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Abstract

Optical microdisk cavities can confine light for very long times in a small volume due to total
internal reflection. This ability makes them interesting for many applications. However, in
wave mechanics microdisk cavities belong to a non-Hermitian Hamiltonian of a weakly open
system and not to an Hermitian Hamiltonian of a closed system. Consequently, they show
pronounced aspects of non-Hermitian physics. One prominent phenomenon of this nature is
the asymmetric backscattering which occurs when the cavity’s boundary is deformed in a way
that all mirror-reflection symmetries are destroyed. Such a fully asymmetric cavity exhibits
generically an imbalance between clockwise (CW) and counter-clockwise (CCW) traveling
waves inside the cavity. This imbalance also manifests in the optical modes: They appear in
nearly degenerate pairs, they are highly pairwise non-orthogonal, and both modes of such a
pair have the same preferred sense of rotation what is quantified by a finite chirality.

In the first part of this thesis the asymmetric backscattering is studied in the ray dynamics.
To this end the Frobenius-Perron operator which describes the time evolution of classical
intensity distributions in phase space is constructed for microdisk cavities. The eigenstates of
the Frobenius-Perron operator reveal the interesting non-Hermitian properties of the optical
modes like non-orthogonality and chirality. A nice agreement to the wave mechanics is observed
for cavities with strong deformed boundaries in terms of an averaged Husimi function of long-
lived modes with relatively small wavelength.

Furthermore in this thesis a perturbation theory for fully asymmetric microdisk cavities is
derived. For this purpose a slightly deformed circular cavity is considered such that the modes
can be expanded perturbatively in solutions of the circular cavity. By properly accounting
the degeneracy of CW and CCW propagating waves in the circular cavity this perturbation
theory is able to capture also the interesting non-Hermitian effects in asymmetric deformed
cavities like a finite chirality of the mode pairs. Additionally, the established perturbation
theory for slightly deformed symmetric cavities with a mirror-reflection symmetry is extended
to the next higher order in this thesis.

Another manifestation of the non-Hermitian physics in optical microdisk cavities is the long
but finite lifetime of the whispering-gallery modes which is commonly expressed in a large
𝑄-factor. In deformed cavities the 𝑄-factor is usually spoiled. In this thesis it is revealed that
the 𝑄-spoiling in slightly deformed microdisk cavities is a consequence of resonance-assisted
tunneling due to nonlinear resonance chains in the phase space. A nice agreement between
the derived predictions of the 𝑄-spoiling and full numerical wave simulations is observed.
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1 Introduction

Optical microcavities are small dielectric devices which are of particular interest in physics
for many reasons. On the one hand they promise lots of practical applications due to their
ability to store the energy of light for very long times in a small volume [Vahala, 2003]. For
example they can be used as detecting devices such as label-free sensors for small particles like
viruses or molecules [Armani et al., 2007, Vollmer et al., 2008, Vollmer and Arnold, 2008]; or as
small sensors for rotating motion using the Sagnac effect [Post, 1967, Sunada and Harayama,
2006, Sunada and Harayama, 2007]. A large class of applications is based on the fact that
deformed microcavities can exhibit directional light emission [Levi et al., 1993, Nöckel and
Stone, 1997, Gmachl et al., 1998, Wiersig and Hentschel, 2008, Shinohara et al., 2009, Wang
et al., 2010, Schermer et al., 2015]. Therefore they can be used, e.g., as microlaser with
a very low threshold [Wiersig et al., 2009, Park et al., 2004] or as single photon emitters
[Michler et al., 2000, Pelton et al., 2002]. Recently, an application as a narrow-band and
speckle-free light source has been considered for imaging [Hokr et al., 2016] as well. Further
applications of microcavities, e.g., as optical frequency filters [Lohmeyer, 2002, Ilchenko and
Matsko, 2006] or frequency comp generators for telecommunication technology, astronomy or
microwave photonics have been discussed [Kippenberg et al., 2011].

On the other hand microcavities are of particular interest also in theoretical physics. For
example they allow to study the correspondence of ray and wave dynamics in a regime where
the size of the cavity is almost comparable the wavelength. For this reason deformed micro-
cavities are of interest in the field of quantum chaos [Stöckmann, 2000, Haake, 2010] where
one studies the signatures in the quantum (or wave) dynamics of systems whose classical (or
ray) dynamics is chaotic [Stone, 2001, Türeci et al., 2005]. Furthermore, microcavities are
ideal model systems for non-Hermitian physics [Cao and Wiersig, 2015, Lee et al., 2009, Zhu
et al., 2010, Brandstetter et al., 2014, Peng et al., 2014b, Peng et al., 2016]. Since they store
the energy of light for very long but finite times they are described by a non-Hermitian Hamil-
tonian of an open system instead of an Hermitian Hamiltonian of a closed system. Generic
non-Hermitian systems exhibit so-called exceptional points (EPs) where, depending on multi-
ple system parameters, the eigenvalues and simultaneously the wave functions coalesce [Kato,
1966, Heiss, 2000, Heiss and Harney, 2001, Berry, 2004]. In microcavities EPs can be generated
e.g. by boundary deformations [Lee et al., 2009, Lee et al., 2008b], external scatterers [Peng
et al., 2016] or balanced regions of amplification and absorption [El-Ganainy et al., 2007a, Guo
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et al., 2009a, Ruter et al., 2010]. Cavities which operate at such an EP are proposed to have
improved sensitivity against perturbations which is advantageous, e.g., for sensing devices
[Wiersig, 2016, Wiersig, 2014b].

So far microcavities have been fabricated in various shapes. As three-dimensional objects the
most prominent realizations are e.g. microspheres [Collot et al., 1993, Garrett et al., 1961,
Götzinger et al., 2006], microtoroids [Ilchenko et al., 2001, Armani et al., 2003], microjets
[Yang et al., 2006, Lee et al., 2002], micropillars [Albert et al., 2010, Böckler et al., 2008], or
microrings [Zhang et al., 1995]. However, another large class of realizations which are often
studied experimentally, theoretically, and numerically are microdisk cavities [McCall et al.,
1992, Levi et al., 1993, Harayama and Shinohara, 2011]. They can be treated within the
effective refractive index approximation as quasi-two-dimensional objects in the 𝑥-𝑦 plane.
For these microdisk cavities a lot of shapes have been considered and realized experimentally
for their own desired purposes; e.g. the Limaçon [Wiersig and Hentschel, 2008, Song et al.,
2009, Shinohara et al., 2009, Yan et al., 2009, Yi et al., 2009], the annular cavity [Hentschel
and Richter, 2002, Hackenbroich and Nöckel, 1997, Bäcker et al., 2009], the spiral [Chern et al.,
2003, Luo and Poon, 2007, Lee et al., 2008a, Hentschel and Kwon, 2009], or the quadrupole
[Tureci et al., 2002, Nöckel et al., 1996] just to mention a few representative examples.

Such quasi-two-dimensional optical microdisk cavities are the scope of this thesis. The aim
here is to get a deeper understanding of the dynamics and the mode properties in microdisk
cavities by using perturbation theory and methods from quantum chaos. In particular three
main topics are discussed in this thesis as follows.

As the first topic of the thesis the so-called asymmetric backscattering [Wiersig, 2014a] is
issued. This phenomenon occurs if a microcavity is deformed or perturbed in a way such that all
mirror-reflection symmetries of the system are destroyed. Accordingly, an imbalance between
clockwise and counter-clockwise propagating waves inside the cavity arises. As a consequence of
this imbalance these fully asymmetric cavities exhibit nearly degenerate pairs of non-orthogonal
modes where both modes have the same preferred sense of rotation [Wiersig et al., 2008, Wiersig
et al., 2011, Wiersig et al., 2008, Wiersig, 2011] (for experiments see Refs. [Peng et al., 2016,
Redding et al., 2012, Ryu et al., 2017]). In other words, the modes inside the cavity are no
longer standing waves but (partially) traveling waves which is quantified by a finite chirality
of the modes. Asymmetric backscattering is wave mechanically well explained by an effective
non-Hermitian 2× 2 Hamiltonian describing the dynamics of such a mode pair. In this thesis
it is shown that not only such a two-mode Hamiltonian but also proper eigenstates can be
constructed within the ray dynamics. To do so, the Frobenius–Perron operator [Altmann et al.,
2013] (FPO) for microcavities is introduced. This operator describes the classical dynamics of
intensities in a Poincaré section of the phase space. The eigenstates of the FPO can be seen
as classical analogues to long-lived optical modes. In particular they also appear in nearly
degenerate pairs where both eigenstates are non-orthogonal and have the same preferred sense
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of rotation. Numerically a good agreement of the FPO eigenstates with an average of long-lived
modes with relatively small wavelength (or large dimensionless wave number 𝑘𝑅) is observed.

The second topic in this thesis is the perturbation theory for slightly-deformed microdisk cav-
ities. This perturbation theory was originally developed by Dubertrand et al. [Dubertrand
et al., 2008] for TM polarization and symmetric deformations, i.e. cavities whose deformed
boundary still has a mirror-reflection symmetry. By this restriction one avoids a coupling be-
tween degenerate modes of the circular cavity because the modes of the deformed cavity still
fall into two orthogonal classes of even and odd parity with respect to the mirror-reflection
symmetry line. In the past years this perturbation theory has been shown to give reliable
predictions in many cases e.g. for the Limaçon [Kraft and Wiersig, 2014] or cavities with local
boundary deformations [Wiersig, 2012] (and also for the case of TE polarization [Ge et al.,
2013]). In this thesis the perturbation theory (for TM polarization) is reviewed and extended
to one higher (third) order. However, the remaining restriction to symmetric cavities prevents
to capture the interesting non-Hermitian phenomena in cavities with asymmetric deformed
boundaries such as copropagating and non-orthogonal mode pairs. Therefore, the perturba-
tion theory is also generalized here such that it includes the coupling between degenerate
circular modes. Consequently, this generalized perturbation theory is now applicable to fully
asymmetric boundary deformations without any mirror-reflection symmetry. Furthermore, the
derived formulas verify analytically the existence of nearly degenerate pairs of non-orthogonal
modes with same preferred sense of rotation in cavities without mirror-reflection symmetry. In
the regime of large wavelength (i.e. small dimensionless wave number 𝑘𝑅) the perturbation the-
ory is in very good agreement with full numerical solutions. Furthermore such a perturbation
theory for fully asymmetric cavities provides a solid base for further analytical investigations
on e.g. the problem of boundary roughness [Wiersig and Kullig, 2017], optimization procedures
to achieve arbitrary desired far-fields [Kraft and Wiersig, 2016] or search procedures for EPs
in slightly deformed cavities.

The third topic which is discussed in this thesis deals with the question how optical modes in
slightly deformed cavities are influenced by classical resonance chains in the phase space. Such
resonance chains consist of an alternating sequence of stable and unstable periodic orbits which
naturally develop due to the Poincaré-Birkhoff theorem if an integrable system is slightly per-
turbed [Poincaré, 1912, Birkhoff, 1913]. In the case of microdisk cavities this perturbation can
be seen again as a slight boundary deformation of the circular cavity. The signatures of such
resonance chains in the corresponding quantum mechanical systems have been discussed so far
intensively at kicked Hamiltonian systems: Here a resonance chain enhances the tunneling pro-
cess between the separated regions in phase space which is therefore called resonance-assisted
tunneling (RAT) [Brodier et al., 2002, Keshavamurthy and Schlagheck, 2011]. RAT has been
so far also verified by experiments on microwave billiards [Gehler et al., 2015] and recently in
optical microdisk cavities as well [Kwak et al., 2015]. In this thesis the methods describing
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RAT in quantum mechanics were adapted to the case of microcavities. Consequently, the
RAT mechanism can explain the enhanced decay rates of modes in a slightly deformed cavity.
Therefore, RAT in microdisk cavities leads to the so-called 𝑄-spoiling [Nöckel et al., 1994, Yu
et al., 2015]. Furthermore, the RAT mechanism allows to predict the mode pattern inside the
cavity and the emission profile of the mode. As an outlook at the end of the thesis it is demon-
strated that RAT not only explains the formation of single modes but also the slight differences
between modes of even and odd parity in deformed cavity with a mirror reflection-symmetry.
In particular this thesis is organized as follows. In Sec. 2 the ray dynamics in a microdisk
cavity is introduced. Afterwards in Sec. 3 it is explained how Maxwell’s equations reduce to
a scalar mode equation for disk-like cavities. Furthermore, some general properties of optical
modes in the circular and the deformed cavity are discussed in this section. In the following
Sec. 4 the first topic of this thesis, i.e. the asymmetric backscattering in ray dynamics, is
targeted. In Sec. 5 then the perturbation theory for slightly deformed symmetric cavities is
reviewed. Here, also an extension of the perturbation theory to an higher order (third order)
is presented. In Sec. 6 the perturbation theory is extended to the case of fully asymmetric
boundary deformations which is the second main topic of this thesis. The third main topic,
the resonance-assisted tunneling in microdisk cavities, is discussed in Sec. 7. Finally, in Sec. 8,
a summary of the thesis is provided.



2 Ray dynamics

In this chapter the ray dynamics of quasi-two-dimensional (2D) microcavities with homoge-
neous refractive index is discussed. In this model light propagates on straight lines until it is
partially reflected at the cavity’s boundary. The pure geometrical dynamics of the reflections,
i.e. the billiard dynamics, is usually expressed in a Poincaré surface of section along the cavity’s
boundary (in the following Poincaré section for short). The so-called Birkhoff coordinates of
this Poincaré section are introduced in Sec. 2.1. Afterwards, in Sec. 2.2, it is discussed how
a deformation of the cavity’s boundary effect this billiard dynamics and leads to a transition
from integrable to chaotic dynamics. Additionally to the billiard dynamics also the intensity
of the light ray and the traveling time are dynamical variables which are discussed in Sec. 2.3.
Furthermore, a review is given in this section how the ray model can be used to predict the
far-field emission pattern of a microdisk cavity.

2.1 Poincaré section for ray dynamics

The billiard dynamics in a microdisk cavity takes place in the 2D 𝑥-𝑦 plane. Therefore the
phase space for this dynamics consists of two position and two momentum variables; i.e. it
is four-dimensional (4D). However, this full 4D phase space contains “trivial” information.
Therefore, (i) scaling and (ii) a section along the boundary is commonly used to projection
the dynamics onto a 2D Poincaré section of the 4D phase space which still contains all rel-
evant information about the dynamics. To first employ the scaling it is used that the light
propagation inside the cavity is equivalent to the motion of a classical particle whose billiard
dynamics is described by the (dimensionless) Hamiltonian

ℋ(�⃗�, 𝑝) =

⎧⎨⎩
𝑝2

2
inside the cavity

∞ outside
(2.1)

where �⃗� and 𝑝 are position and momentum in the 𝑥-𝑦-plane. This Hamiltonian has the scaling
property

ℋ(�⃗�, 𝜆𝑝) = 𝜆2ℋ(�⃗�, 𝑝) (2.2)
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which implies that whenever [�⃗�(𝑡), 𝑝(𝑡)] solve Hamiltonian equations of motion

˙⃗𝑞 =
𝜕ℋ(�⃗�, 𝑝)

𝜕𝑝
, ˙⃗𝑝 = −𝜕ℋ(�⃗�, 𝑝)

𝜕�⃗�
(2.3)

on the energy shell 𝐸 = ℋ(�⃗�, 𝑝) then [�⃗�𝜆(𝑡), 𝑝𝜆(𝑡)] = [�⃗�(𝜆𝑡), 𝜆𝑝(𝜆𝑡)] is the solution of Eq. (2.3)
with energy 𝜆2𝐸 as

˙⃗𝑞𝜆 = 𝜆 ˙⃗𝑞 = 𝜆2
𝜕ℋ
𝜕(𝜆𝑝)

(�⃗�, 𝑝) =
𝜕ℋ
𝜕(𝜆𝑝)

(�⃗�, 𝜆𝑝) =
𝜕ℋ
𝜕𝑝𝜆

(�⃗�𝜆, 𝑝𝜆) (2.4)

˙⃗𝑝𝜆 = 𝜆2 ˙⃗𝑝 = −𝜆2𝜕ℋ
𝜕�⃗�

(�⃗�, 𝑝) = −𝜕ℋ
𝜕�⃗�

(�⃗�, 𝜆𝑝) = −𝜕ℋ
𝜕𝑞𝜆

(�⃗�𝜆, 𝑝𝜆). (2.5)

Note that the dot denotes a derivative with respect to 𝑡. In other words, the geometrical billiard
dynamics in a microdisk cavity is invariant under changing the ray’s momentum. Throughout
the rest of this thesis the scaling property is exploited by fixing 𝑝 2 = 1; i.e. by considering
rays with dimensionless energy 𝐸 = 1/2. This leads to dynamics on a three-dimensional (3D)
energy shell in the full 4D phase space.

Next, the fact is exploited that the ray dynamics between the boundary reflections is “trivial”
in the sense that 𝑝 is constant. Therefore, it is convenient to describe the ray dynamics in a 2D
Poincaré section of the 3D energy shell. The most commonly used section for billiard systems is
given by so-called Birkhoff coordinates (𝑞, 𝑝). Here, the position 𝑞 along the cavity’s boundary
is tracked at the reflections. Accordingly, the conjugate momentum 𝑝 is the projection of the
full momentum vector 𝑝 of the reflected ray onto the tangent of the boundary at 𝑞. As shown in
Fig. 2.1(a) this momentum 𝑝 = sin𝜒 is given by the angle of incidence/reflection 𝜒. The sign
of the angle 𝜒 can be used to identify clockwise (−) and counter-clockwise (+) propagation
inside the cavity.

(q1, p1)

(q2, p2)

χ2χ2

(q3, p3)

(q4, p4)

(a)

0 qmax
−1

0

1

(q1, p1)

(q2, p2)

(q3, p3)

(q4, p4)

counter-clockwise propagation

clockwise propagation

q

p

(b)

Figure 2.1: (a) Blue arrows illustrate a ray propagating in a Limaçon shaped cavity, see
Eq. (2.15). (b) The four reflection positions 𝑞𝑖 and momenta 𝑝𝑖 = sin𝜒𝑖 are shown in the
Poincaré section of the phase space as blue dots.
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Consequently, the time-continuous billiard dynamics in a 4D phase space is effectively described
by a discrete mapping

(𝑞𝑛+1, 𝑝𝑛+1) = ℳ(𝑞𝑛, 𝑝𝑛) (2.6)

in a 2D Poincaré section of the phase space. In the following this 2D Poincaré section of the
phase space is always considered and for convenience simply called “phase space”. Note that
billiard dynamics implies that the inverse mapping (𝑞𝑛−1, 𝑝𝑛−1) = ℳ−1(𝑞𝑛, 𝑝𝑛) is given by

(𝑞𝑛−1,−𝑝𝑛−1) = ℳ(𝑞𝑛,−𝑝𝑛) (2.7)

which follows from time-reversal symmetry. And further note that the mapping ℳ can only
be written explicitly for simple boundary shapes. Generic cavity shapes require a numerical
evaluation of ℳ.
An often considered case are cavities whose boundary is given in polar coordinates by a (may
implicit defined) continuous function 𝑟(𝜑). Therefore it is mentioned that sometimes not the
arc length

𝑞(𝜑) =

∫︁ 𝜑

0

√︀
𝑟′2(𝑥) + 𝑟2(𝑥) d𝑥 (2.8)

and 𝑝 but also the angle 𝜑 and the 𝑧-component of the angular momentum 𝐿𝑧 = (�⃗�×𝑝)𝑧 of the
ray can be used as proper coordinates for a Poincaré section. However, the tuple (𝜑, 𝑝) leads
a non-area preserving Poincaré mapping. Note that even in convex cavities the coordinate
transformation (𝜑, 𝐿𝑧) ↦→ (𝑞, 𝑝) does not need to be bijective; i.e. for some deformations one
finds two pairs (𝑞, 𝑝1) and (𝑞, 𝑝2) leading to the same (𝜑, 𝐿𝑧).

2.2 Billiard dynamics in deformed cavities

In the previous section an efficient description of the billiard dynamics was explained. The
purpose of this section is now to investigate the billiard dynamics depending on the cavity’s
boundary shape. In Sec. 2.2.1 it is explained how chaotic dynamics develops by perturbing
the boundary of an integrable cavity. Afterwards, in Sec. 2.2.2, the properties of the billiard
dynamics in cavities with commonly used symmetries are remarked.

2.2.1 Integrable and chaotic billiard dynamics

The billiard dynamics in a 2D microdisk cavity is integrable if there exists two constants of
motion. One is always the (dimensionless) energy which is here fixed to 𝐸 = 1/2, see Sec. 2.1.
Another constant of motion can be extracted in some cases from the particular shape of the



8 2.2 Billiard dynamics in deformed cavities

microdisk cavity. Then, in a cavity with integrable dynamics the time evolution of an initial
condition at most fills a 2D tori in the 4D phase space and a 1D tori, i.e. a curve, in the 2D
Poincaré section of the phase space. If one iterates two nearby initial conditions their distance
slowly (sub-exponentially) increases with time.

On the other hand a strongly deformed cavity exhibits regions in phase space where the
dynamics depends sensitively on the initial condition, i.e. the distance between two nearby
initial conditions exponentially increases with time. This type of dynamics is called chaotic.
A chaotic orbit fills a whole area in phase space. For a microdisk cavity with chaotic dynamics
one cannot find a second constant of motion.

In the following the transition from integrable to chaotic dynamics due to a boundary deforma-
tion which acts as a generic perturbation to the integrable dynamics is discussed. Therefore,
first, the integrable dynamics of the circular cavity is reviewed and afterward gradually in-
creasing deformations are considered.

Integrable dynamics in a circular cavity

The circular cavity is one of the simplest systems and shows integrable billiard dynamics.
The reflections at the boundary change the momentum 𝑝 parallel to �⃗�. Therefore, the second
conserved quantity is the angular momentum 𝐿𝑧 = (�⃗� × 𝑝)𝑧 of a ray. Consequently, also the
Birkhoff coordinate 𝑝 = sin𝜒 remains constant. The billiard dynamics of the circular cavity
is given in phase space explicitly by the mapping

𝑞𝑛+1 = 𝑞𝑛 + 2𝑅 arccos(𝑝𝑛) mod 2𝜋𝑅 (2.9a)

𝑝𝑛+1 = 𝑝𝑛 (2.9b)

where 𝑅 is the radius of the circle.

This mapping can be compared to the continuous time evolution

𝜃(𝑡) = 𝜃(0) + 𝜔(𝐽)𝑡 (2.10a)

𝐽(𝑡) = 𝐽(0). (2.10b)

of a general integrable Hamiltonian system 𝐻(𝜃, 𝐽) with action-angle variables (𝐽, 𝜃) where 𝐽
is the constant of motion [Lichtenberg and Lieberman, 1992]. Then

𝜔(𝑝) = 2𝑅 arccos(𝑝) (2.11)

can be deduced as the frequency of orbits in the phase-space map of the circular cavity [see
Fig. 2.3]. Strictly speaking this conclusion is only valid for 𝑝 ≥ 0. For 𝑝 < 0 the frequency
is negative as 𝜔(−|𝑝|) = −𝜔(|𝑝|) since the real space dynamics is rotating in the clockwise
direction and not in the mathematically positive counter-clockwise direction. For the following
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Figure 2.2: The billiard dynamics in a circular cavity is shown in phase space. Colored
dots mark some (marginally stable) periodic orbits while gray lines illustrate non-periodic
orbits filling a whole line in phase space. Corresponding real space trajectories are shown
in the right panel.

discussion in this section it is sufficient to consider only the upper half of the phase space with
positive frequency 𝜔(𝑝).
In the following, it is useful to distinguish between periodic and non-periodic orbits. Periodic
orbits (𝑞*𝑛, 𝑝*𝑛) with periodicity 𝑟 need to fulfill(︃

𝑞*𝑛+𝑟
𝑝*𝑛+𝑟

)︃
=

(︃
𝑞*𝑛
𝑝*𝑛

)︃
(2.12)

and therefore

𝑟𝜔(𝑝*𝑛) = 𝑟𝜔𝑟:𝑠 = 2𝜋𝑠𝑅 (2.13)

where both 𝑠 and 𝑟 are integer. This condition means that a periodic orbit/ray needs 𝑟
reflections to encircle the origin 𝑠 times. By inserting Eq. (2.13) into Eq. (2.11) it follows that
in phase space the 𝑟:𝑠 periodic orbit is located at the momentum

𝑝𝑟:𝑠 = cos
(︁
𝜋
𝑠

𝑟

)︁
. (2.14)

Therefore this line of constant momentum contains a whole family of 𝑟:𝑠 periodic orbits,
who are all separated in the sense that one single initial condition cannot discover the whole
line of constant momentum. This is fundamentally different for a non-periodic orbit whose
momentum is given by Eq. (2.14) with an irrational ratio 𝑠/𝑟. Iterating a single initial condition
fills a line 𝑝 = const densely. In a more general framework of dynamical system the fraction



10 2.2 Billiard dynamics in deformed cavities

𝑠/𝑟 is also called winding number [Lichtenberg and Lieberman, 1992].

0 p1:3 p1:4 p1:7 1
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2πR

Figure 2.3: A black solid curve shows the frequency of orbits in the circular cavity as a
function of the momentum 𝑝 = sin𝜒, see Eq. (2.11). Dashed lines mark the momentum and
frequencies of the periodic orbits shown in Fig. 2.2.

Generic boundary deformations and transition to chaotic dynamics

A generic boundary deformation acts as a perturbation to the billiard dynamics of the circular
cavity. Depending on the perturbation strength the dynamics shows therefore a transition
from integrable to near-integrable, to mixed, and finally, to chaotic dynamics. Two well-
known theorems describe how such a perturbation influences the dynamics of an integrable
system: (i) the Poincaré-Birkhoff theorem [Poincaré, 1912, Birkhoff, 1913] for the resonant
(periodic) tori and (ii) the Kolmogorov-Arnold-Moser (KAM) theorem [Kolmogorov, 1954,
Arnol’d, 1963, Moser, 1962] for almost-all tori sufficiently away from the resonant tori.
In the following both theorems are discussed in more detail. For an illustration the deformation
of the Limaçon cavity is considered. However, the explained mechanisms are quite general for
all generic deformations. The boundary of the Limaçon is defined in polar coordinates by

𝑟(𝜑)

𝑅
= 1 + 𝜖 cos(𝜑). (2.15)

The parameter 𝜖 indicates the perturbation strength. In Fig. 2.4 the boundary of the Limaçon
is shown for different values of 𝜖.
Starting from the circle (𝜖 = 0) and increasing 𝜖 slightly the KAM theorem points out that
almost all tori of the circular cavity whose winding numbers are sufficiently irrational will
remain. But they are slightly deformed. This is illustrated by the gray curves in Fig. 2.5 for
the Limaçon with 𝜖 = 0.15.
On the other hand the Poincaré-Birkhoff theorem points out that a tori whose unperturbed
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ε = 0.15 ε = 0.25 ε = 0.5 ε = 1

Figure 2.4: The boundary of the Limaçon, Eq. (2.15), is shown as black curve for different
deformation parameters 𝜖. Note that the size of the cavity is scaled individually for each 𝜖.

frequencies 𝜔𝑟:𝑠 = 2𝜋𝑠/𝑟 has small integer values 𝑠 and 𝑟 splits up into an alternating se-
quence of 𝑟 stable and 𝑟 unstable periodic orbits, see Fig. 2.5 around 𝑝 = 0.5: The unstable
periodic orbits are connected by the separatrix (red curve) which encloses the remaining reg-
ular dynamics around the stable periodic orbits (blue curves) and separates them from the
remaining KAM tori (gray curves). This structure is a so-called resonance chain. The regular
dynamics around the stable (and unstable) periodic orbit (𝑞*, 𝑝*) can be approximated with
the linearized 𝑟-fold mapping(︃

𝑞𝑛+𝑟

𝑝𝑛+𝑟

)︃
= 𝐽𝑟

(︃
𝑞𝑛 − 𝑞*

𝑝𝑛 − 𝑝*

)︃
+

(︃
𝑞*

𝑝*

)︃
(2.16)

where

𝐽𝑟 =

⎛⎜⎝
𝜕𝑞𝑛+𝑟
𝜕𝑞𝑛

𝜕𝑞𝑛+𝑟
𝜕𝑝𝑛

𝜕𝑝𝑛+𝑟
𝜕𝑞𝑛

𝜕𝑝𝑛+𝑟
𝜕𝑝𝑛

⎞⎟⎠
⃒⃒⃒⃒
⃒⃒⃒
(𝑞,𝑝)=(𝑞*,𝑝*)

(2.17)

is the monodromy matrix. The trace Tr 𝐽𝑟 indicates whether the periodic orbit is stable
(|Tr 𝐽𝑟| < 2), or unstable (|Tr 𝐽𝑟| > 2), or marginal (|Tr 𝐽𝑟| = 2) [Lichtenberg and Lieberman,
1992]. Furthermore, from the area preservation it follows for all points in phase space | det 𝐽1| =
1. As an example the linearized dynamics around a stable period-3 orbit in the Limaçon is
shown in the magnification in Fig. 2.5 as green dashed curves.

The periodic orbit with the smallest integers 𝑠:𝑟 is typically the bouncing ball orbit 𝑟:𝑠 = 2:1
which travels along the cavity’s diameter. The resonance chain of the bouncing ball orbit is
therefore typically formed even for very small perturbation strengths 𝜖. Resonance chains with
higher integers 𝑟:𝑠 cover typically smaller areas in phase space.

Around the separatrix a thin region of chaotic dynamics exists. This so-called chaotic layer
increases with increasing perturbation strength, e.g. in the Limaçon with increasing 𝜖. Si-
multaneously, resonance chains of higher orders develop from the remaining regular tori and
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Figure 2.5: The figure shows the phase space dynamics in the Limaçon with 𝜖 = 0.15.
Some of the remaining KAM tori are shown as gray curves. The separatrix of the 𝑟:𝑠 = 3:1
resonance chain is shown as red curve. The regular dynamics around stable fixed points
(black empty circle) is illustrated by blue curves; some unstable periodic orbits are marked
by black crosses. In the magnification on the orbits of the linearized mapping around the
central periodic orbit (𝑞*, 𝑝*) ≈ (𝑞max/2, 0.50805) are shown as green dashed curves.

increase their area in phase space and overlap with other resonance chains [Chirikov, 1960].
This mechanism leads to a generic mixed system where regions of regular and chaotic dy-
namics coexist in the phase space. For an illustration of such a system see Fig. 2.6. Here a
phase space portrait of the Limaçon with 𝜖 = 0.25 is shown. At this deformation strength
still islands of regular dynamics exist around the stable periodic orbits. Furthermore, there
are regular tori for high momentum 𝑝. The existence of these remaining unbroken tori is a
feature of the billiard dynamics. It is explained by the Lazutkin theorem [Lazutkin, 1973]
which states that in convex cavities still a set of caustics with a non-zero measure exists. Since
theses caustics are smooth and closed curves inside the cavity each formed by the envelope
of a single orbit it follows that also the orbit itself needs to be on a smooth closed curve in
phase space; i.e. on an invariant whispering-gallery-like curve. On the other hand if the cavity
is deformed to a non-convex shape, i.e. if there exits at least one point of vanishing curvature
along the boundary, then it follows from Mather’s theorem [Mather, 1982] that no remaining
convex caustic and therefore no whispering-gallery-like curve in phase space exits. However,
at these deformations may still regular islands around periodic orbits are embedded in the
chaotic region.

Note that the chaotic region is not homogeneous in the sense that transport is limited by partial
barriers which are for instance formed from destroyed KAM tori [Meiss, 1992]. Furthermore,
chaotic orbits can be trapped at the hierarchical structures formed by partial barriers around
regular islands [MacKay et al., 1984, Mackay et al., 1984].
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Figure 2.6: Orbits of the Limaçon cavity with 𝜖 = 0.25 are shown as gray dots/curves.

By further increasing the perturbation strength 𝜖 the regular structures gradually vanish. In
the Limaçon at 𝜖 = 0.5 macroscopically the phase space looks chaotic [see Figs. 2.4 and 2.7(a)],
but small islands still exist at small scales. Full chaotic (ergodic) dynamics is rigorously proven
only for a few examples, e.g., the Cardiod (the Limaçon with 𝜖 = 1) [see Figs. 2.4 and 2.7(b)]
or the Sinai billiard [Markarian, 1993].
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(a) ε = 0.5
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(b) ε = 1

Figure 2.7: The figure shows the phase space dynamics (gray dots) of a single initial
condition in the Limaçon with (a) 𝜖 = 0.5 and (b) 𝜖 = 1 (Cardioid).
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Special boundary deformations

Except for the generic deformations of the circular cavity which lead to a smooth transition
from integrable to chaotic dynamics there exists special deformations which do not follow the
above mentioned mechanism. A first example is given by deforming a circle to an ellipse given
by

𝑟(𝜑)

𝑅
=

𝑏√︀
1− e2 cos2(𝜑)

(2.18)

with scaling parameter 𝑏 and eccentricity e < 1. By increasing the eccentricity the deformation
to the circle gets stronger. However, for arbitrary strong deformations the orbits of the billiard
dynamics still follow 1D tori in phase space; i.e. the dynamics is integrable. The reason is that
in the ellipse a second conserved quantity in addition to the energy of the ray exists. This
conserved quantity is the product of the two angular momenta with respect to the two foci
[Nöckel, 1997].
Similarly, the deformation of a square to a rectangle does not generate chaotic dynamics even
for strong elongations because 𝑝2𝑥 and 𝑝2𝑦 are two independent constants of motion resulting in
integrable dynamics.
On the other hand even arbitrary small deformations can exhibit chaotic dynamics if they,
e.g., exhibits points of infinite curvature such as edges. One example of such a deformation is
the spiral cavity which is defined by

𝑟(𝜑)

𝑅
= 1− 𝜖

2𝜋
𝜑 (2.19)

where for every 𝜖 > 0 chaotic dynamics is generated. Another example of this type is the
deformation of the circle to a stadium [Bunimovich, 1979].

2.2.2 Symmetries

In cavities where the boundary shape exhibits a symmetry also the phase space dynamics
needs to reflect this symmetry. Therefore a reduced phase space is appropriate to describe the
dynamics of the whole system. In this section a remark on typical symmetries and their effect
on the billiard dynamics is given.

Mirror-reflection symmetry to the 𝑥-axis

If there exists a mirror-reflection symmetry in the cavity’s boundary it is assumed that the
coordinate system is tilted such that the symmetry line coincides with the 𝑥-axis. Accordingly,
the radius satisfies 𝑟(𝜑) = 𝑟(−𝜑) as, e.g., in the Limaçon, the ellipse, and the circular cavity.
Then the dynamics in the lower half (𝑝 < 0) and the upper half (𝑝 > 0) of the phase space is
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equivalent. Via the relation

(𝑞𝑛, 𝑝𝑛) ↦→ (𝑞𝑛+1, 𝑝𝑛+1) ⇐⇒ (𝑞max − 𝑞𝑛,−𝑝𝑛) ↦→ (𝑞max − 𝑞𝑛+1,−𝑝𝑛+1) (2.20)

the symmetry connected partner orbit can be constructed. Note that both might be the same.
If a mirror-reflection symmetry is present the phase space can be restricted to the upper half
without loss of generality as e.g. in Figs. 2.5, 2.6, 2.7.

Mirror-reflection symmetry to the 𝑥-axis and the 𝑦-axis

Some systems as e.g. the ellipse exhibit a second mirror-reflection symmetry which is perpen-
dicular to the first one. Then additionally to Eq. (2.20) the following relation

(𝑞𝑛, 𝑝𝑛) ↦→ (𝑞𝑛+1, 𝑝𝑛+1)

⇐⇒
(︁𝑞max

2
− 𝑞𝑛 mod 𝑞max,−𝑝𝑛

)︁
↦→
(︁𝑞max

2
− 𝑞𝑛+1 mod 𝑞max,−𝑝𝑛+1

)︁
(2.21)

is valid for the symmetry connected orbits. Therefore, the phase space can be partitioned into
four parts separated at 𝑞max/4, 𝑞max/2, and 3𝑞max/4. And additionally, the lower and upper
half of the phase space are equivalent.

𝑁-fold rotational symmetry

Some systems show a general 𝑁 -fold rotational symmetry, e.g., if 𝑟(𝜑) = 𝑟(𝜑 + 2𝜋𝑗/𝑁) with
integer 𝑗 = 0...𝑁 . Then all orbits are 𝑁 -fold rotational symmetry related via

(𝑞𝑛, 𝑝𝑛) ↦→ (𝑞𝑛+1, 𝑝𝑛+1)

⇐⇒
(︂
𝑞𝑛 +

𝑗

𝑁
𝑞max mod 𝑞max, 𝑝𝑛

)︂
↦→
(︂
𝑞𝑛+1 +

𝑗

𝑁
𝑞max mod 𝑞max, 𝑝𝑛+1

)︂
. (2.22)

Note that a boundary curve could have such a 𝑁 -fold rotational symmetry but no mirror-
reflection symmetry. However, the existence of a mirror-reflection symmetry implies the ex-
istence of at least a 2-fold rotational symmetry. An example for such a cavity shape with a
𝑁 -fold rotational symmetry and a mirror reflection symmetry is the microflower 𝑟(𝜑)/𝑅 =

1 + 𝜖 cos(𝑁𝜑) [Boriskina et al., 2006]. However, a circular saw shaped cavity has an 𝑁 -fold
rotational symmetry but no mirror-reflection symmetry. In this case the phase space is again
segmentized in 𝑁 parts separated by 𝑗𝑞max/𝑁 but the dynamics in the lower and upper half
is not equivalent in the sense of Eq. (2.20).

2.3 From billiards to microdisk cavities

So far the billiard dynamics which describes the geometrical propagation of rays inside the
cavity was discussed. However, in a microcavity rays are not always totally reflected. If
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they hit the boundary with a small angle of incidence they are just partially reflected. The
other part of the intensity radiates out of the cavity. Thus not only the reflection direction
but also the reflected intensity is a quantity which changes dynamically. In Sec. 2.3.1 this
partial leakage is introduced to the phase space dynamics. Since radiation out of the cavity is
included to the ray model one is able to construct the resulting far-field emission pattern of
the microcavity which is discussed in Sec. 2.3.2.

2.3.1 Partial leakage and true-time dynamics

If a ray with intensity 𝐼 hits an interface where the refractive index changes from 𝑛1 to 𝑛2

it is partially reflected and partially transmitted depending on the angle of incidence 𝛼, see
Fig. 2.8(a). The amount of reflected intensity 𝑅𝐼 and transmitted intensity (1 − 𝑅)𝐼 can
be described with the reflection coefficient 𝑅. In case of large | sin𝛼| > 𝑛2/𝑛1 total internal
reflection implies 𝑅 = 1. Whereas for small | sin𝛼| < 𝑛2/𝑛1 the reflection coefficient 𝑅 is
described by the Fresnel formulas [Jackson, 1998]. In the often considered cases of transverse
magnetic (TM) or transverse electric (TE) polarization [for details of TE/TM polarization see
Sec. 3.1] the Fresnel formulas reduce to

𝑅 =

(︂
sin(𝛼− 𝛽)

sin(𝛼 + 𝛽)

)︂2

for TM polarization (2.23a)

𝑅 =

(︂
tan(𝛼− 𝛽)

tan(𝛼 + 𝛽)

)︂2

for TE polarization. (2.23b)

Here, the angle of incidence 𝛼 and emission 𝛽, see Fig. 2.8(a), are connected via Snell’s law

𝑛1 sin𝛼 = 𝑛2 sin 𝛽. (2.24)

In Fig. 2.8(b) the reflection coefficient for TM/TE polarization is plotted versus the phase
space variable 𝑝 = sin𝛼 (of a planar interface). Note that in case of TE polarization at the so-
called Brewster angle 𝑝 = 𝑛1/

√︀
𝑛2
1 + 𝑛2

2 all incoming intensity is transmitted because 𝑅 = 0.
As a consequence of the finite reflectivity a leaky region is introduced in the phase space of a
microcavity, see Fig. 2.8(c).

Since the intensity of a ray can only be reduced by boundary reflections it is also important
how often a ray is reflected within a certain time interval: For example a ray traveling through
a short diameter of the cavity needs less time but the same number of reflections than a ray
traveling through the long diameter to loose a certain amount of intensity. This mismatch
between number of phase space iterations and the actual flight time of the ray can be incor-
porated in a so called true-time mapping. Here the flight time 𝑡𝑛 is also a dynamical variable
which increases by an increment Δ𝑡 and is recorded at the reflection points (𝑞𝑛, 𝑝𝑛). There-
fore, in order to properly incorporate the openness of the microcavity into the phase space
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Figure 2.8: (a) Illustration of partial reflection and transmission of a ray (blue arrows)
at a dielectric interface where the refractive index changes from 𝑛1 to 𝑛2 < 𝑛1. (b) The
reflection coefficient 𝑅 for TM (blue curve) and TE (red curve) is plotted versus the phase
space momentum 𝑝 = sin𝛼, see Eq. (2.23). For the illustration the ratio 𝑛2/𝑛1 = 1/2 is
chosen. (c) The leaky region according to (b) is shown in the phase space of an arbitrary
shaped cavity.

mapping (2.6) the tuple (𝑞𝑛, 𝑝𝑛, 𝐼𝑛, 𝑡𝑛) needs to be iterated as [Altmann et al., 2013]

(𝑞𝑛, 𝑝𝑛) ↦→ (𝑞𝑛+1, 𝑝𝑛+1) = ℳ(𝑞𝑛, 𝑝𝑛) (2.25a)

𝐼𝑛 ↦→ 𝐼𝑛+1 = 𝑅(𝑝𝑛+1)𝐼𝑛 (2.25b)

𝑡𝑛 ↦→ 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡(𝑞𝑛, 𝑝𝑛). (2.25c)

This mapping is illustrated in Fig. 2.9 for the Limaçon with 𝜖 = 0.5.
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Figure 2.9: (a) The ray dynamics in the open Limaçon with 𝜖 = 0.5 is illustrated by blue
arrows. (b) The length (or normalized flight time) Δ𝑡(𝑞, 𝑝) of a ray until the next boundary
collision is shown.

With the mapping (2.25) the ray model for a microcavity is defined. In the next section the
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ray model is used to calculate the far-field emission pattern of a deformed microdisk cavity.

2.3.2 Far-field emission and invariant sets in phase space

A property which is important for applications and experiments is the emission pattern of
a microdisk cavity. Especially, the emission pattern concerning the light trapped inside the
cavity for a long time is of interest. In this section the ray model is applied to predict the
emission pattern of this long-trapped light. For weakly deformed cavities regular dynamics is
present where rays are trapped forever due to total internal reflection and therefore do not
radiate out of the cavity. Hence, the ray model should be applied to predominantly chaotic
cavities where the classical transport into the leaky region in phase space determines the far-
field emission. For this purpose, first, the invariant sets in phase space of chaotic cavities are
introduced. Second, the emission pattern is obtained from theses invariant sets (precisely from
the unstable manifold).
In a first step it is assumed that the leaky region in phase space is completely open and all
intensity entering this region radiates out of the cavity. Then it is naturally to define the
set Γsaddle that contains all phase space points which never in the future nor in the past
enter the leaky region [Altmann et al., 2013, Ott, 1993], see Fig. 2.10(b). This set Γsaddle is
called chaotic saddle. However, if one is interested in the emission trough the leaky region not
the chaotic saddle but its unstable manifold Γunstable is important; i.e. the points in phase
space that converge to Γsaddle under backward iteration, see Fig. 2.10(a). For completeness
it is mentioned that a third invariant set is the stable manifold Γstable of the chaotic saddle
which consists of the points in phase space that converge to Γsaddle under forward iteration.
Therefore, the saddle can be written as Γsaddle = Γstable ∩ Γunstable.
However, the leaky region of a microcavity is not completely open but only partially open.
Therefore also the invariant sets need to be modified by tracking the intensity of the ray
according to the Fresnel reflection coefficient, see Fig. 2.10(c) (see Refs. [Wiersig and Hentschel,
2008, Altmann, 2009] and especially Appendix C of Ref. [Altmann et al., 2013] for details on
the computation of the intensity weighted invariant sets). This intensity weighted unstable
manifold can be used to predict the far-field intensity emission pattern |𝐹 (𝜑)|2 which is shown
in Fig. 2.10 for the Limaçon, also compare with Ref. [Wiersig and Hentschel, 2008]. Note that
because of the mirror-reflection symmetry in the Limaçon the far-field angle is restricted to
the interval 𝜑 ∈ [0, 𝜋].
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Figure 2.10: (a) Unstable manifold and (b) chaotic saddle for the fully open (no reflectivity
in leaky region) Limaçon at 𝜖 = 0.43 and 𝑛 = 3.3. (c) Unstable manifold for the Limaçon
cavity with finite reflectivity (TM polarization) [see Eq. (2.23a)] inside the leaky region.
(d) The resulting far-field emission pattern |𝐹 (𝜑)|2 for the Limaçon is shown (compare to
Ref. [Wiersig and Hentschel, 2008]).





3 Wave dynamics

In this section the wave dynamics of the electric and magnetic field in a dielectric microcavity
is discussed. Therefore, one searches for solutions of Maxwell’s equations with a harmonic
dependence in time, the so-called optical modes. In case of a thin disk-like cavity these modes
are determined by a scalar mode equation with proper boundary conditions which is derived
in Sec. 3.1. Since the mode equation is solvable analytically only for a few systems with
rotational symmetry the circular cavity with homogeneous refractive index is investigated in
Sec. 3.2. However, the more general case of deformed cavities is treated in Sec. 3.3.

3.1 From Maxwell’s equations to a scalar mode equation

The foundation of classical electrodynamics are Maxwell’s equations. In a medium these are
inhomogeneous coupled partial differential equations for the electric displacement field �⃗�, the
magnetic field �⃗�, the electric field �⃗�, and the magnetic flux density �⃗� which are influenced
by free charges 𝜌𝑓 and free currents �⃗�𝑓 as

∇⃗ · �⃗� = 𝜌𝑓 (3.1a)

∇⃗ · �⃗� = 0 (3.1b)

∇⃗ × �⃗� = −𝜕𝑡�⃗� (3.1c)

∇⃗ × �⃗� = �⃗�𝑓 + 𝜕𝑡�⃗�. (3.1d)

In a general case the relation between �⃗� and �⃗� (�⃗� and �⃗�) depend on the atomic bound
charges and currents. Only for a linear and isotopic medium which is considered here it yields

�⃗� = 𝜖0𝜖𝑟�⃗� (3.2a)

�⃗� = 𝜇0𝜇𝑟�⃗� (3.2b)

where (𝜖𝑟) 𝜖0 is the (relative) permittivity and (𝜇𝑟) 𝜇0 is the (relative) permeability. They are
related to the refractive index �̃� =

√
𝜖𝑟𝜇𝑟

1 and the vacuum speed of light 𝑐 = 1/
√
𝜖0𝜇0.

Furthermore, at a dielectric interface where the refractive index changes discontinuously the

1The symbol �̃� is used here for the refractive index of the material to distinguish it from the effective refractive
index denoted by 𝑛 which will be introduced later on in this section.
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electromagnetic fields need to fulfill boundary conditions. If the two regions with different
refractive indexes are divided into inside (index in) and outside (index out) and �⃗� is the local
normal vector at the interface then

�⃗� ·
(︁
𝑛2

in�⃗�in − 𝑛2
out�⃗�out

)︁
= 0 (3.3a)

�⃗� ·
(︁
�⃗�in − �⃗�out

)︁
= 0 (3.3b)

�⃗� ×
(︁
�⃗�in − �⃗�out

)︁
= 0 (3.3c)

�⃗� ×
(︁
�⃗�in − �⃗�out

)︁
= 0 (3.3d)

needs to be fulfilled [Jackson, 1998].

Derivation of the mode equations

In the following, the mode equation is derived for a setup where the shape and the dielectric
properties of the cavity are given by the refractive index profile �̃� = �̃�(�⃗�) which is piece-
wise constant and discontinuous at the cavity’s boundary. Furthermore it is assumed that
no external currents and charges are present, i.e. �⃗�𝑓 = 0 and 𝜌𝑓 = 0. In this situation
Maxwell’s equations can be rewritten for �⃗� and �⃗� by first calculating the curl of Eqs. (3.1c)
and Eqs. (3.1d). On the one hand this yields

∇⃗ × ∇⃗ × �⃗� = ∇⃗(∇⃗ · �⃗�)− ∇⃗2�⃗� = −∇⃗2�⃗� (3.4a)

∇⃗ × ∇⃗ × �⃗� = ∇⃗(∇⃗ · �⃗�)/(𝜇𝑟𝜇0)− ∇⃗2�⃗� = −∇⃗2�⃗� (3.4b)

with piece-wise constant 𝜇𝑟. But on the other hand it gives

∇⃗ × ∇⃗ × �⃗� = ∇⃗ ×
(︁
−𝜕𝑡�⃗�

)︁
= −𝜇𝜇𝑟𝜕𝑡(∇⃗ × �⃗�) = −𝜇𝜇𝑟𝜕2𝑡 �⃗� = − �̃�

2

𝑐2
𝜕2𝑡 �⃗� (3.5a)

∇⃗ × ∇⃗ × �⃗� = ∇⃗ ×
(︁
𝜕𝑡�⃗�

)︁
= 𝜖𝑟𝜖0𝜕𝑡

(︁
∇⃗ × �⃗�

)︁
= −𝜖𝑟𝜖0𝜕2𝑡 �⃗� = − �̃�

2

𝑐2
𝜕2𝑡 �⃗� (3.5b)

with piece-wise constant 𝜇𝑟 and 𝜖𝑟. Therefore, Eqs. (3.4a)-(3.5b) can be compactly written as
the wave equation

∇⃗2Ψ⃗(�⃗�, 𝑡)− �̃�2(�⃗�)

𝑐2
𝜕2𝑡 Ψ⃗(�⃗�, 𝑡) = 0 (3.6)

for Ψ⃗ ∈ {�⃗�, �⃗�}. A separation of variables leads to Ψ⃗(�⃗�, 𝑡) = Ψ⃗(�⃗�) exp(−𝑖𝜔𝑡) where 𝜔 ∈ C is
the complex frequency of Ψ⃗(�⃗�). The complex frequency is often expressed as the dimensionless
complex wave number 𝑘𝑅 = 𝑅𝜔/𝑐 where 𝑅 is a typical scale of the system size (R has the unit
of a length). While the real part of 𝑘𝑅 is related to the usual wavelength as Re 𝑘𝑅 = 2𝜋𝑅/𝜆

the imaginary part of 𝑘𝑅 determines the temporal decay or amplification of the mode Ψ⃗(�⃗�).
For a passive cavity which radiates to the free space Im 𝑘𝑅 < 0. To quantify the lifetime of a
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mode in the cavity the quality- or 𝑄-factor

𝑄 = − Re 𝑘𝑅
2Im 𝑘𝑅

(3.7)

is introduced. Therefore, high-𝑄 modes oscillate a longer time in the cavity than the lossy
low-𝑄 modes. The spatial distribution, the actual mode Ψ⃗(�⃗�), is determined by the mode
equation

∇⃗2Ψ⃗ + �̃�2𝑘2Ψ⃗ = 0 (3.8)

in its vectorial form. This equation needs to be solved numerically for arbitrary shaped 3D cavi-
ties where no further symmetries could be employed as e.g. deformed microspheres/microtoroids
or compounds of different 3D dielectric structures.

If however a translation invariance in 𝑧-direction is assumed, i.e. that the cavity is an infinite
cylindrical object defined by �̃�(�⃗�) = �̃�(𝑥, 𝑦), then the mode equation can be simplified further
for the 𝑧-component Ψ𝑧 of Ψ⃗. A separation of variables leads to Ψ𝑧 = 𝜓(𝑥, 𝑦) exp(−𝑖𝑘𝑧𝑧) with
separation constant 𝑘𝑧 describing the plane wave propagation in 𝑧-direction. For the mode
profile 𝜓(𝑥, 𝑦) the scalar mode equation

Δ𝑥𝑦𝜓 + 𝑛2𝑘2𝜓 = 0 (3.9)

follows from the separation ansatz. Here, Δ𝑥𝑦 = 𝜕2𝑥 + 𝜕2𝑦 is the 2D Laplace operator and
𝑛 = �̃�

√︀
1− 𝑘2𝑧/(�̃�𝑘)

2 is the effective refractive index. Note that the scalar mode equation (3.9)
is sufficient to determine all components of the full vector field Ψ⃗ in a cylindrical geometry
because the components of the vector field in the 𝑥-𝑦 plane, Ψ⃗𝑥𝑦, can be computed from the
𝑧-component Ψ𝑧 as follows: First, one evaluates

∇⃗ × Ψ⃗ =
(︁
∇⃗𝑥𝑦 + 𝜕𝑧 �⃗�𝑧

)︁
×
(︁
Ψ⃗𝑥𝑦 +Ψ𝑧 �⃗�𝑧

)︁
(3.10a)

=
(︁
∇⃗𝑥𝑦Ψ𝑧 × �⃗�𝑧

)︁
+
(︁
∇⃗𝑥𝑦 × Ψ⃗𝑥𝑦

)︁
+
(︁
�⃗�𝑧 × 𝜕𝑧Ψ⃗𝑥𝑦

)︁
(3.10b)

=
(︁
𝑖𝑘𝑧Ψ⃗𝑥𝑦 + ∇⃗𝑥𝑦Ψ𝑧

)︁
× �⃗�𝑧 +

(︁
∇⃗ × Ψ⃗

)︁
𝑧
�⃗�𝑧. (3.10c)

The both summands in the last equation are orthogonal vectors where the first one is in 𝑥-𝑦
plane. Hence, Maxwell’s equations for the curl (3.1c)-(3.1d) and the time harmonic dependence
of the modes can be used to obtain

−𝑖𝜔𝜖𝑟𝜖0�⃗�𝑥𝑦 =
(︁
𝑖𝑘𝑧�⃗�𝑥𝑦 + ∇⃗𝑥𝑦𝐻𝑧

)︁
× �⃗�𝑧 (3.11a)

𝑖𝜔𝜇𝑟𝜇0�⃗�𝑥𝑦 =
(︁
𝑖𝑘𝑧�⃗�𝑥𝑦 + ∇⃗𝑥𝑦𝐸𝑧

)︁
× �⃗�𝑧 (3.11b)

as system of equations for the fields �⃗�𝑥𝑦 and �⃗�𝑥𝑦 in the 𝑥-𝑦 plane. By inserting both equations
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into each other it yields

�⃗�𝑥𝑦 =
𝑖

𝑛2

(︁
𝑘𝑧∇⃗𝑥𝑦𝐸𝑧 − 𝑘 �⃗�𝑧 × ∇⃗𝑥𝑦𝐻𝑧

)︁
(3.12a)

�⃗�𝑥𝑦 =
𝑖

𝑛2

(︁
𝑘𝑧∇⃗𝑥𝑦𝐻𝑧 + 𝑘𝑛2 �⃗�𝑧 × ∇⃗𝑥𝑦𝐸𝑧

)︁
. (3.12b)

Here it is mentioned that one can distinguish two ideal polarizations

�⃗� = �⃗�𝑧 i.e. �⃗� = �⃗�𝑥𝑦 transverse magnetic (TM) polarization
�⃗� = �⃗�𝑧 i.e. �⃗� = �⃗�𝑥𝑦 transverse electric (TE) polarization

(3.13)

where Eqs. (3.12a) and (3.12b) decouple.

The reduction from the vectorial mode equation (3.8) to the scalar mode equation (3.9) is
strictly speaking only valid for a cylindrical geometry and not for a disk-like geometry. Nev-
ertheless, one can argue that in a microdisk the light propagation in 𝑧-direction is very slow,
i.e. 𝑘𝑧 ∼ 0, and therefore the finite cylinder size is not “seen” by the field. Hence, the scalar
mode equation (3.9) can predict modes also in a microdisk cavity well within the effective
refractive index approximation [Smotrova et al., 2005]. Note that a cylindrical symmetry is
almost achieved in microjet cavities [Yang et al., 2006, Lee et al., 2002]. Recently, also the
effects of the finite height of the microdisk cavity on the optical modes and their emission
profile have been studied at the Limaçon [Kreismann et al., 2017].

Boundary conditions for the scalar mode equation

In the following the boundary conditions (3.3a)-(3.3d) for the electromagnetic fields at a di-
electric interface are adapted to the case of a cylindrical (or disk-like) geometry. Especially
for the ideal polarizations TM and TE the boundary conditions can be simplified significantly:
First, TM polarization is examined. Here, from Eq. (3.12b) with 𝐻𝑧 = 0 it follows

�⃗�in − �⃗�out = �⃗�𝑥𝑦,in − �⃗�𝑥𝑦,out = 𝑖𝑘
[︁
�⃗�𝑧 × ∇⃗𝑥𝑦 (𝐸𝑧,in − 𝐸𝑧,out)

]︁
. (3.14)

Since in a cylindrical geometry the normal vector �⃗� lies in the 𝑥-𝑦 plane such that �⃗� × (�⃗�𝑧 ×
∇⃗𝑥𝑦) = �⃗�𝑧 · (�⃗� · ∇⃗𝑥𝑦) = �⃗�𝑧𝜕�⃗� the boundary condition (3.3d) can be simplified with Eq. (3.14)
to

𝜕�⃗�𝐸𝑧,in = 𝜕�⃗�𝐸𝑧,out. (3.15a)

Furthermore from Eq. (3.3c) it follows directly

𝐸𝑧,in = 𝐸𝑧,out. (3.15b)
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Both Eqs. (3.15a) and (3.15b) are the boundary conditions for the scalar mode equation (3.9)
at a dielectric interface for TM polarized fields.
Similarly, in the case of TE polarization where 𝐸𝑧 = 0, Eq. (3.12a) is used to obtain

�⃗�in − �⃗�out = �⃗�𝑥𝑦,in − �⃗�𝑥𝑦,out = −𝑖𝑘
[︂
�⃗�𝑧 × ∇⃗𝑥𝑦

(︂
𝐻𝑧

𝑛2
in
− 𝐻𝑧

𝑛2
out

)︂]︂
. (3.16)

With Eq. (3.3d) and �⃗� × (�⃗�𝑧 × ∇⃗𝑥𝑦) = �⃗�𝑧𝜕�⃗� this leads to the boundary condition for the mode
equation at a dielectric interface for TE polarized fields:

𝐻𝑧,in = 𝐻𝑧,out (3.17a)
𝜕�⃗�𝐻𝑧,in

𝑛2
in

=
𝜕�⃗�𝐻𝑧,out

𝑛2
out

. (3.17b)

It is mentioned again that these are ideal polarizations. In experiments maybe slight mixtures
of both polarizations are observed.

The outgoing wave condition

Additionally to the boundary conditions at a dielectric interfaces also the conditions of the
fields far away from the microdisk are crucial. The intensity of optical modes is assumed radiate
out of the cavity. It should not came from infinity and enter into the cavity. Therefore, in the
2D case general scattering theory implies that the Sommerfeld outgoing wave condition needs
to be fulfilled, i.e. that the wave function 𝜓 behaves asymptotically as

𝜓(𝑟, 𝜑) ∼ ℎ(𝜑; 𝑘)
𝑒𝑖𝑘𝑟√
𝑟

(3.18)

for large 𝑟. Note that in the 3D case the
√
𝑟 is replaced by 𝑟.

The combination of boundary conditions and outgoing wave condition make the mode equation
solvable only for discrete values of the complex wave number 𝑘 2 where due to radiation the
imaginary part of 𝑘 needs to be negative.

3.2 The circular microdisk

A very special case of a cylindrical or disk-like geometry is the circular cavity. Here, it is
possible to employ the continuous rotational symmetry in 𝑥-𝑦-plane additionally such that the
scalar mode equation (3.9) can be simplified further. This allows one to obtain an analytical
solution of Maxwell’s equations. Therefore, the circular cavity is an ideal system to classify
optical modes by mode numbers which can be defined rigorously in the circular cavity but

2The discrete values of the complex wave number 𝑘 can be seen as the discrete energy spectra of bounded
states in quantum mechanics.
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are also often used for slightly deformed microdisk cavities. Furthermore, the circular cavity
serves as a starting point to treat deformed cavities perturbatively as it will be discussed in
Sec. 5 and Sec. 6. In this section the determination of the modes in a circular microdisk cavity
and their properties are discussed.

In case of a continuous rotational symmetry the (effective) refractive index 𝑛(𝑥, 𝑦) = 𝑛(𝑟) is
assumed to be a piecewise constant function of the radius 𝑟 and independent of the angle 𝜑.
Therefore, the ansatz 𝜓(𝑟, 𝜑) = 𝛹(𝑟) exp(𝑖𝑚𝜑) can be used to separate the variables 𝑟 and
𝜑 in the scalar mode equation (3.9). The 2𝜋-periodicity of 𝜓 implies 𝑚 ∈ Z. For the radial
dependence a Bessel-like ODE of 𝑚-th order3

𝑟2𝜕2𝑟𝛹 + 𝑟𝜕𝑟𝛹 +
[︀
𝑛2𝑘2𝑟2 −𝑚2

]︀
𝛹 = 0 (3.19)

is obtained. Formally this equation is solved independently by both 𝐽𝑚(𝑛𝑘𝑟) and 𝐻𝑚(𝑛𝑘𝑟)

being 𝑚-the order Bessel- and Hankel-functions of the first kind. Note that also Neumann-
functions solve the Bessel ODE but are adverse solutions for a basis here. Since on the one
hand for large 𝑟 ≫ 𝑅 the Bessel-functions 𝐽𝑚 do not fulfill the outgoing wave condition (3.18),
and on the other hand the Hankel function 𝐻𝑚 diverge for 𝑟 → 0, it is natural to expand

𝜓𝑚,𝑙(𝑟, 𝜑) ≡ 𝜓(𝑟, 𝜑) =

⎧⎪⎪⎨⎪⎪⎩
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑘𝑅)
𝑒𝑖𝑚𝜑 for 𝑟 < 𝑅

𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑘𝑅)
𝑒𝑖𝑚𝜑 for 𝑟 > 𝑅

(3.20)

as the solution of the circular cavity. Here and in the following it is assumed that 𝑛 = 𝑛in

and 𝑛out = 1. In case of pure TM [or TE] polarization 𝜓(𝑟, 𝜑) needs to fulfill the boundary
conditions (3.15a)-(3.15b) [or (3.17a)-(3.17b)] which results in the conditional equation for the
quantized (dimensionless) wave number 𝑥 = 𝑘𝑅 as

𝑆𝑚(𝑥) :=
𝑛

𝜁

𝐽 ′
𝑚

𝐽𝑚
(𝑛𝑥)− 𝐻 ′

𝑚

𝐻𝑚

(𝑥)
!
= 0 (3.21)

where 𝜁 = 1 (𝜁 = 𝑛2) for TM (TE) polarization. The solutions of Eq. (3.21) are shown in
Fig. 3.1 for TM polarization. For fixed 𝑚 ∈ Z the roots of 𝑆𝑚(𝑥) are counted with an index
𝑙 ∈ N+ which has already been used as label in Eq. (3.20). The integers 𝑚, 𝑙 specifying the
mode, i.e. 𝜓𝑚,𝑙(𝑟, 𝜑) and 𝑥𝑚,𝑙. Therefore they are called mode numbers. For fixed 𝑙 the mode
with higher 𝑚 has the higher 𝑄-factor and the smaller wavelength.

From the symmetry relations 𝐽−𝑚(𝑥) = (−1)𝑚𝐽𝑚(𝑥) for Bessel functions (and similar for
Hankel functions) it follows that solutions of Eq. (3.21) for |𝑚| > 0 are double degenerate with
eigenfunctions 𝜓|𝑚|,𝑙 and 𝜓−|𝑚|,𝑙. Therefore, it is valid to superimpose the optical modes from

3The ordinary Bessel differential equation of 𝑚-th order is obtained by substituting 𝑥 = 𝑛𝑘𝑟. Note that the
refractive index 𝑛 and therefore 𝑥 are different inside (𝑛 = 𝑛in) and outside (𝑛 = 𝑛out) the cavity.
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Figure 3.1: The roots 𝑥 = 𝑘𝑅 of 𝑆𝑚(𝑥) [Eq. (3.21)] are shown in complex plane as blue
dots for the refractive index 𝑛 = 2 and TM polarization. For an interpretation of the mode
numbers 𝑚, 𝑙 see Fig. 3.2.

Eq. (3.20) as

𝜓+,|𝑚|,𝑙 =
1

2

(︀
𝜓|𝑚|,𝑙 + 𝜓−|𝑚|,𝑙

)︀
∼ cos(|𝑚|𝜑) (3.22a)

𝜓−,|𝑚|,𝑙 =
1

2𝑖

(︀
𝜓|𝑚|,𝑙 − 𝜓−|𝑚|,𝑙

)︀
∼ sin(|𝑚|𝜑) (3.22b)

such that a positive (+) and negative (−) parity with respect to the 𝑥-axis is obtained. In
Fig. 3.2 the square modulus of 𝜓+,|𝑚|,𝑙 is shown for several mode numbers. Here, an interpre-
tation of the mode numbers 𝑚, 𝑙 is possible: 𝑚 determines the number of nodes in azimuthal
direction to be 2𝑚 and 𝑙 is the number of extrema of |𝜓|2 in radial direction.
The mode number 𝑚 can also be seen as angular momentum (quantum) number since the
mode defined by Eq. (3.20) is an eigenstate of the angular momentum operator �̂�𝑧 = −𝑖𝜕𝜑
with �̂�𝑧𝜓𝑚,𝑙(𝑟, 𝜑) = 𝑚𝜓𝑚,𝑙(𝑟, 𝜑). In this sense modes with positive 𝑚 are counter-clockwise
traveling waves and modes with negative 𝑚 are clockwise traveling waves.
It is mentioned again that the above discussion is valid for circular cavities with homogeneous
refractive index. For example spherical cavities where 𝑛(𝑟) is not stepwise constant can be
treated in a perturbation theory of arbitrary high order, see Ref. [Lee et al., 1998].

3.3 Deformed microdisk cavities

The treatment of deformed cavities is essential since boundary deformations allow to design
the cavity for a desired purpose, e.g. as unidirectional light emitters. Therefore, in this sec-
tion a closer look to the modes in deformed cavities is taken. First, in Sec. 3.3.1 the ideal
case of symmetric deformations is examined, i.e. deformations which preserve at least one
mirror-reflection symmetry. However, in a real experiment the deformations are in general
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Figure 3.2: The figure shows the square modulus of 𝜓+,𝑚,𝑙 for modes in the circular cavity
for different combinations of mode numbers 𝑚, 𝑙. The color scale ranges from black to white
( ).

asymmetric either intended or unintended due to fabrication tolerances. Therefore, the case
of fully asymmetric deformations is discussed in Sec. 3.3.2.

3.3.1 Symmetric deformations

Deformed cavities whose boundary still has a mirror-reflection symmetry (for simplicity the
𝑥-axis) are treated in this section. For the wave function the symmetry implies |𝜓(𝑟, 𝜑)| =
|𝜓(𝑟,−𝜑)| so that the modes fall into two orthogonal classes: the ones with positive and the
ones with negative parity. As long as the cavity is not extremely deformed the modes can be
expanded into a series4

𝜓+(𝑟, 𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁
𝑚≥0

𝛼+,𝑚
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑘𝑅)
cos(𝑚𝜑) for 𝑟 < 𝑅∑︁

𝑚≥0

𝛽+,𝑚
𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑘𝑅)
cos(𝑚𝜑) for 𝑟 > 𝑅

(3.23)

4This so-called Rayleigh hypothesis states that the expansion of a mode into waves of a circular cavity is
possible for deformed microcavities. The scope of the Rayleigh hypothesis is still an open research field, see
e.g. [van den Berg and Fokkema, 1979, Yeo and Selvaraju, 1993, Watanabe et al., 2004, Wauer and Rother,
2009]. Violations to the Rayleigh hypothesis could occur for deformations where rays leaving the cavity do
not radiate to the far-field but reenter again into the cavity.
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with 𝑘 ≡ 𝑘+ for the modes with positive parity and

𝜓−(𝑟, 𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁
𝑚≥0

𝛼−,𝑚
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑘𝑅)
sin(𝑚𝜑) for 𝑟 < 𝑅∑︁

𝑚≥0

𝛽−,𝑚
𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑘𝑅)
sin(𝑚𝜑) for 𝑟 > 𝑅

(3.24)

with 𝑘 ≡ 𝑘− for the modes with negative parity. Furthermore, there might be whispering-
gallery-like modes in the deformed cavity which have one dominant contribution for 𝑎±,𝑚. For
these modes 𝑚, 𝑙 can still be used as mode numbers whereas they are not as rigorously defined
as in the circle. The modes associated to 𝑥+ = 𝑘+𝑅 and 𝑥− = 𝑘−𝑅, which are degenerate in
the circular cavity, show a small complex frequency splitting

Δ𝑥 = 𝑥+ − 𝑥− (3.25)

in the deformed cavity. Typically, this splitting increases with increasing deformation strength.
A large splitting Δ𝑥 is of experimental relevance [Leymann et al., 2013, Kwak et al., 2015, Kim
et al., 2015] and advantageous for, e.g., polarization control [Daraei et al., 2006]. Note that
similar to Eqs. (3.23) and (3.24) it is also valid to expand the wave function into a basis of
traveling waves, i.e. in linear combinations of exp(𝑖𝑚𝜑). In such a case the mirror-reflection
symmetry enforces the expansion coefficients to fulfill |𝛼−𝑚| = |𝛼𝑚|.
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Figure 3.3: The complex wave numbers 𝑥 = 𝑘𝑅 are shown in complex plane for even (blue
open circles) and odd (red dots) parity modes with 𝑙 = 1, 2 in the quadrupole cavity with
(𝜖, 𝑛) = (0.1, 2). For the mode numbers (𝑚, 𝑙) = (12, 1) the complex plane is magnified and
the corresponding intensity mode pattern are shown. A mirror-reflection symmetry line is
shown as yellow dashed line.

Next, the dynamics of the modes associated to 𝑥+ and 𝑥− is expressed in an effective two-mode
model where the effective Hamiltonian takes the matrix form

𝐻 =

(︃
Ω 𝐴

𝐵 Ω

)︃
(3.26)
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in the basis of CCW and CW propagating waves [Wiersig et al., 2008, Wiersig et al., 2011,
Wiersig, 2011, Wiersig, 2014a] (for billiards see also Ref. [Hackenbroich et al., 1998]). There-
fore, the off-diagonal element 𝐴 (𝐵) describes the coupling of a pure CCW (CW) waves to
pure CW (CCW) waves conveyed by the boundary deformation, and Ω refers to the intensity
being not backscattered. Here, mirror-reflection symmetry implies 𝐴 = 𝐵. The eigenvalues of
this symmetric matrix are

𝜆± = Ω± 𝐴 (3.27)

and the eigenstates are

𝜓+ =
1√
2

(︃
1

1

)︃
𝜓− =

1√
2

(︃
1

−1

)︃
. (3.28)

Here, 𝜓+ (𝜓−) reflect the eigenstates regarding positive (negative) parity of the mode pair.
The splitting in the eigenvalues Δ𝑥 ≡ 𝜆+−𝜆− = 2𝐴 depends on the coupling strength 𝐴 = 𝐵

of CW and CCW waves; i.e. on the backscattering.
Note that the Hamiltonian (3.26) represents the dynamics of even and odd parity modes.
However, a formally similar Hamiltonian can be used to describe the interaction between
two levels 𝑙. Such an interaction leads to an avoided resonance crossing and occurs, e.g., if
one varies a system parameter [Carmon et al., 2008, Wiersig, 2006, Unterhinninghofen et al.,
2008, Yi et al., 2011, Wiersig and Hentschel, 2006].
If weak boundary deformations are considered the actual modes and their complex wave num-
ber can be determined by a perturbation theory for TM polarization [Dubertrand et al., 2008]
which is reviewed in Secs. 5.1-5.2 (for TE polarization see Ref. [Ge et al., 2013]). For stronger
boundary deformations the mode equation needs to be solved numerically e.g. with boundary
element method (BEM) [Wiersig, 2003], boundary integral method [Boriskina et al., 2004],
finite-difference-time-domain (FDTD) calculations [Inan and Marshall, 2011, Oskooi et al.,
2010], wave-matching [Nöckel and Stone, 1996, Hentschel and Richter, 2002] or numerical
scattering matrix approaches [Türeci et al., 2005]. In this thesis all full numerical results are
obtained using the boundary element method 5 6.

3.3.2 Asymmetric deformations and asymmetric backscattering

In this section microdisk cavities are discussed that do not exhibit any mirror-reflection sym-
metry. Such fully asymmetric cavities can be constructed by deforming a circular cavity e.g.
to a spiral [Chern et al., 2003]. An alternative way to construct asymmetric cavities is to place

5Note that the boundary element method has the advantage that it does not assume the Rayleigh hypothesis.
Therefore, the BEM gives accurate results also for, e.g., non-convex cavities.

6The cpp code of the boundary element method [Wiersig, 2003] which is used in this thesis was provided by
Prof. J. Wiersig.
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external scatterers such as nanoparticles [Wiersig, 2011], waveguides [Redding et al., 2012] or
microfiber tips [Mazzei et al., 2007] along the cavity’s boundary. The latter procedure can
be used experimentally to easily control the asymmetry parameter, e.g. the position of the
microfiber tips, in order to drive the system in an exceptional point [Peng et al., 2016]. In
microjet cavities an asymmetric shape can be induced by using a noncircular orifice [Yang
et al., 2006].
In asymmetric cavities the modes are no longer separated into even and odd parity classes
but still, as long as the deformation is not too large, one observes mode pairs as illustrated in
Fig. 3.4. However, these modes do not from standing waves any longer but partially traveling
waves; i.e. the modes exhibit a finite chirality 𝛼ch. From the angular momentum decomposition
of the mode

𝜓(𝑟, 𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁
𝑚∈Z

𝛼𝑚
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑘𝑅)
𝑒𝑖𝑚𝜑 for 𝑟 < 𝑅∑︁

𝑚∈Z
𝛽𝑚

𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑘𝑅)
𝑒𝑖𝑚𝜑 for 𝑟 > 𝑅

(3.29)

this chirality can be computed as

𝛼ch =

∑︀
𝑚<0

|𝛼𝑚|2 −
∑︀
𝑚>0

|𝛼𝑚|2∑︀
𝑚<0

|𝛼𝑚|2 +
∑︀
𝑚>0

|𝛼𝑚|2
(3.30)

which is −1 for pure CCW propagation, zero for standing waves and 1 for pure CW propa-
gation. Note that often, e.g. in Refs. [Wiersig, 2011, Wiersig et al., 2011, Wiersig, 2014a], an
alternative definition

�̃�ch = 1−
min

(︂∑︀
𝑚<0

|𝛼𝑚|2,
∑︀
𝑚>0

|𝛼𝑚|2
)︂

max

(︂∑︀
𝑚<0

|𝛼𝑚|2,
∑︀
𝑚>0

|𝛼𝑚|2
)︂ (3.31)

is used which is zero for standing waves and converge to one for any direction of propagation.
As show in the intensity pattern in Fig. 3.4 the modes do not have defined node lines, i.e. they
form ring-like structures which indicates them as (partially) traveling waves.

Two mode model for asymmetric backscattering

As long as the optical modes still come in nearly degenerate pairs it is valid to use a two-mode
model to describe the dynamics of such a pair. The effective two-mode Hamiltonian (3.26)

𝐻 =

(︃
Ω 𝐴

𝐵 Ω

)︃
. (3.32)
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Figure 3.4: (a) The complex wave numbers of optical modes in the spiral cavity with
(𝜖, 𝑛) = (0.05, 2.0) are shown in complex plane for mode pairs 𝑙 6 2. (b) and (c) shown the
numerically determined chirality 𝛼ch, see Eq. (3.30), for 𝑙 = 1 and 𝑙 = 2 respectively. The
magnification show a highly copropagating mode pair around Re𝑥 ≈ 11.68. The intensity
pattern of the modes is shown in right panels with a white curve illustrating the cavity’s
boundary.

is repeated here for convenience. In contrast to the symmetric case (3.26), here, for fully
asymmetric cavities, the matrix𝐻 is not symmetric and, because of the openness of the system,
it is also not Hermitian; consequently |𝐴| ̸= |𝐵|. This phenomenon is called asymmetric
backscattering, see Refs. [Wiersig et al., 2008, Wiersig et al., 2011, Wiersig, 2011, Wiersig,
2014a]. As a result of the asymmetric backscattering the eigenvalues

𝜆± = Ω±
√
𝐴𝐵 (3.33)

and unnormalized eigenvectors

𝜓± =

(︃ √
𝐴

±
√
𝐵

)︃
(3.34)

differ from the symmetric case. From the eigenvectors of two-mode model the three main
aspects of asymmetric backscattering in microdisk cavities are obvious: (i) Since |𝐴| < |𝐵|
(|𝐴| > |𝐵|) the modes are partially traveling waves in (C)CW direction. (ii) Both modes are
copropagating with the same preferred sense of rotation as 𝛼ch,+ = 𝛼ch,− = (|𝐴| − |𝐵|)/(|𝐴|+
|𝐵|) [compare to Eq. (3.30)]. (iii) The mode pair is non-orthogonal with 𝜓*

+ · 𝜓− = |𝐴| −
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|𝐵| ̸= 0. These three aspects have been verified by full numerical simulations [Wiersig et al.,
2011, Wiersig, 2011] and experiments [Peng et al., 2016, Redding et al., 2012]. In Sec. 6 these
properties of modes in asymmetric cavities will be verified also within a perturbative approach
to slightly deformed microcavities.
Moreover, the eigenvectors (3.34) nicely reflect the properties of the expansion coefficients 𝛼𝑚
of the optical modes [Wiersig et al., 2008, Wiersig et al., 2011], see Fig. 3.5 for the angular
momentum distribution of the mode pair shown in Fig. 3.4. The pattern |𝑎𝑚|2 of the expansion
coefficients are almost identical for both modes. Since,

∑︀
𝑚>0 |𝑎𝑚|2 >

∑︀
𝑚<0 |𝑎𝑚|2 it yields 𝐴 >

𝐵 which identifies both modes as copropagating in CCW direction. Furthermore the expansion
coefficients 𝑎𝑚 of the second mode (blue circles) have the opposite signs than the 𝑎𝑚 of the
first mode (red dots) for negative 𝑚 which can also be explained by the eigenvectors (3.34).
Additionally, the 𝛼𝑚 of the two modes can be superimposed to reconstruct purely CW/CCW
propagating states, see Fig. 3.5(d). Accordingly, this can be done with the eigenvectors (3.34)
to reconstruct the basis of the two-mode Hamiltonian (3.32) as

𝜓+ + 𝜓−

2
√
𝐴

=

(︃
1

0

)︃
pure CCW propagating (3.35a)

𝜓+ − 𝜓−

2
√
𝐵

=

(︃
0

1

)︃
pure CW propagating. (3.35b)

Note that these superpositions are not eigenstates of the system due to a small splitting in
𝑘𝑅, 𝜆 respectively.

Exceptional points

An interesting aspect of the mode dynamics in asymmetric microcavities are so-called excep-
tional points (EPs) in parameter space [Kato, 1966, Heiss, 2000, Heiss and Harney, 2001, Berry,
2004, Heiss, 2012]. They are straightforwardly explained by the two-mode model: Considering
a deformation where the backscattering in only one direction vanishes, e.g. 𝐵 = 0 in the Hamil-
tonian (3.32) but the backscattering in the other direction is still finite with 𝐴 ̸= 0. Then,
from Eq. (3.33) it follows directly that the eigenvalues 𝜆 are degenerate. However, in contrast
to an ordinary (diabolic) degeneracy, at an EP also the eigenvectors coalesce and become
collinear, i.e. 𝜓+ = 𝜓− in Eq. (3.34). Therefore, if the microcavity is tuned into an EP the
mode pair vanishes and is replaced by a single degenerate mode with one complex wave num-
ber 𝑥 = 𝑘𝑅. Note that this mode is a purely traveling wave, e.g. in CCW direction if 𝐵 = 0.
Experimentally and numerically it is hard to tune the system exactly into an EP. Therefore,
also the properties of the system close to an EP are important and provide interesting physics.
From Eq. (3.33) it follows that the eigenvalues 𝜆, i.e. the complex wave numbers 𝑘𝑅, show a
characteristic square root topology close to the EP as illustrated in Fig. 3.6. Therefore, a way
to identify an EP numerically and experimentally is to encircling it in parameter space: After
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Figure 3.5: For the two modes shown in Fig. 3.4 the circular-mode expansion coefficients
𝛼𝑚 from Eq. (3.29) are shown in (a-c). In (d) the superpositions (orange open circles)
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(1)
𝑚 − 𝛼

(2)
𝑚 )/2 representing purely CW/CCW

propagating states are shown. The coefficients 𝛼−
𝑚 are enlarged by a factor 10.

one encircling the eigenvalues have exchanged; i.e. one need two encircling of the EP to restore
the eigenvalue. However to reestablish the wave function one needs actually four encirclings
because of a sign flip after the first two encirclings. These properties of the EP have been
first measured in microwave experiments [Dembowski et al., 2001, Dembowski et al., 2004]
and later in single optical microcavities [Lee et al., 2008b, Lee et al., 2009, Zhu et al., 2010].
Furthermore, EPs are important in 𝒫𝒯 -symmetric systems [Bender and Boettcher, 1998] such
as coupled optical structures with amplification and absorption [El-Ganainy et al., 2007b, Guo
et al., 2009b, Rüter et al., 2010, Hodaei et al., 2014, Peng et al., 2014a]. EPs in microcavities
also have promising applications, e.g. for improved sensitivity of nanoparticle sensors [Wiersig,
2014b], mechanical motion sensors [Liu et al., 2016], optical gyroscopes [Sarma et al., 2015],
and for the construction of optical waveguides with special transport properties [Schomerus
and Wiersig, 2014].
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3.4 Ray-wave correspondence

So far two ways to describe a microcavity are explained: The ray model in chapter 2 and
the wave model in the current chapter. In this section the two approaches are now compared.
Therefore, in Sec. 3.4.1 the boundary Husimi function [Hentschel et al., 2003] is reviewed which
projects the wave function 𝜓 (and its normal derivative) at the cavity’s boundary into the phase
space; to be precise into the section of the phase space taken along the cavity’s interface. In
Sec. 3.4.2 some fundamental aspects of the ray and wave comparison are discussed.

3.4.1 The boundary Husimi representation

The ray dynamics is effectively expressed in phase space where regions of regular and chaotic
dynamics are clearly separated. However, the wave function 𝜓(�⃗�) as solution of the mode
equation (3.9) acts in real space. In quantum mechanics therefore a Husimi function [Husimi,
1940] is used to project the wave function into the full phase space. Similarly, in case of
optical microcavities the boundary Husimi function [Hentschel et al., 2003]7 is used to project
𝜓(�⃗�) into the phase space spanned by the Birkhoff coordinates (𝑞, 𝑝) which were introduced in
Sec. 2.1. Consistently with the ray dynamics, the Husimi function can be constructed from the
component of 𝜓 approaching the boundary (inc) or emerging (em) from the boundary. Hence,
the overlap of the wave function 𝜓 and its normal derivative 𝜕𝜈𝜓 with a minimal uncertainty
wave packet 𝜁(𝑞, 𝑞, 𝑝) at (𝑞, 𝑝) [and folding parameter 𝑞] is used to define the boundary Husimi

7See also Ref. [Crespi et al., 1993] for the Husimi function in closed billiards.
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function as

𝐻
inc(em)
0 (𝑞, 𝑝) =

𝑛Re 𝑘
2𝜋

⃒⃒⃒⃒
ℱℎ𝜓(𝑞, 𝑝) + (−)

𝑖

ℱ𝑘ℎ𝜕𝜓(𝑞, 𝑝)
⃒⃒⃒⃒2

(3.36)

with ℱ =
√︁
𝑛
√︀

1− 𝑝2 and the functions

ℎ𝜓(𝑞, 𝑝) =

∫︁ 𝑞max

0

𝜓(𝑞)𝜁(𝑞, 𝑞, 𝑝) d𝑞 (3.37a)

ℎ𝜕𝜓(𝑞, 𝑝) =

∫︁ 𝑞max

0

𝜕𝜈𝜓(𝑞)𝜁(𝑞, 𝑞, 𝑝) d𝑞 (3.37b)

𝜁(𝑞, 𝑞, 𝑝) = (𝜎𝜋)−1/4
∞∑︁

𝑙=−∞
exp

[︂
−(𝑞 − 𝑞 + 𝑙𝑞max)

2

2𝜎
− 𝑖𝑛𝑘𝑝(𝑞 + 𝑙𝑞max)

]︂
. (3.37c)

Here, the parameter 𝜎/𝑅2 =
√
2/(𝑛Re 𝑘𝑅) fixes the extension of the minimal-uncertainty

wave packet 𝜁(𝑞, 𝑞, 𝑝). Note that in Ref. [Hentschel et al., 2003] in a similar manner also an
external Husimi function 𝐻 inc(em)

1 (𝑞, 𝑝) is defined that evaluates the components of 𝜓 and 𝜕𝜈𝜓
being outside of the cavity which is advantageous, e.g., for the comparison with scattering
experiments. In this thesis the emerging Husimi function 𝐻em

0 (𝑞, 𝑝) inside the cavity is used
to be consistent with the ray dynamics explained in chapter 2.

3.4.2 Comparing ray and wave dynamics

In the following, aspects of classical dynamics and their wave mechanical (or quantum me-
chanical) manifestations in phase space are discussed. Therefore, it is practical to define an
effective Planck constant

~ =
1

𝑛Re 𝑘𝑅
. (3.38)

for a particular optical mode which determines the resolution in phase space.

Regular dynamics

The circular cavity is an integrable system whose ray dynamics follow straight lines of constant
momentum in phase space, see Sec. 2.2.1. Therefore, also the optical modes follow these
integrable lines since the momentum 𝑝 is a conserved quantity. The momentum where the
optical mode localizes is predicted via [Nöckel, 1997]

𝑝 = ~𝑚 =
𝑚

𝑛Re 𝑘𝑅
, (3.39)

see Fig. 3.7. The profile of the Husimi function in 𝑝 is in a good agreement with a Gaussian.
Since the mode shown in Fig. 3.7 is a standing wave (with a positive parity) the Husimi function
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has same contributions on upper and lower half of phase space; i.e. same contributions of CW
and CCW parts.
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Figure 3.7: In (a) the Husimi function of the (positive parity) mode (𝑚, 𝑙) = (8, 1), see
Eq. (3.22a), in a circular cavity with 𝑛 = 2 is shown from low intensity (black) to high
intensity (yellow). In (b) the momentum distribution of the Husimi function is shown as
black curve. Blue dashed lines indicate the localization at 𝑝 given by Eq. (3.39).

If the microcavity is slightly deformed such that families of KAM curves in phase space exist
(see Sec. 2.2) then also the wave function in general follows the KAM curves with quantizing
actions [Gutzwiller, 1991]. Although the deformation is slightly stronger such that KAM
curves are already destroyed then there exists so called adiabatic curves [Robnik and Berry,
1985, Nöckel, 1997]

𝑝adi(𝑞) =

√︃
1−

(︂
𝜅(𝑞)

𝐾

)︂2/3

(3.40)

which roughly describe the ray dynamics for short times. Here, 𝜅(𝑞) is the curvature of the
cavity at 𝑞 and 𝐾 is an integration constant. Whispering-gallery-like optical modes follow
these adiabatic curves [Nöckel and Stone, 1997, Nöckel et al., 1996].

Localization along periodic orbits

If the cavity is moderately deformed regular islands around stable periodic orbits establish
due to the Poincaré-Birkhoff theorem. A wave mechanical signature of the regular islands
is the localization of modes in these regions. By properly adjusting the refractive index this
localization on the regular island can be used to create directional emission from the cavity
[Gmachl et al., 1998].
If all islands of a periodic orbit are outside the leaky region the lifetime of the concerning rays
is infinite. However, an optical mode localizing on such a regular island clearly has a finite
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lifetime. The origin is the so-called dynamical tunneling [Davis and Heller, 1981] which couples
classically separated regions in phase space. Therefore the mode radiates out of the cavity
in a two step process: First, the intensity leaves the regular island via dynamical tunneling
and, second, the chaotic dynamics around the island lead to an intensity transport into the
leaky region where it radiates out of the cavity [Shinohara et al., 2010, Shinohara et al., 2011].
Since the transport in the chaotic component of the phase space is rather fast such a process
is called chaos-assisted tunneling.

However, optical modes not only localize at the regular region around stable fixed points but
also along unstable fixed points without regular dynamics around. This phenomenon is called
scarring [Heller, 1984, Rex et al., 2002, Lee et al., 2002, Gmachl et al., 2002].

Interestingly, even in microcavities where no periodic orbit is present in classical ray dynamics
optical modes can localize along simple geometric structures. This has been observed e.g. in
the spiral cavity by Lee et al. [Lee et al., 2008a, Lee et al., 2004] and experimentally verified
by Kim et al. [Kim et al., 2009]. Such modes are called quasiscarred modes.

Partial barriers

If the microcavity is strongly deformed the phase space becomes predominantly chaotic, see
Sec. 2.2. However the transport in the chaotic region is usually not homogeneous. Partial bar-
riers which are formed e.g. from broken KAM tori (so-called cantori) can reduce the transport,
e.g., in the momentum 𝑝. The effects of such a partial barrier on the wave dynamics strongly
depend on the ratio Δ𝐴/~ of the wavelength, i.e. ~ from Eq. (3.38), and the area Δ𝐴 trans-
ported through the partial barrier via the turnstile mechanism [Mackay et al., 1984, Michler
et al., 2012]: If the wavelength is small enough the wave can penetrate the partial barrier
otherwise the partial barrier acts similar as an invariant curve. Consequently, it is possible
that long-lived whispering-gallery-like modes are formed in a predominantly chaotic cavity
[Shim et al., 2011]: Here, a partial barrier with small turnstile flux along a high momentum
𝑝 prevent the mode from spreading into the leaky region. For the similar effect in quantum
maps see also Ref. [Körber et al., 2015].

Unstable manifold

In a microcavity with chaotic ray dynamics the emission pattern of very long trapped rays
is predicted via an intensity-weighted unstable manifold as explained in Sec. 2.3.2. In Ref.
[Wiersig and Hentschel, 2008] it has been shown that also long-lived optical modes localize on
the unstable manifold and therefore exhibit a similar far-field pattern. This knowledge can be
used to design cavities with unidirectional light emission by designing the boundary shape to
result in a “proper” unstable manifold, see Ref. [Schermer et al., 2015].
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Resonance chains in phase space

Classical resonance chains in phase space which develop naturally due to Poincaré-Birkhoff
theorem have an impact on optical modes: If the order of the resonance chain is (𝑟:𝑠), i.e.
the resonance chain has 𝑟 islands in phase space (see Sec. 2.2.1), then circular modes whose
mode number difference (Δ𝑚,Δ𝑙) is a multiple of (𝑟:𝑠) are coupled [Brodier et al., 2002, Kwak
et al., 2015]. This situation is illustrated in Fig. 3.8. Here, the mode of the deformed cavity at
𝑘𝑅 = 105.79408− 0.00291𝑖 is dominantly the circular mode (𝑚, 𝑙) = (115, 4) localizing below
the resonance chain but has also noticeable contributions from the circular mode (𝑚, 𝑙) =

(133, 1) localizing above the resonance chain. The mode number difference (Δ𝑚,Δ𝑙) = (18, 3)

coincides with three times the order of the resonance chain (𝑟:𝑠) = (6:1). Remarkable in
the situation of Fig. 3.8 is that a low-𝑄 mode (𝑚, 𝑙) = (115, 4) gets contributions from a
high-𝑄 mode (𝑚, 𝑙) = (133, 1) which leads to the interesting fact that the 𝑄-factor of the
deformed cavity 𝑄deformed = 18155 is larger than the 𝑄-factor of the corresponding circular
mode 𝑄circle,(115,4) = 16838.
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Figure 3.8: In (a) the Husimi function of an optical mode with 𝑘𝑅 = 105.79408− 0.00291𝑖
is show from low intensity (black) to high intensity (yellow). The cavity shape is given by
𝑟(𝜑)/𝑅 = 1+0.003 cos 6𝜑 and the cavity has a refractive index 𝑛 = 4/3. The resonance chain
of the billiard dynamics is shown as white curve. In (b) the momentum distributions of the
Husimi function is shown as black curve. Red and blue dashed lines indicate the momenta
of the modes (𝑚, 𝑙) = (133, 1) and (𝑚, 𝑙) = (115, 4) in a circular cavity respectively, see
Eq. (3.39).

However, a generic whispering-gallery mode with radial mode number 𝑙 = 1 can only couple
to modes with lower 𝑄-factors via a classical resonance chain. Therefore one observes in
general a 𝑄-spoiling of high-𝑄 modes due to the resonance-assisted tunneling. This 𝑄-spoiling
mechanism is discussed in detail in Sec. 7.



40 3.4 Ray-wave correspondence

Extended ray dynamics

Whenever, ray and wave dynamics are compared one should keep in mind that a very good
agreement is only expected in the so-called semiclassical limit Re 𝑘𝑅 → ∞ (𝜆/𝑅 → 0). How-
ever, for a finite wavelength 𝜆 slight deviations are observable. One prominent effect is the
Goos-Hänchen shift [Goos and Hänchen, 1947]: In ray dynamics the reflection takes place at
a single point where the ray hits the dielectric interface. At this point the ray is instantly
reflected. However, in the wave picture a reflected beam is slightly shifted away from the
position of an incoming beam. This shift can be explained such that the beam is not directly
reflected at the interface but penetrates the material by roughly a wavelength and is there
reflected at an effective boundary [Hentschel and Schomerus, 2002].
A second important effect for the dynamics in the cavity is the Fresnel filtering [Tureci et al.,
2002] (or to be precise the angular Goos-Hänchen shift [Merano et al., 2009, Götte et al., 2013]):
In ordinary ray dynamics the angle of incidence is always equal to the angle of reflection.
However, in wave mechanics the angle at which a beam is reflected can be slightly different
from the angle of incidence. The origin here is that a beam actually exhibits a distribution
of incident angles some of which are only partially reflected. Therefore, the mean reflection
angle of the reflected beam is shifted. In this sense the Fresnel filtering is naturally explained
in ray dynamics if one iterates not a single ray but an intensity weighted distribution of rays.
However, if a single ray with finite wavelength is considered then the phase space dynam-
ics is effected by both the Goos-Hänchen shift and the Fresnel filtering [Schomerus and
Hentschel, 2006]. The incorporations of these wave effects in the ray dynamics can lead to
non-Hamiltonian (non-area-preserving) phase-space dynamics [Altmann et al., 2008]. Mod-
els for the wave corrections to the ray dynamics exit for planar [Artmann, 1948, Lai et al.,
1986, Unterhinninghofen and Wiersig, 2010] and curved [Stockschläder et al., 2014] interfaces.
Note that the extended ray dynamics also shift periodic orbits in phase space at which modes
can localize [Unterhinninghofen and Wiersig, 2010]. Moreover, incorporating extended ray
dynamics can create new periodic orbits which are not present in ordinary ray dynamics.
Therefore extended ray dynamics explains the occurrence of quasiscarred modes.



4 Asymmetric backscattering in ray
dynamics

Asymmetric optical cavities, i.e. cavities whose boundary does not have any mirror-reflection
symmetry, exhibit asymmetric backscattering between clockwise and counter-clockwise prop-
agating waves. As described in Sec. 3.3.2 asymmetric backscattering therefore leads wave
mechanically to non-orthogonal and copropagating mode pairs with a finite chirality. Wave
mechanically this is straightforwardly explained within an effective non-Hermitian two-mode
Hamiltonian. However, the ray dynamical correspondence of asymmetric backscattering is not
fully understood. So far, in Ref. [Lee et al., 2008a] it was demonstrated at a spiral cavity
that the classical survival probability has main contributions in one half of the phase space
which can be interpreted as a finite chirality. Furthermore, in Ref. [Wiersig et al., 2011] it
was shown for a smooth asymmetric cavity that the intensity transported from the lower to
the upper half of the phase space is different than vice versa when rays are tracked over time.
So far still missing points are (i) the existence of classical pairs of intensity distributions,
(ii) their copropagating nature, and (iii) their non-orthogonality. In this chapter the points
(i)-(iii) are explained by introducing the Frobenius-Perron operator (FPO) ℱ for microcavi-
ties. This operator ℱ defines the time evolution of intensity distributions in phase space such
that the eigenstates of this operator refer to classical intensity distributions with the expected
properties (i)-(iii).

First, in Sec. 4.1 the time evolution and backscattering of uniform intensity distributions
is discussed. Afterwards, in Sec. 4.2, the FPO ℱ for microcavities is introduced and the
eigenstates and eigenvalues are discussed. At the end of the chapter, in Sec. 4.3, an analytically
solvable toy-model for the FPO ℱ in one dimension is presented.

4.1 Asymmetric backscattering of uniform intensity

distributions

In this section the backscattering process between clockwise (CW) and counter-clockwise
(CCW) components of the phase space is discussed from the ray dynamics using uniformly
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distributed intensities. The target is to set up an effective 2× 2 matrix

𝐻 =

(︃
Ω1 𝐴

𝐵 Ω2

)︃
(4.1)

from the ray dynamics which qualitatively reflects the properties of the two-mode Hamiltonian
(3.32). To illustrate the derivation of the matrix elements the generalized Fourier-truncated
spiral is used here. This cavity has a smooth boundary which violates mirror-reflection symme-
try for an asymmetry parameter 𝛿 > 0. Details of the definition and illustrations are provided
in the Appendix A.2.1.
The essential point in the derivation of the matrix elements is the definition of CW and
CCW regions in phase space since they represent the basis for the matrix (4.1). First, the
intuitive identification that the lower [upper] part of the phase space correspond to CW [CCW]
propagation is used.1 As illustrated in Fig. 4.1(a)-(b) a single iteration of the billiard map
ℳ leads to an area exchange between CW and CCW regions. Since the mapping ℳ is area
preserving the area transfered from CW to CCW is the same as the area transfered from
CCW to CW. However, microcavities are open systems such that the intensity in the cavity
is reduced due to a finite reflectivity. Therefore, as illustrated in Fig. 4.1(c)-(f), the effective
intensity transport from CW to CCW and from CCW to CW is different. This amount of
transported intensity (normalized to the overall started intensity) is the matrix element 𝐴 [𝐵]
as illustrated by the yellow [green] shaded areas in Fig. 4.1(d) [(e)]. Similarly, the amount of
intensity remaining in the CW [CCW] component of the phase space is measured by Ω2 [Ω1].
Since the billiard mapping is only known numerically the matrix elements are computed by
tracing a large set of initial conditions (≈ 107...109) in phase space.
This procedure of numerically determining the matrix elements is done for increasing asym-
metry parameter 𝛿 in the generalized Fourier-truncated spiral. The results are summarized
in Tab. 4.1. As expected the normalized overlap 𝑆 = (𝐴 − 𝐵)/(𝐴 + 𝐵) of the eigenstates,
see Sec. 3.3.2, and therefore also the chirality of the eigenstates of the two-mode Hamiltonian
increases with increasing 𝛿. However, in the ray dynamics the diagonal matrix elements Ω1 and
Ω2 are different which is a violation of the two-mode Hamiltonian for asymmetric backscatter-
ing in Sec. 3.3.2. Since the order of the difference in Ω1 and Ω2 is the same as the difference
between 𝐴 and 𝐵 it can not be seen as a small correction.
The origin of the inconsistency between the matrix (4.1) from ray dynamics and the two-mode
Hamiltonian (3.32) is the definition of CW and CCW regions in phase space: In the wave
picture CW and CCW propagation is measured via the terms proportional to 𝑎𝑚 exp(𝑖𝑚𝜑),
i.e. via the angular momentum with respect to the origin. Therefore, to be consistent with
the wave mechanics, also in the ray dynamics CW and CCW propagation need to be defined
with respect to the curve 𝐿𝑧(𝑠, 𝑝) = 0 of vanishing angular momentum, see yellow curve in

1This identification is often used in literature, e.g., in Refs. [Wiersig et al., 2011, Lee et al., 2008a].
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Figure 4.1: (a) and (b) shows the billiard mapping of initially CW (blue) and CCW
(red) regions in the phase space of the Fourier-truncated spiral, see Eq. (A.14), with
(𝜖, 𝛿,𝑁𝑝, 𝑛) = (0.07, 1, 4, 3.0). A yellow dashed line indicate 𝑝 = 0 which separates CW
and CCW propagation. In (c), (d) [(e), (f)] the intensity iteration of initially CW [CCW]
regions is shown as a histogram over momentum 𝑝. Therefore the area below the curves in
(d) and (f) corresponds to the matrix elements in Eq. (4.1) as labeled in the plots.

Fig. 4.2(a). This curve 𝐿𝑧 = 0 is clearly different from the line 𝑝 = 0 which is traditionally used
in the ray picture to distinguish CW and CCW regions. As shown in Appendix A.2.2 the curve
of vanishing angular momentum can be calculated analytically for cavities that are defined via
a continuous function 𝑟(𝜑). Furthermore, it is shown that the image of the curve 𝐿𝑧 = 0 is its
mirror-reflection at 𝑝 = 0 [see Fig. 4.2(b)]. Therefore the phase space area which is shuffled
via one map iteration from CW to CCW region is again the same as the one shuffled from
CCW to CW (regarding 𝐿𝑧 = 0), but the effective intensity transport is different. From the
shuffled intensity the matrix elements [see Fig. 4.2(c)] can be again determined numerically.
The results for increasing asymmetry parameter 𝛿 are listed in Tab. 4.2. Except for statistical
fluctuations from the finite sample size of computed trajectories which are of the order 10−5

the diagonal matrix elements Ω1 and Ω2 are the same and the normalized overlap 𝑆 of the
eigenstates increases with increasing asymmetry parameter 𝛿. Moreover, in Appendix A.2.3
analytical expressions for the matrix elements are derived [under the assumption that the
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𝛿 Ω1 Ω2 𝐴 𝐵 |𝑆|
0.0 0.76871 0.76871 0.01563 0.01563 < 10−4

0.2 0.76890 0.76855 0.01544 0.01578 0.01089
0.4 0.76908 0.76844 0.01525 0.01590 0.02087
0.6 0.76926 0.76840 0.01508 0.01594 0.02772
0.8 0.76942 0.76844 0.01492 0.01589 0.03148
1.0 0.76958 0.76860 0.01475 0.01573 0.03215

Table 4.1: Numerically determined matrix elements of the 2 × 2 Hamiltonian (4.1) and
resulting asymmetry in the backscattering 𝑆 = (𝐴−𝐵)/(𝐴+𝐵) for the Fourier-truncated
spiral with (𝜖, 𝛿,𝑁𝑝, 𝑛) = (0.07, 1, 4, 3.0). The definition of CW and CCW propagation is
regarding the line 𝑝 = 0.

reflectivity (2.23a) has a Taylor expansion and the refractive index is not too small].

However, the definition of CW and CCW regions using the angular momentum also has a
general disadvantage: It depends on the choice of the origin whereas the backscattering with
respect to 𝑝 = 0 is origin independent. In Appendix A.2.4 further comments on the backscat-
tering with a shifted origin are provided. In this Appendix it is also shown that the main
advantage Ω1 = Ω2 holds under the origin shift. However, the asymmetry in the backscatter-
ing 𝑆 changes.

Here, it is mentioned again that the above discussion deals with initially uniform intensity
distributions and therefore captures overall properties of the open billiard. However, in wave
dynamics optical modes are never uniformly distributed but show large fluctuations and/or
localization in phase space. Therefore, it is not assumed that this ray picture provides quan-
titative comparable results. Nevertheless, some qualitative results regarding the two-mode
Hamiltonian could be obtained, e.g. the fact that it has the same diagonal terms Ω1 = Ω2

and different off-diagonals |𝐴| ̸= |𝐵|. Furthermore, these aspects could be shown almost ana-
lytically (see Appendix A.2.3). In order to obtain results for asymmetric backscattering from
ray dynamics which are also quantitatively comparable to wave dynamics and go beyond the

𝛿 Ω1 Ω2 𝐴 𝐵 |𝑆|
0.0 0.76610 0.76610 0.01823 0.01823 < 10−4

0.2 0.76607 0.76606 0.01796 0.01859 0.01730
0.4 0.76598 0.76598 0.01776 0.01895 0.03241
0.6 0.76592 0.76590 0.01763 0.01923 0.04354
0.8 0.76590 0.76587 0.01753 0.01937 0.04975
1.0 0.76592 0.76590 0.01749 0.01937 0.05084

Table 4.2: The numerically determined matrix elements of the 2 × 2 Hamiltonian (4.1)
and the resulting asymmetry in the backscattering 𝑆 = (𝐴 − 𝐵)/(𝐴 + 𝐵) for the Fourier-
truncated spiral with (𝜖, 𝛿,𝑁𝑝, 𝑛) = (0.07, 1, 4, 3.0) are shown. The definition of CW and
CCW propagation is regarding the curve 𝐿𝑧 = 0.
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Figure 4.2: (a) Initially CW (blue) and CCW (red) regions are shown in the phase space
of the Fourier-truncated spiral with (𝜖, 𝛿,𝑁𝑝, 𝑛) = (0.07, 1, 4, 3.0). (b) The image of these
regions after one billiard map iteration is shown. In both pictures a yellow dashed curve
represents the curve of vanishing angular momentum 𝐿𝑧(𝑞, 𝑝) = 0. In (c) an integration of
the intensity in the shaded region defines the matrix elements in Eq. (4.1) as labeled.

simple two-region approximation in phase space the next section provides a more elaborated
approach using the Frobenius-Perron operator.

4.2 Frobenius-Perron operator for optical microdisk

cavities

In this section asymmetric backscattering is investigated in the ray dynamics with the so-called
Frobenius-Perron operator (FPO) which time-evolves intensity distributions in phase space.
The FPO has previously been used for Hamiltonian maps [Beck and Schögl, 1993, Weber
et al., 2001, Weber et al., 2000, Frahm and Shepelyansky, 2010], dissipative maps [Ermann
and Shepelyansky, 2010, Frahm and Shepelyansky, 2013, Carlo et al., 2015], and leaking chaotic
billiard [Altmann et al., 2013]. In this section the FPO is adapted to the case of predominantly
chaotic microdisk cavities. First, in Sec. 4.2.1, the construction of the FPO for microcavities
is explained. Afterwards, in Sec. 4.2.2, it is shown that the long-lived eigenstates of the FPO
have interesting properties similar to optical modes: They are pairwise non-orthogonal where
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both eigenstates have the same preferred sense of rotation. Therefore the FPO eigenstates are
the classical counterparts of optical modes and explain asymmetric backscattering from a ray
dynamical point of view. In Sec. 4.2.3 further properties of the FPO eigenstates are discussed
and demonstrated at example systems.

4.2.1 Construction of the Frobenius-Perron operator

The Frobenius-Perron operator (FPO) maps an initial intensity distribution 𝜌(𝑞, 𝑝) in phase
space to its time-evolved counterpart 𝜌 as

𝜌 ↦→ 𝜌 = ℱ𝜌. (4.2)

This mapping is point-wise defined in closed systems as [Beck and Schögl, 1993]

𝜌(𝑞, 𝑝) =
∑︁

(𝑞,𝑝)∈ℳ−1(𝑞,𝑝)

𝜌(𝑞, 𝑝)

|𝐽(𝑞, 𝑝)| (4.3)

where the Jacobian determinant | det 𝐽(𝑞, 𝑝)| = 1 for the Hamiltonian dynamics. However,
microcavities are open systems that lose intensity through the leaky region in phase space.
Therefore this definition of the FPO needs to be adapted. Additionally, it needs to be taken
into account that the time increment Δ𝑡 from one reflection to the next is not uniform but
depends on the phase space variables (𝑞, 𝑝). Therefore, in Ref. [Altmann et al., 2013] the FPO
for leaking billiards is defined point-wise as

𝜌(𝑞, 𝑝) =
∑︁

(𝑞,𝑝)∈ℳ−1(𝑞,𝑝)

𝑒𝜅Δ𝑡(𝑞,𝑝)𝑅(𝑝)𝜌(𝑞, 𝑝). (4.4)

Here, 𝜅 is a classical escape rate that determines the overall loss of the cavity and 𝑅 is the
reflectivity (2.23). Note that the sum in Eq. (4.4) contains only one term for the ray dynamics
in convex cavities. More terms could occur if e.g. non-Hamiltonian extended ray dynamics or
rays which leave and reenter the cavity again are considered.

Since the FPO has to describe the whole (may chaotic) ray dynamics inside the cavity it is clear
from the point-wise definition (4.4) of the FPO that this is an operator of infinite dimension.
In order to make the FPO numerically accessible such that its eigenstates can be computed a
finite approximation of the FPO needs to be constructed. In Ref. [Weber et al., 2001] a matrix
for the FPO ℱ𝑖𝑗 is constructed using a set of basis functions2 𝜌𝑗(𝑞, 𝑝) in phase space. Then

2In Ref. [Weber et al., 2001] spherical harmonics are used as basis functions 𝜌 in phase space.
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the matrix form of ℱ is defined by

ℱ𝑖𝑗 =

∫︁ 1

−1

∫︁ 𝑞max

0

𝜌*𝑖 (𝑞, 𝑝)ℱ𝜌𝑗(𝑞, 𝑝) d𝑞d𝑝 (4.5a)

=

∫︁ 1

−1

∫︁ 𝑞max

0

𝜌*𝑖 (𝑞, 𝑝)𝑅(𝑝) exp
[︀
𝜅Δ𝑡(ℳ−1(𝑞, 𝑝))

]︀
𝜌𝑗(ℳ−1(𝑞, 𝑝)) d𝑞d𝑝. (4.5b)

This matrix ℱ𝑖𝑗 maps the coefficients 𝑎𝑗 of an arbitrary intensity distribution 𝜌 =
∑︀

𝑗 𝑎𝑗𝜌𝑗

to the coefficients �̃�𝑖 of the time-evolved intensity 𝜌 =
∑︀

𝑗 �̃�𝑖𝜌𝑗. In order to obtain a finite
matrix for ℱ one needs a truncation, i.e. a finite set of basis functions needs to be considered.
Therefore a proper choice of the basis functions 𝜌𝑗 is crucial. Since the cavities considered in
this chapter are predominantly chaotic it is not practical to use basis functions each supporting
the whole phase space. A rather better choice for 𝜌𝑗 are the characteristic function of small
cells in phase space. In Fig. 4.3 such a phase space discretization is shown. In Refs. [Frahm and
Shepelyansky, 2010, Ermann and Shepelyansky, 2010, Frahm and Shepelyansky, 2013] such a
discretization of the phase space has been used for maps to get a simple algorithm for a finite
matrix approximation of the FPO. This procedure is also known as (slightly modified) Ulam’s
method [Ulam, 1960]. Instead of performing the integrals in Eqs. (4.5) here the intensity
transport between the cells is measured. In the following the construction of the FPO matrix
for microcavities using Ulam’s method is explained in detail: First, the phase space is divided
equally into 𝑁grid × 𝑁grid cells labeled with an index as shown in Fig. 4.3. In each cell 𝑗
random initial conditions (𝑞𝜏 , 𝑝𝜏 ) with intensity 𝐼𝜏 = 1 are chosen. They are iterated once via
the billiard map to points (𝑞𝜏 , 𝑝𝜏 ). Thus, the intensity of the iterated points is 𝐼𝜏 = 𝑅(𝑝𝜏 ).
From the points that are iterated from cell 𝑗 to cell 𝑖 the scattered intensity 𝐼(𝑗 → 𝑖) is
calculated as

𝐼(𝑗 → 𝑖) =
1

𝑁𝜏

∑︁
𝜏

(𝑞𝜏 ,𝑝𝜏 ) in cell 𝑗
(𝑞𝜏 ,𝑝𝜏 ) in cell 𝑖

𝑅(𝑝𝜏 ) (4.6)

where 𝑁𝜏 is the number of trajectories started in cell 𝑗. This procedure is sketched in Fig. 4.3.

Next, the true-time aspect of the billiard dynamics needs to be incorporated in the FPO
approximation. Therefore, the scattered intensity 𝐼(𝑗 → 𝑖) is weighted with a factor according
to the length (or fight time) of the orbit. The weighting factor consistent with (4.4) is

𝑇𝑖𝑗 =
𝑒𝜅Δ𝑡𝑖𝑗

⟨𝑒𝜅Δ𝑡⟩ . (4.7)

Here, Δ𝑡𝑖𝑗 is the average time for one iteration from cell 𝑗 to cell 𝑖 and ⟨𝑒𝜅Δ𝑡⟩ is the average
value of the terms 𝑒𝜅Δ𝑡𝑖𝑗 that enter to the matrix 𝑇𝑖𝑗. In Eq. (4.7) the escape rate 𝜅 enters.
In Ref. [Altmann et al., 2013] accurate schemes to compute this quantity are given. However,
in the examples shown in this thesis it is sufficient to use a simple estimate of the escape rate
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Figure 4.3: An illustration of the phase space discretization and the construction of the
FPO approximation is shown. Black squares are the cells labeled by an index 𝑖 = 1...𝑁2

grid.
The intensity transport from cell 𝑗 to cell 𝑖 is measured by iterating random initial condition
in 𝑗 (blue dots). Red dots are the iterated initial conditions.

which is given by

𝜅 = − ln (1− 𝜇)

⟨Δ𝑡⟩ . (4.8)

Here, 𝜇 = 1/𝑛−
∫︀ 1/𝑛

0
𝑅(𝑝) d𝑝 is the measure of the leak and ⟨Δ𝑡⟩ is the average time between

boundary collisions [Altmann et al., 2013].

Finally, the finite approximation of the FPO for microcavities is given by

ℱ𝑖𝑗 = 𝑇𝑖𝑗𝐼(𝑗 → 𝑖). (4.9)

For typical calculations 𝑁grid = 100 up to 𝑁grid = 2000 is chosen and 𝑁2
grid𝑁𝜏 ≈ 1010...1011

trajectories are iterated in phase space to get a statistically satisfying result.

The final FPO matrix is of dimension 𝑁2
grid ×𝑁2

grid, i.e. it has typically up to ∼ 1013 elements
(1013 · 64bit= 80TB memory). However, a single cell in phase space is typically coupled to
just a few other cells via the billiard dynamics. Therefore, the FPO matrix is very sparse such
that it can be stored easily at the computer (∼800MB memory for 𝑁grid = 2000).

For an illustration how the FPO acts on an intensity distribution in phase space see Fig. 4.4.
Here, the iteration of an initially Gaussian distribution is shown in the phase space of the
Fourier-truncated spiral. By applying ℱ the intensity is shifted and elongated according to
the billiard dynamics and loses intensity through the leaky region in phase space.
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Figure 4.4: (a) A Gaussian intensity distribution centered at (𝑞, 𝑝) = (0.15, 0.73) in the
phase space of the Fourier-truncated spiral with (𝜖,𝑁𝑝, 𝛿, 𝑛) = (0.07, 4, 1, 3.0) is shown.
The 1-3 fold iterations are shown in (b-d) respectively. The FPO is approximated using
𝑁grid = 2000 cells in phase space. Note that in each plot the color map (from black to
yellow) is scaled to maximum of the intensity.

4.2.2 Eigenstates and eigenvalues in the presence of asymmetric

backscattering

Since the FPO time-evolves classical intensity distributions in phase space, the eigenstates
of the FPO represent stationary intensity pattern. Because of the openness, i.e. the leaky
region in phase space, the norm of such an intensity pattern is reduced each time the FPO is
applied. Therefore the eigenvalues of the FPO need to be inside the unite circle in the complex
plane. The only exception is the intensity pattern supporting the chaotic saddle. Since the
chaotic saddle does not enter the leaky region neither in forward nor in backward iteration
its overall intensity stays constant. The chaotic saddle is typically a fractal set such that the
corresponding eigenstate vanishes if a finite approximation of the FPO is considered. However,
non-fractal eigenstates of the FPO are accessible with the finite approximation derived in the
previous section. Typically, one is interested in the long-lived eigenstates whose eigenvalues
have large absolute modulus. Therefore the numerical diagonalization of the large sparse FPO
matrix ℱ𝑖𝑗 can be done with a suitable algorithm, e.g. Arnoldi method [Stewart, 2001], to get
not all but a few relevant eigenvalues 𝜆𝑖 and eigenvectors 𝜌𝑖 with the desired large modulus
eigenvalue.

Eigenvalues

In the following the Fourier-truncated spiral with (𝜖,𝑁𝑝, 𝛿, 𝑛) = (0.07, 4, 1, 3.0), see Appendix
A.2.1, is used to illustrate the results for a typical asymmetric and chaotic cavity. The numer-
ically computed eigenvalues are shown in Fig. 4.5.

As expected all eigenvalues are inside the unit circle. The eigenvalues with largest modulus
are close to one and they are on the real axis.

Mathematically only one eigenvalue with the largest modulus determines the long-time dynam-
ics of a general dynamical system. But here the physical interpretation is different. Two eigen-
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Figure 4.5: (a-c) The FPO eigenvalues 𝜆 for the Fourier-truncated spiral with (𝜖,𝑁𝑝, 𝛿, 𝑛) =
(0.07, 4, 1, 3.0) and for different discretizations (black dots)𝑁grid = 100, (red crosses)𝑁grid =
1600, and (blue squares) 𝑁grid = 2000 are shown in the complex plane. For 𝑁grid = 1600
and 𝑁grid = 2000 only the 200 largest modulus eigenvalues are shown. The unit circle is
drawn as black curve in (a-b). The convergence of the largest modulus (d) 200 and (e) 2
eigenvalues with 𝑁grid is shown. The largest eigenvalue is illustrated as red solid curve, the
second largest as blue dashed curve, and the others as gray solid curves.

values with large modulus are nearly degenerate and clearly separated from the next pair of
eigenvalues, see Fig. 4.5(d). Consequently even in the long-time dynamics both largest modulus
eigenvalues have to be taken into account. The importance of the second eigenvalue (and corre-
sponding eigenstate) can be illustrated with the fraction (𝜆2/𝜆1)

𝑚 = (0.925043/0.925456)𝑚 ≈
0.999554𝑚 for 𝑁grid = 2000. To neglect the second eigenstate in the dynamics, this fraction
needs to be much smaller than one which is true for 𝑚 → ∞. But up to 𝑚 = 1000 iterations
this fraction is still about 64%. During this time (or iterations) the measure of eigenstate 𝜌1
is reduced by 𝜆10001 ≈ 10−34. So the cavity would lose more or less all of its intensity until one
can neglect the second eigenstate. Note that also other eigenvalues come in pairs: For example
for |𝜆| > 0.82 the distance from an eigenvalue to the next-next neighbor is at least ∼ 30 times
larger than the distance to the next neighbor.
The convergence of the eigenvalues with the phase space discretization 𝑁grid is shown in
Fig. 4.5(d-e). The eigenvalue pair with largest modulus converges rapidly such that already for
small values of 𝑁grid reliable results can be obtained. The convergence of the lower modulus
eigenvalues seems in general slower such that even for 𝑁grid = 2000 not all eigenvalues shown
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in Fig. 4.5(d) are converged.

Eigenstates

Next, the corresponding long-lived eigenstates of the largest modulus eigenvalue pair are dis-
cussed. They are shown in Fig. 4.6(a-b). As expected from the Frobenius-Perron theorem
[Perron, 1907, Frobenius, 1912] the first eigenstate is completely real and positive. Here, also
the second eigenstate is completely real but changes the sign between upper and lower half of
the phase space. Both eigenstates support the same sets namely the unstable manifold.
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Figure 4.6: (a) The first and (b) the second eigenstate of the Fourier-truncated spiral with
(𝜖,𝑁𝑝, 𝛿, 𝑛) = (0.07, 4, 1, 3.0) are shown in phase space. (c) and (d) show the momentum
representation of the eigenstates, see Eq. (4.10). The discretization of the phase space is
𝑁grid = 2000.

As a signature of the asymmetry in the system the overall intensity in the upper half of the
phase space is smaller than in the lower half for both eigenstates. Therefore CW propagation
is featured by the system. To see this in a cleaner way the momentum distributions of the
eigenstates defined via

𝜌mom(𝑝) =
1

𝒩

∫︁ 𝑞max

0

𝜌(𝑞, 𝑝) d𝑞 (4.10)
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are shown in Fig. 4.6(c-d). Since both eigenstates have more weight on the lower half of the
phase space they are not orthogonal rather their scalar product

⟨𝜌1, 𝜌2⟩ =
1

2𝑞max

∫︁ 1

−1

∫︁ 𝑞max

0

𝜌*1(𝑞, 𝑝), 𝜌2(𝑞, 𝑝) d𝑞d𝑝 (4.11)

is ⟨𝜌1, 𝜌2⟩ = 0.872248 (for normalized eigenstates with ⟨𝜌𝑖, 𝜌𝑖⟩ = 1). Therefore, the eigenstates
are highly copropagating. The propagation of the eigenstates can also be quantified by the
(ray dynamical) chirality

�̃�ch = 1−
min

(︁∫︀ 0

−1
|𝜌mom|2 d𝑝,

∫︀ −1

0
|𝜌mom|2 d𝑝

)︁
max

(︁∫︀ 0

−1
|𝜌mom|2 d𝑝,

∫︀ −1

0
|𝜌mom|2 d𝑝

)︁ (4.12)

of the momentum distributions [compare to the wave dynamical definition of the chirality in
Eq. (3.31)]. For 𝜌1 one obtains �̃�ch = 0.932096 and for 𝜌2 �̃�ch = 0.931519. In Ref. [Wiersig
et al., 2011] it was shown that the chirality �̃�ch of each single mode is related to the over-
lap/scalar product 𝑆 of the mode pair via �̃�ch = 2𝑆/(1 + 𝑆). Here, this relation is also valid
for ray dynamics since 𝑆 = |⟨𝜌1, 𝜌2⟩| leads to �̃�ch = 0.931766 which is in good agreement to
the chirality of each eigenstate.

Note that the eigenstates are pairwise highly non-orthogonal since e.g. the overlap ⟨𝜌1, 𝜌3⟩ =
0.142122 with the third eigenstate at 𝜆3 = 0.868647 is much smaller than the overlap of the
first pair.

Two-mode approximation from the FPO

In the following the 2×2model for the phase-space dynamics of (C)CW regions is reconstructed
from the full FPO. As discussed in Sec. 4.1 proper basis states representing pure (C)CW
propagation in phase space are crucial for the construction of such a 2 × 2 model from the
ray dynamics. In the wave dynamics a proper basis of purely propagating states can be
obtained from linear combinations of the modes with nearly degenerate complex frequencies
[see Fig. 3.5(d)]. Now, with the nearly degenerate eigenstates 𝜌1/2 from the FPO the same
ansatz is suitable for the ray dynamics: Therefore, the linear combinations

𝜌CCW =
𝜌1 − 𝜌2
𝒩CCW

, 𝜌CW =
𝜌1 + 𝜌2
𝒩CW

(4.13)

represent proper CCW and CW basis states for the 2 × 2 model. The normalization factors
are given by

𝑁CCW =
√︀

2 [1− Re ⟨𝜌1, 𝜌2⟩], 𝑁CW =
√︀

2 [1 + Re ⟨𝜌1, 𝜌2⟩]. (4.14)
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The linear combinations and their momentum distributions are shown in Fig. 4.7. Indeed they
represent (C)CW propagating states because they are dominantly localized either on the lower
or the upper half of the phase space. Note that both linear combinations are not eigenstates
of the FPO. Therefore, they are not invariant under time evolution such that the 2× 2 matrix

𝐻 =

(︃
⟨𝜌CCW,ℱ𝜌CCW⟩ ⟨𝜌CCW,ℱ𝜌CCW⟩
⟨𝜌CCW,ℱ𝜌CCW⟩ ⟨𝜌CW,ℱ𝜌CW⟩

)︃
(4.15)

has finite off-diagonal elements which describe the backscattering between CW and CCW
regions. Due to the definition of 𝜌(C)CW the diagonal elements in the 2×2 matrix are the same.
Using the scalar product for real 𝜌1 and 𝜌2 one can explicitly obtain the matrix elements of
(4.15) in connection with the two-mode Hamiltonian (3.32) as

Ω =
𝜆1 + 𝜆2

2
(4.16a)

𝐴 =
𝜆1 − 𝜆2

2

√︃
1− ⟨𝜌1, 𝜌2⟩
1 + ⟨𝜌1, 𝜌2⟩

(4.16b)

𝐵 =
𝜆1 − 𝜆2

2

√︃
1 + ⟨𝜌1, 𝜌2⟩
1− ⟨𝜌1, 𝜌2⟩

. (4.16c)

Therefore, the backscattering 𝑆 in the 2× 2 Hamiltonian is

𝑆 =

⃒⃒⃒⃒
𝐴−𝐵

𝐴+𝐵

⃒⃒⃒⃒
= |⟨𝜌1, 𝜌2⟩| (4.17)

with normalized 𝜌1/2.
The only difference to the effective Hamiltonian of the wave dynamics (3.32) is that in the
matrix (4.15) the elements Ω, 𝐴,𝐵 are real. For the Fourier-truncated spiral the matrix ele-
ments (Ω, 𝐴,𝐵) ≈ (0.925249, 5.4 · 10−5, 7.9 · 10−4) are obtained where 𝐵 > 𝐴 indicates that
CW propagation is preferred as shown in the eigenstates. The openness is again reflected in
Ω + 𝐴 < 1 and Ω +𝐵 < 1.

Comparison to wave dynamics

Qualitatively the two largest modulus eigenstates of the FPO nicely reflect the properties
of optical modes including the properties of the effective two-mode Hamiltonian. Next, the
intensity pattern of the FPO eigenstates is compared to the wave dynamics. To avoid the
fluctuations of a single mode the comparison is done to an average of several modes Ψ𝑘𝑅

which are in a small interval Re 𝑘𝑅 ∈ [70, 72]. Since the FPO eigenstates represent long-lived
intensity pattern also long-lived modes should be taken into account for the comparison, i.e.
modes whose 𝑄-factor is larger than a threshold 𝑄𝑐. From these modes the averaged Husimi
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Figure 4.7: (a-b) The linear combinations of the FPO eigenstates (see Fig. 4.6) according to
Eq. (4.13) are shown in phase space. The momentum distribution of the linear combinations
are shown in (c-d) as red curves.

function

𝐻(𝑞, 𝑝) =
1

𝒩
∑︁
𝑘𝑅

𝑄>𝑄𝑐

𝐻
(em)
0 (𝑞, 𝑝; 𝑘𝑅) (4.18)

can be constructed. A rough approximation of a reasonable threshold 𝑄𝑐 can be obtained by
comparing the wave mechanical intensity time evolution ‖Ψ(⟨Δ𝑡⟩)‖2=exp[2Im 𝑘𝑅 ⟨Δ𝑡⟩]‖Ψ(0)‖2
with the FPO time evolution ‖ℱ𝜌1‖ = 𝜆1‖𝜌1‖ of the eigenstate 𝜌1. Since Re 𝑘𝑅 is fixed to a
small range this leads to 𝑄𝑐 ≈ ⟨Δ𝑡⟩Re 𝑘𝑅/ ln𝜆1 ≈ 1450. The resulting averaged Husimi func-
tion is shown in Fig. 4.8(a). The corresponding momentum distribution [similar to Eq. (4.10)]
of the averaged Husimi is compared to the one of the eigenstate 𝜌1 in Fig. 4.8(c). The visual
good agreement is also confirmed numerically by the chirality �̃�ch = 0.945874 for the averaged
Husimi (compare to �̃�ch = 0.932096 for 𝜌1). As shown in Fig. 4.8(b,d) the choice of 𝑄𝑐 is not
too restrictive since also for a slightly higher 𝑄𝑐 = 2000 a very good agreement is observed.
Here, the chirality of the averaged Husimi is �̃�ch = 0.9523108.

Finally, a short conclusion of this section is given: In this section it was shown that the
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Figure 4.8: The averaged Husimi function, Eq. (4.18), for modes with Re 𝑘𝑅 ∈ [70, 72] and
(a) 𝑄𝑐 = 1450, (b) 𝑄𝑐 = 2000 is shown. In (c) and (d) the momentum distributions of the
(red curve) averaged Husimi and the (gray curve) FPO eigenstate 𝜌1 are compared.

eigenstate of the FPO for microcavity are valuable to describe asymmetric backscattering in
ray dynamics. The basic requirements are that the ray dynamics is dominantly chaotic and
that the backscattering regarding 𝑝 = 0 is visible in the ray dynamics.3 Then the eigenvalues
of the FPO are pairwise nearly degenerate such that two largest modulus eigenvalues have to
be taken into account for the long-time dynamics. The corresponding eigenstates are real and
show the signatures of the asymmetric backscattering: They have the same preferred sense of
rotation and they are nonorthogonal. Because of these properties it is possible to construct
an effective two-mode model from the ray dynamics including a proper definition of CW and
CCW states which is consistent with the wave dynamics. An overall good agreement between
ray and wave calculations is given by an averaged Husimi function. In this section the results
for the Fourier-truncated spiral were presented.
In the next section further aspects of the FPO and its eigenstates are discussed including
variation of parameters and also counter-examples where asymmetric backscattering cannot
be captured by the ray dynamics.

4.2.3 Application

In the last section the properties of the FPO eigenstates regarding asymmetric backscattering
were the main issue. In this section now further applications of the FPO for microdisk cavities

3A counter-example is the billiard of constant width which is discussed below in Sec. 4.2.3. Note also the
comment in Appendix A.2.3 for the backscattering regarding 𝐿𝑧 = 0.
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are discussed.

Symmetric deformations

The construction of the FPO matrix is also possible for symmetrically deformed cavities; i.e.
cavities that exhibit at least one mirror-reflection symmetry (for simplicity the 𝑥-axis). Here,
the symmetry in the billiard mapping, see Sec. 2.2.2, can be incorporated in the construction
of the FPO matrix: Whenever a random initial condition is iterated from cell 𝑗 to 𝑖 also the
symmetry related orbit from cell 𝑖′ = 𝑁2

grid + 1− 𝑖 to 𝑗′ = 𝑁2
grid + 1− 𝑗 is taken into account

(𝑖, 𝑗 = 1, ..., 𝑁2
grid). Finally, the FPO matrix has a sparse block structure

ℱ =

(︃
CCW A

B CW

)︃
(4.19)

where the elements are related via

ℱ [𝑗, 𝑖] = ℱ
[︀
𝑁2

grid + 1− 𝑗,𝑁2
grid + 1− 𝑖

]︀
≡ ℱ [−𝑖,−𝑗]. (4.20)

Such a matrix is called centrosymmetric matrix. For even 𝑁2
grid it yields CW = JCCWJ and

A = JBJ with J = (𝛿𝑖,𝑁2
grid+1−𝑗)𝑖,𝑗 having unity elements in the counter-diagonal only. Since

the sub-matrices A and B have nonzero elements a backscattering between CW and CCW
regions in phase space is observed. However, due to the relation (4.20) the backscattering
is symmetric and therefore also the eigenstates of the FPO are symmetric with |𝜌(𝑞, 𝑝)| =
|𝜌(𝑞max − 𝑞,−𝑝)|.

Far-field emission from the eigenstates

In Sec. 2.3.2 it was shown that each point (𝑞, 𝑝) in phase space with intensity 𝐼 represent an
emerging ray from the cavity’s boundary that can contribute to the far-field intensity pattern
|𝐹 (𝜑)|2 via the transmitted intensity [1−𝑅(𝑝)]𝐼 at (𝑠, 𝑝), see Fig. 2.9(a). Since the eigenstates
of the FPO represent such an intensity distribution in phase space it is possible to construct
the far-field intensity pattern from the FPO eigenstates. To this end each cell 𝑖 in phase space
is presented by its midpoint (𝑞𝑖, 𝑝𝑖) and the intensity 𝜌1(𝑞𝑖, 𝑝𝑖) of the eigenstate with largest
modulus eigenvalue. Summation over the contributions from each cells in phase space results
in the far-field pattern shown in Fig. 4.9 for the Fourier-truncated spiral.

Regular islands in a mixed phase space

Although, for the construction of the FPO matrix it was assumed that the ray dynamics inside
the cavity is almost chaotic it is an interesting question what results can be obtained for a
mixed phase space. As an example here the Limaçon with 𝜖 = 0.3 is treated where three
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Figure 4.9: The (normalized) far-field emission pattern of FPO eigenstate 𝜌1 [see
Fig. 4.6(a)] for the Fourier-truncated spiral with (𝜖,𝑁𝑝, 𝛿, 𝑛) = (0.07, 4, 1, 3.0) is shown.

large islands are observable in the phase space around 𝑝 = 0.5. For 𝑛 = 3.0 these regular
islands have no overlap with the leaky region such that rays are trapped infinitely long in the
island without losing any intensity. Therefore the long-lived eigenstates of the FPO localize at
these regular island as shown in Fig. 4.10(b-c). However, the eigenvalue of the corresponding
eigenstate do not reflect any proper intensity decay in sense that |𝜆| > 1 is obtained, see
Fig. 4.10(a). The origin for this is the rescaling of the intensity transport with time weighting
factor 𝑇𝑖𝑗, see Eq. (4.7): For quite long periodic orbits with large Δ𝑡𝑖𝑗 the matrix 𝑇𝑖𝑗 effectively
leads to an artificial amplification of the transport 𝐼(𝑖 → 𝑗). However, the largest modulus
eigenvalues are still on the real axis and occur in pairs. Also the order of the eigenvalue pairs is
reasonable: The first eigenstate from the largest modulus eigenvalue pair [Fig. 4.10(b)] shows
a simple localization on the island while the eigenstate of the second-largest pair [Fig. 4.10(c)]
and of the third-largest pair [Fig. 4.10(d)] correspond to “exited states” of the island. Note
that these excited eigenstates also change their sign inside the island. The localization of
FPO eigenstates on regular phase-space structures was also observed in Ref. [Weber et al.,
2000, Weber et al., 2001] for Hamiltonian maps with a mixed phase space.

It is mentioned here that in Ref. [Frahm and Shepelyansky, 2010] a slight modification to the
Ulam’s method for the FPO was introduced which is valuable if one is interested only in the
chaotic component of a mixed system: Instead of iterating many random initial conditions to
get the intensity transport from cell 𝑖 to 𝑗 one follows one single chaotic trajectory for a long
time to compute 𝐼(𝑖→ 𝑗). This single trajectory does not penetrate the regular regions which
are therefore omitted in the FPO matrix.

Connection to extended ray dynamics

So far the FPO is based on ordinary ray dynamics which does not depend on 𝑘𝑅. Next, it is
discussed how extended ray dynamics effect the eigenstates and eigenvalues of the FPO for a



58 4.2 Frobenius-Perron operator for optical microdisk cavities

(b)

(c)

(d)

−0.1 0 0.1
0.95

1.00

1.05

Imλ

Reλ

(a)

0 qmax
0

1
n

1

q

p

(b) |ρ1(q, p)|

0 qmax
0

1
n

1

q

p

(c) |ρ3(q, p)|

0 qmax
0

1
n

1

q

p

(d) |ρ5(q, p)|

Figure 4.10: (a) The eigenvalues of the FPO (𝑁grid = 600) for a Limaçon with (𝜖, 𝑛) =
(0.3, 3.0) are shown in complex plane. (b-d) The modulus of the eigenstates to the eigen-
values labeled in (a) are shown in phase space. They localize at the period three regular
islands which is illustrated by the (white dots) orbit shown in (b).

finite 𝑘𝑅.4 First, the Goos-Hänchen (GH) shift Δ𝑞GH [see Sec. 3.4.2] is applied on top of the
billiard dynamics. Here, the numerical model for the GH shift from Ref. [Unterhinninghofen
and Wiersig, 2010] is used which results in Δ𝑞GH shown in Fig. 4.11(a) for 𝑛 = 3.0. The
long-lived eigenstate 𝜌1(𝑞, 𝑝) of the Fourier-truncated spiral with incorporated GH shift are
shown in Fig. 4.11(c-d). The intensity pattern look similar to the one obtained from ordi-
nary ray dynamics. However, the detailed phase space structures are blurred for smaller 𝑘𝑅.
Nevertheless, the momentum distribution of the eigenstates shown in Fig. 4.11(b) are almost
identical for all values of 𝑘𝑅. Therefore also the asymmetry in the backscattering, i.e. the
overlap 𝑆 = |⟨𝜌1, 𝜌2⟩| and the eigenvalues 𝜆1/2 do not change much with 𝑘𝑅, see Tab. 4.3: For
small 𝑘𝑅 just a slightly smaller asymmetry is noticeable.

𝑘𝑅 for GH 𝜆1 𝜆2 𝑆

5 0.934473 0.934308 0.849765
10 0.926056 0.925811 0.864740
20 0.925717 0.925360 0.871597
30 0.925732 0.925357 0.887056
40 0.925717 0.925339 0.883398

Table 4.3: Eigenvalues 𝜆1/2 and overlap 𝑆 = |⟨𝜌1, 𝜌2⟩| for the FPO eigenstates for the
Fourier-truncated spiral with (𝜖,𝑁𝑝, 𝑛,𝑁grid) = (0.07, 4, 3.0, 1600) and additional GH shift.

In Ref. [Hentschel and Schomerus, 2002] it is shown that a curved interface effectively changes
the reflection law to become smooth and 𝑘𝑅 depended as shown in Fig. 4.11(e). However,
this modified reflection law also does not perturb the FPO eigenstates strongly as shown in
the phase space pattern in Fig. 4.11(f) and in the momentum distribution [dashed curve in

4Note that the 𝑘𝑅 dependent corrections to the billiard dynamics vanish for 𝑘𝑅→ ∞.
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Figure 4.11: (a) The GH shift obtained numerically from the method presented in Ref. [Un-
terhinninghofen and Wiersig, 2010] for different values of 𝑘𝑅 and 𝑛 = 3. In (b) the momen-
tum distributions of the FPO eigenstate with largest modulus eigenvalue for the Fourier-
truncated spiral with (𝜖,𝑁𝑝, 𝑛,𝑁grid) = (0.07, 4, 3.0, 1600) are shown: Solid curves represent
the eigenstates with implemented GH shift [color according to (a)] and the black dashed
curve is obtained from the implementation of the modified reflection law for curved inter-
faces. The phase space representation of the long-lived FPO eigenstate is shown for (c) a GH
shift according 𝑘𝑅 = 5, (d) a GH shift according 𝑘𝑅 = 20, and (f) the modified reflection
law for 𝑘𝑅 = 10. (e) Comparison of the (dashed curve) modified reflection law [Hentschel
and Schomerus, 2002] with the (solid curve) Fresnel reflection law for TM polarization.

Fig. 4.11(b)].5 Therefore it is expected that also more elaborated models for Δ𝑞GH as in
Ref. [Stockschläder et al., 2014] which properly account for the curved interface of the cavity
do not change the eigenstates of the FPO drastically.
Note again that the eigenstates of the FPO are intensity distributions and also the FPO itself
iterates intensity distributions. Therefore, the Fresnel filtering, which has its origin in the time
evolution of intensity distributions (see Sec. 3.4), is already captured by the FPO. Moreover,
in Ref. [Unterhinninghofen, 2011] it is shown that the incorporation of the Fresnel filtering
into the dynamics of a single ray does not change the unstable manifold much. Therefore,
additional effects of Fresnel filtering can be omitted here.
However, an interesting consequence of the GH shift was discussed in Ref. [Unterhinninghofen
and Wiersig, 2010]: The GH shift Δ𝑞GH effectively also shifts a periodic orbit in 𝑝 which is

5The modified reflection coefficient is usually smaller than the one from the Fresnel law therefore the eigenvalue
of the long-lived FPO eigenstate pair is slightly reduced to 𝜆 ≈ 0.902.
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called periodic orbit shift (POS, Δ𝑝POS). To illustrate this effect of the POS in the FPO eigen-
states it is practical to use a system where the eigenstates localize at the regular region around
a periodic orbit, e.g. the Limaçon at 𝜖 = 0.3 which was discussed above [see Fig. 4.10(b)]. As
shown in Fig. 4.12 the GH shift indeed shifts the localization of the eigenstate in 𝑞 but also in
𝑝 what is exactly the POS. Furthermore, the eigenstates show a strong leakage to the chaotic
part of the phase space e.g. for 𝑘𝑅 = 10 where the corrections to the ordinary ray dynamics
are strong. This is in good agreement to the fact that the GH shift breaks some tori of the
regular island resulting in a larger chaotic component of the phase space.
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Figure 4.12: The eigenstates of the largest modulus eigenvalue of the FPO for the Limaçon
with (𝜖, 𝑛,𝑁grid) = (0.3, 3.0, 600) are shown for different 𝑘𝑅 depended GH shifts. The regular
island from ordinary ray dynamics is shown in white.

However, for increasing 𝑘𝑅 → ∞ the effects of the GH shift and the POS vanish again such
that already for 𝑘𝑅 = 50 the localization at the island obtained from ordinary ray dynamics
is almost restored, see Fig. 4.12(c). Consequently, the GH shift and the POS do not effect
the comparison to the ray dynamics illustrated by the averaged Husimi function in Sec. 4.2.2
[Fig. 4.8] which was obtained for 𝑘𝑅 ≈ 70.

Asymmetry parameter of the Fourier-truncated spiral

In Sec. 4.1 it was shown that with increasing asymmetry parameter 𝛿 the asymmetry in the
backscattering of uniform intensity distributions also increases. However, the eigenstates of
the FPO represent special long-lived intensity distributions such that the backscattering with
increasing 𝛿 is slightly different. In Fig. 4.13 the effects from a variation of 𝛿 to the FPO
eigenstates are presented. For 𝛿 = 0 the cavity is symmetric. Therefore also the eigenstates
of the FPO are symmetric with vanishing 𝑆 = |⟨𝜌1, 𝜌2⟩|, see cyan curve/dot in Fig. 4.13(a/c).
With slightly increasing 𝛿 also the FPO eigenstates show the expected increasing asymmetry.
At 𝛿 ≈ 0.3 a smaller interruption occurs which is may due to very small regular structures in
phase space. However, around the golden mean 𝛿 = (

√
5−1)/2 ≈ 0.618 the asymmetry reaches

a maximum (orange curve/dot) and surprisingly decreases afterwards. The eigenvalues of the
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long-lived eigenstates, see Fig. 4.13(b), decrease with increasing parameter 𝛿 (except a small
fluctuation at 𝛿 = 0.8), i.e. also the long-lived states become more lossy with increasing 𝛿.
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Figure 4.13: Variation of the asymmetry parameter 𝛿 in the Fourier-truncated spiral,
see Eq. (A.14). In (a) the momentum distribution of the eigenstate with largest modulus
eigenvalue is shown for different values of 𝛿. In (b) the largest (black curve) and second
largest (gray curve) eigenvalue is plotted versus 𝛿. The overlap 𝑆 = |⟨𝜌1, 𝜌2⟩| of the first
and the second eigenstate is shown in (c). In (b-c) colored dots represent the states shown
in (a). Other parameters are fixed to (𝜖, 𝑛,𝑁𝑝, 𝑁grid) = (0.07, 3.0, 4, 1000).

The refractive index and TE polarization

In the next step the properties of the leaky region are changed. Therefore, first, the refractive
index 𝑛 is varied. As demonstration example serves again the Fourier-truncated spiral with
(𝜖,𝑁𝑝, 𝛿) = (0.07, 4, 1) where the both eigenstates of the FPO with largest modulus are shown
in Fig. 4.14 for a varying refractive index 𝑛. Obviously with increasing 𝑛 the leaky region
becomes smaller such that the eigenstates spread over a larger fraction of the phase space.
Furthermore, with increasing refractive index the asymmetry in the eigenstates, i.e. the asym-
metric backscattering, is getting weaker. In the concrete example the fraction of intensity in
the upper half of the phase space rises in comparison to the intensity in the lower half. Note
that when the leaky region gets smaller the unstable manifold from the upper half of the phase
space meanders into the lower half of the phase space (and vice versa). This can be seen well
e.g. in Fig. 4.14(h) where the eigenstate 𝜌2 has also some negative (blue) tails in the lower
phase space half. Therefore, for these high refractive indexes it is again controversial if the
line 𝑝 = 0 is a proper ray dynamical criterion to separate CW and CCW propagation or if the
linear combinations of 𝜌1 and 𝜌2, see Eqs. (4.13), are a rather better choice, especially if one
compares the eigenstates to optical modes.
Note that since the leaky region is getting smaller also the largest modulus eigenvalue of the
FPO increases from 𝜆1 ≈ 0.9407 for 𝑛 = 3.5 to 𝜆1 ≈ 0.9637 for 𝑛 = 5.
It is mentioned that also results for smaller refractive indexes are obtained (not shown). How-
ever, for 𝑛 . 2.5 the coupling of the upper and the lower half of the phase space is very weak
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Figure 4.14: The eigenstate of the FPO with (a-d) largest and (e-h) second-largest
eigenvalue modulus are shown in the phase space of the Fourier-truncated spiral with
(𝜖, 𝛿,𝑁𝑝, 𝑁grid) = (0.07, 1, 4, 1600) and varying refractive index 𝑛.

due to a small reflectivity in the large leaky region. Therefore the numerical diagonalization of
the sparse FPO matrix is getting more and more elaborated and one needs to iterate a larger
number of trajectories to obtain accurate matrix elements.

Additionally, also the FPO eigenstates for TE polarization have been analyzed. In principle
they look quite similar to the ones for TM polarization. In particular they also come in pairs
with finite chirality and copropagation in CW direction (for the Fourier-truncated spiral),
see Fig. 4.15 for the momentum distribution of 𝜌1/2. However, the following differences are
remarkable: (i) Since the reflectivity in the leaky region for TE polarization is smaller than
for TM polarization, also the weight of the eigenstate inside the leaky region is much smaller.
(ii) For TE polarization the reflectivity 𝑅(𝑝) is zero at Brewster’s angle 𝑝 = ±1/

√
𝑛2 + 1.

The eigenstates of the FPO also show this characteristic root as indicated by the arrows in
Fig. 4.15. (iii) The overlap 𝑆 = |⟨𝜌1, 𝜌2⟩| = 0.9526 is slightly larger than for TM polarization.

Billiard of constant width

Next, an example of an asymmetric cavity is discussed where the FPO eigenstates cannot
describe the asymmetric backscattering: The billiard of constant width [Gutkin, 2007]. This
cavity is parametrized with 𝛼 ∈ [0, 2𝜋) in the 𝑥-𝑦 plane via the complex variable

𝑧(𝛼) = 𝑥(𝛼) + 𝑖𝑦(𝛼) = 𝑧(0)− 𝑖
∑︁
𝑛∈Z

𝑎𝑛
𝑛+ 1

(︀
𝑒𝑖(𝑛+1)𝛼 − 1

)︀
. (4.21)
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Figure 4.15: Momentum distribution of the eigenstates with (blue solid curve) largest
and (red dashed curve) second largest modulus eigenvalue in case of TE polarization. The
system is the Fourier-truncated spiral with (𝜖, 𝛿, 𝑛,𝑁grid) = (0.07, 1, 3.0, 1600). The arrows
at 𝑝 = ±1/

√
𝑛2 + 1 mark Brewster’s angle.

In Ref. [Wiersig et al., 2011] it has been shown that for [𝑧(0), 𝑎0, 𝑎3, 𝑎5] = 𝑅[1/4− 𝑖, 1, 𝑖/8, (𝑖+

1)/4], and 𝑎−𝑛 = 𝑎*𝑛, and vanishing 𝑎𝑛 for 𝑛 /∈ {0,±3,±5} the cavity violates any mirror-
reflection symmetry [see Fig. 4.16(a)] and exhibits asymmetric backscattering in wave dynam-
ics. However, in the ray dynamics backscattering regarding the line 𝑝 = 0 is not possible since
this line is an invariant curve in phase space which cannot be crossed by a ray orbit. Since
there is no coupling of CW and CCW propagation (regarding 𝑝 = 0) in ray dynamics the finite
FPO matrix has the block structure

ℱ =

(︃
CCW 0

0 CW

)︃
(4.22)

where, due to the asymmetry of the boundary, the sub-matrix CCW is not related to the
sub-matrix CW. Therefore the eigenstate intensity pattern, see Fig. 4.16(c-d), is different in
the upper and lower half of the phase space. Note that the eigenvalues obtained numerically
for 𝑁grid = 1200 are 𝜆1 = 0.863792 and 𝜆2 = 0.863788 such that the difference 𝜆1 − 𝜆2 is of
the order 10−6. Since the matrix elements are calculated from a finite set of initial conditions
and also the diagonalization is done only approximately (with the Arnoldi method), it is likely
that this small splitting is just a numerical artifact and that the actual eigenvalues of the
infinite FPO are degenerate. Hence, no effective two-mode Hamiltonian for the asymmetric
backscattering [see Eq. (4.15)] can be obtained from the FPO eigenstates in this case.

Artificial asymmetry in symmetric cavities

In this section it is discussed that also symmetric cavities can exhibit asymmetric backscat-
tering if they are perturbed locally such that the mirror-reflection symmetry is destroyed. In
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Figure 4.16: (a) A black curve illustrates the boundary of the constant width billiard, see
Eq. (4.21) with parameters as in the text. (b) The phase space dynamics near 𝑝 = 0 with
(red) regular curves and (blue) chaotic orbits is shown in phase space. (c-d) The first and
second eigenstate of the FPO are shown in phase space for (𝑁grid, 𝑛) = (1200, 3.0). A white
line indicates 𝑝 = 0. (e-f) The momentum distribution of the eigenstates, see Eq. (4.10), is
shown as red curve.

an recent experiment [Redding et al., 2012] such local asymmetric perturbation was realized
by placing a waveguide close to a symmetric Limaçon cavity. Depending on the position of
the waveguide along the cavity’s boundary the output is either dominated by CW or by CCW
traveling waves.

Since the ray dynamics does not “see” the waveguide outside the cavity one needs to model
such external perturbations effectively. Here this is done by an artificial local change of the
reflection coefficient as illustrated in Fig. 4.17(a). The purpose of this part is not to model
the coupling to a waveguide exactly but to show that such a small perturbation in general
lead to asymmetric backscattering in the ray dynamics. Therefore the reflectivity of the red
phase space region in Fig. 4.17(a) is simply set to zero. Hence, the symmetry in the ray
dynamics of the Limaçon is broken and the eigenstates of the FPO matrix show the signatures
of asymmetric backscattering as illustrated in Fig. 4.17: In (b) it is shown that the long-lived
FPO eigenstate pair indeed has a finite overlap; i.e. a finite chirality [as also seen in the intensity
pattern (d-f)] depending on the position 𝑞PT of the perturbation along the cavity’s interface.
Furthermore, the splitting Δ𝜆 of the largest modulus eigenvalue pair is small whenever |𝑆| is
large, i.e. whenever the eigenstates 𝜌1/2 become copropagating. Note that symmetry arguments
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can be exploited to restrict 𝑞PT ∈ [0, 𝑞max/2].
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Figure 4.17: In (a) the artificial asymmetric perturbation of the Limaçon is illustrated in
phase space: The reflectivity in the gray leaky region is give by the reflection law (2.23a)
and in the red region the reflectivity is set to zero. (b) The normalized overlap 𝑆 = ⟨𝜌1, 𝜌2⟩
of the long-lived FPO eigenstate pair is shown by black dots. (c) The splitting Δ𝜆 = 𝜆1−𝜆2
of the largest modulus eigenvalue pair is plotted. (d-e) The phase space pattern of the
eigenstate with largest modulus is shown for different 𝑞PT. The red frame illustrates the
region where the reflection law is modified. The parameters are fixed to (𝜖, 𝑛,𝑁grid,Δ𝑞PT) =
(0.5, 3.0, 600, 0.06𝑞max).

However for a comparison to experimental data a more elaborated modeling of the external
perturbation (e.g. the waveguide) is necessary which may change the dependency 𝑆(𝑞PT) shown
in the figure.

The spiral cavity

Another well known example for an asymmetric cavity is the spiral, see Eq. 2.19. Here, Lee et
al. [Lee et al., 2008a, Lee et al., 2004] have shown that the classical ray-survival probability is
larger in one half of the phase space than in the other. This can be interpreted such that the
spiral exhibits a finite chirality in the ray dynamics. This finite chirality is also reflected in the
eigenstates of the FPO which are shown in Fig. 4.18 for a spiral with (𝜖, 𝑛) = (0.04, 3.3). Here,
almost all intensity of the first and the second eigenstate is located in the upper half of the
phase space. In the momentum distributions of the eigenstates 𝜌1/2 [see Fig. 4.18(c-d)] it can
be seen that a small fraction of the intensity is also in the lower half of the phase space and that
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the second eigenstate shows the characteristic change of the sign. However, in the spiral the
asymmetry in the backscattering is extremely large such that the numerical approximation of
the FPO and the numerical diagonalization of the corresponding sparse matrix is problematic:
The difference between largest 𝜆1 = 0.902020 and second-largest 𝜆2 = 0.901993 eigenvalue
is quite small such that it may cannot be captured exactly by approximative diagonalization
algorithms for sparse matrices. Consequently, also the numerically determined eigenstates
suffer from this inaccuracy which manifests e.g. in different weights between 𝜌1 and 𝜌2 in the
lower half of the phase space [see magnifications in Fig. 4.18(c-d)]. Except for these numerical
problems the overall shape of the eigenstates is in good agreement with the survival probability
shown in Ref. [Lee et al., 2008a].
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Figure 4.18: The eigenstate of the FPO matrix with (a) the largest and (b) the second-
largest eigenvalue modulus are shown in phase space. The corresponding momentum repre-
sentations are shown in (c) and (d) as red curve.

4.3 1D model for asymmetric backscattering

In this section a toy model with asymmetric backscattering in one dimension is constructed.
For this toy model the FPO eigenvalue problem can be solved analytically and the eigen-
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states show all signatures of asymmetric intensity backscattering including non-orthogonality,
chirality, and copropagation.

The dynamics of the toy model take place in the interval [−1, 1]. It is given in three steps
that are illustrated in Fig. 4.19. First, random dynamics take place in each of the two sepa-
rated intervals [−1, 0) and [0, 1] [see Fig. 4.19(a)]. In comparison to microcavities this should
symbolize the chaoticity of the billiard dynamics in the lower and the upper part of the phase
space. Afterwards the two separated regions are coupled via an exchange of interval [−𝑎, 0)
and [0, 𝑎] with 0 < 𝑎≪ 1 [see Fig. 4.19(b)], which symbolizes the backscattering between CW
and CCW regions in phase space. In a third step the intensity in the interval [−𝑎, 𝑎] is reduced
by a function 𝑅(𝑥) [see Fig. 4.19(c)]. In contrast to the reflectivity in a microcavity here it
is assumed that the function 𝑅(𝑥) itself is asymmetric in the region of exchange [−𝑎, 𝑎] such
that

𝐴 =

∫︁ 0

−𝑎
𝑅(𝑥) d𝑥 ̸=

∫︁ 𝑎

0

𝑅(𝑥) d𝑥 = 𝐵. (4.23)

Here, 𝐴 and 𝐵 quantify the intensity which is scattered from [−1, 0) to [0, 1] and vice versa.
The fraction of intensity which remains in either [−1,−𝑎) or [𝑎, 1] is given by

Ω =

∫︁ 1

𝑎

𝑅(𝑥) d𝑥 = 1− 𝑎. (4.24)

Thus, the time evolution of a given intensity 𝜌(𝑥) for one time step is given by

ℱ𝜌(𝑥) = 𝑅(𝑥)

{︃
⟨𝜌⟩1 for 𝑥 ∈ [−1,−𝑎) ∪ [0, 𝑎]

⟨𝜌⟩2 for 𝑥 ∈ [−𝑎, 0) ∪ (𝑎, 1]
(4.25)

where ⟨𝜌⟩1 denote the average of 𝜌 in the interval [−1, 0) and ⟨𝜌⟩2 is the average of 𝜌 in the
interval [0, 1]. These averages are a result from instantaneous mixing random dynamics in the
separated intervals.
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Figure 4.19: The three steps of the dynamics in the 1D model are illustrated: (a) green/gray
arrows for the random dynamics in the separated intervals, (b) illustration of backscattering
via an exchange of intervals and (c) the reflectivity function 𝑅(𝑥) defined by Eq. (4.28).
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The eigenvalue problem ℱ𝜌 = 𝜆𝜌 of the FPO is solved in the following with the ansatz

𝜌(𝑥) = 𝑅(𝑥)

{︃
𝐶1 for 𝑥 ∈ [−1,−𝑎) ∪ [0, 𝑎]

𝐶2 for 𝑥 ∈ [−𝑎, 0) ∪ (𝑎, 1]
(4.26)

where 𝐶1 and 𝐶2 are constants to be determined. Applying ℱ given by Eq. (4.25) and com-
paring both sides of the eigenvalue problem it yields(︃

Ω 𝐴

𝐵 Ω

)︃(︃
𝐶1

𝐶2

)︃
= 𝜆

(︃
𝐶1

𝐶2

)︃
. (4.27)

This equation is the equivalent to the eigenvalue problem of the two-mode model in Eq. (3.32).
Hence, the FPO for the 1D model has two eigenvalues 𝜆1,2 = Ω ±

√
𝐴𝐵 and two normalized

eigenstates 𝜌1,2 given by Eq. (4.26) with (𝐶1, 𝐶2) = (
√
𝐴,±

√
𝐵)/

√︀
|𝐴|+ |𝐵|.

For an illustration of the dynamics in the 1D toy model in the following 𝑅(𝑥) is specified to

𝑅(𝑥) =

{︃
0.9(𝑥− 𝑎)4/(2𝑎)4 + 0.1 for |𝑥| < 𝑎

1 else
(4.28)

and 𝑎 = 0.1 is fixed. Therefore, 𝐴 = 0.044875, 𝐵 = 0.011125, and Ω = 0.9 is obtained which
results in 𝜆1 ≈ 0.922 and 𝜆2 ≈ 0.878. The eigenstates and the eigenvalues of the FPO are shown
in Fig. 4.20. Both eigenstates are localized dominantly in the interval [−1, 0). Therefore, they
exhibit a finite chirality and they are significantly non-orthogonal with a normalized overlap
𝑆 = (𝐴−𝐵)/(𝐴+𝐵) ≈ 0.6. Furthermore, the second eigenstate shows the characteristic flip
of the sign.

Next, the analytical results are confirmed by the construction and diagonalization of a random
matrix as approximation of the FPO. The construction of the 2𝑁×2𝑁 matrix ℱ𝑖𝑗 is explained
in the following: Suppose the interval [−1, 1] is sampled with points 𝑥𝑖 = −1 + 𝑖/𝑁 with
𝑖 = 0, 1, . . . , 2𝑁 then the finite matrix ℱ𝑖𝑗 time-evolves an intensity 𝜌𝑖 = 𝜌(𝑥𝑖) according to
the three steps of the dynamics. In particular ℱ𝑖𝑗 can be written as

(ℱ𝑖𝑗) = RXD (4.29)

where D is a block matrix for the random dynamics in each of the separated intervals [−1, 0)

and [0, 1]. Consequently, D consists of two 𝑁×𝑁 blocks in the diagonal. The matrix elements
of each block are uniformly distributed random numbers, which are normalized afterwards so
that the sum over each row in D gives unity. The matrix X represents the exchange of
the interval [−𝑎, 0) with the interval [0, 𝑎]. Therefore, the matrix X consists of ones in the
diagonal except for elements X𝑖𝑗 where 𝑥𝑖 or 𝑥𝑗 are inside [−𝑎, 𝑎]. This sub-matrix has ones
in the counterdiagonal. Finally, the matrix R determines the partial leakage of the system
and has only diagonal elements R𝑖𝑖 according to the (asymmetric) function 𝑅(𝑥𝑖). Because
of this matrix R the random matrix approximation of the FPO becomes sub-unitary with
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eigenvalues inside the unit circle in the complex plane. As shown in Fig. 4.20 the analytical
values are in very good agreement to the random matrix approximation of the FPO. All the
other eigenvalues of the random matrix are close to zero and represent very short lived states.

−1

0

1

−1 0 1

(a)

Re λ

Im λ
0

1

−1 0 1p

(b) ρ1

−1

0

1

−1 0 1p

(c) ρ2

Figure 4.20: The analytical eigenvalues of the toy model FPO are shown as red squares
in (a). Black dots represent numerically determined eigenvalues of the corresponding
1000×1000 random matrix for the FPO. All eigenvalues are inside the unit circle (blue
dashed curve). The eigenvalues close to one are magnified in the upper right inset. (b)
and (c) show the first and the second eigenstates of the toy model FPO as red curve. The
corresponding eigenstates of the random matrix are represented as bright gray curves.

Linear combinations of the long-lived eigenstates according to Eqs. (4.13) lead to states that
are dominantly localized either on the left or the right side of the exchange interval as shown
in Fig. 4.21(a-b). Therefore, they are identified with CW and CCW propagating states respec-
tively. To confirm the asymmetry of the backscattering the time evolution of 107 trajectories
is traced. Thus, the scattered intensity from [−1, 0] to [0, 1] and vice versa can be obtained
numerically. As shown in Fig. 4.21(c) more intensity is scattered from CCW to CW region
than in the reverse process while the loss of intensity from the initial region is almost equal
for both CW and CCW.
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Figure 4.21: In (a) and (b) linear combinations of the eigenstates of the toy model are
shown. (c) shows the time evolution as𝑚 = 0, 1, 2, . . . iterations of a CW and CCW intensity
respectively. A black solid (dashed) line is the component of the initial CW intensity in the
CW (CCW) region and a red solid (dashed) curve is the component of the initial CCW
intensity in the CCW (CW) region.
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4.4 Chapter summary

In this chapter the wave mechanical phenomenon of asymmetric backscattering is investigated
in the ray dynamics. First, it was focused on the backscattering of uniform intensity distri-
butions in order to treat the asymmetric backscattering as a simple exchange of intensities
between two regions in phase space which represent CW and CCW propagating motion. Here,
a qualitative agreement with the effective two-mode model can be observed when the proper
definition of CW and CCW is used namely with respect to 𝐿𝑧 = 0 and not with the intuitively
line 𝑝 = 0.
In the second part of the chapter the more elaborate approach to the asymmetric backscattering
in the ray dynamics was introduced based on the FPO. It has been shown that the eigenstates
of the FPO with the largest modulus eigenvalue nicely reflect the properties of long-lived optical
modes. In particular they are pairwise nearly degenerate, they are pairwise non-orthogonal,
and both eigenstates of such a pair have the same preferred sense of rotation. Furthermore,
from the FPO eigenstates the two-mode model can be reconstructed in the same manner as in
the wave mechanics, namely by superpositions of the eigenstates. A good agreement between
ray and wave dynamics is obtained qualitatively within an averaged Husimi function of long-
lived modes. However, to see the asymmetric backscattering in the FPO eigenstates the cavity
needs to have predominantly chaotic dynamics with a mixing of CW and CCW regions which
is fulfilled for generic moderate or strongly deformed cavities.
In the last part of this chapter a 1D toy-model for asymmetric backscattering was introduced
where the eigenvalue problem of the FPO is solved analytically. The results from the 1D
toy-model illustrate and confirm the properties of the FPO eigenstates in microcavities.
The main results of this chapter are published in Ref. [Kullig and Wiersig, 2016a].





5 Perturbation theory for slightly
deformed symmetric microdisk
cavities

For many applications it is necessary to deform the cavity’s boundary such that optical modes
show a desired property, e.g. unidirectional light emission. Such a boundary deformation then
acts as a perturbation to the ideal circular cavity. Thus, the 𝑄-factor is typically spoiled what
is unwanted in many cases. Consequently, just slight boundary deformations are considered
as a compromise with the following advantages: (i) Already slight deformations can have huge
intended impact on optical modes and their far-field emission [Kraft and Wiersig, 2016, Ge
et al., 2013], e.g. the change from isotropic to unidirectional emission. (ii) The 𝑄-spoiling is
in many cases in an acceptable range. (iii) Slight boundary deformations allow to solve the
mode equation, and the boundary conditions, not only numerically but also with an analytical
perturbation theory [Dubertrand et al., 2008, Ge et al., 2013, Wiersig, 2012, Kraft and Wiersig,
2014].

In this chapter the perturbation theory for microcavities with symmetric boundary deforma-
tions is discussed. This perturbation theory was originally developed for TM polarization
by Dubertrand et al. [Dubertrand et al., 2008] up to second order. It has been shown that
reliable results can be obtained for slight deformations, e.g. in a cut disk [Dubertrand et al.,
2008], the Limaçon [Kraft and Wiersig, 2014], and cavities with local boundary deformations
[Wiersig, 2012]. The perturbation theory provides analytical formulas for the near- and the
far-field mode pattern, and the complex wave number depending on the cavity’s boundary
deformation. In Ref. [Kraft and Wiersig, 2016] it has been shown that these formulas can be
inverted in order to search for an optimal boundary shape which lead to a desired far-field
emission pattern of an optical mode. Furthermore, in Ref. [Ge et al., 2013] the perturbation
theory was also derived for the case of TE polarization which is a more elaborate task because
of the more complicated boundary conditions at the cavity’s interface.

The first aim of this chapter is to review the perturbation theory for symmetric cavities and TM
polarization. Therefore, in Sec. 5.1 the key idea and the general framework of the perturbation
theory is introduced. So far the perturbation theory has been derived in literature up to second
order. This derivation is reviewed in Sec. 5.2.
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As a new result of this thesis the third-order corrections to the complex wave number are
derived in Sec. 5.3 and they are discussed in Sec. 5.4. A summary of the chapter is provided
in Sec. 5.5.

5.1 General setup for the symmetric perturbation theory

In this Section the general framework of the perturbation theory for TM polarization is intro-
duced following Ref. [Dubertrand et al., 2008]. It is assumed that a slight deformation of the
circular cavity is present which is of the form

𝑟(𝜑) = 𝑅 + 𝜆𝑓(𝜑) (5.1)

where 𝜆 is the formally small perturbation parameter such that |𝜆𝑓(𝜑)| ≪ 1. Here, the
deformation is assumed to be symmetric, i.e. 𝑓(𝜑) = 𝑓(−𝜑). Hence, the optical modes with
positive/even (+) or negative/odd (−) parity can be classified. They are labeled in the interior
with 𝜓±,in and in the exterior with 𝜓±,out. The modes need to fulfill the mode equation (3.9) and
the boundary conditions for TM polarization (3.15a)-(3.15b) at the cavity’s interface. With
Eq. (5.1) the boundary conditions can be expanded in a series of the perturbation parameter
𝜆 as

[𝜓±,in − 𝜓±,out] (𝑅, 𝜑) = − 𝜆

1!
𝑓(𝜑)𝜕𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑)

−𝜆
2

2!
𝑓 2(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑)

−𝜆
3

3!
𝑓 3(𝜑)𝜕3𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) +𝒪(𝜆4) (5.2a)

𝜕𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) = − 𝜆

1!
𝑓(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑)

−𝜆
2

2!
𝑓 2(𝜑)𝜕3𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑)

−𝜆
3

3!
𝑓 3(𝜑)𝜕4𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) +𝒪(𝜆4). (5.2b)

Since the boundary deformation is small the modes can still be identified via two mode numbers
𝑚 > 0 and 𝑙 > 0. In order to solve the mode equation with the corresponding boundary
conditions, the mode 𝜓± is expanded into solutions of the circular cavity as

𝜓±,in(𝑟, 𝜑) =
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑥)
𝜒±,𝑚(𝜑) +

∑︁
𝑝 ̸=𝑚

𝑎𝑝
𝐽𝑝(𝑛𝑘𝑟)

𝐽𝑝(𝑛𝑥)
𝜒±,𝑝(𝜑) (5.3a)

𝜓±,out(𝑟, 𝜑) = (1 + 𝑏𝑚)
𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑥)
𝜒±,𝑚(𝜑) +

∑︁
𝑝 ̸=𝑚

(𝑎𝑝 + 𝑏𝑝)
𝐻𝑝(𝑘𝑟)

𝐻𝑝(𝑥)
𝜒±,𝑝(𝜑) (5.3b)

where for the positive parity 𝜒+,𝑝(𝜑) = cos(𝑝𝜑) and for the negative parity 𝜒−,𝑝(𝜑) = sin(𝑝𝜑)
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are the radial dependencies. With this ansatz the mode equation is automatically fulfilled but
not the boundary conditions at the cavity’s interface. The target of the perturbation theory
is now to determine the complex wave number 𝑥 = 𝑘𝑅 and the coefficients 𝑎𝑝, 𝑏𝑝 such that
also the boundary conditions Eqs. (5.2a)-(5.2b) are fulfilled in the orders 𝜆1, 𝜆2, ... for a given
deformation function 𝑓(𝜑). Therefore, the complex wave number and the coefficients need to
be expanded in a power series as

𝑥 = 𝑥0 + 𝑥1𝜆 + 𝑥2𝜆
2 + 𝑥3𝜆

3 + 𝒪(𝜆4)

𝑎𝑝 = 𝑎
(1)
𝑝 𝜆 + 𝑎

(2)
𝑝 𝜆2 + 𝑎

(3)
𝑝 𝜆3 + 𝒪(𝜆4)

𝑏𝑝 = 𝑏
(2)
𝑝 𝜆2 + 𝑏

(3)
𝑝 𝜆3 + 𝒪(𝜆4)

(5.4)

where here and in the following a superscripted parenthetical number (𝑖) indicates the 𝑖-th order
in the perturbation parameter 𝜆. For convenience the corrections to the wave number 𝑥 in
different orders of 𝜆 are indicated by a subscripted number. Note that by inserting Eq. (5.2b)
into Eq. (5.2a) it follows that the terms 𝑎(0)𝑝 , 𝑏

(0)
𝑝 , and 𝑏(1)𝑝 are absent in the expansion scheme.

In the circular cavity the complex wave number of an optical mode (𝑚, 𝑙) is determined as the
root of the scattering function 𝑆𝑚(𝑥0) [see Eq. (3.21)]. For the derivation of the perturbation
theory one needs to expand 𝑆𝑝(𝑥) also for 𝑝 ̸= 𝑚 around 𝑥0 as

𝑆𝑝(𝑥) = 𝑆𝑝(𝑥0) + 𝜆𝑥1𝜕𝑥𝑆𝑝(𝑥0) + 𝜆2
(︂
𝑥2𝜕𝑥𝑆𝑝(𝑥0) +

1

2
𝑥21𝜕

2
𝑥𝑆𝑝(𝑥0)

)︂
+𝒪(𝜆3) (5.5)

where in particular for 𝑝 = 𝑚 it can be obtained [Dubertrand et al., 2008]

𝑆𝑚(𝑥0) = 0 (5.6a)

𝜕𝑥𝑆𝑚(𝑥0) = −(𝑛2 − 1) (5.6b)

𝜕2𝑥𝑆𝑚(𝑥0) = (𝑛2 − 1)

(︂
1

𝑥0
+ 2

𝐻 ′
𝑚

𝐻𝑚

(𝑥0)

)︂
. (5.6c)

Furthermore it is necessary for the derivation of the first- and second-order perturbation theory
to calculate the terms 𝜕𝑢𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) (𝑢 = 0, 1, 2, 3) explicitly for the ansatz (5.3) as
[Dubertrand et al., 2008]

[𝜓±,in − 𝜓±,out] = −
∑︁
𝑝

𝑏(2)𝑝 𝜒±,𝑝(𝜑) +𝒪(𝜆3) (5.7a)

𝜕𝑟 [𝜓±,in − 𝜓±,out] = 𝑘

{︃
𝑆𝑚(𝑥)𝜒±,𝑚(𝜑) +

∑︁
𝑝 ̸=𝑚

𝑎𝑝𝑆𝑝(𝑥)𝜒±,𝑝(𝜑)

−
∑︁
𝑝

𝑏(2)𝑝
𝐻 ′
𝑝

𝐻𝑝

(𝑥0)𝜒±,𝑝(𝜑)

}︃
+𝒪(𝜆3) (5.7b)
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𝜕2𝑟 [𝜓±,in − 𝜓±,out] = − 𝑘

𝑅

{︃[︀
𝑆𝑚(𝑥) + 𝑥(𝑛2 − 1)

]︀
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

𝑎(1)𝑝
[︀
𝑆𝑝(𝑥0)𝑥0(𝑛

2 − 1)
]︀
𝜒±,𝑝(𝜑)

}︃
+𝒪(𝜆2) (5.7c)

𝜕3𝑟 [𝜓±,in − 𝜓±,out] =

{︃
𝑘𝑆𝑚(𝑥0)

(︂
𝑚2 + 2

𝑅2
− 𝑘2𝑛2

)︂

−𝑘3(𝑛2 − 1)
𝐻 ′
𝑝

𝐻𝑝

(𝑥0) + 𝑘2
𝑛2 − 1

𝑅

}︃
𝜒±,𝑚(𝜑) +𝒪(𝜆). (5.7d)

Note that whenever one has a product of two quantities 𝑔, ℎ which depend on 𝜆, the 𝑙-th order
in 𝜆 denoted by (𝑙) fulfills the product rule

[𝑔ℎ](𝑙) =
𝑙∑︁

𝑖=0

𝑔(𝑖)ℎ(𝑙−𝑖) (5.8)

which is used, e.g., in the derivation of the terms above.

The perturbation theory is supposed to give reliable results if the deformation |𝜆𝑓(𝜑)| and the
wave number 𝑥 is small. In Ref. [Dubertrand et al., 2008] Dubertrand et al. derived a criterion
for the applicability of the perturbation theory based on the area 𝛿𝑎 where the refractive index
is changed via the boundary deformation. This criterion is given by

𝑠𝑛
𝛿𝑎

8𝜋𝑅2
(Re𝑥)2𝑛2 ≪ 1 (5.9)

with

𝑠𝑛 = 1− 2

𝜋

(︃
arcsin

1

𝑛
+

1

𝑛

√︂
1− 1

𝑛2

)︃
. (5.10)

In Ref. [Kraft and Wiersig, 2014] it was demonstrated that the criterion (5.9) is not too strict,
i.e. the perturbation theory (of second order) predicts 𝑥 also well if the left hand side of Eq. (5.9)
is close to one. However, quasi-degeneracies in Re 𝑥 between modes of different branches 𝑙 can
cause additional corrections to the perturbation theory and may spoil the accuracy of the
prediction. The treatment of such quasi-degeneracies between two and three modes is also
discussed in Ref. [Dubertrand et al., 2008].

Once the coefficients in the scheme (5.4) are evaluated not only the internal mode pattern but
also the far-field pattern 𝐹 (𝜑) is determined as

𝐹 (𝜑) = (1 + 𝑏𝑚)
𝑒−𝑖𝜋𝑚/2

𝐻𝑚(𝑥)
𝜒±,𝑚(𝜑) +

∑︁
𝑝 ̸=𝑚

(𝑎𝑝 + 𝑏𝑝)
𝑒−𝑖𝜋𝑝/2

𝐻𝑝(𝑥)
𝜒±,𝑝(𝜑). (5.11)
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5.2 Review on first- and second-order perturbation

theory

This section reviews the perturbation theory for symmetric deformed microdisk cavities up to
second order following the original derivation by Dubertrand et al. [Dubertrand et al., 2008].
The purpose is not to show each step of the calculation explicitly but to illustrate the key
ideas of the derivation and to provide the analytical results. For applications and examples of
the perturbation theory see Sec. 5.4.

First-order perturbation theory

In the first-order perturbation theory the boundary conditions Eqs. (5.2a)-(5.2a) are evaluated
in order 𝜆1 as

[𝜓±,in − 𝜓±,out]
(1) (𝑅, 𝜑) = −𝑓(𝜑)𝜕𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑) (5.12a)

𝜕𝑟 [𝜓±,in − 𝜓±,out]
(1) (𝑅, 𝜑) = −𝑓(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑). (5.12b)

With the ansatz for the wave function (5.3a)-(5.3b) and the expansion of the coefficients
according to the scheme (5.4) the first equation is automatically fulfilled [see Eqs. (5.7) for the
derivatives]. The latter equation results in the conditional equation

−𝑥1(𝑛2 − 1)𝜒±,𝑚(𝜑) +
∑︁
𝑝 ̸=𝑚

𝑎(1)𝑝 𝑆𝑝(𝑥0)𝜒±,𝑝(𝜑) =
𝑓(𝜑)

𝑅
𝑥0(𝑛

2 − 1)𝜒±,𝑚(𝜑) (5.13)

for 𝑥1 and 𝑎(1)𝑝 . Using the orthogonality of the 𝜒±,𝑝(𝜑) for different 𝑝 the first-order results

𝑥1 = −𝑥0𝐴𝑚𝑚 (5.14)

𝛼(1)
𝑝 = (𝑛2 − 1)

𝑥0
𝑆𝑝(𝑥0)

𝐴𝑝𝑚. (5.15)

can be extracted. Here, 𝐴𝑝𝑚 are the Fourier harmonics of the boundary which are defined as

𝐴𝑝𝑚 =
𝜀𝑝
2𝜋𝑅

∫︁ 2𝜋

0

𝜒±,𝑝(𝜑)𝑓(𝜑)𝜒±,𝑚(𝜑) d𝜑 (5.16)

with 𝜀𝑝 = 2 − 𝛿0,𝑝. Note that the 𝐴𝑝𝑚 are dimensionless since the deformation function 𝑓(𝜑)
has the same dimension as 𝑅.

The first-order results provide corrections in the complex wave number 𝑥 = 𝑥0(1 − 𝜆𝐴𝑚𝑚)

and via the 𝑎(1)𝑝 the first-order gives rough predictions for the mode pattern. However, since
𝑏
(1)
𝑝 = 0 and 𝐴𝑚𝑚 is real, the first-order results cannot provide corrections to the 𝑄-factor



78 5.2 Review on first- and second-order perturbation theory

because

𝑄(𝑥0 + 𝜆𝑥1) = − Re [𝑥0(1− 𝜆𝐴𝑚𝑚)]

2Im [𝑥0(1− 𝜆𝐴𝑚𝑚)]
= − Re𝑥0

2Im𝑥0
= 𝑄(𝑥0). (5.17)

Therefore, 𝑄-spoiling in deformed cavities is an effect of higher order in the boundary defor-
mation and requires at least second-order perturbation theory.

Second-order perturbation theory

In order to obtain the results for the second-order corrections of the perturbation theory,
Eqs. (5.2a) and (5.2a) are evaluated in order 𝜆2 as

[𝜓±,in − 𝜓±,out]
(2) (𝑅, 𝜑) = −𝑓(𝜑)𝜕𝑟 [𝜓±,in − 𝜓±,out]

(1) (𝑅, 𝜑)

−𝑓
2(𝜑)

2
𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑) (5.18a)

𝜕𝑟 [𝜓±,in − 𝜓±,out]
(2) (𝑅, 𝜑) = −𝑓(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(1) (𝑅, 𝜑)

−𝑓
2(𝜑)

2
𝜕3𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑). (5.18b)

By inserting the Eqs. (5.7) into Eq. (5.18a) it follows

∑︁
𝑝

𝑏(2)𝑝 𝜒±,𝑝(𝜑) =
1

2
(𝑛2 − 1)𝑥20

𝑓 2(𝜑)

𝑅2
𝜒±,𝑚(𝜑) (5.19a)

and from Eq. (5.18b) one obtains{︃
(𝑛2 − 1)

[︂
−𝑥2 +

1

2𝑥0
𝑥21

(︂
1 + 2𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂]︂
+ 𝑏(2)𝑚

𝐻 ′
𝑚

𝐻𝑚

}︃
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

[︂
𝑥1𝑎

(1)
𝑝 𝜕𝑥𝑆𝑝 + 𝑎(2)𝑝 𝑆𝑝 + 𝑏(2)𝑝

𝐻 ′
𝑚

𝐻𝑚

]︂
𝜒±,𝑝(𝜑)

= (𝑛2 − 1)
𝑓(𝜑)

𝑅

(︃
𝑥0
∑︁
𝑝 ̸=𝑚

𝑎(1)𝑝 𝜒±,𝑝(𝜑) + 𝑥1𝜒±,𝑚(𝜑)

)︃

+(𝑛2 − 1)𝑥0
𝑓 2(𝜑)

2𝑅2

(︂
1 + 𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂
𝜒±,𝑚(𝜑). (5.19b)

These are the conditional equations for the second order coefficients 𝑎(2)𝑝 , 𝑏
(2)
𝑝 , and 𝑥2. Using

the (dimensionless) second-order Fourier harmonics of the boundary defined by

𝐵𝑝𝑚 =
𝜖𝑝

2𝜋𝑅2

∫︁ 2𝜋

0

𝑓 2(𝜑)𝜒±,𝑝(𝜑)𝜒±,𝑚(𝜑) d𝜑 (5.20)
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with 𝜖𝑝 = 2− 𝛿0,𝑝 one can exploit the orthogonality of the 𝜒±,𝑝(𝜑) in Eq. (5.19a) such that

𝑏(2)𝑝 =
1

2
(𝑛2 − 1)𝑥20𝐵𝑝𝑚 (5.21)

is obtained. Hence, Eq. (5.19b) can now be solved for 𝑥2 and 𝑎(2)𝑝 as

𝑥2 =
1

2
𝑥0
(︀
3𝐴2

𝑚𝑚 −𝐵𝑚𝑚

)︀
+ 𝑥20

(︀
𝐴2
𝑚𝑚 −𝐵𝑚𝑚

)︀ 𝐻 ′
𝑚

𝐻𝑚

(𝑥0)

−(𝑛2 − 1)𝑥20
∑︁
𝑝 ̸=𝑚

𝐴𝑚𝑝𝐴𝑝𝑚
𝑆𝑝(𝑥0)

(5.22)

𝑎(2)𝑝 = (𝑛2 − 1)
𝑥0

𝑆𝑝(𝑥0)

{︃
𝐴𝑝𝑚𝐴𝑚𝑚

[︂
𝑥0

𝑆𝑝(𝑥0)
𝜕𝑥𝑆𝑝(𝑥0)− 1

]︂
+
1

2
𝐵𝑝𝑚

[︂
1− 𝑥0

(︂
𝐻 ′
𝑚

𝐻𝑚

(𝑥0)−
𝐻 ′
𝑝

𝐻𝑝

(𝑥0)

)︂]︂
+𝑥0(𝑛

2 − 1)
∑︁
𝑘 ̸=𝑚

𝐴𝑝𝑘𝐴𝑘𝑚
𝑆𝑘(𝑥0)

}︃
. (5.23)

Therefore, all coefficients in the expansion scheme (5.4) are computed up to second order in 𝜆
which completes the derivation of second-order perturbation theory. Since, the corrections to
𝑥 = 𝑘𝑅 in second order are in general complex the second-order results give also non-trivial
predictions for the 𝑄-factor, i.e. 𝑄(𝑥0 + 𝜆𝑥1 + 𝜆2𝑥2) ̸= 𝑄(𝑥0).

Note that in case of local boundary deformations the formulas can be further simplified such
that not the matrices 𝐴𝑝𝑚 and 𝐵𝑝𝑚 but only the first two moments ⟨𝑓⟩ and ⟨𝑓 2⟩ of the
deformation function enter [Wiersig, 2012].

5.3 Extension to third-order perturbation theory

As a new result of this thesis, the third-order corrections of the complex wave number 𝑥 are
derived in this section. By the extension to the third order one in general expects a higher
accuracy. Furthermore, since the second-order gives access to the 𝑄-factor corrections one
expects for third-order perturbation theory to capture further interesting effects: In Sec. 5.4
it is e.g. shown that the splitting Δ𝑥 = 𝑥+ − 𝑥− of even and odd parity modes is predicted
more accurate by third-order perturbation theory.

As starting point for the derivation of the third-order corrections the boundary conditions
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(5.2a) and (5.2a) are evaluated in order 𝜆3 as

[𝜓±,in − 𝜓±,out]
(3) (𝑅, 𝜑) = −𝑓(𝜑)𝜕𝑟 [𝜓±,in − 𝜓±,out]

(2) (𝑅, 𝜑)

−𝑓
2(𝜑)

2
𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(1) (𝑅, 𝜑)

−𝑓
3(𝜑)

6
𝜕3𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑) (5.24a)

𝜕𝑟 [𝜓±,in − 𝜓±,out]
(3) (𝑅, 𝜑) = −𝑓(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(2) (𝑅, 𝜑)

−𝑓
2(𝜑)

2
𝜕3𝑟 [𝜓±,in − 𝜓±,out]

(1) (𝑅, 𝜑)

−𝑓
3(𝜑)

6
𝜕4𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑). (5.24b)

Here, in principle one could insert the terms according to expansion in 𝜆 given by Eqs. (5.7).
But in the following a more convenient way to derive the third-order corrections is chosen.
Therefore, first, the function

𝐷𝑙
𝑚(𝑥) = 𝜕𝑙𝑟

[︂
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑥)
− 𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑥)

]︂ ⃒⃒⃒⃒
⃒
𝑟=𝑅

=
(︁ 𝑥
𝑅

)︁𝑙 [︃
𝑛𝑙
𝐽
[𝑙]
𝑚

𝐽𝑚
(𝑛𝑥)− 𝐻

[𝑙]
𝑚

𝐻𝑚

(𝑥)

]︃
(5.25)

is defined where [𝑙] indicates the 𝑙-th derivative (and not the 𝑙-th order in 𝜆). Note that
𝐷𝑙
𝑚(𝑥) does not depend on the specific boundary deformation 𝑓(𝜑) but it depends on 𝜆 via 𝑥.

Therefore, it needs to be expanded as

𝐷𝑙
𝑚(𝑥) = 𝐷𝑙

𝑚 + 𝜆𝑥1𝜕𝑥𝐷
𝑙
𝑚 + 𝜆2

(︂
𝑥2𝜕𝑥𝐷

𝑙
𝑚 +

1

2
𝑥21𝜕

2
𝑥𝐷

𝑙
𝑚

)︂
+𝜆3

(︂
𝑥3𝜕𝑥𝐷

𝑙
𝑚 + 𝑥1𝑥2𝜕

2
𝑥𝐷

𝑙
𝑚 +

1

6
𝑥31𝜕

3
𝑥𝐷

𝑙
𝑚

)︂
+𝒪(𝜆4). (5.26)

Here, for convenience, the dependencies on 𝑥0 are not explicitly written, i.e. 𝐷𝑙
𝑚 = 𝐷𝑙

𝑚(𝑥0),
𝜕𝑥𝐷

𝑙
𝑚 = 𝜕𝑥𝐷

𝑙
𝑚(𝑥0), ... is shorten. By using the function 𝐷𝑙

𝑚(𝑥) the terms
𝜕𝑙𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) can be written compactly as

𝜕𝑙𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) = 𝐷𝑙
𝑚(𝑥)𝜒±,𝑚(𝜑)+

∑︁
𝑝 ̸=𝑚

𝑎𝑝𝐷
𝑙
𝑝(𝑥)𝜒±,𝑝(𝜑)−

∑︁
𝑝

𝑏𝑝

(︁ 𝑥
𝑅

)︁𝑙 𝐻 [𝑙]
𝑝

𝐻𝑝

(𝑥)𝜒±,𝑝(𝜑).

(5.27)

In order to write down the conditional equations (5.24) explicitly one needs to evaluate
Eq. (5.27) for different 𝑙 and in different orders of the perturbation parameter 𝜆. The terms
needed are listed below [their computation is straight forward by using the product rule (5.8)
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and the expansion (5.26)]

[𝜓±,in − 𝜓±,out]
(3) = −

∑︁
𝑝

𝑏(3)𝑝 𝜒±,𝑝(𝜑) (5.28a)

𝜕𝑟[𝜓±,in − 𝜓±,out]
(3) =

(︂
𝑥3𝜕𝑥𝐷

1
𝑚 + 𝑥1𝑥2𝜕

2
𝑥𝐷

1
𝑚 +

1

6
𝑥31𝜕

3
𝑥𝐷

1
𝑚

)︂
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

(︃
𝑎(3)𝑝 𝐷1

𝑝 + 𝑎(2)𝑝 𝑥1𝜕𝑥𝐷
1
𝑝

+ 𝑎(1)𝑝

[︂
𝑥2𝜕𝑥𝐷

1
𝑝 +

1

2
𝑥21𝜕

2
𝑥𝐷

1
𝑝

]︂)︃
𝜒±,𝑝(𝜑)

−
∑︁
𝑝

(︃
𝑏(3)𝑝

𝑥0
𝑅

𝐻 ′
𝑝

𝐻𝑝

+ 𝑏(2)𝑝

{︂
𝑥

𝑅

𝐻 ′
𝑝

𝐻𝑝

(𝑥)

}︂(1)
)︃
𝜒±,𝑝(𝜑) (5.28b)

𝜕𝑟[𝜓±,in − 𝜓±,out]
(2) =

(︂
𝑥2𝜕𝑥𝐷

1
𝑚 +

1

2
𝑥21𝜕

2
𝑥𝐷

1
𝑚

)︂
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

(︀
𝑎(2)𝑝 𝐷1

𝑝 + 𝑎(1)𝑝 𝑥1𝜕𝑥𝐷
1
𝑝

)︀
𝜒±,𝑝(𝜑)−

∑︁
𝑝

𝑏(2)𝑝
𝑥0
𝑅

𝐻 ′
𝑝

𝐻𝑝

𝜒±,𝑝(𝜑)

(5.28c)

𝜕2𝑟 [𝜓±,in − 𝜓±,out]
(2) =

(︂
𝑥2𝜕𝑥𝐷

2
𝑚 +

1

2
𝑥21𝜕

2
𝑥𝐷

2
𝑚

)︂
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

(︀
𝑎(2)𝑝 𝐷2

𝑝 + 𝑎(1)𝑝 𝑥1𝜕𝑥𝐷
2
𝑝

)︀
𝜒±,𝑝(𝜑)−

∑︁
𝑝

𝑏(2)𝑝
𝑥20
𝑅2

𝐻 ′′
𝑝

𝐻𝑝

𝜒±,𝑝(𝜑)

(5.28d)

𝜕2𝑟 [𝜓±,in − 𝜓±,out]
(1) = 𝑥1𝜕𝑥𝐷

2
𝑚 𝜒±,𝑚(𝜑) +

∑︁
𝑝 ̸=𝑚

𝑎(1)𝑝 𝐷2
𝑝 𝜒±,𝑝(𝜑) (5.28e)

𝜕3𝑟 [𝜓±,in − 𝜓±,out]
(1) = 𝑥1𝜕𝑥𝐷

3
𝑚 𝜒±,𝑚(𝜑) +

∑︁
𝑝 ̸=𝑚

𝑎(1)𝑝 𝐷3
𝑝 𝜒±,𝑝(𝜑) (5.28f)

𝜕3𝑟 [𝜓±,in − 𝜓±,out]
(0) = 𝐷3

𝑚 𝜒±,𝑚(𝜑) (5.28g)

𝜕4𝑟 [𝜓±,in − 𝜓±,out]
(0) = 𝐷4

𝑚 𝜒±,𝑚(𝜑). (5.28h)

For convenience the dependencies (𝑅, 𝜑) at the left-hand-side and (𝑥0) at the Hankel-functions
and at the terms 𝜕𝑢𝑥𝐷𝑙

𝑝 have been omitted. Inserting these terms into Eqs. (5.24) one obtains
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the conditional equations for the third-order perturbation theory in the explicit form

−
∑︁
𝑝

𝑏(3)𝑝 𝜒±,𝑝(𝜑) =

[︂
−𝑓(𝜑)

(︂
𝑥2𝜕𝑥𝐷

1
𝑚 +

1

2
𝑥21𝜕

2
𝑥𝐷

1
𝑚

)︂
− 1

2
𝑓 2(𝜑)𝑥1𝜕𝑥𝐷

2
𝑚 − 1

6
𝑓 3(𝜑)𝐷3

𝑚

]︂
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

[︂
−𝑓(𝜑)

(︀
𝑎(2)𝑝 𝐷1

𝑝 + 𝑎(1)𝑝 𝑥1𝜕𝑥𝐷
1
𝑝

)︀
− 1

2
𝑓 2(𝜑)𝑎(1)𝑝 𝐷2

𝑝

]︂
𝜒±,𝑝(𝜑)

+
∑︁
𝑝

𝑓(𝜑)𝑏(2)𝑝
𝑥0
𝑅

𝐻 ′
𝑝

𝐻𝑝

𝜒±,𝑝(𝜑) (5.29a)

(︂
𝑥3𝜕𝑥𝐷

1
𝑚 + 𝑥1𝑥2𝜕

2
𝑥𝐷

1
𝑚 +

1

6
𝑥31𝜕

3
𝑥𝐷

1
𝑚

)︂
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

(︂
𝑎(3)𝑝 𝐷1

𝑝 + 𝑎(2)𝑝 𝑥1𝜕𝑥𝐷
1
𝑝 + 𝑎(1)𝑝

[︂
𝑥2𝜕𝑥𝐷

1
𝑝 +

1

2
𝑥21𝜕

2
𝑥𝐷

1
𝑝

]︂)︂
𝜒±,𝑝(𝜑)

−
∑︁
𝑝

(︃
𝑏(3)𝑝

𝑥0
𝑅

𝐻 ′
𝑝

𝐻𝑝

+ 𝑏(2)𝑝

{︂
𝑥

𝑅

𝐻 ′
𝑝

𝐻𝑝

(𝑥)

}︂(1)
)︃
𝜒±,𝑝(𝜑)

=

[︂
−𝑓(𝜑)

(︂
𝑥2𝜕𝑥𝐷

2
𝑚 +

1

2
𝑥21𝜕

2
𝑥𝐷

2
𝑚

)︂
− 1

2
𝑓 2(𝜑)𝑥1𝜕𝑥𝐷

3
𝑚 − 1

6
𝑓 3(𝜑)𝐷4

𝑚

]︂
𝜒±,𝑚(𝜑)

+
∑︁
𝑝 ̸=𝑚

[︂
−𝑓(𝜑)

(︀
𝑎(2)𝑝 𝐷2

𝑝 + 𝑎(1)𝑝 𝑥1𝜕𝑥𝐷
2
𝑝

)︀
− 1

2
𝑓 2(𝜑)𝑎(1)𝑝 𝐷3

𝑝

]︂
𝜒±,𝑝(𝜑)

+
∑︁
𝑝

𝑓(𝜑)𝑏(2)𝑝
𝑥20
𝑅2

𝐻 ′′
𝑝

𝐻𝑝

𝜒±,𝑝(𝜑). (5.29b)

These equations can be solved for the third-order corrections 𝑥3, 𝑏
(3)
𝑝 , and 𝑎

(3)
𝑝 . Using the

orthogonality of the 𝜒±,𝑝 for different 𝑝 and with the (dimensionless) third-order Fourier har-
monics

𝐶𝑝𝑚 =
𝜖𝑝

2𝜋𝑅3

∫︁ 𝜋

0

𝑓 3(𝜑)𝜒±,𝑚(𝜑)𝜒±,𝑝(𝜑) d𝜑 (5.30)

of the boundary deformation, Eq. (5.29a) can be solved for 𝑏(3)𝑚 as

𝑏(3)𝑝 =

(︂
𝑥2𝜕𝑥𝐷

1
𝑚 +

1

2
𝑥21𝜕

2
𝑥𝐷

1
𝑚

)︂
𝑅𝐴𝑚𝑝 +

1

2
𝑥1𝜕𝑥𝐷

2
𝑚𝑅

2𝐵𝑚𝑝 +
1

6
𝐷3
𝑚𝑅

3𝐶𝑚𝑝 (5.31)

+
∑︁
𝑘 ̸=𝑚

[︂(︁
𝑎
(2)
𝑘 𝐷1

𝑘 + 𝑎
(1)
𝑘 𝑥1𝜕𝑥𝐷

1
𝑘

)︁
𝑅𝐴𝑘𝑝 +

1

2
𝑎
(1)
𝑘 𝐷2

𝑘𝑅
2𝐵𝑘𝑝

]︂
−
∑︁
𝑘

𝑏
(2)
𝑘 𝑥0

𝐻 ′
𝑘

𝐻𝑘

𝐴𝑝𝑘

=

(︂
𝑥2𝜕𝑥�̃�

1
𝑚 +

1

2
𝑥21𝜕

2
𝑥�̃�

1
𝑚

)︂
𝐴𝑚𝑝 +

1

2
𝑥1𝜕𝑥�̃�

2
𝑚𝐵𝑚𝑝 +

1

6
�̃�3
𝑚𝐶𝑚𝑝 (5.32)

+
∑︁
𝑘 ̸=𝑚

[︂(︁
𝑎
(2)
𝑘 �̃�1

𝑘 + 𝑎
(1)
𝑘 𝑥1𝜕𝑥�̃�

1
𝑘

)︁
𝐴𝑘𝑝 +

1

2
𝑎
(1)
𝑘 �̃�2

𝑘𝐵𝑘𝑝

]︂
−
∑︁
𝑘

𝑏
(2)
𝑘 𝑥0

𝐻 ′
𝑘

𝐻𝑘

𝐴𝑝𝑘
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where in the last equation the rescaled function �̃�𝑙
𝑚 = 𝑅𝑙𝐷𝑙

𝑚 is introduced. Using the orthog-
onality of 𝜒±,𝑝(𝜑) in Eq. (5.29b) one obtains(︂

𝑥3𝜕𝑥�̃�
1
𝑚 + 𝑥1𝑥2𝜕

2
𝑥�̃�

1
𝑚 +

1

6
𝑥31𝜕

3
𝑥�̃�

1
𝑚

)︂
= 𝑏(3)𝑚 𝑥0

𝐻 ′
𝑚

𝐻𝑚

+ 𝑏(2)𝑚

{︂
𝑥
𝐻 ′
𝑚

𝐻𝑚

(𝑥)

}︂(1)

−
(︂
𝑥2𝜕𝑥�̃�

2
𝑚 +

1

2
𝑥21𝜕

2
𝑥�̃�

2
𝑚

)︂
𝐴𝑚𝑚

−1

2
𝑥1𝜕𝑥�̃�

3
𝑚𝐵𝑚𝑚 − 1

6
�̃�4
𝑚𝐶𝑚𝑚 + 𝑏(2)𝑚 𝑥20

𝐻 ′′
𝑚

𝐻𝑚

𝐴𝑚𝑚

−
∑︁
𝑝 ̸=𝑚

[︃
𝐴𝑚𝑝

(︁
𝑎(2)𝑝 �̃�2

𝑝 + 𝑎(1)𝑝 𝑥1𝜕𝑥�̃�
2
𝑝

)︁
+
1

2
𝐵𝑚𝑝𝑎

(1)
𝑝 �̃�3

𝑝 − 𝐴𝑚𝑝𝑏
(2)
𝑝 𝑥20

𝐻 ′′
𝑝

𝐻𝑝

]︃
(5.33)

which can be solved for the third-order correction in complex wave number as

𝑥3𝜕𝑥�̃�
1
𝑚 = −𝑥1𝑥2𝜕2𝑥�̃�1

𝑚 − 1

6
𝑥31𝜕

3
𝑥�̃�

1
𝑚 + 𝑏(3)𝑚 𝑥0

𝐻 ′
𝑚

𝐻𝑚

+ 𝑏(2)𝑚

{︂
𝑥
𝐻 ′
𝑚

𝐻𝑚

(𝑥)

}︂(1)

−
(︂
𝑥2𝜕𝑥�̃�

2
𝑚 +

1

2
𝑥21𝜕

2
𝑥�̃�

2
𝑚

)︂
𝐴𝑚𝑚

−1

2
𝑥1𝜕𝑥�̃�

3
𝑚𝐵𝑚𝑚 − 1

6
�̃�4
𝑚𝐶𝑚𝑚 + 𝑏(2)𝑚 𝑥20

𝐻 ′′
𝑚

𝐻𝑚

𝐴𝑚𝑚

−
∑︁
𝑝 ̸=𝑚

[︂
𝐴𝑚𝑝

(︁
𝑎(2)𝑝 �̃�2

𝑝 + 𝑎(1)𝑝 𝑥1𝜕𝑥�̃�
2
𝑝

)︁
+

1

2
𝐵𝑚𝑝𝑎

(1)
𝑝 �̃�3

𝑝 − 𝐴𝑚𝑝𝑏
(2)
𝑝 𝑥20

𝐻 ′′
𝑝

𝐻𝑝

]︂
(5.34)

with 𝜕𝑥�̃�1
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For the implementation of these equations the terms 𝜕𝑢𝑥�̃�𝑙
𝑝(𝑥0) need to be evaluated explicitly.

This can be done with a computer algebra system; e.g. Maple. The necessary terms are listed
for completeness in the Appendix A.3. Also for completeness the terms 𝑎(3)𝑝 are deduced from
Eq. (5.29b) as
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(5.36)

with �̃�1
𝑝 = 𝑥0𝑆𝑝(𝑥0).
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5.4 Applications – Improvements from the third order?

In this section the results from the perturbation theory are applied and discussed at some
example systems. A main question here is whether the third-order perturbation theory im-
proves the predictions of the complex wave numbers. In order to illustrate the difficulty of this
question, first, two trivial deformations are discussed: (i) A uniform deformation 𝑓(𝜑) = −𝜖𝑅
which leads to a shrunken circular cavity with reduced radius. (ii) A shift of the circular cavity
by 𝜖 along the 𝑥-axis. Here, the radius of the shifted circle is given by

𝑟(𝜑)

𝑅
= −𝜖 cos(𝜑) +

√︀
1− 𝜖2 [1− cos2(𝜑)] (5.37)

which implies a deformation function 𝑓(𝜑) = 𝑟(𝜑) − 𝑅. The advantage of these two trivial
deformations is that the exact value of the complex wave number is known analytically: In
case (i) scaling can be used to obtain 𝑥 = 𝑥0/(1− 𝜖) as complex wave number of the deformed
cavity. In case (ii) the complex wave number of the “deformed” cavity is again 𝑥0. Therefore,
the error of the predictions from the perturbation theory

Err𝑥 = |𝑥PT − 𝑥analyt| (5.38)

can be computed for the first-, second-, and third order. The results for these two cases are
shown in Fig. 5.1. For the shrunken circle the error Err𝑥 scales as expected: The error in the
𝑖-th order is proportional to 𝜖𝑖+1 which definitely leads to an improvement of the predictions
by the third order in comparison to the second order.

However, in case of the shifted circle the error scaling is quite different. Here, already the
second-order perturbation theory scales with 𝜖4 and predicts the same values as the third
order. Consequently, evaluating the third order does not yield an improvement. Note, that
for the shifted circle 𝜖 does not one to one correspond to the perturbation parameter 𝜆 since
it enters also nonlinear in 𝑟(𝜑). However, also in the case of the shifted circle the parameter
𝜖 sets the strength of the perturbation. Furthermore, the leading order in 𝑟(𝜑) is linear in 𝜖.
Hence, 𝜖 and 𝜆 can be seen as equivalent parameter for the error scaling.

Further note that one cannot argue that the absence of the term proportional to 𝜖3 in the
𝜖-expansion of 𝑟(𝜑) [Eq. (5.37)] is responsible for the vanishing third-order correction in 𝑥.
Otherwise every deformation linear in 𝜖 would lead to a vanishing 𝑥2.

The above discussed deformations are trivial in the sense that they do not change the circular
shape of the cavity. Therefore, next, more generic boundary deformations are considered which
immediately results in the problem that the analytical reference value of 𝑥 is not known. Here,
the numerical boundary element method (BEM) [Wiersig, 2003] is used to provide a proper
reference value of 𝑥. First, a circular cavity with two Gaussian notches symmetrically placed
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Figure 5.1: The error Err 𝑥 of the perturbation theory predictions of (black) first, (red)
second and (blue) third order for (a) a uniform deformation [shrunken circle] and (b) a
shifted circle are shown for the mode (𝑚, 𝑙) = (8, 1). The refractive index is 𝑛 = 2.0. Gray
dashed lines illustrate the scaling with 𝜖2, 𝜖3, and 𝜖4.

at the 𝑥-axis is studied. The cavity is defined by

𝑟(𝜑)

𝑅
= 1− 𝜖

∑︁
𝑙∈Z

exp

[︃
−(𝜑− 𝜋𝑙)2

2𝜎2

]︃
(5.39)

where 𝜎 is the width parameter of the notches. In Fig. 5.2(a) the resulting error scaling of 𝑥
for the positive parity mode (𝑚, 𝑙) = (8, 1) is shown for 𝑛 = 2. The notch width is set via
𝜎 = 0.2 what results in a relatively broad notch. The perturbation theory shows the expected
error scaling, i.e., the second order scales proportional to 𝜖3 and the third order scales with
𝜖4. Therefore, evaluating the third-order corrections again provide more accurate results. This
situation is in good agreement with the example of the shrunken circle in Fig. 5.1(a). However,
note that the intrinsic numerical errors of the BEM prevent to observe the error scaling over
many magnitudes of 𝜖. In particular around 𝜖 ∼ 10−2 the numerical error of the BEM is
considerable for the third-order perturbation theory and results in a saturation of the error
Err𝑥.
The second example for a non-trivial boundary deformation is the flatten quadrupole which is
defined by

𝑟(𝜑)

𝑅
=
√︀

1 + 2𝜖 cos 2𝜑. (5.40)

The reason for exploiting the flatten quadrapole rather than the quadruple (no square root)
is to prevent the vanishing of lots of elements in the matrices 𝐴𝑝𝑚, 𝐵𝑝𝑚, and 𝐶𝑝𝑚 due to
the simple cosine deformation. Therefore the flatten quadrupole represents a more generic
deformation than the quadrupole. The results of the error scaling in the perturbation theory
are shown in Fig. 5.2(b) for the even parity mode (𝑚, 𝑙) = (8, 1). Here, the scaling is quite
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Figure 5.2: The error Err 𝑥 of the perturbation theory predictions of (red) second and
(blue) third order for (a,c) the double-notched circle and (b,d) the flatten quadrupole are
shown for the mode (a,b) (𝑚, 𝑙) = (8, 1) and (c,d) (𝑚, 𝑙) = (5, 1). The refractive index is
𝑛 = 2.0. Gray dashed lines illustrate the scaling with 𝜖3, and 𝜖4. Reference values of 𝑥 are
obtained with numerical BEM. Therefore a saturation of Err 𝑥 is observed for very small 𝜖.

similar to the case of the shifted circle: The error of the perturbation theory of second- and
third-order scale similar to 𝜖4. Note that the blue curve of the third-order perturbation theory
is slightly below the red curve for the second-order perturbation theory. Therefore, also for the
flatten quadrupole the third-order predictions are slightly more accurate than the second-order
predictions.

In Fig. 5.2(c) and (d) the error scaling for the even parity mode (𝑚, 𝑙) = (5, 1) in the double
notched-circle and the flatten quadrupole is shown. Also here the same error scaling as for
the mode (𝑚, 𝑙) = (8, 1) is observed. Moreover the same error scaling can be seen also for
an refractive index 𝑛 = 1.5 (not shown) and for the modes with the odd/negative parity (not
shown). This suggests that the type of the boundary deformation causes the different scalings
of Err 𝑥.

However, up to now it is not clear which mechanism is responsible for the error scaling.
In order to illustrate that the situation is even more delicate as discussed so far, next, the
elliptical cavity [see Eq. (2.18)] is studied. In particular the axis ratio 𝑣 is varied such that
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the parameters 𝑏 =
√
𝑣 and eccentricity e2 = (1 − 𝑣2) in Eq. (2.18) are used. For 𝑣 = 1 a

circular cavity is obtained. With a Taylor expansion of the radius around 𝑣 = 1 one can verify
that the term (1 − 𝑣) is a proper deformation parameter corresponding to 𝜆. The obtained
error scaling for the ellipse is shown in Fig. 5.3 for both the even and the odd parity modes.
Here, a dependence of the error scaling with the mode number 𝑚 is observed. In particular
for the mode 𝑚 = 3 [Fig. 5.3(a-b)] the third-order corrections give a significant improvement.
However, for 𝑚 = 5 [Fig. 5.3(c-d)] there is almost no improvement from the evaluation of the
third-order corrections. And even worse, the third-order predictions can become more faulty
than the second-order predictions, see also Fig. 5.3(e-f) for 𝑚 = 8. Note that again due to the
numerical calculation of the reference value of 𝑥 deviations from the scaling, i.e. a saturation,
can be seen for small errors/small deformations.

An interesting observation in the predictions from the perturbation theory is that the complex
frequency splitting Δ𝑥 = 𝑥+ − 𝑥− is predicted in all the shown cases much better by the
third order than by the second order even if the error scaling for the individual mode 𝑥+ or
𝑥− is may worser. This is illustrated in Fig. 5.4 where the results for the splitting Δ𝑥 in the
flatten quadrupole (a-b), the notched circle (c) and the ellipse (d-f) are shown. Especially, in
Figs. 5.4(e-f) the third-oder predictions for the splitting are surprisingly closer to the BEM
results than the second-order predictions. However, in these both cases [and also for the flat-
ten quadrupole mode 𝑚 = 5 shown in Fig. 5.4(b)] neither the second- nor the third-order
perturbation theory gives very accurate results. Nevertheless, the shown data suggest that
evaluating even higher orders in the perturbation theory might give even more accurate pre-
dictions for the splitting Δ𝑥. For such future evaluations of higher orders in the perturbation
theory the presented formalism, i.e. the formulation of the relevant derivatives [see Eq. 5.27]
with the function 𝐷𝑙

𝑚(𝑥) is advantageous.

Note that for all the studied systems in the limit of small deformations a power-law scaling of
the splitting Δ𝑥 with the deformation parameter is observed and predicted by the perturbation
theory. This is in good agreement with the literature [Hackenbroich et al., 1998] where such an
power-law was found for elliptical and quadrupole billiard. Furthermore, a power-law behavior
is explained semiclassically with a tunneling coupling [Wilkinson, 1986].

It is mentioned here that the BEM is able to predict the spitting Δ𝑥 much more precise than
the actual values of 𝑥 because dominant errors in 𝑥+ and 𝑥− can cancel out if their difference
is taken [see Appendix A.6 for a simple illustration example].

5.5 Chapter summary

In the first part of this chapter the perturbation theory for TM polarized modes in slightly de-
formed symmetric cavities developed by Dubertrand et al. was reviewed. In the second part of
the chapter this perturbation theory was extended to the third order. The third-order correc-
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tions in general promise an improved accuracy in the predictions of the complex wave numbers.
In the applications it rather turns out that these improvements are quite controversial: In some
cases indeed a significant improvement in the predictions is observed. However, for specific
boundary deformations these improvements can be quite marginal. Especially in the ellipse it
is furthermore observed that the third-order prediction can worsen the predictions. So far it
is not clear which mechanism is responsible for this limitation.
However, an interesting feature of the third-order predictions is that the complex frequency
splitting, i.e. the difference in the wave numbers of even and odd parity modes, is predicted
more accurately by the third-order than by the second-order perturbation theory.
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Figure 5.3: The figures show the error scaling of the (red) second- and (blue) third-order
perturbation theory predictions of the complex wave number 𝑥 in the ellipse with refractive
index 𝑛 = 2 and varying axis ratio 𝑣. The results for the even parity are shown in the left
panels and for the odd parity in right panels. The mode number 𝑚 is (a-b) 𝑚 = 3, (c-d)
𝑚 = 5, and (e-f) 𝑚 = 8; 𝑙 is fixed to one. Dashed lines are a guide to the eye and indicate
a power law scaling with (1− 𝑣)4.
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Figure 5.4: The figure shows the modulo of the complex frequency spitting Δ𝑥 = 𝑥+ − 𝑥−
between even and odd party modes in (a-b) the flatten quadrupole, (c) the notched circle
with 𝜎 = 0.2, and (d-f) the ellipse. The refractive index is in each case set to 𝑛 = 2. The
predictions from the (red curve) second- and (blue curve) third-order perturbation theory
are compared to the (black curve) BEM results. Black dashed lines are a guide to the eye
and indicate a power-law scaling.



6 Perturbation theory for slightly
deformed asymmetric microdisk
cavities

The perturbation theory developed so far in literature [Dubertrand et al., 2008] can only treat
symmetrically deformed microdisk cavities where modes can be classified by even and odd
parity. Because of this distinction which can already be used for the degenerate modes in
the unperturbed (circular) cavity the perturbation theory for symmetric deformations is a
non-degenerate perturbation theory. However, in the generic case a cavity is asymmetrically
deformed either via a desired asymmetric boundary curve or via small fabrication tolerances.
Consequently, the separation of the modes into even and odd parity is no longer valid (see
Sec. 3.3.2). Therefore, the perturbation theory for asymmetric deformations needs to determine
the correct linear combination of degenerate modes in the unperturbed (circular) cavity first.
Hence, it is a degenerate perturbation theory.

In this chapter, as one main result of this thesis, the perturbation theory for asymmetric de-
formed cavities is derived and discussed. First, in Sec. 6.1 the framework for this perturbation
theory is explained and compared to the symmetric case. In the following sections the formu-
las for the wave number 𝑥 = 𝑘𝑅 and the mode corrections are derived in first- (Sec. 6.2) and
second order (Sec. 6.3). Finally, applications are discussed in Sec. 6.4 and a chapter summary
is provided in Sec. 6.5.

6.1 General setup

In this section the general framework of the perturbation theory for asymmetric deformations
(asymmetric-PT) is introduced. Especially it is discussed which modification to the pertur-
bation theory for symmetric deformations (symmetric-PT) in Sec. 5 need to be established to
properly account for the asymmetric cavity shape. For the asymmetric-PT it is still assumed
that the cavity shape is given in polar coordinates by a function

𝑟(𝜑) = 𝑅 + 𝜆𝑓(𝜑) (6.1)
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with a formally small perturbation parameter 𝜆. However, in contrast to Eq. (5.1) in the
previous section, here, 𝑓(𝜑) ̸= 𝑓(−𝜑) is in general asymmetric. The expansion of the boundary
conditions into a Taylor series in 𝜆 [see Eq. (5.2)] is still valid. But in order to properly account
for the mixture of degenerate modes in the circular cavity the ansatz for the wave function
(5.3) needs to be modified: In contrast to simple superpositions of 𝑒𝑖𝑚𝜑 and 𝑒−𝑖𝑚𝜑 leading to
even and odd parity in the symmetric-PT, here, a priori an arbitrary linear combination is
allowed. Therefore, the ansatz of the wave function with dominant mode numbers (𝑚, 𝑙) is
given by

𝜓±,in(𝑟, 𝜑) =
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑥)

[︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

𝑎𝑝
𝐽𝑝(𝑛𝑘𝑟)

𝐽𝑝(𝑛𝑥)
𝑒𝑖𝑝𝜑 (6.2a)

𝜓±,out(𝑟, 𝜑) =
𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑥)

[︀
(1 + 𝑏𝑚)𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + (1 + 𝑏−𝑚)𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

(𝑎𝑝 + 𝑏𝑝)
𝐻𝑝(𝑘𝑟)

𝐻𝑝(𝑥)
𝑒𝑖𝑝𝜑 (6.2b)

where the parameter 𝑧 ∈ C fixes the contributions of the unperturbed modes with ±𝑚. Note
that the ansatz is written in the symmetrized form such that 𝑚 → −𝑚 results in 𝑧 → −𝑧.
And further note that the sums over 𝑝 now range from −∞ to ∞. Since the correct linear
combination of 𝑒𝑖𝑚𝜑 and 𝑒−𝑖𝑚𝜑 depends on the perturbation also 𝑧 needs to be expanded in
the perturbation parameter 𝜆 as

𝑧 = 𝑧0 + 𝜆𝑧1 +𝒪(𝜆2). (6.3)

Hence, the coefficient 𝑒±𝑖𝑧 is expanded as

𝑒±𝑖𝑧 = 𝑒±𝑖𝑧0(1± 𝜆𝑖𝑧1) +𝒪(𝜆2). (6.4)

It will be shown that the asymmetric-PT in first order fixes 𝑧0 ∈ R (see Sec. 6.2) and in
second order 𝑧1 ∈ C is obtained (see Sec. 6.3) which could lead to a strong chirality. The
other unknown quantities in the ansatz are 𝑥 = 𝑘𝑅, 𝑎𝑝, and 𝑏𝑝 which are expanded in the
perturbation parameter 𝜆 as in the symmetric-PT, see scheme (5.4).

Consequently, the chirality of the optical mode

𝛼ch =

∑︀
𝑝>0

|𝑎𝑝|2 −
∑︀
𝑝<0

|𝑎𝑝|2∑︀
𝑝>0

|𝑎𝑝|2 +
∑︀
𝑝<0

|𝑎𝑝|2
(6.5)

can be computed from the coefficients 𝑎𝑝 with 𝑎±𝑚 = 𝑒±𝑖𝑧 within the asymmetric-PT. Fur-
thermore the expression of the far-field pattern [see Eq. (5.11)] needs to be modified according
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to the ansatz for the wave function as

𝐹 (𝜑) = (1 + 𝑏𝑚)𝑒
𝑖𝑧 𝑒

−𝑖𝜋𝑚/2

𝐻𝑚(𝑥)
𝑒𝑖𝑚𝜑 + (1 + 𝑏−𝑚)𝑒

−𝑖𝑧 𝑒
−𝑖𝜋𝑚/2

𝐻𝑚(𝑥)
𝑒−𝑖𝑚𝜑

+
∑︁
𝑝 ̸=±𝑚

(𝑎𝑝 + 𝑏𝑝)
𝑒−𝑖𝜋𝑝/2

𝐻𝑝(𝑥)
𝑒𝑖𝑝𝜑. (6.6)

6.2 First-order perturbation theory

The derivation of the first-order asymmetric-PT starts similar to the symmetric case: The
boundary conditions are evaluated in order 𝜆1 which leads to Eqs. (5.12a)-(5.12b) which are
repeated here for convenience

[𝜓±,in − 𝜓±,out]
(1) (𝑅, 𝜑) = −𝑓(𝜑)𝜕𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑) (6.7a)

𝜕𝑟 [𝜓±,in − 𝜓±,out]
(1) (𝑅, 𝜑) = −𝑓(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑). (6.7b)

In order to solve this set of equations one needs to compute the terms 𝜕𝑢𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑)

with 𝑢 = 0, 1, 2, 3 for the ansatz (6.2). This computation is done in Appendix A.4. Hence,
evaluating Eq. (6.7b) results in the conditional equation

−(𝑛2 − 1)𝑥1
[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

𝑎(1)𝑝 𝑆𝑝(𝑥0)𝑒
𝑖𝑝𝜑

=
𝑓(𝜑)

𝑅
𝑥0(𝑛

2 − 1)
[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
(6.8)

for the quantities 𝑥1, 𝑧0, and 𝑎
(1)
𝑝 . Note that Eq. (6.7a) is automatically fulfilled with the

ansatz (6.2) of the wave function. To extract the unknown quantities from Eq. (6.8), first, the
orthogonality of 𝑒±𝑖𝑚𝜑 is exploited. Thus, with the (dimensionless) Fourier harmonics of the
asymmetric boundary deformation

𝐴𝑞 =
1

2𝜋𝑅

∫︁ 2𝜋

0

𝑓(𝜑)𝑒𝑖𝑞𝜑 d𝜑 (6.9)

one obtains the system of equations

−𝑥1𝑒𝑖𝑧0 = 𝑥0
[︀
𝑒𝑖𝑧0𝐴0 + 𝑒−𝑖𝑧0𝐴−2𝑚

]︀
(6.10a)

−𝑥1𝑒−𝑖𝑧0 = 𝑥0
[︀
𝑒𝑖𝑧0𝐴2𝑚 + 𝑒−𝑖𝑧0𝐴0

]︀
(6.10b)

for 𝑥1 and 𝑧0. The solutions of this system are the first-order corrections

𝑧0 = −1

4
Arg

(︂
𝐴2𝑚

𝐴−2𝑚

)︂
+ 𝜇

𝜋

2
=

1

2
Arg(𝐴−2𝑚) + 𝜇

𝜋

2
; (6.11)

𝑥1 = −𝑥0
[︀
𝐴0 + 𝑒−2𝑖𝑧0𝐴−2𝑚

]︀
(6.12)
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where 𝐴−2𝑚 = 𝐴⋆2𝑚 and 𝜇 ∈ Z is a parameter selecting the particular mode of the mode pair.
Therefore it is sufficient to restrict 𝜇 ∈ {0, 1}. Other values of 𝜇 will predict the same two
modes. In Eq. (6.11) one sees that 𝑧0 is real. It fixes the phase of the involved unperturbed
modes proportional to exp(±𝑖𝑚𝜑) and does not lead to a finite chirality in Eq. (6.5). Note
that Eq. (6.12) can be rewritten as

𝑥1 = −𝑥0 (𝐴0 ± |𝐴2𝑚|) . (6.13)

Hence, the first-order corrections in general lift the degeneracy in 𝑥0 of the mode pair in the
unperturbed (circular) cavity. But since the correction is linear in 𝑥0 (with a real factor) it
yields 𝑄(𝑥0 + 𝜆𝑥1) = 𝑄(𝑥0) [see Eq. (5.17)], i.e. also in the asymmetric-PT the first-order
corrections do not explain the spoiling of the 𝑄-factor.

Next, the orthogonality of 𝑒𝑖𝑝𝜑 with 𝑝 ̸= ±𝑚 in Eq. (6.8) is exploited which leads to

𝑎(1)𝑝 =
(𝑛2 − 1)𝑥0

𝑆𝑝

[︀
𝑒𝑖𝑧0𝐴𝑚−𝑝 + 𝑒−𝑖𝑧0𝐴−𝑚−𝑝

]︀
(6.14)

which completes the derivation of the first-order corrections in the asymmetric-PT.

Note that especially for the solution of the system (6.10) it is assumes that 𝐴−2𝑚 = 𝐴⋆2𝑚 ̸= 0.
For non-generic boundary shapes with vanishing Fourier harmonic 𝐴−2𝑚 one cannot fix 𝑧0 in
first-order perturbation theory and only a single value 𝑥1 = −𝑥0𝐴0 is predicted for the mode
pair.

6.3 Second-order perturbation theory

In this section the second order of the asymmetric-PT is derived. This requires to evaluate
the boundary conditions (5.2) in order 𝜆2 which leads like in the symmetric-PT to Eqs. (5.18)
which are repeated here for convenience

[𝜓±,in − 𝜓±,out]
(2) (𝑅, 𝜑) = −𝑓(𝜑)𝜕𝑟 [𝜓±,in − 𝜓±,out]

(1) (𝑅, 𝜑)

−𝑓
2(𝜑)

2
𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑) (6.15a)

𝜕𝑟 [𝜓±,in − 𝜓±,out]
(2) (𝑅, 𝜑) = −𝑓(𝜑)𝜕2𝑟 [𝜓±,in − 𝜓±,out]

(1) (𝑅, 𝜑)

−𝑓
2(𝜑)

2
𝜕3𝑟 [𝜓±,in − 𝜓±,out]

(0) (𝑅, 𝜑). (6.15b)

With the ansatz (6.2) for the wave function and the terms calculated in Appendix A.4 one
obtains from Eq. (6.15a)

𝑏(2)𝑚 𝑒𝑖𝑧0𝑒𝑖𝑚𝜑+𝑏
(2)
−𝑚𝑒

−𝑖𝑧0𝑒−𝑖𝑚𝜑+
∑︁
𝑝 ̸=±𝑚

𝑏(2)𝑝 𝑒𝑖𝑝𝜑 =
1

2

𝑓 2(𝜑)

𝑅2
𝑥20(𝑛

2−1)
[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
(6.16)
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and from Eq. (6.15b) one gets[︂
−𝑥2 +

𝑥21
2𝑥0

(︂
1 + 2𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂]︂ [︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
− 𝑏

(2)
𝑚

𝑛2 − 1

𝐻 ′
𝑚

𝐻𝑚

𝑒𝑖𝑧0𝑒𝑖𝑚𝜑

− 𝑏
(2)
−𝑚

𝑛2 − 1

𝐻 ′
𝑚

𝐻𝑚

𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑 − 𝑥1𝑖𝑧1
[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 − 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
+

1

𝑛2 − 1

∑︁
𝑝 ̸=±𝑚

[︂
𝑎(1)𝑝 𝑥1

𝜕𝑆𝑝
𝜕𝑥

+ 𝑎(2)𝑝 𝑆𝑝 − 𝑏(2)𝑝
𝐻 ′
𝑝

𝐻𝑝

]︂
𝑒𝑖𝑝𝜑

=
𝑓(𝜑)

𝑅

(︃
𝑥0𝑖𝑧1

[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 − 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
+ 𝑥1

[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
+ 𝑥0

∑︁
�̸�=±𝑚

𝑎(1)𝑝 𝑒𝑖𝑝𝜑

)︃

+
1

2

𝑓 2(𝜑)

𝑅2
𝑥0

(︂
1 + 𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
.

(6.17)

Note that the dependency on 𝑥0 is not explicitly written at the Hankel-functions and at 𝑆𝑝.

First, the orthogonality of 𝑒𝑖𝑝𝜑 is used in Eq. (6.17). With the second (dimensionless) Fourier
harmonics of the boundary

𝐵𝑞 =
1

2𝜋𝑅2

∫︁ 2𝜋

0

𝑓 2(𝜑)𝑒𝑖𝑞𝜑 d𝜑 (6.18)

one obtains

𝑏(2)𝑝 =
1

2
𝑥20(𝑛

2 − 1)
[︀
𝑒𝑖𝑧0𝐵𝑚−𝑝 + 𝑒−𝑖𝑧0𝐵−𝑚−𝑝

]︀
(6.19a)

𝑏(2)𝑚 =
1

2
𝑥20(𝑛

2 − 1)
[︀
𝐵0 + 𝑒−2𝑖𝑧0𝐵−2𝑚

]︀
(6.19b)

𝑏
(2)
−𝑚 =

1

2
𝑥20(𝑛

2 − 1)
[︀
𝐵0 + 𝑒2𝑖𝑧0𝐵2𝑚

]︀
. (6.19c)

In the next step the quantities 𝑥2, 𝑧1, and 𝑎
(2)
𝑝 are calculated from Eq. (6.16). Therefore, first,

the orthogonality of 𝑒±𝑖𝑚𝜑 is used to get the system of equations[︂
−𝑥2 +

𝑥21
2𝑥0

(︂
1 + 2𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂
− 𝑏2𝑚
𝑛2 − 1

𝐻 ′
𝑚

𝐻𝑚

]︂
𝑒𝑖𝑧0 = 𝑖𝑥1𝑧1𝑒

𝑖𝑧0 + 𝑖𝑥0𝑧1
[︀
𝑒𝑖𝑧0𝐴0 − 𝑒−𝑖𝑧0𝐴−2𝑚

]︀
+ 𝑥1

[︀
𝑒𝑖𝑧0𝐴0 + 𝑒−𝑖𝑧0𝐴−2𝑚

]︀
+ 𝑥0

∑︁
𝑝 ̸=±𝑚

𝑎(1)𝑝 𝐴𝑝−𝑚

+
1

2
𝑥0

(︂
1 + 𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂[︀
𝑒𝑖𝑧0𝐵0 + 𝑒−𝑖𝑧0𝐵−2𝑚

]︀
(6.20a)
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[︂
−𝑥2 +

𝑥21
2𝑥0

(︂
1 + 2𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂
− 𝑏2−𝑚
𝑛2 − 1

𝐻 ′
𝑚

𝐻𝑚

]︂
𝑒−𝑖𝑧0 =− 𝑖𝑥1𝑧1𝑒

−𝑖𝑧0 + 𝑖𝑥0𝑧1
[︀
𝑒𝑖𝑧0𝐴2𝑚 − 𝑒−𝑖𝑧0𝐴0

]︀
+ 𝑥1

[︀
𝑒𝑖𝑧0𝐴2𝑚 + 𝑒−𝑖𝑧0𝐴0

]︀
+ 𝑥0

∑︁
�̸�=±𝑚

𝑎(1)𝑝 𝐴𝑝+𝑚

+
1

2
𝑥0

(︂
1 + 𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂[︀
𝑒𝑖𝑧0𝐵2𝑚 + 𝑒−𝑖𝑧0𝐵0

]︀
(6.20b)

which is solved by

𝑧1 = − 𝑖𝑒2𝑖𝑧0

4𝐴−2𝑚

{︃ ∑︁
𝑝 ̸=±𝑚

𝑎(1)𝑝
[︀
𝑒−𝑖𝑧0𝐴𝑝−𝑚 − 𝑒𝑖𝑧0𝐴𝑝+𝑚

]︀
− 1

2

(︂
1 + 2𝑥0

𝐻 ′
𝑚

𝐻𝑚

)︂[︀
𝑒2𝑖𝑧0𝐵2𝑚 − 𝑒−2𝑖𝑧0𝐵−2𝑚

]︀}︃
(6.21)

𝑥2 = 𝑥0

{︃
1

2

(︁
3
[︀
𝐴0 + 𝑒−2𝑖𝑧0𝐴−2𝑚

]︀2 − [︀𝐵0 + 𝑒−2𝑖𝑧0𝐵−2𝑚

]︀)︁
+ 𝑥0

𝐻 ′
𝑚

𝐻𝑚

(︁[︀
𝐴0 + 𝑒−2𝑖𝑧0𝐴−2𝑚

]︀2 − [︀𝐵0 + 𝑒−2𝑖𝑧0𝐵−2𝑚

]︀)︁
− 𝑒−𝑖𝑧0

∑︁
𝑝 ̸=±𝑚

𝑎(1)𝑝 𝐴𝑝−𝑚 + 2𝑖𝑧1𝑒
−2𝑖𝑧0𝐴−2𝑚

}︃
. (6.22)

Second, the orthogonality of 𝑒𝑖𝑝𝜑 is used to solve Eq. (6.17) for 𝑎(2)𝑝 as

𝑎(2)𝑝 =
(𝑛2 − 1)𝑥0

𝑆𝑝

{︃[︀
𝐴0 + 𝑒−2𝑖𝑧0𝐴−2𝑚

]︀ [︀
𝑒𝑖𝑧0𝐴𝑚−𝑝 + 𝑒−𝑖𝑧0𝐴−𝑚−𝑝

]︀(︂𝑥0
𝑆𝑝

𝜕𝑆𝑝
𝜕𝑥

− 1

)︂
+

1

2

(︂
1 + 𝑥0

[︂
𝐻 ′
𝑚

𝐻𝑚

+
𝐻 ′
𝑝

𝐻𝑝

]︂)︂ [︀
𝑒𝑖𝑧0𝐵𝑚−𝑝 + 𝑒−𝑖𝑧0𝐵−𝑚−𝑝

]︀
+
∑︁
𝑘 ̸=±𝑚

𝑎
(1)
𝑘 𝐴𝑘−𝑝 + 𝑖𝑧1

[︀
𝑒𝑖𝑧0𝐴𝑚−𝑝 − 𝑒−𝑖𝑧0𝐴−𝑚−𝑝

]︀}︃
. (6.23)

Hence, all coefficients up to order 𝜆2 in the expansion scheme (5.4) and 𝑧 = 𝑧0+𝜆𝑧1 have been
calculated for asymmetric deformations.

In the following some remarks about the final second-order results are listed: (i) Since 𝑧1 is
complex [see Eq. (6.21)] it affects the chirality in Eq. (6.5). (ii) For practical evaluations of
the formulas it is useful to replace the infinite sums with finite sums ranging from 𝑝 = −𝑀
to 𝑝 = 𝑀 with e.g. 𝑀 = 150. (iii) In the formulas it is still assumed 𝐴−2𝑚 = 𝐴⋆2𝑚 ̸= 0 to
allow for a proper evaluation. (iv) Although the boundary conditions are evaluated in second
order the parameter 𝑧 is just fixed up to the order proportional to 𝜆. Higher orders in 𝑧 would
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require to evaluate the boundary conditions in higher orders too.

6.4 Applications

In this section the previously derived formulas for the asymmetric-PT are applied to some
example systems. The target is to predict the complex wave number, the mode pattern in
the near- and the far-field, and the chirality of the optical modes and compare them to the
numerically obtained values from the boundary element method (BEM) [Wiersig, 2003].

The spiral

The first example is the spiral cavity defined by Eq. (2.19). The spiral has been shown to
exhibit modes with strong chirality even for small notch size 𝜖, see Ref. [Wiersig et al., 2008].
Therefore it is an ideal example to illustrate the asymmetric-PT. Furthermore, the spiral has
the advantage that 𝐴𝑞 ̸= 0 for 𝑞 ∈ Z such that the derived formulas are formally applicable
for all (𝑚, 𝑙). For the parameters (𝜖, 𝑛) = (0.04, 2.0) studied e.g. in Refs. [Wiersig et al.,
2008, Wiersig, 2008, Kullig and Wiersig, 2016b] the complex wave numbers for modes with
𝑙 < 4 and Re𝑥 < 20 are shown in Fig. 6.1. Here, an overall good agreement of the asymmetric-
PT with the numerical BEM is observed. Larger deviations occur only for larger values of Re𝑥
if two 𝑙-levels show an avoided crossing and therefore also exhibit a quasi-degeneracy in Re𝑥.
Note that such deviation occur in the symmetric-PT too. Further note that each of the points
in Fig. 6.1 are actually two points according to the pair with 𝜇 ∈ {0, 1}. They are too close to
be distinguishable in the plot. But it can be seen in the magnification around Re 𝑥 = 5.5. In
this regime of low Re 𝑥 the asymmetric-PT is able to predict the complex wave number for each
mode of the pair accurately. (Note the different scales of Im𝑥 and Re𝑥 in the magnification.)

In order to show that the asymmetric-PT predicts also the chirality [see Eq. (6.5)] well despite
that 𝑧 is only linear in the perturbation parameter, the spiral with a slightly larger 𝜖 = 0.05

is analyzed in Fig. 6.2 (compare to Fig. 3.4 in Sec. 3.3.2). Similar to the good agreement in
the complex wave number also the chirality matches overall well. Typically the predictions
from the asymmetric-PT are slightly more accurate if the chirality is small which is consistent
with a small Im 𝑧. Here, higher orders in the asymmetric-PT are expected to give improved
accuracy since they allow to determine the second-order in the correction to 𝑧.
Note that for the spiral in both cases 𝜖 = 0.04 [Fig. 6.1] and 𝜖 = 0.05 [Fig. 6.2] the formal
limit of the perturbation theory given by the criterion (5.9) is already reached at Re𝑥 ≈ 11.4

and Re 𝑥 ≈ 10.2, respectively. Nevertheless, even beyond this formal limit the asymmetric-PT
gives reliable results.
Next, the predictions of the mode pattern is investigated in more detail: See Fig. 6.3 for a
collection of several modes whose predictions from the asymmetric-PT are compared to the
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Figure 6.1: The complex wave numbers 𝑥 = 𝑘𝑅 for the spiral cavity with (𝜖, 𝑛) = (0.04, 2.0)
are shown in complex plane. The asymmetric-PT predictions are illustrated by magenta
triangles and the BEM results are drawn as open circles. The magnification illustrates the
occurrence of the near-degenerate pairs.

numerical BEM results. In general the agreement is very well both in the near- and in the
far-field pattern. In a closer look one sees that also the phases, i.e. the positions of the intensity
extrema along the cavity’s boundary nicely match. However, especially if the mode localizes
on periodic quasiscar-like structures slight deviations between asymmetric-PT and BEM can
be observed in the near-field pattern. In the far-field pattern the asymmetric-PT seems to
slightly overestimate the fluctuations. However, the asymmetric-PT accurately predicts the
dominant emission direction(s). Especially for the whispering-gallery modes in the spiral
one observes a pronounced peak in the far-field pattern (for 𝑛 = 2) which indicates strong
directional light emission opposite to the notch. This is in good agreement to the mechanism
for directional emission in the notched ellipse [Wang et al., 2010] where a local boundary
perturbation scatters the intensity to the opposite direction where it is focused to directional
emission due to a lensing effect of the round cavity boundary.

In the following the mode number (𝑚, 𝑙) = (14, 1) is fixed and the notch size 𝜖 of the spiral
is varied. This allows to investigate the predictions of the asymmetric-PT with increasing
perturbation strength. Note that in the spiral cavity 𝜖 is equal to the formal perturbation
parameter 𝜆. In Fig. 6.4 the results are summarized. The real part of 𝑥 is dominated by the
linear/first order which is directly related to the changing average radius of the cavity. Since
the imaginary part of 𝑥0 in the circular cavity is quite small, the linear order in Im 𝑥 almost
does not contribute such that here the second-order dominates. The chirality 𝛼ch seems to be
linear in 𝜖 for very small deformations.
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Figure 6.2: (a) The complex wave numbers of the spiral cavity with (𝜖, 𝑛) = (0.05, 2.0)
are shown in complex plane with a magnification around Re𝑥 = 11.68. (b) and (c) show
the chirality of the 𝑙 = 1 and 𝑙 = 2 modes respectively. In all plots magenta triangles are
asymmetric-PT predictions and open circles are BEM results.

In addition also the (complex) error of the asymmetric-PT is analyzed in Fig. 6.4(d-f) for the
mode (𝑚, 𝑙) = (14, 1). Therefore, the difference

Err𝑐 𝑥 = 𝑥APT − 𝑥BEM (6.24)

between the perturbatively predicted 𝑥APT and the BEM results 𝑥BEM for the complex wave
number is plotted. Since the asymmetric-PT is of second order in 𝜆 (𝜖 respectively) one expects
the error to roughly follow 𝜖3.

Since the spiral is an asymmetric cavity one cannot distinguish even and odd parity. However,
because of the existence of mode pairs described by 𝜇 = 0 and 𝜇 = 1 the complex frequency
splitting Δ𝑥 = 𝑥𝜇=0−𝑥𝜇=1 can be calculated. The asymmetric-PT predictions for this splitting
in the spiral are compared to the numerical BEM results in Fig. 6.5. The almost linear trend in
the real part of the splitting is nicely captured by the asymmetric-PT. However the imaginary
part of the splitting is beyond the second-order asymmetric-PT. At this point an extension
to third order might give improved predictions for the splitting as in the symmetric-PT. But
note that the imaginary part of the splitting only marginally contribute to the absolute value
of Δ𝑥 since it is more than one magnitude smaller than the real part.
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Notched circle

The next example investigated here is the asymmetrically notched circular cavity or notched
circle for short. The boundary is described in polar coordinates by

𝑟(𝜑)

𝑅
= 1 +

𝑁𝜈∑︁
𝜈=0

∞∑︁
𝜉=−∞

𝜖𝜈 exp

(︂
−(𝜑− 𝜑𝜈 − 2𝜋𝜉)2

2𝜎2
𝜈

)︂
(6.25)

where the parameters 𝜖𝜈 , 𝜎𝜈 > 0, and 𝜑𝜈 determine the depth, width and position of the
𝜈-th notch, respectively. The notched circle has the advantage that the parameters of the
notches, especially 𝜑𝜈 , can be varied without changing the overall strength of the perturbation,
i.e. the area where the deformed cavity varies from the circle can be kept almost constant.
Furthermore, systems with two (and more) notches have already been discussed in literature:
In Ref. [Schlehahn et al., 2013] it has been shown that the notched circle can be used to select
the lasing mode in a cavity by spoiling the 𝑄-factor of undesired modes. And in Ref. [Kim
et al., 2014] the modes in the notched circle have been shown experimentally to exhibit a finite
chirality near exceptional points. Moreover, the notched circle allows to study the limiting
case where the asymmetric-PT converges to the symmetric-PT by placing notches of equal
width symmetrically along the boundary.

In the following the double notched circle is discussed. First, in Fig. 6.6(a-c) the parameters
(𝜖1, 𝜎1) = (−0.08, 0.07), (𝜖2, 𝜎2)= (−0.09, 0.03), and 𝜑1 = 0 are fixed and 𝜑2 is varied. The non-
trivial dependency of the complex wave number on 𝜑2 is quite well captured by the asymmetric-
PT for both the real and the imaginary part of 𝑥. Note that the upper branch in Fig. 6.6(a)
with higher Re 𝑘𝑅 has the lower 𝑄-factor since the intensity maxima of the mode along the
cavity’s interface tend to be close to the notches. Therefore the mode is perturbed strongly
by the notch. The oscillation in the real part of 𝑥 has roughly a period of 𝜋/𝑚. Shifting the
notch position by this angle it interacts with the next intensity maximum along the cavity’s
interface.

Next, the parameters of the notches where changed to (𝜖1, 𝜎1) = (−0.056, 0.06) and (𝜖2, 𝜎2) =

(−0.06, 0.035) such that the mode pair (𝑚, 𝑙) = (10, 1) is close to an exceptional point (EP).
By the variation of the second notch’s position 𝜑2 the vicinity of the EPs is investigated in
Fig. 6.6(d-f). The asymmetric-PT captures some main aspects like the almost degenerate
wave numbers and the strong chirality. However in the detailed structure differences to the
numerical BEM results are obtained: (i) In Re 𝑥 the perturbation theory predicts two crossings
close together while BEM results do not show these crossings; i.e. the system is not exactly on
the EP but close to it, see magnification in Fig. 6.6(d). (ii) In the asymmetric-PT the predicted
crossings in Im 𝑘𝑅 are not exactly at the same angles as the crossings in Re𝑥. Furthermore,
the curve shape between the predicted EPs differs from the BEM results, see magnification
in Fig. 6.6(e). (iii) The asymmetric-PT predictions for the chirality converge to ±1. However
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the change from 1 to −1 is a sudden drop while BEM results show a smooth transition, see
magnifications in Fig. 6.6(f).
Consequently, EPs seem to limit the predictions of the asymmetric-PT. Note that it is intuitive
that the perturbation theory breaks down close to an EP because there two modes coalesce
which is the strongest deviation from the unperturbed symmetric case where both modes are
orthogonal. Maybe an improved ansatz of the wave function the vicinity of the EP could be
considered to improve the accurately around the EP. Nevertheless, for parameter 𝜑2 where the
system is sufficiently away from the EP the mode properties are predicted well in Fig. 6.6(d-f).
In order to compare the asymmetric-PT with the previously derived symmetric-PT a system
with two notches of equal width 𝜎1 = 𝜎2 = 0.035 which are placed at (𝜑1, 𝜑2) = (0, 1.375)

is studied. Since 𝜖1 = −0.06 is fixed a variation of 𝜖2 allows to cover the two symmetric
cases 𝜖2 = 0 and 𝜖2 = −0.06 where the symmetric-PT is applicable. As shown in Fig. 6.7
in these cases of a symmetric cavity the asymmetric- and symmetric-PT predictions are the
same. The asymmetric-PT additionally shows a good agreement for other values of 𝜖2 where
no mirror-reflection symmetry is present.

Constant width billiard

The next example is the billiard of constant width [see Eq. (4.21) and Fig. 4.16 in Sec. 4.2.3].
Note that this is a harder task since in the billiard of constant width the deformation to
the circle is larger than in the examples discussed above. In Fig. 6.8(a) the asymmetric-PT
predictions of the complex wave number are compared to the BEM results for 𝑙 = 1. The
agreement is very well until the real part of 𝑥 becomes large such that the formal criterion for
the perturbation theory (5.9) is violated. Since 𝑛 = 2 and the perturbation area 𝛿𝑎/𝑅2 ≈ 0.264

Eq. (5.9) requires Re𝑥≪ 7.8 [see gray shaded region in Fig. 6.8].
The predictions for the complex wave number are accurate up to Re𝑥 = 7.8. However, the
predictions for the chirality show errors already for Re𝑥 > 6 [see Fig. 6.8(b)]. It is mentioned
that close to Re𝑥 = 6 the level 𝑙 = 2 [gray triangles in Fig. 6.8(a)] comes close to the level
𝑙 = 1 which can cause additional errors in the perturbation theory due to quasi-degeneracies
in Re𝑥 between the levels [Dubertrand et al., 2008]. In the case of the constant width cavity
these interactions seem to neutralize a strong chirality. However, for smaller values of Re𝑥
also the predictions for the chirality agree well with the numerically computed results.
Finally, in Fig. 6.9 the predictions for the near- and the far-field pattern for modes in the
constant width cavity are shown. Consistently, with the predictions of the chirality the predic-
tions are very well for small Re𝑥 (upper panels) and become erroneous for larger Re 𝑥 (lower
panel). In the BEM result of the faulty predicted mode pattern it can be seen that the mode
is not identifiable rigorously as 𝑙 = 1 or 𝑙 = 2 what strengthens the argumentation that the
𝑙 = 2 level leads to the faulty predictions in this case.
However, the example of the billiard of constant width illustrates that the asymmetric-PT is not
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based on the ray dynamic properties of the system. Especially a finite chirality is also predicted
if the underling classical phase space does not show (asymmetric) backscattering. Furthermore,
ray chaos is not relevant for the asymmetric-PT since only the boundary deformation in real
space is considered. However, if this deformation is strong such that the deformation area is
large the asymmetric-PT (like the symmetric-PT) becomes incorrect. In Appendix A.5 it is
demonstrated how a rescaled boundary can be used to minimize the perturbation area and
therefore give improved accuracy of the perturbation theory.
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Figure 6.3: Modes in the spiral cavity: A comparison of the near-field pattern predicted
by asymmetric-PT (left panels) and numerically determined with the BEM (middle panels).
The far-field pattern are shown in the right panels (normalized to the area below the curves).
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wave number 𝑥 and (c/f) the chirality in a double notched cavity. In (a-c) the pa-
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(a-c) (𝑚, 𝑙) = (8, 1) and (e-f) (𝑚, 𝑙) = (10, 1) is shown. In all plots magenta triangles are
asymmetric-PT predictions and black open circles are BEM results. In the magnifications
in (f) a dashed line at 𝜑2 = 1.0996 is a guide to the eye.
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6.5 Chapter summary

In this chapter the perturbation theory for symmetric deformed cavities [Dubertrand et al.,
2008] has been extended to the case of asymmetric deformations. The derived formulas are
analytical and reflect the key aspects of asymmetric cavities: The modes come in nearly-
degenerate pairs where both modes have the same preferred sens of rotation. Therefore, in
contrast to the symmetric-PT, the asymmetric-PT is a degenerate perturbation theory which
first fixes the correct linear combination of the involved unperturbed modes in the circular
cavity.
In the presented applications it has been shown that the asymmetric-PT not only predicts the
complex wave number 𝑥 and the chirality 𝛼ch but also the near-field and the far-field mode
pattern very well. These results have been verified with the numerical BEM. The asymmetric-
PT gives reliable results if the deformation area is small. But even if the formal criterion
obtained by Dubertrand et al. [Dubertrand et al., 2008] for the symmetric-PT is not strictly
fulfilled the predictions in many cases are reasonable.
The asymmetric-PT also captures signatures of exceptional points (EPs). However, for a
detailed investigation of EPs more elaborate descriptions are necessary which are may given
within higher orders in the perturbation theory.
Since the obtained formulas are analytical they allow for a further analysis regarding special
situations. One example mentioned here are microdisk cavities with surface roughness where
simple, analytical formulas for e.g. the average 𝑄-spoiling can be derived [Wiersig and Kullig,
2017].
The main results of this chapter were published in Ref. [Kullig and Wiersig, 2016b].





7 Resonance-assisted tunneling for
slightly deformed microdisk cavities

If an integrable system is perturbed resonance chains with an alternating sequence of stable and
unstable periodic orbits develop naturally in phase space due to the Poincaré-Birkhoff theorem.
In Sec. 2.2.1 this scenario was described for a deformed microdisk cavity. In quantum and wave
mechanics such a resonance chain can drastically enhance the dynamical tunneling between
classically disjoint regions in phase space which is hence called resonance-assisted tunneling
(RAT). In this chapter the perturbation theory of RAT which was originally developed for
kicked Hamiltonian systems (maps) [Keshavamurthy and Schlagheck, 2011, Brodier et al.,
2002, Löck, 2009] is adapted to the case of microdisk cavities. Therefore, it is possible to
predict the 𝑄-factor of modes, the near-field and the far-field mode pattern. At the beginning
of this chapter, in Sec. 7.1, the basic ideas of RAT in microdisk cavities and an outline for
the RAT predictions is provided. Afterwards, in Sec. 7.2, an integrable approximation of the
resonance chain in phase space is constructed and in Sec. 7.3 the mode and the 𝑄-spoiling
predictions based on this integrable approximation are derived. Finally, at the end of this
chapter (Sec. 7.4) an outlook of a recently developed theory is given which allows to determine
the splitting of the complex wave number between the even and the odd parity mode from the
bouncing ball resonance chain in phase space. The chapter is summarized in Sec. 7.5.

7.1 Outline and basic ideas for the RAT predictions in

microdisk cavities

In a recent experiment Kwak et al. [Kwak et al., 2015] showed that RAT plays an important
role for microdisk cavities. In their experiments they verified that RAT couples optical modes
and leads to avoided crossings in Re 𝑘𝑅. Furthermore, they have shown that the coupling
strength of the involved modes is proportional to the square of the resonance chain’s area 𝐴
in phase space.
The main purpose of the first part of this chapter is to demonstrate that not only Re 𝑘𝑅
is determined by RAT but also the 𝑄-factor, the near-field, and the far-field pattern of the
optical mode.
Already in Ref. [Bäcker et al., 2009] it was demonstrated that the 𝑄-factor of an optical mode
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is related to the dynamical tunneling process from regions of total internal reflection into the
leaky region in phase space. Moreover, in Refs. [Nöckel and Stone, 1997, Hackenbroich and
Nöckel, 1997, Shinohara et al., 2010, Shinohara et al., 2011, Lee and Chung, 2011, Creagh and
White, 2012] it has been shown that dynamical tunneling in general can be used to explain
the radiation of a mode from the microcavity. Hence, it is a natural guess that also RAT is
able to predict the interesting properties of the mode.

In quantum mechanics RAT is usually studied in this context of kicked Hamiltonian systems
(maps) with a mixed phase space. The target in these systems is to determine the tunneling
rate of a metastable state in the regular region (regular island) into the chaotic part of the phase
space. For this purpose a rich theory of RAT has been developed to predict e.g. the regular-
to-chaotic tunneling rate (see Refs. [Keshavamurthy and Schlagheck, 2011, Brodier et al.,
2002, Löck, 2009] and references therein for an introduction). Beside some recently developed
semiclassical [Fritzsch et al., 2017], or perturbation-free [Mertig et al., 2016] approaches RAT
is often treated within a perturbation theory for the phase space dynamics [Keshavamurthy
and Schlagheck, 2011, Brodier et al., 2002, Löck et al., 2010, Eltschka and Schlagheck, 2005,
Mouchet et al., 2006]. This perturbation theory for RAT in principle works as follows. In a first
step one determines a fictitious integrable Hamiltonian 𝐻0 that mimics the regular dynamics
near the resonance chain but smoothly interpolates through the resonance chain; i.e. the
Hamiltonian 𝐻0 has no resonance chain but mimics the non-resonant tori of the regular region.
From this Hamiltonian the so-called direct tunneling is derived [Bäcker et al., 2008, Mertig
et al., 2013, Bäcker et al., 2010] which is e.g. quantified by a (direct) tunneling rate 𝛾𝑑𝑚 for the
eigenstate Ψ𝑚. This direct tunneling dominates the dynamical (regular-to-chaotic) tunneling
if the effects from the resonance chain are negligible.

In the second step, one models the resonance chain with an effective perturbative term 𝒱𝑟:𝑠 to
the integrable Hamiltonian 𝐻0. This perturbative term results in a coupling of Ψ𝑛 to Ψ𝑛+𝑗𝑟

(𝑗 ∈ Z) where 𝑟:𝑠 is the order of the resonance chain, see Sec. 2.2.1. These restriction of the
coupling related to 𝑟:𝑠 is called “selection rule” [Brodier et al., 2002]. Consequently, to predict
the RAT-enhanced dynamical tunneling rate 𝛾𝑚 one superimpose the direct tunneling rates
𝛾𝑑𝑚+𝑗𝑟 with perturbatively determined coefficients from 𝒱𝑟:𝑠 [Löck et al., 2010].

This procedure for kicked Hamiltonian systems is adapted to the case of slightly deformed
optical microdisk cavities as follows. The fictitious integrable system 𝐻0 that smoothly inter-
polates through the resonance chain is actually not fictitious; it is the unperturbed circular
cavity. Consequently, the eigenstates of 𝐻0 are identified with the optical modes in the circular
cavity [Bäcker et al., 2009]. Hence, the direct tunneling rate 𝛾𝑑𝑛 is related to Im 𝑘𝑅 of a mode
in the circle. Note that Im 𝑘𝑅 determines the decay rate of the mode which is governed by
the tunneling rate form regions of total internal reflection into the leaky region in phase space.
Since the microdisk is weakly deformed the main contribution to the 𝑄-spoiling arises from
the spoiling of Im 𝑘𝑅 whereas the change in Re 𝑘𝑅 is negligible. Therefore, the prediction of
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Im 𝑘𝑅 is equivalent to the prediction of 1/𝑄 = −2Im 𝑘𝑅/(Re 𝑘𝑅).

Hence, in case of microdisk cavities the simplified procedure for the RAT predictions can be
outlined [see Fig. 7.1]: (Step I) The resonance chain in the phase space of the deformed cavity
is effectively modeled with a generalized pendulum Hamiltonian ℋ𝑟:𝑠(𝑞, 𝑝). (Step II) One
diagonalizes the Hamiltonian ℋ𝑟:𝑠(𝑞, 𝑝) perturbatively. With the derived coupling coefficients
one can superimpose the modes of the circular cavity in order to predict the mode of the
deformed cavity (near-field and far-field). And similarly one can superimpose Im 𝑘𝑅 of the
circular cavity modes to predict Im 𝑘𝑅 of the mode in the deformed cavity.

0 qmax
0

1
n

pr:s

1

q

p

0 qmax
0

1
n

pr:s

1

q

p

Step I
Generating
Hr:s(q, p)

near-field

0

45
90

135

180

225
270

315

far-field

0 10 20
10−12

10−8

10−4

100

Re kR

−Im kR

complex wave number

circular
BEM
RAT

Step II
Mode approximation
with Hr:s(q, p)

Figure 7.1: Overview of the procedure to determine RAT predictions in slightly deformed
microdisk cavities.

In this outline there are two facts to mention: (i) The RAT-perturbation theory was originally
developed for 1D kicked Hamiltonian systems. But in case of microdisk cavities one has in
principle a 2D system. With the pendulum Hamiltonian ℋ𝑟:𝑠(𝑞, 𝑝) of the resonance chain one
models this 2D system effectively by a Hamiltonian of a 1D system. Therefore one needs to
keep in mind that the selection rules need to be adapted to respect both mode numbers; i.e.
the mode (𝑚, 𝑙) can couple to modes (𝑚 − 𝑗𝑟, 𝑙 + 𝑗𝑠) with 𝑗 ∈ Z [Kwak et al., 2015, Mertig,
2015]. (ii) Since microdisk cavities are open systems (with dielectric boundary conditions
at the cavity’s interface) the perturbative theory for the pendulum Hamiltonian ℋ𝑟:𝑠(𝑞, 𝑝)

needs to be adapted in order to account for additional wave corrections. In particular the
Goos-Hänchen shift is crucial.
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7.2 The pendulum Hamiltonian – Phase-space

approximation of a resonance chain

In this section the first step in the derivation of the RAT predictions, i.e. the phase-space
approximation of a dominant resonance chain, is discussed for the case of microdisk cavities.
Therefore, imagine a slightly deformed microdisk where a single resonance chain of order 𝑟:𝑠
is present in phase space at momentum 𝑝𝑟:𝑠 = cos(𝜋𝑠/𝑟) (compare to Sec. 2.2.1). On a basic
level such a resonance-chain is modeled by a generalized pendulum approximation
[Keshavamurthy and Schlagheck, 2011, Brodier et al., 2002, Kullig et al., 2014]

ℋ𝑟:𝑠(𝑞, 𝑝) = 𝐻0(𝑝) + 2𝒱𝑟:𝑠 cos
(︂
2𝜋𝑟

𝑞

𝑞max
+ 𝑞0

)︂
(7.1)

which creates 𝑟 islands in phase space along the momentum where 𝐻0(𝑝) has a extremum.
In the generalized pendulum Hamiltonian the function 𝐻0(𝑝) describes the dynamics of the
unperturbed system without a resonance chain in a corotating frame. In case of microdisk
cavities therefore 𝐻0(𝑝) can be obtained analytically from the dynamics in the circular cavity:
In Sec. 2.2.1 the (dimensionless) frequency of the phase space dynamics in the circular cavity
was obtained as [Eq. (2.11) divided by 𝑅]

𝜔(𝑝) = 2 arccos(𝑝). (7.2)

Furthermore, it is remarked that the (dimensionless) frequency of the 𝑟:𝑠 periodic orbit is
𝜔𝑟:𝑠 = 2𝜋𝑠/𝑟 [see Eq. (2.13)]. Therefore, the corotating frequency in Hamiltonian’s equations
of motion 𝜔(𝑝)− 𝜔𝑟:𝑠 = 𝜕𝐻0(𝑝)/𝜕𝑝 can be integrated to define

𝐻0(𝑝) =

∫︁ 𝑝

𝑝𝑟:𝑠

[𝜔(𝑝)− 𝜔𝑟:𝑠] d𝑝. (7.3)

Consequently, for the 𝑟:𝑠 resonance chain in a microdisk cavity one obtains explicitly the
dimensionless (𝑘 and 𝑅 independent) Hamiltonian

𝐻0(𝑝) = 2
(︁
𝑝 arccos(𝑝)−

√︀
1− 𝑝2 +

√︀
1− 𝑝2𝑟:𝑠

)︁
− 2𝜋𝑝𝑠/𝑟. (7.4)

From an expansion at 𝑝 = 𝑝𝑟:𝑠 one can obtain the quadratic (pendulum) approximation

𝐻0(𝑝) =
(𝑝− 𝑝𝑟:𝑠)

2

2𝑚𝑟:𝑠

+𝒪
[︀
(𝑝− 𝑝𝑟:𝑠)

3
]︀

(7.5)

with 𝑚𝑟:𝑠 = −
√︀

1− 𝑝2𝑟:𝑠/2. Note that 𝐻0 is specified by the order 𝑟:𝑠 of the resonance chain
only and does not depend on the deformation strength; i.e. the size of the resonance chain. An
example for 𝐻0(𝑝) is shown for 𝑟:𝑠 = 4:1 in Fig. 7.2(a) and for 𝑟:𝑠 = 9:2 in Fig. 7.2(b). Note
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that 𝐻0(𝑝) is concave due to the sign of the frequency 𝜔(𝑝). In the upper half of the phase
space the frequency 𝜔(𝑝) is positive.
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Figure 7.2: The figure shows the function 𝐻0(𝑝) given by Eq. (7.4) as orange solid curve
and its quadratic approximation [Eq. (7.5)] as black dashed curve. In (a) 𝑟:𝑠 is set to 4:1
and in (b) to 9:2. Both examples are used later in this section.

The remaining system specific parameters in ℋ𝑟:𝑠 are 𝒱𝑟:𝑠, 𝑞0 and 𝑞max. Here, 𝑞max and 𝑞0 are
determined by the boundary’s arc length and the position of the (un)stable periodic orbit of the
resonance chain. Therefore, the remaining parameter quantifying the size of the resonances
chain is 𝒱𝑟:𝑠 > 01. In principle 𝒱𝑟:𝑠 can be obtained via fitting. However, in the following
strategies are discussed to obtain suitable values for 𝒱𝑟:𝑠 from the billiard dynamics: First,
one can use the area 𝐴 of the resonance chain in the phase space of the deformed cavity and
determine 𝒱𝑟:𝑠 such that the pendulum approximation’s resonance chain encloses the same
area: With the quadratic approximation of 𝐻0 one derives as function for the separatrix

𝑝(𝑞) = 𝑝𝑟:𝑠 ±
√︁
2𝒱𝑟:𝑠

√︀
1− 𝑝2𝑟:𝑠 [1 + cos(2𝜋𝑟𝑞/𝑞max + 𝑞0)]. (7.6)

By integrating this function the enclosed area of the separatrix in the pendulum Hamiltonian
can be computed as function of 𝒱𝑟:𝑠. Finally, the value of 𝒱𝑟:𝑠 matching the area 𝐴 is

𝒱𝑟:𝑠 =
(︂
2𝜋𝑅

𝑞max

)︂2
𝐴2

256
√︀

1− 𝑝2𝑟:𝑠
≈ 𝐴2

256
√︀

1− 𝑝2𝑟:𝑠
. (7.7)

Alternatively, an estimation for a suitable parameter 𝒱𝑟:𝑠 can be obtained from the linearized
dynamics around the stable fixed point [Eltschka and Schlagheck, 2005, Löck, 2009]: With the

1Note that here 𝒱𝑟:𝑠 is defined positive. A negative sign in 𝒱𝑟:𝑠 can be absorbed in 𝑞0.
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substitution 𝑝 = 𝑝− 𝑝𝑟:𝑠 and 𝑞 = 𝑞 + 𝑞max𝑞0/(2𝜋𝑟) one writes

˙̃𝑞 =
𝜕ℋ𝑟:𝑠

𝜕𝑝
=

−2𝑝√︀
1− 𝑝2𝑟:𝑠

(7.8a)

˙̃𝑝 = −𝜕ℋ𝑟:𝑠

𝜕𝑞
= 2𝒱𝑟:𝑠

2𝜋𝑟

𝑞max
sin

(︂
2𝜋𝑟

𝑞

𝑞max

)︂
≈ 2𝒱𝑟:𝑠

(︂
2𝜋𝑟

𝑞max

)︂2

𝑞 (7.8b)

with 𝑝𝑟:𝑠 = cos(𝜋𝑠/𝑟) [see Eq. (2.14)]. Note that in the approximation in Eq. (7.8b) the sine
has been linearized to obtain a linear system whose solution can be written as(︃

𝑞(𝑡)

𝑝(𝑡)

)︃
=

(︃
cos(𝜔𝑡) 𝐶1 sin(𝜔𝑡)

𝐶2 sin(𝜔𝑡) cos(𝜔𝑡)

)︃(︃
𝑞(0)

𝑝(0)

)︃
(7.9)

with constants 𝐶1/2 and

𝜔2 =
4𝑟2𝒱𝑟:𝑠√︀
1− 𝑝2𝑟:𝑠

(︂
2𝜋

𝑞max

)︂2

. (7.10)

Equation (7.9) can now be compared for 𝑡 = 𝑟 ·𝑅 with the linearized billiard map [Eq. (2.16)]
given by the monodromy matrix 𝐽𝑟 which yields

Tr 𝐽𝑟 = 2 cos(𝜔𝑟) (7.11)

Consequently, with Eq. (7.10) one derives

𝒱𝑟:𝑠 =
(︁𝑞max

2𝜋𝑅

)︁2 √︀1− 𝑝2𝑟:𝑠
4𝑟4

(︂
arccos

[︂
Tr 𝐽𝑟

2

]︂)︂2

. (7.12)

Since the pendulum Hamiltonian has a 𝑟-fold rotational symmetry and also the systems which
will be discussed in the following have this symmetry, it is practical to slightly simplify the
derived result further to

𝒱𝑟:𝑠 =
(︁𝑞max

2𝜋𝑅

)︁2 √︀1− 𝑝2𝑟:𝑠
4𝑟2

(︂
arccos

[︂
Tr 𝐽1

2

]︂)︂2

. (7.13)

Here, not the monodromy matrix of the 𝑟-fold iterated map 𝐽𝑟 but the one obtained for a
single iteration 𝐽1 is used.

The cavity which is considered in the following as illustration example is the multipole cavity
(also called microflower) [Creagh and White, 2012, Boriskina et al., 2006, Qiu et al., 2007]. It
is defined in polar coordinates by

𝑟(𝜑)

𝑅
= 1 + 𝜖 cos(𝑁𝜑) (7.14)
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with 𝑁 ∈ N. The cavity has a 𝑁 -fold rotational symmetry which implies that the lowest
order resonance chain has 𝑟 = 𝑁 because every 𝑟 < 𝑁 would violate the rotational symmetry.
Therefore such a deformation allows to vary the desired dominant resonance chain in phase
space. Especially, the three systems labeled with 𝒜, ℬ, and 𝒞 are used in the following. They
are specified by the combinations of (𝜖,𝑁) and the refractive index 𝑛 as listed in Tab. 7.1.
The phase space dynamics of these three systems is shown in Fig. 7.3. Note that the refractive
index is chosen such that most of the larger undesired resonance chains are inside the leaky
region and therefore are negligible for the 𝑄-spoiling.
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Figure 7.3: The phase space dynamics in the multipole cavities [Eq. (7.14)] specified by
the parameters in Tab. 7.1 are shown as black curves/dots. The bright gray shaded region
is the leaky region.

For these systems 𝒜, ℬ, and 𝒞 the generalized pendulum approximation [Eq. (7.1)] of the
dominant resonance chain is computed with a nice agreement to the billiard dynamics as
shown in Fig. 7.4. In Systems 𝒜 and 𝒞 the perturbation by the boundary deformation is
small. Therefore also the resonance chain is not too large and surrounded only by a small
chaotic layer. In these cases the value of 𝒱𝑟:𝑠 from the stable fixed point [Eq. (7.13)] is accurate
since the system is near-integrable. On the other hand in system ℬ the perturbation from the
boundary deformation is quite strong resulting in a large resonance chain with large chaotic
layer. Here, it is not sufficient to estimate 𝒱𝑟:𝑠 from the stable fixed point. In such a case it
is rather practical to derive the approximated area 𝐴 of the resonance chain from the billiard
dynamics numerically and use Eq. (7.7) for a proper value of 𝒱𝑟:𝑠.

System 𝜖 𝑁 𝑛 𝑟:𝑠
System 𝒜 0.0025 4 2.0 4:1
System ℬ 0.013 4 2.0 4:1
System 𝒞 0.002 9 1.6 9:2

Table 7.1: The tabular shows the boundary parameters [see Eq. (7.14)] of the three systems
which are discussed here. Furthermore, the refractive index 𝑛 and the order of the dominant
resonance chain above the critical line 𝑝 = 1/𝑛 is shown.



118 7.3 𝑄-spoiling and mode prediction from the phase-space approximation

0 qmax
0

1
n

p4:1

1

q

p

(a) System A

0 qmax
0

1
n

p4:1

1

q

p

(b) System B

0 qmax
0

1
n

p9:2

1

q

p

(c) System C

Figure 7.4: The contour curves of the generalized pendulum approximation [Eq. (7.1)] for
the example systems are shown as orange curves. The underlying billiard dynamics is shown
as black curves/dots.

In all of the shown cases the generalized pendulum approximation nicely mimics the phase
space structure of the dominant resonance chain. In a more challenging case where e.g. the
resonance chain is not along a line of constant momentum 𝑝 additional canonical transforma-
tions can be applied to the generalized pendulum to match the billiard dynamics. In case of
kicked Hamiltonian systems this procedure has been used in Ref. [Kullig et al., 2014] (based
on the iterative canonical transformation method [Löbner et al., 2013]). Furthermore, for very
complicated structures of the resonance chain a more general ansatz

ℋ𝑟:𝑠(𝑞, 𝑝) = 𝐻0(𝑝) +
∑︁
𝑧

2𝑉𝑟:𝑠,𝑧(𝑝) cos

(︂
2𝜋𝑟𝑧

𝑞

𝑞max
+ 𝑞0,𝑧

)︂
(7.15)

would be promising. Such a normal form ansatz [Lebœuf and Mouchet, 1999] is also used
in the case of kicked Hamiltonian systems for the predictions of RAT from a regular island
into the chaotic region of the phase space [Keshavamurthy and Schlagheck, 2011, Brodier
et al., 2002, Löck, 2009, Mertig et al., 2016, Fritzsch et al., 2017]. However, for the microdisk
cavities studied here it turns out that the simple ansatz (7.1) is sufficient to model the dominant
resonance chain, see Fig. 7.4.

7.3 𝑄-spoiling and mode prediction from the phase-space

approximation

In this section the second step in the derivation of the RAT predictions is derived. In particular
the generalized pendulum ℋ𝑟:𝑠 is treated perturbatively in order to obtain the modes of the
deformed cavity. In the following it is distinguished between the mode of the circular cavity
Ψ𝑚,𝑙 with 𝑥𝑚,𝑙 = 𝑘𝑅 and the mode in the deformed cavity Ψ̃𝑚,𝑙 with �̃�𝑚,𝑙 = 𝑘𝑅.
With the selection rules for RAT, i.e. that modes (𝑚− 𝑗𝑟, 𝑙 + 𝑗𝑠) with 𝚥 ∈ Z are coupled via
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the resonance chain, the central assumption in this section is that one can express the mode
of the deformed cavity as

Ψ̃𝑚,𝑙(�⃗�, �̃�) = 𝒩−1
∑︁
𝑗>0

𝑎𝑗Ψ𝑚−𝑗𝑟,𝑙+𝑗𝑠(�⃗�, �̃�). (7.16)

Here, the coefficients 𝑎𝑗 ∈ C are normalized by 𝒩 2 =
∑︀

𝑗>0 |𝑎𝑗|2. To be consistent with the
limit of vanishing deformation 𝑎0 is set to one. In leading order ‖Ψ̃‖2 defined by

‖Ψ̃(𝑡)‖2 =
∫︁

cavity
|Ψ̃|2 d𝑥d𝑦 = 𝑒−Γ𝑡. (7.17)

is proportional to the loss rate Γ = −2𝑐Im �̃�/𝑅. Therefore, the second central assumption for
the 𝑄-spoiling is

Im �̃�𝑚,𝑙 = 𝒩−2
∑︁
𝑗>0

|𝑎𝑗|2Im �̃�𝑚−𝑗𝑟,𝑙+𝑗𝑠. (7.18)

Remaining, the coefficient 𝑎𝑗 need to be determined from the Hamiltonian ℋ𝑟:𝑠. To do so, the
term 2𝒱𝑟:𝑠 cos(...) is treated as perturbation to 𝐻0 in Eq. (7.1). The result of the perturbation
theory is known from literature [Brodier et al., 2002, Eltschka and Schlagheck, 2005, Löck
et al., 2010]. With the selection rules regarding both 𝑚 and 𝑙 it yields

𝑎𝑗 =
∏︁
𝑢6𝑗

𝒱𝑟:𝑠𝑒𝑖𝜑0
𝐻0(𝑝mod

𝑚,𝑙 )−𝐻0(𝑝mod
𝑚−𝑢𝑟,𝑙+𝑢𝑠)

. (7.19)

About this result there are two remarks to mention: First, the applied perturbation theory
is in the following sense not a standard perturbation theory. The mode with mode numbers
(𝑚, 𝑙) can directly couple to the mode (𝑚 − 𝑟, 𝑙 + 𝑠). However the coupling to the mode
(𝑚− 2𝑟, 𝑙+2𝑠) is indirect via the mode (𝑚− 𝑟, 𝑙+ 𝑠); and so on for the higher coupling terms.
That is the reason for the product in Eq. (7.19). The second remark is that in Eq. (7.19)
the modified momenta 𝑝mod

𝑚,𝑙 have been introduced in order to respect the dielectric boundary
conditions of the microdisk cavity. In the following the meaning of the modified momenta is
explained and an explicit formula for 𝑝mod

𝑚,𝑙 is derived.

The Hamiltonian ℋ𝑟:𝑠 is modeled such that it mimics the closed system (billiard) dynamics of
the cavity. However, in the open system the Goos-Hänchen shift and the Fresnel filtering lead
to wavelength depended corrections that are usually incorporated in the so-called extended
ray dynamics. Consequently, the resonance chain appears slightly different in the phase space
of the extended ray dynamics. However, incorporating the openness into the ray dynamics
and adapt ℋ𝑟:𝑠 is disadvantageous here because it would require to set up a new ℋ𝑟:𝑠 for
each individual mode. Furthermore, 𝐻0(𝑝) would not be known analytically. Therefore, here
a slightly different strategy is followed. Instead of adapting the ray dynamics to the wave
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mechanics, here, the momentum 𝑝𝑚,𝑙 of the mode is modified to fit to the corresponding
closed system billiard dynamics. It is known that the mode (𝑚, 𝑙) localizes at the momentum
𝑝𝑚,𝑙 = 𝑚/(𝑛Re𝑥𝑚,𝑙) [see Eq. (3.39); Ref. [Nöckel, 1997]]. Therefore, the modified momentum
is defined as 𝑝mod

𝑚,𝑙 = 𝑚/(𝑛Re𝑥𝑚,𝑙)−Δ𝑝open where Δ𝑝open represents the corrections from the
extended ray dynamics.
Next, a explicit expression for Δ𝑝open is derived using various approximations. (i) Since the
Fresnel filtering is typically small for large Re𝑥 it is neglected here completely. Nevertheless,
the remaining Goos-Hänchen shift Δ𝑞(𝑝) leads to a shift of the periodic orbits of the 𝑟:𝑠
resonance chain in 𝑝. An explicit formula for this periodic-orbit shift (POS) was derived in
Ref. [Unterhinninghofen and Wiersig, 2010]

Δ𝑝POS =
Δ𝑞(𝑝𝑟:𝑠)

2𝑟𝑐

√︀
1− 𝑝2𝑟:𝑠 (7.20)

where 𝑟𝑐 is the radius of curvature. (ii) The slight differences of 𝑟𝑐 of the stable and unstable
periodic orbit are ignored; i.e. the average radius of curvature 𝑟𝑐 ≈ 𝑅 is used. (iii) The
Goos-Hänchen shift Δ𝑞(𝑝) is approximated with the Artmann result [Artmann, 1948]

Δ𝑞(𝑝)
2𝑝√︀

𝑛2𝑝2 − 1
√︀

1− 𝑝2Re 𝑘
. (7.21)

This approximation seems to be outdated since more accurate estimations are known
[Stockschläder et al., 2014, Unterhinninghofen and Wiersig, 2010]. However, the Artmann
approximation is on the one hand suitable for a resonance chain being located in between
but not close to 𝑝 = 1/𝑛 and 𝑝 = 1. And on the other hand the Artmann approximation is
analytical and allows to compactly express the POS as shift in the mode number 𝑚 as

Δ𝑚POS =
𝑝𝑟:𝑠√︀

𝑝2𝑟:𝑠 − 𝑛−2
. (7.22)

Therefore, also the modified momentum can be written in the compact form

𝑝mod
𝑚,𝑙 =

1

𝑛Re𝑥𝑚,𝑙
(𝑚−Δ𝑚POS). (7.23)

Using this modified momentum the 𝑎𝑗 are determined via Eq. (7.19). Consequently, the mode
[Eq. (7.16)] with Im �̃�𝑚,𝑙 from Eq. (7.18) can be computed. For the real part of the complex
wave number it is Re �̃�𝑚,𝑙 = Re𝑥𝑚,𝑙 assumed here. Since in Ref. [Kwak et al., 2015] RAT
was measured in the real part of the complex wave number an extended theory would need
to account for the corrections in Re �̃�𝑚,𝑙 too. However, for the 𝑄-spoiling which is the main
target of this section the relatively small changes in Re �̃�𝑚,𝑙 are negligible since Im �̃�𝑚,𝑙 changes
by several orders of magnitude.
It is worth to mention that the coupling of the modes (𝑚, 𝑙) and (𝑚 − 𝑟, 𝑙 + 𝑠) given by 𝑎1
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in Eq. (7.19) is proportional to 𝐴2 where 𝐴 is the area of the resonance chain in phase space.
This proportionality was measured experimentally in Ref. [Kwak et al., 2015].

Additionally to the prediction of Ψ̃𝑚,𝑙 and Im �̃�𝑚,𝑙 the coefficients 𝑎𝑗 allow to predict the far-
field pattern 𝐹 (𝜑) of the mode in a similar manner as Eq. (7.16) namely as superposition of
the far-field pattern of the circular modes

𝐹 (𝜑) ≈
∑︁
𝑗>0

𝑎𝑗
𝑒−𝑖𝜋(𝑚−𝑗𝑟)/2

𝐻𝑚−𝑗𝑟(�̃�𝑚,𝑙)
𝜒±,𝑚−𝑗𝑟(𝜑) (7.24)

Here, 𝜒±,𝑚−𝑗𝑟(𝜑) is either the (−) sine or the (+) cosine with period 2𝜋/(𝑚− 𝑗𝑟).

Application to example systems

Next, the derived predictions are applied to the example systems introduced in the previous
section, see Tab. 7.1. The values for the couping strength 𝒱𝑟:𝑠 and the mode number shift
Δ𝑚POS due to the POS are shown in Tab. 7.2.

System 𝒱𝑟:𝑠 Δ𝑚POS
System 𝒜 0.0017965 1.41421
System ℬ 0.0085653 1.41421
System 𝒞 0.00116968 1.72944

Table 7.2: The tabular shows the parameters 𝒱𝑟:𝑠 for the coupling strength, i.e. the size of
the resonance chain, and the mode number shift [Eq. (7.22)] due to the POS for the three
systems studied here.

With these parameter Eq. (7.18) can be evaluated which lead to the predictions of Im �̃�𝑚,𝑙

shown in Fig. 7.5 for the three systems 𝒜, ℬ, and 𝒞.2 The periodic peaks in Im 𝑥 are charac-
teristic for RAT; compare e.g. to the peaks in the eigenphase splitting in Ref. [Brodier et al.,
2002] or to the peaks in the tunneling rate in Ref. [Löck et al., 2010]. The agreement of the
RAT predictions to the numerical BEM is very well keeping in mind that a variety of approx-
imations has been used. A further comparison to the BEM results for larger Re𝑥 is hindered
by the small |Im �̃�| . 10−6 which cannot be resolved accurately by the BEM. This restrictions
does not hold for the RAT predictions since the evaluation of the derived formulas is quite sim-
ple from a numerical point of view. However for very large Re𝑥 it is expected that Eq. (7.18)
becomes inaccurate because resonance chains of higher order will become important. These
effects from the so-called multi-resonance-assisted tunneling are so far not implemented. How-
ever it is remarkable that even in system ℬ reasonable predictions are obtained in the shown

2It is mentioned that for the System 𝒞 the quadratic approximation of 𝐻0 is used which gives a slightly better
result than the full 𝐻0 from Eq. (7.4). The suspected reason are the additional effects from the resonance
chain 𝑟:𝑠=9:1 closer to 𝑝 = 1, see Fig. 7.3(c) which result in an additional perturbation to 𝐻0.
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range of Re𝑥 although the resonance chain has a considerable large chaotic layer; i.e. the
system cannot be treated as near-integrable.
In Fig. 7.6 the predictions of the near-field mode pattern are shown for the modes of system 𝒜
around the first peak in Im �̃�. They are compared to the ones obtained by BEM. Additionally,
in order to illustrate the origin of the peaks in Im �̃� the curve 𝐻0(𝑝) with the marked modified
momenta is shown. In (a), before the peak, the mode is quite similar to a mode in the circular
cavity. Here, the difference in the energy denominator 𝐻0(𝑝

mod
𝑚,𝑙 )−𝐻0(𝑝

mod
𝑚−𝑟,𝑙+𝑠) in Eq. (7.19) is

large such that the coupling of the modes (𝑚, 𝑙) and (𝑚− 𝑟, 𝑙+ 𝑠) is weak. In particular 𝑎1 is
small. By increasing the mode number 𝑚 the momentum 𝑝𝑚,𝑙 and therefore also 𝑝mod

𝑚,𝑙 becomes
larger. Consequently, 𝐻0(𝑝

mod
𝑚,𝑙 ) becomes of the order of 𝐻0(𝑝

mod
𝑚−𝑟,𝑙+𝑠) as shown in Fig. 7.6(b)

which results in a strong coupling of the modes (𝑚, 𝑙) and (𝑚 − 𝑟, 𝑙 + 𝑠). Here the mode of
the deformed cavity localizes at the unstable periodic orbit which is correctly predicted by the
RAT perturbation theory. If one increases the mode number 𝑚 further to 𝑚 = 22 as shown
in Fig. 7.6(c) one reaches the case where 𝐻0(𝑝

mod
𝑚,𝑙 ) is almost degenerate with 𝐻0(𝑝

mod
𝑚−𝑟,𝑙+𝑠).

Here, the predictions of the mode pattern collapse due to the small denominator in Eq. (7.19).
Note that in this case Im �̃�𝑚,𝑙 do not diverge due to the normalization factor 𝒩−2. It is rather
determined by roughly the value of Im𝑥𝑚−𝑟,𝑙+𝑠 because of the large coupling to this mode.
Further note that the predicted near-field pattern is therefore also quite similar to the one of
the mode Ψ̃𝑚−𝑟,𝑙+𝑠 (not shown). After further increasing the mode number to 𝑚 = 23 [see
Fig. 7.6(d)] the modes (𝑚, 𝑙) and (𝑚− 𝑟, 𝑙 + 𝑠) become off-resonant again such that |Im �̃�𝑚,𝑙|
drops. But the energy denominator has now changed the sign which results in the localization
of the mode at the unstable periodic orbit. This prediction is again in a nice agreement with
the numerical BEM result.
Similarly, the second peak in Im �̃�𝑚,𝑙 has its origin in a strong coupling between the modes
(𝑚, 𝑙) and (𝑚−2𝑟, 𝑙+2𝑠) due to a small denominator in 𝑎2. Therefore the 𝑗-th peak in Im �̃�𝑚,𝑙

is identified with a strong coupling to the mode (𝑚− 𝑗𝑟, 𝑙 + 𝑗𝑠).
In principle, for modes with (𝑚, 𝑙 > 1) also the coupling to the mode (𝑚 + 𝑗𝑟, 𝑙 − 𝑗𝑠) needs
to be considered. In an interesting case such a mode (𝑚, 𝑙) (with a low 𝑄-factor) is below
the resonance chain and couples to a mode (with a high 𝑄-factor) above the resonance chain
resulting in a slightly higher 𝑄-factor in the deformed cavity than in the circular cavity for
the mode (𝑚, 𝑙 > 1). Such a scenario was shown in Sec. 3.4.2 [see Fig. 3.8]. However, this
𝑄-enhancement for modes (𝑚, 𝑙 > 1) is only marginal for the systems studied here and in the
relevant regime of 𝑘𝑅. Nevertheless, it could be implemented in an extended version of the
RAT perturbation theory.

Far-field predictions from RAT

Using Eq. (7.24) the far-field pattern of an optical mode can be predicted. In Fig. 7.7 this is
done for the modes in system 𝒜 whose near-field pattern are shown in Fig. 7.6. The overall
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agreement to the numerical BEM is quite well. At first glance this nice agreement especially
for the mode (𝑚, 𝑙) = (22, 1) at the resonance peak is surprising since the near-flied prediction
is erroneous. However one needs to keep in mind that this error comes from the wrongly
predicted coupling strength 𝑎1 to the mode (𝑚 − 𝑟, 𝑙 + 𝑠) = (18, 2) whose near-filed pattern
can be clearly distinguished from the one of the mode (𝑚, 𝑙) = (22, 1). However the far-field
pattern of the mode (𝑚 − 𝑟, 𝑙 + 𝑠) = (18, 2) [green dotted curve in Fig 7.7(c)] looks quite
similar to the one of the mode (𝑚, 𝑙) = (22, 1) [Creagh and White, 2012]. Therefore the
wrongly predicted coupling coefficient 𝑎1 does not result in a significant error in the far-field
prediction.

The effect of the POS shift

Next, it is clarified that the POS and therefore the Goos-Hänchen shift is indeed very sub-
stantial for the mode predictions via RAT. Since it shifts the momentum 𝑝𝑚,𝑙 to the modified
momentum 𝑝mod

𝑚,𝑙 it consequently also shifts the position of the RAT-peak where the energy
denominator vanishes. Even if the shift Δ𝑚POS from the POS in the mode number is only
around Δ𝑚POS ≈ 1.5 it can result in a quite large shift of the RAT-peak. This is illustrated in
Fig. 7.8(a) where for system 𝒞 the RAT predictions without the POS are shown in comparison
to the predictions including the POS. If one ignores the POS the RAT-peak is predicted quite
too early; i.e. for the mode (𝑚, 𝑙) = (33, 1) instead of (𝑚, 𝑙) = (44, 1). In Fig. 7.8(b-c) it is
shown that the small shift in 𝑝 due to the POS can tune the modes into resonance (c) or out
of resonance (b).

Connection to the boundary perturbation theory

Next, the RAT theory is compared to the perturbation theory based on the cavity’s boundary
deformation which was the topic of the last two chapters. Since the cavities studied in this
chapter have a mirror-reflection symmetry one can apply the symmetric-PT [Dubertrand et al.,
2008], see Sec. 5, in order to obtain predictions for �̃�𝑚,𝑙. First, one should mention that
both theories, RAT and symmetric-PT, are applicable to slightly deformed cavities. For the
symmetric-PT the criterion of its validity is that the area where the refractive index is changed
via the deformation needs to be small [see Eq. (5.9)]. In contrast the RAT theory it requires
that one can identify a dominant resonance chain in phase space. Therefore, the deformation
needs to be small as well such that no large resonance chains of higher order or large chaotic
regions are generated outside of the leaky region.

A further similarity is that both theories use a perturbative approach. The theory from
Dubertrand et al. treat the deformation in real space perturbatively but the RAT theory
solves an effective Hamiltonian for the phase space dynamics perturbatively.

A remarkable difference is that the symmetric-PT is valid for small Re𝑥. But since the RAT
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theory is based on the ray dynamics it is in this sense a semiclassical theory3 and therefore
expected to be valid also for larger Re𝑥.

A direct comparison of the predictions based on the symmetric-PT and the RAT-predictions
can be seen in Fig. 7.9 for system 𝒞. Since the first-order perturbation theory [Eq. (5.14)] gives
corrections only linear in 𝑥0 it is not able to predict the RAT-peak in Im𝑥. The second-order
perturbation theory [Eq. (5.22)] contains terms being nonlinear in 𝑥0 and it nicely describes the
first RAT-peak in Im𝑥. For these small values of Re𝑥 the second-order perturbation theory
predictions are more accurate than the RAT predictions which can be seen e.g. at the saddle
of the RAT-peak around Re𝑥 ≈ 20...30.

However, for larger Re𝑥 the second-order perturbation theory is not able to predict the second
RAT-peak in Im𝑥 although the criterion (5.9) is fulfilled till Re𝑥 ≈ 68. In case of a simple
deformation 𝑓 = cos(𝑁𝜑) where 𝑁 ≡ 𝑟 correspond to the order of the dominant resonance
chain this can be explained from the coupling matrices 𝐴𝑝𝑚, 𝐵𝑝𝑚 [Eqs. (5.16), (5.20)]. These
matrices reduce to

𝐴𝑝𝑚 =
2− 𝛿0,𝑝

4
(𝛿𝑚−𝑝,±𝑟 + 𝛿𝑚+𝑝,𝑟) (7.25a)

𝐵𝑝𝑚 =
2− 𝛿0,𝑝

8
(𝛿𝑚−𝑝,±2𝑟 + 𝛿𝑚+𝑝,2𝑟 + 2𝛿𝑚,𝑝) . (7.25b)

In Eq. (5.22) for the second-order corrections 𝑥2 terms 𝐴𝑝𝑚 and only 𝐵𝑚𝑚 enter. Therefore,
𝐴𝑝𝑚 correctly describes the coupling between the modes (𝑚, 𝑙) and (𝑚 − 𝑟, 𝑙 + 𝑠). But the
coupling to the mode (𝑚− 2𝑟, 𝑙 + 2𝑠) which would be encoded in 𝐵𝑝𝑚 with 𝑝 = 𝑚− 2𝑟 does
not enter in 𝑥2. It is mentioned that the third-order corrections 𝑥3 [Eq. (5.34)] for this special
type of deformation vanish for the relevant modes at the peak because of the simple cosine
deformation.

However, for the perturbation theory such a simple boundary deformation is very non-generic
since higher coupling terms in 𝐴𝑝𝑚 and 𝐵𝑝𝑚 vanish. In order to illustrate this fact one can
perform the perturbation theory not for the simple deformation 𝑓(𝜑) = cos(𝑁𝜑) but for the
flatten version of the deformation

𝑟(𝜑)

𝑅
=
√︀
1 + 2𝜖 cos(𝑁𝜑). (7.26)

Since 𝜖 is small the boundary shape of the flatten and the simple cosine perturbation is
almost equal but the flatten version exhibits higher order terms in 𝐴𝑝𝑚 (and 𝐵𝑝𝑚) being
proportional to 𝛿𝑚−𝑝,±𝑙𝑟, 𝑙 ∈ N. In Fig. 7.10 the results of the perturbation theory applied
to the flatten cavity shape are compared to the previously obtained results (BEM and RAT)
for the simple version of the deformation. For small Re 𝑘𝑅 the perturbation theory applied to

3In the literature about RAT the term “semiclassical” is often used slightly different; e.g. if the Hamiltonian
ℋ𝑟:𝑠 is solved with WKB-quantization schemes. Therefore, a semiclassical RAT theory is related to complex
paths in phase space [Fritzsch et al., 2017, Mertig, 2013].
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the flatten boundary is almost equal to the perturbation theory applied to the simple version.
However around the second RAT-peak the third-order perturbation theory can at least capture
signatures of the peak. Note that these signatures can be seen also (but barely) in the second
order perturbation theory as well. Nevertheless, the RAT theory is still much more accurate
for the second RAT-peak than the boundary perturbation theory. However, this example
illustrates that too simple boundary shapes, e.g. with a single cosine, are quite non-generic
for the boundary perturbation theory since important aspects cannot be captured due to the
vanishing coupling matrix elements.
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Figure 7.5: For the three systems 𝒜, ℬ, and 𝒞 the (orange triangles) RAT predictions
[Eq. (7.18)] for the imaginary part of the complex wave number 𝑥 = 𝑘𝑅 are compared to
BEM results (open black circles). The results for the circular disk are shown as black dots.
The shown data correspond to modes with radial mode number 𝑙 = 1.
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Figure 7.6: For the modes (a) (𝑚, 𝑙) = (18, 1), (b) (𝑚, 𝑙) = (21, 1), (c) (𝑚, 𝑙) = (22, 1), and
(d) (𝑚, 𝑙) = (23, 1) in system 𝒜 the near-field intensity mode patterns computed by (upper
panel) RAT [Eq. (7.16)] and (middle panel) BEM are shown. In the lower panel the function
𝐻0(𝑝) is shown as orange curve where black dots mark the modified momenta 𝑝mod

𝑚−𝑗𝑟,𝑙+𝑗𝑠. A
dashed line at 𝐻0(𝑝

mod
𝑚,𝑙 ) serves as guide to the eye.
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Figure 7.7: For the modes (a) (𝑚, 𝑙) = (18, 1), (b) (𝑚, 𝑙) = (21, 1), (c) (𝑚, 𝑙) = (22, 1), and
(d) (𝑚, 𝑙) = (23, 1) in system 𝒜 the far-field intensity pattern predicted by (orange curves)
RAT is compared to the (black curves) BEM results. In (c) the far-field calculated with the
BEM for the mode (𝑚, 𝑙) = (18, 2) is shown additionally as green dotted curve. Due to the
4-fold rotational symmetry the angle 𝜑 is restricted to the interval [0, 𝜋/2]. All curves are
normalized to have the same area below the curves.
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Figure 7.8: (a) The (orange triangles) RAT predictions for Im𝑥 based on Eq. (7.18) includ-
ing the POS are compared to (empty circles) the BEM results for modes with 𝑙 = 1 in system
𝒞. Additionally the RAT predictions without the POS are shown as black crosses. For the
mode numbers (b) (𝑚, 𝑙) = (33, 1) and (c) (𝑚, 𝑙) = (44, 1) the parabola 𝐻0(𝑝) is shown as
orange curve. The modified momenta 𝑝mod

𝑚,𝑙 and 𝑝mod
𝑚−𝑟,𝑙+𝑠 are illustrated by black dots. The

conventional momenta 𝑝𝑚,𝑙 and 𝑝𝑚−𝑟,𝑙+𝑠 (without the POS correction) are marked as black
crosses.
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Figure 7.9: The complex wave numbers are shown for modes with radial mode number
𝑙 = 1 in system 𝒞. Results from the BEM are shown as open black circles. The RAT
predictions [Eq. (7.18)] are shown as orange triangles. Furthermore, the results of the
boundary perturbation theory in (light blue dots) first- and (black crosses) second order are
shown.
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Figure 7.10: The complex wave numbers are shown for modes with radial mode number 𝑙 =
1 in system 𝒞. Results from the BEM are shown as open black circles. The RAT predictions
[Eq. (7.18)] are shown as orange triangles. The results of the third-order perturbation theory
applied to the flatten version of the boundary deformation [Eq. (7.26)] are shown as black
crosses and the corresponding second-order results are the light blue dots.
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7.4 Outlook: 𝑘𝑅 splitting of even and odd parity modes

due to resonance-assisted tunneling

In the previous section it was shown that a single 𝑟:𝑠 resonance chain outside the leaky region
couples the modes (𝑚, 𝑙) and (𝑚 − 𝑗𝑟, 𝑙 + 𝑗𝑠) with 𝑗 ∈ Z. However, in this section now the
focus is on the resonance chain inside the leaky region; to be precise on the bouncing ball
resonance chain (BBC) which is along 𝑝 = 0. In the circular cavity the line 𝑝 = 0 is obviously
centered between the traveling waves (𝑚, 𝑙) and (−𝑚, 𝑙). However, in a slightly deformed
cavity with a mirror-reflection symmetry these traveling waves need to be superimposed to
standing waves with even and odd parity to form a mode. In other words the deformation
of the cavity give rise to a coupling between the traveling waves ±𝑚. The proposal here is
to explain this coupling with a RAT process across the BBC. Consequently, predictions for
the real part of the splitting ReΔ�̃�𝑚,𝑙 = Re �̃�+𝑚,𝑙 −Re �̃�−𝑚,𝑙 of the even (+) and odd (−) parity
modes in the deformed cavity are obtained.

Following, the outline for that RAT predictions from the previous section, first, the phase
space structure of the BBC is modeled with the effective generalized pendulum Hamiltonian
[Eq. (7.1)]. Since the BBC is located at the momentum 0 = 𝑝𝑟:𝑠 = cos(𝜋𝑠/𝑟) it yields

𝑠

𝑟
=

1

2
mod 1. (7.27)

Hence, 𝐻0(𝑝) simplifies to

𝐻0(𝑝) = 2
(︁
𝑝 arccos(𝑝)−

√︀
1− 𝑝2 + 1

)︁
− 𝜋𝑝 = −𝑝2 +𝒪(𝑝4). (7.28)

Remaining, the coupling strength 𝑉1:2 of the BBC needs to be determined. Here, Eq. (7.7) is
promising since the area 𝐴 of (a typically large) BBC can be computed numerically from the
billiard dynamics or approximated by an integration of the adiabatic curve [see Eq. (3.40)].

In the second step the splittingΔ�̃�𝑚,𝑙 between the even and the odd parity modes is determined
within a perturbative approach from the Hamiltonian matching the BBC. Since the traveling
waves (𝑚, 𝑙) and (−𝑚, 𝑙) are degenerate in the circular (unperturbed) cavity the perturbation
theory for the splitting Δ�̃�𝑚,𝑙 is a degenerate perturbation theory. In Refs. [Keshavamurthy,
2005, Keshavamurthy, 2007] it was shown that the eigenvalue splitting Δ𝐸𝑚 between the
energies regarding even and odd eigenfunctions of the (quantum) pendulum Hamiltonian

𝐻(𝑞, 𝑝) =
𝑝2

2𝑀
+ 2𝑉 cos(2𝜑) (7.29)
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can be obtained perturbatively as

Δ𝐸𝑚 = 2𝑉

(𝑚−2)∏︁
𝑢=−(𝑚−2)

Δ𝑢=2

𝑉

𝐸𝑚 − 𝐸𝑢
(7.30)

where 𝐸𝑚 and 𝐸𝑢 are the energies of the free particle Hamiltonian 𝑝2/(2𝑀). In Eq. (7.30)
𝑢 takes the values 𝑢 = −(𝑚 − 2),−(𝑚 − 4), ..., (𝑚 − 4), (𝑚 − 2) because of the particular
form of the perturbation proportional to cos(2𝜃). In order to adapt this result to a microdisk
cavity whose BBC is described by an Hamiltonian (7.1) the connection between Δ𝐸𝑚 and
ReΔ�̃�𝑚,𝑙 needs to be figured out as follows. The energies of the circular (unperturbed) cavity
are identified by inserting 𝑝𝑚,𝑙 = 𝑚/(𝑛Re𝑥𝑚,𝑙) into Eq. (7.5) which yields

𝐸𝑚 ≡ 𝐻0(𝑝𝑚,𝑙) =
1

[𝑛Re𝑥𝑚,𝑙]2
(𝑚−𝑚𝑟:𝑠)

2√︀
1− 𝑝2𝑟:𝑠

∼ 1

[𝑛Re𝑥𝑚,𝑙]2
(7.31)

with 𝑚𝑟:𝑠 = 𝑝𝑟:𝑠𝑛Re𝑥𝑚,𝑙 ∈ R. Thus, from the total differential one obtains

Δ𝐸𝑚
𝐸𝑚

= 2
ReΔ�̃�𝑚,𝑙
Re𝑥𝑚,𝑙

(7.32)

where Δ𝐸𝑚 and ReΔ�̃�𝑚,𝑙 are defined positive. By inserting this relation into Eq. (7.30) with
𝑉 = 𝑉𝑟:𝑠 one obtains

ReΔ�̃�𝑚,𝑙 =Re𝑥𝑚,𝑙
𝑉𝑟:𝑠
𝐸𝑚

(𝑚−2)∏︁
𝑢=−(𝑚−2)

Δ𝑢=2

𝑉𝑟:𝑠𝑒
𝑖𝜑0

𝐸𝑚 − 𝐸𝑢
(7.33a)

=Re𝑥𝑚,𝑙
𝑉𝑟:𝑠/~2

𝐸𝑚/~2

(𝑚−2)∏︁
𝑢=−(𝑚−2)

Δ𝑢=2

𝑉𝑟:𝑠/~2𝑒𝑖𝜑0
𝐸𝑚/~2 − 𝐸𝑢/~2

. (7.33b)

In the second equation all terms are expanded with ~2. In contrast to Eq. (7.30) this expan-
sion is necessary for microdisk cavities because each energy 𝐸𝑚 ∼ ~2 scales with a different
~ = 1/(𝑛Re𝑥𝑚,𝑙) [see Eq. (7.31)]. Hence, one needs to rescale each of the terms with the cor-
responding ~2 in order to make them comparable in the (𝑘𝑅 independent) Hamiltonian. Note
that this rescaling is crucial for the terms occurring in the product but not for the prefactor
where ~ in the numerator and the denominator are the same. Furthermore, the prefactor can
be simplified further by exploiting the assumption that mode 𝑚 is a well-confined whispering-
gallery mode (𝑙 = 1); i.e. Re𝑥𝑚,𝑙 ≫ 1 and |Im𝑥𝑚,𝑙| ≪ Re𝑥𝑚,𝑙. In this case the asymptotic
relation 𝑚 = 𝑛Re𝑥𝑚,𝑙 [Dubertrand et al., 2008] can be used to remove the term 𝐸𝑚. Hence,
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one obtains the final prediction for the frequency splitting from the BBC as

ReΔ�̃�𝑚,𝑙 = Re𝑥𝑚,𝑙 𝑉𝑟:𝑠
(𝑚−2)∏︁

𝑢=−(𝑚−2)
Δ𝑢=2

𝑉𝑟:𝑠[Re𝑥𝑢𝑙,]2𝑒𝑖𝜑0

𝐻0(𝑝𝑚,𝑙)[Re𝑥𝑚,𝑙]2 −𝐻0(𝑝𝑢,𝑙)[Re𝑥𝑢,𝑙]2
. (7.34)

Note that in the similar Eq. (7.19) the wavelength scaling of the individual terms does not
occur. The reason is that Re𝑥𝑚,𝑙 is almost equal to Re𝑥𝑚−𝑟,𝑙+𝑠 at the RAT-peak of the 𝑄-
spoiling. Therefore, it was neglected in that case. However, in the case of Eq. (7.34) Re𝑥𝑚,𝑙
and Re𝑥𝑢,𝑙 are quite different since both correspond to modes with the same radial mode
number 𝑙 = 1 but different azimuthal mode numbers 𝑚 and 𝑢; i.e. Re𝑥𝑢,𝑙 < Re𝑥𝑚,𝑙 for 𝑢 < 𝑚.
Thus, the wavelength scaling cannot be neglected in Eq. (7.34). Further note that in Eq. (7.34)
the conventional momenta 𝑝𝑢,𝑙 = 𝑢/(𝑛Re𝑥𝑢,𝑙) enter because the GHS corrections vanish for
the resonance chain of the bouncing ball orbit at 𝑝𝑟:𝑠 = 0 [see Eqs. (7.22)-(7.23)].
In the following the results of this approach for the splitting ReΔ�̃�𝑚,𝑙 are discussed: The
formula (7.34) allows to interpret the RAT process which couples (𝑚, 𝑙) and (−𝑚, 𝑙) as a
stepwise process. In case of an ordinary 𝑟:𝑠=2:1 BBC this means that the mode (−𝑚, 𝑙) couples
to the mode (−𝑚+2, 𝑙), then to (−𝑚+4, 𝑙), and so on until it reaches (𝑚, 𝑙). Therefore, every
mode (𝑚, 𝑙) can couple to its counter part (−𝑚, 𝑙) which results in a finite frequency splitting
of each mode in the deformed cavity.
However, the interesting consequence of this mechanism occur for BBC of higher order. Since
Eq. (7.27) contains the modulus one can imagine e.g. a 𝑟:𝑠=4:2 BBC which can occur in systems
with a 4-fold rotational symmetry. In this case the mode (−𝑚, 𝑙) couples first to (−𝑚 + 4, 𝑙)

and next to (−𝑚 + 8, 𝑙) and so on, for an illustration see Fig. 7.11. However, for each odd
mode number 𝑚 it is therefore impossible to couple to its counterpart −𝑚. Consequently, one
expects a vanishing splitting in the deformed cavity for the modes with odd 𝑚 and a finite
splitting for the modes with even 𝑚.

3
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m

∆m = r = 4AB

C

−2 2−4 4−6 60

Figure 7.11: Illustration of the coupling mechanism between the traveling waves 𝑚 and
−𝑚 in a cavity with a 𝑟:𝑠=4:2 BBC. The (A) blue and (B) magenta paths lead to a finite
splitting between even and odd parity modes in the deformed cavity for 𝑚 = 2 and 𝑚 = 4,
respectively. The (C) black path illustrates an impossible coupling path for the mode 𝑚 = 5
resulting in a vanishing splitting.

In Fig. 7.12 the splitting results for such higher-order BBCs are shown. The cavity studied here
is the multipole [Eq. (7.14)] with refractive index 𝑛 = 1.5. For each even 𝑁 the corresponding
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BBC is of the order 𝑟:𝑠=𝑁 :𝑁/2. Therefore, Eq. (7.34) can be applied to the modes (𝑚, 𝑙) =
(𝑁/2, 1), (𝑁, 1), (3𝑁/2, 1), ... and for all other modes the splitting Δ�̃� should vanish. As shown
in Fig. 7.12 these predictions quite nicely correspond to the BEM results. The numerically
determined splitting for the modes which are not covered by Eq. (7.34) is of the order 10−13

and therefore within the error range of the numerics.

However, for larger mode numbers 𝑚 Eq. (7.34) systematically underestimates the splitting.
The reason therefore is that Eq. (7.34) only accounts for the effects of the BBC. But with
higher mode number 𝑚 more and more phase space structures, especially resonance chains of
higher order at finite momentum 𝑝𝑟:𝑠 ̸= 0, give contributions to the splitting. The contributions
from such higher order resonance chains are discussed in the next paragraph.
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Figure 7.12: Splitting between even and odd parity modes in the multipole cavity
[Eq. (7.14)] with refractive index 𝑛 = 1.5. The BEM results are shown as open black
circles connected by dashed lines and the RAT-predictions from Eq. (7.34) are shown as red
dots. The parameter 𝜖 is set to (a-b) 𝜖 = 0.002 and (c-d) 𝜖 = 0.001. The paths corresponding
to Fig. 7.11 are labeled.
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Splitting enhancement via multi-resonance-assisted tunneling

So far the predictions for the splitting are based on the BBC only. However, in the previous
section it was already shown that resonance chains of higher order which are located at a finite
momentum 𝑝𝑟:𝑠 ̸= 0 can result in a coupling of modes with different mode number 𝑙 which
manifests e.g. in 𝑄-spoiling. Therefore, the purpose in the following is to combine the spitting
predictions from Eq. (7.34) for the BBC with the RAT-coupling mechanism for a higher order
resonance chain, see Sec. 7.3. In order to treat these effects, first, the notation needs to be
fixed: The BBC is still labeled with 𝑟:𝑠. However, the additional resonance chain at finite
momentum 𝑝𝑟:𝑠 has the order 𝑟:𝑠. Then the splitting obtained so far as tunneling over the
BBC only is illustrated in Fig. 7.13(a). The additional tunneling path which includes the 𝑟:𝑠
resonance chain is shown in Fig. 7.13(b). In such a case the mode (𝑚, 𝑙) gets contributions
from the mode (𝑚 − 𝑟, 𝑙 + 𝑠) which then uses the BBC to couple to its counter-propagating
counterpart. This second tunneling path is supposed to become important for larger 𝑚 when
the mode (𝑚, 𝑙) is located above 𝑝𝑟:𝑠.

r̃:s̃

r̃:s̃

r:s

(m, l)

(m− r̃, l + s̃)

(−m, l)

(−m+ r̃, l + s̃)

∆x̃m−r̃,l+s̃

(b)

(m, l)

(−m, l)

r:s

∆x̃m,l

(a)

Figure 7.13: Illustration of the tunneling paths for the complex frequency splitting Δ�̃�.
In (a) the BBC couples the traveling wave (𝑚, 𝑙) with its counter-propagating counterpart
which results in the splitting predicted by Eq. (7.34). In (b) the additional tunneling path
is shown which first uses a RAT-coupling via the 𝑟:𝑠 resonance chain [see Eqs. (7.16) and
(7.19)].

In order to predict this RAT-enhanced splitting Δ�̃�enh which now accounts for the additional
RAT step an ansatz in the spirit of Eq. (7.18) is used

ReΔ�̃�enh =
∑︁
𝑗≥0

|𝑎𝑗|2ReΔ�̃�𝑚−𝑗𝑟,𝑙+𝑗𝑠 (7.35)

where the coefficients 𝑎𝑗 are given by Eq. (7.19) (for the 𝑟:𝑠 resonance chain); and 𝑎0 = 1.
As an example system in the following the quadrupole cavity is studied for 𝜖 = 0.035 and a
refractive index 𝑛 = 3.0. In Fig. 7.14 the results for the splitting are shown versus the mode
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number 𝑚 for modes with 𝑙 = 1. In the regime of small 𝑚 < 8 the splitting is governed
by the BBC only (orange curve). However, for 9 < 𝑚 < 19 the numerically obtained values
(BEM) start to deviate from the prediction of Eq. (7.34) and show a peak-like structure. This
deviation can be traced back to the 𝑟:𝑠 = 6:2 resonance chain in phase space. Therefore,
Eq. (7.35) can be applied which nicely predicts the enhanced splitting up to 𝑚 ≈ 19 (blue
curve). However, for even larger 𝑚 also this prediction fails because not only the 𝑟:𝑠 = 6:2
resonance chain but also other resonance chains contribute. For example Eq. (7.35) applied to
the 𝑟:𝑠 = 4:1 resonance chain indicates the slightly enhanced splitting for 𝑚 = 21 (red curve).
Therefore, it is suggested that in an extended version of the splitting prediction for such modes
with large 𝑚 all or at least many important resonance chains are taken into account. Note
that the identification of these important resonance chains is not trivial since a simple criterion
concerning the area in phase space fails. For example in the quadrupole the 6:2 resonance chain
is smaller than the 4:1 resonance chain but it becomes already important for smaller mode
numbers 𝑚 ≈ 9. Hence, also the momentum 𝑝𝑟:𝑠 of the resonance chain is crucial. Resonance
chains with lower 𝑝𝑟:𝑠 are crossed already at a small 𝑚 and therefore influence the splitting of
these modes.
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Figure 7.14: The figure shows the real part of the complex frequency splitting of even
and odd parity modes with 𝑙 = 1 in the quadrupole cavity with 𝜖 = 0.035 and refractive
index 𝑛 = 3.0. The BEM results are shown as open black circles. The predictions based on
Eq. (7.12) are shown as orange connected dots, and the predictions based on Eq. (7.35) for
𝑟:𝑠 = 6:2 [𝑟:𝑠 = 4:1] are shown as blue [red] connected dots, respectively. The right inset
shows a phase space portrait of the billiard dynamics with the highlighted resonance chains.

However, the presented results highlight the importance of RAT for the splitting in the real
part of the complex frequency Δ�̃� between even and odd parity modes in slightly deformed,
i.e. near-integrable, microdisk cavities.
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7.5 Chapter summary

In this chapter the influences of nonlinear resonance chains in the phase space to the optical
modes have been discussed. Such resonance chains develop naturally from slight boundary
deformations.
In the first part of the chapter a dominant resonance chain above the critical line 𝑝 = 1/𝑛 is
considered. Such a resonance chain of order 𝑟:𝑠 can couple the mode (𝑚, 𝑙) with the modes
(𝑚− 𝑗𝑟, 𝑙 + 𝑗𝑠), 𝑗 ∈ Z, which results for whispering-gallery modes (𝑙 = 1) in a spoiling of the
𝑄-factor. This 𝑄-spoiling can be predicted within a generalized pendulum approximation of
the dominant resonance chain. Furthermore, the phase space approximation allows to predict
the near- and far-field mode pattern. A crucial point in these predictions are the corrections
of the billiard dynamics due to the dielectric boundary conditions at the cavity’s interface.
Especially, the corrections from the Goos-Hänchen shift are important for the predictions of
the characteristic peaks in Im 𝑘𝑅.
In the second part of the chapter an outlook has been provided how the resonance chain of
the bouncing ball orbit can be used to describe the splitting of the complex frequency between
modes with even and odd parity in cavities with a mirror-reflection symmetry. It turns out
that for larger mode numbers 𝑚, i.e. large Re 𝑥, also resonance chains at finite momentum
contribute to this splitting which can be modeled in a first draft. However, the generalization
of this ansatz to the semiclassical regime of very large 𝑚 is of future interest.
Another future challenge is the description of the 𝑄-spoiling and the mode splitting in slightly
deformed asymmetric cavities using resonance-assisted tunneling. This might also provide a
tunneling approach to asymmetric backscattering.



8 Summary and conclusion

In this thesis aspects of the non-Hermitian physics in deformed optical microdisk cavities are
studied in the ray and the wave dynamics. In fully asymmetric cavities, i.e. in cavities whose
boundary has no mirror-reflection symmetry generically asymmetric backscattering occurs in
the wave mechanics as a signature of the non-Hermitian dynamics. In the first main part of
this thesis (in Sec. 4) the asymmetric backscattering has been studied within the ray dynam-
ics. To this end a finite approximation of the Frobenius-Perron operator (FPO) for the time
evolution of classical phase-space intensities has been constructed. The eigenstates of the FPO
show an interesting correspondence to the optical modes. In particular there exists a pair of
non-orthogonal and copropagating eigenstates with a large lifetime; i.e. an large eigenvalue
modulus. Similar to the wave dynamics an effective 2× 2 Hamiltonian for this eigenstate pair
can be constructed. Furthermore, both eigenstates show a very good agreement to an average
of long-lived optical modes in terms of an averaged Husimi function. For the construction of
the FPO it was assumed that the dynamics in the cavity is chaotic and that the ray dynamics
mixes the regions of clockwise and counter-clockwise propagation in the phase space. For such
cavities a proper ray dynamical description of asymmetric backscattering has been invented.

The issue of the second main part of this thesis was the generalization of the perturbation
theory for slightly deformed cavities. Here, a degenerate perturbation theory based on the
analytical solutions of the circular cavity allows to treat also fully asymmetric cavities without
mirror-reflection symmetry. Consequently, analytical formulas for the complex wave number
𝑘𝑅 and the mode pattern have been derived. These formulas lead to accurate results for slight
deformations and small values of 𝑘𝑅 which has been confirmed at several generic examples. The
generalized perturbation theory captures the interesting non-Hermitian phenomena in fully
asymmetric deformed cavities like a finite chirality of modes and signatures of exceptional
points. Furthermore, the generalized perturbation theory provides a foundation for further
analytical investigations of deformed microdisk cavities.

The third main topic discussed in this thesis was the effect of nonlinear resonance chains in the
phase space of symmetrically deformed microdisk cavities. It was shown that such resonance
chains not only affect the wavelength of optical modes, i.e. the real part of the complex
wave number 𝑘𝑅 which was experimentally verified before, but also the imaginary part of
the complex wave number 𝑘𝑅 via resonance-assisted tunneling. Therefore such resonance
chains lead to a spoiling of the 𝑄-factor. By modeling one dominant resonance chain in the
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phase space with an effective generalized pendulum Hamiltonian one can derive predictions
for the 𝑄-spoiling, the mode pattern, and the far-field pattern of a single mode. Here, an
incorporation of the Goos-Hänchen shift in the model is crucial for the accurate prediction of
the characteristic resonance-assisted tunneling peaks in the imaginary part of 𝑘𝑅.
Moreover, it was shown that the resonance chains in the phase space also affect the even
and odd parity mode pair: Via resonance-assisted tunneling over the resonance chain of the
bouncing ball orbit the small splitting between these modes with even and odd parity can
be explained. Therefore resonance-assisted tunneling provides a new approach to explain the
formation of optical modes in slightly deformed cavities. For future investigations it would be
valuable to extent the RAT-framework to cavities without mirror-reflection symmetry.



A Appendix

A.1 Calculation of billiard dynamics

In this appendix the numerical procedure to determine the billiard dynamics of rays in a
microdisk cavity is described. It is assumed that the cavity’s boundary is given in polar
coordinates by a dimensionless and may implicit defined function

𝜌(𝜑) =
𝑟(𝜑)

𝑅
. (A.1)

Therefore, the dimensionless arc length is defined as

𝑞(𝜑) =

∫︁ 𝜑

0

√︀
𝜌(𝑥)2 + 𝜌′(𝑥)2 d𝑥. (A.2)

Here, the integration in general needs to be done numerically. Only in a few non-generic cases
as e.g. for the ellipse one can solve the integral analytically. In order to iterate an initial
condition (𝑞1, 𝑝1) in phase space, first, the real space position on the boundary (𝑥1, 𝑦1) and the
direction vector �⃗� = (𝑣𝑥, 𝑣𝑦) of the ray is computed. Therefore, Eq. (A.2) needs to be inverted
numerically via a root search for 𝜑 as

𝜑(𝑞target) : 𝑞(𝜑)− 𝑞target = 0 (A.3)

to obtain 𝜑1 = 𝜑(𝑞1). Hence, the starting position of the ray is given by(︃
𝑥1

𝑦1

)︃
=

(︃
𝜌(𝜑1) cos𝜑1

𝜌(𝜑1) sin𝜑1

)︃
. (A.4)

To determine the vector �⃗� which indicates the traveling direction of the ray, first, the local
tangent vector

�⃗� =
1√︀

𝜌′(𝜑1)2 + 𝜌(𝜑1)2

(︃
𝜌′(𝜑1) cos𝜑1 − 𝜌(𝜑1) sin𝜑1

𝜌′(𝜑1) sin𝜑1 + 𝜌(𝜑1) cos𝜑1

)︃
(A.5)
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and inward pointing normal vector

�⃗� =

(︃
−𝑡𝑦
𝑡𝑥

)︃
=

1√︀
𝜌′(𝜑1)2 + 𝜌(𝜑1)2

(︃
−𝜌′(𝜑1) sin𝜑1 − 𝜌(𝜑1) cos𝜑1

𝜌′(𝜑1) cos𝜑1 − 𝜌(𝜑1) sin𝜑1

)︃
(A.6)

is computed. Thus, the vector �⃗� of the ray is given by

�⃗� = 𝑝1�⃗�+
√︁

1− 𝑝21�⃗�. (A.7)

The ray reaches the new reflection point at the boundary after a (dimensionless) flight time
𝑡𝑐 > 0. Hence, the function

𝑓(𝑡) = 𝑥2(𝑡) + 𝑦2(𝑡)− 𝜌2(𝜑(𝑡)) (A.8)

with [𝑥(𝑡), 𝑦(𝑡)] = [𝑥1, 𝑦1]+ 𝑡[𝑣𝑥, 𝑣𝑦] and 𝜑(𝑡) = arctan[𝑦(𝑡)/𝑥(𝑡)] has a root at 𝑡𝑐; i.e. 𝑓(𝑡𝑐) = 0.
The root search needs to be done numerically with e.g. a Newton method. Note that not only
𝑡𝑐 but also 𝑡 = 0 is a root of 𝑓 and if the cavity is non-convex there might exists even more
roots with finite 𝑡. To obtain the correct value of 𝑡𝑐 it is therefore necessary to have a proper
initial guess for the Newton method. This can be done by using a polygon approximation
of the boundary. Hence, one can compute all the intersection of the ray with the segments
of the polygon first which can be done for each segment analytically. Then a proper initial
guess is the smallest approximated flight time larger than zero. Once the new intersection
point is found from Eq. (A.8) as [𝑥2, 𝑦2] = [𝑥(𝑡𝑐), 𝑦(𝑡𝑐)] the new phase space position 𝑞2 can be
determined from Eq. (A.2). The new momentum 𝑝2 can be calculated from the local tangent
vector at 𝑞2 as 𝑝2 = �⃗� · �⃗� and therefore the mapping (𝑞1, 𝑝1) ↦→ (𝑞2, 𝑝2) is determined.

In the following it is discussed how the procedure described above can be accelerated to
shorten the computational time for the determination of a single iteration. One of the most
time consuming steps in the procedure is the evaluation of the integral in Eq. (A.2) since the
function 𝑞(𝜑) is needed several times; e.g. for the Newton method to determine the inverse
𝜑(𝑞), see Eq. (A.3). To optimize the evaluation of 𝑞(𝜑) the integrand is expressed in a Fourier
series as

√︀
𝜌(𝑥)2 + 𝜌′(𝑥)2 ≈ �̃�0

2
+

𝑁∑︁
𝑛=1

�̃�𝑛 cos(𝑛𝑥) + �̃�𝑛 sin(𝑛𝑥) (A.9)

where the coefficients are given by

�̃�𝑛 =
1

𝜋

∫︁ 2𝜋

0

√︀
𝜌(𝑥)2 + 𝜌′(𝑥)2 cos(𝑛𝑥) d𝑥 (A.10)

�̃�𝑛 =
1

𝜋

∫︁ 2𝜋

0

√︀
𝜌(𝑥)2 + 𝜌′(𝑥)2 sin(𝑛𝑥) d𝑥. (A.11)
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The numerical truncation parameter 𝑁 needs to be chosen sufficiently large. For most cases
studied in this thesis 𝑁 ∼ 40...100 gives already accurate results. The Fourier expansion allows
for an analytical integration in Eq. (A.2) which yields

𝑞(𝜑) ≈ �̃�0
2
𝜑+

𝑁∑︁
𝑛=1

�̃�𝑛

∫︁ 𝜑

0

cos(𝑛𝑥) d𝑥+ �̃�𝑛

∫︁ 𝜑

0

sin(𝑛𝑥) d𝑥 (A.12)

=
�̃�0
2
𝜑+

𝑁∑︁
𝑛=1

�̃�𝑛
𝑛

sin(𝑛𝜑)− �̃�𝑛
𝑛

cos(𝑛𝜑). (A.13)

The advantage is that the coefficients could be precomputed and recalled in every function
call of 𝑞(𝜑). Note that if the system exhibits a mirror-reflection symmetry �̃�𝑛 = 0 for all 𝑛.

Similar, also the inverse 𝜑(𝑞) can be expressed in a Fourier series with precomputed coefficients.
For a typical deformed cavity this optimization for 𝑞(𝜑) and 𝜑(𝑞) results in a speed up by a
factor 5...30. Hence, it is helpful for e.g. the calculation of the Frobenius-Perron operator.

A.2 Asymmetric backscattering in the angular

momentum

A.2.1 The Fourier-truncated spiral: An example system for

asymmetric backscattering

In this section the generalized Fourier-truncated spiral is introduced. This cavity is a nice
system for asymmetric backscattering since it has a smooth boundary curve that violates
mirror-reflection symmetry. The cavity is defined in polar coordinates via

𝑟(𝜑)

𝑅
= 1 + 𝜖

𝑁𝑝∑︁
𝑗=1

(−1)𝑗+1

𝑗
cos
(︁
𝑗𝜑+ 𝛿

𝜋

2

)︁
. (A.14)

Here, 𝛿 ∈ [0, 1] is an asymmetry parameter which leads to a symmetric cavity if 𝛿 = 0. An
asymmetric cavity is obtained for 𝛿 > 0. The number of Fourier terms 𝑁𝑝 should not be chosen
to large to avoid the Gibbs phenomenon in the boundary. The overall perturbation strength
is fixed with 𝜖. In the limit (𝛿 = 1, 𝑁𝑝 → ∞) a spiral cavity with notch size 𝜋𝜖𝑅 is obtained.
For an illustration of the shape for different parameter combinations see Fig. A.1.

In this thesis mainly 𝜖 = 0.07, 𝛿 = 1, and 𝑁𝑝 = 4 is chosen. For these parameters the phase
space is dominantly chaotic with very small (almost not visible) bouncing ball islands at 𝑝 = 0

inside the leaky region.
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(Np, δ) = (4, 0) (Np, δ) = (4, 0.5) (Np, δ) = (4, 1) (Np, δ) = (8, 1)

Figure A.1: Illustration of the Fourier-truncated spiral (A.14) for different parameters
(𝑁𝑝, 𝛿). The parameter 𝜖 = 0.07 is fixed.

A.2.2 The curve 𝐿𝑧(𝑞, 𝑝) = 0 in phase space

In this section an analytical expression for the curve of vanishing angular momentum in phase
space is obtained. To do so cavities defined via a continuous function 𝑟(𝜑) are assumed.

For any point in the 2D real space the angular momentum of a ray is defined via

𝐿𝑧 = (�⃗� × 𝑝)𝑧 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥. (A.15)

The angular momentum 𝐿𝑧 of a ray changes only at the reflections. Therefore, in the following
Eq. (A.15) is evaluated right after the reflection at the boundary: Using 𝑟 = 𝑟(𝜑) and

𝑥 = 𝑟 cos𝜑 (A.16a)

𝑦 = 𝑟 sin𝜑 (A.16b)

𝑝𝑥 = 𝑡𝑥𝑝+ 𝑛𝑥
√︀
1− 𝑝2 (A.16c)

𝑝𝑦 = 𝑡𝑦𝑝+ 𝑛𝑦
√︀

1− 𝑝2 (A.16d)

with tangent �⃗� = (𝑡𝑥, 𝑡𝑦) [see Eq. (A.5)] and normal vector �⃗� = (𝑛𝑥, 𝑛𝑦) = (−𝑡𝑦, 𝑡𝑥) [see
Eq. (A.6)] the curve of vanishing angular momentum can be calculated as follows

0 = 𝐿𝑧 =
𝑟 cos𝜑√
𝑟′2 + 𝑟2

(︁
𝑝 [𝑟′ sin𝜑+ 𝑟 cos𝜑] +

√︀
1− 𝑝2 [𝑟′ cos𝜑− 𝑟 sin𝜑]

)︁
− 𝑟 sin𝜑√

𝑟′2 + 𝑟2

(︁
𝑝 [𝑟′ cos𝜑− 𝑟 sin𝜑]−

√︀
1− 𝑝2 [𝑟′ sin𝜑+ 𝑟 cos𝜑]

)︁
(A.17a)

=
𝑟
(︁
𝑟′
√︀

1− 𝑝2 + 𝑝𝑟
)︁

√
𝑟′2 + 𝑟2

. (A.17b)

Here, 𝑟′ is the derivative of the radius with respect to the angle. Because 𝑟 ̸= 0 it follows that
the term in the parentheses needs to vanish. Hence,

p ≡ 𝑝(𝜑) =
−𝑟′√
𝑟′2 + 𝑟2

(A.18)
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is obtained. Since 𝜑 = 𝜑(𝑞) Eq. (A.18) defines a curve 𝑝(𝑞) in phase space where the angular
momentum is zero.

Interestingly, the image (one billiard map iteration) of this curve is given by its mirror-reflection
at 𝑝 = 0; i.e. by 𝑟′/

√
𝑟′2 + 𝑟2. This can be proven via a time-reversal symmetry argument as

follows: If one takes an arbitrary point on the curve 𝐿𝑧(𝑞0, 𝑝0) = 0 the ray crosses the origin
and is mapped to (𝑞1, 𝑝1) whose angular momentum is in general not zero. However, the
backward traveling ray (𝑞1,−𝑝1) at (𝑞1, 𝑝1) crosses again the origin and is therefore on the
curve 𝐿𝑧 = 0. Hence, after one mapping of the whole curve 𝐿𝑧 = 0 one needs to flip it at
𝑝 = 0 to obtain the original curve 𝐿𝑧 = 0 again. Therefore, the image of the curve 𝐿𝑧 = 0 is
its mirror-reflection at 𝑝 = 0.

A.2.3 Backscattering concerning 𝐿𝑧(𝑞, 𝑝) = 0

In this section the backscattering concerning the curve of vanishing angular momentum (A.18)
[which is in the following denoted by p] is investigated. The main target is to show that in the
2× 2 model of clockwise (CW) and counter-clockwise (CCW) propagating motion(︃

Ω1 𝐴

𝐵 Ω2

)︃
(A.19)

the diagonal terms Ω1 and Ω2 are equal if the propagation is defined relative to p. To simplify
the following calculations the curves

p− =
−|𝑟′|√
𝑟′2 + 𝑟2

(A.20a)

p+ =
|𝑟′|√
𝑟′2 + 𝑟2

(A.20b)

are defined. These are the parts of p and its image which lie only in the lower or the upper
half of the phase space. Similar to the turn style mechanism for partial barriers the matrix
elements in (A.19) are given by integrals over phase areas. Since microcavities can be treated
as open billiards the areas need to be weighted with the reflectivity 𝑅(𝑝), see (2.23a), to get
the intensity which is exchanged during one iteration. The matrix elements are therefore given
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by

Ω1 =

∫︁ 𝑞max

0

∫︁ 1

p+

𝑅(𝑝)
d𝑝 d𝑞
𝑞max

(A.21a)

Ω2 =

∫︁ 𝑞max

0

∫︁ p−

−1

𝑅(𝑝)
d𝑝 d𝑞
𝑞max

(A.21b)

𝐴 =

∫︁ 𝑞max

0

∫︁ −p

p−

𝑅(𝑝)
d𝑝 d𝑞
𝑞max

(A.21c)

𝐵 =

∫︁ 𝑞max

0

∫︁ p

p−

𝑅(𝑝)
d𝑝 d𝑞
𝑞max

(A.21d)

with p, p−, p+ according to Eqs. (A.18), (A.20a), (A.20b). Next, it is assumed that CW and
CCW regions are weakly coupled such that the curves defined by Eqs. (A.20a) and (A.20b) are
completely inside the leaky region. Which is also true if the refractive index 𝑛 is not too large;
e.g. for 𝑛 . 4 in the Fourier-truncated spiral with (𝜖, 𝛿,𝑁𝑝) = (0.07, 1, 4). In the leaky region
the reflectivity is symmetric 𝑅(𝑝) = 𝑅(−𝑝) and analytical such that it has a power series

𝑅(𝑝) =
∞∑︁
𝑛=0

𝑎2𝑛𝑝
2𝑛. (A.22)

Inserting Eqs. (A.20a), (A.20b) and (A.22) into the integrals one gets

𝐴 =
1

𝑞max

∫︁ 𝑞max

0

∫︁ −p

p−

∞∑︁
𝑛=0

𝑎2𝑛𝑝
2𝑛 d𝑝 d𝑞 (A.23a)

=
1

𝑞max

∫︁ 𝑞max

0

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

(︀
−p2𝑛+1 − p2𝑛+1

−
)︀
d𝑞 (A.23b)

=
1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

∫︁ 2𝜋

0

[︀
−p2𝑛+1 − p2𝑛+1

−
]︀√

𝑟2 + 𝑟′2 d𝜑 (A.23c)

=
1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

[︂∫︁ 2𝜋

0

|𝑟′|
(︂

𝑟′2

𝑟2 + 𝑟′2

)︂𝑛
d𝜑+

∫︁ 2𝜋

0

𝑟′
(︂

𝑟′2

𝑟2 + 𝑟′2

)︂𝑛
d𝜑
]︂

(A.23d)

=
1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

[𝐼𝑛 + 𝛿𝐼𝑛] (A.23e)
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𝐵 =
1

𝑞max

∫︁ 𝑞max

0

∫︁ p

p−

∞∑︁
𝑛=0

𝑎2𝑛𝑝
2𝑛 d𝑝 d𝑞 (A.23f)

=
1

𝑞max

∫︁ 𝑞max

0

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

(︀
p2𝑛+1 − p2𝑛+1

−
)︀
d𝑞 (A.23g)

=
1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

∫︁ 2𝜋

0

[︀
p2𝑛+1 − p2𝑛+1

−
]︀√

𝑟2 + 𝑟′2 d𝜑 (A.23h)

=
1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

[︂∫︁ 2𝜋

0

|𝑟′|
(︂

𝑟′2

𝑟2 + 𝑟′2

)︂𝑛
d𝜑−

∫︁ 2𝜋

0

𝑟′
(︂

𝑟′2

𝑟2 + 𝑟′2

)︂𝑛
d𝜑
]︂

(A.23i)

=
1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

[𝐼𝑛 − 𝛿𝐼𝑛] (A.23j)

Ω1 =
1

𝑞max

∫︁ 𝑞max

0

∫︁ 1

p+

𝑅(𝑝) d𝑝 d𝑞 (A.23k)

=
1

𝑞max

∫︁ 𝑞max

0

(︃∫︁ 0

p+

𝑅(𝑝) d𝑝+
∫︁ 1/𝑛

0

𝑅(𝑝) d𝑝+
∫︁ 1

1/𝑛

𝑅(𝑝) d𝑝

)︃
d𝑞 (A.23l)

=
1

𝑞max

∫︁ 𝑞max

0

(︃
−

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

p2𝑛+1
+ +

1

2

∫︁ 1/𝑛

−1/𝑛

𝑅(𝑝) d𝑝+ 1− 1

𝑛

)︃
d𝑞 (A.23m)

= 1− 1

𝑛
+ 𝜇− 1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

𝐼𝑛 (A.23n)

Ω2 =
1

𝑞max

∫︁ 𝑞max

0

∫︁ p−

−1

𝑅(𝑝) d𝑝 d𝑞 (A.23o)

=
1

𝑞max

∫︁ 𝑞max

0

(︃∫︁ −1/𝑛

−1

𝑅(𝑝) d𝑝+
∫︁ 0

−1/𝑛

𝑅(𝑝) d𝑝+
∫︁ p−

0

𝑅(𝑝) d𝑝

)︃
d𝑞 (A.23p)

=
1

𝑞max

∫︁ 𝑞max

0

(︃
− 1

𝑛
+ 1 +

1

2

∫︁ 1/𝑛

−1/𝑛

𝑅(𝑝) d𝑝+
∑︁ 𝑎𝑛

2𝑛+ 1
p2𝑛+1
−

)︃
d𝑞 (A.23q)

= 1− 1

𝑛
+ 𝜇− 1

𝑞max

∞∑︁
𝑛=0

𝑎2𝑛
2𝑛+ 1

𝐼𝑛. (A.23r)

Here, the integrals

𝜇 =

∫︁ 1/𝑛

−1/𝑛

𝑅(𝑝)
d𝑝
2

(A.24a)

𝐼𝑛 =

∫︁ 2𝜋

0

|𝑟′|
(︂

𝑟′2

𝑟2 + 𝑟′2

)︂𝑛
d𝜑 (A.24b)

𝛿𝐼𝑛 =

∫︁ 2𝜋

0

𝑟′
(︂

𝑟′2

𝑟2 + 𝑟′2

)︂𝑛
d𝜑 (A.24c)
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have been used. Although Eqs. (A.23e), (A.23j), (A.23n), and (A.23r) contain infinite sums
it allows some conclusions: (i) Eqs. (A.23n) and (A.23r) are the same such that Ω1 = Ω2. (ii)
The asymmetry in the matrix elements 𝐴 and 𝐵 has its origin in 𝛿𝐼𝑛 such that maximizing 𝛿𝐼𝑛
allows to search for “more asymmetric” cavities. This is illustrated at the Fourier-truncated
spiral by varying the asymmetry parameter 𝛿, see Eq. (A.14). The numerically determined
chirality 𝑆 (see Tab. 4.2) coincides quite well with 𝛿𝐼1 as shown in Fig. A.2. This can be seen
by substracting Eq. (A.23j) [𝐵] from Eq. (A.23e) [𝐴] which provides a series in the 𝛿𝐼𝑛. The
higher order terms 𝛿𝐼2, 𝛿𝐼3, ... give minor contributions with the same trend in 𝛿.1 (iii) The

n = 1

n = 2

0 1
0.000

0.005

0.010

δ

|δIn|

0 1
0.000

0.025

0.050

|S|

Figure A.2: For the Fourier-truncated spiral with 𝜖 = 0.07, asymmetry parameter 𝛿, and
refractive index 𝑛 = 3 the chirality 𝑆 (red dots) and the integrals 𝛿𝐼1, 𝛿𝐼2 (blue curves) are
shown. Note that 𝑦-axis is scaled for 𝑆 according to the right labels and for 𝛿𝐼𝑛 according
to the left labels.

non-linear terms in the reflectivity are crucial to get asymmetric backscattering in the ray
dynamics. If e.g. a model system with constant reflectivity is assumed it yields

𝐴−𝐵 ∼ 𝛿𝐼0 =

∫︁ 2𝜋

0

𝑟′ d𝜑 = 0 (A.25)

and therefore no asymmetry in the backscattering is observed.
A further interesting issue is the backscattering in constant width billiards [Gutkin, 2007].
Here, the line 𝑝 = 0 is an invariant curve which cannot be crossed by trajectories starting in
lower or upper half of the phase space, see e.g. Fig. 4.16 in Sec. 4.2.3 for an example. Therefore,
a ray dynamical origin of asymmetric backscattering has been ruled out in Ref. [Wiersig et al.,
2011] for such cavities which is definitely true if the backscattering regarding the line 𝑝 = 0

is considered. However, the backscattering regarding the curve 𝐿𝑧(𝑞, 𝑝) = 0 can have a ray
dynamical origin since this curve is not invariant. Therefore the numerically obtained matrix

1Interestingly the maximum of |𝛿𝐼1| is not at 𝛿 = 1 but at 𝛿 ≈ 0.95. This is confirmed numerically by
|𝑆(𝛿 = 0.95)| = 0.05106 which is slightly larger than |𝑆(𝛿 = 1)| = 0.05084.
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elements of the 2 × 2 Hamiltonian (A.19) are Ω1 = Ω2 ≈ 0.75603, 𝐴 ≈ 0.02824, and 𝐵 ≈
0.02837. They reflect a slight asymmetry in the backscattering with 𝑆 = (𝐴−𝐵)/(𝐴+𝐵) ≈
−0.00236 (values obtained for 𝑛 = 3.0 and the cavity from Fig. 4.16). Note that both 𝐴 ̸= 0

and 𝐵 ̸= 0 indicate that the intensity is scattered from CW to CCW and vice versa.

A.2.4 Shifting the angular momentum center

In this section it is discussed how a shift of the origin changes the backscattering concerning
the curve 𝐿𝑧 = 0. It is assumed that the new origin at (𝑥𝑐, 𝑦𝑐) is still inside the cavity such
that the angular momentum with respect to the new origin is

𝐿𝑧 = (𝑥− 𝑥𝑐)𝑝𝑦 − (𝑦 − 𝑦𝑐)𝑝𝑥. (A.26)

A similar calculation as in (A.17) results in the curve p of vanishing angular momentum

𝑝 =
−𝑔√︀
𝑔2 + ℎ2

(A.27)

where 𝑔 and ℎ are functions of the angle 𝜑. They are given by

𝑔 = 𝑟𝑟′ − 𝑟′ (𝑥𝑐 cos𝜑+ 𝑦𝑐 sin𝜑) + 𝑟 (𝑥𝑐 sin𝜑− 𝑦𝑐 cos𝜑) (A.28a)

ℎ = 𝑟2 + 𝑟′ (𝑦𝑐 cos𝜑− 𝑥𝑐 sin𝜑)− 𝑟 (𝑥𝑐 cos𝜑+ 𝑦𝑐 sin𝜑) . (A.28b)

For an illustration of several curves p with different (𝑥𝑐, 𝑦𝑐) see Fig. A.3. Note that 𝑟 = 𝑟(𝜑)

and 𝑟′ = 𝑟′(𝜑) are defined with respect to the original (non-shifted) origin. Since Eq. (A.27)
is formally the same in the shifted and non-shifted case the calculation (A.23) of the matrix
elements can be done in a same manner but with the redefined integrals

𝐼𝑛 =

∫︁ 2𝜋

0

|𝑔|
(︂

𝑔2

𝑔2 + ℎ2

)︂𝑛√︃
𝑟′2 + 𝑟2

𝑔2 + ℎ2
d𝜑 (A.29a)

𝛿𝐼𝑛 =

∫︁ 2𝜋

0

𝑔

(︂
𝑔2

𝑔2 + ℎ2

)︂𝑛√︃
𝑟′2 + 𝑟2

𝑔2 + ℎ2
d𝜑. (A.29b)

Note that for (𝑥𝑐, 𝑦𝑐) → (0, 0) the original definitions of p, 𝐼𝑛, and 𝛿𝐼𝑛 as in Eqs. (A.18),
(A.24b), and (A.24c) are restored.

In Fig. A.4 the backscattering in the Fourier-truncated spiral with a varying angular mo-
mentum center is illustrated. As shown in Fig. A.4(b) even in the symmetric case 𝛿 = 0 a
asymmetry in the backscattering (𝑆 ̸= 0) can be observed. Only if the angular momentum
center is chosen at the mirror-reflection line 𝑦 = 0 the backscattering is symmetric. This is
intuitive since every 𝑦 ̸= 0 is not a mirror-reflection symmetry line of the cavity.

Interestingly, also for the asymmetric deformation 𝛿 = 1 as shown in Fig. A.4(a) there exists
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(a)

S < 0

0 qmax

− 1
n

0

1
n

q

p

(xc, yc) = (0, 0)

(b)

S ≈ 0

0 qmax

− 1
n

0

1
n

q

p

(xc, yc) = (−0.2,−0.04)

(c)

S > 0

0 qmax

− 1
n

0

1
n

q

p

(xc, yc) = (−0.2, 0.2)

Figure A.3: The black solid curves p (𝐿𝑧(𝑞, 𝑝) = 0) are shown for different angular momen-
tum centers in (a) to (c). Black dashed curves represent the one times iterated solid curves.
In (a) CW propagation and in (c) CCW propagation is preferred while in (b) no rotation is
preferred. Compare this preferred sense of rotation, i.e. 𝑆, with Fig. A.4 (a).

curves of vanishing asymmetry in the backscattering (shown as white curves). These curves
cannot be related to a mirror-reflection symmetry of the boundary. It is rather only the phase
space mapping of the curve p (and their image) which determines them. This is illustrated in
Fig. A.3: Roughly speaking, if the curve 𝐿𝑧 = 0 has a large extension in the upper but a small
extension in the lower half of the phase space then its image has a small extension in the upper
but a large extension in the lower half of the phase space. Consequently, the matrix element
𝐵 is larger than 𝐴 (because the reflectivity is symmetric to 𝑝 = 0 and increases for larger
|𝑝|). This situation leads to 𝑆 < 0 which is illustrated in Fig. A.3(a). The opposite situation
resulting in 𝑆 > 0 can be seen in Fig. A.3(c). In case of almost vanishing asymmetry in the
backscattering 𝑆 ≈ 0 the curve p and its image have almost the same extension in the upper
and lower half of the phase space as shown in Fig. A.3(b) which results in matrix elements
𝐴 ≈ 𝐵.

The main aspects of the backscattering with a varying angular momentum center can be
already captured by the analytical expression 𝛿𝐼1 from Eq. (A.29b), see Fig. A.4(c)-(d). The
curves of vanishing 𝑆 are predicted nicely with 𝛿𝐼1. However, for larger shifts (𝑥𝑐, 𝑦𝑐) the
predictions based on 𝛿𝐼1 become less accurate. Note that for larger shifts (𝑥𝑐, 𝑦𝑐) Eq. (A.29b)
is strictly speaking not valid since the curve p exceeds 1/𝑛 what was excluded in the derivation
of the matrix elements.
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Figure A.4: (a) and (b) show the numerically determined overlap 𝑆 = (𝐴 − 𝐵)/(𝐴 + 𝐵)
in the Fourier-truncated spiral with (𝜖,𝑁𝑝, 𝑛) = (0.07, 4, 3.0) and corresponding 𝛿 with
varying angular momentum center (𝑥𝑐, 𝑦𝑐). In (c) and (d) the analytical solutions 𝛿𝐼1 [see
Eq. (A.29b)] are shown. A white curve illustrates 𝑆 = 0 in (a)-(b) and 𝛿𝐼1 = 0 in (c)-(d).

A.3 Derivatives of the function �̃�𝑙
𝑚(𝑥)

In section 5.3 the third-order corrections to the complex wave number 𝑥 = 𝑘𝑅 are derived as
[see Eq. (5.34)]

𝑥3𝜕𝑥�̃�
1
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𝑝
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]︂
(A.30)

where the function

�̃�𝑙
𝑚(𝑥) = 𝑥𝑙𝑛𝑙

𝐽
[𝑙]
𝑚

𝐽𝑚
(𝑛𝑥)− 𝑥𝑙

𝐻
[𝑙]
𝑚

𝐻𝑚

(𝑥) (A.31)
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and its derivatives with respect to 𝑥 enter ([𝑙] denotes the 𝑙-th derivative). In this appendix these
derivatives 𝜕𝑢𝑥�̃�𝑙

𝑚 are listed explicitly to allow for a direct implementation. The derivatives
are calculated and exported to LATEX using the computer algebra system Maple as

�̃�1
𝑚 = −𝐽𝑚+1 (𝑛𝑥)𝑛𝑥

𝐽𝑚 (𝑛𝑥)
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𝑚 (𝑥)

(A.32)
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(A.34)
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A.4 Derivatives for the asymmetric perturbation theory

In this appendix the terms 𝜕𝑢𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) with 𝑢 = 0, 1, 2, 3 which are needed for
the derivation of the asymmetric-PT are calculated. The wave function is given by the ansatz



153

(6.2) which is repeated here for convenience

𝜓±,in(𝑟, 𝜑) =
𝐽𝑚(𝑛𝑘𝑟)

𝐽𝑚(𝑛𝑥)

[︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

𝑎𝑝
𝐽𝑝(𝑛𝑘𝑟)

𝐽𝑝(𝑛𝑥)
𝑒𝑖𝑝𝜑 (A.41)

𝜓±,out(𝑟, 𝜑) =
𝐻𝑚(𝑘𝑟)

𝐻𝑚(𝑥)

[︀
(1 + 𝑏𝑚)𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + (1 + 𝑏−𝑚)𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

(𝑎𝑝 + 𝑏𝑝)
𝐻𝑝(𝑘𝑟)

𝐻𝑝(𝑥)
𝑒𝑖𝑝𝜑. (A.42)

Evaluating the ansatz for 𝑟 = 𝑅 straightforwardly leads to

[𝜓±,in − 𝜓±,out] = −𝑏𝑚𝑒𝑖𝑧𝑒𝑖𝑚𝜑 − 𝑏−𝑚𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑 −

∑︁
𝑝 ̸=±𝑚

𝑏𝑝𝑒
𝑖𝑝𝜑. (A.43)

Note that here (and in the following) the dependency (𝑅, 𝜑) at the left-hand-side is not ex-
plicitly written.

Next, the first derivative (𝑢 = 1) is computed as follows

𝜕𝑟[𝜓±,in − 𝜓±,out] =

[︂
𝑛𝑘
𝐽 ′
𝑚

𝐽𝑚
(𝑛𝑥)− 𝑘

𝐻 ′
𝑚

𝐻𝑚

(𝑥)

]︂
⏟  ⏞  

𝑘𝑆𝑚(𝑥)

[︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀

− 𝑘
𝐻 ′
𝑚

𝐻𝑚

(𝑥)
[︀
𝑏𝑚𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑏−𝑚𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

𝑎𝑝

[︂
𝑛𝑘
𝐽 ′
𝑝

𝐽𝑝
(𝑛𝑥)− 𝑘

𝐻 ′
𝑝

𝐻𝑝

(𝑥)

]︂
⏟  ⏞  

𝑘𝑆𝑝(𝑥)

𝑒𝑖𝑝𝜑 −
∑︁
�̸�=±𝑚

𝑘𝑏𝑝
𝐻 ′
𝑝

𝐻𝑝

(𝑥)𝑒𝑖𝑝𝜑 (A.44a)

= 𝑘

{︃
𝑆𝑚(𝑥)

[︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
− 𝐻 ′

𝑚

𝐻𝑚

(𝑥)
[︀
𝑏𝑚𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑏−𝑚𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

(︂
𝑎𝑝𝑆𝑝(𝑥)− 𝑏𝑝

𝐻 ′
𝑝

𝐻𝑝

(𝑥)

)︂
𝑒𝑖𝑝𝜑

}︃
(A.44b)

As the next step the second derivative (𝑢 = 2) is computed. Therefore, one first writes

𝜕2𝑟 [𝜓±,in − 𝜓±,out] =

[︃
𝑛2𝑘2

𝐽 ′′
𝑚

𝐽𝑚
(𝑛𝑥)− 𝑘2

𝐻 ′′
𝑚

𝐻𝑚

(𝑥)

]︃ [︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
− 𝑘2

𝐻 ′′
𝑚

𝐻𝑚

(𝑥)
[︀
𝑏𝑚𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑏−𝑚𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
(A.45)

+
∑︁
𝑝 ̸=±𝑚

𝑎𝑝

[︃
𝑛2𝑘2

𝐽 ′′
𝑝

𝐽𝑝
(𝑛𝑥)− 𝑘2

𝐻 ′′
𝑝

𝐻𝑝

(𝑥)

]︃
𝑒𝑖𝑝𝜑 −

∑︁
�̸�=±𝑚

𝑏𝑝𝑘
2
𝐻 ′′
𝑝

𝐻𝑝

(𝑥)𝑒𝑖𝑝𝜑.
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At this point the relation

𝐽 ′′
𝑝

𝐽𝑝
(𝑧) = −1

𝑧

𝐽 ′
𝑝

𝐽𝑝
(𝑧)−

(︂
1− 𝑝2

𝑧2

)︂
. (A.46)

from the Bessel-equation is used which is also valid for the Hankel-functions. Hence, one can
simplify

𝑛2𝑘2
𝐽 ′′
𝑝

𝐽𝑝
(𝑛𝑥)− 𝑘2

𝐻 ′′
𝑝

𝐻𝑝

(𝑥) = 𝑘2
[︂
−𝑛
𝑥

𝐽 ′
𝑝

𝐽𝑝
(𝑛𝑥) +

1

𝑥

𝐻 ′
𝑝

𝐻𝑝

(𝑥)− 𝑛2

(︂
1− 𝑚2

(𝑛𝑥)2

)︂
+ 1− 𝑚2

𝑥2

]︂
(A.47a)

= 𝑘2
[︂
−1

𝑥
𝑆𝑝(𝑥)− (𝑛2 − 1)

]︂
(A.47b)

= − 𝑘

𝑅

[︀
𝑆𝑝(𝑥) + 𝑥(𝑛2 − 1)

]︀
. (A.47c)

This simplification can be inserted in Eq. (A.45) which yields

𝜕2𝑟 [𝜓±,in − 𝜓±,out] =− 𝑘

𝑅

{︃[︀
𝑆𝑚(𝑥) + 𝑥(𝑛2 − 1)

]︀ [︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
(A.48)

+ 𝑥
𝐻 ′′
𝑚

𝐻𝑚

(𝑥)
[︀
𝑏𝑚𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑏−𝑚𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

𝑎𝑝
[︀
𝑆𝑝(𝑥) + 𝑥(𝑛2 − 1)

]︀
𝑒𝑖𝑝𝜑 + 𝑥

∑︁
𝑝 ̸=±𝑚

𝑏𝑝
𝐻 ′′
𝑝

𝐻𝑝

(𝑥)𝑒𝑖𝑝𝜑

}︃
.

Finally, the third derivative (𝑢 = 3) is computed as

𝜕3𝑟 [𝜓±,in − 𝜓±,out] =

[︃
𝑛3𝑘3

𝐽 ′′′
𝑚

𝐽𝑚
(𝑛𝑥)− 𝑘3

𝐻 ′′′
𝑚

𝐻𝑚

(𝑥)

]︃ [︀
𝑒𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
(A.49)

− 𝑘3
𝐻 ′′′
𝑚

𝐻𝑚

(𝑥)
[︀
𝑏𝑚𝑒

𝑖𝑧𝑒𝑖𝑚𝜑 + 𝑏−𝑚𝑒
−𝑖𝑧𝑒−𝑖𝑚𝜑

]︀
+
∑︁
𝑝 ̸=±𝑚

𝑎𝑝

[︃
𝑛3𝑘3

𝐽 ′′′
𝑝

𝐽𝑝
(𝑛𝑥)− 𝑘3

𝐻 ′′′
𝑝

𝐻𝑝

(𝑥)

]︃
𝑒𝑖𝑝𝜑 −

∑︁
�̸�=±𝑚

𝑏𝑝𝑘
3
𝐻 ′′′
𝑝

𝐻𝑝

(𝑥)𝑒𝑖𝑝𝜑.

At this point one can use the relation

𝐽 ′′′
𝑝

𝐽𝑝
(𝑧) =

(︂
𝑝2 + 2

𝑧2
− 1

)︂
𝐽 ′
𝑝

𝐽𝑝
(𝑧) +

1

𝑧
− 3

𝑝2

𝑧3
(A.50)

obtained from the Bessel-equation which is again also valid for the Hankel functions. Hence,
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it can be simplified

𝑛3𝑘3
𝐽 ′′′
𝑝

𝐽𝑝
(𝑛𝑥)− 𝑘3

𝐻 ′′′
𝑝

𝐻𝑝

(𝑥) = 𝑘3

{︃
𝑝2 + 2

𝑥2

[︂
𝑛
𝐽 ′
𝑝

𝐽𝑝
(𝑛𝑥)− 𝐻 ′

𝑝

𝐻𝑝

(𝑥)

]︂
+

[︂
−𝑛3

𝐽 ′
𝑝

𝐽𝑝
(𝑛𝑥) +

𝐻 ′
𝑝

𝐻𝑝

(𝑥)

]︂
⏟  ⏞  

−
[︂
𝑛2

(︂
𝑛

𝐽′
𝑝

𝐽𝑝
(𝑛𝑥)−𝐻′

𝑝
𝐻𝑝

(𝑥)

)︂
+(𝑛2−1)

𝐻′
𝑝

𝐻𝑝
(𝑥)

]︂

+
𝑛2

𝑥
− 3

𝑝2

𝑥3
− 1

𝑥
+ 3

𝑝2

𝑥3

}︃
(A.51a)

= 𝑘3
{︂
𝑝2 + 2

𝑥2
𝑆𝑝(𝑥)− 𝑛2𝑆𝑝(𝑥)− (𝑛2 − 1)

𝐻 ′
𝑝

𝐻𝑝

(𝑥) +
1

𝑥
(𝑛2 − 1)

}︂
(A.51b)

=𝑆𝑚(𝑥)𝑘

(︂
𝑝2 + 2

𝑅2
− 𝑘2𝑛2

)︂
− 𝑘3(𝑛2 − 1)

𝐻 ′
𝑝

𝐻𝑝

(𝑥) + 𝑘2
𝑛2 − 1

𝑅

(A.51c)

=
𝑥20
𝑅3

(𝑛2 − 1)

(︂
1− 𝑥0

𝐻 ′
𝑝

𝐻𝑝

(𝑥0)

)︂
+𝒪(𝜆). (A.51d)

Inserting the result into Eq. (A.49) yields

𝜕3𝑟 [𝜓±,in − 𝜓±,out] =
𝑥20
𝑅3

(𝑛2 − 1)

(︂
1− 𝑥0

𝐻 ′
𝑚

𝐻𝑚

(𝑥0)

)︂[︀
𝑒𝑖𝑧0𝑒𝑖𝑚𝜑 + 𝑒−𝑖𝑧0𝑒−𝑖𝑚𝜑

]︀
+𝒪(𝜆).

(A.52)

Hence, the terms 𝜕𝑢𝑟 [𝜓±,in − 𝜓±,out] (𝑅, 𝜑) have been calculated up to their required order in
𝜆.

A.5 Improving the perturbation theory using scaling

In this section it is explained how a rescaling of the cavity size can be used to get an improved
prediction of 𝑥 = 𝑘𝑅 from the perturbation theory. This improvement is valuable in cases
where the boundary perturbation function 𝑓(𝜑) enlarges (or reduces) the overall cavity size.
A typical example is the spiral where 𝑓(𝜑) < 0 for all 𝜑 > 0.

The key idea of the scaling improvement is not to use 𝑟(𝜑) directly but to introduce a rescaled
radius 𝑟𝜂(𝜑)

𝑟𝜂(𝜑) = 𝜂𝑟(𝜑) (A.53)

of the cavity. Consequently, the rescaled boundary deformation function is

𝑓𝜂(𝜑) = 𝑟𝜂(𝜑)−𝑅. (A.54)
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The scaling factor 𝜂 is then chosen such that it minimizes the area where 𝑓𝜂(𝜑) changes the
refractive index of the circular cavity of radius 𝑅, see Fig. A.5(a-b) for the rescaling of a spiral
with 𝜖 = 0.2.
Using the rescaled deformation function for the Fourier harmonics 𝐴𝑞 and 𝐵𝑞 [see Eqs. (6.9)
and (6.18)] for the asymmetric-PT or in the 𝐴𝑝𝑚, 𝐵𝑝𝑚, 𝐶𝑝𝑚 [see Eqs. (5.16), (5.20), and (5.30)]
for the symmetric-PT results in a prediction 𝑥𝜂 of the rescaled cavity. Thereby, the complex
wave number 𝑥 of the original non-rescaled cavity is obtained via

𝑥 = 𝜂𝑥𝜂. (A.55)

In the following the rescaling improvements are illustrated at the spiral cavity [see Eq. (2.19)].
First, the optimal scaling 𝜂 needs to be deduced for a given notch size 𝜖. Therefore, Fig. A.5(c)
shows the perturbation area as function of the scaling factor 𝜂 and notch size 𝜖. The optimal
scaling factor is well described by

𝜂 = 1 +
𝜖

2
(A.56)

which is shown as white line in Fig. A.5. Using this scaling factor for the perturbation theory
results in improved predictions of the wave number 𝑥 as shown in Fig. A.6 for the modes
(𝑚, 𝑙) = (18, 1) in the spiral with 𝑛 = 2.0.
Note that additionally to the scaling improvement also a shifting of the cavity in 𝑥-𝑦 plane can
be used to minimize the area of perturbation. This procedure has already been demonstrated
in Ref. [Kraft and Wiersig, 2014] to be valuable for the Limaçon.
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Figure A.5: (a) The spiral and (b) the rescaled spiral cavity is shown as black solid curve.
The cyan colored region is the area of perturbation 𝛿𝑎 regarding the circle of radius 𝑅
(dashed black curve). (c) The area of the perturbation 𝛿𝑎 depending on notch size 𝜖 of the
spiral and scaling factor 𝜂 is color encoded from dark (small perturbation area) to bright
(large perturbation area). Black solid curves are contour lines. The white line is the optimal
scaling to minimize the perturbation area [see Eq. (A.56)].
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Figure A.6: (a) The real and (b) the imaginary part of the complex wave number 𝑥 of the
optical mode pair (𝑚, 𝑙) = (18, 1) in a spiral cavity with 𝑛 = 2.0 is shown as function of
notch size 𝜖. Dark blue crosses and magenta triangles represent perturbation theory with
[𝜂 as in Eq. (A.56)] and without [𝜂 = 1] scaling. The BEM results are shown as black open
circles.
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A.6 Illustration of the BEM error for the splitting Δ𝑥

In this short appendix it is illustrated why the boundary element method (BEM) for microdisk
cavities [Wiersig, 2003] is able to predict the complex frequency splitting Δ𝑥 = 𝑥+ − 𝑥− more
precise than the actual values of 𝑥+ and 𝑥− itself.
A main part in the BEM algorithm is the integration of a kernel over boundary elements
(see e.g. the computation of the matrix elements 𝐵𝑖𝑙 and 𝐶𝑖𝑙 in Ref. [Wiersig, 2003]). This
motivates to choose a simple numerical integration as an illustration example here: Assume
that the two integrals 𝜆1 and 𝜆2 should be computed numerically, e.g. via a Riemann sum or
a Gauss quadrature. Further assume that each integral depends on a (small) parameter 𝜖. For
the illustration it is specified

𝜆1(𝜖) =

∫︁ 2𝜋

0

[︁
1 + sin(𝑥−

√
3) + 3𝜖2𝑥2

]︁
d𝑥 = 2𝜋 + (2𝜋)3𝜖2 (A.57a)

𝜆2(𝜖) =

∫︁ 2𝜋

0

[︁
1 + sin(𝑥−

√
3) + 2𝜖2𝑥

]︁
d𝑥 = 2𝜋 + (2𝜋)2𝜖2. (A.57b)

Then, each numerically determined integral 𝜆1 and 𝜆2 can have an individually significant error.
Especially, the determination of 𝜆1/2(0) also contains errors from the numerical integration.
However, by choosing the same numerical parameters for the integration discretization

∫︀
→∑︀𝑁

𝑖 Δ𝑥𝑖. The error of difference Δ𝜆 = 𝜆1 − 𝜆2 can be quite small. Roughly speaking, the
errors of the sine integration completely vanishes if the same discretization scheme is used.
On the other hand if different discretization schemes for 𝜆1 and 𝜆2 are chosen the error of the
sine integration does not cancel out and Δ𝜆 scales similar to 𝜆1/2. For an illustration of this
situation see Fig. A.7.
The relation to the case of a microdisk cavity is as follows: 𝜆1/2 represent the complex wave
numbers of the even and odd parity modes which depend on a deformation parameter 𝜖. For
the case of the circular cavity (𝜖 = 0) the accurate computation of the wave number with BEM
is quite elaborated since one often cannot resolve the very small imaginary part of 𝑥. However,
if the complex frequency splitting Δ𝑥 is computed this error from the circular cavity cancels
out.
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Figure A.7: (a) The error of (red solid curve) 𝜆1, (blue dashed curve) 𝜆2 [see Eqs. (A.57)],
and (black dotted curve) Δ𝜆 = 𝜆1 − 𝜆2 for the numerical integration (Riemann sum) with
same discretization 𝑁1 = 𝑁2 = 1000 is shown. In (b) the errors for a slightly different
discretization 𝑁2 = 1100 for 𝜆2 integration is shown.
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