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Abstract

This work focuses on the numerical approximations and analysis of time-dependent
convection-diffusion-reaction and population balance equations.

The local projection stabilization method in space and discontinuous Galerkin method in
time are proposed for the finite element discretization of the time-dependent convection-
diffusion-reaction equations. Error estimates for the semi discrete and fully discrete prob-
lems are discussed.

In population balance equations, the distribution of the entities depends not only on space
and time but also on its own properties referred to as internal coordinates. An operator
splitting and at alternating direction method are developed for the numerical solution
of population balance equations. In particular, the operator splitting method transforms
the original time-dependent problem into two subproblems: a time-dependent convection-
diffusion problem and a transient transport problem with pure advection. The backward
Euler time stepping scheme is used to discretize subproblems in time. In addition, the
operator splitting method allows to use different type of discretization techniques to solve
the subproblems. Since the first subproblem is convection-dominated, stabilization tech-
niques in particular local projection and Streamline-Upwind Petrov-Galerkin methods are
used.

First the local projection stabilization method in space with discontinuous Galerkin
method in the internal coordinate are used for the finite element discretization of the sub-
problems. The unconditional stability and convergence analysis for the two-step method
are discussed comprehensively.

Second the Streamline-Upwind Petrov-Galerkin method in space together with the dis-
continuous Galerkin method in the internal coordinate are used. The formulation is
strongly consistent in the sense that the time derivative is included in the stabilization
term. The stability estimates of the two-step method are proved under the condition
that the stabilization parameters depend on the length of the time step. Based on the
choice of stabilization parameters, error estimates with the standard order of conver-
gence are derived. Furthermore, the numerical results obtained by Streamline-Upwind
Petrov-Galerkin method in space are compared with those computed using local projec-
tion stabilization method in space.

The aim in alternating direction scheme is the same as in the operator splitting method,
i.e., reducing the high dimensional problem into a set of lower ones. First the problem is
discretized in space and internal coordinate using local projection stabilization and discon-
tinuous Galerkin method, respectively. Then the backward Euler time stepping method is
used to obtain a fully discrete scheme. The matrices in the fully discrete scheme are tensor
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products of the space and internal coordinate direction. Therefore it is possible to derive
a two-step alternating direction method. Based on an equivalent one step formulation the
stability and convergence of the method are discussed.
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Zusammenfassung

Schwerpunkt der vorliegenden Arbeit ist die numerische Approximation und Analysis der
zeitabhängigen Konvektions-Diffusions-Reaktions- sowie Populationsbilanzgleichungen.

Für die Finite Elemente Diskretisierung der zeitabhängigen Konvektions-Diffusions-Re-
aktions-Gleichungen werden die Methode der lokalen Projektion für die räumliche und
das unstetige Galerkin-Verfahren für die zeitliche Diskretisierung verwendet. Es werden
Fehlerabschätzungen für das semidiskrete und das vollständig diskrete Probleme behan-
delt.

Bei Populationsbilanzgleichungen hängt die Verteilung der Spezies nicht nur vom Raum
und von der Zeit, sondern auch von deren Eigenschaften ab, welche als Eigenschaftskoordi-
nate bezeichnet werden. Zur numerischen Lösung von Populationsbilanzgleichungen wird
eine Operator-Splitting-Methode und eine Methode der alternierenden Richtungen en-
twickelt. Die Operator-Splitting-Methode transformiert das zeitabhängige Problem durch
ein zeitabhängiges Konvektions-Diffusions-Problem und durch ein transientes Transport-
problem mit reiner Advektion. Zur Diskretisierung der beiden Teilprobleme wird das
implizite Euler-Verfahren verwendet. Darüber hinaus erlaubt die Operator-Splitting-
Methode die Verwendung verschiedener Diskretisierungstechniken, um die beiden Teil-
probleme zu lösen. Da im ersten Teilproblem die Konvektion dominiert, muss eine Sta-
bilisierungsmethode verwendet werden. Dafür wird die Methode der lokalen Projektion
und die Streamline-Upwind Petrov-Galerkin Methode verwendet.

Zunächst wird für die Finite Elemente Diskretisierung der Teilprobleme die lokale Pro-
jektionsmethode im Raum mit der unstetigen Galerkinmethode für die Eigenschaftsko-
ordinate kombiniert. Die unbedingte Stabilität sowie eine Konvergenzanalyse werden
ausführlich für eine Zwei-Schritt Methode behandelt.

Anschließend wird die Streamline-Upwind Petrov-Galerkin Methode im Raum zusammen
mit der unstetigen Galerkinmethode für die Eigenschaftskoordinate verwendet. Die For-
mulierung ist stark konsistent, in dem Sinne, dass die Zeitableitung im Stabilisierungsterm
enthalten ist. Die Stabilitätsabschätzungen der Zwei-Schritt Methode sind unter der Vo-
raussetzung bewiesen, dass die Stabilisierungsparameter von der Länge des Zeitschritts
abhängen. Basierend auf der Wahl der Stabilisierungsparameter, wird eine Fehlerab-
schätzung mit der Standardkonvergenzordnung abgeleitet. Darüber hinaus werden nu-
merische Ergebnisse der Streamline-Upwind Petrov-Galerkin Methode mit Resultaten der
Methode der lokalen Projektion verglichen.

Das Ziel der Methode der alternierenden Richtungen besteht, wie auch bei der Operator-
Splitting-Methode, in der Reduktion eines höher dimensionalen Problems durch Systeme
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niedrigerer Dimension. Zunächst wird das Problem räumlich und in der Eigenschaftsko-
ordinate diskretisiert, wobei die LPS-bzw. dG-Methode verwendet werden. Im Anschluss
wird das implizite Euler Verfahren angewendet, um eine vollständige Diskretisierung
des Systems zu erhalten. Dabei lassen sich die Matrizen des vollständigen diskreten
Systems als Tensorprodukte der Systeme aus der räumlichen Diskretisierung und der
Diskretisierung in der Eigenschaftskoordinate darstellen. Daher ist es möglich, eine
Zwei-Schritt-Methode der alternierenden Richtungen abzuleiten. Basierend auf einer
äquivalenten Ein-Schritt-Formulierung wird schließlich die Stabilität und Konvergenz dieser
Methode untersucht.
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Chapter 1

Introduction

The modeling of many technical and physical processes leads to descriptions which contain
time-dependent convection-diffusion-reaction equations as subproblems. Many engineer-
ing problems are governed by these type of equations. A special example is the precipita-
tion process, which involves chemical reaction in a flow field. Such processes are modeled
by a population balance system [40], consisting of equations describing the flow field
by the Navier-Stokes equations, the chemical reactions by convection-diffusion-reaction
equations and the particle size distributions by transport equations. These equations are
strongly coupled such that the inaccuracies in the concentration of one species directly
effect the concentrations of all other species. These equations are convection dominated in
the case that the size of diffusion is smaller by several order of magnitude compare to the
flow field and are reaction dominated because of strong chemical reactions. The numer-
ical methods in such situation often produce solutions which contain spurious oscillations.

Therefore, the accurate and efficient solution of time-dependent convection-diffusion-
reaction equations is critical for accuracy and efficiency of the whole process. The first
objective of this thesis is to address the numerical analysis of algorithms for solving such
problems.

In addition to the strong coupling of the equations in population balance systems, the
other difficulty in the simulation is that the population balance equation (PBE) depends
not only on space and time but also on its own properties referred to as internal coor-
dinates. Consequently, the dimension of the PBE is higher than the other equations in
the system. Because of the high dimensionality of the PBE, the numerical simulation of
coupled system with standard numerical scheme is a challenge from computational point
of view. Thus, a second goal of this thesis is the development and analysis of new efficient
numerical methods for the population balance equations which have not been considered
in the literature before.

Let Ω be a domain in R
d (d = 1, 2, 3), with polyhedral boundary ∂Ω and T > 0 is

the final time. We consider the scalar convection-diffusion-reaction equation:

1



CHAPTER 1. INTRODUCTION

Find u : (0, T ) × Ω → R:






∂u

∂t
− ε∆u + b · ∇u + σu = f in (0, T ] × Ω,

u(0, ·) = u0 in Ω

u = 0 on (0, T ] × ∂Ω,

(1.1)

where ε > 0 is the diffusion coefficient, b is the convection field with ∇ · b = 0, σ is the
non-negative reaction coefficient, f is the source function, and u0 is the initial data.

Population balance equations have many applications in various branches of engineering
and science. These equations are widely used in chemical engineering to model processes
involving one or more particulate phase. For example, they are used to study crystal-
lization, precipitation, pharmaceutical manufacturing, particle size distribution, aerosol
formation, emulsion process and dispersed phase distribution of multiphase flows. A pop-
ulation balance equation describing the particle size distribution z is defined as follows:
Find z : (0, T ) × Ωℓ × Ωx → R






∂z

∂t
+ ∇ℓ ·

(
Gz

)
− ε∆xz + b · ∇xz = f in (0, T ] × Ωℓ × Ωx,

z(0, ·) = z0 in Ωℓ × Ωx, z = g on (0, T ] × ∂Ωℓ × Ωx,

z = 0 on (0, T ] × Ωℓ × ∂Ωx,

(1.2)

Here, ℓ represents the variable in internal coordinates and x in space (external coordinates)
which represents the position of the particle in the physical space. Furthermore, ε > 0 is
the diffusion coefficient, ∆x and ∇x represents the Laplacian and gradient with respect
to the variable x, respectively, and ∇ℓ the gradient with respect to the variable ℓ. The
physical domain Ωx ⊂ R

d, d = 2, 3, and internal coordinate domain Ωℓ ⊂ R
e, e ≥ 1.

The vector functions b is a given d-dimensional velocity field and growth rate G > 0,
e-dimensional function. The internal coordinates ℓ, often referred to as size, is typically
the characteristics length, volume or mass, but it can also represent age, composition and
other characteristic of entities in a distribution. The growth rate G can be a function of
size and other variables such as temperature and concentration of chemical species in the
solution but is independent of space variable x. For more detail, we refer to the book of
Ramkrishna [74] where a comprehensive review of the subject of PBE in terms of PBE
formulation, application and solution has been discussed.

1.1 Overview

In applications, typically the convection terms are dominant in convection-diffusion or
incompressible flow problems and characteristic solutions have sharp layers. In this case,
standard finite element methods will lead to solutions which contain global unphysical os-
cillations. Also standard discretization techniques will not produce an accurate solution

2



1.1. OVERVIEW

on quasi-uniform meshes due to the presence of interior and boundary layers. In order to
prevent these difficulties, a-priori choices of meshes and several stabilization techniques
were introduced in the literature.

One of the first layer adapted meshes were proposed by Bakhvalov [4]. In 1969, Bakhvalov
solved boundary value problems for ordinary differential equations with a small parameter
multiplying the second derivative. Solutions to such problems involve boundary layers.
The solution was achieved by applying nonuniform grids (Bakhvalov grids) condensing
in the boundary layer. A-priori adapted meshes can be used if sufficient information of
the structure of the solution is available. The piecewise uniform Shishkin meshes were
originally proposed for finite difference methods in [71]. The first analysis of finite element
methods on Shishkin meshes is studied in [82]. For more details about the properties and
uses of these kinds of meshes, we refer to [76].

As mentioned in [61, 84], the standard discretization methods lack the stability even on
the layer-adapted meshes, a stabilization term are added to standard discretization [65].

Several different methods have been devised for the solution of the above mentioned
difficulties. One popular method for stabilizing the convection-dominated convection-
diffusion-reaction problems is the Streamline-Upwind Petrov-Galerkin method (SUPG)
(also known as streamline-diffusion finite element method (SDFEM)). It was introduced
by Hughes and Brooks [36] for steady problems. This method provides good stability
properties and highly accurate solutions outside the interior and boundary layers. The
SUPG method was investigated by many author’s, see [23, 44, 45]. The SUPG with
higher order finite elements applied to convection-diffusion problems on Shishkin meshes
was studied by Stynes and Tobiska [83]. However, the main drawback of the SUPG method
is the fact that several additional terms which includes the second order derivatives have
to be assembled in order to ensure the strong consistency of the method. In particular,
the assembling of the latter ones is time consuming on non-affine meshes. Moreover, the
strong consistency requirement leads to a wide (and generally unphysical) coupling of the
unknowns.

Alternatives to SUPG are symmetric stabilization methods such as the continuous in-
terior penalty method (CIP) [13], the local projection stabilization (LPS) [6, 8, 67], the
subgrid scale modeling (SGS) [31, 59], and others. These methods have been investigated
during the last decades.

The idea in the continuous interior penalty method is to add a least squares penaliza-
tion on the gradient jump between the neighboring elements. Moreover, the Dirichlet
boundary conditions are imposed weakly in the discrete problem, unlike all other sta-
bilization methods in which the boundary conditions are incorporated into the finite
element space. There exists a huge amount of literature on CIP stabilization method
for convection-diffusion problems. Starting from [12] the pure transport problem or

3
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convection-dominated problems, which is the extension of interior penalty method pro-
posed by Douglas and Dupont [22], the method was extended to generalized Stokes prob-
lem in [14], to the Oseen problem in [11]. The CIP method on Shishkin meshes for
convection-diffusion problems with characteristic layers has been analyzed in [28].

The stabilization term of the local projection method is based on a projection πh : Vh →
Dh of the finite element space Vh which approximates the solution into a discontinuous
space Dh. Originally proposed for Stokes problem [5], the local projection method was
extended to transport problems in [6]. The application of local projection methods to
Oseen problems are studied in [8, 67] and for convection-diffusion-reaction problem with
mixed boundary condition in [68]. The local projection method on layer adapted meshes
for convection-diffusion problems with exponential boundary layer was studied in [65, 66].
The local projection method provides additional control over the fluctuations of the gra-
dient or parts of it. Although, the method is weakly consistent only, the consistency
error can be bounded by choosing the projection spaces rich enough and optimal order of
convergence is maintained.

The local projection method was originally proposed as two-level approach where the
projection space Dh is defined on a coarser mesh [5, 6, 8]. In this case, standard finite
element spaces can be used for both the approximation space and the projection space.
The stabilization terms of CIP and the two-level LPS methods introduce additional cou-
plings between degrees of freedoms which do not belong to the same finite element cell.
Hence the sparsity of the element matrices decreases and one needs appropriate data
structures for an efficient implementation into a given computer code. The general ap-
proach presented in [67] allows us to construct a method based on local projection such
that the resulting discretization stencil does not increase compared to standard Galerkin
or SUPG method. This is done by an enrichment of finite element space compared to
the standard finite element space. In this case the enriched and the projection spaces
live on the same grid. Although the system looks larger at the first glance. However, the
additional degrees of freedom which occur due to the enrichment can be eliminated locally
by static condensation. In this way, one can work with the same number of degrees of
freedom which are needed to achieve the appropriate approximation order. Furthermore,
neither time derivative nor second order derivatives have to be assembled for the stabi-
lization term of LPS method. Recently also exponential enrichment have been considered
see [46]. Here we consider the classical one-level LPS method with polynomial enrichment.

The subgrid scale modeling was first applied to a scalar transport problem [31]. This
method based on the scale separation of the finite element space Vh = VH ⊕ V H

h , where
VH represents the space of large scales and V H

h the space of small scales. The standard
Galerkin finite element method is stabilized by adding terms which gives a weighted con-
trol on the gradient of fluctuations id − PH where PH : Vh → VH ⊂ Vh is a suitable
projection operator. Similar to LPS, the scale separation can also be treated as one- and
two-level approaches. The difference of SGS to LPS is that in SGS the stabilization term

4
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uses gradients of fluctuations while in LPS fluctuations of gradients. For more details and
a relation between the stabilizing terms of SGS and LPS, we refer to [76].

The discontinuous Galerkin (dG) method has recently received significant attention and
is applied to a wide range of hyperbolic and parabolic problems. The method was first
introduced by Reed and Hills [75] for neutron transport problem and analyzed for ordi-
nary differential equation by Dekfour, Hager and Trochu in [19]. The analysis of the dG
method for partial differential equation starts with the works of Lesaint & Raviart [58]
and Johnson & Pitkäranta [43]. The first work in the context of parabolic problems
was done by Eriksson, Johnson & Thomée [24] and Larsson, Thomée & Wahblin [57].
An hp a priori error analysis of the dG time stepping method for initial value problems
was studied by Schötzau and Schwab [78] and for hp-version of the dG finite element
method for parabolic problems in [79]. The dG method for the spatial discretization of
different types of partial differential equation have been investigated by Cockburn and his
co-workers [2]. For more details about the dG method we refer to the survey article [16]
and the books [17, 85].

In comparison with other numerical methods, e.g. finite element or finite volume meth-
ods, the discontinuous Galerkin method has both advantages and disadvantages. This
method uses discontinuous piecewise polynomial spaces to approximate the sought so-
lution of partial differential equation on a finite element mesh without any requirement
on the continuity between the neighboring element. Like SUPG and other stabilization
methods, the dG method is more stable than the standard Galerkin method, when applied
to convection-diffusion problems. On the other hand, the construction of the bilinear form
in dG finite element formulation is very different from the other finite element methods.
The essential boundary conditions are imposed weakly to the weak formulation of the
problem without using multipliers and therefore can be applied to domain decomposi-
tion. Despite all these advantages, dG methods have not yet made a significant impact
for practical applications. Since the bases functions are discontinuous across the element
boundaries, the number of unknowns are large. The computational cost associated with
discontinuous Galerkin method is larger when compared to continuous finite element or
finite volume methods. Recently, the hybridizable discontinuous Galerkin method was
introduce to handle this issue, see [72] and their references.

There are several approaches for discretizing time-dependent convection-diffusion-reaction
problems by finite element methods. Firstly, space-time elements combined with some
stabilization could be used [42, 88]. This results into (d+1)-dimensional problems in each
space-time slab which are more difficult to handle than the corresponding d-dimensional
problems in space. Secondly, semidiscretization as intermediate steps can be used. Here,
we distinguish between horizontal and vertical methods of lines. The vertical method of
lines discretizes first in space and then in time while the horizontal method of lines (or
Rothe’s method) applies first a time discretization which is followed by a discretization in
space. Stabilization parameters play a critical role in the success of the stabilized meth-

5
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ods. The main difficulty in the analysis of SUPG method for time-dependent problems
comes from the fact that the time derivative has to be added into the stabilization term
and this adds a non-symmetric term that cannot be easily bounded by using standard
energy argument.

Stabilized finite element methods for time-dependent convection-diffusion-reaction prob-
lems have been investigated by several authors. The stability property of consistent
stabilization methods in the small time step limit have been discussed in [7, 35]. The
approach in these studies was to discretize the problem in space first with a stabilized
method, choose the stabilization parameters for the semi-discrete problem, and then dis-
cretize in time. This results in stabilization parameters that depends only on mesh width
in space, because the temporal discretization is performed after the choice of stabiliza-
tion parameters. The stability and convergence properties of the SUPG method in space
combined with backward Euler, the Crank-Nicolson or the second order backward differ-
entiation formula in time for transient transport problems are studied in [9]. The error
bounds in the L2 norm and in the norm of material derivative are obtained under a regu-
larity conditions on data and the stabilization parameters depend only on the mesh size
in space variable. For non-smooth data, the bounds are valid under the condition that
the stabilization parameters depend on the length of the time step. Numerical studies of
the different stabilization techniques including SUPG can be found in [18, 62].

On the other hand, if the problem is discretized in space and time first, see [39, 41],
and then choosing the stabilization parameters. This gives stabilization parameters
which depends on the length of the time step. The stability and error estimates for
SUPG method combined with backward Euler time stepping scheme for time-dependent
convection-diffusion-reaction problems are discussed in [39]. In particular, two different
choices of stabilization parameters are derived. The first choice is to choose the stabi-
lization parameters proportional to the time step length and the second one proportional
to some function of time step length. Moreover, the time continuous limit is analyzed
under certain conditions on the coefficients of the equation. Numerical studies presented
in [39, 41] show that this approach leads to a solution which contains unphysical oscilla-
tions for small time steps compared to the approach from [7, 35]. However, the numerical
results in time continuous limit case in [39] also suggest that the stabilization parameters
can be chosen independent of the length of the time step.

The symmetric stabilization’s in space combined with the θ-method and the second order
backward differentiation formula in time have been investigated in [10]. In particular,
they show that the contribution from stabilization leads to an extended matrix pattern
which can be extrapolated from the previous time step. The details of the stability and
error estimates are given only for the CIP method due to the same structure of sym-
metric stabilization methods. The coupling of other stabilization techniques in the one
dimensional case with the finite difference time integration in particular the vertical and
horizontal method of lines have been discussed in [3]. The standard Galerkin method

6
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in space but on a layer adapted Shishkin mesh and different time discretization have
been studied in [48]. Besides the finite difference methods, we consider the so-called dG
method, based on using a finite element formulation in time with piecewise polynomial of
degree q. In the case q = 0, i.e., when the approximation functions are piecewise constant
in time, the method reduces to the backward Euler scheme with modified right-hand side.
One of the advantages of dG finite element method in time is that the method is based on
variational formulation, which is useful in the analysis of time discretization error. The
dG method has been analyzed in space [20, 27] and in space and time [26]. A numerical
study of SUPG applied to time-dependent convection diffusion problems with small dif-
fusion parameter can be found in [41]. Details about the dG time stepping method can
be found in book [85].

In population balance equations, the distribution of entities depends not only on space and
time but also on their own properties referred to as internal coordinates. Consequently,
the PBE given in high dimensional domain is therefore challenging from computational
point of view. For example in [40], precipitation processes are modeled by a population
balance system consisting of equations describing the flow field by the Navier-Stokes equa-
tions, the chemical reaction by convection-diffusion-reaction equations and the particle
size distribution by transport equations. In addition to the coupling of these equations
the main difficulty in the simulation is the PBE because the dimension of the PBE is
higher than the other equations in the system. In recent years several numerical methods
have been introduced for the numerical solution of population balance equations. For ex-
ample, method of moments and its variant, method of characteristics, finite difference etc.

The method of moments, a special class of method of weighted residuals, is applied as
a model reduction for the solution of population balance equations, see [63, 81]. This
method reduces the population balance equation to a set of ordinary differential equa-
tions (ODEs) which can be solved by any ODE solver. However, the resulting model
have several drawbacks. The reconstruction of the density function from moments is dif-
ficult [37], since the inverse problem is ill-posed. In addition, the use of size dependent
functions violate the closure condition. The method of characteristics, in which the spa-
tial discretization is no longer required, was suggested by Kumara and Ramkrishna [77].
This method also transforms the PBE into a system of ODEs that is then solved along the
pathline of the particles (characteristic curves). However, in this method the numerical
dissipation error caused by the discretization of growth term can be avoided. Most of
these and other methods are restricted to only internal coordinates. In addition, these
methods are not efficient and cannot be applied to combined processes and multidimen-
sional population balance equations. Hence, it is motivated to find a computationally
efficient numerical scheme for solving multidimensional population balance equations.

In order to handle the curse of dimensionality associated with the population balance
equations, an operator splitting or alternating direction methods are introduced in [30]
where the Streamline-Upwind Petrov-Galerkin method has been combined with the stan-
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dard Galerkin method. Operator splitting methods can be applied in different context
(splitting in coordinates or directions, splitting with respect to physics i.e., diffusion, con-
vection). These methods are widely used for time integration of unsteady problems. The
basic theory of operator splitting for one-dimensional problems can be found in [80, 86].
The concept of operator splitting for time-dependent problems is to decompose the spa-
tial operator into a sum of two or more operators. For example in [64], the decomposi-
tion of convection-diffusion-reaction problem into pure convection and diffusion-reaction
problems was studied. For more details about operator splitting methods for linear and
non-linear convection-diffusion problems, see [47, 49, 50, 51, 56]. The main advantage of
such splitting is that each of the subproblems can be discretized and stabilized separately
by the best suitable method independent of the other subproblem(s). A detailed analysis
of an alternating direction implicit (or operator-splitting) scheme is demonstrated in [52]
for the Fokker-Planck equation. The basic idea in [52] is to split the high dimensional
problem into two low dimensional problems corresponding to the configuration and the
physical spaces. The solution of the convection-diffusion type problem in configuration
space is obtained by a Galerkin spectral method at each quadrature point corresponding
to the physical domain. Furthermore, a type of L2 projection is used to update the right-
hand side vector at the second stage where the solution of advection equation in physical
space is approximated by a finite element method.

1.2 Objectives

This thesis is concerned with the study of the stability and convergence of time-dependent
problems. We begin with a brief description of the nature of convection and/or reaction
dominated problems. In particular, we are interested in the case when the diffusion coef-
ficient in (1.1) and (1.2) is small e.g 0 < ε ≪ 1 (the process is convection and/or reaction
dominant). The smallness of the diffusion coefficient ε reduces the stability for standard
numerical methods. We handle this difficulty by using the SUPG and LPS methods.

We start with the time dependent convection-diffusion-reaction problem (1.1) where we
combine the local projection stabilization method in space with the discontinuous Galerkin
method in time. First we derive the error estimate for the semi-discrete problem after
discretizing the problem in space by finite element methods with local projection stabiliza-
tion. Then, we discretize the problem in time by using a discontinuous Galerkin method.
The stability and error estimates for the fully discrete scheme are derived. Theoretical
results are confirmed with some numerical tests for smooth solution and we also present
the numerical studies for non-smooth data.

A precise review of the literature shows that the error estimates for this kind of local pro-
jection stabilization method for time-dependent convection-diffusion-reaction equations
are not yet available. Furthermore, the method is unconditionally stable and conver-
gence estimates are half order better than the other finite difference schemes compared
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to [39, 10].

The population balance equation (1.2) is defined on the domain Ωℓ × Ωx which is of
Cartesian product structure. The main idea is to decouple a complex equation into two
simpler equations and to solve them by best suitable methods. For this we introduce an
operator splitting and alternating direction methods. The basic idea in both methods is
the same, i.e., reducing the high dimensional problem into a set of lower ones. In operator
splitting method, we split the continuous problem first and then discretizes the subprob-
lems in space and internal coordinate. On the other hand, alternating direction method
is used after having the fully discrete scheme.

Let N > 0 be a given positive integer and consider 0 = t0 < t1 < . . . < tN = T be a uni-
form partition of (0, T ) with the time step size τ = T/N . Then starting with u(t0) = z0,
two subproblems are sequentially solved on the sub-intervals (tn; tn+1], n = 0, 1, . . . , N−1:

1. Ωx-direction: Given u(tn) find ũ : (tn; tn+1] → R such that:






∂ũ

∂t
+ Lxũ = f in (tn, tn+1] × Ωℓ × Ωx

ũ = 0 on (tn, tn+1] × Ωℓ × ∂Ωx

ũ(tn+) = u(tn).

(1.3)

2. Ωℓ-direction: Find u : (tn, tn+1] × Ωℓ × Ωx → R such that






∂u

∂t
+ Lℓu = 0 in (tn, tn+1] × Ωℓ × Ωx

u|ℓmin
= zmin on (tn, tn+1] × Ωx

u(tn+) = ũ(tn+1),

(1.4)

where

Lℓz = ∇x · (Gz), Lxz = −ε∆xz + b · ∇xz.

This two-step operator splitting scheme defines u(tn), n = 1, . . . , N , as an approximation
of z(tn).

The first subproblem (1.3) is a time-dependent convection-diffusion equation and the sec-
ond subproblem (1.4) is a transport problem with pure advection. Note that on each time
interval the solution of (1.3) is obtained by solving a d-dimensional problem parametrized
by variable ℓ ∈ Ωℓ. Similarly, the evaluation of η is given by solving e-dimensional prob-
lem (1.4) parametrized by x ∈ Ωx. Then the operator splitting scheme is based on spatial
and temporal discretization of (1.3) and (1.4).

Since the splitting leads to a sequence of d- and e-dimensional solves at each time step in-
stead of d+e-dimensional solve, the curse of dimensionality associated with the numerical
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solution of population balance equation (1.2) is improved. The same kind of splitting has
been considered in [30], where the standard Galerkin method was combined with SUPG
method in space and internal coordinate, respectively. The stability and error bounds
were derived using an equivalent one-step formulation. Note that, the fully discrete form
of operator splitting scheme is equivalent only in the case that stabilization parameters
are proportional to the length of the time step, i.e., δ = O(τ) where δ and τ are the sta-
bilization parameter and time step length, respectively. The same choice of stabilization
parameter have been considered in [39] for evolutionary equations. On the other hand, if
δ = O(

√
τh) the second choice of stabilization parameter in [39], the fully discrete form

of operator splitting method is not equivalent to one-step formulation. These conditions
arise in the stability bounds from the stabilization term with the discretization of time
derivative.

In this work we have considered one internal coordinate. Since in our splitting, the
first subproblem is convection-dominated, we use Streamline-Upwind Petrov-Galerkin to
stabilize the space discretization. The second subproblem is a transport problem with
pure advection, one suitable choice is a discontinuous Galerkin method for the discretiza-
tion with respect to the internal coordinate. Here, we prove that the two-step method is
unconditionally stable. Optimal error estimates are obtained for two-step method.

The second goal is to consider SUPG method for space discretization together with dG
method in internal coordinate. We have consider the two different choices of stabilization
parameters discussed in [39] to derive the stability and convergence results for the two-
step method. The numerical results obtained are also compared with those of the LPS
method in space.

Finally, we have considered the alternating direction approach for the numerical solu-
tion of population balance equation (1.2). We derive the semi-discrete error bounds using
LPS method in space and dG method in internal coordinate. Then the alternating direc-
tion scheme is established after discretization in time by backward Euler time stepping
scheme. Based on an equivalent one-step formulation we derive the unconditional stability
and convergence estimates of the method.

1.3 Outline

The contents of the thesis are organized as follows:

In Chapter 2, we present the mathematical notations and functions spaces that will be
used throughout the thesis. Further, we explain the one-level variant of local projection
stabilization method and the discontinuous Galerkin finite element method for time dis-
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cretization.

Chapter 3 concerns with the time-dependent convection-diffusion-reaction problem. We
combine the local projection stabilization method in space with discontinuous Galerkin
method in time. After discretization in space by local projection stabilization method, we
give the error estimates for semi-discrete problem. Stability and convergence estimates
will then be given by discretizing the semidiscrete problem in time by the discontinuous
Galerkin method. Finally, the theoretical results are confirmed by numerical tests.

Chapter 4 deals with the operator splitting method for the population balance equation
with one internal coordinate given on high-dimensional domain. The operator splitting
method decomposes the original problem into two subproblems. The first subproblem
(1.3) is a time-dependent convection-diffusion equation while the second one (1.4) is a
transport problem with pure advection. We provide the unconditional stability of the
two-step method after discretizing the subproblems in time using the backward Euler
time stepping scheme. The fully discrete stabilized scheme is then obtain by applying the
local projection stabilization method in space and discontinuous Galerkin finite element
method in internal coordinate. Furthermore, based on the unconditional stability of the
fully discrete two-step scheme error estimates are proved.

The goal of Chapter 5 is to analyze the SUPG method based on the conditions on the sta-
bilization parameters discussed in [39] for time-dependent convection-diffusion problems.
This chapter starts with the SUPG in space and dG method in internal coordinate for
the finite element discretization of the two-step method introduced in Chapter 4. After
having the fully discrete two-step scheme, the stability estimates based on two different
choices of stabilizing parameters are given. Error bounds for the method are obtained
under that conditions. Finally, we give a numerical comparison of the results with the
results obtained by LPS method in space.

In Chapter 6, we consider the alternating direction Galerkin method for the numerical
solution of PBE (1.2). The original work on alternating direction method for the solu-
tion of parabolic and elliptic partial differential equation is by Douglas and Dupont [21].
The chapter starts with the discretization in space and internal coordinate using LPS
and dG finite element method, respectively. Then we derive the error estimates for the
semi-discrete problem. The fully discrete scheme is obtained using the backward Euler
method in time. The matrices in the fully discrete scheme are tensor products of the space
and internal coordinate direction. Therefore we are able to derive two steps alternating
direction method. Based on an equivalent one step formulation we discuss the stability
and convergence of the method.

11



Chapter 2

Preliminaries

The aim of this chapter is to collect several tools that will be needed later. The common
link between all results in this chapter is that they are preparatory for the main results
in the following chapters.

In Section 2.1 the basic notations and function spaces are summarized. The key idea
behind the local projection stabilization method is introduced in Section 2.2. Further-
more, the one-level approach is discussed in detail with some appropriate examples. In
Section 2.3 we develop the time discontinuous Galerkin finite element method in a general
framework and derive some frequently used properties. Finally, we will state some useful
inequalities.

2.1 Function spaces

In this section, we lay down some useful notation for various spaces and their corre-
sponding norms. More details about these spaces can be found in text books about finite
element method for partial differential equations and functional analysis [1]. We use the
standard notation of function spaces. Let Ω be a bounded domain, we denote by (·, ·) the
inner product in L2(Ω) and by ‖·‖ the associated norm. Let Hm(Ω) denote the Sobolev
space of functions with derivatives up to order m in L2(Ω). The norm in Hm(Ω) is defined
as

‖v‖m =




∑

|α|≤m

‖Dαv‖2




1/2

.

where α = (α1, α2, · · · , αd) is a multi-index. Since in this work time-dependent problems
are considered, we define certain Bochner spaces, for details we refer to [87]. Let X be a
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Banach space equipped with norm ‖·‖X and seminorm |·|X . Then we define the following

C
(
0, T ; X

)
=

{
v : [0, T ] → X, v continuous

}
,

L2(0, T ; X) =
{

v : (0, T ) → X,

∫ T

0

‖v(t)‖2
Xdt < ∞

}
,

Hm(0, T ; X) =
{

v ∈ L2(0, T ; X) :
∂jv

∂tj
∈ L2(0, T ; X), 1 ≤ j ≤ m

}
,

where the derivatives ∂jv/∂tj are understood in the sense of distributions on (0, T ).
Throughout the thesis we will use the short notation

Y (X) := Y (0, T ; X).

The norms and seminorms in the above defined spaces are given by

‖v‖C(X) = sup
t∈[0,T ]

‖v(t)‖X , ‖v‖L2(X) =




T∫

0

‖v(t)‖2
Xdt




1/2

,

|v|Hm(X) =




T∫

0

∥∥∥∥
∂mv

∂tm

∥∥∥∥
2

X

dt




1/2

, ‖v‖Hm(X) =




T∫

0

m∑

j=0

∥∥∥∥
∂jv

∂tj

∥∥∥∥
2

X

dt




1/2

.

2.2 Local projection stabilization (LPS)

It is well known that in convection-dominated convection-diffusion problems the standard
finite element methods will lead to solutions which contain global unphysical oscillations.
In order to prevent this, stabilization techniques are applied. In this section, we discuss
in detail the stabilization method based on local projection.

Let us consider a shape regular triangulation {Th} of Ω into d-simplices quadrilaterals
or hexahedra. The diameter of the cell K will be denoted by hK and the mesh size
parameter h is defined by h := maxK∈Th

hK . Assume that Vh ⊂ H1(Ω) denotes the ap-
proximation space of continuous, piecewise polynomials of degree r, r ≥ 1, defined over
Th. Let Dh denotes a finite element space of discontinuous, piecewise polynomials of de-
gree r − 1 with r ≥ 1 and let Dh(K) = {qh|K : qh ∈ Dh} be the local projection space.
Let πK : L2(K) → Dh(K) be the local L2-projection into Dh(K), which generates the
global L2-projection πh : L2(Ω) → Dh defined by

(πhv)|K = πK(v|K) ∀K ∈ Th, ∀v ∈ L2(Ω).

The fluctuation operator κh is given by κh := id − πh where id : L2(Ω) → L2(Ω) is the
identity mapping on L2(Ω).
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Then, the stabilizing term denoted by Sh(vh, wh) is defined as

Sh(vh, wh) =
∑

K∈Th

µK

(
κh(∇vh), κh(∇wh)

)

K
(2.1)

with user defined non-negative constant µK , K ∈ Th. The optimal mesh dependent choice
of the parameter will follow from the error analysis of the methods in the upcoming chap-
ters.

The stabilization Sh gives an additional L2-control over the fluctuations κh of the gra-
dients. Note that one can replace the gradient ∇vh by the derivative in the streamline
direction b · ∇v [68]. Then the stabilization term looks like

Sh(vh, wh) =
∑

K∈Th

µK

(
κh(b · ∇vh), κh(b · ∇wh)

)

K
(2.2)

which represents the fluctuation of the derivative in the streamline direction or even more
better ([53, 54]) by bK · ∇v where bK is a piecewise constant approximation of b, which
leads to similar results.

Stability and convergence properties of LPS methods are based on the following assump-
tions with respect to the pair (Vh,Dh) [67, 68].

Assumption A1: There is an interpolation operator ih : H2(Ω) → Vh such that

‖v − ihv‖0,K + hK |v − ihv|1,K ≤ Chl
K‖v‖l,K ∀K ∈ Th, v ∈ H l(K), 2 ≤ l ≤ r + 1. (2.3)

Assumption A2: The fluctuation operator κh satisfies the following approximation prop-
erty

‖κhq‖0,K ≤ Chl
K‖q‖l,K ∀K ∈ Th ∀q ∈ H l(Ω), 0 ≤ l ≤ r. (2.4)

The most important factor in the error analysis of the the LPS method is the existence
of an interpolant jh : H2(Ω) → Vh with the error v − jhv being L2-orthogonal to the
discontinuous projection space Dh without loosing the standard approximation properties.
Assumption A3: There exists a constant β1 > 0 such that for all h > 0

inf
qh∈Dh(K)

sup
vh∈Vh(K)

(vh, qh)K

‖vh‖0,K‖qh‖0,K

≥ β1 > 0 ∀K ∈ Th (2.5)

is satisfied where Vh(K) = {vh|K : vh ∈ Vh, vh = 0 in Ω\K}.

Note that the Assumptions A1 and A3 guarantee the existence of a interpolant with
the usual interpolation properties (2.3) and the orthogonality v − jhv ⊥ Dh. Assumption
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A2 is needed to bound the consistency error [67, 68, 76]. For example, in one-level LPS
Assumption A1 and A2 are satisfied if we choose (Vh,Dh) = (Pr, P

disc
r−1 ), i.e., continuous

and discontinuous piecewise polynomials of degree r and r − 1, respectively. In order
to guarantee also the Assumption A3, the approximation space Vh is enriched locally by
suitable bubble functions. For details see [67].

Theorem 2.2.1. Let the Assumption A1 and A3 be satisfied. Then there is an interpo-
lation operator jh : H2(Ω) → Vh satisfying the approximation

‖v − jhv‖0,K + hK |v − jhv|1,K ≤ Chl
K‖v‖l,K ∀K ∈ Th, ∀v ∈ H l(Ω), 2 ≤ l ≤ r + 1 (2.6)

and orthogonality property

(v − jhv, w) = 0 ∀qh ∈ Dh, ∀v ∈ H2(Ω). (2.7)

Proof. The proof of the theorem can be found in [67, 76].

In the following we give explicit examples satisfying the assumptions A1-A3. We use
mapped finite element spaces [15] where on the reference cell K̂ the enriched spaces are
given by

P bubble
r (K̂) = Pr(K̂) + b̂△Pr−1(K̂)

Qbubble
r (K̂) = Qr(K̂) + span

{
b̂¤x̂r−1

i , i = 1, 2
}
.

Here, b̂△ and b̂¤ are the cubic bubble on the reference triangle and biquadratic bubble
on the reference square, respectively, which vanish on the element boundary. The nu-
merical tests are performed in this thesis using for (Vh,Dh) the pairs (Qbubble

r , P disc
r−1 ) and

(P bubble
r , P disc

r−1 ) in two dimensional case with r = 1, and r = 2. An overview of different
variants in two dimensional case for r = 1 and r = 2 are illustrated in figures 2.1 and 2.2.

tt

t t

t

V +
h

t

Dh

t t t

t

ttt

t mt
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h

t t

t
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Figure 2.1: Approximation and projection spaces on quadrilaterals (one-level approach).
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Figure 2.2: Approximation and projection spaces on triangles (one-level approach).

2.3 Discontinuous Galerkin (dG) method

In the following, we will introduce the key idea behind the discontinuous Galerkin (dG)
finite element method for time discretization of the initial value problem

ut + Lu = f, u(0) = u0 (2.8)

where L : V → V is a bounded operator, independent of time and not necessarily self
adjoint. Let us denote by (·, ·) the inner product in V and formulate the discontinuous
Galerkin method for (2.8). Note that the exact solution of (2.8) satisfies

∫ T

0

{
(u′, v) + (Lu, v)

}
dt =

∫ T

0

(f, v)

u(0) = u0, (2.9)

for sufficiently smooth v. In what follows, we shall denote by f ′, f ′′, and f (q) the first,
second and q-th order time derivative of f , respectively. Integrating by parts the first
term with respect to t, we get

∫ T

0

{
− (u, v′) + (Lu, v)

}
dt +

(
u(T ), v(T )

)
=

(
u(0), v(0)

)
+

∫ T

0

(f, v) dt. (2.10)

The idea behind the time discretization by the dG method is to consider a partition
of the interval [0, T ] into N subintervals 0 = t0 < t1 < · · · < tN = T , Jn = (tn−1, tn] with
time step length kn = tn − tn−1 and k = max

n
kn. For a given nonnegative integer q, we

define the following space

Sq
k =

{
v : [0, T ] → V : v|Jn =

q∑

j=0

vjt
j with vj ∈ V

}
(2.11)

i.e., on each subinterval Jn, we are looking for an approximation of (2.8) of degree less
than or equal to q having values in V . Notice that, by convention, the functions in Sq

k are
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allowed to be discontinuous at the nodes tn, n = 0, . . . , N − 1. For discontinuous in time
functions we use the notation

ϕ±
n = ϕ(t±n ) = lim

t→tn±0
ϕ(t). (2.12)

Then the jumps at the end points of Jn are defined as

[ϕ]m := ϕ+
m − ϕ−

m, m ∈ {n − 1, n}. (2.13)

Let us introduce the bilinear form B as

B(u, v) =
N∑

n=1

∫

Jn

{
(u′, v) + (Lu, v)

}
dt +

N−1∑

n=1

([u]n, v+
n ) + (u+

0 , v+
0 ). (2.14)

Then the discrete formulation of (2.10) reads:

Given u0, find U ∈ Sq
k such that

B(U,X) = (u0, X
+
0 ) +

∫ T

0

(f,X) dt ∀X ∈ Sq
k. (2.15)

Lemma 2.3.1. The bilinear form B can be expressed as

B(u, v) =
N∑

n=1

∫

Jn

{
− (u, v′) + (Lu, v)

}
dt −

N−1∑

n=1

(u−
n , [v]n) + (u−

N , v−
N). (2.16)

Proof. Integrating by parts the first term in (2.14) we get

N∑

n=1

∫

Jn

(u′, v) dt =
N∑

n=1

(u, v)|tntn−1
−

N∑

n=1

∫

Jn

(u, v′) dt

=
N∑

n=1

{(u−
n , v−

n ) − (u+
n−1, v

+
n−1)} −

N∑

n=1

∫

Jn

(u, v′) dt.

Substituting into (2.14)

B(u, v) =
N∑

n=1

∫

Jn

{
− (u, v′) + (Lu, v)

}
dt +

N∑

n=1

{
(u−

n , v−
n ) − (u+

n−1, v
+
n−1)

}

+
N−1∑

n=1

{
(u+

n , v+
n ) − (u−

n , v+
n )

}
+ (u+

0 , v+
0 )

=
N∑

n=1

∫

Jn

{
− (u, v′) + (Lu, v)

}
dt +

N−1∑

n=1

(u−
n , v−

n − v+
n ) + (u−

N , v−
n − v−

N)

which is equivalent to (2.16). This completes the proof.

17



CHAPTER 2. PRELIMINARIES

Lemma 2.3.2. The following holds

B(v, v) =
N∑

n=1

∫

Jn

(Lv, v) dt +
1

2
‖v+

0 ‖2 +
1

2

N−1∑

n=1

‖[v]n‖2 +
1

2
‖v−

N‖2. (2.17)

Proof. Replacing u by v in (2.14) and (2.16), we get

B(v, v) =
N∑

n=1

∫

Jn

{
(v′, v) + (Lv, v)

}
dt +

N−1∑

n=1

([v]n, v
+
n ) + (v+

0 , v+
0 ),

B(v, v) =
N∑

n=1

∫

Jn

{
− (v, v′) + (Lv, v)

}
dt −

N−1∑

n=1

(v−
n , [v]n) + (v−

N , v−
N).

Adding them together and dividing by 2, we get

B(v, v) =
N∑

n=1

∫

Jn

(Lv, v) dt +
1

2

N−1∑

n=1

([v]n, v
+
n ) − 1

2

N−1∑

n=1

(v−
n , [v]n) +

1

2
(v−

N , v−
N) +

1

2
(v+

0 , v+
0 )

=
N∑

n=1

∫

Jn

(Lv, v) dt +
1

2

N−1∑

n=1

([v]n, [v]n) +
1

2
(v−

N , v−
N) +

1

2
(v+

0 , v+
0 ).

This completes the proof.

Gronwall’s inequalities are important in the error analysis of time-dependent problems. In
this thesis we use continuous as well as discrete versions of the Gronwall’s inequality [34].

Lemma 2.3.3 (Continuous Gronwall inequality). Let f, g, y are piecewise continuous
functions defined on (t0, t). Suppose that g is a non-decreasing function and that there
exists a constant α independent of t such that

y(t) + f(t) ≤ g(t) + α

∫ t

t0

y(s) ds ∀t ∈ (t0, t).

Then,

y(t) + f(t) ≤ exp
(
α(t − t0)

)
g(t) ∀t ∈ (t0, t). (2.18)

Lemma 2.3.4 (Discrete Gronwall’s inequality). Let k, B, and am, bm, cm, γm, for integer
m ≥ 0, be nonnegative number such that

an + k

n∑

m=0

bm ≤ k

n∑

m=0

γmam + k

n∑

m=0

cm + B for n ≥ 0.

Suppose that kγm < 1, for all m, and set σm = (1 − kγm)−1. Then,

an + k
n∑

m=0

bm ≤ exp

(
k

n∑

m=0

γmσm

) {
k

n∑

m=0

cm + B

}
for n ≥ 0. (2.19)
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2.3. DISCONTINUOUS GALERKIN (DG) METHOD

Important tools in the derivation of the error estimates are inverse inequalities.

Lemma 2.3.5 (Inverse inequality). Let {Th} be a shape regular family of affine meshes
in R

d with h ≤ 1. Let 0 ≤ m ≤ l and 1 ≤ p, q ≤ ∞, then there exists a constant C
independent of h, K, p and q such that (see [25])

|w|l,p,K ≤ cinvh
m−l+d( 1

p
− 1

q
)

K |w|m,q,K , ∀K ∈ Th, ∀w ∈ Vh. (2.20)
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Chapter 3

Convection-diffusion-reaction
problem

This chapter concerns with the numerical solution of time-dependent convection-diffusion-
reaction equations. We apply the vertical method of lines. The aim is to combine the
local projection stabilization in space with the discontinuous Galerkin in time, which are
discussed in detail in Chapter 2. First we discretize the model problem in space only and
investigate the error estimates for the semi-discrete problem. Then the error bounds for
the fully discrete scheme are obtained after discretization of the semi-discrete problem in
time.

The chapter is organized as follows. Section 3.1 introduces the problem under consid-
eration and derives the weak formulation of the problem. The semi-discretization in
space and the local projection stabilization are introduced in Section 3.2. Furthermore,
an optimal error estimate for the semi-discretized problems is given. Section 3.3 presents
the error analysis for the fully discrete problem after a time discretization by a discontinu-
ous Galerkin method. Finally, numerical results which confirm the theoretical predictions
are given in Section 3.4.

3.1 Model problem

Let Ω ⊂ R
d be a bounded polygonal for d = 2 or polyhedral for d = 3 domain with

Lipschitz continuous boundary Γ = ∂Ω and T > 0. We set QT := Ω× (0, T ) and consider
the following time-dependent convection-diffusion-reaction problem:
Find u : QT → R such that






ut − ε∆u + b · ∇u + σu = f in QT ,

u = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

(3.1)

where ε > 0 is a given positive constant, b is a given velocity field, f is a source function
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3.2. SEMI-DISCRETE PROBLEM

and u0 is the initial data. We assume that b, and σ are independent on time t, whereas
f may depend on t. Furthermore, let the data b, σ, u0 and f are sufficiently smooth on
Ω and Ω× (0, T ), respectively. By the transformation u(x, t) = eKtv(x, t) with a suitable
large constant K one obtains always a system for v of the form (3.1) such that

σ − 1

2
div b ≥ σ0 > 0 in Ω. (3.2)

Let us introduce the space V = H1
0 (Ω), its dual space H−1(Ω), and 〈·, ·〉 for the duality

product between these two spaces. Then, a function u is a weak solution of problem (3.1),
if

u ∈ L2(H1
0 ), u′ ∈ L2(H−1), (3.3)

and for almost all t ∈ (0, T ),

{
〈u′(t), v〉 + a(u(t), v) = 〈f(t), v〉 ∀v ∈ V,

u(0) = u0.
(3.4)

Here the bilinear form a is given by

a(u, v) := ε(∇u,∇v) + (b · ∇u, v) + (σu, v).

Note that (3.3) implies the continuity of u as a mapping of [0, T ] → L2(Ω) such that the
initial condition u(0) = u0 is well-defined.

3.2 Semi-discrete problem

Since we are interested in convection-dominated convection-diffusion-reaction problems,
standard finite element methods will lead to solutions which contain global unphysical
oscillations. In order to prevent this, we will consider the one-level local projection stabi-
lization method in which the approximation and projection spaces live on the same mesh.

Based on the finite element discretization in Section 2.2, the stabilization term
Sh(uh, vh) is given by

Sh(uh, vh) :=
∑

K∈Th

µK

(
κh(∇vh), κh(∇wh)

)

K
(3.5)

with user chosen non-negative constants µK , K ∈ Th. Now, the stabilized semi-discrete
problem reads:

For all t ∈ (0, T ), find uh(t) ∈ Vh such that

{
(u′

h(t), vh) + ah(uh(t), vh) = (f(t), vh) ∀vh ∈ Vh,
uh(·, 0) = uh,0,

(3.6)
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CHAPTER 3. CONVECTION-DIFFUSION-REACTION PROBLEM

where the stabilized bilinear form ah is given by

ah(uh, vh) := a(uh, vh) + Sh(uh, vh) (3.7)

and uh,0 ∈ Vh is a suitable approximation of u0 ∈ L2(Ω).

Lemma 3.2.1 (Coercivity). The stabilized bilinear form ah(·, ·) is coercive

ah(vh, vh) ≥ |||vh|||2 (3.8)

with respect to the mesh dependent norm

|||vh||| =
{
ε|vh|21 + σ0‖vh‖2 + Sh(vh, vh)

}1/2
. (3.9)

Proof. Setting uh = vh in (3.7), we obtain

ah(vh, vh) = a(vh, vh) + Sh(vh, vh)

= ε(∇vh,∇vh) + (b · ∇vh, vh) + σ(vh, vh) + Sh(vh, vh)

Integrating by parts the second term and using the inequality (3.2), we get

ah(vh, vh) = ε|vh|21 + σ0‖vh‖2 + Sh(vh, vh)

≥ |||vh|||2.

This completes the proof.

In order to analyze the semi-discrete error, we define the Ritz-projection Rh : V → Vh

associated with the stabilized bilinear form ah as Rhw ∈ Vh such that

ah(Rhw, vh) = a(w, vh) ∀vh ∈ Vh. (3.10)

For the stationary problem associated with (3.1) we have

Theorem 3.2.2. Suppose A1-A3 defined in Chapter 2, τK ∼ hK for all K ∈ Th, and let
the data of the problem be sufficiently smooth. Then, there exists a positive constant C,
independent of ε and h, such that

|||Rhw||| ≤ C‖w‖1 ∀w ∈ H1(Ω) (3.11)

and

|||w − Rhw||| ≤ C(ε1/2 + h1/2)hr‖w‖r+1 (3.12)

for all w ∈ H1
0 (Ω) ∩ Hr+1(Ω).
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3.2. SEMI-DISCRETE PROBLEM

Proof. From (3.8) and (3.10) we have

|||Rhw|||2 ≤ ah(Rhw,Rhw) = a(w,Rhw)

≤ C‖w‖1 |||Rhw|||,

from which (3.11) follows. For (3.12), see [76, Theorem 3.74].

The next theorem states the main result of this section.

Theorem 3.2.3. Let u(t) and uh(t) be the solutions of the continuous problem (3.4) and
the semi-discrete problem (3.6), respectively. Let the assumptions A1-A3 be fulfilled and
u0 ∈ Hr+1(Ω), u ∈ H1(Hr+1). If τK ∼ hK for all K ∈ Th, then there exists a positive
constant C independent of t, ε, and h, such that for all t ∈ [0, T ]

‖uh(t) − u(t)‖ ≤ ‖uh,0 − u0‖ + C(ε1/2 + h1/2)hr

{
‖u0‖r+1 +

∫ t

0

‖u′‖r+1dt

}
(3.13)

and
∫ t

0

|||uh(s) − u(s)|||2 ds

≤ C

[
‖uh,0 − u0‖2 + (ε + h)h2r

{
‖u0‖2

r+1 +

∫ t

0

(
‖u(s)‖2

r+1 + ‖u′(s)‖2
r+1

)
ds

}]
. (3.14)

Proof. We split the error into two parts

uh(t) − u(t) = uh(t) − Rhu(t) + Rhu(t) − u(t) = ξ(t) + η(t)

where
ξ := uh − Rhu η := Rhu − u.

The estimate for the projection error η(t) follows from (3.13)

‖η(t)‖ = ‖Rhu(t) − u(t)‖ ≤ Chr(ε1/2 + h1/2)‖u(t)‖r+1

≤ Chr(ε1/2 + h1/2)

{
‖u0‖r+1 +

∫ t

0

‖u′(s)‖r+1ds

}
(3.15)

where we used in the second step

‖u(t)‖r+1 ≤ ‖u0‖r+1 +

∫ t

0

‖u′(s)‖r+1ds.

In order to bound ξ(t), we use (3.4), (3.6), the definition (3.10) of the Ritz-projection
operator Rh, and the fact that Rh commutes with time derivative to get

(ξ′(t), vh) + ah(ξ(t), vh) = (u′
h(t) − (Rhu)′(t), vh) + ah(uh(t) − Rhu(t), vh)

= (f(t), vh) − ah(Rhu(t), vh) − ((Rhu)′(t), vh)

= (u′(t) − (Rhu)′(t), vh)

= −(η′(t), vh) ∀vh ∈ Vh.
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CHAPTER 3. CONVECTION-DIFFUSION-REACTION PROBLEM

Setting vh = ξ(t) and taking into consideration the non-negativity of the bilinear form ah,
we obtain

1

2

d

dt
‖ξ(t)‖2 ≤ (ξ′(t), ξ(t)) + ah(ξ(t), ξ(t)) = −(η′(t), ξ(t)) ≤ ‖η′(t)‖ ‖ξ(t)‖.

A usual regularization trick to avoid problems with the differentiability of t 7→ ‖ξ(t)‖
when ξ = 0 and integration over time from 0 to t yields

d

dt
‖ξ(t)‖ ≤ ‖η′(t)‖

‖ξ(t)‖ ≤ ‖ξ(0)‖ +

∫ t

0

‖η′(s)‖ ds.

The terms on the right hand side can be estimated as follows

‖ξ(0)‖ ≤ ‖uh(0) − u(0)‖ + ‖u(0) − Rhu(0)‖
≤ ‖uh,0 − u0‖ + Chr(ε1/2 + h1/2)‖u0‖r+1

‖η′(s)‖ = ‖u′(s) − Rhu
′(s)‖

≤ Chr(ε1/2 + h1/2)‖u′(s)‖r+1.

Thus, for the error to the Ritz-projection we have

‖ξ(t)‖ ≤ ‖uh,0 − u0‖ + Chr(ε1/2 + h1/2)

{
‖u0‖r+1 +

∫ t

0

‖u′(s)‖r+1ds

}
.

Combining this with (3.15), we get (3.13).

Above we used only the non-negativity of ah(ξ(t), ξ(t)) instead of the stronger coercivity
estimate

ah(ξ(t), ξ(t)) ≥ |||ξ(t)|||2.

Now starting with

1

2

d

dt
‖ξ(t)‖2 + |||ξ(t)|||2 ≤ ‖η′(t)‖ ‖ξ(t)‖,

applying arithmetic-geometric inequality in the right-hand side

‖η′(t)‖ ‖ξ(t)‖ ≤ σ0

2
‖ξ(t)‖2 +

1

2σ0

‖η′(t)‖2

where σ0 from (3.2) and integrating over t, we obtain

‖ξ(t)‖2 +

∫ t

0

|||ξ(s)|||2 ds ≤ ‖ξ(0)‖2 +
1

σ0

∫ t

0

‖η′(s)‖2 ds.
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3.3. FULLY DISCRETE PROBLEM

Using again the estimates for ‖ξ(0)‖ and ‖η′(s)‖ above, we have

‖ξ(t)‖2 +

∫ t

0

|||ξ(s)|||2 ds ≤ C‖uh,0 − u0‖2

+ C(ε + h) h2r

{
‖u0‖2

r+1 +

∫ t

0

‖u′(s)‖2
r+1 ds

}
.

Finally, we use (3.12) and the triangle inequality to get (3.14).

Compared to standard Galerkin finite element method, where µK = 0 for all K ∈ Th,
the local projection method provides additional control over the fluctuation of gradients
because of the definition of the triple norm. The additional stabilization term yields
improved stability properties. In the special case, when ε = 1, b = 0 and σ = 0, the
corresponding error estimates (3.13) and (3.14) are the same as in [85, Theorem 1.2,1.3].

3.3 Fully discrete problem

For getting a fully discrete version of (3.1) we apply the discontinuous Galerkin method
to problem (3.6). Let 0 = t0 < t1 < · · · < tN = T be a partition of the time interval
[0, T ], Jn = (tn−1, tn], kn = tn − tn−1, and k = max

n
kn. For a given non-negative integer

q, we define the semi-discrete space as in (2.11)

Sq
k :=

{
v : [0, T ] → V : v

∣∣
Jn

(t) =

q∑

j=0

vjt
j with vj ∈ V

}

and the fully discrete space

Sr,q
h,k :=

{
v : [0, T ] → Vh : v

∣∣
Jn

(t) =

q∑

j=0

vjt
j with vj ∈ Vh

}
(3.16)

where Vh consists of elements of order r.

The fully discrete problem reads: Given an approximation uh,0 of u0, find Uh ∈ Sr,q
h,k

such that

B(Uh, X) = (uh,0, X
+
0 ) +

∫ T

0

(f,X) dt, ∀X ∈ Sr,q
h,k, (3.17)

where the bilinear form is defined by

B(u, v) : =
N∑

n=1

∫

Jn

{
(u′, v) + ah(u, v)

}
dt +

N−1∑

n=1

(
[u]n, v+

n

)
+ (u+

0 , v+
0 ) (3.18)
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and integration by parts with respect to t gives

B(u, v) =
N∑

n=1

∫

Jn

{
− (u, v′) + ah(u, v)

}
dt −

N−1∑

n=1

(
u−

n , [v]n
)

+ (u−
N , v−

N). (3.19)

The jump terms in the bilinear forms are stabilizing operators and have an effect of up-
winding information with respect to time.

The exact solution satisfies (3.17) since [u]n = 0, n = 1, . . . , N − 1. Since the func-
tions in the fully discrete space Sr,q

h,k are allowed to be discontinuous at the nodes tn,
n = 0, . . . , N − 1, we can choose v to vanish outside the time interval Jn. Therefore, the
fully discrete scheme (3.17) becomes

∫

Jn

(
(U ′

h, v) + ah(Uh, v)
)
dt + (U+

h,n−1, v
+
n ) = (U−

h,n−1, v
+
n−1) +

∫

Jn

(f, v) dt, ∀v ∈ Vh

(3.20)

for 1 ≤ n ≤ N , where U−
h,0 = uh,0.

Special case: In the case q = 0, the approximation functions are piecewise constants in
time on each interval, and in particular we have U ′

h ≡ 0 and Uh,n = U+
h,n−1. Therefore, the

fully discrete scheme (3.20) reduces to backward Euler method with modified right-hand
side, i.e., for all v ∈ Vh and 1 ≤ n ≤ N

(Uh,n, v) + knah(Uh,n, v) = (Uh,n−1, v) +

∫

Jn

(f, v) dt,

(
Uh,n − Uh,n−1

kn

, v

)
+ ah(Uh,n, v) =

1

kn

∫

Jn

(f, v) dt.

We consider two mesh-dependent norms given by

‖v‖w =

(
N∑

n=1

∫

Jn

|||v|||2dt +
1

2
‖v−

N‖2

)1/2

(3.21)

‖v‖s =

(
N∑

n=1

∫

Jn

|||v|||2dt +
1

2
‖v+

0 ‖2 +
1

2

N−1∑

n=1

‖[v]n‖2 +
1

2
‖v−

N‖2

)1/2

. (3.22)

Here, and in the following we assume the regularity of v needed such that B and ‖ · ‖s

are well defined.

Lemma 3.3.1. The bilinear form B is coercive with respect to the strong norm ‖ · ‖s, i.e.

B(v, v) ≥ ‖v‖2
s. (3.23)
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Proof. Setting u = v in (3.18) and (3.19) and adding them together to get

2B(v, v) = 2
N∑

n=1

∫

Jn

ah(v, v) dt +
N−1∑

n=1

([v]n, [v]n) + (v+
0 , v+

0 ) + (v−
N , v−

N).

Using the coercivity of ah with respect to ||| · ||| and dividing by two, we get

B(v, v) ≥
N∑

n=1

∫

Jn

|||v|||2 dt +
1

2

N−1∑

n=1

∥∥[v]n
∥∥2

+
1

2
‖v+

0 ‖2 +
1

2
‖v−

N‖2 = ‖v‖2
s.

The next lemma gives the stability of the fully discrete scheme (3.17).

Lemma 3.3.2. The solution Uh of the fully discrete problem (3.17) is uniquely determined
and satisfies the stability estimate

‖Uh‖s ≤ C
(
‖uh,0‖ + ‖f‖L2(L2)

)
. (3.24)

Proof. Setting X = Uh in (3.17) and using the coercivity of B, (3.24) follows by means of
Cauchy-Schwarz type inequalities

∥∥Uh

∥∥2

s
≤ ‖u0,h‖

∥∥U0
h

∥∥ +

∫ T

0

‖f‖
∥∥Uh

∥∥ dt

≤ ‖u0,h‖
∥∥U0

h

∥∥ +

(∫ T

0

‖f‖2 dt

) (∫ T

0

∥∥Uh

∥∥2
dt

)

≤ C
(
‖u0,h‖ + ‖f‖L2(L2)

)∥∥Uh

∥∥
s
.

For analyzing the error of the discontinuous Galerkin method, we define an interpolant
ũ ∈ Sq

k of the exact solution u(t) of (3.1) defined by

ũ(t−n ) = u(tn), n = 1, . . . , N (3.25)
∫

Jn

(
ũ(t) − u(t)

)
tl dt = 0, l = 0, 1, . . . , q − 1, n = 1, . . . , N (3.26)

i.e., ũ interpolates at the nodal points, and the interpolation error is L2-orthogonal to
the space of polynomials of degree q − 1 on Jn. Note that ũ is on each Jn a polynomial
in t with values in V . For this type of interpolation, we have for i, j = 0, 1 the error
estimates [73].

sup
0≤t≤tN

|u(t) − ũ(t)|j ≤ Ckq+1 sup
0≤t≤tN

|u(q+1)(t)|j, (3.27)

∫

Jn

|u(i)(t) − ũ(i)(t)|2j dt ≤ Ck2(q+1−i)

∫

Jn

|u(q+1)(t)|2j dt, (3.28)
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Lemma 3.3.3. Suppose A1-A3, and τK ∼ hK for all K ∈ Th. Let Uh and u be the
solutions of the fully discrete problem (3.17) and the continuous problem (3.1). Moreover,
let u0 ∈ Hr+1(Ω) and u ∈ H1(Hr+1). Then, the following estimates hold true

‖Uh − Rhũ‖s ≤ C

[
‖uh,0 − Rhu

+
0 ‖ + (ε1/2 + h1/2)hr‖u‖H1(Hr+1) + kq+1‖u‖Hq+1(H1)

]
,

(3.29)

Proof. For ξ = Uh − Rhũ ∈ Sr,q
h,k we have from the coercivity (3.23) of B

‖ξ‖2
s = ‖Uh − Rhũ‖2

s ≤ B
(
Uh − Rhũ, Uh − Rhũ

)

≤ B
(
Uh − Rhu, ξ

)
+ B

(
Rhu − Rhũ, ξ

)
(3.30)

Having in mind that Uh and u are the solutions of the fully discrete and continuous
problem, respectively, and that the Ritz-projection commutes with the time derivative.
From (3.17), (3.4) and (3.10), we have

B(Uh, ξ) = (uh,0, ξ
+
0 ) +

∫ tN

0

(f, ξ) dt

= (uh,0, ξ
+
0 ) +

∫ tN

0

{
(u′, ξ) + a(u, ξ)

}
dt

= (uh,0, ξ
+
0 ) +

N∑

n=1

∫

Jn

{
(u′, ξ) + ah(Rhu, ξ)

}
dt.

The regularity assumption u ∈ H1(Hr+1) ensures the continuity of the mapping t 7→
Rhu(t). Hence, [Rhu]n = 0 for n = 1, . . . , N − 1. Adding and subtracting the terms∫ tN

0

(Rhu
′, ξ) and (Rhu

+
0 , ξ+

0 ), we get

B(Uh, ξ) =
N∑

n=1

∫

Jn

{
(Rhu

′, ξ) + ah(Rhu, ξ)
}

dt +
N−1∑

n=1

(
[Rhu]n, ξ+

n

)
+ (Rhu

+
0 , ξ+

0 )

+
N∑

n=1

∫

Jn

(u′ − Rhu
′, ξ) dt + (uh,0 − Rhu

+
0 , ξ+

0 ).

From (3.18), we get

B(Uh, ξ) = B(Rhu, ξ) +
N∑

n=1

∫

Jn

(u′ − Rhu
′, ξ) dt + (uh,0 − Rhu

+
0 , ξ+

0 ).

Hence for the first term in (3.30), we have the relation

B(Uh − Rhu, ξ) =
N∑

n=1

∫

Jn

(u′ − Rhu
′, ξ) dt + (uh,0 − Rhu

+
0 , ξ+

0 )
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Now, applying Cauchy-Schwarz’s inequality and (3.12), we conclude

B(Uh − Rhu, ξ) ≤

√√√√
N∑

n=1

∫

Jn

‖u′ − Rhu′‖2 dt

√√√√
N∑

n=1

∫

Jn

‖ξ‖2 dt + ‖uh,0 − Rhu
+
0 ‖ ‖ξ+

0 ‖

≤ C(ε1/2 + h1/2)hr

√∫ T

0

‖u′(s)‖2
r+1 ds

√√√√
N∑

n=1

∫

Jn

‖ξ‖2 ds

+ ‖uh,0 − Rhu
+
0 ‖ ‖ξ+

0 ‖. (3.31)

For the second term in (3.30), we have from the second representation (3.19) of bilinear
form B

B(Rhu − Rhũ, ξ) =
N∑

n=1

∫

Jn

{
−

(
Rh(u − ũ, ξ′) + ah(Rh(u − ũ), ξ

)}
dt

+
N−1∑

n=1

(
Rh(u − ũ)(t−n ), [ξ]n

)
+

(
Rh(u − ũ)(t−N), ξ−N

)
.

Taking into consideration that u(tn) = ũ(t−n ), n = 1, . . . , N and using the second repre-
sentation of the bilinear form B, we get

B(Rhu − Rhũ, ξ) =
N∑

n=1

∫

Jn

{
−

(
Rhu − Rhũ, ξ′

)
+ ah

(
Rh(u − ũ), ξ

)}
dt

=
N∑

n=1

∫

Jn

a(u − ũ, ξ) dt.

The first term vanishes. Indeed, from

ah

(
Rh(u − ũ), vh

)
= a(u − ũ, vh) ∀vh ∈ Vh

we obtain after multiplying by an arbitrary polynomial p of degree less than or equal to
q − 1 and integration over Jn the relation

∫

Jn

ah

(
pRh(u − ũ), vh

)
dt =

∫

Jn

a
(
p(u − ũ), vh

)
dt.

Applying Fubini’s theorem, we get

ah

(∫

Jn

pRh(u − ũ)dt, vh

)
= a

(∫

Jn

p(u − ũ), vh

)
dt = 0 ∀vh ∈ Vh

due to the orthogonality (3.26). Therefore, for all polynomials p of degree q − 1 we have
∫

Jn

pRh(u − ũ) dt = 0
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which implies ∫

Jn

(Rh(u − ũ), ξ′) dt = 0.

By means of the interpolation error estimate (3.28), we conclude

∣∣∣B(Rhu − Rhũ, ξ)
∣∣∣ ≤

√√√√
N∑

n=1

∫

Jn

‖u − ũ‖2
1 dt

√√√√
N∑

n=1

∫

Jn

ah(ξ, ξ)

≤ Ckq+1

√∫ T

0

‖uq+1(s)‖2
1 ds

√√√√
N∑

n=1

∫

Jn

|||ξ|||2 ds. (3.32)

Substituting the estimates (3.31) and (3.32) into (3.30)

‖ξ‖2
s ≤ C(ε1/2 + h1/2)hr

√∫ T

0

‖u′(s)‖2
r+1 ds

√√√√
N∑

n=1

∫

Jn

‖ξ‖2 ds

+ Ckq+1

√∫ T

0

‖uq+1(s)‖2
1 ds

√√√√
N∑

n=1

∫

Jn

|||ξ|||2 ds + ‖uh,0 − Rhu
+
0 ‖ ‖ξ+

0 ‖

≤ C
1

σ0

(ε1/2 + h1/2)2h2r

∫ T

0

‖u′(s)‖2
r+1 ds +

σ0

4

N∑

n=1

∫

Jn

‖ξ‖2 ds

+ 2‖uh,0 − Rhu
+
0 ‖2 +

1

8
‖ξ+

0 ‖2 + Ck2q+2

∫ T

0

‖uq+1(s)‖1 ds

+
1

4

N∑

n=1

∫

Jn

|||ξ|||2 ds

≤ C

[
(ε1/2 + h1/2)2h2r‖u′(s)‖2

L2(Hr+1) + ‖uh,0 − Rhu
+
0 ‖2 + k2q+2‖u‖2

Hq+1(H1)

]

+
3

4
‖ξ‖2

s

1

4
‖ξ‖2

s ≤ C

[
(ε1/2 + h1/2)2h2r‖u′(s)‖2

L2(Hr+1) + ‖uh,0 − Rhu
+
0 ‖2 + k2q+2‖u‖2

Hq+1(H1)

]
.

From this the required estimate (3.29) follows.

Lemma 3.3.4. Suppose A1-A3, and τK ∼ hK for all K ∈ Th. Let u0 ∈ Hr+1(Ω) and
u ∈ H1(Hr+1) be the solution of problem (3.4). Then, we have following estimates

‖Rhũ − Rhu‖s ≤ Ckq+1/2|u|Hq+1(H1), (3.33)

‖Rhũ − Rhu‖w ≤ Ckq+1|u|Hq+1(H1), (3.34)

‖Rhu − u‖s ≤ C(ε1/2 + h1/2)hr
(
‖u‖L2(Hr+1) + ‖u‖C(Hr+1)

)
. (3.35)
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Proof. From (3.18), we have for the Ritz-projection of the interpolation error η := Rhũ−
Rhu = Rh(ũ − u)

‖η‖2
s ≤ B(η, η) =

N∑

n=1

∫

Jn

[
− (η, η′) + ah(η, η)

]
dt −

N−1∑

n=1

(η−
n , [η]n) + (η−

N , η−
N).

The interpolation ũ satisfies ũ(t−n ) = u(tn), n = 1, . . . , N , thus the last two terms vanishes
and for the first two terms applying Cauchy-Schwarz inequality and coercivity of the
bilinear form ah gives

‖η‖2
s ≤

N∑

n=1

∫

Jn

[
‖η‖ ‖η′‖ + |||η|||2

]
dt

≤
N∑

n=1

∫

Jn

[
‖ũ − u‖1 ‖ũ′ − u′‖1 + ‖ũ − u‖2

]
dt.

Here, we used the stability of the Ritz-projection (3.11). We conclude the estimate (3.33)
by using the interpolation error estimates (3.28)

‖η‖2
s ≤ Ck2q+1|u|2Hq+1(H1).

For the improved error estimate with respect to the weak norm, we have

‖η‖w =
( N∑

n=1

∫

Jn

|||η|||2 dt + ‖η−
N‖2

)1/2

Note that ũ−
N = u(t−N), therefore the second term vanishes. Using again the stability

estimate of the Ritz-projection (3.11) and the interpolation estimates (3.27) to get

‖η‖w ≤ C

(
N∑

n=1

∫

Jn

‖ũ − u‖2
1

)1/2

≤ Ckq+1|u|Hq+1(H1),

which is (3.34).

Now we estimate the projection error for which the jump terms [Rhu − u]n vanishes
for n = 1, . . . , N , we have from (3.22)

‖Rhu − u‖s =

(∫ T

0

|||Rhu − u|||2 ds +
1

2
‖(Rhu − u)+

0 ‖2 +
1

2
‖(Rhu − u)−N‖2

)1/2

.

We conclude the final estimate (3.35) by using (3.12)

‖Rhu − u‖s ≤ C(ε1/2 + h1/2)hr

(∫ T

0

‖u(s)‖r+1 ds + ‖u+
0 ‖r+1 + ‖u−

N‖r+1

)

≤ C(ε1/2 + h1/2)hr
(
‖u‖L2(Hr+1) + ‖u‖C(Hr+1)

)

which completes the proof of the lemma.
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Theorem 3.3.5. Suppose A1-A3, and τK ∼ hK for all K ∈ Th. Let Uh and u be the
solutions of fully discrete problem (3.17) and the continuous problem (3.1), respectively.
Moreover, let u0 ∈ Hr+1(Ω) and u ∈ H1(Hr+1). Then, there exists a positive constant C
independent of h, k and ε, such that the following error estimates

‖Uh − u‖s ≤ ‖Rhu
+
0 − uh,0‖ + Ckq+1/2|u|Hq+1(H1)

+ C(ε1/2 + h1/2)hr
(
‖u‖H1(Hr+1) + ‖u‖C(Hr+1)

)
(3.36)

and

‖Uh − u‖w ≤ ‖Rhu
+
0 − uh,0‖ + Ckq+1|u|Hq+1(H1)

+ (ε1/2 + h1/2)hr
(
‖u‖H1(Hr+1) + ‖u‖C(Hr+1)

)
(3.37)

hold true.

Proof. The proof follows from the triangle inequality applied to the splitting

Uh − u = (Uh − Rhũ) + (Rhũ − Rhu) + (Rhu − u)

and using Lemmas 3.3.3 and 3.3.4.

Applying discontinuous Galerkin method to ordinary differential equations one gets the
error estimates of order O(kq+1). In (3.37) we got the same convergence order in time for
weaker norm.

3.4 Numerical results

In this section, we will present some numerical results for the discontinuous Galerkin
and LPS methods applied to time dependent convection-diffusion-reaction problems. All
numerical calculations were performed with the finite element package MooNMD [38].
Appropriate finite element spaces which fulfill the assumptions A1-A3 are given in [67].
In our numerical computations we use mapped finite element spaces [15] where on the

reference cell K̂ the enriched spaces are given by

P bubble
s (K̂) = Ps(K̂) + b̂△Ps−1(K̂)

Qbubble
s (K̂) = Qs(K̂) + span

{
b̂¤x̂s−1

i , i = 1, 2
}
.

Here, b̂△ and b̂¤ are the cubic bubble on the reference triangle and biquadratic bubble on
the reference square, respectively.
The numerical tests are performed using for (Vh, Dh) the pairs (P bubble

1 , P disc
0 ), (P bubble

2 , P disc
1 ),

(Qbubble
1 , P disc

0 ) and (Qbubble
2 , P disc

1 ). The stabilization parameters τK have been chosen as

τK := τ0hK ∀K ∈ Th
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3.4. NUMERICAL RESULTS

where τ0 denotes a constant which is given further for each of the test calculation. We
used uh,0 := jhu0 as discrete initial condition. In order to compare our results with those
in the literature, the first example is taken from [10] and the second from [41].
Due to the enrichment of the approximation spaces by bubble functions, quadrature
formulas with higher order accuracy have to be applied to calculate the entries of the
system matrix, the mass matrix, and the right-hand side vector. Since Qbubble

r ⊂ Qr+1 on
quadrilaterals, the order of Gaussian formula has to be increased just by 1. On simplicial
meshes, the inclusion P bubble

r ⊂ Pr+d holds true. For assembling the mass matrix the use
of quadrature formulas which are exact for polynomials of degree r+d on each element
can be avoided by computing the mass matrix on the reference cell and transforming it
to the current element.

Example 1. In this example, we consider a pure transport problem in two dimension
given by ε = σ = f = 0, b = (−y, x)T , Ω = {(x, y) ∈ R

2 : x2 + y2 ≤ 1} with a Gaussian
initial condition centered at (0.3, 0.3) given by

u0(x, y) = e−10[(x−0.3)2+(y−0.3)2].

The calculations have been performed on triangular meshes which are obtained from an
initial triangulation by successive refinement with boundary adaption due to the curved
boundary. The initial mesh (level 0) and the mesh on level 3 are shown in Fig. 3.1.

Figure 3.1: Triangular meshes for Example 1: coarsest mesh (left) and mesh after three
refinement steps (right).

To find the errors in space and time, we use the standard strategy, i.e., consider the
time-step size small enough to find the convergence order in space and vice versa. In
Tables 3.1–3.4, we show the convergence results in the strong and weak norms ‖ · ‖s and
‖ · ‖w, respectively, defined in Section 3.3. For the time discretization, the discontinuous
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CHAPTER 3. CONVECTION-DIFFUSION-REACTION PROBLEM

Galerkin methods of first and second order are used with the final time T = 2π. Table 3.1
shows the error in space in the strong and weak norms with stabilizing parameter τ0 = 0.1
and time step length k = 2π × 10−3 for (P bubble

1 , P disc
0 ) and dG(1) in time. In Table 3.2,

the convergence results for (P bubble
2 , P disc

1 ) and dG(2) in time are listed. We see that the
expected convergence orders are obtained.

Table 3.1: Errors and convergence orders in space for (P bubble
1 , P disc

0 ), dG(1), k = 2π ·10−3

and τK = 0.1 hK .

level ‖u − uh‖s ‖u − uh‖w

1 6.024193e-01 3.866296e-01
2 2.060501e-01 1.5478 1.453955e-01 1.4110
3 5.706335e-02 1.8524 4.562678e-02 1.6720
4 1.695608e-02 1.7507 1.495364e-02 1.6094
5 5.535004e-03 1.6152 5.151535e-03 1.5374

Table 3.2: Errors and convergence orders in space for (P bubble
2 , P disc

1 ), dG(2), k = 2π ·10−4

and τK = 0.1 hK .

level ‖u − uh‖s ‖u − uh‖w

1 1.070935e-01 7.581427e-02
2 1.677886e-02 2.67415 1.263272e-02 2.5853
3 3.046522e-03 2.46141 2.425352e-03 2.3809
4 5.709154e-04 2.41582 4.790734e-04 2.3399
5 1.109878e-04 2.36288 9.813064e-05 2.2875

The numerical errors and convergence orders in time are listed in Table 3.3 with τ0 = 0.1
for dG(1) and (P bubble

1 , P disc
0 ) on level 7. The error for dG(2) in time with (P bubble

2 , P disc
1 )

on level 7 are presented in Table 3.4. We see from the results of weaker norm in Table 3.3
that the expected rates of convergence are achieved for the two largest time step lengths.
For smaller time step length the order starts decreasing. This is because the error in space
dominates, i.e., the mesh size h is not small enough so that one can see the corresponding
convergence rate in time.
Example 2. The second example is the three body rotation used as a test case for
advection problem from [41]. We choose Ω = (0, 1)2 and the coefficients ε = 10−20,
b = (0.5 − y, x − 0.5)T , c = f = 0. The initial condition consists of three disjoint bodies:
a slotted cylinder, a cone and smooth hump, see Fig. 3.2. The position of each body is
given by its center (x0, y0). Each of the bodies lie within a circle of radius r0 = 0.15 with
center (x0, y0). The initial condition is zero outside the three bodies. Let

r(x, y) =
1

r0

√
(x − x0)2 + (y − y0)2.
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Table 3.3: Errors and convergence orders in time for dG(1) and (P bubble
1 , P disc

0 ) on level
= 7 with τK = 0.1 hK .

k ‖u − uh‖s ‖u − uh‖w

2π/10 2.006905e-01 4.650374e-02
2π/20 9.357820e-02 1.1007 1.198127e-02 1.9565
2π/40 3.614780e-02 1.3723 2.614460e-03 2.1962
2π/80 1.337951e-02 1.4338 8.423330e-04 1.6341
2π/160 4.956802e-03 1.4325 6.429738e-04 0.3897

Table 3.4: Errors and convergence orders in time for dG(2) and (P bubble
2 , P disc

1 ) on level
= 7 with τK = 0.1 hK .

k ‖u − uh‖s

2π/10 4.230334e-02
2π/20 8.815594e-03 2.2627
2π/40 1.669538e-03 2.4006
2π/80 4.142938e-04 2.0107
2π/160 1.589712e-04 1.3819
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Figure 3.2: Initial condition for rotating body problem.

The center of the slotted cylinder is in (x0, y0) = (0.5, 0.75) and its geometry is given by

u0(x, y) =






1 if r(x, y) ≤ 1, |x − x0| ≥ 0.0225

or y ≥ 0.85,

0 else.

The conical body at the bottom side is described by its center (x0, y0) = (0.5, 0.25) and

u0(x, y) = 1 − r(x, y).
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Finally, the hump at the left side is given by (x0, y0) = (0.25, 0.5) and

u0(x, y) =
1

4
(1 + cos(πmin{r(x, y), 1})).

The rotation of the body occurs counter-clockwise and the first full revolution takes
place at T = 2π which is considered as final time. In the original example [60], the
pure transport problem was considered and after each revolution one obtains the initial
condition. In our numerical studies, we have used the case of very small diffusion (ε =
10−20). Hence, the results obtained by our method are very closed to the initial condition.
The numerical solutions were compared with the initial condition u0. We present ‖U −
u‖L2(L2) and

var(t) := max
(x,y)∈Ω

Uh(t; x, y) − min
(x,y)∈Ω

Uh(t; x, y),

where the maximum and the minimum were computed in the vertices’s of the mesh
cells. The values ‖Uh − u‖L2(L2) give some indication of the accuracy of the method and
the smearing in the numerical solution whereas var(t) measures the size of the spurious
oscillations. The optimal value is var(t) = 1 for all t ∈ [0, T ].

We have used triangular and quadrilateral meshes which are generated by successive
refinement starting from the coarsest meshes (level 0) which are shown in Fig. 3.3.
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Figure 3.3: Meshes on level 0 for Example 2.

The results computed for the dG(1) in time with time step length k = 2π × 10−3 and the
pairs (Qbubble

1 /P disc
0 ) and (P bubble

1 /P disc
0 ) on level 7 are listed in Tables 3.5 and 3.6 and are

plotted in Fig. 3.4.
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Table 3.5: Body rotation (Qbubble
1 /P disc

0 )

τ0 ‖U − u‖L2(L2) var(2π)
0.01 0.131808 1.71336
0.05 0.121924 1.54572
0.1 0.123186 1.42281
0.5 0.136054 1.36074
1.0 0.141408 1.37894
2.0 0.14594 1.37086
5.0 0.152682 1.30647
10.0 0.161308 1.23874

Table 3.6: Body rotation (P bubble
1 /P disc

0 ).

τ0 ‖U − u‖L2(L2) var(2π)
0.01 0.193271 1.88889
0.05 0.161097 1.45071
0.1 0.148976 1.29564
0.5 0.140925 1.33735
1.0 0.144971 1.4265
2.0 0.150848 1.49369
5.0 0.15909 1.59402
10.0 0.164467 1.6663

Note that the same meshes were used in [41]. For the higher order methods (Qbubble
2 /P disc

1 )
or (Qbubble

2 /P disc
1 ) with dG(2) using k = 8π × 10−3 we list the results in Table 3.7 and 3.8

and plot them in Fig. 3.5.

Table 3.7: Body rotation (Qbubble
2 /P disc

1 ).

τ ‖U − u‖L2(L2) var(2π)
0.01 0.118006 1.41489
0.05 0.119446 1.32256
0.1 0.121823 1.33089
0.5 0.128382 1.38688
1.0 0.132182 1.40098
2.0 0.136541 1.37409
5.0 0.142882 1.35463
10.0 0.147771 1.34645

Table 3.8: Body rotation (P bubble
2 /P disc

1 ).

τ ‖U − u‖L2(L2) var(2π)
0.01 0.11584 1.30134
0.05 0.116975 1.29865
0.1 0.118591 1.33371
0.5 0.119912 1.40233
1.0 0.119735 1.41362
2.0 0.120005 1.40841
5.0 0.121273 1.41464
10.0 0.12278 1.42961

From Tables 3.5 and 3.6 for the first order discretization, we see that the L2-error decreased
initially since the oscillations becomes smaller. However, increasing τ0 further, L2-error
increases due to smearing. The results concerning the variations differ on the underlying
meshes. On quadrilateral, the variations are decreasing by increasing τ0, see Table 3.5
and the second picture in Fig. 3.4. On triangles, an increase of τ0 causes an increase of
the variations, see Table 3.6 and last picture in Fig. 3.4.
In the second order discretization, the L2-errors are increasing when τ0 becomes larger,
see Tables 3.7 and 3.8 and Fig. 3.5. The reduction of variation for increasing τ0 which
has been observed on quadrilateral meshes but not on triangular ones is less visible for
higher order approximations.
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Figure 3.4: Body rotation problem; the computed solution at t = 2π.
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Figure 3.5: Body rotation problem; the computed solution at t = 2π.
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Chapter 4

PBE, LPS method in space and dG
in internal coordinate

The goal of this chapter is to overcome the curse of dimensionality associated with the
numerical solution of population balance equation (1.2). For this, we apply an operator
splitting method in the context of finite element methods.

The application of operator splitting method reduces the original high-dimensional prob-
lem into a collection of two or more low-dimensional unsteady subproblems of smaller
complexity. The first subproblem is a time-dependent convection-diffusion problem while
the second one is a transport problem with pure advection. The main advantage of such
a splitting is that each of the subproblems can be discretized and stabilized separately by
the best suitable method independently of the other subproblem(s). Since in our split-
ting, the first subproblem is convection-dominated, we use in this chapter the stabilization
method based on local projection. In Chapter 5, the SUPG method is considered. The
second subproblem in our splitting is a transport problem with pure advection, one suit-
able choice is the discontinuous Galerkin finite element method for the discretization with
respect to internal coordinate. For temporal discretization, we use backward Euler time
stepping scheme.

The format of the chapter is as follows: Section 4.1 introduces the model problem un-
der consideration and defines the basic notations. In Section 4.2, the operator splitting
technique is applied to decompose the problem into two simpler ones. We shall formu-
late the backward Euler discretization and derive the weak form of the two subproblems.
Further, we derive the unconditional stability of the two-step method. We then discretize
the subproblems in space and internal coordinate using local projection stabilization and
discontinuous Galerkin methods, respectively, in Section 4.3. We show the unconditional
stability of the fully discrete two-step method. Section 4.4 presents the error analysis
of the fully discrete two-step scheme. Some implementation issues of the method are
discussed in Section 4.5. Finally, we present in Section 4.6 some computational results
supporting our theoretical results.
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4.1. MODEL PROBLEM

4.1 Model problem

Let Ωx be a domain in R
d (d = 2 or 3) with boundary ∂Ωx, Ωℓ = [ℓmin, ℓmax] ⊂ R and

T > 0. The state of individual particle in population balance equations consists of the
external coordinate x, referring to its position in the physical space, and the internal
coordinate ℓ, representing the properties of particles, such as size, temperature, volume
etc. A population balance for a solid process such as crystallization with one internal
coordinate can be described by the following partial differential equation:
Find z : (0, T ) × Ωℓ × Ωx → R such that






∂z

∂t
+

∂(Gz)

∂ℓ
− ε∆xz + b(x) · ∇xz = f in (0, T ] × Ωℓ × Ωx,

z(0, ·) = z0 in Ωℓ × Ωx,

z|ℓmin
= zmin on (0, T ] × Ωx,

z = 0 on (0, T ] × Ωℓ × ∂Ωx,

(4.1)

where the diffusion coefficient ε > 0 is a given constant, ∆x and ∇x represent the Lapla-
cian and gradient with respect to x, respectively, b is a given velocity field satisfying
∇x ·b = 0, and f is a source function. Here G > 0 represents the growth rate of the parti-
cles that depends on ℓ but is independent of x and t, we also assume that ∂ℓG ≥ 0 [69, 70].
Furthermore, let us consider the data of the problem G, b, f , z0 and zmin to be sufficiently
smooth functions.

Here and in the next chapters we denote by (·, ·) the L2-inner product in L2(Ωℓ ×Ωx) and
by ‖ · ‖0 the corresponding L2-norm defined by

(v, w) =

∫

Ωℓ×Ωx

vw dℓ dx and ‖v‖2
0 = (v, v).

Furthermore, to distinguish the inner products and corresponding norms in space and in-
ternal coordinate, let us denote by (·, ·)ℓ and ‖·‖L2(Ωℓ) the L2-inner product and associated
norm in Ωℓ, respectively, and by (·, ·)x and ‖ · ‖L2(Ωx) the L2-inner product and the associ-
ated norm in Ωx. The Bochner spaces defined in Chapter 2 are used for Ωℓ = [ℓmin, ℓmax],
i.e.,

C(Ωℓ; X) =
{

v : Ωℓ → X, v continuous
}

,

L2(Ωℓ; X) =
{

v : Ωℓ → X,

∫

Ωℓ

‖v(ℓ)‖2
Xdℓ < ∞

}
,

Hm(Ωℓ; X) =
{

v ∈ L2(Ωℓ; X) :
∂jv

∂ℓj
∈ L2(Ωℓ; X), 1 ≤ j ≤ m

}
,

where the derivatives ∂jv/∂ℓj are understood in the sense of distribution on Ωℓ. For
spaces X and Y we use the short notation Y (X) := Y (Ωℓ; X). The norms in the above
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defined spaces are given as follows

‖v‖C(X) = sup
ℓ∈Ωℓ

‖v(ℓ)‖X , ‖v‖L2(X) =

(∫

Ωℓ

‖v(ℓ)‖2
Xdℓ

)1/2

,

‖v‖Hm(X) =

(∫

Ωℓ

m∑

j=0

∥∥∥
∂jv

∂ℓj

∥∥∥
2

X
dℓ

)1/2

.

4.2 Operator splitting method

The numerical method for solving (4.1) in d+ 1 variable is based on an operator splitting
with respect to (ℓ, t) and (x, t) in Ωℓ and Ωx direction, respectively. We consider a uniform
partition of the time interval (0, T ] i.e. tn = τn, n = 1, . . . , N , with time step length
τ = T/N . Then starting with u(t0) = z0, two subproblems are sequentially solved on the
sub-intervals (tn, tn+1], n = 0, 1, . . . , N − 1:
Given u(tn) find ũ : (tn, tn+1] × Ωℓ × Ωx → R such that






∂ũ

∂t
+ Lxũ = f in (tn, tn+1] × Ωℓ × Ωx

ũ = 0 on (tn, tn+1] × Ωℓ × ∂Ωx

ũ(tn+) = u(tn).

(4.2)

Find u : (tn, tn+1] × Ωℓ × Ωx → R such that





∂u

∂t
+ Lℓu = 0 in (tn, tn+1] × Ωℓ × Ωx

u|ℓmin
= zmin on (tn, tn+1] × Ωx

u(tn+) = ũ(tn+1),

(4.3)

where

Lℓz =
∂(Gz)

∂ℓ
, Lxz = −ε∆xz + b · ∇xz. (4.4)

This two-steps operator splitting scheme defines u(tn), n = 1, . . . , N , as an approximation
of z(tn).

In the framework of PBE, the first subproblem (4.2) is a time-dependent convection-
diffusion equation posed on Ωx parametrized by the variable ℓ in internal coordinate and
the second subproblem (4.3) is a one-dimensional transport problem on Ωℓ parametrized
by the space variable x.

Let us consider the spaces V = H1
0 (Ωx) and W = H1(Ωℓ). We introduce the space

P =
{

v ∈ L2(Ωℓ × Ωx) : v ∈ L2(Ωx; W ) ∩ L2(Ωℓ; V )
}

. (4.5)

A variational form of (4.2) and (4.3) reads as follows:
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First step: Find ũ : (tn, tn+1] → P with ũ(tn+) = u(tn) such that
∫

Ωℓ

(
ũt, v

)
x

+

∫

Ωℓ

a(ũ, v) =

∫

Ωℓ

(
f, v

)
x

∀v ∈ P, (4.6)

where the bilinear form a is defined as

a(u, v) = ε(∇xu,∇xv)x + (b · ∇xu, v)x.

Second step: Find u : (tn, tn+1] → P with u(tn+) = ũ(tn+1) such that
∫

Ωℓ

(
ut, v

)
x

+ b
(
u, v

)
=

(
(Gz)min, v(ℓmin)

)
x

∀v ∈ P, (4.7)

where wmin = w(ℓmin) and the bilinear form b is defined as

b(u, v) =

∫

Ωℓ

(∂(Gu)

∂ℓ
, v

)

x
+

(
(Gu)(ℓmin), v(ℓmin)

)

x
.

Note that we have imposed the boundary condition (u|ℓmin
= zmin) in ℓ-direction in weak

sense.

After discretizing in time by the backward Euler method, the first order accurate im-
plicit scheme is considered as two-step method:

First step: Given un ∈ P, find ũn+1 ∈ P such that
∫

Ωℓ

( ũn+1 − un

τ
, v

)

x
dℓ +

∫

Ωℓ

a(ũn+1, v) =

∫

Ωℓ

(fn+1, v)x (4.8)

for all v ∈ P.

Second step: Update ũn+1 from the first step and find the solution un+1 ∈ P such that
∫

Ωℓ

(un+1 − ũn+1

τ
, v

)

x
+ b(un+1, v) =

(
Gminz

n+1
min , v(ℓmin)

)

x
(4.9)

for all v ∈ P, where zn+1
min = zmin(t

n+1, ·).
The next paragraph gives the stability of the two-step method (4.8) and (4.9).

Lemma 4.2.1. Assume that ũn, un , n = 1, 2 . . . , N , is the solution obtained from the
two-step algorithm (4.8) and (4.9). If ∂ℓG ≥ 0 and τ ≤ 1

4
, then the following stability

estimate holds

∥∥uN
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

{
2ε

∥∥ũn+1
∥∥2

H1(Ωx)
+ ∂ℓG

∥∥un+1
∥∥2

L2(Ωx)

}

≤ exp(3T/2)

{
∥∥u0

∥∥2

0
+ τ

N−1∑

n=0

(
2
∥∥fn+1

∥∥2

0
+

∥∥G
1/2
minz

n+1
min

∥∥2

L2(Ωx)

)}
. (4.10)
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Proof. Setting v = ũn+1 in (4.8), yields
∫

Ωℓ

(ũn+1 − un, ũn+1)x + τ

∫

Ωℓ

a(ũn+1, ũn+1) = τ

∫

Ωℓ

(fn+1, ũn+1)x.

Using the relation 2(a − b)a = a2 − b2 + (a − b)2, one can write
∫

Ωℓ

(ũn+1 − un, ũn+1)x =
1

2
‖ũn+1‖2

0 −
1

2
‖un‖2

0 +
1

2
‖ũn+1 − un‖2

0.

Integrating by parts with respect to x the second term in the bilinear form a(·, ·), one
obtains

∫

Ωℓ

a(ũn+1, ũn+1) = ε

∫

Ωℓ

‖ũn+1‖2
H1(Ωx)

since ũn+1 vanishes on the boundary ∂Ωx and ∇x ·b = 0. Hence by using Cauchy-Schwarz
inequality for the right-hand side, we have for the first step

‖ũn+1‖2
0 − ‖un‖2

0 + ‖ũn+1 − un‖2
0 + 2τε

∫

Ωℓ

‖ũn+1‖2
H1(Ωx)

≤ τ‖fn+1‖2
0 + τ‖ũn+1‖2

0. (4.11)

Substituting v = un+1 in the second step (4.9) gives
∫

Ωℓ

(un+1 − ũn+1, un+1)x + τb(un+1, un+1) = τ
(
Gminz

n+1
min , un+1(ℓmin)

)

x
. (4.12)

Starting from

b(un+1, un+1) =

∫

Ωℓ

(∂(Gun+1)

∂ℓ
, un+1

)

x
+

(
Gminu

n+1(ℓmin), u
n+1(ℓmin)

)

x

an integration by parts twice with respect to ℓ gives

b(un+1, un+1) =
1

2

∫

Ωℓ

∂ℓG
∥∥un+1

∥∥2

L2(Ωx)
+

1

2

∥∥G1/2
maxu

n+1(ℓmax)
∥∥2

L2(Ωx)

+
1

2

∥∥G
1/2
minu

n+1(ℓmin)
∥∥2

L2(Ωx)
.

where Gmax = G(ℓmax). Cauchy-Schwarz inequality gives for the right-hand side in (4.12)
(
Gminz

n+1
min , un+1(ℓmin)

)

x
≤ 1

2

∥∥G
1/2
minz

n+1
min

∥∥2

L2(Ωx)
+

1

2

∥∥G
1/2
minu

n+1(ℓmin)
∥∥2

L2(Ωx)
.

Combining these two results in (4.12) and using the same relation 2(a − b)a = a2 − b2 +
(a − b)2 for first term, we get for second step

∥∥un+1
∥∥2

0
−

∥∥ũn+1
∥∥2

0
+

∥∥un+1 − ũn+1
∥∥2

0
+ τ

∫

Ωℓ

∂ℓG
∥∥un+1

∥∥2

L2(Ωx)

≤ τ
∥∥G

1/2
minz

n+1
min

∥∥2

L2(Ωx)
. (4.13)
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Adding (4.11) and (4.13), neglecting some contribution of positive terms, and summing
over n = 0, . . . , N − 1, we obtain

∥∥uN
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

{
2ε

∥∥ũn+1
∥∥2

H1(Ωx)
+ ∂ℓG

∥∥un+1
∥∥2

L2(Ωx)

}

≤
∥∥u0

∥∥2

0
+ τ

N−1∑

n=0

{∥∥fn+1
∥∥2

0
+

∥∥G
1/2
minz

n+1
min

∥∥2

L2(Ωx)

}
+ τ

N−1∑

n=0

∥∥ũn+1
∥∥2

0
.

From (4.11) we have

∥∥ũn+1
∥∥2

0
≤ τ

1 − τ

∥∥fn+1
∥∥2

0
+

1

1 − τ

∥∥un
∥∥2

0
. (4.14)

Using (4.14) in the above inequality, we get

∥∥uN
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

{
2ε

∥∥ũn+1
∥∥2

H1(Ωx)
+ ∂ℓG

∥∥un+1
∥∥2

L2(Ωx)

}

≤
∥∥u0

∥∥2

0
+ τ

N−1∑

n=0

{
4

3

∥∥fn+1
∥∥2

0
+

∥∥G
1/2
minz

n+1
min

∥∥2

L2(Ωx)

}
+

4τ

3

N−1∑

n=0

∥∥un
∥∥2

0
,

where we have used 1/(1− τ) ≤ 4/3 for τ ≤ 1/4. We conclude the statement by applying
Gronwall’s lemma. This completes the proof.

The critical issue of the operator splitting method is the overall accuracy of the two-step
method. Using Taylor series expansions first order accuracy of the two-step method (4.2)
and (4.3) can be shown. A detail error analysis for the first order Lie operator splitting
of the sum of two elliptic operators can be found in [32, 33]. Unfortunately, we can’t use
these results due to the hyperbolic nature of the operator Lℓ.

4.3 Fully discrete method

In view of different properties of operator Lℓ and Lx, the operator splitting technique
allows us to use different types of discretization methods to solve the problems in Ωℓ and
Ωx. Since the first subproblem (4.7) is convection-dominated, we use the local projection
method to stabilize the space discretization. While the second subproblem (4.9) is a
transport problem with pure advection, one suitable choice is the discontinuous Galerkin
method for the discretization with respect to the internal coordinate.

4.3.1 LPS in space

In this subsection, we discretize the subproblem in space. For this, let us denote by {Th} a
family of shape regular decompositions of Ωx into d-simplices, quadrilateral or hexahedra.
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The diameter of a cell K ∈ Th is denoted by hK and h describes the maximum diameter
of cells K. Let Vh ⊂ V denote the standard finite element space of continuous, piecewise
polynomials of degree r. The Galerkin discretization of the problem (4.7) is generally
unstable due to dominating advection when the diffusion coefficient is very small ε ≪ 1.
We handle this difficulty by adding a stabilizing term based on local projection. Details
of the local projection stabilization method are given in Chapter 2.

The stabilized bilinear form is then defined as

ah(u, v) = a(u, v) + Sh(u, v). (4.15)

where

Sh(u, v) =
∑

K∈Th

µK

(
κh(∇xu), κh(∇xv)

)

K

and µK , for all K ∈ Th, denote user defined parameters. The bilinear form ah is coercive
on Vh with respect to the mesh dependent norm

|||v||| :=
(
ε|v|2H1(Ωx) +

∑

K∈Th

µK‖κh(∇xv)‖2
L2(K)

)1/2

, (4.16)

that is ah(vh, vh) ≥ |||vh|||2 for all vh ∈ Vh.

4.3.2 Discontinuous Galerkin method in internal coordinate

To discretize (4.7) and (4.9) in internal coordinate ℓ, we apply a discontinuous Galerkin
method. Let M > 0 be a given positive integer and ℓmin = ℓ0 < ℓ1 < · · · < ℓM = ℓmax is a
partition of Ωℓ. Here and in the next chapters we denote by Ii = (ℓi−1, ℓi], ki = ℓi − ℓi−1,
and k = max

i
ki with respect to the internal coordinate. Also as in (2.11), we denote by Sq

k

the function space of discontinuous piecewise polynomials of degree q ≥ 1 and is defined
as

Sq
k =

{
v : Ωℓ → R : v|Ii

(ℓ) =

q∑

j=0

vjℓ
j with vj ∈ R, j = 0, . . . , q

}
.

Then we give the fully discrete space Sr,q
h,k as follows

Sr,q
h,k = Vh ⊗ Sq

k

=
{

v : Ωℓ × Ωx → R : v|Ii
(ℓ) =

q∑

j=0

vjℓ
j with vj ∈ Vh, j = 0, . . . , q

}
. (4.17)

The functions in these spaces are allowed to be discontinuous at the nodes ℓi, i =
1, . . . ,M − 1. The jumps across the nodes are defined by [φ]i = φ(ℓ+

i ) − φ(ℓ−i ), where

ϕ±
m = ϕ(ℓ±m) = lim

ℓ→ℓm±0
ϕ(ℓ).

In the next paragraph, we define the fully discrete scheme based on the two-step method.
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First step: For given un
h,k ∈ Sr,q

h,k, find ũn+1
h,k ∈ Sr,q

h,k such that

∫

Ωℓ

( ũn+1
h,k − un

h,k

τ
,X

)

x
+

∫

Ωℓ

ah(ũ
n+1
h,k , X) =

∫

Ωℓ

(fn+1, X)x (4.18)

for all X ∈ Sr,q
h,k where u0

h,k is a suitable approximation of z0 in Sr,q
h,k.

Second step: Update the solution ũn+1
h,k from (4.18) and find un+1

h,k ∈ Sr,q
h,k such that

∫

Ωℓ

(un+1
h,k − ũn+1

h,k

τ
,X

)

x
+ B(un+1

h,k , X) =
(
Gminz

n+1
min,h, X(ℓ+

0 )
)

x
(4.19)

for all X ∈ Sr,q
h,k, where zn+1

min,h ∈ Sr,q
h,k is an approximation of zn+1

min and the bilinear form B
is defined as

B(u, v) =
M∑

i=1

∫

Ii

(∂(Gu)

∂ℓ
, v

)

x
+

M−1∑

i=1

([(
Gu

)]
i
, v(ℓ+

i )
)

x
+

(
Gminu(ℓ+

0 ), v(ℓ+
0 )

)

x
. (4.20)

Integrating by parts with respect to ℓ
∫

Ii

(∂(Gu)

∂ℓ
, v

)

x
=

((
Gu

)
(ℓ−i ), v(ℓ−i )

)

x
−

((
Gu

)
(ℓ+

i−1), v(ℓ+
i−1)

)

x
−

∫

Ii

(
Gu,

∂v

∂ℓ

)

x

leads to the representation

B(u, v) = −
M∑

i=1

∫

Ii

(
Gu,

∂v

∂ℓ

)

x
−

M−1∑

i=1

(
u(ℓ−i ),

[(
Gv

)]
i

)

x
+

(
Gmaxu(ℓ−M), v(ℓ−M)

)

x
. (4.21)

We introduce the mesh dependent norm on Sr,q
h,k

‖v‖2
dG =

M∑

i=1

∫

Ii

∂ℓG‖v‖2
L2(Ωx) +

∥∥G
1/2
minv(ℓ+

0 )
∥∥2

L2(Ωx)
+

M−1∑

i=1

∥∥[
(G1/2v)

]
i

∥∥2

L2(Ωx)

+
∥∥G1/2

maxv(ℓ−M)
∥∥2

L2(Ωx)
. (4.22)

Lemma 4.3.1. The bilinear form B is coercive with respect to the mesh dependent norm
‖ · ‖dG, i.e.,

B(vh, vh) ≥
1

2
‖vh‖2

dG ∀vh ∈ Sr,q
h,k. (4.23)

Proof. Setting u = v in (4.20) and in (4.21) to get

B(vh, vh) =
M∑

i=1

∫

Ii

(∂(Gvh)

∂ℓ
, vh

)

x
+

M−1∑

i=1

([
(Gvh)

]
i
, vh(ℓ

+
i )

)
x

+
(
Gminvh(ℓ

+
0 ), vh(ℓ

+
0 )

)
x

B(vh, vh) =
M∑

i=1

∫

Ii

−
(
Gvh,

∂vh

∂ℓ

)

x
−

M−1∑

i=1

(
vh(ℓ

−
i ),

[
(Gvh)

]
i

)
x

+
(
Gmaxvh(ℓ

−
M), vh(ℓ

−
M)

)
x
.
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Adding them together and dividing by two, we get the statement of lemma

B(vh, vh) =
1

2

M∑

i=1

∫

Ii

∂G

∂ℓ
(vh, vh)x +

1

2

M−1∑

i=1

(
[G1/2vh]i, [G

1/2vh]i
)

x

+
1

2

(
G

1/2
minvh(ℓ

+
0 ), vh(ℓ

+
0 )

)

x
+

1

2

(
G1/2

maxvh(ℓ
−
M), vh(ℓ

−
M)

)

x

≥ 1

2
‖vh‖2

dG.

The next Lemma gives the stability result of the fully discrete method (4.18) and (4.19).

Lemma 4.3.2. Let ∂ℓG ≥ 0 and τ ≤ 1/2, then the solution ũn
h,k and un

h,k, n = 1, 2, . . . , N ,
of (4.18) and (4.19),respectively, satisfies

∥∥uN
h,k

∥∥2

0
+ 2τ

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ũn+1
h,k

∣∣∣∣∣∣2 + τ
N−1∑

n=0

∥∥un+1
h,k

∥∥2

dG

≤ exp(3T/2)

{
∥∥u0

h,k

∥∥2

0
+ τ

N−1∑

n=0

(
4

3

∥∥fn+1
∥∥2

0
+ 2

∥∥(G
1/2
minz

n+1
min,h)

∥∥2

L2(Ωx)

)}
. (4.24)

Proof. The proof of the stability estimate for the fully discrete method are obtained
following the same steps as in the proof of Lemma 4.2.1. That is, we start by setting
X = ũn+1

h,k in (4.18) and using the equality 2(a − b)a = a2 − b2 + (a − b)2, to get for the
first term

∫

Ωℓ

(ũn+1
h,k − un

h,k, ũ
n+1
h,k )x =

1

2
‖ũn+1

h,k ‖2
0 −

1

2
‖un

h,k‖2
0 +

1

2
‖ũn+1

h,k − un
h,k‖2

0.

From the coercivity of the bilinear form ah we obtain for the second term in (4.18)

∫

Ωℓ

ah(ũ
n+1
h,k , ũn+1

h,k ) ≥
∫

Ωℓ

|||ũn+1
h,k |||2.

Combining these estimates and using Cauchy-Schwarz for the right-hand side to get

‖ũn+1
h,k ‖2

0 − ‖un
h,k‖2

0 + ‖ũn+1
h,k − un

h,k‖2
0 + 2

∫

Ωℓ

|||ũn+1
h,k |||2

≤ ‖fn+1‖2
0 + ‖ũn+1

h,k ‖2
0. (4.25)

Similarly setting X = un+1
h,k in (4.19), we get for first term

∫

Ωℓ

(un+1
h,k − ũn+1

h,k , un+1
h,k )x =

1

2
‖un+1

h,k ‖2
0 −

1

2
‖ũn+1

h,k ‖2
0 +

1

2
‖un+1

h,k − ũn+1
h,k ‖2

0.
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For the second term in (4.19), the coercivity property (4.23) of the bilinear form B gives

B(un+1
h,k , un+1

h,k ) ≥ 1

2
‖un+1

h,k ‖2
dG.

Cauchy-Schwarz inequality and Young’s inequality gives for the right-hand side

(
Gminz

n+1
min,h, u

n+1
h,k (ℓ+

0 )
)

x
≤

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
+

1

4

∥∥G
1/2
minu

n+1
h,k (ℓ+

0 )
∥∥2

L2(Ωx)

≤
∥∥G

1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
+

1

4

∥∥un+1
h,k

∥∥2

dG

Combining these results and contributing the dG-norm with the left hand side, we get

∥∥un+1
h,k

∥∥2

0
−

∥∥ũn+1
h,k

∥∥2

0
+

∥∥un+1
h,k − ũn+1

h,k

∥∥2

0
+

τ

2

∥∥un+1
h,k

∥∥2

dG
≤ 2τ

∥∥G
1/2
minu

n+1
h,k (ℓ−0 )

∥∥2

L2(Ωx)
. (4.26)

Adding (4.25) and (4.26) and summing over n = 0, . . . , N − 1, we arrives at

∥∥uN
h,k

∥∥2

0
+ 2τ

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ũn+1
h,k

∣∣∣∣∣∣2 +
τ

2

N−1∑

n=0

∥∥un+1
h,k

∥∥2

dG

≤
∥∥u0

h,k

∥∥2

0
+ τ

N−1∑

n=0

{
2
∥∥G

1/2
minu

n+1
h,k (ℓ−0 )

∥∥2

L2(Ωx)
+

∥∥fn+1
∥∥2

0
+

∥∥ũn+1
h,k

∥∥2

0

}
.

We conclude the statement of the lemma using (4.14) and Gronwall’s Lemma 2.3.4 in a
same fashion as in Lemma 4.2.1.

The operator splitting based on an equivalent one-step method is studied in [30], wherein
SUPG method in internal coordinates is combined with standard Galerkin finite element
method in space. This method is conditionally stable because of the time derivative,
which needs to add into the stabilization terms in order to ensure the consistency of
the method. On the other hand, the dG method includes a natural upwinding that is
equivalent to some stabilization and therefore need no extra stabilization. The two-step
method presented here is unconditionally stable.

4.4 Error estimates

In this section, we derive the error estimates of the fully discrete two-step scheme (4.18)
and (4.19). First we define a special interpolant Πkw(t, ·, x) ∈ Sq

k of a function w(t, ℓ, x)
by

Πkw(ℓ−i ) = w(ℓ−i ), i = 1, . . . ,M − 1, (4.27)
∫

Ii

(Πkw − w)ℓs dℓ = 0, s ≤ q − 1, i ≥ 1, (4.28)
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i.e., Πkw interpolates at the nodal points and the interpolation error is orthogonal to
the space of polynomials of degree q − 1 on Ii. For this type of interpolant we have the
following error estimates

sup
0≤ℓ≤ℓM

|Πkw(ℓ) − w(ℓ)|j ≤ Ckq+1 sup
0≤ℓ≤ℓM

|w(q+1)(ℓ)|j, j = 0, 1, (4.29)

∫

Ii

|Πkw
(s)(ℓ) − w(s)(ℓ)|2j dℓ ≤ Ck2(q+1−s)

∫

Ii

|w(q+1)(ℓ)|j dℓ, s, j = 0, 1, (4.30)

see [73, 85]. We denote by Ph,k the projection operator which maps onto the tensor
product space Sr,q

h,k and for sufficiently smooth function w is defined by

Ph,kw = jhΠkw = Πkjhw, (4.31)

where jh is the special interpolant in space satisfying assumption A1 and Πk is the special
interpolant with respect to the internal coordinate. In addition, we have the stability
property of interpolant Πk given by

∫

Ωℓ

∥∥Πku
∥∥2

Hr+1(Ωx)
≤ C

∫

Ωℓ

‖u‖2
Hr+1(Ωx) (4.32)

since Πk acts in ℓ-direction and the norms are with respect to the space direction.

Let us consider ηn := u(tn) − Ph,ku(tn) and ξn := Ph,ku(tn) − un
h,k. We also denote

η̃n := ũ(tn) − Ph,kũ(tn) and ξ̃n := Ph,kũ(tn) − ũn
h,k, then the error u(tn) − un

h,k can be
decomposed as follows

en = u(tn) − un
h,k = ηn + ξn,

where ũn
h,k and un

h,k are the solution for fully discrete scheme (4.18) and (4.19) and ũ(tn)
and u(tn) is the solution of (4.2) and (4.3), respectively. Furthermore, to obtain the
separate estimates in space and internal coordinate we use the following decomposition
of errors

Ph,kw − w =
(
Ph,kw − Πkw

)
+

(
Πkw − w

)
= ϑ + ϕ. (4.33)

Assumption A4: Let u, ut, utt, ũ, ũt, ũtt, zmin and z0 satisfy the following regularity
conditions

u, ũ ∈ H1
(
L2(Hr+1)

)
∩ H1

(
Hq+1(H1)

)
, ut, ũt ∈ L2

(
L2(Hr+1)

)
∩ L2

(
Hq+1(L2)

)
,

utt, ũtt ∈ L2
(
L2(L2)

)
, z0 ∈ L2

(
Ωℓ; H

r+1(Ωx)
)
∩ Hq+1

(
Ωℓ; L

2(Ωx)
)
,

zmin ∈ H1
(
0, T ; Hr+1(Ωx)

)
.

Lemma 4.4.1. Let the assumptions A1-A4 be fulfilled. Then for all t ∈ (0, T ], we have
the following estimates for the interpolation error

‖Ph,ku(t) − Πku(t)‖2
dG ≤ C h2r+2

{
‖u(t)‖2

L2(Hr+1) + ‖u(t)‖2
C(Hr+1)

}
, (4.34)

‖Πku(t) − u(t)‖2
dG ≤ C kq+1/2‖u(t)‖2

Hq+1(L2). (4.35)
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Proof. For simplicity we skip the dependency t within the proof. From (4.22) we get

1

2

∥∥ϑ
∥∥2

dG
≤

M∑

i=1

∫

Ii

∂ℓG‖ϑ‖2
L2(Ωx) +

∥∥G
1/2
minϑ(ℓ+

0 )
∥∥2

L2(Ωx)
+

∥∥G1/2
maxϑ(ℓ−M)

∥∥2

L2(Ωx)
.

The jump terms [jhu−u]i, i = 1, . . . ,M−1, vanishes due to the continuity of interpolation
jhu in internal coordinate. The interpolation estimates (2.6) and condition (4.32) gives

‖ϑ‖2
dG ≤ Ch2r+2

(
M−1∑

i=1

∫

Ii

‖Πku‖2
Hr+1(Ωx) + ‖Πku(ℓ+

0 )‖2
Hr+1(Ωx) + ‖Πku(ℓ−M)‖2

L2(Ωx)

)

≤ C h2r+2

{
‖u‖2

L2(Hr+1) + ‖u‖2
C(Hr+1)

}
.

Using (4.21), Πku(ℓ−i ) = u(ℓ−i ), i = 1 . . . ,M , (4.29) and (4.30), we get

‖ϕ‖2
dG ≤ B(ϕ, ϕ) =

M∑

i=1

∫

Ii

−
(
Gϕ,

∂ϕ

∂ℓ

)

x

≤
M∑

i=1

∫

Ii

‖Gϕ‖L2(Ωx)‖∂ℓϕ‖L2(Ωx)

≤ C k2q+1‖u‖2
Hq+1(L2)

which completes the proof of the lemma.

Lemma 4.4.2. Let the assumptions A1-A4 be fulfilled and τK ∼ hK. Then for all t ∈
(0, T ], the following estimates hold

∫

Ωℓ

ah

(
(Ph,ku − Πku)(t), ξ(t)

)
≤ C (ε1/2 + h1/2)hr‖u(t)‖L2(Hr+1)

(∫

Ωℓ

|||ξ(t)|||2
)1/2

+ C hr+1‖u(t)‖L2(Hr+1) ‖ξ(t)‖0, (4.36)
∫

Ωℓ

ah

(
(Πku − u)(t), ξ(t)

)
≤ C (ε1/2 + h1/2) kq+1‖u(t)‖Hq+1(H1)

(∫

Ωℓ

|||ξ(t)|||2
)1/2

+ C kq+1‖u(t)‖Hq+1(H1)‖ξ(t)‖0, (4.37)

B
(
(Ph,ku − Πku)(t), ξ(t)

)
≤ C hr+1

{
‖u(t)‖H1(Hr+1)‖ξ(t)‖0

+ ‖u(t)‖C(Hr+1)‖ξ(t)‖dG

}
, (4.38)

B
(
(Πku − u)(t), ξ(t)

)
≤ C kq+1‖u(t)‖Hq+1(L2)‖ξ(t)‖0. (4.39)

Proof. For simplicity of the presentation we again skip the dependency of the time within
the proof. From the definition of the bilinear form ah, we have for ϑ = Ph,ku − Πku∫

Ωℓ

ah

(
ϑ, ξ

)
= ε

∫

Ωℓ

(
∇xϑ,∇xξ

)
x

+

∫

Ωℓ

(
b · ∇xϑ, ξ

)
x

+

∫

Ωℓ

Sh

(
ϑ, ξ

)

= I1 + I2 + I3. (4.40)
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We start by estimating the first term on the right-hand side. Using Cauchy-Schwarz
inequality, (2.6) and (4.32), it follows that

|I1| ≤ ε

∫

Ωℓ

||ϑ||H1(Ωx)||ξ||H1(Ωx) ≤ C ε1/2hr

∫

Ωℓ

‖Πku‖Hr+1 |||ξ|||

≤ Cε1/2hr

(∫

Ωℓ

‖u‖2
Hr+1

)1/2 (∫

Ωℓ

|||ξ|||2
)1/2

≤ C ε1/2hr‖u‖L2(Hr+1)

(∫

Ωℓ

|||ξ|||2
)1/2

.

Integrating I2 in (4.40) by parts with respect to the space variable x, using the orthogo-
nality property (2.7) and Cauchy-Schwarz inequality, we get

|I2| =
∣∣∣
∫

Ωℓ

(
b · ∇xϑ, ξ

)
x

∣∣∣ =
∣∣∣
∫

Ωℓ

(
ϑ,b · ∇xξ

)
x

∣∣∣

≤
∣∣∣
∫

Ωℓ

(
ϑ, κh(b · ∇xξ)

)
x

∣∣∣

≤
∫

Ωℓ

∑

K∈Th

‖ϑ‖L2(K)‖κh(b · ∇xξ)‖L2(K).

Let b be the L2-projection of b in the space of piecewise constant functions with respect
to Th. Using the L2-stability of the fluctuation operator κh, inverse inequality and κh(b ·
∇x)ξ = b · κh(∇xξ), we get in a same fashion as in [67] the following estimate

∥∥κh(b · ∇x)ξ
∥∥

L2(K)
≤ C|b|1,∞,K‖ξ‖L2(K) + ‖b‖0,∞,K

∥∥κh(∇xξ)
∥∥

L2(K)
. (4.41)

Thus inserting this in the previous estimate, using (2.6), µK ∼ hK , and (4.32) to get

|I2| ≤ C

∫

Ωℓ

∑

K∈Th

|b|1,∞,K‖ϑ‖L2(K)‖ξ‖L2(K)

+ C

∫

Ωℓ

∑

K∈Th

|b|0,∞,K‖ϑ‖L2(K)

∥∥κh(∇xξ)
∥∥

L2(K)

≤ C

∫

Ωℓ

(
∑

K∈Th

h2r+2
K

∥∥Πku
∥∥2

Hr+1(K)

)1/2 (
∑

K∈Th

‖ξ‖2
L2(K)

)1/2

+ C

∫

Ωℓ

(
∑

K∈Th

µ−1
K h2r+2

K

∥∥Πku
∥∥2

Hr+1(K)

)1/2 (
∑

K∈Th

µK‖κh(∇xξ)‖2
L2(K)

)1/2

≤ C hr+1/2

{
h1/2‖ξ‖0 +

( ∫

Ωℓ

|||ξ|||2
)1/2

}
‖u‖L2(Hr+1).
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For I3, the Cauchy-Schwarz inequality and interpolation error estimates give

|I3| =
∣∣∣
∫

Ωℓ

Sh

(
ϑ, ξ

)∣∣∣ ≤
∫

Ωℓ

Sh

(
ϑ, ϑ

)1/2
Sh

(
ξ, ξ

)1/2

≤ Chr+1/2

∫

Ωℓ

‖u‖Hr+1(Ωx) |||ξ|||

≤ Chr+1/2

(∫

Ωℓ

‖u‖2
Hr+1(Ωx)

)1/2 (∫

Ωℓ

|||ξ|||
)1/2

≤ Chr+1/2‖u‖L2(Hr+1)

(∫

Ωℓ

|||ξ|||2
)1/2

.

Combining I1, I2 and I3, we get the desired estimate

∫

Ωℓ

ah

(
ϑ, ξ

)
≤ C (ε1/2 + h1/2) ‖u‖L2(Hr+1)

(∫

Ωℓ

|||ξ|||2
)1/2

+ C hr+1 ‖u‖L2(Hr+1) ‖ξ‖0.

Next, we find the estimates in internal coordinate. From the definition of the bilinear
form ah, we have for ϕ = Πku − u

∫

Ωℓ

ah(ϕ, ξ) = ε

∫

Ωℓ

(
∇xϕ,∇xξ

)
x

+

∫

Ωℓ

(
b · ∇xϕ, ξ

)
x

+

∫

Ωℓ

Sh

(
ϕ, ξ

)

= I4 + I5 + I6.

Then by using the Cauchy-Schwarz inequality, the stability property of the fluctuation
operator κh, the approximation properties (4.29) of interpolant Πk and the parameter
choice µK ∼ hK , we get for I4, I5, and I6 the following estimates

|I4| ≤ ε

∫

Ωℓ

‖Πku − u‖H1(Ωx)‖ξ‖H1(Ωx)

≤ ε1/2

∫

Ωℓ

‖Πku − u‖H1(Ωx)|||ξ|||

≤ ε1/2
(∫

Ωℓ

‖Πku − u‖2
H1(Ωx)

)1/2( ∫

Ωℓ

|||ξ|||2
)1/2

≤ C ε1/2kq+1‖u‖Hq+1(H1)

( ∫

Ωℓ

|||ξ|||2
)1/2

,

|I5| ≤
∫

Ωℓ

‖b‖0,∞

∥∥∇xϑ
∥∥

L2(Ωx)
‖ξ‖L2(Ωx) ≤ C kq+1‖u‖Hq+1(H1)‖ξ‖0
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and

|I6| ≤
∫

Ωℓ

∑

K∈Th

µK

∥∥κh(∇x(Πku − u))
∥∥

L2(K)

∥∥κh(∇xξ)
∥∥

L2(K)

≤ C h1/2

∫

Ωℓ

∥∥∇x(Πku − u)
∥∥

L2(Ωx)
|||ξ|||

≤ C h1/2kq+1‖u‖Hq+1(H1)

(∫

Ωℓ

|||ξ|||2
)1/2

.

Hence, combining these estimates we get the second statement of the lemma
∫

Ωℓ

ah

(
ϕ, ξ

)
≤ C (ε1/2 + h1/2) kq+1‖u‖Hq+1(H1)

( ∫

Ωℓ

|||ξ|||2
)1/2

+ C kq+1‖u‖Hq+1(H1)‖ξ‖0.

To obtain the last two estimates, we use the two different representations (4.20) and
(4.21) of B. Note that the jump terms [jhu − u]i, i = 1, . . . ,M − 1, vanishes due to the
continuity of the interpolant jhu in ℓ-direction. From (4.20), (2.6), and (4.32), we get for
ϑ = Ph,ku − Πku

B(ϑ, ξ) =
M∑

i=1

∫

Ii

(∂(Gϑ)

∂ℓ
, ξ

)

x
+

(
Gminϑ(ℓ+

0 ), ξ(ℓ+
0 )

)

x

≤
M∑

i=1

∫

Ii

∥∥∂ℓ(Gϑ)
∥∥

L2(Ωx)
‖ξ‖L2(Ωx) +

∥∥G
1/2
minϑ(ℓ+

0 )
∥∥

L2(Ωx)

∥∥G
1/2
minξ(ℓ

+
0 )

∥∥
L2(Ωx)

≤ C hr+1

{
‖u‖H1(Hr+1)‖ξ‖0 + ‖u‖C(Hr+1)‖ξ‖dG

}
.

The interpolation Πku satisfies Πku(ℓ−i ) = u(ℓ−i ), i = 1, . . . ,M . Thus, from (4.21), we get
for ϕ = Πku − u

B(ϕ, ξ) =
M∑

i=1

∫

Ii

−
(
Gϕ,

∂ξ

∂ℓ

)

x
.

Let Π0G be the L2-projection of G in a space of piecewise constant functions in ℓ-direction.
Using the orthogonality (4.28) of the interpolant Πk, we get

B(ϕ, ξ) =
M∑

i=1

∫

Ii

(
ϕ, (G − Π0G)

∂ξ

∂ℓ

)

x

≤
M∑

i=1

∫

Ii

‖ϕ‖L2(Ωx)

∥∥(G − Π0G)∂ℓξ
∥∥

L2(Ωx)
dx

≤ C kq+1‖u‖Hq+1(L2)‖ξ‖0. (4.42)

Here, we used the Cauchy-Schwarz inequality, the inverse inequality and the interpolation
error estimates (4.29). This complete the proof.
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Theorem 4.4.3. Let ũ(tn), u(tn) and ũn
h,k, un

h,k, be the solutions of two-step method (4.2),
(4.3) and (4.18), (4.19), respectively. Under the assumptions A1-A4 and µK ∼ hK there
holds for ξn = Ph,ku(tn) − un

h,k and ξ̃n = Ph,ku(tn) − un
h,k

∥∥ξN
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ξ̃n+1
∣∣∣∣∣∣2 +

τ

2

N−1∑

n=0

∥∥ξn+1
∥∥2

dG

≤ Cue
9T/2

[∥∥Ph,kz0 − u0
h,k

∥∥2

0
+ τ 2 + (ε + h) h2r + k2q+2

]
(4.43)

and for en = u(tn) − un
h,k and ẽn = ũ(tn) − ũn

h,k

∥∥eN
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ẽn+1
∣∣∣∣∣∣2 +

τ

2

N−1∑

n=0

∥∥en+1
∥∥2

dG

≤ Cue
9T/2

[∥∥Ph,kz0 − u0
h,k

∥∥2

0
+ τ 2 + (ε + h) h2r + k2q+1

]
(4.44)

where Cu depends on u, ut, utt, ũ, ũt, ũtt and zmin.

Note that the error to the interpolant Ph,ku is superclose with respect to the internal
coordinate (order k + 1 instead of k + 1/2).

Proof. From the result of the Lemma 4.3.2, we can write for ξn = Ph,ku(tn) − un
h,k

1

2

∥∥ξN
∥∥2

0
− 1

2

∥∥ξ0
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ξ̃n+1
∣∣∣∣∣∣2 +

τ

2

N−1∑

n=0

∥∥ξn+1
∥∥2

dG
≤ T1 + T2 (4.45)

where

T1 = τ
N−1∑

n=0

∫

Ωℓ

{( ξ̃n+1 − ξn

τ
, ξ̃n+1

)

x
+ ah(ξ̃

n+1, ξ̃n+1)

}
, (4.46)

T2 = τ

N−1∑

n=0

{ ∫

Ωℓ

(ξn+1 − ξ̃n+1

τ
, ξn+1

)

x
+ B(ξn+1, ξn+1)

}
. (4.47)

We first consider T1. Using (4.18) to get

T1 = τ

N−1∑

n=0

∫

Ωℓ

{(Ph,kũ(tn+1) − Ph,ku(tn)

τ
, ξ̃n+1

)

x
+ ah

(
Ph,kũ(tn+1), ξ̃n+1

)

−
( ũn+1

h,k − un
h,k

τ
, ξ̃n+1

)

x
−

∫

Ωℓ

ah(ũ
n+1
h,k , ξ̃n+1)

}

= τ
N−1∑

n=0

∫

Ωℓ

{(Ph,kũ(tn+1) − Ph,ku(tn)

τ
, ξ̃n+1

)

x
+ ah

(
Ph,kũ(tn+1), ξ̃n+1

)

−
(
fn+1, ξ̃n+1

)
x

}
.
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Using (4.6) at t = tn+1 for the last term on the right-hand side, we obtain

T1 = τ

N−1∑

n=0

∫

Ωℓ

(Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1), ξ̃n+1
)

x

+ τ
N−1∑

n=0

∫

Ωℓ

a
(
Ph,kũ(tn+1) − ũ(tn+1), ξ̃n+1

)
+ τ

N−1∑

n=0

∫

Ωℓ

Sh

(
Ph,kũ(tn+1), ξ̃n+1

)

= τ
N−1∑

n=0

∫

Ωℓ

(Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1), ξ̃n+1
)

x

+ τ

N−1∑

n=0

∫

Ωℓ

ah

(
Ph,kũ(tn+1) − ũ(tn+1), ξ̃n+1

)
+ τ

N−1∑

n=0

∫

Ωℓ

Sh

(
ũ(tn+1), ξ̃n+1

)

= T1,1 + T1,2 + T1,3. (4.48)

We treat the contribution of the terms on the right-hand side of (4.48) separately. For
the first term, using Cauchy-Schwarz inequality, the Young’s inequality and the initial
condition ũ(tn) = u(tn) for first step

|T1,1| ≤ τ

N−1∑

n=0

∫

Ωℓ

∥∥∥∥
Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1)

∥∥∥∥
L2(Ωx)

∥∥ξ̃n+1‖L2(Ωx)

≤ τ

2

N−1∑

n=0

∫

Ωℓ

∥∥∥∥
Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1)

∥∥∥∥
2

L2(Ωx)

+
τ

2

N−1∑

n=0

∫

Ωℓ

‖ξ̃n+1‖2
L2(Ωx)

≤ τ

N−1∑

n=0

∥∥∥∥
Ph,kũ(tn+1) − Ph,kũ(tn)

τ
− Ph,kũt(t

n+1)

∥∥∥∥
2

0

+ τ

N−1∑

n=0

∥∥Ph,kũt(t
n+1) − ũt(t

n+1)
∥∥2

0
+

τ

2

N−1∑

n=0

∥∥ξ̃n+1
∥∥2

0
. (4.49)

For the first term, applying Taylor’s theorem with integral remainder term and for second
term the approximation properties of interpolant jh and Πk and condition (4.32) yields

∥∥∥∥
Ph,kũ(tn+1) − Ph,kũ(tn)

τ
− Ph,kũt(t

n+1)

∥∥∥∥
2

0

=
1

τ 2

∥∥∥∥
∫ tn+1

tn
(t − tn)Ph,kũtt dt

∥∥∥∥
2

0

≤ 1

τ 2

((∫ tn+1

tn
(t − tn)2 dt

)1/2 (∫ tn+1

tn

∥∥Ph,kũtt

∥∥2

0
dt

)1/2 )

≤ C τ

∫ tn+1

tn

∥∥ũtt

∥∥2

0
dt,
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∥∥Ph,kũt(t
n+1) − ũt(t

n+1)
∥∥2

0
≤

∥∥Ph,kũt(t
n+1) − Πkũt(t

n+1)
∥∥2

0
+

∥∥Πkũt(t
n+1) − ũt(t

n+1)
∥∥2

0

≤ C h2r+2
∥∥Πkut(t

n+1)
∥∥2

L2(Hr+1)
+ Ck2q+2

∥∥ũt(t
n+1)

∥∥2

Hq+1(L2)

≤ Ch2r+2
∥∥ũt(t

n+1)
∥∥2

L2(Hr+1)
+ Ck2q+2

∥∥ũt(t
n+1)

∥∥2

Hq+1(L2)
.

Combining them together in (4.49), we get

|T1,1| ≤ τ 2

N−1∑

n=0

∫ tn+1

tn

∥∥ũtt

∥∥2

0
dt +

τ

2

N−1∑

n=0

∥∥ξ̃n+1
∥∥2

0

+ Cτ

N−1∑

n=0

[
h2r+2

∥∥ũt(t
n+1)

∥∥2

L2(Hr+1)
+ k2q+2

∥∥ũt(t
n+1)

∥∥2

Hq+1(L2)

]
. (4.50)

To find the estimates for T1,2 in (4.48), we use the decomposition (4.33) of errors into
space and internal coordinate and get

T1,2 = τ
N−1∑

n=0

{
ah

(
ϑ̃n+1, ξ̃n+1

)
+ ah

(
ϕ̃n+1, ξ̃n+1

)}
.

Then from the results (4.36) and (4.37) of Lemma 4.4.2, we obtain

|T1,2| ≤ C (ε + h) τ
N−1∑

n=0

[
h2r

∥∥ũ(tn+1)
∥∥2

L2(Hr+1)
+ k2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)

]

+ C τ
N−1∑

n=0

[
h2r+2

∥∥ũ(tn+1)
∥∥2

L2(Hr+1)
+ k2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)

]

+
τ

4

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ξ̃n+1
∣∣∣∣∣∣2 +

τ

2

N−1∑

n=0

∥∥ξ̃n+1
∥∥2

0
. (4.51)

The estimate for T1,3 in (4.48) follows from the approximation properties of the fluctuation
operator κh and the choice of the stabilizing parameter µK ∼ hK . We obtain

|T1,3| ≤ τ
N−1∑

n=0

∫

Ωℓ

Sh

(
ũ(tn+1), ũ(tn+1)

)
+

τ

4

N−1∑

n=0

∫

Ωℓ

Sh

(
ξ̃n+1, ξ̃n+1

)

≤ C h2r+1τ
N−1∑

n=0

∥∥ũ(tn+1)
∥∥2

L2(Hr+1)
+

τ

4

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ξ̃n+1
∣∣∣∣∣∣2. (4.52)
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Inserting (4.50)-(4.52) into (4.48), we obtain

|T1| ≤ τ 2

N−1∑

n=0

∫ tn+1

tn

∥∥ũtt

∥∥2

0
dt +

τ

2

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ξ̃n+1
∣∣∣∣∣∣2 + τ

N−1∑

n=0

∥∥ξ̃n+1
∥∥2

0

+ C h2rτ
N−1∑

n=0

[
(ε + h)

∥∥ũ(tn+1)
∥∥2

L2(Hr+2)
+ h2

∥∥ũt(t
n+1)

∥∥2

L2(Hr+1)

]

+ C k2q+2 τ

N−1∑

n=0

[
(ε + h + 1)

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)
+

∥∥ũt(t
n+1)

∥∥2

Hq+1(L2)

]
. (4.53)

Now we estimate the second term T2 in (4.47). Using (4.19) we get

T2 = τ
N−1∑

n=0

∫

Ωℓ

(Ph,ku(tn+1) − Ph,kũ(tn+1)

τ
, ξn+1

)

x
+ τ

N−1∑

n=0

B
(
Ph,ku(tn+1), ξn+1

)

− τ

N−1∑

n=0

(
Gminz

n+1
min,h, ξ

n+1(ℓ+
0 )

)

x
.

and (4.7) at t = tn+1 gives

T2 = τ

N−1∑

n=0

∫

Ωℓ

(Ph,ku(tn+1) − Ph,kũ(tn+1)

τ
− ut(t

n+1), ξn+1
)

x

+ τ
N−1∑

n=0

B
(
Ph,ku(tn+1) − u(tn+1), ξn+1

)

− τ

N−1∑

n=0

(
Gminz

n+1
min − Gminz

n+1
min,h, ξ

n+1(ℓ+
0 )

)

x

= T2,1 + T2,2 + T2,3. (4.54)

Following the same steps as in (4.49), we get for T2,1

|T2,1| ≤ τ
N−1∑

n=0

∥∥∥∥
Ph,ku(tn+1) − Ph,kũ(tn+1)

τ
− Ph,kut(t

n+1)

∥∥∥∥
2

0

+ τ

N−1∑

n=0

∥∥Ph,kut(t
n+1) − ut(t

n+1)
∥∥2

0
+

τ

2

N−1∑

n=0

∥∥ξn+1
∥∥2

0

≤ τ 2

N−1∑

n=0

∫ tn+1

tn

∥∥utt

∥∥2

0
dt +

τ

2

N−1∑

n=0

∥∥ξn+1
∥∥2

0

+ Cτ
N−1∑

n=0

[
h2r+2

∥∥ut(t
n+1)

∥∥2

L2(Hr+1)
+ k2q+2

∥∥ut(t
n+1)

∥∥2

Hq+1(L2)

]
. (4.55)
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Note that in above estimates we have used the initial condition u(tn) = ũ(tn+1) from
(4.3). The bounds for T2,2 in (4.54) are obtained by using the error decomposition (4.33)
and the estimates (4.38) and (4.39)

|T2,2| =

∣∣∣∣∣τ
N−1∑

n=0

{
B

(
ϑn+1, ξn+1

)
+ B

(
ϕn+1, ξn+1

)}
∣∣∣∣∣

≤ C h2r+2 τ

N−1∑

n=0

[∥∥u(tn+1)
∥∥2

H1(Hr+1)
+

∥∥u(tn+1)
∥∥2

C(Hr+1)

]

+ C k2q+2 τ
N−1∑

n=0

∥∥u(tn+1)
∥∥2

Hq+1(L2)
+

τ

2

N−1∑

n=0

∥∥ξn+1
∥∥2

0
+

τ

8

N−1∑

n=0

∥∥ξn+1
∥∥2

dG
. (4.56)

Applying Cauchy-Schwarz inequality and Young’s inequality for T2,3 leads to

|T2,3| ≤ τ
N−1∑

n=0

∥∥G
1/2
minzmin(t

n+1) − G
1/2
minz

n+1
min,h

∥∥
L2(Ωx)

∥∥G
1/2
minξ

n+1(ℓ+
0 )

∥∥
L2(Ωx)

≤ C h2r+2 τ
N−1∑

n=0

∥∥zmin(t
n+1)

∥∥2

Hr+1(Ωx)
+

τ

8

N−1∑

n=0

∥∥ξn+1
∥∥2

dG
. (4.57)

Substituting (4.55)-(4.57) into (4.54) we get for T2

|T2| ≤ τ 2

N−1∑

n=0

∫ tn+1

tn

∥∥utt

∥∥2

0
dt + τ

N−1∑

n=0

‖ξn+1‖2
0 +

τ

4

N−1∑

n=0

∥∥ξn+1
∥∥2

dG

+ Cτh2r+2

N−1∑

n=0

[∥∥u(tn+1)
∥∥2

H1(Hr+1)
+

∥∥zmin(t
n+1)

∥∥2

Hr+1(Ωx)
+

∥∥ut(t
n+1)

∥∥2

L2(Hr+1)

+
∥∥u(tn+1)

∥∥2

C(Hr+1)

]

+ Cτk2q+2

N−1∑

n=0

[∥∥u(tn+1)
∥∥2

Hq+1(L2)
+

∥∥ut(t
n+1)

∥∥2

Hq+1(L2)

]
. (4.58)

Inserting (4.53) and (4.58) in (4.45), adding the triple norm and the dG norm contributions
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in the left-hand side and using (4.14), we get

1

2

∥∥ξN
∥∥2

0
− 1

2

∥∥ξ0
∥∥2

0
+ τ

N−1∑

n=0

∫

Ωℓ

∣∣∣∣∣∣ξ̃n+1
∣∣∣∣∣∣2 +

τ

2

N−1∑

n=0

∥∥ξn+1
∥∥2

dG

≤ τ 2

N−1∑

n=0

∫ tn+1

tn

∥∥utt

∥∥2

0
dt + τ

N−1∑

n=0

γn

∥∥ξn
∥∥2

0
+ 2τ

N−1∑

n=0

∥∥fn+1
∥∥2

0

+ C h2r τ

N−1∑

n=0

[
(ε + h)

∥∥u(tn+1)
∥∥2

H1(Hr+1)
+ h2

∥∥ut(t
n+1)

∥∥2

L2(Hr+1)

+ h2
∥∥zmin(t

n+1)
∥∥2

Hr+1(Ωx)
+

∥∥u(tn+1)
∥∥2

C(Hr+1)

]

+ C k2q+2 τ
N−1∑

n=0

[
(ε + h + 1)

∥∥u(tn+1)
∥∥2

Hq+1(H1)
+

∥∥ut(t
n+1)

∥∥2

Hq+1(L2)

]

where γ0 = 2, γN = 1 and γn = 3, n = 1, . . . , N − 1. We conclude by applying the
Gronwall’s Lemma in the same fashion as in Lemma 4.2.1.

Consider the standard Galerkin finite element method in space, µK = 0 for all K ∈ Th,
and set ε = 1. The error estimates (4.44) is then of O(τ 2 + k2q+1 + h2r). We see that,
the same rate of convergence can be derived without using any extra stabilization with
respect to internal coordinate as compared to the estimates in [30].

4.5 Implementation of numerical method

This section indicates the implementation of the operator splitting method in the context
of finite element methods.
Using the bases

Vh = span{φi}, 1 ≤ i ≤ Nx, Sq
k = span{ψk}, 1 ≤ k ≤ Nℓ,

the tensor product space Sr,q
h,k is defined as follows

Sr,q
h,k =

{
v =

Nx∑

i=1

Nℓ∑

k=1

αikφi(x)ψk(ℓ), αik ∈ R, 1 ≤ i ≤ Nx, 1 ≤ k ≤ Nℓ

}
.

The finite element functions are represented as

un
h,k =

Nx∑

i=1

Nℓ∑

k=1

ξn
ikφi(x)ψk(ℓ), X =

Nx∑

j=1

Nℓ∑

l=1

xjlφj(x)ψl(ℓ).
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We define the matrices Mx, Tx, Dx, Sx ∈ R
Nx×Nx by

(Mx)ij =
(
φi(x), φj(x)

)
x
, (Dx)ij = ε

(
∇xφi(x),∇xφj(x)

)
x

(Tx)ij =
(
b · ∇xφi(x), φj(x)

)
x
, (Sx)ij = Sh

(
φi(x), φj(x)

)
.

Similarly we define the matrices Mℓ, Tℓ ∈ R
Nℓ×Nℓ as

(Mℓ)kl =
(
ψk(ℓ), ψl(ℓ)

)

ℓ
,

(Tℓ)kl =

Nℓ∑

i=1

(
∂ℓ(Gψk(ℓ)), ψl(ℓ)

)

Ii

+

Nℓ−1∑

i=1

[Gψk(ℓ)]i ψl(ℓ
+
i ) + Gψk(ℓ

+
0 )ψl(ℓ

+
0 ).

For the ease of presentation let us consider (4.1) with source term f = 0. Then the
algorithm for the operator splitting method described in (4.18) and (4.19) is as follows:
Within each time interval (tn, tn+1], we begin with the x-direction step where we are
looking for the solution of the time-dependent convection-diffusion equation (4.18). We
compute η̃n+1

j ∈ R
Nx , j = 1, . . . , Nℓ, by solving the linear systems

(Mx + τDx + τTx + τSx)η̃
n+1
j = Mxη

n
j , j = 1, . . . , Nℓ.

With obtaining the solutions η̃n+1
j , j = 1, . . . , Nℓ, the x-direction step is completed. Then,

we continue with the ℓ-direction step where we update the solution from the first step and
compute the solution of the one-dimensional transport problem (4.19) by a discontinuous
Galerkin method. In this step we solve the linear systems

(Mℓ + τTℓ)η
n+1
j = Mℓη̃

n+1
j , j = 1, . . . , Nx,

and the obtained solutions ηn+1
j , j = 1, . . . , Nℓ, are used as input for the time interval

(tn+1, tn+1].

4.6 Numerical tests

We report in this section the numerical computations illustrating the theoretical results
obtained in the previous section. The two-step method (4.18) and (4.19) in the context of
finite element method in space and discontinuous Galerkin method in internal coordinate
is implemented in the finite element package MooNMD [38].

The tests are made in two plus one dimensions, i.e, we consider Ωx = (0, 1) × (0, 1)
as two dimensional domain in space and Ωℓ = (0, 1) as one dimensional domain in the
internal coordinate. We consider the velocity field b as b1 = b2 = 0.1, the growth rate
G(ℓ) = 1 and two different choices of diffusion coefficient ε, ε = 1 and ε ≪ 1. The source
term f , the boundary and initial conditions are chosen such that the analytical solution
of the problem (4.1) is

z(t, ℓ, x, y) = e−0.1t sin(πℓ) cos(πx) cos(πy).
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Let en := z(tn) − un
h,k, where z is the exact solution of (4.1)and the numerical solution

un
h,k is obtained by two-step method (4.18) and (4.19). We use the following notations

‖e‖0 =

(
τ

N∑

n=1

‖en‖2
L2(L2) + τ

N∑

n=1

‖en‖2
dG

)1/2

,

‖e‖1 =

(
τ

N∑

n=1

‖en‖2
L2(H1) + τ

N∑

n=1

‖en‖2
dG

)1/2

,

‖e‖DG =

(
τ

N∑

n=1

∫

Ωℓ

∣∣∣∣∣∣en
∣∣∣∣∣∣2 + τ

N∑

n=1

‖en‖2
dG

)1/2

.

In order to illustrate the convergence order in time, internal coordinate and space, we use
the well known strategy, i.e., the convergence order in time can be obtained by assuming
that the mesh sizes k and h are small enough compared to the time-step size τ . In the
numerical computations, we have used triangular and quadrilateral meshes which are gen-
erated by successive refinement starting from coarsest meshes (level 0) as in Fig. 3.3 for
two-dimensional domain Ωx and a line divided into two cells for one-dimensional domain
Ωℓ.

Case ε = 1: In this case, the Galerkin finite element method in space is combined
with a discontinuous Galerkin method in internal coordinate. For time discretization, the
backward Euler time stepping scheme is used with final time T = 1. One can expect a
convergence for ‖ · ‖0-norm of order O(hr+1) and for ‖ · ‖1-norms of order O(hr) using Qr

and Pr finite elements in space with sufficiently small time step length τ and mesh size k.
The results are presented in Tables 4.1–4.4.

Tables 4.1 and 4.2 show the second order convergence in the ‖ · ‖0-norm and first or-
der convergence in the ‖ · ‖1-norm for both Q1 and P1 finite elements in space with dG(1)
in internal coordinate. The length of the time step was set to be τ = 10−3 and mesh size
to k = 1/64. For Q2 and P2 finite elements in space with dG(2) in internal coordinate, the
time step length was set to τ = 10−4 and mesh size k = 1/64. The results of Tables 4.3
and 4.4 show third order convergence for the ‖·‖0-norm and second order for the ‖·‖1-norm.

In Tables 4.5 and 4.6, the errors and convergence orders for internal coordinate and
time are listed. We expect a convergence of order O(kq+1/2) in the internal coordinate
and a convergence of O(τ) in time. The errors for dG(1) in internal coordinate with Q1

on level 7 and time step length τ = 2.5 · 10−4 are presented in Table 4.5. We see that
the expected orders of convergence are achieved. The numerical errors and convergence
orders in time are listed in Table 4.6 for dG(1) with k = 1/32 and Q1 on level 6. The
theoretically predicted convergence order is achieved.
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Table 4.1: Errors and rate of convergence in space for Q1 and dG(1), k = 1/64 and
τ = 10−3.

Level ‖e‖0 ‖e‖1

error order error order
0 1.719554e-01 —— 1.006185 ——
1 4.746460e-02 1.8571 4.892384e-01 1.0403
2 1.206219e-02 1.9764 2.412003e-01 1.0203
3 3.167958e-03 1.9289 1.201483e-01 1.0054

Table 4.2: Errors and rate of convergence in space for P1 and dG(1), k = 1/64 and
τ = 10−3.

Level ‖e‖0 ‖e‖1

error order error order
0 2.353104e-01 —— 1.432599 ——
1 7.412177e-02 1.6666 7.996426e-01 0.8413
2 1.981996e-02 1.9029 4.113880e-01 0.9589
3 5.144843e-03 1.9458 2.072235e-01 0.9893

Table 4.3: Errors and rate of convergence in space for Q2 and dG(2), k = 1/64 and
τ = 10−4.

Level ‖e‖0 ‖e‖1

error order error order
0 1.916287e-02 —— 2.396151e-01 ——
1 2.599528e-03 2.8820 6.137457e-02 1.9650
2 3.354662e-04 2.9540 1.561139e-02 1.9750

Table 4.4: Errors and rate of convergence in space for P2 and dG(2), k = 1/64 and
τ = 10−3.

Level ‖e‖0 ‖e‖1

error order error order
0 3.511498e-02 —— 5.583590e-01 ——
1 4.796648e-03 2.8720 1.526520e-01 1.8710
2 6.138514e-04 2.9661 3.929766e-02 1.9577

Case ε = 10−9: In the case of convection-dominated convection-diffusion, we consider
local projection as stabilization in space. Discontinuous Galerkin methods of first and
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Table 4.5: Errors and rate of convergence in internal coordinate for dG(1), Q1 on level 6
and τ = 2.5 · 10−4.

k ‖e‖0

1/2 6.696513e-02 ——
1/4 1.829413e-02 1.7398
1/8 6.521805e-03 1.4880

Table 4.6: Errors and rate of convergence in time for Q1 and dG(1) on level = 6 and
k = 1/32.

τ ‖e‖0 ‖e‖1

error order error order
1/10 1.815303e-01 —— 4.027364 ——
1/20 9.577853e-02 0.9224 2.170105 0.8921
1/40 4.983170e-02 0.9427 1.141479 0.9269
1/80 2.567753e-02 0.9566 5.869174e-01 0.9597

second order are used for the discretization in internal coordinate. For time discretization,
the backward Euler time stepping scheme is used. The numerical tests are performed using
for (Vh, Dh) the pairs (P bubble

1 , P disc
0 ), (P bubble

2 , P disc
1 ), (Qbubble

1 , P disc
0 ), and (Qbubble

2 , P disc
1 ).

The stabilization parameters µK have been chosen as

µK := µ0hK ∀K ∈ Th

where µ0 denotes a constant which will be given for each of the test calculations.

In Tables 4.7 and 4.8 we show the convergence results for space in norm ‖ · ‖DG. Ta-
ble 4.7 shows the error in space with stabilizing parameter µ0 = 5, time step length
τ = 10−3 and mesh size k = 1/64 for (Qbubble

1 , P0) and (P bubble
1 , P0) with dG(1) in internal

coordinate. In Table 4.8, the convergence results for (Qbubble
2 , P disc

1 ) and (P bubble
2 , P disc

1 )
with dG(2) in internal coordinate with µ0 = 5, k = 1/64 and τ = 10−4 are listed. We
see that the expected orders of convergence O(hr+1/2) are achieved for quadrangles. For
smaller mesh size h, the convergence order starts to decrease for triangles. This is because
the influence of the error in internal coordinate increases, i.e., the mesh size k is not small
enough that one can see the corresponding convergence rate in space for higher order
elements.
The numerical errors and convergence orders in internal coordinate are listed in Table 4.9
for dG(1) and (Qbubble

1 , P0) with µ0 = 5 on level 7 and τ = 2.5 · 10−4. The convergence
order starts to decrease for small mesh size k since the errors in space have increasing
influence.
Finally, Table 4.10 shows the errors and convergence orders in time for (Qbubble

1 , P0) on
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Table 4.7: Errors and rate of convergence in space for (Qbubble
1 , P0) and (P bubble

1 , P0) and
dG(1), k = 1/64, τ = 10−3 and µK = 5hK .

(Qbubble
1 , P0) (P bubble

1 , P0)
Level ‖en‖DG ‖en‖DG

0 1.756772 —— 1.93314 ——
1 6.394630e-01 1.4580 7.247844e-01 1.4153
2 2.280495e-01 1.4875 2.661525e-01 1.4453
3 8.245890e-02 1.4678 1.086554e-01 1.2925

Table 4.8: Errors and rate of convergence in space for (Qbubble
2 , P disc

1 ) and (P bubble
2 , P disc

1 )
and dG(2), k = 1/64, τ = 10−4 and µK = 5hK .

(Qbubble
2 , P disc

1 ) (P bubble
2 , P disc

1 )
Level ‖en‖DG ‖en‖DG

0 1.272972 —— 1.234504 ——
1 2.558153e-01 2.3151 2.352103e-01 2.3919
2 4.700162e-02 2.4443 5.094834e-02 2.2069
3 8.010563e-03 2.5527 1.222369e-02 2.0593

Table 4.9: Errors and rate of convergence in internal coordinate for dG(1) and (Qbubble
1 , P0)

on level 7 with µK = 5hK and τ = 2.5 · 10−4.

k ‖en‖DG

1/2 2.493607e-01 ——
1/4 9.283060e-02 1.4256
1/8 3.425394e-02 1.4383
1/16 1.446166e-02 1.2441

level 6 with µ0 = 2.5 and dG(1) with k = 1/32. We see that the time stepping scheme is
of first order convergent.

Table 4.10: Errors and rate of convergence in time for dG(1) and (Qbubble
1 , P0) on level

with µK = 2.5hK and k = 1/32.

τ ‖en‖DG

1/10 8.017623e-01 ——
1/20 4.318566e-01 0.8926
1/40 2.270064e-01 0.9278
1/80 1.166372e-01 0.9607
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Chapter 5

PBE, SUPG method in space and
dG in internal coordinate

This chapter concentrates on the SUPG method as spatial discretization of the two-step
method introduced in Chapter 4 for the population balance equations (4.1). For discretiza-
tion in internal coordinate and time, dG and backward Euler methods, respectively, are
used. The main focus of this chapter is to explore the conditions on the stabilization
parameters discussed in [39] for the population balance equations based on an operator
splitting method.

The structure of this chapter is as follows. In Section 5.1, we address the full discretization
of the subproblems (4.6) and (4.7) by considering the SUPG and dG methods in space and
internal coordinate, respectively. Stability bounds are derived assuming δ = O(τ) and
δ = O

(√
τh

)
in Section 5.2, where δ is the stabilization parameter and τ the time step

length. In Section 5.3, we use the stability estimates to derive convergence results. Fur-
thermore, we give a comparison of SUPG with LPS method in space. Numerical results
illustrating the theory are reported in Section 5.4

5.1 The SUPG and dG method

Let Th be a family of an admissible and shape regular triangulations of the polyhedral do-
main Ωx. Let Vh ⊂ V denote the underlying finite element space of piecewise polynomials
of order r ≥ 1. The stabilized bilinear form in the SUPG scheme is defined as follows

aS(u, v) = a(u, v) +
∑

K∈Th

δK(−ε∆xu + b · ∇xu,b · ∇xv)K . (5.1)

Here, K ∈ Th denotes a mesh cell of the triangulation and δK are the local stabilizing
parameters which have to be chosen appropriately.
To discretize the subproblems in internal coordinates Ωℓ, let ℓmin = ℓ0 < ℓ1 < · · · < ℓM =
ℓmax be a partition of Ωℓ, with Ii = (ℓi−1, ℓi], ki = ℓi − ℓi−1 and k = max

i
ki. As in (4.17),
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5.1. THE SUPG AND DG METHOD

the fully discrete space Sr,q
h,k is defined as follows

Sr,q
h,k = Vh × Sq

k =
{

v : Ωx × Ωℓ → R : v
∣∣
Ii
(ℓ) =

q∑

j=0

vjℓ
j with vj ∈ Vh

}
. (5.2)

Then, the fully discrete two-step method reads:

First step: For given un
h,k ∈ Sr,q

h,k, find ũn+1
h,k ∈ Sr,q

h,k such that
∫

Ωℓ

(
ũn+1

h,k − un
h,k, χ

)
x

+ τ

∫

Ωℓ

aS

(
ũn+1

h,k , χ
)

+

∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xχ

)

K

= τ

∫

Ωℓ

(fn+1, χ)x + τ

∫

Ωℓ

∑

K∈Th

δK

(
fn+1,b · ∇xχ

)
K

(5.3)

for all χ ∈ Sr,q
h,k where u0

h,k is a suitable approximation of z0 in Sr,q
h,k.

Second step: Update the solution ũn+1
h,k from (5.3) and find un+1

h,k ∈ Sr,q
h,k such that

∫

Ωℓ

(
un+1

h,k − ũn+1
h,k , χ

)

x
+ τB(un+1

h,k , χ) = τ
(
Gminz

n+1
min,h, χ(ℓ+

0 )
)

x
(5.4)

for all χ ∈ Sr,q
h,k, where zn+1

min,h is an approximation of zn+1
min . Two different representations

of the bilinear form B are given in (4.20) and (4.21).

Assume that for u ∈ Hr+1(Ωx) there exists an interpolation operator πh : V → Vh

satisfying the following approximation property [15]
∥∥u − πhu

∥∥
Hm(K)

≤ C hr+1−m
K |u|Hr+1(K) for m = 0, 1, 2 (5.5)

for all K ∈ Th.

Lemma 5.1.1 (Coercivity of aS). If we choose the SUPG parameter δK such that

δK ≤ h2
K

2εc2
inv

∀K ∈ Th (5.6)

then the bilinear form aS(·, ·) satisfies

aS(vh, vh) ≥
1

2
‖vh‖2

S (5.7)

with

‖vh‖S :=

(
ε|vh|2H1(Ωx) +

∑

K∈Th

δK‖b · ∇xvh‖2
L2(K)

)1/2

. (5.8)

Proof. See [76, Lemma 3.25].
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5.2 Stability of the two-step method

This section studies the stability analysis of the two-step method. We will consider the
two different choices of stabilization parameters discussed in [39]. These conditions arises
in the stability bounds from the stabilization term with the discretization of the time
derivative. In the next lemma, we give the stability of the two-step method based on
stabilization parameter proportional to the length of the time step.

Lemma 5.2.1. Let (5.6) be satisfied and ∂ℓG ≥ 0. With the condition

δK ≤ τ

4
and τ ≤ 1

4
∀K ∈ Th (5.9)

the solution un+1
h,k of the two-step algorithm (5.3) and (5.4) satisfies

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥um+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤ e3T/2

[∥∥u0
h,k

∥∥2

0
+ τ

n−1∑

m=0

{
4

3

(
1 + τ

) ∥∥fm+1
∥∥2

0
+ 2

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)

}]
. (5.10)

Proof. The proof starts in the usual way by setting χ = ũn+1
h,k in (5.3). This gives

∫

Ωℓ

(
ũn+1

h,k − un
h,k, ũ

n+1
h,k

)
x

+ τ

∫

Ωℓ

aS

(
ũn+1

h,k , ũn+1
h,k

)

= τ

∫

Ωℓ

(
fn+1, ũn+1

h,k

)
+ τ

∫

Ωℓ

∑

K∈Th

δK

(
fn+1,b · ∇xũ

n+1
h,k

)
K

−
∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xũ

n+1
h,k

)
K

. (5.11)

The identity 2(a − b)a = a2 − b2 + (a − b)2 yields
∫

Ωℓ

(
ũn+1

h,k − un
h,k, ũ

n+1
h,k

)
x

=
1

2

∥∥ũn+1
h,k

∥∥2

0
− 1

2

∥∥un
h,k

∥∥2

0
+

1

2

∥∥ũn+1
h,k − un

h,k

∥∥2

0
.

Using this and (5.7) in (5.11), we get

1

2

∥∥ũn+1
h,k

∥∥2

0
− 1

2

∥∥un
h,k

∥∥2

0
+

1

2

∥∥ũn+1
h,k − un

h,k

∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S

≤
∣∣∣∣∣τ

∫

Ωℓ

(
fn+1, ũn+1

h,k

)
∣∣∣∣∣ +

∣∣∣∣∣τ
∫

Ωℓ

∑

K∈Th

δK

(
fn+1,b · ∇xũ

n+1
h,k

)
K

∣∣∣∣∣

+

∣∣∣∣∣

∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xũ

n+1
h,k

)

K

∣∣∣∣∣. (5.12)
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The first two terms on the right-hand side are estimated by using Cauchy-Schwarz in-
equality followed by Young’s inequality

∣∣∣∣∣τ
∫

Ωℓ

(
fn+1, ũn+1

h,k

)
∣∣∣∣∣ ≤ τ

∫

Ωℓ

∥∥fn+1
∥∥

L2(Ωx)

∥∥ũn+1
h,k

∥∥
L2(Ωx)

≤ τ

2

∥∥fn+1
∥∥2

0
+

τ

2

∥∥ũn+1
h,k

∥∥2

0

and
∣∣∣∣∣τ

∫

Ωℓ

∑

K∈Th

δK

(
fn+1,b · ∇xũ

n+1
h,k

)
K

∣∣∣∣∣

≤ τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥

L2(K)

∥∥b · ∇xũ
n+1
h,k

∥∥
L2(K)

≤ 2τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)
+

τ

8

∫

Ωℓ

∑

K∈Th

δK

∥∥b · ∇xũ
n+1
h,k

∥∥2

L2(K)

≤ 2τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)
+

τ

8

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
.

The estimate for the last term on the right hand side of (5.11) is obtained by using
Cauchy-Schwarz inequality, the Young’s inequality and condition (5.9) on the stabilization
parameters

∣∣∣∣∣

∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xũ

n+1
h,k

)
K

∣∣∣∣∣

≤
∫

Ωℓ

∑

K∈Th

δK

∥∥ũn+1
h,k − un

h,k

∥∥
L2(K)

∥∥b · ∇xũ
n+1
h,k

∥∥
L2(K)

≤ 2

τ

∫

Ωℓ

∑

K∈Th

δK

∥∥ũn+1
h,k − un

h,k

∥∥2

L2(K)
+

τ

8

∫

Ωℓ

∑

K∈Th

δK

∥∥b · ∇xũ
n+1
h,k

∥∥2

L2(K)

≤ 1

2

∥∥ũn+1
h,k − un

h,k

∥∥2

0
+

τ

8

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
. (5.13)

Substituting these estimates in (5.12) and contributing the ‖ · ‖S-norm in the left-hand
side gives

∥∥ũn+1
h,k

∥∥2

0
−

∥∥un
h,k

∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
≤ τ(1 + τ)

∥∥fn+1
∥∥2

0
+ τ

∥∥ũn+1
h,k

∥∥2

0
. (5.14)

Here we have used the condition (5.9) once more. From (5.14) we have

∥∥ũn+1
h,k

∥∥2

0
≤ τ(1 + τ)

1 − τ

∥∥fn+1
∥∥2

0
+

1

1 − τ

∥∥un
h,k

∥∥2

0
. (5.15)
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Next, we consider the second step and setting χ = un+1
h,k in (5.4) to get

∫

Ωℓ

(
un+1

h,k − ũn+1
h,k , un+1

h,k

)

x
+ τB(un+1

h,k , un+1
h,k

)
= τ

(
Gminz

n+1
min,h, u

n+1
h,k (ℓ+

0 )
)

x

Using again the identity 2(a − b)a = a2 − b2 + (a − b)2 and the coercivity (4.23) of the
bilinear form B, we obtain

1

2

∥∥un+1
h,k

∥∥2

0
− 1

2

∥∥ũn+1
h,k

∥∥2

0
+

1

2

∥∥un+1
h,k − ũn+1

h,k

∥∥2

0
+

τ

2

∥∥un+1
h,k

∥∥2

dG

=
∣∣∣τ

(
Gminz

n+1
min,h, u

n+1
h,k (ℓ+

0 )
)

x

∣∣∣.

Then applying Cauchy-Schwarz inequality together with Young’s inequality to right hand
side gives

τ
∣∣∣
(
Gminz

n+1
min,h, u

n+1
h,k (ℓ+

0 )
)

x

∣∣∣ ≤ τ
∥∥G

1/2
minz

n+1
min,h

∥∥
L2(Ωx)

∥∥G
1/2
minu

n+1
h,k (ℓ+

0 )
∥∥

L2(Ωx)

≤ τ
∥∥G

1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
+

τ

4

∥∥G
1/2
minu

n+1
h,k (ℓ+

0 )
∥∥2

L2(Ωx)

≤ τ
∥∥G

1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
+

τ

4

∥∥un+1
h,k

∥∥2

dG
.

Hence, we have for the second step

∥∥un+1
h,k

∥∥2

0
−

∥∥ũn+1
h,k

∥∥2

0
+

τ

2

∥∥un+1
h,k

∥∥2

dG
≤ 2τ

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
. (5.16)

Adding (5.14) and (5.16), summing over m = 0, . . . , n − 1 and using the relation (5.15),
we get

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥ũm+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤
∥∥u0

h,k

∥∥2

0
+

τ(1 + τ)

1 − τ

n−1∑

m=0

∥∥fm+1
∥∥2

0
+ 2τ

n−1∑

m=0

∥∥G1/2um+1
h,k (ℓ−0 )

∥∥2

L2(Ωx)

+
τ

1 − τ

n−1∑

m=0

∥∥um
h,k

∥∥2

0

≤
∥∥u0

h,k

∥∥2

0
+

4τ

3
(1 + τ)

n−1∑

m=0

∥∥fm+1
∥∥2

0
+ 2τ

n−1∑

m=0

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)

+
4τ

3

n−1∑

m=0

∥∥um
h,k

∥∥2

0
.

Finally, the statement follows by applying Gronwall’s lemma.
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The stability estimate of Lemma holds for the stabilization parameter δK = τ/4. The
stabilization becomes small for small time step size when the grid in space variable is
fixed and vanishes in time continuous limit case. This behavior has been discussed in
more detail in [39].

Lemma 5.2.2. Let ∂ℓG ≥ 0 and (5.6) hold. With the additional condition

δK =
σ(τ)hK

‖b‖0,∞,Kcinv

, ∀K ∈ Th with 0 < σ(τ) ≤ 1

4
and τ ≤ 1

2
, (5.17)

where σ(τ) is a function to be specified later, the solution of two-step algorithm (5.3) and
(5.4) satisfies

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥ũm+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1
[∥∥u0

h,k

∥∥2

0
+ 2τ

n−1∑

m=0

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)

+ 2τ
n−1∑

m=0

∥∥fm+1
∥∥2

0
+ 4τ

n−1∑

m=0

∫

Ωℓ

∑

K∈Th

δK

∥∥fm+1
∥∥2

L2(K)

]
. (5.18)

Proof. In order to proof the stability estimate (5.18), we follow the same procedure as
in [39, Theorem 3.2] for the first step. The proof starts exactly as the proof of Lemma
5.2.1 till (5.12). The bounds for the first two terms on the right hand side of (5.12) are
obtained by Cauchy-Schwarz and Young’s inequalities

∣∣∣τ
∫

Ωℓ

(
fn+1, ũn+1

h,k

)∣∣∣ ≤ τ

2

∥∥fn+1
∥∥2

0
+

τ

2

∥∥ũn+1
h,k

∥∥2

0

∣∣∣∣∣τ
∫

Ωℓ

∑

K∈Th

δK

(
fn+1,b · ∇xũ

n+1
h,k

)
K

∣∣∣∣∣ ≤ τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)
+

τ

4

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
.

71



CHAPTER 5. PBE, SUPG METHOD IN SPACE AND DG IN
INTERNAL COORDINATE

The bounds for the last term in (5.12) are obtained by using inverse inequality (2.20)

∣∣∣
∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xũ

n+1
h,k

)
K

∣∣∣

=

∣∣∣∣∣

∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇x(ũ

n+1
h,k − un

h,k)
)

K

+

∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xu

n
h,k

)
K

∣∣∣∣∣

≤
∫

Ωℓ

∑

K∈Th

δK
‖b‖∞,Kcinv

hK

∥∥ũn+1
h,k − un

h,k

∥∥2

L2(K)
+

1

4

∫

Ωℓ

∑

K∈Th

∥∥ũn+1
h,k − un

h,k

∥∥2

L2(K)

+

∫

Ωℓ

∑

K∈Th

δ2
K‖b‖2

∞,K

∥∥∇xu
n
h,k

∥∥2

L2(K)

≤
∫

Ωℓ

∑

K∈Th

(
δK

‖b‖∞,Kcinv

hK

+
1

4

) ∥∥ũn+1
h,k − un

h,k

∥∥2

L2(K)

+

∫

Ωℓ

∑

K∈Th

δ2
K‖b‖2

∞,K

∥∥∇xu
n
h,k

∥∥2

L2(K)
.

The first term can be hidden in the left hand side of (5.12) if the following holds

δK
‖b‖∞,Kcinv

hK

+
1

4
≤ 1

2
=⇒ δK ≤ hK

4‖b‖∞,Kcinv

.

Setting the stabilization parameter (5.17) in above equation, we get

∣∣∣
∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xũ

n+1
h,k

)
K

∣∣∣ ≤ 1

2

∥∥ũn+1
h,k − un

h,k

∥∥2

0
+ σ(τ)2

∥∥un
h,k

∥∥2

0
.

Substituting all the estimates in (5.12) leads to following

∥∥ũn+1
h,k

∥∥2

0
−

∥∥un
h,k

∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S

≤ τ
∥∥fn+1

∥∥2

0
+ 2τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)
+ τ

∥∥ũn+1
h,k

∥∥2

0
+ 2σ2(τ)

∥∥un
h,k

∥∥2

0
. (5.19)

From this equation, we have the following relation

∥∥ũn+1
h,k

∥∥2

0
=

1

1 − τ

[(
1 + 2σ2(τ)

)∥∥un
h,k

∥∥2

0
+ τ

∥∥fn+1
∥∥2

0
+ 2τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)

]
.

(5.20)
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Adding (5.16) and (5.19) and using the relation (5.20), we get

∥∥un+1
h,k

∥∥2

0
−

∥∥un
h,k

∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
+

τ

2

∥∥un+1
h,k

∥∥2

dG

≤ 2σ2(τ)
∥∥un

h,k

∥∥2

0
+ τ

∥∥ũn+1
h,k

∥∥2

0
+ 2τ

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
+ τ

∥∥fn+1
∥∥2

0

+ 2τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)

≤ 2σ2(τ)
∥∥un

h,k

∥∥2

0
+

τ

1 − τ

(
1 + 2σ2(τ)

)∥∥un
h,k

∥∥2

0
+ 2τ

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)

+
τ

1 − τ

∥∥fn+1
∥∥2

0
+

2τ

1 − τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)
.

Hence, 1/(1 − τ) ≤ 2 gives

∥∥un+1
h,k

∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
+

τ

2

∥∥un+1
h,k

∥∥2

dG

≤
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)∥∥un
h,k

∥∥2

0
+ 2τ

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)
+ 2τ

∥∥fn+1
∥∥2

0

+ 4τ

∫

Ωℓ

∑

K∈Th

δK

∥∥fn+1
∥∥2

L2(K)
. (5.21)

Now, one obtains by induction

∥∥un+1
h,k

∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ũn+1
h,k

∥∥2

S
+

τ

2

∥∥un+1
h,k

∥∥2

dG

≤
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1∥∥u0
h,k

∥∥2

0

+ τ

n∑

m=0

[(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n−m
{

2
∥∥fm+1

∥∥2

0
+ 4

∫

Ωℓ

∑

K∈Th

δK

∥∥fm+1
∥∥2

0,K

+ 2
∥∥G

1/2
minz

n+1
min,h

∥∥2

L2(Ωx)

}]

≤
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1
[
∥∥u0

h,k

∥∥2

0
+ τ

n∑

m=0

{
2
∥∥fm+1

∥∥2

0

+ 4

∫

Ωℓ

∑

K∈Th

δK

∥∥fm+1
∥∥2

0,K
+ 2

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)

}]
. (5.22)
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Summing (5.21) over m = 0, . . . , n − 1 gives

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥ũm+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤
(
2σ2(τ) + 2τ + 4τσ2(τ)

) n−2∑

m=0

∥∥um+1
h,k

∥∥2

0
+

(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)∥∥u0
h,k

∥∥2

0

+ τ
n−1∑

m=0

[
2
∥∥fm+1

∥∥2

0
+ 4

∫

Ωℓ

∑

K∈Th

δK

∥∥fm+1
∥∥2

L2(K)
+

∥∥G
1/2
minz

n+1
min,h

∥∥2

L2(Ωx)

]
.

Inserting (5.22) in the equation above to get

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥ũm+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤
(
2σ2(τ) + 2τ + 4τσ2(τ)

) n−2∑

m=0

(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)m+1∥∥u0
h,k

∥∥2

0

+
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)∥∥u0
h,k

∥∥2

0

+
(
2σ2(τ) + 2τ + 4τσ2(τ)

) n−2∑

m=0

(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)m+1

τ
m−1∑

j=0

[
2
∥∥f j+1

∥∥2

0

+ 4

∫

Ωℓ

∑

K∈Th

δK

∥∥f j+1
∥∥2

L2(K)
+ 2

∥∥G
1/2
minz

j+1
min,h

∥∥2

L2(Ωx)

]

+ 2τ
n−1∑

j=0

∥∥f j+1
∥∥2

0
+ 4τ

n−1∑

j=0

∫

Ωℓ

∑

K∈Th

δK

∥∥f j+1
∥∥2

L2(K)
+ 2τ

n−1∑

j=0

∥∥G
1/2
minz

j+1
min,h

∥∥2

L2(Ωx)
.

Using
n∑

i=1

ai =
an+1 − a

a − 1
, one obtains

(
2σ2(τ) + 2τ + 4τσ2(τ)

) n∑

m=1

(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)m

+
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)
=

(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1

,

(
2σ2(τ) + 2τ + 4τσ2(τ)

) n∑

m=1

(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)m

+ 1

=
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1

−
(
2σ2(τ) + 2τ + 4τσ2(τ)

)

≤
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1

.
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Hence, we get

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥ũm+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1
[∥∥u0

h,k

∥∥2

0
+ 2τ

n−1∑

m=0

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)

+ 2τ
n−1∑

m=0

∥∥fm+1
∥∥2

0
+ 4τ

n−1∑

m=0

∫

Ωℓ

∑

K∈Th

δK

∥∥fm+1
∥∥2

L2(K)

]
.

Consider a finite time interval [0, T ] and a fixed time step length. The above estimate
blows up for σ(τ) = const in time continuous limit case. This estimate will not blow up in

time continuous limit if
(
1 + 2σ2(τ) + 2τ + 4τσ2(τ)

)n+1
is bounded uniformly. A possible

choice is σ(τ) = σ0

√
τ to give the stabilizing parameter

δK = δ0

√
τhK

‖b‖∞,Kcinv

, (5.23)

where δ0 has to be chosen such that δ0

√
τ ≤ 1/4. With this choice of σ(τ) we can get

(
1 + 2τ + 2τσ2(τ) + 4τσ2(τ)

)1+n

=
(
1 + 2τ + 2τσ2(τ) + 4τσ2(τ)

)1+T/τ

≤
(
1 + 2τ + 2τσ2(τ) + 4τσ2(τ)

)
e4T .

The following corollary states the stability bounds of the fully discrete two-step algorithm
(5.3) and (5.4).

Corollary 5.2.3. Let ∂ℓG ≥ 0, (5.6) and (5.23) hold, then the solution of two-step
algorithm (5.3) and (5.4) satisfies

∥∥un
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∫

Ωℓ

∥∥ũm+1
h,k

∥∥2

S
+

τ

2

n−1∑

m=0

∥∥um+1
h,k

∥∥2

dG

≤ e4T

[
∥∥u0

h,k

∥∥2

0
+ 2τ

n−1∑

m=0

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+ 2τ

n−1∑

m=0

∥∥fm+1
∥∥2

0

+ 4τ
n−1∑

m=0

∫

Ωℓ

∑

K∈Th

δK

∥∥fm+1
∥∥2

L2(K)

}]
. (5.24)

Compared with the stability results of an equivalent one-step formulation studied in [30],
it is apparent that this two-step scheme provides us flexibility to relax the conditions on
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stabilization parameters. The main difficulty in the analysis of an equivalent one-step
method are the following terms

τ

∫

Ωℓ

∑

K∈Th

δK

(
∂ℓ(Gz),b · ∇xv

)
K

and τ
∑

K∈Th

δK

(
Gminzmin,b · ∇xv(ℓ+

0 )
)

K
.

These terms can be combined with the perturbation term of order τ 2 if δK ∼ τ . If
δK ∼ √

τhK , then one can see that these terms can not be combined with perturbation
terms. This means that the one-step formulation is not equivalent to the fully discrete
scheme of the original problem.

5.3 Error analysis

Since the stability bounds derived in Lemma 5.2.1 and Corollary 5.2.3 are similar except
with the factor in front of right hand sides of (5.18) and (5.24) are different. The detailed
analysis for the error estimates is presented here only for the first case which was discussed
in Lemma 5.2.1.

For the solution u(tn) of (4.2) and (4.3) and un
h,k of (5.3) and (5.4), we define

en =
(
u(tn) − Ph,ku(tn)

)
+

(
Ph,ku(tn) − un

h,k)
)

:= ηn + ξn. (5.25)

Note that, here we mean by Ph,k a projection operator which is defined through the
interpolation πh and Πk in space and internal coordinate, respectively, and is defined in
a similar fashion as in (4.31), i.e.,

Ph,kw = πhΠkw = Πkπhw, (5.26)

where πh satisfies (5.5).

Since ξn ∈ Sr,q
h,k, we use ξ̃n+1 = Ph,kũ(tn+1) − un+1

h,k in the first step of splitting (5.3)
to get

∫

Ωℓ

(
ξ̃n+1 − ξn, ξ̃n+1

)

x
+ τ

∫

Ωℓ

ah

(
ξ̃n+1, ξ̃n+1

)

=

∫

Ωℓ

(
Ph,kũ(tn+1) − Ph,ku(tn), ξ̃n+1

)

x
+ τ

∫

Ωℓ

ah

(
Ph,kũ(tn+1), ξ̃n+1

)
− τ

∫

Ωℓ

(
fn+1, ξ̃n+1

)

− τ

∫

Ωℓ

∑

K∈Th

δK

(
fn+1,b · ∇xξ̃

n+1
)

K
−

∫

Ωℓ

∑

K∈Th

δK

(
ũn+1

h,k − un
h,k,b · ∇xξ̃

n+1
)

K
,

where the terms containing ũn+1
h,k and un

h,k are replaced by the right hand side of (5.3).
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Then using (4.6) and (4.2) at t = tn+1, we get

∫

Ωℓ

(
ξ̃n+1 − ξn, ξ̃n+1

)

x
+ τ

∫

Ωℓ

ah

(
ξ̃n+1, ξ̃n+1

)

=

∫

Ωℓ

(
Ph,kũ(tn+1) − Ph,ku(tn) − τ ũt(t

n+1), ξ̃n+1
)

x
+ τ

∫

Ωℓ

a
(
Ph,kũ(tn+1) − ũ(tn+1), ξ̃n+1

)

+ τ

∫

Ωℓ

∑

K∈Th

δK

(
Lx

(
Ph,k − I

)
ũ(tn+1),b · ∇xξ̃

n+1
)

K
−

∫

Ωℓ

∑

K∈Th

δK

(
ξ̃n+1 − ξn,b · ∇xξ̃

n+1
)

K

+

∫

Ωℓ

∑

K∈Th

δK

(
Ph,kũ(tn+1) − Ph,ku(tn) − τ ũt(t

n+1),b · ∇xξ̃
n+1

)

K
.

Hence, we get

1

2

∥∥ξ̃n+1
∥∥2

0
− 1

2

∥∥ξn
∥∥2

0
+

1

2

∥∥ξ̃n+1 − ξn
∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S

≤
∣∣∣∣∣τ

∫

Ωℓ

(Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1), ξ̃n+1
)

x
+ τ

∫

Ωℓ

a
(
Ph,kũ(tn+1) − ũ(tn+1), ξ̃n+1

)

+ τ

∫

Ωℓ

∑

K∈Th

δK

(
Lx

(
Ph,k − I

)
ũ(tn+1),b · ∇xξ̃

n+1
)

K
+

∫

Ωℓ

∑

K∈Th

δK

(
ξ̃n+1 − ξn,b · ∇xξ̃

n+1
)

K

+ τ

∫

Ωℓ

∑

K∈Th

δK

(Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1),b · ∇xξ̃
n+1

)

K

∣∣∣∣∣.

The convective term in the bilinear form aS(·, ·) can be split into two terms, the first term
corresponding to the error term in space and the second one in internal coordinate. Then
the first term is integrated by parts with respect to x to get

(
b · ∇x

(
Ph,kũ − ũ

)
, ξ̃n+1

)

x

=
(
b · ∇x

(
Ph,kũ − Πkũ

)
, ξ̃n+1

)

x
+

(
b · ∇x

(
Πkũ − ũ

)
, ξ̃n+1

)

x

= −
(
Ph,kũ − Πkũ,b · ∇xξ̃

n+1
)

+
(
b · ∇x

(
Πkũ − ũ

)
, ξ̃n+1

)

x

= −
∑

K∈Th

δK

(Ph,kũ − ũ

δK

,b · ∇xξ̃
n+1

)

K
+

(
b · ∇x

(
Πkũ − ũ

)
, ξ̃n+1

)

x
.

Using this and rearranging the terms on the right hand side of above equation, we get the
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following error inequality for first step

1

2

∥∥ξ̃n+1
∥∥2

0
− 1

2

∥∥ξn
∥∥2

0
+

1

2

∥∥ξ̃n+1 − ξn
∥∥2

0
+

τ

2

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S

≤
∣∣∣τ

∫

Ωℓ

(
T1, ξ̃

n+1
)

x

∣∣∣ +
∣∣∣ετ

∫

Ωℓ

(
T2,∇xξ̃

n+1
)

x

∣∣∣ +
∣∣∣τ

∫

Ωℓ

∑

K∈Th

δK

(
T3,b · ∇xξ̃

n+1
)

L2(K)

∣∣∣

+
∣∣∣
∫

Ωℓ

∑

K∈Th

δK

(
ξ̃n+1 − ξn,b · ∇xξ̃

n+1
)

L2(K)

∣∣∣, (5.27)

where

T1 =

{
Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1) + b · ∇x

(
Πkũ(tn+1) − ũ(tn+1)

)}
,

T2 = ∇x

(
Ph,kũ(tn+1) − ũ(tn+1)

)
,

T3 =
{

Lx

(
Ph,k − I

)
ũ(tn+1)

}
+

{
Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1)

}

+

{
Ph,kũ(tn+1) − Πkũ(tn+1)

δK

}
.

We consider the terms on the right hand side of (5.27) separately. For first three terms,
Cauchy-Schwarz inequality and Young’s inequality gives

∣∣∣τ
∫

Ωℓ

(
T1, ξ̃

n+1
)

x

∣∣∣ ≤ τ

∫

Ωℓ

∥∥T1

∥∥
L2(Ωx)

∥∥ξ̃n+1
∥∥

L2(Ωx)

≤ τ

2

∥∥T1

∥∥2

0
+

τ

2

∥∥ξ̃n+1
∥∥2

0

∣∣∣ετ
∫

Ωℓ

(
T2,∇xξ̃

n+1
)

x

∣∣∣ ≤ τε

∫

Ωℓ

∥∥T2

∥∥
L2(Ωx)

∥∥∇xξ̃
n+1

∥∥
L2(Ωx)

≤ 2ετ
∥∥T2

∥∥2

0
+

τ

8

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S

and
∣∣∣τ

∫

Ωℓ

∑

K∈Th

δK

(
T3,b · ∇xξ̃

n+1
)

L2(K)

∣∣∣

≤ τ

∫

Ωℓ

∑

K∈Th

δK

∥∥T3

∥∥
L2(K)

∥∥b · ∇xξ̃
n+1

∥∥
L2(K)

≤ τ

∫

Ωℓ

∑

K∈Th

δK

∥∥T3

∥∥2

L2(K)
+ τ

∫

Ωℓ

∑

K∈Th

δK

∥∥b · ∇xξ̃
n+1

∥∥2

L2(K)

≤ 2τ

∫

Ωℓ

∑

K∈Th

δK

∥∥T3

∥∥2

L2(K)
+

τ

8

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S
.
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For the last term, we use the same procedure as in (5.13)

∣∣∣
∫

Ωℓ

∑

K∈Th

δK

(
ξ̃n+1 − ξn,b · ∇xξ̃

n+1
)

L2(K)

∣∣∣

≤
∫

Ωℓ

∑

K∈Th

δK

∥∥ξ̃n+1 − ξn
∥∥

L2(K)

∥∥b · ∇xξ̃
n+1

∥∥
L2(K)

≤ 2

τ

∫

Ωℓ

∑

K∈Th

δK

∥∥ξ̃n+1 − ξn
∥∥2

L2(K)
+

τ

8

∫

Ωℓ

∑

K∈Th

δK

∥∥b · ∇xξ̃
n+1

∥∥2

L2(K)

≤ 1

2

∥∥ξ̃n+1 − ξn
∥∥2

0
+

τ

8

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S
.

Inserting these estimates in (5.27) yields

∥∥ξ̃n+1
∥∥2

0
−

∥∥ξn
∥∥2

0
+

τ

4

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S

≤ τ
∥∥T1

∥∥2

0
+ 4ετ

∥∥T2

∥∥2

0
+ 4τ

∫

Ωℓ

∑

K∈Th

δK

∥∥T3

∥∥2

L2(K)
+ τ

∥∥ξ̃n+1
∥∥2

0
. (5.28)

Now consider the second step. Applying ξn+1 to (5.4)

∫

Ωℓ

(
ξn+1 − ξ̃n+1, ξn+1

)

x
+ τB(ξn+1, ξn+1)

=

∫

Ωℓ

(
Ph,ku(tn+1) − Ph,kũ(tn+1), ξn+1

)

x
+ τB

(
Ph,ku(tn+1), ξn+1

)

− τ
(
Gminz

n+1
min,h, ξ

n+1(ℓ+
0 )

)

x

where the terms un+1
h,k and ũn+1

h,k are replaced by the right-hand side of (5.4). Then (4.3)
at t = tn+1 gives

∫

Ωℓ

(
ξn+1 − ξ̃n+1, ξn+1

)

x
+ τB(ξn+1, ξn+1)

=

∫

Ωℓ

(
Ph,ku(tn+1) − Ph,kũ(tn+1) − τut(t

n+1), ξn+1
)

x
+ τB

(
Ph,ku(tn+1) − u(tn+1), ξn+1

)

− τ
(
G

(
zmin(t

n+1) − zn+1
min,h

)
, ξn+1(ℓ+

0 )
)

x
(5.29)

Using the error decomposition into space and internal coordinate, we can write the bilinear
form B(·, ·) as

B
(
Ph,ku(tn+1) − u(tn+1), ξn+1

)

= B
(
Ph,ku(tn+1) − Πku(tn+1), ξn+1

)
+ B

(
Πku(tn+1) − u(tn+1), ξn+1

)
. (5.30)
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Then for the first term on the right hand side, we use (4.20) to get

B
(
Ph,ku(tn+1) − Πku(tn+1), ξn+1

)

=
M∑

i=1

∫

Ii

( ∂

∂ℓ

(
GPh,ku(tn+1) − GΠku(tn+1)

)
, ξn+1

)

x

+
(
Gmin

(
Ph,ku(tn+1, ℓ+

0 ) − Πku(tn+1, ℓ+
0 )

)
, ξn+1(ℓ+

0 )
)

x
.

Here the jump terms vanishes due to the continuity of πhu in ℓ direction.

Note that the interpolant Πku satisfies (4.27), therefore using the second representation
(4.21) of the bilinear form B, we get for the second term on the right hand side of (5.30)

B
(
Πku(tn+1) − u(tn+1), ξn+1

)
= −

M∑

i=1

∫

Ii

(
Πku(tn+1) − u(tn+1), G∂ℓξ

n+1
)

x
.

Substituting this in (5.30) and combining with (5.29), we get

∫

Ωℓ

(
ξn+1 − ξ̃n+1, ξn+1

)

x
+ τB(ξn+1, ξn+1)

= τ

M∑

i=1

∫

Ii

{(
T4, ξ

n+1
)

x
+

(
T5, G∂ℓξ

n+1
)

x

}
+

(
T6, G

1/2
minξ

n+1(ℓ+
0 )

)

x
,

where

T4 =

{
Ph,ku(tn+1) − Ph,kũ(tn+1)

τ
− ut(t

n+1)

}
+

{
∂

∂ℓ

(
GPh,ku(tn+1) − GΠku(tn+1)

)}

T5 = Πku(tn+1) − u(tn+1)

T6 =
{

Gmin

(
Ph,ku(tn+1, ℓ+

0 ) − Πku(tn+1, ℓ+
0 )

)}
+

{
G

1/2
min

(
zmin(t

n+1) − zn+1
min,h

)}
.

Hence, we have

1

2

∥∥ξn+1
∥∥2

0
− 1

2

∥∥ξ̃n+1
∥∥2

0
+

τ

2

∥∥ξn+1
∥∥2

dG

≤
∣∣∣τ

M∑

i=1

∫

Ii

(
T4, ξ

n+1
)

x

∣∣∣ +
∣∣∣τ

M∑

i=1

∫

Ii

(
T5, G∂ℓξ

n+1
)

x

∣∣∣ +
∣∣∣
(
T6, G

1/2
minξ

n+1(ℓ+
0 )

)

x

∣∣∣. (5.31)

For first and last terms on the right hand side, the Cauchy-Schwarz inequality and Young’s
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inequality gives

∣∣∣τ
M∑

i=1

∫

Ii

(
T4, ξ

n+1
)

x

∣∣∣ ≤ τ

M∑

i=1

∫

Ii

∥∥T4

∥∥
L2(Ωx)

∥∥ξn+1
∥∥

L2(Ωx)

≤ τ
M∑

i=1

∫

Ii

∥∥T4

∥∥2

L2(Ωx)
+

τ

4

∥∥ξn+1
∥∥2

0
,

∣∣∣τ
(
T6, G

1/2
minξ

n+1(ℓ+
0 )

)
x

∣∣∣ ≤ τ
∥∥T6

∥∥
L2(Ωx)

∥∥G
1/2
minξ

n+1(ℓ+
0 )

∥∥
L2(Ωx)

≤ τ
∥∥T6

∥∥2

L2(Ωx)
+

τ

4

∥∥ξn+1
∥∥2

dG
.

In order to bound the second term, let Π0G be the L2-projection of G in a space of piece-
wise constant functions in internal coordinate, using the orthogonality property (4.28) of
Πk, the Cauchy-Schwarz inequality and the inverse inequality to get

∣∣∣τ
M∑

i=1

∫

Ii

(
T5, G∂ℓξ

n+1
)

x

∣∣∣ ≤
∣∣∣τ

M∑

i=1

∫

Ii

(
T5,

(
G − Π0G

)
∂ℓξ

n+1
)

x

∣∣∣

≤ τ
M∑

i=1

∫

Ii

∥∥T5

∥∥
L2(Ωx)

|G − Π0G| k−1
i

∥∥ξn+1
∥∥

L2(Ωx)

≤ C τ

M∑

i=1

∫

Ii

∥∥T5

∥∥2

L2(Ωx)
+

τ

4

∥∥ξn+1
∥∥2

0
.

Inserting all estimates in (5.31) leads to

∥∥ξn+1
∥∥2

0
−

∥∥ξ̃n+1
∥∥2

0
+

τ

2

∥∥ξn+1
∥∥2

dG

≤ τ
M∑

i=1

∫

Ii

{
2
∥∥T4

∥∥2

L2(Ωx)
+ C

∥∥T5

∥∥2

L2(Ωx)

}
+ 2τ

∥∥T6

∥∥
L2(Ωx)

+ τ
∥∥ξn+1

∥∥2

0
. (5.32)

Adding (5.28) and (5.32), summing over n = 0, . . . , N − 1, using (5.15) and applying
Gronwall’s Lemma 2.3.4 in the same fashion as in Lemma 5.2.1 to get

∥∥ξN
∥∥2

0
+

τ

4

N−1∑

n=0

∫

Ωℓ

∥∥ξ̃n+1
∥∥2

S
+ τ

N−1∑

n=0

∥∥ξn+1
∥∥2

dG

≤ e2T
∥∥ξ0

∥∥2

0
+ e2T τ

N−1∑

n=0

[∥∥T1

∥∥2

0
+ 4ε

∥∥T2

∥∥2

0
+ 4

∫

Ωℓ

∑

K∈Th

δK

∥∥T3

∥∥2

L2(K)

+
M∑

i=1

∫

Ii

{
2
∥∥T4

∥∥2

L2(Ωx)
+ C

∥∥T5

∥∥2

L2(Ωx)

}
+ 2

∥∥T6

∥∥2

L2(Ωx)

]
. (5.33)

In the following, the arising terms on the right hand side of above equation have to be
bounded by the norms of the continuous solution of (4.2) and (4.3).
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Using triangle inequality, we get

∥∥∥∥
Ph,kũ(tn+1) − Ph,ku(tn)

τ
− ũt(t

n+1)

∥∥∥∥
2

0

≤ 2

∥∥∥∥
Ph,kũ(tn+1) − Ph,ku(tn)

τ
− Ph,kũt(t

n+1)

∥∥∥∥
2

0

+ 2
∥∥Ph,kũt(t

n+1) − ũt(t
n+1)

∥∥2

0
.

The estimates of first term uses the initial condition ũ(tn+) = u(tn) from first step in (4.2),
Taylor’s theorem with integral remainder term, commutation and stability property of
projection Ph,k gives

∥∥∥∥
Ph,kũ(tn+1) − Ph,kũ(tn)

τ
− Ph,kũt(t

n+1)

∥∥∥∥
2

0

≤ τ

∫ tn+1

tn

∥∥Ph,kũtt

∥∥2

0
≤ C τ

∫ tn+1

tn

∥∥ũtt

∥∥2

0
.

Using the splitting (4.33), interpolation error estimates of (5.5), (4.30) and condition
(4.32) we get for the second term

∥∥Ph,kũt(t
n+1) − ũt(t

n+1)
∥∥2

0

≤ 2

∫

Ωℓ

∥∥πhΠkũt(t
n+1) − Πkũt(t

n+1)
∥∥2

L2(Ωx)
+ 2

∫

Ωℓ

∥∥Πkũt(t
n+1) − ũt(t

n+1)
∥∥2

L2(Ωx)

≤ Ch2r+2
∥∥ũt(t

n+1)
∥∥2

L2(Hr+1)
+ Ck2q+2

∥∥ũt(t
n+1)

∥∥2

Hq+1(L2)
.

Similarly the estimates for the other terms can be obtained as follows

∥∥Ph,kũ(tn+1) − ũ(tn+1)
∥∥2

0

≤ 2

∫

Ωℓ

∥∥Ph,kũ(tn+1) − Πkũ(tn+1)
∥∥2

L2(Ωx)
+ 2

∫

Ωℓ

∥∥ũ(tn+1) − Πkũ(tn+1)
∥∥2

L2(Ωx)

≤ Ch2r+2
∣∣ũ(tn+1)

∥∥2

L2(Hr+1)
+ Ck2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(L2)
,

∥∥b · ∇x

(
Ph,kũ(tn+1) − ũ(tn+1)

∥∥2

0
≤ 2

∥∥b
∥∥2

0,∞

∫

Ωℓ

∥∥∇x

(
Πkπhũ(tn+1) − Πkũ(tn+1)

∥∥2

L2(Ωx)

+ 2
∥∥b

∥∥2

0,∞

∫

Ωx

∥∥∇x

(
Πkũ(tn+1) − ũ(tn+1)

∥∥2

L2(Ωℓ)

≤ Ch2r
∥∥ũ(tn+1)

∥∥2

L2(Hr+1)
+ Ck2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)
.

The estimates for the stabilizing terms can be obtained by using the local approximation
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properties

∫

Ωℓ

∑

K∈Th

δK

{∥∥ε∆x(Ph,k − I)ũ(tn+1)
∥∥2

L2(K)
+

∥∥b · ∇x(Ph,k − I)ũ(tn+1)
∥∥2

L2(K)

}

≤ 2
(

max
K∈Th

δK

)∫

Ωℓ

{
ε2

∥∥∆x(Ph,k − Πk)ũ(tn+1)
∥∥2

L2(K)
+ ε2

∥∥∆x(Πk − I)ũ(tn+1)
∥∥2

L2(K)

+
∥∥b · ∇x(Ph,k − Πk)ũ(tn+1)

∥∥2

L2(K)
+

∥∥b · ∇x(Πk − I)ũ(tn+1)
∥∥2

L2(K)

}

≤ C
(

max
K∈Th

δK

){
ε2h2r−2

∥∥ũ(tn+1)
∥∥2

L2(Hr+1)
+ ε2k2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(H2)

+ h2r
∥∥ũ(tn+1)

∥∥2

L2(Hr+1)
+ k2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)

}
.

The initial condition ũn+1 = u(tn) from the second step and Taylor theorem with integral
remainder term gives

∥∥∥∥
Ph,ku(tn+1) − Ph,ku(tn)

τ
− Ph,kut(t

n+1)

∥∥∥∥
2

0

≤ τ

∫ tn+1

tn

∥∥Ph,kutt

∥∥2

0
≤ C τ

∫ tn+1

tn

∥∥utt

∥∥2

0

and the approximation properties of πh and Πk gives

∥∥Ph,kut(t
n+1) − ut(t

n+1)
∣∣2
0
≤ 2

∥∥Ph,kut(t
n+1) − Πkut(t

n+1)
∣∣2
0
+ 2

∥∥Πkut(t
n+1) − ut(t

n+1)
∣∣2
0

≤ Ch2r+2
∥∥ut(t

n+1)
∥∥2

L2(Hr+1)
+ Ck2q+2

∥∥ut(t
n+1)

∥∥2

Hq+1(L2)
,

M∑

i=1

∫

Ii

∥∥(Πk − I)u(tn+1)
∥∥2

L2(Ωx)
≤ Ck2q+2

M∑

i=1

∫

Ii

∥∥u(q+1)(tn+1)
∥∥2

L2(Ωx)

≤ Ck2q+1
∥∥u(tn+1)

∥∥2

Hq+1(L2)

and

∥∥G
1/2
min(Ph,k − Πk)u(tn+1, ℓ+

0 )
∥∥2

L2(Ωx)
≤ Ch2r+2

∥∥Πku(tn+1, ℓ+
0 )

∥∥
Hr+1(Ωx)

≤ Ch2r+2
∥∥u(tn+1)

∥∥2

C(Hr+1)
.

Finally, the bounds for the boundary condition in internal coordinate are obtained as

∥∥Gmin

(
zmin(t

n+1) − zn+1
min,h

)∥∥2

L2(Ωx)
≤ Ch2r+2

∥∥zmin(t
n+1)

∥∥2

Hr+1(Ωx)
.

Therefore, we have the following optimal error bounds for the terms on the right hand
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side of (5.33)

∥∥T1

∥∥2

0
≤ C

[
τ

∫ tn+1

tn

∥∥ũtt

∥∥2

0
+ h2r+2

∥∥ũt(t
n+1)

∥∥2

L2(Hr+1)

+ k2q+2
(∥∥ũt(t

n+1)
∥∥2

Hq+1(L2)
+

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)

) ]
,

∥∥T2

∥∥2

0
≤ C

[
h2r

∥∥ũ(tn+1)
∥∥2

L2(Hr+1)
+ k2q+2

∥∥ũ(tn+1)
∥∥2

Hq+1(H1)

]
,

∫

Ωℓ

∑

K∈Th

δK

∥∥T3

∥∥2

L2(K)

≤ C
(

max
K∈Th

δK

)[
h2r

(
ε2h−2 + 1

)∥∥ũ(tn+1)
∥∥2

L2(Hr+1)
+ h2r+2

∥∥ũt(t
n+1)

∥∥2

L2(Hr+1)

+ τ

∫ tn+1

tn

∥∥ũtt

∥∥2

0

]
+

(
min
K∈Th

δK

)−1

h2r+2
∥∥ũ(tn+1)

∥∥2

L2(Hr+1)

+ C
(

max
K∈Th

δK

)
k2q+2

[(
ε2 + 1

)∥∥ũ(tn+1)
∥∥2

Hq+1(H2)
+

∥∥ũt(t
n+1)

∥∥2

Hq+1(L2)

]
,

M∑

i=1

∫

Ii

∥∥T4

∥∥2

L2(Ωx)
≤ C

[
τ

∫ tn+1

tn

∥∥utt

∥∥2

0
+ h2r+2

(∥∥ut(t
n+1)

∥∥2

L2(Hr+1)
+

∥∥u(tn+1)
∥∥2

H1(Hr+1)

)

+ k2q+2
∥∥ut(t

n+1)
∥∥2

Hq+1(L2)

]
,

M∑

i=1

∫

Ii

∥∥T5

∥∥2

L2(Ωx)
≤ Ck2q+2

∥∥u(tn+1)
∥∥2

Hq+1(L2)
,

∥∥T6

∥∥2

L2(Ωx)
≤ Ch2r+2

∥∥zmin(t
n+1)

∥∥2

Hr+1(Ωx)
.

Substituting these bounds in (5.33), applying the triangle inequality and using the inter-
polation error estimates leads to the following error estimates.

Theorem 5.3.1. Let ũ(tn), u(tn) and ũn
h,k, un

h,k be the solution of (4.2), (4.3) and
(5.3), (5.4). Let the stabilization parameter δK > 0 satisfies (5.6) and (5.9) for all K ∈ Th.
Under the regularity Assumption A4 there holds

∥∥u(tn) − un
h,k

∥∥2

0
+ τ

n−1∑

m=0

∫

Ωℓ

∥∥ũ(tm+1) − ũm+1
h,k

∥∥2

S
+ τ

n−1∑

m=0

∥∥u(tm+1) − um+1
h,k

∥∥2

dG

≤ Ce3T/2

[
τ 2 + h2r

(
ε + δ + h2

)
+ h2r−2δ

(
ε2 + h + h2

)
+ h2r+2

(
min
K∈Th

δK

)−1

+ k2q+1 + δk2q+2 +
∥∥Ph,kz0 − u0

h,k

∥∥2

0

]
, (5.34)
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where δ =
(

max
K∈Th

δK

)
and C is a constant, independent of ε, h and k, depends only on u,

ũ, ut, ũt, utt and ũtt.

Using the same procedure as above, we end up with (5.33) with factor e4T on the right
hand side. The same analysis as in the proof of Theorem 5.3.1 gives the following error
estimates.

Theorem 5.3.2. Let ũ(tn), u(tn) and ũn
h,k, un

h,k be the solution of (4.2), (4.3) and
(5.3), (5.4). Let the stabilization parameter δK > 0 satisfies (5.6) and (5.23) for all
K ∈ Th. Under the regularity Assumption A4 there holds

∥∥u(tn) − un
h,k

∥∥2

0
+ τ

n−1∑

m=0

∫

Ωℓ

∥∥ũ(tm+1) − ũm+1
h,k

∥∥2

S
+ τ

n−1∑

m=0

∥∥u(tm+1) − um+1
h,k

∥∥2

dG

≤ Ce4T

[
τ 2 + h2r

(
ε + δ + h2

)
+ h2r−2δ

(
ε2 + h + h2

)
+ h2r+2

(
min
K∈Th

δK

)−1

+ k2q+1 + δk2q+2 +
∥∥Ph,kz0 − u0

h,k

∥∥2

0

]
, (5.35)

where δ =
(

max
K∈Th

δK

)
and C is a constant, independent of ε, h and k, depends only on u,

ũ, ut, ũt, utt and ũtt.

In order to get only one asymptotic order of convergence for the mesh width h and time
step length τ in the error estimates (5.34), (5.35) and (4.44), we have to assume that the
mesh size k in internal coordinate is small enough. Then, the optimal scaling of mesh
width h and time step length τ can be derived from these estimates. Similarly, the opti-
mal scaling for τ and k is obtained by assuming that the mesh width h small.

In SUPG method, the stabilization parameters δK depends upon the length of time
step, see (5.9) and (5.23). These conditions come from the fact that, in addition to
second order derivatives and source term, the time derivative has to be added to the
stabilizing term in order to ensures the consistency. This adds a non-symmetric term
that can not be easily bounded using standard estimates. Under the assumptions of
Lemma 5.2.1 and Corollary 5.2.3, the stabilization parameters are set to δk = δ = τ/4
and δK =

√
τhK/(4‖b‖0,∞), respectively. For fixed mesh width k in internal coordinate,

the optimal scaling in convection-dominated regime ε ≪ h is obtained by balancing the
terms O(τ) and O(τ−1/2hr+1) in the error estimates (5.34). In the estimate (5.35), the
terms O(τ) and O(τ−1/4hr+1/2) have to be balanced to get an optimal scaling.

Similarly, the terms O(τ) and O(τ 1/2kq+1) have to be balanced for fixed mesh width
h in (5.34) and (5.35). In this case we obtain τ = O(k2q+2) as optimal choice. For fixed
mesh width h, the number of time steps is too large to get the convergence orders for
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dG(2). Furthermore, the stabilization vanishes in the time-continuous limit.

On the other hand, the LPS method is unconditionally stable, i.e., the stabilization pa-
rameters µK do not depend on the length of time step. This is because neither time
derivatives nor second order derivatives have to be added to the stabilizing terms.

In one-level LPS, the discretization stencil does not increase compared to standard Galerkin
or SUPG approach since the approximation and projection spaces live on the same mesh.
Although the system looks larger due to the enrichment of the finite element space, the
additional degrees of freedom can be eliminated locally by static condensation. In this
way, one can work with the same number of degrees of freedom which are needed to
achieve the appropriate approximation order.

In convection-dominated regime, the optimal scaling for (4.44) are obtained by balancing
the terms O(τ) and O(hr+1/2) by assuming k fixed. While keeping h fixed, the terms
O(τ) and O(kq+1/2) have to be balanced. With this scaling the time step length is larger
than in SUPG case and optimal order of convergence in internal coordinate can easily be
obtained.

5.4 Numerical studies and comparison

This section presents some numerical results for the Streamline-Upwind Petrov-Galerkin,
local projection stabilization and discontinuous Galerkin methods applied to population
balance equation. All numerical calculations were performed with the finite element pack-
age MooNMD [38].

For the numerical tests, Q1, Q2 in SUPG method and for (Vh, Dh) the pairs (Qbubble
1 , P0)

and (Qbubble
2 , P disc

1 ) in LPS method are used. For discretization in internal coordinate,
discontinuous Galerkin method of first and second order are used. The stabilization pa-
rameter for the LPS method have been chosen as

µK = µ0hK ∀K ∈ Th

where µ0 denotes a constant which is specified in the different test calculations. In order
to support the theoretical results presented in the previous Sections, the first example is
the generalization of an example in [39] and the second one is from [29].

Test example 1: Consider (4.1) with Ωx = (0, 1)2, Ωℓ = [0, 1], T = 1, G = 1, two
different choices of ε, b = (1,−1) and the right-hand side is chosen such that

z(t, ℓ, x, y) = esin(2πt) sin(2πℓ) sin(2πx) sin(2πy)

is the solution of (4.1). In convection-dominated regime the simulation were performed
with ε = 10−8 and in diffusion-dominated regime with ε = 1. In space, uniform quadrilat-
eral grid is used with coarsest grid (level 0) obtained by dividing the unit square into four
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small quadrilaterals and the initial grid in internal coordinate contains two line segments.
The mesh widths h and k are defined by dividing the diameters of the mesh cells by

√
2.

In order to get only one asymptotic order of convergence for the the mesh width h and
time step length τ for the error estimates (5.34) and (5.35), one have to assume that the
mesh size k in internal coordinate is small enough. Then, the optimal scaling of mesh
width h and the time step length τ can be derived from these estimates. Similarly, the
optimal scaling for τ and k are obtained by assuming that the mesh width h is small.

The stabilization parameter for the estimates (5.34) under the assumptions of Lemma 5.2.1
is set to δK = δ = τ/4. In the convection-dominated regime ε ≪ h, the terms O(τ) and
O(hr+1τ−1/2) have to be balanced to obtain an optimal estimate (5.34). This leads to
the scaling τ = O(h2(r+1)/3), when the mesh size k is very small. In diffusion-dominated
regime h ≪ ε, the terms O(τ), O(hr−1ετ 1/2) and O(τ−1/2hr+1) have to be balanced. This
gives the optimal choice of time step length τ = O(h2(r+1)/3) or τ = O(h2/ε). On the
other hand, the local projection stabilization method is unconditionally stable, i.e., the
stabilization parameter µK does not depends on the length of the time step. In convection-
dominated regime ε ≪ h, the terms O(τ) and O(hr+1/2) have to be balanced to obtain
an optimal estimate (4.44). This leads to the scaling τ = O(hr+1/2), when the mesh
size k assumed to be small enough. The optimal scaling in diffusion-dominated regime is
τ = O(hr).

In convection-dominated regime (ε ≪ h), the errors and rate of convergence are listed
in Tables 5.1 in space for Q1 and for (Qbubble

1 , P0) with stabilizing parameter µ0 = 2.5
and dG(1) in internal coordinate with k = 1/32 for the estimates (5.34) and (4.44), re-
spectively. In Table 5.2, the convergence results for Q2, (Qbubble

2 , P disc
1 ) and dG(2) in

internal coordinate are presented with k = 1/64 and stabilizing parameter µ0 = 2.5.
We see that the expected convergence rate O(h4/3), O(h2) for the estimates (5.34) and
O(h3/2), O(h5/2) for (4.44) can be obtained. In diffusion-dominated regime h ≪ ε, the
errors and convergence rates are given in Tables 5.3 and 5.4. For r = 1, only first order
convergence can be expected due to the presence of term (hrε1/2). The convergence re-
sults in Table 5.3 are calculated in space for Q1, (Qbubble

1 , P0) with stabilization parameter
µ0 = 2.5 and dG(1) in internal coordinate on mesh size k = 1/64 and in Table 5.4 for Q2,
(Qbubble

2 , P disc
1 ) and dG(2) in internal coordinate.

Concerning the convergence rate in internal coordinate, the mesh size h is chosen
small enough, the stabilizing parameter according to the stability Lemma 5.2.1 are set
to δK = δ = τ/4. In both convection- and diffusion-dominated regime, the terms O(τ)
and O(kq+1δ−1/2) in the estimates (5.34), the terms O(τ) and O(kq+1/2) in (4.44) have
to be balanced. Then the optimal scalings are O(τ) = O(k2(q+1)) and O(τ) = O(kq+1/2).
In both regime the expected convergence orders for dG(1) and dG(2) are of O(k3/2) and
O(k5/2) for the error estimates (5.34) and (4.44), respectively. The corresponding results
in Tables 5.5 and 5.7 are computed for dG(1), Q1 and (Qbubble

1 , P0) and in Tables 5.6 and
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Table 5.1: Errors and convergence orders in space for (5.34) and (4.44): ε = 10−8, dG(1)
with k = 1/32: Q1 for SUPG, (Qbubble

1 , P0) for LPS with µ0 = 2.5.

Level L2, Q1 SUPG, Q1 L2, (Qbubble
1 , P0) LPS,(Qbubble

1 , P0)
error order error order error order error order

0 1.0364+0 2.7363+0 7.1411-1 3.3569+0
1 4.9411-1 1.07 9.9410-1 1.46 4.0592-1 0.82 1.1168+0 1.59
2 3.2324-1 0.61 4.7248-1 1.07 1.5716-1 1.37 3.9051-1 1.52
3 1.8328-1 0.82 2.2358-1 1.08 6.0867-2 1.37 1.4058-1 1.48
4 8.9178-2 1.04 1.0071-1 1.15 2.8353-2 1.10 5.3124-2 1.40

Table 5.2: Errors and convergence orders in space for (5.34) and (4.44): ε = 10−8, dG(2)
with k = 1/64: Q2 for SUPG, (Qbubble

2 , P disc
1 ) for LPS with µ0 = 2.5.

Level L2, Q2 SUPG, Q2 L2, (Qbubble
2 , P disc

1 ) LPS,(Qbubble
2 , P disc

1 )
error order error order error order error order

0 5.7266-1 1.3868+0 8.5782-1 4.5615+0
1 3.6078-1 0.67 5.2445-1 1.40 2.9045-1 2.86 1.6818+0 1.44
2 1.4570-1 1.31 1.6769-1 1.65 6.9940-2 2.06 3.2138-1 2.39
3 4.3851-2 1.73 4.7272-2 1.83 1.4017-2 2.32 5.5968-2 2.52
4 1.1602-2 1.92 1.2314-2 1.94 2.5580-3 2.45 9.3766-3 2.58

5.8 for dG(2), Q2 and (Qbubble
2 , P disc

1 ) on level 6 with stabilization parameter µ0 = 2.5.
The results match well with theoretical prediction.

Table 5.3: Errors and convergence orders in space for (5.34) and (4.44): ε = 1, dG(1)
with k = 1/64: Q1 for SUPG, (Qbubble

1 , P0) for LPS with µ0 = 2.5.

Level L2, Q1 SUPG, Q1 L2, (Qbubble
1 , P0) LPS,(Qbubble

1 , P0)
error order error order error order error order

2 3.3991-1 2.6562+0 2.5507-1 1.9153+0 ——
3 1.5663-1 1.12 1.2543+0 1.08 9.9371-2 1.36 7.2879-1 1.39
4 6.4892-2 1.27 5.6043-1 1.16 3.6532-2 1.44 2.8186-1 1.37
5 2.6657-2 1.28 2.5227-1 1.15 1.4092-2 1.37 1.1382-1 1.31
6 1.1884-2 1.17 1.1603-1 1.12 7.3250-3 0.95 4.9044-2 1.22

According to the stability Lemma 5.2.2, the stabilizing parameters in error estimates

(5.35) are set to δK = τ1/2hK

4‖b‖
. In convection- and diffusion-dominated regime, the terms

O(τ) and O(hr+1/2τ−1/4) gives the optimal scaling τ = O(h4(r+1/2)/5). In Tables 5.9
and 5.10, the errors and convergence orders in space for Q1 and Q2 are given. The
convergence orders are obtained for Q1, Q2 and dG(1), dG(2) with k = 1/32, k = 1/64,
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Table 5.4: Errors and convergence orders in space for (5.34) and (4.44): ε = 1, dG(2)
with k = 1/64: Q2 for SUPG, (Qbubble

2 , P disc
1 ) for LPS with µ0 = 2.5.

Level L2, Q2 SUPG, Q2 L2, (Qbubble
2 , P disc

1 ) LPS,(Qbubble
2 , P disc

1 )
error order error order error order error order

0 7.5123-1 6.2969+0 6.9867-1 6.7706+0
1 3.7996-1 0.98 2.7509+0 1.20 2.1229-1 1.72 1.8473+0 1.87
2 1.1103-1 1.78 7.8478-1 1.81 4.0235-2 2.40 3.2928-1 2.49
3 2.8503-2 1.96 2.0129-1 1.96 7.1660-3 2.49 5.9642-2 2.47
4 7.1778-3 1.99 5.0638-2 1.99 1.2702-3 2.50 1.1430-2 2.38

Table 5.5: Errors and convergence orders in internal coordinate dG(1) for (5.34) and
(4.44): ε = 10−8, Q1 for SUPG, (Qbubble

1 , P0) for LPS with µ0 = 2.5 on level 6.

k L2, Q1 SUPG, Q1 L2, (Qbubble
1 , P0) LPS,(Qbubble

1 , P0)
error order error order error order error order

1/2 1.1913+0 1.2111+0 1.0283+0 1.0209+0
1/4 4.0470-1 1.56 3.9885-1 1.60 4.0804-1 1.33 4.0259-1 1.34
1/8 1.5196-1 1.42 1.5039-1 1.41 1.5248-1 1.42 1.5212-1 1.40

Table 5.6: Errors and convergence orders in internal coordinate dG(2) for (5.34) and
(4.44): ε = 10−8, Q2 for SUPG, (Qbubble

2 , P disc
1 ) for LPS with µ0 = 2.5 on level 6.

k L2, Q2 SUPG, Q2 L2, (Qbubble
2 , P1) LPS,(Qbubble

2 , P1)
error order error order error order error order

1/2 1.8438-1 2.0790-1 4.2743-1 4.0093-1
1/4 8.6508-2 1.09 9.1876-2 1.19 1.4034-1 1.61 1.4273-1 1.49
1/8 2.3084-2 1.91 2.4970-2 1.88 2.8987-2 2.28 3.0517-2 2.23
1/16 6.7152-3 1.78 7.3340-3 1.77 5.2873-3 2.46 5.6203-3 2.44

Table 5.7: Errors and convergence orders in internal coordinate dG(1) for (5.34) and
(4.44): ε = 1, Q1 for SUPG, (Qbubble

1 , P0) for LPS with µ0 = 2.5 on level 6.

k L2, Q1 SUPG, Q1 L2, (Qbubble
1 , P0) LPS,(Qbubble

1 , P0)
error order error order error order error order

1/2 1.0294+0 1.1930+0 7.3781-1 2.9389+0
1/4 1.8345-1 2.49 2.7112-1 2.13 2.3739-1 1.64 6.9701-1 2.08
1/8 6.3522-2 1.53 1.3564-1 1.00 6.9069-2 1.78 1.3693-1 2.35

respectively. From (5.35), the expected rate of convergence for Q1 and Q2 are of O(h6/5)

89



CHAPTER 5. PBE, SUPG METHOD IN SPACE AND DG IN
INTERNAL COORDINATE

Table 5.8: Errors and convergence orders in internal coordinate dG(2) for (5.34) and
(4.44): ε = 1, Q2 for SUPG, (Qbubble

2 , P disc
1 ) for LPS with µ0 = 2.5 on level 6.

k L2, Q2 SUPG, Q2 L2, (Qbubble
2 , P disc

1 ) LPS,(Qbubble
2 , P disc

1 )
error order error order error order error order

1/2 1.9402-1 9.6722-1 4.9673-1 3.1413+0
1/4 6.1087-2 1.67 2.9147-1 1.73 1.0851-1 2.20 6.5335-1 2.27
1/8 1.5912-2 1.94 8.9782-2 1.70 1.9656-2 2.47 1.1814-1 2.47
1/16 4.4133-3 1.85 2.8066-2 1.68 3.4666-3 2.50 2.1018-2 2.49

and O(h2), respectively.

Table 5.9: Errors and rate of convergence in space for the estimates (5.35), ε = 10−8,
dG(1) and dG(2) with k = 1/32 and k = 1/64: Q1 and Q2 for SUPG.

Level L2, Q1 SUPG, Q1

error order error order
2 3.8370-1 4.6284-1
3 2.3993-1 0.68 2.4910-1 0.89
4 1.3123-1 0.87 1.3316-1 0.90
5 6.4660-2 1.02 6.6503-2 1.00
6 3.0378-2 1.09 3.1699-2 1.07

Level L2, Q2 SUPG, Q2

error order error order
0 5.7265-1 1.3868+0
1 3.6077-1 0.67 5.2443-1 1.40
2 1.4570-1 1.31 1.6769-1 1.65
3 4.3849-2 1.73 4.7270-2 1.83
4 1.1595-2 1.92 1.2308-2 1.94

Table 5.10: Errors and rate of convergence in space for the estimates (5.35), ε = 1, dG(1)
and dG(2) with k = 1/32 and k = 1/64: Q1 and Q2 for SUPG.

Level L2, Q1 SUPG, Q1

error order error order
3 2.1458-1 1.5424+0
4 9.9923-2 1.10 7.3057-1 1.08
5 4.4678-2 1.16 3.3605-1 1.12
6 2.0283-2 1.14 1.5437-1 1.12
7 1.0265-2 0.98 7.1537-2 1.11

Level L2, Q2 SUPG, Q2

error order error order
0 7.5120-1 6.2966+0
1 3.7995-1 0.98 2.7508+0 1.20
2 1.1102-1 1.78 7.8476-1 1.81
3 2.8490-2 2.00 2.0128-1 1.96
4 7.1628-3 2.00 5.0614-2 1.99

Test example 2: In this example we show numerical experiment for the finite element
discretization of population balance equation (4.1). Let us consider (4.1) in the domain
Ωx = [0, 1]×[0, 1] and Ωℓ = [0, 1] with homogeneous boundary conditions. We take G = 1,
ε = 10−8, b1 = b2 = 1, the source term f = 1, the initial condition z0 = 0 and the final
time T = 1.
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In the numerical simulation a uniform grid of 16384 quadrilateral cells for the triangulation
Th and 32 line segments for Ωℓ were used. This results in 16 641 degrees of freedom for Q1

finite elements, 33 025 for Qbubble
1 elements including the Dirichlet nodes and 64 degrees

of freedom for dG(1). The computational results are obtained with δK = 0 for Galerkin
finite element method and for SUPG method with δK = τ/4 and δK = τ 1/2hK/4 for all
K ∈ Th. In LPS method the stabilization parameters are set to µK = µ0hK for all K ∈ Th.

The obtained numerical results for Q1 and (Qbubble
1 , P0) with µ0 = 0.1 at ℓ = 0.0066

and final time T = 1 are plotted in Fig 5.1. To show the effect of the local projection
stabilization, the second figure from left to right is generated using only the linear part
(Q1) of the solution. The numerical solution, obtained by two different choice of stabiliza-
tion parameters δK for SUPG method, possess some interior layers. This is because the
stabilization effect becomes less for small time steps. In LPS method, the stabilization pa-
rameter can be chosen independent of the time step length. Therefore, for suitable choice
of stabilization parameter one can remove the unphysical oscillations. Summarizing our
numerical studies, one can conclude that the LPS method help to reduce the spurious
oscillations in the numerical solution of population balance equation.
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(a) Galerkin finite element method (b) LPS with µK = 0.1hK

(c) SUPG with δK = τ/4 (d) SUPG with δK =
√

τhK/4

Figure 5.1: Computed solutions for different methods and parameters applied to popula-
tion balance equation (4.1).
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Chapter 6

ADI type methods based on an
equivalent one-step formulation

This chapter is concerned with the alternating direction method for the solution of popu-
lation balance equation (4.1). Alternating direction scheme uses the same principle as the
operator splitting method, i.e., it reduces the high dimensional problem into a set of lower
ones. At first, LPS and dG methods are used to discretize the whole problem in space
and internal coordinate, respectively. Applying backward Euler time stepping method
then gives us the fully discrete scheme. The matrices in the fully discrete scheme are
tensor product of the space and internal coordinate directions. We discuss the stability
and convergence of the method using an equivalent one-step formulation.

This chapter is organized as follows: In Section 6.1 we derive the weak form of the pop-
ulation balance equation. The semi-discretization in space and internal coordinate based
on local projection stabilization and discontinuous Galerkin method are introduced. Fur-
thermore, an optimal error estimate for the semi-discretized problem is given. We then
introduce Alternating direction Galerkin procedure in Section 6.2 and derive equivalent
one-step formulation. In Section 6.3 we derive the stability results and then establish the
convergence estimates in Section 6.5.

6.1 Weak and semi-discrete formulation

To derive the weak formulation of problem (4.1), we use the notations and function spaces
that were already defined in Chapter 4. Let z ∈ L2(0, T ;P) and zt ∈ L2(0, T ;P ′), where
P ′ is the dual space of P . Then the variational formulation of (4.1) reads:

Find z ∈ L2(0, T ;P) with zt ∈ L2(0, T ;P ′) such that for all v ∈ P

∫

Ωℓ

(∂z

∂t
, v

)

x
+ B(z, v) =

(
Gminzmin, v(ℓmin)

)

x
+

∫

Ωℓ

(f, v)x (6.1)
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with z(0, ℓ, x) = z0(ℓ, x). Recalling that

P =
{

v ∈ L2(Ωℓ × Ωx) : v ∈ L2(Ωx; W ) ∩ L2(Ωℓ; V )
}

.

Here the bilinear form B(·, ·) is given by

B(u, v) =

∫

Ωℓ

{(∂(Gu)

∂ℓ
, v

)

x
+ a(u, v)

}
+

(
Gminz(ℓmin), v(ℓmin)

)

x
. (6.2)

After discretizing in space and internal coordinate using LPS and dG, the semi-discrete
problem is defined as follows: For all t ∈ (0, T ), find zh,k(t) ∈ Sr,q

h,k such that for all
X ∈ Sr,q

h,k

∫

Ωℓ

(
∂tzh,k, X

)

x
+ Bh

(
zh,k, X

)
=

(
Gminzmin,h, X(ℓ+

0 )
)

x
+

∫

Ωℓ

(f,X)x, (6.3)

where zh,k(0) and zmin,h are suitable approximations of z0 and zmin, respectively. Here the
stabilized bilinear form Bh is given by

Bh(u, v) :=
N∑

i=1

∫

Ii

{(∂(Gu)

∂ℓ
, v

)

x
+ ah(u, v)

}
+

N−1∑

i=1

([
(Gu)

]
i
, v(ℓ+

i )
)

x

+
(
Gminu(ℓ+

0 ), v(ℓ+
0 )

)

x
, (6.4)

and the bilinear form ah is the same as in (4.15). Integration by parts with respect to ℓ
gives the second representation of the bilinear form Bh

Bh(u, v) :=
N∑

i=1

∫

Ii

{
−

(
Gu,

∂v

∂ℓ

)

x
+ ah(u, v)

}
−

N−1∑

i=1

(
u(ℓ−i ),

[
(Gv)

]
i

)

x

+
(
u(ℓ−M), Gv(ℓ−M)

)

x
. (6.5)

Let us introduce the mesh dependent norm

‖v‖DG =

{ M∑

i=1

∫

Ii

(
∂G

∂ℓ
‖v‖2

L2(Ωx) + 2|||v|||2
)

+
M−1∑

i=1

∥∥[
(G1/2v)

]
i

∥∥2

L2(Ωx)

+
∥∥G

1/2
minv(ℓ+

0 )
∥∥2

L2(Ωx)
+

∥∥G1/2
maxv(ℓ−M)

∥∥2

L2(Ωx)

}1/2

, (6.6)

where ||| · ||| is defined in (4.16).

Lemma 6.1.1. The bilinear form Bh is coercive with respect to the mesh dependent norm
‖ · ‖DG, i.e.,

Bh(vh, vh) ≥
1

2
‖vh‖2

DG, ∀vh ∈ Sr,q
h,k. (6.7)

Proof. The statement of the lemma follows by adding the two representations of Bh,
setting uh = vh, and using the coercivity of ah with respect to the triple norm.
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6.2 Semidiscrete error estimates

Let z(t) be the solution of the continuous problem (6.1) and zh,k(t) be the solution of
semidiscrete problem (6.3). As in Section 4.4, we define

z(t) − zh,k(t) = z(t) − Ph,kz(t) + Ph,kz(t) − zh,k(t) = η(t) + ξ(t), (6.8)

where η := z−Ph,kz, ξ := Ph,kz−zh,k. As in (4.31), the projection operator Ph,k is defined
for sufficiently smooth function w by

Ph,kw = jhΠkw = Πkjhw.

Furthermore, the separate errors in space and in internal coordinate are decomposed as
follows

Ph,kz(t) − z(t) = Ph,kz(t) − Πkz(t) + Πkz(t) − z(t) = ϑ(t) + ϕ(t) (6.9)

where ϑ := Ph,kz − Πkz and ϕ := Πkz − z.

Theorem 6.2.1. Suppose the data of the problem be sufficiently smooth. Let assumptions
A1-A3 defined in Chapter 2 be fulfilled. If µK ∼ hK for all K ∈ Th, then there exists a
constant C, independent of ε and h, such that

|||jhw − w||| ≤ C (ε1/2 + h1/2) hr‖w‖Hr+1(Ωx) (6.10)

for all w ∈ H1
0 (Ωx) ∩ Hr+1(Ωx).

Proof. For proof see [76, Theorem 3.74].

The next Lemma states the approximation results based on the interpolation error esti-
mates (2.6) and (4.27)-(4.30).

Lemma 6.2.2. Suppose A1-A4, if µK ∼ hK for all K ∈ Th, then for all t ∈ (0, T ] we
have the following estimates for the interpolation errors

∥∥Ph,kz(t) − Πkz(t)
∥∥

DG
≤ C(ε1/2 + h1/2)hr

{
‖z(t)‖L2(Hr+1) + ‖z(t)‖C(Hr+1)

}
, (6.11)

∥∥Πkz(t) − z(t)
∥∥

DG
≤ C kq+1/2 ‖z(t)‖Hq+1(H1). (6.12)

Proof. For the sake of simplicity, we drop the dependency over t within the proof. From
(6.6), we have for ϑ = Ph,kz − Πkz = Πk(jhz − z)

1

2
‖ϑ‖2

DG ≤
M∑

i=1

∫

Ii

(
∂G

∂ℓ
‖ϑ‖2

L2(Ωx) + |||ϑ|||2
)

+
M−1∑

i=1

‖
[
(G1/2ϑ)

]
i
‖2

L2(Ωx)

+
∥∥G

1/2
minϑ(ℓ+

0 )
∥∥2

L2(Ωx)
+

∥∥G1/2
maxϑ(ℓ−M)

∥∥2

L2(Ωx)
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Note that the interpolation jhz is continuous in ℓ-direction, thus the jump terms [jhz−z]i
vanish for i = 1, . . . ,M − 1. Hence

1

2
‖ϑ‖2

DG =
M∑

i=1

∫

Ii

(
∂G

∂ℓ
‖ϑ‖2

L2(Ωx) + 2|||ϑ|||2
)

+
∥∥G

1/2
minϑ(ℓ+

0 )
∥∥2

L2(Ωx)
+

∥∥G1/2
maxϑ(ℓ−M)

∥∥2

L2(Ωx)

≤
∥∥Ph,kz − z

∥∥2

dG
+

M∑

i=1

∫

Ii

∣∣∣∣∣∣Ph,kz − z
∣∣∣∣∣∣2.

We conclude the estimate (6.11) by using the results (4.34), (6.10) and condition (4.32)

‖Ph,ku − Πku‖DG ≤ C(ε1/2 + h1/2)hr

{∫

Ωℓ

(
h1/2‖u‖Hr+1(Ωx) + ‖u‖Hr+1(Ωx)

)

+ ‖z(ℓ+
0 )‖Hr+1(Ωx) + ‖z(ℓ−M)‖Hr+1(Ωx)

}

≤ C(ε1/2 + h1/2)hr

{
‖z‖L2(Hr+1) + ‖z‖C(Hr+1)

}
.

From the second representation (6.5) of the bilinear form Bh and using Πkz(ℓ−i ) = z(ℓ−i ),
i = 1, . . . ,M − 1, we have for ϕ = Πkz − z

1

2
‖ϕ‖2

DG ≤ Bh(ϕ, ϕ) =
N∑

i=1

∫

Ii

{
−

(
Gϕ,

∂ϕ

∂ℓ

)

x

+ ah(ϕ, ϕ)

}
−

N−1∑

i=1

(
ϕ(ℓ−i ),

[
(Gϕ)

]
i

)

x

+
(
ϕ(ℓ−M), Gmaxϕ(ℓ−M)

)

x
= ‖ϕ‖2

dG +
N∑

i=1

∫

Ii

|||ϕ|||2.

Then, the L2-stability of the fluctuation operator κh and the parameter choice µK ∼ hK

gives for the second term on the right-hand side

|||ϕ|||2 = ε
∥∥∇xϕ

∥∥2

L2(Ωx)
+

∑

K∈Th

µK

∥∥κh∇xϕ
∥∥2

L2(K)

≤ C (ε + h)
∥∥∇xϕ

∥∥2

L2(Ωx)
.

Incorporating this bound in the above equation, we conclude the second statement of
lemma using (4.30) and (4.35)

‖ϕ‖2
DG = ‖ϕ‖2

dG + (ε + h)
M∑

i=1

∫

Ii

‖ϕ‖2
H1(Ωx)

≤ C k2q+1‖z‖2
Hq+1(L2) + C (ε + h) k2q+2

∫

Ii

∥∥z(q+1)
∥∥2

H1(Ωx)

≤ C (εk + hk + 1) k2q+1 ‖z‖2
Hq+1(H1).

This completes the proof.
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Lemma 6.2.3. Suppose A1-A4 and µK ∼ hK for all K ∈ Th. For the solution zh,k(t) of
the semidiscrete problem (6.3) the following estimates hold true for all t ∈ [0, T ]

Bh

(
(Ph,kz − Πkz)(t), ξ(t)

)
≤ C hr+1

[
‖z(t)‖H1(Hr+1) + ‖z(t)‖L2(Hr+1)

]
‖ξ(t)‖0

+ C hr

[
(ε1/2 + h1/2)‖z(t)‖L2(Hr+1) + h‖z(t)‖C(Hr+1)

]
‖ξ(t)‖DG,

(6.13)

Bh

(
(Πkz − z)(t), ξ(t)

)
≤ C kq+1

[
‖z(t)‖Hq+1(H1) + ‖z(t)‖Hq+1(L2)

]
‖ξ(t)‖0

+ C (ε1/2 + h1/2) kq+1‖z(t)‖Hq+1(H1) ‖ξ(t)‖DG. (6.14)

Proof. For notation simplicity, we again drop the dependency of t. From (6.4), we have
for ϑ = Ph,kz − Πkz

Bh(ϑ, ξ) =
N∑

i=1

∫

Ii

{(∂(Gϑ)

∂ℓ
, ξ

)

x
+ ah(ϑ, ξ)

}
+

N−1∑

i=1

([
(Gϑ)

]
i
, ξ(ℓ+

i )
)

x

+
(
Gminϑ(ℓ+

0 ), ξ(ℓ+
0 )

)

x

= B
(
ϑ, ξ

)
+

M∑

i=1

∫

Ii

ah(ϑ, ξ).

Hence, from (4.36) and (4.38), we get the first statement of the lemma

Bh(ϑ, ξ) ≤ C hr+1

[
‖z‖H1(Hr+1) + ‖z‖L2(Hr+1)

]
‖ξ‖0

+ C hr

[
(ε1/2 + h1/2)‖z‖L2(Hr+1) + h‖z‖C(Hr+1)

]
‖ξ‖DG.

Similarly from the second representation (6.5) of bilinear form Bh, we have for ϕ = Πkz−z

Bh(ϕ, ξ) =
N∑

i=1

∫

Ii

[
−

(
Gϕ,

∂ξ

∂ℓ

)

x

+ ah(ϕ, ξ)
]
−

N−1∑

i=1

(
ϕ(ℓ−i ),

[
(Gξ)

]
i

)

x
+

(
ϕ(ℓ−M), Gmaxξ(ℓ

−
M)

)

x

= B
(
ϕ, ξ

)
+

M∑

i=1

∫

Ii

ah(ϕ, ξ).

Hence, the second statement follows from (4.37) and (4.39)

Bh(ϕ, ξ) ≤ C (ε1/2 + h1/2) kq+1‖z‖Hq+1(H1) ‖ξ‖DG

+ C kq+1

{
‖z‖Hq+1(H1) + ‖z‖Hq+1(L2)

}
‖ξ‖0.
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The next theorem states the main results of this section.

Theorem 6.2.4. Let z(t) and zh,k(t) be the solution of the continuous problem (6.1) and
the semi-discrete problem (6.3), respectively. If µK ∼ hK, for all K ∈ Th, then there
exists a positive constant C independent of t, ε, h, and k such that for all t ∈ [0, T ]

∥∥z(t) − zh,k(t)
∥∥2

0
+

1

2

∫ t

0

‖z(t) − zh,k(t)‖2
DG ≤ Cet

[
∥∥Ph,kz0 − zh,k(0)

∥∥2

0
+

+
(
ε + h

)
h2r

{
‖z0‖2

L2(Hr+1) +

∫ t

0

(∥∥zt(s)
∥∥2

L2(Hr+1)
+

∥∥z(s)
∥∥2

H1(Hr+1)
+

∥∥zmin(s)
∥∥2

r+1

)}]

+ Cetk2q+1

[
∥∥z0

∥∥2

Hq+1(L2)
+

∫ t

0

(∥∥z(s)
∥∥2

Hq+1(H1)
+

∥∥zt(s)
∥∥2

Hq+1(L2)

)]

Proof. Since ξ ∈ Sr,q
h,k, we apply (6.3) to ξ = Ph,kz− zh,k, using (6.1) and the fact that the

projection operator Ph,k commutes with the time derivative to get

∫

Ωℓ

(
ξt, vh

)
x

+ Bh

(
ξ, vh

)

=

∫

Ωℓ

(
(Ph,kz)t − ∂tzh,k, vh

)
x

+ Bh

(
Ph,kz − zh,k, vh

)

=

∫

Ωℓ

(
Ph,kzt, vh

)

x
+ Bh

(
Ph,kz, vh

)
−

(
Gminzmin,h, vh(ℓ

+
0 )

)

x
−

∫

Ωℓ

(f, vh)x

=

∫

Ωℓ

(
Ph,kzt − zt, vh

)

x
+ Bh

(
Ph,kz − z, vh

)
+

∫

Ωℓ

Sh(z, vh)

+
(
Gmin(zmin − zmin,h), vh(ℓ

+
0 )

)

x
.

Setting vh = ξ, and using (6.7), we obtain

1

2

d

dt
‖ξ‖2

0 +
1

2
‖ξ‖2

DG ≤
∫

Ωℓ

(
Ph,kzt − zt, ξ

)

x
+ Bh

(
Ph,kz − z, ξ

)
+

∫

Ωℓ

Sh(z, ξ)

+
(
Gmin(zmin − zmin,h), ξ(ℓ

+
0 )

)

x

= I1 + I2 + I3 + I4. (6.15)

In the next paragraphs we analyze the terms Ii, i = 1, . . . , 4. Using Cauchy-Schwarz
inequality, splitting (6.9), interpolation error estimates (2.6), (4.30) and condition (4.32),
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we get for I1

|I1| =
∣∣∣
∫

Ωℓ

(
Ph,kzt − zt, ξ

)

x

∣∣∣ ≤
∫

Ωℓ

‖Ph,kzt − zt‖L2(Ωx)‖ξ‖L2(Ωx)

≤
∫

Ωℓ

{
‖Ph,kzt − Πkzt‖L2(Ωx) + ‖Πkzt − zt‖L2(Ωx)

}
‖ξ‖L2(Ωx)

≤ C hr+1

∫

Ωℓ

‖zt‖Hr+1(Ωx)‖ξ‖L2(Ωx) + C kq+1

∫

Ωx

‖zt‖Hq+1(Ωℓ)‖ξ‖L2(Ωℓ)

≤ C

{
hr+1‖zt‖L2(Hr+1) + kq+1 ‖zt‖Hq+1(L2)

}
‖ξ‖0.

For I2, the error decomposition (6.9) and the results of Lemma 6.2.3 yield

|I2| =
∣∣∣Bh

(
Ph,kz − z, ξ

)∣∣∣ =
∣∣∣Bh

(
Ph,kz − Πkz, ξ

)
+ Bh

(
Πkz − z, ξ

)∣∣∣

≤ C

{
hr+1

(
‖z‖H1(Hr+1) + ‖z‖L2(Hr+1)

)
+ kq+1

(
‖z‖Hq+1(H1) + ‖z‖Hq+1(L2)

)}
‖ξ‖0

+ C

{
hr

(
(ε1/2 + h1/2)‖z‖L2(Hr+1) + h ‖z‖C(Hr+1)

)

+ (ε1/2 + h1/2) kq+1‖z‖Hq+1(H1)

}
‖ξ‖DG.

The approximation properties of the fluctuation operator κh give for I3

|I3| =
∣∣∣
∫

Ωℓ

Sh(z, ξ)
∣∣∣ ≤

∫

Ωℓ

Sh

(
z, z

)1/2
Sh

(
ξ, ξ

)1/2 ≤ Chr+1/2

∫

Ωℓ

‖z‖Hr+1(Ωx)|||ξ|||

≤ C hr+1/2‖u‖L2(Hr+1) ‖ξ‖DG.

Applying the Cauchy-Schwarz inequality and using the approximation results, we get for
I4

|I4| =
∣∣∣
(
Gmin

(
zmin − zmin,h), ξ(ℓ

+
0 )

)

x

∣∣∣ ≤
∥∥G

1/2
min

(
zmin − zmin,h

)∥∥
L2(Ωx)

∥∥G
1/2
minξ(ℓ

+
0 )

∥∥
L2(Ωx)

≤ C hr+1
∥∥zmin

∥∥
Hr+1(Ωx)

‖ξ‖DG.

Combining I1, I2, I3 and I4 in (6.15), we get

1

2

d

dt
‖ξ‖2

0 +
1

2
‖ξ‖2

DG ≤ C

{
hr+1

(
‖zt‖L2(Hr+1) + ‖z‖H1(Hr+1) + ‖z‖L2(Hr+1) +

∥∥zmin

∥∥
Hr+1(Ωx)

)

+ kq+1
(
‖zt‖Hq+1(L2) + ‖z‖Hq+1(H1) + ‖z‖Hq+1(L2)

)}
‖ξ‖0

+ C

{
hr

(
(ε1/2 + h1/2)‖z‖L2(Hr+1) + h

∥∥z
∥∥

C(Hr+1)

)

+ (ε1/2 + h1/2) kq+1‖z‖Hq+1(H1)

}
‖ξ‖DG.
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Young’s inequality and integration over 0 to T gives

∥∥ξ
∥∥2

0
+

1

2

∫ T

0

‖ξ‖2
DG

≤ C

∫ T

0

{
h2r+2

(
‖zt‖2

L2(Hr+1) + ‖z‖2
H1(Hr+1) + ‖z‖2

L2(Hr+1) +
∥∥zmin

∥∥
Hr+1(Ωx)

)

+ k2q+2
(
‖zt‖2

Hq+1(L2) + ‖z‖2
Hq+1(H1) + ‖z‖2

Hq+1(L2)

)}

+ C

∫ T

0

{
h2r

(
(ε + h)‖z‖2

L2(Hr+1) + h2 ‖z‖2
C(Hr+1)

)

+ (ε + h) k2q+2‖z‖2
Hq+1(H1)

}
+

∥∥ξ(0)
∥∥2

0
+

∫ T

0

‖ξ‖2
0.

Applying continuous version of Gronwall’s Lemma 2.3.3, we get

∥∥ξ(t)
∥∥2

0
+

1

2

∫ t

0

‖ξ‖2
DG ≤ et

[
∥∥ξ(0)

∥∥2

0
+ C

(
ε + h

)
h2r

∫ t

0

‖z(s)‖2
H1(Hr+1)

+ Ch2r+2

∫ t

0

(
‖zt(s)‖2

L2(Hr+1) + ‖z‖2
C(Hr+1) +

∥∥zmin(s)
∥∥2

Hr+1

)

+ Ck2q+2

∫ t

0

(
(ε + h + 1) ‖z(s)‖2

Hq+1(H1) + ‖zt(s)‖2
Hq+1(L2)

)]
.

The statement follows by using triangle inequality and interpolation error estimates.

6.3 Fully discrete problem

In this section, we give a fully discrete scheme. We start with discussing a time discretiza-
tion of (6.3) using backward Euler scheme. Equivalent one-step method is then shown for
the two-step of alternating direction method. Then we give some useful properties which
are used in the stability and error estimates in the upcoming sections.

Let N > 0 be a given positive integer. We consider a uniform partition of time in-
terval [0, T ] with time step size τ = T/N . Further, let zn

h,k ∈ Sr,q
h,k be the approximation

of z(tn). Then the backward-Euler time discretization of (6.3) reads as follows:

For given zn
h,k, find zn+1

h,k ∈ Sr,q
h,k, for n = 0, · · · , N − 1 such that

∫

Ωℓ

(
∂τz

n+1
h,k , X

)
x

+ Bh

(
zn+1

h,k , X
)

=
(
Gminz

n+1
min,h, X(ℓ+

0 )
)

x
+

∫

Ωℓ

(fn+1, X)x (6.16)
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for all X ∈ Sr,q
h,k, where ∂τz

n+1
h,k = τ−1(zn+1

h,k − zn
h,k).

For deriving the alternating direction scheme, we use the bases functions and matrices
defined in Section 4.5. The fully discrete scheme (6.16) in algebraic form can be expressed
as follows: Let

zn
h,k =

Nx∑

i=1

Nℓ∑

s=1

ξn
isφi(x)ψs(ℓ) ∈ Sr,q

h,k,

where
ξn := {ξn

11, . . . , ξ
n
1Nℓ

, . . . , ξn
NxNℓ

}T ∈ R
Nx×Nℓ .

Find ξn+1 ∈ R
Nx×Nℓ , such that

(Mx ⊗ Mℓ)
(ξn+1 − ξn

τ

)
+ (Mx ⊗ Tℓ) ξn+1

+
(
(Tx + Dx + Sx) ⊗ Mℓ

)
ξn+1 = Mxξ

n+1
min ⊗ Ix + F n+1, (6.17)

where the tensor product of matrices is defined as follows

Mx ⊗ Mℓ =





m11Mℓ m12Mℓ · · · m1nMℓ

m21Mℓ m22Mℓ · · · m2nMℓ
...

...
. . .

...
mm1Mℓ mm2Mℓ · · · mmnMℓ




.

Since the matrices in (6.17) are tensor product of the x- and ℓ-direction discretization
matrices, we can approximate (6.17) using the following two-step method

{
Mx ⊗ Mℓ + τ

(
Dx + Tx + Sx

)
⊗ Mℓ

}
ξ̃

n+1
= (Mx ⊗ Mℓ) ξn + τF n+1 (6.18)

Mx ⊗
(
Mℓ + Tℓ

)
ξn+1 = (Mx ⊗ Mℓ) ξ̃

n+1
+ Mxξ

n+1
min ⊗ Ix. (6.19)

These two equations define the fully discrete alternating direction Galerkin formulation
of problem (4.1). Note that, if we write (4.18) and (4.19) in algebraic form we get the
(6.18) and (6.19), respectively. The next step is to derive the one-step formulation.

Lemma 6.3.1. The two-step method (6.18) and (6.19) is equivalent to the following fully
discrete one-step formulation:

Given zn
h,k ∈ Sr,q

h,k, for each n = 0, · · · , N − 1, find zn+1
h,k ∈ Sr,q

h,k satisfying

∫

Ωℓ

(
∂τz

n+1
h,k , X

)

x
+ Bh

(
zn+1

h,k , X
)

+ τK
(
zn+1

h,k , X
)

=
(
Gminz

n+1
min,h, X(ℓ+

0 )
)

x
+

∫

Ωℓ

(
fn+1, X

)

x
+ τah

(
Gminz

n+1
min,h, X(ℓ+

0 )
)

(6.20)
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for all X ∈ Sr,q
h,k, where K = K1 + K2 + K3 with

K1(u, v) = ε

M∑

i=1

∫

Ii

(
∂ℓ(G∇xu),∇xv

)

x
+ ε

M−1∑

i=1

(
∇x

[
(Gu)

]
i
,∇xv(ℓ+

i )
)

x

+ ε
(
Gmin∇xu(ℓ+

0 ),∇xv(ℓ+
0 )

)

x
, (6.21)

K2(u, v) =
M∑

i=1

∫

Ii

(
∂ℓ(Gb · ∇xu), v

)

x
+

M−1∑

i=1

(
b · ∇x

[
(Gu)

]
i
, v(ℓ+

0 )
)

x

+
(
Gminb · ∇xu(ℓ+

0 ), v(ℓ+
0 )

)

x
, (6.22)

K3(u, v) =
M∑

i=1

∫

Ii

Sh

(
∂ℓ(Gu), v

)
+

M−1∑

i=1

Sh

([
(Gu)

]
i
, v(ℓ+

i )
)

+ Sh

(
Gminu(ℓ+

0 ), v(ℓ+
0 )

)
, (6.23)

Proof. To obtain the one-step fully discrete formulation, we multiply (6.19) by Iℓ⊗ (Mx +
τDx + τTx + τSx)M

−1
x and get

{
(Mx ⊗ Mℓ) + τ

(
(Mx ⊗ Tℓ) + (Dx ⊗ Mℓ) + (Tx ⊗ Mℓ) + (Sx ⊗ Mℓ)

)

+ τ 2
(
(Dx ⊗ Tℓ) + (Tx ⊗ Tℓ) + (Sx ⊗ Tℓ)

)}
ξn+1

=

{
(Mx ⊗ Mℓ) + τ

(
(Dx ⊗ Mℓ) + (Tx ⊗ Mℓ) + (Sx ⊗ Mℓ)

)}
ξ̃

n+1

+ τMxξ
n+1
min ⊗ Ix + τ 2

(
Dx + Tx + Sx

)
ξn+1

min ⊗ Ix. (6.24)

Equating the left-hand side of (6.18) with the right-hand side of (6.24) we obtain

{
(Mx ⊗ Mℓ) + τ

(
(Mx ⊗ Tℓ) + (Dx ⊗ Mℓ) + (Tx ⊗ Mℓ) + (Sx ⊗ Mℓ)

)

+ τ 2
(
(Dx ⊗ Tℓ) + (Tx ⊗ Tℓ) + (Sx ⊗ Tℓ)

)}
ξn+1

= (Mx ⊗ Mℓ)ξ
n + τMxξ

n+1
min ⊗ Ix + τ 2

(
Dx + Tx + Sx

)
ξn+1

min ⊗ Ix + τF n+1.

(6.25)
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Let us describe separately the cross terms in (6.25)

(
Dx⊗Tℓ

)
ξn

= ξn
i,sε

(
∇xφi(x),∇xφj(x)

)

x

{ M∑

ν=1

∫

Iν

∂

∂ℓ

(
Gψs(ℓ)

)
ψp(ℓ) +

M−1∑

ν=1

[Gψs]νψp(ℓ
+
i )

+ Gminψs(ℓ
+
0 )ψp(ℓ

+
0 )

}

=
M∑

ν=1

ε

∫

Iν

ξn
i,s

(
∇x

∂

∂ℓ

(
Gφi(x)ψs(ℓ)

)
,∇x

(
φj(x)ψp(ℓ)

))

x

+ εξn
i,k

M−1∑

ν=1

(
∇x[Gφi(x)ψs(ℓ)]ν ,∇x(φj(x)ψp(ℓ

+
ν ))

)

x

+ εξn
i,s

(
∇x

(
Gminφi(x)ψs(ℓ

+
0 )

)
,∇x(φj(x)ψp(ℓ

+
0 ))

)

x

=
M∑

ν=1

ε

∫

Iν

(
∇x

( ∂

∂ℓ

(
Gzn

h,k

))
,∇xX

))

x

+ ε
M−1∑

ν=1

(
∇x[Gzn

h ]ν ,∇xX(ℓ+
ν ))

)

x

+ ε
(
Gmin∇xz

n
h(ℓ+

0 ),∇xX(ℓ+
0 )

)

x

= K1(z
n
h,k, X).

Similarly

(
Tx ⊗ Tℓ

)
ξn = K2(z

n
h,k, X),

(
Sx ⊗ Tℓ

)
ξn = K3(z

n
h,k, X),

and

(Dx + Tx + Sx)ξ
n
min ⊗ Ix = ah

(
Gminz

n
min,h, X(ℓ+

0 )
)
.

Using these expressions, one can write (6.25) in inner product form (6.20). Note that,
the one-step formulation (6.20) is equivalent to the fully discrete form (6.16) except the
perturbation term of O(τ 2) which is presented in (6.20).

Properties of K

Here we illustrate some basic properties of the bilinear forms K1, K2 and K3 defined in
(6.21), (6.22) and (6.23) respectively.
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Lemma 6.3.2. The bilinear forms K1, K2 and K3 can be expressed as

K1(u, v) = ε

M∑

i=1

∫

Ii

−
(
G∇xu, ∂ℓ∇xv

)

x
− ε

M−1∑

i=1

(
∇xu(ℓ−i ),∇x

[
(Gv)

]
i

)

x

+ ε
(
Gmax∇xu(ℓ−M),∇xv(ℓ−M)

)

x
(6.26)

K2(u, v) =
M∑

i=1

∫

Ii

−
(
Gb · ∇xu, ∂ℓv

)

x
−

M−1∑

i=1

(
b · ∇xu(ℓ−i ),

[
(Gv)

]
i

)

x

+
(
Gmaxb · ∇xu(ℓ−M), v(ℓ−M)

)

x
(6.27)

K3(u, v) =
M∑

i=1

∫

Ii

−Sh

(
Gu, ∂ℓv

)
+

M−1∑

i=1

Sh

(
u(ℓ−i ),

[
(Gv)

]
i
)
)

+ Sh

(
Gu(ℓ−M), v(ℓ−M)

)
.

(6.28)

Proof. Integrating by parts the first term in (6.21), (6.22) and (6.23) with respect to ℓ we
get the required results.

Consider the mesh dependent norm

∥∥v
∥∥2

K
= ‖v‖2

K1
+ ‖v‖2

K3

with K1(v, v) ≥ ‖v‖2
K1

, K3(v, v) ≥ ‖v‖2
K3

and

‖v‖2
K1

= 2
M∑

i=1

∫

Ii

∂ℓG|||v|||2 + ε
M−1∑

i=1

∥∥[
(G1/2v)

]
i

∥∥2

H1(Ωx)
+ ε

∥∥G
1/2
minv(ℓ+

0 )
∥∥2

H1(Ωx)

+ ε
∥∥G1/2

maxv(ℓ−M)
∥∥2

H1(Ωx)
, (6.29)

‖v‖2
K3

= 2
M∑

i=1

∫

Ii

∂ℓG|||v|||2 +
M−1∑

i=1

Sh

([
(Gv)

]
i
, [v]i

)
+ Sh

(
Gminv(ℓ+

0 ), v(ℓ+
0 )

)

+ Sh

(
Gmaxv(ℓ−M), v(ℓ−M)

)
. (6.30)

The next lemma gives the positivity of the form K.

Lemma 6.3.3. Assume that G > 0 and ∂ℓG ≥ 0, then the bilinear form K is coercive
corresponding to the norm ‖·‖K, i.e.

K(v, v) ≥ 1

2
‖v‖2

K . (6.31)

Proof. First we show that K2(v, v) = 0. Setting u = v in (6.22) and (6.27) and then
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adding them together, we get

2K2(v, v) =
M∑

i=1

∫

Ii

{(
∂ℓ

(
Gb · ∇xv

)
, v

)

x
−

(
Gb · ∇xv, ∂ℓv

)

x

}

+
M−1∑

i=0

(
b · ∇x

[
(G1/2v)

]
i
,
[
(G1/2v)

]
i

)

x
+

(
Gminb · ∇xv(ℓ+

0 ), v(ℓ+
0 )

)

x

+
(
Gmaxb · ∇xv(ℓ−M), v(ℓ−M)

)

x

= I1 + I2 + I3 + I4.

The velocity field b does not depend on ℓ, also the growth rate G is independent of space
variable x, thus using the fact that ∇x and ∂ℓ commute, we can write I1 as

I1 =
M∑

i=1

∫

Ii

{(
b · ∇x∂ℓ(Gv), v

)

x
−

(
Gb · ∇xv, ∂ℓv

)

x

}

=
M∑

i=1

∫

Ii

{
∂ℓG

(
b · ∇xv, v

)

x
+ G

(
b · ∇x∂ℓv, v

)

x
− G

(
b · ∇xv, ∂ℓv

)

x

}
.

Since ∇x · b = 0, it follows that

2 (b · ∇xv, v)x = −
(
∇x · b, v2

)
x

= 0,

hence we have

I1 =

∫

Ωℓ

{
G

(
b · ∇x

(
∂ℓv

)
, v

)

x
− G

(
b · ∇xv, ∂ℓv

)

x

}

= I1,1 − I1,2.

Next, we show that the two terms on the right-hand side of this equation are the same.

I1,1 =

∫

Ωℓ

G
(
b · ∇x

(
∂ℓv

)
, v

)

x
=

∫

Ωℓ×Ωx

b · ∇x

(
G∂ℓv

)
v =

∫

Ωℓ×Ωx

d∑

i=1

bi
∂

∂xi

(
G

∂v

∂ℓ

)
v

=

∫

Ωℓ×Ωx

d∑

i=1

bi
∂

∂xi

(
G

∂(φψ)

∂ℓ

)
φψ =

∫

Ωℓ×Ωx

d∑

i=1

bi
∂φ

∂xi

φG
∂ψ

∂ℓ
ψ

=
1

4

∫

Ωℓ×Ωx

d∑

i=1

bi
∂φ2

∂xi

G
∂ψ2

∂ℓ
dx,

where φ = φj(x), 1 ≤ j ≤ Nx and ψ = ψl(ℓ), 1 ≤ l ≤ Nℓ are the bases functions defined
in Section 4.5. Similarly

I1,2 =

∫

Ωℓ

G
(
b · ∇xv, ∂ℓv

)

x
=

∫

Ωℓ×Ωx

G
(
b · ∇xv, ∂ℓv

)

x
dℓ =

∫

Ωℓ×Ωx

d∑

i=1

bi
∂v

∂xi

G
∂v

∂ℓ

=

∫

Ωℓ×Ωx

d∑

i=1

bi
∂φ

∂xi

φG
∂ψ

∂ℓ
ψ =

1

4

∫

Ωℓ×Ωx

d∑

i=1

bi
∂φ2

∂xi

G
∂ψ2

∂ℓ
.
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We deduce from the last two results that

I1 =

∫

Ωℓ

{
G

(
b · ∇x

(
∂ℓv

)
, v

)
x
− G (b · ∇xv, ∂ℓv)x

}
= 0.

For the terms I2, I3 and I4, integrating by parts with respect to x and using ∇x · b = 0
we get

I2 =
M−1∑

i=0

(
b · ∇x

[
(G1/2v)

]
i
,
[
(G1/2v

]
i

)

x
= −1

2

M−1∑

i=0

(
∇x · b,

([
(G1/2v)

]
i

)2
)

x
= 0,

I3 =
(
Gb · ∇xv(ℓ+

0 ), v(ℓ+
0 )

)

x
= 0,

I4 =
(
Gb · ∇xv(ℓ−M), v(ℓ−M)

)

x
= 0.

Hence K2(v, v) = 0. The required result is obtained by adding the two different represen-
tations of the bilinear forms K1 and K3 and then dividing by two.

6.4 Stability

In this section, we address the stability of the method based on an equivalent one-step
scheme (6.20).

Theorem 6.4.1. Let zn
h,k, n = 1, . . . , N , be the solution of (6.20). Assume that G > 0

and ∂ℓG ≥ 0 then we have the following estimate

∥∥zn
h,k

∥∥2

0
+

n−1∑

m=0

∥∥zm+1
h,k − zm

h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

DG
+

τ 2

2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

K

≤ e2T
∥∥z0

h,k

∥∥2

0
+ e2T

n−1∑

m=0

τ

{
I

(
zm+1
min,h

)
+

∥∥fm+1
∥∥2

0

}
, (6.32)

where

I
(
zm+1
min,h

)
= 4

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+ 4τ

(
ε + ‖b‖2

0,∞

)∥∥G
1/2
minz

m+1
min,h

∥∥2

H1(Ωx)

+ 4τSh

(
Gminz

m+1
min,h, z

m+1
min,h

)
.

Proof. Set X = zm+1
h,k in the one-step formulation (6.20) to get

∫

Ωℓ

(
zm+1

h,k − zm
h,k, z

m+1
h,k

)
x

+ τBh(z
m+1
h,k , zm+1

h,k ) + τ 2K(zm+1
h,k , zm+1

h,k )

= τ
(
Gminz

m+1
min,h, z

m+1
h (ℓ+

0 )
)

x
+ τ

∫

Ωℓ

(fm+1, zm+1
h,k )x + τ 2ah

(
Gminz

m+1
min,h, z

m+1
h (ℓ+

0 )
)
. (6.33)
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Applying the identity 2(a − b)a = (a2 − b2) + (a − b)2, we obtain for the first term

∫

Ωℓ

(
zm+1

h,k − zm
h,k, z

m+1
h,k

)
x

=
1

2

∥∥zm+1
h,k

∥∥2

0
− 1

2

∥∥zm
h,k

∥∥2

0
+

1

2

∥∥zm+1
h,k − zm

h,k

∥∥2

0
. (6.34)

Using Cauchy-Schwarz inequality and Young’s inequality with δi (for any δi > 0), i =
1, 2, . . . , we get for the first two terms on the right-hand side of (6.33)

(
Gzm+1

min,h, z
m+1
h (ℓ+

0 )
)

x
+

∫

Ωx

(
fm+1, zm+1

h,k

)

x

≤
∥∥G

1/2
minz

m+1
min,h

∥∥
L2(Ωx)

∥∥G
1/2
minz

m+1
h (ℓ+

0 )
∥∥

L2(Ωx)
+

∥∥fm+1
∥∥

0

∥∥zm+1
h,k

∥∥
0

≤ 1

2δ1

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+

δ1

2

∥∥G
1/2
minz

m+1
h (ℓ+

0 )
∥∥2

L2(Ωx)
+

1

2δ2

∥∥fm+1
∥∥2

0
+

δ2

2

∥∥zm+1
h,k

∥∥2

0

≤ 1

2δ1

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+

δ1

2

∥∥zm+1
h,k

∥∥2

DG
+

1

2δ2

∥∥fm+1
∥∥2

0
+

δ2

2

∥∥zm+1
h,k

∥∥2

0
. (6.35)

From the definition of the bilinear form ah, we write the third term on the right-hand side
of (6.33)

τah

(
Gminz

m+1
min,h, z

m+1
h (ℓ+

0 )
)

= ε τ
(
Gmin ∇xz

m+1
min,h,∇xz

m+1
h (ℓ+

0 )
)

x
+ τ

(
Gminb · ∇xz

m+1
min,h, z

m+1
h (ℓ+

0 )
)

x

+ τSh

(
Gminz

m+1
min,h, z

m+1
h (ℓ+

0 )
)
.

Then, Cauchy-Schwarz inequality and Young’s inequality give

τah

(
Gminz

m+1
min,h, z

m+1
h (ℓ+

0 )
)

≤ ε τ
∥∥G

1/2
min∇xz

m+1
min,h

∥∥
L2(Ωx)

∥∥G
1/2
min∇xz

m+1
h (ℓ+

0 )
∥∥

L2(Ωx)

+ τ
∥∥G

1/2
minb · ∇xz

m+1
min,h

∥∥
L2(Ωx)

∥∥G
1/2
minz

m+1
h (ℓ+

0 )
∥∥

L2(Ωx)

+ τSh

(
Gminz

m+1
min,h, z

m+1
min,h

)1/2

Sh

(
Gminz

m+1
h (ℓ+

0 ), zm+1
h (ℓ+

0 )
)1/2

≤ ετ

2δ3

∥∥G
1/2
min∇xz

m+1
min,h

∥∥2

L2(Ωx)
+

ετδ3

2

∥∥G
1/2
min∇xz

m+1
h (ℓ+

0 )
∥∥2

L2(Ωx)

+
1

2δ4

∥∥b
∥∥2

0,∞

∥∥G
1/2
min∇xz

m+1
min,h

∥∥2

L2(Ωx)
+

δ4

2

∥∥G
1/2
minz

m+1
h (ℓ+

0 )
∥∥

L2(Ωx)

+
τ

2δ5

Sh

(
Gminz

m+1
min,h, z

m+1
min,h

)
+

τδ5

2
Sh

(
Gminz

m+1
h (ℓ+

0 ), zm+1
h (ℓ+

0 )
)

≤ τ
( ε

2δ3

+
‖b‖2

0,∞

2δ4

)∥∥G
1/2
minz

m+1
min,h

∥∥2

H1(Ωx)
+

δ4

2

∥∥zm+1
h,k

∥∥2

DG
+

τδ3

2

∥∥zm+1
h,k

∥∥2

K1

+
τδ5

2
Sh

(
Gminz

m+1
min,h, z

m+1
min,h

)
+

τδ5

2

∥∥zm+1
h,k

∥∥2

K3
. (6.36)
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Hence from (6.7), (6.31) and (6.33)-(6.36), we have

∥∥zm+1
h,k

∥∥2

0
−

∥∥zm
h,k

∥∥2

0
+

∥∥zm+1
h,k − zm

h,k

∥∥2

0
+ τ

∥∥zm+1
h,k

∥∥2

DG
+ τ 2

∥∥zm+1
h,k

∥∥2

K

≤ τ

δ1

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+ τ

(
δ1 + δ4

)∥∥zm+1
h,k

∥∥2

DG

+
τ

δ2

∥∥fm+1
∥∥2

0
+ τδ2

∥∥zm+1
h,k

∥∥2

0
+ τ 2

( ε

δ3

+
‖b‖2

0,∞

δ4

)∥∥G
1

2 um+1
h (ℓ−0 )

∥∥2

H1(Ωx)

+ τ 2δ5Sh

(
Gminz

m+1
min,h, z

m+1
min,h

)
+ τ 2(δ3 + δ5)

∥∥zm+1
h,k

∥∥2

K
.

Setting δ1 = δ4 = 1/4, δ2 = 1 and δ3 = δ5 = 1/4, multiplying by τ and summing over
m = 0, 1, . . . , n − 1, we get

∥∥zn
h,k

∥∥2

0
+

n−1∑

m=0

∥∥zm+1
h,k − zm

h,k

∥∥2

0
+ τ

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

DG
+ τ 2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

K

≤
∥∥z0

h,k

∥∥2

0
+ 4τ

n−1∑

m=0

∥∥G
1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+ τ

n−1∑

m=0

∥∥fm+1
∥∥2

0

+ 4τ 2
(
ε + ‖b‖2

0,∞

) n−1∑

m=0

∥∥G
1/2
minz

m+1
min,h

∥∥2

H1(Ωx)
+ 4τ 2

n−1∑

m=0

Sh

(
Gminz

m+1
min,h, z

m+1
min,h

)

+
τ

2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

DG
+

τ 2

2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

K
+ τ

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

0
.

Absorbing ‖ · ‖DG and ‖ · ‖K norm contributions in the left-hand side and applying the
Gronwall’s Lemma 2.3.4, we get

∥∥zn
h,k

∥∥2

0
+

τ

2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

DG
+

τ 2

2

n−1∑

m=0

∥∥zm+1
h,k

∥∥2

K

≤ e2T
∥∥z0

h,k

∥∥2

0
+ e2T τ

n−1∑

m=0

{
4
∥∥G

1/2
minz

m+1
min,h

∥∥2

L2(Ωx)
+

∥∥fm+1
∥∥2

0

}

+ 4e2T τ 2

n−1∑

m=0

[(
ε + ‖b‖2

0,∞

)∥∥G
1/2
minz

m+1
min,h

∥∥2

H1(Ωx)
+ Sh

(
Gminz

m+1
min,h, z

m+1
min,h

)]
.

This completes the proof.

6.5 Convergence analysis

In this section, we use the equivalent one-step formulation (6.20) and the stability Lemma 6.4.1
to derive the convergence estimates. Define

z(tn) − zn
h,k = (z(tn) − Ph,kz(tn)) +

(
Ph,kz(tn) − zn

h,k

)
=: ξn + ηn, (6.37)
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where z(tn) is the solution of continuous problem (4.1) and zn
h,k is the solution of equivalent

one-step problem (6.20).

Theorem 6.5.1. Suppose A1-A4 and µK ∼ hK for all K ∈ Th. Let z(tn) and zn
h,k be

the solution of the continuous problem (4.1) and the equivalent one-step problem (6.20).
Then for en = z(tn) − zn

h,k there holds

∥∥en
∥∥2

0
+

τ

2

n−1∑

m=0

{∥∥em+1
∥∥2

DG
+ τ

∥∥em+1
∥∥2

K

}

≤ CeT

[∥∥Ph,kz0 − z0
h,k

∥∥2

0
+ τ 2 +

(
ε + h

)
h2r + k2q+1

]
,

where C only depends on z, zt, z0 and zmin.

Proof. We start by applying the equivalent one-step formulation (6.20) to ξm = z(tm) −
zm

h,k − ηm and setting X = ξm+1, to get
∫

Ωℓ

(ξm+1 − ξm

τ
, ξm+1

)

x
+ Bh

(
ξm+1, ξm+1

)
+ τK

(
ξm+1, ξm+1

)

=

∫

Ωℓ

(z(tm+1) − z(tm)

τ
, ξm+1

)

x
+ Bh

(
z(tm+1), ξm+1

)
+ τK

(
z(tm+1), ξm+1

)

−
(
Gminz

m+1
min,h, ξ

m+1(ℓ+
0 )

)
x
−

∫

Ωℓ

(
fm+1, ξm+1

)
x
− τah

(
Gminz

m+1
min,h, ξ

m+1(ℓ+
0 )

)

−
∫

Ωℓ

(ηm+1 − ηm

τ
, ξm+1

)
x
− Bh

(
ηm+1, ξm+1

)
− τK

(
ηm+1, ξm+1

)
,

where the terms containing zm+1
h,k and zm

h,k are replaced by the right-hand side of (6.20).
Then using the weak form (6.1) at t = tm+1, we get

∫

Ωℓ

(ξm+1 − ξm

τ
, ξm+1

)

x
+ Bh

(
ξm+1, ξm+1

)
+

n−1∑

m=0

τK
(
ξm+1, ξm+1

)

=

∫

Ωℓ

(z(tm+1) − z(tm)

τ
− zt(t

m+1), ξm+1
)

x
−

∫

Ωℓ

(ηm+1 − ηm

τ
, ξm+1

)
x

+ τK
(
z(tm+1), ξm+1

)
− Bh

(
ηm+1, ξm+1

)
−

∫

Ωℓ

Sh

(
z(tm+1), ξm+1

)
x

− τah

(
Gminz

m+1
min,h, ξ

m+1(ℓ+
0 )

)
− τK

(
ηm+1, ξm+1

)

−
(
Gmin

(
zm+1
min,h − zmin(t

m+1)
)
, ξm+1(ℓ+

0 )
)

x
.

In above we have used the continuity of z. It follows from the coercivity of bilinear forms
Bh and K (Lemma 6.1.1 and 6.3.3) that

1

2

∥∥ξn
∥∥2

0
− 1

2

∥∥ξ0
∥∥2

0
+

τ

2

n−1∑

m=0

{∥∥ξm+1
∥∥2

DG
+ τ

∥∥ξm+1
∥∥2

K

}
≤

7∑

j=1

Tj, (6.38)
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where Tj, j = 1, . . . , 7, are given as follows

T1 =
n−1∑

m=0

τ

∫

Ωℓ

(
z(tm+1) − z(tm)

τ
− zt(t

m+1), ξm+1

)

x

,

T2 = −
n−1∑

m=0

τ

∫

Ωℓ

(
ηm+1 − ηm

τ
, ξm+1

)

x

dℓ,

T3 =
n−1∑

m=0

τ 2

{
K

(
z(tm+1), ξm+1

)
− ah

(
Gmin,hz

m+1
min,h, ξ

m+1(ℓ+
0 )

)}
,

T4 = −
n−1∑

m=0

τBh

(
ηm+1, ξm+1

)
, T5 = −

n−1∑

m=0

τ

∫

Ωℓ

Sh

(
z(tm+1), ξm+1

)
x
,

T6 = −
n−1∑

m=0

τ 2K
(
ηm+1, ξm+1

)

T7 =
n−1∑

m=0

τ
(
G

(
zm+1
min,h − zmin(t

m+1)
)
, ξm+1(ℓ+

0 )
)

x
.

In the following δi, (i = 1 . . .) are arbitrary positive constants to be fixed later. The
estimates for the first term are standard, using Cauchy-Schwarz inequality and Taylor’s
theorem with remainder term we get

|T1| ≤ Cτ 2

n−1∑

m=0

∫ m+1

tm

∥∥ztt(s)
∥∥2

0
ds +

δ1

2

n−1∑

m=0

τ
∥∥ξm+1

∥∥2

0
. (6.39)

For T2, the Cauchy-Schwarz inequality, the Young’s inequality and the error decomposition
(4.33) yield

|T2| ≤
1

2δ2

n−1∑

m=0

τ
∥∥∥
ηm+1 − ηm

τ

∥∥∥
2

0
+

δ2

2

n−1∑

m=0

τ
∥∥ξm+1

∥∥2

0

≤ 1

2δ2

n−1∑

m=0

∫ tm+1

tm

∥∥∂tη(t)
∥∥2

0
dt +

δ2

2

n−1∑

m=0

τ
∥∥ξm+1

∥∥2

0

≤ 1

2δ2

n−1∑

m=0

∫ tm+1

tm

{∥∥∂tϑ(t)
∥∥2

0
+

∥∥∂tϕ(t)
∥∥2

0

}
dt +

δ2

2

n−1∑

m=0

τ
∥∥ξm+1

∥∥2

0

Then the approximation properties (2.6) and (4.30) and the condition (4.32) give

|T2| ≤ C

n−1∑

m=0

∫ tm+1

tm

{
h2r+2

∥∥zt(s)
∥∥2

L2(Hr+1)
+ k2q+2

∥∥zt(s)
∥∥2

Hq+1(L2)

}
ds

+
δ2

2

n−1∑

m=0

τ
∥∥ξm+1

∥∥2

0
. (6.40)
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For the third term T3, we use the definitions (6.21)-(6.23) of K1, K2, and K3, respectively.
The jump terms are zero due to the continuity of z(tm+1). We obtain

T3 =
n−1∑

m=0

τ 2

{
K1

(
z(tm+1), ηm+1

)
+ K2

(
z(tm+1), ξm+1

)
+ K3

(
z(tm+1), ξm+1

)

− ah

(
Gminz

m+1
min,h, ξ

m+1(ℓ+
0 )

)}

=
n−1∑

m=0

τ 2

∫

Ii

{
ε
(
∂ℓ

(
G∇xz(tm+1)

)
,∇xξ

m+1
)

x
+

(
∂ℓ

(
Gb · ∇xz(tm+1)

)
, ξm+1

)

x

+ Sh

(
∂ℓ

(
Gz(tm+1)

)
, ξm+1

)}
+ ε

n−1∑

m=0

τ 2
(
Gmin∇xzmin(t

m+1),∇xξ
m+1(ℓ+

0 )
)

x

+
n−1∑

m=0

τ 2
(
Gminb · ∇xzmin(t

m+1), ξm+1(ℓ+
0 )

)

x
+

n−1∑

m=0

τ 2Sh

(
Gminzmin(t

m+1), ξm+1(ℓ+
0 )

)

− ah

(
Gminz

m+1
min,h, ξ

m+1(ℓ+
0 )

)
.

Then from the weak form (6.1), we get

T3 = τ 2

n−1∑

m=0

∫

Ωℓ

(
∂ℓ{Gfm+1 − Gzt(t

m+1) − G∂ℓ(Gz(tm+1))
}
, ξm+1

)

x

+
n−1∑

m=0

τ 2

∫

Ωℓ

Sh

(
∂ℓ

(
Gz(tm+1)

)
, ξm+1

)

+
n−1∑

m=0

τ 2ah

(
Gmin

(
zmin(t

m+1) − zm+1
min,h

)
, ξm+1(ℓ+

0 )
)
. (6.41)

The bounds for the first term are obtained by applying the Cauchy-Schwarz inequality
and the Young’s inequality

τ 2

n−1∑

m=0

∫

Ωℓ

(
∂ℓ{Gfm+1 − Gzt(t

m+1) − G∂ℓ

(
Gz(tm+1)

)}
, ξm+1

)

x

≤ τ 2

n−1∑

m=0

∫

Ωx

∥∥Gfm+1 − Gzt(t
m+1) − G∂ℓ

(
Gz(tm+1)

)∥∥
H1(Ωℓ)

‖ξm+1‖L2(Ωℓ)

≤ τ 2

2δ3

n−1∑

m=0

∫

Ωx

∥∥Gfm+1 − Gzt(t
m+1) − G∂ℓ

(
Gz(tm+1)

)∥∥2

H1(Ωℓ)
+

δ3τ
2

2

n−1∑

m=0

‖ξm+1‖2
0

≤ C τ 2

n−1∑

m=0

[∥∥fm+1
∥∥2

H1(L2)
+

∥∥zt(t
m+1)

∥∥2

H1(L2)
+

∥∥z(tm+1)
∥∥2

H2(L2)
+

δ3

2
‖ξm+1‖2

0

]
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For the second term we use the fact that ∇x and ∂ℓ commute. Then by Cauchy-Schwarz
inequality, the Young’s inequality, and the approximation properties of fluctuation oper-
ator κh, we obtain

τ 2

n−1∑

m=0

∫

Ωℓ

Sh

(
∂ℓ

(
Gz(tm+1)

)
, ξm+1

)

≤ τ 2

n−1∑

m=0

(∫

Ωℓ

Sh

(
∂ℓ(Gz(tm+1)), ∂ℓ(Gz(tm+1))

))1/2 (∫

Ωℓ

Sh(ξ
m+1, ξm+1)

)1/2

≤ 2τ 3

δ4

n−1∑

m=0

∫

Ωℓ

∥∥∂ℓ

(
Gκh(∇xz(tm+1)))

∥∥2

L2(K)
+

δ4

8

n−1∑

m=0

τ

∫

Ωℓ

∣∣∣∣∣∣ξm+1
∣∣∣∣∣∣2

≤ C h2r+1 τ 3

n−1∑

m=0

∥∥z(tm+1)
∥∥2

H1(Hr+1)
+

δ4

8

n−1∑

m=0

τ
∥∥ξm+1

∥∥2

DG
.

For the third term in (6.41) using the definition of bilinear form ah and following the same
steps as in (4.40), we get

τ 2

n−1∑

m=0

ah

(
Gmin

(
zmin(t

m+1) − zm+1
min,h, ξ

m+1(ℓ+
0 )

)

=
n−1∑

m=0

τ 2ε
(
Gmin∇x

(
zmin(t

m+1) − zm+1
min,h,∇xξ

m+1(ℓ+
0 )

)

x

+
n−1∑

m=0

τ 2
(
Gminb · ∇x

(
zmin(t

m+1) − zm+1
min,h, ξ

m+1(ℓ+
0 )

)

x

+
n−1∑

m=0

τ 2Sh

(
Gmin

(
zmin(t

m+1) − zm+1
min,h, ξ

m+1(ℓ+
0 )

)

≤ C
(
τε + τh + h

)
h2rτ

n−1∑

m=0

∥∥zmin(t
m+1)

∥∥2

Hr+1(Ωx)
+

τδ4

8

n−1∑

m=0

∥∥ξm+1
∥∥2

DG

+
τ 2δ5

2

n−1∑

m=0

∥∥ξm+1
∥∥2

K
.

Inserting these bounds into (6.41), we get for T3

|T3| ≤ C τ 3

n−1∑

m=0

{∥∥fm+1
∥∥2

H1(L2)
+

∥∥zt(t
m+1)

∥∥2

H1(L2)
+

∥∥z(tm+1)
∥∥2

H2(L2)

}

+ C
(
τε + τh + h) h2rτ

n−1∑

m=0

∥∥zmin(t
m+1)

∥∥2

Hr+1(Ωx)
+

τδ3

2

n−1∑

m=0

∥∥ξm+1
∥∥2

0

+
τδ4

4

n−1∑

m=0

∥∥ξm+1
∥∥2

DG
+

τ 2δ5

2

n−1∑

m=0

∥∥ξm+1
∥∥2

K
. (6.42)
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For T4, the error decomposition (4.33), results of Lemma 6.2.3 and Young’s inequality
give

T4 = τ
n−1∑

m=0

{
Bh

(
ϑm+1, ξm+1

)
+ Bh

(
ϕm+1, ξm+1

)}

≤ C
(
ε + h + h2

)
h2rτ

n−1∑

m=0

∥∥z(tm+1)
∥∥2

H1(Hr+1)
+ C τh2r+2

n−1∑

m=0

∥∥z(tm+1)
∥∥2

C(Hr+1)

+ C
( 1

2δ6

+
ε + h

δ7

)
τ

n−1∑

m=0

∥∥z(tm+1)
∥∥2

Hq+1(H1)
+

τδ6

2

n−1∑

m=0

∥∥ξm+1
∥∥2

0

+
τδ7

4

n−1∑

m=0

∥∥ξm+1
∥∥2

DG
. (6.43)

The approximation properties of fluctuation operator κh and the choice of stabilizing
parameter µK ∼ hK give for T5

|T5| ≤ C h2r+1τ

n−1∑

m=0

∥∥z(tm+1)
∥∥2

L2(Hr+1)
+

τδ8

4

n−1∑

m=0

∥∥ξm+1
∥∥2

DG
. (6.44)

In order to find the bounds for T6, we write it as

T6 = τ 2

n−1∑

m=0

{
K1(η

m+1, ξm+1) + K2(η
m+1, ξm+1) + K3(η

m+1, ξm+1)

}
. (6.45)

Then Cauchy-Schwarz inequality and error decomposition (4.33) give for the first term
on the right-hand side

τ 2

n−1∑

m=0

K1(η
m+1, ξm+1) ≤ 3τ 2δ9

2

n−1∑

m=0

∥∥ηm+1
∥∥2

K1
+

τ 2δ9

6

n−1∑

m=0

∥∥ξm+1
∥∥2

K1

≤ 3τ 2δ9

2

n−1∑

m=0

{∥∥ϑm+1
∥∥2

K1
+

∥∥ϕm+1
∥∥2

K1

}
+

τ 2δ9

6

n−1∑

m=0

∥∥ξm+1
∥∥2

K1
.

From Lemma 6.3.3, the coercivity of the bilinear form K1, the continuity of jhz in ℓ-
direction and the interpolation error estimates, we get

‖ϑm+1‖2
K1

≤ K1(ϑ
m+1, ϑm+1)

= ε

∫

Ωℓ

(
∂ℓ(G∇xϑ

m+1),∇xϑ
m+1

)

x
+ ε

(
Gmin∇xϑ

m+1(ℓ+
0 ),∇xϑ

m+1(ℓ+
0 )

)

x

≤ C εh2r

{∥∥z(tm+1)
∥∥2

H1(Hr+1)
+

∥∥z(tm+1)
∥∥2

C(Hr+1)

}
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Using Πkz(ℓ−i ) = z(ℓ−i ), i = 1, 2, . . . ,M , (6.26) and (4.30), we obtain

‖ϕm+1‖2
K2

≤ K1(ϕ
m+1, ϕm+1) = ε

M∑

i=1

∫

Ii

(
G∇xϕ

m+1, ∂ℓ

(
∇xϕ

m+1
))

x

≤ C ε k2q+1
∥∥z(tm+1)

∥∥2

Hq+1(H1)
.

Inserting these two yields

n−1∑

m=0

τ 2K1(η
m+1, ξm+1) ≤ C ε h2rτ 2

n−1∑

m=0

{∥∥z(tm+1)
∥∥2

H1(Hr+1)
+

∥∥z(tm+1)
∥∥2

C(Hr+1)

}

+ C ε k2q+1τ 2

n−1∑

m=0

∥∥z(tm+1)
∥∥2

Hq+1(H1)
+

τ 2δ9

6

n−1∑

m=0

∥∥ξm+1
∥∥2

K
.

Similarly for K3(η
m+1, ξm+1)

n−1∑

m=0

τ 2K3

(
ηm+1, ξm+1

)
≤ 3δ9

2

n−1∑

m=0

τ 2
∥∥ηm+1

∥∥2

K3
+

δ9

6

n−1∑

m=0

τ 2
∥∥ξm+1

∥∥2

K

≤ C h2r+1τ 2

n−1∑

m=0

{∥∥z(tm+1)
∥∥2

H1(Hr+1)
+

∥∥z(tm+1)
∥∥2

C(Hr+1)

}

+ C k2q+1 hτ 2

n−1∑

m=0

∥∥z(tm+1)
∥∥2

Hq+1(H1)
+

τ 2δ9

6

n−1∑

m=0

∥∥ξm+1
∥∥2

K
.

Next, we bound the second term on the right-hand side of (6.45) as follows. Using the
error decomposition (4.33), we get

τ 2

n−1∑

m=0

K2

(
ηm+1, ξm+1

)
= τ 2

n−1∑

m=0

{
K2

(
ϑm+1, ξm+1

)
+ K2

(
ϕm+1, ξm+1

)}
. (6.46)

Then, from (6.22) and continuity of jhz in internal coordinate, we get for the first term

n−1∑

m=0

τ 2K2

(
ϑm+1, ξm+1

)
=

n−1∑

m=0

τ 2

∫

Ωℓ

(
∂ℓ(Gb · ∇xϑ

m+1), ξm+1
)

x

+ τ 2

n−1∑

m=0

(
Gb · ∇xϑ

m+1(ℓ+
0 ), ξm+1(ℓ+

0 )
)

x
.
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Using the same approach as for I2 in (4.40), we get

τ 2

n−1∑

m=0

K2

(
ϑm+1, ξm+1

)

≤ C
(
τh + 1

)
h2r+1τ 2

n−1∑

m=0

{∥∥z(tm+1)
∥∥2

H1(Hr+1)
+

∥∥z(tm+1)
∥∥2

C(Hr+1)

}

+
τ 2δ9

6

n−1∑

m=0

∥∥ξm+1
∥∥2

K
+

τδ10

4

n−1∑

m=0

∥∥ξm+1
∥∥2

0
+

τδ11

4

n−1∑

m=0

∥∥ξm+1
∥∥2

DG
.

The interpolation Πkz satisfies Πkz(ℓ−i ) = z(ℓ−i ), i = 1, 2, . . . ,M , thus the last two terms
in (6.27) vanish. Following the same steps as in (4.42) we get

∣∣∣
n−1∑

m=0

τ 2K2

(
ϕm+1, ξm+1

)∣∣∣ =
∣∣∣ − τ 2
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i=1
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m+1, G∂ℓξ
m+1

)

x

∣∣∣

≤ C k2q+2τ 3
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τδ10

4
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m=0
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∥∥2

0
.

Combining these two estimates, we get for the second term in (6.45)

τ 2
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m=0
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Inserting the estimates K1, K2 and K3 into (6.45), we get for T6

|T6| ≤ C
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Finally for the last term T7, we obtain

|T7| ≤ C h2r+2τ
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Hence, inserting the estimates T1, . . . , T7 into (6.38), and chose δi, i = 1, . . . , 12, such that

δ4 = δ7 = δ8 = δ11 = δ12 =
1

5
,

δ5 = δ9 =
1

2
, and δ1 = δ2 = δ3 = δ6 = δ10 =

1

5
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We conclude by absorbing the ‖ · ‖DG- and ‖ · ‖K-norms contribution in the left-hand
side, applying the Gronwall’s Lemma 2.3.4 in the same fashion as in the Theorem 6.4.1,
triangle inequality and interpolation error estimates.
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Chapter 7

Conclusion

In this thesis, we have considered stability and convergence results for the numerical
solution of time-dependent convection-diffusion-reaction problems (1.1) and population
balance equations (1.2). We have mainly focused on the finite element method in space
with local projection or Streamline-Upwind Petrov-Galerkin stabilization discretization,
discontinuous Galerkin in internal variables and backward Euler time stepping methods.
We concentrated on the one-level enrichment approach of the local projection stabilization
methods.

First of all, we have analyzed a stabilized finite element method for the numerical so-
lution of time-dependent convection-diffusion-reaction equations. We have derived the
optimal estimates in the strong and weak norms for the error of the approximate solution
by local projection stabilization method in space and discontinuous Galerkin method
in time. Using polynomial of degree r in space and q in time, the errors of order
O

(
(ε1/2 + h1/2)hr + kq+1/2

)
in strong norm and of order O

(
(ε1/2 + h1/2)hr + kq+1

)
in

weak norm have been obtained. Computational results indicate that the error estimates
are optimal in strong and weak norms. Furthermore, we observed from our numerical
studies that the parameters of LPS lead to different influences on first and second order
schemes. First order schemes are more sensitive with respect to changes of LPS parame-
ters than second order schemes.

Then, we have been concerned with the numerical solution of the population balance equa-
tion with one internal coordinate posed on domain Ωℓ ×Ωx, where Ωx was d-dimensional
and Ωℓ one-dimensional domain. We have considered an operator splitting method which
decomposes the original problem into two subproblems. The first subproblem is a time-
dependent convection-diffusion problem in physical space parametrized by the variable
in internal coordinate and the second one is a transport problem with pure advection in
internal coordinate parametrized by the variable in physical space. The method combines
the continuous finite element method (and local projection stabilization) in space with
discontinuous Galerkin method in internal coordinate. We have considered first order
backward Euler time stepping scheme. Under a certain regularity of exact solution, we
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have derived error estimates for the two-step method, i.e., using polynomials of degree r
in space and of degree q in internal coordinate the errors of order O(τ + hr+1/2 + kq+1/2)
when ε ≪ 1 and O(τ + hr + kq+1/2) when ε = 1 have been obtained.

Since the operator splitting method allows us to use different techniques to discretize
the subproblems in space and internal coordinate. We have used the Streamline-Upwind
Petrov-Galerkin method to discretize the two subproblems in space and discontinuous
Galerkin method in internal coordinate. The stability and error estimates have been de-
rived for two-step method under the conditions that the stabilization parameters depends
on the length of the time step. The mathematical and numerical results have been com-
pared with those obtained by local projection stabilization method in space. Furthermore,
the numerical results have been presented for a test problem with known smooth solu-
tion. The optimal order of convergence has been obtained for first and second order finite
elements in space and first order in internal coordinate. It should be pointed out that for
fixed mesh width in space, the optimal scaling in SUPG method gave large numbers of
time step, therefore we have only computed the convergence order for dG(1) in internal
coordinate. Moreover, it has been shown that the LPS method in space helps to reduce
the spurious oscillations which still remains in SUPG method.

Finally, we have considered the alternating direction Galerkin method to derive the sta-
bility and convergence estimate for the population balance equation. Local projection
stabilization method in space and dG methods in internal coordinate have been used to
obtain the semi-discrete error estimates. For the fully discrete problem backward Euler
temporal discretization has been considered. Similar error estimates have been proved
(as in two-step operator splitting method) for fully discrete scheme based on equivalent
one-step formulation.

Note that the resulting fully discrete two-step method obtained using the alternating di-
rection method was similar to that one obtained from the operator splitting method. The
difference from the operator splitting method was that the stability and error estimates
were derived by using the equivalent one-step formulation obtained from the two-steps
alternating direction Galerkin formulation. Whereas in operator splitting scheme we fol-
lowed the two-step method.

From the analysis and methods presented here in this thesis one can see that further
modifications and generalizations are possible, which are as follows

• The operator splitting and alternating direction methods can be used for more than
one internal coordinate.

• The method can be extended to higher-order time discretization schemes, for exam-
ple Crank-Nicolson and discontinuous Galerkin method.

• The presented algorithm can be used to solve coupled multidimensional population
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balance systems [40] with suitable numerical methods.

• The operator splitting method facilitate different kind of discretization techniques
in space and internal coordinate.

• It is possible to use the present algorithm for the source terms like aggregation and
breakage. These terms have to be treated explicitly, where the efficient evaluation
of the non-local integral operators are needed [55].
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