd/
√
2 with d = 0.5 m and x0 = 40 m, y0 = 5 m. In this ase, theresulting plane wave travels with a propagation diretion of ∼ 45 degrees to the bottomleft. N = 20 seems to yield a su�iently plane wave front, whih also an be seen in themeasured wave fronts in Fig. 7.14 and Poynting vetors in Fig. 7.15 in setion 7.3.1, eventhough the ross-setion at x = 30, y = 3.75 shown in the bottom panel of Fig. 7.5 doesnot look ompletely like a plane wave. In an experiment, the di�erent spherial wavesgenerated by the antennas will not all have the same phases even if the same antennais used to generate them; random phase �utuations an our beause the antenna isnot onneted in preisely the same way, whih leads to a di�erent apaity and thus adi�erent phase. However, this does not perturb the formation of a plane wave muh, asFig. 7.6 shows. There, Eq. (7.6) has been used with the same parameters as in Fig. 7.5,but eah term in the j-sum has been multiplied with a phase fator exp(iρj), where ρj isa random number between zero and 2π (the phases in the experiment typially will notvary this muh, but the �worst ase� is studied here). The resulting wave for N = 20still is to a good approximation plane; even random phase �utuations do not destroythis property.The propagation diretion of a plane wave generated from spherial waves an bein�uened by adding a phase fator to eah spherial wave. In this ase, the phases arenot random, but funtions of the position j of the individual spherial wave in the array:
ψ(x, y) =

j=N/2
∑

j=−N/2

exp
[

ik
√

(x− xj)2 + (y − yj)2 + iφ(j)
]

√

(x− xj)2 + (y − yj)2
. (7.7)Figure 7.7 shows plane waves with di�erent phase funtions φ(j) and their propagationdiretions. By varying φ(j), one an thus ahieve propagation diretions whih lead tore�etion under di�erent angles of inidene. I.e., φ(j) = j leads to re�etion with anangle below the ritial angle χr ≈ 44 degrees for Te�on with n = 1.44, φ(j) = −jleads to re�etion with an angle above the ritial angle, and for φ(j) = 0 the re�etionhappens lose to the ritial angle. Unfortunately, there is no analytial formula for therelation of φ(j) and the resulting propagation diretion; the hoie of the φ(j) funtionstherefore remains somewhat arbitrary.A plane wave, however, does not experiene the GHS upon re�etion, as the GH e�etis a onsequene of the interferene of partial waves with di�erent angles of inidene.Creating a plane wave thus does not su�e if one wants to measure the GHS. Butby superimposing two plane waves generated aording to Eq. (7.7) with di�erent φ(j)funtions orresponding to a small di�erene in their propagation diretions leads to abeam just like the one assumed in the derivation of the Artmann result (see setion 6.1.1):

ψ(x, y) = ψ1(x, y) + ψ2(x, y) ≈ exp (ikp1x) + exp (ikp2x) , (7.8)with pm = sinχm ∼ Sm,x, where Sm,x is the x omponent of the Poynting vetor of
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x = 30, y = 3.75.
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Figure 7.6.: Plane wave generated from N = 20 spherial waves with random phasefators. The parameters are the same as in Fig. 7.5.
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Figure 7.7.: Plane waves with generated aording to Eq. (7.7) with di�erent phase fun-tions φ(j). The number of spherial waves is N = 20, the other parametersare as in Fig. 7.5.



7.2. Measurements of the Goos-Hänhen shift 119partial wave m (with m = 1, 2). If p1 and p2 are similar, the Artmann result
∆sTM =

1

nkp

1
√

sin2 χ− 1/n2
(7.9)an be used to predit the GHS.As both partial waves of the beam (7.8) are alulated using the same spherial waveomponents ψj ,

ψ1 =

N/2
∑

j=−N/2

ψje
iφ1(j), ψ2 =

N/2
∑

j=−N/2

ψje
iφ2(j), (7.10)the sum is just given by

ψ = ψ1 + ψ2 =

N/2
∑

j=−N/2

ψj

(

eiφ1(j) + eiφ2(j)
)

. (7.11)It is also possible to reate a Gaussian beam from many plane waves generated byEq. (7.7):
ψ =

∫ 1

−1

dp fin(p)einkpx
=

∫ 1

−1

dp fin(p) N/2
∑

j=−N/2

ψje
iφj .

(7.12)The p integration in Eq. (7.12) has to be done numerially, i.e. has to be approximatedas a sum over di�erent p values pm, eah orresponding to a phase funtion φm(j):
ψ ≈

N/2
∑

j=−N/2

ψj

∑

m

∆pmfin(pm)eiφm(j), (7.13)with ∆pm = pm+1− pm. As there is no analytial formula relation the phase funtion φjto the propagation diretion (and thus to p), �nding the required φm funtion is tedious.In this thesis, only beams onsisting of two plane waves will be onsidered.7.2.3. Experimental setupFigure 7.8 shows the avity used in the experiments. It is a Te�on plate with dimensions50 m (length) × 100 m (width) × 0.5 m (height); modes with frequenies up to
νmax = 30 GHz an thus be treated as two-dimensional. All boundaries exept thebottom one, where the re�etion of the beams happens, are lad with a arbon-basedmaterial (ROHACELL from the ompany Röhm GmbH) whih absorbs mirowaves, asto redue noise reated by multiple re�etions. As the plate is glued to an aluminiumplate and pressed to another plate from below in the experiments, bending of the plate is
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Figure 7.8.: Photograph of the retangular Te�on billiard used in the experiments. Allboundaries exept the one the re�etion happens at are lad with an ab-sorbing material. The billiard is glued to an aluminium plate.no issue. The experimental setup is shown in Fig. 7.9. The billiard is pressed from belowto the table on whih the wave funtions are measured. The �xed antenna (onnetedto one port of the VNA) reates the spherial waves; the wave funtion is measured withthe movable antenna (onneted to the other port of the VNA). It is moved by means ofthree step motors, whih are ontrolled by a omputer. Figure 7.10 shows the movableantenna in more detail. The top plate of the table underneath whih the billiard is plaedis made of aluminium and has holes in it whih are arranged on a retangular grid withdistanes of 5 mm. Wave funtion measurements an only be done at the hole positions:the movable antenna holder moves to the position of a hole and then downwards, so thatthe antenna is sunk into the hole. If the measurement at this position is �nished, theantenna holder moves up again and then to the position at whih one wishes to measurenext. This of ourse limits the spatial resolution of wave funtion measurements, whihan not be better than the hole distane, but on the other hand, it greatly enhanes thepreision with whih the movable antenna an be plaed on the table.As mirowave ables are expensive, it is not possible to plae about 20 antennas on thetable and measure the spherial waves they generate simultaneously � it also would notbe possible to onnet them all to the VNA. Hene, only one �xed antenna is plaed onthe table, the wavefuntion is measured, and the antenna is moved to another position.When wave funtions at enough di�erent positions are measured, they are superimposed,and the plane wave is generated. Additional phase fators an also be added when doingthis superposition. The plane wave is thus given by
ψ(r) =

∑antennas j

ψj(r)e
iφ(j), (7.14)where ψj is the wave funtion measured by antenna j and φ(j) is a phase funtiondesigned to ensure propagation in the right diretion, as desribed in setion 7.2.2. Fig-ure 7.11 shows the positions of the �xed antennas on the hole raster. In the experiments,



7.2. Measurements of the Goos-Hänhen shift 121

VNA

PC

fixed antenna

control
step motor

movable
antenna

holes
plate with
aluminium 

billiard
underneath

Figure 7.9.: Photograph of the experimental setup. Wave funtion measurements aremade with an antenna whih an be moved on a table with three step motors(ontrolling movement in three dimensions). The movable antenna, as wellas the �xed antenna generating the spherial waves, are onneted to a VNA.The antenna movement and data aquisition is ontrolled by a PC.
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Figure 7.10.: (a) Photograph of the movable antenna holder. (b) Close-up photographof the movable antenna while measuring (antenna is sunk into a hole). ()Close-up photograph of the movable antenna after measuring (antenna isnow above the table). (d) Photograph of the mirowave antenna itself.
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Figure 7.11.: Positioning of the �xed antennas on the hole raster on the measuring table.18 antenna positions were used.Measuring the wave funtion at a point in spae takes about 2 minutes. If one wouldlike to measure it on the whole billiard, this would take about 48 days for one antennaposition. Measuring 10 positions would take more than a year; this is not feasible.Therefore, wave funtions are only measured in parts of the billiard, as shown in Fig. 7.12.These parts are suh that the inoming and outgoing wave funtions and their Poyntingvetors an be extrated. In addition, the wave funtion at the interfae is measured.One measurement now takes about 36 hours, and the 18 antenna positions are measuredin about a month.7.3. Results7.3.1. Generation of a single plane waveFigure 7.13 shows wave funtions Re(ψ) alulated from the measured data aordingto Eq. (7.14) with φj = 0 at ν = 15 GHz, orresponding to kR = 157.5. The boundaryof the Te�on billiard is shown, as well as the position of the j = 0 antenna in the middleof the antenna array. It is already lear from Fig. 7.13 that both the inoming and theoutgoing waves have nearly plane wave fronts and travel at an angle of approximately45 degrees to the billiard boundary.As it is di�ult to see details of the wave funtions in the di�erent measured parts ofthe billiard, they are shown individually in Fig. 7.14. From Fig. 7.14, the width of thegenerated plane waves an be estimated. The inoming wave has a width of ≈ 3 m,whih is muh smaller than the ≈ 9 m one would expet from an 18-antenna antenna
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Figure 7.12.: De�nition of the parts of the billiard (dark grey) in whih the wave fun-tions are measured for all antennas in the antenna array. Inoming andoutgoing wave funtions as well as the wave funtion at the interfae, wherere�etion happens, an be extrated. The measured parts are not shownto sale.
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Figure 7.13.: Wave funtions Re(ψ) on the measured parts of the billiard at ν = 15 GHz.The billiard is shown as the gray region; the position of the middle (j = 0)antenna in the antenna array is shown as well.array. The outgoing wave, while less sharply de�ned, has approximately the same width(≈ 4 m). The spatial resolution of 5 mm, whih is given by the hole raster on the table,is learly su�ient to see the struture of the inoming and outgoing waves. The wavefuntion on the boundary looks less well de�ned; with an extension of only 3 m in the
y diretion, the de�ned measuring area probably is too small to allow for a distintionof the inoming and outgoing waves and the penetration of the wave into the regionoutside the billiard boundary. The penetration depth is approximately one wavelength,
λ ≈ 2 m in the ase of the Te�on material with ν = 15 GHz, whih explains whymuh intensity is found outside the billiard. Measuring the wave funtion muh fartheroutside the material would, however, not have been possible beause the table endsapproximately 4 m away from the bottom of the billiard and some spae is required forthe movable antenna to �t in. For GHS extration as desribed in setion 7.2.1, however,only the inoming and outgoing wave funtions are required, and the fat that the sizeof the measured boundary wave funtion is too small is not relevant.Figure 7.15 shows the Poynting vetors extrated for the three measured parts of thebilliard. The positions rin and rout are taken as the middle point of the regions markedby the dashed lines in Fig. 7.14; they are given by

rin = (33.5 m
1.0 m ) , rout = (−19.0 m

0.0 m ) (7.15)for the Poynting vetors in this �gure. As ould already be expeted from the plane wave
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Figure 7.15.: Poynting vetors (red arrows) for the (a) inoming wave, (b) wave funtionon the billiard boundary, and () outgoing wave. In (a) and (), the averagePoynting vetor at rin (out) is shown as well (blak arrow). The blak linein (b) marks the billiard boundary. The averaging in () has been doneover the region marked by the blak lines. The Poynting vetors are saleddi�erently in the three �gures.



128 7. Measuring the Goos-Hänhen shift in mirowave avitiesfronts of the inoming and outgoing waves, their respetive Poynting vetors show a learpropagation diretion. The inoming angle alulated from the averaged Poynting vetoris χ ≈ 47 degrees, the respetive outgoing angle is χ ≈ 45 degrees, whih further supportsthe laim that, in fat, a plane wave travelling at an angle of 45 degrees has been reated.The Poynting vetors of the wave funtion at the boundary, perhaps surprisingly giventhat so little ould be seen in the wave funtion itself, reveal that, in fat, there areinoming and outgoing parts of the wave at the boundary. A part is re�eted at theboundary, but another part penetrates outside the billiard. The penetration depth seemsto be a bit larger than the wavelength of 2 m.The generation of plane waves with one propagation diretion thus works, at least forhigh ν values (ν ≥ 10 GHz; below that value, the wave fronts are less well de�ned andthe extration of Poynting vetors is thus not possible with high auray).7.3.2. Superposition of two plane waves and GHS extrationTwo plane waves generated aording to the sheme disussed in the previous setion annow be superimposed. The GHS of the resulting beam an be extrated and omparedto the Artmann result.Table 7.1 shows the di�erent phase funtions φ1(j), φ2(j) used in this setion andthe angle of inidene χ of the beam onstruted with them aording to Eq. (7.11).The hoie of the φ(j) is of ourse somewhat arbitrary; here, they are hosen suh thatthe j dependene is simple, the di�erene between φ1(j) and φ2(j) is small (as this isthe approximation in the Artmann result), and suh that a range of angles of inideneresults.Figure 7.16 shows Poynting vetors at ν = 15 GHz for the inoming (top panel) andoutgoing (bottom panel) waves for φ1(j) = 0 and φ2(j) = −j/4, orresponding to aninoming angle of χ = 47.6 degrees. The propagation diretion is still well de�ned.The extrated GHS for the inoming angles given in Table 7.1 is shown in Fig. 7.17for ν = 10 GHz and ν = 15 GHz together with the Artmann result (7.11). The errorshown as the error bar is given by the errors in 〈S〉in (out), whih in turn are, as 〈S〉in (out)is an average value, given by the standard deviation. The error δ∆s in ∆s is then givenby error propagation:
δ∆s =

∣

∣

∣

∣

∂∆s

∂ 〈Sin〉x ∣∣∣∣ δ〈Sin〉x + ∣∣∣∣ ∂∆s

∂ 〈Sin〉y ∣∣∣∣ δ〈Sin〉y
+

∣

∣

∣

∣

∂∆s

∂ 〈Sout〉x ∣∣∣∣ δ〈Sout〉x + ∣∣∣∣ ∂∆s

∂ 〈Sout〉y ∣∣∣∣ δ〈Sout〉y. (7.16)The errors are all approximately δ∆s/∆s ≈ 20 % (inoming angles above the ritialangle) and δ∆s/∆s ≈ 50 % (inoming angles below ritial angle). As the GHS belowthe ritial angle is small, relatively larger errors are expeted. Overall, the errors arequite large, whih is mostly due to the unertainties in the average Poynting vetors
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φ1(j) φ2(j) χ (degrees)
8j/9 j 22.5
2j/3 3j/4 27.9
j/2 j/3 35.1
0 j/4 41.4
j/10 0 44.9
0 −j/4 47.6
−j/2 −j/3 55.9
−8j/9 −j 68.9Table 7.1.: Phase funtions φ1,2(j) and the resulting inoming angles χ in degrees asextrated from the experimental data.
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Figure 7.17.: GHS k∆s as extrated from the measured data for ν = 15 GHz (red dots)and ν = 10 GHz (blue triangles). The blak solid line is the Artmannresult, the blak dashed line marks the ritial angle for n = 1.44.
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Figure 7.18.: GHS k∆s extrated from the measured data at ν = 15 GHz (red dots)and ν = 10 GHz (blue triangles). For omparison, the alulated GHS fora Gaussian wave paket with the orresponding frequeny is shown as well(red solid and blue dotted urves).� and even a small hange in the propagation diretion an lead to a larger hange inthe GHS. But overall, the main features of the Artmann result (zero GHS below theritial angle, maximum GHS at the ritial angle, approximately onstant GHS abovethe ritial angle, independene on k) an be seen quite well in the data. Espeiallyat ν = 10 GHz, the agreement above the ritial angle is not so good, and the GHS issystematially higher than the Artmann result predits.The deviations at and above the ritial angle an be explained as being due todeviations from the Artmann form of the inoming wave. The individual waves arenot ompletely plane waves, as they have a width �xed by the width of the antennaarray. If one approximates them as Gaussian, the resulting GHS ∆s an be alulatednumerially, as shown in setion 6.2. In ontrast to the alulations there, no minimal-unertainty beam is used, but the width is given by the experimentally extrated beamwidth σ ≈ 3 m. Figure 7.18 shows the results together with the experimental data for
ν = 10 GHz and ν = 15 GHz. The deviations above the ritial angle are explained verywell by a Gaussian beam pro�le. This is not surprising, as it has been shown by Laiet al. [LCT86℄ that the preise form of the beam envelope does not in�uene the GHSmuh: a retangle pro�le (whih is approximately the form our beams have, as an beseen in the bottom panel of Fig. 7.5) results in a GHS whih is very similar to the oneof a Gaussian pro�le.For omparison, one an also extrat a GHS ∆s from the pure generated �plane waves�without superimposing them aording to Eq. (7.11). After all, the generated �planewave� beams only have a width of a ouple of wavelengths are thus not really goodplane waves; they ould also show a GHS. The phase funtions φ(j) used in this ase
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φ(j) χ (degrees)
j 20.6
8j/9 27.5
j/4 33.6
j/6 38.8
j/8 41.5
0 46.1
−j/4 53.4
−j 69.0Table 7.2.: Phase funtions φ(j) and resulting inoming angles χ for the GHS extrationfrom the generated �plane waves�.are shown in Table 7.2 together with the resulting inoming angles χ.The resulting GHS k∆s is shown in Fig. 7.19 for ν = 15 GHz. While the extrated GHSis not zero, it �ts neither to the Artmann result nor to the result of a Gaussian beamalulation, whih is probably due to the fat that the beam pro�le (see Fig. 7.5) is toodi�erent from a Gaussian pro�le in this ase, and approximately only one propagationdiretion instead of many is present in the beam. The results for ν = 10 GHz are quitesimilar.
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Figure 7.19.: GHS k∆s as extrated from the generated �plane wave� beams withoutsuperposition of two beams for ν = 15 GHz (red dots). The blak solid lineshows the Artmann result, the red dashed lines the result of a Gaussianbeam alulation of the GHS for ν = 15 GHz.





135
SummaryIn this work, ray and extended ray models were investigated in speial optial miroav-ities, namely deformed mirodisk avities; suh avities were introdued in hapter 2.As the dynamis of light rays whih stay inside the avity is equivalent to the dynamisof a lassial partile in a billiard, billiard systems and their nonlinear dynamis weredisussed in hapter 3. Optial modes in mirodisk avities and ray-wave orrespondenewere reviewed in hapter 4.In hapter 5, a suessful ray model was presented for a mirodisk avity with elliptialross-setion and a wavelength-sale �noth� at the avity boundary; this boundary shapesupports long-lived optial modes with highly unidiretional far �eld emission. That thisis the ase an be understood from the ray model alone: whispering-gallery-like rays,whih travel along the boundary for a long time, eventually hit the noth. It sattersthem to the opposite avity boundary, whih for ertain hoies of the eentriity ofthe ellipse, ats like a lens and ollimates the rays in the far �eld. This ombinationof a smooth boundary, allowing long-lived whispering-gallery-like rays, sattering, andollimation leads to the long mode life-times and the direted emission. Chapter 5 alsodealt with optimization of the diretionality depending on parameters like avity shape,refrative index, and noth size and shape. Elliptial avities with noth have beenfabriated by ollaborators at Harvard university and used as resonators for quantumasade lasers; this work ompared their experimental result to the author's own rayand mode alulations, �nding good agreement between them.Chapter 6 introdued an extended ray model, whih inludes �rst-order wave or-retions, the so-alled Goos-Hänhen shift (GHS) and the Fresnel �ltering (FF) e�et.Both orretions manifest themselves as phase-spae shifts; the GHS is a shift in the sdiretion, the FF a shift in p diretion. Using Gaussian beams, both orretions werealulated and the inlusion in the ray dynamis of a avity was disussed. Inlusion ofthem was shown to lead to a variety of phase-spae modi�ations: new stable islands andunstable periodi orbits an be reated, attrators and repellers an form, periodi orbitsan experiene a phase-spae shift ompared to their ounterparts in the onventionalray dynamis, and there may be asymmetries between lokwise and ounter-lokwisetravelling rays. The disussion of these e�ets and the omparison of results of theextended ray dynamis with mode alulations was the main part of hapter 6.Chapter 7 desribed the setup and results of experiments performed by the authorduring a stay at the university of Marburg. The aim was to measure the GHS in amirowave avity; measurements in optial miroavities are di�ult, beause measuringeletrial �eld distributions with a high spatial resolution is non-trivial in this ase. Asthe results for the GHS sale with λ/R (λ being the wavelength and R a typial avitylength sale), suh measurements an also be performed in mirowave avities (where



136 Summarythe wavelengths are larger as in the optial miroavity ase, but the avity sizes arelarger as well; in this ase, high-resolution �eld measurements an be easily managed.In hapter 7, the experimental setup was desribed, the generation of suitable beamsand the extration of the GHS from the experimental data disussed, and the resultswere ompared to numerial alulations of the GHS. Overall, the agreement betweenmeasured GHS values and numerial alulations was quite good.
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A. Numerial alulation of billiarddynamisA.1. Billiard dynamis for arbitrary boundary shapesFor a general billiard boundary urve r(φ), the mapping (s, p) → (s′, p′) an not be alu-lated analytially. Instead, the dynamis has to be alulated numerially. Starting withinitial values (φ, χ) ↔ (s, p), the real spae position (x0, y0) = r0 = (r(φ) cosφ, r(φ) sinφ)an be alulated. The loal tangent τ and (outwards pointing) normal vetor ν a givenby

τ =
1

|dr/dφ| drdφ =
1

√

r2(φ) + r′2(φ)

(

− sinφ r(φ) + cosφ r′(φ)
cosφ r(φ) + sinφ r′(φ)

)

,

ν =

(

−τy
τx

)

,with r′(φ) = drdφ. (A.1)
τ and ν then are normalized and orthogonal. The ar length is given by

s(φ) =

∫ φ

−π

dφ′
∣

∣

∣

∣

d rdφ′

∣

∣

∣

∣

=

∫ φ

−π

dφ′
√

r2(φ′) + r′2(φ′). (A.2)Here, the polar angle φ lies between −π and π. De�nition of φ suh that it is between0 and 2π is, of ourse, also possible; however, values between −π and π are numeriallyonvenient, as this is the output range of artan implementations whih are needed inthe alulations (see Eq. (A.4)).One an then de�ne a diretion vetor (�veloity�) for the ray or partile travelling inthe billiard:
v = v0 [sinχτ − cosχν] ; (A.3)

v0 an be set as unity. In order to �nd the position where the billiard boundary will behit the next time, one has to �nd intersetions between the boundary urve r(φ) andthe straight line (x(t), y(t)) = (x0, y0) + tv; the parameter t is the elapsed time. Onethus has to solve the equation
F (t) ≡

√

x(t)2 + y(t)2 − r

(

arctan
y(t)

x(t)

)

= 0. (A.4)
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Figure A.1.: Calulating the billiard mapping (s, p) → (s′, p′).This an be done using Newton's method, whih here needs a reasonable starting value,as t = 0 is always a possible solution ((x0, y0) is on the billiard boundary by de�nition)whih has to be avoided. A good starting value is found by alulating F (ih) for integers
i and a step size h until a sign hange of F between in and in+1 is found, and taking
t0 = (in+1+ in)h/2. The step size h has to be hosen smaller if the boundary has regionswith high urvature or is non-onvex; for other avities with area one, h = 10−5R seemsto be su�ient, if R is the typial billiard length sale. In billiards with regions of highurvature, h = 10−5ρ with the loal radius of urvature ρ is used. The resulting t0 istaken as a starting point for Newton's method, whih yields a solution ts of (A.4). Thenew position on the boundary is then (x1, y1) = (x0, y0) + tsv. With

tanφ′ =
y1
x1
, sinχ′ = v · τ ′ (A.5)(where τ

′ is the tangent vetor at the position (x1, y1)), φ′ and χ′ (and orrespondingly
s′ and p′) are found. Figure A.1 illustrates the proedure.A.2. Calulation of far �eld patternsIn order to alulate far �eld patterns, one has to �nd the intensity emitted into θ whenstarting from the phase spae position (s, p). Starting from this point with the intensity
I = 1, the billiard mapping is applied, leading to (s′, p′) (orresponding to a polarangle φ and an angle of inidene χ). If χ′ is below the ritial angle for total internalre�etion, Snell's law is applied, leading to an angle of refration η via sin η = n sinχ.The diretion v

′ of the refrated ray is then given by
v
′ = sin ητ + cos ην. (A.6)
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Figure A.2.: Calulation of far �eld patterns from ray dynamis.(see Fig. A.2). The far �eld angle an be alulated as
tan θ =

v′y
v′x
. (A.7)The intensity of the refrated ray is given by I = |t|2I and the intensity of the re�etedray, whih stays inside the avity, is given by |r|2I. r is the omplex Fresnel re�etionoe�ient.

r(χ) =

{

sin(η−χ)
sin(η+χ)

, (TM polarization),
tan(η−χ)
tan(η+χ)

, (TE polarization). (A.8)
η is given by the Snell law, and |t|2 = 1−|r|2. This proedure is iterated until a maximumnumber of ollisions with the boundary has ourred or the intensity inside the avityhas sunk below a threshold value.One measure of diretionality is given by the intensity emitted into the angle region
±∆, i.e.

I±∆ =

∫ ∆

−∆
dθ I(θ)

∫ π

−π
dθ I(θ) (A.9)where I(θ) is the intensity emitted in the θ diretion. Another diretionality measure,whih is sometimes alled U3, is given by

U3 =

∫ π

−π
dθ cos θ I(θ)
∫ π

−π
dθ I(θ) . (A.10)



140 A. Numerial alulation of billiard dynamisA.3. Implementation: billiard lassesThe numerial alulation of billiard dynamis and far �eld patterns is done using aolletion of C++ lasses, all derived from an abstrat base lass, whih implement thedi�erent boundary urves. In this setion, the struture of suh a boundary lass isdesribed as well as seleted of its funtions. The lasses proving funtions for thealulation of the wave orretions and for far �eld alulations are disussed as well.The Boundary lass is an abstrat base lass from whih the di�erent spei� boundarylasses (like Limaon implementing the limaçon shape) are derived. Any boundary shapewhih an be desribed by a urve r(φ) in polar oordinates an be easily implemented.The boundary lasses provide funtions desribing the boundary itself (BoundaryCurvebeing the boundary urve r(φ) itself, TangentVetor the loal tangent vetor τ , et.),and also proedures for the alulation of the billiard mapping: ConvertToCartesian�nds the real spae position (x0, y0) and the veloity v from the phase spae oordinates
φ and χ, StartFinder �nd a starting value for Newton's method, whih is implementedin NumtCal (the Ellipse lass has an analytial alulation of the intersetion in-stead), and so on. The GoosHaenhenShift proedure applies the wave orretions(Goos-Hänhen shift and Fresnel �ltering) to φ and χ. As the boundary lasses onlyimplement the billiard dynamis, no refrative index has to be provided; if the extendedray dynamis inluding GHS and FF orretions is alulated, a refrative index is ofourse impliated by the hoie of a GHS/FF data set. The following listing shows theontents of the Boundary.h �le; all virtual member funtions have to be implementedin the derived boundary lasses whih de�ne a speial boundary.#ifndef Boundary__H#define Boundary__H lass Boundary{publi: // boundary urve and f i r s t d e r i v a t i v evirtual double BoundaryCurve(double phi1)=0;virtual double dBoundaryCurve(double phi1)=0;// t ang en t and normal v e  t o r s , ar l e n g t h a l  u l a t i o nvirtual void TangentVetor(double phi1 , double *tx1 , double *ty1)=0;virtual void NormalVetor(double phi1 , double *nx1 , double *ny1)=0;virtual double ArLenght (double phi1)=0;// f i n d i n g o f i n t e r s e  t i o n s w i th boundary , newpo s i t i o n , new inoming an g l e svirtual double F(double t1, double x1, double y1,double vx1 , double vy1)=0;



A.3. Implementation: billiard lasses 141virtual double dF(double t1, double x1, double y1, double vx1 , double vy1)=0;virtual void ConvertToCartesian(double phi1 ,double theta1 , double *rho1 , double *x1, double*y1, double *vx1 , double *vy1)=0;virtual double tCal(double x1,double y1,doublerho1 ,double phi1)=0;virtual double NumtCal (double x1, double y1,double vx1 , double vy1)=0;virtual void newPosition(double x1,double y1,double vx1 ,double vy1 ,double *x2,double *y2)=0;virtual void newVeloity(double theta1 ,doublerho1 , double phi1 ,double *vx1 , double *vy1)=0;virtual double newTheta (double vx1 ,double vy1 ,double tx1 , double ty1)=0;// Newton ' s method and s t a r t i n g v a l u e f i n d e r f o ri tvirtual double StartFinder(double x1, double y1,double vx1 , double vy1)=0;virtual double Newton(double ts, double x1,double y1, double vx1 , double vy1)=0;// a p p l i  a t i o n o f GHS/FF and  a l  u l a t i o n o f p o l a rang l e from ar l e n g t hvirtual double GoosHaenhenPhi(double *phi1 ,double *s1, double ss, int s_len)=0;virtual void GoosHaenhenShift(double phi1 ,double theta1 , double xi1[℄, double yi1[℄,double yi2[℄, int N1, double ys1[℄, double ys2[℄,double *ar2 , double *theta2)=0;// s t e p s i z e f o r Newton ' s methods ta t i  double onst h_newton =1e-5;s ta t i  double onst h_SF=1e-7;};#inlude "Boundary .pp"#endifMethods for the numerial alulation of the GHS and FF orretions are found in theGHSInterpolation lass, whih also provides the analytial GHS formulas of Artmannand Lai. GHSInterpolation also provides methods for reading the GHS/FF values fromgiven data �les and writing them to arrays whih an be used for interpolation.New boundary lasses an be written easily by hanging the template (Template.ppand Template.h). After hoosing a name (whih should be desriptive) for the new lass,



142 A. Numerial alulation of billiard dynamisone hanges the onstrutor by introduing the parameter(s) desribing the boundaryshape (i.e., deformation parameter(s) if the shape is a deformed irle), if there are any.The boundary urve has to be provided to the BoundaryCurve and dBoundaryCurvemethods; the derivative dr/dφ provided by dBoundaryCurve an be alulated numeri-ally if neessary.For example, the onstrutor of the Limaon lass implementing the limaçon boundaryurve looks like this:Limaon ::Limaon(double e_parameter){ epsilon=e_parameter;}and the BoundaryCurve method looks like this:double Limaon :: BoundaryCurve(double phi1){ double r1;r1=1.0+ epsilon*os(phi1);return(r1);}The dBoundaryCurve method an be implemented using an analytial expression (whihis atually used in the Limaon lass),double Limaon :: dBoundaryCurve(double phi1){ double r1;r1=-epsilon *sin(phi1);return(r1);}as well as using a numerial alulation of the derivativedouble Limaon :: dBoundaryCurve(double phi1){ double r1;double onst h1=1e-10;r1=( BoundaryCurve(phi1+h1)-BoundaryCurve(phi1 -h1))/(2.0* h1);return(r1);}Apart from BoundaryCurve and dBoundaryCurve, no other methods in Template.pphave to be hanged.The boundary urves implemented are shown in Table A.1. As the boundary urves
r(φ) for the ellipse with a double or paraboli noth are quite omplex, they are not



A.3. Implementation: billiard lasses 143displayed in the table; they are given in setion 5.5.5. The RoundedSquare and Round-edHexagon lasses de�ne �rounded� versions of billiards (the square and the hexagon)whose boundaries are given by polygons. For low deformation parameters n and s, thepolygon edges are rounded; they beome less round, and the boundary urves approxi-mate the square and hexagon billiards better, if n, s→ ∞.The methods for alulating far �eld patterns are provided by the FarField lass,whih takes an objet of the Boundary lass and a refrative index as input. It providesre�etion oe�ients (refletionTM and refletionTE) as well as methods for alu-lating the far �eld emission angle θ (FindFarFieldAngle) and the intensity emitted into
±∆ degrees (CalulateIntensityDegrees, ∆ has to be provided as input) as well asthe diretionality measure U3 (CalulateU3). Far �elds an then be alulated usingboth the onventional and the extended ray dynamis.
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lass name boundary urve r(φ)Ellipse 1/

√

sin2 φ
a2

+ cos2 φ
b2Limaon 1 + ǫ cos φDeformedLimaon R(1 + ǫ cos φ)(1− ǫ1 cos(2φ)) + dQuadrupol 1 + ǫ cos(2φ)Multipol 1 + ǫ cos(mφ)ThreePointedEgg 1 + α cos(3φ)RoundedSquare 1/ n

√
cosn φ+ sinn φRoundedHexagon s

√

2/
[(

cosφ− sinφ√
3

)s

+
(

2 sinφ√
3

)s

+
(

cos φ+ sinφ√
3

)s]EllipseNoth √

sin2 φ+ (ǫ cosφ− δ exp(−2(φ− π)2/ϑ2) cosφ)2EllipseDoubleNoth see Eq. (5.23)EllipseParaboliNoth see Eq. (5.25)QuadrupolNoth √

r20 sin
2 φ+ (r0 cos φ− δr0 exp(−2(φ− π)2/θ2) cosφ)2with r0 = 1.0− ǫ cos(2φ).Table A.1.: Class names and boundary urves r(φ) of the boundary urves alreadyimplemented.
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B. Derivation of the HelmholtzequationB.1. Derivation of the mode equationsThe Maxwell equations (in SI units) without free harges and urrents are given by

∇ ·D = 0, (B.1)
∇ ·B = 0, (B.2)
∇× E = −∂B

∂ t
, (B.3)

∇×H =
∂D

∂ t
. (B.4)

c is the speed of light in vauum. The eletri �eld E, the magneti �eld H, the eletridisplaement D, and the magneti �ux B are, in linear isotropi media, related by
D = ǫ0ǫrE, B = µ0µrH (B.5)with the eletri suseptibility ǫr and the magneti permeability µr of the material. Therefrative index is then given by n2 = ǫrµr. The avity modes are solutions with aharmoni time dependene eiωt, Eqs. (B.1)�(B.4) simplify to
∇ · ǫ0ǫrE = 0, (B.6)
∇ ·H = 0, (B.7)
∇× E = iωµ0µrH (B.8)
∇×H = −iωǫ0ǫrE. (B.9)For miroavities, the refrative index usually is pieewise onstant with respet to spae,i.e. it has one value n2 inside the avity and another value n1 outside of it. The avitygeometry is then given solely by the funtion n(r). For r not on the avity boundary,

ǫr and µr are thus onstants. By alulating ∇× (B.8) and ∇ × (B.9), one �nds with
c2 = 1/ǫ0µ0:

∇×∇× E = −∇(∇ · E)−∆E

= −∆E ( as ∇ ·E = 0 with (B.6))
= iωµ∇×H

=
ω2ǫrµr

c2
E, (with (B.9)) (B.10)



146 B. Derivation of the Helmholtz equatione. g.,
∆E = −n2(r)

ω2

c2
E. (B.11)Analogously, one �nds

∆H = −n2(r)
ω2

c2
H. (B.12)At the avity boundary with loal normal vetor ν(r), the ontinuity relations

ν(r) ·
(

n2
1E1(r)− n2

2E2(r)
)

= 0, ν(r) · (H1(r)−H2(r)) = 0,

ν(r)× (E1(r)− E2(r)) = 0, ν(r)× (H1(r)−H2(r)) = 0,
(B.13)hold, meaning that the tangential omponents of E and H are ontinuous aross theboundary, as well as the normal omponent of H. Equations (B.11) and (B.12), togetherwith the relations (B.13), de�ne the optial modes.B.2. Redution of Maxwell's equations in ylindrialgeometryWhen dealing with mirodisks, one is only interested in the �elds in the disk (x−y) plane;the dependene of the �elds on z is not interesting. This means that the two-dimensionaldisk an be viewed as an in�nite ylinder: if the z dependene is not important, one anassume about is whatever is most onvenient. In suh a ylindrial geometry, the (x, y)and z omponents an be regarded as deoupled. Beause of the translational symmetryalong z, the propagation in z diretion is given by a plane wave ansatz ∼ e−ikzz, and the�elds an be separated as

E(x, y, z) = E(x, y)e−ikzz, H(x, y, z) = H(x, y)e−ikzz. (B.14)Inserting this ansatz into the mode equations (B.11) and (B.12) yields
(

∆⊥ + n2e�k2)E(x, y) = 0,
(

∆⊥ + n2e�k2)H(x, y) = 0.
(B.15)Here, the vauum wave number k = ω/c and the e�etive refrative index n2e� = n2− k2zhave been introdued as well as ∇⊥ = ∇− (∂z)ez.In order to simplify things even further, one an deompose the �elds in omponentsparallel and perpendiular to z:

E(x, y) = Ez(x, y)ez + E⊥(x, y),

H(x, y) = Hz(x, y)ez +H⊥(x, y).
(B.16)Inserting this ansatz into the Maxwell equations (B.6)�(B.9), one �nds

∇⊥ · E⊥ = ikzEz (B.17)
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Figure B.1.: Geometry with ylindrial symmetry for mirodisk avities. The disk planeis the (x, y)-plane; ν is a loal normal vetor to the avity boundary. Therefrative index inside the disk is n2, the refrative index outside n1.and
iωµ0µrH = ∇× (E⊥ + Ezez)

= (∇⊥ × E⊥) + [ikzE⊥ × ez + (∇⊥Ez)× ez] .
(B.18)These relations, split up in z and ⊥ omponents, lead to

∇⊥ ·E⊥ = ikzEz, (B.19)
iωµ0µrHz = (∇⊥ ×E⊥)z , (B.20)
iωµ0µrH⊥ = (ikzE⊥ +∇⊥Ez)× ez. (B.21)Similar relations follow from the equations for the magneti �eld H:
∇⊥ ·H⊥ = ikzHz, (B.22)
− iωǫ0ǫrEz = (∇⊥ ×H⊥)z , (B.23)
− iωǫ0ǫrE⊥ = (ikzH⊥ +∇⊥Ez)× ez. (B.24)When Eq. (B.24) is used to eliminate H⊥ from Eq. (B.21), one an �nd a relationbetween E⊥ and Ez and Hz:
E⊥ =

i

n2e� (kz∇⊥Ez − kez ×∇⊥Hz) . (B.25)Analogously, one an �nd a relation between H⊥ and Ez, Hz by eliminating E⊥ fromEq. (B.24) by means of Eq. (B.21):
H⊥ =

i

n2e� (kz∇⊥Hz + kn2
ez ×∇⊥Ez

)

. (B.26)



148 B. Derivation of the Helmholtz equationIt is thus su�ient to solve Eqs. (B.15) for Ez and Hz, i.e. the salar wave equations
(

∆⊥ + n2e�k2)Ez = 0,
(

∆⊥ + n2e�k2)Hz = 0, (B.27)as the other �eld omponents then an be alulated from Ez, Hz. As one typiallydeals either with TM polarization (Hz = 0 for all x, y) or TE polarization (Ez = 0 forall x, y), one only has to solve one salar wave equation, the Helmholtz equation
(

∆x,y + ne�(x, y)2k2)ψ(x, y) = 0 (B.28)for a pieewise onstant refrative index ne� and a salar funtion ψ with ψ = Ez (TM)or ψ = Hz (TE). In this ase, the ontinuity relations (B.13) simplify to
ψ1 = ψ2, ∂νψ1 = ∂νψ2 (TM),
ψ1 = ψ2,

∂νψ1

n2
1

=
∂νψ2

n2
2

(TE), (B.29)with ∂νψ = ν · ∇x,yψ.While the Helmholtz equation (B.28) is valid not only for avities made of positive-index material, but for negative-index avities as well, the ontinuity relations (B.29)have to be modi�ed in the negative-index ase [WUS+10a℄.
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C. Boundary element methodThe boundary element method (BEM) [Wie03℄ is a Green funtion-based method foralulating resonanes of two-dimensional dieletri avities with spatially homogeneousindex of refration. Resonanes an be alulated for avities of arbitrary shape, whihmay be oupled. The refrative index may be omplex, whih an be used to inludethe e�ets of a medium with gain or loss in a simple way.The main idea is to map the two-dimensional Helmholtz equation to a (one-dimensional)integral equation whih an then be solved numerially.C.1. Derivation of boundary integral equationsFigure C.1 shows an exemplary system whose resonanes an be studied using the BEM.It onsists of J − 1 avities with refrative indies nj , interiors Ωj and boundaries Γj =
∂Ωj (whih do not have to be simply onneted). Eah boundary an be parametrizedusing an ar length s, and on eah boundary, a normal vetor ν an be de�ned at eahboundary point. The region outside the avities is ΩJ , bounded by a irle at in�nity
∂ΩJ = I∞. Inside eah region Ωj , the Helmholtz equation holds:

(

∆+ n2
jk

2
)

ψ(r) = 0. (C.1)A solution of this equation yields both the avity resonane wavenumbers k and theorresponding wavefuntions ψ. At eah avity boundary Γj, the following boundaryonditions (quantities with index �in� are inside the region Ωj, quantities with index�out� are outside) hold:
ψin = ψout (both TM and TE polarization),
∂νψin = ∂νψout (TM),
∂νψin/n2in = ∂νψout/n2out (TE). (C.2)

∂ν = ν · ∇
r
is the normal derivative. As modes are often alulated for the simulationof avities for lasers, where only light omes out of the avity, but no light omes in, onean hoose outgoing-wave onditions at in�nity:

ψ(r → ∞) ∼ h(θ, k)
eikr√
r
. (C.3)Even though the Helmholtz equation (C.1) is invariant under time reversal, the outgoing-wave ondition (C.3) is not, and thus introdues solutions whih also violate time-reversalinvariane.
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Figure C.1.: An exemplary system to be studied using the BEM, onsisting of J − 1arbitrarily shaped avities with di�erent refrative indies nj .The Green's funtion is the solution of
(

∆+ n2
jk

2
)

G(r, r′, k) = δ(r− r
′). (C.4)The Green's funtion is just the Green's funtion of an outgoing wave in a mediumwith onstant index of refration (i.e., basially the free spae solution) and knownanalytially:

G(r, r′, k) = G0(r, r
′, k) = − i

4
H

(1)
0 (njk|r− r

′|), (C.5)with the zeroth-order Hankel funtion of the �rst kind H(1)
0 . Calulating

ψ(r)× (C.1)−G0(r, r
′, k)× (C.4), (C.6)one �nds

ψ(r)δ(r− r
′) = ψ(r)∇2G0(r, r

′, k)−G0(r, r
′, k)∇2ψ(r)

= ∇ · (ψ(r)∇G0(r, r
′, k)−G0(r, r

′, k)∇ψ(r)) . (C.7)Integration over the region Ωj and applying Green's theorem yields
ψ(r′) =

∮

Γj

ds [ψ(r(s))∂νG0(r(s), r
′, k)−G0(r(s), r

′, k)∂νψ(r(s))] , (C.8)where s is the ar length around the boundary Γj. The normal derivative of the Green'sfuntion ∂νG0(r(s), r
′, k) an be alulated analytially using properties of the Hankelfuntions [GR65℄:

∂νG0(r(s), r
′, k) =

injk

4
cosαH

(1)
1 (njk|r(s)− r

′|) (C.9)



C.2. Numerial solution of the boundary integral equations 151with
cosα = ν(r) · r− r

′

|r− r′| . (C.10)The limit r′ → Γj in Eq. (C.8) an be performed. The integral has then to be alulatedas a Cauhy prinipal value integral, yielding
ψ(r′) = 2P

∮

Γj

ds [(ψ(r(s))∂νG0(s, r
′, k)−G0(s, r

′, k)∂νψ(r(s))] . (C.11)It an be shown [Wie03℄ that the irle at in�nity I∞ does not give a ontribution. Apartfrom that, there is an equation like (C.11) of eah region Ωj . Equation (C.11) an berewritten as
∮

Γj

ds [B(s′, s, k)φ(s) + C(s′, s, k)ψ(s)] = 0, (C.12)with the integral kernels
B(s′, s, k) =

{

−2G0(r(s), r(s
′), k), TM polarization,

−2n2
jG0(r(s), r(s

′), k), TE polarization.
C(s′, s, k) = 2∂νG0(r(s), r(s

′), k)− δ(r(s)− r(s′))

(C.13)and
ψ(s) = ψ(r(s)), φ(s) =

{

∂νψ(r(s)), TM polarization,
∂νψ(r(s))/n

2
j , TE polarization. (C.14)The boundary onditions, i.e. the fat that ψ and φ have to be ontinuous aross eahboundary Γj , are then build in: eah equation has two ontributions, one from insidethe region Ωj and one from outside the region Ωj (both ontributions are alulated onthe shared boundary Γj); they have the same ψ, φ, but di�erent B and C (beause therefrative index nj enters the integral operators via the Green's funtion). Solution ofEq. (C.12) yields the wavefuntion on the boundary Γj and the resonane wavenumber

k; the full wave funtion an be alulated using Eq. (C.8).C.2. Numerial solution of the boundary integralequationsC.2.1. DisretizationThe boundary is disretized into small boundary elements (BEs) with lengths ∆si, suhthat the length is smaller than the wavelength λ = 2π/(njk) inside the region Ωj , andalso smaller than the loal radius of urvature. Typially, one hooses ∆si/λ ≈ 1/10.Then, the wavefuntion ψ, its normal derivative φ, and the loal normal vetor ν anbe onsidered onstant on a BE. The BEs do not have to have equal lengths; in fat, itis reasonable to optimize the length distribution suh that regions of high urvature are
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Figure C.2.: Illustration of a disretization of the boundary of a avity. The BEs havestarting points s0i , end points s1i , mid points smi , and lengths ∆si.divided into more BEs of smaller length and regions of low urvature into orrespondinglyless BEs. Figure C.2 illustrates suh a disretization. The BEs have starting points s0i ,end points s1i , and mid points smi . The boundary is divided into Nj BEs. Using thisdisretization, the boundary integral equations (C.12) an be written as
Nj
∑

l=1

(Bilφl + Cilψl) = 0, (C.15)with
Bil =

∫ s1
l

s0
l

dsB(si, s),

Cil =

∫ s1
l

s0
l

dsC(si, s),
ψl = ψ(sml ), φl = φ(sml ).

(C.16)
Beause the integral operators are nearly singular, one has to alulate the diagonalelements Bll, Cll separately. This an be done by using the expansion of the Hankelfuntions for small arguments:

Bll ≈
∆sl
π

[

1− ln

(

njk∆sl
4

)

+ i
π

2
− γ

]

,

Cll ≈ −1 +
κl∆sl
2π

.

(C.17)
κl is the urvature at the midpoint sml and γ = 0.577215 . . . is Euler's onstant.



C.2. Numerial solution of the boundary integral equations 153Equation (C.15) an be written in matrix form:










B1
il C1

il

B2
il C2

il... ...
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il CJ
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φ1
l

φ2
l...
φJ
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ψ1
l

ψ2
l...

ψJ
l



























= 0, (C.18)
where Bj

il, Cj
il are the integral kernels in regionΩj and φj

l , ψj
l the respetive wavefuntionson the boundary Γj.For the speial (and most ommon) ase of only one avity, Eq. (C.18) reads

(

Binside
il C inside

il

Boutside
il Coutside

il

)

·
(

φl

ψl

)

= 0. (C.19)Denoting the matrix of the integral operators appearing in Eq. (C.18) as M̂(k) and thevetor of the wavefuntions and their normal derivatives by (φ, ψ)t, (C.18) reads
M̂(k) ·

(

φ
ψ

)

= 0. (C.20)This equation has to be solved for both the parameter k and the vetor (φ, ψ)t. This anbe viewed as a singular value or eigenvalue problem: One has to �nd the parameter k suhthat M̂(k) has a singular value (or eigenvalue) of zero, and then �nd the orrespondingsingular or eigenvetor.C.2.2. Computing resonanes and wave funtionsThe �rst step to the solution of the boundary integral equations is to �nd the reso-nane wavenumber kres, i.e., a k value for whih M̂(k) has an eigen- or singular value ofzero. The matrix itself is alulated by alulating the Bil and Cil bloks; the neessaryintegration over the BEs an be done using a simple integration proedure like Numer-ial Reipe's qromb (Romberg integration) [PFTV92℄. Hankel funtions for omplexarguments are provided by the free slate library (zbesh routine).In order for M̂(k) to have a zero singular- or eigenvalue, detM̂(k) has to be zero.This equation an be solved using Newton's method, whih iteratively improves theapproximate solutions to detM̂(k) = 0 as
kj+1 = kj −

detM̂(kj)

∂[detM̂(kj)]/∂k
. (C.21)



154 C. Boundary element methodBeause alulating determinants, partiularly small determinants, is hard to do au-rately numerially, one an use the identity
ln detM̂ = tr ln M̂ → detM̂ = exp(tr ln M̂), (C.22)whih yields

∂detM̂
∂k

= exp(tr ln M̂)tr(∂ ln M̂
∂k

)

= detM̂tr(M̂−1 · ∂M̂/∂k
)

,

(C.23)whih, put into (C.21), leads to
kj+1 = kj −

1tr(M̂−1 · ∂M̂/∂k
) . (C.24)The inverse matrix M̂−1 and the matrix produt an be e�iently alulated using BLASroutines (zgetri/zgetrf and zgemm).After kres has been found with su�ient auray, the vetor (φ, ψ)t ful�lling (C.20)with k = kres has to be alulated. This an be done either by �nding the left singularvetor to the singular value zero of M̂(kres) (e.g., using the zgesvd routine from LA-PACK) or the eigenvetor orresponding to the eigenvalue zero of M̂(kres) (e.g., usingthe zheevd routine). Eigenvetor alulation is typially a bit faster, the singular valuedeomposition, on the other hand, is typially numerially more stable. After the wave-funtion on the boundary is known, the full wavefuntion in the region Ωj is alulatedaording to

ψ(r′) =

Nj
∑

l=1

ψl

∫ s1
l

s0
l

ds ∂νG0(r(s), r
′, kres)

−
Nj
∑

l=1

φl

∫ s1
l

s0
l

dsG0(r(s), r
′, kres). (C.25)

Far �eld patterns an be alulated by adding up intensities on a irle
R(θ) =

(

R0 cos θ
R0 sin θ

) (C.26)far away from the avities; typially, one hooses R0 ≈ 1000 times the radius of theregion ontaining the avities. The far �eld is then given by
I(θ) = |ψ(R(θ))|2. (C.27)



C.3. Husimi funtions 155C.2.3. More aurate Q-fator alulationFor long-lived modes with high Q fators, the aurate alulation of
Q = − Re(kres)

2Im(kres) (C.28)using the BEM an be di�ult beause the imaginary part of kres is very small; evensmall numerial errors an thus hange Q drastially or even lead to the unphysial resultof a negative Q value (positive imaginary part of kres). Zou et al. [ZYX+09℄ developed amethod whih an improve the auray ofQ fators alulated by the BEM signi�antly.As the imaginary part of the wavenumber k de�nes a lifetime of the avity mode(and subsequently the energy inside the avity and the energy �ow to the exterior) via
τ = −Im(k)/2c, the energy deay an be desribed as
I(t) = I0 exp(−t/τ) = I0 exp [tRe(k)/(Im(k)Re(k)/2c)] = I0 exp(−Qt/Re(ω)), (C.29)with the frequeny ω = ck. This implies

Q = −Re(ω) I(t)d I/d t . (C.30)The energy deay an be alulated using the energy balane of the eletromagneti �eld[Ja75℄: d Id t =

∮

A

dA · S, (C.31)where S is the Poynting vetor S = E × H and the right-hand side is the energy �owthrough a surfae A surrounding the avity. Combining equations (C.30) and (C.31)yields
Q = k2

∫

Ωj
dV n2

j |ψ|2
∮

A
ds Im(ψ∗∂νψ)

, (C.32)where S = Im(ψ∗∂νψ), whih holds for two-dimensional avities, has been used.Even if the error in the imaginary part of kres obtained by the BEM is relatively large,the overall error in kres is small, and the extrated wave funtion ψ is quite insensitiveto small hanges in kres and thus also aurate. Therefore, the Q fator alulated usingEq. (C.32) an be more aurate than the one alulated just using kres.C.3. Husimi funtionsIt is often useful to projet the alulated mode wave funtions to the Poinaré surfaeof setion; this an be done by means of the Husimi distribution. Fortunately, it anbe easily alulated from the wave funtion and its normal derivative on the avityboundaries, whih are alulated anyway if one uses the BEM to �nd modes.



156 C. Boundary element methodThe inoming and emergent Husimi funtions inside the avity region Ωj are givenby [HSS03℄:
H

in/em
j (s, p) =

njRe(kres,j)
2π

∣

∣

∣

∣

−Fjhj(s, p)±
i

kres,jFj

h′j(s, p)

∣

∣

∣

∣

2

, (C.33)with1
hj(s, p) =

∫ smax
0

d s′ψj(s
′)ξ(s, s′, p),

h′j(s, p) =

∫ smax
0

d s′∂νψj(s
′)ξ(s, s′, p),

Fj =

√

nj

√

1− p2,

ξ(s, s′, p) =
1

4
√
σπ

∞
∑

l=−∞

e−injkres,jp(s′+lsmax)e−(s′−s+lsmax)2/2σ2

.

(C.34)
One has the freedom to hoose the width of the minimal-unertainty wave paket ξ;here, σ2 = smax/njkres,j is hosen. The l-sum in Eq. (C.33) whih ensures the orretperiodiity of ξ is, of ourse, numerially only taken from −N to N . N = 1 is mostlysu�ient; another (yet arbitrary) hoie is N = 1 + 20σ/smax.Using the disretization of setion C.2.1, one �nds

hj(s, p) ≈
Nj
∑

l=1

ψl

∫ s1
l

s0
l

ds′ ξ(s, s′, p),
h′j(s, p) ≈

Nj
∑

l=1

φl

∫ s1
l

s0
l

ds′ ξ(s, s′, p); (C.35)
the Husimi funtions (C.33) an thus be alulated diretly from the wavefuntion onthe boundary as found from the BEM.C.4. Boundary element method for negative-indexavitiesIn [WUS+10a℄, the boundary element method has been generalized in order to desribedavities made of negative-index metamaterials (NIMs), i.e. materials where both theeletri permeability ǫ and the magneti permittivity µ are negative. The Helmholtzequation (C.1) remains unhanged, but for µin < 0 inside the avity and µout > 01Note that [HSS03℄ has a typo in the ξ equation: there, the �rst exponential is written as

exp(−ikres . . . ) without the refrative index nj , whih is wrong.



C.4. Boundary element method for negative-index avities 157outside, the boundary onditions read
ψin = ψout (both TE and TM polarization),
1

µin∂νψin = 1

µout∂νψout (TM),
1

ǫin∂νψin = 1

ǫout∂νψout (TE). (C.36)If µ = −1 inside the avity and µ = 1 outside, the only hange in the boundary onditionsompared to (C.2) is a sign in the ondition for ∂νψ; this an be implemented easily bysetting φ = −∂νψ (TM) or φ = −∂νψ/n2
j (TE) at eah boundary dividing a positive-index from a negative-index region. The B integral kernel also gets a sign hange in thesame ases.However, this is not the only hange neessary. In order to ensure a positive Q fator(energy deay in the passive avity), one has to inlude frequeny-dispersion of therefrative index. When introduing dispersion, the eletromagneti energy density (ings units) reads

W =
1

8π

(

E
2∂(ǫω)

∂ω
+H

2∂(µω)

∂ω

)

, (C.37)whih is only positive (and thus physial) if
∂(ǫω)

∂ω
,
∂(µω)

∂ω
> 0. (C.38)The frequeny dispersion in a NIM has to ful�ll (C.38). A simple possibility is found byexpanding ǫ and µ around a resonane frequeny ωr (typially, ωr is near the frequenyof the avity resonane one wants to alulate), whih leads to

ǫ ≈ ǫ(ωr)

(

1 + αǫ
ωr − ω

ωr

)

,

µ ≈ µ(ωr)

(

1 + αµ
ωr − ω

ωr

) (C.39)with dimensionless onstants αǫ, αµ whih have to be larger than one in order to ful-�ll (C.38). The refrative index nj hanges aording to
nj =

√
ǫµ ≈ nj(ωr)

(

1 +
αǫ + αµ

2

ωr − ω

ωr

)

. (C.40)When implementing the BEM for NIMs, one has to update the refrative index in eahstep of Newton's method when alulating resonanes, depending on kj; when alulatingwavefuntions or Husimi funtions, one has to use the wavenumber-dependent refrativeindex nj(kres) as well. ωr an be hosen as the frequeny orresponding to the startingvalue of Newton's method.
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