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Outline of the Thesis

Order picking deals with the retrieval of requested items from their storage locations in the
warehouse (Petersen & Schmenner, 1999; Wäscher, 2004). The items to be retrieved (picked) are
specified by a set of external or internal customer orders. Although several attempts have been
made to automate the picking process, manual order picking systems are prevalent in practice
(de Koster et al., 2007). Due to the employment of human operators (order pickers) on a large
scale in manual systems, order picking represents the most cost-intensive warehouse function,
accounting for between 50% (Frazelle, 2002) and 65% (Coyle et al., 1996) of the total warehouse
operating costs. Among manual systems, picker-to-part order picking systems are the most
important ones (de Koster, 2008). In such systems, order pickers process the customer orders by
performing tours through the picking area of the warehouse. Customer orders processed on the
same tour are referred to as a picking order. Each tour starts and ends at the depot and includes
all storage locations of the requested items (pick locations) contained in the respective picking
order. The time spent for performing a tour can be divided into the time for preparing a tour,
the time required at the pick locations for the identification and the retrieval of the items, and
the time needed to travel from the depot to the first pick location, between the pick locations
and from the last pick location back to the depot. From these components, the time for traveling
represents the major part of an order picker’s working time (Tompkins et al., 2010). Therefore,
the minimization of the travel times of all tours (total travel time) is of prime importance for
an efficient organization of the picking operations. Since the travel time is a linearly increasing
function of the length of the corresponding tour (Jarvis & McDowell, 1991), the minimization of
the lengths of all tours (total tour length) is equivalent to the minimization of the total travel time.

The length of a tour is dependent on the sequence according to which the pick locations included
in the tour are meant to be visited. The determination of the sequence is part of the Picker Routing
Problem which can be stated as follows. Let a set of picking orders consisting of requested items
with known storage locations be given. For each picking order, the sequence according to which
the pick locations are to be visited and the corresponding path through the picking area of the
warehouse have then to be determined in such a way that the total tour length is minimized.

The Picker Routing Problem has been widely studied in the literature and a large variety of
solution approaches exists. However, most approaches rely on the application of simple routing
strategies which may result in very long tours (Roodbergen, 2001). For example, the tours
constructed by means of the routing strategy most frequently used in practice leads to tours
which are up to 48% longer than an optimal tour (Theys et al., 2010). Since the generation of
such long tours can be expected to have a significant negative impact on the efficiency of the
picking process, the approaches proposed in the literature so far cannot be seen as satisfactory.
Therefore, in this thesis, several variants and extensions of the Picker Routing Problem are
addressed and more promising solution approaches are presented. All solution approaches have
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been implemented and extensive numerical experiments have been conducted in order to evaluate
the performance of the approaches. The solution approaches and the results of the experiments
have been published in peer-reviewed journals and in a working paper series.

In Scholz & Wäscher (2017b), a comprehensive overview of state-of-the-art solution approaches
to the Picker Routing Problem is given, while the approaches are classified according to the
underlying assumptions. It is pointed out that the complexity of the Picker Routing Problem
and the computational effort of corresponding solution approaches are mainly dependent on
assumptions concerning the layout of the picking area, i.e. the arrangement of the storage
locations in the picking area of the warehouse. The picking area includes picking aisles and
cross aisles. Picking aisles have to be entered in order to retrieve items as the storage locations
are situated on one side or even both sides of the picking aisles. Cross aisles do not contain any
storage locations, but they enable the order pickers to switch between picking aisles. Based on
the arrangement of the picking and cross aisles, a conventional or a non-conventional layout is
constituted. Typically, the picking area is assumed to follow a conventional layout (Roodbergen,
2001) which is also assumed in the following parts of this thesis. In conventional layouts, picking
aisles and cross aisles are straight, of equal length and width, and arranged parallel to each other,
respectively. Furthermore, the cross aisles intersect the picking aisles at right angles and divide
the picking area into blocks and the picking aisles into subaisles, where a subaisle is the part of a
picking aisle which belongs to the same block (see Fig. 1). Consequently, a conventional layout
with m picking aisles and q+1 cross aisles includes q blocks and q ·m subaisles.

Fig. 1: Example of a conventional layout with two blocks

The layout of the warehouse is also characterized by the width of the picking aisles where
standard, wide and narrow picking aisles can be distinguished. Standard picking aisles are wide
enough such that order pickers can pass or overtake each other in such aisles. At the same time,
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standard picking aisles are narrow enough for allowing pickers to retrieve items from storage
locations on both sides of the respective picking aisle without performing additional movements
(Roodbergen, 2001). No such additional movements are required in narrow picking aisles.
However, order pickers working at the same time in a narrow subaisle may cause congestion
(Parikh & Meller, 2009). In contrast, congestion is not an issue when dealing with wide picking
aisles but, in this case, additional movements are required for picking items located on different
sides of the wide picking aisle (Goetschalckx & Ratliff, 1988).

Based on the characteristics of the layout, different solution approaches to the Picker Routing
Problem are proposed in this thesis. First, conventional layouts with standard picking aisles are
considered. If a conventional layout contains two cross aisles only, the picking area follows a
so-called single-block layout. Using the special structure of optimal tours in a single-block layout
(Ratliff & Rosenthal, 1983), a problem-specific model formulation has been developed by Scholz
et al. (2016). The size of the model is independent of the number of pick locations and it only
increases linearly with the number of picking aisles. By application of a commercial IP-solver
to the model, any practical-sized problem instance can be solved to optimality within a small
amount of computing time. However, when being adapted to conventional layouts with more than
two cross aisles (multi-block layouts), the size of the model significantly increases. Therefore,
several procedures have been applied to the underlying graph in Scholz (2017), reducing the size
of the resulting model formulation. By means of numerical experiments, it has been demonstrated
that the model formulation is suitable for solving Picker Routing Problems in multi-block layouts.
In particular, the computing time does not increase with an increasing number of blocks, which
can be seen as a major advantage of the model as no efficient solution approach exists which is
able to deal with more than two blocks (Roodbergen, 2001).

In case of narrow picking aisles, order pickers are not able to pass or overtake each other, i.e. a
picker may have to wait until another picker has performed the operations in a subaisle. Thus, the
minimization of the total travel time does not represent a valid objective but rather waiting times
have to be taken into account. In Hahn & Scholz (2017), problem parameters are first pointed out
which have a significant impact on the waiting times of all order pickers (total waiting time) and
situations are identified where the proportion of the total waiting time as part of the processing
times of all customer orders is quite large. A truncated branch-and-bound algorithm is then
proposed which aims for the minimization of the total waiting time. The results of the numerical
experiments indicate that this approach provides high-quality solutions within short computing
times.

In the above-mentioned parts of the thesis, picking orders are assumed to be given, i.e. decisions
regarding the grouping (batching) of customer orders to picking orders have already been made.
This type of decision is now integrated into the Picker Routing Problem, giving rise to the Joint
Order Batching and Picker Routing Problem. The main characteristic of this problem can be
found in the objective. Distance-related and tardiness-related objectives can be distinguished.
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The minimization of the total tour length represents the most common distance-related objective.
The benefit (in terms of the savings regarding the total tour length) of dealing with the Joint Order
Batching and Picker Routing Problem instead of solving both subproblems in sequence has been
investigated by Scholz & Wäscher (2017a). For this purpose, an iterated local search approach to
the Order Batching Problem has been combined with several routing heuristics as well as with
the exact approach of Roodbergen & de Koster (2001). By means of numerical experiments, it
has been shown that the integration of the exact routing algorithm leads to superior results even
if the computing time is limited to a few minutes.

If customer orders have to be completed until a certain due date, tardiness-related objectives are
usually considered. The minimization of the tardiness of all customer orders (total tardiness),
i.e. the extent to which the due dates are violated, represents a widely-used tardiness-related
objective (Tsai et al., 2008). In contrast to the case of distance-related objectives, decisions
regarding the assignment of picking orders to order pickers and the sequence according to
which the picking orders are to be processed by the pickers have to be made as well. In Scholz
et al. (2017), a variable neighborhood descent algorithm has been developed for solving this
problem. The neighborhood structures are related to batching, assignment and sequencing
decisions while two routing algorithms are used for the evaluation of the solutions. Numerical
experiments have been conducted in order to show that the proposed algorithm is able to provide
high-quality solutions within reasonable computing times. Furthermore, the benefit of dealing
with all decisions simultaneously has been analyzed, and significant improvements compared to
a sequential solution of the subproblems have been observed.

When customers place orders, the requested items have to be retrieved from their storage
locations in the warehouse first. Problems arising in this context have been considered in the
above-mentioned parts of the thesis. However, after having provided the items in the warehouse,
vehicle tours have to be performed for shipping the requested items to the corresponding customer
locations. In order to comply with the due dates of the customer orders, the picking and the
shipping operations have to be well coordinated. This problem has been addressed by Schubert
et al. (2017). In this paper, an iterated local search approach has been designed which contains
neighborhood structures concerning the sequence of the picker tours as well as the composition
and the sequence of the vehicle tours. Extensive numerical experiments have been executed in
order to identify the situations where a holistic consideration of the picking and the shipping
operations is inevitable and to point out in which cases both types of operations can be dealt with
separately.

The thesis concludes with an outlook where several interesting areas for further research are
identified based on the findings from this thesis.
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Picker Routing in Manual Picker-to-Part Systems:

A Review of Problem Settings and Solution Approaches

A. Scholz, G. Wäscher

Abstract

In manual picker-to-part order picking systems, human operators (order pickers) walk or ride

through the warehouse using a picking device in order to retrieve items which are specified by

customer orders. The major part of the working time, an order picker spends for traveling through

the warehouse. Therefore, finding short picker tours is pivotal for an efficient organization of

warehouse operations. The construction of picker tours is part of the Picker Routing Problem (PRP).

The PRP is characterized by the arrangement of the storage locations in the picking area (layout).

In the first part of this paper, attributes regarding the layout are pointed out which affect the types

of decisions to be made and the time complexity of the solution approaches to the respective PRPs.

In the second part, the integration of the PRP into the Order Batching Problem (OBP), which deals

with the grouping of customer orders into picking orders, is considered. Since the PRP and the OBP

always arise simultaneously, an integrated solution of both problems has received much attention in

the recent literature. However, solution approaches are rarely based on the same settings. Therefore,

the algorithms are classified according to the underlying assumptions here in order to obtain a

structured overview. Finally, for both PRPs and integrated problems, research gaps are identified.
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2 Picker Routing in Manual Picker-to-Part Systems

1 Introduction

Order picking is a warehouse function responsible for the satisfaction of a given demand specified by

customer orders. It deals with the retrieval of requested items from their storage locations in the picking

area of the warehouse (Petersen & Schmenner, 1999; Wäscher, 2004). Order picking is necessary

since articles are received and stored in large volumes, while customers request small volumes of

different articles only. In manual order picking systems, which are prevalent in practice (de Koster et

al., 2007), the picking process is performed by human operators (order pickers). Among manual picking

systems, picker-to-part systems are the most important ones (de Koster, 2008). In those systems, order

pickers walk or ride through the picking area using a picking device in order to retrieve requested

items (Wäscher, 2004). Due to the employment of human operators on a large scale, order picking is

considered to be the most cost-intensive warehouse function, as picking operations account for between

50% (Frazelle, 2002) and 65% (Coyle et al., 1996) of the total warehouse operating costs.

The picking process executed by the order pickers is mainly composed of traveling through the picking

area, searching for the respective items and picking them from their storage locations. Traveling

consumes 50% of an order picker’s working time (Tompkins et al., 2010) and is the most important

component. Therefore, retrieving requested items in such a way that the travel time is kept at a low

level is pivotal for an efficient organization of warehouse operations. This gives rise to the so-called

Picker Routing Problem (PRP). The PRP deals with the determination of a sequence according to which

requested items are to be retrieved such that the distance to be covered by the order pickers is minimized.

The PRP is characterized by the underlying layout of the warehouse, i.e. the arrangement of the storage

locations in the picking area. Depending on the layout, the corresponding PRP can be solved efficiently

or it is rather difficult to solve. In this paper, different criteria are identified for the classification of

layouts first and existing solution approaches to the PRP are presented for each class of layouts. By

doing so, the impact of the layout on the types of decisions to be made and on the complexity of the

corresponding PRPs is pointed out.

More recently, it has been demonstrated that the picking process can further be improved by integrating

the PRP into related planning problems. The Order Batching Problem (OBP) can be considered as the

most popular problem predestined to be solved jointly with the PRP. The OBP deals with determining

which customer orders are to be processed on the same tour and it always arises simultaneously with the

PRP. Nevertheless, for a long time, the PRP did not receive much attention when dealing with the OBP.

Only in recent years, first solution approaches have been developed which simultaneously tackle both



A. Scholz, G. Wäscher 3

problems. However, almost all approaches rely on different assumptions, which makes it very difficult

to compare the performance of the algorithms. In order to give a comprehensive overview of the solution

approaches, the main assumptions are pointed out and used for the classification of the algorithms to

the respective problem variant. Furthermore, for each approach, results of numerical experiments are

considered and the maximum size of the problem instances, as well as computing times required to

solve the instances, are addressed.

The remainder of this paper is organized as follows: The next section comprises an overview of typical

warehouse areas. The picking area and its characteristics are described in more detail before the order

picking process is illustrated and planning problems arising in the picking process are mentioned.

Section 3 is devoted to the PRP. Based on the type of the layout, different variants of the PRP are

presented and corresponding solution approaches are explained. In Section 4, the integration of the PRP

into the OBP is considered. Solution approaches are reviewed and classified based on their underlying

assumptions. The paper concludes with an outlook on promising areas for future research (Section 5).

2 Manual picker-to-part order picking systems

2.1 Order picking warehouses

The basic processes in a warehouse involve (Gu et al., 2007) the receiving of shipments from suppliers,

the storage of the respective items, the retrieval of stored items, and the preparation of retrieved items

for shipment to the customers (see Fig. 1). Incoming shipments arrive by trucks at the receiving area,

where the items are unloaded and either directly transferred to the shipping area or transported to the

storage area of the warehouse. The storage area typically consists of two parts (Rouwenhorst et al.,

2000), namely the reserve and the picking area. In the reserve area, huge amounts of items are stored in

the most economical way until they are required for the replenishment of the inventory of the picking

area. The picking area contains smaller volumes of items which are stored in such a way that they can

easily be retrieved (picked). After the retrieval, the items are prepared for shipment and transferred to

the shipping area from where they are transported to the respective customers.

Among all warehouse operations, the operations performed in the picking area are considered as the

most cost-intensive ones (Gu et al., 2007). In the picking area, pallets, bins or low-level racks are

typically used to store the items (de Koster et al., 2007). The arrangement of the storage locations

determines the so-called layout of the picking area. In general, the picking area includes two types
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of aisles, namely picking aisles and cross aisles. Picking aisles have to be entered in order to retrieve

requested items, as the storage locations are arranged on one side or even both sides of the picking

aisles. Cross aisles do not contain any storage locations, but they are required in order to proceed from

one picking aisle to another. If the picking aisles are straight, arranged parallel to each other, of identical

length and width, and intersected by cross aisles at right angles, the layout is called conventional. In

conventional layouts, the cross aisles divide the picking area into blocks and picking aisles into subaisles

(see Fig. 2a)). If cross aisles only exist at the front and the rear of the picking area, the arrangement of

the storage locations follows a single-block layout. Otherwise, at least one additional middle cross aisle

exists, resulting in a multi-block layout.

Fig. 1: Typical warehouse areas and flows (de Koster et al., 2007)

If the picking and cross aisles do not show the above-mentioned characteristics, the layout is called

non-conventional. The most prominent non-conventional layouts are the flying-V and the fishbone

layout (Gue & Meller, 2009). The flying-V layout is characterized by a curved cross aisle, where the

angle between the cross aisle and an intersecting picking aisle gets larger the farther the picking aisle is

away from the depot (see Fig. 2b)). A disadvantage of such a layout can be seen in the rather sharp turns

that order pickers have to perform when entering the lower part of a picking aisle. This can be avoided

by allowing picking aisles to be arranged both vertically and horizontally resulting in a fishbone layout

(see Fig. 2 c)).

Besides the orientation of the picking aisles and the cross aisles, the width of the picking aisles represents

an important characteristic of the picking area. Standard, wide and narrow picking aisles have to be

distinguished. In standard aisles, items can be retrieved from both sides of the aisle without performing

additional movements. At the same time, aisles are wide enough for order pickers to pass each other

(see e.g. Roodbergen (2001)). In wide aisles, order pickers are also able to pass or overtake each other,
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whereas additional movements are required for picking items from storage locations of different sides

of a picking aisle (Goetschalckx & Ratliff, 1988). When narrow aisles have to be dealt with, no such

additional movements have to be executed. However, order pickers may interfere (block) each other as

passing and overtaking is not possible in narrow aisles (Parikh & Meller, 2009).

Fig. 2: Conventional and non-conventional layouts

The picking area either contains a single depot (centralized depositing) or retrieved items can be

deposited at the front end of each picking aisle (decentralized depositing). Furthermore, it has to

be distinguished between picking areas, where each article has exactly one storage location and

warehouses, where multiple locations are assigned to certain articles.

2.2 Picking process

In manual picker-to-part systems, order pickers perform tours through the picking area of the warehouse

in order to retrieve requested items from their storage locations. The information about which article

is requested and how many items of this article are to be retrieved is comprised of a set of external

or internal customer orders. Based on the customer orders, pick lists are generated which guide the

order pickers through the warehouse. A pick list identifies the sequence according to which the storage

locations of requested items (pick locations) are meant to be visited, and it contains information about

the quantity to be picked at the respective pick locations. By means of a picking device (e.g. a cart or

a roll cage), the order picker is able to temporarily store retrieved items, allowing the picker to retrieve
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several items on the same tour. Requested items retrieved on the same tour are addressed as a picking

order (batch). The number of items which can be retrieved on the same tour is limited by the capacity of

the picking device. The capacity may be specified in terms of a maximum number of items, a maximum

weight or even a maximum number of customer orders.

At the end of the picking process, requested items have to be sorted according to their corresponding

customer order as complete orders are allowed to be shipped to customers only. Two picking strategies

can be distinguished: pick-and-sort and sort-while-pick (de Koster et al., 2007). Using the first strategy,

items can be retrieved independently of the customer order to which they belong, resulting in an

additional sorting effort after the items have been deposited. When applying the sort-while-pick strategy,

all requested items of a customer order have to be picked on the same tour, i.e. splitting of customer

orders is not permitted.

2.3 Planning issues

Due to the large proportion of time-consuming manual operations, minimization of the total time

required for processing the orders, i.e. the time needed for performing the corresponding tours, is of

prime importance and a common objective in order picking warehouses (de Koster et al., 2007). The

time that an order picker spends for retrieving all items of a batch (batch processing time) can be divided

into (Tompkins et al., 2010) the time for preparing a batch (setup time), the time required for traveling

from the depot, to and between the pick locations and back to the depot (travel time), the time at the pick

location for identifying the correct item (search time) and the time for the physical retrieval of the item

(pick time). From these components, the travel time is of major importance as the other activities have

to be performed anyway and are not dependent on the sequence according to which pick locations are

visited within an order picker’s tour (de Koster & van der Poort, 1998). Assuming the travel velocity of

the pickers to be constant, the travel time is a linearly increasing function of the travel distance (Jarvis

& McDowell, 1991). Consequently, minimizing the travel distance also minimizes the travel time.

Let a (non-empty) set of customer orders be given, each of which requiring certain items to be retrieved

from the picking area of the warehouse. The distance to be covered for retrieving all requested items

(total travel distance) is then determined by dealing with the following planning issues (de Koster et al.,

2007):

• internal layout design (aisle configuration), i.e. the determination of the number of picking and cross

aisles as well as their arrangement in the picking area (tactical level);
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• storage assignment, i.e. the assignment of articles to storage locations (tactical and operational level);

• zoning, i.e. the assignment of aisles to work zones to which order pickers are restricted in their

operations (tactical and operational level);

• order consolidation (order batching), i.e. the grouping of customer orders into batches (operational

level);

• picker routing, i.e. the determination of a sequence according to which requested items of a batch are

picked and the identification of the corresponding path through the picking area (operational level).

Obviously, the travel distance is affected by the sequence according to which pick locations are to be

visited, i.e. the respective solution to the PRP. However, the decisions made regarding the other planning

issues have a significant impact on the travel distance as well. Nevertheless, an integrated solution of

all planning issues has not been considered in the literature because of two reasons. First, the resulting

problem would be far too complex and second, the planning issues include decisions with different

planning horizons (de Koster et al., 2007). The OBP is the only planning problem which always arises

simultaneously with the PRP. Therefore, we focus on solution approaches to the PRP first and then

proceed with the consideration of an integrated solution of the PRP and the OBP.

3 The Picker Routing Problem

The PRP can be formulated as follows (Ratliff & Rosenthal, 1983; Scholz et al., 2016): Given a set of

items to be picked from known storage locations, in which sequence should the locations be visited such

that the total length of the corresponding tour is minimized? The PRP can thus be interpreted as a special

case of the Traveling Salesman Problem (TSP), while the special characteristic of the PRP can be found

in the layout of the picking area, i.e. the width of the picking aisles (standard, wide, narrow) and the

arrangement of the picking and cross aisles (single-block, multi-block, non-conventional layout).

In Table 1, an overview of solution approaches to the PRP is given. The first column includes the

authors of the respective publication. The next three columns specify the characteristics of the picking

area, where the columns give information about the width of the picking aisles, the arrangement of

aisles and additional specifications, respectively. The fifth column contains a brief description of the

solution approach. Whether an approach always provides an optimal solution (exact) or not (heuristic)

can be seen in the sixth column. Furthermore, the seventh column shows the computational effort for

algorithms as well as the number of variables and constraints (size) for mathematical programming
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formulations. Both the computational effort and the size of a model may be dependent on the number of

blocks q, the number of picking aisles m and the number of pick locations n. Note that no information is

given for metaheuristic approaches as they are terminated after a fixed time limit or after the execution

of a certain number of iterations. The approaches depicted in Table 1 are explained in greater detail in

the following subsections, starting with solution approaches to PRPs in standard-aisle warehouses.

3.1 The Picker Routing Problem in standard-aisle warehouses

Single-block layout

The single-block layout represents the simplest form of conventional layouts and has frequently been

assumed in the literature so far. It is characterized by the existence of exactly two cross aisles, one at

the front and one at the rear of the picking area. Thus, an order picker has only two possibilities for

switching between picking aisles. Using the special structure of the picking area, Ratliff & Rosenthal

(1983) developed an efficient algorithm able to optimally solve any practical-sized PRP in a single-block

layout within fractions of a second. They pointed out that picking aisles can be considered successively

and proved that only five options have to be taken into account for the retrieval of items from the storage

locations of a picking aisle. A graph representing the tour is constructed. Starting with a graph with an

empty set of edges, edges are added corresponding to the picking aisles from left to right. By means

of dynamic programming, one out of the five options is chosen for each picking aisle, resulting in an

optimal solution. In this approach, a constant number of graphs has to be considered for each picking

aisle. Thus, the computational effort of the algorithm increases only linearly with the number of picking

aisles. Due to the construction process regarding the five options, the increase of the computational

effort is also linear in the number of pick locations.

Another exact approach has been proposed by Scholz et al. (2016), who developed a problem-specific

mathematical model to the PRP. First, a graph to the PRP is constructed based on an observation of

Burkard et al. (1998) who formulated the PRP as a Steiner TSP. In this representation, the set of Steiner

points, i.e. the vertices which do not have to be visited, contains the locations of the intersections

between a picking and a cross aisle. The remaining vertices are given by the location of the depot

and the pick locations. Taking the structure of optimal solutions to the PRP into account, the graph is

modified in such a way that its size (in terms of the number of vertices and edges) is totally independent

of the number of pick locations. A TSP formulation is then applied to this graph, resulting in a

model formulation whose size linearly increases with the number of picking aisles. By application
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of a commercial IP-solver, any practical-sized PRP instance can be solved within a small amount of

computing time (Scholz et al., 2016). Furthermore, it is shown that application of this model outperforms

the usage of general TSP and Steiner TSP formulations by far in terms of computing times and optimal

solutions obtained within a given time limit.

Although very fast exact approaches exist, the application of simple heuristic routing strategies is

prevalent in practice (Roodbergen, 2001). This can be explained by the fact that tours resulting from

such routing strategies are more straightforward and can be memorized easily, whereas optimal tours

seem to be quite confusing for order pickers, increasing the risk of missing a requested item (Petersen

& Schmenner, 1999). The S-shape, return, midpoint and largest gap strategies represent such simple

routing policies. Following the S-shape or the return strategy, picking aisles are visited from left to

right. As for the S-shape strategy, each picking aisle containing at least one requested item is traversed.

An exception may occur in the last picking aisle to be visited. If this aisle is entered from the front cross

aisle, the order picker moves to the pick location farthest away from the front cross aisle and then returns

for retrieving the remaining requested items in that aisle. According to the return strategy, each picking

aisle is entered and left via the front cross aisle in such a way that all requested items are collected.

When applying the midpoint or the largest gap strategy, each picking aisle is divided into a lower and

an upper part. The order picker traverses the leftmost picking aisle containing a pick location and then

visits the picking aisles, from which an item has to be picked, from left to right, retrieving all requested

items located in the upper part of the picking area. The rear cross aisle is used for entering and leaving

the respective picking aisles. When reaching the rightmost picking aisle with pick locations, the order

picker traverses this aisle in order to reach the front cross aisle from where the remaining requested

items are retrieved. The midpoint and the largest gap policy only differ in the way how the picking area

is divided into the two parts. As for the midpoint strategy, the distance of a pick location to the front

cross aisle is considered. If the distance is shorter than half of the length of the picking aisle, the pick

location is assigned to the lower part of the warehouse. Otherwise, it belongs to the upper part. When

applying the largest gap strategy, the largest distance (gap) between two adjacent pick locations or a pick

location and the adjacent cross aisle is determined for each picking aisle. Pick locations from below

the largest gap are assigned to the lower part, while the upper part includes the remaining requested

items. As can be seen, both the midpoint and the largest gap strategy result in tours in which picking

aisles may be visited twice. However, since items in a picking aisle are retrieved in such a way that the

non-traversed distance is maximal when applying the largest gap policy, this strategy outperforms the

midpoint policy in terms of solution quality (Hall, 1993). In Fig. 3, an example for an optimal tour as
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well as tours obtained by using the S-shape, return and largest gap strategies are depicted. (Note that the

tour constructed according to the midpoint policy matches with the tour shown in Fig. 3d).) The storage

locations of requested items are symbolized by black rectangles.

Fig. 3: Example picker tours in a single-block layout

As can be seen in Fig. 3, in comparison to an optimal tour, tours generated by means of the routing

strategies may appear to be very simple. However, the solution quality of these routing policies is

strongly dependent on the problem data (e.g. the number of picking aisles and pick locations) and in

many situations, application of simple routing strategies results in tours with tour lengths far from the

optimum (Roodbergen, 2001). Therefore, other routing strategies have been designed which tend to

result in shorter tours while still having a simple structure. In this context, simple means that each

picking aisle is visited at most once, i.e. when retrieving the items in a picking aisle, the picker either

traverses the aisle or returns at the pick location farthest from the cross aisle from where the picking aisle

has been entered. Thus, the resulting routing strategies combine elements of the S-shape and the return

policy. Petersen (1997) was the first who proposed such a routing strategy called composite heuristic.

Following this strategy, for each picking aisle, it is independently determined whether the distance to

be covered is smaller for the application of a return move or for a move according to the S-shape

strategy. The shorter one is executed. A more sophisticated routing heuristic has been developed by
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Vaughan & Petersen (1999). In the so-called aisle-by-aisle heuristic, the type of move to be executed

in a picking aisle is determined by means of dynamic programming. This approach tends to result in

shorter tours than the application of the composite heuristic. However, although such tours still have a

simple structure, they may not appear straightforward for order pickers as they have been generated by

means of dynamic programming and do not follow a simple rule.

In all approaches mentioned above, it is assumed that the pickers have to return to the depot in order to

unload retrieved items. However, in modern warehouses with paperless work, there is no need for order

pickers to return to the depot each time the items of a batch have been picked. Instead, requested items

could be deposited at the head of an arbitrary picking aisle and new instructions could be received by

means of a mobile computer. This allows the order pickers to process several batches in a row resulting

in significant time savings. This variant of the PRP has been considered by de Koster & van der Poort

(1998). They modified the algorithm of Ratliff & Rosenthal (1983) by adding a vertex for each picking

aisle representing the deposit location at the head of the aisle. The general concept of the algorithm

remains unchanged and the computational effort is still linear in m and n.

Instead of multiple deposit locations, Daniels et al. (1998) dealt with PRPs in picking areas where

articles can be assigned to multiple storage locations, respectively. When an item of an article has to be

picked, it has then to be decided which storage location is included in the tour. Furthermore, Daniels

et al. (1998) introduced an inventory level at each storage location, i.e. multiple locations may have to

be visited for retrieving all items of a certain type. The authors formulate the problem as a modified

TSP. For solving the problem, three TSP heuristics, namely the nearest-neighbor and the shortest-arc

heuristic as well as a randomized construction approach are presented. These approaches are modified

in such a way that inventory levels and quantities picked are taken into account. For the generation of

high-quality solutions, Daniels et al. (1998) designed a tabu search approach where moves according to

the neighborhood structures exchange a certain number of locations included in the tour.

Multi-block layout

Using a single-block layout is rarely the best choice for designing a picking area, as the introduction of

additional middle cross aisles enables order pickers to switch between picking aisles at several positions,

resulting in much shorter tours (Roodbergen et al., 2008). However, when dealing with multiple blocks,

the determination of optimal tours, as well as the structure of tours in general, gets much more complex.

For solving the PRP in a two-block layout, Roodbergen & de Koster (2001a) managed to extend

the algorithm of Ratliff & Rosenthal (1983). The computational effort of the algorithm still linearly
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increases with the number of picking aisles and pick locations. However, in the approach of Roodbergen

& de Koster (2001a), the number of graphs to be constructed in each iteration is much larger. While the

number of graphs amounts to 50 in the approach of Ratliff & Rosenthal (1983), up to 331 graphs have to

be constructed in an iteration of the algorithm of Roodbergen & de Koster (2001a). Moreover, it would

be very difficult to further extend the algorithm to PRPs including more than two blocks (Roodbergen,

2001). Up to now, no efficient algorithm exists which can deal with PRPs in picking areas with a

three-block or even an arbitrary multi-block layout. Therefore, Scholz (2016) extended the formulation

of Scholz et al. (2016) to the case of multiple blocks. In order to keep the size of the model at a reasonable

level, several procedures are applied which significantly reduce the size of the underlying graph. The

model formulation is suitable for solving PRPs with an arbitrary number of blocks as computing times

do not increase if more blocks are considered (Scholz, 2016).

As it is the case for the single-block layout, heuristic approaches are frequently used to deal with PRPs

in multi-block layouts. The aisle-by-aisle heuristic can also be applied to multi-block layouts (Vaughan

& Petersen, 1999). Each picking aisle is visited once and by means of dynamic programming, the cross

aisles used for entering or leaving the aisle are determined, respectively. Furthermore, Roodbergen &

de Koster (2001b) extended the routing strategies previously presented to the case of multiple blocks. In

the extended version, the blocks are successively considered, starting from the block farthest from the

depot. The respective routing strategy is then applied to the block under consideration before proceeding

with the next block. Thus, the general concept of the respective routing strategy remains unchanged.

However, with an increasing number of blocks, tours become much more complex and the solution

quality further deteriorates (Roodbergen, 2001). The problem-specific heuristic approach, which leads

to the best solutions in most settings has been proposed by Roodbergen & de Koster (2001b) and is called

combined heuristic. This heuristic is similar to the aisle-by-aisle heuristic as dynamic programming is

applied in order to determine which cross aisles are to be used. A difference can be seen in the fact that

subaisles instead of complete picking aisles are considered in this approach. The order picker starts from

the depot and traverses the leftmost picking aisle to be visited up to the block farthest from the depot.

The aisle-by-aisle heuristic is then applied to this block. After having retrieved all requested items in the

block, the picker goes to the next block again following the aisle-by-aisle heuristic. In comparison to

the aisle-by-aisle heuristic, the combined heuristic is particularly advantageous when picking aisles are

long, and it provides good solutions even for a larger number of blocks (Roodbergen, 2001). In order to

further improve the solution quality, Roodbergen & de Koster (2001b) modified the combined heuristic

with respect to the movements in the block nearest to the depot (block 1). In its original version, the
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leftmost picking aisle containing requested items is used to go to the block farthest from the depot. Now,

the picker is permitted to deviate from this path and retrieve all items from block 1 located in the left of

picking aisle m̃ before proceeding to the block farthest from the depot. Optimizing over m̃ ∈ {1, . . . ,m}
generates a tour not longer than the original tour constructed by the combined heuristic.

Apart from problem-specific heuristic approaches, TSP heuristics have been applied to the PRP in a

multi-block layout by Theys et al. (2010). The authors pointed out that the Lin-Kernighan-Helsgaun

(LKH) heuristic (Helsgaun, 2000) provides solutions of outstanding quality. It reduces the tour length

obtained by application of the S-shape strategy by up to 48%. With respect to the solution quality, the

LKH heuristic represents the best heuristic which has been applied to the PRP.

Non-conventional layouts

More recently, other designs than conventional layouts have been considered and situations have been

identified in which using such non-conventional layouts is advantageous. Çelik & Süral (2014) proposed

an exact approach to the PRP in flying-V and fishbone layouts. First, the authors represent the PRP as

a Steiner TSP as previously described. The graph is then transformed in such a way that its structure

corresponds to the Steiner TSP representation of a PRP in a two-block layout. The exact algorithm

of Roodbergen & de Koster (2001a) is applied to construct an optimal tour in a fishbone or flying-V

layout. Çelik & Süral (2014) also adapted the S-shape, largest gap and aisle-by-aisle strategies to the

PRP in fishbone layouts. The picking area is divided into three regions: the horizontal picking aisles

left from the depot, the vertical picking aisles and the horizontal picking aisles located on the right

of the depot. These different regions are then treated as different blocks and the routing strategies are

applied as to a PRP in a three-block layout. Çelik & Süral (2014) compared fishbone and conventional

layouts with respect to the distance to be covered for retrieving a set of items. For both layout types,

they computed optimal solutions for different settings and pointed out that distance savings by up to

20% can be achieved using fishbone layouts. However, this observation holds for pick lists including

only one or two items which was expected as the average distance between storage locations and the

depot is smaller in fishbone layouts. With an increasing size of the pick list, the advantage of fishbone

layouts diminishes. For pick lists with 30 items, tours are up to 36% longer than in conventional layouts.

3.2 The Picker Routing Problem in wide-aisle warehouses

When dealing with standard aisles, it is assumed that the order picker can retrieve items from both sides

of the picking aisles without consuming additional time. In practice, the picker often cannot reach both
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sides without changing the position as picking aisles are four meters wide or even more (Goetschalckx

& Ratliff, 1988). In standard-aisle warehouses, moves related to the S-shape, the return or the largest gap

strategies enable order pickers to retrieve all items in a picking aisle. When using return or largest gap

moves in a wide picking aisle, all items can be picked as well. The order picker starts with picking all

items from one side and then returns while retrieving the requested items from the other side. Regarding

S-shape moves, two possibilities have to be considered in wide-aisle warehouses. Either the picking

aisles is traversed twice (split traversal strategy) collecting the items from one side, respectively, or it is

traversed once (traversal strategy) in such a way that all items are retrieved. Based on the four possible

movements which can be performed in a picking aisle, Goetschalckx & Ratliff (1988) modified the

algorithm of Ratliff & Rosenthal (1983) to PRPs in wide-aisle warehouses. In order to determine an

optimal tour, for each picking aisle, the minimum distance to be covered for application of the traversal

strategy has to be calculated. Goetschalckx & Ratliff (1988) reduced the problem to finding a shortest

path in an acyclic graph by means of dynamic programming. This is done in O
(
ñ2) time, where ñ

denotes the number of pick locations in the respective picking aisle. The computational effort of the

modified algorithm of Ratliff & Rosenthal (1983) then amounts to O
(
m+n2), where m and n denote

the number of picking aisles and pick locations, respectively. Thus, it can be observed that PRPs in

wide-aisle warehouses seem to be more difficult to solve than PRPs in warehouses with standard aisles.

However, only minor modifications are required for adapting approaches to the PRP with standard aisles

to the case of wide aisles.

3.3 The Picker Routing Problem in narrow-aisle warehouses

Due to limited space in the picking area, very narrow picking aisles have to be dealt with in many

practical applications (Gu et al., 2007). In case of narrow picking aisles, order pickers can neither pass

nor overtake each other, i.e. they may have to wait until their path is not blocked by another order picker.

This results in three main differences compared to the PRPs in standard-aisle warehouses. First, tours

of different pickers cannot be constructed independently of each other. Second, it is not sufficient to

determine the path through the warehouse but waiting instructions may have to be given to the order

pickers. Waiting instructions include information about which picker has to wait at which point in time

for how long. Third, the minimization of the total travel distance does not represent a valid objective in

narrow-aisle warehouses since short tours do not guarantee for short processing times. Thus, it can be

concluded that the PRP in warehouses with narrow aisles significantly differs from the standard-aisle

case. Due to the interdependencies of the tours of different pickers, PRPs in narrow-aisle warehouses
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are much more difficult to solve and no efficient solution approach exists so far.

Chen et al. (2013) were the first who designed a metaheuristic approach to the PRP in narrow-aisle

warehouses. They considered a scenario where a given set of customer orders is processed by two order

pickers. The sequence according to which the orders are processed is given. The objective is to minimize

the average throughput time of an order which is defined as the difference between the completion

date of an order and its arrival date, i.e. the point in time when the order has become available at the

warehouse. In order to solve this problem, Chen et al. (2013) proposed an ant colony optimization (ACO)

approach. The tour corresponding to the first order to be processed is assigned to the first picker and is

constructed without consideration of blocking. This tour will remain unchanged. The tour of the second

picker is then determined while taking the tour of the first picker into account, i.e. waiting instructions

may be given to the second picker. If more than two orders exist, the next two orders are not processed

before both pickers have returned to the depot. In the numerical experiments, Chen et al. (2013) applied

the ACO approach to instances with two orders comprising up to 30 pick locations. Solving an instance

of this size required 10 seconds of computing time. However, the solution quality of the algorithm was

barely superior to the quality of solutions obtained by application of a modified S-shape strategy.

Chen et al. (2016) extended the approach of Chen et al. (2013) to the case of an arbitrary number of

order pickers. As in Chen et al. (2013), it is assumed that each order picker processes one order, then

returns to the depot and waits until all pickers have finished their work. First, by means of an ACO

approach, a tour is constructed for each picker without taking blocking aspects into account. In a second

step, instructions are given to order pickers if blocking situations arise. If pickers block each other by

picking items in the same aisle, then the picker who first enters the picking aisle performs the tasks

and waiting instructions are given to the other pickers. If a blocking situation is caused by a picker

traversing an aisle without retrieving items, the order picker can be instructed to use another aisle. Chen

et al. (2016) applied the algorithm to instances with up to 10 order pickers and 30 pick locations per

order. Unfortunately, computing times have not been reported. As it is the case for the basic algorithm

proposed by Chen et al. (2013), the approach of Chen et al. (2016) is not able to significantly improve

solutions provided by modified S-shape and largest gap strategies.

4 Order Batching and Picker Routing

Order Batching and Picker Routing Problems both represent planning problems at the operational level.

They always arise simultaneously in practical applications. Nevertheless, these problems have been
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treated separately for a long time. In fact, the PRP has even been neglected completely, i.e. very simple

routing policies have been applied only, and all effort has been put in solving the OBP. More recently,

the benefit of solving the PRP and the OBP simultaneously has been identified and a large variety of

solution approaches to the Joint Order Batching and Picker Routing Problem (JOBPRP) have been

proposed. The JOBPRP can be defined as follows (Scholz & Wäscher, 2017): Let a set of customer

orders be given, each of which including certain items to be retrieved from known storage locations. A

picking device with limited capacity is used for collecting requested items. The following two questions

have then to be dealt with.

• How should the set of customer orders be grouped into batches? (order batching)

• For each batch, in which sequence should the items included be retrieved? (picker routing)

How difficult the JOBPRP is to solve mainly depends on the objective. Objectives to the JOBPRP can be

divided into distance-related and tardiness-related objectives. In the first case, the tours are constructed

in such a way that the length of all tours (total tour length) is minimized. In the letter case, a due

date is assigned to each customer order and these due dates are to be met in the best possible way.

A very common tardiness-related objective represents the minimization of the total tardiness, i.e. the

extent to which the due dates are violated (Henn & Schmid, 2013; Chen et al., 2015). Solving the

JOBPRP regarding a tardiness-related objective is much more complex because it is not sufficient to

group orders into batches but batches have also to be assigned to order pickers and for each order

picker, a sequence has to be determined according to which the batches assigned to the picker are to

be processed. Thus, the number of order pickers is also an important date, which is not the case when

dealing with distance-related objectives.

Independent of the objective to be dealt with, solution approaches to the JOBPRP typically have the

same structure consisting of two components. The first component is a metaheuristic regarding the

batching problem. In this component, the composition (and assignment and sequence) of batches is

modified in order to obtain a better solution. The second component contains the routing algorithm

and is only used for the evaluation of solutions. The two components, as well as information about the

problem settings and the maximum size of the instances (in terms of the number of customer orders, the

number of requested items per order and the capacity of the picking device) considered in the numerical

experiments, are depicted in Table 2 for each solution approach.
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4.1 Distance-related objectives

Most approaches to the JOBPRP deal with the minimization of the total travel distance. However, almost

all approaches rely on different assumptions regarding the problem settings, i.e. the measurement of the

capacity, if splitting of customer orders allowed or not and the layout of the picking area, which makes

it impossible to compare the performance of the algorithms. In the following, the solution approaches

are reviewed based on how the capacity of the picking device is determined.

Maximum number of orders

If orders consist of a relatively low or an almost identical number of items, order pickers usually use

picking devices with bins for performing their tours. Items belonging to the same customer order are

then placed in the same bin (Gademann & van de Velde, 2005), implying that the maximum number of

orders processed on the same tour equals the number of bins.

Cheng et al. (2015) proposed a particle swarm optimization (PSO) approach to the JOBPRP with a

capacity limited by the number of orders. In PSO approaches, a population of solutions (particles)

is encoded and moved with a certain velocity around the search space, guided by its own position

and the position of the particle representing the best known solution. The authors used an encoding

scheme which can be divided into two parts. The first part gives information about the number of orders

contained in the batches, while the second part arranges the orders into a sequence. As the size of

each batch is given by the first part, the sequence also determines the composition of the batches. For

the generation of an initial population, the authors apply a random procedure to establish the batch

sizes. Based on the proximity of the storage locations in the order, the order sequence is generated. The

objective function value of a solution is determined by representing the arising routing subproblem as a

TSP and applying an ACO approach. By means of numerical experiments, Cheng et al. (2015) showed

that this approach provides optimal or near-optimal solutions within a few seconds of computing time

for small instances with up to 7 customer orders. For solving large instances with 200 orders, computing

times of up to 20 minutes are required.

Lin et al. (2016) dealt with the same problem and also proposed a PSO approach. For the encoding of a

solution, the warehouse is represented as a grid consisting of storage locations and locations in picking

and cross aisles. Each order is then represented by a single location (order center) in the grid. The order

center denotes the location with the smallest distance to all pick locations included in the respective

order. A batch center is analogously defined. Thus, coordinates of order centers are known, whereas
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coordinates have to be determined for batch centers. The coding scheme of the solution then consists

of two parts. The first part contains a permutation of customer orders and the second one comprises the

coordinates of each batch center. For decoding a solution, customer orders are successively considered

and assigned to the batch with a positive remaining capacity whose batch center has the smallest distance

to the order center. The arising PRPs are solved by means of the nearest-neighbor heuristic. Lin et

al. (2016) conducted numerical experiments for the evaluation of the impact of different algorithmic

parameters only. No comparison to other approaches is given. Dependent on the number of particles

used in the PSO approach, the computing time for solving an instance with 100 customer orders varies

between 20 seconds and 6 minutes. The approach does not seem to be as time-consuming as the PSO

approach by Cheng et al. (2015). However, application of the simple nearest-neighbor heuristic to the

arising PRPs can be expected to have a significant negative impact on the solution quality.

Matusiak et al. (2014) integrated additional precedence constraints for the picking of a customer order.

In this setup, items of an order have to be retrieved according to a predefined sequence. When all items

of an order have been picked, the items have to be deposited at the drop-off location of the respective

order. The picker returns to the depot when all orders in the batch have been processed. Matusiak et

al. (2014) developed a simulated annealing (SA) approach to this variant of the JOBPRP. An initial

solution is constructed by application of the savings heuristic (Clarke & Wright, 1964). Neighbor

solutions are generated by means of the so-called REMIX procedure which randomly selects a certain

number of batches and reassigns the orders contained in these batches. For dealing with the routing

problems, Matusiak et al. (2014) used an A∗-algorithm similar to the approach of Psaraftis (1980)

designed for a variant of the Dial-a-Ride Problem. The state of the algorithm is defined by a vector

whose components indicate the last item picked for each order. The A∗-algorithm optimally solves the

PRP with precedence constraints. However, the computational effort exponentially increases with the

number of orders in a batch. An estimation method is applied when batches are composed of more than

two orders. Nevertheless, solving an instance with 150 customer orders and a capacity of 4 orders per

tour requires 3 hours of computing time.

Maximum number of items

When orders are highly heterogeneous with respect to the size, the picking device cannot be divided

into equally-sized bins. Instead, the picking device only includes a single loading area where all items

retrieved on the tour are stored. In this case, the capacity cannot be expressed in terms of the number of

orders but rather is dependent on the loading space of the picking device and the capacity requirements
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of the items. If capacity requirements are fairly even for all items, the capacity can be expressed by a

maximum number of items allowed to be included in a batch.

Won & Olafsson (2005) were the first ones who dealt with the JOBPRP considering this type of capacity

constraint. They did not assume all customer orders to be known in advance. Instead, orders arrive at a

certain rate. Besides the total travel time, the throughput time of all orders is minimized. Won & Olafsson

(2005) proposed a constructive approach with multiple starts to the batching problem. First, minimum

and maximum between-batch times (tmin and tmax) are chosen. The between-batch time denotes the

difference between the point in time an order is dispatched and its arrival date. A set of batches is

constructed starting with all orders whose between-batch time is not larger than tmin. The between-batch

time is then incremented, resulting in another set of batches. This procedure is repeated until tmax is

reached. The set of batches leading to the smallest objective function value is taken as the solution. The

objective function value is determined by means of the 2-opt heuristic. Problem instances with up to

100 orders arriving per hour have been solved in the numerical experiments. Computing times have not

been reported as they are negligible.

Scholz & Wäscher (2017) designed an approach to the JOBPRP aiming at the minimization of the total

tour length. For the batching subproblem, an iterated local search (ILS) approach suggested by Henn et

al. (2010) is adapted. An initial solution is constructed by means of the first-come-first-served heuristic.

The improvement phase consists of two different neighborhood structures. In the first structure, a

neighbor solution is generated by moving an order from one batch to another (shift), while orders

between two different batches are exchanged (swap) in the second neighborhood. The perturbation

phase interchanges a random number of customer orders between two batches. For the determination

of the total tour length, different routing strategies as well as the exact algorithm of Roodbergen & de

Koster (2001a) have been integrated, which makes the approach being restricted to a two-block layout.

Scholz & Wäscher (2017) conducted numerical experiments to analyze if rather simple or more complex

routing algorithms should be integrated into the batching heuristic when large instances are to be solved

within a small amount of computing. Instances with up to 80 customer orders have been solved within

4 minutes of computing time. It is shown that exact routing outperforms heuristic strategies although

far fewer iterations are performed in the batching algorithm.

Maximum total weight of items

As items stored in a warehouse are typically heterogeneous regarding their size and shape, the number

of items is often not an appropriate measure for the capacity of the picking device (Grosse et al., 2014).
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In order to provide a more realistic measure, a maximum total weight of items included in a batch is

taken as the capacity. For example, it can be represented by the maximum weight until which the order

picker is able to push the picking device without risking musculoskeletal disorders.

This kind of capacity constraints has been considered by Kulak et al. (2012), who proposed a tabu

search (TS) algorithm to the batching problem. The construction of initial batches is based on so-called

similarity indices. The similarity index of two batches i and j is defined as the ratio between the distance

to be covered for retrieving all items of batch i and the distance covered for visiting all pick locations

included in batches i and j, while tours are constructed by means of the nearest-neighbor heuristic. In

the TS algorithm, neighbor solutions are generated by application of the same shift and swap moves

as in the ILS approach of Henn et al. (2010). The arising routing problems are solved by means of the

nearest-neighbor and Or-opt or the savings and 2-opt heuristics. This approach has proven to be very

fast, generating solutions to instances with 250 customer orders in less than 2 minutes.

Grosse et al. (2014) made two additional assumptions regarding the problem settings. First, they allow

orders to be split when being batched, i.e. items included in the same order may be assigned to different

batches. Second, a single-block layout is assumed. Grosse et al. (2014) used the standard objective

function and aimed for minimizing the total tour length. They suggested a SA algorithm and generated

an initial solution by clustering items into batches based on different routing strategies. According to

the neighborhood structure used in the SA approach, an item included in a batch is moved to another

batch. The objective function value of a solution is determined by applying the same routing strategies

which have been used for the initial clustering. Instances with an order size of up to 60 items have been

solved within 20 minutes of computing time in the numerical experiments.

4.2 Tardiness-related objectives

Tsai et al. (2008) considered the same problem settings as Grosse et al. (2014) but they additionally

introduced due dates for the orders and minimized the total costs arising from traveling and from

completing orders too early or too late. Thus, a combination of a distance-related and a tardiness-related

objective is considered. Assuming that one picker is available, they proposed a genetic algorithm for the

batching problem in which a chromosome is divided into several gene segments. Each segment includes

items of the same article and an allele represents the number of the batch to which the corresponding

item is assigned. Tsai et al. (2008) used two-point crossover operations in which two gene segments of

the parent chromosomes are randomly chosen and exchanged. By application of the mutation operation,
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the alleles of two randomly selected genes are exchanged. The fitness value of a chromosome is

determined by application of another genetic algorithm solving the routing problems. In this algorithm,

a chromosome gives the routing sequence, i.e. each allele represents the number of a pick location. A

partially-matched crossover is applied, which means that two gene segments are exchanged between

the parent chromosomes and the alleles are then modified in such a way that chromosomes representing

feasible tours are generated. In the numerical experiments, instances with up to 250 orders have been

solved. However, the solution approach consumes more than 3 hours of computing time for solving

those large instances.

Chen et al. (2015) dealt with a JOBPRP in which splitting of customer orders is not allowed. The

capacity of the picking device is limited by the total weight of items and a single order picker is available

for processing customer orders. They aimed for the minimization of the total tardiness. Chen et al. (2015)

designed a genetic algorithm in order to tackle the batching subproblem. In the genetic algorithm, an

initial solution is generated by means of the earliest due date rule, i.e. customer orders are sorted in

an order of non-descending due dates and batches are constructed based on this order. Chromosomes

are divided into two gene segments. Alleles in the first segment give information about the size of a

batch, while the second segment determines the sequence according to which orders are assigned to a

batch. Two-point crossover operations are applied to the first gene segment and position-based crossover

operations to the second segment. According to the mutation operation, two alleles from the same

segment are exchanged. For the determination of the fitness value of a chromosome, the arising routing

problems are solved by the application of an ACO approach. The integration of an ACO approach into

a genetic algorithm results in a very time-consuming algorithm. Chen et al. (2015) dealt with small

instances including up to 8 customer orders only and stated that computing time is a very critical issue

even for such small problem instances.

Scholz et al. (2017) considered the same settings as Chen et al. (2015) but they measured the capacity in

terms of the number of items. Furthermore, they dealt with multiple pickers, which makes the problem

more complex since decisions regarding the assignment of batches to pickers have to be made as

well. Scholz et al. (2017) proposed a variable neighborhood descent (VND) algorithm for the batching

problem. For the generation of an initial solution, an earliest due date rule-based algorithm and a seed

algorithm are applied, while the solution with the smaller objective function value is taken as initial

solution. The VND includes six different neighborhood structures from which two structures alter the

batch assignment and sequencing. The remaining four structures are shift and swap moves regarding

the composition of the batches. Tours are constructed by means of two different routing algorithms.
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Within the local search phases, the combined heuristic is applied as it generates tours of good quality

within a very small amount of computing time (Roodbergen & de Koster, 2001b). Whenever a new best

solution has been found, the LKH heuristic of Helsgaun (2000) is used in order to improve the tours,

further reducing the total tardiness. In the results of the numerical experiments, Scholz et al. (2017)

demonstrated that this approach can deal with very large instances. Problem instances with up to 200

orders and 5 pickers have been solved. The maximum computing time amounted to 1 hour.

5 Conclusion and outlook

The Picker Routing Problem (PRP) deals with the determination of the sequence according to which

storage locations of requested items are to be visited and the identification of the corresponding path

through the picking area of the warehouse. It is the most studied problem of all warehouse operations

(Gu et al., 2007), which is not surprising as traveling consumes the major part of an order picker’s

working time (Tompkins et al., 2010) and routing order pickers is considered to be pivotal for an efficient

organization of order picking operations.

The PRP is mainly characterized by the layout of the picking area, which is determined by the

arrangement of the storage locations. The layout can be classified by the width of the picking aisles

(standard, wide or narrow), the arrangement of picking and cross aisles (single-block, multi-block or

non-conventional layout) as well as by the number of deposit locations and the number of storage

locations to which an article may be assigned (single or multiple locations). The PRP in standard-aisle

warehouses with a single depot and unique article locations has frequently been studied in the literature.

Exact approaches are available to the PRP in conventional layouts with up to two blocks and for the

PRP in fishbone and flying-V layouts. Furthermore, it has been shown that these approaches can easily

be extended to the case of multiple deposit locations. The main research gap in the context of PRPs in

standard-aisle warehouses can be found in the consideration of multiple storage locations per article. By

assigning articles to multiple storage locations, tours become much more flexible, resulting in decreased

travel distances. However, first, the benefits of assigning an article to multiple locations concerning the

tour length have not been evaluated so far. Second, only one solution approach exists, which can deal

with this feature. Thus, the development of an exact approach and the modification of routing strategies

to the case of multiple article locations would represent a promising area for future research.

In wide picking aisles, additional movements have to be performed in the picking aisles in order to

retrieve items from different sides of the picking aisle. Due to this fact, the corresponding PRP gets
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slightly more difficult to solve. However, it can be shown that exact approaches to PRPs in standard-aisle

warehouses can be adapted easily to the case of wide aisles. This is not possible when dealing with

narrow aisles where order pickers can neither pass nor overtake each other. PRPs with narrow aisles are

much more complex to handle because routes of different pickers cannot be constructed independently

anymore and waiting times caused by order pickers blocking each other have to be taken into account.

Two heuristic approaches exist which can deal with such PRPs. However, the solution quality does

not seem to be convincing. Thus, the main emphasis should be put on the development of exact and

heuristic solution approaches to the PRP in narrow-aisle warehouses. By means of such algorithms, it

could then be investigated under which conditions, narrow aisles should be used in order to maximize

the space utilization in the picking area, and when it is inevitable to design a layout with standard aisles

in order to keep the processing times at a reasonable level. Further research could also concentrate on

the investigation of the performance of standard-aisle PRP approaches when being applied to PRPs with

narrow aisles. Then, conclusions could be drawn about which routing strategy leads to least blocking

situations.

The Order Batching Problem deals with the grouping of customer orders into batches and always arises

simultaneously with the Picker Routing Problem. Thus, it is not surprising that the integrated solution of

both problems has received much attention in the literature so far. The solution approaches to the Joint

Order Batching and Picker Routing Problem (JOBPRP) have the same structure and are composed

of a batching heuristic including a routing algorithm for determining the objective function value.

Although all approaches have the same components, the approaches rarely rely on the same assumptions,

making it almost impossible to compare the algorithms with respect to solution quality or computing

time. In general, the assumptions concern the objective and the way how the capacity is measured.

Distance-related and tardiness-related objectives are considered, where additional decisions have to be

made concerning the assignment of batches to order pickers and the sequence of the batches assigned

to a picker when dealing with tardiness-related objectives. Thus, solution approaches to the JOBPRP

with a distance-related objective cannot be adapted straightforwardly to the case of tardiness-related

objectives. In contrast, the assumption regarding the capacity measurement is not critical and could

easily be changed in the respective algorithms. Therefore, it would be interesting to make all algorithms

applicable to all three possible types of capacity measurements and then compare the performance of

the algorithms.

All approaches to the JOBPRP deal with standard-aisle warehouses. As mentioned above, an adaption

to warehouses with wide picking aisles would be quite easy. However, the consideration of the JOBPRP
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in narrow-aisle warehouses would be a very interesting topic for future research, although the resulting

problem can be expected to be very challenging. Another extension of the JOBPRP can be found in the

integration of multiple article locations. Compared to the consideration of multiple article locations in

the context of the PRP, the benefits could be even higher when dealing with the JOBPRP, since more

combinations of orders represent promising batches if it can be chosen between several article locations.

Furthermore, in case of narrow aisles, assigning articles to multiple locations allows for more flexible

tours and can be expected to significantly decrease the waiting times caused by blocking situations.

In this paper, operations performed in the picking area have been considered. After the items have been

retrieved they are transported to the shipping area to be then delivered to the customers. Further research

could also concentrate on the integration of picking and shipping operations. The problem of delivering

the items to the customer locations is typically formulated as a Vehicle Routing Problem with Time

Windows because customers usually give a certain time interval when they are able to take the delivery

of the goods (Schmid et al., 2013). A solution to the shipping problem consists of a set of tours with

different start dates, while the start date of a tour is dependent on the point in time when the items of all

orders allocated to the tour have been retrieved completely. Thus, in order to guarantee the tours to start

in time, it is pivotal to coordinate picking and shipping operations.
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a b s t r a c t 

The Single-Picker Routing Problem deals with the determination of the sequence according to which ar- 

ticle locations have to be visited in a distribution warehouse and the identification of the corresponding 

paths which have to be traveled by human operators (order pickers) in order to collect a set of items 

requested by internal or external customers. The Single-Picker Routing Problem (SPRP) represents a spe- 

cial case of the classic Traveling Salesman Problem (TSP) and, therefore, can also be modeled as a TSP. 

Standard TSP formulations applied to the SPRP, however, neglect that in distribution warehouses article 

locations are arranged in a specifically structured way. When arranged according to a block layout, ar- 

ticles are located in parallel picking aisles, and order pickers can only change over to another picking 

aisle at certain positions by means of so-called cross aisles. In this paper, for the first time a mathemat- 

ical programming formulation is proposed which takes into account this specific property. By means of 

extensive numerical experiments it is shown that the proposed formulation is superior to standard TSP 

formulations. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The Traveling Salesman Problem (TSP) is one of the most exten- 

sively studied problems in combinatorial optimization ( Rego, Gam- 

boa, Glover, & Osterman, 2011 ). It can be described as the problem 

of finding a least-weight Hamiltonian cycle (in short: a tour) in a 

complete edge-weighted graph ( Glover & Punnen, 1997 ). The TSP 

arises in many different practical contexts. It is of prime impor- 

tance for practical applications in engineering, management, health 

care and many other areas. For detailed reviews of applications of 

the TSP in practice we refer to Lenstra and Rinnooy Kan (1975) , 

Matai, Singh, and Mittal (2010) and Filip and Otakar (2011) . 

In this paper, we will deal with an application of the TSP that 

arises in distribution warehouse management. As for its core func- 

tion, order picking, items have to be retrieved from the warehouse 

in order to satisfy a given demand from customers ( Petersen & 

Schmenner, 1999; Wäscher, 2004 ). In picker-to-part systems, hu- 

man operators (order pickers) travel through the warehouse, col- 

lecting the requested items at their storage locations. This gives 

rise to the so-called Single-Picker Routing Problem (SPRP) which in- 

cludes the determination of the sequence in which the locations 

∗ Corresponding author. Tel.: +49 3916711841. 

E-mail address: andre.scholz@ovgu.de (A. Scholz). 

have to be visited. It can be interpreted as a special case of the 

(classic) TSP or the Steiner TSP ( Burkard, Deneko, van der Veen, & 

Woeginger, 1998 ). 

For the (classic) TSP several mathematical programming for- 

mulations have been proposed in the literature ( Padberg & Sung, 

1991 ). These formulations and also formulations for the Steiner 

TSP, however, seem not to be appropriate for the SPRP since they 

ignore the special structure of the latter. In this paper, the first 

mathematical formulation for the SPRP will be introduced that 

takes into account specific properties of optimal solutions of this 

problem. In comparison to the more general modeling approaches 

mentioned above, the proposed formulation results in a substantial 

reduction of the number of variables and constraints. In particular, 

it will be shown that the size of the formulation is independent of 

the number of locations where items have to be picked from. By 

means of extensive numerical experiments it will be demonstrated 

that the proposed formulation for the SPRP is superior to standard 

TSP and Steiner TSP formulations. 

The remainder of this paper is organized as follows: In the 

following section we introduce the SPRP and review the related 

literature. In Section 3 , we present three well-known general 

mathematical programming formulations for the TSP as well as 

a formulation for the Steiner TSP provided by Letchford, Nasiri, 

and Theis (2013) . Since the size of the models will be an im- 

portant criterion for the analysis and evaluation of the different 

http://dx.doi.org/10.1016/j.ejor.2016.02.018 

0377-2217/© 2016 Elsevier B.V. All rights reserved. 
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Fig. 1. Single-block layout. 

formulations, we concentrate on compact formulations for the TSP 

here, i.e. formulations which only require a polynomial number 

of variables and constraints. In Section 4 , the central part of this 

paper, we develop the newly proposed formulation for the SPRP. 

First, we describe a graph and its construction on which the 

formulation is based. Then we represent the graph in a mathe- 

matical programming model and exemplify its core elements. In 

order to analyze and evaluate the different formulations, extensive 

numerical experiments have been carried out in which a wide 

range of problem instances have been solved by a state-of-the-art 

commercial IP solver. The design of the experiments and the 

results obtained from them are presented in Section 5 . 

For the sake of simplicity of exposition, we restrain the pre- 

sentation of the newly-proposed model in Section 4 and the nu- 

merical experiments in Section 5 to the so-called single-block lay- 

out which represents a standard arrangement of storage locations 

in distribution warehouses. In Section 6 , we extend our view and 

demonstrate how the graph and the resulting model formulation 

can be modified in order to represent more complex layouts and 

other aspects of order picking encountered in practice. In Section 7 , 

the paper concludes with a summary and an outlook on future re- 

search areas. An Appendix includes a complete and detailed model 

formulation for the SPRP. 

2. The Single-Picker Routing Problem 

2.1. Problem description 

In picker-to-part order picking systems, the arrangement of 

storage locations typically follows a block layout ( Roodbergen, 

2001 ) in which picking aisles run in parallel to each other. Arti- 

cles are stored in and picked from racks on both sides of these 

picking aisles. Cross aisles can be used to proceed from one pick- 

ing aisle to another. They do not contain any storage locations. A 

section between two adjacent cross aisles establishes a so-called 

block. In the following, we will focus on a single-block layout, i.e. 

only two cross aisles exist, one at the front and one at the rear of 

the warehouse (see Fig. 1 ). 

The black rectangles in Fig. 1 give an example of locations from 

which items have to be collected ( pick locations ) in order to sat- 

isfy a certain demand from (external or internal) customers. This is 

done by a so-called order picker , a human operator who completes 

a tour through the warehouse, i.e. he or she starts from a depot , 

proceeds to the pick locations, retrieves the requested items, and 

finally returns to the depot where the picked items are deposited. 

Due to the high proportion of time-consuming manual tasks, 

order picking is looked upon as the most labor cost-intensive 

warehouse function ( Tompkins, White, Bozer, & Tanchoco, 2010 ). 

Consequently, the minimization of picking times is of vital impor- 

tance for the efficient control of picking operations. The total or- 

der picking time , i.e. the time spent by an order picker to collect 

all items of a picking order, can be divided into ( Tompkins et al., 

2010 ) the setup time (the time for preparing the tour through the 

warehouse), the travel time (the time needed to travel to, from, and 

between the pick locations), the search time (the time needed at 

the article locations for the identification of the items that have 

to be retrieved), and the pick time (the time actually needed for 

retrieving the items from the respective article locations). Among 

these components, the travel time consumes the major propor- 

tion of the total order picking time. It also represents the only 

variable part while the remaining components (setup time, search 

time, pick times) can be considered to be constants ( Bozer & Kile, 

2008; Henn, Koch, Dörner, Strauss, & Wäscher, 2010 ). The travel 

time is determined by the total length of the picker tour ( Jarvis & 

McDowell, 1991 ) which, again, is dependent on the sequence ac- 

cording to which the items have to be picked. Assuming that the 

order picker moves at a constant velocity, the minimization of the 

total length of the picker tour becomes equivalent to the minimiza- 

tion of the travel time. Therefore, the SPRP can be defined as fol- 

lows: Given a set of items to be picked from known storage loca- 

tions, in which sequence should the locations be visited such that 

the total length of the corresponding picker tour is minimized? 

2.2. Related literature 

The SPRP can easily be interpreted as a TSP in which the ver- 

tices of the corresponding graph are defined by the location of the 

depot and the locations of the items to be picked. Therefore, gen- 

eral TSP formulations may also be used to model the SPRP. The 

first mathematical programming formulation for the TSP can be at- 

tributed to Dantzig, Fulkerson, and Johnson (1954) . It includes one 

binary variable per edge indicating whether an edge is contained 

in the tour or not. However, this formulation requires, like several 

other formulations ( Gouveia & Pires, 2001 ), an exponential number 

of constraints. 

For an explicit representation of large TSPs, compact formula- 

tions appear to be more appropriate which only require a poly- 

nomial number of variables and constraints. A variety of such for- 

mulations have been proposed in the literature ( Öncan, Altinel, & 

Laporte, 2009 ), of which the formulation of Miller, Tucker, and 

Zemlin (1960) , the single-commodity flow formulation of Gavish 

and Graves (1978) and the multi-commodity flow formulation of 

Claus (1984) probably are the most prominent ones. They will be 

explained in greater detail in Section 3 , since we will compare our 

modeling approach to these formulations. 

Burkard et al. (1998) pointed out that the SPRP can also be 

formulated as a Steiner TSP, which can be defined as follows: Let 

G = (V, E) be a graph with a set of vertices V and a set of edges E . 

Furthermore, let a sequence v 1 , e 1 , v 2 , . . . , v k , e k , v k +1 ( v i ∈ V, 

e i = ( v i , v i +1 ) , i = 1 , . . . , k, k ≥ 0) with e i � = e j for i � = j and 

v 1 = v k +1 be called a closed walk. Let P be a subset of V . The ele- 

ments of V �P are called Steiner points. A Steiner tour is then de- 

fined as a closed walk in which each vertex of P is visited at least 

once. The Steiner points do not have to be visited. Then the Steiner 

TSP consists of finding a Steiner tour of minimal length within G 

( Burkard et al., 1998 ). 

As for the SPRP (see Fig. 2 ), the set P is composed of the pick 

locations and the depot (black vertices), and the Steiner points 

are the intersections between the picking aisles and the cross 

aisles (white vertices). The distance between any pair of vertices 

is the length of the shortest path between the two vertices. By 
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Fig. 2. Illustration of a Steiner TSP. 

definition, a Steiner tour then has to include the depot and the 

storage locations of all items to be picked. Visiting these locations 

more than once is permitted. Multiple visits may occur, e.g., when 

a picking aisle is entered and left via the same cross aisle. On the 

other hand, visits of some of the white vertices may be skipped 

because two points exist for each picking aisle where an aisle can 

be entered or left, and it is possible to use one vertex twice and 

skip the other one. 

Letchford et al. (2013) developed three compact formulations 

for the Steiner TSP. These formulations are advantageous in com- 

parison to general TSP formulations if the number of Steiner points 

is large compared to the total number of vertices ( Letchford et al., 

2013 ). For problem instances in which less than 100 vertices (in- 

cluding both Steiner points and locations to be visited) have to 

be considered, the authors proposed the application of a Steiner 

TSP formulation which is derived from the multi-commodity flow 

model of Claus (1984) . Since instances of the SPRP from practice 

will usually result in a Steiner TSP with less than 100 vertices, we 

will focus on this formulation. It will be explained in greater detail 

in Section 3 . 

The SPRP in a single-block or a two-block layout can be solved 

efficiently by problem-specific solution methods. Ratliff and Rosen- 

thal (1983) introduced an optimal algorithm for the single-block 

case which is based on dynamic programming and solves the prob- 

lem in O (m + n ) time, where m is the number of picking aisles 

and n is the number of pick locations. Roodbergen and de Koster 

(2001a) modified the algorithm for the two-block case. However, 

it is very difficult to further extend this algorithm to layouts with 

three or more blocks and up to now no efficient algorithm exists 

which can deal with an arbitrary number of blocks ( Roodbergen, 

2001 ). Our approach is much more flexible with respect to the ex- 

tension to different layouts which we consider as a main advantage 

of our approach. In particular, it allows for modeling a block lay- 

out with an arbitrary number of blocks and considering the case 

of decentralized depositing in which items can be deposited at the 

end of each picking aisle. Furthermore, our proposed model for- 

mulation can easily be modified to find simple tours through the 

warehouse which will be demonstrated in Section 6 . 

In practice, in order to solve the SPRP, usually simple heuristics, 

so-called routing strategies , are applied ( Roodbergen, 2001 ). Solu- 

tions from such routing strategies can be memorized and executed 

easily, and they reduce the risk of missing an item that should be 

picked. The simplest routing strategies are the S-shape, the return 

and the largest gap strategies ( Gu, Goetschalckx, & McGinnis, 2007; 

de Koster, Le-Duc, & Roodbergen, 2007 ). The S-shape strategy pro- 

vides solutions in which the order picker enters a picking aisle and 

traverses it completely if at least one required item is located in 

that aisle. Then he proceeds to the next aisle from which items 

have to be picked. An exception would only be a situation in which 

the order picker is positioned in the front cross aisle, facing the 

last picking aisle from which items have to be picked. He would 

then return to the front cross aisle after having picked the most- 

distantly located item in that aisle. Solutions from the return strat- 

egy provide tours in which each picking aisle containing at least 

one requested item is entered from the front cross aisle. The picker 

proceeds to the farthest pick location and returns to the front cross 

aisle with the picked items. The largest-gap strategy gives solutions 

in which the order picker completely traverses the first and the 

last aisle containing a requested item. All other aisles containing 

at least one required item are entered from the front and from the 

rear cross aisle in such a way that the non-traversed distance be- 

tween two adjacent pick locations or a pick location and the ad- 

jacent cross aisle is maximal. The combined strategy ( Roodbergen 

& de Koster, 2001b ) integrates elements of the S-shape and return 

strategy. Aisles may be traversed entirely or may be entered and 

left via the same cross aisle. Solutions are generated by means of 

dynamic programming. 

The performance of the routing strategies is dependent on the 

problem characteristics (number of picking aisles, number of loca- 

tions per aisle, position of the depot, number of requested items). 

Moreover, also the policy according to which items are assigned to 

different locations has a significant impact on the tour lengths pro- 

vided by the heuristics. Elements of these routing strategies will be 

contained in the new model formulation for the SPRP presented in 

this paper. 

3. General TSP and Steiner TSP formulations 

For a model formulation of the TSP usually a complete graph 

G 

T SP = (V, A ) is assumed. In case of the SPRP, the set of vertices 

V = { 0 , . . . , n } contains the depot (vertex 0) and all storage loca- 

tions where items have to be picked. The set of arcs is defined as 

A = { (p, q ) | p, q ∈ V, p � = q } and for each arc a distance c pq can be 

calculated according to the respective layout. 

Based on this graph, we will focus on three model formula- 

tions which require a polynomial number of both variables and 

constraints. These formulations, which have also been chosen by 

Letchford et al. (2013) as a basis for their analysis of Steiner TSP 

formulations, differ with respect to two characteristics, namely the 

number of variables and constraints on the one hand and the qual- 

ity of the lower bound which can be obtained by solving the LP 

relaxation on the other hand. 

We complete this section of model formulations by presenting 

the Steiner TSP formulation that was proposed by Letchford et al. 

(2013) and derived from the multi-commodity flow model of Claus 

(1984) . 

3.1. Formulation of Miller, Tucker and Zemlin 

The formulation proposed by Miller et al. (1960) uses the fol- 

lowing variables: 

x pq = 

{
1 , if arc (p, q ) is contained in the tour , 
0 , otherwise , 

(p, q ) ∈ A ;
h p : position of vertex p in the tour , p ∈ V \ { 0 } . 
Then, the TSP can be represented as follows: 

min 

∑ 

(p,q ) ∈ A 
c pq · x pq (1) 
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∑ 

p∈ V 
x pq = 1 ∀ q ∈ V (2) 

∑ 

q ∈ V 
x pq = 1 ∀ p ∈ V (3) 

h p − h q + ( n + 1 ) x pq ≤ n ∀ (p, q ) ∈ A: p, q � = 0 (4) 

x pq ∈ { 0 , 1 } ∀ (p, q ) ∈ A (5) 

h p ≥ 0 ∀ p ∈ V \ { 0 } (6) 

The objective function minimizes the total cost of the tour, i.e. 

as for the SPRP the total length of the picker tour. Constraints (2) 

and (3) guarantee that each vertex is visited exactly once. Condi- 

tions (4) exclude subtours by ensuring that the position assigned to 

vertex p in a tour is smaller than the position assigned to vertex q 

if arc ( p , q ) is used. This formulation requires only O ( n 2 ) variables 

and constraints. However, the solution of its LP relaxation provides 

an extremely weak lower bound ( Padberg & Sung, 1991 ). 

3.2. Formulation of Gavish and Graves 

A formulation based on the flow of a single commodity type 

has been introduced by Gavish and Graves (1978) . At the start of 

the tour, n units of the commodity are available. While the tour 

is being executed, these units have to be delivered to the vertices 

when they are visited. Each vertex requires the shipment of exactly 

one unit. 

For this model, additional non-negative variables are introduced 

describing the flow on arc ( p , q ) ∈ A : 

g pq : number of units of the commodity passed on 

directly from vertex p to q, (p, q ) ∈ A : q � = 0 . 

Based on this definition and on the above-described considera- 

tions, the following model formulation can be introduced: 

min 

∑ 

(p,q ) ∈ A 
c pq · x pq (7) 

∑ 

p∈ V 
x pq = 1 ∀ q ∈ V (8) 

∑ 

q ∈ V 
x pq = 1 ∀ p ∈ V (9) 

∑ 

q ∈ V 
g qp −

∑ 

q ∈ V \ { 0 } 
g pq = 1 ∀ p ∈ V \ { 0 } (10) 

g pq ≤ nx pq ∀ (p, q ) ∈ A: q � = 0 (11) 

x pq ∈ { 0 , 1 } ∀ (p, q ) ∈ A (12) 

g pq ≥ 0 ∀ (p, q ) ∈ A: q � = 0 (13) 

Constraints (10) ensure that exactly one unit of the commodity 

is delivered to each vertex p ∈ V\ { 0 } while constraints (11) guar- 

antee the flow to be zero along arcs not included in the tour. This 

formulation includes O ( n 2 ) variables and constraints. Padberg and 

Sung (1991) have shown that its LP relaxation leads to a stronger 

lower bound than the formulation of Miller et al. (1960) . 

3.3. Formulation of Claus 

Another formulation that was proposed by Claus (1984) uses 

multi-commodity flows in order to prohibit subtours. Here, n dif- 

ferent commodities have to be delivered. At the beginning of the 

tour, one unit of each commodity is available. Each vertex is meant 

to receive exactly one of these commodities. 

For the presentation of this model formulation, the following 

additional variables are introduced: 

w 

k 
pq : number of units of commodity k passed on directly from 

vertex p to q, (p, q ) ∈ A, k ∈ V \ { 0 } . 
The TSP can then be represented as follows: 

min 

∑ 

(p,q ) ∈ A 
c pq · x pq (14) 

∑ 

p∈ V 
x pq = 1 ∀ q ∈ V (15) 

∑ 

q ∈ V 
x pq = 1 ∀ p ∈ V (16) 

∑ 

q ∈ V \ { 0 } 
w 

k 
1 q −

∑ 

q ∈ V \ { 0 } 
w 

k 
q 1 = −1 ∀ k ∈ V \ { 0 } (17) 

∑ 

q ∈ V 
w 

p 
pq −

∑ 

q ∈ V 
w 

p 
qp = 1 ∀ p ∈ V \ { 0 } (18) 

∑ 

q ∈ V 
w 

k 
pq −

∑ 

q ∈ V 
w 

k 
qp = 0 ∀ p, k ∈ V \ { 0 } : p � = k (19) 

w 

k 
pq ≤ x pq ∀ (p, q ) ∈ A, k ∈ V \ { 0 } (20) 

x pq ∈ { 0 , 1 } ∀ (p, q ) ∈ A (21) 

w 

k 
pq ≥ 0 ∀ (p, q ) ∈ A, k ∈ V \ { 0 } (22) 

Constraints (17) guarantee that each commodity leaves the de- 

pot and is delivered to a vertex. Constraints (18) ensure that each 

vertex receives exactly one commodity. Constraints (19) ensure 

that a commodity leaves a vertex that is not its final destination. 

This model formulation requires O ( n 3 ) variables and constraints. 

The solution of its LP relaxation leads to the strongest lower bound 

of the three formulations considered here ( Padberg & Sung, 1991 ). 

3.4. Formulation of Letchford, Nasiri and Theis 

In a block layout, the order picker cannot proceed directly from 

one location of a requested item to another one if these items are 

located in different picking aisles. Instead, a cross aisle has to be 

used for switching over from one picking aisle to the other. This 

aspect is neglected in general TSP formulations since a complete 

graph is assumed. It can be taken into account explicitly, though, in 

Steiner TSP formulations. The following formulation for the Steiner 

TSP was provided by Letchford et al. (2013) and has been derived 

from the general multi-commodity flow TSP formulation of Claus 

(1984) . 

Since the set of arcs in this formulation differs from the arc set 

of the general TSP formulation, we use ˜ A to denote the set of arcs 

of a Steiner TSP. As in Section 2 , the set of Steiner points is denoted 

by P . The formulation for the Steiner TSP then is as follows: 

min 

∑ 

(p,q ) ∈ ̃ A 

c pq · x pq (23) 

∑ 

q ∈ V: 

(p,q ) ∈ ̃ A 

x pq ≥ 1 ∀ p ∈ V \P (24) 

∑ 

q ∈ V: 

(p,q ) ∈ ̃ A 

x pq −
∑ 

q ∈ V: 

(q,p) ∈ ̃ A 

x qp = 0 ∀ p ∈ V (25) 

∑ 

q ∈ V: 

(q, 1) ∈ ̃ A 

w 

k 
q 1 −

∑ 

q ∈ V: 

(1 ,q ) ∈ ̃ A 

w 

k 
1 q = −1 ∀ k ∈ V \(P ∪ { 0 } ) (26) 

∑ 

q ∈ V: 

(q,k ) ∈ ̃ A 

w 

k 
qk −

∑ 

q ∈ V: 

(k,q ) ∈ ̃ A 

w 

k 
kq = 1 ∀ k ∈ V \(P ∪ { 0 } ) (27) 
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Fig. 3. Movements within a picking aisle permitted for an optimal solution. 

∑ 

q ∈ V: 

(p,q ) ∈ ̃ A 

w 

k 
pq −

∑ 

q ∈ V: 

(q,p) ∈ ̃ A 

w 

k 
qp = 0 ∀ p ∈ V \ { 0 } , k ∈ V \(P ∪ { 0 , p } ) (28) 

w 

k 
pq ≤ x pq ∀ (p, q ) ∈ 

˜ A , k ∈ V \(P ∪ { 0 } ) (29) 

x pq ∈ { 0 , 1 } ∀ (p, q ) ∈ 

˜ A (30) 

w 

k 
pq ≥ 0 ∀ (p, q ) ∈ 

˜ A , k ∈ V \(P ∪ { 0 } ) (31) 

Constraints (24) ensure that each vertex not corresponding to a 

Steiner point is visited at least once, while (25) guarantee that the 

indegree of each vertex is equal to its outdegree. Constraints (26) –

(29) correspond to the multi commodity flow constraints ( (17) –

(20) ) in the formulation of Claus (1984) . 

In general, the formulation of Letchford et al. (2013) for the 

Steiner TSP requires O (| P || E |) variables and constraints. When it is 

being used for representing a SPRP, the location of the depot and 

the pick locations have to be taken as points which have to be 

visited ( | P | = n + 1 ) while the points where a picking aisle can be 

entered or left represent Steiner points. Assuming the picking area 

following a block layout, | E | = O ( n · m ) arcs are needed to repre- 

sent the SPRP as a Steiner TSP. This results in a model formulation 

which requires O ( n 2 · m ) variables and constraints, i.e. its size is 

dependent on both the number of requested items and the number 

of picking aisles. However, especially for a large number of stor- 

age locations to be visited, it requires significantly fewer variables 

and constraints than the formulation of Claus (1984) on which it is 

based. 

Each of these four formulations can be used to model and solve 

the SPRP. However, the number of variables and constraints and, 

therefore, the computing times needed to solve the problems may 

grow quite large when the number of pick locations is increased. 

In order to find a model formulation of smaller size, it is necessary 

to change over from general TSP or Steiner TSP formulations to a 

more problem-specific formulation for the SPRP. 

4. A new, problem-specific formulation for the SPRP 

Tours taken by order pickers in warehouses in which the stor- 

age locations are arranged according to a block layout exhibit a 

specific structure. It results from the fact that cross aisles have to 

be used for switching over from one picking aisle to another. Also 

movements within picking aisles are rather restricted. Both prop- 

erties are not explicitly considered by general TSP formulations. 

In this section, we introduce a new graph for the SPRP that 

takes into account these properties and we show that the respec- 

tive number of vertices and arcs is not dependent on the number 

of pick locations. Then, a TSP formulation is applied to this graph 

in order to provide a model for the problem. 

4.1. Graph construction 

A representation of the SPRP in a single-block layout must not 

necessarily be based on a complete graph with arcs between each 

pair of vertices. Ratliff and Rosenthal (1983) have shown that for 

the generation of an optimal tour only six different paths need to 

be considered which allow for visiting all pick locations of a pick- 

ing aisles (see Fig. 3 ). 
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Fig. 4. A graph for a SPRP in a single-block layout with five picking aisles. 

(1) The order picker enters the picking aisle from the front cross 

aisle, visits all pick locations sequentially, and exits the aisle 

at the rear cross aisle. 

(2) The order picker enters the picking aisle from the rear cross 

aisle, visits all pick locations sequentially, and exits the aisle 

at the front cross aisle. 

(3) The order picker enters and exits the picking aisle twice, one 

time from and back to the front cross aisle and another time 

from and back to the rear cross aisle. In both cases he re- 

turns to the cross aisle from where the picking aisle was en- 

tered. The return point is defined by the largest gap between 

two adjacent pick locations or between a pick location and 

the adjacent cross aisle. 

(4) The order picker enters and leaves the aisle at the front 

cross aisle. The return point is defined by the pick location 

which corresponds to the largest distance from the front 

cross aisle. 

(5) Likewise, the order picker enters and leaves the aisle at the 

rear cross aisle. The return point is defined by the pick loca- 

tion which corresponds to the largest distance from the rear 

cross aisle. 

(6) The picking aisle is not entered at all since no requested 

item is located in that aisle. 

As a consequence, instead of considering all pick locations, it 

is sufficient that each picking aisle i is only be represented by six 

points, namely the points which are defined by 

(a) the intersection between the picking aisle i and the front 

cross aisle and the intersection between the picking aisle i 

and the rear cross aisle (vertices [ i , f ] and [ i , b ]), 

(b) the two pick locations defining the largest gap (vertices [ i , 2] 

and [ i , 3]) and 

(c) the first and the last storage location where an item has to 

be picked (vertices [ i , 1] and [ i , 4]). 

If less than four pick locations have to be visited in an aisle, 

points need to be duplicated in order to obtain the required num- 

ber. In case that items have to be picked from one location only, 

that location will be represented by [ i , 1], [ i , 2], [ i , 3] and [ i , 4]. 

In case items have to be picked from two different locations then 

[ i , 1] and [ i , 2] ([ i , 3] and [ i , 4]) are identical. In case of three dif- 

ferent pick locations that have to be visited, the pair of locations 

defining the largest gap has to be determined. If the gap exists 

between the two pick locations nearest to the front cross aisle, 

then [ i , 1] and [ i , 2] are identical; otherwise [ i , 3] and [ i , 4] are 

identical. 

Based on these considerations, a graph representing the SPRP 

in a single-block layout can be constructed by introducing the six 

vertices for each picking aisle and choosing the edges that re- 

sult from the options according to which pick locations can be 

visited (see Fig. 3 ). In order to represent moves of the order 

picker in the cross aisles, each pair of vertices ([ i, f ] , [ i + 1 , f ]) and 

([ i, b] , [ i + 1 , b]) ( i = 1 , . . . , m − 1 , where m denotes the number of 

picking aisles) is connected by two arcs. The depot is positioned in 

front of the leftmost picking aisle and identical to vertex [1, f ] in 

the graph. An example of a graph related to a (single-) block layout 

with five picking aisles is depicted in Fig. 4 . 

The weight c a for an arc a in a picking aisle i can be determined 

as follows: The arc weight c ([ i , 2], [ i , 3]) is always equal to the largest 

gap between two adjacent pick locations in picking aisle i or a pick 

location and the adjacent cross aisle. Let j ∗
i 

be the location repre- 

sented by vertex [ i , 2]. Then, three different cases have to be dis- 

tinguished for the determination of c ([ i , f ], [ i , 1]) and c ([ i , 1], [ i , 2]) : 

(1) If j ∗
i 

does not correspond to the location of a requested item 

but to the point where picking aisle i can be entered via the 

front cross aisle, then c ( [ i, f ] , [ i, 1] ) = c ( [ i, 1] , [ i, 2] ) = 0 . 

(2) If j ∗
i 

corresponds to the pick location nearest to the front 

cross aisle, then c ([ i , f ], [ i , 1]) is equal to the distance between 

the front cross aisle and j ∗
i 
, and c ( [ i, 1] , [ i, 2] ) = 0 holds. 

(3) Otherwise, c ([ i , f ], [ i , 1]) is determined as in the second case, 

and c ([ i , 1], [ i , 2]) is the distance between the pick location 

nearest to the front cross aisle and j ∗
i 
. 
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Fig. 5. Prohibited path in a solution. 

The determination of c ([ i , 3], [ i , 4]) and c ([ i , 4], [ i , 5]) is performed 

analogously. If picking aisle i does not contain any requested item, 

then c ([ i , 2], [ i , 3]) is equal to the distance between the front and the 

rear cross aisle; the remaining arc weights are set to zero. 

A feasible solution for the SPRP would be given by a tour which 

starts and ends at vertex [1, f ] and includes the vertices [ i , 1], [ i , 2], 

[ i , 3] and [ i , 4] for each picking aisle i that contains at least one re- 

quested item. When applying a model formulation for the TSP to 

this graph, we therefore need degree constraints for these vertices 

in order to ensure that they are contained in the tour. However, 

this approach would result in two problems. First, even in an op- 

timal solution for the SPRP, it is possible that vertices are visited 

more than once, which is not permitted in standard definitions of 

the TSP. Second, simply guaranteeing that all vertices in a picking 

aisle are visited does not necessarily ensure that a feasible solution 

for the SPRP is provided. 

In Fig. 5 , an infeasible combination of arcs in a picking aisle is 

depicted. All vertices in this picking aisle are visited, however, it 

cannot be guaranteed that all pick locations are included in the 

tour. This is due to the fact that the number of vertices, by which 

each picking aisle is defined, is not dependent on the number of 

requested items. Because of this reason, it is possible that some 

requested items are situated between the locations that are repre- 

sented by the vertices. Vertices [ i , 2] and [ i , 3] represent the two 

locations defining the largest gap and, therefore, no pick location 

can be situated between those locations. This is not true for ver- 

tices [ i , 1] and [ i , 2] as well as for [ i , 3] and [ i , 4]. Since vertices 

[ i , 1] and [ i , 4] represent the location nearest and farthest from 

the front cross aisle, several storage locations containing requested 

items may be situated between these locations and the locations 

defining the largest gap. Thus, tours may be generated in which 

some of the pick locations are skipped. 

In order to ensure feasibility of solutions for the SPRP which are 

obtained from a TSP formulation based on this graph, additional 

predecessor and successor constraints for arcs are needed. For 

example, we will have to ensure that arc ([ i , 3], [ i , 4]) is used if 

arc ([ i , 2], [ i , 3]) was chosen. 

Another issue refers to the elimination of subtours. The general 

concept of the subtour elimination constraints in the TSP formula- 

tions presented above consists of the enumeration of the vertices 

according to the sequence in which they appear in the tour. This 

approach cannot be successful when using this graph, because on 

the one hand, vertices are allowed to be visited more than once 

and, on the other hand, some cycles are allowed within the tour 

(e.g. if a largest gap strategy is used in an aisle). 

In order to avoid vertices to be visited more than once, vertices 

are split up into several vertices in such a way that each gener- 

ated vertex can only be visited one time. According to Ratliff and 

Rosenthal (1983) vertices corresponding to cross aisles can be vis- 

ited up to three times, while the other vertices may be visited 

at most twice. Therefore, we replace each vertex [ i , f ] and [ i , b ] 

(i = 1 , . . . , m ) by three vertices, where one vertex has to be used 

to enter a picking aisle and the other two vertices correspond to 

movements to the left and to the right in the cross aisles. The ver- 

tices [ i , 1], [ i , 2], [ i , 3] and [ i , 4] represent movements within a 

picking aisle i and are replaced by two vertices, where these ver- 

tices correspond to movements towards the rear cross aisle (up) 

and the front cross aisle (down), respectively. Furthermore, a ver- 

tex symbolizing the location of the depot is added. An example for 

the resulting graph is depicted in Fig. 6 . 

In general, the vertices of this graph can be described as fol- 

lows. Vertex 0 symbolizes the location of the depot. The other ver- 

tices are characterized by a triple, where the first component rep- 

resents the direction in which the tour can be continued. r and l 

indicate movements to the right and to the left, respectively. Move- 

ments towards the rear cross aisle and towards the front cross aisle 

are symbolized by u (“up”) and d (“down”). The second component 

characterizes the number of picking aisle i , where picking aisle 1 is 

the leftmost and aisle m the rightmost picking aisle. The last com- 

ponent of the triple represents the location of the vertex, where f 

and b mean that the vertex corresponds to the front and the rear 

cross aisle, respectively. The four locations in a particular picking 

aisle are enumerated from 1 to 4. Based on this denotation, the 

vertices [ l , 1, b ], [ r , m , b ] and [ r , m , f ] do not exist, because at these 

points either moves to the left or to the right are possible. After 

having introduced the vertices of the graph, arcs are added based 

on the feasible options according to which requested items can be 

picked in a picking aisle (see Fig. 3 ). 

These modifications result in a graph in which an optimal or- 

der picking tour can be constructed without visiting a vertex more 

than once. This graph includes more than twice the number of ver- 

tices as the previously presented graph does. However, the size of 

the improved model formulation for the SPRP will only be depen- 

dent on the number of arcs and not on the number of vertices. Fur- 

thermore, the size of the graph is completely independent of the 

number of pick locations. Applying a TSP formulation to this modi- 

fied graph, in which the number of subtour elimination constraints 

increases linearly to the number of arcs, will lead to a mathemat- 

ical model whose size increases linearly to the number of picking 

aisles. 

4.2. Model formulation based on the modified graph 

In this section, a TSP formulation is applied to the graph con- 

structed in Section 4.1 . The complete mathematical model for the 

SPRP is presented in the Appendix. It includes the following classes 

of constraints: 
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Fig. 6. Modified graph for a SPRP in a single-block layout with five picking aisles. 

• Degree constraints [ (37) –(59) ]: Each vertex has to be left after 

it has been visited. 
• Subtour elimination constraints [ (60) –(90) ]: The resulting tour 

has to be connected. 
• Depot inclusion constraint [ (91) ]: The depot has to be included 

in the tour. 
• Pick location inclusion constraints [ (92) –(93) ]: Each pick loca- 

tion has to be included in the tour. 

The degree and subtour elimination constraints [ (37) –(90) ] are 

very similar to the corresponding constraints [ (2) –(4), (8) –(11) and 

(15) –(20) ] used in the general TSP formulations and will only be 

described briefly here. As decision variables we introduce binary 

variables for each arc, indicating if the arc is contained in the tour 

(variable is equal to 1) or not (0). For a picking aisle i , the notation 

of the variables for the different arc types is depicted in Fig. 7 . 

For the sake of clarity, each arc type is only included for a single 

direction in this figure. Arcs corresponding to movements in the 

opposite direction are excluded. (For example, arc ([ u , i , 3], [ u , i , 4]) 

is depicted and ([ d , i , 1], [ d , i , 2]) is excluded.) 

The degree constraints in general TSP formulations ensure that 

each vertex is visited exactly once, which means that the indegree 

and the outdegree of each vertex are equal to one, respectively. 

When dealing with a SPRP represented by the modified graph, 

each vertex is visited at most once. However, some vertices may 

exist which are not included in an optimal tour. Therefore, it has 

to be ensured that the indegree and the outdegree are equal to 1 

if a vertex is visited and equal to 0 otherwise. This can be done 

by requiring that, for each vertex, the indegree is equal to the out- 

degree. In the degree constraints (37) –(59) , the outdegree is calcu- 

lated on the left hand side of the equation while the right hand 

side represents the indegree. 

The mathematical models for the general TSP presented in 

Section 3 only differ in the way how subtours are excluded. Based 

on pretests, we decided to apply the subtour elimination con- 

straints by Gavish and Graves (1978) in which the arcs are enu- 

merated according to the sequence in which they are used in the 

tour. Constraints (10) ensure for each vertex i ∈ V\ { 0 } that the sum 

of variables corresponding to arcs, which can be used to reach ver- 

tex i , has to be by one greater than the sum of variables for arcs 

leaving this vertex. Constraints (11) result in a solution where both 

sums contain exactly one variable greater than zero, respectively. 

The general principle of constraints (10) is also used in the model 

formulation based on the modified graph. The application of these 

constraints leads to constraints (60) –(80) . The structure of the left 

hand side of these equations is equal to those of constraints (10) . 

However, the right hand side of constraints (60) –(80) cannot be 

equal to one for each vertex, because this would lead to tours in 

which all vertices have to be visited although it is allowed to skip 

some vertices when using the modified graph. Therefore, the right 

hand side of constraints (60) –(80) has to be equal to zero if the 

corresponding vertex is not included in the tour; otherwise, it has 

to be equal to 1. This can be obtained by calculating the degree 

(here: outdegree) for each vertex. The second part of the subtour 

elimination constraints [ (81) –(90) ] is equivalent to (11) . 

Constraint (91) ensures that the depot is included in the tour. 

Since not all vertices must necessarily be visited, we will have 

to introduce vertex-related criteria which have to be satisfied if it 

is permitted to skip a vertex. Each vertex representing an intersec- 

tion between a picking and a cross aisle is allowed to be skipped. 
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Fig. 7. Notation of the variables in the model formulation. 

Furthermore, in some cases it is also possible to skip vertices cor- 

responding to a pick location. The pick locations of a picking aisle i 

are represented by four pairs of vertices. In order to guarantee that 

all requested items are contained in the tour, it is sufficient to visit 

the vertices nearest to the cross aisles. In this case, the degree con- 

straints ensure that all pick locations will be visited. Let us con- 

sider the two vertices nearest to the front cross aisle which are 

denoted by [ u , i , 1] and [ d , i , 4]. Both vertices represent the same 

pick location and, therefore, only one of them has to be included 

in the tour. If vertex [ u , i , 1] is visited, the next vertex to be visited 

is [ u , i , 2], which means that the variable w i 1 f has to be equal to 

one. If [ d , i , 4] is included in the tour, the vertex [ d , i , 3] has to be 

visited before, which implies w i 3 b = 1 . Since picking aisles which 

do not contain any requested items can also be skipped, the con- 

straint w i 1 f + w i 3 b ≥ 1 must hold for all picking aisles i containing 

at least one requested item. This is expressed by the constant b i 
which is equal to 1 if picking aisle i has to be visited and 0 oth- 

erwise. Analogously, the constraints resulting from the pair of ver- 

tices nearest to the rear cross aisle can be constructed. This results 

in the following two constraints for a picking aisle i : 

w i 1 f + w i 3 b ≥ b i (32) 

w i 1 b + w i 3 f ≥ b i (33) 

However, another special case exists in which one of these two 

pairs of vertices is allowed not to be contained in the tour. This 

case occurs if the largest gap is not defined by two pick locations 

but by a pick location and the adjacent cross aisle. If the corre- 

sponding cross aisle is the rear cross aisle, then the pair of vertices 

nearest to the rear cross aisle does not have to be visited. In this 

case, the vertices [ d , i , b ], [ u , i , 4] and [ u , i , 3] represent the same 

location and, therefore, the distance between [ d , i , b ] and [ u , i , 3], 

denoted by c e 
i 3 b 

, is equal to zero. This implies that constraint (33) 

must hold if and only if c e 
i 3 b 

> 0 which can be obtained by mul- 

tiplying both sides of the constraint by c e 
i 3 b 

resulting in (93) . The 

same line of argumentation holds if the front cross aisle is consid- 

ered. In this case, multiplying constraint (32) by c e 
i 3 f 

leads to (92) . 

In total, we have O ( m ) variables and constraints, i.e. the number 

of variables and constraints increases only linearly to the number 

of picking aisles m and is not dependent on the number of pick 

locations. 

5. Numerical experiments 

5.1. Design 

In order to evaluate the above-presented formulations, we have 

performed numerical experiments for various classes of problem 

instances. The formulations will be compared w.r.t. the actual 

model sizes and the computing times needed by a commercial IP- 

solver for providing optimal solutions to these instances. For the 

numerical experiments, the characteristics of the warehouse have 

been chosen according to the experiments of Henn and Wäscher 

(2012) . Each picking aisle consists of 90 storage locations, 45 on 

each side. Demands are uniformly distributed, i.e. each pick loca- 

tion has the same probability of being included in a picking or- 

der. The length of each storage location amounts to one length unit 

(LU). Whenever leaving an aisle, the order picker has to move one 

LU in the vertical direction from either the first or the last storage 

location in order to reach the cross aisle. The distance between two 

adjacent picking aisles is equal to 5 LU. The depot is assumed to be 

located in front of the leftmost picking aisle. 

In their experiments, Henn and Wäscher (2012) fixed the num- 

ber of picking aisles m to 10. Since both the size of the Steiner 

TSP formulation and the newly-proposed formulation are depen- 

dent on the number of picking aisles, we consider different values 

of m here. Therefore, m has been set to 5, 10, 15, 20, 25 and 30. For 

the size of the picking order (number of pick locations n ), the val- 

ues 30, 45, 60, 75 and 90 have been chosen. Combination of these 

parameters gives rise to 30 problem classes. For each class, 30 in- 

stances have been generated, resulting in 900 instances in total. 

All formulations have been implemented and solved by CPLEX 

12.6. The experiments have been carried out on a desktop PC with 

a 3.4 gigahertz Pentium processor with 8 gigabytes RAM. The com- 

puting time for each instance and formulation has been limited to 

30 minutes. 

5.2. Results 

Before the model formulations are evaluated with respect to 

the corresponding computing times and the number of optimal 

solutions obtained within the time limit, they are compared 

regarding their sizes in dependency on the number of pick 

locations n and picking aisles m . For each problem class, the size 

of each formulation is depicted in Table 1 . 

Concerning the formulations of Miller et al. (1960) [MTZ], 

Gavish and Graves (1978) [GG] and Claus (1984) [C], the number 

of variables (#var) and constraints (#cons) depends on the number 

of pick locations n , whereas the size of the Steiner TSP formulation 

provided by Letchford et al. (2013) [LNT] is dependent on both the 

number of pick locations n and the number of picking aisles m . 

In comparison to this, the size of the newly-proposed formulation 

[SHSW] is determined by the number of picking aisles m only. In 

fact, the size of the new model formulation increases only linearly 

to the number of picking aisles. Therefore, it can be assumed that 

the new formulation for the SPRP outperforms the other formula- 

tions (w.r.t. the size of the models) if the ratio n / m gets large. This 

is actually confirmed by the data presented in Table 1 . Only for 

a large number of picking aisles ( m = 30 ) and a small number of 
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Table 1 

Size of mathematical programming formulations for the SPRP. 

( m , n ) MTZ GG C LNT SHSW 

#var #cons #var #cons #var #cons #var #cons #var #cons 

(5, 30) 960 932 1830 992 28,830 28,892 583 1022 220 254 

(5, 45) 2115 2072 4095 2162 95,220 95,312 748 1352 220 254 

(5, 60) 3720 3662 7260 3782 223,260 223,382 913 1682 220 254 

(5, 75) 5775 5702 11,325 5852 433,200 433,352 1078 2012 220 254 

(5, 90) 8280 8192 16,290 8372 745,290 745,472 1243 2342 220 254 

(10, 30) 960 932 1830 992 28,830 28,892 1638 2682 460 524 

(10, 45) 2115 2072 4095 2162 95,220 95,312 1953 3312 460 524 

(10, 60) 3720 3662 7260 3782 223,260 223,382 2268 3942 460 524 

(10, 75) 5775 5702 11,325 5852 433,200 433,352 2583 4572 460 524 

(10, 90) 8280 8192 16,290 8372 745,290 745,472 2898 5202 460 524 

(15, 30) 960 932 1830 992 28,830 28,892 3193 5042 700 794 

(15, 45) 2115 2072 4095 2162 95,220 95,312 3658 5972 700 794 

(15, 60) 3720 3662 7260 3782 223,260 223,382 4123 6902 700 794 

(15, 75) 5775 5702 11,325 5852 433,200 433,352 4588 7832 700 794 

(15, 90) 8280 8192 16,290 8372 745,290 745,472 5053 8762 700 794 

(20, 30) 960 932 1830 992 28,830 28,892 5248 8102 940 1064 

(20, 45) 2115 2072 4095 2162 95,220 95,312 5863 9332 940 1064 

(20, 60) 3720 3662 7260 3782 223,260 223,382 6478 10,562 940 1064 

(20, 75) 5775 5702 11,325 5852 433,200 433,352 7093 11,792 940 1064 

(20, 90) 8280 8192 16,290 8372 745,290 745,472 7708 13,022 940 1064 

(25, 30) 960 932 1830 992 28,830 28,892 7803 11,862 1180 1334 

(25, 45) 2115 2072 4095 2162 95,220 95,312 8568 13,392 1180 1334 

(25, 60) 3720 3662 7260 3782 223,260 223,382 9333 14,922 1180 1334 

(25, 75) 5775 5702 11,325 5852 433,200 433,352 10,098 16,452 1180 1334 

(25, 90) 8280 8192 16,290 8372 745,290 745,472 10,863 17,982 1180 1334 

(30, 30) 960 932 1830 992 28,830 28,892 10,858 16,322 1420 1604 

(30, 45) 2115 2072 4095 2162 95,220 95,312 11,773 18,152 1420 1604 

(30, 60) 3720 3662 7260 3782 223,260 223,382 12,688 19,982 1420 1604 

(30, 75) 5775 5702 11,325 5852 433,200 433,352 13,603 21,812 1420 1604 

(30, 90) 8280 8192 16,290 8372 745,290 745,472 14,518 23,642 1420 1604 

O ( n 2 ) O ( n 2 ) O ( n 2 ) O ( n 2 ) O ( n 3 ) O ( n 3 ) O ( n 2 m ) O ( n 2 m ) O ( m ) O ( m ) 

pick locations ( n = 30 ) – resulting in a very small ratio n / m – the 

number of variables and constraints in the SHSW formulation may 

turn out to be larger than in the MTZ and GG formulations, even 

though the difference does not appear to be really significant. The 

C and the LNT formulations are clearly outperformed by the SHSW 

formulation. 

It can be expected that the performance of a formulation is 

strongly correlated with its size. In this case, a good performance 

means that by applying the model formulation an optimal solution 

can be found within a small amount of computing time. For each 

formulation, Table 2 depicts the number of optimal solutions ob- 

tained within 30 minutes. 

The application of the general TSP formulations MTZ, GG and C 

leads to rather unsatisfactory results. As expected, the number of 

optimal solutions obtained within the predefined time limit signif- 

icantly decreases with an increasing number of pick locations n . 

Furthermore, it should be noted that the performance of these 

three formulations is also slightly dependent on the number of 

picking aisles m . The impact of m is not as strong as it is the case 

for n , but with an increasing number of picking aisles the num- 

ber of instances in which an optimal solution can be found within 

30 minutes of computing time also decreases. When comparing 

the results from the three general TSP formulations, it can be seen 

that the MTZ formulation shows the worst performance. Although 

requiring the least number of variables and constraints, no prob- 

lem class exists in which all instances can be solved to optimality. 

This performance can be explained by the fact that solving its LP 

relaxation leads to a very weak lower bound. By application of 

the C formulation all problem instances with a small number of 

pick locations ( n = 30 ) can be solved to optimality within 30 min- 

utes. However, when increasing n , the performance gets much 

worse. For instances with 60 or more pick locations only a single 

Table 2 

Number of solved instances (out of 30) within 30 

minutes of computing time. 

( m , n ) MTZ GG C LNT SHSW 

(5, 30) 28 30 30 30 30 

(5, 45) 19 30 15 30 30 

(5, 60) 3 28 0 30 30 

(5, 75) 0 22 0 30 30 

(5, 90) 0 8 0 30 30 

(10, 30) 26 30 30 30 30 

(10, 45) 19 30 13 30 30 

(10, 60) 1 30 0 30 30 

(10, 75) 0 25 0 30 30 

(10, 90) 0 8 0 30 30 

(15, 30) 26 30 30 30 30 

(15, 45) 6 30 7 30 30 

(15, 60) 0 29 1 30 30 

(15, 75) 0 21 0 30 30 

(15, 90) 0 9 0 20 30 

(20, 30) 24 30 30 30 30 

(20, 45) 5 30 5 30 30 

(20, 60) 0 26 0 30 30 

(20, 75) 0 11 0 23 30 

(20, 90) 0 4 0 7 30 

(25, 30) 18 30 30 30 30 

(25, 45) 0 30 2 30 30 

(25, 60) 0 26 0 30 30 

(25, 75) 0 14 0 19 29 

(25, 90) 0 3 0 2 24 

(30, 30) 16 30 30 30 30 

(30, 45) 0 30 3 30 30 

(30, 60) 0 29 0 30 30 

(30, 75) 0 10 0 16 24 

(30, 90) 0 2 0 0 21 



78 A. Scholz et al. / European Journal of Operational Research 253 (2016) 68–84 

problem instance can be solved. Therefore, this formulation can 

only be used for very small instances which could be expected 

since this formulation requires the largest number of variables and 

constraints with a size increasing cubically to the number of pick 

locations. The GG formulation is the best TSP formulation in our 

numerical experiments. Using this formulation, we can obtain op- 

timal solutions for all instances with up to 45 pick locations and 

even for n = 60 , optimal solutions can be found within the given 

time limit for most instances. However, since the number of vari- 

ables and constraints increases with an increasing number of pick 

locations (as it is also the case for the other TSP formulations), only 

a small fraction of the problem instances can be solved to optimal- 

ity when n gets quite large ( n = 90 ). 

More convincing results are obtained when the LNT and the 

SHSW formulations are applied. For all instances with up to 10 

picking aisles or 60 pick locations, an optimal solution can be 

found within 30 minutes of computing time. The size of both for- 

mulations is dependent on the number of picking aisles and this 

can also be seen in the results since the number of optimal so- 

lutions obtained within the time interval decreases with an in- 

creasing number of picking aisles. By using the LNT formulation 

all instances with up to 10 picking aisles can be solved whereas 

the SHSW formulation provides optimal solution for all instances 

with up to 20 picking aisles. An increasing number of pick loca- 

tions also shows a negative impact on the performance of both 

formulations. While the number of optimal solutions obtained by 

applying the SHSW formulation only slightly decreases with an in- 

creasing number of pick locations, the performance of the LNT for- 

mulation drastically deteriorates. For m ≤ 15, the LNT formulation 

leads to quite convincing results. When considering a larger num- 

ber of picking aisles m , it can be seen that the LNT formulation 

still provides optimal solutions for all instances with up to 60 pick 

locations. However, for instances with m ≥ 20 only a few optimal 

solutions can be found by using this formulation when the number 

of pick locations is very large ( n = 90 ). Especially, when looking at 

the results from the largest problem class ( m = 30 , n = 90 ), we can 

see the limitation of the Steiner TSP formulation. While the SHSW 

formulation still provides optimal solutions for 21 out of 30 (70%) 

of those problem instances, no optimal solution can be found by 

using the LNT formulation. The superiority of the SHSW formu- 

lation for this case can be attributed to the size of the two for- 

mulations. Since the number of variables and constraints required 

by the LNT formulation is not only dependent on the number of 

picking aisles m but also on the number of pick locations n , an in- 

crease of both m and n has a strong impact on the performance of 

the LNT formulation. 

In Table 3 the average computing times for the five formu- 

lations are presented. Computing times have only been recorded 

if the instance has been solved to optimality and, therefore, no 

information about computing times is given for some problem 

classes when the MTZ, the C or the LNT formulation has been ap- 

plied. 

The results depicted in Table 3 are in accordance to the ex- 

pectations raised by comparing the sizes of the formulations and 

the number of optimal solutions obtained within the predefined 

time interval. Again, the general TSP formulations lead to the worst 

results. When applying one of these formulations, the computing 

times grow very fast if the number of pick locations is increased. 

The strongest increase of computing time can be observed for the 

C formulation since its size increases cubically to the number of 

picking aisles (instead of quadratically as it is the case for the 

MTZ and GG formulation). For the MTZ formulation, the comput- 

ing times are already quite large for a small number of pick lo- 

cations ( n = 30 ), while computing times for other problem classes 

cannot be interpreted since only a few instances can be optimally 

solved and, therefore, computing times have not been recorded for 

Table 3 

Computing times [seconds]. 

( m , n ) MTZ GG C LNT SHSW 

(5, 30) 109.18 2.65 25.67 2.84 0.09 

(5, 45) 869.72 22.37 1169.04 8.71 0.09 

(5, 60) 1666.20 453.94 – 25.66 0.09 

(5, 75) – 898.21 – 63.22 0.09 

(5, 90) – 1393.63 – 146.31 0.10 

(10, 30) 310.62 1.94 114.14 4.57 1.60 

(10, 45) 991.73 14.59 1408.99 14.66 1.03 

(10, 60) 1750.94 90.74 – 37.09 1.42 

(10, 75) – 482.53 – 156.22 1.36 

(10, 90) – 1414.21 – 303.68 0.62 

(15, 30) 372.77 3.40 89.14 7.45 2.29 

(15, 45) 1564.07 20.20 1562.30 24.85 5.28 

(15, 60) – 395.01 1761.62 90.30 10.64 

(15, 75) – 1069.54 – 357.27 15.10 

(15, 90) – 1537.30 – 811.61 19.41 

(20, 30) 555.07 4.05 104.96 9.47 10.57 

(20, 45) 1649.94 36.64 1656.18 41.30 27.32 

(20, 60) – 524.44 – 147.52 114.33 

(20, 75) – 1551.92 – 614.11 216.63 

(20, 90) – 1780.10 – 1627.68 485.71 

(25, 30) 899.22 4.30 110.76 15.07 54.46 

(25, 45) – 62.09 1768.15 41.55 85.46 

(25, 60) – 497.17 – 173.87 258.92 

(25, 75) – 1256.74 – 858.44 527.39 

(25, 90) – 1758.36 – 1764.21 646.59 

(30, 30) 1098.95 4.18 98.49 14.00 204.18 

(30, 45) – 59.64 1760.77 43.01 406.19 

(30, 60) – 418.95 – 293.87 508.80 

(30, 75) – 1510.33 – 1102.47 638.89 

(30, 90) – 1762.80 – – 786.29 

most instances. As expected, the GG formulation requires the low- 

est computing times. For the solution of instances with 30 pick 

locations, on average less than 5 seconds are required and even 

for instances with n = 45 , the application of the GG formulation 

results in an optimal solution within approximately one minute 

or less. However, with a further increase of n , we can observe 

a very strong increase of the computing times, which leads us 

to the conclusion that this formulation should not be applied to 

instances with 60 or more pick locations. Furthermore, not only 

an increasing number of pick locations n but also an increase 

in the number of picking aisles m seem to have a negative im- 

pact on the computing times required by general TSP formula- 

tions, even though the size of these formulations is not dependent 

on m . 

Apart from very small instances with only 30 pick locations, the 

LNT and SHSW formulations require the smallest amount of com- 

puting time. For both formulations, the computing times increase 

with both an increasing number of pick locations and picking 

aisles. For the LNT formulation, this could be expected since the 

size of the mathematical model is also dependent on both num- 

bers and, therefore, it is not surprising that an increasing number 

of pick locations has a much larger impact on the LNT than on 

the SHSW formulation. However, the results show that computing 

times required for the solution of the SHSW formulation also in- 

crease with an increasing number of pick locations, even though 

the number of arcs and vertices of the modified graph is indepen- 

dent of this number. This is due to two reasons: First, constraints 

(92) and (93) are redundant for a picking aisle i if b i = 0 , i.e. if 

picking aisle i does not contain any pick locations. The less pick 

locations have to be considered, the smaller the probability gets 

that a large number of picking aisles has to be visited. Second, a 

large number of pick locations results in many solutions almost as 

good as an optimal solution and, therefore, proving optimality gets 

quite time consuming. 
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Fig. 8. Two-block layout. 

As could be expected with respect to the number of constraints 

and variables, the application of the SHSW formulation outper- 

forms the other approaches by far when the number of picking 

aisles is not too large ( m ≤ 15). If the number of aisles is small 

( m = 5 ), by using the SHSW formulation the computing times can 

be reduced by a factor between 30 ( n = 30 ) and 1500 ( n = 90 ) 

compared to the best of the other four formulations. As mentioned 

before, in term of the size, the advantage of the SHSW formula- 

tion over general and Steiner TSP formulations diminishes if the 

ratio n / m gets small. This observation coincides with the comput- 

ing times depicted in Table 3 . For instances with a larger num- 

ber of picking aisles ( m ≥ 20) and a small number of pick loca- 

tions ( n = 30 ), the GG formulation requires substantial less com- 

puting time than the SHSW formulation. If the number of picking 

aisles is very large ( m ≥ 25) and only up to 60 locations have to 

be visited, the LNT formulation clearly outperforms the SHSW for- 

mulation. However, since the size of the general TSP and the LNT 

formulations is dependent on the number of pick locations n , the 

performance of these approaches deteriorates when n gets large, 

whereas the SHSW formulation provides optimal solutions within 

a decent amount of computing time even for large instances. 

6. Some extensions to the proposed model formulation 

In the previous sections, we focused on warehouses with a 

single-block layout and developed a graph representing the SPRP 

in such warehouses and a corresponding mathematical program- 

ming formulation. In the following, we will present several modi- 

fications which can be used for representing variants of the SPRP 

which are highly relevant to practice. 

6.1. SPRP in multi-block layouts 

Single-block layouts result in long picking aisles if the num- 

ber of picking aisles is small and the number of storage locations 

is large. Consequently, the order pickers will have to travel long 

distances to change over from one picking aisle to another. This 

becomes particularly inefficient if only a few items have to be re- 

moved from each picking aisle. Therefore, picking aisles are usually 

arranged in several blocks which are separated by additional cross 

aisles. In Fig. 8 , a warehouse with two blocks and one additional 

(middle) cross aisle is depicted. The middle cross aisle divides each 

picking aisle into two subaisles. 

Roodbergen and de Koster (2001a) have extended the algorithm 

of Ratliff and Rosenthal (1983) for the SPRP in warehouses with 

two blocks. However, with an increasing number of cross aisles, 

the SPRP becomes harder to solve since the number of options for 

changing over from one picking aisle to another increases. Instead 

of 7 different equivalence classes (in the case for the original al- 

gorithm of Ratliff & Rosenthal, 1983 ) now 25 equivalence classes 

have to be dealt with in each phase of a dynamic programming 

procedure. An extension to warehouses with three or more blocks 

has not been proposed in the literature so far but can be consid- 

ered even more complex. 

The graph and the corresponding mathematical programming 

formulation presented in this paper can be extended easily to 

warehouse layouts with an arbitrary number of blocks. For this 

purpose, a slightly modified copy of the graph has to be added 

for each additional block. The modification refers to the vertices 

corresponding to points in the middle cross aisles. In a single- 

block layout, at each point in a cross aisle, the picker can choose 

between moving to the left, moving to the right or entering the 

respective picking aisle. Three different vertices are needed to rep- 

resent these movement options. In a two-block or a multi-block 

layout, when positioned in a middle cross aisle, now the order 

picker has an additional option, namely to choose between enter- 

ing the picking aisle in the upper block and entering the picking 

aisles in the lower block. Therefore, each point of a middle cross 

aisle has to be represented by four vertices. 

6.2. SPRP with decentralized depositing 

In the standard SPRP, a central depot is assumed, i.e. the picker 

starts and terminates the tour at the depot. In practice, items 

can often be deposited at the end (head) of each picking aisle 

( de Koster & van der Poort, 1998 ). In other words, the starting 

point of a route is known in advance, which can now be the de- 

pot or any picking-aisle head. The point where the picker termi- 

nates the tour has to be determined. The algorithm of Ratliff and 

Rosenthal (1983) has been modified by de Koster and van der 

Poort (1998) for this case of decentralized depositing. However, 

this modification is only applicable to picking areas following a 

single-block layout. 

Again, by simple modifications to the graph and the mathemat- 

ical model presented above, this case and also its extension to a 

multi-block layout can be dealt with in the approach proposed 

in this paper: The (given) starting point will be represented by 

vertex 0. Since the tour may terminate at the head of any picking 

aisle, a vertex D is added for each picking aisle representing a loca- 

tion where items can be deposited. Furthermore, for each picking 

aisle i , an arc is added, connecting vertex D and vertex [ d , i , 4], the 

latter corresponding to the pick location in this picking aisle clos- 

est to the front cross aisle. An example of a graph for decentral- 

ized depositing with five picking aisles is depicted in Fig. 9 . In the 

resulting model formulation, we only have to ensure that the out- 

degree of vertex 0 and the sum of the indegrees of the vertices D 

and vertex 0 are equal to 1. 

6.3. Generating simple routes for the SPRP 

Order pickers in practice seem to prefer simple tours through 

the warehouse which can be memorized easily. More complex 

tours, e.g. those resulting from the application of exact algorithms, 

may contain elements which are looked upon as unnatural, result- 

ing in an additional orientation effort, which reduces the travel ve- 

locity of the pickers, increases the risk of making a false step and 

lengthening the tour, and also increases the number of picking er- 

rors ( Petersen & Schmenner, 1999 ). In the worst case, the proposed 

tours may not be accepted at all, and the pickers will compile 
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Fig. 9. Graph for a SPRP with decentralized depositing. 

paths of their own through the warehouse which they may con- 

sider good but may in fact be far from optimal. 

In order to generate more acceptable, simple tours, one can try 

to eliminate elements from the tours which may be considered 

as unnatural. One such element refers to the fact that a picking 

aisle is entered more than once ( Roodbergen & de Koster, 2001b ). 

Prohibiting a picking aisle to be entered more than once is not 

straightforward in the TSP formulations for the SPRP, but it can 

easily be integrated in the graph and the corresponding model 

proposed here. A solution in which each subaisle is entered at 

most once corresponds to the application of either the return or 

the traversal strategy, while the largest-gap strategy must be ex- 

cluded. This can be achieved by deleting the edges e i 3 f and e i 3 b 
from the graph for each subaisle i . Solving the resulting model 

formulation will result in a simple tour not longer than the tour 

provided by the combined heuristic of Roodbergen and de Koster 

(2001b) . 

The simplicity of a picking tour is also seen related to the num- 

ber of direction changes the order picker has to perform within 

the cross aisles. First, tours with frequent changes of the moving 

direction happen to be quite confusing for the order picker since 

the picking aisles are not visited in a natural sequence ( Petersen 

& Schmenner, 1999 ). Second, movements within cross aisles only 

serve the purpose of changing from one picking aisle to another. 

No items are collected while moving in a cross aisle. If a tour in- 

cludes frequent direction changes within the cross aisles, the order 

picker may conclude that the travel distance can be reduced by de- 

viating from the tour plan, resulting in an even longer tour. There- 

fore, it can be useful to limit the number of direction changes or 

even prohibit them. 

The proposed model formulation for the SPRP can easily be 

modified to include this feature. Let the order picker be in an 

arbitrary cross aisle. For a given pair of adjacent picking aisles 

(i, i + 1) , it is possible to change over from picking aisle i to i + 1 

(movement to the right) and from aisle i + 1 to i (movement to 

the left). In the mathematical model, these movements can be rep- 

resented by two variables each. In order to prohibit a direction 

change in the corresponding cross aisle, the sum of these variables 

has to be smaller than or equal to 1 for each pair of adjacent pick- 

ing aisles. For example, in order to prohibit a direction change in 

the front cross aisle, the following constraints have to be added: 

l w 

i f + l l i f + r w 

i −1 , f + r r i −1 , f ≤ 1 ∀ i = 2 , . . . , m − 1 (34) 

l w 

m f + l l m f + r w 

m −1 , f ≤ 1 (35) 

By introducing such constraints for a certain number of cross 

aisles, it is possible to limit the number of direction changes 

within cross aisles, resulting in tours which may appear to be more 

straightforward for the order picker and can be memorized more 

easily. 

7. Conclusion and outlook 

In this article, we considered the Single-Picker Routing Prob- 

lem in a single-block layout which represents a special case of the 

Traveling Salesman Problem. We proposed the first mathematical 
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programming formulation that adopts the specific properties of 

this problem. It could be shown that the size of the proposed for- 

mulation (expressed in the number of variables and constraints) 

depends on the number of picking aisles only and not on the num- 

ber of storage locations to be visited. 

By means of numerical experiments, the proposed formulation 

has been evaluated and compared to more general TSP and Steiner 

TSP formulations. It could be demonstrated that the proposed for- 

mulation is advantageous with respect to the size of the formula- 

tion. The proposed formulation also outperforms the general for- 

mulations with respect to computing times. Moreover, within a 

given time limit, we were able to find optimal solutions for in- 

stances which could not be solved by means of the general for- 

mulations. The numerical results clearly indicate that for specific, 

efficiently-solvable cases of the Traveling Salesman Problem, the 

development of customized formulations is necessary in order to 

obtain optimal solutions within short computing times. 

This work focused on the SPRP in single-block layouts, but it 

has also been shown how several practically relevant situations 

(multi-block layout, decentral depositing, generation of simple 

tours) can be integrated into the proposed formulation. Interest- 

ing topics of future research could be dealing with other features 

encountered with order picking systems in practice. This may re- 

fer to the determination of picker tours in warehouses with high 

racks where movements within the picking aisles are much more 

complex. 

Furthermore, for the proposed formulation wide-aisles have 

been assumed which enable order pickers to pass and overtake 

each other. As a consequence, their tours through the warehouse 

can be determined independently from each other. In narrow-aisle 

warehouses, a picking aisle may be blocked when a picker cannot 

enter the aisle before it is left by another picker moving in the 

opposite direction. Even traffic jams may occur when two pick- 

ers have to collect items from the same storage location at the 

same time. Picker tours can no longer be determined indepen- 

dently but will have to be planned simultaneously with the batch- 

ing of customer orders into picking orders. An optimization model 

for order batching has been suggested by Hong, Johnson, and 

Peters (2012) which takes blocking considerations into account. 

However, this model is restricted to warehouses in which only 

one-way travel within picking aisles is allowed. Therefore, combin- 

ing picker blocking aspects with more general routing schemes and 

their integration into the proposed model formulation could be an- 

other promising area of future research. 

Appendix. Model formulation for the SPRP 

Sets: 

I = { 1 , . . . , m } : set of picking aisles; 

F = { f, b } : set of cross aisles. 

Constants: 

b i = 

{ 

1 , if picking aisle i ∈ I contains at least one 
requested item , 

0 , otherwise; 

c a : distance between two adjacent aisles; 

c 0 : distance between the depot and the location on the 

front cross aisle where the first picking aisle can be 

entered ;
c e isα : distance between front cross aisle ( α = f ) and vertex 

[ d, i, s ] ( s ∈ { 1 , 3 } ) or rear cross aisle ( α = b ) 

and vertex [ u, i, s ] in picking aisle i ∈ I;

c t iα : distance between front cross aisle ( α = f ) and vertex 

[ u, i, 1 ] or back cross aisle ( α = b ) 

and vertex [ d, i, 1 ] in picking aisle i ∈ I;
c w 

is : distance between location s ∈ { 1 , 2 , 3 } and location 

s + 1 in picking aisle i ∈ I;
M : large number (e.g. number of vertices) . 

Binary variables indicating the edges included in the tour: 

r r iα = 

{
1 , if edge ( [ r, i, α] , [ r, i + 1 , α] ) is contained in the tour , 
0 , otherwise , 

(i, α) ∈ ( I \ { m − 1 , m } ) × F ;

r w 

ib = 

{
1 , if edge ( [ r, i, b ] , [ d, i + 1 , b ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { m } ;
r w 

i f = 

{
1 , if edge ( [ r, i, f ] , [ u, i + 1 , f ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { m } ;
� � iα = 

{
1 , if edge ( [ �, i, α] , [ �, i − 1 , α] ) is contained in the tour , 
0 , otherwise , 

(i, α) ∈ ( ( I\ { 1 , 2 } ) × F ) ∪ { ( 2 , f ) } ;
� w 

ib = 

{
1 , if edge ( [ �, i, b ] , [ d, i − 1 , b ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { 1 } ;
� w 

i f = 

{
1 , if edge ( [ �, i, f ] , [ u, i − 1 , f ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { 1 } ;
e isb = 

{
1 , if edge ( [ d, i, b ] , [ u, i, s ] ) is contained in the tour , 
0 , otherwise , 

(i, s ) ∈ I × { 1 , 3 } ;
e is f = 

{
1 , if edge ( [ u, i, f ] , [ d, i, s ] ) is contained in the tour , 
0 , otherwise , 

(i, s ) ∈ I × { 1 , 3 } ;
t ib = 

{
1 , if edge ( [ d, i, b ] , [ d, i, 1 ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I;

t i f = 

{
1 , if edge ( [ u, i, f ] , [ u, i, 1 ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I;

w isb = 

{
1 , if edge ( [ d, i, s ] , [ d, i, s + 1 ] ) is contained in the tour , 
0 , otherwise , 

(i, s ) ∈ I × { 1 , 2 , 3 } ;
w is f = 

{
1 , if edge ( [ u, i, s ] , [ u, i, s + 1 ] ) is contained in the tour , 
0 , otherwise , 

(i, s ) ∈ I × { 1 , 2 , 3 } ;
v r ib = 

{
1 , if edge ( [ u, i, 4 ] , [ r, i, b ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { m } ;
v r i f = 

{
1 , if edge ( [ d, i, 4 ] , [ r, i, f ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { m } ;
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v � ib = 

{
1 , if edge ( [ u, i, 4 ] , [ �, i, b ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I \ { 1 } ;
v � i f = 

{
1 , if edge ( [ d, i, 4 ] , [ �, i, f ] ) is contained in the tour , 
0 , otherwise , 

i ∈ I;

y 0 α = 

{
1 , if edge ( [ 0 ] , [ α, 1 , f ] ) is contained in the tour , 
0 , otherwise , 

α ∈ { l, r, u } ;
y � 0 = 

{
1 , if edge ( [ �, 1 , f ] , [ 0 ] ) is contained in the tour , 
0 , otherwise . 

Real-valued variables to exclude subcycles: 

˜ r r iα, (i, α) ∈ ( I \ { m − 1 , m } ) × F ;
˜ r w 

iα, (i, α) ∈ ( I \ { m } ) × F ;
˜ � � iα, (i, α) ∈ ( ( I \ { 1 , 2 } ) × F ) ∪ { ( 2 , f ) } ;
˜ � w 

iα, (i, α) ∈ ( I \ { 1 } ) × F ;
˜ e isα, (i, s, α) ∈ I × { 1 , 3 } × F ;
˜ t iα, (i, α) ∈ I × F ;
˜ w isα, (i, s, α) ∈ I × { 1 , 2 , 3 } × F ;
˜ v r iα, (i, α) ∈ ( I \ { m } ) × F ;
˜ v � iα, (i, α) ∈ ( ( I \ { 1 } ) × F ) ∪ { ( 1 , f ) } ;
˜ y 0 α, α ∈ { l, r, u } . 
Objective function: 

min 

m −2 ∑ 

i =1 

∑ 

α∈ F 
c a ·

(
r r iα + r w 

iα

)
+ c a ·

∑ 

α∈ F 
r w 

m −1 ,α

+ 

m ∑ 

i =3 

∑ 

α∈ F 
c a ·

(
� � iα + � w 

iα

)
+ c a · � � 2 f + c a ·

∑ 

α∈ F 
� w 

2 α

+ 

m ∑ 

i =1 

∑ 

s ∈ { 1 , 3 } 

∑ 

α∈ F 
c e isα · e isα + 

m ∑ 

i =1 

∑ 

α∈ F 
c t iα · t iα

+ 

m ∑ 

i =1 

3 ∑ 

s =1 

∑ 

α∈ F 
c w 

isα · w isα + 

m −1 ∑ 

i =1 

∑ 

α∈ F 
c t iα · v r iα

+ 

m ∑ 

i =2 

∑ 

α∈ F 
c t iα · v � iα + c t 1 f · v � 1 f 

+ c 0 ·
(
y 0 l + y 0 r + y 0 u + y l 0 

)
(36) 

Degree constraints: 

• Constraints corresponding to the depot 

y 0 l + y 0 r + y 0 u = y l 0 (37) 

• Constraints corresponding to vertices [ r , i , α] 

r r iα + r w 

iα = v r iα + r r i −1 ,α ∀ (i, α) ∈ ( I \ { 1 , m − 1 , m } ) × F (38) 

r w 

m −1 ,α = v r m −1 ,α + r r m −2 ,α ∀ α ∈ F (39) 

r r 1 f + r w 

1 f = v r 1 f + y 0 r (40) 

r r 1 b + r w 

1 b = v r 1 b (41) 

• Constraints corresponding to vertices [ � , i , α] 

� � iα + � w 

iα = v � iα + � � i +1 ,α ∀ (i, α) ∈ ( I \ { 1 , 2 , m } ) × F (42) 

� � mα + � w 

mα = v � mα ∀ α ∈ F (43) 

� � 2 f + � w 

2 f = v � 2 f + � � 3 f (44) 

� w 

2 b = v � 2 f + � � 3 f (45) 

y � 0 = y 0 � + v � 1 f + � � 2 f (46) 

• Constraints corresponding to vertices [ u , i , f ] and [ d , i , b ] 

t iα + e i 1 α + e i 3 α = r w 

i −1 ,α + � w 

i +1 ,α ∀ (i, α) ∈ ( I \ { 2 , m } ) × F (47) 

t mα + e m 1 α + e m 3 α = r w 

m −1 ,α ∀ α ∈ F (48) 

t 1 f + e 11 f + e 13 f = y 0 u + � w 

2 f (49) 

t 1 b + e 11 b + e 13 b = � w 

2 b (50) 

• Constraints corresponding to vertices [ u , i , 4] and [ d , i , 4] 

v r iα + v � iα = w i 3 α ∀ (i, α) ∈ ( I \ { 2 , m } ) × F (51) 

v � mα = w m 3 α ∀ α ∈ F (52) 

v r 1 f + v � 1 f = w 13 f (53) 

v r 1 b = w 13 b (54) 

• Constraints corresponding to vertices [ u , i , s ] and [ d , i , s ] 

w i 1 f = t i f + e i 1 b ∀ i ∈ I (55) 

w i 1 b = t ib + e i 1 f ∀ i ∈ I (56) 

w i 2 α = w i 1 α ∀ (i, α) ∈ I × F (57) 

w i 3 f = w i 2 f + e i 3 b ∀ i ∈ I (58) 

w i 3 b = w i 2 b + e i 3 f ∀ i ∈ I (59) 

Subtour elimination constraints: 

• Constraints corresponding to vertices [ r , i , α] 

˜ v r iα + ̃  r r i −1 ,α −
(

˜ r r iα + ̃  r w 

iα

)
= r r iα + r w 

iα

∀ (i, α) ∈ ( I \ { 1 , m − 1 , m } ) × F (60) 

˜ v r m −1 ,α + ̃  r r m −2 ,α − ˜ r w 

m −1 ,α = r w 

m −1 ,α ∀ α ∈ F (61) 

˜ v r 1 f + ˜ y 0 r −
(

˜ r r 1 f + ̃  r w 

1 f 

)
= r r 1 f + r w 

1 f (62) 

˜ v r 1 b −
(

˜ r r 1 b + ̃  r w 

1 b 

)
= r r 1 b + r w 

1 b (63) 

• Constraints corresponding to vertices [ � , i , α] 

˜ v � iα + 

˜ � � i +1 ,α −
(

˜ � � iα + 

˜ � w 

iα

)
= � � iα + � w 

iα

∀ (i, α) ∈ ( I \ { 1 , 2 , m } ) × F (64) 

˜ v � mα −
(

˜ � � mα + 

˜ � w 

mα

)
= � � mα + � w 

mα ∀ α ∈ F (65) 

˜ v � 2 f + 

˜ � � 3 f −
(

˜ � � 2 f + 

˜ � w 

2 f 

)
= � � 2 f + � w 

2 f (66) 

˜ v � 2 f + 

˜ � � 3 f − ˜ � w 

2 b = � w 

2 b (67) 

• Constraints corresponding to vertices [ u , i , f ] and [ d , i , b ] 

˜ r w 

i −1 ,α + 

˜ � w 

i +1 ,α −
(

˜ t iα + ˜ e i 1 α + ˜ e i 3 α
)

= t iα + e i 1 α + e i 3 α

∀ (i, α) ∈ ( I \ { 2 , m } ) × F (68) 

˜ r w 

m −1 ,α −
(

˜ t mα + ˜ e m 1 α + ˜ e m 3 α

)
= t mα + e m 1 α + e m 3 α ∀ α ∈ F (69) 

˜ y 0 u + 

˜ � w 

2 f −
(

˜ t 1 f + ˜ e 11 f + ˜ e 13 f 

)
= t 1 f + e 11 f + e 13 f (70) 

˜ � w 

2 b −
(

˜ t 1 b + ˜ e 11 b + ˜ e 13 b 

)
= t 1 b + e 11 b + e 13 b (71) 
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• Constraints corresponding to vertices [ u , i , 4] and [ d , i , 4] 

˜ w i 3 α −
(

˜ v r iα + ̃

 v � iα

)
= v r iα + v � iα ∀ (i, α) ∈ ( I \ { 2 , m } ) × F (72) 

˜ w m 3 α − ˜ v � mα = v � mα ∀ α ∈ F (73) 

˜ w 13 f −
(

˜ v r 1 f + ̃

 v � 1 f 

)
= v r 1 f + v � 1 f (74) 

˜ w 13 b − ˜ v r 1 b = v r 1 b (75) 

• Constraints corresponding to vertices [ u , i , s ] and [ d , i , s ] 

˜ t i f + ˜ e i 1 b − ˜ w i 1 f = w i 1 f ∀ i ∈ I (76) 

˜ t ib + ˜ e i 1 f − ˜ w i 1 b = w i 1 b ∀ i ∈ I (77) 

˜ w i 1 α − ˜ w i 2 α = w i 2 α ∀ (i, α) ∈ I × F (78) 

˜ w i 2 f + ˜ e i 3 b − ˜ w i 3 f = w i 3 f ∀ i ∈ I (79) 

˜ w i 2 b + ˜ e i 3 f − ˜ w i 3 b = w i 3 b ∀ i ∈ I (80) 

• Constraints to link variables 

˜ r r iα ≤ M · r r iα ∀ (i, α) ∈ ( I \ { m − 1 , m } ) × F (81) 

˜ r w 

iα ≤ M · r w 

iα ∀ (i, α) ∈ ( I \ { m } ) × F (82) 

˜ � � iα ≤ M · � � iα ∀ (i, α) ∈ ( ( I \ { 1 , 2 } ) × F ) ∪ { ( 2 , f ) } (83) 

˜ � w 

iα ≤ M · � w 

iα ∀ (i, α) ∈ ( I \ { 1 } ) × F (84) 

˜ e isα ≤ M · e isα ∀ (i, s, α) ∈ I × { 1 , 3 } × F (85) 

˜ t iα ≤ M · t iα ∀ (i, α) ∈ I × F (86) 

˜ w isα ≤ M · w isα ∀ (i, s, α) ∈ I × { 1 , 2 , 3 } × F (87) 

˜ v r iα ≤ M · v r iα ∀ (i, α) ∈ ( I \ { m } ) × F (88) 

˜ v � iα ≤ M · v � iα ∀ (i, α) ∈ ( ( I \ { 1 } ) × F ) ∪ { ( 1 , f ) } (89) 

˜ y 0 α ≤ M · y 0 α ∀ α ∈ { l, r, u } (90) 

Depot inclusion constraint: 

y 0 l + y 0 r + y 0 u ≥ 1 (91) 

Item inclusion constraints: 

c e i 3 f ·
(
w i 1 f + w i 3 b 

)
≥ b i · c e i 3 f ∀ i ∈ I (92) 

c e i 3 b ·
(
w i 1 b + w i 3 f 

)
≥ b i · c e i 3 b ∀ i ∈ I (93) 

Constraints for the domains of the variables: 

r r iα ∈ { 0 , 1 } ∀ (i, α) ∈ ( I \ { m − 1 , m } ) × F (94) 

r w 

iα ∈ { 0 , 1 } ∀ (i, α) ∈ ( I \ { m } ) × F (95) 

� � iα ∈ { 0 , 1 } ∀ (i, α) ∈ ( ( I \ { 1 , 2 } ) × F ) ∪ { ( 2 , f ) } (96) 

� w 

iα ∈ { 0 , 1 } ∀ (i, α) ∈ ( I \ { 1 } ) × F (97) 

e isα ∈ { 0 , 1 } ∀ (i, s, α) ∈ I × { 1 , 3 } × F (98) 

t iα ∈ { 0 , 1 } ∀ (i, α) ∈ I × F (99) 

w isα ∈ { 0 , 1 } ∀ (i, s, α) ∈ I × { 1 , 2 , 3 } × F (100) 

v r iα ∈ { 0 , 1 } ∀ (i, α) ∈ ( I \ { m } ) × F (101) 

v � iα ∈ { 0 , 1 } ∀ (i, α) ∈ ( ( I \ { 1 } ) × F ) ∪ { ( 1 , f ) } (102) 

y 0 α ∈ { 0 , 1 } ∀ α ∈ { l, r, u } (103) 

y � 0 ∈ { 0 , 1 } (104) 

˜ r r iα ≥ 0 ∀ (i, α) ∈ ( I \ { m − 1 , m } ) × F (105) 

˜ r w 

iα ≥ 0 ∀ (i, α) ∈ ( I \ { m } ) × F (106) 

˜ � � iα ≥ 0 ∀ (i, α) ∈ ( ( I \ { 1 , 2 } ) × F ) ∪ { ( 2 , f ) } (107) 

˜ � w 

iα ≥ 0 ∀ (i, α) ∈ ( I \ { 1 } ) × F (108) 

˜ e isα ≥ 0 ∀ (i, s, α) ∈ I × { 1 , 3 } × F (109) 

˜ t iα ≥ 0 ∀ (i, α) ∈ I × F (110) 

˜ w isα ≥ 0 ∀ (i, s, α) ∈ I × { 1 , 2 , 3 } × F (111) 

˜ v r iα ≥ 0 ∀ (i, α) ∈ ( I \ { m } ) × F (112) 

˜ v � iα ≥ 0 ∀ (i, α) ∈ ( ( I \ { 1 } ) × F ) ∪ { ( 1 , f ) } (113) 

˜ y 0 α ≥ 0 ∀ α ∈ { l, r, u } (114) 
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2 An Exact Solution Approach to the Single-Picker Routing Problem

1 Introduction

Every day, a warehouse receives a high number of items in large lot sizes which have to be stored

and redistributed in small volumes based on thousands of daily customer orders (Wäscher, 2004). The

retrieval of requested items from their storage locations (order picking) accounts for up to 55% of

the costs in a warehouse (Tompkins et al., 2010), which can be attributed to the fact that, in many

warehouses, human operators (order pickers) are assigned to execute the picking process (de Koster

et al., 2007). This process is mainly composed of traveling through the warehouse, searching for the

respective items and picking them from their storage locations, while traveling consumes approximately

50% of the total working time of a picker (Tompkins et al., 2010). In order to reduce the travel time,

different procedures can be applied which are improving the allocation of the articles in the warehouse

(storage assignment), grouping customer orders into picking orders (order batching) and determining a

sequence according to which the picker retrieves the items (picker routing).

The last-mentioned procedure is a part of the so-called Single-Picker Routing Problem (SPRP), which

deals with finding a tour of minimum length including all storage locations of requested items (Ratliff

& Rosenthal, 1983). The SPRP represents a special case of the Traveling Salesman Problem (TSP) and,

thus, approaches to the TSP can be applied to solve the SPRP. However, the storage locations in the

warehouse are typically arranged in such a way that they constitute a block layout (Roodbergen, 2001).

This fact is totally neglected when modeling the SPRP as a general TSP, which mainly results in two

problems. First, problem-specific approaches to the SPRP may outperform TSP approaches by far in

terms of computing time. Second, TSP approaches may not be able to deal with additional constraints

arising in practical applications. For example, order pickers seem to prefer simple routes which are easy

to memorize (Petersen & Schmenner, 1999). Furthermore, some aisles may be very narrow making

it impossible for the order picker to change his moving direction within the aisle. The possibility of

depositing retrieved items at the end of each picking aisle represents another modification often arising

in practice (de Koster & van der Poort, 1998). These constraints can easily be taken into account by

problem-specific approaches, whereas their integration into TSP algorithms may not be straightforward.

Efficient problem-specific solution approaches have been proposed by Ratliff & Rosenthal (1983) and

Roodbergen & de Koster (2001) for the case of a single- and a two-block layout, respectively. However,

no efficient algorithm exists which can deal with more than two blocks (Roodbergen, 2001). Therefore,

in this paper, a problem-specific model formulation to the SPRP is developed, which can be used to

optimally solve large-sized SPRP instances with an arbitrary number of blocks. The model formulation
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represents an extension of the model of Scholz et al. (2016), which is meant to solve SPRPs in a

single-block layout. Since the number of variables and constraints rapidly increases with an increasing

number of blocks, the underlying graph is modified in order to keep the size of the model at a reasonable

level. First, a so-called pyramid structure is introduced, which cuts off the components of the graph

representing parts of the warehouse not included in an optimal tour. In a second step, the number of

vertices and arcs required for the representation of the locations of the items is reduced.

The modifications result in a model formulation whose size is not only dependent on the size of the

problem, i.e. on the number of requested items and on the size of the warehouse, but it also depends on

the respective storage locations of the requested items. Due to this fact, it is not possible to determine

the size of the model for a given class of problem instances without conducting numerical experiments.

Thus, the impact of the modifications cannot be evaluated in advance and no conclusions can be drawn

whether application of the modifications to a certain instance is a worthwhile endeavor. Therefore,

formulas are developed in order to estimate the number of variables and constraints included in the

model. By means of numerical experiments, it is shown that quite good estimations are obtained by

using the formulas, and problem classes are pointed out where the application of the modifications is

inevitable for solving instances within a reasonable amount of computing time. Furthermore, the results

of the experiments clearly demonstrate that the model formulation is able to deal with any practical-sized

problem instance, while computing times do not increase with an increasing number of blocks.

The remainder of this paper is organized as follows: The SPRP is introduced and the related literature is

briefly reviewed in the next section. In Section 3, a graph representing the SPRP is first constructed based

on the suggestions of Scholz et al. (2016). Different conditions are then investigated under which the size

of the graph can be reduced significantly, and formulas are developed in order to estimate the number

of vertices and arcs included in the modified graph. The components of the resulting model formulation

are described in Section 4, while Section 5 comprises the design of the numerical experiments and the

results obtained from them. The paper concludes with an outlook on further research (Section 6).

2 Single-Picker Routing Problem

2.1 Problem description

The SPRP consists of finding a tour through the warehouse which starts and ends at the depot while all

requested items are retrieved. In the warehouse, the items are stored on pallets or racks which typically
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constitute a block layout (Roodbergen, 2001). According to this layout, two different types of aisles

have to be distinguished, namely picking aisles and cross aisles. Picking aisles are arranged parallel to

each other and include the storage locations of the items. Thus, for retrieving an item, the corresponding

picking aisle has to be entered. In contrast, cross aisles do not contain any storage locations, but they

are required for changing over from one picking aisle to another. Furthermore, cross aisles divide the

picking area of the warehouse into blocks and picking aisles into subaisles. A block is the part of the

picking area located between two adjacent cross aisles, and a subaisle is defined as the part of a picking

aisle corresponding to the same block. A warehouse with q+1 cross aisles and m picking aisles consists

of q blocks and q ·m subaisles. The corresponding layout is called a q-block layout.

Fig. 1: Two-block layout

In Fig. 1, a picking area with two blocks and 5 picking aisles is depicted. The rectangles symbolize the

storage locations and the black rectangles represent the locations of the requested items (pick locations).

The depot is situated in the bottom left-hand corner of the picking area. Three cross aisles exist, namely

the front, a middle and the rear cross aisle, which can be used to switch between picking aisles. The

front (rear) cross aisle represents the cross aisle nearest to (farthest from) the depot. In order to change

over from one block to another, the middle cross aisle has to be crossed.

The retrieval of requested items from their storage locations is carried out by an order picker who walks

or rides through the warehouse using a picking device. Among all operations required for retrieving

items and returning them to the depot, traveling consumes a major part of the working time of an
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order picker (Tompkins et al., 2010). Furthermore, other components (such as setup times at the depot

or searching and picking times at the pick locations) can be considered to be constants (Caron et al.,

2000) because they are independent of the sequence according to which the items are to be picked.

Therefore, minimizing the total travel time is a common objective for the SPRP. Assuming a constant

travel velocity, the travel time is a linearly increasing function of the travel distance (Jarvis & McDowell,

1991), implying that minimizing the travel time is equivalent to finding a tour of minimum length.

The SPRP can then be defined as follows (Ratliff & Rosenthal, 1983; Scholz et al., 2016): Given a set

of items to be picked from known storage locations, in which sequence should the locations be visited

such that the total length of the corresponding tour is minimized?

2.2 Literature review

Since the SPRP represents a special case of the TSP, general TSP formulations may be suitable for

modeling the SPRP. For the first time, Dantzig et al. (1954) proposed a model formulation to the TSP.

However, in this model, the number of constraints required for the exclusion of subtours exponentially

increases with the number of pick locations as it is the case for several other mathematical programming

formulations to the TSP (Gouveia & Pires, 2001). Due to memory restrictions, these formulations cannot

be applied to large SPRPs. In contrast, compact formulations, characterized by a polynomial increase of

the number of variables and constraints in the number of pick locations, allow for explicitly representing

larger SPRPs. A variety of compact formulations to the TSP exists (Öncan et al., 2009). However, due

to the quality of the lower bounds obtained by solving the corresponding LP relaxations, which may be

much weaker than the lower bounds in the Dantzig formulation (Padberg & Sung, 1991), compact TSP

formulations may not be able to deal with larger SPRP instances either (Letchford et al., 2013; Scholz

et al., 2016).

A more appropriate way to model the SPRP has been presented by Burkard et al. (1998) who formulated

the SPRP as a Steiner TSP. In a Steiner TSP, the set of vertices V can be divided into a subset P and

a subset V \ P (Steiner points). A Steiner tour has to include all vertices of the subset P. Steiner points

may but do not have to be visited. Furthermore, vertices and edges are allowed to be visited and used

more than once. As for the SPRP, the set P includes the pick locations and the location of the depot. The

set of Steiner points comprises the vertices representing the intersections between a cross aisle and a

picking aisle. Edges are then introduced between adjacent pick locations situated in the same subaisle,

between the pick locations nearest to a cross aisle and the adjacent Steiner point, and between Steiner
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points corresponding to adjacent intersections. This kind of representation requires far fewer edges than

the corresponding TSP graph would include. Since the number of variables is only dependent on the

number of edges in many TSP formulations, the consideration of a sparse graph can be expected to result

in model formulations of smaller size. Letchford et al. (2013) developed compact formulations to the

Steiner TSP, and they demonstrated that the application of these formulations outperforms general TSP

formulations in terms of computing time. This observation also holds when solving the SPRP. However,

since the size of Steiner TSP formulations is dependent on both the number of pick locations and the

number of intersections, these formulations are not suitable for solving SPRPs in large warehouses

with many items to be retrieved (Scholz et al., 2016). Furthermore, Steiner TSP as well as general

TSP solution approaches do not allow for the integration of problem-specific modifications, such as

the construction of simple tours, in which the number of changes in direction is limited or where each

subaisle is allowed to be visited once only (Scholz et al., 2016). For the consideration of such aspects,

the application of problem-specific approaches to the SPRP is inevitable.

For warehouses with one or two blocks, efficient problem-specific solution approaches exist. Ratliff &

Rosenthal (1983) proposed an exact algorithm for the SPRP in a single-block layout which is based on

dynamic programming. The computational effort of the algorithm increases linearly with the number

of pick locations and picking aisles and, therefore, it can be used to solve any practical-sized instance

within fractions of a second. Roodbergen & de Koster (2001) extended this algorithm to the two-block

case. However, the authors stated that it would be very difficult to further extend this approach to layouts

with more than two blocks. The model formulation of Scholz et al. (2016) is the only problem-specific

exact solution approach which can be extended straightforwardly to the case of multiple blocks. Based

on the representation of the SPRP as a Steiner TSP and some characteristics of optimal SPRP solutions,

a graph to the SPRP in a single-block layout was first constructed whose size is independent of the

number of pick locations. A model formulation was then obtained by application of a TSP formulation

to the underlying graph. By means of numerical experiments, Scholz et al. (2016) demonstrated that

general and Steiner TSP formulations are outperformed by far in terms of computing time. The authors

also briefly described how the model could be extended to SPRPs in multiple blocks. However, they

noted that the size of the graph, as well as the size of the model, would significantly increase, which will

lead to serious computing time issues if several blocks have to be dealt with.

According to the suggestions of Scholz et al. (2016), the model formulation is extended to the case of

multiple blocks in the next section. Modifications to the graph are then proposed in order to keep the size

of the graph and the resulting model formulation at a reasonable level even for large SPRP instances.
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3 Representation of the SPRP in a multi-block layout

3.1 Graph construction according to Scholz et al. (2016)

As mentioned before, the underlying graph of the model formulation of Scholz et al. (2016) is based on

the Steiner TSP representation of the SPRP. A directed graph is considered, i.e. each edge is replaced

by two reverse arcs representing possible movements of an order picker. Arcs between Steiner points

relate to movements within cross aisles, whereas the other arcs (except for arcs incident to the vertex

representing the depot) stand for movements in subaisles. The latter can be further restricted due to

the structure of optimal solutions to the SPRP. In an optimal tour, the following movements can be

performed for retrieving all requested items in a subaisle (Ratliff & Rosenthal, 1983):

(a) the subaisle is entered from an adjacent cross aisle and left via the other adjacent cross aisle;

(b) the subaisle is entered and left via the same adjacent cross aisle, while the picker returns at the

pick location farthest from this cross aisle;

(c) the subaisle is visited twice in such a way that the largest gap, i.e. the largest distance between

two adjacent pick locations or a pick location and the adjacent cross aisle, is skipped.

The pick locations of a subaisle can then be represented by using four vertices only. One vertex is

required for each pick location which is adjacent to a cross aisle while the remaining two vertices

correspond to the pick locations defining the largest gap. This results in a graph whose size is

independent of the number of pick locations. In order to ensure that each vertex is visited at most

once, Scholz et al. (2016) modified the graph by copying the vertices based on the maximum number of

visits in an optimal tour. One copy is introduced for each vertex representing a pick location, two copies

are generated for each front and rear cross aisle vertex and three copies are inserted for each vertex

which represents an intersection with the middle cross aisle. An example graph is depicted in Fig. 2.

Vertex "0" represents the location of the depot. The denotation of the other vertices is as follows: The

first entry indicates the direction in which the tour is proceeded after visiting the vertex, where "r" and

"l" symbolize that the next step will be a movement to the right and to the left, respectively. Movements

towards the rear and the front cross aisle are indicated by "u" ("up") and "d" ("down"). The second

component stands for the number of the block if the vertex represents a pick location, or the number of

the cross aisle, otherwise. Cross aisles are enumerated from 1 to p+1, where p is the number of blocks

and cross aisle 1 is the cross aisle nearest to the depot. The third component characterizes the number of

the corresponding picking aisle. Picking aisles are enumerated in ascending order from left to right, i.e.
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picking aisle 1 is the leftmost picking aisle while m denotes the rightmost aisle. Furthermore, vertices

representing a pick location have an additional fourth component indicating the position of the vertex

in the corresponding subaisle. The arcs have been introduced according to the possible movements in a

subaisle. If the arc ([u,q,1] , [u,q, i,1]) or ([d,q,1] , [d,q, i,1]) is visited first, then the subaisle has to be

traversed. The arcs ([u,q,1] , [d,q, i,1]) and ([d,q,1] , [u,q, i,1]) indicate that the subaisle is entered and

left via the same cross aisle, while the arcs ([u,q,1] , [d,q, i,3]) or ([d,q,1] , [u,q, i,3]) symbolize that the

largest gap is skipped.

Fig. 2: Graph for a SPRP with two blocks and five picking aisles



A. Scholz 9

3.2 Reduction of the number of subaisles to be represented

The graph presented in the previous subsection allows for the representation of the SPRP using a

constant number of vertices per subaisle, which is advantageous if the number of pick locations is

quite large compared to the number of subaisles. However, in case of multiple blocks, this kind of

representation becomes the major drawback of the graph. If multiple blocks have to be dealt with,

the number of subaisles significantly increases, resulting in far fewer pick locations per subaisle. In

particular, if using class-based storage assignment procedures (Petersen & Schmenner, 1999), it will be

most likely that lots of subaisles will not contain any pick location at all. Nevertheless, each subaisle will

be included in the graph and represented by the same number of vertices and arcs. In order to reduce the

size of the graph and overcome this drawback, in the following, it is investigated under which conditions

a subaisle can be removed from the graph without affecting the minimal tour length.

Let B = {1, . . . , p} be the set of blocks and M q the rightmost subaisle of block q ∈ B containing at

least one requested item. Furthermore, mq denotes the rightmost subaisle of block q ∈ B to be included

in the graph in order to not affect the minimal tour length. Obviously, it must hold mq ≥ M q for each

block q ∈ B since each subaisle containing a requested item has to be visited. Another reason for visiting

a subaisle is to change over to another cross aisle in order to reach an adjacent block. Due to this

fact, simply removing all subaisles containing no pick location could result in longer tours. Thus, it is

necessary to also take the characteristics of other blocks into account. In fact, a subaisle of a block q ∈ B

is not removed if the adjacent upper block, i.e. a block farther from the depot, includes a subaisle, which

has to be considered and is located further on the right.

The index mq of the rightmost subaisle of block q ∈ B to be included in the graph can then be determined

by solving the following mathematical program. (Note that mp+1 is defined to be 0.)

min mq (1)

mq ≥ M q (2)

mq ≥ mq+1 (3)

The objective function minimizes the index of the rightmost subaisle to be considered in block q.

Constraint (2) guarantees that no subaisle of block q containing at least one requested item is removed

from the graph. Constraint (3) ensures that the index of the rightmost subaisle to be considered is not

larger for block q + 1 than for block q. Due to this constraint, the resulting structure of the graph is

referred to as a pyramid structure.
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Since mp+1 = 0, the optimal solution for block p is mp = M p. Then mq can be determined successively

for the remaining blocks q ∈ B\{p}:

mq = max
{
M q; mq+1

}
. (4)

An analogue procedure can be applied to subaisles located in the first (leftmost) subaisles of a block.

Let M q be the leftmost subaisle of block q ∈ B containing a pick location and mq the leftmost subaisle

of block q ∈ B which has to be considered for the construction of an optimal tour. With the same line of

argumentation as above, it results mp = M p and for each block q ∈ B\{1, p}:

mq = min
{
M q; mq+1

}
. (5)

Since the depot is assumed to be situated in the bottom left-hand corner of the picking area, m1 has to

be set to 1 even if the leftmost picking aisle does not include any pick locations.

For each block q ∈ B, a subaisle is then removed if it is located further to the left than subaisle mq or in

the right of subaisle mq. When removing a subaisle i of a block q, all of the eight vertices representing

the pick locations are deleted. Since this aisle will not be entered in an optimal tour, vertices [u, i,q] and

[d, i,q+1] will be removed as well. Furthermore, vertices [r, i−1,q+1] and [l, i,q+1], required for

switching over to the subaisle, are also deleted. In conjunction with these vertices, incident arcs will be

removed. In total, dependent on the location of the subaisle, a removal of a single subaisle will reduce

the size of the graph by up to 12 vertices and 30 arcs.

3.3 Improvements related to the representation of a subaisle

In the graph of Scholz et al. (2016), independent of the number of pick locations included, each subaisle

is represented by 8 vertices, while 18 arcs are required to specify the possible movements within the

subaisle (see Fig. 2). If a subaisle contains only a few or even no pick locations, Scholz et al. (2016)

introduced dummy vertices and arcs. This approach may cause problems in case of multiple blocks

since lots of dummy vertices and arcs will be introduced due to the small ratio between the number of

pick locations and the number of subaisles. Therefore, special cases are identified for the locations of

the requested items of a subaisle, which allow for removing vertices and arcs. For the sake of simplicity

of exposition, a subaisle i of a block q ∈ B\{1, p} with mq+1 < i < mq+1 is considered.

The largest reduction can be observed when a subaisle does not contain any pick locations (denoted

by special case 1). In this case, arcs are only required in order to ensure that the subaisle can be used

to switch over to an adjacent cross aisle. On the left-hand side of Fig. 3, the subaisle including the



A. Scholz 11

storage locations is depicted, while the corresponding part of the graph is shown on the right-hand

side. For entering the subaisle, either vertex [u,q, i] or [d,q+1, i] has to be visited. The order picker

can then proceed the tour by going to the left or to the right or by entering a subaisle of an adjacent

block. The representation of the above-mentioned movements requires 6 arcs, resulting in a reduction

of 8 vertices (100%) and 12 arcs (67%) per subaisle.

Fig. 3: Representation of a subaisle containing no pick locations

Another considerable size reduction can be obtained if the largest gap lies between cross aisle q and

the adjacent pick location (special case 2). Vertex [u,q, i] and vertex pair ([u,q, i,2] , [d,q, i,3]) will then

represent the same location. In this case, skipping the largest gap is the same as entering and leaving

the subaisle via cross aisle q + 1. For the representation of such a subaisle, two vertices [u,q, i,1] and

[d,q, i,1] are required, which refer to the pick locations nearest to and farthest from the depot (see Fig. 4).

Note that these vertices do not form a vertex pair, i.e. the distance to vertex [u,q, i] may be different for

both vertices. Here, 2 instead of 8 vertices (75% reduction) and 10 instead of 18 arcs are needed (44%

reduction). The same line of argumentation holds if the largest gap lies between cross aisle q + 1 and

the adjacent pick location.

A very simple possibility to reduce the size of the graph arises when only two pick locations are

contained in a subaisle, while the largest gap is situated between these locations (special case 3). A

vertex pair is then introduced for each pick location and the arcs are chosen in such a way that all

movements can be performed. 4 vertices (50% reduction) and 14 arcs (22% reduction) are needed to

represent the locations and the movements in the subaisle.

If the largest gap is given by two pick locations and one of them is adjacent to the lower cross aisle, a

slight size reduction can be achieved, since the vertex pairs ([u,q, i,1] , [d,q, i,4]) and ([u,q, i,2] , [d,q, i,3])
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define the same location (special case 4). Therefore, one vertex pair can be removed from the graph,

resulting in a reduction of 2 vertices (25%) and 2 arcs (11%). The same reduction is obtained if one of

the pick locations is adjacent to the upper cross aisle (special case 5).

Fig. 4: Representation of a subaisle with the largest gap located between a pick location and the adjacent cross aisle

3.4 Estimation of the size of the reduced graph

The graph depicted in Fig. 2 contains 125 vertices and 217 arcs. After introduction of the pyramid

structure and consideration of the special cases of item distribution, the number of vertices and arcs

amounts to 54 and 98, respectively, which corresponds to a reduction of the size of the graph by

approximately 55%. In general, the amount of reduction obtained is dependent on the size of the

respective SPRP instance on the one hand, but it also depends on the actual locations of the requested

items on the other hand. Thus, the impact of the reduction procedures on the size of the graph cannot be

quantified in advance for problem instances of a certain size. Therefore, formulas are given, which allow

for estimating the number of remaining vertices and arcs for an instance with n pick locations, p blocks,

m picking aisles and a certain storage assignment policy. The formulas are developed in two steps. First,

the vertices representing locations in cross aisles and adjacent arcs are considered. Second, the vertices

representing the pick locations and the corresponding adjacent arcs are added to the graph.

In the first step, the representation of the pick locations is not considered any further, i.e. each subaisle

is assumed to follow special case 1. Before the removal of subaisles by application of the pyramid

structure, the number of vertices vc and arcs ac per subaisle is then as follows:

vc =
4pm−2p+2m−2

pm
= 4− 2

m
+

2
q

− 2
pm

; (6)
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ac =
12pm−12p−4

pm
= 12− 12

m
− 4

pm
. (7)

Estimations for the number of vertices E (V c) and for the number of arcs E (Ac) included in the graph

after the introduction of the pyramid structure are given by

E (V c) = E (S) · vc +2 and (8)

E (Ac) = E (S) ·ac +6, (9)

respectively, where E (S) denotes the expected number of subaisles not removed from the graph. The

constant part in equation (8) is related to the vertices "0" and [l,1,1], while the constant term in (9) refers

to arcs adjacent to these vertices. For the determination of E (S), the following symbols are introduced:

αqi: probability (given by the storage assignment policy) of an item to be stored in subaisle i of block q;

Xqi: number of requested items located in subaisle i of block q;

Xqi ∼ B
(
n,αqi

)
, i.e. P

(
Xqi = k

)
=
(n

k

)
·αk

qi ·
(
1−αqi

)n−k;

Q: index of the block to be considered which is farthest from the depot;

δ l
q: difference between the number of subaisles of block q and block q + 1, which have been removed

on the left-hand side of the blocks; δ l
q = mq+1 −mq for q ∈

{
1, . . . ,Q−1

}
and δ l

Q
= mQ −mQ +1;

δ r
q : difference between the number of subaisles of block q and block q + 1, which have been removed

on the right-hand side of the blocks; δ r
q = mq−1 −mq for q ∈

{
2, . . . ,Q

}
and δ r

1 = m−m1.

Now, E (S) is given by:

E (S) =
p·m
∑
s=1

s ·P(S = s) =
p·m
∑
s=1

s ·
p

∑
q=1

P
(
S = s | Q = q

)
·P
(
Q = q

)
. (10)

First, the probability P
(
Q = q

)
of block q being the farthest block with a requested item is considered:

P
(
Q = q

)
= P

(
p

∑
w=q+1

m

∑
i=1

Xwi = 0,
m

∑
i=1

Xqi > 0

)

= P

(
p

∑
w=q+1

m

∑
i=1

Xwi = 0

)
−P

(
p

∑
w=q+1

m

∑
i=1

Xwi = 0,
m

∑
i=1

Xqi = 0

)
. (11)

Let Y = (Y1,Y2,Y3) denote the number of requested items included in the first q − 1 blocks (Y1), in the

qth block (Y2) and in the last p−q blocks (Y3), respectively. Y follows a multinomial distribution, i.e.:

P(Y1 = k1,Y2 = k2,Y3 = k3) =

(
n

k1,k2,k3

)
·
(

q−1

∑
w=1

m

∑
i=1

αwi

)k1

·
(

m

∑
i=1

αqi

)k2

·
(

p

∑
w=q+1

m

∑
i=1

αwi

)k3

, (12)
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where
( n

k1,k2,k3

)
= n!

k1!·k2!·k3! represents the multinomial coefficient with k1 +k2 +k3 = n. This observation

leads to the following result for q > 1:

P
(
Q = q

)
= P(Y3 = 0)−P(Y2 = 0,Y3 = 0)

=
n

∑
j=0

(
n

j,n− j,0

)
·
(

q−1

∑
w=1

m

∑
i=1

αwi

) j

·
(

m

∑
i=1

αqi

)n− j

−
(

q−1

∑
w=1

m

∑
i=1

αwi

)n

=
n−1

∑
j=0

(
n
j

)
·
(

q−1

∑
w=1

m

∑
i=1

αwi

) j

·
(

m

∑
i=1

αqi

)n− j

. (13)

If q = 1, all requested items are contained in the subaisles of the first block, i.e. it holds:

P
(
Q = 1

)
=

(
m

∑
i=1

α1i

)n

. (14)

In addition to P
(
Q = q

)
, the probability P

(
S = s | Q = q

)
of s to be the number of subaisles included

in the reduced graph given that q is the farthest block with requested items has to be determined. For

this purpose, the set Oq
s is introduced which describes all pyramid structures containing s subaisles in

total given that Q = q. If all requested items are included in the first q blocks, the actual structure of the

pyramid can be derived from the values of δ l
w and δ r

w (w ∈ {1, . . . ,q}). The set Oq
s is given as follows:

Oq
s =

{(
δ l

1, . . . ,δ
l
q,δ r

1 , . . . ,δ r
q

)
∈ {0,1, . . . ,m}2q

∣∣∣∣∣
q

∑
w=1

(
δ l

w +δ r
w

)
= m, δ l

q > 0,

q ·m−
q−1

∑
w=1

δ l
w · (q−w)−

q

∑
w=1

δ r
w · (q−w+1) = s

}
(15)

By definition, the sum of all parameters δ l
w and δ r

w has to be equal to the number of picking aisles m,

while δ l
q has to be positive in order to ensure that block q includes a requested item. The third condition

is related to the number of subaisles s still included in the graph after the introduction of the pyramid

structure. The maximum number of subaisles equals q ·m in a picking area with q blocks and m picking

aisles. In the first block, no picking aisles are removed on the left-hand side because of the location

of the depot, whereas the reduction amounts to δ r
1 subaisles for the right-hand side. δ l

1 and δ r
1 + δ r

2

subaisles are removed from the left-hand and from the right-hand side of the second block, respectively.

Following this procedure, the first
q−1
∑

w=1
δ l

w and the last
q
∑

w=1
δ r

w subaisles are removed from block q.

The pyramid structure defined by δ =
(
δ l

1, . . . ,δ
l
q,δ r

1 , . . . ,δ r
q
)

implies that the first
w−1
∑

w̃=1
δ l

w̃ subaisles of
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block w ∈ {2, . . . ,q} and the last
w
∑

w̃=1
δ r

w̃ subaisles of block w ∈ {1, . . . ,q} do not include any requested

items. Moreover, whenever δ l
w is positive for a block w ∈ {2, . . . ,q−1}, subaisle

w
∑

w̃=1
δ l

w̃ +1 of block w

has to contain at least one requested item. Otherwise, this subaisle would have been removed by

application of the pyramid structure. Analogueously, a positive value of δ r
w for a block w ∈ {1, . . . ,q−1}

implies that subaisle m −
w
∑

w̃=1
δ r

w̃ includes a requested item. With respect to block q, it can be seen that

requested items have to be located in the subaisles
q−1
∑

w̃=1
δ l

w̃ and
q
∑

w̃=1
δ l

w̃, respectively. These observations

result in the following equations.

q = 1 : P
(
S = s | Q = q

)
= ∑

δ∈Oq
s

P
(

X1,m−δ r
1
> 0, X1,m−δ r

1+1 = 0, . . . ,X1,m = 0
)

(16)

q > 1 : P
(
S = s | Q = q

)
= ∑

δ∈Oq
s

P
(

X21 = 0, . . . ,X2,δ l
1
= 0, . . . ,Xq1 = 0, . . . ,Xq,δ l

1+...+δ l
q−1

= 0,

X1,m−δ r
1+1 = 0, . . . ,X1m = 0, . . . ,Xq,m−δ r

1−...−δ r
q+1 = 0, . . . ,Xqm = 0,

Xw,δ l
1+...+δ l

w−1+1 > 0 for all w ∈ {2, . . . ,q−1} with δ l
w > 0,

Xw,m−δ r
1−...−δ r

w
> 0 for all w ∈ {1, . . . ,q−1} with δ r

w > 0,

Xq,δ l
1+...+δ l

q−1+1 > 0,Xq,m−δ r
1−...−δ r

q
> 0
)

(17)

Let now J0
δ comprise all subaisles including no requested items and let J+

δ contain all subaisles in which

at least one requested item has to be located. By application of the inclusion-exclusion rule, we obtain:

P
(
S = s | Q = q

)
= ∑

δ∈Oq
s

P
(
Xwi = 0 for all (w, i) ∈ J0

δ , Xwi > 0 for all (w, i) ∈ J+
δ
)

= ∑
δ∈Oq

s

(
P
(
Xwi = 0 for all (w, i) ∈ J0

δ
)

−P
(
Xwi = 0 for all (w, i) ∈ J0

δ , Xwi = 0 for at least one (w, i) ∈ J+
δ
))

= ∑
δ∈Oq

s

|J+
δ |

∑
k=0

(−1)k ∑
J⊆J+

δ
|J|=k

P
(
Xwi = 0 for all (w, i) ∈ I0

δ ∪ J
)

= ∑
δ∈Oq

s

|J+
δ |

∑
k=0

(−1)k ∑
J⊆J+

δ
|J|=k

P


 ∑

(w,i)∈I0
δ ∪J

Xwi = 0




= ∑
δ∈Oq

s

|J+
δ |

∑
k=0

(−1)k ∑
J⊆J+

δ
|J|=k


1− ∑

(w,i)∈I0
δ ∪J

αwi




n

. (18)
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After the introduction of the pyramid structure, special cases of item distribution are considered in order

to reduce the number of vertices and arcs for the representation of the movements in the subaisles. The

expected number of vertices E (V w) required for the representation of all pick locations is given by:

E (V w) =
p

∑
q=1

m

∑
i=1

4

∑
v=1

2v ·P
(
V w

qi = 2v
)

=
p

∑
q=1

m

∑
i=1

4

∑
v=1

2v ·
n

∑
j=1

P
(
V w

qi = 2v
∣∣Xqi = j

)
·P
(
Xqi = j

)

=
p

∑
q=1

m

∑
i=1

4

∑
v=1

2v ·
n

∑
j=1

P
(
V w

qi = 2v
∣∣Xqi = j

)
·
(

n
j

)
·α j

qi ·
(
1−αqi

)n− j
. (19)

According to the special cases of item distribution, the pick locations in a subaisle are represented by

either two, four, six or eight vertices. The probability P
(

V w
qi = v

∣∣Xqi = j
)

of v vertices to be required

given that j items are to be picked in the subaisle is dependent on the number of storage locations per

subaisle and on the way how the items have been assigned to the storage locations in the subaisle. Let f

denote the number of storage locations per subaisle. The number of possible assignments of j items to

the storage locations then amounts to f j. (Note that some requested items may be assigned to the same

location.) Assuming that all assignments have the same probability of being chosen, i.e. items assigned

to a subaisle are randomly assigned to a specific storage location in this aisle, P
(

V w
qi = v

∣∣Xqi = j
)

is approximated via simulation. For f = 50 and j ∈ {1, . . . ,15,76, . . . ,90}, the results are depicted in

Table 1. For each number of requested items j, 108 assignments have been generated randomly and the

resulting number of vertices required for the representation has been determined for each assignment. An

approximation of P
(

V w
qi = v

∣∣Xqi = j
)

is then obtained by dividing the number of assignments leading

to v vertices by the total number of assignments.

Two vertices are required if the largest gap is defined by a pick location and the adjacent cross aisle

(special case 2). With an increasing number of requested items, the number of gaps also increases, which

reduces the probability of the gap between a pick location and a cross aisle to be the largest one, leading

to a decreasing value of P
(

V w
qi = 2

∣∣Xqi = j
)

. This expectation matches with the results on the left-hand

side of the table. However, if the number of requested items to be picked in a subaisle gets very large,

P
(

V w
qi = 2

∣∣Xqi = j
)

increases with an increasing value of j. This can be explained by the fact that lots

of gaps exist in this case and several gaps represent a largest gap. Since least vertices are required for the

representation according to special case 2, this kind of representation is chosen whenever it is possible.

Four vertices are needed if exactly two pick locations exist and the largest gap is situated between these
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Table 1: Approximation of P
(

V w
qi = v

∣∣Xqi = j
)

[%] for a subaisle including 50 storage locations

number of vertices required number of vertices required
j 2 4 6 8 j 2 4 6 8
1 100.00 0.00 0.00 0.00 76 35.02 0.00 6.05 58.93
2 68.00 32.00 0.00 0.00 77 36.45 0.00 5.89 57.66
3 52.08 3.84 44.09 0.00 78 37.88 0.00 5.73 56.39
4 42.53 0.36 41.62 15.49 79 39.34 0.00 5.58 55.09
5 36.21 0.03 35.91 27.85 80 40.79 0.00 5.42 53.79
6 31.72 0.00 31.44 36.84 81 42.24 0.00 5.27 52.49
7 28.36 0.00 28.08 43.56 82 43.70 0.00 5.12 51.18
8 25.78 0.00 25.47 48.74 83 45.15 0.00 4.97 49.88
9 23.74 0.00 23.40 52.85 84 46.59 0.00 4.83 48.58

10 22.09 0.00 21.73 56.18 85 48.02 0.00 4.69 47.29
11 20.72 0.00 20.34 58.94 86 49.45 0.00 4.54 46.01
12 19.58 0.00 19.18 61.24 87 50.86 0.00 4.40 44.73
13 18.63 0.00 18.20 63.16 88 52.25 0.00 4.27 43.48
14 17.84 0.00 17.38 64.79 89 53.63 0.00 4.14 42.23
15 17.16 0.00 16.66 66.18 90 54.98 0.00 4.01 41.01

locations (special case 3). This case has only to be considered if 2 to 4 requested items are located in the

subaisle. For a larger number of items, this case hardly arises because the probability that all items refer

to two pick locations gets close to 0. Six vertices are introduced when the largest gap is defined by the

two pick locations nearest to a cross aisle (special cases 4 and 5). In general, the probability of this case

to appear is fairly even to the probability of special case 2. However, due to the lower number of vertices

required, special case 2 is chosen if possible. This implies P
(

V w
qi = 2

∣∣Xqi = j
)

≥ P
(

V w
qi = 6

∣∣Xqi = j
)

for all j, where the difference is negligible for small values of j and it gets significant when the number

of requested items gets very large. In the standard case of item distribution, eight vertices are required

for the representation of the pick locations. Up to a certain point, P
(

V w
qi = 8

∣∣Xqi = j
)

increases when

more requested items are contained in the subaisle, since the number of gaps increases. If the number of

gaps gets very large, this probability decreases because of the advantageous alternative "special case 2".

Analogueously, the expected number of arcs E (Aw) representing movements in a subaisle is determined.

The probability P
(

V w
qi = a

∣∣Xqi = j
)

of a arcs to be required for the representation of j requested items

is given by P
(

V w
qi = v

∣∣Xqi = j
)

for the corresponding number of vertices v regarding the special cases.

E (Aw) =
p

∑
q=1

m

∑
i=1

∑
a∈{4,8,10,12}

a ·
n

∑
j=1

P
(
V w

qi = a
∣∣Xqi = j

)
·
(

n
j

)
·α j

qi ·
(
1−αqi

)n− j
. (20)

Finally, estimations for the total number of vertices E (V ) and arcs E (A) are given by

E (V ) = E (V c)+E (V w) and (21)

E (A) = E (Ac)+E (Aw) . (22)
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4 Model formulation

Based on the graph defined in the previous section, a mathematical model to the SPRP is formulated.

According to Scholz et al. (2016), the model consists of the following components:

• Degree constraints: Each vertex visited has to be left afterwards.

• Subtour elimination constraints: The tour has to be connected.

• Depot inclusion constraint: The depot has to be a part of the tour.

• Pick location inclusion constraints: Each pick location has to be visited for retrieving all items.

Two different types of variables are contained in the model. A binary variable is introduced for each arc

of the graph indicating whether the respective arc is included in the tour or not. Using these variables,

the degree constraints are formulated by claiming that, for each vertex, its indegree has to be equal to

its outdegree. The second type of variables is required for the exclusion of subtours, which is achieved

by introducing so-called single-commodity flow constraints (Gavish & Graves, 1978). These constraints

are based on the assumption that a single commodity type exists of which one unit has to be delivered

to each pick location. For this reason, a non-negative variable is introduced for each arc which describes

the amount of the commodity passing the arc. In this way, vertices are enumerated according to their

appearance in the tour which guarantees the exclusion of subtours.

Since not all vertices have to be visited, additional constraints are required in order to ensure that

the depot is included in the tour and all requested items are retrieved. For guaranteeing the depot

to be a part of the tour, the outdegree of the corresponding vertex "0" must not be smaller than 1.

The pick location inclusion constraints depend on the respective special case of item distribution of a

subaisle i of block q. As for the standard case, no requested items are situated between the pick locations

defining the largest gap. Thus, all items of this subaisle are retrieved if either arc ([u,q, i,1] , [u,q, i,2])

or ([d,q, i,3] , [u,q, i,4]) and either arc ([u,q, i,3] , [u,q, i,4]) or ([d,q, i,1] , [d,q, i,2]) are included in the

tour. No pick location inclusion constraints are needed for subaisles following special case 1 because

no requested items are located in these subaisles. According to special case 2, all pick locations are

situated between the locations defined by vertex [u,q, i,1] and [d,q, i,1]. The arcs are arranged in such

a way that visiting and leaving one of these vertices corresponds to a traversal of the subaisle or to

moving to the pick location farthest away from an adjacent cross aisle and then returning to this cross

aisle. In both cases, all requested items are retrieved in the subaisle. Thus, it has to be ensured that either

vertex [u,q, i,1] or [d,q, i,1] is included in the tour. Subaisles assigned to special case 3 only contain two
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pick locations. All requested items are collected if both locations are visited. This can be guaranteed if

for each pick location at least one vertex of the corresponding vertex pair is contained in the tour. For

subaisles belonging to special cases 4 or 5, it is sufficient to ensure that the two locations defining the

largest gap are visited. Due to the degree constraints, all requested items are then retrieved.

The model formulation is included in the appendix available at http://www.mansci.ovgu.de/

mansci/en/Research/Materials/2016+_+III_-p-608.html. Due to the reduction procedures,

lots of distinctions of cases are necessary in order to formulate the model, resulting in more than 500

different types of constraints. However, a fraction of the constraints will appear in the model formulation

to a specific SPRP instance. In fact, the size of the model linearly increases with the number of vertices

and arcs included in the reduced graph, which again linearly increase with the number of subaisles.

More precisely, the number of variables equals two times the number of arcs, whereas the number of

constraints amounts to two times the number of vertices plus the number of arcs (if the depot and the

pick location inclusion constraints are neglected).

5 Numerical experiments

5.1 Setup

Both the model formulation without application of the reduction procedures (referred to as basic model)

and the model based on the reduced graph (referred to as reduced model) are now solved by means of a

commercial IP-solver in order to evaluate the impact of the reduction procedures on the performance of

the solution approach. Extensive numerical experiments are conducted and the model formulations are

compared with respect to the size of the formulations, the number of optimal solutions obtained within

a given time limit, the optimality gap if no optimal solution has been found as well as the computing

time required for the generation of an optimal solution.

The settings for the numerical experiments are adapted from the experiments of Scholz et al. (2016).

They considered the SPRP in a single-block layout and demonstrated that their model formulation

was able to provide optimal solutions within a small amount of computing time. Due to this good

performance, application of procedures for the reduction of the size is not necessary. Therefore, the focus

is put on warehouses with 2 and 3 blocks here. As done by Scholz et al. (2016), the number of picking

aisles is set to 5, 10, 15, 20, 25 and 30, i.e. the number of subaisles varies between 10 (2 blocks and

5 picking aisles) and 90 (3 blocks and 30 picking aisles). Each subaisle consists of 50 storage locations
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uniformly arranged on both sides of the subaisle. The length of a single storage location is equal to

1 length unit (LU). The distance between an adjacent cross aisle and the nearest storage location of the

subaisle amounts to 1 LU as well. Thus, 26 LUs have to be covered in order to traverse a subaisle. The

distance between two adjacent picking aisles equals 5 LUs.

The number of requested items is set to 30, 45, 60, 75 and 90. In each problem instance, the storage

locations of the requested items are generated in such a way that the resulting pick locations are mutually

different. Furthermore, in order to have a fair comparison, it is ensured that the block farthest from the

depot includes at least one pick location. Two different procedures are considered for the assignment of

articles to storage locations, namely the random and a class-based storage assignment policy. According

to the random assignment strategy, each pick location has the same probability of being included in

the tour. When using a class-based storage assignment policy, articles are divided into several classes

depending on the demand frequency. As done by Henn & Wäscher (2012), three classes A, B and C are

considered, where class A consists of 10% of all articles which possess the highest demand frequency

and represent up to 52% of the total demand. 30% of all articles are assigned to class B, where these

articles are responsible for 36% of the total demand. The remaining articles are assigned to class C and

have quite low demand frequencies. For each class, subaisles are determined based on the distance to

the depot. 10% of all subaisles with the shortest distance to the depot are assigned to class A, while 60%

of all subaisles farthest away from the depot correspond to class C. The remaining subaisles belong to

class B. Each article from a class is then randomly assigned to a storage location of a corresponding

subaisle.

Combination of the parameters gives rise to 120 different problem classes. For each problem class,

30 instances have been generated, resulting in 3600 instances in total. The basic and the reduced

formulations have been solved by CPLEX 12.6.3 on a desktop PC with a 3.4 GHz Pentium processor

and 8 GB RAM. The computing time for solving a single instance has been limited to 30 minutes.

5.2 Results

5.2.1 Size of the formulations

The procedures introduced in Section 3 aim for reducing the size of the graph, which results in a

reduction of the size of the model formulation as well. In order to evaluate the impact of the procedures

on the size of the model, the basic and the reduced model are compared with respect to the number

of variables and constraints. In Tables 2 and 3, the number of variables (#var) and the number of
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constraints (#cons) are depicted for the basic and the reduced model, respectively. Furthermore, the

amount of reduction (in %) obtained by the reduction procedures is given. The values in brackets

relate to the estimations based on the formulas given in Subsection 3.4. In both tables, problem classes

corresponding to large-sized warehouses are considered, i.e. the picking area consists of 3 blocks, while

the number of picking aisles m is 20, 25 or 30. The number of pick locations n is as described in the

previous subsection. The size of the formulations is depicted for random (Table 2) and class-based

storage assignment (Table 3) strategies.

Table 2: Size of the model formulations in case of a three-block layout and random storage assignment
basic reduced reduction [%]

m n #var #cons #var #cons #var #cons
20 30 2812 3435 1468.4 (1480.5) 1743.0 (1685.7) 47.78 (47.35) 49.26 (50.93)
20 45 2812 3435 1630.3 (1607.1) 1934.6 (1851.0) 42.02 (42.85) 43.68 (46.11)
20 60 2812 3435 1725.9 (1700.7) 2041.5 (1979.3) 38.62 (39.52) 40.57 (42.38)
20 75 2812 3435 1808.9 (1777.2) 2144.6 (2088.4) 35.67 (36.80) 37.57 (39.20)
20 90 2812 3435 1874.1 (1842.8) 2221.1 (2185.1) 33.35 (34.47) 35.34 (36.39)
25 30 3532 4295 1820.7 (1809.9) 2154.1 (2043.6) 48.45 (48.76) 49.85 (52.42)
25 45 3532 4295 1975.5 (1955.5) 2336.2 (2230.2) 44.07 (44.63) 45.61 (48.07)
25 60 3532 4295 2079.5 (2062.6) 2451.7 (2373.8) 41.12 (41.60) 42.92 (44.73)
25 75 3532 4295 2168.8 (2150.4) 2552.9 (2495.5) 38.60 (39.12) 40.56 (41.90)
25 90 3532 4295 2261.9 (2225.9) 2660.2 (2603.6) 35.96 (36.98) 38.06 (39.38)
30 30 4252 5155 2137.9 (2136.8) 2487.2 (2398.6) 49.72 (49.75) 51.75 (53.47)
30 45 4252 5155 2307.7 (2299.7) 2696.2 (2604.7) 45.73 (45.91) 47.70 (49.47)
30 60 4252 5155 2442.4 (2418.6) 2858.8 (2761.5) 42.56 (43.12) 44.54 (46.43)
30 75 4252 5155 2538.4 (2516.1) 2970.5 (2894.1) 40.30 (40.83) 42.38 (43.86)
30 90 4252 5155 2632.0 (2600.2) 3080.0 (3011.8) 38.10 (38.85) 40.25 (41.58)

As can be seen, the size of the basic model depends on the number of picking aisles only and is

independent of the number of pick locations. In contrast, the size of the reduced model is dependent

on both m and n. It is even dependent on the specific storage locations of the requested items, i.e. each

instance may result in a different size. However, compared to the basic formulation, far fewer variables

and constraints are required for modeling an instance to the SPRP. For the random assignment policy,

the amount of the reduction achieved regarding the number of variables and constraints ranges from

33.35% and 35.34% (m = 20, n = 90) to 49.72% and 51.75% (m = 30, n = 30), respectively. The

reduction procedures have the largest impact for instances characterized by a large number of picking

aisles and a small number of pick locations. In these cases, only a few pick locations have to be visited

in a subaisle, which means that lots of vertices and arcs can be removed from the graph by consideration

of the special cases of item distribution. Furthermore, if the number of subaisles is large compared to the

number of pick locations, many subaisles do not contain any requested items and, thus, the introduction

of the pyramid structure leads to considerable size reductions as well.

The estimated amount of reduction ranges from 34.47% and 36.39% (m = 20, n = 90) to 49.75% and
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53.47% (m = 30, n = 30) regarding the number of variables and constraints, respectively. As it is the

case for the average reduction obtained, the estimated amount of reduction increases with an increasing

number of picking aisles and a decreasing number of pick locations. The number of variables and

constraints is underestimated slightly. This can be explained by the fact that, in the instances from

the experiments, the farthest block always includes a requested item and all requested items refer to

different pick locations. These adjustments decrease the impact of the reduction procedures and are

not considered in the (more general) formulas developed in Subsection 3.4. Nevertheless, very close

estimations are obtained by using the formulas. This is particularly true for the number of variables,

where the average deviation of the estimation from the average number of variables amounts to 1.03%.

For the number of constraints, the average deviation equals 3.15%.

Table 3: Size of the model formulations in case of a three-block layout and class-based storage assignment
basic reduced reduction [%]

m n #var #cons #var #cons #var #cons
20 30 2812 3435 1233.9 (1142.0) 1490.2 (1309.6) 56.12 (59.39) 56.62 (61.87)
20 45 2812 3435 1422.0 (1342.4) 1713.3 (1552.7) 49.43 (52.26) 50.12 (54.80)
20 60 2812 3435 1469.2 (1463.5) 1791.5 (1705.3) 47.75 (47.96) 47.85 (50.36)
20 75 2812 3435 1577.9 (1548.5) 1901.9 (1815.8) 43.89 (44.93) 44.63 (47.14)
20 90 2812 3435 1679.7 (1613.8) 2018.8 (1902.9) 40.27 (42.61) 41.23 (44.60)
25 30 3532 4295 1598.1 (1423.8) 1871.9 (1616.2) 54.75 (59.69) 56.42 (62.37)
25 45 3532 4295 1679.3 (1649.3) 2015.8 (1887.7) 52.45 (53.30) 53.07 (56.05)
25 60 3532 4295 1846.7 (1788.1) 2215.8 (2061.1) 47.72 (49.37) 48.41 (52.01)
25 75 3532 4295 1958.0 (1887.4) 2335.7 (2188.6) 44.56 (46.56) 45.62 (49.04)
25 90 3532 4295 2040.0 (1964.5) 2423.4 (2290.0) 42.24 (44.38) 43.58 (46.68)
30 30 4252 5155 1764.7 (1697.9) 2071.3 (1914.3) 58.50 (60.07) 59.82 (62.87)
30 45 4252 5155 2056.1 (1953.1) 2397.2 (2219.2) 51.64 (54.07) 53.50 (56.95)
30 60 4252 5155 2235.2 (2112.8) 2624.6 (2417.5) 47.43 (50.31) 49.09 (53.10)
30 75 4252 5155 2270.1 (2228.2) 2682.2 (2565.0) 46.61 (47.60) 47.97 (50.24)
30 90 4252 5155 2452.9 (2318.1) 2874.3 (2682.6) 42.31 (45.48) 44.24 (47.96)

When articles are assigned according to the class-based assignment strategy described in Subsection 5.1,

the impact of the reduction procedures increases (see Table 3). On average, the amount of reduction

ranges from 40.27% and 41.23% (m = 20, n = 90) to 58.50% and 59.82% (m = 30, n = 30) for the

number of variables and constraints, respectively. Due to the class-based assignment procedure, pick

locations near to the depot have a large probability of being included in the tour. Therefore, many

subaisles far away from the depot can be removed from the graph by application of the pyramid structure,

resulting in a graph which is much smaller than in case of random assignment.

The quality of the estimations deteriorates if the instances based on the class-based assignment strategy

are considered. This can also be explained by the instance generation procedure. In case of random

assignment, articles are distributed over a large number of subaisles. It is very likely that all blocks

contain requested items and that all requested items refer to different pick locations since few items
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are included in the same subaisle. Therefore, minor adjustments have to be performed in the instance

generation process only. This is not true in case of class-based assignment. A large proportion of the

requested items will be located in the subaisles near to the depot. In particular, if the number of items

is quite small, the probability of the block farthest from the depot not containing a pick location is not

negligible at all. Thus, it is not surprising that the average deviation of the estimated from the average

number of variables and constraints increases, and now amounts to 4.27% and 7.29%, respectively.

Nevertheless, the estimations still represent a good approximation of the size of the reduced model

and can be used in order to evaluate in advance whether application of the reduction procedures to an

instance of a certain problem class is a worthwhile endeavor.

5.2.2 Number of optimal solutions and optimality gaps

Since the reduced formulation includes considerable fewer variables and constraints, while having the

same components as the basic model, it can be expected that application of an IP-solver using this

formulation leads to a better performing solution approach to the SPRP. This expectation is verified by

the results of the numerical experiments. In Table 4, the number of instances solved to optimality within

30 minutes of computing time is depicted for both formulations. If a number is equal to 30, all instances

of the problem class have been solved optimally by using the respective formulation.

Concerning the basic model, it can be observed that its performance is independent of the number

of pick locations, which can be explained by the fact that each subaisle is represented by a constant

number of vertices in the underlying graph. The same line of argumentation holds for the storage

assignment procedure which affects the locations of the requested items. Two parameters can be

identified which have an impact on the number of optimal solutions obtained within the time limit. First,

an increasing number of picking aisles results in a decreasing number of optimal solutions. Using the

basic formulation, all instances of problem classes with 5 or 10 picking aisles can be solved to proven

optimality. However, this number rapidly decreases when the warehouse includes more picking aisles.

For problem classes with 20 picking aisles, an optimal solution can be determined for approximately

half of all instances, whereas only 4 out of 120 instances with 30 picking aisles have been solved

to optimality. This performance matches with the observations of Scholz et al. (2016). The second

important parameter is the number of blocks. An increasing number of blocks leads to fewer optimal

solutions obtained. For 2 blocks, nearly all instances with 15 picking aisles or fewer can be solved

to optimality. However, for 3 blocks, only approximately two-thirds of the instances with 15 picking
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Table 4: Number of optimally solved instances (out of 30) within 30 minutes of computing time
random storage assignment class-based storage assignment

2 blocks 3 blocks 2 blocks 3 blocks
m n basic reduced basic reduced basic reduced basic reduced
5 30 30 30 30 30 30 30 30 30
5 45 30 30 30 30 30 30 30 30
5 60 30 30 30 30 30 30 30 30
5 75 30 30 30 30 30 30 30 30
5 90 30 30 30 30 30 30 30 30
10 30 30 30 30 30 30 30 30 30
10 45 30 30 30 30 30 30 30 30
10 60 30 30 30 30 30 30 30 30
10 75 30 30 30 30 30 30 30 30
10 90 30 30 30 30 30 30 30 30
15 30 30 30 29 30 27 30 22 30
15 45 30 30 29 30 29 30 21 30
15 60 30 30 28 30 29 30 26 30
15 75 29 30 28 30 30 30 20 30
15 90 27 30 27 30 27 30 19 30
20 30 20 30 7 30 17 30 8 30
20 45 18 30 6 30 16 30 10 30
20 60 19 29 10 30 15 30 6 30
20 75 15 29 9 30 17 30 11 29
20 90 10 29 8 29 17 30 11 29
25 30 8 30 0 30 2 30 0 30
25 45 4 30 0 30 2 30 0 30
25 60 3 30 0 30 7 30 0 30
25 75 6 29 1 30 5 30 1 30
25 90 6 23 2 29 8 28 0 30
30 30 0 30 0 30 0 30 0 30
30 45 2 30 0 30 1 29 0 30
30 60 1 30 0 30 0 27 0 29
30 75 0 26 0 28 0 25 0 29
30 90 0 22 0 29 0 20 0 27

aisles can be solved optimally. Furthermore, an optimal solution has been found for 4 instances with

m ≥ 25 only. This performance was also expected because the size of the formulation is multiplied by

the number of blocks. The results of the experiments indicate that the basic formulation is not suitable

for solving SPRPs in multi-block layouts.

When using the reduced model, most of the instances can be solved to optimality. For all instances with

15 picking aisles or fewer, optimal solutions have been found. If the number of picking aisles is increased

to 20 or 25, except for one problem class, at least 28 out of 30 instances can still be solved, respectively.

If m gets very large (m = 30), several instances exist to which no optimal solution has been determined.

However, the minimum number of optimal solutions obtained in a problem class amounts to 20 (2 blocks,

30 picking aisles, 90 pick locations, class-based storage assignment), which shows that application of

the reduced model outperforms the usage of the basic formulation by far. Besides the number of picking

aisles, an increasing number of pick locations has a negative impact on the performance of the reduced
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model. This is not surprising since fewer vertices and arcs can be removed from the underlying graph,

if more pick locations have to be represented, leading to a deteriorating performance of the approach.

The storage assignment procedure does not seem to have an impact on the number of optimal solutions

obtained. In case of the class-based assignment policy, lots of subaisles can be removed from the graph

by introduction of the pyramid structure, resulting in a significant reduction of the size of the model

(see Table 3). This is not possible when articles are assigned according to the random assignment policy.

However, in case of the random assignment, the number of pick locations per subaisle is quite low, which

allows for large reductions based on the special cases of item distribution (see Table 1). Thus, it can be

observed that the interaction of the reduction procedures leads to a good performance of the reduced

model for both storage assignment policies. The major advantage of the reduced model can be seen in

its performance for an increasing number of blocks. Compared to the two-block case, the number of

optimal solutions obtained even increases when 3 blocks are considered. In fact, at least 90% (27 out

of 30) of the instances of a problem class have been solved to optimality. This clearly shows that the

reduced model is able to deal with multiple blocks.

Besides the number of optimal solutions obtained, the quality of solutions is investigated if no optimal

solution has been found, i.e. if the solution process has been terminated after 30 minutes of computing

time. In Table 5, the maximum optimality gaps are depicted for problem classes with a larger number

of picking aisles (m ≥ 20). If the maximum gap amounts to 0.00%, all instances of the corresponding

class have been solved to optimality.

Table 5: Maximum optimality gaps [%]
random storage assignment class-based storage assignment

2 blocks 3 blocks 2 blocks 3 blocks
m n basic reduced basic reduced basic reduced basic reduced
20 30 3.47 0.00 8.73 0.00 7.28 0.00 8.10 0.00
20 45 2.43 0.00 3.39 0.00 3.98 0.00 7.54 0.00
20 60 2.59 1.01 1.91 0.00 4.66 0.00 6.03 0.00
20 75 3.50 0.70 2.42 0.00 3.36 0.00 3.74 0.62
20 90 2.45 0.56 2.53 0.43 5.24 0.00 5.63 1.05
25 30 7.94 0.00 11.31 0.00 8.62 0.00 12.99 0.00
25 45 5.68 0.00 5.70 0.00 7.98 0.00 8.89 0.00
25 60 4.56 0.00 5.10 0.00 9.55 0.00 10.40 0.00
25 75 4.61 1.35 4.20 0.00 5.71 0.00 6.80 0.00
25 90 3.64 1.40 3.38 0.30 4.79 1.02 7.08 0.00
30 30 12.11 0.00 15.29 0.00 16.41 0.00 20.62 0.00
30 45 7.91 0.00 8.93 0.00 10.60 0.20 16.04 0.00
30 60 6.23 0.00 7.30 0.00 8.89 4.11 10.05 0.43
30 75 5.35 1.33 6.09 0.79 7.36 1.63 8.34 1.37
30 90 2.87 1.19 4.63 0.20 8.26 4.50 7.84 2.83

As expected, for the basic formulation, the maximum optimality gap increases with an increasing
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number of picking aisles as well as an increasing number of blocks. In contrast, the gaps decrease with

an increasing number of pick locations and when articles are randomly assigned to storage locations.

This can be explained by the fact that the minimum tour length increases in these cases. Thus, small

changes to the tour do not have such a large impact on the relative deviation from the optimal tour

length. Nevertheless, it can be observed that application of the basic formulation leads to tours which

are up to 20.62% longer than an optimal tour (3 blocks, 30 picking aisles, 30 pick locations, class-based

assignment) and, therefore, it is again concluded that this formulation is not suitable for dealing with

SPRPs including multiple blocks.

The maximum optimality gaps obtained by application of the reduced model are much smaller. As it

is the case for the number of optimal solutions found, the performance deteriorates with an increasing

number of picking aisles and pick locations, whereas it slightly improves with an increasing number of

blocks. Furthermore, it can be seen that the gaps are smaller when the random assignment procedure is

used. In this case, the maximum gap amounts to 1.40% (2 blocks, 25 picking aisles, 90 pick locations),

which shows that at least near-optimal solutions have been found by application of the reduced model. If

the class-based storage assignment procedure is assumed, the gaps are getting larger for instances with

30 picking aisles. However, all gaps are not larger than 4.50%, which means that near-optimal solutions

have also been provided in case of the class-based assignment.

5.2.3 Computing times

The average computing time required for the determination of an optimal solution by application of the

respective model formulation is depicted in Table 6. If no optimal solution has been found within the

predefined time interval, a computing time of 30 minutes has been reported. An average computing time

of 1800.00 seconds means that no instance of the problem class has been solved to proven optimality.

The number of picking aisles and the number of blocks have an impact on the computing time required

for applying the basic formulation, whereas no conclusions can be drawn regarding the impact of the

number of pick locations and the storage assignment strategy. Computing times rapidly increase with

an increasing number of picking aisles. While instances with up to 10 picking aisles can be solved

within a few seconds on average, up to 9 minutes are required for m = 15 and even up to 28 minutes

when 20 picking aisles are considered. For instances with more than 20 picking aisles, computing times

are not meaningful because not many optimal solutions have been found in this case. Concerning the

number of blocks, it can be observed that computing times increase significantly if three blocks have to
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Table 6: Computing times [sec]
random storage assignment class-based storage assignment

2 blocks 3 blocks 2 blocks 3 blocks
m n basic reduced basic reduced basic reduced basic reduced
5 30 0.48 0.31 0.95 0.40 0.78 0.44 0.99 0.37
5 45 0.43 0.32 0.88 0.47 0.71 0.47 0.98 0.40
5 60 0.49 0.39 0.84 0.52 0.67 0.46 0.84 0.44
5 75 0.49 0.39 0.80 0.60 0.74 0.52 1.14 0.47
5 90 0.53 0.42 1.00 0.75 0.78 0.55 1.21 0.56

10 30 5.87 1.10 14.98 1.86 14.29 1.03 20.71 1.57
10 45 8.92 2.00 34.70 3.23 12.17 1.42 35.52 1.83
10 60 10.61 3.61 17.57 3.93 13.69 1.38 21.11 1.79
10 75 14.98 8.68 29.88 6.80 10.85 1.58 30.20 2.31
10 90 21.91 11.05 58.24 11.18 10.03 1.42 29.93 3.16
15 30 92.56 3.96 249.44 4.74 428.07 6.08 525.43 14.00
15 45 66.11 5.43 315.19 6.73 351.52 6.54 428.78 6.44
15 60 149.77 18.72 273.87 12.14 355.98 19.50 397.78 7.20
15 75 316.32 50.73 304.36 18.33 271.85 13.10 593.61 17.79
15 90 524.69 67.56 332.93 34.29 478.34 47.94 525.43 14.00
20 30 1028.47 9.40 1584.00 8.66 1000.09 6.91 1390.47 7.25
20 45 974.57 17.19 1582.97 14.18 1010.82 16.44 1606.71 17.06
20 60 911.62 91.53 1279.95 18.13 1110.61 53.12 1704.86 66.37
20 75 1074.15 128.81 1506.79 41.43 1111.41 113.47 1309.55 100.81
20 90 1393.30 258.85 1602.78 149.07 1015.24 168.85 1277.25 108.43
25 30 1572.69 18.68 1802.00 18.17 1695.72 20.02 1800.00 18.47
25 45 1712.87 33.48 1800.00 21.05 1727.68 44.54 1800.00 22.50
25 60 1743.07 77.50 1800.00 49.85 1517.52 162.40 1800.00 93.28
25 75 1592.18 229.65 1756.90 70.03 1654.45 270.24 1766.42 170.96
25 90 1620.58 664.22 1726.38 251.04 1529.55 317.64 1800.00 205.47
30 30 1800.41 46.39 1800.00 61.85 1801.15 59.00 1800.00 71.38
30 45 1703.87 74.41 1800.00 96.15 1752.28 184.08 1800.00 58.65
30 60 1773.87 167.90 1800.00 82.96 1800.90 330.98 1800.50 232.28
30 75 1800.00 515.90 1800.00 227.76 1801.73 581.39 1800.47 155.85
30 90 1800.00 771.55 1800.00 306.88 1802.37 904.34 1800.00 339.70

be dealt with. In fact, for instances with m ≤ 20, computing times rise by 81.31% on average if three

instead of two blocks are considered.

For the reduced formulation, the results depicted in Table 6 also match with the expectations based

on the development of the size of the formulation (see Tables 2 and 3). Both the number of picking

aisles and the number of pick locations have an impact on its performance. Regarding the number of

picking aisles m, all instances with m ≤ 15 have been solved within less than 70 seconds on average,

whereas up to 15 minutes are required for solving instances with m = 30. When m gets large, the impact

of the number of pick locations n gets significant as well. While the maximum average computing

time amounts to 1.2 minutes (3 blocks, 30 picking aisles, class-based assignment) for instances with

a small number of pick locations (n = 30), on average up to 15 minutes are required for solving

instances with the same characteristics but 90 pick locations. Concerning the storage assignment policy,

it can be seen that computing times are lower for class-based assignment if instances with m ≤ 20 are
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considered. Otherwise, the performance of the reduced model seems to be better for random assignment.

As observed before, the performance of the reduced model improves with an increasing number of

blocks. This is particularly true for instances difficult to solve, i.e. instances with a large number of

picking aisles or with many pick locations. The largest reduction can be seen in the problem classes

with 30 picking aisles, 75 pick locations and class-based storage assignment, where an increase of the

number of blocks leads to a decrease of the average computing time by 73%.

Compared to the basic formulation, application of the reduced model consumes far less computing

time. It can be observed that the impact of the number of picking aisles on the computing time is

much smaller for the reduced formulation. This particularly holds if a small number of pick locations

(n = 30) is considered since lots of vertices can be removed from the underlying graph. Application of

the reduction procedures results in a decrease of the average computing time by up to 99.5% (3 blocks,

20 picking aisles, class-based assignment). When more pick locations are considered, the computing

time required for solving the reduced model increases. However, even for a very large number of pick

locations (n = 90), reductions of more than 90% (3 blocks, 20 picking aisles) are achieved for both

random and class-based storage assignment. Furthermore, it can be observed that the largest amount

of reduction is obtained in case of three blocks. Whereas computing times significantly increase for

the basic formulation, computing times even decrease for the reduced model. This performance shows

that application of the reduction procedures is pivotal in order to obtain a problem-specific model

formulation able to deal with SPRPs in warehouses with multiple blocks.

6 Conclusion and Outlook

The Single-Picker Routing Problem deals with the determination of the sequence according to which

requested items are to be retrieved from the storage locations in the picking area of the warehouse. It

represents a special case of the Traveling Salesman Problem. However, Scholz et al. (2016) pointed

out that problem-specific solution approaches lead to better results and can easier be adapted to

modifications arising in practical applications. They proposed a mathematical programming formulation

to the Single-Picker Routing Problem in a single-block layout, which is extended to the case of multiple

blocks in this paper. A so-called pyramid structure is introduced and special cases of item distribution

are identified, which significantly reduce the size of the formulation and make the formulation suitable

for dealing with large instances. Since the size of the resulting reduced model is not dependent on

the size of the problem only but it also depends on the specific locations of the requested items, the
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impact of the reduction procedures on the size of the model cannot be determined in advance. Therefore,

formulas are developed, which provide good estimations for the number of variables and constraints

and allow for evaluating whether application of the reduction procedures to an instance is a worthwhile

endeavor.

By means of numerical experiments, the proposed reduced model formulation is evaluated and

compared to the basic formulation to which no reduction procedures have been applied. It is shown that

the reduced model formulation outperforms the basic formulation by far in terms of optimal solutions

found, optimality gaps and computing times. By application of a commercial IP-solver to the reduced

model, nearly all instances from the experiments have been solved to optimality within the given time

limit, whereas the basic model was able to solve instances with a small number of picking aisles only.

Regarding average computing times, reductions of up to 99.5% have been obtained, which demonstrates

that application of the reduction procedures is inevitable when dealing with multi-block layouts. Finally,

it is observed that computing times do not increase with an increasing number of blocks, which is a

major advantage of the reduced model since no efficient solution approach exists so far, which is able

to deal with more than two blocks.

The model formulation has been designed for picking areas following a block layout. However, a recent

trend is to design the layout of a warehouse without using parallel picking and cross aisles. Instead,

non-conventional layouts such as fishbone layouts are applied (Çelik & Süral, 2014). The construction

of problem-specific formulations to those layouts would be a promising area for future research.

Further research could also concentrate on picker blocking aspects. In this paper, it is assumed that

aisles are wide enough enabling order pickers to pass each other. Without losing generality, it can then

be assumed that only one picker is available when dealing with the routing problem because routes can

be determined independently of each other. This is not true if very narrow aisles have to be dealt with.

Thus, it would be interesting to investigate whether blocking aspects could be integrated into the model.
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Appendix: Model formulation to the SPRP

Sets:

B = {1, . . . , p}: set of blocks

F = {1, . . . , p+1}: set of cross aisles

Iq = {mq,mq}: set of subaisles to be considered in block q, with m1 = 1 and mq < mq −1 ∀ q ∈ B (see Section 4.1

for the determination of mq and mq)

Iq
0 ⊆ Iq: set of the subaisles which are located in block q and follow the standard case of item distribution;

Iq
0 = Iq\{Iq

1 ∪ Iq
2 ∪ Iq

3 ∪ Iq
4 ∪ Iq

5}
Iq
1 ⊆ Iq: set of the subaisles which are located in block q and do not contain pick locations (special case 1)

Iq
2 ⊆ Iq: set of the subaisles which are located in block q and contain the largest gap between the first or the

last pick location and the adjacent cross aisle (special case 2)

Iq
3 ⊆ Iq: set of the subaisles which are located in block q and contain exactly two pick locations with the

largest gap located between them (special case 3)

Iq
4 ⊆ Iq: set of the subaisles which are located in block q and contain the largest gap between the first and

the adjacent pick location (special case 4)

Iq
5 ⊆ Iq: set of the subaisles which are located in block q and contain the largest gap between the last and

the adjacent pick location (special case 5)

Binary variables indicating the arcs included in the tour:

rr
qi : binary variable, ∀ (q, i) ∈ F × (Iq\{mq −1,mq}), with

rr
qi =





1, if arc ([r,q, i], [r,q, i+1]) is contained in the tour

0, otherwise

ru
qi : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}), with

ru
qi =





1, if arc ([r,q, i], [u,q, i+1]) is contained in the tour

0, otherwise

rd
qi : binary variable, ∀ (q, i) ∈ (F\{1})× (Iq\{mq}), with

rd
qi =





1, if arc ([r,q, i], [d,q, i+1]) is contained in the tour

0, otherwise

ll
qi : binary variable, ∀ (q, i) ∈ F × ((Iq\{mq,mq +1})∪{(1,2)}), with

ll
qi =





1, if arc ([l,q, i], [l,q, i−1]) is contained in the tour

0, otherwise



lu
qi : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}), with

lu
qi =





1, if arc ([l,q, i], [u,q, i−1]) is contained in the tour

0, otherwise

ld
qi : binary variable, ∀ (q, i) ∈ (F\{1})× (Iq\{mq}), with

ld
qi =





1, if arc ([l,q, i], [d,q, i−1]) is contained in the tour

0, otherwise

eu
qi1 : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ), with

eu
qi1 =





1, if arc ([d,q+1, i], [u,q, i,1]) is contained in the tour

0, otherwise

ed
qi1 : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ), with

ed
qi1 =





1, if arc ([u,q, i], [d,q, i,1]) is contained in the tour

0, otherwise

eu
qi2 : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
4 ), with

eu
qi2 =





1, if arc ([d,q+1, i], [u,q, i,2]) is contained in the tour

0, otherwise

ed
qi2 : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
4 ), with

ed
qi2 =





1, if arc ([u,q, i], [d,q, i,2]) is contained in the tour

0, otherwise

eu
qi3 : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
5 ), with

eu
qi3 =





1, if arc ([d,q+1, i], [u,q, i,3]) is contained in the tour

0, otherwise

ed
qi3 : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
4 ), with

ed
qi3 =





1, if arc ([u,q, i], [d,q, i,3]) is contained in the tour

0, otherwise



tu
qi : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ), with

tu
qi =





1, if arc ([u,q, i], [u,q, i,1]) is contained in the tour

0, otherwise

td
qi : binary variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ), with

td
qi =





1, if arc ([d,q+1, i], [d,q, i,1]) is contained in the tour

0, otherwise

wu
qis : binary variable, ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3})), with

wu
qis =





1, if arc ([u,q, i,s], [u,q, i,s+1]) is contained in the tour

0, otherwise

wd
qis : binary variable, ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3})), with

wd
qis =





1, if arc ([d,q, i,s], [d,q, i,s+1]) is contained in the tour

0, otherwise

vu
qi : binary variable, ∀ (q, i) ∈ (B\{p})× Iq, with

vu
qi =





1, if arc ([u,q, i], [u,q+1, i]) for i ∈ Iq
1 , ([u,q, i,1], [u,q+1, i]) for i ∈ Iq

2 ,

([u,q, i,2], [u,q+1, i]) for i ∈ Iq
3 , ([u,q, i,3], [u,q+1, i]) for i ∈ Iq

4 ∪ Iq
5 or

([u,q, i,4], [u,q+1, i]) for i ∈ Iq
0 is contained in the tour

0, otherwise

vu,l
qi : binary variable, ∀ (q, i) ∈ B× (Iq\{mq}), with

vu,l
qi =





1, if arc ([u,q, i], [l,q+1, i]) for i ∈ Iq
1 , ([u,q, i,1], [l,q+1, i]) for i ∈ Iq

2 ,

([u,q, i,2], [l,q+1, i]) for i ∈ Iq
3 , ([u,q, i,3], [l,q+1, i]) for i ∈ Iq

4 ∪ Iq
5 or

([u,q, i,4], [l,q+1, i]) for i ∈ Iq
0 is contained in the tour

0, otherwise



vu,r
qi : binary variable, ∀ (q, i) ∈ B× (Iq\{mq}), with

vu,r
qi =





1, if arc ([u,q, i], [r,q+1, i]) for i ∈ Iq
1 , ([u,q, i,1], [r,q+1, i]) for i ∈ Iq

2 ,

([u,q, i,2], [r,q+1, i]) for i ∈ Iq
3 , ([u,q, i,3], [r,q+1, i]) for i ∈ Iq

4 ∪ Iq
5 or

([u,q, i,4], [r,q+1, i]) for i ∈ Iq
0 is contained in the tour

0, otherwise

vd
qi : binary variable, ∀ (q, i) ∈ (B\{1})× Iq, with

vd
qi =





1, if arc ([d,q+1, i], [d,q, i]) for i ∈ Iq
1 , ([d,q, i,1], [d,q, i]) for i ∈ Iq

2 ,

([d,q, i,2], [d,q, i]) for i ∈ Iq
3 , ([d,q, i,3], [d,q, i]) for i ∈ Iq

4 ∪ Iq
5 or

([d,q, i,4], [d,q, i]) for i ∈ Iq
0 is contained in the tour

0, otherwise

vd,l
qi : binary variable, ∀ (q, i) ∈ B× (Iq\{mq})∪{(1,1)}), with

vd,l
qi =





1, if arc ([u,q+1, i], [l,q, i]) for i ∈ Iq
1 , ([d,q, i,1], [l,q, i]) for i ∈ Iq

2 ,

([d,q, i,2], [l,q, i]) for i ∈ Iq
3 , ([d,q, i,3], [l,q, i]) for ∈ Iq

4 ∪ Iq
5 or

([d,q, i,4], [l,q, i]) for i ∈ Iq
0 is contained in the tour

0, otherwise

vd,r
qi : binary variable, ∀ (q, i) ∈ B× (Iq\{mq}), with

vd,r
qi =





1, if arc ([u,q+1, i], [r,q, i]) for i ∈ Iq
1 , ([u,q, i,1], [r,q, i]) for i ∈ Iq

2 ,

([u,q, i,2], [r,q, i]) for i ∈ Iq
3 , ([u,q, i,3], [r,q, i]) for i ∈ Iq

4 ∪ Iq
5 or

([u,q, i,4], [r,q, i]) for i ∈ Iq
0 is contained in the tour

0, otherwise

y0
α : binary variable, ∀ α ∈ {l,r,u}, with

y0
α =





1, if arc ([0], [α,1,1]) is contained in the tour

0, otherwise

yl
0 : binary variable, with

yl
0 =





1, if arc ([l,1,1], [0]) is contained in the tour

0, otherwise



Real-valued variables to exclude subtours:

r̃r
qi : real-valued variable, ∀ (q, i) ∈ F × (Iq\{mq −1,mq})

r̃u
qi : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq})

r̃d
qi : real-valued variable, ∀ (q, i) ∈ (F\{1})× (Iq\{mq})

l̃l
qi : real-valued variable, ∀ (q, i) ∈ F × ((Iq\{mq,mq +1})∪{(1,2)})

l̃u
qi : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq})

l̃d
qi : real-valued variable, ∀ (q, i) ∈ (F\{1})× (Iq\{mq})

ẽu
qi1 : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 )

ẽd
qi1 : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 )

ẽu
qi2 : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
4 )

ẽd
qi2 : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
5 )

ẽu
qi3 : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
5 )

ẽd
qi3 : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
4 )

t̃u
qi : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 )

t̃d
qi : real-valued variable, ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 )

w̃u
qis : real-valued variable, ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3}))

w̃d
qis : real-valued variable, ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3}))

ṽu
qi : real-valued variable, ∀ (q, i) ∈ (B\{p})× Iq

ṽu,l
qi : real-valued variable, ∀ (q, i) ∈ B× (Iq\{mq})

ṽu,r
qi : real-valued variable, ∀ (q, i) ∈ B× (Iq\{mq})

ṽd
qi : real-valued variable, ∀ (q, i) ∈ (B\{1})× Iq

ṽd,l
qi : real-valued variable, ∀ (q, i) ∈ B× (Iq\{mq})∪{(1,1)})

ṽd,r
qi : real-valued variable, ∀ (q, i) ∈ B× (Iq\{mq})

ỹ0
α : real-valued variable, ∀ α ∈ {l,r,u}

ỹl
0 : real-valued variable

Constants:

c0 : distance between the depot and the intersection of cross aisle 1 with the first sub-aisle of block 1

ca : distance between two adjacent picking aisles

c : length of a sub-aisle

ct,u
qi : distance between cross aisle q and vertex [u,q, i,1], ∀ (q, i) ∈ B× (Iq\Iq

1 )

ct,d
qi : distance between cross aisle q+1 and vertex [d,q, i,1], ∀ (q, i) ∈ B× (Iq\Iq

1 )

ce,u
qis : distance between cross aisle q+1 and vertex [u,q, i,s], ∀ (q, i,s) ∈ B× (((Iq\Iq

1)×{1})∪ ((Iq
3 ∪ Iq

4 )×{2})

∪ ((Iq
0 ∪ Iq

5)×{3}))

ce,d
qis : distance between cross aisle q and vertex [d,q, i,s], ∀ (q, i,s) ∈ B× (((Iq\Iq

1)×{1})∪ ((Iq
3 ∪ Iq

5 )×{2})

∪ ((Iq
0 ∪ Iq

4)×{3}))

cw,u
qis : distance between vertex [u,q, i,s] and vertex [u,q, i,s+1], ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5)×{1,2})

∪ (Iq
0 ×{1,2,3}))



cw,d
qis : distance between vertex [d,q, i,s] and vertex [d,q, i,s+1], ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5)×{1,2})

∪ (Iq
0 ×{1,2,3}))

M : large number (e.g. number of vertices)

Objective Function:

min
p+1

∑
q=1

mq−2

∑
i=mq

ca · rr
qi +

p+1

∑
q=2

mq−1

∑
i=mq

ca · rd
qi +

p

∑
q=1

mq−1

∑
i=mq

ca · ru
qi +

p

∑
q=1

mq−1

∑
i=mq−1,
i≥mq−1

ca · ru
qi +

p+1

∑
q=1

mq

∑
i=mq+2

ca · ll
qi + ca · ll

1,m1+1

+
p+1

∑
q=2

mq

∑
i=mq+1

ca · ld
qi +

p

∑
q=1

mq

∑
i=mq+1

ca · lu
qi +

p

∑
q=1

mq+1

∑
i=mq+1,
i≤mq−1

ca · lu
qi +

p−1

∑
q=1

∑
i∈Iq

1,
i≤mq+1

c · vu
qi +

p

∑
q=1

∑
i∈Iq

1\{mq}
c · vu,r

qi

+
p

∑
q=1

∑
i∈Iq

1\{mq}
c · vu,l

qi +
p

∑
q=1

∑
i∈Iq\Iq

1

(ce,d
qi1 · ed

qi1 + ce,u
qi1 · eu

qi1)+
p

∑
q=1

∑
i∈Iq

3∪Iq
5

ce,d
qi2 · ed

qi2 +
p

∑
q=1

∑
i∈Iq

0∪Iq
4

ce,d
qi3 · ed

qi3

+
p

∑
q=1

∑
i∈Iq

3∪Iq
4

ce,u
qi2 · eu

qi2 +
p

∑
q=1

∑
i∈Iq

0∪Iq
5

ce,u
qi3 · eu

qi3 +
p

∑
q=1

∑
i∈Iq\Iq

1

(ct,d
qi · td

qi + ct,u
qi · tu

qi)+
p

∑
q=1

∑
i∈Iq

0

3

∑
s=1

(cw,u
qis ·wu

qis + cw,d
qis ·wd

qis)

+
p

∑
q=1

∑
i∈Iq

3

(cw,u
qi1 ·wu

qi1 + cw,d
qi1 ·wd

qi1)+
p

∑
q=1

∑
i∈Iq

4∪Iq
5

2

∑
s=1

(cw,u
qis ·wu

qis + cw,d
qis ·wd

qis)+
p−1

∑
q=1

∑
i∈Iq

2,
i≤mq+1

ce,u
qi1 · vu

qi

+
p−1

∑
q=1

∑
i∈Iq\(Iq

1∪Iq
2):

i≤mq+1

ct,d
qi · vu

qi +
p

∑
q=2

∑
i∈Iq

2

ce,d
qi1 · vd

qi +
p

∑
q=2

∑
i∈Iq\(Iq

1∪Iq
2)

ct,u
qi · vd

qi +
p

∑
q=1

∑
i∈Iq

2\{mq}
ce,u

qi1 · vu,r
qi

+
p

∑
q=1

∑
i∈Iq\(Iq

1∪Iq
2∪{mq})

ct,d
qi · vu,r

qi +
p

∑
q=1

∑
i∈Iq

2\{mq−1}
ce,d

qi1 · vd,r
qi +

p

∑
q=1

∑
i∈Iq\(Iq

1∪Iq
2∪{mq−1})

ct,u
qi · vd,r

qi +
p

∑
q=1

∑
i∈Iq

2\{mq}
ce,u

qi1 · vu,l
qi

+
p

∑
q=1

∑
i∈Iq\(Iq

1∪Iq
2∪{mq})

ct,d
qi · vu,l

qi +
p

∑
q=1

∑
i∈Iq

2\{mq−1}
ce,d

qi1 · vd,l
qi +

p

∑
q=1

∑
i∈Iq\(Iq

1∪Iq
2∪{mq−1})

ct,u
qi · vd,l

qi + ∑
i∈I1

2,
i=1

ce,d
111 · vd,l

11

+ ∑
i∈I1\(I1

1∪I1
2):

i=1

ct,u
11 · vd,l

11 + c0 · (y0
l + y0

r + y0
u + yl

0)+
p

∑
q=2

∑
i∈Iq

1

c · vd
qi +

p

∑
q=1

∑
i∈Iq

1:
i<mq−1

c · vd,r
qi +

p

∑
q=1

∑
i∈Iq

1:
i>mq−1

c · vd,l
qi + ∑

i∈I1
1:

i=1

c · vd,l
11 (1)

Depot Inclusion Constraint:

y0
l + y0

r + y0
u ≥ 1 (2)

Item Inclusion Constraints:

wu
qi1 +wd

qi3 ≥ 1 ∀ q ∈ B, i ∈ Iq
0 (3)

wu
qi3 +wd

qi1 ≥ 1 ∀ q ∈ B, i ∈ Iq
0 (4)

tu
qi + ed

qi1 + td
qi + eu

qi1 ≥ 1 ∀ q ∈ B, i ∈ Iq
2 (5)

wu
qi1 +wd

qi1 + ed
qi2 ≥ 1 ∀ q ∈ B, i ∈ Iq

3 (6)



wu
qi1 +wd

qi1 + eu
qi2 ≥ 1 ∀ q ∈ B, i ∈ Iq

3 (7)

wu
qi1 +wd

qi2 + ed
qi3 ≥ 1 ∀ q ∈ B, i ∈ Iq

4 (8)

wu
qi2 +wd

qi1 ≥ 1 ∀ q ∈ B, i ∈ Iq
4 (9)

wu
qi1 +wd

qi2 ≥ 1 ∀ q ∈ B, i ∈ Iq
5 (10)

wu
qi2 + eu

qi3 +wd
qi1 ≥ 1 ∀ q ∈ B, i ∈ Iq

5 (11)

Degree Constraints:

• Constraint corresponding to the depot

y0
l + y0

r + y0
u = yl

0 (12)

• Constraints corresponding to vertices [r,q, i]

rr
1i + ru

1i = rr
1,i−1 + vd,r

1i ∀ i ∈ I1\{m1,m1 −1,m1} (13)

rr
1,m1

+ ru
1m1

= y0
r + vd,r

1,m1
(14)

ru
1,m1−1= rr

1,m1−1 + vd,r
1,m1−1 (15)

rr
qi + ru

qi + rd
qi= rr

q,i−1 + vu,r
q−1,i + vd,r

qi ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with mq −1 < i < mq (16)

rr
qi + rd

qi = rr
q,i−1 + vu,r

q−1,i ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with i < mq −1 or i > mq (17)

rr
qi + rd

qi = rr
q,i−1 + vu,r

q−1,i + vd,r
qi ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with i = mq (18)

rr
qi + ru

qi + rd
qi = rr

q,i−1 + vu,r
q−1,i ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with i = mq −1 (19)

rr
q,mq−1

+ ru
q,mq−1

+ rd
q,mq−1

= vu,r
q−1,mq−1

+ vd,r
q,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 (20)

rr
q,mq−1

+ ru
q,mq−1

+ rd
q,mq−1

= vu,r
q−1,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 +1 (21)

rr
q,mq−1

+ rd
q,mq−1

= vu,r
q−1,mq−1

∀ q ∈ F\{1, p+1} with mq > mq−1 +1 (22)

ru
q,mq−1−1 + rd

q,mq−1−1 = rr
q,mq−1−2 + vu,r

q−1,mq−1−1 + vd,r
q,mq−1−1 ∀ q ∈ F\{1, p+1} with mq = mq−1 (23)

rd
q,mq−1−1 = rr

q,mq−1−2 + vu,r
q−1,mq−1−1 + vd,r

q,mq−1−1 ∀ q ∈ F\{1, p+1} with mq = mq−1 −1 (24)

rd
q,mq−1−1 = rr

q,mq−1−2 + vu,r
q−1,mq−1−1 ∀ q ∈ F\{1, p+1} with mq < mq−1 −1 (25)

rr
p+1,i + rd

p+1,i = rr
p+1,i−1 + vu,r

pi ∀ i ∈ Ip\{mp,mp −1,mp} (26)

rr
p+1,mp

+ rd
p+1,mp

= vu,r
p,mp

(27)

rd
p+1,mp−1 = rr

p+1,mp−2 + vu,r
p,mp−1 (28)

• Constraints corresponding to vertices [l,q, i]

ll
1i + lu

1i= ll
1,i+1 + vd,l

1i ∀ i ∈ I1\{m1,m1} (29)

yl
0= y0

l + ll
1,m1+1 + vd,l

1,m1
(30)

ll
1,m1

+ lu
1,ml

= vd,l
1,m1

(31)

ll
qi + lu

qi + ld
qi= ll

q,i+1 + vd,l
qi + vu,l

q−1,i ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with mq < i < mq +1 (32)



ll
qi + ld

qi = ll
q,i+1 + vu,l

q−1,i ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with i < mq or i > mq +1 (33)

ll
qi + ld

qi = ll
q,i+1 + vd,l

qi + vu,l
q−1,i ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with i = mq (34)

ll
qi + lu

qi + ld
qi = ll

q,i+1 + vu,l
q−1,i ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with i = mq +1 (35)

lu
q,mq−1+1 + ld

q,mq−1+1= ll
q,mq−1+2 + vd,l

q,mq−1+1 + vu,l
q−1,mq−1+1 ∀ q ∈ F\{1, p+1} with mq = mq−1 (36)

ld
q,mq−1+1 = ll

q,mq−1+2 + vd,l
q,mq−1+1 + vu,l

q−1,mq−1+1 (37)

ld
q,mq−1+1 = ll

q,mq−1+2 + vu,l
q−1,mq−1+1 ∀ q ∈ F\{1, p+1} with mq > mq−1 +1 (38)

ll
q,mq−1

+ lu
q,mq−1

+ ld
q,mq−1

= vd,l
q,mq−1

+ vu,l
q−1,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 (39)

ll
q,mq−1

+ lu
q,mq−1

+ ld
q,mq−1

= vu,l
q−1,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 −1 (40)

ll
q,mq−1

+ ld
q,mq−1

= vu,l
q−1,mq−1

∀ q ∈ F\{1, p+1} with mq < mq−1 −1 (41)

ll
p+1,i + ld

p+1,i = ll
p+1,i+1 + vu,l

pi ∀ i ∈ Ip\{mp,mp +1,mp} (42)

ld
p+1,mp+1 = ll

p+1,mp+2 + vu,l
p,mp+1 (43)

ll
p+1,mp

+ ld
p+1,mp

= vu,l
p,mp

(44)

• Constraints corresponding to vertices [u,q, i]

vu
qi + vu,l

qi + vu,r
qi = lu

q,i+1 + ru
q,i−1 + vu

q−1,i ∀ q ∈ B\{1, p}, i ∈ Iq
1\{mq,mq} with mq+1 ≤ i ≤ mq+1 (45)

vu
1,m1

+ vu,r
1,m1

= lu
1,m1+1 + y0

u if m1 = m2 and m1 ∈ I1
1 (46)

vu
q,mq

+ vu,l
q,mq

= ru
q,mq−1 + vu

q−1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1 and mq = mq−1 (47)

vu
q,mq

+ vu,l
q,mq

= ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1 and mq ̸= mq−1 (48)

vu,l
qi + vu,r

qi = lu
q,i+1 + ru

q,i−1 + vu
q−1,i ∀ q ∈ B\{1, p}, i ∈ Iq

1\{mq,mq} with i < mq+1 or i > mq+1 (49)

vu,r
1,m1

= lu
1,m1+1 + y0

u if m1 ̸= m2 and m1 ∈ I1
1 (50)

vu,l
q,mq

= ru
q,mq−1 + vu

q−1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1 and mq = mq−1 (51)

vu,l
q,mq

= ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq ̸= mq+1 and mq ̸= mq−1 (52)

vu
q,mq

+ vu,r
q,mq

= lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1 and mq = mq−1 (53)

vu
q,mq

+ vu,r
q,mq

= ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1 and mq ̸= mq−1 (54)

vu,r
q,mq

= lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1 and mq = mq−1 (55)

vu,r
q,mq

= ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq ̸= mq+1 and mq ̸= mq−1 (56)

vu,l
pi + vu,r

pi = lu
p,i+1 + ru

p,i−1 + vu
p−1,i ∀ i ∈ Ip

1\{mp,mp} (57)

vu,r
p,mp

= lu
p,mp+1 + vu

p−1,mp
if mp ∈ Ip

1 (58)

vu,l
p,mp

= ru
p,mp−1 + vu

p−1,mp
if mp ∈ Ip

1 (59)

vu
1i + vu,l

1i + vu,r
1i = lu

1,i+1 + ru
1,i−1 ∀ i ∈ I1

1\{m1,m1} with m2 ≤ i ≤ m2 (60)

vu,l
1i + vu,r

1i = lu
1,i+1 + ru

1,i−1 ∀ i ∈ I1
1\{m1,m1} with i < m2 or i > m2 (61)

vu
1,m1

+ vu,l
1,m1

= ru
1,m1−1 if m1 = m2 and m1 ∈ I1

1 (62)

vu,l
1,m1

= ru
1,m1−1 if m1 ̸= m2 and m1 ∈ I1

1 (63)



tu
1i + ed

1i1 = lu
1,i+1 + ru

1,i−1 ∀i ∈ I1
2\{m1,m1} (64)

tu
1,m1

+ ed
1,m1,1 = lu

1,m1+1 + y0
u if m1 ∈ I1

2 (65)

tu
1,m1

+ ed
1,m1,1 = ru

1,m1−1 if m1 ∈ I1
2 (66)

tu
qi + ed

qi1 = lu
q,i+1 + ru

q,i−1 + vu
q−1,i ∀ q ∈ B\{1}, i ∈ Iq

2\{mq,mq} (67)

tu
q,mq

+ ed
q,mq,1 = lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1} with mq ∈ Iq
2 and mq = mq−1 (68)

tu
q,mq

+ ed
q,mq,1 = ru

q,mq−1 + lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq ̸= mq−1 (69)

tu
q,mq

+ ed
q,mq,1 = ru

q,mq−1 + vu
q−1,mq

∀ q ∈ B\{1} with mq ∈ Iq
2 and mq = mq−1 (70)

tu
q,mq

+ ed
q,mq,1 = ru

q,mq−1 + lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq ̸= mq−1 (71)

tu
1i + ed

1i1 + ed
1i3 = lu

1,i+1 + ru
1,i−1 ∀ i ∈ (I1

0 ∪ I1
4 )\{m1,m1} (72)

tu
1,m1

+ ed
1,m1,1 + ed

1,m1,3 = lu
1,m1+1 + y0

u if m1 ∈ I1
0 ∪ I1

4 (73)

tu
1,m1

+ ed
1,m1,1 + ed

1,m1,3 = ru
1,m1−1 if m1 ∈ I1

0 ∪ I1
4 (74)

tu
qi + ed

qi1 + ed
qi3 = lu

q,i+1 + ru
q,i−1 + vu

q−1,i ∀ q ∈ B\{1}, i ∈ (Iq
2 ∪ Iq

4 )\{mq,mq} (75)

tu
q,mq

+ ed
q,mq,1 + ed

q,mq,3 = lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1} with mq ∈ Iq

0 ∪ Iq
4 and mq = mq−1 (76)

tu
q,mq

+ ed
q,mq,1 + ed

q,mq,3 = ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq ̸= mq−1 (77)

tu
q,mq + ed

q,mq,1 + ed
q,mq,3 = ru

q,mq−1 + vu
q−1,mq

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq = mq−1 (78)

tu
q,mq

+ ed
q,mq,1 + ed

q,mq,3 = ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq ̸= mq−1 (79)

tu
1i + ed

1i1 + ed
1i2 = lu

1,i+1 + ru
1,i−1 ∀ i ∈ (I1

3 ∪ I1
5 )\{m1,m1} (80)

tu
1,m1

+ ed
1,m1,1 + ed

1,m1,2 = lu
1,m1+1 + y0

u if m1 ∈ I1
3 ∪ I1

5 (81)

tu
1,m1

+ ed
1,m1,1 + ed

1,m1,2 = ru
1,m1−1 if m1 ∈ I1

3 ∪ I1
5 (82)

tu
qi + ed

qi1 + ed
qi2 = lu

q,i+1 + ru
q,i−1 + vu

q−1,i ∀ q ∈ B\{1}, i ∈ (Iq
3 ∪ Iq

5 )\{mq,mq} (83)

tu
q,mq

+ ed
q,mq,1 + ed

q,mq,2 = lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1} with mq ∈ Iq

3 ∪ Iq
5 and mq = mq−1 (84)

tu
q,mq

+ ed
q,mq,1 + ed

q,mq,2 = ru
q,mq−1 + lu

q,mq+1 + vu
q−1,mq

∀ q ∈ B\{1} with mq ∈ Iq
3 ∪ Iq

5 and mq ̸= mq−1 (85)

tu
q,mq

+ ed
q,mq,1 + ed

q,mq,2 = ru
q,mq−1 + vu

q−1,mq
∀ q ∈ B\{1} with mq ∈ Iq

3 ∪ Iq
5 and mq = mq−1 (86)

tu
q,mq + ed

q,mq,1 + ed
q,mq,2 = ru

q,mq−1 + lu
q,mq+1 + vu

q−1,mq
∀ q ∈ B\{1} with mq ∈ Iq

3 ∪ Iq
5 and mq ̸= mq−1 (87)

• Constraints corresponding to vertices [d,q, i]

vd,l
1i + vd,r

1i = ld
2,i+1 + rd

2,i−1 + vd
2i ∀ i ∈ I1

1\{m1,m1} with m2 ≤ i ≤ m2 (88)

vd,l
1i + vd,r

1i = ld
2,i+1 + rd

2,i−1 ∀ i ∈ I1
1\{m1,m1} with i < m2 or i > m2 (89)

vd,l
1,m1

+ vd,r
1,m1

= ld
2,m1+1 + vd

2,m1
if m1 ∈ I1

1 and m1 = m2 (90)

vd,l
1,m1

+ vd,r
1,m1

= ld
2,m1+1 if m1 ∈ I1

1 and m1 ̸= m2 (91)

vd,l
1,m1

= rd
2,m1−1 + vd

2,m1
if m1 ∈ I1

1 and m1 = m2 (92)

vd,l
1,m1

= rd
2,m1−1 if m1 ∈ I1

1 and m1 ̸= m2 (93)

vd,l
qi + vd,r

qi + vd
qi = ld

q+1,i+1 + rd
q+1,i−1 + vd

q+1,i ∀ q ∈ B\{1, p}, i ∈ Iq
1\{mq,mq} with mq+1 ≤ 1 ≤ mq+1 (94)



vd,l
qi + vd,r

qi + vd
qi = ld

q+1,i+1 + rd
q+1,i−1 ∀ q ∈ B\{1, p}, i ∈ Iq

1\{mq,mq} with i < mq+1 or i > mq+1 (95)

vd,r
q,mq

+ vd
q,mq

= ld
q+1,mq+1 + vd

q+1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1,mq = mq−1 (96)

vd,r
q,mq

+ vd
q,mq

= ld
q+1,mq+1 ∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1,mq = mq−1 (97)

vd,l
q,mq

+ vd
q,mq = rd

q+1,mq−1 + vd
q+1,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1,mq = mq−1 (98)

vd,l
q,mq

+ vd
q,mq

= rd
q+1,mq−1 ∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1,mq = mq−1 (99)

vd,l
pi + vd,r

pi + vd
pi = ld

p+1,i+1 + rd
p+1,i−1 ∀ i ∈ Ip

1 \{mp,mp} (100)

vd,l
p,mp

+ vd,r
p,mp

+ vd
p,mp

= ld
p+1,mp+1 if mp ∈ Ip

1 and mp ̸= mp−1 (101)

vd,r
p,mp

+ vd
p,mp

= ld
p+1,mp+1 if mp ∈ Ip

1 and mp = mp−1 (102)

vd,l
p,mp

+ vd,r
p,mp

+ vd
p,mp

= rd
p+1,mp−1 if mp ∈ Ip

1 and mp ̸= mp−1 (103)

vd,l
p,mp

+ vd
p,mp

= rd
p+1,mp−1 if mp ∈ Ip

1 and mp = mp−1 (104)

vd,l
q,mq

+ vd,r
q,mq

+ vd
q,mq

= ld
q+1,mq+1 + vd

q+1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1,mq ̸= mq−1 (105)

vd,l
q,mq

+ vd,r
q,mq

+ vd
q,mq

= ld
q+1,mq+1 ∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1,mq ̸= mq−1 (106)

vd,l
q,mq

+ vd,r
q,mq

+ vd
q,mq

= rd
q+1,mq−1 + vd

q+1,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1,mq ̸= mq−1 (107)

vd,l
q,mq

+ vd,r
q,mq

+ vd
q,mq

= rd
q+1,mq−1 ∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1,mq ̸= mq−1 (108)

eu
qi1 + td

qi = ld
q+1,i+1 + rd

q+1,i−1 + vd
q+1,i ∀ q ∈ B\{p} with i ∈ Iq

2\{mq,mq},mq+1 ≤ i ≤ mq+1 (109)

eu
qi1 + td

qi = ld
q+1,i+1 + rd

q+1,i−1 ∀ q ∈ B\{p} with i ∈ Iq
2\{mq,mq}, i < mq+1 or i > mq+1 (110)

eu
q,mq,1 + td

q,mq
= ld

q+1,mq+1 + vd
q+1,mq

∀ q ∈ B\{p} with mq ∈ Iq
2 and mq = mq+1 (111)

eu
q,mq,1 + td

q,mq
= ld

q+1,mq+1 ∀ q ∈ B\{p} with mq ∈ Iq
2 and mq ̸= mq+1 (112)

eu
q,mq,1 + td

q,mq
= rd

q+1,mq−1 + vd
q+1,mq

∀ q ∈ B\{p} with mq ∈ Iq
2 and mq = mq+1 (113)

eu
q,mq,1 + td

q,mq
= rd

q+1,mq−1 ∀ q ∈ B\{p} with mq ∈ Iq
2 and mq ̸= mq+1 (114)

eu
pi1 + td

pi = ld
p+1,i+1 + rd

p+1,i−1 ∀ i ∈ Ip
2 \{mp,mp} (115)

eu
p,mp,1 + td

p,mp
= ld

p+1,mp+1 if mp ∈ Ip
2 (116)

eu
p,mp,1 + td

p,mp
= rd

p+1,mp−1 if mp ∈ Ip
2 (117)

eu
qi1 + eu

qi2 + td
qi = ld

q+1,i+1 + rd
q+1,i−1 + vd

q+1,i ∀ q ∈ B\{p}, i ∈ (Iq
3 ∪ Iq

4 )\{mq,mq} with mq+1 ≤ i ≤ mq+1 (118)

eu
qi1 + eu

qi2 + td
qi = ld

q+1,i+1 + rd
q+1,i−1 ∀ q ∈ B\{p}, i ∈ (Iq

3 ∪ Iq
4 )\{mq,mq} with i < mq+1 or i > mq+1 (119)

eu
q,mq,1 + eu

q,mq,2 + td
q,mq

= ld
q+1,mq+1 + vd

q+1,mq
∀ q ∈ B\{p} with mq ∈ Iq

3 ∪ Iq
4 and mq = mq+1 (120)

eu
q,mq,1 + eu

q,mq,2 + td
q,mq

= ld
q+1,mq+1 ∀ q ∈ B\{p} with mq ∈ Iq

3 ∪ Iq
4 and mq ̸= mq+1 (121)

eu
q,mq,1 + eu

q,mq,2 + td
q,mq

= rd
q+1,mq−1 + vd

q+1,mq
∀ q ∈ B\{p} with mq ∈ Iq

3 ∪ Iq
4 and mq = mq+1 (122)

eu
q,mq,1 + eu

q,mq,2 + td
q,mq

= rd
q+1,mq−1 ∀ q ∈ B\{p} with mq ∈ Iq

3 ∪ Iq
4 and mq ̸= mq+1 (123)

eu
pi1 + eu

pi2 + td
pi = ld

p+1,i+1 + rd
p+1,i−1 ∀ i ∈ (Ip

3 ∪ Ip
4 )\{mp,mp} (124)

eu
p,mp,1 + eu

p,mp,2 + td
p,mp

= ld
p+1,mp+1 if mp ∈ Ip

3 ∪ Ip
4 (125)

eu
p,mp,1 + eu

p,mp,2 + td
p,mp

= rd
p+1,mp−1 if mp ∈ Ip

3 ∪ Ip
4 (126)

eu
qi1 + eu

qi3 + td
qi = ld

q+1,i+1 + rd
q+1,i−1 + vd

q+1,i ∀ q ∈ B\{p}, i ∈ (Iq
0 ∪ Iq

5 )\{mq,mq} with mq+1 ≤ i ≤ mq+1 (127)



eu
qi1 + eu

qi3 + td
qi = ld

q+1,i+1 + rd
q+1,i−1 ∀ q ∈ B\{p}, i ∈ (Iq

0 ∪ Iq
5 )\{mq,mq} with i < mq+1 or i > mq+1 (128)

eu
q,mq,1 + eu

q,mq,3 + td
q,mq

= ld
q+1,mq+1 + vd

q+1,mq
∀ q ∈ B\{p} with mq ∈ Iq

0 ∪ Iq
5 and mq = mq+1 (129)

eu
q,mq,1 + eu

q,mq,3 + td
q,mq

= ld
q+1,mq+1 ∀ q ∈ B\{p} with mq ∈ Iq

0 ∪ Iq
5 and mq ̸= mq+1 (130)

eu
q,mq,1 + eu

q,mq,3 + td
q,mq = rd

q+1,mq−1 + vd
q+1,mq

∀ q ∈ B\{p} with mq ∈ Iq
0 ∪ Iq

5 and mq = mq+1 (131)

eu
q,mq,1 + eu

q,mq,3 + td
q,mq

= rd
q+1,mq−1 ∀ q ∈ B\{p} with mq ∈ Iq

0 ∪ Iq
5 and mq ̸= mq+1 (132)

eu
pi1 + eu

pi3 + td
pi = ld

p+1,i+1 + rd
p+1,i−1 ∀ i ∈ (Ip

0 ∪ Ip
5 )\{mp,mp} (133)

eu
p,mp,1 + eu

p,mp,3 + td
p,mp

= ld
p+1,mp+1 if mp ∈ Ip

0 ∪ Ip
5 (134)

eu
p,mp,1 + eu

p,mp,3 + td
p,mp = rd

p+1,mp−1 if mp ∈ Ip
0 ∪ Ip

5 (135)

• Constraints corresponding to vertices [u,q, i,1]

vu
qi + vu,l

qi + vu,r
qi = eu

qi1 + tu
qi ∀ q ∈ B\{p}, i ∈ Iq

2\{mq,mq} with mq+1 ≤ i ≤ mq+1 (136)

vu,l
qi + vu,r

qi = eu
qi1 + tu

qi ∀ q ∈ B\{p}, i ∈ Iq
2\{mq,mq} with i < mq+1 or i > mq+1 (137)

vu
q,mq

+ vu,r
q,mq

= eu
q,mq,1 + tu

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq = mq+1 (138)

vu,r
q,mq

= eu
q,mq,1 + tu

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq ̸= mq+1 (139)

vu
q,mq

+ vu,l
q,mq

= eu
q,mq,1 + tu

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq = mq+1 (140)

vu,l
q,mq

= eu
q,mq,1 + tu

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq ̸= mq+1 (141)

vu,l
pi + vu,r

pi = eu
pi1 + tu

pi ∀ i ∈ Ip
2 \{mp,mp} (142)

vu,r
p,mp

= eu
p,mp,1 + tu

p,mp
if mp ∈ Ip

2 (143)

vu,l
p,mp

= eu
p,mp,1 + tu

p,mp if mp ∈ Ip
2 (144)

wu
qi1 = eu

qi1 + tu
qi ∀ q ∈ B, i ∈ Iq\(Iq

1 ∪ Iq
2 ) (145)

• Constraints corresponding to vertices [u,q, i,2]

vu
qi + vu,l

qi + vu,r
qi = eu

qi2 +wu
qi1 ∀ q ∈ B\{p}, i ∈ Iq

3 \{mq,mq} with mq+1 ≤ i ≤ mq+1 (146)

vu,l
qi + vu,r

qi = eu
qi2 +wu

qi1 ∀ q ∈ B\{p}, i ∈ Iq
3\{mq,mq} with i < mq+1 or i > mq+1 (147)

vu
q,mq

+ vu,r
q,mq

= eu
q,mq,2 +wu

q,mq,1 ∀ q ∈ B\{p} with mq ∈ Iq
3 and mq = mq+1 (148)

vu,r
q,mq

= eu
q,mq,2 +wu

q,mq,1 ∀ q ∈ B\{p} with mq ∈ Iq
3 and mq ̸= mq+1 (149)

vu
q,mq

+ vu,l
q,mq

= eu
q,mq,2 +wu

q,mq,1 ∀ q ∈ B\{p} with mq ∈ Iq
3 and mq = mq+1 (150)

vu,l
q,mq

= eu
q,mq,2 +wu

q,mq,1 ∀ q ∈ B\{p} with mq ∈ Iq
3 and mq ̸= mq+1 (151)

vu,l
pi + vu,r

pi = eu
pi2 +wu

pi1 ∀ i ∈ Ip
3 \{mp,mp} (152)

vu,r
p,mp

= eu
p,mp,2 +wu

p,mp,1 if mp ∈ Ip
3 (153)

vu,l
p,mp

= eu
p,mp,2 +wu

p,mp,1 if mp ∈ Ip
3 (154)

wu
qi2 = eu

qi2 +wu
qi1 ∀ q ∈ B, i ∈ Iq

4 (155)

wu
qi2 = wu

qi1 ∀ q ∈ B, i ∈ Iq
0 ∪ Iq

5 (156)



• Constraints corresponding to vertices [u,q, i,3]

vu
qi + vu,l

qi + vu,r
qi = wu

qi2 ∀ q ∈ B\{p}, i ∈ Iq
4\{mq,mq} with mq+1 ≤ i ≤ mq+1 (157)

vu,l
qi + vu,r

qi = wu
qi2 ∀ q ∈ B\{p}, i ∈ Iq

4\{mq,mq} with i < mq+1 or i > mq+1 (158)

vu
q,mq

+ vu,r
q,mq

= wu
q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq

4 and mq = mq+1 (159)

vu,r
q,mq

= wu
q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq

4 and mq ̸= mq+1 (160)

vu
q,mq + vu,l

q,mq
= wu

q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq
4 and mq = mq+1 (161)

vu,l
q,mq

= wu
q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq

4 and mq ̸= mq+1 (162)

vu,l
pi + vu,r

pi = wu
pi2 ∀ i ∈ Ip

4 \{mp,mp} (163)

vu,r
p,mp

= wu
p,mp,2 if mp ∈ Ip

4 (164)

vu,l
p,mp

= wu
p,mp,2 if mp ∈ Ip

4 (165)

vu
qi + vu,l

qi + vu,r
qi = eu

qi3 +wu
qi2 ∀ q ∈ B\{p}, i ∈ Iq

5 \{mq,mq} with mq+1 ≤ i ≤ mq+1 (166)

vu,l
qi + vu,r

qi = eu
qi3 +wu

qi2 ∀ q ∈ B\{p}, i ∈ Iq
5\{mq,mq} with i < mq+1 or i > mq+1 (167)

vu
q,mq

+ vu,r
q,mq

= eu
q,mq,3 +wu

q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq
5 and mq = mq+1 (168)

vu,r
q,mq

= eu
q,mq,3 +wu

q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq
5 and mq ̸= mq+1 (169)

vu
q,mq + vu,l

q,mq
= eu

q,mq,3 +wu
q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq

5 and mq = mq+1 (170)

vu,l
q,mq

= eu
q,mq,3 +wu

q,mq,2 ∀ q ∈ B\{p} with mq ∈ Iq
5 and mq ̸= mq+1 (171)

vu,l
pi + vu,r

pi = eu
pi3 +wu

pi2 ∀ i ∈ Ip
5 \{mp,mp} (172)

vu,r
p,mp

= eu
p,mp,3 +wu

p,mp,2 if mp ∈ Ip
5 (173)

vu,l
p,mp

= eu
p,mp,3 +wu

p,mp,2 if mp ∈ Ip
5 (174)

wu
qi3 = eu

qi3 +wu
qi2 ∀ q ∈ B, i ∈ Iq

0 (175)

• Constraints corresponding to vertices [u,q, i,4]

vu
qi + vu,l

qi + vu,r
qi = wu

qi3 ∀ q ∈ B\{p}, i ∈ Iq
0\{mq,mq} with mq+1 ≤ i ≤ mq+1 (176)

vu,l
qi + vu,r

qi = wu
qi3 ∀ q ∈ B\{p}, i ∈ Iq

0\{mq,mq} with i < mq+1 or i > mq+1 (177)

vu
q,mq

+ vu,r
q,mq

= wu
q,mq,3 ∀ q ∈ B\{p} with mq ∈ Iq

0 and mq = mq+1 (178)

vu,r
q,mq

= wu
q,mq,3 ∀ q ∈ B\{p} with mq ∈ Iq

0 and mq ̸= mq+1 (179)

vu
q,mq

+ vu,l
q,mq

= wu
q,mq,3 ∀ q ∈ B\{p} with mq ∈ Iq

0 and mq = mq+1 (180)

vu,l
q,mq

= wu
q,mq,3 ∀ q ∈ B\{p} with mq ∈ Iq

0 and mq ̸= mq+1 (181)

vu,l
pi + vu,r

pi = wu
pi3 ∀ i ∈ Ip

0 \{mp,mp} (182)

vu,r
p,mp

= wu
p,mp,3 if mp ∈ Ip

0 (183)

vu,l
p,mp

= wu
p,mp,3 if mp ∈ Ip

0 (184)



• Constraints corresponding to vertices [d,q, i,1]

vd,l
1i + vd,r

1i = ed
1i1 + td

1i ∀ i ∈ I1
2\{m1} (185)

vd,l
1,m1

= ed
1,m1,1 + td

1,m1
if m1 ∈ I1

2 (186)

vd
qi + vd,l

qi + vd,r
qi = ed

qi1 + td
qi ∀ q ∈ B\{1}, i ∈ Iq

2\{mq,mq} (187)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= ed
q,mq,1 + td

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 < mq (188)

vd
q,mq

+ vd,r
q,mq

= ed
q,mq,1 + td

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 = mq (189)

vd
q,mq + vd,l

q,mq
+ vd,r

q,mq
= ed

q,mq,1 + td
q,mq ∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 > mq (190)

vd
q,mq + vd,l

q,mq
= ed

q,mq,1 + td
q,mq ∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 = mq (191)

wd
qi1 = ed

qi1 + td
qi ∀ q ∈ B, i ∈ Iq\(Iq

1 ∪ Iq
2 ) (192)

• Constraints corresponding to vertices [d,q, i,2]

vd,l
1i + vd,r

1i = ed
1i2 +wd

1i1 ∀ i ∈ I1
3\{m1} (193)

vd,l
1,m1

= ed
1,m1,2 +wd

1,m1,1 if m1 ∈ I1
3 (194)

vd
qi + vd,l

qi + vd,r
qi = ed

qi2 +wd
qi1 ∀ q ∈ B\{1}, i ∈ Iq

3\{mq,mq} (195)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= ed
q,mq,2 +wd

q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 < mq (196)

vd
q,mq

+ vd,r
q,mq

= ed
q,mq,2 +wd

q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 = mq (197)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= ed
q,mq,2 +wd

q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 > mq (198)

vd
q,mq

+ vd,l
q,mq

= ed
q,mq,2 +wd

q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 = mq (199)

wd
qi2 = wd

qi1 ∀ q ∈ B, i ∈ Iq
0 ∪ Iq

4 (200)

wd
qi2 = ed

qi2 +wd
qi1 ∀ q ∈ B, i ∈ Iq

5 (201)

• Constraints corresponding to vertices [d,q, i,3]

vd,l
1i + vd,r

1i = ed
1i3 +wd

1i2 ∀ i ∈ I1
4\{m1} (202)

vd,l
1,m1

= ed
1,m1,3 +wd

1,m1,2 if m1 ∈ I1
4 (203)

vd
qi + vd,l

qi + vd,r
qi = ed

qi3 +wd
qi2 ∀ q ∈ B\{1}, i ∈ Iq

4\{mq,mq} (204)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= ed
q,mq,3 +wd

q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq
4 and mq−1 < mq (205)

vd
q,mq

+ vd,r
q,mq

= ed
q,mq,3 +wd

q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq
4 and mq−1 = mq (206)

vd
q,mq + vd,l

q,mq
+ vd,r

q,mq
= ed

q,mq,3 +wd
q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq

4 and mq−1 > mq (207)

vd
q,mq + vd,l

q,mq
= ed

q,mq,3 +wd
q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq

4 and mq−1 = mq (208)

vd,l
1i + vd,r

1i = wd
1i2 ∀ i ∈ I1

5\{m1} (209)

vd,l
1,m1

= wd
1,m1,2 if m1 ∈ I1

5 (210)

vd
qi + vd,l

qi + vd,r
qi = wd

qi2 ∀ q ∈ B\{1}, i ∈ Iq
5\{mq,mq} (211)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= wd
q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 < mq (212)



vd
q,mq

+ vd,r
q,mq

= wd
q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 = mq (213)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= wd
q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 > mq (214)

vd
q,mq

+ vd,l
q,mq

= wd
q,mq,2 ∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 = mq (215)

wd
qi3 = ed

qi3 +wd
qi2 ∀ q ∈ B, i ∈ Iq

0 (216)

• Constraints corresponding to vertices [d,q, i,4]

vd,l
1i + vd,r

1i = wd
1i3 ∀ i ∈ I1

0\{m1} (217)

vd,l
1,m1

= wd
1,m1,3 if m1 ∈ I1

0 (218)

vd
qi + vd,l

qi + vd,r
qi = wd

qi3 ∀ q ∈ B\{1}, i ∈ Iq
0\{mq,mq} (219)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= wd
q,mq,3 ∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 < mq (220)

vd
q,mq

+ vd,r
q,mq

= wd
q,mq,3 ∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 = mq (221)

vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

= wd
q,mq,3 ∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 > mq (222)

vd
q,mq

+ vd,l
q,mq

= wd
q,mq,3 ∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 = mq (223)

Subtour Elimination Constraints:

• Constraints corresponding to vertices [r,q, i]

r̃r
1,i−1 + ṽd,r

1i − (r̃r
1i + r̃u

1i) = rr
1i + ru

1i ∀ i ∈ I1\{m1,m1 −1,m1} (224)

ỹ0
r + ṽd,r

1,m1
− (r̃r

1,m1
+ r̃u

1,m1
) = rr

1,m1
+ ru

1,m1
(225)

r̃r
1,m1−1 + ṽd,r

1,m1−1 − r̃u
1,m1−1 = ru

1,m1−1 (226)

r̃r
q,i−1 + ṽu,r

q−1,i + ṽd,r
qi − (r̃r

qi + r̃u
qi + r̃d

qi) = rr
qi + ru

qi + rd
qi

∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with mq −1 < i < mq (227)

r̃r
q,i−1 + ṽu,r

q−1,i − (r̃r
qi + r̃d

qi) = rr
qi + rd

qi

∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with i < mq −1 or i > mq (228)

r̃r
q,i−1 + ṽu,r

q−1,i + ṽd,r
qi − (r̃r

qi + r̃d
qi) = rr

qi + rd
qi ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with i = mq (229)

r̃r
q,i−1 + ṽu,r

q−1,i − (r̃r
qi + r̃u

qi + r̃d
qi) = rr

qi + ru
qi + rd

qi

∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 −1,mq−1} with i = mq −1 (230)

ṽu,r
q−1,mq−1

+ ṽd,r
q,mq−1

− (r̃r
q,mq−1

+ r̃u
q,mq−1

+ r̃d
q,mq−1

) = rr
q,mq−1

+ ru
q,mq−1

+ rd
q,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 (231)

ṽu,r
q−1,mq−1

− (r̃r
q,mq−1

+ r̃u
q,mq−1

+ r̃d
q,mq−1

) = rr
q,mq−1

+ ru
q,mq−1

+ rd
q,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 +1 (232)

ṽu,r
q−1,mq−1

− (r̃r
q,mq−1

+ r̃d
q,mq−1

) = rr
q,mq−1

+ rd
q,mq−1

∀ q ∈ F\{1, p+1} with mq > mq−1 +1 (233)

r̃r
q,mq−1−2 + ṽu,r

q−1,mq−1−1 + ṽd,r
q,mq−1−1 − (r̃u

q,mq−1−1 + r̃d
q,mq−1−1) = ru

q,mq−1−1 + rd
q,mq−1−1

∀ q ∈ F\{1, p+1} with mq = mq−1 (234)

r̃r
q,mq−1−2 + ṽu,r

q−1,mq−1−1 + ṽd,r
q,mq−1−1 − r̃d

q,mq−1−1 = rd
q,mq−1−1 ∀ q ∈ F\{1, p+1} with mq = mq−1 −1 (235)



r̃r
q,mq−1−2 + ṽu,r

q−1,mq−1−1 − r̃d
q,mq−1−1 = rd

q,mq−1−1 ∀ q ∈ F\{1, p+1} with mq < mq−1 −1 (236)

r̃r
p+1,i−1 + ṽu,r

pi − (r̃r
p+1,i + r̃d

p+1,i) = rr
p+1,i + rd

p+1,i ∀ i ∈ Ip\{mp,mp −1,mp} (237)

ṽu,r
p,mp

− (r̃r
p+1,mp

+ r̃d
p+1,mp

) = rr
p+1,mp

+ rd
p+1,mp

(238)

r̃r
p+1,mp−2 + ṽu,r

p,mp−1 − r̃d
p+1,mp−1 = rd

p+1,mp−1 (239)

• Constraints corresponding to vertices [l,q, i]

l̃l
1,i+1 + ṽd,l

1i − (l̃l
1i + l̃u

1i) = ll
1i + lu

1i ∀ i ∈ I1\{m1,m1} (240)

ỹ0
l + l̃l

1,m1+1 + ṽd,l
1,m1

− ỹl
0 = yl

0 (241)

ṽd,l
1,m1

− (l̃l
1,ml

+ l̃u
1,ml

) = ll
1,ml

+ lu
1,ml

(242)

l̃l
q,i+1 + ṽd,l

q,i + ṽu,l
q−1,i − (l̃l

qi + l̃u
qi + l̃d

qi) = ll
qi + lu

qi + ld
qi

∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with mq < i < mq +1 (243)

l̃l
q,i+1 + ṽu,l

q−1,i − (l̃l
qi + l̃d

qi) = ll
qi + ld

qi

∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with i < mq or i > mq +1 (244)

l̃l
q,i+1 + ṽd,l

q,i + ṽu,l
q−1,i − (l̃l

qi + l̃d
qi) = ll

qi + ld
qi ∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with i = mq (245)

l̃l
q,i+1 + ṽu,l

q−1,i − (l̃l
qi + l̃u

qi + l̃d
qi) = ll

qi + lu
qi + ld

qi

∀ q ∈ F\{1, p+1}, i ∈ Iq\{mq−1,mq−1 +1,mq−1} with i = mq +1 (246)

l̃l
q,mq−1+2 + ṽd,l

q,mq−1+1 + ṽu,l
q−1,mq−1+1 − (l̃u

q,mq−1+1 + l̃d
q,mq−1+1) = lu

q,mq−1+1 + ld
q,mq−1+1

∀ q ∈ F\{1, p+1} with mq = mq−1 (247)

l̃l
q,mq−1+2 + ṽd,l

q,mq−1+1 + ṽu,l
q−1,mq−1+1 − l̃d

q,mq−1+1 = ld
q,mq−1+1 ∀ q ∈ F\{1, p+1} with mq = mq−1 +1 (248)

l̃l
q,mq−1+2 + ṽu,l

q−1,mq−1+1 − l̃d
q,mq−1+1 = ld

q,mq−1+1 ∀ q ∈ F\{1, p+1} with mq > mq−1 +1 (249)

ṽd,l
q,mq−1

+ ṽu,l
q−1,mq−1

− (l̃l
q,mq−1

+ l̃u
q,mq−1

+ l̃d
q,mq−1

) = ll
q,mq−1

+ lu
q,mq−1

+ ld
q,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 (250)

ṽu,l
q−1,mq−1

− (l̃l
q,mq−1

+ l̃u
q,mq−1

+ l̃d
q,mq−1

) = ll
q,mq−1

+ lu
q,mq−1

+ ld
q,mq−1

∀ q ∈ F\{1, p+1} with mq = mq−1 −1 (251)

ṽu,l
q−1,mq−1

− (l̃l
q,mq−1

+ l̃d
q,mq−1

) = ll
q,mq−1

+ ld
q,mq−1

∀ q ∈ F\{1, p+1} with mq < mq−1 −1 (252)

l̃l
p+1,i+1 + ṽu,l

pi − (l̃l
p+1,i + l̃d

p+1,i) = ll
p+1,i + ld

p+1,i ∀ i ∈ Ip\{mp,mp +1,mp} (253)

l̃l
p+1,mp+2 + ṽu,l

p,mp+1 − l̃d
p+1,mp+1 = ld

p+1,mp+1 (254)

ṽu,l
p,mp

− (l̃l
p+1,mp

+ l̃d
p+1,mp

) = ll
p+1,mp

+ ld
p+1,mp

(255)

• Constraints corresponding to vertices [u,q, i]

l̃u
q,i+1 + r̃u

q,i−1 + ṽu
q−1,i − (ṽu

qi + ṽu,l
qi + ṽu,r

qi ) = vu
qi + vu,l

qi + vu,r
qi (256)

∀ q ∈ B\{1, p}, i ∈ Iq
1\{mq,mq} with i ≥ mq+1, i ≤ mq+1 (257)

l̃u
1,m1+1 + ỹ0

u − (ṽu
1,m1

+ ṽu,r
1,m1

) = vu
1,m1

+ vu,r
1,m1

if m1 = m2 and m1 ∈ I1
1 (258)



r̃u
q,mq−1 + ṽu

q−1,mq
− (ṽu

q,mq
+ ṽu,l

q,mq
) = vu

q,mq
+ vu,l

q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1 and mq = mq−1 (259)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (ṽu
q,mq

+ ṽu,l
q,mq

) = vu
q,mq

+ vu,l
q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1 and mq ̸= mq−1 (260)

l̃u
q,i+1 + r̃u

q,i−1 + ṽu
q−1,i − (ṽu,l

qi + ṽu,r
qi ) = vu,l

q, + vu,r
qi

∀ q ∈ B\{1, p}, i ∈ Iq
1\{mq,mq} with i < mq+1 or i > mq+1 (261)

l̃u
1,m1+1 + ỹ0

u − ṽu,r
1,m1

= vu,r
1,m1

if m1 ̸= m2 and m1 ∈ I1
1 (262)

r̃u
q,mq−1 + ṽu

q−1,mq
− ṽu,l

q,mq
= vu,l

q,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1 and mq = mq−1 (263)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− ṽu,l
q,mq

= vu,l
q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq ̸= mq+1 and mq ̸= mq−1 (264)

l̃u
q,mq+1 + ṽu

q−1,mq
− (ṽu

q,mq
+ ṽu,r

q,mq
) = vu

q,mq
+ vu,r

q,mq
(265)

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1 and mq = mq−1 (266)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (ṽu
q,mq

+ ṽu,r
q,mq

) = vu
q,mq

+ vu,r
q,mq

(267)

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1 and mq ̸= mq−1 (268)

l̃u
q,mq+1 + ṽu

q−1,mq
− ṽu,r

q,mq
= vu,r

q,mq
∀ q ∈ B\{1, p} with mq ̸= mq+1 and mq ∈ Iq

1 (269)

l̃u
p,i+1 + r̃u

p,i−1 + ṽu
p−1,i − (ṽu,l

pi + ṽu,r
pi ) = vu,l

pi + vu,r
pi ∀ i ∈ Ip

1\{mp,mp} (270)

l̃u
p,mp+1 + ṽu

p−1,mp
− ṽu,r

p,mp
= vu,r

p,mp
if mp ∈ Ip

1 (271)

r̃u
p,mp−1 + ṽu

p−1,mp
− ṽu,l

p,mp
= vu,l

p,mp
if mp ∈ Ip

1 (272)

l̃u
1,i+1 + r̃u

1,i−1 − (ṽu
1i + ṽu,l

1i + ṽu,r
1i ) = vu

1i + vu,l
1i + vu,r

1i ∀ i ∈ I1
1\{m1,m1} with m2 ≤ i ≤ m2 (273)

l̃u
1,i+1 + r̃u

1,i−1 − (ṽu,l
1i + ṽu,r

1i ) = vu,l
1i + vu,r

1i ∀ i ∈ I1
1\{m1,m1} with i < m2 or i > m2 (274)

r̃u
1,m1−1 − (ṽu

1,m1
+ ṽu,l

1,m1
) = vu

1,m1
+ vu,l

1,m1
if m1 = m2 and m1 ∈ I1

1 (275)

r̃u
1,m1−1 − ṽu,l

1,m1
= vu,l

1,m1
if m1 ̸= m2 and m1 ∈ I1

1 (276)

l̃u
1,i+1 + r̃u

1,i−1 − (t̃u
1i + ẽd

1i1) = tu
1i + ed

1i1 ∀i ∈ I1
2\{m1,m1} (277)

l̃u
1,m1+1 + ỹ0

u − (t̃u
1,m1

+ ẽd
1,m1,1) = tu

1,m1
+ ed

1,m1,1 if m1 ∈ I1
2 (278)

r̃u
1,m1−1 − (t̃u

1,m1
+ ẽd

1,m1,1) = tu
1,m1

+ ed
1,m1,1 if m1 ∈ I1

2 (279)

l̃u
q,i+1 + r̃u

q,i−1 + ṽu
q−1,i − (t̃u

qi + ẽd
qi1) = tu

qi + ed
qi1 ∀ q ∈ B\{1}, i ∈ Iq

2\{mq,mq} (280)

l̃u
q,mq+1 + ṽu

q−1,mq
− (t̃u

q,mq
+ ẽd

q,mq,1) = tu
q,mq

+ ed
q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq

2 and mq = mq−1 (281)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (t̃u
q,mq

+ ẽd
q,mq,1) = tu

q,mq
+ ed

q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq
2 and mq ̸= mq−1 (282)

r̃u
q,mq−1 + ṽu

q−1,mq
− (t̃u

q,mq + ẽd
q,mq,1) = tu

q,mq + ed
q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq

2 and mq = mq−1 (283)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (t̃u
q,mq

+ ẽd
q,mq,1) = tu

q,mq
+ ed

q,mq,1 ∀ q ∈ B\{1} with mq ∈ Iq
2 and mq ̸= mq−1 (284)

l̃u
1,i+1 + r̃u

1,i−1 − (t̃u
1i + ẽd

1i1 + ẽd
1i3) = tu

1i + ed
1i1 + ed

1i3 ∀ i ∈ (I1
0 ∪ I1

4 )\{m1,m1} (285)

l̃u
1,m1+1 + ỹ0

u − (t̃u
1,m1

+ ẽd
1,m1,1 + ẽd

1,m1,3) = tu
1,m1

+ ed
1,m1,1 + ed

1,m1,3 if m1 ∈ I1
0 ∪ I1

4 (286)

r̃u
1,m1−1 − (t̃u

1,m1
+ ẽd

1,m1,1 + ẽd
1,m1,3) = tu

1,m1
+ ed

1,m1,1 + ed
1,m1,3 if m1 ∈ I1

0 ∪ I1
4 (287)

l̃u
q,i+1 + r̃u

q,i−1 + ṽu
q−1,i − (t̃u

qi + ẽd
qi1 + ẽd

qi3) = tu
qi + ed

qi1 + ed
qi3 ∀ q ∈ B\{1}, i ∈ (Iq

0 ∪ Iq
4 )\{mq,mq} (288)



l̃u
q,mq+1 + ṽu

q−1,mq
− (t̃u

q,mq
+ ẽd

q,mq,1 + ẽd
q,mq,3) = tu

q,mq
+ ed

q,mq,1 + ed
q,mq,3

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq = mq−1 (289)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (t̃u
q,mq

+ ẽd
q,mq,1 + ẽd

q,mq,3) = tu
q,mq

+ ed
q,mq,1 + ed

q,mq,3

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq ̸= mq−1 (290)

r̃u
q,mq−1 + ṽu

q−1,mq
− (t̃u

q,mq + ẽd
q,mq,1 + ẽd

q,mq,3) = tu
q,mq + ed

q,mq,1 + ed
q,mq,3

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq = mq−1 (291)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (t̃u
q,mq + ẽd

q,mq,1 + ẽd
q,mq,3) = tu

q,mq + ed
q,mq,1 + ed

q,mq,3

∀ q ∈ B\{1} with mq ∈ Iq
0 ∪ Iq

4 and mq ̸= mq−1 (292)

l̃u
1,i+1 + r̃u

1,i−1 − (t̃u
1i + ẽd

1i1 + ẽd
1i2) = tu

1i + ed
1i1 + ed

1i2 ∀ i ∈ (I1
3 ∪ I1

5 )\{m1,m1} (293)

l̃u
1,m1+1 + ỹ0

u − (t̃u
1,m1

+ ẽd
1,m1,1 + ẽd

1,m1,2) = tu
1,m1

+ ed
1,m1,1 + ed

1,m1,2 if m1 ∈ I1
3 ∪ I1

5 (294)

r̃u
1,m1−1 − (t̃u

1,m1
+ ẽd

1,m1,1 + ẽd
1,m1,2) = tu

1,m1
+ ed

1,m1,1 + ed
1,m1,2 if m1 ∈ I1

3 ∪ I1
5 (295)

l̃u
q,i+1 + r̃u

q,i−1 + ṽu
q−1,i − (t̃u

qi + ẽd
qi1 + ẽd

qi2) = tu
qi + ed

qi1 + ed
qi2 ∀ q ∈ B\{1}, i ∈ (Iq

3 ∪ Iq
5 )\{mq,mq} (296)

l̃u
q,mq+1 + ṽu

q−1,mq
− (t̃u

q,mq
+ ẽd

q,mq,1 + ẽd
q,mq,2) = tu

q,mq
+ ed

q,mq,1 + ed
q,mq,2

∀ q ∈ B\{1} with mq ∈ Iq
3 ∪ Iq

5 and mq = mq−1 (297)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (t̃u
q,mq

+ ẽd
q,mq,1 + ẽd

q,mq,2) = tu
q,mq

+ ed
q,mq,1 + ed

q,mq,2

∀ q ∈ B\{1} with mq ∈ Iq
3 ∪ Iq

5 and mq ̸= mq−1 (298)

r̃u
q,mq−1 + ṽu

q−1,mq
− (t̃u

q,mq
+ ẽd

q,mq,1 + ẽd
q,mq,2) = tu

q,mq
+ ed

q,mq,1 + ed
q,mq,2

∀ q ∈ B\{1} with mq ∈ Iq
3 ∪ Iq

5 and mq = mq−1 (299)

r̃u
q,mq−1 + l̃u

q,mq+1 + ṽu
q−1,mq

− (t̃u
q,mq + ẽd

q,mq,1 + ẽd
q,mq,2) = tu

q,mq + ed
q,mq,1 + ed

q,mq,2

∀ q ∈ B\{1} with mq ∈ Iq
3 ∪ Iq

5 and mq ̸= mq−1 (300)

• Constraints corresponding to vertices [d,q, i]

l̃d
2,i+1 + r̃d

2,i−1 + ṽd
2i − (ṽd,l

1i + ṽd,r
1i ) = vd,l

1i + vd,r
1i ∀ i ∈ I1

1\{m1,m1} with m2 ≤ i ≤ m2 (301)

l̃d
2,i+1 + r̃d

2,i−1 − (ṽd,l
1i + ṽd,r

1i ) = vd,l
1i + vd,r

1i ∀ i ∈ I1
1\{m1,m1} with i < m2 or i > m2 (302)

l̃d
2,m1+1 + ṽd

2,m1
− (ṽd,l

1,m1
+ ṽd,r

1,m1
) = vd,l

1,m1
+ vd,r

1,m1
if m1 ∈ I1

1 and m1 = m2 (303)

l̃d
2,m1+1 − (ṽd,l

1,m1
+ ṽd,r

1,m1
) = vd,l

1,m1
+ vd,r

1,m1
if m1 ∈ I1

1 and m1 ̸= m2 (304)

r̃d
2,m1−1 + ṽd

2,m1
− ṽd,l

1,m1
= vd,l

1,m1
if m1 ∈ I1

1 and m1 = m2 (305)

r̃d
2,m1−1 − ṽd,l

1,m1
= vd,l

1,m1
if m1 ∈ I1

1 and m1 ̸= m2 (306)

l̃d
q+1,i+1 + r̃d

q+1,i−1 + ṽd
q+1,i − (ṽd,l

qi + ṽd,r
qi + ṽd

qi) = vd,l
qi + vd,r

qi + vd
qi

∀ q ∈ B\{1, p}, i ∈ Iq
1\{mq,mq} with mq+1 ≤ i ≤ mq+1 (307)

l̃d
q+1,i+1 + r̃d

q+1,i−1 − (ṽd,l
qi + ṽd,r

qi + ṽd
qi) = vd,l

qi + vd,r
qi + vd

qi

∀ q ∈ B\{1, p}, i ∈ Iq
1\{mq,mq}, with i < mq+1 or 1 > mq+1 (308)



l̃d
q+1,mq+1 + ṽd

q+1,mq
− (ṽd,r

q,mq
+ ṽd

q,mq
) = vd,r

q,mq
+ vd

q,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1,mq = mq−1 (309)

l̃d
q+1,mq+1 − (ṽd,r

q,mq
+ ṽd

q,mq
) = vd,r

q,mq
+ vd

q,mq
∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1,mq = mq−1 (310)

r̃d
q+1,mq−1 + ṽd

q+1,mq
− (ṽd,l

q,mq
+ ṽd

q,mq) = vd,l
q,mq

+ vd
q,mq ∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq = mq+1,mq = mq−1 (311)

r̃d
q+1,mq−1 − (ṽd,l

q,mq
+ ṽd

q,mq) = vd,l
q,mq

+ vd
q,mq ∀ q ∈ B\{1, p} with mq ∈ Iq

1 and mq ̸= mq+1,mq = mq−1 (312)

l̃d
p+1,i+1 + r̃d

p+1,i−1 − (ṽd,l
pi + ṽd,r

pi + ṽd
pi) = vd,l

pi + vd,r
pi + vd

pi ∀ i ∈ Ip
1 \{mp,mp} (313)

l̃d
p+1,mp+1 − (ṽd,l

p,mp
+ ṽd,r

p,mp
+ ṽd

p,mp
) = vd,l

p,mp
+ vd,r

p,mp
+ vd

p,mp
if mp ∈ Ip

1 and mp ̸= mp−1 (314)

l̃d
p+1,mp+1 − (ṽd,r

p,mp
+ ṽd

p,mp
) = vd,r

p,mp
+ vd

p,mp
if mp ∈ Ip

1 and mp = mp−1 (315)

r̃d
p+1,mp−1 − (ṽd,l

p,mp
+ ṽd,r

p,mp
+ ṽd

p,mp) = vd,l
p,mp

+ vd,r
p,mp

+ vd
p,mp if mp ∈ Ip

1 and mp ̸= mp−1 (316)

r̃d
p+1,mp−1 − (ṽd,l

p,mp
+ ṽd

p,mp
) = vd,l

p,mp
+ vd

p,mp
if mp ∈ Ip

1 and mp = mp−1 (317)

l̃d
q+1,mq+1 + ṽd

q+1,mq
− (ṽd,l

q,mq
+ ṽd,r

q,mq
+ ṽd

q,mq
) = vd,l

q,mq
+ vd,r

q,mq
+ vd

q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1,mq ̸= mq−1 (318)

l̃d
q+1,mq+1 − (ṽd,l

q,mq
+ ṽd,r

q,mq
+ ṽd

q,mq
) = vd,l

q,mq
+ vd,r

q,mq
+ vd

q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq ̸= mq+1,mq ̸= mq−1 (319)

r̃d
q+1,mq−1 + ṽd

q+1,mq
− (ṽd,l

q,mq
+ ṽd,r

q,mq
+ ṽd

q,mq) = vd,l
q,mq

+ vd,r
q,mq

+ vd
q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq = mq+1,mq ̸= mq−1 (320)

r̃d
q+1,mq−1 − (ṽd,l

q,mq
+ ṽd,r

q,mq
+ ṽd

q,mq
) = vd,l

q,mq
+ vd,r

q,mq
+ vd

q,mq

∀ q ∈ B\{1, p} with mq ∈ Iq
1 and mq ̸= mq+1,mq ̸= mq−1 (321)

l̃d
q+1,i+1 + r̃d

q+1,i−1 + ṽd
q+1,i − (ẽu

qi1 + t̃d
qi) = eu

qi1 + td
qi ∀ q ∈ B\{p}, i ∈ Iq

2\{mq,mq} with mq+1 ≤ i ≤ mq+1 (322)

l̃d
q+1,i+1 + r̃d

q+1,i−1 − (ẽu
qi1 + t̃d

qi) = eu
qi1 + td

qi ∀ q ∈ B\{p}, i ∈ Iq
2\{mq,mq} with i < mq+1 or i > mq+1 (323)

l̃d
q+1,mq+1 + ṽd

q+1,mq
− (ẽu

q,mq,1 + t̃d
q,mq

) = eu
q,mq,1 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq = mq+1 (324)

l̃d
q+1,mq+1 − (ẽu

q,mq,1 + t̃d
q,mq

) = eu
q,mq,1 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq ̸= mq+1 (325)

r̃d
q+1,mq−1 + ṽd

q+1,mq
− (ẽu

q,mq,1 + t̃d
q,mq

) = eu
q,mq,1 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq = mq+1 (326)

r̃d
q+1,mq−1 − (ẽu

q,mq,1 + t̃d
q,mq

) = eu
q,mq,1 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq ̸= mq+1 (327)

l̃d
p+1,i+1 + r̃d

p+1,i−1 − (ẽu
pi1 + t̃d

pi) = eu
pi1 + td

pi ∀ i ∈ Ip
2 \{mp,mp} (328)

l̃d
p+1,mp+1 − (ẽu

p,mp,1 + t̃d
p,mp

) = eu
p,mp,1 + td

p,mp
if mp ∈ Ip

2 (329)

r̃d
p+1,mp−1 − (ẽu

p,mp,1 + t̃d
p,mp

) = eu
p,mp,1 + td

p,mp
if mp ∈ Ip

2 (330)

l̃d
q+1,i+1 + r̃d

q+1,i−1 + ṽd
q+1,i − (ẽu

qi1 + ẽu
qi2 + t̃d

qi) = eu
qi1 + eu

qi2 + td
qi

∀ q ∈ B\{p}, i ∈ (Iq
3 ∪ Iq

4 )\{mq,mq} with mq+1 ≤ i ≤ mq+1 (331)

l̃d
q+1,i+1 + r̃d

q+1,i−1 − (ẽu
qi1 + ẽu

qi2 + t̃d
qi) = eu

qi1 + eu
qi2 + td

qi

∀ q ∈ B\{p}, i ∈ (Iq
3 ∪ Iq

4 )\{mq,mq} with i < mq+1 or i > mq+1 (332)

l̃d
q+1,mq+1 + ṽd

q+1,mq
− (ẽu

q,mq,1 + ẽu
q,mq,2 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,2 + td

q,mq

∀ q ∈ B\{p} with mq ∈ Iq
3 ∪ Iq

4 and mq = mq+1 (333)



l̃d
q+1,mq+1 − (ẽu

q,mq,1 + ẽu
q,mq,2 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,2 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

3 ∪ Iq
4 and mq ̸= mq+1 (334)

r̃d
q+1,mq−1 + ṽd

q+1,mq
− (ẽu

q,mq,1 + ẽu
q,mq,2 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,2 + td

q,mq

∀ q ∈ B\{p} with mq ∈ Iq
3 ∪ Iq

4 and mq = mq+1 (335)

r̃d
q+1,mq−1 − (ẽu

q,mq,1 + ẽu
q,mq,2 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,2 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

3 ∪ Iq
4 and mq ̸= mq+1 (336)

l̃d
p+1,i+1 + r̃d

p+1,i−1 − (ẽu
pi1 + ẽu

pi2 + t̃d
pi) = eu

pi1 + eu
pi2 + td

pi ∀ i ∈ (Ip
3 ∪ Ip

4 )\{mp,mp} (337)

l̃d
p+1,mp+1 − (ẽu

p,mp,1 + ẽu
p,mp,2 + t̃d

p,mp
) = eu

p,mp,1 + eu
p,mp,2 + td

p,mp
if mp ∈ Ip

3 ∪ Ip
4 (338)

r̃d
p+1,mp−1 − (ẽu

p,mp,1 + ẽu
p,mp,2 + t̃d

p,mp
) = eu

p,mp,1 + eu
p,mp,2 + td

p,mp
if mp ∈ Ip

3 ∪ Ip
4 (339)

l̃d
q+1,i+1 + r̃d

q+1,i−1 + ṽd
q+1,i − (ẽu

qi1 + ẽu
qi3 + t̃d

qi) = eu
qi1 + eu

qi3 + td
qi

∀ q ∈ B\{p}, i ∈ (Iq
0 ∪ Iq

5 )\{mq,mq} with mq+1 ≤ i ≤ mq+1 (340)

l̃d
q+1,i+1 + r̃d

q+1,i−1 − (ẽu
qi1 + ẽu

qi3 + t̃d
qi) = eu

qi1 + eu
qi3 + td

qi

∀ q ∈ B\{p}, i ∈ (Iq
0 ∪ Iq

5 )\{mq,mq} with i < mq+1 or i > mq+1 (341)

l̃d
q+1,mq+1 + ṽd

q+1,mq
− (ẽu

q,mq,1 + ẽu
q,mq,3 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,3 + td

q,mq

∀ q ∈ B\{p} with mq ∈ Iq
0 ∪ Iq

5 and mq = mq+1 (342)

l̃d
q+1,mq+1 − (ẽu

q,mq,1 + ẽu
q,mq,3 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,3 + td

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

0 ∪ Iq
5 and mq ̸= mq+1 (343)

r̃d
q+1,mq−1 + ṽd

q+1,mq
− (ẽu

q,mq,1 + ẽu
q,mq,3 + t̃d

q,mq
) = eu

q,mq,1 + eu
q,mq,3 + td

q,mq

∀ q ∈ B\{p} with mq ∈ Iq
0 ∪ Iq

5 and mq = mq+1 (344)

r̃d
q+1,mq−1 − (ẽu

q,mq,1 + ẽu
q,mq,3 + t̃d

q,mq) = eu
q,mq,1 + eu

q,mq,3 + td
q,mq ∀ q ∈ B\{p} with mq ∈ Iq

0 ∪ Iq
5 and mq ̸= mq+1 (345)

l̃d
p+1,i+1 + r̃d

p+1,i−1 − (ẽu
pi1 + ẽu

pi3 + t̃d
pi) = eu

pi1 + eu
pi3 + td

pi ∀ i ∈ (Ip
0 ∪ Ip

5 )\{mp,mp} (346)

l̃d
p+1,mp+1 − (ẽu

p,mp,1 + ẽu
p,mp,3 + t̃d

p,mp
) = eu

p,mp,1 + eu
p,mp,3 + td

p,mp
if mp ∈ Ip

0 ∪ Ip
5 (347)

r̃d
p+1,mp−1 − (ẽu

p,mp,1 + ẽu
p,mp,3 + t̃d

p,mp
) = eu

p,mp,1 + eu
p,mp,3 + td

p,mp
if mp ∈ Ip

0 ∪ Ip
5 (348)

• Constraints corresponding to vertices [u,q, i,1]

ẽu
qi1 + t̃u

qi − (ṽu
qi + ṽu,l

qi + ṽu,r
qi ) = vu

qi + vu,l
qi + vu,r

qi ∀ q ∈ B\{p}, i ∈ Iq
2\{mq,mq} with mq+1 ≤ i ≤ mq+1 (349)

ẽu
qi1 + t̃u

qi − (ṽu,l
qi + ṽu,r

qi ) = vu,l
qi + vu,r

qi ∀ q ∈ B\{p}, i ∈ Iq
2\{mq,mq} with i < mq+1 or i > mq+1 (350)

ẽu
q,mq,1 + t̃u

q,mq
− (ṽu

q,mq
+ ṽu,r

q,mq
) = vu

q,mq
+ vu,r

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq = mq+1 (351)

ẽu
q,mq,1 + t̃u

q,mq
− ṽu,r

q,mq
= vu,r

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

2 and mq ̸= mq+1 (352)

ẽu
q,mq,1 + t̃u

q,mq − (ṽu
q,mq + ṽu,l

q,mq
) = vu

q,mq + vu,l
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
2 and mq = mq+1 (353)

ẽu
q,mq,1 + t̃u

q,mq − ṽu,l
q,mq

= vu,l
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
2 and mq ̸= mq+1 (354)

ẽu
pi1 + t̃u

pi − (ṽu,l
pi + ṽu,r

pi ) = vu,l
pi + vu,r

pi ∀ i ∈ Ip
2 \{mp,mp} (355)

ẽu
p,mp,1 + t̃u

p,mp
− ṽu,r

p,mp
= vu,r

p,mp
if mp ∈ Ip

2 (356)

ẽu
p,mp,1 + t̃u

p,mp
− ṽu,l

p,mp
= vu,l

p,mp
if mp ∈ Ip

2 (357)

ẽu
qi1 + t̃u

qi − w̃u
qi1 = wu

qi1 ∀ q ∈ B, i ∈ Iq\(Iq
1 ∪ Iq

2 ) (358)



• Constraints corresponding to vertices [u,q, i,2]

ẽu
qi2 + w̃u

qi1 − (ṽu
qi + ṽu,l

qi + ṽu,r
qi ) = vu

qi + vu,l
qi + vu,r

qi ∀ q ∈ B\{p}, i ∈ Iq
3\{mq,mq} with mq+1 ≤ i ≤ mq+1 (359)

ẽu
qi2 + w̃u

qi1 − (ṽu,l
qi + ṽu,r

qi ) = vu,l
qi + vu,r

qi ∀ q ∈ B\{p}, i ∈ Iq
3\{mq,mq} with i < mq+1 or i > mq+1 (360)

ẽu
q,mq,2 + w̃u

q,mq,1 − (ṽu
q,mq

+ ṽu,r
q,mq

) = vu
q,mq

+ vu,r
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
3 and mq = mq+1 (361)

ẽu
q,mq,2 + w̃u

q,mq,1 − ṽu,r
q,mq

= vu,r
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
3 and mq ̸= mq+1 (362)

ẽu
q,mq,2 + w̃u

q,mq,1 − (ṽu
q,mq

+ ṽu,l
q,mq

) = vu
q,mq

+ vu,l
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
3 and mq = mq+1 (363)

ẽu
q,mq,2 + w̃u

q,mq,1 − ṽu,l
q,mq

= vu,l
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
3 and mq ̸= mq+1 (364)

ẽu
pi2 + w̃u

pi1 − (ṽu,l
pi + ṽu,r

pi ) = vu,l
pi + vu,r

pi ∀ i ∈ Ip
3 \{mp,mp} (365)

ẽu
p,mp,2 + w̃u

p,mp,1 − ṽu,r
p,mp

= vu,r
p,mp

if mp ∈ Ip
3 (366)

ẽu
p,mp,2 + w̃u

p,mp,1 − ṽu,l
p,mp

= vu,l
p,mp

if mp ∈ Ip
3 (367)

ẽu
qi2 + w̃u

qi1 − w̃u
qi2 = wu

qi2 ∀ q ∈ B, i ∈ Iq
4 (368)

w̃u
qi1 − w̃u

qi2 = wu
qi2 ∀ q ∈ B, i ∈ Iq

0 ∪ Iq
5 (369)

• Constraints corresponding to vertices [u,q, i,3]

w̃u
qi2 − (ṽu

qi + ṽu,l
qi + ṽu,r

qi ) = vu
qi + vu,l

qi + vu,r
qi ∀ q ∈ B\{p}, i ∈ Iq

4\{mq,mq} with mq+1 ≤ i ≤ mq+1 (370)

w̃u
qi2 − (ṽu,l

qi + ṽu,r
qi ) = vu,l

qi + vu,r
qi ∀ q ∈ B\{p}, i ∈ Iq

4\{mq,mq} with i < mq+1 or i > mq+1 (371)

w̃u
q,mq,2 − (ṽu

q,mq
+ ṽu,r

q,mq
) = vu

q,mq
+ vu,r

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

4 and mq = mq+1 (372)

w̃u
q,mq,2 − ṽu,r

q,mq
= vu,r

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

4 and mq ̸= mq+1 (373)

w̃u
q,mq,2 − (ṽu

q,mq
+ ṽu,l

q,mq
) = vu

q,mq
+ vu,l

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

4 and mq = mq+1 (374)

w̃u
q,mq,2 − ṽu,l

q,mq
= vu,l

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

4 and mq ̸= mq+1 (375)

w̃u
pi2 − (ṽu,l

pi + ṽu,r
pi ) = vu,l

pi + vu,r
pi ∀ i ∈ Ip

4 \{mp,mp} (376)

w̃u
p,mp,2 − ṽu,r

p,mp
= vu,r

p,mp
if mp ∈ Ip

4 (377)

w̃u
p,mp,2 − ṽu,l

p,mp
= vu,l

p,mp
if mp ∈ Ip

4 (378)

ẽu
qi3 + w̃u

qi2 − (ṽu
qi + ṽu,l

qi + ṽu,r
qi ) = vu

qi + vu,l
qi + vu,r

qi ∀ q ∈ B\{p}, i ∈ Iq
5\{mq,mq} with mq+1 ≤ i ≤ mq+1 (379)

ẽu
qi3 + w̃u

qi2 − (ṽu,l
qi + ṽu,r

qi ) = vu,l
qi + vu,r

qi ∀ q ∈ B\{p}, i ∈ Iq
5\{mq,mq} with i < mq+1 or i > mq+1 (380)

ẽu
q,mq,3 + w̃u

q,mq,2 − (ṽu
q,mq

+ ṽu,r
q,mq

) = vu
q,mq

+ vu,r
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
5 and mq = mq+1 (381)

ẽu
q,mq,3 + w̃u

q,mq,2 − ṽu,r
q,mq

= vu,r
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
5 and mq ̸= mq+1 (382)

ẽu
q,mq,3 + w̃u

q,mq,2 − (ṽu
q,mq

+ ṽu,l
q,mq

) = vu
q,mq

+ vu,l
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
5 and mq = mq+1 (383)

ẽu
q,mq,3 + w̃u

q,mq,2 − ṽu,l
q,mq

= vu,l
q,mq

∀ q ∈ B\{p} with mq ∈ Iq
5 and mq ̸= mq+1 (384)

ẽu
pi3 + w̃u

pi2 − (ṽu,l
pi + ṽu,r

pi ) = vu,l
pi + vu,r

pi ∀ i ∈ Ip
5 \{mp,mp} (385)

ẽu
p,mp,3 + w̃u

p,mp,2 − ṽu,r
p,mp

= vu,r
p,mp

if mp ∈ Ip
5 (386)

ẽu
p,mp,3 + w̃u

p,mp,2 − ṽu,l
p,mp

= vu,l
p,mp

if mp ∈ Ip
5 (387)

ẽu
qi3 + w̃u

qi2 − w̃u
qi3 = wu

qi3 ∀ q ∈ B, i ∈ Iq
0 (388)



• Constraints corresponding to vertices [u,q, i,4]

w̃u
qi3 − (ṽu

qi + ṽu,l
qi + ṽu,r

qi ) = vu
qi + vu,l

qi + vu,r
qi ∀ q ∈ B\{p}, i ∈ Iq

0\{mq,mq} with mq+1 ≤ i ≤ mq+1 (389)

w̃u
qi3 − (ṽu,l

qi + ṽu,r
qi ) = vu,l

qi + vu,r
qi ∀ q ∈ B\{p}, i ∈ Iq

0\{mq,mq} with i < mq+1 or i > mq+1 (390)

w̃u
q,mq,3 − (ṽu

q,mq
+ ṽu,r

q,mq
) = vu

q,mq
+ vu,r

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

0 and mq = mq+1 (391)

w̃u
q,mq,3 − ṽu,r

q,mq
= vu,r

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

0 and mq ̸= mq+1 (392)

w̃u
q,mq,3 − (ṽu

q,mq + ṽu,l
q,mq

) = vu
q,mq + vu,l

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

0 and mq = mq+1 (393)

w̃u
q,mq,3 − ṽu,l

q,mq
= vu,l

q,mq
∀ q ∈ B\{p} with mq ∈ Iq

0 and mq ̸= mq+1 (394)

w̃u
pi3 − (ṽu,l

pi + ṽu,r
pi ) = vu,l

pi + vu,r
pi ∀ i ∈ Ip

0 \{mp,mp} (395)

w̃u
p,mp,3 − ṽu,r

p,mp
= vu,r

p,mp
if mp ∈ Ip

0 (396)

w̃u
p,mp,3 − ṽu,l

p,mp
= vu,l

p,mp
if mp ∈ Ip

0 (397)

• Constraints corresponding to vertices [d,q, i,1]

ẽd
1i1 + t̃d

1i − (ṽd,l
1i + ṽd,r

1i ) = vd,l
1i + vd,r

1i ∀ i ∈ I1
2\{m1} (398)

ẽd
1,m1,1 + t̃d

1,m1
− ṽd,l

1,m1
= vd,l

1,m1
if m1 ∈ I1

2 (399)

ẽd
qi1 + t̃d

qi − (ṽd
qi + ṽd,l

qi + ṽd,r
qi ) = vd

qi + vd,l
qi + vd,r

qi ∀ q ∈ B\{1}, i ∈ Iq
2\{mq,mq} (400)

ẽd
q,mq,1 + t̃d

q,mq
− (ṽd

q,mq
+ ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,l

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 < mq (401)

ẽd
q,mq,1 + t̃d

q,mq
− (ṽd

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 = mq (402)

ẽd
q,mq,1 + t̃d

q,mq
− (ṽd

q,mq
+ ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,l

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 > mq (403)

ẽd
q,mq,1 + t̃d

q,mq
− (ṽd

q,mq
+ ṽd,l

q,mq
) = vd

q,mq
+ vd,l

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

2 and mq−1 = mq (404)

ẽd
qi1 + t̃d

qi − w̃d
qi1 = wd

qi1 ∀ q ∈ B, i ∈ Iq\(Iq
1 ∪ Iq

2 ) (405)

• Constraints corresponding to vertices [d,q, i,2]

ẽd
1i2 + w̃d

1i1 − (ṽd,l
1i + ṽd,r

1i ) = vd,l
1i + vd,r

1i ∀ i ∈ I1
3\{m1} (406)

ẽd
1,m1,2 + w̃d

1,m1,1 − ṽd,l
1,m1

= vd,l
1,m1

if m1 ∈ I1
3 (407)

ẽd
qi2 + w̃d

qi1 − (ṽd
qi + ṽd,l

qi + ṽd,r
qi ) = vd

qi + vd,l
qi + vd,r

qi ∀ q ∈ B\{1}, i ∈ Iq
3\{mq,mq} (408)

ẽd
q,mq,2 + w̃d

q,mq,1 − (ṽd
q,mq

+ ṽd,l
q,mq

+ ṽd,r
q,mq

) = vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 < mq (409)

ẽd
q,mq,2 + w̃d

q,mq,1 − ṽd
q,mq

+ ṽd,r
q,mq

= vd
q,mq

+ vd,r
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 = mq (410)

ẽd
q,mq,2 + w̃d

q,mq,1 − (ṽd
q,mq + ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq + vd,l
q,mq

+ vd,r
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 > mq (411)

ẽd
q,mq,2 + w̃d

q,mq,1 − (ṽd
q,mq

+ ṽd,l
q,mq

) = vd
q,mq

+ vd,l
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
3 and mq−1 = mq (412)

w̃d
qi1 − w̃d

qi2 = wd
qi2 ∀ q ∈ B, i ∈ Iq

0 ∪ Iq
4 (413)

ẽd
qi2 + w̃d

qi1 − w̃d
qi2 = wd

qi2 ∀ q ∈ B, i ∈ Iq
5 (414)



• Constraints corresponding to vertices [d,q, i,3]

ẽd
1i3 + w̃d

1i2 − (ṽd,l
1i + ṽd,r

1i ) = vd,l
1i + vd,r

1i ∀ i ∈ I1
4\{m1} (415)

ẽd
1,m1,3 + w̃d

1,m1,2 − ṽd,l
1,m1

= vd,l
1,m1

if m1 ∈ I1
4 (416)

ẽd
qi3 + w̃d

qi2 − (ṽd
qi + ṽd,l

qi + ṽd,r
qi ) = vd

qi + vd,l
qi + vd,r

qi ∀ q ∈ B\{1}, i ∈ Iq
4\{mq,mq} (417)

ẽd
q,mq,3 + w̃d

q,mq,2 − (ṽd
q,mq

+ ṽd,l
q,mq

+ ṽd,r
q,mq

) = vd
q,mq

+ vd,l
q,mq

+ vd,r
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
4 and mq−1 < mq (418)

ẽd
q,mq,3 + w̃d

q,mq,2 − ṽd
q,mq

+ ṽd,r
q,mq

= vd
q,mq

+ vd,r
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
4 and mq−1 = mq (419)

ẽd
q,mq,3 + w̃d

q,mq,2 − (ṽd
q,mq + ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq + vd,l
q,mq

+ vd,r
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
4 and mq−1 > mq (420)

ẽd
q,mq,3 + w̃d

q,mq,2 − (ṽd
q,mq + ṽd,l

q,mq
) = vd

q,mq + vd,l
q,mq

∀ q ∈ B\{1} with mq ∈ Iq
4 and mq−1 = mq (421)

w̃d
1i2 − (ṽd,l

1i + ṽd,r
1i ) = vd,l

1i + vd,r
1i ∀ i ∈ I1

5\{m1} (422)

w̃d
1,m1,2 − ṽd,l

1,m1
= vd,l

1,m1
if m1 ∈ I1

5 (423)

w̃d
qi2 − (ṽd

qi + ṽd,l
qi + ṽd,r

qi ) = vd
qi + vd,l

qi + vd,r
qi ∀ q ∈ B\{1}, i ∈ Iq

5\{mq,mq} (424)

w̃d
q,mq,2 − (ṽd

q,mq
+ ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,l

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 < mq (425)

w̃d
q,mq,2 − (ṽd

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 = mq (426)

w̃d
q,mq,2 − (ṽd

q,mq
+ ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,l

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

5 and mq−1 > mq (427)

w̃d
q,mq,2 − (ṽd

q,mq
+ ṽd,l

q,mq
) = vd

q,mq
+ vd,l

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

3 and mq−1 = mq (428)

ẽd
qi3 + w̃d

qi2 − w̃d
qi3 = wd

qi3 ∀ q ∈ B, i ∈ Iq
0 (429)

• Constraints corresponding to vertices [d,q, i,4]

w̃d
1i3 − (ṽd,l

1i + ṽd,r
1i ) = vd,l

1i + vd,r
1i ∀ i ∈ I1

0\{m1} (430)

w̃d
1,m1,3 − ṽd,l

1,m1
= vd,l

1,m1
if m1 ∈ I1

0 (431)

w̃d
qi3 − (ṽd

qi + ṽd,l
qi + ṽd,r

qi ) = vd
qi + vd,l

qi + vd,r
qi ∀ q ∈ B\{1}, i ∈ Iq

0\{mq,mq} (432)

w̃d
q,mq,3 − (ṽd

q,mq
+ ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,l

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 < mq (433)

w̃d
q,mq,3 − (ṽd

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 = mq (434)

w̃d
q,mq,3 − (ṽd

q,mq
+ ṽd,l

q,mq
+ ṽd,r

q,mq
) = vd

q,mq
+ vd,l

q,mq
+ vd,r

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 > mq (435)

w̃d
q,mq,3 − (ṽd

q,mq + ṽd,l
q,mq

) = vd
q,mq + vd,l

q,mq
∀ q ∈ B\{1} with mq ∈ Iq

0 and mq−1 = mq (436)

• Constraints to link variables

r̃r
qi ≤ M · rr

qi ∀ (q, i) ∈ F × (Iq\{mq −1,mq}) (437)

r̃d
qi ≤ M · rd

qi ∀ (q, i) ∈ (F\{1})× (Iq\{mq}) (438)

r̃u
qi ≤ M · ru

qi ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}) (439)

l̃l
qi ≤ M · ll

qi ∀ (q, i) ∈ F × ((Iq\{mq,mq +1})∪{(1,2)}) (440)

l̃d
qi ≤ M · ld

qi ∀ (q, i) ∈ (F\{1})× (Iq\{mq}) (441)

l̃u
qi ≤ M · lu

qi ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}) (442)



ẽu
qi1 ≤ M · eu

qi1 ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq
1 ) (443)

ẽd
qi1 ≤ M · ed

qi1 ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq
1 ) (444)

ẽu
qi2 ≤ M · eu

qi2 ∀ (q, i) ∈ (F\{p+1})× (Iq
3 ∪ Iq

4 ) (445)

ẽd
qi2 ≤ M · ed

qi2 ∀ (q, i) ∈ (F\{p+1})× (Iq
3 ∪ Iq

5 ) (446)

ẽu
qi3 ≤ M · eu

qi3 ∀ (q, i) ∈ (F\{p+1})× (Iq
0 ∪ Iq

5 ) (447)

ẽd
qi3 ≤ M · ed

qi3 ∀ (q, i) ∈ (F\{p+1})× (Iq
0 ∪ Iq

4 ) (448)

t̃u
qi ≤ M · tu

qi ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq
1 ) (449)

t̃d
qi ≤ M · td

qi ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq
1 ) (450)

w̃u
qis ≤ M ·wu

qis ∀ (q, i,s) ∈ B× ((Iq
3 ×{1})∪ ((Iq

4 ∪ Iq
5 )×{1,2})∪ (Iq

0 ×{1,2,3})) (451)

w̃d
qis ≤ M ·wd

qis ∀ (q, i,s) ∈ B× ((Iq
3 ×{1})∪ ((Iq

4 ∪ Iq
5 )×{1,2})∪ (Iq

0 ×{1,2,3})) (452)

ṽu
qi ≤ M · vu

qi ∀ (q, i) ∈ (B\{p})× Iq (453)

ṽu,l
qi ≤ M · vu,l

qi ∀ (q, i) ∈ B× (Iq\{mq}) (454)

ṽu,r
qi ≤ M · vu,r

qi ∀ (q, i) ∈ B× (Iq\{mq}) (455)

ṽd
qi ≤ M · vd

qi ∀ (q, i) ∈ (B\{1})× Iq (456)

ṽd,l
qi ≤ M · vd,l

qi ∀ (q, i) ∈ B× ((Iq\{mq})∪{(1,1)}) (457)

ṽd,r
qi ≤ M · vd,r

qi ∀ (q, i) ∈ B× (Iq\{mq}) (458)

ỹ0
α ≤ M · y0

α ∀ α ∈ {l,r,u} (459)

ỹl
0 ≤ M · yl

0 (460)

Constraints for the Domains of the Variables:

rr
qi ∈ {0,1} ∀ (q, i) ∈ F × (Iq\{mq −1,mq}) (461)

rd
qi ∈ {0,1} ∀ (q, i) ∈ (F\{1})× (Iq\{mq}) (462)

ru
qi ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}) (463)

ll
qi ∈ {0,1} ∀ (q, i) ∈ F × ((Iq\{mq,mq +1})∪{(1,2)}) (464)

ld
qi ∈ {0,1} ∀ (q, i) ∈ (F\{1})× (Iq\{mq}) (465)

lu
qi ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}) (466)

eu
qi1 ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (467)

ed
qi1 ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (468)

eu
qi2 ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
4 ) (469)

ed
qi2 ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
5 ) (470)

eu
qi3 ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
5 ) (471)

ed
qi3 ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
4 ) (472)

tu
qi ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (473)

td
qi ∈ {0,1} ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (474)



wu
qis ∈ {0,1} ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3})) (475)

wd
qis ∈ {0,1} ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3})) (476)

vu
qi ∈ {0,1} ∀ (q, i) ∈ (B\{p})× Iq (477)

vu,l
qi ∈ {0,1} ∀ (q, i) ∈ B× (Iq\{mq}) (478)

vu,r
qi ∈ {0,1} ∀ (q, i) ∈ B× (Iq\{mq}) (479)

vd
qi ∈ {0,1} ∀ (q, i) ∈ (B\{1})× Iq (480)

vd,l
qi ∈ {0,1} ∀ (q, i) ∈ B× ((Iq\{mq})∪{(1,1)}) (481)

vd,r
qi ∈ {0,1} ∀ (q, i) ∈ B× (Iq\{mq}) (482)

y0
α ∈ {0,1} ∀ α ∈ {l,r,u} (483)

yl
0 ∈ {0,1} (484)

r̃r
qi ≥ 0 ∀ (q, i) ∈ F × (Iq\{mq −1,mq}) (485)

r̃d
qi ≥ 0 ∀ (q, i) ∈ (F\{1})× (Iq\{mq}) (486)

r̃u
qi ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}) (487)

l̃l
qi ≥ 0 ∀ (q, i) ∈ F × ((Iq\{mq,mq +1})∪{(1,2)}) (488)

l̃d
qi ≥ 0 ∀ (q, i) ∈ (F\{1})× (Iq\{mq}) (489)

l̃u
qi ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq\{mq}) (490)

ẽu
qi1 ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (491)

ẽd
qi1 ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (492)

ẽu
qi2 ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
4 ) (493)

ẽd
qi2 ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq

3 ∪ Iq
5 ) (494)

ẽu
qi3 ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
5 ) (495)

ẽd
qi3 ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq

0 ∪ Iq
4 ) (496)

t̃u
qi ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (497)

t̃d
qi ≥ 0 ∀ (q, i) ∈ (F\{p+1})× (Iq\Iq

1 ) (498)

w̃u
qis ≥ 0 ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3})) (499)

w̃d
qis ≥ 0 ∀ (q, i,s) ∈ B× ((Iq

3 ×{1})∪ ((Iq
4 ∪ Iq

5 )×{1,2})∪ (Iq
0 ×{1,2,3})) (500)

ṽu
qi ≥ 0 ∀ (q, i) ∈ (B\{p})× Iq (501)

ṽu,l
qi ≥ 0 ∀ (q, i) ∈ B× (Iq\{mq}) (502)

ṽu,r
qi ≥ 0 ∀ (q, i) ∈ B× (Iq\{mq}) (503)

ṽd
qi ≥ 0 ∀ (q, i) ∈ (B\{1})× Iq (504)

ṽd,l
qi ≥ 0 ∀ (q, i) ∈ B× ((Iq\{mq})∪{(1,1)}) (505)

ṽd,r
qi ≥ 0 ∀ (q, i) ∈ B× (Iq\{mq}) (506)

ỹ0
α ≥ 0 ∀ α ∈ {l,r,u} (507)

ỹl
0 ≥ 0 (508)
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Order Picking in Narrow-Aisle Warehouses: A Fast

Approach to Minimize Waiting Times

S. Hahn, A. Scholz

Abstract

Mail order companies like Zalando or Amazon reported a significant increase regarding the number

of incoming customer orders in recent years. Customers are served from a central distribution

center (warehouse) where requested items of the orders have to be retrieved (picked) from their

storage locations. The picking process is performed by human operators (order pickers) who are

employed on a large scale in order to enable a fast processing of the orders. However, due to limited

space, aisles are often very narrow in warehouses, and order pickers cannot pass or overtake each

other. Thus, an order picker may have to wait until another picker has performed his/her operations.

The arising waiting times may significantly increase the processing times of the orders, implying

that a large number of pickers does not guarantee for small processing times. Therefore, in this

paper, the impact of several problem parameters on the amount of waiting time is investigated first

and situations are identified where the consideration of waiting times is inevitable for an efficient

organization of the picking process. In the second part of the paper, a solution approach, namely a

truncated branch-and-bound algorithm, is proposed which aims for the minimization of the waiting

times. By means of extensive numerical experiments, it is demonstrated that this approach provides

high-quality solutions within a very small amount of computing time.
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2 Order Picking in Narrow-Aisle Warehouses

1 Introduction

Zalando, a large mail order company, recorded an increase of the number of customer orders by more

than 400% in recent years, as the number of orders amounted to 11.0 million in 2011, while 55.3

million orders were received in 2015 (Statista, 2016). When placing an order, customers have the

possibility to choose express deliveries, guaranteeing the requested items to be delivered at the next

work day. Recently, even same-day deliveries have been tested in some regions. Thus, being able to

process customer orders very fast becomes more important in order to ensure customer satisfaction.

Before the items requested by the customers can be shipped to the customer locations, the orders have

to be processed in the distribution center (warehouse), i.e. the items have to be retrieved from their

storage locations. In most warehouses, this is done by human operators (order pickers) who perform

tours through the warehouse. For processing a huge number of orders within a short amount of time,

many order pickers are employed who work in the warehouse at the same time.

Besides a large number of orders, companies are confronted with an increasing number of different

articles to be stored (Hirschberg, 2015). Due to limited space, warehouses often include narrow picking

aisles in order to maximize space utilization (Gue et al., 2006). However, in narrow aisles, order pickers

can neither pass nor overtake each other. When two pickers work in a narrow aisle at the same time,

a picker may have to wait until the other picker has completed the work in this aisle. This can cause

severe problems, as waiting times may arise on a large scale and the advantage of the employment of a

large number of pickers diminishes. Although it is known that waiting times have a significant negative

impact on the processing times, waiting times are rarely taken into account in the literature when guiding

pickers through the warehouse.

The intention of this paper is twofold. A large variety of analytical and simulation models exists which

estimate the impact of several problem parameters on the waiting times. However, almost all approaches

rely on the assumption that all storage locations have to be visited regardless of the locations of requested

items. In order to provide more realistic insights, we conduct extensive numerical experiments for the

evaluation of the impact of the parameters. Combinations of parameters are identified where waiting

times are significant and its consideration is inevitable for an efficient organization of the picking process.

In the second part of the paper, a solution approach is provided which takes the waiting times into

account. In fact, we propose a truncated branch-and-bound algorithm, where waiting instructions are

given to order pickers. Such instructions include information about the points in time when a picker

has to wait and when he/she continues the tour. By means of this approach, the benefit of using more
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sophisticated waiting instructions as well as the impact of the decisions regarding the selection of the

picker who has to wait are investigated.

The remainder of the paper is organized as follows. A detailed description of the problem is given

in the next section. Section 3 comprises a literature review. First, the results obtained by means of

analytical and simulation models are reviewed. Second, solution approaches are presented which deal

with guiding order pickers through the warehouse while taking waiting times into account. In Section 4,

the impact of several parameters on the waiting times is investigated. Since waiting times are significant

for several parameter combinations, a truncated branch-and-bound algorithm is proposed which aims

for the minimization of the waiting times (Section 5). Section 6 is devoted to the evaluation of the

performance of the algorithm. The paper concludes with a summary and an outlook on future research

opportunities.

2 Problem description

In manual picker-to-parts order picking systems, order pickers walk or ride through the warehouse

in order to retrieve requested items from their storage locations. The storage locations are typically

arranged in such a way that they constitute a block layout (Roodbergen, 2001). A picking area following

a block layout includes two types of aisles: picking aisles and cross aisles. Picking aisles are of identical

length and width and are arranged parallel to each other. Furthermore, they have to be entered to retrieve

items as the items are stored on pallets or racks located on one side or even both sides of the picking

aisles. Cross aisles are arranged orthogonally to the picking aisles. They do not contain any requested

items, but cross aisles are required for enabling the pickers to proceed from one picking aisle to another.

Cross aisles divide the picking area into blocks and the picking aisles into subaisles (see Fig. 1).

Fig. 1: Two-block layout
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In Fig. 1, a two-block layout is depicted which contains 5 picking aisles and 10 subaisles. The rectangles

symbolize the storage locations while the locations of requested items (pick locations) are represented

by black rectangles. The depot is located in front of the leftmost picking aisle. A picker tour then starts at

the depot, proceeds to the respective pick locations and ends at the depot. The time that an order picker

needs for performing a tour (processing time) is composed of (Tompkins et al., 2010) the time required

for preparing the tour (setup time), the time spent at the pick locations for the identification and the

retrieval of the items (pick time) and the time needed for traveling from the depot to the pick locations,

between the pick locations and back to the depot (travel time). Since a picking area with narrow subaisles

is considered, an additional component, namely the waiting time, has to be taken into account. Waiting

times arise because order pickers can neither pass nor overtake each other in narrow subaisles. Thus,

several order pickers working in the same subaisle at the same time may cause congestion (blocking).

(Note that congestion is not an issue in cross aisles.) A situation where an order picker cannot continue

his/her operations because he/she is not able to pass or overtake another picker is referred to as a blocking

situation. An example for a blocking situation is depicted in Fig. 2. Here, picker #1 is retrieving an item

from its storage location. At the same time, picker #2 has to pass this location in order to reach another

pick location. Due to the narrow subaisle, picker #2 is not able to pass picker #1. Thus, picker #2 has

to wait until picker #1 has completed the retrieval of the item (assuming that picker #1 will proceed the

tour by going upwards).

Fig. 2: Two order pickers working in the same subaisle

From the components of the processing time, the setup time and the pick time can be considered

as constants (Bozer & Kile, 2008; Henn et al., 2010). The travel time is dependent on the sequence

according to which the pick locations are meant to be visited. This sequence is determined by means of

a certain procedure here, e.g. by application of a routing strategy (Roodbergen, 2001) or even by using

an exact approach (Ratliff & Rosenthal, 1983; Roodbergen & de Koster, 2001). Thus, the sequence and,

therefore, also the travel time can be assumed to be known for a given set of requested items, leaving

the waiting time as the only variable component of the processing time. The waiting time of an order is

dependent on the waiting instructions given to the picker performing the corresponding tour. A waiting
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instruction may have to be executed when a blocking situation arises. It comprises information about

the point in time when a picker starts to wait (which also defines the position in the picking area where

the picker waits) and the point in time when the picker continues the tour.

A set of customer orders to be processed is given. Each customer order is specified by the date when it

has become available at the warehouse (arrival date) and by the requested articles and the respective

quantities. The orders are processed by the pickers in the sequence they arrived at the warehouse

(first-come-first-served) while a separate tour is performed for processing each customer order. As soon

as an order picker becomes available, i.e. when he/she has finished a tour, he/she immediately starts with

processing the next order in the sequence.

It is of prime importance to process customer orders as fast as possible. Therefore, the minimization of

the throughput time of all orders (total throughput time) is a very common objective in this context

(Le-Duc & de Koster, 2007; Van Nieuwenhuyse & de Koster, 2009; Yu & de Koster, 2009). The

throughput time of an order is defined as the difference between the completion date of the order, i.e.

the point in time when all requested items have been brought to the depot, and its arrival date. The

throughput time of an order is composed of the time that elapsed after its arrival until processing of

the order has started (start date) and its processing time. The start date of an order cannot be affected

directly, as the sequence is given according to which the orders are processed. Indirectly, it is affected

by the processing times of the orders processed before. Concerning the processing time of an order, as

mentioned before, the waiting time is the only variable part. Thus, the minimization of the waiting times

of all orders (total waiting time) is equivalent to the minimization of the total throughput time here.

The problem can now be stated as follows. Let a set of customer orders with known arrival dates be

given including certain requested items. The customer orders are processed by a certain number of order

pickers according to the sequence in which they arrived. Each picker processes the next order as soon

as the picker becomes available. Furthermore, let setup times, pick times per item as well as a constant

travel velocity of the pickers be given. In addition, the layout of the picking area is known and a routing

algorithm for the construction of the picker tours is given. Then, for each order picker, the points in time

when the picker has to wait and when he/she has to continue the tour have to be determined, respectively,

in such a way that the total waiting time is minimized.

In the following section, the related literature is reviewed. First, we focus on analyses of the impact

of several problem parameters on different performance criteria regarding the efficiency of the picking

process. Second, solution approaches to related problems are reviewed.
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3 Literature review

3.1 Analyses regarding the impact of parameters

A general consensus has been reached in the literature regarding the point that picker blocking may

have a significant negative impact on the efficiency of the picking process. Thus, it is not surprising

that a large variety of approaches exists concerning the estimation of the impact of certain problem

parameters on performance criteria related to the picking process such as the total throughput time or

the proportion of the total waiting time as part of the processing time of all orders (total processing

time). All approaches deal with analytical and simulation models where most of them are based on the

assumption that all subaisles are traversed according to a given sequence and direction (regardless of the

fact whether a subaisle includes a pick location or not). It can then be assumed that the storage locations

constitute a cycle. The order pickers start at a certain point of the cycle which represents the depot. From

this point, they walk through the cycle until they reach this point again. With a probability of p (referred

to as the pick density), an order picker stops at a storage location in order to retrieve an item.

Parikh & Meller (2009) dealt with picker blocking arising in warehouses with wide aisles, i.e. order

pickers are able to pass and overtake each other in all aisles. However, pickers may block each other

when the same pick location has to be visited at the same time (pick-face blocking). The authors pointed

out that the proportion of the waiting time increases with an increasing pick density p. When p exceeds a

certain value, waiting times decrease with a further increasing p. If p is equal to 1, no waiting times will

arise as the pickers will stop at each location, implying that all pickers need the same time for performing

a tour through the cycle. Furthermore, Parikh & Meller (2009) observed that a larger number of storage

locations results in shorter waiting times, whereas the proportion of the total waiting time significantly

increases when a larger number of pickers is available.

Skufca (2005) considered the impact of the number of order pickers, the number of storage locations

and the pick density on the proportion of the total waiting time as part of the total processing time. The

author dealt with a narrow-aisle warehouse, i.e. waiting times may arise since passing and overtaking of

order pickers is not possible in subaisles (in-the-aisle blocking). Regarding the impact of the parameters

mentioned above, Skufca (2005) obtained the same results as Parikh & Meller (2009). Based on the same

assumptions, Gue et al. (2006) investigated the impact of the pick density but also of the pick-walk-time

ratio, i.e. the average pick time per item divided by the time required for passing a storage location

without retrieving an item. Gue et al. (2006) observed that an increasing pick-walk-time ratio leads
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to an increasing proportion of the total waiting time. Parikh & Meller (2010) additionally pointed out

that waiting times may be underestimated by far if deterministic pick times per item are assumed. For

example, no waiting times occur if the pick density equals 1 and pick times are deterministic. This is

not true in case of non-deterministic pick times.

Pan & Shih (2008) and Pan & Wu (2012) are the only publications in which the picking area is not

assumed to be cyclic as picker tours through the narrow-aisle warehouse are constructed by means of

certain routing strategies. Pan & Shih (2008) applied the S-shape strategy. According to this strategy,

each subaisle containing at least one requested item is traversed. An exception may occur in the last

subaisle of a block where the picker returns after having retrieved all items in this aisle if this leads to a

shorter tour. Pan & Shih (2008) investigated the impact of the procedure according to which articles are

assigned to storage locations (storage assignment policy) on the throughput rate. The throughput rate

is defined as the number of items retrieved within a certain amount of time. They compared a random

storage assignment policy to a storage assignment policy of Jarvis & McDowell (1991) which is based

on the demand frequency of the articles. Pan & Shih (2008) observed that application of the random

assignment policy results in higher throughput rates. Pan & Wu (2012) chose the total throughput time

as the performance criterion and extended the considerations of Pan & Shih (2008) to further routing

strategies and several class-based storage assignment policies. They pointed out that the routing strategy

leading to the shortest tours in combination with the across-aisle storage assignment policy (Petersen &

Schmenner, 1999) results in the smallest total throughput time.

3.2 Solution approaches to related problems

Although the impact of waiting times on the performance of the picking process has widely been studied

and observed to be significant in many cases, only few solution approaches exist which actually take

waiting times into account when guiding order pickers through narrow-aisle warehouses. In fact, two

approaches are available which address problems related to the one described in Section 2.

The scenario considered by Chen et al. (2013) differs from the problem defined in Section 2 regarding

three aspects. First, the number of order pickers is restricted to two. Second, the next customer orders

are not processed before both pickers have finished their tours. Third, no routing algorithm is given.

Chen et al. (2013) proposed an ant colony optimization (ACO) approach to the resulting problem. By

means of the ACO algorithm, a tour is constructed for the picker who leaves the depot first. This tour

will remain unchanged. The ACO is then used for the determination of the tour of the other picker. The
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construction of the tour is based on the logical distance between pick locations, which is composed of

the travel time between the locations as well as the waiting time caused by the tour of the first picker.

Solving an instance with 2 customer orders containing up to 30 items requires 10 seconds of computing

time. However, in terms of solution quality, the performance of this approach is hardly better than the

performance of a modified S-shape strategy.

Chen et al. (2016) extended the considerations of Chen et al. (2013) to the case of an arbitrary number

of pickers. They also designed an ACO approach to tackle this problem. First, the ACO algorithm is

applied to construct the tours for all pickers without taking waiting times into account. Thus, as it is the

case for the problem described in Section 2, a routing algorithm is given by which tours are determined

beforehand. In a second step, blocking situations are identified. If a blocking situation is caused by two

order pickers performing picking operations in the same subaisle, then the order picker who enters the

subaisle first will perform the operations while the other picker waits at the entrance of this subaisle

until he/she can execute the operations without being blocked. If two pickers block each other and at

least one of the pickers traverses the subaisle without retrieving items, then it is checked whether the

total throughput time can be decreased by traversing another subaisle, i.e. tours are allowed to be altered

in the settings of Chen et al. (2016). The authors applied their approach to instances with 10 pickers and

30 requested items per order. Computing times have not been reported. The algorithm does not lead to

convincing results concerning the solution quality as solutions provided by simple modifications of the

S-shape and the largest gap strategy (Hall, 1993) cannot be improved significantly.

4 Evaluation of the impact of parameters on waiting times

4.1 Test instances

In the literature, several problem parameters have been identified which have an impact on the efficiency

of the picking process in narrow-aisle warehouses (see Subsection 3.1). Since most approaches rely on

the assumption that all subaisles are visited regardless of the pick locations, we conducted extensive

numerical experiments in order to investigate the impact of the parameters on the performance of the

picking process for more realistic settings. For the evaluation of the performance, the proportion of the

total waiting time as part of the total processing time has been used as done by Skufca (2005), Gue et

al. (2006) and Parikh & Meller (2009). Based on the observations from the literature, the impact of the

following parameters is analyzed: the number of blocks, the number of picking aisles, the number of



S. Hahn, A. Scholz 9

pickers, the pick-walk-time ratio, the number of items per order, the storage assignment policy, and the

routing algorithm.

In the experiments, the picking area follows a block layout with b ∈ {1,2,3} blocks and m ∈ {5,10}
picking aisles. Each subaisle contains 25 storage locations on each side, respectively. The distance

between adjacent storage locations amounts to 1 length unit (LU). The same distance has to be covered

for entering or leaving a subaisle. The distance between two adjacent picking aisles equals 5 LUs while

1.5 LUs are covered for traveling from the depot to the leftmost picking aisle (Henn & Wäscher, 2012).

Instances with 100 customer orders are considered. The number of requested items per order is

uniformly distributed between nl and nu with (nl,nu) ∈ {(5,25),(10,50)}. For the assignment of articles

to storage locations, two different procedures are applied, namely the random assignment policy (a = r)

and the class-based assignment policy (a = c) used by Henn & Wäscher (2012). According to the

random assignment policy, each storage location has the same probability of being a pick location.

In the class-based assignment policy, articles are divided into three classes A, B and C based on the

demand frequency. Class A articles are 10% of the articles with the highest demand and account for

52% of the total demand. 30% of all articles are assigned to class B where these articles represent 36%

of the total demand. The remaining articles belong to class C and are characterized by quite low demand

frequencies. Based on the class, articles are assigned to subaisles. Class A articles are located in 10% of

the subaisles nearest to the depot while articles assigned to class C are situated in 60% of the subaisles

farthest from the depot. The remaining subaisles include articles from class B. Each article is randomly

assigned to a storage location of the corresponding subaisles.

For processing the customer orders, k ∈ {2,3,5,7} order pickers are available. The time that an order

picker needs to perform the tasks (see Section 2) is set as follows (Henn, 2015). The setup time amounts

to 180 seconds while the picker needs 3 seconds to cover 1 LU. Since the pick-walk-time ratio α is

usually 20 or less in practical applications (Gue et al., 2006), α ∈ {3,10,20} is chosen. This implies that

a picker needs 9, 30 or 60 seconds for searching and retrieving an item. The picker tours are generated by

means of two routing algorithms, namely the S-shape strategy and the Lin-Kernighan-Helsgaun (LKH)

heuristic of Helsgaun (2000). The S-shape strategy represents the routing strategy most frequently used

in practice (Roodbergen, 2001), while the LKH heuristic leads to very short tours (Theys et al., 2010).

The combination of all parameters mentioned above results in 576 problem classes. For each class,

48 instances have been generated, leading to 27648 instances in total.
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4.2 Test solution approaches

For the determination of the proportion of the total waiting time as part of the total processing time,

the problem described in Section 2 has to be solved. Two solution approaches are considered which are

adapted from approaches proposed in the literature. In both approaches, based on the given picker tours,

blocking situations are identified and waiting instructions are given. More precisely, the approaches

work as follows. Let k denote the number of order pickers. In the first step, based on their arrival dates,

the first k customer orders are processed by the pickers where each picker processes exactly one order.

It is then checked whether blocking situations have to be dealt with. Blocking situations are identified

chronologically, i.e. the situation which occurs first is considered. A blocking situation always concerns

two order pickers. In order to deal with a blocking situation, waiting instructions are given to one of the

pickers. The waiting instructions will not change the tour but they may affect the points in time when

an order picker is at a certain location. Thus, these points in time have to be updated. Then, the next

blocking situation is identified and dealt with based on the updated points in time. When all blocking

situations have been considered which arise until one of the pickers has finished his/her current tour, the

next customer order is assigned to this picker, and it is again checked whether new blocking situations

arise. The procedure is repeated until all customer orders have been assigned to the pickers and all

blocking situations have been dealt with. This principle is the same for both approaches presented below.

However, the approaches differ with respect to the waiting instructions given to the pickers.

The first approach (A1) is based on an approach of Ho & Chien (2006). They considered a distribution

center in Taiwan where a single order picker was allowed to be in a subaisle only. Thus, an order picker

is only permitted to enter a subaisle if no other picker is currently working in this subaisle. Otherwise,

the picker has to wait at the entrance of the subaisle until the other picker has left the subaisle. Based

on this rule, waiting instructions are given, i.e. the points in time when an order picker has to wait and

when he/she has to proceed the tour are determined.

When applying A1, waiting times can be expected to be very large, as pickers may have to wait

although they would not actually block each other according to the definition of a blocking situation

(see Section 2). Therefore, in the second approach (A2), several order pickers are allowed to be in the

same subaisle at the same time. In this approach, a blocking situation is dealt with by giving waiting

instructions to the picker who left the depot at a later point in time (Chen et al., 2013). Thus, it is known

which picker is allowed to continue the tour and which picker has to wait. Waiting instructions for a

blocking situation can then be given in such a way that the waiting time caused by this situation is
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minimized. For the identification of such waiting instructions, the possible paths through subaisles are

considered. A picker either traverses a subaisle or returns at a certain point. Moreover, either two pickers

enter a subaisle from the same cross aisle or they use different cross aisles. Based on these observations,

six blocking situations have to be considered (see Fig. 3).

Fig. 3: Possible blocking situations in a subaisle

Waiting instructions are now given to the picker who has to wait based on the classification of the

blocking situation. If the blocking situation follows a scenario depicted in Fig. 3 a) to e), the picker

waits at the entrance of the subaisle until he/she can proceed the tour without blocking the other picker.

The scenario shown in Fig. 3 f) is the only scenario where a picker may wait in the subaisle. This

depends on the locations of the return points. If the location of the return point of the picker who has

to wait is closer to the cross aisle from where the subaisle has been entered, then the picker will wait at

the entrance as done in the other scenarios. If the return location is farther away and if the picker has

entered the subaisle first, then he/she may wait at the return location until he/she can proceed the tour

without being blocked by the other picker.

4.3 Results

The results of the experiments are depicted in Tables 1 and 2 and Tables A1 to A6, where Tables

denoted by an "A" are included in the appendix available at http://www.mansci.ovgu.de/mansci/

en/Research/Materials/2017+_+I_-p-632.html. Tables 1, 2, A1 and A2 contain information

about the average proportion of the total waiting time as part of the total processing time (in %) for

the approaches A1 and A2 combined with the S-shape strategy and the LKH heuristic, respectively. The

corresponding total processing times (in hours) are shown in Tables A3 to A6.

Concerning the routing algorithms, the results are very similar. Both algorithms result in the smallest
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Table 1: Proportion [%] of the total waiting time as part of the total processing time for A1 and the S-shape strategy

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 1.6 2.3 3.5 5.2 8.0 13.0 15.4 28.6
3 (5,25) 1 10 1.1 1.9 2.2 3.9 4.6 9.5 7.4 18.4
3 (5,25) 2 5 1.4 2.5 3.1 5.3 6.4 13.0 10.1 24.4
3 (5,25) 2 10 0.9 1.3 2.0 2.9 4.0 6.9 6.1 11.9
3 (5,25) 3 5 1.0 1.8 2.3 3.6 4.8 8.2 7.8 13.1
3 (5,25) 3 10 0.6 1.1 1.2 2.2 2.7 5.0 4.4 8.4

3 (10,50) 1 5 2.0 2.9 4.3 6.3 9.8 17.8 20.5 37.1
3 (10,50) 1 10 0.9 2.0 1.9 4.6 4.2 10.9 6.6 23.3
3 (10,50) 2 5 1.4 2.9 2.9 6.0 6.0 14.5 9.3 29.1
3 (10,50) 2 10 0.8 1.3 1.7 2.7 3.5 6.4 5.6 10.8
3 (10,50) 3 5 1.0 1.6 2.1 3.4 4.3 7.6 6.9 12.4
3 (10,50) 3 10 0.6 1.0 1.1 2.0 2.5 4.4 4.3 7.4

10 (5,25) 1 5 2.7 4.4 6.0 10.1 13.3 29.0 23.1 47.6
10 (5,25) 1 10 1.4 3.5 3.1 7.8 6.3 21.3 10.2 40.5
10 (5,25) 2 5 1.8 4.1 3.8 9.6 8.1 26.0 12.6 44.3
10 (5,25) 2 10 1.2 2.1 2.1 4.7 4.4 10.7 7.1 18.5
10 (5,25) 3 5 1.4 2.4 2.8 5.3 5.9 12.1 9.2 20.2
10 (5,25) 3 10 0.7 1.5 1.4 3.2 3.0 7.1 4.9 11.6

10 (10,50) 1 5 4.1 6.0 8.2 14.0 16.7 38.4 27.3 55.3
10 (10,50) 1 10 1.7 4.5 3.6 10.1 7.7 29.3 11.7 48.5
10 (10,50) 2 5 2.2 5.5 4.5 11.8 9.4 33.2 14.0 51.0
10 (10,50) 2 10 1.0 2.3 2.1 4.9 4.6 11.7 7.1 19.6
10 (10,50) 3 5 1.3 2.9 2.9 5.7 6.3 12.7 9.4 21.1
10 (10,50) 3 10 0.7 1.6 1.5 3.2 3.3 7.1 4.9 11.7

20 (5,25) 1 5 4.1 6.8 8.2 16.6 18.0 42.0 28.7 57.6
20 (5,25) 1 10 1.9 5.4 3.9 12.7 8.2 34.8 13.2 52.6
20 (5,25) 2 5 2.5 6.4 4.9 14.6 9.9 37.3 15.4 54.6
20 (5,25) 2 10 1.2 3.1 2.4 6.4 5.1 14.5 8.3 25.0
20 (5,25) 3 5 1.6 3.4 3.3 7.4 7.2 16.2 10.9 26.8
20 (5,25) 3 10 0.8 2.0 1.7 4.1 3.6 9.6 5.6 15.5

20 (10,50) 1 5 5.8 8.8 10.8 20.2 21.0 47.0 32.1 61.7
20 (10,50) 1 10 2.6 6.7 5.4 16.2 10.5 42.1 15.6 58.1
20 (10,50) 2 5 2.9 7.5 5.5 18.0 11.5 43.7 17.5 59.2
20 (10,50) 2 10 1.4 3.2 2.6 7.0 5.6 16.3 8.4 28.0
20 (10,50) 3 5 1.9 3.8 3.8 7.9 8.0 17.0 11.7 28.4
20 (10,50) 3 10 0.9 2.3 1.8 4.6 3.8 9.5 5.9 16.0

proportion of the total waiting time for the problem class (α = 3, (nl,nu) = (5,25), b = 3, m = 10, k = 2,

a = r). When applying A1 the smallest proportion of the waiting time amounts to 0.6% for both routing

algorithms, while the proportion equals 0.4% and 0.5% for the S-shape strategy and the LKH heuristic

when A2 is used. For the S-shape strategy, the maximum proportion of the waiting time is 61.7% for A1

and 22.2% for A2. Regarding the LKH heuristic, proportions of up to 62.2% and 28.6% can be observed.

On average, order pickers wait for 10.9% or 4.7% of the total processing time if A1 or A2 is applied and

tours are constructed by means of the S-shape strategy. When using the LKH heuristic, waiting times

account for 12.3% or 6.0% of the total processing time. It can be seen that the proportions are slightly
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Table 2: Proportion [%] of the total waiting time as part of the total processing time for A2 and the S-shape strategy

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 1.3 0.9 2.9 2.0 6.1 3.9 10.0 6.1
3 (5,25) 1 10 1.0 0.7 1.8 1.3 3.7 2.8 5.7 4.5
3 (5,25) 2 5 1.1 1.0 2.1 2.0 4.6 4.3 6.7 7.0
3 (5,25) 2 10 0.6 0.9 1.4 2.0 2.7 4.1 4.3 6.4
3 (5,25) 3 5 0.7 0.8 1.5 1.6 3.2 3.7 4.9 5.6
3 (5,25) 3 10 0.4 0.6 0.8 1.3 1.7 2.8 2.8 4.3

3 (10,50) 1 5 1.7 1.1 3.6 2.4 7.7 4.6 13.8 6.9
3 (10,50) 1 10 0.7 0.6 1.5 1.3 3.1 2.7 4.7 4.2
3 (10,50) 2 5 1.2 1.4 2.4 2.7 5.0 5.7 7.3 8.8
3 (10,50) 2 10 0.7 1.0 1.3 2.0 2.8 4.4 4.4 6.8
3 (10,50) 3 5 0.8 0.9 1.8 1.9 3.4 3.9 5.5 6.1
3 (10,50) 3 10 0.5 0.6 0.9 1.1 1.9 2.4 3.1 3.7

10 (5,25) 1 5 2.3 1.7 4.5 3.4 9.6 6.6 15.0 10.4
10 (5,25) 1 10 1.2 1.2 2.7 2.4 5.3 4.9 8.0 7.8
10 (5,25) 2 5 1.4 1.4 2.8 3.2 6.0 6.4 8.9 10.0
10 (5,25) 2 10 0.9 1.5 1.6 2.9 3.5 6.1 5.5 9.5
10 (5,25) 3 5 1.0 1.2 2.1 2.4 4.2 5.3 6.5 8.3
10 (5,25) 3 10 0.5 1.0 1.0 1.9 2.1 4.1 3.4 6.2

10 (10,50) 1 5 3.1 2.2 6.2 4.2 12.2 8.2 18.7 11.9
10 (10,50) 1 10 1.4 1.3 2.8 2.7 5.8 5.2 8.4 7.9
10 (10,50) 2 5 1.8 2.1 3.4 4.0 7.1 8.0 10.7 12.1
10 (10,50) 2 10 0.9 1.7 1.9 3.5 3.9 7.1 5.9 11.3
10 (10,50) 3 5 1.1 1.4 2.5 2.6 5.1 5.3 7.7 8.2
10 (10,50) 3 10 0.6 0.8 1.3 1.7 2.7 3.8 4.0 5.7

20 (5,25) 1 5 3.0 2.7 6.2 5.1 12.5 9.8 18.8 14.3
20 (5,25) 1 10 1.8 1.8 3.4 3.5 7.0 7.2 10.4 11.3
20 (5,25) 2 5 1.9 2.2 3.7 4.5 7.4 8.8 10.9 13.7
20 (5,25) 2 10 1.1 1.9 2.0 3.9 4.2 8.4 6.6 13.1
20 (5,25) 3 5 1.3 1.8 2.6 3.4 5.3 7.2 7.8 10.9
20 (5,25) 3 10 0.7 1.3 1.3 2.6 2.7 5.9 4.3 8.7

20 (10,50) 1 5 4.3 3.0 7.7 6.2 14.8 10.7 22.2 14.9
20 (10,50) 1 10 2.1 2.0 4.2 3.8 7.9 7.6 11.6 11.5
20 (10,50) 2 5 2.4 2.6 4.6 5.4 9.2 10.2 13.5 15.0
20 (10,50) 2 10 1.3 2.0 2.5 4.4 4.9 9.4 7.3 14.5
20 (10,50) 3 5 1.6 1.7 3.1 3.4 6.3 6.8 9.1 10.5
20 (10,50) 3 10 0.7 1.2 1.6 2.4 3.3 5.0 5.2 7.7

larger if tours are generated by application of the LKH heuristic. This can be explained by the fact that

the LKH heuristic constructs shorter tours, resulting in smaller total processing times (see Tables A3 to

A6). The impact of the other parameters is nearly the same for both routing algorithms. Therefore, the

analysis is based on the results related to the S-shape strategy only.

Number of order pickers

According to the literature, waiting times significantly increase with a rising number of order pickers k

since more blocking situations arise when many pickers work in the same picking area at the same time.
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This is also verified by the results of the experiments. While the average proportion of the total waiting

time amounts to 2.5% and 1.4% for A1 and A2 when the number of order pickers is very small (k = 2),

the pickers spend 21.1% and 8.7% of their time on waiting for other pickers performing their operations,

respectively, if many pickers are simultaneously employed (k = 7).

Size of the picking area and storage assignment policy

The size of the picking area is dependent on the number of blocks b and the number of picking aisles m.

If the picking area is quite large, order pickers do not come across each other very often, resulting

in few blocking situations and a short total waiting time. The same line of argumentation holds for the

application of the random assignment policy instead of using the class-based storage assignment strategy.

Thus, it can be expected that the proportion of the total waiting time decreases with increasing values

for b and m, and that the proportion is smaller for the random assignment policy. In Table 3, the average

proportion of the total waiting time is depicted for A1 and A2 dependent on the number of blocks, the

number of picking aisles and the storage assignment policy.

Table 3: Proportion [%] of the total waiting time dependent on the size of the warehouse and the storage assignment policy

b m
A1 A2

a = r a = c a = r a = c

1 5 12.3 24.1 8.7 6.0
1 10 5.7 19.5 4.4 4.2

2 5 7.0 21.9 5.3 5.9
2 10 3.7 9.3 3.0 5.4

3 5 4.9 10.2 3.7 4.4
3 10 2.6 5.9 2.0 3.2

As can be seen in Table 3, the results of the experiments match with the expectations if A1 is applied.

The proportion of the total waiting time decreases with an increasing number of blocks (15.4% for b = 1,

10.4% for b = 2 and 5.9% for b = 3), it decreases with a rising number of picking aisles (13.4% for

m = 5 and 7.8% for m = 10) and the proportion gets smaller when the random assignment policy is

applied (15.1% for a = c and 6.0% for a = r).

Concerning A2, the impact of the size of the picking area is dependent on the storage assignment policy.

For the random assignment policy (a = r), the proportions of the total waiting time are in line with the

expectations as they decrease with increasing numbers of blocks (5.8% for b = 1, 4.9% for b = 2 and

3.3% for b = 3) and picking aisles (5.7% for m = 5 and 3.7% for m = 10). However, if the class-based

assignment procedure is used (a = c) and the picking area contains 10 picking aisles, the proportions

increase when switching from 1 block to 2 blocks. Furthermore, the proportion of the waiting time
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is larger for (b = 3, m = 5) than for (b = 1, m = 10), although the latter picking area contains fewer

subaisles. This can be explained by the procedure how the articles are assigned to the three classes A,

B and C. The articles included in classes A and B account for 88% of the total demand and they are

distributed over the 40% of the subaisles which are nearest to the depot. In case of a two-block layout

with 5 picking aisles, classes A and B are solely assigned to subaisles of the block nearest to the depot

(first block). Thus, it is quite likely that all pick locations included in a tour are situated in the first block.

Moreover, most of the subaisles assigned to classes A and B will have to be visited. Tours constructed

by means of the S-shape strategy are then very similar as all of these subaisles are traversed. This results

in quite short waiting times since order pickers may only be blocked by other pickers who currently

retrieve an item. In contrast, if picking areas include 2 blocks and 10 picking aisles or 3 blocks, then

subaisles of the second block are assigned to class B as well. Therefore, at least two blocks are part

of the tours, which makes the resulting tours much more diverse. Order pickers then traverse subaisles

in different directions. If an order picker is blocked by another picker who traverses the subaisle in

a different direction, the picker has to wait until the other picker has left the subaisle. In most cases,

this causes considerably larger waiting times than blocking situations where both pickers traverse an

aisle in the same direction. Thus, the proportion of the total waiting time increases if not all frequently

requested articles are assigned to subaisles of the first block.

Pick-walk-time ratio

In the experiments, the travel velocity of the pickers has been fixed and the time required for performing

the operations at a pick location is varied. The larger the pick-walk-time ratio α gets, the longer an

order picker stops at a pick location. Thus, it can be expected that a larger value for α leads to an

increasing proportion of the total waiting time (Gue et al., 2006). The results of the experiments match

with the expectations. For the application of A1, the average proportion amounts to 6.5% for α = 3, to

11.0% for α = 10 and to 14.3% for α = 20 while the average proportions equal 3.1%, 4.7% and 6.2%,

respectively, if A2 is used.

Number of requested items per customer order

According to Gue et al. (2006), waiting times increase with an increasing number of requested items

per order. Furthermore, Hong et al. (2010) pointed out that a larger variance in the number of items will

increase the proportion of the waiting time. Thus, it is expected that larger proportions can be observed

for classes with (nl,nu) = (10,50). This is true for both A1 and A2 as the average proportions rise from

9.9% and 4.4% to 11.3% and 4.9%, respectively, when (nl,nu) are raised from (5,25) to (10,50).
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Besides the impact of different problem parameters on the proportion of the total waiting time, the results

of the experiments clearly show that, in many settings, taking waiting times into account is pivotal for

achieving small processing times. In some settings, more than half of the total processing time can be

attributed to waiting times, i.e. order pickers spend more time on waiting than on traveling through

the warehouse and retrieving items. In order to keep waiting times at a reasonable level, a truncated

branch-and-bound algorithm is presented in the next section.

5 A truncated branch-and-bound algorithm

5.1 General overview

In both solution approaches presented in Subsection 4.2, waiting instructions are given to a predefined

picker (e.g. the picker who enters a subaisle at a later point in time). This may result in high waiting

times. For example, if a picker enters a subaisle first but has to pick many items in this subaisle, then

a picker, whose current tour only includes few pick locations in this subaisle, may have to wait for

a long time. Therefore, a solution approach is presented which deals with the determination of the

picker to whom waiting instructions are given. Since exactly two decisions are possible in this case, it

seems reasonable to apply a branch-and-bound algorithm. Due to computing time and memory issues,

a truncated branch-and-bound (TBB) algorithm has been designed. In TBB algorithms, the branching

scheme of a branch-and-bound algorithm is kept while heuristic evaluation methods are applied to prune

some branches (Rakrouki et al., 2012). By the heuristic pruning of branches, the computational effort is

considerably reduced. However, optimality of the solution obtained cannot be guaranteed.

A pseudo-code of the TBB algorithm designed here is depicted below. In the TBB algorithm, each node

of the tree represents a partial solution. At the beginning of the algorithm, no assignments of orders to

pickers have been performed. The root r is then constructed by application of the expansion procedure.

In the expansion procedure, (some) customer orders are assigned to order pickers and blocking situations

are identified which arise by processing the orders according to the tours constructed by the given routing

algorithm. After the expansion procedure is completed, the root is either assigned to the set of active

nodes V or to the set of terminal solutions F . A node represents a terminal solution if all customer

orders have been assigned to order pickers and all blocking situations have been taken into account. If

r already corresponds to a terminal solution, the TBB algorithm terminates. Otherwise, iterations are

performed as long as active nodes exist. An iteration starts with the selection of an active node ṽ. A
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branching procedure is then applied to ṽ, resulting in two nodes v1 and v2 located on the next level of

the tree. By branching, the decision about the picker who has to wait is taken for a certain blocking

situation and waiting instructions are given to this picker. The expansion procedure is applied to v1 and

v2, respectively. It is then checked whether the nodes represent a terminal solution or have to be included

in the set of active nodes. At the end of an iteration, the pruning procedure identifies active nodes which

are excluded from the solution process, i.e. they are removed from the set of active nodes. At the end of

the solution process, the TBB algorithm returns the node v∗ which corresponds to the terminal solution

resulting in the minimum total waiting time w. In the following, the components of the TBB algorithm

are explained in greater detail.

Algorithm 1 Truncated Branch-and-Bound Algorithm

Input: problem data, node r corresponding to a partial solution with no orders assigned to pickers;

Output: node v∗ corresponding to a solution to the problem defined in Section 2;

r := Expansion_Procedure(r);
if r corresponds to a terminal solution then

V := /0; F := {r};
else

V := {r}; F := /0;
end if
while V ̸= /0 do

ṽ := Node_Selection(V ); V := V \{ṽ};
(v1,v2) := Branching_Procedure(ṽ);
for v ∈ {v1,v2} do

v := Expansion_Procedure(v);
if v corresponds to a terminal solution then

F := F ∪{v};
else

V := V ∪{v};
end if

end for
for v ∈ V do

Pruning_Procedure(v);
end for

end while
v∗ := argmin{w(v) | v ∈ F};

5.2 Expansion of a node

As mentioned before, the TBB algorithm starts with no customer orders being assigned to the order

pickers and it then successively assigns the orders to the pickers. This is done in the expansion procedure
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which works as follows. Let a node v be given, representing a partial solution with a set of customer

orders already assigned to order pickers and a set of waiting instructions already given to the pickers.

Let tmin denote the point in time when the next order picker becomes available where the calculation of

tmin includes the waiting time of instructions already given but not waiting times which may arise due

to blocking situations not yet taken into account. The node v can then be expanded if and only if all

blocking situations arising until tmin have been dealt with in the corresponding partial solution. In this

case, the next order in the sequence (based on the arrival date) is assigned to the picker who finishes

the tour at tmin and tmin is updated. This procedure is repeated until at least one blocking situation arises.

At the end of the expansion or if the node cannot be expanded, the expansion procedure returns the

blocking situations which have been identified. An example of the expansion of a node is depicted in

Fig. 4.

a) Partial solution before expansion of the node b) Partial solution after expansion of the node

Fig. 4: Example of an expansion of a node

In Fig. 4a), a partial solution is given which corresponds to an expandable node. A Gantt chart is depicted

where the rectangles represent the tours to be performed for processing the respective orders. The width

of a rectangle gives information about the duration of a tour. The gray parts of a rectangle stand for the

waiting time caused by executing the waiting instructions. It can be seen that customer orders #1 to #4

have already been assigned to order pickers in this partial solution. Furthermore, picker #1 and picker #3

execute a waiting instruction, respectively. Here, tmin is defined as the point in time when picker #1 has

completed the tour. Thus, when expanding the node, the next order is assigned to picker #1 which is

shown in Fig. 4b). Since no blocking situation results from this assignment, order #6 is assigned to

picker #3 because this picker will be the next picker who is available. This assignment causes two

blocking situations which are illustrated by the dotted lines in Fig. 4b). The first blocking situation

concerns pickers #1 and #3 while the other situation relates to pickers #2 and #3. Thus, the expansion

procedure terminates and tmin is now the point in time when picker #2 has processed customer order #4.

(Note that the effect of the two blocking situations is not included in tmin.)
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5.3 Characteristics of a (partial) solution

Let tmin be defined as in the previous subsection. A (partial) solution is then characterized by:

1) the customer orders already assigned to a picker and the assignment of the orders to the pickers;

2) for each picker, the waiting instructions received for the blocking situations already dealt with;

3) the total waiting time caused by performing the received waiting instructions;

4) the number of assigned customer orders;

5) the number of remaining blocking situations arising until tmin.

The characteristics mentioned in 1) and 2) contain information about the decisions to be taken for solving

the problem described in Section 2. The third component represents the objective function value if the

solution is a terminal solution. Otherwise, it defines a lower bound regarding the objective function value.

Since the waiting time is dependent on the customer orders and the blocking situations already taken

into account, components 4) and 5) are required for the identification of the pairs of the corresponding

nodes which can be compared regarding the lower bounds in the pruning procedure. The selection of

the node to be considered in an iteration is also based on these components.

5.4 Selection of a node, and branching and pruning procedures

In order to keep the tree at a reasonable size, the node to be considered is chosen in such a way that

many nodes can be compared in the pruning procedure, i.e. the corresponding partial solutions of the

nodes are equal with respect to the number of assigned customer orders. Therefore, a node is selected

according to the following priorities:

1) the smallest number of assigned customer orders;

2) the smallest number of remaining blocking situations;

3) the smallest total waiting time;

4) the first generated node.

The branching procedure is then applied to the selected node. In this procedure, the first arising

blocking situation identified in the expansion procedure is considered and two nodes are generated. The

generation of the nodes is based on the decision regarding the picker who has to wait in this blocking
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situation. Waiting instructions are then given to the respective picker. The waiting instructions match

with the instructions used in approach A2 (see Subsection 4.2).

In a TBB algorithm, the pruning procedure replaces the bounding phase of a classic branch-and-bound

algorithm. Here, two heuristic methods are applied to prune branches, reducing the size of the tree. The

first procedure is based on the comparison of nodes regarding the lower bounds. As mentioned before,

nodes can only be compared if they relate to partial solutions characterized by the same number of

assigned customer orders. A branch corresponding to a node is then pruned if another node exists whose

corresponding partial solution either contains fewer remaining blocking situations while not having a

larger total waiting time or if the number of remaining blocking situations is equal for both partial

solutions but the total waiting time is smaller for the other one.

The second possibility for pruning a branch of a node is related to the number of remaining blocking

situations after application of the branching procedure. By branching, a blocking situation is taken into

account and waiting instructions are given to a picker. In general, the number of remaining blocking

situations either decreases by 1 or further orders can even be assigned until new blocking situations are

identified. However, since the execution of waiting instructions results in changes in the points in time

when the respective picker is at certain locations, it is also possible that blocking situations arise which

did not occur before. Thus, the number of remaining blocking situations may remain unchanged or even

increase. In this case, the branch of the generated node is pruned. An exception occurs if both resulting

branches would have been pruned. The node whose corresponding partial solution shows the smaller

number of remaining blocking situations is then kept, guaranteeing the algorithm to find a terminal

solution.

6 Performance of the TBB algorithm

6.1 Setup

For the evaluation of the performance of the TBB algorithm, numerical experiments are conducted.

The settings of the experiments are chosen according to the setup of the experiments described in

Subsection 4.1. Based on the observations from Subsection 4.3, we focus on problem classes in which

the proportion of the total waiting time as part of the total processing time can be expected to be

significant. Thus, the problem classes with the following parameters are considered. For processing

N ∈ {100,200} customer orders, each including between 10 and 50 items, k ∈ {3,5,7,10} order pickers



S. Hahn, A. Scholz 21

are available while the pick-walk-time ratio α either amounts to 10 or is equal to 20. The picking area of

the warehouse contains b ∈ {1,2} blocks and m ∈ {5,10} picking aisles. Articles are assigned to storage

locations according to the random or the class-based assignment policy.

The combination of all parameter values gives rise to 256 problem classes. For each class, 48 problem

instances have been generated, resulting in 12288 instances in total. The TBB algorithm has been

implemented using Visual Studio C++ 2015. The numerical experiments have been executed by means

of a Haswell system with up to 3.2 GHz and 16 GB RAM per core.

The performance of the TBB algorithm is evaluated with respect to the amount of improvement (in terms

of the reduction of the total waiting time) obtained compared to the application of the approaches A1

and A2, i.e. the impact of the decisions regarding the given waiting instructions and the selection of the

picker who has to wait is considered. Furthermore, computing times are reported in order to investigate

whether the TBB algorithm is able to deal with large-sized instances.

6.2 Improvements obtained by application of the TBB algorithm

6.2.1 Improvements by allowing several pickers to work in the same aisle at the same time

In Tables A7 and A8, the results of the experiments are depicted for problem classes with 100 customer

orders where tours have been constructed by means of the S-shape strategy and the LKH heuristic,

respectively. Tables 4 and 5 include the respective results for problem classes containing 200 orders. For

each problem class, the average total waiting times w1, w2 and wB (in hours) are given which result by

the application of the approaches A1 and A2 and the TBB algorithm. Furthermore, the average relative

amount of reduction of the total waiting time impi (in %) is depicted which is obtained by applying the

TBB algorithm instead of using approach Ai (i ∈ {1,2}).

According to approach A1, only a single picker is allowed to be in a subaisle (see Subsection 4.2). If a

picker has to enter a subaisle currently occupied by another picker, the picker has to wait until the other

picker has performed the operations and has left this subaisle. In contrast, more sophisticated waiting

instructions are given in the TBB algorithm. Thus, by comparing the total waiting times resulting by

application of A1 and the TBB algorithm, the impact of the waiting instructions on the waiting times can

be analyzed. (Note that a further difference between A1 and the TBB algorithm consists in the selection

of the picker who has to wait. However, the impact on the solution quality is quite small compared to

the impact of the waiting instructions.)
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By application of the TBB algorithm, significant improvements regarding the total waiting time are

achieved. In fact, the improvements range between 39.5% (S-shape, N = 200, k = 5, a = r, α = 10,

b = 1, m = 5) and 95.8% (S-shape, N = 200, k = 10, a = c, α = 10, b = 1, m = 10). On average, the

total waiting time can be reduced by 72.6%, which corresponds to a reduction of the processing time

per customer order by 18 minutes. Thus, the results clearly demonstrate that using appropriate waiting

instructions is pivotal for an efficient organization of the picking process.

In the following, the impact of the parameter settings on the amount of reduction obtained by application

of the TBB algorithm is investigated. Regarding the number of customer orders and the pick-walk-time

ratio, no effect on the amount of reduction can be identified. Concerning the routing algorithms, on

average, the improvements obtained are also very similar (72.1% for the S-shape strategy and 73.1%

for the LKH heuristic). However, the impact of the remaining parameters may be different depending

on how the tours have been constructed.

Tours constructed by means of the S-shape strategy

Concerning the number of order pickers k, the amount of reduction rises with an increasing value of k if

the S-shape strategy is used for the construction of the tours and if articles are assigned according to the

class-based assignment policy. In fact, the average relative reduction of the total waiting time rises from

82.9% (k = 3) to 90.0% (k = 10). When assigning articles based on the random assignment policy, the

largest improvements are observed in problem classes with 3 or 10 pickers.

Comparing the results for the two storage assignment policies, larger reductions are obtained in each

problem class when articles are assigned following the class-based assignment policy. On average, the

amount of reduction equals 57.9% and 86.4% for a = r and a = c, respectively. If the class-based

assignment policy is applied, the subaisles located near to the depot will be visited on almost every tour.

Thus, the tours generated by means of the S-shape policy have a very similar structure, implying that

order pickers traverse the subaisles in the same direction in most of the tours. In this case, the waiting

times can be reduced significantly if other instructions are given than waiting at the entrance of the

subaisle until the other picker has left this aisle. Furthermore, based on approach A1, order pickers may

often wait although no blocking situation occurs. If the random assignment policy is used, it is very

likely that the sets of subaisles to be visited are significantly different for different tours, increasing the

probability of order pickers traversing a subaisle in different directions at the same time. In this case, in

both approaches, a picker has to wait until the other picker has left the subaisle. The only possibility of

the TBB algorithm to improve the solution consists in the selection of the picker. Thus, the amount of
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reduction is smaller if the random storage assignment policy is used.

When considering the size of the warehouse for problem classes with a = c, the smallest improvements

can be observed if the picking area consists of 2 blocks and 10 picking aisles. This can be explained

by the fact that this is the only picking area where not all articles from the classes A and B have been

assigned to subaisles of the first block. Thus, it is likely that the second block has to be visited, which

results to more diverse tours (see also Subsection 4.3). With the same line of argumentation as for the

impact of the storage assignment policy on the amount of reduction, smaller amounts of improvement

can be justified in this case.

Tours constructed by means of the LKH heuristic

If the tours have been constructed by application of the LKH heuristic, the amount of reduction increases

with an increasing number of order pickers for problem classes with a = c. This coincides with the

observations related to problem classes where the S-shape strategy has been used. The relative reduction

of the total waiting time amounts to 81.5%, 83.9%, 85.8% and 88.7% if 3, 5, 7 and 10 pickers are

available, respectively. For a = r, the relative reduction obtained is similar for problem classes with 3, 5

and 7 pickers, while the largest reductions can be observed in classes with 10 pickers.

Regarding the storage assignment policy, larger relative reductions can be identified for the class-based

assignment policy (85.0%) than for the random assignment strategy (61.3%). The only problem classes

where the amount of reduction is larger for a = r are characterized by a picking area containing 2 blocks

and 10 picking aisles. At the same time, these problem classes represent the classes with the smallest

relative reductions obtained if the class-based assignment procedure has been applied. This result

matches with the corresponding observation for classes with a = c and tours being constructed by

means of the S-shape strategy.

6.2.2 Improvements by selecting the picker who has to wait

The results presented above show that the waiting instructions have a large impact on the total waiting

time. In approach A2 and in the TBB algorithm, identical waiting instructions are given if the same order

picker has to wait. The difference between these approaches can only be found in the selection of the

picker to whom waiting instructions are given for a certain blocking situation. While the picker who left

the depot at a later point in time will always wait according to A2, the selection of the picker is dependent

on the effect of the decision on the current and future blocking situations in the TBB algorithm.
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The amount of reduction ranges from 12.4% (S-shape, N = 200, k = 5, a = r, α = 10, b = 1, m = 5)

to 61.9% (S-shape, N = 200, k = 3, a = r, α = 20, b = 1, m = 10). As expected, the average relative

reduction is smaller than the improvements achieved regarding A1. However, compared to approach A2,

the TBB algorithm can reduce the total waiting time by 43.2% on average, which shows that the selection

of the picker who has to wait also represents an important decision, having a significant impact on the

resulting total waiting time.

The reductions obtained for varying numbers of customer orders, pick-walk-time ratios and routing

algorithms are of similar magnitude, respectively. Regarding the number of order pickers k, it can

be observed that an increasing number of pickers results in smaller relative reductions. While relative

reductions of 50.0% are achieved for k = 3, the total waiting time can be decreased by 41.1% for k = 10.

This can be explained by the fact that the total waiting time significantly rises with an increasing number

of order pickers. With respect to the absolute reduction of the total waiting time, average improvements

of 10.3 hours are obtained for problem classes with 10 pickers, where the waiting time is reduced

by 2.4 hours only if 3 pickers are available. The impact of the assignment policy and the size of the

picking area is dependent on the underlying routing algorithm. Whereas larger relative reductions can

be observed for the class-based assignment policy if tours are constructed by means of the S-shape

strategy (42.0% for a = r and 44.1% for a = c), the opposite holds for problem classes where the LKH

heuristic has been applied (44.9% for a = r and 41.7% for a = c). Concerning the size of the warehouse,

it can be seen that the number of blocks and the number of picking aisles do not affect the amount of

reduction obtained if problem classes based on the LKH heuristic are considered. For classes in which

the S-shape strategy has been applied, the average relative reduction drops with a decreasing number of

picking aisles if articles have been assigned according to the random assignment policy. Otherwise, the

least reductions are obtained in case of a picking area including 2 blocks and 10 picking aisles.

As can be seen from the results of the numerical experiments, both the selection of the order picker who

has to wait and the waiting instructions actually given to the respective pickers have a strong impact on

the total waiting time. By carefully dealing with both types of decisions, the TBB algorithm manages

to reduce the total waiting time significantly, which has a positive effect on the processing times of the

orders. In the following subsection, the TBB algorithm is evaluated with respect to the computing time

required in order to investigate whether this approach is suitable for dealing with large-sized instances

arising in practical applications.
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6.3 Computing times

The computing times required by approaches A1 and A2 are below one second and, therefore, they

are negligible. Regarding the TBB algorithm, for each problem class, the average computing time (in

seconds) is depicted in Table 6. As can be seen from the table, the average computing time is below one

minute for each problem class. Thus, it can be concluded that the TBB algorithm is suitable for dealing

with very large instances as well. More precisely, the average computing time required for solving an

instance by means of the TBB algorithm ranges from 0.1 seconds (several classes with S-shape, N = 100

and k = 3) to 56.9 seconds (S-shape, N = 200, k = 10, a = c, α = 20, b = 2, m = 10).

Table 6: Computing times [seconds] required by the truncated branch-and-bound algorithm

N a α b m
k = 3 k = 5 k = 7 k = 10

S-shape LKH S-shape LKH S-shape LKH S-shape LKH

100 r 10 1 5 0.1 0.2 0.2 0.4 0.5 1.0 2.0 3.7
100 r 10 1 10 0.3 0.3 0.5 0.6 0.9 1.0 1.5 2.2
100 r 10 2 5 0.2 0.3 0.4 0.6 0.7 1.3 1.4 2.7
100 r 10 2 10 0.4 0.5 0.9 0.9 1.7 1.5 3.0 2.6

100 r 20 1 5 0.1 0.2 0.2 0.5 0.6 1.3 2.7 6.2
100 r 20 1 10 0.2 0.3 0.6 0.7 1.0 1.2 2.3 2.4
100 r 20 2 5 0.2 0.3 0.5 0.8 0.8 1.4 1.6 3.4
100 r 20 2 10 0.5 0.5 1.1 1.0 1.9 1.7 3.7 3.2

100 c 10 1 5 0.1 0.1 0.2 0.3 0.3 0.5 0.6 1.1
100 c 10 1 10 0.1 0.2 0.3 0.4 0.4 0.7 0.8 1.2
100 c 10 2 5 0.2 0.2 0.4 0.4 0.8 0.8 2.1 1.4
100 c 10 2 10 0.5 0.6 1.0 1.3 1.8 2.3 5.4 5.8

100 c 20 1 5 0.1 0.1 0.2 0.3 0.4 0.6 0.8 1.6
100 c 20 1 10 0.2 0.2 0.3 0.5 0.7 0.9 1.2 1.5
100 c 20 2 5 0.3 0.2 0.5 0.6 1.0 0.9 2.7 2.0
100 c 20 2 10 0.5 0.7 1.1 1.6 2.5 3.3 8.3 10.1

200 r 10 1 5 0.5 0.8 0.9 2.4 2.2 5.5 8.4 22.7
200 r 10 1 10 0.9 1.3 2.1 2.7 3.7 4.7 6.7 9.2
200 r 10 2 5 1.0 1.4 2.1 3.3 3.4 6.4 6.1 12.9
200 r 10 2 10 1.8 2.2 4.5 4.2 7.5 6.9 14.5 12.4

200 r 20 1 5 0.5 0.9 1.1 2.6 2.5 7.1 10.9 40.2
200 r 20 1 10 1.1 1.3 2.7 3.1 4.8 5.8 9.7 11.2
200 r 20 2 5 1.1 1.5 2.6 3.7 4.2 7.0 8.2 16.8
200 r 20 2 10 2.0 2.3 5.0 4.8 8.6 7.8 17.8 14.4

200 c 10 1 5 0.4 0.5 0.8 1.3 1.3 2.4 2.4 6.1
200 c 10 1 10 0.7 1.0 1.4 2.0 2.2 3.0 3.7 5.9
200 c 10 2 5 1.1 1.0 2.4 2.3 4.4 3.7 9.9 7.2
200 c 10 2 10 2.0 2.7 4.6 5.8 8.6 11.2 26.3 29.1

200 c 20 1 5 0.4 0.6 1.1 1.5 1.7 2.9 3.4 9.7
200 c 20 1 10 0.9 1.1 1.9 2.4 3.1 3.9 5.9 7.7
200 c 20 2 5 1.2 1.2 2.8 2.8 5.4 4.7 15.1 9.3
200 c 20 2 10 2.4 3.2 5.7 7.1 12.6 16.3 45.9 56.9
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The number of nodes included in the tree has a major impact on the computing time. Since nodes are

generated after a blocking situation has been identified, it can be expected that the largest computing

times are required for solving instances from problem classes where order pickers tend to block each

other quite often. In fact, computing times rise with an increasing number of order pickers and an

increasing pick-walk-time ratio. Furthermore, larger computing times can be observed when tours have

been constructed according to the LKH heuristic. This can also be explained by the number of blocking

situations arising as, on average, 214 blocking situations are considered for the LKH heuristic while

only 188 blocking situations occur for the S-shape strategy. Therefore, if the S-shape strategy has been

used for the generation of the tours, the average number of nodes created in the TBB algorithm is lower

(1260 nodes for the S-shape strategy compared to 1792 nodes for the LKH heuristic), leading to smaller

computing times. The number of customer orders represents another parameter that has an impact on

the number of blocking situations. The more customer orders are to be processed, the more tours are to

be performed, resulting in a larger number of blocking situations in total. Thus, it is not surprising that

computing times increase (from 1.2 seconds to 6.1 seconds) if 200 instead of 100 orders are considered.

A significant part of the computing time is also spent on the identification of blocking situations.

Whether a blocking situation arises, is checked each time before a picker enters a subaisle. The more

subaisles are to be entered in a tour, the more checks have to be performed. Thus, the identification of

blocking situations is more time-consuming in case of large picking areas including many subaisles,

leading to slightly higher computing times for increasing numbers of blocks and picking aisles.

7 Conclusion and outlook

In this paper, we dealt with the problem of guiding order pickers through a picking area including

narrow subaisles. In narrow subaisles, order pickers can neither pass nor overtake each other. Thus, an

order picker may have to wait until another picker has completed the operations in a certain subaisle.

Although it is known that, in particular when many order pickers are employed, the arising waiting times

have a significant negative impact on the efficiency of the picking process, waiting times are rarely taken

into account when guiding order pickers.

In the first part of the paper, by means of numerical experiments, settings are identified where the

proportion of the total waiting time as part of the total processing time is quite large and situations

are pointed out where waiting times can be neglected. For the determination of the total waiting

time, two different approaches are designed in which the decisions regarding the pickers who have to
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wait are made based on suggestions from the literature. The results of the experiments show that the

consideration of waiting times is inevitable for an efficient organization of the picking process, as the

proportion of the total waiting time amounts up to 62%, i.e. almost two-thirds of the total processing

time is spent on waiting. In order to reduce waiting times, in the second part of the paper, a truncated

branch-and-bound algorithm is proposed where blocking situations are identified chronologically and

nodes are generated according to decisions regarding the selection of the picker who has to wait in the

respective blocking situation. By means of numerical experiments, it is demonstrated that this algorithm

leads to excellent results within very short computing times. It is pointed out that waiting times can be

decreased by up to 96% if more sophisticated waiting instructions are used instead of instructing the

pickers to wait at the entrance of the subaisle until no other picker is in this subaisle. Furthermore, it is

shown that reductions of up to 62% can be obtained by simply putting more emphasis on the selection

of the picker who has to wait in a certain situation.

It has to be noted that all considerations in this paper are based on the assumption that the travel velocity

of all pickers is constant and both the travel velocity and the pick times are deterministic. This is a

standard assumption in the literature. However, this assumption is very critical as it is hardly met in

practice. First, human operators do not travel with a constant velocity. They have to accelerate after

having performed the operations at a location and they decelerate before stopping at a pick location or

when switching between picking aisles. Moreover, the travel velocity may differ regarding the travel

directions (e.g. the velocity may be lower when an order picker returns to a cross aisle by backing).

Second, the travel velocity is not only varying but also stochastic in practice. This also holds for the

pick time because a human operator does not need exactly the same amount of time each time he/she

performs a certain operation. Thus, the integration of varying or even stochastic travel velocities and

pick times represents a very important area of future research.

Further research could also concentrate on the extension of the waiting instructions. In the truncated

branch-and-bound approach, pickers either wait or they perform their operations as planned. For the

reduction of the waiting times, it could also be advantageous that order pickers deviate from their paths.

For example, if a subaisle is traversed without retrieving an item, another subaisle could be chosen (Chen

et al., 2016). Moreover, the tours could be modified completely, i.e. the sequence according to which the

items are to be picked could be changed. In both scenarios, the minimization of the total waiting time

would not represent a valid objective and the total processing time should be used for the evaluation of

solutions instead.
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The consideration of the assignment of customer orders to the pickers and the sequencing according to

which customer orders are to be processed represents another promising topic for future research. These

decisions provide much more flexibility, which can be expected to prevent many blocking situations

from arising. Another interesting aspect can be found in the integration of the Order Batching Problem,

i.e. customer orders can be grouped into batches and then processed on a single tour. It can be expected

that the batching of customer orders leads to an increase of the proportion of the total waiting time (Gue

et al., 2006; Hong et al., 2010). However, it will significantly reduce the total processing time.
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Appendix: Results of the numerical experiments

Table A1: Proportion [%] of the total waiting time as part of the total processing time for A1 and the LKH heuristic

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 3.1 3.2 6.4 7.3 13.9 17.5 21.8 33.5
3 (5,25) 1 10 1.5 2.4 3.0 5.3 6.3 12.5 9.9 23.9
3 (5,25) 2 5 1.9 2.9 3.8 6.1 8.2 15.0 12.5 28.6
3 (5,25) 2 10 0.8 1.7 1.8 3.5 3.7 7.8 5.7 13.1
3 (5,25) 3 5 1.4 2.0 2.6 4.2 6.0 9.3 9.2 15.8
3 (5,25) 3 10 0.6 1.2 1.3 2.6 2.7 5.5 4.2 9.1

3 (10,50) 1 5 3.9 4.3 8.0 9.1 16.7 22.1 26.2 40.5
3 (10,50) 1 10 1.9 2.9 3.9 6.5 8.4 14.8 13.0 28.5
3 (10,50) 2 5 2.3 3.4 4.8 7.3 9.8 17.0 15.1 33.1
3 (10,50) 2 10 1.1 1.8 2.3 3.9 4.7 8.8 7.2 14.4
3 (10,50) 3 5 1.6 2.2 3.3 4.6 6.8 10.4 10.6 16.6
3 (10,50) 3 10 0.8 1.4 1.6 2.8 3.2 6.2 5.0 10.1

10 (5,25) 1 5 4.3 5.6 9.2 12.5 18.7 32.6 28.4 50.1
10 (5,25) 1 10 1.8 4.4 4.0 9.7 8.3 25.9 12.8 44.6
10 (5,25) 2 5 2.3 4.7 4.8 10.8 9.9 28.4 15.4 47.1
10 (5,25) 2 10 1.1 2.5 2.2 5.5 4.5 12.3 6.9 20.4
10 (5,25) 3 5 1.7 3.0 3.3 6.4 7.0 14.3 10.7 22.7
10 (5,25) 3 10 0.7 1.7 1.4 3.6 3.0 8.1 4.6 13.1

10 (10,50) 1 5 5.5 7.3 11.3 16.2 22.4 39.9 33.1 56.8
10 (10,50) 1 10 2.6 5.6 5.4 12.4 11.0 32.7 16.5 51.2
10 (10,50) 2 5 2.8 6.1 5.9 13.3 12.0 35.7 18.3 53.4
10 (10,50) 2 10 1.3 3.2 2.8 6.6 5.7 15.0 8.7 23.6
10 (10,50) 3 5 1.9 3.7 4.0 7.6 8.2 16.8 12.3 26.7
10 (10,50) 3 10 0.9 2.0 1.9 4.5 3.8 9.7 5.8 15.3

20 (5,25) 1 5 5.4 8.0 11.1 18.7 22.4 43.4 33.0 59.1
20 (5,25) 1 10 2.4 6.5 5.0 15.0 10.2 38.0 15.6 54.9
20 (5,25) 2 5 2.9 7.0 5.8 16.0 11.7 40.0 17.8 56.4
20 (5,25) 2 10 1.4 3.6 2.5 7.8 5.4 17.1 8.3 27.5
20 (5,25) 3 5 2.0 4.3 4.0 8.6 8.0 19.0 12.1 29.0
20 (5,25) 3 10 0.9 2.4 1.8 4.9 3.6 10.6 5.4 17.0

20 (10,50) 1 5 6.6 9.7 13.3 21.8 26.1 47.7 36.7 62.2
20 (10,50) 1 10 3.1 7.7 6.3 18.0 12.7 44.3 19.4 59.4
20 (10,50) 2 5 3.5 8.0 6.8 19.4 14.0 44.9 20.6 60.3
20 (10,50) 2 10 1.5 4.2 3.2 9.3 6.7 19.8 10.0 31.2
20 (10,50) 3 5 2.2 4.9 4.6 10.1 9.3 21.3 14.1 33.1
20 (10,50) 3 10 1.1 2.8 2.1 5.7 4.3 12.4 6.6 20.3



Table A2: Proportion [%] of the total waiting time as part of the total processing time for A2 and the LKH heuristic

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 2.3 0.9 4.7 2.0 9.5 4.2 13.9 6.6
3 (5,25) 1 10 1.0 0.6 1.9 1.3 3.9 2.7 5.8 4.3
3 (5,25) 2 5 1.5 0.8 2.9 1.7 5.8 3.7 8.6 5.6
3 (5,25) 2 10 0.6 1.3 1.2 2.7 2.5 5.5 3.7 8.1
3 (5,25) 3 5 1.1 1.6 2.1 3.3 4.4 6.5 6.5 10.3
3 (5,25) 3 10 0.5 0.9 1.0 1.9 1.8 3.8 2.8 5.8

3 (10,50) 1 5 3.2 1.4 6.6 2.8 12.6 5.8 19.0 9.2
3 (10,50) 1 10 1.4 0.9 2.9 1.8 5.8 3.7 8.6 5.8
3 (10,50) 2 5 1.8 1.1 3.8 2.3 7.5 4.6 11.1 7.1
3 (10,50) 2 10 0.8 1.6 1.6 3.5 3.3 6.6 5.0 9.9
3 (10,50) 3 5 1.4 1.9 2.6 4.2 5.2 8.0 7.6 11.9
3 (10,50) 3 10 0.6 1.2 1.1 2.5 2.3 4.7 3.4 7.3

10 (5,25) 1 5 3.2 1.8 6.7 3.5 13.3 7.1 19.2 10.9
10 (5,25) 1 10 1.3 1.1 2.7 2.2 5.3 5.1 8.4 7.6
10 (5,25) 2 5 1.7 1.2 3.8 2.8 7.3 5.5 11.0 8.5
10 (5,25) 2 10 0.9 2.1 1.5 4.1 3.3 8.5 4.7 12.9
10 (5,25) 3 5 1.3 2.4 2.5 5.1 5.3 10.3 7.7 15.0
10 (5,25) 3 10 0.6 1.3 1.1 2.6 2.2 5.8 3.3 8.7

10 (10,50) 1 5 4.5 2.1 9.1 4.1 17.2 8.8 25.0 13.1
10 (10,50) 1 10 1.9 1.5 3.6 2.9 7.4 5.9 11.2 9.1
10 (10,50) 2 5 2.3 1.7 4.8 3.5 9.4 6.6 13.9 10.2
10 (10,50) 2 10 1.0 2.9 2.0 5.4 3.9 11.3 6.0 16.4
10 (10,50) 3 5 1.6 3.2 3.3 6.2 6.3 12.9 9.2 18.5
10 (10,50) 3 10 0.7 1.9 1.3 3.8 2.6 7.7 4.2 11.3

20 (5,25) 1 5 4.5 2.4 8.4 4.7 16.2 9.6 23.5 14.7
20 (5,25) 1 10 1.7 1.7 3.5 3.4 7.0 7.1 10.2 11.3
20 (5,25) 2 5 2.4 2.0 4.5 3.8 8.8 8.2 13.1 12.7
20 (5,25) 2 10 1.0 3.1 2.0 5.8 3.9 11.8 6.0 18.0
20 (5,25) 3 5 1.6 3.5 3.3 6.8 6.3 13.4 9.3 19.7
20 (5,25) 3 10 0.7 1.9 1.4 3.7 3.0 7.8 4.1 11.7

20 (10,50) 1 5 5.7 2.8 10.9 5.5 20.3 10.6 28.6 16.3
20 (10,50) 1 10 2.3 1.9 4.7 4.0 9.1 8.1 13.5 12.3
20 (10,50) 2 5 3.0 2.0 5.7 4.5 10.7 9.0 15.9 13.1
20 (10,50) 2 10 1.1 3.7 2.3 7.5 4.7 15.2 7.1 21.8
20 (10,50) 3 5 1.9 4.5 3.7 8.4 7.4 16.5 10.7 23.8
20 (10,50) 3 10 0.8 2.4 1.6 5.2 3.2 10.1 4.9 15.0



Table A3: Total processing time [hours] when applying A1 with the S-shape strategy

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 23.8 21.4 24.2 22.1 25.4 24.0 27.7 29.3
3 (5,25) 1 10 33.6 26.2 33.9 26.7 34.8 28.4 35.9 31.5
3 (5,25) 2 5 30.3 23.6 30.8 24.2 31.9 26.4 33.3 30.4
3 (5,25) 2 10 40.2 31.4 40.7 31.9 41.5 33.3 42.5 35.2
3 (5,25) 3 5 36.7 29.6 37.2 30.2 38.2 31.7 39.4 33.5
3 (5,25) 3 10 48.3 37.6 48.7 38.0 49.4 39.1 50.3 40.6

3 (10,50) 1 5 29.5 27.8 30.2 28.8 32.0 32.8 36.4 42.9
3 (10,50) 1 10 41.4 34.7 41.8 35.6 42.9 38.2 43.9 44.3
3 (10,50) 2 5 38.9 31.9 39.5 32.9 40.8 36.2 42.3 43.7
3 (10,50) 2 10 54.7 42.6 55.2 43.2 56.3 44.9 57.5 47.1
3 (10,50) 3 5 48.6 40.1 49.1 40.9 50.2 42.7 51.7 45.1
3 (10,50) 3 10 68.2 52.2 68.6 52.7 69.5 54.1 70.9 55.8

10 (5,25) 1 5 32.8 30.5 33.9 32.5 36.8 41.1 41.4 55.8
10 (5,25) 1 10 42.1 35.3 42.9 36.9 44.4 43.3 46.3 57.2
10 (5,25) 2 5 38.8 32.7 39.6 34.7 41.5 42.4 43.6 56.4
10 (5,25) 2 10 48.7 40.1 49.2 41.2 50.4 44.0 51.9 48.2
10 (5,25) 3 5 45.5 38.2 46.2 39.3 47.7 42.4 49.4 46.7
10 (5,25) 3 10 57.1 45.9 57.5 46.7 58.5 48.6 59.7 51.1

10 (10,50) 1 5 47.3 46.4 49.4 50.7 54.5 70.8 62.4 97.6
10 (10,50) 1 10 58.8 53.1 59.9 56.4 62.6 71.7 65.4 98.4
10 (10,50) 2 5 56.2 50.4 57.6 54.0 60.7 71.3 64.0 97.2
10 (10,50) 2 10 71.5 60.6 72.3 62.3 74.2 67.1 76.2 73.7
10 (10,50) 3 5 66.0 57.4 67.1 59.2 69.4 63.9 71.9 70.7
10 (10,50) 3 10 85.2 69.8 85.9 71.0 87.5 73.9 89.0 77.8

20 (5,25) 1 5 46.1 44.9 48.2 50.2 54.0 72.1 62.1 98.7
20 (5,25) 1 10 55.2 49.0 56.3 53.1 59.0 71.1 62.4 97.8
20 (5,25) 2 5 51.5 46.9 52.8 51.4 55.8 70.0 59.4 96.7
20 (5,25) 2 10 61.4 53.5 62.2 55.4 63.9 60.7 66.1 69.1
20 (5,25) 3 5 58.1 51.5 59.1 53.7 61.6 59.3 64.2 67.9
20 (5,25) 3 10 69.5 59.1 70.2 60.4 71.5 64.1 73.1 68.5

20 (10,50) 1 5 75.3 75.4 79.5 86.1 89.7 129.7 104.5 179.4
20 (10,50) 1 10 84.6 80.6 87.1 89.7 92.1 129.9 97.7 179.3
20 (10,50) 2 5 82.5 77.9 84.7 87.9 90.4 127.9 97.1 176.8
20 (10,50) 2 10 97.1 87.2 98.3 90.8 101.4 100.9 104.5 117.2
20 (10,50) 3 5 90.8 84.3 92.6 88.1 96.9 97.7 100.9 113.3
20 (10,50) 3 10 111.1 95.9 112.2 98.1 114.5 103.4 117.1 111.5



Table A4: Total processing time [hours] when applying A2 with the S-shape strategy

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 23.7 21.1 24.1 21.3 24.9 21.7 26.0 22.3
3 (5,25) 1 10 33.5 25.8 33.8 26.0 34.5 26.4 35.2 26.9
3 (5,25) 2 5 30.2 23.2 30.5 23.4 31.3 24.0 32.0 24.7
3 (5,25) 2 10 40.1 31.3 40.4 31.6 41.0 32.3 41.7 33.1
3 (5,25) 3 5 36.6 29.3 36.9 29.6 37.6 30.2 38.2 30.8
3 (5,25) 3 10 48.3 37.4 48.4 37.6 48.9 38.2 49.4 38.8

3 (10,50) 1 5 29.4 27.3 30.0 27.6 31.3 28.3 33.6 29.0
3 (10,50) 1 10 41.3 34.2 41.6 34.5 42.3 35.0 43.1 35.5
3 (10,50) 2 5 38.9 31.4 39.3 31.8 40.4 32.8 41.4 33.9
3 (10,50) 2 10 54.7 42.5 55.0 42.9 55.8 44.0 56.8 45.1
3 (10,50) 3 5 48.5 39.8 49.0 40.2 49.8 41.1 50.9 42.0
3 (10,50) 3 10 68.1 52.0 68.4 52.3 69.1 53.0 69.9 53.7

10 (5,25) 1 5 32.6 29.7 33.4 30.2 35.3 31.3 37.5 32.6
10 (5,25) 1 10 42.1 34.5 42.7 34.9 43.9 35.8 45.2 36.9
10 (5,25) 2 5 38.6 31.8 39.2 32.4 40.5 33.5 41.8 34.9
10 (5,25) 2 10 48.6 39.9 49.0 40.5 49.9 41.8 51.0 43.4
10 (5,25) 3 5 45.4 37.7 45.8 38.2 46.9 39.3 48.0 40.6
10 (5,25) 3 10 57.0 45.6 57.3 46.1 58.0 47.1 58.7 48.2

10 (10,50) 1 5 46.8 44.6 48.3 45.5 51.7 47.5 55.8 49.5
10 (10,50) 1 10 58.6 51.4 59.4 52.1 61.3 53.5 63.1 55.0
10 (10,50) 2 5 56.0 48.7 56.9 49.6 59.2 51.8 61.6 54.1
10 (10,50) 2 10 71.4 60.2 72.1 61.4 73.6 63.8 75.2 66.8
10 (10,50) 3 5 65.8 56.5 66.7 57.2 68.6 58.9 70.5 60.8
10 (10,50) 3 10 85.1 69.3 85.8 69.9 87.0 71.4 88.2 72.9

20 (5,25) 1 5 45.7 43.0 47.2 44.0 50.6 46.4 54.5 48.8
20 (5,25) 1 10 55.1 47.2 56.1 48.0 58.2 49.9 60.4 52.2
20 (5,25) 2 5 51.3 44.9 52.2 46.0 54.3 48.1 56.4 50.9
20 (5,25) 2 10 61.3 52.8 61.9 54.0 63.4 56.6 65.0 59.6
20 (5,25) 3 5 57.9 50.6 58.7 51.4 60.4 53.5 62.1 55.8
20 (5,25) 3 10 69.4 58.7 69.9 59.5 70.9 61.5 72.0 63.4

20 (10,50) 1 5 74.1 70.8 76.9 73.3 83.3 76.9 91.1 80.7
20 (10,50) 1 10 84.1 76.7 86.0 78.1 89.5 81.4 93.2 84.9
20 (10,50) 2 5 82.0 74.0 83.9 76.2 88.2 80.2 92.6 84.8
20 (10,50) 2 10 97.0 86.1 98.1 88.3 100.6 93.1 103.3 98.7
20 (10,50) 3 5 90.6 82.5 92.0 83.9 95.1 87.0 98.1 90.6
20 (10,50) 3 10 111.0 94.8 112.0 95.9 114.0 98.6 116.2 101.4



Table A5: Total processing time [hours] when applying A1 with the LKH heuristic

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 22.1 20.0 22.9 20.9 24.9 23.5 27.4 29.1
3 (5,25) 1 10 29.4 23.7 29.8 24.4 30.9 26.4 32.1 30.4
3 (5,25) 2 5 27.0 21.8 27.6 22.6 28.9 25.0 30.3 29.7
3 (5,25) 2 10 34.1 28.0 34.4 28.6 35.1 29.9 35.8 31.7
3 (5,25) 3 5 31.1 26.6 31.5 27.3 32.6 28.8 33.8 31.0
3 (5,25) 3 10 38.2 31.9 38.4 32.3 39.0 33.3 39.6 34.7

3 (10,50) 1 5 28.5 26.7 29.8 28.1 32.9 32.8 37.1 43.0
3 (10,50) 1 10 38.6 32.1 39.5 33.4 41.4 36.6 43.5 43.6
3 (10,50) 2 5 35.7 29.8 36.6 31.0 38.7 34.6 41.1 42.9
3 (10,50) 2 10 47.4 38.2 47.9 39.0 49.1 41.1 50.4 43.8
3 (10,50) 3 5 41.5 35.8 42.2 36.7 43.8 39.1 45.6 42.0
3 (10,50) 3 10 53.2 43.8 53.7 44.4 54.5 46.0 55.6 48.0

10 (5,25) 1 5 31.2 29.3 32.9 31.6 36.7 41.0 41.7 55.4
10 (5,25) 1 10 38.0 33.0 38.8 35.0 40.6 42.6 42.7 56.9
10 (5,25) 2 5 35.5 31.1 36.4 33.2 38.4 41.4 40.9 55.9
10 (5,25) 2 10 42.6 36.8 43.1 38.0 44.1 40.9 45.3 45.0
10 (5,25) 3 5 39.7 35.4 40.4 36.6 42.0 40.0 43.8 44.4
10 (5,25) 3 10 46.9 40.3 47.2 41.1 48.0 43.2 48.8 45.6

10 (10,50) 1 5 46.4 45.5 49.4 50.4 56.4 70.2 65.5 97.6
10 (10,50) 1 10 56.0 50.7 57.7 54.7 61.4 71.1 65.4 98.1
10 (10,50) 2 5 53.0 48.3 54.7 52.3 58.5 70.6 62.9 97.2
10 (10,50) 2 10 64.2 56.5 65.1 58.5 67.1 64.3 69.3 71.6
10 (10,50) 3 5 58.9 53.4 60.2 55.6 63.0 61.8 65.9 70.1
10 (10,50) 3 10 70.4 61.3 71.1 62.9 72.5 66.5 74.0 70.9

20 (5,25) 1 5 44.7 43.8 47.6 49.5 54.5 71.1 63.1 98.6
20 (5,25) 1 10 51.1 46.9 52.5 51.6 55.5 70.6 59.1 97.2
20 (5,25) 2 5 48.3 45.3 49.8 50.2 53.1 70.2 57.0 96.5
20 (5,25) 2 10 55.4 50.2 56.1 52.5 57.8 58.4 59.6 66.8
20 (5,25) 3 5 52.4 48.8 53.5 51.1 55.9 57.6 58.5 65.8
20 (5,25) 3 10 59.3 53.6 59.9 55.1 61.0 58.6 62.2 63.1

20 (10,50) 1 5 74.3 74.5 80.0 86.1 93.9 128.8 109.6 178.3
20 (10,50) 1 10 81.7 78.5 84.6 88.3 90.7 130.0 98.3 178.4
20 (10,50) 2 5 79.3 75.8 82.1 86.5 89.0 126.6 96.4 175.6
20 (10,50) 2 10 89.6 83.4 91.1 88.0 94.5 99.5 98.1 116.0
20 (10,50) 3 5 83.7 80.6 85.8 85.3 90.2 97.5 95.2 114.7
20 (10,50) 3 10 96.1 87.4 97.1 90.1 99.4 97.0 101.9 106.5



Table A6: Total processing time [hours] when applying A2 with the LKH heuristic

α (nl ,nu) b m
k = 2 k = 3 k = 5 k = 7

a = r a = c a = r a = c a = r a = c a = r a = c

3 (5,25) 1 5 21.9 19.5 22.5 19.8 23.7 20.2 24.9 20.7
3 (5,25) 1 10 29.2 23.3 29.5 23.4 30.1 23.8 30.8 24.2
3 (5,25) 2 5 26.9 21.4 27.3 21.6 28.1 22.0 29.0 22.5
3 (5,25) 2 10 34.0 27.9 34.2 28.3 34.6 29.2 35.1 30.0
3 (5,25) 3 5 31.0 26.5 31.3 27.0 32.1 27.9 32.8 29.1
3 (5,25) 3 10 38.1 31.8 38.3 32.1 38.6 32.8 39.0 33.4

3 (10,50) 1 5 28.3 25.9 29.3 26.3 31.3 27.1 33.8 28.1
3 (10,50) 1 10 38.5 31.5 39.0 31.8 40.2 32.4 41.5 33.1
3 (10,50) 2 5 35.5 29.1 36.2 29.4 37.7 30.1 39.2 31.0
3 (10,50) 2 10 47.2 38.1 47.6 38.8 48.4 40.1 49.3 41.6
3 (10,50) 3 5 41.4 35.7 41.9 36.6 43.0 38.1 44.2 39.8
3 (10,50) 3 10 53.1 43.7 53.4 44.3 54.1 45.3 54.7 46.6

10 (5,25) 1 5 30.9 28.2 32.0 28.7 34.4 29.8 36.9 31.0
10 (5,25) 1 10 37.8 31.9 38.3 32.3 39.4 33.3 40.7 34.2
10 (5,25) 2 5 35.3 30.0 36.0 30.4 37.4 31.3 38.9 32.3
10 (5,25) 2 10 42.5 36.7 42.8 37.4 43.6 39.2 44.2 41.2
10 (5,25) 3 5 39.6 35.2 40.1 36.1 41.3 38.2 42.4 40.3
10 (5,25) 3 10 46.8 40.2 47.0 40.7 47.6 42.1 48.1 43.4

10 (10,50) 1 5 45.9 43.1 48.2 44.0 52.9 46.3 58.4 48.5
10 (10,50) 1 10 55.7 48.6 56.6 49.3 59.0 50.9 61.5 52.7
10 (10,50) 2 5 52.7 46.2 54.0 47.0 56.8 48.5 59.7 50.5
10 (10,50) 2 10 63.9 56.3 64.6 57.8 65.9 61.6 67.4 65.4
10 (10,50) 3 5 58.7 53.1 59.8 54.8 61.7 59.0 63.6 63.1
10 (10,50) 3 10 70.2 61.2 70.7 62.5 71.6 65.1 72.8 67.7

20 (5,25) 1 5 44.3 41.2 46.2 42.2 50.5 44.6 55.3 47.2
20 (5,25) 1 10 50.7 44.6 51.7 45.4 53.6 47.2 55.5 49.4
20 (5,25) 2 5 48.1 43.0 49.1 43.8 51.4 45.9 54.0 48.2
20 (5,25) 2 10 55.2 49.9 55.8 51.4 56.9 54.8 58.2 59.0
20 (5,25) 3 5 52.3 48.4 53.2 50.1 54.8 53.9 56.7 58.2
20 (5,25) 3 10 59.2 53.4 59.7 54.4 60.6 56.8 61.4 59.3

20 (10,50) 1 5 73.6 69.2 77.9 71.3 87.1 75.3 97.2 80.4
20 (10,50) 1 10 81.1 73.9 83.1 75.4 87.1 78.8 91.6 82.6
20 (10,50) 2 5 78.9 71.2 81.2 73.0 85.8 76.6 91.0 80.3
20 (10,50) 2 10 89.3 82.9 90.4 86.3 92.6 94.2 95.0 102.1
20 (10,50) 3 5 83.5 80.3 85.0 83.8 88.3 91.9 91.7 100.7
20 (10,50) 3 10 95.9 87.1 96.6 89.6 98.2 94.5 100.0 99.9
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Abstract Order Batching and Picker Routing Problems arise in warehouses when
items specified by customer orders have to be retrieved from their storage locations.
The Order Batching Problem includes the grouping of a given set of customer orders
into feasible picking orders such that the total length of all picker tours is minimized.
In order to calculate the length of a picker tour, the sequence has to be determined
according to which the items contained in the picking order will be picked. This prob-
lem is known as the Picker Routing Problem. Although quite sophisticated heuristics
and even efficient exact solution approaches exist to the Picker Routing Problem in
warehouse with up to two blocks, the routing problem does not get much attention
when dealing with the Order Batching Problem. Instead, the order pickers are assumed
to follow a certain, simple routing strategy when making their ways through the ware-
house. The advantage of this approach can be seen in the fact that—in particular for
single-block warehouse layouts—the corresponding picker tours are very straightfor-
ward and can be memorized easily by the order pickers. This advantage diminishes,
however, whenmore complex, multi-block layouts have to be dealt with. Furthermore,
in such case, the approach may result in picker tours which are far from optimal. For
multi-block layouts, we integrate different routing algorithms into an iterated local
search approach for the batching in order to demonstrate what the benefits are from
solving the Order Batching and the Picker Routing Problem in a more integrated way.
By means of numerical experiments it is shown that paying more attention to the
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Picker Routing Problem results in a substantial improvement of the solution quality
without increasing computing times.

Keywords Order Picking · Order Batching · Picker Routing · Iterated local search

1 Introduction

Order picking is a warehouse function dealing with the retrieval of items from their
storage locations in order to satisfy a given demand specified by customer orders
(Petersen and Schmenner 1999; Wäscher 2004). It occurs because incoming articles
are received and stored in large volume unit loads while customer orders comprise
small volumes (less-than-unit-loads) of different articles. In spite of various attempts
to automate the picking process, approximately 80% of all order picking systems in
Western Europe are manual ones (de Koster et al. 2007). Among such systems, picker-
to-parts systems can be looked upon as the most important ones, where order pickers
walk (or ride) through the warehouse and collect the requested items from their stor-
age locations (Wäscher 2004). Due to a large-scale involvement of human operators,
order picking includes the most cost-intensive warehouse operations. According to
the literature, between 50% (Frazelle 2002) and 65% (Coyle et al. 1996) of the total
warehouse operating costs can be attributed to order picking.

On the operational level, the Order Batching Problem and the Picker Routing
Problem represent the key planning problems for operating distribution warehouses
efficiently (de Koster et al. 1999a). In the Order Batching Problem, a set of (indivis-
ible) customer orders is given, each of which requiring certain items to be collected
from known storage locations within the warehouse. These customer orders have to be
grouped into picking orders (batches) in such a way that the total length of all picker
tours necessary to collect all items is minimized. In order to determine the length of a
picker tour, it has to be decided in which sequence the storage locations of the respec-
tive items have to be visited. This gives rise to the so-called Picker Routing Problem.
In the Picker Routing Problem, a picking order is given, and one has to determine a
tour of minimum length that allows for collecting all items included in the picking
order.

From this point of view, solving the Picker Routing Problem is dependent on the
solution of the Order Batching Problem. However, in order to solve the Order Batching
Problem, certain assumptions have to be made with respect to the routing schemes
according to which the order pickers are guided on their tours through the warehouse.
Therefore, efficient operation of order picking systems requires careful analysis of the
two problems and their interdependencies and an integrated solution of both problems.

As individual problems, both the Order Batching Problem and the Picker Routing
Problem have been studied quite extensively (de Koster et al. 2007). However, despite
the fact that sophisticated exact and heuristic algorithms exist for its solution, the Picker
Routing Problem does not receive much attention when the two problems are to be
solved in an integrated way. It is usually argued that, in practice, order pickers follow a
simple routing strategy when making their way through the warehouse. Based on this
routing strategy, the customer orders are grouped into picking orders and the total tour
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length is determined. In order to justify the application of such routing strategies, it is
argued that the provided solutions (tours) appear to be “more straightforward”; they can
probably be memorized more easily than optimal ones and, therefore, get more easily
accepted by the order pickers (de Koster et al. 1999a). This reasoning is questionable,
though. First, the solution quality of such routing strategies is strongly dependent
on the problem data (e.g. number of picking aisles of the warehouse, capacity of
the picking device), and it is not uncommon that they provide tours which are far
from being optimal. Second, for more complex layouts (e.g. layouts with two or more
blocks), even these routing strategies may result in tours which are not straightforward
at all but equally complex as optimal tours (see Roodbergen and de Koster (2001b) for
examples). In other words, the core argument in favor of heuristic routing strategies,
the simple structure of the provided tours, is no longer valid. Third, also the quality
of the solutions generated by means of simple routing strategies tends to deteriorate
when more complex warehouse layouts are considered (Roodbergen 2001).

We conclude that, for efficient order picking in more complex, multi-block layouts,
more attention should be paid to the arising Picker Routing Problems when dealing
with the Order Batching Problem. Hence, we propose an approach which allows for
solving the Order Batching Problem and Picker Routing Problem in a more integrated
way, and we will demonstrate what the benefits are from such an approach. In order
to keep the exposition simple, the approach will be described and exemplified for
two-block layouts, only. Nevertheless, it will become clear that the approach can be
extended to block layouts of higher dimensions and that the observed benefits hold or
even increase for such layouts.

We further note that, on the one hand, more sophisticated routing algorithms will
result in shorter tours and, consequently, in better solutions. On the other hand, how-
ever, the integration of complex routing algorithms may result in longer, probably
unacceptable computing times. We will, therefore, also study under which conditions
exact routing algorithms can be applied, and we will suggest heuristic modifications
of an exact routing algorithm for situations in which this is not possible.

The remainder of this paper is organized as follows: In Sect. 2, we give a precise
statement of the problem under discussion, which we name the Joint Order Batching
and Picker Routing Problem. Section 3 comprises a literature review regarding the
routing and the batching problem. For the Joint Order Batching and Picker Routing
Problem, a corresponding mathematical model formulation based on Gademann and
van de Velde (2005) is presented in Sect. 4. Section 5 contains solution approaches
to the Picker Routing Problem, namely the exact algorithm by Roodbergen and de
Koster (2001a), the S-shape, largest gap, aisle-by-aisle and combined+ heuristic. Fur-
thermore, a heuristic solution approach derived from the exact algorithm is proposed
in order to close the gap between the complex exact algorithm and the very simple
routing strategies. In Sect. 6, an iterated local search algorithm for the Order Batching
Problem is introduced which allows for integrating different routing algorithms. Sec-
tion 7 is devoted to the numerical experiments which have been carried for evaluating
the impact of the routing algorithms used in the iterated local search approach on
the solution quality. We explain how the test problem instances were generated, and
we report and discuss the results from the experiments. The paper concludes with an
outlook on potential areas of future research.
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2 Problem description

In the following,we consider a distributionwarehousewith amanual, low-level picker-
to-part order picking system from which a given set of items has to be retrieved. In a
manual order picking system, human operators perform the necessary tasks. In picker-
to-parts systems the order pickers walk (or ride) through the picking area, visit the
storage locations of the respective articles (pick locations), and remove (pick) the
required number of article units (items). In low-level picker-to-parts systems the items
have to be removed from pallets or bins placed on the floor or from low-level racks
which are directly accessible to the order pickers (Henn et al. 2012). The picking
area possesses a block layout, i.e. it consists of a certain number of straight parallel
picking aisles of equal length and width. The storage locations are of identical size
and arranged on both sides of the picking aisles. By means of cross aisles, the order
pickers are enabled to enter and exit a picking aisle. The part of the warehouse located
between two adjacent cross aisles is called a block and the corresponding part of the
picking aisle is denoted as a subaisle, i.e. each picking aisle is composed of q subaisles,
where q denotes the number of blocks. The order pickers enter the picking area at the
depot. This is also the place where they return to in order to deposit the picked items.
An example of a block layout with two blocks is depicted in Fig. 1. Warehouses with
two blocks contain three cross aisles, namely the front, middle and rear cross aisle,
where the front cross aisle presents the cross aisle nearest to the depot.

Fig. 1 Two-block layout
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When moving through the warehouse, the order pickers use a picking device (e.g. a
cart or a roll cage) on which they can place several items. Thus, they may visit several
pick locations before they return to the depot. In other words: the requested items are
picked on tours through the warehouse. The number of stops on each tour is limited
by the available space of the picking device on the one hand and by the capacity
requirements of the items to be picked on the other hand. The information about the
items to be retrieved from thewarehouse is comprised in a set of customer orders. Each
of these orders is related to a particular (external or internal) customer and consists
of a set of order lines, each one identifying a particular article and the corresponding
quantity. All items requested in the customer orders should be retrieved in such a way
that the total length of the necessary tours (total tour length) is minimized.

On their tours through the warehouse, order pickers are guided by pick lists. A
pick list contains the order lines which should be processed together (picking order)
and the storage locations of the respective articles. Furthermore, the order lines are
already sorted into the sequence according to which the order picker is meant to visit
the pick locations. A picking order may be composed of a combination of multiple
customer orders. Splitting of customer orders, however, is not permitted since it would
result in an additional, unacceptable consolidation effort. In this case a picking order
is addressed as a batch.

Let a (non-empty) set of customer orders be given, each of which requiring certain
items with known storage locations to be retrieved from a distribution warehouse.
Then, in order tominimize the total length of the tours necessary to collect all requested
items, the following two questions have to be answered:

• How should the given set of customer orders be grouped (batched) into picking
orders? (Order Batching Problem)

• For each picking order, in which sequence should the storage locations of the
articles be visited which are included in the respective order? (Picker Routing
Problem)

Obviously, both problems are closely interconnected and, therefore, should be
solved in an integrated way, giving rise to the Joint Order Batching and Picker Routing
Problem (JOBPRP). Before we provide a model formulation to the JOBPRP, we will
review the state-of-the-art related to the individual problems.

3 Literature review

3.1 Picker routing problem

Given a set of items to be collected and the respective locations where they are stored
in the warehouse, a sequence must be determined according to which these locations
should be visited such that the length of the corresponding tour is minimized. This so-
called Picker Routing Problem (PRP) represents a special case of the classic Traveling
Salesman Problem (TSP), i.e. solution approaches to the TSP can be applied in order
to deal with the PRP. Due to the limited capacity of the picking device, the number
of pick locations to be visited in a tour is quite small in practical applications and,
therefore, the PRP can even be solved to optimalitywithin a short amount of computing
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time by using an exact approach to the TSP. However, dependent on the layout of the
picking area, efficient problem-specific solution approaches to the PRP exist, which
are able to solve any practical-sized problem instance within fractions of a second and
clearly outperform any exact TSP algorithm in terms of computing time (Ratliff and
Rosenthal 1983; Roodbergen and de Koster 2001b).

For single-block layouts, Ratliff and Rosenthal (1983) presented an exact algorithm
with complexity O(n+m) where n stands for the number of pick locations and m for
the number of picking aisles. In practice, though, instead of proceeding according to
optimal tours, which are often looked upon as complicated and difficult to memorize,
order pickers seem to prefer tours based on simple routing strategies. The application
of such routing strategies, e.g. the S-shape, the return, the midpoint and the largest
gap strategy, can be considered as a heuristic approach to the PRP. As for the S-shape
heuristic (Goetschalckx and Ratliff 1988), the order picker entirely traverses every
picking aisle containing at least one item to be picked. When following the return
heuristic, the order picker enters and leaves every picking aisle to be visited from the
front cross aisle. For the midpoint heuristic, the warehouse is divided equally into two
areas, the front section and the rear section. All items located in the front section are
accessed from the front cross aisle, while items in the rear section are reached from
the rear cross aisle. For the largest gap heuristic, in each aisle to be visited the two
warehouse sections are determined by the largest distance between two pick locations
or between a pick location and the adjacent cross aisle. Hall (1993) noticed that the
largest gap heuristic outperforms the midpoint heuristic. Heuristics based on more
sophisticated routing strategies are the composite heuristic (Petersen 1997) and the
aisle-by-aisle heuristic (Vaughan and Petersen 1999) which combine elements of the
S-shape and the return heuristic. These two heuristics have in common that, for each
picking aisle where an item has to be picked, it has to be decided whether the order
picker entirely traverses the picking aisle or, alternatively, enters and leaves it via the
same cross aisle. In the aisle-by-aisle heuristic, this decision is derived by means of
dynamic programming. In the composite heuristic, a picking aisle is traversed if more
than half of the picking aisle has to be entered to pick all items in this aisle.

All above-mentioned approaches to the PRP have been designed initially for single-
block layouts. Roodbergen and de Koster (2001b) modified the Ratliff-Rosenthal
Algorithm for the PRP in two-block layouts. For two-block andmore complex layouts,
the authors also introduced extensions of the S-shape and the largest gap heuristic. Fur-
thermore, they proposed the so-called combined heuristic, which includes elements of
the aisle-by-aisle heuristic. Theys et al. (2010) applied different TSP heuristics to var-
ious classes of PRP instances related to warehouses with two and more blocks. They
report significant (average) savings in the total tour length (up to 48% in comparison to
tours constructed by the S-shape strategy) when using the Lin–Kernighan–Helsgaun
Heuristic (Helsgaun 2000).

3.2 Order Batching Problem

The Order Batching Problem (OBP) can be stated as follows (Wäscher 2004; Henn
andWäscher 2012): Given the article storage locations, the routing strategy to be used,
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and the capacity of the picking device, how can the set of customer orders be grouped
into picking orders such that the sum of the total lengths of all tours required to collect
the requested items is minimized?

The OBP as described above is known to be NP-hard (in the strong sense) if the
number of orders per batch is greater than two (Gademann and van de Velde 2005).
Hence, it is not surprising that only a few exact solution approaches have been proposed
so far for this problem. Gademann and van de Velde (2005) presented a branch-and-
price algorithm with column generation that was able to solve problem instances with
up to 32 customer orders to optimality. Bozer and Kile (2008) proposed a mixed-
integer programming approach that provided optimal solutions for instances with up
to 25 orders within a few minutes. However, their approach is limited to S-shape
routing and, thus, not suitable for the JOBPRP.

Apart from these exact approaches, a large variety of heuristic solution approaches
exists. (For a detailed review, we refer to de Koster et al. (2007) and Henn et al.
(2012).) The most prominent ones are priority rule-based algorithms, seed algorithms,
savings algorithms and metaheuristics. In priority rule-based algorithms, priorities are
assigned to customer orders at first; then, in the sequence given by the priorities, the
customer orders are successively allocated to batches as long as the capacity of the
picking device is not exceeded (Gibson and Sharp 1992). Seed algorithms have been
introduced by Elsayed (1981). Batches are generated sequentially in such algorithms.
The procedure for each batch is as follows: In a first step, a seed (or initial) order
is chosen from those orders not yet added to a batch. Then, in a second step, not yet
selected customer orders are added to the seed order until no further order can be added
without violating the capacity constraint of the picking device. Savings algorithms are
based on the Clarke-and-Wright Algorithm for the Vehicle Routing Problem (Clarke
and Wright 1964) which has been adapted for the OBP. The initial version can be
described as follows: At the beginning, savings (in terms of reductions of the total
travel distance) are determined which can be obtained by collecting items of two
customer orders on a single (large) tour instead of collecting them on two separate
tours. Then, in a non-ascending order of the savings, the pairs of customer orders are
assigned to batches in a way in which one tries to include both orders in the same
batch. The algorithm terminates when each order has been assigned to a batch or
when all pairs of orders have been considered. A straightforward improvement of the
algorithm consists of recalculating the savings each time a customer order is added
to a batch (Elsayed and Unal 1989). By means of numerical studies, de Koster et al.
(1999b) have shown that, among these constructive algorithms, either seed or savings
algorithms provide the best solutions.

Several metaheuristics have also been proposed for the OBP. Tsai et al. (2008) pre-
sented a genetic algorithm which is based on the assumption that splitting customer
orders is allowed and, therefore, deals with a problem different to the one intro-
duced above. Gademann and van de Velde (2005) suggested an iterated improvement
algorithm in which, starting from an initial solution constructed by means of the first-
come-first-served rule, improved solutions are obtained by so-called swap moves, i.e.
by interchanging two customer orders from two different batches. They were able to
solve instanceswith up to 30 customer orderswithin a few seconds. Albareda-Sambola
et al. (2009) developed a variable neighborhood search algorithm for theOBP inwhich
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three different kinds of neighborhood structures are considered. This approach was
applied to four different problem classes including up to 250 orders, and the authors
reported computing times of less than 1 min. Henn et al. (2010) proposed an iter-
ated local search algorithm and a rank-based ant system. Comprehensive numerical
studies have shown that these approaches lead to very good solutions but also require
long computing times (up to 20min) for large instances (up to 60 customer orders).
Henn and Wäscher (2012) described a tabu search algorithm and an attribute-based
hill climber approach to the OBPwhich outperform the iterated local search algorithm
in terms of solution quality and require computing times of up to 2min (classic tabu
search) and up to 10min (attribute-based hill climber) for problem instances with up
to 100 customer orders.

The above mentioned approaches integrate very simple routing policies (mainly
S-shape and largest gap strategies) into the respective batching heuristic. So far, only
few articles exist taking other routing methods into account. Kulak et al. (2012) dealt
with the OBP in a single- and a two-block block layout where the depot is located
at the middle cross aisle instead of the front cross aisle. The authors introduced a
tabu search algorithm for the OBP and integrated two TSP heuristics in order to
solve the arising PRPs. As TSP heuristics, they used a nearest neighbor and a savings
heuristic which also represent rather simple routing algorithms. Grosse et al. (2014)
proposed a simulated annealing algorithm for the batching problem and combined it
with four different routing heuristics. These routing heuristics were also used to create
initial batches. However, when creating the initial batches by means of a routing
algorithm, it is not taken into consideration to which customer order a requested
item is assigned implying that items included in the same customer order may be
contained in different batches. This would not represent a feasible solution to the
variant of the JOBPRP considered in this paper since splitting of customer orders is
not allowed.

4 Model formulation

In order to formulate a model and develop a solution approach to the JOBPRP, we
assume that each article has been assigned to exactly one storage location as also done
by Kulak et al. (2012) and Grosse et al. (2014). A straightforward way to formulate
a model for the JOBPRP consists of considering—either explicitly or implicitly—all
feasible batches and to choose some of them such that each customer order is contained
in exactly one batch and the total tour length is minimized. A model based on this
approach has been introduced by Gademann and van de Velde (2005) and includes
the following parameters:

The set J contains all customer orders and the set F all feasible batches. A batch is
called feasible if it does not violate the capacity constraint resulting from the picking
device. The constants a f j indicate whether a customer order j ∈ J is included in
batch f ∈ F(a f j = 1) or not (a f j = 0). Furthermore, the constants d f represent
the minimum length of an order picking tour which includes all items of customer
orders contained in batch f ∈ F . In order to calculate the constants d f , for each
feasible batch f ∈ F , the corresponding PRP has to be solved. Finally, the variables
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x f indicate whether batch f ∈ F is chosen (x f = 1) or not (x f = 0). Now the
mathematical model for the JOBPRP can be formulated as follows:

min
∑

f ∈F
d f · x f (1)

∑

f ∈F
a f j · x f = 1, ∀ j ∈ J ; (2)

x f ∈ {0, 1} , ∀ f ∈ F. (3)

Constraints (2) and (3) ensure that a set of batches is chosen in such a way that each
customer order is contained in exactly one of these batches. The objective function
represents the total tour length caused by the chosen batches.

In order to solve the above-presentedmathematicalmodel, it is necessary to consider
(at least implicitly) all feasible batches. Furthermore, for each feasible batch, the
minimum length of the corresponding order picking tour has to be calculated. If a
two-block layout of the warehouse is assumed, the PRP can be solved efficiently
(Roodbergen and de Koster 2001a). However, the number of feasible batches |F |
grows exponentially with the number of customer orders |J |. Hence, only very small
problems can be solved by applying the model formulation presented above.

For this reason, other approaches to the JOBPRP have to be considered. In order
to deal with the JOBPRP, we introduce an iterated local search approach to the OBP
developed by Henn et al. (2010) and integrate different routing algorithms. The inte-
gration ofmore sophisticated routing approaches results in shorter tours and, therefore,
leads to better solutions to the JOBPRP. However, simple routing strategies require
much less computational effort and allow the iterated local search approach for inves-
tigating a larger part of the solution space within the same amount of computing time.
Due to this reason, it is not obvious whether it is better to put most effort in dealing
with the OBP, as it is done in the literature so far, or to pay more attention to the
solution of the arising PRPs. In the following section, we present different solution
approaches to the PRP, including the exact algorithm for the PRP in warehouses with
two blocks provided by Roodbergen and de Koster (2001a) as well as some heuristic
routing strategies. Furthermore, we heuristically modify the exact algorithm in order
to obtain an approach requiring less computational effort than the exact approach,
while providing better solutions than the routing strategies.

5 Solution approaches to the PRP in two-block layouts

5.1 Exact solution approach

The PRP in warehouses with a two-block layout can be solved efficiently (Roodbergen
and de Koster 2001a). The corresponding exact solution approach will be presented
briefly in the following. For a more detailed presentation of this algorithm we refer to
Roodbergen and de Koster (2001a).

The solution approach consists of a dynamic programming procedure. The tour is
constructed by starting with an empty tour and consecutively adding subaisles to the
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Fig. 2 Graph representing the Picker Routing Problem of Fig. 1

tour until all subaisles to be visited are included. The problem is represented by a graph
G = (V, E) with the set of edges E and the set of vertices V = ⋃m

j=1

{
a j , b j , c j

} ∪
{v0, . . . , vn}. v0 represents the location of the depot and the vertex vi represents the
storage location of item i ∈ {1, . . . , n}. Vertices a j , b j and c j correspond to the
points where picking aisle j ∈ {1, . . . ,m} can be accessed, namely via the rear cross
aisle (a j ), the middle cross aisle (b j ) and the front cross aisle (c j ), respectively. Each
pair of adjacent positions (either two pick locations or a pick location and the adjacent
cross aisle) is connected by two parallel edges. The corresponding edge weight is
equal to the distance between these two positions. Figure 2 depicts the graph related
to the PRP introduced in Fig. 1.

From the graph G, edges have to be chosen such that they correspond to a feasible
tour and the sum of the edge weights is minimized. A tour is called feasible if each
vertex vi (i ∈ {0, . . . , n}) is included in the tour, each vertex has an even or a zero
degree and, excluding vertices with zero degree, the subgraph is connected. Thus, an
order picking tour can be perceived as a subgraph of G. Since an order picking tour is
constructed by consecutively extending a subgraph of G, the following definitions are
needed. Let L−

j be a subgraph ofG consisting of vertices a j , b j and c j togetherwith all
vertices and (some) edges corresponding to the left of picking aisle j . Furthermore,
L+1
j denotes a subgraph of G which additionally contains all vertices and (some)

edges corresponding to subaisle j of block #1. L+2
j denotes a subgraph that contains

all vertices and (some) edges corresponding to the left of picking aisle j + 1 except
edges connecting aisle j and aisle j + 1. The denotation L j is used to indicate that a
result holds for L j = L−

j , L j = L+1
j or L j = L+2

j .
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A subgraph Tj of L j is called a L j partial tour subgraph (L j -PTS), if at least one
subgraph ofG (called completion) exists consisting of vertices and edges not included
in L j , such that the union of Tj and the completion leads to a graph representing an
order picking tour. Hence, we can find an optimal tour by considering a picking aisle
j , constructing all L j -PTSs (either L

−
j -, L

+1
j - or L+2

j -PTSs) and identifying the best
completion for each PTS. In general, it is quite difficult to find the best completion,
i.e. the completion with a minimum sum of edge weights, but we could consider L+2

m -
PTSs, where a graph with an empty set of edges would represent the best completion.
However, the consideration of all PTSs would lead to an unacceptable computational
effort. Fortunately, not all PTSs have to be taken into consideration since out of two
L j -PTSs with the same set of completions only the shorter subgraph, i.e. the subgraph
with the smaller sum of edge weights, may lead to an optimal tour. L j -PTSs having
an equal set of completions are called equivalent. Roodbergen and de Koster (2001a)
have shown that 25 different equivalent classes exist which have to be taken into
consideration. This theorem leads to the following solution approach:

The algorithm starts by constructing a L−
1 - PTS, i.e. a subgraph T = (Ṽ , Ẽ) with

Ṽ = {a1, b1, c1} and Ẽ = {∅}. Then, the first subaisle of block #1 is considered and
edges are added to T in such a way that each vertex in this subaisle is incident to at
least two edges. Therefore, for the construction of an optimal tour, only six different
edge combinations have to be considered (Roodbergen and de Koster 2001a). These
edge combinations are depicted in Fig. 3a. Configurations (1) and (6) indicate that
a subaisle is traversed once or twice, respectively. The edge configurations (3) and
(4) correspond to return strategies, i.e. the requested items are picked by entering and
leaving a subaisle via the same cross aisle, and configuration (5) follows a largest
gap policy. Configuration (2) can only be used if a subaisle does not contain any
requested items. Otherwise, the inclusion of this configuration would not lead to a
PTS. Adding each of configurations (1) to (6) to a L−

1 -PTS results in different L+1
1 -

PTSs. Configurations (1) to (6) are then added to each of these PTSs representing the
best PTS of its corresponding equivalent class in order to receive L+2

1 -PTSs. Again, we
determine the PTSs representing the subgraph with a minimum sum of edge weights
in its equivalent class. These subgraphs contain all vertices corresponding to pick
locations in the first picking aisle.

In order to obtain L−
2 -PTSs, edge configurations representing the order picker

changing over from one picking aisle to another have to be added to these L+2
1 -PTSs.

By definition, each vertex included in an order picking tour must have an even degree.
Therefore, picking aisles have to be connected by an even number of edges. Further-
more, an optimal tour contains at most two edges between two vertices. This leads
to 14 different edge configurations that can be used to change over from one picking
aisle to another (Roodbergen and de Koster 2001b). Some of these configurations are
depicted in Fig. 3b.

For each equivalent class, the best L−
2 -PTS is determined and configurations (1)–(6)

are added to these subgraphs which results in L+1
2 -PTSs. Following this procedure,

we finally obtain L+2
m -PTSs. Now we get an optimal tour by determining the PTS

which results in a minimum sum of edge weights and corresponds to a feasible tour.
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Fig. 3 a All possible edge configurations for traversing a subaisle. b A selection of configurations for
changing between aisles

A pseudo-code of the algorithm is given in the appendix (available at http://www.
mansci.ovgu.de/mansci/en/Research/Materials/2015+_+I_-p-472.html).

An optimal tour provided by this solution approach is depicted in Fig. 4. The time-
complexity function of this exact solution approach is linear in the number of picking
aisles m and the number of pick locations n (Roodbergen and de Koster 2001a) and,
therefore, application of the exact algorithm to a single instance of the PRP will not
result in unacceptable computing times. Even large instances can be solved within
fractions of a second. However, when applied within a complex heuristic algorithm
for the JOBPRP, where many PRPs have to be solved repeatedly, the computing time
needed by the exact algorithm can become a critical issue. For example, Henn et al.
(2010) have reported computing times up to 20 min for solving an OBPwith 60 orders
by applying a rank-based ant colony system, although they have used the simple
S-shape and largest gap routing strategies which will be presented in the following
section.

5.2 S-shape and largest gap strategy

TheS-shape and the largest gap strategies are routingpolicieswhich are very frequently
used in conjunctionwith theOBP. In the subsequent brief description of these and other
routing strategies, it is assumed that the depot is located in front of the leftmost picking
aisle. We refer to Hall (1993) and Roodbergen and de Koster (2001b) for a detailed
presentation of the strategies for warehouses with one block and with multiple blocks,
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Fig. 4 Example for an optimal
picking tour

respectively. The following denotations are used to describe the routing strategies: Let
jmin and jmax be the leftmost and the rightmost picking aisle containing at least one
requested item, and let j imin and j imax be the leftmost and rightmost subaisle of block
i that has to be visited.

The S-shape (or traversal) routing policy requires that each subaisle containing
at least one requested item is traversed entirely. The picker starts at the depot and
proceeds to j2min by traversing jmin of block #1. Then, from left to right, each subaisle
of block #2 containing a requested item is traversed. If the number of subaisles to be
traversed in block #2 is odd, the picker returns to the middle cross aisle after picking
the items located in j2max. Having completed all picks in block #2, the picker moves
to j1max and starts retrieving all items to be collected from block #1 by traversing the
corresponding subaisles one by one from the right to the left. Again, it may also be
necessary here to apply the return strategy to the last subaisle to be visited. Finally,
the order picker returns to the depot.

Note that this algorithm differs slightly from the S-shape routing policy described
by Roodbergen and de Koster (2001b). After having changed over from block #2
to block #1, Roodbergen and de Koster (2001b) choose the leftmost subaisle of the
first block that still has to be visited instead of j1max if this subaisle is closer to j2max.
However, they state that this approach will increase the tour length because it may
lead to tours in which the picker visits the subaisles in block #1 from left to right,
then has to traverse a considerable part of the front cross aisle before he can return to
the depot. Therefore, we use the above-described small modification of their S-shape
policy here. An example tour following from our version is depicted in Fig. 5a. The
time-complexity function of this routing policy is independent of the number of pick
locations and increases linearly with the number of picking aisles.

When the largest gap policy is applied, each subaisle containing at least one
requested item is treated in such a way that the non-traversed distance is maximal.
This concept leads to the following strategy:
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Fig. 5 Picker tour examples, generated by means of a the S-shape strategy, b the largest gap strategy

The order picker leaves the depot by traversing the first part of jmin and subaisle
j2min. He then moves to j2max by entering each subaisle of block #2 from the rear cross
aisle up to its largest gap. Subaisle j2max is traversed and the middle cross aisle is used
to collect the remaining items located in this block. Afterwards, the picker moves to
the leftmost subaisle of block #1 that still has to be visited and proceeds from left to
right, entering the subaisles of block #1 from the middle cross aisle and proceeding
up to their respective largest gaps. When finally j1max has been traversed, the picker
returns to the depot. On this part of his tour, he collects the remaining items by entering
the corresponding subaisles from the front cross aisle.

The time-complexity function of this algorithm is linear in the number of pick
locations and picking aisles. Again, this algorithm slightly differs from the description
byRoodbergen and deKoster (2001b), where the picker—after having proceeded from
block #2 to block #1—is permitted to travel to the rightmost subaisle of block #1 that
has to be entered from themiddle cross aisle.Ourmodification leads to tourswith fewer
changes of movement directions. This is because the largest gap policy by Roodbergen
and de Koster (2001b) may generate tours in which the order picker continues to the
right after having changed over to block #1, resulting in a corresponding direction
change. Now two changes in direction have to be performed in order to apply the
largest gap strategy to this block, followed by a further direction change necessary for
the return to the depot.

An example for a tour provided by our version of the largest gap strategy is given in
Fig. 5b. It becomes evident that this tour can no longer be considered as “simple” and
“straightforward”. This view particularly holds if the tour is compared to the optimal
solution to the same problem depicted in Fig. 4. Thus, we conclude again that for
warehouse layouts with two or more blocks no valid argument exists for restricting
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the routing of the order pickers to solutions provided by simple heuristics like S-shape
or largest gap strategy.

5.3 Aisle-by-aisle heuristic

As for the aisle-by-aisle heuristic introduced by Vaughan and Petersen (1999), each
picking aisle containing at least one pick location is visited exactly once, i.e. the order
picker starts at the depot, picks all requested items in the first picking aisle, then he
collects all items in the second aisle and so on. After reaching the rightmost picking
aisle that has to be visited, he returns to the depot. Hence, one has only to determine
which cross aisle is used to change over from one picking aisle to another. This is
determined by dynamic programming.

At first, for each cross aisle i ∈ {“front”, “middle”, “rear”}, the distance is deter-
mined which has to be travelled when the order picker starts at the depot, visits
the pick locations in the first picking aisle and exits the first picking aisle by using
cross aisle i . Then the second picking aisle is considered and the distance is calcu-
lated which the order picker has to travel if he exits picking aisle 1 via cross aisle
i ∈ {“front”, “middle”, “rear”}, picks all requested items located in the second pick-
ing aisle and then exits this aisle by using cross aisle ĩ ∈ {“front”, “middle”, “rear”}.
This results in three different distances for each cross aisle ĩ . For each cross aisle ĩ ,
the smallest of these three distances is taken as the distance needed to start at the
depot, pick all requested items located in the first two picking aisles and exit picking
aisle 2 via cross aisle ĩ . This procedure is applied to each picking aisle until jmax
has been taken into consideration. This results in the distance to be travelled by the
order picker when picking all requested items and exiting the rightmost picking aisle
through the front cross aisle. Since the picker has to complete his tour at the depot,
the distance between jmax and the depot has to be added. An example tour resulting
from the aisle-by-aisle heuristic is depicted in Fig. 6a. For this heuristic, each picking
aisle has to be considered once and, therefore, the time-complexity function is linear
in the number of picking aisles.

5.4 Combined+ heuristic

The combined heuristic introduced by Roodbergen and de Koster (2001b) follows a
similar approach as the aisle-by-aisle heuristic does. Here, each subaisle containing at
least one requested item is visited exactly once, i.e. each block is considered separately.
At first all requested items located in block #2 are collected and then block #1 is
considered.

The picker starts at the depot, enters the leftmost picking aisle that contains at
least one requested item, and proceeds to the middle cross aisle. Now only block #2
is considered to which the aisle-by-aisle heuristic designed for warehouses with a
single-block layout is applied. Note that the picker will not return directly to the depot
but complete his tour through block #2 by leaving the last subaisle to be visited in this
block via the middle cross aisle. Then the picker proceeds to the rightmost subaisle
that has to be visited in block #1. Again, the aisle-by-aisle heuristic for single-block
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Fig. 6 Picker tour examples, generated by means of a the aisle-by-aisle strategy, b the combined+ strategy

layouts is applied. In contrast to the original aisle-by-aisle heuristic, the picker has to
move from right to left.

In the described procedure, the routing scheme for block #2 includes a move from
left to right. Thus, in block #1, the order picker has to traverse the leftmost aisle with
pick locations in order to access block #2. However, there may be situations in which it
can be advantageous to deviate from this path (e.g. if the storage positions to be visited
in the first subaisles of block #1 are located near to the middle cross aisle (Roodbergen
and de Koster 2001b)). In this case, the picker may visit several subaisles of block #1
before moving on to block #2. Generally, a tour can be constructed as follows: Let
m be the number of picking aisles. The order picker starts at the depot and proceeds
to a picking aisle j∗ ∈ {1, . . . ,m} by using the front cross aisle. Then the above-
described, slightlymodified aisle-by-aisle heuristic is applied to the first j∗ subaisles of
block #1. After picking all requested items in these subaisles, the picker proceeds to
block #2 in order to visit all pick locations in this block. (The tour through block #2
is not changed by the modification.) The (modified) aisle-by-aisle heuristic approach
is then applied to the last m − j∗ subaisles of block #1. Finally, the picker returns to
the depot. By optimizing over j∗ ∈ {1, . . . ,m} we obtain a tour that is not longer than
the tour provided by the original combined heuristic.

The combined heuristic into which this optimization step has been integrated
is called combined+ heuristic (Roodbergen and de Koster 2001b). Since the com-
bined heuristic is composed of multiple applications of the aisle-by-aisle heuristic
(one application for each block), the time-complexity function for this heuristic also
increases linearly with the number of picking aisles. When using the combined+
heuristic, a slightly modified variant of the combined heuristic is applied for each
j∗ ∈ {1, . . . ,m}, generatingm different tours. Therefore, we have a quadratic increase
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of the time-complexity function in the number of picking aisles. An example tour for
the combined+ heuristic is shown in Fig. 6b.

5.5 A heuristic derived from the exact solution approach

The time-complexity function of the exact approach is linear in the number of picking
aislesm. However, it contains a large constant by whichm has to be multiplied. There-
fore, application of this algorithm to large problem instances encountered in practice
is likely to bemore time-consuming than the usage of simple routing strategies will be.
The constant originates from the number of subgraphs that have to be constructed in
the exact solution approach. In each step, i.e. for each picking aisle, 6+ 6+ 14 = 26
edge configurations have to be added to up to 25 PTSs. This means, if we neglect
the fact that the addition of some configurations to certain PTSs cannot lead to an
(optimal) order picking tour, up to 26 · 25 = 650 subgraphs have to be constructed in
each iteration of the algorithm.

In order to decrease the large constant in the time-complexity function, we do not
always consider PTSs from all equivalent classes but, at some points, only the PTS
with the minimum sum of edge weights. To be more precise, all PTSs except the
shortest one are deleted after each change of a picking aisle. Based on this idea, a
heuristic solution approach can be designed as follows:

Consider the exact algorithm at the iteration before the requested items in picking
aisle j are treated, i.e. after having constructed the L−

j -PTSs. Then the shortest of

the L−
j -PTSs is determined and configurations (1)–(5) (see Fig. 3) are added to this

subgraph. This results in up to five L+1
j -PTSs. Following the procedure of the exact

solution approach, configurations are added to eachPTS representing the best subgraph
of its corresponding equivalence class. Then, the same procedure is applied to the
L+2
j -PTSs which leads to L−

j+1-PTSs. This transition includes an aisle change and,
therefore, all subgraphs, except for the best PTS, are deleted.

Furthermore, as can be derived from the above description, configuration (6) is
neglected, i.e. the algorithmwill not lead to tours in which a subaisle is traversed twice.
This configuration is of course needed to ensure optimality of the tour. (Consider a
PRP in which all requested items are located in the first subaisle of block #2. Then,
an optimal solution has to contain configuration (6) in the first subaisle of block #1.)
However, pretests have shown that only a few cases exist in which this configuration
is actually necessary. If this configuration is included, the respective tour often proves
itself to be non-optimal.Also, several optimal toursmay exist and some can be obtained
without using configuration (6).

Of course, optimality of anorder picking tour cannot beguaranteedby this approach.
Moreover, this heuristic may not lead to a feasible solution at all because it will only
result in a few subgraphs and not all L+2

m -PTSs necessarily correspond to a feasible
tour. In order to guarantee that at least one feasible tour is obtained, we always consider
a subgraph belonging to one of the equivalence classes 3, 4 and 6–9 in Roodbergen
and de Koster (2001a). After each step in which the shortest PTS is determined, it is
checked whether this subgraph belongs to one of these equivalent classes. If this is
not the case, we additionally consider the shortest subgraph belonging to one of these
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classes. This is done because only eight equivalence classes (classes 2–9) correspond
to feasible tours (Roodbergen and de Koster 2001a) and two of these may lead to an
infeasible one if they occur as L+1

jmax
-PTSs, where jmax denotes the last picking aisle

to be visited.
This modification guarantees feasibility of the solutions provided by the heuristic.

However, adding edge configurations to only one instead of 25 subgraphs may lead to
a poor solution quality. Especially, in the early stages of the algorithm decisions may
bemadewhich result in a poor final solution quality, because, at an early stage, a single
edge configuration can have a quite large impact on the sum of edge weights of the
subgraph. If a PRP with a small number of requested items per subaisle is considered,
then configuration (1) will lead to a larger sum of edge weights than configurations
(3)–(5). Hence, the heuristic will tend to select one of these three configurations
resulting in subgraphs that are not connected. At a later stage, edge configurations
may have to be added to connect the subgraph regardless of the impact on the length
of the tour. In order to overcome this problem, our heuristic is combined with the
exact solution approach. This means the exact solution approach is applied to the
first s = �p · m� picking aisles resulting in several L+2

s -PTSs. Then the heuristic
solution approach is applied to the last m − s picking aisles. The parameter p denotes
the percentage of picking aisles to which the exact solution approach is applied. The
larger p is chosen, the higher the computational effort gets, but a larger value of p tends
to result in a better solution quality. The choice p = 1 results in the exact solution
approach. In the appendix, a pseudo-code of this heuristic approach is given in order
to point out the differences between the exact algorithm and the heuristic solution
approach.

6 An iterated local search for the JOBPRP

For evaluating the impact of the routing strategies on solutions to the JOBPRP, we
combine the routing algorithms explained in Sect. 5 with the iterated local search
algorithm (ILS) of Henn et al. (2010) for the OBP. The heuristic consists of two
alternating phases, namely a local search and a perturbation phase. In the local search
phase an initial solution is improved by means of a certain neighborhood structure
until a local optimum is reached. In order to overcome local optima, the incumbent
solution is partiallymodified in the perturbation phase and improved in the local search
phase again. If the new solution stemming from the local search procedure passes an
acceptance criterion, this solution becomes the new incumbent solution. Otherwise,
the perturbation phase is applied to the previous solution again.

A general pseudo-code of our algorithm for the JOBPRP is depicted below. For a
more detailed presentation of the ILS algorithm we refer to Henn et al. (2010). When
dealing with the joint problem, it is sufficient to consider solutions to the OBP and
solve the PRP in order to evaluate the solutions. Consequently, we only deal with
solutions to the OBP, i.e. each solution x does not correspond to the JOBPRP, but only
to the batching (sub)problem. The solution approaches to the PRP are only used for the
determination of the corresponding objective function values. Therefore, the follow-
ing definition regarding the objective function is needed: Let fr (x) be the objective
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function value resulting from the solution x to the OBP if the tours are constructed by
applying the routing algorithm r . Furthermore, let N∗ denote the number of batches
in the best known solution.

Algorithm 1 ILS for the JOBPRP
Input: problem data, rearrangement parameter λ, threshold parameter μ, interval t , routing strategy r ;

Output: solution x∗ to the OBP and corresponding total tour length fr
(
x∗)

;

generate initial solution x by applying the FCFS rule;
x∗ := local_search (x); xinc := x∗;
repeat

x := perturbation
(
xinc, 	N∗ · λ + 1
);

x := local_search (x);
if fr (x) < fr

(
x∗)

then
x∗ := x ; xinc := x ;

end if
if no improvement of fr

(
x∗)

during t and fr (x) − fr
(
x∗)

< μ · fr
(
x∗)

then
xinc := x ;

end if
until termination condition is met

An initial (and first best) solution x is determined by applying the first-come-first-
served (FCFS) rule. Then the local search procedure is used in combination with the
routing strategy r in order to improve x . Afterwards, the perturbation and the local
search phase alternate until a termination condition ismet. In the local search procedure
two different types of neighborhoods are used. With respect to the first neighborhood
structure, two solutions are called neighbors if one solution can be obtained from
the other by interchanging two orders of the batches (SWAP). The second structure
considers solutions that can be generated by assigning a single order to a different
batch (SHIFT). The local search phase stops when no further improvement is possi-
ble by means of these neighborhood structures. The perturbation phase constructs a
new solution by interchanging a random number of orders of two batches. An itera-
tion of this phase can be described as follows: Two batches α and β and an integer
number v between 1 and half of the number of orders in α and β are randomly selected.
The first v orders are removed frombothα andβ. Then the v orders fromα are assigned
to β and vice versa as long as the capacity constraints are not violated. The remaining
orders are assigned to a new batch. This iteration is repeated 	N∗ · λ + 1
 times, i.e.
the more batches are contained in the best known solution, the more iterations are
performed in the perturbation phase.

7 Numerical experiments

7.1 Setup

In order to evaluate the performance of the algorithms for the PRP and the JOBPRP,
thorough numerical experiments are carried out. The generation of the test instances
is partially based on the problem sets in Henn et al. (2010) and Henn and Wäscher
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(2012). We do not use the same problem instances here because they considered the
OBP in a warehouse with a single-block layout, whereas in this paper a two-block
layout is assumed. Furthermore, some modifications are made due to the fact that the
solution quality of routing strategies is dependent on the dimension of the warehouse.

We consider a warehouse with a two-block layout and 50 storage locations in each
subaisle (25 locations on each side of the subaisle). Within each subaisle, we assume
two-sided picking, i.e. when a picker is located in the center of a subaisle, he is able to
collect items from both sides without additional movements. A single storage location
has a length of 1 length unit (LU) and a width of 1.5 LUs. The distance between
two opposite storage locations belonging to the same subaisle amounts to 2 LUs.
In addition, the picker has to move 1 LU from the first or the last storage location
of a subaisle to reach a cross aisle. Therefore, a picker has to travel 46 LUs when
traversing a subaisle and 5 LUs when changing from one aisle to another. Since we
aim at evaluating the performance of routing strategies and since the performance of
the algorithms is known to be dependent on the number of picking aisles, in contrast
to Henn and Wäscher (2012) (who fixed the number of aisles to 10), we consider
problem instances with either 10, 20 or 30 picking aisles for the PRP and either 10
or 30 aisles for the JOBPRP which results in warehouses with 1000, 2000 and 3000
storage locations, respectively.

In our numerical experiments we consider problem instances of four different sizes:
20, 40, 60 and 80 customer orders. The number of requested items in a customer order
is uniformly distributed over the set {5, . . . , 25}. The capacity of the picking device,
which is the maximum number of items that can be collected in a single tour, amounts
to 30, 45, 60 and 75. This means that the expected maximum number of customer
orders included in one tour varies between 2 and 5. Of course, when dealing with
the PRP, the number of orders is set to 1 and the capacity of the picking device is
not smaller than the number of requested items. In the experiments for the PRP, the
number of pick locations has been fixed to 30, 45, 60 and 75. Since the solution quality
of the solution approaches to the PRP is only investigated in order to decide which of
these algorithms should be combined with the iterated local search approach, we limit
the considerations to a random storage assignment, i.e. the probability of each article
to be contained in a customer order is identical for all articles. This kind of storage
assignment has also been used by Albareda-Sambola et al. (2009) and Henn et al.
(2010). For the JOBPRP, we also consider the more sophisticated class-based storage
assignment policy used by Henn et al. (2012). The general idea of this policy is to
assign articles with high demand frequencies to storage locations near to the depot.
In the approach of Henn et al. (2012), the articles are, therefore, divided into three
classes A, B and C. 10% of all articles with the highest demand frequency represent up
to 52% of the total demand (class A) and 30% are responsible for 36% of the demand
(class B). The remaining articles have quite low demand frequencies and are assigned
to class C. Within each class, articles are randomly assigned to a storage location in a
certain subaisle. The determination of this subaisle is based on the distance between
the subaisle and the depot; class A (C) articles are assigned to a storage location in a
subaisle representing 10% (60%) of all subaisles with the shortest (longest) distance
to the depot.
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Table 1 Average deviation of
the objective function values
obtained by the heuristic routing
strategies from the optimal
objective function values in %

m n SS LG AA C+ HMEA

10 30 20.2 19.3 15.6 6.8 4.0

10 45 15.2 22.2 13.3 5.1 3.2

10 60 9.6 23.4 8.8 3.7 2.3

10 75 8.9 26.5 9.2 3.2 2.9

20 30 27.2 22.3 16.3 7.2 5.8

20 45 24.4 22.1 16.4 6.9 4.5

20 60 20.8 23.7 14.5 6.4 3.1

20 75 18.4 23.5 14.2 6.6 2.7

30 30 27.4 27.7 16.3 7.0 7.6

30 45 26.4 26.3 16.5 7.3 5.4

30 60 25.0 24.3 16.7 7.0 4.3

30 75 23.9 25.1 16.1 7.0 3.8

Average 20.6 23.9 14.5 6.2 4.1

A combination of the above-mentioned parameter values results in 12 problem
classes for the PRP and 64 classes for the JOBPRP. For each PRP class, 100 test
instances havebeengenerated and for each class of the JOBPRP, 50 instances havebeen
considered, leading to 4000 problem instances. The computations have been carried
out on a desktop PCwith a 3.4GHz Pentium processor and 8GBRAM.All algorithms
have been encoded in C++ using Microsoft Visual Studio 2013. Before the JOBPRP
is considered, the solution quality of the algorithms for the PRP is investigated.

7.2 Picker Routing Problem

In this section, the performance of the solution approaches to the PRP presented in
Sect. 5 is evaluated. The new heuristic approach introduced in Sect. 5.5 includes a
parameter p which has to be specified. According to results from pretests we have
chosen p = 0.25. The results from the numerical experiments for the PRP are depicted
in Table 1. Each instance has been solved by each of the algorithms in less than one
second. Computing times, therefore, are not reported in greater detail here.

For each problem class, Table 1 depicts the average deviation of the objective
function values obtained by the routing strategies under discussion (SS: S-shape;
LG: largest gap; AA: aisle-by-aisle; C+: combined+; HMEA: heuristically modified
exact algorithm, where the best equivalence class of an iteration is considered only)
from the optimal values that were obtained by the algorithm of Roodbergen and de
Koster (2001a). The problem classes are identified by the number of picking aisles
m and the number of pick locations n. For each problem class, the number in bold
represents the best result obtained.

The results presented in Table 1 demonstrate that the HMEA outperforms the other
routing strategies and generates the shortest tours. Furthermore, the solution quality
improves with an increasing number of pick locations for the following reason: The
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exact algorithm as well as the HMEA do not explicitly consider each pick location but
rather each subaisle. Let us consider the configurations added to collect requested items
in a subaisle. The sum of the edge weights that results from adding configuration (1)
or (6) (see Fig. 3) is independent from the requested items. In contrast to that, the sum
of the edge weights for configurations (3)–(5) is strongly dependent on the location
of the requested items within the subaisle. Therefore, the sum of edge weights may
vary very strongly for a small number of requested items, but for a large number of
pick locations in a subaisle, it converges to the sum of the edge weights that results
from adding configuration (6). Hence, several equivalence classes may lead to a near
optimal solution and the impact of deleting an equivalence class, which would lead to
an optimal tour, is not as large as it is for problems with a small number of requested
items. In addition, it can be seen that the number of picking aisles also has an impact
on the solution quality of the HMEA. This is also due to the effect explained above
because an increasing number of picking aisles results in a decreasing number of pick
locations per subaisle.

The S-shape heuristic, which represents the most frequently used routing policy in
practice (Roodbergen 2001), leads to poor results. For problem instances with a small
number of picking aisles and a large number of pick locations, the S-shape heuristic
provides acceptable tours because if there are a lot of requested items in each subaisle,
the additional length to traverse each subaisle through the entire length compared to
the distance that is needed to collect the requested items in a subaisle will be small.
However, the solution quality deteriorates with an increasing number of picking aisles,
where the S-shape heuristic leads to average deviations of up to 27%. This observation
coincides with the results from numerical experiments done by Roodbergen and de
Koster (2001b). Over all problem classes, the average deviation amounts to 20.6%,
which is more than 16 percentage points higher than the deviation of the objective
function value obtained by the HMEA from the optimal objective function value.

The largest gap heuristic provides an average deviation from the optimal total tour
length of 23.9%. When applied to a PRP in a warehouse with a single-block layout,
it is known that the solution quality of this heuristic improves with a decreasing
number of pick locations because, in this case, the distances between adjacent pick
locations within the same subaisle (called gaps) increase. Since tours constructed by
this routing strategy do not contain the part of an aisle that corresponds to the largest
gap, larger gaps lead to a better solution. This argumentation matches with the results
from the instances containing 10 picking aisles.However, ifwe take a look at the results
corresponding to problem classes containing 30 aisles, we will see the opposite: The
solution quality improves with an increasing number of pick locations. The problem
instances containing 30 picking aisles are characterized by a quite small number of
pick locations per subaisle. This number ranges from 0.5 to 1.25. Therefore, it can
be expected that the gaps in the subaisles are quite large. Thus, the largest gap policy
leads to very short distances to be traveled in subaisles. The distances to be traveled
in cross aisles, however, may be quite large. In a worst case scenario, the middle cross
aisle has to be traversed twice which results in large tour lengths for problems with a
large number of picking aisles. If the number of pick locations increases, the length
of an order picking tour will also increase, especially due to the long distances to
be traveled in the subaisles. Therefore, the percentage of the distance to be traveled
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in cross aisles decreases and the large distance resulting from the movements in the
middle cross aisle has a minor impact on the objective function value, resulting in a
smaller deviation from the optimal objective function value. However, if the number
of pick locations increases, the deviation from the optimal objective function value
will also increase at some point due to the increasing deviation resulting from the
movements within the subaisles.

Across all problem classes, the aisle-by-aisle heuristic leads to an average deviation
of 14.5% and also results in quite long tours and is outperformed by the combined+
heuristic. This is a consequence of the fact that the combined+ heuristic considers
the problem blockwise, i.e. only subaisles are considered instead of complete picking
aisles. Therefore, the combined+ heuristic leads to an acceptable solution quality
even for problem instances in which the number of pick locations per subaisle is quite
small. Nevertheless, the solution quality deteriorates with a decreasing number of pick
locations per subaisle because this heuristic is a combination of the S-shape and the
return strategy and, as mentioned before, the S-shape policy leads to very poor results
in these cases.

In summary, it can be stated that the HMEA leads to the smallest deviation from the
optimal objective function value. Furthermore,we can see that the combined+ heuristic
also results in rather short order picking tours. However, if only single instances of the
PRP have to be solved, the exact approach should be applied because the computing
times are below one second and, therefore, negligible. Computing times become an
issue, though, when instances of the PRP have to be solved repeatedly within the
proposed ILS approach to the JOBPRP, as will be demonstrated in the next subsection.

7.3 Joint Order Batching and Picker Routing Problem

7.3.1 Selection of routing strategies and parameters for the ILS

In order to deal with the OBP and the PRP in a more integrated way, the exact solution
approach of Roodbergen and de Koster (2001b) and the routing strategies which have
been shown to perform quite well in the previous subsection have been combined with
the iterated local search approach presented in Sect. 6, namely the S-shape and largest
gap policy, the combined+ heuristic and the HMEA. As termination criterion for our
solution approach, we use a time limit T which is measured in seconds and defined
by T = 3N . By definition, the time limit is only dependent on the number of orders
N , i.e. on the problem size of the OBP and not on the routing strategy used. Thus, a
tradeoff exists between considering a larger part of the solution space of the OBP by
running a large number of iterations in the iterated local search and constructing good
tours. This can also be seen from Table 2.

In this table, the number of iterations performed by the ILS is presented in depen-
dency of the number of picking aisles m, the number of orders N and the routing
strategy. An iteration includes two consecutive local search and perturbation phases.
Of course, the number of iterations decreases with an increasing number of picking
aisles and orders. However, the number of iterations also decreases significantly if
more complex routing algorithms are used. This is due to the fact that a large number
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Table 2 Average number of
iterations performed by the ILS
algorithm combined with
different routing algorithms
(C = 30)

m N SS LG C+ HMEA Exact

10 20 9220 3822 762 292 181

10 40 3145 1058 201 96 60

10 60 1251 455 116 34 21

10 80 717 206 36 12 7

30 20 3481 1861 296 122 81

30 40 1117 543 66 29 20

30 60 376 174 20 11 6

30 80 209 97 9 6 3

Table 3 Average deviation of
the objective function values
obtained by the ILS in
combination with the exact
routing algorithm from the
optimal values for N = 20 (%)

m C Storage assignment

Random Class based

10 30 0.23 0.51

10 45 0.25 0.49

30 30 0.84 0.14

30 45 0.48 0.23

of PRPs has to be solved in each local search phase in order to evaluate the solutions.
Although only fractions of a second are needed to solve a single PRP to optimality, the
routing algorithm used in the ILS has a large impact on the number of different solu-
tions to the OBP that can be considered. Therefore, it will have to be investigated if this
small number of iterations still results in reasonably good solutions to the JOBPRP.

The iterated local search approach contains different parameters which have to be
chosen. Henn et al. (2010) used this ILS algorithm to deal with the OBP while the
S-shape or the largest gap strategies have been used to evaluate the solutions. They
have shown that this approach leads to high quality solutions if the parameters are
set as follows: λ = 0.3, μ = 0.05, t = T

10 . However, as can be seen from Table 2,
the number of iterations within the ILS is strongly dependent on the routing strategy
used, and it cannot be guaranteed that these parameter values are also appropriate
when dealing with the JOBPRP. We, therefore, used the model formulation presented
in Sect. 4 in order to solve small instances (N = 20) to optimality and compared
the minimum total tour lengths to the objective function values obtained from the
ILS approach combined with the exact routing algorithm. The results are depicted in
Table 3.

The size of the model formulation rapidly increases with an increasing number
of orders N and a growing capacity C . Due to memory restrictions, we were only
able to solve all instances of the problem classes with 20 orders and a capacity of up
to 45 items. As stated in Sect. 7.1, we considered problem classes with 10 and 30
picking aisles as well as random and class-based storage assignment. Each problem
class includes 50 instances which have been solved by integrating the exact routing
algorithm into the ILS approach. On average, the objective function value obtained
deviates less than 1% from the minimum total tour length. This observation holds
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for all problem classes under consideration. Thus, we conclude that this approach
leads to very good solutions and the parameter selection of Henn et al. (2010) is also
appropriate for the JOBPRP.

In the following two subsections, the solution quality of the ILS approach in
combination with the different routing algorithms is investigated. We first consider
problem instances based on a random assignment of articles to storage locations.
Then, instances related to a class-based storage assignment are considered in order
to study the impact of the location assignment strategy on the performance of the
different solution approaches.

7.3.2 Results for random storage assignment

For each problem class, the average deviation of the objective function values obtained
from the application of the ILS in combination with a routing heuristic from the
objective function value of the ILS with the exact routing algorithm (denoted by ILS-
Exact) is depicted in Table 4. Due to the fact that all deviations are positive, we can
conclude that the ILS in combination with the exact routing algorithm outperforms
the combintions of the ILS with the other heuristic routing strategies.

When dealing with the OBP, usually the S-shape or the largest gap strategy are used
in order to evaluate solutions (Albareda-Sambola et al. 2009; Henn et al. 2010; Henn
and Wäscher 2012). The usage of these simple routing strategies, however, results in
objective function values far above the objective function values that can be obtained by
combining a metaheuristic for the OBP with the exact routing algorithm. On average,
across all problem classes, the common integration of the S-shape and the largest gap
strategy into the batching algorithm leads to tours that are 17.95 and 22.48% longer
than tours obtained by ILS-Exact. If the number of picking aisles is small (m = 10)
and the capacity of the picking device is large (C = 75), then the integration of the
S-shape policy leads to deviations that are below 10%. This is because a larger capacity
results in batches containing more items and due to the fact that the S-shape strategy
leads to good solutions if the number of pick locations per aisle is quite large. However,
what concerns all other problem classes, both the S-shape and the largest gap strategy
result in very poor solutions. This is particularly true if the number of picking aisles is
large (m = 30). The integration of the more complex routing algorithms combined+
and, in particular, the HMEA leads to acceptable results with an average deviation of
4.87 and 2.64%, respectively.

The results from Table 4 demonstrate that it is pivotal to take the PRP into account
when dealing with the OBP. Although the integration of more complex routing algo-
rithms results in a significant lower number of iterations conducted by the batching
algorithm, thoroughly dealing with the arising PRPs leads to significant savings with
respect to the total tour length. However, the routing approach which should be used
is dependent on the computing time which is available for solving the JOBPRP. In our
numerical experiments, we considered quite low computing times varying between 1
and 4 min. [Note that some solution approaches to the OBP require up to 20min for
solving instances with 60 customer orders (Henn et al. 2010).] If the time limit of our
approach is further increased the number of iterations in the ILS will also increase.
Since the number of iterations is a critical issue for complex routing algorithms inte-
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Table 4 Average deviation
from the objective function
value obtained by the ILS in
combination with the exact
routing algorithm for random
storage assignment (%)

m N C ILS

SS LG C+ HMEA

10 20 30 20.28 17.90 6.37 3.72

10 20 45 14.93 20.21 4.85 1.64

10 20 60 12.21 22.72 4.21 1.18

10 20 75 9.93 24.68 3.63 0.88

10 40 30 19.29 17.56 5.92 3.44

10 40 45 13.77 19.32 4.26 1.68

10 40 60 10.61 21.88 3.79 1.35

10 40 75 8.22 24.09 2.89 1.20

10 60 30 18.44 17.68 5.23 2.76

10 60 45 13.45 19.51 3.83 1.72

10 60 60 10.10 21.30 2.87 1.21

10 60 75 7.88 23.61 2.45 0.85

10 80 30 18.31 17.49 5.39 2.86

10 80 45 13.30 19.38 4.11 1.74

10 80 60 10.23 21.40 3.51 1.57

10 80 75 7.85 23.56 2.82 1.52

30 20 30 24.10 25.52 5.94 4.95

30 20 45 24.55 24.49 5.94 3.18

30 20 60 23.45 24.56 5.87 2.57

30 20 75 22.22 24.39 5.58 2.11

30 40 30 24.21 25.03 5.87 4.73

30 40 45 24.18 23.98 5.73 3.44

30 40 60 22.87 24.08 5.80 3.15

30 40 75 21.22 24.02 5.46 2.48

30 60 30 23.46 24.89 5.67 4.76

30 60 45 23.15 24.01 5.56 3.86

30 60 60 22.49 23.57 5.00 3.50

30 60 75 21.52 23.01 5.13 2.42

30 80 30 23.37 24.62 5.77 4.30

30 80 45 22.60 23.35 5.30 3.22

30 80 60 21.87 23.73 5.64 3.31

30 80 75 20.39 23.68 5.38 3.14

Average 17.95 22.48 4.87 2.64

grated into the ILS, it can be expected that the solution quality will further improve
in this case. Thus, it would get even more important to use a sophisticated routing
algorithm in order to solve the arising PRPs. On the other hand, if less computing time
is available, it may not be possible to apply the exact routing algorithm within the ILS.
In this case, the newly proposed HMEA should be applied to deal with the PRPs since
this heuristic allows for more ILS iterations and still provides very good solutions to
the PRP.
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Table 5 Average deviation
from the objective function
value obtained by the ILS in
combination with the exact
routing algorithm for class based
storage assignment [%]

m N C ILS

SS LG C+ HMEA

10 20 30 16.06 13.41 5.02 3.76

10 20 45 11.17 16.40 3.42 2.11

10 20 60 9.65 19.43 2.79 1.47

10 20 75 8.86 21.61 2.83 1.27

10 40 30 15.40 13.92 5.06 3.78

10 40 45 10.43 14.74 3.35 1.98

10 40 60 8.29 18.88 2.57 1.26

10 40 75 7.10 20.94 2.13 0.98

10 60 30 14.50 13.31 4.70 3.31

10 60 45 9.21 14.74 2.68 1.50

10 60 60 7.80 17.57 2.84 1.30

10 60 75 8.47 24.52 3.04 1.38

10 80 30 14.87 12.99 4.82 3.83

10 80 45 9.99 14.97 3.18 2.14

10 80 60 8.01 17.15 2.54 1.62

10 80 75 6.84 19.36 1.97 1.48

30 20 30 23.76 27.41 6.02 5.51

30 20 45 22.59 26.46 5.53 3.27

30 20 60 21.17 26.29 5.24 2.92

30 20 75 19.36 26.53 4.70 2.35

30 40 30 21.72 25.82 5.48 4.36

30 40 45 20.77 25.08 5.10 3.58

30 40 60 19.39 25.25 4.91 2.99

30 40 75 18.08 25.60 4.60 2.26

30 60 30 22.17 25.73 5.54 4.56

30 60 45 20.97 25.03 5.05 3.35

30 60 60 19.71 25.25 5.02 3.08

30 60 75 18.12 25.60 4.84 2.96

30 80 30 21.80 25.94 5.47 4.49

30 80 45 20.66 25.06 4.99 3.36

30 80 60 18.97 24.96 4.46 3.00

30 80 75 17.32 25.08 4.19 2.67

Average 15.41 21.46 4.19 2.75

7.3.3 Results for class-based storage assignment

In this section, the results for class-based storage assignment are reported. Again,
the different, already previously discussed solution approaches are compared to ILS-
Exact. Table 5 depicts the corresponding deviations of the objective function values
that were obtained for the different problem classes.
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In general it can be noted that the results are very similar to those for random
storage assignment. It can be noted again that the integration of the simple S-shape
and largest gap strategies lead to very poor results. Compared to the results for random
storage assignment, the deviation from the total tour lengths obtained by ILS-Exact
only slightly decreases. The average deviation is decreased by 2.54 (S-shape strategy)
and 1.02 (largest gap strategy) percentage points. As before, the S-shape policy leads
to very long tours if the ratio m/C is quite large. However, for problem instances
with a small number of picking aisles (m = 10) and a small capacity of the picking
device (C = 30), the deviation from the total tour lengths obtained by ILS-Exact
is significantly reduced compared to the case of random storage assignment. Since
articleswith highdemand frequencies are assigned to the subaisleswith a short distance
from the depot, only few items have to be retrieved that are located in more distant
subaisles. This leads to tours with fewer subaisles to be visited, which is advantageous
when applying the S-shape policy. When considering the results for the largest gap
strategy, we can observe different effects of the class-based storage assignment. For
instanceswith a small number of picking aisles (m = 10), the largest gapheuristic leads
to smaller deviations compared to the case of random storage assignment. This can also
be explained by the fact that a smaller number of subaisles has to be visited. However,
the deviations even increase for a large number of picking aisles (m = 30). This is
due to the following two reasons: First, the main drawback of the largest gap strategy
in a two-block layout consists in traversing the middle cross aisle twice which results
in very long tours when considering a large number of picking aisles. Second, this
heuristic only leads to good solutions if the gaps are quite large.When applying a class-
based storage assignment procedure to a largewarehouse, a considerably large number
of subaisles is assigned to articles with a quite high demand frequency. Therefore, lots
of itemsmay be picked in these subaisles resulting in very small gaps. This effect is not
compensated by the fact that the other subaisles only contain very few requested items.

Regarding the integration of the more sophisticated routing heuristic combined+
and the HMEA, we can again observe that these approaches result in a good solution
qualitywith an average deviation of 4.19% (combined+ heuristic) and 2.75% (HMEA)
which is very similar to the results in the case of random storage assignment.

Considering the average over all problem classes, for each solution approach, the
deviation in the case of class-based storage assignment differs less than 0.5 percent-
age points from the deviation in the case of randomly assigned articles. We, therefore,
conclude that our results hold for both random and more sophisticated storage assign-
ment procedures. Furthermore, all deviations remain positive which means that again,
the integration of the exact routing algorithm outperforms the application of heuristic
routing strategies.

8 Conclusion and outlook

In this paper, we have dealt with the Order Batching and the Picker Routing Problem
which are pivotal for operating manual order picking systems efficiently. Although
both problems are closely interconnected, most approaches only deal with the Order
Batching Problem and apply simple routing policies for solving the arising Picker
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Routing Problems. The intention of this paper was to investigate whether the solution
quality can be improved by solving the two problems in a more integrated way. There-
fore, an exact routing algorithm as well as several heuristic routing strategies have
been combined with an iterated local search algorithm for the Order Batching Prob-
lem. Furthermore, a new solution approach derived from an exact routing algorithm
has been designed in order to close the gap between the complex exact routing algo-
rithm and the simple routing heuristics. Based on extensive numerical experiments
with fixed computing times, the performance of the routing algorithms as well as the
performance of the iterated local search approach combined with different routing
algorithms have been evaluated.

The results from the numerical experiments have shown that common approaches
are outperformed by far. On average, the resulting tours turned out to be up to 25%
longer than the tours obtained by the iterated local search into which an exact routing
algorithm has been integrated. It has been demonstrated that— at least for medium
computing times available—muchmore attention should be given to the arising Picker
Routing Problems. If computing time is not a critical issue it is pivotal to find (near)
optimal solutions to the routing problems. Even if solutions have to be provided within
a very small amount of computing time, the routing problems should be taken into
account. In this case, either the newly proposed heuristically modified exact approach
or the combined+ heuristic are to be applied.

The observations made in this paper also hold for warehouses with layouts com-
posed ofmore than two blocks. Since the solution quality of common routing strategies
tends to deteriorate with an increasing number of blocks and, furthermore, the tours
generated get more complex, the consideration of the arising Picker Routing Prob-
lems gets even more important. However, no efficient exact algorithm is available for
Picker Routing Problems in warehouses withmore than two blocks which is why other
approaches have to be considered. The integration of sophisticated TSP algorithms
such as the Lin-Kernighan-Helsgaun Heuristic could be a very promising approach.

Further research could also concentrate on the consideration of picker blocking
aspects because congestion is an important topic in warehouses with narrow aisles and
the savings reached by the integration of the exact routing algorithm may diminish if
this leads to picker blocking on a larger scale. From a practical point of view it would
also be reasonable to consider the on-line variant of the Order Batching and Picker
Routing Problem in which not all customer orders are known in advance.
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Appendix

Pseudo-codes for the exact algorithm and the heuristic derived from this approach

Algorithm 2 Pseudo-code for the algorithm by Roodbergen & de Koster (2001a)
Input: problem data (containing number of picking aisles m);

compute sum of edge weights for each configuration and picking aisle;
construct L+1

1 -PTS by adding configurations for subaisle 1 of block #1 to an empty graph;
for equivalence classes i = 1 to 25 do

determine the L+1
1 -PTS of class i with the smallest sum of edge weights;

end for
for equivalence classes i = 1 to 25 do

construct L+2
1 -PTS by adding configurations for subaisle 1 of block #2 to L+1

1 -PTS of class i;
end for
for equivalence classes i = 1 to 25 do

determine the L+2
1 -PTS of class i with the smallest sum of edge weights;

end for
for picking aisles j = 2 to m do

for equivalence classes i = 1 to 25 do
construct L−

j -PTS by adding configurations for movements between picking aisles j − 1 and
j to L+2

j−1-PTS of class i;
end for
for equivalence classes i = 1 to 25 do

determine the L−
j -PTS of class i with the smallest sum of edge weights;

end for
for equivalence classes i = 1 to 25 do

construct L+1
j -PTS by adding configurations for subaisle j of block #1 to L−

j -PTS of class i;
end for
for equivalence classes i = 1 to 25 do

determine the L+1
j -PTS of class i with the smallest sum of edge weights;

end for
for equivalence classes i = 1 to 25 do

construct L+2
j -PTS by adding configurations for subaisle j of block #2 to L+1

j -PTS of class i;
end for
for equivalence classes i = 1 to 25 do

determine the L+2
j -PTS of class i with the smallest sum of edge weights;

end for
end for
out of classes 2, 3, . . . , 9, determine the L+2

m -PTS with the smallest sum of edge weights;



Algorithm 3 Pseudo-code for the heuristic derived from the exact solution approach
Input: problem data (containing number of picking aisles m̃), percentage p;

compute sum of edge weights for each configuration and picking aisle;
apply the algorithm by Roodbergen & de Koster (2001a) with m := ⌈p · m̃⌉;
for pickings aisles j = ⌈p · m̃⌉ + 1 to m̃ do

for equivalencees class i = 1 to 25 do
construct L−

j -PTS by adding configurations for movements between picking aisles j − 1 and
j to L+2

j−1-PTS of class i;
end for
determine the L−

j -PTS (denoted by L∗
j ) with the smallest sum of edge weights;

construct L+1
j -PTS by adding configurations for subaisle j of block #1 to L∗

j ;
if L∗

j does not belong to any of the classes 3, 4, 6, 7, 8 or 9 then
out of classes 3, 4, 6, 7, 8 and 9, determine the L−

j -PTS (denoted by L∗∗
j ) with the smallest

sum of edge weights;
construct additional L+1

j -PTS by adding configurations for subaisle j of block #1 to L∗∗
j ;

end if
for equivalence classes i = 1 to 25 do

determine the L+1
j -PTS of class i with the smallest sum of edge weights;

end for
for equivalence classes i = 1 to 25 do

construct L+2
j -PTS by adding configurations for subaisle j of block #2 to L+1

j -PTS of class i;
end for
for equivalence classes i = 1 to 25 do

determine the L+2
j -PTS of class i with the smallest sum of edge weights;

end for
end for
out of classes 2, 3, . . . , 9, determine the L+2

m -PTS with the smallest sum of edge weights;
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a b s t r a c t 

In manual picker-to-part order picking systems, human operators (order pickers) walk or ride through 

the warehouse, retrieving items from their storage locations in order to satisfy a given demand specified 

by customer orders. Each customer order is characterized by a certain due date until which all items 

included in the order are to be retrieved. For the actual picking process, customer orders may be grouped 

(batched) into more substantial picking orders (batches). The items of a batch are then collected on a 

picker tour. Thus, the picking process of each customer order in the batch is completed when the picker 

returns to the depot after the last item of the batch has been picked. Whether and to what extent due 

dates are violated depends on how the customer orders are batched, how the batches are assigned to 

order pickers, how the assigned batches are sequenced and how the pickers are routed. Existing literature 

has only dealt with specific aspects of this problem so far. In this paper, for the first time, an approach 

is proposed which considers all subproblems simultaneously. A mathematical model of the problem is 

introduced that allows for solving small problem instances. For larger instances, a variable neighborhood 

descent algorithm is presented. By means of numerical experiments, it is demonstrated that the algorithm 

provides solutions of excellent quality. Furthermore, it is shown that a simultaneous solution approach to 

the above-mentioned subproblems can be considered as a significant source for improving the efficiency 

of operations in distribution warehouses. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Order picking is a function which is critical for managing and 

operating distribution warehouses efficiently. It deals with the 

retrieval of items requested by external or internal customers 

( Petersen & Schmenner, 1999; Wäscher, 2004 ). In picker-to-part 

systems, which are referred to in this paper, human operators (or- 

der pickers) walk or ride through the warehouse and collect the 

requested items from their storage locations ( Wäscher, 2004 ). 

The items specified by a customer order usually have to be pro- 

vided until a certain due date ( Henn & Schmid, 2013 ). Violation 

of due dates may delay subsequent shipment and/or production 

processes, and, as a consequence, results in an unacceptable cus- 

tomer satisfaction and high costs. Whether or to what extent due 

dates of a set of customer orders can be met is dependent on (1) 

how the customer orders are grouped into picking orders (Order 

∗ Corresponding author. 

E-mail address: andre.scholz@ovgu.de (A. Scholz). 

Batching Problem), (2) how the picking orders are assigned to and 

sequenced by the order pickers (Batch Assignment and Sequenc- 

ing Problem), and (3) how each order picker is routed in order to 

collect the items of each picking order (Picker Routing Problem). 

These problems are closely interrelated. Thus, solving them simul- 

taneously appears to be a promising approach for the provision of 

solutions which comply with the given due dates in the best pos- 

sible way. Literature dealing with solution approaches which ex- 

plicitly take into account these problems simultaneously is almost 

non-existing. To the best of our knowledge, Chen, Cheng, Chen, and 

Chan (2015) represent the only exception. Their approach is re- 

lated to a problem environment which is more specific than the 

one considered in this paper. Furthermore, computing times be- 

come a critical issue and the numerical experiments demonstrate 

that this approach can only be applied to very small problem in- 

stances. Due to this reason, the approach of Chen et al. (2015) is 

neither suitable for dealing with practical-sized problem instances 

nor can it be used for evaluating the benefit which results from 

solving the subproblems simultaneously. 

http://dx.doi.org/10.1016/j.ejor.2017.04.038 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
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Consequently, in this paper, we present a new, more compet- 

itive approach to what is called hereafter the Joint Order Batch- 

ing, Assignment and Sequencing, and Routing Problem (JOBASRP) 

and which includes an integrative view of the problems sketched 

above. We propose a mathematical programing formulation to this 

problem whose size increases polynomially with the number of 

customer orders. This model provides insights into the problem but 

is only appropriate for solving small problem instances. Therefore, 

we also introduce a heuristic solution approach, namely a variable 

neighborhood descent algorithm, which incorporates neighborhood 

structures regarding the batching and the sequencing problem pro- 

posed in an earlier paper by Henn (2015) . The arising routing 

problems are solved by means of the combined heuristic, which 

constructs routes of good quality within fractions of a second 

( Roodbergen & de Koster, 2001a ). In order to improve the routes, 

the Lin–Kernighan–Helsgaun heuristic ( Helsgaun, 20 0 0 ) is applied 

to very promising solutions. By means of numerical experiments, it 

is shown that this approach leads to high-quality solutions within 

reasonable computing times even for large problem instances. Fur- 

thermore, a sequential approach is constructed which is composed 

of state-of-the-art algorithms for the respective subproblems. In 

the experiments, the sequential and the joint approach are com- 

pared with respect to the solution quality in order to provide an 

insight into the benefits of dealing with the JOBASRP as a holistic 

problem. It is pointed out that the joint consideration of the sub- 

problems results in a substantial reduction of the tardiness of all 

customer orders and that the application of an integrated approach 

is inevitable in order to obtain high-quality solutions. 

The remainder of this paper is organized as follows: in 

Section 2 , we give a precise statement of the JOBASRP. 

Section 3 comprises a literature review regarding the subproblems 

and joint problems. For the JOBASRP, a new mathematical model 

formulation is presented in Section 4 . Section 5 contains the de- 

scription of the variable neighborhood descent algorithm includ- 

ing the generation of an initial solution, the different neighbor- 

hood structures and the integration of the routing algorithms. In 

Section 6 , the numerical experiments are presented which have 

been carried out in order to evaluate the performance of the algo- 

rithm as well as the benefits resulting from solving the subprob- 

lems simultaneously. The paper concludes with an outlook on fur- 

ther research. 

2. Problem description 

We consider a warehouse with a manual, low-level picker-to- 

parts order picking system from which a given set of items has to 

be retrieved. The items are stored on pallets or in bins directly ac- 

cessible to the order pickers ( Henn, Koch, & Wäscher, 2012 ). The 

storage locations of the items typically constitute a block layout 

( Roodbergen, 2001 ) composed of so-called picking aisles and cross 

aisles. The picking aisles run parallel to each other and include 

storage locations arranged on both sides of each picking aisle. 

Cross aisles do not contain any storage locations but enable or- 

der pickers to enter or exit a picking aisle. Furthermore, the cross 

aisles divide the picking area into several blocks and the picking 

aisles into subaisles. A block is formed by the picking area located 

between two adjacent cross aisles. The corresponding part of a 

picking aisle is denoted as a subaisle. Thus, a warehouse with m 

picking aisles and q + 1 cross aisles includes q blocks and q · m 

subaisles. Additionally, the warehouse contains a depot where the 

order pickers enter the picking area and return to in order to de- 

posit the picked items. In Fig. 1 , an example of a picking area with 

two blocks and five picking aisles is depicted. A two-block layout 

is characterized by three cross aisles, namely the front, middle and 

rear cross aisle, where the front and the rear cross aisles repre- 

sent the cross aisles nearest to and farthest away from the de- 

Fig. 1. Two-block layout. 

pot, respectively. The middle cross aisle separates the two blocks 

from each other. The storage locations are represented by rectan- 

gles, while black rectangles symbolize the locations of requested 

items (pick locations). 

In order to retrieve the requested items, several order pickers 

operate in the picking area. Each order picker is equipped with a 

picking device, e.g. a cart or a roll cage, enabling him to perform a 

tour through the warehouse on which several items are picked be- 

fore he returns to the depot. The maximum number of stops on a 

tour is dependent on the capacity of the picking device and the ca- 

pacity requirements of the respective customer orders. On his tour, 

the order picker is guided by a so-called pick list. The list repre- 

sents a batch and identifies the storage locations and the quantities 

of the items which are to be retrieved on the same tour. A batch 

may include requested items of several customer orders. However, 

splitting of customer orders is not allowed since it would result in 

an unacceptable sorting effort. The pick list also contains informa- 

tion on the sequence according to which a picker is meant to visit 

the respective pick locations. 

The time an order picker spends for retrieving all items of 

a batch (batch processing time) can be divided into ( Tompkins, 

White, Bozer, & Tanchoco, 2010 ): 

• the setup time, i.e. the time needed for preparing a tour, 
• the search time, i.e. the time required at each pick location for 

identifying the correct item, 
• the pick time, i.e. the time for physically retrieving the items 

from their storage locations, and 
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Fig. 2. Impact of batch assignment and sequencing decisions. 

• the travel time, i.e. the time spent for traveling from the depot 

to the first pick location, between the pick locations and from 

the last pick location back to the depot. 

Processing of a batch is started when the corresponding order 

picker to whom the batch has been assigned starts with preparing 

the tour. This point in time is addressed as the batch start time, 

while the batch completion time denotes the point in time when 

the picker returns to the depot after having retrieved all items in- 

cluded in the batch. The start time (likewise: the completion time) 

of a customer order, therefore, is identical to the start time (com- 

pletion time) of the batch in which the order is included. An exam- 

ple including 8 customer orders to be processed by two order pick- 

ers is given in Fig. 2 . In Fig. 2 (a), a Gantt chart is depicted in which 

each batch is represented by a box. Each batch consists of several 

customer orders, each of which, again, including several items to 

be picked, e.g. batch #4 includes order #3 (items to be picked: 3a, 

3b, 3c) and order #7 (items to be picked: 7a, 7b). According to this 

chart (and based on the given definition) the completion times of 

customer orders #3 and #7 are identical and both orders are com- 

pleted at 6:42. 

Given a particular composition of the batches, a different as- 

signment of batches to order pickers (see Fig. 2 (b)) and/or a dif- 

ferent sequence of the batches assigned to a picker (see Fig. 2 (c)) 

will result in different order completion times. From Fig. 2 (b) and 

(c) we take, e.g. that the completion time of customer orders #3 

and #7 now is 6:20, respectively. Of course, according to Fig. 2 (b), 

also the completion times of the orders included in batch #1 (or- 

der #8 ), in batch #2 (orders #1 , #2 and #6 ), and according to 

Fig. 2 (c), also the completion time of batch #3 (orders #4 and #5 ) 

has been affected. 

Furthermore, the completion time of customer orders can also 

be influenced by the assignment of orders to batches. The length 

of a box, i.e. its extent in the horizontal dimension, indicates the 

batch processing time. It is determined by the customer orders 

from which it is composed and by the time the order picker needs 

to complete a respective tour through the warehouse on which 

the requested items are collected. In Fig. 3 (a), the schedule of 

Fig. 2 (a) is repeated. An example of a tour corresponding to batch 

#2 is presented in Fig. 3 (b). In Fig. 3 (c), the batches are com- 

posed differently. Batch #2 now includes orders #2 , #6 and #7 , 

while order #1 has been assigned to batch #4 . The corresponding 

picker tour through the warehouse related to batch #2 , depicted in 

Fig. 3 (d), is different to the one of Fig. 3 (b). In particular, since the 

tour is now shorter, less time will be necessary for its completion, 

resulting in a decrease of the processing time of batch #2 , i.e. a 

decrease of the length of the box related to batch #2 in Fig. 3 (c). 

Likewise, also the processing time of batch #4 to which order #1 

has been assigned will be affected. We note again that also com- 

pletion times of all customer orders may be affected which are 

included in batches scheduled after those batches to which such 

changes occurred. 

In distribution warehouses, customer orders usually have to be 

picked until certain due dates ( Henn & Schmid, 2013 ) in order to 

guarantee the scheduled departure of trucks delivering the picked 

items during contracted (and often tight) time windows to exter- 

nal customers ( Gademann, van den Berg, & van der Hoff, 2001 ). 

As can be taken from the examples presented in Figs. 2 and 3 , 

whether such due dates are met or not depends on the assign- 

ment of customer orders to batches, the assignment of batches 

to order pickers, the sequencing of batches and the routing of or- 

der pickers. In the example from Fig. 2 , orders #7 and #8 are due 

at 6:30 and 6:45, respectively. According to the solution depicted 

in Fig. 2 (a), order #7 is completed at 6:42, i.e. it is delayed by 

12 minutes, whereas order #8 is completed in time. In Fig. 2 (b), 

the assignment of the batches, which include the two orders, to 

the order pickers is changed. Order #7 is now completed at 6:20, 

while the completion time of order #8 is 6:36. Thus, the due dates 

of both orders are met. However, this affects the completion time 

of batch #2 which is increased by one minute and, therefore, the 

extent to which orders #1 , #2 and #6 are delayed is also increased. 

Delayed shipments result in fines which, e.g. for the delivery of 

fresh foods to supermarkets or of parts to production lines in the 

car industry, are often dependent on the length of the delay (tar- 

diness). More precisely, the tardiness τ n of a customer order n is 

defined as the (non-negative) difference between the completion 

time c n of the order and its due date d n ( Henn & Schmid, 2013 ), 

i.e. the tardiness is given by τn = max { c n − d n ; 0 } . The sum of the 

tardiness of all customer orders is referred to as the total tardi- 

ness. A total tardiness of 0 means that the due dates of all cus- 

tomer orders are met in the respective solution. The total tardi- 

ness of all customer orders will be used here for the evaluation 

of solutions provided by our approach. We note that this objective 
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Fig. 3. Impact of order batching decisions on picker routing. 

is widely used; not only in the literature related to order picking 

( Elsayed, Lee, Kim, & Scherer, 1993; Henn & Schmid, 2013; Tsai, 

Liou, & Huang, 2008 ) but also in literature related to other prob- 

lem settings in which on-time delivery to external or internal 

clients represents a key element of the study, e.g. in scheduling 

( Koulamas, 1994; Pinedo, 2016; Ullrich, 2013 ). 

The Joint Order Batching, Assignment and Sequencing, and 

Routing Problem can now be stated as follows: let a non-empty set 

of customer orders be given, each of which including certain items 

with known storage locations to be removed from the warehouse. 

Furthermore, each order is characterized by a due date until which 

all requested items of the order should be retrieved and brought 

forward to the depot. A given number of order pickers is available 

for carrying out the necessary picking operations. Then, the follow- 

ing questions have to be answered (simultaneously) in such a way 

that the total tardiness is minimized: 

• How should the set of customer orders be grouped into picking 

orders? (Order Batching Problem) 
• How and in which sequence should the set of picking orders be 

assigned to the order pickers? (Batch Assignment and Sequenc- 

ing Problem) 
• For each picking order, in which sequence should the respective 

pick locations be visited? (Picker Routing Problem) 

In the following, we will assume a warehouse with wide aisles 

which enable the order pickers to pass each other. This assumption 

has also been made by Chen et al. (2015) and Henn (2015) and al- 

lows for neglecting cases in which the processing time of a batch 

is increased by waiting times which may arise if order pickers 

simultaneously work in the same picking aisle. Even without con- 

sidering such picker blocking aspects, the JOBASRP formulated 

above is known to be NP-hard ( Chen et al., 2015 ). 

3. Literature review 

Although the above-mentioned subproblems of the JOBASRP 

arise simultaneously, joint solution approaches have rarely been 

addressed in the literature so far. Instead, the subproblems are 

dealt with independently of each other in most approaches. The 

first subproblem is the Order Batching Problem (OBP) which can 

be stated as follows ( Wäscher, 2004 ): given the article storage lo- 

cations, the routing strategy to be used, and the capacity of the 

picking device, how can the set of customer orders be grouped into 

picking orders such that the total lengths of the arising tours is 

minimized? The OBP has been widely studied in the literature and 

a large variety of solution approaches exists. For a very detailed re- 

view of solution methods to the OBP, we refer to de Koster, Le-Duc, 

and Roodbergen (2007) and Henn et al. (2012) . 

As for the Batch Assignment and Sequencing Problem (BASP) 

customer orders are characterized by due dates which have 

to be met in the best possible way, while each customer or- 

der has already been assigned to a certain batch. Solutions 

are evaluated by the total tardiness of all orders. The BASP 

can then be stated as follows: how should the batches be as- 

signed to a limited number of pickers and, for each picker, 

how should the batches be sequenced such that the total 
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Table 1 

Joint considerations regarding the Batching, Assignment and Sequencing, and Routing Problem. 

Reference Batching Assignment Sequencing Routing 

Kulak, Sahin, and Taner (2012) � � 

Grosse, Glock, and Ballester-Ripoll (2014) � � 

Scholz and Wäscher (2017) � � 

Elsayed et al. (1993) � � 

Elsayed and Lee (1996) � � 

Henn and Schmid (2013) � � 

Henn (2015) � � � 

Tsai et al. (2008) � � � 

Chen et al. (2015) � � � 

tardiness is minimized? The special cases of the BASP with 

a single customer order per batch or with customer orders 

having identical due dates find their parallels in Parallel Machine 

Scheduling: a set of jobs (here: batches) has to be assigned to ma- 

chines (here: order pickers) and sequenced in such a way that the 

total tardiness of all jobs is minimized ( Pinedo, 2016 ). We refer to 

Koulamas (1994) for a review of solution approaches to the Par- 

allel Machine Scheduling Problem. To the best of our knowledge, 

no solution approach exists to the BASP where the batches include 

customer orders with different due dates. 

The Picker Routing Problem (PRP) can be stated as follows 

( Ratliff & Rosenthal, 1983; Scholz, Henn, Stuhlmann, & Wäscher, 

2016 ): given a set of items to be picked from known storage loca- 

tions, in which sequence should the locations be visited such that 

the total length of the corresponding picker tour is minimized? Al- 

though the PRP can be solved efficiently in warehouses with up 

to two blocks ( Ratliff & Rosenthal, 1983; Roodbergen & de Koster, 

2001b ), simple routing strategies are used for routing order pick- 

ers in practice. This is due to the fact that optimal tours appear to 

be complex and difficult to memorize for the order pickers. The S- 

shape strategy is the most frequently used routing scheme in prac- 

tice ( Roodbergen, 2001 ). When applying this strategy, the order 

picker traverses each subaisle completely which contains at least 

one requested item. An exception may occur in the last subaisle 

of the block which is visited. Here, the picker may return after re- 

trieving all items in this subaisle. A more sophisticated strategy, 

the so-called combined strategy ( Roodbergen & de Koster, 2001a ), 

combines elements of the S-shape and the return strategy. For each 

picking aisle to be visited, by means of dynamic programing it 

is determined whether the aisle is traversed or whether it is en- 

tered and left via the same cross aisle. For a detailed review of 

routing strategies, we refer to de Koster et al. (2007) (single-block 

layout) and Roodbergen and de Koster (2001a) (multi-block lay- 

out). As the PRP is a special case of the Traveling Salesman Prob- 

lem (TSP), Theys, Bräysy, Dullaert, and Raa (2010) applied a TSP 

heuristic, namely the Lin–Kernighan–Helsgaun heuristic ( Helsgaun, 

20 0 0 ), to the PRP and demonstrated that the tour length can be re- 

duced by up to 48% compared to the usage of the simple S-shape 

strategy. 

In more recent years, research has shifted to solution ap- 

proaches which focus on the simultaneous solution of two or more 

subproblems of the JOBASRP. Table 1 provides an overview of re- 

spective publications. The table shows that all approaches deal 

with the OBP and either include the BASP or the PRP. As for the 

BASP, the assignment and the sequencing problem are treated sep- 

arately. A check mark provided in the sequencing but not in the as- 

signment column indicates that a single picker is considered only, 

i.e. no assignment decisions have to be made in this case. In the 

following part of the review, we focus on those articles dealing 

with three of the four decision types. 

In Henn (2015) , the OBP is combined with the BASP, resulting 

in the Joint Order Batching, Assignment and Sequencing Problem 

(JOBASP). This is the only paper so far in which multiple pickers 

have been taken into account. Henn (2015) proposed a variable 

neighborhood descent (VND) and a variable neighborhood search 

(VNS) approach in order to solve the JOBASP. As an upper bound, 

an earliest start date rule (ESDR)-based algorithm has been cho- 

sen in which customer orders are batched and sequenced accord- 

ing to their due dates, and batches are assigned to the picker who 

currently possesses the smallest total processing time. Problem in- 

stances with up to 200 customer orders have been included in 

the numerical experiments. The total tardiness obtained by using 

the ESDR-based algorithm could be reduced by 41% (VNS) and 39% 

(VND) on average. Application of the VNS algorithm requires up to 

25 minutes of computing time, while the VND approach terminates 

after a maximum of 30 seconds. 

In general, from all the papers discussed so far, it becomes clear 

that the simultaneous solution of the subproblems of the JOBASRP 

may provide large benefits w.r.t. improved planning of picking op- 

erations. Nevertheless, only two approaches exist which deal with 

the complete JOBASRP. Tsai et al. (2008) proposed a genetic algo- 

rithm for the JOBASRP. Apart from the total tardiness, they also 

minimize the total earliness as well as the total tour length. Unlike 

in the approaches discussed before, splitting of customer orders is 

allowed. Chen et al. (2015) presented a genetic algorithm for the 

JOBASP and solved the arising PRPs by means of an ant colony ap- 

proach. In the genetic algorithm, however, the batching and the se- 

quencing problem are considered separately which results in many 

unfeasible solutions with respect to the capacity constraint of the 

picking device. Furthermore, the ant colony algorithm consumes 

far more computing time than problem-specific approaches to the 

PRP do. Thus, it is not surprising that the authors stated that com- 

puting times are a critical issue (without reporting any comput- 

ing times, though). In their numerical experiments, only very small 

problem instances with up to 8 orders have been considered. Both 

the study of Tsai et al. (2008) and Chen et al. (2015) have in com- 

mon that it is assumed that only a single picker is available for 

processing the customer orders. This implies that the assignment 

problem does not have to be taken into account which simplifies 

the problem considerably. 

We conclude that, even though the joint solution of the sub- 

problems of the JOBASRP seems to represent a promising research 

path, no approach exists which captures the core elements of the 

problem and, at the same time, is capable of providing solutions of 

good quality in reasonable computing time. 

4. Model formulation 

The mathematical model introduced by Henn (2015) for the 

JOBASP can be adapted to the JOBASRP. It requires that all feasible 

batches have to be generated in advance. Then, for each feasible 

batch, the minimum processing time has to be computed, which 

involves solving the arising PRPs to optimality. As a consequence, 

when solving a specific problem instance, providing the prob- 

lem data for the model would already consume a large amount 

of computing time. Furthermore, the number of variables in the 
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Fig. 4. Illustration of a Steiner TSP. 

model depends on the number of feasible batches, which increases 

exponentially with the number of customer orders. Thus, even for 

small instances, it may not be possible to generate the model ex- 

plicitly at all due to memory restrictions. 

Instead, in order to keep the number of variables at a reason- 

able level, we chose a modeling approach in which the batches are 

not generated in advance. For our model formulation as well as 

for the heuristic approach presented in Section 5 , we assume that 

the capacity of the picking device is measured in the number of 

items, i.e. a maximum number of C items can be picked on a tour. 

This is a standard assumption which has also been made by Bozer 

and Kile (2008) and Henn (2015) . Note, that this is not a critical 

assumption as the mathematical model and the heuristic approach 

can easily be modified such that other kinds of capacity constraints 

(e.g. a maximum number of customer orders or a maximum total 

weight of items) can be dealt with. 

The model formulation can be divided into two parts: the first 

part is related to the Joint Order Batching and Picker Routing 

Problem which means that the customer orders are grouped into 

batches and the corresponding tours are constructed. With respect 

to the specific structure of tours in an order picking warehouse, we 

interpret the routing problem as a Steiner TSP. The graph of Fig. 4 

illustrates this interpretation and will be used as the basis for our 

model. 

Black vertices represent the location of the depot and the pick 

locations. These vertices have to be included in the tour. White ver- 

tices (Steiner points) depict the intersections of picking aisles and 

cross aisles. They can be visited, but do not necessarily need to be 

included in the tour. As can be taken from the figure, the max- 

imum degree of a vertex is equal to four. Therefore, this Steiner 

TSP-based graph contains significantly fewer arcs than a standard 

TSP graph would include. In the model formulation, we consider 

a directed graph which means that each edge is replaced by two 

reverse arcs. 

The second part of the model formulation deals with the BASP 

in which the constructed batches are assigned to a picker and ar- 

ranged in a certain sequence. The sequence consists of as many 

positions as batches have been assigned to the picker. The picker 

starts processing the batch assigned to the first position and, af- 

ter having returned to the depot, the batch in the next position 

is dealt with etc. This procedure provides the completion time for 

each batch and the completion times of all customer orders in- 

cluded in the batch, from which the tardiness of each customer 

order can be determined. 

Before presenting the model formulation, we introduce the cor- 

responding sets, parameters and variables. 

Sets 

P : set of order pickers 

K : set of positions (for each order picker) where a batch can 

be scheduled 

(
K = 

{
1 , . . . , K 

})
H : set of tours which can be performed 

N : set of customer orders 

V : set of vertices in the graph representing the warehouse 

R : set of vertices representing a pick location and the loca- 

tion of the depot 

A : set of arcs in the graph representing the warehouse 

Parameters 

C : capacity of the picking device 

βs : setup time per batch 

βp : pick and search time per item 

β t : travel time per length unit 

c n : number of requested items of order n ∈ N 

d n : due date of order n ∈ N 

αnr : constant for indicating whether vertex r ∈ R represents 

a storage location of a requested item of order n ∈ N 

( αnr = 1 ) or not ( αnr = 0 ) 
w a : distance to be covered when using arc a ∈ A 

M : sufficiently large number 

(
e.g. M = K ·

(
βs + βt · ∑ 

a ∈ A 
w a 

)
+ β p · ∑ 

n ∈ N 
c n 

)

Variables 

τ n : tardiness of order n ∈ N 

˜ u h : processing time of tour h ∈ H 

u pk : processing time of the tour assigned to position k ∈ K of 

picker p ∈ P 

v pk : completion time of the tour assigned to position k ∈ K of 

picker p ∈ P 

x pkh : variable for indicating whether tour h ∈ H is assigned to 

position k ∈ K of picker p ∈ P ( x pkh = 1 ) or not ( x pkh = 0 ) 

y nh : variable for indicating whether order n ∈ N is assigned to 

tour h ∈ H ( y nh = 1 ) or not ( y nh = 0 ) 

z ah : variable for indicating whether arc a ∈ A is included in 

tour h ∈ H ( z ah = 1 ) or not ( z ah = 0 ) 

f ah : number of units of the commodity passing arc a ∈ A on 

tour h ∈ H 

The JOBASRP can then be formulated as follows. 

min 

∑ 

n ∈ N 
τn (1) 

∑ 

h ∈ H 
x pkh ≤ 1 ∀ p ∈ P, k ∈ K (2) 

∑ 

p∈ P 

∑ 

k ∈ K 
x pkh = 1 ∀ h ∈ H (3) 
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∑ 

h ∈ H 
y nh = 1 ∀ n ∈ N (4) 

∑ 

n ∈ N 
c n · y nh ≤ C ∀ h ∈ H (5) 

∑ 

a ∈ δ−
0 

z ah ≥ 1 ∀ h ∈ H (6) 

∑ 

a ∈ δ−
r 

z ah ≥ αnr · y nh ∀ h ∈ H, n ∈ N, r ∈ R\ { 0 } (7) 

∑ 

a ∈ δ−
v 

z ah = 

∑ 

a ∈ δ+ 
v 

z ah ∀ h ∈ H, v ∈ V (8) 

∑ 

a ∈ δ+ 
r 

f ah −
∑ 

a ∈ δ−
r 

f ah = αnr · y nh ∀ h ∈ H, n ∈ N, r ∈ R\ { 0 } (9) 

∑ 

a ∈ δ+ 
v 

f ah −
∑ 

a ∈ δ−
v 

f ah = 0 ∀ h ∈ H, v ∈ V \R (10) 

f ah ≤ C · z ah ∀ a ∈ A, h ∈ H (11) 

βs + β p ·
∑ 

n ∈ N 
c n · y nh + βt ·

∑ 

a ∈ A 
w a · z ah ≤ ˜ u h ∀ h ∈ H (12) 

˜ u h − M ·
(
1 − x pkh 

)
≤ u pk ∀ p ∈ P, k ∈ K, h ∈ H (13) 

u p1 ≤ v p1 ∀ p ∈ P (14) 

u pk + v p,k −1 ≤ v pk ∀ p ∈ P, k ∈ K\ { 1 } (15) 

v pk − d n − M ·
(
2 − x pkh − y nh 

)
≤ t n 

∀ n ∈ N, p ∈ P, k ∈ K, h ∈ H (16) 

x pkh , y nh , z ah ∈ { 0 , 1 } ∀ a ∈ A, n ∈ N, p ∈ P, k ∈ K, h ∈ H (17) 

τn , ˜ u h , u pk , v pk , f ah ≥ 0 ∀ a ∈ A, n ∈ N, p ∈ P, k ∈ K, h ∈ H 

(18) 

The objective function (1) minimizes the total tardiness. Con- 

straints (2) ensure that at most one tour is assigned to each po- 

sition of each picker, while (3) guarantee that each tour is per- 

formed. Each customer order has to be processed in exactly one 

tour which is obtained by meeting restrictions (4). The capacity 

of the picking device is taken into account by satisfying (5). Con- 

straints (6)–(11) represent the routing constraints. First, constraints 

(6) ensure that the depot is left on each tour. Here, δ+ 
v ( δ−

v ) de- 

notes the set of arcs to which vertex v is an end (start) vertex. 

Vertex “0” represents the location of the depot. Constraints (7) 

guarantee that each pick location is visited which corresponds 

to a requested item of a customer order included in the respec- 

tive tour. Restrictions (8) are the degree constraints. The follow- 

ing three types of constraints represent subtour elimination con- 

straints. These constraints are related to the single-commodity 

flow constraints introduced by Letchford, Nasiri, and Theis (2013) . 

Subtours are excluded by ensuring that the picker starts his tour 

with a certain number of units of a commodity and delivers one 

unit to each vertex to be visited. In this way, the vertices are enu- 

merated according to their appearance in the tour. In constraints 

(12), the processing time is determined for each tour, which is 

composed of the setup time, the time for searching and picking 

the items and the travel time. The processing time of the tour as- 

signed to a certain position of a certain picker is determined in 

(13), while constraints (14) and (15) calculate the corresponding 

completion times. Finally, constraints (16) compute the tardiness 

for each order. The variable domains are defined in (17) and (18). 

The model formulation includes linear constraints only. Further- 

more, both the number of variables and the number of constraints 

increase polynomially with the problem size, which is a major ad- 

vantage of this model in comparison to the formulations of Chen 

et al. (2015) and Henn (2015) . However, as will be shown later, 

our model is only suitable for solving relatively small problem in- 

stances. For dealing with larger instances, we have developed a 

variable neighborhood descent approach to the JOBASRP. 

5. Variable neighborhood descent 

5.1. Overview 

Variable neighborhood descent was introduced in Hansen and 

Mladenovi ́c (2001) . The general principle of VND consists of ex- 

ploring the solution space of the problem by means of a sequence 

of neighborhood structures N 1 , . . . , N L . It is started with an incum- 

bent solution s ∗ and the best neighbor s (in terms of the objective 

function value) of N 1 ( s 
∗) is determined. If s represents a better so- 

lution than s ∗, then s becomes the new incumbent solution and 

the first neighborhood structure N 1 ( s 
∗) is considered again. Other- 

wise, the exploration of the solution space continues with the next 

neighborhood. The algorithm terminates if no improvement can be 

found in the last neighborhood structure N L ( s 
∗) , i.e. a local opti- 

mum is found with respect to all neighborhood structures. 

In our VND approach, a solution s is a solution to the JOBASP, 

i.e. it includes information about how the orders are grouped into 

batches and in which sequence the batches are to be processed by 

the pickers. Based on this solution, different PRPs have to be solved 

in order to determine the corresponding objective function values. 

Since many PRPs arise during the solution process, we decided to 

solve them by applying the combined heuristic. This heuristic was 

particularly designed for warehouses with multiple blocks and out- 

performs the frequently used S-shape heuristic by far in terms of 

solution quality ( Roodbergen & de Koster, 2001a ). The correspond- 

ing objective function value is denoted by f Comb ( s ). 

In contrast to the standard VND procedure, we do not directly 

return to N 1 after an improvement has been found. Instead, be- 

fore doing so, we determine a local optimum regarding the cur- 

rent neighborhood structure. The objective function value, the to- 

tal tardiness, is strongly dependent on the processing times of the 

batches. In order to reduce processing times, each time when a lo- 

cal optimum has been found, the arising PRPs are solved by means 

of the Lin–Kernighan–Helsgaun (LKH) heuristic. Applied to the PRP, 

this heuristic results in very short tours ( Theys et al., 2010 ) and, 

as a consequence, in shorter processing times. However, since the 

computational effort is much higher than the effort f or the appli- 

cation of the combined heuristic, it is not possible to use the LKH 

heuristic for evaluating all solutions to be considered in the ex- 

ploration of the neighborhood structures. Due to this fact, we try 

to ensure that the LKH heuristic is only applied to very promis- 

ing solutions. Therefore, we decided to determine a local optimum 

before returning to N 1 . f LKH ( s ) denotes the total tardiness of a solu- 

tion s whose PRPs have been solved by means of the LKH heuris- 

tic. A pseudocode of our VND approach is depicted below, while 
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the generation of the initial solution as well as the neighborhood 

structures will be dealt with in the next sections. 

5.2. Initial solution 

For the generation of an initial solution, two constructive ap- 

proaches are first applied, providing one solution each. The so- 

lution with the smaller objective function value is then taken as 

the initial solution for the VND. The first constructive approach is 

based on the earliest start date rule and was also used by Henn 

(2015) . It is a priority rule-based algorithm in which orders are as- 

signed successively to the batches and the positions of the pickers. 

A detailed pseudocode of this algorithm is depicted below. 

In the pseudocode, U denotes the set of orders not yet assigned 

to a picker, k p is the sequence position of picker p to which the 

next batch can be assigned and B pk p represents the set of orders 

included in the batch assigned to position k p of picker p . C p and v p 
denote the number of items contained in the batch under consid- 

eration for picker p as well as its completion time, while u Comb cal- 

culates the processing time of the current batch by means of the 

combined heuristic. At the beginning of the algorithm, all orders 

are unassigned. The orders are then assigned successively to cer- 

tain batches, starting with the unassigned order n ∗ with the small- 

est due date. For each order picker p , the completion time ˜ v p is de- 

termined that would follow from an assignment of n ∗ to the picker. 

The assignment consists of an addition of n ∗ to batch B pk p if the 

capacity constraint of the picking device is not violated; otherwise, 

the assignment includes the opening of a new batch containing n ∗. 

The algorithm terminates when all orders have been assigned to 

batches and positions. 

In order to minimize the total tardiness, the orders are sorted 

according to their due dates and then assigned successively. The 

composition of the batches is not considered any further. This is 

a reasonable approach as long as the due dates are loose. How- 

ever, in case of tight due dates, it is of prime importance to con- 

struct batches and tours which allow for short processing times. 

We, therefore, propose another constructive approach which takes 

into account the processing times resulting from the construction 

of the batches. This approach can be perceived as a seed algorithm. 

Seed algorithms have been frequently applied to the OBP and con- 

sist of two steps ( Elsayed, 1981 ). First, a seed order is chosen by 

means of a seed selection rule and assigned to a new batch. Ac- 

cording to an order addition rule, orders are then added to this 

batch. As for the seed selection, we chose an order which is not 

yet assigned to a batch and has the closest due date. Dependent on 

the savings in terms of total tardiness, which result from adding an 

order to this batch instead of processing it separately, other orders 

are assigned to the batch. A detailed pseudocode of this algorithm 

can be seen in Algorithm 3 . 

In step 1, each order is assigned to a separate batch. Starting 

with the batch that includes the order with the smallest due date, 

the batches are successively added to the picker p who currently 

possesses the shortest completion time ˜ v p . In step 2, batches are 

merged in order to reduce the processing times as well as the to- 

tal tardiness. The order with the smallest due date represents the 

seed order and forms batch 

˜ B 1 . Based on the solution generated in 

step 1, for each unassigned order n ∈ U , savings sa v in are deter- 

mined which are defined as the reduction of the total tardiness ob- 

tained by merging the batch of order n and the batch i of the seed 

order. Of the potential pairs of batches which could be merged 

without violating the capacity constraint, two batches are actually 

merged for which the savings are maximal. Then, the savings are 

updated and another order may be added to the batch. This is done 

until no further positive savings can be realized. While at least one 

order exists not considered in step 2, i. e. while U � = ∅ , the next 

seed order is determined based on the due dates and a new batch 

Algorithm 1 Variable neighborhood descent algorithm for the 

JOBASRP. 

Input: problem data, number of neighborhood structures L 

Output: solution s ∗ to the JOBASRP and corresponding total tardi- 

ness f LKH ( s 
∗) 

generate initial solution s ; 

s ∗ := s ; l := 1 ; 

while l ≤ L do 

s := s ∗; 

s ’ := arg min { f Comb ( ̃ s ) | ˜ s ∈ N l ( s ) } ; 
while f Comb ( s ’ ) < f Comb ( s ) do 

s := s ’ ; 

s ’ := arg min { f Comb ( ̃ s ) | ˜ s ∈ N l ( s ) } ; 
end while 

if f LKH ( s ) < f LKH ( s 
∗) then 

s ∗ := s ; 

l := 1 ; 

else 

l := l + 1 ; 

end if 

end while 

Algorithm 2 ESDR-based algorithm. 

Input: set of orders N with due dates d n and number of requested 

items c n ( n ∈ N ) , set of pickers P , capacity C of the picking device 

Output: solution s ∗ to the JOBASRP and corresponding total tardi- 

ness f Comb ( s 
∗) 

U := N; 

for p ∈ P do 

k p := 1 ; B pk p := ∅ ; C p := 0 ; v p := 0 ; 

end for 

while U � = ∅ do 

n ∗ = arg min { d n | n ∈ U } ; 
for p ∈ P do 

if C p + c n ∗ ≤ C then 

˜ v p := v p + u Comb 

(
B pk p ∪ { n ∗} ); 

else 

˜ v p := v p + u Comb ( { n ∗} ) ; 
end if 

end for 

p ∗ := arg min { ̃ v p | p ∈ P } ; 
U := U \ { n ∗} ; v p ∗ := ̃

 v p ∗ ; 

if C p ∗ + c n ∗ ≤ C then 

B p ∗k p ∗ := B p ∗k p ∗ ∪ { n ∗} ; C p ∗ := C p ∗ + c n ∗ ; 

else 

k p ∗ := k p ∗ + 1 ; B p ∗k p := { n ∗} ; C p ∗ := c n ∗ ; 

end if 

end while 

is opened to which orders are to be added. Thus, step 2 provides a 

solution in which the processing times and the total tardiness are 

explicitly taken into account. In step 3, the batches in this solution 

are reassigned to the positions of the pickers. This is done con- 

secutively starting with batch 

˜ B 1 . Each batch is inserted into the 

position k of picker p minimizing the total tardiness f 
p,k 
Comb 

of all 

batches which have been inserted up to this point. In analogy to 

the ESDR-based algorithm, the combined heuristic is used to de- 

termine the processing times. 
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Algorithm 3 Seed algorithm. 

Input: set of orders N with due dates d n and number of requested 

items c n ( n ∈ N ) , set of pickers P , capacity C of the picking device 

Output: solution s ∗ to the JOBASRP and corresponding total tardi- 

ness f Comb ( s 
∗) 

U := N; //step 1 

for p ∈ P do 

k p := 1 ; v p := 0 ; 

end for 

while U � = ∅ do 

n ∗ := arg min { d n | n ∈ U } ; 
for p ∈ P do 

˜ v p := v p + u Comb ( { n ∗} ) ; 
end for 

p ∗ := arg min { ̃ v p | p ∈ P } ; 
U := U \ { n ∗} ; v p ∗ := ̃

 v p ∗ ; k p ∗ := k p ∗ + 1 ; B p ∗k p := { n ∗} ; 
end while 

U := N; i := 1 ; //step 2 

while U � = ∅ do 

n ∗ := arg min { d n | n ∈ U } ; ˜ B i := { n ∗} ; ˜ C := c n ∗ ; 

U := U \ { n ∗} ; 
while max 

{
sa v in | n ∈ U : ˜ C + c n ≤ C 

}
> 0 do 

n ∗ := arg max 
{

sa v in | n ∈ U : ˜ C + c n ≤ C 
}

; 

˜ B i := B i ∪ { n ∗} ; ˜ C := 

˜ C + c n ; U := U \ { n ∗} ; 
end while 

i := i + 1 ; ˜ C := 0 ; 

end while 

for p ∈ P do //step 3 

k p := 1 ; 

end for 

for j := 1 to i do 

( p ∗, k ∗) := arg min 

{ 

f 
p,k 
Comb 

| p ∈ P, k ∈ { 1 , . . . k p } 
} 

; 

B p ∗,k ∗+1 := B p ∗,k ∗ ; …; B p ∗,k p +1 := B p ∗,k p ; B p ∗,k ∗ := 

˜ B i ; 

k p ∗ := k p ∗ + 1 ; 

end for 

Since the seed algorithm also considers the composition of the 

batches instead of just basing the construction of a solution on the 

information about the due dates, it can be expected to lead to bet- 

ter results in case of tight due dates. By selecting the best solution 

of the ESDR-based and the seed algorithm, we aim to generate an 

initial solution enabling the VND to proceed faster to a local opti- 

mum. 

5.3. Neighborhood structures 

As mentioned before, a solution to the JOBASRP includes infor- 

mation about the composition of the batches and their assignment 

to the positions of the pickers. The arising routing problems are 

only solved in order to determine the resulting objective function 

value. Thus, the neighborhood structures considered in our VND 

can be divided into structures related to the sequencing problem 

and structures regarding the batching problem. 

Neighborhood structures related to the sequencing problem 

only deal with the assignment of the batches to the pick- 

ers’ positions. The composition of the batches remains un- 

changed. Thus, complete batches are considered instead of sin- 

gle customer orders. Since the number of batches is usu- 

ally much smaller than the number of customer orders, 

these neighborhoods can be explored in reasonable comput- 

Fig. 5. Example of neighborhood structure N 1 . 

Fig. 6. Example of neighborhood structure N 2 . 

ing time. Therefore, these neighborhoods are used at the be- 

ginning of the VND algorithm. As proposed by Henn (2015) , 

we use one sequencing related neighborhood structure N 1 . 

Regarding N 1 , the neighborhood of a solution s is composed of 

all solutions which can be obtained by exchanging two batches b 1 
and b 2 from s . Only exchanges between different pickers are taken 

into consideration. Batch b 1 is moved to the position of b 2 and vice 

versa. The positions of the remaining batches are not changed (see 

Fig. 5 ). 

In N 2 , we consider complete batches, too. However, not only 

the way how batches are sequenced is changed but also how they 

are composed of orders. This neighborhood structure is meant 

to break up a complete batch and reassign the orders to other 

batches. Furthermore, the batch sequence is optimized. A neigh- 

bor regarding N 2 is obtained as follows: in a first step, a batch 

is removed from the solution. In a second step, the remaining se- 

quence is optimized. First, for each batch, it is checked whether 

the solution can be improved by moving this batch to a position of 

another picker. The move which provides the largest improvement 

is carried out. This procedure is repeated until no further improve- 

ment is possible. Movements regarding N 1 are then applied as long 

as the solution can be improved. Subsequent to this improvement 

step, the orders contained in the removed batch are considered 

successively in the order of non-descending due dates. Each order 

may either be inserted in an existing batch or forms a new batch. 

The option resulting in the smallest total tardiness is realized. An 

example of a move regarding N 2 is depicted in Fig. 6 . 
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Neighborhood structures N 3 to N 6 are straightforward struc- 

tures to the batching problem. By means of these structures, the 

composition of the batches is changed. Either an order is moved 

from one batch to another batch (shift) or two orders contained in 

different batches are exchanged (swap). These structures can de- 

fine movements on the same picker as well as operations includ- 

ing two pickers. Combination of these characteristics (swap or shift 

and one picker or two pickers) gives rise to four different neighbor- 

hood structures which have been used in the following sequence: 

N 3 : an order is moved from one batch to another batch 

assigned to the same picker; 

N 4 : an order is moved from one batch to another batch 

assigned to another picker; 

N 5 : two orders are exchanged which are included in different 

batches assigned to the same picker; 

N 6 : two orders are exchanged which are included in different 

batches assigned to different pickers. 

We note that only neighbors are considered which represent 

feasible solutions, i.e. which do not violate the capacity constraint 

of the picking device. If an order cannot be added to a batch, this 

order is assigned to a new batch, where the position of the new 

batch is chosen such that the total tardiness is minimal. 

6. Numerical experiments 

6.1. Test problem instances 

Chen et al. (2015) dealt with a problem which is almost identi- 

cal to the one discussed here. Unfortunately, the problem instances 

from their experiments were not available. Therefore, we gener- 

ated instances with the same characteristics and noticed that all 

of them could be solved to optimality within a few seconds by 

means of the model formulation proposed in Section 4 . This can 

be explained by the fact (i) that the problem instances used by 

Chen et al. (2015) are rather small ones which only included at 

most 8 customer orders and (ii) that the problem itself is more 

simple since the authors assumed that only one order picker is 

available for processing the orders from which follows that no de- 

cisions concerning the assignment of batches to pickers have to be 

made. We, therefore, decided not to use these instances for the 

evaluation of the solution quality of our VND but design our own, 

more challenging test problem sets instead. 

For our experiments, we adapted the generation of test prob- 

lems from the numerical experiments of Henn (2015) who dealt 

with very large instances for the JOBASP. We consider a warehouse 

with 10 picking aisles, where the number of blocks q varies be- 

tween 1 and 3, resulting in 10, 20 or 30 subaisles. Each subaisle 

contains 50 storage locations (25 on each side of the subaisle). The 

depot is located in front of the leftmost picking aisle, and the dis- 

tance between the depot and the leftmost picking aisle amounts 

to 1.5 length units (LUs). For entering or leaving a subaisle, the or- 

der picker has to cover a distance of 1 LU. This is also the distance 

between two adjacent storage locations of a subaisle. The distance 

between two adjacent picking aisles amounts to 5 LUs. 

For the assignment of articles to storage locations, a class-based 

storage assignment policy is applied, i.e. articles with high demand 

frequencies are assigned to storage locations near the depot. We 

use the same approach as Henn (2015) , who divided the articles 

into three classes A, B and C, whereupon class A includes 10% of 

all articles with the highest demand frequency, representing up to 

52% of the total demand; class B contains 30% of all articles re- 

sponsible for 36% of the demand. The remaining articles, assigned 

to class C, are characterized by rather low demand frequencies. 

Within each class, articles are randomly assigned to the storage lo- 

cations of the corresponding subaisles. The determination of the 

subaisles is based on the distance to the depot. Class A articles 

are assigned to storage locations in a subaisle representing 10% of 

all subaisles with the shortest distance to the depot. The subaisles 

which belong to 60% of all subaisles farthest from the depot in- 

clude class C articles. 

The number of customer orders is fixed to 100 and 200, where- 

upon the number of items contained in an order is uniformly dis- 

tributed over the set { 5 , 6 , . . . , 25 } . Each order should be completed 

until a certain due date. The due dates are generated based on the 

processing times ˜ u n ( n ∈ N ) of the orders, the number of available 

order pickers p max and the so-called modified traffic congestion 

rate (MTCR) γ describing the tightness of the due dates ( Elsayed & 

Lee, 1996 ). The interval from which due dates are randomly chosen 

is determined as follows: [ min { ̃  u n | n ∈ N} , (2 · (1 − γ ) · ∑ 

n ∈ N ˜ u n 
+ min { ̃  u n | n ∈ N} ) /p max ] . As can be seen, the tightness of the due 

dates is dependent on the processing time ˜ u n of an order n , while 

the processing time is determined by the sequence according to 

which the corresponding items are to be retrieved, which is the 

main reason why we do not use the same instances as Henn 

(2015) . They applied the simple S-shape and largest gap strategies 

for the determination of the processing times. Since we integrate 

the routing problem into our approach, we generate much shorter 

tours. This results in considerable shorter batch processing times, 

which is why an application of our approach to the instances of 

Henn (2015) results in a total tardiness of 0 for most instances. 

Therefore, we decided to use the LKH heuristic for the determi- 

nation of the processing times ˜ u n ( n ∈ N ) instead, which is more 

appropriate as the LKH heuristic is also applied within our VND 

algorithm. The MTCR γ has been fixed to 0.6, 0.7 and 0.8 as done 

by Henn (2015) . 

In our experiments, 2, 3 or 5 pickers are available for process- 

ing the orders. The capacity C of the picking device is set to 45 or 

75 items. The time a picker needs for performing a tour is com- 

posed of the setup time, the search and pick time, and the travel 

time (see Section 2 ). The setup time amounts to 3 minutes, while 

searching and picking an item requires 20 seconds, and the order 

picker moves 20 LU per minute. 

Combination of the above-mentioned parameter values results 

in 108 problem classes. For each problem class, 30 instances have 

been generated, i.e. 3240 problem instances have been solved in 

total. The experiments have been carried out on a desktop PC with 

a 3.4 gigahertz Pentium processor and 8 gigabytes RAM. The so- 

lution approach has been encoded in C++ using Microsoft Visual 

Studio 2015. 

6.2. Evaluation of the components of the VND approach 

6.2.1. Initial solution 

Pretests have shown that the amount of computing time re- 

quired for applying the VND is strongly dependent on the quality 

of the initial solution. Starting with a low-quality solution, a large 

number of iterations has to be carried out until a local optimum 

is found. Henn (2015) used the ESDR-based algorithm in order to 

generate an initial solution. However, this rule may result in very 

poor solutions since the orders are grouped into batches without 

considering the resulting processing times. Therefore, we proposed 

a seed algorithm in which both the due dates of the orders and 

the tour length of the corresponding batches are taken into con- 

sideration. 

The computing times of both approaches are below one second 

if the combined heuristic is used for determining the processing 

times of the respective tours. Since such computing times can be 

neglected, both approaches are applied and the solution with the 

smaller total tardiness is used as the initial solution. The impact 

on the quality of the initial solution is depicted in Tables 2 and 3 . 

In Tables 2 and 3 , for the problem classes with 100 and 200 

orders, the quality of the initial solutions (in terms of the aver- 



A. Scholz et al. / European Journal of Operational Research 263 (2017) 461–478 471 

Table 2 

Evaluation of the initial solution for 100 orders. 

2 pickers 3 pickers 5 pickers 

C γ q ESD INI ESD INI ESD INI 

tar tar imp tar tar imp tar tar imp 

45 0.6 1 130 130 0.0 112 112 0.0 89 89 0.0 

45 0.6 2 70 70 0.0 165 158 3.7 128 128 0.0 

45 0.6 3 235 220 6.3 347 283 18.4 517 516 0.2 

45 0.7 1 1831 1017 44.4 1451 1102 24.0 1209 986 18.4 

45 0.7 2 2479 1345 45.8 2245 1708 23.9 1483 1280 13.7 

45 0.7 3 5347 2715 49.2 3908 2435 37.7 2808 2147 23.5 

45 0.8 1 8117 4988 38.6 6181 3996 35.4 4729 3294 30.3 

45 0.8 2 10,468 6522 37.7 7203 4734 34.3 6692 4502 32.7 

45 0.8 3 14,434 8968 37.9 10,246 6677 34.8 3857 2694 30.2 

75 0.6 1 62 62 0.0 85 85 0.0 116 116 0.0 

75 0.6 2 63 63 0.0 99 99 0.0 130 130 0.0 

75 0.6 3 91 91 0.0 154 154 0.0 270 270 0.0 

75 0.7 1 141 141 0.0 166 166 0.0 268 268 0.0 

75 0.7 2 181 181 0.0 340 340 0.0 312 312 0.0 

75 0.7 3 431 431 0.0 489 489 0.0 686 686 0.0 

75 0.8 1 2793 2473 11.5 2556 2399 6.1 2397 2250 6.1 

75 0.8 2 3872 3407 12.0 2968 2742 7.6 3726 3134 15.9 

75 0.8 3 6477 5120 21.0 5055 4289 15.1 1926 1778 7.7 

Average 3179 2108 16.9 2432 1776 13.4 1741 1366 9.9 

Table 3 

Evaluation of the initial solution for 200 orders. 

2 pickers 3 pickers 5 pickers 

C γ q ESD INI ESD INI ESD INI 

tar tar imp tar tar imp tar tar imp 

45 0.6 1 158 158 0.0 181 180 0.7 180 180 0.0 

45 0.6 2 130 130 0.0 115 115 0.0 270 270 0.0 

45 0.6 3 753 604 19.8 345 345 0.0 419 419 0.0 

45 0.7 1 6436 2755 57.2 5127 3551 30.7 3187 2784 12.7 

45 0.7 2 8150 3461 57.5 5564 4212 24.3 3625 3307 8.8 

45 0.7 3 18,697 6972 62.7 12,763 7692 39.7 9461 6865 27.4 

45 0.8 1 33,890 19,487 42.5 22,982 14,169 38.3 14,632 9494 35.1 

45 0.8 2 41,291 24,360 41.0 26,747 16,759 37.3 17,909 11,872 33.7 

45 0.8 3 56,178 32,847 41.5 39,085 23,840 39.0 24,405 15,708 35.6 

75 0.6 1 70 70 0.0 85 85 0.0 136 136 0.0 

75 0.6 2 70 70 0.0 97 97 0.0 164 164 0.0 

75 0.6 3 95 95 0.0 158 158 0.0 267 267 0.0 

75 0.7 1 177 177 0.0 190 190 0.0 267 267 0.0 

75 0.7 2 375 375 0.0 235 235 0.0 286 286 0.0 

75 0.7 3 478 478 0.0 618 618 0.0 755 755 0.0 

75 0.8 1 11,039 8705 21.1 7982 7454 6.6 5785 5526 4.5 

75 0.8 2 14,669 11,758 19.8 9334 8852 5.2 7471 7011 6.2 

75 0.8 3 22,468 16,607 26.1 16,942 13,767 18.7 11,703 9974 14.8 

Average 11,951 7173 21.6 8253 5684 13.4 5607 4183 9.9 

age total tardiness (tar) in minutes) is depicted which is obtained 

after the application of the ESDR-based algorithm (ESD) and after 

the additional application of the seed algorithm (INI). The improve- 

ment (imp) [in %] amounts to zero, if the additional application of 

the seed algorithm has no impact on the quality of the initial solu- 

tions. In these cases, solutions constructed by means of the ESDR- 

based algorithm always lead to a smaller total tardiness for the 

instances of the corresponding problem class. In fact, this is the 

case for instances with a very small MTCR ( γ = 0 . 6 ) and with a 

medium MTCR ( γ = 0 . 7 ) and a large capacity of the picking de- 

vice ( C = 75 ). These instances are characterized by quite loose due 

dates which can be met easily. (Note that the generation of the due 

dates is independent of the capacity of the picking device and due 

dates can be satisfied easier when the capacity is large since the 

total processing time of all orders decreases.) If the due dates are 

not tight, minimizing the processing times gets much less impor- 

tant since the due dates of most orders can be met by processing 

the orders in the sequence of non-descending due dates. This is 

exactly what the ESDR-based algorithm guarantees, which is the 

reason why the application of this rule leads to rather good solu- 

tions in these cases. 

With an increasing MTCR, the due dates get tighter and harder 

to meet, resulting in a dramatic increase of the average total 

tardiness. In case of very tight due dates, it is not sufficient to find 

a reasonable sequence according to which the orders are to be 

processed. Instead, minimizing the processing times gets pivotal. 
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Table 4 

Impact of the neighborhood structures for the case of five pickers 

and 200 orders. 

C γ N 1 N 2 N 3 N 4 N 5 N 6 

45 0.6 25.9 37.8 6.0 11.6 0.9 17.8 

45 0.7 42.9 5.8 28.3 8.7 6.3 8.1 

45 0.8 33.4 2.1 7.0 9.5 35.1 12.9 

75 0.6 3.9 76.0 4.1 6.4 0.2 9.3 

75 0.7 12.9 36.8 8.6 18.2 0.9 22.5 

75 0.8 26.2 11.1 22.4 12.9 14.8 12.6 

Average 24.2 28.3 12.7 11.2 9.7 13.9 

Since the processing times are not taken into consideration, 

solutions obtained by means of the ESDR-based algorithm are 

expected to be of very poor quality. The results from the numer- 

ical experiments confirm this expectation and demonstrate that 

the seed algorithm outperforms the ESDR-based algorithm by far 

when a high MTCR is assumed. By means of the seed algorithm, 

the average total tardiness can be decreased by up to 62.7% (200 

orders, 2 pickers, C = 45 , γ = 0 . 7 , q = 3 ). As expected, the savings 

obtained by application of the seed algorithm tend to get larger 

with a decreasing capacity of the picking device or an increasing 

MTCR. For problem classes with a small capacity ( C = 45 ) and a 

large MTCR ( γ = 0 . 8 ), the reduction of the average total tardiness 

ranges between 30.2% (100 orders, 5 pickers, q = 3 ) and 42.5% 

(200 orders, 2 pickers, q = 1 ). Furthermore, it should be noted that 

the improvements get smaller with an increasing number of order 

pickers available. This can be deduced to the fact that dealing 

with the sequencing problem gets more important when a larger 

number of pickers, i.e. more possibilities of assigning orders, have 

to be taken into account. 

As an intermediate summary, it can be stated that the applica- 

tion of two constructive approaches leads to significant improve- 

ments with respect to the total tardiness. On average, across all 

problem classes the total tardiness can be reduced by 14.2% with- 

out a noticeable increase of the computing time. 

6.2.2. Neighborhood structures 

When designing a VND, another very important issue refers to 

the choice of the neighborhood structures and the sequence ac- 

cording to which they are used within the algorithm. The VND 

approach proposed by Henn (2015) performed quite well for 

the JOBASP. The author suggested utilization of the batch-related 

neighborhood structure N 1 and the order-related structures N 3 to 

N 6 . We also use these structures and the corresponding sequence. 

Furthermore, we introduce a new neighborhood structure N 2 in or- 

der to be able to break up a complete batch and reinsert the orders 

into other batches. The impact of the moves applied according to 

the neighborhood structures is depicted in Table 4 . 

For problem classes with 5 order pickers and 200 customer or- 

ders, Table 4 includes information about the average proportion 

[in %] of the improvement obtained within the local search phases 

according to the neighborhood structure N l ( l ∈ { 1 , . . . , 6 } ). For ex- 

ample, the entry 25.9 ( C = 45 , γ = 0 . 6 , l = 1 ) means that 25.9% of 

the total improvement obtained by the VND can be attributed to 

the local search phases within the first neighborhood structure N 1 . 

The average proportion of the improvement ranges from 9.7% ( N 5 ) 

to 28.3% ( N 2 ). Therefore, it can be concluded that all neighborhood 

structures should be integrated into the algorithm. 

The batch-related neighborhood structure N 1 is responsible for 

24.2% of the total improvement. It can be observed that the im- 

pact of this structure is much higher than the impact of the order- 

related neighborhood structures N 3 –N 6 , whose proportion of the 

improvement amounts to approximately 10%, respectively. This can 

be traced back to the fact that the batch-related neighborhood 

structure is the first structure of the sequence and applied much 

more often than order-related structures. Nevertheless, the impact 

of structures N 3 –N 6 should not be underestimated as improve- 

ments found in the respective local search phases may allow the 

algorithm to further improve the solution by continuing with N 1 

and N 2 . 

The newly proposed neighborhood structure N 2 shows the 

largest proportion (28.3%) of the total improvement, although it 

is sequenced after N 1 . The proportion strongly fluctuates, ranging 

from 2.1% ( C = 45 , γ = 0 . 8 ) to 76.0% ( C = 75 , γ = 0 . 6 ). The reason 

can be found in the generation of the initial solution. As shown in 

the previous subsection, the ESDR-based algorithm leads to good 

solutions for loose due dates which are easy to meet (instances 

with a low MTCR γ or a medium MTCR and a large capacity C ), 

while it is outperformed by the seed algorithm when the due dates 

get tight. A move according to N 2 is defined by breaking up a com- 

plete batch and reassigning the orders to other batches. If the ini- 

tial solution is constructed by means of the seed algorithm, these 

moves will usually not lead to improvements since the orders are 

already grouped into batches in a reasonable manner which also 

takes into account the processing times. This is not true for solu- 

tions generated by applying the ESDR-based algorithm. In this ap- 

proach, batches are constructed considering the due dates of the 

orders only, which is the reason why the impact of N 1 (which sim- 

ply changes the position of batches) is quite small. However, by 

means of moves according to N 2 , the batching can be optimized 

regarding the processing times resulting in massive improvements 

with respect to the tardiness of all orders. 

6.3. Evaluation of the performance of the VND approach 

6.3.1. The VND and an exact approach applied to small and 

medium-sized problem instances 

In order to evaluate the solution quality of the proposed VND 

algorithm, the objective function values of the solutions provided 

by this approach could be compared to the ones of an exact solu- 

tion approach. For this purpose, we generated small ( n ∈ { 10 , 20 } 
orders) and medium-sized ( n = 50 orders) instances with p = 2 or 

p = 5 order pickers. For each problem class, 10 instances have been 

generated and solved by means of the newly-proposed model for- 

mulation. Application of the IP-solver has been terminated after 

7200 seconds. Problematic is the fact that solving the LP-relaxation 

of the model almost always results in a total tardiness equal to 0. 

Also, no other procedures are known for the determination of ad- 

equate lower bounds for the JOBASRP ( Henn, 2015 ). Consequently, 

optimality gaps cannot be obtained. For an evaluation of the per- 

formance of the VND algorithm, we considered instances with 

MTCRs of γ = 0 . 6 and γ = 0 . 8 and compared the respective VND 

solution to the best solution found by the IP-solver (applied to the 

model) within 2 hours of computing time. 

In Table 5 , the average total tardiness per problem instance is 

presented for solutions generated by the IP-solver as well as for 

solutions provided by the VND algorithm. Furthermore, w.r.t. the 

VND algorithm, the average improvement (imp) [in %] of the ob- 

jective function value (tardiness) in comparison to the best ob- 

jective function value obtained by the IP-solver is given. Finally, 

average computing times are depicted for both approaches. The 

results demonstrate that the VND algorithm outperforms the ex- 

act approach by far, both in terms of solution quality and com- 

puting time. What concerns small instances with n = 10 , the ex- 

act approach generated solutions of acceptable quality. In fact, for 

a low MTCR ( γ = 0 . 6 ), three instances have been solved to opti- 

mality (two instances for p = 2 and one instance for p = 5 ). For 

such small problem instances, though, assignment and sequenc- 

ing decisions are rather trivial since the number of batches is not 

larger than the number of pickers. Consequently, the total tardi- 
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Table 5 

Results for the exact approach and for the VND algorithm. 

n p γ Exact approach VND 

time tar time tar imp 

10 2 0.6 5822 9 2 8 8.7 

10 2 0.8 7200 75 3 70 6.7 

10 5 0.6 6600 26 3 23 11.4 

10 5 0.8 7200 77 3 74 4.2 

20 2 0.6 7200 67 8 25 63.3 

20 2 0.8 7200 307 14 220 28.5 

20 5 0.6 7200 63 14 34 45.6 

20 5 0.8 7200 206 12 166 18.9 

50 2 0.6 7200 17,249 31 34 99.7 

50 2 0.8 7200 20,342 98 1167 93.6 

50 5 0.6 7200 6094 33 52 99.0 

50 5 0.8 7200 7161 85 622 90.6 

ness is minimized by assigning at most one order to each picker. 

Nevertheless, even for these small instances, the exact approach 

was outperformed by the VND algorithm. The latter did not only 

manage to find optimal solutions for the three instances which 

have been solved optimally by the exact approach; in addition to 

that it provided solutions with a smaller average total tardiness for 

all four problem classes, where the improvements ranged between 

4.2% and 11.4%. When the number of customer orders is increased, 

it can be observed that the solution quality of the exact algorithm 

drastically deteriorates. For medium-sized instances ( n = 50 ), the 

exact approach produced solutions of inferior quality and applica- 

tion of the VND algorithm led to improvements ranging between 

90.6% ( p = 5 , γ = 0 . 8 ) and 99.7% ( p = 2 , γ = 0 . 6 ). 

We conclude that the discussed exact solution procedure, i.e. 

applying a commercial IP-solver to the respective model formula- 

tion, does by no means represent a competitive or even promising 

approach to the JOBASRP. Even for very small problem instances, 

the exact approach is outperformed by the proposed VND algo- 

rithm. 

6.3.2. Generation of upper bounds for large problem instances 

Since we will not be able to evaluate the solution quality of 

the proposed VND algorithm by comparing the objective function 

values of the provided solutions to the respective optimal objective 

function values or to an adequate lower bound, we will have to 

use upper bounds from the application of heuristic approaches as 

a reference instead. Three approaches will be used for generating 

upper bounds. 

In the first approach, solutions are provided by the ESDR-based 

algorithm in combination with the S-shape routing strategy. The 

ESDR-based algorithm, which has also been used by Henn (2015) , 

is a very straightforward approach to solve the JOBASRP. Solutions 

from this relatively simple approach and the corresponding objec- 

tive function values will be used in order to identify what the ben- 

efits are when turning to a more complex approach (i.e. to our 

VND algorithm). 

In practice, the respective subproblems of the JOBASRP are 

solved in sequence. We, therefore, designed a sequential solution 

approach in which state-of-the-art algorithms have been integrated 

for solving these subproblems. The results from this approach will 

be compared to those from the VND algorithm in order to identify 

the benefits from dealing with the JOBASRP as a holistic problem. 

In the first step of the sequential approach, each order is contained 

in a single batch; the corresponding processing times are deter- 

mined on the basis of the S-shape strategy. Then, the BASP is to be 

solved, which results in an assignment of customer orders to order 

pickers. As mentioned in Section 3 , when each batch includes one 

order only, the BASP is equivalent to the Parallel Machine Schedul- 

ing Problem with the objective of minimizing the total tardiness of 

all orders. We have implemented the solution approach of Biskup, 

Herrmann, and Gupta (2008) here which currently represents the 

state-of-the-art algorithm for this problem ( Ullrich, 2013 ). In the 

second step, given the previously-generated assignment, for each 

order picker, the JOBASP is solved by the iterated local search (ILS) 

algorithm of Henn and Schmid (2013) . The ILS algorithm is termi- 

nated after a certain time limit has been reached. The time limit 

t ILS is chosen in such a way that the computing time of the se- 

quential approach coincides with the time t VND needed for apply- 

ing the VND algorithm. Since solving a single problem instances 

requires for applying the ILS algorithm to the JOBASP of each or- 

der picker, the time limit of the ILS is set to t ILS = t VND /p, where 

p denotes the number of pickers. Finally, in the third step, in order 

to reduce the processing times of the batches, the LKH heuristic is 

applied to each of the routing problems arising from the customer 

orders included in the batches. 

As a third upper bound, we use the initial solution to which 

the VND in combination with the LKH heuristic is applied. This 

bound is chosen in order to evaluate the improvements which are 

obtained by application of the VND algorithm. 

6.3.3. Solution quality of the VND algorithm for large instances 

In Tables 6 and 7 , the average total tardiness (tar) in minutes 

is depicted for the ESDR-based algorithm combined with S-shape 

routing (ESD), the sequential solution approach (SEQ), the initial 

solution after the application of the LKH heuristic (INI) and the 

complete variable neighborhood descent algorithm (VND) for prob- 

lem classes with 100 and 200 orders, respectively. Furthermore, 

the average improvements (imp i ) [in %] are presented compared 

to the total tardiness provided by approach i ( i ∈ {1, 2, 3}) from 

the previous subsection. 

Comparison with the ESDR-based algorithm : When comparing so- 

lutions obtained by the ESDR-based algorithm with VND solutions, 

significant improvements regarding the total tardiness of all cus- 

tomers can be observed. On average, the reduction of the total tar- 

diness ranges from 51.5% (200 orders, 2 pickers, C = 75 , γ = 0 . 6 , 

q = 1 ) to 95.2% (200 orders, 3 pickers, C = 45 , γ = 0 . 7 , q = 2 ). The 

number of pickers does not seem to have a strong impact on the 

amount of improvement as the average reduction is between 69.2% 

and 71.2% for 100 customer orders and ranges from 73.5% to 74.8% 

for 200 orders. However, the impact of the other factors under in- 

vestigation, namely the number of orders, the capacity C of the 

picking device, the MTCR γ as well as the number of blocks q does 

not seem to be negligible. 

The more orders have to be assigned to batches, the larger the 

number of solutions gets since more combinations of orders ex- 

ist which can be grouped into a batch. In the ESDR-based algo- 

rithm, orders are sequentially assigned to batches not taking ad- 

vantage of the larger number of possibilities. In contrast to this, 

the VND considers much more moves according to the neigh- 

borhood structures N 3 to N 6 . Thus, it is not surprising that the 

amount of improvement increases with an increasing number of 

customer orders. An increasing capacity of the picking device leads 

to a reduction with respect to the relative improvement. A larger 

capacity leads to tours containing more pick locations. Since the 

S-shape strategy is known to perform quite well if the num- 

ber of pick locations is large in comparison to the number of 

subaisles ( Roodbergen, 2001 ), the difference between the S-shape 

strategy and the LKH heuristic in terms of solution quality is quite 

small in these cases, resulting in less space for improvement. The 

reverse line of argumentation holds for the impact of an increase 

in the number of blocks as more blocks result in more subaisles, 

leading to a smaller number of pick locations per subaisle. Thus, 
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the solution quality of the S-shape policy deteriorates and the 

amount of the improvement obtained by applying the VND (into 

which two more sophisticated routing algorithms are integrated) 

increases. The MTCR determines how tight the due dates are. A 

larger MTCR leads to tighter due dates which tend to increase the 

total tardiness of solutions to the corresponding problem instance. 

Apart from problem classes with an MTCR γ = 0 . 8 and a capacity 

C = 45 , the amount of improvement increases with an increasing 

MTCR. This can be explained by the fact that the solution quality 

of the ESDR-based algorithm deteriorates when the due dates get 

tighter (see Section 6.2.1 ). If the MTCR is low or medium ( γ ∈ {0.6, 

0.7}), the VND leads to solutions with an average total tardiness of 

up to 1815 minutes (200 orders, 2 pickers, C = 45 , γ = 0 . 7 , q = 3 ), 

i.e. the average tardiness of an order amounts to 9 minutes. For in- 

stances of these problem classes, the VND provides many solutions 

with a total tardiness which is zero or close to zero, resulting in 

improvements of 100% (regardless of the absolute amount of im- 

provement). Thus, conclusions have to be drawn carefully for in- 

stances with a small MTCR. If the MTCR is large ( γ = 0 . 8 ), the av- 

erage total tardiness significantly increases. Finding solutions with 

a low total tardiness gets even harder when the capacity is small 

( C = 45 ) since, the total processing times of the orders increase. 

Therefore, the amount of the relative improvement decreases when 

very difficult instances are considered. Nevertheless, the VND man- 

ages to massively reduce the total tardiness as an absolute im- 

provement of up to 45 , 479 minutes (200 orders, 2 pickers, C = 45 , 

γ = 0 . 8 , q = 3 ) is achieved, which corresponds to a decrease of the 

tardiness by approximately 4 hours per order. 

Comparison with the sequential solution approach: In the VND 

algorithm, neighborhood structures deal with the assignment and 

sequencing problem, and with the batching problem, while routing 

algorithms are integrated for the determination of processing times 

and for the evaluation of solutions. Thus, all three subproblems 

are considered jointly in the VND approach. The resulting holistic 

problem is very complex and difficult to solve. Therefore, we eval- 

uate the benefit from using the integrated approach compared to 

solving the subproblems in sequence by applying a state-of-the-art 

algorithm to each subproblem, which is done in the second ap- 

proach for generating upper bounds. 

The results of the numerical experiments indicate that solving 

the subproblems jointly reduces the total tardiness by 49.2% on 

average across all problem classes. This clearly demonstrates that 

solving these subproblems simultaneously is pivotal for achieving 

high-quality solutions. The number of order pickers available for 

processing customer orders as well as the number of blocks in the 

picking area do not seem to have a large impact on the amount 

of improvement. The impact of the number of customer orders is 

also quite small. For 100 customer orders, the joint solution ap- 

proach is able to decrease the total tardiness by 46.4%, while the 

relative improvement amounts to 52.0% on average for instances 

containing 200 orders. The largest impact on the solution qual- 

ity of the sequential approach can be observed for the MTCR γ
and the capacity C . If the MTRC is quite small ( γ = 0 . 6 ), using the 

joint approach results in a reduction of the total tardiness by up 

to 84.0% (200 orders, 3 pickers, C = 45 , q = 2 ). In this case, due 

dates of most customer orders can be met quite easily. This is 

verified by the VND algorithm which manages to find solutions, 

where the average tardiness of a customer order is less than a 

minute. Such high-quality solutions are rarely obtained when ap- 

plying the sequential approach. This stems from the large objective 

function values of solutions generated at an early stage of the solu- 

tion process. In the first step of the sequential approach, orders are 

assigned to order pickers and the simple S-shape strategy is used 

to determine processing times. The batching and the routing prob- 

lems are not considered by the assignment algorithm at all. It only 

ensures that the sum of the processing times of the orders is fairly 

evenly distributed across all pickers. Consequently, nearly all cus- 

tomer orders get delayed significantly, where the average tardiness 

of an order amounts to more than 140 minutes. Based on the gen- 

erated assignment, the algorithms applied for subsequent batching 

and routing are not capable of providing high-quality solutions to 

the joint problem. With an increasing MTCR, assignment decisions 

get less important as it is not possible to meet the due dates of 

the orders. When orders are tardy anyway, it is more pivotal to 

find good solutions to the batching and routing problems in or- 

der to decrease the processing times. Nevertheless, even for a large 

MTCR ( γ = 0 . 8 ), the VND clearly outperforms the sequential ap- 

proach, reducing the total tardiness by at least 17.8% (100 orders, 

3 pickers, C = 45 , q = 1 ). 

Depending on the MTCR, an increasing capacity has different 

impacts on the amount of improvement. If the MTCR is small 

( γ = 0 . 6 ), increasing the capacity of the picking device implies 

less improvement by the VND. As pointed out before, in case of 

a small MTCR, the sequential approach leads to solutions of very 

poor quality because of bad assignment decisions. However, when 

the capacity of the picking device is large, the subsequent batching 

algorithm has lots of options to improve the solution, making the 

assignment decisions to have less impact on the solution quality. 

For a large MTCR ( γ = 0 . 8 ), the relative improvement obtained by 

the VND increases with an increasing capacity. Whereas the impact 

is almost negligible for a small number of customer orders and or- 

der pickers, the difference gets very large when problems includ- 

ing 200 orders are considered. As mentioned before, finding high- 

quality solutions to the batching and routing problems for reducing 

processing times is pivotal in those instances, while the solution 

space gets quite large with an increasing number of orders and 

capacity of the picking device. Starting from a very poor solution, 

where each order is contained in a single batch, the ILS algorithm 

dealing with the batching subproblem is not able to reach the part 

of the search space containing very promising solutions within a 

small amount of computing time. (Note that the time limit for the 

ILS is smaller than the computing time required for applying the 

VND as the ILS has to be applied to the JOBASP of each picker.) 

Comparison with the initial solution of the VND algorithm: In 

order to investigate the performance of the VND, we also com- 

pare the solutions to the initial solution in combination with the 

LKH heuristic. It can be observed that the VND manages to re- 

duce the total tardiness by between 19.3% (100 orders, 2 pickers, 

C = 45 , γ = 0 . 8 , q = 3 ) and 84.2% (200 orders, 3 pickers, C = 45 , 

γ = 0 . 7 , q = 2 ). On average, across all problem classes, the im- 

provement amounts to 44.2%, which demonstrates that the appli- 

cation of the VND is pivotal for the generation of high-quality so- 

lutions. Three main factors can be identified which have an im- 

pact on the amount of the improvement obtained. First, as ob- 

served in the comparison to the ESDR-based algorithm, a larger 

number of orders allows for more space for improvement. Second, 

the amount of improvement tends to decrease with an increas- 

ing number of blocks. Third, the combination of the MTCR γ and 

the capacity C has a great impact. While the largest improvements 

can be obtained for γ = 0 . 7 and C = 45 , the smallest reductions 

are observed for γ = 0 . 8 and C = 45 . This can be explained by the 

way how the initial solution is generated. The combination γ = 0 . 8 

and C = 45 results in instances with very tight due dates which 

are very difficult to meet. In this case, the seed algorithm leads to 

very good solutions and, therefore, is chosen for the construction 

of initial solutions. Due to the high quality of these solutions, only 

small improvements can be obtained by application of the VND. In 

contrast, the combination γ = 0 . 7 and C = 45 leads to due dates 

not tight enough for the seed algorithm but too tight for the ESDR- 

based algorithm. Thus, the quality of the initial solution is quite 
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Table 8 

Computing time (in seconds) required by the VND algorithm. 

100 orders 200 orders 

C γ q Number of pickers Number of pickers 

2 3 5 2 3 5 

45 0.6 1 77 80 96 222 349 448 

45 0.6 2 52 70 68 164 229 501 

45 0.6 3 48 72 88 256 252 474 

45 0.7 1 293 377 416 1494 2553 3091 

45 0.7 2 198 264 289 1130 2022 2680 

45 0.7 3 160 252 268 1348 2597 3347 

45 0.8 1 342 371 367 2263 2990 3621 

45 0.8 2 216 260 259 1951 2264 2875 

45 0.8 3 204 247 292 1918 2488 3155 

75 0.6 1 122 126 151 231 255 334 

75 0.6 2 46 49 57 101 121 184 

75 0.6 3 50 59 72 106 141 218 

75 0.7 1 184 164 243 406 449 518 

75 0.7 2 72 104 100 185 209 260 

75 0.7 3 85 103 120 209 231 388 

75 0.8 1 545 685 596 2472 3075 3044 

75 0.8 2 276 319 310 1629 1820 1940 

75 0.8 3 338 431 376 1775 2027 2284 

Average 184 224 232 992 1337 1631 

poor and the VND manages to significantly reduce the total tardi- 

ness. 

6.3.4. Considerations regarding computing times 

Apart from the solution quality, the VND is evaluated with re- 

spect to the computing times required. Henn (2015) proposed 

solution approaches to the JOBASP using very simple routing 

strategies and reported computing times of up to 25 minutes for 

problem instances with 200 orders. It can be expected that our 

solution approach requires a higher computational effort as we 

integrated more complex routing algorithms. Furthermore, Henn 

(2015) considered a single-block layout only. Especially when the 

capacity is large and the simple S-shape strategy is used, many 

batches will result in the same tours as all picking aisles will be 

traversed. Due to this characteristic, the problem is reduced to a 

sequencing problem and solution approaches will terminate much 

faster as there is less room for improvement. This is not true for 

our setup since we also consider more complex layouts. Further- 

more, tours constructed by the LKH heuristic are dependent on the 

certain pick locations instead of the subaisles to be visited only as 

it is the case for the S-shape strategy. 

In Table 8 , the average computing time required by the VND 

for solving a problem instance is depicted for all problem classes. 

As can be seen, computing times are dependent on the number of 

customer orders as well as on how difficult the due dates can be 

met. Of course, a larger number of orders significantly increases 

the computing times as it allows for much more possible moves 

regarding the neighborhood structures. For problem classes with 

100 orders, the computing times are not a critical issue as they 

range from 1 to 11 minutes. When 200 orders are considered, 

however, up to 1 hour is required for solving a single instance. 

The largest computing times can be observed for problems with 

a large MTCR ( γ = 0 . 8 ) and a small capacity ( C = 45 ), which can 

be explained by the fact that these instances are characterized by 

very tight due dates. In practical applications, such high comput- 

ing times may be a critical issue, which is why we investigate to 

which extent the solution quality decreases if less computing time 

is spent. Since the largest computing times arise for instances with 

Fig. 7. Development of the solution quality over time. 

200 orders, 5 pickers, C = 45 , γ = 0 . 8 and q = 1 , we depicted the 

development of the solution quality over time for these instances 

in Fig. 7 . 

The VND starts with an initial solution in which the combined 

heuristic is used in order to determine the processing times of the 

batches. The computing time for constructing this solution is neg- 

ligible. Then, the LKH heuristic is applied, significantly reducing 

the processing times and improving the objective function value. 

On average, application of the LKH heuristic to all batches only re- 

quires 12 seconds of computing time for instances from this prob- 

lem class. The remaining improvement is obtained by the moves 

corresponding to the different neighborhood structures. As can be 

seen in Fig. 7 , the largest proportion of the improvement is real- 

ized within the first 30% of the computing time. After investing 

40% of the time, which corresponds to 24 minutes, the total tardi- 

ness is 10% above the tardiness of the best solution found after the 

VND terminates. However, it can be observed that the VND man- 

ages to steadily improve the solution until the end of the solution 

process, i.e. reducing the computing time will definitely result in a 

larger total tardiness. 

If the solution process has to be speeded up, the removal of 

N 6 would be a straightforward way as this neighborhood structure 

requires the highest computational effort. Considering instances 

from the problem class defined above, a removal of N 6 would save 

44.0% of the total computing time, while the average total tar- 

diness would increase by 6.4%. Another possible modification for 

saving computing time consists in the application of other rout- 

ing algorithms. In order to determine the processing times of the 

batches, which is necessary to evaluate a solution, a routing prob- 

lem has to be solved for each batch. This is done by means of 

the combined heuristic which represents a very fast solution ap- 

proach. However, whenever a local optimum has been found, the 

processing times of the batches are improved by applying the LKH 

heuristic. This step consumes a large proportion of the total com- 

puting time required by the VND. Therefore, the impact of inte- 

grating routing algorithms, which are based on more simple im- 

provement strategies (e.g. 2-opt or 3-opt), is evaluated in Table 9 . 

Table 9 depicts the relative average deviation of the total tardi- 

ness ( �tar) [in %] as well as the deviation of the computing time 

( �time) [in %] when applying the 2-opt or 3-opt improvement 

strategies to a local optimum instead of using the LKH heuristic. 

Only problem classes with 200 orders, 5 pickers, an MTCR γ equal 

to 0.8 or with γ = 0 . 8 and a capacity C of 45 are considered here, 

as instances from these classes clearly require the highest amount 

of computing time when being solved by means of the VND algo- 

rithm. As can be seen from the table, the tardiness increases while 

computing times decrease when using more simple improvement 

strategies. On average, over all problem classes under consider- 

ation, the tardiness increases by 15.6% (2-opt) and 5.0% (3-opt), 
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Table 9 

Results for the application of the 2-opt and 3-opt improvement strategies instead of the LKH heuristic. 

C γ q LKH 2-opt 3-opt 

tar time tar �tar time �time tar �tar time �time 

45 0,7 1 433 3091 555 28.1 2153 −30.3 460 6.1 2247 −27.3 

45 0,7 2 505 2680 676 33.8 2068 −22.8 548 8.5 2084 −22.2 

45 0,7 3 1475 3347 1735 17.6 2740 −18.1 1553 5.3 2951 −11.8 

45 0,8 1 6311 3621 6821 8.1 2270 −37.3 6497 2,9 2456 −32.2 

45 0,8 2 7912 2875 8519 7.7 2277 −20.8 8135 2,8 2078 −17.3 

45 0,8 3 9511 3155 10,141 6,6 2536 −19.6 9728 2.3 2624 −16.8 

75 0,8 1 2280 3044 2525 10.7 1618 −46.8 2373 4.1 2140 −29.7 

75 0,8 2 2913 1840 3368 15.6 1225 −33.4 3114 6.9 1541 −16.2 

75 0,8 3 3922 2284 4382 11.7 1783 −21.9 4161 6.1 1934 −15.3 

Average 3918 2882 4302 15.6 2075 −27.9 4063 5.0 2228 −21.0 

whereas the average computing time is reduced by 27.9% (2-opt) 

and 21.0% (3-opt). Thus, the results indicate that using more sim- 

ple improvement strategies is a valid option if computing times 

are a critical issue. This holds for the 3-opt improvement strat- 

egy in particular. Whereas the integration of the 2-opt strategy 

leads to an increase of the total tardiness by up to 33.8% ( C = 45 , 

γ = 0 . 7 , q = 2 ), using 3-opt results in an acceptable solution qual- 

ity in all problem classes. Considering the problem class where 

solving instances by means of the original VND algorithm con- 

sumes the largest amount of computing time ( C = 45 , γ = 0 . 8 , 

q = 1 ), applying 3-opt instead of the LKH heuristic reduces the av- 

erage computing time by 32.2%, while increasing the average total 

tardiness by 2.9% only. Thus, we conclude that the VND can be ad- 

justed, if necessary, in such a way that solutions with a reasonable 

quality can be found within an acceptable amount of computing 

time. 

7. Conclusion 

In this paper, we considered the Joint Order Batching, Assign- 

ment and Sequencing, and Routing Problem which is rarely ad- 

dressed in the literature, although it is pivotal for an efficient or- 

ganization of manual order picking systems. We proposed a new 

mathematical model formulation. In contrast to existing formula- 

tions, the size of the model increases polynomially with the num- 

ber of customer orders, which allows for solving small instances 

within a reasonable amount of computing time. Furthermore, we 

designed a variable neighborhood descent approach which is able 

to deal with very large problems. In order to reach the local opti- 

mum quite fast and speed up the solution process, a new heuristic 

for the construction of an initial solution is developed which out- 

performs the earliest start date rule-based algorithm by far when 

due dates are very tight. 

By means of numerical experiments, the solution quality of the 

variable neighborhood descent algorithm is evaluated. First, the 

initial solution is compared to solutions obtained by applying the 

earliest start date rule-based algorithm, which represents a com- 

mon approach to generate a solution and was also used by Henn 

(2015) . It is demonstrated that our initial solution leads to a re- 

duction of the total tardiness by up to 63%. In a second step, we 

show that all neighborhood structures are important in order to 

obtain high-quality solutions. The largest proportion of the total 

improvement is achieved by moves regarding a newly designed 

neighborhood structure which breaks up complete batches and re- 

assigns the orders to other batches. Finally, several approaches for 

generating upper bounds are used in order to evaluate the quality 

of solutions provided by the variable neighborhood descent algo- 

rithm. Combining the earliest start date rule-based algorithm with 

the simple S-shape strategy represents a very straightforward way 

to solve the problem. However, it is pointed out that the solution 

quality of this approach is very poor as the variable neighborhood 

descent manages to improve the objective function value of these 

solutions by up to 95%, which means a massive reduction of the 

total tardiness. Another upper bound is obtained by decomposing 

the Joint Order Batching, Assignment and Sequencing, and Rout- 

ing Problem into its subproblems and sequentially solving them 

by means of state-of-the-art algorithms. Thus, this upper bound 

represents the total tardiness which results from considering the 

subproblems separately as done in the literature so far. Compared 

to this sequential solution approach, applying the variable neigh- 

borhood descent algorithm reduces the total tardiness of all cus- 

tomer orders by up to 84%, which demonstrates that dealing with 

the Joint Order Batching, Assignment and Sequencing, and Routing 

Problem as a holistic problem is inevitable for an efficient organi- 

zation of warehouse operations. 

We dealt with the Joint Order Batching, Assignment and Se- 

quencing, and Routing Problem in warehouses with wide aisles 

which allow order pickers to overtake each other. Further research 

could concentrate on picker blocking aspects arising in narrow- 

aisle warehouses, where subaisles may be blocked when two pick- 

ers are moving in opposite directions or traffic jams may occur 

when several pickers have to visit the same storage location at 

the same time. When taking blocking aspects into account, tours 

of different pickers cannot be independently determined anymore, 

making the problem much more difficult to deal with. From a prac- 

tical point of view, the on-line variant of the Joint Order Batching, 

Assignment and Sequencing, and Routing Problem would also be a 

very interesting topic as customer orders arrive during the day and 

are not known in advance, which requires for very fast solution 

approaches in order to be able to recalculate each time a certain 

number of new orders has arrived. 
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Abstract

Supermarkets typically order their goods from a centrally located distribution center (warehouse). Each
order that the warehouse receives is characterized by the requested items, the location of the respective
supermarket and a due date by which the items have to be delivered. For processing an order, a human
operator (order picker) retrieves the requested items from their storage locations in the warehouse first.
The items are then available for shipment and loaded on the vehicle which performs the tour including
the respective location of the supermarket. Whether and to which extent a due date is violated (tardiness)
depends on the composition of the tours, the corresponding routes and the start dates of the tours (vehicle
routing subproblem). The start date of a tour, however, is also affected by the assignment of orders to
pickers and the sequence according to which the orders are processed by the pickers (order picking
subproblem). Although both subproblems are closely interconnected, they have not been considered
simultaneously in the literature so far. In this paper, an iterated local search algorithm is designed for
the simultaneous solution of the subproblems. By means of extensive numerical experiments, it is shown
that the proposed approach is able to generate high-quality solutions even for large instances. Furthermore,
the economic benefits of an integrated solution are investigated. Problem classes are identified, where the
sequential solution of the subproblems leads to acceptable results, and it is pointed out in which cases an
integrated solution is inevitable.
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2 Integrated Order Picking and Vehicle Routing with Due Dates

1 Introduction
Supermarkets are typically supplied once per workday (DVZ, 2013) from a centrally located distribution
center (warehouse) with perishable goods. When the warehouse has received a certain number of orders
from the supermarkets, the orders are assigned to human operators (order pickers) who retrieve the
respective items from their storage locations. Each order picker processes the orders one by one in a
particular sequence. All items belonging to an order are grouped together on transport devices like pallets
or boxes and then, together with the items from other orders, loaded on vehicles (trucks) which deliver
the goods to the respective supermarkets. This gives rise to a vehicle routing problem, namely how the
items of the various orders are to be assigned to vehicles and in which sequence the supermarkets are to
be visited on each tour. The solution to the vehicle routing problem determines the actual delivery dates,
i.e. the points in time when each supermarket is being served. However, a vehicle can only leave from
the warehouse and the respective tour can only be started when the items of all orders allocated to the
tour have been retrieved completely. Thus, the actual delivery dates are also affected by the assignment
of orders to order pickers and the sequence in which the orders are processed.

In practice, distribution centers and supermarkets have agreed on deadlines by which the ordered items
have to be delivered. For supermarkets, complying with such deadlines is of uttermost importance as
only very limited safety stocks exist and empty shelves will result in clients satisfying their demands
at competitor outlets. For the distribution centers, a violation of the deadlines will, therefore, result in
– often heavy – fines or even in the loss of customers if the deadlines are violated more permanently.
However, due to short response times which have also been agreed between distribution centers and
supermarkets, deadlines are often difficult tomeet. Thus, deadlines will not only have to be considered for
the determination of vehicle tours but also for the assignment of orders to order pickers and the scheduling
of the orders. Consequently, dispatchers of the picking and shipping processes in warehouses are
confronted with a complex decision problem. Given a set of orders from supermarkets and corresponding
deadlines, it has to be decided (1) how these orders have to be assigned to order pickers, (2) how the
orders assigned to each order picker have to be sequenced, (3) how the orders have to be allocated
to vehicles, and (4) in which sequence the supermarkets should be visited by each vehicle such that
the violation of the deadlines is minimized. We will refer to this problem as the order assignment and
sequencing, and vehicle routing problem (OASVRP).

So far, both in literature and in practice of warehouse management and control, the OASVRP has not
been dealt with holistically. Instead, the order assignment and the order sequencing problem on the one
hand and the vehicle routing problem, on the other hand, are treated and solved separately (Schmid et
al., 2013). With respect to the previously sketched interdependencies between these problems, it can be
expected, though, that an integrative solution approach to the OASVRP can provide a significant source
of the reduction of costs and improved customer service by allowing for an improved compliance with
given delivery deadlines. Our goal, therefore, is twofold: First, we intend to present a solution approach
to the OASVRP which provides high-quality solutions within an acceptable amount of computing time.
Since the above-mentioned subproblems are NP-hard already, we concentrate on a heuristic solution
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approach. In particular, an iterated local search algorithm is proposed. This type of metaheuristic is
chosen since it has already been proven to provide excellent results for other challenging optimization
problems in warehousemanagement. Second, bymeans of this algorithm, wewill analyze whether, under
which conditions, and to what extent benefits arise from dealing with the OASVRP holistically.

Special attention will be given to the fact that in practice large problem instances have to be solved.
For instance, the EDEKA group Minden-Hannover, a large cooperative of independent supermarkets in
Germany, serves 1513 supermarkets from nine warehouses (EDEKA, 2017), i.e. each warehouse has to
provide goods for more than 150 customers on average.

The remainder of the paper is organized as follows: In Section 2, the OASVRP will be stated in greater
detail. The related literature will be reviewed in Section 3. Section 4 comprises the presentation of the
proposed iterated local search approach, where the generation of an initial solution, the structure of the
neighborhoods used within the improvement phase and the design of the perturbation phase will be
described in particular. Section 5 is devoted to the numerical experiments which have been carried out
in order to evaluate the performance of the proposed algorithm but also in order to identify the benefits
resulting from a holistic approach to the OASVRP. The paper concludes with a summary and an outlook
on further research (Section 6).

2 Problem description
The order assignment and sequencing, and vehicle routing problem (OASVRP), which will be described
in this section, deals with picking requested items from awarehouse and delivering them to the respective
customers. Let a set of orders be given, each of which specifying certain items and the corresponding
demands from a particular customer. Furthermore, each order has been assigned a deadline (due date)
according to which the items have to be received by the customer. The items of each order have to
be shipped as a unit, split deliveries are not permitted. In order to make a customer order available for
shipping, the requested items have to be collected from the warehouse. Each customer order is processed
separately, i.e. it may not be merged (batched) with other customer orders.

Human operators (order pickers) walk or ride through the warehouse, retrieving the items from known
storage locations. Picking is performed on (picker) tours through the warehouse, i.e. each order picker
starts from the depot, visits the locations of the items to be collected and, afterwards, returns to the depot
where he/she deposits the collected items. The distance which has to be covered for collecting all items
of an order and, correspondingly, the time, which is required to do so, is dependent on the sequence
according to which the order picker visits the locations. The determination of the sequence is part of
the picker routing problem. Thus, a solution to the picker routing problem, e.g. obtained by application
of so-called routing strategies (Roodbergen, 2001), gives the processing time of an order, i.e. the time
which passes from the moment the order picker leaves the depot until the moment he/she returns to the
depot. As customer orders are processed separately, the processing times can be computed in advance
and assumed to be given.
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The number of order pickers is limited. Thus, each order picker will have to process several orders in
sequence. When all items of an order have been collected and forwarded to the depot by a picker, the
order is considered as finalized and available for shipping. The point in time when an order is finalized
will be denoted as the release date of an order. It is determined by its processing time and the sum of the
processing times of the orders which have been processed before by the respective order picker. In other
words, the release date of an order is dependent on how the orders are assigned to order pickers and how
they are scheduled.

A fleet of homogeneous vehicles is based at the warehouse. The vehicles perform tours from the
warehouse to the customer locations and back onwhich the requested items are delivered to the customers.
Thus, for each vehicle tour, it has to be decided which customers should be served and in which sequence
they should be visited. Each tour is started by loading an available vehicle with the items requested by
the customers assigned to the respective tour. Only items from orders finalized for shipping may be
loaded, and all items of an order must be loaded completely on the same vehicle. The customer locations
are visited one after another and the respective requested items are unloaded. Service times have to be
taken into account for the loading operations at the warehouse as well as for the unloading operations at
the customer locations. The length of a tour (i.e. its duration) can then be defined as the sum of all service
times required at the warehouse and at the customer locations visited, plus the travel times needed by the
vehicle for moving from the warehouse to the first customer location, between the customer locations,
and from the last customer location back to the warehouse. It is limited by a driving time constraint
(Prescott-Gagnon et al., 2010). The point in time when a vehicle returns to the warehouse after having
visited all customers of a tour will be denoted as the completion date of this tour.

Loading of a vehicle for a particular tour could be started as soon as picking of all orders which have
been assigned to the tour has been finalized. However, the number of vehicles is limited, and vehicles
may have to perform multiple tours. Loading of the orders for a particular tour, thus, may have to wait
until the vehicle has returned from a previous tour. The start date of a tour is correspondingly defined as
the maximum of the release dates of all orders assigned to the tour and the completion date of the tour
previously performed by the vehicle.

Each customer order is characterized by a certain due date, which has been agreed on by the warehouse
and the customer. The point in time when the requested items of a customer order are actually unloaded
at the customer location will be named the delivery date of the order. An order which has not been
received by the customer by the due date results in customer dissatisfaction, fines or even in the loss of
the customer if such delays happen to occur over a longer period of time. Complying with agreed due
dates, therefore, is of uttermost importance to the economic success of distribution warehouses and will
provide the core criterion for the evaluation of how the warehouse manages to process customer orders.
Since the consequences of delayed deliveries are often dependent on the length of the delays, we will
refer to the total tardiness of all customer orders here (also see, e.g., Ullrich (2013) who have used the
total tardiness as an evaluation criterion in similar problem settings). In case that the due date of an order
is not met, its tardiness equals the difference between the delivery date and the due date. If the order is
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delivered in time, the tardiness of the order amounts to zero. Then, the total tardiness of a set of customer
orders equals the sum of the tardiness of all orders in the set.

The OASVRP can now be stated. Let the following be given:

• a set of customers and their locations, a limited number of order pickers, and a homogeneous fleet
of vehicles,

• a set of customer orders with agreed due dates and (picking) processing times,

• travel times between the customer locations and between the warehouse and the customer locations,

• a limit on the tour length,

• a service time required for loading the vehicles at the warehouse and a service time required for
unloading the vehicles at the customer locations.

The following six questions have then to be answered (simultaneously) such that the total tardiness of
all customer orders is minimized and the given limit on the tour length is not exceeded:

1) For each customer order, to which order picker should it be assigned?

2) For each order picker, in which sequence should the assigned customer orders be processed?

3) For each customer location, to which tour should it be assigned?

4) For each tour, in which sequence should the assigned customer locations be visited?

5) For each tour, to which vehicle should the tour be assigned?

6) For each vehicle, in which sequence should the tours assigned to the vehicle be processed?

Fig. 1 illustrates a solution of an instance of the OASVRP with nine customer orders, two pickers and
two vehicles. Fig. 1a depicts the temporal aspects by means of a Gantt chart; it further demonstrates
the assignment of customer orders to order pickers and the sequence according to which orders are
processed, as well as the assignment of tours to vehicles and the sequence according to which the tours
are performed. Picker #1 processes customer order #1 first, then continues with order #2, order #3 and
order #5. Correspondingly, picker #2 starts with processing customer order #6, followed by orders #7, #4,
#8, and #9. The (picking) processing time of each order is represented by the length of the corresponding
rectangle. The right end of each rectangle provides the release date of the corresponding order.

Four tours have been built for delivering the requested items to the customers. Fig. 1b provides a graph
of the corresponding routes. From Fig. 1a it can be taken that each vehicle executes two tours. E.g.,
vehicle #1 visits customer #1 first and then proceeds to customer #2 on a first tour; on a second tour
customers #9 and #3 are visited. The length of each rectangle represents the time which is needed by
the vehicle for traveling from the warehouse or a previous customer to the respective customer location
plus the service time for unloading the vehicle at the customer location. The rectangle at the beginning
of each tour indicates the service time for loading the vehicle at the warehouse, while a rectangle labeled
with 0 represents a trip of the vehicle from the last customer of the tour back to the warehouse.
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Fig. 1a also demonstrates that a tour cannot be started before all corresponding orders have been finalized
at the warehouse. E.g., loading of vehicle #1 for the first tour (1, 2) starts as soon as picking of customer
orders #1 and #2 has been completed. After having visited customer #2, vehicle #1 returns to the
warehouse where it remains idle until picking of the last order of its second tour has been finalized.
Loading of vehicle #1 for the second tour (9, 3) commences when order #9 has been provided. The first
tour (7, 8, 6) of vehicle #2 cannot be started before picking of the last order (order #8) has been finalized.
While this tour is being carried out, picking of all orders of the second tour (4, 5) is completed. Thus,
loading of vehicle #2 can immediately be started upon its return to the warehouse from the first tour.

Fig. 1: Example solution

We note that the OASVRP is actually composed of two subproblems, namely an order assignment and
sequencing problem (OASP), where customer orders have to be assigned to order pickers and sequences
have to be determined in which the orders should be processed, and a vehicle routing problem (VRP),
where the vehicles may performmultiple tours and release dates and due dates have to be considered. The
interface between these two problems is provided by the release dates of the orders on the one hand and
the start dates of the tours on the other hand. Before we introduce a solution approach to the OASVRP,
we will review the literature related to the two subproblems and the OASVRP.

3 Literature review

3.1 Order assignment and sequencing problem

If we assume that customers are served individually and not on a tour together with other customers, then
the time that it takes to transport the requested items from the depot to a customer is fixed and the latest
release date of each customer order could be computed from the given due dates. This gives rise to the
order assignment and sequencing problem which can be stated as follows: Let a set of customer orders
with (latest) release dates and processing times, and a limited number of order pickers be given. How
should the customer orders be assigned to the order pickers and in which sequence should the assigned
customer orders be processed by each order picker such that the total tardiness of all orders is minimized?

To the best of our knowledge, the OASP has not been addressed in the context of order picking so far.
However, the OASP is equivalent to the Identical Parallel Machine Problem (IPMP) from scheduling
(Pinedo, 2016), where the customer orders are processed by machines instead of order pickers.

The IPMP is known to be NP-hard (Pinedo, 2016) and only a few exact solution approaches are available.
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The first exact approach, a dynamic programming-based algorithm, was introduced by Gupta &Maykut
(1973). Branch and bound algorithms were proposed by Azizoglu &Kirca (1998), Yalaoui & Chu (2002)
and Shim & Kim (2007) which managed to solve problems with up to 15 customer orders and three
machines, 20 customer orders and twomachines, and 30 customer orders and five machines, respectively.

Due to the fact that exact algorithms can only deal with small-sized problems, heuristic approaches have
been developed for solving problems of practical size. In particular, priority rule-based algorithms (Ho
& Chang, 1991) have been introduced, where customer orders are sorted first according to a priority
rule and then assigned one by one to the next available machine. The priority of a customer order can
be dependent on its due date, on its processing time and/or on the ratio between the average processing
time and the average due date. Alidaee & Rosa (1997) extended the modified-due-date (MDD) rule for
the single machine problem proposed by Baker & Bertrand (1982). The MDD rule combines elements
of the earliest-due-date (EDD) rule, where priority values of orders increase with a decreasing due date,
and the shortest-processing-time rule, according to which higher priorities are assigned to orders with
shorter processing times. Other approaches than priority-rule-based algorithms have been proposed by
Koulamas (1997), who designed a decomposition approach as well as a hybrid simulated annealing
algorithm. According to Ullrich (2013), the current state-of-the-art heuristic has been developed by
Biskup et al. (2008). In this approach, customer orders are first sorted according to the EDD rule. Several
incomplete initial solutions are then generated, where each initial solution is iteratively completed. In
each iteration, exactly one non-assigned customer order is inserted into the partial solution. For each
machine, one customer order is selected according to the MDD rule, resulting in a set of potentially
assignable customer orders. One customer order from this set is then selected and optimally inserted into
the partial solution.

3.2 Vehicle routing problems with multiple use of vehicles, release dates
and due dates

The second subproblem of the OASVRP deals with the determination of routes for the vehicles which
are used for delivering the requested items to the customers after finalized orders have been provided at
the warehouse. It represents a variant of the classic vehicle routing problem where each customer order
is characterized by a release date, i.e. a point in time when it becomes available for shipment at the depot,
and a due date, i.e. the point in time by which it should have been received at the customer location. A
set of homogeneous vehicles is available for transporting the requested items to the customers. Several
customer locations may be visited on each tour and the vehicles may be used for multiple tours; however,
the length of each tour is limited.

A VRP with multiple use of vehicles and a tour length constraint has been introduced by Fleischmann
(1990). He extended the classic capacitated vehicle routing problem and designed a savings based
heuristic. Taillard et al. (1996) and Brandão & Mercer (1997) proposed tabu search algorithms in order
to solve the VRP with multiple use of vehicles. A constructive heuristic has been introduced by Petch &
Salhi (2004), and Olivera & Viera (2007) suggested an extended tabu search approach to this problem.
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For the VRP with hard time windows and multiple use of one vehicle, Azi et al. (2007) proposed an
exact algorithm. Azi et al. (2010) extended this work to the case of multiple vehicles. They suggested
a branch-and-price algorithm that is able to solve instances with up to 50 customers. More recently,
Azi et al. (2014) designed an adaptive large neighborhood search algorithm for the heuristic solution of
large-sized instances.

A VRP with release dates has been considered by Cattaruzza et al. (2016). They designed a genetic
algorithm for the vehicle routing problem with hard time windows and release dates.

Due dates can be considered as a special case of time windows in which the lower bound is sufficiently
small and the upper bound of the time window is a soft constraint. Taillard et al. (1997) suggested a tabu
search algorithm for a VRP with a hard constraint regarding the lower bound and a soft constraint with
respect to the upper bound of the time window. For the VRP with soft time windows, Chiang & Russell
(2004) and Fu et al. (2008) designed tabu search algorithms. Liberatore et al. (2011) also considered the
VRP with soft time windows and developed a branch-and-price algorithm.

3.3 Integrated scheduling and vehicle routing problems

As mentioned before, the OASP is equivalent to the IPMP. This scheduling problem has also been
considered in conjunction with distribution problems which involve routing decisions. Table 1 provides
an overview of publications related to such integrated scheduling and vehicle routing problems (ISVRP).
(We refer to Chen (2010) for a very detailed review.) The second column of the table depicts the number
of machines considered in the scheduling subproblem. The third, fourth and fifth column refer to
the routing subproblem. The third column provides the number of available vehicles, while the entry
“infinite” indicates that a sufficiently large number of vehicles has been assumed. The fourth column
indicates whether each vehicle may only perform a single tour or whether it can be used for multiple
tours, while the fifth column informs whether a limit on the length of each tour has been considered.

Table 1: Integrated scheduling and vehicle routing problems

reference # machines # vehicles use of vehicles tour length

Hurter & Van Buer (1996) single infinite single unlimited
Van Buer et al. (1999) single intinite multiple limited
Chen & Vairaktarakis (2005) multiple infinite single unlimited
Li et al. (2005) single single multiple unlimited
Low et al. (2013) single multiple single unlimited
Low et al. (2014) single infinite single unlimited
Li et al. (2016) single infinite single unlimited
Ullrich (2013) multiple multiple multiple unlimited

this paper (OASVRP) multiple multiple multiple limited

Hurter &Van Buer (1996) were the first who considered an ISVRP (Gao et al., 2015). They investigated a
newspaper production and distribution problem. Different types of newspapers have to be delivered from
a distribution center to drop-off points. All drop-off points have to be served by an identical deadline.
The delivery of the newspapers is performed on tours by a fleet of homogeneous vehicles, but only one
type of newspapers can be included in a single tour. Van Buer et al. (1999) extended this problem by
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allowing multiple tours per vehicle and multiple types of newspapers per tour. Chen & Vairaktarakis
(2005) studied several variants of the ISVRP with an unrestricted number of homogeneous vehicles.
Each vehicle is allowed to perform at most one tour and can visit a restricted number of locations per
tour. In the production subproblem, both a single machine and multiple machines are assumed. Li et
al. (2005) considered an ISVRP, where all customer orders are processed by a single machine. A single
vehicle is available which may perform multiple tours. Low et al. (2013) investigated an ISVRP which
integrates a scheduling problem with one machine and a VRP with hard time windows. This problem
was extended by Low et al. (2014) who took a fleet of heterogeneous vehicles into account. Moreover,
instead of hard time windows, soft time windows were assumed. The work of Li et al. (2016) combines
a scheduling problem including a single machine with routing decisions including an unlimited number
of homogeneous vehicles. In Ullrich (2013), multiple machines are used in the production process and
a limited number of heterogeneous vehicles is used for the delivery of customer orders. For machines
and vehicles, ready dates are given, i.e. the corresponding machine or vehicle must not necessarily be
available at the beginning of the planning horizon.

As can be seen fromTable 1, the problem considered byUllrich (2013) resembles theOASVRP dealt with
in this paper, except for the limitation of the tour lengths. The author proposed a genetic algorithm and
investigated the benefits from an integrated solution of the scheduling and routing problems. However,
the performance of the algorithm deteriorates drastically with an increasing number of customer orders.
E.g., for instances with 70 orders, the quality of solutions provided by the genetic algorithm is hardly
superior to the quality of solutions generated by a simple construction procedure (Ullrich, 2013, p. 163).

Apart from incorporating the tour length limitation, we will, therefore, pay particular attention to the
development of an algorithm for the OASVRP which is capable of providing high-quality solutions to
practical-sized problem instances in reasonable computing times. The algorithm, based on an iterated
local search approach, will be presented in the next section.

4 Iterated local search approach

4.1 General principle

Iterated local search (ILS) has successfully been adapted to many kinds of optimization problems. It
can be considered as the state-of-the-art algorithm for operations research problems, among others for
various types of vehicle routing problems (Vidal et al., 2013), for single machine (Grosso et al., 2004;
Congram et al., 2002) and identical parallel machine scheduling problems (Brucker et al., 1996, 1997)
as well as for the order batching and sequencing problem (Henn & Schmid, 2013).

The general principle of ILS can be described as follows (Lourenço et al., 2010): Starting with an initial
solution σini, an improvement phase is executed in order to determine a local optimum, resulting in
the first incumbent solution σinc and, at the same time, the best solution σ∗ found so far. Perturbation
and improvement phases are then alternately performed until a termination condition is met. In the
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perturbation phase, the incumbent solution σinc is randomly modified in order to avoid the ILS getting
stuck in a local optimum. Based on the modified solution, a (new) local optimum is determined by
means of the improvement phase. If the resulting solution represents a new best solution, then the best
solution σ∗ as well as the incumbent solution σinc are updated. Otherwise, σ∗ remains unchanged and
σinc is only altered if an acceptance condition is met. Depending on the acceptance condition, it may
be possible to accept a solution with a worse objective function value than the incumbent solution. A
pseudocode of the ILS approach is depicted below.

Algorithm 1 General principle of iterated local search

Input: problem data

Output: solution σ∗ to the OASVRP and corresponding total tardiness f (σ∗)

generation of an initial solution σini

σinc := improvement(σini)

σbest := σinc

while termination condition is not met do
σ̃ := perturbation(σinc)

σ∗ := improvement(σ̃)

if f(σ∗) < f(σbest) then
σbest := σ∗

end if
σinc := acceptance condition(σ∗, σinc)

end while

4.2 Initial solution

For the generation of an initial solution, the OASVRP is divided into its two subproblems, which are
then solved sequentially. First, a solution to the VRP is constructed. Tours and corresponding routes
are generated by adapting the EDD rule originally designed for the IPMP (Baker & Bertrand, 1981).
According to this rule, all customer orders are sorted in a non-descending order of the due dates. Then,
in this sequence, the orders are assigned to the vehicle which currently possesses the shortest total travel
time. More precisely, a customer order is assigned to the last position of the currently last route of the
vehicle chosen. A new tour is opened each time the maximum tour length would be exceeded. In order
to provide a feasible solution to the VRP, order release dates have to be taken into account. Regarding
the OASVRP, the release date of an order is defined by the point in time when the order is finalized
for shipment at the warehouse, which is not known at this stage of the algorithm. Therefore, release
dates are estimated by assuming that the number of order pickers is identical to the number of vehicles
and each order picker processes all orders assigned to a certain vehicle in the sequence provided by the
above-described modification of the EDD rule. Based on the estimated release dates, the start date of
each tour is determined. The estimated release dates are taken as (planned) start dates of the tours.

The solution of the VRP is then taken as input for the solution of the OASP which determines the release
dates of the orders. Regarding the OASVRP, picking of an order has to be finalized before the start date
of the tour in which it is included. In the context of the resulting OASP, the tardiness of an order is then
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defined as the non-negative difference between the (planned) start date of the corresponding tour and
the release date of the order. As mentioned in Section 3.1, the OASP is equivalent to the IPMP. Thus, in
order to solve this problem, the approach of Biskup et al. (2008) is applied.

If the approach of Biskup et al. (2008) leads to a solution with a total tardiness equal to 0, combining this
solution with the solution to the VRP results in a feasible solution to the OASVRP as well. Otherwise,
a tour including orders for which picking is completed after the (planned) start date of the tour has
to be postponed and the start dates of the respective tour and the subsequent tours are corrected
correspondingly. After having obtained a feasible solution, start dates may be updated in order to
ensure that each tour starts as early as possible.

4.3 Improvement phase

As has been explained in Section 2, solving the OASVRP involves six different types of decisions which
have to be taken simultaneously. Since a simple local search procedure will not be able to deal with
all aspects of the problem, a more complex improvement procedure will be used. In fact, a variable
neighborhood descent (VND) algorithm has been designed in order to tackle all decision types.

VND was first introduced in Hansen & Mladenovic (2001). In this approach, the solution space is
explored using a sequence of neighborhood structures N1, . . ., NL. Starting with a solution σ, a local
optimum regarding the first neighborhood structure N1 is determined. If the resulting solution provides
a better objective function value than the best solution found so far, this solution becomes the new
best solution and N1 is explored again. Otherwise, the algorithm continues with exploring the next
neighborhood structure. Each time a local optimum represents a new best solution, the algorithm
continues with N1. The VND approach terminates when no improvement has been found in the last
neighborhood structure NL. In this case, the best solution σ∗ is a local optimum with respect to all
neighborhood structures.

The improvement phase of the ILS approach presented in this paper consists of two VND algorithms,
dealing with decisions related to the VRP (VND_VRP) and the OASP (VND_OASP), respectively. A
pseudocode of the improvement phase is given in Algorithm 2.

Algorithm 2 Improvement phase

Input: problem data, solution σ with objective function value f(σ)

Output: local optimum σ∗, f(σ∗)

do
σ∗ := σ

σ := VND_VRP (σ)

σ := VND_OASP (σ)

while f(σ) < f(σ∗)

EachVND algorithm deals with one subproblem only. This approach is chosen because of the structure of
the OASVRP. Decisions regarding the VRP only affect this subproblem.Moves related to these decisions
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can be performed quite easily. In contrast to that, any changes regarding the OASP have an impact on the
release dates of the orders and, therefore, such moves will also affect the start dates of the tours. Since
moves regarding the OASP affect both subproblems, their execution is much more time-consuming. As
a consequence, a VND approach is first applied to the VRP and modifications to solutions of the OASP
are not carried out before a local optimum regarding the VRP has been found.

In the VND algorithm for the VRP, four neighborhood structures N VRP
1 , . . ., N VRP

4 are contained:

N VRP
1 : a consecutive sequence of orders is moved to another position of the same tour;

N VRP
2 : two tours assigned to different vehicles are exchanged;

N VRP
3 : a consecutive sequence of orders is moved to a tour assigned to another vehicle;

N VRP
4 : a consecutive sequence of up to two orders is removed from a tour and it is assigned to the same

vehicle building a new tour.

The impact of moves performed in the VND_VRP procedure is exemplified for the neighborhood
structure N VRP

4 (see Fig. 2). Regarding N VRP
4 , a neighbor solution is constructed by first choosing a tour

assigned to a certain vehicle. A consecutive sequence of orders is then removed from the tour, i.e. the
tour is divided into two subsets. The first subset contains all orders which are still included in the tour.
No further changes will be performed to this tour. The second subset consisting of the removed orders
will form a new tour and will be assigned to another position of the same vehicle. The position is chosen
in such a way that the total tardiness is minimized.

Fig. 2: Example of a move regarding neighborhood structure NVRP
4

In the example depicted in Fig. 2, a possible move regarding N VRP
4 is performed. The orders #7 and #8

are removed from the tour (7, 8, 6) originally assigned to vehicle #2. The remaining tour only contains
order #6 and can now start much earlier as order #6 is processed by an order picker at the very beginning
of the planning horizon. The new tour (7, 8) is inserted as the second one for vehicle #2 and can be
started after order #8 has been provided. As can be seen from Fig. 2, the start date of this tour is identical
to the start date of the tour (7, 8, 6) in the solution before the transformation. Obviously, the length of
the tour (7, 8) is shorter than the length of the tour (7, 8, 6). Therefore, the subsequent tour (4, 5) can be
started earlier now, resulting in earlier delivery dates for both orders.

The moves included in the VND_VRP procedure affect the tours assigned to one (N VRP
1 and N VRP

4 )
or two (N VRP

2 and N VRP
3 ) vehicles. Tours assigned to other vehicles will remain unchanged, but also

decisions related to the OASPwill not be affected. As mentioned before, moves changing the assignment
of customer orders to order pickers or the sequence according to which customer orders are processed by
an order picker are much more complex. Therefore, the VND_OASP procedure includes the following
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two neighborhood structures only:

N OASP
1 : an order is moved to another position of the same picker;

N OASP
2 : two orders assigned to different pickers are exchanged.

In Fig. 3, an example of amove regardingN OASP
2 is depicted, where the assignment to the order pickers is

exchanged for orders #1 and #8. The release date of order #1 increases, resulting in a later start date of the
corresponding tour. The start date of the following tour (9, 3) is now determined by the completion date
of the tour (1, 2) instead of the release date of order #9. Consequently, the tour (9, 3) is also postponed.
Regarding vehicle #2, it can be seen that the start dates of the tours significantly decrease due to the
exchange of orders #1 and #8 because the release date of order #8 decreases.

Fig. 3: Example of a move regarding neighborhood structure NOASP
2

4.4 Perturbation phase

After a local optimum has been identified in the improvement phase, the solution is randomly modified
in the perturbation phase. The design of the perturbation phase is pivotal for the performance of an ILS
approach. If the modifications are too small, a further application of the improvement phase will result
in the same local optimum. If too many changes are applied to the local optimum, the promising part
of the solution space is left and the ILS algorithm turns into an improvement procedure with multiple
random starts (Lourenço et al., 2010).

For the perturbation phase, we decided to use moves related to the OASP, as their impact on the solution
is expected to be larger than that of VRPmoves (see the previous subsection). Amove in the perturbation
phase is defined by the exchange of two sequences of consecutive customer orders which are assigned
to different order pickers (see Fig. 4). The lengths of the two sequences are chosen randomly and may
be different from each other. The maximum length of a sequence determines the degree of modification
performed in the perturbation phase.

Fig. 4: Example of a move in the perturbation phase
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In Fig. 4, three consecutive orders assigned to picker #1 are exchanged with two orders processed by
picker #2. Consequently, the release dates change for all of the five orders. This affects the start date of all
tours. Regarding vehicle #1, the first tour is postponed because of the increased release date of order #2.
Nevertheless, the subsequent tour (9, 3) is started earlier now. For vehicle #2, the transformation leads to
earlier start dates for both tours. The start date of tour (7, 8, 6) decreases due to the smaller release date
of order #8, and the subsequent tour can then be started earlier as well since its start date is determined
by the completion date of tour (7, 8, 6).

4.5 Acceptance and termination condition

In addition to the perturbation phase, an adequate acceptance condition helps to overcome local optima. A
solution of inferior quality may be accepted if no improvements have been found for a certain number ñ

of consecutive iterations and if the solution provides an objective function value not too far from the
objective function of the current best solution. The acceptance condition of our ILS was proposed by
Dueck & Scheuer (1990). According to this condition, a solution σ is accepted if its objective function
value f (σ) is not larger than (1 + α) · f (σ∗), where f (σ∗) denotes the objective function value of the
current best solution σ∗ and α is a parameter indicating the relative amount of deterioration allowed. At
the beginning of the algorithm, α is initialized by 0, i.e. a solution is only accepted if it represents an
improvement compared to the current best solution. Each time no solution is accepted for ñ consecutive
iterations, α is increased. Whenever the incumbent solution is updated, α is set to 0 again. Thus, the
longer the ILS algorithm gets stuck in a local optimum the higher the relative amount of deterioration
allowed gets. This type of acceptance condition has also been applied by Polacek et al. (2004) to a VRP
with time windows and multiple depots, by Tarantilis et al. (2004) to a VRP with a heterogeneous fleet
and by Henke et al. (2015) to a VRP with multiple compartments.

A time limit has been chosen as the termination condition. After each iteration, it is checked whether the
time limit has been exceeded. If this is the case, the ILS approach is terminated. Otherwise, at least one
additional iteration is performed.

5 Numerical experiments

5.1 Test problem instances and parameter settings

In order to evaluate the performance of the ILS algorithm as well as to determine the benefits from
solving the OASVRP as a holistic problem instead of dealing with the OASP and the VRP sequentially,
extensive numerical experiments have been conducted. Since the problem instances of Ullrich (2013)
were not available, new test problem instances have been generated. The generation of the instances
followed the procedures of Ullrich (2013) for the VRP and of Scholz et al. (2016) for the OASP.

For the numerical experiments, problem instances with 100 and 200 customer orders have been generated.
Instances of this size have also been used by Henn (2015) and Scholz et al. (2016) for different types
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of order picking problems and they are also considered as realistic problem sizes for VRPs (Desaulniers
et al., 2014). The customer orders are processed by 2, 3 or 5 order pickers in the warehouse. For the
determination of the processing times of the customer orders, a block layout with 10 picking aisles is
assumed for the picking area. A class-based procedure has been assumed for assigning the articles to the
storage locations (Henn, 2015; Scholz et al., 2016). The routes of the order pickers are constructed by
means of the S-shape strategy which represents the routing strategy most frequently used in practice
(Roodbergen, 2001). Processing times of orders will increase with an increasing number of blocks.
Instances with 1 block (short processing times) and 3 blocks (long processing times) are considered.

Identical to Ullrich (2013), the number of vehicles available for the delivery of the customer orders is set
either to 4, 6, 8 or 10. The respective customer locations are chosen randomly, while the corresponding
coordinates for the horizontal and vertical dimensions are selected from the interval [1, 100] for instances
including 100 customer orders and from [1, 150] for problems with 200 orders. The location of the
warehouse is fixed to the coordinates (50, 50) and (75, 75), respectively. The travel times are then defined
by the euclidean distances between the locations (Ullrich, 2013). The time for loading the vehicle (service
time at the depot) is set to 20 minutes, while 5 minutes are required for unloading the required items
(service time at a customer location). The maximum tour length is set to 8 hours.

Finally, a due date is assigned to each customer order. The due dates are determined based on the
procedure of Ullrich (2013). According to this procedure, the due dates are dependent on the number of
customer ordersN , the number of vehiclesK, the number of order pickersM as well as on the processing
times pn (n = 1, . . . , N) of the orders and the travel and service times. Additionally, a parameter θ is
introduced describing how difficult it is to meet the due dates. The due date of customer order n is then
a realization of the random variable Dn which is defined as follows (Ullrich, 2013):

Dn = pn + t0n + s0 + sn + Γ + ∆ (1)

On the one hand, Dn includes order-specific data such as the travel time t0n between the depot and
the location of customer n and the service time (sn) at the customer location. Due to the integration
of the service time at the depot (s0) as well as the random variables Γ and ∆, general problem data
is included in the calculation on the other hand. Γ and ∆ are uniformly distributed over the discrete
sets {0, . . . , ⌊θ (maxn=1,...,N pn) (N/ (K + M))⌋} and {0, . . . , ⌊θ (maxn=1,...,N pn)⌋}, respectively. In
the numerical experiments, θ is set to 0.5 (tight due dates) and to 1.0 (loose due dates).

The combination of all parameter values gives rise to 96 different problem classes. For each class, 48 test
problem instances have been generated, resulting in 4608 instances in total. The ILS algorithm has been
implemented using Visual Studio C++ 2015. The numerical experiments have been performed by means
of a Haswell system with up to 3.2 GHz and 16 GB RAM per core.

Regarding the ILS approach, the following settings have been chosen. The maximum length of a
sequence of consecutive orders exchanged is set to 5 for the perturbation phase. The parameter α

included in the acceptance criterion is increased by 0.1 after 50 consecutive iterations each without
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finding a new best solution. The time limit for the ILS has been fixed to 30 minutes for instances with
100 customer orders and to 60 minutes for problems with 200 orders.

5.2 Generation of upper bounds

As has been shown by Ullrich (2013), only very small problem instances can be solved to optimality
within a reasonable amount of computing time. Therefore, upper bounds are generated in order to
evaluate the performance of the ILS approach. In fact, three procedures for the determination of upper
bounds are applied.

As for the first procedure (Ullrich, 2013), each customer order is assumed to be served on a separate
tour. This assumption reduces the OASVRP to a hybrid flow shop problem with M parallel machines at
the first stage and K parallel machines at the second stage. Processing times at the first stage are given
by the processing times pn (n = 1, . . . , n) of the orders, while the times for delivering the customer
orders (given by s0 + t0n + tn0 + sn) represent the processing times at the second stage (Ullrich, 2013).
This problem is then solved by applying the MDD rule which has been proven to perform quite well
for multiple stage hybrid flow shop problems with due dates (Brah, 1996). Ullrich (2013) compared the
solutions generated by a genetic algorithm to this upper bound and pointed out that the genetic algorithm
was not able to find solutions of superior quality for problem instances with 70 or more customer orders.
This observation indicates that the genetic algorithm does not performwell for those problems. Therefore,
in our experiments, this upper bound (UB1) is used in order to identify whether the ILS approach is
suitable for dealing even with very large instances.

The general principle for the generation of the second upper bound (UB2) was also proposed by Ullrich
(2013). He suggested to divide the problem into its two subproblems and then solve them one after
another to optimality. The author started with the VRP, continued with the OASP and got back again
to the VRP. The procedure then terminates since performing further iterations have proven not to lead
to significant improvements regarding the solution quality. Ullrich (2013) computed upper bounds of
this type for very small problem instances including 7 customer orders only. Therefore, in order to be
able to calculate the bounds for larger instances, we use the same principle but the subproblems are
solved heuristically. At first, the procedure for the determination of an initial solution (see Section 4.2)
is used, i.e. the VRP is solved and then the algorithm of Biskup et al. (2008) is applied to the OASP.
As suggested by Ullrich (2013), the VRP is then solved again. Here, the VND_VRP procedure (see
Section 4.3) is applied. This procedure for the generation of an upper bound is much more complex than
the previous one, as a state-of-the-art algorithm is used for solving the OASP and a VND approach for
solving the VRP. Upper bounds of this second type are generated in order to determine the benefits from
dealing with the OASVRP as a holistic problem instead of solving the subproblems in sequence.

The determination of the third upper bound (UB3) also originates from the ILS approach. The initial
solution is constructed and one improvement phase of the ILS algorithm is performed. The quality of this
bound is at least as good as the quality of the second bound. The third bound is used for the investigation
of the impact of the perturbation phase on the quality of solutions provided by the ILS approach.
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5.3 Evaluation of the solution quality of the ILS algorithm

In Tables 2 and 3, the average total tardiness (tardi) in minutes is depicted for the upper bounds UBi

(i ∈ {1, 2, 3}) as well as for the solutions provided by the ILS approach (tardILS) for problem classes
with 100 and 200 customer orders, respectively. Furthermore, the average improvements (impi) [in %]
are presented in comparison to upper bound UBi. In the tables, K denotes the number of vehicles, B

represents the number of blocks and θ is the parameter used for the generation of the due dates (see
Section 5.1).

Performance of the ILS algorithm for large-sized instances

Comparing the objective function values of solutions obtained by the ILS approach to the upper
bound UB1, significant improvements regarding the total tardiness can be observed. On average, the
reduction ranges from 4.6% (100 orders, 2 pickers, θ = 0.5, B = 1, K = 10) to 94.0% (200 orders,
5 pickers, θ = 1, B = 3, K = 4). The magnitude of the improvement varies very strongly between
different problem classes. This can be explained by the performance of the approach for generating UB1.
Application of the MDD rule leads to rather good solutions to the OASP. The VRP is solved on the basis
of the assumption that each customer is served on a separate tour. This assumption is not critical as long
as processing the orders in the warehouse consumes more time than the separate delivery of each order,
i.e. when many more vehicles than order pickers are available or when the processing times of the orders
are large in comparison to their travel times. Furthermore, the upper bound may have a good quality in
case of loose due dates.

Due to the increasing ratio between vehicles and order pickers, the amount of improvement decreases
with an increasing number of vehicles (75.4% for K = 4 and 32.6% for K = 10) and increases with
an increasing number of order pickers (30.6% for 2 pickers and 75.6% for 5 pickers). As has been
anticipated, these two parameters have the largest impact on the amount of improvement. If few vehicles
are available for the delivery, the solutions to the VRP can significantly be improved by serving several
customer orders on the same tour when the orders can be processed by many order pickers. Besides the
number of pickers and the number of vehicles, the number of blocks and the parameter θ affect the amount
of improvement. An increasing number of blocks results in a reduction of the average improvement.
While the total tardiness can be reduced by 56.7% in a single-block layout, the improvement amounts
to 47.5% when the picking area is composed of three blocks. The reason can be found in the processing
times which increase when the picking area includes a larger number of blocks. Picking the orders gets
more time-consuming and the advantage of serving several customers on a single vehicle tour diminishes.
The amount of improvement also decreases with an increasing value of θ, as the bound can be improved
by 55.5% for θ = 0.5 and by 47.7% for θ = 1. Problem classes characterized by a large θ contain
instances with loose due dates. In this case, delivering more than one order per tour is not that important.
Thus, the quality of the bound increases and the amount of improvement obtained by application of the
ILS approach decreases. Furthermore, it can be observed that larger reductions of the total tardiness are
achieved for instances with a larger number of orders (43.8% for 100 orders and 60.4% for 200 orders).
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This can be explained by the fact that no advantage of the larger solution space is taken by the procedure
for the construction of the upper bound, whereas the number of moves performed in the improvement
phase of the ILS algorithm significantly increases with an increasing number of customer orders.

On average, across all problem classes, the first upper bound can be improved by 52.1%, which
demonstrates that significant reductions of the total tardiness are obtained. In contrast to the genetic
algorithm of Ullrich (2013), which is not able to significantly improve the upper bound for instances
including 70 or more customer orders, the proposed ILS algorithm results in serious improvements
even for very large instances. Furthermore, the impact of the parameters on the amount of improvement
matches the expectations based on the quality of the upper bound, which leads us to the conclusion that
the ILS algorithm is well designed.

Benefits of a holistic solution of the OASVRP

While the generation of the first upper bound makes use of two simple construction procedures, the
second bound is provided by application of a state-of-the-art algorithm to the OASP and a VND approach
to the VRP. Nevertheless, compared to the second upper bound, the ILS algorithm results in remarkable
improvements, which vary between 8.7% (200 orders, 2 pickers, θ = 0.5, B = 3, K = 10) and 88.7%
(200 orders, 5 pickers, θ = 1,B = 3,K = 4). Over all problem classes, the total tardiness can be reduced
by 37.8% on average, which clearly demonstrates that solving the OASVRP as a holistic problem is
pivotal for obtaining high-quality solutions.

The results from the experiments indicate that a simultaneous solution of the OASP and the VRP is more
advantageous if the number of vehicles is not too large in comparison to the number of order pickers. If
few vehicles are available for the delivery of the orders, more orders will be contained in a single tour.
The start dates of the tours are then dependent on the release dates of several orders, i.e. the solution
of the VRP is strongly affected by the solution of the OASP and the other way round. If the number
of vehicles is very large, the tours include few or even a single order only. In this case, the VRP gets
less important and the OASP can be solved without taking the vehicle tours into account. A similar
argumentation holds for the impact of the number of blocks on the size of the improvement. Increasing
processing times caused by a larger number of blocks produces the same effect as a decreasing number
of order pickers does since fewer orders can be processed within the same amount of time. Thus, fewer
customers will be visited on a tour, decreasing the benefits from solving the subproblems simultaneously.
Regarding the number of customer orders, the results show that – what concerns the joint approach –
a larger number of orders provides more space for improvement, increasing the reduction of the total
tardiness by 8.3 percentage points (33.2% reduction for 100 orders and 41.5% reduction for 200 orders).

Impact of the perturbation phase on the solution quality

The third upper bound is obtained by application of the improvement phase to the solution provided by the
procedure for the generation of the second bound. The improvements obtained by the ILS approach range
between 6.2% (200 orders, 2 pickers, θ ∈ {0.5, 1}, B = 3, K = 10) and 87.1% (200 orders, 5 pickers,
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θ = 1, B = 3, K = 4). On average, the improvement amounts to 32.5%, clearly demonstrating that
more than a simple improvement procedure is required for providing high-quality solutions to such a
complex problem. The application of the perturbation phase is pivotal in order to overcome local optima
and to guide the search to the promising part of the solution space.

The amount of improvement is mainly dependent on the number of order pickers and the number of
vehicles. Regarding the number of order pickers, it can be observed that the reduction of the total
tardiness, given by UB3, gets much larger with an increasing number of pickers. In fact, the average
amount of reduction equals to 16.1% in the case of 2 pickers, while the total tardiness can be reduced
by 53.1% for problems including 5 pickers. This can be explained by the fact that the perturbation phase
exchanges randomly-chosen orders between two pickers. If 2 pickers are available only, the selection
of the order pickers is fixed. Thus, the probability that the perturbation phase leads to solutions already
investigated earlier is significantly increased in this case. Concerning the number of vehicles, the same
behavior can be observed as for the comparison with UB2: If the number of vehicles gets very large in
comparison to the number of order pickers, many orders can be delivered on a separate tour. Thus, the
benefit from solving the OASP and the VRP simultaneously diminishes, which also reduces the range in
which improvements can be obtained. The impact of the processing times and the parameter θ is much
less significant than the impact of the number of pickers and the number of vehicles. The amount of
improvement obtained by application of the ILS approach increases with decreasing processing times,
i.e. with a decreasing number of blocks, and an increasing value of θ. Furthermore, larger improvements
are obtained for instances with a larger number of customer orders. While the total tardiness can be
reduced by 28.1% when 100 customers are considered, an average reduction of 37.8% is obtained for
instances with 200 orders. However, these results have to be taken carefully since much more computing
time is spent on solving instances including 200 orders by application of the ILS approach.

5.4 Considerations regarding computing times

The generation of the upper bounds requires a few seconds of computing time, whereas the computing
time of the ILS approach has been fixed to one hour for problem instances with 200 customer orders. The
improvements obtained in comparison to the bounds provides information on the benefits of applying
the ILS algorithm instead of using simple construction procedures or sequential solution approaches.
However, no reliable conclusions on the performance of the proposed ILS algorithm can be drawn from
the results. In particular, it is not known whether the time limit has appropriately been chosen. In Fig. 5,
information on the development of the average solution quality over time is given for instances from
three problem classes. Problem classes with 200 customer orders are considered, implying that the ILS
approach is terminated after one hour of computing time. For each point in time, Fig. 5 depicts the
relative deviation [in %] of the total tardiness provided by the best solution found after one hour from
the tardiness of the current best solution.

The first problem class (2 pickers, θ = 0.5,B = 3,K = 10), which has been considered, is characterized
by very low improvements (6.2%) with respect to UB3. After 10% of the total computing time, the



22 Integrated Order Picking and Vehicle Routing with Due Dates

tardiness provided by the current best solution can only be improved by 2% on average within the
remaining 90% of the computing time. The reason can be found in the design of the perturbation phase.
As mentioned before, fewer decisions have to be taken in the perturbation phase in the case of 2 pickers,
which significantly reduces the number of possible moves. For the second problem class (3 pickers,
θ = 1, B = 3, K = 6), UB3 can be improved by 38.0%, which can be interpreted as a fairly average
amount of improvement. In this case, the time limit of one hour seems to be chosen appropriately. The
total tardiness is reduced by 10% in the last 90%of the computing time, representing a significant amount
of improvement. Thus, the algorithm should not be stopped at an early stage. Furthermore, the algorithm
seems to converge as the reduction found amounts to 1.1% for the last 50% and 0.1% for the last 10% of
the total computing time. The largest improvements are obtained for the problem class (5 pickers, θ = 1,
B = 3, K = 4), where UB3 is reduced by 87.1% on average. The development of the solution quality
over time clearly indicates that a larger amount of computing time is required for generating high-quality
solutions. Even the tardiness obtained after 50% of the total computing time can be reduced by 11.1%.
In the last 10% of the time, the objective function value can still be improved by almost 1%.

Fig. 5: Development of the solution quality over one hour of computing time

As a preliminary conclusion, it can be stated that the time limit of 1 hour is more than sufficient for
solving instances from the class with 2 order pickers. For the classes considered above, which include
3 or 5 pickers, it is further investigated whether the computing time has been chosen sufficiently or not.
Therefore, for these two problem classes, the development of the solution quality over four hours of
computing time is depicted in Fig. 6.

Fig. 6: Development of the solution quality over four hours of computing time
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If three additional hours are spent on solving an instance from the class with 3 pickers, the total tardiness
can be reduced by 1.6% on average. Thus, we conclude that the time limit of one hour is appropriate
for those instances as the solution quality does not improve significantly. This is not true for problem
instances from the class containing 5 order pickers. On average, the objective function value of the best
solution found after one hour of computing time can be improved by 8.2%, which shows that the total
tardiness can significantly be reduced by spending a larger amount of computing time. However, in the
last hour, the reduction obtained amounts to less than 1.0%, indicating that four hours of computing time
are sufficient in order to tackle problems with 5 order pickers. Summing up, it can be pointed out that the
amount of computing time required for obtaining solutions of good quality increases with an increasing
number of order pickers, which could be expected as the problem gets more complex when more pickers
are available.

6 Conclusions and outlook
In this paper, we investigated the order assignment and sequencing, and vehicle routing problem
(OASVRP), which is particularly pivotal for an efficient organization of the distribution processes in the
retail industry. In the considered scenario, the orders are first processed in the warehouse by retrieving the
respective requested items from their storage locations. After having completed the picking operations,
vehicles will perform tours in order to deliver the requested items to the customers.

Order picking and vehicle routing operations are closely interconnected since a vehicle tour cannot
start before all requested items of the orders included in the tour have been provided by the warehouse.
Nevertheless, the integrated solution of these two subproblems has not been addressed in the literature so
far. For solving the OASVRP, an algorithm of Ullrich (2013) could be adapted to this problem. However,
the computational performance of this approach is limited. In order to introduce a more competitive
approach, in particular for large problem instances, an iterated local search (ILS) algorithm for the
OASRP has been proposed in this paper. Due to the complexity and the characteristics of the OASVRP,
the improvement procedure includes two alternating variable neighborhood descent algorithms which
tackle one subproblem each. By means of the ILS approach, the benefits from dealing with the OASVRP
as a holistic problem could be investigated even for problem instances of a size encountered in practice.

Extensive numerical experiments have been conducted. In the first part of the experiments, it is
demonstrated that the proposed ILS approach is suitable for solving large-sized instances. The second
part of the experiments is devoted to the investigation of the benefit from integrating order picking and
vehicle routing operations. It has been shown that the solution of the OASVRP as a holistic problem
reduces the total tardiness by up to 88.7%, while the average reduction over all problem classes amounts
to 37.8% compared to a sequential solution of the respective subproblems. Furthermore, problem
characteristics have been pointed out under which a separate solution of the subproblems leads to
acceptable results, and problem classes have been identified, where the consideration of the OASVRP
as a holistic problem is inevitable in order to provide high-quality solutions.
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Further research could concentrate on an extension of the problem regarding the picking operations.
In this paper, the processing times of the orders can considered as given due to the assumption that
customer orders have to be processed separately. However, the picking device may enable the order
pickers to temporarily store a larger number of items, which allows for processing several customer
orders on the same tour. In this case, it has to be decided which customer orders are included in a picker
tour. Furthermore, the routes could not be determined in advance anymore, which makes the resulting
problem even more complex. Nevertheless, integrating this aspect would clearly represent a worthwhile
endeavor because the processing times in the warehouse would significantly decrease if customer orders
do not have to be processed separately.

Regarding the vehicle routing subproblem, a straightforward extension represents the introduction of
time windows for the delivery of the customers. In particular, early deliveries may cause problems when
no room is available for temporarily storing the items. Such problemswould be avoided by the integration
of an earliest possible delivery date. A further interesting extension can be found in the consideration
of vehicles with multiple compartments. Supermarkets receive several kinds of food, which have to be
transported under different cooling conditions. These products can be transported on the same tour if
the vehicle can be divided into different compartments, where each compartment represents a certain
temperature zone (Hübner & Ostermeier, 2016).

References
Alidaee, B. & Rosa, D. (1997): Scheduling parallel machines to minimize total weighted and unweighted
tardiness. Computers & Operations Research 24, 775–788.

Azi, N; Gendreau, M. & Potvin, J.-Y. (2007): An exact algorithm for a single-vehicle routing problem
with time windows and multiple routes. European Journal of Operational Research 78, 755–766.

Azi, N; Gendreau, M. & Potvin, J.-Y. (2010): An exact algorithm for a vehicle routing problem with time
windows and multiple use of vehicles. European Journal of Operational Research 202, 756–763.

Azi, N; Gendreau,M.& Potvin, J.-Y. (2014): An adaptive large neighborhood search for a vehicle routing
problem with multiple routes. Computers & Operations Research 41, 167–173.

Azizoglu, M. & Kirca, O. (1998): Tardiness minimization on parallel machines. International Journal
of Production Economics 55, 163–168.

Baker, K.R. & Bertrand, J.W.M. (1981): An investigation of due-date assignment rules with constrained
tightness. Journal of Operations Management 1, 109–120.

Baker, K.R. & Bertrand, J.W.M. (1982): A dynamic priority rule for scheduling against due-dates.
Journal of Operations Management 3, 37–42.

Biskup, D.; Herrmann, J. & Gupta, J.N.D. (2008): Scheduling identical parallel machines to minimize
total tardiness. International Journal of Production Economics 115, 134–142.



D. Schubert, A. Scholz, G. Wäscher 25

Brah, S.A. (1996): A comparative analysis of due date based job sequencing rules in a flow shop with
multiple processors. Production Planning & Controls 7, 362–373.

Brandão, J. & Mercer, A. (1997): A tabu search algorithm for the multi-trip vehicle routing and
scheduling problem. European Journal of Operational Research 100, 180–191.

Brucker, P.; Hurink, J. & Werner, F. (1996): Improving local search heuristics for some scheduling
problems. Part I. Discrete Applied Mathematics 65, 97–122.

Brucker, P.; Hurink, J. & Werner, F. (1997): Improving local search heuristics for some scheduling
problems. Part II. Discrete Applied Mathematics 72, 47–69.

Cattaruzza, D.; Absi, N. & Feillet, D. (2016): The multi-trip vehicle routing problem with time windows
and release dates. Transportation Science 50, 676–693.

Chen, Z.-L. & Vairaktarakis, G.L. (2005): Integrated scheduling of production and distribution
operations.Management Science 51, 614–628.

Chen, Z.-L. (2010): Integrated production and outbound distribution scheduling: Review and extension.
Operations Research 58, 130–148.

Chiang, W.-C. & Russell, R.A. (2004): A Metaheuristic for the Vehicle-Routeing Problem with Soft
Time Windows. The Journal of the Operational Research Society 55, 1298–1310.

Congram, R.K.; Potts, C.N. & van de Velde, S.L. (2002): An iterated dynasearch algorithm for the
single-machine total weighted tardiness scheduling problem. INFORMS Journal on Computing 14,
52–67.

Desaulniers, G.; Madsen, O.B.G. & Ropke, S. (2014):: The vehicle routing problem with time
windows. Vehicle routing: Problems, methods and applications 2nd edition, Toth, P. & Vigo, D. (eds).
Philadelphia: Society for Industrial and Applied Mathematics and the Mathematical Optimization
Society, 119–160.

Dueck, G. & Scheuer, T. (1990): Threshold accepting: A general purpose optimization algorithm
appearing superior to simulated annealing. Journal of Computational Physics 1, 161–175.

DVZ – Deutsche Verkehrszeitung (2013): Wir liefern künftig im 24-Stunden-Rhythmus. URL:
http://www.dvz.de/rubriken/logistik-verlader/single-view/nachricht/24-stunden-belieferung-ueber-
alle-sortimente.html.

EDEKAMinden-Hannover: Zahlen, Daten&Fakten. URL: http://www.edeka-verbund.de/Unternehmen/
de/edeka_minden_hannover/unternehmen_minden_hannover/zahlen_daten_fakten/zahlen_daten
_fakten_minden_hannover.jsp



26 Integrated Order Picking and Vehicle Routing with Due Dates

Fleischmann, B. (1990): The vehicle routing problem with multiple use of vehicles. Working paper,
Fachbereich Wirtschaftswissenschaften, Universität Hamburg.

Fu, Z.; Eglese, R. & Li, L.Y.O. (2008): A unified tabu search algorithm for vehicle routing problems
with soft time windows. Journal of the Operational Research Society 59, 663–673.

Gao, S.; Qi, L. & Lei, L. (2015): Integrated batch production and distribution scheduling with limited
vehicle capacity. International Journal of Production Economics 160, 13–25.

Grosso, A.; Della Croce, F. & Tadei, R. (2004): An enhanced dynasearch neighborhood for the
single-machine total weighted tardiness scheduling problem. Operations Research Letters 32, 68–72.

Gupta, J.N.D. & Maykut, A. R. (1973): Concepts, theory, and techniques –Scheduling jobs on parallel
processors with dynamic programming. Decision Sciences 4, 447–457.

Hansen, P. & Mladenovic, N. (2001): Variable neighborhood search: principles and applications.
European Journal of Operational Research 130, 449–467.

Henke, T; Speranza, M.G. &Wäscher, G. (2015): The multi-compartment vehicle routing problem with
flexible compartment sizes. European Journal of Operational Research 246, 730–743.

Henn, S. & Schmid, V. (2013): Metaheuristics for order batching and sequencing in manual order picking
systems. Computers & Industrial Engineering 66, 338–351.

Henn, S. (2015): Order batching and sequencing for the minimization of the total tardiness in
picker-to-part warehouses. Flexible Services and Manufacturing 27, 86–114.

Ho, J.C. & Chang, Y.-L. (1991): Heuristic for minimizing mean tardiness of m parallel machines. Naval
Research Logistics 38, 367–381.

Hurter, A.P. & Van Buer, M.G. (1996): The newspaper production/distribution problem. Journal of
Business Logistics 17, 85–107.

Hübner, A. & Ostermeier, M. (2016): A multi-compartment vehicle routing problem with loading and
unloading costs. Working Paper, Catholic University Eichstätt-Ingolstadt.

Koulamas, C. (1997): Decomposition and hybrid simulated annealing heuristics for the parallel-machine
total tardiness problem. Naval Research Logistics 44, 109–125.

Li, C.-L.; Vairaktarakis, G.L. & Lee, C.-Y. (2005): Machine scheduling with deliveries to multiple
customer locations. European Journal of Operational Research 164, 39–51.

Li, K.; Zhou, C.; Leung, J.Y.-T. &Ma, Y. (2016): Integrated production and delivery with single machine
and multiple vehicles. Expert Systems With Applications 57, 12–20.



D. Schubert, A. Scholz, G. Wäscher 27

Liberatore, F.; Righini, G. & Salani, M. (2011): A column generation algorithm for the vehicle routing
problem with soft time windows. 4OR 9, 49–82.

Lourenço, H.R.; Martin, O.C. & Stützle, T. (2010): Iterated local search: Framework and applications.
Handbook of Metaheuristics, 2nd edition., Gendreau, M. & Potvin, J.-Y. (eds.). International Series
in Operations Research & Management Science 146. New York et al.: Springer, 363–397.

Low, C.; Li, R.-K. & Chang, C.-M. (2013): Integrated scheduling of production and delivery with time
windows. International Journal of Production Research 51, 897–909.

Low, C.; Chang, C.-M.; Li, R.-K. & Huang, C.-L. (2014): Coordination of production scheduling
and delivery problems with heterogeneous fleet. International Journal of Production Research 153,
139–148.

Olivera, A. & Viera, O. (2007): Adaptive memory programming for the vehicle routing problem with
multiple trips. Computers & Operations Research 34, 28–47.

Petch, R & Salhi, S. (2004): A multi-phase constructive heuristic for the vehicle routing problem with
multiple trips. Discrete Applied Mathematics 133, 69–92.

Pinedo, M.L. (2016): Scheduling: Theory, Algorithms, and Systems. 5th edition, Springer, Cham et al.

Polacek,M; Hartl, R.F. &Doerner, K. (2004): A variable neighborhood search for themulti depot vehicle
routing problem with time windows. Journal of Heuristics 10, 613–627.

Prescott-Gagnon, E.; Desaulniers, G.; Drexl, M. & Rousseau, L.-M. (2010): European driver rules in
vehicle routing with time windows. Transportation Science 44, 455–473.

Roodbergen, K. J. (2001): Layout and Routing Methods for Warehouses. Trial, Rotterdam.

Schmid, V.; Doerner, K.F. & Laporte, G. (2013): Rich routing problems arising in supply chain
management. European Journal of Operational Research 224, 435–448.

Scholz, A.; Schubert, D. & Wäscher, G. (2016): Order picking with multiple pickers and
due dates – Simultaneous solution of order batching, batch assignment and sequencing, and
picker routing problems. Working Paper No. 5/2016, Faculty of Economics and Management,
Otto-von-Guericke-Universität Magdeburg.

Shim, S.-O. & Kim, Y.-D. (2007): Scheduling on parallel identical machines to minimize total tardiness.
European Journal of Operational Research 177, 135–146.

Taillard, É.D.; Laporte, G. & Gendreau, M. (1996): Vehicle routeing with multiple use of vehicles. The
Journal of the Operational Research Society 47, 1065–1070.

Taillard, É.D.; Badeau, P.; Gendreau, M.; Guertin, F. & Potvin, J.-Y. (1997): A tabu search heuristic for
the vehicle routing problem with soft time windows. Transportations Science 31, 170–186.



28 Integrated Order Picking and Vehicle Routing with Due Dates

Tarantilis, C.D.; Kiranoudis, C.T. & Vassiliadis, V.S. (2004): A threshold accepting metaheuristic for the
heterogeneous fixed fleet vehicle routing problem. European Journal of Operational Research 152,
148–158.

Ullrich, C.A. (2013): Integrated machine scheduling and vehicle routing with time windows. European
Journal of Operational Research 227, 152–165.

Van Buer, M.G.; Woodruff, D.L. & Olson, R.T. (1999): Solving the medium newspaper
production/distribution problem. European Journal of Operational Research 115, 237–253.

Vidal, T.; Crainic, T.G.; Gendreau, M. & Prins, C. (2013): Heuristics for multi-attribute vehicle routing
problems: A survey and synthesis. European Journal of Operational Research 231, 1–21.

Yalaoui, F. & Chu, C. (2002): Parallel machine scheduling to minimize total tardiness. International
Journal of Production Economics 76, 265–279.



Part IX:

Outlook on Further Research



1

Outlook on Further Research

Concerning the routing of order pickers, various promising areas for further research can be
identified. In Part III and Part IV of this thesis, it has been shown that the application of a
problem-specific formulation to the Picker Routing Problem in standard-aisle warehouses leads
to a well-performing solution approach which can also easily be adapted to several constraints
arising in practical applications. For example, the formulations can be used to construct simple
tours, e.g. tours where each subaisle is visited at most once (Roodbergen, 2001). Simple tours
are more straightforward and easier to memorize for the order pickers, reducing the risk of pick
errors or deviations from the path (de Koster et al., 1999). However, simple tours are of course
longer than optimal ones. By means of the model formulations, the benefit of using optimal
tours instead of tours with a simple structure could be evaluated and problem settings could
be identified where the generation of optimal tours is inevitable for keeping the tour lengths
at a reasonable level. A further modification from practice can be found in the consideration
of multiple deposit locations (de Koster & van der Poort, 1998). It would be interesting to
investigate the impact of multiple deposit locations on the tour lengths and analyze whether the
savings regarding the travel time justify the additional consolidation effort caused by the usage
of multiple deposit locations.

For the Picker Routing Problem in narrow-aisle warehouses, a truncated branch-and-bound
algorithm has been presented in Part V. This approach is based on two main assumptions
which could be addressed in future research. First, order pickers follow given paths through the
warehouse and are not permitted to deviate from their paths even though blocking situations may
be avoided. By allowing pickers to deviate from their paths or even visit the pick locations in
another sequence, the processing times of the orders may be reduced significantly. The second
assumption is even more critical as deterministic travel velocities and pick times are dealt with.
Since the tasks are performed by human operators, these components are not deterministic in
practice (Parikh & Meller, 2010), and blocking situations cannot be identified in advance. Thus,
it would be very important to take stochastic travel velocities and pick times into account. Arising
blocking situations have to be predicted and robust tours have to be constructed where small
fluctuations regarding these components do not cause additional blocking situations. Then, it
would also be quite interesting to analyze the impact of the employment of an additional order
picker on the average processing time of the orders. Furthermore, it could be evaluated whether
it is really a good choice to use a narrow-aisle layout in order to maximize space utilization or if
at least some standard aisles should be introduced.

Parts VI and VII deal with the Joint Order Batching and Picker Routing Problem for distance-
related and tardiness-related objectives, respectively. The first-mentioned variant has been
widely studied in the literature. However, tardiness-related objectives have been rarely
considered when dealing with the Joint Order Batching and Picker Routing Problem, leaving
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several fields for further research. In this thesis, a variable neighborhood descent algorithm has
been proposed in order to tackle this problem. The numerical experiments indicate that computing
time is a very critical issue. Thus, further research could concentrate on the development of
a fast approach which results in solutions of similar quality. Future research could also deal
with the integration of further problem aspects. For example, priority values (weights) could be
assigned to the customer orders and the weighted tardiness could be minimized. Furthermore,
the on-line variant of the Joint Order Batching and Picker Routing Problem could be considered,
i.e. customer orders are not available at the beginning but arrive over the planning horizon.

In Part VIII, a first solution approach to integrated order picking and vehicle routing is proposed.
Since almost no research has been conducted in this field, basic aspects of the problem have been
considered only. For example, it is assumed that order pickers are prohibited from processing
more than one order on a single tour. Neglecting this assumption, the Order Batching Problem
could be integrated here, resulting in much shorter average processing times and making due
dates less difficult to be met. Regarding the vehicle routing part, the problem could be extended
by taking a heterogeneous vehicle fleet or vehicles with different compartments into account
(Henke et al., 2015; Hübner & Ostermeier, 2016). Furthermore, time windows with a hard lower
bound could be introduced, i.e. vehicles cannot serve a customer before a certain point in time
(Ullrich, 2013).

All problems dealt with in this thesis are based on the assumption that each article is assigned to
exactly one storage location in the warehouse. This represents a very common assumption in the
literature. However, in particular, when dealing with the Picker Routing Problem in narrow-aisle
warehouses or with the Joint Order Batching and Picker Routing Problem, significant benefits can
be expected from the assignment of frequently requested articles to multiple storage locations. In
case of narrow-aisle warehouses, blocking situations can be avoided by having the possibility to
choose between different locations. With respect to the Joint Order Batching and Picker Routing
Problem, the consideration of multiple storage locations per article leads to a larger number of
combinations of customer orders which result in promising picking orders. Thus, further research
could concentrate on the design of exact and heuristic approaches to those problems taking
multiple article locations into account, allowing for the evaluation of the benefit of assigning
some articles to more than one storage location.
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