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"Nothing behind me, everything ahead of me, as is ever so on the road."

Jack Kerouac, On the Road



Zusammenfassung

Institut für Mechanik - OVGU Magdeburg

On the elastic-plastic behaviour of regular honeycomb structures

by M. Sc. Sara Bucci

Innerhalb der Gruppe der periodischen, zellulären Materialien sind Wabenstrukturen
mit am leichtesten und widerstandsfähigsten. Sie sind weit verbreitet im Einsatz, zum
Beispiel in der Luft- und Raumfahrt, der Automobilindustrie und der Verpackungsindus-
trie. Gibson und Ashby behandeln die lineare Elastizität von Wabenstrukturen mit Hilfe
der mechanischen Bilanzen, Experimente und numerische Simulationen sind in Papka
und Kyriakides zu �nden. In dieser Arbeit wird das ebene, elastisch-plastische Verhalten
auf drei unterschiedlichen Gröÿenskalen untersucht. Auf der Mikroebene werden Finite-
Elemente-Simulationen (FE) mit Hilfe des FE-Werkzeugs Abaqus durchgeführt, um rele-
vante elastische und plastische e�ektive Materialkennwerte wie den Elastizitätsmodul und
die Flieÿ�äche zu erhalten. Anschlieÿend wird ein e�ektives Materialgesetz entwickelt,
mit dem verschiedene Probleme, wie die nicht-Konvexität der Flieÿ�äche, die Gültigkeit
von Druckers Postulat und die Gültigkeit einer assoziierten Flieÿregel diskutiert werden.
Des weiteren wird auf einer meso-Ebene ein Feder-Balken-Modell entwickelt, anhand
dessen eine analytische Homogenisierung der Wabenstruktur erfolgt. Für die Plastizität
wird anhand der e�ektiven Verfestigung von Balken bei Biegung sowie der Symmetrie
der Struktur ein Prediktor-Korrektor Einschrittverahren entwickelt. Das daraus resul-
tierende e�ektive Modell wird auf der Makroebene in FE Simulationen untersucht, wobei
sich zeigt, dass einige Charakteristika der Plastizität von Wabenstrukturen, insbesondere
der Beginn von Dehnungslokalisierung, erfolgreich reproduziert werden können. Diese
Analyse wurde für zwei Materialien durchgeführt, nämlich Aluminium und Polyethylen,
welche repräsentativ in ihrer jeweiligen Materialklasse (Metalle und Thermoplaste) sind.
Der vorgeschlagene Ansatz ist neu und erstaunlich einfach, weswegen er gut als Aus-
gangspunkt für weitere Untersuchungen dienen kann. Sinnvolle Erweiterungen könnten
zum Beispiel die Formulierung für groÿe Deformationen und für Medien mit inneren
Freiheitsgraden (Mikropolare Theorie oder Gradienten-Theorie) sein. Die Methode kann
weiterhin leicht auf andere zelluläre Strukturen übertragen werden.



Contents

Contents iii

List of Figures vi

List of Tables ix

1 Introduction 1

2 Honeycomb structures: review, industry and manufacturing 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Manufacturing and applications . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Mechanics 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Classi�cation of forces . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Constitutive laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Preliminary considerations and simulations 23

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Considerations on the isotropy of the linear elastic behaviour of honeycombs 23

4.2.1 Gibson and Ashby's argument . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Check of the sti�ness matrix . . . . . . . . . . . . . . . . . . . . . 25

4.3 Simulations in ABAQUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Micro- macro-scale: the effective yield limit obtained by the represen-

tative volume element 29

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Structure and representative volume element . . . . . . . . . . . . 29

5.2.2 Parametrization of the stress state . . . . . . . . . . . . . . . . . . 30

iii



Contents iv

5.2.3 The yield limit on the macro scale . . . . . . . . . . . . . . . . . . 32

5.3 Interpolated yield surface and �ow direction . . . . . . . . . . . . . . . . . 36

5.4 Mathematical �t of the yield surface . . . . . . . . . . . . . . . . . . . . . 42

5.4.1 Mathematical yield limit for honeycomb structure . . . . . . . . . . 42

5.4.2 3D yield surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Macro-scale I: ABAQUS implementation of the non-convex yield sur-

face with a study of flow rules 48

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Implementation in ABAQUS . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Study of the effect of non-convex yield limit 57

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 The model and its extension . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Base model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.2 Extension of the model . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Simulations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Meso-scale: the analytical approach to linear elasticity and non-associative

plasticity 63

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.2 Homogenization approach to elasticity . . . . . . . . . . . . . . . . . . . . 64

8.3 Modelling plasticity through plastic hinges . . . . . . . . . . . . . . . . . . 70

8.3.1 Analysis of the bending moment-curvature relation of beams . . . 70

8.3.2 The Considére argument . . . . . . . . . . . . . . . . . . . . . . . . 73

8.3.3 The plastic hinges model . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Validation of the model 77

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Macro-scale II: yield surface and ABAQUS implementation of the meso-

scale approach 84

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.2 Evolution of the yield surface . . . . . . . . . . . . . . . . . . . . . . . . . 84

10.2.1 Change of the elastic range . . . . . . . . . . . . . . . . . . . . . . 84

10.2.2 Plastic �ow direction . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.3 Implementation in ABAQUS . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.3.1 The predictor corrector algorithm . . . . . . . . . . . . . . . . . . . 91

10.3.2 Observations on the algorithmic consistent linearization . . . . . . 93

10.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Conclusions and outlook 97

11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

11.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



Contents v

A Python algorithm with stress tensor parametrization 100

B UMAT implementation of the non-convex yield surface 104

C Solution to the problem in chapters 8 and 10 111

D Mathematica script for the plastic flow direction 113

E UMAT implementation of the algorithm for plastic hinges 118

Bibliography 122



List of Figures

1.1 Open and closed celled structures . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Compression experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Speci�c sti�ness vs speci�c strength graph . . . . . . . . . . . . . . . . . . 4

1.4 Logic scheme of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Continuous method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Corrugation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Expansion method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Injection moulding method . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Polyethylene honeycomb structure . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Applications of honeycomb sutructures . . . . . . . . . . . . . . . . . . . . 13

3.1 Material body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Hardening rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Unitary cell of hexagonal shape . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Six fold symmetry of the honeycomb structure . . . . . . . . . . . . . . . . 26

4.3 Honeycomb structure in ABAQUS . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Compression test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Stress-strain curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 RVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Parametrization of the stress state . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Load type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Uniaxial simple tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Isotropic biaxial tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Mixed biaxial tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Stress-strain curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8 Aluminium yield curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.9 Polyethylene yield curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.11 Yield points after cyclic loading . . . . . . . . . . . . . . . . . . . . . . . . 39

5.10 Interpolated yield surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.13 Angle deviation distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.12 Normal vs e�ective �ow direction . . . . . . . . . . . . . . . . . . . . . . . 41

5.14 Mohr's circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.15 Aluminium: 𝑎 and 𝑏 vs 𝑎(𝜒) and 𝑏(𝜒) . . . . . . . . . . . . . . . . . . . . 44

5.16 Polyethylene: 𝑎 and 𝑏 vs 𝑎(𝜒) and 𝑏(𝜒) . . . . . . . . . . . . . . . . . . . . 45

5.17 3D initial yield surface for polyethylene. . . . . . . . . . . . . . . . . . . . 45

5.18 3D initial yield surface for aluminium. Units: [MPa] . . . . . . . . . . . . 46

vi



List of Figures vii

6.1 Homogenized von Mises yield criterion . . . . . . . . . . . . . . . . . . . . 49

6.2 Homogenized honeycomb yield criterion . . . . . . . . . . . . . . . . . . . 50

6.3 Homogenized honeycomb yield criterion with isotropic hardening . . . . . 51

6.4 Tuning equation 𝑓(𝑥). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Bell equation 𝑔(𝜒). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Combination of tuning and bell equations: 𝑐(T, 𝜀) . . . . . . . . . . . . . 53

6.7 Homogenized honeycomb yield criterion with distortional hardening . . . . 53

6.8 Equation tuning the dilatoric and deviatoric contributions of T: 𝑠1/𝑠2 =
10e‖𝜀‖ + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.9 Homogenized honeycomb yield criterion with non-associative �ow rule . . 55

6.10 Homogenized honeycomb yield criterion with non-associative �ow rule and
isotropic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.11 Homogenized honeycomb yield criterion with non-associative �ow rule and
distortional hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1 Mises cylindrical yield surface in the stress space . . . . . . . . . . . . . . 58

7.2 Condition for uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Shear test increasing wiggle amplitude . . . . . . . . . . . . . . . . . . . . 60

7.3 Reference shear test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.5 Shear test decreasing wiggle amplitude . . . . . . . . . . . . . . . . . . . . 61

8.1 Schematic representation of the bar system with springs . . . . . . . . . . 63

8.2 Honeycombs auxetic behaviour . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 RVE system of bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.4 Periodicity of the bar system . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.5 Y shape unitary cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.6 Strain and stress distribution in bended beam . . . . . . . . . . . . . . . . 71

8.7 Beam cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.8 Bending moment-curvature relation . . . . . . . . . . . . . . . . . . . . . . 73

8.9 Bar specimen under tensile test . . . . . . . . . . . . . . . . . . . . . . . . 73

8.10 Stress-Strain curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.11 Final bar con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.1 Aluminium: physical vs empirical calibration . . . . . . . . . . . . . . . . 78

9.2 Polyethylene: physical vs empirical calibration . . . . . . . . . . . . . . . . 79

9.3 Aluminium: physical vs empirical validation, constant 𝜃 . . . . . . . . . . 80

9.4 Polyethylene: physical vs empirical validation, constant 𝜃 . . . . . . . . . 81

9.5 Aluminium: physical vs empirical validation, constant 𝜒 . . . . . . . . . . 82

9.6 Polyethylene: physical vs empirical validation, constant 𝜒 . . . . . . . . . 83

10.1 Six planes yield surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10.2 Areas evidenced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10.3 Evolution of the planes yield surface changing 𝑎 . . . . . . . . . . . . . . . 87

10.4 Evolution of the planes yield surface changing 𝑏 . . . . . . . . . . . . . . . 87

10.5 Evolution of the planes yield surface changing 𝑎 and 𝑏 . . . . . . . . . . . 88

10.6 Yield surface and �ow direction . . . . . . . . . . . . . . . . . . . . . . . . 90

10.7 Case 1: Δ𝜙12 > Δ𝜙𝑦 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10.8 Case 2: Δ𝜙12, Δ𝜙23 > Δ𝜙𝑦 . . . . . . . . . . . . . . . . . . . . . . . . . . 92



List of Figures viii

10.9 Bvp of metallic 2D sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.10Deformed homogenized 2D sheet (geometric) . . . . . . . . . . . . . . . . 94

10.11Deformed homogenized 2D sheet (calibrated) . . . . . . . . . . . . . . . . 95



List of Tables

5.1 Material parameters and hexagon dimensions . . . . . . . . . . . . . . . . 30

10.1 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



Chapter 1

Introduction

Humans have always tried to understand the nature, to know how it works, and to learn
how to use it for their own needs, to imitate it and even to improve it. Every scienti�c
�eld that has been developed during the history, has born to solve clues imposed by the
nature Russo [2013]. Honeycomb structures are an example of this: the perfection of the
bees' regular hexagonal honeycomb, which is extremely light, spacious and resistant, was
inspiring artists, designers and lately engineers, which in 1938 a.C. reproduced, for the
�rst time, structures with this shape and characteristics (see Cross [1990]). What is more,
during the previous and last centuries, technology has developed exponentially, making
always easier the realization of almost any desired structure. Processes like 3-D printing,
electro-spinning, foaming, selective laser sintering and other advanced techniques for
manufacturing, have made the production of complex materials possible, materials which
present new and very di�erent characteristics (for a general discussion on this argument
see dell'Isola et al. [2015]). This allowed industries to invent and produce almost every
kind of structure, which may have all the necessary properties to satisfy the requirements
for a given scope. Every thinkable and printable material becomes then a new subject
of study.
In this framework, cellular solids like foams or honeycomb-like structures, are replacing
full solids, thanks to their better and optimized properties. In particular, because of
their structure, cellular solids permit the minimization of the used material, maximizing,
at the same time, the strength, the thermal properties, the energy absorption and so on.
This not only reduces the costs of production, but also widens the applicability of such
materials.
What distinguishes cellular solids from bulk material, is indeed their internal structure:
as suggested by the name, these are media made of cells which are interconnected by
solid struts and which �ll the space. If the cells of the structure can connect to each
other through open faces then it is called open-celled, while if the cells are separated
through solid walls then it is called closed-celled. Most of the foams are part of the �rst
family, some of them are partially open and partially closed, and almost all honeycomb-
like structures belong to the second family.
In nature there exist many materials, like wood or cork, which can be idealized as

honeycomb structures. Building a model for such natural materials is very convenient,
because of the simpli�ed geometry which makes the mechanisms of deformation and
failure easier to analyze. Since always man had tried to imitate nature and also in this
case we try to reproduce a structure which is convenient from many points of view (as we
already stated). That is why we build honeycombs made of polymers, metal or ceramic

1
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Figure 1.1: Examples of open and closed celled structures: a) hexagonal honeycomb;
b) open celled foam; c) closed celled foam. (Gibson and Ashby [1997])

to �ll sandwich panel cores.
The peculiarity of these structures is that they all have one or more internal length
scale. This fact awards them for all the aforementioned properties which need a speci�c
mathematical framework in order to be properly modelled. In particular, for materials
that have a microstructure, the overall mechanical behaviour depends on the interaction
between the di�erent length scales.
Because of their wide use, either as structural components or for other applications, it
is important to study the global behaviour of honeycombs, of which their yielding and
failure mechanisms are most interesting.
Let us have al look at Figures 1.2a and 1.2b, where an in-plane compression test on
an aluminium specimen of honeycomb structure is performed. The overall crushing
behaviour can be summarized as follows:

0-1 In the initial con�guration and geometry, we have linear elastic behaviour.

1-2 Then, non-linear elastic behaviour starts, with the consequent reduction in
sti�ness.

2-3 Immediately follow the on-set of localization and the collapse of the �rst row
of cells.

3-4 Then the deformations spread to the neighbouring rows, leaving the rest un-
deformed.
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(a)
(b)

Figure 1.2: Crushing of a compressed 6x6 cell aluminium honeycomb structure and
the corresponding stress strain curve. Experimental results from Papka and Kyriakides

[1994]

4-5-6 The collapsing of the �rst row triggers the one of the neighbouring ones
subsequently; the contact between cell's walls causes the increasing of sti�ness.

7-8 At the end, almost all cells have collapsed and got in contact; a sharp rise of
the load required for further deformations is experienced.

We see that their unusual way of in-plane localization by collapse of adjacent rows suggest
a non-classical evolution of the deformations of the structure. The observed behaviour
is also widely described in Zhang and Ashby [1992], Papka and Kyriakides [1999a,b] and
Zhu and Mills [2000], where not only uni-axial compression tests, but also multi-axial
compression, tension or indentation tests are performed.
Understanding this behaviour will allow engineers to optimize the properties of the hon-
eycombs and even to modify the structure itself in order to get non-classical, even exotic
behaviours (see dell'Isola et al. [2015]).

Structure of the work and goals

The structure of this work is shown in the diagram (1.4). The central topic of the study
are honeycomb structures, in the pink rectangle, and, in particular, their mathematical
model concerning elastic and plastic behaviour. In the green boxes the chapters are
presented, each of them related to the central one through one arrow. The directions
of the red arrows indicate what we obtained studying the speci�c topic, while the black
ones rather state the approach or method used. Finally the dotted lines indicate sub-
arguments included in the relative topic.
The study is conducted on three di�erent scales: the micro-scale, where we study a repre-
sentative volume element (RVE), with the actual material properties, we set a boundary
value problem (BVP) and perform numerical homogenization; the meso-scale, where we
use the same RVE but we now look at the cell size, with a system of three bars, on which
we perform analytical homogenization and develop an algorithm for the plastic problem;
�nally the macro-scale, coming both from the micro- and meso-scales, where we forget
the structure inside the body, and we look at it as a continuum with the material prop-
erties coming out from the homogenization procedures. The whole analysis is conducted
on two core materials, namely polyethylene and aluminium which are representative for
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Figure 1.3: Specific stiffness vs specific strength graph

a weak and a strong material respectively (as we can see from Figure 1.31).
The �rst part of the thesis is introductory, especially the �rst two chapters, where we
explain what honeycomb structures are, the way they are produced and utilized. Not
less important, we also give a small review on the existing works about them. In chapter
3 some basic notions of mechanics are given, which will be useful for reading this work.
Already from the fourth chapter, we start with some considerations and observations
about these cellular solids.
A numerical laboratory based on FE simulations on a representative volume element is
presented in chapter 5. Through a parametrization of the stress tensor we are able to
represent the yield surface of the cellular solid. We observe and discuss the plastic �ow
direction and the validity of the associative �ow rule. Moreover, we use a non-classical
procedure to �nd the yield surface through a mathematical �t to the one obtained by FE
simulations. This is then implemented in chapter 6 and discussed in chapter 7, where
we do some observations about the e�ect of the non-convexity of the yield limit.
In chapter 8 we face the small strain linear elastic problem with a homogenization ap-
proach which will be used later to get one of the main results. We also propose an
algorithm, which we develop based on hardening of elastic-plastic beams, as alternative
to the classical associative �ow rule.
In the ninth chapter (9), we �t the elastic and plastic parameters so that the stress-strain
curves are comparable to the ones obtained on the micro-scale. Finally, in the tenth chap-
ter (10) we implement the system of equations and the algorithm in Mathematica, to
obtain the evolution of the yield surface through the use of two state variables. Moreover,
we write the algorithm in ABAQUS UMAT, as material model for an homogeneous 2D
sheet of material, to see if it is capable to capture the localization of the deformations.
Notice that, in almost every section, results given by numerical �nite element simulations
are presented to support and visualize the discussed topics.

1Figure 1.3 is taken from Cambridge University, Department of Engineering, Material selection and
processing (see http://www-materials.eng.cam.ac.uk/mpsite/).

http://www-materials.eng.cam.ac.uk/mpsite/
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In the last chapter, we sum up the obtained results, underline the strengths and limita-
tions of the used approach and �nally we give an outlook and propose some step forward
for next studies.
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Figure 1.4: Logic scheme of the thesis



Chapter 2

Honeycomb structures: review,

industry and manufacturing

2.1 Introduction

A cellular solid is one which is composed of a network of solid plates or beams which
form the faces or the edges of cells. Such structures can have di�erent shapes of cells like
circular, triangular, squared or, in our case, hexagonal. Honeycomb structures (brie�y
called honeycombs) are indeed solids with a periodic cellular structure which gives them
their main advantage of being very light but still highly stress resistant. This peculiar-
ity is strictly connected to the relative density ratio, de�ned as the ratio between the
structural density and the density of the core material (in our case polyethylene and
aluminium), which also determines the failure mode of the structures, its manufacturing
process and �nal use. Metallic honeycomb structures are produced mainly through two
di�erent processes: by expansion (the most used), where the sheets of metal are bound
together by strips of glue and then expanded (Figure 2.3), and by corrugation, where
the sheets of metal are �rst corrugated into half hexagons, and then glued together (Fig-
ure 2.2). Instead, thermoplastic material honeycombs are produced mainly by injection
moulding, giving them a more regular structure. For a general overview on honeycombs,
see, e.g., Ali and Jun [2014], Gibson and Ashby [1997], Masters and Evans [1996].
Honeycombs, and cellular solids in general, are often used as core materials for sand-
wich panels and shells for energy absorption, in particular for structural or packaging
applications, for heat dissipation or vibration control. Moreover, their simple production
processes make these structures very appealing from an engineering and industrial point
of view.
In this chapter we will give a review of the works done on honeycombs so far, we will
describe some of the manufacturing processes used to create metallic honeycomb panel
cores and we will see which are the main applications for such structures.

2.2 State of the art

Honeycomb structures have always attracted the man both from a artistic point of view
and an applicative, practical one. The �rst attempt of human to copy the perfection of

7
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the bees' honeycomb, for decorative purposes, dates more than 3000 years back (Sacks
[2014]). First scientists to be interested in the properties of honeycombs have been
Galileo Galilei (Galilei [1638]), Robert Hooke and Charles Darwin (Darwin and Bynum
[2009]), who described their characteristics of being very light and and resistant and of
being able to optimize the amount of wax to be used by the insects.
Then, in 1914, honeycombs found their �rst application for structural purposes, when
Hö�er proposed them to build aircraft �oor panels (Hö�er and Renyi [1914]). From that
moment they have become of great interest for engineers and scientists, who started to
study the behaviour of such sandwich panels with honeycomb cores, made of di�erent
materials like paper, metal, thermoplastic, ceramics or composites (Fahey et al. [1961],
Herbert [1960], Bardhan [1997], Vinson [1986]). In 1999, Hales proved that the bees'
honeycomb is the most stable in nature, providing the maximal cell space with the
minimal use of wax (Hales [2001]). This property makes them extremely appealing not
only for engineering applications but also for medicine or biology (George et al. [2008],
Tejavibulya et al. [2011]), if one considers them on smaller dimensions (nanometers scale).
As concerning engineering applications, in particular structural, architecture or aviation
ones, di�erent cell shape can be considered, based on the speci�c behaviour that one
wants to obtain: for example, hexagonal, square and triangular shapes are all very
resistant in supporting shear loads, while only the �rst two are also good at heat transfer
(Wadley [2006], Hohe and Becker [1999], Gu et al. [2001]). In Torquato et al. [1998], an
interesting analysis on the mechanical and transport properties of honeycomb structures
with di�erent cell shapes is made, while in Zhu and Mills [2000] a theoretical analysis for
di�erent core materials is made, based on the compression behaviour of the cellular solid.
As outcome of all these studies and many others (see also Wang and McDowell [2005],
Kim and Christensen [2000]) the factors that mainly in�uence the mechanical response
of honeycombs, are the material, the topology of the cell and the relative density. To test
those properties, di�erent kinds of experiments have been conducted both for in-plane
and out-of-plane characteristics: for example in Papka and Kyriakides [1994, 1998a,b,
1999a] experimental results for in-plane crushing of honeycomb under uniaxial or biaxial
loading conditions can be found, while in Foo et al. [2007], failure modes under tension
are studied. Instead, in Pan et al. [2006], Grove et al. [2006], Hong et al. [2006] out-of-
plane shear and compression tests are performed. Analytical and �nite element results
can be found in Pan et al. [2008] where out-of-plane shear is studied, or in Petras and
Sutcli�e [1999], Alonso and Fleck [2009], Masters and Evans [1996] where also in-plane
failure modes are considered.
During the work, more references will be given, based on the problem that we will be
facing step by step. For a general, exhaustive review on honeycomb, see also Zhang et al.
[2015], Wadley [2006].

2.3 Manufacturing and applications

2.3.1 Manufacturing

Since the last century, many di�erent technologies to produce honeycomb structures have
been developed (Du et al. [2012], Dempsey et al. [2005], Bitzer [2012]). Based on the �nal
use that a honeycomb panel is destined to, and on the material used to produce it, there
are several di�erent ways of manufacturing such structures: corrugation, expansion,
continuous production (see Figure 2.1), injection moulding or casting and extrusion.
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Figure 2.1: Manufacturing honeycombs through the continuous folding method (Pflug
et al. [1999])

Figure 2.2: Manufacturing honeycombs through corrugation method (Wadley [2006])

We will explain the �rst two methods, which are, together with the third, the most
commonly used to produce metallic honeycomb structures, and the injection moulding
process, which is instead used to produce thermoplastic panels.

Corrugation (Figure 2.2)

1. The honeycomb starts as a rolled aluminum (or any metal) foil

2. the foil is gradually unrolled and passed through a gear press which gives it the
shapes of half hexagons

3. the foils are cut and put together in a corrugated block

4. the layers are �nally glued together.

Expansion (Figure 2.3)

1. The honeycomb starts as a rolled aluminum (or any metal) foil
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Figure 2.3: Manufacturing honeycombs through expansion method Wadley [2006]

2. the foil is gradually unrolled, cut and adhesive strips are applied to the obtained
sheets

3. the foils are immediately glued together and then sliced

4. each slice is �nally pulled apart to expand and create the panel.

In both methods, di�erent ways of gluing the layers together can be used, based on
the temperatures that the panel has to withstand. These are: adhesive and di�usion
bonding, resistance welding, brazing and thermal fusion. The most commonly used is
the adhesive bonding, which is cheap but still can resist to temperatures around 390
centigrades. The others are more expensive and are used in more peculiar applications,
in the case the panel has to withstand temperatures above 400 centigrades.

Injection moulding (Figure 2.4)

1. Loading and melting: a screw gets the granulated material, which is loaded from
a hopper on the top of the machine. The material is pushed and accumulated to
the tip of the machinery and melted through heaters, during this process

2. the two parts of the mould are blocked together at the end of the barrel, where the
plastic material is collected

3. a hydraulic pump pushes the melt through a sprue, into the pre-warmed mould
(heating the mould prevents the early solidi�cation of the material)

4. a lower pressure is kept during the cooling process in order to �ll completely the
mould when the material shrinks

5. pressure is released and the complete cooling of the mould is waited before its
removal1

6. the mould is opened and the structure is removed.
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Figure 2.4: Manufacturing honeycombs through injection moulding method (http:
//www.technologystudent.com/watt/wattex.htm)

Figure 2.5: Polyethylene honeycomb structure (http://www.3cinterglobal.com/
Plastics.htm)

Notice that this process is more resource and cost e�cient than the previous ones. With
injection, the structure obtained can be considered perfectly regular (see Figure 2.5),
since there is not the double thickness of the wall where the metal sheets are glued
together. For any desired speci�c characteristic that the core needs to have, it is su�cient
to produce one mould, and used for the production of the panels.
For more details about manufacturing processes the reader could refer to Wadley [2006]
and Bitzer [2012].

2.3.2 Applications

Thanks to their peculiar properties, honeycomb structures are widely used in many dif-
ferent applications. Indeed they are very light, but still su�ciently strong structures.
Their composition allows the minimization of the weight and the material used to build
them, still giving them the property of being shock resistant and e�cient at absorbing
energy. All this, makes such composite structures extremely appealing from an engi-
neering point of view (Seepersad et al. [2004], Wadley [2006], Davalos et al. [2001]).
Depending on the material used to build the core of the panel, honeycomb structures get

1This would be the ideal procedure. In reality complete cooling is not waited in order to increase the
production and, sometimes, to obtain different polymeric microstructures.

http://www.technologystudent.com/watt/wattex.htm
http://www.technologystudent.com/watt/wattex.htm
http://www.3cinterglobal.com/Plastics.htm
http://www.3cinterglobal.com/Plastics.htm
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di�erent properties and therefore, di�erent application areas. For example, metallic core
honeycombs, are mainly used for structural applications in aircrafts (see Figure 2.6a),
buildings, cars and so on. In particular, in aeronautics and aerospace applications, they
are used to build secondary structures, which are important because they prevent the
crushing of the part in case of failure.
Paper cores, instead, are used for packaging proposal (Figure 2.6b) and transport appli-
cations.
Since they are not completely �lled by the material, thermoplastic honeycomb panels are
used for thermal insulation, buoyancy (Figure 2.6f), and �uid directing (Chochua et al.
[2002]), in addition to structural applications.
A part from the aforementioned classical uses, honeycombs cores, have recently found
more modern applications: thanks to their shock absorbing capacity, they are employed
in car components (Figure 2.6c), sportsgear and sport shoes (Figure 2.6d). Another im-
portant application, which is recently rising, is in bio-medicine, where the structure is
made by bio-material, and is used in particular for replacing tissues, like bone (Figure
2.6e), liver or heart tissues (Engelmayr Jr et al. [2008], George et al. [2008], Gmeiner
et al. [2015]).
A deep understanding of how these structures work is therefore necessary, in order to
improve and optimize their use in all the aforementioned applications.
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(a) Honeycomb composition of an aircraft wing (b) Paper honeycomb panels used for packaging

(c) Structure for crash absorption of a car
(d) Sole of a training shoe made of honeycomb

for shock absorption

(e) Bone prosthesis made by shifted honeycomb
structure (see Gmeiner et al. [2015]) (f) Plastic honeycomb panel

Figure 2.6: Applications of different material honeycomb sutructures



Chapter 3

Mechanics

3.1 Introduction

The subject of mechanics has its origins with the Greeks way before A.D. 0. After
a big gap in science (see Russo [2013]), then, scientists like Leonardo da Vinci and
Galileo Galilei re-started the study of the subject, examining and describing simple
objects and structures, followed by Robert Hooke, Isaac Newton, Daniel Bernoulli and
Leonhard Euler who built the theoretical basis of continuum mechanics. Researchers
like Cauchy, Navier, Timoshenko, Cosserat (see the classic works Cosserat et al. [1909],
Timoshenko [1953], Timoshenko and Woinowsky-Krieger [1959]) and many others, gave
the most contribution in developing the theories and models which are still now studied
and used by mathematicians, physicists and engineers, not only for applications aimed
in building structures or means of transport but also for economics, biology and social
behaviours. The pioneering works of Piola, Kirchho�, Toupin, Germain and Mindlin then
introduced a new theory for continuum mechanics, more general, and able to describe
the behaviour of complex materials, microstructured, such as �ber reinforced materials
or foams (see Piola [1833], Toupin [1962], Mindlin [1964, 1965]). This theory is still an
open subject and it is being recently applied to structures which are arising thanks to
new technologies such as 3D printing, electro-spinning or foaming. In this chapter we try
to brie�y summarize the principles of classical continuum mechanics. We will introduce
kinematics and dynamics of deformable bodies, present the principles of elasticity and
plasticity with an overview on both small and large deformations.

3.2 Kinematics

A material body B is considered as consisting of material particles occupying a region of
the Euclidean space. In order to describe the motion of such a body, we need to choose a
reference placement at a certain time 𝑡0, in which the vector X is the position vector of a
material point 𝑃 (see Figure 3.1). Every material point will correspond to its respective
one in the actual or current placement, whose position vector will be x. Let us consider
a map f such that:

x = f(X, 𝑡), (3.1)

14
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Figure 3.1: Material body in its reference and current configurations

i.e. f maps the position vector X of the reference placement, into the current position
vector x at time 𝑡. Since at the reference time 𝑡0 : X = f(X, 𝑡0), we can de�ne the
displacement vector as:

u(X, 𝑡) := f(X, 𝑡)− f(X, 𝑡0) = f(X, 𝑡)−X. (3.2)

The invertibility of the map f guarantees that at a �xed time 𝑡 two material points do
not occupy the same spatial point. This allows us to de�ne physical quantities, 𝜑, in its
material coordinates and then transform them into spatial ones:

𝜑𝐿(𝑋1, 𝑋2, 𝑋3, 𝑡) = 𝜑𝐿(𝑓
−1
1 (𝑥1, 𝑥2, 𝑥3, 𝑡), 𝑓

−1
2 (𝑥1, 𝑥2, 𝑥3, 𝑡), 𝑓

−1
3 (𝑥1, 𝑥2, 𝑥3, 𝑡), 𝑡)

=: 𝜑𝐸(𝑥1, 𝑥2, 𝑥3, 𝑡),
(3.3)

where 𝜑𝐿 is the material or Lagrange representation, and 𝜑𝐸 is the spatial or Eulerian
representation.
In order to describe the deformations of a body, the spatial derivatives of x and u have
to be used. With all these ingredients, we can de�ne the displacement gradient H and
the deformation gradient F:

F(X, 𝑡) := Grad f(X, 𝑡) =
𝜕𝑓𝑖
𝜕𝑋𝑗

e𝑖 ⊗ e𝑗

H(X, 𝑡) := Gradu(X, 𝑡) =
𝜕𝑢𝑖
𝜕𝑋𝑗

e𝑖 ⊗ e𝑗

= Grad (f(X, 𝑡)−X) = Grad (f(X))−GradX = F(X, 𝑡)− I,

(3.4)

where Grad stands for the derivative with respect to the material coordinates 𝑋𝑖. Notice
that F contains both rigid body rotations and strains. Therefore, in order to exclude the
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formers, we can write the deformation gradient in its polar decomposition:

F = R ·U = V ·R, (3.5)

where U and V are positive de�nite, symmetric, right and left (respectively) stretch
tensors and R ∈ 𝑂𝑟𝑡ℎ+ is an orthogonal tensor. Then we can de�ne the right and left
Cauchy-Green tensors respectively as

C := U2 = F𝑇 · F
B := V2 = F · F𝑇 .

(3.6)

A straightforward strain measure in the reference placement is Green's tensor, de�ned
as

E𝐺 :=
1

2
(F𝑇 · F− I) =

1

2
(H+H𝑇 +H𝑇 ·H), (3.7)

representing the change of angle between two line elements (for further details see
Bertram and Glüge [2015]). Notice that E𝐺 is not linear in H and, therefore, neither in
u. If we want to stick to linearity, we have to linearise Green's strain tensor, obtaining

E :=
1

2
(H+H𝑇 ) =

1

2
(
𝜕𝑢𝑖
𝜕𝑋𝑗

+
𝜕𝑢𝑗
𝜕𝑋𝑖

)e𝑖 ⊗ e𝑗 = 𝜀𝑖𝑗e𝑖 ⊗ e𝑗 , (3.8)

i.e. the symmetric part of the displacement gradient H (remember that this theory is
valid only for small deformations).
The trace, or the spherical part, E∘ = 1

3tr(E)I, of the (in�nitesimal) strain tensor
represents the dilatations (volumetric change) of the body, while its deviatoric part,
E′ = E−E∘, represents the isocoric deformations or, in other words, the distortions.
In many cases, especially in the context of large deformations or viscous materials, the
velocity at which the process is performed in�uences the result. Therefore we need to
de�ne the velocity gradient as follows:

L := gradv =
𝜕v(x, 𝑡)

𝜕x
= Ḟ · F−1

. (3.9)

With the additive decomposition of L we can �nally obtain the rate of deformation
tensor:

D =
1

2
(L+ L𝑇 ) = D𝑇 , (3.10)

i.e. its symmetric part, and the spin tensor or vorticity

W =
1

2
(L− L𝑇 ) = −W𝑇 , (3.11)

i.e. L's skew part.
As a remark, it is necessary to point out that the strain tensor is by no means unique.
Indeed there exist many other strain tensors, like the ones after Alamansi, Biot or Henky
(see Bertram [2015]).
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3.3 Balance equations

3.3.1 Classification of forces

As classical Newton and Euler laws state, the motion of a body is due to externally
applied forces. These can be divided into:

body forces or volume forces, which are indeed related to the volume or the mass of
the body, as, for example, the weight or potential forces

surface forces or contact forces, which act on surfaces, either external or internal to
the body.

To better understand this latter category, for external surface forces we mean the one
which result from contact with other bodies. On the other hand, the internal surface
forces are the ones which we �nd when cutting imaginary (Cauchy's cut) a body in two.
If we assume that the contact forces are uniformly distributed into the body, we can
de�ne the stress vector, t(n,x, 𝑡) and the Cauchy's stress tensor as

t(n,x, 𝑡) = T · n, (3.12)

which is a nine components tensor, describing a particular con�guration of the deformed
body at time 𝑡. Notice that we can write the stress tensor in its spectral form as follows

T = 𝜎𝑖𝑗e𝑖 ⊗ e𝑗 , (3.13)

where 𝜎𝑖𝑗 are the principal stresses and e𝑖 is an orthonormal basis, such that, when 𝑖 = 𝑗
all shear stresses are zero.
Like in the case of E we can decompose the stress tensor into

−𝑝I =
1

3
tr(T)I =

1

3
(𝜎1 + 𝜎2 + 𝜎3)I spherical part (pressure)

T′ := T− 1

3
tr(T)I deviatoric part.

(3.14)

As for the previous section, it is important to remark the existence of other de�nitions
for the stress tensor as, for example, the ones by Piola and Kirchho� (see sec. 3.3.2,
3.4.1).

3.3.2 Balance laws

As mentioned before, in continuum mechanics we can write balance relations which can
involve either the entire body or a subsection of it. Therefore integral relations are
necessary, both on the surface and on the volume. The relation between the two integral
forms are given by Gauss theorem. In this way we can obtain balance laws of mass,
momentum and moment of momentum, from the spatial point of view. These can be
written, in their di�erential form, as:

�̇�+ (𝜌∇) · u̇ = 0 Balance of mass

𝜌ü−∇ ·T− 𝜌b = 0 Euler's �rst law of motion

T = T𝑇 Euler's second law of motion,

(3.15)
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where 𝜌 and �̇� are the body density and its material derivative with respect to time, and
b is a body force density.
If we pull-back the previous relations to the reference placement, we can write them as:

det(F) = 𝐽 =
𝜌0
𝜌

𝜌0ü−∇0 ·P𝑇
𝐼 − 𝜌0b = 0

F ·P𝑇
𝐼 = P𝐼 · F𝑇 ,

(3.16)

where P𝐼 is the �rst Piola-Kirchho� stress tensor de�ned as

P𝐼 = 𝐽T · F−𝑇 , (3.17)

and 𝜌0 is the mass density in the reference con�guration.

3.4 Constitutive laws

As the reader may have noticed, up to now we just mentioned general laws and math-
ematical relations, which can be applied to any body. Moreover, if we consider the 3D
case, we can count 12 unknowns, against 6 equations given by the balance laws. We
still miss 6 equations, exactly those equations which we need to characterize speci�cally
the behaviour of the material we are dealing with. These are called constitutive laws,
and will express the relations between the kinematical variables (like F or E) and the
dynamical ones (like T or P𝐼). Nevertheless, these laws have to undergo some common
principles like the one of determinism, of local action and invariance under superimposed
rigid body motion.

3.4.1 Elasticity

One of the oldest, easiest but still most used constitutive relation is the linear elastic law.
It was formulated by Hooke in 1676. He found linear Force-Displacement relations to
be structure independent, concluding that it had to be a material property. Therefore,
Hooke's law states the linear dependence between stresses and strains. We can write it
through the linearised strain tensor E and Cauchy's stress tensor as

T = K[E], (3.18)

where K is the 4th-order elasticity tensor.
Another form of the previous law, which lives entirely in the reference placement, is
written by means of the second Piola-Kirchho� stress tensor. It states that the 2nd

Piola-Kirchho� stress tensor is a function of the Cauchy-Green tensor (3.7)

P𝐼𝐼 = 𝑓(C) = K

[︂
1

2
(C− I)

]︂
, (3.19)

where
P𝐼𝐼 = 𝐽F−1 ·T · F−𝑇 (3.20)

is the 2nd Piola-Kirchho� stress tensor, which relates forces to areas, both in the reference
placement. Notice that the tetrad K has, in principle, 81 entries, which are reduced to 21
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independent components, thanks to major symmetry and left and right subsymmetries.
These can be easily represented if one uses the Voigt notation which allows to write the
sti�ness tensor as a 6 by 6 matrix:

K = 𝐾𝑖𝑗𝑘𝑙e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 = 𝐾𝛼𝛽B𝛼 ⊗B𝛽, (3.21)

with

B1 = e1 ⊗ e1, B4 =

√
2

2
(e2 ⊗ e3 + e3 ⊗ e2)

B2 = e2 ⊗ e2, B5 =

√
2

2
(e1 ⊗ e3 + e3 ⊗ e1)

B3 = e3 ⊗ e3, B6 =

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1).

(3.22)

The sti�ness matrix also tells us the symmetry class of the material, through the number
of independent components contained (see chapter 4).

3.4.2 Plasticity

As in the classical theory for plasticity, we assume the decomposition of the strains E in
its elastic and plastic parts:

E = E𝑒 +E𝑝. (3.23)

Then, in order to model the plastic behaviour of any material, three main ingredients
are necessary:

Elastic ranges within which the material presents elastic behaviour

Yielding and plastic flow which changes the elastic range

Hardening or softening which changes the yield limit

The boundary of the elastic range, 𝜕𝐸𝑙𝑎 represents the yield surface or yield limit, and
could be represented by a tensor function Φ(T) such that:

∙ If Φ(T) < 0 then the material is still in the elastic range

∙ If Φ(T) = 0 the material is yielding

∙ If Φ(T) > 0 the material is out of the elastic range

Notice that the third case can not really be considered (unless one is dealing with some
particular viscous material). Indeed, when the stress state reaches the yielding of the
material, it pushes it forward, deforming plastically the body, and, at the same time,
shifting its elastic range.

Yield limits

In order to write a yield criterion it is helpful to de�ne an equivalent stress 𝜎𝑒𝑞(T) which
we will compare with the critical one 𝜎𝑦, the yield stress. Then, the yield limit function,
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in the dynamic variables Φ, will be:

Φ(T) = 𝜎𝑒𝑞(T)− 𝜎𝑦 (3.24)

In literature, there exist a huge amount of yield criteria, proposed by di�erent scientists
like Rankine, Mohr, Drucker, Prager, Hill and many others. Here we limit ourselves to
the explanation of two of the most important yield criteria:

Tresca or maximum shear yield criterion: it compares the maximum shear stress 𝜏𝑚𝑎𝑥

with the one appearing in a simple tension stress at yielding

Φ(T) = 𝜏2𝑚𝑎𝑥 − 𝜏2𝑦 =
1

2
(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)

2 − 𝜏2𝑦 . (3.25)

Von Mises yield criterion, based on the 𝐽2 theory: the equivalent stress depends only
on the norm of the stress deviator, i.e. on its second invariant

Φ(T) = 3𝐽2 − 𝜎2
𝑦 =

3

2
T′ · ·T′ − 𝜎2

𝑦 (3.26)

Notice that both the presented models are independent from hydrostatic pressure, which
motivates the dropping of the �rst invariant1 (𝐽1 = trT).

Plastic flow and hardening

As we mentioned in section 3.4.2, in order to have plastic deformations of the body, the
state of the stress must stay on the yield surface. This is ensured by two conditions:

∙ The yield criterion is ful�lled
Φ(T) = 0 (3.27)

∙ The loading condition is ful�lled

Φ̇𝐷 |E𝑝=
𝜕Φ

𝜕T
|E𝑝 · · Ṫ > 0 (3.28)

When the two conditions hold, plastic �ow occurs and, therefore, we need new relations
to describe how the elastic ranges deform or, in other words, how the yield limit evolves.
The general �ow rule can be written as

dE𝑝 = d𝜆 dG, (3.29)

where dE𝑝 is the plastic strain increment, d𝜆 is a plastic multiplier, and dG is the plastic
�ow direction. Many material behaviours can be collected under the non-associative �ow
rule

dE𝑝 = d𝜆
𝜕𝑞

𝜕T
, (3.30)

1This is incompressible plasticity and, as we will see later, it does not work for the effective model of
the microstructured body.
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Figure 3.2: Evolution of the yield surface with isotropic and kinematic hardening

where 𝑞 is a scalar function, called plastic potential. In particular, if 𝑞 coincides with
the yield function Φ, we get the associative �ow rule, or normality rule

dE𝑝 = d𝜆
𝜕Φ

𝜕T
, (3.31)

being 𝜕Φ/𝜕T normal to the yield surface.
Hardening (or softening) is introduced mainly by the accumulated plastic strain 𝜖 =´
d𝜆 =

´
𝜆d𝑡. The most simple models for hardening rules are kinematic and isotropic

hardening. When we consider kinematic hardening, the yield surface is rigidly shifted
in the stress space, whereas in isotropic hardening, the yield surface is blown up
isotropically by some linear factor (see Figure 3.2).

Drucker’s Postulate

In 1959 Daniel C. Drucker wrote a postulate with the aim of de�ning stable materials
(see Drucker [1957] and also Drucker [1963]). He states that in order for the material to
be stable, the following inequality must hold:

˛
(T−T𝐴) · · dE ≥ 0, (3.32)

where the integral is made on the whole cyclic process, which starts from the stress state
T𝐴. This must hold both for elastic and plastic processes (although not exceeding too
much the yield stress). If we consider T𝐴 = 0, after some manipulation of (3.32) (see
Bertram and Glüge [2015]) we get

(T) · · dE𝑝 ≥ 0. (3.33)

and it can be interpreted physically as the energy dissipated during the process.
Drucker's postulate has three main consequences, which one could use to ensure the
stability of the studied material:

∙ the yield surface in the stress space must be convex
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∙ associated �ow rule (or normality) must hold

∙ dT · · dE ≥ 0 must hold

Therefore, materials which present softening, buckling of the microstructure, non-convex
yield surfaces or non-associative �ow rules, are considered as unstable and, indeed, they
often present di�culties when driving numerical analysis. We will encounter such a
material behaviour during our work and we will deal with it using di�erent approaches
trying to overcome the instabilities in the most e�cient way.



Chapter 4

Preliminary considerations and

simulations

4.1 Introduction

In this chapter, we report some preliminary considerations and results on honeycomb
structures. Approaching honeycombs for the �rst time, we make a short review of Gibson
and Ashby's work on the small strain linear elastic problem and make some observation to
support their results. Then, we set a boundary value problem (BVP) using the software
ABAQUS, and perform simulations on a 10× 10 cells structure, in order to see if we are
able to reproduce the basic properties of a real one1. In particular, we would like to see
the collapsing of rows and the corresponding stress-strain curve.

4.2 Considerations on the isotropy of the linear elastic be-

haviour of honeycombs

4.2.1 Gibson and Ashby’s argument

Lorna J. Gibson and Michael E. Ashby in 1997 published a book called "Cellular solids"
(see Gibson and Ashby [1997]). This is a collection of studies about all cellular solids,
from polymeric foams to wood and so on. A couple of chapters of that book are entirely
dedicated to honeycomb structures, which are, in fact, closed cells cellular solids. Here
we report the main formulas, which may turn out to be useful during our next analysis.
We will focus exclusively on the linear elastic behaviour. Let us consider the unit cell
in �g 4.1. Notice that, in general, ℎ ̸= 𝑙, 𝛾 can be arbitrary and that the thickness 𝑡 is
doubled in real alluminum honeycombs core panels because of their fabrication process
(see chapter 2).
The �rst important parameter is the relative density

𝜌*

𝜌𝑚
=

𝑡/𝑙(ℎ/𝑙 + 2)

2 cos 𝛾(ℎ/𝑙 + sin 𝛾)
(4.1)

1As a first attempt we tried to use the software COMSOL with which we captured an unexpected
auxetic behaviour of the structure (see Figure 8.2). Then, we switched to ABAQUS in order to have
more freedom with the problem settings.

23
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Figure 4.1: Unitary cell of hexagonal shape

where 𝜌* is the density of the structure, while 𝜌𝑚 is the density of the core material. If
the relative density is low, also 𝑡/𝑙 is small so to ensure bending of the beams (in chapter
5 we will see that a higher 𝑡/𝑙 leads to a negative poisson ratio).
Limiting themselves to small linear elastic deformations, the authors made a force anal-
ysis and found the Young's moduli, shear modulus and Poisson's ratios, through balance
of forces and moments of momentum:

Young’s moduli in directions 𝑥1 and 𝑥2, respectively

𝐸*
1

𝐸𝑚
=

(︂
𝑡

𝑙

)︂3 cos 𝛾

(ℎ/𝑙 + sin 𝛾) sin2 𝛾

𝐸*
2

𝐸𝑚
=

(︂
𝑡

𝑙

)︂3 ℎ/𝑙 + sin 𝛾

cos3 𝛾

(4.2)

Poisson’s ratios

𝜈*12 =
cos2 𝛾

(ℎ/𝑙 + sin 𝛾) sin 𝛾

𝜈*21 =
(ℎ/𝑙 + sin 𝛾) sin 𝛾

cos2 𝛾

(4.3)

Shear modulus
𝐺*

12

𝐸𝑚
=

(︂
𝑡

𝑙

)︂3 ℎ/𝑙 + sin 𝛾

(ℎ/𝑙)2(1 + 2ℎ/𝑙) cos 𝛾
(4.4)

For regular hexagons, where ℎ = 𝑙 and 𝛾 = 30∘ we obtain with easy calculations

Young’s moduli

𝐸*
1

𝐸𝑚
=

𝐸*
2

𝐸𝑚
= 2.3

(︂
𝑡

𝑙

)︂3

(4.5)

Poisson’s ratios

𝜈*12 = 𝜈*21 = 1 (4.6)

Shear modulus
𝐺*

12

𝐸𝑚
= 0.57

(︂
𝑡

𝑙

)︂3

=
1

4

𝐸*

𝐸𝑚
(4.7)
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meaning that the regular structure, under small elastic deformations, presents an isotropic
behaviour. These formulas will be used later on in order to compute the material pa-
rameters for our numerical simulations.

4.2.2 Check of the stiffness matrix

In chapter 3 we just hinted to the material symmetry as the number of independent
components of the sti�ness matrix.
A simple and intuitive way of de�ning an isotropic material could be that its material
properties are the same in all directions. To be a bit more accurate, let us consider a
displacement �eld u(𝑋) and a rotation tensor Q, such that

u′(𝑋 ′) := Q · u(𝑋) ⇔ u(𝑋) := Q · u′(𝑋 ′)

where the apex ′ denotes the rotated vector. Using the chain rule we can get the rotated
displacement gradient and strain tensor

H′ = Q ·H ·Q𝑇

E′ = Q ·E ·Q𝑇 .

Then, an elastic law is symmetric w.r.t. a rotation Q if

T′ = Q ·T ·Q𝑇 .

Q is a symmetry transformation of T = K · ·E if

K · ·(Q ·E ·Q𝑇 ) = Q · (K · ·E) ·Q𝑇 . (4.8)

If we write K in Voigt notation (see eq. (3.21)) and apply equation (4.8) we get that

K · ·E = Q𝑇 · (K · ·(Q ·E ·Q𝑇 )) ·Q

for all symmetric tensors E. Hence

K = 𝐾𝑖𝑗𝑘𝑙e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 = 𝐾𝑖𝑗𝑘𝑙(Q · e𝑖)⊗ (Q · e𝑗)⊗ (Q · e𝑘)⊗ (Q · e𝑙) = Q * K (4.9)

where * denotes the Rayleigh product2. For a deeper discussion about material sym-
metries please refer to Bertram and Glüge [2015], Coleman and Noll [1964]. For us it
is su�cient to report here the sti�ness matrix for isotropic elastic material in the Voigt
notation (in the 2D case):

k = 𝛼I⊗ I+ 𝛽I𝑠 ⇔ 𝐾𝑖𝑗𝑘𝑙 = 𝛼𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛽(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) =

⎡⎣𝛼+ 2𝛽 𝛼 0
𝛼 𝛼+ 2𝛽 0
0 0 𝛽

⎤⎦E𝑖 ⊗E𝑗

(4.10)
where 𝛿 is the Kronecker delta. Now assume we have a symmetry rotating the structure
by 𝜋

3 (�g. 4.2):

R(
𝜋

3
) =

[︂
cos(𝜋3 ) − sin(𝜋3 )
sin(𝜋3 ) cos(𝜋3 )

]︂
e𝑖 ⊗ e𝑗 , 𝑖, 𝑗 = 1, 2

2The RAYLEIGH product maps all basis vectors of a tensor simultaneously without changing its
components
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Figure 4.2: Six fold symmetry of the honeycomb structure

and impose the symmetry to the complete sti�ness matrix K:

R(
𝜋

3
) *C = C′ ⇔

𝐶 ′
𝑖𝑗𝑘𝑙 = 𝑅𝑖𝑚𝑅𝑗𝑛𝑅𝑘𝑜𝑅𝑙𝑝𝐶𝑚𝑛𝑜𝑝ei ⊗ ej ⊗ ek ⊗ el =⎡⎣ 𝑐2222 −2𝑐1212 + 𝑐2222 0

−2𝑐1212 + 𝑐2222 𝑐2222 0
0 0 𝑐1212

⎤⎦E𝑖 ⊗E𝑗 .

This matrix has the same structure as the isotropic one in equation (4.10) where 𝛼 =
−2𝑐1212+𝑐2222 and 𝛽 = 𝑐1212. Therefore, the 2D hexagonal symmetry implies the isotropy
of the sti�ness matrix: it is symmetric and has only two independent parameters.

4.3 Simulations in ABAQUS

As we stated in the introduction, we now set a boundary value problem using the FE
software ABAQUS. Let us consider the 10 × 10 cell structure, made of aluminium (for
simplicity we use a database material; this simulation is just a representative one, with
the aim of reproducing the real qualitative behaviour of a hexagonal cellular structure),
of Figure 4.3. Large deformations are allowed and von Mises plasticity is considered.
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Figure 4.3: 10× 10 cell honeycomb structure, with boundary conditions and mesh

The mesh is composed of 3D, 20-node, quadratic, isoparametric elements, with reduced
integration. We constrain the bottom of the structure in the 𝑥2 direction, and just a point
in the 𝑥1 direction in order to not have rigid body translation. We impose a negative
displacement on the top, and periodic boundary conditions at the lateral sides. Because
of stability problems, caused by the buckling of the bars, we give a small perturbation,
applying some pressure in the 𝑥1 direction on an arbitrary bar (pink arrows in the
middle). We expect therefore the localization to start from that row (or its neighbouring
ones). Moreover we consider hard, frictionless contact between the faces internal to the
cells, in the case they touch. The result is shown in Figure 4.4.

Figure 4.4: 10 × 10 cell honeycomb structure after a compression test in the 𝑥2

direction.
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We also report the stress-strain curve obtained by this test (Figure 4.5).

Figure 4.5: Time-force curve of the compression test in Figure 4.4. The time in the
abscissa axes is proportional to the strain and the area under the curve to the energy

dissipated.

From the Figure we see the initial, linear-elastic behaviour, which ends when the �rst
row collapses. We observe a softening behaviour going on until the collapsed row touches
the neighbouring one. Then the force grows again, until a second row starts to fail. This
behaviour of softening and hardening, goes on until all the cells have collapsed (see
Papka and Kyriakides [1994, 1998a]). After that, the compaction of the structure results
in a steep monotonic growth the stress-strain curve. Unfortunately we are not able to
observe this behaviour in our simulation, since the code fails to converge because of
buckling problems.
This unusual behaviour is what makes such honeycombs panels so interesting: they can
undergo large deformations at roughly constant stresses. From a structural engineering
point of view it is noteworthy to have a model able to capture this behaviour in order
to prevent the collapse, or even to intervene once it has already started. In this work,
we try to understand this structures, both from a mechanical and geometrical point of
view. It is di�cult to �nd a global solution to the problem, but we achieve to obtain a
simple, manageable model able to capture the main features of the structure.

Conclusions

We presented the Gibson and Ashby linear elastic model for regular honeycombs and
checked again the isotropy of the structure in this range.
We implemented in ABAQUS a 10×10 cell structure with periodic boundary conditions
and saw the rows collapsing and the respective stress-strain curve. We see that although
it is possible to implement a real FE model, it is extremely expensive and complex, giving
timing and convergence issues. This motivates the development of an e�ective model,
able to give reasonable e�ective results, removing the complexity of the microstructure.



Chapter 5

Micro- macro-scale: the effective

yield limit obtained by the

representative volume element

5.1 Introduction

In this chapter, we approach the 2-D in-plane elastic-plastic problem. In particular, we
focus on the modelling of the yield limit of the homogenized honeycomb structures. We
perform �nite element simulations for both elastic and plastic problems, taking into con-
sideration the most convenient representative volume element for our goals. An analytic
model, for the so obtained yield limit, is then developed by �nding a best �t solution.
The parametric study may be useful to properly understand the behaviour of honeycomb
structures and can be generalized to other periodic cell structures and cellular solids.

5.2 Numerical study

5.2.1 Structure and representative volume element

As a �rst step in the investigation of the behaviour of honeycombs we need to set up
a numerical laboratory which allows us to test the structure under di�erent loading
conditions, boundary constrains, mechanical and geometrical properties. To this aim,
we have created, with the support of the codes in ABAQUS and Python, an algorithm
that tests the selected elementary component under the desired loading conditions (see
Appendix A). In this section, the characteristics of the core material, of the structure
itself and of the elementary cell that can �t our needs, are presented.

Let us consider the structure made of aluminium or polyethylene, with an elastic-perfectly
plastic material model, and 𝐽2 plastic �ow theory. In table 5.1 the used material parame-
ters (Young's modulus 𝐸, Poisson's ratio 𝜐, yield strength 𝑌𝑠) and geometric dimensions
of the regular hexagonal shape (𝑙 = ℎ = 1) shown in Figure 4.1 are reported.
Already in Wilbert et al. [2011], Haghpanah et al. [2013, 2014] di�erent elementary cells
are examined to study the response of normal or hierarchical honeycomb structures by

29
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Material 𝐸 𝜐 𝑌𝑠 𝑡 𝛾

Aluminium 68.97GPa 0.33 292MPa 0.216 𝜋/6

Polyethylene 0.7GPa 0.3 30MPa 0.216 𝜋/6

Table 5.1: Material parameters and hexagon dimensions

(a)

(b)

Figure 5.1: (A) Representative volume element with periodic boundary conditions;
(B) Macrostructure made of RVE

�nite element analysis. For our numerical simulation we select an elementary cell which
allows us to reduce the computational time but, at the same time, permits to observe
the deformations which the structure undergoes locally, i.e. at the cell level. We need a
Representative Volume Element (RVE), the smallest element over which measurements
can be made, and that will lead to results that can be extended to the macro-structure
(Hill [1963]). It is depicted in Figure 5.1a: this (irreducible) unit cell is the smallest
repeatable one. It is clear that any other con�guration with this property will �t as well,
therefore the minimal RVE is by no means unique. We choose the Y con�guration for
convenience of visualization and to better observe the deformation behaviour of periodic
hexagonal cell. In Figure 5.1, the RVE with the boundary conditions are also shown:
we imposed periodic displacements for the parts highlighted with the same colour and
named by the same letter. In this way, we can rebuild the whole structure (Figure 5.1b).
Notice that by con�ning ourselves to the smallest possible periodicity frame, we disregard
plastic deformations that do not �t into this frame, see, e.g., Miehe et al. [2002]. Thus,
we exclude the evolution of localization patterns that do not allow for the chosen frame
of periodicity.

5.2.2 Parametrization of the stress state

We already mentioned the advantages that the selected elementary cell presents:

∙ It is the smallest element which can be extended periodically

∙ it has a simple geometry
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Figure 5.2: Parametrization of the stress state

∙ it requires little computational time

∙ it allows the visualization of the local deformations

∙ it is easy to manipulate.

However, to be able to fully exploit all these properties, we still need an equally simple
language, which permits us the imposition of loads to the structure, without loosing the
perception of what we are doing, and, at the same time, allows us to easily interpret and
handle the results that we obtain. To that purpose we parametrize the plane stress-state
by geometric variables and loading parameters, that could help us to keep in mind the
structural features and, therefore, to understand the obtained outputs.
Figure 5.2 visualizes the parametrization of the selected stress state: we see in black the
structure, in grey the chosen base vectors, and in dashed black the eigendirections of the
stress tensor.
Keeping in mind that

T =

[︂
𝑇11 𝑇12

𝑇12 𝑇22

]︂
e𝑖 ⊗ e𝑗 , (5.1)

and that its eigenvectors can be written as

t1 = cos 𝜃 e1 + sin 𝜃 e2, t2 = − sin 𝜃 e1 + cos 𝜃 e2, (5.2)

we can write the stress tensor in its spectral form

T = 𝜆1 t1 ⊗ t1 + 𝜆2 t2 ⊗ t2, (5.3)

where 𝜆1 and 𝜆2 are the principal stresses.
In this way we have already found our �rst parameter 𝜃, which we will therefore call
orientation angle, that relates the orientation of the imposed load to our structure.
The normalized stress tensor is

T* =
𝜆1√︀

𝜆2
1 + 𝜆2

2

t1 ⊗ t1 +
𝜆2√︀

𝜆2
1 + 𝜆2

2

t2 ⊗ t2. (5.4)

We impose the biaxiality condition as a perturbation of the monoaxial load, keeping
𝜆2
1 + 𝜆2

2 = 𝑚2. In this way we have the limit cases when 𝜆𝑖 = 𝑚, which is uniaxial
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Figure 5.3: Load type depending on the angle 𝜒 (which determines the values of 𝜆1

and 𝜆2)

loading (in 𝑡𝑖 direction), and 𝜆1 = 𝜆2 which is biaxial isotropic load. The magnitude 𝑚
will be our second parameter.
The parameters 𝜃 and 𝑚 are more or less straight forward since they come from the
geometry and from a measure of the stress tensor.
Now we introduce a third parameter, 𝜒, such that:

𝜆1 = 𝑚 cos(𝜒), 𝜆2 = 𝑚 sin(𝜒). (5.5)

We call 𝜒 biaxiality measure angle: 𝜒 = 𝑛𝜋/2 means monoaxial load in t1 or t2 direction;
𝜒 = 𝜋/4 + 𝑛𝜋 means 𝜆1 = 𝜆2. With the variation of 𝜒 we change the type of load we
impose to the structure (Figure 5.3). For the simulations, we discretized 𝜒 in steps of
𝜋/36 and 𝜃 in steps of 𝜋/(6 ·20), we then increase 𝑚 until signi�cant plastic deformations
are observed.
Preliminary results for the general response of loading can be seen in dell'Isola et al.

[2016].

5.2.3 The yield limit on the macro scale

Although such structures present an initial isotropic linear response under small elastic
deformations (see Gibson and Ashby [1997]), as soon as large deformations (elastic and
plastic) are considered, the behaviour becomes non linear and even anisotropic (Beblo
et al. [2015]). The study of the plastic behaviour of such structures is of great interest
from an engineering point of view, since honeycombs are mainly used because of their
capability of absorbing energy. This property is indeed given from the localization modes
occurring during plastic deformations, both for in-plane loads (see for example Papka
and Kyriakides [1998a, 1999a, 1998b], Asada et al. [2009], Papka and Kyriakides [1994],
Karagiozova and Yu [2008]), and out-of-plane ones (Mohr and Doyoyo [2004a,b], Mohr
[2006]). These local modes lead to the plateaux of the stress strain-curves, characteristic
of such structures. In order to study the non-classical behaviour which is visible in plastic
deformations, as �rst, one has to properly model the yielding of such structures. After
formulating a yield criterion, a plastic �ow rule is needed. A comparison between di�erent
yield surfaces for di�erent cell forms of the honeycombs is given in Wang and McDowell
[2005, 2004] by means of classical balance laws and a yield criterion based on stretching
and bending of beams. In contrast to them, we want to formulate a yield criterion based
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(a) 𝜃 = 0, 𝜒 = 0
(b) 𝜃 = 𝜋

18 , 𝜒 = 0

(c) 𝜃 = 0, 𝜒 = 𝜋
2 (d) 𝜃 = 𝜋

18 , 𝜒 = 𝜋
2

Figure 5.4: Final configurations of the RVE after different uniaxial simple tests. In
the scale of colours the equivalent plastic strain is reported.

on phenomenological observation, which works for a general stress state. Due to the non-
linear behaviour that the structure shows from the onset of the tests (see Figure 5.7), the
classical criteria for the yield surface do not work here. Indeed, as we can see in Figures
5.4, 5.5 and 5.6, the RVE simulations indicate that yielding occurs only in speci�c parts
of the structure, namely at the joints of the bars. This rather localized o�set of yielding
is hardly relevant on the macro-scale since it does not a�ect the yielding behaviour of
the macrostructure. From the same set of �gures we can also see how the bending of the
bars is absent, while the axial elongation has a small contribution. This behaviour is well
visible in Figures 5.5, from which we can also appreciate the isotropy of the biaxial test
with the eigenvalues having the same magnitude (𝜒 = 𝜋

4 , 𝜒 = 3𝜋
4 , 𝜒 = 5𝜋

4 ): changing the
orientation of the imposed load, the result does not change. We remark that these are
just some, representative, simulations, from a total of 1440 (20 angles for 𝜃×72 angles for
𝜒) for each material. We choose three groups, namely the simple uniaxial tests (Figures
5.4), isotropic biaxial tests (Figures 5.5) and mixed anisotropic biaxial tests (Figures 5.6)
for the polyethylene material case (the qualitative behaviour and the �nal con�guration
for aluminium would be the same but with a di�erent scale of equivalent plastic strain).

Therefore we need a non-local yield criterion to exclude such irrelevant local plastic
deformation. Thereafter, we de�ne that e�ective yielding occurs when 10% and 40%,
for polyethylene and aluminium respectively, of the total stress power is dissipated in
plastic deformation, resulting in reasonable values for the yield strength (see Bertram
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(a) 𝜃 = 0, 𝜒 = 𝜋
4 (b) 𝜃 = 𝜋

9 , 𝜒 = 𝜋
4

(c) 𝜃 = 0, 𝜒 = 3𝜋
4

(d) 𝜃 = 𝜋
18 , 𝜒 = 3𝜋

4

(e) 𝜃 = 0, 𝜒 = 5𝜋
4 (f) 𝜃 = 𝜋

18 , 𝜒 = 3𝜋
4

Figure 5.5: Final configurations of the RVE after different isotropic biaxial tests. In
the scale of colours the equivalent plastic strain is reported.

and Kraska [1999]). In order to determine the obtained yield limits for each test, we
increase the parameter 𝑚 until the ultimate loading is reached.

Implementation in ABAQUS with Python algorithm

In Section 5.2.1 we presented the elementary cell which we use for the numerical simula-
tions. In Figure 5.1 we can already see the RVE with the mesh and boundary conditions.
We use 20-nodes quadratic hexahedral isoparametric elements with reduced integration
(ABAQUS notation: C3D20R), while we prescribe the periodic boundary conditions as

H · (x+ − x−) = u+ − u−,
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(a) 𝜃 = 0, 𝜒 = 5𝜋
12 (b) 𝜃 = 𝜋

18 , 𝜒 = 5𝜋
12

(c) 𝜃 = 0, 𝜒 = 11𝜋
12 (d) 𝜃 = 𝜋

18 , 𝜒 = 11𝜋
12

Figure 5.6: Final configurations of the RVE after different mixed biaxial tests. In the
scale of colours the equivalent plastic strain is reported.

where H is the average displacement gradient, for the coupled elements on the side faces,
as highlighted in the Figure (5.1a). Finally, we impose biaxial loads, prescribing an
average plane stress state, so to let the structure deform freely.
Notice that the loads are not imposed to any point on the RVE, but on 3 arti�cial
(�ctitious) nodes, outside of the Y shape. Each of the nodes has 3 kinematic and 3
dynamic degrees of freedom that correspond to the e�ective stresses and strains. Now, we
want to perform stress driven tests but in a plane strain �eld, avoiding rigid rotations. We
know that H = E+W; In particular, when linear theory is considered the displacement
gradient is the sum of a strain measure and a rotation. At this point two possibilities
arise: either one lets H be completely free, allowing rotations, or constrains it to be
symmetric and lets just the strains be free. We noticed that, if the rotations are allowed,
strange instability e�ects arise, resulting in non monotonic stress-strain curves, and in
extreme cases, the �ipping of the RVE. In order to avoid this behaviour, but still obtain
what we want, we prescribe the following

average stress

T =

⎡⎣𝑇11 𝑇12 0
𝑇12 𝑇22 0
0 0 0

⎤⎦
average displacement gradient

H =

⎡⎣ 𝑓𝑟𝑒𝑒 𝑓𝑟𝑒𝑒𝑠𝑦𝑚 𝑓𝑟𝑒𝑒𝑠𝑦𝑚
𝑓𝑟𝑒𝑒𝑠𝑦𝑚 𝑓𝑟𝑒𝑒 𝑓𝑟𝑒𝑒𝑠𝑦𝑚
𝑓𝑟𝑒𝑒𝑠𝑦𝑚 𝑓𝑟𝑒𝑒𝑠𝑦𝑚 𝑓𝑟𝑒𝑒

⎤⎦
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so to have plane strain solution, without rigid rotations1.
Setting a looping algorithm in Python, we performed simulations for all angles 0 ≤ 𝜒 ≤
2𝜋 with steps of 𝜋/36 and 0 ≤ 𝜃 ≤ 𝜋/6 in steps of 𝜋/(6 * 20). In Figure 5.7 the stress-
strain responses, with the respective yield points, for both materials are shown: each
group of curves show di�erent loading conditions, for di�erent angles 𝜃. We can see
that the general behaviour is quite similar for the two materials, except for the orders
of magnitude of the stresses and strains. In both cases, the weakest response is given
from the mixed loading condition, namely 𝜒 = 3𝜋

4 = 7𝜋
4 , the strongest from the biaxial

tension, 𝜒 = 𝜋
4 , while in between we have the biaxial compression, 𝜒 = 5𝜋

4 , in which
the two direction of loading compensate each other. Moreover, we can notice that, for
polyethylene, non-linearities arise already from the very beginning of the elastic part,
and that, in general, its response is much weaker that the one of aluminium.
In Figures 5.8 and 5.9, we report the four cases of interest (for both materials), namely
𝜆1 > 0, 𝜆2 > 0 (tension-tension tests), 𝜆1 < 0, 𝜆2 > 0 (compression-tension tests),
𝜆1 < 0, 𝜆2 < 0 (compression-compression tests) and 𝜆1 > 0, 𝜆2 < 0 (tension-compression
tests), where each point is the yield limit extracted from the respective test.
We observe that for the case 𝜒 = 0 (simple tension test) the behaviour is very anisotropic,
while it reduces to a perfect circle in the case 𝜒 = 𝜋/4 (biaxial isotropic load). Looking at
Figures 5.8 and 5.9 we can also estimate the di�erent load magnitudes that the structure
may support: we see that for compression-compression tests, the yield stress is 10 to 100
times smaller than in compression-tension and tension-tension tests. An exception is the
isotropic compression-compression test (𝜒 = 5/4𝜋) which instead shows a high resistance
of the structure, comparable to the one in a tension-tension tests. Such behaviour can
be explained with the simple observation that, if the stresses are of the same sign,
they can balance each others' bending moments. On the other hand, if stresses are
of opposite sign, the bending caused by one is increased by the other, therefore inducing
a premature collapse (Gibson and Ashby [1997]). Notice that all these considerations
may be generalized, if one thinks to uniaxial loads (𝜆1 = 𝑚, 𝜆2 = 0), equally biaxial
loads (𝜆1 = 𝜆2) or inverse biaxial loads (𝜆1 = −𝜆2).
In all these cases we can recognise the hexagonal symmetry at 𝜋/3. Finally, we can
already observe some di�erences between the behaviour of the two materials. We see
that the response of polyethylene is much weaker than the one of aluminium. This also
results on a less isotropic behaviour from the plastic material which, as we will see in the
next paragraphs, will lead to a non-convex yield surface.
Once more, we want to explain the importance of having an appropriate model for these
properties of the material. Indeed if one is able to predict the modes of collapse of such a
structure, one is able to prevent or even modify them to obtain optimal behaviour for the
purposes they are produced for. To this aim, the behaviour of the polyethylene structure
is of major interest, since it is weaker and less classical, triggering the localization with
more ease than in the aluminium structure.

5.3 Interpolated yield surface and flow direction

In this section we will see the yield surfaces obtained through the interpolation of all
the yield points found as described in the previous sections. In this way we can get
an impression of their shape. Since we are considering a 2D plane stress problem, and

1The entries denoted by "𝑓𝑟𝑒𝑒" take the values resulting from the solution of the problem ("𝑓𝑟𝑒𝑒𝑠𝑦𝑚"
are imposed to be symmetric), all the others entries are given
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(a) Aluminium

(b) Polyethylene

Figure 5.7: Stress-strain curves for aluminium and polyethylene, with yield points,
for different types of tests

small strains, we can represent the yield points, in the three dimensional stress space,
with 𝑇11, 𝑇22 and 𝑇12 as perpendicular axes

2 (see Figure 5.10). Then we will make some
considerations on the so found yield surfaces, and, in particular, we focus on the conse-
quences of the non-convexity arising from the case of polyethylene, analysing its plastic
�ow direction.
Figure 5.10 show the interpolated yield surfaces for aluminium and polyethylene.
The continuous surfaces are obtained interpolating the yield points resulting from the
numerical simulations. It is immediately visible the strong non-convexity at the extreme

2We can write the Cauchy stresses as

T = 𝑇11e1 ⊗ e1 + 𝑇22e2 ⊗ e2 + 𝑇12(e1 ⊗ e2 + e2 ⊗ e1) = 𝑇11r1 + 𝑇22r2 + 𝑇12r3,

where e𝑖 is a two dimensional orthonormal basis, and r𝑖 is a three dimensional, orthogonal one.
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(a) 0 ≤ 𝜒 ≤ 𝜋
4

(b) 𝜋
2 ≤ 𝜒 ≤ 3𝜋

4

(c) 𝜋 ≤ 𝜒 ≤ 5𝜋
4

(d) 3𝜋
2 ≤ 𝜒 ≤ 7𝜋

4

Figure 5.8: Yield curves for different values of 𝜒, increasing in the direction of the
arrow, for aluminium.

ends of the shape, i.e. in the compression and tension areas, for the case of polyethylene,
while we �nd almost symmetry in the response of the aluminium. We see that for both
materials the three-fold symmetry from the perspective of the hydrostatic axes is well
represented in the surface.
At this point natural questions arise: how does such a yield surface evolves? Is the
normality rule applicable? In order to answer the �rst questions, one could set up sim-
ulations on cyclic loadings (as described in chapter 7), and see how, at each cycle, the
residual plastic deformations in�uence the following yield point. For seek of complete-
ness, we performed one cycle of loading in the uniaxial compression, polyethylene, case:
as a starting point for the next set of simulations, we took the unloaded con�guration
after the uniaxial compression test. The most important result which we obtained is
that, already at the �rst cycle, the six-fold symmetry of the yield surface is lost, as we
can see in Figure 5.11.
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(a) 0 ≤ 𝜒 ≤ 𝜋
4

(b) 𝜋
2 ≤ 𝜒 ≤ 3𝜋

4

(c) 𝜋 ≤ 𝜒 ≤ 5𝜋
4 (d) 3𝜋

2 ≤ 𝜒 ≤ 7𝜋
4

Figure 5.9: Yield curves for different values of 𝜒, increasing in the direction of the
arrow, for polyethylene.

Figure 5.11: View, from the hydrostatic axes, of the yield points, in the stress space,
after one cycle of loading
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(a) Aluminium: general view (b) Aluminium: hydrostatic axes view

(c) Polyethylene: general view

(d) Polyethylene: hydrostatic axes view

Figure 5.10: Numerical result for the yield surfaces, obtained interpolating the yield
points of each simulation

Also, we can check if the associative �ow rule holds. In this spirit we run a new set of
simulations, from which we extract the plastic strain increment between two steps:

ΔE𝑝 = E𝑝,𝑛+1 −E𝑝,𝑛. (5.6)

If we plot it as a vector in the stress space, using the yield surface as a starting point,
we obtain the e�ective plastic �ow direction, which we compare with the one obtained
using the normality rule (3.31).
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Figure 5.13: Distribution of the angle deviation in function of 𝜃 and 𝜒

Figure 5.12: Normal versus effective flow direction in the case of a tension test, for
polyethylene. In red: the real flow direction. In black: the normality rule flow direction

In Figure 5.12, we can see a slice of the polyethylene's yield surface, on which we plot the
directions of the �ow, computed with the normality rule (in black) and with the plastic
strain increment (in red), in the case of a tension test. It is immediately clear that the
two directions are very di�erent, meaning that a non-associative �ow rule is needed, to
model the plastic behaviour. It is even more clear if we have a look at Figure 5.13: the
diagram reports the angle deviation in function of the position on the yield surface in
the stress space. The light blue colored parts have de highest value, reaching 70 degrees,
in the areas of tension and compression (i.e. where the non-convexity is more evident).
This result indicates the need of a non-associative �ow rule (Sumelka and Nowak [2015],
Bigoni and Hueckel [1991], Lubarda et al. [1996]) which will be developed in chapter 8,
starting from another length scale.
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5.4 Mathematical fit of the yield surface

Up to now we performed numerical simulations on a representative element, which were
able to give us the response of such structures under di�erent loading conditions, and,
from this, we could extract the yield limit. Now we present a mathematical expression
for these yield limits, which we may use as a starting point for a plastic model for honey-
combs. We see di�erent ways of dealing with the elastic-plastic behaviour of honeycombs
in Davini [2013], Asada et al. [2009, 2008], who use homogenization techniques such as
Γ-convergence or the fully implicit homogenization scheme proposed in Asada and Ohno
[2007], or in Karagiozova and Yu [2004] which describes and analyses di�erent collapsing
modes using a limit analysis approach.
For the aim of �nding a good elastic-plastic model for any material or structure, �rst
one has to determine the elastic range. This is bounded by the yield limit, which can be
de�ned in the stress or strain space. Inside this elastic range, the behaviour is assumed
to be elastic. On the other hand, when the stresses reach the yield limit, and if the
loading condition is ful�lled, plastic �ow occurs. This may change the current elastic
range (see Bertram [2015]).

5.4.1 A non-classical approach to obtain the yield limit based on in-

variance requirements

To describe the complete yield behaviour of honeycombs, we use a non-classical approach,
which is able to give a satisfying prediction of the response for every type of plane load.
We want to get the yield criterion in the form

Φ =‖ T ‖ −𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒), (5.7)

where the function 𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒) complies with the invariance requirement with respect
to both material symmetries (six fold, 𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒) = 𝑚𝑐𝑟𝑖𝑡(𝜃 + 𝑛𝜋

3 , 𝜒)) and eigenvalues
ordering (𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒(𝜆1, 𝜆2)) = 𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒(𝜆2, 𝜆1))). The procedure can be summarized
as follows:

∙ We start with a parametric ansatz for the magnitude of the yield stress:

𝑚𝑐𝑟𝑖𝑡 = 𝑎(𝜒) + 𝑏(𝜒) cos(6 𝜃), (5.8)

which is composed by an isotropic part 𝑎(𝜒) and an anisotropic one 𝑏(𝜒), multi-
plied by the term cos(6 𝜃), which captures the material symmetries shown by the
structure. Thus, the invariance of the function with respect to the eigenvalue or-
dering, will be necessarily contained in the terms depending on 𝜒. Notice that it is
possible to add higher order terms, but this would increase the complexity of the
function as well as the number of model parameters, while only giving a very small
contribution to the precision of the representation of the yield limit. Therefore, we
limit the structure of 𝑚𝑐𝑟𝑖𝑡 to only one anisotropic part;

∙ For numerical simulations with a constant 𝜒 and a parameter sweep for 𝜃, we
determine a best �t for 𝑎(𝜒) and 𝑏(𝜒). In this way we get di�erent values of 𝑎(𝜒)
and 𝑏(𝜒) for di�erent angles 𝜒 which are the dots in Figures 5.15 and 5.16;
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∙ Observing the trend of the parameter values, we write two functions for 𝑎(𝜒) and
𝑏(𝜒), depending on 𝜒, still parametric, but with the least possible number of terms.
Then we �t the parameters, 𝑝𝑖, 𝑖 = 1...𝑛, to the values of 𝑎 and 𝑏 from the
�rst parameter �t (see Figures 5.15 and 5.16). Notice that in these functions,
the invariance with respect to eigenvalues ordering is already contained. Indeed,
the functions show interesting properties: they are both periodic of 2𝜋, 𝑎(𝜒) is
symmetric with respect to the vertical axes at 𝜋/4 (even function) while 𝑏(𝜒) is
symmetric with respect to the point (𝜋/4, 0) (odd function). It is easy to show by
geometric arguments that by inverting the eigenvalues ordering, the angles 𝜃 and
𝜒 would change in such a way that 𝑚𝑐𝑟𝑖𝑡(𝜃

1, 𝜒1) = 𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒);

∙ After writing 𝑚𝑐𝑟𝑖𝑡 = 𝑎(𝜒) + 𝑏(𝜒) cos(6 𝜃), we could iterate this process in order to
get a better match to the numerical values, adjusting the 7 parameters and, even-
tually adding another exponential term to the isotropic part 𝑎(𝜒). The obtained
functions with the numerical values are shown in Figures 5.15 and 5.16. We can
already give an interpretation to 𝑎(𝜒) and 𝑏(𝜒) which goes beyond the isotropy
meaning. Indeed, while 𝑎(𝜒) mainly gives the magnitude of the stresses, 𝑏(𝜒), tells
us when the response is isotropic, and, what is more, its sign gives the very im-
portant information on the direction of the higher stress. Indeed we can notice,
comparing Figures 5.15 or 5.16 with 5.8 or 5.9, that for 𝑏 < 0 the higher stress is
in 𝜃 = 𝜋/6 + 𝑛𝜋/3 direction, while, for 𝑏 > 0 it is in 𝜃 = 𝑛𝜋/3 direction.

With such a construction, we are now able to get 𝑚 depending only on 𝜃 and 𝜒.
At this point, we still need to �nd a way to compare 𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒) with T. To this aim, we
make use of Mohr's circle construction (Figure 5.14).
We write 𝜃 and 𝜒 depending on the components of T and compute ‖ T ‖:

𝜒 = arctan

(︂
𝑇11−

√
4𝑇 2

12+(𝑇11−𝑇22)2+𝑇22

𝑇11+
√

4𝑇 2
12+(𝑇11−𝑇22)2+𝑇22

)︂

𝜃 = arctan

(︂
2𝑇12

𝑇11+
√

4𝑇 2
12+(𝑇11−𝑇22)2−𝑇22

)︂

‖ T ‖=
√︀

𝑇 2
11 + 2𝑇 2

12 + 𝑇 2
22.

The yield criterion is then given by the di�erence between the equivalent stress given by
‖ T ‖ and the previously computed yield stress 𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒):

Φ =‖ T ‖ −𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒) ≤ 0, (5.9)

where Φ ≤ 0 indicates the elastic range.



Chapter 5. The representative volume element and the effective yield limit 44

Figure 5.14: Mohr’s circle represented by the components of T

(a) (b)

Figure 5.15: Numerical values for 𝑎 and 𝑏 (dotted) with the described fitting func-
tions (in blue) 𝑎(𝜒) = 𝑝1 + 𝑝2 cosh(𝑝3(

𝜋
4 − 𝜒)), with periodicity of 𝜋, and 𝑏(𝜒) =

𝑝4e
𝑝5 cos(𝜋

5 +𝜒)2 − 𝑝6e
𝑝7 cos( 13𝜋

60 +𝜒)2 + 𝑝4e
𝑝5 sin(𝜋

5 −𝑥)2 + 𝑝6e
𝑝7 sin( 13𝜋

60 +𝜒)2 , for aluminium.



Chapter 5. The representative volume element and the effective yield limit 45

(a) (b)

Figure 5.16: Numerical values for 𝑎 and 𝑏 (dotted) with the described fitting functions
(in blue) 𝑎(𝜒) = 𝑝1 + 𝑝2 e

𝑝3(cos(
𝜋
4 −𝜒)) and

𝑏(𝜒) =

{︃
𝑝4 sin(𝑝5(𝜒− 𝜋

4 )), if 𝜋
9 ≤ 𝜒 ≤ 7𝜋

18

𝑝6 sin(𝜒− 𝜋
4 ) + 𝑝7 sin(3(𝜒− 𝜋

4 )), if 7𝜋
18 < 𝜒 ≤ 19𝜋

9

, for polyethylene.

5.4.2 3D yield surface

With this approach, we are �nally able to plot the three dimensional yield surface in the
space of the stress tensor components.

(a) 3D general view. (b) Front view from the 𝑇22, 𝑇12 plane.

(c) Back view from the 𝑇22, 𝑇12 plane. (d) Side view from the 𝑇11, 𝑇22 plane.

Figure 5.17: 3D initial yield surface for polyethylene.
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Figure 5.18: 3D initial yield surface for aluminium. Units: [MPa]

It is interesting to notice that the resulting surfaces appear for both materials to be
non-convex. This observation is con�rmed if one uses the relation

Φ(𝑣T1 + (1− 𝑣)T2) ≤ 0, if Φ(T1) ≤ 0 ∧ Φ(T2) ≤ 0 ∀𝑣 ∈ [0, 1] .

Indeed, this inequality does not hold for all points of the �tted surfaces, thus proving
the non-convexity of the result.
Notice that in the case of aluminium (Figure 5.18) we did not consider the contribution
of the function 𝑏(𝜒) since it is much smaller than the one of 𝑎(𝜒) (it is immediately
visible comparing the order of magnitude on Figure 5.15a and 5.15b). Instead, in the
case of polyethylene, 𝑏(𝜒) assumes more importance, since it is 0 in a few points and of a
comparable magnitude to 𝑎(𝜒) in almost the whole interval. This results in the six fold
symmetry, and the strong non-convexity at the ends of the surface, as visible in Figure
5.17.
It is important to not forget that this is a mathematical approximation of the yield surface
of the two materials. Indeed, as we saw in the yield surfaces found through interpolation,
while for aluminium the non-convexity results to be an artefact of the approximation, for
the polyethylene the non-convexity is an actual property of the e�ective cellular solid.

Conclusions

We set up a numerical laboratory, with a convenient RVE and a simple parametrization
of the stress tensor. With this tools we performed FE simulations which allowed us to
�nd the e�ective yield surface for the honeycomb structure for both materials. The most
important information arising from this is its non-convexity and all that we can deduce
from its shape, i.e. the elongation along the hydrostatic axis and bigger magnitude in
tension than in compression, in the case of polyethylene (strength di�erential e�ect),
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as well as its plastic compressibility. We could also make some important observations:
the plastic deformations localize at the joints; the bending of the bars is hardly present;
there is no plastic deformation coming from the elongation of the bars. Notice that all
these features, will be used later on to make assumptions for the analytical model.
Although we can already learn a lot from the results obtained, the parametrization
has a big weakness: as soon as the symmetry of the structure breaks, e.g. when �rst
plastic yielding occurs, it can not be used any more. In other words, the nice symmetry
properties are lost during the plastic deformation process, and a more general approach
is needed.



Chapter 6

Macro-scale I: ABAQUS

implementation of the non-convex

yield surface with a study of flow

rules

6.1 Introduction

In the previous chapter we found an expression for the yield criterion that is able to de-
scribe qualitatively the initial yield behaviour of a honeycomb structure. It is important
to remark that, as soon as yield occurs, the symmetry given from the regular geometry of
the cellular solid is broken (see chapter 5 Figure 5.11). Therefore, all the arguments used
to parametrize the stress tensor and to build the mathematical formulation of the yield
criterion are lost. A method that can be used to determine the way the yield surface
evolves could be to cyclically load and unload the structure: for each loading test one
should reach the elastic limit, then release the body, and after this, repeat the whole
procedure explained in chapter 5. After a single speci�c iteration, one would just have
the consecutive elastic range, after the yielding due to a very particular loading condi-
tion. This means that, to have an exhaustive description of the plastic behaviour of the
structure, one should perform a huge amount of numerical simulations just to extract
an even bigger number of data, ending up with a very small quantity of understanding.
This approach, although very accurate and complete, is not convenient for many reasons.
Instead, in this �rst attempt, we use the expression for the yield surface found in the
previous chapter, for the case of polyethylene, which appears to be more anisotropic,
non-symmetric and non-convex. This is valid to describe the initial yield behaviour of
the homogenized continuum, therefore we try to apply di�erent �ow rules, together with
hardening, to see which one is able to better capture the localization of the strain.

6.2 Implementation in ABAQUS

ABAQUS/Standard (and also Explicit) has an interface called UMAT (or VUMAT)
which allows the user to implement general constitutive equations. When none of the

48
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existing material models included in ABAQUS material library can accurately represent
the behaviour of the material to be studied, then a UMAT can be used to create one's
own material. Through this interface, material models of any complexity can be de�ned
and tested with advanced structural elements, complex loading conditions, contact and
friction and so on. It is also extremely convenient if one wants to model materials which
present instabilities or localization phenomena.
Now, let us consider a homogeneous 2D square, with eight-node plane stress mesh ele-
ments (ABAQUS denomination: CPS8). We set the boundary value problem �xing the
bottom elements and imposing a displacement on top. From the classical von Mises yield
criterion, we modify the UMAT, adding personalized subroutines, increasing gradually
the complexity of the model implemented. Therefore, we start implementing the yield
surface found with the equation (5.9) and we equip it with the associative �ow rule (eq.
3.31) or a �ow rule accounting for a stress decomposition into isocoric and volumetric
part (eq. 6.4); �nally we add isotropic hardening as

Φ =‖ T ‖ −𝜆𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒), (6.1)

where 𝜆 is a multiplying factor, scaling isotropically the yield surface, or with a hardening
rule acting locally on the yield surface (eqs. 6.2 and 6.3). Notice that this last approach
is empirical, based on the observation of the e�ective behaviour of the structure, i.e. an
initial softening behaviour, when the rows collapse one after the other, and hardening
when compacti�cation happens (refer to chapter 1 for the general explanation).
For the complete UMAT �le, please look at the Appendix B.

Von Mises yield surface with associative flow rule

As a reference solution, we consider the classical von Mises yield limit (eq. 3.26), together
with the associative �ow rule (eq. 3.31), shown in Figure 6.1:

Figure 6.1: Final configuration of a squared sheet of polyethylene after a compression
test. In the scale of colours the largest eigenvalue of the absolute strain.
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Honeycomb plastic model with associative flow rule

In this section we report the results of the implementation of the yield surface found
in chapter 5. We consider a homogeneous material which yields following the presented
criterion. We further assume the validity of the associative �ow rule and enrich the model
with isotropic hardening, equation (6.1), and distortional hardening, equations (6.2) and
(6.3).
Figure 6.2 reports the �nal con�guration of a structure, with the yield criterion (5.9)
equipped with the associative �ow rule.

Figure 6.2: Final configuration of a homogenized honeycomb structure, where asso-
ciative flow rule is applied.

We already see the unstable behaviour of the material, which presents a recess in the
middle.
If we add isotropic hardening (see the Appendix B) the result changes slightly:
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Figure 6.3: Final configuration of a homogenized honeycomb structure, where asso-
ciative flow rule is applied and isotropic hardening is considered.

We see that the strains are distributed less homogeneously. The recession on the sides is
less evident than in the previous case and the general response is sti�er. In both cases,
the �nal con�guration results are qualitatively wrong: indeed, while expanding laterally,
as we can see from both experimental and numerical results presented in the previous
chapters, the body shows lateral contraction, up to superimposition of the mesh, when
further displacement is imposed.
Finally we implement a distortional hardening that acts locally on the yield surface. As
we explained before, with this method, we would like to capture the softening-hardening
behaviour that honeycomb structures show when plastic deformations occur, especially
during plastic compression. To this purpose we add a term 𝑐(T, 𝜀) to the magnitude of
the yield stresses so that:

Φ =‖ T ‖ −(𝑚𝑐𝑟𝑖𝑡(𝜃, 𝜒) + 𝑐(T, 𝜀))

The function 𝑐(T, 𝜀) has the following form:

𝑐(T, 𝜀) = 𝑓(
tr(T · 𝜀)
‖ T ‖

)𝑔(𝜒(T)), (6.2)

with

𝑓(𝑥) =

{︃
(𝑥− 0.4)4 − 0.44, if 𝑥 ≥ 0

0, if 𝑥 < 0

𝑔(𝜒) = e
(
−(𝜒−𝜋)2

2𝜋/36
)
+ e

(
−(𝜒−3/2𝜋)2

2𝜋/36
)
,

(6.3)

where we wrote 𝑓(𝑥) instead of 𝑓( tr(T·𝜀)
‖T‖ ) for simplicity.

The function 𝑓(𝑥) (Figure 6.4) is built so that it triggers localization through softening,
until the 80% of the total deformation is reached, and compacti�cation through hard-
ening, afterwards. 𝑓(𝑥) < 0 for strains 𝑥 < 0.8 therefore the material will present a
softening behaviour, while in the opposite cases we will have hardening.
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Figure 6.4: Tuning equation 𝑓(𝑥).

Its argument tr(T·𝜀)
‖T‖ is the plastic strain component which is in the same direction of T,

so that, the described behaviour only happens when you keep loading always in the same
direction. On the other hand, this softening-hardening phenomenon, is mostly visible
when the structure is subject to compression. That is where the function 𝑔(𝜒) enters.

Figure 6.5: Bell equation 𝑔(𝜒).

𝑔(𝜒) is a bell function which tells when the behaviour captured by 𝑓(𝑥) is more e�ective.
For example, in the cases of pure compression when 𝜒 = 𝜋, 3/2𝜋, we have a big contri-
bution of hardening, and 𝑓(𝑥) has a big e�ect on the yield surface. The overall action is
well visible in the following �gure:
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Figure 6.6: Combination of tuning and bell equations: 𝑐(T, 𝜀)

where the function 𝑐(T, 𝜀), in the case of compression, is reported. The material be-
haviour will be softened for strains 0.6 <‖ 𝜀 ‖< 0.8, when the rows crash adjacently to
each other, and hardened after it, when all the rows have collapsed and compacted.
After implementing such a distortional hardening in ABAQUS, we �nd, for the same
boundary value problem as in the previous cases, the following �nal con�guration:

Figure 6.7: Final configuration of a homogenized honeycomb structure, where asso-
ciative flow rule is applied and distortional hardening is considered.

On one hand we do not have any more instability problems and singularities in the
solution, but, on the other, we see that the localizing behaviour is practically disappeared.

Honeycomb plastic model with stress tensor decomposition flow rule

The last set of simulations that we run, are based on a di�erent �ow rule, which we again
equip with isotropic or distortional hardening. For this case, we decompose the stress
tensor into its deviatoric and dilatoric part. This will allow us to control how much of
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the strain is dispersed in the isotropic volumetric change of the body (pressure sensitive
material), and how much is used for the shape change. The �ow rule will be:

�̇�𝑝 = 𝜆(𝑠1T
′ + 𝑠2T

∘), (6.4)

where T∘ = 1
2tr(T)I is the volumetric part (dilatoric) and T′ = T−T∘ is the deviatoric

part (see eq. (3.14)). The parameters 𝑠1 and 𝑠2 serve to tune the two contributions
and are such that 𝑠1/𝑠2 = 10e‖𝜀‖ + 1. This function, which looks like the one in Figure
6.8, makes the deviatoric contribution considerable at the beginning of the deformation,
while it becomes asymptotically equal to the dilatoric one, at large strains.

Figure 6.8: Equation tuning the dilatoric and deviatoric contributions of T: 𝑠1/𝑠2 =
10e‖𝜀‖ + 1

In the Appendix B all this modi�cations to the UMAT �le of ABAQUS can be found
and are further explained step by step.
As �rst case, we implement our yield criterion together with the presented non-associative
�ow rule:
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Figure 6.9: Final configuration of a homogenized honeycomb structure, where non-
associative flow rule is applied.

Then we add isotropic hardening:

Figure 6.10: Final configuration of a homogenized honeycomb structure, where non-
associative flow rule is applied together with isotropic hardening.

And �nally the more complicated model with additional distortional hardening:
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Figure 6.11: Final configuration of a homogenized honeycomb structure, where non-
associative flow rule is applied and distortional hardening is considered.

From this set of results we can appreciate a more homogeneous distribution of the strains.
We see that the lateral sides of the polygon remain parallel, contrarily to what happened
in the previous cases (Figures from 6.2 to 6.7). We notice a small concentration of strains
in the upper and lower parts of the body. The last (Figure 6.11), more complicated model,
�nally, does not bring any new informations about the strain distribution, which is, once
more, localized close to the upper and lower boundaries.

Conclusions

We implemented the mathematical �t of the yield surface of the previous chapter in
a UMAT subroutine. We tested the behaviour of the body with associative and non-
associative �ow rules and isotropic and distortional hardening. We conclude that knowing
Φ(T) is not enough to catch the plastic behaviour of the structure, since associative
plasticity does not work. Although we can see that softening triggers the localization, all
the study is kept on a very empirical level. To determine the �ow rule and the evolution
of the yield surface, either one performs a huge number of numerical simulations and
experiments, or some more e�cient approach has to be considered. We will see in chapter
8 that the second option leads to better results, is easier to manage and to understand.



Chapter 7

Study of the effect of non-convex

yield limit

7.1 Introduction

In section 3.4.2, we presented Drucker's postulate with its features and consequences.
However, we did not specify for which class of materials this rule holds. Although
Drucker's postulate is used to reduce the functional freedom of the plastic behaviour of
many materials, there are some materials which violate Drucker's postulate. In particu-
lar, those which exhibit non-convex yield limits. It is often the case for microstructured
materials, which present internal buckling and instabilities. In this chapter, we want to
analyze and discuss whether the convexity of Φ(T) actually re�ects any e�ective material
property. We start from an isotropic, Mises-like, yield limit, which we perturb in order
for it to become non-convex. Two parameters will control the amplitude and number of
wiggles that we create. After setting up the model, we will present some study cases, in
order to see how the non-convexity of the yield limit in�uences the qualitative material
behaviour.

7.2 The model and its extension

7.2.1 Base model

As base model, we use again the two dimensional one presented in chapter 5. We write
the Mieses-like yield limit as:

𝜑(T) =
√
2 ‖ T′ ‖ −𝜎𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑘 ≤ 0 (7.1)

where T′ is the stress deviator (for more detail please read Glüge and Bucci [2017]). The
yield limit de�ned above, has the shape of a cylinder with elliptical base, in the stress
space (as we already did in chapter 5)(see Figure 7.1).

57
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Figure 7.1: Mises cylindrical yield surface in the stress space

7.2.2 Extension of the model

Now, we will consider the base model described in the previous section, and equip it with
wiggles. To do so, we start describing the base ellipse in polar coordinates. We consider
the stress tensor in the base r𝑖 and rotate it so that the hydrostatic axis of the cylinder,
becomes 𝛼r1:

v = Q ·T⎡⎣𝑣1𝑣2
𝑣3

⎤⎦ =

⎡⎣cos(−𝜋/4) − sin(−𝜋/4) 0
sin(−𝜋/4) cos(−𝜋/4) 0

0 0 1

⎤⎦⎡⎣𝑇11

𝑇22

𝑇12

⎤⎦ .
(7.2)

The yield limit becomes

𝜑(T) =
√︁

𝑣22 + 2𝑣23 − 𝜎𝑘. (7.3)

If we make 𝜎𝑘 a function of the angle in the r1-plane, i.e. 𝜎𝑘 = 𝜎𝑘(1+𝑎 cos(𝑛 arctan(𝑣2/𝑣3))),
we are able to introduce 𝑛 wiggles of amplitude 𝑎, on the yield limit. In order to get
the polar form of the yield function, we set 𝜑(T) = 0 and substitute 𝑣2 = 𝑟 sin(𝛾) and
𝑣3 = 𝑟 cos(𝛾). Then:

𝑟(𝛾) = 𝜎𝑘
1 + 𝑎 cos(𝑛𝛾)√︀

2 cos(𝛾)2 + sin(𝛾)2
, (7.4)

where we can use the parameters 𝑎 and 𝑛 to control the convexity of the function1. In
the following, we will consider 𝑛 = 3, which gives −1/19 ≤ 𝑎 ≤ 19 for the yield limit to
be convex in the stress space.

1In order to be convex, a polar function with 𝑟 > 0∀𝛾, has to satisfy the following condition:
𝑟(𝛾)2 + 2𝑟′(𝛾)2 − 𝑟(𝛾)𝑟′′(𝛾) ≥ 0
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7.3 Simulations and results

Simulations setting

In order to run simulations with the proposed model, we implement it as a subroutine in
ABAQUS UMAT. Notice that, as the yield limit is non-convex, not all small step sizes
are admissible, as the corrector step may become non-unique. Therefore we consider
as an upper bound for the step size the smallest curvature radius encountered on the
surface (see Figure 7.2).

Figure 7.2: Representative three-fold symmetry yield limit, with the relative smallest
admissible curvature radius in order to have uniqueness of the solution.

We use a simple simulation to compare with the others in which we impose the wiggles.
We consider an homogeneous square of side length 𝑙 on which we impose a simple shear
deformation displacing the upper side by 𝑙/10, while the remaining two are free, and the
lower side is �xed. Additionally to the simulation results, we will plot the yield limit
projected parallel to the hydrostatic axis, in a (𝑇22−𝑇11/

√
2) − 𝑇12 plane (Figure 7.3c).

In the same graph we plot a density histogram with all the stresses met at the end of the
�nite element simulation, and a line, which shows the accumulated plastic deformations.

Results

In the following pictures we see the reference simulation (7.3) and two set of results
obtained increasing (7.4) and decreasing (7.5) the yield stress in the 𝑇12 direction, re-
spectively. As we can see already from Figure (7.3a) shear bands appear, starting from
the corners, where the stress accumulates, while the rest of the deformation remains quite
homogeneous. As we learn from the coloured histogram 7.3c, the plastic deformations
are predominant in the direction corresponding to a shear combined to a hydrostatic
pressure. It is also clear that the direction in which plastic deformations evolve, is nor-
mal to the yield limit.
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(a) (b) (c)

Figure 7.4: Shear test simulation run increasing the wiggle amplitude: 𝑎 =
0.1, 0.3, 0.5. From left to right: (A) largest eigenvalue of the absolute strain, (B) equiva-
lent von Mises stress, (C) yield limit, density histograms of the stresses and accumulated

plastic deformations.

(a) (b) (c)

Figure 7.3: Reference shear test simulation run with the Mises yield criterion. From
left to right: (A) largest eigenvalue of the absolute strain, (B) equivalent von Mises
stress, (C) yield limit, density histograms of the stresses and accumulated plastic de-

formations.

On the other hand, when we increase the yield stress in 𝑇12 direction, Figure 7.4, two
stress concentrations appear, increasing in the same direction where the bulges develop.
Also the plastic deformation accumulates in the same region, in agreement to the fact
that the normals to the surface coincide with the largest accumulation of strain. This
behaviour becomes more evident when increasing the amplitude of the wiggles (or bulges).
Finally, we analyse the case in which we decrease the yield stress instead of increasing
(Figure 7.5). This modi�cation will have the opposite e�ect of the former, on the shape
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(a) (b)
(c)

Figure 7.5: Shear test simulation run decreasing the wiggle amplitude: 𝑎 =
−0.1,−0.3,−0.5. From left to right: (A) largest eigenvalue of the absolute strain,
(B) equivalent von Mises stress, (C) yield limit, density histograms of the stresses and

accumulated plastic deformations.

of yield limit. As we can see, shear bands are still forming, going inside the body as
we decrease the value of 𝑎 (7.5a). They neither disappear, nor change direction, as
it happened in the previous case. Moreover, the predominant shear stresses decrease,
which is also in contrast with the former cases. Eventually, the accumulated plastic strain
develops in non-trivial patterns. We see that the behaviour of the structure, especially
regarding the shear band formation, is not strictly related to the (non-)convexity of the
yield limit. Indeed, strain localization areas are already visible in the case of the von
Mises yield limit. The interested reader is invited to refer to Glüge and Bucci [2017],
where more outputs are reported and where we also perform cyclic simulations and
others, close to the limit case of loss of convexity.

Conclusions

After setting up a simple initial boundary value problem, with a 2D von Mises elastic-
plastic material model, we modi�ed it equipping the yield surface with bumps so to obtain
a non-convex, anisotropic yield function. In all the cases we observed the localization of
the strain which appears to be unrelated (or slightly) to the amplitude of the bumps.
Instead, the material anisotropy appears to be responsible for the observed behaviour.
We conclude that the non-convexity of the yield function does not a�ect the qualitative
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behaviour of the material in the two dimensional case under study, therefore it does not
re�ect any material property.



Chapter 8

Meso-scale: the analytical approach

to linear elasticity and

non-associative plasticity

8.1 Introduction

Non-associative �ow rules have always been of great interest not only in the �eld of
geomechanics, when studying granular materials or rocks (Maier and Hueckel [1979],
Tejchman [2013]), but also when dealing with microstructured materials like composites,
reinforced materials or conrete (Lei and Lissenden [2007], Taherizadeh et al. [2011]).
Non-associativity was always connected somehow to anisotropy of the material, both as
the e�ect and the cause of it (Jiang et al. [2012], Manzari and Yonten [2014]). In the
case of honeycomb structures, since we assume linearity between T and E and an initial
isotropic elastic behaviour (see chapter 4), the anisotropy is caused by the growth of
plastic deformations (see chapter 5).
In this chapter we will approach the structure from another scale level: we will consider
the system of three bars, connected by elastic-plastic springs (see Figure 8.1).

Figure 8.1: Schematic representation of the bar system with springs

63
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The bars will be assumed to be only extensible and periodic boundary conditions will be
imposed at the end of each. We will see that the system of equations is closed, and an
analytical solution to the stress-strain problem can be found. Therefore, we will build
an algorithm which considers a threshold for the variation of the angles, after which
the angle variations will be decomposed in elastic and plastic part. The main issue
when developing the algorithm is to �nd out a way to distribute the plastic deformations
through the three angles. To this aim, we observe the stress-strain curves found in chapter
5 and compare them with the moment-curvature ones obtained by the analysis of bending
beams. We �nd out that they have the same e�ective hardening behaviour, even if in
the micro-scale model simple plasticity was assumed. Moreover, from the argument of
Considére, we know that the plastic hardening resulting from the homogenization plays
the main role in the deformations of the bars, until necking occurs. This will allow us
to assume that the deformations evolve symmetrically at the joint of the bars, so that
when one angle increases of Δ𝜑𝑝 the other two decrease of Δ𝜑𝑝/2 each. Therefore we
introduce the formation of plastic hinges, after the threshold angle is surpassed. This
results in a simple algorithm, that is able to capture both elastic and plastic behaviour
of the microstructured body. As a straightforward outcome of the presented model, we
observe a new yield surface, less exhaustive than the one in chapter 5 (the non-convexity
is lost) but still catching its main features (symmetry, orientation), and, most important,
how it evolves depending on only two scalar plastic state variables.

8.2 Homogenization approach to elasticity

As we learnt in the previous sections, there exist no standard methods to model non-
associative plasticity, especially when talking about homogenized continua. Therefore
we want to �nd a simple approach, which is able to capture the main features of our
structure. The case of polyethylene non-associativity already motivates us to look for
an alternative method which can be adapted to any honeycombs. We want to develop
a general procedure that holds for both material cases and that can be extended to
all desired materials. To this aim, we use a homogenization approach which considers
a system of three extensible bars. We apply the balance of forces and moments, and
consider di�erent constitutive equations, describing the behaviour of the bars and the
angles between them.

Homogenization of the elastic problem

In this section we try to obtain an analytical homogenized model for the linear elastic
behaviour of the honeycomb. We will consider a "Y" shaped system of bars (shown
in Figures 8.1 and 8.3) as the smallest repeatable one, which can build the hexagonal
shape, if a certain periodicity is assumed (as we did in chapter 5). On this element we
will de�ne local quantities which will be related to the average quantities considering the
integration over the volume. Notice that from now on we will neglect the existence of
the out-of-plane dimension. Our study is completely driven with only two dimensions,
which allows us the use of plane stresses without buckling problems in the "z" direction.
From a model point of view, using plane stresses or strains does not make a di�erence,
since Hooke's law is valid in both cases. What changes is the sti�ness/compliance matrix
on the macro scale, in�uenced by the di�erence of the sti�ness of the bars. In fact, one
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can easily observe that in the case of plane stresses, the sti�ness of the beam is lower
than in the case of plane strains, due to the fact that there are no restrictions on the
lateral straining (in the out-of-plane direction). The �nal aim of the whole procedure is
to obtain a homogenized relation able to describe the behaviour of such a structure as if
it was a continuum. To this purpose we will adopt a systematic approach which can be
outlined as follows:

1. we de�ne average, homogeneous, deformation quantities (using average �eld theory
method, see Hori and Nemat-Nasser [1999], Miehe et al. [2002], Miehe and Koch
[2002]): H e�ective displacement gradient;

2. we de�ne local kinematic quantities which are related to the average deformations;

3. we de�ne local dynamic quantities conjugate to the local kinematic quantities;

4. we introduce constitutive equations between local kinematic and dynamic quanti-
ties for the single honeycomb cell;

5. we de�ne e�ective dynamical quantities from the local ones: T e�ective Cauchy
stresses;

6. we obtain a constitutive homogeneous law T(H).

During the whole procedure we will pay particular attention to the number of degrees
of freedom (DOF) that we give to the structure and to the number of equations that we
write do describe its behaviour.
Since we would like to keep the model the most general as possible, we will consider
the structure made of extensible beams. In this way we are able to describe a wider
class of honeycomb structures, just through the modi�cation of the bending or axial
modulus. Indeed all the already existing models (Gibson and Ashby [1997], Papka and
Kyriakides [1998a, 1999b], Wang and Cuitiño [2000]) just focus on the bending properties
of the elements, considering classical slender Euler-Bernoulli beams. In this way they
ignore the interesting behaviour that the structure shows if one does not neglect the axial
deformation. In fact, if instead one considers a thick beam, the axial deformation would
be the main contribution to the average deformation1, leading to an auxetic behaviour
of the structure (see Figure 8.2), with a negative Poisson ratio. Moreover, as the plastic
deformations concentrate at the joints of the bars, plastic bending along the bars does
not contribute to the e�ective plastic behaviour (as we saw for example in Figure 5.4).

1 The bending stiffness is proportional to: 𝐼 = 𝑏ℎ3

12
∝ ℎ3; The extension

stiffness is proportional to: 𝐴 = 𝑏ℎ ∝ ℎ
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Figure 8.2: A preliminary simulation run with the software COMSOL. In this picture
we see the effect of a high bending stiffness versus a low axial one. The thick beams tend
to elongate or shorten rather than bend, conferring the peculiar auxetic behaviour to the
structure. In black: the reference displacement. In colours: the deformed displacement

with von Mises stress.

Figure 8.3: RVE system of bars

Local kinematics and dynamic quantities and geometry definition

In the range of small deformations we de�ne:

∙ the local displacement at the end of the bars 1,2,3

u1 = {𝑢11, 𝑢12}
u2 = {𝑢21, 𝑢22}
u3 = {𝑢31, 𝑢32};

(8.1)
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∙ the initial positions of the endpoints of the beams

x10 = {
√
3

2
𝑙,
1

2
𝑙}

x20 = {−
√
3

2
𝑙,
1

2
𝑙}

x30 = {0,−𝑙};

(8.2)

∙ the initial normal and tangential vectors to the displacement

n10 = {
√
3

2
,
1

2
}

n20 = {−
√
3

2
,
1

2
}

n30 = {0,−1}

d10 = {−1

2
,

√
3

2
}

d20 = {−1

2
,−

√
3

2
}

d30 = {1, 0};

(8.3)

∙ the forces applied to each beam

F1 = {𝐹11 , 𝐹12}
F2 = {𝐹21 , 𝐹22}
F3 = {𝐹31 , 𝐹32};

(8.4)

∙ the initial plastic deformation of the angles

Δ𝜙𝑖𝑗𝑝 = 0; (8.5)

Notice that the subscripts refer to the bars and not to any vectorial relation, unless the
quantities are explicitly decomposed, and that the center of the bar system is �xed at
{0, 0}.
Since we want to get the homogenized behaviour of the structure, we need a scale tran-
sition from the local, bars scale, to the large, continuum scale. We start our analysis
considering extensible bars, joint by rotational springs (see Figure 8.1), subject to local
forces. Periodicity is imposed through the balance of forces and moments of momentums
(automatically satis�ed since they are linearly dependent). Moreover, for any �nal con-
�guration the bar system can assume, periodicity will be always automatically satis�ed
by its geometrical properties, as we can see, for example, in Figure 8.4.
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Figure 8.4: Periodicity of the bar system

Since the boundary of the unit cell, 𝜕Ω, is piecewise continuous, the normal vectors to the
displacement, n, at the corners are computed as the average between the limit vectors
normal to the two converging sides. The tangential vector, d, is then the unit vector
perpendicular to the normal, see Figure 8.3. Remind that the subscripts in the equations
indicate the related bar rather than the components of the vectors (only in equations
(8.6) and (8.10) vector components are explicit and written with smaller subscripts).

Figure 8.5: Y shape unitary cell with the construction of the outer normal at the
corner

Homogenization procedure

1. We start de�ning the average displacement gradient as (see Hori and Nemat-Nasser
[1999], Miehe et al. [2002])

H =
1

𝑉

ˆ
Ω
u⊗∇ d𝑉 =

1

𝑉

ˆ
𝜕Ω

u⊗ n0 d𝐴 = 𝑔(u1 ⊗ n10 + u2 ⊗ n20 + u3 ⊗ n30) =

= 𝑔

3∑︁
0

u𝑖 ⊗ n𝑖0

(8.6)
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where u𝑖 is the local displacement at the end of each bar, n𝑖0 the respective initial
outer normals and 𝑔 is a scaling factor arising from the geometrical properties

(𝑔 = 3
√
3
2 [mm−1]). The second integral is obtained by applying Gauss theorem,

while the sum is due to the fact that the problem is a discrete one (only 3 bars).

2. Balance equations of forces and moments applied to each bar, F𝑖:∑︁
F𝑖 = F1 + F2 + F3 = 0∑︁
F𝑖 · d𝑖0 = F1 · d10 + F2 · d20 + F3 · d30 = 0

(8.7)

3. Constitutive equations:

𝑐𝑒𝑙𝑜 u𝑖 · x𝑖0⏟  ⏞  
Δ𝑙

= F𝑖 · x𝑖0

𝑐𝑟𝑜𝑡 Δ𝜙𝑖𝑗𝑒 = (F𝑖 · d𝑖0 − F𝑗 · d𝑗0)𝑙

∀𝑖, 𝑗 = 1, 2, 3,

(8.8)

where the �rst equation considers the elongation of the beams, with elastic modulus
𝑐𝑒𝑙𝑜 [N/mm] and the vectors x𝑖0 denote the initial positions of the bars. Instead, the
second equation considers the rotational springs between the bars (with modulus
𝑐𝑟𝑜𝑡 [N mm], since d is normalized and therefore dimensionless), as a linear relation
for the variations between the angles, namely

𝑙Δ𝜙𝑖𝑗 = 𝜙𝑗 − 𝜙𝑖 = u𝑗 · d𝑗0 − u𝑖 · d𝑖0 , (8.9)

where 𝑙 is the length of the bar.

4. We de�ne the average stress (see again Miehe et al. [2002], Hori and Nemat-Nasser
[1999]) as2

T =
1

𝑉

ˆ
𝜕Ω

t⊗ x 𝑑𝐴 = 𝑔(t1 ⊗ x10 + t2 ⊗ x20 + t3 ⊗ x30) =

= 𝑔

3∑︁
0

F𝑖 ⊗ x𝑖0

(8.10)

5. Solving the system of equations (4 in eq. (8.6) + 3 in (8.7) + 5 from eq. (8.8) and
(8.9)= 12) in the variables F1,F2,F3,u1,u2,u3 (for a total of 12 variables) we can
�nally get a relation in the form of

T = T(H). (8.11)

The solution for the problem can be found in the Appendix C.

2To prove the validity of the relation, the following chain of argument can be used:

𝑉T =

ˆ
𝑉

T · I d𝑉 =

ˆ
𝑉

∇ · (T𝑇 ⊗ x) d𝑉 =

ˆ
𝜕𝑉

n · (T𝑇 ⊗ x) d𝐴 =

ˆ
𝜕𝑉

t⊗ x d𝐴 =

ˆ
𝜕𝑉

(t− t̃)⊗ x d𝐴 =

ˆ
𝜕𝑉

t⊗ x d𝐴−
ˆ
𝜕𝑉

t̃⊗ x d𝐴 =

ˆ
𝜕𝑉

t⊗ x d𝐴

where we used Gauss theorem from the volume to the surface integral and Cauchy theorem to go from
the average stress tensor to the local tractions. Then we used the decomposition of the stress field into
its homogeneous and fluctuation parts (t = t+ t̃), from where we get

´
𝜕𝑉

t̃⊗x𝑑𝐴 = 0 (see Glüge [2013]
eq. 33) if Hill-Mandell condition applies.



Chapter 8. Meso-scale: elasticity and plasticity 70

Notice: from our model we can get the one of Gibson and Ashby [1997] since, in both
models, all the dependencies are linear. Nevertheless, our model is richer because we
also consider the extension of the bars (see the second equation of (8.8)).

8.3 Modelling plasticity through plastic hinges

In the previous section, we built a homogenized model for linear elasticity. Now we want
to present the plastic one which we develop using an algorithm considering the formation
of plastic hinges at the bar's joints. The model is based on the assumption that the
plastic deformations, that in our case will be represented by the plastic angle variations,
distribute symmetrically on the bars. In the next two paragraphs we will present the
rationale that led us to make this assumption. It is based on the observation of the stress-
strain curves of the FE simulation, in particular, on their similarities with the bending
moment-curvature relation of beams, which present hardening in the e�ective model,
even though not present in the material model. This, together with some observations
based on the Considére argument (which he used to model plastic necking), will lead to
the conclusion of the symmetric distribution of the plastic deformations in our model.
Once again, the whole reasoning is done on three di�erent scale levels: the micro-scale,
where von Mises material is considered, the meso-scale, where the beam model is used,
and the macro-scale where the hexagonal cell honeycomb is considered. We will see
that passing from one scale to the other we obtain di�erent e�ects, namely the plastic
hardening, going from the Mises material to the beam model, and the symmetric angle
distribution, going from the beam to the macro structure.

8.3.1 Analysis of the bending moment-curvature relation of beams

In chapter 5, we have studied the RVE problem, assuming von Mises plasticity on the
micro-scale. Nevertheless, if we observe the stress-strain curves obtained after FE simula-
tions, we see that the e�ective model presents some hardening, with a smooth transition
from the linear elastic range to the plastic one, which is the reason why we had to use
the energy criterion to �nd the yield point. In that moment we did not stop to ask
ourselves, why does this happens. This is the same behaviour that one obtains analysing
the bending moment-curvature relation of a simple beam.
Let us assume a slender Euler-Bernoulli beam, with homogeneous, isotropic, linear elas-
tic, perfectly plastic material properties, equal in tension and compression. Moreover let
us consider beams whose plane sections remain plane (so that the strain is proportional
to the distance from the neutral axis), whose neutral axis passes through the centroid
of the rectangular cross section (so that the stress-strain distribution is symmetric) and
on which symmetric load (bending moment) is applied. Then, the stresses and strains
distributions inside the beam cross section are shown in Figure 8.6: in the �rst graph,
8.6a, the bending moment did not exceed the elastic regime, therefore, stresses are still
linear; in the second one, 8.6b, the yield limit is reached and the outer �bres of the beam
plasticize; the stresses present the inelastic region, corresponding to the perfectly plastic
behaviour which we assumed; �nally, in the last one, 8.6c, the entire section of the beam
has plasticized and only inelastic stresses are present (in reality there will always be a
small elastic range close to the neutral axes).
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(a) Only elastic deformations

(b) Elastic and plastic deformations

(c) Only plastic deformations

Figure 8.6: Strain and stress distribution in a symmetrically bended beam

Once analysed the stresses and strains distributions in the cross section of the beam, on a
micro-scale level, we can try to build the model and �nd the bending moment-curvature
(𝑀−𝜅) relation of the homogenized material. Let us consider the beam section of Figure
8.7, where ℎ and 𝑏 are the dimensions of the rectangular cross section, 𝑧 is the distance
from the neutral axes, 𝑧𝑝 is the distance at which plastic strains occur and d𝐴 is a small
element of area.
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Figure 8.7: Beam cross section with elastic and plastic stress distribution

If we consider the case when just elastic deformations appear (Figure 8.6a), the bending
moment is:

𝑀 =

ˆ
𝜎𝑧d𝐴 =

ˆ
𝐸𝜀𝑧d𝐴 =

ˆ
𝐸𝜅𝑧2d𝐴, (8.12)

where we used: the Hooke's equation 𝜎 = 𝐸𝜀 = 𝐸𝜅𝑧, and Bernoulli's 𝜀 = 𝜅𝑧, the
Young's modulus 𝐸 and the curvature 𝜅. Since d𝐴 = 𝑏d𝑧 we can write:

𝑀 =

ˆ ℎ/2

−ℎ/2
𝐸𝜅𝑧2𝑏d𝑧 = 𝐸𝜅

ℎ3𝑏

12
= 𝐸𝐼𝜅, (8.13)

where we recognize 𝐼 = ℎ3𝑏
12 as the second moment of area for a rectangular cross section.

As expected the bending moment is linear in the curvature.
Now let us consider the case in which part of the beam section has plasticized: as shown
in Figure 8.7, the linear elastic part is from 0 to 𝑧𝑝 and the plastic one, from 𝑧𝑝 to ℎ/2.
Then the bending moment is divided in two parts:

𝑀 = 2

ˆ 𝑧𝑝

0
𝜎𝑧d𝐴+ 2

ˆ ℎ/2

𝑧𝑝

𝜎𝑦d𝐴, (8.14)

where 𝜎𝑦 is the yield stress (we consider twice the same contribution in the integral
instead of the full one, because of symmetry). As we did before, we transform and solve
the integrals:

𝑀 = 2𝐸𝜅𝑏

ˆ 𝑧𝑝

0
𝑧2d𝑧 + 2𝜎𝑦𝑏

ˆ ℎ/2

𝑧𝑝

𝑧d𝑧 = 2
𝜎𝑦
𝑧𝑝

𝑏

[︂
1

3
𝑧3
]︂𝑧𝑝
0

+ 2𝜎𝑦𝑏

[︂
1

2
𝑧2
]︂ℎ/2
𝑧𝑝

=

𝜎𝑦𝑏

(︂
2

3
𝑧2𝑝 − 𝑧2𝑝 +

1

4
ℎ2
)︂

= 𝜎𝑦ℎ
2𝑏

(︃
1

4
− 1

3

𝑧2𝑝
ℎ2

)︃
=

12
𝜎𝑦𝐼

ℎ

(︂
1

4
− 1

3

(︁𝑧𝑝
ℎ

)︁2)︂
.

(8.15)
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Writing the solution in terms of the curvature 𝑧𝑝 =
𝜎𝑦/𝐸
𝜅 (from the Bernoulli hypothesis

𝜅 = 𝜀/𝑧), we get the quadratic relation between the bending moment and the curvature,
resulting in the curve shown in Figure 8.8.

Figure 8.8: Bending moment-curvature relation of the loaded rectangular section
beam

Even if there is a smooth transition between elastic and plastic regime, it is easy to �nd
the yield point. Indeed, the �rst time the beam yields is when 𝑧𝑝 = ℎ/2 resulting in the

bending moment 𝑀𝑦 =
2𝐼𝜎𝑦

ℎ . On the other hand, the beam is completely plastic when

𝑧𝑝 = 0 giving the result 𝑀𝑝 =
3𝐼𝜎𝑦

ℎ = 3
2𝑀𝑦.

Also in this case we see that the e�ective model presents plastic, asymptotic harden-

ing, despite we assumed simple von Mises plasticity, that there is not a clear point

of yielding in the curve and that the one found analytically is very close to the 10% of
change in the curve slope.

8.3.2 The Considére argument

In 1885 Considére wrote about plastic instability concerning necking in bars under ten-
sile tests (Considère [1885]). He wrote that initially, strain hardening compensates for
reduction in area and that necking begins when the increase in stress due to decrease
in the cross-sectional area is greater than the increase in load bearing capacity of the
specimen due to work hardening. That is when instabilities arise. Now, let us consider
a specimen under tensile test (Figure 8.9):

Figure 8.9: Bar specimen under tensile test
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We know from the previous theory of plastic bending (8.3.1) that even if the material is
assumed to be perfectly plastic, in the e�ective model there will always be some harden-
ing contribution, due to stress redistribution. If the two parts (Figure 8.9) have exactly
the same stress-strain curve it immediately follows that the deformations distribute sym-
metrically, with respect to the middle line, on sides 1 and 2. Instead, if they have slightly
di�erent curves (which is more likely in reality, even if the material is the same), �rst
the weakest will start to harden, as soon as its yield point 𝜎𝑦1 is reached. Nevertheless,
as we can see in Figure 8.10, the stresses will continue to increase until also the second
part reaches its limit stress, 𝜎𝑦2 . At this point both will harden at the same time and
again (dotted red line), the deformations will be symmetric.

Figure 8.10: Stress-strain curves with hardening, of the two sides of the same specimen

This behaviour will hold until softening takes place. Then the localization of strain
starts and necking causes the cross section area to be too small which �nally results in
the fracture of the specimen.

8.3.3 The plastic hinges model

We will now use all the considerations made in the previous subsections to build a plastic
model of the three bars system, based on the symmetric distribution of the deformations
(which in our case will be considered as angle variations).
Usually, in structural mechanics, plastic hinges are used to describe the part of a beam
where the plastic bending occurs. When a certain value of the moment is passed, tran-
sition from elastic to ideally plastic is assumed. The plastic hinge model then allows
rotations of the bars at a constant plastic moment. In our case, the yielding moment is
described by the second equation in (8.8). Then, we consider the total variation of the
angle as:

Δ𝜙𝑖𝑗 = Δ𝜙𝑖𝑗𝑒 −Δ𝜙𝑖𝑗𝑝 , (8.16)

i.e. composed from an elastic, reversible, part Δ𝜙𝑖𝑗𝑒 and a plastic one Δ𝜙𝑖𝑗𝑝 . Moreover,
the additional equation

Δ𝜙31𝑝 = −Δ𝜙12𝑝 −Δ𝜙23𝑝 (8.17)

can be considered, meaning that the sum of the angle variation is always 0. Equation
(8.17) eliminates one degree of freedom, which leaves the plastic problem depending only
on two plastic state variables.
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At this point the following algorithm is used, in order to �nd the plastic angles and,
therefore, the �nal con�guration of the bars structure:

∙ Initialize the parameters, equations (8.1) to (8.5)

∙ Given an average displacement gradient H, we divide the path to reach the desired
value in 𝑚 steps, each of them representing a small time increment (𝑡𝑚 = 𝑚Δ𝑡)

∙ Compute Δ𝜙𝑖 𝑖 = 1, 2, 3 trough equations (8.6) to (8.10), assuming always the
step to be elastic.

∙ Set an elastic limit in terms of a maximum elastic change of angle, Δ𝜙𝑦. When this
yield angle is exceeded by any one of the three angles between the beams, plastic
hinges form in the structure.

∙ Start decreasing the angle that plasticized by a small 𝛿, which we distribute sym-
metrically to the other two angles (see paragraphs 8.3.1 and 8.3.2), until it is again
in the elastic range. For example, suppose the angle Δ𝜙12 > Δ𝜙𝑦, then

Δ𝜙12𝑒,𝑛+1 = Δ𝜙12𝑒,𝑛 − 𝛿

Δ𝜙23𝑒,𝑛+1 = Δ𝜙23𝑒,𝑛 + 𝛿/2

Δ𝜙31𝑒,𝑛+1 = Δ𝜙31𝑒,𝑛 + 𝛿/2

(8.18)

∙ The di�erence between the actual totalΔ𝜙 and the elastic part, will be the updated
plastic variation angles

Δ𝜙𝑖𝑗𝑝,𝑛+1 = Δ𝜙𝑖𝑗,𝑛+1 −Δ𝜙𝑖𝑗𝑒,𝑛+1 (8.19)

As we can see in Figures 8.11, with this simple algorithm, the �nal con�guration that the
system of bars takes, is plausible and corresponds to our predictions, if one, for example,
compares them with the FE simulations of the RVE, in chapter 5.

Conclusions

In this chapter we derived a mechanism-based plasticity model for honeycombs, pointing
out once more the need of a di�erent approach to the problem. Therefore, starting from
beam theory and hardening arguments, we built a bar model, which is able to reproduce:

∙ the elastic elongation of the bars;

∙ the localization of the deformation at the bars joints by introducing there elastic-
plastic hinges;

∙ the symmetric distribution of the deformations when plastic hinges appear.

We see that the algorithm output gives �nal con�gurations for the bar system that
emulate the ones found in chapter 5 for di�erent prescribed displacements. In chapter
9 we will compare the stress-strain curves resulting from the algorithm with the once
resulting from the FE model and observe more interesting properties arising from the
developed model. Notice that we are still working on a meso-scale level, where we still
consider the cellular structure. In the next chapters we will see what is the e�ective
behaviour resulting from this model.
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(a) H =

[︂
1 0
0 0

]︂
(b) H =

[︂
0 0
0 1

]︂

(c) H =

[︂
−1 0
0 0

]︂
(d) H =

[︂
0 0
0 −1

]︂

(e) H =

[︂
0 1
0 0

]︂ (f) H =

[︂
0 0
1 0

]︂

Figure 8.11: Initial (black) and final (green) configurations of the bar system, after
different displacement driven tests



Chapter 9

Validation of the model

9.1 Introduction

In chapter 8 we built a model, based on an algorithm, in which di�erent parameters,
elastic and plastic, such the sti�ness modulus and the yield angle, appear. In a �rst
moment they were assumed to be unitary for simplicity. In this chapter we will see how
to calibrate those parameters comparing a simple tension test from the bar model to
the same test driven on a numerical simulation with the RVE. Once obtained acceptable
values, we use them in other tests and compare the stress-strain curves and the �nal
con�gurations with the ones from the FE model.

9.2 Calibration

Before being ready to validate our model and compare it with the RVE one, we need
to adjust our material parameters to the e�ective ones. To do that, �rst of all we have
to adapt our code for the bar model such that we can conduct stress driven tests, as
the ones done in the FE simulation. The easiest way to accomplish this requirement
is to keep our strain driven algorithm and use it in a Newton scheme. Given a stress
tensor, the Newton iteration will �nd the strain tensor such that, through the algorithm,
will give as output the prescribed stress tensor. Now we can take the data from one
RVE simulation, for example a simple tension test in the 𝑥2 direction, and use them to
calibrate the model's parameters so that the stress-strain curves match. To do this we
can consider two approaches:

∙ The physical calibration, in which we consider the physical meaning of the 𝑐𝑒𝑙𝑜
and 𝑐𝑟𝑜𝑡 moduli. As they are elastic constants, we �t them considering only the
elastic range of the test. We do it in such a way that, given a stress value, the
strains in the 𝑥 and 𝑦 directions from the two models (RVE and bar) coincide.
Finally we adjust the plastic parameter Δ𝜙𝑦. With this procedure we can see the
curves �t in Figures 9.1a and 9.2a with the respective material parameters.

∙ The empirical calibration, in which we treat the variables simply as �tting pa-
rameters, and therefore we just �nd the values which lead to best curve �t. With
this kind of calibration we notice some interesting features of 𝑐𝑒𝑙𝑜 and 𝑐𝑟𝑜𝑡. In

77
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(a) Δ𝜙𝑦 = 0.0094, 𝑐𝑒𝑙𝑜 = 23.529 * 103, 𝑐𝑟𝑜𝑡 = 0.696 * 103

(b) Δ𝜙𝑦 = 0.0078, 𝑐𝑒𝑙𝑜 = 7.156 * 103, 𝑐𝑟𝑜𝑡 = 0.784 * 103

Figure 9.1: In red physically and empirically obtained stress strain curves for tension
test in 𝑦-direction, fitted on the one from RVE simulation in green, for aluminium

fact, we see that, while both control the slope of the linear part, the former is also
responsible for the hardening behaviour of the curve (the smaller 𝑐𝑒𝑙𝑜 the more
hardening we have), and the latter for the yield point. The best �t curve can be
seen in Figures 9.1b and 9.2b, with the respective material parameters.

We see that in both cases, the empirical �t can capture better the behaviour of the curve,
since we have more freedom to modify the parameters. Moreover we notice that, because
of the non-linear behaviour that the polyethylene shows since the very beginning, the
�t results to be harder than in the easier material case of aluminium. Nevertheless, the
approximation is good for both materials and is able to catch the main information from
the curves, namely the non de�ned yield point and the hardening behaviour when plastic
deformations start.
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(a) Δ𝜙𝑦 = 0.098, 𝑐𝑒𝑙𝑜 = 0.078 * 103, 𝑐𝑟𝑜𝑡 = 0.008 * 103

(b) Δ𝜙𝑦 = 0.035, 𝑐𝑒𝑙𝑜 = 0.019 * 103, 𝑐𝑟𝑜𝑡 = 0.018 * 103

Figure 9.2: In red physically and empirically obtained stress strain curves for tension
test in 𝑦-direction, fitted on the one from RVE simulation in green, for polyethylene

9.3 Validation

After calibrating the curves, �tting them on the one obtained from a tension test made
on the RVE, we are now ready to see if the model responds correctly to the other tests.
We do this still comparing the stress-strain curves obtained from the same tests done
using the bar model and the FE simulations. The validation results are shown in Figures
9.3, 9.4, 9.5 and 9.6. From Figures 9.3 and 9.5 (aluminium case) we notice that the model
is able to capture very well the curve behaviour both with the physical and empirical �t;
in particular we see that, while the physical �t approximates perfectly the linear elastic
part, being less precise regarding the yield point and plastic zone, the empirical �t does
it very well, but looses precision for the case in red of Figure 9.3b (𝜒 = 𝜋/4). Instead,
concerning the polyethylene (Figures 9.4 and 9.6) we see that the �t matches perfectly
only few cases, especially the physical one. We see that the empirical �t in Figure 9.6b
captures perfectly both the elastic and plastic part, except for the case 𝜃 = 𝜋/5 for which
the model response is weaker than the RVE one. In general, we notice that the model
works much better for the aluminium case, which is sti�er and fully linear in the elastic
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(a) Physical

(b) Empirical

Figure 9.3: Curve fits, with dots, for different RVE simulation tests, with constant
𝜃 = 0, for aluminium: in green 𝜒 = 0, in red 𝜒 = 𝜋

4 , in blue 𝜒 = 𝜋
2 , in black 𝜒 = 3𝜋

4

part, than for polyethylene which presents non-linearities since the very beginning (we
already noticed this in chapter 5, �gure 5.7b).

Conclusions

In this chapter we compared the stress-strain curves obtained from the RVE simulations
and through the bar model algorithm. We see that the model is able to capture quite well,
qualitatively and quantitatively, the behaviour of the cellular solid, both for aluminium
and polyethylene material cases. In particular, the model is able to reproduce the two
most important properties of the e�ective material:

∙ �rst of all, in both models, we �nd out that there is not a clear yield point appearing
in the average stress-strain curves;

∙ straightforward, we see that in both cases, the e�ective model presents hardening,
even though on the micro-scale level, simple von Mises plasticity was assumed;
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(a) Physical

(b) Empirical

Figure 9.4: Curve fits, with dots, for different RVE simulation tests, with constant
𝜃 = 0, for polyethylene: in green 𝜒 = 0, in red 𝜒 = 𝜋

4 , in blue 𝜒 = 𝜋
2 , in black 𝜒 = 3𝜋

4

These two features are the same which one can observe in the analysis of the bending
moment-curvature relation of a beam, as we saw in section 8.3.1.
Next step will be to see what is the e�ective behaviour resulting from this model when
applied to a homogeneous material.
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(a) Physical

(b) Empirical

Figure 9.5: Curve fits, with dots, for different RVE simulation tests, with constant
𝜒 = 0, for aluminium: in green 𝜃 = 0, in red 𝜃 = 𝜋

20 , in blue 𝜃 = 𝜋
10 , in black 𝜃 = 𝜋

5
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(a) Physical

(b) Empirical

Figure 9.6: Curve fits, with dots, for different RVE simulation tests, with constant
𝜒 = 0, for polyethylene: in green 𝜃 = 0, in red 𝜃 = 𝜋

20 , in blue 𝜃 = 𝜋
10 , in black 𝜃 = 𝜋

5



Chapter 10

Macro-scale II: yield surface and

ABAQUS implementation of the

meso-scale approach

10.1 Introduction

Up to now, we always focused on our elementary cell, trying to get a behaviour which
could correspond to the one observed in a real cell from a honeycomb panel. Nevertheless,
the �nal aim of this work is to forget about the internal structure, and treat the medium
as a continuum, still observing the peculiar behaviour of the cellular solid (i.e. strain
localization, pressure sensitivity). As a �rst step into the macro-scale level, we will
see the e�ective yield surface arising from the model on which we plot the plastic �ow
direction. Two plastic state variables will be su�cient to allow us to study the evolution
of the yield surface and con�rm that an associative �ow rule can not be applied and that
neither isotropic, nor kinematic hardening work. Then we will apply all what we learnt,
to perform �nite element simulations. In order to do this, we build our material model
in an ABAQUS UMAT �le, in which we implement the plastic model developed in the
previous sections, with a more e�cient predictor-corrector step approach.

10.2 Evolution of the yield surface

10.2.1 Change of the elastic range

In section 8.2 we set and solve the elastic-plastic problem of the three bars RVE. If we
consider equations (8.7), (8.8) and (8.10) we are able to plot the yield surface corre-
sponding to the problem, posed with this new approach, in the stress space. Using the
balance of forces and moments∑︁

F𝑖 = F1 + F2 + F3 = 0∑︁
F𝑖 · d𝑖0 = F1 · d10 + F2 · d20 + F3 · d30 = 0,

(10.1)
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and the average stress

T = 𝑔(t1 ⊗ x10 + t2 ⊗ x20 + t3 ⊗ x33),

we can �nd the expression of the forces in terms of stress components

𝐹11 = (2
√
3𝑇11 +

√
2𝑇12)/6 𝐹12 =(

√
6𝑇12 + 2𝑇22)/6

𝐹21 = (−2
√
3𝑇11 +

√
2𝑇12)/6 𝐹22 =(−

√
6𝑇12 + 2𝑇22)/6

𝐹31 = −(
√
2𝑇12)/3 𝐹32 =− (2𝑇22)/3.

(10.2)

Now, let us recall the constitutive equation for the angle variation (the second of the set
of equations (8.8))

𝑐𝑟𝑜𝑡 Δ𝜙𝑖𝑗𝑒 = (F𝑖 · d𝑖0 − F𝑗 · d𝑗0)𝑙. (10.3)

Remembering the Hesse normal form to express a plane in the R3 Euclidean space,
r · n = 𝑘 (where r is a set of vectors describing all points lying on the plane, n is the
normal vector to the plane pointing away from the origin and 𝑘 is the distance from
the origin to the plane), we notice that the equation above, can represent six planes
in the stress space (the same approach is used by Florence and Sab [2005] to study
the yield surface and its evolution in the case of a periodic tetrakaidecahedral cellular
solid). Therefore, substituting the forces found in (10.2), in the expression (10.3), and
considering Δ𝜙𝑖𝑗𝑒 = Δ𝜙𝑖𝑗𝑦 , i.e. the critical yield angle variation, we can describe the
elastic range as all the points falling inside the region de�ned from

𝑐𝑟𝑜𝑡
𝑙

Δ𝜙𝑖𝑗𝑦 ≥| F𝑖 · d𝑖0 − F𝑗 · d𝑗0 | (10.4)

(see Figures 10.1 A and B).

(a) (b)

Figure 10.1: (A) Six planes in the stress space defined by (10.3); (B) Hexagonal yield
surface in the stress space defined by (10.4)
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Figure 10.2: Six planes delimiting the elastic range, with different areas in evidence

From the Figures we can recognize some analogies with the yield surface in Figure 5.10:
indeed we can identify the six fold symmetry (with the hexagonal shape), the elongation
on the tension and compression parts, along the hydrostatic axes. If we have a look
at Figure 10.2, we can easily interpret the di�erent areas in evidence: the red part is
the elastic range; if we exceed the limit on one side of the hexagon, we are in the pink
areas which indicate that only one angle has passed the yield limit; the points where two
planes meet indicate that two angles are on the critical value, and in all the green parts
they are over it; �nally, the blue areas are where three angles yield concurrently. Notice
that this last case has to be excluded from the analysis since the predictor step size to
reach it would be too big. The cases to consider are only the ones that fall in a small
neighborhood of the elastic range.
Unfortunately, but predictably, we loose the information of the non convexity and

pressure sensitivity, since the surface extends in�nitely along the hydrostatic axis. Nev-
ertheless, this representation of the yield surface allows us to study, with incredible
simplicity, its evolution.
To this purpose, let us consider equations (10.4). We know, from the way the model is
built, that Δ𝜙12𝑝 +Δ𝜙23𝑝 +Δ𝜙31𝑝 = 0. Then we can modify equations (10.4), adding
two plastic terms 𝑎 and 𝑏, as state variables, which change the yielding angle as follows:

𝑐𝑟𝑜𝑡
𝑙

Δ𝜙12𝑦 ≥ 𝑎+ F1 · d10 − F2 · d20

𝑐𝑟𝑜𝑡
𝑙

Δ𝜙23𝑦 ≥ −𝑎

2
+ 𝑏+ F2 · d20 − F3 · d30

𝑐𝑟𝑜𝑡
𝑙

Δ𝜙31𝑦 ≥ −𝑎

2
− 𝑏+ F3 · d30 − F1 · d10 .

(10.5)

Notice that the �rst term 𝑎 is responsible for the symmetric change of the yield surface,
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while 𝑏 for the non-symmetric one. The two state variables basically correspond to a
plastic change of the angles Δ𝜙. With this manipulation we can see how the yield surface
evolves:

(a) 𝑎 = −0.4, 𝑏 = 0 (b) 𝑎 = −0.8, 𝑏 = 0 (c) 𝑎 = −1.4, 𝑏 = 0

Figure 10.3: Evolution of the yield surface, changing the first state variable 𝑎.

(a) 𝑎 = 0, 𝑏 = −0.4 (b) 𝑎 = 0, 𝑏 = −0.8 (c) 𝑎 = 0, 𝑏 = −1

Figure 10.4: Evolution of the yield surface, changing the second state variable 𝑏.
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(a) 𝑎 = −0.4, 𝑏 = −0.4 (b) 𝑎 = 0.4, 𝑏 = −0.8

Figure 10.5: Evolution of the yield surface, changing both state variables 𝑎 and 𝑏.

From Figures 10.3, 10.4 and 10.5 we can observe some interesting, uncommon, features
of the evolution of the yield surface. We notice the loss of the regular hexagonal shape:
for example, as we change 𝑎, the hexagon �attens symmetrically along the 𝑇12 direction
and elongates along the other two. On the other hand, varying 𝑏, leads to a deformation
along the 𝑇12 axes, shearing the sides of the hexagon. Finally, if we change both of
the parameters simultaneously, we can see the two e�ects acting together on the surface.
This behaviour cannot be accounted neither for isotropic nor kinematic hardening models
and is called distortional hardening (see Ortiz and Popov [1983], Shi and Mosler [2013],
Feigenbaum and Dafalias [2007], Manopulo et al. [2015] for more examples on distortional
hardening). Another interesting fact is that, after a certain value of the parameter 𝑎 (in
this case after 𝑎 = −0.8), the shape of the surface cease changing anisotropically and
starts to shrink showing a softening behaviour, until it disappears. Of course this is a
non-physical, limit case because it would mean that the elastic range disappears and
only plastic deformations are taking place.

10.2.2 Plastic flow direction

Another advantage of using the algorithm presented in section 10.3 is that it allows us
to study the �ow direction. Indeed, it can be used as a �ow rule to �nd the vectors
indicating the plastic �ow direction, in the stress space where we plot the yield surface.
To do this, we need to �nd a way, in our Mathematica codes, to relate the change of
plastic strains to the stresses. Once more we will make use of the relations presented in
chapter 8 and the algorithm. We solve the equations stepwise in function of the angle
variations and substitute the results in the expressions for H.
Let us start with a further assumption: we force the relations between 𝑢𝑖1 and 𝑢𝑖2 such



Chapter 10. Macro-scale II 89

that the bars do not elongate, i.e. we assume displacements parallel to d𝑖0

u1 = {𝑢11,
−𝑢11

arctan(𝜋/3)
}

u2 = {𝑢21,
𝑢21

arctan(𝜋/3)
}

u3 = {𝑢31, 0}.

(10.6)

In this way we suppress a variable and we can write H as function of only 𝑢11, 𝑢21
and 𝑢31. Then we solve the equations for the angles variations of (8.8), in function
of the displacements. Notice that only two of the three displacements can be used,
since the third one is linearly dependent. Therefore, to eliminate the last variable, we
solve 𝐻12 = 𝐻21 for 𝑢31, i.e., we �nd the displacement such that the matrix becomes
symmetric, therefore excluding rigid rotations of the cell. We get the following:

H =

[︃ 3Δ𝜙12 arctan(𝜋/3)√
3+arctan(𝜋/3)

− Δ𝜙12+2Δ𝜙23√
3+arctan(𝜋/3)

− Δ𝜙12+2Δ𝜙23√
3+arctan(𝜋/3)

− 3Δ𝜙12

3+
√
3 arctan(𝜋/3)

]︃
. (10.7)

The next step is to write the angles variations as a function of the stresses. To do this,
we substitute the expression for the forces (10.2) in the second of (8.8). Then we can
write the elastic angle variation in function of the stresses, which will give us the elastic
part of H:

Δ𝜙12𝑒 =
−𝑇11 + 𝑇22√

3𝑐𝑟𝑜𝑡𝑙

Δ𝜙23𝑒 =

√
3𝑇11 + 6𝑇12 −

√
3𝑇22

6𝑐𝑟𝑜𝑡𝑙

Δ𝜙31𝑒 =

√
3𝑇11 − 6𝑇12 −

√
3𝑇22

6𝑐𝑟𝑜𝑡𝑙
.

(10.8)

At this point the algorithm described in section 10.3 must be used in order to �nd the
plastic angles (written in function of the stress tensor components). The so found Δ𝜙𝑝,
once inserted in equation (10.7) will give us the plastic �ow direction in the stress space.
For the complete Mathematica scripts, look at the Appendix D. The results obtained
with this procedure are reported in Figure 10.6.
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(a) (b)

(c)

Figure 10.6: The yield surface with a part of vectors showing the flow direction (then
the solution is symmetric).

From this �gures we can see that the plastic �ow is normal to the yield surface only
from the perspective of the 𝑇12 axes 8.6a. This is lost in the other perspectives. In
particular, in Figures 10.6b and 10.6c, we see that the plastic �ow has a component along
the hydrostatic axis, suggesting compressible plasticity. Indeed, the material presents a
volume change, as we can see from the experimental results, due to the collapse and
compacti�cation of the rows. Moreover we can see the sudden change of direction of the
arrow on the corners, maybe due to a kind of singularity of the surface. In fact, that is
the point where two surfaces meet, meaning that two angles yield simultaneously.
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Figure 10.7: Case 1: only one angle exceeds the limit angle Δ𝜙𝑦

10.3 Implementation in ABAQUS

10.3.1 The predictor corrector algorithm

From the analysis of the plastic step increment, we notice that the �nal distribution of
the angle variation can be summarized in the following way:

Case 1 If only one angle, say Δ𝜙12, exceeds the yield limit, by a quantity that we call 𝑒𝑥
(𝑒𝑥 = Δ𝜙12𝑝𝑟𝑒𝑑 −Δ𝜙𝑦), then the corrector step is:

Δ𝜙12𝑐 = Δ𝜙𝑦

Δ𝜙23𝑐 = Δ𝜙23 + 𝑒𝑥/2

Δ𝜙31𝑐 = Δ𝜙31 + 𝑒𝑥/2

(10.9)

Figure 10.7.

Case 2 If two angles, say Δ𝜙12 and Δ𝜙23, exceed the limit, then:

Δ𝜙12𝑐 = Δ𝜙𝑦

Δ𝜙23𝑐 = −Δ𝜙𝑦

Δ𝜙31𝑐 = 0,

(10.10)

Figure 10.8.

Case 3 If the three angles exceed the limit then:

– If min(| Δ𝜙12 −Δ𝜙13 |, | Δ𝜙23 −Δ𝜙13 |, | Δ𝜙12 −Δ𝜙23 |) ≤ Δ𝜙𝑦, then apply
[Case 1] where the biggest Δ𝜙 goes to the limit and the other two share the
angle excess;
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Figure 10.8: Case 2: two angles exceed the limit angle Δ𝜙𝑦

– If min(| Δ𝜙12 −Δ𝜙13 |, | Δ𝜙23 −Δ𝜙13 |, | Δ𝜙12 −Δ𝜙23 |) ≥ Δ𝜙𝑦, then apply
[Case 2] where the smallest Δ𝜙 goes to 0 and the other two go to the limit
with opposite sign.

Here the subscript 𝑐 stands for "corrector".
Using these conditions instead of the stepwise algorithm, the �nal result is the same, but
obtained in just one iteration. The di�erence between the two approaches would be as
small as 𝛿. The new approach, then, is applied to an homogeneous, 2D, sheet of material
which we �x at the bottom, and on which we impose a displacement on the top (see
Figure 10.9).

Figure 10.9: 2D, homogeneous structure, with mesh and boundary conditions
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For these simulations we can either use the parameters found with the curves �tting, or
the material parameters given from the geometry of the bars. For the latter case we use
the following:

𝑐𝑒𝑙𝑜[𝑁/𝑚] 20.96

𝑐𝑟𝑜𝑡[𝑁𝑚] 17.29

Δ𝜙[] 0.2

𝑙[𝑚] 1

Table 10.1: Material parameters

where 𝑐𝑒𝑙𝑜 and 𝑐𝑟𝑜𝑡 are computed respectively: 𝑐𝑒𝑙𝑜 = 𝐴𝐸/𝑙, i.e. the sti�ness for a
rectangular bar, where 𝐴 is the cross-section area, 𝐸 is the Young modulus of the base
material (in this case we use aluminium) and 𝑙 is the length of the bar; 𝑐𝑟𝑜𝑡 instead is
the sti�ness extracted from the stress-strain curve of a compression test. We also report
the output using the constitutive parameters obtained with the empirical calibration of
polyethylene (which results to be more signi�cant than the one of aluminium, although
not really representative of the honeycomb structure behaviour).
For the UMAT.f �le, look at the Appendix E.

10.3.2 Observations on the algorithmic consistent linearization

As we can see in the Appendix E our material model has been implemented as a user
material in ABAQUS UMAT (see section 6.2). It is worth now to spend some time to
point out another advantage of the developed algorithm.
To write a user material some important quantities must be de�ned, that are the stresses
and the dependence on �eld variables or internal state variables. Moreover, one has to
write the constitutive rate equations as incremental equations. Then ABAQUS uses the
Newton scheme, to �nd the f𝑖𝑛𝑡(u) such that r(u) = f𝑖𝑛𝑡(u) − f𝑒𝑥𝑡 = 0 at each step
increment. This can be linearized as follows

0 = r(u) ≈ r(u𝑛) +
𝜕r(u)

𝜕u
|un(u𝑛+1 − u𝑛) = r(u) + J(u𝑛+1 − u𝑛),

and solved for
u𝑛+1 = −J−1r𝑛 + u𝑛.

To do this, the Jacobian has to be provided and can be decomposed by the chain rule as
follows:

𝜕r𝑛+1

𝜕u𝑛+1
=

𝜕r𝑛+1

𝜕T𝑛+1

𝜕T𝑛+1

𝜕E𝑛+1

𝜕E𝑛+1

𝜕u𝑛+1
.

The �rst and last terms are constant element matrices, given from the element formula-
tion, while the middle term needs to be explicitly de�ned by the user. The problem of
de�ning a consistent Jacobian or "algorithmically consistent tangent moduli" was �rstly
recognised by Simo and Taylor [1985]. In fact, many constitutive models commonly used
in solid mechanics are very di�cult to linearize exactly, which creates a need for e�ective
approximations of material sti�ness. For a deeper discussion on the argument, refer to
Laursen [2013].
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This de�nition involves the use of a time integration algorithm, and here is where our
enters: we build a backward algorithm, similar to the backward Euler method, which
evaluates the stresses at the end of each time increment, in such a way that they always
lie on the yield surface if the yield limit is reached, and are elastic otherwise. The sti�-
ness matrix K𝑛+1 := 𝜕T𝑛+1

𝜕E𝑛+1
is computed componentwise by numerical di�erentiation as

follows:

𝐾𝑖𝑗𝑘𝑙 ≈
𝑇𝑖𝑗(E+ΔE)− 𝑇𝑖𝑗(E)

Δ𝐸𝑘𝑙
,

for which we just have to de�ne the function T(E).

10.3.3 Results

In the following �gures we report the �nal con�gurations of the material sheet under
di�erent loading conditions, obtained using the user material implemented in UMAT.

(a) Compression (b) Shear

(c) Tension

(d) Compression/Shear

Figure 10.10: Final configuration under different loading conditions using the material
parameters of table 10.1. In the scale of colours equivalent strains are reported

Figures 10.10 are obtained using the geometrical material parameters. They show ex-
plicitly the localization of the deformation. For each loading condition we can appreciate
the appearance of deformation bands. In particular, for the cases of compression and
tension, we see the deformation propagating from the corners to the centre of the body,
whereas, in the other two cases, it concentrates immediately in the centre. The rest of the
square, instead, remains homogeneous and almost free of deformation. This behaviour
is very typical for complex materials, whose mechanical behaviour is well modelled by
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second (or higher) order gradient theories (see for example Reiher et al. [2016]). Never-
theless, the aim of this study is to keep our description simple and easily handleable for
engineering purposes. Further complexity can be added to the proposed approach and
will be discussed in the �nal outlook of this thesis.

(a) Compression (b) Shear

(c) Tension
(d) Compression/Shear

Figure 10.11: Final configuration under different loading conditions using the pa-
rameters for polyethylene empirical fit (Figure 9.2b). In the scale of colours equivalent

strains are reported

On the other hand, Figures 10.11 show the results for the �tted parameters. We can
see that the localization of the deformation always starts at the corners of the specimen.
For each loading condition we can just appreciate the starting of deformation bands.
It is important to observe that, what we can actually see in this second case, are only
the initializations of the localization. This is because, as soon as the deformations start
to localize, large strains occur. This is one limitation of the model and therefore the
�rst modi�cation that one would start to investigate. In both cases, upgrading the
model to large deformations could result in a better representation of the plastic strain
localization.
Notice that, since there is no internal scale, a mesh dependence of the �nal result is
unavoidable. Nevertheless, it can be overcome by adding a viscosity term in the model,
which can be tuned to uniform the results obtained with di�erent mesh sizes. Indeed, as
widely explained in Niazi et al. [2013], Needleman [1988], Peerlings et al. [1998], including
a regularizing viscosity in the model means introducing an internal length scale. Then
the localization size correlates with the viscosity parameters which can be varied to �t
the experimental results (see also De Borst et al. [1993], Dias da Silva [2004]).
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Conclusions

In this last chapter we saw that not only is the model able to capture the behaviour shown
by the RVE, but it also allows us to study further the characteristics of the yield surface
and investigate its evolution. We con�rm that the associative �ow rule does not apply to
the cellular material, being indeed a compressible one, and that distorsional hardening
is present in the plastic behaviour. This is one of the most important achievements of
the model, since it is able to represent the evolution of the yield surface, when one would
not know what to do because of the big functional freedom of the problem. Obtaining
the same result through FE approach, would require an excessive number of simulations,
if one wants to consider all possible loading paths.
We saw that, once implemented in a �nite element software as a user material, the model
is able to capture the localization of the deformations in shear bands and its initialization,
typical of honeycomb-like structures.



Chapter 11

Conclusions and outlook

11.1 Conclusions

In the presented work we studied and examined the elastic-plastic behaviour of hon-
eycomb structures made of two di�erent materials: aluminium and polyethylene. We
approached the structure on three di�erent levels: micro-, meso-, and macro-scale. At
each level we faced di�erent problems: parametrization of the stress tensor and the math-
ematical �t of the yield surface, at the micro-scale; properly modelling the cell structure
and �nding a good algorithm for its plastic behaviour, at the meso-scale; �nding the
good material parameters and a �nite element implementation, at the macro-scale.
In order to easily preform numerical simulations, we parametrized the stress tensor with
the three parameters, i.e. the magnitude of the load 𝑚, the orientation angle 𝜃 and
the biaxiality measure angle 𝜒, and used them to �nd a mathematical expression for
the yield surface, based on observations of symmetry properties. It turned out to be a
very complex one, non-classical and above all, non-convex, for both material cases. As
a general outcome, we learned that aluminium responds in a sti�er way than polyethy-
lene, conferring it smoother and more regular properties. Nevertheless, not excluding
the possibility of having such kind of yield limit, we went on trying to �nd a �ow rule
able to capture the localization of deformations, characteristic of the structures. To do
so, we had two possibilities: either going on with the expensive numerical approach, or
exploring the analytical one.
Observing the outputs of the FE simulations we noticed that all the deformations during
every type of test, localized in the joint of the bars. This observation gave us a reason
to model the plastic behaviour through the use of plastic hinges. Therefore, on a 2D,
small strains framework, we faced the homogenization of the elastic-plastic problem of
a "Y" shaped RVE, made of a simple von Mises material on the smallest scale and, of
a system of extensible bars connected by rotational springs on the meso-scale. For the
former case we performed numerical homogenization, in order to �nd the yield surface of
the homogenized structure, building a numerical laboratory with the software ABAQUS.
For the latter, we used average �eld theory to �nd a closed relation between T and H for
the elastic problem. We assumed that the yielding of the structure is due to an excessive
variation of the angle between the bars and not to their elongation or bending. Based
on this new assumption, we have developed an algorithm which considers the total angle
di�erence between two bars as the sum of its elastic and plastic parts Δ𝜙 = Δ𝜙𝑒+Δ𝜙𝑝.

97
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This algorithm, although simple, allows us to observe di�erent things: the �nal con�gu-
ration of the bars (Figure 8.11); the yield surface in the stress space (Figure 10.1); the
evolution of the yield limit (Figures 10.3, 10.4 and 10.5); the direction of the plastic �ow
and the compressible plasticity (Figure 10.6). Moreover, once computed the e�ective
material parameters and implemented the algorithm as an ABAQUS user material, we
could run simulations and see the behaviour of an homogeneous continuum responding
to the described material law, in particular we saw the localization of the strains in shear
bands paths (Figures 10.10 and 10.11). The real power of this model stands behind its
simplicity: observing the behaviour of the internal structure, one can extract the elements
that mainly contribute to the e�ective one, which are the elongation contribution, rather
than the bending one, to the deformations, and the fact that the plastic deformations
concentrate only at the bar joints, where plastic hinges form. It is clear that the more
we enrich the model, the better we can capture the e�ective plastic behaviour and that
this work is just a starting point for further investigations on the topic. Nevertheless,
the results obtained with this approach are really encouraging, thanks to the simplicity
and interpretability of the methods employed, and we really hope that it will be used
and deepened in the future.

11.2 Outlook

In the spirit of encouraging new researchers to use and enrich our model, here we give
some inputs and ideas that arose in our minds while working on this thesis. In particular,
as an outlook for next works, a few things would be interesting to investigate.

∙ A study of the evolution of the yield surface with the initial FE approach could be a
challenging task for a numerical analyst, which could reformulate the parametriza-
tion and run cyclic loads on the structure;

∙ Extend the model proposed in chapter 8 considering the bending of the bars and
including the bending moment. Notice that this is not a trivial extension: the
main problem of considering moments on the meso-scale arises when we have to go
to the macro-scale. First of all: what would be the respective e�ective quantity?
For the forces we have the Cauchy stress tensor and the conjugate strains. For the
moments, this would be a couple stress tensor. If one considers the angle variation
on the meso-scale as conjugate to the moments, anyway the question of how to
translate it on the macro scale comes natural. The micropolar theory comes to
mind, but it is not clear what e�ective quantity belongs to the angle variations of
the beams. In any case, this step would just in�uence the elastic properties of the
structure;

∙ As a natural consequence of the previous point, the �nal element implementation
of the more complex model comes to mind: this would be a serious issue, because
one should develop itself the code for the gradient or micropolar theory, since
conventional tools would be useless1;

1Conventional FE methods provide only 𝐶0 continuity of the displacement field, while gradient models
require 𝐶1 continuity, since they consider also the second derivative of u. There are no standard 3D
finite elements that address this issue. One has resort to somewhat non-standard methods, like the
isogeometric analysis or a weak enforcement of the strain gradient in standard finite elements (usually
called implicit gradient extension, see, e.g. Dimitrijevic and Hackl [2008].
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∙ Extend the model proposed in chapter 8 considering large deformations: this would
be a very challenging task since the linearity of all our equations would be lost and
the system would get complex trigonometrical relations between the terms. In this
case the plastic angle variations will be in�uenced and the localization of plastic
deformation can become more visible in the �nite element simulations;

∙ Interpret and �nd an analytical expression for the �ow rule;

∙ Approach the problem directly with plastic gradient theories.

In the context of plastic in-plane models for regular hexagonal honeycomb structures,
these are the open questions that arose during our work and still need to be answered.



Appendix A

Python algorithm with stress tensor

parametrization

In the following, we report the phython script used to run the simulations as described
in chapter 5.

# List of tools necessary to run ABAQUS and Python

from abaqus import *

from abaqusConstants import *

from odbAccess import *

from math import *

import __main__

import sys

import string

import fileinput

import shutil

import os

import subprocess

import time

import section

import regionToolset

import displayGroupMdbToolset as dgm

import part

import material

import assembly

import step

import interaction

import load

import mesh

import optimization

import job

import sketch

import visualization

import xyPlot

import displayGroupOdbToolset as dgo

import connectorBehavior

import odbAccess

import random

import math

# Open and operate on the ABAQUS input file

# Looping the angle $\chi$

for j in range (0 ,360 ,5):

kappa=j/180.0*3.1415926

sigma1=sin(kappa)

sigma2=cos(kappa)

100
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currange=range (21)

# Looping the angle $\phi$

for i in currange:

phi =(1.5*i)/180.0*3.1415926

shutil.copyfile(’symyield.inp ’, ’symyield -current.inp ’)

c=cos(phi)

s=sin(phi)

f = open(’symyield -current.inp ’,’a’)

# Setting plane strains on the artificial nodes an1 , an2 , an3

f.write(’*Boundary\n’)

f.write(’fixed , 1, 3, 0.0\n’)

f.write(’an1 ,3 ,3 ,0.0\n’)

f.write(’an2 ,3 ,3 ,0.0\n’)

f.write(’an3 ,1 ,1 ,0.0\n’)

f.write(’an3 ,2 ,2 ,0.0\n’)

f.write(’an3 ,3 ,3 ,0.0\n’)

# Setting stresses through the parametrization on the artificial nodes

f.write(’*CLOAD\n’)

f.write(’an1 ,1,%s\n’ %(str (10.0* sigma1*c*c+10.0* sigma2*s*s)))

f.write(’an1 ,2,%s\n’ %(str (10.0*c*s*(sigma1 -sigma2 ))))

f.write(’an2 ,1,%s\n’ %(str (10.0*c*s*(sigma1 -sigma2 ))))

f.write(’an2 ,2,%s\n’ %(str (10.0*s*s*sigma1 +10.0* sigma2*c*c)))

f.write(’** \n’)

f.write(’** OUTPUT REQUESTS \n’)

f.write(’** \n’)

f.write(’*Restart , write , frequency =0 \n’)

f.write(’** \n’)

f.write(’** FIELD OUTPUT: F-Output -1 \n’)

f.write(’** \n’)

f.write(’*Output , field , variable=PRESELECT , frequency =1 \n’)

f.write(’** \n’)

f.write(’** HISTORY OUTPUT: H-Output -1 \n’)

f.write(’** \n’)

f.write(’*Output , history , variable=PRESELECT \n’)

f.write(’*End Step \n’)

f.close()

# Run job

job = ’~/ABQ/Commands/abaqus job=symyield -current ask_delete=OFF cpus=8’

os.system(job)

# Wait for job to finish

t0 = time.time ();

while not os.path.isfile ("symyield -current.lck"):

time.sleep (2.)

tn = time.time ();

print ’Job starts ..., t = ’,tn-t0

while os.path.isfile ("symyield -current.lck"):

time.sleep (2.)

tn = time.time ();

print ’Job runs ..., t = ’,tn-t0

# Writing the report

inpname=’symyield -current ’

o1 = session.openOdb(name=inpname+’.odb ’)

session.viewports[’Viewport: 1’]. setValues(displayedObject=o1)

odb = session.odbs[inpname+’.odb ’]

framelen=len(odb.steps[’Step -1’]. frames)

nodes=odb.rootAssembly.nodeSets[’ ALL NODES ’]
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session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =((’RF’,

NODAL , ((COMPONENT , ’RF1 ’), (COMPONENT , ’RF2 ’), (COMPONENT , ’RF3 ’), )),

), nodeSets=(’AN1 ’, ’AN2 ’, ’AN3 ’, ))

session.xyDataListFromField(odb=odb , outputPosition=NODAL , variable =((’U’,

NODAL , ((COMPONENT , ’U1 ’), (COMPONENT , ’U2 ’), (COMPONENT , ’U3 ’), )), ),

nodeSets=(’AN1 ’, ’AN2 ’, ’AN3 ’, ))

K1NR = 6458

K2NR = K1NR+1

K3NR = K1NR+2

# Write the displacements

x0 = session.xyDataObjects[’U:U1 PI: PART -1-1 N: %d’ %K1NR]

x1 = session.xyDataObjects[’U:U2 PI: PART -1-1 N: %d’ %K1NR]

x2 = session.xyDataObjects[’U:U3 PI: PART -1-1 N: %d’ %K1NR]

x3 = session.xyDataObjects[’U:U1 PI: PART -1-1 N: %d’ %K2NR]

x4 = session.xyDataObjects[’U:U2 PI: PART -1-1 N: %d’ %K2NR]

x5 = session.xyDataObjects[’U:U3 PI: PART -1-1 N: %d’ %K2NR]

x6 = session.xyDataObjects[’U:U1 PI: PART -1-1 N: %d’ %K3NR]

x7 = session.xyDataObjects[’U:U2 PI: PART -1-1 N: %d’ %K3NR]

x8 = session.xyDataObjects[’U:U3 PI: PART -1-1 N: %d’ %K3NR]

# Write the reaction forces

x9 = session.xyDataObjects[’RF:RF1 PI: PART -1-1 N: %d’ %K1NR]

x10 = session.xyDataObjects[’RF:RF2 PI: PART -1-1 N: %d’ %K1NR]

x11 = session.xyDataObjects[’RF:RF3 PI: PART -1-1 N: %d’ %K1NR]

x12 = session.xyDataObjects[’RF:RF1 PI: PART -1-1 N: %d’ %K2NR]

x13 = session.xyDataObjects[’RF:RF2 PI: PART -1-1 N: %d’ %K2NR]

x14 = session.xyDataObjects[’RF:RF3 PI: PART -1-1 N: %d’ %K2NR]

x15 = session.xyDataObjects[’RF:RF1 PI: PART -1-1 N: %d’ %K3NR]

x16 = session.xyDataObjects[’RF:RF2 PI: PART -1-1 N: %d’ %K3NR]

x17 = session.xyDataObjects[’RF:RF3 PI: PART -1-1 N: %d’ %K3NR]

session.writeXYReport(fileName=inpname+’_U ’+’.rpt ’, appendMode=OFF , xyData =(x0, x1 ,

x2, x3, x4, x5, x6, x7, x8, x9 , x10 , x11 , x12 , x13 , x14 , x15 , x16 , x17))

# Write Green ’s strain tensor

textfile = open(inpname+str(j)+’_’+str(i)+’.txt ’,’w’)

#~ textfile.write("NINC TIME STRESS NORM E NORM EDEV\n")

for i in range(len(x0.data )):

e1=x0.data[i][1]

e2=x4.data[i][1]

e3=x8.data[i][1]

e4=(x1.data[i][1]+x3.data[i][1])/2.0

e5=(x2.data[i][1]+x6.data[i][1])/2.0

e6=(x5.data[i][1]+x7.data[i][1])/2.0

norme=sqrt(e1**2+e2**2+e3 **2+2.0* e4 **2+2.0* e5 **2+2.0* e6**2)

tracee3 =(e1+e2+e3 )/3.0

e1d=e1 -tracee3

e2d=e2 -tracee3

e3d=e3 -tracee3

normed=sqrt(e1d **2+ e2d **2+ e3d **2+2.0* e4 **2+2.0* e5 **2+2.0* e6**2)

# Save the resulting values

textfile.write(str(i)+" "+str(x0.data[i][0])+" "+str(norme )+" "+str(normed )+" "+str(e1)+" "+str(e2)+" "+str(e3)+" "+str(e4)+" "+str(e5)+" "+str(e6)+"\n")

textfile.close()

# Delete the current session and close the odb file

del session.xyDataObjects[’U:U1 PI: PART -1-1 N: %d’ %K1NR]

del session.xyDataObjects[’U:U2 PI: PART -1-1 N: %d’ %K1NR]

del session.xyDataObjects[’U:U3 PI: PART -1-1 N: %d’ %K1NR]

del session.xyDataObjects[’U:U1 PI: PART -1-1 N: %d’ %K2NR]

del session.xyDataObjects[’U:U2 PI: PART -1-1 N: %d’ %K2NR]

del session.xyDataObjects[’U:U3 PI: PART -1-1 N: %d’ %K2NR]

del session.xyDataObjects[’U:U1 PI: PART -1-1 N: %d’ %K3NR]

del session.xyDataObjects[’U:U2 PI: PART -1-1 N: %d’ %K3NR]
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del session.xyDataObjects[’U:U3 PI: PART -1-1 N: %d’ %K3NR]

del session.xyDataObjects[’RF:RF1 PI: PART -1-1 N: %d’ %K1NR]

del session.xyDataObjects[’RF:RF2 PI: PART -1-1 N: %d’ %K1NR]

del session.xyDataObjects[’RF:RF3 PI: PART -1-1 N: %d’ %K1NR]

del session.xyDataObjects[’RF:RF1 PI: PART -1-1 N: %d’ %K2NR]

del session.xyDataObjects[’RF:RF2 PI: PART -1-1 N: %d’ %K2NR]

del session.xyDataObjects[’RF:RF3 PI: PART -1-1 N: %d’ %K2NR]

del session.xyDataObjects[’RF:RF1 PI: PART -1-1 N: %d’ %K3NR]

del session.xyDataObjects[’RF:RF2 PI: PART -1-1 N: %d’ %K3NR]

del session.xyDataObjects[’RF:RF3 PI: PART -1-1 N: %d’ %K3NR]

odb.close()



Appendix B

UMAT implementation of the

non-convex yield surface

The UMAT �le for the implementation of the procedure described in chapter 6 is reported
in the following. Notice that it contains all the parts of the analysis, namely the von
Mises and the proposed yield criteria, the associative and non-associative �ow rule, and
the isotropic and distortional hardening. To use the desired subroutine, the user has just
to comment the others.

c~~~~ Initialisation internal variables

subroutine sdvini(statev ,coords ,nstatv ,ncrds ,noel ,npt ,layer ,kspt)

implicit none

integer nstatv ,ncrds ,kspt ,layer ,npt ,noel

double precision statev(nstatv),coords(ncrds)

statev =0.d0

return

end

subroutine umat(stress ,statev ,ddsdde ,sse ,spd ,scd ,

1 rpl ,ddsddt ,drplde ,drpldt ,

2 stran ,dstran ,time ,dtime ,temp ,dtemp ,predef ,dpred ,cmname ,

3 ndi ,nshr ,ntens ,nstatv ,props ,nprops ,coords ,drot ,pnewdt ,

4 celent ,dfgrd0 ,dfgrd1 ,noel ,npt ,layer ,kspt ,kstep ,kinc)

c~~~~ Declarations abaqus

implicit none

integer kstep ,kspt ,layer ,npt ,noel ,nprops ,nstatv ,ntens ,

1 nshr ,ndi ,kinc ,maxit

double precision sse ,spd ,scd ,rpl ,drpldt ,dtime ,temp ,dtemp ,

1 pnewdt ,celent

double precision dfgrd0 (3,3), dfgrd1 (3,3),time(2), stress(ntens),

1 statev(nstatv),ddsdde(ntens ,ntens),ddsddt(ntens),drplde(ntens),

2 stran(ntens),dstran(ntens),predef (1), dpred(1),props(nprops),

3 coords (3),drot (3,3)

character *80 cmname

c~~~~ Declarations user

integer i

double precision CMAT (3,3) , EMO ,nu

double precision stranelpred (3),ys ,stranplsave (3), stranplneu (3)

double precision stranneu (3),delta ,stressneu (3),lambda ,rdummy

double precision rd2 ,epeq ,epsplast (3)

delta =1.d-7

104
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c~~~~ Predictor step , call for hooke ’s law

stranneu=stran+dstran

epsplast (1:3)= statev (1:3)

stranelpred=stranneu -epsplast

lambda=statev (4)

epeq=statev (5)

rdummy=lambda

rd2=epeq

call hooke(stress ,stranelpred ,CMAT)

c~~~~ Corrector step

if (YS(stress ,epeq ,epsplast ).gt.0.d0) then

c~~~~ Gets the updates

c~~~~ Saves the output state as the new starting point and

c~~~~ updates stranplneu and stress

stranplsave=epsplast

stranplneu=stranplsave

call update(stranneu ,stranplneu ,stress ,lambda ,pnewdt ,dtime ,epeq)

statev (1:3)= stranplneu

statev (4)= lambda

statev (5)= epeq

c~~~~ Gets the difference quotient

do i=1,3

stranplneu=stranplsave

lambda=rdummy

epeq=rd2

stranneu(i)= stranneu(i)+ delta

call update(stranneu ,stranplneu ,stressneu ,lambda ,pnewdt ,dtime

& ,epeq)

stranneu(i)= stranneu(i)-delta

ddsdde(i,:)=( stressneu (:)- stress (:))/ delta

end do

else

ddsdde=CMAT

end if

c~~~~ Regularising viscosity:

c~~~~ large values for rdummy will heavily distort the results ,

c~~~~ it should be kept small at cost of small stepsize

rdummy =0.1d0

stress (1:3)= stress (1:3)+ rdummy/dtime*dstran (1:3)

do i=1,3

ddsdde(i,i)= ddsdde(i,i)+ rdummy/dtime

end do

return

end

c~~~~ Hooke ’s law

subroutine hooke(stress ,strain ,C)

implicit none

double precision stress (3), strain (3),C(3,3),rdummy ,EMO ,nu

EMO =20.d1

nu=0.3d0

rdummy=EMO /(1.d0-nu*nu)

C=0.d0

C(1 ,1)= rdummy

C(1 ,2)=nu*rdummy

C(2 ,1)=nu*rdummy

C(2 ,2)= rdummy
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C(3 ,3)=0.5d0*(1.d0-nu**2)* rdummy

stress=matmul(C,strain)

return

end

subroutine update(stranneu ,stranplneu ,stress ,lambda ,pnewdt ,dtime ,

& epeq)

implicit none

double precision stranneu (3), stranplneu (3), stress (3)

double precision lambda ,stranelneu (3),dtime

double precision x(4), passin (8),tol ,damp(4), pnewdt

integer size ,npassin ,maxit ,msglinesearch ,msgjac ,msgquasi

double precision CMAT(3,3),EMO ,nu,rdummy ,YS,epeq

external resmaterial

c~~~~ Isotropic plane stress stiffness

size=4

npassin =8

tol =1.d-10

maxit =1000

damp =1.d0

msglinesearch =0

msgjac =1

msgquasi=-1

passin (1:3)= stranplneu

passin (4:6)= stranneu

passin (7)= dtime

passin (8)= epeq

x(1:3)= stranplneu

x(4)= lambda

call solven(x,resmaterial ,size ,passin ,

& npassin ,tol ,maxit ,damp ,msglinesearch ,msgjac ,

& msgquasi)

stranplneu (1:3)=x(1:3)

lambda=x(4)

epeq=epeq+x(4)* passin (7)

stranelneu=stranneu -stranplneu

call hooke(stress ,stranelneu ,CMAT)

if(maxit.eq.0) then

pnewdt =0.5d0

end if

return

end

subroutine resmaterial(x,r,passin ,npassin ,size)

implicit none

integer npassin ,size

double precision epsplastalt (3), epsneu (3)

double precision epsplastcurrent (3), epselastcurrent (3)

double precision dys(3),ys,passin(npassin),x(4), stress (3),r(4)

double precision CMAT(3,3),EMO ,nu,rdummy ,epeqneu

double precision I(3),dil(3),dev(3),s1,s2,ratio

epsplastalt (1:3)= passin (1:3)

epsneu (1:3)= passin (4:6)

epsplastcurrent (1:3)=x(1:3)

epselastcurrent=epsneu -epsplastcurrent

epeqneu=passin (8)+x(4)* passin (7)
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c~~~~ Defines the new elements

I(1)=1. d0

I(2)=1. d0

I(3)=0. d0

call hooke(stress ,epselastcurrent ,CMAT)

c~~~~ Elements for the non -associative flow rule

dil =0.5d0*( stress (1)+ stress (2))*I

dev=stress -dil

ratio =10.d0*dexp(-epeqneu) + 1.d0

s2=1.d0/(ratio +1.d0)

s1=1.d0/(1.d0/ratio +1.d0)

call YSwDerivative(stress ,epeqneu ,dys ,ys ,epsplastcurrent)

c~~~~ Associative flow rule

r(1:3) = epsplastalt + x(4) * passin (7) * (dil+dev)

& - epsplastcurrent

c~~~~ Non -associative flow rule

r(1:3)= epsplastalt+x(4) * passin (7)*(s1*dev (1:3) + s2*dil (1:3))

& - epsplastcurrent

r(4)=ys

return

end

c~~~~ HONEYCOMBS ’ YIELD SURFACE

c~~~~ Define the eigenvalues of the stress tensor

FUNCTION l1(s)

implicit none

double precision s(3), l1

l1=1/2.d0*(s(1)+s(2)- dsqrt(s(1)**2+4. d0*s(3)**2 -2*s(1)*s(2)

& +s(2)**2))

return

end

FUNCTION l2(s)

implicit none

double precision s(3), l2

l2=1/2.d0*(s(1)+s(2)+ dsqrt(s(1)**2+4*s(3)**2 -2*s(1)*s(2)+s(2)**2))

return

end

c~~~~ Defines the parametrization

function chi(s)

implicit none

double precision chi ,l1 ,l2,s(3)

chi=datan2(l2(s),l1(s))

return

end

function phi(s)

implicit none

double precision phi ,s(3)

If(s(3).eq.0) then

phi =0.d0

else

phi=datan2 (2.d0*s(3),(s(1)+ dsqrt (4.d0*(s(3)**2)+(s(1)-s(2))**2)
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& -s(2)))

end if

return

end

function mag(s)

implicit none

double precision mag , s(3)

mag=dsqrt(s(1)**2+s(2)**2+2. d0*s(3)**2)

return

end

c~~~~ Defines the function b

function b(chi)

implicit none

double precision chi , pi8 , b

pi8=dacos (-1.0d0)

if((chi.gt.0.d0) .and. (chi.lt.pi8/2.d0)) then

b= -0.232135* dsin (5.18173*( - pi8/4.d0+chi))

& -0.100778* dsin (10.2899*( - pi8 /4.d0+chi))

else if ((chi.gt.pi8 /2.d0) .and. (chi.lt.pi8)) then

b= -0.146533* dsin(pi8/4.d0 -chi)

& -0.0231437* dsin (2.d0*(-pi8/4.d0+chi))

else if (chi.lt.0.d0) then

b= -0.146533* dsin(pi8/4.d0 -chi)

& -0.0231437* dsin (2.d0*(-pi8/4.d0+chi))

end if

return

end

c~~~~ Defines the function a

function a(chi)

implicit none

double precision chi , pi8 , a

pi8=dacos (-1.0d0)

a=0.0862606

& +7.1091*10. d0**(-6.d0)*dexp (13.0758* dcos(pi8 /4.d0-chi))

& +0.2d0*dexp (2.d0*dcos(pi8/8.d0-chi /2.d0)**2)

& +3.75384* dexp ( -15002.3d0*dcos(pi8 /8.d0-chi/2.d0)**2)

RETURN

END FUNCTION

c~~~~ Defines the bell function for the distortional hardening

function bell(chi)

implicit none

double precision chi , pi8 , bell

pi8=dacos (-1.0d0)

bell=dexp(-(chi -pi8 )**2/(2* pi8 /36))

& +dexp(-(chi -3/2* pi8 )**2/(2* pi8 /36))

RETURN

END FUNCTION

c~~~~ T.eps trace(T.eps)/modT (orientation of the load)

function teps(s,epsplastcurrent)
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implicit none

double precision teps , epsplastcurrent (3), s(3), n

n=dsqrt(s(1)**2+s(2)**2+2*s(3)**2)

if(n.lt.1.d-6) then

teps =0.d0

else

teps=(s(1)* epsplastcurrent (1)+s(2)* epsplastcurrent (2)

& +2.d0*s(3)* epsplastcurrent (3))/n

end if

RETURN

END FUNCTION

c~~~~ Defines the tuning function for the distortional hardening

function fs(teps)

implicit none

double precision fs, teps

If(teps.lt.0) then

fs=0.d0

else

fs=(teps -0.4d0)**4 -0.4d0**4

end if

RETURN

END FUNCTION

c~~~~ Defines the term to add to the the yield function

function c(s,epsplastcurrent)

implicit none

double precision fs, bell , s(3), epsplastcurrent (3), c, teps , chi

double precision tepsval

tepsval=teps(s,epsplastcurrent)

c=1.d0*fs(tepsval )*bell(chi(s))

RETURN

END FUNCTION

c~~~~ Defines the function describing the yield stress surface of the material

function approach(s,epsplastcurrent)

implicit none

double precision a, b, approach , phi , s(3),chi , epsplastcurrent (3)

double precision pi8 , c, teps , fsy , bell

c~~~~ Greek pi

pi8=dacos (-1.0d0)

c~~~~ Yield surface with distortional hardening

approach=a(chi(s))+b(chi(s))* dcos (6.d0*phi(s))

& +c(s,epsplastcurrent)

RETURN

END FUNCTION

c~~~~ The material is in the elastic range when ys <0

FUNCTION ys(s,epeq ,epsplastcurrent)

implicit none

double precision mag , approach , ys, s(3), epeq

double precision epsplastcurrent (3)
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c~~~~ Yield criterion with isotropic hardening

ys=mag(s)

& -((epeq - 0.3d0 )**2+1.d0 -0.3d0 **2)* approach(s,epsplastcurrent)

RETURN

END FUNCTION

c~~~~ VON -MISES YIELD CRITERION

FUNCTION YS(stressvek ,epeq)

implicit none

double precision stressvek (3),YS,press ,epeq

press =0.5d0*( stressvek (1)+ stressvek (2))

YS=dsqrt(( stressvek (1)-press )**2+

& (stressvek (2)-press )**2+

& 2.0* stressvek (3)**2) -100. d0*(1.d0+5.d0*epeq)

RETURN

END FUNCTION

SUBROUTINE YSwDerivative(stressvek ,epeq ,DYS ,YSval ,epsplastcurrent)

implicit none

double precision stressvek (3),DYS(3),YS ,YSval ,delta ,rdummy ,epeq

double precision epsplastcurrent (3)

integer i

delta =1.d-3

YSval=YS(stressvek ,epeq ,epsplastcurrent)

do i=1,3

stressvek(i)= stressvek(i)+ delta

rdummy=YS(stressvek ,epeq ,epsplastcurrent)

DYS(i)=(rdummy -YSval)/delta

stressvek(i)= stressvek(i)-delta

end do

RETURN

END



Appendix C

Solution to the problem in chapters

8 and 10

In the following we report the solution for the forces and displacement components of
the problems described in the previous chapters. We recall that:

𝑐𝑒𝑙𝑜 is elastic modulus responsible for the elongation of the bars

𝑐𝑟𝑜𝑡 is the elastic modulus of the angular spring between the bars

𝑙 is the length of the bars.

𝐹11 =
𝑐𝑒𝑙𝑜(3𝑐𝑒𝑙𝑜(𝐻11 +𝐻22) + 𝑐𝑟𝑜𝑡(9𝐻11 + 2

√
3𝐻12 + 2

√
3𝐻21 − 3𝐻22 − 6Δ𝜙12𝑝𝑙 + 6Δ𝜙23𝑝𝑙))

18(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝐹12 =
𝑐𝑒𝑙𝑜(

√
3𝑐𝑒𝑙𝑜(𝐻11 +𝐻22) + 𝑐𝑟𝑜𝑡(−

√
3𝐻11 + 6𝐻12 + 6𝐻21 + 3

√
3(𝐻22 + 2(Δ𝜙12𝑝 +Δ𝜙23𝑝)𝑙)))

18(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝐹21 =
𝑐𝑒𝑙𝑜(−3𝑐𝑒𝑙𝑜(𝐻11 +𝐻22) + 𝑐𝑟𝑜𝑡(−9𝐻11 + 2

√
3𝐻12 + 2

√
3𝐻21 + 3𝐻22 + 12Δ𝜙12𝑝𝑙 + 6Δ𝜙23𝑝𝑙))

18(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝐹22 =
𝑐𝑒𝑙𝑜(

√
3𝑐𝑒𝑙𝑜(𝐻11 +𝐻22)− 𝑐𝑟𝑜𝑡(

√
3𝐻11 + 6𝐻12 + 6𝐻21 − 3

√
3(𝐻22 − 2Δ𝜙23𝑝𝑙)))

18(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝐹31 =
−(𝑐𝑟𝑜𝑡𝑐𝑒𝑙𝑜(2

√
3𝐻12 + 2

√
3𝐻21 + 3(Δ𝜙12𝑝 + 2Δ𝜙23𝑝)𝑙)

9(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙)

𝐹32 =
−(𝑐𝑒𝑙𝑜(𝑐𝑒𝑙𝑜(𝐻11 +𝐻22) + 𝑐𝑟𝑜𝑡(−𝐻11 + 3(𝐻22 +Δ𝜙12𝑝𝑙)))

3
√
3(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙)

(C.1)
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𝑢11 =
𝑐𝑒𝑙𝑜(𝐻11 −𝐻21/

√
3) + 𝑐𝑟𝑜𝑡(𝐻11 + (2𝐻12)/

√
3 +𝐻21/

√
3 + Δ𝜙12𝑝𝑙 + 2Δ𝜙23𝑝𝑙)

3(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝑢12 =

√
3𝑐𝑟𝑜𝑡𝐻11 −

√
3𝑐𝑒𝑙𝑜𝐻11 + 3𝑐𝑟𝑜𝑡𝐻21 + 3𝑐𝑒𝑙𝑜𝐻21 + 2

√
3𝑐𝑒𝑙𝑜𝐻22 − 3

√
3𝑐𝑟𝑜𝑡Δ𝜙12𝑝𝑙

9𝑐𝑟𝑜𝑡𝑙 + 9𝑐𝑒𝑙𝑜𝑙

𝑢21 =
−3(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝐻11 + 2

√
3𝑐𝑟𝑜𝑡𝐻12 +

√
3𝑐𝑟𝑜𝑡𝐻21 −

√
3𝑐𝑒𝑙𝑜𝐻21 + 3𝑐𝑟𝑜𝑡Δ𝜙12𝑝𝑙 + 6𝑐𝑟𝑜𝑡Δ𝜙23𝑝𝑙

9(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝑢22 =

√
3𝑐𝑟𝑜𝑡𝐻11 −

√
3𝑐𝑒𝑙𝑜𝐻11 − 3𝑐𝑟𝑜𝑡𝐻21 − 3𝑐𝑒𝑙𝑜𝐻21 + 2

√
3𝑐𝑒𝑙𝑜𝐻22 − 3

√
3𝑐𝑟𝑜𝑡Δ𝜙12𝑝𝑙

9𝑐𝑟𝑜𝑡𝑙 + 9𝑐𝑒𝑙𝑜𝑙

𝑢31 =
−
√
3𝑐𝑒𝑙𝑜(3𝐻12 +𝐻21) + 𝑐𝑟𝑜𝑡(−

√
3𝐻12 +

√
3
√
3𝐻21 + 3Δ𝜙12𝑝𝑙 + 6Δ𝜙23𝑝𝑙)

9(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

𝑢32 =
−𝑐𝑒𝑙𝑜(𝐻11 +𝐻22) + 𝑐𝑟𝑜𝑡(𝐻11 − 3(𝐻22 +Δ𝜙12𝑝𝑙))

3
√
3(𝑐𝑟𝑜𝑡 + 𝑐𝑒𝑙𝑜)𝑙

(C.2)

Notice that, since we are in the small strain setting 𝐻12 = 𝐻21.



Appendix D

Mathematica script for the plastic

flow direction

The process to �nd the plastic �ow direction is divided in three parts which we report
below.

Part 1

Write the average displacement gradient, H, in function of the angle variations:

Remove ["Global ‘*"]

(*Bars length *)

l = 1;

(*Bars position *)

x01 = {Sqrt [3]/2 l , l/2};

x02 = {-Sqrt [3]/2 l , l/2};

x03 = {0, -l};

(*Bars displacement .*)

(* Neglect elongation setting \

u12=-ArcTan[3,Pi]u11 and u22=-ArcTan[3,Pi]u21*)

u1 = {u11 , -u11/ArcTan[Pi/3]};

u2 = {u21 , u21/ArcTan[Pi /3]};

u3 = {u31 , 0};

(* Tangent and normal vectors to the displacement *)

t01 = {-1/2, Sqrt [3]/2};

t02 = {-1/2, -Sqrt [3]/2};

t03 = {1, 0};

n01 = {l + l/2 , Sqrt [3]/2 l};

n02 = {-l - l/2 , Sqrt [3]/2 l};

n03 = {0, -l 2 Sqrt [3]/2};

(* Average displacement gradient *)

HBAR = (Outer[Times , u1, n01] + Outer[Times , u2, n02] +

Outer[Times , u3, n03]);
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(* Angles variations *)

eq1 = deltaphi12 == -(u1.t01 - u2.t02);

eq2 = deltaphi23 == -(u2.t02 - u3.t03);

eq3 = deltaphi31 == -(u3.t03 - u1.t01);

(*This equation is not useful because it is linearly \

dependent from the previous two*)

(*Solve equations 1 and 2 for the \

two displacements *)

expr = Solve[{eq1 , eq2}, {u11 , u21}];

(* Substitute the obtained expressoions for u11 and u22 in the average \

displacement gradient *)

HBAR = FullSimplify [(HBAR /. expr )[[1]]];

(* Determine u31 such that HBAR is symmetric *)

expr = Solve[HBAR[[1, 2]] == HBAR[[2, 1]], u31];

(* Substitute the obtained expressoions for u31 in the average \

displacement gradient *)

HBAR = FullSimplify[HBAR /. expr[[1, 1]]]

Part 2

Write the angle variations as a function of the stress tensor components:

Remove ["Global ‘*"]

(* Elastic constant of the rotational springs *)

c = 3;

u1 = {u11 , u12};

u2 = {u21 , u22};

u3 = {u31 , u32};

x01 = {Sqrt [3]/2 l , l/2};

x02 = {-Sqrt [3]/2 l , l/2};

x03 = {0, -l};

n01 = {l + l/2 , Sqrt [3]/2 l};

n02 = {-l - l/2 , Sqrt [3]/2 l};

n03 = {0, -l 2 Sqrt [3]/2};

t01 = {-1/2, Sqrt [3]/2};

t02 = {-1/2, -Sqrt [3]/2};

t03 = {1, 0};

(* Forces vectors for each bar*)

F1 = {F11 , F12};

F2 = {F21 , F22};

F3 = {F31 , F32};

(* Stress tensor *)

STRESSES = {{T11 , T12}, {T12 , T22}};

(* Average stress *)

eqs0 = Flatten[

Table[STRESSES [[i,

j]] == (Outer[Times , F1 , x01] + Outer[Times , F2 , x02] +

Outer[Times , F3, x03 ])[[i, j]], {i, 1, 2}, {j, 1, 2}]];

(* Forces equilibrium *)
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eqs1 = Flatten[Table[F1[[i]] + F2[[i]] + F3[[i]] == 0, {i, 1, 2}]];

(* Moment equilibrium *)

eqs2 = {F1.t01 + F2.t02 + F3.t03 == 0};

(* Constitutive equations for the elastic elongations of the bars*)

eqs3 = {EMO u1.x01 == F1.x01 , EMO u2.x02 == F2.x02 ,

EMO u3.x03 == F3.x03};

(* Compute thte angles variations between the bars*)

deltaphi12 = -(u1.t01 - u2.t02);

deltaphi23 = -(u2.t02 - u3.t03);

deltaphi31 = -(u3.t03 - u1.t01);

(* Calculate the elastic part of the angles variations *)

deltaphi12e = (deltaphi12 - deltaphi12p );

deltaphi23e = (deltaphi23 - deltaphi23p );

deltaphi31e = (deltaphi31 - deltaphi31p );

(* Constitutive equations for the elastic -plastic hinges *)

(*This will \

be used to find the elastic part of the average displacement gradient *)

eqs4 = {

-c deltaphi12e == F1.t01 - F2.t02 ,

-c deltaphi23e == F2.t02 - F3.t03 ,

-c deltaphi31e == F3.t03 - F1.t01};

(*Solve equations 0, 1, 2 for the forces *)

eqs = Join[eqs0 , eqs1 , eqs2] ;

erg = Solve[eqs , {F11 , F12 , F21 , F22 , F31 , F32 }];

Set @@@ erg [[1]];

(* Substitute the expretions found for the forces in the definition of \

the elastic angle variations *)

deltaphi12e =

FullSimplify [(F1.t01 - F2.t02)/c]

deltaphi23e = FullSimplify [(F2.t02 - F3.t03)/c]

deltaphi31e = FullSimplify [(F3.t03 - F1.t01)/c]

Part 3

Find the plastic increment and plot it in the stress space:

Remove ["Global ‘*"]

l = 1;

c = 3;

(* Define the function that gives the plastic angle variation for a \

given elastic angle variation *)

update[arg_] := (

(*a is the list of elastic deltaangles *)

a = arg;

yield = 0.2;

err = 0.00000000;

(* Plastic corrector step*)
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ind = {0, 0, 0};

For[i = 1, i <= 3, i++,

If[Abs[a[[i]]] > yield , ind[[i]] = 1]

];

sum = Sum[ind[[i]], {i, 1, 3}];

(*If sum=0 the deformation is purely elastic *)

(*Case 1:

only one angle exceeds the yield limit *)

If[sum == 1,

While[Max[Abs[a]] > yield ,

which = Position[ind , 1][[1 , 1]];

If[a[[which]] > yield , res = a[[which ]] - yield];

If[a[[which]] < -yield , res = a[[ which]] + yield];

For[i = 1, i <= Length[a], i++,

If[a[[i]] > yield ,

a[[i]] = yield;

];

If[a[[i]] < -yield ,

a[[i]] = -yield;

];

If[

a[[i]] > -yield && a[[i]] < -err ||

a[[i]] > err && a[[i]] < yield ,

a[[i]] = a[[i]] + res/2;

];

];

];

];

(*Case 2: two angles exceed the yield limit*)

If[sum == 2,

For[i = 1, i <= 3, i++,

If[a[[i]] > yield , a[[i]] = yield ,

If[a[[i]] < -yield , a[[i]] = -yield ,

a[[i]] = 0]]];

];

(*Case 3:

three angle exceed the yield limit*)

(* Notice that this case is \

in reality excluded from the possibilies because it would mean a too \

big predictor step*)

(*It is here only for representation scopes *)

If[sum == 3,

a = {0, 0, 0};

];

a);

(* Compute the elastic angle variation *)

showyield[T_] := (

T11 = T[[1]];

T22 = T[[2]];

T12 = T[[3]];

oldel = {(-T11 + T22)/( Sqrt [3] c l), (

Sqrt [3] T11 + 6 T12 - Sqrt [3] T22 )/(6 c l), (

Sqrt [3] T11 - 6 T12 - Sqrt [3] T22 )/(6 c l)};

newel = update[oldel];

If[Norm[newel - oldel] == 0, -1, Norm[newel - oldel ]]

);
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(* Compute the plastic angle variation and the flow direction *)

arrow[T_] := (

T11 = T[[1]];

T22 = T[[2]];

T12 = T[[3]];

oldel = {(-T11 + T22)/( Sqrt [3] c l), (

Sqrt [3] T11 + 6 T12 - Sqrt [3] T22 )/(6 c l), (

Sqrt [3] T11 - 6 T12 - Sqrt [3] T22 )/(6 c l)};

newel = update[oldel];

plastangle = oldel - newel;

deltaphi12 = plastangle [[1]];

deltaphi23 = plastangle [[2]];

deltaphi31 = plastangle [[3]];

dir = -{(3 deltaphi12 ArcTan [\[Pi ]/3])/(

Sqrt [3] + ArcTan [\[Pi]/3]) , -((3 deltaphi12 )/(

3 + Sqrt [3] ArcTan [\[Pi]/3])) , -(( deltaphi12 + 2 deltaphi23 )/(

Sqrt [3] + ArcTan [\[Pi ]/3]))};

Arrow[{T, T + 0.5 Normalize[dir ]}]

)

(*Plot the yield surface together with the plastic flow direction *)

\

limit = 1.5

Show[RegionPlot3D[

showyield [{x, y, z}] < 0, {x, -limit , limit}, {y, -limit ,

limit}, {z, -limit , limit}, PlotPoints -> 30],

Graphics3D[Table[arrow[{i, -i, 0.62 - i/2}], {i, 0, 0.5, 0.1}]] ,

Graphics3D[Table[arrow[{-i, i, 0.62 - i/2}], {i, 0, 0.5, 0.1}]] ,

Graphics3D[Table[arrow [{0.52 , -0.52, 0.31 - i}], {i, 0, 0.6, 0.1}]] ,

Graphics3D[Table[arrow [{-0.52, 0.52, 0.31 - i}], {i, 0, 0.6, 0.1}]]]
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UMAT implementation of the

algorithm for plastic hinges

In the following, we report the �le with the approach and algorithm described in chapter
8

c~~~~ Initialisation internal variables

subroutine sdvini(statev ,coords ,nstatv ,ncrds ,noel ,npt ,layer ,kspt)

implicit none

integer nstatv ,ncrds ,kspt ,layer ,npt ,noel

double precision statev(nstatv),coords(ncrds)

statev =0.d0

return

end

subroutine umat(stress ,statev ,ddsdde ,sse ,spd ,scd ,

1 rpl ,ddsddt ,drplde ,drpldt ,

2 stran ,dstran ,time ,dtime ,temp ,dtemp ,predef ,dpred ,cmname ,

3 ndi ,nshr ,ntens ,nstatv ,props ,nprops ,coords ,drot ,pnewdt ,

4 celent ,dfgrd0 ,dfgrd1 ,noel ,npt ,layer ,kspt ,kstep ,kinc)

c~~~~ Declarations abaqus

implicit none

integer kstep ,kspt ,layer ,npt ,noel ,nprops ,nstatv ,ntens ,

1 nshr ,ndi ,kinc ,maxit ,i

double precision sse ,spd ,scd ,rpl ,drpldt ,dtime ,temp ,dtemp ,

1 pnewdt ,celent

double precision dfgrd0 (3,3), dfgrd1 (3,3),time(2), stress(ntens),

1 statev(nstatv),ddsdde(ntens ,ntens),ddsddt(ntens),drplde(ntens),

2 stran(ntens),dstran(ntens),predef (1), dpred(1),props(nprops),

3 coords (3),drot (3,3)

character *80 cmname

double precision strain (3), delta , intvars (3), intvarsnew (3)

double precision deltastress (3),visk

c~~~~ Calculate result

strain=stran+dstran

intvars=statev (1:3)

call algorithm(strain , intvars , stress , intvarsnew)

statev (1:3) = intvarsnew

c~~~~ Calculate tangent

118



Appendix E. ABAQUS implementation of the algorithm for plastic hinges 119

delta =0.00001 d0

do i=1,3

strain(i)= strain(i)+delta

call algorithm(strain , intvars , deltastress , intvarsnew)

ddsdde(i,:)=( deltastress (:)- stress (:))/ delta

strain(i)= strain(i)-delta

end do

c~~~~ Add stabilizing viscosity to value (Stress) and derivative (ddsdde)

visk =0.1d0

stress=stress+visk*dstran/dtime

ddsdde (1 ,1)= ddsdde (1,1)+ visk/dtime

ddsdde (2 ,2)= ddsdde (2,2)+ visk/dtime

ddsdde (3 ,3)= ddsdde (3,3)+ visk/dtime

return

end

c~~~~ Implementation of the algorithm for the plastic hinges

subroutine algorithm(strain , deltaphipold , stress , deltaphipnew)

implicit none

double precision HBAR(2,2),F1(2),F2(2),F3(2),u1(2),u2(2),u3(2)

double precision x01(2),x02(2),x03(2),n01(2),n02(2),n03(2)

double precision t01(2),tx02(2),t03(2),emo ,l,c,deltaphiold (3)

double precision TBAR(2,2), identity (2,2), dfgrd(2,2), deltaphi (3)

double precision deltaphipnew (3), deltaphie (3),yield , angles (3)

double precision res ,stress (3), strain (3), deltaphipold (3)

double precision summation , error

integer i, ind (3)

identity (1 ,1)=1

identity (1 ,2)=0

identity (2 ,1)=0

identity (2 ,2)=1

HBAR (1,1)= strain (1)

HBAR (1,2)= strain (3)

HBAR (2,1)= strain (3)

HBAR (2,2)= strain (2)

EMO =78.d0

c=8.d0

l=1

c~~~~ Computation of forces and angle variations

F1(1)=( EMO *(3.0*(3.0 + Sqrt (5.0))* EMO*(HBAR (1,1)+ HBAR (2,2)) +

- c*(9.0*(3.0+ Sqrt (5.0))* HBAR (1 ,1)+2.0* Sqrt (3.0)*(3.0

- +Sqrt (5.0))* HBAR (1,2)+

- 2.0* Sqrt (3.0)*(3.0+ Sqrt (5.0))* HBAR(1,2)-

- 3.0*((3.0+ Sqrt (5.0))* HBAR (2 ,2)+4.0*( deltaphipold (1)

- -deltaphipold (2))*l))))/(36.0*(c+EMO)*l)

F1(2)=( EMO*(Sqrt (3.0)*(3.0+ Sqrt (5.0))* EMO*(HBAR (1,1)+ HBAR (2,2)) +

- c*(-(Sqrt (3.0)*(3.0+ Sqrt (5.0))* HBAR (1 ,1)) +

- 3.0*(2.0*(3.0+ Sqrt (5.0))* HBAR (1,2)+

- 2.0*(3.0+ Sqrt (5.0))* HBAR (1 ,2)+

- Sqrt (3.0)*((3.0+ Sqrt (5.0))* HBAR (2 ,2)+4.0*( deltaphipold (1)

- +deltaphipold (2))*l)))))/(36.0*(c + EMO)*l)

F2(1)=( EMO *( -3.0*(3.0+ Sqrt (5.0))* EMO*(HBAR (1,1)+ HBAR (2,2)) +

- c*( -9.0*(3.0+ Sqrt (5.0))* HBAR (1 ,1)+2.0* Sqrt (3.0)*(3.0+

- Sqrt (5.0))* HBAR (1,2)+

- 2.0* Sqrt (3.0)*(3.0+ Sqrt (5.0))* HBAR (1,2)+

- 3.0*(3.0+ Sqrt (5.0))* HBAR (2 ,2)+

- 12.0*(2.0* deltaphipold (1)
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- +deltaphipold (2))*l)))/(36.0*(c+EMO)*l)

F2(2)=( EMO*(Sqrt (3.0)*(3.0+ Sqrt (5.0))* EMO*(HBAR (1,1)+ HBAR(2,2))-

- c*(Sqrt (3.0)*(3.0+ Sqrt (5.0))* HBAR (1,1)+

- 3.0*(2.0*(3.0+ Sqrt (5.0))* HBAR (1,2)+

- 2.0*(3.0+ Sqrt (5.0))* HBAR (1 ,2)+

- Sqrt (3.0)*(( -3.0 - Sqrt (5.0))* HBAR (2,2)+

- 4.0* deltaphipold (2)*l)))))/(36.0*(c + EMO)*l)

F3(1)=(c*EMO *(4.0* Sqrt (3.0)* HBAR (1 ,2)+4.0* Sqrt (3.0)* HBAR(1,2)-

- 3.0*( -3.0+ Sqrt (5.0))*( deltaphipold (1)+2.0* deltaphipold (2))

- *l))/(9.0*( -3.0+ Sqrt (5.0))*(c + EMO)*l)

F3(2)=( EMO *((3.0+ Sqrt (5.0))*c*HBAR (1 ,1) -(3.0+ Sqrt (5.0))

- *EMO*(HBAR (1,1)+ HBAR (2 ,2)) -

- 3.0*c*((3.0+ Sqrt (5.0))* HBAR (2 ,2)+2.0* deltaphipold (1)*l)))/

- (6.0* Sqrt (3.0)*(c+EMO)*l)

deltaphi (1)=(4.0* EMO*(-HBAR (1,1)+ HBAR (2 ,2))+3.0*( -3.0+ Sqrt (5.0))

- *c*deltaphipold (1)*l)/(3.0*( -3.0+ Sqrt (5.0))*(c+EMO)*l)

deltaphi (2)=(2.0* EMO*(HBAR (1,1)+ Sqrt (3.0)* HBAR (1 ,2)+ Sqrt (3.0)

- *HBAR(1,2)-HBAR (2 ,2))+3.0*( -3.0+ Sqrt (5.0))*c*

- deltaphipold (2)*l)/(3.0*( -3.0+ Sqrt (5.0))*(c+EMO)*l)

deltaphi (3)=(2.0* EMO*HBAR (1 ,1) -2.0* EMO*(Sqrt (3.0)* HBAR (1,2)

- +Sqrt (3.0)* HBAR (1,2)+ HBAR (2 ,2)) -

- 3.0*( -3.0+ Sqrt (5.0))*c*( deltaphipold (1)

- +deltaphipold (2))*l)/(3.0*( -3.0+ Sqrt (5.0))*(c+EMO)*l)

deltaphie (1) = (deltaphi (1)- deltaphipold (1))

deltaphie (2) = (deltaphi (2)- deltaphipold (2))

deltaphie (3) = (deltaphi (3)- deltaphipold (3))

yield =0.098 d0

angles=deltaphie

ind =(/0.0 ,0.0 ,0.0/)

do i=1, 3

if (Abs(angles(i))>yield) then

ind(i)=1

end if

end do

summation=ind (1)+ ind (2)+ ind(3)

diffs (1)= deltaphie (1)- deltaphie (2)

diffs (2)= deltaphie (1)- deltaphie (3)

diffs (3)= deltaphie (2)- deltaphie (3)

error =0.0000 d0

c~~~~ Algorithm to update the plastic angle variations

c~~~~ Case 1 and 3.1

if (( summation ==1). or.

& ((min(abs(diffs (1)),abs(diffs (2)),abs(diffs (3)))< yield).and.

& (summation ==3) )) then

do while (max(abs(angles (1)), abs(angles (2)),abs(angles (3)) )>

& yield )

do i = 1, 3

if (ind(i) .eq. 1) then

loc = i

exit

endif

end do

if(angles(loc)>yield) then

res=angles(i)-yield

end if

if(angles(loc)<-yield) then

res=angles(i)+yield

end if
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do i=1, 3

if (angles(i)>yield) then

angles(i)=yield

end if

if (angles(i)<-yield) then

angles(i)=-yield

end if

if (angles(i)>-yield .AND. angles(i)<-error

& .OR. angles(i)>error .AND. angles(i)<yield) then

angles(i)= angles(i)+res/2

end if

end do

end do

end if

c~~~~ Case 2 and 3.2

if (( summation ==2). or.

& ((min(abs(diffs (1)),abs(diffs (2)),abs(diffs (3)))> yield).and.

& (summation ==3) )) then

do i=1, 3

if (angles(i)>yield) then

angles(i)=yield

if (angles(i)<-yield) then

angles(i)=-yield

else

angles(i)=0.d0

end if

end if

end do

end if

deltaphipnew (1)= deltaphi (1)- angles (1)

deltaphipnew (2)= deltaphi (2)- angles (2)

deltaphipnew (3)= deltaphi (3)- angles (3)

c~~~~ Compute the updated average stress tensor

TBAR (1 ,1)=( EMO *((3.0+ Sqrt (5.0))* EMO*(HBAR (1,1)+ HBAR (2,2)) +

- c*(3.0*(3.0+ Sqrt (5.0))* HBAR (1 ,1) -(3.0+ Sqrt (5.0))

- *HBAR (2 ,2) -6.0* deltaphipnew (1)*l)))/

- (4.0* Sqrt (3.0)*(c+EMO))

TBAR (2,1)=-(c*EMO *(4.0* Sqrt (3.0)* HBAR (1 ,2)+4.0* Sqrt (3.0)* HBAR (1,2)

- -3.0*( -3.0+ Sqrt (5.0))*( deltaphipnew (1)

- +2.0* deltaphipnew (2))*l))/

- (6.0*( -3.0+ Sqrt (5.0))*(c+EMO))

TBAR (1,2)= TBAR (2,1)

TBAR (2 ,2)=( EMO *((3.0+ Sqrt (5.0))* EMO*(HBAR (1,1)+ HBAR (2,2)) +

- c*((-3.0- Sqrt (5.0))* HBAR (1 ,1)+3.0*(3.0+ Sqrt (5.0))

- *HBAR (2 ,2)+6.0* deltaphipnew (1)*l)))/

- (4.0* Sqrt (3.0)*(c+EMO))

stress (1)= TBAR (1,1)

stress (2)= TBAR (2,2)

stress (3)= TBAR (1,2)

end
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