

Bachelorarbeit

zur Erlangung des Grades Bachelor of Science (B. Sc.)

Optimierung der quantitativen Bestimmung von Amphetamin und Amphetaminderivaten im Blutserum mittels GC/MS

Fachbereich

Ingenieur – und Naturwissenschaften

Studiengang

Angewandte Chemie

eingereicht bei

Prof. Dr. Valentin Cepus

Dr. Karen Blümke-Anbau

Abgabetermin

17.10.2023

bearbeitet von

Fabian Picht

Matrikel

27439

Eidesstattliche Versicherung

Ich versichere eidesstattlich durch eigenhändige Unterschrift, dass ich die Arbeit selbständig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche kenntlich gemacht. Ich weiß, dass bei Abgabe einer falschen Versicherung die Prüfung als nicht bestanden zu gelten hat.

Merseburg, 17.10.2023	
Ort. Datum	Fabian Picht

Inhaltsverzeichnis

K	Lurzfassui	ng	IV
A	bbildung	sverzeichnis	VI
T	'abellenve	rzeichnis	VII
A	bkürzunş	gsverzeichnis	VIII
1	Einleit	ung	1
2	Theore	etische Grundlagen	2
	2.1 G	aschromatographie – Massenspektrometrie	2
	2.1.1	Mobile Phase	2
	2.1.2	Stationäre Phase	2
	2.1.3	Injektor	3
	2.1.4	Ofen	4
	2.1.5	Detektor	4
	2.2 M	Iethoden zum Nachweis von Amphetamin und Amphetaminderivaten	6
	2.3 D	erivatisierung	7
	2.4 O	ptimierung des bestehenden Verfahrens	9
	2.5 A	nalyten – Amphetamin und Derivate	11
	2.5.1	Amphetamin	12
	2.5.2	Methamphetamin	13
	2.5.3	MDMA	14
	2.5.4	MDA	15
	2.5.5	MDEA	15
	2.5.6	MBDB	16
	2.6 V	alidierung – Prüfparameter	16
3	Materi	al und Methoden	17
	3.1 M	laterial	17
	3.1.1	Lösungsmittel und Chemikalien	17
	3.1.2	Matrixproben	17
	3.1.3	Kontrollproben	18
	3.1.4	Stammlösungen	18
	3.1.5	Interner Standard	19
	3.1.6	Testlösung	19
	3.2 A	nalytische Methode	20

	3.2.1	Probenvorbereitung20			
	3.2.2	GC/MS Bedingungen			
	3.2.3				
	3.3	Methodenvalidierung	23		
	3.3.1	Selektivität und Spezifität	23		
	3.3.2	Linearität der Kalibration	24		
	3.3.3	Genauigkeit	26		
	3.3.4	Analytische Grenzen	31		
	3.3.5	Stabilität	33		
	3.3.6	6 Wiederfindung	34		
	3.3.7	Messunsicherheit	35		
4	Aus	wertung und Ergebnisse	37		
	4.1	Selektivität und Spezifität	37		
	4.2	Linearität der Kalibration3			
	4.3	Genauigkeit40			
	4.4	Analytische Grenzen4			
	4.5	Stabilität	43		
	4.6	Wiederfindung	44		
	4.7	Messunsicherheit	44		
5	Zusa	ammenfassung	45		
6	Lite	raturverzeichnis	46		
7	Anh	ang	50		
	7.1	Valistat-Validierungsprotokoll: Amphetamin	50		
	7.2	2 Valistat-Validierungsprotokoll: Methamphetamin			
	7.3	.3 Valistat-Validierungsprotokoll: MDMA			
	7.4	7.4 Valistat-Validierungsprotokoll: MDA			
	7.5	Valistat-Validierungsprotokoll: MDEA	78		
	7.6	Valistat-Validierungsprotokoll: MBDB	85		
	77	Messunsicherheit	92		

Kurzfassung

Das Ziel dieser Arbeit lag in der Optimierung und Validierung einer quantitativen Methode zur Bestimmung von Amphetamin und Amphetaminderivaten im Blutserum. Alle Experimente wurden mit einem Gaschromatographen gekoppelt an ein Massenspektrometer durch Elektronenstoßionisation im SIM-Modus durchgeführt. Die zu entwickelnde Methode sollte insbesondere hinsichtlich der Probenaufarbeitung vereinfacht werden und eine Reduzierung der Nachweisgrenzen bei gleichzeitiger Volumenreduktion erkennbar sein. Dies beinhaltete auch die Bewertung und Auswahl eines alternativen Derivatisierungsmittel beziehungsweise Derivatisierungsverfahren.

Das unter diesen Kriterien neu konzipierte Verfahren ersetzte die bisherige Festphasenextraktion durch eine kostengünstigere und weniger lösungsmittelintensive Flüssig-Flüssig-Extraktion. Eine weitere Verbesserung zeigte sich durch den Wechsel des Derivatisierungsmittel von Trifluoressigsäureanhydrid zu Pentafluorpropionsäureanhydrid. Die dadurch deutlich gestiegene Empfindlichkeit brachte trotz einer parallelen Verkleinerung des verwendeten Probenvolumens niedrigere Nachweis- und Bestimmungsgrenzen. Hierbei konnte auch das eingesetzte Probenvolumen von 1 auf 0,25 mL reduziert werden. Abschließend wurde ebenfalls die Dauer der Probenaufarbeitung signifikant verkürzt. Dies gelang durch einen mikrowellengestützen Derivatisierungsprozess der den ursprünglichen von 30 auf 5 Minuten verringerte.

Nach Abschluss der einzelnen Optimierungsschritte erfolgte die Prüfung der entwickelten Methode auf Gültigkeit und Richtigkeit mit Hilfe einer Validierung. Dabei durchlief das Analysenverfahren unterschiedlichste Prüfparameter, welche es im Rahmen bestimmter Grenzen zu bestehen galt. Die Validierung wurde nach den Richtlinien der GTFCh durchgeführt, die Ergebnisse wurden dokumentiert und durch die Software Valistat ausgewertet.

Im Experiment zur Selektivität konnten keine Störungen durch exogene oder endogene Substanzen erfasst werden. Die Linearität der Methode wurde belegt und führte zu einem Arbeitsbereich über alle Analyten von 10 bis 1000 ng/mL. Die Nachweisgrenzen liegen zwischen 1,1 und 1,4 ng/mL und die Bestimmungsgrenzen zwischen 5,0 und 5,7 ng/mL. Die Akzeptanzkriterien der Kenngrößen Richtigkeit, Wiederholpräzision und Laborpräzision wurden erfüllt. Die Extraktionsausbeute betrug für alle Analyten ≥ 95 %. Die Stabilität der aufgearbeiteten derivatisierten Proben beträgt bei 25 °C mindestens 4 Tage. Zusätzlich zum Validierungsumfang wurde die Messunsicherheit bestimmt, welche ebenfalls akzeptable Ergebnisse hervorbrachte.

Zusammenfassend zeigen die durchgeführten Bestätigungsverfahren, dass die hier entwickelte Methode in Bezug auf sämtliche Analyten vergleichbare und reproduzierbare Ergebnisse liefert und somit für ihren Einsatzzweck zur Bestimmung von Amphetamin und Amphetaminderivaten in Blutserum geeignet ist.

Abstract

The aim of this work was to optimize and validate a quantitative method for the determination of amphetamine and amphetamine derivatives in blood serum. All experiments were carried out with a gas chromatograph coupled to a mass spectrometer by electron impact ionization in SIM mode. The method to be developed was to be simplified, particularly regarding sample preparation, and a reduction in detection limits with simultaneous volume reduction was to be apparent. This also included the evaluation and selection of an alternative derivatization agent or derivatization procedure.

The newly designed procedure based on these criteria replaced the previous solid-phase extraction with a more cost-effective and less solvent-intensive liquid-liquid extraction. A further improvement was achieved by changing the derivatization agent from trifluoroacetic anhydride to pentafluoropropionic anhydride. The resulting significant increase in sensitivity brought lower detection and quantification limits despite a parallel reduction in the sample volume used. The sample volume used could also be reduced from 1 to 0.25 mL. Finally, the time of sample processing was also significantly reduced. This was achieved by a microwave-assisted derivatization process that lowered the original time from 30 to 5 minutes.

After completion of the individual optimization steps, the developed method was tested for validity and correctness with the help of a validation. The analytical procedure was subjected to a wide range of test parameters, which had to be passed within certain limits. The validation was carried out according to the guidelines of the GTFCh, the results were documented and evaluated by the Valistat software.

In the experiment on selectivity, no interference from exogenous or endogenous substances could be detected. The linearity of the method was proven and resulted in a working range over all analytes from 10 to 1000 ng/mL. The limits of detection ranged between 1.1 and 1.4 ng/mL and the limits of quantification ranged between 5.0 and 5.7 ng/mL. The acceptance criteria of the parameter's trueness, repeatability and laboratory precision were fulfilled. The extraction yield was \geq 95 % for all analytes. The stability of the processed derivatized samples is at least 4 days at 25 °C. In addition to the scope of validation, the measurement uncertainty was determined, which produced acceptable results.

In summary, the confirmatory procedures performed show that the method developed here provides comparable and reproducible results for all analytes and is therefore suitable for its intended use in the determination of amphetamine and amphetamine derivatives in blood serum.

Abbildungsverzeichnis

Abbildung 1: Schematischer Aufbau eines Gaschromatographen (verändert nach [9])	2
Abbildung 2: Trennphase der verwendeten Kapillarsäule	3
Abbildung 3: Schematischer Aufbau eines Split-Splitless-Injektors (verändert nach [9])	3
Abbildung 4: Schematischer Aufbau einer Ionenquelle	4
Abbildung 5: Schematisches Funktionsprinzip eines Quadrupols (verändert nach [10])	5
Abbildung 6: Reaktion von Amphetamin mit ausgewählten Derivatisierungsmitteln	8
Abbildung 7: Massenspektrum von Methamphetamin / -d5 nach PFPA-Derivatisierung	9
Abbildung 8: Struktur der sechs Phenethylaminderivate (verändert nach [5])	_11
Abbildung 9: Metabolismus von Amphetamin (verändert nach [1, 29])	_12
Abbildung 10: Metabolismus von Methamphetamin (verändert nach [1, 29])	_13
Abbildung 11: Metabolismus von MDMA (verändert nach [1])	_14
Abbildung 12: Metabolismus von MDA (verändert nach [1])	_15
Abbildung 13: Metabolismus von MDEA (verändert nach [1])	_15
Abbildung 14: Metabolismus von MBDB (verändert nach [1])	_16
Abbildung 15: Massenspektrum von Methamphetamin-PFP (gemäß [40])	_21
Abbildung 16: Chromatogramme unterschiedlicher Testsituationen	_37
Abbildung 17: Mittelwerte der sechsfach Bestimmung aller Kalibrationsgeraden	_39
Abbildung 18: Zusammenfassung 95%-Intervalle (Valistat)	_40
Abbildung 19: SIM-Ionen von MDEA bei zwei unterschiedlichen Konzentrationsniveaus	_42
Abbildung 20: Glasinserthalter und Glasinsert mit 60 µL Dichlormethan	_43
Abbildung 21: Stabilitätsverhalten von Amphetamin	_43

Tabellenverzeichnis

Tabelle 1: Vergleich der bisherigen und neuen Extraktionsbedingungen	10
Tabelle 2: Chemikalien mit Herstellerangabe	17
Tabelle 3: Referenzsubstanzen	17
Tabelle 4: Analytkonzentration der verwendeten Kontrollproben	18
Tabelle 5: Ansatz zur Herstellung der Stammlösungen	18
Tabelle 6: Zusammensetzung des Internen Standards	19
Tabelle 7: Zusammensetzung der Testlösung	19
Tabelle 8: Geräteeinstellung der validierten Methode	20
Tabelle 9: Ionen zum Nachweis der PFPA-Derivate	21
Tabelle 10: Toleranzen der relativen Intensitäten von Ionen (verändert nach [41])	22
Tabelle 11: Volumenangaben zur Herstellung der Kalibrationsgeraden	26
Tabelle 12: Ergebnisse der Experimente zur Bestimmung der Genauigkeit	41
Tabelle 13: Nachweisgrenzen, Bestimmungsgrenzen und Vorgaben der GTFCh [41]	42
Tabelle 14: Ermittelte Wiederfindung und relative Standardabweichung	44
Tabelle 15: Ergebnisse zur Abschätzung der Messunsicherheit über Ringversuche	44

Abkürzungsverzeichnis

AA Acetic anhydride, Essigsäureanhydrid

BDB 3,4-(Methylendioxyphenyl)-2-butanamin

DIN Deutsche Industrie Norm

EMA European Medicines Agency

FDA US Food and Drug Administration

GC Gaschromtographie

GC/MS Gaschromatographie gekoppelt mit Massenspektrometrie

GC-MS/MS Gaschromatographie gekoppelt mit einem Tandem-Massenspektrometer

GTFCh Gesellschaft für Toxikologische und Forensische Chemie

HFBA Heptafluorbuttersäureanhydrid

HHA 3,4-Dihydroxy-amphetamin

HHMA 3,4-Dihydroxy-methamphetamin

HMA 3-Methoxy-4-hydroxy-amphetamin

HMMA 3-Methoxy-4-hydroxy-methamphetamin

LOD Limit of Detection, Nachweisgrenze

LOQ Limit of Quanitification, Bestimmungsgrenze

MBFTA N-Methyl-bis-trifluoracetamid

MDA 3,4-Methylendioxyamphetamin

MDEA 3,4-Methylendioxyethylamphetamin

MDMA 3,4-Methylendioxymetamphetamin

MeOH Methanol

MS Massenspektrometer

MTBSTFA N-tert-Butyldimethylsilyl-N-methyltrifluoracetamid

NaOH Natronlauge

PFPA Pentafluorpropionsäureanhydrid

SIM Selected Ion Monitoring

SL Stammlösung

SWGTOX Scientific Working Group of Forensic Toxicology

TFAA Trifluoroacetic anhydride, Trifluoressigsäureanhydrid

QC Quality Control, Qualitätskontrolle

1 Einleitung

Amphetamin und seine Derivate besitzen eine sympathomimetische Wirkung, begleitet von einem hohen Missbrauchspotential [1]. Trotz der Risiken, die mit einem illegalen Konsum einhergehen, belegen aktuelle Statistiken den steigenden Bedarf und die Verbreitung dieser Substanzklasse. So kam es im Jahr 2020 zu 25000 Sicherstellungen von Amphetamin mit einer Gesamtmenge von 21,2 Tonnen durch die EU-Mitgliedsstaaten [2]. Die Motivation eines Konsums ist dabei recht verschieden und spiegelt sich somit auch in unterschiedlichen Settings wider. Werden aus sportmedizinischer Betrachtung diese Verbindungen als leistungssteigernde Substanzen (Doping) eingesetzt, so betrachtet die Rechtsmedizin selbige in der Klärung nicht natürlicher Todesfälle, zur Ursachenfindung von Intoxikationen sowie einer möglichen Beeinflussung im Rahmen strafrechtlicher Fragestellungen.

Methamphetamin, 3,4-Methylendioxymetamphetamin (MDMA), 3,4-Amphetamin, Methylendioxyamphetamin (MDA), 3,4-Methylendioxyethylamphetamin (MDEA) und N-Methyl-1-(3,4-methylendioxyphenyl)-2-butanamin (MBDB) stellen Analoga von Phenylethylamin dar und weisen durch ihre Strukturähnlichkeit vergleichbare Wirkungsmechanismen auf. Bei diesem wird ein zentral stimulierender Effekt ausgelöst, resultierend aus der Freisetzung von Monoamin-Neurotransmittern [3]. Aufgrund des weitverbreiteten Missbrauchs und deren möglicher Beteiligung in den oben genannten Situationen ist ein methodisch sicherer und verlässlicher Nachweis dieser Substanzen notwendig.

Der Beleg eines Konsums kann dabei mit unterschiedlichen analytischen Methoden realisiert werden. Neben qualitativen Verfahren, die alleinstehend keine eineindeutige Aussage erlauben, finden häufig gaschromatographische- oder flüssigchromatographische-Analysemethoden Anwendung. Beide Varianten erlauben eine massenspektrometrische Kopplung, die in Publikationen häufig beschrieben wird [4, 5, 6, 7]. Die mit diesen Methoden erzeugten Ergebnisse können dabei helfen, die Beeinflussung durch psychoaktive Wirkstoffe zu interpretieren.

Ein Ziel dieser Arbeit bestand darin, dass im Institut für Rechtsmedizin Halle angewandte Verfahren zur Bestimmung von Amphetamin und Amphetaminderivaten im Blutserum zu optimieren. Zunächst sollte die Probenextraktion vereinfacht werden. Dabei zu berücksichtigen war die Reduzierung des Probenvolumens. Weiterhin sollte die reformierte Methode niedrigere Nachweisgrenzen aufweisen, um ihren Anwendungsbereich zu erweitern. Ferner musste geprüft werden, ob ein alternatives Derivatisierungsmittel chromatographische Vorteile und / oder zu einem Intensitätsgewinn führen könnte.

Die unter diesen Aspekten neu entwickelte Methode musste nun die Fähigkeit, forensisch gesicherte Ergebnisse zu erzeugen, belegen. Mit dem Ziel, reproduzierbare und vergleichbare Daten zu generieren, durchlief das Verfahren eine Validierung, welche ein essentielles Kriterium in der forensisch-toxikologischen Analytik darstellt [8].

Insgesamt sollte diese Arbeit die Möglichkeiten und Grenzen der zur Verfügung stehenden Nachweismethoden für die Amphetaminanalytik im Blutserum aufzeigen und die Zuverlässigkeit eines routinemäßig eingesetzten quantitativen Verfahrens unter Beweis stellen. Damit besitzt die vorliegende Arbeit erhebliche praktische Relevanz für die Amphetaminanalytik in einem forensisch-toxikologischen Labor.

2 Theoretische Grundlagen

2.1 Gaschromatographie – Massenspektrometrie

Die Gaschromatographie (GC) ist ein Trennverfahren zur Detektion flüchtiger Substanzen. Dabei strömt ein Gasstrom über oder durch eine stationäre Phase, welche in einem langen dünnen Rohr fixiert ist [9]. Das inerte Trägergas transportiert dabei die durch eine Injektion eingebrachten Substanzen. Das Trennprinzip beruht auf komplexen Wechselwirkungsprozessen, bei denen die Komponenten von der stationären Phase gelöst oder adsorbiert werden. Diese Interaktionen führen zu unterschiedlichen Verweildauern der einzelnen Verbindungen, welche dadurch verzögert austreten.

Abbildung 1 zeigt den prinzipiellen Aufbau eines Gaschromatographen. Im Injektor wird die eingespritzte Probe erhitzt und verdampft. Das Trägergas transportiert die vaporisierte Probe in die Säule, welche sich in einem temperierbaren Ofen befindet. Die am Säulenende austretenden Komponenten gelangen anschließend in den Detektor. Die vom Analysator erfassten Daten werden dann mit Hilfe spezieller Programme verarbeitet.

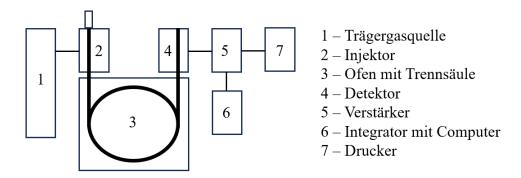


Abbildung 1: Schematischer Aufbau eines Gaschromatographen (verändert nach [9])

Im Folgenden werden nur die im Rahmen dieser Bachelorarbeit verwendeten Funktionen und Bauteile erläutert, können doch in Abhängigkeit der Anwendung unterschiedlichste Gerätekonfigurationen vorliegen.

2.1.1 Mobile Phase

Häufig eingesetzt werden Inertgase wie Wasserstoff, Stickstoff oder Helium. Diese werden ausgewählt, da sie weder mit der stationären Phase noch mit den Analyten interagieren und keinen Einfluss auf Verteilungskonstanten oder Elutionsreihenfolgen haben. Die gewählte mobile Phase beeinflusst jedoch die Trenneffizienz und wird durch die Van-Deemter-Gleichung beschrieben. Im hier verwendeten System wurde Helium eingesetzt.

2.1.2 Stationäre Phase

Die stationäre Phase befindet sich in der Regel in einer Säule. Zu unterscheiden sind gepackte und Kapillarsäulen, wobei letztere den verbreitetsten Typen darstellen und auch im Rahmen dieser Arbeit Anwendung fand. Hierbei ist die stationäre Phase eine immobilisierte Flüssigkeit, die auf der Innenwand der Kapillare aufgetragen wurde [9]. Die äußere Beschichtung stellt ein Kunststoff dar. Die Phase selbst wird so gewählt, dass sie die den zu untersuchenden Verbindungen nach Möglichkeit sehr ähnlich ist.

Im Fall der hier bearbeiteten Analyten wurde ein Polysiloxan aus 5 % - Diphenyl – 95 % dimethylsiloxan verwendet (Abbildung 2).

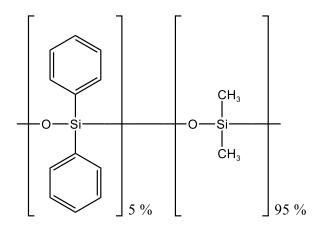


Abbildung 2: Trennphase der verwendeten Kapillarsäule

2.1.3 Injektor

Die Aufgabe des Injektors besteht in der Verdampfung und dem anschließenden Transport der Probe in die chromatographische Säule. Ein weitverbreiteter und hier genutzter Typ ist der Split-Splitless-Injektor (Abbildung 3). Bei diesem wird die Probe mit Hilfe einer Mirkoliterspritze durch ein gasdichtes Septum in einen beheizten Glasliner eingespritzt. Die dabei gängigen Volumina bewegen sich zwischen 0,1 und 10 µL. Anschließend wird die Probe schlagartig verdampft und mit dem Trägergasstrom in die Kapillarsäule transportiert. Fakultativ kann ein Splitfluss aktiviert werden, welcher einen Teil der gasförmigen Probe abtransportiert und dadurch das Risiko von Überladungseffekten verhindern kann.

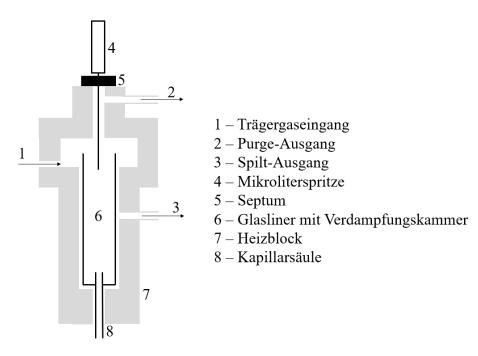


Abbildung 3: Schematischer Aufbau eines Split-Splitless-Injektors (verändert nach [9])

2.1.4 Ofen

Aufgrund der Tatsache, dass die gaschromatographische Trennung primär nach den Siedepunkten der einzelnen Komponenten erfolgt, stellt neben der stationären Phase ein im Ofen ablaufendes Temperaturprogramm eine weitere Möglichkeit zur Trennung von Verbindungen mit engem Siedepunktsbereich dar. Ein isothermer Betrieb ließe Analyten mit niedrigen Siedepunkten schneller eluieren und würde möglicherweise zu Überlappungen führen. Darüber hinaus könnten höhersiedende Komponenten vollständig auf der Säule zurückgehalten werden [9]. Durch die Wahl eines geeigneten Temperaturprogrammes während eines chromatographischen Laufes kann dagegen der optimale Siedebereich erfasst werden, welcher idealerweise zu Basislinien getrennten Peaks führt.

2.1.5 Detektor

Es gibt eine Vielzahl nach unterschiedlichen Prinzipien arbeitenden Detektoren. Diese variieren in Selektivität, Empfindlichkeit, dem dynamischen Bereich und Preis. Dabei wird die Wahl des Analysators häufig durch die analytische Fragestellung bestimmt. Bei dem hier verwendeten Detektor handelt es sich um ein Massenspektrometer, welches eine massenselektive Detektion via Elektronenstoßionisation erlaubt. Bei diesem Prozess gelangt eingangs der Eluat-Strom (M) von der Säule in die Ionisierungskammer. Hier emittiert ein Filament Elektronen im rechten Winkel zum Stoffstrom ($M + e^-$), welche durch eine Spannung von 70 eV beschleunigt werden [10]. Der Beschuss führt zur Bildung positiv geladener Radikal-Ionen ($M^+ + 2e^-$), werden doch Elektronen aus den Molekülen herausgeschlagen (Abbildung 4).

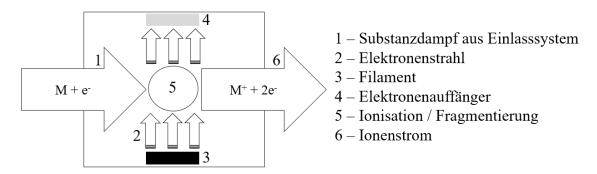


Abbildung 4: Schematischer Aufbau einer Ionenquelle

Durch die Energie der Ionisierung werden neben positiv geladenen Molekülionen auch Fragmentionen gebildet, welche einen Aufschluss über die Struktur der Moleküle geben. Die ionisierten Molekül -und Fragmentionen werden anschließend in einen Quadrupol-Analysator geleitet. Dieser besteht aus vier achsenparallelen Stäben, an denen eine Gleichspannung angelegt ist, wobei je zwei gegenüberliegende Stäbe die gleiche Polarität aufweisen (Abbildung 5).

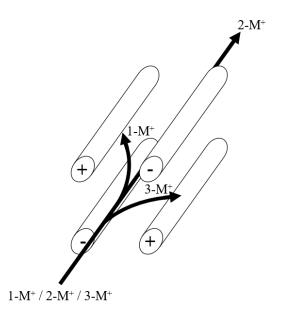


Abbildung 5: Schematisches Funktionsprinzip eines Quadrupols (verändert nach [10])

Darüber hinaus ist eine Hochfrequenzspannung überlagert. Die Veränderung der Spannung und Frequenz des Hochfrequenzfeldes führt jetzt dazu, dass jeweils nur ausgewählte Ionen gleicher Masse auf einer bestimmten Bahn den Quadrupol passieren, während andere abgelenkt und neutralisiert werden [10]. Die finale Detektion findet dann an einem Sekundärelektronenvervielfacher statt. Die hier erfassten Signale werden dann so transformiert, dass eine softwaregestütze Auswertung der Daten möglich ist.

2.2 Methoden zum Nachweis von Amphetamin und Amphetaminderivaten

Der Nachweis von Amphetamin und Amphetaminderivaten mit Hilfe analytischer Verfahren ist in der Literatur vielfach beschrieben. Eingeteilt werden diese in qualitative und quantitative Methoden. Die qualitative Analytik beinhaltet dabei unter anderem hinweisgebende Verfahren zur Untersuchung von Feststoffen über Farb-, Anion- oder Mikrokristall-Tests [11]. Diese Tests sind kostengünstig und vergleichsweise einfach durchzuführen. In Proben humanen Ursprungs werden dagegen häufig initial immunchemische Verfahren eingesetzt [12]. Diese Analysetechniken bergen jedoch das Risiko falsch positiver beziehungsweise falsch negativer Ergebnisse und stellen damit nur ein vorläufiges Ergebnis dar, welches durch weiterführende Verfahren bestätigt werden muss [13].

Zu den (semi-) quantitativen Methoden zählt die Dünnschichtchromatographie [14], Gaschromatographie gekoppelt mit Flammenionisationsdetektor [15], Fourier-Transformation-Infrarot-Spektroskopie [16] aber auch elektrochemische Methoden wie Voltammetrie [17] und Potentiometrie [18]. Trotz der Vielzahl an Analysetechniken dominieren gegenwärtig durch Massenspektrometrie gestützte Nachweisverfahren den forensisch-toxikologischen Bereich. Unterschieden wird hierbei die Kopplung des Massenspektrometers an ein gaschromatographisches- oder flüssigchromatographisches-System sowie der Typ des Massenanalysators selbst. Beispiele dafür sind Quadrupol-Massenspektrometer, Tandem-Massenspektrometer oder Flugzeit-Massenspektrometer.

Die Autoren in [4] präsentieren eine validierte GC/MS Methode für den Nachweis von 26 Stimulanzien aus Blut und Urin. Die Extraktion erfolgt mittels DLLME (Dispersive Liquid Liquid Microextraction) und beinhaltet einen Derivatisierungsschritt mit Hexylchlorformiat. Hervorgehoben werden die kurze Probenaufarbeitungszeit sowie der geringe Verbrauch an organischen Lösungsmitteln. Dem gegenüber steht jedoch ein Mindestprobenvolumen von 2 mL sowie Nachweis- und Bestimmungsgrenzen im Bereich von 1 – 50 ng/mL die insbesondere für den Nachweis von Amphetamin (50 ng/mL) im Blut als nicht hinreichend empfindlich bewertet werden müssen.

Eine validierte GC-MS/MS Methode für die Bestimmung von 11 Amphetaminen und 34 synthetischen Cathinonen in Vollblut wird in [19] vorgestellt. Das Verfahren benötigt lediglich ein Probenvolumen von 0,2 mL welches mittels Ethylacetat extrahiert wird. Die Derivatisierung erfolgt mit Pentafluorpropionsäureanhydrid. Die Nachweisgrenzen von 0,02-0,72 ng/mL und Bestimmungsgrenzen von 1-2,5 ng/mL sind sehr niedrig und gewähren dadurch selbst bei verminderten Probeneinsatz eine ausreichend hohe Detektionsfähigkeit. Die Schwächen dieser Methode liegen in der Methodenlaufzeit von 32 Minuten sowie der Verwendung von lediglich zwei deuterierten internen Standards.

Eine auf Flüssigchromatographie basierende Methode zur Identifizierung von 90 zentral stimulierenden neuen psychoaktiven Substanzen in Blutserum wird in [6] beschrieben. Von den 90 Verbindungen wurden 62 vollständig validiert. Unter Verwendung von 0,15 mL Probe werden hier nach Festphasenextraktion Nachweisgrenzen von 0,2 – 4 ng/mL erreicht. Die Methodenlaufzeit von 11 Minuten ist unter Berücksichtigung der Menge zu detektierender Analyten als hervorragend zu bewerten. Nebst aller Stärken dieser Methode ist der damit verbundene Aufwand und die Pflege einer solch umfangreichen Analysenmethode durchaus zu Beachten.

In [7] wird die erfolgreiche Entwicklung einer LC-HRMS-QTOF (liquid chromatography high resolution mass spectrometry quadrupole-time-of-flight) Methode zum Beleg des Konsums von 39 Designerdrogen im Urin dargestellt. Die hier verwendete Probenmenge von 0,2 mL wird via SALLE (salting out liquid-liquid extraction) extrahiert und führt zu Nachweisgrenzen von < 10 ng/mL und Bestimmungsgrenzen von < 25 ng/mL. Die Laufzeit von 12 Minuten bestätigt die Routinefähigkeit dieser Methode, weist aber auch hier Schwächen hinsichtlich der Menge verwendeter korrespondierender Interner Standards auf.

Die hier vorgestellten Methoden stellen nur einen äußerst geringen Teil der bisher publizierten Literatur dar. Unter Vernachlässigung von unterschiedlichsten Analyt-Panels und der aktuellen Gerätetechnik repräsentieren diese aber den Stand der Technik.

2.3 Derivatisierung

Die Gaschromatographie ist eine robuste Analysentechnik, die die Trennung, Identifizierung und Quantifizierung von Analyten aus komplexen Matrices erlaubt. Die Trennung selbst erfolgt primär nach dem Siedepunkt einer Komponente. Der Nachteil dieses Verfahrens ist das polare, thermolabile, schwerflüchtige und große Moleküle nicht analysiert werden können. Diese Limitierungen können jedoch durch eine Derivatisierung überwunden werden, welche weitere Vorteile wie die Verbesserung der Peakform, ein vorteilhafteres Fragmentierungsverhalten und eine gesteigerte Empfindlichkeit mit sich bringen kann [20]. Das Reaktionsprinzip vieler Derivatisierungen ist eine nucleophile Substitution, bei der eine elektrophile Gruppe durch Verdrängung eines reaktiven Wasserstoffatomes an die nucleophile Stelle gebunden wird. Der Austausch kann bei polaren Gruppen wie Alkoholen, Carbonsäuren, Thiolen, Aminen oder auch Amiden stattfinden [20]. Die Reaktionstypen lassen sich anhand der eingeführten Gruppen unter anderen in Alkylierung, Silylierung und Acylierung unterteilen.

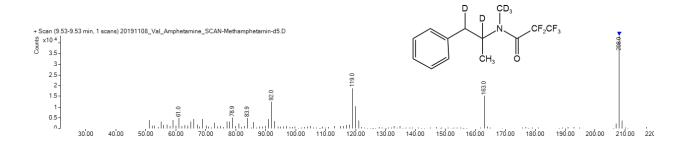
Werden im Rahmen einer Derivatisierung Alkylgruppen in ein Molekül eingebracht, so spricht man dabei von einer Alkylierung. Charakterisieren lässt sich die Alkylierung durch den Alkyltyp (z. B. Methylierung oder Ethylierung) oder die Art des Atoms, an dem die Alkylgruppe bindet (z. B. O-Alkylierung, N-Alkylierung, S-Alkylierung). Die Methylierung wird frequent bei Verbindungen mit mehreren funktionellen Gruppen eingesetzt und bildet sehr stabile Derivate [21]. Diese Form der Derivatisierung wird in der Literatur bei den hier betrachteten Substanzen vernachlässigt, sollte der Vollständigkeit halber aber genannt sein.

Eine ebenfalls weniger populäre Derivatisierungstechnik stellt die Silylierung dar. Hierbei handelt es sich um eine Substitutionsreaktion, bei der nach Reaktionsende eine Alkylsilylgruppe im Molekül vorliegt. Ein Vorteil silylierter Derivate ist, dass die Probe direkt injiziert werden kann, wodurch die Aufarbeitungszeit verringert wird. Ein negativer Aspekt des Silylierungsverfahrens ist, dass die silylierten Verbindungen oft feuchtigkeitsempfindlich sind [21]. Dennoch wird die erfolgreiche Verwendung von N-tert-Butyldimethylsilyl-N-methyltrifluoracetamid (MTBSTFA, N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide) in [22] beschrieben. Betont wird die Bildung stabiler Derivate, hochmolekularer Fragmente, einem großen Arbeitsbereich sowie einer verlängerten Lebensdauer der verwendeten chromatographischen Säule.

Bei der Acylierung wird eine Acylgruppe in das Molekül eingeführt, wodurch Amine, Alkohole und Thiole in Amide, Ester und Thioelektrolyte umgewandelt werden können. Es gibt drei Haupttypen von Acylierungsmitteln: Anhydride, Acylhalogenide und komplexere Derivate wie

acylierte Imidazole. Dabei ist die Verwendung von Anhydriden wie Essigsäureanhydrid (AA, Acetic anhydride) oder fluorierten Acylreagenzien wie Trifluoressigsäureanhydrid (TFAA, Trifluoroacetic anhydride), Pentafluorpropionsäureanhydrid (PFPA, Pentafluoropropionic anhydride) und Heptafluorbuttersäureanhydrid (HFBA, Heptafluorobutyric anhydride) häufig für den Nachweis von Amphetaminen beschrieben [23, 24, 19, 25]. Der Vorteil halogenierter Derivate liegt in einem sehr spezifischen Fragmentierungsmuster resultierend aus den gebildeten Ionen mit hohem m/z-Wert. Nachteilig ist jedoch die gegebenenfalls notwendige Entfernung des Acylierungsmittels zur Verhinderung einer sekundären Derivatisierung, welche durch die Injektion am Gaschromatographen hervorgerufen werden kann [21]. Darüber hinaus bergen derlei halogenierte Verbindungen per se ein erhöhtes Gefährdungspotential in sich. Eine generelle Empfehlung des zu verwendenden Acylierungsmittels kann nicht gegeben werden, kommen unterschiedliche Arbeitsgruppen doch zu verschiedenen Ergebnissen.

In [23] wird PFPA, HFBA, AA, TFA und N-Methyl-bis-trifluoracetamid (MBFTA, N-Methylbis-trifluoroacetamide) für die Derivatisierung von Amphetamin, Methamphetamin, MDMA, MDA und MDEA miteinander verglichen. Hinsichtlich Signal-Rausch-Verhältnis, absoluter Peakflächen, relativer Standardabweichung, Linearität, Nachweisgrenze und Selektivität schneidet AA als das am besten geeignete Derivatisierungsmittel ab. Entgegen dem wird in [26] und [25] PFPA unter Berücksichtigung der dort beschriebenen Validationsparameter empfohlen. Hier nicht weiter erwähnte, aber dennoch zu berücksichtigende Derivatisierungsparameter sind Temperatur und Zeit, welche es individuell zu ermitteln gilt. Die chemische Struktur der im Text erwähnten Reagenzien und deren Reaktion mit Amphetamin ist in Abbildung 6 zu finden.


Abbildung 6: Reaktion von Amphetamin mit ausgewählten Derivatisierungsmitteln

2.4 Optimierung des bestehenden Verfahrens

Die hier validierte Methode sollte die bisher zur Quantifizierung verwendete nicht nur ersetzen, sondern wesentlich reformieren. Dabei galt es insbesondere den Extraktionsprozess zu verbessern, dabei ein geringeres Probenvolumen einzusetzen und deutlich niedrigere Nachweis- und Bestimmungsgrenzen zu erreichen. Die methodische Optimierung fand bereits im Vorfeld der Erstellung dieser Arbeit statt. Dennoch sollen die entscheidenden Schritte hier erläutert werden.

In der bis dato durchgeführten Methode wurden die Analyten via Festphasenextraktion von Matrixkomponenten getrennt. Der Nachteil dieser Verfahrensweise lag zum einen in den hohen Kosten der verwendeten Säulen als auch die große Menge an Elutionslösungsmittel und dessen anschließender, sehr zeitaufwendigen Entfernung. Die erfolgreiche Eliminierung dieser Punkte sollte durch eine Flüssig-Flüssig-Extraktion realisiert werden. Die in der Literatur [5, 19] beschriebene und durch eigene Experimente bestätigte erfolgreiche Extraktion mit Hilfe von Ethylacetat beschrieb die erste wesentliche Verbesserung des hier validierten Verfahrens.

Die Substitution des bislang verwendeten Derivatisierungsmittels sollte eine weitere darstellen. Neben dem bislang eingesetzten Reagenz (TFAA) wurde vor allem PFPA in aktuellen Publikationen [19, 25, 26] propagiert. Zum Vergleich wurden die Analyten unter identischen Bedingungen derivatisiert und die Ergebnisse miteinander verglichen. Hierbei wurden auch die erhaltenen Massenspektren (Beispielhaft in Abbildung 7) so vorhanden mit Literaturdaten abgeglichen und auf Plausibilität geprüft.

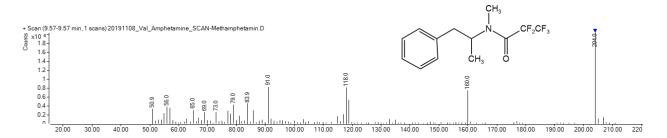


Abbildung 7: Massenspektrum von Methamphetamin / -d5 nach PFPA-Derivatisierung

Eine bessere chromatographische Trennung sowie gesteigerte Analytsignale bestätigten die zu bevorzugenden Hinweise hinsichtlich des Einsatzes von PFPA. Die höhere Empfindlichkeit der PFPA-Derivate erlaubte eine Reduzierung des Probenvolumens unter gleichzeitiger Verbesserung der analytischen Grenzwerte.

Weiterhin konnte der Derivatisierungsprozess, welcher in der Regel sehr zeitintensiv ist, deutlich verkürzt werden. In [21] wird die Reduktion dieses Vorgangs durch mikrowellengestütze Verfahren bereits beschrieben. Die Reaktionszeit von fünf Minuten bei 385 Watt verringerte die bisherige um 25 Minuten.

Unverändert dagegen blieb die Addition von Salzsäure nach dem Extraktionsschritt. Da die Analyten mitunter eine hohe Flüchtigkeit aufweisen, werden diese so von freien Basen in Salze umgewandelt. Dadurch können Verluste während des Eindampfens minimiert werden.

Das neu entwickelte Extraktionsverfahren führte zu einer drastischen Reduzierung des eingesetzten Probenvolumens von 1 auf 0,25 mL. Die Menge an Extraktionspuffer (Natronlauge) wurde um den Faktor acht von 2 auf 0,25 mL verringert. Das Volumen an organischem Lösungsmittel konnte ebenfalls um das sechseinhalbfache vermindert werden. Weiterhin führte der Verzicht der Festphasensäulen zu einer erheblichen Kostenreduzierung. In Tabelle 1 sind abschließend alle relevanten Probenaufarbeitungsschritte beider Methoden aufgeführt.

Tabelle 1: Vergleich der bisherigen und neuen Extraktionsbedingungen

	Methode alt	Methode neu
Serum [mL]	1	0,25
Interner Standard [µL]	250	25
0,1 M NaOH [mL]	2	0,25
	<u>Festphase</u>	Flüssig-Flüssig
	komplette Probe	mit 1,2 mL Ethylacetat
Extraktion	auf Festphasensäule	ausschütteln und
EXHARHOH	geben und	anschließend
	mit 8 mL Ether	zentrifugieren
	eluieren	
0,1 M Salzsäure [μL]	50 50	
Fig. 1 f 1	Eluat	organische Phase
Eindampfschritt	bei 30°C mit N ₂ bis zur Trockne einengen	
	70 μL TFAA	50 μL Ethylacetat und
Derivatisierung	bei 55°C für 30 Minuten	50 μL PFPA
		bei 385 W für 5 Minuten
		erneut bei 30°C mit
weitere Schritte		N ₂ bis zur Trockne
		einengen
		und in 60 μL
		Dichlormethan
		aufnehmen

2.5 Analyten – Amphetamin und Derivate

Amphetamin und die Amphetamin-Derivate Methamphetamin, MDMA, MDA, MDEA und MBDB stellen Analoga von Phenylethylamin (Abbildung 8) dar [5]. Durch beispielsweise Substitution eines Protons an der aliphatischen Kette kann dieses leicht in entsprechende Homologe wie Amphetamin überführt werden. Es handelt sich bei diesen Verbindungen um vollsynthetische Feststoffe, die ein hohes Missbrauchspotenzial aufweisen, charakterisiert durch die Eigenschaft, einen zentral stimulierenden Effekt auszulösen sowie mitunter halluzinogene Wirkungsweisen hervorzurufen [27]. Dieser Effekt beruht auf der Fähigkeit, die Blut-Hirn-Schranke leicht zu überwinden, die Biotransformation im Gehirn in Teilen zu umgehen und Monoamin-Neurotransmitter aus den Nervenendigungen freizusetzen. Die α-Methylgruppe verhindert die Oxidation der Amingruppe durch die Enzyme der Monoaminoxidase und erhöht die Fähigkeit, Membranen zu durchqueren [3]. Darüber hinaus Amphetamine aufgrund der strukturellen Ähnlichkeit wirken mit Monoaminkonkurrierende Neurotransmittern als Substrate an den Membrantransportern von Noradrenalin, Dopamin und Serotonin, wodurch sie die Wiederaufnahme endogener Neurotransmitter verringern und den umgekehrten Transport endogener Neurotransmitter induzieren [3]. Amphetamine fördern auch die Freisetzung von Dopamin und Serotonin aus den Speicherbläschen und verhindern die Aufnahme in die Bläschen, wodurch die zytoplasmatischen Konzentrationen der Neurotransmitter erhöht werden und sie leichter für den umgekehrten Transport verfügbar sind [3].

Abbildung 8: Struktur der sechs Phenethylaminderivate (verändert nach [5])

2.5.1 Amphetamin

Amphetamin erstmalig 1887 synthetisiert, ist eine niedermolekulare, lipophile und schwache Base. Ursprünglich entwickelt als Medikament für die Behandlung von Adipositas, Narkolepsie und Hypotonie wird diese Verbindung aufgrund aufputschender und euphorisierender Effekte häufig missbräuchlich konsumiert [1]. Sie ist weiterhin unter dem Straßennamen Speed bekannt. Amphetamin besitzt ein chirales Zentrum und liegt somit in zwei optisch aktiven Formen als L- und D-Isomer vor, wobei das D-Isomer eine drei bis vierfach größere zentral stimulierende Aktivität aufweist. Amphetamin wird hauptsächlich zu Phenylaceton desaminiert (Abbildung 9), welches wiederum zu Benzoesäure oxidiert und unter anderem als Glucuronid ausgeschieden wird. Der Anteil des im Urin unverändert vorzufindenden Amphetamins ist stark pH-abhängig. Unter sauren Bedingungen können bis zu 74 % unverändert vorliegen, hingegen fällt der Anteil auf bis zu 1 % im basischen Milieu. Darüber hinaus ist Amphetamin ein Metabolit vieler weiterer Substanzen wie beispielsweise Metamphetamin [1]. Bei Konsumeinheiten von 10 – 100 mg liegen im Blut Konzentrationen von 0,2 mg/L vor, wobei die Halbwertszeit zwischen 4 – 30 Stunden beträgt. [28]. Der Beleg für einen Missbrauch erfolgt über die Bestimmung von Amphetamin.

Abbildung 9: Metabolismus von Amphetamin (verändert nach [1, 29])

2.5.2 Methamphetamin

Methamphetamin ist ein N-Methylderivat von Amphetamin und wurde 1919 zum ersten Mal synthetisch hergestellt. Wie Amphetamin liegt auch Methamphetamin in zwei optisch aktiven Formen vor. Das D-Isomer wird zur Therapie von Adipositas eingesetzt. Die L-Form ist in einigen nicht verschreibungspflichtigen Inhalatoren aufgrund seiner abschwellenden Wirkung enthalten [1]. Das Racemat als auch das D-Isomer ist als missbrauchsrelevante Verbindung unter dem Namen Crystal Meth bekannt und stellt die weltweit zweithäufigst illegal konsumierte Droge dar [30]. Der Konsum von niedrigen bis moderaten Dosen (5 – 30 mg) führt unter anderem zu einer verminderten Müdigkeit, Euphorie und wird durch eine positive Stimmung begleitet. Methamphetamin wird multipel verstoffwechselt und unter anderem via N-Demethylierung zu Amphetamin abgebaut (Abbildung 10). Ähnlich Amphetamin verändert der im Urin vorliegende pH-Wert auch hier die Ausscheidungsraten der unveränderten Substanz deutlich [1]. Die Substanz wird intravenös, intranasal, oral aber auch durch Rauchen eingenommen. Im Blut treten dabei Werte von 0,2 mg/L auf, wobei die Konzentration des Metaboliten Amphetamin in etwa 10 % der Methamphetaminkonzentration entspricht. Die Halbwertszeit variiert zwischen 4 – 30 Stunden [28].

Abbildung 10: Metabolismus von Methamphetamin (verändert nach [1, 29])

2.5.3 MDMA

MDMA, besser bekannt als Ectasy oder XTC, ist ein ringsubstituiertes Derivat von Methamphetamin, welches seit dem 1. August 1986 dem Betäubungsmittelgesetz unterliegt. "Die Substanz ist heute besonders in Szenen der elektronischen Musik verbreitet und ist als klassische Partydroge bekannt" [31]. MDMA weist entaktogene Eigenschaften auf und führt unter anderem zu einer Steigerung von Euphorie, Liebesgefühlen und Kommunikation. Seine sympathomimetischen Wirkungen zeigen sich auch in Form von einem Anstieg der Herz-Kreislauf-Parameter als auch Mundtrockenheit und Appetitlosigkeit [32]. MDMA wird unter anderem via N-Demethylierung zu MDA und durch Spaltung der Methylenbrücke zu Monound Dihydroxyderivaten metabolisiert (Abbildung 11), die anschließend konjugiert werden [1]. In Dosen von 50 – 250 mg werden Blutspiegel von 0,3 mg/L erreicht. Die Halbwertszeit beträgt acht Stunden [28]. Der Nachweis im Blut erfolgt über die Bestimmung von MDMA und MDA.

Abbildung 11: Metabolismus von MDMA (verändert nach [1])

2.5.4 MDA

MDA ist ein Amphetamin-Derivat mit psychotropen Eigenschaften, welches erstmalig 1910 synthetisiert wurde [1]. Berichte deuten darauf hin, dass es eine ähnliche sozialemotionale Wirkung wie MDMA hervorruft. Weiterhin führt der Konsum zu einem Anstieg von Herzfrequenz und Blutdruck und erhöht die Cortisol- als auch Prolaktinkonzentration [33]. MDA wird über O-Dealkylierung, Deaminierung und Konjugation verstoffwechselt (Abbildung 12). Die Substanz wird in Dosen von 50 – 250 mg oral und intravenös eingenommen [1]. Es ergeben sich Spiegel von 0,2 mg/L für MDA und 0,09 mg/L für den Hauptmetaboliten HMA (3-Methoxy-4-hydroxy-amphetamin). Die Halbwertszeit von MDA beträgt zehn Stunden [33].

Abbildung 12: Metabolismus von MDA (verändert nach [1])

2.5.5 MDEA

MDEA, verbreitet unter dem Namen Eve zeigt eine große chemische Ähnlichkeit zu MDMA auf. Beide Substanzen unterscheiden sich lediglich durch eine Methyl – beziehungsweise Ethylgruppe am Stickstoffatom. Wie MDMA weist auch diese Verbindung entaktogene Eigenschaften auf und findet aufgrund halluzinogener Wirkweisen als illegale Droge große Bedeutung [1]. Aufgrund der strukturchemischen Nähe zu MDMA wundert es nicht, dass auch hier, jedoch durch N-Deethylierung MDA als Metabolit auftritt (Abbildung 13). Nach der Einnahme von 50 – 200 mg werden Konzentrationen von bis zu 0,5 mg/L erwartet [28].

Abbildung 13: Metabolismus von MDEA (verändert nach [1])

2.5.6 MBDB

MBDB ist ein MDMA-Analog das sich durch eine Butylkette am aromatischen System unterscheidet und als weniger potent beschrieben wird. Es wurde 1986 erstmalig synthetisiert und findet eine Einstufung als missbrauchsrelevante Substanz. Der im Urin auftretende Hauptmetabolit BDB (3,4-(Methylendioxyphenyl)-2-butanamin) ist die Folge einer N-Dealkylierung (Abbildung 14), wobei der Beleg für einen Konsum über die Muttersubstanz MBDB im Blut erfolgt. Die Substanz wird in Tablettenform in Dosen von 50 – 200 mg peroral eingenommen [1]. Dabei werden Blut- beziehungsweise Plasmaspiegel von bis zu 0,5 mg/L erreicht [28].

Deaminierung, Methylierung oder Glucuronidierung

Abbildung 14: Metabolismus von MBDB (verändert nach [1])

2.6 Validierung – Prüfparameter

Der Begriff Validierung beschreibt die Prüfung auf Gültigkeit und Richtigkeit eines Verfahrens, dass zuverlässig und reproduzierbar im Rahmen definierter Bedingungen das prognostizierte Ergebnis liefert [34]. Somit dient die Validierung einer analytischen Methode im forensisch-toxikologischen Bereich der Erhebung rechtssicherer Ergebnisse und schafft darüber hinaus die Möglichkeit, Analysenergebnisse zu vergleichen und zu bewerten. Weiterhin kann die Eignung eines Analyseverfahrens für seinen Bestimmungszweck nachvollziehbar belegt werden [34]. Der Umfang einer Validierung kann dabei recht unterschiedlich sein. Handelt es sich um eine einzige Anforderung beziehungsweise um eine sehr seltene, so kann der Validierungsaufwand stark reduziert oder aber alternative Verfahren wie die Standardadditionsmethode Anwendung finden [35]. Sollte das entsprechende Verfahren jedoch gehäuft in Anspruch genommen werden, so gilt es eine Methodenvalidierung durchzuführen. Obwohl der Umfang einer Validierung prinzipiell im Ermessen des Analytikers liegt und verschiedene Richtlinien existieren wie der US Food and Drug Administration (FDA) [36], der European Medicines Agency (EMA) [37] oder der Scientific Working Group of Forensic Toxicology (SWGTOX) [38], stellt im deutschsprachigen Raum des forensischtoxikologischen Bereiches die Gesellschaft für Toxikologische und Forensische Chemie (GTFCh) die Rahmenbedingungen einer solchen [8]. Diese beinhaltet die Prüfung verschiedener Verfahren wie Selektivität, Linearität der Kalibration, Genauigkeit, Stabilität, Analytische Grenzen und Wiederfindung. Wenngleich die Auswertung der einzelnen Experimente in dieser Bachelorarbeit weitestgehend mit Hilfe des Programmes Valistat [39] durchgeführt wurde, soll in einem späteren Kapitel der mathematische Ursprung der einzelnen Prüfpunkte aufgeführt werden.

3 Material und Methoden

3.1 Material

3.1.1 Lösungsmittel und Chemikalien

Die zur Probenaufarbeitung verwendeten Chemikalien sind in Tabelle 2 aufgeführt.

ChemikalieHerstellerMethanolSigma-AldrichEthylacetatSigma-AldrichDichlormethanCarl RothNatronlauge 1 MCarl RothSalzsäure 0,1 M in IsopropanolDr. K. Holborn & SöhnePentafluorpropionsäureanhydridChemCruz

Tabelle 2: Chemikalien mit Herstellerangabe

In Tabelle 3 sind die Referenzsubstanzen zur Herstellung der Stammlösungen, Kalibratoren und des internen Standards abgebildet. Alle Substanzen wurden über die Firma Cerillant bezogen und lagen in Methanol vor.

Analyt	Konzentration [mg/mL]
Amphetamin-d5	1,0
Amphetamin	1,0
Methamphetamin-d5	1,0
Methamphetamin	1,0
MDMA-d5	1,0
MDMA	1,0
MDA-d5	1,0
MDA	1,0
MDEA-d5	1,0
MDEA	1,0
MBDB-d5	0,1
MBDB	1,0

Tabelle 3: Referenzsubstanzen

3.1.2 Matrixproben

Für die Experimente zur Bestimmung der Prüfparameter Selektivität oder auch Linearität musste analytfreie Matrix vorliegen. Bei dem verwendeten Serum handelte es sich um Restprobenmaterial, welches randomisiert und anonym Blutproben entnommen wurde. Die Blutproben stammten von Personen, die von der Polizei untersucht wurden und bei denen der Verdacht auf einen Betäubungsmittelkonsum bestand. Diese wurden vor Gebrauch einer Analyse auf Interferenzen und Abwesenheit der Analyten unterzogen und bis zur Anwendung bei 4 °C gelagert.

3.1.3 Kontrollproben

Die Nutzung von externem Kontrollmaterial bietet zahlreiche Vorteile. Der möglicherweise wichtigste liegt in der Fähigkeit, die gespikte Konzentration eines Analyten in einer Probe zu prüfen. Um dies zu gewährleisten, wurden für die Experimente Linearität der Kalibration und Genauigkeit, die in Tabelle 4 aufgeführten Qualitätskontrollproben verwendet.

	Medichem DOA-I S low Charge: GG121	Medichem DOA-I S mid Charge: GG121	ACQ Science DCT-C SE Charge: 20030917208
Analyt	Konzentration [ng/mL]	Konzentration [ng/mL]	Konzentration [ng/mL]
Amphetamin	25,2	90,4	501
Methamphetamin	25,2	90,4	505
MDMA	25,1	90,7	501
MDA	25,2	60,4	504

60,4 90,8

60,5

499

501

25,1

25,1

Tabelle 4: Analytkonzentration der verwendeten Kontrollproben

3.1.4 Stammlösungen

MDEA

MBDB

Die benötigten Stammlösungen (SL) lagen im Konzentrationsbereich von 0,1 bis 0,001 mg/mL. entsprechenden Volumina an Referenzmaterial beziehungsweise notwendigen Verdünnungsschritte sind Tabelle 5 zu entnehmen.

Tabelle 5: Ansatz zur Herstellung der Stammlösungen

		SL 0,1	SL 0,01	SL 0,001
		[mg/mL]	[mg/mL]	[mg/mL]
		Volumen je	Volumen	Volumen
		Referenz auf	SL 0,1 auf	SL 0,01 auf
Anglyt	Konzentration	<u>80</u> μL MeOH	<u>180</u> μL MeOH	<u>180</u> μL MeOH
Analyt	[mg/mL]	[μL]	[µL]	[μL]
Amphetamin	1,0	20		
Methamphetamin	1,0	20		
MDMA	1,0	20	20	20
MDA	1,0	20	20	20
MDEA	1,0	20		
MBDB	1,0	20		

3.1.5 Interner Standard

Als Interner Standard wurde eine methanolische Lösung der deuterierten Analoga verwendet. Dafür wurde eine Glasschraubflasche mit 99,625 mL Methanol gefüllt und anschließend mit den deuterierten Analoga gespikt. Die Zusammensetzung des internen Standard kann der unten aufgeführten Tabelle 6 entnommen werden.

Tabelle 6: Zusammensetzung des Internen Standards

Analyt	Konzentration [mg/mL]	Volumen Referenz [µL]
Amphetamin-d5	1,0	25
Methamphetamin-d5	1,0	25
MDMA-d5	1,0	25
MDA-d5	1,0	25
MDEA-d5	1,0	25
MBDB-d5	0,1	250

3.1.6 Testlösung

Um die Messbereitschaft des Systems zu prüfen, wurde vor jeder Probenserie eine Testlösung der Analyten gemessen. Mit dieser können unter anderem die Retentionszeiten bestimmt, die Ionenverhältnisse erfasst und auf eine hinreichende Empfindlichkeit getestet werden. Die Testlösung setzt sich aus 4,895 mL Methanol und den in Tabelle 7 aufgeführten Volumina der entsprechenden Substanzen zusammen.

Tabelle 7: Zusammensetzung der Testlösung

Analyt	Konzentration Referenz [mg/mL]	Volumen Referenz [µL]
Amphetamin-d5	1,0	5
Amphetamin	1,0	5
Methamphetamin-d5	1,0	5
Methamphetamin	1,0	5
MDA-d5	1,0	5
MDA	1,0	5
MDMA-d5	1,0	5
MDMA	1,0	5
MDEA-d5	1,0	5
MDEA	1,0	5
MBDB-d5	0,1	50
MBDB	1,0	5

3.2 Analytische Methode

3.2.1 Probenvorbereitung

In einem Reagiergefäß (2 mL) wurden 250 μL Probenmaterial vorgelegt. Anschließend wurden 25 μL Interner Standard hinzugegeben und für fünf Sekunden geschüttelt. Danach wurde 250 μL 0,1 M Natronlauge hinzupipettiert und für 10 Sekunden geschüttelt. Abschließend wurden 1,2 mL Ethylacetat hinzugegeben und für 30 Sekunden geschüttelt. Jetzt wurden die Probe bei 14000 rpm für fünf Minuten zentrifugiert. Währenddessen wurden 50 μL 0,1 M Salzsäure (in Isopropanol) in einem 1,5 mL Glasschraubfläschehen vorgelegt und danach der komplette organische Überstand überführt und für 20 Minuten bei 30°C mittels Stickstoff vollständig eingeengt. Anschließend wurden 50 µL Ethylacetat und 50 µL PFPA hinzugegeben, das Fläschchen mit einem Schraubdeckel verschlossen und für fünf Sekunden geschüttelt. Die Probe wurde dann für fünf Minuten bei 385 W (Programm: Med) in einer Mikrowelle derivatisiert. Nachdem die Probe auf Raumtemperatur abgekühlt war, wurde der Schraubdeckel entfernt und der Extrakt für 10 Minuten bei 30°C mittels Stickstoff eingeengt. Zum Schluss wurde die Probe in 60 µL Dichlormethan aufgenommen, mit einem Schraubdeckel verschlossen und für fünf Sekunden geschüttelt. Diese 60 µL wurden nun in ein 200 µL Glasinsert überführt, mit einer Bördelkappe verschlossen und in einem Teflon-Glasinsert-Halter eingesetzt. Die Probe konnte jetzt auf dem Autosampler positioniert werden.

3.2.2 GC/MS Bedingungen

Die Experimente wurden mit einem GC/MS der Firma Agilent, bestehend aus einem 7890 GC System, 7693 Autosampler und einem 5977A MSD Massenanalysator durchgeführt. Die chromatographische Trennung erfolgte auf einer Agilent HP – 5MS Kapillarsäule (30 m, 0,25 mm Innendurchmesser, 0,25 μ m Filmdicke). Die weiteren Analysebedingungen sind in Tabelle 8 gelistet.

Tabelle 8: Geräteeinstellung der validierten Methode

Parameter	Einstellung	
Injektionstemperatur	260 °C	
MSD Transfer Line	285 °C	
Säulenofentemperatur	50 °C	
Ofenprogramm	50 °C halten für 1 Minute	
	13 °C / Minute auf 160 °C	
	5 °C / Minute auf 250 °C	
	20 °C / Minute auf 300 °C und anschließend für 1 Minute halten	
Post Run	300 °C halten für 2 Minuten	
Druck	7,5103 psi	
Säulenfluss	1 mL / Minute	
Flow Control Mode	Contant Flow	
Aufzeichnungsmodus	SIM	
Laufzeit	30,9 Minuten	
Injektionsvolumen	1 μL	

Die zur Identifizierung herangezogenen Ionen wurden durch Injektion der Derivatisierten Reinsubstanzen im SCAN-Modus erhalten (Abbildung 15). Die erhaltenen Massenspektren wurden mit Literaturdaten verglichen und auf Plausibilität hinsichtlich ihrer Fragmentierung überprüft.

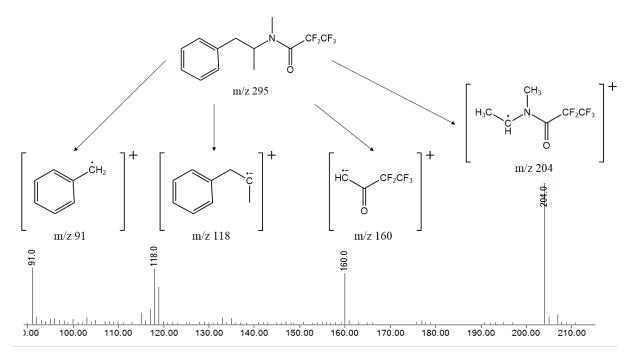


Abbildung 15: Massenspektrum von Methamphetamin-PFP (gemäß [40])

Die daraus gewonnen Ionen sind in Tabelle 9 aufgeführt.

Tabelle 9: Ionen zum Nachweis der PFPA-Derivate

Analyt	Target-Ion	Qualifier-Ion 1	Qualifier-Ion 2
Amphetamin-d5	194	123	
Amphetamin	190	118	117
Methamphetamin-d5	208	163	
Methamphetamin	204	160	118
MDMA-d5	208	344	
MDMA	204	339	160
MDA-d5	167	330	
MDA	162	325	135
MDEA-d5	223	358	
MDEA	218	353	190
MBDB-d5	222	163	
MBDB	218	160	353

3.2.3 Identifizierungskriterien

Die zweifelsfreie Identifizierung eines Analyten stellt die Basis aller daraus folgenden Erhebungen und muss somit stets gewährleistet sein. In Abhängigkeit des verwendeten analytischen Messinstrumentes und der gewählten Detektionstechnik sind dabei verschiedene Anforderungen zu berücksichtigen. Die hier zu realisierende Validierung wird mit Hilfe einer gaschromatographischen Methode gekoppelt an ein (Quadrupol-)Massenspektrometer durch Elektronenstoßionisation im SIM-Modus (Selected Ion Monitoring) durchgeführt. In diesem Modus wird der Massenanalysator so gesteuert, dass nur die analytisch relevanten Ionen betrachtet werden, welches einen positiven Effekt auf Empfindlichkeit und Peakform hat [9].

Der Abgleich der Retentionszeit eines Analyten aus einer Referenzprobe mit der Retentionszeit aus einer unbekannten Probe wird als eingehendes chromatographisches Identifizierungskriterium verwendet. Da für jede zu validierende Substanz jedoch der deuterierte interne Standard vorliegt, wird die relative Retentionszeit des Analyten im Verhältnis zum internen Standard im Vergleich zu einer Referenzprobe betrachtet. Die zu tolerierende prozentuale Abweichung beträgt $\pm 1\%$ [41].

Die massenspektrometrische Identifikation erfolgt über die Bestimmung von mindestens drei charakteristischen Ionen für den Analyten respektive zwei für seinen deuterierten internen Standard, wobei die einzelnen Fragmentionen nach Möglichkeit das gesamte Molekül beschreiben sollten. Das in der Regel signalstärkste Ion wird zur Quantifizierung verwendet und folgend als Quantifier bezeichnet. Die beiden weiteren Ionen dienen der Verifizierung und werden als Qualifier betitelt. Alle Signale müssen sich um den Faktor drei vom Untergrund abheben und sollten eine symmetrische Peakform aufweisen [41].

Die finale Identifizierung erfolgt jetzt über das Verhältnis zwischen dem Quantifier und zwei weiteren Qualifiern, wobei das Signal des Quanitifieres 100 % entspricht. Auch hier werden die Verhältnisse zum Abgleich einer entsprechenden Referenzprobe entnommen. Die erlaubten Toleranzen sind Tabelle 10 zu entnehmen.

Tabelle 10: Toleranzen der relativen Intensitäten von Ionen (verändert nach [41])

relative Ionenintensität	akzeptierte Toleranz	
[%]	[%]	
> 50	20	
> 20-50	20	
> 10-20	25	
≤ 10	50	

3.3 Methodenvalidierung

Die regelmäßige Anforderung einer analytischen Methode zum Nachweis eines oder mehrerer Analyten in einer gegebenen Matrix erfordert eine vollumfängliche Validierung. Das Ausmaß dieser wird durch die Richtlinien der GTFCh festgelegt und umfasst relevante Prüfpunkte wie Selektivität, Linearität der Kalibration, Genauigkeit, Stabilität, Analytische Grenzen und Wiederfindung. Im Folgenden sollen die einzelnen Prüfpunkte erläutert, die zum Bestehen zu erfüllenden Kriterien genannt werden und die theoretisch als dann auch praktisch gegebenenfalls abweichend durchgeführte Bestimmung beschrieben werden.

3.3.1 Selektivität und Spezifität

Erläuterung

Die Fähigkeit einer Methode, mehrere Analyten parallel, ohne gegenseitige Beeinflussung und auch unter Anwesenheit endogener und / oder exogener Verbindungen störungsfrei und eineindeutig zu detektieren, wird als Selektivität bezeichnet. Hingegen beschreibt die Spezifität die Identifizierung eines Analyten oder einer Substanzklasse ohne Verfälschung durch andere in einer Probe vorhandene Komponenten [34].

Kriterien

Bei keinem der hier durchzuführenden Experimente dürfen keine Störungen in der Nähe des Analyten auftreten [8]. Derlei Matrixbestandteile können zu einer Verfälschung der Peakfläche führen und somit zu fehlerbehafteten Messwerten. Interferenzen dieser Art können zum Beispiel in Form von Co-Eluierenden Peaks auftreten.

Theoretische Bestimmung

Es müssen mindestens sechs Leerproben (Leermatrix ohne internen Standard) aus zwei verschiedenen Chargen und zwei Nullproben (Leermatrix mit internen Standard) untersucht werden. Weiterhin sollen Leerproben mit in authentischen Proben zu erwartenden Substanzen versetzt und gemessen werden, besser jedoch authentische Proben, die die entsprechenden Verbindungen bereits enthalten. Die Verwendung von authentischem Probenmaterial hat den Vorteil, dass hier möglicherweise nicht kommerziell erhältliche und interferenzverursachende Metaboliten, also aus dem Stoffwechsel resultierende oder im Stoffwechsel umgesetzte Produkte enthalten sind [8].

Praktische Bestimmung

Es wurden folgende Proben vermessen, um den Einfluss eventueller Störungen durch Matrixkomponenten oder anderer Substanzen festzustellen: zehn verschiedene Serumproben ohne Analyten und ohne Internem Standard, zehn verschiedene Serumproben ohne Analyten und mit Internem Standard, zehn verschiedenen Serumproben mit hohen Konzentrationen der folgenden Substanzen und Substanzklassen: Kokain, Opiate, THC, Methadon und fünf verschiedenen kommerziell erhältlichen Serum Kontrollen (Chromsystems und Recipe) mit hohen Konzentrationen verschiedener Analyten der folgenden Substanzklassen: Antidepressiva, Benzodiazepine, Antiepileptika, Antiarrhytmika, Neuroleptika.

3.3.2 Linearität der Kalibration

Erläuterung

Die Linearität einer Kalibration ist dann gegeben, wenn in einem definierten Konzentrationsbereich eine direkte Proportionalität zwischen dem Analytsignal und der Analytmenge vorzufinden ist. Dieser Bereich muss zwingend den Arbeitsbereich einschließen. Der Arbeitsbereich selbst soll dabei etwaige Entscheidungsgrenzen, therapeutische Bereiche, in jedem Fall aber zu erwartende Konzentrationen von Realproben inkludieren. Das anzuwendende mathematische Modell entspricht einer linearen Regression:

$$y = m \cdot x + n \tag{Gl. 1}$$

- [y] y-Achsenabschnitt (entspricht der Signalgröße)
- [m] Steigung (entspricht der Empfindlichkeit)
- [x] x-Achsenabschnitt (entspricht der Konzentration)
- [n] Achsenabschnitt (entspricht einem Blindwert)

Die sich daraus ergebende Kalibrierfunktion unter Verwendung eines internen Standards lautet wie folgt:

$$\frac{y_A}{y_i} = m \cdot \frac{x_A}{x_i} + n \tag{Gl. 2}$$

- $[y_A]$ y-Achsenabschnitt des Analyten
- $[y_i]$ y-Achsenabschnitt des internen Standards
- [*m*] Steigung (entspricht der Empfindlichkeit)
- $[x_A]$ x-Achsenabschnitt des Analyten
- $[x_i]$ x-Achsenabschnitt des internen Standard
- [n] Achsenabschnitt (entspricht einem Blindwert)

Kriterien

Als Ausreißer werden Messpunkte bezeichnet, die sich numerisch signifikant von den restlichen Messwerten einer Messreihe unterscheiden. Mit Hilfe des **Grubbs-Tests** können diese erkannt werden, wobei zwei Niveaus berücksichtigt werden. Liegt ein Messwert auf dem 95 %-Signifikanzniveau so handelt es sich um einen Straggler. Dieser darf eliminiert werden, wenn die Ursache seiner Abweichung erklärt werden kann. Ist dies nicht der Fall, so darf eine Eliminierung nur erfolgen, wenn der Wert auch auf dem 99 %-Niveau signifikant ist [8]. Die Ermittlung kann folgendermaßen beschrieben werden, wobei die bestimmte Prüfgröße mit Tabellenwerken verglichen wird, die das Signifikanzniveau sowie die Anzahl der Messwerte berücksichtigen:

$$PG = \frac{|x' - \bar{x}|}{s} \tag{Gl. 3}$$

[PG] Prüfgröße

[x'] Messwert mit der größten Abweichung vom Mittelwert

 $[\bar{x}]$ Mittelwert

[s] Standardabweichung

Ein weiter zu prüfendes Kriterium ist der **Cochran-Test auf Varianzhomogenität**. Dieser untersucht die Homogenität der Varianzen zwischen den Messwerten und den einzelnen Kalibrationspunkten. Bei Nichterfüllung muss der Kalibrationsbereich eingeschränkt oder ein gewichtetes Kalibrationsmodell mit Wichtungsfaktoren herangezogen werden, würden doch die oberen Kalibrationspunkte übermäßig berücksichtigt und die Richtigkeit im unteren Bereich beeinträchtigt [8]. Auch hier wird der ermittelte Wert mit tabellierten Werten verglichen:

$$C_j = \frac{s_j^2}{\sum_{i=1}^n s_i^2}$$
 (Gl. 4)

 $[C_i]$ Cochran für die Datenreihe j

 $[s_i]$ Standardabweichung der Datenreihe j

 $[s_i]$ Standardabweichung der Datenreihe i

[n] Anzahl der Bestimmungen

Der **F-Test auf Linearität** (Mandeltest) prüft, ob die Anwendung einer quadratischen Regression signifikant besser ist als die einer linearen Regression. Hierfür werden die Quadrate der Reststandardabweichung aus 1. und 2. Ordnung verwendet. Bei Erfüllung kann mit einem linearen Kalibrationsmodell gearbeitet werden [8].

Theoretische Bestimmung

Hierfür werden wenigstens fünf von Null verschiedene Konzentrationen gewählt und mit Leermatrix versetzt. Dabei gilt, dass der niedrigste Kalibrator größer oder gleich der Bestimmungsgrenze sein muss. Die einzelnen Kalibratoren werden dann sechsmal vermessen [8].

Praktische Bestimmung

Es wurde eine 10-Punkt-Kalibration mit Kalibratoren aus gespiktem Negativserum in sechsfach Bestimmung für Amphetamin, Methamphetamin, MDMA, MDA, MDEA und MBDB verwendet. In Tabelle 11 finden sich die einzelnen Konzentrationen sowie die zu verwendenden Volumen an analytfreien Serum und Stammlösung für Herstellung von je 1 mL Material pro Kalibrator.

Tabelle 11: Volumenangaben zur Herstellung der Kalibrationsgeraden

Kalibrator	Konzentration	Volumen Serum	SL	Volumen SL
	[ng/mL]	[µL]	[mg/mL]	[µL]
1	10	990	0,001	10
2	15	985	0,001	15
3	20	980	0,001	20
4	50	995	0,01	5
5	70	993	0,01	7
6	150	985	0,01	15
7	300	970	0,01	30
8	600	994	0,1	6
9	800	992	0,1	8
10	1000	990	0,1	10

3.3.3 Genauigkeit

Der Begriff Genauigkeit beherbergt systematische und zufällige Fehler. Er stellt einen Oberbegriff für Richtigkeit und Präzision dar und beschreibt somit das Ausmaß der Übereinstimmung zwischen einem als wahr angenommenen und dem ermittelten Messwert [34].

3.3.3.1 Richtigkeit

Erläuterung

Die Abweichung zwischen Mittelwert und Sollwert wird als Richtigkeit bezeichnet [34]. Der Einfluss durch systematischen Fehler auf diese wird als Bias ausgedrückt. Jener beschreibt die Differenz zwischen einem Messergebnis und einem Sollwert mit folgender Gleichung:

$$Bias = \frac{\bar{x} - \mu}{\bar{x}} \cdot 100\% \tag{Gl. 5}$$

[Bias] systematischer Fehler

 $[\bar{x}]$ Mittelwert

 $[\mu]$ Sollwert

Kriterien

Es sind nur Bias-Wert von \pm 15 % beziehungsweise \pm 20 % nahe der Bestimmungsgrenze zu tolerieren [8].

Theoretische Bestimmung

Aus so verfügbar kommerziellen Kontrollen bei nicht weniger als zwei, besser drei Konzentrationen, die den gesamten Kalibrationsbereich abdecken, müssen Aliquote (Teilproben der Gesamtprobe) gebildet und unter Gewährleistung der Stabilität entsprechend gelagert werden. Die hergestellten Qualitätskontrollproben werden jetzt zumindest in Doppelbestimmung an nicht weniger als acht Tagen analysiert [8].

Praktische Bestimmung

Für die Ermittlung wurden drei kommerziell erhältliche Serum-Kontrollproben (Medichem, ACQ Science) eingesetzt. Die Messungen für jede der drei Kontrollproben wurde in sechsfach an Tag eins und dreifach Bestimmungen Tag zwei bis acht an verschiedenen Werktagen von derselben Person an einem Gerät durchgeführt (jeweils n=27) und wurden mit einer Mehrpunkt-Kalibration ausgewertet.

3.3.3.2 Präzision

Die Präzision ist ein Maß für die Streuung von Analysenergebnissen um einen Mittelwert. Sie dient somit der Beschreibung zufälliger Fehler [34]. Es existieren verschiedene Arten der Präzisionsbestimmung wie Vergleichspräzision, Wiederholpräzision oder Laborpräzision. Bei der hier durchgeführten Validierung werden jedoch nur die beiden zuletzt genannten erfasst. Die Präzision kann mit Hilfe der Standardabweichung beziehungsweise relativen Standardabweichung wie folgend ausgedrückt werden:

$$S_{rel} = \frac{s}{\bar{x}} \tag{Gl. 6}$$

$$s_{rel} = \frac{\sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}}{\bar{x}}$$
 (Gl. 7)

- $[s_{rel}]$ relative Standardabweichung
- [s] Standardabweichung
- $[\bar{x}]$ Mittelwert
- [n] Anzahl der Bestimmungen
- $[x_i]$ Messwert der i-ten Bestimmung

3.3.3.2.1 Wiederholpräzision

Erläuterung

Die Wiederholpräzision wird durch die Verwendung derselben Methode, an einem Gerät, durch einen Analytiker, mit identischem Probenmaterial innerhalb eines kurzen Zeitintervalles erfasst [34]. Berechnet werden kann diese unter Zuhilfenahme der Wiederholvarianz folgendermaßen [8]:

$$RSD_r = \frac{\sqrt{s_r^2}}{\bar{x}} \cdot 100\% \tag{Gl. 8}$$

$$RSD_r = \frac{\sqrt{\frac{\sum_{i=1}^{p} \sum_{k=1}^{n} (x_{ik} - \bar{x}_i)^2}{p \cdot (n-1)}}}{\bar{x}} \cdot 100\%$$
 (Gl. 9)

 $[RSD_r]$ Wiederholpräzision

 $[s_r]$ Wiederholvarianz

 $[\bar{x}]$ Mittelwert

[p] Anzahl der Tage

[n] Anzahl der Wiederholbestimmungen pro Tag

 $[x_{ik}]$ k-te Bestimmung am i-ten Tag

 $[\bar{x}_i]$ Mittelwert der n Bestimmungen am i-ten Tag

Kriterien

 RSD_r -Werte von ≤ 15 % respektive ≤ 20 % an der Bestimmungsgrenze sind akzeptabel [8].

Theoretische Bestimmung

Die Wiederholpräzision wird parallel im Experiment zur Bestimmung der Richtigkeit ermittelt.

Praktische Bestimmung

Die praktische Bestimmung muss wie die theoretische Bestimmung nicht separat durchgeführt werden und wird ebenfalls bereits im Kapitel Richtigkeit erläutert.

3.3.3.2.2 Laborpräzision (tagesverschieden)

Erläuterung

Die Laborpräzision ähnelt der Wiederholpräzision sehr stark, erlaubt jedoch die Variation eines Parameters wie Analytiker oder Gerät. Bei der hier durchzuführenden tagesverschiedenen Laborpräzision wird jedoch nur die Zeit, das heißt der Tag der Analyse verändert [8]. Die mathematische Beschreibung erfolgt durch folgende Gleichung:

$$RSD_T = \frac{\sqrt{s_t^2 + s_r^2}}{\bar{x}} \cdot 100\%$$
 (Gl. 10)

$$RSD_{T} = \frac{\sqrt{\left(\frac{\sum_{i=1}^{p}(\bar{x}_{i}-\bar{x})^{2}}{p-1} - \frac{s_{r}^{2}}{n}\right) + s_{r}^{2}}}{\bar{x}} \cdot 100\%$$
(Gl. 11)

 $[RSD_T]$ tagesverschiedene Laborpräzision

 $[s_t]$ Varianz zwischen den Tagen

 $[s_r]$ Wiederholvarianz

 $[\bar{x}]$ Mittelwert

 $[\bar{x}_i]$ Mittelwert der n Bestimmungen am i-ten Tag

[p] Anzahl der Tage

[n] Anzahl der Wiederholbestimmungen pro Tag

Kriterien

RSD_T-Werte von \leq 15 % respektive \leq 20 % an der Bestimmungsgrenze gelten als akzeptabel [8].

Theoretische Bestimmung

Analog der Wiederholpräzision wird auch die Laborpräzision im Experiment zur Bestimmung der Richtigkeit ermittelt.

Praktische Bestimmung

Erneut kann auch hier auf die praktische Bestimmung der Richtigkeit verwiesen.

3.3.3.2.3 Gemeinsames Akzeptanzintervall für Bias und Präzision

Erläuterung

Die unter Richtigkeit (Bias) und Laborpräzision (RSD_T) bestimmten Werte werden in Kombination als 95 % β-Toleranzintervall ausgedrückt. Der folgende Zusammenhang gilt nur, wenn die Anzahl der Wiederholbestimmungen für alle Tage gleich ist [8]:

$$L_{u} = Bias - t_{f;0,975} \cdot \sqrt{1 + \frac{1}{p \cdot n \cdot B^{2}}} \cdot RSD_{T}$$
 (Gl. 12)

$$L_o = Bias + t_{f;0,975} \cdot \sqrt{1 + \frac{1}{p \cdot n \cdot B^2}} \cdot RSD_T$$
 (Gl. 13)

$$f = \frac{(R+1)^2}{\frac{\left(R+\frac{1}{n}\right)^2}{p-1} + \frac{1-\frac{1}{n}}{p \cdot n}}$$
(Gl. 14)

$$R = \frac{s_t^2}{s_r^2} \tag{Gl. 15}$$

$$B = \sqrt{\frac{R+1}{n \cdot R+1}}$$
 (Gl. 16)

 $[L_u]$ untere Grenze des 95 % β-Toleranzintervall

 $[L_0]$ obere Grenze des 95 % β-Toleranzintervall

[Bias] systematischer Fehler

 $[t_{f:0.975}]$ 97,5 %-Perzentil der t-Verteilung bei f Freiheitsgraden

[p] Anzahl der Tage

[n] Anzahl der Wiederholbestimmungen pro Tag

[*B*] Hilfsgröße zur Berechnung des 95 % β-Toleranzintervall

[f] Anzahl der Freiheitsgrade

 $[RSD_T]$ tagesverschiedene Laborpräzision

[*R*] Hilfsgröße zur Berechnung der Anzahl der Freiheitsgrade

 $[s_t]$ Varianz zwischen den Tagen

 $[s_r]$ Wiederholvarianz

Kriterien

Das 95 % β -Toleranzintervall darf innerhalb eines Akzeptanzintervalls von \pm 30 % beziehungsweise \pm 40 % nahe der Bestimmungsgrenze liegen [8].

Theoretische Bestimmung

Die Bestimmung der einzelnen Größen sind den entsprechenden Kapiteln zu entnehmen.

Praktische Bestimmung

Für die Bestimmung des 95 % β -Toleranzintervall bedarf es abermals keinem eigenständigen Experiment.

3.3.4 Analytische Grenzen

Zur Charakterisierung der Empfindlichkeit eines analytischen Verfahrens gehören Nachweisgrenze, Erfassungsgrenze und Bestimmungsgrenze. Da die Richtlinien der GTFCh [8] nur die Nachweis- und Bestimmungsgrenze vorsieht, wird die Erfassungsgrenze nicht ermittelt.

3.3.4.1 Nachweisgrenze

Erläuterung

Die Konzentration eines Analyten in einer Probe, bei der die Nachweiswahrscheinlichkeit 50 % beträgt, diesen unter Einhaltung von Identifizierungskriterien und mit einer definierten statistischen Aussagesicherheit qualitativ sowie unterscheidbar von einer Nullprobe nachzuweisen wird als Nachweisgrenze (LOD, Limit of Detection) bezeichnet. Die Bestimmung dieser kann über das Signal-Rausch-Verhältnis oder nach DIN 32645 [42] erfolgen, wobei letztere Anwendung findet [8]:

$X_{NG} = s_{x_0} \cdot t_{f,\alpha} \cdot$	$\sqrt{\frac{1}{m} + \frac{1}{n} + \frac{\bar{x}^2}{Q_x}}$	(Gl. 17)
---	--	----------

F T 7	37 1 .
$[X_{NG}]$	Nachweisgrenze
LANCI	Nachweisglehze

 $[s_{x_0}]$ Verfahrensstandardabweichung

 $[t_{f,a}]$ Quantil der t-Verteilung

[m] Anzahl der Messungen

[n] Anzahl der Kalibrationsniveaus

 $[\bar{x}]$ Mittelwert

 $[Q_x]$ Summe der Abweichungsquadrate

[α] Signifikanzniveau (Fehler 1. Art, $\alpha = 0,1$)

Kriterien

Grundlegend ist zu prüfen, ob die ermittelte Nachweisgrenze hinreichend niedrig ist, um den Bestimmungszweck der Methode zu erfüllen. Weiterhin muss eine eindeutige Identifizierung gewährleistet sein [8].

Theoretische Bestimmung

Es müssen zumindest fünf Kalibratoren durch Aufstocken von Leermatrix hergestellt werden. Die Konzentrationsniveaus sollten dabei äquidistant und im Bereich der erwarteten Nachweisgrenze liegen. Weiterhin darf die Konzentration des höchsten Kalibrators maximal das Zehnfache der errechneten Nachweisgrenze sein. Es erfolgt eine Einfachbestimmung. Die erhaltenen Peakflächenverhältnisse aus Analyt und internen Standard des schwächsten Ions werden gegen die Konzentrationen der Kalibratoren aufgetragen. Die Nachweisgrenze wird über eine lineare Regression bestimmt [8].

Praktische Bestimmung

Mit Referenzmaterial wurde Negativpoolserum mit den Analyten in äquidistanten Konzentrationen angesetzt und in einfach Bestimmung analysiert, dabei wurden 20 Punkte mit folgenden Konzentrationen gewählt: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ng/mL.

3.3.4.2 Bestimmunsgrenze

Erläuterung

Mit einer Nachweiswahrscheinlichkeit von 100 % und unter Einhaltung der Kriterien zur Bestimmung der Nachweisgrenze stellt die Bestimmungsgrenze (LOQ, Limit of Quantification) die Konzentration eines Analyten in einer Probe dar, ab der quantitative Aussagen getroffen werden können. Die Ermittlung der Bestimmungsgrenze kann anhand von Bias- und Präzisionsdaten oder nach DIN 32645 [42] erfolgen, wobei hier die Erfassung nach DIN vorgesehen ist:

$$X_{BG} = k \cdot s_{x_0} \cdot t_{f,\alpha} \cdot \sqrt{\frac{1}{m} + \frac{1}{n} + \frac{(X_{NG} - \bar{x})^2}{Q_x}}$$
 (Gl. 18)

$[\Lambda_{BG}]$ Destining in gas $[\Lambda_{BG}]$	$[X_{BG}]$	Bestimmungsgrenze
--	------------	-------------------

[k] relative Ergebnissunsicherheit (k = 3)

 $[s_{x_0}]$ Verfahrensstandardabweichung

 $[t_{f,a}]$ Quantil der t-Verteilung

[m] Anzahl der Messungen

[n] Anzahl der Kalibrationsniveaus

 $[\bar{x}]$ Mittelwert

 $[Q_x]$ Summe der Abweichungsquadrate

[α] Signifikanzniveau (Fehler 1. Art, $\alpha = 0.01$)

 $[\beta]$ Wahrscheinlichkeit (Fehler 2. Art)

 $[X_{NG}]$ Nachweisgrenze

Kriterien

Es liegen identische Kriterien wie bei der Bestimmung der Nachweisgrenze vor. Ferner gilt, dass die Bestimmungsgrenze die Nachweisgrenze nicht unterschreiten darf. Ist dies dennoch der Fall, so wird die Nachweisgrenze auch die Bestimmungsgrenze [8].

Theoretische Bestimmung

Die Bestimmungsgrenze wird im Experiment zur Bestimmung der Nachweisgrenze ermittelt. Es werden jedoch die Peakflächenverhältnisse aus Analyt und internen Standard des stärksten Ions gegen die Konzentrationen der Kalibratoren aufgetragen [8].

Praktische Bestimmung

Auch hier muss die praktische Bestimmung nicht isoliert durchgeführt werden und wird bereits im Kapitel der Nachweisgrenze beschrieben.

3.3.5 Stabilität

Erläuterung

In der forensisch-toxikologischen Analytik beschreibt die Stabilität die chemische Beständigkeit eines Analyten in einer gegebenen Matrix unter bestimmten Bedingungen für gegebene Zeitintervalle. Hierbei zu betrachten ist die Stabilität eines Analyten von der Probennahme bis zur Analyse, die Einfrier- und Auftaustabilität unbearbeiteter Proben, die Langzeitstabilität sowie die Stabilität aufgearbeiteter (derivatisierter) Proben. Liegt bereits Literatur vor, die mit Stabilitätsdaten diese hinreichend beschreibt, kann die Durchführung der ersten drei Prüfpunkte vernachlässigt werden. Da die Stabilität aufgearbeiteter (derivatisierter) Proben jedoch methodenabhängig ist, muss diese zwingend geprüft werden [8].

Kriterien

Die maximal zu akzeptierende Signalab- beziehungsweise Signalzunahme beträgt \pm 15 % respektive \pm 20 % nahe der Bestimmungsgrenze und unter Verwendung deuterierter Interner Standards \pm 25 % [8].

Theoretische Bestimmung

Es dürfen nicht weniger als sechs Bestimmungen bei jeweils zwei Konzentrationen aus idealerweise kommerziellen Material untersucht werden. Diese müssen den Arbeitsbereich abdecken. Hierbei werden alle Proben gleichzeitig aufgearbeitet, die entsprechenden Konzentrationsniveaus vereint und auf sechs Aliquote verteilt. Die aufgearbeiteten Proben werden dann in gleichmäßigen Abständen injiziert, wobei die Intervalle den Zeitraum einer regulären Analysenserie berücksichtigen sollen. Die gemessenen Peakflächen werden dann gegen die einzelnen Zeitpunkte der entsprechenden Konzentration aufgetragen und via linearer Regression ausgewertet [8].

Praktische Bestimmung

Die Stabilität wurde bei zwei verschiedenen Konzentrationen mit kommerziellen Kontrollmaterial (ACQ Science) ermittelt. Die Proben wurden aufgearbeitet und nach 10, 20, 30, 40, 50 und 70 h injiziert.

3.3.6 Wiederfindung

Erläuterung

Die Extraktion eines Analyten aus einer Matrix in ein Lösungsmittel kann mitunter unvollständig sein. So können Verluste durch Transferschritte im Rahmen der Probenaufarbeitung auftreten, als auch der analytisch methodische Kompromiss mehrere strukturchemisch unterschiedliche Verbindungen parallel zu Erfassung ursächlich sein. Die Leistung einer Extraktion wird mit Hilfe der Wiederfindung bestimmt. Hierbei werden die Signale einer mit dem Analyten versetzten Matrixprobe mit denen einer nicht extrahierten Originallösung verglichen. Von Extraktionsausbeute wird gesprochen, wenn der Analyt einen Derivatisierungsschritt durchläuft und die zu vermessenden Derivate nicht als Reinsubstanz vorliegen. Diese berücksichtigt den gesamten Transfer des Analyten in den primären Extrakt und wird folgendermaßen ermittelt:

$$W = \frac{\bar{x}_M}{\bar{x}_L} \cdot 100\% \tag{Gl. 19}$$

[W] Wiederfindung

 $[\bar{x}_M]$ Peakflächenverhältnissmittelwert der Matrixproben

 $[\bar{x}_L]$ Peakflächenverhältnissmittelwert der Lösungsmittelproben

Kriterien

Die Extraktionsausbeute muss ≥ 50 % betragen [37].

Theoretische Bestimmung

Als minimale Anforderung sollten sechs Analysen bei niedrigen und hohen Konzentrationen, so erhältlich aus kommerziellem Material durchgeführt werden, bei denen der interne Standard und der Analyt erst nach der Extraktion hinzugegeben werden. Weitere sechs Messungen werden bei den identischen Konzentrationsniveaus durchgeführt, jedoch wird jetzt der Analyt vor und der interne Standard nach der Extraktion hinzugegeben. Die so erhaltenen Peakflächenverhältnisse (Analyt und Interner Standard) können anschließend miteinander verglichen werden [8].

Praktische Bestimmung

Die Wiederfindung wurde ermittelt, in dem sechs Matrixproben der normalen Aufarbeitung unterzogen wurden, jedoch der interne Standard einmal vor der Extraktion und einmal nach der Extraktion hinzugefügt wurde. Die nach Aufarbeitung der Matrixproben und Zugabe des Internen Standard erhaltenen Peakflächenverhältnisse wurden mit den Peakflächenverhältnisse der gespikten Lösemittelproben in Beziehung gesetzt.

3.3.7 Messunsicherheit

Erläuterung

Ein analytischer Prozess ist per se mit einer Unsicherheit verknüpft, wobei die Größe dieser durch verschiedene Faktoren beeinflusst wird. Mögliche Ursachen resultieren aus Fehlern während der Probennahme und dem Probentransport, den Lagerungsbedingungen vor der eigentlichen Analyse, aber auch Pipettierfehler und die Robustheit beziehungsweise Leistungsfähigkeit des Analysensystems spielen dabei eine Rolle. Wenngleich der Einfluss des jeweiligen Unsicherheitsbetrages unterschiedlich groß sein kann. Dies führt dazu, dass auch unter genormten Bedingungen die Mehrfachbestimmung einer Probe nur im Einzelfall zu einem identischen Ergebnis führt. Infolgedessen unterliegt der finale Messwert einer Streuung, die als Messunsicherheit bezeichnet wird [43]. Die Bestimmung kann über die Schätzung durch zertifiziertes Referenzmaterial oder über die Schätzung durch Ringversuche und ein Referenzmaterial erfolgen [44], wobei letztere Anwendung findet und sich wie folgt berechnet [8]:

$$U = k \cdot u(y) \tag{Gl. 20}$$

$$U = k \cdot \sqrt{(RMSBias)^2 + \left(u(Cref)\right)^2 + \left(u(RSD_{PK})\right)^2}$$
 (G1. 21)

$$U = k \cdot \sqrt{\left(\sqrt{\frac{\sum \left(100\% \frac{Bias}{SW}\right)^2}{m}}\right)^2 + \left(\frac{\left(\frac{\sum 100\% \frac{S_{RV}}{SW}}{m}\right)}{\sqrt{p}}\right)^2 + \left(100\% \cdot \frac{S_{PK}}{MW}\right)^2}$$
 (G1. 22)

[Bias] Abweichung des Messwertes vom Ringersuchswert

[k] Erweiterungsfaktor

[m] Anzahl der Ringversuche

[p] Mittlere Anzahl der teilnehmenden Laboratorien

[RMSBias] Unsicherheitsbeitrag durch die Unrichtigkeit der Messung

 $[s_{PK}]$ Standardabweichung für die Messung des Kontrollmaterials über die Messtage

 $[s_{RV}]$ Standardabweichung im Ringversuch (Vergleichsstandardabweichung)

[SW] Sollwert im Ringversuch

[*U*] Erweiterte Messunsicherheit

[u(Cref)] Unsicherheitsbeitrag durch die im Ringversuch ermittelten Sollwerte

 $[u(RSD_{PK})]$ Unsicherheitsbeitrag durch die Laborpräzision (tagesverschieden)

[u(y)] Kombinierte Messunsicherheit

Kriterien

Da die Richtlinien der GTFCh keine maximal zulässige Messunsicherheit vorgibt, wird diese mit ≤ 30 % eigenständig festgelegt.

Theoretische Bestimmung

Die Ermittlung der Messunsicherheit erfolgt über Richtigkeit und Laborpräzision. Für den Richtigkeitsanteil dürfen nicht weniger als fünf aufeinanderfolgende Ringversuche verwendet werden. Zur Bestimmung des Präzisionsanteils müssen zehn niedrige Konzentrationsniveaus analysiert werden, die tagesverschieden untersucht wurden. Zur Auswertung wird das durch die GTFCh bereitgestellte Excel-Tabellenmakro Messunsicherheit [45] verwendet.

Praktische Bestimmung

Zur Berechnung des Richtigkeitsanteils wurden fünf beziehungsweise sechs bestandene Ringversuchsauswertungen herangezogen. Hierfür wurden folgende Ringversuche (ARVECON) eingesetzt: BTMF3/17-A, BTMF3/17-B, BTMF1/18-A, BTMF1/18-B, BTMF2/18-A, BTMF3/18-A. Da für MBDB keine Ringversuche zu Verfügung standen, wurden hier fünf Werte vom mittleren Kontrolllevel und fünf Werte vom hohen Kontrolllevel verwendet. Zur Berechnung des Präzisionsanteils wurden die ersten zehn Werte der Genauigkeitsbestimmung der Qualitätskontrollprobe vom niedrigsten Kontrolllevel herangezogen.

4 Auswertung und Ergebnisse

4.1 Selektivität und Spezifität

Die Untersuchung der Leeproben ergab keine Hinweise auf eine Störung durch endogene Matrixbestandteile. Es konnten zwar vereinzelt Signale in der Nähe der Analyten beobachtet werden, diese eluierten jedoch nicht zum Zeitpunkt der Substanzen und betrafen maximal ein zu untersuchendes Ion je Analyt. Weiterhin waren die Nullproben analytfrei was darauf schließen lässt, dass der undeuterierte Anteil in den internen Standards sehr gering beziehungsweise mit dieser Methode nicht nachweisbar ist. Darüber hinaus konnte keine die internen Standards betreffenden Interferenzen entdeckt werden. Das Verhalten der Nachweisionen zeigt Abbildung 16 am Beispiel von MDMA / -d5 in den einzelnen Testsituationen.

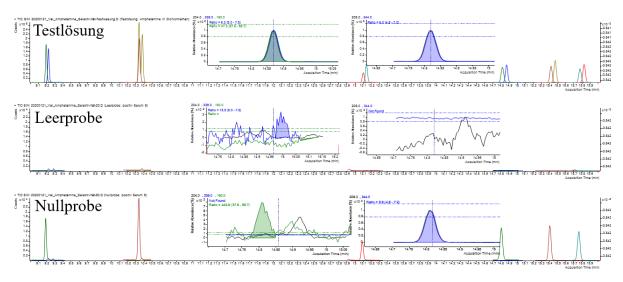


Abbildung 16: Chromatogramme unterschiedlicher Testsituationen

Darüber hinaus konnte mit Hilfe der weiteren Experimente eine potentielle Störung durch die folgenden Substanzklassen beziehungsweise Substanzen ausgeschlossen werden:

Antiarrhythmika: Acebutolol, Ajmalin, Amiodaron, Desethylamiodaron, Aprindin,

Atenolol, Bisoprolol, Diltiazem, Disopyramid, Dronedaron, Debutyldronedaron, Flecainid, Flunarizin, Gallopamil, Lidocain, Metoprolol, Mexiletin, Propafenon, Propranolol, Chinidin,

Hydrochinidin, Sotalol, Tocainid, Verapamil, Norverapamil

Antidepressiva: Agomelatin, Atomoxetin, Bupropion, erythro-Dihydro-Bupropion,

threo-Dihydro-Bupropion, Citalopram, Clomethiazol, Desmethylcitalopram, Desmethylfluoxetin, Desmethylmianserin, Desmethylmirtazapin, Desmethylsertralin, O-Desmethyltramadol, O-Desmethylvenlafaxin, Dosulepin, Duloxetin, Fluoxetin, Fluoxamin, Guanfacin, Hydroxybupropion, Methylphenidat, Mianserin, Milnacipran, Mirtazapin, Moclobemid, Nefazodon, Opipramol,

Paroxetin, Reboxetin, Ritalinsäure, Sertralin, Tianeptin, Tramadol,

Tranylcypromin, Trazodon, Venlafaxin, Vortioxetin

Antiepileptika: Carbamazepin, Carbamazepin-10,11-epoxid, 10,11-

Dihydroxycarbamazepin, 10-OH-Carbamazepin, Ethosuximid, Felbamat, Gabapentin, Lacosamid, Lamotrigin, Levetiracetam, N-Desmethylmesuximid, Oxcarbazepin, Phenobarbital, Phenylethylmalonamid, Phenytoin, Pregabalin, Primidon, Rufinamid, Stiripentol, Sultiam, Theophyllin, Tiagabin, Topiramat, Valproinsäure,

Vigabatrin, Zonisamid

Benzodiazepine: 7-Aminoclonazepam, 7-Aminoflunitrazepam, 7-Aminonitrazepam,

Alprazolam, Bromazepam, Brotizolam, Chlordiazepoxid, Clobazam, Clonazepam, Demoxepam, Desalkylflurazepam, Desalkylflurazepam, Desmethylflunitrazepam, Diazepam, Estazolam, Flunitrazepam, Flurazepam, α -Hydroxyalprazolam, 3-Hydroxybromazepam, α -Hydroxymidazolam, α -Hydroxytriazolam, Lorazepam, Lormetazepam, Medazepam, Midazolam, Nitrazepam, Norclobazam, Nordiazepam, Oxazepam, Prazepam, Temazepam, Tetrazepam, Trazodon, Triazolam,

Zaleplon, Zolpidem, Zopiclon, Zopiclon, ACP

Cannabinoide: Tetrahydrocannabinol, 11-Hydroxy- Tetrahydrocannabinol,

Tetrahydrocannabinol-Carbonsäure

Kokain: Kokain, Benzoylecgonin, Ecgoninmethylester

Neuroleptika: Amisulprid, Aripiprazol, Chlorpromazin, Chlorprothixol, Clozapin,

Dehydro-Aripiprazol, Desmethylolanzapin, Flupentixol, Fluphenazin, Haloperidol, Levomepromazin, Melperon, Norclozapin, Norquetiapin, Olanzapin, Paliperidon (9-OH-Risperidon), Perazin, Pipamperon, Promethazin, Prothipendyl, Quetiapin, Risperidon, Sertindol, Sulpirid,

Thioridazin, Ziprasidon, Zotepin, Zuclopenthixol

Opiate / Opioide: Morphin, Codein, Methadon

4.2 Linearität der Kalibration

Mit Hilfe der einzelnen Messwerte wurden Kalibrationsgeraden erstellt, welche in Abbildung 17 dargestellt sind. In dieser Abbildung ist jeweils das Bestimmtheitsmaß hervorgehoben, welches die Güte der Anpassung durch die Regressionsgerade beurteilt. Ist das Bestimmtheitsmaß nahe Null, ist ein funktionaler Zusammenhang zwischen x und y nicht erkennbar. Bei Werten in der Nähe von Eins ist ein linearer Zusammenhang zwischen den Konzentrationswerten x und den Signalwerten y gegeben. Man kann anhand des Bestimmtheitsmaß jedoch nicht entnehmen, ob eine lineare oder eine quadratische Anpassung günstiger wären, hierfür eignet sich der Mandel-Test.

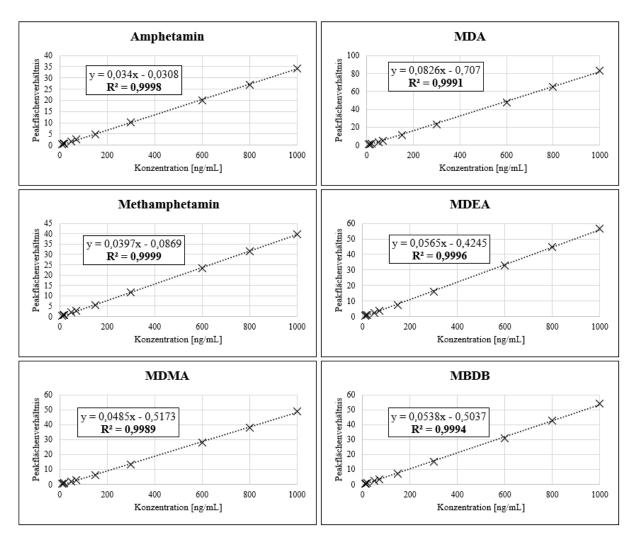


Abbildung 17: Mittelwerte der sechsfach Bestimmung aller Kalibrationsgeraden

In den sechs Kalibrationsgeraden konnten keine signifikanten Abweichungen einzelner Messwerte beobachtet werden. Die 95 % und 99 % Signifikanzniveaus wurden nicht erreicht. Somit wurden keine Ausreißer oder Straggler festgestellt, wodurch der Grubbs-Test als bestanden bewertet werden kann.

Mit dem Cochran-Test wird über den gesamten Kalibrationsbereich auf Homogenität der Varianzen geprüft. Hierfür wurde ein Prüfwert aus den Varianzen der Messwerte berechnet, der den Tabellenwert nicht überschreiten durfte. Bei allen Analyten war dies erfüllt.

Der Test auf Linearität der Kalibration nach Mandel ist bei allen Analyten bestanden, demnach darf bei jedem Analyten ein lineares Kalibrationsmodell anstatt eines quadratischen gewählt werden.

4.3 Genauigkeit

Die Prüfung auf Richtigkeit wird durch den Bias-Wert, das heißt der Abweichung zum Zielwert ausgedrückt. Der von der GTFCh festgelegte Grenzwert von 15 % wurde von keinen Analyten überschritten. Entsprechend dem gilt die Prüfung auf Richtigkeit als bestanden.

Anschließend wurde die Wiederholpräzision betrachtet, deren Grenzwert als relative Standardabweichung mit 15 % angegeben wird. Diese wurde an keinem der acht Tage von einem der Analyten überschritten. Dies belegt, dass die hier validierte Methode bei wiederholter Messung von Proben am gleichen Tag in der Lage ist, vergleichbare Ergebnisse zu liefern und die zufälligen Fehler den Toleranzbereich dabei nicht überschreiten.

Mit der Messung an verschiedenen Tagen wurde die Laborpräzision überprüft. Dabei wurde die Abweichungen der einzelnen Messwerte zwischen den verschiedenen Tagen miteinander verglichen. Auch die (tagesspezifische) Laborpräzision war für alle Analyten erfüllt, der Grenzwert der Standardabweichung wurde nicht überschritten.

Die unter Richtigkeit und Laborpräzision in Kombination als 95 % β-Toleranzintervall ausgedrückten graphischen Darstellung finden sich in Abbildung 18. Zu erkennen ist, dass insbesondere die hohe Kontrolle bei nahezu allen Analyten den gesamten Toleranzbereich von 30 % nutzt. Möglicherweise könnte ein weiterer Kalibrationspunkt im oberen Bereich diesem Phänomen entgegenwirken. Dennoch erfüllen auch hier alle Analyten die gesetzten Kriterien.

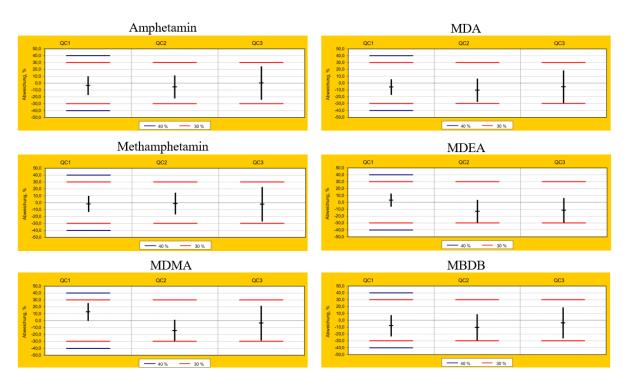


Abbildung 18: Zusammenfassung 95%-Intervalle (Valistat)

Abschließend sind die Ergebnisse der Kenngrößen Richtigkeit, Wiederholpräzision und Laborpräzision in Tabelle 12 zusammengefasst.

Tabelle 12: Ergebnisse der Experimente zur Bestimmung der Genauigkeit

	QC - 1				
	Konzentration	Mittelwert	BIAS	RSD _r	RSD _T
Analyt	[ng/mL]	[ng/mL]	[%]	[%]	[%]
Amphetamin	25,2	24,7	-1,9	3,2	5,7
Methamphetamin	25,2	24,9	-0,9	3,8	4,9
MDMA	25,1	26,7	6,1	3,1	5,0
MDA	25,2	24,4	-3,0	3,6	5,0
MDEA	25,1	25,4	1,6	3,4	4,0
MBDB	25,1	24,0	-4,0	2,6	6,5
		_			
	QC - 2				
Analyt	Konzentration	Mittelwert	BIAS	RSD _r	RSD _T
Allalyt	[ng/mL]	[ng/mL]	[%]	[%]	[%]
Amphetamin	90,4	87,8	-2,8	5,6	7,3
Methamphetamin	90,4	89,8	-0,6	5,3	6,8
MDMA	90,7	83,9	-7,1	5,7	7,2
MDA	60,4	57,1	-5,4	5,5	7,6
MDEA	90,8	84,6	-6,7	5,5	7,4
MBDB	60,5	57,2	-5,4	5,1	8,3
		_			
	QC - 3				
Analyt	Konzentration	Mittelwert	BIAS	RSD _r	RSDT
Allalyt	[ng/mL]	[ng/mL]	[%]	[%]	[%]
Amphetamin	501	501	0,1	4,9	9,8
Methamphetamin	505	495	-1,2	5,3	10,1
MDMA	501	491	-1,8	5,7	10,5
MDA	504	489	-2,9	5,6	10,1
MDEA	499	469	-5,8	4,9	7,7
MBDB	501	491	-1,9	5,9	9,4

4.4 Analytische Grenzen

Durch die Messung der 20 Standards für jeden Analyten wurde die Nachweisgrenze und Bestimmungsgrenze mit Hilfe einer linearen Regression nach DIN 32645 bestimmt. Von diesen 20 Kalibratoren wurden maximal zehn, zumindest jedoch fünf pro Substanz zur Auswertung herangezogen. Dabei wurde der erste Kalibrationspunkt jeweils unter Berücksichtigung der Identifizierungskriterien gewählt. In Abbildung 19 wird dies beispielhaft am Analyten MDEA demonstriert. Bei einem Konzentrationsniveau von 1 ng/mL weist das Ion mit m/z 353 keine symmetrische Peakform auf und das Ion 190 ist von einer deutlichen Co-Elution betroffen. Infolgedessen darf dieser Konzentrationspunkt nicht berücksichtigt werden. Dagegen sind bei einer Konzentration von 10 ng/mL alle Kriterien erfüllt, wodurch dieser Punkt hinzugezogen werden darf.

**Selected Ion (218.0) 20200129_Val_Amphetamine_NWQ__ + Selected Ion (353.0) 20200129_Val_Amphetamine_NWQ__ + Selected Ion (190.0) 20200129_Val_Amphetamine_

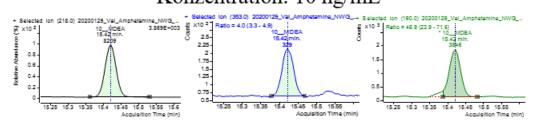


Abbildung 19: SIM-Ionen von MDEA bei zwei unterschiedlichen Konzentrationsniveaus

Da diese Methode unter anderem zur Beantwortung forensischer Fragestellungen herangezogen werden soll, ist gemäß den Richtlinien der GTFCh zu belegen, dass die ermittelte Bestimmungsgrenze für die beweissichere Analyse in Serum / Plasma kleiner oder gleich der jeweils maximal zulässigen Werte ist. Die Eignung dafür wird mit den Daten in Tabelle 13 bewiesen.

Analyt	Nachweisgrenze [ng/mL]	Bestimmungsgrenze [ng/mL]	Vorgabe GTFCh [ng/mL]
Amphetamin	1,4	5,4	25
Methamphetamin	1,4	5,0	25
MDMA	1,2	5,6	25
MDA	1,4	5,7	25
MDEA	1,1	5,2	25
MBDB	1,3	5,2	25

Tabelle 13: Nachweisgrenzen, Bestimmungsgrenzen und Vorgaben der GTFCh [41]

4.5 Stabilität

Nach Abschluss der Experimente zur Bestimmung der Stabilität wurden die Analytflächen in Valistat übertragen. Dabei fiel auf, dass die Messwerte für jeden Analyten stark variierten und sich nicht wie erwartet konstant auf einem Niveau bewegten. Besonders auffällig war dabei der Anstieg der Peakflächen über den betrachteten Zeitraum. Eine Möglichkeit, dieses Verhalten zu erklären, liegt im verwendeten Injektionslösungsmittel Dichlormethan. Am Ende der Probenaufarbeitung befinden sich 60 µL Lösungsmittel in einem Glasinsert mit einer Volumenkapazität von 200 µL (Abbildung 20). Dichlormethan besitzt einen Siedepunkt von 39,8 °C. Bei Labortemperaturen von 25 bis 40 °C könnte ein Wechsel des Aggregatzustandes von Dichlormethan in die gasförmige Phase unter Berücksichtigung des vorhandenen Gasraumes bereits begünstigt sein. Auch wenn keine Angaben bezüglich des Siedepunktes vom zum Beispiel Amphetamin-PFP-Derivat in der Literatur beschrieben ist, kann dieser als deutlich höher angenommen werden. Schlussfolgernd kann eine Aufkonzentrierung der Analyten stattfinden, welches dieses Phänomen erklären würde.

Abbildung 20: Glasinserthalter und Glasinsert mit 60 µL Dichlormethan

Auch wenn das oben beschriebene Verhalten erklärt werden konnte, galt es die gegebenen Akzeptanzkriterien zu erfüllen. In der Annahme, dass der deuterierte interne Standard ein identisches Verhalten zeigt, wurden die Peakflächenverhältnisse aus beiden gebildet und in die Software eingetragen. Dies führte zu homogenen Ergebnissen, die die zu erfüllenden Kriterien deutlich unterschritten. Abbildung 21 verdeutlicht die beiden Szenarien am Beispiel von Amphetamin.

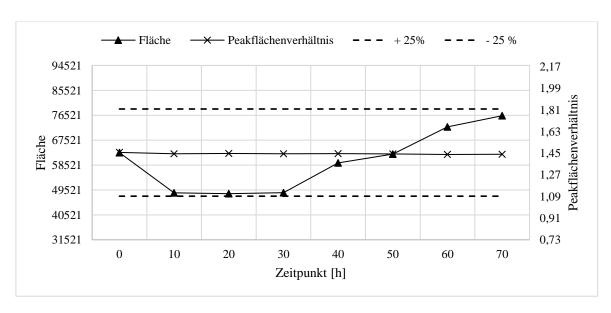


Abbildung 21: Stabilitätsverhalten von Amphetamin

4.6 Wiederfindung

Die erzielten Extraktionsausbeuten inklusive Standardabweichung sind in Tabelle 14 abgebildet. Die Wiederfindung beträgt bei allen Analyten ≥ 95 % beziehungsweise ≤ 105 %. Somit kann bei der unter alkalischen Bedingungen durchgeführten Extraktion mittels Ethylacetat von einem vollständigen Transfer des Analyten aus der Probe ausgegangen werden.

Tabelle 14: Ermittelte Wiederfindung und relative Standardabweichung

Analyt	Konzentration [ng/mL]	Wiederfindung [%]	relative Standardabweichung [%]
Amphetamin	50	95,8	4,2
Amphetamin	500	97,4	2,6
Methamphetamin	50	97,5	4,7
Methamphetamin	500	99,4	2,7
MDMA	50	97,3	5,1
MIDNIA	500	98,4	2,9
MDA	50	96,6	3,9
MDA	500	97,6	3,0
MDEA	50	98,5	5,4
MDEA	500	104	7,2
MDDD	50	98,0	3,9
MBDB	500	101	4,2

4.7 Messunsicherheit

Die Daten der gemessenen Ringversuche und Qualitätskontrollproben wurden in das zur Ermittlung vorgesehene Excel-Formular der GTFCh eingetragen. Die berechneten Werte sind in Tabelle 15 dargestellt. Die erweiterte Messunsicherheit mit dem Erweiterungsfaktor zwei liegt über alle Analyten zwischen 14,8 und 20 %. Die selbst gewählte Grenze von 30 % wurde somit für jede Verbindung unterschritten und das Kriterium erfüllt. Dies bedeutet das die mit dieser Methode erzeugten Messwerte konsistent und verlässlich sind.

Tabelle 15: Ergebnisse zur Abschätzung der Messunsicherheit über Ringversuche

	Unsicherheitsbetrag		etrag	Kombinierte	Erweiterte
	Richtigkeit	Sollwert	Präzision	Unsicherheit	Unsicherheit
Analyt	RMSBias [%]	u(Cref) [%]	u(RSD _{PK}) [%]	u(y) [%]	U [%]
Amphetamin	6,9	1,4	5,5	8,9	17,8
Methamphetamin	4,8	1,4	5,5	7,4	14,8
MDMA	6,0	1,5	6,9	9,3	18,5
MDA	8,1	1,5	5,7	10,0	20,0
MDEA	7,9	1,5	5,5	9,7	19,4
MBDB	7,2	4,6	5,2	10,0	20,0

5 Zusammenfassung

Im Kontext forensischer Fragestellungen erfolgt regelmäßig die Untersuchung von Amphetamin und Derivaten im Blut. Unter Berücksichtigung wissenschaftlicher Aspekte ist eine anhaltende Optimierung der eingesetzten Untersuchungsmethoden in Bezug auf Ergebnisqualität und Wirtschaftlichkeit unerlässlich.

In der der vorliegenden Arbeit konnte, die im Institut für Rechtsmedizin Halle bisher angewandte Methode durch ein neu entwickeltes Verfahren ersetzt werden. Die Vorteile dieser Methode zeigen sich in folgenden Punkten: Reduzierung des Probenvolumens, Verkleinerung des Lösungsmittelbedarfs, niedrigere Nachweis- und Bestimmungsgrenzen sowie der Einsatz eines alternativen Derivatisierungsreagenzes unter paralleler Verringerung der dafür notwendigen Reaktionszeit.

Das Verfahren wurde darüber hinaus nach den Richtlinien der GTFCh validiert. Dabei konnte gezeigt werden, dass die verwendete GC/MS-Methode verlässliche und reproduzierbare Ergebnisse liefert, die den Forderungen der GTFCh an eine routinemäßig eingesetzte quantitative Untersuchungsmethode erfüllt. Die Methode ist somit für ihren Einsatzzweck geeignet.

6 Literaturverzeichnis

- [1] Baselt R. C. (2002) Disposition of toxic drugs and chemicals in man, Biomedical Publications, Foster City, California (USA), 6
- [2] Europäische Beobachtungsstelle für Drogen und Drogensucht (2022) Europäischer Drogenbericht 2022: Trends und Entwicklungen, Amt für Veröffentlichungen der Europäischen Union, Luxemburg
- [3] Carvalho, M., Carmo, H., Costa, V. M., Capela, J. P., Pontes, H., Remiao, F., Carvalho, F., Bastos, M.deL. (2012). Toxicity of amphetamines: an update, *Arch Toxicol*, 86 (8), S 1167–1231
- [4] Mercieca G., Odoardi S., Cassar M., Rossi S. S. (2018) Rapid and simple procedure for the determination of cathinones, amphetamine-like stimulants and other new psychoactive substances in blood and urine by GC–MS, *J Pharm Biomed Anal*, 149, S 494-501
- [5] Wozniak MK, Wiergowski M, Aszyk J, Kubica P, Namiesnik J, Biziuk M. (2018) Application of gas chromatography-tandem mass spectrometry for the determination of amphetamine-type stimulants in blood and urine, *J Pharm Biomed Anal*, 148, S 58-64
- [6] Lehmann S., Kieliba T., Beike J., Thevis M., Mercer-Chalmers-Bender K. (2017) Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry, *J Chrom B*, *Analytical technologies in the biomedical and life sciences*, 1064, S 124–138
- [7] Paul M., Ippisch J., Herrmann C et al. (2014) Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach, *Anal Bioanal Chem*, 406, S 4425–4441
- [8] Peters F. T., Hartung M., Herbold M., Schmitt G., Daldrup T., Mußhoff F. (2009) Anforderungen an die Validierung von Analysenmethoden. Anhang B zur Richtlinie der GTFCh zur Qualitätssicherung bei forensisch-toxikologischen Untersuchungen, Version 01, online verfügbar unter www.gtfch.org/cms/images/stories/files/GTFCh_Richtlinie _Anhang%20B_Validierung_Version%201.pdf, zuletzt geprüft am 29.03.2023
- [9] Matissek R., Fischer M. (2021) Lebensmittelanalytik, Springer, Berlin, 7
- [10] Gross J. H. (2019) Massenspektrometrie Spektrokopiekurs kompakt, Springer, Berlin
- [11] UNODC (2006) Recommended Methods for the Identification and Analysis of Amphetamine, Methamphetamine and their Ring-substituted Analogues in Seized Materials, United Nations of Drugs and Crime, 2006. online verfügbar unter https://www.unodc.org/pdf/scientific/stnar34.pdf, zuletzt geprüft am 06.09.2023
- [12] Nieddu M., Baralla E., Pasciu V., Rimoli M.G., Boatto G. (2022) Cross-reactivity of commercial immunoassays for screening of new amphetamine designer drugs. A review, *J Pharm Biomed Anal*, 218

- [13] Broussard L. (2019) Chapter 16 Critical Issues When Testing for Amphetamine-Type Stimulants: Pitfalls of Immunoassay Screening and Mass Spectrometric Confirmation for Amphetamines, Methamphetamines, and Designer Amphetamines, Critical Issues in Alcohol and Drugs of Abuse Testing, Academic Press, S 207-214, 2
- [14] Zakrzewska A., Parczewski A., Kaźmierczak D., Ciesielski W., Kochana, J. (2007) Visualization of amphetamine and its analogues in TLC, Acta Chimica Slovenica, 54, S 106-109
- [15] Mitrevski B., Zdravkovski Z. (2005) Rapid and simple method for direct determination of several amphetamines in seized tablets by GC—FID, *Forensic Sci Int*, 152 (2-3), S 199–203
- [16] Kalasinsky K. S., Levine B., Smith M. L., Magluilo J., Schaefer T. (1993) Detection of amphetamine and methamphetamine in urine by gas chromatography/Fourier transform infrared (GC/FTIR) spectroscopy; *J Anal Toxicol*, 17(6), S 359–364
- [17] Garrido E. M. P. J., Garrido J. M. P. J., Milhazes N., Borges F., Oliveira-Brett A. M. (2010) Electrochemical oxidation of amphetamine-like drugs and application to electroanalysis of ecstasy in human serum, *Bioelectrochemistry*, 79 (1), S 77-83
- [18] Gallardo-González J., Baraket A., Bonhomme A., Zine N., Sigaud M., Bausells J., Errachid A. (2018) Sensitive Potentiometric Determination of Amphetamine with an All-Solid-State Micro Ion-Selective Electrode, *Analytical Letters*, 51 (3), S 348-358
- [19] Wozniak M. K., Banaszkiewicz L., Wiergowski M. et al. (2019) Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood, *Forensic Toxicol*, 38, S 42–58
- [20] Kusch P. (2019) Gas Chromatography Derivatization, Sample Preparation, Application, IntechOpen
- [21] Söderholm, S., Damm, M., Kappe, C.O. (2010) Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis, *Molecular Diversity*, 14, S 869-888
- [22] Melgar, R., Kelly, R. C. (1993) A novel GC/MS derivatization method for amphetamines, J Anal Toxicol, 17 (7), S 399–402
- [23] Dobos, A., Hidvégi, E., Somogyi, G. P. (2012) Comparison of five derivatizing agents for the determination of amphetamine-type stimulants in human urine by extractive acylation and gas chromatography-mass spectrometry, *J Anal Toxicol*, 36 (5), S 340–344
- [24] Marais, A. A., Laurens, J. B. (2009) Rapid GC-MS confirmation of amphetamines in urine by extractive acylation, *Forensic Sci Int*, 183 (1-3), S 78–86
- [25] Mohamed, K., Bakdash, A. (2017) Comparison of 3 Derivatization Methods for the Analysis of Amphetamine-Related Drugs in Oral Fluid by Gas Chromatography-Mass Spectrometry, *Anal Chem Insights*, 12
- [26] Khalid A., Calum M. (2017) Comparison of Six Derivatizing Agents for the Determination of Nine Synthetic Cathinones Using Gas Chromatography-Mass Spectrometry, *Anal Methods*, 9 (18), S 2732-2743

- [27] Mußhoff F., Madea B. (2004) Haaranalytik: Technik und Interpretation in Medizin und Recht, Deutscher Ärzte-Verlag, Köln
- [28] Drummer O. H. (2004) Postmortem toxicology of drugs of abuse, *Forensic Sci Int*, 142 (2-3), S 101-113
- [29] Mura P., Brunet B., Ghysel-Laporte M.-H., Goulle J.-P. (2015) Driving and amphetamines in blood-bibliographic data for a consensus of the French Society of Analytical Toxicology, *Toxicol Anal et Clin*, 27, S 142-152
- [30] Cruickshank C. C., Dyer K. R. (2009) A review of the clinical pharmacology of methamphetamine, *Addiction*, 104 (7), S 1085-1099
- [31] Von Heyden M., Jungaberle H., Majic T. (2018) Handbuch Psychoaktive Substanzen, Springer, Berlin, S 537-550
- [32] Kolbrich E. A., Goodwin R. S., Gorelick D. A., Hayes R. J., Stein E. A., Huestis M. A. (2008) Plasma pharmacokinetics of 3,4-methylenedioxymethamphetamine after controlled oral administration to young adults, *Ther Drug Monit*, 30 (3), S 320-32
- [33] Baggott M. J., Garrison K. J., Coyle J. R., Galloway G. P., Barnes A. J., Huestis M. A., Mendelson J. E. (2019) Effects of the Psychedelic Amphetamine MDA (3,4-Methylenedioxyamphetamine) in Healthy Volunteers, *J Psychoactive Drugs*, 51 (2), S 108-117
- [34] Kromidas S. (2000) Validierung in der Analytik, Wiley-VCH, Weinheim
- [35] Peters F. T., Drummer O. H., Mußhoff F. (2006) Validation of new methods, *Forensic Sci Int*, 165 (2-3), S 216-224
- [36] Guidance for industry-Bioanalytical method validation (2018) US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine, online verfügbar unter www.fda.gov/media/70858/download, zuletzt geprüft am 19.03.2023
- [37] Guideline on bioanalytical method validation (2015) Committee for medicinal products for human use, European Medicines Agency, online verfügbar unter www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf, zuletzt geprüft am 19.03.2023
- [38] Scientific Working Group for Forensic Toxicology (2013) Scientific Working Group for Forensic Toxicology standard practices for method validation in forensic toxicology, *J Anal Toxicol*, 37 (7), S 452-74
- [39] ARVECON GmbH in Zusammenarbeit mit dem Arbeitskreis der GTFCh "Qualitätssicherung" (2011) VALISTAT 2.0 Programm auf Excel-Basis zur Validierung nach den Richtlinien der GTFCh unter Berücksichtigung der ISO 5725, Version 2.0, Heidelberg / Walldorf
- [40] Al-Ahmadi, T. M. (2007) A comparison of derivatisation procedures for the detection of multiple analytes in systematic forensic toxicology, PhD thesis, University of Glasgow

- [41] Paul L. D., Mußhoff F. (2016) Richtlinie der GTFCh zur Qualitätssicherung bei forensischtoxikologischen Untersuchungen, Version 02, online verfügbar unter www.gtfch.org/cms/images/stories/files/GTFCh_Richtlinie_For-Tox_Version-2.pdf, zuletzt geprüft am 29.03.2023
- [42] DIN 32645:2008-11
- [43] Ellison S. L. R., Rosslein M., Williams A. (2003) EURACHEM/CITAC Leitfaden Ermittlung der Messunsicherheit bei analytischen Messungen, 2, online verfügbar unter https://eurolab-d.de/files/ermittlung_der_messunsicherheit_bei_analytischen_messungen .pdf, zuletzt geprüft am 16.04.2023
- [44] Schmitt G., Herbold M., Aderjan R. (2007) Schätzung der Messunsicherheit über "zertifizierte" Kontrollproben, online verfügbar unter www.gtfch.org/cms/images/stories /media/tb/tb2007/s551-557.pdf, zuletzt geprüft am 13.04.2023
- [45] Schmitt G., Herbold M., Peters F. T., Toennes S. W., Excel-Formular zur Abschätzung der Messunsicherheit, Version 1.6, zur Verfügung gestellt durch das Institut der Rechtsmedizin Halle (Saale), online verfügbar im Mitgliederbereich auf der Homepage der GTFCh unter www.gtfch.org

Anhang

Analyt

Weitere bestimmbare Analyte

7.1 Valistat-Validierungsprotokoll: Amphetamin Validierungsprotokoll

Seite: Gültig ab:	1 von 7 02 03 2020	Institution: Methode:	Institut für Rechtsmedizin Halle (Saale) GC-MS
Titel		Quantita	ative Bestimmung von Amphetamin und Derivaten im Serum mit GC-MS
SOP		SAA-T-I	001
Angaben zur M Kurzbezeichnu (ggf. Nr. der S	ng der Methode	Amphet	amin und Derivate im Serum mit GC-MS
Anwendungsge Arbeitsbereich		7723	ne / Forensische Toxikologie 00 ng/mL

Amphetamin (Interner Standard: Amphetamin-d5)

earbeitungszeitraum	
	November 2019 - Februar 2020
Methode gültig erklärt am	02.03.2020
Methode ungültig erklärt am	entfällt
Eusammenfassung und Bewertung	Flüssig/Flüssig-Extraktion mit Ethylacetat, eindampfen und PFPA-Derivatisierung

Inhaltsverzeichnis

- 1. Arbeitsbereich und Kalibrationsmodell
- Target
 1.1.1 Prüfung auf Varianzhomogenität (F-Test)
 1.1.2 Prüfung auf Linearität (Mandel-Test)
- 1.2. Qualifier
 1.2.1 Prüfung auf Varianzhomogenität (F-Test)
 1.2.2 Prüfung auf Linearität (Mandel-Test)
- 1.3. Lösemittelkalibration
- 1.3.1 Prüfung auf Ausreißer (F-Test)
 1.3.2 Prüfung auf Linearität (Mandel-Test)
 1.3.3 Prüfung auf Varianzhomogenität (F-Test)
- 2. Genauigkeit
- 2.1. Level 1
 2.1.1 Wiederholpräzision
 2.1.2 Laborpräzision
 2.1.3 Richtigkeit
- 2.1.4 95%-Intervall (40% / 30%)
- 2.2. Level 2
 2.2.1 Wiederholpräzision
 2.2.2 Laborpräzision
 2.2.3 Richtigkeit
 2.2.4 95%-Intervall (30%)
- 2.3. Level 3
 - 2.3.1 Wiederholpräzision 2.3.2 Laborpräzision 2.3.3 Richtigkeit
- 2.3.4 95%-Intervall (30%)
- 2.4. Zusammenfassung 95%-Intervall

- 3. Grenzwerte
- Sestimmung nach DIN 32645
 S.1.1 Bestimmung nach DIN 32645
 S.1.1 Bestimmung der Nachweisgrenze (schwaches lon)
 S.1.2 Bestimmung der Bestimmungsgrenze (intensives lon)

Quant: Methamphetamin, MDMA, MDA, MDEA, MBDB; Semi-Quant: Methylphenidat, Ethylon,

Methylon, Methcathinon, Cathinon, 4-MTA, PMA, Ethylamphetamin, Mephedron, Ephedrin

- Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus dem Signal/Rauschverhältnis
 3.2.2 Bestimmungsgrenze aus der Wiederholpräzision (20%)
- 4. Wiederfindung
- Bestimmung der Wiederfindung
 Bestimmung der Wiederfindung für hohe Konzentration
 Sestimmung der Wiederfindung für niedrige Konzentration
- - 4.2.1 Bestimmung der Stabilität bei hoher Konzentration
 4.2.2 Bestimmung der Stabilität bei niedriger Konzentration
- Matrixeffekte 4.3
 - 4.3.1 Überprüfung der Matrixeffekte bei hoher Konzentration
 - 4.3.2 Bestimmung der Matrixeffekte bei niedriger Konzentration

Valistat 2.0 - Protokoll

Druckdatum: 4/28/2020- 11:45 AM

Formular: 2.0

Seite:		2 von 7		Institution:	Institut für R	echtsmedizir	Halle (Saa	le)			
Gültig ab:		02.03.2020		Methode: GC-MS							2
1. Arbeitsbereich	und Kalib	rationsmode	II								
1.1 TARGET	l		Messsignal:	m/z = 190			Messgrösse:	Ratio		Einheit:	ng/ml.
Konz	entration	10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
	1	0.329	0.532	0.692	1.744	2.431	5.025	10.162	20.8952	27.6108	35.3193
<u>o</u>	2	0.375	0.573	0.729	1.744	2.425	5.011	10.311	18.8419	25.673	34.2786
MESSUNG	3	0.408	0.53	0.689	1.763	2.373	4.863	10.1275	20.7222	27.1854	34.3143
ES	4	0.456	0.559	0.717	1.703	2.395	5.198	9.832	20.3663	26.6948	36.0598
2	5	0.402	0.581	0.752	1.716	2.492	4.578	10.0216	20.0874	26.122	33.2616
	6	0.431	0.527	0.649	1.693	2.416	4.66	10.3965	19.7443	29.1485	32.7106
м	ittelwert	0,4	0.55	0.705	1.727	2.422	4.889	10.14183333	20.10955	27.07241667	34.32403333
	SD	0.0443	0.0238	0.0361	0.0275	0.0402	0.2367	0.2021	0.7482	1.2343	1.244

										0.0
Ausreisser-Test nach Grubb	S									
Extremwert	0.329	0.581	0.649	1.763	2.492	4.576	9.832	18.8419	29,1485	36.0598
Prüfwert	1.608	1.292	1.542	1.308	1.73	1.322	1.531	1.694	1.682	1,395
Signifikanz 95%										1,000
Tabellenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Straggler?	nein	nein	nein							
Signifikanz 99%										
Tabellenwert	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Ausreißer?	nein	nein	noin	nein	nein	nein	polo	nolo	noin.	

Cochran-Test (Varianzenhomogenität)		Mandel-F-Test auf Linearität		Lineare Kalibrationsfunktion		Quadratische Kalibrationsfunktion	
(Signifikanz 99%)		(Signifikanz 99%)		Y = a·x + b		Y = A•x² + B•x + C	
Prüfwert	0.4145	Prüfwert	-6.99	a	000,000	A	0.00000177
Tabellenwert	0.423	Tabellenwert	12.24	b		B	0.03241309
Bestanden?	ja	Bestanden?	ja	R Rest-SD	00,001 0.00	C R	0.08678637 0.99997952
						Rest-SD	0.09065183

JALIFIER		Messsignal:	m/z = 117			Messgrösse:	Ratio		Einheit:	ng/ml.
Konzentration	10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
1	0.081	0.117	0.166	0.440	0.606	1.320	2.674	5.413	7,166	9.054
დ 2	0.094	0.136	0.158	0.418	0.607	1.311	2.703	5.324	6.599	8.860
WESSUNG 4	0.093	0.129	0.168	0.415	0.607	1.280	2.647	5.360	7.106	8.862
£ 4 [0.095	0.130	0.190	0.439	0.623	1.382	2.576	4.960	6.930	9.505
≥ 5	0.088	0.139	0.190	0.439	0.640	1.211	2.637	5.026	6.815	8.629
6	0.091	0.132	0.177	0.440	0.658	1.252	2,757	4.907	7.601	8.487
Mittelwert	0.09	0.13	0.175	0.432	0.624	1.293	2 666	5.165	7.036	8.899
SD	0.005	0.007	0.013	0.012	0.021	0.059	0.062	0.225	0.344	0.357
Varianz	0.0	0.0	0.0	0.0	0.0	0.003	0.004	0.051	0.118	0.127
Werte	6	6	6	6	6	6	6	6	6	6
Extremwert	0.081	0.117	0.158	0.415	0.658	1,382	2.757	4.907	7.601	9.505
Prüfwert [1.821	1.779	1.274	1.418	1,597	1,509	1.484	1.147	1.641	1,696
Tabellenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Straggler?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Tabellenwert [1.944	1.944	1.944	1.944	1,944	1.944	1.944	1.944	1.944	1,944
Ausrelßer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein

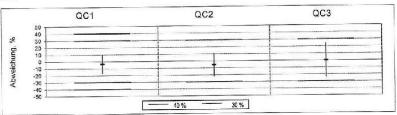
Cochran-Test (Varian: (Signifikanz 99%)	zenhomogenität)	Mandel-F-Test auf Lin (Signifikanz 99%)	earität	Lineare Kalibration Y = a·x + b	sfunktion	Quadratische Kalib Y = A•x² + B•x + C	rationsfunktion
Prüfwert Tabellenwert Bestanden?	0.418 0.423 ja	Prüfwert Tabellenwert Linear?	6.75 12.24 ja	a b R Rest-SD	0.00883104 000,000 00,001 0.05416502	A B C R Rest-SD	0.00000043 0.00843821 0.01672172 0.9999368 0.04131166

Formular: 2.0

Valistat 2.0 - Protokoll

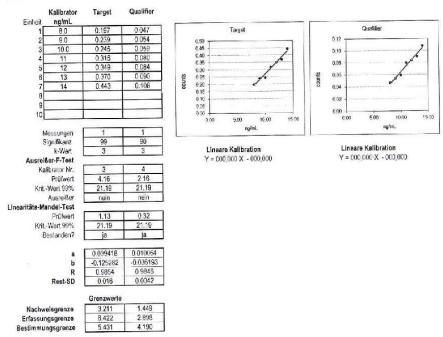
Seite: Gültig ab:	_	3 von 7 02 03,2020			Institut für Rech GC-MS	ılsmedizin Hal	le (Saale)				
	ITTELKALIBR										
		ATION	101								
	Signifikanz nzentration		%					3155			
	semittel (xo) Matrix (xm)										
	R gemessen R berechnet										
Wiederfindun			Ausreißer-F-	Test	1	Linearitäts-To	est		Varianzenhoi	nogenitäts-F-	Test
xm = ao * xo 4 ao bo R Rest-SD	+ bo		Kalibrator Nr Prüfwert Kritischer-W Ausreisser?			Prüfwert Kritischer-We Bestanden?	ert		RSD Grundk: RSD Wiederf Prüfwert Kritischer-Wi Bestanden?	indung	
		Wiede	rfindungsrate	1					kalibration weeu für VB = 9	nel.	
% 45 55 50 65 65 60 75 60 75 60 61 62 63 64 65 65 60 65 60 65 60 65 60 65 60 65 60 60 60 60 60 60 60 60 60 60						1.0 - 0.9 - 0.8 - 0.7 - 0.6 - 15 0.5 -	Winkelha	albierende	ween fur VB = 7	976	
5		0 0.40	o so ng/mL	0.80 1.0	0 1.20	0.4 · 0.3 · 0.2 · 0.1 · 0.0 ·	.0 0.1		0.6	0.8	1.0
		-						Lös	emittel		
2. Genauigkei 2.1. Level 1	it	QC-Sollwert:		Einheit:	ng/inL						-
	1	Tag 1 27.5	Tag 2 24.2	Tag 3 25.5	Tag 4 25.2	Tag 5 25.5	Tag 6	Tag 7 24.5	Tag 8	Tag 9	Tag 10
	1	25.5	27.3	25.4	24.6	24.7	23.5	24.7	22.6		
	3 4 5 6 7 8	26.0 25.3 25.0 25.2	26,4	25 8	236	24.6	23.1	24.2	22.0		
	9 10 Mittelwert	25.75	25 9667	25.5667	24.4667	24.9333	23.3567	24.4567	22.3333		
	BIAS, %	2.2 0.9224966	3.0 1.5947832	1.5 0.2081666	-2.9 0.8082904	-1.1 0.4932883	-7.3 0.2309401	-2.9 0.2516611	-11.4 0.305505		
	RSD, %	3.6	6.1	0.2081000	3.3	2.0	1.0	1.0	1.4		
		Kenndaten MW (ges.)		OK 24,7333	Wiederholpri SD RSD, %	Izision	0.7827639 3.2	Laborpräzisi SD RSD, %	on	1.408435 5.7	
		SD RSD, %		1.3575997 5.5	ites, in						_

Formular: 2.0 Valistat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:45 AM


eite:		4 von 7		Institution:	Institut für R	echtsmedizir	Halle (Saale	9)			
ültig ab:		02.03.2020		Methode:	GC-MS						
.2. Level 2		QC-Sollwert: [90.4	Einheit:	ng/mL	1					
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	98.5	86.3	89.6	92.8	85.8	84.1	89 4	83.4		
	2	95.8	85.2	92.1	81.0	84.6	86.3	84.0	80.0		
	3	95.6	77.6	88.1	91.5	86.1	85.1	87.3	81.2		
	9 4	107.0									
	Nns 5	86.3									
	MESSUNG 8 7	87.4									
	≥ / B										
	9					-					
	10										
	Mittelwert	95.1	83.0333	89.9333	88,4333	85.5	85.1667	86.9	81.5333		
	BIAS, %	5.2	-8.1	-0.5	-2.2	-5.4	-5.8	-3.9	-9.8		
	SD RSD, %	7.6241721	4.7374395	2.0207259	6.470188	0.7937254	1.1015141	2.7221315	1.7243356		
	KOD, 76	8.0	5.7	2.2	7.3	0.9	1.3	3.1	2.1		
		Kenndaten	-	OK	Wiederhol	präzision	_	Laborpräz	ision		
		MW (ges.)		87,8556	SD		4.8767619	SD		6.3742087	
		SD		6.237192	RSD, %		5.6	RSD, %		7.3	
		RSD, %		7.1	0.000		10000			11885	
			100000								
		Richtigkeit		95%-Inter	vall		K				
		Abw.	-2.54	Faktor			178				
		Bias, %	-2.8	B-Toleran		00,070 b					
				Prüfberei	on (30%)	00,063 D	is 00,118				
3. Level 3											
		QC-Sollwert:	501.0	Einheit:	ng/mL						
						Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	QC-Sollwert: [Tag 1 542.0	501.0 Tag 2 425.0	Tag 3	ng/mL Tag 4 441.0	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1 2	Tag 1	Tag 2 425.0 428.0	Tag 3	Tag 4				Tag 8 506.0 514.0	Tag 9	Tag 10
	1 2 3	Tag 1 542.0	Tag 2 425.0	Tag 3 490.0	Tag 4 441.0	505.0	577.0	529.0	506.0	Tag 9	Tag 10
	1 2 3	Tag 1 542.0 538.0 573.0 565.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3	Tag 1 542.0 538.0 573.0 565.0 548.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 6	Tag 1 542.0 538.0 573.0 565.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 6 7	Tag 1 542.0 538.0 573.0 565.0 548.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 6 7 8	Tag 1 542.0 538.0 573.0 565.0 548.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 6 7	Tag 1 542.0 538.0 573.0 565.0 548.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 6 7 8 9	Tag 1 542.0 538.0 573.0 565.0 548.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 6 6 7 8 9 10 Mittelwert	Tag 1 542.0 538.0 573.0 565.0 548.0	Tag 2 425.0 428.0	Tag 3 490.0 472.0	Tag 4 441.0 456.0	505.0 477.0	577.0 551.0	529.0 521.0	506.0 514.0	Tag 9	Tag 10
	1 2 3 4 5 5 6 7 8 9 10 Mittelwert BIAS, %	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0	Tag 2 425.0 428.0 430.0 427.6667 -14.6	Tag 3 490.0 472.0 487.0 483.0 -3.6	Tag 4 441.0 456.0 445.0 447.3333 -10.7	506.0 477.0 463.0	577.0 551.0 536.0	529 0 521.0 540 0 530 0 58	506.0 514.0 523.0 514.3333 2.7	Tag 9	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 455.0	Tag 2 425.0 428.0 430.0 430.0 427.6667 -14.6 2.5166115	Tag 3 490.0 472.0 487.0 483.0 -3.6 9.6496508	Tag 4 441.0 456.0 445.0 447.3333 -10.7 7.7674535	481,5667 -3.9 21,3854	577.0 551.0 536.0 536.0 554.6667 10.7 20.7445	529 0 521.0 540 0 530 0 58 9.539392	506.0 514.0 523.0 514.3333 2.7 8.6049005	Tag 9	Tag 10
	1 2 3 4 5 5 6 7 8 9 10 Mittelwert BIAS, %	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0	Tag 2 425.0 428.0 430.0 427.6667 -14.6	Tag 3 490.0 472.0 487.0 483.0 -3.6	Tag 4 441.0 456.0 445.0 447.3333 -10.7	506.0 477.0 463.0 481.6667 -3.9	577.0 561.0 536.0 536.0 554.6667 10.7	529 0 521.0 540 0 530 0 58	506.0 514.0 523.0 514.3333 2.7	Tag 9	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.8	Tag 2 425.0 428.0 430.0 430.0 427.6667 -14.6 2.5166115	Tag 3 490 0 472 0 487 0 483 0 -3 6 9.649508 2.0	Tag 4 441.0 456.0 445.0 445.0 447.3333 -10.7 7.7674535 1.7	481.5667 -3.9 21.3854 4.4	577.0 551.0 536.0 536.0 554.6667 10.7 20.7445	529 0 521.0 540.0 540.0 530 0 5 8 9.539392 1.8	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7	Tag 9	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten	Tag 2 425.0 428.0 430.0 430.0 427.6667 -14.6 2.5166115	Tag 3 490 0 472 0 487 0 483 0 -3 6 9 6406508 2 0	Tag 4 441.0 456.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi	481.5667 -3.9 21.3854 4.4	577.0 561.0 588.0 554.6667 10.7 20.7445 3.7	529 0 521.0 540.0 540.0 530.0 58 9.539392 1.3	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7		Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten MW (ges.)	Tag 2 425.0 428.0 430.0 430.0 427.6667 -14.6 2.5166115	Tag 3 490 0 472.0 487.0 483.0 -3.6 9.640508 2.0 OK 501.3704	Tag 4 441.0 445.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi	481.5667 -3.9 21.3854 4.4	577.0 551.0 558.0 554.6667 10.7 20.7445 3.7	529 0 521.0 540 0 540 0 530 0 58 9.539392 1.3 Laborprāzi	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7	49.0074	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten	Tag 2 425.0 428.0 430.0 430.0 427.6667 -14.6 2.5166115	Tag 3 490 0 472 0 487 0 483 0 -3 6 9.6496508 2.0 OK 501.3704 47.0827	Tag 4 441.0 456.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi	481.5667 -3.9 21.3854 4.4	577.0 561.0 588.0 554.6667 10.7 20.7445 3.7	529 0 521.0 540.0 540.0 530.0 58 9.539392 1.3	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7		Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten MW (ges.) SD RSD, %	Tag 2 425.0 428.0 430.0 430.0 427.6667 -14.6 2.5166115	Tag 3 490 0 472.0 487.0 487.0 3.6 9.646508 2.0 OK 501.3704 47.0827 9.4	Tag 4 441.0 445.0 445.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi SD RSD, %	481.5667 -3.9 21.3854 4.4	577.0 551.0 558.0 554.6667 10.7 20.7445 3.7	529 0 521.0 540 0 540 0 530 0 58 9.539392 1.3 Laborprāzi	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7	49.0074	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten MW (ges.) SD RSD, %	Tag 2 425.0 428.0 430.0 430.0 427.5657 -14.6 2.5166115 0.6	Tag 3 490 0 472 0 487 0 483 0 -3 6 9.640608 2.0 OK 501,3704 47,0827 9.4	Tag 4 441.0 445.0 445.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi SD RSD, %	481 5657 -3.9 21.3854 4.4	577.0 551.0 538.0 538.0 554.6667 10.7 20.7445 3.7 24.485 4.9	529 0 521.0 540 0 540 0 530 0 58 9.539392 1.3 Laborprāzi	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7	49.0074	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten MW (ges.) SD RSD, % Richtigkeit Abw.	Tag 2 425.0 428.0 430.0 430.0 427.5657 -14.6 2.5166115 0.6	Tag 3 490 0 472 0 487 0 487 0 487 0 487 0 50 436508 2.0 0K 501.3704 47.0827 9.4	Tag 4 441.0 445.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi SD RSD, %	481.5657 -3.9 21.3854 4.4 Orazision	577.0 551.0 538.0 554.6667 10.7 20.7445 3.7 24.485 4.9	529 0 521.0 540 0 540 0 530 0 58 9.539392 1.3 Laborprāzi	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7	49.0074	Tag 10
	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 542.0 538.0 573.0 565.0 548.0 455.0 536.8333 7.2 42.3104 7.9 Kenndaten MW (ges.) SD RSD, %	Tag 2 425.0 428.0 430.0 430.0 427.5657 -14.6 2.5166115 0.6	Tag 3 490 0 472 0 487 0 483 0 -3 6 9.640608 2.0 OK 501,3704 47,0827 9.4	Tag 4 441.0 445.0 445.0 445.0 447.3333 -10.7 7.7674535 1.7 Wiederholi SD RSD, %	481 5657 -3.9 21.3854 4.4	577.0 551.0 558.0 558.0 554.6667 10.7 20.7445 3.7 24.485 4.9	529 0 521.0 540 0 540 0 530 0 58 9.539392 1.3 Laborprāzi	506.0 514.0 523.0 514.3333 2.7 8.6049005 1.7	49.0074	Tag 10

Formular: 2.0

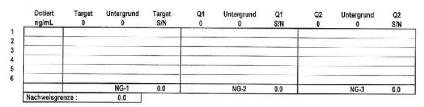
Valistat 2.0 - Protokoll


Seite:	5 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

Zusammenfassung 95%-Intervall

Zusammenfassung	QC1	QC2	QC3
B-Toleranz	00,021 bis 00,028	00,070 bis 00,101	00,379 bis 00,624
%	- 17 bis 10	-22 bis 11	-24 bis 25
Prüfbereich (30%)	00,018 bis 00,033	00,063 bis 00,118	00,351 bis 00,651
Prüfbereich (40%)	00.015 bis 00,035		The same of the sa

3. Grenzwerte 3.1 Bestimung nach DIN 32645

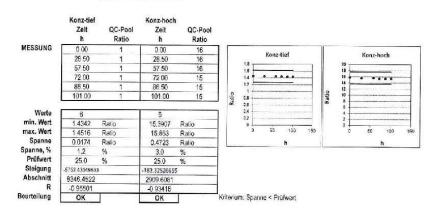


Formular: 2.0

Valistat 2.0 - Protokoll

Seite:	6 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)	
Gültig ab:	02.03.2020	Methode: GC-MS	

- 3.2 Bestimmung mittels Alternativmethode
- 3.2.1 Nachweisgrenze aus Signal/Rauschverhältnis


3.2.2 Bestimmungsgrenze

4. WIEDERFINDUNG 4.1 WIEDERFINDUNG

	QC-untere		QC-obere	
Konzentration [50,1	ng/mL	501.0	ng/mL
MESSUNG	Lösemittel Ratio	Matrix Ratio	Lõsemittel Ratio	Matrix Ratio
1	2.3088	2.3214	23.0931	21.9574
2	2.4459	2.1644	22,7367	21.7605
3	2.4243	2.3842	22.07	22.1018
4	2.4652	2.3737	22.5393	21,409
5	2.4904	2.4254	22.5077	22.7448
6	2.5062	2.356	22.6693	22 0614
Mittelwert	2.44	2.338	22 60268333	22.00581667
SD	0.071	0.091	0.335	0.442
RSD, %	2.9	3.9	1.5	2.0
N (Werte)	6	6	6	6
Wiederfin		95.8	97.4	
	RSD, %	4.2	2.6	

4.2 STABILITAT

Formular: 2.0

Valistat 2.0 - Protokoll

·, · · ·

ite:	7 von 7			echtsmedizir	Halle (Saaie)			4	
tig ab:	02.03.2020	Methode:	GO-IVIO						
MATRIXEFFEKTE -	I C/MS//MS/								
MATRIAL PERIL	Echilos (mo)								
	QC1	ng/mL	QC2]ng/mL				
	Reinsubstanz I	Extrakt Matrix	Reinsubstanz		Matrix				
MESSUNG			1						
WESSONS									
			No						
Mittelwert									
SD Varianz									
Anzahi									
	Wiederfindu RS	ng,%							
	RS	D, %							
	Matrixeffe RS	akt,% iD, %							
		eilung							
		50 110000	EON						
	Kni	terium: Recovery >= SD <=25%							
		Matrixeffekle	. 75-125%						
imerkungen									
		-							
							-		

						-			
Formular: 2.0			1	/alistat 2 n	- Protokall			Druckdatum: 4/28/2	020- 11:4
STATISTICS L.V					an 10 Sept. 1500				

7.2 Valistat-Validierungsprotokoll: Methamphetamin

Validierungsprotokoll

Seite: 1 von 7 Gültig ab: 02.03.2020	Institution: Institut für Rechtsmedizin Halle (Saale) Methode: GC-MS
Titel	Quantitative Bestimmung von Amphetamin und Derivaten im Serum mit GC-MS
SOP	SAA-T-001
Angaben zur Methode	
Kurzbezeichnung der Methode (ggf. Nr. der SOP)	Amphetamin und Derivate im Serum mit GC-MS
Anwendungsgebiet	Klinische / Forensische Toxikologie
Arbeitsbereich	10 - 1000 ng/mL
Analyt	Methamphetamin (Interner Standard: Methamphetamin-d5)
Weitere bestimmbare Analyte	Quant: Amphetamin, MDMA, MDA, MDEA, MBDB; Semi-Quant: Methylphenidat, Ethylon,
Weltere pestiminate Analyte	Methylon, Methcathinon, Cathinon, 4-MTA, PMA, Ethylamphetamin, Mephedron, Ephedrin
Verantwortlichkeiten	
Leiter der Validierung	Fr. Dr. K. Blümke-Anbau
Beteiligte Mitarbeiter	F. Picht
Bearbeitungszeitraum	November 2019 - Februar 2020
Methode gültig erklärt am	02 03:2020
Methode ungültig erklärt am	entfällt
Zusammenfassung und Bewertung	Flüssig/Flüssig-Extraktion mit Ethylacetat, eindampfen und PFPA-Derivatisierung

Inhaltsverzeichnis

- 1. Arbeitsbereich und Kalibrationsmodell
- Target
 1.1.1 Prüfung auf Varianzhomogenität (F-Test)
 1.1.2 Prüfung auf Linearität (Mandel-Test)
- 1.2. Qualifier
 1.2.1 Prüfung auf Varianzhomogenitäl (F-Test)
 1.2.2 Prüfung auf Linearität (Mandel-Test)
- 1.3. Lösemittelkalibration
 1.3.1 Prüfung auf Ausreißer (F-Test)
 1.3.2 Prüfung auf Linearität (Mandel-Test)
 - 1.3.3 Prüfung auf Varianzhomogenität (F-Test)
- 2. Genauigkeit
- 2.1. Level 1
 2.1.1 Wiederholpräzision
 2.1.2 Laborpräzision
 2.1.3 Richtigkeit
 2.1.4 95%-Intervall (40% / 30%)
- 2.2. Level 2
 - 2.2.1 Wiederholpräzision 2.2.2 Laborpräzision

 - 2.2.3 Richtigkeit 2.2.4 95%-Intervall (30%)
- 2.3. Level 3
 2.3.1 Wiederholpräzision
 2.3.2 Laborpräzision
 2.3.3 Richtigkeit

Formular: 2.0

- 2.3.4 95%-Intervall (30%)
- 2.4. Zusammenfassung 95%-Intervall

- 3. Grenzwerte
- Bestimmung nach DIN 32645
 3.1. Bestimmung der Nachweisgrenze (schwaches Ion)
 3.1.2 Bestimmung der Bestimmungsgrenze (intensives Ion)
- Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus dem Signal/Rauschverhältnis
 3.2.2 Bestimmungsgrenze aus der Wiederholpräzision (20%)
- 4. Wiederfindung

- 4. Meetinmung der Wiederfindung
 4.1.1 Bestimmung der Wiederfindung für hohe Konzentration
 4.1.2 Bestimmung der Wiederfindung für niedrige Konzentration
- 4.2 Stabilität

 - 4.2.1 Bestimmung der Stabilität bei hoher Konzentration
 4.2.2 Bestimmung der Stabilität bei niedriger Konzentration
- - 3 Matrixeffekte
 4.3.1 Überprüfung der Matrixeffekte bei hoher Konzentration
 4.3.2 Bestimmung der Matrixeffekte bei niedriger Konzentration

Druckdatum: 4/28/2020- 11:48 AM Valistat 2.0 - Protokoll

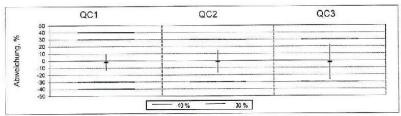
		2 von 7		Inetitution	. Inclided file	Rechtsmedizir	- Halle /Cast	lel.			
Seite: Gültig ab:		02.03.202	vn.		: GC-MS	Neurismeuizii	ii Halle (Saal	e)			
ourng av.		02.00.202	.0	Methode	s. GC-1VIS	and a					
1. Arbeitsbereich	und Kali	brationsmod	lell								
1.1 TARGET			Messsignal:	m/z = 204			Messgrösse:	Ratio		Einheit:	ng/mL
		400	450	1	T				T	1	
Nonz	entration	10.0 0.365	0.57	20.0 0.752	50.0 1.962	70.0 2.733	150.0 5.765	300.0 11.6573	600.0 24.1475	800.0	1000.0
c)	2	0.41	0.606	0.765	1.975	2.739	5.699	12.0065	23,9786	32.3431 29.8286	41.0288 39.7853
MESSUNG	3	0.419	0.578	0.769	2.01	2.711	5.561	11.6791	24.0131	31.4227	39 5443
88	4	0.465	0.596	0.791	1.943	2.751	6.02	11.4033	23.7322	31.0516	42.0056
E	5	0.432	0.608	0.801	1.953	2.811	5.289	11.6513	22.4187	30.6202	38.7121
	6	0.421	0.571	0.717	1.935	2.764	5.386	12.1395	22.3103	34.0428	37.9439
N	littelwert	0.419	0.588	0.766	1.963	2.751	5.62	11.7561666	7 23.4334	31.5515	39 836666
	SD	0.0326	0.0173	0.0299	0.0271	0.0341	0.2666	0.2686	0.8395	1.4789	1,4873
	Varianz	0.0011	0.0003	0.0009	0.0007	0.0012	0.0711	0.0722	0.7047	2.1871	2.2122
	Werte	5.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Ausreisser-Test r											
	remwert	0.365	0.608	0.717	2.01	2.811	6.02	12,1395	22.3103	34.0428	42.0056
	Prüfwert	1.649	1.156	1.634	1.747	1.74	1.501	1.427	1.338	1.685	1.458
Signifikanz 95% Tabe	llenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
	ggler?	nein	nein	nein	nein	nein	nein	nein	nein	nein	1.822 nein
Signifikanz 99%			1		T THANK	1	1.001	1 1001	T tient	I/OII)	1 110111
Tabe	llenwert	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Au	sreißer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Cochran-Test (Va	rianzanh	mogonităti	Mandel-F-Tes	t suf Linearit	1214	Lineare Kalib	roff a nofembel		I Ouradratic ch	e Kalibrations	unktion
(Signifikanz 99%)	- Turke Crimit	mogamaty	(Signifikanz 99		lat	Y = a·x +b	TALIUNSIUNKU	OH	Y = A•x² + B		diskuoli
Prüfwert		0.4213	Prüfwert		-6 99	a		000,000	A		0.0000017
Tabellenwert		0.423	Tabellenw	ert	12.24	b		000.000	В		0.0380628
Bestanden?		ja	Bestanden		ja	R		00,001	С		0.0275902
						Rest-SD		0.00	R		0.99998517
						Rest-SD		0.00	R Rest-SD		
a company											
1.2 QUALIFIER			Messsignal:	m/z = 160			Messgrösse:			Einheit:	
	entration	10.0			50.0	N.		Ratio	Rest-SD		0.0898378 ng/mL
	entration 1	10.0 0.136	Messsignal: 15.0 0.211	m/z = 160 20.0 0.285	50.0		150.0	Ratio 300.0	Rest-SD 600.0	800.0	0.0898378 ng/mL 1000.0
Konz	1 2		15.0	20.0		70.0		Ratio	Rest-SD		0.0898378 ng/mL 1000.0 15.671
Konz	1 2 3	0.136 0.155 0.165	15.0 0.211 0.226 0.220	20.0 0.285 0.286 0.293	0.737	70.0 1.021	150.0 2.162	Ratio 300.0 4.362	Rest-8D 600.0 8.546	800.0 12.006	0.0898378 ng/mL 1000.0
Konz	1 2 3 4	0.136 0.155 0.165 0.179	15.0 0.211 0.226 0.220 0.228	20.0 0.285 0.286 0.293 0.302	0.737 0.738 0.731 0.741	70.0 1.021 1.032 1.026 1.046	150.0 2.162 2.151 2.116 2.294	Ratio 300.0 4.362 4.523 4.445 4.359	600.0 8.546 9.071 9.158 9.088	800.0 12.006 11.349	0.0898378 ng/mL 1000.0 15.671 15.161
	1 2 3 4 5	0.136 0.155 0.165 0.179 0.166	15.0 0.211 0.226 0.220 0.228 0.232	20.0 0.285 0.286 0.293 0.302 0.305	0.737 0.738 0.731 0.741 0.747	70.0 1.021 1.022 1.026 1.046 1.046	150.0 2.162 2.151 2.116 2.294 2.024	Ratio 300.0 4.362 4.523 4.445 4.359 4.471	8.546 9.071 9.088 8.929	800.0 12.006 11.349 12.072 11.984 11.806	ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828
Konz	1 2 3 4	0.136 0.155 0.165 0.179	15.0 0.211 0.226 0.220 0.228	20.0 0.285 0.286 0.293 0.302	0.737 0.738 0.731 0.741	70.0 1.021 1.032 1.026 1.046	150.0 2.162 2.151 2.116 2.294	Ratio 300.0 4.362 4.523 4.445 4.359	600.0 8.546 9.071 9.158 9.088	800.0 12.006 11.349 12.072 11.984	ng/mL 1000.0 15.671 15.161 14.399 15.157
MESSUNG	1 2 3 4 5	0.136 0.155 0.165 0.179 0.166 0.166	15.0 0.211 0.226 0.220 0.228 0.232 0.219	20.0 0.285 0.286 0.293 0.302 0.305 0.274	0.737 0.738 0.731 0.741 0.747 0.743	70.0 1.021 1.032 1.026 1.046 1.087 1.055	150.0 2.162 2.151 2.116 2.294 2.024 2.064	Ratio 300.0 4.362 4.523 4.445 4.359 4.471 4.663	600.0 8.546 9.071 9.158 9.088 8.929 8.892	800.0 12.006 11.349 12.072 11.984 11.806 12.695	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760
MESSUNG	1 2 3 4 5 6	0.136 0.155 0.165 0.179 0.166 0.166	15.0 0.211 0.226 0.220 0.228 0.232 0.219	20.0 0.285 0.286 0.293 0.302 0.305 0.274	0.737 0.738 0.731 0.741 0.747 0.743	70.0 1.021 1.022 1.026 1.046 1.097 1.055	150.0 2.162 2.151 2.116 2.294 2.024 2.064	Ratio 300.0 4.362 4.523 4.445 4.359 4.471 4.663	8.947	800.0 12.006 11.349 12.072 11.984 11.806 12.895	ng/mL 1000.0 15 671 15.161 14.399 15.452 14.760
Konz WESSING Mi	1 2 3 4 5	0.136 0.155 0.165 0.179 0.166 0.166	15.0 0.211 0.226 0.220 0.228 0.232 0.219	20.0 0.285 0.286 0.293 0.302 0.305 0.274	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006	70.0 1.021 1.032 1.032 1.046 1.046 1.097 1.055	150.0 2.162 2.151 2.116 2.294 2.024 2.064 2.135 0.094	Ratio 300.0 4.362 4.523 4.445 4.359 4.471 4.663 4.47 0.114	800.0 8.546 9.071 9.158 9.088 8.929 8.892 8.947 0.221	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.98538333 0.436	ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.959 0.436
Konz WESSING Mi	1 2 3 4 5 6 ttelwert	0.136 0.155 0.165 0.179 0.166 0.166 0.166	15.0 0.211 0.226 0.220 0.228 0.232 0.219	20.0 0.285 0.286 0.293 0.302 0.305 0.274	0.737 0.738 0.731 0.741 0.747 0.743	70.0 1.021 1.022 1.026 1.046 1.097 1.055	150.0 2.162 2.151 2.116 2.294 2.024 2.064	Ratio 300.0 4.362 4.523 4.445 4.359 4.471 4.663	8.947	800.0 12.006 11.349 12.072 11.984 11.806 12.895	ng/mL 1000.0 15 671 15.161 14.399 15.452 14.760
MESS CING	1 2 3 4 5 6 ttelwert SD Varianz Werte	0.136 0.155 0.165 0.179 0.166 0.166 0.166 0.161 0.015	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6	20.0 0.285 0.286 0.293 0.302 0.305 0.274 0.291 0.012 0.0 6	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006 0.0 6	70.0 1.021 1.022 1.026 1.046 1.046 1.055 1.046 0.028 0.001 8	150.0 2.162 2.151 2.116 2.294 2.024 2.064 2.135 0.094 0.009 6	Ra60 300.0 4.362 4.523 4.445 4.352 4.447 4.663 4.47 0.114 0.013 6	894-8D 600.0 8.546 9.071 9.158 9.088 8.892 8.892 8.892 0.021 0.049 6	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.98538333 0.436 0.19 6	0.0898378 ng/mL 1000.0 15.671 15.167 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6
MESS PINC	1 2 3 4 5 6 ttelwert SD Varianz Werte	0.136 0.155 0.165 0.179 0.166 0.166 0.161 0.015 0.0 6	15.0 0.211 0.226 0.220 0.228 0.228 0.232 0.219 0.223 0.008 0.00 6	20.0 0.285 0.286 0.293 0.302 0.305 0.274 0.291 0.012 0.0 6	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006 0.0 6	70.0 1.021 1.032 1.032 1.046 1.046 1.097 1.055 1.046 0.028 0.001 8	150.0 2.162 2.151 2.116 2.294 2.024 2.064 2.135 0.094 0.009 6	Ratio 300.0 4.362 4.523 4.445 4.352 4.447 4.663 4.471 4.663 4.663	Rest-SD 600.0 8.546 9.071 9.158 9.088 8.929 8.892 8.942 0.049 6	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.98538333 0.436 0.19 6	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6
MESS PINC	1 2 3 4 5 6 ttelwert SD Varianz Werte	0.136 0.155 0.165 0.179 0.166 0.166 0.166 0.161 0.015	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6	20.0 0.285 0.286 0.293 0.302 0.305 0.274 0.291 0.012 0.0 6	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006 0.0 6	70.0 1.021 1.022 1.026 1.046 1.046 1.055 1.046 0.028 0.001 8	150.0 2.162 2.151 2.116 2.294 2.024 2.064 2.135 0.094 0.009 6	Ra60 300.0 4.362 4.523 4.445 4.352 4.447 4.663 4.47 0.114 0.013 6	894-8D 600.0 8.546 9.071 9.158 9.088 8.892 8.892 8.892 0.021 0.049 6	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.98538333 0.436 0.19 6	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6
MESSSUNG MESSSUNG	1 2 3 4 5 6 ttelwert SD Varianz Werte	0.136 0.155 0.165 0.179 0.166 0.166 0.161 0.015 0.0 6	15.0 0.211 0.226 0.220 0.228 0.228 0.232 0.219 0.223 0.008 0.00 6	20.0 0.285 0.286 0.293 0.302 0.305 0.274 0.291 0.012 0.0 6	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006 0.0 6	70.0 1.021 1.032 1.032 1.046 1.046 1.097 1.055 1.046 0.028 0.001 8	150.0 2.162 2.151 2.116 2.294 2.024 2.064 2.135 0.094 0.009 6	Ratio 300.0 4.362 4.523 4.445 4.352 4.447 4.663 4.471 4.663 4.663	Rest-SD 600.0 8.546 9.071 9.158 9.088 8.929 8.892 8.942 0.049 6	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.98538333 0.436 0.19 6	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6 15.671 1.549
MESSON MA	1 2 3 4 5 6 ttelwert SD Varianz Werte enwert brüfwert	0.136 0.155 0.165 0.165 0.179 0.166 0.166 0.161 0.015 0.0 6	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6	20.0 0.285 0.286 0.293 0.302 0.305 0.274 0.291 0.00 6	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006 0.0 6	70.0 1.021 1.022 1.026 1.046 1.097 1.055 1.046 0.028 0.001 8	150.0 2.162 2.151 2.116 2.294 2.034 2.034 2.034 0.009 6	Ratio 300.0 4.352 4.523 4.445 4.459 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692	8.545 8.546 9.071 9.158 9.088 8.629 8.892 8.892 0.049 6 8.543 1.817	800.0 12.006 11.349 12.072 12.072 11.806 12.895 11.98538333 0.436 0.19 6 12.695 1.695	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6
MESSPING Extr P Tabel St	1 2 3 4 5 6 6 ttelwert SD Varianz Werte enwert rüfwert lenwert raggler?	0.136 0.155 0.165 0.179 0.166 0.166 0.161 0.015 0.0 5 0.136 1.726	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512	20.0 0.285 0.286 0.293 0.305 0.274 0.012 0.0 6 0.274 1.442 1.822 rein	0.737 0.738 0.731 0.741 0.741 0.743 0.739 0.006 0.0 5 0.731 1.568	70.0 1.021 1.022 1.026 1.046 1.097 1.055 1.046 0.028 0.001 8 1.097 1.810	150.0 2.162 2.151 2.116 2.294 2.024 2.034 2.135 0.094 0.099 6 2.294 1.693 1.822 nein	Ratio 300.0 4.362 4.523 4.452 4.459 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692 1.822 nein	8.546 8.546 9.071 9.158 9.088 8.929 8.892 8.892 8.847 0.221 0.049 6 8.546 1.817	800.0 12.006 11.349 12.072 11.986 11.806 12.895 11.9858333 0.436 0.19 6 12.895 1.822 rein	0.0898378 ng/mL 1000.0 15.671 15.161 14.393 14.760 14.9959 0.436 0.19 6 15.671 1.822 nein
MESSPING Extr P Tabel St	1 2 3 4 5 6 6 ttelwert SD Varianz Werte emwert trüfwert [raggler?]	0.136 0.155 0.165 0.179 0.186 0.186 0.186 0.181 0.05 0.136 1.726 1.822 nein	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512 1.822 nsin	20.0 0.285 0.286 0.293 0.305 0.274 0.012 0.012 0.0 6 0.274 1.442 1.822 nein	0.737 0.738 0.731 0.741 0.747 0.743 0.739 0.006 0.0 6 0.731 1.568	70.0 1.021 1.032 1.032 1.046 1.046 1.097 1.055 1.046 0.028 0.001 8 1.097 1.810	150.0 2.162 2.151 2.116 2.294 2.024 2.034 2.135 0.094 0.009 6 2.294 1.693 1.822 nein	Ratio 300.0 4.362 4.562 4.553 4.445 4.359 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692 1.822 nein	Rest-SD 600.0 8.546 9.071 9.158 9.086 8.929 8.892 0.049 6 8.546 1.317 1.822 nein	800.0 12.006 11.349 12.072 11.986 11.806 12.895 11.895 0.436 0.19 6 12.895 1529 1.822 rein	0.0898378 ng/mL 1000.0 15 671 15.161 14.399 15.157 14.828 14.7605 0.19 6 15.671 1.549 1.822 nein
MESSPING Extr P Tabel St	1 2 3 4 5 6 6 ttelwert SD Varianz Werte enwert rüfwert lenwert raggler?	0.136 0.155 0.165 0.179 0.166 0.166 0.161 0.015 0.0 5 0.136 1.726	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512	20.0 0.285 0.286 0.293 0.305 0.274 0.012 0.0 6 0.274 1.442 1.822 rein	0.737 0.738 0.731 0.741 0.741 0.743 0.739 0.006 0.0 5 0.731 1.568	70.0 1.021 1.022 1.026 1.046 1.097 1.055 1.046 0.028 0.001 8 1.097 1.810	150.0 2.162 2.151 2.116 2.294 2.024 2.034 2.135 0.094 0.099 6 2.294 1.693 1.822 nein	Ratio 300.0 4.362 4.523 4.452 4.459 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692 1.822 nein	8.546 8.546 9.071 9.158 9.088 8.929 8.892 8.892 8.847 0.221 0.049 6 8.546 1.817	800.0 12.006 11.349 12.072 11.986 11.806 12.895 11.9858333 0.436 0.19 6 12.895 1.822 rein	0.0898378 ng/mL 1000.0 15.671 15.161 14.393 14.760 14.9959 0.436 0.19 6 15.671 1.822 nein
MESSON Minus Extrement of the Contract of the	1 2 3 4 5 6 6 ttelwert SD Varianz Werte emwert rüfwert [lenwert graggler?]	0.136 0.155 0.165 0.179 0.166 0.166 0.161 0.015 0.0 6 0.136 1.726 1.822 nein	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512 1.822 nsin 1.944 nein	20.0 0.285 0.286 0.293 0.305 0.274 0.012 0.012 0.0 6 0.274 1.442 1.822 nein 1.944 nein	0.737 0.738 0.731 0.741 0.741 0.743 0.739 0.006 0.0 5 0.731 1.568 1.822 nein	70.0 1.021 1.032 1.032 1.046 1.097 1.055 1.046 0.028 0.001 8 1.097 1.810 1.822 nein 1.944 nein	150.0 2.162 2.151 2.116 2.294 2.024 2.034 2.135 0.094 0.009 8 2.294 1.693 1.822 nein	Ratio 300.0 4.362 4.523 4.452 4.523 4.447 4.663 4.471 0.114 0.013 6 4.663 1.692 1.822 nein	Rest-SD 600.0 8.546 9.071 9.158 9.088 8.929 8.892 0.221 0.049 6 8.546 1.817 1.822 nein 1.944 nein Quadratische	800.0 12.006 11.349 12.072 11.994 11.806 12.895 11.9853833 0.436 0.19 6 12.895 1.822 rein 1.944 rein Kallbratlonsfk	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6 15.671 1.549 1.822 nein
MESSON Minus Extrement of the Contract of the	ttelwert SD Varianz Werte emwert trüfwert raggler? lenwert reißer?	0.136 0.155 0.165 0.179 0.166 0.166 0.161 0.015 0.0 6 0.136 1.726 1.822 nein	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512 1.822 nein	20.0 0.285 0.286 0.293 0.305 0.274 0.012 0.012 0.0 6 0.274 1.442 1.822 nein 1.944 nein	0.737 0.738 0.731 0.741 0.741 0.743 0.739 0.006 0.0 5 0.731 1.568 1.822 nein	70.0 1.021 1.032 1.026 1.046 1.087 1.055 1.046 0.028 0.001 8 1.097 1.810 1.822 rein 1.944 rein Lineare Kalibr Y = avx + b	150.0 2.162 2.151 2.116 2.294 2.024 2.034 2.034 0.094 0.009 6 2.294 1.693 1.822 nein 1.944 nein ationsfunktio	Ratio 300.0 4.362 4.362 4.523 4.454 4.359 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692 1.822 nein	Rest-SD	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.9858333 0.436 0.19 6 12.898 1.822 nein 1.944 nein Kallbrationstc++C	0.0898378 ng/mL 1000.0 15.671 15.161 14.393 14.760 14.9959 0.436 0.19 6 15.671 1.543 1.822 nein 1.944 nein
Minssaw Minssaw Minssaw Minssaw Tabel St Tabel Aus Ochran-Test (Var Sgriffkanz 99%)	ttelwert SD Varianz Werte emwert rüfwert lenwert raggler?	0.136 0.155 0.165 0.179 0.166 0.166 0.166 0.166 0.166 0.161 0.015 0.0 6 1.726 1.822 nein 1.944 nein	15.0 0.211 0.226 0.220 0.220 0.232 0.232 0.219 0.223 0.008 0.00 6 0.211 1.512 1.822 nsin	20.0 0.285 0.266 0.293 0.305 0.305 0.274 0.012 0.0 6 0.274 1.442 1.822 nein 1.944 nain inauf.ineariti %)	0.737 0.738 0.731 0.741 0.741 0.742 0.743 0.739 0.006 0.0 6 0.731 1.568 1.822 nein	70.0 1.021 1.032 1.032 1.046 1.097 1.055 1.046 0.028 0.001 8 1.097 1.810 1.822 nein 1.944 nein	150.0 2.162 2.151 2.116 2.2194 2.024 2.034 2.135 0.094 0.009 6 2.294 1.693 1.822 nein 1.944 nein	Ratio 300.0 4.362 4.523 4.445 4.529 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692 1.822 nein 1.944 nein 0.001499598	Rest-SD 600.0 8.546 9.071 9.158 9.088 8.929 8.892 0.221 0.049 6 8.546 1.817 1.822 nein 1.944 nein Quadratische	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.985 30.436 0.19 6 12.895 1.822 rein 1.944 rein Kalibrationsft.	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6 15.671 1.549 1.822 nein
Minssau Minssa	ttelwert 5 5 6 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.136 0.165 0.165 0.179 0.196 0.196 0.196 0.196 0.196 0.196 1.726 1.726 1.822 nein 1.944 nein mogenität) 0.4207	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512 1.922 nsin 1.944 nndel-F-Test (Signifikanz 99 Prüfwert	20.0 0.285 0.286 0.293 0.305 0.274 0.291 0.012 0.0 6 0.274 1.442 1.822 rein 1.944 nein 4 auf Lineariti	0.737 0.738 0.731 0.741 0.741 0.742 0.743 0.739 0.006 0.0 6 0.731 1.568 1.822 nein	70.0 1.021 1.032 1.026 1.026 1.046 1.087 1.055 1.046 0.028 0.001 8 1.097 1.810 1.822 peim 1.944 peim Lineare Kalibr Y = avx + b a b R	150.0 2.162 2.151 2.116 2.294 2.024 2.034 2.135 0.094 0.009 6 2.294 1.693 1.822 nein 1.944 nein	Ratio 300.0 4.362 4.362 4.523 4.454 4.359 4.471 4.663 4.47 0.114 0.013 6 4.663 1.692 1.822 nein	8.546 9.071 9.158 9.088 9.098 8.929 8.892 8.892 1.347 0.221 0.049 6 1.347 1.822 1.822 1.944	800.0 12.006 11.349 12.072 11.994 11.806 12.895 11.9853833 0.436 0.19 6 12.895 1.822 rein 1.944 rein Kallbratlonsft.c+C	0.0898378 ng/mL 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6 15.671 1.549 1.822 nein
Min Samuel Min State (Var Aus Goriffan Test (Var Aus Goriffan Z 99%) Prüfwert Tabellanwert	ttelwert 5 5 6 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.136 0.155 0.165 0.179 0.166 0.166 0.166 0.161 0.015 0.0 5 0.136 1.726 1.822 nein 1.944 nein mogenität)	15.0 0.211 0.226 0.220 0.228 0.232 0.219 0.223 0.008 0.0 6 0.211 1.512 1.822 nsin Mandel-F-Test (Signifkanz 99 Püfwert Tabollenwer	20.0 0.285 0.286 0.293 0.305 0.274 0.291 0.012 0.0 6 0.274 1.442 1.822 rein 1.944 nein 4 auf Lineariti	0.737 0.738 0.731 0.741 0.741 0.742 0.739 0.006 0.0 6 0.731 1.568 1.822 nein	70.0 1.021 1.032 1.032 1.046 1.097 1.055 1.046 0.028 0.001 8 1.097 1.810 1.822 nein 1.944 nein Lineare Kalibri Y = avx + b a b	150.0 2.162 2.162 2.151 2.116 2.294 2.024 2.034 2.034 0.009 6 2.294 1.693 1.822 nein 1.944 nein ationsfunktio	Ratio 300.0 4.362 4.362 4.453 4.445 4.471 4.663 4.47 0.114 6.63 1.692 1.822 nein 1.944 nein 0.001499598 000,000	8.546 9.071 9.158 9.088 8.929 8.892 0.221 0.049 6 8.546 1.817 1.822 nein 1.944 nein Quadratische Y = A·x² + B·y A	800.0 12.006 11.349 12.072 11.984 11.806 12.895 11.985 11.985 11.822 1.822 1.944 1.8	0.0898378, ng/ml. 1000.0 15.671 15.161 14.399 15.157 14.828 14.760 14.9959 0.436 0.19 6 15.671 1.549 1.822 nein 1.944 nein inktion

Formular: 2.0

Valistat 2.0 - Protokoll

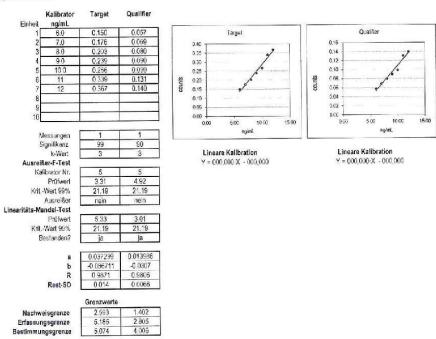
Seite: Gültig ab:	3 von 7 02.03.2020			Institut für Rech GC-MS	itsmedizin Halle	(Saaie)				
ung ap:	02.03.2020		neurous.	-						
1.3 LÖSEMITTELKALIBRA	ATION									
Signifikanz		%								
Konzentration Lösemittel (xo)										
Matrix (xm)										
WFR gemessen WFR berechnet				7/4						
Wiederfindungsfunktion		Ausreißer-F-T	est	1	Linearitäts-Te	st		Varianzenhom	ogenitäts-F-1	est
xm = ao * xo + bo		Kalibrator Nr.	-		Prüfwert			RSD Grundka	libration	
ao bo		Prüfwert			Kritischer-Wei	rt		RSD Wiederfin	ndung	
R Rest-SD		Kritischer-We Ausreisser?	ert		Bestanden?			Prüfwert Kritischer-We	rt	
restron		, mo, siegos :						Bestanden?		
	Wiede	rfindungsrate					Lösemitteli Signifikanzni	calibration veau für VB = 99	%	
80 75					0.9		2000			
80 75 76 60 60 55 40 40 40 40 40 40 40 40 40 40 40 40 40					0.8	Winkelha	lbierende			
55 - 50 -					0.7 -					
% 45 -					0.5 - W 0.4 -					
≥ 30 ± 25 ± 25 ± 25					0.4 -					
15				11.3	0.3 -					
10 -				948 9	9-2-T					
5 -	en paretture			10	0.1					
0 00 0.20	0,40	0 60 ng/mL	9.80 1.0	00 1.20	(1) (3) (3) (4)	o 0.3	2 C.4	0.6	0.8	1.0
5	0.40		0.80 1.0	00 1.20	0.1 -	o 0.2		o s emittel	0.8	1.0
5 0 00 C 20	0.40		0.80 1.0	00 1.20	0.1 -	0 0.3			0.8	1.0
0 00 C.24	0.40		3000	1.20	0.1 -	o o.:			0.8	1.0
2. Genauigkeit 2.1. Level 1	QC-Soliwert	ng/mL 25.2	Einheit:	ng/mL	0.1 - 0.0 - 0.0		Löse	emittel		
2. Genauigkeit 2.1. Level 1	QC-Sollwert Tag 1	ng/mL 25.2 Tag 2	Einheit:	ng/mL Tag 4	0.1 - 0.0 + 0.0 0.0	Tag 6	Löse Tag 7		0.8 Tag 9	1.0 Tag 10
2. Genauigkeit 2.1. Level 1	QC-Soliwert	25.2 Tag 2 24.0 27.1	Einheit: Tag 3 25.1 26.4	ng/mL Tag 4 25 6 24.9	0.1 - 0.0 + 0.1 -	Tag 6 24.2 24.0	Tag 7 25.2 25.2	Tag 8 23.2 23.0		
2. Genauigkeit 2.1. Level 1	QC-Sollwert: Tag 1 28.2 25.0 26.5	25.2 Tag 2 24.0	Einheit: Tag 3 25.1	ng/mL Tag 4 25 6	0.1 0.0 + 0.0	Tag 6	Tag 7	Tag 8		
2. Genauigkeit 2.1. Level 1	QC-Sollwert Tag 1 28.2 25.0 26.5 25.0 24.9	25.2 Tag 2 24.0 27.1	Einheit: Tag 3 25.1 26.4	ng/mL Tag 4 25 6 24.9	0.1 - 0.0 + 0.1 -	Tag 6 24.2 24.0	Tag 7 25.2 25.2	Tag 8 23.2 23.0		
2. Genauigkeit 2.1. Level 1	QC-Sollwert: Tag 1 28.2 25.0 26.5 26.0	25.2 Tag 2 24.0 27.1	Einheit: Tag 3 25.1 26.4	ng/mL Tag 4 25 6 24.9	0.1 - 0.0 + 0.1 -	Tag 6 24.2 24.0	Tag 7 25.2 25.2	Tag 8 23.2 23.0		
2. Genauigkeit 2.1. Level 1 1 1 3 9 Nn SSS W 7 8	QC-Sollwert Tag 1 28.2 25.0 26.5 25.0 24.9	25.2 Tag 2 24.0 27.1	Einheit: Tag 3 25.1 26.4	ng/mL Tag 4 25 6 24.9	0.1 - 0.0 + 0.1 -	Tag 6 24.2 24.0	Tag 7 25.2 25.2	Tag 8 23.2 23.0		
2. Genauigkeit 2.1. Level 1 1 1 3 9NIDS 5 6 9 7	QC-Sollwert Tag 1 28.2 25.0 26.5 25.0 24.9	25.2 Tag 2 24.0 27.1	Einheit: Tag 3 25.1 26.4	ng/mL Tag 4 25 6 24.9	0.1 - 0.0 + 0.1 -	Tag 6 24.2 24.0	Tag 7 25.2 25.2	Tag 8 23.2 23.0		
2. Genauigkeit 2.1. Level 1 1 1 3 9NITSS 5 6 7 8 9 10	QC-Sollwert Tag 1 28.2 25.0 26.5 26.0 24.9 25.4	ng/mL 25.2 Tag 2 24.0 27.1 26.4	Einheit: Tag 3 25.1 26.4 25.4	ng/mL Tag 4 25 6 24.9 24.1	0.1 - 0.0 - 0.1 -	Tag 6 24 2 24 0 23 6	Tag 7 25 2 25 2 24.7	Tag 8 23 2 23 0 23.2		
2. Genauigkeit 2.1. Level 1	QC-Sollwert Tag 1 28.2 25.0 26.5 25.0 24.9 25.4	ng/mL 25.2 Tag 2 24.0 27.1 26.4	Einheit: Tag 3 25.1 26.4	ng/mL Tag 4 25 6 24.9	0.1 - 0.0 + 0.1 -	Tag 6 24 2 24 0 23 6	Tag 7 25.2 25.2 24.7	Tag 8 23 2 23 0 23.2 23.1333 -87		
2. Genauiskeit 2.1. Level 1 1 1 3 9 NTDS 93 W 10 Mittelwert BIAS, % SS	QC-Sollwort Tag 1 28.2 25.0 26.5 26.0 24.9 25.4	ng/mL 25.2 Tag 2 24.0 27.1 26.4	Einheit: Tag 3 25.1 26.4 25.4 25.4 25.3 0.4 0.1732051	ng/mL Tag 4 25 6 24.9 24.1	Tag 5 26.1 24.4 24.5	Tag 6 24 2 24 0 23 6 23 9333 -5.0 0 305505	Tag 7 25.2 25.2 24.7 25.0 33.3 0.7 0.2888/51	Tag 8 23 2 23 0 23 2 23 0 23 2 20 0 1154701		
2. Genauigkeit 2.1. Level 1 1 1 3 5 WESS 4 7 8 9 10 Militalwert BIAS, %	QC-Sollwert Tag 1 28 2 25 0 26 5 26 0 24 9 25 4	25 2 Tag 2 24 0 27 1 26 4	Einheit: Tag 3 25.1 25.4 25.4 25.4	ng/mL Tag 4 25 6 24.9 24.1	Tag 5 26.1 24.4 24.5 25.0 0.0533332 3.8	Tag 6 24 2 24 0 23 6	Tag 7 25.2 25.2 24.7 25.0333 -0.7 0.2886751 1.2	Tag 8 23 2 23.0 23.2 23.1333 -82 0.1154701 0.5		
2. Genauiskeit 2.1. Level 1 1 1 3 9 NTDS 5 6 7 8 9 10 Mittelwert BIAS, % SS	QC-Sollwert Tag 1 28.2 25.0 26.5 26.5 25.0 24.9 25.4 25.8533 2.5 1.3033291 5.0 [Kenndaten	ng/mL 25.2 Tag 2 24.0 27.1 26.4	Einheit: Tag 3 25.1 26.4 25.4 25.4 25.3 0.4 0.1732051 0.7	ng/mL Tag 4 25 6 24.9 24.1 24.8067 -1.3 0.7505553 3.0	Tag 5 26.1 24.4 24.5 25.0 0.0533332 3.8	Tag 6 24 2 24 0 23 6 23 9333 -50 0 305505 1 3	Tag 7 25.2 25.2 25.2 24.7 25.0333 -0.7 0.2886751 1.2	Tag 8 23 2 23.0 23.2 23.1333 -82 0.1154701 0.5	Tag 9	
2. Genauiskeit 2.1. Level 1 1 1 3 9 NTDS 5 6 7 8 9 10 Mittelwert BIAS, % SS	QC-Sollwert Tag 1 28 2 25 0 26 5 26 0 24 9 25 4 25 8 33 3 2.5 1 3033291 5.0	ng/mL 25.2 Tag 2 24.0 27.1 26.4	Einheit: Tag 3 25.1 25.4 25.4 25.4 25.4 0.1732051 0.7	ng/mL Tag 4 25 6 24.9 24.1	Tag 5 26.1 24.4 24.5 25.0 0.0533332 3.8	Tag 6 24 2 24 0 23 6 23 9333 -5.0 0 305505	Tag 7 25.2 25.2 24.7 25.0333 -0.7 0.2886751 1.2	Tag 8 23 2 23.0 23.2 23.1333 -82 0.1154701 0.5		
2. Genauiskeit 2.1. Level 1 1 1 3 9 NITS SS3 W Mittalwert BIAS, % SS	QC-Sollwert Tag 1 28 2 25 0 26 5 26 0 24 9 25 4 25 8333 2.5 1 3033291 5.0 Kenndaten MW (ges.) SD	ng/mL 25.2 Tag 2 24.0 27.1 26.4	Einheit: Tag 3 25.1 26.4 25.4 25.4 25.4 0.1732051 0.7 OK 24.9741 1.2024311 4.8	24.8667 -1.3 -0.750553 -1.3 -0.750553 -1.3 -0.750553 -1.3 -0.750553 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.	0.1 - 0.0 -	Tag 6 24 2 24 0 23 6 23 9333 -5.0 0 305505 1.3 0 9505308 3.8	Tag 7 25 2 26 2 24.7 25 0333 -0.7 0.288751 1.2 [Laborpräzis] SD	Tag 8 23 2 23.0 23.2 23.1333 -82 0.1154701 0.5	Tag 9	
2. Genauiskeit 2.1. Level 1 1 1 3 9 NITS SS3 W Mittalwert BIAS, % SS	QC-Sollwort Tag 1 28.2 25.0 26.5 26.0 24.9 25.4 25.3 1.3033291 5.0 Kenndaten MW (ges.) SCD, % Richtigkeit Abw.	25.2 Tag 2 24.0 27.1 26.4 25.8333 2.5 1.6258331 6.3	Einheit: Tag 3 25.1 25.4 25.4 25.4 25.4 0.7 OK 24.9741 1.2024511 4.8	24.8667 -1.3 0.7505553 3.0 Wiederholpr SD RSD, %	0.1 - 0.0 -	Tag 6 24 2 24 0 23.6 23 9333 -5.0 0 305505 1.3 0 9505308 3.8	Tag 7 25 2 26 2 24.7 25 0333 -0.7 0.288751 1.2 [Laborpräzis] SD	Tag 8 23 2 23.0 23.2 23.1333 -82 0.1154701 0.5	Tag 9	
2. Genauiskeit 2.1. Level 1 1 1 3 9 NITS SS3 W Mittalwert BIAS, % SS	QC-Sollwert Tag 1 28.2 25.0 26.5 26.0 24.9 25.4 25.8333 2.5 1.3033291 Solution MW (ges.) SD RSD, % Richtigkeit	25 2 Tag 2 24 0 27.1 26 4	25 3 0.4 0.1732051 0.7 0K 24.9741 1.2024311 4.8 95%-Intel Faktor 8-Tolora	24.8667 -1.3 0.7505553 3.0 Wiederholpr SD RSD, %	0.1 - 0.0 -	Tag 6 24 2 24 0 23 6 23 9333 -5.0 0 305505 1.3 0 9505308 3.8	Tag 7 25 2 26 2 24.7 25 0333 -0.7 0.288751 1.2 [Laborpräzis] SD	Tag 8 23 2 23.0 23.2 23.1333 -82 0.1154701 0.5	Tag 9	

Formular: 2.0 Valistat 2.0 - Protokoll


Seite:		4 von 7	M -38	Institution:	Institut für Re	chtsmediz	in Halle (Saal	e)			
Gültig ab:		02.03.2020		Methode:				11/4.8			
									7.555		
.2. Level 2		00.0-11		7							
		QC-Sollwert:	90.4	Einheit:			_	2.00			
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	100.0	87.5	92.1	95.8	87.3	86.6	91,7	86.5		
	2	98.5	86.7	93.6	83.3	86.3	87.6	86.8	82.6		
	3	98.9	79.6	89.9	93.9	88.3	87.7	90.3	83.8		
	9 4	106.0									
	5	86.8		00499 II m 199							
	WESSUNG 5 6 7	88.2									
	2 /										
	9										
	10										
	Mittelwert	96.4	84.6	91,8667	91.0	87.3	87.3	89.6	84.3		
	BIAS, %	6.6	-6.4	1.6	0.7	-3.4	-3.4	-0.9	-6.7		
	SD	7.4186252	4.348563	1.8510033	8.7357256	1.0	0.6082763	2 5238859	1.9974984		
	RSD, %	7.7	5.1	2.0	7.4	1.1	0.7	2.8	2.4		
		P		017	05.1.1						
		Kenndaten		OK	Wiederholp	razision		Laborpräz	rision	M252880 32527	
		MW (ges.)		89.863	SD W		4.7800389	SD W		6.0747942	
		SD Ben w		5.9549687	RSD, %		5.3	RSD, %		6.8	
		RSD, %		6.6							
		Richtigkeit		95%-Interv	rall		OK	1			
		Abw.	-0.54	Faktor			2.34				
		Bias, %	-0.6	ß-Tolerana	1		bis 00,104				
			575	Prüfbereid	h (30%)	00,063	bis 00,118				
3. Level 3		QC-Sollwert:	501.0	Einheit:	ng/mL						
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Top 7	Ton 0	Ton O	T 10
	1	530.0						Tag 7	Tag 8	Tag 9	Tag 10
	2		417.0	479.0	437.0	497.0	568.0	526,0	495.0		
	3	522.0 576.0	430.0 422.0	463.0 481.0	449 0	466.0	549.0	524.0	506.0		
		575.0	422.0	401.0	437.0	456.0	531.0	538,0	513.0		
	S 5	533.0									
	nss 6	450.0									
	MESSUNG 6 7	400.0								56000	
	8	-					-			-	
	9										
	10							100000000000000000000000000000000000000			
	Min								- and the second		
	Mittelwert BIAS, %	531.0	423.0	474.3333	441.0	473.0	549.3333	529.3333	504.6667		
	SD SD	6.0 46.0608	-15.6 6.5574295	-5.3	-12.0	-5.6	9.6	5.7	0.7		
	RSD, %	8.7	6.5574385 1.6	9.8657657 2.1	6.9282032	21.3776	18.5023	7.5718778	9.0737717		
	, 10	0.7	1.0	4.1	1.6	4.5	3.4	1.4	1.8		
		Kenndaten		OK	Wiederholps	räzision		Laborpräz	ision		
		MW (ges.)		495,1852	SD		26 0189	SD		50.088	
		SD		48.176	RSD, %		5.3	R\$D, %		10.11499857	
		RSD, %		9.7	100 R/99		X2000)		TOTAL	
		District		060/ 1-/	-11						
		Richtigkeit		95%-Interv	all		OK.				
		Abw. Bias, %	-5.81	Faktor			499				
		Dids, 76	-1.2	ß-Toleranz			ois 00,615				
				Prüfbereic	1 (30%)	00,351 1	ois 00,651				

Formular: 2.0

Valistat 2.0 - Protokoll


Seite:	5 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03 2020	Methode: GC-MS

Zusammenfassung 95%-Intervall

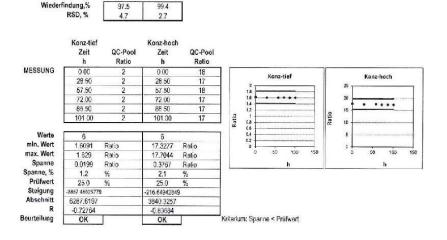
Zusammenfassung	QC1	QC2	QC3
B-Toleranz	00,022 bis 00,028	00,075 bis 00,104	00,364 bis 00,615
%	- 13 bis 10	-17 bis 15	-27 bls 23
Prüfbereich (30%)	00,018 bis 00,033	00,063 bis 00,118	00,351 bis 00,651
Prüfbereich (40%)	00.015 bis 00.035		

3. Grenzwerte 3.1 Bestimung nach DIN 32645

Seite:	6 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

- 3.2 Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus Signal/Rauschverhältnis

Dotiert ng/mL	Target 0	Untergrund 0	Target S/N	Q1 0	Untergrund 0	Q1 S/N	Q2 0	Untergrund 0	Q2 S/N
							land to the		
		NG-1	0.0		NG-2	0.0		NG-3	0.0
Nachweisgre	nze :	0.0				***			0.0


3.2.2 Bestimmungsgrenze

Vorgabe	ng/mL				
MESSUNG	Konz.	Wiederholpräzision		Bias	
1		Mittelwert		Bias	
2		SD		Bias, %	
3		RSD, %			
4		Krit. Wert, %	20	Krit. Wert, %	20
5		*			
6		Beurteilung	***	Kriterium: RSD und bias<20%	

4. WIEDERFINDUNG 4.1 WIEDERFINDUNG

	QC-untere		QC-obere	
Konzentration [50.5	ng/mL	505.0	ng/mL
MESSUNG	Lösemittel Ratio	Matrix Ratio	Lõsemittel Ratio	Matrix Ratio
1	2.2052	2.2498	21.3272	20.9489
2	2.3178	2.0728	21.3574	20.7903
3	2.2958	2.3019	20.4764	21.1918
4	2.3157	2.2824	21,2038	20.5178
5	2.3543	2.3614	21.2295	21.6417
6	2.3829	2.2625	21.2961	20.9771
Mittelwert	2.312	2.255	21.1484	21.01126567
SD	0.061	0.098	0.334	0.381
RSD, %	2.6	4.3	1.6	1.8
N (Werte)	6	6	6	6
Wiederfin	ndung,%	97.5	99.4	1
	RSD, %	4.7	2.7	

4.2 STABILITAT

Formular: 2,0

Valistat 2.0 - Protokoll

e: iig ab:	7 von 7 02.03.2020		: Institut für Re a: GC-MS	cntsmedizin	nalic (Saale)		
MATRIXEFFEKTE -	LC/MS/(MS)						
	QC1	ng/mL	QC2		rg/mL		
	Reinsubstanz Extrak		Reinsubstanz	Extrakt	Matrix		
MESSUNG							
Mittelwert							
SD Varianz Anzahi							
	Wiederfindung,% RSD, %						
	Matrix effekt,% RSD, %						
	Beurteilung						
	Kriterium	SD <=25°	>=50% % te: 75-125%				
		Wallington	10 12070				
nmerkungen							
morkangon							
					-		
							-
		_					

7.3 Valistat-Validierungsprotokoll: MDMA

Validierungsprotokoll

Seite: 1 von 7 Gültig ab: 02.03.2020	Institution: Institut für Rechtsmedizin Halle (Saale) Methode: GC-MS
Titel	Quantitative Bestimmung von Amphetamin und Derivaten im Serum mit GC-MS
SOP	SAA-T-001
Angaben zur Methode	
Kurzbezeichnung der Methode (ggf. Nr. der SOP)	Amphetamin und Derivate im Serum mit GC-MS
Anwendungsgebiet	Klinische / Forensische Toxikologie
Arbeitsbereich	10 - 1000 ng/mL
Analyt	MDMA (Interner Standard: MDMA-d5)
Weitere bestimmbare Analyte	Quant: Amphetamin, Methamphetamin, MDA, MDEA, MBDB; Semi-Quant: Methylphenidat, Methylon, Methcath., Cathinon, 4-MTA, PMA, Ethylamphetamin, Mephedron, Ephedrin, Ethylor
Verantwortlichkeiten	
Leiter der Validierung	Fr. Dr. K. Blümke-Anbau
Beteiligte Mitarbeiter	F. Picht
Bearbeitungszeitraum	November 2019 - Februar 2020
Methode gültig erklärt am	02.03.2020
Methode ungültig erklärt am	entfällt
Zusammenfassung und Bewertung	Flüssig/Flüssig-Extraktion mit Ethylacetat, eindampfen und PFPA-Derivatisierung

Inhaltsverzeichnis

- 1. Arbeitsbereich und Kallbrationsmodell
- Target
 1.1. Target
 1.1.1 Prüfung auf Varianzhomogenität (F-Test)
 1.1.2 Prüfung auf Linearität (Mandel-Test)
- Qualifier
- 1.2.1 Prüfung auf Varianzhomogenität (F-Test)
 1.2.2 Prüfung auf Linearität (Mandel-Test)

- Lösemittelkalibration
 1.3.1 Prüfung auf Ausreißer (F-Test)
 1.3.2 Prüfung auf Linearität (Mandel-Test)
 1.3.3 Prüfung auf Varianzhomogenität (F-Test)

- Genauigkeit
 Level 1
 L.1.1 Wiederholpräzision
 L.1.2 Laborpräzision

 - 2.1.3 Richtigkeit 2.1.4 95%-Intervall (40% / 30%)

- Level 2
 2.2.1 Wiederholpräzision
 2.2.2 Laborpräzision
 2.2.3 Richtigkeit
 2.2.4 95%-Intervall (30%)
- 2.3. Level 3
- 2.3.1 Wiederholpräzision 2.3.2 Laborpräzision 2.3.3 Richtigkeit 2.3.4 95%-Intervall (30%)

- 2.4. Zusammenfassung 95%-Intervall

- 3. Grenzwerte
- 3.1. Bestimmung nach DIN 32645
 3.1.1 Bestimmung der Nachweisgrenze (schwaches Ion)
 3.1.2 Bestimmung der Bestimmungsgrenze (intensives Ion)
- Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus dem Signal/Rauschverhältnis
 3.2.2 Bestimmungsgrenze aus der Wiederholpräzision (20%)

- Wiederfindung
 Bestimmung der Wiederfindung
 4.1.1 Bestimmung der Wiederfindung für hohe Konzentration
 4.1.2 Bestimmung der Wiederfindung für niedrige Konzentration
- 4.2 Stabilität

 - 4.2.1 Bestimmung der Stabilität bei hoher Konzentration 4.2.2 Bestimmung der Stabilität bei niedriger Konzentration
- Matrixeffekte
 4.3.1 Überprüfung der Matrixeffekte bei hoher Konzentration
 4.3.2 Bestimmung der Matrixeffekte bei niedriger Konzentration

Druckdatum: 4/28/2020- 11:47 AM Valistat 2.0 - Protokoll

Formular: 2.0

Institution: Institut für Rechtsmedizin Halle (Saale) Methode: GC-MS

Seite: Gültig ab: 2 von 7 02.03.2020

GET	8.1		Messsignal:	m/z = 204			Messgrösse:	Ratio		Einheit:	ng/mL
Kor	nzentration	10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
	1	0.387	0.605	0.785	2.048	2.869	6.143	12.7534	26.386	38.5019	50.8442
9	2	0.441	0.62	0.805	2.056	2.899	6.351	13.4727	27.5951	35.307	47.9059
MESSUNG	3	0.44	0.59	0.788	2.119	2.906	6.192	12.9851	28 835	38.3136	48 6423
83	4	0.478	0.612	0.811	2.044	2.919	6.732	12.5058	28 6963	37.7457	52.015
2	5	0.465	0.624	0.819	2.08	3.055	5.691	13.6618	28.4151	37.146	47.0418
	6	0.451	0.594	0.744	2,068	2,962	6.024	14.1704	26 9839	41.4833	47.3191
	Mittelwert	0.444	0.607	0.792	2.069	2.935	6.189	13.25835657	27.81856667	38.08291667	48.96138333
	SD	0.0312	0.0137	0.0268	0.0277	0.0661	0.346	0.6221	0.9958	2.0243	2.0232
	Varianz	0.001	0.0002	0.0007	0.0008	0.0044	0.1197	0.387	0.9917	4.0977	4.0935
	Werte	6.0	6.0	6.0	5.0	6.0	6.0	6.0	6.0	6.0	6.0

Ausreisser-Test nach Grupp	8		DESCRIPTION OF THE PARTY OF THE			X			20	
Extremwert	0.387	0.59	0.744	2.119	3.055	5.732	14.1704	26.386	41.4833	52 015
Prüfwert	1.802	1.274	1.779	1.803	1.818	1.57	1.466	1.439	1.68	1.509
Signifikanz 95%										
Tabellenwert	1 822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Straggler?	nein	nein	nein	nein	nein	nein	nein	nein	rein	nein
Signifikanz 99%										
Tabellenwert	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Ausreißer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein

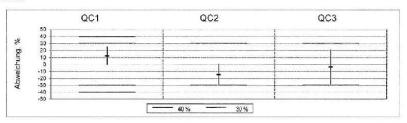
Cochran-Test (Varian (Signifikanz 99%)	zenhomogenität)	Mandel-F-Test auf Lin (Signifikanz 99%)	earität	Lineare Kalibration Y = a•x + b	sfunktion	Quadratische Kalibi Y = A•x² + B•x + C	ationsfunktion
Prüfwert Tabellenwert Bestanden?	0.4226 0.423 ja	Prüfwert Tabellenwert Bestanden?	-6.99 12.24 ja	a b R Rest-SD	000,000 -000,001 00,001 0.00	A B C R Rest-SD	0.0000681 0.04224151 -0.06434251 0.99998702 0.10294284

QUALIFIER [Messsignal:	m/z = 339			Messgrösse:	Ratio		Einheit:	ng/ml
Konzentration	10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
1	0.023	0.035	0.044	0.124	0.174	0.371	0.707	1.652	2.296	2.892
2 ن ن	0.027	0.037	0.048	0.123	0.172	0.375	0.800	1.668	2.102	2.786
WESSUNG	0.026	0.036	0.047	0.125	0.172	0.363	0.788	1.697	2.239	2.731
SS 4	0.028	0.036	0.047	0.120	0.169	0.393	0.690	1.677	2.222	2.986
₹ 5	0.027	0.036	0.047	0.121	0.173	0.318	0.792	1.653	2.193	2.687
6	0.026	0.034	0.043	0.120	0.170	0.335	0.821	1.605	2.438	2.747
Mittelwert	0.026	0.036	0.046	0.122	0.172	0.359	0.766	1.659	2.248	2.805
SD	0.002	0.001	0.002	0.002	0.002	0.028	0.054	0.031	0.113	0.113
Varianz	0.0	0.0	0.0	0.0	0.0	0.001	0.003	0.001	0.013	0.013
Werte	6	- 6	6	6	- 6	6	6	ô	6	6
Extremwert	0.023	0.034	0.043	0.125	0.174	0.318	0 690	1.605	2.438	2.986
Prüfwert	1.771	1,659	1.424	1.189	1.326	1.500	1.418	1.714	1.682	1.607
Tabellenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Straggler?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Tabellenwert [1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Ausreißer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein

Cochran-Test (Varian (Signifikanz 99%)	zenhomogenität)	Mandel-F-Test auf Lin (Signifikanz 99%)	earität	Lineare Kalibration Y = a•x + b	sfunktion	Quadratische Kallb Y = A+x² + B+x + C	rationsfunktion
Prüfwert Tabellenwert Bestanden?	0.4223 0.423 ja	Prüfwert Tabellenwert Linear?	6.34 12.24 ja	a b R Rest-SD	0.00282124 000,000 00,001 0.02748818	A B C R Rest-SD	0.00000021 0.00262503 -0.01267763 0.99983574 0.02127985

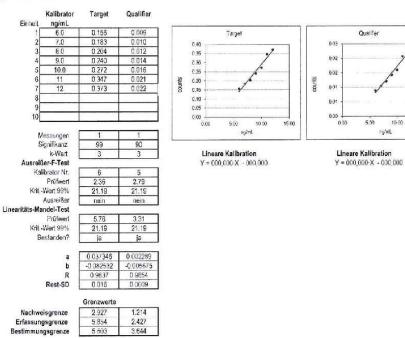
Formular: 2.0 Valistat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:47 AM

Seite: Gültig ab:		3 von 7 02 03 2020		Institution: Methode:	Institut für Rec GC-MS	hlsmedizin Ha	lle (Saale)				
1.3 LÖSEN	MITTELKALIBE	RATION									
	Signifikanz onzentration ösemittel (xo) Matrix (xm)	-]%								
	R gemessen R berechnet										
Wiederfindu m = ao * xo	ngsfunktion		Ausreißer-F	Test		Linearitäts-T	est		Varianzenho	mogenitäts-F-	Test
ao bo R Rest-SD	7 + 50		Kalibrator N Prüfwert Kritischer-W Ausreisser?	/ert		Prüfwert Kritischer-W Bestanden?			RSD Grundk RSD Wiedert Prüfwert Kritischer-W Bestanden?	indung	
		Wiede	rfindungsrate						elkalibration niveau für VB = 9	9%	
WFR, % 11 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	05					0.9 0.8 0.7 0.6 12 0.5 W 0.4 0.3 0.2	Winkeln	albierende			
	0.00 0.2	0 0.40	0.60 ng/mL	0.80 1.0	00 1.20	0.0	0.0 0.		0.6 semittel	C.8	1.0
2. Genauigke	pit										
2.1. Level 1		QC-Sollwert:	25.2 Tag 2	Einheit:	ng/mL Tag 4] Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	29.5	25.5	26.5	27.0	27.9	25.9	26.9	24.7		
	1 3 5	27.7 28.7 27.5	29.1 27.6	26.7 26.7	26.8 26.2	26.1 26.5	25.9 25.4	26.7 26.5	24.8 23.9		
	5 6 7 8 9 10	27.2									
	Mittelwert	28.0833	27.4	26 6333	26 6667	26.8333	25.7333	26.7	24.4667		
	BIAS, %	11.4 0.8588752	8.7 1.8083141	5.7 0.1154701	5.8 0.4163332	6.5 0.9451631	2.1 0.2886751	6.0 0.2	-2.9 0.4932883		F-1
	RSD, %	3.1	6.6	0.4	1.6	3.5	1.1	0.7	2.0		
		Kenndaten MW (ges.) SD RSD, %		OK 26.7333 1.2991121 4.9	Wiederholpra SD RSD, %	izision	0.8310319 3.1	Laborpräzis SD RSD, %	ion	1.3422534 5.0	
		Richtigkelt Abw. Bias, %	1.53 6.1	95%-Inter Faktor ß-Tolerar Prüfberer Prüfberer	z ch (30%)	2 00,025 00,018	OK 433 bis 00,032 bis 00,033 bis 00,035				


Formular: 2.0 Valistat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:47 AM

Seite:		4 von 7		Institution:	Institut für R	echtsmedizir	Halle (Saale)			
Gültig ab:		02.03.2020		Methode:	GC-MS					till and a second	
.2. Level 2		QC-Sollwert:	90.7	Einheit:	ng/mL	1					
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 1
	1	95.0	81.2	81.5	86.2	81.6	80.6	85.7	82.9		10.75
	2	93.1	80.4	84.0	75.6	80.9	81.6	80.0	82.4		
	3	93.8	76.8	80.0	85.9	83.3	81.2	83.0	82.1		
	ra 4	103.0									
	MESSUNG 6 7	82.7									
	88 6	82.0									
	8										-
	9										
	10									11000	
	Mittelwert	91.6	79.4667	81.8333	82.5667	81.9333	81.1333	82.9	82.4667		
	BIAS, %	1.0	-12.4	-98	-9.0	-9.7	-10.5	-8.6	-9.1		
	SD	7.99975	2.3437861	2.0207259	6.0351747	1.2342339	0.5033223	2.8513155	0.4041452		
	RSD, %	8.7	2.9	2.5	7.3	1.5	0.6	3.4	0.5		
		Kenndaten		OK	Wiederhol	präzision		Laborpräz	dision	NAMES OF THE PERSONS	
		MW (ges.)		83.9444	SD		4.7689787	SD		6.0284975	
		S D		5.911679	RSD, %		5.7	RSD, %		7.2	
		RSD, %		7.0						7	
		Richtigkeit		95%-Inter	vall	-	Ж	ir.			
		Abw.	-6.76	Faktor			34				
		Bias, %	-7.4	ß-Toleran	z		is 00,092				
				Prüfberei	ch (30%)	00,063 b	in 00 110				
						00,000 0	18 00,110				
				1.124.00		00,000 0	is 00,116				
2.3. Level 3						00,000	is oc, Ha				
2.3. Level 3		QC-Sollwert:	501.0] Einheit:	ng/mL						
2.3. Level 3		Tag 1	Tag 2	Einheit:	ng/mL Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
2.3. Level 3	1	Tag 1 528.0	Tag 2 420.0	Einheit: Tag 3	ng/mL Tag 4 435.0	Tag 5 498 0	Tag 6 565.0	524.0	477.0	Tag 9	Tag 10
2.3. Level 3	1 2	Tag 1 528.0 539.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 10
2.3. Level 3	1 2 3	Tag 1 528.0 539.0 584.0	Tag 2 420.0	Einheit: Tag 3	ng/mL Tag 4 435.0	Tag 5 498 0	Tag 6 565.0	524.0	477.0	Tag 9	Tag 1(
2.3. Level 3	1 2 3	Tag 1 528.0 539.0 584.0 588.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 10
2.3. Level 3	1 2 3	Tag 1 528.0 539.0 584.0 588.0 533.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 1(
2.3. Level 3	1 2 3 4 5 6	Tag 1 528.0 539.0 584.0 588.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 5 6 7	Tag 1 528.0 539.0 584.0 588.0 533.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 5 6	Tag 1 528.0 539.0 584.0 588.0 533.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 5 6 7 8	Tag 1 528.0 539.0 584.0 588.0 533.0	Tag 2 420.0 417.0	Einheit: Tag 3 474.0 456.0	ng/mL Tag 4 435.0 453.0	Tag 5 498 0 469.0	Tag 6 565.0 536.0	524.0 511.0	477.0 495.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 5 6 7 8 9 10	Tag 1 528.0 539.0 534.0 584.0 588.0 533.0 452.0	Tag 2 420.0 417.0 412.0	Einheit: Tag 3 474.0 456.0 469.0	ng/mL Tag 4 435.0 453.0 439.0	Tag 5 498 0 489 0 456.0	Tag 6 565.0 536.0 520.0	524.0 511.0 537.0	477.0 495.0 493.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert	Tag 1 528.0 539.0 539.0 584.0 688.0 533.0 452.0	Tag 2 420.0 417.0 412.0	Einheit: Tag 3 474.0 456.0 469.0	ng/mL Tag 4 435.0 453.0 439.0	Tag 5 498 0 499 0 456 0	Tag 6 565.0 536.0 520.0 540.3333	524.0 511.0 537.0	477.0 495.0 493.0 488.3333	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 5 5 6 7 8 9 10 Mittelwert BIAS, %	Tag 1 528.0 539.0 539.0 584.0 588.0 633.0 452.0 537.3333 7.3	Tag 2 420.0 417.0 412.0 416.3333 -16.9	Tag 3 474.0 456.0 469.0	Tag 4 435.0 453.0 459.0 459.0	Tag 5 498 0 469 0 456 0	Tag 6 565.0 536.0 520.0 540.3333 7.9	524.0 511.0 537.0 524.0 4.6	477.0 495.0 493.0 493.0 498.3333 -2.5	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 539.0 586.0 588.0 533.0 452.0 537.3333 7.3 49.2653	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519	Einheit: Tag 3 474.0 456.0 469.0 466.3333 -6.9 9.2915732	Tag 4 435.0 453.0 439.0 442.3333 -11.7 9.4516313	Tag 5 498 0 499 0 456.0 474.3333 5.5.3 21.0019	Tag 6 665.0 536.0 520.0 520.0 540.3333 7.9 22.8108	524.0 511.0 537.0 524.0 4.6 13.0	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 5 5 6 7 8 9 10 Mittelwert BIAS, %	Tag 1 528.0 539.0 539.0 584.0 588.0 633.0 452.0 537.3333 7.3	Tag 2 420.0 417.0 412.0 416.3333 -16.9	Tag 3 474.0 456.0 469.0	Tag 4 435.0 453.0 459.0 459.0	Tag 5 498 0 469 0 456 0	Tag 6 565.0 536.0 520.0 540.3333 7.9	524.0 511.0 537.0 524.0 4.6	477.0 495.0 493.0 493.0 498.3333 -2.5	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 539.0 586.0 588.0 533.0 452.0 537.3333 7.3 49.2653	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519	Einheit: Tag 3 474.0 456.0 469.0 466.3333 -6.9 9.2915732	Tag 4 435.0 453.0 439.0 442.3333 -11.7 9.4516313	Tag 5 498 0 499 0 456 0 474.3333 -5.3 21.5019 4.5	Tag 6 665.0 536.0 520.0 520.0 540.3333 7.9 22.8108	524.0 511.0 537.0 524.0 4.6 13.0	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 594.0 598.0 533.0 452.0 537.3333 7.3 49.2853 9.2	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519	Einheit: Tag 3 474.0 456 0 469 0 468 3333 -5 9 9.2915732 2 0	100 mg/mL 100 mg	Tag 5 498 0 499 0 456 0 474.3333 -5.3 21.5019 4.5	Tag 6 665.0 536.0 520.0 520.0 540.3333 7.9 22.8108	524.0 511.0 537.0 524.0 4.6 13.0 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	Tag 9	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 534.0 588.0 533.0 452.0 537.3333 7.3 49.2853 9.2 Kenndaten	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519	Einheit: Tag 3 474.0 456.0 469.0 466.3333 -6.9 9.2915732 2.0 OK	Tag 4 435.0 453.0 453.0 439.0 442.3333 -11.7 9.4516313 2.1 Wiederhol	Tag 5 498 0 499 0 456 0 474.3333 -5.3 21.5019 4.5	Tag 6 665.0 536.0 536.0 520.0 540.3333 7.9 22.8108 4.2	524.0 511.0 537.0 524.0 4.6 13.0 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0		Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 534.0 588.0 533.0 452.0 537.3333 7.3 49.2853 9.2 Kenndaten MW (gcs.)	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519	Einheit: Tag 3 474.0 456.0 469.0 469.0 466.3333 -6.9 9.2915732 2.0 OK 491.8519	Tag 4 435.0 453.0	Tag 5 498 0 499 0 456 0 474.3333 -5.3 21.5019 4.5	Tag 6 605.0 536.0 536.0 520.0 520.0 540.3333 7.9 22.8108 4.2	524.0 511.0 537.0 524.0 4.6 13.9 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	51.8995	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 539.0 584.0 588.0 533.0 452.0 537.3333 7.3 49.2853 9.2 Kenndaten MW (gcs.) SD RSD, %	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519	Einheit: Tag 3 474.0 456.0 459.0 466.3333 -6.9 9.2915732 2.0 OK 491.8519 49.9836 10.16233147	100 mg/mL 100 mg	Tag 5 498 0 498 0 496 0 456 0 474 3333 5.3 21.5019 4.5	7ag 6 565.0 536.0 520.0 520.0 540.3333 7.9 22.8108 4.2	524.0 511.0 537.0 524.0 4.6 13.9 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	51.8995	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 594.0 598.0 533.0 452.0 537.3333 7.3 49.2853 9.2 Kenndaten MW (ges.) SD RSD, %	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519 1.0	Einheit: Tag 3 474.0 456.0 469.0 466.3333 -6.9 9.2915732 2.0 OK 491.8519 49.9836 10.16233147 95%-Inter	100 mg/mL 100 mg	Tag 5 498 0 499 0 456 0 474 3333 5.3 21.5019 4.5	Tag 6 565.0 536.0 536.0 520.0 540.3333 7.9 22.8108 4.2 28.1138 5.7	524.0 511.0 537.0 524.0 4.6 13.9 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	51.8995	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 539.0 588.0 533.0 452.0 537.3333 7.3 49.2853 9.2 Kenndaten MW (ges.) SD RSD, %	Tag 2 420.0 417.0 412.0 412.0 416.3333 -16.9 4.0414519 1.0	Einheit: Tag 3 474.0 456.0 469.0 469.0 469.0 469.0 49.2915732 2.0 20.2915732 2.0 20.2915732 2.0 49.8836 10.16233147 95%-Inter-Faktor	Tag 4 435.0 453.0	Tag 5 498 0 499 0 456.0 474.3333 5.3 21.5019 4.5	Tag 6 665.0 536.0 536.0 520.0 540.3333 7.9 22.8108 4.2 28.1138 5.7	524.0 511.0 537.0 524.0 4.6 13.9 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	51.8995	Tag 10
2.3. Level 3	1 2 3 4 4 5 6 6 7 8 9 10 Mittelwert BIAS, % SD	Tag 1 528.0 539.0 594.0 598.0 533.0 452.0 537.3333 7.3 49.2853 9.2 Kenndaten MW (ges.) SD RSD, %	Tag 2 420.0 417.0 412.0 416.3333 -16.9 4.0414519 1.0	Einheit: Tag 3 474.0 456.0 469.0 466.3333 -6.9 9.2915732 2.0 OK 491.8519 49.9836 10.16233147 95%-Inter	Ing/mL Tag 4 455.0 455.0 455.0 457.0	Tag 5 498 0 498 0 499 0 456 0 474 3333 5.3 21.5019 4.5 00.356 1	Tag 6 565.0 536.0 536.0 520.0 540.3333 7.9 22.8108 4.2 28.1138 5.7	524.0 511.0 537.0 524.0 4.6 13.9 2.5	477.0 495.0 493.0 493.0 488.3333 -2.5 9.8657657 2.0	51.8995	Tag 1

Formular: 2.0 Valislat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:47 AM


Seite:	5 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

Zusammenfassung 95%-Intervall

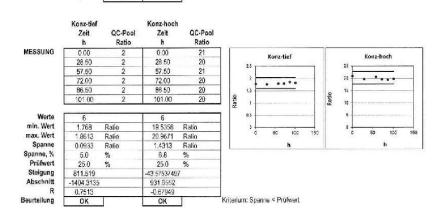
Zusammenfassung	QC1	QC2	QC3
B-Toleranz	00,025 bis 00,032	00,064 bis 00,092	00,356 bis 00,609
%	00 bis 25	-30 bis 01	-29 bis 22
Prüfbereich (30%)	00,018 bis 00,033	00,063 bis 00,118	00,351 bis 00,651
Prüfbereich (40%)	00,015 bis 00,035	CONTROL NO.	A COMMENT OF THE PARTY OF THE P

3. Grenzwerte 3.1 Bestimung nach DIN 32645

Seite:	6 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

- 3.2 Bestimmung mittels Alternativmethode 3.2.1 Nachweisgrenze aus Signal/Rauschverhältnis

Dotiert ng/mL	Target 0	Untergrund 0	Target S/N	Q1 0	Untergrund 0	Q1 S/N	Q2 0	Untergrund 0	Q2 S/N
		NG-1	0.0		NG-2	0.0		NG-3	0.0
Nachweisgre	nze :	0.0							


3.2.2 Bestimmungsgrenze

Vorgabe	ng/mL				
MESSUNG	Konz.	Wiederholpräzision		Bias	
1		Mittelwert		Bias	
2		SD		Bias. %	
3		RSD, %		A STATE OF THE STA	
4		Krit. Wert, %	20	Krit. Wert, %	20
5					
6		Beurteilung		Kriterium: RSD und bias<20%	2

4. WIEDERFINDUNG 4.1 WIEDERFINDUNG

	QC-untere		QC-obere	
Konzentration[50.3	ng/mL	501.0	ng/mL
MESSUNG	Lösemittel Ratio	Matrix Ratio	Lösemittel Ratio	Matrix Ratio
1 [2,4524	2.5543	25 6174	24,4656
2	2.6205	2.3583	25.1621	24.3147
3	2.5618	2,6087	24.0202	24.672
4	2.6022	2.5561	24.9346	24.1311
5	2.7758	2.6433	24.7853	25.1373
6	2.682	2.5467	24.8871	24.3346
Mittelwert	2.616	2.545	24.90111667	24.50921667
SD	0.109	0.099	0.524	0.356
RSD, %	4.2	3.9	2.1	1.5
N (Werte)	6	6	6	6
Wiederfin	ndung,%	97.3	98.4	1
	RSD, %	5.1	2.9	

4.2 STABILITAT

Formular: 2.0

Valistat 2.0 - Protokoll

Seite: Gültig ab:	7 von 7 02.03.2020		Institution: Methode:	: Institut für Re : GC-MS	chtsmediz	in Halle (Saale)	
.3 MATRIXEFFEKTE -								
	QC1		ng/mL	QC2		ng/mL_		
	-	Extrakt	Matrix	Reinsubstanz	Extrakt	Matrix		
MESSUNG		399737.96						
Mittelwert SD Varianz Anzahl							e e	
	Matrixef	SD, % fekt,%						
	R	SD, %						
		teilung [Recovery >=! SD <=25% Matrixeffekte	50% 75-125%				
nmerkungen								

Formular; 2.0				Va	listat 2.0	- Protokoli		Druckdatum: 4/28

7.4 Valistat-Validierungsprotokoll: MDA

Institution:

1 von 7

Validierungsprotokoll

Institut für Rechtsmedizin Halle (Saale)

Gültig ab: 02.03.2020	Methode: GC-MS
Titel	Quantitative Bestimmung von Amphetamin und Derivaten im Serum mit GC-MS
SOP	SAA-T-001
Angaben zur Methode	
Kurzbezeichnung der Methode (ggf. Nr. der SOP)	Amphetamin und Derivate im Serum mit GC-MS
Anwendungsgebiet	Klinische / Forensische Toxikologie
Arbeitsbereich	10 - 1000 ng/mL
Analyt	MDA (Interner Standard: MDA-d5)
Weitere bestimmbare Analyte	Quant: Amphetamin, Methamphetamin, MDMA, MDEA, MBDB; Semi-Quant: Methylphenidat,
	Methylon, Methcath., Cathinon, 4-MTA, PMA, Ethylamphetamin, Mephedron, Ephedrin, Ethylor
Verantwortlichkeiten	
Leiter der Validierung	Fr. Dr. K, Blümke-Anbau

Leiter der Validierung	Fr. Dr. K. Blümke-Anbau
Beteiligte Mitarbeiter	F. Picht
Bearbeitungszeitraum	November 2019 - Februar 2020
Methode gültig erklärt am	02.03.2020
Methode ungültig erklärt am	entfällt
Zusammenfassung und Bewertung	Flüssig/Flüssig-Extraktion mit Ethylacetat, eindampfen und PFPA-Derivatisierung

Inhaltsverzeichnis

1. Arbeitsbereich und Kalibrationsmodell

- Target
 1.1.1 Prüfung auf Varianzhomogenität (F-Test)
 1.1.2 Prüfung auf Linearität (Mandel-Test)
- Qualifier
 1.2.1 Prüfung auf Varianzhomogenität (F-Test)
 1.2.2 Prüfung auf Linearität (Mandel-Test)

- Lösemitlelkalibration
 1.3.1 Prüfung auf Ausreißer (F-Test)
 1.3.2 Prüfung auf Linearilät (Mandel-Test)
 1.3.3 Prüfung auf Varianzhomogenität (F-Test)
- Genauigkeit
 Level 1
 2.1.1 Wiederholpräzision
 2.1.2 Laborpräzision

 - 2.1.3 Richtigkeit
 - 2.1.4 95%-Intervall (40% / 30%)
- Level 2
 2.2.1 Wiederholpräzision
 2.2.2 Laborpräzision
 2.2.3 Richtigkeit
 2.2.4 95%-Intervall (30%)

- 2.3. Level 3
 2.3.1 Wiederholpräzision
 2.3.2 Laborpräzision
 2.3.3 Richtigkeit
 2.3.4 95%-Intervall (30%)
- 2.4. Zusammenfassung 95%-Intervall

3. Grenzwerte

- Bestimmung nach DIN 32845
 3.1.1 Bestimmung der Nachweisgrenze (schwaches Ion)
 3.1.2 Bestimmung der Bestimmungsgrenze (intensives Ion)
- Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus dem Signal/Rauschverhältnis
 3.2.2 Bestimmungsgrenze aus der Wiederholpräzision (20%)

4. Wiederfindung

- 4.1 Bestimmung der Wiederfindung
 4.1.1 Bestimmung der Wiederfindung für hohe Konzentration
 4.1.2 Bestimmung der Wiederfindung für niedrige Konzentration
- 4.2 Stabilität

 - 4.2.1 Bestimmung der Stabilität bei hoher Konzentration
 4.2.2 Bestimmung der Stabilität bei niedriger Konzentration
- Matrixeffekte
 4.3.1 Überprüfung der Matrixeffekte bei hoher Konzentration
 4.3.2 Bestimmung der Matrixeffekte bei niedriger Konzentration

Druckdatum: 4/28/2020- 11:46 AM

Formular: 2.0

W Ausreisser-Test nach Extrem	10.0 10.0 0.572 0.775 0.78 0.783 0.721		Methode: m/z = 182 20.0 1.379 1.427 1.388 1.445 1.439 1.317	50.0 3.651 3.68 3.715 3.633 3.616	70.0 4.996 5.147 5.127 5.138	Messgrösse: 150.0 11.0276 11.1369	300.0 22.66	600.0 46.0901	Einheit:	ng/mL 1000.0
Konzentri 10 N 3	10.0 10.0 0.572 0.775 0.78 0.783 0.721	15.0 1.05 1.094 1.053 1.094 1.093 1.094 1.046	20.0 1.379 1.427 1.388 1.445 1.439	3.651 3.68 3.715 3.633 3.616	70.0 4.996 5.147 5.127	150.0 11.0276	300.0 22.66		800.0	
Konzentri Konzentri 1 2 3 3 3 4 5 6 Mittel Var Ausreisser-Test nach Extrem Prüfi Signifikanz 95% Tabellen Straggle	10.0 10.0 0.572 0.775 0.78 0.783 0.721	15.0 1.05 1.094 1.053 1.094 1.093 1.094 1.046	20.0 1.379 1.427 1.388 1.445 1.439	3.651 3.68 3.715 3.633 3.616	70.0 4.996 5.147 5.127	150.0 11.0276	300.0 22.66		800.0	
Konzentr. 1 29 2 2 3 3 4 4 5 6 6 6 Mittel Var Ausreisser-Test nach Extrem Signifikanz 95% Tabellean Straggle Signifikanz 99%	0.672 0.775 0.78 0.778 0.783 0.721 0.0455 0.0455 rianz 0.0021 Verte 6.0	15.0 1.05 1.094 1.053 1.091 1.092 1.046	20.0 1.379 1.427 1.388 1.445 1.439	3.651 3.68 3.715 3.633 3.616	70.0 4.996 5.147 5.127	150.0 11.0276	300.0 22.66		800.0	
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.672 0.775 0.78 0.778 0.783 0.721 0.0455 0.0455 rianz 0.0021 Verte 6.0	1.05 1.094 1.053 1.091 1.092 1.046	1.379 1.427 1.388 1.445 1.439	3.651 3.68 3.715 3.633 3.616	4.996 5.147 5.127	11.0276	22.66			1000.0
Signifikanz 95%	0.775 0.78 0.778 0.783 0.721 Iwert 0.751 \$D 0.0455 rianz 0.0021 Verte 6.0	1.094 1.053 1.091 1.092 1.046	1.427 1.388 1.445 1.439	3.68 3.715 3.633 3.616	5.147 5.127			46.0901	OF 2040	
NS 3 SS3 5 6 Mittel Var Ausreisser-Test nach Extrem Prüfi Signifikanz 95% Tabellean Straggle	0.78 0.778 0.783 0.721 lwert 0.751 sp 0.0455 rianz 0.0021 Verte 6.0	1.053 1.091 1.092 1.046	1.388 1.445 1.439	3.715 3.633 3.616	5.127	11.1360	1001000000		65.8048	86.4778
6 Mittel Var Ausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%	0.778 0.783 0.721 lwert 0.751 SD 0.0455 rianz 0.0021 Verte 6.0	1.091 1.092 1.046	1.445 1.439	3.633 3.616			23.8183	51.0687	59.3008	82.9023
6 Mittel Var Ausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%	0.783 0.721 lwert 0.751 SD 0.0455 rianz 0.0021 Verte 6.0	1.092 1.046	1.439	3.616	5 138	10.7869	23.2276	46.0774	65.9359	83.0522
6 Mittel Var Ausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%	0.721 Neert	1.046				11.6115	22.5906	47.9626	64.0311	89.2201
Mittel Var Wausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%	Nert 0.751 SD 0.0455 rianz 0.0021 Verte 6.0	1.071	1.317		5.454	10.2291	23 33	47.9846	63.3217	79.5189
Var Nusreisser-Test nach Extrem Prüf Signifikanz 95% Tabellem Straggle Signifikanz 99%	SD 0.0455 rianz 0.0021 Verte 6.0			3.644	5.227	10.5207	24.0441	44.9534	70 8832	79.7143
Var Nusreisser-Test nach Extrem Prüf Signifikanz 95% Tabellem Straggle Signifikanz 99%	SD 0.0455 rianz 0.0021 Verte 6.0		1.399	3.667	5,182	10.88545	23.27843333	47,35613333	67 97069333	83,4809333
W Ausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%	rianz 0.0021 Verte 6.0		0.0484	0.0356	0.1528	0.4866	0.5897	2.1706	3.8022	3.8032
W Ausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%	Verte 6.0	0.0006	0.0023	0.0013	0.0233	0.4368	0.3477	4.7114	14,45699836	14.4846214
Ausreisser-Test nach Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Extrem Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%		0.0	0.0	6.0	0.0	0.0	0.0	b.u	6.0	6.0
Prüf Signifikanz 95% Tabellen Straggle Signifikanz 99%		1.046	1.317	3.715	5,454	11.6115	24.0441	51.0687	70.8832	89.2201
Tabellen Straggle Signifikanz 99%	fwert 1.747	1.058	1.696	1.643	1.785	1,492	1.298	1.71	1.579	1,509
Tabellen Straggle Signifikanz 99%		115.5		100,000	100.00					
Straggle Signifikanz 99%	wert 1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Signifikanz 99%		nein	nein	nein	nein	nein	nein	nein	nein	nein
		1			1			1,14		
	wert 1.944	1,944	1.944	1.944	1,944	1.944	1.944	1.944	1.944	1,944
Ausreif		nein	nein	nein	nein	nein	nein	nein	nein	nein
0.51/1/0.000										
Cochran-Test (Varian	nzenhomogenität)		st auf Linearitä	it		rationsfunktio	n		Kalibrationsf	unktion
(Signifikanz 99%)		(Signifikanz 9)	9%)		$Y = a \cdot x + b$			Y = A+x2 + B+	(+6	0.00001039
Prüfwert	0.4224	Prüfwert	- 94	-6.99	a		000,000	A		
Tabellenwert	0.423	Tabellenw	77.6 k	12.24	b		-000,001	В		0.07299490
Bestanden?	ja	Bestander	1?	ja	R		00,001	C		-0.0162408
					Rest-SD		0.00	R		0.99997829
								Rest-SD		0.22650900
I.2 QUALIFIER		Messsignal:	m/z = 325			dessgrösse:	Ratio		Einhelt:	ng/mL
Konzentr	ration 10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
	1 0.088	0.145	0.182	0.506	0.687	1.511	3,123	6.481	8.907	11,136
rn.	2 0.099	0.151	0.196	0.505	0.700	1.492	3.213	6.836	7.915	10.569
MESSUNG	3 0.104	0.141	0.188	0.496	0.682	1,435	3.076	5.539	8 604	10.513
88	4 0.104	0.145	0.192	0.482	0.683	1.530	2.962	6.396	8.448	11.603
Æ		0.144	0.190	0.477	0.717	1.339	3.028	8.251	8.276	10.403
1177	5 0.111	0.138	0.171	0.478	0.689	1.366	3.125	6.047	9.283	10.474

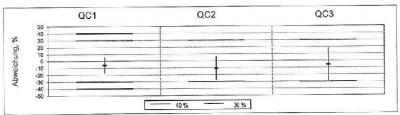
Cochran-Test (Varianzenhor	ogenität)	Mandel-F-Tes	t auf Linearitä	it	Lineare Kalib	rationsfunktio	in .	Quadratische	Kalibrations	funktion
Ausreißer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Tabellenwert	1.944	1.944	1.944	1.944	1,944	1,944	1.944	1.944	1.944	1.944
Straggler?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Tabellenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Prüfwert _	1.791	1,642	1.722	1.151	1.780	1.344	1.447	1.534	1.480	1.706
Extremwert	0.088	0.151	0.171	0.506	0.717	1.339	2.962	6.836	9.283	11,603
Werte	6	6	6	6	6	6	6	6	6	6
Varianz	0.0	0.0	0.0	0.0	0.0	0.006	0.008	0.072	0.231	0.231
SD	0.008	0.004	0.009	0.013	0.014	0.079	0.087	0.268	0.48	D.481
Mittelwert	0.102	0.144	0.187	0.491	0.693	1.445	3.088	6.425	8.572	10.7829
6	0.104	0.138	0.171	0.478	0.689	1,366	3.125	6.047	9.283	10.474
0.000	0.111	0.144	0.190	0.477	0.717	1.339	3.028	6.251	8.276	10.403
WESSUNG 4 5	0.104	0.145	0.192	0.482	0.683	1.530	2.962	6.396	8.448	11.603
ž 3	0.104	0.141	0.188	0.496	0.682	1.435	3.076	6.539	8 604	10.513
co 2	0.099	0.151	0.196	0.505	0.700	1.492	3.213	6.836	7.915	10.569

Cochran-Test (Varianzenhomogenität) (Signifikanz 99%)		Mandel-F-Test auf Linearität (Signifikanz 99%)		Lineare Kalibration Y = a•x + b	sfunktion	Quadratische Kalibrationsfunktion Y = A-x² + B-x + C	
Prüfwert	0.4218	Prüfwert	6.21	a	0.01080569	A	0.00000046
Tabellenwert	0.423	Tabellenwert	12.24	b	000.000	В	0.01037738
Bestanden?	ia	Linear?	la	R	00,001	C	-0.03421029
	50 4 Fig.	0.0000000000	100	Rest-SD	0.06034939	R	0.99994545
						Rest-SD	0.04695907

Formular: 2.0 Valistat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:46 AM

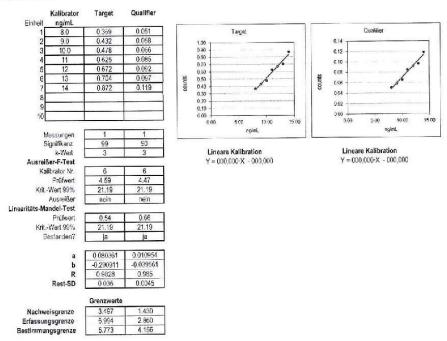
leite: Gültig ab:	3 von 7 02 03 2020		Institution: Methode:	Institut für Red GC-MS	thismedizin H	alle (Saale)				
			monioue.	- Jane						
1.3 LÖSEMITTELK	CALIBRATION									
Signifi Konzentra Lösemitte Matrix	ation]%								
WFR geme	econ									
WFR berec										
viederfindungsfunk m = ao * xo + bo	tion	Ausreißer-F-			Linearitäts-	Test			mogenitäts-F	Test
no po Rest-SD		Kalibrator N Prüfwert Kritischer-W Ausreisser?	ert		Prüfwert Kritischer-V Bestanden?			RSD Grundk RSD Wieden Prüfwert Kritischer-W Bestanden?	findung	
	Wiede	rfindungsrate					Lösemitte	Ikalibration		
80 75 75 75 75 75 75 75 75 75 75 75 75 75	,	Į.			10 0.9 0.8 0.7 0.6 ix 0.5 0.4 0.3 0.2 0.1	Winkelh		iveac für v∋ = S	9%	
9.90	0.20 0.40	0.60 ng/mL	0.80 1.0	00 1.20	0.0	0.0 0.		0.6 emittel	0.8	1.0
Genauigkeit 1. Level 1	OO Salkanda		7 - 1		1					
	QC-Sollwert: Tag 1	25.2 Tag 2	Einheit: Tag 3	rg/mL Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1 28.0 1 25.0	23.5 26.5	24.8 25.1	24.6 23.9	24.7 23.3	24.2 23.8	24.5 24.4	23.0 22.9		
	3 25.7	25.3	25.2	23.4	23.4	23.7	24.4	22.2		
MESSUNG	4 24.9 5 24.6 6 25.1 7 8	***************************************								
Mitte	10 25.55	25.1	25 0333	23.9657	23.8	23.9	24.4333	22.7		
	AS, % 1.4	-0.4	-0.7	-4.9	-5.6	-5.2	-30	-9.9 0.4358899		
RS	SD 1.2533954 SD, % 4.9	1,5099669 6.0	0.2031566 0.8	0.6027714 2.5	0.781025 3.3	0.2645751 1.1	0 057735 0.2	1.9		
	Kenndaten	2014	ок	Wiederholpra	azision		Laborpräzisi	on		1
	MW (ges.) SD RSD, %		24.4481 1.186258 4.9	SD RSD, %		0.8877826 3.6	SD RSD, %		1.2157124 5.0	
	Richtigkeit		95%-Inter	vall		ОК	1			

Formular: 2.0 Valistat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:46 AM


Seite: Gültig ab:		4 von 7 02.03.2020		Institution: I	nstitut fü r Re GC-MS	chtsmedizin	Halle (Saale)				
outing ab.		02.00.2020		methodo.	o mo						
2.2. Level 2	10	QC-Sollwert:	60.4	Einheit:	ng/mL						
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1		54.2	57.9	58.8	52.2	54.1	56.8	57.3		
	2	64.7		59.4	55.4	52.9	56.8	54.3	55.6		
	3	63.3	54.1	56.4	57.2	54.7	56.1	56.5	56.1		
	. 4	63.6	51.3	30.4	31.2	J4.1	30.1	00.0	00.1	_	
	Ş ,	70.8									
	5 6	56.4		-							
	MESSUNG	55.6									
	2 8								-		
	9						Silikation				
	10	<u> </u>		-							
	10										
	Mittelwert	62,4	53.2	57.9	57.1333	53.2667	55.6667	55 8667	56.3333		
	BIAS, %	3.3	-11.9	-4.1	-5.4	-11.8	-7.8	-7.5	-6.7		
	SD	5.6628615	1.6462078	1.5	1.7009801	1.2897028	1.40119	1.3650397	0.8736895		
	RSD, %	9.1	3.1	2.6	3.0	2.4	2.5	2.4	1.6		
	10							1-1	T-1		
	1	Kenndaten		OK	Wiederholy	orazision	700000000000000000000000000000000000000	Laborpräz	ision		
	1	MW (ges.)		57.1296	SD **		3.1502158	SD III		4.3164106	
	1/4	SD		4.2116884	RSD, %		5.5	RSD, %		7.6	
		RSD, %		7.4							
		Richtigkeit		95%-Interva	all		ok .				
		Abw.	-3.27	Faktor			38				
		Bias, %	-5.4	8-Toleranz		00.044 b	is C0,064				
			-0.4	Prüfbereich			is 00,079				
			_		, , , ,						
2.3. Level 3					0.000						
		QC-Sollwert:	504.0	Einheit:	ng/mL						
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	519.0	455.0	478.0	420.0	481.0	579.0	532.0	482.0		
	2	521.0	436.0	459.0	436.0	457.0	549.0	521.0	493.0		
	3	586.0	420.0	462.0	428.0	457.0	528.0	540.0	489.0		
	40 4	564.0					7507-5-1				
	ž 5	512.0								100 100	
	MESSUNG 6 7	435.0					- Pieze				
	₩ 7										
	8										
	9										
	10							2 200			
	Mittelwert	540 5	107.0	400 0000	400.0	105.0	552.0	531.0	488.0		
	BIAS, %	519.5	437.0	466.3333	428.0	465.0	9.5	5.4	-3.2		
	SD SD	3.1	-13.3	-7.5	-15.1	-7.7 12 0004	25.632	9.539392	5.5677644		
	RSD, %	47.6267	17.5214	10.2144	8.0 1.9	13.8564	4.6	1.8	1.1		_
	NOU, 70	9.2	4.0	2.2	1.8	0.0	4,0	1,0	101		-
		Kenndaten	_	OK	Wiederhol	präzision		Laborpräz	zision		
		MW (ges.)		489.5926	SD		27.3709	SD		49 6652	
		SD SD		47.859	RSD, %		5.6	RSD, %		10.14418871	
		RSD, %		9.8			0.0				
		AND STORY OF THE									
		Richtigkeit		95%-Interv	all		OK				
		Abw.	-14.41	Faktor		2.	436				
			-14.41 -2.9			2. 00,355 t					

Formular: 2.0

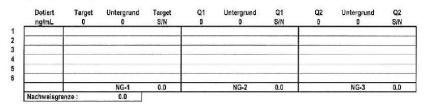
Valistat 2.0 - Protokoll


Seite:	5 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

Zusammenfassung 95%-Intervall

Zusammenfassung	QC1	QC2	QC3
B-Toleranz	00,021 bis 00,027	00,044 bis 00,064	00,355 bis 00,597
%	- 17 bis 06	-28 bis C6	-30 bis 18
Prüfbereich (30%)	00,018 bis 00,033	00,042 bis 00,079	00,353 bis 00,655
Prüfbereich (40%)	00,015 bis 00,035		

3. Grenzwerte 3.1 Bestimung nach DIN 32645



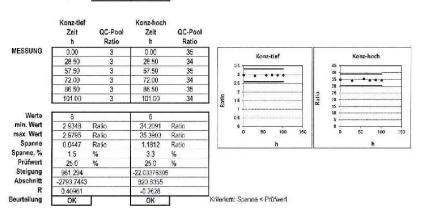
Formular: 2.0

Valistat 2.0 - Protokoll

Seite:	6 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)	٦
Gültig ab:	02.03.2020	Methode: GC-MS	

- 3.2 Bestimmung mittels Alternativmethode 3.2.1 Nachweisgrenze aus Signal/Rauschverhältnis

3.2.2 Bestimmungsgrenze



4. WIEDERFINDUNG 4.1 WIEDERFINDUNG

	QC-untere		QC-obere	
Konzentration [50.5	ng/mL	504.0	ng/mL
MESSUNG	Lösemittel Ratio	Matrix Ratio	Lösemittel Ratio	Matrix Ratio
1	4.0073	3.9656	41.3283	39.6657
2	4.1675	3.7206	41.5314	39.2078
3	4.1558	4.0768	38.5199	39.3586
4	4.1159	4.0757	40.4056	39.3706
5	4.1873	4.1428	40.6293	40.7377
6	4.2853	4.08	40.6271	38.8042
Mittelwert	4.153	4.01	40.50693333	39.5241
SD	0.091	0.153	1.069	0.658
RSD, %	2.2	3.8	2.6	1.7
N (Werte)	6	6	6	6

Wiederfindung,% RSD, % 97.6 3.0

4.2 STABILITAT

Formular: 2.0

Valistat 2.0 - Protokoll

ültig ab:	7 von 7 02.03.2020		Methode	: Institut für Re : GC-MS	chtsmedizi	Trialic (Gaare)		
3 MATRIXEFFEKTE -	LC/MS/(MS)							
	QC1		ng/ m L	QC2]ng/mL		
	Reinsubstanz	Extrakt	Matrix	Reinsubstanz	Extrakt	Matrix		
MESSUNG								
Mittelwert						-		
SD Varianz Anzahl								
	Wiederfindu RS	ng,% SD, %						
	Matrixeffe RS	ekt,% SD, %						
		eilung						
	Kri	terium:	Recovery >: SD <=25%	,				
			Matrixeffekte	e: 75-125%				
nmerkungen							 	
					The second second			
								F
								,
								F

7.5 Valistat-Validierungsprotokoll: MDEA

Validierungsprotokoll

Seite: Gültig ab:	1 von 7 02 .03.2020	Institution: Methode:	Institut für Rechtsmedizin Halle (Saale) GC-MS
Titel		Quantita	sive Bestimmung von Amphetamin und Derivaten im Serum mit GC-MS
SOP		SAA-T-	001

Angaben zur Methode	
Kurzbezeichnung der Methode (ggf. Nr. der SOP)	Amphetamin und Derivate im Serum mit GC-MS
Anwendungsgebiet	Klinische / Forensische Toxikologie
Arbeitsbereich	10 - 1000 ng/mL
Analyt	MDEA (Interner Standard: MDEA-d5)
Weitere bestimmbare Analyte	Quant: Amphetamin, Methamphetamin, MDMA, MDA, MBDB; Semi-Quant: Methylphenidat,
	Methylon, Methcath., Cathinon, 4-MTA, PMA, Ethylamphetamin, Mephedron, Ephedrin, Ethylon

Leiter der Validierung	Fr. Dr. K. Blümke-Anbau
Beteiligte Mitarbelter	F. Picht
Bearbeitungszeitraum	November 2019 - Februar 2020
Methode gültig erklärt am	02.03.2020
Methode ungültig erklärt am	entfällt
Zusammenfassung und Bewertung	Flüssig/Flüssig-Extraktion mit Ethylacetat, eindampfen und PFPA-Derivatisierung

Inhaltsverzeichnis

- 1. Arbeitsbereich und Kalibrationsmodell
- Target
 1.1.1 Prüfung auf Varianzhomogenität (F-Test)
 1.1.2 Prüfung auf Linearität (Mandel-Test)
- 1.2. Qualifier
 1.2.1 Prüfung auf Varianzhomogenität (F-Test)
 1.2.2 Prüfung auf Linearilät (Mandel-Test)
- Lösemittelkalibration
 1.3.1 Prūfung auf Ausreißer (F-Test)
 1.3.2 Prūfung auf Linearität (Mandel-Test)
 1.3.3 Prūfung auf Varianzhomogenität (F-Test)

 - 2. Genauigkeit
- 2.1. Level 1
 2.1.1 Wiederholpräzision
 2.1.2 Laborpräzision
 2.1.3 Richtigkeit

 - 2.1.4 95%-Intervall (40% / 30%)
- 2.2. Level 2
 2.2.1 Wiederholpräzision
 2.2.2 Laborpräzision
 2.2.3 Richtigkeit
 2.2.4 95%-Intervall (30%)
- 2.3. Level 3
 2.3.1 Wiederholpräzision
 2.3.2 Laborpräzision
 2.3.3 Richtigkeit
- 2.3.4 95%-Intervall (30%)
- 2.4. Zusammenfassung 95%-Intervall

- 3. Grenzwerte
- S. Greinzweite
 S. Greinzweite
 S. Greinzweite
 S. Greinzweite
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 Sestimmung der Nachweisgrenze (schwaches Ion)
 S. Greinzweite
 S. Greinzweite
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 Sestimmung nach DIN 32645
 S. Greinzweite
 Sestimmung der Nachweisgrenze (schwaches Ion)
 S. Greinzweite
 Sestimmung der Bestimmungsgrenze (intensives Ion)
- Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus dem Signal/Rauschverhältnis
 3.2.2 Bestimmungsgrenze aus der Wiederholpräzision (20%)
- 4. Wiederfindung
- 4.1 Bestimmung der Wiederfindung
 4.1.1 Bestimmung der Wiederfindung für hohe Konzentration
 4.1.2 Bestimmung der Wiederfindung für niedrige Konzentration
- - 4.2.1 Bestimmung der Stabilität bei hoher Konzentration 4.2.2 Bestimmung der Stabilität bei niedriger Konzentration
- Matrixeffekte
 4.3.1 Überprüfung der Matrixeffekte bei hoher Konzentration
 4.3.2 Bestimmung der Matrixeffekte bei niedriger Konzentration

Druckdatum: 4/28/2020- 11:47 AM

Formular: 2.0

Valistat 2.0 - Protokoll

Seite:	2 von 7		Institution	: Institut für	Rechtsmedizin	Halle (Saa	ie)			
Gültig ab:	02.03.2020)	Methode	GC-MS						
	800 20 10									
1. Arbeitsbereich und Ka	ibrationsmode		040				D. 17			
1.1 TARGET		Messsignal:	m/2 = 218			Nessgrösse:	Ratio		Einheit:	ng/mL
Konzentration	10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	I 1000.0
1	0.443	0.733	0.952	2.476	3.466	7.362	15.2277	31.0693	45.3534	59.5828
5 2	0.505	0.753	0.976	2.479	3,493	7,615	16.1752	33,7063	41.1743	56 6412
WESSUNG	0.532	0.715	0.957	2.541	3,486	7.443	16.1157	33,9096	44.9223	56.588
SS 4	0.575	0.739	0.987	2.438	3,493	8.084	15.8904	33.5375	44.2904	58.768
₩ 5	0.557	0.751	0.991	2.482	3.664	7.129	16.3251	33 3948	43.8249	54.545
6	0.543	0.718	0.901	2.468	3.577	7.24	16.9624	31.532	47 9942	53.975
			*							
Mittelwert	0.526	0.735	0.961	2.481	3.53	7.479	16.11608333	32.85825	44.59325	58.8836
SD	0.0468	0.0159	0.0335	0.0336	0.0759	0.3403	0.5663	1.2274	2.2192	2.2212
Varianz	0.0022	0.0003	0.0011	0.0011	0.0058	0.1158	0.3207	1,5066	4.9248	4.9339
Werte	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Ausreisser-Test nach Gru										
Extremwert		0.715	0 901	2.541	3.664	8.084	15.2277	31.0693	41.1743	59.5820
Prüfwert	1.763	1.208	1.795	1.793	1.767	1.778	1.569	1.457	1.541	1.305
Signifikanz 95%	257						31 33			
Tabellenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
Straggler?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Signifikanz 99%										
Tabellenwert		1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Ausreißer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
	2741	In		**	Te : 12 101			A J	Vallendens	
Cochran-Test (Varianzen)	iomogenitat)		st auf Lineariti	at	Lineare Kalibr	ationsfunkti	on	Quadratische $Y = A \cdot x^2 + B \cdot x^2$		runktion
Signifikanz 99%)	0.4477	(Signifikanz 9	9%)	0.60	$Y = a \cdot x + b$		202.202	A A . K - + D .	(+6	0.0000047
Prüfwert	0.4177	Prüfwert		-6.99	a		000,000	В		
Tabellenwert	0.423	Tabellenw		12.24	b R		000,000 00.001	C		0.052075
Bestanden?	ja	Bestander	17	ja	Rest-SD		0.00	R		0.109383
		l			Restrop		0.00	Rest-SD		0.1510545
White the same				11-11-17-2				Kest-SD		0.101004
I.2 QUALIFIER		Messsignal:	m/z = 353		N.	essgrösse:	Ratio		Einheit:	ng/mL
Konzentration	10.0	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
1	0.018	0.031	0.040	0.102	0.142	0.307	0.603	1.350	1.752	2.302
	0.022	0.031	0.039	0.101	0.143	0.311	0.661	1.373	1.695	2.319
(2)			0.038	0.103	0.141	0.300	0.651	1.381	1.812	2.320
9 2 9 3	0.021	0.029								
9Nnss: 4	0.021 0.023	0.029	0.040	0.098	0.142	0.325	0.637	1.358	1.806	2.379
<u>\$</u> 3				0.098	0.142	0.325	0.637	1.358		
NOSS 4	0.023	0.030	0.040						1.806 1.769 1.874	2.379 2.241 2.207
NOSSEM 5	0.023 0.022 0.022	0.030 0.030 0.029	0.040 0.040 0.036	0.100	0.142 0.143	0.284 0.288	0.652 0.674	1.344 1.306	1.769 1.874	2.241 2.207
ND 3 SSS 4 5 6 Mittelwert	0.023 0.022 0.022 0.022	0.030 0.030 0.029	0.040 0.040 0.036 0.039	0.100 0.099 0.1	0.142 0.143 0.142	0.284 0.288 0.302	0.652 0.674 0.646	1.344 1.306	1.769 1.874 1.785	2.241 2.207 2.295
NOSSEM 5 6 Mittelwart SD	0.023 0.022 0.022 0.021 0.002	0.030 0.030 0.029 0.03 0.001	0.040 0.040 0.036 0.039 0.002	0.100 0.099 0.1 0.002	0.142 0.143 0.142 0.001	0.284 0.288 0.302 0.015	0.652 0.674 0.646 0.024	1.344 1.306 1.352 0.026	1.769 1.874 1.785 0.061	2.241 2.207 2.295 0.062
NO 3 4 4 5 6 Mittelwert	0.023 0.022 0.022 0.022	0.030 0.030 0.029	0.040 0.040 0.036 0.039	0.100 0.099 0.1	0.142 0.143 0.142	0.284 0.288 0.302	0.652 0.674 0.646	1.344 1.306	1.769 1.874 1.785	2.241 2.207 2.295

Cochran-Test (Varianzenhomogenität) (Signifikanz 99%)		Mandel-F-Test auf Linearität (Signifikanz 99%)		Lineare Kalibrationsfunktion Y = a*x + b		Quadratische Kalibrationsfunktion Y = A-x² + B-x + C	
Prüfwert	0.4194	Prüfwert	11.78	a	0.00228246	A	0.00000017
Tabellenwert	0.423	Tabellenwert	12.24	b	000,000	В	0.00212511
Bestanden?	ja	Linear?	ia	R	00,001	C	-0.0056766
			3.5	Rest-SD	0.01919318	R	0.99991308
						Rest-SD	0.01252311

0.143 1.524

1,822 nein

1.944

1.822 nein

1.944

1.822 nein

1.944

1.822 nein

1.944

1.822 nein

1.944

1.822

1.944

0.098 1.363

1.822 nein

1.944

Formular: 2.0

Extremwert Prüfwert

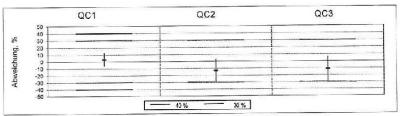
Straggler?

Tabellenwert Ausreißer? 1.944 nein 1.822 nein 1.822 nein

Valistat 2.0 - Protokoll

Seite: Gültig ab:	3 von 7 02.03.2020		nstitution: Methode:	Institut für Reci GC-MS	htsmedizin Hall	e (Saale)				
1.3 LÖSEMITTELKALIBR	RATION									
Signifikanz		1%								
Konzentration		70								
Lõsemittel (xo)			5 5 17 5	75 E.						
Matrix (xm)										
WFR gemessen WFR berechnet							116			
Niederfindungsfunktion		Ausreißer-F-1	est		Linearitäts-Te	est	- Holtz-191	Varianzenhon	ogenitäts-F-	Test
xm = ao * xo + bo ao		Kalibrator Nr.	145		Prüfwert			RSD Grundka	libration	
bo		Prüfwert			Kritischer-We	ert		RSD Wiederfin		
R Rest-SD		Kritischer-We Ausreisser?	ert		Bestanden?			Prüfwert Kritischer-We	rt	
Rest-SD		Ausreisserr						Bestanden?		
	Wiede	rfindungsrate						lkalibration		-
80	13.53.75				1.0 -		Signifikanzı	niveau für VB = 99	%	
80 - 70 - 70 - 70 - 70 - 70 - 70 - 70 -					0.9 -	Makalada	bierende			
70 - 55 - 50 - 50 - 8 45 -					0.8 -	winkein	Dietende			
50 - % 45 -				14.1	0.6					
% 45 - 40 - 35 - 30					0.5 - W 0.4 -					
≥ 30 · 25 ·										
20 15 10					0.3 -					2
5 -			-		0.1 -					
0.00 0.2										
0.00	0 0.40		0.80 1.0	00 1.20	0.0		,	n.e		10
0.00	0 0.40	o.60 ng/mL	0.80 10	00 1.20		c c.			0.8	1.0
0.00	0 0.40		0.80 1.0	00 1.20	0.0	c c.		D.5 semittel	0.8	1.0
	0 0.40		0.80 1.0	00 1.20	0.0	c 0.			0.8	1.0
2. Genauigkelt		ng/mL	de Castral		0.0	C C.			0.8	1.0
2. Genauigkelt	QC-Sollwert	ng/mL 25.1	Einheit:	ng/mL	0.0	c o.			0.8 Tag 9	1.0
2. Genauigkeit 2.1. Level 1		ng/mL	de Castral	ng/mL Tag 4 25.8	0.0 - 0.0 -	Tag 6	Tag 7	Tag 8		-
2. Genauigkeit 2.1. Level 1 1 1	QC-Sollwert Tag 1 28.3 25.5	1 25.1 Tag 2 24.0 27.1	Einheit: Tag 3 25.5 26.6	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 8 23.9 24.0		-
2. Genauigkeit 2.1. Level 1 1 1 3	QC-Sollwert Tag 1 28.3 25.5 26.6	ng/mL 25.1 Tag 2 24.0	Einheit: Tag 3 25.5	ng/mL Tag 4 25.8	0.0 - 0.0 -	Tag 6	Tag 7	Tag 8		-
2. Genauigkeit 2.1. Level 1 1 1 3	QC-Sollwart Tag 1 28.3 25.5 26.6 25.6	1 25.1 Tag 2 24.0 27.1	Einheit: Tag 3 25.5 26.6	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 8 23.9 24.0		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 N 1 5 8 8	QC-Sollwert Tag 1 28.3 25.5 26.6	1 25.1 Tag 2 24.0 27.1	Einheit: Tag 3 25.5 26.6	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 8 23.9 24.0		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 NNS 5 8 8 8 8 7	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.1	1 25.1 Tag 2 24.0 27.1	Einheit: Tag 3 25.5 26.6	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 8 23.9 24.0		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 9 9 8 5 8 8 7 8	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.1	1 25.1 Tag 2 24.0 27.1	Einheit: Tag 3 25.5 26.6	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 8 23.9 24.0		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.1	1 25.1 Tag 2 24.0 27.1	Einheit: Tag 3 25.5 26.6	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 8 23.9 24.0		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 5 8 8 9 10	QC-Sollwert Tag 1 28.3 25.5 26.6 26.6 25.1 26.8	ng/mL 25.1 Tag 2 24.0 27.1 26.2	Einheit: Tag 3 25.5 26.6 26.8	ng/mL Tag 4 25.8 25.6 24.7	7ag 5 26.7 25.2 25.5	Tag 6 25.0 24.9 24.9	Tag 7 26.1 25.8 25.5	Tag 3 23 9 24 0 23 6		-
2. Genauigkeit 2.1. Level 1 1 1 3 9NISSES 8 7	QC-Sollwert Tag 1 28 3 25 5 26 6 25 6 25 1 25 8	ng/mL 25.1 Tag 2 24.0 27.1 26.2	Einheit: Tag 3 26.5 26.6 25.8	ng/ml. Tag 4 25.8 25.6	0.0 - 0.0 -	Tag 6 25.0 24.9	Tag 7 26.1 25.8	Tag 3 23.9 24.0 23.6		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 NS 5 88 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28:3 28:3 26:6 25:5 26:6 25:6 25:1 25:8	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832	Einheit: Tag 3 25.5 25.6 25.8 25.8 25.6333 2.1 0.1527525	ng/mL Tag 4 25.8 25.6 24.7	7ag 5 26.7 25.2 25.5 25.8 28 0.7957254	Tag 6 25.0 24.9 24.9 24.9 24.9 33.3 -0.7 0.057735	Tag 7 26 1 25 8 25 5 25 3 2.8 0.3	Tag 3 23.9 24.0 23.6 23.8333 -5.0 0.2081666		-
2. Genauigkeit 2.1. Level 1 1 1 3 9NDS 5 8 9 10 Mittelwert BIAS, %	QC-Sollwert Tag 1 28:3 25:5 26:6 25:6 25:6 25:1 25:8	25.1 Tag 2 24.0 27.1 26.2	Einheit: Tag 3 25.5 25.6 25.8 25.8	ng/mL Tag 4 25.8 25.6 24.7	Tag 5 26.7 25.2 25.5	Tag 6 25.0 24.9 24.9 24.9333	Tag 7 26 1 25 8 25 5	Tag 3 23.9 24.0 23.6		-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 NS 5 88 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.1 26.8	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832	Einheit: Tag 3 25.5 25.6 25.8 25.8 25.6333 2.1 0.1527525	ng/mL Tag 4 25.8 25.6 24.7	7 Tag 5 26.7 25.2 25.5 26.8 26.9 26.9 27 27 27 27 27 27 27 27 27 27 27 27 27	Tag 6 25.0 24.9 24.9 24.9 24.9 33.3 -0.7 0.057735	Tag 7 26.1 25.8 25.5 25.3 2.8 0.3 1.2	Tag 8 23 9 24.0 23 6 23.8333 -5.0 0.2081666 0.9	Tag 9	-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 5 8 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28:3 25:5 26:6 25:6 25:6 25:8 26:15 4.2 1.1640447 4.5	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832	Einheit: Tag 3 25.5 25.6 25.8 25.8 25.8 25.8 25.8 25.8 25.8	25.3667 1.1 0.5893485 2.3	7 Tag 5 26.7 25.2 25.5 26.8 26.9 26.9 27 27 27 27 27 27 27 27 27 27 27 27 27	Tag 6 25.0 24.9 24.9 24.9 24.9 33.3 -0.7 0.057735	Tag 7 26.1 25.8 25.5 25.8 2.8 0.3 1.2	Tag 8 23 9 24.0 23 6 23.8333 -5.0 0.2081666 0.9		-
2. Genauigkeit 2.1. Level 1 1 1 3 4 5 5 8 8 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.1 26.8 26.15 4.2 1.1640447 4.5 Kenndaten MW (ges.) SD RSD, %	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832	Einheit: Tag 3 25.5 26.6 25.8 25.8 25.8 25.8 25.8 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	25 3667 1.1 0 5899486 2.3 Wiederholpr SD RSD, %	25.8 25.5 25.5 25.5 25.5 25.5 25.5 25.5	Tag 6 25.0 24.9 24.9 24.9 24.9333 -0.7 0.657735 0.2 0.8623204 3.4	7ag 7 26.1 25.8 25.5 25.3 2.8 3.3 1.2	Tag 8 23 9 24.0 23 6 23.8333 -5.0 0.2081666 0.9	Tag 9	-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 NS 5 88 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28:3 25:5 26:6 25:6 25:6 25:1 26:8 26:15 4.2 1.1640447 4.5 Kandaten MW (ges.) SD RSD, % Richtigkeit	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832 5.2	Einheit: Tag 3 25.5 26.6 26.8 25.8 25.8 25.8 25.8 25.8 26.8 26.8 26.8 26.8 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	25.867 24.7 25.867 24.7 25.899495 2.3 Wiederholpr SD RSD, %	7 Tag 5 26.7 25.2 25.5 25.5 28.0 0.7957254 3.1 32/sision	Tag 6 25 0 24.9 24.9 24.9 24.9 0.57735 0.2 0.8623204 3.4	7ag 7 26.1 25.8 25.5 25.3 2.8 3.3 1.2	Tag 8 23 9 24.0 23 6 23.8333 -5.0 0.2081666 0.9	Tag 9	-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 5 8 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.1 26.8 26.15 4.2 1.1640447 4.5 Kenndaten MW (ges.) SD RSD, %	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832	Einheit: Tag 3 25.5 25.6 25.8 25.8 25.8 25.8 25.8 25.8 25.8 25.8	25 3667 1.1 0 5893485 2.3 Wiederholpr SD RSD, %	25 8 28 0.7937254 3.1 \$2ision	Tag 6 25.0 24.9 24.9 24.9 24.9 20.7 0.057735 0.2 0.8623204 3.4 3.8 338 318 318 319 319 319 320 328	7ag 7 26.1 25.8 25.5 25.3 2.8 3.3 1.2	Tag 8 23 9 24.0 23 6 23.8333 -5.0 0.2081666 0.9	Tag 9	-
2. Genauigkeit 2.1. Level 1 1 1 3 9 4 5 8 9 10 Mittelwert BIAS, % SD	QC-Sollwert Tag 1 28.3 25.5 26.6 25.6 25.6 25.8 26.8 26.42 1.1640447 4.5 Kanndaten MW (ges.) SND, % Richtigkeit Abw.	25.1 Tag 2 24.0 27.1 26.2 25.7657 2.7 1.5947832 3.2	Einheit: Tag 3 25.5 26.6 25.8 25.833 2.1 0.1527525 0.6 0K 25.4926 1.0156188 4.0	25.867 24.7 25.867 24.7 25.899495 2.3 Wiederholpr SD RSD, %	26.3 26.7 25.2 25.5 26.7 25.2 26.5 26.7 27.2 26.7 27.2 26.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2	Tag 6 25 0 24.9 24.9 24.9 24.9 0.57735 0.2 0.8623204 3.4	7ag 7 26.1 25.8 25.5 25.3 2.8 3.3 1.2	Tag 8 23 9 24.0 23 6 23.8333 -5.0 0.2081666 0.9	Tag 9	

Formular: 2.0 Valistat 2.0 - Protokoll


Seite:		4 von 7		Institution:	Institut für F	Rechtsmedizir	Halle (Saale)			
Gültig ab:		02.03.2020		Methode:	GC-MS						
2.2. Level 2											
		QC-Sollwert:	90.8	Einheit:	ng/mL						
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	95.4	80.8	83.9	89.6	82.7	81.6	85.0	80.2		
	2	93.5	79.8	86.5	78.8	80.6	82.7	80.5	78.1		
	3	95.5	79.5	81.4	89.0	83.2	82.9	83.8	80.2		
	A	104.0							72.2		
	× 5	84.2									
	MESSUNG	83.1									
	₩ 7										
	8						10000				
	9										
	10										
		V -									
	Mittelwert		80.0333	83.9333	85.8	82.1667	82.4	83.1	79.5		
	BIAS, %	2.0	-11.9	-7.6	-5.5	-9.5	-93	-8.5	-12.4		
	SD		0 6806859	2.5501634	6 0695964	1.3796135	0.7	2.330236	1.2124356		
	RSD, %		0.9	3.0	7.1	1.7	0.8	2.8	1.5		
		W-1994-11141									33
		Kenndaten		OK		präzision		Laborpräz	rision	Mark State Control of Control	
		MW (ges.)		84.6852	SD		4.6680794	SD		6.3017169	
		SD		6.1541546	RSD, %		5.5	RSD, %		7.4	
		RSD, %		7.3							
		Richtigkeit		95%-Interv	rall .	,	iK				
		Abw.		Faktor	raii		38				
		Bias, %	-6.11	ß-Tolerana	20		is 00,094				
		Dias, /s	-6.7	Prüfbereic			is 00,094				
				Fraibeieid	11 (30 %)	00,004 L	15 (00,110				
2.3. Level 3											
Z.J. LEVEL J		QC-Sollwert:	499.0	Einheit:	ng/mL	1					
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	486.0	439.0	451.0	433.0	464.0	533.0	498 0	468.0	1.03.0	109 10
	2	481.0	439.0	448.0	421.0	439.0	498.0	484.0	485.0		
	3	540.0	422.0	457.0	435.0	425.0	480.0	511.0	478.0		
	4	536.0	422.0	407,0	430.0	423.0	400.0	011.0	470.0		
	9N 5	495.0									
	nss 6	440.0									
	WESSUNG 6 7	440.0									
	8									-	
	9										
	10										
										1.00	
	Mittelwert	496.3333	433.3333	452.0	429.6667	442.6667	503.8667	497.6667	477.0		
	BIAS, %	-0.5	-13.2	-9.4	-13.9	-11.3	0.9	-0.3	-4.4		
	SD	37.4094	9.8149546	4.5825757	7.5718778	19.7569	28.9506	13.5031	8.5440037		
	RSD, %	7.5	2.3	1.0	1.8	4.5	5.4	2.7	1.8		
		Kenndaten	_	ок	Wiederhol	orazision		Laborpräz	leion		
		MW (ges.)			SD	Pracision	00.0450	SD	IdioII	00.0040	
		SD (ges.)		469 8519	RSD, %		23.0453			36.3349	
		RSD, %		35.2035 7.5	K30, 76		4.9	RSD, %		7.7	
		1100, 10		1.0							
		Richtigkelt	A	95%-Interv	all	0					
		Abw.	-29.15	Faktor		2.4					
		Bias, %	-5.8	B-Toleranz		00,354 b					
		1		Prüfbereic	1209/1	00,349 b	o 00 640				

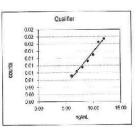
Formular: 2.0

Valistat 2.0 - Protokoll

Seite:	5 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

Zusammenfassung 95%-Intervall

Zusammenfassung	QC1	QC2	QC3
B-Toleranz	00,023 bis 00,028	00,064 bis 00,094	00,354 bis 00,531
%	- 06 bis 13	-30 bis 03	-29 bis 06
Prüfbereich (30%)	00,018 bis 00,033	00,064 bis 00,118	00,349 bis 00,649
Prüfbereich (40%)	00,015 bis 00,035		

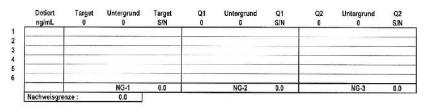

3. Grenzwerte 3.1 Bestimung nach DIN 32645

Ausrelßer-F-Test
Kallbrator Nr. 5 6
Prüfwert 2.23 4.63
Krit.-Wert 99% 21.19 21.19
Ausrelßer nein nein
Linearitäts-Mandel-Test
Prüfwert 5.92 2.62
Krit.-Wert 99% 21.19 21.19
Beslanden? ja ja

Target

0 90
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5
0 1,5

Lineare Kalibration Y = 000,000·X - 000,000


Lineare Kalibration Y = 000,000-X - 000,000

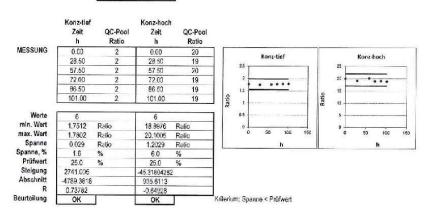
Formular: 2.0

Valistat 2.0 - Protokoll

Seite:	6 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

- 3.2 Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus Signal/Rauschverhältnis

3.2.2 Bestimmungsgrenze


Torguoc	119/11	IL.			
MESSUNG	Konz.	Wiederholpräzision		Blas	
1		Mittelwert		Bias	
2		SD		Bias, %	
3		RSD, %			
4		Krit. Wert, %	20	Krit. Wert, %	20
5				*	
6		Beurteilung		Kriterium: RSD und bias<20%	

4. WIEDERFINDUNG 4.1 WIEDERFINDUNG

	QC-untere		QC-obere	
Konzentration [50.1	ng/mL	499.0	ng/mL
MESSUNG	Lõsemittel Ratio	Matrix Ratio	Lösemittel Ratio	Matrix Ratio
1 [2.8239	2.7674	26.1344	25,4059
2	2.7805	2.5477	25.7708	25.3714
3 4	2.9775	2.8459	27.8678	29.4927
4	2.8321	3.0483	25.4367	25.2951
5	2.8467	2.8656	25.6218	29.2584
6	2.8751	2.7997	25.6443	28.5553
Mittelwert	2.856	2.812	26.0793	27.23146667
SD	0.057	0.162	0.906	2.076
RSD, %	2.3	5.8	3.5	7.6
N (Werte)	6	6	6	6

Wiederfindung,% RSD, %

4.2 STABILITAT

Formular: 2.0

Valistat 2.0 - Protokoll

te:	7 von 7			ı: İnstitut für Re	chtsmedizi	n Halle (Saale	:)		
g ab:	02.03,2020		Methode	: GC-MS					
ATRIXEFFEKTE -	LC/MS/(MS)								
	001		Tan Imi	000		Toolm!			
	QC1	Cutentit	ng/mL Matrix	QC2 Reinsubstanz	Extrakt]ng/mL Matrix			
	Reinsubstanz	Extrakt	Matrix	Remsuostanz	CAUGAE	mauix	,		
MESSUNG									
Mittelwert							1		
SD Varianz Anzahl									
	Wiederfin	dung,% RSD, %							
	Matrixe	effekt,% RSD,%							
	Bei	urteilung							
		Kriterium:	Recovery > SD <=25%	=50%					
			Matrixeffekt						
nerkungen	l se								
									-
				511,					
rmular: 2.0				v	alistat 2.0	- Protokol		Dru	ckdatum: 4/28/2020- 11:4

7.6 Valistat-Validierungsprotokoll: MBDB

1 von 7

Seite:

Validierungsprotokoll

Institution: Institut für Rechtsmedizin Halle (Saale)

itel	Quantitative Bestimmung von Amphetamin und Derivaten im Serum mit GC-MS					
SOP	SAA-T-001					
Angaben zur Methode						
(urzbezeichnung der Methode ggf. Nr. der SOP)	Amphetamin und Derivate im Serum mit GC-MS					
Anwendungsgebiet	Klinische / Forensische Toxikologie					
Arbeitsbereich	10 - 1000 ng/mL					
Analyt	MBDB (Interner Standard: MBDB-d5)					
Veitere bestimmbare Analyte	Quant: Amphetamin, Methamphetamin, MDMA, MDA, MDEA; Semi-Quant: Methylphenidat,					
	Methylon, Methcath., Cathinon, 4-MTA, PMA, Ethylamphetamin, Mephedron, Ephedrin, Ethylon					
Verantwortlichkeiten						
Leiter der Validierung	Fr. Dr. K. Blümke-Anbau					
Beteiligte Mitarbeiter	F. Picht					
Bearbeitungszeitraum	November 2019 - Februar 2020					
Methode gültig erklärt am	02.03.2020					
Methode ungültig erklärt am	entfällt					
Zusammenfassung und Bewertung	Flüssig/Flüssig-Extraktion mit Ethylacetat, eindampfen und PFPA-Derivatisierung					

Inhaltsverzeichnis

- 1. Arbeitsbereich und Kalibrationsmodell
- Target
 1.1.1 Prüfung auf Varianzhomogenitäl (F-Test)
 1.1.2 Prüfung auf Linearitäl (Mandel-Test)
- 1.2. Qualifier
 1.2.1 Prüfung auf Varianzhomogenität (F-Test)
 1.2.2 Prüfung auf Linearität (Mandel-Test)

- Lösemittelkalibration
 1.3.1 Prüfung auf Ausreißer (F-Test)
 1.3.2 Prüfung auf Linearität (Mandel-Test)
 1.3.3 Prüfung auf Varianzhomogenität (F-Test)

- Genauigkeit
 Level 1
 L1.1 Wiederholpräzision
 L1.2 Laborpräzision
 Richtigkeit
 Annument (Annument)

 - 2.1.4 95%-Intervall (40% / 30%)
- 2.2. Level 2 2.2.1 Wiederholpräzision 2.2.2 Laborpräzision

 - 2.2.3 Richtigkeit 2.2.4 95%-Intervall (30%)
- 2.3. Level 3

 - 3. Level 3
 2.3.1 Wiederholpräzision
 2.3.2 Laborpräzision
 2.3.3 Richtigkeit
 2.3.4 95%-Intervall (30%)
- 2.4 Zusammenfassung 95%-Intervall

- 3. Grenzwerte
- 3.1. Bestimmung nach DIN 32645
 3.1.1 Bestimmung der Nachweisgrenze (schwaches lon)
 3.1.2 Bestimmung der Bestimmungsgrenze (intensives lon)

- Bestimmung mittels Alternativmethode
 3.2.1 Nachweisgrenze aus dem Signal/Rauschverhältnis
 3.2.2 Bestimmungsgrenze aus der Wiederholpräzision (20%)
- 4. Wiederfindung
- Bestimmung der Wiederfindung
 1.1 Bestimmung der Wiederfindung für hohe Konzentration
 4.1.2 Bestimmung der Wiederfindung für niedrige Konzentration

- 4.2.1 Bestimmung der Stabilität bei hoher Konzentration
 4.2.2 Bestimmung der Stabilität bei niedriger Konzentration
- 4.3 Matrixeffekte

 - 4.3.1 Überprüfung der Matrixeffekte bei hoher Konzentration
 4.3.2 Bestimmung der Matrixeffekte bei niedriger Konzentration

Druckdatum: 4/28/2020- 11:45 AM

Formular: 2.0

Valistat 2.0 - Protokoll

Seite:		2 von 7		Institutio	n: Institut für	Rechtsmedizir	Halle (Saa	(a)			
Gültig ab:		02.03.202			e: GC-MS	(ACCHOINGUE)	i i iane toda	ie)			
Guitig ab.		02.03.202	.0	Weulou	e. Go-Ivio				-		
1. Arbeitsbereich	und Kali	brationsmod							2 =		
1.1 TARGET		V.,	Messsignal:	m/z = 218			Messgrösse:	Ratio		Einheit:	ng/mL
Konz	entration	-	15.0	20.0	50.0	70.0	150.0	300.0	600.0	800.0	1000.0
	1	0.415	0.681	0.889	2.298	3.237	6.886	14.3526	29.8107	43,3588	56.2105
9	2	0.465	0.695	0.913	2.289	3.225	7.031	15.0767	31.759	40.0277	54.8177
S	3	0.494	0.66	0.854	2.322	3.206	6.876	15.2048	32.1206	42,4839	53 5947
MESSUNG	4	0.532	0.685	0.913	2.272	3.26	7.355	14.8558	31.7148	41.9927	55.8766
-	5	0.52	0.695 0.658	0.918	2.305 2.298	3.344 3.303	6.614 6.708	15.2261 15.8657	31.4564 29.3736	41.5045 45.8223	51.911 51.510
								1		10.00.00	01.010
M	ittelwert	0.488	0.679	0.886	2.297	3.263	6.912	15.09861667		42.53165	53.986
	SD	0.0423	0.0165	0.0372	0.0166	0.0519	0.2617	0.4934	1.149	1.956	1.99
	Varianz	0.0018	0.0003	0.0014	0.0003	0.0027	0.0685	0.2434	1.3203	3.826	3.9599
Ausreisser-Test n	Werte	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	5.0	6.0
	rach Grui remwert	0.415	0.658	0.827	2.322	3.344	7.355	15.8657	1 20 2776	45 0000	E4 E40
	rüfwert	1.712	1.255	1.571	1.5	1.565	1.693	1.555	29.3736 1.45	45 8223 1.682	51.5100 1.244
Signifikanz 95%		- ATT IN	CEUC	1	1 10	1.000	1.050	1.000	1.40	1.002	1.244
	llenwert	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822	1.822
	ggler?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Signifikanz 99%					V-0160				o = //		
	llenwert	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944	1.944
Aus	sreißer?	nein	nein	nein	nein	nein	nein	nein	nein	nein	nein
Cochran-Test (Va Signifikanz 99%)	rianzenh		Mandel-F-Ter (Signifikanz 9		ität	Lineare Kalib Y = a•x + b	rationsfunkti	on	Quadratische Y = A•x² + B•x		unktion
Prüfwert		0.4202	Prüfwert	1771/0	-6.99	a	and the state of t	000,000	A		0.000005
Tabellenwert		0.423	Tabellenw		12.24	b		-000,001	В		0.048676
Bestanden?		ja	Bestander	n?	ja	R		00,001	C		-0.134565
						Rest-SD		0.00	R Rest-SD		0.9999669
						1			IX691-0D		U. 1020016
1.2 QUALIFIER			Messsignal:	m/z = 353			Messgrösse:	Ratio		Einheit:	ng/mL
Vana		100	T 450	70.0	F0.0	70.0	150.0	1 200.0		200.0	40000
Konz	entration 1	0.021	15.0 0.034	20.0	50.0	70.0 0.160	150.0 0.339	300.0	600.0	800.0	1000.0
	2	0.021	0.034	0.044	0.113	0.157	0.339	0.708	1.418 1.544	2.124 1.960	2.587 2.683
S.	3	0.023	0.032	0.043	0.114	0.155	0.333	0.731	1.553	2.042	2.608
AESSUNG	4	0.026	0.033	0.043	0.110	0.157	0.363	0.709	1.524	2.042	2.610
밀	5	0.026	0.033	0.044	0.111	0.164	0.315	0.726	1.506	1.986	2.419
	6	0.024	0.032	0.039	0.109	0.158	0.318	0.752	1.461	2.217	2.489
Mi	ttelwert	0.024	0.033	0.043	0.111	0.158	0.335	0.727	1.501	2.06	2.566
300						0				0.095	0.095
	SD	0.002	0.001	0.002	0.002	0.003	0 017	0.017	0 052		
	SD Varianz	0.002	0.001	0.002	0.002	0.0	0.017	0.0	0.003	0.009	0.009
	SD Varianz Werte	0.002 0.0 6	0.001 0.0 6	0.002 0.0 6	0.002 0.0 6	6	0.017 0.0 6	6	0.003 6	0.009 6	
Extr	SD Varianz Werte emwert	0.002 0.0 6	0.001 0.0 6	0.002 0.0 6	0.002 0.0 6	0.0	0.017 0.0 6	0.0 6 0.752	0.003 6 1.418	0.009 6 2.217	0.009 6 2.419
Extr	SD Varianz Werte	0.002 0.0 6	0.001 0.0 6	0.002 0.0 6	0.002 0.0 6	6	0.017 0.0 6	6	0.003 6	0.009 6	0.009 6
Extr P	SD Varianz Werte emwert rüfwert	0.002 0.0 6 0.021 1.800	0.001 0.0 6 0.032 1.406	0.002 0.0 6 0.039 1.811	0.002 0.0 6 0.114 1.519	0.0 6 0.164 1.789	0.017 0.0 6 0.363 1.600	0.0 6 0.752 1.442	0.003 6 1.418 1.597	0.009 6 2.217 1.643	0.009 6 2.419 1.543
Extr P Tabel	SD Varianz Werte emwert rüfwert	0.002 0.0 6 0.021 1.800	0.001 0.0 6 0.032 1.406	0.002 0.0 6 0.039 1.811	0.002 0.0 6 0.114 1.519	0.0 6 0.164 1.789	0.017 0.0 6 0.363 1.800	0.0 6 0.752 1.442	0.003 6 1.418 1.597	0.009 6 2.217 1.643 1.822	0.009 6 2.419 1.543
Extr P Tabel	SD Varianz Werte emwert rüfwert	0.002 0.0 6 0.021 1.800	0.001 0.0 6 0.032 1.406	0.002 0.0 6 0.039 1.811	0.002 0.0 6 0.114 1.519	0.0 6 0.164 1.789	0.017 0.0 6 0.363 1.600	0.0 6 0.752 1.442	0.003 6 1.418 1.597	0.009 6 2.217 1.643	0.009 6 2.419 1.543
Extr P Tabel St Tabel	SD Varianz Werte emwert rüfwert lenwert raggler?	0.002 0.0 6 0.021 1.800	0.001 0.0 6 0.032 1.406	0.002 0.0 6 0.039 1.811	0.002 0.0 6 0.114 1.519	0.0 6 0.164 1.789	0.017 0.0 6 0.363 1.800	0.0 6 0.752 1.442	0.003 6 1.418 1.597	0.009 6 2.217 1.643 1.822	0.009 6 2.419 1.543
Extr P Tabel St Tabel	SD Varianz Werte emwert rüfwert lenwert raggler?	0.002 0.0 6 0.021 1.800 1.822 nein	0.001 0.0 6 0.032 1.406	0.002 0.0 6 0.039 1.811 1.822 nein	0.002 0.0 6 0.114 1.519 1.822 nein	0.0 6 0.164 1.789 1.822 nein	0.017 0.0 6 0.363 1.800 1.822 nein	0.0 6 0.752 1.442 1.822 nein	0.003 6 1.418 1.597 1.822 nein	0.009 6 2.217 1.643 1.822 nein	0.009 6 2.419 1.543 1.822 nein
Extr P Tabel St Tabel Aus Cochran-Test (Var	SD Varianz Werte emwert rüfwert lenwert raggler?	0.002 0.0 6 0.021 1.800 1.822 nein 1.944 nein	0.001 0.0 6 0.032 1.406 1.822 nein 1.944 nein	0.002 0.0 6 0.039 1.811 1.822 nein 1.944 nein	0.002 0.0 6 0.114 1.519 1.822 nein	0.0 6 0.164 1.789 1.822 nein 1.944 nein	0.017 0.0 6 0.363 1.800 1.822 nein 1.944 nein	0.0 6 0.752 1.442 1.822 nein 1.944 nein	0.003 6 1.418 1.597 1.822 nein 1.944 nein	0.009 6 2.217 1.643 1.822 nein 1.944 nein	0.009 6 2.419 1.543 1.822 nein 1.944 nein
Extr P Tabel St Tabel Aus Cochran-Test (Var	SD Varianz Werte emwert rüfwert lenwert raggler?	0.002 0.0 8 0.021 1.800 1.822 nein 1.944 nein	0.001 0.0 6 0.032 1.406 1.822 nein 1.944 nain Mandel-F-Tes (Signifikanz 96	0.002 0.0 6 0.039 1.811 1.822 nein 1.944 nein	0.002 0.0 6 0.114 1.519 1.822 nein 1.944 nein	0.0 6 0.164 1.789 1.822 nein 1.944 nein Lineare Kalibi Y = a·x + b	0.017 0.0 6 0.363 1.800 1.822 nein 1.944 nein	0.0 6 0.752 1.442 1.822 nein 1.944 nein	0.003 6 1.418 1.597 1.822 nein	0.009 6 2.217 1.643 1.822 nein 1.944 nein	0.009 6 2.419 1.543 1.822 nein 1.944 nein
Extr P Tabel St Tabel Aus Cochran-Test (Var Signifikanz 99%)	SD Varianz Werte emwert rüfwert lenwert raggler?	0.002 0.0 6 0.021 1.800 1.822 nein 1.944 nein	0.001 0.0 6 0.032 1.406 1.822 nein 1.944 nein	0.002 0.0 6 0.039 1.811 1.822 nein 1.944 nein	0.002 0.0 6 0.114 1.519 1.822 nein 1.944 nein	0.0 6 0.164 1.789 1.822 nein 1.944 nein Lineare Kalibi Y = a*x + b	0.017 0.0 6 0.363 1.800 1.822 nein 1.944 nein	0.0 6 0.752 1.442 1.822 nein 1.944 nein	0.003 6 1.418 1.597 1.822 rein 1.944 rein Quadratische I Y = Avx² + B·x	0.009 6 2.217 1.643 1.822 nein 1.944 nein	0.009 6 2.419 1.543 1.822 nein 1.944 nein unktion
Extr P Tabel St Tabel Aus Cochran-Test (Var Signifikanz 99%) Prüfwert	SD Varianz Werte emwert rüfwert lenwert raggler?	0.002 0.0 8 0.021 1.800 1.822 nein 1.944 nein	0.001 0.0 6 0.032 1.406 1.822 nein 1.944 nein Mandel-F-Tes (Signifikanz 98) Prüfwert	0.002 0.0 6 0.039 1.811 1.822 nein 1.944 nein	0.002 0.0 6 0.114 1.519 1.822 nein 1.944 nein	0.0 6 0.164 1.789 1.822 nein 1.944 nein Lineare Kalibi Y = a·x + b	0.017 0.0 6 0.363 1.800 1.822 nein 1.944 nein	0.0 6 0.752 1.442 1.822 nein 1.944 nein	0.003 6 1.418 1.597 1.822 nein 1.944 nein Quadratische I Y = Ax² + B·x	0.009 6 2.217 1.643 1.822 nein 1.944 nein	0.009 6 2.419 1.543 1.822 nein 1.944 nein

0.00000017 0.00241848 -0.00971173 0.9999054 0.01475045

Valistat 2.0 - Protokoll

Formular: 2.0

0.00257704 000,000 00,001 0.02061733

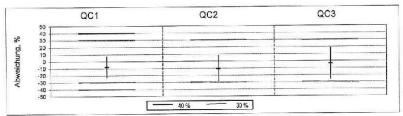
A B C R Rest-SD

Druckdatum: 4/28/2020- 11:45 AM

86

leite:	3 von 7 02.03.2020		Institution: Methode:	Institut für Red GC-MS	chismedizin Ha	ile (Saaie)				
ültig ab:	02.03.2020		Methode:	OCHIG		-				
1.3 LÖSEMITTELKAL	IBRATION									
Signifika	nz]%								
Konzentratio		1.5					1998-11			
Lösemittel (x										
Matrix (x	n)									
WFR gemesse	n									1971
WFR berechn	et									
Viederfindungsfunktio	n	Ausreißer-	F-Test		Linearitäts-T	est		Varianzenhor	nogenitäts-F-	Test
m = ao * xo + bo	*	100000000000000000000000000000000000000						505.0 "	m- 10	
ao bo		Kalibrator Prüfwert	Nr.		Prüfwert Kritischer-W	ort		RSD Grundka RSD Wiederfi		
00 R		Kritischer-	Wert		Bestanden?			Prüfwert	700 Procession - 0	
Rest-SD		Ausreisse						Kritischer-We Bestanden?	ert	
			-					Bestanden		
	Wiede	rfindungsra	ite				Lösemitte	elkalibration		
80 T					1.0		Signifikanzı	niveau für VB = 99	#7%	
80 75 70 70 70 70 70 70 70 70 70 70 70 70 70					0.9					
60					0.8	Winkelh	albierende			
\$0 - 45 -					0.6					
% 45 - 40 - 35 - 30 -					¥ 0.5 ≥ 0.4					
≥ 30 - 25 -										
15				- 1	0.3					
5										
		- 1	-		0.1	4				
0.00	0.20 0.40	0.60	0.80 1	.00 1.20	0,0			. 05	0.8	1.0
0.0C	C 2C 0.40	0 60 ng/mL	0.80 1	00 1.20	0,0	0.0 0			8.0	1.0
0.00	C.2C 0.40		0.80 1	.00 1.20	0,0	20 0		t 0.6 semittel	8.0	1.0
	C.2C 0.40		0.80 1	.00 1.20	0,0	0.0 0			8.0	1.0
2. Genauigkelt	3002901	ng/mL			0,0	- 0 0			0.8	1.0
2. Genauigkelt	QC-Sollwert	ng/mL	Einhe i t:	ng/mL	0.0		Lö		0.8 Tag 9	1.0
2. Genaulgkeit	QC-Sollwert Tag 1	ng/mL = 25.1 Tag 2			0,0	Tag 6	Tag 7	Tag 8		
2. Genauigkelt 2.1. Level 1	QC-Sollwert Tag 1 26.6 24.6	ng/mL 25.1 Tag 2 24.6 25.6	Einheit: Tag 3 25.7 26 0	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1		
t. Genauigkelt 1.1. Level 1	QC-Sollwert Tag 1 26.6 24.6 3 25.0	ng/mL 25.1 Tag 2 24.6	Einheit: Tag 3 25.7	rg/mL Tag 4 23.7	0.c o.c o.c o.c o.c o.c o.c o.c o.c o.c o	Tag 6 23.1	Tag 7	Tag 8		
t. Genauigkelt 2.1. Level 1	QC-Sollwert Tag 1 26.6 1 24.6 3 26.0 4 25.4	ng/mL 25.1 Tag 2 24.6 25.6	Einheit: Tag 3 25.7 26 0	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1		
. Genauigkelt 2.1. Level 1	QC-Sollwert Tag 1 1 26.6 1 24.6 3 26.0 25.4 5 25.5	ng/mL 25.1 Tag 2 24.6 25.6	Einheit: Tag 3 25.7 26 0	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1		
. Genauigkeit .1. Level 1	QC-Sollwert Tag 1 26.6 24.6 3 26.0 4 25.4 5 25.0 7	ng/mL 25.1 Tag 2 24.6 25.6	Einheit: Tag 3 25.7 26 0	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1		
c. Genauigkeit c.1. Level 1	QC-Sollwert Tag 1 26.6 22.5 8 26.0 4 25.4 25.0 5 25.2 7	ng/mL 25.1 Tag 2 24.6 25.6	Einheit: Tag 3 25.7 26 0	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1		
2. Genauigkelt 2.1. Level 1	QC-Sollwert Tag 1 26.6 22.5 8 26.0 4 25.4 25.0 5 25.2 7	ng/mL 25.1 Tag 2 24.6 25.6	Einheit: Tag 3 25.7 26 0	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1		
2. Genauigkeit 2.1. Level 1	QC-Sollwert Tag 1 1 26.6 24.6 25.4 25.4 25.7 25.0 25.0	ng/mL : 25.1 Tag 2 24.6 25.6 26.6	Einheit: Tag 3 25.7 26.0 25.4	rg/mL Tag 4 23.7 22.9	Tag 5 24.4 22.7	Tag 6 23.1 22.8	Tag 7 23.3 23.2	Tag 8 22.3 22.1 21.5		
S. Genaulgkeit 2.1. Level 1 SWINSS SWINSS WINSS	QC-Sollwert Tag 1 26.6 24.6 3 25.0 4 25.4 25.4 25.2 7 8 9 0 vert 254667	ng/mL 25.1 Tag 2 24.6 25.6 26.6 26.6 2.0	Einheit: Tag 3 25.7 26.0 25.4	rg/mL Tag 4 23 7 22 9 22 9 23 1667 -7.7	7ag 5 24.4 22.7 23.2	Tag 6 23.1 22.8 22.6	Tag 7 23.3 23.2 23.1	Tag 8 22.3 22.1 21.5		
2. Genauigkelt 2.1. Level 1 SONOS SO	QC-Sollwert Tag 1 Tag 1 26.6 24.6 25.4 25.4 5 25.0 25.2 3 3 25.2 1.5 SSD 0.7229569	25.1 Tag 2 24.8 25.6 26.6 26.6 2.0 1.0	Einheit: Tag 3 25.7 26.0 25.4	rg/mL Tag 4 23.7 22.9 22.9 23.1667 -7.7 0.4618902	7 Tag 5 24.4 22.7 23.2 23.4333 -6.6 0.8736895	Tag 6 23.1 22.8 22.6 22.8333 49.0 0.2516611	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332		
2. Genaulgkeit 2.1. Level 1 SUNDSSEE Mittelw BIAS	QC-Sollwert Tag 1 1 26.6 1 24.6 2 25.0 3 25.2 3 25.2 4 25.4 5 25.0 5 25.0 7 3 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ng/mL 25.1 Tag 2 24.6 25.6 26.6 26.6 2.0	Einheit: Tag 3 25.7 26.0 25.4 26.7 2.4 0.3 1.2	rg/mL Tag 4 23.7 22.9 22.9 22.9 23.1667 -7.7 0.4618802 2.0	23.4333 -6.6 0.8736895 3.7	Tag 6 23.1 22.8 22.6	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9		
2. Genauigkelt 2.1. Level 1 SONNS SO	QC-Sollwert Tag 1 1 26.6 1 24.6 3 25.0 3 25.2 5 25.2 7 3 9 0 0.722969 2.8 Kenndaten	25.1 Tag 2 24.8 25.6 26.6 26.6 2.0 1.0	Einheit: Tag 3 25.7 26.0 25.4 25.4 26.7 2.4 0.3 1.2 OK	rg/mL Tag 4 23.7 22.9 22.9 23.1667 -7.7 0.4618902 2.0	23.4333 -6.6 0.8736895 3.7	Tag 6 23.1 22.8 22.6 22.8333 -9 0 0.2516511 1.1	Tag 7 23.3 23.2 23.1 23.2 23.1 23.2 24.1 25.2 26.0 27.6 27.6 27.6 27.6 27.6 27.6 28.1 28.2 28.2 29.1 29.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9	Tag 9	
2. Genauigkelt 2.1. Level 1 SONNS SO	QC-Sollwert Tag 1 26.6 24.6 3 26.0 45.25.0 5 25.0 7 3 9 0 1.5 0.7229599 2.8 Kenndaten MW (ges.)	25.1 Tag 2 24.8 25.6 26.6 26.6 2.0 1.0	Einheit: Tag 3 25.7 26 0 25.4 25.7 2.4 0.3 1.2 OK 24.0926	23.7667 -7.7 0.4618902 2.0 Wiederholpi	23.4333 -6.6 0.8736895 3.7	23.1 22.8 22.8 22.6 22.8 22.8 1.1 22.8333 -9.0 0.2516511 1.1	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9		
2. Genauigkelt 2.1. Level 1 SONNS SO	QC-Sollwert Tag 1 1 26.6 1 24.6 3 25.0 3 25.2 5 25.2 7 3 9 0 0.722969 2.8 Kenndaten	25.1 Tag 2 24.8 25.6 26.6 26.6 2.0 1.0	Einheit: Tag 3 25.7 26.0 25.4 25.4 26.7 2.4 0.3 1.2 OK	rg/mL Tag 4 23.7 22.9 22.9 23.1667 -7.7 0.4618902 2.0	23.4333 -6.6 0.8736895 3.7	Tag 6 23.1 22.8 22.6 22.8333 -9 0 0.2516511 1.1	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4 Laborpřázie	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9	Tag 9	
2. Genauigkelt 2.1. Level 1 SONING SERVICE Mittelw BIAS	QC-Sollwert Tag 1 26.6 24.6 3 26.0 25.4 5 25.0 3 25.2 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.1 Tag 2 24.8 25.6 26.6 26.6 2.0 1.0	Einheit: Tag 3 26.7 26.0 25.4 26.7 2.4 0.3 1.2 OK 24.0926 1.4899473 6.2	23.1667 -7.7 0.4618902 2.0 Wiederholpi SD RSD, %	23.4333 -65 0.8736995 3.7	22.8333 -9 0 0.2516511 1.1 0.6172946 2.6	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4 Laborpřázie	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9	Tag 9	
2. Genauigkelt 2.1. Level 1 SONING SERVICE Mittelw BIAS	QC-Sollwert Tag 1 26.6 24.6 3 26.0 25.4 5 25.0 3 25.2 7 8 9 0 15 25.9 7 8 9 0 17 229569 2.8 Kenndaten MW (ges.) SD RSD, %	25.1 Tag 2 24.6 25.6 26.6 25.6 2.0 1.0 3.9	Einheit: Tag 3 25.7 28.0 25.4 25.7 2.4 0.3 1.2 OK 24.0926 1.4899473	23.1667 -7.7 0.4618902 2.0 Wiederholpi SD RSD, %	23.4333 -6.5 0.8736895 3.7	22.8333 -9 0 0.2516611 1.1 0.6172946	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4 Laborpřázie	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9	Tag 9	
2. Genauigkelt 2.1. Level 1 SONING SERVICE Mittelw BIAS	QC-Sollwert Tag 1 26.6 24.6 3 26.0 25.4 5 25.0 3 25.2 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.1 Tag 2 24.8 25.6 26.6 26.6 2.0 1.0	Einheit: Tag 3 26.7 26.0 25.4 25.7 2.4 0.3 1.2 OK 24.0926 1.4899473 6.2	23.1667 -7.7 0.4618802 2.0 Wiederholpi SD RSD, %	23.4333 -65 0.8736955 3.7	22.8333 22.6 22.8333 -9 0 0.2516511 1.1 0.6172946 2.6 OK	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4 Laborpřázie	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9	Tag 9	
2. Genaulgkelt 2.1. Level 1 SONING SO	QC-Sollwert Tag 1 1 26.6 24.6 25.4 25.4 5 25.0 25.2 7 8 9 0 0 1.5 0.7229569 2.8 Kenndalen MW (ges.) SD RSD, %	25.1 Tag 2 24.8 25.6 26.6 26.6 27.0 1.0 3.9	Einheit: Tag 3 25.7 26 0 25 4 26.7 2.4 0.3 1.2 OK 24.0926 1.4899473 6.2 95%-Intlefaktor B-Toffer Prüfber	23.7 22.9 22.9 22.9 23.1667 -7.7 0.4618902 2.0 Wiederholpi SD RSD, %	23.4333 -6.6 0.8736995 3.7 razision	Tag 6 23.1 22.8 22.8 22.6 22.8333 49.0 0.2516511 1.1 0.6172946 2.6 OK	Tag 7 23.3 23.2 23.1 23.2 -7.6 0.1 0.4 Laborpřázie	Tag 8 22.3 22.1 21.5 21.9667 -12.5 0.4163332 1.9	Tag 9	

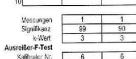
Formular: 2.0 Valistat 2.0 - Protokoll Druckdatum: 4/28/2020- 11:45 AM


Seite: Sültig ab:		4 von 7 02.03.2020		Institution: Methode:		echtsmedizir	Halle (Saale))			
2. Level 2											
Z. COVOLZ		QC-Sollwert: [60.5	Einheit:	ng/mL]	T 0	T 7	T 0	T 0	T 40
	1926 - 3	Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1	63.5	57.6	61.5	57.3	53.1	55.7	55.7	55.5		
	2	63.8	56.1	61.2	50.3	54.0	56.2	52.2	52.6		
	, 4	64.0	53.1	58.5	56.4	53.9	54.3	55.8	53.9		
	SNC 5	71.4 59.7									
	nss 6	58.3									
	MESSUNG 6 7	30.0							7		
	- 8				***************************************					77-51811	
	9	-									
	10										
	Mittelwert	63.45	56.6	60.4	54,6667	53 6667	55.4	54 5667	54.0		
	BIAS, %	4.9	-8.1	-0.2	-9.6	-11.3	-8.4	-9.8	-10.7	illi -	
	SD	4.5654135	2.2912878	1.6522712	3.8083242	0.4932883	0.9848858	2.0502032	1.4525839	Million .	
	RSD, %	7.2	4.1	2.7	7.0	0.9	1.8	3.8	2.7		
		Kenndaten		ok	Wiederhol	nräzielon		Laborpräz	Islan		
		MW (ges.)		57.2444	SD	prazieron	2 9400591	SD	Islon	4.7742889	
		SD		4.6198013	RSD, %		5.1	RSD, %		8.3	
		RSD, %		8.1	1100111		J. 1	1,000,00		0.0	
		Richtigkeit		95%-Interv	rall	,	ĸ	1	+		
		Abw.	-3.26	Faktor	all		433				
		Bias, %	-5.4	ß-Toleran:			is 00,066				
		5,40, 10	-0.44	Prüfbereid			is 00,079				
								ı			
3. Level 3		QC-Sollwert:	501.C	Einheit:	ng/mL	í					
		Tag 1	Tag 2	Tag 3	Tag 4	Tag 5	Tag 6	Tag 7	Tag 8	Tag 9	Tag 10
	1			469.0		460.0			465 D	1 ag s	Tag IV
	2	548.0 549.0	467.0 445.0	500.0	467.0 449.0	441.0	541.0 508.0	498.0 491.0	478.0		
	3	582.0	445.0	554.0	439.0	423.0	488.0	491.0	479.0		
		572.0	440.0	50T.U	950.0	720.0	400.0	TOLIN	712.0		
	E 5	553.0									
	SS 6	461.0									
	8				The Carrier	154.151					
	9			4	-				79		
	Mittelwert	P11 2****	450,0000	*******	194 ****	111 ****	F40	400 5555	47.5		
	BIAS, %	544.1667	453.3333	507.6667	451.6667	441.3333	512 3333	493.6667	474.0		
	SD SD	8.6 42 9857	-9.5 11.9304	1.3 43.0155	-9.8 14.1892	-11.9 18.5023	2.3 26.7644	-1.5 3.7859389	-5.4 7.8102497		
	RSD, %	7.9	2.6	8.5	3.1	4.2	5.2	0.8	1.6		

		Kenndaten		OK	Wiederhol	präzision		Laborpräz	ision		
		MW (ges.)		491.3704	SD		28.9235	SD		46.2935	
		SD RSD, %		44.8229 9.1	RSD, %		5.9	RSD, %		9.4	
	9				KAV.			e			
		Richtigkeit		95%-Interv	all		K				
	ì	Abw.	-9.63	Faktor			33				
		Bias, %	-1.9	B-Toleranz			is 00,595				
				Prüfbereic	11 (30%)	00,451 0	is 00,651				

Formular: 2.0

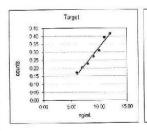
Valistat 2.0 - Protokoll


Seite:	5 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)
Gültig ab:	02.03.2020	Methode: GC-MS

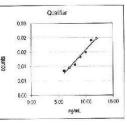
Zusammenfassung 95%-Intervall

Zusammenfassung	QC1	QC2	QC3
B-Toleranz	00,019 bis 00,027	00,043 bis 00,066	00,369 bis 00,595
%	- 23 bis 08	-30 bis 09	-26 bis 19
Prüfbereich (30%)	00,018 bis 00,033	00,042 bis 00,079	00,351 bis 00,651
Prüfbereich (40%)	00,015 bis 00,035		La teal occurrence

3. Grenzwerte 3.1 Bestimung nach DIN 32645



> a 0.04275 0.002032 b -0.099379 -0.004618 R 0.9862 0.9807 Rest-SD 0.017 0.001


 Nachweisgrenze
 2 890
 1.397

 Erfassungsgrenze
 5 381
 2.794

 Bestimmungsgrenze
 5 216
 3.597

Lineare Kalibration Y = 000,000 X - 000,000

Lineare Kalibration Y = 000,000-X - 000,000

Formular: 2.0

Valistat 2.0 - Protokoll

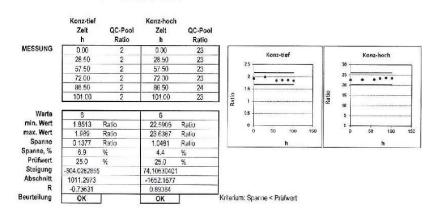
Seite:	6 von 7	Institution: Institut für Rechtsmedizin Halle (Saale)	
Gültig ab:	02.03.2020	Methode: GC-MS	

3.2 Bestimmung mittels Alternativmethode 3.2.1 Nachweisgrenze aus Signal/Rauschverhältnis

Dotiert ng/mL	Target 0	Untergrund 0	Target S/N	Q1 0	Untergrund 0	Q1 S/N	Q2 0	Untergrund 0	Q2 S/N
-									
		NG-1	0.0		NG-2	0.0		NG-3	0.0
Nachweisgren	ze:	0.0							

3.2.2 Bestimmungsgrenze

Vorgabe	ng/mL				
MESSUNG	Konz.	Wiederholpräzision		Bias	
1		Mittelwert		Bias	
2		SD		Bias, %	
3		RSD, %		*	
4		Krit. Wert, %	20	Krit. Wert, %	20
5					
6		Beurteilung		Krilerium: RSD und blas<20%	

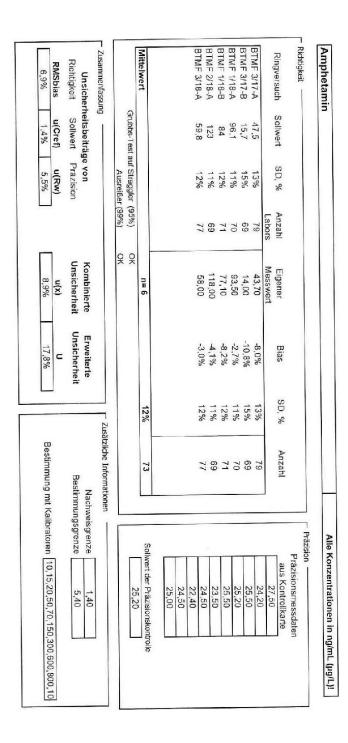

4. WIEDERFINDUNG 4.1 WIEDERFINDUNG

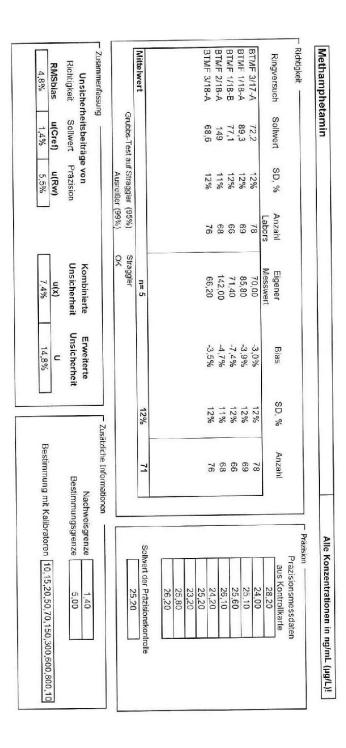
	QC-untere		QC-obere	
Konzentration	50	ng/mL	501.0	ng/mL
MESSUNG	Lösemittel Ratio	Matrix Ratio	Lösemittel Ratio	Matrix Ratio
1 [1.9982	2.0364	20.1072	19,4453
2 3	2.0453	1.8928	19.6892	19.1533
3	2.0556	2.0428	19.0403	19.8925
4	2.1151	2.0437	20.2037	19.7539
5	2.1007	2.1511	19.7856	20.7178
6	2.1437	2.0387	19 3685	20.3855
Mittelwert	2.076	2 034	19 69908333	19.89138333
SD	0.053	0.082	0.441	0.581
RSD, %	2.6	4.0	2.2	2.9
N (Werte)	6	6	6	6

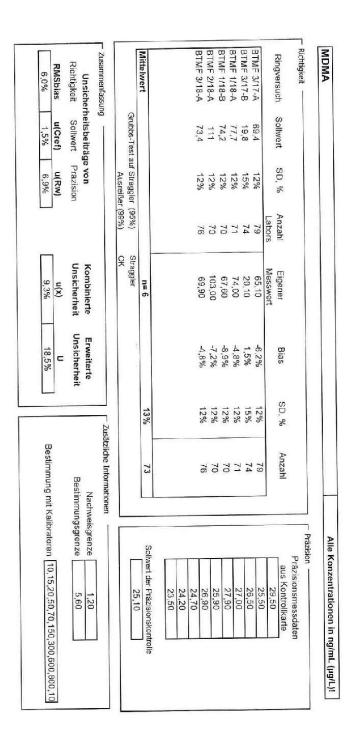
98.0 3.9

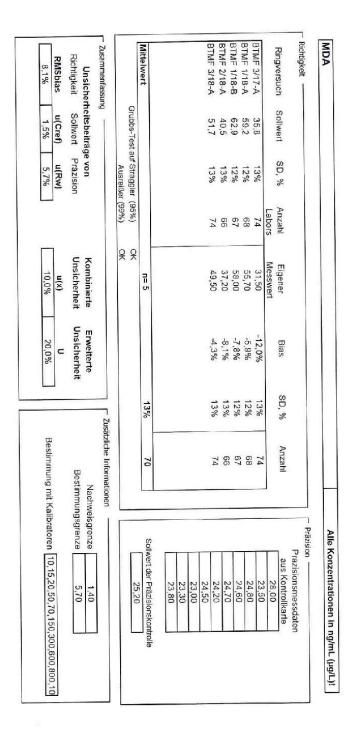
Wiederfindung,% RSD, %

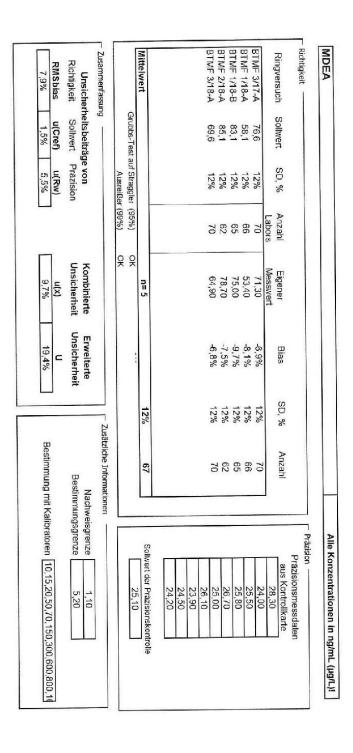
4.2 STABILITAT


Formular: 2.0


Valistat 2.0 - Protokoll


	7 von 7		ution: Institut für Re	Citionicossit Francia foo	ile)	
ig ab:	02.03.2020	Met	hode: GC-MS			
MATRIXEFFEKTE - I	.C/MS/(MS)					
	QC1	ng/mL	QC2	ng/mL		
	Reinsubstanz	Extrakt Ma	atrix Reinsubstanz	Extrakt Matrix		
MESSUNG				-	7	
Mittelwert						
SD						
Varianz Anzahl						
Aireill	18 Ender					
	Wiederfinds R	ung,% SD, %				
	Matrixef	200				
	R	SD, %		İ		
	Beur	rteilung				
	Kr	riterium: Reco	very >=50%			
		SD	<=25%			
		Main	xeffekte: 75-125%			
nmerkungen						
				Valistat 2.0 - Protok		Druckdatum: 4/28/2020-1


7.7 Messunsicherheit


Ansprechpartner für Rückfragen Fr. Dr. K. Blümke-Anbau Telefon 0345 557 1597	ür Rückfragen Telefon	kfragen Fr. Dr. K. Blüml Telefon 0345 557 1597	mke-Anbau 97		
Erweiterungsfaktor für die Erweiterte Unsicherheit U (2 = 95,5%, 3= 99,7%)	für die Erweit	erte Unsicher	rheit U (2 = 95	,5%, 3= 99,7%	3
	Ur Richtigkeit RMShias	Unsicherheitsbeitrag sit Sollwertes F s u(Cref)	itrag Präzision u(Rw)	Kombinierte Erweiterte Unsicherheit Unsicherheit u(x) U	Erweiterte Unsicherhe U
Amphetamin	6.9%	1,4%	5,5%	8,9%	17,8%
Methamphetamin	4.8%	1,4%	5,5%	7,4%	14,8%
MDMA	6,0%	1,5%	6,9%	9,3%	18,5%
MDA	8,1%	1,5%	5,7%	10,0%	20,0%
MDEA	7,9%	1,5%	5,5%	9,7%	19,4%
MBDB	7,2%	4,6%	5,2%	10,0%	20,0%
0)	-	1	1	
0		-	1		1

