
Describing Orbitopes by Linear Inequalities

and Projection Based Tools

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von Dipl. Jour. Andreas Loos

geboren am 27. April 1973 in Erlangen
genehmigt durch die Fakultät für Mathematik
der Otto-von-Guericke-Universität Magdeburg
Gutachter: Prof. Dr. Volker Kaibel

Prof. Dr. Marc Pfetsch
eingereicht am 1. Dezember 2010
Verteidigung am 28. April 2011

ii

Zusammenfassung

Es seiMp,q die Menge aller 0/1-Matrizen mit p Zeilen und q Spalten. Lässt man
eine Permutationsgruppe auf den Spalten der Elemente von Mp,q operieren, dann
zerfälltMp,q in eine Menge von Orbits. Die lexikografisch maximalen Repräsentan-
ten all dieser Orbits bilden die Ecken der Polytope, die in dieser Doktorarbeit unter-
sucht werden, der so genannten Orbitope. Spezifiziert man die Anzahl der 1-Einträge
in jeder Zeile, dann lassen sich Packungs- (Zeilensumme6 1), Partitionierungs- (Zei-
lensumme = 1), Überdeckungs- (Zeilensumme > 1) und volle Orbitope (beliebige
Zeilensumme) unterscheiden. Ein Hauptaugenmerk dieser Doktorarbeit liegt auf der
Untersuchung von Orbitopen über der vollen symmetrischen Gruppe, insbesondere
im Hinblick auf deren lineare Beschreibungen.

Wir zeigen, dass es möglich ist, über vollen Orbitopen über der vollen symmetri-
schen Gruppe in polynomieller Zeit zu optimieren, während die Optimierung über
den anderen Orbitopen im Allgemeinen NP-schwer ist. Um Polytope linear zu be-
schreiben, entwickeln wir Methoden in Zusammenhang mit der Projektion erweiter-
ter Beschreibungen, etwa das faithful sectioning oder branched polyhedral systems.
Wir erhalten für einen Spezialfall der vollen Orbitope, den Orbisack, vollständige
lineare Beschreibungen. Wie gezeigt werden wird, sind die entwickelten Werkzeuge
nicht nur auf die Verwendung mit Orbitopen beschränkt, sondern von allgemeinerem
Interesse, etwa im Zusammenhang mit Stabile-Mengen-Polytopen.

Abstract

Let Mp,q the set of all 0/1-matrices with p rows and q columns. If you let a
permutation group operate on the columns of the elements of Mp,q, then Mp,q

can be partitioned by a set of orbits. The lexicographic maximal representatives
of all these orbits are the vertices of the polytopes covered in this thesis, the so
called orbitopes. Specifying the number of 1s in each row, one distinguishes packing
(rowsum 6 1), partitioning (rowsum = 1), covering (rowsum > 1) and full orbitopes
(arbitrary rowsum). One main interest of this thesis is to study orbitopes over the
full symmetric group, particularly with regard to their linear descriptions.

We show that it is possible to optimize over full orbitopes over the full symmetric
group in polynomial time, while optimization over the other orbitopes is in gen-
eral NP-hard. To linearly describe polytopes, we develop methods in connection
with the projection of extended formulations, for instance the faithful sectioning or
branched polyhedral systems. For a special case of a full orbitope, the orbisack, we
obtain complete linear descriptions. As will be shown, the tools are not restricted to
be used with orbitopes only. Instead, they are of more general interest, for instance
in connection with stable set polytopes.

iii

iv

Acknowledgements

Without any doubt, there are not many advisors like Volker Kaibel. In the six
years since I met him, I can barely remember one moment when he didn’t have time
for me and my ideas. His brain is almost always open (as Erdös would have said),
and his optimism is irrepressible. Apart from combinatorics, linear optimization and
tools to tackle problems, he taught me a lot about how mathematics is presented.
And he reminded me more than once that doing mathematics includes knowing how
to pace oneself. I would like to thank him for all of this.

I would also like to thank Günter M. Ziegler: he granted me a fellowship from his
Leibniz Fund and supplied me with a desktop, coffee and hints. I really enjoyed the
atmosphere at his institute which is international, energetic, witty and (especially
in summer) hot.

Matthias Peinhardt did some mathematics with me at the blackboard and in the
train to and from Magdeburg. I would like to thank him, as well as Rüdiger Stephan,
who talked to me about mathematics at rather unusual places, for instance at the
Zoo and at several playgrounds in Berlin. He also read some part of this thesis and
gave me some very helpful hints.

I would like to thank Katie Bedford for reading the English between the formulas
and pointing out typos and mistakes.

Last, I would like to thank Tina Heidborn who sometimes had a hard job to give
me unfailing support.

Berlin, June 2011 Andreas Loos

Contents

1 Introduction 1

1.1 Outline. 1

1.2 Notation, Wording, Basic Definitions . 4

1.2.1 General Notation. 4

1.2.2 Notation related to Graphs and Hypergraphs . 7

1.2.2.1 Common Graphs and Digraphs . 7

1.2.2.2 Hypergraphs . 10

1.2.3 Notation related to Polyhedral Theory . 12

2 The Setting, our Toolbox and its Origins 17

2.1 Symmetry Breaking and Orbitopes . 17

2.2 Extended Formulations . 19

2.3 Dynamic Programming . 22

2.4 Faithful Sectioning . 26

2.4.1 Applications and Examples . 27

2.4.1.1 The Clique Polytope with Clique Size 2 . 27

2.4.1.2 The Path Set Polytope for Acyclic Digraphs . 36

2.4.1.3 The Matching Polytope of an Arbitrary Graph 38

3 Mapping the Terrain 41

3.1 Definition of Orbitopes . 41

3.2 What can be done and what cannot? . 43

3.2.1 Full Symmetric Group. 44

3.2.1.1 General Properties and Characterization of Vertices 45

3.2.1.1.1 Full Orbitopes . 45

3.2.1.1.2 (k)-Packing and (k)-Partitioning Orbitopes . 49

3.2.1.1.3 (k)-Covering Orbitopes . 52

3.2.1.2 Optimization and Complexity . 53

3.2.1.2.4 Full Orbitopes . 53

3.2.1.2.5 Packing and Partitioning Orbitopes . 59

3.2.1.2.6 k-Packing, k-Partitioning, k-Covering and related Orbitopes 61

3.2.1.3 Dimension . 66

3.2.1.4 Facial Structure . 69

3.2.1.4.7 (k)Packing and (k)Partitioning Orbitopes . 69

3.2.1.4.8 (k)Covering Orbitopes . 70

3.2.1.4.9 Full Orbitopes . 70

3.2.2 Cyclic group . 71

3.2.2.1 Characterization of Vertices . 74

3.2.3 Optimization . 74

3.2.4 Facial Description of Packing and Partitioning Orbitopes 76

3.2.5 Other Groups Operating on the Columns . 76

v

vi CONTENTS

4 Orbisacks 79

4.1 Facial Description of Orbisacks I (Combinatorial Proof). 79

4.1.1 Sign Pattern of Non-Trivial Facet Defining Inequalities 80

4.1.2 Block-Inequalities . 82

4.1.3 Block-Inequalities are Facet Defining Inequalities . 84

4.1.4 Trivial Facet Defining Inequalities . 85

4.2 Facial Description of Orbisacks II (Sequential Knapsack). 86

4.2.1 Computation of Inequalities for POp,2 . 89

4.3 Complete Description of Orbisacks III (Proof by Faithful Sectioning). 96

4.3.1 Extended Formulations for Orbitopes . 96

4.3.1.1 The Px,y-Formulation . 96

4.3.1.2 The Px̃,y,z-Formulation . 96

4.3.1.3 Extended Formulation associated with Dynamic Programming. . . . 98

4.3.1.4 Overview of the Extended Formulations . 99

4.3.2 Linear Description of Px,y via Faithful Sectioning . 100

4.3.3 Linear Description of Op,2 via Faithful Sectioning . 102

4.4 Selected Properties of the Orbisack . 106

4.4.1 Number of Facets . 106

4.4.2 The Separation Problem for Orbisacks. 106

4.4.3 The Graph of the Orbisack . 107

4.4.3.1 Characterization of Adjacency. 107

4.4.3.2 Number of Edges and Average Degree . 112

5 Branched Polyhedral Systems 117

5.1 Branched Polyhedral Systems (BPS). 118

5.1.1 Linear Description . 119

5.1.2 BPS and Orbitopes. .123

6 Conclusions 125

Chapter 1

Introduction

1.1 Outline

Solving a combinatorial optimization problem basically means choosing an optimal
subset from a given ground set of elements, on condition that the subset satisfies
certain properties. Often, one describes the choice of elements by binary variables
indicating whether or not an element has been chosen, that is: any feasible solution
is encoded by a 0/1-vector in a space of appropriate dimension. A set of linear
constraints can then describe the feasible domain. In many cases, one finds that
after assigning weights to the elements a solution is optimal if and only if the total
sum of weights of chosen elements is maximal or minimal. In these cases, one is able
to express the combinatorial problem as an integer program (IP). In lucky cases,
one can even formulate it as a linear program (LP).

Probably the most prominent example of a combinatorial problem with LP-
formulation is the problem of weighted perfect matching. For a given graph G =
(V , E) with weights on the edges, a matching is a subset of pairwise disjunct edges in

E . If the matching has cardinality |V|
2 , it is called perfect. Its weight is the total sum

of the weights of the edges in the matching. Jack Edmonds ([31]) showed almost
half a century ago that a vector x ∈ RE is the incidence vector of a perfect matching
if and only if it is an extreme point of the domain described by the following set of
inequalities

xe > 0 ∀ e ∈ E
∑

e∈δ(v) xe = 1 ∀ v ∈ V
∑

e∈δ(U) xe > 1 ∀ U ⊆ V odd,

(1.1)

where δ(v) denotes the set of edges incident with node v. So, a formerly combi-
natorial problem of finding a perfect matching of maximum edge weight has been
turned into a linear problem and can be solved with standard tools like the simplex
algorithm, the ellipsoid method or interior point methods. Using an appropriate
separation algorithm, one can therefore solve the problem in polynomial time (de-
spite the fact that the number of inequalities is growing exponentially with the
number of edges). On the other hand, the inequalities from above can be ob-
tained from Edmonds’ combinatorial algorithm for the weighted matching problem
(see [107], 26.3b; for more information about polyhedral techniques in combinato-
rial optimization, see for instance Aardal and Hoesel’s overview [1] and [2] for an
annotated bibliography).

Generally speaking, geometry, solving the problem algorithmically and gaining
structural (combinatorial) insights to the problem go often hand in hand.

It is not unusual for these (IP or LP-)formulation of combinatorial problems to
bear symmetries. That means: in every solution, one can perform certain permuta-

1

2 CHAPTER 1. INTRODUCTION

tions of the components of every solution without changing the objective value and
feasibility. In 2005, Volker Kaibel and Marc Pfetsch focused on the shape of con-
straints that break certain classes of symmetry, and how knowledge about it could
be exploited when solving symmetric problems. At first, they considered packing
and partitioning problems, where objects are assigned to at most or exactly one
from a set of properties, respectively, on the assumption that certain permutations
of properties also yield a feasible solution. The standard example is the problem
of coloring a graph G = (V , E) with as few colors as possible taken from a set C of
colors. The default IP-model uses binary variables xv,c telling whether node v has
been colored with color c, as well as binary variables yc telling whether color c has
been used at all:

minimize
∑

c∈C

yc such that

∑

c∈C

xv,c = 1 ∀v ∈ V

xv,c + xw,c 6 yc ∀{v, w} ∈ E and c ∈ C

x ∈ {0, 1}V×C

y ∈ {0, 1}C

Clearly, relabeling the colors does not change the structure of the solution. Hence,
the space of feasible solutions is larger than necessary, which can in particular be-
come interesting when using branching algorithms. To refine the search by breaking
the symmetry, one could consider only solutions (x,y) where x has lexicographically
ordered columns. (Note that vector x has the form of a matrix.)

This immediately raises some questions: which inequalities have to be added to
the inequality system above to break this class of symmetry? Can we gain structural
insights in symmetry breaking from these inequalities, and can this knowledge be
exploited, for example for improving branch and bound algorithms?

Kaibel and Pfetsch called the polytopes defined by the symmetry-breaking in-
equalities“orbitopes”, since the respective inequalities select one representative from
each orbit arising from the operation of the permutations on the variables the prob-
lem is described in.

They obtained non-redundant linear descriptions of packing and partitioning or-
bitopes (that is: orbitopes connected with assignment problems of the packing and
partitioning type) with the full symmetric group and the cyclic group operating
on the columns of the solutions ([65]). Their study of packing and partitioning
orbitopes also led to ways to fix variables in branch and bound algorithms in order
to break these symmetries in the solutions ([64]). The question remained whether
other orbitopes can be linearly described, in particular the convex hull of all 0/1-
matrices with lexicographically ordered columns (the so-called “full orbitope over
the full symmetric group”). This case is particularly interesting since the group is
large and has a more complex structure than for instance the cyclic group.

This thesis investigates the possibilities for linear descriptions of certain classes
of orbitopes. For a special case of the full orbitope, the orbisack, the complete
non-redundant linear description is derived.

The tools used for these purposes are presented in a general overview in chapter 2.
They are not customized to orbisacks, although they fit well with them. Therefore,
we develop in section 2.4 the linear descriptions of a number of other polytopes with
the method of faithful sectioning, in particular clique polytopes for bounded clique
size and path set polytopes on acyclic digraphs. This work arose in collaboration
with Volker Kaibel and Matthias Peinhardt.

CHAPTER 1. INTRODUCTION 3

In chapter 3, we define orbitopes in detail and show that for many classes of
orbitopes, (the decision problem associated with) optimization over orbitopes is in
fact NP-complete. This is in general true for k-packing, k-partitioning, and k-
covering orbitopes over the full symmetric group (which are the convex hulls of
0/1-matrices with columns in lexicographic order and less than, exactly, or more
than k 1-entries in each row, respectively, where k > 1).

In contrast to this, we show that it is possible to optimize in polynomial time over
full orbitopes over the full symmetric group. We develop a dynamic programming
algorithm for linear optimization over Op,q running in time O(pq3). Figure 3.2 shows
an overview over complexity of optimization and linear descriptions for orbitopes
over the full symmetric group. Note that the parts of the work concerning NP-
completeness of optimization over orbitopes also emerged from joint work with
Volker Kaibel and Matthias Peinhardt.

The algorithm for optimization over full orbitopes is interesting not because of
any potential practical applications, but in connection with the search for “nice”
linear descriptions. This does not concern the number of facets: Grötschel, Lovász
and Schrijver showed ([52]) that a linear problem can be solved in polynomial time,
provided there is an appropriate separation oracle. This implies that even for poly-
nomial problems, the number of facets can definitely grow exponentially with the
problem size — the perfect matching problem from above is an example for this.

Instead, the question is if one can say in polynomial time that a given inequal-
ity is part of the complete linear description of the feasible domain. Karp and
Papadimitriou ([67]) were putting this question and the complexity of optimization
in the following relation (see also [107] for an outline of their results): Let Π a com-
binatorial problem with linear objective, and let each instance σ ∈ Π be formulated
as an IP over a polyhedron Pσ ∈ Rmσ . Then, the decision problem

Given σ ∈ Π, c ∈ Qmσ , and k ∈ Q, is there an x ∈ Pσ with 〈c,x〉 > k?

is in co-NP if and only if for each σ, a description Iσ of Pσ exists such that problem

Given σ ∈ Π, c ∈ Qmσ , and ℓ ∈ Q, does inequality 〈c,x〉 6 ℓ belong to Iσ?

belongs to NP . This implies that if the (decision problem associated with the)
combinatorial problem is NP-complete and NP 6= co-NP , then it is an NP-
complete problem to decide whether an inequality belongs to the linear description
of the feasible domain of the problem. Roughly speaking, a “nice” linear description
can be expected only for polytopes over which one can optimize in polynomial time.

Hence, there is hope for a “nice” linear description of full orbitopes over the full
symmetric group, although computer experiments indicate that for these orbitopes,
the linear descriptions seem to be much more complicated than for packing and
partitioning orbitopes. A complete linear description for the full orbitope Op,q

exists so far only in case that the vertices have two columns, i.e. q = 2.

This special case is the so-called orbisack. In chapter 4, we present three different
ways to obtain linear descriptions of these orbitopes. The motivation was to find a
proof that could be inductively or in other ways extended to orbitopes with more
than two columns. However, this hope has not been fulfilled. Any of the three
proofs has its idiosyncrasies that prohibit to extend the proof to full orbitopes in
general.

x The combinatorial proof relies on the fact that for q = 2, the coefficients of
facet inducing inequalities follow a certain sign pattern. This is not true for
q > 2 anymore, since our experiments show that for q > 2, there exist different
facets with the same sign pattern.

x The proof by faithful sectioning relies on the fact that each vertex of an or-
bisack has either only rows (1, 1) or (0, 0), or it has a unique row (1, 0) that

4 CHAPTER 1. INTRODUCTION

“ensures”that the columns of the vertex are in lexicographic order. This fact –
leading to the notion of “critical row”– enables us to find nice extended formu-
lations for the orbisack, which are the prerequisite for the method of faithful
sectioning. However, for q > 2, our search for extended formulations brought
only two formulations to light: one is derived from the dynamic programming
algorithm, and the other one is related to branched polyhedral systems (BPS).
Unfortunately, it is already in the case of orbisack unclear how to construct
the linear description directly from these extended formulations.

x The last proof is an application of work of Weismantel and Pochet concerning
the linear description of sequential knapsack polytopes ([117]). It relies on the
fact that Op,2 is a sequential knapsack polytope — however, Op,q is for q > 2
and p > 1 not even a knapsack anymore.

Note that only the first two proofs lead to a non-redundant description. We
conclude chapter 4 by studying the graph of the orbisack and characterizing the
adjacency structure. The hope was to show that the edge expansion of the orbisack
is bounded from below by 1. However, despite the fact that the graph has an
appealing structure, we did not succeed in proving this lower bound (which we
conjecture to be tight for orbisacks).

In chapter 5, we present the tool of branched polyhedral systems (BPS), which
can be used to obtain an extended formulation for orbitopes. Different from the
other extended formulations presented in the chapters before, it is an open question
how to use the extended formulation from BPS for obtaining a linear description of
orbitopes. Therefore, BPS is treated in a chapter of its own. It would be a bit out
of the scope of this thesis to fathom out all possibilities of this method. For more
information on BPS, we refer to [63], where the material from this chapter can also
be found.

1.2 Notation, Wording, Basic Definitions

The following section will fix notation for a range of objects from linear algebra,
graph theory and polyhedral theory that will be useful for our following work. Note
that the aim of the section is to clarify notation to prevent later ambiguities; it is
by no means a basic introduction to the respective fields of mathematics. For these
purposes, we refer the reader to common textbooks like [40], [75, 76] or [114, 115]
for linear algebra, [21] or [13] for graph theory, [71] for combinatorial optimization,
[106, 107], [94] or [113] for (combinatorial) linear programming and [120, 121, 53]
for polyhedral aspects, in particular for 0/1-polytopes.

1.2.1 General Notation

By N, we denote the set of natural numbers including 0. Z, Q, R denote the setImportant Sets

of integers, rational numbers and real numbers, respectively. The set of positive
integers N r {0} is denoted by N>. For some x ∈ R, we define ⌊x⌋ := max({j ∈Z | j 6 x}) and ⌈x⌉ := min({j ∈ Z | j > x}). For some set S ⊆ R, we denote by
S+ the set {x ∈ S | x > 0} and by S− the set {x ∈ S | x 6 0}. The empty set is
denoted by ∅.

We denote by 2S the power set of set S, that is {T | T ⊆ S}. Any set F ⊆ 2S is
called a family.

For n ∈ N>, the (integral) range [n] is the subset of N> containing all naturalRanges

numbers from 1 through n. For n ∈ R r N>, we define [n] := ∅. Furthermore, we
write [n]0 := [n] ∪ {0} and for 1 6 i < n, i, n ∈ N>, we write [i..n] := [n] r [i− 1].
The cardinality of a range is called its length.

Note that the closed interval {x ∈ R | a 6 x 6 b} bounded by some real numbers
a, b ∈ R is written [a, b].

CHAPTER 1. INTRODUCTION 5

object style examples

general sets and families (sets of sets) calligraphic, capital letter S

scalars normal, lower case x, λ

vectors, tupels bold, lower case x, ℓ

matrices bold, capital letter A, M

graphs, digraphs and hypergraphs normal, capital letter D, G, H

nodes, edges, arcs and hyperarcs normal, lower case v, a

polyhedra, polytopes, faces, facets bold, capital letter P, F

Figure 1.1: Overview over the typesetting styles for the most frequently used mathematical
objects throughout the document.

The symmetric difference of two sets A and B is defined as (A r B) ∪ (B r A) Symmetric
Difference

and denoted by A∆B.
For two finite sets A and B, the Cartesian set product is defined as

A× B = {(a, b) | a ∈ A and b ∈ B}.

Notation “×” is also used for the direct product of groups and for the Cartesian Cartesian Set
Product

graph product (see below). Let I be a nonempty index set and let for each i ∈ I
set Si := S be a copy of some nonempty ground set S. Iterating the Cartesian set
product, we write then

SI :=×
i∈I

Si.

If I = [n], we will also write Sn instead of S [n].
The elements of SI are called vectors or tupels, that is, vector v = (vi)i∈I with Vectors

entries or components vi. If |I| = n, then the vector (tupel) is an n-vector (n-tupel).
The ground set S will usually be R, Q or {0, 1} for our purposes. If all components
of a vector are in Z, the vector is called integral. Note that for our purposes, the
index set of vectors will often be two dimensional, for instance I = [m]× [n].

A special vector that will frequently be used is the incidence vector or character- Incidence Vector

istic vector of a subset T ⊆ S of a set S; it is defined as the vector x[T] ∈ {0, 1}S

of T with xi = 1 if and only if i ∈ T .
The scalar product of two vectors x,y ∈ RI , denoted by 〈., .〉, is defined as Scalar Product

〈x,y〉 :=
∑

i∈I

xiyi.

We sometimes have to change single components of some vector v ∈ RI and leave Modifying Vectors

the remaining components as they are. This will be referred to as a modification.
More precisely, we call ṽ ∈ RI a modification of v in component ṽℓ := s ∈ R, if

ṽi =

{
s, if i = ℓ

vi, otherwise
∀i ∈ I.

Note that a modification in more than one component is also possible. Moreover,
it can happen that v = ṽ.

For two vectors v,w ∈ RI , we write v > w if and only if vi > wi for all i ∈ I.
We also compare vectors lexicographically. For two vectors v,w ∈ RI with an Comparing Vectors

index set I ordered by “>“, we say that v is lexicographically larger than w, in

6 CHAPTER 1. INTRODUCTION

short v ≻ w, if and only if there is an index k ∈ I such that vk > wk and for all
i ∈ I with i < k, it holds that vi = wi.

Clearly, for two vectors v,w ∈ {0, 1}n, it holds that v ≻ w, if and only if

n∑

i=1

2n−ivi >

n∑

i=1

2n−iwi.

While vectors are denoted by small bold letters, matrices are denoted by capitals.Matrices

In a matrix A ∈ R[m]×[n], the entry or component in row i and column j is denoted
by ai,j .

Let A ∈ RI×J be a matrix, and let I ′ ⊆ I and J ′ ⊆ J be subsets of index
sets I and J , respectively. Then AI′×J ′ denotes the submatrix that arises from
deleting all entries in A which do not have a row index in I ′ or a column index in
J ′. Moreover, we use “wild cards to describe columns and rows of matrices. That
is: the vector ai,∗ is the ith row of matrix A and analogously, a∗,j denotes its jth
column.

Note that we use the same notation for vectors with a two-dimensional index set.
Example: Let v ∈ R[5]×[5], then vector v∗,2 is the second column of vector v and
vector w := v[1..2]×[2..5] is the vector in R[1..2]×[2..5] that arises from deleting rows 3
through 5 and the first column in v. Note that w∗,1 is not defined.

The matrix product of two matrices A ∈ R[m]×[n] and B ∈ R[n]×[p] is matrixMatrix Product

AB ∈ R[m]×[p] defined by entries

(AB)i,j := 〈ai,∗, b∗,j〉 ∀(i, j) ∈ [m]× [p]

Depending on the context, a vector v ∈ SI can be seen as a column vector (that
is, a I × 1-matrix) or as a row vector (a 1 × I-matrix). If not explicitly denoted,
we implicitly assume compatibility of sizes when using notation like

Ax 6 b or yA = c.

Sometimes, we explicitly denote by M⊺ the transpose of a matrix M ∈ RA×B, that
is:

A = M⊺ if and only if aj,i = mi,j for all (i, j) ∈ A× B.

(Similarly, for vectors.)
We denote by 0[m]×[n] or 1[m]×[n] a [m] × [n]-matrix with only entries 0 or 1,Special Matrices

and Vectors
respectively. The matrix A = I[m] ∈ {0, 1}[m]×[m] is the unit matrix with m rows
and m columns, i.e. the matrix with entries ai,j = 1 if and only if i = j. Similarly,0[m] and 1[m] denote m-vectors with all entries 0 and 1, respectively, and ek

[m] is the

kth unit vector in {0, 1}[m], that is a vector with an entry 1 in the kth component
and 0s, otherwise. If the context is clear, we drop the dimension in the index,
writing for instance 0 instead of 0[m]×[n].

The support of a vector x ∈ RI (and analogously for matrices) is defined asSupport

supp(x) := {i ∈ I | xi 6= 0}.

Moreover, we define
supp+(x) := {i ∈ I | xi > 0}.

and
supp−(x) := {i ∈ I | xi < 0}.

Mainly for estimating computational complexity, we need the size of numbers.Size of Numbers
and Vectors

The size of a rational number p
q
∈ Q with p, q ∈ Z co-prime is defined by

size
(p
q

)
:= 1 + ⌈log2(|p|+ 1)⌉+ ⌈log2(|q|+ 1)⌉,

CHAPTER 1. INTRODUCTION 7

while the size of a n-tupel of rational numbers x ∈ Q[n] is defined by

size(x) := n+

n∑

i=1

size(xi),

and, analogously, the size of a rational m× n-matrix A ∈ Q[m]×[n] is defined by

size(A) := mn+
∑

(i,j)∈[m]×[n]

size(ai,j).

We denote by O the Landau (“big O”) notation to estimate the growth of a
Landau Notation
and Polynomial
Time Algorithmsfunction. For real valued functions f, g : R → R, it holds that f = O(g) if there is

a scalar λ ∈ R+ r {0} and an index x0 ∈ R such that

|f(x)| 6 λ|g(x)| ∀x ∈ R with x > x0.

Using this notation, we say that an algorithm for some problem P runs in time of
O(f(x)), if the worst case running time for an instance P of size x is of O(f(x)).
If not otherwise stated, we use the unit time model, i.e. we assume that multipli-
cations, divisions, additions and subtractions cost a constant unit of time. If f(x)
is a polynomial, we say that the algorithm has polynomial running time or is poly-
nomial. For more information concerning complexity theory, we refer the reader to
[46].

1.2.2 Notation related to Graphs and Hypergraphs

1.2.2.1 Common Graphs and Digraphs

An undirected graph is a pair G = (V , E), where V is some set and E is a family of Undirected Graph

unordered pairs of elements of V . The elements of V are called vertices or nodes of
the graph, the set E contains the edges of G. If not explicitly stated, we will assume
that there are no loops, i.e. v 6= w for each edge {v, w} ∈ E , and no parallel edges,
i.e. E does not contain two identical subsets. If we want to emphasize that V is the
set of vertices of graph G, we write VG. (Similarly for edges.)

We say that if edge e = {v, w} ∈ E , then vertices v and w are adjacent. If for
two distinct edges e, f , it holds that e∩ f = {v} 6= ∅, then we say that e and f are
incident with each other as well as with vertex v; otherwise, we say the edges are
disjoint.

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E . If E ′ is the set of (Induced)
Subgraph

all edges from E with both end nodes in V ′, then G′ is induced by V ′ and we write
G′ = G[V ′]. At the same time, G′ is induced by all edges in E ′ and G′ = G[E ′]. By
V [E ′], we denote the set of nodes V ′ ⊆ V that are incident with the edges in E ′, and
by E [V ′], we denote the edges with both ends in V ′ (which is E ′).

A graph is called complete, if E contains an edge {v, w} for each v, w ∈ V with Complete Graph

v 6= w. We denote by Kn the complete graph with n vertices.

A directed graph, digraph or network is a pair D = (V ,A) of a vertex set V and Directed Graph

a family A of ordered pairs of elements of V , called the arcs of the digraph. An
arc a = (v, w) leads from its start node or tail v to its end node or head w. The
reverse arc to (u, v) is (v, u). In arc (v, w), node w is called the successor of v, and,
conversely, node v is the predecessor of w.

Sometimes, we will write common graph or common digraph, respectively, to
Common
(Di)Graph

emphasize that we are not speaking of a directed hypergraph (see below).

8 CHAPTER 1. INTRODUCTION

Let S ⊆ V . We denote bySuccessors and
Predecessors

succD(S) := {w ∈ V | ∃(v, w) ∈ A for some v ∈ S}

the set of successors in D and by

predD(S) := {w ∈ V | ∃(w, v) ∈ A for some v ∈ S}

the set of predecessors in D. If S contains one node v only, we also write succD(v)
or predD(v), respectively, and we drop index D if the context is clear.

Subdigraphs and induced subdigraphs are defined analogously as for undirected
graphs, by replacing edges by arcs. As for graphs, we assume that digraphs do notSubdigraph

contain parallel arcs or loops unless explicitly stated.
One can always obtain a digraph D from an undirected graph G by replacingCanonical Digraph

every edge {u, v} in E by two arcs, namely arc (u, v) and reverse arc (v, u). We will
call this digraph the canonical digraph of G.

Moreover, we call two graphs G = (V , E), G′ = (V ′, E ′) isomorphic, denoted byGraph Isomorphism

G ≃ G′, if there is a bijection π : V → V ′ such that {π(v), π(w)} ∈ E ′ if and only
if {v, w} ∈ E . Similarly, digraphs D = (V ,A) and D′ = (V ′,A′) are isomorphic if
there is a bijection π : V → V ′ such that (π(v), π(w)) ∈ A′ if and only if (v, w) ∈ A.

A (possibly empty) subset of nodes of a graph that induces a subgraph which isk-Clique

isomorphic to a complete graph Kk is called a k-clique.
The complement of a graph G = (V , E) is denoted by G = (V , E); for edge set E ,Complement

it holds that

{v, w} ∈ E if and only if {v, w} /∈ E .

The complement of a digraph is defined analogously.
A subset S of pairwise not adjacent nodes of some graph or digraph is stable or

Stable Set,
k-Partite Graph

independent. A graph or digraph is k-partite, if its vertex set can be partitioned
into k stable sets.

Let G = (V , E) be a graph. A sequence of edges P = (e1, . . . , en) is called aPaths, Cycles

(simple) s-t-path if
(i) ei = {vi, vi+1} for all i ∈ [n],
(ii) v1 = s and vn+1 = t, and
(iii) vi 6= vj for i 6= j.
If s = t (condition (iii) is not satisfied), then P is called a cycle. If additionally
all nodes in P are distinct, then P is called a simple cycle. We say that node v is
used by a path if v ∈

⋃n

i=1 ei. Directed s-t-paths and cycles are defined analogously
as for undirected graphs as a sequence of arcs (a1, . . . , an) with ai = (vi, vi+1) for
all i ∈ [n]. n is the length of the path or cycle. A cycle of length n is a n-cycle.
Note that P can also be the empty set, which means that for any node v, there is
a v-v-path.

A digraph that has no cycles is called acyclic. Sometimes, we write in short DAG
instead of “directed acyclic digraph”.

Two nodes u, v in an undirected graph are connected, if there is a u-v-path inConnected Graph

G. Connectedness defines an equivalence relation on the vertices: two nodes in the
graph are equivalent if they are connected. The equivalence classes are called the
connected components of the graph. A graph with one single connected component
is called connected.

For any undirected graph G = (V , E) and a subset S ⊆ V , we define:
Subsets of Nodes
and Edges/Arcs

x the neighborhood

NG(S) := {w ∈ V r S | ∃{w, v} ∈ E for some v ∈ S},
x the star

δG(S) := {e ∈ E | e = {v, w} with v ∈ S and w /∈ S}, and

CHAPTER 1. INTRODUCTION 9

x the reach

rG(S) := {w ∈ V | ∃v-w-path in G for some v ∈ S}.

Analogously, we define for digraphs D = (V ,A):
x the in-neighborhood

Nin
D(S) := {w ∈ V r S | ∃(w, v) ∈ A for some v ∈ S},

x the out-neighborhood

Nout
D (S):= {w ∈ V r S | ∃(v, w) ∈ A for some v ∈ S},

x the in-star

δinD(S) := {a ∈ A | a = (w, v) with w /∈ S and v ∈ S},
x the out-star

δout
D (S) := {a ∈ A | a = (w, v) with w ∈ S and v /∈ S},

x the the in-reach

rinD(S) := {w ∈ V | ∃w-v-path in D for some v ∈ S}, and

x the out-reach

rout
D (S) := {w ∈ V | ∃v-w-path in D for some v ∈ S}.

In-star, out-star and star are sometimes also referred to as in-cuts, out-cuts
and cuts, respectively. If the set S contains only one single element v, we write
.(v) instead of .({v}), for instance δinD(v) instead of δinD({v}). Note that for sin-
gle nodes, in-neighborhood and the set of predecessors are identical, and similarly
out-neighborhood and set of successors.

For some digraph D = (V , E) and subsets S, T of the node set V , we denote by

S : T := {(v, w) ∈ A | v ∈ S and w ∈ T }

the set of arcs with tail in S and head in T . For undirected graphs, S : T is similarly
defined as the set of edges with one end in S and the other end in T . Note that in
directed graphs, S : (V r S) = δout

D (S) and (V r S) : S = δinD(S), and analogously,
in an undirected graph G, S : (V r S) = δG(S).

In an undirected graph G, the degree of a node v is defined as deg(v) := |δG(v)|. Degree of a Node

Similarly, in a digraphD, the in-degree and out-degree of v are degin(v)D := |δinD(v)|
and degout(v)D := |δout

D (v)|, respectively.
For all subsets of nodes, edges and arcs defined so far, we will always drop indices

D and G, if it is clear which (di)graph is underlying.

A tree T = (V , E) is an undirected connected graph containing no cycles. An Trees,
Arborescences

arborescence is a directed graph D = (V ,A) arising from tree T by choosing an
arbitrary node r ∈ V as root and replacing each edge {v, w} ∈ E either by an arc
(v, w) or by an arc (w, v) such that there is a directed path from v to r for each
v ∈ V in D.

Let G and H be be two graphs. Then the Cartesian graph product G × H is Cartesian Graph
Product

defined as the graph with the following properties:
x the vertex set of G×H is the Cartesian set product VG × VH and
x any two vertices (u, u′) and (v, v′) are adjacent in G×H if and only if either

x u = v and u′ is adjacent with v′ in H , or
x u′ = v′ and u is adjacent with v in G.

We will also use flows and circulations . Let D = (V ,A) be some digraph. We Flows and
Circulations

assign to each arc a ∈ A a lower and an upper bound ℓa, ua ∈ R ∪ {−∞,+∞}
defining the capacity of a. A vector y ∈ RA with

ua 6 ya 6 ℓa ∀a ∈ A

is called a (feasible) flow on D. If it additionally holds that
∑

a∈δin
D

(v)

ya =
∑

a∈δout
D

(v)

ya ∀v ∈ V ,

then the flow is called a circulation.

10 CHAPTER 1. INTRODUCTION

1.2.2.2 Hypergraphs

Generalizing the definitions concerning graphs and digraphs, we will now proceed
with definitions of hypergraphs, hyperpaths, and related objects. Here, we follow
in many aspects Ausiello et al. [5], in particular in their definition of hyperpaths.

Let U 6= ∅ be some finite set of vertices. A hyperarc is an ordered tupelHypergraphs

(S, T) ∈ (2U r {∅})× (2U r {∅})

with S ∩ T = ∅. Arcs and vertices define the directed hypergraph H = (U ,A).
Each arc a = (S, T) in A has a (nonempty) set tail(a) := S of tail nodes and a
nonempty set head(a) := T of head nodes. The arc is directed from its tail nodes
to its head nodes.

A hyperarc a ∈ A with | tail(a)| = 1 is called forward arc (F-arc), an arc withF-Arcs, B-Arcs,
BF-Arcs

| head(a)| = 1 is a backward arc (B-arc), and arcs with | tail(a)| = | head(a)| = 1
are called backward-forward arcs (BF-arcs). If all arcs in A are F-arcs (B-arcs,
BF-arcs), then the graph is called F-hypergraph (B-hypergraph, BF-hypergraph),
respectively. (Note that a BF-hypergraph is a common digraph.) For B-arcs, we
write (S, t) instead of (S, {t}), and for F-arcs, we write (s, T) instead of ({s}, T).

The relaxation of a directed hypergraph is the digraph D = (U , Ā) with vertex
Relaxation of
Hypergraph

set U and arc set Ā, where (u, v) ∈ Ā if and only if there is a hyperarc (S, T) ∈ A
with u ∈ S and v ∈ T .

For some subset L ⊆ A of hyperarcs, we denote by U [L] the node set of L, i.e.Induced Subgraphs

those nodes in U that are incident with the hyperarcs in L:

U [L] :=
⋃

a∈L

(
tail(a) ∪ head(a)

)

For some subset L ⊆ A of arcs, we call (U [L],L) a subgraph of H .
A W-t-hyperpath in a hypergraph H = (U ,A) is an ordered subset of arcs L =Hyperpath

(a1, . . . , an) ⊆ A such that
[p1] t ∈ head(an)
[p2] For all i ∈ [n], tail(ai) ⊆ W ∪

(⋃
k<i head(ak)

)
.

[p3] Any proper subgraph of (U [L],L) violates conditions [p1] or [p2].
For each t ∈ U , there is an empty hyperpath L = ∅ leading from t to t. We say
that hyperpath L is using its node set U [L].

Similarly as for common digraphs, we define for any hypergraph H = (U ,A) and
Subsets of Nodes
and Hyperarcs

any v ∈ U
x the in-neighborhood

Nin
H(v) := {u ∈ U | ∃(S, T) ∈ A with u ∈ S and v ∈ T },

x the out-neighborhood

Nout
H (v) := {u ∈ U | ∃(S, T) ∈ A with v ∈ S and u ∈ T },

x the in-star

δinH(v) := {a ∈ A | a = (S, T) with v ∈ T },
x the out-star

δout
H (v) := {a ∈ A | a = (S, T) with v ∈ S},

x the in-reach

rinH(v) := {u ∈ U | ∃W-v-hyperpath with u ∈ W}, and

x the out-reach

rout
H (v) := {u ∈ U | ∃W-u-hyperpath with v ∈ W}.

If the context is clear, we will drop index H .

Last, a directed hypergraph is called acyclic if and only if its relaxation is an
acyclic digraph. This implies the existence of a (topological) order on the nodes U .

Remark 1.1

CHAPTER 1. INTRODUCTION 11

a1 a2

a3

W

t

Figure 1.2: Undirected cycle in the relaxation of a W-t-hyperpath.

x Each W-t-hyperpath L starts from a nonempty set U [L] ∩W ⊆ W.
x Definition [p1] through [p3] generalizes the definition for paths in common digraphs.
x Even in B-hypergraphs, the relaxation of the subgraph induced by a W-t-hyperpath

can contain undirected cycles, as figure 1.2 shows.
x [p3] ensures in particular that the relaxation of a W-t-hyperpath is a connected

graph.
x In literature, a couple of alternative definitions for hyperpaths can be found. (For

alternatives, see e.g. [42, 101] and for a discussion [95, 58].)

Lemma 1.2 If H is a B-hypergraph, then the relaxation of the subgraph induced
by a nonempty W-t-hyperpath L = (a1, . . . , an) cannot contain directed (simple)
cycles.

Proof. Let L be a W-t-hyperpath. We call an arc ak ∈ L dispensable,

(a) if head(ak) ⊆ W or
(b) if there is an arc ai ∈ L with head(ak) = head(ai) and i < k or
(c) if all arcs ai ∈ L with head(ak) ∈ tail(ai) are dispensable.

We denote the set of dispensable arcs in L by D.

First, we claim that set D is empty if L is a hyperpath. Otherwise, L′ := Lr D
will be satisfying properties [p1] and [p2], as will be shown in the following. By [p3],
this is in contradiction to the assumption that L is a W-t-hyperpath.

If t ∈ W , then D = L; so, if D 6= ∅, then L is indeed no hyperpath since L′ = ∅
is a hyperpath.

If t /∈ W , then the arc from {aj ∈ L | head(aj) = {t}} with minimal index m will
not be dispensable and is therefore in L′. Because of (b), L′ cannot contain any
arcs with index larger than m. So [p1] is satisfied for L′. Let now ai be an arbitrary
arc in L′. We consider the tail nodes of ai that are not in W . Assume there is a
v ∈ tail(ai) rW with

v /∈
⋃

ak∈L′

k<i

head(ak).

In this case, all arcs in L with head v must have been regarded as dispensable.
However, this could not happen because of (a), because v /∈ W . Nor could it
happen because of (c), as ai is not dispensable. The application of (b) always leaves
at least one arc not dispensable. So any node in the tail of ai must either be in W
or it has in-neighbors with lower index in L′. Hence, [p2] is satisfied for L′.

Last, any proper subgraph of (U [L′],L′) is a proper subgraph of (U [L],L). Hence,
no proper subset of L′ can be a hyperpath by assumption that L was a hyperpath

12 CHAPTER 1. INTRODUCTION

and [p3] is satisfied. Therefore L′ is a hyperpath which is different from L if and
only if D 6= ∅.

For the second part of the proof, we assume that the relaxation of L contains
a simple directed k-cycle (ã1, . . . , ãk). We select an ordered set of arcs A :=
(a(1), . . . , a(k)) from L such that the relaxation of each a(i) contains arc ãi. So, for
any j ∈ [k], it holds for a(j) and a((j + 1) mod k) that

head
(
a(j)

)
∩ tail

(
a((j + 1) mod k)

)
6= ∅.

There must be at least one pair of cyclically subsequent arcs ak, ai in A with k > i.
As we are in a B-hypergraph, head(ak) and tail(ai) intersect in one single node
v. As L is by assumption a hyperpath, we get from [p2] that either v ∈ W or
{v} = head(aj) for some arc aj ∈ Lr C with j < i or both. In any case, ak ∈ A is
an dispensable arc. Therefore, L contains a dispensable arc contradicting the fact
that L is hyperpath.

1.2.3 Notation related to Polyhedral Theory

Let X = {x1, . . . ,xk} be a nonempty set of k points in Rn, and let y be some pointHulls

in Rn that can be expressed in the following way:

y =

k∑

i=1

λixi.

If

λi ∈ R ∀ i ∈ [k],

λi ∈ R ∀ i ∈ [k] and
∑k

i=1 λi = 1,

λi ∈ R+ ∀ i ∈ [k],

λi ∈ R+ ∀ i ∈ [k] and
∑k

i=1 λi = 1,

then y is a

linear

affine

conic

convex

combination of X .

The set of all linear, affine, conic or convex combinations of finite subsets of a
nonempty (not necessarily finite) set X ⊂ Rn is called the linear, affine, conic or
convex hull of X and is denoted by lin(X), aff(X), cone(X) or conv(X), respectively.
In each case, the set X is said to generate the hull.

Let a ∈ Rn and b ∈ R. The set {x ∈ Rn | ax = b} is called a hyperplane in Rn;
the set {x ∈ Rn | ax 6 b} is a halfspace in Rn. For arbitrary b, both are called
affine; if b = 0, they are linear.

A set P of points in Rn is called a (convex) polyhedron if there is some matrixPolyhedra

A ∈ Qm×n and some vector b ∈ Qm such that

P = {x ∈ Rn | Ax 6 b}.

In this case, Ax 6 b is called a (complete) linear description for P. The size of the
description is the encoding length of (A, b), that is

size(A) + size(b).

Obviously, a polyhedron P is the intersection of finitely many affine halfspaces
in Rn. It follows immediately that the intersection of two polyhedra is again a
polyhedron.

A central fact of polyhedral optimization is that each nonempty polyhedron can
be decomposed into the Minkowski sum of the conic hull of a finite set of points

CHAPTER 1. INTRODUCTION 13

C ⊂ Rn (the so-called recession cone) and the convex hull of a finite set of points
V ⊂ Rn:

P = conv(V) + cone(C),

and conversely, any Minkowski sum of a finitely generated cone and the convex hull
of some finite set of points is a polyhedron. Let v ∈ P be a point in the polyhedron.
If for all x, y ∈ P r {v}, it holds that v /∈ conv{x, y}, then v is an extreme point or
vertex of P. The lineality space of polyhedron P is the largest linear subspace

lineal(P) = cone(C) ∩ − cone(C)

contained in cone(C). If lineal(P) = {0}, then polyhedron P is called pointed.
For pointed polyhedra, it holds that if V is minimal (i.e. removing any point

from V leads to a polyhedron different from P), then it is the set of vertices of the
polyhedron, denoted by VP, and, similarly, if set C is minimal, then each c ∈ C
generates an extreme ray of P.

If C = {∅}, then the polyhedron is bounded and it is called a polytope. Polytopes

The above said implies that there are two equivalent ways to describe any pointed
polyhedron: one can either specify its vertices and the generators of extreme rays
of its recession cone or one can list a set of affine halfspaces that determines the
polyhedron. In the first case, we speak of a V-representation and in the second case
of an H-representation of the polyhedron.

The dimension of a polytope, in short dim(P), is the dimension of its affine hull.
If P ⊂ Rn and dim(P) = n, then we call polytope P full dimensional.

Dimension of
Polytope

A prominent example for equivalent V- andH-descriptions is the d−1-dimensional
(Standard) Simplex

standard simplex △d−1 in Rd. This polytope can either be described as the convex
hull of the d unit vectors ei in Rd, that is

△d−1= conv
({ei ∈ {0, 1}d

∣∣∣ i ∈ [d]
})

or, equivalently, as

△d−1=
{

x ∈ Rd
∣∣∣

d∑

i=1

xi = 1 and xi > 0 ∀i ∈ [d]
}
.

(Note that the non-standard d-dimensional simplex △̃d in Rd is described by

△̃d = conv
({ei ∈ {0, 1}d

∣∣∣ i ∈ [d]
}
∪
{
0
})

=

=
{
x ∈ Rd

∣∣∣
d∑

i=1

xi 6 1 and xi > 0 ∀i ∈ [d]
}
.

This is — in contrast to the standard simplex — a full dimensional but non-regular
polytope, since it has edges of different lengths.)

Another example for the equivalence of H- and V-description is the d-hypercube Hypercube

which can either be described as

conv
(
{0, 1}d

)

or as {
x ∈ Rd

∣∣∣−xi 6 0 and xi 6 1 ∀i ∈ [d]
}
.

A third class of polyhedra we will encounter in this work is the class of knapsack
Knapsack
Polyhedra

polyhedra. Let vector a ∈ Rm and scalar b ∈ R be given. Moreover, let for each
i ∈ [m] a value si ∈ N> ∪ {+∞} be given, which enables us to define a set

S := {x ∈ Nm | 0 6 xi 6 si ∀i ∈ [m]}.

14 CHAPTER 1. INTRODUCTION

The associated knapsack polyhedron is then defined as

conv({x ∈ S | ax 6 b}).

It is therefore the convex hull of those points in S that lie in the halfspace specified
by a and b.
The idea is to fill a knapsack of maximal capacity b (which may not exceeded) with
items that have each a certain weight a1 through am; one can choose up to si copies
of item i.

If si = 1 for all i ∈ [m], then the associated polytope is called a 0/1-knapsack
polytope. Note that the d-dimensional simplex △̃d from above is a very basic 0/1-
knapsack polytope.

We say that an inequality ax 6 b with a ∈ Qm and b ∈ Q is valid for a set of
points V ∈ Rm, if av 6 b for all v ∈ V . In other words, if ax 6 b is valid for V , then
the halfspace defined by the inequality completely contains set V . A vector v ∈ Rm

is called active for inequality ax 6 b, ifValid Inequalities,
Faces

av = b,

that is, v lies in the hyperplane defined by a and b.

Let now P be a d-dimensional polytope in Rn and ax 6 b some inequality valid
for P. We call the set

FP(ax 6 b) := P ∩ {x ∈ Rn | ax = b}

a face of polytope P defined by inequality ax 6 b. (If the context is clear, we
drop index P.) By definition, the polytope P itself is also added to the set of faces.
Clearly, any face is again a polytope. All faces apart from the empty set and P are
called proper faces. Proper faces of dimension 0, 1, and d − 1 are called vertices,
edges, and facets, respectively. If dim(FP(ax 6 b)) = d − 1, then ax 6 b is called

Vertices,
Edges,
Facets a facet defining inequality. It is a well-known fact that any proper face of P and P

itself can be described as the intersection of a nonempty set of facets of P. Among
the proper faces, facets are inclusion maximal. For full dimensional polytopes, a
complete linear description Ax 6 b with A ∈ Q[m]×[n] and b ∈ Q is irredundant if
every inequality in the description is facet inducing. This implies that no inequality
in the description can be obtained from a conic combination of other inequalities in

the description, that is: for all i ∈ [m], there exists no vector y ∈ R[m]
+ , y 6= ei such

that

y(A, b) = (ai,∗, bi).

When describing a polyhedron P ⊆ R[m] linearly, we distinguish two kinds of
inequalities, trivial inequalities and non-trivial inequalities. An inequality av 6 b
is called trivial if | supp(a)| = 1; otherwise, the inequality is called non-trivial. If P
is a 0/1-polytope, then trivial inequalities (xi 6 1, xi > 0) are also referred to as
cube inequalities. Facets defined by (non-)trivial inequalities are called (non-)trivial
facets, respectively.

Let ax 6 b define a face F of polytope P . Then we denote by VP[ax 6 b] the set
of those vertices in VP that are active for ax 6 b. Note that VP[ax 6 b] is exactly
the set of vertices VF of the face (and polytope) F. In particular, if F is an edge of
P, then F is the convex hull of exactly two vertices of P.

For inequalities ax 6 b with a ∈ Q[p]×[2] and b ∈ Q, we will from time to time

CHAPTER 1. INTRODUCTION 15

use the following representation in graphic form:

a1,1 a1,2 x1,1 x1,2 (6)b

a2,1 a2,2 x2,1 x2,2

a3,1 a3,2 x3,1 x3,2

...
...

...
...

Consequently, we say for general vectors v ∈ R[p]×[q] that a row vi,∗ is lower than
row vj,∗ if and only if i > j.

Let P be some polytope with vertex set VP, and let GP = (VP, E) be some
Graph of a
Polytope

undirected graph with the property that there is an edge {u, v} ∈ E if and only if
there is an edge in polytope P containing u and v. Then GP is called the graph
of the polytope. As the nodes of the graph of the polytope and the vertices of the
polytope are identified with each other, we will write both v ∈ E or v ∈ E , depending
on whether we are stressing that v is node of GP or that the respective vertex of
the polytope has certain properties.

A polytope P with dimension d is called simple, if each vertex is adjacent to Simple Polytopes

exactly d edges, i.e. deg(v) = d of each node v in the graph of the polytope.

16 CHAPTER 1. INTRODUCTION

Chapter 2

The Setting, our Toolbox and its

Origins

2.1 Symmetry Breaking and Orbitopes

Many linear programs exhibit symmetry under certain permutations of variables.
What is meant by that? Let

P = {x ∈ Rn | Ax 6 b}

be some polyhedron in Rn, where A ∈ Qm×n, b ∈ Qm and let

min({〈c,x〉 | x ∈ P}) (*)

be a linear problem over P with cost vector c ∈ Qn. We denote by Πn the group of
permutations of n elements and let Πn operate on the variables of (*):

Πn × Rn → Rn, (σ,x) 7→ σ(x),

such that σ ∈ Πn permutes the entries in x.

Definition 2.1 The symmetry group G of the linear problem (*) is defined as

G := {σ ∈ Πn | σ(x) ∈ P and 〈c, σ(x)〉 = 〈c,x〉 for all x ∈ P},

G is obviously a subgroup of Πn.

If x⋆ is a feasible solution to (*), then we can pick an arbitrary permutation
σ ∈ G and obtain with σ(x⋆) another feasible solution to (*) with the same objective
value. In other words: each element in the orbit G(x⋆) does the same job on the
cost functional as x⋆.

Example 2.2 A well-known example of an IP with symmetries is the Bin Packing Prob-
lem. Let S ⊂ Q be a set of rational numbers (“items of size”) s1 through sm with
0 < si 6 1 for all 1 6 i 6 m. The problem consists in partitioning [m] into n subsets
(“bins”) I1 through In such that

P

i∈Ij
si 6 1 for all 1 6 j 6 n. A common IP model for

this problem uses binary variables xi,j that are 1 if and only if item i is put into bin Ij :

max
X

i∈[m]

X

j∈[n]

xi,j s.t.

X

j∈[n]

xi,j 6 1 ∀i ∈ [m]

X

i∈[m]

sixi,j 6 1 ∀j ∈ [n]

xi,j ∈ {0, 1} ∀(i, j) ∈ [m] × [n]

17

18 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

It is possible to pack all items into the bins, if and only if there exists a solution x⋆ with
objective value m. However, the formulation of the bin-packing problem from above bears
a lot of intrinsic symmetry, since all bins have the same size, and all xi,j are weighted
the same in the objective functional. So, the symmetry group of the IP contains any
permutation of bins, as any permutation of columns in x⋆ leads to another solution with
same objective value.
Note that a similar IP can be used to model the problem of Graph Partitioning, see
for instance [64] or [32].

Symmetry becomes in particular a problem when solving IPs with branch-and-
bound methods, because it makes the branching tree unnecessarily large. Therefore,
several techniques have been developed to reduce or even eliminate symmetry in
integer and linear programs. (For an overview, see for instance [85].)

(1) In some cases, it is possible to find a problem reformulation with reduced sym-
metry, for example by using a different set of variables. Examples are bin
packing, see [39], or the social golfers problem, see [110, 54]. However, breaking
the symmetry often leads to larger models (more variables, for instance).

(2) Another approach to break symmetry is perturbation. One can for instance
add a small random vector to the objective vector. Before, all elements in an
orbit G(x) are equivalent as they yielded the same objective value. After, they
become distinguishable in this sense. However, the solution space is in this
case the same and the computational effort to answer the question whether a
solution is feasible or not is not reduced.

(3) The third method consists in narrowing the set of feasible solutions by disre-
garding symmetric solutions, either in advance or during computation.

There are several possibilities to go for option (3). Prerequisite is the choice of
a representative (or a set of specific points) for each orbit. To take the (unique)
lexicographic maximal or minimal solution over other solutions is an idea which has
been popular for quite a long time in combinatorics (isomorphism-free backtracking,
see [103, 87]) or in constraint programming (see e.g. [36, 48]).

When solving IPs, there are two major ways to deal with unwanted solutions: one
can cut them off by adding inequalities; or one can use knowledge about them such
that respective subtrees in the branching tree will not be entered. In practice, a
mix of both methods can be used. Note that simply adding inequalities may impair
the model, since the number of inequalities grows.

In 2000, Rothberg ([104]) presented ideas for a systematic way to generate cuts
a priori by identifying dominated subsets of variables. (His method even applied to
mixed integer programs.) However, Rothbergs “domination cuts” were a rather ad
hoc approach coming from practice.

Friedman ([41]) proposed a different approach to generate cuts dynamically. Here,
H is given as a finite group of affine transformations of some 0/1-polytope P ⊆ Rn.
If for some set F ⊂ P, the set

{x ∈ P | ∃y ∈ F , ∃ δ ∈ H such that x = δ(y)}.

equals P, then F is called a fundamental domain. More concrete, fundamental
domains are constructed on the basis of an ordering vector c ∈ Rn

Fc := {x ∈ P | 〈c,x〉 > 〈c, δ(x)〉 ∀δ ∈ H}.

Friedman’s idea is to find separating hyperplanes between a fundamental domain
and the remaining points in P. However, since the choice of cost vector c is delicate
and the fundamental domains are usually not as refined as orbitopes (see below),
his framework is so far only of theoretical interest.

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 19

Another approach was undertaken by Margot in 2002. He transferred isomorphism-
free backtracking to branch-and-cut by pruning subtrees containing symmetric so-
lutions during computation (isomorphism pruning, see [82, 83]) and applied this
method later to coloring problems ([84]). Margot generated cutting inequalities to
fix subsets of variables to certain values while running the branching algorithm. A
similar approach, called orbital branching, has been formulated by Linderoth et al.
([97], further developed in [98]).

Herr and Bödi ([56, 55]) create projections of the constraints matrix and objective
vectors depending on the symmetry to obtain smaller IPs or LPs that with optimal
solutions of the same value as for the original problems. They apply their method
to IPs with full symmetric or alternating groups.

A somewhat different perspective has been taken by Kaibel and Pfetsch. Com-
ing from packing and partitioning problems, they were interested in the structure
of the convex hulls over certain two-dimensional 0/1-vectors that are lexicographic
maximal subject to some group operating on the columns of the vectors. Kaibel
and Pfetsch called these objects orbitopes ([65]. Of course, adding the inequalities
describing an orbitope to the IP formulation would break symmetries in the IP for-
mulation and therefore narrow the solution space. But the idea was that orbitopes
could do more: The linear description of orbitopes is not only separating the lexi-
cographic maximal representative from the remaining points in each orbit but also
ensuring integrality of the extremal points. Since Kaibel and Pfetsch had observed
that symmetry also seems to weaken the bounds from the LP-bounds relaxation of
the IP, their idea was that linearly describing orbitopes could lead to a deeper struc-
tural understanding of how to strengthen these bounds by an appropriate subset of
the inequalities describing the orbitope.

We will give a formal description of orbitopes in Definition 3.3.

Kaibel, Pfetsch and Peinhardt drew also combinatorial information from their
separation algorithm over packing and partitioning orbitopes to fix variables when
optimizing over subsets of the vertices of these orbitopes, for instance in graph
partitioning problems ([64]). Another approach was to add some of the facet defining
inequalities to the graph coloring polytope and to compare the resulting polytope
with a similar polytope defined by Méndéz-Dı́az and Zabala ([88, 90]. The latter had
enhanced the classic IP-model for graph coloring by inequalities inducing an order
on the color labels: before choosing color j, all colors 1 through j − 1 have to be in
use. (Recently, they developed a branch-and-cut-algorithm using their polyhedral
results, see [89].)

In our work, we will exclusively focus on the geometric aspects and polyhedral
properties of orbitopes. It is a different question (and would go too far) to investigate
if and how one can use those results to actually improve computations in practice.

2.2 Extended Formulations

Often, the facial structure of a polyhedron P ⊂ Rn associated with a linear problem
is too complex to be handled directly. This may become a problem when trying
to study the geometry of the polyhedron or when optimizing over it. If the lin-
ear problem describes a combinatorial problem, it can also happen that the linear
description of the feasible domain is growing exponentially in the size of the com-
binatorial problem. One way to overcome the problem is to search for a new set
of variables polynomial in size of the combinatorial problem, to formulate a new
polyhedron Q with easier facetial structure and/or smaller size of linear description
that can be linearly projected onto P. This is the general idea behind extended
formulations. (Note however that the face lattice of polyhedron P is isomorphic to

20 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

a sublattice of polyhedron Q. Therefore, Q will have at least as many faces as P;
see [62].)

Definition 2.3 (Projection) Let Q be a polyhedron in Rn × Rd defined by

Q := {(x,y) ∈ Rn × Rd | Ax + By 6 b},

with matrices A ∈ Qm×n and B ∈ Qm×d, and vector b ∈ Qm. The polyhedron

projx(Q) := {x ∈ Rn | ∃y ∈ Rd such that (x,y) ∈ Q}

is called the projection of Q onto the x-space or in Rn.

Let now Q̃ = {y ∈ Rd | B̃y 6 b̃} be some polyhedron in Rd described by

B̃ ∈ Qm×d and b̃ ∈ Qm, and let matrix S ∈ Qn×d induce a linear map σ : Rd → Rn

projecting Q̃ to σ(Q̃) = P in Rn. Then for the polyhedron

Q := {(x,y) ∈ Rn × Rd | B̃y 6 b̃, −1x + Sy = 0}
it holds that projx(Q) = P.

Definition 2.4 (Extended formulation) Let polyhedron Q be as in Definition 2.3.
If polyhedron P = projx(P), then we call a linear description of Q an extended
formulation for P. The extended formulation is called compact if the size of the
matrix (A,B, b) is polynomial in n.

Sometimes, one can use an extended formulation for a polyhedron P to derive a
linear description for P by characterizing the extreme rays of the associated projec-
tion cone.

Definition 2.5 The projection cone of Q is the polyhedral cone

C := {v ∈ Rm | vB = 0, v > 0},
with matrix B as defined in Definition 2.3.

Suppose, the set extr(C) of extreme rays of the projection cone is known, then a
linear description of polyhedron P can be easily obtained by the following classical
theorem:

Theorem 2.6 ([10]) Let polyhedron Q = {(x,y) ∈ Rn × Rd | Ax + By 6 b} and
projection cone C = {v ∈ Rm | vB = 0, v > 0} be given as above. Then

projx(Q) = {x ∈ Rn | (vA)x 6 〈v, b〉,v ∈ extr(C)}

Proof. The projection cone C is pointed, because C ⊆ Rm
+ . Therefore, C is gener-

ated by its extreme rays.
⊆©Let x ∈ projx(Q). Then by definition of projection, there is a y such that

(x,y) ∈ Q. Hence, Ax + By 6 b. Now let v ∈ extr(C); therefore, in particular
v > 0 and vB = 0 hold. Hence, multiplication from left gives

v(Ax + By) = (vA)x 6 vb.

⊇©Let x satisfy (vA)x 6 〈v, b〉 for all v ∈ extr(C). Then there is no conic
combination of extreme rays v′ > 0 such that v′B = 0 and v′(Ax − b) > 0,
because otherwise (v′A)x > 〈v′, b〉. Using Farkas’ Lemma, there must therefore
exist a y such that By 6 b−Ax, which means that x ∈ projx(Q).

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 21

One reason why extended formulations are interesting is that optimization over P
can be replaced by optimization over Q̃: as soon as the linear map σ : y 7→ x = Sy

is known, we can use it to define the map

σ⋆ : Rn → Rd,x 7→ y = S⊺x

adjoined to σ. Let now c ∈ Rn be some cost vector. Then

max({〈c,x〉 | x ∈ P}) = max{〈σ⋆(c),y〉 | y ∈ Q̃},

using the identity 〈S⊺c,y〉 = 〈c,Sy〉 = 〈c,x〉.

Extended formulations can be seen in a context with the classic method of lift-
and-project (for an overview, see for example [9, 10]). In literature, one can find
a large number of approaches to generating extended formulations more or less
automatically. We will only list a few of them:

x Lovász and Schrijver provide ways to construct extended formulations for gen-
eral 0/1-problems [78] and apply their method to develop a polynomial time
algorithm for the weighted stable set problem on certain graphs. A similar,
but more elaborate approach has been developed by Sherali and Adams [109].
In both approaches, the authors introduce new variables corresponding to
products of the original variables.

x Another common idea is the derivation of extended formulations from dynamic
programming algorithms due to Martin et al. ([86]).

x Also, disjunctive programming (for instance [8]) can be seen as a method to
generate canonical extended formulations for a certain class of polytopes. Let
a set of k nonempty polyhedra Pi = {x ∈ Rn | Aix 6 bi} be given, as well as
sets Vi of vertices and sets Ri of generators of the cones for each Pi, i ∈ [k].
Then the polyhedron

{y ∈ Rn | y =
k∑

i=1

µi, Aiµi 6 biµ
0
i ,

k∑

i=1

µ0
i = 1, (µi, µ

0
i) ∈ Rn+1, µ0

i > 0 ∀i ∈ [k]}

is an extended formulation for the polyhedron

conv(
k⋃

i=1

Vi) + cone(
k⋃

i=1

Ri).

x Haus, Köppe and Weismantel construct extended formulations when relaxing
knapsack relaxations in IPs (see [69]).

The use of extended formulations is a classic approach for proofs of the integral-
ity of a linear description. (See for example the proof of Balas and Pulleyblank
concerning the linear description of the perfectly matchable subgraphs of bipartite
([11]) and arbitrary graphs ([12].)

Extended formulations have been used in connection with the linear description of
hop-constrained path polytopes (Stephan, [111]), Gomory corner polyhedra (Köppe
et al. [70]), the stable set polytope for distance claw free graphs (Pulleyblank
and Shepherd [102]), the maximal clique problem with edge weights (Lee et al.
[100]), mixed integer programs in general (Wolsey [118]) or packing and partitioning
orbitopes (Faenza and Kaibel, [35]).

An overview on examples of the use of extended formulations can be found in the
excellent survey of Conforti, Cornuéjols and Zambelli ([26]).

We will mainly use extended formulations in connection with faithful sectionings
(see section 2.4).

22 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

Remark 2.7 Note that the fact that any polytope is the projection of a higher dimensional
standard simplex gives a trivial extended formulation for any polytope P: one simply maps
the i-th unit vector ei ∈ R|VP| to the i-th vertex in the vertex set VP of the polytope P.
However, this extended formulation does not yield much of an insight into the structure
of the original problem. Moreover, as the number of vertices of P is often exponential in
the dimension of the polytope, the same holds for the dimension of the simplex. On the
other hand, the simplex can be easily described as

{y ∈ R|VP| |
|VP|
X

i=1

yvi
= 1, yvi

> 0 ∀vi ∈ VP}.

To sum up, one can say that extended formulations are a way to spread difficulty
on two shoulders: instead of directly focusing on the linear description of a polyhe-
dron, one deals with the linear description of the extension polyhedron on the one
hand and with its linear projection on the other.

2.3 Dynamic Programming

In general, a combinatorial optimization problem is characterized by a finite ground
set G, a set of feasible solutions S ⊆ 2G of subsets of G and an objective function
f : S → Q which maps each solution to a specific rational value. The problem can
then be formulated as

min
x∈S

f(x).

A problem solvable by dynamic programming (DP) is a special case of a combina-
torial optimization problem. Here, the problem is solved by breaking it into finitely
many subproblems that can be solved in a stacked process. The subproblems are
usually referred to as stages and the solutions to the subproblems are called states.
A decision chooses states from earlier stages and transforms them into a new state.
Correspondingly, each state has a value assigned that is composed from the values
of a combination of earlier states and the cost of the transition. This value is com-
puted by the Bellman equations, following the optimality principle which can be
stated as follows: any sequence of decisions (also referred to as policy) d1, . . . , dn

is optimal only if for all k ∈ [n], subsequence dk, . . . , dn is optimal under the as-
sumption that decisions d1, . . . , dk−1 are done. (Detailed descriptions of dynamic
programming can be found for instance in [16], [17, 18] or [74].)

In the easiest case, every state arises from transforming a single predecessor state.
In this case, the policies correspond to simple s-t-paths in a common acyclic net-
work, where each node corresponds to a state and each decision is represented by
an arc. Node s represents an initial state and t a final (global) state. The optimal
policy corresponds to a path that is shortest with respect to the total sum of arc
weights in the path, where the arc weights correspond to the costs of transitions.
As a consequence, many problems solvable by DP are in fact solved by computing
a shortest path in a directed acyclic graph. Classical examples include the binary
knapsack problem (Bellman and Dantzig, [16]), the Dreyfus-Wagner-algorithm for
the computation of Minimum Steiner Trees ([30]), the dynamic programming ap-
proach to solve TSP, algorithms for sequence alignment, and subsequence counting
problems which have a certain practical importance in connection with DNA se-
quencing ([93, 72, 34]) or simple lot-sizing problems ([119]).

However, these models turn out to be too simple in cases where more than one
state must be combined for the computation of an output state (which can already
happen for more advanced lot-sizing problems). To model problems of this kind
in terms of graph theory, one makes use of directed acyclic hypergraphs instead
of common digraphs. This insight came up in the 1980s (see [51]; overviews in
[6, 43, 73]). Examples are multi echelon lot sizing problems ([7]) and some dynamic

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 23

programming algorithms derived from tree decompositions, for example Maximum
Stable Set on Trees (see e.g. [29, 3]). The following small example shows the idea:

Example 2.8 Problem Chain Multiplication ([68]): given a sequence of matrices A1 ∈Rd0×d1 through An ∈ Rdn−1×dn , one has to find a parenthesization such that the product
Qn

i=1 Ai is computed with as few computations as possible.

For this problem, the underlying hypergraph is H = (U ,A), where node set U contains
for each 1 6 k < ℓ 6 n one node uk,ℓ. In an optimal solution, state uk,ℓ has as value the
optimal number of computations for the matrix product of subsequence Ak through Aℓ.
The arc set A contains for each 1 6 j 6 k < ℓ 6 n one hyperarc ({uj,k, uk+1,ℓ}, uj,ℓ). The
weight of the hyperarc is the number of computations when multiplying product

Qk

i=j Ai

with product
Qℓ

i=k+1 Ai, i.e. value dj−1dkdℓ.

A solution corresponds to a W-t-hyperpath in this hypergraph, from W := {ui,i ∈
U | i ∈ [n]} to final state t := u1,n. The length of the hyperpath is determined by the total
sum of its arc weights.

Looking at the matter from a geometric point of view, the convex hull over in-
cidence vectors characterizing the W-t-hyperpaths in a hypergraph H = (U ,A)
associated to the underlying problem becomes interesting. Several choices of vari-
ables can be thought of to describe the hyperpaths in H . It immediately suggests
itself to encode the hyperpaths by incidence vectors x ∈ {0, 1}A, setting xa = 1 if
and only if arc a is used in the hyperpath. However, one could also describe the
hyperpath by the nodes it is passing through or think of a mix of both descriptions.

Definition 2.9 Let H = (V ,A) be some directed hypergraph with W ⊆ V and
t ∈ V . We will call the convex hull over all incidence vectors in {0, 1}V of subsets
V [L] ⊆ V induced by W-t-hyperpaths L in H the hyperpath set polytope in node
space, and the convex hull of all incidence vectors in {0, 1}A of W-t-hyperpaths in
H the hyperpath polytope in arc space.

Remark 2.10 We remark that if H is a B-F-hypergraph and W = {s}, then W-t-hyperpaths
become in fact simple s-t-paths in a common digraph. In this case, the hyperpath set
polytope is what is in literature referred to as path set polytope (see e.g. [112]).

Moreover, we note that a description of the W-t-hyperpath polytope in a combination
of arc and node variables is provided by means of the more general concept of branched
polyhedral systems which will be studied in chapter 5.

If there is a linear projection σ projecting any characteristic vector of a hyperpath
(policy) with respect to nodes to the corresponding solution, then the hyperpath
set polytope together with σ provides an extended formulation for the polyhedron
of solutions.

However, it is NP-hard to determine shortest hyperpaths in general directed
(hyper)graphs (for common digraphs, it is obvious that Hamilton Path is a spe-
cial case); hence, a “nice” linear description of the hyperpath set polytope can not
be expected in general. (See page 3.) The situation looks different when we con-
sider classes of hypergraphs, in particular the following class that conforms to the
properties of many dynamic programming algorithms.

Definition 2.11 (DP hypergraphs) A hypergraph H = (U ,A) will be called DP
hypergraph if it has the following properties:

[dph1] H has a unique sink t, i.e. one single node t such that there is no arc a ∈ A
with t ∈ tail(a).

[dph2] H is an acyclic B-hypergraph.
As U is finite and H is acyclic, there must exist a set of nodes

∅ 6=W = {w ∈ U | ∄a ∈ A such that w ∈ head(a)}.

24 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

We call W the source nodes of H . Moreover, from the acylicity and the
uniqueness of sink t follows that H is connected.

[dph3] For any W-t hyperpath L in H , it holds that the relaxation of (U [L],L) is
an arborescence rooted at t.

It is easy to see that DP hypergraphs reproduce the properties of many dynamic
programming algorithms.

x A DP hypergraphH = (U ,A) is a B-hypergraph. This reflects the fact that in
each computational step, subsets of states are transformed into single output
states.

x H has a unique sink t, which serves as a “final state”, along with a set of
sources W ⊂ U such that none of the nodes in W is head node of any arc in
A.

x H is acyclic; we are not interested in cycling algorithms.

Remark 2.12 In a hypergraph H = (U ,A) complying to [dph1] and [dph2], there exists
for every node u ∈ U a W-t-hyperpath passing through node u.

Why is this so? Certainly, we can bring U in a topological order such that for each arc
a ∈ A, v ≻ w for v ∈ head(a) and for all w ∈ tail(a). We will now construct a hyperpath
L ⊆ W containing some node u. If u = t, we initialize L by setting L = ∅. Otherwise, we
let L initially consist of a set of arcs a1, . . . , an with the following properties:

x u ∈ tail(a1)
x head(ai) ∩ tail(ai+1) 6= ∅, i = 1, . . . , n − 1
x head(an) = {t}

This series of arcs must exist as H is an acyclic hypergraph with unique sink t. Note
that for each node v ∈ U [L], there cannot be more than one arc in L having v in its head
because of the acyclicity of H .

Next, we define the set of “open ends”

U◦
L := {v ∈ U [L] | v /∈ W and ∄a ∈ L such that v ∈ head(a)}

We extend L to become a hyperpath by repeatedly applying the following steps:

(1) If U◦
L 6= ∅, choose the topologically largest node v ∈ U◦

L,
(2) add an arc a ∈ A r L to L with head(a) = {v}, and
(3) update U◦

L accordingly.

Note that node v chosen in (1) cannot be in W by definition of U◦
L. But by Definition 2.11

of W, it holds that for every node v /∈ W, there must be an arc a with {v} = head(a), and
a /∈ L by definition of U◦

L. Hence, the arc a added in (2) must exist. After the update, U◦
L

contains only nodes topological smaller than v. As the vertex set U is finite, the algorithm
must therefore terminate with U◦

L = ∅.

By construction, there is for each node v ∈ U [L]rW exactly one arc in L with head(a) =
{v}. Moreover, for any arc a ∈ L, it holds that head(a) ∩ W = ∅. So, we can order the
arcs in L according to the topological order of their head nodes. This ordered arc set
obviously satisfies [p1] and [p2]. Moreover, it is not possible to remove a subset of arcs
from L without violating [p1] and [p2], because then, there exist nodes that are not head
of any arc in L. Hence, L is a hyperpath.

From Lemma 1.2, we get already that the relaxation DL of (U [L],L) is an acyclic
digraph for any hyperpath L. [dph3] ensures that DL does even not contain any
undirected cycles.

Remark 2.13 Condition [dph3] can be alternatively formulated by introducing a reference

set system R, as Martin et al. do. (See [86]):

[dph3’] Each node u ∈ U of the hypergraph is labeled with a nonempty set R(u) ∈ R such
that for each arc a ∈ A, it holds:

x u, v ∈ tail(a) with u 6= v ⇒ R(u) ∩R(v) = ∅
x u ∈ tail(a), v ∈ head(a) ⇒ R(u) ⊆ R(v)

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 25

Figure 2.1: Condition [dph3’] forbids in particular cycles with more than one sink in W-t-
hyperpaths.

Proof. ⇒©We develop R from [dph3]. Since H is acyclic, we can bring the node set U in
topological order. Starting in that order from the last node in W, we set R(v) := v if
v ∈ W and R(v) :=

S

u∈predH(v) R(u), otherwise. Obviously, we get for any a ∈ A with

head(a) = v that for all u ∈ tail(a), the inclusion R(u) ⊆ R(v) is satisfied.

Now assume that there exists an arc a with head(a) = v, u, w ∈ tail(a), u 6= w, and
R(u) ∩ R(w) 6= ∅. Then we can choose two sequences of arcs Lα := (α1, . . . , αk) and
Lβ := (β1, . . . , βℓ) such that

(i) α1 = β1 = a,
(ii) head(αi) ∈ tail(αi−1) for all 1 < i 6 k and, similarly,

head(βi) ∈ tail(βi−1) for all 1 < i 6 ℓ,
(iii) tail(αi) ∩ tail(βj) = ∅ for all i < k, j < ℓ, and
(iv) tail(αk) ∩ tail(βℓ) 6= ∅.
Furthermore, we can as in the proof of remark 2.12 choose a set Lt ⊆ A connecting node v
with node t. We define initially a set L as Lt ∪ Lα ∪ Lβ. Proceeding algorithmically as in
the proof of remark 2.12, we end up with a set L of arcs that has all open tail nodes in W
and a single open head node in node t. We claim that L is a hyperpath. [p1] and [p2] are
obviously satisfied, and since by construction deleting a subset of arcs from L leaves open
tail nodes not in W, we get that [p3] is satisfied, too. So we found an hyperpath which
has a relaxation that is not an arborescence, contradicting [dph3].

⇐©Assume that [dph3’] holds for DP hypergraph H . It suffices to show that for any W-
t-hyperpath L, DL = (U [L],L) does not contain undirected cycles. Assume the contrary.
Each undirected cycle C in the undirected version GL of digraph DL must contain a unique
sink. Otherwise, there must be an arc a in L violating condition R(u) ∩ R(w) = ∅ for
all u, w ∈ tail(a), u 6= w (see figure 2.1). This implies that there is also a unique source
in C. Moreover, each cycle C must contain one unique node vmax

C (vmin
C) that is maximal

(minimal) among all nodes in C with respect to the topological order of DL. Since there
is only one source in C, for all nodes v in C holds that R(vmin

C) ⊆ R(v).

We proceed by induction along the topological order of DL to show that no node in
U [L] can serve as a maximal node in a cycle C. Clearly, there can not be a cycle C with
vmax
C among the sources W by definition of W.

Now assume that there is an undirected cycle C such that vmax
C /∈ W is maximal node in

C. Let u, w be the direct predecessors of vmax
C such that arcs (u, vmax

C) and (w, vmax
C) are

both in C. As ∅ 6= R(vmin
C) ⊆ R(u)∩R(w), there can be no arc a in L with {u, w} ⊆ tail(a)

because of [dph3’]. So u and w must be in the tails of two different arcs au and aw with
head(au) = head(aw) = {vmax

C }. The proof of Lemma 1.2 shows that one of these arcs
must be dispensable. Hence, L cannot be a hyperpath. Contradiction.

Martin et al. gave a complete linear description of the path polytope in arc
variables for DP-hypergraphs ([86]):

26 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

Theorem 2.14 ([86]) Let H = (U ,A) be a DP hypergraph. Then the follow-
ing inequalities provide a complete linear description of the path polytope of W-t-
hyperpaths in arc space:

∑

a∈δin
H

(t)

xa = 1 (2.1)

∑

a∈δin
H

(u)

xa −
∑

a∈δout
H

(u)

xa = 0 ∀u ∈ U r (W ∪ {t}) (2.2)

xa > 0 ∀a ∈ A (2.3)

If we additionally postulate that H is a BF-hypergraph (i.e. a common digraph),
then this description becomes the well-known linear description of the path polytope
(in arc variables) for acyclic digraphs (see [57]).

As will be shown later (see page 55), the DP algorithm for optimization over
orbitopes (see figure 3.9) allows the construction of a corresponding DP-hypergraph.
For the special case of orbisacks, it is even possible to achieve a complete description
of the hyperpath set polytope (in node variables on this hypergraph).

2.4 Faithful Sectioning

Faithful sectioning can be a useful tool to derive the H-representation of a polyhe-
dron from its V-representation. The idea is not completely new. However, as far
as we know, it has never been introduced systematically. In the literature, faithful
sectionings are not explicitly tagged, but informally described as a reduction of one
polyhedron to another (see for instance [107]).

Definition 2.15 Let σ : Rd → Rn be a linear projection from Rd to Rn. We call a
map s : Rn → Rd a σ-section, if σ(s(x)) = x for all x ∈ Rn.

Let now Ax 6 b be a set of linear inequalities with A ∈ Qm×n and b ∈ Qm that
is valid for polyhedron P, and let Q be a polyhedron in Rd which is projected to
P by means of the projection σ. The main idea is to show that for each x ∈ Rn

satisfying Ax 6 b, the relation s(x) ∈ Q holds.

Definition 2.16 We say that the inequality system Ax 6 b is Q-enforcing for s
if and only if for all x ∈ Rn satisfying Ax 6 b it follows that s(x) ∈ Q.

Theorem 2.17 Let polyhedra P ⊆ Rn and Q ⊆ Rd be given. Moreover, let a set
of linear inequalities Ax 6 b with A ∈ Qm×n and b ∈ Qm be given that are valid
for P. Let σ : Rd → Rn be a linear projection such that σ(Q) ⊆ P and let the map
s : Rn → Rd be a σ-section. If the inequalities Ax 6 b are Q-enforcing for s, then
P = {x ∈ Rm | Ax 6 b}.

Proof. Figure 2.2 illustrates the idea. Let P′ denote the set {x ∈ Rn | Ax 6 b}.
Clearly, P ⊆ P′, because the set of inequalities is valid for P. So it remains to show
that P′ ⊆ P. Let x ∈ P′. As the inequalities are Q-enforcing for s, s(x) ∈ Q.
However, σ(Q) ⊆ P, and as s is a σ-section, σ(s(x)) = x holds. Hence, x must be
in σ(Q) and therefore in P.

As will be shown in the following, the application of this method does not nec-
essarily require an educated “guess” at the linear description of P. Moreover, we
remark that map s does not have to be defined in every point in Rn. Instead, it

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 27

σs

P

Q

Rn

Rd

s(x)

x

Figure 2.2: Projection σ and σ-sectioning s.

suffices for s to be defined for all x ∈ {x ∈ Rn | Ax 6 b}, since it can be extended
arbitrarily to Rn.

In what follows, we will present some instructive examples for the application of
faithful sectionings.

2.4.1 Applications and Examples

2.4.1.1 The Clique Polytope with Clique Size 2

Definition 2.18 (Clique polytopes) Let G = (V , E) be a graph and let Ck be a k-
clique in G. The incidence vector x[Ck] ∈ {0, 1}V induced by Ck has entries xv = 1
if and only if v ∈ Ck. For k = 0, we define x[C0] := 0. Denoting by

X k := {x ∈ {0, 1}V | ∃k-clique Ck in G such that x = x[Ck]},

we define the k-clique polytope as

Pk(G) := conv(X k),

the clique polytope with bounded clique size k as

P6k(G) := conv(

k⋃

i=0

X i),

The clique number ω(G) of graph G denotes the size of a largest clique in G. The
polytope P6ω(G) is called the clique polytope.

As the cliques of graph G correspond to stable sets in the complement G of G,
polytope Pk(G) is isomorphic to the convex hull of stable sets of size k in G for
any k. However, finding an independent set of maximal size in G (or, equivalently,
finding a k-clique of maximal size in G) is an NP-hard problem in general graphs
([46]). In the sense of the results of Papdimitriou and Karp (see page 3, there is no
hope of obtaining a “nice” complete linear description for Pk(G) or P6k(G).

But even for graph classes with known efficient algorithms for Max Indepen-
dent Set — as for instance apple (pan) free graphs (which include the claw free
graphs, see [22]) or 2K2-free graphs (see [79]) — there is no description for stable
set polytopes available. However, there is a lot of development in this field. A
complete description of P6ω(G)(G) was formulated some years ago by Eisenbrand

28 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

s

t
a

b

c

de

a(1)

a(2)

b(1)

b(2)

c(1)

c(2)

d(1)

d(2)

e(1)

e(2)

V (1)

V (2)

Figure 2.3: A graph G and its associated digraph D used in the construction of the extended
formulation for P62. Gray arcs — except arc (t, s) — have lower capacity bound 0 and upper
capacity bound +∞.

et al. for quasi-line graphs ([33]). Ventura et al. found a linear description (by
extended formulation) for geared (fuzzy) line graphs ([45, 44]) and Oriolo et al.
recently obtained a description for claw free graphs with stability number at least
4 and containing neither homogeneous pairs nor 1-joins ([96]. The latter proof is
especially interesting for us as it relies on graph decomposition and is related to
branched polyhedral systems (see chapter 5; in fact, Oriolo et al. are using the
strip-decomposition of graphs proposed by Chudnovsky and Seymour, see [25]).

Much less is known about the linear description of polytopes P6k, although for
fixed k, optimization can be done in polynomial time. (Note that checking every
subgraph of size at most k to be a clique costs time of O(nkk2) in a graph with n
nodes.)

Janssen and Kilakos found a linear description of the polytope P62(G) for general
graphs G, formulated from the stable set point of view ([59]). Their proof is based
on the work of Cook and Shepherd ([108]) and the use of sequential liftings ([99]).
However, it has slight flaws concerning the characterization of facets (see 2.27).

Our own experiments show that for P6k(G), things become much more involved
if k > 3 and G is a general graph. For graphs G with bipartite complement, i.e. for
graphs with a vertex set that can be partitioned into two subsets each inducing a
complete subgraph, Janssen and Kilakos gave a linear description of P63(G).

In what follows, we will use the technique of faithful sectioning to (re)prove a
linear description of P62 for some given graph G = (V , E). The main idea is
the use of an extended formulation based on the cycle polytope of a digraph D
associated with G. While a complete “nice” description of the cycle polytope of
general digraphs seems out of reach, it can nevertheless be formulated for special
digraphs. In our case, we will derive the cycle polytope for a special digraph from
the circulation polytope of D using Hoffman’s theorem describing circulations in
arbitrary digraphs.

Theorem 2.19 (Circulation theorem, [57]) Let D = (W ,A) be some digraph with
upper capacity bound ua ∈ R ∪ {−∞,+∞} and lower capacity bound ℓa ∈ R ∪
{−∞,+∞} on each arc a ∈ A. Then a circulation exists if and only if

∑

a∈δin
D

(S)

ℓa 6
∑

a∈δout
D

(S)

ua ∀S ⊂ W.

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 29

Moreover, if there is a feasible circulation in D and if ℓ and u are both integral,
then there exists an integer-valued feasible circulation.

Definition 2.20 We call the set of all circulations in some digraph D = (W ,A)

Q�(D,u, ℓ) := {y ∈ RA |
∑

a∈δin
D (w)

ya −
∑

a∈δout
D (w)

ya = 0 ∀w ∈ W , ℓa 6 ya 6 ua ∀a ∈ A}

the circulation polyhedron of D. Polyhedron Q�(D,u, ℓ) is integral if u and ℓ are
integral. (This follows from the total unimodularity of the constraints matrix, since
the V-E-incidence matrix of any digraph is total unimodular.)

Now let us return to P62(G) on graph G = (V , E). We define a digraph D =
(W ,A) with node set W defined as

W := (V × {1, 2}) ⊎ {s, t}.

SoW is the union of two copies V1 and V2 of the node set V of G and two additional
nodes s and t. For a node v ∈ V or subset of nodes U ⊆ V , we denote by vi ∈ V i or
U i ⊆ V i, i ∈ {1, 2}, their respective copies. The arc set A of D is defined as the set
containing

x the arc (t, s),
x all arcs pointing from s to V1 ∪ V2,
x all arcs pointing from from V1 ∪ V2 to t, and
x for any edge {v, w} ∈ E one arc (v1, w2) and one arc (w1, v2).

Figure 2.3 shows an example for a graph G and its associated digraph D.

Defining upper and lower capacity bounds u⋆, ℓ⋆ ∈ RA as follows

ℓ⋆a := 0 for all a ∈ A

u⋆
a := 1 for a = (t, s)

u⋆
a := +∞ for all a ∈ Ar {(t, s)},

we obtain a circulation polytope Q�(D,u⋆, ℓ⋆) on D, which is bounded because of
the bounds on arc (t, s).

We are now ready to fix the ingredients for the faithful sectioning.

Definition 2.21 We provide a projection σ as follows:

σ : RA → RV with σ(y)v = y(s,v1) + y(v2,t).

Moreover, we define a map s : RV
+ → RA which is mapping any point x ∈ RV

+ to an
arbitrary point in the circulation polytope Q�(D,ux, ℓx), if the latter is not empty,
and to an arbitrary point in RA otherwise. Upper and lower capacity bounds ux

and ℓx are defined as follows:

ℓx(s,v1) := xv

2

}
for all v ∈ V

ℓx(v2,t) := xv

2

ℓxa := 0 for all other a ∈ A

ux
(s,v1) := xv

2

}
for all v ∈ V

ux
(v2,t) := xv

2

ux
(t,s) := 1 for a = (t, s)

ux
a := +∞ for all other a ∈ A,

30 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

In figure 2.3, any gray arc except arc (t, s) gets lower capacity bound 0 and upper
capacity bound +∞. All black arcs get lower and upper bound xv

2 , where v1 is end
node or v2 is start node of the arc, respectively.

Lemma 2.22 σ(Q�(D,u⋆, ℓ⋆)) ⊆ P62(G).

Proof. For any circulation y in D = (W ,A) it holds that the flow on each arc in D
is implicitly bounded from above by 1 by construction of D and the upper bound on
arc (t, s). Moreover, ya > 0 for any a ∈ A. By Theorem 2.19 and Definition 2.20, we
get that each vertex y of Q�(D,u⋆, ℓ⋆) is integral, which means that in particular
ya ∈ {0, 1} for each a ∈ A. Hence, supp+(y) is a simple cycle in D for each
vertex y, and by construction of D, σ(y) is a vertex of P62(G). As σ is linear,
σ(Q�(D,u⋆, ℓ⋆)) ⊆ P62(G).

Lemma 2.23 If the polytope Q�(D,ux, ℓx) is nonempty, then σ(s(x)) = x.

Proof. If polytope Q�(D,ux, ℓx) is nonempty, then there is a feasible circulation in
D satisfying upper and lower bounds. This circulation must send xv

2 units of flow
over arcs (s, v1) and (v2, t) for all v ∈ V . Hence, σ(s(x)) = x.

The crucial observation is that for any x ∈ RV ,

Q�(D,ux, ℓx) ⊂ Q�(D,u⋆, ℓ⋆).

Hence, if polytope Q�(D,ux, ℓx) is nonempty for some x ∈ RV , then s(x) ∈
Q�(D,u⋆, ℓ⋆). This means: if we ensure by some set of inequalities that for any
x ∈ RV satisfying these inequalities, polytope Q�(D,ux, ℓx) is nonempty, then
this inequality system is at the same time Q�(D,u⋆, ℓ⋆)-enforcing for s. However,
this wanted inequality system has in general already been formulated in the main
statement in Hoffman’s circulation theorem.

Lemma 2.24 The following set of inequalities is Q�(D,u⋆, ℓ⋆)-enforcing for s:

2
∑

v∈T

xv +
∑

v∈Vr(T ∪NG(T))

xv 6 2 ∀T ⊆ V stable in G (2.4)

xv > 0 ∀v ∈ V (2.5)

Proof. By Theorem 2.19, there is a circulation in Q�(D,ux, ℓx) if and only if
∑

a∈δin
D

(S)

ℓxa 6
∑

a∈δout
D

(S)

ux
a ∀S ⊂ W. (*)

However, we observe:
x If s ∈ S and there is a node v ∈ V2 with v /∈ S, then the right-hand side of

(*) becomes +∞, and
x if {s} ∪ V2 ⊆ S, then the left-hand side of (*) becomes 0, as there is no arc a

entering S with ℓa > 0.
x Similarly, if t /∈ S and S ∩ V1 6= ∅, then the right-hand side of (*) becomes

+∞ and
x if t /∈ S and S ∩ V1 = ∅, then the left-hand side of (*) becomes 0.
x If there is an arc a ∈ V1 × V2 with a ∈ δout(S), then the right-hand side of

(*) becomes +∞.
In all these cases, inequality (*) is trivially satisfied. Hence, we can in the following
assume that

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 31

V

W r {s, t}

V1 V3V2 V4

V1
1 V1

2 V1
3 V1

4

V2
1 V2

2 V2
3 V2

4

Figure 2.4: Partitioning node set V1 ∪ V2. If V1
i and V1

j are not connected with a line, then we

can assume that there is no arc in V1
i : V1

j , as described in the proof. Subsets of S are gray. The

partition of W induces a partition of V (dashed sets).

(i) s /∈ S, that
(ii) t ∈ S and that
(iii) (S ∩ V1) : (S ∩ V2) = ∅.

Now we partition W into sets V i
1 through V i

4, i ∈ {1, 2}, such that

V1
1 ∩ S = ∅ and V2

1 ∩ S = ∅ V1
2 ⊆ S and V2

2 ∩ S = ∅

V1
3 ∩ S = ∅ and V2

3 ⊆ S V1
4 ⊆ S and V2

4 ⊆ S.

Note that this partitions at the same time set V into sets V1 through V4; see fig-
ure 2.4.

So, we can write the left-hand side of (*) as follows:

∑

a∈{s}:V1
2

ℓxa +
∑

a∈{s}:V1
4

ℓxa +
∑

a∈{s}:V2
3

ℓxa

︸ ︷︷ ︸
=0

+
∑

a∈{s}:V2
4

ℓxa

︸ ︷︷ ︸
=0

+

∑

a∈V1
1 :{t}

ℓxa

︸ ︷︷ ︸
=0

+
∑

a∈V1
3 :{t}

ℓxa

︸ ︷︷ ︸
=0

+
∑

a∈V2
1 :{t}

ℓxa +
∑

a∈V1
2 :{t}

ℓxa =

=
1

2

∑

v∈V1

xv +
∑

v∈V2

xv +
1

2

∑

v∈V4

xv.

Because of (iii), V1
i : V2

1 = ∅ and V1
i : V2

2 = ∅ for i ∈ {2, 4}. So the right-hand side
of (∗) becomes u(t,s) = 1. We obtain the following inequality:

∑

v∈V1

xv + 2
∑

v∈V2

xv +
∑

v∈V4

xv 6 2 (2.6)

Observation (iii) also implies that V2 is a stable set in G. Moreover, there are no
edges between V1∪V4 and V2 in G. Hence V1∪V4 ⊆ Vr(V2∪NG(V2)). In particular,
every inequality from (2.6) is dominated by an inequality from (2.4) with V2 = T
and V1∪V4 ⊆ Vr(T ∪NG(T)), since we can additionally assume that xv > 0 for all
v ∈ V . Therefore, it suffices to use inequalities (2.4) in connection with (2.5).

Observation 2.25

(a) The dimension of P
62(G) ⊆ RV is |V| because it contains 0 and standard unit vectorsev for all v ∈ V.

32 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

a2 a3

a5

k

a1

a4

Figure 2.5: Inequality
P

v∈A xv + 2
P

v∈K xv 6 2 is not facet defining in this graph.

(b) For the considerations below, the dimension of P
2(G) is also of interest. This di-

mension is clearly the rank of the node-edge incidence matrix of G = (V, E) (i.e.,
the dimension of the linear subspace spanned by P

2(G)) minus one (since P
2(G) is

contained in the hyperplane defined by
P

v∈V xv = 2). As the rank of the node-edge
incidence matrix of a connected graph with n nodes equals n− 1 if the graph is bipar-
tite and n otherwise (see e.g. [23]), we get that dim(P2(G)) = |V| − 1 − β(G), with
β(G) the number of bipartite components of G.

Proposition 2.26 For any graph G = (V , E), the following set of inequalities is a
complete non-redundant linear description for P62(G):

2
∑

v∈S

xv +
∑

v∈Vr(S∪NG(S))

xv 6 2 (2.7)

xv > 0 ∀v ∈ V (2.8)

for all S ⊆ V that are (possibly empty) stable sets in G, where G[V r (S ∪NG(S))]
does not contain any bipartite component.

Proof. The set of inequalities (2.4) and (2.5) provides a linear description of P62(G)
as all prerequisites for Theorem 2.17 are satisfied:

x The set of inequalities (2.4) and (2.5) is obviously valid for P62(G).
x By Lemma 2.22, σ(Q�(D,u⋆, ℓ⋆)) ⊆ P62(G).
x By Lemmas 2.23 and 2.24, s is a σ-section for any x satisfying inequalities (2.4)

and (2.5).
x Finally, by Lemma 2.24, the inequalities are Q�(D,u⋆, ℓ⋆)-enforcing.

If x ∈ {0, 1}V is active for an inequality (2.4), then x is
x either the incidence vector of a 2-clique in G[V r (S ∪NG(S))] or
x ev for some v ∈ S or
x the incidence vector of a 2-clique that intersects with S.

From this and Observation 2.25 (b) follows that the affine dimension of the face
defined by the inequality is |V|−1−β, where β is the number of bipartite components
in V r (S ∪NG(S)). Hence, an inequality (2.4) is facet defining if and only if there
are no bipartite components in V r (S ∪NG(S)).

Consider now the active vertex set for inequality xv > 0. It contains all vertices
induced by 1- and 2-cliques C with v /∈ C together with the 0-clique. Thus, its
convex hull is the same as PC≤2(G′) for graph G′ arising from G by dropping v and
all edges adjacent to v. The dimension of PC≤2(G′) is |V| − 1.

Remark 2.27 This corrects the results of Janssen and Kilakos, who erroneously characterize
inequalities as facet defining which in fact are not, as example graph G in figure 2.5 shows.

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 33

The blank node K in the graph represents a clique which is adjacent to all nodes in the
set A = {a1, a2, a3, a4, a5} of (gray) nodes. So the following conditions are satisfied:

x Every maximal stable set in G[A] has size at least 2.
x G[A] has a stable set of size at least 3.
x K is maximal clique in Ñ(A) :=

T

v∈A NG(v) r A, where NG(v) denotes the neigh-
bourhood of v in G.

However,
X

v∈A

xv + 2
X

v∈K

xv 6 2

is not facet defining as Janssen and Kilakos claim, because it is the sum of inequalities

X

v∈K

xv + xa4 +
1

2
(xa1 + xa2 + xa3) 6 1 and

X

v∈K

xv + xa5 +
1

2
(xa1 + xa2 + xa3) 6 1.

We close this section by characterizing P2(G) linearly. This polytope is a face
of P62(G), namely the intersection of P62(G) with equation

∑
v∈V xv = 2. Sub-

tracting this equation from inequalities (2.4), we get that the following inequality
set ∑

v∈T

xv −
∑

v∈NG(T)

xv 6 0 ∀T ⊆ V stable in G (*)

holds for any point in P2(G). Any face of P2(G) defined by an inequality from (*)
is isomorphic to P2(G′) with G′ the graph arising from G by deleting all edges with
one end in NG(T) and the other end not in T . Similarly, for every v ∈ V , the face
of P2(G) defined by xv > 0 is isomorphic to P2(G′′), where G′′ arises from G by
removing v.

This establishes the following

Proposition 2.28 For any graph G = (V , E), the following set of inequalities pro-
vides a complete non-redundant linear description for P2(G):

∑

v∈V

xv = 2

∑

v∈T

xv −
∑

v∈NG(T)

xv = 0 for all T ∈ B

∑

v∈T

xv −
∑

v∈NG(T)

xv 6 0 for all T ∈ S

xv = 0 for all isolated nodes v ∈ V

xv > 0 for all v ∈ Ṽ

where

x B is the family of subsets of V containing from each bipartite component of G
exactly one of the two shores,

x S is the family of stable sets T ⊆ V of G with the property that removing from
G all edges in T : (V r NG(T)) increases the number of bipartite components
by exactly one, and

x Ṽ contains all nodes of G that can be removed without changing the number
of bipartite components of G.

34 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

Digression: the Edge Expansion of the Graph of P2(G)

Let P be some polytope with graph H = (VH , EH). (For the definition of the graph
of a polytope, see page 15.) The edge expansion of P is then defined as

χe(P) := min
0⊂S⊂VH

|S|6
|VH |

2

(
|δ(S)|

|S|

)

The vertex expansion of the polytope is defined as

χv(P) = min
0⊂S⊂VH

|S|6
|VH |

2

(
|NH(S)|

|S|

)
,

where NH(S) is the set of neighbours of S in VH r S. It is an open question
whether the edge expansion of every 0/1-polytope is equal or larger than one (this
has been conjectured by Mihail and Vazirani, see e.g. [37] and [91]). Clearly, the
edge expansion is bounded from below by the vertex expansion. Unfortunately, 0/1-
polytopes with (arbitrary) small vertex expansions do exist; they can be generated
by means of probabilistic methods (see eg. [49]).

In contrast to this, we will show in Example 2.30 that P2(G) can be used for
a deterministic construction of polytopes with vertex expansion < 1. We will also
show that P2(G) has always edge expansion equal or larger than one.

We start with the characterization of adjacency in the graph of P 2(G). We will
use the fact that two vertices of the polytope are adjacent in the graph of the
polytope if and only if there is a linear cost functional maximized by exactly these
two vertices.

Lemma 2.29 Let e := {u, v} and f := {s, t} be edges in G = (V , E). Then vertices
x[e] and x[f] of P2(G) are adjacent in the graph of the polytope if and only if e and
f are not opposites in a four-cycle in G.

Proof. ⇐©Let e and f be no opposites in every 4-cycle. Let K the edge set of the
complete graph on nodes u, v, s, t except of edges e and f . We will construct a
cost vector c which is maximized by x[e] and x[f] only. We have to distinguish the
following cases:

(i) e and f are incident in G, w.l.o.g. at node v = s. Define vector c with cu := 1,
cv := 2, ct := 1, components 0 otherwise. The maximum cost value of 3 is
only achieved by x[e] and x[f].

(ii) e and f are not incident and E ∩ K = ∅. Use then vector c with cu := 1,
cv := 1, cs := 1, ct := 1 and components 0 otherwise.

(iii) e and f are not incident and |E ∩ K| = 1. We can w.l.o.g. assume that edge
{u, s} exists. (Other constellations are isomorphic.) Use cv := 2, ct := 2,
cu := 1, cs := 1 and components 0 otherwise.

(iv) e and f are not incident and |E ∩ K| = 2. We can w.l.o.g. assume that edges
{u, s} and {v, s} exist. (Since e and f are not in a four-cycle by assumption,
all other constellations are isomorphic.) Use cu := 2, cv := 2, cs := 1, ct := 3
and components 0 otherwise.

⇒©Let now e and f be opposites in a four-cycle. W.l.o.g, the other edges in the
cycle are {u, s} and {v, t}. Assume we could find a cost vector c maximized by x[e]
and x[f] only. Its components have to satisfy the following system of equations and
inequalities:

cu + cv = ζ cs + ct = ζ

cu + cs < ζ cv + ct < ζ

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 35

G1 G2

V1
1

V2
1

V1
2

V2
2

Figure 2.6: Example for graph G7,3 inducing polytope P2(G7,3) with small vertex expansion.
Dotted edges are “red”, solid edges are “blue”.

So

cu + cs︸ ︷︷ ︸
<ζ

+ cv + ct︸ ︷︷ ︸
<ζ

!
= 2ζ.

Contradiction.

Example 2.30 The vertex expansion of the graph of P
2(G) can be as small as 2(

√
2−1)+ǫ

for some ǫ > 0, as the following example shows.

Let G1 := Km,m and G2 := Kn,n be two complete bipartite graphs. Graph Gj has
vertex set Vj := V1

j ⊎ V2
j and edge set Ej = V1

j × V2
j for j ∈ {1, 2}.

We construct the graph Gm,n from G1 and G2 by adding all edges {u, v} with u ∈ V j
1

and v ∈ V j
2 , j ∈ {1, 2}. (See fig. 2.6 for an example with m = 7 and n = 3.)

Now we color all edges inside G1 red and all other edges blue. This induces sets of red
and blue nodes in the graph of polytope P

2(Gm,n). We will study the adjacency of those
red and blue nodes.

As long as n2 + 2mn > m2, there are at least as many blue than red nodes. There
can be no connection between blue nodes coming from edges in the graph G2 and any
red node, since the corresponding edges in Gm,n are opposites in 4-cycles. On the other
hand, any other blue node is connected to a red node. Hence, the red nodes have 2mn
blue neighbours. (In the example, there are 49 red edges and 51 blue ones, and the blue
neighbourhood of the red node set has cardinality 42.)

For m,n > 0 with n2 + 2mn > m2, the vertex expansion of the graph of P
2(Gm,n)

is therefore bounded from above by 2n
m

. This value becomes smallest for m as large as

possible, which is the case if n2 + 2mn − m2 = 0. This implies a bound of 2(
√

2 − 1) ≈
0.82843.

Proposition 2.31 P 2(G) has an edge expansion of at least 1.

Proof. Let G = (V , E) and let H := (Ṽ , Ẽ) be the graph of polytope P2(G). To dis-
tinguish the edges in G from the edges in H , we will refer to the latter as meta-edges.
We color an arbitrary nonempty set of edges ER ⊂ E “red” and the complement
EB := E r ER “blue”, where |ER| 6 |EB|. This induces sets ṼR ⊂ Ṽ and ṼB ⊂ Ṽ
of red and blue nodes in H . Moreover, we define a blue subgraph B := G[EB], a
red subgraph R := G[ER], and a set VB := {v ∈ V | degB(v) > 1} containing all
vertices in V incident with at least one blue edge.

The aim is to show that |δH(ṼR)| > |ṼR| = |ER|.
Let v ∈ VB . For any red edge r ∈ ER incident with v, there are meta-edges

between r and all edges in δB(v), because r cannot be opposite to these edges in a

36 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

4-cycle. This implies that

|δH(ṼR)| >
∑

v∈VB

degR(v) degB(v).

If for all v ∈ VB, it holds that degR(v) > 1, then

|δH(ṼR)| >
∑

v∈VB

degB(v) = 2|EB| > 2|ER|.

But if degR(v) = 0 for some v ∈ VB, then v is not incident with any edge in ER.
This implies that for every edge r ∈ ER, there exists at least one edge in EB which is
not opposite to r. (Assume that for some r ∈ ER, all edges in EB are opposite. Then
there must be in particular a 4-cycle containing v (since VB does not contain isolated
nodes). This cycle contains edge b ∈ EB leading between one endpoint of r and v
which cannot be opposite to r. Contradiction.) So for any edge in ER, there exists

at least one meta-edge between ṼR and ṼB, which implies |δH(ṼR)| > |ER|.

2.4.1.2 The Path Set Polytope for Acyclic Digraphs

Our second example for the use of faithful sectionings concerns the linear description
of the s-t-path set polytope for acyclic digraphs (see Definition 2.9), which has
already been derived by Vande Vate ([112]) by means of a lift and project approach
in combination with Bender’s decomposition.

Let D = (V ,A) be some acyclic digraph with unique source node s and unique
sink node t. The s-t-path set polytope in D will be denoted by Ps,t(D).

Just like in the first example, we give an extended formulation based on a directed
graph D̃ = (Ṽ , Ã). The construction is standard: node set Ṽ is defined as

Ṽ := (V × {in, out}),

that is, we split each node v ∈ V into two clone nodes vin and vout. Again, for any
subset of nodes U ⊆ V we denote by U in ⊆ V in or Uout ⊆ Vout the sets of their
respective copies in Ṽ.

The arc set Ã is defined as

Ã := {(vout, win) | (v, w ∈ A)} ∪ {(vin, vout) | v ∈ V} ∪ (tout, sin).

Arcs in {(vout, win) | (v, w ∈ A)} will be referred to as real arcs while arcs in
{(vin, vout) | v ∈ V} will be called split arcs ; see figure 2.7 for an example. The
construction of the faithful sectioning is as follows.

x We consider the circulation polytope Q�(D̃, ℓ⋆,u⋆) on the digraph D̃ with
the following bounds on the capacity:

ℓ⋆(vout,win) := −∞
}

for all (v, w) ∈ A (real arcs)
u⋆

(vout,win) := +∞

ℓ⋆(vin,vout) := 0
}

for all v ∈ V (split arcs)
u⋆

(vin,wout) := +∞

ℓ(tout,sin) := 1

u(tout,sin) := 1

Any vertex y of Q�(D̃, ℓ⋆,u⋆) describes a (nonempty) cycle in D̃.
x Projection σ is defined as:

σ : R eA → RV , σ(y)v = y(vin,vout)

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 37

soutsin touttin

voutvin

s t

v

Figure 2.7: Example digraph eD (bottom) obtained from acyclic digraph D (top).

x Map s is mapping any point in R+ to a circulation in Q�(D̃, ℓx,ux) (as long
as it is not empty), which is defined by bounds

ℓx(vout,win) := −∞
}

for all (v, w) ∈ A
ux

(vout,win) := +∞

ℓx(vin,vout) := xv

}
for all v ∈ V

ux
(vin,vout) := xv

ℓ(tout,sin) := 1

u(tout,sin) := 1

It is easy to see that map s is a σ-section for those x ∈ RV where it is defined,
that σ(Q�(D̃,u⋆, ℓ⋆)) ⊆ Ps,t(D) and that Q�(D̃,ux, ℓx) ⊆ Q�(D̃,u⋆, ℓ⋆).

It remains to ensure by some set of inequalities, that for each x ∈ RV satisfying
these inequalities, polytope Q�(D̃, ℓx,ux) becomes nonempty, since in this case,

the inequality system is Q�(D̃, ℓ⋆,u⋆)-enforcing for s.

Proposition 2.32 Let D = (V ,A) be an acyclic digraph with unique source s and
sink t. The following system of inequalities provides a linear description for the
s-t-path set polytope:

∑

v∈T

xv −
∑

v∈succD(T)

xv 6 0 ∀T ⊂ V r {t} (*)

xv > 0 ∀v ∈ V

Proof. By theorem 2.19, Q�(D̃,ux, ℓx) is nonempty if and only if
∑

a∈δin
fD

(eS)

ℓxa 6
∑

a∈δout
fD

(eS)

ux
a ∀S̃ ⊆ Ṽ . (**)

Let S̃ be an arbitrary subset of Ṽ. From S̃, we derive three subsets of V :

S in := {v ∈ V | vin ∈ S̃ and vout /∈ S̃},

Sout := {v ∈ V | vin /∈ S̃ and vout ∈ S̃}, and

S in out := {v ∈ V | vin ∈ S̃ and vout ∈ S̃}.

38 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

(i) Note that if δout
eD

(S̃) or δin
eD
(S̃) contain any real arc, then (**) is trivially satis-

fied. So, instead of (**), it suffices to ensure that

α+
∑

v∈Sin

xv 6
∑

v∈Sout

xv, (***)

where α is set to 1 if δin
eD
(S̃) contains arc (tout, sin); otherwise, we set α = 0.

(ii) Assume now that t ∈ S in. We remove tout from S̃. If sin ∈ S̃, then this does

not change the values of the left and right hand side in (***); if sin /∈ S̃, then
we subtracted 1 from both sides.

(iii) α = 1 implies that sin ∈ S̃. By removing sin from S̃, we either subtract 1 from

both sides of inequality (***) (if sout /∈ S̃) or leave both sides as they are (if

sout ∈ S̃).

Hence, (***) is satisfied for S̃ if it is satisfied for a set S̃′ with t /∈ S in and α = 0,
which will be assumed in the following. Moreover, we can add

∑
v∈Sin out xv to both

sides of (***) obtaining

∑

v∈(Sin∪Sin out)

xv 6
∑

v∈(Sout∪Sin out)

xv, (***’)

Last, we observe that because of (i), we can take it as given that

succD(S in out ∪ Sout) ⊆ S in out ∪ S in. (****)

Putting this together, we get

∑

v∈(Sin∪Sin out)

xv

(∗)

6
∑

v∈succD(Sin∪Sin out)

xv

(∗∗∗∗)

6
∑

v∈Sin∪Sin out

xv,

by using T = S in∪S in out in (*) and exploiting that xv > 0 for all v ∈ V to establish
(***’).
Hence, inequality system (***) together with x > 0 is Q�(D̃,u⋆, ℓ⋆)-enforcing for
s. As σ(Q�(D̃,u⋆, ℓ⋆)) ⊆ Ps,t(D) and the inequality system is valid for Ps,t(D),
we obtain the statement.

2.4.1.3 The Matching Polytope of an Arbitrary Graph

As said at the beginning of chapter 1, the perfect matching polytope of a general
graph is given by inequalities (1.1). Schrijver ([107]) derives a linear description of
the matching polytope for general graphs by a reduction (as he calls it) from the
linear description of the perfect matching polytope. In essence, he is using a faithful
sectioning. We will rephrase his proof in terms of faithful sectionings.

Proposition 2.33 The matching polytope PM (G) of a general graph G = (V , E) is
given by the following set of inequalities:

xe > 0 ∀ e ∈ E (2.9)
∑

e∈δG(v)

xe 6 1 ∀ v ∈ V (2.10)

∑

e∈E[U]

xe 6

⌊1

2
|U|
⌋

∀ U ⊆ V odd, (2.11)

CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS 39

Proof. Define graph G̃ := G×K2. We denote by v′ the copy of node v ∈ V and by
e′ the copy of e ∈ E . Moreover, we write V ′ := {v′ | v ∈ V} and E ′ := {e′ | e ∈ E}.

Hence, graph G̃ = (V ∪V ′, Ẽ) consists of two identical subgraphs G and G′ = (V ′, E ′)
and a set of edges {{v, v′} | v ∈ V} connecting both.

The crucial observation is that if M̃ is a perfect matching in graph G̃, then M̃ ∩ E
is a matching in graph G, and, on the other hand, supposed we found a matching

M in G and define sets M′ := {e′ ∈ E ′ | e ∈ M} and M :=
{
{v, v′}

∣∣∣ v /∈ V [M]
}
,

then

M̃ :=M ∪ M′ ∪ M

is a perfect matching in G̃. (See figure 2.8 left for an example.)

First, we construct an extended formulation for PM (G) from the perfect matching

polytope PPM (G̃) and the orthogonal projection σ which maps any point y ∈ ReE

to x = yE . Therefore, σ maps in particular the incidence vector y of a perfect

matching in G̃ to the incidence vector x of a matching in G.

Next, we define a map s : RE → ReE as follows:

ye := xe ∀e ∈ E

ye′ := xe ∀e′ ∈ E ′

y{v,v′} := 1−
∑

e∈δG(v)

xe ∀{v, v′} ∈ E

We observe:

x The polytope P described by inequalities (2.9) through (2.11) contains PM (G).

x σ(PPM (G̃)) ⊆ PM (G).
x σ(y) = x for all y = s(x); hence, s is a σ-section.

Therefore, by Theorem 2.17, it remains to show that inequalities (2.9) through

(2.11) are PPM (G̃)-enforcing for s. In other words: we have to show that inequali-
ties (1.1) are valid for any point s(x) if inequalities (2.9) through (2.11) are valid
for x.

x Equations
∑

e∈δ eG
(v) ye = 1 follow from the definition of map s.

x Inequalities ye > 0 for all e ∈ E and ye′ > 0 for all e′ ∈ E ′ follow readily from
inequalities (2.9).

x Inequalities y{v,v′} > 0 for all v ∈ V follow from inequalities (2.10).

x Finally, we have to ensure inequalities
∑

e∈δ eG
(U) ye > 1 for all odd sets U ⊆ Ṽ .

Let X := U ∩V and Y ′ := U ∩V ′ and let U∅ ⊆ Ṽ arise from U by deleting all
nodes in X∩Y and X ′∩Y ′ from U . The symmetric difference δ eG

(U∅) △ δ eG
(U)

can be partitioned into six subsets.

set. . . contains all edges in Ẽ [U] with. . .

A1 . . . one node in X r (X ∩ Y) and one node in X ∩ Y

A′
1 . . . one node in X ′ r Y ′ and one node in X ′ ∩ Y ′

A2 . . . one node in Y ′ r (X ′ ∩ Y ′) and one node in X ′ ∩ Y ′

A′
2 . . . one node in Y r X and one node in X ∩ Y

A3 . . . one node in X ∩ Y and one node in V r (X ∪ Y))

A′
3 . . . one node in X ′ ∩ Y ′ and one node in V ′ r (X ′ ∪ Y ′))

(See figure 2.8 right.) Because of the symmetry of G̃, there is a one-to-one-
correspondence between edge set Ai and edge set A′

i for any i ∈ [3]. Moreover,
edges in A1 and A′

2 are in δ eG
(U∅) but not in δ eG

(U), and, vice versa, edges

40 CHAPTER 2. THE SETTING, OUR TOOLBOX AND ITS ORIGINS

G = (V , E)

G′ = (V ′, E ′)

{v, v′} X Y

X ′ Y ′

A1 A2

A′
1 A′

2

A3

A′
3

V r (X ∪ Y)

V ′ r (X ′ ∪ Y ′)

X ∩ Y

X ′ ∩ Y ′

Figure 2.8: Left: example of graph eG ≃ G×K2. Edges {v, v′} are dashed, and bold edges make

a perfect matching in eG obtained from a matching in G. Right: partitioning δ eG
(U∅)∆δ eG

(U).

in A′
1 and A2 are in δ eG

(U) but not in δ eG
(U∅). The edges in A3 ∪ A′

3 are in

δ eG
(U) but not in δ eG

(U∅). As ye > 0 for all e ∈ Ẽ , we obtain that

∑

e∈δ eG
(U)

ye >
∑

e∈δ eG
(U∅)

ye

Hence, we can assume that X ∩ Y = ∅. So, either X or Y must be odd.
W.l.o.g., we can assume that X is odd; again, w.l.o.g, we can therefore assume
that Y = ∅.
Now, ∑

e∈δ eG
(X)

ye + 2
∑

e∈E[X]

ye =
∑

v∈X

δ eG
(v) = |X |

because of equations
∑

e∈δ eG
(v) ye = 1. Rearranging gives

∑

e∈δ eG
(X)

ye = |X | − 2
∑

e∈E[X]

ye

(∗)

> |X | − 2
⌊1

2
|X |
⌋

= 1

where (*) holds because of inequalities (2.11).

So, in fact, inequalities (2.9) through (2.11) are PPM (G̃)-enforcing for s and we
obtain the result by Theorem 2.17.

Remark 2.34 Schrijver uses faithful sectionings also for other linear descriptions.
x He derives with faithful sectioning the linear description of several classes of poly-

topes related to the b-matching polytope, in particular the b-matching polytope
(theorem 31.2 in [107]) and the c-capacitated b-matching polytope (theorem 32.2
in [107]). In the first case, the extended formulation is based on the matching poly-
tope, in the second case, it is based on the b-matching polytope.

x He also shows that the linear description of the b-edge cover polyhedron can be
obtained by faithful sectioning, using the description of the edge cover polytope
(theorem 34.2 in [107]).

Chapter 3

Mapping the Terrain

3.1 Definition of Orbitopes

In 2006, Kaibel and Pfetsch introduced orbitopes1 as the convex hull of all 0/1-
matrices with lexicographically ordered columns. We will now specify the different
classes of orbitopes in detail, largely following [65].

Throughout the following, we denote byMp,q the set of 0/1-matrices with p rows
and q columns and by M an element of Mp,q. We let some subgroup G of the
symmetric group Sq on q elements act on Mp,q:

G×Mp,q →Mp,q, (g,M) 7→ g(M),

such that any group element g ∈ G permutes the columns of matrix M . So, G
generates an orbit from each matrix M :

G(M) := {g(M) | g ∈ G} ⊆ Mp,q

and these orbits partitionMp,q.

To pick out some unique representative from each orbit, we define an order on
the elements in Mp,q by comparing their entries columnwise (see figure 3.1.); we
will use the lexicographic ordering (see page 5) and compare the entries of vertices
columnwise.

More precisely, we define an order on the entries by means of the following function
τ mapping each element in [pq] to a tupel (i, j) ∈ [p]× [q]:

τ :=

{
[pq] → [p]× [q]

ℓ 7→
(
((ℓ− 1) mod p) + 1, ⌊(ℓ− 1)/p⌋+ 1

)

For two elements M ,N ∈Mp,q with entries mi,j and ni,j , respectively, we say that
M is lexicographically larger than N (or, equivalently, M and N are in lexicographic
order, in short M ≻ N), if there is some ℓ ∈ [pq] such that mτ(ℓ) > nτ(ℓ) and
mτ(i) = nτ(i) for all i ∈ [pq] with i ∈ [ℓ − 1].

Definition 3.1 We defineMmax
p,q (G) as the set of those matrices in Mp,q that are

lexicographically maximal within their orbits under action of G.

Depending on the number k ∈ [q]0 of 1-entries in the rows of the matrices in
Mp,q, we define now the following subsets ofMp,q:

1Not to be confused with orbitopes in the sense of Sanyal et al., see [105]. They understand
orbitopes as the convex hull of an orbit of a compact group acting linearly on a vector space.

41

42 CHAPTER 3. MAPPING THE TERRAIN

i

j

τ (1)

τ (4)

τ (29)

τ (32)

Figure 3.1: When comparing two matrices, the significance of the entries decreases columnwise.
Top left entry with indices (1, 1) is the most significant entry. In this example, p = 4 and q = 8.

M6k
p,q := {M ∈Mp,q |

∑

j∈[q]

mi,j 6 k ∀i ∈ [p]}

M=k
p,q := {M ∈Mp,q |

∑

j∈[q]

mi,j = k ∀i ∈ [p]}

M>k
p,q := {M ∈Mp,q |

∑

j∈[q]

mi,j > k ∀i ∈ [p]}

Generalizing this concept, we let k ∈ Np be some list of integers. Entry ki

determines the number of 1-entries in row i. We define

M=k
p,q := {M ∈Mp,q |

∑

j∈[q]

mi,j = ki ∀i ∈ [p]}

Definition 3.2 For a given group G ⊆ Sq, the full orbitope is

Op,q(G) := convMmax
p,q (G),

the k-packing orbitope is

O6k
p,q(G) := conv(Mmax

p,q (G) ∩M6k
p,q),

the k-partitioning orbitope is

O=k
p,q(G) := conv(Mmax

p,q (G) ∩M=k
p,q),

and the k-covering orbitope is

O>k
p,q(G) := conv(Mmax

p,q (G) ∩M>k
p,q).

For an arbitrary list k ∈ Np, we call

O=k
p,q (G) := conv(Mmax

p,q (G) ∩M=k
p,q)

the fixed row sum orbitope over group G.
Note that we drop the group G if the context is clear.
Furthermore, we always drop k if k = 1 and speak in this case of packing-

(O6
p,q(G)), partitioning- (O=

p,q(G)), and covering-orbitopes (O>
p,q(G)) over group G.

CHAPTER 3. MAPPING THE TERRAIN 43

A majority of the following work concentrates on orbitopes over the full symmetric
group and q = 2 columns. Only to a limited extend, we will study orbitopes over
the cyclic and other groups, as well as orbitopes with more than two columns.

Definition 3.3 A full orbitope with q = 2 columns and p rows over the full sym-
metric group S2 is called an orbisack. We shorty write Op,2.

Clearly, in the case of orbisacks, the group G could just as well be the cyclic
group. For general orbitopes however, the choice of group G definitely matters.

Remark 3.4 We remark that there is a relationship between orbitopes and revlex-initial

polytopes. A set X ⊆ {0, 1}p is called revlex-initial, if X contains with any x ∈ X also
all points in {0, 1}p that are lexicographic smaller than x. If set X is revlex-initial, then
the convex hull of X is called a revlex-initial polytope P(X). Gillman and Kaibel gave a
complete facial description of revlex-initial orbitopes, see [50].
Choose now an arbitrary vector c ∈ {0, 1}[p]. From c, we derive a vector c̃ ∈ R[p]×[2] by
setting

c̃i,1 = 1, if ci = 1,

c̃i,1 = −1, if ci = 0, and

c̃i,2 = 0 for all i ∈ [p].

Furthermore, we define b := 〈c∗,1, c̃〉. It is easy to see that the inequality c̃x 6 b is valid
for the orbisack. Moreover, the set {x ∈ {0, 1}[p]×[2] | 〈c̃, x〉 = b} contains all 0/1-vectors
that have first column c. Hence,

Op,2 ∩ {x ∈ R[p]×[2] | 〈c̃, x〉 6 b}

is a face of the orbisack. All faces that arise from fixing the first column in the vertices of
an orbisack to a certain 0/1-pattern are reflex initial polytopes.

We close this section with a small remark concerning our definition of lexico-
graphic order.

Remark 3.5 The lexicographic order defined above differs from the one used in [65]. This
does not become apparent as long as one sticks to packing and partitioning orbitopes as
Kaibel and Pfetsch did. However, with arbitrary groups (e.g. the cyclic group) and more
than one 1 per row, Mmax

p,q (G) starts to look different. For example, using the ordering
from [65], Mmax

2,3 (C3) contains the following matrix:

1 1 0

0 1 1

!

which is apparently not a representative according to our notion of lexicographic ordering.
We chose our ordering, because it seems to fit better with column permutations.

3.2 What can be done and what cannot?

Immediately, several questions pop up. What do the vertices of the orbitopes look
like, depending on the choice of group G and on the restriction on the number of
1s in each row? What is the complexity status for optimization over the different
orbitopes and what do optimization algorithms look like? As outlined in the in-
troduction, particularly the complexity status is interesting, as it indicates whether
there are chances to find ”nice“ complete linear descriptions for the actual orbitopes
(see page 3).

The results are quite encouraging for orbitopes over the full symmetric group
(section 3.2.1) or over products of symmetric groups (section 3.2.5). Figure 3.2 gives
a short overview over the known facts concerning orbitopes over the full symmetric
group. The details will be presented in the following.

44 CHAPTER 3. MAPPING THE TERRAIN

complexity of optimization complete lin. descr.

covering NP-hard p. 61 —

packing polynomial time [65] X

partitioning polynomial time [65] X

k-packing NP-hard even for k = 2 p. 61 —

k-partitioning NP-hard even for k = 2 p. 61 —

fixed row sum NP-hard even for k = 2 p. 61 —

full, q > 2 polynomial time Theorem 3.33 open

full, q = 2 polynomial time Theorem 3.33 X

Figure 3.2: Complexity of optimization and the state of knowledge on linear descriptions for full
orbitopes over the full symmetric group.

However, if the cyclic group is operating on the columns, things seem to become
much more complicated. Apart from the results of Kaibel et al. ([65]) concerning
partitioning and packing orbitopes over cyclic groups, a lot of questions are open.
It is unclear how to optimize over full orbitopes when the columns can be cycli-
cally permuted, and there is even no elementary description of the vertices of these
orbitopes known.

3.2.1 Full Symmetric Group

Let M ∈ Mp,q. For the remainder of this section, the full symmetric group Sq is
operating on the columns of M . Hence, each orbit G(M) contains by definition all
matrices arising from arbitrary permutations of the columns of M . The represen-
tative of G(M) is therefore the matrix with all columns in non-increasing order. In
other words: in any vertex x of an orbitope — no matter which restrictions on the
number of 1s per row exist —, any two columns x∗,j and x∗,k, j < k, are either
identical or there is some row index i⋆ ∈ [p] such that xi,j = xi,k for all i ∈ [i⋆ − 1],
and xi⋆,j = 1 and xi⋆,k = 0. This follows from the definition.

Example 3.6 The following is an example of two lexicographic descending ordered vectors
with length p = 6. As there are up to two 1-entries per row, this could be the vertex of a
packing orbitope O62

p,2 = Op,2.

0 0

1 1

1 0

0 1

1 1

1 0

Roughly speaking, the gray row in this example ”decides“ that the columns of the
0/1-vector are in lexicographic descending order. This row will become particularly
important when we are studying orbisacks. Therefore, we define for any vector in
Mp,2:

Definition 3.7 (Critical row) Let v ∈ Mp,q. We define a set I(v) ⊆ [p] as follows:

i ∈ I(v) ⇔ vi,∗ = (1, 0).

CHAPTER 3. MAPPING THE TERRAIN 45

We call

crit(v) :=

{
min(I(v) ∪ {p+ 1}), if v ∈Mmax

p,2

undefined, otherwise.
∈ [p+ 1]

the critical row. Note that if the two columns of v are equal, then the critical row
is p+ 1, and if v∗,1 ≺ v∗,2, then crit(v) is undefined.

Using this concept, we define for an arbitrary number of columns:

Definition 3.8 (Split) Let v ∈ Mp,q. The split pattern σ ∈ [p+ 1]q−1 is a vector
containing as entry σj , j ∈ [q− 1], the critical row of the submatrix v∗,[j..j+1] (that
is the critical row of neighbouring columns v∗,j and v∗,j+1). If σj = i, we call σj a
split in row i.

Next, we make some small observations concerning split patterns of vectors in
Mmax

p,q .

Observation 3.9
x For any j ∈ [q − 2], it holds that if σj = i, then σj+1 6= i.
x There are at most min(q − 1, 2i−1) splits in row i.
x There are at most O(pq−1) split patterns possible, since we can choose for each pair

of neighbouring column p + 1 possible splits.

Last, we will define a map that will be useful in several situations.

Definition 3.10 (Flipping a vector) Let v ∈ Mp,q and define the following two
affine transformations f to invert the order of columns and g to flip 1s and 0s in
v, that is, f : Mp,q → Mp,q with f(x) = y defined by yi,j = xi,q−j+1 for all
(i, j) ∈ [p]× [q], and g :Mp,q →Mp,q with g(x) = 1 − x.

Observation 3.11 f ◦g is an affine transformation with a nice property: f ◦g(v) is in Mmax
p,q

if and only if v ∈ Mmax
p,q , i.e. if the columns of v are in non-increasing lexicographic order.

Proof: ⇒©Transformation f inverts the order of the columns, and it is easy to see that
any pair of neighbouring columns in g(v) is ordered in lexicographic non-decreasing order
if they were in lexicographic non-increasing order. Hence, if v is in lexicographic order,
f ◦ g(v) is, too. ⇐© f ◦ g is self-inverse.

This has the following implications:

Observation 3.12
x The partitioning orbitope O=k

p,q is isomorphic to the partitioning orbitope O=q−k
p,q ,

since because of the fact that any vertex v of O=k
p,q has q − k 0-entries in each row,

any vertex f ◦ g(v) has q − k 1-entries in each row.
x Similarly, O6k

p,q is isomorphic to O>q−k
p,q .

After these general observations and definitions, we will now consider special
orbitopes in detail.

3.2.1.1 General Properties and Characterization of Vertices

3.2.1.1.1 Full Orbitopes

The vertices of the full orbitope Op,q can have an arbitrary number of 1-entries per
row. From the definition of splits, it follows that vector v is a vertex of Op,q if and
only if σj is defined for all j ∈ [q − 1]. Moreover, there is at most one split in the
first row (Observation 3.9).

Hence, we can characterize the vertices of the full orbitope as follows.

46 CHAPTER 3. MAPPING THE TERRAIN

Op,q

Op,q

Op,q

O6q−k
p,q

O6k
p,q

O>q−k
p,q

O>k
p,q

O=q−k
p,q

O=k
p,q

Figure 3.3: The vertex set of a full orbitope Op,q contains in particular the vertex sets of O6k
p,q ,

O=k
p,q and O>k

p,q for any k ∈ [q]0. Packing and covering orbitopes are isomorphic to each other by
transformation f ◦ g. (See definition 3.10 and observations 3.11 and 3.12.)

Lemma 3.13

(i) The first row of any vertex x of the full orbitope Op,q over the full symmetric
group consists of k 1-entries, with k ∈ [q]0, followed by q − k 0-entries. In
particular, (x1,j , x1,j+1) = (0, 1) is forbidden for all 1 6 j < q.

(ii) For 1 6 k 6 q − 1, both subvectors x[2..p]×[k] and x[2..p]×[k+1..q] have lexico-
graphically ordered columns and are therefore vertices of Op−1,k(Sk) and
Op−1,q−k(Sq−k), respectively.

Proof. (i) follows from Observation 3.9. For (ii), see the example below. We consider
first the left submatrix x[2..p]×[k]. The statement is trivial for k = 0 or k = 1. So
assume that k > 1. Any column in x∗,[k] has first entry 1. Consider now the pattern

of splits σ ∈ [i][p−1] for x. By definition of splits, it holds that for any j ∈ [k − 1],
the value σj ∈ [2..p], since v ∈ Op,q. This implies that the columns of x[2..p]×[k] are
lexicographically ordered, and since there are no restrictions on the number of 1-
entries per row, we obtain that x[2..p]×[k] ∈ Op−1,k. The argumentation is analogous
for columns in x[2..p]×[k+1..q].

We will take advantage of this lemma when later formulating an algorithm for
linear optimization over full orbitopes.

Example 3.14 This is an example of a vertex of the full orbitope O4,8. Note that both the
left and the right gray submatrix are vertices of an orbitope of smaller dimension.

1 1 1 0 0 0 0 0

1 1 0 1 1 1 1 0

1 0 1 1 1 0 0 0

1 1 1 1 1 0 0 0

Observation 3.15 In any vertex v of Op,q , one can read the columns of v as the binary
expansion of numbers in [2p − 1]0. Ordering the columns lexicographically is equivalent to
ordering them according to the value of their decimal representations.

This observation leads to the following characterization of the vertices of orbisacks
Op,2: a vector x ∈ {0, 1}[p]×[2] is a vertex of the orbisack if and only if it satisfies
the following inequality:

p∑

i=1

2p−i(xi,1 − xi,2) > 0 (3.1)

CHAPTER 3. MAPPING THE TERRAIN 47

Lemma 3.16 Orbisacks are knapsack polytopes.

Proof. The knapsack inequality is (3.1).

Define now the following affine transformation ϕ : R[p]×[2] → R[p]×[2], where
ϕ(x) = y is defined by

yi,1 = 1− xp−i+1,1

yi,2 = xp−i+1,2

∀i ∈ [p].

Since ϕ is one-to-one, x ∈ {0, 1}[p]×[2] satisfies inequality (3.1) if and only if ϕ(x)
satisfies inequality

p∑

i=1

2i−1(yi,1 + yi,2) 6 2p − 1. (3.2)

Therefore, the orbisack is in particular isomorphic to a special 0/1-knapsack inR[p]×[2], called the sequential knapsack polytope. This will be explained in detail
(and exploited) in section 4.2.

Apart from the orbisacks, there are more knapsack polytopes among the full
orbitopes: the orbitope O1,q is a knapsack polytope for any q ∈ N>. This follows
from the fact that O1,q is isomorphic to a q-dimensional simplex △̃q, which is a
knapsack polytope (see page 14).

Lemma 3.17 Orbitope O1,q is isomorphic to the (non-standard) q-dimensional
simplex △̃q.

Proof. The vertices of O1,q make a set of q + 1 affinely independent points.

In fact, orbisacks and Op,1 are the only two classes of orbitopes over the full
symmetric group that contain knapsack polytopes.

Proposition 3.18 Any full orbitope over the full symmetric group with q > 2
columns and p > 1 rows is not a knapsack.

Proof. Assume, there is a vector c ∈ R[p]×[q] and a right-hand side b ∈ R defining a
hyperplane 〈c,x〉 6 b separating the vertices of the orbitope Op,q from the remaining
vertices of Mp,q, i.e.

〈c,x〉 6 b ∀x ∈ Mp,q ∩Op,q

and

〈c,x〉 > b ∀x ∈ Mp,q r Op,q.

However, because of the lexicographic ordering, e1,1 + e1,2 and e2,1 + e2,2 + e2,3

are vertices of Op,q, but e2,1 + e2,3 and e1,1 + e1,2 + e2,2 are not (see figure 3.4).
Therefore, the following inequalities must hold:

c1,1 + c1,2 6 b (3.3a)

c2,1 + c2,2 + c2,3 6 b (3.3b)

c2,1 + c2,3 > b (3.4a)

c1,1 + c1,2 + c2,2 > b (3.4b)
Multiplication of (3.3a) by −1 and addition to (3.4b) gives

c2,2 > 0,

48 CHAPTER 3. MAPPING THE TERRAIN

Figure 3.4: Vertices of the full orbitope (top row) and vertices of the cube that are not in the
orbitope (bottom row). We show the upper left corner of each vertex; all other entries are 0.

Figure 3.5: Visualization of triangular number T (2, 6) = 21.

while multiplication of (3.4a) by −1 and addition to (3.3b) yields

c2,2 < 0.

Contradiction.

We close this section by counting the number of vertices in full orbitopes. For
this purpose, we use the mth k-simplex number T (k,m), which can be defined as
the number of integer points in the set

T (k,m) := {x ∈ Rk+1
+ |

k+1∑

i=1

xi = m− 1},

for k,m ∈ N>. Note that T (k, 2) is the number of integral points in the k-
dimensional standard simplex and that T (2,m) is also known as the mth triangular
number (see figure 3.5 for an example). It is easy to see that

m∑

i=1

T (k − 1, i) = T (k,m)

holds, using inductively that there are T (k − 1,m − i) different integer points in
T (k,m) with first component i for all i ∈ [m− 1]0.

Proposition 3.19 The full orbitope Op,q has T (q, 2p) vertices, where T (k,m) de-
notes the mth k-simplex number.

CHAPTER 3. MAPPING THE TERRAIN 49

Proof. If x ∈ [m]k is a k-tupel x = (x1, . . . , xk) with entries x1 > x2 > . . . > xk,
we refer to x as an ordered (k,m)-tupel. Because of Observation 3.15, the number
of ordered (q, 2p)-tupels equals the number of vertices of the full orbitope. (Note
that each entry of an ordered (q, 2p)-tupel lies between 1 and 2p while the columns
of the orbitope have decimal representations between 0 and 2p − 1.)

We count the number of ordered (k,m)-tupels inductively. For k = 1, there are

T (1,m) =

m∑

ℓ=1

1 = m

ordered (1,m)-tupels.
For k > 1, we observe that if x is an ordered (k,m)-tupel and entry x1 has value

ℓ, then the remaining entries x2, . . . , xk form an ordered (k − 1, ℓ)-tupel. Hence,
there are by induction T (k− 1, ℓ) different (k,m)-tupels with entry x1 = ℓ possible.
Therefore, we get a number of

m∑

ℓ=1

T (k − 1, ℓ) = T (k,m)

ordered (k,m)-tupels.

T (k,m) can be computed by

T (k,m) =

(
m+ k − 1

k

)
=

1

k!

k∏

i=1

(m+ i− 1),

(which can for instance be shown using the properties of Pascal’s triangle). More-

over, it is easy to see that
(
k
ℓ

)
>
(

k
ℓ

)ℓ
using induction and the identity

(
k
ℓ

)
= k

ℓ

(
k−1
ℓ−1

)
.

This yields the following corollary.

Corollary 3.20 The number of vertices of the full orbitope grows exponentially in
p and q.

For orbisacks, the identity from Proposition 3.19 can be simplified.

Corollary 3.21 The orbisack Op,2 has

2p∑

k=1

k = 2p−1(1 + 2p)

vertices.

3.2.1.1.2 (k)-Packing and (k)-Partitioning Orbitopes

In [65], Kaibel and Pfetsch study packing or partitioning orbitopes, i.e. k-packing
and k-partitioning orbitopes with k = 1. They observe for example that for each
vertex v of O6

p,q or O=
p,q, the ”upper right triangle“ is fixed to 0:

Observation 3.22 For any vertex v of a packing or a partitioning orbitope, it holds that

vi,j = 0 for each (i, j) ∈ [p] × [q] with i < j.

50 CHAPTER 3. MAPPING THE TERRAIN

Figure 3.6: Example for upper triangle fixing for k-partitioning and k-packing. Here, k = 3,
p = 5 and q = 14. Any white entry is fixed to 0.

This observation implies that for partitioning orbitopes, v1,1 = 1 must hold, and
similarly, vℓ,1 = 1 must hold for packing orbitopes, where ℓ is the first row containing
a nonzero entry. We will generalize these results to k-packing and k-partitioning
orbitopes using basically the same argument as Kaibel and Pfetsch.

Proposition 3.23 Let k > 1 and let x be a vertex of packing orbitope O6k
p,q or of

partitioning orbitope O=k
p,q. Then the following equations hold for x:

xi,j = 0 for all i ∈ [p] and j ∈ [ik + 1..q].

(See figure 3.6.)

Proof. Assume the statement is false. Then there is an index (s, t) minimal with
respect to the total order on [p]× [q] such that xs,t = 1 and t > sk.

Since there are not more than k 1-entries in row s allowed, this implies that
there must be a column ℓ among the k indices [(s− 1)k + 1..sk] such that vs,ℓ = 0.
Moreover, because of the minimality of (s, t), we know that vs,ℓ = 0 even for all
i ∈ [s]. We move column t before column ℓ, i.e. we shift all columns [ℓ..t] cyclically
by one position to the right:

(1, . . . , ℓ, . . . , t, . . . , q) 7→ (1, . . . , t, ℓ, . . . , t− 1, t+ 1 . . . , q)

This gives a vector lexicographic larger than x. Contradiction.

Proposition 3.24 For partitioning orbitopes, the following equations hold addi-
tionally to the equations from Proposition 3.23:

q∑

j=1

xi,j = k

for all i ∈ [p].

Proof. Follows from the definition of partitioning orbitopes.

Kaibel and Pfetsch also give an inductive method to generate vertices of packing
and partitioning row by row. This can as well be extended to k-partitioning and
k-packing orbitopes in general.

We will construct row ℓ of some vertex v. For ℓ = 1 and packing orbitopes,
the first row can either contain only 0s or we fill the first row with up to k 1s on
positions v1,j , j ∈ [k], starting with v1,1. For partitioning orbitopes, v1,j = 1 for
all j ∈ [k] is the only possibility. Note that this automatically fixes for partitioning
orbitopes the split σk = 1, and for packing orbitopes there is a column j ∈ [k] such
that σj = 1 if the first row is not 0.

CHAPTER 3. MAPPING THE TERRAIN 51

ℓ − 1 ℓ. Note that for packing orbitopes, it is possible that all entries in the
list of splits σ are yet undefined. We choose now a family T of pairwise disjoint
ranges [s..t] ⊆ [q] with the following properties:

(i) If range [s..t] ∈ T , then there is no range in T starting at t+ 1.
(ii) For any range [s..t] ∈ T , either s = 1 or there is a split defined in σ with

σj = s− 1.
(iii) The total length |

⋃
I∈T I| equals k for partitioning orbitopes and is less or

equal k for packing orbitopes.

We set vℓ,j := 1 for all j ∈
⋃

I∈T I and vℓ,j := 0 otherwise. Moreover, for any
[s..t] ∈ T , if σt is undefined so far, we set σt := ℓ.
Last, after defining the entries in row p, we set σj := p + 1 for any σj that is
undefined so far.

Remark 3.25 Note that the vertices of the packing orbitope O6
p−1,q−1 can also be con-

structed from the vertices of the partitioning orbitope O=
p,q by simply deleting the first

column and the first row in each vertex. On the other hand, one can construct from each
vertex of O6

p−1,q−1 a vertex of O=
p,q by means of linear map φ : R[p−1]×[q−1] → R[p]×[q]

defined by

φ(x)i,j =

(

1 −Pq−1
i=1 xi,j , if j = 1

xi−1,j−1, otherwise
for all (i, j) ∈ [p] × [q].

Therefore, O=
p,q and O6

p−1,q−1 are affinely isomorphic (see [65]).

Similarly, we can construct any vertex of a k-packing orbitope O6k
p−k,q−k from a vertex

of O=k
p,q by deleting the first row and the first k columns. However, for k > 1, O=k

p,q and

O6k
p−1,q−k are not isomorphic anymore.

We make some observations additional to Observation 3.12 which concern special
cases of k-partitioning and k-packing orbitopes.

Observation 3.26

x For p = 1, the partitioning orbitope O=k
1,q , and for arbitrary p, the partitioning

orbitope O=k
p,k consist both of one vertex each.

x The packing orbitope O6k
p,q is for p = 1 isomorphic to the full orbitope O1,k.

x For an arbitrary number of rows p, O6k
p,k is isomorphic to Op,k.

x From Observation 3.12 it follows in particular that O=k
p,k+1 is isomorphic to O=

p,k+1.

Proposition 3.27 For k > 2 and p > 1, k-packing O6k
p,q orbitopes and for k > 2,

p > 1, and q > k + 1, k-partitioning orbitopes are not isomorphic to knapsack
orbitopes.

Proof. For k-packing orbitopes, the proof is identical to the proof for full orbitopes
(Proposition 3.18).
For k-partitioning orbitopes, we observe that the 0/1-vectors shown in the top row
of figure 3.7 are in O=k

p,q and the 0/1-vectors in the bottom row of figure 3.7 are not.
Assuming there is a knapsack inequality 〈c,x〉 6 b separating the allowed vectors
from the forbidden ones, we get inequalities

p∑

i=1

k∑

j=1

ci,j 6 b (3.5a)

p∑

i=1

k∑

j=1

ci,j − c2,k−1 − c2,k + c2,k+1 + c2,k+2 6 b (3.5b)

52 CHAPTER 3. MAPPING THE TERRAIN

1

1

2

2

kk

Figure 3.7: Vertices of the partitioning orbitope (top row) and vertices of the cube that are not
in the orbitope (bottom row).

and

p∑

i=1

k∑

j=1

ci,j − c2,k−1 + c2,k+1 > b (3.5c)

p∑

i=1

k∑

j=1

ci,j − c2,k + c2,k+2 > b. (3.5d)

Multiplying inequality (3.5a) with −1 and adding it to inequality (3.5c), we obtain
that

c2,k+1 > c2,k−1.

On the other hand, we can multiply inequality (3.5b) with −1 and add it to (3.5d)
to get

c2,k−1 > c2,k+1.

Contradiction.

3.2.1.1.3 (k)-Covering Orbitopes

As has been observed in the section on k-packing and k-partitioning orbitopes above,
O6k

p,q is isomorphic to O>q−k
p,q . Therefore, most of the facts concerning k-partitioning

and k-packing orbitopes can be transferred and adapted to k-covering orbitopes.
In particular, for q = 2 and k = 1, O>

p,2 and O6
p,2 are isomorphic. This opens the

way to a full facial description of covering orbitope O>1
p,2 via [65]. (See page 70, in

particular Proposition 3.61.)

It is clear that for k > 1, the method of generation of vertices described for k-
packing and k-partitioning can also be applied to k-covering orbitopes; in this case,
one has to ensure that at least the first k entries in the first row are set to 1 and
|
⋃

I∈T I| > k for each row below.

We immediately obtain that all vertices of O>k
p,q share the following property:

Proposition 3.28 Let k > 1. For any vertex x of O>k
p,q, equations

x1,j = 1

hold for all j ∈ [k].

CHAPTER 3. MAPPING THE TERRAIN 53

Moreover, we obtain from Observation 3.26 and Proposition 3.27 the following
proposition.

Proposition 3.29 For k < q − 2 and p > 1, k-covering orbitopes O>k
p,q are not

knapsack orbitopes.

3.2.1.2 Optimization and Complexity

3.2.1.2.4 Full Orbitopes

Lemma 3.13 shows how to generate all vertices of orbitope Op,q. Roughly speaking,
this can be done by “glueing” together an arbitrary vertex of Op−1,k and another
one of Op−1,q−k, and topping both with a row filled with k 1-entries followed by
q−k 0-entries. Note that 0 6 k 6 q, so in particular k = 0 or q−k = 0 are allowed.

This idea is the cornerstone of the construction of an algorithm for optimization
over full orbitopes. For a formal description of this algorithm, we introduce the
notion of bricks.

Definition 3.30 (Bricks) Let I := {[s..t] | [s..t] ⊆ [q]} be the family of all ranges
in [q]. We define the following sets of tupels

B•
p,q := [p]× I × {black} and B◦

p,q := [p]× I × {white}

as well as set

Bp,q := B•
p,q ∪ B

◦
p,q.

We denote by b•k,[s..t] the elements of B•
p,q and by b◦k,[s..t] the elements of B◦

p,q.
Furthermore, we define a map

Mp,q : Bp,q →Mp,q

that maps any element bk,[s..t] ∈ Bp,q to a 0/1-matrix with p rows and q columns
and is defined by

(
Mp,q(b•k,[s..t])

)
i,j

=

{
1, if i = k and j ∈ [s..t]

0, otherwise
for all (i, j) ∈ [p]× [q].

and

Mp,q(b◦k,[s..t]) = 0p,q

for all k ∈ [p] and [s..t] ⊆ [q]. The matrices in Mp,q(Bp,q) are referred to as bricks.
Note that Mp,q is defined on B◦

p,q only for sake of completeness; for the following
considerations, these bricks are not needed.

For the construction of the vertices of Op,q(Sq), we use two liftings φleft,q :Rp−1,k → Rp,q defined by

φleft,q(x)i,j =

{
0, if i = 1 or j > k

xi−1,j , otherwise,

and φright,q : Rp−1,k → Rp,k defined by

φright,q(x)i,j =

{
0, if i = 1 or j < q − k

xi−1,j−(q−k), otherwise,

54 CHAPTER 3. MAPPING THE TERRAIN

11 1 k k+1qq q

Figure 3.8: Vertices of a full orbitope over the full symmetric group can be generated recursively
row by row. There are basically three possibilities to put together a vertex.

where k 6 q in both cases. (Note that for k = q, it holds that φleft,q = φright,q.)
Lemma 3.13 shows that any vertex v of orbitope Op,q has one of the following three
forms. Either,

v = Mp,q(b•1,[1..q]) + φleft,q(v′) (3.6a)

or

v = φleft,q(v′) (3.6b)

with v′ some vertex of Op−1,q in both cases, or

v = Mp,q(b•1,[1..k]) + φleft,q(v′) + φright,q(v′′) (3.6c)

with v′ some vertex of Op−1,k, v′′ some vertex of Op,q−k, and 0 < k < q. (For an
illustration of these three possibilities, see figure 3.8.)

Next, we tackle the problem P of linear optimization (maximization) over full
orbitope Op,q. Any instance P(p, q, c) of this problem is described by some cost
vector c ∈ Q[p]×[q], and we aim to find a vector x⋆ ∈ Op,q such that

〈x⋆, c〉 = max{〈c,x〉 | x ∈ Op,q}. (3.7)

Let
ζP(p,q,c) := 〈x⋆, c〉

denote the objective value of the optimal solution.

Lemma 3.31 Let c ∈ R[p]×[q] be some cost vector and let x⋆ be an optimal solution
to instance P(p, q, c). Then

〈c,x⋆〉 = (3.8)

= max
({ q∑

j=1

c1,j + ζP(p−1,q,c[2..p]×[q])

}
∪

{
ζP(p−1,q,c[2..p]×[q])

}
∪

{ k∑

j=1

c1,j + ζP(p−1,k,c[2..p]×[1..k]) + ζP(p−1,q−k,c[2..p]×[k+1..q])

∣∣∣ k ∈ [q − 1]
})
,

where c[i..j]×[k..ℓ] denotes the submatrix of c defined by rows i through j and columns
k through ℓ.

CHAPTER 3. MAPPING THE TERRAIN 55

Proof. We build x⋆ according to Lemma 3.13 either from the combination of two op-
timal solutions to subproblemsP(p−1, k, c[2..p]×[1..k]) and P(p−1, q−k, c[2..p]×[k+1..q])
or from the optimal solution to subproblem P(p− 1, q, c[2..p]×[q]).

Note that equation (3.8) is the Bellman equation for a dynamic programming
algorithm to linearly optimize over Op,q(Sq).

For a description of this algorithm, we first extend the set Bp,q by adding an
element b0,[1..q] which will serve as final state in the algorithm; that is, we define set

B0
p,q := Bp,q ∪ {b0,[1..q]}.

Next, we define a dynamic programming table L containing one entry L(bi,[j..k]) for
each element in B0

p,q.
x For element b•

k,[s..t], 1 6 k < p and [s..t] ⊆ [1..q], entry L(b•
k,[s..t]) stores the

value

ζP(p−k,t−s+1,c[k+1..p]×[s..t]) +

t∑

i=s

ck,i.

x For element b◦
k,[s..t], 1 6 k < p and [s..t] ⊆ [1..q], entry L(b◦

k,[s..t]) stores the
value

ζP(p−k,t−s+1,c[k+1..p]×[s..t]).

x For elements b•
p,[s..t] in row p, [s..t] ⊆ [1..q], we set

L(b•p,[s..t]) :=

t∑

j=s

cp,j ,

x and for elements b◦
p,[s..t] in row p, [s..t] ⊆ [1..q], we define

L(b◦p,[s..t]) := 0.

x Last, L(b0,[1..q]) stores the optimal objective value to P(p, q, c).

The complete algorithm is shown in figure 3.9. Note that in the form shown there,
only the optimal objective value is computed. However, if one stores in each state
which predecessor node(s) are used to derive the respective partial solution, then
one can easily reconstruct the set of nodes S ⊂ B0

p,q that take part in establishing
the optimal objective value. The optimal solution is then given by

x⋆ =
∑

b•
k,[s..t]

∈S∩B•
p,q

Mp,q(b•k,[s..t]).

Theorem 3.32 The algorithm in figure 3.9 works correctly.

Proof. Follows from Lemma 3.31.

Theorem 3.33 The algorithm in figure 3.9 has running time O(pq3).

Proof. There are O(pq2) entries in L. For each entry, the computation needs time
of O(q). Hence over all, we need time O(pq3).

The algorithm for optimization over full orbitopes is based on dynamic program-
ming. Hence, we can define a directed hypergraph associated with this algorithm
(see section 2.3). Any vertex of the full orbitope can be mapped to a hyperpath in

56 CHAPTER 3. MAPPING THE TERRAIN

Data: cost vector c ∈ R[p]×[q]

Result: optimum max{〈c,x〉 | x ∈ Op,q}
// Initialize

foreach [s..t] ∈ [q] do

L(b•p,[s..t])←
∑t

j=s cp,j;

L(b◦
p,[s..t])← 0;

end
// Build up L row by row

k← p− 1;
while k 6= 0 do

foreach [s..t] ∈ [q] do

L(b•k,[s..t])←
∑

j∈[s..t]

ck,j+ max
(
{L(b•k+1,[s..t]), L(b◦k+1,[s..t])} ∪

{L(b•k+1,[s..ℓ]) + L(b◦k+1,[ℓ+1..t]) | s 6 ℓ < t}
)
;

L(b◦k,[s..t])← max
(
{L(b•k+1,[s..t]), L(b◦k+1,[s..t])} ∪

{L(b•k+1,[s..ℓ]) + L(b◦k+1,[ℓ+1..t]) | s 6 ℓ < t}
)

end
k ← k − 1;

end
// Global solution

L(b0,[1..q])← max
(
{L(b•1,[1..q]), L(b◦1,[1..q])} ∪

{L(b•1,[1..ℓ]) + L(b◦1,[ℓ+1..q]) | 1 6 ℓ < q}
)

return L(b0,[1..q]);

Figure 3.9: Algorithm for finding max{〈c, x〉 | x ∈ Op,q(Sq)}. The algorithm can straight-
forwardly be adjusted such that it also allows to reconstruct the optimal solution recursively.

CHAPTER 3. MAPPING THE TERRAIN 57

this hypergraph. In what follows, we will briefly characterize the DP-hypergraph
H = (B,A) with vertex set B and hyperarc set A that is associated with the DP-
algorithm from above (in the following referred to as the orbitope hypergraph) and
append some polyhedral results.

The vertex set B is partitioned into subsets B0 ⊎ B1 ⊎ . . . ⊎ Bp defined as follows:

Bi :=

{bi,[1..q]}, if i = 0

{b•
i,[1..s] | 1 6 s 6 q} ∪ {b◦

i,[s..q] | 1 6 s 6 q}, if i = 1

{b•
i,[s..t] | 1 6 s 6 t 6 q} ∪ {b

◦
i,[s..t] | 1 6 s 6 t 6 q}, otherwise

for all i ∈ [p]0. We refer to nodes corresponding to elements in B•
p,q as black nodes

and to nodes associated with elements in B◦
p,q by white nodes.

The set of hyperarcs A is defined as

{(
{b•i,[s..ℓ], b

◦
i,[ℓ+1..t]}, bi−1,[s..t]

) ∣∣∣ b•i,[s..ℓ], b
◦
i,[ℓ+1..t] ∈ Bi, bi−1,[s..t] ∈ Bi−1 ∀i ∈ [p]

}
∪

{(
bi,[s..t], bi−1,[s..t]

) ∣∣∣ bi,[s..t] ∈ Bi, bi−1,[s..t] ∈ Bi−1 ∀i ∈ [p]
}
.

We denote in the following the final state b0,[1..q] also by bt.

Observation 3.34
(a) It is easy to see that H = (B,A) is in fact a DP-hypergraph: it has a unique sink

bt and it is an acyclic B-hypergraph. The set of sources is Bp. Obviously, the map
R : bi,[j..k] 7→ [j..k] constitutes a reference system R satisfying alternative criterion
[dph3’].

(b) Each Bp-bt-hyperpath in this DP-hypergraph corresponds uniquely to a vertex of Op,q

and vice versa. This follows from the construction of vertices as described on page 53 ff.
An example for a composition of a vertex is shown in figure 3.10. The nodes of the
hypergraph are in this illustration ordered by color and by sets Bi they are contained
in, so brick b•i,[j..k] can be found among the black nodes in Bi in row j and column k.

(c) The number of arcs in H is

|A| = 1 +
2

3
q − 3q2 + 2pq2 +

5

3
pq +

1

3
pq3 − 2

3
q3 = O(pq3)

Proof. Let H associated with Op,q and denote by hq,i (h̃q,i) the number of hyperarcs
with two (one) vertices in the tail, respectively, that are leaving from set Bi and ending
in set Bi−1.

x For i = 1, hq,1 = q − 1 and h̃q,1 = 2.
x For i = 2, it holds that for any hyperarc a with | tail(a)| = 2 either b•i,[1..s] ∈

tail(a) or b◦i,[s..q] ∈ tail(a) (or both) for some s ∈ [q]. Moreover, the first kind
of arcs has a black node in the head, the second one a white node. Hence,
hq,2 = q(q − 1); on the other hand, h̃q,2 = 4q.

x Let i ∈ [3..p]. Clearly, h2,i = 2. We proceed from q−1 to q. Then hq,i = hq−1,i +
h′

q,i, where h′
q,i counts those hyperarcs a with | tail(a)| = 2 and b◦i,[s+1..q] ∈ tail(a)

for s ∈ [1..q−1]. For each value of s, these are 2s hyperarcs, namely the hyperarcs
({b•i,[ℓ..s], b

◦
i,[s+1..q]}, bi−1,[ℓ..q]) for ℓ ∈ [1..s]. Hence

hq,i = hq−1,i + q(q − 1) = q(q − 1)(q + 1)/3

On the other hand, h̃q,i = 2q(q + 1).

(d) The number of nodes of H is

|B| = 1 + 2q +
1

2
(p − 1)q(q + 1)

Now, we will focus on the polyhedral aspects.

58 CHAPTER 3. MAPPING THE TERRAIN

B0

B1

B2

B3

B4

Figure 3.10: The composition of a vertex of the full orbitope (O4,6, in this case) by bricks. The
complete vertex is shown on the top left. On the left side, one can see the relevant entries of the
bricks in use. On the right side, the corresponding B4-bt-hyperpath is shown, together with the
complete set of nodes B of the DP hypergraph associated with orbitopes. Black nodes correspond
to elements in B•

p,q and white nodes to elements in B◦
p,q . The node set is partitioned into subsets

B0 through B4 as described in the text. The nodes are ordered in arrays such that bk,[s..t] can be
found in Bk in row s and column t.

CHAPTER 3. MAPPING THE TERRAIN 59

Definition 3.35 We denote by Parc(H) the Bp-bt-hyperpath polytope in arc vari-
ables and by Pnode(H) the Bp-bt-hyperpath set polytope.

It is easy to obtain a complete linear description of Parc(H) by means of Theo-
rem 2.14 due to Martin et al..

Corollary 3.36 Denoting by y ∈ {0, 1}A the incidence vector of a hyperpath in arc
variables, the following inequalities provide a full description of Parc(H):

∑

a∈δin
H

(bt)

ya = 1 (3.9)

∑

a∈δin
H

(bi,[s..t])

ya −
∑

a∈δout
H

(bi,[s..t])

ya = 0 ∀bi,[s..t] ∈

p−1⋃

i=1

Bi (3.10)

ya > 0 ∀a ∈ A (3.11)

As a consequence, one can derive from this linear description an extended for-
mulation for the orbitope Op,q using a linear transformation which is based on the
following observation:

Observation 3.37 If the hyperpath enters some node bi,[j..k] ∈ B, then this corresponds to
fixing entries xi,j through xi,k in the associated vertex x of the orbitope to either 1 or 0
(depending on the color of the node). On the other hand, each entry xi,j of an orbitope
vertex is determined by the choice of one node bi,[s..t] ∈ B with 1 6 s 6 j 6 t 6 q. In
particular, if xi,j = 1, then the hyperpath corresponding to x must have been using one
black node in {b•i,[s..t] | 1 6 s 6 j 6 t 6 q}, and this means at the same time that one arc
in the outstars of these nodes has been used.

Lemma 3.38 There is a linear projection of Parc(H) to Op,q that establishes to-
gether with the linear description from Corollary 3.36 an extended formulation for
the orbitope.

Proof. Let linear projection ϑ : Parc(H)→ Op,q be defined as follows:

ϑ : RA → R[p]×[q], xi,j =
∑

16s6j6t6q

∑

a∈δout
H

(b•
i,[s..t]

)

ya

⊆©ϑ(Parc) ⊆ Op,q. ⊇©On the other hand, the DP-algorithm allows to generate for
each vertex of the orbitope one Bp-bt-path in H , so Op,q ⊆ ϑ(Parc).

Remark 3.39 Of course, we can similarly project P
node(H) to Op,q , by means of a projec-

tion eϑ : Pnode(H) → Op,q defined by

xi,j =
X

16s6j6t6q

ubi,[s..t]
,

where u ∈ P
node(H).

It is obvious that the algorithm from figure 3.9 can be seen as the computation
of the length of a Bp-bt-hyperpath in H of maximal length.

3.2.1.2.5 Packing and Partitioning Orbitopes

The first optimization algorithm over orbitopes with symmetric groups has been
given by Kaibel and Pfetsch for packing and partitioning orbitopes in [65]. In its

60 CHAPTER 3. MAPPING THE TERRAIN

i

j
s

t

1

1

1

1

1

1

0

00

000

0 0
0

0

00
0

0

0 0 0

00

0

Figure 3.11: Digraph giving an extended formulation for partitioning orbitopes. The nodes in-
side the gray area correspond to the entries of the vertex of the partitioning orbitope; entries in
the upper right triangle are fixed to 0 and are therefore disregarded for the digraph (see Observa-
tion 3.22). In each row, one can either put the 1-entry within the columns used so far or one can
extend the column range by one. For each row, the s-t-path encodes the maximal allowed column.
Modifying the setting to packing orbitopes is simply done by making column j = 1 encode whether
a 0-row is used or not.

initial form, it had time complexity of O(p2q) in a unit-cost model. Later, it has
been improved by Faenza and Kaibel [35] to time O(pq). On the way, they devel-
oped an extended formulation which relies on the fact that any vertex of the packing
and partitioning orbitope induces an s-t-path in an acyclic network. We will briefly
plot their idea in the partitioning setting which can easily be adapted to packing
orbitopes.

Assuming p > q > 1, we start by defining the vertex set of a DAG D = (V ,A) as

V := {(i, j) ∈ [p]× [q] | i 6 j} ⊎ {s, t}.

For the arc set, we set

A� := {
(
(i, j), (i+ 1, j)

)
| (i, j) ∈ V with i < p}

and
A � := {

(
(i, j), (i+ 1, j + 1)

)
| (i, j) ∈ V with i < p and j < q}.

Then the whole arc set A is defined as

A := A � ∪ A� ∪ {
(
s, (1, 1)

)
} ∪ {

(
(p, j), t

)
| j ∈ [q]}.

(See figure 3.11 for an example.)
The main idea is that for optimization, it is not necessary to construct the whole

vertex of a partitioning orbitope: it suffices to decide in row ℓ whether one stays
within the columns used so far or uses a “new” column.

Let the cost functional be 〈c,x〉 with given cost vector c ∈ Q[p]×[q] and assume
we aim to find

ζ := max({
∑

(i,j)∈[p]×[q]

ci,jxi,j | x ∈ O=
p,q}).

This can be done by fixing the following arc weights in D:
x arc (s, (1, 1) gets weight c1,1,
x any arc

(
(i, j), (i+ 1, j)

)
∈ A� gets weight max({ci+1,k | k ∈ [j]}),

x any arc
(
(i, j), (i+ 1, j + 1)

)
∈ A � gets weight ci+1,j+1, and

CHAPTER 3. MAPPING THE TERRAIN 61

x all other arcs get weight 0.
Obviously, the length of a longest s-t-path in D is exactly the optimum value and

ζ can be found in time O(pq).

The isomorphy between O6
p,q and O=

p+1,q+1 (remark 3.25) makes it easy to adapt
the algorithm to the packing case.

3.2.1.2.6 k-Packing, k-Partitioning, k-Covering and related Orbitopes

Optimization becomes in general hard as soon as the upper, exact or lower bounds
on the number of 1s in each row of the solution become larger than 1. More precisely,
we will show in the following that optimization over k-covering orbitopes is already
NP-hard for k = 1, while k-packing and k-partitioning become both NP-hard with
k > 2, as long as the respective orbitopes have sufficiently many rows and columns.

However, optimization over k-covering, k-packing, k-partitioning and fixed row
sum orbitopes can all be done in polynomial time for constant number of rows or
columns. (See propositions 3.53 and 3.52.)

Before proving these facts, we will formulate the decision problems associated
with the optimization problems above.

Problem 3.40 (Orbitopal k-Packing) Given a number of rows p, a number of columns
q, an objective vector c ∈ R[p]×[q], an integer k > 2 and a bound B: is there a vertex
v⋆ ∈ O6k

p,q such that 〈v⋆, c〉 6 B?

Problem 3.41 (Orbitopal k-Partitioning) Given a number of rows p, a number of
columns q, an objective vector c ∈ R[p]×[q], an integer k > 2 and a bound B: is there
a vertex v⋆ ∈ O=k

p,q such that 〈v⋆, c〉 6 B?

Problem 3.42 (Orbitopal k-Covering) Given a number of rows p, a number of columns
q, an objective vector c ∈ R[p]×[q], and a bound B: is there a vertex v⋆ ∈ O>k

p,q such that
〈v⋆, c〉 6 B?

Problem 3.43 (Orbitopal Fixed Row Sum Partitioning) Given a number of rows p, a
number of columns q, an objective vector c ∈ R[p]×[q], and a bound B: is there a vertex
v⋆ ∈ O=k

p,q such that 〈v⋆, c〉 6 B? (Note that in contrast to Orbitopal k-Partitioning,
k is a vector here; its entries are fixing the row sums independently from each other.)

We will reduce Minimum Exact Cover (exact set cover) to Orbitopal k-
Partitioning.

Problem 3.44 (Minimum Exact Cover) Given is a family C = {S1, . . . ,Sn} of sets Si

and a bound B. Let S := ∪Si∈CSi. Is there a subset C⋆ ⊆ C with |C⋆| 6 B,
S

Si∈C⋆ Si = S
and C⋆ partitioning S?

Remark 3.45 Minimum Cover is the slighty weaker problem than Minimum Exact
Cover; here, C⋆ is required to contain at least one set Si for each element x in

S

Si∈C Si

C⋆ such that x ∈ Si.

However, Minimum Cover is already strongly NP-hard and hard to approximate.
Feige [38] showed that there cannot be a (1 − ǫ) ln(|S|) approximation algorithm for any
ǫ > 0, unless NP contains problems only solvable with certain super-polynomial time
algorithms. Lund and Yannakakis ([80]) show that Minimum Exact Cover is at least as
hard to approximate than Minimum Cover.

To reduce Minimum Exact Cover to Orbitopal k-Partitioning, we con-
struct for k > 2 an objective vector c(C, k) depending on the given family of sets
C = {S1,S2, . . . ,Sn} and on the bound k on the number of 1-entries in each row of
the orbitope vertex. Any optimal solution to the optimization problem

min({〈c(C, k),x〉 | x ∈ O=k
p,q}) (3.12)

62 CHAPTER 3. MAPPING THE TERRAIN

will yield an optimal exact set cover of set

S :=

n⋃

i=1

Si

and vice versa.
We define an ordered family C̃ = C × {1, 2} as

C̃ := {(S1, 1), (S1, 2), (S2, 1), (S2, 2), (S3, 1), (S3, 2), . . .}.

Moreover, let α and β be two weights in Q+ that will later be fixed to appropriate
values. We compose the objective c(C, k) from the following eight submatrices M1,1

through M4,2:

M1,1 := {−α}[1]×[k], M1,2 := {0}[1]×
eC,

M2,1 ∈ {0,−α}C×[k], with m2,1
i,j :=

{
−α, for j < k − 1

0, otherwise,

M2,2 ∈ {−α, α}C×
eC, with m2,2

i,j :=

{
−α, for (i, j) ∈

{(
Sℓ, (Sℓ, 1)

)
,
(
Sℓ, (Sℓ, 2)

)}
, ℓ ∈ |C|

α, otherwise,

M3,1 ∈ {−α, 0}C×[k], with m3,1
i,j :=

{
−α, for j < k

0, otherwise,

M3,2 ∈ {β/2, α}C×
eC, with m3,2

i,j :=

{
β/2, for (i, j) =

(
Sℓ, (Sℓ, 1)

)

α, otherwise,

M4,1 ∈ {−α, α}S×[k], with m4,1
i,j :=

{
−α, for j < k

α, otherwise,

M4,2 ∈ {0, α}S×eC, with m4,2
i,j :=

{
−β, for (i, j) =

(
s, (Sℓ, 2)

)
with s ∈ Sℓ

α, otherwise.

Cost vector c(C, k) is then a composition of these submatrices:

c(C, k) :=

M 1,1 M1,2

M 2,1 M2,2

M 3,1 M3,2

M 4,1 M4,2

(3.13)

See figures 3.12 and 3.13 for an example with S = {a, b, c, d, e, f}, set system C ={
{a}, {b}, {c, e}, {a, b, c}, {a, d}, {d, e}

}
and k = 3. Note that in each solution v ∈

O=k
|S|+2|C|+1,k+2|C| subject to a cost vector (3.12), we will interpret a 1-entry in the

part of the solution corresponding to submatrix M4,2 as a covering of the element
corresponding to that row. On the other hand, a 1-entry in the part of the solution
that corresponds to M 3,2 indicates which subset is responsible for this covering.

Proposition 3.46 Minimum Exact Cover can be reduced to Orbitopal k-
Partitioning for k > 2, p > 4 and q > k + 2 in polynomial time.

Proof. We choose α big enough such that any c(C, k)-minimal vertex v⋆ ∈ O=k
p,q has

1 at −α-positions and 0 at α-positions, and define β := 1. Matrix c(C, k) as defined

CHAPTER 3. MAPPING THE TERRAIN 63

S1

S2

S3

S4

S5

S6

a
b c

d e

Figure 3.12: Example instance for minimum set cover with sets S1 through S6 over a ground
set S = {a, b, c, d, e}.

S1 S2 S3 S4 S5 S6

a

b

c

d

e

Figure 3.13: Objective vector associated with the instance of a minimum cover problem from
figure 3.12. We are minimizing over O=3

p,q here. Black “+” correspond to components +α, black
“−” correspond to −α, gray “+” correspond to +β/2, and gray “−” correspond to −β. White
cells contain 0-entries. α is chosen such that all components of a solution corresponding to cells
with gray background are a priori fixed to 0 and 1, respectively, as described in the proof of
Proposition 3.46.

64 CHAPTER 3. MAPPING THE TERRAIN

in (3.13) can obviously be generated in time polynomial in the size of the instances
of Minimum Exact Cover.

Hence, in any of the last |S| rows of v⋆, there remains exactly one 1 to be set to
one of the −1-positions. However, this requires a 1 at the respective +1/2-position
in M3,2.

A solution v⋆ constructed in such way has value

〈c(C, k),v⋆〉 = K
2 − |S|(kα − α+ 1)− |C|α(2k − 1)− kα

where K is the number of 1s in the part of the solution vector corresponding to
submatrix M3,2; hence, K is the number of chosen subsets. The minimality of
〈v⋆, c(C, k)〉 guarantees the minimality of the set cover and the constant row sum
ensures that all elements are covered by exactly one subset.

On the other hand, if one has a solution for an instance of Minimum Exact
Cover, it is easy to construct a solution for the associated instance of Orbitopal
k-Partitioning from it.

Hence, we can cover S with K or less sets from C if and only if the associated
optimization problem (3.13) has value K

2 − |S|(kα − α+ 1)− |C|α(2k − 1)− kα or
smaller.

Note that problems 3.40, 3.41, 3.42, and 3.43 are all in NP . This yields

Corollary 3.47 Orbitopal k-Partitioning is NP-complete for all problems
with k > 2, p > 4 and q > k + 2.

The same cost function c(C, k) as defined above for k-partitioning orbitopes can
be used to reduce Minimum Cover to Orbitopal k-Packing, similarly to above.
We obtain

Proposition 3.48 Orbitopal k-Packing is NP-complete for all problems with
k > 2, p > 4 and q > k + 2.

Proof. To construct an optimal solution v⋆ for cost vector c(C, k), we proceed as
described in the proof for the partitioning case. Since 〈v⋆, c(C, k)〉 has to be as
small as possible, we obtain that in each of the last |S| rows, exactly k entries must
be set to 1.

Exploiting the isomorphy between O6k
p,q and O>q−k

p,q (Observation 3.12), we obtain

Corollary 3.49 Orbitopal k-Covering is NP-complete for all problems with
k > 2, p > 4 and q > k + 2.

Remark 3.50 It is also possible to reduce Weighted Set Cover to Orbitopal k-
Packing, Orbitopal k-Partitioning, and Orbitopal k-Covering. Differing from
Minimum (Exact) Cover, in Weighted (Exact) Set Cover, there are weights wi ∈Q+ associated with the sets Si ∈ C. The task is to find a set cover with minimal total
weight. Hence, Weighted Set Cover with weights wi = 1 for all i ∈ n becomes Mini-
mum (Exact) Cover. For Weighted (Exact) Set Cover, one can use essentially the
same reductions as above with the following adaptions in the respective cost vector:

x In M 3,2, entry β/2 is replaced by weight wi/2 associated with the respective set Si.
x In M 4,2, the entry −β is chosen as −max({wi | i ∈ [n]}).

Remark 3.51 The complexity results concerning partitioning orbitopes imply that Or-
bitopal Fixed Row Sum Partitioning is also NP-hard, as long as ki > 2 for all ki ∈ k,
i ∈ [p]. This can also be shown directly, since it is not too difficult to modify the cost

CHAPTER 3. MAPPING THE TERRAIN 65

vector as defined in (3.13) such that in each row of submatrix M 3,2, one 1-entry can be
positioned, and in each row of matrix M 4,2, at least one 1 can be positioned in each row.

In contrast to the results obtained so far, optimization over all the aforementioned
orbitopes can be done in polynomial time as long as the number of columns or rows
are not part of the input.

Let us start with a fixed number of columns. The number of possible split patterns
is bounded by O(pq) (see Observation 3.9). Therefore, if we can show that it is
possible to compute in a time that is polynomial in p for a given split pattern
σ ∈ [p+ 1]q−1 and an objective vector c ∈ Q[p]×[q] a vertex of one of the orbitopes
in focus that produces an objective value which is minimal among all vertices with
the same split pattern, we are finished.

How can this solution be constructed? The main idea is to define for each row a
family of ranges T similar to the family used in the construction of vertices from
page 50.

For this, we define for row ℓ a sequence (sj) as follows: s1 := 1 and, for t > 1,

st = min({j ∈ [st−1 + 1..q − 1] | σj 6 ℓ})

We add all ranges [sj ..sj+1] to T . For each range, we have to distinguish three
cases:

(i) σsj+1 = ℓ; then we set all entries vℓ,k with k ∈ [sj ..sj+1] to 1.
(ii) σsj−1 = ℓ; then we set all entries vℓ,k with k ∈ [sj ..sj+1] to 0.
(iii) Otherwise, we can either set the entries vℓ,k with k ∈ [sj ..sj+1] either all to 1

or all to 0.

For full orbitopes with no restriction on the number of 1s per row, we would
choose vℓ,k = 1 for all k ∈ [sj ..sj+1] if and only if

∑
k∈[sj ..sj+1] cℓ,k < 0. This is

different for k-packing, k-partitioning and k-covering orbitopes. Here, the ranges in
the third case require the solution of a subset sum or a knapsack problem for row
ℓ. However, these subproblems can be solved by enumeration in time O(2q) which
is constant in the size of the input. Hence, we obtain the following proposition:

Proposition 3.52 Optimization over k-partitioning, k-packing, k-covering and
fixed row sum orbitopes can be done in polynomial time if the number of columns is
fixed.

Next, we assume that the number of rows is part of the input. In this case,
we will generate vertex v of a k-packing, k-partitioning, k-covering or a fixed row
sum orbitope column by column. There are 2p possibilities to choose from when
building column v∗,j . However, we have to exclude those columns that are lexico-
graphically larger than column v∗,j−1, as well as those columns that violate the row
sum conditions.

For this purpose, we define an acyclic digraph D = (V ,A). In what follows, we
will show what this digraph looks like in the case of fixed row sum orbitope O=k

p,q .
(The construction can easily be adapted to other orbitopes.)

The node set is defined as

V := [q]× {0, 1}p × [k]p0 ∪ {s, t},

where k := max({ki | i ∈ p}) is the maximal entry in the vector k defining the row
sums. Node (j,y, z) will be identified with the choice of vector y as column v∗,j in

case of
∑j

ℓ=1 vi,ℓ = zi for all i ∈ [p].

66 CHAPTER 3. MAPPING THE TERRAIN

The arc set A contains the following arcs:

(
s, (1,y,y)

)
for all y ∈ {0, 1}p and(

(j,y, z), (j + 1,y′, z + y′)
)

for all j ∈ [q − 1], y,y′ ∈ {0, 1}p with y < y′,

and z ∈ [k]p0.

Additionally, there exist arcs that are specific for the orbitope. For the fixed row
sum orbitope O=k

p,q , these are the following ones:

(
(q,y, z), t

)
for all y ∈ {0, 1}p and z = k

It is obvious that there is a one-to-one-correspondence between the s-t-paths in D
and the vertices of O=k

p,q . Let now c ∈ R[p]×[q] be the given cost vector. We will
solve the minimization problem

min({〈x, c〉 | x ∈ O=k
p,q}) (*)

by assigning weights

〈c∗,1,y〉 to each arc
(
s, (1,y,y)

)
∈ A,

〈c∗,j+1,y
′〉 to each arc

(
(j,y, z), (j + 1,y′, z + y′)

)
∈ A, and

0, to each arc
(
(j,y, z), t

)
∈ A.

A shortest s-t-path in D corresponds then to a minimal solution for (*).
The cardinality of V is within O(q2pkp), and the cardinality of E is within
O(q22pk2p). It costs O(|V|+ |E|) to bring V into topological order (which is possible
since D is acyclic); a shortest path can then be found in time O(|E|).

Since k-partitioning, k-packing and k-covering orbitopes can be treated similarly,
we obtain the following proposition:

Proposition 3.53 If the number of rows is not part of the input, one can opti-
mize over k-partitioning O=k

p,q, k-packing O6k
p,q , k-covering O>k

p,q and fixed row sum

orbitopes O=k
p,q in linear time O(q).

3.2.1.3 Dimension

Before we focus on the facial structure of the orbitopes, we briefly study their
dimension. As the characterization of vertices (see page 45) already indicated, only
full orbitopes are full dimensional.

Lemma 3.54 The full orbitope Op,q is full dimensional, i.e. it has dimension pq.

Proof. For any (i, j) ∈ [p]× [q], we define a vector vi,[j] with components

v
i,[j]
s,t :=

{
1, if s = i and t ∈ [j]

0, otherwise.

Together with 0p,q, this gives a set of pq + 1 affinely independent points that are
vertices of the orbitope.

Lemma 3.55 Writing q as mk + n with m,n ∈ N and n < k, the packing orbitope
O6k

p,q has dimension

pq −
m(m− 1)

2
k −mn.

CHAPTER 3. MAPPING THE TERRAIN 67

Figure 3.14: Examples concerning the packing orbitope O63
p,q . Set I is marked gray in the left

image. The middle image shows vertex u(2, 5), while the right image shows vertex u(6, 8).

Proof. Let S := {(i, j) ∈ [p]× [q] | 1 6 j 6 min({q, ik})}. In each vertex v of O6k
p,q ,

the upper right stepped triangle is fixed to 0, that is:

vi,j = 0 for all (i, j) ∈ ([p]× [q]) r S. (*)

This makes m(m−1)
2 k +mn equations.

We define now the set

I := {(i, j) ∈ [p]× [q] | j ∈ [((i− 1)k + 1)..ik]} ∪ {(0, 0)}

(see figure 3.14 left). Since there is for each column in [q] at most one element in
I, we can order set I columnwise. This order is denoted by <I .

x For each (s, t) ∈ I, we define a vector u(s, t) ∈ [p] × [q] with components
ui,j(s, t) = 1 for all (i, j) 6I (s, t), (i, j) ∈ I r {(0, 0)}. Otherwise, vector
u(s, t) has only 0-entries. (See figure 3.14 middle.) Note that u(0, 0) = 0p,q

by this definition.
x For each (s, t) ∈ S r I, we define vector u(s, t) as es,t + u(s′, j − 1), where s′

is choosen such that (s′, j − 1) ∈ I. (See figure 3.14 right.)

We obtain by this a set of pq − m(m−1)
2 k − mn + 1 affinely independent vertices

u(i, j) of O6k
p,q .

For the vertices of the k-partitioning orbitope, the equation set (*) is also valid.
However, we find more valid equations.

x In the first row of each vertex v, the first k entries are fixed to 1:

x1,j = 1 for all j ∈ [k]. (**)

x In the second row, it holds that

x2,k−j+1 + x2,k+j = 1 (***)

for all j ∈ [k].
x For every row i ∈ [p], it holds that

∑
t∈[q] xi,t = k. (In fact, this follows for

rows 1 and 2 already from equations (*), (**), and (***)).

Therefore, at least m(m−1)k
2 +mn+2k+p−2 equations are holding for O=k

p,q , where
m and n are defined as in Lemma 3.55. This leads to the following observation:

Observation 3.56 Let q = mk + n with m,n ∈ N and n < k. Then the dimension of the
partitioning orbitope O=k

p,q is bounded from above by pq − m(m−1)k
2

− mn − 2k − p + 2.

It is an open question whether this bound is tight or not.

For the covering orbitope O>k
p,q , the first k entries in the first row are fixed to 1.

This gives the following set of equations:

x1,j = 1 for all j ∈ [k].

68 CHAPTER 3. MAPPING THE TERRAIN

Figure 3.15: For this example concerning covering orbitopes, p = 5, q = 11 and k = 8. Therefore,
k = 2(q − k) + 2, m = 2 and n = 2 and the black entries in rows 1 through m + 1 = 3 are fixed to
1, while the first entry in the fourth row can be 0. Gray positions are not necessarily fixed to 1.

Figure 3.16: Constructing affinely independent vertices of the covering orbitope.

For the second row, one has to distinguish two cases: Either, 2k 6 q or 2k > q. If
2k 6 q, then we can place k 1-entries into columns [k + 1..2k], which means that
columns [k] may contain 0-entries. However, if 2k > q, we are forced to place into
columns [k] at least 2k − q 1-entries, starting from column 1. This implies that in
this case, the equations

x2,j = 1 for all j ∈ [2k − q]

are holding. This can be iterated; if for the ith row it holds that ik > (i− 1)q, then
we are forced to place ik − (i − 1)q 1-entries into the first columns. Figure 3.15
shows an example for k = 8 and q = 11.

Hence, we obtain the following observation:

Observation 3.57 If q > 2k, then we get k equations. If q < 2k, then we decompose
k into m(q − k) + n with m,n ∈ N and n < q − k. In this case, there are at least
m(m+1)

2
(q − k) + (m + 1)n equations valid for the covering orbitope O>k

p,q.

Lemma 3.58 If 2k 6 q, then the dimension of O>k
p,q is pq − k.

Proof. Define a vector

w(v) :=

(11,k
v 01,q−k

v1p−1,k
v v

)

in {0, 1}[p]×[q] that is composed from a row vector 11,k filled with k 1-entries, a
row vector 01,q−k filled with q − k 0-entries, a vector 1p−1,k with p− 1 rows and k
columns filled with 1s only, and an arbitrary vertex v of the full orbitope Op−1,q−k.
Then w(v) is a vertex of O>k

p,q . Similarly,

w̃(u) :=

(11,k
v 01,q−k

v

u 1p−1,q−k

)

CHAPTER 3. MAPPING THE TERRAIN 69

is also a vertex of O>k
p,q , where u ∈ Op−1,k. (See figure 3.16 for examples.)

To construct a set of affinely independent vertices of O>k
p,q , we will now adopt the

construction of vertices of the full orbitope from the proof of lemma 3.54. Consider
the vertices w(vi,[j]) and w̃(ui′,[j′]) with (i, j) ∈ [p − 1] × [q − k] and (i′, j′) ∈
[p− 1]× [k], and add to these for j ∈ [q − k]0 the set of vertices

(11,k v1,[j]1p−1,k 0p−1,q−k

)
,

where v1,[j] ∈ O1,q−k and v1,[0] is identified with 01,q−k. This gives a set of

(p− 1)k + (p− 1)(q − k) + q − k + 1 = pq − k + 1

vertices of O>k
p,q which are obviously affinely independent.

The dimension of O>k
p,q for 2k > q is an open question.

3.2.1.4 Facial Structure

3.2.1.4.7 (k)Packing and (k)Partitioning Orbitopes

For k = 1, Kaibel and Pfetsch gave a complete linear description for k-packing and
k-partitioning orbitopes. For this, they introduced a class of inequalities valid for
packing and partitioning orbitopes.

Definition 3.59 (Shifted column inequalities) Let (α, ζ) ∈ [p]× [q] with α 6 ζ and
let C be a set of α− ζ + 1 column indices ci ∈ [q] with the property that 1 6 c1 6
c2 6 . . . 6 cα−ζ+1 < ζ. Moreover, let k some column such that ζ 6 k 6 min({q, ζ}).
Then

min({q,α})∑

j=k

xα,j −

α−ζ+1∑

i=1

xi+ci−1,ci
6 0

is called a shifted column inequality.

Proposition 3.60 ([65]) Let k = 1. The nonnegativity constraints, the shifted
column inequalities and the row sum inequalities

q∑

j=1

xℓ,j 6 1 for all ℓ ∈ [p]

provide a complete description for packing orbitopes.
Replacing the row sum inequalities by equations, we obtain a complete description
for partitioning orbitopes.

For k > 2, no ”nice“ linear description can be expected, since optimization is
NP-hard.

However, it is clear that if ax 6 b defines a facet of O6k
p,q , then reading the

columns of a backwards and multiplying them by −1 must give the normal of a
facet of O>q−k

p,q ; this follows from the isomorphy of both. Similarly, any facet of

O=k
p,q corresponds to a facet of O=q−k

p,q .

70 CHAPTER 3. MAPPING THE TERRAIN

3.2.1.4.8 (k)Covering Orbitopes

Optimization is NP-hard for k > 2, p > 4, and q > k + 2. So we cannot expect
a ”nice“ linear description for general p and q. However, if q = k + 1, the covering
orbitope O>k

p,k+1 becomes isomorphic to the packing orbitope O6
p,k+1, as Observa-

tion 3.11 shows. Therefore, one can from Proposition 3.60 derive a linear description
for O>k

p,k+1. This is in particular possible for k = 1.

Proposition 3.61
1. The following inequalities provide a complete description for O>

p,2.
(a) Trivial (in)equalities:

xi,j 6 1 for all 2 6 i 6 p, 1 6 j 6 2,

−x1,2 6 0 and

x1,1 = 1

(b) Row-sum inequalities:

−xi,1 − xi,2 6 −1 for all 2 6 i 6 p

(c) Column-sum inequalities:

−xk,1 +

k−1∑

i=1

xi,2 6 k − 2 for all 2 6 k 6 p

2. All of these inequalities, but not the equation x1,1 = 1, define facets.

Proof. Follows from Proposition 3.60 (and can also be shown by total unimodularity
of the constraints matrix.) For the characterization of facets (in the packing case),
see [65].

Note that all valid equations for the orbisack are also valid for the covering or-
bitope O>

p,2.

3.2.1.4.9 Full Orbitopes

Not much is known about the facial structure of the full orbitope. This is astounding,
because it is possible to optimize polynomially over full orbitopes; therefore, a
“nice” linear description seems not to be a priori excluded. However, our computer
experiments using the software package polymake ([47]) exhibit a rather complicated
facial structure.

As examples, we show the computed facets of O3,4, O4,4 and of O5,3, in fig-
ure 3.17, 3.18, and 3.19, respectively. All inequalities are in the form ax 6 b with
right-hand side b at the top right corner of each facet; red entries mark negative
coefficients, blue coefficients are positive.

As one can see, the linear description of Op,q contains all lifted facets from Os,q,
s < p. This is not by chance.

Lemma 3.62 Let for p > s > 1 the lifting φ : Rs,q → Rp,q be defined by

φ(x)i,j =

{
xi,j , if (i, j) ∈ [s]× [q]

0, otherwise
for all (i, j) ∈ [p]× [q]

Then inequality ax 6 b with a ∈ R[s]×[q] is facet defining for Os,q, if and only if
inequality φ(a)x 6 b is facet defining for Op,q.

CHAPTER 3. MAPPING THE TERRAIN 71

00

−1

01
−1

−1

−1

1

1

02

−1

03
−1

−1

−1

1

1

04
−1

−1

−1

1

1

05
−1

−1

−1

1

1

06
−1

−1

−1

1

1

07

−1

08
−1

−1

−1

1

1

09

−1

011

−1

012

−1

013
−1

014

−1

115

1

016
−2

−1

−1

2

1

1

117
−1

−1

1

1

1

118
−1

−1

1

1

1

119
−1

−1

1

1

1

010

−1

020
−1

−1

1

1

121

1

022
−1 1

123

1

124
−1

−1

1

1

1

125
−1

−1

1

1

1

026
−2

−1

−1

2

1

1

127

1

028
−1

−1

1

1

029
−1 1

130
−1

−1

1

1

1

031
−2

−1

−1

2

1

1

132

1

033
−1

−1

1

1

134

1

035
−1 1

136

1

137

1

138
1

Figure 3.17: The facets of O3,4(S4).

Proof. ⇒© Since ax 6 b is facet defining, there exists a subset C of vertices of Os,q

containing sq affinely independent vectors active for ax 6 b. From C, we derive a
subset C′ of vertices of Op,q as follows: For each v ∈ C, C′ contains vector φ(v).
Moreover, pick out some arbitrary vector v′⋆ ∈ C′. For any (i, j) ∈ [s+ 1..p]× [q],
we add to C′ the modification of v′⋆ in all components ṽ

′⋆
i,ℓ := 1, ℓ ∈ [j]. Obviously,

any of these modifications is a vertex of Op,q.
Hence, C′ contains qs + (p − s)q = pq affinely independent vertices that are active
for inequality φ(a)x 6 b.
⇐©We use the orthogonal projection ψ : R[p]×[q] → R[s]×[q] that maps x to x[s]×[q].
ψ(F) is the face of Os,q defined by ax 6 b. We have to show that ψ(F) is facet
defining. The face lattice of Op,q and the sub-face lattice of Os,q consisting of the
ψ-compatible faces are isomorphic (see for instance [61]). Since F is obviously ψ-
compatible, F is either a facet of Op,q or Op,q ⊆ F; however, the latter is not possible
since Op,q is full dimensional (Lemma 3.54).

Corollary 3.63 The linear description of orbitope Op,q contains the lifted facets
of Os,q for any 1 6 s < p. In particular, the facet set of the orbisack Op,2 contains
all lifted facets of any smaller orbisack Os,2, 1 6 s < p.

Observation 3.64 Similarly as for k-packing and k-covering orbitopes (observation 3.11), if
ax 6 b defines a facet of Op,q , then reading the columns of a backwards and multiplying
all entries by −1 gives the normal of another facet of Op,q . This follows readily from the
affine transformation from Definition 3.10.

Observation 3.65 It is also possible to lift facets by inserting empty columns instead of
rows as in Lemma 3.62. The lifted facets are clearly valid, but do not have to be facet
defining, as the computational experiments show.

3.2.2 Cyclic group

For this subsection, the full cyclic group Cq is operating on the columns of the
vertices of each considered orbitope. As we will see, much more questions than for
the symmetric group are open. We will collect the few known facts.

In the case of two columns, the operation of cyclic and full symmetric group
becomes the same. Therefore, everything that can been said about orbitopes with
two columns over full symmetric group also holds for the cyclic group. This is in
particular true for the orbisack (see chapter 4). We will in the following assume
that q > 2.

72 CHAPTER 3. MAPPING THE TERRAIN

Figure 3.18: The facets of O4,4(S4).

CHAPTER 3. MAPPING THE TERRAIN 73

Figure 3.19: The facets of O5,3(S3).

74 CHAPTER 3. MAPPING THE TERRAIN

3.2.2.1 Characterization of Vertices

For the cyclic group and k = 1, the vertices of the packing orbitope O6
p,q(Cq) and the

partitioning orbitope O=
p,q(Cq) can be easily described. For partitioning orbitopes,

the lexicographically maximal column in each vertex is unique, and for the packing
case it is either unique or the matrix is 0[p]×[q], i.e. all columns are equal 0p then.
A vector in Mp,q is therefore vertex of the packing (partitioning) orbitope with
respect to the cyclic group, if and only if

(i) its lexicographic largest column is the first one, and
(ii) every row contains at most (exactly) one 1-entry.

In particular, the vertices of O=
p,q(Cq) are exactly the vectors v with v1,1 = 1 and

row sum 1 for each row.

However, other (or no) restrictions on the number of 1s in each row seem to make
things much more complicated. For the full orbitope O1,q(Cq) with cyclic column
permutations, the vertex set is already obviously quite intricate. In the following,
we collect observations about these vertices to get nearer to a characterization.

Observation 3.66 (i) If a vertex v ∈ Op,q(C) has last column 1p, then all columns are 1p.
(ii) Similarly, if v∗,1 = 0p, then v∗,j = 0p for all j ∈ [q].

Proof. (i) v∗,q must be lexicographically smaller or equal than v∗,1, so v∗,1 =1p. But v∗,1 must also be lexicographically smaller or equal than v∗,2; otherwise
(v∗,q,v∗,1, . . . ,v∗,q−1) would be a lexicographically larger permutation of v. There-
fore v∗,2 = 1p. By induction follows that v∗,j = 1p for all j ∈ [q]. The case (ii) is
analogous.

It follows that in particular for p = 1, each vertex v of O1,q is either 1q, or it is0q, or it has first entry 1 and last entry 0.

Definition 3.67 All vertices v ∈ O1,q with v1,1 = 1 and v1,q = 0 will in the
following be referred to as non-trivial vertices.

Observation 3.68 Each non-trivial vertex of O1,q can be identified with a sequence of ℓ
tupels (α1

i , α
0
i), 1 6 i 6 ℓ where α1

i and α0
i denote the length of the ith sequence of 1s and

0s, respectively, and

q =

ℓ
X

i=1

(α1
i + α0

i).

The lexicographic order induces an order on the set of tupels as follows:

(α1
i , α

0
i) > (α1

j , α
0
j) if and only if either (α1

i > α1
j) or (α1

i = α1
j and α0

i < α0
j).

3.2.3 Optimization

Of course, it is possible to decide in polynomial time whether a given vector inMp,q

is in Op,q(Cq) or not. However, it is unclear whether it is possible to optimize in
polynomial time over Op,q(Cq); the observation above does not seem to lead to an
algorithm for optimization. Consequently, the complexity status for optimization
over Op,q(C) (even for p = 1) is open for the full case as well as for all restricted
cases (except 6 1, = 1 and k = const).

However, even if there are no restrictions on the number of 1s per row, optimiza-
tion over O1,q(Cq) is at least as hard as optimization over Op,q(Cq), as the following
considerations show.

Let m,n ∈ N> with 1 6 m < n. We define a projection φn :M1,nq →Mn,q that
splits 0/1-vector v ∈ M1,nq into segments each of length n and interprets the jth

CHAPTER 3. MAPPING THE TERRAIN 75

segment as the jth column of the image vector, that is:

φn

(
v = (v1, v2, . . . , vnq)

)
=

v1 vn+1 · · · v(q−1)n+1

...
...

...

vn v2n · · · vqn

Moreover, let ψm :Mn,q →Mn−m−1,q be the orthogonal projection that maps any
vector v to v[m+1..n−1]×[q]. In other words, ψm deletes the first m and the last row
in v ∈Mn×q.

Lemma 3.69 Let p, q ∈ N>. For any ℓ > p, we set s(ℓ) := (2ℓ+ p+1)q and define

τ := ψ2ℓ ◦ φs(ℓ),

where φ and ψ are defined as described above. Moreover, let the set Bℓ ⊆ M1,s(ℓ)

contain all vectors in {0, 1}[1]×[s(ℓ)] that are of the following form:

v := (1ℓ, 0ℓ,v1, 0, 1ℓ, 0ℓ,v2, 0, . . . , 1ℓ, 0ℓ,vq, 0), (3.14)

where vi ∈M1,p for all i ∈ [q]. Then the following holds:

(i) If v ∈ Bℓ ∩O1,s(ℓ)(Cs(ℓ)), then τ(v) ∈ Op,q(Cq).
(ii) For any vertex w ∈ Op,q(Cq) and ℓ > p, there is a vector v′ ∈ O1,s(ℓ)(Cs(ℓ))∩Bℓ

such that τ(v′) = w.

Proof. (i) Since v ∈ Bℓ, we know that

τ(v) = (v1,v2, . . . ,vq).

Assume that τ(v) /∈ Op,q(Cq). Then there is a cyclic permutation π : [q]→ [q]
such that

(vπ(1),vπ(2), . . . ,vπ(q))

is lexicographically larger than τ(v). However, this implies that

(1ℓ, 0ℓ,vπ(1), 0, 1ℓ, 0ℓ,vπ(2), 0, 1ℓ, 0ℓ,vπ(3), 0, . . . , 1ℓ, 0ℓ,vπ(q), 0)

is lexicographically larger than v. Contradiction.
(ii) It suffices to show that for any vertex w of Op,q, the vector

v′ = (1ℓ, 0ℓ,w∗,1, 0, 1ℓ, 0ℓ,w∗,2, 0, 1ℓ, 0ℓ,w∗,3, 0, . . . , 1ℓ, 0ℓ,w∗,q, 0)

is in O1,s(ℓ) for an arbitrary ℓ > p. Obviously, only those cyclic permutations
π : [s(ℓ)]→ [s(ℓ)] have to be considered that shift (1ℓ, 0ℓ)-segments to the first
position. Assume there is a π that gives a lexicographically larger vector than
v′, i.e. v′ /∈ O1,s(ℓ). Then π induces a cyclic permutation π′ : [q] → [q] such
that

(w∗,π′(1),w∗,π′(2),w∗,π′(3), . . . ,w∗,π′(q))

is lexicographically larger than w. Contradiction.

Corollary 3.70 Optimization over O1,q is at least as hard as optimization over
Op,q for general p.

76 CHAPTER 3. MAPPING THE TERRAIN

Proof. From some given cost vector c ∈ R[p]×[q], we construct the following cost
vector

c′ := (ζ1ℓ, −ζ1ℓ, c∗,1, −ζ, ζ1ℓ, −ζ1ℓ, c∗,2, −ζ, . . . , ζ1ℓ, −ζ1ℓ, c∗,q, −ζ),

with ζ ∈ R sufficiently large (i.e. ζ >
∑

(i,j)∈supp+(c) ci,j). Any optimal solution

for max({〈c′,x〉 | x ∈ O1,s(ℓ)}) induces by projection τ an optimal solution for
max({〈c,x〉 | x ∈ Op,q}).

3.2.4 Facial Description of Packing and Partitioning Orbitopes

Kaibel and Pfetsch gave a linear description for packing and partitioning orbitopes
also for the cyclic case, see [65]. The facial description for the partition orbitope
O=

p,q(Cq) is

x1,1 = 1

x1,j = 0 ∀ 2 6 j 6 q

xi,j > 0 ∀ 2 6 i 6 p and j ∈ [q]
∑

j∈[q]

xi,j = 1 ∀ 2 6 i 6 p,

while the packing orbitope O6
p,q(Cq) is fully and non-redundantly described by

x1,1 > 0

x1,j = 0 ∀ 2 6 j 6 q

xi,j > 0 ∀ 2 6 i 6 p and j ∈ [q]
∑

j∈[q]

xi,j 6 1 ∀ 2 6 i 6 p

q∑

j=2

xi,j −
i−1∑

k=1

xk,1 6 0 ∀ 2 6 i 6 p.

Apart from these special cases (and two-columned orbitopes), no facial description
is known for orbitopes over the cyclic group. Moreover, our computer experiments
seem to indicate that the facial structure of full orbitopes over the cyclic group
is even more complicated than the facial structure of full orbitopes over the full
symmetric group. For instance, we computed the facial structure of O3,4(C4) using
the software package polymake ([47]; for a visualization of the facets, see the fig-
ure 3.20). The results do not seem very encouraging. (Compare with figure 3.17:
for p = 3 and q = 4, there are 361 facets when the cyclic group is operating on
the columns versus 39 facets with the symmetric group operating. However, what
counts more is the fact that recurring patterns seem to become much less obvious.)

3.2.5 Other Groups Operating on the Columns

Partition the column indices [q] into k subsets Gi. If it is possible to simultaneously
decompose the group G operating on the columns into a product of G1 × . . .×Gk

of subgroups Gi such that subgroup Gi is operating on subset Gi for all i ∈ [k], then
the representatives of Op,q(G) can be characterized as follows.

Proposition 3.71 Let [q] =
⋃̇k

i=1Gi and G ≃ G1 × · · · ×Gk. Let the action of G
be defined by the actions of the Gi on Gi. Denote moreover by Vi the vertex set of
Op,Gi

(Gi). Then x is a vertex of Op,q(G) if and only if x∗,Gi
∈ Vi for all i ∈ [k].

CHAPTER 3. MAPPING THE TERRAIN 77

00

−1

01
−1

−1

−1

1

1

02

−1

03
−2

−1

−1

1 −1

2

1

04
−1

−1

−1

1

1

05
−1

16

−1

−1 1

1

07
−1

−1

−1

−1 2

1

08

−1

19
−3

−1

−1

1

−1

1

−1

2

2

1

010
−4

−2

−1

1

−1

1

−1

3

2

1

011

−1

212
−2

−1

−1

−1

2

2

1

1

013
−4

−2

−1

−1

−1

4

2

1

1

114
−2

−1

−1

−1

2

1

1

1

215
−1 −1

−1

1

1

1

1

216
−1

−1 1

1

1

017
−1

−1

−1

1

1

018
−2

−1

−1

−1

1

1 1

1

019
−3

−1

−2

−1

1

1 2

2

020
−2

−1

−1

−1 1

2

1

421
−4

−2

−2

−1

−1

4

4

2

1

1

1

222
−4

−2

−2

−1

−1

4

2

2

1

1

1

023
−8

−4

−2

−2

−1

−1

8

4

2

1

1

1

224
−3

−1

−1

−1

1

2

1

1

1

1

225
−3

−1

−1

−1

−1

2

2

1

1

1

1

026
−5

−2

−1

−1

−1

−1

4

2

1

1

1

1

127
−3

−1

−1

−1

−1

2

1

1

1

1

1

228
−1 −1

−1

−1

1

1

1 1

229
−1

−1

−1

1

1 1

230
−2

−1

−1

−1

1

2

1 1

131
−2

−1

−1

−1

−1

2

1

1 1

032
−4

−2

−1

−1

−1

−1

4

2

1 1

233
−2

−1

−1

−1

−1

2

2

1 1

434
−2 −2

−1

−1

2

2

2

1

1

1

235
−2

−1

−1

1

1

1

1

1

236
−2 −1

−1

−1

1

1

1

1

1

1

037
−4

−2

−1

−1

−1

1

2

3

1

1

038
−3

−1

−1

−1

−1

1

1

2

1

1

139

−1

−1 1

1

040
−2

−2

−1

−1 1

1

2

1

141
−1

−1

−1 1

1

1
042

−2

−2

−1

−1 1

1

2

1

043
−4

−3

−1

−1

−1

2

1

3

1

2

144
−2

−2

−1

−1

1

1

2

1

1

145
−2

−1

−1

−1

1

1

1

1

1

046
−5

−2

−1

−1

−1

1

−1

4

3

2

147
−4

−1

−1

−1

−1

1

−1

3

3

2

048
−3

−1

−1

−1

−1

1

−1

2

2

1

049
−4

−2

−1

−1

−1

2

1

2

2

1

050
−4

−3

−1

−1

−1

2

1

3

2

1

051
−3

−2

−1

−1

−1

2

1

2

1

1

152
−4

−3

−1

−2

−1

4

2

1

2

1

1

253
−2

−2

−2

−1

2

1

1

2

1

1

154
−2

−1

−1

−1

−1

2

1

1

1

1

255
−1

−1

−1

−1

1

1

1

1

1

056
−2

−1

−1

−1

−1

2

1 1

157
−1

−1

−1

−1

1

1 1

158
−3

−1

−1

−1

−1

2

1

1

2

1

259
−2

−1

−1

−1

1

1

1

2

1

060
−2

−1

−1

−1

−1

1 1

2

061
−3

−2

−1

−1

−1

1 3

2

1

062
−2

−1

−2

−1

−1

1 2

2

063
−1

−1

−1

−1

−1

1 1

1

064
−3

−1

−1

−1

−1

1 2

2

1

065
−4

−2

−1

−1

−1

3

1

1

1

2

066
−3

−2

−1

−1

−1

3

1

1

1

1

167
−4

−3

−1

−2

−1

4

2

2

2

1

168
−2

−2

−1

−1

2

1

1

1

1

069
−6

−3

−2

−2

−2

5

2

1

2

2

1

070
−4

−2

−2

−2

−2

3

1

2

2

1

171
−1

−2

−1

−1

1

1

1

1

072
−2

−1

−2

−1

−1

2

1

1

1

073
−5

−2

−1

−1

−1

−1

2

1

3

2

2

474
−4

−2

−2

−1

−1

2

2

3

3

3

275
−2

−2

−2

−1

−1

2

2

1

1

1

176
−4

−1

−1

−1

−1

−1

2

1

2

2

2

077
−3

−1

−1

−1

−1

−1

2

1

1

1

1

278
−6

−2

−2

−2

−1

−1

4

2

3

3

3

079
−4

−2

−2

−2

−1

−1

4

2

1

1

1

180
−2

−1

−1

−1

−1

1

1

1

1

1

281
−3

−1

−1

−1

−1

1

1

2

2

2

282
−3

−1

−3

−2

−1

−1

3

3

2

1

1

283
−4

−3

−2

−1

−1

4

2

2

2

1

1

084
−5

−3

−3

−2

−1

−1

5

3

2

1

1

085
−8

−4

−2

−2

−1

−1

4

2

5

3

3

086
−4

−3

−2

−2

−1

−1

4

2

2

1

1

087
−8

−5

−2

−2

−1

−1

8

4

2

2

1

1

088
−4

−2

−2

−2

−1

−1

2 3

3

1

089
−5

−2

−1

−1

−1

−1

3

1

1

2

2

1

090
−8

−4

−2

−2

−1

−1

6

2

2

3

3

1

191
−1

−2

−1

−1

−1

1

1

1

1

192
−1

−1

−1

−1

−1

1

1 1

093
−2

−2

−1

1

2

1

094
−4

−3

−1

1

−1

1 3

1

2

095
−2

−2

−1

1

2

1

096
−1

−1

−1

1

1

097
−1

−1

−1

1

1

098
−1

−1

−1 1

1
099

−2

−2

−1

1

1

1

1

0100
−4

−3

−1

1

−1

2

1

2

1

1

1101
−3

−2

−1

1

−1

2

1

1

1

1

0102

−1

−1

−1 1
0103

−1

−2

−1

−1 2

1

0104
−1

−1

−1

1

1

0105
−1

−1

−1 1

1
0106

−3

−3

−1

−1

−1

2

1

2

1

1

0107
−3

−3

−1

−1

−1

1 3

1

2

0108
−2

−2

−1

−1

−1

1 2

1

1

0109
−3

−2

−1

−1

−1

1 2

1

2

0110
−4

−2

−1

−1

−1

1 3

2

2

1111
−3

−1

−1

−1

−1

1 2

2

2

0112
−2

−1

−1

−1

−1

1 1

1

1

0113
−4

−2

−1

−1

−1

3

1

1

1

1

1

0114
−3

−2

−1

−1

−1

2

1

1

1

1

0115
−2

−2

−1

−1

−1

1 2

1

1

0116
−2

−1

−1

−1

−1

1 1

1

1

0117

−1

0118
−2

−3

−1

−1

−1

−1

2

1

1

1

0119
−4

−5

−2

−2

−1

−1

4

2

2

1

1

0120
−4

−4

−2

−2

−1

−1

4

2

1

1

1

0121
−4

−3

−2

−2

−1

−1

3

1

1

1

2

0122
−7

−3

−2

−2

−1

−1

5

2

1

2

2

2

0123
−6

−3

−2

−2

−1

−1

5

2

1

1

1

2

0124
−2

−2

−1

−1

−1

−1

2

1 1

0125
−2

−2

−2

−2

−1

−1

2 1

1

1

1126
−6

−2

−2

−2

−1

−1

3

1

3

3

3

0127
−4

−2

−2

−2

−1

−1

3

1

1

1

2

0128
−5

−2

−2

−2

−1

−1

3

1

2

2

2

0129
−3

−2

−2

−2

−1

−1

2 1

1

2

0130
−1

−1

−1

−1

−1

−1

1

1

0131
−2

−3

−2

−2

−1

−1

2 2

1

1

0132
−4

−5

−2

−2

−1

−1

2 4

1

3

0133
−2

−3

−1

−1

−1

−1

1 2

2

0134
−1

−2

−1

−1

−1

−1

1 1

1

0135
−2

−2

−1

−1

−1

−1

1 1

2

0136
−4

−3

−2

−2

−1

−1

2 2

1

3

0137
−5

−3

−2

−2

−1

−1

3

1

2

1

3

0138
−7

−3

−2

−2

−1

−1

3

1

4

3

3

0139
−1

−2

−1

−1 2

1

0140
−1

−2

−1

−1 1

1

1
0141

−1

−1

−1 1
2142

−3

−1

−1

−1

1

2

2

2

1143
−2

−1

−1

−1

1

1

1

1

1144
−1

−1

−1

−1

1

1

1145
−2

−1

−1

1

−1

1 1

1

1

0146
−3

−2

−1

1

−1

1 2

1

1

0147
−1

−1

−1

1

1
0148

−1

−1

−1

1

1
0149

−1

2150
−2

−2

−2

−1

−1

2

2

1

1

1

2151
−2

−3

−2

−1

−1

2

2

2

1

1

0152
−4

−3

−1

−1

−1

−1

4

2

1

1

1

0153
−6

−5

−2

−2

−1

−1

4

2

4

1

3

0154
−6

−4

−2

−2

−1

−1

4

2

3

1

3

0155
−3

−3

−1

−1

−1

−1

2

1

2

2

0156
−2

−2

−1

−1

−1

−1

2

1

1

1

0157
−5

−4

−2

−1

−1

−1

3

2

3

3

0158
−8

−6

−3

−2

−1

−1

5

3

5

1

4

1159
−2

−1

−2

−1

−1

−1

2

2

1

1

0160
−3

−2

−2

−1

−1

−1

3

2

1

1

1161
−2

−2

−1

−1

−1

2

1

1

1

1

1162
−1

−1

−1

−1

−1

1

1

1

0163
−2

−1

−1

−1

−1

−1

2

1

1

0164
−3

−2

−1

−1

−1

−1

2

1

1

2

0165
−2

−2

−1

−1

−1

2

1

1

1

1166
−2

−3

−1

−2

−1

2

2

2

1

0167
−3

−2

−1

−1

−1

2

1

1

2

1168
−4

−2

−1

−1

−1

2

1

2

3

1

1169
−1

−2

−1

−1

1

1

1

1

2170
−2

−1

−1

−1

1

1

1

2

1

1171
−1

−1

−1

−1

1

1

1

2172
−1

−1

−1

−1

1

1

1

1

1

2173
−1

−2

−2

−1

1

1

2

1

1

1174
−2

−1

−1

−1

−1

1 2

2

1

0175
−3

−2

−1

−1

−1

1 3

2

1

1176
−2

−1

−1

−1

−1

2

1

1

1

1

2177
−1

−1

−1

−1

1

1

1

1

1

0178
−3

−2

−1

−1

−1

2

1

2

1

1

1179

−1

−1 1

1

0180
−1

−1

−1

−1 2

1

0181
−1

−1

−1

−1 1

1

1
0182

−1
0183

−2

−1

−1

−1

−1

1

1

1

1

0184
−3

−2

−1

−1

−1

1

2

2

1

0185
−4

−3

−1

−1

−1

1

2

3

2

0186
−3

−2

−1

−1

−1

1

1

2

2

0187
−4

−2

−1

−1

−1

2

2

1

2

1

1188
−2

−1 −1

−1

1

1

1

1

1

0189
−4

−2

−1

−1

−1

3

2

1

1

1

1190
−3

−1

−1

−1

−1

2

2

1

1

1

3191
−4

−1

−2

−1

−1

−1

4

4

2

1

1

0192
−7

−4

−2

−1

−1

−1

7

4

2

1

1

2193
−3

−2

−1

−1

−1

3

2

2

1

1

3194
−2

−1

−1

−1

−1

2

2

2

1

1

0195
−1

−1

−1

1

1

1196

−1

−1 1

1

0197

−1

0198
−1

0199

−1

2200
−3

−1

−1

−1

−1

1 3

3

2

2201
−4

−2

−1

−1

−1

2

1

3

3

2

3202
−2

−1

−1

−1

1

1

2

2

2

3203
−1

−1

−2 1

1

1

2

1

1

2204
−1 1

1

1

2205
−1 1

1

1

1206
−1

−1 1

1

1

1207
−1

−1 1

1

1

1208
−3

−2

−1

1

1

1

1

2

1

1209
−3

−2

−1

−1 2

2

1

2

1

2210
−1

−1

−1 1

1

1

1

1

1211

1

0212
−2

−1

−1

2

1

1

1213
−1

−1

1

1

1

1214
−2

−1

−1

−1 1

1

2

1

1

0215
−3

−2

−1

−1 1

1

3

1

1

1216
−1

−1

−1 2

1

1

0217
−3

−2

−1

−1 4

2

1

2218
−1

−1

−1 2

2

1

0219
−5

−3

−1

−1

−1

2

1

4

2

2

3220
−2

−1

−1

−1

1

1

2

2

2

2221
−3

−1

−1

−1

−1

2

1

2

2

2

0222
−5

−3

−1

−1

−1

1 5

3

2

2223
−3

−1

−1

−1

−1

1 3

3

2

3224
−2

−1

−1

−1

1

1

2

2

2

2225
−4

−2

−1

−1

−1

2

1

3

3

2

0226
−3

−2

−1

1

3

1

1

0227
−5

−3

−1

1

−1

1 4

2

2

0228
−3

−2

−1

1

3

1

1

0229
−2

−1

−1

2

1

1

2230
−3

−1

−1

1

−1

1 2

2

2

1231
−1

−1

1

1

1

0232
−11

−6

−3

−2

−1

−1

5

3

8

4

4

3233
−8

−3

−3

−2

−1

−1

5

3

5

4

4

5234
−6

−1

−3

−2

−1

−1

3

3

5

4

4

0235
−6

−3

−2

−1

−1

2

1

5

3

2

3236
−3

−2

−1

−1

1

1

3

3

2

2237
−4

−1

−2

−1

−1

2

1

3

3

2

1238
−4

−2

−1

−1

−1

3

1

1

2

2

1

0239
−6

−3

−2

−1

−1

1 6

4

2

2240
−4

−1

−2

−1

−1

1 4

4

2

1241
−4

−2

−1

−1

−1

1 4

3

2

3242
−2

−1

−1

−1

1

1

2

2

2

2243
−3

−1

−1

−1

−1

2

1

2

2

2

1244
−4

−2

−1

−1

−1

2

1

3

2

2

1245
−5

−3

−1

−1

−1

2

1

4

3

2

2246
−3

−2

−1

−1

1

1

3

2

2

0247
−6

−3

−1

−1

−1

1

2

5

2

2

0248
−5

−2

−1

−1

−1

1

1

4

2

2

1249
−4

−1

−1

−1

−1

1

1

3

2

2

0250
−4

−2

−1

−1 1

4

2

1

0251
−5

−2

−2

−1

1

1 4

3

1

1252
−4

−1

−2

−1

1

1 3

3

1

1253
−3

−1

−1

−1

1

1 2

2

1

0254
−3

−1

−1

−1

3

2

1

1255
−2

−1

−1

2

2

1

4256
−2

−1

−2

−1

2

2

2

2

1

1

3257
−1 −1

−1

1

1

1

1

1

1

2258
−2

−1

−1

−1

2

1

1

1

1

1

3259
−2

−1

−1

−1

2

2

1

1

1

1

1260
−4

−2

−1

−1

−1

4

2

1

1

1

1

1261
−1

−1

1

1

1

1262
−2

−1 −1 1

2

1

1

1263
−4

−2

−1

−1

−1

2

2

1

3

1

1

2264
−2

−1

−1

−1

1

1

1

2

1

1

3265
−3

−2

−2

−1

3

2

2

2

1

1

0266
−6

−3

−1

1

−1

1

−1

5

3

2

2267
−4

−1

−1

1

−1

1

−1

3

3

2

1268
−4

−2

−1

1

−1

2

1

2

2

1

0269
−5

−3

−1

1

−1

2

1

3

2

1

0270
−5

−3

−1

−1

−1

3

1

1

3

2

1

1271
−4

−2

−1

−1

−1

3

1

1

2

2

1

3272
−3

−2

−2

−1

3

2

2

2

1

1

4273
−2

−1

−2

−1

2

2

2

2

1

1

2274
−2

−1 1

−1

1

1

1

1

1

1275
−4

−2

−1

−1

−1

4

2

1

1

1

1

3276
−2

−1

−1

−1

2

2

1

1

1

1

2277
−2

−1

−1

−1

2

1

1

1

1

1

3278
−1 −1

−1

1

1

1

1

1

1

1279
−4

−2

−1

1

−1

3

1

1

1

1

1

1280
−1

−1

1

1

1

0281
−2

−1

−1

2

1

1

0282
−5

−3

−1

−1

−1

4

2

1

2

1

1

1283
−3

−2

−1

−1

2

1

1

2

1

1

0284
−5

−3

−1

1

−1

3

1

1

2

1

1

0285
−5

−2

−1

−1

−1

2

2

1

3

1

1

5286
−3

−1

−2

−1

−1

3

3

3

2

1

1

1287
−4

−1

−1

−1

−1

2

2

1

2

1

1

0288
−5

−2

−1

−1

−1

3

2

1

2

1

1

1289
−3

−1 −1

−1

1

1

1

2

1

1

0290
−11

−6

−3

−2

−1

−1

11

6

3

2

1

1

3291
−5

−3

−2

−1

−1

5

3

3

2

1

1

5292
−6

−1

−3

−2

−1

−1

6

6

3

2

1

1

1293
−3

−2 1

−1

1

1

2

1

1

0294
−3

−2

−1

−1 4

2

1

2295
−1

−1

−1 2

2

1

1296
−1

−1

−1 2

1

1

0297
−3

−1

−1

−1

3

2

1

1298
−2

−1

−1

2

2

1

0299
−4

−2

−1

1 −1

4

2

1

1300
−1

−1

1

1

1

1301
−2

−1 1 −1

2

1

1

0302
−2

−1

−1

1

1

1

1

0303
−3

−2

−1

1

1

1

2

1

1304
−1

−1 1

1

1

0305
−2

−1

−1 1

2

1

1306
−2

−1

−1

−1 2

1

1

1

1

2307
−1

−1

−1 1

1

1

1

1

0308
−3

−2

−1

−1 2

1

1

2

1

1309
−2

−1

−1

−1 1

1

1

2

1

0310
−6

−3

−2

−1

−1

5

2

2

2

2

2311
−5

−3

−1

−2

−1

5

3

3

2

1

4312
−3

−1

−1

−2

−1

3

3

3

2

1

0313
−3

−1

−1

−1

1

1

1

2

1

3314
−3

−2

−1

−1

3

3

2

1

1

0315
−6

−3

−2

−1

−1

6

3

2

1

1

1316
−4

−2

−1

−1

−1

4

2

2

1

1

2317
−3

−2

−1

−1

3

2

2

1

1

3318
−2

−1

−1

−1

2

2

2

1

1

3319
−2

−1

−1

−1

2

2

2

1

1

1320
−2

−1 −1

1

1

1

1

1

1321
−2

−1

−1

1

1

1

1

1

0322
−3

−1

−1

−1

2

1

1

1

1

2323
−3

−2

−1

−2 3

2

2

2

1

2324
−1

−1

−1 1

1

1

1

1

3325
−2

−1

−1

−2 2

2

2

2

1

1326
−3

−1

−1

1

−1

1

1

1

1

1

1

0327
−5

−2

−2

−1

1

3

1

1

2

2

0328
−2

−1

−1

1

1

1

1

0329
−2

−1

−1 1

2

1

1330
−1

−1 1

1

1

0331
−1

−1

1

1

1332

1

1333
−3

−2

−1

1

2

1

1

1

1
1334

−2

−1 1

1

1

1
0335

−3

−2

−1

1

2

1

1

1
0336

−2

−1

−1

1

1

1

1
1337

−2

−1

−1

−1 2

2

1

1
0338

−3

−2

−1

−1 3

2

1

1
1339

−2

−1

−1 2

1

1

1

2340
−1 −1 1

1

1

1
1341

−2

−1

−1

1

1

1

1

1
0342

−2

−1

−1

1

1

1

1
0343

−1 1
1344

−2

−1

−1

1

1

1

1

1

1345

1

0346
−2

−1

−1

2

1

1

1347
−1

−1

1

1

1

1348
−2

−1

−1

1

1

1

1

1

0349
−1

−1

1

1

1350

1

0351
−1 1

0352
−2

−1

−1

2

1

1

1353
−1

−1

1

1

1

1354

1

1355

1

0356
−1

−1

1

1

0357
−1 1

1358

1

1359

1

1360
1

Figure 3.20: The facets of O3,4(C4).

Proof. ⇒©Assume v is a vertex of Op,q(G) and there is an i ∈ [k] such that v∗,Gi

is not vertex of Op,Gi
(Gi). Then there is an element g ∈ Gi such that v∗,g(Gi) ≻

v∗,Gi
. Therefore, applying (id, . . . , id, g, id, . . . , id) ∈ G on the columns of v yields

a lexicographically larger vector than v. (id denotes here the identity in groups
Gk, k 6= i.) Contradiction. ⇐©Assume that for some v ∈ Op,q(G), v∗,Gi

is a vertex
of Op,Gi

(Gi) for each i ∈ [k], but there is an element g ∈ G such that v∗,g([q]) is
lexicographically larger than v. We compare v∗,g([q]) and v∗,q column by column.
Let j the index of the first column such that v∗,j ≺ v∗,g(j). Then by definition
of G, there must be some subset Gi ⊆ [q] such that both j, g(j) ∈ Gi. Moreover,
the restriction g̃ of g on the elements of Gi must be an element of Gi. But then,
operating with (id, . . . , id, g̃, id, . . . , id) on the columns of v gives a lexicographically
larger vector than v. Contradiction.

For Gi ≃ SGi
for all i ∈ [k], this fact has been observed by Faenza. It is clear that

in full orbitopes over products of full symmetric groups, Proposition 3.71 implies
that one can optimize over Op,q(G) in polynomial time, by optimizing separately
over each column partition Gi. Note that an optimal vertex of Op,q(G) can definitely
have undefined splits, meaning: the columns of the vertex do not have to be in
lexicographic order.

Proposition 3.71 has also implications for the linear description of Op,q(G). If a
linear description of Op,Gi

(Gi) is available for any i ∈ [k], one can obtain a linear
description for Op,q(G) by lifting the inequalities appropriately, independently of

78 CHAPTER 3. MAPPING THE TERRAIN

the type of groups Gi, since Op,q(G1 × · · · × Gk) = Op,G1(G1) × · · · ×Op,Gk
(Gk).

In other words: assuming that for any i ∈ [k], the linear description of Op,Gi
(Gi) is

given by
Op,Gi

(Gi) = {y ∈ R[p]×Gi | Aiy 6 bi},

with Ai ∈ Q[ki]×([p]×Gi), y ∈ {0, 1}[p]×Gi and bi ∈ Q[ki] and defining

P := {x ∈ R[p]×[q] | Aix∗,Gi
6 bi ∀i ∈ [k]},

then P = Op,q(G) holds.

For other groups, for instance alternating groups, we have neither experimental
nor analytical results.

Chapter 4

Orbisacks

Orbisacks Op,2 are full orbitopes over the symmetric group, and, as we will see, they
are – apart from some other special cases like packing and partitioning orbitopes
– the best understood class of orbitopes. The reason is that orbisacks are special
in many respects. As has been shown in Lemma 3.16, the orbisack is a knapsack
polytope. Moreover, each orbitope vertex has exactly one split, the critical row,
which opens the way to nice extended formulations.

But, because of their very special properties, orbisacks are a kind of laboratory
mice. To us, there is no real world application known which could profit from the
linear description of orbisacks. Our interest in orbisacks is more theoretical. From
studying them, we tried to learn how to describe full orbitopes with more than
two columns linearly. However, it turned out that all the properties that make
orbisacks so nice get lost as soon as we consider more than two rows, as indicated
in the introduction.

In this chapter, we will present in the first main part three different ways to derive
a linear description of the orbisack Op,2.

x The first proof shows in a direct way that if inequality ax 6 b is defining a
facet, then the entries of normal vector a show a certain sign pattern, and all
inequalities based on the same sign pattern are dominated by one with certain
absolute values (the so called valued block inequality), which will prove to be
facet defining.

x The second proof relies on the fact that the orbisack is a special knapsack poly-
tope: its weight set is ordered such that the ratio of two subsequent weights
is integral. This is what is generally known as a sequential knapsack polytope
(SKP). In [117], Weismantel and Pochet gave a complete linear description of
all SKPs which gives us a second approach for a linear description of orbisacks.

x Our third proof relies on an extended formulation for orbisacks (see page 19)
and a two-step application of faithful sectioning (see Theorem 2.17).

The second main part of the chapter is mainly dedicated to the graph of the
orbisack.

4.1 Facial Description of Orbisacks I
(Combinatorial Proof)

For the following proofs, the term “critical row” will become of great importance
(see Definition 3.7). Additionally, we will give now some more definitions that will
prove to be useful.

Let VOp,2 denote the set of vertices of the orbisack.

79

80 CHAPTER 4. ORBISACKS

Definition 4.1 (Layers) The position of the critical row can be used to partition
the vertex set of the orbisack. For k ∈ [p+ 1], we define sets

Lk := {v ∈ VOp,2 | crit(v) = k}.

The equivalence classes Lk are called layers.

Definition 4.2 (Maximizing vertex set) For a given vector a ∈ R[p]×[2], we define
the set

V [a] := argmaxv({〈v,a〉 | v ∈ VOp,2})

of orbisack vertices maximizing cost functional 〈x,a〉. Sometimes, it will be conve-
nient to also partition set V [a] into subsets

Vk[a] := V [a] ∩ Lk, k ∈ [p+ 1].

A key tool for our proofs will be the modification of a vector, that is: a change
in selected components of some vertex (see page 5). For a given vector v ∈ R[p]×[2],
a modification ṽ ∈ R[p]×[2] of v in component ṽk,ℓ := s is the vector

ṽi,j =

{
s, if (i, j) = (k, ℓ)

vi,j , otherwise.
for all (i, j) ∈ [p]× [2].

Before we look at the linear description in detail, we need two more definitions:

Definition 4.3 (n-rows, p-rows, np-rows) For some vector a ∈ R[p]×[2],
x a negative row (in short n-row) has the form (−α, 0),
x a positive row (in short p-row) has the form (0, β), and
x a negative-positive row (in short np-row) has the form (−α, β),

where α, β > 0. If the row contains only 0s, we call it empty.

Definition 4.4 (Basement) Let ax 6 b be an inequality with a ∈ Q[p]×[2] and
a 6= 0. We call row

base(a) := max({i ∈ [p] | ai,∗ is not (0, 0) (empty)})

the basement of a (or of the inequality ax 6 b, respectively).

Remark 4.5 From lemmas 3.54 and 3.62 it follows that any facet defining inequality with
basement s < p is a lifted facet from Os,2. Hence, if not otherwise stated, we can (and
will) for the following proofs w.l.o.g. assume that any considered inequality ax 6 b has
full extension, i.e. base(a) = p.

We will obtain the full description in four steps:
(i) We give for some candidate ax 6 b necessary conditions on the sign pattern

of a and b.
(ii) We define the class of so called valued block inequalities (VBI). These show the

sign-pattern of a facet defining inequality and dominate all inequalities with
same sign pattern.

(iii) We prove that all VBI in fact define facets.
(iv) Last, we briefly consider trivial inequalities.

4.1.1 Sign Pattern of Non-Trivial Facet Defining Inequalities

If the facet F is defined by inequality ax 6 b, then it is denoted by F(ax 6 b).

CHAPTER 4. ORBISACKS 81

Lemma 4.6 Let facet F(av 6 b) be non-trivial. For all i ∈ [p] and j ∈ [2], there
is at least one vertex v with vi,j = 1 and at least one vertex v′ with v′i,j = 0 both
active for facet F.

Proof. If all vertices on facet F have component vi,j = 1 in common, then

F ⊂ {x ∈ Op,2 | xi,j = 1},

i.e. F is contained in a trivial face of Op,2. But F is not trivial by assumption.
Contradiction. Similarly with v′i,j = 0.

Lemma 4.7 For any non-trivial facet F(av 6 b), it holds that ai,1 6 0 and ai,2 > 0
for all i ∈ [p].

Proof. Assume ai,1 > 0. There is some vertex v in F with vi,1 = 0 (Lemma 4.6).
We modify v in component ṽi,1 := 1. Then ṽ ∈ Op,2, but it violates ax 6 b.
Contradiction.
For the assertion ai,2 > 0, we modify some vertex v with vi,2 = 1 in component
ṽi,2 := 0.

Lemma 4.8 Let F(av 6 b) be a non-trivial facet. Then there is no empty row r
with 1 6 r < p.

Proof. We assume that base(a) = p (Remark 4.5). This implies that either ap,1 < 0
or ap,2 > 0 or both (Lemma 4.7); let’s say that ap,1 < 0. (The other case can be
treated similarly).
Assume row r < p was an empty row in a. Let v be some vertex on F with vp,1 = 1
(Lemma 4.6). Then crit(v) ≮ p, because we could then modify v in ṽp,1 := 0,
obtaining ṽ ∈ Op,2 with 〈a, ṽ〉 > 〈a,v〉 = b. So vp,∗ is either (1, 1) or (1, 0), and we
can find another modification of v in components ṽr,1 := 1, ṽr,2 := 0 and ṽp,1 := 0.
Row r is then critical row in ṽ. ṽ is also vertex of Op,2, but 〈a, ṽ〉 > 〈a,v〉.
Contradiction.

Definition 4.9 We call ai,∗ a balanced row, if it is an n-p-row and its row sum
ai,1 + ai,2 = 0.

Lemma 4.10 Let F(av 6 b) be a non-trivial facet. Then row ap,∗ is balanced.

Proof. We assume base(a) = p (Remark 4.5). We assume ap,2 > 0 (the case ap,1 < 0
is similar).
There is a vertex v with vp,1 = 1 that lies on facet F (Lemma 4.6). Then vp,2

must be 1, because if not, then we could modify v in component ṽp,2 := 1 without
leaving the orbisack, but 〈a, ṽ〉 > 〈a,v〉 = b. We can modify v also by ṽp,1 := 0
and ṽp,2 := 0. ṽ is a vertex of the orbisack, so aṽ 6 b and 〈a,v〉 − 〈a, ṽ〉 > 0. So
we get that ap,1 + ap,2 > 0 must hold to keep ax 6 b valid.
But there is also a vertex u with up,2 = 0 (Lemma 4.6) and up,1 = 0. By modifying
u by ũp,1 := 1 and ũp,2 := 1, we obtain ap,1 + ap,2 6 0. Hence ap,1 + ap,2 = 0.

Lemma 4.11 Let F(av 6 b) be a non-trivial facet. Then row a1,∗ is balanced.

Proof. Assume first that a1,1 + a1,2 < 0. There is a vertex v with v1,2 = 1
(Lemma 4.6). But then v1,1 = 1 because of the lexicographic order, and we could en-
large 〈a,v〉 by modifying the first row of v to (0, 0). Contradiction. If a1,1+a1,2 > 0,

82 CHAPTER 4. ORBISACKS

then it’s the same situation with v1,∗ = (0, 0). Contradiction.
So a1,1 + a1,2 = 0. As the first row cannot be an empty row (0, 0) because of
Lemma 4.8, the first row must be balanced.

4.1.2 Block-Inequalities

We will now focus on the sign structure of a of non-trivial facet defining inequalities
ax 6 b.

Definition 4.12 (Sign-pattern, block types) A vector σ ∈ {0,+,−}[p]×[2] is called
a sign-pattern. We are especially interested in those sign-patterns that can be
segmented into certain substructures, called blocks. A block is a set of subsequent
rows of σ with the following properties:

x The first row has sign-pattern (−,+).
x All the following rows inside the block have sign pattern (0,+) or (−, 0).

A sign-pattern that can be divided into a set of blocks is said to be of general block
type. If the lowest block – that is, the block with a first row with largest row index
among all blocks – additionally consists of one row only, the sign pattern is of special
block type.

Definition 4.13 (Function sign) We define function sign : R[p]×[2] → {0,+,−}[p]×[2]

by

sign(a)i,j =

+, if ai,j > 0

−, if ai,j < 0

0, if ai,j = 0

for all (i, j) ∈ [p]× [2].

The following observation is crucial for the further considerations.

Observation 4.14 Lemmas 4.6 through 4.11 show that if inequality ax 6 b defines a non-
trivial facet, then sign pattern sign(a) is of special block type.

We will further narrow the set of candidates by considering a certain subset of
these inequalities, the valued block-inequalities.

Definition 4.15 (Valued block inequality (VBI)) We call an inequality ax 6 b a
valued block inequality (VBI), if the following holds:

x sign(a) is of special block type.
x Inside each block, every nonzero entry has the same absolute value. We will

call it the value of the block.
x The values of the blocks are powers of 2 and ordered such that if Bn, . . . , B0

are the blocks from top to bottom with block B0 the basement, then the value
of B0 is 20, and the value of Bi is 2i−1 for all i ∈ [n].

x Last,

b :=

p∑

i=1
i is p-row

ai,2

Fig. 4.1 shows two examples of inequalities. The left one is a VBI.

Lemma 4.16 Let a ∈ R[p]×[2]. Then for every a-maximizing vertex v ∈ Vk[a] with

CHAPTER 4. ORBISACKS 83

Block B3

-4 4 6 9

-4 0

0 4

-4 0

-4 0

B2

-2 2

-2 0

0 2

-2 0

0 2

B1

{
-1 1

0 1

B0

{
-1 1

-4 4 6 10

-4 0

0 2

-3 0

-4 0

-2 2

-3 0

0 2

-2 0

0 2

-1 1

0 1

-1 0

Figure 4.1: The sign pattern of the left inequality is of special block type. Moreover, by choice
of the values on the entries and of the right-hand side, the inequality is a VBI. The inequality to
the right has a sign-pattern of general block type, and it is no VBI.

k ∈ [p+ 1], the following holds:

vi,∗ ∈

{(1, 1), (0, 0)}, if ai,1 + ai,2 = 0

{(1, 1)}, if ai,1 + ai,2 > 0

{(0, 0)}, if ai,1 + ai,2 < 0

∀ 1 6 i < k

vi,ℓ ∈

{1, 0}, if ai,ℓ = 0

{1}, if ai,ℓ > 0

{0}, if ai,ℓ < 0

∀ k < i 6 p and ℓ ∈ [2]

Proof. Above the critical row, vertex v contains only rows (1, 1) or (0, 0). So if the
row sum of row i is negative, we will choose row type (0, 0) when constructing an
a-maximizing vertex v, and row type (1, 1) if the row sum is positive.
Below the critical row, v[k+1...p],∗ forms a cube.

Note that the statement of Lemma 4.16 is in particular true if sign(a) is of special
block type.

Corollary 4.17 Let a,a′ ∈ R[p]×[2] be two vectors with sign(a) = sign(a′) of special
block type, and let moreover a′x 6 b′ be a valued block inequality. Then V [a] ⊆
V [a′].

84 CHAPTER 4. ORBISACKS

Proof. If Vk 6= ∅ for k ∈ [p+ 1], each vector v in Vk[a′] has the following shape.

vi,∗ ∈

{(1, 1), (0, 0)}, if a′
i,∗ is np-row

{(1, 1)}, if a′
i,∗ is p-row

{(0, 0)}, if a′
i,∗ is n-row

∀ 1 6 i < k

vi,ℓ ∈

{1, 0}, if a′
i,∗ is np-row

{1}, if a′
i,∗ is p-row

{0}, if a′
i,∗ is n-row

∀ k < i 6 p and ℓ ∈ [2]

In particular, V [a′] 6= ∅. Comparing with the vertices in Vk[a] (proof of Lemma 4.16),
we get that V [a] ⊆ V [a′].

Thus, showing that every VBI defines a facet finishes the characterization of the
linear description of orbisacks. This problem will be tackled in the following section.

4.1.3 Block-Inequalities are Facet Defining Inequalities

For this and the following section, we drop the assumption that base(a) = p for any
VBI ax 6 b, i.e. we also consider valued block inequalities that are lifted.

Lemma 4.18 Valued block inequalities are valid.

Proof. Let ax 6 b be a valued block inequality and let vertex v ∈ Vk[a]. Let α be
the value of the block where critical row k lives in. Then

〈ak,∗,vk,∗〉 =

{
−α, if ak,∗ is n-row or np-row

0, if ak,∗ is p-row

So there are two possibilities:

(i) Row k is p-row. Then v is collecting at most
x the positive entries in all p-rows of a, except for entry +α in row k, and
x all positive entries in np-rows below row k.

(ii) Row k is np-row or n-row. Then v is collecting at most
x the positive entries in all p-rows of a,
x all positive entries in np-rows below row k, and
x the negative entry −α in row k.

Thus, vector v collects in both cases at most the same value

〈a,v〉 =
∑

i∈[p]
i p-row

ai,2 +
∑

i∈[k+1..p]
i np-row

ai,2

︸ ︷︷ ︸
∗
=α

−α =
∑

i∈[p]
i p-row

ai,2
∗
= b, (4.1)

where both identities (∗) hold by definition of valued block inequalities 4.15.

The following almost immediately follows from the lemma above.

Observation 4.19 For any valued block inequality ax 6 b,

Vk[a] 6= ∅ for all k ∈ [p + 1] r {base(a)}.

CHAPTER 4. ORBISACKS 85

Proof. Any vertex v of Op,2 with critical row in the basement base(a) that is sup-
posed to maximize 〈a,x〉 collects the entries in all p-rows above the basement, as
well as entry abase(a),1 = −1 in the basement. Therefore,

〈a,v〉 =
∑

i∈[p]
i p-row

ai,2 − 1
∗
< b,

where (∗) holds because of Definition 4.15. For k 6= base(a), the proof of Lemma 4.18
shows that 〈a,v〉 must equal b (see equation (4.1)), which implies that Vk[a] 6= ∅
then.

Proposition 4.20 All valued block inequalities define facets.

Proof. As it is clear that all trivial inequalities are valid (see Lemma 4.21), we
know so far that the trivial and valued block inequalities together yield a complete
description of the orbisack. Therefore, it suffices here to show that for any valued
block inequality ax 6 b, the set of vertices V [ax 6 b] is not completely contained
in the set of vertices on any other (block or trivial) inequality.

First, let F(ax 6 b), F′(a′x 6 b′) be the faces defined by ax 6 b and a′x 6 b′,
respectively, and suppose that V [a] ⊆ V [a′].

From Observation 4.19 follows that base(a′) = base(a) must hold; otherwise,
F(ax 6 b) * F(a′x 6 b′).

Let now row 1 < i < base(a) be a row with differing sign pattern in a and a′.
From Observation 4.19 follows that V1[a] 6= ∅ and Vp+1[a] 6= ∅. In particular,

depending on the shape of ai,∗ and a′
i,∗, we can choose a vector v from V1[a] or

from Vp+1[a], respectively, with the following entries in row vi,∗:

sign(a′
i,∗)

(−, 0) (0,+) (−,+)

si
g
n
(a

i,
∗
) (−, 0) — (0, 0) (0, 0)

(0,+) (1, 1) — (1, 1)

sign(a′
i,∗)

(−, 0) (0,+) (−,+)

(−,+) (1, 1) (0, 0) —

v ∈ V1[a] v ∈ Vp+1[a]

By this choice, v ∈ V [a] and v /∈ V [a′]. Contradiction.
Last, suppose that either trivial inequality xi,j 6 1 or xi,j > 0 contains F(ax 6 b).

However, this would imply that

V [a] ⊆ {x ∈ Op,2 | xi,j = ζ},

with ζ = 1 in the first case and ζ = 0 in the second. But Lemma 4.6 shows that
this is not true. Contradiction.

4.1.4 Trivial Facet Defining Inequalities

Last, we consider the trivial inequalities.

Lemma 4.21 Inequalities

xi,j > 0 and xi,j 6 1 ∀i ∈ [p] and j ∈ [2]

86 CHAPTER 4. ORBISACKS

are valid for the orbisack.

Proof. Obviously true.

Proposition 4.22 The following trivial inequalities are defining facets:

(i) xi,j 6 1 for (i, j) ∈ ([p]× [2]) r {(1, 2)}

(ii) −xi,j 6 0 for (i, j) ∈ ([p]× [2]) r {(1, 1)}

Proof. We start with the exceptions.

x1,2 6 1: Any vertex v on the face F(x1,2 6 1) must have first row v1,∗ = (1, 1)
because of the lexicographic order of the columns of v. But then v ∈ F(−x1,1+
x1,2 6 0). Therefore, x1,2 6 1 cannot be a facet defining inequality.

−x1,1 6 0: Similarly, face F(−x1,1 6 0) contains only vertices v with first row
v1,∗ = (0, 0). Hence also F(−x1,1 6 0) ⊆ F(−x1,1 + x1,2 6 0) and −x1,1 6 0
cannot be a facet defining inequality.

Now consider inequality xi,j 6 1 with (i, j) 6= (1, 2). The set of vertices on face
F(xi,j 6 1) is clearly

V [xi,j 6 1] = {x ∈ VOp,2 | xi,j = 1}.

Since (i, j) 6= (1, 2), there is for each k ∈ [p] a vector in V [xi,j 6 1] with critical row
k; in particular, there is at least one vector v with crit(v) = 1. One can modify
this vector v at any position (s, t) 6= (i, j), t > 1 by component ṽs,t := 1 − vs,t

and obtains a vector that is also in V [xi,j 6 1]. The vector w := 1p,2 is also in
V [xi,j 6 1], and if (i, j) 6= (1, 1), then we can additionally modify w by components
w̃1,∗ := (0, 0) to obtain another vector in V [xi,j 6 1]. Hence, we can find for every
position (s, t) 6= (i, j) at least two vectors u,u′ in V [xi,j 6 1] with us,t = 1 and
u′s,t = 0. Therefore, F(xi,j 6 1) cannot be contained in another trivial inequality.

For any valued block inequality ax 6 b, it holds that V [ax 6 b] does not contain
a vector v with crit(v) = base(a) (Observation 4.19). So it follows from above that
F(xi,j 6 1) can also not be contained in a valued block inequality.

Case (ii) is analogously.

4.2 Facial Description of Orbisacks II
(Sequential Knapsack)

A classic in combinatorial optimization is the integer knapsack problem:

max

n∑

i=1

pixi

such that

n∑

i=1

wixi 6 c and xi ∈ N ∀i ∈ [n],

where wi ∈ N is the weight of item i, pi ∈ R is the profit associated with item
i and c ∈ N is the capacity of the knapsack. If for all i ∈ [n], the values of xi

are additionally required to be in [si]0 ⊂ N with some si ∈ N, then the knapsack
problem is called bounded. If si = 1 for all i ∈ [n], we speak of a 0/1-knapsack
problem. An integer knapsack problem is called sequential if one can order (after
possible renumbering of components) the weights such that

0 < w1 6 w2 6 . . . 6 wm

CHAPTER 4. ORBISACKS 87

and for any pair of successive weights wi−1, wi, it holds that wi

wi−1
∈ N. Note

that after possibly scaling weights and capacity, we can for sequential knapsack
problems w.l.o.g. assume that w1 = 1. The convex hull of the feasible solutions
of a (sequential and) bounded integer knapsack problem is called the (sequential)
knapsack polytope.

As has been observed in Lemma 3.16, the orbisack is isomorphic to the following
0/1-knapsack polytope

POp,2 := conv

({
y ∈ Mp,q

∣∣∣
p∑

i=1

2i−1(yi,1 + yi,2) 6 2p − 1
})

,

determined by knapsack inequality (3.2). The weights wi,j = 2i−1 as well as c =
2p − 1 are in N and yi,j ∈ [1]0 for all (i, j) ∈ [p]× [2]. Moreover, after ordering the
weights as follows:

0 < w1,1︸︷︷︸
=20

= w1,2︸︷︷︸
20

6 w2,1︸︷︷︸
=21

= w2,2︸︷︷︸
=21

6 . . . 6 wp,1︸︷︷︸
=2p−1

= wp,2︸︷︷︸
=2p−1

,

it is clear that
wi,2

wi,1
= 1 ∈ N and

wi,1

wi−1,2
= 2 ∈ N for all i ∈ [p]. Hence, POp,2 is in

fact a sequential 0/1-knapsack polytope.

Observation 4.23 Using the isomorphism defined by yi,1 = 1−xp−i+1,1 and yi,2 = xp−i+1,2,
it is easy to see that any inequality ax 6 b valid for Op,2 transforms into an inequality
a′y 6 b′ valid for POp,2 by setting

a′
i,j :=

(

−ap−i+1,j , if j = 1

ap−i+1,j , if j = 2

for all (i, j) ∈ [p] × [2] and fixing right-hand side

b′ := b −
p
X

i=1

ai,1.

In particular, trivial inequalities transform as follows:

xi,16 1 −yi,16 0 xi,26 1 yi,26 1

−xi,16 0 yi,16 1 −xi,26 0 −yi,26 0

Example 4.24 From Proposition 4.20, we get that the inequality to the left is facet defining
for orbisack O5,2. To the right, there is the corresponding facet defining inequality for
PO5,2 .

−4 4 6 4

0 4

−2 2

−1 1

−1 1

1 1 6 12

1 1

2 2

0 4

4 4

To the left, there is a vertex of O5,2 and to the right the corresponding vertex of PO5,2 .
It is easy to check that both are contained in the respective facets from above.

0 0

1 1

1 0

0 1

0 1

1 1

1 1

0 0

0 1

1 0

88 CHAPTER 4. ORBISACKS

In 1998, Robert Weismantel and Yves Pochet gave an inductive scheme to com-
pute the linear description of a sequential integer knapsack polytope P in general
([117]). We will in the following briefly present their main ideas.

Let P ⊂ Rn. For some objective vector p ∈ Rn, Weismantel and Pochet transform
polytope P into a polytope P̃p by combining certain subsets of items, called (item)
blocks1. The transformed polytope has two nice properties:
(a) Optimization over P with respect to profit vector p is equivalent to optimization

over P̃p with respect to a modified profit vector p̃; i.e. there is an optimal
solution y⋆ to the original problem if and only if there is an optimal solution
z⋆ to the modified problem and 〈y⋆,p〉 = 〈z⋆, p̃〉.

(b) Using the standard dynamic programming scheme for knapsacks developed by
Bellman and Dantzig ([14, 28, 15], overview for instance in [71]), one can charac-

terize the optimal solutions over P̃p with respect to profit vector p̃. Weismantel
and Pochet show that it is also possible — parallel to the run of the dynamic
programming algorithm — to recursively construct an inequality valid for P̃p

that is satisfied at equality by all optimal solutions to the problem of maximizing
〈z, p̃〉 over P̃p.

Using (a), one can then transform the obtained inequality for P̃p into an inequality
valid for P. Moreover, it turns out that the profit vectors can be partitioned in
equivalence classes with respect to the inequalities; any pair of profit vectors from
the same class yields the same inequality. So, one ends up with a finite set of
inequalities. However, this set is pretty big: it contains at least 2nn! inequalities.

To show that this set provides a full description of P, Weismantel and Pochet
show that any inequality transformed originating from P̃p as described above is
satisfied at equality by all optimal solutions to the problem of optimizing 〈y,p〉 over
polytope P. As this is true for arbitrary profit vectors p, this implies that the set of
inequalities valid for P must contain in particular all facet defining inequalities and
therefore provides a complete linear description (this latter idea is due to Lovász,
see [77]).

We will in the following reproduce the main definitions together with some results
concerning orbisacks as far as they are needed to compute the linear description of
the sequential knapsack polytope POp,2 associated with the orbisack Op,2. In this
special case, the knapsack inequality is 〈w,y〉 6 c with weights wi,j = 2i−1 for all
(i, j) ∈ [p]× [2] and capacity c = 2p− 1. Note that for each i ∈ [p], both items (i, 1)
and (i, 2) have the same weight.

The main concept is the combination of items into item blocks.

Definition 4.25 Let P be the sequential knapsack problem

max

n∑

i=1

piyi such that

n∑

i=1

wiyi 6 c

yi ∈ [si]0 ∀i ∈ [n]

Let B ⊆ [n] and bB := min(B). Set B is called an item block if for every k ∈ Br{bB},
it holds that

wk 6 wbB +
∑

i∈B
i<k

siwi. (*)

Lemma 4.26 For orbisacks, a subset B ⊆ [p]× [2] is not an item block if and only
if there is a k ∈ [2..p− 1] such that B can be partitioned into two nonempty subsets

1In fact, Weismantel and Pochet speak of blocks only. We use the term item block instead to
avoid confusion with the blocks from block inequalities, see Definition 4.12.

CHAPTER 4. ORBISACKS 89

bB

Figure 4.2: Example for an item block in the case of orbisacks (left). The gray marked indices
are in the block. The example to the right is no item block.

B< ⊆ [k − 1]× [2] and B> ⊆ [k + 1]× [2]. In other words: any subset B of [p]× [2]
that does not “skip” both items (k, 1) and (k, 2) in some row k is an item block. (See
figure 4.2 for an example.)

Proof. (i) Let b< and b> be the smallest elements in B< and B>, respectively.
Assume, set B = B< ∪ B> and B<,B> 6= ∅. As B is a block,

wb< +
∑

b∈B<

wb > wb>

must hold. But the left-hand side is maximally 2k − 1, while the right-hand
side is at least 2k. Contradiction.

(ii) Let B ⊆ [p]× [2]. Let (s, t) be the smallest item in B and let (k, ℓ) > (s, t) be
some other item in B. If k = s, then ws,t = wk,ℓ and inequality (*) is satisfied.
So we can assume that k > s. Let W := {wi,j | (i, j) < (k, ℓ), (i, j) ∈ B}.
From (i), we get that the smallest possible set W is

W = {2i−1 | i ∈ [s..k − 1]}.

Hence, the right-hand side of inequality (*) is at least

2s−1 +

k−1∑

i=s

2i−1 = 2k−1.

On the other hand, wk = 2k−1. Hence, inequality (*) is satisfied.

4.2.1 Computation of Inequalities for POp,2

Since we are mainly interested in the computation of coefficients and the right-hand
side of these inequalities, we skip the details of transformation and generation of
inequalities and refer for the details to the paper of Weismantel and Pochet.

Instead, we proceed with the definition of the set of variables which is needed to
construct an algorithm to generate the inequalities for P. (Note that the paper of
Weismantel and Pochet contains some typos which are corrected here.)

We will in the following run through a family of item blocks B. For each item
block Bi in B, we define:

Definition 4.27 Let ℓ := argmini({wi | i ∈ Bj}). We define the weight of item

block Bj by w̃j := wℓ and the normalized weight of Bj by w̃′
j :=

ewj

ew1
. Moreover, the

multiplicity of item block Bj is denoted by ũj := 1
ewj

∑
i∈B siwi. The profit of a item

block is p̃j := pℓ.

90 CHAPTER 4. ORBISACKS

The inequalities to be computed are of the form

m∑

j=1

dj

w̃j

∑

i∈Bj

wiyi 6 gm(N),

with a right-hand side depending on some N ∈ N that will be specified later.

x For j = 1 and any γ ∈ N, we define

d1 := 1 g1(γ) := min({ũ1, γ}).

x For j ∈ [2..m] and any γ ∈ N, we define

λN
j := N mod w̃′

j

and

Nj :=

λN
j , if

∑
i∈∆j

ũiw̃
′
i < λN

j

max
({
k ∈ N ∣∣∣ k 6 ∑

i∈∆j

ũiw̃
′
i and k mod w̃j = λN

j

})
, if

∑
i∈∆j

ũiw̃
′
i > λ

N
j .

The values of gj(γ) are defined by

gj(γ) :=

gj−1(Nj) + µj(γ)dj , if 0 6 µj(γ) 6 ũj

gj−1(γ), if µj(γ) < 0

gj−1(γ − w̃′
j ũj) + ũjdj , if µj(γ) > ũj.

and are based on the value of

µj(γ) :=
1

w̃′
j

(γ −Nj).

Last, the coefficients dj in the inequality are computed recursively by

dj := gj−1(Nj + w̃′
j)− gj−1(Nj).

These definitions also rely on values ∆j . In fact, this is where the objective p

comes in, as Weismantel and Pochet define a first version of ∆j by

∆j :=
{
i ∈ [j − 1]

∣∣∣ p̃i

w̃′
i

>
p̃j

w̃′
j

}
for all j ∈ [m].

It is easy to see that the size of the coefficients of p has an immediate influence only
on the order of indices. As any possible profit vector is considered when constructing
the linear hull of P, it is therefore possible to replace this definition by another one
based on permutations π of [m]. This leads to the following definition:

Definition 4.28 Set ∆j can independently of p be defined by

∆j := {i ∈ [j − 1] | π(i) < π(j)} for all j ∈ [m],

where π is some permutation of [m].

Now, the main result of Weismantel and Pochet can be formulated as follows:

CHAPTER 4. ORBISACKS 91

Theorem 4.29 ([117]) The following set of inequalities provides a complete linear
description for polytope P:

yk > 0 ∀k ∈ [n]
m∑

j=1

dj

w̃j

∑

i∈Bj

wiyi 6 gm(N),

where N := (⌊ c
ew1
⌋), family B is any family of item blocks Bi partitioning any subset

of itemsW ⊆ [n], and gi and di, i ∈ [m], are defined on the basis of any permutation
π of [m].

Corollary 4.30 The following set of inequalities provides a complete linear de-
scription for polytope POp,2 :

yk > 0 ∀k ∈ [n]
m∑

k=1

dk

w̃k

∑

(i,j)∈Bk

wi,jyi,j 6 gm(N), (*)

where wi,j = 2i−1, N := (⌊ 2
p−1
ew1
⌋), family B is any family of item blocks Bi as

described in Lemma 4.26 partitioning any subset of items W ⊆ [p]× [2], and gi and
di are defined for i ∈ [m] on the basis of any permutation π of [m].

It is obvious that all trivial inequalities

yi,j 6 1

with (i, j) ∈ [p]× [2] can be easily obtained by choosing item block system B = {B1}
containing one single item block B1 with B1 = {(i, j)}.

It requires a bit more work to see that the valued block inequalities are among
the inequalities (*). This will be done in the following.

Assume, ay 6 b is a valued block inequality for Op,2 with basement β := base(a),
and let a′y 6 b′ be the corresponding inequality for POp,2 as described in Obser-
vation 4.23. We choose

π[j] := β − j + 1

W := supp(a′)

Bj :=

{(p− β + j, 1)} if aβ−j+1,∗ is n-row

{(p− β + j, 2)} if aβ−j+1,∗ is p-row

{(p− β + j, 1), (p− β + i, 2)} if aβ−j+1,∗ is n-p-row,

for all j ∈ [β]. This choice implies the following:

∆j = ∅

w̃j = 2p−β+j−1

w̃′
j = 2j−1

N =
⌊ c

w̃1

⌋
=
⌊2p − 1

2p−β

⌋
= 2β − 1

ũj =
1

w̃j

∑

(k,ℓ)∈Bj

2k−1 = |Bj | =

{
2, if ak,∗ is n-p-row

1, otherwise
∑

i∈∆j

ũiw̃
′
i = 0,

92 CHAPTER 4. ORBISACKS

for all j ∈ [β].

Observation 4.31

x By choice of B, W is decomposed into β item blocks.
x By choice of B, block |B1| = 2 and block |Bβ | = 2.
x For any element (k, ℓ) in block Bj , i ∈ [β], it holds that

wk,ℓ

ewj
= 1. Therefore,

inequality (*) can be simplified to

m
X

j=1

dj

X

(k,ℓ)∈Bj

yk,ℓ 6 gm(2β − 1).

Example 4.32 In this example, p = 7 and β = 5.

ax 6 b a′x 6 b′ w

−2 2 6 2 0 0 6 8 1 1

−2 0 0 0 2 2

0 2 1 1 4 4 B1 = {(3, 1), (3, 2)}
−1 1 1 1 8 8 B2 = {(4, 1), (4, 2)}
−1 1 0 2 16 16 B3 = {(5, 2)}

0 0 2 0 32 32 B4 = {(6, 1)}
0 0 2 2 64 64 B5 = {(7, 1), (7, 2)}

We will now compute dj for all j ∈ [β] as well as gβ(N). For j > 1, the coefficients
dj depend on Nj . Hence, we have to compute this value first.

Lemma 4.33 If N = 2β − 1, then Nj = 2j−1 − 1 holds for any j ∈ [2..β].

Proof. With N = 2β − 1, we obtain for any j ∈ [2..β]

λN
j = N mod w̃′

j = 2β − 1 mod 2j−1 = 2j−1 − 1.

On the other hand,
∑

i∈∆j
ũiw̃i = 0 < λN

j for all j ∈ [β]. Therefore, Nj = λN
j by

definition.

Observation 4.34 In fact, Lemma 4.33 is independent of the choice of permutation π.
Assume there is a permutation π′ inducing sets ∆′

j and a index j⋆ such that

X

i∈∆′
j⋆

eui ewi > λN
j⋆

This implies by definition that

Nj⋆ = max
`

n

k ∈ N ˛˛
˛

k 6
X

i∈∆′
j⋆

eui ew
′
i and k mod ewj⋆ = λN

j⋆

o

´

.

However,

X

i∈∆′
j⋆

eui ew
′
i 6

j⋆−1
X

i=1

eui ew
′
i 6 2

j⋆−1
X

i=1

ew′
i = 2

j⋆−1
X

i=1

2i−1 = 2j⋆ − 2 <

< 2j⋆−1 + 2j⋆−1 − 1 6 2p−β+j⋆−1 + 2j⋆−1 − 1 6 ewj⋆ + λN
j⋆

Hence, k < ewj⋆ + λN
j⋆ , which implies that Nj⋆ = λN

j⋆ .

CHAPTER 4. ORBISACKS 93

Lemma 4.35 Let N = 2β − 1 and define for β > i > j > 1 the scalar

γi,j :=

{
Ni + w̃′

i −
∑i−1

k=j w̃
′
kũk if i > j

Ni + w̃′
i if i = j.

Then

gj−1(γi,j) :=

{
gi−2(γi,j−1) + ũj−1dj−1 if j > 2

2 if j = 2.

Proof. First let j = 2. From the definition of g1(γ) follows that

g1(γi,2) = min({ũ1, γi,2}).

But

γi,2 = Ni + w̃′
i −

i−1∑

k=2

w̃kuk = 2i−1 − 1 + 2i−1 −
i−1∑

k=2

2k−1|Bk| >

> 2i − 1−
i−1∑

k=2

2k = 2i − 1− (2i − 1− 3) = 3,

which gives the statement for j = 2.

For j > 2, we have to show that µj−1(γi,j) > ũj−1 for any β > i > j > 2. This
can be done using Lemma 4.33:

µj−1(γi,j) =
1

w̃′
j−1

(γi,j −Nj−1) =

=
1

2j−2
(2i−1 − 1 + 2i−1 −

i−1∑

k=j

2k−1|Bk| − 2j−2 + 1) >

> 22−j(2i − 2

i−1∑

k=j

2k−1 − 2j−2) = 22−j(2i − 2(2i−1 − 2j−1)− 2j−2) =

=
3

4
22 = 3 > 2 > ũj−1.

Now, the statement follows from the definition of gj(γ).

Corollary 4.36 We can now recursively compute gj−1(γj,j) for any β > j > 1:

gj−1(γj,j) = gj−2(γj,j−1) + ũj−1dj−1 = . . . =

= g1(γj,2) +

j−1∑

k=2

ũkdk = 2 +

j−1∑

k=2

|Bk|dk =

j−1∑

k=1

|Bk|dk,

since |B1| = 2 by Observation 4.31.

Lemma 4.37 Let N = 2β − 1. Then

gj−1(Nj) :=

{
gi−2(Nj−1) + dj−1 if j > 2

1 if j = 2.

94 CHAPTER 4. ORBISACKS

Proof. For j = 2, N2 = 21 − 1 = 1. Hence, g1(N2) = min({2, N2}) = 1.
For j > 2, we will show that µj−1 = 1:

µj−1 =
1

w̃j−1
(Nj −Nj−1) = 22−j(2j−1 − 1− 2j−2 + 1) = 22−j(2j−2) = 1.

The statement follows then from the definition of gi(γ).

Corollary 4.38 Lemma 4.37 enables us to recursively compute gj−1(Nj) for any
β > j > 1:

gj−1(Nj) = gj−2(Nj−1) + dj−1 = . . . = g1(N2) +

j−1∑

k=2

dk = 1 +

j−1∑

k=2

dk =

j−1∑

k=1

dk,

since d1 = 1 by definition.

Corollaries 4.36 and 4.38 together make it now possible to compute dj for β >
j > 1 using the definition for dj :

dj = gj−1(Nj + w̃j)− gj−1(Nj) =

j−1∑

k=1

dk(|Bk| − 1).

It is easy to see that this implies that the coefficients of inequality (**) are those of
a transformed facet defining inequality of the orbisack. For j = 2, we get that

d2 = d1(|B1| − 1) = 1

and for j > 2, we obtain

dj =

j−1∑

k=1

dk(|Bk| − 1) =

= dj−1(|Bj−1| − 1) +

j−2∑

k=1

dk(|Bk| − 1) = dj−1(|Bj−1| − 1) + dj−1 =

= dj−1|Bj−1|.

So, for j > 2, dj = 2dj−1 holds if |Bj−1| corresponds to a n-p-row; otherwise,
dj = dj−1. It remains to compute the right-hand side gβ(N) of inequality (**).

Lemma 4.39 Let N = 2β − 1. Then

gβ(N) = gβ−1(Nj) + dβ .

Proof. Again, we use Lemma 4.33 to obtain that µβ(N) is computed as

0 < µβ(N) =
1

w̃′
β

(N −Nβ) = 21−β(2β − 1− (2β−1 − 1)) = 20 = 1 6 ũj .

Lemmas 4.39 and 4.37 enable us to recursively compute the right-hand side gβ(N)
as follows:

gβ(N) = gβ−1(Nβ) + dβ = . . . = g1(N2) +

β∑

i=2

di =

β∑

i=1

di.

CHAPTER 4. ORBISACKS 95

So far, we know that the set of inequalities from Theorem 4.29 contains all facet
defining inequalities for the orbisack. However, the set contains more inequalities.
We close this section with some examples. For all examples, p = 6.

Example 4.40

Item blocks: yield the following inequalities:

B1 := {(1, 1), . . . , (6, 1)}
B2 := {(1, 2), . . . , (6, 2)}

π(i) := m − i + 1 ∀i ∈ [m]

1 1 6 63

2 2

4 4

8 8

16 16

32 32

B1 := {(1, 1), (2, 1)}
B2 := {(1, 2), (2, 2)}
B3 := {(3, 1), (4, 1)}
B4 := {(3, 2), (4, 2)}
B5 := {(5, 1), (6, 1)}
B6 := {(5, 2), (6, 2)}

π(i) := m − i + 1 ∀i ∈ [m]

1 1 6 48

2 2

3 3

6 6

12 12

24 24

Bi same as above

π(i) := i ∀i ∈ [m]

1 0 6 3

2 0

0 0

0 0

0 0

0 0

B1 := {(3, 1), (3, 2)}
B2 := { (4, 2)}
B3 := {(5, 1), (5, 2)}

π(i) := m − i + 1 ∀i ∈ [m]

0 0 6 5

0 0

1 1

0 1

1 1

0 0

Obviously, one can easily generate inequalities different from the transformed
facet defining inequalities for the orbisack.

It is an open question whether it is possible to describe the set of inequalities from
Corollary 4.30 in a more appealing way than is done there. Moreover, the second
and third inequality in Example 4.40 indicate that it is not possible to read off the
item block system associated to an inequality from the coefficients of the inequality.
Note that the set of inequalities from Corollary 4.30 is in NP .

96 CHAPTER 4. ORBISACKS

4.3 Complete Description of Orbisacks III
(Proof by Faithful Sectioning)

4.3.1 Extended Formulations for Orbitopes

In the following, we will define three different extended formulations for orbisacks.
The first two formulations are specific for orbisacks, i.e. restricted to q = 2 columns.
The third formulation is based on the dynamic programming algorithms for or-
bitopes in general, i.e. it relies on the hyperpath polytope and the description of
vertices of the orbitope as hypergraphs. So in this case, we obtain (also) an extended
formulation for orbitopes with more than two columns.

At the end of the section, we will give a short overview of the extended formula-
tions developed so far and the relationships between them.

4.3.1.1 The Px,y-Formulation

For this extended formulation, we append to each vertex x of an orbisack some 0/1-
vector storing information about the position of the critical row of x. More precisely,
we define for each vertex x of the orbisack Op,2 some vector y(x) ∈ {0, 1}[p] by

y(x) :=

{ ecrit(x), if crit(x) < p+ 10, if crit(x) = p+ 1

Polytope Px,y is defined as

Px,y := conv({(x,y(x)) ∈ R[p]×[2] × R[p] | x vertex of Op,2})

(Simplifying notation, we allow to write (x,y) instead of
(
x,y(x)

)
.)

Lemma 4.41 A linear description of Px,y together with an appropriate linear pro-
jection provides an extended formulation for the orbisack.

Proof. The projection from Px,y to Op,2 is simply the orthogonal projection

σx,y : R[p]×[2] × R[p] → R[p]×[2], (x,y) 7→ x

to the space of x-variables.

This extended formulation will be later used for deriving the linear description of
orbisacks with the means of faithful sectioning.

4.3.1.2 The Px̃,y,z-Formulation

Our second approach for an extended formulation for the orbisack uses y-variables
just like the Px,y-formulation above. However, instead of recycling x, the x-variables
are split into two new classes of variables, namely x̃ and z. For each vertex x of the
orbisack, the x̃-variables display information about the entries of x below crit(x)
and the z-variables store information about the type of the rows above crit(x).

In detail, we define for any vertex x of an orbisack Op,2 a vector
(
x̃(x),y(x), z(x)

)

in R[p]×[2] × R[p] × R[p] with

(x̃i,1, x̃i,2) =

{
(xi,1, xi,2), if i > crit(x)

(0, 0), otherwise
for all i ∈ [p]

CHAPTER 4. ORBISACKS 97

and

zi =

{
xi,1, if i < crit(x)

0, otherwise
for all i ∈ [p]

and y(x) = y as defined for Px,y above.

The corresponding polytope is defined as

Px̃,y,z := conv({(x̃(x),y(x), z(x)) ∈ R[p]×[2] × R[p] × R[p] | x vertex of Op,2})

Again, we shorten notation by writing (x̃,y, z) instead of (x̃(x),y(x), z(x)) in the
following.

Lemma 4.42 A linear description of Px̃,y,z together with an appropriate linear
projection provides an extended formulation for Px,y.

Proof. The projection σx̃,y,z from Px̃,y,z to Px,y is mapping point (x̃,y, z) ∈R[p]×[2] × R[p] × R[p] to point (x,y) ∈ R[p]×[2] × R[p] with

xi,1 = x̃i,1 + yi + zi (4.2)

xi,2 = x̃i,2 + zi (4.3)

for all i ∈ [p]. The projection σx̃,y,z is linear.

The following proposition gives a linear description of Px̃,y,z. This provides the
basis for the proof of the linear description via faithful sectioning(s).

Proposition 4.43 Polytope Px̃,y,z is completely described by the following set of
inequalities

x̃i,1 −
i−1∑

k=1

yk 6 0 ∀i ∈ [p] r {1} (4.4)

x̃i,2 −
i−1∑

k=1

yk 6 0 ∀i ∈ [p] r {1} (4.5)

i∑

k=1

yk + zi 6 1 ∀i ∈ [p] (4.6)

x̃i,j , yi, zi > 0 ∀i ∈ [p] and j ∈ [2] (4.7)

x̃1,1 = 0 (4.8)

x̃1,2 = 0 (4.9)

Proof. The system is totally unimodular, because the constraints matrix is an in-
terval matrix (with attached unit matrices).

Obviously, the vertices (x̃, y, z) satisfy all inequalities (4.4) through (4.7). On the
other hand, (4.6) makes sure that no 0/1-vector (x̃, y, z) can have more than one
1 in y, and if yk = 1, then zi = 0 for k 6 i 6 p. Inequalities (4.4), (4.5), and the
equations (4.8) and (4.9) make sure that x̃i,∗ = 0 for all rows i with 1 6 i 6 k. So
the system in fact describes Px̃,y,z.

98 CHAPTER 4. ORBISACKS

4.3.1.3 Extended Formulation associated with Dynamic Programming

As we have shown on page 55, one can, based on the DP algorithm for orbitopes,
build a DP-hypergraph for orbitopes. There is a one-to-one-correspondence between
the hyperpaths in this hypergraphs leading from the set of initial states Bp to the
final state bt and the vertices of the orbitope; the associated hyperpath polytope
in arc variables leads to an extended formulation for orbitopes (see Lemma 3.38).
(Note that we will in the following reuse notation from that section.)

Unfortunately, this extended formulation is not of much help for the linear de-
scription of the orbitope, as it is unclear how to describe the set of extreme rays of
the projection cone. An alternative could be the use of node variables instead of arc
variables. This would be interesting also for another reason: the number of nodes
in H is of order O(pq2) and the number of arcs is of order O(pq3). Therefore, a
linear description of the hyperpath set polytope would need fewer variables than the
descriptions in arc variables does. Hence, a description in node variables would be
nice to have. However, computer experiments are discouraging: they show that the
description of the hyperpath polytope in node variables seems to be quite involved
in general.

Nevertheless, for q = 2, a linear description for the Bp-bt-hyperpath set poly-
tope Pnode(H) is accessible. We will show that in fact, Pnode(H) is isomorphic to
polytope Px̃,y,z as defined above. Denoting by w ∈ {0, 1}B the incidence vector
of B[L] ⊆ B induced by a Bp-bt-hyperpath L, we define for q = 2 the following
transformation.

x Transformation τ : Pnode(H)→ Px̃,y,z.

zi = w•
i,[1..2] ∀i ∈ [p]

y1 = w•
1,[1..1]

y2 = w•
2,[1..1] + w◦

2,[1..1] − w
•
1,[1..1]

yi = w•
i,[1..1] + w◦

i,[1..1] − w
•
i−1,[1..1] − w

◦
i−1,[1..1] ∀i ∈ [3..p]

x̃i,1 = w•
i−1,[1..1] + w◦

i−1,[1..1] − w
◦
i,[1..1] ∀i ∈ [2..p]

x̃i,2 = w•
i,[2..2] ∀i ∈ [2..p]

x̃1,j = 0 ∀j ∈ [2]

x Transformation τ−1 : Px̃,y,z → Pnode(H).

w•
i,[1..2] = zi ∀i ∈ [p]

w◦
i,[1..2] = 1− (

∑i

k=1 yk + zi) ∀i ∈ [p]

w•
i,[1..1] = x̃i,1 + yi ∀i ∈ [p]

w◦
i,[1..1] =

∑i−1
k=1 yk − x̃i,1 ∀i ∈ [2..p]

w•
i,[2..2] = x̃i,2 ∀i ∈ [2..p]

w◦
i,[2..2] =

∑i

k=1 yk − x̃i,2 ∀i ∈ [p]

We are using here and in the following the notation from page 55 ff..

Proposition 4.44 For q = 2, the complete linear description of Pnode(H) is given

CHAPTER 4. ORBISACKS 99

by the following set of inequalities:

w•
i,[2..2] − w

•
i−1,[2..2] − w

◦
i−1,[2..2] 6 0 ∀i ∈ [p] r {1} (4.10)

w◦
i,[1..1] − w

•
i−1,[1..1] − w

◦
i−1,[1..1] 6 0 ∀i ∈ [p] r {1} (4.11)

w•
i,[1..2] + w◦

i,[1..2] − w
•
i−1,[1..2] − w

◦
i−1,[1..2] 6 0 ∀i ∈ [p] r {1} (4.12)

w•
i,[1..2], w

◦
i,[1..2], w

•
i,[1..1], w

◦
i,[1..1], w

•
i,[2..2], w

◦
i,[2..2] > 0 ∀i ∈ [p] (4.13)

w◦
1,[1..1] = 0 (4.14)

w•
1,[2..2] = 0 (4.15)

w0,[1..2] = 1 (4.16)

w◦
i,[1..2] + w•

i,[1..2] + w•
i,[1..1] + w◦

i,[1..1] = 1 ∀i ∈ [p] (4.17)

w◦
i,[1..2] + w•

i,[1..2] + w•
i,[2..2] + w◦

i,[2..2] = 1 ∀i ∈ [p] (4.18)

Proof. Follows directly from Proposition 4.43 and application of τ−1.

Despite the fact that the hypergraph point of view gives us a completely new
set of variables (with new meaning), from the polyhedral point of view, it does not
reveal more information than Px̃,y,z does.

One can also map Parc(H) to Px̃,y,z by means of the following projection. We
denote the arc variables by ua here.

x Projection γ : Parc(H)→ Px̃,y,z.

x̃1,j = 0 ∀j ∈ [2]

y1 = u({b•
1,[1..1]

,b◦
1,[2..2]

},b0,[1..2])

z1 = u(b•
1,[1..2]

,b•
0,[1..2]

)

yi = u({b•
i,[1..1]

,b◦
i,[2..2]

},b•
i−1,[1..2]

) + u({b•
i,[1..1]

,b◦
i,[2..2]

},b◦
i−1,[1..2]

) ∀i ∈ [2..p]

xi,1 = u(b•
i,[1..1]

,b•
i−1,[1..1]

) + u(b•
i,[1..1]

,b◦
i−1,[1..1]

) ∀i ∈ [2..p]

xi,2 = u(b•
i,[2..2]

,b•
i−1,[2..2]

) + u(b•
i,[2..2]

,b◦
i−1,[2..2]

) ∀i ∈ [2..p]

zi = u(b•
i,[1..2]

,b•
i−1,[1..2]

) + u(b•
i,[1..2]

,b◦
i−1,[1..2]

) ∀i ∈ [2..p]

Together with projection τ−1 : Px̃,y,z → Pnode(H) from above, we get therefore
also a projection τ−1 ◦ γ : Parc(H)→ Pnode(H).

4.3.1.4 Overview of the Extended Formulations

Focusing on the orbisack, the extended formulations that have been defined so far
can be arranged in a hierarchical structure, as the following illustration shows.
Each of these extended formulations is set together from a polytope and a linear
transformation mapping this polytope to another one. Projection ϑ has been defined
in Lemma 3.38. Note that so far, for q = 2 columns, we have only linear descriptions
for Pnode(H), Parc(H) and Px̃,y,z. (Marked by boxes in the illustration.) We will
undertake the task of formulating the linear description for the remaining polytopes
in the following sections.

100 CHAPTER 4. ORBISACKS

Pnode(H)Parc(H)

Px,y

Px̃,y,z

Op,2

σx,y

σx̃,y,z

τ

τ−1

ϑ

σx̃,y,z
◦ τ

τ−1 ◦ γ

γ

4.3.2 Linear Description of Px,y via Faithful Sectioning

We are now ready to derive a linear description of Px,y via faithful sectioning, using
the linear description of Px̃,y,z from Proposition 4.43.

We will start collecting the ingredients for the faithful sectioning. First, it is clear
that the linear projection σ is as in Lemma 4.42:

σ := σx̃,y,z

Next, we have to determine the map s : R[p]×[3] → R[p]×[4], (x,y) 7→ (x̃,y, z).

Observation 4.45 (a) Let s be some σ-section and Ax 6 b a linear description for P
x,y

that is P
x̃,y,z-faithful for s. This implies that (at least) for any

(x, y) ∈ {(x, y) | A(x, y) 6 b},

(i) s
`

(x, y)
´

∈ P
x̃,y,z and

(ii) σ
`

s
`

(x, y)
´´

= (x, y).
From (i) follows that any point (x̃, y, z) = s

`

(x, y)
´

lifted from {(x, y) | A(x, y) 6 b}
must satisfy the inequalities from Proposition 4.43, in particular inequalities (4.4) and
(4.5). From (ii) follows that we can use equations (4.2) and (4.3) to replace x̃i,1 and
x̃i,2, respectively, to obtain the following conditions

xi,1 −
i
X

k=1

yk 6 zi ∀i ∈ [p] r {1} and (*)

xi,2 −
i−1
X

k=1

yk 6 zi ∀i ∈ [p] r {1}, (**)

for any (x, y) ∈ {(x, y) | A(x, y) 6 b}. Moreover, from (4.7) follows that zi > 0. Any
other inequality in the linear description of P

x̃,y,z bounds zi either from above or not
at all. So, defining component zi of s

`

(x, y)
´

as

zi := max
“n

xi,1 −
i
X

k=1

yk, xi,2 −
i−1
X

k=1

yk, 0
o”

,

is not a contradiction to the fact that s is a σ-section and Ax 6 b is P
x̃,y,z-faithful.

(b) For i = 1, we obtain from equations (4.8) and (4.9) and the properties of σ that

z1 = x1,1 − y1 = x1,2. (4.19)

Therefore, equation x1,1 − xi,2 − y1 = 0 must hold for P x,y.

CHAPTER 4. ORBISACKS 101

So, we define s : (x,y) 7→ (x̃,y, z) component wise as follows:

x̃i,1 := xi,1 − yi − zi

 for all i ∈ [p]x̃i,2 := xi,2 − zi

yi := yi

z1 := max({x1,1 − y1, x1,2, 0})

zi := max({xi,1 −
∑i

k=1 yk, xi,2 −
∑i−1

k=1 yk, 0}) for all i ∈ [2..p].

Note that i = 1 and i > 1 can be considered simultaneously, if we keep in mind that
equation (4.19) holds and thus identify y0 with 0.

Lemma 4.46 Map s is a σ-section.

Proof. Easy computation shows that σ
(
s
(
(x,y)

))
= (x,y) for all (x,y) ∈ R[p]×[2]×R[p].

Lemma 4.47 The following set of linear inequalities is Px̃,y,z-enforcing for s.

xi,1 − yi > 0 (4.20) xi,2 + yi 6 1 (4.21)

xi,1 − xi,2 − yi +

i−1∑

k=1

yk > 0 (4.22) −xi,1 + xi,2 +

i∑

k=1

yk > 0 (4.23)

p∑

k=1

yk 6 1 (4.24) yi > 0 (4.25)

xi,1 6 1 (4.26) xi,2 > 0 (4.27)
for all i ∈ [p], together with equation

x1,1 − x1,2 − y1 = 0 (4.28)

Proof. We need to show that for all possibilities of zi, s(x,y) is satisfying the in-
equality system from Proposition 4.43 determining Px̃,y,z. (Remaining inequalities
are satisfied by definition of s, see Observation 4.45.)

In the following table, we list in the first column the inequalities from Proposi-
tion 4.43, in the second column the possible cases for zi, in the third column the
inequalities which are necessary to satisfy the inequality from column one, and in the
fourth and fifth column the respective numbers from the inequalities Lemma 4.47.
So it can be read as follows: Inequality . . . is for zi = . . . satisfied if inequality . . .
is holding; this latter inequality has number . . . in Lemma 4.47 or it is dominated
by inequality number . . . in the same Lemma.

inequality zi ineq. satisfied if dom. by
Pi

k=1 yk + zi 6 1 xi,1 −Pi

k=1 yk −xi,1 > −1 (4.26)

xi,2 −Pi−1
k=1 yk −xi,2 − yi > −1 (4.21)

0 −Pi

k=1 yk > −1 (4.24)

x̃i,1 > 0 xi,1 −Pi

k=1 yk

Pi−1
k=1 yk > 0 (4.25)

xi,2 −Pi−1
k=1 yk xi,1 − xi,2 − yi +

Pi−1
k=1 yk > 0 (4.22)

102 CHAPTER 4. ORBISACKS

0 xi,1 − yi > 0 (4.20)

x̃i,2 > 0 xi,1 −Pi

k=1 yk −xi,1 + xi,2 +
Pi

k=1 yk > 0 (4.23)

xi,2 −Pi−1
k=1 yk

Pi−1
k=1 yk > 0 (4.25)

0 xi,2 > 0 (4.27)

yi > 0 xi,1 −Pi

k=1 yk yi > 0 (4.25)

xi,2 −Pi−1
k=1 yk yi > 0 (4.25)

0 yi > 0 (4.25)

Corollary 4.48 The inequality system from Lemma 4.47 provides a complete linear
description of Px,y.

Proof. Obviously, the inequalities are valid for Px,y. Moreover, σ(Px̃,y,z) ⊆ Px,y,
because σ and Px̃,y,z provide an extended formulation for Px,y (Lemma 4.42). Map
s is a σ-section because of Lemma 4.46. Lemma 4.47 shows that inequalities (4.20)
through (4.27) and equation (4.28) are Px̃,y,z-enforcing. Hence, the prerequisites
for Theorem 2.17 are given.

4.3.3 Linear Description of Op,2 via Faithful Sectioning

From the linear description of Px,y, we will now derive a linear description for the
orbisack. We will proceed similarly to above.

We define σ := σx,y by (x,y) 7→ x (Lemma 4.41).

Observation 4.49 Consider some point (x, y) ∈ P
x,y . It satisfies inequalities (4.20) through

(4.27) as well as equation (4.28). For i > 1, inequalities (4.20), (4.21), (4.22), and (4.24)
define upper bounds for yi. Hence, for any point (x, y) ∈ P

x,y , it holds that

yi 6 min
“n

xi,1, 1 − xi,2, xi,1 − xi,2 +

i−1
X

k=1

yk, 1 −
i−1
X

k=1

yk

o”

for all i > 1

and
y1 = x1,1 − x1,2 for i = 1

Therefore, map s is defined by

s :

{ R[p]×[2] → R[p]×[2] × R[p]

x 7→ (x,y)
,

where

yi = min
({
xi,1, 1− xi,2, xi,1 − xi,2 +

i−1∑

k=1

yk, 1−
i−1∑

k=1

yk

})
for all i > 1 (*)

and
y1 = x1,1 − x1,2 for i = 1.

Lemma 4.50 s is a σ-section for all x ∈ R[p]×[2].

Proof. Obviously, σ(s(x)) = x for all x ∈ R[p]×[2].

Lemma 4.51 The valued block inequalities (see Definition 4.15) and the cube in-
equalities form a set of Px,y-enforcing inequalities for s.

CHAPTER 4. ORBISACKS 103

Proof. We proceed by induction on i. For i = 1, equation y1 = x1,1−x1,2 is satisfied
by any point s(x). The question is: which properties must x have such that s(x)
also satisfies inequalities (4.20) through (4.27) for i = 1?

inequality in description of P
x,y is satisfied if

x1,1 − y1 > 0 x1,2 > 0

x1,2 + y1 6 1 x1,1 6 1

x1,1 − x1,2 − y1 > 0 —

−x1,1 + x1,2 + y1 > 0 —

y1 6 1 x1,1 6 1 and x1,2 > 0

y1 > 0 −x1,1 + x1,2 6 0

x1,1 6 1 x1,1 6 1

x1,2 > 0 x1,2 > 0

Note that the block inequality −x1,1 + x1,2 6 0 and x1,1 6 1 imply that x1,2 6 1.
Moreover, inequalities −x1,1 + x1,2 6 0 and x1,2 > 0 imply that x1,1 > 0. So, for
i = 1, we add inequalities x1,j 6 1, x1,j > 0, j ∈ [2], as well as the block inequality
−x1,1 + x1,2 6 0 to the set of Px,y-enforcing inequalities.

For induction step i i+ 1, we can assume that

yk > 0 for all k ∈ [i− 1] and (**)

i−1∑

k=1

yk 6 1 (***)

Moreover, by choice of s, s(x) already satisfies inequalities (4.20), (4.21), (4.22), and
(4.24). It remains to identify those inequalities in x that ensure that s(x) satisfies
the remaining inequalities (4.23), (4.25), (4.26), and (4.27).

inequality in description of P
x,y yi ineq. satisfied by

−xi,1 + xi,2 +
Pi

k=1 yk > 0 xi,1 (**) and xi,2 > 0

1 − xi,2 (**) and xi,1 6 1

xi,1 − xi,2 +
Pi−1

k=1 yk (**)

1 −Pi−1
k=1 yk xi,1 6 1 and xi,2 > 0

yi > 0 xi,1 xi,1 > 0

1 − xi,2 xi,2 6 1

xi,1 − xi,2 +
Pi−1

k=1 yk (****)

1 −Pi−1
k=1 yk (***)

xi,1 6 1 xi,1 xi,1 6 1

1 − xi,2 xi,1 6 1

xi,1 − xi,2 +
Pi−1

k=1 yk xi,1 6 1

1 −Pi−1
k=1 yk xi,1 6 1

xi,2 > 0 xi,1 xi,2 > 0

1 − xi,2 xi,2 > 0

xi,1 − xi,2 +
Pi−1

k=1 yk xi,2 > 0

1 −Pi−1
k=1 yk xi,2 > 0

104 CHAPTER 4. ORBISACKS

The inequalities obtained so far imply that x ∈ [0, 1][p]×[2]. It remains to ensure
that any x ∈ [0, 1][p]×[2] satisfies inequalities

xi,1 − xi,2 +

i−1∑

k=1

yk > 0 (****)

for all i > 1. Note that y1 = x1,1 − x1,2.

Example 4.52 Let i = 7. If yk, k ∈ [2..6], equals the second, fourth, and three times the
third option in (*), we obtain:

x1,1 − x1,2 −(x1,1 − x1,2) 0 0 0

1 − x2,2 −(1 − x2,2) 0 0 0

1 1 2 4

x4,1 − x4,2 x4,1 − x4,2 2(x4,1 − x4,2)

x5,1 − x5,2 x5,1 − x5,2

x6,1 − x6,2

y1 y2 y3 y4 y5 y6

To satisfy the corresponding inequality (***) is equivalent to ensuring that the sum over
all entries of this table (except the last row, of course), plus x7,1 − x7,2, is larger or equal
than 0; that is:

0 0 x1,1 x1,2 6 8

0 0 x2,1 x2,2

0 0 x3,1 x3,2

−4 +4 x4,1 x4,2

−2 +2 x5,1 x5,2

−1 +1 x6,1 x6,2

−1 +1 x7,1 x7,2

Note that this inequality is the sum of trivial inequalities −xi,1 6 0 and xi,2 6 1 for all
i ∈ [4..7].

On the other hand, we obtain with the first, second and three times the third option:

x1,1 − x1,2 x1,1 − x1,2 2(x1,1 − x1,2) 4(x1,1 − x1,2)

x2,1 x2,1 2x2,1 4x2,1

1 − x3,2 1 − x3,2 2(1 − x3,2) 4(1 − x3,2)

x4,1 − x4,2 x4,1 − x4,2 2(x4,1 − x4,2)

x5,1 − x5,2 x5,1 − x5,2

x6,1 − x6,2

y1 y2 y3 y4 y5 y6

CHAPTER 4. ORBISACKS 105

Therefore, x must satisfy inequality

−8 +8 x1,1 x1,2 6 8

−8 x2,1 x2,2

+8 x3,1 x3,2

−4 +4 x4,1 x4,2

−2 +2 x5,1 x5,2

−1 +1 x6,1 x6,2

−1 +1 x7,1 x7,2

Note that this inequality is a valued block inequality.

Observation 4.53 Obviously, one can define vectors a∗,1, a∗,2 and b all in R[p] such that

xi,1 − xi,2 +

i−1
X

k=1

yk =

p
X

k=1

(ak,1xk,1 + ak,2xk,2 + bk)

simply by reading off the coefficients. Inequality (****) can then be rewritten as

−〈a, x〉 6
p
X

k=1

bk,

where a = (a∗,1, a∗,2) and x = (x∗,1, x∗,2).

We will in the following describe the coefficients of a∗,1,a∗,2 and b. Clearly,
ai,1 = −1, ai,2 = +1, and ak,j = 0 for k > i and j ∈ [2]. Assume entries yk

have a value from (*) for k ∈ [i − 2]. What influence has the value of yi−1 on the
components of vectors a and b?

Observation 4.54

x If yi−1 is option 1 or 2 in (*), then for all k < i − 1, ak,1, ak,2 and bk keep unchanged,
and either ai−1,1 = −1, ai−1,2 = 0 and bi−1 = 0 (option 1) or ai−1,1 = 0, ai−1,2 = 1
and bi−1 = 1 (option 2).

x If yi−1 is option 3 in (*), then for all k < i− 1, ak,1, ak,2 and bk are each multiplied
by factor 2. Moreover, ai−1,1 = −1, ai−1,2 = 1 and bi−1 = 0.

x If yi−1 is option 4 in (*), then for all k < i − 1, ak,1 = 0, ak,2 = 0 and bk = 0.
Moreover, ai−1,1 = 0, ai−1,2 = 0 and bi−1 = 1.

x By construction of the map s, y1 = x1,1 −x1,2. Together with the above-mentioned,
this implies that a1,1 = −α and a1,2 = α with α ∈ {2µ | µ ∈ N} ∪ {0}.

From these observations, it follows that if yk is equal to one of the first three
options in (*) for all k ∈ [2..i−1], then inequality (****) is a valued block inequality.
If, on the other hand, not every yk comes from the first three options, the resulting
inequality ax 6 b looks like a block inequality with basement i, where rows 1
through k⋆ are replaced by empty rows for some 1 6 k⋆ 6 i − 1. The right-hand
side is the sum of all p-rows in the modified vector a plus the value of the block
that contains row k⋆; so the right-hand side equals the sum of all positive entries
in a. Therefore, the inequality ax 6 b is a block inequality plus the sum of trivial
inequalities. (See the first of examples 4.52.)

Therefore, for any i > 1, if x satisfies all valued block inequalities with basement
i, s(x) does not violate inequality (****).

Proposition 4.55 The set of valued block inequalities and the cube inequalities
provide a complete description of the orbisack.

106 CHAPTER 4. ORBISACKS

a =

...
...

−1 1

−1 1

0 0
...

...

...
...

−1 1

0 1

−1 1
...

...

or

...
...

−1 1

−1 0

−1 1
...

...

or

...
...

−2 2

−1 1

−1 1
...

...

case (A) case (B) case (C)

Figure 4.3: The idea behind the separation algorithm as listed in figure 4.4: row by row, we shift
the basement down and modify vector a and right-hand side b appropriately such that ax 6 b
stays a valued block inequality and 〈ay〉 becomes maximal.

Proof. The valued block and cube inequalities are valid for the orbisack. Map s
is a σ-section (Lemma 4.50). Moreover, Lemma 4.51 shows that the valued block
inequalities and the cube inequalities make are Px,y-enforcing inequalities for s. So
we obtain the statement by Theorem 2.17.

4.4 Selected Properties of the Orbisack

4.4.1 Number of Facets

It is easy to enumerate the facets of the orbisack.

Observation 4.56 The orbisack Op,2 has Θ(3p) facets.

Proof. There are 2(2p− 1) trivial facets. Each non-trivial facet ax 6 b is fixed by
the sign pattern of the components of a. There is one sign pattern (and therefore
one non-trivial facet) with basement in row 1 and one with basement in row 2. For
basement k > 3, each row between first row and the basement can be filled with
one of three sign patterns. For p > 2, we get therefore a total number of facets of

2(2p− 1) + 2 +

p∑

k=3

3k−2 = 4p+
3

2
(3p−2 − 1),

using the geometric sum.

4.4.2 The Separation Problem for Orbisacks

The separation problem is to decide whether a given vector y ∈ R[p]×[2] lies inside
a polytope (here: an orbisack Op,2) or not and, if not, to find a valid inequality for
the polytope that is violated by y. This problem can be solved in time O(p2) as the
algorithm in fig. 4.4 shows. The main loop is executed not more than p-times, but
in the worst case, it may be necessary to cycle through a in each run to multiply
each entry by factor 2.

Lemma 4.57 Algorithm 4.4 works correctly.

Proof. The algorithm obviously terminates. Correctness can be shown inductively.
For basements ℓ = 1 and ℓ = 2, the algorithm considers all existing VBIs. ℓ ℓ+1:
In the main loop, the algorithm varies the sign pattern of the inequality obtained in
the preceding step (only) in the last row and appends a new basement. Let ax 6 b

CHAPTER 4. ORBISACKS 107

be the inequality obtained in the preceding step with base(a) = ℓ. The algorithm
constructs a′ and b′ from a and b such that a′y − b′ becomes

max
(
{ 〈a,y〉+ yℓ,1 − yℓ+1,1 + yℓ+1,2 − b,

〈a,y〉 − yℓ,2 − yℓ+1,1 + yℓ+1,2 − b− 1,

2〈a,y〉+ yℓ,1 − yℓ,2 − yℓ+1,1 + yℓ+1,2 − 2b }
)
.

If there is an inequality ã′x 6 b̃′ with base(ã′) = ℓ+1 and ã′y− b̃′ > a′y− b′, then
this implies that there exists an inequality ãx 6 b̃ with basement ℓ and ãy − b̃ >
ay − b contradicting the induction hypothesis.

4.4.3 The Graph of the Orbisack

The graph (sometimes also phrased as the “1-skeleton”) GP = (V , E) of a polytope
P has vertex set V = VP and edges E ⊆ V × V with {v,w} ∈ E if and only if
polytope P has an edge F such that v,w ∈ F. As it is usual, v and w are called
neighbours then.

The graph of a polytope reflects a lot of information about the polytope itself
(for a survey, see [66]).

In this section, we will give a complete characterization of the graph GOp,2 of
the orbisack Op,2; this will allow us to compute the average degree of each vertex.
Our aim was to prove that the graph of the orbisack has edge expansion at least
1 by inductively constructing the graph of Op,2 from graphs of Ok,2, k < p. This
would be a further support for the conjecture of Mihail and Vazirani (see page 34).
However, we did not succeed.

First, we will show necessary conditions for adjacency, followed by a proof that
these conditions are sufficient. The section is closed by the computation of the
number of edges and the average degree.

4.4.3.1 Characterization of Adjacency

The main ingredient of the following proofs is a standard observation.

Observation 4.58 It is clear that two vertices v, w ∈ P cannot be adjacent if there are two
other vertices x, y ∈ P and scalars 0 6 µ, λ 6 1 such that

µx + (1 − µ)y = λv + (1 − λ)w,

i.e. if conv({v, w}) ∩ conv({x, y}) 6= ∅. Restricting to λ = µ = 1
2
, we get that in

particular, v and w cannot be adjacent if there are x, y ∈ P such that

v + w = x + y. (4.29)

For certain classes of 0/1-polytopes, the latter condition is also necessary for
non-adjacency; so, for these polytopes, two vertices v and w are neighbours if and
only if there is no other pair of vertices x,y such that x + y = v + w. Among
these polytopes are e.g. matching, matroid, and stable set polytopes. Naddef and
Pulleyblank called these polytopes combinatorial (see [92]).

As we will see, orbisacks are combinatorial in this sense. Naddef and Pulleyblank
showed that the graphs of combinatorial polytopes are either hypercubes or Hamil-
ton connected. We will see that the latter is the case for the orbisack, i.e. any pair
of nodes in the graph of orbisack is joined by a Hamilton path.

108 CHAPTER 4. ORBISACKS

Data: y ∈ R[p]×[2]

Result: (false) or (true and violated inequality)
if y /∈ [0, 1][p]×[2] then

return true; y violates trivial inequality;
end
if −y1,1 + y1,2 > 0 then

return true; y violates inequality −x1,1 + x1,2 6 0;
end
if p > 1 then

a←

−1 1

−1 1

0 0
...

...

and b← 0;

while base(a) 6 p do
if 〈a,y〉 > b then

return true; y violates inequality ax 6 b;
end
if base(a) < p then

// basement becomes p-row

A← 〈a,y〉+ ybase(a),1 − ybase(a)+1,1 + ybase(a)+1,2 − b− 1;
// basement becomes n-row

B ← 〈a,y〉 − ybase(a),2 − ybase(a)+1,1 + ybase(a)+1,2 − b;
// basement becomes np-row

C ← 2〈a,y〉+ ybase(a),1− ybase(a),2− ybase(a)+1,1 + ybase(a)+1,2−2b;
switch max({A,B,C}) do

case A
b← b+ 1;
a← a + abase(a),1 − abase(a)+1,1 + abase(a)+1,2;

endsw
case B

a← a− abase(a),2 − abase(a)+1,1 + abase(a)+1,2;
endsw
case C

b← 2b;
a← 2a + abase(a),1 − abase(a),2 − abase(a)+1,1 + abase(a)+1,2;

endsw

endsw

end

end

end
return false;

Figure 4.4: Separation algorithm for orbisacks.

CHAPTER 4. ORBISACKS 109

v w

St

crit(v)

Sm

crit(w)

Sb

Figure 4.5: Partitioning the rows of two vertices v and w into segments St, Sm, and Sb. Critical
rows are marked gray.

Definition 4.59 (Segments) Let v,w be a pair of vertices of Op,2. We define three
intervals St,Sm,Sb ⊆ [p] of row indices and refer to them as segments. The range
of each segment depends on the positions of the critical rows crit(v) and crit(w):

St := {i ∈ [p] | i < min({crit(v), crit(w)})},

Sm := {i ∈ [p] | i > min({crit(v), crit(w)}) and i < max({crit(v), crit(w)}}), and

Sb := {i ∈ [p] | i > max({crit(v), crit(w)})}.

Note that Sm = ∅ if crit(v) = crit(w).
Moreover, Sb = ∅ if max(crit(v), crit(w)) = p+ 1.

Now we can start with a characterization of non-adjacent pairs of vertices.

Lemma 4.60 Two vertices v and w with the same critical row cannot be adjacent
if they differ
(a) in more than one row in segment St or
(b) in more than one position (i, j) in segment Sb or
(c) in at least one row in segment St and at least one position (i, j) in segment Sb.

Proof. (a) Suppose, the vertices differ in rows i, k ∈ St, i 6= k. Modify v in ṽi,∗ :=1 − vi,∗ and w by w̃i,∗ := 1 − wi,∗. Then ṽ /∈ {v,w} and w̃ /∈ {v,w}, but
v + w = ṽ + w̃ and condition (4.29) for non-adjacency is satisfied.

(b) Similarly, if v and w differ in positions (i, j) and (k, ℓ) with i, k ∈ Sb, we modify
v in ṽi,j := 1− vi,j and w in w̃i,j := 1− wi,j .

(c) Analogous to (a) and (b).

Lemma 4.61 Let v and w be two vertices with different critical rows. (W.l.o.g.,
we can assume that crit(v) < crit(w).) The vertices cannot be adjacent, if any of
the following holds:
(a) vSt,∗ 6= wSt,∗,
(b) vSb,∗ 6= wSb,∗,

110 CHAPTER 4. ORBISACKS

(c) there is some row i ∈ Sm such that vi,∗,wi,∗ ∈ {(1, 1), (0, 0)} and vi,∗ 6= wi,∗,
(d) there is some row i ∈ Sm such that vi,∗ = (1, 0),
(e) vcrit(w),∗ ∈ {(1, 1), (0, 0), (0, 1)} and vSb,∗ is lexicographically ordered.

Note that if for case (e), Sb = ∅, then vSb,∗ can be seen as lexicographically ordered.

Proof. (a) Assume, vi,∗ 6= wi,∗ for i ∈ St. Then modify v in components ṽi,∗ :=1−vi,∗ and w in components w̃i,∗ := 1−wi,∗. Because of crit(v) 6= crit(w), we
get that vcrit(w,∗) 6= (1, 0). So ṽ /∈ {v,w} and w̃ /∈ {v,w}, but v + w = ṽ + w̃.

(b) Analogous to (a).
(c) We swap the rows between v an w: modify w in components w̃i,∗ := vi,∗ and

v by ṽi,∗ := wi,∗.
(d) Analogous to (c).
(e) Analogous to (c). If vcrit(w),∗ ∈ {(1, 1), (0, 0)} and wSb,∗ is in lexicographic

order, swapping rows vcrit(w,∗) and vcrit(v,∗) leads to modified vectors ṽ and w̃

with v + w = ṽ + w̃. If vcrit(w),∗ = (0, 1) and wSb,∗ is in lexicographic order,
then modify w in components w̃i,∗ := (1, 1) and v in components ṽi,∗ := (0, 0).

We summarize:

x To have a chance that two vectors v and w are adjacent, they must differ
either in one row above crit(v) or in one entry below crit(v) but not both, as
long as crit(v) = crit(w).

x If v and w are supposed to be adjacent and crit(v) < crit(w), then both
vectors must be identical above crit(v) and below crit(w). In rows i between
crit(v) and crit(w), the entries are either identical in v and w or row vi,∗ =
(0, 1). Last, if vSb,∗ is lexicographic ordered, then row vcrit(w),∗ = (1, 0).

Proposition 4.62 The conditions from Lemma 4.60 and 4.61 completely charac-
terize non-adjacency, i.e.: If two vertices are not adjacent, then at least one of the
conditions from Lemma 4.60 and 4.61 is violated.

Proof. For two vertices v and w that satisfy the conditions from lemmas 4.60 and
4.61, we will construct a cost vector c ∈ R[p]×[2] such that V [c] = {v,w}. For this
purpose, we define sets Iα := {(i, j) ∈ [p] × [2] | vi,j = wi,j = α} for α ∈ {0, 1}.
The cost vector will be in general defined as

c(a) :=
∑

(i,j)∈I1

ei,j −
∑

(i,j)∈I0

ei,j

︸ ︷︷ ︸
(∗)

+a,

depending on some vector a ∈ R[p]×[2] that will be fixed later. The unit vectors
(∗) already fix for any vector x ∈ V [c(a)] entry xi,j to value α ∈ {0, 1} if vi,j = α
and wi,j = α. (The solutions lie in the intersection of the appropriate trivial faces.)
Thus we have to care only about entries where v and w differ from each other.

(i) First, we consider the case crit(v) = crit(w). We have to show that if v and
w do not violate conditions (a) through (c) from Lemma 4.60, then they are
adjacent. Note that therefore, I1 ∪ I0 covers all positions (i, j) ∈ [p] × [2]
except either one row above crit(v) or one entry below crit(v). So, we have to
distinguish only two cases:
(i.1) If v and w differ in one position (i, j) below crit(v), we set a := 0.

Then, a choice is only possible for position (i, j), and therefore V [c(a)] =
{v,w}.

CHAPTER 4. ORBISACKS 111

(i.2) If, on the other hand, v and w differ in one row k above crit(v), then we
must ensure by choice of a that no vector in V [c(a)] has critical row k.
So we define vector a as the vector with the following properties

x there exists b ∈ R such that ax 6 b is a VBI,
x base(a) = k, and
x each nonempty row of a has sign pattern sign(ai,∗) = (−,+).

Now the vectors in V [c(a)] differ only in entries in row k. However,
Observation 4.19 shows that there is no vector in V [a] (and hence no
vector in V [c(a)]) with critical row in row k. Therefore, again V [c(a)] =
{v,w}.

(ii) Consider now the case crit(v) < crit(w). We will show that if v and w do
not violate Lemma 4.61 (a) through (e), then they must be adjacent. For the
construction of appropriate additional cost vectors a, we have to distinguish
four sub cases:

rows (0, 1) in Sm? vcrit(w),∗ = (1, 0)?

(1) — X

(2) X X

(3) X —

(4) — —

(ii.1) In this case, vectors v and w are equal in all components except either
position (crit(v), 1) or position (crit(v), 2). So we can choose a = 0 and
the situation is similar to (i.1).

(ii.2) First, we define set

T := {i ∈ Sm | ∃ k ∈ Sm with k > i and vk,∗ = (0, 1)}.

This set contains all rows in Sm down to the last row of type (0, 1).
We then define a as follows:

x There is a b ∈ R such that ax 6 b is a valued block inequality
x base(a) = max(T).
x The sign pattern of a is chosen as follows:

sign(ai,∗) :=

(−,+), if i ∈ St

(−,+), if i = crit(v)

(−,+), if i ∈ T and vi,∗ = (0, 1)

(−, 0), if i ∈ T and vi,∗ = (0, 0)

(0,+), if i ∈ T and vi,∗ = (1, 1).

(See the left picture in figure 4.6.)
Let now x ∈ V [c(a)] be some c(a)-maximizing vertex of the orbisack.
By definition of (∗), x is not completely fixed in row crit(v) and in rows
i ∈ Sm with vi,∗ = (0, 1). However, (∗) ensures that vertex x doesn’t
have its critical row in any of the latter rows. Hence, there are two
possibilities:

x crit(x) = crit(v). Then all rows i ∈ Sm with vi,∗ = (0, 1) are set to
xi,∗ = (0, 1) as cost vector a has np-rows there and thus x equals
v.

x crit(x) = crit(w). Then in any row above crit(x) that is not com-
pletely fixed, one component is fixed by choice of (∗). Hence, these
rows will be set as in w, hence x = w.

So, V [a(c)] = {v,w}.
(ii.3) We define now:

T := Sm ∪ {i ∈ Sb | ∄ k ∈ Sb with vk,∗ = (0, 1) and k < i}

112 CHAPTER 4. ORBISACKS

v w sign(a)

1 1 1 1 − +

0 0 0 0 − +

1 0 1 1 − +

1 1 1 1 0 +

T

0 0 0 0 − 0

0 1 1 1 − +

0 1 0 0 − +

1 1 1 1 0 0

1 0 1 0 0 0

1 1 1 1 0 0

1 0 1 0 0 0

0 0 0 0 0 0

1 1 1 1 0 0

v w sign(a)

1 1 1 1 − +

0 0 0 0 − +

1 0 1 1 − +

T

1 1 1 1 0 +

0 0 0 0 − 0

0 1 1 1 − +

0 1 0 0 − +

1 1 1 1 0 +

0 1 1 0 − +

1 1 1 1 0 +

0 1 0 1 − +

0 0 0 0 0 0

1 1 1 1 0 0

Figure 4.6: Examples for the choice of additional cost vectors a in case (ii.2) (left) and case (ii.3)
(right) for the proof of Proposition 4.62. Critical rows crit(v) and crit(w) are drawn gray. In both
cases, rows vi,∗ = (0, 1) are allowed in Sm. However, in case (ii.2), vcrit(w),∗ = (1, 0) holds, while
in (ii.3), vcrit(()w),∗ ∈ {(0, 1), (1, 1), (0, 0)} here. This implies that in case (ii.3), vSb,∗ must be in
reverse lexicographic order.

and a as in case (ii.2). (See right picture in figure 4.6.)
Set T now contains all rows in Sm and the rows in Sb down to the first
row of type (0, 1) (which must exist because vSb,∗ must be in lexico-
graphically reverse order not to violate Lemma 4.61 (e)).
Note that by the new definition of set T , base(a) lies now in set Sb.
The construction of c(a)-maximizing vertices is basically the same as
for case (ii.2).

(ii.4) This case is completely analogous to case (ii.3).

4.4.3.2 Number of Edges and Average Degree

To count the edges of the orbisack, we will break up the edge set E into partitions,
depending on the endpoints of the edges. For this purpose, we will split up the set
of vertices into classes containing all vertices that are identical in a certain subset
of rows. Additionally, we partition the vertices by the position of their critical row
into layers (see definition 4.1).

Definition 4.63 Let R ⊆ [p] be a (possibly empty) set of row indices. We define
an equivalence relation ∼R on V as follows:

x If R = ∅, then v ∼R w holds for all v,w ∈ V .
x If R 6= ∅, then for v,w ∈ V , it holds that

v ∼R w ⇔ vi,∗ = wi,∗ ∀ i ∈ R.

CHAPTER 4. ORBISACKS 113

So, if R = ∅, then set V is the only equivalence class; if R = [p], then V
decomposes into |V| different equivalence classes.

We will now use this equivalence class to partition the set of edges E into four
subsets E1 through E4. Subsets E1 and E2 contain edges between vertices with same
critical row, i.e. in the same layer; subsets E3 and E4 contain edges between vertices
with different critical rows.

(E1) {v,w} ∈ E1 ⇔ {v,w} ∈ E and (v,w ∈ Lk and v ∼[1..k−1] w)

for k ∈ [1..p− 1]

(E2) {v,w} ∈ E2 ⇔ {v,w} ∈ E and (v,w ∈ Lk and v ∼[k+1..p] w)

for k ∈ [2..p+ 1]

(E3) {v,w} ∈ E3 ⇔ {v,w} ∈ E and v ∈ Lk,w ∈ Lℓ, with 1 6 k < ℓ 6 p

(E4) {v,w} ∈ E4 ⇔ {v,w} ∈ E and v ∈ Lk with k ∈ [p],w ∈ Lp+1

Proposition 4.64 The graph GOp,2 of the orbisack Op,2 has

|E| = 2p
(

7
4 (1 − 2p) + p(1 + 9 · 2p−3)

)

edges.

Proof.

(E1) {v,w} ∈ E1 implies that v and w share the same rows above and in the critical
row. Because of Lemma 4.60 and Proposition 4.62, there are 2(p − k) edges
in E1 containing some vector v ∈ Lk for 1 6 k 6 p− 1. There are 2k−122(p−k)

vertices in layer Lk for 1 6 k 6 p−1. Introducing factor 1
2 because of counting

each edge twice, we obtain:

|E1| =

p−1∑

k=1

2k−122(p−k)(p− k) =

= 22p−1
(
p

p−1∑

k=1

2−k −

p−1∑

k=1

k 2−k
)

=

= 22p−1
(
p (1 − 2−p+1)− 2−p+1(2p − p− 1)

)
=

= 2p
(
1− 2p (1 − p 2−1)

)
.

(4.30)

(E2) Two vertices v,w ∈ Lk with v ∼[k+1..p] w are identical in and below the
critical row k for 2 6 k 6 p. They are neighbours if and only if they differ in
exactly one row above the critical row. For k = p+ 1, two vertices v,w ∈ Lk

are also neighbours if and only they differ in exactly one row (Lemma 4.60,
Proposition 4.62, and Definition 4.63).
Hence, for 2 6 k 6 p+1, each vertex in layer Lk has k−1 neighbours (sharing
the same rows in and below the critical row if k < p+ 1). Layer Lk contains
22p−k−1 vertices for 1 6 k 6 p and 2p vertices for k = p+ 1.

114 CHAPTER 4. ORBISACKS

Summing up over all relevant layers gives

|E2| = p
1

2
2p +

p∑

k=2

1

2
(k − 1)22p−k−1 =

= p 2p−1 + 22p−3

p−1∑

k=1

k 2−k =

= p 2p−1 + 22p−3 2−(p−1)
(
2p − (p− 1)− 2

)
=

= 2p−2
(
2p + p− 1

)
.

(4.31)

(E3) To count the edges between different layers, we work “bottom up”. That
means: we count the edges that start from some vertex v ∈ Lk with 1 < k 6 p
and end at any vertex w ∈ Lℓ<k.
Let us at first fix some vertex v ∈ Lk. If v is adjacent to some vertex w ∈ Lℓ<k,
then v[1..ℓ−1],∗ = w[1..ℓ−1],∗ and v[k+1..p],∗ = w[k+1..p],∗ must hold.
However, each row wi,∗ with ℓ < i < k can be chosen either to be the same
as in v or to (0, 1). This gives 2k−ℓ−1 possibilities.
For row k of w, there is either one row type possible, namely

vk,∗ ∈ {(1, 0)}, if v[k+1..p],1 < v[k+1..p],2

or there is one of four row types possible, namely

vk,∗ ∈ {(1, 0), (0, 1), (0, 0), (1, 1)}, if v[k+1..p],1 ≺ v[k+1..p],2.

That means: vertex v has either 2k−ℓ−1 or 4 · 2k−ℓ−1 neighbours in any layer
Lℓ<k, depending on whether v[k+1..p],∗ is lexicographically ordered or not.
Thus in all layers Lℓ<k, the number of neighbours of vertex v sums up to

∑k−1
ℓ=1 2k−ℓ−1 = 2k−1 − 1, if v[k+1,p],1 < v[k+1,p],2

22
∑k−1

ℓ=1 2k−ℓ−1 = 22(2k−1 − 1), if v[k+1,p],1 ≺ v[k+1,p],2.

In each set Lm
k , we find

2p−k−1(2p−k + 1) vertices with v[k+1,p],1 < v[k+1,p],2

2p−k−1(2p−k − 1) vertices with v[k+1,p],1 ≺ v[k+1,p],2,

which can be calculated with the help of Proposition 3.19. As there are 2k−1

different sets Lm
k , we get

2p−2(2p−k + 1) vertices with v[k+1,p],1 < v[k+1,p],2

2p−2(2p−k − 1) vertices with v[k+1,p],1 ≺ v[k+1,p],2

in the entire layer Lk. That means that there are

2p−2(2p−k + 1) (2k−1 − 1)︸ ︷︷ ︸
lex. ordered

+ 2p−2(2p−k − 1) 22(2k−1 − 1)︸ ︷︷ ︸
lex. rev. ordered

=

= 2p−2(2k−1 − 1)(5 · 2p−k − 3) (4.32)

edges between all vertices in layer Lk and all vertices in layers Lℓ<k. We have
to sum (4.32) up over all layers 1 < k 6 p. Note that (4.32) equals 0 for k = 1,

CHAPTER 4. ORBISACKS 115

hence we can start the sum from k = 1:

|E3| =

p∑

k=1

2p−2(2k−1 − 1)(5 · 2p−k − 3) =

= 2p−2

p∑

k=1

(5 · 2p−1 − 3 · 2k−1 − 5 · 2p−k + 3) =

= 2p−2
(
5p · 2p−1 + 3p− 8(2p − 1)

)
.

(4.33)

(E4) There are 2p vertices in layer Lp+1. For each v ∈ Lp+1, we can find 2p−k

neighbours w ∈ Lk<p+1, as

w[1..k−1],∗ = v[1..k−1],∗

and
wi,∗ ∈ {vi,∗, (0, 1)} for all i ∈ [k + 1..p]

must hold (Lemma 4.60 and Proposition 4.62). Thus all vertices in layer p+1
have together 22p−k neighbours in any layer Lk<p+1. Summing up over all
k ∈ [p] gives:

|E4| =

p∑

k=1

22p−k = 2p (2p − 1). (4.34)

Summing up equations (4.30), (4.31), (4.33), and (4.34), we get in total

|E| = 2p
(

7
4 (1− 2p) + p(1 + 9 · 2p−3)

)
.

This result immediately gives us the possibility to compute the average degree of
a vertex of the orbisack.

Corollary 4.65 (Average vertex degree) As there are 2p−1(2p + 1) vertices in
orbisack Op,2, for the average vertex degree D(p), it holds that D(p) 6 2.25 · p.

Proof. It is easy to see that limp→∞
D(p)

p
= 9

4 and that D(p)
p

is bounded from above

by 9
4 .

Corollary 4.66 The graph of the orbisack is Hamilton connected.

Proof. The orbisack is a combinatorial polytope, so the graph can be either a hyper-
cube or Hamilton connected ([92]). In a d-hypercube, all vertices have same degree
d. However, it is obvious that this is not the case for the graph of the orbisack. For
instance, a vertex v ∈ Lp+1 has p neighbours inside Lp+1 (E3) and

p−1∑

k=0

2k = 2p − 1

into layers Lk with k < p + 1 (E5). However, node w ∈ Lm
k has at least 22(p−k)

neighbours in Lm
k , and therefore generally (i.e. for p > 1), w has a higher degree

than v.

116 CHAPTER 4. ORBISACKS

Chapter 5

Branched Polyhedral Systems

A large class of dynamic programming algorithms can be associated with a certain
class of directed hypergraphs, the DP hypergraphs (see definition 2.11). The so-
lutions of these problems can then be identified with paths or hyperpaths in the
hypergraph. Describing these hyperpaths in arc variables, the convex hull of the
corresponding incidence vectors has been described by Martin et al. ([86]), see The-
orem 2.14. However, things become much more involved as soon as one chooses
node variables.

For motivation, we will briefly sketch the general idea for this framework coming
from dynamic programming. LetH = (V , Ã) be a DP-hypergraph with source nodes

W and final state t, let L ⊆ Ã be a W-t-hyperpath in H , and let the relaxation of
H be D = (V ,A). For each v ∈ V rW , the hypergraph defines a family of sets

Fv := {S ⊂ V | (S,v) ∈ Ã}.

Hence, Fv contains those sets of states that can be combined and directly translated
into state v while running the DP-algorithm.

Based on these families, we can now define a nonempty 0/1-polytope Pv for each
v ∈ V rW as the convex hull of feasible combinations of in-neighbours in D, i.e.

Pv := conv
({

x ∈ {0, 1}N
in
D(v)

∣∣∣x = x[S] for some S ∈ Fv
})
. (*)

Let x = x
[
V [L]

]
∈ {0, 1}V be the incidence vector of the nodes that hyperpath

L is using. From the properties of a hyperpath follows that x must satisfy three
properties:

x xt = 1
x If component xv is set to 1 and v /∈ W , then there must be a set S ∈ Fv of

in-neighbours of v in D such that xw = 1 for all w ∈ S and xw = 0 for all
w ∈ Nin

D(v) r S.
x If component xv = 1 and v 6= t, then there must be a node w ∈ Nout

D (v) such
that xw = 1.

We will refer to these properties as path conditions.
In particular, the incidence vector of the W-t-hyperpath restricted to the in-neigh-
bours of some node v ∈ V rW must be a vertex of Pv. These vertices correspond
to partial solutions to subproblems of the problem the DP algorithm is solving, and
they are arranged in a directed tree (arborescence) structure.

It suggests itself to generalize this approach by replacing polytopes Pv with gen-
eral polyhedra Qv in RNin

D(v) and adapting the path conditions appropriately. (We
will in the following section define more precisely what we mean by that.)
The main goal is to describe the linear hull of all feasible combinations of points

117

118 CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS

of polyhedra Qv that belong to hyperpaths by using the linear descriptions of the
polyhedra Qv themselves. We will derive a description of the hyperpath polytope
in arc and node variables.

However, in general, a linear description purely in node variables is still pending.
The material presented here is joint work with Volker Kaibel and has been pub-

lished in [63]. However, that paper goes a bit further than we will in the following
chapter: It also studies other applications of branched polyhedral systems, for in-
stance to generalize Balas’ unions of polyhedra or to study certain stable set poly-
topes. In contrast to this, we will focus here exclusively on branched polyhedral
systems in the context of orbitopes. Note that different from [63], we direct in this
chapter the digraph D that is underlying the branched polyhedral systems from
its sources W to the final state t. This makes the construction consistent with the
definitions from the previous chapters, in particular with DP hypergraphs.

5.1 Branched Polyhedral Systems (BPS)

Definition 5.1 (Branched Polyhedral System) Let D = (V ,A) be an acyclic di-
graph with unique sink t and set of sources W . For each node v ∈ V r W , a
polyhedron Pv ⊆ RNin

D(v) is given by

Pv := conv(Ĝv
⋄) + cone(Ĝv

#
),

generated by finite sets ∅ 6= Ĝv
⋄ ⊂ RNin

D(v) and Ĝv
#
⊆ RNin

D(v), with the additional

properties that any point x ∈ Ĝv
⋄ ∪ Ĝ

v
#

satisfies

rinD(w) ∩ rinD(w′) = ∅ for w,w′ ∈ supp(x) and w 6= w′. (*)

and that for each x ∈ Ĝv
⋄ ∪ Ĝ

v
#
, it holds that xw > 0 for all w ∈ supp(x) rW .

Let P := {Pv | v ∈ V}. We call the pair (D,P) a branched polyhedral system
(BPS).

Let C = (D,P) be some BPS. Pick some v′ ∈ VrW and set V ′ := rinD(v′) as well
as P ′ := {Pv | v ∈ V ′}. Then the pair (D[V ′],P ′) on the subgraph of D induced by
V ′ is also a BPS. We call it the truncation of the BPS (D,P) at node v′, denoted
by Cv′

.

We proceed with some small remarks.

Remark 5.2
x If polyhedra P

v are pointed, it suffices for the linear description of P
v that the set

bGv
⋄ only contains all vertices of P

v . Similarly, bGv
only has to contain all generators

of extreme rays of P
v . However, we do not assume that a priori.

x As we can identify the in-neighbourhood Nin
D(v) with the in-star δin

D(v), we will also

consider the polyhedra P
v as subsets of Rδin

D (v).

Let from now on C = (D,P) be some BPS based on some choice of sets Ĝv
⋄ and

Ĝv
#

for all v ∈ V rW .

Definition 5.3 (Polyhedron associated with BPS) We define set GC⋄ as the set of
points x ∈ RV with the following properties:
(V.1) xt = 1

(V.2) For each v ∈ supp(x) rW it holds that 1
xv

xNin
D

(v) ∈ Ĝ
v
⋄ .

(V.3) For each v ∈ supp(x) r {t}, it holds that xNout
D

(v) 6= 0Nout
D

(v).

The set GC
#

is defined as the set of all points x ∈ RV for which there exists a node
ṽ ∈ V rW with the following properties:
(R.1) xNin

D
(ev) ∈ Ĝ

ev
#

CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS 119

(R.2) Let Ṽx := Nin
D(ṽ) ∩ supp(x). For any w ∈ V r

⋃
v∈eVx

rinD(v), it holds that
xw = 0. (In particular, xev = 0.)

(R.3) 1
xw

xrin
D

(w) ∈ G
Cw

⋄ for all w ∈ Nin
D(ṽ) ∩ supp(x).

The polyhedron associated with BPS C is then defined as

PC := conv(GC⋄) + cone(GC
#
)

Remark 5.4
x As P

v 6= ∅ for all v ∈ V r W, we get that GC
⋄ 6= ∅.

x From the finiteness of bGv
⋄ for all v ∈ V r W follows that GC

⋄ is finite, as can be seen
by applying (V.1) and (V.2) in topological order of V.

x Similarly, one obtains from the finiteness of GC
⋄ and (R.1) through (R.3) that GC

is
also finite.

x From (V.1), (V.2), (R.1) through (R.3) follows that if Pv ⊆ RNin
D(v)

+ for all v ∈ VrW,

then P
C ⊆ RVrW

+ × RW .

x If P
v is a pointed integral polyhedron for all v ∈ V r W, then P

C is also a pointed
integral polyhedron.

Remark 5.5 It is also possible to assign to each node v ∈ V rW a combinatorial problem.
Let Sv be the set of solutions to the combinatorial problem connected with node v, and
denote by S the family of all sets Sv . Then the pair (D,S) is called a branched combi-

natorial system. It is obvious that by describing the solutions in Sv by incidence vectors,
one can derive from each branched combinatorial system a branched polyhedral system,
where all P

v ∈ P are 0/1-polytopes, namely the convex hulls of the incidence vectors of
the feasible solutions.

5.1.1 Linear Description

We start with a small lemma.

Lemma 5.6 Vector x ∈ GC⋄ if and only if
(i) xt = 1,
(ii) 1

xv
xrin

D
(v) ∈ G

Cv

⋄ for each v ∈ supp(x) rW, and

(iii) supp(x) induces an arborescence in D rooted at t.

Proof. ⇒©Let x satisfy (i) through (iii). Clearly, (i) implies (V.1), (ii) implies (V.2)
and (iii) implies (V.3). Hence, x ∈ GC⋄ . ⇐©Let x ∈ GC⋄ . Then (i) is satisfied by (V.1).
This implies that t ∈ supp(x). Let now D′ = D[supp(x)] be the graph induced by
supp(x). Proceeding in topological order starting with t, we obtain by inductively
applying (V.3) that from any node w ∈ D′, there is a path leading to t. Moreover,
this path is unique: assume there are two different paths Γ1 and Γ2 leading from
some u ∈ supp(x) to t. There must be a node v where Γ1 and Γ2 intersect with
(δinD(v) ∩ Γ1) 6= (δinD(v) ∩ Γ2), contradicting (*). This establishes (iii).
To show (ii), let v ∈ supp(x)rW and let x′ := 1

xv
xrin

D
(v). (V.1) is trivially satisfied

for x′, since xv

xv
= 1. (V.2) is satisfied for x′, since for any w ∈ supp(x) ∩ (rinD(v) r

W), it holds that

1

x′w
x′

Nin
D

(w) =
1

xw

xv

1

xv

xNin
D

(w) =
1

xw

xNin
D

(w),

which is in Ĝw
⋄ , since (V.2) holds for x. Last, let w ∈ rinD(v). Since x satisfies (V.3),

|Nout
D (w) ∩ supp(x)| > 1. In fact, the inequality cannot be strict, since then D′

could not be an arborescence.

In our following considerations, we will use the homogenization of a polyhedron.
Let ∅ 6= Q ⊆ Rn be some nonempty polyhedron. The recession cone of Q is defined

120 CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS

as
rec(Q) := {w ∈ Rn | v + w ∈ Q for all v ∈ Q}

and the homogenization of Q is defined as

hom(Q) := cone({(v, 1) | v ∈ Q}) + {(v, 0) | v ∈ recQ}.

Using the linear description Q = {x ∈ Rn | Ax 6 b} with A ∈ Rm×n and b ∈ Rm

for Q, we obtain that

hom(Q) = {(x, λ) ∈ Rn × R | Ax− λb 6 0, λ > 0}

(For details, see for instance section 1.5 in [120].)

Theorem 5.7 Let C = (D,P) be a polyhedral branching system, where D = (V,A)
is an acyclic digraph with unique sink node t ∈ V and set of sources W ⊆ V .
Moreover, there is an extended formulation given for each Pv ∈ P, that is: for each
v ∈ V rW, we have given a polyhedron Qv ⊆ Rd(v) and a linear map πv : Rd(v) →Rδin

D (v) such that Pv = πv(Qv).
Then, the polyhedron QB ⊆ RV × RA ××v∈VrW Rd(v) defined by the system

xt = 1 (5.1)

xv −
∑

a∈δout
D

(v)

ya = 0 for all v ∈ V r {t} (5.2)

yδin
D

(v) − π
v(z) = 0 for all v ∈ V rW (5.3)

(zv , xv) ∈ hom(Qv) for all v ∈ V rW (5.4)

together with the orthogonal projection π : RV ×RA ××v∈CrW Rd(v) → RV provide
an extended formulation to PC, that is:

π(QC) = PC = conv(GC⋄) + cone(GC
#
),

where GC⋄ and GC
#

are defined with respect to any choice of sets Ĝv
⋄ and Ĝv

#
) defining

polyhedra Pv for all v ∈ V rW.

Proof. ⊆©We show that PC ⊆ π(QC) by constructing from each vector x ∈ PC a
vector (x,y, z) that satisfies (5.1) through (5.4). Let x ∈ GC⋄ .

(i) For all v ∈ (V rW) r supp(x), we set y(w,v) := 0 for all w ∈ Nin
D(v), as well

as zv := 0.
(ii) For all v ∈ (V rW) ∩ supp(x), we set y(w,v) := xw for all w ∈ Nin

D(v).
(iii) Since for v ∈ (V rW) ∩ supp(x),

Pv
(V.2)
∋

1

xv

xNin
D

(v)

(*)
=

1

xv

yδin
D

(v),

where equality (*) holds because of our definition of y from above, we get
that there is a point z̃

v ∈ Qv such that πv(z̃v) = 1
xv

yδin
D

(v) for each v ∈

(V rW) ∩ supp(x). This allows us to set zv := xv z̃
v for each such v.

By (V.1), xt = 1, so (5.1) is satisfied.
From Lemma 5.6 follows that there is exactly one node w ∈ Nout

D (v) ∩ supp(x) for
each v ∈ supp(x). From (i) and (ii) follows that y(v,w) = xv and y(v,w′) = 0 for all

w 6= w′ ∈ Nout
D (v)rsupp(x). On the other hand, (i) and (ii) ensure for v /∈ supp(x)

that ya = 0 for all a ∈ δout
D (v). Hence, (5.2) is satisfied.

By choice of zv in (i) and (iii), πv(zv) = yδin
D

(v) for all v ∈ V rW . Hence, (x,y, z)

CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS 121

satisfies (5.3).
As xv > 0 and by choice of z, we get that (x,y, z) satisfies (5.4).
Therefore, conv(GC⋄) ⊆ π(QC).

Next, we will prove that cone(GC
#
) ⊆ π(rec(QC)) by showing that λx′ ∈ π(rec(QC))

for any x′ ∈ GC
#

and positive scalar λ > 0.
For x := λx′, we define vectors y and z as above except for the root node vx′ of
x′. Here, we define yδin

D
(v

x
′) := xNin

D
(v

x
′). Moreover, we choose a vector z̃

v
x
′ ∈

rec(Qv
x
′) with πv

x
′ (z̃v

x
′) = 1

λ
yδin

D
(v

x
′), which must exist, since

πv
x
′ (rec(Qv

x
′))

(*)
= rec(Pvx)

(R.1)
∋ x′

Nin
D

(ev)

(**)
=

1

λ
yδin

D
(ev),

where (*) holds because Pv
x
′ is the projection of Qv

x
′ , and (**) holds because of

our choice of y. With the means of ṽx′ , we define now zv
x
′ := λz̃v

x
′ .

Hence, zv
x
′ ∈ rec(Qv

x
′), which implies that (zv

x
′ , 0) ∈ hom(Qv

x
′). So, for vx′

(x,y, z) satisfies (5.4).
From (R.2) and (R.3) follows that (x,y, z) also satisfies (5.4) for all other v ∈ VrW ,
as well as all equations (5.1) through (5.3).

⊇©We will show that π(QC) ⊆ PC by proving that for all c ∈ RV and

ω := max({〈c,x〉 | (x,y, z) ∈ QC}),

there exist
x x⋆ ∈ GC⋄ with 〈x⋆, c〉 = ω, if ω <∞ and
x x⋆ ∈ GC

#
with 〈x⋆, c〉 > 0, if ω =∞.

Let Qv = {zv ∈ Rd(v) | Avx 6 bv} be the H-representation of Qv and let

T v ∈ Rδin
D (v)×[d(v)] be the matrix associated with linear projection πv . Then the

inequality system describing QC from above can be reformulated as follows:

xt = 1 (5.5)

xv −
∑

a∈δout
D

(v)

ya = 0 ∀v ∈ V r {t} (5.6)

yδin
D

(v) − T vzv = 0 ∀v ∈ V rW (5.7)

Avzv − xvbv
6 0 ∀v ∈ V rW (5.8)

xv > 0 ∀v ∈ V rW (5.9)

We will construct vector x⋆ along the topological order from sources to sink on
the node set V rW .

Since the node set of D is by definition finite, the algorithm terminates, either at
some node w 6= t or at sink t. The solution v⋆ is in GC⋄ ∪ G

C
#
, which can be shown

by induction: the statement is obviously true for all nodes in W . Now let node v

some processed node in V rW . If ζw < ∞, then xv ∈ GC
v

⋄ and c⋆v = 〈c,xv〉; if
ζw =∞, then xv ∈ GC

v

#
and 〈c,xv〉 > 0.

We define now dual variables additionally to the λ associated with inequalities (5.8)
already defined in the algorithm.

x For inequalities (5.5) and (5.6), we define dual variables νv := c⋆v for all v ∈ V .
x For inequalities (5.7), we define dual variables µv := −cNin

D
(v) for all v ∈

V rW .
The objective value of vector (ν, µ, λ) is obviously νt = c⋆t .
Moreover, (ν, µ, λ) is dual feasible: for all constraints associated with z-variables,
we get that

(λv)⊺Av − (µv)⊺T v = ((T v)⊺c⋆
Nin

D
(v))

⊺ − (c⋆
Nin

D
(v))

⊺T v = 0,

122 CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS

Data: c

Result: x⋆

// Initialization

foreach v ∈ V rW do
xv ← 0 ∈ RV ; // xv ∈ RV

end
foreach v ∈ W do

xv ← ev ∈ RV ; // xv ∈ RV

end

c⋆
W ← cW ; // auxiliary cost vector c⋆ ∈ RV

foreach v ∈ V rW along topological order do
let ζv ← max({〈c⋆

Nin
D

(v)
, x̃〉 | x̃ ∈ Pv});

if ζv =∞ then

choose x̃ ∈ Ĝv
#

with 〈c⋆
Nin

D
(v)
, x̃〉 > 0;

set x⋆ ←
∑

w∈supp(x̃) x̃wxv;

break;

else

choose x̃ ∈ Ĝv
⋄ with 〈c⋆

Nin
D

(v)
, x̃〉 = ζv ;

compute optimal solution λv to dual problem
max({〈(T v)⊺c⋆

Nin
D

(v)
, z̃ | Avz̃ 6 bv});

set xv ← ev +
∑

w∈supp(x̃) x̃wxw;

set c⋆v ← cv + ζv ;

end

end
return x⋆

for all v ∈ V \ VT . For the constraints associated with the y-variables, we find that

−µv
w − νw = c⋆w − c

⋆
w = 0

for all (v,w) ∈ A. And for the constraints associated with x-variables, we get that

−(λv)⊺bv + νv = −ζv + c⋆v = 0.

for all v ∈ V , even for all v ∈ V \ W . This implies that the nonnegativity con-
straints (5.9) are redundant.

The description becomes simpler if the polyhedra Pv are not described by ex-
tended formulations.

Corollary 5.8 Let C = (D,P) be a BPS based on a digraph D = (V ,A) with sink
node t ∈ V and set of sources W ⊆ V. Then polyhedron QC ⊆ RV × RA defined by
system

xt = 1 (5.10)

xv −
∑

a∈δout
D

(v)

ya = 0 ∀v ∈ V r {t} (5.11)

(yδin
D

(v), xv) ∈ hom(Pv) ∀v ∈ V rW (5.12)

and the orthogonal projection π : RV × RA → RV provide an extended formulation
for polyhedron PC.

CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS 123

5.1.2 BPS and Orbitopes

We will use the branched polyhedral systems now to develop an extended formula-
tion for full orbitopes over the full symmetric group.

The underlying digraph D = (B,A) is the relaxation of the DP-hypergraph H =
(B,A) associated with orbitopes (see page 55).

Define for each node bi,[s..t] ∈ B, i ∈ [p− 1], the following set

Sbi,[s..t] := {b•i+1,[s..t]} ∪ {b
◦
i+1,[s..t]} ∪

{
{b•i+1,[s..ℓ], b

◦
i+1,[ℓ+1..t]}

∣∣∣ ℓ ∈ [s..t− 1]
}

and for b0,[1..q] ∈ B the set

Sb0,[1..q] := {b•1,[1..q]} ∪ {b
◦
1,[1..q]} ∪

{
{b•1,[1..ℓ], b

◦
1,[ℓ+1..q]}

∣∣∣ ℓ ∈ [1..q − 1]
}
.

Denote by S := {Sv | v ∈ VrBp}. Then (D,S) is a branched combinatorial system
which induces a branched polyhedral system (D,P) over a family of polytopes
Pbi,[s..t] , bi,[s..t] ∈ B r Bp, where each polytope Pbi,[s..t] is defined as conv({x[s] ∈

{0, 1}[s..t] | s ∈ Sbi,[s..t]}), that is: the convex hull over all incidence vectors of
solutions in Sbi,[s..t] .

However, these polytopes can be linearly described, since for each bi,[s..t] ∈ BrBp,

Pbi,[s..t] is isomorphic to

conv
(
{e1, e2} ∪ {e2ℓ−1 + e2ℓ | ℓ ∈ [2..n]}

)
, (*)

with n = t− s+ 1. It is obvious that the polytope (*) can be linearly described by

u2ℓ−1 + u2ℓ = 0 ∀ℓ ∈ [2..n]

2u1 + 2u2 +
∑2n

ℓ=3 uℓ = 2

ui > 0 ∀i ∈ [2n]

Thus, we obtain the following proposition:

Proposition 5.9 The full orbitope Op,q over the full symmetric group is a projec-
tion of the polyhedron defined by

xbi,[s..t]
−

∑
a∈δout

D
(bi,[s..t])

ya = 0 ∀bi,[s..t] ∈ B r {bt}

y(b•
1,[1..ℓ]

,bt) − y(b◦1,[ℓ+1..q]
,bt) = 0 ∀ℓ ∈ [q − 1]

2
(
y(b•

1,[1..q]
,bt) + y(b◦

1,[1..q]
,bt)

)
+

+
q−1∑
ℓ=1

(
y(b•

1,[1..ℓ]
,bt) + y(b◦

1,[ℓ+1..q]
,bt)

)
= 2

y(b•
i+1,[s..ℓ]

,bi,[s..t]) − y(b◦i+1,[ℓ+1..t]
,bi,[s..t]) = 0 ∀ℓ ∈ [s..t− 1] and

bi,[s..t] ∈ B r Bp

2
(
y(b•

i+1,[s..t]
,bi,[s..t]) + y(b◦

i+1,[s..t]
,bi,[s..t])

)
+

+
t−1∑
ℓ=1

(
y(b•

i+1,[s..ℓ]
,bi,[s..t]) + y(b◦

i+1,[ℓ+1..t]
,bi,[s..t])

)
− 2xbi,[s..t]

= 2 ∀bi,[s..t] ∈ B r Bp

ya > 0 ∀a ∈ A

where bt = b0,[1..q] and

124 CHAPTER 5. BRANCHED POLYHEDRAL SYSTEMS

Proof. First project the polyhedron orthogonally to the x-coordinates, then use
projection ϑ̃ from remark 3.39.

Note that this extended formulation is isomorphic to the one from Theorem 2.14.
It remains an open question whether this extended formulation can be useful for
obtaining the linear description of full orbitopes; it is for instance unclear how the
projection cone for this polyhedron can be generated.

Chapter 6

Conclusions

One main purpose of this thesis is to mark off for which classes of orbitopes “nice”
inequality descriptions can be expected. We showed that if the full symmetric group
is operating on the columns, then in general, the full orbitopes and the orbitopes
isomorphic to packing and partitioning orbitopes are the only orbitopes that allow
such a linear description, at least as long as NP 6= co-NP . The reason is that in
general, optimization is NP-hard over any orbitope over the full symmetric group
apart from the above mentioned. On the other hand, the dynamic programming
algorithm for optimization over full orbitopes which runs in time O(pq3) still gives
hope that a linear description for these orbitopes can be found.

A series of computer experiments indicated nevertheless that the facial structure
of the full orbitope seems to be quite involved, as soon as the number of columns
exceeds two. There seems to be no obvious set of rules that would allow to guess
how to generate the set of facets in general.

Therefore, for “warming up” and deriving a better understanding of full orbitopes
in general, the full orbitope with two columns (the so-called orbisack) has been
studied in detail. We present in this thesis a set of tools and methods that allow
the derivation of the linear description of orbisacks in three different ways. Two of
these approaches, namely the faithful sectioning and the direct combinatorial proof,
even yield a non-redundant description. Since the application of faithful sectioning
requires an appropriate extended formulation, we studied branched polyhedral sys-
tems (BPS) in order to develop extended formulations for full orbitopes. However,
we obtained only an extended formulation isomorphic to the one based on the work
of Kipp Martin et al.

The framework of BPS can be seen as a tool of very general possibilities; it gen-
eralizes for instance Balas’ disjunctive programming. However, it has been treated
in this thesis only very briefly, in so far it concerns orbitopes. It would be a re-
search field in itself to study BPS in detail. However, this study could prove to be
interesting, since BPS may in future play in particular a role in context with the
polyhedral description of the solution set of combinatorial algorithms on graphs that
can be decomposed in certain ways. (There are several ideas of how to decompose
graphs. For tree decompositions, see [20] or the works of Arnborg and Bodlaender,
e.g. [4, 19], for the strip-decomposition of claw-free graphs [24], for other decompo-
sitions e.g. [60, 27, 116]). There is evidence that graph decomposition can open new
possibilities for polyhedral descriptions associated with combinatorial problems (see
for instance Margot’s thesis [81]). A concrete example is the linear description of
the stable set polytope for a subclass of claw-free graphs due to Oriolo et al. ([96]),
which is tightly connected to branched polyhedral systems.

As has been shown in examples in chapter 2, the tools developed to obtain the

125

126 CHAPTER 6. CONCLUSIONS

linear description of orbisacks are not restricted to use with orbisacks; they can
definitely be applied to other polytopes. We used them in particular to prove linear
descriptions of clique polyhedra with clique size less or equal 2 and exactly 2 and
the path set polytope of a directed acyclic digraph.

Nevertheless, the tools can apparently not easily be extended to orbitopes in
general, although they fit well with orbisacks. The main reason for this — apart
from the lack of an idea of the facial structure of orbitopes we mentioned before — is
that for the known extended formulations for orbitopes Op,q>2, which are based on
the path polytope in arc variables and on branched polyhedral systems (BPS), no
constructions of faithful sectionings are known. Since full orbitopes are in general
no knapsack polytopes and the combinatorial proof seems also not to be extendable
to more than two columns, neither of the three approaches presented in chapter 4
can be directly adjusted to orbitopes in general.

For the same reasons, we are also skeptical that a linear description of the full
orbitope Op,q with q > 2 can be obtained by means of a modification of one of
the three approaches from chapter 4. However, another extended formulation based
on BPS could perhaps open a new direction. One such extended formulation in
node and arc variables is given in chapter 5; it is unclear how its projection to node
variables looks like. (This would give the hyperpath set polytope on the DP hyper-
graph associated with full orbitopes). For the linear description of orbitopes, these
extended formulations can possibly be useful in connection with faithful sectionings.

A different technique is based on an idea of Lovász ([77]). As Weismantel and
Pochet have shown ([117]), this approach proves to work for sequential knapsack
polytopes, mainly because of the existence of a dynamic programming algorithm for
these polytopes. Using the dynamic programming algorithm from section 3.2.1.2.4,
their strategy could therefore perhaps be adapted to orbitopes: For any cost vector
c ∈ Q[p]×[q], one would formulate an inequality which is valid for Op,q and which
defines a face containing all vertices of Op,q maximizing the functional 〈x, c〉. The
aim is to make the set finite by a suitable construction of these inequalities, and
to identify all facet defining inequalities in it. However, it is currently unclear how
these steps could be done in detail. Hence, there is still a lot of work to be done.

Much time has been spent on attempts to show that the edge expansion of the
orbisack is bounded by 1 from below, which would further confirm the conjecture
of Mihail and Vazirani ([91]). (We conjecture that the bound of 1 is tight in case of
the orbisack.) For these purposes, the adjacency structure of the orbisack has been
worked out. However, it turned out that the inductive approaches which have been
taken probably do not sufficiently take into account the structure of the graph. We
think that approaches which incorporate the details of the adjacency structure are
more promising.

Last, not much is known if groups different from the full symmetric group or
products of full symmetric groups are permuting the columns, in particular if the
cyclic group acts on the columns. For these orbitopes, possible applications could
possibly be found in scheduling problems, for instance for the development of cyclic
timetables. However, our computer experiments indicate that the facial structure of
full orbitopes over cyclic groups is even more intricate than for the symmetric group.
An interesting next step would therefore be to prove or disprove that optimization
over full orbitopes over full cyclic groups is NP-complete.

Bibliography

[1] Karen Aardal and Stan van Hoesel, Polyhedral Techniques in Combinatorial
Optimization — I (Theory) and II (Computations), Statistica Nederlandica
(1995).

[2] Karen Aardal and Robert Weismantel, Polyhedral combinatorics: An anno-
tated bibliography, Annotated bibliographies in combinatorial Optimization
(M. Dell’Amico, F. Maffioli, and Silvano Martello, eds.), 1998.

[3] Stefan Arnborg, Efficient algorithms for combinatorial problems on graphs
with bounded decomposability — (Survey), BIT Numerical Mathematics 25
(1985), no. 1, 1–23.

[4] Stefan Arnborg, Jens Lagergren, and Detlef Seese, Easy problems for tree-
decomposable graphs, Journal of Algorithms 12 (1991), no. 2, 308–340.

[5] Giorgio Ausiello, Paolo G. Franciosa, and Daniele Frigioni, Directed Hyper-
graphs: Problems, Algorithmic Results, and a Novel Decremental Approach,
Lecture Notes in Computer Science (2001), 312–327.

[6] Giorgio Ausiello and Guiseppe F. Italiano, On-line algorithms for polynomi-
ally solvable satisfiability problems, Journal of Logic Programming 10 (1990),
no. 1, 90.

[7] Sven Axsäter, Inventory control, Springer, 2006.

[8] Egon Balas, Disjunctive programming: properties of the convex hull of feasible
points, Discrete Applied Mathematics 89 (1998), no. 1-3, 3–44.

[9] , Projection and lifting in combinatorial optimization, Lecture Notes
in Computer Science (2001), 26–56.

[10] , Projection and lifting and extended formulation in integer and com-
binatorial optimization, Annals of Operations Research (2005), no. 140, 125–
161.

[11] Egon Balas and William R. Pulleyblank, The perfectly matchable subgraph
polytope of a bipartite graph, Networks 13 (1983), 495–516.

[12] , The perfectly matchable subgraph polytope of an arbitrary graph, Com-
binatorica 9 (1989), no. 4, 321–337.

[13] Jørgen Bang-Jensen and Gregory Gutin, Digraphs: Theory, algorithms and
applications, Springer, 2006.

[14] Richard E. Bellman, Notes on the theory of dynamic programming IV —
maximization over discrete sets, Naval research Logistics Quaterly (1956),
no. 3, 67–70.

127

128 BIBLIOGRAPHY

[15] , Comment on Dantzig’s paper on discrete variable extremum problems,
Operations Research (1957), no. 5, 723–724.

[16] , Dynamic programming, Princeton University Press, 1957.

[17] Dimitri P. Bertsekas, Dynamic programming and optimal control, vol. I,
Athena Scientific, Belmont, Massachusetts, 2000.

[18] , Dynamic programming and optimal control, vol. II, Athena Scientific,
Belmont, Massachusetts, 2001.

[19] Hans L. Bodlaender, Treewidth: Algorithmic techniques and results, Mathe-
matical Foundations of Computer Science 1997 (1997), 19–36.

[20] Hans L. Bodlaender and Arie M. C. A. Koster, Combinatorial Optimization
on Graphs of Bounded Treewidth, The Computer Journal (2007), 1–15.

[21] John Adrian Bondy and Uppaluri Siva Ramachandra Murty, Graph theory,
Graduate Texts in Mathematics, vol. 244, Springer, 2008.

[22] Andreas Brandstädt, Thilo Klembt, Vadim V. Lozin, and Raffaele Mosca,
Independent sets of maximum weight in apple-free graphs, LNCS 5369 (Seok-
Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, eds.), Springer, 2008,
pp. 848–858.

[23] Richard A. Brualdi and Herbert John Ryser, Combinatorial matrix theory,
Cambridge University Press, 1991.

[24] Maria Chudnovsky and Paul D. Seymour, Surveys in combinatorics, London
Mathematical Society Lecture Note Series, vol. 327, ch. The structure of claw-
free graphs, pp. 153–172, Cambridge University Press, 2005.

[25] , Claw-free graphs IV. global structure., Journal of Combinatorial The-
ory, Series B 98 (2008), 1373–1410.

[26] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli, Extended For-
mulations in Combinatorial Optimization, Tech. report, 2009.

[27] Bruno Courcelle and Stephan Olariu, Clique width: A graph complexity mea-
sure — preliminary results and open problems, Proceedings of the 5th Inter-
national Workshop on Graph Grammars and Their Application to Computer
Science, 1994, pp. 263–270.

[28] George B. Dantzig, Discrete variable extremum problems, Operations Re-
search (1957), no. 5, 266–277.

[29] Babette Lucie Elisabeth DeFluiter, Algorithms for graphs with small treewidth,
Ph.D. thesis, Universiteit Utrecht, 1997.

[30] Stuart E. Dreyfus and Robert A. Wagner, The Steiner problem in graphs,
Networks 1 (1972), no. 3, 195–207.

[31] Jack Edmonds, Maximum matching and a polyhedron with 0, 1 vertices, Jour-
nal of Research of the National Bureau of Standards 69 B (1965), 125–130.

[32] Andreas Eisenblätter, Frequency assignment in GSM networks: Models,
heuristics, and lower bounds, Ph.D. thesis, Technical University Berlin, 2001.

[33] Friedrich Eisenbrand, Gianpaolo Oriolo, Gautier Stauffer, and Paolo Ventura,
The stable set polytope of quasi-line graphs, Combinatorica 28 (2008), no. 1,
45–67.

BIBLIOGRAPHY 129

[34] Cees Elzinga, Sven Rahmann, and Hui Wang, Algorithms for subsequence
combinatorics, Theoretical Computer Science 409 (2008), 394–404.

[35] Yuri Faenza and Volker Kaibel, Extended formulations for packing and par-
titioning orbitopes, Mathematics of Operations Research 34 (2009), no. 3,
686–697.

[36] Thorsten Fahle, Stefan Schamberger, and Meinolf Sellmann, Symmetry break-
ing, vol. Lecture Notes in Computer Science 2239, pp. 93–107, Springer, 2001.

[37] Tomás Feder and Milena Mihail, Balanced matroids, STOC ’92: Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing (New
York, NY, USA), ACM Press, 1992, pp. 26–38.

[38] Uriel Feige, A threshold of lnn for approximating set cover, Journal of the
ACM 45 (1998), no. 4, 634–652.

[39] Sàndor P. Fekete and Jörg Schepers, A combinatorial characterization of
higher-dimensional orthogonal packing, Mathematics of Operations Research
29 (2004), 353–368.

[40] Gert Fischer, Lineare Algebra, 9 ed., Vieweg, Braunschweig, 1989.

[41] Eric J. Friedman, Fundamental domains for integer programs with symmetries,
COCOA’07: Proceedings of the 1st international conference on Combinatorial
optimization and applications (Andreas Dress, Yinfeng Xu, and Binhai Zhu,
eds.), Springer-Verlag, 2007, pp. 146–153.

[42] Giorgio Gallo, Giustino Longo, and Stefano Pallottino, Directed hypergraphs
and applications, Discrete Applied Mathematics 42 (1993), no. 2, 177–201.

[43] Giorgio Gallo and Maria Grazia Scutellà, Directed hypergraphs as a modelling
paradigm, Decisions in Economics and Finance 21 (1998), no. 1, 97–123.

[44] Anna Gallucio, Claudio Gentile, and Paolo Ventura, Gear composition and the
stable set polytope, Operations Research Letters 36 (2008), no. 4, 419–423.

[45] , On the stable set polytope of claw-free graphs, COCOA 2008 LNCS
5165 (B. Yang, D.-Z. Du, and W.A. Wang, eds.), Springer, 2008, pp. 339–350.

[46] Michael R. Garey and David S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W. H. Freeman & Co, 1979.

[47] Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing
convex polytopes, Polytopes — Combinatorics and Computation (Gil Kalai
and Günter M. Ziegler, eds.), Birkhäuser, 2000, pp. 43–74.

[48] Ian P. Gent, Karen E. Petrie, and Jean-François Puget, Symmetry in con-
straint programming, Handbook of Constraint Programming (F. Rossi, P. van
Beck, and Toby Walsh, eds.), 2006.

[49] Rafael Gillmann, 0/1-polytopes: Typical and extremal properties, Ph.D. thesis,
Technical University Berlin, 2007.

[50] Rafael Gillmann and Volker Kaibel, Revlex-initial 0/1-polytopes, Journal of
Combinatorial Theory A 113 (2006), no. 5, 799–821.

[51] Stefania Gnesi, Ugo Montanari, and Alberto Martelli, Dynamic programming
as graph searching: An algebraic approach, Journal of the ACM 28 (1981),
no. 4, 737–751.

130 BIBLIOGRAPHY

[52] Martin Grötschel, László Lovász, and Alexander Schrijver, The ellipsoid
method and its consequences in combinatorial optimization., Combinatorica
1 (1981), no. 2, 169–197.

[53] Branko Grünbaum, Convex polytopes, Graduate Texts in Mathematics,
Springer, 2003.

[54] Warwick Harvey, Symmetry breaking and the social golfer problem, Proceed-
ings of Symmetry in Constraints (SymCon-01) (2001).

[55] Katrin Herr and Richard Bödi, Symmetries in integer programs, arxiv (2009),
no. 0908.3331v1.

[56] , Symmetries in linear and integer programs, arxiv (2009),
no. 0908.3329v1.

[57] Alan J. Hoffman, Some recent applications of the theory of linear inequa-
tions to extremal combinatorial analysis, Proceedings of Symposia in Applied
Mathematics, American Mathematical Society, Providence (Richard E. Bell-
man and Marshall Hall, eds.), vol. 10, 1960, pp. 113–127.

[58] Liang Huang, Advanced dynamic programming in semiring and hypergraph
frameworks, Coling 2008, Manchester, UK (2008).

[59] Jeannette Janssen and Kyriakos Kilakos, Bounded stable sets: Polytopes and
colorings, Siam Journal of Discrete Mathematics 12 (1999), no. 2, 262–275.

[60] Öjvind Johansson, Graph decomposition using node labels, Ph.D. thesis, Royal
Insitute of Technology, Department of Numerical Analysis and Computer Sci-
ence, Stockholm, 2001.

[61] Volker Kaibel, Polyhedral combinatorics of the quadratic assignment problem,
Ph.D. thesis, University of Köln, 1997.

[62] , Two theorems on projections of polyhedra, manuscript, 2009.

[63] Volker Kaibel and Andreas Loos, Branched polyhedral systems, Integer
Programming and Combinatorial Optimization (Friedrich Eisenbrand and
F. Bruce Shepherd, eds.), Lecture Notes in Computer Science 6080, vol. Pro-
ceedings of IPCO XIV, Springer, 2010, pp. 177–190.

[64] Volker Kaibel, Matthias Peinhardt, and Marc E. Pfetsch, Orbitopal Fixing,
IPCO (Matteo Fischetti and David P. Williamson, eds.), Lecture Notes in
Computer Science, vol. 4513, Springer, 2007, pp. 74–88.

[65] Volker Kaibel and Marc E. Pfetsch, Packing and partitioning orbitopes, Math-
ematical Programming 114 (2008), no. 1, 1–36.

[66] Gil Kalai, Polytope skeletons and paths, pp. 331–344, CRC Press, Inc., Boca
Raton, FL, USA, 1997.

[67] Richard M. Karp and Christos H. Papadimitriou, On linear characterizations
of combinatorial optimization problems, Siam Journal on Computing (1982),
no. 11, 620–632.

[68] Donald E. Knuth, The Art of Computer Programming. Vol. 3, Sorting and
Searching, Addison-Wesley Reading, MA, 1973.

BIBLIOGRAPHY 131

[69] Matthias Köppe, Robert Weismantel, and Utz-Uwe Haus, A primal all-integer
algorithm based on irreducible solutions, Mathematical Programming Series B
96 (2003), 205–246.

[70] Matthias Köppe, Robert Weismantel, Quentin Louveaux, and Laurence A.
Wolsey, Extended formulations for gomory corner polyhedra, Discrete Opti-
mization 1 (2004), 141–165.

[71] Bernhard Korte and Jens Vygen, Combinatorial optimization (theory and al-
gorithms), 4 ed., Springer, 2008.

[72] Joseph B. Kruskal and David Sankoff, String edits and macromolecules: The
theory and practice of sequence comparision, Addison-Wesley Reading, MA,
1983.

[73] A.J.D. (Fred) Lambert, Disassembly sequencing: a survey, International Jour-
nal of Production Research 41 (2003), no. 16, 3721–3759.

[74] Art Lew and Holger Mauch, Dynamic programming (a computational tool),
Springer, 2007.

[75] Falko Lorenz, Lineare Algebra I, vol. 1, B.I. Wissenschaftsverlag, Mannheim,
1988.

[76] , Lineare Algebra II, vol. 2, B.I. Wissenschaftsverlag, Mannheim, 1989.

[77] László Lovász, Graph theory and integer programming, Annals of Discrete
Mathematics (1979), no. 4, 141–158.

[78] László Lovász and Alexander Schrijver, Matrix cones, projection representa-
tions and stable set polyhedra, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 1 (1990), 1–17.

[79] Vadim V. Lozin and Raffaele Mosca, Independent sets in extensions of 2K2-
free graphs, Discrete Applied Mathematics 146 (2005), 74–80.

[80] Carsten Lund and Mihalis Yannakakis, On the hardness of approximating
minimization problems, Journal of the ACM 41 (1994), no. 5, 960–981.

[81] François Margot, Composition de polytopes combinatoires: Une approche par

projection, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 1994.

[82] , Pruning by isomorphism in branch-and-cut, Mathematical Program-
ming A (2002), no. 94, 71–90.

[83] , Exploiting orbits in symmetric ILP, Mathematical Programming B
(2003), no. 98, 3–21.

[84] , Symmetric ILP: Coloring and small integers, Discrete Optimization
4 (2007), 40–62.

[85] , Symmetry in Integer Linear Programming, Tepper Working Paper
E-37 (2008), Carnegie Mellon University.

[86] R. Kipp Martin, Ronald L. Rardin, and Brian A. Campbell, Polyhedral charac-
terization of discrete dynamic programming, Operations Research 38 (1990),
no. 1, 127–138.

[87] D. McKay, Isomorphim-free exhaustive generation, Journal of Algorithms 26
(1998), 306–324.

132 BIBLIOGRAPHY

[88] Isabel Méndéz-Dı́az and Paul Zabala, A polyhedral approach for graph color-
ing, Electronics Notes in Discrete Mathematics 7 (2001).

[89] , A cutting plane algorithm for graph coloring, Discrete Applied Math-
ematics 156 (2008), 159–179.

[90] Isabel Méndéz-Dı́az, Paul Zabala, Javier Marenco, and Pablo Coll, Facets for
the graph coloring polytope, Annals of Operations Research 116 (2002), 79–90.

[91] Milena Mihail, On the expansion of combinatorial polytopes, MFCS ’92: Pro-
ceedings of the 17th International Symposium on Mathematical Foundations
of Computer Science, Springer-Verlag, London, UK, 1992, pp. 37–49.

[92] Denis Naddef and William R. Pulleyblank, Hamiltonicity and combinatorial
polyhedra, Journal of Combinatorial Theory 31 (1981), no. B, 297–312.

[93] Saul B. Needleman and Christian D. Wunsch, A general method applicable to
the search of similarities in the amino-acid sequence of two proteins, Journal
for Molecular Biology (1970), no. 48, 443–453.

[94] George L. Nemhauser and Laurence A. Wolsey, Integer and combinatorial
optimization, John Wiley & Sons, New York, 1988.

[95] Sang Nguyen and Stefano Pallottino, Hyperpaths and shortest hyperpaths,
COMO ’86: Lectures given at the third session of the Centro Internazionale
Matematico Estivo (C.I.M.E.) on Combinatorial optimization (New York, NY,
USA), Springer-Verlag New York, Inc., 1989, pp. 258–271.

[96] Gianpaolo Oriolo, Yuri Faenza, and Gautier Stauffer, The hidden matching
structure of the composition of strips: A polyhedral perspective, to appear,
2010.

[97] James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio, Orbital
Branching, IPCO (Matteo Fischetti and David P. Williamson, eds.), Lecture
Notes in Computer Science, vol. 4513, Springer, 2007, pp. 104–118.

[98] , Constraint orbital branching, IPCO (Andrea Lodi, Alessandro Pan-
conesi, and Giovanni Rinaldi, eds.), Lecture Notes in Computer Science, vol.
5035, Springer, 2008, pp. 225–239.

[99] Manfred Padberg, On the facial structure of set packing polyhedra, Mathe-
matical Programming (1973), no. 5, 199–215.

[100] Kyungchul Park, Kyungsik Lee, and Sungsoo Park, An extended formulation
to the edge-weighted maximal clique problem, European Journal of Operational
Research 95 (1996), 671–682.

[101] Daniele Pretolani and Lars Relund Nielsen, A remark on the definition of
b-hyperpath, 2001.

[102] William R. Pulleyblank and F. Bruce Shepherd, Formulations for the stable
set polytope, Proceeding of IPCO III, Springer, 1993, pp. 267–279.

[103] Ronald C. Read, Every one a winner, Annals of Discrete Mathematics (1978),
no. 2, 107–120.

[104] Ed Rothberg, Using cuts to remove symmetries, Presentation ISMP 2000,
2000.

BIBLIOGRAPHY 133

[105] Raman Sanyal, Bernd Sturmfels, and Frank Sottile, Orbitopes, arxiv
0911.5436v3 (2010).

[106] Alexander Schrijver, Theory of linear and integer programming, John Wiley
& Sons, 1986.

[107] , Combinatorial optimization (polyhedra and efficiency), vol. A-C,
Springer, 2004.

[108] F. Bruce Shepherd, Near perfection and stable set polyhedra, Ph.D. thesis,
University of Waterloo, 1990.

[109] Hanif D. Sherali and Warren P. Adams, A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming prob-
lems, Siam Journal of Discrete Mathematics 3 (1990), no. 3, 411–430.

[110] Barbara M. Smith, Reducing symmetry in a combinatorial design problem,
CPAIOR’01: Proceedings of the Third International Workshop on Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, 2001, pp. 351–359.

[111] Rüdiger Stephan, Polyhedral aspects of cardinality constrained combinatorial
optimization problems, Ph.D. thesis, Technical University Berlin, 2009.

[112] John H. Vande Vate, The path set polytope of an acyclic, directed graph with
an application to machine sequencing, Networks 19 (1989), no. 5, 607–614.

[113] Robert J. Vanderbei, Linear programming – foundations and extensions,
Springer, 2008.

[114] Rolf Walter, Lineare Algebra und analytische Geometrie, Vieweg, Braun-
schweig, 1985.

[115] , Einführung in die lineare Algebra, 2 ed., Vieweg, Braunschweig, 1986.

[116] Egon Wanke and Frank Gurski, k-nlc graphs and polynomial algorithms, Dis-
crete Applied Mathematics 54 (1994), no. 2-3, 251–266.

[117] Robert Weismantel and Yves Pochet, The sequential knapsack polytope, Siam
Journal of Optimization 8 (1998), no. 1, 248–264.

[118] Laurence A. Wolsey, Strong formulations for mixed integer programs: valid in-
equalities and extended formulations, Mathematical Programming 97 (2003),
no. 1–2, 423–447.

[119] Laurence A. Wolsey and Yves Pochet, Production planning by mixed integer
programming, Springer Series in Operations Research and Financial Engineer-
ing ed., Springer, 2006.

[120] Günter M. Ziegler, Lectures on polytopes, Springer, 1994.

[121] , Lectures on 0/1-polytopes, Polytopes — Combinatorics and Compu-
tation (Gil Kalai and Günter M. Ziegler, eds.), DMV Seminar 29, Birkhäuser,
2000, pp. 1–42.

Schriftliche Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche
kenntlich gemacht.

Insbesondere habe ich nicht die Hilfe einer kommerziellen Promotionsberatung
in Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar
geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt
der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähn-
licher Form als Dissertation, Diplom- oder ähnliche Prüfungsarbeit eingereicht und
ist als Ganzes auch noch nicht veröffentlicht.

Berlin, 8. Juli 2011

	1 Introduction
	1.1 Outline
	1.2 Notation, Wording, Basic Definitions
	1.2.1 General Notation
	1.2.2 Notation related to Graphs and Hypergraphs
	1.2.2.1 Common Graphs and Digraphs
	1.2.2.2 Hypergraphs

	1.2.3 Notation related to Polyhedral Theory

	2 The Setting, our Toolbox and its Origins
	2.1 Symmetry Breaking and Orbitopes
	2.2 Extended Formulations
	2.3 Dynamic Programming
	2.4 Faithful Sectioning
	2.4.1 Applications and Examples
	2.4.1.1 The Clique Polytope with Clique Size 2
	2.4.1.2 The Path Set Polytope for Acyclic Digraphs
	2.4.1.3 The Matching Polytope of an Arbitrary Graph

	3 Mapping the Terrain
	3.1 Definition of Orbitopes
	3.2 What can be done and what cannot?
	3.2.1 Full Symmetric Group
	3.2.1.1 General Properties and Characterization of Vertices
	3.2.1.1.1 Full Orbitopes
	3.2.1.1.2 k-Packing and k-Partitioning Orbitopes
	3.2.1.1.3 k-Covering Orbitopes

	3.2.1.2 Optimization and Complexity
	3.2.1.2.4 Full Orbitopes
	3.2.1.2.5 Packing and Partitioning Orbitopes
	3.2.1.2.6 k-Packing, k-Partitioning, k-Covering and related Orbitopes

	3.2.1.3 Dimension
	3.2.1.4 Facial Structure
	3.2.1.4.7 k-Packing and k-Partitioning Orbitopes
	3.2.1.4.8 k-Covering Orbitopes
	3.2.1.4.9 Full Orbitopes

	3.2.2 Cyclic group
	3.2.2.1 Characterization of Vertices

	3.2.3 Optimization
	3.2.4 Facial Description of Packing and Partitioning Orbitopes
	3.2.5 Other Groups Operating on the Columns

	4 Orbisacks
	4.1 Facial Description of Orbisacks I (Combinatorial Proof)
	4.1.1 Sign Pattern of Non-Trivial Facet Defining Inequalities
	4.1.2 Block-Inequalities
	4.1.3 Block-Inequalities are Facet Defining Inequalities
	4.1.4 Trivial Facet Defining Inequalities

	4.2 Facial Description of Orbisacks II (Sequential Knapsack)
	4.2.1 Computation of Inequalities for orbisack

	4.3 Complete Description of Orbisacks III (Proof by Faithful Sectioning)
	4.3.1 Extended Formulations for Orbitopes
	4.3.1.1 The Pxy-Formulation
	4.3.1.2 The Pxyz-Formulation
	4.3.1.3 Extended Formulation associated with Dynamic Programming
	4.3.1.4 Overview of the Extended Formulations

	4.3.2 Linear Description of Pxy via Faithful Sectioning
	4.3.3 Linear Description of orbisack via Faithful Sectioning

	4.4 Selected Properties of the Orbisack
	4.4.1 Number of Facets
	4.4.2 The Separation Problem for Orbisacks
	4.4.3 The Graph of the Orbisack
	4.4.3.1 Characterization of Adjacency
	4.4.3.2 Number of Edges and Average Degree

	5 Branched Polyhedral Systems
	5.1 Branched Polyhedral Systems (BPS)
	5.1.1 Linear Description
	5.1.2 BPS and Orbitopes

	6 Conclusions

