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Preface

This dissertation is submitted to Otto von Guericke University, Magdeburg for the de-

gree of Doctor of Philosophy. The research described herein was conducted under the

supervision of Prof. Eckehard Specht and Prof. Albrecht Bertram between March 2007

and May 2010. To the best of my knowledge, this work is original, except where suitable

references are made to previous works. Neither this, nor any substantially similar disser-

tation has been submitted for any degree, diploma or qualification at any other university

or institution.

Ashok Kumar Nallathambi

Magdeburg, 03.05.2010

Our wisdom comes from our experience, and our experience comes from our foolishness

Sacha Guitry (1885-1957)
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Abstract

Direct chill (DC) casting is a semi-continuous casting technique which is used to produce

rolling ingots and extrusion billets. Generally, non-ferrous metals such as aluminum and

magnesium alloys are cast through the DC casting. During the DC casting, the liquid

metal is poured into a bottomless static mold which is initially enclosed by the bottom

block. After certain time, the bottom block is withdrawn with a specified speed along

with the casting. As the lower part of the casting leaves the mold, the cooling water

flows downward and directly chills the surface of the casting. During this process, three

different cooling zones are identified: primary mold cooling, secondary water cooling,

and bottom block cooling. The start-up, steady state or pseudo steady state, and end-up

are the three different stages of DC casting. Transient nature of the start-up phase is

the most critical phase in which the quality of the ingot is questioned. Apart from other

quality issues, the hot crack and cold crack are the two major problems in the DC casting

which originate during and after the solidification.

In this work, the thermal, metallurgical, and the mechanical fields of DC casting

are modeled. The attention is focused on the mushy state of alloy where the chances

are high for the hot tearing. The heat conduction and metallurgical phase-change phe-

nomenon are modeled together in a strongly coupled manner. An isothermal staggered

approach is followed to couple the thermal and mechanical parts within a time step.

Finite element method is used to discretize the thermal and mechanical field equations.

A finite element program is developed for mesh generation and solving the coupled field

equations by using MATLAB programming language. A temperature-based fixed grid

method is followed to incorporate the latent heat. The computational difficulties associ-

ated with a pure metal solidification is addressed. A line-search algorithm is introduced

within the Newton-Raphson iterations. Also, an attempt is made to predict the boiling

curve which is essential to describe the secondary cooling of DC casting. Experimental

setup is established for the quenching of hot rectangular plate by an array of jets. An

infrared thermography is used to measure the temperature profiles on the plate surface

with known emissivity. A non-iterative inverse finite element is developed to compute the

heat flux from the experimental temperature profiles. The influence of water flow rate is
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investigated by using Nickel (Ni200), and aluminum alloy (AL2024) plates. It is found

that the water velocity and wetting front movement are not linearly varying. There is

a critical water flow rate below which increase in water velocity increases the speed of

the wetting front and the magnitude of heat flux. Beyond the critical water flow rate,

increase in water flow rate does not promote the cooling.

The strain tensor is additively decomposed into elastic, thermal, and viscoplastic

strain tensors. Thermal strain is computed through the thermal expansion coefficient.

The mushy state of alloy is characterized through the Norton-Hoff viscoplastic law and

the solid phase is modeled through the Garafalo law. An axisymmetric round billet is

simulated. The casting material is considered as AA1201 aluminum alloy. It is found

that all the components of stress and viscoplastic strain are maximum at the billet center.

Further, the start-up phase stresses and strains are always higher than the steady state

phase. Therefore, the chances of hot crack formation are higher during the start-up phase

and specifically at the billet center. The influence of casting speed, secondary cooling, and

melt superheat on the sump parameter and stress-strain evolution are studied thoroughly.

It is proved that through the ramping procedure, the vulnerability of start-up phase can

be lowered. Ramping delays the time and increases the billet height to reach the steady

state. Increase in casting speed, secondary cooling, and melt temperature promote the

chances of hot tearing. The influence of secondary cooling parameters are studied in

depth. Increased cooling reduces stresses in the mushy at the steady state and rises

probability of hot tearing during the start-up phase whereas the reduced cooling influences

in exactly opposite manner. Therefore, an attempt is made to illustrate the importance

of varying the secondary cooling with respect to time. It is demonstrated that through

the optimized secondary cooling, the evolution of residual stresses and inelastic strains

can be lowered. The Leidenfrost temperature, maximum, and film boiling heat transfer

coefficients have the negligible influence on the sump parameters.

Keywords: Direct chill casting, Solidification, Hot tear, Residual stresses, Viscoplastic

strain, Cold crack.
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Zusammenfassung

Der Direkte Kokillenguss ist eine halbkontinuierliche Technik, die zur Produktion von

Walzbarren oder Pressbarrren verwendet wird. Generell werden Nichteisenmetalle wie

Aluminium- und Magnesiumlegierungen mit dem Kokillengusses hergestellt. Während

des Kokillengusses wird das flüssige Metall in eine bodenlosen statische Form gegossen,

die zunächst von einem Unterblock geschlossen ist. Nach einiger Zeit wird der untere

Block mit einer bestimmten Geschwindigkeit zurückgezogen und das Kühlwasser fließt

direkt auf die Oberfläche des Gusses. Während dieses Prozesses werden drei verschiedene

Kühlzonen identifiziert: Hauptgussformkühlung, Sekundäre Wasserkühlung und die Un-

terblock Kühlung. Anlaufen, stationärer Punkt oder pseudo- stationärer Punkt und end

up sind die drei verschiedenen Stufen des Kokillengusses. Der schwankende Charakter

der Anlaufphase ist die kritischste Phase, in der die Qualität des Barrens bestimmt wird.

Abgesehen von anderen Qualitätseigenschaften, sind der Heiß- und Kaltriss das Haupt-

problem, diese können während und nach der Erstarrung entstehen.

In dieser Arbeit werden der thermische, metallurgische und mechanische Bereich des

Kokillengusses modelliert. Das Augenmerk liegt auf dem weichen Zustand der Legierung,

wo die Wahrscheinlichkeit für Rissbildung hoch ist. Die Wärmeleitung und die metal-

lurgischen Phasenveränderungen wurden in einer stark gekoppelten Weise modelliert.

Ein isothermisch versetzter Ansatz verfolgt die Kopplung der thermischen und mechanis-

chen Anteile innerhalb eines Zeitschrittes. Die Finite-Elemente-Methode wird verwendet,

um die Feldgleichungen aus dem thermischen und mechanischen Teil des Kokillengusses

zu diskretisieren. Ein Finites-Elemente-Programm in MATLAB ist für die Netzgener-

ierung und für die Lösung der gekoppelten Feldgleichungen entwickelt worden. Eine

auf der Temperatur basierende feste Gitter Methode verfolgt die Inkoperation der laten-

ten Wärme. Die rechnerischen Schwierigkeiten liege bei einer reinen Metallerstarrung

vor. Ein Line-Search-Algorithmus ist mit der Newton-Raphson-Iterationen eingeführt

worden. Es wird versucht, die Siedekurve vorherzusagen, die wesentlich für die Beschrei-

bung der Kühlung des sekundären Kokillengusses ist. Ein Versuchsaufbau für das Ab-

schrecken einer heißen rechteckigen Platte durch eine Reihe von Jets wurde entwick-

elt. Die Infrarot-Thermographie wurde verwendet, um die Temperaturprofile auf der
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Rückseite der Platte, dessen Emissiongrad bekannt ist, zu messen. Ein nichtiteratives

inverses Finite Element wurde entwickelt, um den Wärmefluss aus den experimentellen

Temperaturprofile zu berechnen. Der Einfluss des Wasserdurchflusses wird durch die Ver-

wendung von Nickel(Ni200)- und Aluminiumlegierungen(AL2024) Platten untersucht. Es

wurde festgestellt, dass die Wassergeschwindigkeit und die Bewegung der Benetzung nicht

linear variieren. Es existiert eine kritische Wassermenge unterhalb derer bei Erhöhung

der Wassergeschwindigkeit sich die Geschwindigkeit der Benetzung und die Größe des

Wärmestromes erhöht. Jenseits der kritischen Wassermenge, fördert eine Erhöhung der

Wassermenge die Kühlung nicht.

Der Verzerrungstensor ist additiv in elastische, thermische und viskoplastische Verz-

errungstensoren zerlegt. Die thermische Belastung wird durch den thermischen Ausde-

hungskoeffizienten berechnet. Der weiche Zustand der Legierung wird durch das Norton-

Hoff-Viskoplastizitätsgesetz charakterisiert wobei die feste Phase durch das Garafalo

Gesetz modelliert wird. Ein asymmetrischer Walzbarren wurde simuliert. Der Gusswerk-

stoff wird als Aluminiumlegierung AA1201 berücksichtigt. Das Maximum der Spannungs-

und viskoelastischen Verzerrungskomponenten konnte im Zentrum des Walzblockes veri-

fiziert werden. Des Weiteren sind die Spannungen und Verzerrungen in der Anlaufphase

immer höher als in der stationären Phase. Deswegen ist das Auftreten von Heißrissbil-

dung im Zentrum des Walzbarren während der Anlaufphase wahrscheinlich. Weiterhin

wird der Einfluss von Gießgeschwindigkeit, Sekundärkühlung und Schmelzüberhitzung

auf die Sumpfparameter sowie auf die Spannungs-/Verzerrungsentwicklung untersucht.

Es werde gezeigt, dass durch das Rampingverfahren die Anfälligkeit der Anlauf-

phase gemindert wird. Das Hochlaufverfahren verzögert die Zeit und erhöht die

Länge des Walzblockes, um stationären Zustand zu erreichen. Ein Erhöhen von

Gießgeschwindigkeit, Sekundärkühlung und Schmelztemperatur erhöht die Wahrschein-

lichkeit der Rissbildung. Der Einfluss von Sekundärkühlungsparametern wird detailliert

untersucht. Vermehrtes Kühlen reduziert zum Einen die Spannungen im weichen Zus-

tand in der stationären Phase. Zum Anderen erhöht es die Wahrscheinlichkeit der Riss-

bildung während der Anlaufphase. Wohingegen eine Verringerung der Kühlung exakt

Gegenläufiges bewirkt. Daher wird die Bedeutung der Variation des Sekundärkühlens

in Abhängigkeit von der Zeit dargestellt. Es kann gezeigt werden, dass eine optimale

Sekundärkühlung die Entwicklung der Restspannung und der unelastischen Verzerrung

reduziert. Die Leidenfrosttemperatur, der maximale Wärmeübergangskoeffizient sowie

der Wärmeübergangskoeffizient durch Filmverdampfung haben einen vernachlässigbaren

Einfluss auf die Sumpfparameter.

Schlagwörter: Direkter Kokillenguss, Erstarrung, Wärmeriss, Eigenspannungen, Visko-

plastische Belastung, Kaltrisse
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�u & Û Displacement vectors [m]
�us Prescribed surface displacement vector [m]
�bf & B̂f Body force vectors [N/m3]
�tf & T̂f Prescribed surface traction vectors [N/m2]
I & I Fourth order identity tensor & matrix
I & I Second order identity tensor & matrix
�n Unit normal vector
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Chapter 1

Introduction

1.1 Overview and Motivation

Casting is a manufacturing process by which a liquid metal is allowed to solidify inside

the mold with desired shape. It is the first stage of metal production process followed by

various forming and heat treating processes. Shape casting is a kind of casting process

in which liquid metal is poured in a mold to obtain a solid product meeting a set of

geometrical requirements [1]. Apart from the shape casting, the cast material generally

known as ingot (non-circular cross-section) or billet (circular cross-section) is the prereq-

uisite block for the metal forming processes such as extrusion, rolling, etc. To meet the

demand in metal forming industry, mass production of ingot/billet has to be performed

continuously. Steel like metals has to be cast in a continuous manner because of its lower

thermal conductivity. Metals like aluminum and magnesium can be easily cast through

the semi-continuous casting techniques.

Electromagnetic casting (EMC) and Direct chill (DC) casting are the two important

semi-continuous casting techniques for the production of extrusion billets and rolling

ingots [2]. In both the methods, the ingot is supported by a moving bottom block

which is withdrawn with a certain velocity while the fresh liquid flows into the pool from

above. EMC and DC casting are schematically represented in Fig. 1.1. In DC casting, the

solidifying alloy is in contact with a mold whereas in EMC, the liquid pool is supported by

electromagnetic forces. These forces are produced by the interaction of currents induced

in the aluminum by an inductor surrounding the metal, and the magnet. Since the alloy

solidifies without contacting a physical mold, the ingot has a better surface quality than

a DC ingot. In both the methods, water is used as the secondary cooling medium which

extracts the major portion of heat from the surface of the ingot.

DC casting process can be classified based on the movement of bottom block: (a)

horizontal DC casting and (b) vertical DC casting. In horizontal DC casting, the bot-
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Figure 1.1: Schematic diagram (Barral and Quintela, 2000): (a) Direct Chill casting, and
(b) Electromagnetic casting

tom block moves in the horizontal direction whereas the bottom block moves vertically

downward in the later case. The vertical DC casting process is used to produce the in-

gots that have larger cross sections [3]. The vertical DC casting process is schematically

shown in Fig. 1.2. Initially, the molten metal is transferred to the casting furnace. In the

casting furnace the temperature is increased to 50 oC above the liquidus temperature of

the alloy. The entrapped gases are removed from the melt by blowing Argon/Nitrogen

gas through the melt [4]. In the last part of the launder system grain-refiner is added

in the form of wire into the molten metal. Casting is performed by pouring the molten

metal from furnace through the launder to a stationary mold which is initially enclosed

by the bottom block [5]. The bottom block moves vertically downwards and the billet

or slab will moves with it. The mold is surrounded by cooling water which is known as

primary cooling. At the exit of the mold, the cooling water directly impinges on the billet

or slab that is called as secondary cooling. Due to the high cooling rate in the secondary

region, the solidification proceeds rather fast. The casting is terminated when the ingot

reaches a desired length. Therefore, it is known as semi-continuous casting. The name

Direct Chill is coined with this casting process because the cooling water directly chills

the ingot.

The schematic view of solidification process which occurs during the DC casting of

aluminum alloy is as shown in Fig. 1.3. It shows three different metallurgical zones

such as solid, mushy and liquid. Alloys transform gradually from liquid to solid over a

temperature interval. Unlike alloys, pure metals solidify at one particular temperature.
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During the casting the alloy spends considerable amount of time in a semi-solid state. The

material in this semi-solid state can be divided into two categories: slurries and mushes.

A slurry is defined as a liquid with suspended solid particles. At some temperature

solid grains start to interact with each other and the material gains certain strength.

Below this temperature, the material is called a mush, i.e. a solid network with liquid in

between. Fig. 1.3 shows the solidification front forms a sump which its depth increases

with distance from the surface of billet or slab [5].

The complete DC casting process can be divided into three stages: (a) start-up phase,

(b) pseudo steady state, and (c) end phase. In the start-up phase, the bottom block lies

inside the mold and the liquid metal is poured from the top through a distribution bag

into the bottomless mold. The level of liquid metal is maintained constant in the mold by

means of continuous addition of liquid metal. A solidified shell is formed over the bottom

block and along the mold wall. As soon as the solidified shell is strong enough to support

the molten metal inside, the bottom block is lowered with certain velocity [6]. When

the cooling water directly touches the surface of the billet, the solidification process gets

accelerated. This complete sequence of processes are known as start-up phase. The start-

up phase is the most critical phase of DC casting during which the position of solidification

front, accumulation of stress and strain, and thermal and mechanical boundary conditions

change along with time. Modeling the transient start-up phase is one of the challenging

task because of the complexity associated with this. After the start-up phase, a pseudo

steady state is reached during which the thermal and mechanical field quantities reach a

constant values. In general, during this phase the velocity of bottom block is maintained

constant. During this phase, if the attention is focused on a particular spatial point, the

temperature will not change with respect to time. The same is not true for the material

point. Due to this reason it is known as pseudo steady state. The spatial position of the

solidification front is almost fixed during the pseudo steady state. This is also frequently

referred as steady state. Therefore, this phase is not a strong function of time. At last,

the liquid metal feeding and the movement of bottom block are stopped and the billet is

kept for certain time so that there is no liquid or semi-solid material left. This phase is

known as the end phase. Both the start-up and end phase are transient in nature.

Producing the high quality ingot with less consumption of energy is one of the most

important industrial objectives which is also a challenging task for the engineers. As far

as the DC casting is concerned, if the ingot fails to meet the quality requirements, ex-

cessive machining and remelting are the only two possible remedies. Both the operations

consume considerable amount of energy and money. Further, the machining operation

can only provide the better surface quality. Even though, the ingot has to undergo fur-

ther processing before it made into the final product, the quality of the ingot strongly
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influences in all the consequence stages. Therefore, it is mandatory to understand the

physics of DC casting process for the production of high quality ingot. DC casting is a

complex process because of the strong interaction and coupled nature of multi-physics

associated with it.

During the DC casting, the ingot thermo-mechanically interact with the moving bot-

tom block and the static mold. Apart from these two contact areas, the remaining portion

of the ingot except the top surface, thermally interact with the cooling water which flows

vertically downward. The top portion of the ingot is in liquid stage and the liquid metal

is continuously supplied. The ingot surface itself is subjected to non-uniform thermal

boundary conditions, therefore the thermal gradients are very high in the core. Due to

this non-uniform thermal forces, the ingot deforms continuously and develops residual

stresses and strains. The residual stresses are compressive in the outer region and tensile

in the core. The excessive tensile thermal stresses in the core is a favorable situation for

the formation of hot cracks. Once the hot crack or generally known as hot tear forms,

due to its brittle nature, it may extend in the entire length of the ingot or it can open up

in the radial/horizontal direction and there are chances of liquid metal flow out and con-

tact with cooling water which may cause accidents in the casting plant. There are other

quality issues associated with the DC casting such as macrosegregation, micro porosity,

cold cracks, butt curl, butt swell, etc.

With the help of sophisticated experimental techniques, it is possible to understand

some of the above-mentioned phenomena. Apart from the experimental observations,

mathematical modeling of the physical process gives the clear insight into the problem.

Through the modeling and simulations, it is always possible to address most of the

issues associated with the DC casting process. Of course, experiments are also equally

important for the purpose of validations and material characterizations. The evolution

of computational techniques give the strong motivation to the engineers to model and

simulate the entire DC casting process. Thermal, mechanical, metallurgical, chemical,

and fluid mechanics are the major physical fields associated with the DC casting. Due to

the strong coupling between these fields, it is highly complicated to address all the issues

related to the DC casting.

This work is dedicated to model the thermo-mechano-metallurgical effects of vertical

DC casting process. The objective of this work is to simulate the temperature evolution

and residual stresses and strains development during the start-up phase of DC casting.

With the help of temperature and stress-strain histories at every material point, it is

possible to predict the chances of hot tearing in the early stages of solidification. The finite

element method (FEM) is effectively implemented to discretize the energy and momentum

equations. The thermal and metallurgical fields are modeled in a strongly coupled manner
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due to the release of latent heat during the phase-change. Further, the computational

difficulties of isothermal phase-change are addressed elaborately. The thermal boundary

conditions are estimated through the quenching characteristics of a hot plate made up of

casting material. A non-iterative finite element method is adopted to solve the inverse

problem using the experimental temperature profiles. An isothermal staggered approach

is followed to couple the thermo-metallurgy and mechanical fields. Elastic-plastic and

elasto-viscoplastic material models are used to characterize the mechanical behavior of

the mushy and solid regions. Separate constitutive relations are used in the mushy and

solid regions. The influence of casting parameters such as casting speed and cooling

characteristics are investigated in a detailed manner.

1.2 Aluminum and its alloys

In 1886, Paul Louis Toussaint Héroult (France) and Charles Martin Hall (USA) indepen-

dently invented the electrolytic process known as Hall-Héroult process which is the basis

for all aluminum production today [7]. In this process, the dissolved aluminum oxide

(alumina) in a bath of molten cryolite is subjected to strong electrical forces which leave

the molten aluminum at the bottom of the bath. This pioneering invention revolutionized

the world and presented a new metal which has enormous applications starting from the

house-hold usages to aircraft industries. The percentage consumption of aluminum [8] by

different industries are given in Table. 1.1. The world production of aluminum increases

steadily and reached 38 million tonnes per year in 2007 which is nearly 4 times when

compared to the year 1970 [9].

Aluminum is the third largest available metal up to 8% by weight of the earth’s solid

surface after oxygen and silicon. Aluminum is a nonmagnetic and nonsparking material.

The yield strength of a pure aluminium is 7-11 MPa, while its alloys have yield strengths

ranging from 200 to 600 MPa at elevated temperature. Corrosion resistance of aluminum

is excellent due to a thin surface layer of aluminum oxide that forms when the metal

is exposed to air which effectively prevents further oxidation. It is a good thermal and

electrical conductor, having 62% the conductivity of copper. It is also a strongly reactive

metal that forms a high-energy chemical bond with oxygen. Extraction of aluminum

from its ore, such as bauxite is difficult when compared to other metals. This is due to

the higher energy requirements in the reduction of aluminium oxide (Al2O3).

The typical alloying elements for the aluminum are copper, zinc, manganese, silicon,

and magnesium. In general, the aluminum alloys can be categorized as cast alloys and

wrought alloys. Cast alloys are directly cast into their final form by one of various

methods such as sand-casting, die or pressure die casting. Wrought alloys, which are
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Table 1.1: Industrial consumption of aluminum (CIB)

Industry % usage

Transport 26
Packaging 22
Construction 22
Electrical 8
Machinery 8
Miscellaneous 14

initially cast as ingots or billets and subsequently processed through the hot and/or

cold worked mechanically into the desired form [10]. i.e. rolling, extrusion, forming and

forging. Cast aluminum alloys yield cost effective products due to the low melting point,

although they generally have lower tensile strengths than wrought alloys. The British

Standards Institution categorized the wrought alloys based on the alloying elements.

There are 8 series of wrought alloys as shown in Fig. 1.4. These are designated by a 4

digit number that may be preceded or followed by letters.

FeFe
1xxx :  Al 1xxx :  Al –– Fe Fe –– Si :  99% AlSi :  99% Al

3xxx : Al3xxx : Al -- MnMn

SiSi

3xxx : Al3xxx : Al MnMn

4xxx :  Al 4xxx :  Al -- SiSi
NonNon-- Heat treatableHeat treatable

AlAl

MnMn 5xxx :  Al 5xxx :  Al -- MgMg

MgMg 8xxx :  Special alloys 8xxx :  Special alloys 

ZnZn 2xxx :  Al 2xxx :  Al –– Cu Cu –– MgMg

6xxx : Al6xxx : Al MgMg SiSi Heat treatableHeat treatable
CuCu

6xxx : Al6xxx : Al –– MgMg –– SiSi

7xxx :  Al 7xxx :  Al –– ZnZn –– Cu Cu –– Mg  Mg

Heat treatableHeat treatable

Al  - Aluminum, Fe – Iron, Si – Silicon, Mn – Manganese, Mg - Magnesium, Zn - Zinc, Cu – Copper
Underline indicates the major alloying element. Source: http://aluminium.matter.org.uk

Figure 1.4: Wrought alloy classifications

Both the cast and wrought alloys can be further classified as heat treatable alloys and
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non-heat treatable alloys. The strength of the non-heat treatable alloys can only be im-

proved through the cold working. In general, four different strengthening mechanisms [10]

are used to strengthen the aluminum alloys: (a) strain hardening, (b) solute hardening,

(c) precipitation hardening, and (d) grain size hardening. Strain hardening is achieved by

mechanical deformation of the material at ambient temperature [11]. Solute hardening

allows soluble alloying elements to enter into solid solution. Precipitation hardening, also

known as age hardening, is a heat treatment technique which is used to increase the yield

strength of the alloys. It relies on changes in solid solubility with temperature to produce

fine particles of an impurity phase, which impede the movement of the dislocations or

defects in a crystal’s lattice. Reducing the grain size of a polycrystalline material is an

effective way of increasing its strength.

The thermo-physical properties of aluminum and its alloys constantly attracting the

engineers to make use of its potential to the fullest. The density of aluminum is almost

one third of the density of steel. Therefore, it is a good alternative for steel where the

weight is a deciding factor. Even though, the elastic modulus of aluminum is one third

that of steel, it is extensively used in the aircraft industry rather than steel. When it

comes to casting / solidification, the thermal properties are more important than the

mechanical properties. The melting temperature of aluminum alloys is significantly lower

than that of steel. The aluminum casting plant operates at relatively lower temperature

environment than that of steel. The thermal conductivity of aluminum alloys is an order

of magnitude higher than that of steel. The thermal diffusivity of liquid aluminum is

about 6 times higher than that of liquid steel. This means that liquid aluminum tends to

lose its superheat faster than liquid steel, for a given fluid flow pattern [12]. Apart from

these features, the aluminum alloys have few drawbacks over steel. The solidification

shrinkage experienced by aluminum alloys is almost twice that of steel. Therefore, higher

thermal stresses can be generated within the solidification range by aluminum alloys.

Further,the thermal contraction coefficient of solid aluminum is higher than in steel.

1.3 DC casting

Steel have to be cast continuously because of its lower thermal conductivity. In the

continuous casting of steel, the solidifying strand moves vertically for a certain distance

and can be bent into the horizontal direction with an appropriate curvature. This kind

of continuous casting is not possible for a material having higher thermal conductivity

because the metal completely solidifies with a relatively smaller distance. This normally

limits the length of the ingot to 8–10 m. Further, this restriction motivated to develop

a new casting technique known as semi-continuous casting. Direct chill casting (DCC) is

8



one of the semi-continuous casting technique for a metal having higher thermal conduc-

tivity. The DCC technique was developed in 1930s. In addition to being reliable, DCC

has proved to be a very economical production technique for casting non-ferrous metals

such as aluminum, magnesium, copper and zinc [13]. However, the DCC technique is well

known for the aluminum alloys. The horizontal DCC is restricted to the smaller ingot

dimensions and low strength alloys. However, the vertical DCC has no such restrictions.

Therefore, here onwards the word DCC means vertical DCC, unless otherwise explicitly

stated.

The DCC method differs from the continuous casting method in two ways: (a) rela-

tively shorter mold length - in continuous casting of steel, the molds are 700–1200 mm

long but in DCC it is around 70–90 mm and (b) relatively lower casting speed - generally

DCC speed is 10 times lower than the continuous casting. The casting speed during

the DCC varies from 60 mm/min to 200 mm/min. The typical DCC billets and ingot

are shown in Fig. 1.3. The extrusion billets are usually cylindrical with diameters typ-

ically within the range of 100–400 mm. The rolling ingots typically have thickness of

400–600 mm and widths in the range of 1500–2200 mm. The length of the rolling ingot

may vary from 6500 to 8000 mm. For extrusion billets, casting up to 200 molds may be

situated on a single casting table depending on the billet diameter [14], e.g. Fig. 1.3(a)

shows 110 molds on a single casting table.

Figure 1.5: DC casting of (a) billets and (b) ingots
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1.3.1 Cooling mechanisms

As stated before, the heat flows from the ingot through the three distinguished cooling

zones: (a) primary cooling zone, (b) secondary cooling zone, and (c) bottom block zone.

The heat transfer mechanisms in all the three zones differ completely and each zone

has its own complexity. In the primary cooling zone, before the melt starts solidifying,

almost a perfect contact between the mold and the ingot is established. The heat transfer

is rather fast during this stage. Once the nearby liquid metal starts solidifying, the ingot

locally looses the contact with the mold due to the solidification shrinkage. This forms

an air gap in between the ingot and the mold. It is a well known fact that air is a good

insulator. Due to this air gap, the convective heat transfer coefficient (HTC) between the

mold and the ingot decreases drastically. Generally, the mold is cooled by the cooling

water which also flows vertically and impinges on the ingot below the mold level. Further,

there is a small distance in between the water impingement point and the contact point

of the mold known as air cooling zone, which is left uncovered by either mold or cooling

water. Taking everything into consideration, only 20% of ingot heat is extracted through

the primary mold cooling.

The secondary cooling zone can be further divided into two regions such as the im-

pingement zone and the free flow regime. In the impingement region, the cooling water

strikes the hottest surface of the ingot. The cooling water can not wet the surface be-

cause of immediate vaporization. A thin water vapor layer is formed which covers the

ingot surface and acts as an insulator. This phenomena is known as water ejection. Film

boiling is the primary mechanism of heat transfer in this region. After the impingement

zone, the temperature of the ingot drops below the Leidenfrost point where the film col-

lapses and transition and nucleate boiling, and forced convection dominates. During the

transition and nucleate boiling, the heat flux reaches a maximum value. A thin wetting

front separates these two regions and tries to move against the ingot movement. More

than 75–80% of ingot heat is removed through the secondary cooling.

In the bottom block zone, the liquid metal establishes a perfect contact with the

bottom block before the start of solidification which is similar to the primary cooling

zone. During the start-up phase, the ingot butt is chilled by both the bottom block and

the mold. Gradually an air gap develops in between the bottom block and the solidified

strand from which starts the outer corner. However, the center of the bottom block

is connected with a solidified portion of the ingot by means of specially designed bolts

known as starter block. Without this connecting element, the bottom block can not pull

the ingot continuously. During the start-up phase, when the water start striking the

ingot surface, the temperature drop on the surface is very high which makes the ingot

deform plastically. This excessive deformation on the surface nearby butt is known as
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butt curl. Due to this butt curl, a considerable amount of gap will be formed in between

the ingot and bottom block. Therefore, the cooling water enters into the gap which

improves the cooling in the bottom block zone for a small period. This is called water

intrusion. Further, the rapid vaporization of water in the gap may lead to a bumping of

the ingot [15]. And also the excessive butt curl reduces the rigid standing of the ingot

on the starter block and causes a portion of the ingot to lose contact with the bottom

block, leading to possible shell remelting. Even though the heat transfer in this zone is

slightly improved during the time of water intrusion, the total contribution of bottom

block zone is less than 5% during the pseduo steady state. However, in the start-up

phase, a significant amount of heat is extracted through this zone.

All the above-mentioned cooling zones are strongly interconnected. The excessive

cooling effect given by the secondary zone greatly influences the primary and bottom

block zones. During the start-up phase, it is typical to reduce secondary cooling to

avoid excessive butt curl. Several technologies are introduced to control the rate of heat

transfer in the secondary zone. There are several production problems associated with

a butt curl, which include: run outs of the melt, cold shuts, reduced rigid standing

(instability) of the ingot on bottom block, which can lead to low recovery rates [16]. A

simple strategy to reduce the secondary cooling is to allow the vapor film for a longer

period on the ingot surface. This can be achieved by increasing the water flow rate.

Further, the water flow rate and the heat removal rate are not exactly linear. However,

there are practical difficulties associated with this. The secondary zone influences the

primary zone considerably during the start-up and pseudo steady phases through the air

gap between the mold and the ingot.

1.3.2 Common DC casting problems

Due to high demand, a wide variety of aluminum alloys are being cast continuously by

means of DC casting process. In search for better properties such as corrosion resistance

and higher strength, new alloys are being developed which may impose constraints on the

production process. The knowledge of process parameters and its controlling technique

have to be developed for the production of defect free billets [17]. A large number of

casting problems arise during the DC casting process. It is almost impossible to eliminate

all the quality issues related with the DC casting. It is mandatory to overcome all the

casting hurdles for improving the casting efficiency. However, here the attention is only

focused on the major issues which have the dominant influences on the quality of cast

ingot. The major DC casting problems and their origins are discussed as follows:

1. Hot tearing: A crack which originates during the solidification is called as hot
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crack or hot tear or hot shortness. The word hot itself indicates that the crack

propagates in the high temperature regions or above the solidus temperature. The

mushy region with higher solid fraction is the most vulnerable portion of the ingot

where the hot tears supposed to be originated. In the worst situation, hot tear may

run the entire ingot in the axial direction or it can extend in the lateral direction

which can divide the ingot into two parts or two pieces and the liquid metal may

come out. A typical hot tear which originates during the pseudo steady state is

shown in Fig. 1. Both the horizontal and vertical expansion of hot tears lead to stop

the casting process and consequently the ingot has to be remelted. Hot tear brings

down the production efficiency and the ingot quality. Therefore, its an industrial

objective to produce the ingots without hot tears.

The mechanisms of hot tear formation in the DC casting are still not well understood

in the research community. However, it is generally accepted that the hot tear

occurs within the mushy zone where the solidification shrinkage is not compensated

by interdendritic melt flow due to insufficient liquid feeding in the presence of

thermal stresses. The thermally induced deformation due to non-uniform cooling

contraction is one of the major reason for the hot tearing [18]. Hot tears are easily

identifiable as they take the form of ragged, intergranular cracks that often occur

at a hot spot or thin section within the casting [19]. Generally, pure metals and

alloys of eutectic composition are not prone to hot tearing or less susceptible to hot

tearing due to narrow solidification range. Hot tearing susceptibility increases when

the phase-change temperature interval increases. Apart from this, the structure

development during the phase-change also significantly influences the hot tearing

susceptibility. Hot tearing is not yet uniquely related to alloy composition but

is affected by a range of interrelated factors including: composition, superheat,

hot-spot size, structure of the grain and its size, solid–liquid interface morphology,

casting geometry, and mold type [19].

Initially, the solid grains nucleate in the liquid pool when the temperature drops

below the liquidus point. These grains may be of columnar or dentritic structures

based on the alloy composition. When the solid fraction increases, the chemical

diffusion occurs and the grains start interacting each other physically. The temper-

ature at which the grains start gaining mechanical rigidity is known as coherency

point. Mass feeding is limited at these solid fractions and thus the displacement of

grains away from each other by the application of a load cannot be accommodated

by the inflow of liquid. The pressure drop between the intergranular liquid and

grains can cause micro porosity. Further, an increase in thermal stress can cause

hot tears. Hot tearing is prone to the solid fractions of 0.85–0.95. The alloy which
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has higher chances of hot tearing are AA5182 and Al–4.5%Cu.

Generally, hot tearing occurs in the center of the ingot because of excessive ten-

sile residual stresses. It is found that circumferential stresses and inelastic strains

are tensile at the solidus temperature near the center of the ingot. During the

start-up phase, these values reach maximum and this is favorable to hot crack

formation. There are several methods proposed to reduce the hot tearing suscep-

tibility. Through the application of a ramping procedure it is always possible to

reduce the hot tearing susceptibility.

Figure 1.6: Typical hot tears which occur during pseudo steady state phase (Suyitno,
2005)

2. Cold cracking: It occurs in the fully solidified material below the solidus tem-

perature. Generally cold cracks occur in the high strength alloys due to the higher

thermal stresses built up during the casting and cooling to the atmospheric tem-

perature [17]. The rapid propagation of such micro-cracks in tensile thermal stress

fields can lead to catastrophic failure of ingots in the solid state. The 7xxx series

aluminum alloys are more vulnerable to cracking mainly because of poor thermal

and mechanical properties in the as-cast condition. Low thermal conductivity val-

ues compared to other aluminum alloys result in high-temperature gradients, which

in turn lead to an accumulation of thermal stresses with different signs and mag-

nitudes in different locations of the billets during DC casting. This kind of alloys

looses its ductility below 200 oC and become extremely brittle, which can make

the material prone to cold cracking [20]. As mentioned in the hot tearing case,

the stress states are tensile in the center of the billet for all the time except the

smaller region which is in contact with the bottom block. At the surface of the

billet, on the other hand, stresses are tensile in the water impingement zone but
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they turn to compressive upon further cooling. Even though there are chances of

formation of cracks in the surface at the water impingement zone, in the later stages

due to excessive compressive stresses it can be healed. This is not possible in the

center. Similar to hot tearing, cold crack susceptibility is very high in the center of

the billet. A typical cold crack which expands in radial direction in the center of

the billet is shown in Fig. 1.7(a). The arrow region indicates that the direction of

circumferential compressive stress which arrests the crack expansion.

Figure 1.7: A typical (a) cold crack (Lalpoor et al., 2009), and (b) exudation (Thevik et
al. 1999)

3. Macrosegregation: Macrosegregation is an inhomogeneous distribution of alloy-

ing elements at the scale of solidified ingot. This can lead to nonuniform mechanical

properties that affect the behavior of the metal during the subsequent processing

and impair the quality of the final product [21]. Macrosegregation is a really serious

problem because it cannot be eliminated during the downstream processing, unlike

microsegregation, which can be removed relatively easily by high temperature an-

nealing [22]. Macrosegregation occurs due to the transport of segregated alloying

elements at the scale of a casting by the relative movement of liquid and solid

phases. It is a direct consequence of the transport phenomena taking place during

the solidification process. It is caused by advective solute transport primarily due

to the flow of segregated liquid in the mushy zone. This laminar flow is a result of

convection in the liquid part, driven by buoyancy forces due to thermal gradients

(thermal natural convection), buoyancy forces due to concentration gradients (so-

lutal natural convection), and inlet flow (bulk convection). Additionally, a feeding

flow due to the density difference between the two phases (solidification shrinkage)

is induced in the mushy zone [21].
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In general, the advancing solidification front pushes the liquid enriched in the solute

(in the case of partition coefficient less than 1) towards the hotter part of the casting,

e.g., the center. As a result, after solidification, the center of the casting will contain

more solute than the periphery of the casting. In reality the solute rich liquid should

be transported toward the hot spot of the casting (in the direction of solidification).

The driving force behind such transport is either convection or shrinkage-driven

flow. There are two kinds of macrosegregation processes: (a) negative segregation

- concentration of an element is lower than the average concentration in the alloy

and (b) positive segregation. A positive segregation on the surface of the ingot is

known as exudation [23]. Mostly, the thickness of an exudation layer is more than

1 mm as shown in Fig. 1.7(b) which can only be removed by machining.

4. Ingot distortion: Butt curl, butt swell, and rolling surface inward pull-in are the

major ingot distortions which occur during the DC casting process. In the station-

ary stage, the solidified shell contracts inwards and the inhomogeneous distribution

of the cooling jets results the rectangular ingot deform into bone-shaped as shown

in Fig. 1.8(b). In an attempt to compensate this effect, molding collars have to be

designed in convex shape, usually with three segments per quadrant instead of a

rectangular one. Butt swell is the increase in cross-section nearby ingot butt.

Figure 1.8: Butt curl and cross-sectional bone-shaped deformation of ingot (Barral and
Quintela, 1999)

1.4 Problem definition

Experimental methods are highly important for the material characterizations, solving

the inverse problems, and validating the numerical simulation results. Performing the
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experiments in a real time DC casting plant is quite complicated and also not preferable.

Therefore, a specially designed experimental set up which can reproduce the similar sit-

uation in the casting plant is highly essential for conducting the experimental study.

Further, from the experiments only the thermo-kinematic quantities like temperature,

displacement, etc. are measurable, whereas the kinetic quantities like heat flux, stress,

etc. are obtained from the respective constitutive equations. Modeling the physical

process is also equally important for the better understanding of the process, optimizing

the parameters, and for the decision making. Due to the advancements in computer

technology, it is feasible to simulate complex problems such as DC casting. Therefore,

this work concentrates on the modeling of DC casting process and its numerical simula-

tions. Experiments are only performed for the purpose of finding the secondary cooling

boundary conditions.

Modeling the theromechanical behavior of the ingot during the DC casting process

is a challenging task due to the complexities such as phase-change, latent heat release,

moving interface, time-dependent domain, change in boundary conditions, rate-dependent

material behavior, etc. There are different physical fields coupled to each other such

as thermal, metallurgical, chemical, mechanical, etc. It is highly tedious to solve the

coupled fields involving more than two or three. Furthermore, three dimensional problems

consume larger computational time when compared to two dimensional problems. Apart

from all these difficulties, the solution domain is time dependent and it grows in the

direction of casting. Therefore, only three physical fields such as thermal, metallurgical

and mechanical fields are considered and the attention is focused on the temperature and

stress-strain evolutions.

In solidification modelling, thermal and metallurgical fields are strongly coupled due

to the release of latent heat at the phase-change interval. Further, decoupling of these two

fields may not produce accurate and reliable solutions when the phase-change interval is

too small. The solutions of thermo-metallurgical fields strongly influences the mechanical

field. The primary objective of this work is to capture the temperature evolution inside

the ingot during the start-up and pseudo steady phases. This solidification problem itself

complicated because of the moving solid-liquid interface where the thermal and mechan-

ical properties change abruptly. The liquid flow is neglected and the liquid convection

current due to the density difference is incorporated by means of increasing the thermal

conductivity of the liquid phase. A fixed grid method with keeping the temperature as

an independent variable is used to model the solidification problem. The primary and

bottom block boundaries change continuously due to the solidification shrinkage of the

ingot. The primary mold boundary has only two states: (a) contact, and (b) non-contact.

During the contact case the ingot touches the mold and during the non-contact case an
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air-gap between the mold and ingot develops. The bottom block boundary also has these

two cases and additionally one more situation called as water intrusion also occurs. Dur-

ing the water intrusion, the cooling water enters the gap between ingot and bottom block.

All these effects are included in the solidification model.

The secondary cooling boundary conditions are measured through experimental tech-

niques. The objective of this experiment is to predict the boiling curve (temperature vs.

heat flux). For this motive, a hot plate made up of casting material is quenched by an

array of water jets which flow parallel to the plate in the direction of gravity. Even though

this situation is not exactly the same as the DC casting secondary cooling, the boiling

curve in both the cases are nearly similar. An infrared thermography is used to measure

the temperature on the non-quenched side of the plate. Using the experimental temper-

ature profile, an inverse 2-D heat conduction problem is solved to obtain the heat flux

leaving on the quenched side. The ill-posed nature of the inverse problem demands so-

phisticated numerical techniques to avoid the numerical oscillations. Further, the inverse

problems are highly sensitive to the experimental errors. A simple data noise filtering

method is developed to reduce the level of error in the experimental measurements. The

influence of the water velocity is studied in detail. Due to the absence of DC casting

experimental facilities in our institute, an attempt is made to characterize the boiling

curve using the available quenching unit. However, the explicit relation between the heat

flux and quenching parameters such as water flow rate, water temperature, etc. is not

established yet. For the sake of completeness, the modeling issues of an inverse problem

are addressed in this work with the help of nickel and aluminum plate quenching. The

experimental part of this work was carried by another research group in our institute.

There is a large amount of scraps to be remelted when the quality of the ingot is

not satisfactory. The hot and cold cracks and the ingot deformations are the frequently

encountered DC casting problems. Even though all the other casting defects are equally

important, here the attention is only focused on these three defects. It is mandatory to

know the history of the residual stress-strain development at every material point for the

prediction of cracks. Further, the rate-dependent effects dominate in high temperature

regions. Therefore, the mechanical behavior of ingot is modeled through the elastic-

viscoplastic material model. The liquid phase is treated as a fictitious solid with a very

small stiffness because it can not accommodate stresses. Within the mushy zone, there

is a coherency point where the material starts sustaining the mechanical loads. From

the coherency temperature to the solidus temperature, the mechanical behavior of the

material is modeled by Norton’s viscoplastic law. The solid phase is assumed to behave

according to Garafalo’s viscoplastic law. With these models, the stress-strain development

near the mushy zone is carefully studied. And it is found that the nature of stresses in
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the center of the billet are tensile, whereas at the surfaces it is compressive. The influence

of casting speed, melt superheat, and secondary cooling boundary conditions is studied

in detail.

Another important motive of this work is to understand and modify the secondary

cooling HTC profile so that the magnitude of internal residual stresses can be minimized.

To achieve this objective, it is necessary to develop a proper numerical technique and

simulation software. There are large numbers of commercial packages such as ANSYS,

ABAQUS, COMSOL, MSC.MARC, etc. which available to simulate the industrial DC

casting process. However, at a certain level, one has to enter the solver which is well

known as black box 1 where there is a zero control. Therefore, an attempt is made to

develop the finite element codes without using the commercial packages. This gives a

complete insight of the problem from its starting to the end. Though, it demands more

reengineeing work but it is worthful once a well established code is developed. In this

work, a MATLAB code is developed to solve the DC casting process.

1.5 Mathematical modeling of DC casting

In the real time industrial DC casting process, the bottom block is withdrawn with certain

velocity, while the mold is kept stationary and the liquid melt is fed continuously from

the top. However, in the DC casting model, the positions of ingot and bottom block are

fixed, and the mold is allowed to move with the casting speed, and the melt feeding is

achieved by the introduction of a new layer of materials which is an exact replica of an

industrial DC casting process. This way of modeling eliminates the continuous change

in spatial coordinates of a material point. The history of changes in the field variables

such as temperature, stress, etc., at every material point can be tracked easily with

this approach. Generally, in solid mechanics Lagrangian coordinate systems are more

preferred rather than the Eulerian system. Based on this, the liquid phase is treated as

a fictitious solid and its flow behavior is neglected.

The entire DC casting model is decomposed into two parts: (a) thermal model, and

(b) mechanical/displacement model. The thermal model consists of solidification model,

interface heat transfer model, and inverse model. The schematic representation of DC

casting model is shown in Fig. 1.9. The temperature change may induce the phase trans-

formation, and the phase transformation intern releases the latent heat which strongly

affects the temperature change. Therefore, the heat conduction and phase fields have to

be modeled simultaneously. Otherwise, the phenomena of latent heat release may not be

1A computer program into which users enter information and the system utilizes pre-programmed
logic to return output to the user: http://www.investopedia.com/terms/b/blackbox.asp
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Figure 1.9: DC casting model

captured accurately. Generally in DC casting, different materials thermally interact at

the boundaries such as casting or ingot, bottom block, and mold. The thermal interface

model takes care of the ingot-bottom block and ingot-mold interfaces. In both of these

interfaces, when the liquid metal starts solidifying, due to the thermal shrinkage, an air

gap will be formed. The interfacial HTC is a function of normal gap between the in-

terfaces. The inverse model provides the information about the secondary water cooling

boundary conditions with the help of experiments. Even though the inverse model is

a part of thermal model of DC casting, it can be handled as a separate problem. The

solidification model and interface model are the integral part of a DC casting thermal

model. As the interface HTC is prior known as a function of temperature, the thermal

and mechanical problems can be solved independently.

The mechanical model of the DC casting problem is subdivided into a material model

and a contact model. It is obvious that the material model and the contact model have

to be inserted in a structural model with suitable boundary conditions which address

the deformation of the ingot. Here, the attention is specifically focused on the material

and contact models. A proper material model which can predict more accurately the

behavior of mushy and solid phases is absolutely necessary for the realistic simulations.

The ingot-bottom block and the ingot-mold mechanical contact determines the normal

gap size which intern affects the thermal part.

From the knowledge of temperature change at every instant, the thermal strain can

be computed which is the major driving force for the displacement field. In the case of

casting, the heat transfer at the boundaries is strongly dependent on its displacement his-
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tory. With a suitable coupling techniques, these two problems can be solved sequentially

in a weakly coupled manner. The modeling details of both the thermal and mechani-

cal problems, the numerical method used to solve the coupled field equations, and the

coupling techniques are explained in detail in the following subsections.

1.5.1 Thermal model

The objective of modeling the thermal problem is to find the temperature evolution

inside the ingot. To achieve this, the phase-change phenomena has to be modeled more

accurately which strongly influences the heat conduction of the domain. Furthermore,

the boundary conditions have to be well defined priorly. The thermal model takes care

of all these effects and provides the information about the temperature change at any

instant. Therefore, the thermal problem is described through the following subproblems

such as solidification problem, interface problem and inverse problem which are discussed

separately in detail.

Solidification model

A model which considers the heat conduction and the phase-change simultaneously is

known as solidification model. Without assumptions, it is almost impossible to model

any such physical processes. Therefore, the assumptions of the solidification model used

in this work are described once again as follows:

1. The material is treated as an isotropic rigid heat conductor.

2. The liquid flow is neglected. Therefore, the liquid phase is treated as a fictitious

solid.

3. Fixed grid method is followed. Therefore, the domain is not explicitly decomposed

into solid, liquid, and mushy zones. The position of phase front and its kinetics are

implicitly enforced in the energy balance.

4. The dissipation due to mechanical deformation is negligible when compared to

the latent heat release. Therefore, the solidification and mechanical problems are

decoupled within the time step.

5. The back diffusion effect is not considered. Therefore, the partition coefficient is

taken as unity. The microsegregation is neglected.

6. The liquid convection is accounted in the form of increasing the thermal conduc-

tivity of the liquid phase by a factor of 5 from its original value.
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7. The heat generation due to the frictional dissipation at the contact interface is

assumed to be negligible.

8. There is no pore formation, i.e. fs + fl = 1. Where fs and fl are solid and liquid

volume/phase fractions, respectively.

With the above mentioned assumptions, the energy balance is obtained based on the

first law of thermodynamics. The latent heat phenomena are incorporated in the balance

equation through the definition of the specific internal energy. This way of incorporating

the latent heat is commonly known as temperature-based fixed grid method. The moving

phase-front boundary condition is automatically satisfied and gets canceled once deriving

the weak form of energy equation. A linear phase-change function is employed to capture

the latent heat release.

The weak form of energy balance is discretized using the finite element method. A

temperature-based finite element solution procedure proposed by Celentano et al. [24]

is used to solve the discrete form of the energy equation. An isothermal phase-change

introduces artificial numerical oscillations due to the exchange of field variables from

temperature to enthalpy. Generally, enthalpy based methods are employed to solve the

phase-change problems having a narrow solidification range. In this work, the existing

temperature-based finite element method is suitably modified in such a way that we can

handle any kind of phase-change problems with considerably less computational efforts.

To achieve this, a line-search algorithm proposed by Fachinotti et al. [25] and Crisfield [26]

is implemented within the Newton-Raphson iterations. A backward Euler time-stepping

algorithm is used to discritize the rate equations.

Interface model

The objective of the interface problem is to incorporate the influence of nearby material on

the ingot. This is a kind of boundary condition which can not be solved independently.

Therefore, the interface problem is an integral part of the thermal problem. In the

DC casting, ingot-mold and ingot-bottom block are the two important interfaces which

strongly affect the thermal behavior of ingot. As explained before, in both the interfaces

contact and non-contact situations arise due to the thermal shrinkage of the solidified

solid. In both cases, the interface heat transfer is assumed to occur mainly due to

the combined heat convection and radiation. Even though the heat conduction is the

predominant mode of heat transfer during the time of contact between the liquid ingot

and nearby material, generally the heat conduction effect is incorporated through the

definition of higher value of HTC. Therefore, a gap dependent HTC is defined for the

interacting material boundaries. Alternatively, it is also possible to include the effect
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of interface heat transfer by means of defining a temperature-dependent HTC. In this

case, nearby material temperature is idealized to a mean temperature. Further, this

method eliminates the mechanical dependent behavior of a heat conducting body. Both

approaches are followed in this work.

A 4-noded interface element is developed based on the work of Lewis and Ravin-

dran [27]. This introduces an additional matrix with a regular conductance matrix. The

interface elements have no contribution for the regular capacitance matrix and force vec-

tor. The interface heat transfer coefficient is defined through the following relation as in

Cervera et al. [28]

h(gn) =
ka

gn + ka

ho

(1.1)

where ka is the thermal conductivity of air, ho is the convection-radiation coefficient for

the two surfaces in contact and gn is the normal gap. Eq. (1.1) shows that the interfacial

HTC depends on the normal gap and thermal conductivity of air. Thermal conductivity

of air2 varies from 0.02–0.05 W/mK which is 3–4 orders lesser than the metals.

Inverse model

The inverse problem is defined as the estimation of boundary conditions using the exper-

imental measurements. In DC casting, the secondary water cooling boundary conditions

are estimated using an inverse problem. In this work, an inverse problem is solved by

separately using the experimental temperature measurements made during the quenching

of a hot plate by array of jets. It is assumed that the boiling curve obtained through

the quenching experiments and the secondary cooling HTC of DC casting are nearly the

same. An infrared thermography is used to measure the temperature evolution during

the metal quenching process and the recorded temperature history is further processed

using a 2-D inverse heat conduction model. The influence of the water velocity on the

heat flux leaving at the boundary is analyzed based on the wetting front movement.

In this work, a non-iterative inverse finite element method proposed by Ling et al. [29]

is suitably modified and successfully implemented for the 2-D domain. Due to non-

iterative nature, the solution of the inverse problem is obtained in a single step. Generally,

the inverse problems are solved iteratively to minimize the instantaneous error norm. To

avoid the iterative process, the unknown force is written in a suitable form so that its

derivative with respect to temperature yields a constant matrix which can be easily

computed using the regular finite element method. This eliminates the repeated solving

of direct problem.

2http://www.engineeringtoolbox.com/air-properties-d 156.html

22



1.5.2 Mechanical model

The objective of modeling the mechanical problem is to find the evolution of displace-

ment, residual stress and strain during the start-up and pseudo steady state phases of

DC casting. The mechanical problem is also equally complex when compared to the

thermal problem due to the following reasons: (a) rate-dependent material behavior, (b)

mechanical contact between the objects, and (c) simultaneous handling of liquid, mushy

and solid phases. The last issue is addressed through defining the material properties as

a strong function of temperature. The coefficient of thermal expansion (α) and Young’s

modulus (Ey) are the important material properties which control the displacement field.

For the liquid phase, α is taken as zero and Ey is taken as 3–4 orders less than a solid

phase. Therefore, the liquid phase does not develop any stresses until it reaches a co-

herency temperature. The assumptions of the mechanical model used in this work can

be stated as follows:

1. The material is treated as isotropic.

2. Small deformation theory is used to model the mechanical behavior of the ingot.

3. The interface between the ingot and mold and bottom block is decomposed into

a pure contact problem in the normal direction, and the friction in the tangential

direction is neglected.

4. The contribution of the metal shrinkage during solidification is neglected due to the

constant liquid feeding within the mushy zone. The alloy is allowed to contract as

soon as it reaches the coherency temperature [15].

5. The body force is neglected.

6. The liquid pressure on the solidified solid is not considered.

With these assumptions, the weak form of the linear momentum equation is discretized

using the finite element method. The strain tensor is additively decomposed into three

parts such as elastic, thermal, and inelastic. The volumetric nature of the thermal strain

is the only external disturbance other than the contact conditions which continuously

alters the other field variables such as stress, elastic strain, and inelastic strain. The

inelastic strain can be either plastic or viscoplastic. Different integration algorithms are

employed for the plastic and viscoplastic parts. The material model and contact model

are discussed separately in the following subsections.
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Material model

The viscoplastic behavior of mushy zone is modeled using a Norton-Hoff law. Similarly,

for the solid phase, the Garafalo viscoplastic rule is followed. The highly non-linear nature

of these two viscoplastic laws demand sophisticated numerical schemes to integrate their

rate forms. Therefore, a Newton-based implicit iterative integration scheme which is

proposed by Saleeb et al. [30] is implemented for the integration point level computations.

Furthermore, without the help of a line-search algorithm within a Newton’s iteration, it is

difficult to achieve the convergence. Due to the iterations at the integration point level,

the computational time increases which can not be avoided in this kind of non-linear

material behavior.

Contact model

During the DC casting process, the ingot interacts not only thermally but also mechan-

ically with the bottom block and mold. The relative motion between the bottom block

and the ingot is relatively lower when compared to the ingot-mold contact. Therefore, it

is reasonable to assume a frictionless smooth sliding contact between the bottom block

and ingot. In the case of mold, even though there is a considerable relative motion exists

with the ingot, due to the development of the air gap the major portion of mold looses

the physical contact with the ingot. The prediction of the air gap is highly important

because the interface thermal model computes the HTC based on the normal gap between

the objects. Therefore, the contact between the objects in the normal direction is more

important than the tangential direction. In this work, a coincident frictionless contact

element is incorporated based on the method introduced by Vila Real et al. [31]. The

mechanical contact between the ingot and bottom block is highly important for the exact

prediction of the butt curl.

1.5.3 Coupling strategy

As discussed before, a thermo-mechano-metallurgical problem of the DC casting process

is solved using the finite element method. Initially, the domain starts with few rows of

elements, and continuously elements are added at the beginning of every time step ac-

cording to the casting speed. Similarly, the thermal and mechanical boundary conditions

are continuously updated . Non-linear coupled simultaneous equations obtained through

FEM are solved using an isothermal staggered algorithm [32, 33]. Thermo-metallurgical

and mechanical fields are solved sequentially in every time step in the following way:

1. The thermal and the metallurgical fields are solved simultaneously at a fixed con-

figuration.

24



2. The mechanical field is solved at a constant temperature and phase fractions.

In each time step, first the transient temperature and metallurgical fields are solved

simultaneously in an iterative manner, and finally the displacement field is computed

iteratively using the full Newton-Raphson method. Armero and Simo [32] argued and

proved that this kind of isothermal split of coupled problems are only conditionally stable.

Therefore, a proper determination of the time step interval is essential for achieving the

convergence. At the end of every time step, the thermo-mechanical interface contact

conditions are updated.

1.6 Literature review

Mathematical modeling of DC casting process has evolved continuously over the past

35 years. A large number of research articles were published in the field of DC casting.

Reviewing all the previously published works is almost impossible, and further it may

lead to go out of the scope of this work. Therefore, only essential works which fall within

the scope are critically reviewed. Firstly, the thermal aspects of DC casting model are

discussed which includes the solidification phenomena, primary cooling and secondary

cooling. Secondly, the mechanical aspects such as stress and strain development and

material characterizations and its related modeling issues are addressed. Thirdly, the

defect predictions such as hot tearing theories and cold cracking are presented. Finally,

some general aspects of DC casting which do not come into the above-mentioned three

categories are explained.

1.6.1 Thermal aspects of DC casting

Modeling the thermal field of DC casting is relatively complex because of the solidification

phenomena and insufficient knowledge about the boundary conditions. With the help of

advanced measuring techniques and modern computing facilities, researchers attempted

to understand the thermal field of DC casting. The objective of the thermal field modeling

is none other than predicting the temperature evolution. Even though the microstructure

formation is equally important but without the knowledge of temperature, it is almost

impossible to address other issues related to the DC casting process. Therefore, this

section is dedicated to review the previous works related to the modeling of thermal field

of DC casting.
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Solidification

The simulation of phase-change problems is highly important for achieving a high quality

casting and to avoid difficult experimentations. During the phase-change, the latent heat

release introduces a severe non-linearity and a local exchange of the field variables [34].

The finite element method (FEM) is one of the globally accepted numerical techniques

for the simulation of coupled problems. A large number of phase-change problems are

formulated, keeping the enthalpy as an independent variable [35], and the nodal temper-

atures are obtained from the enthalpy-temperature relations. Most of the commercial

coupled field FE codes are based on the temperature-based formulation. Therefore, it

is quite important to find a reasonable temperature-based formulation with improved

convergence rate. In this work, a temperature-based finite element formulation is used

to define the phase-change problem using the Celentano-Orate-Oller (COO) [24] method

with an extra insertion of the line-search technique of Fachinotti et al. [25].

There are two different kinds of solidification / phase-change processes reported in

the research community such as (a) isothermal solidification, and (b) non-isothermal so-

lidification. Generally, pure metals and alloys of eutectic composition solidify at constant

temperature known as melting or phase-change temperature. In contrast to pure metals,

alloys solidify over a range of temperature known as phase-change interval. The solidifi-

cation starts at a higher temperature known as liquidus temperature and ends at a lower

temperature known as solidus temperature. In between the liquidus and solidus temper-

ature, there exists a mixture of solid and liquid phases known as mushy phase. Apart

from the physics of solidification, the mathematical modeling of a non-isothermal case is

relatively simpler than the isothermal case. In contrast to the mathematical modeling,

the physics of non-isothermal or alloy solidification is relatively complex and practically

there are more changes of defect generation at the phase-change temperature interval.

There are two methods to model the phase-change phenomena using the finite ele-

ment method: (a) fixed-grid method, and (b) front-tracking method. In the front tracking

method [36], a deforming grid formulation is generally employed in order to adapt the

mesh to the interface displacement. The solid and the liquid domains are treated as

two separate domains and the latent heat release is treated as a special boundary con-

dition relating the solid and the liquid domains [27]. Even though it predicts the latent

heat release and the position of phase front more accurately, the major drawbacks of

this method are the need to initialize the front location, the difficulty of dealing with

appearing/disappearing phases, and multiple interfaces [24]. Further, this method is not

suitable for alloys with a finite freezing range and complex geometries.

The fixed-grid methods are derived from a weak formulation that implicitly contains

the moving interface condition [24]. Fixed grid methods treat both the solid and liquid
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regions as one continuous region and the phase boundary is never explicitly determined.

This eliminates the difficulties of mesh adapting and interface tracking. Within the frame-

work of fixed grid methods, to account the latent heat effect, there are two options to

choose a dependent variable as either enthalpy or temperature. In the enthalpy-based

methods, the nodal enthalpy vector is obtained for each time step and the nodal temper-

atures can be computed using the well-known enthalpy-temperature relationship. The

enthalpy-based method is a powerful tool to incorporate the latent heat effect but it needs

a regularization to remove the discontinuity that appears at the phase front. The heat

source method [37–39] and the effective specific heat method [40] are the other forms of

enthalpy-based methods.

A large number of researchers worked on the fixed-grid phase-change problems and the

interested readers are referred the following review articles [41–47]. Recently, the front-

tracking fixed-grid methods [48, 49] is also emerging. Without the loss of generality,

most of the above-mentioned methods perform extremely well for the non-isothermal

solidification of alloys. When it comes to an isothermal solidification of pure metals,

some of the computational methods introduce a numerical instability. This is mainly

due to the local exchange of dependent variable from temperature to enthalpy during

the isothermal latent heat release [34]. There exist quite a large number of enthalpy

values at the isothermal phase-change temperature (θm). Due to this jump in enthalpy

- temperature relation, the problem becomes highly nonlinear. Therefore, the classical

Newton-Raphson method fails to converge to the solution.

Celentano et al. [24] proposed a temperature-based FEM for the phase-change problem

which incorporates the latent heat release by means of an additional phase-change matrix

and a latent heat vector. They derived an approximate jacobian matrix which preserves

the numerical stability and gives a reasonable convergence rate. It does not need any

explicit regularization and further coarser meshes and larger time steps (in comparison

with other methods) can be used. The COO formulation performs extremely well for

the isothermal phase-change with high Stefan numbers. Further, for low Stefan numbers,

the temperature-based method fails to converge however small the time step might be.

Therefore, Fachinotti et al. [25, 50] followed the COO’s temperature formulation, and

introduced an element split technique along with a line-search algorithm. The Fachinotti

et al. model is compatible with the COO model. Both models differ each other through

the method of estimation of the latent heat vector (Θ) and the Jacobian contribution of

latent heat matrix ( ∂L
∂Θ

).

Generally, there are two ways of estimating the element quantities such as integration

point phase-fraction technique and element decomposition method. In the element de-

composition method, a single element is divided into different regions based on the nodal
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temperatures [25]. In each region, a single phase exists such as solid, mushy and liquid

regions in the case of non-isothermal phase-change or solid and liquid regions if it is an

isothermal. Therefore, an exact evaluation of the latent heat matrix is possible because

of the absence of a discontinuous phase function in the isothermal case. This method

does not demand any regularization of the integrands, assuring an accurate evaluation

of the discrete balance equation. Unlike the element decomposition method, in the in-

tegration point phase-fraction method, the phase fractions are defined or computed at

the integration points. This might appear to be trivial, because one may argue that a

material point should be either liquid or solid. This question is reasonable and mean-

ingful because even for the non-isothermal phase-change, the solid particle should start

evolving at the liquidus temperature in the mushy zone. It means that mushy can be a

physical mixture of solid and liquid but the material point should be either liquid or solid.

Here, it should be indicated that for the computational purpose there is a compromise

made between the reality and simulation. Even though, the integration point approach

lacks this physical meaning, it saves a considerable amount of computational time and

is compatible with the regular finite element method subroutines. Fachinotti et al. used

a 3-noded triangular element and approximated the shape of the phase front as straight

lines and evaluated the element quantities explicitly with out any Gauss quadrature kind

of numerical integrations. Generally, this method is quoted in the research community

as non-standard spatial integration methods.

In 1996, Celentano et al. [51] presented a coupled thermo-mechanical model for the

solidification problem using a phenomenological approach which is an extension of their

previous work. Saracibar et al. [33] extended the Celentano et al. work and introduced

a thermo plasticity method using an isentropic split approach proposed by Armero and

Simo [52]. A newly introduced thermal phase-change free energy function takes care

of the latent heat release during the phase-change. In the coupled thermo-mechanical

theory, an additive split of the local entropy into elastic and plastic parts is adopted,

where the plastic entropy is viewed as an additional internal variable arising as a result

of dislocation and lattice defect motion. The present work derives the method from

the COO model and Fachinotti et al. [25] formulations, and attempts to generalize the

temperature-based formulation even for low Stefan numbers.

Primary cooling

As explained previously, the air gap develops once the interface material starts solidifying.

Different authors proposed different methods to incorporate the interfacial heat transfer

between the ingot and mold and bottom block. Mortensen [6] used a geometric mean of

HTCs due to the air gap and the lubricating film in the primary cooling zone. Hao et
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al. [53] used a temperature dependent HTC between the magnesium alloy ingot and mold.

When the temperature of an interface material is above the liquidus temperature, the

interfacial HTC is taken as 1500 W/m2K, and once the temperature drops to the solidus

temperature a lower value of 75 W/m2K is assigned. In the phase-change interval, a

linear variation is assumed. Katgerman et al. [54] directly used the solid fraction in the

computation of primary cooling HTC given

h = h
(1−fs)
contact hfs

gap (1.2)

where fs is the solid fraction, and hcontact and hgap are the HTCs at the contact and

non-contact situations, respectively. The values of hcontact and hgap are taken as 4000 and

150 W/m2K respectively. Sengupta et al. [55] used the similar approach for an AA5182

alloy and modified the interfacial HTC as

h = hcontact (1− fs) + hgap fs (1.3)

hcontact might be in the range of 1000–2000 W/m2K, and similarly for hgap it would be

around 50–200 W/m2K. Suyitno et al. [56] idealized the primary cooling HTC as contact

and non-contact cases. During the time of contact, HTC is taken as 1500 W/m2K, and

in non-contact situation, the HTC is reduced to 300 W/m2K. Stangeland et al. [57] used

the same approach, however they varied the HTC from 3000 W/m2K to 220 W/m2K for

the same alloy of Al–Cu.

Wiskel [58] used a space-dependent HTC for the mold region. Drezet et al. [59] fol-

lowed this approach and computed the HTC as a function of distance from the melt level

through an inverse analysis of experimental measurements. Even though both authors

investigated the same alloy such as AA5182, the magnitude changes a lot. According to

Drezet et al., the HTC at the melt level is around 1320 W/m2K and reaches a maximum

of 2400 W/m2K at 10 mm from the melt level, and finally becomes 50 W/m2K at 60 mm

from melt. This result is frequently used in the literature such as Williams et al. [60]. In

this work, the Drezet et al. [59] method is used to account the primary cooling.

The bottom block boundary condition is similar to the primary mold boundary. Addi-

tionally, the secondary cooling water may enter the gap and changes the thermal behavior

of the bottom block and the ingot base. This phenomena is known as water incursion.

Suyitno et al. [5] incorporated the water incursion situation based on the amount of gap

opening. During the time of water intrusion, the interfacial HTC is increased up to

3000 W/m2K at 200oC and gradually reduced to 1000 W/m2K at room temperature.

Sengupta et al. [55] introduced a wetting factor which varies from 0 to 1 and represent

the degree of wet. However, Droste et al. [61] argued that the intruded water might act
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as a sink for both bottom block and ingot.

Secondary cooling

The secondary cooling experienced by the ingot surfaces as they emerge from the mold,

is governed by the boiling water heat transfer [62]. Fig. 1.10 shows the typical cooling

water boiling curve as a function of ingot surface temperature. From the figure, it is easy

to understand the four different boiling regimes such as the forced convection, nucleate

boiling, transition boiling and film boiling. Generally, in DC casting, surface temperatures

at the point of water contact, lie between the transition and film boiling regions. The

temperature at which the vapor film collapses is known as Leidenfrost point (LFP). As

the ingot is cooled by the direct chill water [58], the amount of heat extracted follows

the transition portion of the cooling curve up to the maximum value, at a critical point

shown in Fig. 1.10. With a further reduction in surface temperature, the intensity of

nucleate boiling decreases until the surface temperature drops below the boiling point of

water. Below this point, the heat is extracted by forced convective cooling [58].
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Figure 1.10: A typical boiling curve

Generally, based on the water flow, the secondary cooling ingot surface is divided into

two different regions such as water impingement zone and free falling zone or downstream

zone. In the water impingement zone, Opstelten and Rabenberg [63] presented a empirical

30



correlation for the heat flux and given as

q = 27.3× 103 θ − 1.27× 106 if θ < 120oC

q = 94.3× 103 θ − 9.24× 106 if 120oC ≤ θ < 150oC (1.4)

q = 12.3× 103 θ − 3.06× 106 if θ ≥ 150oC

In 1982, Weckman and Niessen [64] proposed a following correlation for the estimation

of nucleate boiling HTC in the free falling region as,

h(θ) =
(−1.67× 105 + 704 θ̄

) (
Q

πD

)1/3

+
20.8

θ − θref
(θ − 373.15)3 (1.5)

where θ represents the billet surface temperature in Kelvin, θref is the bulk cooling water

temperature in Kelvin, θ̄ (= 0.5(θ + θref)) is the mean temperature in Kelvin, Q is the

water flow rate in m3/sec, and D is the billet diameter in meter. The first term in Eq. (1.5)

accounts for the convective heat transfer due to the one-phase free falling turbulent film

of water, and the second term, which is taken into account only when θ > 373.15 K,

models the subcooled nucleate boiling. However, the bulk temperature of the free falling

water changes with respect to the billet height. Ŝarler and Mencinger [65] presented

the method to calculate the increase in bulk temperature of cooling water as a function

of billet height. Zuidema [4] slightly modified the Eq. (1.5) and did not verify that at

all. Weckman and Niessen [64] mentioned the risk associated with increasing the casting

speed from a steady state condition when cooling is by nucleate boiling. As the casting

speed is increased, the surface temperature of the ingot will rise at the point where the

secondary spray first hits. When this temperature surpasses the critical temperature,

there will be a sudden switch into film boiling with its much lower heat extraction rates.

Consequently, surface temperatures increase very rapidly causing more and more of the

surface to enter the film boiling regime in a self-perpetuating manner. If heat extraction

rates by film boiling are insufficient, to form a thick enough ingot shell, liquid metal

breakout will occur. This sudden jump from nucleate boiling to film boiling may be

responsible for liquid metal breakouts during the higher casting speeds.

Due to the film boiling, water ejection [55] may occur during the low water flow rate.

Sengupta et al. [66] included the effect of water ejection in their model. Unfortunately,

the information regarding the water ejection is not explained clearly. Sengupta et al. [12]

extensively studied the secondary cooling of DC casting and compared it with the contin-

uous casting of steel. They reported the following facts: (a) the maximum heat flux varies

from 5 to 1 MW/m2, (b) the LFP varies from 250–350oC and increases with increasing

water flow rate, and (c) rougher surfaces exhibit higher heat transfer rates.
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Recently, Caron and Wells [67] presented a new two-dimensional inverse heat conduc-

tion (IHC) model which takes into account the effect of advanced cooling front phenomena

during quenching tests. In their IHC model, the second derivative of the temperature

with respect to time is computed to identify the progression of the wetting front along

the sample surface. The initial sample temperature determines whether the film boiling

takes place at the impingement point; it does not significantly affect the boiling curve for

the free-falling zone. They found that the casting speed exerts a strong influence on the

boiling curve if the initial temperature is above the Leidenfrost point for the impingement

zone, else its effect is minimal. The cooling water flow rate influences the LFP and the

rewetting temperature as well as the critical heat flux at the impingement point.

Mortensen [6] presented a model for the time-dependent heat and fluid flows during

DC casting of aluminum alloy AA1050. They used a constant HTC of 30 kW/m2K and

estimated the length of the impingement zone as 10 mm. Drezet et al. [59] presented

an inverse model using a maximum a posteriori (MAP) method developed by Rappaz

et al. [68] and studied the secondary cooling of DC casting. They mentioned that the

relationship between the surface temperature and the HTC is not unique between 90oC

and 110oC. The reheating of the ingot surface below the water-impingement point as-

sociated with the water bounce-off produces a somewhat skewed, cooling curve around

100oC. Wiskel and Cockcroft [69, 70] investigated the secondary cooling of AA5182 alloy

and presented an empirical relation for HTC as a function of temperature. The heat flow

is influenced by the surface morphology and water flow conditions during the start-up

phase. Opstelten and Rabenberg [63] showed that the classical description of a heat

transfer coefficient or heat flux as a function of surface temperature alone does not accu-

rately describe the thermal boundary condition for DC casting. The influences of water

cooling on DC casting ingot was studied by Tsunekawa et al. [71], Grandfield et al. [72],

and Maenner et al. [73]. Kiss et al. [74] showed the quality of water has the strongest

influence on transition between the different boiling regimes and also on the character of

the fluctuations of the surface temperature and heat flux. The influence of water flow rate

and casting speed on the thermal boundary conditions of DC casting has been studied

by Sabau et al. [75].

1.6.2 Mechanical aspects of DC casting

An excellent review of existing works related to the DC casting was presented by Sengupta

et al. [16]. Barral and Quintel [2, 76] presented a 3-D numerical model for the accurate

prediction of butt curl during the pseudo steady phase. They used a space and time

dependent HTC profile for the lateral surfaces of the ingot. The details of the thermal

model is not explained in detail but the mathematical aspects of the mechanical model
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have been described in more detailed manner. The contact between the ingot and bottom

block is modeled through the Lagrange multiplier method. To avoid non-linearities due

to the contact condition and the viscoplastic law, they introduced a maximal monotone

operator technique involving a contact multiplier and a viscoplastic multiplier. The liquid

elements are treated as a purely elastic material.

Residual thermal stress-strain

Fjær and Mo [77] presented a DC casting mathematical model known as ALSPEN using

the finite element method. For the thermal model of AA6063, they used an established

package known as ALSIM-2. They demonstrated the numerical method for computing

the stress and strain using an axisymmetric circular billet. The advantage of their FEM

model is the reduction of computational time by using a single integration point taken

at the element center. Therefore, they introduced an initial stress concept for the newly

incoming elements.

Williams et al. [60] simulated the 3-D DC casting of AA1201 alloy using a commercial

package ANSYS. They used a modified Perzyna type viscoplastic law for the prediction

of mechanical behavior of solid and mushy phases. They also incorporated the liquid

flow. The material hardening effects and the initial free surface filling are not included in

their model. They reported extremely higher values of stresses due to the inappropriate

material model. Therefore, it is highly important to incorporate a proper material model.

Drezet and Rappaz [15] and Katgerman and coworkers significantly contributed in the

field of DC casting modeling.

Kaymak [78] investigated the development of residual stresses in a solid material

subjected to quenching. In his work, the curvature of the quenched object is treated as a

measure of distortion. To achieve this, a 2-D finite element model is developed using an

elastic-plastic material model with isotropic hardening. He investigated the solid-solid

phase transformation which generally occurs in steel. The thermal and metallurgical

fields are decoupled within the time step. This may not be the case in liquid-solid

phase transition problems due to the domination of latent heat release. He proposed

the optimum cooling strategies to reduce the distortion and residual stresses [39, 79, 38].

With an enhanced cooling at the mass lumped region, and reduced cooling at the edges

or less mass concentrated area, it is possible to reduce the residual stresses. His work is

considered as a basis for the current investigation about the DC casting.
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Material characterization

Magnin et al. [80] performed tensile tests on an Al–4.5%Cu alloy in order to determine the

rheology and ductility over a wide range of temperature moving from the room tempera-

ture to the dendiritic coherency temperature. Based on their experimental observations,

they come up with an elasto-viscoplastic law

σ = K (ε̇p + ε̇po)
m (εp + εpo)

n (1.6)

where K,m, and n are material parameters which are strongly dependent on temperature,

εp and ε̇p are the plastic strain and plastic strain rate, and εpo and ε̇po are the small constant

plastic strain and strain rate respectively. Suyitno et al. [56] used the same law for the

solid phase and proposed a different constitutive law for the mushy phase which is similar

to the Garafalo law. However, they incorporated the solid fraction in the constitutive

law of mushy which is not the case for the Garafalo law. According to them,

σ = σ̃o e(α̃fs) e(
mQ
Rθ )ε̇m (1.7)

Drezet and Rappaz [15] used the Garafalo law for the solid phase and Norton-Hoff law for

the mushy phase. They investigated the AA1201 alloy and predicted the butt curl, butt

swell and rolling faces inward pull-in. M’Hamdi et al. [81] used a complex viscoplastic

law with more material parameters.

Depending on the fraction of liquid, the behavior of semisolid materials under stress

has been described with rheological or creep-type laws. The critical temperature sepa-

rating these two behaviors is defined as the dendrite coherency temperature. Above this

temperature, the dendrites are free to move, and the material behaves as non-Newtonian

viscous slurries. Just below the dendrite coherency temperature, the dendrites are in close

proximity and interact as soon as a strain is applied. This causes the material to behave

as a mush exhibiting a yield stress above which plastic flow occurs by grain boundary

sliding [1].

Considering that a continuous domain of liquid exists in the mushy interval giving the

possibility of sponge like behavior. Nguyen et al. [82] developed a two-phase isothermal

model based on the theory of mixtures and the mechanics of continuous media. The

model is able to characterize the compressibility and the hardening/softening behavior of

the porous solid phase saturated with liquid, but fails to describe the tension-compression

asymmetry representative of a real sponge like behavior when large strains are applied.

Benke and Laschet [83] experimentally investigated the behavior of A356 semi-solid

alloy in tension, compression, and shear during equiaxed solidification. Their model is
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based on the theory of porous media for a binary porous medium taking into account the

mass exchange between the solid and the liquid due to the progressing solidification.

1.6.3 Hot tearing and cold cracking

A hot tear is a fracture formed during solidification due to the shrinkage and the hindered

contraction, lack of feeding, and it initiates in the mushy zone [84]. Because of the

complex mechanisms acting during the solidification of metals, the prediction of the hot

tearing phenomenon is not an easy task. The complex nature of mushy properties adds

additional difficulties while incorporating these in a hot tearing model. Therefore, it is

important to understand the different stages of solidification before addressing the hot

tearing theories. Suytino [5] categorized the alloy solidification process into four stages,

based on the permeability of the solid network:

1. Stage–1: Mass feeding, in which both liquid and solid are free to move.

2. Stage–2: Interdendritic feeding, in which the remaining liquid has to flow through

the dendritic network. After the dendrites have formed a solid skeleton, the re-

maining liquid has to flow through the dendritic network. A pressure gradient may

develop across the mushy zone by solidification shrinkage occurring deeper in the

mushy zone. However at this stage the permeability of the network is still large

enough to prevent pore formation.

3. Stage–3: Interdendritic separation, in which the liquid network becomes fragmented

and pore formation or hot tearing may occur. With increasing solid fraction, the

liquid is isolated in pockets or immobilized by surface tension. When the permeabil-

ity of the solid network becomes too small for the liquid to flow. Further thermal

contraction of the solid will cause pore formation or hot tearing.

4. Stage–4: Interdendritic bridging or solid feeding, in which the ingot has developed

a considerable strength and solid-state creep compensates further contraction. At

the final stage of solidification (fl < 0.1), only isolated liquid pockets remain and

the ingot has a considerable strength. Solid-state creep can now only compensate

solidification shrinkage and thermal stresses.

At present, there are 8 hot tearing theories existing, and the detailed review of the

related works can be found in Eskin et al. [85]. Generally, these theories can be classified

based on nonmechanical aspects such as feeding behavior and mechanical aspects. A

short description of the nonmechanical criteria are given below:
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1. Feurer’s criterion [86]: Feurer considers the transition from the second to third

stage to be important for determining whether hot tears may initiate or not. The

transition point is strongly dependent on the feeding pressure, length of porous net-

work, volume fraction of liquid, dendrite arm spacing, tortuosity constant, viscosity

of liquid, and density of solid and liquid. He stated that a hot tear occurs when

the maximum volumetric flow rate through a dendritic network is lesser than the

volumetric solidification shrinkage due to the density difference.

2. Clyne and Davies criterion [87]: Apart from the second and third stages, Clyne

and Davies considered other transitions also in their criterion. In the last stage of

solidification, it is difficult for the liquid to move freely so that the strains develop

during this stage cannot be accommodated by mass and liquid feeding. Based

on this, they defined the hot tearing susceptibility (HTS) as the vulnerable time

period (tV ) and the time available for the stress-relief process where mass feeding

and liquid feeding occurs (tR) and is given as

HTS =
tV
tR

=
t0.99 − t0.9

t0.9 − t0.4

(1.8)

where t0.99,t0.9, and t0.4 are the times when the solid fraction reach 0.99, 0.9, and

0.4 respectively. Due to the usage of constant values of the solid fraction for the

transition limits, the influence of other parameters is neglected. This criterion is

the simplest one to implement when compared to others.

3. Katgerman’s criterion [88]: Katgerman combined the Feurer and Clyne and Davies

criteria, and defined the HTS as,

HTS =
t0.99 − tcr
tcr − tcoh

(1.9)

where tcoh is the time to reach coherency point, and tcr is the time when feeding

becomes inadequate. Generally, tcr is computed based on the Feuer’s criterion. This

criterion is based on the first three stages of solidification.

The mechanical criteria are based on the rheological behavior of the mushy phase and its

short descriptions are given below:

1. Prokhorov’s criterion [89]: In this approach, hot cracking sensitivity is determined

by the shrinkage and apparent strain rate in the mush in relation to the fracture

strain.

2. Novikovs criterion [90]: According to this theory, hot cracking sensitivity is deter-

mined by shrinkage strains in the mush in relation to the fracture strain of the
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mush.

3. Magnin et al. criteria [91]: It is based on the strain experienced during solidification

in relation to the fracture strain in the last stage of solidification. The HTS is taken

as the quotient of the circumferential plastic strain(εp
θθ) at solidus temperature and

the experimentally determined fracture strain (εfr) close to the solidus temperature.

Thus, the sensitivity is taken as

HTS =
εp
θθ

εfr
(1.10)

This is also one of the simplest mechanical criterion. Even without the normaliza-

tion with εfr, according to this theory, it can be possible to say in which case hot

cracks most likely occur.

4. Rappaz-Drezet-Gremaud (RDG) criterion [92]: According to them, the hot tear

will form if the depression pressure in the mushy (ΔP ) exceeds the critical depres-

sion pressure (ΔPcr). The depression pressure is the sum of pressure due to the

solidification shrinkage, deformation induced flow and metallostatic pressure.

5. Braccini et al.criterion [93]: They defined a critical strain rate which is used to

represent the measure of the hot cracking sensitivity.

Suyitno et al. [84] extensively studied all the above mentioned existing criteria and

discussed their finite element implementations. They analyzed all the criteria based on

the following four aspects:(a) casting speed, (b) ramping procedure, (c) billet center, and

(d) whether crack will form or not. And found that none of the eight criteria are able

to correctly predict whether hot tear during DC casting will occur. The RDG criterion

shows the greatest potential in this regard when used on a qualitative base. Further,

they rated the different casting speed profiles based on the following parameters: (a)

sump depth, (b) mushy zone length, and (c) stress near the mushy zone. Eskin and

Katgerman [94] emphasized the importance and requirement for a hot tearing criteria.

Farup and Mo [95] presented a two-phase continuum model for an isotropic mushy zone.

They mentioned that due to the higher pressure in the solid phase than the liquid phase,

tensile stress is necessary for the formation of hot tears. The hot tearing susceptibility

increases with an increasing solidification interval and casting speed.

Paramatmuni at el. [96] studied the cracking resistance of Al2024 (AlCuMg) and

Al3002 (AlMnMg) alloys and the microstructures formed at different locations of the

ingot. Using the quench-cracking tests, they found that the increase in solidification rate

increases the cracking resistance and decreases the grain size. This is due to the less
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number of grain boundaries along which the crack has to pass resulting in absorption of a

smaller amount of cracking energy, and thus the crack can easily pass through the coarse

and continuous eutectic phases along the grain boundaries leading to an intergranular

fracture. Conversely, the grain size and fraction of eutectics decreases when the cracking

resistance increases.

Lalpoor et al. [97] investigated the microstructural features of intergranular brittle

fracture and cold cracking in high strength aluminum alloys. It occurs mainly because

of the continuous coverage of the grain boundaries and intergranular areas by brittle

intermetallics and non-equilibrium eutectics formed at final stages of solidification. Weak

bonding to the matrix and cleavage are the main reasons for the abrupt fracture, and

brittle intermetallics are covering the fracture surfaces entirely. On the microscopic scale,

however, micro cracks may form above the solidus temperature and preferably propagate

through the intermetallics, making a river-like pattern. Thus they may not eventually

get aligned normally to the maximum principal stress component, which is required for

their propagation and eventually catastrophic failure.

The effect of porosity on hot tearing was investigated by Phillion et al. [98] using

a semi-solid tensile deformation methodology combined with X-ray micro-tomography.

They conducted tests on the commercial aluminum–magnesium alloy AA5182 in the

as-cast state. With the help of hot isostatic pressing, they found that the semi-solid

tensile strength and ductility of the material can be increased by reducing the number

of pre-existing nucleation sites for strain accommodation. Further, they showed that the

failure in this material is localized to the fracture surface with very little internal damage

occurring in other areas.

M’Hamdi et al. [99, 81] made a comparison of experimental observations and computer

simulations and showed that the trends in the occurrence and severity of center cracks in

the DC cast ingots for the different casting speed profiles and explained using the changes

in viscoplastic strain rate at the center. They investigated 5 different casting trials and

demonstrated the importance of ramping. Further, they computed the pressure drops

in the mushy zone using a simple model and showed that the mechanical contribution

is larger than the shrinkage contribution during the critical stage of solidification. Their

investigations are based on the following parameters: (a) strain accumulation in the

vulnerable period, (b) stress in the normal direction of crack propagation, and (c) strain

rate. In their later work [18], they proposed a new hot tearing theory based on the

effective tearing strain known as accumulated viscoplastic strain in the vulnerable part

of the mushy zone which exceeds the critical value.

Wu [100] argued that the major reason for the surface cracks in DC casting is the

improper cooling given by the mold region. The air gap arises from the tendency of the
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solidified shell to be pulled inward as a result of the contraction in the solidified ingot.

The contraction stress and the metallostatic pressure may cause solidified shell cracking.

Mao et al. [101] presented a fracture mechanics approach for the prediction of quench

cracks. They found that the higher cooling rate results in lower cracking toughness under

the same grain size structures. Martin et al. [102] investigated the fracture behavior in

tension of the viscoplastic porous metal saturated with the liquid. Further, they extended

their work [103] for the rheological behavior of mushy zone with moderate fraction of the

solid. Lahaie and Bouchard [104] gave the importance of isothermal compressibility of

the liquid phase for the formation of hot tears, and explained the need for the fracture

based hot tearing theory. Due to the brittle nature of the mushy phase, once hot tear

occurs, propagation of the crack will follow catastrophically until fracture.

Spittle and Cushway [105] reported that the increase in melt superheat increases the

HTS based on the investigation of Al-Cu alloys. Eskin et al. [106] experimentally studied

the effects of melt temperature and casting speed on the structure and defect formation

during start-up and pseudo steady state phases of DC casting of an Al-2.8%Cu alloy.

They varied the melt temperature from 660oC to 715oC. Increase in melt superheat in-

creases the probability of bleed-outs during casting, deepens the sump, and results in

the formation of a coarser structure. An increase in casting temperature decreases the

vulnerability of the billet to hot tearing. This contradicts the work of Spittle and Cush-

way. Eskin et al. argued that the hot cracks are gradually substituted in the structure

by microcracks, healed cracks, and pores. They mentioned that the increase in melt tem-

perature increases the severity of subsurface segregation, whereas the macrosegregation

in the rest of the billet remains virtually unaffected. Further, they reported that HTS is

strongly diminished by an increased melt superheat.

1.6.4 General aspects of DC casting

Drezet and Rappaz [15] predicted the ingot distortion using ABAQUS. They investigated

the AA1201 alloy and optimized the shape of the mold. Specifically, they investigated

the butt curl, butt swell and lateral faces inward pull-in. However, they did not discuss

about the stress and viscoplastic strain evolutions. The material data for the present

investigation are taken from this work. Suyitno [5] presented an FE model for the DC

casting of round billet. They reported that during the start-up phase, all components

of stresses in the mushy zone are tensile except the axial component. Further, they

evaluated all the existing hot tearing criterion.

Mortensen [6] has presented a three-dimensional mathematical model for the transient

evolution of the heat and fluid flows in DC casting of an AA1050 sheet ingot. His model

is able to predict the complicated thermal history of the ingot in the start-up period of
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the casting. The fluid flow has been shown to have a significant effect on how the solid

shell solidifies against the bottom block and the mold.

Sengupta [62] conducted a 3-D simulation of DC casting using ABAQUS. He mainly

focused on the thermal part of DC casting. Two different start-up conditions based on

the secondary cooling are discussed in his work such as cold cast and hot cast. In the hot

cast, a larger portion of the secondary cooling is subjected to film boiling, and therefore

water ejection happens. The ingot is extremely hot during the hot cast. In the case of

cold cast, the conditions are reversed and the billet is relatively colder. Based on the

experimental results, they reported that the butt curl is higher in the cold cast than the

hot cast. However, the information about the secondary cooling for the cold and hot cast

are not explained except the water ejection phenomena. Further, they did not attempt

the mechanical and hot crack part of the DC casting.

From the above-mentioned literature, it can be concluded that the influence of casting

speed profile and melt superheat are investigated by several authors. However, very few

authors focused their attention near the mushy zone. The mushy state of metal is the

most important region in DC casting where the chances are high for the formation of

hot tears. Further, the influence of secondary cooling parameters and its related studies

are nowhere reported. Therefore, this work is dedicated to theoretically investigate the

influence of casting speed profile, secondary cooling parameters, and melt superheat. The

primary attention is focused on the mushy zone. From the stress and strain development

near the mushy zone, the chances of hot tear formation are discussed in this work.

1.7 Thesis outline

Chapter 2 is dedicated to address the solidification problem. The mathematical formula-

tion and the solution methodology are discussed in detail. To incorporate the pure metal

solidification, more attention is devoted to the computational aspects of the problem. To

validate the developed model, two different isothermal solidification problems are solved

and the results are compared with the literature. The interfacial heat transfer is also

addressed. In Chapter 3, the inverse problem associated with the secondary cooling of

DC casting is investigated through the experimental observation of hot plate quenching.

A mathematical formulation and the non-iterative solution procedures are discussed in

detail. Two different materials such as nickel and aluminum alloy are investigated. The

influence of water flow rate on the boiling curve is demonstrated through the combined

experimental and finite element solutions.

The mechanical aspects of DC casting are discussed in Chapter 4. Two different types

of inelastic strains and its time integration procedures are explained. The contact between
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the interface materials are addressed. The importance of rate-dependent plastic behavior

of metals are illustrated through the examples. Finally, an example thermo-mechanical

problem is solved using the elastic-plastic and elastic-viscoplastic material laws and the

results are compared. In Chapter 5, the simulation results of DC casting are presented.

The problems associated with the start-up phase of DC casting is investigated through

a constant casting speed of 120 mm/min. The influence of the casting speed is studied

through different casting speed profiles and constant casting speeds. The influence of

secondary cooling and other casting parameters are discussed.

1.8 Summary

The direct chill casting process is explained. Start-up and end phases of DC casting

strongly depends on time. Primary, secondary, and bottom block are the three zones

through which the ingot loses the heat. The air gap in the primary and bottom block

zones significantly reduces the heat transfer. The importance of aluminum alloys and

its classifications are addressed. The objective of this work is to develop a numerical

model which can simulate the transient start-up phase of DC casting. The attention is

focused on the temperature evolution and residual stress development. The assumptions

of thermal and mechanical models are discussed. The importance of interfacial heat

transfer and contact conditions are emphasized. The existing DC casting models are

reviewed briefly.
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Chapter 2

Modeling of Solidification Problem

This chapter presents the solidification model and its numerical solution techniques. A

general governing differential equation is developed and then simplified according to the

assumptions. The fixed grid method follows. The liquid phase is treated as a fictitious

solid. The liquid flow and convection is neglected. The weak form of energy equation

is derived using the variational principles. A temperature-based finite element technique

is developed. The backward Euler time difference method is used to discretize the rate

equation in time direction. The computational difficulty of isothermal phase-change is

explained in detail. A line-search algorithm is introduced during the Newton’s iterations.

Two numerical examples are presented and the results are compared with the literature.

This chapter is formulated based on the published work of Nallathambi et al. [107].

2.1 Definition

Let an open bounded domain Ω ⊂ Rnd (nd = 1,2,3) be the configuration of a solidifying

material body B with particles defined by �X ∈ Ω̃0, Γ = ∂Ω its smooth boundary and

the time interval of analysis t ∈ Υ (Υ ⊂ R
+). As usual, Ω̃ = Ω∪Γ and Γ = Γθ ∪Γq. The

solidification problem consists of finding the absolute temperature field θ : Ω̃ × Υ→ R+

such that [24]

−∇ · �q + ρ rq + Dmech = ρ
∂u

∂θ

(
∂θ

∂t
+∇θ · �v

)
in Ω̃ × Υ (2.1)

subject to the boundary conditions

θ = θ̄ in Γθ × Υ (2.2)

�q · �n = −qconv − q̄ in Γq × Υ (2.3)
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and the initial conditions

θ( �X, t)|t=0 = θ0( �X) in Ω (2.4)

fpc( �X, t)|t=0 = 1 in Ω (2.5)

�v( �X, t)|t=0 = 0 in Ω (2.6)

Eq. (2.1) represents the energy balance of a continuum heat conductor. Where �q is the

heat flux vector, ρ is the mass density, rq is the specific internal heat source, Dmech is the

heat dissipation due to mechanical deformation, u is the specific internal energy, and �v

is the velocity vector.

The first term in Eq. (2.1) is due to the heat conduction. The heat flux can be related

to the temperature gradient through the well known Fourier’s law of conduction as

�q = −K · ∇θ (2.7)

where K is the temperature-dependent conductivity second-rank tensor. As a conse-

quence of the second law of thermodynamics, this tensor must be positive semidefinite.

For an isotropic heat conductor, K can be reduced to k I.

The second term in the energy equation arises due to the internal heat generation.

The third term arises due to the mechanical dissipation. If the heat conducting body is

not assumed as a rigid one, the energy dissipation due to mechanical deformation has to

be taken into account in the energy balance. The mechanical dissipation can be stated

as

Dmech = T : Ė
ie

(2.8)

where T is the Cauchy’s stress tensor and, Ė
ie

is the inelastic strain rate tensor. This

is the only term which couples the mechanical field with the thermal field. In this kind

of solidification problems, due to the domination of latent heat effect, this term becomes

insignificant.

Eq. (2.2) represents the temperature prescribed essential boundary condition (EBC)

on Γθ, and Eq. (2.3) is the heat flux specified natural boundary condition (NBC) on Γq

with unit outward normal �n. Heat flux can be applied in two ways: (a) q̄ is the prescribed

normal heat flux and (b) qconv is the heat flux due to convection-radiation phenomena.

From Newton’s law of cooling,

qconv = −h (θ − θ∞) (2.9)

where h is the temperature-dependent convection-radiation heat transfer coefficient
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(HTC) and θ∞ is the atmospheric temperature.

The three initial conditions considered are: (a) θ0( �X) is the initial temperature, (b)

fpc is the liquid phase fraction which is taken as one, and (c) zero initial velocity �v. The

liquid flow field is not considered in this work. For the sake of completeness of the model,

it is presented here.

The right hand side of the energy equation represents the rate of change of internal

energy of the heat conducting body with respect to time. The rate of change of internal

energy with respect to the temperature, represents the specific heat capacity. The ma-

terial time derivative / total time derivative of temperature can be decomposed into (a)

partial time derivative of temperature and (b) convective derivative of temperature. In

this work, the liquid metal is treated as a fictitious solid and the velocity field is not taken

in to account. According to this assumption, the convective terms in the right hand side

can be neglected. Therefore, the rate of change of internal energy with respect to time

can be simplified as,

ė = ρ
∂u

∂θ

∂θ

∂t
(2.10)

The latent heat release during the phase-change can be incorporated in the specific in-

ternal energy term as in [24]

u =

∫ θ

θref

Cp dθ + L fpc (2.11)

where θref is the reference temperature, Cp is the specific heat capacity at constant

pressure, L is the latent heat per unit mass.

The phase-change problem can be classified as (a) isothermal phase-change and (b)

non-isothermal phase-change. During the isothermal phase-change, based on the temper-

ature or the liquid fraction at every material point, the domain of the heat conducting

body (Ω) can be decomposed into a liquid region (Ωl) and a solid region (Ωs) as shown

in Fig. 2.1(a). The non-overlapping domain condition, Ω = Ωl ∪ Ωs has to be consid-

ered. The line which separates the two phases is called phase front on which the latent

heat is released. The temperature of the phase front is exactly equal to the solidification

temperature (θs = θl = θm) and the following Stefan condition should be satisfied on the

phase front as

ks ∇θs · �ns + kl ∇θl · �nl − ρ L �vp · �nl = 0 (2.12)

where ks, θs, and �ns are the solid thermal conductivity, solidus temperature, and the

unit outward normal vector on the solid domain nearby the phase front, respectively.

Similarly, kl, θl and �nl are the same fields for the liquid domain. In Eq. (2.12), �vp is the

phase front velocity. The liquid phase fraction for the isothermal phase-change case can
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Figure 2.1: Domain of the heat conductor

be represented as

fpc(θ) =

{
1, θ > θm on Ωl

0, θ ≤ θm on Ωs

(2.13)

Eq. (2.13) indicates the Heaviside step function H(θ − θm) which is schematically repre-

sented in Fig. 2.2(a).

fpc
1 1

fpc
1 1

0 0
m s l

(a) (b)
Figure 2.2: Phase-change function for: (a) isothermal case and (b) non-isothermal case

In non-isothermal phase-changes, there exists a mushy zone on which the phase frac-

tion varies from zero to one, separating the liquid and solid domain as shown in Fig. 2.1(b).

As usual, Ω = Ωl ∪ Ωm ∪ Ωs. The phase fraction for the non-isothermal case can be

stated as

fpc(θ) =

⎧⎪⎨
⎪⎩

1, θ > θl on Ωl

0 < g(θ) ≤ 1, θs < θ ≤ θl on Ωm

0, θ ≤ θs on Ωs

(2.14)

where g(θ) is the phase-change function which can be derived from the phase change

kinetics. There are lot of choices for the selection of this function. A simple approximation
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for this function is a linear one (Fig. 2.2(b)), given as

g(θ) =
θ − θs

θl − θs
, θs < θ ≤ θl (2.15)

where θs is the solidus temperature and θl is the liquidus temperature.

For the isothermal case, Eq. (2.11) shows that the specific internal energy presents a

discontinuity across the moving interface. This fact makes the problem highly non-linear.

For the non-isothermal case, it can be observed that the latent heat effect appears only

in the domain of mushy zone (Ωm). In the solid and liquid regions, the classical definition

of the specific heat capacity, i.e. Cp = ∂u
∂θ

is recovered because the temperature derivative

fpc is zero in those regions for both cases.

After simplification and substitution of Eq. (2.11), and Eq. (2.7) in Eq. (2.1), the final

form becomes

∇ · (k∇θ) + ρ rq = ρ

(
Cp + L

∂fpc

∂θ

)
θ̇ (2.16)

Eq. (2.16) is the final form of the Governing Differential Equation (GDE) for the

phase-change problem using the effective heat capacitance method [24]. The GDE with

initial and boundary conditions of the solidification problem can be summarized as

GDE: ∇ · (k∇θ) + ρ rq = ρ
(
Cp + L ∂fpc

∂θ

)
θ̇ in Ω̃ × Υ

EBC: θ = θ̄ in Γθ × Υ

NBC: �q · �n = −qconv − q̄ in Γq × Υ

IC: θ( �X, t)|t=0 = θ0( �X) in Ω

2.2 Solution Methodology

In general, the closed form solutions for the non-linear problems is highly difficult and

almost impossible. Therefore, one has to choose an efficient numerical solution procedure

which can handle the non-linearity issues in an easy manner. The well established numer-

ical techniques are the finite volume method, finite element method, boundary element

method, meshless methods, etc. The Finite Element Method (FEM) is employed for

the numerical solution of the GDE because of its robustness. From the GDE, the weak

form is derived using the variational principles. The weak form of GDE is discretized by

large number of elements where the field variable is represented in terms of nodal values

using an appropriate shape functions. The element matrices and vectors are assembled

according to the nodal connectivities to get the global matrices and vectors.
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2.2.1 Weak form

For an arbitrarily chosen temperature distribution θ̃, the thermal equilibrium condition in

Eq. (2.16) has to satisfy the following integral based on the virtual temperature principle

as ∫
Ω

[
∇ · (k∇θ) + ρ rq − ρ

(
Cp + L

∂fpc

∂θ

)
θ̇

]
θ̃ dΩ = 0 (2.17)

By using the property of the divergence operator,

∇ ·
(
θ̃ k∇θ

)
= (k∇θ) · ∇θ̃ +∇ · (k∇θ) θ̃ (2.18)

Therefore, Eq. (2.17) can be written as

∫
Ω

[
∇ ·

(
θ̃ k∇θ

)
− (k∇θ) · ∇θ̃ + ρ rq θ̃ − ρ Cp θ̇ θ̃ − ρ L

∂fpc

∂θ
θ̇ θ̃

]
dΩ = 0 (2.19)

Unlike the EBC, the NBC has to be incorporated in the formulation itself. The EBC

are applied at the end before solving the global algebraic equations. Applying the Gauss

divergence theorem on the natural thermal boundary condition Eq. (2.3), the first term

in Eq. (2.19) becomes,

∫
Ω

[
∇ ·

(
θ̃ k∇θ

)]
dΩ =

∫
Γq

[
�n ·

(
θ̃ k∇θ

)]
dΓq =

∫
Γq

[qconv + q̄] θ̃ dΓq (2.20)

substituting Eq. (2.20) in Eq. (2.19) and becomes

∫
Ω

[
(k∇θ) · ∇θ̃

]
dΩ +

∫
Ω

ρ Cp θ̇ θ̃ dΩ +

∫
Ω

ρ L
∂fpc

∂θ
θ̇ θ̃ dΩ = · · · (2.21)∫

Γq

[qconv + q̄] θ̃ dΓq +

∫
Ω

ρ rq θ̃ dΩ

where it should be noted that in the isothermal phase-change case, the temperature

derivative of fpc is equal to Dirac delta δ(θ−θm) function. For the sake of computational

simplicity, ∂fpc

∂θ
θ̇ is replaced by ∂fpc

∂t
. After the substitution of Newton’s law of cooling,

the final weak form of GDE becomes,

∫
Ω

[
∇θ̃ · (k∇θ)

]
dΩ +

∫
Ω

ρ Cp θ̃ θ̇ dΩ +

∫
Ω

ρ L
∂fpc

∂t
θ̃ dΩ + · · · (2.22)∫

Γq

h θ̃ θ dΓq =

∫
Γq

h θ∞ θ̃ dΓq +

∫
Γq

q̄ θ̃ dΓq +

∫
Ω

ρ rq θ̃ dΩ

This weak form automatically cancels the Stefan condition Eq. (2.12) especially for the

fixed domain methods. Eq. (2.22) has to be satisfied over the entire domain and sub-
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domains like liquid, solid and mushy for an arbitrary temperature distribution θ̃.

2.2.2 Finite Element Technique

The entire domain can be decomposed into an assemblage of finite elements. Over each

element, the temperature field is interpolated from the nodal temperatures. Using a

standard FEM as in [108], the nodal temperature and the gradient of temperature for a

typical element can be given as

θe = NT Θe = ΘeT N

∇θe = BT Θe = ΘeT B (2.23)

where the subscript e denotes the eth element and Θe is the vector of all nodal point

temperatures of the eth element with n-nodes. N and B are functions of local co-ordinates

and known as the shape function vector and gradient operator, respectively. Therefore,

the weak form of a single element becomes

∫
Ωe

[
Θ̃eT B k BT Θe

]
dΩe +

∫
Ωe

[
Θ̃eT ρ Cp N NT Θ̇e

]
dΩe + · · ·∫

Ωe

[
Θ̃eT ρ L

∂fpc

∂t
N

]
dΩe +

∫
Γqe

[
Θ̃eT h N NT Θe

]
dΓqe = · · · (2.24)∫

Γqe

[
Θ̃eT h θ∞ N

]
dΓqe

∫
Γqe

[
Θ̃eT q̄ N

]
dΓqe +

∫
Ωe

[
Θ̃eT ρ rq N

]
dΩe

After arranging the terms, the total potential to be minimized can be written as

Φe
(
Θ̃e
)

= Θ̃eT Fe − Θ̃eT Ke Θe − Θ̃eT Ce Θ̇e − Θ̃eT L̇e (2.25)

where the element matrices and vectors are

Ke =

∫
Ωe

B k BT dΩe +

∫
Γe

q

h N NT dΓe
q

Ce =

∫
Ωe

ρ Cp N NT dΩe

Le =

∫
Ωe

N ρ L fpc dΩe (2.26)

Fe =

∫
Ωe

N ρ rq dΩe +

∫
Γe

q

N h θ∞ dΓe
q +

∫
Γe

q

N q̄ dΓe
q

From the element quantities, the global matrices and vectors can be obtained based
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on the element-nodal mappings. Therefore, the total global potential can be written as

Φ
(
Θ̃
)

= Θ̃T F − Θ̃T K Θ − Θ̃T C Θ̇ − Θ̃T L̇ (2.27)

where K is the global thermal conductance matrix, C is the global capacitance matrix,

L is the global latent heat vector, F is the global force vector, and Θ is the global nodal

temperature vector. From the total potential, the residual vector (R) can be obtained as

R =
∂Φ

∂Θ̃
= F − K Θ −C Θ̇ − L̇ (2.28)

At a finite time, there exist a unique temperature profile for which the residual vector

becomes zero and it becomes

K Θ + C Θ̇ + L̇ = F

Due to the presence of time derivatives, a proper time integration is required to solve this

equation. Before solving this equation, EBC has to be imposed which can be implemented

by eliminating corresponding rows and columns.

2.2.3 Iterative incremental scheme

The rate equation can be integrated using an Euler backward method for obtaining the

unconditionally stable numerical scheme. Assume Θn is the known temperature vector

at time tn which is the previous time step. Similarly, Θn+1 is the current time step

(tn+1 = tn + Δt) temperature vector and Δt is the time interval. The time derivative of

temperature and latent heat vector can be approximated as

Θ̇n+1 =
Θn+1 −Θn

Δt
and L̇n+1 =

Ln+1 − Ln

Δt
(2.29)

The residual vector at the current time step can be written as

R
(
Θn+1

)
= F Δt + C Θn − (Ln+1 − Ln

)− (C + K Δt) Θn+1 (2.30)

This equation is implicit and highly non-linear in nature. Therefore, an iterative scheme

is required to solve this system of equations. To recover the quadratic convergence,

Newton-Raphson method is adopted. The temperature at the (i + 1)th iteration can be

written as

Θn+1
i+1 = Θn+1

i + δΘ (2.31)
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where Θn+1
i is the previous iteration temperature and δΘ is the current iterative-increment

temperature. Therefore, Eq. (2.30) can be modified as

R
(
Θn+1

i

)
= F Δt + C Θn − (Ln+1

i − Ln
)− (C + K Δt) Θn+1

i (2.32)

Using a Taylor series expansion of the residual vector without higher order terms,

Rn+1
i+1 = Rn+1

i +
∂Rn+1

i

∂Θn+1
i

dΘ + · · · (2.33)

∼= Rn+1
i + J(Θn+1

i ) δΘ + · · ·

Therefore, the Jacobian matrix can be derived as

J
(
Θn+1

i

)
=

∂R

∂Θ

∣∣∣∣
n+1

i

= − K Δt −C − ∂L

∂Θ

∣∣∣∣
n+1

i

(2.34)

where the derivative of the latent heat vector with respect to the temperature is denoted

as phase-change matrix Cpc as in [24]. The elemental form of the phase-change matrix is

given as in [24]

Ce
pc =

∂L

∂Θ
=

∫
Ωe

N ρ L
∂fpc

∂θ
NT dΩe (2.35)

For the isothermal phase-change case, the temperature derivative of the phase fraction

0 +_

(a) (b)(a) (b)
Figure 2.3: Derivative of phase-change function with respect to temperature: (a) isother-
mal case and (b) non-isothermal case (linear phase-change function)

function fpc becomes the Dirac delta function δ(θ − θm) as shown in Fig. 2.3(a). The

infinite slope at the phase-change temperature increases the computational difficulty of

isothermal case. In contrast to isothermal, a finite slope is obtained for the non-isothermal

phase-change as shown in Fig. 2.3(b). To recover the numerical stability, the derivative

of the phase fraction with respect to temperature at every iteration is calculated as in
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[24]

∂fpc

∂θ

∣∣∣∣
n+1

i

=
fpc

n+1
i − fpc

n

θn+1
i − θn

and
∂fpc

∂θ

∣∣∣∣
n+1

1

= 0 (2.36)

The error in the evaluation of ∂fpc

∂θ
, forces the Jacobian matrix becomes an approximate

one. This can be compensated by the exact evaluation of the residual vector R. Finally,

the incremental temperature vector can be calculated from the Jacobian Eq. (2.34), by

forcing the residual vector Eq. (2.33) to reach zero as

δΘ = − [
J
(
Θn+1

i

)]−1
R(Θn+1

i ) (2.37)

The convergence criteron at the current iteration is evaluated using the current temper-

ature vector, the residual vector, and the conductance matrix as stated in [24]

RT R

(KΘ)T (KΘ)

∣∣∣∣
n+1

i+1

< ε (2.38)

where ε is the computational zero and taken as 10−3. The above mentioned iterative-

increment scheme can be summarized as:

1. Set Θn+1
1 = Θn, Ln+1

1 = Ln, i = 1.

2. Compute Kn+1
i ,Cn+1

i , Ce
pc

n+1

i
, Ln+1

i and Fn+1
i

3. Assign: Mn+1
i = Kn+1

i Δt + Cn+1
i

4. Rn+1
i = Fn+1

i Δt + Cn+1
i Θn + Ln − Ln+1

i − Mn+1
i Θn+1

i

5. Jn+1
i = Mn+1

i + Ce
pc

n+1

i

6. Find δΘ =
(
Jn+1

i

)−1
Rn+1

i

7. Update Θn+1
i+1 = Θn+1

i + δΘ, i = i + 1

8. Check convergence criteria using Eq. (2.38).

9. If step.8 is true goto step.1 else goto step.2.

2.3 Computational difficulty

Non-isothermal phase-change problems are relatively simpler than the isothermal phase-

change problems. The major reason for the simplicity is due to the continuity of fpc

and ∂fpc

∂θ
with respect to the temperature. Therefore, the latent heat vector and matrix

can be easily evaluated for the non-isothermal phase-change problems without much

difficulties (even for a linear phase-change function). When the phase-change interval

decreases, the computational difficulties increase. If the interval reaches zero, the problem

becomes isothermal phase-change and the temperature-based methods fail to converge to

the solution due to the local exchange of field variable from temperature to enthalpy [34].
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This fact can be clearly understood through the following example.

Let us consider a one-dimensional isothermal solidification with equal solid-liquid

material properties (ρs = ρl = ρ, Cps = Cpl = Cp, ks = kl = k), the GDE Eq. (2.16)

can be reduced as

k
∂2θ

∂x2
= ρ Cp

∂θ

∂t
+ ρ L

∂fpc

∂t
= ρ

∂h(θ)

∂t
(2.39)

where h(θ) is the enthalpy of the solidifying body which can be defined as a function
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Figure 2.4: Isothermal phase-change (Knoll et al., 1999) (a) Enthalpy as a function of
temperature and (b) Temperature as a function of enthalpy

of temperature as h = Cp θ + fpc L. Eq. (2.39) is known as the temperature form

of the energy equation. The main difficulty with this temperature form is evident in

Fig. 2.4(a), where a pure-material enthalpy-temperature relation is depicted. It is clear

that there exists a range of possible values for h at θm, i.e., there is not a unique h(θm).

The temperature version of the energy equation at the front is therefore ill-posed because

h(θm) is not single-valued. At the front, θ is constant and fpc is a function of enthalpy

through the relationship h −Cp θm = fpc L. This non-uniqueness is avoided in standard

implicit methods by fixing the temperature θ at θm , whereby the energy equation is solved

for fpc with the time derivative of temperature set to zero. This is equivalent to solve

the energy equation for h at the front. Substituting h − Cp θm = fpc L in Eq. (2.39)

making ∂θ
∂t

= 0, the energy equation at the front becomes [34],

k
∂2θ

∂x2
= ρ

∂h

∂t
(2.40)

This represents a local exchange in dependent variables at the front from θ to h, and

requires one to fix the front position over a nonlinear iteration within a time step [34].
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This artificial fixing of the front position may restrict the time step size for the nonlinear

convergence and accuracy. In employing enthalpy as the dependent variable on the entire

grid, we need to evaluate θ as a function of h, which is depicted in Fig. 2.4(b) for a pure

material. Here we can clearly see that temperature is a unique, single-valued function of

enthalpy form. Due to this fact, the isothermal phase-change problems are formulated

in the enthalpy. But most of the commercial FE codes are based on the temperature-

based formulation. Therefore, we need to develop a proper numerical algorithm which

can handle the isothermal phase-change problem without much difficulty.

In this work, the temperature is chosen as a dependent variable and during the isother-

mal phase-change, the above-mentioned difficulty is handled by means of approximating

the Heaviside and Dirac delta functions. fpc (Heaviside function as shown in Fig. 2.2(a))

and ∂fpc

∂θ
(Dirac delta function) are approximated for the isothermal phase-change by

fpc = lim
a−→0

1

π
tan−1

(
θ − θm

a

)
+

1

2
(2.41)

∂fpc

∂θ
= lim

a−→0

a

π

1

a2 + (θ − θm)2 (2.42)

where a is the numerical zero. For two different values of a, the Heaviside and the Dirac

delta functions are plotted in Fig. 2.5. The physical meaning of this type of approximation

is simply to introduce an artificial phase-change interval, which is a reasonable assumption

if we choose a very small value of a in Eq. (2.41) and Eq. (2.42).
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Figure 2.5: Liquid phase fraction function for an isothermal phase change: (a) Heaviside
function and (b) Dirac delta function

Further, the non-convergence in Newton’s iteration occurs for the phase-change prob-

lems with lower Stefan number. The Stefan number (St) is defined as the ratio of specific

heat to the latent heat. Irrespective of the formulation, for the lower Stefan number

problems the Newton’s method produces divergence. This issue is addressed in the next

53



section.

2.4 Line-Search Algorithm

One more computational difficulty in the phase-change problem is mentioned as follows:

If θn+1 is not in the neighborhood of θn, the classical Newton iterative method fails

to converge. Therefore, a line-search algorithm is introduced to recover the quadratic

convergence of Newton iterations. The FEM attempts to minimize the total potential Φ

which is defined as

Φ (Θ) = ΘT F − ΘTK Θ − ΘT C Θ̇ − ΘT L̇ (2.43)

From the total potential Φ, as explained in Section 2.2.3, the residual vector R, the

Jacobian matrix J, and the iterative-increment temperature vector ΔΘ can written as

R =
∂Φ

∂Θ
; J =

∂2Φ

∂Θ2
and δΘ = −J−1R

Instead of updating the temperature vector as given in Eq. (2.31), the modified temper-

ature update in every iteration can be given by

Θn+1
i+1 = Θn+1

i + η δΘ (2.44)

where η is the scalar multiplier which is generally known as step length. When the η

reaches unity, the classical Newton method is recovered. We use the Taylor expansion

about the solution at η as in [26]

Φ (η + δη)|n+1
i+1 = Φ (η)|n+1

i+1 +
∂Φ

∂Θ

∂Θ

∂η
δη + · · ·

= Φ|n+1
i+1 + δΘT R (η) δη + · · · (2.45)

To reach a stationary value at η, we need

s (η) = δΘT R (η)
∣∣n+1

i+1
= 0 (2.46)

The physical meaning of Eq. (2.46) is that the search direction (ΔΘ) and the residual

vector are orthogonal to each other as in [25]. One has to find the step-size η which

minimizes s(η) within the iteration loop. Assuming i + 1 as the current iteration, m

is the line-search index, δΘ = δΘn+1
i+1 is the fixed search direction with in the current
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iteration, the following quantities can be computed as in [25]

m←− 1, η1 ←− 0, r1 =
s1

s1
= 1, s1 = δΘT R

(
Θn+1

i

)
m←− 2, η2 ←− 1, r2 =

s2

s1

, s2 = δΘT R
(
Θn+1

i + δΘ
)

It is assumed that r2 is always less than r1. The approximate value of η can be calculated

using linear interpolation and extrapolation until the convergence criterion of r < 0.8

gets satisfied. Due to the severe non-linear nature of the s, a highly efficient algorithm is

required to avoid dangerous extrapolations as mentioned in Crisfield [26]. The different

types of interpolation and extrapolation operations which arises during the line-search are

schematically shown in Fig. 2.6. Fig. 2.7 represents the Crisfield’s line-search algorithm.

The line search parameters are set as follows: ηmaxa = 20, ηmina = 0, amp = 10, and ct

= 0. The algorithm is as follows
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Figure 2.6: Possible choices of interpolation and extrapolation during line-search (Cr-
isfield, 1991)

• Step–1: If ct > 2, end the line-search loop, else go to Step–2.

• Step–2: Using linear interpolations / extrapolations, find a minimum η, η− for

which r should be negative. If negative r− exists for η−, goto Step-3 else goto

Step–4.

• Step–3: Find a largest η, η+ for which r is positive (r+) and also η+ should be less

than the previous positive r, r+. Perform interpolation between η+ and η− and
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named as ηa. Calculate ηb = η+ + 0.2(η−− η+). Set ηm+1 = max(ηa,ηb), ct = ct+1,

m = m + 1. Goto Step–1.

• Step–4: Find a maximum previous η and named as ηmaxp. Extrapolate between ηm

and ηm−1 and store in ηm+1. If ηm+1 <0 or ηm+1 > amp×ηmaxp, change ηm+1 as

amp×ηmaxp. Set ct = ct+1, m = m+1. Goto Step–1.

If ct<2 ENDNOA

Perform interpolation and find
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, r
YES
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Figure 2.7: Line-search Algorithm (Crisfield, 1991)

The computational cost of performing a line-search in every Newton iteration is very

high. Therefore, one has to check whether the line-search is required for the current

iteration or not through checking the value of r. If the absolute value of r exceeds

0.8, performing a line-search significantly improves the Newton iteration. During the

line-search, the element matrices have to be calculated more often, which increases the

computational cost.

2.5 Element computations

When compared to 3-D analysis, 2-D analyses are simpler and the results can be inter-

preted easily. Therefore, a generalized 2-D element is developed which can handle the
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following phase-change problems: (a) plane problems and (b) axisymmetric problems.

Using an isoparametric element formulation, the global co-ordinates of the element and

the temperature inside the element can be give as

{x y} = NT {X Y} and θe = NT Θe (2.47)

where N is the shape function vector, {X Y} is the element nodal co-ordinates matrix in

which X and Y are nodal x and y co-ordinates vector, Θe is the element nodal temperature

vector. The shape function vector for a 4-noded quadrilateral element as

N =
1

4

{
(1+ξ)(1+η)
(1−ξ)(1+η)
(1−ξ)(1−η)
(1+ξ)(1−η)

}
(2.48)

where ξ and η are the local co-ordinates as shown in Fig. 2.8. Using the chain rule of
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Figure 2.8: 4-noded quadrilateral element: (a) parent element and (b) typical element

differentiation,

{
∂
∂ξ

∂
∂η

}
=
{

∂
∂x

∂
∂y

}[ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=
{

∂
∂x

∂
∂y

}
J̃ (2.49)

where the Jacobian matrix J̃ is defined as

J̃ =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=

{
∂N
∂ξ

∂N
∂η

}T

{X Y} (2.50)
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The temperature gradient can be represented as

∇θe =
{

∂θe

∂x
∂θe

∂y

}
=

{
∂
∂x

∂
∂y

}T

NT Θe

= J̃−T
{

∂N
∂ξ

∂N
∂η

}T

Θe (2.51)

= BT Θe

where B is the derivative of shape function with respect to global co-ordinates and also

known as gradient operator of size 4× 2

B =
{

∂N
∂ξ

∂N
∂η

}
J̃−1 (2.52)

In 2-D finite elements, the infinitesimal volume for the volume integrals is obtained by

multiplying the area with the thickness in the perpendicular direction,

dΩe = b dx dy = b
∣∣∣J̃∣∣∣ dξ dη (2.53)

Similarly, the infinitesimal area for the surface integrals is

dΓe =

⎧⎪⎪⎨
⎪⎪⎩

b

(√
J̃(1, 2)2 + J̃(2, 2)2

)
dη on faces 1 & 2

b

(√
J̃(1, 1)2 + J̃(2, 1)2

)
dξ on faces 3 & 4

(2.54)

the scalar b in Eq. (2.53) and Eq. (2.54) can be defined as

b =

{
b real thickness if plane case

x radius if axisymmetric (1 rad is considered)
. (2.55)

The faces define the four boundaries of the element. According to the node numbering

in Fig. 2.8, the left and right sides are called faces 1 and 2, and top and bottom sides are

called faces 3 and 4, respectively.

2.6 Thermal interface

Generally, the solidifying substance known as casting is kept inside a mold. It is im-

portant to account the heat transport from the casting to the mold. During the time

of contact, the heat transfer between the surfaces takes place through heat conduction.

However, in the later stages, there is an air gap which exists between these two surfaces.

Therefore, a jump or discontinuity in the temperature profile occurs due to the lower
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thermal conductivity of air. The interfacial heat transfer can be simply idealized as a

pure convection and the energy balance at the interface can be given as,

�qc · �nc = �qm · �nm = hint (θc − θm) (2.56)

where the subscripts c and m denotes the casting and mold, and hint is the temperature or

gap-dependent interfacial heat transfer coefficient (IHTC). In the finite element aspect,

this equation can be easily incorporated as an additional conductance matrix. A typical

4-noded interfacial element is shown in Fig. 2.9. Therefore, the interfacial conductance

Figure 2.9: Thermal interface element

matrix is explicitly given as in [27],

Kint =
b hint Lele

6

⎡
⎢⎢⎢⎢⎣

2 1 −2 −1

1 2 −1 −2

−2 −1 2 1

−1 −2 1 2

⎤
⎥⎥⎥⎥⎦ (2.57)

where Lele is the length of interfacial element, and b is defined in Eq. (2.55).

2.7 Numerical results

The developed temperature-based finite element technique is applied to two different

isothermal solidification problems. Firstly, a one dimensional solidification of a semi

infinite slab is analyzed for the validation, checking the accuracy and computational

advantages of the numerical technique. Due to the low Stefan number, the line-search

algorithm plays a crucial role in this problem. Secondly, an isothermal solidification of

aluminum in a permanent steel mold is considered. The interface between the mold and
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casting is modeled by the introduction of an additional conductance matrix along with

the regular matrices.

Table 2.1: Material properties for 1-D isothermal phase-change problem

Density (ρs = ρl) 1 kg/m3

Thermal conductivity (ks = kl) 1.08 W/mK
Specific heat capacity (Cps = Cpl) 1 J/kgK
Latent heat (L) 70.26 J/kg
Phase-change temperature (θm) -0.1 oC
Initial temperature (θo) 0.0 oC

2.7.1 Isothermal solidification of 1-D bench-mark problem

A bench-mark isothermal phase-change problem of a 1-D semi-infinite slab with St =

0.625 is considered [109, 24, 25]. As specified in [24, 25], 32 equally spaced 4-noded

rectangular elements of 0.125 m width (Fig. 2.10) and time step Δt = 0.2 s are used.

The material properties are given in Table. 2.1. The dimensionless temperature of the

problem is defined as in [25]

θ∗ =
θo − θm

θm − θw
= 2× 10−3 (2.58)

The Stefan number governs the temperature gradient discontinuity, while the dimension-

less temperature is related to the magnitude of this gradient next to the wall. The solution

process performance uses to deteriorate when St or θ∗ decreases. The Stefan number is

also a measure of the solid-liquid interface velocity. A smaller value of St indicates that

the interface movement will be slower due to the large amount of latent heat [27]. The

above-mentioned values lead to a critical circumstance wherein enthalpy models fail to

converge. This problem is frequently analyzed in the literature for checking the efficiency

of the computation technique.

0.125 m width

Insulated NBC

Insulated NBC

4 m length Insulated NBC

Insulated NBC
32 elements, 66 nodes

Figure 2.10: 1-D semi infinite slab: Domain with boundary conditions
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Figure 2.11: 1-D semi infinite slab: (a) temperature evolution at x = 1 m and (b)
temperature distribution at t = 4 s

The temperature evolution at x = 1 m is shown in Fig. 2.11(a). The temperature

distribution at t = 4 s, and the phase front evolution are shown in Fig. 2.11(b) and

Fig. 2.12(a), respectively. Here, the line-search loop plays an important role. Without

the line-search loop, the solution never converges how small the time step size might be.

Fig. 2.12(b) shows the number of iterations, and the number of times the line search

loop is executed in every time step for the same meshing and time step. It is observed

that for every time step, an average of 8.1 iterations are carried out, and an average of

4 line-search loops out of 8.1 iterations for the convergence of the solution as shown in

Fig. 2.12(b). Within the line search loop, the element matrices are computed at an average

of 3–5 times. Therefore, the computational cost is high, but for this kind of isothermal

solidification problems with a low Stefan number, it is unavoidable. Further, without the

help of line search algorithm, it is almost impossible to use the temperature-based FE for

the isothermal solidification problems with a low Stefan number.

2.7.2 Isothermal solidification of aluminum in a steel mold

A cylindrical casting of pure aluminum in a steel mold is analyzed. The dimensions of

the mold and casting and its finite element mesh is shown in Fig. 2.13. Due to low

St, an artificial phase-change interval of 3oC is introduced, and a relatively higher time-

step interval (2.5 Sec) is used to obtain the solution. Nishida et al. [110] experimentally

measured the interfacial HTC and air gap. Celentano et al. [24] solved the thermal part

of the same problem and verified their results with a temperature-dependent interfacial

HTC. Further, Celentano et al. [51] extended their model with a gap-dependent interfacial

HTC. Therefore, a comparison between the experimental results, the present formulation,
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Figure 2.12: 1-D semi infinite slab: (a) interface evolution and (b) number of iterations
and mean line search per iteration

and the results of Celentano et al. is made. The parameters used in this problem are

given in Table. 2.2. The top of the casting and outer boundaries of mold are assumed to

be perfectly insulated. An elastic-plastic material model with a frictionless contact model

is used to solve the displacement field which is explained in Chapter 4. The bottom of

the mold is fixed and the casting is free to move axially upward.

At the interface, coincident nodes are considered. The computational procedures to

calculate the gap between the interface nodes are given in Chapter 4. The interface

HTC is computed based on Eq. (1.2). The evolution of temperature at the four different

locations (Fig. 2.13) taken in the middle cross-section is shown in Fig. 2.14(a). The release

of latent heat at the center of the casting is clearly visible because the temperature at that

location remains in isothermal phase-change temperature for a period of 15 s. During

this period, the inner surface of the mold suddenly get heated upto 340oC. Due to high

heat transfer at the surface of the casting, the solidification starts from the casting-mold

interface and proceeds toward center. After 15 s, the air gap forms between the surfaces,

and the HTC decreases drastically. Therefore, the slope of the casting temperature curve

decreases. Due to the existence of the air gap, the mold inner surface temperature reaches

a steady state much faster. However, the temperature at the outer surface of the mold

increases gradually.

The results are in good agreement with the experimental results of Nishida et al.

However, the present method slightly over predicts the temperature of the casting after

40 s. Due to the very low Stefan number for the first 7 time steps, the convergence

is achieved at an average of 8.2 iterations and 4 local line-search iterations, which are

similar to the previous problem. The evolution of the air gap between the points B and

C is given in Fig. 2.13. Even though the results agree with Celentano et al., due to the
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Table 2.2: Parameters used in solidification of pure aluminum inside a steel mold (Celen-
tano et al. 1996)

Aluminum Steel

Density(kg/m3) 2650 7850
Latent heat (kJ/kg) 395.1 —
Melting temperature (oC) 660 —
Specific heat capacity (J/kgK)

≤ 100 oC 955.2 552.3
200oC 995.4
300oC 1036.0
400oC 1077.8
500oC 1118.0
≥600oC 1158.5 552.3

Thermal conductivity (W/mK)
≤ 100oC 234.3 45.6

200oC 225.9
400oC 221.8
600oC 217.6

659.9oC 209.2
660.1oC 92.0
>800oC 96.2 45.6

Young’s modulus (GPa)
25 oC 69.3 194
800 oC 35.4 194

Poissons ratio 0.37 0.30
Coefficient of thermal expansion

(×10−6 /oC)
25oC 23.19 12
300oC 27.86
400oC 30.23

659.9oC 30.36
660.1oC 30.12 12

Yield stress (MPa)
25oC 49.3 210
660oC 0.01 210

Hardening modulus (GPa) 0 0

Initial casting temperature – 670oC
Initial mold temperature – 200oC

HTC at contact condition(hc) – 2929 W/m2K
Contact normal stiffness(kn) – 1×1012 MPa/m
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Figure 2.13: Pure aluminum solidification in steel mold (Celentano et al., 1996): FE mesh

(a) Temperature (b) Air gap

Figure 2.14: Pure aluminum solidification in steel mold (Celentano et al. 1996): (a)
temperature evolution at different locations and (b) evolution of air gap

inappropriate material model (elastic-perfectly plastic), the experimental results are not

matching with the simulation results.
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2.8 Summary

The phase-change phenomenon is modeled and the computation techniques are explained

in detail. A temperature-based fixed grid finite element method is developed for the

phase-change problem. While solving the energy equation, the temperature is treated

as a dependent variable instead of enthalpy. Even though, the enthalpy-based methods

handle the isothermal phase-change problems more efficiently, when it comes to problems

with a low Stefan number, it produces numerical oscillations during the Newton’s iter-

ations. The difficulty associated with the isothermal phase-change problem is explained

in detail. A temperature-based formulation along with the line-search algorithm handles

the isothermal phase-change problems with a low Stefan number in an efficient man-

ner. Two different isothermal phase-change problems are solved for the validation of the

model. The results of numerical examples show that the developed solidification model

and the numerical method followed are strong enough to handle any kind of isothermal

phase-change problem. With this notion, the solidification of DC casting can be easily

solved with out any modifications.
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Chapter 3

Inverse Problem

In Direct Chill (DC) non-ferrous metal casting, water is used as a cooling medium to ex-

tract the heat from the solidified outer layer of the ingot which supports the inner molten

metal. This chapter presents the combined experimental and numerical technique to esti-

mate the heat flux in the secondary cooling region of DC casting. The secondary cooling

in DC casting is similar to the quenching of hot plate by an array of jets. Experimental

techniques are explained for the measurement of temperature. A two-dimensional Inverse

Heat Conduction Problem (IHCP) is solved by the non-iterative finite element method

using the experimental temperature data. The wetting front which separates the film

boiling and nucleate boiling zone, changes the order of the heat flux. Maximum heat flux

position and its propagation velocity are plotted as a function of time. It is demonstrated

that the water velocity and the maximum heat flux are not having a linear relationship.

This chapter is formulated based on the published work of Nallathambi and Specht [111].

3.1 Secondary cooling in DC casting

In DC casting, heat transfer from the molten metal to the cooling water takes place

through the outer solidified layer as show in Fig. 3.1(a). The outer solid layer which is

in direct contact with cooling water, plays a major role for the ingot quality. Therefore,

proper understanding of the heat transfer mechanism in the outer solid layer is required.

Performing experiments at the real time DC casting plant is highly difficult and also

expensive. Reproducing the similar operating conditions in a simplistic way will eliminate

the intricacies in the experimentation of DC casting plant. Therefore, water quenching

of a thin hot rectangular plate made of DC casting material from higher temperature is

introduced to mimic the real time cooling of DC casting outer solid layer.

When the hot solid surface is exposed to the cooling water, there can be two different

identifiable zones: (a) wet zone and (b) dry zone. The heat transfer mechanism in these
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Figure 3.1: Secondary cooling in DC casting

two zones are entirely different. In the wet zone, water wets the surface of the solid,

nucleate and transition boiling, and forced convection heat transfer dominates. During

the nucleate boiling, the heat flux reaches the maximum. In the case of the dry zone,

film boiling dominates and a thin film of water vapor is formed on the surface of the

solid and it acts like an insulator which reduces the heat transfer. A visible thin wetting

front separates these two regions, and within this front, the heat flux reaches its global

maximum [112]. Also, this wetting front propagates in the coolant flow direction with a

certain velocity.

A large number of researchers studied the quenching of hot plate, and some of the

important related works are reviewed briefly: Elias and Yadigaroglu [113] developed an

analytical one-dimensional model for the rewetting of a hot plate and predicted the wet-

ting front velocity. They emphasized the importance of axial heat conduction. The limits

of the unsteady-state quenching method was discussed by Peyayopanakul and Westwa-

ter [114]. Carbajo [115] conducted a detailed study on the rewetting temperature and

critically reviewed the existing models. Surface effects in boiling heat transfer have been

studied by Roy Chowdhury and Winterton [116], and Shoji et al. [117]. The influence of

plate thickness on the boiling curve was carried by Westwater et al. [118] and stated that

if the thickness of the plate is too small, the estimated critical heat flux will also be too

small. Guo and El-Genk [119], and El-Genk and Guo [120] conducted experiments on

the inclined surfaces with a downward flow and reported that the nucleate boiling heat
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flux decreases as the angle of inclination is increased. Further, El-Genk and Glebov[121]

studied the influence of curved surfaces and proved that through the curved surface, heat

extraction can be maximized. Klinzing et al. [122] developed the film and transition boil-

ing correlations for quenching of hot surfaces with water sprays. El-Genk and Guo[123]

performed the sensitivity analysis and shown that the thermal diffusivity of the material

has strong influence on the pool boiling curve. Without the help of precision experimental

instrumentations, it is almost impossible to capture the influence of the kind of coolant,

coolant flow characteristics, and surface condition of the specimen on the wetting front

movement. Jeschar et al. [124] reported that there is no correlation between the water

quality and the cooling process. Hall et al. [125, 126], and Mozumder et al. [127] studied

the quenching of metals by an impingement of jet, and Puschmann et al. [128] performed

experiments on spray quenching.

The pioneering work in water cooling of DC casting was done by Wiskel and Cock-

croft [69, 70], Drezet et al. [59], and Zuidema et al. [129]. In contrast to the present

observation about nickel plates, Wells et al.[130] observed the increase in heat flux when

the water flow rate increases, and also studied the influences of surface morphology and

starting temperature in DC aluminum casting. Mozumder et al. [131] studied the delay

of wetting front propagation during jet impingement quenching and concluded that the

value of maximum heat flux is 5–60 times higher than the heat transfer value just before

the wetting front movement. Recently, Akmal et al. [132] studied the influence of initial

surface temperature, water temperature and jet velocity on curved surfaces exposed to

an impinging water jet.

The estimation of Heat Flux (HF) demands the solution of the IHCP [133]. Using the

Laplace transform, Monde [134] solved the inverse heat conduction problem analytically

for a one-dimensional (1-D) heat conductor. Ijaz and coworkers [135] have presented an

adaptive state estimator for the estimation of input heat flux and measurement sensor bias

in two-dimensional (2-D) inverse heat conduction problems. Continuous-time analogue

Hopfield neural network based inverse solution algorithm has been proposed by Deng and

Hwang [136]. The conjugate gradient method for the estimation of the surface heat flux

has been used by Huand and Wu [137] and Xue and Yang [138]. A non-iterative least

square minimization technique along with FEM proposed by Ling et al. [29] simplifies

the inverse problem computation and produces consistent results.

In this work, the heat flux leaving from the water quenched rectangular plate as

a function of space and time is estimated using the combined experimental and finite

element technique through the inverse analysis. Ling et al.’s non-iterative technique is

used to solve the inverse problem. The location of Maximum Heat Flux (MaxHF) is

identified and plotted as a function of time. The effect of water velocity on the surface
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heat flux is analyzed and it is demonstrated that the increase in water velocity always

may not increase the surface HF.

3.2 Experimental arrangements

Moving
Arrangement

Water Nozzle 
Head

Metal Sheet
Furnace

Water 
flow

Arrangement

Data

Infrared camera

PumpData
acquisition

Pump

Figure 3.2: Experimental arrangement for water quenching of hot plate

The experimental arrangement for the quenching of the hot plate is shown in Fig. 3.2.

There are three major groups of components in this arrangement: (a) furnace unit, (b)

temperature data acquisition unit and (c) quenching unit. In the furnace unit, the sample

(rectangular plate) is electrically heated into the higher temperature before quenching.

There are provisions in the furnace, to set the final temperature of the plate. The infrared

camera is used for measuring the surface temperature of the plate from its back side. The

infrared camera has a lot of advantages over the other temperature measuring instruments

like thermocouple. Before heating the plate in the furnace, it is prepared with one side

black coating which improves the emissivity of the plate. The emissivity of the coating

has to be determined for the calibration of the infrared camera. The temperature change

in the plate can be sensed by the infrared camera and the complete quenching program is

recorded in the data acquisition system. The frequency of the infrared camera is 150 Hz

and it can measure the temperature with an accuracy of ± 0.1 K. The measurement

range of the infrared camera for this experimental setup is 50–650oC.

The quenching unit has two important components: nozzle head with moving arrange-

ments and hydraulic pump. Totally 10 orifices are provided in the nozzle head and it is

attached with a moving arrangements. The nozzle head delivers the jets of coolant with

an inclination of 45o to the sample. The details of the nozzle head are as follows: the

dimensions are 200 mm × 125 mm × 100 mm, the size of the single orifice is 4.78 mm, the
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distance between two orifices is 10 mm, the orifices are provided in the 125 mm side, and

the head is made up of aluminum alloys with a wall thickness of 10 mm. The horizontal

distance between the sample and the nozzle head is 23 mm, and the nozzle head is located

vertically 20 mm from the top of the sample. Only 8 out of 10 orifices are allowed to

supply the coolant. Otherwise, the coolant will flow on the backside of the plate which

might affect the temperature recordings in the infrared camera. A hydraulic pump with

a flow regulating device delivers the cooling water to the nozzle head. The nozzle head

supplies the cooling water to the hot rectangular plate. De-ionized water is used as a

coolant, and supplied with a constant temperature of 20oC.

3.3 Mathematical formulation

In the case of Direct Heat Conduction Problem (DHCP), the boundary conditions are

well known and one has to solve the Governing Differential Equation (GDE) to find

the interior domain solution. In the Inverse Heat Conduction Problem (IHCP), the

boundary conditions are unknown, and some part of the domain solution is known through

experiments. Using this experimental temperature data, it is required to solve the GDE

for the estimation of the boundary conditions. The FEM is used to solve the IHCP using

experimental data and DHCP temperature solution. In this section, the mathematical

aspects of the DHCP and IHCP are explained separately in detail.

3.3.1 Direct Heat Conduction Problem (DHCP)

As discussed in the solidification problem, the metal quenching problem consists of

finding the absolute temperature field θ : Ω̄ × Υ→ R+ such that [24]

∇ · k∇θ = ρ cp θ̇ in Ω × Υ (3.1)

subject to the boundary conditions

θ = θ̄ in Γθ × Υ (3.2)

k∇θ · �n = q in Γq × Υ (3.3)

and the initial condition

θ( �X, t)|t=0 = θ0( �X) in Ω (3.4)

Eq. (3.1) represents the energy balance obtained from the first law of thermodynamics

and Fourier’s law of heat conduction, where ρ is the density, cp is the specific heat

70



capacity, and k is the thermal conductivity which are functions of temperature, and q

is the temperature and space dependent normal heat flux due to convection-radiation

phenomenon.

Applying the variational principle and Euler backward time difference method as

discussed in the solidification problem, the final form of the FEM equation at the current

time step n + 1 is given as [139]

(C + Δt K) Θn+1 = C Θn + Δt Fn+1 (3.5)

where the capacitance matrix (C), the conductance matrix (K) and the force vector (F)

are given in elemental form as

Ce =

∫
Ωe

ρ cp N NT dΩe

Ke =

∫
Ωe

B k BT dΩe

Fe =

∫
Γe

q

N q dΓe
q (3.6)

3.3.2 Inverse Heat Conduction Problem (IHCP)

Let an interior of the domain Ω bounded by the curve Γ = Γθ ∪ Γq, where Γθ is the

temperature described boundary, and Γq is the unknown heat flux boundary due to the

water cooling. Using the standard finite element discretization technique, the convective

heat flux vector q̃n+1 at the current time step on the boundary Γq is represented as

q̃n+1 =
[
q̃n+1

1 , q̃n+1
2 , · · · , q̃n+1

J

]T
(3.7)

where J is the total number of nodes on Γq. In order to determine the vector q̃n+1, we

assume that instantaneous time-varying temperature measurements, Ỹn+1, are available

at I measurement site nodes

Ỹn+1 =
[
Ỹn+1

1 , Ỹn+1
2 , · · · , Ỹn+1

I

]T

(3.8)

where I is the total number of nodes on the measurement site. The objective of the

IHCP is to estimate the surface heat flux at the quenched site using the measurement

site temperature data. Assume that Θ̃n+1 is the calculated temperature vector using

inverse FEM at the I measurement site nodes. Therefore, the instantaneous error norm

is defined as in [29]

S = (Ỹn+1 − Θ̃n+1)T (Ỹn+1 − Θ̃n+1) (3.9)
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Using a non-iterative technique proposed by [29] while minimizing the error norm with

respect to the surface heat flux ( ∂ S/∂ q̃ = 0, called as matrix normal equation), yields

the sensitivity coefficient matrix X̃ as in [29]

X̃ij =
∂θ̃n+1

i

∂q̃n+1
j

(3.10)

where superscript on X̃ij is suppressed. Exploiting the advantage of FEM, the force

vector as mentioned in Eq. (3.5) and Eq. (3.6) is modified as in [29]

Fn+1 = D̃ q̃n+1 + c (3.11)

where c is determined by the known temperature distribution on Γθ and D̃Pj =

∂ Fn+1
P /∂ q̃n+1

j , is a constant matrix of dimension N × J . N is the total number of

nodes on Ω̄, and P is the global node number. From the DHCP (Eq. (3.5)), the temper-

ature vector is rewritten as in [29]

Θn+1 = Ψn + Δt U Fn+1 (3.12)

Ψn and U in Eq. (3.12) is given as in [29]

U = (C + Δt K)−1

Ψn = U C Θn (3.13)

Substituting Eq. (3.11) in Eq. (3.12), the measurement site calculated temperature vector

Θ̃n+1 is given as in [29]

Θ̃n+1 = Ψ̃n + Δt Ũ [D̃ q̃n+1 + c ] (3.14)

where ŨiP = UGP and Ψ̃n
i = Ψn

G are mapped from the global nodes to the nodes on

the quenched boundary Γq. The sensitivity coefficient matrix is explicitly rewritten from

Eq. (3.10), and Eq. (3.14)

X̃
n+1

= Δt Ũ D̃ (3.15)

Finally, from the minimization of the error norm, the unknown surface heat flux is given

as

q̃n+1 =
(
X̃

T
X̃
)−1

X̃
T
( Ỹn+1 − Ψ̃n − Δt Ũ c ) (3.16)

The inverse solution algorithm is summarized as follows: (i) Θn, C, K and c are known

from the previous time step. Ỹn+1 is the known current experimental temperature vector.
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Using these quantities, q̃n+1 can be determined from Eq. (3.16). (ii) the force vector

Fn+1 has to be determined using the current q̃n+1 according to the relation given in

Eq. (3.11). (iii) the global temperature vector Θn+1 can be determined by substituting

Fn+1 in Eq. (3.12).

3.3.3 Element computations

The computation of the conductance and capacitance matrices and force vector are as

similar to the solidification problem. The only unknown matrix to be addressed in the

inverse problem is the D matrix. It can be defined as the derivative of the force vector

with respect to the nodal heat flux vector. Assuming c = 0, the force vector can be

written as

Fn+1 = D qn+1 = D̃ q̃n+1 (3.17)

from D and q, D̃ and q̃ can be computed from the global to local mappings as explained

before. In Eq. (3.6), the element force vector can be modified by substituting the unknown

heat flux q as q = NT qe and becomes

Fe =

∫
Γe

q

N NT qe dΓe
q (3.18)

where qe is the element unknown nodal heat flux vector. Now the element form of D

matrix can be given as

De =
∂Fe

∂qe
=

∫
Γe

q

N NT dΓe
q (3.19)

This matrix becomes constant due to the absence of material properties. This can be

easily computed without much difficulty.

3.4 Quenching of nickel plate

A rectangular nickel plate (pure nickel - Ni200) having the geometry and constant material

properties as given in Table. 3.1 is heated to an initial temperature of approximately

600oC and is quenched by the cooling water with two different velocities and flows are

as follows: 1 m/s with 517 litre/hr, and 1.5 m/s with 777 litre/hr. The effective length

(Lm) of the plate considered for the analysis is 156 mm, and 44 mm is allowed for the

water jet to strike the plate parallel to its length as shown in Fig. 3.3.

To evaluate the heat flux, the non-iterative FEM method described in Section 3.3 is

applied to the 2-D structure as show in Fig. 3.3. It is assumed that there is no variation

in the cooling characteristics of the plate in the width direction. The 2-D model of
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Figure 3.3: Schematic representation of plate and finite element model

Table 3.1: Geometry and Material Details

Plate length Lp 200 mm
Width w 110 mm
Thickness h 2 mm

Nickel 200 Density ρ 8908 kg/m3

Thermal conductivity λ 90.9 W/mK
Specific heat cp 444 J/kgK

2×156 mm dimension having 4×67 elements is schematically represented in Fig. 3.3.

Apart from the quenched surface, all thermal boundaries are assumed to be insulated

for the sake of simplicity. A uniform time step of magnitude numerically equal to the

diffusive time of the structure is used and it is defined as in Ling et al. [29]

Diffusive time =
(Distance bet. measured & quenched surface)2

Thermal diffusivity
(3.20)

The diffusive time of the nickel plate considered for the analysis is 0.174 seconds which

is treated as a simulation time interval.
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3.4.1 Validation

Before examining the influence of water velocity, the accuracy of the developed inverse

algorithm, and the repeatability of the experimental setup are verified. To validate the

inverse FEM, the aforementioned material and the mesh is considered for the numerical

experiment. A temperature-dependent HTC is given as an input to the DHCP and the

temperature vector at the measurement site is estimated. Using this temperature history,

an IHCP is solved and the HTC as a function of the quenched surface temperature is

plotted at the center point as shown in Fig. 3.4. Due to the absence of noise in the input
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Figure 3.4: Validation of inverse algorithm: HTC vs. Temperature

temperature history, the estimated HTC profile exactly matches with the input profile.

It is impossible to perform the experiments, without the inherent noises. Therefore, a

random noise is artificially generated and added to the input temperature history as

in [29, 140]

noisyỸ
n+1

i = Ỹ
n+1

i + σ̄ ε̄n+1
i , and ε̄n+1

i =

12∑
j=1

RNj − 6.0 (3.21)

where RN is a random number uniformly distributed between 0 and 1, i is the measure-

ment site node index, and σ̄ is the noise controlling parameter. A noise with σ̄ = 1×10−3
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is introduced with the input temperature profile, and the solution of the IHCP is plotted

as shown in Fig. 3.4. Hernandez et al. [141] showed that filtering the raw experimental

data prior to the inverse analysis greatly improved the estimates of surface heat flux and

heat transfer coefficient. A simple noise filtering technique is developed, and the filtered

θ vs. HTC is shown in Fig. 3.4. The results show that, even for a very high noise, using

a filtering technique, the shape of the HTC profile is preserved but slightly under predict

the maximum input HTC.

The repeatability of the experiment is verified through the sequence of experiments,

and the temperature profiles at the center of solution domain (77 mm from top of solution

domain or 121 mm from top of the plate) at the central cross-section are plotted as

shown in Fig. 3.5. Three experiments were performed for each water velocity, and the

two experiments with similar temperature history are selected and averaged for further

processing.
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Figure 3.5: Repeatability of the experimental setup: Temperature profiles

3.4.2 Temperature profiles

The temperature profiles extracted at four different locations along the central line of the

plate are plotted as shown in Fig. 3.6. The solid line represents the water velocity of 1 m/s

and dashed line represents the water velocity of 1.5 m/s. At all locations (9, 56, 103, and

150 mm from the top of solution domain at central cross-section), the temperature of the
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lower velocity case decreases much faster than the higher velocity case. The temperature

profiles itself indicates the influence of coolant velocity on the cooling rate.

600
1 – 9mm from top
2 – 56mm
3 – 103mm

500
1 m/s

4 – 150mm

300

400

tu
re

 [o C
] 1.5 m/s

2 3 4

200

300

Te
m

pe
ra 1 2 3 4

100

200T

0 1 2 3 4 5 6 7
0

Ti [S ]Time [Sec]
Figure 3.6: Nickel: experimental temperature profile at center line

3.4.3 Estimated heat flux

The instantaneous heat flux distribution along the length of the plate for two different

velocities of water at two different time is represented in Fig. 3.7(a). Due to the presence

of noise in the experimental data, the vector regularization [133] is required to get a

reasonable heat flux profile. In this work, a simple three point averaging type of regular-

ization is carried out with giving more weight on the point at which heat flux is required.

From Fig. 3.7(a), it is observed that the heat flux attains a maximum at a particular

location and also its position shifts toward the bottom of the plate with respect to time.

This fact indicates that, while the cooling water flows along the length of the plate, the

wetting front which separates the film and nucleate boiling, moves continuously along

the water flow direction. Mozumder et al. [112] proved that the position of MaxHF lies

with in the wetting front. In this work, the wetting front position and the MaxHF po-

sition are assumed to be the same. At 1.7 s, the MaxHF (wetting front) for the lower

water velocity occurs at 0.06 m, and for the higher velocity the MaxHF occurs at 0.04 m.

Similarly at 3.5 s, the higher velocity MaxHF occurs at 0.07 m and the lower velocity
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Figure 3.7: Nickel: heat flux distribution

MaxHF occurs at 0.15 m. This result explicitly proves that the water velocity highly

influences the location of instantaneous MaxHF and its magnitude. Similarly, the heat

flux as a function of time at three different locations taken at the central cross-section

is shown in Fig. 3.7(b). For the lower velocity case, at the center point of the solution

domain, the heat flux reaches its maximum at 2.2 s, and for the higher velocity case the

maximum occurs at 4.3 s as shown in Fig. 3.7(b). But at the location of 37 mm from top

of solution domain, the heat flux for the higher velocity case reaches a maximum value

of 6.5 MW/m2 which is higher than the lower velocity case of 4.5 MW/m2.

3.4.4 Maximum heat flux propagation

When the wetting front starts moving, the surface temperature drops sharply, a conse-

quence of which the surface heat flux increases dramatically and the heat flux reaches

its maximum value [112]. Fig. 3.8(a) represents the position of MaxHF at different time

for the two different water velocities. In the initial stage, the higher water velocity curve

leads the lower velocity curve and afterward it always lags behind the lower velocity

curve. The wetting front reaches the bottom of the plate much faster in the case of the

lower water velocity. This fact can be further verified through the velocity of MaxHF

propagation.

To determine the MaxHF propagation velocity, the MaxHF position data are fitted

by the least-squares method to a suitable polynomial (as shown in Fig. 3.8(a) by a dotted

line) and then the polynomial equation is differentiated. Fig. 3.8(b) represents the MaxHF

propagation velocity as a function of time. Even though both the higher and lower water

velocity curves follow the same trend, their peaks and the time at which they reach this

78



0.14

0.16
1 m/s
1 5 m/s

0.12

0.14

m
]

1.5 m/s

0.08

0.1
po

si
tio

n 
[m

0.06

M
ax

H
F 

p

0.02

0.04

M

Trend line (7th order polynomial)

0 1 2 3 4 5 6
0

Time [Sec]Time [Sec]

(a) Propagation of MaxHF position

0 06

0.07

]

1 m/s
1 5 m/s

0.05

0.06

ci
ty

 [m
/s

] 1.5 m/s

0.04

tio
n 

ve
lo

c

0 02

0.03

pr
op

ag
a

0.01

0.02

M
ax

H
F 

0 1 2 3 4 5 6
0

Time [Sec]Time [Sec]

(b) MaxHF propagation velocity

Figure 3.8: Nickel: propagation of MaxHF

peak vary drastically. This figure reveals the effect of water velocity on the MaxHF

propagation. The wetting front reaches the bottom of the plate at 3.6 s in the case of

1 m/s water velocity and for the water velocity of 1.5 m/s takes nearly 5.5 s. Increase in

water velocity delays the MaxHF propagation.

3.4.5 Surface heat flux vs. temperature

Increase in water velocity delays the MaxHF propagation. To understand this fact quan-

titatively, an attempt is made to plot the surface heat flux as a function of temperature

(boiling curve). For that, 20 mm left to the central line and 20 mm right to the central

line of plate is modeled along with the central line as shown in Fig. 3.3. From the above

three mentioned simulations, all nodes except 4 nodes in each end of the FEM mesh are

considered for the heat flux vs. temperature plot as shown in Fig. 3.9. A trend line has

been fitted for the two different velocities of water as shown in Fig. 3.10(a). The film

boiling (above 400oC), nucleate and transition boiling (190 - 400oC), and forced convec-

tion (below 190oC) regions can be easily recognized from the Fig. 3.10(a). Increase in the

water velocity, decreases the MaxHF. For water velocity of 1.5 m/s, the heat flux curve

shifts toward the lower temperature side and also shrinks when compared to the heat flux

curve for a water velocity of 1 m/s. The heat flux in the nucleate boiling and film boiling

zone is higher for lower water velocity. But in the forced convection zone, heat flux in

higher water velocity is greater than the lower water velocity case. Therefore, increase in

water velocity and flow does not increase the heat extraction from the hot surface. The

temperature at which the heat flux reaches a maximum value lies around 180–190oC, and

also its independent of water velocity [112]. Similar kind of results are reported in Li

and Wells [142]. However, Mozumder et al. [112] reported that the maximum heat flux
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occurs at 145oC. An attempt is made to plot HTC as a function of temperature as shown

in Fig. 3.10(b), and the maximum HTC occurs around 150–160oC.
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Figure 3.10: Nickel: Heat flux and HTC as a function of temperature

To further verify the potential of the inverse algorithm, HTC as a function of space

and time for the higher velocity case is plotted as shown in Fig. 3.11. This HTC history

is taken as a time-dependent convective boundary condition, the direct problem is solved

and the temperature profiles are compared with the experimental results as shown in

Fig. 3.12. The developed inverse algorithm predicts the temperature with an accuracy of

± 10oC.
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3.5 Quenching of aluminum plates

Similar to the nickel, quenching of aluminum plates (AA2024/AL2024) are investigated

for 4 different water velocities such as 0.9, 1.2, 1.5, and 1.8 m/s. The dimensions of

the plate, quenching unit, and other quenching parameters are the same as before. The

material properties of AA2024 are given in Table. 3.2. Initially, the plates are heated

up to 520oC. To study the influence of the water velocity, experiments are carried out

under almost similar quenching conditions except the water flow rate. To further ensure

the repeatability, several experiments are performed for the same water flow rate and the

temperature profiles are averaged.

Table 3.2: Aluminum AA2024 alloy - Material properties

Density 2770 kg/m3

Thermal conductivity 177 W/mK
Specific heat 875 J/kgK

The position of the wetting front / MaxHF is shown in Fig. 3.13. Completely opposite

behavior is observed. Here, the increase in water velocity increases the wetting front
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Figure 3.12: Verification of Inverse algorithm: Comparison of temperature profiles

movement. In the lowest velocity case (0.9 m/s), the wetting front movement is slower

than the others. Surprisingly, for the lower velocity cases (1.2 and 1.5 m/s), the maximum

speed of wetting front is observed. Further increase in water velocity, does not promote

the speed of the wetting front. Even though, in the case of 1.5 m/s, the speed of the

wetting front is relatively higher than the lowest water velocity case, it is much lower than

1.2 and 1.5 m/s. It indicates the fact that the relation between the water velocity and

wetting front movements are not exactly linear. However, at this moment, the physical

meaning behind this fact is not well understood.

The boiling curve for AA2024 is shown in Fig. 3.14. Here, the increase in water

velocity promotes the heat flux leaving on the surface of the plate. Fig. 3.14 shows

that the increase in water velocity expands the boiling curve. In all the velocities, the

maximum heat flux occurs at 180–185oC which is similar to that of nickel. Increase in

water velocity, significantly improves the film boiling and transition boiling. There is no

much difference observed in nucleate boiling zone. The maximum heat fluxes for all the

cases lie around 2.1–2.8 MW/m2 which is lower than the nickel.

The objective of this study is to get a HTC as a function of temperature. To achieve

this motive, the heat flux values are normalized with the surface temperature difference,
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and the HTC profiles are shown in Fig. 3.15. The LFP in the case of aluminum is

lower than the nickel and increases with increase in water velocity. In all the cases, the

maximum HTC is around 1.3–1.8 kW/m2K.
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Figure 3.15: Quenching of aluminum: HTC vs. temperature

3.6 Other considerations

The temperature dependency of the thermal properties has to be taken into account

which may significantly change the present observations. The wetting front and the

position of the maximum heat flux are assumed to coincide. The shape of the wetting

front along the width direction is assumed as straight. The influence of the water velocity

on the wetting front movement may not be linear, therefore more experiments have to

be done with different water velocities. The stability of the developed inverse algorithm

is not discussed in this article. The trend curve fitting in heat flux vs. temperature plot

(Fig. 3.9) is heuristic in nature. The increase in the cooling water temperature is not

taken in to account when computing the HTC. The initial temperature distribution of

the plates under different water velocities are not exactly equal. The experimental setup

does not mimic the secondary cooling of DC casting. Therefore, it may not be completely

applicable to the DC casting. In the case of DC casting, the liquid metal continuously

supply the heat, and the ingot moves with certain velocity. These effects are not taken

into account in the present analysis. Due to the limitations of thermography, it is not

possible to cover the entire zone of boiling. Therefore, the observations made on the film

boiling zone is not accurate.
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3.7 Summary

The experimental setup for studying the secondary cooling in DC casting is established.

Water is treated as a coolant and it is supplied through the nozzle head which can produce

a maximum of 10 jets. A rectangular plate with an initial temperature of 500–600oC is

quenched at the front side and the temperature of the plate at the back side is recorded

using an infrared camera. From the measured temperature, the heat flux is estimated by

solving the IHCP. A non-iterative finite element method developed by Ling et al. [29] is

employed to solve the IHCP. The accuracy of the inverse solution, and the repeatability

of the plant are verified. The influence of the cooling water velocity and the quantity

of flow on the heat flux is analyzed. It is observed that the increase in water velocity

and flow and the heat extraction from the hot surface is not linear. This fact is verified

through the maximum heat flux (MaxHF) propagation and its velocity on time. Increase

in water velocity may not always increase the MaxHF propagation and the MaxHF.

Nickel and aluminum plates are investigated, and the heat flux in the case of nickel is

3–4 times higher than the aluminum. Increase in water velocity promotes the film boiling

and increase the Leidenfrost point.
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Chapter 4

Modeling of Displacement Field

In DC casting, the liquid metal is solidified under strong thermal gradients. During the so-

lidification, the material develops stress and strain due to the nonuniform thermal forces.

This chapter presents the mathematical modeling of displacement field. The finite ele-

ment method is used to solve the momentum equation. Small deformation theory is used.

The strain tensor is additively decomposed into elastic, thermal and inelastic strain ten-

sors. Elasto-plastic and elasto-viscoplastic constitutive relations are implemented. Two

numerical examples are presented for the validation of finite element solution approach.

4.1 Mathematical formulation

A thermo-elasto-plastic / thermo-elasto-viscoplastic continuous body B with interior

Ω ⊂ Rnd (nd = 1,2,3) and displacement boundary Γu, traction boundary Γt, Γ = Γu ∪Γt,

together as mentioned in thermal field as Ω̃ = Ω∪Γ and the time interval of analysis t ∈ Υ

(Υ ⊂ R+), has to satisfy the equilibrium equation at the current spatial configuration
�X ∈ Ω̃. The equilibrium equation which yields the displacement solution �u is given as

in [52]

∇ ·T + �bf = �0 in Ω̃ × Υ (4.1)

subject to the boundary conditions

�u = �us in Γu × Υ (4.2)

T · �n = �tf in Γt × Υ (4.3)

where T = Tij �ei⊗�ej is the stress tensor, �bf = bfi �ei is the body force vector, �us is the

prescribed displacement vector and �tf is the prescribed traction vector with unit outward

normal �n.
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The total deformation observed in the DC casting is less than 4%. Therefore, using the

advantage of small deformation theory, the total strain E can be additively decomposed

into three components as

E =
1

2

[∇�u + (∇�u )T
]

= Ee + Et + Eie (4.4)

where Ee is the elastic strain tensor (tensorial), Et is the thermal strain tensor, and Eie is

the inelastic strain tensor (tensorial). The inelastic strain might be either plastic strain

or viscoplastic strain. Once estimating the inelastic and the thermal strain tensors, the

elastic strain tensor can be obtained from the total strain tensor, and its methods of

estimation are discussed in the subsequent subsections in detail. Using the elastic part

of the strain tensor Ee, stress tensor T can be determined from the constitutive law of

the material as

T = C : Ee = κ tr
(
E− Et

)
I + 2μ

(
E′ − Eie

)
(4.5)

where C is the fourth-order elasticity tensor, I = δij �ei ⊗ �ej is the second-order iden-

tity tensor, κ is the bulk modulus, and μ is the shear modulus which are functions of

temperature and phase fractions. Further, the elasticity tensor can be defined as,

C = 3κ P1 + 2μ P2 (4.6)

where P1 and P2 are the fourth-order volumetric and deviatoric projectors, respectively,

are defined as

P1 =
1

3
(I⊗ I) =⇒ P1ijkl =

1

3
δij δkl �ei ⊗ �ej ⊗ �ek ⊗ �el (4.7)

P2 = I − 1

3
(I⊗ I) =⇒ Iijkl =

1

2
(δik δjl + δil δjk )�ei ⊗ �ej ⊗ �ek ⊗ �el (4.8)

where I is the fourth-order symmetric identity tensor. By the definition of P2, the devi-

atoric part of total strain tensor can be defined as

E′ = P2 : E =⇒ E′
ij = P2ijkl Ekl �ei ⊗ �ej (4.9)

4.1.1 Thermal strain

When the hot metal is allowed to cool under the absence of external mechanical loads,

the dimensions of the material shrinks. Similarly, while heating the material expands.

Therefore, a reversible strain is always associated with the heat treatment process. Such

a strain is known as thermal strain. This strain is volumetric in nature. The thermal

strain can be computed in any one of the two ways: (a) density approach, or (b) coeffi-
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cient of thermal expansion approach. In both methods, one has to define the reference

temperature (θref) where the thermal strain is zero. In this work, the thermal strain is

determined using the linearized coefficient of thermal expansion (α) as

Et = α (θ − θref ) I (4.10)

where θ is the current temperature. For the liquid phase, α becomes zero. The time rate

of thermal strain can be give as

Ė
t

= α θ̇ I (4.11)

Alternatively, the density based estimation of thermal strain can be given as in Kay-

mak [78] and Pietzsch et al. [79],

Et =

(
3

√
ρR

ρ
− 1

)
I (4.12)

where ρR is the reference density, and ρ is the current density. Both the methods produce

the same results.

4.1.2 Plastic strain

The inelastic strain may be either a rate-independent plastic strain or a rate-dependent

viscoplastic strain. The plastic strain can be defined through the classical rate-

independent plasticity theory. When the equivalent stress exceeds the yield stress, plas-

tic strain occurs. Using a classical rate-independent, isotropic, thermo-plastic material

model with the temperature and the phase fraction-dependent constitutive law and sys-

tematically employing the yield criterion, loading criterion, flow rule, hardening rule and

consistency condition which are discussed separately in detail, the plastic strain rate (Ė
p
)

can be estimated. This section is formulated based on the published work of Nallathambi

et al. [38]. The stress-rate can be expressed as [78],

Ṫ = C :
(
Ė − Ė

t − Ė
p
)

= C
ep : Ė (4.13)

where C
ep is the tangent elasto-plastic operator. Fig. 4.1 shows the plastic loading occurs

at a point T in the direction normal to yield surface because of the strain increment Ė.

1. Yield criterion: The material starts yielding when the yield criterion is satisfied.

The von-Mises yield criteria has the special feature of the smooth surface with

convexity which is more suitable for pressure-independent ductile materials and
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Figure 4.1: Plasticity: plastic loading at T

given as [78]

φ (T′, εp, θ, fpc) = ‖T′‖ −
√

2

3
σy (εp, θ, fpc) (4.14)

where T′ is the deviatoric stress tensor, εp is the effective plastic strain which is

used as a strain hardening internal variable, and σy is the temperature and phase

fractions dependent yield strength. T′ and ‖T′‖ can be defined as [78],

T′ = P2 : T and ‖T′‖ =
√

T′ : T′ (4.15)

2. Loading criterion: The loading criterion can be stated as in [143],

φ = 0 and φ̇|εp=const > 0 loading

φ = 0 and φ̇|εp=const = 0 neutral loading

φ = 0 and φ̇|εp=const < 0 unloading

where, φ̇ = ∂φ
∂T′ : T′ + ∂φ

∂θ
θ̇ + ∂φ

∂εp ε̇p + ∂φ
∂fpc

˙fpc

3. Flow rule: An associated flow rule is employed and given as in [143]

Ė
p

= λ̇
∂φ

∂T
= λ̇

T′

‖T′‖ = λ̇ Ñ (4.16)

where λ̇ and Ñ are the plastic multiplier and the flow surface normal or stress

deviator direction, respectively. Plastic deformations of metals are incompressible

in nature. Therefore, the trace of the plastic strain tensor is zero. Mathematically,

P1 : Ep = 0 or tr(Ep) = 0
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4. Hardening rule: A linear isotropic hardening rule is considered, and the yield

strength is stated as in [143]

σy (εp, θ, fj) = σyo (θ, fj) + H (θ, fj) εp (4.17)

where σyo is the yield strength at the virgin state, and H is the plastic modulus.

The hardening state variable is integrated from the plastic multiplier

ε̇p =

√
2

3
λ̇ (4.18)

5. Consistency condition: In general, the consistency condition (φ̇ = 0) yields the

value of plastic multiplier λ̇. The isothermal staggered algorithm [32] suggests that

the temperature and phase fractions are kept constant (i.e., θ̇ = 0 and ḟpc = 0), the

computation of the plastic multiplier [52] reduces to

λ̇ =
Ñ : Ė

1 + H
3μ

(4.19)

The continuum tangential elasto-plastic material operator Cep for fixed temperature and

phase fractions can be given as in [78],

C
ep =

∂Ṫ

∂Ė
= C − 2μ

1 + H
3μ

Ñ⊗ Ñ (4.20)

4.1.3 Viscoplastic strain

In metals, for instance, the phenomenological effects of time-dependent mechanisms be-

come apparent typically at absolute temperatures higher than around one third of the

melting point [144]. This fact is illustrated through the uniaxial tension test with metal-

lic bars at higher temperatures are shown in Fig. 4.2. Fig. 4.2(a) shows the stress-strain

curve for various strain rates. In general, the elasticity modulus is independent of the

rate of loading but, clearly, the initial yield limit as well as the hardening curve depend

strongly on the rate of straining. This rate-dependence is also observed at low temper-

atures, but usually becomes significant only at higher temperatures. Another aspect of

time-dependence is the phenomenon of creep. Fig. 4.2(b) shows the evolution of plastic

strains over time in experiments where tensile specimens have been loaded to different

stress levels and left at constant stress during long periods of time. The material experi-

ences a continuous plastic flow that is accelerated for higher stress levels.

The strains generated by creep are physically indistinguishable from those result-
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Figure 4.2: Viscoplasticity (Neto et al., 2008): (a) Strain rate dependence: uniaxial tests
at different strain rates and (b) Creep: plastic flow at constant stress

ing from the quasi-time-independent plastic flow, particularly at elevated temperatures.

Therefore, the plastic and creep deformations can be collectively treated as viscoplastic

strain [15]. Viscoplastic models can be grouped into two categories: (a) models with yield

surface and (b) models without yield surface. The viscoplastic models with yield surface

are conceptually similar to that of the classical rate-independent plasticity except the

consistency condition. Therefore, the stress state outside the yield surface, e.g., Perzyna

model. In fact, particularly at higher temperatures, many materials can be modeled as

flowing whenever under stress; that is, the yield stress is effectively zero. In such cases, a

yield surface and a corresponding elastic domain need not to be introduced in the formu-

lation of the theory. Norton’s law and Garafalo’s law are examples of viscoplastic models

without a yield surface which have been widely used .

Similar to the plastic deformation, the viscoplastic deformation is incompressible.

Irrespective of the model, the viscoplastic strain rate tensor (Ė
vp

) can be written in

terms of a scalar viscoplastic strain rate (ε̇vp) as in [15]

Ė
vp

=
3

2
ε̇vp T′

σeff

= ε̇vp Ñ (4.21)

where Ñ is the flow direction, σeff is the von Mises equivalent stress, and ε̇vp is the

equivalent viscoplastic strain rate. The flow direction which is defined in the plasticity

section is slightly modified in the viscoplastic case for the suitability with all the models

of viscoplasticity. Therefore, the flow direction, the equivalent stress, and the equivalent

viscoplastic strain are given as

Ñ =
3

2

T′

σeff

and σeff =

√
3

2
T′ : T′ and ε̇vp =

√
2

3
Ė

vp
: Ė

vp
(4.22)
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The scalar viscoplastic strain rate can be defined by any one of the following models.

Perzyna model

In the Perzyna model, the excess stress is directly related to the viscoplastic strain rate

through the proportionality constant which is known as viscosity (η). Therefore, the

viscoplastic strain rate can be stated as

ε̇vp =
1

η

〈
φ̃(T)

〉
(4.23)

where φ̃ is the yield function and, 〈 x 〉 is the ramp function which can be defined as

φ̃ = σeff − σy(ε
vp) and 〈 x 〉 :=

x + | x |
2

(4.24)

where σy can be defined like isotropic hardening discussed in the plasticity case. When

η −→ 0, one can recover the rate-independent case but the problem becomes uncon-

strained regularization problem which is ill-posed in nature. Further, the closed form

solution can be obtained like in plasticity case, with the introduction of the relaxation

time (τ = η
2μ

) as explained in [52].

Garafalo law

In DC casting, the solidified metal behavior can be well captured by the Garafalo law

which has no concept of yield surface. The Garafalo law can be defined as

ε̇vp = A

[
sinh

(
σeff

σ̃o

)]ñ

e−( Q
RT ) (4.25)

where A, σ̃o, and ñ are the material-dependent constants, Q is the apparent creep acti-

vation energy, R is the universal gas constant, and T is the absolute temperature. Due

to the presence of the temperature term in Eq. (4.25), the evolution of the viscoplastic

strain strongly depends on temperature. The exponential term in Eq. (4.25) represents

the well known Arrhenius law [144].

Norton-Hoff law

The Norton-Hoff law is the one of the simplest classical viscoplastic model. The mechan-

ical behavior of mushy can be well modeled by the Norton-Hoff law. This can be stated

as

ε̇vp = k̃

(
σeff

σ̃o

)ñ

(4.26)
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where k̃, σ̃o, and ñ are temperature-dependent material constants. In the literature, this

Norton law is often called power law.

4.2 Solution Methodology

The finite element method is used to solve the governing differential equation. The stress

equilibrium equation has to be put in a more convenient form before using it in finite

element formulations. Firstly, the weak form of GDE is derived. Secondly, the FEM is

employed to discrete the GDE, and the element matrices and vectors are derived. Finally,

the time integration of the constitutive equation at the integration point level is explained

separately for elasto-plastic and elasto-viscoplastic cases.

4.2.1 Weak form

The higher order mechanical GDE is reduced to lower order with the help of principle of

virtual displacement and the direct substitution of natural boundary conditions (NBC).

Following the same arguments as used in the solidification problem, for an arbitrary

displacement field �̃u, the mechanical equilibrium condition Eq. (4.1) has to satisfy the

following integral equation

∫
Ω

[
∇ ·T + �bf

]
· �̃u dΩ = 0 (4.27)

This is apparently satisfied because the bracket in the integral is zero vector as per

Eq. (4.1). By using the property of the divergence operator,

∇ ·
(

T · �̃u
)

= (∇ · T ) · �̃u + T : ∇�̃u (4.28)

substituting the above relation in Eq. (4.27) and becomes

∫
Ω

∇ ·
(

T · �̃u
)

dΩ −
∫

Ω

(
T : ∇�̃u

)
dΩ +

∫
Ω

�bf · �̃u dΩ = 0 (4.29)

Applying the Gauss divergence theorem on the natural boundary condition Eq. (4.3), the

first term in Eq. (4.29) becomes,

∫
Ω

∇ ·
(

T · �̃u
)

dΩ =

∫
Γt

�n ·
(

T · �̃u
)

dΓt =

∫
Γt

�tf · �̃u dΓt (4.30)
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The second term in Eq. (4.29) can be represented as,

T : ∇�̃u = T :

(
1

2

[
∇�̃u +

(
∇�̃u

)T
]

+
1

2

[
∇�̃u −

(
∇�̃u

)T
])

= T :
1

2

[
∇�̃u +

(
∇�̃u

)T
]

(4.31)

= T : Ẽ

where Ẽ is the second-order tensorial strain tensor. Due to the symmetry of the stress

tensor (conservation of angular momentum), only the symmetric part of displacement

gradient becomes non-zero during the scalar product. Further, the symmetric part of

displacement gradient is the tensorial strain tensor as defined in Eq. (4.4). Substituting

Eq. (4.30) and Eq. (4.31) in Eq. (4.29) and it becomes,

∫
Ω

T : Ẽ dΩ =

∫
Γt

�tf · �̃u dΓt +

∫
Ω

�bf · �̃u dΩ (4.32)

This is the final weak form of GDE. The engineering strain tensor Eeng can be obtained

from the tensorial strain tensor E by multiplying the shear components by a factor of 2.

4.2.2 Finite element method

Before applying FEM to the weak form, the matrix conversion of tensor quantities has

to be established. Due to the symmetry, the fourth-order tensors can be simplified in a

matrix form and, similarly, the second-order tensors can be represented in a vector form.

Therefore, the fourth-order identity tensor (I), and second-order identity tensor (I) are

represented as,

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1

1

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.33)
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With the help of Eq. (4.33), the fourth-order projectors in Eq. (4.7) & (4.8) can be

simplified as

P1 =
1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and P2 =
1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.34)

The fourth-order elasticity tensor in Eq. (4.6) can be simplified as

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κ + 2 μ
3

κ − μ
3

κ − μ
3

0 0 0

κ − μ
3

κ + 2 μ
3

κ − μ
3

0 0 0

κ − μ
3

κ − μ
3

κ + 2 μ
3

0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.35)

Eq. (4.35) is not exactly equivalent form of Eq. (4.6). While writing in matrix form, the

elasticity tensor is written in a slightly modified form as,

C = 3 κ P1 + 2 μ P2 L−1 (4.36)

where L is the constant matrix which can be defined as,

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.37)

The reason for the insertion of L−1 in Eq. (4.36) is that the engineering strain is used

while writing the constitutive equation Eq. (4.5). Therefore, the engineering strain tensor

Eeng, and stress tensor T can be written in vector form as,

Eeng = L E = { εxx εyy εzz 2εxy 2εxz 2εyz }T (4.38)

T = { σxx σyy σzz τxy τxz τyz }T
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where E is the vector form of tensorial strain tensor. The double contraction or scalar

product of two tensor quantities can be written in matrix form as,

T : E := TT L E = TT Eeng = Eeng
T T (4.39)

For the sake of simplicity, now onwards Eeng is denoted as E. With this notion, the weak

form of GDE for a single element can be written as

∫
Ωe

ẼeT Te dΩe =

∫
Γe

t

˜̂
UeT Te

f dΓe
t +

∫
Ωe

˜̂
UeT Be

f dΩe (4.40)

where Ûe, Te
f , and Be

f are the element displacement, traction, and body force vectors

respectively. This can be stated as

Ûe = {ue ve we}T , Te
f =

{
tefx tefy tefz

}T
, Be

f =
{
be
fx be

fy be
fz

}T
(4.41)

Eq. (4.40) is in the suitable form for the application of the finite element method. There-

fore, the x, y and z components of the element nodal displacements are given as

ue = NT Ūe , ve = NT V̄e , we = NT W̄e (4.42)

where Ūe, V̄e, and W̄e are element nodal displacements in x, y and z directions respec-

tively. Therefore, the element displacement vector Ûe can be written as

Ûe = Ψe Ue (4.43)

where Ψe and Ue are the element interpolation matrix and element nodal displacement

vector respectively. Considering n as the number of nodes per element, the above men-

tioned quantities can be stated as,

Ψe =

⎡
⎢⎣

N1 0 0 N2 0 0 · · · Nn 0 0

0 N1 0 0 N2 0 · · · 0 Nn 0

0 0 N1 0 0 N2 · · · 0 0 Nn

⎤
⎥⎦ (4.44)

and

Ue =
{
Ūe

1 V̄e
1 W̄e

1 Ūe
2 V̄e

2 W̄e
2 · · · Ūe

n V̄e
n W̄e

n

}T
(4.45)
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The element strain can be given as,

Ee =

⎡
⎢⎣

∂
∂x

0 0 ∂
∂y

∂
∂z

0

0 ∂
∂y

0 ∂
∂x

0 ∂
∂z

0 0 ∂
∂z

0 ∂
∂x

∂
∂y

⎤
⎥⎦

T ⎧⎪⎨
⎪⎩

ue

ve

we

⎫⎪⎬
⎪⎭ = Π Ûe (4.46)

Finally, the element strain vector becomes,

Ee = B Ue where B = Π Ψe (4.47)

where B is the strain-displacement matrix and Π is the derivative operator. Substituting

Eq. (4.47) in the weak form Eq. (4.40) and becomes,

∫
Ωe

[
ŨeT BT Te

]
dΩe =

∫
Γe

t

[
ŨeT ΨeT Te

f

]
dΓe

t +

∫
Ωe

[
ŨeT ΨeT Be

f

]
dΩe (4.48)

Substituting the elastic constitutive relation Te = C Ee, the total potential to be

minimized can be written as

Φe(Ũe) = ŨeT Fe − ŨeT Ke Ue (4.49)

where the element quantities are

Ke =

∫
Ωe

[
BT C B

]
dΩe (4.50)

Fe =

∫
Γe

t

[
ΨT

e Te
f

]
dΓe

t +

∫
Ωe

[
ΨT

e Be
f

]
dΩe (4.51)

From the element quantities, the global matrices and vectors can be obtained based on

the element-nodal mappings. Therefore, the total global potential can be written as

Φ(Ũ) = ŨT F − ŨT K U (4.52)

From the total potential, the residual vector (R) can be obtained as

R =
∂Φ

∂Ũ
= F − K U (4.53)

There exists a unique displacement profile for a particular external force F which makes

the residual zero and it becomes

K U = F
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Once applying the EBC, the equation has to be solved for the displacement. The material

law considered is an elastic one. When it comes to elasto-plastic or elasto-viscoplastic,

the constitutive relation exist only in the incremental form. These issues are discussed

elaborately in the next section.

4.2.3 Iterative incremental scheme

Treating tn as the previous time, Δt is the time interval or time step size, and

tn+1 = tn + Δt is the current time time. Further, ΔU is the time-increment of

displacement vector at (n + 1)th time step, and δU is the current iterative displacement

vector at (i + 1)th iteration. The total displacement, and incremental displacement can

be written as

Un+1 = Un + ΔU (4.54)

ΔUi+1 = ΔUi + δU (4.55)

Combining the two equations and the total displacement at the current time-step and

the current iteration becomes

Un+1
i+1 = Un+1

i + δU (4.56)

The Newton-Raphson method is already well explained in the solidification problem.

Following the same argument,

δEe = B δUe (4.57)

δTe = Cepn+1
i δEe = Cepn+1

i B δUe

Een+1
i+1 = Een+1

i + δEe

Ten+1
i+1 = Ten+1

i + Cepn+1
i B δUe

(4.58)

where Cep is elemental consistent elasto-plastic/elasto-viscoplastic operator. At the be-

ginning of the current time step, the following initialization is adopted:

Een+1
1 = Een + ΔEet (4.59)

Ten+1
1 = Ten
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where ΔEet is the elemental increment thermal strain. The final form of mechanical

equilibrium equation becomes

Kn+1
i δU = Fn+1 − Rn+1

i (4.60)

where K is the global tangent stiffness matrix, F is the global external force vector, and

R is the global internal force vector from the previous iteration. The elemental forms of

matrices and vectors are given as in [139]

Ken+1
i =

∫
Ωe

[
BT Cepn+1

i B
]

dΩe

Fen+1 =

∫
Γe

t

[
ΨT

e Te
f

n+1
]

dΓe
t +

∫
Ωe

[
ΨT

e Be
f

n+1
]

dΩe (4.61)

Ren+1
i =

∫
Ωe

[
BT Ten+1

i

]
dΩe

The convergence criteria at the current iteration is evaluated using the current iterative

displacement vector, and the current total displacement vector as

(
δUT δU

UT U

)
< ε (4.62)

where ε is the computational zero and taken as 10−6. The above mentioned iterative-

increment scheme can be summarized as:

Table 4.1: Displacement field: Global iterative-increment scheme

1. Set Un+1
1 = Un, ΔU1 = 0, i = 1.

2. Compute Kn+1
i , Fn+1, and Rn+1

i by using Un+1
i

3. Find δU =
(
Kn+1

i

)−1 [
Fn+1 − Rn+1

i

]
4. Update Un+1

i+1 = Un+1
i + δU, ΔUi+1 = ΔUi + δU, i = i + 1

5. Check convergence criteria using Eq. (4.62).
6. If step.5 is true goto step.1 else goto step.2.

4.2.4 Integration of plastic constitutive relation

In the finite element procedure as discussed in the previous section, the determination

of the tangent stiffness matrix and internal reaction vector demands the integration of

constitutive relations. Different procedures are followed for the integration of elasto-

plastic and elasto-viscoplastic constitutive relations. The plastic multiplier in the elastic-
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plastic case can be expressed in a closed form. In contrast to the elasto-plastic case,

the iterative procedure is followed for the integration of the rate equation in the elasto-

viscoplastic case which is discussed in a more detailed manner in the next section.

From the global iterations, Un+1
i is the known displacement vector at the beginning of

the n + 1th time step and i + 1th iteration. Using Un+1
i , the components of total strain at

the integration point can be computed using the relation En+1
i = B Un+1

i . The thermal

strain (Etn+1
) at the current time step can be computed using Eq. (4.10). It is assumed

that the previous plastic strain (Epn+1
i−1 ) at the integration point is known. Therefore, the

trial stress can be stated as,

Tn+1
i

trial
= Ttrial = C

(
En+1

i − Etn+1 − Epn+1
i−1

)
(4.63)

From the trial stress, the final stress can be computed as

Tn+1
i = T = C

(
En+1

i − Etn+1 −
[
Epn+1

i−1 + Ėp Δt
])

(4.64)

= Ttrial − C Ėp Δt

The engineering plastic strain rate can be approximated using the flow rule stated in

Eq. (4.16) as

(
Ėp
)n+1

i
=

Epn+1
i − Epn+1

i−1

Δt
=

δEp

Δt
=

λn+1
i − λn

i−1

Δt
L Ñn+1

i (4.65)

=
δλ

Δt
L Ñn+1

i

where δλ is the iterative plastic multiplier, and N is the trial stress deviator direction.

The trial stress deviator and its direction can be stated as

Strial = P2 Ttrial and Ñ =
Strial

‖Strial‖ where
∥∥Strial

∥∥ =

√
(Strial)T L Strial (4.66)

substituting Eq. (4.65) and Eq. (4.66) in Eq. (4.64),

T = Ttrial − C δλ L Ñ (4.67)

S = Strial − 2μ δλ L−1 L Ñ

‖S‖ =
∥∥Strial

∥∥− 2μ δλ

It is assumed that the trail deviatoric direction and final deviatoric stress direction are

assumed to coincide. Eq. (4.64) does not contain any time terms due to the assumption
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of rate-independency. The trial yield function can be stated as

φtrial =
∥∥Strial

∥∥−
√

2

3

(
σyo + H εpn+1

i−1

)
(4.68)

The plastic flow occurs when φtrial > 0 in such a manner that φ = 0. This gives the

expression for the plastic multiplier in an explicit manner as in [52],

δλ =
φtrial

2μ
(
1 + H

3μ

) (4.69)

The consistent tangent elasti-plastic operator can be obtained as

Cep =
∂Tn+1

i

∂En+1
i

= C − C L
∂
(
δλÑ

)
∂En+1

i

(4.70)

= C − C L

(
Ñ

{
∂ δλ

∂E

}T

+ δλ
∂Ñ

∂E

)

This expression is slightly different from the continuum elasto-plastic operator Eq. (4.20)

because of the algorithm followed. The derivative in Eq. (4.70) can be obtained as

∂ δλ

∂E
=

∂ δλ

∂Strial

∂Strial

∂E
=

(
1

1 + H
3μ

)
Ñ

∂Ñ

∂E
=

∂Ñ

∂Strial

∂Strial

∂E
=

2μ

‖Strial‖
(
P2 L−1 − Ñ ÑT

)
(4.71)

substituting Eq. (4.71) in Eq. (4.70), we obtain

Cep = C −
(

2μ

1 + H
3μ

)
Ñ ÑT − 4μ2 δλ

‖Strial‖
(
P2 L−1 − Ñ ÑT

)
(4.72)

The stress, plastic strain, and equivalent plastic strain can be updated as

Tn+1
i = Ttrial − 2μ δλ Ñ

Epn+1
i = Epn+1

i−1 + δλ L Ñ (4.73)

εpn+1
i = εpn+1

i−1 +

√
2

3
δλ

Once determined Tn+1
i , and Cep, the internal reaction vector and tangent stiffness matrix

has to computed according to Eq. (4.61). The iterative stress and iterative-incremental

plastic strain are computed based on the previous iteration, not from the previously
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converged time-step. However, use of an iterative scheme based on the intermediate non

converged values is questionable for a problem which is physically path-dependent. In

addition, if unloading within the iterative process occurs, a new iteration is necessary

which starts from the converged stresses state Tn.

4.2.5 Integration of viscoplastic constitutive relation

In contrast to the plastic case, ΔUi is used for the computation of element quantities.

From ΔUi, ΔEi can be obtained from the relation ΔEi = B ΔUi. The subscript i is

the global iteration index which is disregarded for the sake of simplicity.

The fully implicit backward Euler integration scheme is employed for the derivation

of necessary equations. Therefore, the stress update in the local integration point level

is stated as

Tn+1 = Tn + ΔT (4.74)

where Tn is the known previous time-step equilibrium stress. The incremental stress ΔT

can be expressed by the thermo-elasto-viscoplastic constitutive relation as

ΔT = C
(
ΔE−ΔEt −ΔEvp

)
(4.75)

The viscoplastic strain can be approximated using the backward Euler time difference

and substituting Eq. (4.21) as

(
Ėvp

)n+1

=
(Evp)n+1 − (Evp)n

Δt
=

ΔEvp

Δt
= (ε̇vp)n+1 Ñn+1 (4.76)

where Ñ is flow direction vector which can be given as,

Ñ =
3

2 σeff
L S =

√
3

2

(
1√

ST L S

)
L S (4.77)

where S = P2 T is the stress deviator. Therefore, the current stress becomes

Tn+1 = Tn + C
(
ΔE−ΔEt − Δt (ε̇vp)n+1 Ñn+1

)
(4.78)

This equation is implicit in nature, therefore the iterative scheme is adopted. Keeping k

as the previous local iteration counter, the residual can be stated as in [30],

R̄n+1
k = Tn+1

k − Tn − C
(
ΔE−ΔEt − Δt (ε̇vp)n+1

k Ñn+1
k

)
(4.79)
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Thus, consider a first-order Taylor series expansion of the residual vector,

R̄n+1
k+1 = R̄n+1

k +
∂R̄n+1

k

∂Tn+1
k

dT (4.80)

where dT is the local iterative-increment of stress vector at integration point. Forcing

R̄n+1
k+1 to reach zero,

dT = −
[
∂R̄n+1

k

∂Tn+1
k

]−1

R̄n+1
k = − K̄

−1
R̄n+1

k (4.81)

where the Jacobian matrix K̄ can be derived from Eq. (4.79) as

K̄ = I + C Δt

(
∂ε̇vp

∂T
ÑT + ε̇vp ∂Ñ

∂T

)n+1

k

(4.82)

ε̇vp, and Ñ are functions of current local iterative stress vector Tn+1
k . Therefore

∂ε̇vp

∂T

∣∣∣∣
n+1

k

=
∂ε̇vp

∂σeff

[
∂T′

∂T

] {
∂σeff

∂T′

}
=

∂ε̇vp

∂σeff
Ñ

∂Ñ

∂T

∣∣∣∣∣
n+1

k

=
∂Ñ

∂T′

[
∂T′

∂T

]
=

3

2 σeff

(
P2 L− 2

3
Ñ ÑT

)
(4.83)

substituting Eq. (4.83) in Eq. (4.82)

K̄ = I + 2μ Δt

[ (
∂ε̇vp

∂σeff
− ε̇vp

σeff

)
L−1 Ñ ÑT +

3 ε̇vp

2 σeff
P2

]n+1

k

(4.84)

The iterative form of stress update becomes

Tn+1
k+1 = Tn+1

k + dT (4.85)

Finally, the consistent tangent elasto-viscoplastic operator may be derived directly from

the integration scheme and is defined as

Cep = K̄
−1

C (4.86)

Once determined Cep, and Tn+1
i , the tangent stiffness matrix and the residual vector can

be computed using the Eq. (4.61). It is well known that the Newton-Raphson method

exhibits its fast rate of convergence and stability only when the trial solution is close to

the converged value. In reality, for highly nonlinear problems the trial solution may be far
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away from the real solution. Thus, applying a full step-size correction in the iteration, the

updated vector may actually be detrimental to the solution, causing convergence difficul-

ties. Therefore, a line-search algorithm is implemented within each iteration to overcome

the divergence difficulty. The line-search algorithm is well explained in the solidification

problem. The above-mentioned integration point computations for the elasto-viscoplastic

problem can be summarized as follows:

Table 4.2: Displacement field: Local integration point computation for elasto-viscoplastic
problem

1. input: ΔUi, ΔEt, and Tn. Set Tn+1
1 = Tn, and k = 1.

2. Compute R̄n+1
k , and K̄ by using Eq. (4.79) and Eq. (4.82).

3. Find dT = K̄
−1

R̄n+1
k ; s1 = dTT R̄n+1

k , r1 = 1, η1 = 0, m = 1
4. Update Tn+1

k2 = Tn+1
k + dT. Find R̄(Tn+1

k2 ); s2 = dTT R̄n+1
k2 ,

r2 = s2/s1, η2 = 1, m = 2
5. Call line search algorithm if |r2| > 0.8 and find η. else η = 1.
6. Update Tn+1

k+1 = Tn+1
k + η dT, and k = k + 1.

7. if ‖dT‖ > tol, go to step.2 else go to next step.

8. Find Cep = K̄
−1

C and compute Kn+1
i .

9. Compute Rn+1
i using Tn+1

k and update Tn+1
k as Tn+1

i

4.3 Element computations

As discussed in the solidification problem, a generalized 2-D mechanical element is de-

veloped which can handle the following problems: (a) plane strain problems and (b)

axisymmetric problems. Using an isoparametric element formulation, the global coordi-

nates and the displacement field inside the element can be given as

{x y} = NT {X Y} and ue = NT Ūe , ve = NT V̄e (4.87)

where N is the shape function vector, {X Y} is the element nodal coordinates matrix in

which X and Y are nodal x and y coordinates vector, Ūe, and V̄e are the element nodal

displacements in x, and y directions, respectively.

The total strain is the derivative of the displacement field. Therefore, a linear total

strain field is obtained for the 9-noded element. In order to have a linear stress field,

the thermal strains must also be linear. Since the thermal strains are linear functions of

temperature, the thermal field must also be linear. Such a linear thermal field can be

provided by 4-noded elements. This is the reason for the selection of 4-noded thermal

element and 9-noded mechanical element. The layout of a typical mechanical element is
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Figure 4.3: 9-noded quadrilateral element: (a) parent element and (b) typical element

indicated in Fig. 4.3. The shape function vector for a 9-noded quadrilateral element is

stated as

N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N1
N2
N3
N4
N5
N6
N7
N8
N9

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25 (ξ2 + ξ) (η2 + η)
0.25 (ξ2 − ξ) (η2 + η)
0.25 (ξ2 − ξ) (η2 − η)
0.25 (ξ2 + ξ) (η2 − η)
0.5 (1 − ξ2) (η2 + η)
0.5 (ξ2 − ξ) (1 − η2)
0.5 (1 − ξ2) (η2 − η)
0.5 (ξ2 + ξ) (1 − η2)
(1 − ξ2) (1 − η2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.88)

where ξ and η are the local coordinates as shown in Fig. 4.3. Therefore, the element

displacement vector Ûe can be written as,

Ûe = Ψe Ue (4.89)

where Ψe and Ue are the element interpolation matrix and the element nodal displacement

vector, respectively. The above mentioned quantities can be stated as

Ψe =

[
N1 0 N2 0 · · · N9 0

0 N1 0 N2 · · · 0 N9

]
(4.90)

and

Ue =
{
Ūe

1 V̄e
1 Ūe

2 V̄e
2 · · · Ūe

9 V̄e
9

}T
(4.91)

Using the chain rule of differentiation

{
∂
∂ξ

∂
∂η

}
=
{

∂
∂x

∂
∂y

}[ ∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=
{

∂
∂x

∂
∂y

}
J̃ (4.92)
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where the Jacobian matrix J̃ is defined as

J̃ =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=

{
∂N
∂ξ

∂N
∂η

}T

{X Y} (4.93)

The plane strain case is treated as the standard one. The gradient operator (Π) for the

standard case can be represented as

Π =

⎡
⎢⎣

∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎥⎦ =

⎡
⎢⎣

∂
∂ξ

0

0 ∂
∂η

∂
∂η

∂
∂ξ

⎤
⎥⎦ J̃−1 (4.94)

The strain-displacement operator for the standard case (Bstd) can be obtained as,

Bstd = Π Ψe =

⎡
⎢⎣

∂
∂ξ

0

0 ∂
∂η

∂
∂η

∂
∂ξ

⎤
⎥⎦ J̃−1

[
N1 0 N2 0 · · · N9 0

0 N1 0 N2 · · · 0 N9

]
(4.95)

The dimensions of Bstd matrix is 3 × 18. When it comes to the axisymmetric problem,

one additional row of size 1× 18 has to be added with the standard case for accounting

the circumferential strain or hoop strain. Therefore,

Baxs =

[
Bstd

Badd

]
, where Badd =

[
N1

x
0 N2

x
0 · · · N9

x
0
]

(4.96)

In 2-D finite elements, the infinitesimal volume for the volume integrals is obtained by

multiplying the area with the thickness in the perpendicular direction,

dΩe = b dx dy = b
∣∣∣J̃∣∣∣ dξ dη (4.97)

Similarly, the infinitesimal area for the surface integrals is

dΓe =

⎧⎪⎪⎨
⎪⎪⎩

b

(√
J̃(1, 2)2 + J̃(2, 2)2

)
dη on faces 1 & 2

b

(√
J̃(1, 1)2 + J̃(2, 1)2

)
dξ on faces 3 & 4

(4.98)

the scalar b in Eq. (4.97) and Eq. (4.98) can be defined as

b =

{
b real thickness if plane strain case

x radius if axisymmetric (1 rad is considered)
. (4.99)
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The faces define the four boundaries of the element. According to the node numbering

in Fig. 4.3, the left and right sides are called faces 1 and 2, and top and bottom sides are

called faces 3 and 4, respectively.

The volumetric and deviatoric projectors, and L matrix for the standard plane strain

case is given as,

P1 =
1

3

⎡
⎢⎣

1 1 0

1 1 0

0 0 0

⎤
⎥⎦ , P2 =

1

3

⎡
⎢⎣

2 −1 0

−1 2 0

0 0 3

⎤
⎥⎦ and L =

⎡
⎢⎣

1 0 0

0 1 0

0 0 2

⎤
⎥⎦ (4.100)

Similarly for the axisymmetric case,

P1 =
1

3

⎡
⎢⎢⎢⎢⎣

1 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

⎤
⎥⎥⎥⎥⎦ ,P2 =

1

3

⎡
⎢⎢⎢⎢⎣

2 −1 0 −1

−1 2 0 −1

0 0 3 0

−1 −1 0 2

⎤
⎥⎥⎥⎥⎦ andL =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (4.101)

4.4 Contact model

During the metal casting, the solidifying metal and mold interacts thermo-mechanically.

The interfacial HTC is a strong function of the air gap formed between these two surfaces.

Therefore, it is important to address the problem of interfacial contact. In this work, the

interface problem is decomposed into a pure contact problem in the normal direction and

the zero frictional resistance in the tangential direction of the interface. The behavior of

the interface elements is characterized by the relation between the relative displacements

of the surfaces in contact at the interface. As similar to regular elements, an isoparametric

formulation is used and the elements have zero thickness with coincident nodes. In this

work, the interface element is based on the joint element developed by Vila Real et

al. [31]. For the sake of completeness, the relative displacement in the tangential direction

is modeled and finally substituted with zero tangential stiffness (kt).

The relative displacement at any point along the element represented in Fig. 4.4 is

given as

εe∗ =

{
γ∗

ε∗n

}
=

{
tx′ − bx′

ty′ − by′

}
(4.102)

where γ∗ and ε∗n are the relative displacements in the direction of the local axis x′ and

y′ respectively. Further, t refers to the top side of the element and b to the bottom side.

Therefore, tx′ and bx′ represent the displacement in the local x′-axis direction at the top

side of the element and bottom side of the element. The displacement at any point of
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Figure 4.4: Schematic representation of interface contact element

the 6-noded element represented in Fig. 4.4 are given in terms of the shape functions as

tx′ = NT Ūe′ and ty′ = NT V̄e′

bx′ = N̄T Ūe′ and by′ = N̄T V̄e′ (4.103)

where N and N̄ are shape function vectors, Ūe′ and V̄e′ are nodal displacement vectors

along the local x′ and y′ axis respectively. The above mentioned quantities can be ex-

panded as follows: NT = {N1 N2 N3} , N̄T = {N3 N2 N1}, Ue′T =
{
Ue′

1 Ue′
2 Ue′

3

}
,

and Ve′T =
{
Ve′

1 Ve′
2 Ve′

3

}
. Further the shape function vector can be given as

N =

⎧⎪⎨
⎪⎩

N1

N2

N3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

r2−r
2

1− r2

r2+r
2

⎫⎪⎬
⎪⎭ (4.104)

where r is a local coordinate which varies from -1 to +1. Substituting Eq. (4.103) in

Eq. (4.102) the elemental form of relative displacement can be written as

εe∗ = Ψ̃e Ue′ (4.105)

in which

Ψ̃e =

[
N1 0 N2 0 N3 0 −N3 0 −N2 0 −N1 0

0 N1 0 N2 0 N3 0 −N3 0 −N2 0 −N1

]
(4.106)

and

Ue′T =
[

Ūe′
1 V̄e′

1 Ūe′
2 V̄e′

2 · · · Ūe′
6 V̄e′

6

]
(4.107)
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The element local displacements and global displacements can be related through the

well-known transformation matrix (Q) as,

Ue′ = Q Ue (4.108)

where Ue is the elemental form of the nodal global displacement vector. Therefore,

Eq. (4.105) is represented as

εe∗ = Ψ̃e Ue′ = Ψ̃e Q Ue = Bcon Ue (4.109)

where Bcon = Ψ̃e Q is the strain displacement matrix for the contact element. The

stiffness matrix for an interface contact element is defined in the standard FEM which is

discussed above as [31]

Ke
con =

∫
Γe

c

BT
con D Bcon dΓe

c (4.110)

where Γc is the contact surface and D is the matrix which relates the stresses and the

relative displacement in the local coordinate system, so that the incremental contact

stress vector can be given as in [31]

ΔTe
con =

{
Δτ e

Δσe
n

}
=

[
kt 0

0 kn

] {
Δγ∗

Δε∗n

}
= D Δεe∗ = D Bcon Ue (4.111)

where kt and kn are tangential and normal contact stiffness. Generally, kn is chosen as

an arbitrary large number for numerical convergence. Here, it should be noted that only

compressive stresses are allowed, i.e. σn ≤ 0. Finally, the contact stiffness matrix and its

corresponding residual vector are added to regular matrices and vectors before solving.

The normal gap between the contact nodes can be easily computed from the vertical

displacement of nodes in the local coordinate system using Eq. (4.109).

4.5 Numerical examples

For the purpose of validation, two numerical examples are presented in this section.

Firstly, the stress-strain curve for different constitutive laws are obtained using the 2-D

axisymmetric case and the results are compared with the 1-D model. For this purpose, the

displacement controlled uniaxial tensile test is simulated by the numerical experiments.

Further, the significance of the rate effect is explained through this example. Secondly,

a 2-D axisymmetric problem with the purely thermal load is analyzed using the rate-

dependent Perzyna law and rate-independent plasticity. The results of the two models
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are compared.

4.5.1 Mechanical loading

The stress-strain curve obtained by the simple 1-D case is compared with the 2-D case.

For this purpose, a cylinder with dimensions of 50 × 200 mm is considered. One end

of the cylinder is assumed to be hinged. Due to symmetry, the problem is simplified as

an axisymmetric case which is shown in Fig. 4.5. The displacement is specified on the

another end of the cylinder. With this prescribed displacement, an uniform strain-rate

is maintained throughout the cylinder. The thermal strain in this case is treated as zero.

The material properties are given in Table. 4.3. The equivalent stress and equivalent

strain at the point A (Fig. 4.5) is plotted and compared with the 1-D model for various

material models. A simple 1-D model is developed for the verification of the constitutive

Table 4.3: Material properties - Mechanical loading problem

Perzyna model and rate-independent plasticity

Young’s modulus (Ey) 210 GPa
Poisson’s ratio (ν) 0.3
Yield stress (σyo) 3 MPa
Hardening modulus (H) 1 GPa
Viscosity (η) 1 GPa.s

Norton-Hoff law

k̃ 2.1× 10−6 /s
ñ 4.76
σ̃o 1 MPa

Garafalo law

A 28.2× 1025 /s
Q 400 kJ/mol
ñ 7.13
σ̃o 1 MPa

law. In this model, the scalar incremental total strain (Δε) is supplied and the scalar

incremental stress (Δσ) is computed based on the constitutive law. The total strain

is additively decomposed into elastic and inelastic strain. The inelastic strain can be

obtained from the rate-independent plasticity case or rate-dependent viscoplastic case.

The Young’s modulus (Ey) in the 1-D case is multiplied by a factor of 3
2(1+ν)

for the

purpose of comparing with the 2-D axisymmetric results.
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Figure 4.5: Mechanical loading: (a) axisymmetric domain with boundary conditions and
(b) finite element mesh

Firstly, the rate-independent elasto-plastic constitutive law is simulated. This case

coincides with the Perzyna elasto-viscoplastic case when the strain rate is less than 1 ×
10−5 /s as shown in Fig. 4.6. Secondly, the Perzyna type elasto-viscoplastic consitutive

law for various strain rates are simulated and the stress-strain curves are plotted as shown

in Fig. 4.6. When the strain rate increases the stress-strain curve shifts upward, i.e. the

yield limit increases. The 2-D results are in good agreement with the 1-D case.

Thirdly, the stress-strain curves are obtained by using the Norton-Hoff law and plotted

as shown in Fig. 4.7(a). Due to the absence of yield stress, there is no lower bound for

the stress-strain curve. This is not possible in the Perzyna type viscoplasticity. Further,

there is no hardening kind of behavior in the stress-strain curve. This resembles the

rate-independent plasticity case with zero hardening.

Finally, the Garafalo law is used to obtain the stress-strain curve for various strain

rates which are shown in Fig. 4.7(b). The temperature used for the computation is 773 K.

For a very high strain rate material behaves like a perfectly elastic one. This fact can be

clearly observed from the stress-strain curves. The 2-D axisymmetric case results exactly

match with the 1-D case. Therefore, the accuracy of the 2-D model is assured.
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Figure 4.7: Stress-strain curve: Norton-Hoff and Garafalo law

4.5.2 Thermal loading

An axisymmetric cylinder as discussed in the previous section is exposed to the convective

heat transfer coefficient of 500 W/m2K on its longer surface while keeping the other sides

insulated (Fig. 4.8). The material properties are given in Table. 4.4 as a function of

temperature. The mechanical and thermal boundary conditions are shown in Fig. 4.8(a).
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The finite element mesh used for the computation is given in Fig. 4.8(b). The thermal

strain is computed by the density approach. The temperature change can be predicted

by the 2-D axisymmetric solidification model without the phase-change effect.

Table 4.4: Material properties [pure aluminum] - Thermal loading problem

θ Ey ν σyo H k ρ Cp η
oC GPa MPa GPa W/mK kg/m3 J/kgK GPa.sec
50 69.29 0.33 11.49 0.45 238.82 2694 912.4 1
100 67.60 0.33 10.58 0.43 240.08 2685 939.7 1
150 65.82 0.33 9.67 0.40 239.33 2675 964.0 1
200 63.94 0.33 8.76 0.37 237.46 2665 986.2 1
250 61.92 0.33 7.85 0.34 235.05 2654 1007.3 1
300 59.76 0.34 6.94 0.32 232.37 2643 1028.3 1
350 57.44 0.35 6.03 0.29 229.53 2632 1050.1 1
400 54.94 0.36 5.12 0.26 226.49 2620 1073.8 1
450 52.24 0.37 4.21 0.23 223.20 2608 1100.3 1
500 49.32 0.39 3.30 0.21 219.60 2595 1130.5 1
550 46.17 0.41 2.40 0.18 215.76 2582 1165.6 1

The initial temperature of the cylinder is considered as 500oC. Fig. 4.9 shows the tem-

perature evolution at the locations A and B shown in Fig. 4.8(b). Within 100 seconds, the

material cools down to 250oC. The rate-independent plasticity model and Perzyna type

viscoplastic material models are used to compute the displacement field. The evolution

of stresses at the center (location A) is plotted as shown in Fig. 4.10(a). Due to sudden

cooling, the axial, radial and circumferential stresses immediately reach the tensile max-

imum, and in the later stages of cooling, the stresses become compressive in nature. The

shear stress is very low and tensile in nature. Both the models predict nearly the same

stress pattern. Fig. 4.10(b) shows the stresses evolution at the outer surface (location

B). The circumferential stress is compressive in nature with relatively high magnitude

when compared to axial and radial stresses. The shear stress is almost null in both the

material models. In the case of circumferential stress, the Perzyna model predicts lesser

value when compared to rate-independent plasticity model.

The distributions of von Misses equivalent stress at time t =250 s are plotted for

both the models as shown in Fig. 4.11. Similar pattern with nearly same magnitude is

observed in both the models. The equivalent stress is maximum in regions close to the

outer surface and the axial center of central surface. The minimum stress is also observed

in a certain portion of central surface. The distributions of all components of stresses

for the viscoplastic case is shown in Fig. 4.12. The axial and circumferential stresses are

compressive at the outer surface and tensile at the inner surface. The radial stress is
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Figure 4.8: Thermal loading: (a) axisymmetric domain with boundary conditions and
(b) finite element mesh

nearly zero at the outer and tensile at the inner. The shear stress is compressive in the

lower half and tensile in the upper half.

These two numerical examples show the potential of the developed numerical tech-

niques. Three different viscoplastic laws predict the rate effect considerably well. With

this mechanical model, the thermo-mechanical effects of DC casting can be studied easily.

4.6 Summary

In this chapter, the finite element method for the computation of the stress-strain field

is explained. Firstly, the weak form of the momentum equation is derived. Using a

small deformation theory, the strain tensor is approximated as the symmetric part of

displacement gradient. Further, the strain tensor is additively decomposed into elastic,

thermal, and inelastic parts. The thermal strain can be computed using the density

approach or the thermal expansion approach. The inelastic strain can be either plastic

strain or viscoplastic strain. The Perzyna, Norton-Hoff, and Garafalo law are the three
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Figure 4.10: Thermal loading: Evolution of stresses at center (A) and outer(B)

important viscoplastic material models suitable for the aluminum alloys used in DC

casting. Two different kinds of integration techniques are followed for the integration of

the constitutive law. The incorporation of contact conditions between the surfaces are

explained. The accuracy of the displacement model is verified by two numerical examples.

With this notion, the mechanical effects of DC casting can be studied without any major

modifications.
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MPa

Figure 4.11: Thermal loading: Distribution of von Mises equivalent stress at t =250 s (a)
Perzyna model and (b) rate-independent plastiticy

MPa

Figure 4.12: Thermal loading: Distribution of stresses at t =250 s (a) radial (σxx), (b)
axial (σyy), (c) shear (τxy), and (d) cirumferential (σzz)
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Chapter 5

Numerical simulation of DC casting

5.1 Description of DC casting Model

The real time DC casting process is suitably transformed and reproduced by proper

assumptions: the position of the bottom block and ingot/billet is fixed and the ingot/billet

grows vertically upward, and the associated boundary conditions move with a casting

speed. To simplify the computations, the bottom block and mold are neglected for the

analysis. The attention is only focused on the casting, and the interactions of casting

with the bottom block and mold are suitably applied.

In this work, a cylindrical extrusion billet of radius 100 mm is considered for the

study which is schematically represented in Fig. 5.1. Due to the rotational symmetry,

only a rectangular domain is considered for the analysis. Further, the x-axis represents

the radial direction and the y-axis represents the axial direction and axis of symmetry.

The height of mold is taken as 60 mm. The billet height is considered as a function of

time and increases in the y direction according to the casting speed. The initial height of

the billet is taken as 10 mm with 2 rows of elements which is the computational domain

for the first time step. For the next time step, an additional row of liquid elements is

added in the y direction. Fig. 5.2 shows the computational domain at time t and t + Δt.

The element growth in the y direction represents the liquid feeding from the furnace.

The thermal boundaries of the billet is divided into five regions which are non-

overlapping. Γ1 represents the symmetry axis where the heat flux leaving in the normal

direction is considered as zero, i.e. insulated BC. Γ1 extends along with the element

growth. Γ2 is the temperature described essential BC which mimics the liquid feeding.

Γ2 is assigned with a melt temperature which does not vary with time. The size of the

Γ2 BC is fixed but it shifts in the positive y-direction along the element growth as shown

in Fig. 5.2. The interaction of the billet with bottom block is represented through Γ3

convection BC. The size of Γ3 is fixed and the HTC is assumed to vary with temperature.
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Figure 5.1: Computational domain of DC casting billet with thermal and mechanical
boundary conditions

(a) At time t (b) At time t + Δt

Figure 5.2: Computational domain of DC casting billet at time t and t + Δt

The air gap formation and water intrusion cases are imposed on the HTC. Fig. 5.3(a)

shows the bottom block HTC as a function of temperature which is taken from Williams

et al. [60]. The temperature of the bottom block is treated as constant with a value of

100oC [15].

Γ4 represents the primary mold cooling regions with a fixed length and moves upward

in the y-direction during the element growth. This boundary condition is always referred

from the top of the melt. Drezet et al. [59] performed experiments and found the HTC as

a function of position from the top which is shown in Fig. 5.3(b). A small portion of size

10 mm is added along with the mold BC which represents the gap between the mold and

water impingement zone known as air cooling zone. The HTC of this air cooling zone

is taken as 50 W/m2K. The temperature of the mold is taken as 100oC. The secondary

water cooling zone is represented by Γ5 which changes its size during the element growth.

118



Generally, in the simulation of DC casting, the secondary cooling boundary is the most

complicated one due to the lot of controlling parameters such as water flow rate, surface

temperature, cooling water quality, etc. In this work, the secondary cooling HTC is taken

from Williams et al. [60] and shown in Fig. 5.4 as a function of temperature. Further,

different boiling zone temperatures and HTCs are clearly mentioned in the figure.

(a) Bottom block boundary HTC [60] (b) Mold boundary HTC [59]

Figure 5.3: Bottom block and mold boundary HTCs

The mechanical boundary conditions can be classified into three: (a) axisymmetric

boundary conditions are assigned on the Γ1 regions, (b) to avoid the rigid body motion,

the origin of the billet is fixed, and (c) to avoid the penetration of the billet on bottom

block, Γ3 is fixed for the first 15 seconds and then released. Therefore, the contact model

is not incorporated in the following simulations. It is obvious that the contact conditions

are applicable on the region Γ3. However, the contact problem increases the number of

equilibrium iterations of the mechanical problem. Generally, the mechanical boundary

conditions associated with the bottom block have less influence for the extrusion billets

having smaller cross-sections. On the other hand, for the prediction of butt curl in the

case of rolling ingots, the contact between ingot and bottom block has to be incorporated

carefully. The air gap between the bottom block and the billet can be considered as the

vertical displacement of the nodes on Γ3 regions.

The computational domain includes the liquid metal, the mushy zone, and the solid

part. The material is assumed to be an AA1201 alloy. The thermophysical and thermo-

mechanical properties of the alloy are taken from Drezet et al. [15] and given in Table. 5.1.

Linear approximations are used to calculate the material properties at intermediate tem-

peratures. Above the coherency temperature (θc), the alloy is assumed to behave as a

liquid. The Young’s modulus, thermal conductivity, and the coefficient of thermal expan-

sion are strong functions of temperature. The thermal conductivity of the liquid phase
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Figure 5.4: Secondary water cooling region HTC (Williams et al. 20003) as a function of
temperature

is increased to 400 W/mK so as to account for the liquid convection in the sump. The

density of the metal is treated as constant. Therefore, the contribution of metal shrink-

age during the solidification is neglected as a result of constant liquid feeding within the

mushy zone. For the computational purpose, a very small non-zero value is assigned to

the Young’s modulus above the coherency temperature. Through this, the stress develop-

ment in the liquid phase is almost eliminated. There is no mixture rule employed for the

computation of material properties in the mushy state. Further, the mixture rules are not

necessary if the material properties are known as a function of temperature. In between

the coherency temperature (temperature at liquid fraction of 0.714) and 5oC above the

solidus temperature, the creep behavior of mushy is modeled using the Norton-Hoff law,

and its parameters as a function of temperature are separately given in Table. 5.2. Below

635oC, the Garafalo law is used to describe the mechanical behavior of the solid phase.

To ensure the liquid incompressibility, the value of Poisson’s ratio is increased to 0.49

above θc.

A 4-noded quadratic element is used for the thermal field computations. The element

matrices are computed using a 4-point Gauss quadrature rule. To make the thermal strain

compatible with the mechanical strains such as elastic and viscoplastic strains, a 9-noded

quadratic element is used for the mechanical field computations. Therefore, a linear strain

field is obtained within the element. Generally, for a 9-noded element, 4 integration points

are not sufficient because of the large number of non-zero or complex eigenvalues arise
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Table 5.1: Material properties of AA1201

Solidus temperature 630 oC Young’s Modulus 68.2 GPa ≤ 25 oC
Liquidus temperature 658 oC 60.6 GPa 200 oC
Coherency temperature 650 oC 51.8 GPa 400 oC
Solid & liquid density 2650 kg/m3 41.8 GPa 630 oC
Latent heat 358 kJ/kg 40.0 GPa 650 oC
Thermal conductivity 227 ≤ 27 oC 0.1 MPa 650.1oC
(W/mK) 230 127 oC 1.0 kPa 658oC

227 227 oC 0.1 kPa ≥ 700oC
222 327 oC Poisson’s ratio 0.37 ≤ 650.1oC
216 427 oC 0.49 > 650.1oC
210 527 oC Thermal expansion 23.20 ≤ 25oC
203 630 oC (×10−6 /o)C 25.20 200 oC
90 ≥ 658 oC 30.23 400 oC

Specific heat 905 ≤ 27 oC 34.30 630 oC
(J/kgK) 950 127 oC 38.40 650 oC

998 227 oC 0.0 ≥650.1oC
1043 327 oC Garafalo law < 635oC
1090 427 oC A (s−1) 28.2 ×1025

1135 527 oC Q (KJ/gmol) 400
1181 630 oC ñ 7.13
1086 ≥ 658 oC σ̃o (MPa) 13.6

Table 5.2: Parameters of Norton-Hoff law (AA1201)

θ (oC) k̃(s−1) ñ σ̃o (MPa)

635 2.1×10−6 4.76 1.0
640 6.9×10−6 3.85 1.0
645 1.36×10−4 3.5 1.0
650 1.15×10−3 3.4 1.0
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for an element matrix. Therefore, 9 integration points are chosen for the mechanical

computations. A home made MATLAB program is used to generate the meshes and

to solve the thermal and mechanical field non-linear equations iteratively. To accelerate

the convergence in the global level, a line-search algorithm is used within the Newton-

Raphson iterations. Further, in the integration point level, the constitutive equations are

integrated iteratively again using the line-search algorithm within the Newton-Rahphson

iterations. The flow chart of the algorithm used to solve the DC casting problem is shown

in Fig. 5.5.

Thermal and mechanical problems are solved sequentially using an isothermal stag-

gered approach. Within the time step, first the thermal problem is solved and the time

increment of temperature at the nodal and integration points are found. The influence of

the mechanical solution on the thermal problem is nullified because the interfacial HTC

is defined as a function of temperature instead of the normal gap between the surfaces.

Therefore, the interface model is not included in the following simulations. Generally,

implicit Euler backward scheme is independent of the time step size except in very few

cases. Therefore larger time step is used for the thermal field computations. In the

case of larger time steps, due to the relatively high temperature gradient, the mechanical

problem encounters the convergence problem. Therefore, within a global time step, the

mechanical problem is solved repeatedly using a locally smaller time increment. The

thermal force is the only external disturbance which induces the mechanical deformation

because the body force and the liquid pressure on the solidified layer in the mushy zone

are neglected. The influence of thermal solution on the mechanical problem is very high.

5.2 Simulation of DC casting

A constant casting speed of 120 mm/min is investigated. For reducing the computational

time, only 8 elements are taken in the radial direction, and the time step size is considered

as 3 seconds. During the start-up phase, 8 local time steps are used in the mechanical field

computations. Similarly, for the pseudo steady state, 5 local time steps are introduced.

Fig. 5.6 shows the evolution of temperature at 5 different positions nearby the bottom

of the billet. It can be clearly perceived that the cooling is effective in the surface of the

billet rather than the center. Even before the water strikes the surface of the billet, the

cooling rate is relatively higher in the butt of the billet due to the simultaneous cooling

effect provided by the mold and the bottom block. Therefore, the solidification fronts

first start from the billet butt and moves towards the center. At the time of 33 s, the

water first starts striking the butt and the rapid change in the temperature occurs from

553oC to 147oC within a short duration of 24 seconds. Unlike the butt, the temperature
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at the center of billet remains above the solidus temperature until the butt temperature

drops to 147oC.

Figure 5.6: Casting speed 120 mm/min: Temperature evolution nearby bottom block

To understand the movement of solidus and liquidus lines in the early stages of the

start-up phase, the temperature contours are plotted just before and after 24 seconds of

the water impingement as shown in Fig. 5.7. During this stage, the phase fronts move

faster in the axial direction rather than in the radial direction. This fact can be verified

through the Fig. 5.7. The axial movement of the solidus line increases the solidified shell

thickness and provides enough strength to support the inner liquid melt. Further, due to

the high casting speed, the solidus line just falls nearby the bottom of the mold which

is dangerous due to the chances of mushy bleed out. Fig. 5.7 also indicates that the

isotherms propagate from the butt toward the center of the melt.

The temperature contours are plotted for three different stages of DC casting as shown

in Fig. 5.8. Fig. 5.8(a) shows the temperature contours at 78 seconds from the start of

casting, and the billet height at this moment is 160 mm. The position of the solidus line

with respect to the melt level indicates the sump depth. The sump depth at this stage is

127 mm in the center. Fig. 5.8(b) shows temperature contours at the end of the start-up
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Figure 5.7: Casting speed 120 mm/min: Temperature contours at before and after water
impingement

phase. The sump depth slightly decreases when compared to the previous stage. The

pseudo steady state temperature contours are shown in Fig. 5.8(c). There is no change in

sump depth observed after this stage. Nearly, half of the billet temperature is less than

150oC.
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Figure 5.8: Casting speed 120 mm/min: Temperature contours at different stages of DC
casting: (a) during start-up phase, (b) end of start-up phase, and (c) pseudo steady state

To understand the evolution of sump depth and length of the mushy zone, Fig. 5.9 is

plotted. The sump depth is defined by the distance between the location of the solidus

and the melt level. The length of the mushy zone is defined as the distance between

the solidus and liquidus. It can be observed that the sump depth and mushy length are

maximum at the center rather than at the surface. Fig. 5.9(a) shows that the sump depth

125



increases steadily and reaches a maximum of 128 mm at 75 s and then decreases to a

constant value of 115 mm at the center. However, the length of the mushy zone at the

center reaches a maximum of 50 mm at 57 s and decreases to a steady state value of

33 mm as shown in Fig. 5.9(b). The time lag between the maximum sump depth and

the maximum mushy zone length is due to the faster advancement of melt level when

compared to the phase-fronts movement. Once the solidus reaches the center, the mushy

zone length will start decreasing, but this is not the case for the sump depth. To validate

the evolution of the sump depth, the results are compared with the results of Suyitno et

al. [56]. Here, it should be noted that the casting speed for both the cases are the same

but the material is different. Suyitno et al. simulated for the Al–4.5%Cu alloy with the

nearly similar thermal boundary conditions of the present case. However, the present

results of AA1201 alloy are in excellent agreement with them. This fact indicates that

the sump depth is independent of the material but strongly depends on casting speed

and boundary conditions. However, the same is not true for the mushy length because

different alloys may have different freezing ranges.
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Figure 5.9: Casting speed 120 mm/min: evolution of sump depth and mushy zone

Some authors refer the pseudo steady state as the steady state. Therefore, it should

be noted that both names refer the same state. The steady state sump depth and the

mushy zone length along the radial direction are presented in Fig. 5.10. In the center of

the billet, the sump depth and the mushy length are higher than near the edge of the

billet. This is due to the rapid cooling near the surface. Almost double the value of the

sump depth and mushy length is obtained at the center when compared to the surface.

This can not be generalized for all kinds of alloys. Suyitno et al. [56] reported that the

mushy zone length at the billet surface is slightly higher than the subsurface. However,

in the present simulation, this effect is not observed.
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Figure 5.10: Casting speed 120 mm/min: radial distribution of sump depth and mushy
zone at steady state

The mushy state is the most vulnerable state where more likely hot tears may occur.

Therefore, the characteristic time (CT) which is known as the time spent in mushy state

is computed and plotted as a function of billet height as shown in Fig. 5.11(a). Three

different locations are considered such as the center, 50 mm from center, and outer surface

of the billet. For all the locations, the CT increases and reaches a maximum value and

then decreases to a steady state value. The CT is higher at the center, and the maximum

occurs at a height of 10–12 mm from the bottom which corresponds to the start-up

phase. This fact indicates that the center of the billet is the most critical region in the

DC casting. Therefore, there are more chances of hot tearing to form near the center of

the billet. And also, this is more likely to occur during the start-up phase. Further, the

steady state CT at the surface is only half of the center.

The proper understanding of secondary cooling of DC casting is highly essential be-

cause nearly 80% of casting heat is extracted through this zone. Therefore, an attempt

is made to analyze the temperature of the billet surface at which water starts striking

initially. Fig. 5.11(b) shows the surface temperature of the billet vs. the distance from

the bottom at which water starts impinging. Within a very short span of 50 mm from the

bottom, the surface temperature of the billet decreases from 553oC to 410oC. After that,

the temperature slightly increases and then decreases to a steady state value of 408oC

which is nearly 100oC above the Leidenfrost temperature. Therefore, it can be clearly

understood that the film boiling is the dominant mechanism of heat transfer in the water

impingement zone. It is quite interesting to know the length of different boiling zones.

Fig. 5.12 shows the length of film, transition, and nucleate boiling zones vs. billet

height. The steady state length of all the three boiling zones are around 14.3, 21.8,
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and 70 mm respectively. Further, the length of the maximum heat flux or HTC zone

can be crudely approximated as the thickness of wetting front. In this case, the steady

state wetting front thickness lies around 7.8 mm which is practically reasonable. These

informations are very useful for altering the cooling strategy.

The evolution of radial, axial, and circumferential stresses at the center and the sub-

surface (90 mm from center in the radial direction) of the billet are plotted as shown in

Fig. 5.13. Near the bottom of the billet, the influence of the boundary condition is very

high. Therefore, the cross-section considered for the analysis is taken at 50 mm from the

bottom. Further, the element integration points are located within the elements and not

on the element boundaries. The stress and strain are computed only in the integration

points. Even though, it is possible to bring the integration point quantities to the nodal

level through the inverse mapping but this is not more accurate to make the decisions.

Due to this reason, the nearest integration points are considered for the study. Due to

the symmetry, the radial and circumferential components of stresses are equal at the

center. In the center, all the stress components are tensile in nature. However, near the

subsurface, the axial and circumferential stresses are compressive. It can be seen that

stresses become constant after certain time. The higher value of tensile stresses near the

center of the billet can easily open the existing cracks.

Figure 5.13: Casting speed 120 mm/min: evolution of stress at center and a radial
distance of 90 mm (50 mm from bottom)
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It is commonly believed that in order for a hot tear to form, the stress or inelastic

strain must exceed a critical limit. Since the starting cracks in the center of the billet

may propagate in the radial or axial direction, it is of interest to analyze the stress or

inelastic strain component in the direction perpendicular to the crack direction. The

circumferential component of stress/strain is the one which can open the crack in both

the axial and radial directions. Further, the hot tear may form during the last stage

of solidification in the start-up phase. Fig. 5.14 shows the circumferential stress and

viscoplastic strain as a function of temperature. Three locations are selected such as the

center of the billet at start-up phase (1), center of the billet at pseudo steady state (2),

and subsurface of the billet at pseudo steady state (3). Until the coherency temperature,

there is no accumulation of stress and viscoplastic strain at all the locations. From the

coherency to the solidus, the location (1) which corresponds to the start-up phase, the

stress and viscoplastic strain are tensile in nature. However for the location (2) and (3),

the nature of stress and strain are compressive in the mushy state. Below the solidus

temperature, the nature of stress and strain at the locations (1) and (2) are tensile but

for the location (3), it is compressive. Overall, the start-up phase stress and strain are

higher when compared to the steady state for all temperatures. This tensile nature of

stress and strain in the mushy zone is the most favorable situation for the development

of hot tear.

Similarly, the axial components of stresses and viscoplastic strains are plotted in

Fig. 5.15. The trend of the axial stress is similar to the circumferential stress with

slightly lesser magnitude. However, the axial stress and axial viscoplastic strain behave

in an opposite manner. At the billet center, the axial stresses are tensile and the axial

viscoplastic strains are compressive both in the start-up and steady state. The situation is

again reversed at the subsurface during the steady state. The reason for such a behavior

of axial viscoplastic strain is not yet clear. Similar results are reported in Suyitno et

al. [56]. The tensile nature of axial stress can easily open the existing cracks in the

radial direction. However, the radial crack can not reach the outer surface due to high

compressive stress.

The components of stresses and viscoplastic strains at the solidus temperature are

shown in Fig. 5.16 at the center of the billet along the axial direction. Plotting this

graph is little trivial due to the large temperature gradient at the end of solidification.

The temperature may not exactly reach the solidus temperature. Therefore, a linear

interpolation is performed between the upper and the lower solidus point. Further, the

stresses and strains are taken at different time intervals. The circumferential and radial

stresses at the solidus temperature reaches a maximum of 5 MPa at a location of 45–

55 mm from bottom and, then decreases to a steady state value of 1.7 MPa. Similar
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trends are observed for the axial stress. All the components of stresses at the center

of the billet along the axial direction are tensile in nature except in a smaller region

nearby the bottom block. Further, the stresses are maximum during the start-up phase.

Therefore, one can conclude that the start-up phase is the most critical phase in DC

casting and the hot tear may form near the center of the billet where the regions close to

lower mushy. However, the viscoplastic strains at the solidus temperature behave little

different and contracting with the results of Suyitno et al. [56]. The circumferential and

axial components of viscoplastic strains follow an opposite pattern. The circumferential

viscoplastic strain reaches a compressive maximum of 0.011 at 20 mm from the bottom

and then changes the nature to tensile. Similarly, the axial viscoplastic strain is tensile

near the bottom block zone and then becomes compressive. This may be due to the

influence of boundary conditions chosen.

The contours of the radial, axial, and circumferential stresses during the steady state

casting are shown in Fig. 5.17. It can be perceived that the stresses start developing in the

mushy zone in the vicinity of the coherency. The radial stress is tensile at all positions

except a smaller region nearby the water impingement. The axial and circumferential

stresses are compressive close to the edge and tensile in the center of the billet. In the

water impingement zone, the axial stress is relatively higher and tensile in nature. Nearby

solidus, the stress state is tensile which is in good agreement with Suyitno et al. [56]. The

stress contours nearby bottom block regions is little complex.

The contours of radial, axial, and circumferential viscoplastic strains during the steady

state casting are shown in Fig. 5.18. The radial viscoplastic strain is compressive near the

subsurface of the billet and tensile in the center. This observation is a little contradicting

with the Suyitno et al. [56]. In contrast with the axial stress, the axial viscoplastic strain

is compressive near the center and tensile in the edge which is in good agreement with

Suyitno et al. [56]. The circumferential viscoplastic strain is compressive near the edge of

the billet and tensile in the center of the billet. The radial and circumferential viscoplatic

strains in the mushy state close to the solidus and nearby center are tensile whereas it

will become compressive near the edge. However, the axial viscoplastic strain behaves

oppositely. The influence of bottom block boundary on strain contours are higher than

the stress.

The equivalent stress distribution along with the deformed shape of the billet is shown

in Fig. 5.19. The nodal displacement components are multiplied by a factor of 5. The

equivalent stress is higher near the edge and lower at the center. Near the mushy and

higher temperature regions, the equivalent stress is almost zero. In the butt region,

the equivalent stress reaches a global maximum. To understand the butt deformation,

Fig. 5.20 is plotted. It shows the evolution of butt curl and temperature. Until water
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touches the butt, the displacement is relatively low and then it suddenly shoots upto a

maximum of 1.6 mm at 140oC. After that, the thermal gradients are not sufficient to

induce further deformation. Therefore, it relaxes to a steady state value of 0.9 mm.

Figure 5.19: Casting speed 120 mm/min: deformed shape with equivalent stress distrib-
ution at pseudo steady state

Figure 5.20: Casting speed 120 mm/min: butt curl evolution
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5.3 Influence of casting speed

The influence of the casting speed is studied in two ways: (a) different casting speed

profiles, and (b) constant casting speed with different magnitudes. Firstly, six different

casting speed profiles are considered which are given as a function of billet height as

shown in Fig. 5.21. In all the cases, during the steady state condition, the casting speed

is maintained constant. However, the start-up phase casting speed is different for all

the cases. The case-1 is initially started with a speed of 100 mm/min and increased to

120 mm/min when the billet height reaches 29 mm, and afterwards the same speed is

maintained throughout the casting. The case-2 is similar to the case-1 but the casting

speed is gradually increased from 100 to 120 mm/min when the billet height reaches

300 mm. In case-3, a constant casting speed of 150 mm/min is used for the entire casting.

The case-4 is similar to the case-2 but a casting speed of 150 mm/min is reached at a

height of 300 mm. All the above mentioned four cases are exactly the same as Suyitno

et al. [56]. Additionally, case-5 and case-6 are considered to illustrate the importance of

the start-up phase ramping procedure which are taken from M’Hamdi et al. [81]. These

two cases are similar after a billet height of 50 mm. However, the initial casting speed

is different. In case-5, the casting speed of 80 mm/min is maintained constantly until

the height of the billet reaches 150 mm and then suddenly increased to a higher speed

of 110 mm/min. In contrast to case-5, the case-6 is started with 130 mm/min and

then suddenly decreased to 80 mm/min at a billet height of 50 mm. The case-6 is not

exactly the same as M’Hamdi et al. [81] because they increased the speed gradually to

110 mm/min after a height of 50 mm. However, the case-5 is same as M’Hamdi et al. [81].

Secondly, four different constant casting speeds are considered such as 80, 120, 150, and

180 mm/min.

5.3.1 Thermal field

The steady state temperature distribution for the cases 1 and 3 is shown in Fig. 5.22.

When compared to case-1, the billet is relatively hotter in case-3. Even though these

two cases are plotted at two different times, the sump depth and mushy dimensions at

center are relatively lower for case-1. Similar temperature contours are obtained for the

cases 2 and 4, i.e. 1 and 2 are similar and 3 and 4 are similar. Further, the steady

state temperature distribution for the cases 5 and 6 is also similar. Therefore, it can be

concluded that the steady state temperature distribution is independent of the ramping

procedure. However, the time at which the steady state is reached and the billet height

differ from each other.

The sump depth and the mushy dimensions are used as a criterion for the hot tearing
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Figure 5.21: Casting speed profiles vs. length of billet
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Figure 5.22: Influence of casting speed profile: steady state temperature distribution for
(a) case-1 and (b) case-3
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development [56]. Therefore, it is important to analyze these two parameters. For the

six casting profiles considered, the evolution of sump depth and mushy zone length are

plotted (Fig. 5.23) at the center of the billet where the values are critical. In case-1 and

3, the sump depth increases steadily and reaches a maximum at 78 s after then decrease

to a steady state value. However, in case-3, there is not much decrease in sump depth

after the peak, and further it reaches the steady state much faster than in the other cases

which is shown in Fig. 5.23(a). This contradicts the results of Suyitno et al. [56] because

they reported that the higher the casting speed, the longer is the time to reach the steady

state. All the remaining cases (2, 4, 5, and 6), after reaching a peak value, the sump

depth decreases and then increases to reach a steady state value. The steady state is

obtained for case-1 at 144 s (billet height - 285 mm), case-2 at 195 s (360 mm), case-3 at

111 s (273 mm), case-4 at 225 s (495 mm), case-5 at 210 s (314 mm), and case-6 at 210 s

(339 mm). From these results, it is clear that the ramping procedure delays the time and

increases the billet height to reach a steady state. Even though a lower casting speed

is used in the cases 5 and 6, due to the improper ramping method, the steady state is

reached at a slightly longer time. Therefore, it can be concluded that the sudden change

in casting speed increases the time to reach a steady state. While comparing the cases 5

and 6, the sump depth evolves faster in case-6 than in case-5. Only 3 mm difference in

sump depth is observed between case-6 and case-5 at the peak. From the start-up phase

sump depth evolutions, it can be rated that the probability of hot tear formation for the

casting profiles considered as in the descending order as 3–4–1–2–6–5. This means that

case-3 has higher chances and case-5 has lower.

The evolution of mushy zone length (MZL) is nearly similar as that of sump depth

for all the cases as show in Fig. 5.23(b). However, the cases 5 and 6 behave in a slightly

different manner. Before reaching the peak value, the MZL evolution rate is higher for

case-6 when compared to case-5. Similarly, after the peak, for case-6, the MZL evolution

rate decreases faster than case-5. Therefore, it is easy to rate the cases starting from 1 to

4 as 3–4–1–2 but for the cases 5 and 6, it is not possible based on the MLZ evolution. It

is concluded that the steady state sump depth and MZL are independent of the ramping

procedure. To understand the influence of the casting speed, the steady state sump depth

and MZL are plotted as a function of radial position for the different constant casting

speeds as shown in Fig. 5.24. It shows that the sump depth and MZL are maximum at

the center and the magnitude increases with increase in casting speed. However, in the

surface, the MZL decreases with increase in casting speed. In the subsurface of distance

80 mm from the center, the mushy dimension is independent of casting speed. Similarly,

for the casting speed of 150 and 180 mm/min, the sump depth at the surface is nearly

equal. The percentage increase in casting speed is same as the percentage increase in
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(a) Evolution of sump depth

(b) Evolution of mushy zone length

Figure 5.23: Influence of casting speed profile: evolution of sump depth and mushy zone
at center
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sump depth at the center. However, the percentage increase in MZL is slightly lower.

5.3.2 Mechanical field

Due to the tensorial nature of stress and strain, analyzing the displacement field results

are relatively complex when compared to that of the thermal field. According to the

thermal analysis, case-3 has the highest and case-5 has the lowest chances of hot tearing

formation. During the steady state condition, almost similar behavior is observed for

the cases 5 and 6. Therefore, the steady state distribution of circumferential stress (σzz)

and circumferential viscoplastic strain(εvp
zz) are plotted for the cases 6 and 3 as shown in

Fig. 5.25 and Fig. 5.26. The stress and strain concentrations nearby the bottom block

area are higher for case-3 compared to case-6. Higher tensile stress and strain are induced

in case-3 when compared to case-6. However, near the water impingement and butt areas,

the tensile viscoplastic strain region is larger in case-6 than in case-3. A higher tensile

stress is induced near the solidus line at the center in case-3. Therefore, case-3 has the

higher chances of hot tear formation than case-6.

The evolution of circumferential stresses at the center of the billet (56 mm from

bottom) is plotted as shown in Fig. 5.27(a) for all the 6 casting profiles. Due to the

symmetry, these curves also represent the radial stress evolution. Without doubt, the

rating is the same as before. The ramping procedure has a positive influence on the

stress evolution. Similarly, the circumferential stresses at the billet subsurface (56 mm

from bottom) are plotted as shown in Fig. 5.27(b) for four different constant casting

speeds. The higher the casting speed, the higher the stress at subsurface.

The development of circumferential stress and viscoplastic strain as a function of

temperature is studied through the Fig. 5.28. Here, the location is selected at a distance

of 50 mm from bottom close to center of the billet. Even though the stresses are tensile

in nature at the end of the solidification for all the casting profiles, the chances of hot

tear formation are more for the cases 1, 3, and 4 when compared to the cases 2, 5, and 6.

This is due to the development of compressive stress before reaching the solidus for the

cases 2, 5, and 6. Further, for the cases 5 and 6, the viscoplastic strains are compressive

even at the end of the solidification. Therefore, case-5 and case-6 has no chances of

developing hot tear if the viscoplastic strain is the deciding criteria. This is not the case

for the stress because the nature of stresses are tensile at the end of solidification for all

the cases. While comparing case-5 with case-6, the chances of crack formation are more

for case-6 than case-5. Not only hot tears, the chances of cold crack formation are also

higher at the billet center where the regions correspond to the start-up phase. The rating

is same as before, however, it is difficult to say when it comes to case-1 and case-4 due

to the similar behavior.
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Figure 5.25: Influence of casting speed profile: steady state circumferential stress distri-
bution for (a) case-6, and (b) case-3
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Figure 5.26: Influence of casting speed profile: steady state circumferential viscoplastic
strain distribution for (a) case-6 and (b) case-3

To further ensure the influence of the casting speed, the previous conditions are re-

peated for different constant casting speeds, and the results are shown in Fig. 5.29. It is

obvious that increase in casting speed results in an increase of stress and strain in the

mushy. If the casting speed is sufficiently lower, the nature of the stress and strain in the

mushy will become compressive. Even though, the constitutive equation changes at the

end of the solidification, the strain pattern is uniform but the stress change is not smooth

irrespective of the casting speed.

The circumferential component of stress and viscoplastic strain at the solidus tem-

perature vs. billet height at the center are shown in Fig. 5.30 for the different casting
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Figure 5.28: Influence of casting speed profile: circumferential stress and viscoplastic
strain as a function of temperature

profiles. In all cases, the maximum tensile stress occurs at a height of 48–54 mm which

corresponds to the start-up phase. However, for the cases 5 and 6, the stress becomes

compressive after the peak and remains compressive during the steady state. In contrast

to case-5 and case-6, in all other cases, the nature of steady state stress is tensile which is

favorable for the growth of existing crack or hot tear. For case-3, not only in the start-up
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phase, during the steady state also hot crack may form due to relatively higher tensile

stress. The strain concentration nearby the bottom block zone is very high. Therefore,

for plotting of viscoplastic strain, 35 mm from bottom is omitted (Fig. 5.30(b)). For the
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cases 1 to 4, the start-up phase strains are tensile and then remains tensile for the cases

3 and 4 during the steady state. The steady state strains are compressive for the cases 1,

2, 5, and 6. In contrast to the stress behavior near the mushy zone during the start-up

phase, the viscoplastic strains are compressive for the cases 5 and 6. Finally, the rating

is same as before.

The axial stress and axial viscoplastic strain at the solidus temperature are shown in

Fig. 5.31 at the billet center during the start-up phase and the steady state. Fig. 5.31(a)

shows that during the start-up phase, the axial stresses are tensile for all the casting

speeds and remains tensile for higher casting speeds such as 120, 150, and 180 mm/min

during the steady state. For the lower casting speed (80 mm/min), the steady state

stress becomes compressive. The axial viscoplastic strain is completely opposite to that

of the axial stress. Fig. 5.31(b) shows that for the case of 80 mm/min, higher tensile

viscoplastic strain is developed during the steady state phase. In other casting speeds,

the axial viscoplastic strains are always compressive at the end of the solidification. Using

axial stress as a criterion, the hot tear is most likely to occur for the higher casting speed.

The situation is reverse if the axial viscoplastic strain is used as a criterion. Similar

phenomena are reported in Suyitno et al. [56].

The behavior of the butt is presented in Fig. 5.32 for the different casting profiles and

speeds. According to the maximum butt curl which occurs during the start-up phase, the

rating is the same as previously discussed. However, based on the steady state butt curl,

the rating is exactly opposite and the situation is complicated as shown in Fig. 5.32(a).

Therefore, Fig. 5.32(b) is used to clarify this controversy. It shows that the higher the

casting speed, the lower will be the steady state butt curl. This is due to higher reheating

at the butt for the higher casting speed. Therefore, the thermal stresses relax faster.

5.3.3 Hot tearing criterion

Clyne and Davies [87] criterion is applied to all the different casting speed profiles and

the results are shown in Fig. 5.33(a) as a function of the distance from the bottom of the

billet at center. It is observed that in all the cases, nearby the bottom block contact area,

the hot tearing susceptibility (HTS) is very high and then decreases to a constant value

within a short distance. There is not much difference between the various casting speed

profiles. Therefore, the radial distribution of HTS at the steady state condition is plotted

and shown in Fig. 5.33(b) for different casting speeds. Nearly similar curves are obtained

for all the casting speeds. HTS is lower at the center and outer surface when compared to

the intermediate sections. Further, HTS at the surface is higher than the center. Similar

kind of results are reported by Suyitno et al. [84]. Even though this criterion is easy to

implement, it does not provide any useful informations such as the influence of ramping,
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higher sensitivity at center, etc.

5.4 Influence of secondary cooling

At present, the influence of secondary cooling is not well understood in the DC cast-

ing research community. This is mainly due to the insufficient experimental techniques

to describe the boiling curve. Apart from the experimentations, the inverse nature of

this problem increases the computational difficulty. Therefore, the exact relation be-

tween the major controlling variables such as water flow rate, water quality, surface

roughness, thermophysical properties of the casting materials is not yet well established.

Even though, there are some empirical relations existing based on the convection correla-

tions [64, 58, 63], further research is required to reveal the controlling parameters. Based

on the quenching experiments (Chapter 3) conducted in our laboratory, the heat flux is

not linearly varying with the change in water flow rate or the water velocity. Further,

it is not possible to directly apply the quenching experiment results in the secondary

cooling of DC casting. The major reason for this inconsistency is due to the following

reasons: (a) film boiling phenomena is not well captured during the experiments, (b)

the plate is maintained in static condition, and (c) during quenching, the plate is not

exposed to constant heat source. Therefore, a theoretical study is conducted to establish

the influence of secondary cooling.

5.4.1 Influence of secondary cooling HTC profile

It is well known fact that any major change in the secondary cooling parameter will affect

the HTC profile (boiling curve). Therefore, to illustrate the importance of secondary

cooling, an attempt is made to theoretically understand the significance of secondary

cooling HTC profile. To achieve this motive, the previously mentioned secondary HTC

is multiplied by a factor which varies from 0.5–2 with an increment of 0.5. The resulting

HTC profiles are shown in Fig. 5.34. Here, it should be noted that the Leidenfrost point,

maximum HTC temperature intervals, and nucleate boiling start temperature are not

changed. Only, the existing HTC profile is allowed to shrink or enlarge by a factor. A

constant casting speed of 120 mm/min is employed. Other casting conditions are the

same as before. The case-B corresponds to a factor of 1 which is the standard case

because the results are already discussed in Section. 5.2.

The temperature contours during the steady state are plotted for case-A and case-D

in Fig. 5.35. It is evident that the billet is hotter in case-A when compared to case-D. The

position of the liquidus and solidus lines are relatively lower for case-A due to low HTC.
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In the water impingement zone, the distance between the solidus and the Leidenfrost

point (LFP) is in the order of centimeters for case-A. However for case-D, the surface

temperature nearby impingement zone drops to less than 200oC within few millimeters.

The temperature evolution at the extreme bottom corner of the billet known as butt

is shown in Fig. 5.36(a). Before water striking, the temperature drop is same for all the

cases. Once water touches the butt, due to rapid cooling in case-D, the temperature

drops from 552oC to 130oC within 9 seconds. This increases the butt deformation due

to the higher accumulation of irreversible viscoplastic strain. Fig. 5.36(b) shows the butt

deformation for all the cases. In case-A, the temperature drop is not so rapid and the

butt curl is only half of case-D. Hence, the decrease in secondary cooling reduces the butt

curl.

Fig. 5.37 shows that the evolution of the sump depth and the mushy zone length.

When compared to all other cases, the maximum sump depth, steady state sump depth,

maximum MZL, and steady state MZL are always higher for case-A . The radial distrib-

ution of sump depth and MZL at the steady state condition are shown in Fig. 5.38. The

difference in sump depth between the case-A and the standard case is higher at the center

than at the surface. Similar behavior is observed for MZL but for all the cases, the MZL

at the surface is almost same. It can be concluded that the increase in secondary cooling

decreases the sump depth and MZL.
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Figure 5.35: Influence of secondary cooling profile: steady state temperature distribution
for (a) case-A and (b) case-D

The characteristic time at the center of the billet is always higher for case-A in all the

locations as shown in Fig. 5.39(a). The surface temperature of the billet at which water

starts striking is lower for case-D. Fig. 5.39(b) shows that the temperature is around

550oC for case-A and 240oC for case-D. The temperature for case-D is lesser than LFP.

Therefore, it is important to know the length of different boiling zones. Fig. 5.40 shows

the film boiling and combined nucleate and transition boiling zone lengths for all the

cases. The length of film boiling zone is extremely high for case-A (54 mm) and low for

case-D (3 mm) during the steady state. The similar kind of behavior is observed in the

case of nucleate and transition boiling. Therefore, in case-D, most of the billet surface

area comes under the category of forced convection zone.

The distribution of circumferential stress for the cases A and D are shown in Fig. 5.41.

In the entire billet, the stresses are relatively higher in magnitude for case-D than case-A.

Further, near the water impingement zone, higher tensile stresses are induced in case-D

which may lead to develop the surface cracks. In the case of circumferential viscoplastic

strain (Fig. 5.42), the strain concentration near the bottom block is more for case-D.

Higher compressive strain near the subsurface is observed in case-A. Very high tensile

strains are induced during the start-up phase for case-D. Hence, increase in secondary

cooling, increases the stress and strain.

The evolution of stresses during the start-up phase is compared for case-A and case-D

as shown in Fig. 5.43. Two locations at the start-up phase are selected such as the center

and subsurface at 90 mm from center. In both the locations, all components of stresses
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are lower for case-A than case-D. The circumferential component of stress is considerably

reduced in case-A when compared to axial and radial components. The axial stress at

the subsurface changes its nature from tensile to compressive in case-D but surprisingly

in case-A, the nature of stress is monotonically compressive. Generally, during the time

of water start striking, the axial stress becomes tensile and in later stages it turns into

compressive. This behavior is missing in case-A. Therefore, the chances of quench crack

formation at the surface is lower for case-A.

The circumferential stress and viscoplastic strain as a function of temperature is shown

in Fig. 5.44 for three different locations such as the center at 50 mm from bottom, center

at steady state, and subsurface of 90 mm from center at steady state. For case-D, only
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Figure 5.41: Influence of secondary cooling profile: steady state circumferential stress
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during the start-up phase, the stresses are higher, but during the steady state the stresses

are lower than case-A. Further, in case-A, the subsurface stress during the steady state

turn into tensile at 570oC but in case-D, it remains compressive. If the stress is a deciding

factor, the chances of developing cold cracks are more for case-A than case-D. However,

the probability of hot tear formation for case-D is higher than case-A. A similar behavior

is observed for the viscoplastic strain except the subsurface at steady state where case-D

dominates than case-A. The compressive nature of stress and strain are highly preferred

than the tensile one at the vicinity of cracks. With this notion, case-D is better than

case-A at the center during the steady state but in the subsurface situation is complicated

due to the opposite nature of stress and strain.
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Figure 5.42: Influence of secondary cooling profile: steady state circumferential viscoplas-
tic strain distribution for (a) case-A and (b) case-D

The axial and circumferential components of stress and viscoplastic strain at the

solidus temperature are plotted along the distance from bottom of the billet as shown in

Fig. 5.45. In the early stages of start-up phase, the stresses are compressive for case-A

and then turn into tensile. However for case-D, the stresses are tensile from the beginning

itself. The steady state stresses are higher for case-A than case-D. This fact indicates that

for reducing the possibilities of hot tearing, the secondary cooling in the start-up phase

has to be reduced. With respect to the cold crack formation, the secondary cooling has to

be promoted during the steady state phase. The circumferential viscoplastic strain at the

solidus temperature enhances this fact, however the axial viscoplastic strain contradicts it.

The higher tensile axial viscoplastic strain is induced during the start-up phase for case-A

and during the steady state phase it becomes zero as shown in Fig. 5.45(b). An exactly

opposite behavior is observed for case-D, and the steady state values are higher than

case-A. This kind of complex nature of stress and strain restricts any such generalized

conclusions.

5.4.2 Time dependent HTC profiles

From the above-mentioned simulation results regarding the secondary cooling profile, it

can be possible to theoretically optimize the cooling curve. Instead of maintaining a

constant profile, it is also feasible to vary with respect to time. One such possibility

is that the reduced cooling at the beginning and enhanced cooling at the steady state.

Therefore, an attempt is made to vary the cooling curves in the time direction. At the
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time of secondary cooling starts (billet height - 70 mm), the multiplying factor is taken

as λ1. Similarly, the final factor at a billet height of 300 mm is taken as λ2. In between

these two stages, the factor λ is obtained by a liner interpolation. For better illustration,

four different combinations are considered which are given below.

• Case–A: λ1 = 0.5, and λ2 = 0.5 (reduced cooling)

• Case–E: λ1 = 0.5, and λ2 = 2.0 (decreased-increased cooling)

• Case–F: λ1 = 2.0, and λ2 = 0.5 (increased-decreased cooling)

• Case–D: λ1 = 2.0, and λ2 = 2.0 (enhanced cooling)

In cases A and D, a constant factors are used which repeats the same cases A and D as

discussed before. Only, the cases E and F are new in which HTC profiles are varied from

λ1 to λ2. In case–E, the HTC profile is increased from a factor of 0.5 to 2. Case–F is the

exact opposite of case–E. In all the cases, a constant speed of 120 mm/min is used. Other

casting parameters are kept constant and only the secondary cooling profile is supplied

as a function of time.

The evolution of sump depth at the center is shown in Fig. 5.46(a). In case–F, the

curve shifts from D and reaches A. Similarly, in case–E, the curve follows the path of

case–A until certain time and then tends to reach case–D. Similar trends are observed in
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the evolution of mushy zone length as shown in Fig. 5.46(b). Only the evolution pattern

changes from one case to another. This behavior is similar to the ramping which are

discussed in Section 5.3. Increased cooling during the start-up phase and reduced cooling

at the steady state (case–F) or reduced cooling during the start-up phase and increased

cooling at the steady state (case–F) will not alter the steady state sump depth and MZL.

However, the start-up phase sump depth can be reduced using a strategy F. The rating

can be given based on the start-up phase as A–E–F–D and based on the steady state as

A–F–E–D.

The circumferential stress and circumferential viscoplastic strain at the center of the

billet during the start-up phase is plotted as a function of temperature as shown in

Fig. 5.47. There is not much change in stress observed even at the very low temperature.

Surprisingly, the stress and viscoplastic strain are always higher in Case–E when compared

to case–F. The same plot is repeated for another center location which is taken at 300 mm

from bottom where the HTC profile is started maintaining constant. Fig. 5.48(a) shows

that the evolution of stress in the vicinity of the phase-change interval is minimum for

case–E. However, after the solidification, case–E slowly reaches case-F. Similar behavior

is observed in the viscoplastic strain (Fig. 5.48(b)). This creates an ambiguity to identify

the best cooling strategy. According to the stress, the rating can be given based on

the stress evolution within the mushy zone as A–D–F–E and based on the stress after

solidification as D–A–F–E. The rating again changes based on the viscoplastic strain and

given as A–F–E–D.

The circumferential stress and circumferential viscoplastic strain at the solidus tem-

perature along the distance from the bottom of the billet at the center is shown in

Fig. 5.49. In the stress plot, except case–A, all other cases show higher tensile stress

during the start-up phase. After certain distance, the cases D, E, and F reaches a same

steady state value which is lower than case–A. Nearly similar behavior is observed in the

viscoplastic strain, except case-E which reaches a tensile maximum during the start-up

phase. However, the steady state values of case–E is lower than case–A. At a certain

region, case–F exhibits the minimum before reaching the steady state.

The complicated behavior of stress and strain restricts the possibilities to make any

such conclusions. Further the complexity increases if the axial component of stress and

strain are taken into account. This study reveals the fact that through the controlled

cooling, the pattern of evolution of stress and strain can be changed. With a proper

optimization, it may be possible to reduce the probability of hot or cold cracking. At this

moment, it is not possible to conclude which cooling strategy is the better one.
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5.4.3 Influence of other parameters

The influence of the maximum HTC at nucleate and transition boiling (represented as

MHTC in Fig. 5.4), Leidenfront temperature (LFP), and film boiling HTC (represented

as FHTC in Fig. 5.4) are investigated. The results are shown in Fig. 5.50 and Fig. 5.51(a).

Generally, the sump parameters are described by the following four quantities: (a) maxi-

mum sump depth, (b) steady state sump depth, (c) maximum MZL, and (d) steady state

MZL. MHTC is varied in the range -10% to 40% from its standard value (25 kW/m2K).

The corresponding change in sump depth and MLZ are not so high. Even for the case

of 40% increase, the above-mentioned four parameters vary less than 2%. Similarly, the

LFP and FHTC are varied and no significant change is observed. However, the trend

of the approximate curve shows that the influence of LFP is relatively higher than the

MHTC and FHTC. In overall, MHTC, LFP, and FHTC do not influence the sump para-

meters at a greater extend. It is obvious that if there is no significant change in the sump

parameters, the change in stress and strain behavior will be almost null. Therefore, the

change in displacement field results are not shown here. However, from the stress point

of view, it is observed that the increase in LFP promotes the chances of hot cracking at

the billet center during the start-up phase.

5.5 Influence of melt superheat

The influence of melt superheat is studied by varying the melt temperature. Fig. 5.51(b)

shows the variations in sump parameters. The change in melt temperature significantly

changes the sump parameters. It is found that the sump depth and the mushy zone length

behave oppositely. Increase in melt superheat increases the sump depth and decreases

the mushy length. Further, the mushy length decrease rate is higher than the sump depth

increase rate. This fact indicates that the liquidus line shifts faster than the solidus line

when the melt temperature is increased. Nearly similar effect at the center of the billet is

reported in Eskin et al. [106]. However, they mentioned that at the surface, the situation

is reversed when compared to the center. In the present simulation, this effect is not

observed.

Due to the strong influence of melt superheat on the sump parameters, it is quite inter-

esting to analyze the displacement field results. Three different cases of melt temperature

are considered:(a) 670oC (standard case), (b) 680oC, and (c) 690oC. The circumferential

stress plot is shown in Fig.5.52. It indicates that there is not much change in stress. In

the stress-temperature plot, at the phase-change interval, all the cases behave slightly

different manner and after that all cases coincide. Even for the circumferential stress at

the solidus temperature plot shows the similar behavior. However, during the start-up
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phase, the stresses are higher in the case of higher melt temperature. Due to similar

behavior, it is difficult to frame any such conclusions based on the stress plot.

The circumferential viscoplastic strain as a function of temperature is shown in Fig.

5.53(a). The influence of the melt temperature is clearly visible. The increase in melt

temperature increases the viscoplastic strain. Fig. 5.53(b) shows the viscoplastic strain

at a solidus temperature. In all positions, the strains are higher for the case of 690oC.

It can be concluded that the increase in melt superheat promotes the viscoplastic strain.

According to Magnin et al. [91], increase in viscoplastic strain increases the HTS. Based on

this, the increase in melt superheat increases the possibility hot tearing. This observation

agrees with Spittle and Cushway [105] and contradicts with Eskin et al. [106]. However,

Eskin et al. [106] mentioned that the decrease in HTS is substituted by other forms such

as micro cracks, pores and healed cracks.

5.6 Mesh convergence study

In the numerical methods, the infinite degrees of freedom of the computational domain

is forcefully reduced to finite degrees in space and time. This itself indicates that the

accuracy of the numerical solution is lower than the analytical solution. Due to the

limitations, it is practically impossible to obtain the analytical solution for highly complex

problems like DC casting. However, for the reasonably accurate solution, the best choice

is no other than the numerical one. The number of elements in the radial direction and

the size of time step are the two important parameters which control the accuracy of the

DC casting numerical solution. It is essential to understand the influence of these two

parameters on the final solution. Here, the sump parameters are taken as a measure of
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accuracy. Therefore, the thermal part of the problem is sufficient to perform the mesh

convergence study. It is equally important to know the accuracy of the displacement field.

However, if the thermal solution is accurate enough, definitely the mechanical part will be

accurate due to the incorporation of higher order elements. It is already mentioned that

the mechanical elements are 9-noded with 9 integration points and the thermal elements

are 4-noded with 4 integration points. With this notion, the mesh convergence study is

presented in this section based on the sump parameters taken at the billet center.
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Figure 5.54: Mesh convergence: sump depth

The contour plots of the sump depth are shown in Fig. 5.55. The maximum sump

depth plot indicates that if the number of elements are less than 10, the influence of the

time step will be almost null. However, it may be overpredicted if the number of elements

is further reduced. The steady state sump depth plot shows that the time step size is

more important than the number of elements. From the sump depth observations, the

maximum sump depth is strongly influenced by the number of elements, and the steady

state sump depth is controlled by the size of the time step.

The mushy length is plotted as shown in Fig. 5.56. According to the maximum MZL,

if the number of elements higher than 10 and time step size is less than 3, the solution will

be more accurate. Further, the steady state MZL is independent of number of elements.

These trends are almost similar to that of sump depth. The reason for the selection of 8

elements and 3 seconds is due to the restriction given by MATLAB. In the case of DC

casting, the domain grows continuously. Even for the case of 8 elements, 34 mechanical

nodes (8 thermal nodes) are additionally added at the beginning of every time step.

Finally, for the case of the 100th time step, the number of nodes exceed more than 3000.

MATLAB is not good enough to handle if the total nodes are more than 2000. Therefore,
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Figure 5.55: Mesh convergence: mushy zone length

8 elements are selected in the radial direction. The decrease in time step size increases

the number of nodes. This obviously increases the total computational time.

The mean iterations per time step for the thermal problem is shown in Fig. 5.56(a).

The variation is not so high. An average of 4–6 iterations are required for every time

step. The total computational time for the thermal problem is shown in Fig. 5.56(b).

If the number of elements is above 10 and the time step size is less than 3, the total

computational time exceeds one hour.
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Figure 5.56: Computational details: thermal problem

The average number of iterations for the mechanical field is around 4–4.5. The number

of local time steps used in the mechanical problem is 8. Fig. 5.57 shows the computational
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time per time step. In both the problems, computational time per time step increases

gradually due to the addition of elements. When compared to the thermal problem,

the mechanical problem needs an 80 times higher computational time. Finally, for each

simulation, a minimum of 8–10 hours is required to solve the complete DC casting problem

with a casting speed of 120 mm/min up to a height of 500 mm.
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Figure 5.57: Computational time per time step

5.7 Summary and conclusions

The start-up and steady state phases of DC casting is modeled. An axisymmetric round

billet with a radius of 100 mm is simulated. Thermal and metallurgical fields are solved

in a strongly coupled manner. Within a time step, thermal and mechanical problems

are decoupled using an isothermal staggered approach. 4-noded thermal element and 9-

noded mechanical elements are employed. The bottom block and mold are not included

in the computational domain. The interfacial heat transfer is incorporated through the

temperature-dependent heat transfer coefficient. The contact between the bottom block–

billet and mold–billet are neglected. Therefore, the bottom of the billet is fixed for the

first 15 seconds and then released. 8 elements are taken in the radial direction, and the

time increment is considered as 3 seconds. An aluminum alloy of AA1201 is considered

for the study. The mushy behavior is represented by the Norton–Hoff viscoplastic law,

and the solid is assumed to follow the Garafalo law.

A constant casting speed of 120 mm/min has been considered to illustrate the evolu-

tion of temperature and residual stresses during the start-up phase of DC casting. The

sump depth, mushy zone length, and characteristic time are higher at the billet center
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when compared to the surface. When the water starts contacting the surface of the billet,

the surface temperature of the billet is above the Leidenfrost temperature. Therefore,

film boiling is the dominant mode of heat transfer in the water impingement zone. The

lengths of different boiling zones are computed. It is found that all components of stresses

and viscoplastic strains are maximum at the billet center. Further, the nature of stresses

and strains at the center are tensile and its maximum occur during the start-up phase

except the axial viscoplastic strain. The attention is focused on the mushy zone and

found that all the components of stresses and viscoplastic strains in the lower mushy are

tensile except the axial viscoplastic strain. Tensile nature of stress and strain at the end

of the solidification is a favorable situation for the development of hot tears. From the

above observations, it can be concluded that the start-up phase is the most critical phase

in DC casting. And also the hot tearing most likely occurs during the start-up phase

than the steady phase.

The influence of different the start-up conditions are studied through different casting

speed profiles. It is found that the vulnerability of start-up phase can be minimized

through a proper ramping procedure. Further, ramping delays the time and increases the

billet height to reach the steady state. Increase in the casting speed increases the steady

state sump depth and mushy length. Stresses and strains in the mushy zone increase with

increasing casting speed and they are maximum in the start-up phase. Ramping reduces

the start-up phase stresses and strains. The probability of hot tearing increases with

increase in casting speed. The Clyne and Davies hot tearing criterion is evaluated for

different casting speed profiles. There is no significant change in hot tearing susceptibility

observed. This criterion is insensitive to the ramping procedure.

The influence of secondary cooling is studied in detail. It is observed that reduced

cooling increases the length of the film boiling zone. Increased secondary cooling reduces

the sump parameters. Reduced secondary cooling reduces the start-up phase stresses and

strains. However, during the steady state, increased cooling decreases the stresses and

strains in the mushy. Therefore, the secondary cooling has to be decreased to reduce

the chances of hot crack formation during the start-up phase. Similarly for the steady

state, increase in secondary cooling reduces the hot crack development. Therefore, an

attempt is made to vary the secondary cooling with respect to time. Even though the

pattern of stress and strain evolution changes for different cooling strategies, due to the

complex nature of residual stresses and strains, there is no specific conclusion made in

this regarding. However, through the optimized cooling strategy, it is always possible to

reduce the chances of hot crack initiation. It is also found that the following secondary

cooling parameters have the least influences in the DC casting: film boiling and maximum

heat transfer coefficient, and Leidenfrost temperature.
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The melt temperature significantly changes the sump parameters. Increase in melt

temperature decreases the mushy length and increases the sump depth. Further, increase

in melt temperature increases the stress and viscoplastic strain and therefore promotes

the hot cracking. A detailed study has been performed regarding the mesh convergence

and time step size.
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