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Chapter 1

Deutsche Zusammenfassung

Zwei- und Mehrphasenströmungen spielen in zahllosen Anwendungen eine wesentliche Rolle, beispiels-
weise in der Luft- und Raumfahrt, in der Verkehrs- und Schiffstechnik, in der Geo- und der Astrophysik
oder auch in der Elektrochemie oder Meteorologie. Sie treten auf in Siede-, Kühlungs- oder Verbren-
nungsprozessen. Dabei finden i.a. Phasenübergänge und chemische Reaktionen statt. Die Modellierung
und Simulation solcher Prozesse ist eine Herausforderung und Gegenstand der aktuellen Forschung.

Figure 1.1: Die Abbildung1 zeigt ein System zur Kühlung, Befeuchtung und Reinigung von Luft. Dabei
wird mittels Druck Wasser in Form von Nebel der Luft zugeführt. Der Kühleffekt entsteht durch die
sofortige Verdunstung des Wassers.

1.1 Klassifizierung von Zweiphasenströmungen

In den Materialwissenschaften, der Thermodynamik und der physikalischen Chemie bezeichnet eine Phase
einen räumlichen Bereich, in welchem die chemische Zusammensetzung und wesentliche physikalische
Eigenschaften wie z.B. die Dichte homogen sind. Das bedeutet, bestimmende Parameter sind inner-
halb gewisser Größenordnungen etwa konstant. Die wichtigsten Phasen sind die Aggregatzustände
gasförmig, flüssig und fest, die sich wesentlich z.B. in ihren Dichten unterscheiden. Auch innerhalb
eines Aggregatzustandes einer chemischen Substanz können verschiedene Phasen auftreten, man denke
an Graphit und Diamant. Eine Phase kann sich aus mehreren Komponenten zusammensetzen, Luft z.B.
besteht hauptsächlich aus den Komponenten Stickstoff und Sauerstoff. Mitunter ist das Abgrenzen von
Phasen und Komponenten schwierig und kann von der Genauigkeit der Betrachtung, also der verwen-
deten Längenskala, abhängen. In der Literatur ist die Bezeichungsweise teilweise ungenau. Nicht selten
werden die Begriffe nicht unterschieden.

Liegen mindestens zwei Phasen vor, so bildet sich zwischen den Phasen eine Phasengrenze, an der sich
die Materialeigenschaften sprunghaft ändern. Eine Phasengrenze ist im mathematischen Sinne eine Gren-

1https://www.lubing.de/top-klima-system.de
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10 CHAPTER 1. DEUTSCHE ZUSAMMENFASSUNG

zfläche, an der physikalische Größen unstetig sein können. An dieser finden i.a. Phasenübergangsprozesse
statt, z.B. Kondensation oder Verdampfung, aber auch chemische Reaktionen.

Eine Klassifizierung von Zweiphasenströmungen kann mit Hilfe der Charakterisierung der Phasen-
grenze erfolgen. Hierbei werden sog. disperse, separierte und Übergangsströmungen unterschieden.

Zu den separierten Strömungen gehören u.a. Jet- und Filmströmungen. Hierbei sind die Phasen klar
voneinander getrennt. Liegt eine disperse Strömung vor, überwiegt der Volumenanteil der umgebenden
(Träger)-Phase den Volumenanteil der strömenden Partikel bei weitem. Dagegen ist der Volumenanteil
beider Phasen in sog. Übergangströmungen von etwa gleicher Größenordnung.

1.2 Modellierung und Simulation - eine große Herausforderung

Sowohl die korrekte mathematische Beschreibung als auch die numerische Behandlung der Phasen und
insbesondere der Phasengrenzen sind zentrale Fragestellungen in der Theorie von Mehrphasenströmun-
gen. Besondere Schwierigkeiten bereitet die physikalisch korrekte Modellierung der Prozesse an der
Phasengrenze wie Energie- und Massentransfer durch Phasenübergänge. In der Literatur finden sich
verschiedene Modellklassen zur Beschreibung von Zwei- und Mehrphasenströmungen, die sich nach ihrer
Behandlung der Phasengrenzen einteilen lassen.

Sind die Phasen wohl separiert und wird die Phasengrenze als freier Rand explizit verfolgt, spricht
man von sog. sharp-interface-Modellen. Die Beschreibung der Prozesse an der Phasengrenze ist dabei
vergleichsweise einfach und erfolgt durch Sprungbedingungen und kinetische Relationen. Sprungbedin-
gungen sind Erhaltungseigenschaften über die Phasengrenze hinweg und ergeben sich unmittelbar aus
den Erhaltungssätzen für Masse, Impuls und Energie in Abhängigkeit von den zu berücksichtigenden
physikalischen Effekten. Kinetische Relationen quantifizieren die Phasenübergänge und sind thermody-
namisch konsistent zu bestimmen.

Sharp-interface-Methoden erfordern besonderen Aufwand für die Behandlung der Phasengrenze.
Euler-Methoden wie die level-set-Methode oder die volume-of-fluid-Methode arbeiten auf fixen Gittern.
Hierbei ist die Phasengrenze aufwendig zu rekonstruieren. Dagegen arbeiten Lagrange-Methoden auf sich
mit dem Interface mitbewegenden Gittern. Ihre Implementierung ist aufwendig. Ebenfalls aufwendig ist
die Implementierung kombinierter Euler-Lagrange-Methoden, sog. front-tracking-Verfahren.

Die zweite wichtige Modellklasse sind die sog. diffusive-interface-Modelle. Die Phasengrenze ist hier-
bei eine diffusive Zone, d.h. eine Mischung der Phasen. Die numerische Behandlung dieser Modelle ist
teilweise etwas einfacher, da die Lösung auf festen Gittern mit einheitlichen Methoden erfolgen kann.

Der wohl prominenteste Vertreter dieser Klasse ist das Baer-Nunziato-Modell, das ursprünglich als
Zwei-Phasen-Modell formuliert wurde. Obwohl dieses Modell bereits von vielen Autoren diskutiert
wurde, ist es nach wie vor Gegenstand der aktuellen Forschung. Aus analytischer und numerischer Sicht
bereitet das Auftreten sog. nicht-konservatier Produkte Schwierigkeiten. Schwache Lösungen können
nicht formuliert werden und die Diskretisierung erfordert besondere Sorgfalt. Weitere Herausforderun-
gen sind die Modellierung der Austauschterme und thermodynamisch konsitenter Grenzflächengrößen.

Schließlich seien an dieser Stelle noch Partikelströmungen erwähnt. Die Berechnung kann mit Hilfe
direkter numerischer Simulation erfolgen, wobei Phasengrenzflächen explizit aufgelöst werden. Diese
Berechungen sind aufwendig und werden für Strömungen mit bis zu etwa 100 Partikeln durchgeführt.
Alternativ kann die Simulation mit Zweifluidmodellen erfolgen, wobei zusätzlich Partikelgrößenverteilun-
gen zu berechnen sind. Zusätzlicher Modellierungsaufwand ist für die Bestimmung von Austauschtermen
erforderlich.

1.3 Ausblick

Die vorliegende Arbeit gliedert sich in drei Hauptteile und befasst sich mit Aspekten der Modellierung,
analytischen Fragestellungen und der Numerik von Zweiphasenströmungen:

I Modelle mit Grenzflächen

II Diffusive Modelle

III Partikelströmungen
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Die drei Teile dieser Arbeit setzen sich zusammen aus veröffentlichten Artikeln und einer zur Veröffentlichung
eingereichten Arbeit. Es wurden keinerlei inhaltliche Änderungen oder Änderungen der Notation vorgenom-
men.

1.3.1 Modelle mit Grenzflächen

Der erste Teil der vorliegenden Arbeit enthält vor allem analytische Resultate und untersucht Riemann-
Probleme für Zweiphasenströmungen, die mit Hilfe der (isothermen) Eulergleichungen beschrieben wer-
den. Dieses System partieller Differentialgleichungen besteht im allgemeinen Fall aus den Bilanzen für
Masse (1.3.1), Impuls (1.3.2) und Energie (1.3.3)

∂tρ+ ∂x(ρv) = 0 (1.3.1)

∂t(ρv) + ∂x(ρv2 + p) = 0 (1.3.2)

∂t(ρe+ ρ
v2

2
) + ∂x(ρ(e+

v2

2
)v + pv) = 0 (1.3.3)

und im Falle konstanter Temperatur aus den Gleichungen (1.3.1) und (1.3.2). Geschlossen wird dieses
System durch Zustandsgleichungen

p = p(ρ, e) bzw. p = p(ρ) (1.3.4)

für die betrachteten Phasen. Das System wird ergänzt durch eine zusätzliche Gleichung, die kinetische
Relation, die Phasenübergänge über etwaige Phasengrenzen beschreibt.

Riemann-Probleme sind Anfangswertprobleme mit sog. Riemann-Anfangsdaten; dies sind stückweise
konstante Daten mit genau einer Unstetigkeit. Riemann-Probleme treten in natürlicher Weise bei der
Diskretisierung partieller Differentialgleichungen auf. Die Kenntnis und Charakterisierung ihrer exakten
Lösung ist von besonderer Bedeutung für die Konstruktion effizienter Lösungsverfahren, sog. Riemann-
Löser.

Ausgangspunkt von Teil I - Kapitel 3 - ist eine gemeinsame Veröffentlichung mit Wolfgang Dreyer
und Gerald Warnecke, [H8]. Diese Publikation ist gleichzeitig Grundlage des DFG-Projektes HA 6471/2-
1, aus welchem unter anderem die in den Kapiteln 4, 5 und 6 vorgestellten Ergebnisse hervorgegangen
sind.

In Kapitel 3 werden isotherme Phasenübergänge zwischen flüssigem Wasser und Wasserdampf unter-
sucht. Der Zusammenhang zwischen Dichte und Druck wird dabei in beiden Phasen als linear angenom-
men. Die gewählten Materialparametern sind den Dampftafeln [13] entnommen. Isotherm bedeutet kon-
stante Temperatur bzw. unendlich schneller Wärmetransport. Entsprechend werden Phasenübergänge
von den Differenzen der jeweiligen Gibbs-Energien angetrieben. Dies ergibt sich unmittelbar aus dem
zweiten Hauptsatz der Thermodynamik. Die Differenz der Gibbs-Energien geht linear in die kinetische
Relation ein. Der gewählte Koeffizient, die sog. Mobilität, stammt aus der klassischen Hertz-Knudsen-
Theorie und basiert auf der Annahme, dass jedes Dampfmolekül, das auf die Phasengrenze trifft, kon-
densiert, siehe [1].

Für die Konstruktion exakter Riemann-Lösungen folgen wir der Vorgehensweise in Toro [11]. Die
sich in den einzelnen Phasen ausbreitenden Wellen sind klassisch. Die durchlässige Phasengrenze ist eine
zusätzliche Welle, ein sog. nicht-klassischer Stoß. Mathematisch bedeutet das, dass die Bilanzgleichungen
über die Phasengrenze hinweg nicht genügen, die Welle eindeutig zu charakterisieren. Entsprechend ist
eine zusätzliche Bedingung erforderlich, die kinetische Relation, welche den Massentransfer quantifiziert.

In einem ersten Schritt wird die Phasengrenze charakterisiert bzw. die Lösung eines nichtlinearen
Gleichungssystems untersucht. Dazu wird mit Hilfe des Satzes über implizite Funktionen gezeigt, dass zu
gegebenem Dampfzustand auf einer Seite der Grenzfläche der Zustand der flüssigen Phase auf der anderen
Seite eindeutig bestimmt ist und umgekehrt. Geometrisch entspricht dies der eineindeutigen Abbildung
von Zuständen des einen Phasenraumes in den jeweils anderen. In einem weiteren Schritt wird die Lösung
des Riemann-Problems in ein Nullstellenproblem überführt, für welches wiederum die Eindeutigkeit
der Lösung nachzuweisen ist. Dies entspricht der Bestimmung des (eindeutigen) Schnittpunktes sog.
Wellenkurven bzw. ihrer Projektionen.
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Neben dem Nachweis der Eindeutigkeit der Lösung des Riemann-Problemes gelingt es, Existenzaus-
sagen anzugeben und Vorhersagen für das Vorliegen von Verdampfungs- bzw. Kondensationsprozessen
anhand der Anfangsdaten zu formulieren.

Wird Wasserdampf isotherm komprimiert, so kann Kondensation erzwungen werden (Nukleation).
Umgekehrt kann durch isotherme Expansion von flüssigem Wasser Wasserdampf erzeugt werden (Kav-
itation). Für die geschilderten Sachverhalte werden Nukleations- und Kavitationskriterien formuliert,
exakte Lösungen zu Riemann-Anfangsdaten konstruiert und Existenz- und Eindeutigkeitsaussagen be-
wiesen.

Im anschließenden Kapitel 4 gelingen weitreichende Verallgemeinerungen der Resultate aus [H8]. Die
Resultate entstanden in Zusammenarbeit mit dem Doktoranden Ferdiand Thein, der aus oben genanntem
DFG-Projekt finanziert wurde. Die Ergebnisse aus Kapitel 4 sind zur Veröffentlichung eingereicht und
befinden sich derzeit in Begutachtung, siehe [H17].

Für die Beweise der Ergebnisse in [H8] waren umfangreiche Abschätzungen erforderlich. Diese be-
nutzen die speziell getroffenen Annahmen, d.h., die Linearität der Zustandsgleichungen, die Parameter-
bereiche von Wasser und die Annahme über die Mobilität, d.h., die Wahl der kinetischen Relation. Auf
diese Annahmen wird im folgenden verzichtet. Stattdessen werden hinreichende und notwendige Bedin-
gungen für die Existenz und Eindeutigkeit des verallgemeinerten Riemann-Problems mit Phasenübergang
formuliert und nachgewiesen. Ebenfalls gelingt die Konstruktion exakter Lösungen für den Nukleations-
und den Kavitationsfall und der Beweis analoger Eindeutigkeitsresultate.

Es erfolgt eine kritische Diskussion der formulierten Bedingungen. Tatsächlich stellt sich heraus,
dass sich diese im wesentlichen auf (wenig restriktive) Schranken für die dimensionslosen isothermen
Schallgeschwindigkeiten beschränken. Die übrigen Bedingungen ergeben sich aus den Hauptsätzen der
Thermodynamik bzw. sind auch für den einphasigen Fall zu erfüllen, d.h., sind keine zusätzlichen prob-
lemspezifischen Einschränkungen.

Abschließend werden die formulierten Bedingungen anhand verschiedener Zustandsgleichungen disku-
tiert. Die bewiesenen Resultate sind - nach unserem Kenntnisstand - die allgemeinsten Resultate für
diesen Problemtyp.

Eine weitere Verallgemeinerung betrifft die Ausdehnung der Fragestellung auf den nicht-isothermen
Fall, d.h., die entsprechende Fragestellung für das System (1.3.1-1.3.3). Erste Ergebnisse dazu werden
in Kapitel 5 bzw. in [H14], einer gemeinsamen Veröffentlichung mit Ferdinand Thein, diskutiert.

Dazu ist zunächst eine geeignete thermodynamisch konsistene kinetische Relation zu bestimmen.
Ausgangspunkt dafür sind die Bilanzgleichungen über die Phasengrenze sowie die Entropieungleichung
in ihrer allgemeinsten Form. Werden selbstähnliche Riemann-Lösungen für das Euler-System gesucht,
so lässt sich zeigen, dass Phasenübergänge von den Differenzen der Entropien der Phasen getrieben wer-
den. Dies hat weitreichende Konsequenzen. Da die Entropie der Dampfphase (in einem physikalisch
sinnvollen Temperatur- und Druckbereich) stets größer ist als die der flüssigen Phase, besitzt die En-
tropiedifferenz ein festes Vorzeichen. Folglich existieren keine Gleichgewichtszustände und ausschließlich
Verdampfungsprozesse können abgebildet werden. Eine mögliche Folgerung ist, dass das adiabate Modell
in dieser Formulierung ungeeignet ist, Phasenübergänge zu beschreiben.

Ein Ausweg ist die Verallgemeinerung der zugrunde liegenden Annahmen, d.h., die Berücksichtigung
von Wärmeleitung oder eine allgemeinere Beschreibung der Phasengrenze. Im zweiten Fall wird angenom-
men, dass das Interface eine zeitlich veränderliche Energie besitzt, die von der Oberflächenspannung der
Phasengrenze abhängt. Als Konsequenz kann die Grenzfläche Energie speichern, eine Singularität bildet
sich heraus und die Selbstähnlichkeit der Lösung geht verloren.

Das letzte Kapitel des ersten Teils - Kapitel 6 - enthält ein Nicht-Existenzresultat, welches in [H12]
erschienen ist. Wird Wasserdampf komprimiert, so steigt die Dichte der Dampfphase. Man könnte
erwarten, dass durch hinreichend starkes Komprimieren ein Phasenübergang erzwungen werden kann.
Überraschenderweise stellt sich heraus, dass es unmöglich ist, Kondensation von Wasserdampf durch
adiabate Kompression zu erzielen. Dieses Verhalten kann in Experimenten beobachtet werden und ist
bereits im Buch von Landau und Lifshitz [6] erwähnt worden. Ein mathematischer Nachweis lag bislang
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nicht vor und wird in [H12] geliefert.
Dazu wird in einem ersten Schritt die Dampfphase mit Hilfe der stiffened-gas-Zustandsgleichung

beschrieben. Zu beliebigen Anfangszuständen werden die Wellenkurven konstruiert. Anschließend wird
nachgewiesen, dass diese keinen Schnittpunkt mit der Sättigungskurve besitzen, d.h., dass kein Konden-
sationsprozess stattfinden kann.

Natürlich ist die spezielle Wahl der Zustandsgleichung sehr einschränkend und es ist nicht möglich,
mit einem einzigen beliebigen Parametersatz Wasser im gesamten Temperatur-Druck-Bereich realistisch
zu beschreiben. Deshalb wird in einem weiteren Schritt die offizielle Standardformulierung IAPWS-
IF97 für Wasser untersucht. Dies ist der seit 1997 geltende Industriestandard zur Beschreibung von
flüssigem Wasser und Wasserdampf, siehe [13] or [12]. Diese Formulierung besteht aus einem Satz kom-
plizierter Gleichungen für die verschiedenen Zustands- und Geltungsbreiche. Obwohl es nahezu unmöglich
ist, die IAPWS-IF97 analytisch zu diskutieren, lässt sich zeigen, dass sie sich lokal in einer Umge-
bung der Sättigungslinie einschließlich ihrer Ableitungen beliebig genau durch geeignete Paramterwahl
mit Hilfe der stiffened-gas-Gleichung approximieren lässt. Damit gelingt der Nachweis obiger Nicht-
Existenzaussage sowohl für die IAPWS-IF97 als auch für beliebige Zustandsgleichungen, die Wasser
hinreichend gut beschreiben.

Im Anschluss wird der umgekehrte Fall - Kavitation durch Expansion - betrachtet. Hierbei werden
die Fälle schwache Kavitation (Erzeugung von sog. Nassdampf) und starke Kavitation (Erzeugung einer
reinen Dampfphase) unterschieden. Mit einer analogen Strategie wird bewiesen, dass durch adiabate
Expansion keine starke Kavitation zu erzwingen ist. Immerhin der Fall schwacher Kavitation ist real-
isierbar, also die Erzeugung von Nassdampf, einer Mischung aus flüssigem Wasser und Wasserdampf.
Dabei ist der Volumenanteil des Dampfes beschränkt, eine entsprechende Schranke wird angegeben.

Die gewonnenen theoretischen Resultate sind ebenfalls gültig für Zweiphasenmodelle, die auf den
Eulergleichungen basieren, wie z.B. das Baer-Nunziato-Modell. Sie sind in Übereinstimmung mit nu-
merischen Resultaten in der Literatur, siehe dazu z.B. [H3] oder [3].

1.3.2 Diffusive Modelle

Teil II der vorliegenden Arbeit enthält überwiegend numerische Resultate. Hierbei werden Zwei-Phasen-
strömungen mit Phasenübergängen mit Hilfe des Baer-Nunziato-Modelles simuliert. Dieses ist für den
Zwei-Komponentenfall gegeben durch

∂α1

∂t
+ VI

∂α1
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= Sα (1.3.5)
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∂α1

∂x
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Die Größen PI und VI beschreiben den Druck an der Phasengrenze bzw. deren Geschwindigkeit und sind
thermodynamisch konsistent zu modellieren. Mit Hilfe der Terme Sα, Sρ, Sρv und SρE können Massen-,
Impuls- und Energietransfer zwischen den Phasen bzw. Komponenten beschrieben werden. Auch diese
Terme sind geeignet zu modellieren.

Abschnitt II beginnt mit Kapitel 7, dessen Inhalt in [H3] publiziert ist. In dieser Arbeit wird das
Baer-Nunziato-Modell in der oben genannten Form erstmals unter Berücksichtigung aller Quellterme Sα,
Sρ, Sρv und SρE für Flüssigkeit-Dampf-Gemische diskutiert. Frühere Arbeiten in der Literatur behan-
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deln entweder das Baer-Nunziato-Modell ohne Berücksichtigung von Phasenübergängen oder reduzierte
Varianten, siehe z.B. [10].

Der Fokus der Arbeit beruht dabei auf den Austauschtermen. Massen-, Impuls- und Energietransfer
werden mit Hilfe von Relaxationen für die Geschwindigkeiten, die Drücke, die Temperaturen und die
Gibbs-Energien der Phasen realisiert. Der Modellierung liegt die Annahme zugrunde, dass alle Relax-
ationszeiten extrem kurz sind, wobei angenommen wird, dass die Geschwindigkeiten und Drücke schneller
ins Gleichgewicht relaxieren als die Temperaturen und Gibbs-Energien. In entsprechender Reihenfolge
werden die Quellterme behandelt.

Besonderes Augenmerk gilt den Relaxationen für die Temperaturen und die Gibbs-Energien. Es
ist bekannt, dass sich zwei Phasen im thermodynamischen Gleichgewicht befinden, wenn ihre Gibbs-
Energien übereinstimmen. Ist dies nicht der Fall, finden Phasenübergänge statt. Entsprechend wird
der Massentransfer durch Relaxation der Gibbs-Energien modelliert, während der damit einhergehende
Wärmetransport durch die Relaxation der Temperaturen realisiert wird. Motiviert durch eine Arbeit von
[10] werden in [H3] metastabile Flüssigkeiten und damit einhergehend Verdampfungsprozesse untersucht.

Zur Modellierung der Austauschterme für Temperatur- und Gibbs-Relaxation werden insgesamt drei
Relaxationsparameter eingeführt und für diese explizite Ausdrücke in Abhängigkeit von den Variablen
des Systems hergeleitet. Die numerische Lösung der sich aus den Relaxationen ergebenden Systeme
gewöhnlicher Differentialgleichungen ist aufwendig und erfordert verschachtelte Iterationen. Zudem sind
diese Systeme extrem steif und erfordern kleine Zeitschrittweiten. Dies zieht erhebliche Rechenzeiten
für die Lösung des Systems (1.3.5-1.3.11) nach sich. Entsprechend werden Temperatur- und Gibbs-
Relaxation nur im Bereich der Phasengrenze ausgeführt. Dieser wird anhand der Volumenfraktionen der
Phasen identifiziert.

Die Arbeit [H3] enthält umfangreiche numerische Resultate und Vergleiche mit der Literatur. Weit-
erhin wird ein reduziertes Zwei-Phasen-Modell untersucht und verglichen.

Das anschließende Kapitel 8 baut auf den in Kapitel 7 präsentierten Ergebnissen auf und enthält
weitreichende Verallgemeinerungen bzw. Erweiterungen. Motiviert durch die deutsch-französische DFG-
CNRS-Forschergruppe Micro-Macro Modelling and Simulation of Liquid-Vapour Flows und in diesem
Zusammenhang an der Universität Göttingen durchgeführte Experimente sollen nun Kavitationsblasen
simuliert werden.

In den durchgeführten Experimenten, siehe [9], wird mit Hilfe eines Lasers eine Kavitationsblase in
einem Behältnis mit Wasser erzeugt. Es lässt sich beobachten, dass die Blase zunächst aufschwingt und
dann auf einen minimalen Radius zusammenfällt. Es folgen weitere Blasenschwingungen. Eine reine
Wasserdampfblase kann unter den Bedingungen des Experiments ein solches Verhalten nicht aufweisen,
siehe z.B. [7], [8] oder [H5]. Folglich enthält die erzeugte Blase mindestens eine weitere inerte Kompo-
nente, z.B. Sauerstoff, einem Bestandteil von Luft, der zunächst im Wasser gelöst war.

Für eine erfolgreiche Simulation des genannten Experimentes wurde in [H10] das Zweikomponenten-
modell (1.3.5-1.3.11) auf drei Komponenten erweitert und die entsprechenden Relaxationsterme verallge-
meinert. Der Massentransfer wird wiederum mit Hilfe der Gibbs-Relaxation realisiert. Die durchgeführten
Simulationen zeigen ein dem Experiment qualitativ ähnliches Verhalten der Blase. Insbesondere die erste
Blasenschwingung ist in sehr guter Übereinstimmung mit dem Experiment.

Für praxisrelevante Anwendungen ist die Verwendung eines Zweikomponentenmodelles oftmals nicht
ausreichend. Dies wurde bereits im Kapitel 8 deutlich: Ein Zweikomponentenmodell, das Phasenüber-
gänge berücksichtigt, kann das Experiment nicht beschreiben - in Übereinstimmung mit den Gesetzen der
Thermodynamik. Abseits von Laborbedingungen kann das Vorliegen absolut reiner Komponenten i.a.
nicht erwartet werden. Die Gegenwart weiterer Bestandteile bzw. etwaige Verunreinigungen können je-
doch wesentlichen Einfluss auf den Ablauf einer chemischen Reaktion oder eines physikalischen Prozesses
nehmen und sind bei entsprechenden Simulationen zu berücksichtigen.

Die Erweiterung des o.g. Zweikomponentenmodells auf n Komponenten mit Phasenübergang ist nicht
trivial. Diese Verallgemeinerung hat wesentlichen Einfluss auf die mathematischen und physikalischen
Eigenschaften des Systems. Besondere Sorgfalt ist erforderlich, um zu garantieren, dass der zweite
Hauptsatz der Thermodynamik nicht verletzt wird. Dieser Fragestellung widmet sich Kapitel 9 der
vorliegenden Arbeit, veröffentlicht in [H13].
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Neben der Diskussion zahlreicher mathematischer Eigenschaften des n-Komponentenmodells wie Hy-
perbolizität oder Galilei-Invarianz widmet sich Kapitel 9 den Interfacegrößen VI und PI sowie der Mod-
ellierung der Quellterme. Ausgehend vom zweiten Hauptsatz der Thermodynamik werden Bedingungen
für die Modellierung der Interfacegrößen hergeleitet, die thermodynamische Konsistenz garantieren. Ins-
besondere werden spezielle Wahlen für diese Größen vorgeschlagen. In einem weiteren Schritt werden die
Relaxationsterme für die Geschwindigkeiten, Drücke, Temperaturen und Gibbs-Energien bzw. chemische
Potentiale einzeln untersucht und die Gewährleistung der Gesetze der Thermodynamik nachgewiesen.

Das letzte Kapitel des zweiten Teils dieser Arbeit - Kapitel 10 - stellt effiziente Verfahren zur
Behandlung der Relaxationsterme für den n-Komponentenfall vor. Die in [H3] und [H10] verwendeten
Lösungsverfahren sind äußerst aufwendig und ziehen lange Rechenzeiten nach sich, verursacht durch
eine große Steifheit der Relaxationsterme einerseits und verschachtelte Iterationen andererseits. Daher
wurden als Kompromiss vereinfachende Annahmen getroffen:

• Temperatur- und Gibbs-Relaxation wurden nur im Bereich der Phasengrenze angewendet. Zur
Identifikation des entsprechenden Bereiches wurden die Volumenanteile der Komponenten betra-
chtet. Die Wahl der zugehörigen Schranken ist relativ willkürlich.

• Die Berücksichtigung von Phasenübergängen wurde auf metastabile Flüssigkeiten bzw. auf Ver-
dampfung beschränkt.

• Bei der Bestimmung der Gleichgewichtszustände im 3-Komponentenfall wurden vereinfachend
Gibbs-Energien relaxiert, d.h. Mischungsentropien vernachlässigt.

In der Literatur vorgestellte Relaxationsverfahren berücksichtigen entweder nur zwei Komponenten, siehe
z.B. oder treffen ähnliche vereinfachende Annahmen, siehe [4] oder [5]. Die Existenz von physikalisch
sinnvollen Lösungen wird nicht diskutiert.

Im vorliegenden Kapitel 10 gelingen zahlreiche wesentliche Verbesserungen, mit denen u.a. auch eine
Implementierung zweidimensionaler Probleme ohne weiteres möglich ist.

Zunächst wird festgestellt, dass die Steifheit des Systems von der Druckrelaxation verursacht wird.
Die Bestimmung des Druckgleichgewichts kann zu Instabilitäten führen und die Verwendung extrem
kleiner Zeitschritte bzw. extrem kleiner CFL-Zahlen, CFL�1 erfordern. Weiter kann gezeigt werden,
dass der Gleichgewichtszustand unabhängig von der Relaxationsreihenfolge ist. Daher wird eine si-
multane Druck-Temperatur-Relaxation eingeführt. Eine explizite Formel für das Temperatur-Druck-
Gleichgewicht wird bestimmt. Dadurch werden zum einen aufwendige Iterationen zur Bestimmung
des Druckgleichgewichtes vermieden. Andererseits führt dies zu einer erheblichen Stabilisierung. In-
folgedessen ist die Verwendung von CFL=0.9 ohne weiteres möglich.

Eine weitere Verbesserung besteht darin, dass die Temperatur-Relaxation im gesamten Rechenge-
biet ausgeführt wird. Dies ist physikalisch sinnvoll, da auch ohne Massentransfer ein Wärmeaustausch
zwischen den Komponenten erwartet werden kann.

Anstelle der Gibbs-Energien werden chemische Potentiale relaxiert, d.h. Mischungsentropien wer-
den berücksichtigt. Damit wird auch im Mehrkomponentenfall das physikalisch korrekte Gleichgewicht
bestimmt.

Sowohl die Temperaturrelaxation als auch die Relaxation der Gibbs-Energien bzw. chemischen Po-
tentiale wird signifikant verbessert. Die neuen Verfahren vermeiden die Berechnung von Relaxationspa-
rametern. Insbesondere werden verschachtelte Iterationen vermieden.

Weiterhin entfällt die Beschränkung auf metastabile Zustände, so dass auch Kondensationsprozesse
behandelt werden können.

Schließlich gelingt der Beweis der Existenz und Eindeutigkeit von Gleichgewichtszuständen. Insbeson-
dere kann gezeigt werden, dass die Gleichgewichtszustände physikalisch sinnvoll sind und die numerischen
Verfahren gegen diese konvergieren.

Die Veröffentlichung wird abgerundet durch zahlreiche numerische Beispiele.

1.3.3 Partikelströmungen

Der dritte und letzte Teil der vorliegenden Arbeit widmet sich Partikelströmungen und enthält Resultate
aus dem Bereich der Modellierung.
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In Kapitel 11 werden verschiedene Evolutionsgesetze für Dampfblasen hergeleitet, die in [H5] ver-
öffentlicht sind. Motiviert wurde diese Arbeit durch die bereits erwähnte deutsch-französische DFG-
CNRS-Forschergruppe und das bereits im vorhegehenden Abschnitt vorgestellte Experiment für Kavita-
tionsblasen.

Die in diesem Experiment erzeugte Blase schwingt mehrfach im Beobachtungszeitraum. Dabei er-
reicht die Blase beim ersten Aufschwingen den mit Abstand größten Radius. Bereits beim zweiten Auf-
schwingen erfährt der Blasenradius eine erhebliche Dämpfung und wird auch in den folgenden Schwingun-
gen kontinuierlich kleiner.

Die im Experiment gewonnenen Daten beschränken sich im wesentlichen auf den Radius der Blase,
gemessen in kürzesten Zeitabständen. Dagegen gibt das Experiment keine Auskunft über die genaue
Zusammensetzung der Blase, Geschwindigkeitsfelder, den Druck in der Blase oder herrschende Temper-
aturen. Dies macht die Modellierung bzw. Simulation des Experiments äußerst schwierig.

Wird eine einfache Blasenschwingung in einem inkompressiblen Medium unter Vernachlässigung
von Gravitation, Phasenübergang und Wärmeleitung beschrieben, so handelt es sich dabei um eine
ungedäpfte Schwingung. Tatsächlich kommt es natürlich auch in nahezu inkompressiblen Flüssigkeiten
wie Wasser zu Dichteunterschieden und auch die übrigen genannten Effekte üben Einfluss auf die
Schwingung aus.

Ziel von [H5] ist es, diese Effekte mit einfachen Mitteln zu untersuchen und insbesondere die im
Experiment beobachtete starke Dämfung zu erklären. Zu diesem Zweck werden verschiedene einfache
Blasenevolutionsgesetze hergeleitet. Selbstverständlich sind solche reduzierten Modelle nicht in der Lage,
eine Kavitationsblase zufriedenstellend zu beschreiben. Dennoch erlauben sie Rückschlüsse auf die einzel-
nen Mechanismen. Insbesondere geben sie Auskunft darüber, welche Effekte in komplexeren Simulationen
unbedingt zu berücksichtigen oder aber vernachlässigbar sind.

Es wurde bereits diskutiert, dass die Blase neben Wasserdampf mindestens eine inerte Komponente
enthalten muss. Zudem wurde angenommen, dass die Blase sphärisch ist und Größen wie Dichte und
Temperatur innerhalb der Blase homogen sind. Phasenübergänge werden mit Hilfe einer kinetischen
Relation beschrieben, die sich unmittelbar in der Massenevolution niederschlägt.

Um den Einfluss der Kompressibilität der umgebenden Flüssigkeit zu untersuchen, werden diese
zunächst als inkompressibel angenommen. Unter dieser Annahme gelingt es, ein System gewöhnlicher
Differentialgleichungen zur Beschreibung der Blasenevolution herzuleiten. Wird dagegen die umgebende
Flüssigkeit als schwach kompressibel angenommen, so erhält man ein System von Delaygleichungen.

Zur Untersuchung des Einflusses von Phasenübergängen werden Modelle mit und ohne Massentransfer
betrachtet. Insbesondere kann der Massenanteil der inerten Phase variiert werden.

Für die Untersuchung des Dämpfungseffektes durch Wärmeleitung werden die Evolutionsgleichungen
mit der Wärmeleitungsgleichung in der umgebenden Flüssigkeit gekoppelt.

Die resultierenden Systeme werden mit Hilfe von Standardverfahren numerisch gelöst. Es stellt
sich heraus, dass Phasenübergänge den Dämpfungseffekt nicht erklären können. Andererseits haben sie
wesentlichen Einfluss auf die herrschenden Temperaturen. Ebenfalls führt Wärmeleitung zu keinen nen-
nenswerten Dämpfungseffekten. Vielmehr stellt sich heraus, dass die Kompressibilität der umgebenden
Flüssigkeit weitestgehend für die Dämpfung verantwortlich ist. Es kann geschlussfolgert werden, dass
inkompressible Modelle zur Beschreibung solcher und ähnlicher Prozesse ungeeignet sind.

Überraschenderweise kann mit dem reduzierten kompressiblen Modell eine relativ gute Übereinstim-
mung des Radiusses mit den Daten des Experiments erzielt werden, auch wenn dieses Modell natürlich
keine detailierten Rückschlüsse auf weitere physikalische Größen zulässt. Dennoch können mit den
hergeleiteten Modellen qualitative Aussagen für moderate Blasenschwingungen getroffen werden. Ins-
besondere sind die reduzierten Modelle geeignet zur Verwendung als Quellterme in Gemischmodellen zur
Beschreibung disperser Strömungen.

Ein solches Gemischmodell wird in [H11] bzw. in Kapitel 12 der vorliegenden Arbeit hergeleitet.
Sollen Strömungen mit vielen Partikeln, z.B. Tropfen- oder Blasenströmungen, simuliert werden, ist das
explizite Verfolgen sämtlicher Phasengrenzen sehr aufwendig. Mitunter ist die detailierte Betrachtung
jedes einzelnen Partikels nicht notwendig, stattdessen genügt eine qualitative Beschreibung. In diesem
Fall bieten sich zur Simulation Gemischmodelle, ähnlich dem Baer-Nunziato-Modell, an, die zusätzlich
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Partikelgrößenverteilungen bestimmen.
Die Herleitung des Modells benutzt Volumenmittelungstechniken gemäß [2]. Zugrunde liegt die

Annahme einer Mischung aus kleinen sphärischen, wohl separierten Partikeln und eines umgebenden
Fluids. Obwohl in der Veröffentlichung [H11] ausdrücklich von Wasserdampfblasen in flüssigem Wasser
die Rede ist, ist die Herleitung sowohl für beliebige andere Fluide als auch den umgekehrten Fall von
Tropfen in ihrem Dampf gültig.

Während für die Bestimmung gemittelter Größen für die Trägerphase eine kontinuierliche Volumen-
mittelung benutzt wird, wird für die Bestimmung entsprechender disperser Größen ein vereinfachter
Ansatz verwendet. Dieser wird durch Homogenitätsannahmen gerechtfertigt.

Zunächst wird ein Transportsatz für die disperse Phase bewiesen. Damit lassen sich Bilanzgleichungen
für die Partikel herleiten, insbesondere lässt sich eine Bilanz für die Anzahldichte und damit eine Bilanz
für die mittlere Partikelgröße bestimmen. Diese Bilanzen weisen eine Besonderheit auf: Da die Partikel
als wohl separiert angenommen werden, besteht keine Wechselwirkung untereinander. Entsprechend
enthalten die Bilanzgleichungen keinen Druckterm. In einem weiteren Schritt werden mit Hilfe des
Reynoldschen Transportsatzes Bilanzen für die Trägerphase ermittelt.

Es stellt sich heraus, dass sowohl die Bilanzen für die disperse als auch für die Trägerphase unmittelbar
von der Evolution der Partikel abhängen. Konkret ergeben sich Quellterme in Abhängigkeit von der
Evolution der Masse, des Radiusses und der Temperatur der Partikel.

Um das Modell zu schließen, werden also entsprechende Evolutionsgesetze benötigt. Für den Fall von
Dampfblasen stehen mit [H5] geeignete Modelle zur Verfügung. Natürlich sind auch andere Wahlen für
die Quellterme denkbar.

Eine Besonderheit des Modelles ist das Fehlen von nichtkonservativen Termen wie etwa im Baer-
Nunziato-Modell. Somit lassen sich für dieses Modell schwache Lösungen formulieren. Für den ho-
mogenen Anteil des isothermen Untermodelles lassen sich Riemann-Lösungen explizit konstruieren und
Eindeutigkeitsaussagen beweisen. Insbesondere können sich δ-Stoß-Lösungen herausbilden. Eine Pub-
likation dazu befindet sich in Vorbereitung.
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Chapter 2

Compendium

Two- and multi-phase flows occur in many applications, for instance in aerospace, traffic engeneering,
geo- or astrophysics, electrochemistry or meteorology. They play an important role in boiling, cooling
or combustion processes. Within such flows usually phase transitions and chemical reactions take place.
The modelling as well as the simulation of the considered processes is a challenge and in the focus of the
ongoing research.

Figure 2.1: The picture2 shows the structure of clouds. It is taken by the NASA.

2.1 Classification of Two-Phase Flows

In materials science, thermodynamics or physical chemistry a phase denotes a spatial domain where the
chemical composition and essential physical properties like density are homogeneous. This means that
constitutive parameters are nearly constant within appropriate bounds. The most important phases
are the aggregate states gaseous, liquid and solid, which differ amongst other things in the densities.
Also within a certain aggregate state a specific substance may exhibit different phases, see for instance
diamonds and graphite. It is possible that a phase consists of several components, for instance air mainly
consists of nitrogen and oxygen. Occasional it is difficult to distinguish phases and components. This
depends on the required accuracy of the observation and accordingly on the considered length scale. In
the literature sometimes the notation is imprecise. Often these terms are mixed.

In the case of at least two phases an interface is formed. Across the interface material properties
may change significantly. This means that in mathematical sense a phase boundary is a discontinuity.
Across the interface usually mass transfer processes take place, i.e. condensation, evaporation or chemical
reactions.

2www.top-wetter.de/themen/wolken/htm
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Two-phase flows may be classified by the characterization of phase interfaces. Dispersed, separated
and transitional flows were considered.

Examples for separated flows are jet or film flows. In dispersed flows the volume fraction of the
surrounding carrier phase is much larger than the volume fraction of the particles. In contrast to that
the volume fraction of the phases is of the same order in transitional flows.

2.2 Modeling and simulation - a great challenge

The accurate mathematical description as well as the numerical treatment of phases, in particular the
treatment of phase interfaces is in the focus of recent research concerning multi-phase flows. The precise
physical modelling of interface processes, especially the transfer of mass and energy, are a challenge. In
the literature several types of multi-phase models may be found. They can be classified by the methods
to treat phase interfaces.

A first class are the so-called sharp-interface-modells. Here the interface is treated as a free boundary.
Interface processes can be characterized by jump conditions and kinetic relations. Jump conditions are
conservation properties that are satisfied across phase boundaries and arise from conservation laws for
mass, momentum and energy, depending on the physical effects accounted for. Kinetic relations quantify
the mass transfer and have to be determined in a thermodynamically consistent manner.

Sharp-interface-methods require special effort concerning the treatment of interfaces. Euler-methods
like the level-set-method or the volume-of-fluid-method work on fixed grids. The necessary interface
reconstruction is complex and costly. In contrast to that, Lagrangian methods work on moving meshes
coupled to the phase boundaries. They require an extensive implementation. The same is true for
combined Euler-Lagrangian methods, so-called front-tracking-methods.

A further important class is given by the diffusive-interface-models. Here the interface is a diffusive
zone, given by a mixture of the phases. In some parts the numerical treatment is less complex, since
numerical methods may work on fixed grids.

Probably the most famous model in this class is the Baer-Nunziato-model. Originally this model
was introduced as a two-phase model. Even though this model was discussed by numerous authors it is
still in the focus of recent research. From an analytical and a numerical point of view the presence of
non-conservative products causes difficulties. Weak solutions canot be formulated. The discretization of
these terms requires extraordinary diligence. Further challenges are the modelling of source terms and
thermodynamically consistent interphase quantities.

Finally we refer to particle flows. Computations may be performed by direct numerical simulations.
Here phase interfaces are treated explicitly. Such computations are time consuming and are performed for
flows up to about 100 dispersed particles. Alternatively two-fluid modells can be used where in addition
particle size distributions have to be determined. Additional effort is required for the determination of
exchange terms.

2.3 Outline

The thesis consists of three main parts and considers aspects of modelling, analysis and numerics of
two-phase flows:

I Sharp interface modells

II Diffusive interface modells

III Particle flows

These three parts consist of published articles and in addition one submitted article. No changes in their
content and no changes of the notations were made.

2.3.1 Sharp interface models

The first part of this theses mainly presents analytical results. Riemann problems for two phase flows
were considered. We use the system of (isothermal) Euler equations to describe the flows. In the general
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case this system consists of the balance equations for mass (2.3.1), momentum (2.3.2) and energy (2.3.3)

∂tρ+ ∂x(ρv) = 0 (2.3.1)

∂t(ρv) + ∂x(ρv2 + p) = 0 (2.3.2)

∂t(ρe+ ρ
v2

2
) + ∂x(ρ(e+

v2

2
)v + pv) = 0 . (2.3.3)

In the isothermal case the system reduces to equations (2.3.1) and (2.3.2). The system is closed by
equations of state

p = p(ρ, e) resp. p = p(ρ) (2.3.4)

for the phases under consideration. In addition a kinetic relation is considered. This equation quantifies
the mass transfer across phase interfaces.

Riemann problems are initial value problems using Riemann initial data. These data are the sim-
plest, non-trivial initial conditions. The data are piecewise constant with a single discontinuity. Riemann
problems inherently occur in certain discretization of these partial differential equations. The knowledge
of the exact solutions and their structure is a key ingredient for the construction of efficient numerical
Riemann solvers.

Chapter 3, the beginning of the first part of this thesis is formed by a publication together with
Gerald Warnecke und Wolfgang Dreyer, [H8]. This article is the basis of the DFG-project HA 6471/2-1.
Within this project the results presented in the chapters 4, 5 and 6 are developed.

In Chapter 3 we consider isothermal phase transitions between liquid water and water vapor. Here a
linear dependency of densities and pressures is assumed in both phases. The chosen material parameters
are taken from steam tables [13]. In an isothermal process the temperature is assumed to be constant.
This correlates with infinitely fast heat conduction. Due to this assumption phase transitions are driven
by the differences of the Gibbs free energies of the phases, which is a consequence of the second law of
thermodynamics. The kinetic relation is modeled by a linear relation of this difference. The mobility
coefficient is obtained from the classical Hertz-Knudsen theory. It is based on the assumption that vapor
particles hitting the interface will condensate, cf. [1].

For the construction of exact Riemann solutions we follow the strategy presented in the book of
Toro [11]. Waves propagating through the bulk phases are classic. The phase boundary is an additional
wave that possesses the properties of a non-classical shock. From a mathematical point of view this
means that the balances across the phase boundary are not sufficient for a unique characterization of
this wave. Accordingly an additional equation is required, the kinetic relation, quantifying the mass
transfer.

In a first step we investigate the phase boundary. This corresponds to the solution of a non-linear
system of equations. Using the implicit function theorem we prove that a given vapor state located at the
interface uniquely defines the corresponding liquid state and vice versa. In other words a bijective map
between the phase spaces is defined. In a further step the solution of the Riemann problem is converted
to the problem of finding roots of non-linear systems. Geometrically we are looking for intersection
points of wave curves resp. their projections.

Beside proofs uniqueness of the Riemann problem, we succeed in formulating existence results and
we are able to forecast evaporation or condensation processes on the basis of the initial data.

Assume, water vapor is isothermally compressed. In that case it is possible to enforce condensation
(nucleation). Contrarily, by isothermal expansion of liquid water water vapor may be created (cavita-
tion). For these two circumstances nucleation and cavitation criteria are formulated, exact solutions for
Riemann initial data are constructed and existence as well as uniqueness results are proven.

In Chapter 4 we obtain significant generalizations of the results discussed in Chapter 3 resp. in
[H8]. These new results were derived together with Ferdinand Thein within the DFG-project mentioned
above. The outcome of Chapter 4 is submitted for publication.

For the proofs of the results in [H8] many extensive estimations were required. These estimations
use special assumptions like the linearity of the equation of state, the range of parameters for water or
assumptions on the mobility, this means the choice of the kinetic relation. In the following we give up all
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these assumptions. Instead we give sufficient and necessary conditions for existence and uniqueness of
Riemann solutions for the generalized phase transition problem. Moreover, exact solutions for nucleation
and cavitation problems are constructed. Uniqueness results are proven.

Subsequently we critically discuss the formulated conditions. It turns out that basically only restric-
tions for the dimensionless isothermal sound speed are needed. Further conditions result from the laws
of thermodynamic. These conditions must also be fulfilled for single phase flows, this means that these
conditions are no additional problem-specific requirements.

Finally, these conditions are discussed on the basis of examples. The results proven in Chapter 4 are
- to our knowledge - the most general results in this context.

Further generalizations concern the extension of the problem to non-isothermal flows, this means the
extension to the system (2.3.1-2.3.3). First results are discussed in Chapter 5 resp. [H14].

In a first step an appropriate thermodynamic consistent kinetic relation has to be determined, using
the balance equations across the phase boundary as well as the entropy inequality in their general form.
Looking for selfsimilar Riemann solutions to the Euler system one can prove that mass transfer is driven
by the difference of the specific entropies of the phases. This has extensive consequences. Because the
entropy of the vapor phase (in a meaningful pressure-temperature regime) is always larger than the liquid
entropy the entropy difference has a fixed sign. Accordingly no equilibrium states exists and exclusively
evaporation processes can be described.

To overcome this problem further generalizations have to be made, i.e. taking into account heat con-
duction or a more general description of the interface. In the second case one assumes that the interface
exhibits a time-depending energy depending on surfacial tension. Hence the phase boundary is able to
accumulate energy, a singularity is forming and the selfsimilarity of solutions is lost.

The last chapter of the first part - Chapter 6 - presents a non-existence result, which is published in
[H12]. If water vapor is compressed its density will increase. One may assume that for sufficiently strong
compression a phase transition will be enforced. Surprisingly it turns out that it is impossible to achieve
condensation of water vapor by an adiabatic compression. This behavior can be observed in experiments
and was already mentioned in the book of Landau and Lifshitz [6]. Nevertheless, a mathematical proof
was missing until now and is given in [H12].

To prove this statement, in a first step we characterize the vapor phase by the stiffend-gas equation
of state. We construct wave curves for arbitrary initial data. After that we show that there are no
intersection points of the saturation line and any wave curve. This implies that condensation processes
due to compressions are impossible.

Of course, the specific choice of the equation of state is a strong restriction. Moreover, it is not
possible to give a realistic characterization of water vapor in the whole pressure-temperature regime
using a single set of parameters. Therefore in the next step we use the IAPWS-IF97 for water. IAPWS-
IF97 is the industrial formulation for the properties of liquid water and steam, see [13] or [12]. This
formulation consists of a set of complicated equations for the certain ranges of validity. Although it is
nearly impossible to discuss the IAPWS-IF97 analytically, it can be shown that locally in a neighborhood
of the saturation line this curve can be approximated to arbitrary precision using the stiffened gas law
and a proper set of parameters. The same is true for the corresponding derivatives. This fact is crucial
to the proof of the non-existence statement for the IAPWS-IF97 as well as arbitrary equations of state.

Further, we discuss the opposite case - cavitation by expansion. We distinguish the cases (i) weak
cavitation (the creation of wet steam) and (ii) strong cavitation (the creation of pure vapor). Using an
analogous strategy we prove the non-existence of adiabatic strong cavitation. Anyway, weak cavitation
can be realized, this means the creation of wet steam. This is a mixture of water vapor and liquid water.
It is clear that in this case the volume fraction for water vapor is bounded. A bound is given in [H12].

The results obtained are also valid for two-phase models that are based on the Euler equations, for
instance the Baer-Nuntiato model. They are in agreement with numerical results that can be found in
the literature, see [H3] or [3].
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2.3.2 Diffusive interface models

Part II of the present thesis mainly includes numerical results. We consider two-phase flows with phase
transition using the Baer-Nunziato model. For two components this model is given by

∂α1

∂t
+ VI

∂α1

∂x
= Sα (2.3.5)

∂(α1ρ1)

∂t
+
∂(α1ρ1v1)

∂x
= Sρ (2.3.6)

∂(α1ρ1v1)

∂t
+
∂(α1ρ1v

2
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= −PIVI

∂α1

∂x
− SρE (2.3.11)

Here PI and VI denote the interfacial pressure resp. the interface velocity. These quantities have to be
modeled thermodynamically consistent. The terms Sα, Sρ, Srhov and SρE describe the transfer of mass,
momentum and energy between phases resp. components. Also these terms have to be modeled.

The content of Chapter 7, the first chapter in Part II, is published in [H3]. In this article the Baer-
Nunziato model is discussed the very first time in the above presented form taking account the source
terms Sα, Sρ, Srhov and SρE for liquid-vapor mixtures. Previous papers discuss either the Baer-Nunziato
model without phase transitions or reduced models, i.e. [10].

Our main focus is on the transfer terms. We realise the transfer of mass, momentum and energy by
relaxation terms for the velocities, the pressures, the temperatures and the Gibbs free energies of the
phases. The modelling bases on the assumption that all relaxation times are extremely short. Further,
we assume that velocities and pressures relax much faster than temperatures and Gibbs energies. This
assumption determines the order of the relaxations.

Special attention is given to the relaxation terms for the temperature and the Gibbs free energies. It
is known that two phases are in thermodynamic equilibrium if their Gibbs free energies coincide. If this
is not the case, phase transitions will take place. Accordingly mass transfer is modelled by Gibbs free
energy relaxation. Heat exchange is achieved by temperature relaxation. Motivated by [10] in [H3] we
investigate metastable liquids and evaporation processes.

For the modelling of the temperature and Gibbs free energy relaxation three relaxation parameters
have to be introduced. For these parameters explicit expressions are derived depending on the variables
of the considered system. The computation of numerical solutions for the system of ordinary differential
equations resulting from the relaxations is very expensive and requires nested iterations. Moreover, the
relaxation terms introduce strong stiffness to the system. Accordingly very small time steps have to be
used and numerical computations for the system considered are very time consuming. Therefore the
relaxation procedures for temperature and Gibbs free energy are only used in an interfacial region. This
region is identified by the volume fractions of the phases.

In [3] one can find numerous numerical results and comparisons to the existing literature. Moreover,
a reduced modell is discussed.

In the subsequent Chapter 8 that continues the previous work significant generalizations and exten-
sions are made. Motivated by the German-French DFG-CNRS research group Micro macro Modelling
and Simulation of Liquid-Vapour Flows and experiments provided at the Göttingen university we now
investigate cavitation bubbles.

In the experiments, cf. [9], a cavitation bubble is created in a water filled cuvette, using a laser pulse.
One can observe that the bubble is created and grows up to a certain radius. After that it shrinks to
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a minimal radius. Several damped oscillations follow. A pure vapor bubble is not able to show such a
behavior, cf. [7], [8] or [H5]. The conclusion is that the bubble contains at least one inert component,
maybe components of air that were dissolved in the water.

Fur successful simulations of the experiment in [H10] we extend the two-component model (2.3.5 -
2.3.11) to three components. Furthermore, we generalize the relaxation terms. As before the mass trans-
fer is modelled using the Gibbs free energy relaxation. The performed simulations show a qualitatively
similar behavior of the bubble. In particular, the first rebound of the bubble is in very good agreement
with the experiment.

For many applications two-components models are not sufficient to give a fairly good description of the
processes. This was already discussed in Chapter 8: A two-component model that takes phase transitions
into account cannot reproduce the experiment - this is in agreement with thermodynamics. Apart from
laboratory conditions the presence of absolutely pure components cannot be expected. However, the
presence of further constituents or contaminations may strongly impact physical or chemical processes.
Therefore they have to be taken into account in the simulations.

The extension of the two-component model to n components is not trivial. The generalizations modify
the mathematical and physical properties of the system. Reasonable care is required to guarantee that
the second law of thermodynamics is not violated. This problem is in the focus of Chapter 9, published
in [H10].

Beside the discussion of mathematical properties of the n-component model, like hyperbolicity or
Galilean invariance, Chapter 9 discusses the consistent modelling of the interface velocity VI and the in-
terface pressure PI as well as the modelling of the source terms. Using the second law of thermodynamics
conditions for a correct modelling of the interfacial quantities are derived that guarantee thermodynamic
consistency. In particular, a special choice for these quantities is proposed. In further steps the relax-
ation procedures for the velocities, the pressures, the temperatures and the Gibbs free energies resp. the
chemical potential are proven.

Chapter 10 of this thesis introduces efficient and robust procedures to handle the relaxation terms
of the n-component model. The methods used in [H3] and [H10] are very expensive and lead to very
long computational times due to the stiffness of the relaxation terms and nested iterations. Therefore in
[H3] and [H10] some simplifications were made:

• Temperature and Gibbs free energy relaxation were only used in the interfacial region. To identify
this region the volume fractions of the components were considered. The choice of proper bounds
is an arbitrary assumption.

• The consideration of phase transition was restricted to metastable liquids, i.e. evaporation pro-
cesses.

• To evaluate equilibrium states in the three-component case, Gibbs free energies were relaxed, i.e.
the mixture entropy was neglected.

Relaxation procedures proposed in the literature either take into account only two components or use
similar simplifying assumptions, see [4] or [5]. Moreover, the existence of physically meaningful solutions
is not discussed.

In Chapter 10 of this thesis many improvements are achieved that enable also two-dimensional com-
putations within short computational times.

First we point out that the stiffness of the system is introduced by the pressure relaxation. The
evaluation of pressure equilibria may cause instabilities and requires very small time steps resp. very
small CFL numbers, CFL�1. One can show that that the final equilibrium state does not depend on
the order of relaxation. Therefore we propose a simultaneous pressure-temperature relaxation. Thereby,
we avoid expensive iterations. Moreover, this simultaneous procedure stabilizes the simulations and one
may use CFL=0.9.

In addition, we use the temperature relaxation in the whole computational domain. This is physically
reasonable. Apart from phase transitions, energy transfer between components can be expected.
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We do not relax the Gibbs free energies but the chemical potentials, i.e. we take into account the
mixture entropy. Accordingly also in the multi-component case the physically correct equilibrium state
will be determined.

We significantly improve the temperature relaxation procedure as well as the relaxation of Gibbs free
energies resp. chemical potentials. On the one hand we avoid the calculation of relaxation parameters.
On the other hand we are able to avoid nested iterations.

Moreover, we do not restrict ourselves to metastable liquids and are able to handle condensation
processes. We prove existence as well as uniqueness of physically meaningful equilibrium states and
prove convergence of the methods. Finally we present numerous numerical examples.

2.3.3 Particle flows

The last part of this thesis considers particle flows and gives results in the field of modelling.

In Chapter 11 we derive several evolution laws for vapor bubbles, published in [H5]. This work was
motivated by the German-French DFG-CNRS research group mentioned above and the experiment on
cavitation bubbles, introduced in the last subsection.

The bubble created in the experiment shows repeated oscillations in the observation period. The
maximum radius is reached initially. After that the radius is significantly damped and shrinks during
the following oscillations.

More or less, the only experimental data that can be determined during the observation are the bubble
radii measured in very short time intervals. The experiment does not provide any information about
the composition of the bubble, the velocity fields, the pressure inside the bubble or the temperature.
Accordingly, the modelling resp. the simulation of the experiment is extremely difficult.

The oscillation of a bubble surrounded by an incompressible fluid, neglecting gravitation, phase
transitions and heat conduction, gives an undamped oscillation. Actually, also in nearly incompressible
fluids like water density differences can be observed that affect the process.

The aim of [H5] is to investigate the effects mentioned and in particular to explain the damping
mechanism observed in the experiment. Therefore, we derive several evolution laws. Of course, these
reduced models are not able to simulate a cavitation bubble. Nevertheless, they allow conclusions
concerning the particular effects. Especially, we can conclude which terms can be neglected and which
necessarily have to be taken into account.

It was already discussed in the previous subsection that at least one inert component must be present
inside the bubble. We assume the bubble to be spherical and homogeneous. Phase transitions are
described by a kinetic relation resulting in a mass evolution equation.

To investigate the influence of the compressibility of the surrounding fluid in a first step, we assume
the liquid to be incompressible. Under the listed assumptions one can derive a system of ordinary
differential equations describing the bubble evolution. If the liquid is modeled weakly compressible, we
obtain a system of delay equations.

For investigations concerning the influence of phase transitions we derive models with and without
mass transfer. In particular, one can vary the mass fraction of the inert components. Effects due to heat
conduction are investigated by coupling the heat equation for the liquid to the system.

The resulting systems are solved numerically using standard techniques. It turns out that phase
transitions cannot cause the observed damping. On the other hand they significantly influence the
temperature. Also heat conduction is not responsible for the damping. Instead we determine that the
compressibility generates the damping. We conclude that incompressible models are inappropriate to
describe such and similar processes.

Surprisingly the reduced compressible model gives results for the radius evolution that are in good
agreement with the experiment, although the model does not allow further conclusions for other quan-
tities. Nevertheless, the reduced models give qualitative statements for moderate bubble oscillations. In
particular, the reduced models are suitable as source terms in mixture models for dispersed flows.

Such a mixture model is derived in Chapter 12 of this thesis. If flows with many dispersed particles,
i.e. droplets or bubbles, have to simulated, than the explicit treatment of the interfaces is very expensive.
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Often a detailed description of each particle is not required. Instead a qualitative description is sufficient.
In that case one can use mixture models, similar to the Baer-Nunziato model, that in addition determine
particle size distributions.

The derivation of the model uses volume averaging techniques according to [2]. It is based on the
assumption of a mixture of many dispersed spherical well separated particles and a surrounding fluid.
Although in [H11] water vapor bubbles are discussed explicitly, the derivation is also valid for other fluids
or the opposite case of droplets in gas.

We use a continuous type of averaging to derive averaged quantities for the carrier phase but a
simplified method for the dispersed phase. This simplification of the averaging is reasonable due to the
homogeneity assumption inside the particles.

We prove a transport theorem for the dispersed phase. This theorem is used to obtain balance equa-
tions for the particles, especially a balance for the number density resp. the particle size. These balances
feature a special property: Because the particles are well separated, there is no particle interaction. As
a consequence there are no pressure terms in the dispersed balances. In a further step, balances for the
carrier fluid are derived using the Reynolds transport theorem.

It turns out that all balance equations depend on the evolution for the dispersed phase. In detail the
source terms depend on the evolution of mass, radius and temperature of the particles.

To close the model, appropriate evolution laws are required. If vapor bubbles are considered, the
models derived in [H5] are suitable. Of course, other choices are possible.

A special feature of the model is the absence of non-conservative terms. Accordingly weak solutions
can be formulated. For the homogeneous part of the isothermal submodel exact Riemann solutions can
be constructed and uniqueness results can be proven. In particular δ-shock solutions can develop. A
further publication on this topic is in preparation.
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Chapter 3

Euler equations with phase
transition

Bibliographic note: The content of this chapter is published in [H8]: M. Hantke, W. Dreyer, and G.
Warnecke. Exact solutions to the Riemann problem for compressible isothermal Euler equations for two
phase flows with and without phase transition, Quarterly of Applied Mathematics, vol. LXXI 3 (2013),
pp. 509-540.

Abstract: We consider the isothermal Euler equations with phase transition between a liquid and
a vapor phase. The mass transfer is modeled by a kinetic relation. We prove existence and uniqueness
results. Further, we construct the exact solution for Riemann problems. We derive analogous results for
the cases of initially one phase with resulting condensation by compression or evaporation by expansion.
Further we present numerical results for these cases. We compare the results to similar problems without
phase transition.

3.1 Introduction

We study compressible multi phase flows without and with phase transitions relying on the isothermal
Euler equations with a non-monotone pressure-density function. Our main objective is a detailed dis-
cussion of a thermodynamically based kinetic relation that controls the mass transfer across a sharp
interface between two coexisting phases. The derivation of the kinetic relation is based on thermo-
dynamics, especially on classical Hertz-Knudsen theory, see Bond and Struchtrup [4]. To this end we
study Riemann problems and show for various classes of initial data the existence and uniqueness of
solutions. We consider single phase initial data describing condensation by compression or evaporation
by expansion, as well as initial data describing two differing adjacent phases. The case of multi phase
flows without phase transition mainly serves as illustration and as comparison with other treatments of
the same subject in the literature.

Phase transitions can be treated either by sharp interface models or by models that describe the inter-
face between two adjacent phases by a smooth transition within the setting of phase field models. Sharp
interface models are physically better founded while phase field models may have numerical advantages.
The available sharp interface models are surveyed in Zein [23].

The phase field model of Euler-Korteweg type by Dreyer et al. [9] establishes a sharp interface limit
that produces our kinetic relation, whereupon the mass flux across the interface is proportional to the
jump of the Gibbs free energy. A similar study of the same model by Benzoni-Gavage et al. [3] ends
up with a kinetic relation describing local equilibrium at the interface, i.e. the Gibbs free energy is
continuous.

The seminal paper by Abeyaratne and Knowles [1] considers a solid-solid phase transition and de-
scribes the Riemann problem of the corresponding Euler system in Lagrangian coordinates. For this
reason the nonlinearities appearing there are different from the current study. The kinetic relation in [1]
relies on the same driving force as we use here. However, Abeyaratne and Knowles relate the mass flux
to the jump of the Gibbs free energy in a nonlinear manner.
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A very interesting review on the Riemann problem for a large class of thermodynamic consistent
constitutive models in the setting of Euler equation models by Menikoff and Plohr [14] is restricted
to a simple kinetic relation that results from the assumption of local equilibrium at the interface. For
isothermal processes local interfacial equilibrium is guaranteed by the continuity of the Gibbs free energy.

Merkle [15] also considered the Riemann problem for the isothermal Euler system. Differences to
the current work are: He used the van der Waals equation to model the non-monotone pressure-density
dependence. We observed that it is better to model the pressure-density function by pieces of by three
linear functions. This leads to a closer agreement with measured data, e.g. for a substance like water.
The kinetic relation introduced by Merkle does arise from thermodynamic motivations. But there are
initial data for which it must be supplemented by further assumptions in order to pick up a unique
solution. Furthermore the structure of the solutions is essentially different from those that we obtain
here. Our solutions consist exclusively of three types of elementary waves, namely classical shocks,
rarefaction waves and phase transitions, that separate a certain number of constant states. Merkle needs
composite waves to construct the solution.

The isothermal Euler system was also studied by Müller and Voss [18], [21]. They modeled the fluid
by a van der Waals equation, however, instead of a kinetic relation they exclusively applied the Liu
entropy condition in order to establish uniqueness. Consequently Müller and Voss also need composite
waves.

There are also studies of the same subject that use the Euler equations in a different manner than
they are used here. Despite the fact that in those studies the nonisothermal case is considered, the
main difference to our study concerns the application of a full Euler system to each phase everywhere in
space.Thus the number of balance equations is doubled. Additionally there is an equation determining
the local phase fraction. The basic paper is that of Baer and Nunziatio [2]. However, it is restricted to
2-phase flows without phase transition. The main aim of those models is to study phase mixtures such
as e.g. bubbly flows or sprays. Zein et al. [24] started from this approach and added the continuity of
the Gibbs free energy across the interface in order to allow for a phase transition.

For basics on conservation laws see the books of Toro [20], Lax [12], LeVeque [13], Smoller [19],
Kröner [11], Dafermos [5] and others. For thermodynamics see for instance Müller and Müller [16] as
well as Müller [17].

Next we describe the main results of the current study. Our kinetic relation can be obtained in
two different ways. It follows in the sharp interface limit that starts with the isothermal Navier-Stokes-
Korteweg model and ends up with the corresponding isothermal Euler equations, see Dreyer et al. [9]. In
this case the kinetic relation gives the mass flux across the interface as a linear function of the jump of
the Gibbs free energy and it is proportional to the Navier-Stokes viscosities. A more physical derivation
of the kinetic relation can be given in the setting of the Hertz-Knudsen theory, its non-isothermal version
is described in Bond and Struchtrup [4]. Here the only difference between the two derivations is the
factor of proportionality that is related to the sound velocity at the gas side of the interface.

As a main consequence of this kinetic equation is the absence of composite waves in the solution to
Riemann problems. If we consider a Riemann problem where the left and right state correspond to two
different phases, our kinetic relation implies a solution that exclusively consists of two classical waves
and a phase transition in between. This construction is unique and generates classes of initial data, for
which existence of solutions is guaranteed.

If we consider a Riemann problem where the left a right state correspond to the same phase, two
cases may occur. Either the two states can be connected by only classical waves or if this is not possible,
nucleation of a the other phase is enforced by the kinetic relation. Also here we prove existence and
uniqueness.

The paper is organized as follows. In Section 3.2 we introduce the system of balances in the bulk
and across the interface. Details of the equations of state are given in Section 3.3, whereas the entropy
inequality is discussed in the following section. In Section 3.5 we obtain mathematical properties of
the system considered. Moreover we discuss rarefactions and shocks for the isothermal case. The main
part of this section is Subsection 3.5.3. Here we introduce the kinetic relation and prove a uniqueness
result for the pressures at the phase interface. Moreover, we derive monotonicity results for interface
quantities. Based on these results we construct the exact solution for the isothermal Euler euqations
with phase transition, presented in Subsection 3.6.2. We prove uniqueness results within the class of
Riemann problems as well as sufficient conditions for solvability. In Section 3.7 we discuss the cases of
condensation by compression as well as evaporation by expansion. As before we prove several existence
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and uniqueness results. Also we present the exact solution for the Riemann problems considered. Finally
we give numerical examples for all cases considered. These are presented in Section 3.8.

3.2 Isothermal Euler equations

In our study we consider inviscid fluids under the isothermality assumption. This means, that the
temperature T0 is fixed. The phases are indicated by the value of mass density ρ and we have the
velocity v as a variable. The physical fields are assumed to depend on time t ∈ R≥0 and space x ∈ R.
In regular points of the bulk phases we have the local mass conservation law (3.2.1) and the balance law
for momentum (3.2.2). These are

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (3.2.1)

∂(ρv)

∂t
+
∂(ρv2 + p)

∂x
= 0 . (3.2.2)

In the momentum balance equation (3.2.2) there is a further quantity, pressure p. It is not among the
basic variables and is therefore called a constitutive quantity. This quantity is related to the variable ρ
in a material dependent manner by an equation of state. This will be given in Section 3.3. The system
(3.2.1-3.2.2) is called system of isothermal Euler equations.

Across any discontinuity we have the jump conditions

Jρ(v −W )K = 0 (3.2.3)

ρ(v −W )JvK + JpK = 0 . (3.2.4)

Here we use the jump brackets JΨK = Ψ′′−Ψ′ for any physical quantity Ψ, where ′ and ′′ denote the one
sided limits to the left left and right of the discontinuity, respectively, on the horizontal x-axis. Further,
W denotes the propagation speed of the discontinuity. The mass flux Z across the discontinuity is given
by

Z = −ρ(v −W ) (3.2.5)

with

Z =

{
Q shock wave
z phase boundary

and W =

{
S shock wave
w phase boundary

. (3.2.6)

For more details on interface relations see Dreyer [7, Sections 5-14] and Müller [17, Section 2.2.2,
Chapter 3].

3.3 Equations of state

The pressure is related to the density by the equation of state

p = p(ρ) with p′(ρ) = a2 = const , (3.3.1)

where a denotes the speed of sound.
In particular, for the vapor phase V we use the ideal gas law

pV = ρV
kT0

m
(3.3.2)

for given temperature T0. Here k denotes the Boltzmann constant and m is the mass of a single water
molecule. The liquid phase L is modeled as a compressible fluid whose pressure is related to the liquid
density by

pL = p0 +K0

(
ρL
ρ0
− 1

)
, (3.3.3)

where the pressure p0 and the density ρ0 denote arbitrary reference values. The constant K0 is the
modulus of compression, which is temperature dependent. For convenience we choose p0, ρ0,K0 at the
saturation state, tabled in [22]. The data can also be found in [10].
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In order to characterize the two phases we introduce two constant parameters, that will be properly
defined later on. Within a range 0 ≤ ρV ≤ ρ̃ the fluid is assumed to be in the vapor state. For ρL ≥ ρm
the liquid phase is present. Between the pure phases there are intermediate states, whose pressure is
defined by a linear function of negative slope, cf. Figure 3.1. For more details see Section 3.5.3.

Figure 3.1: Equation of state: p(ρ)

According to the second law of thermodynamics the pressure is the derivative of the Helmholtz free
energy with respect to 1/ρ

p = − ∂ψ

∂1/ρ
.

The Gibbs free energy is defined by

g = ψ +
p

ρ
.

This quantity occurs in the entropy inequality for isothermal processes

ZJg +
1

2
(v −W )2K ≤ 0 . (3.3.4)

For details see Dafermos [5], Merkle [15], Müller and Voss [18].

3.4 Riemann problem

In our study we consider the Riemann problem for the isothermal Euler equations. This is given by the
balances (3.2.1-3.2.2), the equation of state (3.3.1) and the corresponding Riemann initial data

ρ(x, 0) =

{
ρ− for x < 0
ρ+ for x > 0

and v(x, 0) =

{
v− for x < 0
v+ for x > 0 .

(3.4.1)

We denote the solution to the Riemann problem by W. The solution consists of constant states W =
const, that are separated by waves or phase boundaries. We will denote neighboring states by ′ and ′′, as
done in Section 3.2. The Riemann problem is solved by self-similar solutions of type W(t, x) = Ŵ(x/t).

3.5 Generic solution

In order to give the mathematical properties of the Euler system (3.2.1-3.2.2), we rewrite the system in
quasilinear form in terms of ρ and v(

ρ
v

)
t

+

(
v ρ
a2

ρ v

)(
ρ
v

)
x

=

(
0
0

)
.

The Jacobian matrix is

A =

(
v ρ
a2

ρ v

)
with the eigenvalues

λ1 = v − a and λ2 = v + a
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as well as the corresponding right eigenvectors

r1 =

(
ρ
−a

)
and r2 =

(
ρ
a

)
.

The system is strictly hyperbolic. Finally we give the Riemann invariants

I1 = v + a ln ρ = const and I2 = v − a ln ρ = const (3.5.1)

across the left and right wave, respectively.

3.5.1 Rarefaction wave fans

Assume, the wave corresponding to λ1 is a (left) 1-rarefaction, then we use the Riemann invariant given
in (3.5.1)1 to obtain

v′ + a ln ρ′ = v′′ + a ln ρ′′ . (3.5.2)

For a left rarefaction the head speed is given by v′ − a whereas the tail speed is given by v′′ − a. The
slope inside the rarefaction fan is given by

dx

dt
=
x

t
= v − a .

Using (3.5.2) we obtain, that the solution W inside the fan is given by

W1fan =

{
v = a+ x

t

ρ = exp
(
v′−v
a + ln ρ′

)
(3.5.3)

On the other hand, using (3.5.1)2 for a (right) 2-rarefaction we get

v′ − a ln ρ′ = v′′ − a ln ρ′′ . (3.5.4)

Analogously to the above calculations for a 2-rarefaction wave we have the head speed v′′ + a and the
tail speed v′ + a. The solution inside the fan is then given by

W2fan =

{
v = −a+ x

t

ρ = exp
(
v−v′′
a + ln ρ′′

)
.

(3.5.5)

3.5.2 Shocks

3.5.2.1 Entropy inequality across a shock wave

In this section we want to prove, that the Lax condition is equivalent to the entropy condition for the
systemconsidered. We take the case, where the states(

ρ′

v′

)
and

(
ρ′′

v′′

)
are separated by a shock wave, that propagates with speed S. W.l.o.g. we assume, that v′ = 0. This
assumption is used to simplify the following calculations and is only used in Section 3.5.2.1. Due to
v′ = 0 we have v′′ < 0. Then from the Rankine-Hugeniot conditions we obtain for S

S = − ρ′′v′′

ρ′ − ρ′′
(3.5.6)

and S =
−ρ′′v′′2 + a2(ρ′ − ρ′′)

−ρ′′v′′
.

This gives

v′′2 = a2 (ρ′ − ρ′′)2

ρ′ρ′′
. (3.5.7)
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Further, the entropy inequality is given by

ρ′S

(
a2 ln

ρ′

ρ′′
+

1

2
S2 − 1

2
(v′′ − S)2

)
≤ 0 .

For the second factor we obtain using (3.5.1) twice, then (3.5.6) and (3.5.7)

a2 ln
ρ′

ρ′′
+

1

2
S2 − 1

2
(v′′ − S)2 = a2 ln

ρ′

ρ′′
+
Q2

2

(
1

ρ′2
− 1

ρ′′2

)
= a2 ln

ρ′

ρ′′
+
ρ′2S2

2

(
1

ρ′2
− 1

ρ′′2

)
= a2 ln

ρ′

ρ′′
+

ρ′2ρ′′2v′′2

2(ρ′ − ρ′′)2

(
1

ρ′2
− 1

ρ′′2

)
= a2 ln

ρ′

ρ′′
+ a2 ρ

′ρ′′

2

(
1

ρ′2
− 1

ρ′′2

)

= a2

(
ln
ρ′

ρ′′
+
ρ′ρ′′

2

(
1

ρ′2
− 1

ρ′′2

)) = 0 , ρ′ = ρ′′

> 0 , ρ′ < ρ′′

< 0 , ρ′ > ρ′′

For the case ρ′ < ρ′′ we have from (3.5.7) S < 0, whereas for the second case ρ′ > ρ′′ this leads to S > 0.
In the first case we thus have from (3.5.6) and (3.5.7) that

S =
ρ′′

ρ′′ − ρ′
v′′ > v′′ and S = −a ρ′′√

ρ′ρ′′
< −a .

This implies the Lax condition a > −a > S > v′′ − a, which in general notation is given by

v′ + a > v′ − a > S > v′′ − a ,

see Lax [12]. Obviously in that case we have a left or 1-shock. Similarly in the second case we have a
right or 2-shock and we obtain the corresponding Lax condition

v′ + a > S > v′′ + a > v′′ − a .

In summary, for the isothermal Euler equations the entropy condition and the Lax condition are equiva-
lent. For this special system this is a more general result than that given in Dafermos [5]. Based on the
explicit constitutive functions used here this statement is true for arbitrarily strong shocks.

3.5.2.2 Shock relations

Let us assume that the left wave is a shock wave, propagating with speed S1. As done in Toro [20] we
define relative velocities

v̂′ = v′ − S1 and v̂′′ = v′′ − S1 . (3.5.8)

We obtain the corresponding Rankine-Hugeniot conditions

ρ′v̂′ = ρ′′v̂′′ (3.5.9)

ρ′v̂′2 + p′ = ρ′′v̂′′2 + p′′ . (3.5.10)

For the mass flux Q1 we have

−Q1 = ρ′(v′ − S1) = ρ′′(v′′ − S1) = ρ′v̂′ = ρ′′v̂′′ . (3.5.11)

We substitute Q1 into (3.5.10) to obtain

−Q1v̂
′ + a2ρ′ = −Q1v̂

′′ + a2ρ′′ .

Solving for −Q1 and using the entropy condition discussed above this leads to

−Q1 = −a
2(ρ′′ − ρ′)
v̂′′ − v̂′

= −a
2(ρ′′ − ρ′)
v′′ − v′

> 0 , (3.5.12)
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which gives us

v′′ = v′ +
a2(ρ′′ − ρ′)

Q1
. (3.5.13)

On the other hand using (3.5.11) to substitute v̂′ and v̂′′ in (3.5.12) we derive the relation

−Q1 = −a
2(ρ′′ − ρ′)
−Q1

ρ′′ + Q1

ρ′

(3.5.14)

and get

Q2
1 = a2ρ′ρ′′ . (3.5.15)

In combination with (3.5.13) and Q1 < 0 this gives us across a left shock

v′′ = v′ − a2(ρ′′ − ρ′)√
a2ρ′ρ′′

.

Finally, from (3.5.11) and (3.5.15) we obtain the speed of a left shock

S1 = v′ +
Q1

ρ′
= v′ −

√
a2ρ′ρ′′

ρ′
.

For a right shock the calculations are very similar. We obtain Q2 > 0 and

v′′ = v′ +
a2(ρ′′ − ρ′)√

a2ρ′ρ′′
.

as well as

S2 = v′ +
Q2

ρ′
= v′ +

√
a2ρ′ρ′′

ρ′
.

In general terms the result is given by

v′′ = v′ − a2|ρ′′ − ρ′|√
a2ρ′ρ′′

and S = v′ +
Q

ρ′
. (3.5.16)

Remark 3.5.1. Note that our notation is similar to, but slightly different from the notation in the book
of Toro [20].

3.5.3 Phase transition

3.5.3.1 Definition of the phases

In case, that the discontinuity represents a boundary between two phases we always have

ρV < ρL . (3.5.17)

Furthermore, from the mass and momentum balances (3.2.3-3.2.4) across the phase boundary together
with (3.2.5) and (3.2.6) we obtain

z2 = − p
′ − p′′

1
ρ′ −

1
ρ′′

.

With the above relation for the densities (3.5.17) we conclude

pL ≥ pV and with pV ≥ 0 we have pL ≥ 0 . (3.5.18)

The second statement is due to the fact that we ignore surface tension. We define, see (3.3.3),

ρm =
ρ0

K0
(K0 − p0) , (3.5.19)
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which gives pL(ρm) = 0. Corresponding to ρm we have to find ρ̃. This value is uniquely defined by the
equation of state (3.3.1), equation (3.5.19) and the Maxwell condition∫ 1

ρV (p0)

1
ρ0

p(ρ) d
1

ρ
=

(
1

ρV (p0)
− 1

ρ0

)
· p0 .

After some calculations we obtain

K0

ρ0
ln
ρ0

ρm
+
kT0

m
ln

ρm
ρV (p0)

− ρm
ρm − ρ̃

kT0

m
ln
ρm
ρ̃

= 0 . (3.5.20)

This relation defines ρ̃ uniquely for sufficiently low temperatures T ≤ 633.15K. For higher temperatures
the definition of ρm gives a negative value. The critical temperature Tc for water is given by Tc =
647.096K. For T0 = 573.15K we obtain ρ̃ = 36.515kg/m3, see Figure 3.2.

Figure 3.2: Equation of state: p(1/ρ) for T0 = 573.15K, dashed red: Maxwell line

The corresponding reference values are given by p0 = 18.6664MPa, ρ0 = 1/0.00189451kg/m3 and
K0 = 1/36.627 · 109Pa.

Furthermore we give the curves ρm(T ) and ρ̃(T ), see Figure 3.3a and the quotient ρ̃(T )/ρm(T ), see
Figure 3.3b. Obviously one has

ρ̃(T )/ρm(T ) < 1/4 (3.5.21)

for all temperatures 273.15K ≤ T0 ≤ 623.15K.

Figure 3.3: a) dashed red: ρ̃(T ), solid black: ρm(T ) b) ρ̃(T )/ρm(T )

Remark 3.5.2. In our notation all temperature dependent constants have index 0. If we choose T0 we
have to use corresponding reference values ρ0, p0,K0.

Remark 3.5.3. Most estimations in this paper are based on the data tabled in [22]. Accordingly for all
temperatures usually means the finite number of discrete temperature values tabled in [22]. For the not
tabled intermediate temperatures we have: If for monotonic temperature changes the temperature depen-
dent constants change monotonically, the estimations are also valid for the intermediate temperatures.
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3.5.3.2 A simple kinetic relation to describe phase transitions

Besides the balances for mass (3.2.3) and momentum (3.2.4) at the phase boundary we need a further
equation, that is called kinetic relation. This equation describes the rate of change of mass across the
interface. We choose

z =
pV√
2π

(
m

kT0

)(3/2)

Jg + ekinK , (3.5.22)

where V denotes the vapor phase. For details of the derivation see Dreyer et a. [8]. If the vapor phase
is to the left of the liquid phase, this results in

z =
pV√
2π

(
m

kT0

) 3
2
[
K0

ρ0
ln
ρL
ρ0
− kT0

m
ln
pV
p0

+
1

2
(vL − w)2 − 1

2
(vV − w)2

]
. (3.5.23)

Here V and L denote the vapor and the liquid phase, respectievely. Equation (3.5.24) gives the kinetic
relation for the case, that the vapor phase is to the right

− z =
pV√
2π

(
m

kT0

) 3
2
[
K0

ρ0
ln
ρL
ρ0
− kT0

m
ln
pV
p0

+
1

2
(vL − w)2 − 1

2
(vV − w)2

]
. (3.5.24)

For the moment we restrict ourselves to the case, that the vapor phase is on the left side. Therefore in
this section we identify ′ (left state) with the vapor and ′′ (right state) with the liquid phase.

If condensation and evaporation are excluded, we replace (3.5.22) by the new kinetic relation

z = 0 . (3.5.25)

This implies that vV = vL at the phase boundary, see (3.2.5) and (3.2.6).

3.5.3.3 Uniqueness of pL for given pV

If pV is given, we have to determine 4 unknowns, namely pL, vL, vV and z. At the interface we have 4
conditions: two mass flux conditions (3.2.5), the interface momentum balance (3.2.4) and furthermore
the kinetic relation (3.5.23). Our goal is to determine an equation for pL. The interface momentum
balance can be written as

JpK = −z2J
1

ρ
K . (3.5.26)

Because ρL > ρV we have
pL = pV ⇔ z = 0 .

This is the equilibrium case pL = pV = p0. Otherwise we have pV < pL .

In the following lemma we will make the assumption

− aV ρV ≤ z ≤ aLρL . (3.5.27)

It simplifies the calculations and later it turns out to be automatically satisfied due to physical consid-
erations, see Remark 3.5.6.

Lemma 3.5.1. Consider the isothermal case with 273.15K ≤ T0 ≤ 623.15K. Then for given interface
pressure pV of the vapor phase with 0 ≤ pV ≤ p̃, the conditions (3.5.27) and the corresponding equations
of state (3.3.2), (3.3.3) define the liquid interface pressure pL, uniquely. Furthermore by these relations
the mass flux z is uniquely defined.

Proof. We replace z in (3.5.26) by the kinetic relation (3.5.23) and get

JpK +

(
m

kT0

)3
p2
V

2π

[
K0

ρ0
ln
ρL
ρ0
− kT0

m
ln
pV
p0
− 1

2
JpK
(

1

ρL
+

1

ρV

)]2

J
1

ρ
K = 0 . (3.5.28)

Next we define the functions

h(pV , pL) =

(
m

kT0

)3/2
1√
2π

[
K0

ρ0
ln
ρL
ρ0
− kT0

m
ln
pV
p0
− 1

2
JpK
(

1

ρL
+

1

ρV

)]
(3.5.29)
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and

f(pV , pL) = JpK + h2(pV , pL)p2
V J

1

ρ
K

for pV ≥ 0 and pL ≥ pV . The roots of the latter function are the solutions of (3.5.28).

1. Let us consider, pV = p0, i.e. the saturation pressure. Then for pL = p0 we have f(p0, pL) = 0. So
(p0, p0) is a solution of (3.5.28). It obviously satisfies (3.5.27) with z = 0.

2. We note, that
∂f

∂pV
(p0, p0) = −1 and

∂f

∂pL
(p0, p0) = 1 .

Accordingly in a neighborhood of pV = p0 relation (3.5.28) implicitely defines a function pL(pV )
with p′L(pV ) > 0. This means, in a neighborhood of pV = p0 relation (3.5.28) has a solution, that
satisfies the inequalities (3.5.27).

3. By our assumption we consider a temperature regime, where in (3.3.3) we have

pL = p0 +K0
ρL
ρ0
−K0 < p0 +K0

ρL
ρ0
− (p0 − pV ) .

Therefore

1− pL − pV
K0

ρ0

ρL
> 0

and we conclude that

∂h

∂pL
(pV , pL) =

(
m

kT0

)3/2
1√
2π

[
1

2

(
1

ρL
− 1

ρV

)
+

1

2

pL − pV
K0

ρ0

ρL

1

ρL

]
< 0 .

For any fixed pV the function h(pV , pL) is strictly decreasing in pL. Due to pL ≥ pV it attains its
maximum at pL = pV .

4. Next we calculate

∂f

∂pL
(pV , pL) = 1− p2

V · h2(pV , pL)
1

ρ2
L

ρ0

K0
+ p2

V h(pV , pL)
∂h

∂pL
(pV , pL)J

1

ρ
K
, .

Let us consider any p∗V , p
∗
L such that f(p∗V , p

∗
L) = 0 and (3.5.27) is satisfied. Let us further consider

that z > 0. Then we obtain
∂f

∂pL
(p∗V , p

∗
L) > 1− K0

ρ0

ρ0

K0
= 0 .

On the other hand, if z < 0 then

∂f

∂pL
(p∗V , p

∗
L) > 1− ρ∗2V

ρ∗2L

a2
V

a2
L

−
(
m

kT0

)3/2
p∗V√
2π
ρV aV

1

ρ∗2V
> 0 .

So p∗L is a simple root of f(p∗V , ·) with ∂f
∂pL

(p∗V , p
∗
L) > 0.

5. Because of f(p∗V , ·) → −∞ for pL → ∞ it is clear, that f has a further root p∗∗L > p∗L with
∂f
∂pL

(p∗V , p
∗∗
L ) ≤ 0. Accordingly (p∗V , p

∗∗
L ) does not satisfy the inequality (3.5.27), see step 4. More-

over, by monotonicity of h there is no further root pL > p∗L, that satisfies (3.5.27), see step 3.

By the same arguments as before there is no further root pL < p∗L.

6. We have seen that in a neighborhood of pV = p0 for every fixed p∗V there exists a unique p∗L such
that f(p∗V , p

∗
L) = 0 and (3.5.27) are satisfied. Next we want to show that this is true for every

0 ≤ pV < p0.

Assume, there exists a pV < p0 such that there is no solution pL with f(pV , pL) = 0. Then by the
previous results we conclude that there exist p∗V , p

∗
L with pV < p∗V < p0 such that f(p∗V , p

∗
L) = 0
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and ∂f
∂pL

(p∗V , p
∗
L) = 0. Accordingly the solution (p∗V , p

∗
L) does not satisfy the right hand side of

inequalities (3.5.27). For (p∗V , p
∗
L) we estimate

z(p∗V , p
∗
L) < p∗V h(p∗V , p

∗
V ) < −

(
m

kT0

)(3/2)
p∗V√
2π

kT0

m
ln
p∗V
p0

= − aV√
2π
ρ∗V ln

p∗V
p0

.

The expression − aV√
2π
ρ∗V ln

p∗V
p0

attains its maximum at p̂V = p0 exp(−1). Accordingly we get

− aV√
2π
ρ∗V ln

p∗V
p0
≤ aV√

2π
ρ̂V < aLρL .

This contradicts the above statement that (p∗V , p
∗
L) does not satisfy the right hand side of inequal-

ities (3.5.27). We conclude, that for every fixed 0 < p∗V < p0 there exists a unique p∗L, such that
f(p∗V , p

∗
L) = 0 and (3.5.27) are satisfied.

7. Taking p∗V = p̃ one can easily check, that the root (p̃, pL(p̃)) satisfies (3.5.27). Accordingly by an
argumentation analogously to step 6 this is true for every p∗V with p0 ≤ p∗V < p̃. Now the first
statement of Lemma 3.5.1 is proven for all 0 ≤ p∗V < p̃.

Applying this solution to the kinetic relation (3.5.23) we obtain the mass flux z across the interface.

Remark 3.5.4. For shorter and more clear notation we will often use instead of ρL the quantity(
pL−p0

K0
+ 1
)
ρ0 given by the equation of state (3.3.3). This fact one should keep in mind when cal-

culating partial derivatives ∂/∂pL.

Proposition 3.5.1. For every temperature 273.15K ≤ T0 ≤ 623.15K and given p∗V the first root of
f(p∗V , ·) satisfies (3.5.27).

Proof. It is obvious, that for pV = pL > p0 the function h is negative whereas for pV = pL < p0 the
function h is positive. Accordingly in the latter case we have

pV · h(pV , pL) < −
(
m

kT0

)3/2
pV√
2π

kT0

m
ln
pV
p0
≤ p0 exp(−1)

aV
√

2π
< aLρL . (3.5.30)

This proves the statement, that the right hand side of (3.5.27) is always satisfied.
For the left hand side of (3.5.27) this statement is clear by step 7 of the proof of Lemma 3.5.1.

3.5.3.4 Monotonicity of p∗L(p∗V )

Lemma 3.5.2. By (3.5.28) the implicitely defined function p∗L(p∗V ) is strictly increasing. Here p∗L denotes
the uniquely defined root of (3.5.28) for given p∗V .

Proof. By the implicit function theorem we know that

p∗
′

L (p∗V ) = − ∂f

∂pV
(p∗V , p

∗
L)

/
∂f

∂pL
(p∗V , p

∗
L) .

From the last subsection we know that ∂f
∂pL

(p∗V , p
∗
L) > 0. So we only have to show, that

∂f

∂pV
(p∗V , p

∗
L) < 0 .

We calculate

∂f

∂pV
(p∗V , p

∗
L) = −1 + p∗V · h2(p∗V , p

∗
L)

(
2

ρ∗L
− 1

ρ∗V

)
+ p2

V · h(p∗V , p
∗
L)

∂h

∂pV
(p∗V , p

∗
L)J

1

ρ∗
K .

Let us assume that z < 0. Then

∂h

∂pV
(p∗V , p

∗
L) =

(
m

kT0

)3/2
1√
8π

(
J

1

ρ∗
K +

Jp∗K
ρ∗V p

∗
V

)
=

(
m

kT0

)3/2
1√
8π

(
1− z2

p∗V ρ
∗
V

)
J

1

ρ∗
K < 0
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and consequently ∂f
∂pV

(p∗V , p
∗
L) < 0. If z > 0 and z ≤ ρ∗V aV then

∂f

∂pV
(p∗V , p

∗
L) < −1 +

(
m

kT0

)3/2
p∗V√
2π
ρ∗V

(
kT0

m

)1/2
1

ρ∗2V
< 0 .

Finally, for z > 0 and z > ρ∗V aV the above statement is obvious.

Proposition 3.5.2. During a condensation process both pressures are larger than the saturation pressure

p0 < pV < pL

whereas during an evaporation process we have

pV < pL < p0 .

This is a direct consequence of the last lemma and the fact pL(p0) = p0.

3.5.3.5 Monotonicity of zJ 1
ρ∗ K

Due to Lemma 3.5.1, for given p∗V the mass flux z is uniquely defined, because f(p∗V , pL) = 0 has only a
single admissible solution. Next we prove a further monotonicity relation.

Lemma 3.5.3. For given temperature 273.15K ≤ T0 ≤ 623.15K the expression zJ 1
ρ∗ K is strictly increas-

ing in p∗V , where z depends on the function p∗L(p∗V ) implicitely defined by (3.5.28).

Proof. We have

dzJ 1
ρK

dpV
(p∗V , p

∗
L) =

(
∂zJ 1

ρK
∂pV

+
∂zJ 1

ρK
∂pL

p∗
′

L

)
(p∗V , p

∗
L) =

(
∂zJ 1

ρK
∂pV

−
∂zJ 1

ρK
∂pL

∂f
∂pV
∂f
∂pL

)
(p∗V , p

∗
L)

Using previous results we will show that(
∂zJ 1

ρK
∂pV

∂f

∂pL
−
∂zJ 1

ρK
∂pL

∂f

∂pV

)
(p∗V , p

∗
L) > 0 . (3.5.31)

Calculating all the derivatives we obtain(
∂zJ 1

ρK
∂pV

∂f

∂pL
−
∂zJ 1

ρK
∂pL

∂f

∂pV

)
(p∗V , p

∗
L) =

(
m

kT0

)3/2
1

ρ∗V
√

2π

{
J

1

ρ∗
K2

(
ρ∗V p

∗
V − z4 1

ρ∗2L

ρ0

K0

)
+

[
K0

ρ0
ln
ρ∗L
ρ0
− kT0

m
ln
p∗V
p0
− 1

2
Jp∗K

(
1

ρ∗L
+

1

ρ∗V

)]
ρ∗V
ρ∗L

(
1− ρ0

K0

p∗L
ρ∗L

)}
.

Let us first consider, that z > 0. Then for z2 ≤ ρ∗V ρ∗LaV aL the above statement is obvious.
Assume, z is positive with z2 > ρ∗V ρ

∗
LaV aL. Then because z > 0 we conclude

−kT0

m
ln
p∗V
p0
− 1

2
Jp∗K

(
1

ρ∗L
+

1

ρ∗V

)
> 0

=⇒ −kT0

m
ln
p∗V
p0

+
1

2
J

1

ρ∗
K
(

1

ρ∗L
+

1

ρ∗V

)
ρ∗V ρ

∗
LaV aL > 0

=⇒ −kT0

m
ln
p∗V
p0
− ρ∗L

2ρ∗V
a2
V > 0

⇐⇒ ρ∗L + 2ρ∗V ln
p∗V
p0

< 0 . (3.5.32)

By some simple calculations we find, that for fixed ρ∗L the expression ρ∗L+2ρ∗V ln
p∗V
p0

attains its minimum

for p̂V = p0 · exp(−1). Accordingly we have

ρ∗L + 2ρ∗V ln
p∗V
p0
≥ ρ∗L − 2ρ̂V > 0 .
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This is a contradiction to (3.5.32) and we conclude z2 ≤ ρ∗V ρ
∗
LaV aL. This implies the above statement

for positive z.

Now let us consider z < 0. We obtain

J
1

ρ∗
K2

(
ρ∗V p

∗
V − z4 1

ρ∗2L

ρ0

K0

)
+

[
K0

ρ0
ln
ρ∗L
ρ0
− kT0

m
ln
p∗V
p0
− 1

2
Jp∗K

(
1

ρ∗L
+

1

ρ∗V

)]
ρ∗V
ρ∗L

(
1− ρ0

K0

p∗L
ρ∗L

)
> J

1

ρ∗
K2

(
ρ∗2V a

2
V −

ρ∗4V a
4
V

ρ∗2L a
2
L

)
+

[
K0

ρ0
ln
ρ∗L
ρ0
− kT0

m
ln
p∗V
p0
− 1

2
Jp∗K

(
1

ρ∗L
+

1

ρ∗V

)]
ρ∗V
ρ∗L

≥ a2
V

(
J

1

ρ∗
K2ρ∗2V

(
1− ρ∗2V a

2
V

ρ∗2L a
2
L

)
−
√

2π
ρ∗V
ρ∗L

)
.

This expression is obviously positive, because ρV /ρL < 1/4, cf. (3.5.21). Accordingly the proof of Lemma
3.5.3 is complete.

Remark 3.5.5. If we exclude phase transition, this means that we use the trivial kinetic relation z = 0,
Lemma 3.5.1 and Lemma 3.5.2 remain valid. It is quite evident, that we have p∗L = p∗V . The expression
zJ 1
ρK of Lemma 3.5.3 becomes zero and is clearly non-strictly increasing in p∗V .

Remark 3.5.6. During the proof of Lemma 3.5.3 we observe that the smallest pL ≥ 0 with f(p∗V , pL) = 0
identically satisfies the inequalities

− aV ρV ≤ z ≤
√
aV aL

√
ρV ρL < aLρL , (3.5.33)

which is a sharper result than the inequality (3.5.27).

3.6 Explicit solutions of the Riemann problem for isothermal
Euler equations for two phases with different equations of
state

Now let us consider two phase flows, where from now on for all examples the left phase (initially x < 0)
is assumed to be water vapor, whereas the right phase (initially x > 0) is assumed to be liquid water.
The different phases are characterized by different equations of state, given in (3.3.2) and (3.3.3). We
consider the Riemann problem

ρ(x, 0) =

{
ρ− = ρV for x < 0
ρ+ = ρL for x > 0

and v(x, 0) =

{
v− = vV for x < 0
v+ = vL for x > 0 .

(3.6.1)

The solution consists of 4 constant states, that are separated by 2 classical waves and the phase boundary.
Accordingly we have three possible wave patterns, see Figure 3.4.

x
(a)

t

x
(b)

t

x
(c)

t

Figure 3.4: Wave patterns. Solid line: classical waves. Dashed line: Vapor-liquid interface
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3.6.1 Case 1: Two-phase flow without phase transition

Let us first consider the case, where the phase transition is excluded, i.e. z = 0. In this case we have

Lemma 3.6.1. There exists no solution of wave pattern types a) and c), which include the cases of the
coincidence of the classical waves with the phase boundary.

The lemma will be proven at the end of this section.

Now we consider Case b). For solutions of that type we use the following notations for the 4 constant
states

WV =

[
ρV
vV

]
W∗

V =

[
ρ∗V
v∗V

]
W∗

L =

[
ρ∗L
v∗L

]
WL =

[
ρL
vL

]
. (3.6.2)

To find the exact solution we extend the procedure that is described for single gas flows by Toro in [20].
We aim to derive a function

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + (vL − vV ) , (3.6.3)

such that the only root p = p∗ is the solution for the pressure p∗V of the Riemann problem (3.2.1-3.2.2),
(3.6.1). The functions fV and fL are the increments that relate the initial velocities vV , vL to v∗V and
v∗L resp., only in terms of the initial data and the unknown solution p∗. This means that

v∗V = vV − fV (p∗,WV ) and v∗L = vL + fL(p∗,WL) . (3.6.4)

This procedure makes use of the constancy of pressure and velocity across the phase boundary, v∗V = v∗L
and p∗V = p∗L, which is due to z = 0.

Because p is constant in the star region, we choose p∗ to be the unknown and eliminate ρ∗V , ρ
∗
L.

However, for shorter notation we keep the initial data ρV , ρL.
We use the results in (3.5.2), (3.5.4) and (3.5.16). For a left wave we replace ′ and ′′ by V and ∗V ,

resp. On the other hand, for a right wave ′ and ′′ are replaced by ∗L and L. We end up with the following

Theorem 3.6.1 (Solution of isothermal two-phase Euler equations without phase transition).
Let f(p,WV ,WL) be given as

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + ∆v , ∆v = vL − vV
where the functions fV and fL are given by

fV (p,WV ) =

{ p−pV√
ρV p

if p > pV (shock)

−aV ln pV + aV ln p if p ≤ pV (rarefaction)

fL(p,WL) =


p−pL√

K0ρL
(
p−p0
K0

+1
) if p > pL (shock)

−aL ln ρL
ρ0

+ aL ln
(
p−p0

K0
+ 1
)

if p ≤ pL (rarefaction)
.

If the function f(p,WV ,WL) has a root p∗ with 0 < p∗ ≤ p̃ and with p̃ as in Section 3.3, this root is
unique and is the unique solution for pressure p∗V of the Riemann problem (3.2.1-3.2.2), (3.6.1). The
velocity v∗V can be calculated as follows

v∗V =
1

2
(vV + vL) +

1

2
(fL(p∗,WL)− fV (p∗,WV )) .

Proof. The function f is strictly monotone increasing in p with f(p,WV ,WL) → −∞ for p → 0.
Therefore f has at most one unique root, which is by construction the solution for the pressure p∗V
of the Riemann problem considered. The second part of the theorem is an immediate consequence of
(3.6.4).

For given initial data one can define the sets of states that can be connected to the initial states by a
single shock or rarefaction wave. These sets define curves in the p-v-phase plane, where the intersection
point (p∗, v∗) is the solution due to Theorem 3.6.1, see Figure 3.5. In Figure 3.5 the black curve CV
belongs to the vapor phase, whereas the red curve CL belongs to the liquid phase. The solid lines denote
those states, that can be connected to the initial states, indicated by a star, by a rarefaction wave. Along
the dash-dotted lines we have states, that may be connected to the initial states by a shock wave. The
wave curves in Figure 3.5 belong to the data of the second example in Section 3.8.
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Figure 3.5: Wave curves in the p-v-phase plane

Theorem 3.6.2 (Sufficient condition for solvability). Let us consider the Riemann problem (3.2.1-
3.2.2), (3.6.1). We have two cases.

• For pL < pV (ρ̃) = p̃ the above Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
p̃− pV√
ρV p̃

+
p̃− pL√

ρ
L

(p̃− p0 +K0)
+ ∆v ≥ 0 .

• For pL ≥ p̃ the above Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
p̃− pV√
ρV p̃

+ aL ln

(
pL − p0 +K0

p̃− p0 +K0

)
+ ∆v ≥ 0 .

Proof. As seen before f is strictly monotone increasing in p with f(p,WV ,WL) → −∞ for p → 0.
Accordingly f has a unique root if and only if f(p,WV ,WL) ≥ 0 for p→ p̃.

Remark 3.6.1 (Complete solution). Theorems 3.6.1 and 3.6.2 allow us to calculate the pressure and
the velocity in the star region as well as the interface velocity. From the equations of state (3.3.2) and
(3.3.3) we find the densities ρ∗V , ρ

∗
L of the star region respectively. In the case of shock waves the relation

(3.5.16) gives the shock speeds.
For a left (right) rarefaction wave the head and tail speeds can be obtained from (3.5.2) or (3.5.4)

respectively. The solution inside the fans is given by (3.5.3) respectively (3.5.5).

Finally we give the proof of Lemma 3.6.1.

Proof. We denote the states between the classical waves with two stars. The states between the right
wave and the phase boundary have one star, also see Figure 3.6.

x

t

WV W∗∗
V W∗

V WL

Figure 3.6: Wave pattern of type (c) with notation
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Assume that the solution is of wave pattern type c). Then the interface is moving with speed
w = vL = vV ∗. Let us further assume that the right wave is a shock wave moving with speed S2.
Obviously the condition w ≥ S2 must hold. To find S2 we use (3.5.16)1 and (3.5.16)2. We replace ′ and
′′ by V ∗∗ and V ∗ resp. We obtain

S2 = w +
aV ρV ∗√
ρV ∗ρV ∗∗

,

which contradicts the condition w ≥ S2.
On the other hand if the right wave is a rarefaction wave, then the head speed is given by aV + vV ∗,

see Subsection 3.5.1. This is likewise a contradiction to the condition w = vL = vV ∗ ≥ aV + vV ∗. If the
phaseboundary lies within the rarefaction wave or at its tail we obtain the analogous contradiction in
the wave speeds.

Accordingly there is no solution of type c). In an analogous manner we may discuss the case of wave
pattern type a).

3.6.2 Case 2: Two-phase flow with phase transition

The lemma corresponding to Lemma 3.6.1 is much more complicated in this case. For this reason we
must discuss all three cases from Figure 3.4 and we start with Case b).

3.6.2.1 Solutions of type b)

To find the solution for the Riemann problem (3.2.1-3.2.2), (3.6.1) with phase transition we use the same
strategy as before. Due to phase transition we have v∗L 6= v∗V at the interface, which gives us a further
term in the resulting algebraic equation. Moreover, a further challenge results from the inequality of the
pressures p∗L 6= p∗V . Nevertheless we are able to construct a function

fz(p,WV ,WL) = fV (p,WV ) + fL(p∗L(p),WL) + zJ
1

ρ
K + (vL − vV ) (3.6.5)

such that the only root p = p∗ is the solution for the pressure p∗V of the Riemann problem (3.2.1-3.2.2),
(3.6.1) with phase transition. The functions fV and fL relate the initial velocities vV , vL to v∗V and
v∗L respectively, only in terms of the initial data and the unknown solution p∗ as well as the implicitely
defined function p∗L(p∗).

As before we use the results in (3.5.2), (3.5.4) and (3.5.16). For a left wave we repalce ′ and ′′ by V

and ∗V , respectively. On the other hand, for a right wave ′ and ′′ are replaced by ∗L and L. We end up
with the following

Theorem 3.6.3 (Solution of isothermal two-phase Euler equations with phase transition).
Let fz(p,WV ,WL) be given as

fz(p,WV ,WL) = fV (p,WV ) + fL(p∗L(p),WL) + zJ
1

ρ
K + ∆v , ∆v = vL − vV (3.6.6)

where the functions fV and fL are given by

fV (p,WV ) =

{ p−pV√
ρV p

if p > pV (shock)

−aV ln pV + aV ln p if p ≤ pV (rarefaction)

fL(p,WL) =


p∗L(p)−pL√

K0ρL

(
p∗
L

(p)−p0
K0

+1

) if p∗L(p) > pL (shock)

−aL ln ρL
ρ0

+ aL ln
(
p∗L(p)−p0

K0
+ 1
)

if p∗L(p) ≤ pL (rarefaction) .

The function p∗L(p) is implicitely defined by (3.5.28) and z is given by (3.5.23).
If the function fz(p,WV ,WL) has a root p∗ with 0 < p∗ ≤ p̃, see Section 3.3, this root is unique.

If further
p∗ > pV we must have z > −aV

√
ρV ρ∗V . (3.6.7)

In this case the root p∗is the unique solution for the pressure p∗V for a b)-type solution of the Riemann
problem (3.2.1-3.2.2), (3.6.1) with phase transition and the complete solution is uniquely determined.

If there is no root or condition (3.6.7) is not satisfied the Riemann problem has no solution.
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Proof. The function fz is strictly increasing in p. This follows from Lemma 3.5.2 and Lemma 3.5.3.
Further we have fz → −∞ for p→ 0. Therefore fz has at most one unique root, which is by construction
the solution for p∗V of the considered Riemann problem.

Then by Lemma 3.5.1 the pressure p∗L(p) and the mass flux z are uniquely defined. The corresponding
densities can be obtained from the equations of state (3.3.2), (3.3.3). To find the velocities in the star
regions one can use (3.5.2), (3.5.4) for rarefactions or (3.5.16) for shocks. The interface velocity can be
obtained from (3.2.5).

The further calculations are the same as in the case of isothermal Euler equations without phase
transition, see the proof for Theorem 3.6.1 and the remarks following.

Remark 3.6.2. The additional condition (3.6.7) in Theorem 3.6.3 is necessary to guarantee, that S1 ≤ w
in the case of a 1-shock propagating through the gas. If this condition is not satisfied, the root p∗ of (3.6.6)
is meaningless.

As in the case of no phase transition in the previous section, one can construct the solution in the
p − v−phase plane. We define the same sets of states as before. Moreover, for every state, that can
be connected to (pV , vV ) by a single wave, there exists a uniquely defined state (p∗L, v

∗
L), that can be

connected to (pV , vV ) by a phase boundary due to the kinetic relation (3.5.23). These states define a
further wave curve CL′ , see Figure 3.7. The red and black curves CL and CV are identical to the case

Figure 3.7: Wave curves in the p− v−phase plane

before. The blue curve CL′ is newly defined, where the blue solid (dash-dotted) part of CL′ corresponds
to the black solid (dash-dotted) part of CV . The intersection point of the blue and red curves CL′ and
CL is the solution for (p∗L(p∗V ), v∗L) due to Theorem 3.6.3. As before the wave curves in Figure 3.7 belong
to the data of the second example in Section 3.8.

Theorem 3.6.4 (Sufficient condition for solvability I). Let us consider the Riemann problem
(3.2.1-3.2.2), (3.6.1). If the Riemann problem considered for Case 1 is solvable, then the same Riemann
problem is also solvable taking into account phase transition due to the kinetic relation (3.5.23).

The proof is obvious by the monotonicity properties of fz. For details see the following corollary and
its proof.

Proposition 3.6.1. Let p∗ be the solution of the pressure in the star region of the Riemann problem
(3.2.1-3.2.2), (3.6.1) for Case 1. Then for the solutions p∗V and p∗L(p∗V ) of the same Riemann problem
for Case 2 we have

1. p∗ = p0 implies that p∗V = p∗L(p∗V ) = p0.

2. p∗ < p0 implies that p∗ < p∗L(p∗V ) < p0.

3. p∗ > p0 implies that p0 < p∗V < p∗.
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Proof. The first statement is obvious. Now let us consider p∗ < p0. Consider that p∗L(p∗V ) = p0. Then
we have an equilibrium and therefore p∗V = p0 and further fz(p0,WV ,WL) = f(p0,WV ,WL) > 0. Now
fz(p0,WV ,WL) > 0 and we obtain due to the monotonicity of fz that p∗L(p∗V ) < p0. On the other
hand, if p∗L(p∗V ) = p∗ then fz(p

∗
V ,WV ,WL) < f(p∗,WV ,WL) = 0 and we conclude the other inequality

p∗ < p∗L(p∗V ). The argumentation for the third statement is analogous.

Theorem 3.6.5 (Sufficient condition for solvability II). Let us consider the Riemann problem
(3.2.1-3.2.2), (3.6.1) with phase transition. This Riemann problem is solvable by a b)-type solution if
and only if

fz(p̃,WV ,WL) ≥ 0

and (3.6.7) is satisfied.

Proof. The statement is obvious, because the above requirement guarantees, that the function fz has a
root.

3.6.2.2 Further solutions

As in Section 3.6.1 we want to discuss the existence of further solutions for the Riemann problem (3.2.1-
3.2.2), (3.6.1) with phase transition. We obtain

Lemma 3.6.2. There is no solution of type a).

Proof. Assume, there is a solution of type a). Then analogously to solutions of type c) in Section 3.6.1
we denote the constant states by (ρV , vv), (ρL∗, vL∗), (ρL∗∗, vL∗∗), (ρL, vL), see Figure 3.6. Obviously
in that case we have a condensation process and therefore z < 0. Assume the left wave is a rarefaction
wave, then the head speed is given by vL∗ − aL and

w =
z

ρL∗
+ vL∗ ≤ vL∗ − aL (3.6.8)

must hold. We obtain z ≤ −aLρL∗. This contradicts (3.5.27) and therefore there is no solution of type
a) with a left rarefaction.

Similarly, for a left shock wave

w =
z

ρL∗
+ vL∗ < vL∗ − aL

√
ρL∗∗
ρL∗

must hold. This is a stronger inequality than (3.6.8) and therefore it cannot be satisfied. This proves
the above statement.

Lemma 3.6.3. Consider the Riemann problem (3.2.1-3.2.2), (3.6.1) with phase transition. If pL ≥ p0

there is no solution of type c).

Proof. A solution of type c) implies an evaporation process. This requires that pL < p0.

Lemma 3.6.4. Consider the Riemann problem (3.2.1-3.2.2), (3.6.1) with phase transition. For suffi-
ciently large pL with pL ≤ p0 there is no solution of type c).

Proof. Assume, there is a solution of type c). Then analogously to the previous case of an a)-type
solution for a right rarefaction

w =
z

ρV ∗
+ vV ∗ ≥ vV ∗ + aV

must hold. On the other hand for a right shock wave we have

w =
z

ρV ∗
+ vV ∗ > vV ∗ + aV

√
ρV ∗∗
ρV ∗

.

Accordingly
z

ρV ∗
+ vV ∗ < vV ∗ + aV ⇐⇒ z

ρV ∗aV
< 1
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is sufficient to guarantee, that there is no solution of type c). Due to z > 0 we obtain from (3.5.23) by a
simple estimate

z

ρV ∗aV
< − 1√

2π
ln
pV ∗
p0

.

Therefore, if

− 1√
2π

ln
pV ∗
p0
≤ 1 ⇐⇒ pV ∗ ≥ p0 exp(−

√
2π)

there is no solution of type c). By the strict monotonicity of pL(pV ∗) the proof is complete, see Lemma
3.5.2.

Remark 3.6.3. Note that the inequality pL ≥ pL(p0 exp(−
√

2π)) is sufficient, but not necessary for the
statement of the above lemma.

3.7 3-Phase flow

3.7.1 Condensation by compression

Now let us consider the Riemann problem for the isothermal Euler equations with the following initial
data for ρV± ∈ [0, p̃]

ρ(x, 0) =

{
ρ− = ρV− for x < 0
ρ+ = ρV+ for x > 0

and v(x, 0) =

{
v− = vV− for x < 0
v+ = vV+ for x > 0 .

(3.7.1)

This means, we have a Riemann problem for a vapor phase only. Using the results of Section 3.5 we
easily obtain

Theorem 3.7.1 (Solution of classical isothermal Euler equations). Let the function fV V be given
as

fV V (p,WV−,WV+) = fV−(p,WV−) + fV+(p,WV+) + ∆v , ∆v = vV+ − vV−

where the functions fV− and fV+ are given by

fV−(p,WV−) =

{
p−pV−√
ρV−p

if p > pV− (shock)

−aV ln pV− + aV ln p if p ≤ pV− (rarefaction)

fV+(p,WV+) =

{
p−pV+√
ρV+p

if p > pV+ (shock)

−aV ln pV+ + aV ln p if p ≤ pV+ (rarefaction)
.

If the function fV V (p,WV−,WV+) has a root p∗ with 0 < p∗ ≤ p̃, this root is unique and is the unique
solution for pressure p∗V of the Riemann problem (3.2.1-3.2.2), (3.7.1). The velocity v∗V is given by

v∗V =
1

2
(vV− + vV+) +

1

2
(fV+(p∗,WV+)− fV−(p∗,WV−)) .

In principle this result is known with some small modifications, see for instance the book of Toro [20].
In the literature one usually looks for a pressure p∗, that is a root of the above algebraic equation. Due
to fV V → −∞ for p → 0 and fV V → +∞ for p → +∞ there is always a solution. The latter case is
physically not meaningful because a sufficiently high pressure in a gas will lead to a phase transition to
a liquid or solid phase. In contrast we only consider solutions, that satisfy the inequality 0 < p∗ ≤ p̃,
where p̃ denotes the maximally possible gas pressure. As a consequence one can find Riemann initial
data without solution. If this happens we follow the following strategy.

Definition 3.7.1 (Nucleation criterion). If there is no solution to the Riemann problem (3.2.1-3.2.2),
(3.7.1) according to Theorem 3.7.1, then nucleation occurs.

If this criterion is fulfilled, we look for a solution with two transition fronts (phase boundaries) and
two classical waves. Next we discuss the possible wave patterns for condensation.
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Lemma 3.7.1. If there is a solution of the Riemann problem (3.2.1-3.2.2), (3.7.1) consisting of two
classical waves and two phase boundaries, then no wave is propagating through the liquid. Waves may
only occur in the gas.

Proof. Assume, there is a solution with a classical wave propagating through the liquid phase. W.l.o.g.
this wave is a left going wave. We denote the states to the left and right of this wave by L∗ and L∗∗,
respectively. Furthermore, on the left hand side of this wave there is a phase boundary propagating with
speed w1. The state left to the phase boundary is denoted by V ∗.

Obviously we have a condensation process. Accordingly p∗ > p0 and pL∗ > p0. This configuration is
impossible due to Lemma 3.6.2. Analogously we discuss the case of a right going wave.

We conclude, both waves propagate through the vapor phase. The possible wave patterns are given
in Figure 3.8.

x
(d)

t

x
(e)

t

x
(f)

t

Figure 3.8: Wave patterns. Solid line: classical wave. Dashed line: phase boundary

Lemma 3.7.2. There are no solutions of wave pattern types d) and f).

Proof. Let us assume, that the solution is of wave pattern type d). This corresponds to solutions of
wave pattern type c) in Section 3.6.2.2, see Figure 3.4. We have seen, that such solutions only can occur
for very low pressures, that imply evaporation, see Lemma 3.6.3 and Lemma 3.6.4. Here we have a
condensation process, so wave pattern type d) is impossible. Analogously we can exclude solutions of
wave pattern type f).

Accordingly the only possible wave configuration is of type e). We use the notation as given in Figure
3.9 and obtain

x

t

WV − W∗
V W∗

L W∗∗
V WV +

Figure 3.9: Notations, wave pattern type e).

Lemma 3.7.3. Assume, there is a solution of wave pattern type e). Then pV ∗ = pV ∗∗.

Proof. For given pV ∗ the pressure pL∗ is uniquely defined, cf. Lemma 3.5.1. The function pL∗(pV ∗)
is strictly monotone, see Lemma 3.5.2. For the second phase boundary we have to use the modified
kinetic relation (3.5.24). We obtain the same pressure function pL∗(pV ∗∗) = pL∗(pV ∗) with the same
monotonicity properties as in Section 3.5.3.4.

Using the results of the previous sections and taking into account, that there are two phase boundaries
we can formulate the following
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Theorem 3.7.2 (Solution of isothermal Euler equations for two gases with phase transition).
Consider the Riemann problem (3.2.1-3.2.2), (3.7.1) and assume the nucleation criterion is satisfied. Let
fV V z(p,WV−,WV+) be given as

fV V z(p,WV−,WV+) = fV−(p,WV−) + fV+(p,WV+) + 2zJ
1

ρ
K + vV− − vV+ = 0 ,

where the functions fV− and fV+ are given by

fV−(p,WV−) =

{
p−pV−√
ρV−p

if p > pV− (shock)

−aV ln pV− + aV ln p if p ≤ pV− (rarefaction)

fV+(p,WV+) =

{
p−pV+√
ρV+p

if p > pV+ (shock)

−aV ln pV+ + aV ln p if p ≤ pV+ (rarefaction)
.

Here z is given by (3.5.23) and J 1
ρK = 1

ρL∗
− 1

ρV ∗
. The function p∗L(p) is implicitely defined by (3.5.28).

If the function fV V z has a root with p0 < p ≤ p̃, then this root is the only one. Furthermore, this
root is the unique solution for pressure pV ∗ = pV ∗∗ of the Riemann problem (3.2.1-3.2.2), (3.7.1) for the
vapor pressure in the star regions. The liquid velocity vL∗ can be calculated by

vL∗ =
1

2
(vV− + vV+) +

1

2
(fV+(p∗)− fV−(p∗)) .

By previous results it is obvious, that the function fV V z has at most one root. By construction this
root is the solution for the pressure of the vapor phase in the two star regions in Figure 3.9.

The further calculations to find the complete solution are analogous to previous calculations.

Remark 3.7.1. Note, that vV ∗ 6= vV ∗∗ with vV ∗ + vV ∗∗ = 2vL∗.

Theorem 3.7.3 (Sufficient condition for solvability I). Consider the Riemann problem (3.2.1-
3.2.2), (3.7.1). This problem is solvable without phase transition if and only if

fV V (p̃,WV−,WV+) ≥ 0 .

Proof. This statement is obvious by the monotonicity of fV V .

Theorem 3.7.4 (Sufficient condition for solvability II). Consider the Riemann problem (3.2.1-
3.2.2), (3.7.1) and assume that the nucleation criterion due to Definition 3.7.1 is satisfied. Taking into
account phase transition this problem is solvable if and only if

fV V z(p̃,WV−,WV+) ≥ 0 .

Proof. This statement is obvious due to the monotonicity of fV V z.

3.7.2 Evaporation by expansion

In the following we consider the Riemann problem for the isothermal Euler equations with initial data
ρL± ≥ ρmin

ρ(x, 0) =

{
ρ− = ρL− for x < 0
ρ+ = ρL+ for x > 0

and v(x, 0) =

{
v− = vL− for x < 0
v+ = vL+ for x > 0 ,

(3.7.2)

i.e. the initial data only contain two states in a liquid phase.
We have seen, that at a planar phase boundary the liquid pressure is always positive. It is known

from applications, that negative liquid pressures are possible. They give rise to cavitation in the liquid,
see Doering [6]. Recall that in the liquid-vapor case a negative liquid pressure is forbidden, see (3.5.18).
Now, in the liquid-liquid case we may meet negative pressures. The smallest pressure in the liquid is
pmin.

Using that definition we obtain
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Theorem 3.7.5 (Solution of isothermal Euler equations for two states of a liquid without
phase transition). Let fLL(p,WL−,WL+) be given as

fLL(p,WL−,WL+) = fL−(p,WL−) + fL+(p,WL+) + ∆v , ∆v = vL+ − vL−

where the functions fL− and fL+ are given by

fL−(p,WL−) =

{ p−pL−√
ρL−p

if p > pL− (shock)

−aL ln ρL−
ρ0

+ aL ln
(
p−p0

K0
+ 1
)

if p ≤ pL− (rarefaction)

fL+(p,WL+) =

{ p−pL+√
ρL+p

if p > pL+ (shock)

−aL ln ρL+

ρ0
+ aL ln

(
p−p0

K0
+ 1
)

if p ≤ pL+ (rarefaction)
.

If the function fLL(p,WL−,WL+) has a root p∗ with pmin ≤ p∗, this root is unique and is the unique
solution for pressure p∗L of the Riemann problem (3.2.1-3.2.2), (3.7.2). The velocity v∗L is calculated from

v∗L =
1

2
(vL− + vL+) +

1

2
(fL+(p∗)− fL−(p∗)) .

Remark 3.7.2. For simplicity in our calculations we choose pmin = 0, but also lower values are possible.
Our theoretical results are general and do not depend on the special value of pmin.

Analogous to the above nucleation criterion we give the

Definition 3.7.2 (Cavitation criterion). If there is no solution of the Riemann problem (3.2.1-3.2.2),
(3.7.2) according to Theorem 3.7.5, then we may encounter cavitation.

If this criterion is fulfilled, we look for a solution involving a vapor phase with two transition fronts
(phase boundaries) and two classical waves. As before we discuss the possible wave patterns.

Lemma 3.7.4. Assume there is a solution of the Riemann problem (3.2.1-3.2.2), (3.7.2) consisting of
two classical waves and two phase boundaries. If further pL−, pL+ are sufficiently large then no wave is
propagating through the vapor.

The proof is analogous to the proof of Lemma 3.6.4. A sufficient lower bound for pL−, pL+ is given
in Remark 3.6.3.

Lemma 3.7.5. There is no solution of type d) and f), see Figure 3.8.

The proof is analogous to the proof of Lemma 3.6.2.
Accordingly we construct solutions of type e), the notations are analogous to the notations in Figure
3.9. We obtain

Lemma 3.7.6. Assume, there is a solution of wave pattern type e). Then pL∗ = pL∗∗.

The proof is analogous to the proof of Lemma 3.7.3.
The next theorem addresses wave pattern type e).

Theorem 3.7.6 (Solution for isothermal Euler equations for two liquids with phase tran-
sition). Consider the Riemann problem (3.2.1-3.2.2), (3.7.2) and assume the cavitation criterion is
satisfied. Let fLLz(p,WL−,WL+) be given as

fLLz(p,WL−,WL+) = fL−(pL(p),WL−) + fL+(pL(p),WL+) + 2zJ
1

ρ
K + vL− − vL+ = 0 ,

with fL− and fL+ according to

fL−(p∗L(p),WL−) =


p∗L(p)−pL−√
ρL−p∗L(p)

if p∗L(p) > pL− (sh.)

−aL ln ρL−
ρ0

+ aL ln
(
p∗L(p)−p0

K0
+ 1
)

if p∗L(p) ≤ pL− (rf.)

fL+(p∗L(p),WL+) =


p∗L(p)−pL+√
ρL+p∗L(p)

if p∗L(p) > pL+ (sh.)

−aL ln ρL+

ρ0
+ aL ln

(
p∗L(p)−p0

K0
+ 1
)

if p∗L(p) ≤ pL+ (rf.) .
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Here z is calculated from (3.5.23) and J 1
ρK = 1

ρL∗
− 1

ρV ∗∗
. The function p∗L(p) is implicitely defined by

(3.5.28).

If the function fLLz has a root with pmin ≤ p, then this root is unique. Further, this root uniquely
determines the pressure p∗V of the Riemann problem (3.2.1-3.2.2), (3.7.2) for the vapor pressure in the
star region. Further, the vapor velocity vV ∗ is given by

vV ∗ =
1

2
(vL− + vL+) +

1

2
(fL+(p∗L(p∗))− fL−(p∗L(p∗))) .

Proof. Due to our previous results it is obvious, that the function fLLz has at most one root. By
construction this root is the solution for the pressure of the vapor phase in the star region.

The further calculations leading to the complete solution are analogous to previous calculations.

Theorem 3.7.7 (Sufficient condition for solvability I). Consider the Riemann problem (3.2.1-
3.2.2), (3.7.2). This problem is solvable without phase transition if and only if

fLL(pmin,WV−,WV+) ≤ 0 .

Proof. This statement is obvious due to monotonicity of fLL.

Theorem 3.7.8 (Sufficient condition for solvability II). Consider the Riemann problem (3.2.1-
3.2.2), (3.7.2) and assume the cavitation criterion is satisfied. If we admit phase transition, this problem
is always solvable.

Proof. This statement is obvious due to the fact that zJ 1
ρK→ −∞ for p∗V → 0.

3.8 Numerical results

In the following section we discuss some numerical examples. The calculations need the Boltzmann
constant k and the mass of a single water molecule mW

k = 1.380658 · 10−23J/K and mW =
2 · 1.0079 + 15.9994

6.02205 · 1026
kg .

The reference values used are tabled in [22].

3.8.1 Example 1: 2 phase flow, wave structure independent of phase transi-
tion

We consider an example in which the wave structure does not depend on whether a phase transition is
modeled or not. The initial data and reference values for the first example are given by

vV = −100m/s vL = 100m/s T0 = 293.15K K0 = 109/0.45836Pa
pV = 2300Pa pL = 1000Pa ρ0 = 1000/1.00184kg/m3 p0 = 2339Pa.

Figure 3.10 shows for z = 0 the solution for velocity, pressure and density as well as the wave pattern.
The phase boundary is indicated by the dotted red line. Figure 3.11 gives the solution for the same
problem with z 6= 0, i.e. with phase transition. Both solutions have similar wave pattern.

Note that in the plots for density and velocity the jump across the shock wave is so small that it is
not visible in the chosen scale. This is generally true for classical waves inside the liquid phase. The
difference is only visible in a local zoom.

The solutions to Example 1 for the intermediate states vV ∗, pV ∗, vL∗, pL∗ for both cases are summa-
rized in the following table

vV ∗ = 100.0002m/s vL∗ = 100.0002m/s vV ∗ = 42.5m/s vL∗ = 100.0004m/s
pV ∗ = 1335.3Pa pL∗ = 1335.3Pa pV ∗ = 1561Pa pL∗ = 1699.5Pa .
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Figure 3.10: Example 1, without phase transition

Figure 3.11: Example 1, with phase transition

3.8.2 Example 2: 2 phase flow, wave structure depending on phase transition

We now consider an example in which the wave type changes when a phase transition is introduced. The
second example relies on

vV = −200m/s vL = −50m/s T0 = 473.15K K0 = 109/0.88383Pa
pV = 60000Pa pL = 100000Pa ρ0 = 1000/1.15651kg/m3 p0 = 1554670Pa .

In the case without phase transition the solution is composed of two rarefaction waves, see Figure 3.12,
whereas the solution with phase transition possesses two shock waves, see Figure 3.13. The corresponding
wave curves are given in Figure 3.5 of Subsection 3.6.1 and Figure 3.7 of Subsection 3.6.2. The solutions
to Example 2 for the intermediate states vV ∗, pV ∗, vL∗, pL∗ for both cases are summarized in the following
table
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Figure 3.12: Example 2, without phase transition

Figure 3.13: Example 2, with phase transition

vV ∗ = −50.057m/s vL∗ = −50.057m/s vV ∗ = −472m/s vL∗ = −49.905m/s
pV ∗ = 43531Pa pL∗ = 43531Pa pV ∗ = 10652Pa pL∗ = 19346Pa .

3.8.3 Example 3: Condensation by compression

In the third example the data are

vV− = 2.7m/s vV+ = −2.7m/s T0 = 363.15K K0 = 109/0.47316Pa
pV− = 70000Pa pV+ = 70000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa.

The solution at time t = 0.001s is illustrated in Figure 3.14, including a zoom plot to show the de-
tails. Further, the solutions to Example 3 for the intermediate states vV ∗, pV ∗, vL∗, pL∗, vV ∗∗, pV ∗∗ are
summarized in the following table
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Figure 3.14: Example 3, condensation by compression

vV ∗ = 0.465m/s vL∗ = 0 vV ∗∗ = −0.465m/s
pV ∗ = 70383.04Pa pL∗ = 70383.13Pa pV ∗∗ = 70383.04Pa .

3.8.4 Example 4 and 5: Evaporation by expansion

At first we start from the data

vL− = −40m/s vL+ = 40m/s T0 = 363.15K K0 = 109/0.47316Pa
pL− = 60000Pa pL+ = 60000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa

and show the result at time t = 0.001s in Figure 3.15. The same phenomenon is produced now by
different data, namely

vL− = −20m/s vL+ = 30m/s T0 = 363.15K K0 = 109/0.47316Pa
pL− = 30000Pa pL+ = 40000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa.

The Example 4 consists of two rarefaction waves and two phase transitions, whereas Example 5 exhibits
two shock waves and two phase transitions, see Figure 3.16. The data for the intermediate states
vL∗, pL∗, vV ∗, pV ∗, vL∗∗, p∗∗ for both examples are given in

vL∗ = −39.996m/s vV ∗ = 0 vL∗∗ = 39.996m/s
pL∗ = 55188Pa pV ∗ = 54665Pa pL∗∗ = 55188Pa

and

vL∗ = −23.9m/s vV ∗ = 4.3m/s vL∗∗ = 32.5m/s
pL∗ = 59185Pa pV ∗ = 58905Pa pL∗∗ = 59185Pa .
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Figure 3.15: Example 4, evaporation by expansion

Figure 3.16: Example 5, evaporation by expansion
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Chapter 4

A general existence result

Bibliographic note: The content of this chapter contains the recently submitted work. F. Thein,
M. Hantke. A general existence result for isothermal two-phase flows with phase transition. Preprint:
https://arxiv.org/abs/1703.09431.

Abstract: Liquid-vapor flows with phase transitions have a wide range of applications. Isothermal
two-phase flows described by a single set of isothermal Euler equations, where the mass transfer is mod-
eled by a kinetic relation, have been investigated analytically in (Quarterly of applied Mathematics, vol.
LXXI 3 (2013), pp. 509-540.). This work was restricted to liquid water and its vapor modeled by linear
equations of state. The focus of the present work lies on the generalization of the primary results to
arbitrary substances, arbitrary equations of state and thus a more general kinetic relation. We prove
existence and uniqueness results for Riemann problems. In particular, nucleation and cavitation are
discussed.

4.1 Introduction

Compressible liquid-vapor flows have a wide range of applications. Two-phase flow models are used to
describe such processes, e.g. the formation of clouds, cavitation near moving objects in liquids such as
ship propellers or certain phenomena in biology. Main difficulties in the modeling result from the phase
interactions, especially from mass and energy transfer due to condensation or evaporation processes. Sev-
eral two-phase flow models are available in the literature. They are mainly distinguished in sharp and
diffusive interface models. For a detailed discussion of these models we refer to Zein [35] and concerning
sharp interface models we exemplary refer to Bedeaux et al. [3]. In our work we study compressible two-
phase flows with phase transitions across a sharp interface. Phase transitions are modeled using a kinetic
relation. This concept was introduced by Abeyaratne and Knowles [1] for solid-solid phase transitions.
This kinetic relation controls the mass transfer across the interface between the two adjacent phases. For
a more general context of kinetic relations see LeFloch [19]. A detailed and very interesting survey on
the Riemann problem for a large class of thermodynamic consistent constitutive models in the setting of
Euler equations models can be found in Menikoff and Plohr [21]. Here the considerations are restricted
to a simple kinetic relation that results from the assumption of local equilibrium at the interface.
In a recent work by Hantke et al. [12] Riemann problems relying on the isothermal Euler equations with
a non-monotone pressure-density function are considered. This function is composed of three parts: the
equations of state for the two single phases and an arbitrary relation for the intermediate state. The
two phases are distinguished using the Maxwell construction, also known as the Equal-Area-Rule. The
mass transfer is modeled via a kinetic relation, derived in [8], based on classical Hertz-Knudsen theory,
see [4]. The authors discussed Riemann problems for various different cases of initial data and showed
existence and uniqueness. Furthermore Hantke et al. also covered the cases of cavitation and nucleation.
The constructed Riemann solutions are selfsimilar. They consist of constant states, separated by clas-
sical rarefaction and shock waves or phase boundaries. Nevertheless, the basic assumptions are very
restrictive. Existence and uniqueness results are proven for liquid water and its vapor, modeled by linear
equations of state.
Also Müller and Voss [26], [32] considered the isothermal Euler system. In contrast to the above men-
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tioned work they modeled the fluid using the van der Waals equation of state. Instead of a kinetic
relation the Liu entropy condition is used to achieve uniqueness. As a consequence Müller and Voss
need non-classical composite waves to construct solutions. Further literature in this context is given by
Merkle [22], Merkle and Rohde [23]. The focus of our present work is on the distinguished generalization
of the results of Hantke et al. [12] resp. Menikoff and Plohr [21]. We consider two-phase flows for any
regular fluid. Both phases can be modeled by any thermodynamic relevant equation of state. Further we
construct exact Riemann solutions and prove existence and uniqueness results that advance achievements
in the actual literature.
The paper is organized as follows. In Section 4.2 we present the balance equations in the bulk phases and
the corresponding jump conditions across discontinuities. Further we give the thermodynamic frame-
work needed throughout this work and discuss the Riemann problem in the isothermal case including the
entropy inequality. In Section 4.3 we prove existence and uniqueness of a solution at the interface under
certain appropriate assumptions. The following Section 4.4 contains a monotonicity argument needed to
solve the two-phase Riemann problem, which is done subsequently. In Section 4.5 we present solutions
to initial one-phase Riemann data leading to nucleation or cavitation, i.e. the creation of a new phase.
We conclude this work with Section 4.6 where we give a detailed discussion of the assumptions made to
state the previous results followed by some examples and the conclusion.

4.2 Isothermal Euler Equations

In this work we study inviscid, compressible and isothermal two phase flows.The two phases are either
the liquid or the vapor phase of one substance. The phases are distinguished by the mass density ρ and
further described by the velocity u. Sometimes it is convenient to use the specific volume v = 1/ρ instead
of the mass density. We will make the reader aware of such situations. The physical quantities depend
on time t ∈ R≥0 and space x ∈ R. In regular points of the bulk phases we have the conservation law for
mass and the balance law for momentum, i.e.

∂tρ+ ∂x(ρu) = 0, (4.2.1)

∂t(ρu) + ∂x(ρu2 + p) = 0. (4.2.2)

The system of equations (4.2.1) and (4.2.2) is referred to as the isothermal Euler equations. The additional
quantity p denotes the pressure and is related to the mass density via the equation of state (EOS)
p = p(ρ). Sometimes one also refers to the EOS as pressure law. Such an EOS crucially depends on the
considered substance and how this substance is modeled. Across any discontinuity we have the following
jump conditions

[[ρ(u−W )]] = 0, (4.2.3)

ρ(u−W )[[u]] + [[p]] = 0. (4.2.4)

Here we write [[Ψ]] = Ψ+−Ψ−, where Ψ+ is the right and Ψ− the left sided limit of the physical quantity
Ψ. Furthermore every discontinuity satisfies the following entropy inequality

ρ(u−W )[[g + ekin]] ≤ 0. (4.2.5)

Further, W denotes the speed of the discontinuity and Z = −ρ(u −W ) the mass flux where we will
distinguish between a classical shock wave and the phase boundary (non-classical shock)

Z =

{
Q, shock wave

z, phase boundary
and W =

{
S, shock wave

w, phase boundary
.

4.2.1 Definition and Requirements for the EOS

Usually one only works with the pressure law when dealing with the Euler equations. Nevertheless
the pressure law does not contain all the information about a fluid or more general a thermodynamic
system. From a thermodynamic point of view a system in (local) equilibrium can be described relating
the extensive quantities energy E, volume V and entropy S, i.e. E(V, S). In the following we will use the
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corresponding (intensive) densities and thus we use small letters (e.g.: e, v, s). Given this relation every
other quantity can be derived using the first and second law of thermodynamics and the so called Maxwell
relations. A condensed overview, including the difference between a complete and an incomplete EOS, can
be found in [21]. For detailed information about EOS we refer to standard literature, cf. [2,18,24,25,28].
A discussion using the ideal gas EOS and the Tait EOS can also be found in [8]. From this point on
we assume that we have an EOS for each phase with consistent thermodynamic properties. There are
different possible thermodynamic potentials which can be used to describe a system and they are all
connected to each other using the Legendre transform. Thus one can start from any potential and will
get similar results. For the discussion of the equations at the interface we need the Gibbs energy and
hence shortly summarize the most important features, i.e. those we need for our purpose. More details
can be found in the above mentioned literature and references therein.

Definition 4.2.1 (Gibbs Energy and Sound Speed). The Gibbs energy is a function of the pressure p
and the temperature T . The (complete) differential is given by

dg = −sdT + vdp.

Further we define the isothermal sound speed as

a =

√
−v2

(
∂p

∂v

)
T

.

From Definition 4.2.1 we obtain(
∂g

∂p

)
T

= v > 0,

(
∂2g

∂p2

)
T

=

(
∂v

∂p

)
T

= −
(v
a

)2

< 0. (4.2.6)

Since thermodynamic quantities may be expressed using different choices of independent variables the
brackets with the subscript simply denote which quantity is held constant when calculating the deriva-
tive. In the isothermal case the Gibbs potential just depends on the pressure and hence we omit writing
the brackets with subscript T . Here the volume v and the speed of sound a are strictly positive functions
of the pressure p. Furthermore the inequality for the second derivative is due to the requirement of ther-
modynamic stability for an isothermal system. In short this can be seen by considering the requirements
for the full case. There, thermodynamic stability requires the energy to be a convex function, both in
the entropy and the volume. This implies that the Hessian of the energy is non negative. If we now
assume the temperature to be constant, what remains is

0 ≤ d2e

dv2
= −dp

dv
. (4.2.7)

In the following we use the subscripts {V,L} when it is necessary to distinguish the vapor and the liquid
phase. Since we are concerned with two phases we write gL for the Gibbs energy of the liquid phase and
gV for the vapor phase, respectively. Further we require

∂gi
∂pj

= 0, i 6= j, i, j ∈ {V,L}.

Since we only consider one substance the condition for two phases to be in equilibrium is

gL(pL) = gV (pV ). (4.2.8)

Due to the monotonicity of gK , K ∈ {V,L} we have

gL(pL) = gV (pV ) ⇔ pL = pV

and we write in this case

pL = pV =: p0 and gL(p0) = gV (p0).

A crucial point when dealing with different phases is how to discriminate them and how to connect them
thermodynamically consistent. Equations of state describing two phases (e.g. van der Waals EOS) have
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a so called spinodal region which is avoided by the Maxwell construction (or equal area rule). We want
to discriminate the phases using the specific volumes. Therefore we need an upper bound for the liquid
volume vm and a lower bound for the vapor volume ṽ. This should still be consistent with the Maxwell
construction. Therefore we may proceed as follows. We use the EOS for each phase and prescribe
the minimum liquid pressure pmin (e.g. pmin = 0) and from this we obtain vm. Further we know the
saturation pressure p0 for a given temperature T0 from a calculation or from tables which are available
for many substances, such as for water [34]. Now we connect our two EOS monotonically and then obtain
the maximum vapor pressure p̃ using the Maxwell construction, see [25].

Definition 4.2.2 (Maximum Vapor Pressure). Given a fixed temperature T0 the corresponding saturation
pressure p0 is given by (4.2.8). Furthermore pmin is defined to be the minimum liquid pressure. Let v̄(p)
be a function such that

vL(pmin) = v̄(pmin), vV (p̃) = v̄(p̃) and v̄′(p) > 0.

Then the maximum vapor pressure p̃ is found as the solution of the following equation

0 = p0(vV (p0)− vL(p0))−
∫ vV (p0)

vL(p0)

p(v) dv.

The function p(v) given by

p(v) =


pL(v), v ∈

(
0, vL(pmin)

]
p̄(v), v ∈

(
vL(pmin), vV (p̃)

)
,

pV (v), v ∈
[
vV (p̃),∞

) .

Finally, analogous to [21] we introduce dimensionless quantities which we will use later on.

Definition 4.2.3 (Dimensionless Quantities). We define the (isothermal) dimensionless speed of sound
as

γ := −v
p

dp

dv
.

and the (isothermal) fundamental derivative

G := −1

2
v

d2p

dv2

dp

dv

.

It is straight forward to verify and no surprise that these quantities are completely analogue to those
defined in [21]. In fact, by using the relations given in [21] and assuming the temperature to be fixed,
one also obtains the results given above. However we want to emphasize that γ and G defined here are
not equal to those defined in [21]. This is because we assume the temperature to be constant, whereas
in [21] the derivatives are taken at constant entropy. To clarify this, let us for the moment write γS for
the isentropic quantity defined in [21]. Then we have (cf. [21])

γ

γS
=
cV
cp

and hence γ ≤ γS for thermodynamic stable systems. Further we have for γ, using Definition 4.2.1

γ =
a2

pv
. (4.2.9)

For the fundamental derivative one may also write

G =
1

2

v2

pγ

d2p

dv2
= −v

a

da

dv
+ 1 (4.2.10)

or when expressed in terms of the pressure

G =
a

v

da

dp
+ 1. (4.2.11)

The isotherms in the p− v plane are convex if G > 0, which we will assume from now on.
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4.2.2 Riemann Problem

In the following we briefly discuss the solution of the Riemann problem for the isothermal Euler equations
(4.2.1)-(4.2.2) for a single phase. In order to do so we will discuss the elementary wave types that can
occur, which are shock or rarefaction waves. The Riemann problem is given by equations (4.2.1)-(4.2.2),
the EOS and the Riemann initial data

ρ(x, 0) =

{
ρ−, x < 0

ρ+, x > 0
and u(x, 0) =

{
u−, x < 0

u+, x > 0
. (4.2.12)

We rewrite the system (4.2.1) - (4.2.2) in quasilinear form in terms of the primitive variables, i.e. the
density ρ and the velocity u (

ρ
u

)
t

+

(
u ρ
a2

ρ u

)(
ρ
u

)
x

= 0. (4.2.13)

The Jacobian matrix

A =

(
u ρ
a2

ρ u

)
(4.2.14)

has the following eigenvalues and corresponding eigenvectors

λ1 = u− a, r1 =

(
ρ
−a

)
, λ2 = u+ a, r2 =

(
ρ
a

)
. (4.2.15)

Due to the requirement of thermodynamic stability (4.2.7) this system is hyperbolic. We have strict
hyperbolicity for

γ > 0. (4.2.16)

Furthermore one can immediately verify that the waves corresponding to the eigenvalues and eigenvectors
are genuine nonlinear if and only if the fundamental derivative

G =
ρ

a

da

dρ
+ 1.

does not vanish, i.e.

∇λ1/2 · r1/2 = ∓a
ρ
G 6= 0. (4.2.17)

Here this is in fact the case, since we assumed G > 0. For systems with genuine nonlinear waves the Lax
condition is enough to pick the right solution, cf. [19] and also [21] for the full system. The Riemann
invariants for this system are

I1 = u+

∫
a

ρ
dρ and I2 = u−

∫
a

ρ
dρ. (4.2.18)

4.2.2.1 Entropy Inequality across a Shock Wave

Hantke et al. proved, that the Lax condition is equivalent to the entropy condition for an isothermal
system. This holds true for the general entropy inequality given by (4.2.5)

Q[[g + ekin]] = −ρ(u− S)[[g + ekin]] ≥ 0.

Consider two states (
ρ1

u1

)
and

(
ρ2

u2

)
separated by a shock wave moving with speed S. Using the specific volume v = 1/ρ one obtains

a(p1)2

v(p1)2
< Q2 <

a(p2)2

v(p2)2
. (4.2.19)

which gives the Lax condition for a left Shock (Q > 0) and a right shock (Q < 0).
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4.2.2.2 Rarefaction Wave

For a rarefaction wave we use the Riemann invariants (4.2.18) and hence obtain for a left rarefaction
wave (corresponding to λ1)

u2 − u1 = −
∫ ρ2

ρ1

a

ρ
dρ. (4.2.20)

Furthermore the slope inside the rarefaction is given by

dx

dt
=
x

t
= λ1 = u− a (4.2.21)

and hence we obtain for the solution inside the rarefaction fan

u =
x

t
− a and F (ρ) = u− u1 +

∫ ρ

ρ1

a

σ
dσ = 0. (4.2.22)

Here ρ is obtained as the root of F (ρ). Similar we obtain the results for a right rarefaction

u2 − u1 =

∫ ρ2

ρ1

a

ρ
dρ,

dx

dt
=
x

t
= λ2 = u+ a,

u =
x

t
+ a and F (ρ) = u− u1 −

∫ ρ

ρ1

a

σ
dσ = 0. (4.2.23)

4.2.2.3 Shock Wave

The relation across a shock wave is given by

[[u]]2 = −JpK[[v]] =
[[p]][[ρ]]

ρ1ρ2
⇔ [[u]] = −

√
−JpK[[v]] = −

√
[[p]][[ρ]]

ρ1ρ2
. (4.2.24)

4.2.2.4 Solution of the Riemann Problem

If we now want to solve the Riemann problem for the isothermal Euler equations we just have to connect
the three constant states separated by the waves using the equations obtained above. Therefore we
assume the left and right state to be given and use that the velocity between the waves is constant. The
solution is obtained as the root of the following function

f(ρ,WL,WR) = fR(ρ,WR) + fL(ρ,WL) + uR − uL = 0, (4.2.25)

fK(ρ,WK) =



√
[[p]][[ρ]]

ρρK
, ρ > ρK (Shock)∫ ρ

ρK

a(σ)

σ
dσ, ρ ≤ ρK (Rarefaction)

, K ∈ {L,R}.

Due to p′(ρ) > 0 we could also state this problems in terms of the unknown pressure p, i.e.

f(p,WL,WR) = fR(p,WR) + fL(p,WL) + uR − uL = 0, (4.2.26)

fK(p,WK) =


√
−[[p]][[v]], p > pK (Shock)∫ p

pK

v(ζ)

a(ζ)
dζ, p ≤ pK (Rarefaction)

, K ∈ {L,R}.

In order to investigate f(p,WL,WR) we need information about the asymptotic behavior

v(p)
p→∞→ 0, v(p)

p→0→ ∞ and further
dv(p)

dp

(4.2.6)2
= −v(p)2

a(p)2
< 0.
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We obtain for fK(p,WK) in the case of a shock wave

d

dp
fK(p,WK) =

−[[v]] + [[p]] v
2

a2

2
√
−[[p]][[v]]

> 0, (4.2.27)

d2

dp2
fK(p,WK) = − 1

4(−[[p]][[v]])3/2

(
−4[[p]]2[[v]]

v3

a4
G +

(
[[p]]

v2

a2
− [[v]]

)2
)
< 0

For a rarefaction wave we yield

d

dp
fK(p,WK) =

v(p)

a(p)
> 0, (4.2.28)

d2

dp2
fK(p,WK) = −v(p)2

a(p)3
G < 0

Combining (4.2.27) with (4.2.28) gives

d

dp
f(p,WL,WR) > 0 and

d2

dp2
f(p,WL,WR) < 0. (4.2.29)

Using the asymptotic behavior of v(p) gives

f(p,WL,WR)
p→0→ −∞ and f(p,WL,WR)

p→∞→ +∞ (4.2.30)

and hence we have a unique root which determines the solution of our system.

4.3 Solution at the Interface

The phase boundary separating the liquid and the vapor phase is a non-classical or under compressive
shock, see [5] or [19] and references therein. Hence the Lax criterion alone will not give us a unique
solution and we need a further relation at the interface. This equation is called kinetic relation. We use
the kinetic relation derived by Dreyer et al. [8]. The kinetic relation is chosen such that the mass flux z
is proportional to the jump term in the entropy inequality (4.2.5)

z[[g + ekin]] ≥ 0.

If we assume the vapor left to the liquid phase the kinetic relation reads

z = τpV [[g + ekin]] = τpV [gL − gV + ekinL − ekinV ]. (4.3.1)

Otherwise we can use

z = −τpV [gL − gV + ekinL − ekinV ]. (4.3.2)

In the following we will assume the first case. In this section we will prove that there exists a unique
solution of the equations at the interface provided certain conditions hold. By this we mean that there
exists a unique liquid (vapor) state for a prescribed vapor (liquid) state such that the following equations
hold

[[z]] = 0,

−z[[u]] + [[p]] = 0,

z = τpV [[g + ekin]].

Here ekin denotes the kinetic energy. Furthermore we have for the so called mobility 0 < τ ∈ R. Usually
one uses

τ =
1√
2π

(
m

kT0

) 3
2

(4.3.3)
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where m denotes the mass of a single molecule, k the Boltzmann constant and T0 the fixed temperature,
see [4, 8]. Using the jump conditions (4.2.3)-(4.2.4) we can rewrite (4.3.1) and obtain

z = τpV [[g − 1

2
p(vL + vV )]]. (4.3.4)

Furthermore we can combine the jump conditions and obtain

[[p]] + z2[[v]] = 0. (4.3.5)

Together with the EOS and (4.3.4) equation (4.3.5) is a single equation for one unknown given one state
at the phase boundary. For example we will prescribe the vapor pressure and then obtain the liquid
pressure as the solution of equation (4.3.5). In the following we will assume as before that γV ≥ 0 and
GK > 0, K ∈ {V,L}. From the mathematical point of view we need further assumptions to solve the
problem. A discussion will be given later on and it will turn out that these assumptions are rather liberal
from a physical point of view, see Subsection 4.6.1. In the following we need the quotient of the specific
volumes to be uniformly bounded as well as the corresponding sound speeds

0 <
vL
vV
≤ α < 1, 0 <

vL
vV

aV
aL
≤ αβ < 1, τ(1− α)2a3

V < γV and

0 < pV ≤ σmaxp0 with σmax =
1 +
√

11− 6α

2
. (4.3.6)

Remark 4.3.1. The specific volume and the speed of sound depend on the pressure but for convenience
we often will not write out this dependence explicitly.

Now we can state one of the main results of this work.

Theorem 4.3.1 (Existence and Uniqueness of a Solution at the Interface). For two phases each described
by a thermodynamic consistent equation of state meeting the requirements (4.3.6) and

−aV /vV ≤ z ≤ aL/vL

exists a unique solution of equation (4.3.5). Furthermore the mass flux z is uniquely defined. The liquid
pressure can be written as a function of the vapor pressure and has the following properties

p∗L = ϕ(p∗V ) ≥ p∗V , ϕ(p0) = p0,
dϕ(p∗V )

dp∗V
> 0

In the remaining part of this section we will give the proof of this theorem.

4.3.1 Proof

The proof of Theorem 4.3.1 is based on the implicit function theorem. The main steps are the following

(i) We define a function f(pV , pL), see (4.3.7), which we will analyze and where the roots correspond
to the solution of (4.3.5).

(ii) The local existence of an admissible root, see Definition 4.3.1, for the equilibrium case (p0, p0) is
given in Remark 4.3.2.

(iii) Lemma 4.3.2 and Lemma 4.3.3 state that the first order derivatives of f(pV , pL) each have a sign
for an admissible solution.

(iv) Uniqueness is shown in Lemma 4.3.4 and global existence is stated and proven in Lemma 4.3.5.

Replacing z in (4.3.5) using (4.3.4) we obtain

[[p]] +

(
τpV [[g − 1

2
p(vL + vV )]]

)2

[[v]] = 0.
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According to this equation we define the following functions

h(pV , pL) := τ [[g − 1

2
p(vL + vV )]]

= τ

[
gL(pL)− gV (pV )− 1

2
(pL − pV )(vL(pL) + vV (pV ))

]
,

f(pV , pL) := [[p]] + (pV h(pV , pL))
2

[[v]]. (4.3.7)

Obviously every root of (4.3.7) is a solution of (4.3.5) and we easily see

0 = f(p∗V , p
∗
L)

[[v]]<0⇒ [[p]] ≥ 0. (4.3.8)

Let us furthermore define the following

Definition 4.3.1 (Admissible Solution). Let (p∗V , p
∗
L) be a solution of f(p∗V , p

∗
L) = 0. We say this

solution is admissible if further the following inequalities hold

−aV (p∗V )

vV (p∗V )
≤ p∗V h(p∗V , p

∗
L) ≤ aL(p∗L)

vL(p∗L)
.

The quantities aK and vK with K ∈ {L, V } are functions of the pressure as already mentioned in
Remark 4.3.1. Thus the bounds are evaluated at the pressures (p∗V , p

∗
L) which solve f(p∗V , p

∗
L) = 0.

Remark 4.3.2. It is immediately verified that a solution f(p∗V , p
∗
L) = 0 with p∗V = p∗L =: p0 implies

equilibrium gL(p∗L) = gV (p∗V ) and vice versa. Thus we further obtain

f(p0, p0) = 0, ∂pV f(p0, p0) = −1, ∂pLf(p0, p0) = 1 with p0h(p0, p0) = 0. (4.3.9)

Hence there exists a neighborhood of pV = p0 such that (4.3.5) implicitly defines a function pL = ϕ(pV )
with ϕ′(pV ) > 0. Additionally (p0, p0) is an admissible solution with z = 0.

Lemma 4.3.1. The function h(pV , pL) is strictly monotonically decreasing in pL under the given as-
sumptions, i.e.

∂pLh(pV , pL) < 0.

Proof. We obtain for the partial derivative of h(pV , pL) using (4.2.6)2

∂pLh(pV , pL) =
τ

2

{
[[v]] + [[p]]

v2
L

a2
L

}
.

Let us consider [[p]] ≥ 0 since it is the only relevant case and the statement is obvious for [[p]] ≤ anyway.
Since GL > 0 we yield for the second partial derivative with respect to pL using (4.2.6)2 and (4.2.11)

∂2
pLh(pV , pL) = −τ [[p]]

v3
L

a4
L

GL < 0.

For pL = pV we know that the Lemma is true and if we increase pL the function is decreasing. Keep in
mind that we have [[p]] > 0. Hence we conclude ∂pLh(pV , pL) < 0.

Corollary 4.3.1. Every root of (4.3.7) with z > 0 is admissible.

Proof. Using Lemma 4.3.1 one obtaines for f(p∗V , p
∗
L) = 0 with z = p∗V h(p∗V , p

∗
L)

z2 = (p∗V h(p∗V , p
∗
L))

2 (4.3.7)
= − [[p∗]]

[[v(p∗)]]

Lemma4.3.1
<

a2
L

v2
L

.

Lemma 4.3.2. Let (p∗V , p
∗
L) be an admissible solution of f(p∗V , p

∗
L) = 0. Then the following inequality

holds

∂pLf(p∗V , p
∗
L) > 0.
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Proof. For the equilibrium solution (4.3.9) the stated relation is obvious. Let us consider p∗V h(p∗V , p
∗
L) >

0. Using Lemma 4.3.1 and [[v]] < 0 we have

∂pLf(p∗V , p
∗
L) = 1 + 2 (p∗V h(p∗V , p

∗
L))︸ ︷︷ ︸

>0

(p∗V ∂pLh(p∗V , p
∗
L))[[v]]︸ ︷︷ ︸

>0

− (p∗V h(p∗V , p
∗
L))2 v

2
L

a2
L︸ ︷︷ ︸

<1

> 0.

It remains to prove the Lemma for the case p∗V h(p∗V , p
∗
L) < 0. We can write

∂pLf(p∗V , p
∗
L) = 1 + 2(p∗V h(p∗V , p

∗
L))(p∗V ∂pLh(p∗V , p

∗
L))[[v]]− (p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

= 1 + τp∗V (p∗V h(p∗V , p
∗
L))[[v]]2

(
1− (p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

)
− (p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

=

(
1− (p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

)(
1 + τp∗V (p∗V h(p∗V , p

∗
L))[[v]]2

)
.

The first term is positive, because of −aV /vV ≤ p∗V h(p∗V , p
∗
L) < 0 and a2

V /v
2
V < a2

L/v
2
L. For the second

term we have

0 < 1 + τp∗V (p∗V h(p∗V , p
∗
L))[[v]]2

p∗V h(p∗V ,p
∗
L)<0⇔ τ < − 1

p∗V (p∗V h(p∗V , p
∗
L))[[v]]2

.

Indeed we obtain

− 1

p∗V (p∗V h(p∗V , p
∗
L))[[v]]2

>
vV

p∗V aV [[v]]2
=

1

p∗V vV aV

(
vL
vV
− 1

)2

(4.3.6)1

≥ γV
(1− α)2a3

V

(4.3.6)3

> τ.

This proves the Lemma.

Lemma 4.3.3. Let (p∗V , p
∗
L) be an admissible solution of f(p∗V , p

∗
L) = 0. Then the following inequality

holds

∂pV f(p∗V , p
∗
L) < 0. (4.3.10)

Proof. Since we have f(p∗V , p
∗
L) = 0 we can write for ∂pV h(p∗V , p

∗
L)

∂pV h(p∗V , p
∗
L) =

τ

2

{
[[v]] + [[p]]

v2
V

a2
V

}
(4.3.7)

=
τ

2
[[v]]

(
1− (p∗V h(p∗V , p

∗
L))2 v

2
V

a2
V

)
(4.3.11)

and hence we conclude

∂pV h(p∗V , p
∗
L)


< 0, (p∗V h(p∗V , p

∗
L))2 <

a2
V

v2
V

,

≥ 0, (p∗V h(p∗V , p
∗
L))2 ≥ a2

V

v2
V

.

In the following we will discuss three cases depending on p∗V h(p∗V , p
∗
L).

First Case: We discuss the case where −aV /vV ≤ p∗V h(p∗V , p
∗
L) ≤ 0. It is obvious to see

∂pV f(p∗V , p
∗
L) =

−1 , p∗V h(p∗V , p
∗
L) = 0,

2
a2
V

p∗V v
2
V

[[v]] , p∗V h(p∗V , p
∗
L) = −aV

vV

 < 0.

In between we have −aV /vV < p∗V h(p∗V , p
∗
L) < 0 and so all together

∂pV f(p∗V , p
∗
L) = . . .

= −1 + 2 (p∗V h(p∗V , p
∗
L))︸ ︷︷ ︸

<0

(h(p∗V , p
∗
L) + p∗V ∂pV h(p∗V , p

∗
L))︸ ︷︷ ︸

<0

[[v]] + (p∗V h(p∗V , p
∗
L))2 v

2
V

a2
v︸ ︷︷ ︸

<1

< 0.
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For 0 < p∗V h(p∗V , p
∗
L) < aL/vL we split the proof into two parts. First we discuss the interval up to

aV /vV and then the remaining part smaller than aL/vL.

Second Case: Using 0 < p∗V h(p∗V , p
∗
L) ≤ aV /vV we obtain

∂pV f(p∗V , p
∗
L) = . . .

= −1 + 2(p∗V h(p∗V , p
∗
L))(h(p∗V , p

∗
L) + p∗V ∂pV h(p∗V , p

∗
L))[[v]] + (p∗V h(p∗V , p

∗
L))2 v

2
V

a2
V

(4.3.11)
=

(
1− (p∗V h(p∗V , p

∗
L))2 v

2
V

a2
V

)
︸ ︷︷ ︸

≥0

(
τp∗

2

V h(p∗V , p
∗
L)[[v]]2 − 1

)
+ 2p∗V (h(p∗V , p

∗
L))2[[v]]︸ ︷︷ ︸

<0

.

For the second term we obtain (as before in the proof of Lemma 4.3.2)

0 > τp∗V (p∗V h(p∗V , p
∗
L))[[v]]2 − 1

p∗V h(p∗V ,p
∗
L)>0⇔ τ <

1

p∗V (p∗V h(p∗V , p
∗
L))[[v]]2

.

and again we have

1

p∗V (p∗V h(p∗V , p
∗
L))[[v]]2

≥ vV
p∗V aV [[v]]2

=
1

p∗V vV aV

(
vL
vV
− 1

)2

(4.3.6)1

≥ γV
(1− α)2a3

V

(4.3.6)3

> τ.

This proves the Lemma for 0 < p∗V h(p∗V , p
∗
L) ≤ aV /vV .

Third Case: We discuss aV /vV < p∗V h(p∗V , p
∗
L) < aL/vL and rewrite ∂pV f(p∗V , p

∗
L) to obtain with

an analogue argument as used before

∂pV f(p∗V , p
∗
L) = . . .

= −1 + 2(p∗V h(p∗V , p
∗
L))(h(p∗V , p

∗
L) + p∗V ∂pV h(p∗V , p

∗
L))[[v]] + (p∗V h(p∗V , p

∗
L))2 v

2
V

a2
V

= −
(

1− (p∗V h(p∗V , p
∗
L))2 v

2
V

a2
V

)
+ 2(p∗V h(p∗V , p

∗
L))(p∗V ∂p∗V h(p∗V , p

∗
L))[[v]] + 2p∗V h(p∗V , p

∗
l )

2[[v]]

(4.3.11)
= − 2

τ [[v]]
∂pV h(p∗V , p

∗
L) + p∗V h(p∗V , p

∗
L))(p∗V ∂p∗V h(p∗V , p

∗
L))[[v]] + 2p∗V h(p∗V , p

∗
l )

2[[v]]

= − 2

τ [[v]]
∂pV h(p∗V , p

∗
L)︸ ︷︷ ︸

>0

(
1− τp∗V [[v]]2p∗V h(p∗V , p

∗
L)
)︸ ︷︷ ︸

(4.3.6)

<0

+ 2p∗V h(p∗V , p
∗
l )

2[[v]]︸ ︷︷ ︸
<0

< 0.

This ends the proof.

Corollary 4.3.2 (Monotonicity of the Implicit Function). Let (p∗V , p
∗
L) be an admissible solution f(p∗V , p

∗
L) =

0. Then there exists a function ϕ with p∗L = ϕ(p∗V ) which is strictly monotonically increasing, i.e.
ϕ′(p∗V ) > 0.

Proof. This follows using the implicit function theorem together with Lemma 4.3.2 and 4.3.3.

Corollary 4.3.3. During a condensation process both pressures are larger than the saturation pressure

p0 < pV < pL

whereas during evaporation both pressures are smaller than the saturation pressure

pV < pL < p0.

Proof. This follows from Corollary 4.3.2 and pL(p0) = p0.
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Lemma 4.3.4 (Uniqueness). Let (p∗V , p
∗
L) be an admissible solution of f(p∗V , p

∗
L) = 0. Then this root is

unique in the sense that for a given p∗V the solution p∗L is unique.

Proof. First we assume that there exists a p∗∗L > p∗L such that f(p∗V , p
∗∗
L ) = 0. From Lemma 4.3.2 we

know that ∂pLf(p∗V , p
∗
L) > 0. Hence we have (monotonicity argument) ∂pLf(p∗V , p

∗∗
L ) ≤ 0. Therefore we

have

p∗V h(p∗V , p
∗∗
L ) < −aV

vV︸ ︷︷ ︸
I

∨̇ p∗V h(p∗V , p
∗∗
L ) >

aL
vL︸ ︷︷ ︸

II

(4.3.12)

otherwise we would meet the requirements of Lemma 4.3.2. Since p∗V h(p∗V , p
∗
L) ≤ aL/vL and Lemma

4.3.1 we can exclude II. Assuming I is true we have that the root (p∗V , p
∗∗
L ) itself is not admissible and

every possible further root with pL > p∗∗L would also fulfill relation I due to Lemma 4.3.1 and thus is not
admissible.
Now we assume that there exists a p∗∗L < p∗L such that f(p∗V , p

∗∗
L ) = 0. As in the first case we have the

two possibilities (4.3.12). The arguments are now quite analogue to the first case. We can exclude I
since

−aV
vV
≤ p∗V h(p∗V , p

∗
L) < p∗V h(p∗V , p

∗∗
L ).

Therefore relation II must hold and p∗∗L is no admissible root. Due to Lemma 4.3.1 every further solution
pL < p∗∗L also fulfills II. This proves uniqueness.

Lemma 4.3.5 (Global Existence). For every p∗V ∈ [0, σmaxp0] exists a p∗L ∈ [p∗V ,∞) such that (p∗V , p
∗
L)

is an admissible root of f(p∗V , p
∗
L) = 0.

Proof. We already have local existence in a neighborhood of (p0, p0) due to the implicit function theo-
rem. In the following we discriminate the cases depending on whether pV is smaller or larger than the
saturation pressure p0.

First Case (0 ≤ pV < p0): Assume that there exists a pV < p0 such that there exists no pL with
f(pV , pL) = 0. Using the above results we know that there exists an admissible root (p∗V , p

∗
L) in the

neighborhood of (p0, p0) and due to monotonicity/continuity a further root pV < p̄V < p∗V and p̄L such
that

f(p̄V , p̄L) = 0 ∧ ∂pLf(p̄V , p̄L) = 0.

Hence this root is not admissible due to Lemma 4.3.2. On the other hand we have, due to the behavior
of the function h(pV , pL) in (p0, p0) and the fact that

f(pV , pL) = 0 ∧ h(pV , pL) = 0 ⇔ [[p]] = 0,

that h(p̄V , p̄L) > 0 for p̄V < p0. Together with Corollary 4.3.1 this gives

0 < p̄V h(p̄V , p̄L) ≤ aL
vL
.

This contradicts the above statement that the root p̄V is not admissible. Therefore the nonexistence
assumption is wrong and we have global existence for 0 ≤ pV < p0.

Second Case (p0 < pV ≤ σmaxp0): The idea is again to show, that there exists no p0 < p∗V ≤ σmaxp0

such that

f(p∗V , p
∗
L) = 0 ∧ ∂pLf(p∗V , p

∗
L) = 0. (4.3.13)

Let us assume we have (p∗V , p
∗
L) such that the above relation holds. From that we can conclude

∂pLf(p∗V , p
∗
L) = 0 ⇔

(p∗V h(p∗V , p
∗
L))

2
= (1 + 2(p∗V h(p∗V , p

∗
L))(p∗V ∂pLh(p∗V , p

∗
L))[[v]])

a2
L

v2
L

.
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Inserting this expression in 0 = f(p∗V , p
∗
L) gives

0 = f(p∗V , p
∗
L) = [[p]] + (p∗V h(p∗V , p

∗
L))

2
[[v]]

= [[p]] + (1 + 2(p∗V h(p∗V , p
∗
L))(p∗V ∂pLh(p∗V , p

∗
L))[[v]])

a2
L

v2
L

[[v]]

= [[p]] + [[v]]
a2
L

v2
L

+ 2(p∗V h(p∗V , p
∗
L))(p∗V ∂pLh(p∗V , p

∗
L))[[v]]2

=
2

τ

a2
L

v2
L

∂pLh(p∗V , p
∗
L) + 2(p∗V h(p∗V , p

∗
L))(p∗V ∂pLh(p∗V , p

∗
L))[[v]]2

=
2

τ
∂pLh(p∗V , p

∗
L)
a2
L

v2
L

(
1 + τ p∗V

2 h(p∗V , p
∗
L)[[v]]2

)
We define the function

H(pV , pL) = 1 + τp2
V h(pV , pL)[[v]]2.

Due to Lemma 4.3.1 we have H(p∗V , p
∗
L) = 0 and hence

p∗V h(p∗V , p
∗
L) = − 1

τp∗V [[v]]2
. (4.3.14)

Further we can rewrite ∂pLf(pV , pL) in terms of H(pV , pL), i.e.

∂pLf(pV , pL) = − v2
L

(τpV aL[[v]]2)
2 (H(pV , pL)− 1)2 +

(
1 +

[[p]]

[[v]]

v2
L

a2
L

)
(H(pV , pL)− 1) + 1.

From this we immediately get

H(pV , pL) = ∂pLf(pV , pL) ⇔

0 = (H(pV , pL)− 1)

(
− v2

L

(τpV aL[[v]]2)
2 (H(pV , pL)− 1) +

[[p]]

[[v]]

v2
L

a2
L

)
.

For the considered root (p∗V , p
∗
L) we can exclude the first case since H(p∗V , p

∗
L) = 1 if and only if

p∗V h(p∗V , p
∗
L) = 0. Hence we further look at the second term which must vanish for (p∗V , p

∗
L) and ob-

tain

H(p∗V , p
∗
L) =

(
τp∗V [[v]]2

)2 [[p]]

[[v]]
+ 1 ⇔ p∗V h(p∗V , p

∗
L) = τp∗V [[p]][[v]]. (4.3.15)

Summing up we can state that there are two conditions (4.3.14) and (4.3.15) which need to be true for
(p∗V , p

∗
L) when (4.3.13) holds. For equation (4.3.14) we easily verify

p∗V h(p∗V , p
∗
L) = − 1

τp∗V [[v]]2

(4.3.6)1

≤ − 1

τp∗V v
2
V (1− α)2

(4.3.6)3

< −aV
vV

. (4.3.16)

Now we investigate (4.3.15) and prove that this implies p∗V h(p∗V , p
∗
L) > −aV /vV . This would contradict

(4.3.16) and hence finish the proof.
First we introduce the following functions for fixed p∗V

F (pL) := p∗V h(p∗V , pL), F ′(pL) = p∗V ∂pLh(p∗V , pL),

G(pL) := τp∗V [[p]][[v]], G′(pL) = τp∗V

{
[[v]]− [[p]]

v2
L

a2
L

}
.

We immediately verify for all pL ≥ p∗V

G′(pL) < F ′(pL) < 0.
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Furthermore we have

G(p∗V ) = 0
p∗V >p0

> F (p∗V ) = p∗V h(p∗V , p
∗
V ) = τp∗V [[g(p∗V )]].

Surely there is a p̄L > p∗V such that

G(p̄L) = −aV
vV

with p̄L = p∗V −
aV

τp∗V vV [[v]]
≤ p∗V +

aV
τp∗V v

2
V (1− α)

. (4.3.17)

Now we investigate F (p̄L) and obtain

F (p̄L) = p∗V h(p∗V , p̄L) = τp∗V

{
[[g]]− 1

2
[[p]](vL + vV )

}
(4.3.17)

= τp∗V ([[g]]− vV [[p]]) +
1

2

aV
vV

.

We have for p∗V = σp0 with σ ∈ [1, σmax]

τp∗V ([[g]]− vV [[p]])
gL(p̄L)>gL(p∗V )

> τp∗V ([[g(p∗V )]]− vV [[p]])

(4.3.17)

≥ τp∗V

{
[[g(p∗V )]]− aV

τp∗V vV (1− α)

}
= τp∗V [[g(p∗V )]]− aV

vV (1− α)

Taylor

≥ τp∗V [[v(p0)]](p∗V − p0)− aV
vV (1− α)

>
vV (p0)

aV (p0)[[v(p0)]]
σ(σ − 1)p0 −

aV
vV (1− α)

≥ −aV (p0)

vV (p0)

σ(σ − 1)

1− α
− aV
vV (1− α)

d
dp

a(p)
v(p)

>0

> −aV (p∗V )

vV (p∗V )

σ(σ − 1)− 1

1− α
σ≤σmax
≥ −3

2

aV
vV

.

This gives us F (p̄L) > G(p̄L) and so there exists a p∗∗L ∈ (p∗V , p̄L) such that

F (p∗∗L ) = G(p∗∗L ) > −aV
vV

. (4.3.18)

Thus condition (4.3.15) contradicts the first condition (4.3.14). Hence there exists no (p∗V , p
∗
L) such that

pL
p∗V p∗∗L p̄L

−aVvV
F (pL)

G(pL)

Figure 4.1: Idea for the contradiction argument

relation (4.3.13) holds. This implies global existence for all p0 < pV ≤ σmaxp0 and finishes the proof.

4.4 Solution of the Two Phase Riemann Problem

In this section we want to solve the Riemann problem. Therefore we follow the strategy of constructing
wave curves and obtain the solution as the intersection of the wave curves, as for example done in [21,31].
Due to the phase boundary we have an additional term, but we still want to show uniqueness of a solution
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to the Riemann problem. Hence we need a further monotonicity argument which we will prove in the
following.
To this end we additionally need bounds for the dimensionless speed of sound γV and γL. We distinguish
two relevant cases, each with an appropriate condition needed to prove monotonicity. This is necessary
especially for EOS (or equivalently fluids) near the critical point, e.g. van der Waals EOS. Further these
conditions show that the dimensionless quantities are not independent of each other. We consider the
following relevant cases

(I)

γV ≤ 1 and 1 ≤ γL with,
1

γL
≥ 1 +

ε(γV )

α
.

(4.4.1)

(II)


γV < 1 and γL < 1 with,

α ≤
1− 1

γV

1− 1
γL

and ε(γV ) ≤ 0.

The quantity ε(γV ) is defined as follows, using all quantities as introduced before,

ε(γV ) :=
1

γV
− 1− τa3

V

γ2
V

(1− α)2
(
1− (αβ)2

)
. (4.4.2)

So far we proved in Section 4.3 that there exists a unique solution of the jump conditions at the interface.
Furthermore we can express the pressure in the liquid phase as a strictly monotone increasing function
of the vapor pressure

p∗L = ϕ(p∗V ) with ϕ′(p∗V ) > 0.

Lemma 4.4.1. Given the requirements (4.3.6) and (4.4.1). For an admissible solution f(p∗V , p
∗
L) = 0

the following monotonicity holds

d

dpV
(p∗V h(p∗V , p

∗
L)[[v]]) ≥ 0.

Proof. We have

d

dpV
(p∗V h(p∗V , p

∗
L)[[v]]) = ∂pV (p∗V h(p∗V , p

∗
L)[[v]]) + ∂pL (p∗V h(p∗V , p

∗
L)[[v]])ϕ′(p∗V )

= (h(p∗V , p
∗
L) + p∗V ∂pV h(p∗V , p

∗
L))[[v]] + p∗V h(p∗V , p

∗
L)
v2
V

a2
V

+

{
p∗V ∂pLh(p∗V , p

∗
L)[[v]]− p∗V h(p∗V , p

∗
L)
v2
L

a2
L

}
ϕ′(p∗V ).

For (p0, p0) the statement is obvious and hence we assume p∗V h(p∗V , p
∗
L) 6= 0 from now on. Now we can

write

d

dpV
(p∗V h(p∗V , p

∗
L)[[v]]) =

1

2p∗V h(p∗V , p
∗
L)

(∂pV f(p∗V , p
∗
L) + 1) +

1

2
p∗V h(p∗V , p

∗
L)
v2
V

a2
V

+

{
1

2p∗V h(p∗V , p
∗
L)

(∂pLf(p∗V , p
∗
L)− 1)− 1

2
p∗V h(p∗V , p

∗
L)
v2
L

a2
L

}
ϕ′(p∗V ).

We multiply with ∂pLf(p∗V , p
∗
L) > 0 and use

ϕ′(p∗V ) = −∂pV f(p∗V , p
∗
L)

∂pLf(p∗V , p
∗
L)
.
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Thus we obtain

∂pLf(p∗V , p
∗
L)

d

dpV
(p∗V h(p∗V , p

∗
L)[[v]]) = . . .

=

{
1

2p∗V h(p∗V , p
∗
L)

(∂pV f(p∗V , p
∗
L) + 1) +

1

2
p∗V h(p∗V , p

∗
L)
v2
V

a2
V

}
∂pLf(p∗V , p

∗
L)

−
{

1

2p∗V h(p∗V , p
∗
L)

(∂pLf(p∗V , p
∗
L)− 1)− 1

2
p∗V h(p∗V , p

∗
L)
v2
L

a2
L

}
∂pV f(p∗V , p

∗
L)

=
1

2p∗V h(p∗V , p
∗
L)

(∂pV f(p∗V , p
∗
L) + ∂pLf(p∗V , p

∗
L))

+
1

2
p∗V h(p∗V , p

∗
L)

(
∂pV f(p∗V , p

∗
L)
v2
L

a2
L

+ ∂pLf(p∗V , p
∗
L)
v2
V

a2
V

)
= (h(p∗V , p

∗
L) + pV ∂pV h(p∗V , p

∗
L))

(
1 + (p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

)
[[v]]

+ pV ∂pLh(p∗V , p
∗
L)

(
1 + (p∗V h(p∗V , p

∗
L))2 v

2
V

a2
V

)
[[v]] + p∗V h(p∗V , p

∗
L)

(
v2
V

a2
V

− v2
L

a2
L

)
= h(p∗V , p

∗
L)[[v]]

(
1 + (p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

)
− p∗V h(p∗V , p

∗
L)[[

v2

a2
]]

+ τpV [[v]]2
(

1− (p∗V h(p∗V , p
∗
L))4 v

2
V

a2
V

v2
L

a2
L

)
= h(p∗V , p

∗
L)

(
[[v]] + [[v]](p∗V h(p∗V , p

∗
L))2 v

2
L

a2
L

− p∗V [[
v2

a2
]]

)
+ τpV [[v]]2

(
1− (p∗V h(p∗V , p

∗
L))4 v

2
V

a2
V

v2
L

a2
L

)
= h(p∗V , p

∗
L)

(
vL

(
1− p∗LvL

a2
L

)
− vV

(
1− p∗V vV

a2
V

))
+ τpV [[v]]2

(
1− (p∗V h(p∗V , p

∗
L))4 v

2
V

a2
V

v2
L

a2
L

)

Due to the bounds for the EOS we can show

(
vL

(
1− p∗LvL

a2
L

)
− vV

(
1− p∗V vV

a2
V

))
≥ 0.

and hence we can immediately verify the Lemma for

0 < p∗V h(p∗V , p
∗
L) ≤

√
aV
vV

aL
vL
. (4.4.3)
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Now we want to prove the result for 0 > p∗V h(p∗V , p
∗
L) ≥ −aV /vV . We have

h(p∗V , p
∗
L)

(
vL

(
1− p∗LvL

a2
L

)
− vV

(
1− p∗V vV

a2
V

))
+ τp∗V [[v]]2

(
1− (p∗V h(p∗V , p

∗
L))4 v

2
V

a2
V

v2
L

a2
L

)
≥ − aV

p∗V vV

(
vL

(
1− 1

γL

)
− vV

(
1− 1

γV

))
+ τp∗V [[v]]2

(
1− a2

V

v2
V

v2
L

a2
L

)
≥ −γV

aV

(
vL

(
1− 1

γL

)
− vV

(
1− 1

γV

))
+ τv2

V p
∗
V (1− α)2

(
1− (αβ)2

)
= −vV

aV

(
γV
γL

vL
vV

(γL − 1) + (1− γV )

)
+ τv2

V p
∗
V (1− α)2

(
1− (αβ)2

)
= −vV

aV

(
γV
γL

vL
vV

(γL − 1) + (1− γV )− τa3
V

γV
(1− α)2

(
1− (αβ)2

))
(+)

γL≥1

≥ −vV
aV

(
α
γV
γL

(γL − 1) + (1− γV )− τa3
V

γV
(1− α)2

(
1− (αβ)2

))
≥ αγV

vV
aV

(
1

γL
−
(

1 +
ε(γV )

α

))
(4.4.1)(I)

≥ 0.

Starting from (+) we obtain for the case 1 > γ for both phases

− vV
aV

(
γV
γL

vL
vV

(γL − 1) + (1− γV )− τa3
V

γV
(1− α)2

(
1− (αβ)2

))
≥ −vV

aV

(
1− γV −

τa3
V

γV
(1− α)2

(
1− (αβ)2

))
= −γV

vV
aV

ε(γV )

(4.4.1)(II)

≥ 0.

It remains the case for √
aV
vV

aL
vL

< p∗V h(p∗V , p
∗
L) <

aL
vL
.

In the subsequent Lemma 4.4.2 we will exclude this case and thus the proof of this Lemma is finished.

Remark 4.4.1 (Assumptions on γ). In Lemma 4.4.1 we only consider cases where γV ∈ (0, 1] for the
vapor phase. As mentioned before the lower bound ensures hyperbolicity and thermodynamic stability.
The upper bound is due to the fact, that we only consider pressures and temperatures below the critical
point.
To illustrate this we consider the isothermal compressibility κT which is defined as follows

κT = −v
(
∂v

∂p

)
T

.

For real gases κT can be expressed in terms of the pressure and the compressibility or gas deviation
factor Z (not to confuse with the mass flux z used in this work), i.e.

κT =
1

p
− 1

Z

(
∂Z
∂p

)
T

.

Below the critical point the second term is negative for most gases and hence

κT >
1

p
⇔ γV =

1

pκT
< 1.

This property is reflected by nonlinear EOS such as the van der Waals or Dieterici EOS. For an ideal
gas the second term vanishes and we obtain γV = 1.
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Lemma 4.4.2. Consider two phases such that the requirements (4.3.6) are fulfilled. Then there exists a
maximal mass flux zmax such that for every admissible solution f(p∗V , p

∗
L) = 0 the following upper bound

holds

zmax ≤
√
aV
vV

aL
vL
.

Proof. Since z(pV ) = 0 if and only if pV = p0 and further z(p0)′ < 0 we can focus on vapor pressures
smaller than p0. We assume that

zmax >

√
aV
vV

aL
vL
.

Hence there exists a p̃ ∈ (0, p0) such that

z(p̃) = p̃h(p̃, ϕ(p̃)) =

√
aV
vV

aL
vL

and z′(p̃) ≤ 0.

This gives

0 ≥ z′(p̃) =
1

p̃

√
aV
vV

aL
vL

+ p̃ (∂pV h(p̃, ϕ(p̃)) + ∂pLh(p̃, ϕ(p̃))ϕ′(p̃))

=
1

p̃

√
aV
vV

aL
vL

+
τ p̃

2
[[v]]

(
1− aL

aV

vV
vL

+

(
1− aV

aL

vL
vV

)
ϕ′(p̃)

)
=

1

p̃

√
aV
vV

aL
vL︸ ︷︷ ︸

>0

+
τ p̃

2
[[v]]

(
1− aV

aL

vL
vV

)
︸ ︷︷ ︸

<0

(
ϕ′(p̃)− aL

aV

vV
vL

)

⇒ ξ := ϕ′(p̃) >
aL
aV

vV
vL
≥ 1

αβ

(4.3.6)2

> 1.

Using the definition of ϕ′(pV ) we obtain

− ∂pV f(p̃, ϕ(p̃)) = ∂pLf(p̃, ϕ(p̃))ξ

⇔

1− 2

√
aV
vV

aL
vL

(
1

p̃

√
aV
vV

aL
vL

+ p̃∂pV h(p̃, ϕ(p̃))

)
[[v]]− aL

vL

vV
aV

= ξ

(
1 + 2

√
aV
vV

aL
vL
p̃∂pLh(p̃, ϕ(p̃))[[v]]− aV

vV

vL
aL

)
⇔

1− ξ +
aV
vV

aL
vL

(
ξ
v2
L

a2
L

− v2
V

a2
V

)
= . . .

= 2

√
aV
vV

aL
vL

[[v]]

(
1

p̃

√
aV
vV

aL
vL

+ p̃(∂pV h(p̃, ϕ(p̃)) + ξ∂pLh(p̃, ϕ(p̃)))

)
. (4.4.4)

For the right hand side of (4.4.4) we easily see

2

√
aV
vV

aL
vL

[[v]]

(
1

p̃

√
aV
vV

aL
vL

+ p̃(∂pV h+ ξ∂pLh)

)
= 2

√
aV
vV

aL
vL

[[v]]z′(p̃) ≥ 0.

If we consider the left hand side of (4.4.4) as a function of ξ we get

d

dξ

(
1− ξ +

aV
vV

aL
vL

(
ξ
v2
L

a2
L

− v2
V

a2
V

))
= −1 +

aV
aL

vL
vV
≤ −1 + αβ < 0.

Thus the left hand side of (4.4.4) is strictly decreasing in ξ and we have

1− ξ +
aV
vV

aL
vL

(
ξ
v2
L

a2
L

− v2
V

a2
V

)
ξ=1
=

aV
vV

aL
vL

[[
v2

c2
]] < 0.

Since ξ > 1 the left hand side of (4.4.4) is negative and hence contradicts the positive right hand side.
Therefore the assumption for zmax is wrong.
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Remark 4.4.2. Lemma 4.4.2 is a direct improvement of Corollary 4.3.1 obtained during the proof of
Theorem 4.3.1. There we stated that the upper bound aL/vL for the mass flux z is always fulfilled.

Now we consider two phase flows, where we initially have the vapor phase on the left (x < 0) and the
liquid phase on the right side (x > 0). The different phases are described using the corresponding EOS.
The considered Riemann initial data is

ρ(x, 0) =

{
ρV , x < 0

ρL, x > 0
and u(x, 0) =

{
uV , x < 0

uL, x > 0
. (4.4.5)

The solution consists of two classical waves and the phase boundary separating four constant states.
Hence there are three possible wave patterns, see Figure 4.2.

x
(a)

t

x
(b)

t

x
(c)

t

Figure 4.2: Wave patterns. Solid line: classical waves. Dashed line: phase boundary

4.4.1 1st Case: Two Phase Flow without Phase Transition

At first we want to deal with the case where phase transition is excluded, i.e. z = 0. Let us consider a
wave pattern of type (b), see Figure 4.2. The four constant states are denoted as follows

WV =

(
ρV
uV

)
, W∗

V =

(
ρ∗V
u∗V

)
, W∗

L =

(
ρ∗L
u∗L

)
, WL =

(
ρL
uL

)
.

As in Section 4.2.2 we want to derive a single function such that the single root p is the solution for
the pressure p∗V . This procedure again uses the constancy of pressure and velocity across the phase
boundary, u∗V = u∗L and p∗V = p∗L, which is because of z = 0. For the solution we use the results obtained
in Section 4.2.

Theorem 4.4.1 (Solution without Phase Transition). Let f(p,WV ,WL) be given as

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + ∆u, ∆u = uL − uV ,

with the functions fV andfL given by

fK(p,WK) =


√
−[[p]][[vK ]], p > pK (Shock)∫ p

pK

vK(ζ)

aK(ζ)
dζ, p ≤ pK (Rarefaction)

, K ∈ {V,L}.

If there is a root f(p∗,WV ,WL) = 0 with 0 < p∗ ≤ p̃, then this root is unique. Here p̃ is given as
in Definition 4.2.2. Further this is the unique solution for the pressure p∗V of the Riemann problem
(4.2.1)-(4.2.2), (4.4.5). The velocity u∗ := u∗V = u∗L is given by

u∗ =
1

2
(uL + uV ) +

1

2
(fL(p∗,WV )− fV (p∗,WL)).

Proof. The function f is strictly monotone increasing in p due to the inequalities (4.2.27), (4.2.28) and
Lemma 4.4.1. Furthermore we have f(p,WV ,WL) → −∞ for p → 0. Hence f has at most one unique
root, which is by construction the solution for the pressure p∗V . The statement for the velocity u∗ follows
immediately from the results in Section 4.2.
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Note that one has to choose the corresponding EOS to calculate the pressure depending quantities
according to the index K ∈ {L, V }.

Theorem 4.4.2 (Sufficient Condition for Solvability). Consider the Riemann problem (4.2.1)-(4.2.2),
(4.4.5). We have two cases.

(i) For pL < pV = p̃ the considered Riemann problem is solvable if and only if

f(p̃,WV ,WL) = . . .

=
√
−(p̃− pV )(vV (p̃)− vV (pV )) +

√
−(pL − p̃)(vL(pL)− vL(p̃)) + ∆u ≥ 0.

(ii) For pL ≥ p̃ the considered Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
√
−(p̃− pV )(vV (p̃)− vV (pV )) +

∫ p̃

pL

vL(ζ)

aL(ζ)
dζ + ∆u ≥ 0.

Proof. As seen before in the proof of Theorem 4.4.1, f is strictly monotone increasing in p with
f(p,WV ,WL)→ −∞ for p→ 0. Accordingly f has a unique root if and only if f(p,WV ,WL) ≥ 0 for
p→ p̃.

So far we discussed the case that the solution is of type (b). The following result deals with the cases
(a) and (c).

Lemma 4.4.3. There exists no solution of wave pattern types (a) and (c). This includes the coincidence
of a classical wave and the phase boundary.

Proof. Let us first discuss case (c). For the notation see Figure 4.3. Since z = 0 we have w = uL = u∗V

x

t

WV W∗∗
V W∗

V WL

Figure 4.3: Wave pattern of type (c) with notation

for the velocity of the interface. Further we assume, that the right classical wave is a shock moving with
speed S. It is obvious that w ≥ S must hold. For the case of a right shock we have p∗∗V > p∗V and hence
we obtain from the entropy inequality Q < 0, see Subsection 4.2.2.1. Now we make use of the continuity
of the mass flux across a shock wave and obtain

Q = ρ∗V (u∗V − S) ⇔ u∗V − S =
Q

ρ∗V

u∗V =w⇔ S = w − Q

ρ∗V
> w.

This contradicts the condition w ≥ S. If, on the other hand, the right classical wave is a rarefaction
wave we have for the head speed u∗V + aV , see Subsection 4.2.2.2. Again this contradicts w = uL =
u∗V ≥ u∗V + aV . In case that the phase boundary lies inside the rarefaction wave, we obtain similar
contradictions in the wave speeds. For wave pattern type (a) the arguments are analogue.
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4.4.2 2nd Case: Two Phase Flow with Phase Transition

Now we want to take phase transition into account, i.e. z 6= 0. As before we first want to discuss the
wave pattern of type (b), see Figure 4.2. In order to determine the solution we again construct a function
analogue to Subsection 4.4.1. For the left and right classical waves we use

u∗V = uV − fV (p∗V ,WV ) and u∗L = uL + fL(p∗L,WL). (4.4.6)

Across the phase boundary we make use of the jump conditions and obtain as in Subsection 4.2.2.1

[[u]] = u∗L − u∗V = z[[v]] = z(vL(p∗L)− vV (p∗V )). (4.4.7)

Finally we use the results obtained in Section 4.3, especially Theorem 4.3.1, to express the liquid pressure
at the interface as a function of the interface vapor pressure pL = ϕ(pV ). Combining these considerations
we end up with the following theorem.

Theorem 4.4.3 (Solution with Phase Transition). Let fz(p,WV ,WL) be given as

fz(p,WV ,WL) = fV (p,WV ) + fL(ϕ(p),WL) + z[[v]] + ∆u, ∆u = uL − uV ,

with the functions fV andfL given by

fV (p,WV ) =


√
−[[p]][[v]], p > pV (Shock)∫ p

pV

vV (ζ)

aV (ζ)
dζ, p ≤ pV (Rarefaction)

,

fL(ϕ(p),WL) =


√
−[[p]][[v]], ϕ(p) > pL (Shock)∫ ϕ(p)

pL

vL(ζ)

aL(ζ)
dζ, ϕ(p) ≤ pL (Rarefaction)

.

The function ϕ(p) is implicitly defined by (4.3.5) and the mass flux is given by (4.3.4). If there is a root
fz(p

∗,WV ,WL) = 0 with 0 < p∗ ≤ p̃, this root is unique. If further

p∗ > pV we must have z > −aV (p̄)

vV (p̄)
for p̄ ∈ (pV , p

∗). (4.4.8)

Then p∗ is the unique solution for the pressure p∗V of a (b)-type solution of the Riemann problem (4.2.1)-
(4.2.2), (4.4.5) with phase transition. If there is no root or condition (4.4.8) is not satisfied, then there
is no solution to the mentioned Riemann problem.

Proof. Due to (4.2.27), (4.2.28), Corollary 4.3.2 and Lemma 4.4.1 we get that the function fz is strictly
monotone increasing in p. Furthermore we have f(p,WV ,WL)→ −∞ for p→ 0. Hence f has at most
one unique root, which is by construction the solution for the pressure p∗V . Theorem 4.3.1 then uniquely
defines the liquid pressure p∗L = ϕ(p∗V ) and the mass flux z at the interface. The remaining quantities
can be calculated using the EOS and (4.4.6).

Remark 4.4.3. Condition (4.4.8) is needed in the case of a shock wave in the vapor phase to guarantee
that w > S. Where w denotes the velocity of the interface and S of the shock respectively. This can be
obtained as follows

u∗V − S = vV (p∗V )QS and u∗V − w = −vV (p∗V )z ⇔ w − S = vV (p∗V )(QS + z)

⇒ S < w ⇔ z > −QS = −aV (p̄)

vV (p̄)
.

For the last equality we used the Lax condition for S together with the monotonicity of a(p)/v(p). If this
condition is not satisfied by the root fz(p

∗,WV ,WL) = 0, the root is meaningless.

Theorem 4.4.4 (Sufficient Condition for Solvability I). If the Riemann problem (4.2.1)-(4.2.2), (4.4.5)
is solvable without phase transition, see Subsection 4.4.1, then the same Riemann problem is also solvable
taking into account phase transition according to the kinetic relation (4.3.4).
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Proof. First Case f(p∗,WV ,WL) = 0 with p∗ = p0: In view of Section 4.3 we have p0 = ϕ(p∗), z = 0
and hence fz(p

∗,WV ,WL) = 0.

Second Case f(p∗,WV ,WL) = 0 with p∗ > p0: From that we have

ϕ(p∗)
4.3.1
> p∗ > p0 and z(p∗) = p∗h(p∗, ϕ(p∗)) < 0.

This gives

fz(p
∗,WV ,WL) > f(p∗,WV ,WL) = 0.

So there exists a p∗V < p∗ such that fz(p
∗
V ,WV ,WL) = 0.

Third Case f(p∗,WV ,WL) = 0 with p∗ < p0: In this situation we obtain

0 = f(p∗,WV ,WL)
p∗<p0

< f(p0,WV ,WL)
ϕ(p0)=p0,z=0

= fz(p0,WV ,WL)

Hence there exists a p∗V < p0 such that fz(p
∗
V ,WV ,WL) = 0.

Corollary 4.4.1. Consider the Riemann problem (4.2.1)-(4.2.2), (4.4.5) without phase transition and
let p∗ be the solution for the pressure. Then we have for the same Riemann problem with phase transition
and the corresponding solutions p∗V and p∗L = ϕ(p∗V ) the following relations:

(1) p∗ = p0 implies p∗V = p∗L = p0, i.e. equilibrium.

(2) p∗ > p0 implies p0 < p∗V < p∗, i.e. condensation.

(3) p∗ < p0 implies p∗ < p∗L < p0, i.e. evaporation.

Proof. The equilibrium case is obvious. The inequality p∗V < p∗ in the second was obtained in the second
part in the proof of Theorem 4.4.4. It remains to show that p0 < p∗V . Assume that p∗V ≤ p0, this gives

0 = fz(p
∗
V ,WV ,WL) ≤ fz(p0,WV ,WL)

= f(p0,WV ,WL)
p0<p

∗

< f(p∗,WV ,WL) = 0.

For the evaporation case the inequality p∗L < p0 is a consequence of the third part in the proof of Theorem
4.4.4. There we obtained p∗V < p0 and this gives, together with Theorem 4.3.1, the second inequality.
Finally we want to prove the first inequality p∗ < p∗L. Again using Theorem 4.3.1 gives p∗V > p0 if we
assume p∗L > p0. By an analogous argument as for the second case this leads to a contradiction. Thus
we have p∗L < p0.

Theorem 4.4.5 (Sufficient Condition for Solvability II). Consider the Riemann problem (4.2.1)-(4.2.2),
(4.4.5) with phase transition. This Riemann problem is solvable by a (b)-type solution if and only if
condition (4.4.8) holds and

fz(p̃,WV ,WL) ≥ 0.

Proof. The statement is obvious, since it guarantees a root for fz.

As in Subsection 4.4.1 we want to discuss wave patterns of type (a) and (c) for the Riemann problem
(4.2.1)-(4.2.2), (4.4.5) with phase transition. The results are given in the subsequent three lemmata.

Lemma 4.4.4. There is no solution with a wave pattern of type (a).

Proof. Assume there is a solution of type (a) as in Figure 4.4. In this case we observe condensation and
according to Corollary 4.3.3 we have

z < 0 and p0 < p∗V < p∗L.
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x

t

WV W∗
L W∗∗

L WL

Figure 4.4: Wave pattern of type (a) with notation

Let us first assume that the left classical wave is a rarefaction wave. The head speed is given by
S = u∗L − aL(p∗L) and we obtain

w = vL(p∗L)z + u∗L
(a)

≤ S = u∗L − aL(p∗L) ⇔ z ≤ −aL(p∗L)

vL(p∗L)

(4.4.1)
< −aV

vV

This is a contradiction and thus we can exclude this case. Given a shock instead of a rarefaction wave
we have using (4.2.19) and the Lax condition

u∗L − aL(p∗L) > S = u∗L − vL(p∗L)QS > u∗∗L − aL(p∗∗L ) with QS =
aL(p̄L)

vL(p̄L)
, p̄L ∈ (p∗L, p

∗∗
L ).

Hence we yield

w < S ⇔ z < −QS = −aL(p̄L)

vL(p̄L)

p∗L<p̄L
< −aL(p∗L)

vL(p∗L)

(4.4.1)
< −aV

vV
.

Therefore we can also exclude this case and the proof is finished.

Lemma 4.4.5. For the considered Riemann problem with phase transition exists no solution of type (c)
with pL ≥ p0.

Proof. A solution of type (c) implies an evaporation process which requires pL < p0.

Lemma 4.4.6. For pL ∈ (p̂L, p0] exists no solution of type (c) of the considered Riemann problem with
phase transition.

Proof. Assume we have a wave pattern of type (c) as in Figure 4.3. Hence we have evaporation and
according to Corollary 4.3.3 we have

z > 0 and p∗V < p∗L < p0.

Let us first assume that the right classical wave is a rarefaction wave. The head speed is given by
S = u∗V + aV (p∗V ) and we obtain

w = vV (p∗V )z + u∗V
(c)

≥ S = u∗V − aV (p∗V ) ⇔ z ≥ aV (p∗V )

vV (p∗V )
.

For a right shock (QS < 0) we have using (4.2.19) and the Lax condition

u∗∗V + aV (p∗∗V ) > S = u∗V − vV (p∗V )QS > u∗V + aV (p∗V )

with QS =
aV (p̄V )

vV (p̄V )
, p̄V ∈ (p∗V , p

∗∗
V ).
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Hence we yield

w > S ⇔ z > −QS =
aV (p̄V )

vV (p̄V )

p̄V >p
∗
V

>
aV (p∗V )

vV (p∗V )
.

Due to Lemma 4.4.2 we have an upper bound for the mass flux that does not initially exclude the
conditions derived above for the rarefaction and shock wave. But the two cases are excluded if z <
aV (p∗V )/vV (p∗V ). Indeed we have due to the monotonicity of z and a/v that

∃ p̂V < p0 such that ∀pV ∈ (p̂V , p0] : z(pV ) <
aV (pV )

vV (pV )
.

Due to the strict monotonicity of p∗L = ϕ(p∗V ), see Theorem 4.3.1, the proof is complete.

4.5 Phase Creation in Single Phase Flows

4.5.1 Condensation by Compression

Let us consider the following Riemann initial data with ρV ± ∈ (0, ρ̃]

ρ(x, 0) =

{
ρV − , x < 0

ρV + , x > 0
and u(x, 0) =

{
uV − , x < 0

uV + , x > 0
. (4.5.1)

Hence initially we have a Riemann problem for a single vapor phase and therefore we can directly apply
the results obtained in subsection 4.2.2.

Theorem 4.5.1 (Solution of Isothermal Euler Equations for a Single Vapor Phase). Let f(p,WV − ,WV +)
be given as

f(p,WV − ,WV +) = f−(p,WV −) + f+(p,WV +) + ∆u, ∆u = uV + − uV − ,

with the functions f− andf+ given by

f±(p,WV ±) =


√
−[[p]][[v]], p > pV ± (Shock)∫ p

pV±

vV (ζ)

aV (ζ)
dζ, p ≤ pV ± (Rarefaction)

.

If there is a root f(p∗,WV − ,WV +) = 0 with 0 < p∗ ≤ p̃, then this root is unique. Further this is the
unique solution for the pressure p∗V of the Riemann problem (4.2.1)-(4.2.2), (4.5.1). The velocity u∗V is
given by

u∗V =
1

2
(uV + + uV −) +

1

2
(f+(p∗,WV +)− f−(p∗,WV −)).

This is no new result and therefore it is well known, cf. Toro [31]. Usually one looks for a pressure p∗

that solves f(p,WV − ,WV +) = 0. Due to the asymptotic behavior there is always a solution. Neverthe-
less a solution with an unreasonable large vapor pressure is physically not meaningful, since a sufficiently
high pressure in a gas will lead to a phase transition to a liquid or even solid phase. According to [12] we
also only consider solutions which satisfy 0 < p∗ ≤ p̃, where p̃ again denotes the maximal gas pressure.
This being said, we can find Riemann initial data without a solution. In this case proceed as follows.

Definition 4.5.1 (Nucleation Criterion). If there is no solution of the Riemann problem (4.2.1)-(4.2.2),
(4.5.1) according to Theorem 4.5.1, then nucleation occurs.

If this criterion is fulfilled, we search a solution consisting of two classical waves and two phase
boundaries. In the following we will again discuss several wave patterns.

Lemma 4.5.1. If there is a solution of the Riemann problem (4.2.1)-(4.2.2), (4.5.1) with two classical
waves and two phase boundaries, then no wave is propagating inside the liquid phase. Hence classical
waves may only occur in the vapor phase.
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Proof. Assume a left going classical wave is propagating through the liquid phase. We denote the liquid
states left and right to this wave by W∗

L and W∗∗
L . Further left to this classical wave there is a phase

boundary moving with speed w1. The vapor state left to this phase boundary is denoted by W∗
V .

Obviously this must be a condensation process and accordingly p∗ > p0 and p∗L > p0. This configuration
is excluded by Lemma 4.4.4. Analogously we can discuss the case of a right going classical wave.

As a consequence of the above result classical waves only propagate through the vapor phase. Hence
we further have to discuss the following three patterns, see Figure 4.5.

x
(d)

t

x
(e)

t

x
(f)

t

Figure 4.5: Wave patterns. Solid line: classical wave. Dashed line: phase boundary

Lemma 4.5.2. There are no solutions of wave pattern types (d) and (f).

Proof. A solution with type (d) wave pattern corresponds to wave pattern type (c) in the previous
Subsection 4.4.2, see Figure 4.3. Thus by Lemma 4.4.5 and Lemma 4.4.6 we know that this is only
possible for sufficiently small pressures and therefore implies evaporation. Since we have a condensation
process wave pattern type (d) can be excluded. Analogously we discuss a type (f) solution. This
corresponds to a type (a) solution in Subsection 4.4.2, see Figure 4.4. Hence due to Lemma 4.4.4 a
solution of wave pattern type (f) is also impossible.

Consequently the only possible wave pattern in this case is of type (e), see Figure 4.6.

x

t

WV − W∗
V W∗

L W∗∗
V WV +

Figure 4.6: Wave pattern of type (e) with notation

Lemma 4.5.3. For a solution of wave pattern type (e) the equality p∗V = p∗∗V holds.

Proof. Across the left phase boundary the liquid pressure p∗L is uniquely defined by the vapor pressure
p∗V using Theorem 4.3.1. So far we assumed the vapor left of the liquid phase. For the right phase
boundary the opposite is the case and thus we have to use the kinetic relation (4.3.2). Nevertheless the
results of the previous section remain unchanged and hence we obtain the same function to determine
the liquid pressure

p∗L = ϕ(p∗V ) = ϕ(p∗∗V ).

Hence the vapor pressures are equal.

Taking into account that there are two phase boundaries and using the results obtained in the previous
sections we can state the following theorem.
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Theorem 4.5.2 (Solution of Isothermal Euler Equations for Two Vapor States with Phase Transition).
Consider the Riemann problem (4.2.1)-(4.2.2), (4.5.1) and assume the nucleation criterion is satisfied.
Let fz(p,WV − ,WV +) be given as

fz(p,WV − ,WV +) = f−(p,WV −) + f+(p,WV +) + 2z[[v]] + ∆u, ∆u = uV + − uV − ,

with the functions f− andf+ given by

f±(p,WV ±) =


√
−[[p]][[v]], p > pV ± (Shock)∫ p

pV±

vV (ζ)

aV (ζ)
dζ, p ≤ pV ± (Rarefaction)

.

Here z is given by (4.3.1) and [[v]] = vL(ϕ(p)) − vV (p). The function ϕ is implicitly defined by (4.3.5).
If there is a root fz(p

∗,WV − ,WV +) = 0 with p0 < p∗ ≤ p̃, then this root is the only one. Further this
is the unique solution for the vapor pressures p∗V = p∗∗V of the Riemann problem (4.2.1)-(4.2.2), (4.5.1).
The liquid velocity u∗L is given by

u∗L =
1

2
(uV + + uV −) +

1

2
(f+(p∗,WV +)− f−(p∗,WV −)).

By the previous results it is obvious that fz has at most one root. By construction this root is
the solution for the vapor pressure in the two star regions, see Figure 4.6. The following results are
completely analogue to those obtained before for the two phase case.

Remark 4.5.1. Note that u∗V 6= u∗∗V with u∗V + u∗∗V = 2u∗L.

Theorem 4.5.3 (Sufficient Condition for Solvability I). Consider the Riemann problem (4.2.1)-(4.2.2),
(4.5.1). This problem is solvable without phase transition if and only if

f(p̃,WV − ,WV +) ≥ 0.

Here f is given as in Theorem 4.5.1.

Proof. This statement is obvious due to the monotonicity of f .

Theorem 4.5.4 (Sufficient Condition for Solvability II). Consider the Riemann problem (4.2.1)-(4.2.2),
(4.5.1) and assume the nucleation criterion is satisfied. Accounting for phase transition, this problem is
solvable if and only if

fz(p̃,WV − ,WV +) ≥ 0.

The function fz is defined as in Theorem 4.5.2.

Proof. Again the statement is obvious due to the monotonicity of fz.

4.5.2 Evaporation by Expansion

Now we consider the following Riemann initial data with ρL± ≥ ρminL

ρ(x, 0) =

{
ρL− , x < 0

ρL+ , x > 0
and u(x, 0) =

{
uL− , x < 0

uL+ , x > 0
. (4.5.2)

Hence initially we have a Riemann problem for a single liquid phase. We have seen so far that at a planar
phase boundary the liquid pressure is always positive. However it is known that negative liquid pressures
are possible, cf. Davitt et al. [6] for water. This gives rise to cavitation in the liquid phase. Again, in
the liquid-vapor case a negative liquid pressure is forbidden, see (4.3.8). Nevertheless in the liquid-liquid
case we may encounter negative liquid pressures. We define the smallest possible liquid pressure to be
pmin and with this definition we obtain the following result.
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Theorem 4.5.5 (Solution of Isothermal Euler Equations for a Single Liquid Phase). Let f(p,WL− ,WL+)
be given as

f(p,WL− ,WL+) = f−(p,WL−) + f+(p,WL+) + ∆u, ∆u = uL+ − uL− ,

with the functions f− and f+ given by

f±(p,WL±) =


√
−[[p]][[v]], p > pL± (Shock)∫ p

pL±

vL(ζ)

aL(ζ)
dζ, p ≤ pL± (Rarefaction)

.

If there is a root f(p∗,WL− ,WL+) = 0 with pmin ≤ p∗, then this root is unique. Further this is the
unique solution for the pressure p∗L of the Riemann problem (4.2.1)-(4.2.2), (4.5.2). The velocity u∗L is
given by

u∗L =
1

2
(uL+ + uL−) +

1

2
(f+(p∗,WL+)− f−(p∗,WL−)).

Remark 4.5.2. For simplicity we choose pmin = 0 but lower values are possible and the theoretical
results do not depend on the specific value of pmin.

Analogously to the case of nucleation we define the following.

Definition 4.5.2 (Cavitation Criterion). If there is no solution of the Riemann problem (4.2.1)-(4.2.2),
(4.5.2) according to Theorem 4.5.5, then cavitation may occur.

If this criterion is fulfilled, we look for a solution involving a vapor phase, two phase boundaries and
two classical waves. Again we discuss the possible patterns.

Lemma 4.5.4. Assume there is a solution of the Riemann problem (4.2.1)-(4.2.2), (4.5.2) consisting
of two classical waves and two phase boundaries. If the pressures pL− , pL+ are sufficiently large then no
wave travels through the vapor.

The proof is analogue to the one of Lemma 4.4.6.

Lemma 4.5.5. There is no solution of type (d) or (f); see Figure 4.5.

The proof of this lemma is analogue to the one of Lemma 4.5.2. Accordingly we construct solutions
of type (e), see Figure 4.7.

x

t

WL− W∗
L W∗

V W∗∗
L WL+

Figure 4.7: Wave pattern of type (e) with notation for the liquid case

Theorem 4.5.6 (Solution of Isothermal Euler Equations for Two Liquid States with Phase Transition).
Consider the Riemann problem (4.2.1)-(4.2.2), (4.5.2) and assume the cavitation criterion is satisfied.
Let fz(p,WL− ,WL+) be given as

fz(p,WL− ,WL+) = f−(p,WL−) + f+(p,WL+) + 2z[[v]] + ∆u, ∆u = uL+ − uL− ,
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with the functions f− and f+ given by

f±(p,WL±) =


√
−[[p]][[v]], ϕ(p) > pL± (Shock)∫ ϕ(p)

pL±

vL(ζ)

aL(ζ)
dζ, ϕ(p) ≤ pL± (Rarefaction)

.

Here z is given by (4.3.1) and [[v]] = vL(ϕ(p)) − vV (p). The function ϕ is implicitly defined by (4.3.5).
If there is a root fz(p

∗,WL− ,WL+) = 0 with pmin ≤ p∗, then this root is unique. Further this is the
unique solution for the vapor pressures p∗V of the Riemann problem (4.2.1)-(4.2.2), (4.5.2). The vapor
velocity u∗V is given by

u∗V =
1

2
(uL+ + uL−) +

1

2
(f+(p∗,WL+)− f−(p∗,WL−)).

Proof. Due to the previous results, the function fz has at most one root. This root is by construction
the solution for the vapor pressure in the star region.

Completely analogue to the condensation case, see Subsection 4.5.1, we have the following results.

Theorem 4.5.7 (Sufficient Condition for Solvability I). Consider the Riemann problem (4.2.1)-(4.2.2),
(4.5.2). This problem is solvable without phase transition if and only if

f(pmin,WL− ,WL+) ≤ 0.

Here f is given as in Theorem 4.5.5.

Proof. The statement is easily verified due to the monotonicity of f .

Theorem 4.5.8 (Sufficient Condition for Solvability II). Consider the Riemann problem (4.2.1)-(4.2.2),
(4.5.2) and assume the cavitation criterion is satisfied. If we admit phase transition, this problem is
always solvable.

Proof. This statement is obvious due to the fact that z[[v]]→ −∞ for p∗V → 0.

4.6 Conclusion

4.6.1 Discussion of the Assumptions

In this part we now want to discuss the assumptions previously made to solve the problem. Basically
we have three types of requirements. First there are the ones due to the underlying thermodynamics, in
particular the first and second law of thermodynamics. Second there are conditions, one needs to solve
the single phase Riemann problem for the Euler equations. The third type concerns the assumptions
imposed to solve the two phase problem. Note that the assumptions are sufficient, from a mathematical
point of view, to obtain the results presented throughout this work.

From a thermodynamic point of view we have first and foremost to satisfy the first and second law
of thermodynamics including the requirement of thermodynamic stability (4.2.7). This is obtained by
deriving the pressure law from a suited thermodynamic potential.
The conditions imposed on the EOS in order to solve the (single phase) Riemann problem for the Euler
equations are

γ > 0, G > 0, v(p)
p→∞→ 0, and v(p)

p→0→ ∞

That we require the single phase Riemann problem to be solvable is of course reasonable, since otherwise
any further discussion would be unnecessary. The conditions above are completely analogue to those
stated in [21]. Note that for any EOS where the speed of sound is a constant (such as in [12]) we have
G = 1. We want to point out that the aforementioned requirements of type one and two are basically no
new or additional assumptions since they are already needed to treat the single phase case.
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Since we are concerned with discussing the case of two phases it is reasonable to assume that all single
phase requirements are met and only a few new ones need to be added. In order to solve the two phase
Riemann problem we need the additional assumptions (4.3.6) and (4.4.1).
The uniform upper bound for the quotient of the specific volumes basically tells us how close we can get
to the critical point, where the volumes would become equal. The case of α = 1, i.e. we include the
critical point where the volumes become equal, is not considered here and has to be treated separately.
The constant β bounds the quotient of the sound speeds and is only needed to be strict smaller than
1/α.
The assumption on the lower bound of γV in (4.3.6) is a rather technical one. Nevertheless if we assume
τ to be as in (4.3.3) and consider the ideal gas EOS for the vapor phase we have

1 = γV > τa3
V (1− α)2 =

1√
2π

(
m

kT0

) 3
2

(1− α)2a3
V =

(1− α)2

√
2π

.

Hence this bound is easily satisfied. If the sound speed of the vapor phase would depend on the pressure
one would have to check this requirement more carefully. We further want to emphasize that apart from
τ > 0 and (4.3.6)3 we do not assume any particular shape or even magnitude of τ . This is a further key
point that contributes to the generality of our result.
The last requirement in (4.3.6) is concerned with the maximum vapor pressure. Due to this bound the
vapor is allowed to be compressed (depending on α) with more than the saturation pressure. This allows
metastable states, which is reflected in the Maxwell construction. Here of course one has to make sure that
the maximum vapor pressure p̃ defined in Definition 4.2.2 satisfies this bound. This can be guaranteed
by choosing an appropriate temperature and also how the two EOS are connected by v̄(p) in Definition
4.2.2. Usually p̃ will only be slightly larger than the saturation pressure for a wide range of temperatures.

Now we want to comment assumptions (4.4.1). Let us first consider γL. Over wide temperature ranges
we have γL ≥ 1 for many substances. For example in Section 4.6.2 we consider the linear and nonlinear
Tait EOS for liquid water and for this type of EOS modeling water this is true up to 636.165K. A similar
result can be obtained for the van der Waals EOS. Above that temperature it is not possible to use the
ideal (polytropic) gas EOS together with such a liquid EOS, because it would contradict (4.4.1) (II).
Regarding case (II) we want to emphasize that for 1 > γL > γV the inequality including α is trivial. In
fact in numerical studies we exemplary obtained that this property is also true for the van der Waals
EOS up to ≈ 640K.
Now we want to comment on ε(γV ) in (4.4.2). Using the ideal gas or the polytropic gas EOS gives γV = 1
and hence

ε0 := ε(1) = −τa3
V (1− α)2

(
1− (αβ)2

)
< 0.

We consider (4.4.1) (II) and have 1 + ε0/α < 0 over large temperature ranges. Suppose this term
becomes positive at high temperatures, it is however still smaller than one. Whereas at the same time
γL approaches one. Hence this bound may be still valid. This of course has to be checked for any given
EOS.

4.6.2 Examples

Now we want to present several examples of choices for the equations of state used to model the fluid
under consideration, in this case water. First we will discuss the ideal gas EOS for the vapor phase and
the (linear) Tait EOS for the liquid phase as in [12]. For the ideal gas we obtain

pV (vV ) =
kT0

m

1

vV
, γV = 1, GV = 1. (4.6.1)

Here k is the Boltzmann constant, T0 is the fixed temperature and m denotes the mass of a single water
molecule. Considering the liquid phase we obtain

pL(vL) = p0 +K0

(
v0

vL
− 1

)
, γL =

(
1 +

vL
K0v0

(p0 −K0)

)−1 K0≥p0

≥ 1, GL = 1. (4.6.2)
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The quantities with index zero are calculated at the saturation state corresponding to T0. We further
have the saturation pressure p0, the modulus of compression K0 and the specific liquid volume v0, cf. [34].
Note that the relation K0 ≥ p0 breaks down for temperatures above 636.165K (Tc = 647.096K).
Both EOS are linear functions of the mass density and thus it is reasonable to connect them with a linear
function p̄. Hence we obtain the specific volume of the vapor phase corresponding to the maximum vapor
pressure p̃ according to Definition 4.2.2 as the solution of the following equation

0 = K0v0 ln
v0

vmin
+

ṽ

vmin − ṽ
kT0

m
ln

ṽ

vmin
+
kT0

m
ln
vV (p0)

vmin
. (4.6.3)

Here vm is chosen such that

vm =


v0

(
1− p0

K0

)−1

, T0 ≤ 620K,

v0

(
1 +

Tc − T0

Tc

)
, T0 > 620K.

Using (4.6.3) we can calculate the quotient vm/ṽ for every reasonable temperature and thus obtain α
and also β. Now we can check the assumptions given in (4.3.6), (4.4.1). We have for temperatures up to
636.165K the following

α . 0.1949, αβ . 0.5419,
1

γL
−
(

1 +
ε0

α

)
& 0.7484 and p̃ . 1.4825p0.

Thus all requirements are met as expected and the limiting factor here are not the assumptions but the
choice of the EOS.

Remark 4.6.1. Note that in the isothermal case the linear Tait EOS is equivalent to the stiffend gas
EOS

pL(vL) = C(γ − 1)
T0

vL
− pc with C(γ − 1) =

K0v0

T0
and pc = K0 − p0.

As a second example we want to use the nonlinear Tait EOS instead of the linear one, i.e.

pL(vL) = p0 +K0

((
v0

vL

)η
− 1

)
, η > 1. (4.6.4)

Again we use the ideal gas EOS for the vapor phase. We obtain for the nonlinear Tait EOS

γL = η

(
1 +

(
vL
v0

)η (
p0

K0
− 1

))−1

> 1, GL =
η + 1

2

and

vm =


v0

(
1− p0

K0

)− 1
η

, T0 ≤ 620K,

v0

(
1 +

Tc − T0

Tc

)
, T0 > 620K.

Next with an approach analogue to the previous case we obtain ṽ as solution of the following equation
and then calculate p̃

0 = (p0 −K0)vm +K0v0 +
K0v

η
0

1− η

(
1

vη−1
m

− 1

vη−1
0

)

+
vm

vm − ṽ
kT0

m
ln

ṽ

vm
+
kT0

m
ln
vV (p0)

ṽ
. (4.6.5)

We can use (4.6.5) to calculate the quotient vm/ṽ for every reasonable temperature and thus obtain α
and also β. Here we use η = 7 as in [29]. We again check the assumptions given in (4.3.6), (4.4.1) and
obtain for temperatures up to 636.165K the following

α . 0.1645, αβ . 0.1818,
1

γL
−
(

1 +
ε0

α

)
& 0.7795 and p̃ . 1.2511p0.

Hence this choice of EOS is also suitable for solving this problem for temperatures from 273.15K up to
636.165K. Again the limiting factor here are not the assumptions but the choice of the EOS.
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4.6.3 Conclusion

The aim of the present work was to investigate the Riemann problem for the isothermal Euler equations
when liquid and vapor phases are present which may condensate or evaporate. We proved that there
exist unique solutions under the given assumptions.To this end we allow any EOS which satisfies these
assumptions, especially nonlinear ones. This is a huge improvement to the previous work [12] where only
two specific linear EOS were chosen to solve this problem. In contrast to this we for example allow the
speed of sound to depend on the pressure or volume instead of being constant. Furthermore allow phase
transitions where the pressures are not in equilibrium as for example in [9]. Additionally we can treat
nucleation an cavitation. In view of the work by Hantke, T. [14] the last point has to be emphasized.
To our knowledge this is the most general result concerning Riemann problems for isothermal two phase
flows.
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Chapter 5

Singular and selfsimilar solutions for
Euler equations

Bibliographic note: The content of this chapter is published in [H14]: F. Thein and M. Hantke.
Singular and selfsimilar solutions for Euler equations with phase transitions, Bulletin of the Brazilian
Mathematical Society, New Series 47 (2), (2016), 779-786.

Abstract: Riemann problems for the full set of Euler equations for two phases with phase transi-
tion are considered. Based on the assumptions across the phase boundary kinetic relations to describe
the mass transfer between the phase are derived from the second law of thermodynamics. Self-similar as
well as singular solutions can be constructed. For both cases the structure of the solution is discussed.

5.1 Introduction

Multiphase flows appear everywhere in nature and are of great importance in industrial applications.
Usually phase transition effects play a significant role. For the modeling of phase transitions often
continuum mechanics equations, derived using averaging or homogenization techniques, were used, see
for instance Zein et. al [9]. For these models a large number of equations is used, one set of balances for
each phase or component. In many cases additional differential terms appearing in the systems prevent
them from being in divergence or conservative form. Exact expressions for the transfer terms are usually
unknown. In fact, there is a lack of theory for these models and their numerical solutions require a big
numerical effort.

On the other hand one can use only one set of balance equations to describe the flow. An additional
kinetic relation describes the exchange of mass between the phases. This concept was introduced by
Abeyaratne and Knowles [1]. The main advantage of this type of modeling is the smaller number of
equations. Moreover, due to the explicit character of the kinetic relation it may be possible to construct
exact solutions for Riemann initial data. For example, for the system of isothermal Euler equations
equipped with a kinetic relation exact solutions for Riemann problems were constructed by Hantke et.
al [6]. Also existence and uniqueness of the solution was proven. Riemann solutions are the basis to
construct efficient Riemann solvers.

In the following we consider Riemann problems for the full system of Euler equations for liquid-
vapor flows. Depending on the assumptions across the phase boundaries different kinetic relations can
be derived from the second law of thermodynamics. These assumptions influence the structure of the
solutions. Self-similar as well as singular solutions can be found. For both cases we discuss the structure
of the solution and give an appropriate choice of a kinetic relation.
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5.2 Balance laws and entropy inequality

The physical fields are assumed to depend on time t ∈ R≥0 and space x ∈ R. In regular points of the
bulk phases we have the local balances for mass (5.2.1), momentum (5.2.2) and energy (5.2.3)

∂ρ

∂t
+
∂(ρv)

∂x
= 0 , (5.2.1)

∂(ρv)

∂t
+
∂(ρv2 + p)

∂x
= 0 , (5.2.2)

∂(ρE)

∂t
+
∂(ρEv + pv)

∂x
= 0 , (5.2.3)

where ρ, v, E denote the density, the velocity and the specific total energy, resp. The specific internal
energy is related to the total energy by E = e + 1

2v
2, whereas the pressure p is related to the density

and the internal energy by an equation of state p = p(ρ, e). For the specific Gibbs free energy g it holds

g = e− Th+
p

ρ
, (5.2.4)

where T = T (ρ, p) and h = h(e, p) are the temperature and the specific entropy.
Using the notation

JΨK = Ψ+ −Ψ− ,

where ′+′ and ′−′ denote the right and left sided limits for any quantity Ψ, we give the mass (5.2.5),
momentum (5.2.6) and energy balances (5.2.7) across any discontinuity in one dimension in their most
general form

d

dt
(ρs)− JṁK = 0 , (5.2.5)

d

dt
(ρsw)− JvṁK + JpK = 0 , (5.2.6)

d

dt
(es + ρs

w2

2
)− J(e+

1

2
v2)ṁK + Jq + pvK = 0 , (5.2.7)

where q denotes the heat flux. The discontinuity, which can be a shock, a contact wave or a phase bound-
ary, propagates with velocity w. The singular mass and the singular internal energy of the discontinuity
are denoted by ρs and es, for more details see Dreyer [3]. Note, that the energy es is not proportional to
the singular mass density ρs. This is in agreement with Dreyer [3]. In the following we always assume,
that for waves propagating through the bulk phase (shock, contact) es = 0 and ρs = 0, whereas we also
consider more general assumptions for phase interfaces. The mass flux ṁ = −ρ±(v± − w) across the
phase boundary has to be specified by an additional kinetic relation, which has to satisfy the second law
of thermodynamics

d

dt
hs − Jhṁ− 1

T
qK = ζs ≥ 0 , (5.2.8)

the entropy production ζs has to be nonnegative. The interface temperature Ts and the Gibbs free energy
of the phase boundary gs are defined by

1

Ts
:=

∂hs
∂es

and
gs
Ts

:= −∂hs
∂ρs

. (5.2.9)

In the following no heat conduction is taken into account, this means that we have q = 0. Finally we
give Riemann initial data. Assuming that at t = 0 the phase boundary is located at x = 0 these data
may be given by

(ρ, v, p)T =

{
(ρL, vL, pL)T x < 0
(ρR, vR, pR)T x > 0 .

(5.2.10)

The construction of Rieman solution will be done analogously to Hantke et al. [6] and follows the ideas
in the book of Toro [7]. The discussion of rarefaction, shock and contact waves is classical and will not
be carried out in this paper. Instead we restrict ourselves to the discussion of phase boundaries.
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5.3 Selfsimilar solutions

All relations are presented in its most general form. In order to construct self-similar solutions we make
the following simplifying assumptions

ρs ≡ 0 and es ≡ 0 (5.3.1)

to remove the derivative terms in the interface balance equations. This means that the interface has no
mass and no energy. As a consequence we have

d

dt
hs = 0 .

Moreover the mass flux across the phase boundary is continuous, this means that

JṁK = 0 .

Accordingly the entropy inequality (5.2.8) becomes

− ṁJhK = ζs ≥ 0 . (5.3.2)

This inequality directly implies that the mass flux ṁ is a function of the differences of the specific
entropies h of the phases, i.e.

ṁ ∼ −JhK . (5.3.3)

The mass flux is driven by the difference of the specific entropies of the phases.
To derive an explicit kinetic relation we follow the ideas in Dreyer et al. [5] and make a linear ansatz

for the kinetic relation in the following form

ṁ = BIJhK .

The interface mobility BI is a positive factor. In [5] BI results from the Maxwell distribution, see [4], or
rather from the classical Hertz-Knudsen theory, see Bond and Struchtrup [2]. With an analogous choice
for the mobility we end up with

ṁ =
pV Ts√

2π

(
m

kTs

) 3
2

JhK , (5.3.4)

where k denotes the Boltzmann constant, m the mass of a single molecule of the considered substance
and pV the pressure of the gas phase. For more details see [5].

Corresponding solutions of the considered Riemann problem consist of five constant states that are
separated by four waves see Figure 5.1. The left and the right wave are classical shocks or rarefactions,

x

t

WV

Shock/Raref. Wave

W ∗V

CD

W ∗∗V

Phase Boundary

W ∗L

Shock/Raref. Wave

WL

Figure 5.1: Solution structure for (5.3.1), W = (ρ, ρv, ρE)T

that propagate through the bulk phases. In addition the solution has a classical contact wave and a
phase boundary, which can be characterized as a non-classical discontinuity. Let us assume the vapor
phase is on the left hand side. For temperatures lower than the critical temperature the specific entropy
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Figure 5.2: Schematic Entropy-Temperature Diagram

of the vapor phase is always larger than the specific entropy of the liquid phase of the same substance,
see Figure 5.2.

Accordingly we have
ṁ ∼ −JhK > 0 .

This implies that only evaporation processes can take place. In other words, for the simplifying as-
sumptions (5.3.1) no thermal equilibrium may occur. Further, one can easily obtain that for the above
assumption the phase boundary propagates faster than the bulk phases, which implies, that the contact
wave always propagates through the vapor phase.

To overcome this phenomenon there are two possibilities. On the one hand heat conduction can be
taken into account. On the other hand one can weaken the simplifying assumptions (5.3.1), which leads
to singular solutions.

Remark 5.3.1. We want to point out, that the wave structure as well as the non-existence of thermal
equilibrium solutions are a direct consequence of the entropy principle (5.3.2). These phenomena occur
for any appropriate choice for a kinetic relation.

5.4 Singular solutions

As discussed in the previous section we now use weaker simplifying assumptions. As before we neglect
surface density, i.a. ρs ≡ 0, but we take into account surface energy. The interface mass and momentum
balances (5.2.5), (5.2.6) reduce to

JṁK = 0 (5.4.1)

−ṁJvK + JpK = 0 . (5.4.2)

Using (5.4.1) and (5.4.2) we rewrite (5.2.7) and obtain the interface energy balance equation

d

dt
es − ṁJe+

p

ρ
+

1

2
(v − w)2K = 0 . (5.4.3)

The entropy production ζs is now given by

ζs = ṁJ
1

Ts
(g +

1

2
(v − w)2) + h(

T

Ts
− 1)K , (5.4.4)

which implies

ṁ ∼ J
1

Ts
(g +

1

2
(v − w)2) + h(

T

Ts
− 1)K . (5.4.5)

Due to the derivative in (5.4.3) the solution of the considered Riemann problem is not self-similar.
Instead we follow the ideas of Yang [8] and construct solutions in the sense of measures, where a discon-
tinuity appears on the phase interface.

Like Yang we assume a delta-shock, propagating with velocity w and located at x(t) = wt, where the
singular value of the surface energy is described by es(t) = e0t.
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The solution consists of five constant states, separated by four waves. As before, the right and left
waves are classical shocks or rarefactions. The order of the two middle waves, the contact and the phase
boundary, depends on the situation under consideration. With the same arguments as in the previous
section we find, if evaporation occurs, the contact propagates through the vapor phase, otherwise through
the liquid. Accordingly for the evaporation case we have the same wave structure as before, see Figure
5.1. For the condensation case see Figure 5.3. Note, that in contrast to the solutions of Section 5.3 the

x

t
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Shock/Raref. Wave

W ∗V

Singular PB

W ∗∗L

CD

W ∗L

Shock/Raref. Wave

WL

Figure 5.3: Solution structure for the condensation case with a singularity on the phase boundary,
W = (ρ, ρv, ρE)T

interface is now equipped with energy and forms a singularity and hence the solution is not self-similar
anymore.

Assume, the solution considered describes a condensation process, where two shock waves propagate
through the bulk phases with velocities SL and SR, then the solution at time t is of the following form

(ρ, ρv, ρE)T (t, x) =



(ρV , ρV vV , ρV EV )T −∞ < x ≤ SLt
(ρ∗V , ρ

∗
V v
∗
V , ρ

∗
V E
∗
V )T SLt < x < wt

(0, 0, e0δ(x− x(t))t)T x = wt
(ρ∗∗L , ρ

∗∗
L v
∗∗
L , ρ

∗∗
L E

∗∗
L )T wt < x < St

(ρ∗L, ρ
∗
Lv
∗
L, ρ
∗
LE
∗
L)T St ≤ x < SRt

(ρL, ρLvL, ρLEL)T SRt ≤ x <∞ ,

(5.4.6)

where S denotes the speed of the contact. For solutions with rarefactions or with evaporation states one
may find a similar structure.

Analogously to the previous case with the assumptions ρs ≡ 0 and es(t) = e0 · t one can treat the
following two cases

ρs(t) = ρ0 · t and es ≡ 0 (5.4.7)

and
ρs(t) = ρ0 · t and es(t) = e0 · t . (5.4.8)

In both cases a singularity will form on the phase interface. The structure of the solution is the same as
before, but in contrast to the case before, one obtains singular values for all three components (ρ, ρv, ρE)T .
For a non-linear ansatz for ρs(t) or es(t) the solution structure becomes more complicated.
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Chapter 6

A non-existence result

Bibliographic note: The content of this chapter is published in [H12]: Maren Hantke and Ferdinand
Thein. Why condensation by compression in pure water vapor cannot occur in an approach based on
Euler equations, Quarterly of Applied Mathematics 73 (2015), 575-591.

Abstract: Phase transitions are in the focus of the modeling of multiphase flows. A large number
of models is available to describe such processes. We consider several different two phase models that are
based on the Euler equations of compressible fluid flows and which take into account phase transitions
between a liquid phase and its vapor. Especially we consider the flow of liquid water and water vapor.
We give a mathematical proof, that all these models are not able to describe the process of condensation
by compression. This behavior is in agreement with observations in experiments, that simulate adiabatic
flows, and shows that the Euler equations give a fairly good description of the process. The mathematical
proof is valid for the official standard IAPWS-IF97 for water and for any other good equation of state.
Also the opposite case of expanding the liquid phase will be discussed.

6.1 Introduction

Compressible two and multi phase flows occur in nature as well as in numerous industrial applications.
In many cases phase transitions between the fluids are of major importance. Examples are the formation
of clouds or the phenomenon of cavitation that for instance appears in liquid water flows around ship
propellers.

The modeling of such processes is a challenge. The description of the interfaces between the fluids as
well as their interaction is of high complexity. Therefore in the spotlight of the methods is the treatment
of the interfaces. Many numerical simulations are based on the Euler equations of compressible fluid
flow. We will direct our attention to two phase models of this type that take into account mass transfer
between the fluids.

Very famous are the models of Baer-Nunziato type. Here both phases are described by their own
set of Euler equations. An additional equation for the volume fractions of the phases is considered,
see Section 6.4.3. The original model of Baer and Nunziato [2], that does not include the effect of mass
exchange between the phases, was modified by Saurel and Abgrall in [18] by introducing relaxation terms
for pressures and velocities of the phases. Later in [19] a similar idea allowed the description of phase
transition by using relaxation terms for the temperatures and chemical potentials. This idea was picked
up for instance by Petitpas et al. in [17] or by Zein et al. in [25].

Another type of modeling of two phase flows is to use only one set of Euler equations. Each phase
has its own equation of state. Phase transitions can be described by a further equation that is called
kinetic relation. See for instance the well reputed article of Abeyaratne and Knowles [1] that deals with
solid- solid interfaces, the papers of Merkle [14] or Hantke et al. [6] on the isothermal Euler equations.

Finally we want to refer to a recent paper of Dumbser et al. [5]. In their work also only one set of
equations is used. Phase transitions take place only in thermal equilibrium, no kinetic relation is used.
Surprisingly this type of modeling is closely related to the Baer-Nunziato type modeling mentioned above
including relaxation terms to describe mass transfer. We come back to this and the abovementioned
models later in Section 6.4.3.
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One can find an extensive literature on cavitating flows, but the opposite question of the creation of
a liquid phase by a strong compression is discussed only in rare cases. In the following we consider pure
water vapor, that will be highly compressed. This can be realized by a steam filled tube with a flexible
piston, see Figure 6.2. If there is no heat exchange with the neighbourhood of the tube, the process is
nearly an adiabatic flow. Therefore it can be fairly described by the compressible Euler equations. One
may expect, that it is possible to compress the vapor phase such that the vapor will condensate. This
means that a liquid phase is created. In fact, it turns out this is impossible in a non-isothermal approach
based on Euler equations, which is in agreement with observations from experiments. The main focus of
our work is to give a mathematical proof for this phenomenon.

In the case of expanding a liquid under the same boundary conditions, see Figure 6.6 the situation
is more complex. Nevertheless, also for the cavitation case we can prove some theoretical results. For
detailed discussions of cavitation models we refer to Iben [7] and [9].

The paper is organized as follows. In Section 6.2 we introduce the compressible Euler equations and
briefly recall some well-known analytical results on the Riemann problem. Afterwards in Section 6.3 we
give some equations of state to close the system and provide some physical background. Section 6.4 deals
with compressed water vapor. First in Section 6.4.1 we explain the idea for the proof of our statement.
In Section 6.4.2 we show for a special choice of equations of state for the phases, that condensation
by compression cannot occur. After that in Section 6.4.3 we show, that this idea is also applicable to
Baer-Nunziato type models with relaxation terms as in Saurel et al. [19], Zein et al. [25]. Thereafter,
in Section 6.5 we generalize the proof to the real equation of state for water. Finally we consider the
opposite case of cavitation by expansion in Section 6.6. We end up with some closing remarks in Section
6.7.

6.2 The Euler model

The compressible Euler equations in one space dimension are given by the following system

∂

∂t
ρ+

∂

∂x
ρu = 0 , (6.2.1)

∂

∂t
ρu+

∂

∂x
(ρu2 + p) = 0 , (6.2.2)

∂

∂t
ρ(e+

1

2
u2) +

∂

∂x

[
ρ(e+

1

2
u2) + p

]
u = 0 , (6.2.3)

where the variables ρ, u and e denote the mass density, the velocity and the internal energy, resp. The
further quantity p describes the pressure. It is related to the mass density ρ and the internal energy e
by an equation of state, see Section 6.3. All physical fields depend on time t ∈ R≥0 and on space x ∈ R.

Here we consider Riemann problems for the Euler equations, that are given by the above balance
equations (6.2.1)-(6.2.3), an equation of state and the corresponding Riemann initial data

ρ(0, x) =

{
ρ−
ρ+

, u(0, x) =

{
u−
u+

, e(0, x) =

{
e− for x < 0
e+ for x ≥ 0 .

(6.2.4)

This is the simplest choice of initial conditions with piecewise constant data. It is possible and conven-
tional to give initial states for (ρ, u, p) or (p, u, T ) instead of initial states for (ρ, u, e). Also other choices
are imaginable.

The Riemann problem is very helpful in the context of hyperbolic partial differential systems, because
it exhibits all phenomena as shock or rarefaction waves. It is a basic problem in the theory of hyperbolic
systems. In numerics Riemann problems appear in finite volume methods for systems of conservation
laws due to the discreteness of the grid.

For the Riemann problem for the compressible Euler equations equipped with an appropriate equation
of state one can construct the exact solution. The solution is selfsimilar. It consists of constant states,
that are separated by shock and rarefaction waves and a contact discontinuity. Details can be found in
several textbooks. For basics on conservation laws see the books of Toro [21], Lax [11], LeVeque [13],
Smoller [20], Kröner [10], Dafermos [4], and others.
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6.3 Equation of state

As mentioned in the previous section we need an equation of state to close the system (6.2.1)-(6.2.3).
Several commonly accepted equations of state are available like the van der Waals equation of state or
the Tait’s equation. A collective problem is that for any choice of parameters all these equations at the
best only locally give a good approximation of the thermodynamic properties of water vapor or liquid
water.

On the other hand, the real equation of state for water to the official standard IAPWS-IF97 based
on the standard formulation of Wagner et al. [23], [24], [22] is too complex for analytical consideration.
In the following this equation of state is called real equation of state.

For the moment we use a modified form of the stiffened gas equation of state, see [19]. It is given by
the following relations

ek(pk, ρk) =
pk + γkπk
ρk(γk − 1)

+ qk , (6.3.1)

Tk(pk, ρk) =
pk + πk

Ckρk(γk − 1)
, (6.3.2)

ak(pk, ρk) =

√
γk(pk + πk)

ρk
, (6.3.3)

sk(pk, Tk) = Ck ln
T γkk

(pk + πk)(γk−1)
+ q′k . (6.3.4)

Here T and s denote the temperature and the specific entropy of the fluid. The speed of sound is given
by a. The index k = V,L indicates the fluid under consideration, vapor or liquid. The parameters γ, π,
q, q′ and C will be specified later. Note, that for the special choice of π = 0 and q = 0 the equation of
state reduces to the ideal gas law.

For the physical background of the following considerations and more details on thermodynamics we
refer to the books of Müller and Müller [15] and Müller [16].

The specific Gibbs free energy of the phases is given by

gk = ek +
pk
ρk
− Tksk . (6.3.5)

If the vapor and the liquid phase are in thermodynamic equilibrium the Gibbs free energies equal each
other, this means that

gV = gL . (6.3.6)

Using the relations (6.3.1)-(6.3.4) the Gibbs free energy of each phase can be expressed as a function of
the temperature and the pressure

gk = gk(pk, Tk) .

Then the equilibrium condition (6.3.6) gives a direct relation between the temperature and the corre-
sponding equilibrium pressure or saturation pressure

psat = psat(T ) . (6.3.7)

This relation gives the saturation line in the (T, p)-phase space. Sometimes it is useful to inversly express
the temperature as a function of the pressure

Tsat = Tsat(p) . (6.3.8)

For admissible pressures we obtain the corresponding saturation temperature.
For the moment we use the same parameters as Saurel et al. [19]. These parameters are given in

Table 6.1. For this special choice of parameters we obtain the saturation curve given by the solid line
in Figure 6.1. Here Region 1 belongs to the liquid water phase, whereas Region 2 belongs to the water
vapor. The dashed line marks the real saturation line. Obviously the precise shape of the saturation line
directly depends on the choice for the equations of state and the parameters therein.

Note that for a thermodynamic consistent equation of state the following relations hold

∂g(p, T )

∂p
=

1

ρ
and

∂g(p, T )

∂T
= −s . (6.3.9)

These relations will be used for the proof of our statement.
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k γ π [Pa] C [J/kg/K] q [J/kg] q′ [J/kg/K]
vapor 1.43 0 1040 2030000 -23000
liquid 2.35 109 1816 -1167000 0

Table 6.1: Parameters for water vapor and liquid water, [19]
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Figure 6.1: Solid line: saturation curve psat(T ) for parameters given in Table 6.1, dashed line: real
saturation curve

6.4 Condensation by compression

6.4.1 Wave curve in the (p, T )-phase space

At first we consider the case of the compression of water vapor. This case can be simulated by a steam
filled tube equipped with a flexible piston, which is highly sped up to compress the vapor phase, see
Figure 6.2. The compression of water vapor will lead to an increase of the pressure and the density of

Water vapor

Figure 6.2: Compression of water vapor

the vapor phase. From the theory of the Euler equations we know, that a shock wave will propagate
through the vapor phase.

Assume that the state ahead of the shock is given by (ρ̂, û, p̂). The state behind the shock is denoted
by (ρ∗, u∗, p∗). Then we have the following relationship for the density and the pressure

ρ∗
ρ̂

=

(
p∗
p̂

)
+
(
γ−1
γ+1

)
+ 2γπ

p̂(γ+1)(
γ−1
γ+1

)(
p∗
p̂

)
+ 1 + 2γπ

p̂(γ+1)

. (6.4.1)

For details of the derivation of relation (6.4.1) we recommend the book of Toro [21], Section 3.1. Note,
that this relation holds only for the generalized stiffened gas law (6.3.1)-(6.3.4). Using the equation of
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state (6.3.2) we easily obtain an analogous relation for the pressure and the temperature, which is given
by

T̂

T∗
=

p̂+ π

p∗ + π
· p∗(γ + 1) + p̂(γ − 1) + 2γπ

p̂(γ + 1) + p∗(γ − 1) + 2γπ p̂
p∗

. (6.4.2)

From Equation (6.4.2) we find the wave curve T∗(p∗; p̂, T̂ ) in the (p, T )-phase space, that denotes all
states (p∗, T∗) that can be connected to the initial state (p̂, T̂ ) by a shock wave.

Assume that the vapor phase with initial pressure and temperature (p̂, T̂ ) is compressed sufficiently
such that a liquid phase is created, then the corresponding wave curve T∗(p∗; p̂, T̂ ) must have an intersec-
tion point with the saturation line, see the sketch in Figure 6.3. We want to prove that this is impossible.

pressure

te
m

p
e
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tu
re

Region 2

Region 1

Figure 6.3: Solid line: saturation curve Tsat(p), dashed line: wave curve, star: initial state

For the proof we assume the existence of the intersection point and derive a contradiction.

6.4.2 Proof of the statement for a particular equation of state

Assume, the intersection point of the wave curve and the saturation line is given by (p∗, T∗). Then the
function

T̂ (p̂; p∗, T∗) = T∗ ·
p̂

p∗
· p∗(γV + 1) + p̂(γV − 1)

p̂(γV + 1) + p∗(γV − 1)
(6.4.3)

denotes all admissible initial states (p̂, T̂ ). Here we already used the fact that for the vapor phase we
have π = 0. Let ′ denote the derivative of the temperature functions with respect to the pressure. At
the intersection point the following relation must hold

T̂ ′(p∗) ≤ T ′sat(p∗) . (6.4.4)

By a simple calculation we find

T̂ ′(p∗; p∗, T∗) =
T∗
p∗
· γV − 1

γV
. (6.4.5)

To find T ′sat(p∗) we start with the equilibrium condition (6.3.6) and express the Gibbs free energies of
the phases as functions of p and T . We obtain

gk(p, T ) = CkTγk + qk − CkT ln
T γk

(p+ πk)γk−1
− Tq′k (6.4.6)

with k = L, V . From
f(p, Tsat(p)) = gV (p, T )− gL(p, T ) = 0 (6.4.7)

we derive by using the implicit function theorem

∂f

∂p
= CV (γV − 1)

Tsat
p
− CL(γL − 1)

Tsat
p+ πL

,

∂f

∂Tsat
= −CV ln

T γVsat
(p)γV −1

− q′V + CL ln
T γLsat

(p+ πL)γL−1

= CLγL − CV γV +
qL − qV
Tsat
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and finally

T ′sat(p∗;T∗) = T∗ ·
CV (γV −1)

p∗
− CL(γL−1)

p∗+πL

CV γV − CLγL + qV −qL
T∗

< T∗ ·
CV (γV −1)

p∗

CV γV
. (6.4.8)

This is clear because

−CL(γL − 1)

p∗ + πL
< 0 and − CLγL +

qV − qL
T∗

> 0 .

Obviously (6.4.8) implies

T ′sat(p∗;T∗) <
T∗
p∗
· γV − 1

γV
= T̂ ′(p∗; p∗, T∗) . (6.4.9)

This is a contradiction, see (6.4.4). Accordingly we have

Theorem 6.4.1. Using the equations of state (6.3.1)-(6.3.4) and the parameters given in Table 6.1
condensation by compression of pure water vapor cannot occur.

6.4.3 Short discussion of different phase transition models

In the following paragraph we explain, why the proof of our statement given in Section 6.4.2 resp. in
Section 6.5 is applicable for all considered models based on Euler equations.

A pure water vapor phase can be described by a single set of Euler equations. The compression leads
to an increase of the density and the pressure as already mentioned in the previous section. One may
assume that for sufficiently strong compression the vapor phase starts to condensate. This means, that
a liquid phase is created.

Of course, for any state (p, T ) which is in the interior of Region 2 (water vapor), the vapor phase is
situated in a stable state. In order that phase condensation can happen, there must be a mechanism for
phase transition. Therefore, it is clear that in the case of condensation the wave curve, see the next to
last section, must have an intersection point with the saturation line. For this it doesn’t matter, whether
phase transition is modeled by a kinetic relation [6], [14] or by using an equilibrium assumption as done
in [5].

Using a kinetic relation, a nucleation criterion is used, see [6]. Here a critical state is reached, in
which the vapor phase starts to condensate, which implies the intersection point.

In Dumbser et al. [5] phase transition is modeled by an equilibrium assumption. For any given
temperature T and p < psat(T ) the pair (T, p) describes some vapor state. Analogously (T, p) with
p > psat(T ) describes the fluid in the liquid state. For p = psat(T ) one may have water vapor or liquid
water as well as a mixture of both fluids. The fluid at the saturation state is defined by its temperature
and the mass fraction or equivalently by its pressure and the mass fraction of the vapor/liquid phase.
All corresponding states in the (p, T )-phase plane are located at the saturation line. For more details
see Iben et al. [8]. Nevertheless, for condensation a wave curve must have an intersection point with the
saturation line.

The Euler equations are only valid for pure fluids or homogeneous mixtures in the thermodynamic
equilibrium. For models that use only one set of Euler equations as discussed before pure fluid are
present. On the other hand in literatur often models of Baer-Nunziato type are used to describe the
situation considered. The generalized Baer-Nunziato model is given by a two phase model using two sets
of Euler equations

∂

∂t
αkρk +

∂

∂x
αkρkuk = ±ṁ ,

∂

∂t
αkρkuk +

∂

∂x
αk(ρku

2
k + pk) = ±P ∂

∂x
αk ±M ,

∂

∂t
αkρk(ek +

1

2
u2
k) +

∂

∂x

[
ρk(ek +

1

2
u2
k) + pk

]
uk = ∓P ∂

∂t
αk ± E ,

k = 1, 2 and a further equation to describe the volume fractions of the phases

∂

∂t
α1 + U

∂

∂x
αk = A
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with the same notations as before. Further, αk denotes the volumefraction of phase k. The sources
A, ṁ,M,E on the right hand side of the equations describe the exchange of mass, momentum and
energy. They include relaxation terms for velocity, pressure, temperature and Gibbs free energy of the
phases, that guarantee, that both phases relax to thermodynamic equilibrium. The pressure P und the
velocity U have to be defined by some closure law, see [18], [19] or [25].

Again we start with a pure vapor phase, that will be compressed. For numerical reasons the volume
fraction of the pure phase is assumed to be 1 − ε, whereas the volume fraction of the absent phase is
assumed to be ε. Typically one uses ε = 10−8, see for instance Saurel and Abgrall [18].

Mass transfer is described by the Gibbs free energy relaxation term. Condensation will occur only
in the case, that the specific Gibbs free energy of the vapor phase is larger than the specific Gibbs free
energy of the (artificial) liquid phase. This is not the case for any set of initial data that describes a pure
water vapor phase. Therefore there is no contribution by the relaxation terms as long as (T, p) is in the
interior of Region 2 (vapor phase).

In regions of constant volume fractions the system decouples. The solution for each phase can be
determined separately. This implies that the relations of the single phase Euler equations are also valid
for the Baer Nunziato model in the case considered. In order that condensation can occur the vapor
phase must be compressed in such a manner that the specific Gibbs free energy of the vapor phase is
larger than the specific Gibbs free energy of the (artificial) liquid phase. This implies an intersection
point of the wave curve with the saturation line.

6.5 Extension to the real equation of state for water

In the previous Section 6.4 we have proved, that condensation by compression can not occur for the
chosen equations of state with parameters given in Table 6.1. On the other hand, in Figure 6.1 we can
see, that this choice gives a very bad approximation of the real saturation curve for higher temperatures.
We now generalize our statement using the results from the last section. We want to show, that for
the real equation of state and for good approximations of the real equation of state condensation by
compression cannot occur. The proof uses the same arguments as before.

We start with an arbitrary initial state in the vapor region and we consider the corresponding wave
curve. Assume, (p∗, T∗) is the intersection point of the curve T̂ (p̂; p∗, T∗) of all admissible initial states
in the (p, T )-phase space with the real saturation line Tsat(p). We compare the derivatives and find the
contradiction.

6.5.1 Approximation of the real equation of state

For our purpose it is sufficient to find a good approximation of the real equation of state in a small
neighborhood of the saturation line. In the following we show how to find suitable parameters, coming
from the intersection point (p∗, T∗). This is an improvement of the method of Le Metayer et al. [12],
which is a modification of the idea introduced by Barberon and Helluy [3].

6.5.1.1 Vapor phase

For any temperature T∗ the corresponding (real) saturation pressure is known by the real formulas given
by Wagner [24], [22]. The same is true for the corresponding vapor density ρV ∗, the speed of sound aV ∗,
the entropy sV ∗ and the internal energy eV ∗. For simplicity we choose πV = 0. Then from (6.3.3) we
directly obtain γV . Next we calculate qV from (6.3.1), CV from (6.3.2) and q′V from (6.3.4). The results
are given in Figure 6.4.

6.5.1.2 Liquid phase

For the liquid phase we disclaim the simplifying assumption for the parameter π. Accordingly we are
looking for 5 parameters. Therefore beside the relations (6.3.1) - (6.3.4) we can use a further relation.
From thermodynamics it is known, that

T
∂s(T, p)

∂T
= Cp
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Figure 6.4: Local optimal parameters for the vapor phase

with the specific heat capacity at constant pressure. Using (6.3.4), (6.3.2) and (6.3.1) we find that

CpL = TL
∂sL(TL, pL)

∂TL
= CLγL

=
1

TL

(
pL + γLπL
ρL(γL − 1)

+
γLpL − pL
ρL(γL − 1)

)
=

1

TL

(
eL − qL +

pL
ρL

)
.

This gives us the further relation

eL = CpLT −
pL
ρL

+ qL , (6.5.1)

where CpL denotes the specific heat capacity at constant pressure of the liquid phase. Again we use the
real equation of state to obtain the liquid density ρL∗, the speed of sound aL∗, the entropy sL∗, the
internal energy eL∗ as well as the specific heat capacity CpL∗. Then from (6.5.1) we find qL. After that
we calculate πL and γL from (6.3.1) and (6.3.3). Finally we obtain CL from equation (6.3.2) and q′L from
equation (6.3.4). The results are given in Figure 6.5.

Using the parameters πV , πL, γV , γL, CV , CL, qV , qL, q
′
V , q

′
L obtained in Sections 6.5.1.1 and 6.5.1.2 the

equations of state (6.3.1)-(6.3.4) give the exact values for the densities, the internal energies, the en-
tropies and the sound speeds at saturation state (p∗, T∗). Also we obtain the exact values for the Gibbs
free energies and the enthalpies. From equations (6.3.9)1 and (6.3.9)2 as well as equation (6.4.7) and the
implicit function theorem we see, that we also find the exact value

T ′sat(p∗;T∗) . (6.5.2)

Due to the smoothness of all expressions for any given tolerance ε > 0 we find a sufficiently small
neighborhood of the saturation state (p∗, T∗) such that all relevant physical states ρk, ek, sk, ak, gk are
approximated with a deviation less then ε.
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Figure 6.5: Local optimal parameters for the liquid phase

6.5.2 Proof of the statement for the real equation of state

Assume, for any initial state in the vapor region, that is close to the saturation line, the corresponding
wave curve in the (p.T )-phase space and the (real) saturation line have the intersection point (p∗, T∗).
Assume further, that we used the optimal parameters πV , πL, γV , γL, CV , CL, qV , qL, q

′
V , q

′
L, such that the

equations of state (6.3.1)-(6.3.4) give the exact values for ρk, ek, sk, ak, gk for both phases at saturation
state (p∗, T∗). Then the following relation must hold at the intersection point

T̂ ′(p∗) ≤ T ′sat(p∗) . (6.5.3)

As before T̂ (p̂; p∗, T∗) denotes all admissible initial states (p̂, T̂ ) in the vapor region, in a sufficiently small
neighborhood of (p∗, T∗). For the derivative we have

T̂ ′(p∗; p∗, T∗) =
T∗
p∗
· γV − 1

γV
. (6.5.4)

Moreover, we have

T ′sat(p∗;T∗) = T∗ ·
CV (γV −1)

p∗
− CL(γL−1)

p∗+πL

CV γV − CLγL + qV −qL
T∗

. (6.5.5)
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In both equations (6.5.4) and (6.5.5) we used the local optimal parameters. As already explained at the
end of Section 6.5.1, equation (6.5.5) gives the exact value for the derivative. Simple estimations show,
that

T̂ ′(p∗) > T ′sat(p∗) . (6.5.6)

Accordingly, there is no such intersection point. Due to the smoothness of all expressions and the exact-
ness of (6.5.5) this statement is true for the real equation of state and for all sufficiently good approxima-
tions of the real equation of state. If there is any set of parameters πV , πL, γV , γL, CV , CL, qV , qL, q

′
V , q

′
L

such that (6.5.6) is not satisfied, then the parameters obviously give a coarse approximation of the satu-
ration line and the result is not meaningful. The same is true for any other choice of equations of state
for the liquid and the vapor phase. We summarize

Theorem 6.5.1. Using the real equations of state [23] or any good approximation of the real equation
of state nucleation by compression cannot occur.

6.6 Cavitation by expansion

After the discussion of condensation by compression one may ask for the opposite case of cavitation by
expansion. We will see, that this process is more complicated and we will distinguish between two cases.
The liquid phase will be expanded in a manner that phase transition will occur. This case corresponds
to a cavitation tube, which is a tube filled with liquid water and a flexible piston, see Figure 6.6. To

Liquid water

Figure 6.6: Expansion of liquid water

illustrate the physics we give the s-T−diagram in Figure 6.7, where the path (1) corresponds to the
process considered. We have seen, that the Baer Nunziato type relaxation model allows the coexistence
of both the vapor and the liquid phase in the same point of the physical domain at the saturation state.
The same is true for the Eulerian model used by Dumbser et al. [5]. Here the phase transition is modeled

Critical Point

Pure Liquid

(1)
Wet Steam

(2) Pure Vapor

(3)

Entropy

T
em
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Figure 6.7: Entropy temperature diagram: (1) isentropic expansion - rarefaction wave, (2) isothermal
path, (3) isentropic compression, see Iben [7]

by an equilibrium assumption. The mixture is called wet steam. An expansion process such that a
mixture of water vapor and liquid water (wet steam) is created, we call the process weak cavitation.
On the other hand, if pure water vapor is created, we call this process strong cavitation.
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6.6.1 Cavitation in the weak sense

If the liquid phase is expanded, a rarefaction wave will propagate through the liquid phase. In analogy
to the condensation case we start with an arbitrary set of initial data in the liquid phase (Region 1).
We construct the wave curve, that connects the initial state to all possible states behind the rarefaction
wave. If (weak) cavitation, by sufficiently strong expansion, can occur this wave curve must have an
intersection point with the saturation line. It is not surprising, that this is usually the case. Numerous
examples can be found in the literature, see for instance the example cavitation by strong rarefaction
using one set of Euler equations and the equilibrium assumption in Dumbser et al. [5]. See further the
expansion tube problem in Zein et al. [25] using the Baer Nunziato type relaxation model.

6.6.2 Cavitation in the strong sense

For the moment we restrict ourselves to the two model types, that allow the coexistence of vapor and
liquid, [25], [5]. Models, using a kinetic relation will be discussed later.

One may assume that for sufficiently strong expansions one may create pure water vapor. To illustrate
that situation we refer to Figure 6.8. Because Region 3, the wet steam region, reduces to a single line in

pressure

d
e
n
s
it
y

Region 1

Region 2

Region 3:
Wet steam

Figure 6.8: Solid line: saturation curves ρV (psat), ρL(psat), dashed line: wave curve, star: initial state,
circle: pure water vapor state

the (p, T ) phase plan, we now plot all the data in the more descriptive (p, ρ) phase plane. The wet steam
region is bounded by the saturation (solid) lines. Assume, there is any initial liquid state, marked by
the star and assume further, the liquid is expanded in a manner that pure water vapor is created. This
state is indicated by the circle. Then there is a rarefaction wave curve, connecting the star and the circle
state. This wave curve crosses the two curves ρk(psat). The same situation in the (p, T ) phase plane
is given in Figure 6.9. In the following we will show, that strong cavitation for the models considered
cannot occur. The argument is similar to the argument in the condensation case. Assume, the circle
state exists. This implies the existence of a rarefaction wave curve that connects both the circle and
the star state. The intersection point of the wave curve and the saturation curve Tsat(p) in the (p, T )
phase plane is called (p∗, T∗). Let us consider that part of the wave curve, that is located in the vapor
in Region 2. We denote this curve by T̂ (p; p∗, T∗). As before for the intersection point we must have

T̂ ′(p∗; p∗, T∗) ≤ T ′sat(p∗) .

The wave curve is found to be

T̂ (p; p∗, T∗) = T∗

(
p

p∗

) γV −1

γV

. (6.6.1)

This directly follows from Equation (6.3.4) and the fact, that the entropy is constant across a rarefaction
wave. Equation (6.6.1) implies

T̂ (p∗; p∗, T∗) =
T∗
p∗
· γV − 1

γV
. (6.6.2)

This gives a contradiction, see (6.5.4) and (6.5.6).
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Figure 6.9: Solid line: saturation curve, dashed line: wave curve, star: initial state, circle: pure water
vapor state

Theorem 6.6.1. Using the real equation of state or any good approximation of the real equation of state
strong cavitation by expansion cannot occur in an approach based on Euler equations and an equilibrium
assumption, [5], [25].

There is an alternative, very simple argument to show, that a pure liquid state and a pure water
vapor state cannot be connected by a rarefaction wave. As already mentioned it is a well known fact,
that the entropy is constant across a rarefaction wave. But it is also known, that for any temperature
between triple point temperature and critical temperature Ttripel = 273.16K < T < Tcrit = 647.096K
the entropies satisfy the inequalities

sL < scrit and scrit < sV . (6.6.3)

Obviously there are no liquid and vapor states with the same entropy. This also can be seen in Figure
6.7.

Using an Eulerian approach like Dumbser et al. [5] one can obtain only weak cavitation. Wet steam
is created, which is a mixture of water vapor and liquid water at saturation state. For the entropy one
has

smix = µsV + (1− µ)sL (6.6.4)

where µ ∈ [0, 1] denotes the vapor mass fraction, see [5]. Due to Equation (6.6.3) the value µ is bounded
for cavitation starting from pure liquid water. Using the steam tables of Wagner [22] we find

µ ≤ 0.5 . (6.6.5)

In contrast to the equilibrium models discussed in the first part of Section 6.6.2 models using a kinetic
relation are able to produce strong cavitation. This is clear by Section 6.6.1. A rarefaction wave curve
in the liquid Region 1 can have an intersection point with the saturation line. Here a critical state is
reached. A cavitation criterion can be used, see Hantke et al. [6]. The liquid phase starts to evaporate
and a pure vapor phase is created. An important difference to the previous models is, that the solution
is nonsmooth and entropy production by phase transition is allowed. Therefore there is no contradiction
to previous results.

6.7 Conclusions

We have seen, that condensation by compression cannot occur in an Eulerian approach. Due to the
compression of the water vapor not only the pressure but also the temperature is increasing. Because of
the temperature rise the saturation pressure is increasing. The key point is, that the saturation pressure
increases much faster than the pressure inside the vapor phase. Therefore phase transition cannot take
place. From observations of nearly adiabatic flows, see Figure 6.6, 6.2 this phenomenon is known.
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• The Euler equations correctly reflect this behavior. We gave a mathematical proof for this.

• Adiabatic compression of vapor does not lead to liquid phase, see Figure 6.7, path (1). To reach
this state, negative heat flow has to be used. This is equivalent to the use of isothermal Euler
equations such as done by Hantke et. al [6]. This corresponds to path (1) in Figure 6.7.

This effect comes up in much weaker form in the case of cavitation. The reason may be that the
temperature changes due to the expansion are much smaller.

• It is not possible to evaporate a pure liquid by a rarefaction wave completely, only with external
supply of energy see again Figure 6.7. This is also equivalent to the use of isothermal Euler
equations [6], see Figure 6.7, path (2).

• We gave a mathematical proof for this.

On the other hand this shows, that heat flow plays an important role in cavitating processes or in
condensation processes caused by compression. Eulerian models are not appropriate to describe such
effects.
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Chapter 7

Modeling Phase Transition for Two
Phase Flows

Bibliographic note: The content of this chapter is published in [H3]: Ali Zein, Maren Hantke, and
Gerald Warnecke. Modeling phase transition for compressible two-phase flows applied to metastable
liquids, Journal of Computational Physics, 229 (2010), pp. 2964-2998.

Abstract: The seven-equation model for two-phase flows is a full non-equilibrium model, each phase
has its own pressure, velocity, temperature, etc. A single value for each property, an equilibrium value,
can be achieved by relaxation methods. This model has better features than other reduced models of
equilibrium pressure for the numerical approximations in the presence of non-conservative terms. In this
paper we modify this model to include the heat and mass transfer. We insert the heat and mass transfer
through temperature and Gibbs free energy relaxation effects. New relaxation terms are modeled and
new procedures for the instantaneous temperature and Gibbs free energy relaxation toward equilibrium
is proposed. For modeling such relaxation terms, our idea is to make use of the assumptions that the
mechanical properties, the pressure and the velocity, relax much faster than the thermal properties, the
temperature and the Gibbs free energy, and the ratio of the Gibbs free energy relaxation time to the
temperature relaxation time is extremely high. All relaxation processes are assumed to be instantaneous,
i.e. the relaxation times are very close to zero. The temperature and the Gibbs free energy relaxation
are used only at the interfaces. By these modifications we get a new model which is able to deal with
transition fronts, evaporation fronts, where heat and mass transfer occur. These fronts appear as extra
waves in the system. We use the same test problems on metastable liquids as in Saurel et al. [R. Saurel,
F. Petitpas and R. Abgrall, Modeling phase transition in metastable liquids: application to cavitating
and flashing flows, J. Fluid Mech., 607, 313-350 (2008)]. We have almost similar results. Computed
results are compared to the experimental ones of Simões-Moreira and Shepherd [J.R. Simões-Moreira
and J.E. Shepherd, Evaporation waves in superheated dodecane, J. Fluid Mech., 382, 63-86 (1999)]. A
reasonable agreement is achieved. In addition we consider the six-equation model with a single velocity
which is obtained from the seven-equation model in the asymptotic limit of zero velocity relaxation time.
The same procedure for the heat and mass transfer is used with the six-equation model and a comparison
is made between the results of this model with the results of the seven-equation model.

7.1 Introduction

In the last two decades, considerable research has been devoted to the modeling and simulation of
compressible two-phase flows. Most of the models used are typically derived by using averaging pro-
cedures [9, 10, 14]. Both the mathematical modeling and numerical computation have certain inherent
difficulties.

The difficulties in modeling concern the physical transfer processes taking place across the interface
such as mass, momentum and heat transfer. Using averaging techniques of the single phase equations
results in additional terms, which describe these transfer processes. The exact expressions for the transfer
terms are usually unknown [9]. Also there appear differential terms that are extracted from the transfer
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122 CHAPTER 7. MODELING PHASE TRANSITION FOR TWO PHASE FLOWS

terms that prevent the system from being in divergence form. Therefore, they are referred to as the
non-conservative terms and they are responsible for numerical difficulties.

The most general two-phase flow model consists of seven partial differential equations, the evolution
equation for the volume fraction of one of the phases together with balance equations for mass, momentum
and energy for each phase. The seven-equation model is a full non-equilibrium model, each phase has
its own pressure, velocity, temperature, etc. Several authors considered such type of models, Baer and
Nunziato [4], Embid and Baer [11] as well as Saurel and Abgrall [27]. Saurel and Abgrall [27] proposed
a Godunov-type method for the solution of this model. Also they proposed instantaneous relaxation
procedures for the pressure and the velocity that make the pressures and velocities of phases relax to
common values. The main disadvantage of this model is the large number of waves.

Several authors have considered a five-equation reduced model which is obtained in the asymptotic
limit of the seven-equation model, see Kapila et al. [15], Murrone and Guillard [23], Petitpas et al. [24]
and Saurel et al. [33]. This model satisfies the mechanical equilibrium, it has a single pressure and a
single velocity. It is composed of two mass equations, a mixture momentum equation and a mixture
energy equation. These equations are written in conservative formulation, while the fifth equation of
this model is a non-conservative equation for the volume fraction which contains a non-conservative term
involving the divergence of the velocity.

Even though the five-equation model is reduced it has severe numerical difficulties. These difficulties
include:

• Shock computational difficulties due to the non-conservative character of the model.

• Maintaining volume fraction positivity due to the difficulties in the approximation of the non-
conservative term involving the divergence of the velocity.

• Non-monotonic behavior of the mixture sound speed, that obeys the Wood formula, with respect to
the volume fraction, see [34]. This behavior may cause inaccurate wave transmission across diffuse
interfaces.

The above difficulties are detailed in Saurel et. al. [34] and Petitpas et al. [24]. It is noted that the
conventional Godunov-type schemes are not suitable for the resolution of this model [24]. To circumvent
these difficulties, the Riemann problem is solved by the help of shock and Riemann invariant relations
that were derived by Saurel et al. [32]. And a specific relaxation projection method is used instead of
the conventional Godunov method, see Saurel et al. [29] and Petitpas et al. [24]. Moreover, Saurel et
al. [33] modified this model to take into account phase transition by including temperature and chemical
potential relaxation effects.

From the computational point of view the seven-equation model has several advantages over the
five-equation model:

• Preserving the positivity of the volume fraction is easier.

• The mixture sound speed has a monotonic behavior, see Petitpas et al. [24].

According to the attractive advantages of the seven-equation model we aim in this paper to modify this
model to include the heat and mass transfer and to present numerical investigations for the resulting
model compared with some previously known results. Our attention is devoted to the evaporation that
appears in cavitating flows. Thus we can compare our results with the results of [33] for metastable
liquids, i.e. liquids with temperature higher than the saturation temperature.

We use the seven-equation model of Saurel and Abgrall [27] which is a modified form of the Baer-
Nunziato model [4]. For the solution of the hyperbolic part of the model a modified Godunov-type scheme
is used. For the mechanical relaxation, the instantaneous velocity and pressure relaxation procedures of
Saurel and Abgrall [27] are taken.

We insert the heat and mass transfer through relaxation effects. New terms associated with the heat
and mass transfer are modeled, these terms are given in terms of the temperature difference for the
heat transfer and in terms of the Gibbs free energy difference for the mass transfer. Also we propose
new procedures for the instantaneous temperature and Gibbs free energy relaxation toward equilibrium.
These procedures are used at each time step after the mechanical relaxations. They are used only at
specific locations, i.e at evaporation fronts.
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Since the exact expressions for the transfer terms are unknown, our idea to model them is to refer to
some general physical observations besides the second law of thermodynamics. In particular we assume
that the mechanical properties relax much faster than the thermal properties. Also we assume that the
relaxation time for the temperature is much smaller than that of the Gibbs free energy. In fact these
assumptions agree with physical evidence in a large number of situations, see [5, 13, 15, 22]. In the book
of Müller et al. [22] some similar assumption is used in the analysis of the equilibrium conditions for
droplets and bubbles, see Chapter 11 there. In Kapila et al. [15] there are some estimates given for
the time scales of the relaxation of the velocity, pressure and temperature in granular materials. These
estimations show that the relaxation time for the temperature is significantly larger than relaxation times
for both the velocity and the pressure. Also other estimations for detonation applications show that the
time scale of the velocity relaxation and pressure relaxation are of the same order of magnitude while
the temperature relaxation time is much greater than that for the velocity and pressure, see [7,26]. More
discussion of this point is given in Section 7.3.2.

By our modifications of the seven-equation model we get a new model which is able to deal with
transition fronts, specifically here evaporation fronts, where heat and mass transfer occur. These fronts
appear as extra waves in the system, see Le Metayer et al. [21] and Saurel et al. [33].

Moreover we consider the six-equation model with a single velocity which is obtained from the seven-
equation model in the asymptotic limit of zero velocity relaxation time. This model consists of the volume
fraction equation of one of the phases, two mass balance equations, a mixture momentum equation and
two energy equations. As with the seven- equation model this model has better features for numerical
computations than the five-equation model. In fact the major difficulty in the numerics of the five-
equation model comes from the equilibrium of the pressure. For more details concerning the six-equation
model without phase transition you can see [34].

We model the heat and mass transfer for the six-equation model by using our procedure that is
proposed for the seven- equation model under the same assumptions.

We use the same test problems of reference [33] for metastable liquids. We see in our results the
extra waves that appear due to the phase transition. Also our results are in a good agreement with the
results of [33].

Computed results are compared to the experimental data of Simões-Moreira and Shepherd [36]. In-
deed, the computed front velocities of the evaporation waves are compared to the measured ones at
several initial temperatures. There is a reasonable agreement with the experimental data.

A comparison between the results of the two models is made. There is no significant difference
between the results of both models under the same conditions, but there is a significant difference in the
CPU time consumed by both models, this makes the six-equation model less expensive.

This paper is organized as follows. In Section 7.2 we present the mathematical model and its closure
relations. Also we deduce phasic entropy equations that will be used in later sections. Section 7.3 is
devoted to the numerical method, in particular, we present a modified Godunov-type scheme with the
HLLC-type Riemann solver [38] for the seven-equation model. In Section 7.4 we model the heat and mass
transfer through the temperature and the Gibbs free energy relaxation effects. Our modeled terms keep
the mechanical equilibrium during the temperature relaxation, also they keep the mechanical equilibrium
and the temperature equilibrium during the Gibbs free energy relaxation. Mathematical procedures are
introduced for the instantaneous relaxation of the temperature and the Gibbs free energy that are used
at each time step after the velocity and the pressure relaxation. In Section 7.5 we consider the six-
equation model with a single velocity, we apply the same ideas proposed for the heat and mass transfer
in the seven-equation model on this case too. Finally, in Section 7.6 we present some numerical results.
Comparison with experimental data is made and comparisons between the results of the seven-equation
model and the six-equation model are considered.
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7.2 Mathematical model

The two-phase flow model of Saurel and Abgrall [27] without heat and mass transfer in one dimension
can be written as:

∂α1

∂t
+ uI

∂α1

∂x
= µ(p1 − p2), (7.2.1a)

∂α1ρ1

∂t
+
∂(α1ρ1u1)

∂x
= 0, (7.2.1b)

∂α1ρ1u1

∂t
+
∂(α1ρ1u

2
1 + α1p1)

∂x
= pI

∂α1

∂x
+ λ(u2 − u1), (7.2.1c)

∂α1ρ1E1

∂t
+
∂(α1(ρ1E1 + p1)u1)

∂x
= pIuI

∂α1

∂x
+ µpI(p2 − p1)

+ λuI(u2 − u1), (7.2.1d)

∂α2ρ2

∂t
+
∂(α2ρ2u2)

∂x
= 0, (7.2.1e)

∂α2ρ2u2

∂t
+
∂(α2ρ2u

2
2 + α2p2)

∂x
= −pI

∂α1

∂x
− λ(u2 − u1), (7.2.1f)

∂α2ρ2E2

∂t
+
∂(α2(ρ2E2 + p2)u2)

∂x
= −pIuI

∂α1

∂x
− µpI(p2 − p1)

− λuI(u2 − u1). (7.2.1g)

The notations are classical: αk is the volume fraction, ρk the density, uk the velocity, pk the pressure

and Ek = ek +
u2
k

2 the total specific energy, where ek is the specific internal energy.
Equation (7.2.1a) is the evolution equation for the volume fraction of phase 1. The volume fractions

for both phases are related by the saturation constraint, α1 + α2 = 1. The sets of equations (7.2.1b)-
(7.2.1d) and (7.2.1e)-(7.2.1g) express the conservation of mass, momentum and energy for phase 1 and
phase 2 respectively.

The terms pI and uI are the interfacial pressure and the interfacial velocity respectively. As in [27],
the interfacial pressure is defined as the mixture pressure, while the interfacial velocity is defined as the
velocity of the center of mass

pI = α1p1 + α2p2, uI =
α1ρ1u1 + α2ρ2u2

α1ρ1 + α2ρ2
. (7.2.2)

Other closure relations for the interfacial terms are possible. One other choice is defined by Baer and
Nunziato [4] as:

pI = p1, uI = u2.

Further closure relations were derived by Saurel et al. [30] and written as follows

pI =
Z1p2 + Z2p1

Z1 + Z2
+ sign

(
∂α1

∂x

)
(u2 − u1)Z1Z2

Z1 + Z2
, (7.2.3)

uI =
Z1u1 + Z2u2

Z1 + Z2
+ sign

(
∂α1

∂x

)
p2 − p1

Z1 + Z2
,

where Zk represents the acoustic impedance, Zk = ρkck, where the speed of sound ck is given as

c2k =

pk
ρ2
k

−
(
∂ek
∂ρk

)
pk(

∂ek
∂pk

)
ρk

, k = 1, 2. (7.2.4)

In this work for the model (7.2.1) we will use the relations that are given in (7.2.2).
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The parameters λ and µ > 0 that appear in the model are the relaxation parameters which determine
the rates at which the velocities and pressures of the two phases relax to a common value. In this work we
are interested in the instantaneous equilibrium for both the velocity and the pressure, thus the parameters
λ and µ are assumed to be infinite.

The model (7.2.1) is a non-strictly hyperbolic system. For details of the mathematical properties of
this model see 7.A.

7.2.1 Equations of state (EOS)

Equations of state are used to close the system of equations (7.2.1). Since this model will be modified
to include the heat and mass transfer, appropriate EOS are required.

Most phase transition models use a cubic EOS, like the Van der Waals EOS. But using such an
EOS produces negative squared sound speed in a certain zone of the two phase flow, the spinodal
zone. This causes a loss of hyperbolicity and leads to computational failure [25, 33]. To overcome this
problem each fluid obeys its own EOS as a pure material, also these EOS should satisfy certain convexity
constraints [19,25,33].

In this paper we will use a modified form of the stiffened gas EOS (SG-EOS) with the same parameters
for the dodecane and the water as in Saurel et al. [33] and Le Métayer et al. [20]. An essential i ssue
is that the various parameters are linked to each other to fulfill some constraints to recover the phase
diagram. This makes such a choice of EOS suitable for phase transitions [20, 33]. For k = 1, 2, they are
expressed as

ek(pk, ρk) =
pk + γkπk
ρk(γk − 1)

+ qk, (7.2.5a)

Tk(pk, ρk) =
pk + πk

Cvkρk(γk − 1)
, (7.2.5b)

s(pk, Tk) = Cvk ln
T γkk

(pk + πk)(γk−1)
+ q′k, (7.2.5c)

where Tk is the temperature, sk the specific entropy and Cvk the heat capacity at constant volume. The
parameters γk, πk, qk and q′k are characteristic constants of the thermodynamic behavior of the fluid.
All parameters of the SG-EOS are given in Table 7.2.1 for the water and in Table 7.2.1 for the dodecane.

Phase γ π(Pa) Cv(J/kg/K) Cp(J/kg/K) q(J/kg) q′(J/kg/K)

vapor 1.43 0 1.04× 103 1.487× 103 2030× 103 −23× 103

liquid 2.35 109 1.816× 103 4.267× 103 −1167× 103 0

Table 7.1: EOS parameters for vapor and liquid water

Phase γ π(Pa) Cv(J/kg/K) Cp(J/kg/K) q(J/kg) q′(J/kg/K)

vapor 1.025 0 1.956× 103 2.005× 103 −237× 103 −24× 103

liquid 2.35 4× 108 1.077× 103 2.534× 103 −755× 103 0

Table 7.2: EOS parameters for vapor and liquid dodecane

7.2.2 Entropy equations

In this part we deduce the entropy equation for each phase. These equations will be used later. Denote
the material derivative as

Dk(.)

Dt
=
∂(.)

∂t
+ uk

∂(.)

∂x
, k = 1, 2.

Using the continuity equation (7.2.1b) with the momentum equation (7.2.1c), we have

α1ρ1
D1u1

Dt
+
∂α1p1

∂x
= pI

∂α1

∂x
+ λ(u2 − u1).
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Multiplying this equation by u1, we get the following equation for the kinetic energy

α1ρ1

D1(
u2

1

2
)

Dt
+ u1

∂α1p1

∂x
= u1pI

∂α1

∂x
+ λu1(u2 − u1).

Subtracting this equation from the total energy equation (7.2.1d), we obtain the internal energy equation

α1ρ1
D1e1

Dt
+ α1p1

∂u1

∂x
= pI(uI − u1)

∂α1

∂x
+ µpI(p2 − p1) + λ(uI − u1)(u2 − u1). (7.2.6)

From the volume fraction equation (7.2.1a) with the continuity equation (7.2.1b) we have

α1
D1ρ1

Dt
+ α1ρ1

∂u1

∂x
= ρ1(uI − u1)

∂α1

∂x
+ µρ1(p2 − p1). (7.2.7)

To get an equation for the entropy we use the Gibbs relation

T1ds1 = de1 −
p1

ρ2
1

dρ1.

By taking the material derivative for this relation and multiplying by α1ρ1, we obtain

α1ρ1T1
D1s1

Dt
= α1ρ1

D1e1

Dt
− α1p1

ρ1

D1ρ1

Dt
. (7.2.8)

Using (7.2.6) and (7.2.7) in (7.2.8), we have

α1ρ1T1
D1s1

Dt
= (pI − p1)(uI − u1)

∂α1

∂x
+ µ(pI − p1)(p2 − p1) + λ(uI − u1)(u2 − u1).

In a similar way we deduce the entropy equation for phase ”2” which is given as

α2ρ2T2
D2s2

Dt
= (pI − p2)(uI − u2)

∂α2

∂x
− µ(pI − p2)(p2 − p1)− λ(uI − u2)(u2 − u1).

7.3 Numerical method

The source terms of the system (7.2.1) consist of differential parts and non-differential parts. As in [27]
to account for both parts we use the Strang splitting approach [37]. Let L∆t

h be the operator of numerical

solution of the hyperbolic part of the system (7.2.1) over ∆t and L
∆t
2
s the operator of integration of the

source and relaxation terms over half of the time interval, i.e.
∆t

2
. Thus the solution is obtained by the

succession of operators.

Un+1
j = L

∆t
2
s L∆t

h L
∆t
2
s Un

j , (7.3.1)

where U = (α1, α1ρ1, α1ρ1u1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2E2)T .

7.3.1 Hyperbolic operator

Consider the hyperbolic part of the system (7.2.1)

∂α1

∂t
+ uI

∂α1

∂x
= 0, (7.3.2a)

∂u

∂t
+
∂f(u, α1)

∂x
= h(u, α1)

∂α1

∂x
, (7.3.2b)

where

u =


α1ρ1

α1ρ1u1

α1ρ1E1

α2ρ2

α2ρ2u2

α2ρ2E2

 , f(u, α1) =


α1ρ1u1

α1ρ1u
2
1 + α1p1

α1(ρ1E1 + p1)u1

α2ρ2u2

α2ρ2u
2
2 + α2p2

α2(ρ2E2 + p2)u2

 , h(u, α1) =


0
pI
pIuI

0
−pI
−pIuI

 .
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Following [27] a modified Godunov scheme is used to take into account the discretization of the non-
conservative part of the system (7.3.2). Assume that we have some Godunov-type discretization for the
system (7.3.2b) of the form

un+1
j = unj −

∆t

∆x
[f(u∗(unj ,u

n
j+1))− f(u∗(unj−1,u

n
j ))] + ∆thj∆j , (7.3.3)

where ∆j is the discrete form of the term
∂α1

∂x
, which has to be determined, and u∗(unj ,u

n
j+1) is the

value of u along the line x = xj+ 1
2

for the Riemann problem with the states unj ,u
n
j+1.

The components of the system (7.3.3) for phase ”1” can be written as

(αρ)n+1
j = (αρ)nj −

∆t

∆x
[(αρu)∗j+ 1

2
− (αρu)∗j− 1

2
], (7.3.4a)

(αρu)n+1
j = (αρu)nj −

∆t

∆x
[(αρu2 + αp)∗j+ 1

2
− (αρu2 + αp)∗j− 1

2
]

+∆t(pI)
n
j ∆j , (7.3.4b)

(αρE)n+1
j = (αρE)nj −

∆t

∆x
[(αρuE + αpu)∗j+ 1

2
− (αρuE + αpu)∗j− 1

2
]

+∆t(pI)
n
j (uI)

n
j ∆j . (7.3.4c)

The index ”1” is omitted for simplicity.
In order to find an expression for ∆j , the idea of Abgrall [1] is used, that a uniform pressure and

velocity must remain uniform during time evolution, for more discussion about this idea see [28]. Assume
p and u are a constant pressure and velocity everywhere at time tn. Then according to the Abgrall
principle we have

pnj = pn+1
j = (pI)

n
j = p∗j± 1

2
= p, (7.3.5)

unj = un+1
j = (uI)

n
j = u∗j± 1

2
= u. (7.3.6)

Multiplying (7.3.4a) by u and subtracting the result from (7.3.4b), we obtain

∆j =
1

∆x
(α∗j+ 1

2
− α∗j− 1

2
). (7.3.7)

Using the definition of E and (7.3.7) in (7.3.4c), and using (7.3.4a), we have the following equation for
internal energy

(αρe)n+1
j = (αρe)nj −

∆t

∆x
u[(αρe)∗j+ 1

2
− (αρe)∗j− 1

2
]. (7.3.8)

Multiplying (7.3.4a) by the parameter q in the (7.2.5a) and subtracting the result from (7.3.8), we obtain

(αρ(e− q))n+1
j = (αρ(e− q))nj −

∆t

∆x
u[(αρ(e− q))∗j+ 1

2
− (αρ(e− q))∗j− 1

2
]. (7.3.9)

From the EOS (7.2.5a) and uniformity of pressure (7.3.5), we see that

ρ(e− q) =
p+ γπ

γ − 1
= const. (7.3.10)

Thus from (7.3.9) with (7.3.10), we get by taking out the constant and using (7.3.6)

αn+1
j = αnj − (uI)

n
j

∆t

∆x
(α∗j+ 1

2
− α∗j− 1

2
). (7.3.11)

This equation provides a discretization for the volume fraction equation.
For the Riemann values the approximate solvers HLL, HLLC [38] and VFRoe [12] are used. For the

seven-equation model (7.2.1) the HLL solver is introduced in [27] and the VFRoe solver is considered
in [3]. In the following section we present the HLLC solver.
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7.3.1.1 HLLC-type solver

The intercell flux of the HLLC Riemann solver is given by, see Toro [38]

FHLLCj+ 1
2

=


f(uL), 0 ≤ sL
f(u∗L) = f(uL) + sL(u∗L − uL), sL ≤ 0 ≤ s∗
f(u∗R) = f(uR) + sR(u∗R − uR), s∗ ≤ 0 ≤ sR
f(uR), 0 ≥ sR.

Where ’L’ and ’R’ refer to the left and right states of a cell boundary respectively.

Following the Davis estimates [8] the wave speeds can be taken as

sL = min{u1L − c1L, u2L − c2L, u1R − c1R, u2R − c2R},
sR = max{u1L + c1L, u2L + c2L, u1R + c1R, u2R + c2R}.

Following Toro [38] for a single phase, the vectors u∗L and u∗R can be given as

u∗K =



α1Kρ1K
sK − u1K

sK − s∗
α1Kρ1K

sK − u1K

sK − s∗
s∗

α1Kρ1K
sK − u1K

sK − s∗

(
E1K + (s∗ − u1K)(s∗ +

p1K

ρ1K(sK − u1K)
)

)
α2Kρ2K

sK − u2K

sK − s∗
α2Kρ2K

sK − u2K

sK − s∗
s∗

α2Kρ2K
sK − u2K

sK − s∗

(
E2K + (s∗ − u2K)(s∗ +

p2K

ρ2K(sK − u2K)
)

)


, K = L,R.

We take the speed s∗ as in [38] but with mixture values for pressure, velocity and density, i.e

s∗ =
pR − pL + ρLuL(sL − uL)− ρRuR(sR − uR)

ρL(sL − uL)− ρR(sR − uR)

where ρ = α1ρ1 + α2ρ2, p = α1p1 + α2p2 and u =
α1ρ1u1 + α2ρ2u2

ρ
.

We refer to the mathematical properties of the model (7.2.1) in 7.A Consider the eigenvectors (7.A.4)
and (7.A.5) for the 2- to 7- fields. It is clear that the function ϕ(W) = α1 is a Riemann invariant for
all 2- to 7- characteristic fields. This means that α1 is constant across all rarefaction waves of the 2-
to 7- fields. Also note that the action of the non-conservative terms is reflected in the 1-field which
corresponds to the eigenvalue λ1 = uI . Moreover, this eigenvalue comes from the evolutionary equation
for α1. Considering these observations we will assume that α1 changes only across s∗, this means that

α1∗K = α1K , K = L, R.

7.3.1.2 Extension to the second order

To achieve second order accuracy we use the MUSCL method, where MUSCL stands for Monotone
Upstream-centered Scheme for Conservation Laws. In the following we will give a summary of this
method, and for details we refer to Toro [38]. This method has three steps, they are

• Data reconstruction: The primitive variables on the cell boundary are extrapolated as

W−
j+ 1

2

= Wn
j +

1

2
δj , W+

j− 1
2

= Wn
j −

1

2
δj .

Performing this step in primitive variables ensures the preservation of uniformity of pressure and
velocity, which is an essential issue in the discretization of the model.
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The limited slope δj is taken as

δj =

{
max{0,min(βdj− 1

2
, dj+ 1

2
),min(dj− 1

2
, βdj+ 1

2
)}, dj+ 1

2
> 0

min{0,max(βdj− 1
2
, dj+ 1

2
),max(dj− 1

2
, βdj+ 1

2
)}, dj+ 1

2
< 0

where
dj− 1

2
= Wn

j −Wn
j−1, dj+ 1

2
= Wn

j+1 −Wn
j .

For particular values of β, the value β = 1 corresponds to the minmod limiter and β = 2 corresponds
to the superbee limiter.

• Evolution: Using (7.A.1) the values W±
j∓ 1

2

are evolved by a time
∆t

2
as

Ŵ
+

j− 1
2

= W +
j− 1

2

− ∆t

2∆x
A(Wj)(W

−
j+ 1

2

−W+
j− 1

2

),

Ŵ
−
j+ 1

2
= W −

j+ 1
2

− ∆t

2∆x
A(Wj)(W

−
j+ 1

2

−W+
j− 1

2

).

• Solution of the Riemann problem: We rewrite Ŵ
±
j± 1

2
in conservative form, and solve the Riemann

problem with the piecewise constant data (Û
−
j+ 1

2
, Û

+

j+ 1
2
).

7.3.2 Source and relaxation operators

According to the Strang splitting (7.3.1), to take into account for source and relaxation terms we have
to solve the following system of ordinary differential equations (ODE).

dU

dt
= S (7.3.12)

where U = (α1, α1ρ1, α1ρ1u1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2E2)T . The source vector S can be decomposed
as the sum

S = SV + SP + SThermal,

where SV and SP are associated with velocity and pressure relaxation terms respectively. The vector
SThermal represents the thermal relaxation terms that include the temperature and Gibbs free energy
relaxation terms that have to be modeled. The mechanical relaxation terms SV and SP are given by

SV =



0
0

λ(u2 − u1)
λuI(u2 − u1)

0
−λ(u2 − u1)
−λuI(u2 − u1)


, and SP =



µ(p1 − p2)
0
0

µpI(p2 − p1)
0
0

−µpI(p2 − p1)


.

The system (7.3.12) is solved by successive integrations considering each one of the source vectors alone.
The relaxation time scales depend on many parameters of the fluids and also possibly on the process,

i.e. evaporation, condensation combustion, etc. For example the rate of the pressure relaxation µ
depends on the compressibility of each fluid besides the nature of each fluid and the two phase mixture
topology [27, 31]. The velocity relaxation time may be greater than that required for the pressure
relaxation, since the velocity relaxation depends on the fluid viscosity which has slow effects compared
to others, also it depends on the pressure relaxation which is in general fast compared to the longitudinal
wave propagation [27, 31]. The interface conditions, for the interface that separates two pure fluids,
impose an equality for pressure and velocity. In many physical situations it is reasonable to assume that
the pressure and velocity relax instantaneously. Such an assumption also fulfills the interface conditions.
Some estimations in certain situations show that the time scale of the velocity relaxation and pressure
relaxation are of the same order of magnitude [7, 26].
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The temperature relaxation depends on the thermal conductivity of the fluids. Where this conduction
occurs due to the collisions of the molecules of the fluids. To reach temperature equilibrium a large
number of collisions is required. This in general has long characteristic time compared to the pressure
and velocity relaxation.

The Gibbs free energy relaxation parameter depends on local chemical relaxation [33]. And this is
a slow process compared with other processes that related to the pressure, velocity and temperature
relaxation at the interfaces. Therefore the relaxation time of the Gibbs free energy relaxation is the
longest compared to other relaxation times.

In this paper we assume that the relaxation times are very close to zero i.e. instantaneous relaxations.
This assumption is justified for the pressure and the velocity in the entire flow field. For the temperature
and the Gibbs free energy this assumption is considered only at the interface where the heat and mass
transfer occur, indeed this assumption is standard at equilibrium interfaces when mass transfer occurs
[33]. The assumption of instantaneous relaxations means that all relaxation parameters are taken to be
infinite and this makes the model free of parameters.

Moreover we assume that the relaxation time of the mechanical variables is much smaller than that
of the thermal variables. We assume that the mechanical variables relax very fast to equilibrium values,
and they will stay in equilibrium during the thermal relaxation. Also we assume that the temperature
relaxes much faster than the Gibbs free energy.

For the velocity and pressure relaxation we use the same procedures as Saurel and Abgrall [27], other
procedures for pressure relaxation also are possible, see [17, 18, 31]. For the thermal relaxation terms
we modeled them depending on the observation of the differences between relaxation times for various
variables, they are the subject of the next section.

7.4 Thermal relaxation, modeling of heat and mass transfer

At each time step after the procedures for the velocity and pressure relaxations we have a two-phase
mixture in mechanical equilibrium, but each phase has its own temperature and its own Gibbs free
energy. In this section we will insert the effect of heat and mass transfer that take place at the interface.

To locate the interface we use the ideas of [33], that the cell is filled with pure fluid when its volume
fraction is close to 1, say (1 − ε), with ε = 10−6. The interface corresponds to mixture cells when the
volume fraction ranges between ε̄ and 1− ε̄, with ε̄ = 10−4. The value of ε̄ has to be chosen larger than
the value of ε to ensure that phase transitions occur only in the interfacial zone, for a discussion on this
point see [33]. Also mass transfer is allowed if the liquid is metastable, i.e. Tl > Tsat(pequi). For the
computation of the curve T = Tsat(pequi) see 7.C.

According to our assumption that the mechanical relaxation time is very small compared with the
thermal relaxation time we may also assume that the mechanical quantities will stay in equilibrium
during the thermal relaxation. Therefore, our modeled terms will keep this assumption.

Also we assume that the temperature relaxes much faster than the Gibbs free energy. So we will split
the thermal terms into two parts. One is related to the heat transfer SQ and the other is related to the
mass transfer Sm, i.e.

SThermal = SQ + Sm.

The system of ODE (7.3.12) is solved for the temperature relaxation then for the Gibbs free energy relax-
ation. During the Gibbs free energy relaxation we assume that the temperature will stay in equilibrium,
and our modeled terms will keep this condition.

7.4.1 Heat transfer and temperature relaxation

The heat transfer is added through the temperature relaxation terms. In the model (7.2.1) the heat
transfer term Q initially appears in the energy equations. As the pressure equilibrium is maintained
through the temperature relaxation we will modify the volume fraction equation to include the effect of
the heat transfer in a way to be able to keep an equilibrium pressure during the temperature relaxation
process. Therefore the heat source vector SQ is modeled as

SQ = (
Q

κ
, 0, 0, Q, 0, 0,−Q)T , (7.4.1)
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where the new variable κ has to be determined.
Then to take into account for the heat transfer we have to solve the following system of ODE

dU

dt
= SQ. (7.4.2)

To find the expression for κ we will use the assumption that the pressure will stay in equilibrium, and
to do that we assume

∂p1

∂t
=
∂p2

∂t
. (7.4.3)

7.4.1.1 Determination of κ

Consider the components of the system (7.4.2) for phase ”1”

∂α1

∂t
=
Q

κ
, (7.4.4a)

∂α1ρ1

∂t
= 0, (7.4.4b)

∂α1ρ1u1

∂t
= 0, (7.4.4c)

∂α1ρ1E1

∂t
= Q. (7.4.4d)

From (7.4.4a) and (7.4.4d) we obtain

∂α1ρ1E1

∂t
= κ

∂α1

∂t
. (7.4.5)

Using the definition of E1, (7.4.4b) and (7.4.4c) with (7.4.5) we have

α1ρ1
∂e1

∂t
= κ

∂α1

∂t
. (7.4.6)

The internal energy e1 is expressed in terms of p1 and ρ1, i.e. e1 = e1(p1, ρ1). Differentiating it with
respect to t and substituting the result in (7.4.6), we obtain

α1ρ1

(
∂e1

∂p1

)
ρ1

∂p1

∂t
+ α1ρ1

(
∂e1

∂ρ1

)
p1

∂ρ1

∂t
= κ

∂α1

∂t
. (7.4.7)

From (7.4.4b) we have α1
∂ρ1

∂t
= −ρ1

∂α1

∂t
. Using this in (7.4.7) we get

α1ρ1

(
∂e1

∂p1

)
ρ1

∂p1

∂t
− ρ2

1

(
∂e1

∂ρ1

)
p1

∂α1

∂t
= κ

∂α1

∂t
,

or

∂p1

∂t
=

κ+ ρ2
1

(
∂e1

∂ρ1

)
p1

α1ρ1

(
∂e1

∂p1

)
ρ1

∂α1

∂t
. (7.4.8)

A similar equation can be attained for p2

∂p2

∂t
= −

κ+ ρ2
2

(
∂e2

∂ρ2

)
p2

α2ρ2

(
∂e2

∂p2

)
ρ2

∂α1

∂t
. (7.4.9)
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Using (7.4.8) and (7.4.9) in the condition (7.4.3) and after some manipulations we have the following
expression for κ

κ =

ρ1c
2
1

α1
+
ρ2c

2
2

α2

Γ1

α1
+

Γ2

α2

−

Γ1

α1
p1 +

Γ2

α2
p2

Γ1

α1
+

Γ2

α2

. (7.4.10)

Here Γk denotes the Grüneisen coefficient of phase k which is given as

Γk =
1

ρk

(
∂pk
∂ek

)
ρk

, k = 1, 2. (7.4.11)

Since the heat transfer relaxation is considered when pressure equilibrium is maintained, i.e. p1 = p2 =
peq, the second term in the right hand side of (7.4.10) is equivalent to the equilibrium pressure. Thus
we have

κ =

ρ1c
2
1

α1
+
ρ2c

2
2

α2

Γ1

α1
+

Γ2

α2

− peq. (7.4.12)

It is interesting to note that the first term on the right hand side of (7.4.12) is exactly the same term
that appears in a similar manner with heat transfer that is given in the model of Saurel et al. [33].

In the context of the SG-EOS (7.2.5), we have the following expression for κ

κ =

p1 + γ1π1

α1
+
p2 + γ2π2

α2

γ1 − 1

α1
+
γ2 − 1

α2

.

7.4.1.2 Mixture entropy

Now let us consider the equation of the mixture entropy. If we follow the same method in Section 7.2.2
for the model with new modifications, we have

α1ρ1T1
Ds1

Dt
= (1 +

p1

κ
)Q, (7.4.13a)

α2ρ2T2
Ds2

Dt
= −(1 +

p2

κ
)Q. (7.4.13b)

After the mechanical relaxation p1 and p2 are in equilibrium, so p1 = p2 = peq.

Combining the two equations in (7.4.13) we get the following equation for the mixture entropy

∂ρs

∂t
+
∂ρsu

∂x
= (1 +

peq
κ

)Q

(
T2 − T1

T1T2

)
,

where ρs = α1ρ1s1 + α2ρ2s2 and u = u1 = u2 is the equilibrium velocity.

The heat transfer Q is modeled as Q = θ(T2 − T1), where θ > 0 is the temperature relaxation
parameter. Since κ is always positive the mixture entropy satisfies the second law of thermodynamics,
i.e.

∂ρs

∂t
+
∂ρsu

∂x
= θ(1 +

peq
κ

)
(T2 − T1)2

T1T2
≥ 0.

In this work the parameter θ is assumed to tend to infinity, i.e. the temperature relaxes to a common
value instantaneously at any time. This assumption is considered at the interface only.
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7.4.1.3 Temperature relaxation

Now to solve the system (7.4.4) with θ →∞, we proceed as for the pressure relaxation in [27]. It is clear
that α1ρ1 and α1ρ1u1, therefore also u1 stay constant through the relaxation process.

From the system (7.4.4) we obtain (7.4.6) for the internal energy, which can be rewritten as

∂e1

∂t
=

κ

α1ρ1

∂α1

∂t
.

Integrating this equation, we obtain the following approximation

e∗1 = e0
1 +

κ̄

α0
1ρ

0
1

(α∗1 − α0
1) (7.4.14)

where ’0’ and ’*’ refer to the states before and after the relaxation process respectively and κ̄ is the mean
interfacial value between the states (α0

1, ρ
0
1, e

0
1) and (α∗1, ρ

∗
1, e
∗
1). Also, we can proceed in the same way

to get a similar result for phase ’2’.

We consider (7.4.14) as an equation for e1 as a function of α1, i.e. e1 = e0
1 +

κ̄

α0
1ρ

0
1

(α1−α0
1), and from

(7.4.4b) ρ1 =
const

α1
. And analogously for the other phase, since α2 = 1− α1 we have only one variable

α1 in the relation

fT (α1) = T2(e2, ρ2)− T1(e1, ρ1) = 0. (7.4.15)

Our aim now is to find an α1 that satisfies the equilibrium condition (7.4.15). The variable κ̄ can be

approximated as κ̄ =
κ̃+ κ0

2
, where κ̃ is estimated at the new state resulting from iterative procedure

for solving fT (α1) = 0.

In this way we get the temperature equilibrium, while keeping the mechanical equilibrium.

7.4.2 Mass transfer and Gibbs free energy relaxation

Analogous to the heat transfer, the mass transfer is also modeled through relaxation terms. As men-
tioned we assume that the temperature relaxation time is very small compared with the Gibbs free
energy relaxation time, and so we will consider that the mechanical equilibrium and the equilibrium of
temperature will be satisfied through the Gibbs free energy relaxation.

To take into account the mass transfer we have to solve the following system of ODE

dU

dt
= Sm. (7.4.16)

Our aim now is to model the mass transfer source vector Sm. The literature on averaging techniques
shows that the mass transfer appears in the model as a mass rate in the interfacial momentum and in the
interfacial energy, see [9, 10, 14]. But the expressions for these terms are unknown. Here we will insert
these terms in the model as they appear by averaging, but we will use some assumptions to find certain
expressions for these terms.
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Let us assume that Sm is given in the model as

∂α1

∂t
=
ṁ

%
, (7.4.17a)

∂α1ρ1

∂t
= ṁ, (7.4.17b)

∂α1ρ1u1

∂t
= uIṁ, (7.4.17c)

∂α1ρ1E1

∂t
= (ei +

u2
I

2
)ṁ, (7.4.17d)

∂α2ρ2

∂t
= −ṁ, (7.4.17e)

∂α2ρ2u2

∂t
= −uIṁ, (7.4.17f)

∂α2ρ2E2

∂t
= −(ei +

u2
I

2
)ṁ. (7.4.17g)

The new variables % and ei have to be determined. According to our assumption the relaxation time
of the Gibbs free energy is much larger than other relaxation times, so during the Gibbs free energy
relaxation process we will assume that the pressure and temperature stay in equilibrium. Thus to find
the new variables we use the following assumptions

∂p1

∂t
=
∂p2

∂t
, (7.4.18a)

∂T1

∂t
=
∂T2

∂t
. (7.4.18b)

7.4.2.1 Determination of ei and %

Since the model (7.4.17) is solved after the mechanical relaxation we have u1 = u2 = uI . From (7.4.17b)
and (7.4.17c) the velocity u1 is constant through the relaxation procedure, also from (7.4.17e) and
(7.4.17f) the velocity u2 is constant.

Using the equations (7.4.17a) - (7.4.17d) and the definition of E1, we get

α1ρ1
∂e1

∂t
= (ei − e1)ṁ. (7.4.19)

Differentiate e1(p1, ρ1) with respect to t and substitute the result in (7.4.19). We obtain

α1ρ1

(
∂e1

∂p1

)
ρ1

∂p1

∂t
+ α1ρ1

(
∂e1

∂ρ1

)
p1

∂ρ1

∂t
= %(ei − e1)

∂α1

∂t
. (7.4.20)

From (7.4.17a) and (7.4.17b), we get

α1
∂ρ1

∂t
= (%− ρ1)

∂α1

∂t
. (7.4.21)

Using this in (7.4.20), we have

α1ρ1

(
∂e1

∂p1

)
ρ1

∂p1

∂t
+ ρ1(%− ρ1)

(
∂e1

∂ρ1

)
p1

∂α1

∂t
= %(ei − e1)

∂α1

∂t
. (7.4.22)

This leads to

∂p1

∂t
=

Γ1

α1

(
−ρ1(%− ρ1)

(
∂e1

∂ρ1

)
p1

+ %(ei − e1)

)
∂α1

∂t
. (7.4.23)
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In a similar way we have an equation for p2

∂p2

∂t
= −Γ2

α2

(
−ρ2(%− ρ2)

(
∂e2

∂ρ2

)
p2

+ %(ei − e2)

)
∂α1

∂t
. (7.4.24)

By the condition (7.4.18a) with (7.4.23) and (7.4.24), we obtain

Γ1

α1

(
−ρ1(%− ρ1)

(
∂e1

∂ρ1

)
p1

+ %(ei − e1)

)
= −Γ2

α2

(
−ρ2(%− ρ2)

(
∂e2

∂ρ2

)
p2

+ %(ei − e2)

)
. (7.4.25)

On the other hand, e1 can be written in terms of T1 and ρ1, i.e. e1 = e1(T1, ρ1). Differentiating it with
respect to t, substituting the result in (7.4.19) and using (7.4.21), we get

∂T1

∂t
=

1

α1ρ1

(
∂e1

∂T1

)
ρ1

(
−ρ1(%− ρ1)

(
∂e1

∂ρ1

)
T1

+ %(ei − e1)

)
∂α1

∂t
.

But

(
∂e1

∂T1

)
ρ1

= Cv1, the specific heat at constant volume. Thus

∂T1

∂t
=

1

α1ρ1Cv1

(
−ρ1(%− ρ1)

(
∂e1

∂ρ1

)
T1

+ %(ei − e1)

)
∂α1

∂t
. (7.4.26)

A similar equation can be attained for T2

∂T2

∂t
=

−1

α2ρ2Cv2

(
−ρ2(%− ρ2)

(
∂e2

∂ρ2

)
T2

+ %(ei − e2)

)
∂α1

∂t
. (7.4.27)

By the condition (7.4.18b) with (7.4.26) and (7.4.27), we get

1

α1ρ1Cv1

(
−ρ1(%− ρ1)

(
∂e1

∂ρ1

)
T1

+ %(ei − e1)

)
=

−1

α2ρ2Cv2

(
−ρ2(%− ρ2)

(
∂e2

∂ρ2

)
T2

+ %(ei − e2)

)
.(7.4.28)

It is clear now that (7.4.25) and (7.4.28) are two equations for the two unknowns ei and %. After some
manipulations, we get from these equations

% =

φ

(
ρ1c

2
1

α1
+
ρ2c

2
2

α2

)
− φ

(
Γ1

α1
p1 +

Γ2

α2
p2

)
+ ψ


ρ2

1

(
∂e1

∂ρ1

)
T1

α1ρ1Cv1
+

ρ2
2

(
∂e2

∂ρ2

)
T2

α2ρ2Cv2



φ

(
c21
α1

+
c22
α2

)
− φ

(
Γ1

α1
h1 +

Γ2

α2
h2

)
+ ψ


e1 + ρ1

(
∂e1

∂ρ1

)
T1

α1ρ1Cv1
+

e2 + ρ2

(
∂e2

∂ρ2

)
T2

α2ρ2Cv2


,(7.4.29a)

ei =

e1 + ρ1

(
∂e1

∂ρ1

)
T1

α1ρ1Cv1
+

e2 + ρ2

(
∂e2

∂ρ2

)
T2

α2ρ2Cv2

φ
−

ρ2
1

(
∂e1

∂ρ1

)
T1

α1ρ1Cv1
+

ρ2
2

(
∂e2

∂ρ2

)
T2

α2ρ2Cv2

%φ
(7.4.29b)

where φ =
1

α1ρ1Cv1
+

1

α2ρ2Cv2
, ψ =

Γ1

α1
+

Γ2

α2
and hk = ek +

pk
ρk

is the enthalpy for phase k.

Consider the expression of % given by (7.4.29a), the terms that are multiplied by ψ come from the
temperature equilibrium condition. While the terms that are multiplied by φ come from the pressure
equilibrium condition. It is interesting to see that a similar expression is given in the Saurel et al. [33] by
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ρI = (
ρ1c

2
1

α1
+
ρ2c

2
2

α2
)/(

c21
α1

+
c22
α2

), see relation (5.9) in [33]. The term ρI in [33] appears with the volume

fraction equation in the same way as our variable %, see volume fraction equation (7.4.17a). It is obvious
that all terms of ρI appear in the expression of %. Note also that the terms are related to the equilibrium
of the temperature in the variable % do not appear in the variable ρI , this is due to the fact that ρI
uses the pressure equilibrium with other assumptions, but it does not use the temperature equilibrium
condition.

In the context of the SG-EOS we have the following expressions for % and ei,

% =

φ

(
p1 + γ1π1

α1
+
p2 + γ2π2

α2

)
− ψ

(
π1

α1ρ1Cv1
+

π2

α2ρ2Cv2

)
−φ
(

(γ1 − 1)q1

α1
+

(γ2 − 1)q2

α2

)
+ ψ

(
e1 − π1

ρ1

α1ρ1Cv1
+

e2 − π2

ρ2

α2ρ2Cv2

) ,

ei =

(
e1 − π1

ρ1

α1ρ1Cv1
+

e2 − π2

ρ2

α2ρ2Cv2

)
φ

+

(
π1

α1ρ1Cv1
+

π2

α2ρ2Cv2

)
%φ

.

Note that Γk = γk − 1, k = 1, 2, for the SG-EOS.

7.4.2.2 Mixture entropy

Now we consider the equation of mixture entropy. If we follow the same argument as in Section 7.2.2,
under the mechanical equilibrium and temperature equilibrium, we have

α1ρ1T1
Ds1

Dt
= (ei +

p1

%
)ṁ− (e1 +

peq
ρ1

)ṁ, (7.4.31a)

α2ρ2T2
Ds2

Dt
= −(ei +

p2

%
)ṁ+ (e2 +

peq
ρ2

)ṁ. (7.4.31b)

Using the mass equations (7.4.17b) and (7.4.17e) with system (7.4.31), we have

T1(
∂α1ρ1s1

∂t
+
∂α1ρ1s1u1

∂x
) = (ei +

peq
%

)ṁ− (e1 +
p1

ρ1
− T1s1)ṁ, (7.4.32a)

T2(
∂α2ρ2s2

∂t
+
∂α2ρ2s2u2

∂x
) = −(ei +

peq
%

)ṁ+ (e2 +
p2

ρ2
− T2s2)ṁ. (7.4.32b)

Note that the quantity ek +
pk
ρk
− Tksk, k = 1, 2 is the Gibbs free energy. Let us denote gk for the Gibbs

free energy.

Add the two entropy equations in (7.4.32) after division by temperatures, we obtain

∂ρs

∂t
+
∂ρsu

∂x
= (ei +

peq
%

)ṁ

(
T2 − T1

T1T2

)
+ ṁ

(
g2

T2
− g1

T1

)
. (7.4.33)

Since the temperatures are in equilibrium by the temperature relaxation the first term in the right
hand side of (7.4.33) vanishes and the mass transfer is modeled as ṁ = η(g2 − g1), where η > 0 is the
relaxation parameter of the Gibbs free energy. Thus the mixture entropy satisfies the second law of
thermodynamics, i.e.

∂ρs

∂t
+
∂ρsu

∂x
= η

(g2 − g1)2

Teq
≥ 0, (7.4.34)

where Teq is the equilibrium temperature, T1 = T2 = Teq.

In this work we assume that the parameter η tends to infinity. This means that the Gibbs free energy
relaxes instantaneously to equilibrium. This is considered at the interface only.
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7.4.2.3 Free Gibbs energy relaxation, procedure I

Now, we will solve the system (7.4.17) when η →∞, this means that the mass transfer occurs until the
Gibbs free energies reach equilibrium. Thus we have to find the value of ṁ that makes the difference of
the Gibbs free energies at the end of the time step is zero. To do that we use the equations for the rate
of change of Gibbs free energies in terms of ṁ. Assume that

∂g1

∂t
= Aṁ, and

∂g2

∂t
= Bṁ. (7.4.35)

Using the SG-EOS, A and B can be given as

A =
γ1Cv1 − Cv1 − s1

α1ρ1%Cv1
[(e1 − q1)(%− ρ1) + %(ei − e1)]

+

[
T1(s1 + γ1Cv1)− p1

ρ1
− (e1 − q1)

]
(%− ρ1)

α1ρ1%
,

B = −γ2Cv2 − Cv2 − s2

α2ρ2%Cv2
[(e2 − q2)(%− ρ2) + %(ei − e2)]

−
[
T2(s2 + γ2Cv2)− p2

ρ2
− (e2 − q2)

]
(%− ρ2)

α2ρ2%
.

From (7.4.35) we get

∂∆g

∂t
=
∂(g1 − g2)

∂t
= (A−B)ṁ.

The simplest numerical approximation of this equation is

(∆g)n+1 − (∆g)n

∆t
= (A−B)n(ṁ)n.

To satisfy the equilibrium condition for the Gibbs free energies we require (∆g)n+1 = 0. Thus the mass
transfer can be approximated as

(ṁ)n =
−(∆g)n

∆t(A−B)n
.

Using this approximation for (ṁ)n we can integrate the system (7.4.17). But we may face the problem
of loosing the positivity of the volume fraction. Therefore a limitation on the value ṁ/% must be used.
We take the following procedure from [33] which we cite for the sake of completeness. Assume that
Sα1

= ṁ/%. Then the maximum admissible source term for the volume fraction evolution in order to
presereve the positivity is given as

Smax, α1
=


1− α1

∆t
, Sα1 > 0

−α1

∆t
, otherwise.

(7.4.36)

Then, if |Smax, α1
| > |Sα1

|, the numerical integration for the system (7.4.17) can be done with the
hydrodynamics time step which is restricted by the CFL number. Otherwise, the integration time step
has to be reduced. The ratio Rα1

= Smax, α1
/Sα1

is computed and the system (7.4.17) is integrated over
a fraction of the time step, typically ∆tm = Rα1

∆t/2. Successive point integrations are done to cover
the complete hydrodynamic step.

The above procedure is cheap, fast and easy to implement. But this procedure is not an instantaneous
one. This means that the equilibrium of the Gibbs free energy is reached very fast after a very short
time but not instantaneously. Hereafter we propose another method for the Gibbs free energy relaxation
which is an instantaneous relaxation procedure.



138 CHAPTER 7. MODELING PHASE TRANSITION FOR TWO PHASE FLOWS

7.4.2.4 Free Gibbs energy relaxation, procedure II

By considering (7.4.17b) and (7.4.17c) with the fact that the velocities are in equilibrium we get
∂u1

∂t
= 0.

Using this with (7.4.17c) and (7.4.17d) we get

∂α1ρ1e1

∂t
= eiṁ. (7.4.37)

From (7.4.37) with (7.4.17a) we have

∂α1ρ1e1

∂t
= %ei

∂α1

∂t
. (7.4.38)

Integrating (7.4.38) we get the following approximation

(α1ρ1e1)∗ = (α1ρ1e1)0 + %ei(α
∗
1 − α0

1), (7.4.39)

where %ei is the mean interfacial value between the states (α0
1, ρ

0
1, e

0
1) and (α∗1, ρ

∗
1, e
∗
1).

From (7.4.17a) and (7.4.17b) we have

∂α1ρ1

∂t
= %

∂α1

∂t
.

Integrating this equation we get

(α1ρ1)∗ = (α1ρ1)0 + %̄(α∗1 − α0
1), (7.4.40)

where %̄ is the mean interfacial value between the states (α0
1, ρ

0
1, e

0
1) and (α∗1, ρ

∗
1, e
∗
1).

In the same way we have the following equations for phase ’2’

(α2ρ2e2)∗ = (α2ρ2e2)0 − %ei(α∗1 − α0
1), (7.4.41)

(α2ρ2)∗ = (α2ρ2)0 − %̄(α∗1 − α0
1). (7.4.42)

Equation (7.4.40) shows that the density ρ1 is a function of α1. Using this fact with (7.4.39) we
conclude that e1 is also a function of α1. Analogously ρ2 and e2 are functions of α1. We aim now to find
the α1 which satisfies the equilibrium condition

fg(α1) = g2(e2, ρ2)− g1(e1, ρ1) = 0. (7.4.43)

The equation (7.4.43) can be solved by any iterative procedure. In this way the Gibbs free energy
equilibrium is reached instantaneously.

This procedure for the Gibbs free energy relaxation is more expensive since an iterative method is
used, but this method has a better resolution than the previous procedure.

7.4.3 The final model

In result of this section, the full model with heat and mass transfer is given as
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∂α1

∂t
+ uI

∂α1

∂x
= µ(p1 − p2) +

Q

κ
+
ṁ

%
, (7.4.44a)

∂α1ρ1

∂t
+
∂(α1ρ1u1)

∂x
= ṁ, (7.4.44b)

∂α1ρ1u1

∂t
+
∂(α1ρ1u

2
1 + α1p1)

∂x
= pI

∂α1

∂x
+ λ(u2 − u1) + uIṁ, (7.4.44c)

∂α1ρ1E1

∂t
+
∂(α1(ρ1E1 + p1)u1)

∂x
= pIuI

∂α1

∂x
+ µpI(p2 − p1)

+ λuI(u2 − u1) +Q+ (ei +
u2
I

2
)ṁ, (7.4.44d)

∂α2ρ2

∂t
+
∂(α2ρ2u2)

∂x
= −ṁ, (7.4.44e)

∂α2ρ2u2

∂t
+
∂(α2ρ2u

2
2 + α2p2)

∂x
= −pI

∂α1

∂x
− λ(u2 − u1)− uIṁ, (7.4.44f)

∂α2ρ2E2

∂t
+
∂(α2(ρ2E2 + p2)u2)

∂x
= −pIuI

∂α1

∂x
− µpI(p2 − p1)

− λuI(u2 − u1)−Q− (ei +
u2
I

2
)ṁ, (7.4.44g)

where

Q = θ(T2 − T1),

ṁ = η(g2 − g1).

The variables κ, % and ei are given in (7.4.10), (7.4.29a) and (7.4.29b) respectively. All relaxation
parameters λ, µ, θ and η are assumed to be infinite. The model (7.4.44) is solved by the Strang splitting
(7.3.1). The operator Ls approximates the solution of the ordinary differential system (7.3.12). This
system is solved by successive integrations considering separately each one of the source vectors that are
related to the relaxation of the velocity, pressure, temperature and Gibbs free energy. The order of the
successive integrations are essential for our model. They are done firstly for the velocity relaxation, then
for the pressure relaxation, after for the temperature relaxation and finally for the Gibbs free energy
relaxation. The velocity and the pressure relaxation are performed for the entire flow field while the
temperature and the Gibbs free energy relaxation are used at the interface only. For the hyperbolic
operator Lh a Godunov-type scheme is used.

7.5 Modeling phase transition for the six-equation model

The six-equation model with a single velocity is obtained from the seven-equation model in the asymptotic
limit of zero velocity relaxation time, see Kapila et al. [15]. This model, as the seven-equation model,
has more attractive advantages over the five-equation model for the numerical computations. Also this
model is less expensive than the seven-equation model.

In this section we will insert the heat and mass transfer in the six-equation model by the relaxation
effects. The above assumptions and ideas for the seven-equation model will be used, i.e. we will assume
that the pressure relaxes much faster than the thermal properties and the temperature relaxation time
is much smaller than that of the Gibbs free energy.
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The six-equation model without heat and mass transfer can be written as

∂α1

∂t
+ u

∂α1

∂x
= µ(p1 − p2), (7.5.1a)

∂α1ρ1

∂t
+
∂(α1ρ1u)

∂x
= 0, (7.5.1b)

∂α2ρ2

∂t
+
∂(α2ρ2u)

∂x
= 0, (7.5.1c)

∂ρu

∂t
+
∂(ρu2 + α1p1 + α2p2)

∂x
= 0, (7.5.1d)

∂α1ρ1e1

∂t
+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
= µpI(p2 − p1), (7.5.1e)

∂α2ρ2e2

∂t
+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
= −µpI(p2 − p1). (7.5.1f)

In this section we use the relation (7.2.3) for the interfacial pressure pI .
We apply the idea of Saurel et al. [34] that during the numerical computations we use the mixture

energy equation to correct the thermodynamic state predicted by the two non-conservative internal
energy equations. By summing the two internal energy equations and using the mass and momentum
equations we obtain the mixture energy equation

∂(ρe+ 1
2ρu

2)

∂t
+
∂u(ρe+ 1

2ρu
2 + α1p1 + α2p2)

∂x
= 0, (7.5.2)

where ρ = α1ρ1 + α2ρ2 and ρe = α1ρ1e1 + α2ρ2e2.

7.5.1 Mathematical properties of the six-equation model

In terms of the primitive variables W = (α1, ρ1, ρ2, u, p1, p2), the model (7.5.1) can be expressed as

∂W

∂t
+ A

∂W

∂x
= S (7.5.3)

where the matrix A is given as

A =



u 0 0 0 0 0
0 u 0 ρ1 0 0
0 0 u ρ2 0 0

p1 − p2

ρ
0 0 u

α1

ρ

1− α1

ρ
0 0 0 ρ1c

2
1 u 0

0 0 0 ρ2c
2
2 0 u


.

The matrix A has six eigenvalues, only three of them are distinct

λ1 = λ2 = λ3 = λ4 = u,

λ5 = u+ c, (7.5.4)

λ6 = u− c.

Here c is the mixture sound speed and is expressed as

c2 =
α1ρ1

ρ
c21 +

α2ρ2

ρ
c22.

The sound speeds ck, k = 1, 2, are defined by (7.2.4).
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The corresponding right eigenvectors are

r1 =



0

0

0

0

−α2

α1

1



, r2 =



0

0

1

0

0

0


, r3 =



0

1

0

0

0

0


, r4 =



1

0

0

0

p2 − p1

α1

0



, r5 =



0

1

ρ2

ρ1

c

ρ1

c21

ρ2

ρ1
c22



, r6 =



0

1

ρ2

ρ1

− c

ρ1

c21

ρ2

ρ1
c22



. (7.5.5)

Therfore, the system (7.5.1) is hyperbolic, but not strictly hyperbolic.

7.5.2 Numerical method

To take into account the non-differential source terms the Strang splitting (7.3.1) is used. In this case
the vector of conservative variables U is given as

U = (α1, α1ρ1, α2ρ2, ρu, α1ρ1e1, α2ρ2e2, ρe+
1

2
ρu2)T .

The last element in U corresponds to the redundant equation (7.5.2).
For the hyperbolic part of the system a Godunov-type scheme is used that takes into account the

discretization of the non-conservative terms.
The source vector S is associated with the relaxation terms and is decomposed as

S = SP + SQ + Sm,

where SP = (µ(p1− p2), 0, 0, 0, µpI(p2− p1),−µpI(p2− p1), 0)T represents the pressure relaxation terms.
The vectors SQ and Sm are associated with the heat and mass transfer relaxation terms respectively,
they will be considered in the next section.

The HLL, HLLC and VFRoe Riemann solvers can be used. For the HLL solver we refer to the book of
Toro [38], it is detailed in the context of Euler equations there but it is easily modified to the six-equation
model. The HLLC solver was introduced above in Section 7.3.1.1 for the seven-equation model and is
detailed in [34] for the six-equation model. The VFRoe solver [12] is explained in the following section
in the context of the six-equation model.

7.5.2.1 VFRoe-type solver

Consider the Riemann problem consists of the homogenous part of the system (7.5.3)

∂W

∂t
+ A

∂W

∂x
= 0,

with the initial conditions

W(x, 0) =

{
WL, x < 0

WR, x > 0.

The Jacobian matrix A(W) is calculated in the average state

W =
WL + WR

2
.

The intermediate state in the solution of the Riemann problem is

W∗ = WL +
∑
λi<0

airi,
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where the eigenvalues λi and the corresponding eigenvectors ri are given by (7.5.4) and (7.5.5)
The coefficients ai are determined by

WR −WL =

6∑
i=1

airi,

Indeed, they are given by the following expressions

a4 = ∆1,

a1 = −
ρ2

ρ1
c22∆5 − c21∆6 − ρ2c

2
2a4(p2−p1)
α1ρ1

α2ρ2

α1ρ1
c22 + c21

,

a5 =
ρ1ρ2c

2
2∆4 + ρ1c∆6 − ρ1ca1

2ρ2cc22
,

a6 = a5 −
ρ1

c
∆4,

a2 = ∆3 −
ρ2

ρ1
(a5 + a6),

a3 = ∆2 − a5 − a6,

where ∆k is the k-th component of WR −WL = (∆1, ...,∆6)T .

7.5.2.2 Godunov-type method

The equations that are written in a conservative form are discretized by the conventional Godunov
scheme

un+1
j = unj −

∆t

∆x
[f(u∗(unj ,u

n
j+1))− f(u∗(unj−1,u

n
j ))],

where

u = (α1ρ1, α2ρ2, ρu, ρe+
1

2
ρu2)T

and

f(u) = (α1ρ1u, α2ρ2u, ρu
2 + α1p1 + α2p2, u(ρe+

1

2
ρu2 + α1p1 + α2p2))T

.
The volume fraction equation and the internal energy equations are discretized as, see [34],

αn+1
1j = αn1j −

∆t

∆x
((uα1)∗j+ 1

2
− (uα1)∗j− 1

2
− αn1j(u∗j+ 1

2
− u∗j− 1

2
)),

(αρe)n+1
kj = (αρe)nkj −

∆t

∆x
((αρeu)∗k,j+ 1

2
− (αρeu)∗k,j− 1

2
+ (αp)nkj(u

∗
j+ 1

2
− u∗j− 1

2
)).

To achieve a second order accuracy we use the MUSCL method detailed in Section 7.3.1.2.

7.5.2.3 Pressure relaxation and the correction criterion

It is clear that the pressure relaxation procedure for the seven-equation model that is introduced in [27]
can be easily used for the six-equation model. Also we refer to the relaxation procedure that is used
in [34]. We see that there is no significant difference between the results of the two procedures in our
numerical results.

To make the relaxed pressure in agreement with the mixture EOS a correction criterion of [34] is
used. From the SG-EOS (7.2.5a) for each phase with the pressure equilibrium we obtain the following
expression for the mixture EOS, see [33,34]

p(ρ1, ρ2, e, α1) =

ρe− α1ρ1q1 − α2ρ2q2 −
(
α1γ1π1

γ1 − 1
+
α2γ2π2

γ2 − 1

)
α1

γ1 − 1
+

α2

γ2 − 1

. (7.5.6)
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The mixture pressure (7.5.6) is obtained from the evolution of the mixture total energy (7.5.2). This
is expected to be accurate in the entire field flow since the equation (7.5.2) is written in the conservative
formulation.

By using evolution of the mixture total energy (7.5.2) we can find the value of ρe. Using this value in
(7.5.6) we can find the value of the mixture pressure. Other variables in the relation (7.5.6) are estimated
by the relaxation step. In this way we determine the value of the mixture pressure that agrees with the
mixture EOS, then we use this value with the SG-EOS for each phase to reset the values of the internal
energies.

7.5.3 Modeling of the heat and mass transfer for the six-equation model

To take into account the heat and mass transfer we have to solve the following system of ODE at each
time step after the pressure relaxation step

dU

dt
= SQ + Sm. (7.5.7)

The system (7.5.7) is solved by considering each one of the source vectors alone. According to our
assumptions during the temperature relaxation the pressures will stay in equilibrium, i.e. the condition
(7.4.3) holds. And during the Gibbs free energy relaxation the pressures and the temperatures will stay
in equilibrium, i.e. the conditions (7.4.18) hold.

The heat source vector is modeled as

SQ = (
Q

κ
, 0, 0, 0, Q,−Q, 0)T , (7.5.8)

where Q = θ(T2 − T1). Note that the last element of SQ corresponds to the redundant equation (7.5.2).
It is clear that the value of κ (7.4.10) for the seven-equation model works also for the six-equation model
and satisfies the condition (7.4.3). Also it is easy to see that the same method of temperature relaxation
for the seven-equation model can be used for the six-equation model.

The vector Sm is modeled as

Sm = (
ṁ

%
, ṁ,−ṁ, 0, eiṁ,−eiṁ, 0), (7.5.9)

where ṁ = η(g2 − g1). The values of % and ei that satisfy the conditions (7.4.18) are given in (7.4.29).
Also the Gibbs free energy relaxation procedures for the seven-equation model can be used directly here.

Thus the final six-equation model with heat and mass transfer is given as

∂α1

∂t
+ u

∂α1

∂x
= µ(p1 − p2) +

1

κ
Q+

1

%
ṁ, (7.5.10a)

∂α1ρ1

∂t
+
∂(α1ρ1u)

∂x
= ṁ, (7.5.10b)

∂α2ρ2

∂t
+
∂(α2ρ2u)

∂x
= −ṁ, (7.5.10c)

∂ρu

∂t
+
∂(ρu2 + α1p1 + α2p2)

∂x
= 0, (7.5.10d)

∂α1ρ1e1

∂t
+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
= µpI(p2 − p1) +Q+ eiṁ, (7.5.10e)

∂α2ρ2e2

∂t
+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
= −µpI(p2 − p1)−Q− eiṁ. (7.5.10f)

On the other hand, the six-equation model with heat and mass transfer is obtained directly from the
seven-equation model involving the heat and mass transfer by the limit of infinitely fast velocity relax-
ation. This is shown in the 7.B We apply the reduction method of Chen et al. [6] on the seven-equation
model including the heat and mass transfer (7.4.44) assuming stiff velocity relaxation. The resulting
model is the six-equation model (7.5.10).



144 CHAPTER 7. MODELING PHASE TRANSITION FOR TWO PHASE FLOWS

7.6 Numerical results

The tests for metastable liquids in [33] are used.

7.6.1 Two phase shock tube

Consider a 1 m shock tube filled with liquid dodecane under high pressure at the left, and with the vapor
dodecane at atmospheric pressure at the right. The initial discontinuity is set at 0.75 m, and the initial
data are

Left: pl = 108 Pa, ρl = 500 kg/m3, ul = 0 m/s
Right: pv = 105 Pa, ρv = 2 kg/m3, uv = 0 m/s.
For numerical reasons, in each side of the shock tube we allow the presence of a small volume fraction

of the other fluid, typically 10−6.
All computations for this example were done with a CFL number of 0.6. They used the first Gibbs free

energy relaxation procedure with a limitation on the source terms given by (7.4.36). The time step for
the fluid motion is restricted by the CFL number, but we observed that the Gibbs free energy relaxation
procedure may require smaller time to ensure the positivity of the volume fraction. This means that
sometimes the equations (7.4.17) are stiff. Thus by using the limitation (7.4.36) a smaller time step is
used for the Gibbs free energy relaxation procedure and successive point integrations are done to cover
the complete hydrodynamic step that is restricted by the CFL number. In the presence of stiffness from
the Gibbs free energy relaxation, the first Gibbs free energy relaxation procedure is more appropriate
than the second relaxation procedure, this is due to the easy of imposition the limitation (7.4.36) on the
source terms.

By using the seven-equation model the results are shown at time t = 473µs. Figure 7.1 gives the
results without phase transition, while in Figure 7.2 we see the case when the phase transition is included.
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Figure 7.1: Dodecane liquid-vapor shock tube without phase transition, by using the 7-equation model.
The mesh involves 1250 cells, the CPU time is 100.65 seconds and the number of time steps is 7197.
The scale for the velocity graph is chosen in this way for a direct comparison with the velocity graph in
Figure 7.2.

In comparison between the two figures, an extra wave appears between the rarefaction wave and
the contact discontinuity which corresponds the evaporation front. Indeed, rarefaction waves propagate
through the liquid producing a superheated liquid and evaporation has occurred. An extra wave rep-
resenting the evaporation front propagates through the superheated liquid and produces a liquid vapor
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mixture at thermodynamic equilibrium with a high velocity, for more details see [33].
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Figure 7.2: Dodecane liquid-vapor shock tube with phase transition, by using the 7-equation model. The
mesh involves 1250 cells, the CPU time is 151.98 seconds and the number of time steps is 8828.
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Figure 7.3: Dodecane liquid-vapor shock tube without phase transition, a comparison between the results
of the 7-equation model (lines) and the 6-equation model results (symbols). The computations used 1250
cells. For the 7-equation model results: The CPU time is 100.65 seconds with 7197 time steps. For the
6-equation model results: The CPU time is 14.46 seconds with 1557 time steps.

A comparison between the results of the six-equation model and the seven-equation model is shown
in Figures 7.3 - 7.6 by using the same number of cells and the same type of the Riemann solver. It is
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clear that for both cases, with or without the phase transition, the results almost coincide. Just a very
small difference appears at the left rarefaction in the curves of the pressure. Such a small difference has
no significant numerical meaning. This small difference appears in both cases i.e. with or without the
phase transition in the same manner, see the pressure profiles on logarithmic scales, Figures 7.4 and 7.5,
the pressure profiles are drawn separately to be able to see the differences. Thus this small difference is
not related to the treatment of the phase transition.
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Figure 7.4: Dodecane liquid-vapor shock tube without phase transition. The pressure profile over (10000)
cells, by the 7- equation model (lines) and the 6-equation model (symbols). For the 7-equation model:
The CPU time is 8145.17 seconds taking 56749 time steps. For the 6-equation model: The CPU time is
1035.01 seconds with 12452 time steps.
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Figure 7.5: Dodecane liquid-vapor shock tube with phase transition. The pressure profile, a comparison
between the results of the 7-equation model (lines) and the 6-equation model results (symbols). The
computations were done with 1250 cells. For the 7-equation model: The CPU time is 151.98 seconds
with 8828 time steps. For the 6-equation model: The CPU time is 19.87 seconds with 1556 time steps.

At the right face of the left rarefaction wave in the pressure profile in Figures 7.2 and 7.5 we can
see a small distortion which does not appear in the results of [33] by using the five-equation model. We
reran this test for higher number of cells for both models, seven-equation and six-equation, but observed
no change. In fact we see the same feature on the curve of the pressure without phase transition, see
Figure 7.4. The pressure curve is shown on logarithmic scale, 10000 cells were used in the computations
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but this distortion still appears. Thus we conclude that this is not related to our new modifications for
heat and mass transfer. This may come from the nature of the initial seven-equation or six-equation
model or from the numerical method without phase transition. Moreover, such differences between the
results of the seven-equation model and the five-equation model without phase transition appear also in
the results of [23]. This requires further investigation.
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Figure 7.6: Dodecane liquid-vapor shock tube with phase transition, a comparison between the results
of the 7-equation model (lines) and the 6-equation model results (symbols). The computations used
1250 cells. For the 7-equation model: The CPU time is 151.98 seconds with 8828 time steps. For the
6-equation model: The CPU time is 19.87 seconds with 1556 time steps.

In result, for this example, we see that there is no significant difference between the results of the 7-
equation model and the 6-equation model and both models give similar results. But there is a significant
difference in the required CPU time. The required time for the 6-equation model is much smaller (≈ 13%)
than that required for the 7-equation model.

7.6.2 Validation against shock tube experiments

Experimental results were obtained by Simões-Moreira and Shepherd [36]. Liquid dodecane in a tube
was suddenly expanded into a low pressure chamber (1 mbar). An evaporation front or wave propagated
into metastable liquid with a steady mean velocity. This velocity was measured for different initial
temperatures of liquid dodecane. Also pressure data were obtained during the evaporation event before
and after the evaporation wave, see [36] and for full details see the PhD thesis of Simões-Moreira [35].

At each temperature we compute the front velocity under conditions which are close to the experi-
mental conditions with help of [21]. We consider a low pressure chamber (1 mbar) filled with gaseous
dodecane at right side of the shock tube with density 10−4kg/m3. While a liquid dodecane is considered
initially at the left side of the shock tube with a higher pressure. We adjust the initial pressure of the left
hand side, so that the pressure in the state before the evaporation front is equal to the measured value.
The density of the liquid is calculated from the equation of state (7.2.5b), as the initial temperature is
known.

Table 3 shows the estimated initial pressure that we use for each temperature, column two. The
columns three and four represent the experimental data for the pressure before the evaporation wave
and the front velocity respectively [36]. The fifth column shows the computed values for the front velocity
by present model.
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As in [33] the front velocity is computed as a local wave speed, i.e. UF = ((ρu)i−(ρu)i−1)/(ρi−ρi−1),
where i refers to the state after the evaporation wave. The computed values for the front velocity are
calculated at several time ponits in the range between 200µs and 500µs. Then an averaged value is
taken. We see that for each case the computed values at different times are very close.

A comparison between our results with the experimental results and the results of Saurel et al. [33] is
shown in Figure 7.7. It is clear that our results are more close to the experimental results. There is still
not perfect agreement with the experimental data. This is related to several sources, like how realistic
the equations of state we used are and how close we are to the real initial conditions of the experiments.
However we have a reasonable agreement with the experimental data also in the tendency of the relation
between the front velocity and the initial temperature, i.e. the front velocity increases if the temperature
increases.

Tl (K) pl (bar) pB (bar) UF (m/s)(measured) UF (m/s)(computed)
453 1.5 0.24 0.253 0.147
473 2.2 0.33 0.309 0.240
489 3.0 0.44 0.390 0.328
503 3.9 0.59 0.472 0.441
523 5.0 0.83 0.648 0.576
543 7.5 1.19 0.837 0.888
563 11.0 1.91 1.381 1.337
573 13.0 2.12 1.578 1.620

Table 7.3: Estimated initial pressure, experimental results and the computed front velocity at several
initial temperatures.
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Figure 7.7: Evaporation front velocity versus initial temperature of liquid dodecane. Comparison between
our results with the experimental results of Simões-Moreira and Shepherd [36] and the computed results
of Saurel et al. [33].

7.6.3 Two phase expansion tube

This test consists of a 1 m long tube filled with liquid water at atmospheric pressure and with density
ρl = 1150 kg/m

3
. A weak volume fraction of vapor (αv = 0.01) is initially added to the liquid. The
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initial discontinuity is set at 0.5 m, the left velocity is −2 m/s and the right velocity is 2 m/s.

In this test the water can not be treated as pure, and only the metastability condition is used
to activate the phase transition, i.e. phase transition occurs if the liquid is metastable, i.e. if Tl >
Tsat(pequi). For the computation of Tsat(pequi) see 7.C

This test case requires a small time step to obtain a stable solution (CFL≈ 0.15). When the strong
rarefaction are considered a smaller time step is required (CFL≈ 0.03). Here for the sake of comparison
we choose to do all computations with CFL=0.03. The small time here indicates that there is a stiffness
coming from the relaxation procedures.

Both procedures of the Gibbs free energy relaxation give the same results, but we consider that the
second procedure has a better resolution, thus it is adopted for this test case.

In Figure 7.8, we see the solution of this problem without phase transition at t = 3.2 ms. The results
are obtained by the seven-equation model and are compared with those of the six-equation model, they are
completely coinciding. The solution involves two expansion waves. The vapor volume fraction increases
at the center of the domain due to the gas mechanical expansion present in small proportions [33].
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Figure 7.8: Water liquid-vapor expansion tube without phase transition, by using the 7-equation model
(lines) and 6-equation model (symbols). The computations were done with 5000 cells. For the 7-equation
model: The CPU time is 14.772 hours with 763550 time steps. For the 6-equation model: The CPU
time is 7.305 hours with 763726 time steps.

The rarefaction waves make the liquid metastable and phase transition has to be added. Figure 7.9
presents the solution when the phase transition is involved and is compared with the solution without
phase transition at t = 3.2 ms. Liquid water is expanded until the saturation pressure is reached (see
the pressure graph) then evaporation appears and quite small of vapor is created, for details see [33]. In
Figure 7.11 a comparison between the results of the seven-equation and the six-equation models is made
at the same time, the curves are completely coinciding.
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Figure 7.9: Water liquid-vapor expansion tube with phase transition at t = 3.2 ms, the computed results
by the 7-equation model with phase transition (symbols) are compared with the results of the same model
without phase transition (lines). The computations were done with 5000 cells. For the model without
phase transition: The CPU time is 14.772 hours with 763550 time steps. when the phase transition is
included: The CPU time is 18.838 hours with 763550 time steps.

Figure 7.10: The waves pattern that correspond to the solutions in Figures 7.9 and 7.11. As shown the
evaporation waves are expansion waves.
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Figure 7.11: Water liquid-vapor expansion tube with phase transition at t = 3.2 ms. A comparison be-
tween the results of the 7-equation model (lines) and the 6-equation model (symbols). The computations
used 5000 cells. For the 7-equation model model: The CPU time is 18.838 hours with 763550 time steps.
For the 6-equation model: The CPU time is 9.447 hours with 764150 time steps.
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Figure 7.12: Water liquid-vapor expansion tube with phase transition at t = 3.2 ms, the vapor volume
fraction profile on a logarithmic scale. By using the 7-equation model (lines) and 6-equation model
(symbols).

The solution with phase transition, Figures 7.9 and 7.11, is composed of four expansion waves. This
is clear if we consider the vapor volume fraction profile on a logarithmic scale as in Figure 7.12. Thus the
wave pattern is as drawn in Figure 7.10. The extra two expansion waves correspond to the evaporation
fronts.

If we consider the solution at later time, when t = 59 ms as in Figure 7.13, the two leading fast
expansion waves leave the tube and the two slow evaporation waves are clearly visible. It is clear that
these evaporation waves are expansion waves. Also it is clear that the results of the seven-equation model
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and the six- equation model are completely coinciding.

0 0.2 0.4 0.6 0.8 1

0.5

0.502

0.504

0.506

0.508

x (m)

P
re

s
s
u
re

 (
b
a
r)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x (m)

V
e
lo

c
it
y
 (

m
/s

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x (m)

V
a
p

o
u
r 

v
o
lu

m
e
 f

ra
c
ti
o
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
x 10

−3

x (m)

V
a
p

o
u
r 

m
a
s
s
 f
ra

c
ti
o
n

Figure 7.13: Water liquid-vapor expansion tube with phase transition at time t = 59 ms, by using the
7-equation model (lines) and 6-equation model (symbols). The two slow evaporation waves are visible.
The computations were done with 3200 cells. For the 7-equation model: The CPU time is 116.078 hours
with 8217444 time steps. For the 6-equation model: The CPU time is 99.406 hours with 8217444 time
steps.
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Figure 7.14: Water liquid-vapor expansion tube with phase transition and strong rarefaction effects
(initial |u| = 100 m/s) at time t = 1.5 ms. The computations are done with 5000 cells. For the 7-
equation model: The CPU time is 8.537 hours with 449836 time steps. For the 6-equation model: The
CPU time is 5.700 hours with 381778 time steps.
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To see the four expansion waves in one single graph we increase the value of the velocity which means
an increase in the rarefaction effects. Under the same conditions except with a velocity −100 m/s on
the left and 100 m/s on the right, the four waves are clearly visible as in Figure 7.14 at time t = 1.5 ms.

When the rarefaction effects become stronger we observe some difficulties. If the same conditions are
maintained except the velocity is increased (& 200m/s), we see that there are some differences between
the results of both models. To consider such difficulty also for the sake of comparsion with the results
of [33], we take the velocity −500 m/s on the left and 500 m/s on the right. The results are shown
in Figure 7.15 at time t = 0.58 ms. There are some differences in the profiles of the pressure and the
vapor mass fraction. Moreover there are some oscillations in the curve of the vapor mass fraction. We
think that the differences in the results of both models may be related to the approximation of the non-
conservative terms and to the fact that in seven-equation model an approximation is used in the velocity
relaxation procedure. This may cause some deviation as the difference between the initial velocities is
increased.
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Figure 7.15: Water liquid-vapor expansion tube with phase transition and strong rarefaction effects
(initial |u| = 500 m/s) at time t = 0.58 ms, by using the 7-equation model (lines) and 6-equation model
(symbols). The computations used 5000 cells. For the 7-equation model: The CPU time is 4.947 hours
with 218710 time steps. For the 6-equation model: The CPU time is 3.372 hours with 186601 time steps.

Under the grid refinement, the differences between the pressure profiles are decreased. They disappear
with a very fine grid, as is shown in Figure 7.16. But the difference between the vapor mass fraction pro-
files remains, moreover the oscillations are more pronounced. To understand why the oscillations increase
with grid refinement, we consider all variables that are related to the vapor mass fraction Y1 = α1ρ1/ρ.
We see that as the number of the cells increases the mixture density decreases to a value very close
to zero with small oscillations. Also the difference between the mixture density of the two models is
reduced. But since the mixture density with low values lies in the denominator of the relation of Y1,
both of the differences and the oscillations in the curves of the vapor mass fraction will be more significant.

Again in this example it is noted that the required CPU time for the six-equation model is smaller
than the CPU time that is required for the seven-equation model, in average it is about 66%. In all cases
the results of both models coincide except when the difference between the initial velocities increase to
a certain value, after that value is reached we observe a small deviation in the results of both models,
also some oscillations appear. This problem is partially reduced under grid refinement.

As a result we think that since both models give the same results and also both of them may
face similar problems under extreme initial conditions. We think that the six-equation model is to be
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preferred for practical applications since it is less expensive. Moreover it is easier to modify this model
to the multi-phase case.
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Figure 7.16: Water liquid-vapor expansion tube with phase transition and strong rarefaction effects
(initial |u| = 500 m/s) at time t = 0.58 ms. By using the 7-equation model (lines) and 6-equation model
(symbols). The computations are done with 25000 cells. For the 7-equation model: The CPU time is
112.393 hours with 1090545 time steps. For the 6-equation model: The CPU time is 85.4813 hours with
934593 time steps.

7.7 Conclusion

In this paper, we modified the seven-equation model for two-phase flows to include the heat and mass
transfer through relaxation effects. Depending on the assumption that each property relaxes in a time is
considerably different from the other characteristic times, we were able to model the effect of heat and
mass transfer by using temperature and Gibbs free energy relaxations. The same ideas are also applied
to the six-equation model with a single velocity, which is obtained from the seven equation-model in the
limit of zero velocity relaxation time.

A modified Godunov-type method is used to solve the hyperbolic part of each model, while simple
relaxation procedures are proposed for the temperature and Gibbs free energy relaxations.

We tested this model on the test problems of [33]. We were able to see also the extra expansion waves
in our results which correspond to the evaporation fronts. Our results are similar to the results of [33]
with few differences.

Computed front velocities in a shock tube at different initial temperatures are compared with exper-
imental ones. A reasonable agreement is achieved.

A comparison between the results of the seven-equation model and the six-equation model was made.
Both models almost give the same results, but the six-equation model is less expensive than the seven-
equation model and easier to adopt to the multiphase case.

Due to the relaxation processes a stiffness may be encountered during the numerical computations.
This requires a smaller time step than is needed for the hydrodynamic system. In particular, if the
stiffness comes from the Gibbs free energy relaxation procedure it is possible to use a limitation on the
source terms which can be used to find reduced time steps. Then a successive point integration is used
to cover the complete hydrodynamic time step. Otherwise small CFL numbers would used and this
consumes more computation time. In fact, this point still requires further efforts. For future work, the
efficiency of the numerical method must be improved by using some adaptive discretizations. This will
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be particularly important when the method is applied to two or three dimensional problems.

We observed that in mixtures under a high difference in the initial velocities there is a small deviation
between the results of the seven-equation and six-equation models. This is reduced under grid refinement.
We think this deviation is related to the approximation of the non-conservative terms and to some
approximation used in velocity relaxation for the seven-equation model. However, to build a specific
understanding for this point still more investigations are required. In fact, an extensive convergence
study for both models would be very useful for this comparison and further insight into the models. This
is a challenging issue for future work.

7.A Appendix: Mathematical properties of the seven-equation
model

In order to investigate the mathematical properties of the model (7.2.1), we rewrite it in terms of primitive
variables as

∂W

∂t
+ A

∂W

∂x
= S (7.A.1)

where W = (α1, ρ1, u1, p1, ρ2, u2, p2)T , the source vector S represents the non-differential source terms
and the matrix A is given as

A =



uI 0 0 0 0 0 0
ρ1

α1
(u1 − uI) u1 ρ1 0 0 0 0

p1 − pI
α1ρ1

0 u1
1

ρ1
0 0 0

ρ1c
2
I,1

α1
(u1 − uI) 0 ρ1c

2
1 u1 0 0 0

− ρ2

α2
(u2 − uI) 0 0 0 u2 ρ2 0

−p2 − pI
α2ρ2

0 0 0 0 u2
1

ρ2

−
ρ2c

2
I,2

α2
(u2 − uI) 0 0 0 0 ρ2c

2
2 u2



.

Where the speed of sound ck is given in (7.2.4) and cI,k, the speed of sound at interface, is determined
by

c2I,k =

pI
ρ2
k

−
(
∂ek
∂ρk

)
pk(

∂ek
∂pk

)
ρk

, k = 1, 2. (7.A.2)

The matrix A has real eigenvalues that are given by the following expressions

λ1 = uI ,

λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1,

λ5 = u2 − c2, λ6 = u2, λ7 = u2 + c2.
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The corresponding right eigenvectors are

r1 =



α1α2σ1σ2

−α2σ2(ρ1(σ1 − c2I,1) + p1 − pI)

α2σ2(u1 − uI)(p1 − pI − ρ1c
2
I,1)/ρ1

α2σ2(ρ1c
2
I,1(u1 − uI)2 − c21(p1 − pI))

−α1σ1(ρ2(c2I,2 − σ2)− p2 + pI)

α1σ1(u2 − uI)(−p2 + pI + ρ2c
2
I,2)/ρ2

α1σ1(−ρ2c
2
I,2(u2 − uI)2 + c22(p2 − pI))



, (7.A.3)

r2 =



0
ρ1

−c1
ρ1c

2
1

0
0
0


, r3 =



0
1
0
0
0
0
0


, r4 =



0
ρ1

c1
ρ1c

2
1

0
0
0


(7.A.4)

r5 =



0
0
0
0
ρ2

−c2
ρ2c

2
2


, r6 =



0
0
0
0
1
0
0


, r7 =



0
0
0
0
ρ2

c2
ρ2c

2
2


. (7.A.5)

where
σ1 = c21 − (u1 − uI)2, σ2 = c22 − (u2 − uI)2.

Thus, the system (7.2.1) is strictly hyperbolic except when some of the eigenvalues coincide. Indeed the
eigenvectors (7.A.3)-(7.A.5) become linearly dependent if any one of the conditions

α1 = 0, α2 = 0, σ1 = 0, σ2 = 0

holds. For more details see Andrianov [2].
Consider the Riemann problem for the system (7.A.1) which is the initial-value problem with initial

data of the form

W(x, 0) =

{
WL, x < 0

WR, x > 0.

One can show that the characteristic fields associated with λ1, λ3 and λ6 are linearly degenerate, and
the 2-, 4-, 5- and 7- fields are genuinely nonlinear. For a proof see Labois [16].

7.B Appendix: Derivation of the six-equation model from the
seven-equation model

This appendix is devoted to the derivation of the six-equation model with heat and mass transfer (7.5.10)
from the full seven-equation model with heat and mass transfer (7.4.44) by the asymptotic limit consid-
ering stiff velocity relaxation. We follow the method of Chen et al. [6]. This method is used by Murrone
and Guillard [23] in the derivation of the five-equation model from the seven-equation model.

Firstly, we introduce briefly the method of reduction for a system of hyperbolic conservation laws in
the presence of stiff relaxation terms using the notations of Murrone and Guillard [23] .
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Consider a hyperbolic system with stiff source relaxation terms, i.e. consider the following system

∂W

∂t
+ A(W)

∂W

∂x
=

R(W)

ε
+ S(W) (7.B.1)

with ε→ 0+. The vector W belongs to Ω, some open subset of RN .

As ε→ 0+, the solution of the system (7.B.1) is expected to be close to the set = ⊂ RN , where

= = {W ∈ RN ; R(W) = 0}.

We make use of the following assumption, Murrone and Guillard [23]:

Assumption 1. The set of equations R(W) = 0 defines a smooth manifold of dimension n, where
0 < n < N . Moreover, for any W ∈ = we explicitly know the parameterization M from ω an open subset
of Rn onto V a neighborhood of W in =, i.e.

M : ω ⊂ Rn → V ⊂ = ⊂ RN ,
w→W = M(w).

Under Assumption 1 the following holds. For any w ∈ ω the Jacobian matrix dMw is a full rank
matrix. Also the column vectors of dMw form a basis of ker(R′(M(w))). For the proof see [23].

Let

C = [dM1
w, ..., dM

n
w, I

1, ..., IN−n], (7.B.2)

where dM1
w, ..., dM

n
w are the column vectors of dMw and I1, ..., IN−n are a basis of the range rng(R′(M(w)))

of R′(M(w)). The matrix (7.B.2) is invertible, let B be the matrix composed of the first n rows of the
inverse of the matrix C. Then we have the following results:

B · dMw = In×n, the identity matrix (7.B.3a)

B ·R′(M(w)) = 0. (7.B.3b)

For proof see the same reference [23].

Decompose the state vector W as

W = M(w) + εV, (7.B.4)

where V is a small perturbation around the state vector M(w).

To obtain the reduced model we use the expression (7.B.4) in the system (7.B.1) and get

∂M(w)

∂t
+ A(M(w))

∂M(w)

∂x
−R′(M(w)) ·V = S(M(w)) +O(ε). (7.B.5)

Multiplying (7.B.5) by B, using (7.B.3) and neglecting the terms of order ε, we obtain the reduced model
of the system (7.B.1)

∂w

∂t
+ B ·A(M(w)) · dMw

∂w

∂x
= B · S(M(w)). (7.B.6)

Now, we apply the above method for the reduction by using the asymptotic limit on the seven-equation
model assuming a stiff velocity relaxation.

Take the vector of primitive variables as W = (α1, ρ1, ρ2, u1, u2, p1, p2), and write the seven-equation
model (7.4.44) accompanied with all relaxation terms in the form (7.B.1). In this case, the source vector
R(W)

ε
consists of the velocity relaxation terms which is stiff, i.e. λ =

1

ε
, where ε → 0+. While the

source vector S(W) is decomposed as

S(W) = SP (W) + SQ(W) + Sm(W).
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The matrix A(W) and the source vectors can be given as

A(W) =



uI 0 0 0 0 0 0

− ρ1

α1
(uI − u1) u1 0 ρ1 0 0 0

ρ2

α2
(uI − u2) 0 u2 0 ρ2 0 0

−pI − p1

α1ρ1
0 0 u1 0

1

ρ1
0

pI − p2

α2ρ2
0 0 0 u2 0

1

ρ2

−Γ1

α1

[
pI − ρ2

1

(
∂e1

∂ρ1

)
p1

]
(uI − u1) 0 0 ρ1c

2
1 0 u1 0

Γ2

α2

[
pI − ρ2

2

(
∂e2

∂ρ2

)
p2

]
(uI − u2) 0 0 0 ρ2c

2
2 0 u2



,

R(W) =



0

0

0

λ

α1ρ1
(u2 − u1)

− λ

α2ρ2
(u2 − u1)

λ
Γ1

α1
(uI − u1)(u2 − u1)

−λΓ2

α2
(uI − u2)(u2 − u1)



,

SP (W) =



µ(p1 − p2)

µ
ρ1

α1
(p2 − p1)

−µ ρ2

α2
(p2 − p1)

0

0

µ
Γ1

α1

[
pI − ρ2

1

(
∂e1

∂ρ1

)
p1

]
(p2 − p1)

−µΓ2

α2

[
pI − ρ2

2

(
∂e2

∂ρ2

)
p2

]
(p2 − p1)



, SQ(W) =



1

κ
Q

− ρ1

α1κ
Q

ρ2

α2κ
Q

0

0

−ρ1c
2
1

α1κ
Q+

Γ1

α1
(1 +

p1

κ
)Q

ρ2c
2
2

α2κ
Q− Γ2

α2
(1 +

p2

κ
)Q



,
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Sm(W) =



1

%
ṁ

1

α1
(1− ρ1

%
)ṁ

− 1

α2
(1− ρ2

%
)ṁ

1

α1ρ1
(uI − u1)ṁ

− 1

α2ρ2
(uI − u2)ṁ

c21
α1

(1− ρ1

%
)ṁ+

Γ1

α1

[
(ei − e1) +

(uI − u1)2

2
− p1

ρ1
(1− ρ1

%
)

]
ṁ

− c
2
2

α2
(1− ρ2

%
)ṁ− Γ2

α2

[
(ei − e2) +

(uI − u2)2

2
− p2

ρ2
(1− ρ2

%
)

]
ṁ



,

where Γk is given in (7.4.11).
The limit of zero velocity relaxation time gives a single velocity, i.e. u1 = u2 = u. Thus the vector of

the primitive variables for the reduced model is

w = (α1, ρ1, ρ2, u, p1, p2)T .

So M(w) is defined as
M : w→M(w) = (α1, ρ1, ρ2, u, u, p1, p2)T . (7.B.7)

Then the Jacobian matrix of the transformation (7.B.7) is given as

dMw =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (7.B.8)

It is easy to see that the Jacobian matrix R′ evaluated on the transformation is given as

R′(M(w)) =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 − 1

α1ρ1

1

α1ρ1
0 0

0 0 0
1

α2ρ2
− 1

α2ρ2
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Obviously, the basis of rng(R′(M(w))) is

I1 =



0
0
0

− 1

α1ρ1
1

α2ρ2

0
0


. (7.B.9)
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From (7.B.8) and (7.B.9) we can find the matrix C, then we can find the matrix B

B =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0
α1ρ1

ρ

α2ρ2

ρ
0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

By using the matrix B together with the matrices we can find the reduced model as in (7.B.6). Thus
the reduced model in primitive variables is given as

∂α1

∂t
+ u

∂α1

∂x
= µ(p1 − p2) +

1

κ
Q+

1

%
ṁ, (7.B.10a)

∂ρ1

∂t
+ u

∂ρ1

∂x
+ ρ1

∂u

∂x
= µ

ρ1

α1
(p2 − p1)− ρ1

α1κ
Q+

1

α1
(1− ρ1

%
)ṁ, (7.B.10b)

∂ρ2

∂t
+ u

∂ρ2

∂x
+ ρ2

∂u

∂x
= −µ ρ2

α2
(p2 − p1) +

ρ2

α2κ
Q− 1

α2
(1− ρ2

%
)ṁ, (7.B.10c)

∂u

∂t
+ u

∂u

∂x
+

(p1 − p2)

ρ

∂α1

∂x
+
α1

ρ

∂p1

∂x
+
α2

ρ

∂p2

∂x
= 0, (7.B.10d)

∂p1

∂t
+ u

∂p1

∂x
+ ρ1c

2
1

∂u

∂x
= µ

Γ1

α1

[
pI − ρ2

1

(
∂e1

∂ρ1

)
p1

]
(p2 − p1)− ρ1c

2
1

α1κ
Q

+
Γ1

α1
(1 +

p1

κ
)Q+

c21
α1

(1− ρ1

%
)ṁ+

Γ1

α1

[
(ei − e1)− p1

ρ1
(1− ρ1

%
)

]
ṁ, (7.B.10e)

∂p2

∂t
+ u

∂p2

∂x
+ ρ2c

2
2

∂u

∂x
= −µΓ2

α2

[
pI − ρ2

2

(
∂e2

∂ρ2

)
p2

]
(p2 − p1) +

ρ2c
2
2

α2κ
Q

− Γ2

α2
(1 +

p2

κ
)Q− c22

α2
(1− ρ2

%
)ṁ− Γ2

α2

[
(ei − e2)− p2

ρ2
(1− ρ2

%
)

]
ṁ, (7.B.10f)

where ρ = α1ρ1 + α2ρ2.
Using equations (7.B.10b) and (7.B.10c) with (7.B.10a), we obtain

∂α1ρ1

∂t
+
∂(α1ρ1u)

∂x
= ṁ,

∂α2ρ2

∂t
+
∂(α2ρ2u)

∂x
= −ṁ.

Using these equations with (7.B.10d), we get

∂ρu

∂t
+
∂(ρu2 + α1p1 + α2p2)

∂x
= 0.

The internal energy of each phase can be written as a function of the phase density and pressure, i.e.
ek = ek(ρk, pk), k = 1, 2. Then we obtain the following expression for the differential dek

dek =

(
∂ek
∂ρk

)
pk

dρk +

(
∂ek
∂pk

)
ρk

dpk. (7.B.11)

With the help of this equation and with the equations of the system (7.B.10), we obtain the following
equations for the internal energies
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∂α1ρ1e1

∂t
+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
= µpI(p2 − p1) +Q+ eiṁ,

∂α2ρ2e2

∂t
+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
= −µpI(p2 − p1)−Q− eiṁ.

Thus the whole model can be written as in (7.5.10)

7.C Appendix: Determination of Tsat(pequi)

The metastable condition Tk > Tsat(pequi) is used to activate the phase transition. In this appendix we
consider the computation of the curve T = Tsat(p).

Simply we use the same idea of [21, 33] that at thermodynamic equilibrium the Gibbs free energies
are equal, and this equality provides a direct relation between the saturation pressure and temperature.

Using the SG-EOS (7.2.5) the Gibbs free energy gk is expressed as

gk = (γkCvk − q′k)Tk − TkCvk ln
T γkk

(pk + πk)(γk−1)
+ qk.

At the saturation curve we have an equilibrium pressure p, an equilibrium temperature T and by the
equality of the two Gibbs free energies g1 and g2 we have

(γ1Cv1 − q′1)T − TCv1 ln
T γ1

(p+ π1)(γ1−1)
+ q1 =

(γ2Cv2 − q′2)T − TCv2 ln
T γ2

(p+ π2)(γ2−1)
+ q2.

This equation is nonlinear and can be solved by any iterative technique to find the saturation temperature
in terms of the saturation pressure.
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Chapter 8

A Laser-Induced Cavitation Bubble

Bibliographic note: The content of this chapter is published in [H10]: Ali Zein, Maren Hantke, and
Gerald Warnecke. On the Modeling and Simulation of a Laser-Induced Cavitation Bubble, Int. J. Num.
Meth. Fluids, Vol.73/2 (2013), pp. 172-203.

Abstract: Single cavitation bubbles exhibit severe modeling and simulation difficulties. This is due
to the small scales of time and space as well as due to the involvement of different phenomena in the
dynamics of the bubble. For example, the compressibility, phase transition and the existence of a non-
condensable gas inside the bubble have strong effects on the dynamics of the bubble. Moreover, the
collapse of the bubble involves the occurrence of critical conditions for the pressure and temperature.
This adds extra difficulties to the choice of equations of state. Even though several models and simula-
tions have been used to study the dynamics of the cavitation bubbles, many details are still not clearly
accounted for.

Here, we present a numerical investigation for the collapse and rebound of a laser-induced cavitation
bubble in liquid water. The compressibility of the liquid and vapor are involved. In addition, great
focus is devoted to study the effects of phase transition and the existence of a non-condensable gas on
the dynamics of the collapsing bubble. If the bubble contains vapor only we use the six-equation model
for two-phase flows that was modified in our previous work [A. Zein, M. Hantke, and G. Warnecke, J.
Comput. Phys., 229(8):2964-2998, 2010]. This model is an extension to the six-equation model with a
single velocity of Kapila et al. [Phys. Fluid, 13:3002-3024, 2001] taking into account the heat and mass
transfer.

To study the effect of a non-condensable gas inside the bubble we add a third phase to the original
model. In this case the phase transition is considered only at interfaces that separate the liquid and its
vapor. The stiffened gas equations of state are used as closure relations. We use our own method to
determine the parameters in order to obtain reasonable equations of state for a wide range of temperatures
and make them suitable for the phase transition effects. We compare our results with experimental ones.
Also our results confirm some expected physical phenomena.

8.1 Introduction

Cavitation is defined as the formation of vapor bubbles in a liquid due to the reduction of the pressure.
The bubbles then collapse when they enter a region of higher pressure. The collapse of a cavitation
bubble causes high pressure and high temperature. This increases the noise of the system and may cause
material damage, cavitation erosion. This phenomenon may have destructive effects and it occurs in
many engineering applications of hydrodynamics like pumps, piping systems and ship propellers [40].
Therefore, special attention has been devoted in the literature to study the mechanism of cavitation
erosion [6, 20, 40, 62]. On the other hand, the cavitation can be advantageous in other applications, for
example cavitation erosion is used to clean solid surfaces [53].

The dynamics of collapsing bubbles was studied first by Rayleigh [43] assuming that the surrounding
liquid is incompressible and inviscid. Later the basic Rayleigh equation was modified by various authors
to include the effects of viscosity and surface tension. The resulting equation after several modifications
is known as Rayleigh-Plesset equation, see e.g. [5, 14]. A further modification was considered assuming
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the surrounding liquid as slightly compressible, see Trilling [58], Keller and Kolodner [23] as well as
Gilmore [16].

Hickling and Plesset [18] presented some numerical solutions to describe the bubble collapse and
rebound by taking into account the liquid compressibility. They used the Gilmore model [16] for a Mach
number smaller than 0.1 and the Lagrangian form of the Euler equations for higher values of Mach
number. The results of Hickling and Plesset show the formation of pressure waves during the rebound of
the bubble. Later several numerical algorithms were modified and several effects during the cavitation
were studied like heat transfer, mass transfer and the existence of a non-condensable gas inside the
bubble, see [15, 21, 24, 27, 35, 36, 41, 42, 52, 56, 60], in the book of Franc and Michel [14] one finds a good
review for the development of the models.

Most of the above models are not suitable for periods of high Mach number flow, where the com-
pressibility of the liquid plays an important role, especially at the end of the collapse. Indeed, a shock
wave is emitted in the liquid at the final stage of the collapse [1, 51]. This phenomenon is confirmed by
experiments, where some measurements for the strength of this shock wave were reported [1, 28]. This
makes consideration of the compressibility of the surrounding water of great importance especially for
a strong bubble collapse. But assuming compressibility introduces severe difficulties in the numerical
simulations.

In recent investigations the full Euler equations were used to describe each fluid. For instance,
Akhatov et al. [1] introduced two models to describe the collapse and rebound of a laser-induced cavitation
bubble. One model for the low Mach number period which assumes an incompressible surrounding liquid,
and the other model for the high Mach number period which consists of the Euler equations for each
phase. The second model assumes compressibility for both the vapor and the liquid phases. It provides
a detailed description for the behavior of both phases. Moreover, the effects of heat transfer, mass
transfer and the existence of a non-condensable gas were studied. The Hertz-Knudsen-Langmuir model
for evaporation and condensation was used. Regarding the model for the high Mach number period,
the heat and mass transfer were modeled separately. Thus a coupling method was required to take into
account these effects in the model. Even though this is not trivial it was unfortunately not detailed in [1].
This makes it difficult to compare their work with any other approach. In addition, the non-condensable
gas was inserted in the energy equation through higher order terms. This adds extra difficulties to the
solution of the model. For this some numerical simplifications were used in [1].

Müller et al. [32] investigated the problem of the laser-induced cavitation bubble by using recent
models and numerical methods for compressible two-phase flows but without heat and mass transfer.
Indeed, Müller et al. [32] presented numerical investigations using two different methods: The Saurel
and Abgrall approach [44] and the real ghost fluid method of Wang et al. [59]. In both Akhatov et al. [1]
as well as Müller et al. [32] some experimental issues were discussed and comparisons with experimental
results were made.

In the last ten years a great progress has occurred in the modeling and simulation for compressible
two-phase flows that is based on averaging techniques [11, 12, 19]. The most general model of this type
consists of seven equations. This model is a full non-equilibrium model, i.e. each phase has its own
pressure, velocity, temperature, etc. In Saurel and Abgrall [44] the solution of this model by a Godunov-
type method was proposed. Also relaxation techniques were used to get equilibrium values for the
velocity and the pressure.

Later, reduced models were derived from the general seven-equation model by the asymptotic analysis
in the limit of zero relaxation time. A six-equation model which has a single velocity is deduced by
assuming zero velocity relaxation time [22,50]. Also a five-equation model with mechanical equilibrium,
single velocity and single pressure, is deduced in the asymptotic limit of zero relaxation time for both the
velocity and the pressure [22,34,38,49]. More recently, these models were extended to include the effects
of heat and mass transfer. The five-equation model was modified by Saurel et al. [49] to include the heat
and mass transfer. Then it was extended to multiphase flows in Petitpas et al. [39]. The seven-equation
model as well as the six-equation model were modified to take into account the heat and mass transfer
by Zein et al. [61].

For the seven-equation and the six-equation models, the heat and mass transfer are modeled in the
relaxation effects. A hierarchical model was built based on the assumptions that the pressure relaxes
much faster than the temperature, and the temperature relaxes much faster than the Gibbs free energy.
During the temperature relaxation it is assumed that the pressure stays in equilibrium and during the
Gibbs free energy relaxation the pressure and temperature stay in equilibrium. The temperature and
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Gibbs free energy relaxations toward the equilibrium are used at the interface where the heat and mass
transfer occur. This fulfills the standard condition at equilibrium interfaces when the mass transfer
occurs. For all details see Zein et al. [61].

In comparison with the latter models: the five equation model faces severe numerical difficulties that
are the results of the equilibrium of the pressure. Some specific relaxation-projection procedures are
used to circumvent these difficulties [38]. Both the seven-equation and six-equation models posses better
features for the numerical approximations [50, 61]. But the six-equation model is less expensive and is
easier to be modified for multiphase flows [61]. Thus it is adopted in this work to model the vapor bubble
in liquid water.

It is expected that the bubble, besides the water vapor, contains a small mass of a non-condensable
gas. This may be due to the plasma recombination during the bubble creation, see Akhatov et al. [1].
The effect of the existence of a non-condensable gas on the dynamics of the bubble was considered in
Akhatov et al. [1] and Dreyer et al. [13]. The computational results in [1] show that a small amount
of non-condensable gas inside the bubble greatly influences its dynamics. The authors of [13] proposed
that the rebound of the bubble after the collapse is possible only if it contains a non-condensable gas.

In this work, the non-condensable gas is modeled as a third phase. Thus the whole model consists
of nine equations. In this situation we use the ideas of Petitpas et al. [39] that the phase transition
is considered only at the interface between the liquid and its vapor. But if the interface separates the
liquid and the non-condensable gas the pressure relaxation is only used to fulfill the condition of the
equilibrium of the pressure.

In the problem of the bubble collapse it is expected that the temperature inside the bubble will exceed
the critical point. Thus the temperature range is very wide, i.e. it starts from low temperatures like the
room temperature and exceeds the critical temperature. This makes the choice of the equations of state
a difficult task. Moreover, including the phase transition requires further attention. In this work we use
the stiffened gas equations of state which are the simplest formulation that contains the main physical
properties of the pure fluid. We use our own method to estimate the parameters of the equations of
state. These estimations respect the saturation curve. This idea was used by Barberon [3], Barberon
and Helluy [4] as well as Le Metayer et al. [29]. This makes the equations of state appropriate if the
phase transition is included in the model.

To test our results we use experimental data for the evolution of the bubble radius. These data were
achieved by the group of Lauterborn in Göttingen, see [1, 32]. In the experiment a strong laser pulse is
focused into liquid water. This generates a cavitation bubble, which expands to have a maximum radius,
then it collapses to a non-zero minimum radius, then the bubble rebounds with a significant damping.
The liquid temperature is kept fairly constant at room temperature during the experiment. Images of
the bubble were taken during the experiment by using a high speed camera. These images were used to
sketch the radius-time curve. For the details of the experiments see [1, 32].

Here we mainly adopt the experimental results that are shown in [32]. Where in this experiment the
cuvette size is 50 × 50 × 50 mm3, the maximum radius Rmax = 747 µm ± 0.5%, the minimum radius
Rmin < 12 µm and the time from the maximum expansion of the bubble to the first collapse is 69.3µs.
The surrounding water is kept at the atmospheric pressure with fairly constant temperature 20 ◦C.

In this work the computations start from the point of the maximal radius. But still the initial state
inside the bubble is unknown. In fact there is no means until now to measure the physical quantities inside
the bubble. Thus we have incomplete experimental data. Some authors introduced certain possibilities
for the initial data inside the bubble. Hickling and Plesset [18] tested several initial pressures in the
range 10−4 − 10−1 bar. Akhatov et al. [1] assumed the same liquid temperature inside the bubble
with the corresponding saturation pressure for the initial pressure. In Müller et al. [32] the initial data
were deduced from the experimental data by fitting of the computed bubble radius by the Keller-Miksis
model [24] to the measured data. Another possibility for the initial data was taken by Dreyer et al. [13].
We test several initial conditions for comparison. These tests include the assumption of the saturation
state inside the bubble, several tests with different pressures and one temperature, and several tests with
one pressure and several temperatures. The aim of these tests is to try to understand the effect of the
initial conditions on the evolution of the bubble radius.

To verify our results we compare the computed radius-time curve to the experimental one. Also
we confirm some known and expected physical behaviors. Our results show that the pressure and the
temperature at the center of the bubble increase to very high values at the collapse moment. Also the
interface velocity goes to a high value at the final stage of the collapse.
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When the phase transition is considered the results show that there is no rebound if the bubble
contains vapor only. And inserting a non-condensable gas is responsible for the rebound. In fact this
result confirms the idea that was proposed by Dreyer et al. [13]. Moreover, we see that the temperature
and the pressure inside the bubble before the collapse point decreases if the mass transfer is included.
This is due to the loss of energy in the mass transfer process.

This work is organized as follows. In Section 8.2 the mathematical models are introduced, a six-
equation model for two phases and a nine-equation model for three phases. The first model is used if the
bubble contains vapor only, while the latter model is used when the bubble contains a non-condensable
gas besides the water vapor. Section 8.3 is devoted to the equations of state, previous criteria in the
literature are recalled and our new criterion is introduced. In Section 8.4 the numerical method is
introduced. Finally, Section 8.5 shows the numerical results and the discussion of the results.

8.2 Mathematical Model

If the bubble contains vapor only a two-phase model is used. One phase is the water vapor and the other
phase is the liquid water. To consider the effect of a non-condensable gas inside the bubble a third phase
is required, i.e. a three-phase model is used. The bubble is assumed to be perfectly spherical. Thus we
consider the models in spherical coordinates. Also we assume rotational symmetry. In this section we
recall the two-phase flow model of Zein et al. [61]. Then an extension of this model for three phases is
introduced.

8.2.1 Two-phase flow model

The six-equation model of Zein et al. [61] including heat and mass transfer for two-phase flow is written
as

∂α1
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+ u
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%
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where Q = θ(T2 − T1), ṁ = η(g2 − g1) and ρ = α1ρ1 + α2ρ2.
Here αk is the volume fraction, ρk the density, u is the radial velocity, pk the pressure, ek is the specific

internal energy, Tk the temperature, gk the Gibbs free energy, Q the heat transfer and ṁ is the mass
transfer. The volume fractions for both phases are related by the saturation constraint, α1 + α2 = 1.

The interfacial pressure pI is assumed as in Saurel et al. [46] to be

pI =
Z1p2 + Z2p1

Z1 + Z2
. (8.2.2)

Here Zk represents the acoustic impedance, Zk = ρkck, where the speed of sound ck is given as

c2k =
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ρ2
k

−
(
∂ek
∂ρk

)
pk(

∂ek
∂pk

)
ρk

, k = 1, 2. (8.2.3)
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The parameters µ, θ and η > 0 are the relaxation parameters for the pressure, temperature and the
Gibbs free energy respectively. In this work, the parameters µ and θ are assumed to be infinite, while η
is assumed to be infinite at the interfaces and zero otherwise. Therefore, the model is free of parameters.

The combination of two internal energy equations with mass and momentum equations gives the
quation for the mixture of the energy

∂(ρe+ 1
2ρu

2)

∂t
+
∂u(ρe+ 1

2ρu
2 + α1p1 + α2p2)

∂r
= −2

r
(ρe+

1

2
ρu2 + α1p1 + α2p2)u,

where ρe = α1ρ1e1 + α2ρ2e2. This extra equation is used during the computations to correct the
thermodynamic states predicted by the two non-conservative internal energy equations [50].

The model (8.2.1a)-(8.2.1f) is a non-strictly hyperbolic model with eigenvalues u (four times), u− c,
and u+ c, with

c2 = Y1c
2
1 + Y2c

2
2,

where c is the mixture sound speed and Yk = αkρk/ρ is the mass fraction. For more information about
the mathematical properties of this model you can see [50,61].

The source terms in the model (8.2.1) are classified into four groups as follows

S = SP + SQ + Sm + Sr, (8.2.4)

where SP , SQ and Sm are associated with the pressure, temperature and Gibbs free energy relaxation
terms respectively and Sr represents the geometrical terms that come from the spherical coordinates in
radial direction. These source vectors are given as
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SQ =

(
Q

κ
, 0, 0, 0, Q,−Q, 0

)T
,

Sm =

(
ṁ
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ρu2 + α1p1 + α2p2)u)T . (8.2.5)

We assume that the mechanical properties relax much faster than the thermal properties. Also we assume
that the relaxation time for the temperature is much smaller than that of the Gibbs free energy. In fact,
these assumptions agree with physical evidence in a large number of situations [61]. In particular, we
assume that the pressures relax very fast to equilibrium and they will stay in equilibrium during the
temperature relaxation. Moreover, the pressure and the temperature are assumed to maintain equilibrium
states during the Gibbs free energy relaxation, for all details see Zein et al. [61]. These assumptions are
used to find the expressions for the parameters κ, % and ei, see Section 8.4.2.

8.2.2 Extension to a three-phase flow model

To derive a multiphase flow model with a single velocity we start from the full non-equilibrium model
for multiphase flows . The full non-equilibrium model for multiphase flows of Saurel-Abgrall type [44]
without heat and mass transfer is written as

∂αk
∂t

+ uI · ∇αk = µ(pk − p̂),
∂αkρk
∂t

+∇ · (αkρkuk) = 0,

∂αkρkuk
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+∇ · (αkρkuk ⊗ uk) +∇(αkpk) = pI∇αk + λ(û− uk),

∂αkρkEk
∂t

+∇ · (αk(ρkEk + pk)uk) = pIuI · ∇αk − µpI(pk − p̂) + λuI · (û− uk),

(8.2.6)

where uI is the interfacial velocity and Ek = ek +
uk · uk

2
is the total specific energy for phase k. Here

k = 1, 2, ..., N , where N is the number of phases.
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The summation over the phases of all relaxation terms for each type of balance is zero. Thus the
mixture values û and p̂ are given as

û =

N∑
k=1

uk

N
, p̂ =

N∑
k=1

pk

N
.

Modeling the relaxation terms for the velocity and the pressure in the above way means that we assume
that all velocities of different fluids have the same relaxation rate, also all pressures have the same
relaxation rate. These terms can be modeled in different ways, for example see Hérard [17]. However,
the above modeling is enough for our problem because we are interested in one velocity and one pressure
in the whole domain of the flow.

To derive a single velocity model we use the method of Chen et al. [7]. This method was used by
Murrone and Guillard [34] to derive a five-equation model with single velocity and single pressure from
the seven-equation model by assuming stiff velocity and pressure relaxations. Also this method was used
by Zein et al. [61] to derive the six-equation model of a single velocity from the full non-equilibrium
seven-equation model by assuming stiff velocity relaxation.

Assume stiff velocity relaxation for the model (8.2.6), i.e. λ =
1

ε
where ε→ 0+. Then following the

method of Chen et al. [7], we get the following reduced model
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where ρ =

N∑
k=1

αkρk and p =

N∑
k=1

αkpk.

A model with three phases is enough to investigate the bubble containing vapor and a non-condensable
gas with surrounding liquid water. Thus the model (8.2.7) for three phases in spherical coordinates
assuming rotational symmetry is written as
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(8.2.8)

where k = 1, 2, 3, and ρe =

3∑
k=1

αkρkek.

Here u is the radial velocity. The volume fractions for the three phases are connected by the saturation
constraint, α1 + α2 + α3 = 1. Note that the model (8.2.8) consists of nine equations augmented with a
redundant mixture energy equation.
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The interfacial pressure in this model is taken as a generalization of the relation (8.2.2), i.e.

pI =
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pk
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3∑
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1
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.

The model (8.2.8) is a non-strictly hyperbolic model with eigenvalues u (seven fold), u− c and u+ c,
with

c2 =

3∑
k=1

Ykc
2
k,

For more information about the mathematical properties of this model see 8.A.
After the pressure relaxation at each time step the heat and mass transfer are included through the

temperature and the Gibbs free energy relaxations. Following Petitpas et al. [39] the heat and mass
transfer are considered only if interface separates between the liquid and its vapor. When dealing with
an interface between the liquid and the non-condensable gas the parameters of the temperature and
Gibbs free energy relaxations are set to zero. Thus, the heat and mass transfer for the model (8.2.8) are
included exactly as done in the previous section between the liquid and its vapor.

8.3 Equations of state (EOS)

In this paper we assume that each fluid obeys its own EOS as a pure material. Where in the present
model equilibrium is achieved by relaxation processes.

The stiffened gas EOS (SG-EOS) is mostly used by authors for its simplicity [2, 8, 26, 44, 49]. This
EOS reflects the main properties of the pure fluids, i.e. attractive and repulsive molecular effects [29,49].
Moreover the SG-EOS satisfy the convexity constraints for stability that are discussed in [30]. The
SG-EOS for each phase reads, see Le Metayer et al. [29]

e(p, v) =
p+ γπ

(γ − 1)
v + q, (8.3.1a)

h(T ) = CpT + q, (8.3.1b)

T (p, v) =
p+ π

Cv(γ − 1)
v, (8.3.1c)

s(p, T ) = Cv ln
T γ

(p+ π)(γ−1)
+ q′, (8.3.1d)

g(p, T ) = (γCv − q′)T − CvT ln
T γ

(p+ π)(γ−1)
+ q, (8.3.1e)

where v =
1

ρ
is the specific volume, s the specific entropy and Cp the specific heat capacity at constant

pressure. The constants γ, π, q and q′ are characteristic constants of the thermodynamic behavior of
the fluid.

The parameters of the SG-EOS are determined by using a reference curve. In the literature two
types of curves are used: The Hugoniot curve and the saturation curve. Using the Hugoniot curve as
a reference is the classical way used by authors for two-phase flow models to determine the parameters
that appear in the internal energy equation (8.3.1a), see Cocchi et al. [9], Saurel and Abgrall [45]. Using
the saturation curve as a reference seems to be more relevant to the phase transition. This idea was
introduced by Barberon [3], Barberon and Helluy [4]. Then it was modified by Le Metayer et al. [29].
The main idea of this method is the following: Linking the two pure fluid EOS under thermodynamic
equilibrium must be able to reproduce the liquid-vapor phase diagram. Therefore, the various parameters
of the pure EOS are linked to each other to fulfill some constraints to recover the phase diagram [29].

The method of Le Metayer et al. [29] is summarized as:
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• Choose two reference states, for example in [29] the chosen temperature range is 298−473 K. Then
all experimental data that correspond to each temperature are taken from the saturation tables.

• From the linearity of the relation between the enthalpy and the temperature both Cp (the slope)
and q ( reference energy at a given state) are determined, see the relation (8.3.1b).

• Use the experimental curve p = psat(T ) in (8.3.1c), thus the specific volume is expressed in terms of
temperature. Using the two known states with some manipulation the parameter π is determined,
then Cv is also determined.

• Find γ by using γ = Cp/Cv.

• At thermodynamic equilibrium the Gibbs free energies are equal, i.e. gl = gg. By this equality with
the definition (8.3.1e) we have

(γlCvl − q′l)T − CvlT ln
T γl

(p+ πl)(γl−1)
+ ql =

(γgCvg − q′g)T − CvgT ln
T γg

(p+ πg)(γg−1)
+ qg. (8.3.2)

This equation is nonlinear and can be solved to find the saturation temperature in terms of the
saturation pressure. But still the entropy constants q′g and q′l are unknown. The authors of [29]
chose to set the parameter q′l = 0 and chose the parameter q′g that provides the best fit between
the theoretical and experimental saturation curve.

The group of parameters were obtained by Le Metayer et al. [29], provides a good agreement between
the theoretical and experimental curves for the saturation curve and the saturation enthalpies in the
specified range of temperature, i.e. 298− 473 K, see the comparisons in [29]. Outside of this range the
accuracy decreases. This is due to the fact that the saturation curves are nonlinear or may be considered
as almost piecewise linear, while the SG-EOS provides a linear approximation in the (p, v)-plane. The
above method mainly depends on the linearity of the relation between the enthalpy and temperature, but
this linearity holds in limited ranges only. In fact, near the critical point the nonlinear feature appears
strongly. Moreover, the choice of the entropy constants q′k may lead to negative values for the entropy.

In the problem under consideration i.e. bubble collapse, the range of the temperature is very wide. It
starts from the room temperature and exceeds the critical point. Thus choosing appropriate parameters
for EOS is not an easy task. Moreover, including the heat and mass transfer requires more attention.
In fact, finding EOS that cover very wide ranges of properties and provide the required stability for the
solution of the hyperbolic system is a difficult issue.

In this work we adopt the SG-EOS (8.3.1). We use our own method for the determination of the
parameters. In this method we keep the aim of the previous method that the various parameters of each
EOS are linked to each other to recover the saturation curve. Since the range of the temperature is very
wide it is impossible to obtain good agreements between the theoretical and the experimental curves by
one group of parameters. Instead of that we aim to keep the physical properties of the quantities besides
reasonable agreement with the tendency of the relations between the various quantities.

Now, we determine the parameters for water vapor then for liquid water.

8.3.1 Determination of the SG-EOS for the water vapor

For gases it is typical to set πg = 0. For example, if we follow the method of Le Metayer et al. [29]
for some short ranges of temperatures we find that πg is either negative or has a small value. Thus we
choose πg = 0.

Using πg = 0, it is easy to see from (8.3.1a) and (8.3.1c) that

eg(T ) = CvgT + qg. (8.3.3)

This is a linear equation. In the literature we find several values that can be taken for the specific heat
at constant volume for the water vapor, more precisely they are in the range (1.04− 1.4)× 103 J/kg/K,
see [29, 54]. The choice depends on the range of the temperature. In our case we choose Cvg = 1.2 ×
103 J/kg/K. Then we choose qg which gives a good fitting for the experimental relation between eg and
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T . For the experimental data we use the saturation tables, see [37, 54]. We found that the choice of
qg = 1995× 103 J/kg provides a good fitting for the experimental data, see Figure 8.1. Here we did not
use any mathematical method to find the best linear fit. In fact, we are not interested in the best linear
fit since the nonlinearity effect is continued to a small range. Instead of that we choose our line in order
to be close to the experimental curve in the wide range of approximate linearity.
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Figure 8.1: Saturation internal energy for the water vapor. Experimental curves are shown in lines and
the SG-EOS approximation with symbols.

The relation (8.3.1c) can be reformulated as

vg(T ) =
(γg − 1)CvgT

psat(T )
. (8.3.4)

Then we choose the value of γg which provides a good fit between the theoretical and experimental curves
of vg versus T . Indeed, the value of γg = 1.327 provides such a good fitting, see Figure 8.2.
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Figure 8.2: Saturation specific volume for the water vapor. Experimental curves are shown in lines and
the SG-EOS approximation with symbols.

Still the parameter q′g is unknown. We will postpone this untill after the presentation of the liquid
water parameters.

8.3.2 Determination of the SG-EOS for the liquid water

For the liquid water the situation is more complicated and the nonlinear feature for the internal energy is
stronger. From the thermodynamic approximations it is known that the internal energy and the specific
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volume for the compressed water can be approximated by the saturated values, while the enthalpy of the
compressed water is approximated by the saturated enthalpy by adding a correction, see e.g. Moran and
Shapiro [31]. Moreover, the internal energy appears explicitly in the models. Thus we use the saturated
values for the internal energy e and specific volume v in our method.

We start from the idea that the internal energy e is a convex function of the specific volume v. The
relation between e and v is non linear, but the SG-EOS (8.3.1a) provides a linear approximation in
the (p, v)- plane. Here, we choose two states from the saturation tables: The first state is the initial
temperature of the liquid, i.e. the room temperature. The second state is chosen to be a little bit less
than the critical temperature since near the critical temperature the quantities change dramatically.
Indeed, we choose the first temperature T1 = 293 K and the second temperature T2 = 623 K. Note that
the critical temperature is Tcr = 647 K.

The experimental data corresponding to T1 and T2 are, see [37,54]:

psat(T1) = 2339 Pa el(T1) = 83.94× 103 J/kg vl(T1) = 0.001002 m3/kg
psat(T2) = 16.514× 106 Pa el(T2) = 1641.81× 103 J/kg vl(T2) = 0.00174 m3/kg

Substitute each group of the experimental data into the relation (8.3.1a). We obtain two equations

83.94× 103 = (0.001002)
2339 + γlπl
γ1 − 1

+ ql, (8.3.5)

1641.81× 103 = (0.00174)
16.514× 106 + γlπl

γl − 1
+ ql. (8.3.6)

Equations (8.3.5) and (8.3.6) are two equations of three variables, so a third equation is required. For
the third equation we use the expression of the sound speed (8.2.3). The sound speed in the liquid water
is 1482 m/s at T1 = 293 K. Thus we get the following equation

(1482)2 = 0.001002γl(2339 + πl). (8.3.7)

We have three equations with three unknowns. Solving the equations (8.3.5)-(8.3.7), we obtain

γl = 2.057, πl = 1.066× 109 Pa, ql = −1.994674× 106 J/kg.

To determine Cv we use the temperature expression (8.3.1c) with one of the known states. In fact this
will produce a big error. Indeed the expression (8.3.1c) itself is an approximation derived initially from
a linear approximation in terms of v, see Le Metayer et al. [29]. But it is expected in the bubble collapse
that the water will stay at the initial temperature during the whole process. Thus we choose to use the
initial state to find Cv to reduce the error. Substituting the experimental data related to T1 in (8.3.1c)
we have Cv = 3.449× 103 J/kg/K.

From (8.3.1a) and (8.3.1c) we can write the internal energy in terms of v and T , i.e.

el(T, v) = CvT + πlv + ql. (8.3.8)

Also we can write the internal energy in terms of T and p as

el(T, p) =
p+ γlπ

p+ π
CvT + ql,

or

el(T ) =
psat(T ) + γlπl
psat(T ) + πl

CvT + ql. (8.3.9)

To see the experimental curves versus the theoretical ones, we use the relation (8.3.8) and draw the
internal energy versus the temperature. For v we use the values that are given in the saturation tables,
see the left graph of Figure 8.3. Then we use the relation (8.3.9) and draw the internal energy versus
the temperature, see the right graph of Figure 8.3.

In fact the relation (8.3.8) shows a reasonable agreement between the theoretical and experimental
curves. But in this case the values of specific volume are taken directly from the tables. However this
indicates that this relation provides a reliable description for the relation between the internal energy
with T and v. But if the specific volume written in terms of the saturation temperature, i.e. the internal
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energy is a function of temperature, then we see that the agreement between the experimental and
theoretical curves is bad. This is due to the choice of the temperature expression (8.3.1c). In other
words, there is a relatively big error in the relation between T and v. To reduce the effect of this error
we give more attention to the initial state since it is expected that the water outside the bubble will keep
the initial temperature throughout all of the collapse process as is explained above. However, we think
that the expression (8.3.1c) for the temperature should be improved to give more realistic values.

300 400 500 600
0

500

1000

1500

2000

2500

3000

T (K)

e l (k
J/

kg
)

300 400 500 600
0

500

1000

1500

2000

2500

3000

T (K)

e l (k
J/

kg
)

Figure 8.3: Saturation internal energy for the liquid water. Experimental curves are shown in lines and
the SG-EOS approximation with symbols.

8.3.3 Determination of the entropy constants

To determine the entropy constants q′l and q′g we proceed as in Le Metayer et al. [29], i.e. at thermody-
namic equilibrium the Gibbs free energies are equal, see equation (8.3.2). In our case we did not set any
of the parameters to zero to avoid negative values for the entropy. Instead of that we take q′l to satisfy
the initial value of the entropy of the liquid. Then we choose q′g in order to obtain a good fitting for the
saturation curve.

The entropy of the liquid at T1 = 293 K is sl1 = 0.296 kJ/kg/K. Using these data in (8.3.1d) we find
q′l = 35.78 kJ/kg/K. Using this value we can obtain a good agreement to the experimental saturation
curve in the range 293 − 500 K if we choose q′g = 2.41 kJ/kg/K, see Figure 8.4. Out this range of
temperature the agreement is bad. If the expected range of the temperature within the specified range
then this choice is enough, but if the temperature can exceed 500 K an improvement is required.
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Figure 8.4: Saturation curve of the water. Experimental curves are shown in lines and the SG-EOS
approximation with symbols.
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In fact to obtain a good agreement to the experimental saturation curve with one choice of q′g in
the whole range is impossible. Instead of that we choose more than one value to q′g regarding to the
temperature range. For example, choose q′l = 35.64 kJ/kg/K and

q′g =


2.41, T < 573

2.51, 573 ≤ T ≤ 593

2.57, 593 ≤ T ≤ 613

2.61, T > 613

, (8.3.10)

where the unit of T is K and the unit of q′g is kJ/kg/K. By these values the saturation curve is recovered
for a wide range of temperatures, see Figure 8.5.

In the computations we observed that if the phase transition is included the interfacial temperature
increases as the time evolves. After about 550 K the change of the temperature becomes very fast, then
the bubble collapses. Thus, the several values of q′g in (8.3.10) are used just for very short intervals of
time with respect to the total time of the evolution. Thus for most time the computations were made
with q′g = 2.41 kJ/kg/K.

In Summary the parameters of the SG-EOS by this method are given in Table 2.

Phase γ π(Pa) Cv(J/kg/K) q(J/kg) q′(J/kg/K)

vapor 1.327 0 1.2× 103 1995× 103 2.41× 103

liquid 2.057 1.066× 109 3.449× 103 −1994.674× 103 35.78× 103

Table 8.1: EOS parameters for vapor and liquid water by the present method.
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Figure 8.5: Saturation curve of the water. Experimental curves are shown in lines and the SG-EOS
approximation with symbols.

8.4 Numerical method

To take into account the relaxation terms the Strang splitting [55] is used. Thus when a second-order nu-
merical scheme is employed the solution of the systems (8.2.1) and (8.2.8) are obtained by the succession
of operators

Un+1
j = L

∆t
2

RsL
∆t
h L

∆t
2

RsU
n
j , (8.4.1)

where

U = (α1, α1ρ1, α2ρ2, ρu, α1ρ1e1, α2ρ2e2, ρe+
1

2
ρu2)T ,
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or

U = (α1, α2, α1ρ1, α2ρ2, α3ρ3, ρu, α1ρ1e1, α2ρ2e2, α3ρ3e3, ρe+
1

2
ρu2)T ,

for the systems (8.2.1) and (8.2.8) respectively.
Here LRs is the operator of integration of the relaxation terms over half of the time interval and Lh

the operator of numerical solution of the hyperbolic part of the system accompanied by the geometrical
source vector.

A Godunov-type method is used for the operator Lh while a successive relaxation processes are used
for the operator LRs in order: The pressure relaxation, the temperature relaxation then the Gibbs free
energy relaxation. Hereafter, we explain a Godunov-type method in the context of two phases, i.e the
system (8.2.1), for simplicity. This method can directly be extended to the three-phase model (8.2.8).
Then the relaxation step is detailed for the model (8.2.1).

8.4.1 Godunov-type method

The system (8.2.1) is discretized by a Godunov-type method. The equations of the system (8.2.1) that
are written in a conservative form are discretized as

un+1
j = unj −

∆t

∆r
[f(u∗(unj ,u

n
j+1))− f(u∗(unj−1,u

n
j ))] + ∆tSnrj ,

where

u = (α1ρ1, α2ρ2, ρu, ρe+
1

2
ρu2)T ,

f(u) = (α1ρ1u, α2ρ2u, ρu
2 + α1p1 + α2p2, u(ρe+

1

2
ρu2 + α1p1 + α2p2))T ,

and u∗(unj ,u
n
j+1) the value of u along the line r = rj+ 1

2
for the Riemann problem with the states

unj ,u
n
j+1. The numerical approximation Snrj of the geometrical source vector (8.2.5) is evaluated as the

average between the left and right states unj ,u
n
j+1.

The volume fraction equation and the internal energy equations are discretized as, see [50],

αn+1
1j = αn1j −

∆t

∆x
((uα1)∗j+ 1

2
− (uα1)∗j− 1

2
− αn1j(u∗j+ 1

2
− u∗j− 1

2
)),

(αρe)n+1
kj = (αρe)nkj −

∆t

∆x
((αρeu)∗k,j+ 1

2
− (αρeu)∗k,j− 1

2
+ (αp)nkj(u

∗
j+ 1

2
− u∗j− 1

2
))− 2

rj
(αρeu+ αpu)nkj .

The geometrical term
2

rj
(αρeu+ αpu)nkj is taken as the average between the left and right states.

To achieve a second order accuracy we use the MUSCL method [57]. For the Riemann values we
use the HLLC-type Riemann solver that was proposed by Saurel et al. [50]. This solver uses the non-
conventional shock relations that were derived in Saurel et al. [48].

8.4.2 Relaxation step

In the relaxation step, applying the Strang splitting on the model (8.2.1), we must solve the following
system of ordinary differential equations (ODE)

dU

dt
= SP + SQ + Sm.

This system is solved successively for each source vector alone.
The relaxation steps are performed in the following order: first pressure relaxation then temperature

relaxation and at last Gibbs free energy relaxation. From one step to the other, what is relaxed stays
relaxed. The variable κ is related to the heat transfer modeling and is determined in a way to keep the
pressure equilibrium during the temperature relaxation. The variables % and ei are related to the mass
transfer and are determined to keep the equilibrium of the pressure and temperature during the Gibbs
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free energy relaxation. It is essential to emphasize that the model with new terms for the heat and mass
transfer satisfies the second law of thermodynamics, for details see [61].

For numerical reasons, we allow the presence of a negligibly small amount of vapor outside the bubble,
and a small amount of liquid inside the bubble, typically these values are ε = 10−6. Then to locate the
interface we use the ideas of Saurel et al. [49]. We assume that the cell is filled with pure fluid when its
volume fraction is close to 1, say (1 − ε). The interface corresponds to mixture cells when the volume
fraction ranges between ε̄ and 1− ε̄, with ε̄ = 10−4. The value of ε̄ has to be chosen larger than the value
of ε to ensure that phase transitions occur only in the interfacial zone, for a discussion on this point
see [49].

It is expected that the small values of different volume fractions on each side have no significant
effects. Indeed, by using pressure relaxation in the whole domain we keep a single value for the pressure.
In addition, we use the temperature relaxation in the whole domain, so we have a single temperature.
This seems to be better for the resolution of the physical variables. In fact, we observed just a small
change in the results if we use the temperature relaxation at the interface only. The mass transfer is
considered only at the interface, i.e. the Gibbs free energy relaxation is used only at the interface.

To perform the temperature relaxation we must solve the following ODE system

dU

dt
= SQ, (8.4.2)

During the temperature relaxation the pressure is assumed to stay in equilibrium. To ensure this during
the temperature relaxation process we assume that

∂p1

∂t
=
∂p2

∂t
.

From this condition with system (8.4.2), we obtain

κ =

ρ1c
2
1

α1
+
ρ2c

2
2

α2

Γ1

α1
+

Γ2

α2

−

Γ1

α1
p1 +

Γ2

α2
p2

Γ1

α1
+

Γ2

α2

. (8.4.3)

Here Γk denotes the Grüneisen coefficient of phase k which is given as

Γk =
1

ρk

(
∂pk
∂ek

)
ρk

, k = 1, 2. (8.4.4)

After the temperature relaxation the Gibbs free energy relaxation is performed by solving the system

dU

dt
= Sm. (8.4.5)

Through the process of the Gibbs free energy relaxation the pressure and the temperature are assumed
to stay in equilibrium, i.e.

∂p1

∂t
=
∂p2

∂t
,

∂T1

∂t
=
∂T2

∂t
.
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Using these conditions with system (8.4.5) we obtain the following expressions for % and ei

% =

φ

(
ρ1c

2
1

α1
+
ρ2c

2
2

α2

)
− φ

(
Γ1

α1
p1 +

Γ2

α2
p2

)
+ ψ


ρ21

(
∂e1
∂ρ1

)
T1

α1ρ1Cv1
+

ρ22

(
∂e2
∂ρ2

)
T2

α2ρ2Cv2



φ

(
c21
α1

+
c22
α2

)
− φ

(
Γ1

α1
h1 +

Γ2

α2
h2

)
+ ψ


e1 + ρ1

(
∂e1
∂ρ1

)
T1

α1ρ1Cv1
+

e2 + ρ2

(
∂e2
∂ρ2

)
T2

α2ρ2Cv2


,

ei =

e1 + ρ1

(
∂e1
∂ρ1

)
T1

α1ρ1Cv1
+

e2 + ρ2

(
∂e2
∂ρ2

)
T2

α2ρ2Cv2
φ

−

ρ21

(
∂e1
∂ρ1

)
T1

α1ρ1Cv1
+

ρ22

(
∂e2
∂ρ2

)
T2

α2ρ2Cv2
%φ

,

where Cvk is the specific heat capacity at constant volume, φ =
1

α1ρ1Cv1
+

1

α2ρ2Cv2
, ψ =

Γ1

α1
+

Γ2

α2
and

hk = ek +
pk
ρk

is the specific enthalpy for phase k.

The relaxation procedures for the temperature and the Gibbs free energy were detailed in Zein et
al. [61]. These procedures are used for the model (8.2.1). Also they are used directly for the model (8.2.8),
since the heat and mass transfer is considered only at the interface between the liquid and its vapor.
Several procedures are available for the pressure relaxation with model (8.2.1), see [25, 26, 44, 47, 50]. In
this work we adopt the recent procedure of Saurel et al. [50]. This method is easily implemented and
easily used for multiphase flows.

In addition a correction criterion of Saurel et al. [50] is used to make the relaxed pressure in agreement
with the mixture EOS. It is based on the evolution of the total energy equation, see equation (8.2.1) in
the system (8.2.1) and the last equation in system (8.2.8). This is expected to be accurate in the entire
fluid flow since the equation is written in a conservative formulation.

In the presence of a non-condensable gas, i.e. in the three-phase model, the interface between the
liquid and vapor is located as in Petitpas et al. [39] by using the volume fractions of both the vapor and
liquid. Assume α1 and α2 to be the volume fractions of vapor and liquid respectively. Then the interface
is located where

ε̄ ≤ α1 ≤ (1− ε̄) and ε̄ ≤ α2 ≤ (1− ε̄).

Note that in this case the bubble is identified by the summation of the vapor volume fraction and the
non-condensable gas volume fraction.

The heat and mass transfer change the pressure of the vapor and liquid. But both stay in equilibrium.
To keep one pressure in the system at each time step we also set the pressure of the non-condensable gas
to the new pressure. This effect modifies the internal energy of the non-condensable gas.

8.5 Numerical Results

In this section, we provide numerical computations for the dynamics of a laser-induced bubble. The
results are shown taking the six-equation model (8.2.1) for the two-phase flow if the bubble contains
vapor only. While if the bubble contains a percentage of non-condensable gas also, then the three-phase
model of nine equations (8.2.8) is used. In all computations the CFL number is fixed to 0.6 and a uniform
grid is used.

For validation we take the experimental radius-time curve that appears in Müller et al. [32]. Thus
for all computations, unless mentioned, the initial conditions are as follows: The radius of the bubble
Rmax = .75 mm. The surrounding water has a pressure pl = 1 bar and temperature Tl = 293 K.

Since the initial state inside the bubble is unknown, we choose several possibilities to provide a
description for the dynamics of the collapsing bubble with different initial conditions. The computational
domain is taken to be suitably large compared to the bubble size to avoid boundary effects. In our
computations the domain is chosen to be the interval [0, 99] mm. The left boundary conditions, i.e. at
the center of the bubble, are the symmetric conditions. For the right boundary conditions, i.e. at the
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far wall of the domain, there are two choices in the literature. Müller et al. [32] assumed a reflected
velocity at the far field wall. In Dreyer et al. [13] the velocity at the far wall is set to be zero. In our
computations both choices were tested, there is no significant effect on the results. This may be due to
the large size of the computational domain.

Since the grid is uniform and the computational domain is very large compared to the bubble radius,
we introduce the number of cells NI . This number NI represents the number of cells inside the bubble
from its center to its wall at the initial state, i.e. the number of cells that cover the maximum radius of
the bubble at the initial state. In Table 3, the values of NI are shown with the corresponding numbers
of the cells in the whole domain.

NI 250 500 750 1000
Total number of cells 33,000 66,000 99,000 132,000

Table 8.2: The concept of NI .

For numerical reasons, we allow the presence of a small volume fraction of the liquid water inside the
bubble and a small volume fraction of vapor outside the bubble, typically these small values are taken
10−6.

For each numerical test the results are shown with respect to time for the radius of the bubble, the
pressure and temperature at the center of the bubble and the velocity at the interface.

8.5.1 Tests for vapor bubble

This subsection deals with the case that the bubble contains vapor only. Assume that the initial state
inside the bubble is the saturation state, i.e. Tv = 293 K and pv = 2339 Pa. A comparison between
results with and without mass tansfer are first considered. Then mesh refinement tests are addressed.
After that tests for different initial temperatures and pressures are included.

8.5.1.1 Comparison between with and without mass transfer

The results without mass transfer are shown in Figure 8.6. If the mass transfer is included the results
are shown in Figure 8.7. Following Akhatov et al. [1] and Dreyer et al. [13], the mass transfer is activated
from the beginning of the evolution until the critical state is exceeded, the critical temperature of the
water is Tcr = 647 K. If the interfacial temperature of the bubble exceeds the critical temperature the
mass transfer is stopped. This is due to the fact that there is no difference between the phases at the
bubble interface beyond the critical state. Then the mass transfer is activated again after the collapse
when the temperature falls below the critical temperature. In the computations, we observe that in the
case with no mass transfer the temperature inside the bubble after reaching 1500 K increases rapidly and
then the collapse occurs. The temperature reaches almost immediately a very high value (> 6000 K).
If the phase transition is included the temperature after reaching 515 K increases rapidly and then the
collapse occurs. The temperature again becomes greater than 6000 K.

The radius-time curves before the collapsing point are coinciding and in an excellent agreement with
the experimental data, see the radius graph in Figure 8.7. The collapse occurs slightly earlier if the mass
transfer is included. Indeed, in this case the collapse occurs at time t = 69.431 µs, while if the mass
transfer is excluded the collapse occurs at time t = 69.743 µs. Both values for the collapsing time are
very close to the experimental value t = 69.3 µs.

In the computations, before the instant of the collapse, we observe that the temperature and the
pressure inside the bubble, when the phase transition, is included is less than the corresponding values
if the phase transition is not considered, see Figures 8.7 and 8.8. In Figure 8.8 the temperature and the
pressure are shown before the collapse point. We think this behavior is physically correct, since a part
of the energy inside the bubble is consumed by the phase transition.

At the collapse time, both the pressure and the temperature at the center of the bubble almost jump
to very high values. These values are higher in the case of mass transfer than the case without mass
transfer. This indicates that the collapse is more violent if the mass transfer is included and the bubble
vanishes. In fact we cannot say more about the physics of this behavior. Moreover, there seems to be
no way to check such comparisons experimentally.
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It is clear from Figure 8.7 that there is no rebound if the phase transition is included. This occurs since
most of the vapor mass leaves the bubble and there is no mechanism for a rebound. In real experiments
this behavior is not observed. Always there is a rebound of the bubble. This motivates us to consider
a percentage of non-condensable gas inside the bubble besides the water vapor, as is expected in real
experiments. This will be investigated numerically in Subsection 8.5.2.
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Figure 8.6: The collapse and rebound of the vapor bubble without mass transfer. The computed radius
is compared with the experimental data (dots). NI = 500 cells, Tv = 293 K and pv = 2339 Pa.
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Figure 8.7: The collapsing vapor bubble results with mass transfer (solid line) compared to those without
mass transfer (dashed line). The computed radii are compared with the experimental data (dots).
NI = 500 cells, Tv = 293 K and pv = 2339 Pa.
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Figure 8.8: The center temperature and pressure of the bubble before the collapse instant. Results with
mass transfer (solid line) compared to the ones without mass transfer (dashed line). With NI = 500
cells, Tv = 293 K and pv = 2339 Pa. The graphs here are some zoom of the temperature and pressure
graphs in Figure 8.7.

In the case of phase transition after the collapse the bubble vanishes, so it is expected that after
a certain time the pressure and the temperature in all of the domain will be like the values for the
liquid water. From the pressure profile we see after the collapse point that there are some oscillations
around the value of atmospheric pressure. From the temperature profile we see that the temperature
remains quite high. In fact even though the bubble vanishes there still is a certain small remaining vapor
concentration. This is shown in Figure 8.9. The left side graphs are shown for a very small domain while
the right graphs are shown for the distance equal to the initial maximum radius. It is clear from the
figure that there still is some concentration of vapor at the bubble center. Moreover, the oscillations of
the pressure in Figure 8.7 have decreasing amplitudes in time, also the temperature decreases with time
but very slowly.

0 0.01 0.02 0.03 0.04
0

1

2

3

4
x 10

−3

r (mm)

V
a

p
o

r 
m

a
s
s
 f

ra
c
ti
o

n

0 0.15 0.3 0.45 0.6 0.75
0

1

2

3

4
x 10

−3

r (mm)

V
a

p
o

r 
m

a
s
s
 f

ra
c
ti
o

n

0 0.01 0.02 0.03 0.04
200

300

400

500

600

700

800

r (mm)

T
e

m
p

e
ra

tu
re

 (
K

)

0 0.15 0.3 0.45 0.6 0.75
200

300

400

500

600

700

800

r (mm)

T
e

m
p

e
ra

tu
re

 (
K

)

Figure 8.9: The vapor mass fraction and temperature versus radial direction if the phase transition is
included at time t = 180 µs. With NI = 500 cells, Tv = 293 K and pv = 2339 Pa.
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8.5.1.2 Mesh refinement tests

We repeat the same problem with a different number of cells, without mass transfer as shown in Figure
8.10 and with mass transfer as in Figure 8.12. A common feature is that before the instant of the collapse
all curves are almost coinciding. In addition there is an excellent agreement with the experimental data.
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Figure 8.10: Vapor bubble without mass transfer, comparison using several grids. The computed radii
are compared with the experimental data (dots). Initial values Tv = 293 K and pv = 2339 Pa.

Figure 8.10 shows that there is a significant difference between the curves for a different number of
cells after the collapse point. To understand the reasons we draw the volume fraction profiles at different
instants of time, see Figure 8.11. It is clear that the interface diffusion is weaker if the number of cells is
higher. Long before the time of collapse the diffusion in the curves is very small, thus the radius curves
coincide, see graph (a), the results are shown at time t = 50 µs. Around the time of collapse the curves
start to diffuse. See graphs (b) and (c), where the diffusion now became more serious. Graphs (d) and
(e) show the results after the collapse but still very close to the collapsing time. There is a big diffusion
across the interface especially for NI = 250 cells. The diffusion will be reduced again as the time evolves
as in graph (f), but now the curves remain clearly distinct from each other. This produces the differences
in the radii curves. Hence, we conclude that the diffusion of the curves increases around the collapse
point. In addition, the pressure and temperature relaxations reduce some amount of the vapor inside
the bubble, this is higher if the interface is more diffusive. Thus passing through the collapse point the
diffusion has a significant effect which will continue to be observed after the collapse. So it is important
to reduce the diffusion as much possible.
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Figure 8.11: Vapor volume fraction profiles of the results in Figure 8.10, they are shown at times (a)
t = 50 µs (b) t = 68 µs (c) t = 69 µs (d) t = 71 µs (e) t = 72 µs (f) t = 120 µs. The computations are
made with NI = 250 cells (solid line), NI = 500 cells (dashed line), and NI = 750 cells (dashed-dotted
line).

In the temperature profiles of Figure 8.10 one cannot conclude anything about the effect of the
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number of cells on the direction of the maximal temperature at the collapse time. This may come from
the larger diffusion for NI = 250 cells.

In the case of phase transition as in Figure 8.12, it is clear that the bubble vanishes in all cases.
There are noticeable differences in other values as the number of cells is increased. This is effected by
the diffusion of the interface, where in the case of NI = 250 cells the bubble vanishes before the others
and the concentration of the mass fraction after the collapse times is lower.
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Figure 8.12: Vapor bubble with mass transfer, comparison between several grids. The computed radii
are compared with the experimental data (dots). Initial values Tv = 293 K and pv = 2339 Pa.

However, in both cases, i.e. with or without phase transition the diffusion of the interface has bad
consequences on the results after the collapse point. A similar problem was also discussed in Müller et
al. [32] for the Saurel and Abgrall model [44], i.e. the seven-equation model. In next tests to reduce the
effects of diffusion we use a relatively high number of cells, we use NI = 500 cells. In fact using high
number of cells is expensive. Thus the issue of diffusion requires more investigation.

8.5.1.3 Effects of the initial values inside the bubble

Let us now study the effects of the initial values of the temperature and the pressure inside the bubble
on its dynamics. First, we keep the temperature inside the bubble constant at Tv = 293 K and change
the values of the pressure. The results for the case without mass transfer are shown in Figure 8.13. We
see the following features in the results for the lower initial pressure: The collapse occurs earlier, the
rebound is faster and more damped. Also the values of pressure, temperature and velocity are higher
at the collapse point. If the phase transition is included the results are shown in Figure 8.14. For lower
pressure the collapse occurs earlier with a higher temperature. The velocities and pressures are almost
the same.
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Figure 8.13: Vapor bubble without mass transfer, comparison between different initial bubble pressures
at Tv = 293 K. The computed radii are compared with the experimental data (dots). The computations
are made with NI = 500 cells.
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Figure 8.14: Vapor bubble with mass transfer, comparison between different initial bubble pressures at
Tv = 293 K. The computed radii are compared with the experimental data (dots). The computations
are made with NI = 500 cells.

Second, we keep the initial pressure inside the bubble constant at pv = 2339 Pa and change the
temperature. The results are shown in Figure 8.15 with no mass transfer and in Figure 8.16 if the mass
transfer is included. The differences between the curves in both figures are small. In both cases, it is
noted that for the higher initial temperature the collapse is a little bit faster and the temperature at the
center of the bubble at the collapse time is higher.
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Whatever the initial state inside the bubble we can conclude the following results for the collapsing
of the vapor bubble:

• There is no rebound of the bubble after the collapse if the mass transfer is included.

• In all cases at the collapse time the pressure and temperature at the bubble center jump to very high
values. The high pressure shows the importance of considering compressibility for the surrounding
water.

• Before the collapse time the curves for the radius of the bubble in all cases are coinciding. In
addition, in this period there is a perfect agreement with the experimental data.

• The pressure and temperature inside the bubble before the collapse time when the mass transfer
is included are less than those values with no mass transfer. This is due to the loss of energy by
the phase transition process.

• In the cases of no mass transfer it is noted that the first collapse is much more violent than the
second one.
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Figure 8.15: Vapor bubble without mass transfer, comparison between different initial bubble temper-
atures at pv = 2339 Pa. The computed radii are compared with the experimental data (dots). The
computations are made with NI = 500 cells.
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Figure 8.16: Vapor bubble with mass transfer, comparison between different initial bubble temperatures
at pv = 2339 Pa. The computed radii are compared with the experimental data (dots). The computations
are made with NI = 500 cells.

8.5.2 Tests for gas-vapor bubble

In the tests of this subsection, besides the vapor inside the bubble we assume a percentage of non-
condensable gas. The existence of such a gas is justified physically, but its specific nature is not really
known. As our aim is just to consider the general effect of the existence of such gas we use several
assumptions. Following Dreyer et al. [13], Hydrogen H2 and Oxygen O2 are most probably present since
they are the components of water and may be produced by the plasma due to the laser beam. Here we
deal with both gases, i.e. Hydrogen or Oxygen.

We assume that the non-condensable gas obeys the SG-EOS, i.e. it obeys equations (8.3.1). For both
Hydrogen and Oxygen we assume γ = 1.4, π = 0 and q = 0. For Hydrogen we use Cv = 10.1 kJ/kg/K.
For Oxygen we take Cv = 0.662 kJ/kg/K.

8.5.2.1 A percentage of Hydrogen inside the bubble

Consider a saturation state inside the bubble at temperature T = 293 K, i.e. the pressure is p = 2339 Pa.
Then, assume an initial 1% of Hydrogen mass inside the bubble. Always, for numerical reasons, we
assume a small volume fraction of non-condensable gas outside the bubble, i.e. in the liquid water, typ-
ically 10−6. The results with mass transfer are shown in Figure 8.17 for vapor and gas-vapor bubbles.
The main feature of the results is that: The bubble rebounds again after the collapse if it contains a
non-condensable gas, whereas the bubble dies if it contains vapor only. In fact, in the literature there
are two different considerations of this experiment and the issue of rebound. For example, the numerical
results of Akhatov et al. [1] show that the existence of non-condensable gas has a strong influence on
the dynamics of the bubble. But in their results the rebound occurs even if the bubble contains vapor
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only. A different consideration was proposed by Dreyer et al. [13]. It depends on some fundamental
thermodynamic properties. Due to these the rebound of the bubble after the first collapse is possible
only if there is a non-condensable gas inside the bubble. Our computational results confirm the ideas of
Dreyer et al. [13]. However, this point requires more investigations.
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Figure 8.17: Bubble results with mass transfer, comparison between the results of vapor bubble (solid
line) with gas-vapor bubble (dashed line). The computed radii are compared with the experimental data
(dots). Computations are made with NI = 500 cells, initial state inside the bubble: T = 293 K and
p = 2339 Pa. The non-condensable gas is Hydrogen with a mass fraction of 1%.

It is clear from Figure 8.17 that the values of temperature, pressure and velocity are reduced for
the gas-vapor bubble. Moreover, the temperature and pressure inside the bubble before the instant of
collapse are smaller in the results of vapor bubble than those of gas-vapor bubble. Again we think this
is physical since the action of the phase transition is stronger in the vapor bubble than in the gas-vapor
bubble.

Figure 8.18 shows the results for a gas-vapor bubble using a different number of computational cells.
The same previous conditions with a mass fraction of 1% of Hydrogen are used. We see in all cases
that the bubble rebounds after the collapse. The differences in the curves are due to the diffusion of the
interface especially through passing the collapse point, see the discussion in the previous subsection.
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Figure 8.18: Gas-vapor bubble with mass transfer, comparison at different grids. The computed radii
are compared with the experimental data (dots). Computations are made with NI = 500 cells, initial
state inside the bubble: T = 293 K and p = 2339 Pa. The non-condensable gas is Hydrogen with a mass
fraction of 1%.

8.5.2.2 A percentage of Oxygen inside the bubble

For more validation consider the gas-vapor bubble with the same initial state except that instead of
Hydrogen we assume Oxygen with a mass fraction of 2.2%. T
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Figure 8.19: Gas-vapor bubble with mass transfer, the non-condensable gas is Oxygen with a mass
fraction of 2.2%. The computed radii are compared with the experimental data (dots). Computations
are made with NI = 500 cells, initial state inside the bubble: T = 293 K and p = 2339 Pa.
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he results are shown in Figure 8.19. To achieve this percentage we set the initial value of the volume
fraction of the Oxygen to be 0.015. For the previous case of Hydrogen to get 1% of mass fraction we set
the initial volume fraction to 0.1. These values depend on the values of heat capacity Cv since we keep
the temperature constant.

Consider the same gas-vapor problem with Oxygen as a non-condensable gas with different percent-
ages. This is shown in Figure 8.20. For the lower value of volume fraction we note that the maximum
radius after the collapse is smaller and the center temperature is higher.
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Figure 8.20: Gas-vapor bubble with mass transfer, the non-condensable gas is Oxygen with different
percentages. The computed radii are compared with the experimental data (dots). Computations are
made with NI = 500 cells, initial state inside the bubble: T = 293 K and p = 2339 Pa. Note that NG
stands for non-condensable gas.

8.5.2.3 More validation tests

In Figures 8.21 and 8.22 the solution of the problem is shown for different assumptions for the non-
condensable gas, i.e. different values of the specific heat Cv. In Figure 8.21 the results are shown with
an assumption of a 2% mass fraction for all gases. For Figure 8.22 the volume fraction is taken to be
0.045 for all gases. The results in Figure 8.22 are very close. Thus the equal initial volume fractions
for different non-condensable gases give results not so far from each other. Moreover, we see during the
computations that an assumption of a too small percentage for the non-condensable gas is insignificant
for the rebound.
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Figure 8.21: Gas-vapor bubble with mass transfer, different gases with percent 2% in mass. The computed
radii are compared with the experimental data (dots). Computations are made with NI = 500 cells,
initial state inside the bubble: T = 293 K and p = 2339 Pa.
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Figure 8.22: Gas-vapor bubble with mass transfer, different gases with initial volume fraction 0.045. The
computed radii are compared with the experimental data (dots). Computations are made with NI = 500
cells, initial state inside the bubble: T = 293 K and p = 2339 Pa.

We conclude the following results for the collapse of the gas-vapor bubble:

• The existence of sufficient amount of non-condensable gas is essential for the rebound after the
collapse if the mass transfer is included.

• The behavior of the rebound depends on the percentage of the non-condensable gas and on the
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nature of the gas.

For more validation we compute the maximum radius after the first collapse for several values of
initial radius of the bubble. Then we compare these values with experimental data of Akhatov et al. [1].
For this test the initial temperature is assumed to be T = 296 K inside and outside the bubble with
pressure inside the bubble p = 2339 Pa. For the non-condensable gas we assume Cv = 5 kJ/kg/K with
1.5% mass fraction. We choose this assumption for the heat capacity to be in the middle between the
values of Hydrogen and Oxygen. The results are shown in Figure 8.23. It is clear that the computed
results have the same tendency as the experimental ones. In Figure 8.24 detailed results for different
initial radii are shown.
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Figure 8.23: The initial bubble radius versus the maximum radius after the first collapse. Computations
are made with uniform grid ∆r = 1.6× 10−6.
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Figure 8.24: Gas-vapor bubble with mass transfer, different initial radii. Computations are made with
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8.6 Conclusion

A laser-induced cavitation bubble in liquid water has been investigated by using diffusive interface
models. The vapor bubble is modeled by the six-equation model including heat and mass transfer which
was modified in Zein et al. [61]. This model was extended in the paper to include the existence of a
non-condensable gas inside the bubble, i.e. gas-vapor bubble.

To overcome the problem of negative squares of sound speed in computations, each fluid obeys its
own equations of state as a pure fluid. The stiffened gas equations of state were used. We proposed
new estimations for the parameters of these equations of state taking into account a wide range of
temperature. These parameters are linked to each other in a way to recover the saturation curve.

The main result from the computations is that if the mass transfer is included then the rebound of
the bubble after the collapse is only possible when a non-condensable gas presents inside the bubble.

The computations show a high pressure and temperature at the center of the bubble at the collapse.
In addition, using phase transition reduces the pressure and temperature inside the bubble before the
collapse point.

The diffusive interface may have bad effects on the results. This diffusion increases around the
collapse point which has strong effects on the results after the collapse point. To avoid this problem
in the computations we used a higher number of cells. For future work some adaptive discretization
should be used to improve the capturing of the interface. Also, we plan to study the coupling between
our approach here with the ideas of sharp interface modeling just around the collapse point. By this
coupling we expect to collect the benefits of considering the phase transition as well as avoiding the
problem of diffusion through the collapse.

In this paper we were interested in the general effect of the presence of a non-condensable gas. For
future work the treatment using the non-condensable gas requires more investigation. Indeed, modeling
the non-condensable gas with vapor as a mixture seems to be more physical.

8.A Appendix: Mathematical properties of the three-phase model

In order to investigate the mathematical properties of the model (8.2.8), without the redundant equation,
we rewrite its hyperbolic part in terms of primitive variables as

∂W

∂t
+ A

∂W

∂x
= 0, (8.A.1)

where W = (α1, α2, ρ1, ρ2, ρ3, u, p1, p2, p3). The matrix A is given as

A =



u 0 0 0 0 0 0 0 0
0 u 0 0 0 0 0 0 0
0 0 u 0 0 ρ1 0 0 0
0 0 0 u 0 ρ2 0 0 0
0 0 0 0 u ρ3 0 0 0

p1 − p3

ρ

p2 − p3

ρ
0 0 0 u

α1

ρ

α2

ρ

1− α1 − α2

ρ
0 0 0 0 0 ρ1c

2
1 u 0 0

0 0 0 0 0 ρ2c
2
2 0 u 0

0 0 0 0 0 ρ3c
2
3 0 0 u


.

The matrix A has real eigenvalues that are given by the following expressions

λ1 = λ2 = ... = λ7 = u,

λ8 = u+ c,

λ9 = u− c.

Here c is the mixture sound speed for the model and is expressed as

c2 =
α1ρ1

ρ
c21 +

α2ρ2

ρ
c22 +

α3ρ3

ρ
c23.
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The sound speeds ck, k = 1, 2, 3, are defined by (8.2.3).
The corresponding right eigenvectors are

r1 =



0
0
0
0
0
0

−α3

α1
0
1


, r2 =



0
0
0
0
0
0

−α2

α1
1
0


, r3 =



0
0
0
0
1
0
0
0
0


, r4 =



0
0
0
1
0
0
0
0
0


, r5 =



0
0
1
0
0
0
0
0
0


, (8.A.2)

r6 =



0
1
0
0
0
0

p3 − p2

α1
0
0


, r7 =



1
0
0
0
0
0

p3 − p1

α1
0
0


, r8 =



0
0
1

ρ2/ρ1

ρ3/ρ1

c/ρ1

c21
ρ2c

2
2/ρ1

ρ3c
2
3/ρ1


, r9 =



0
0
1

ρ2/ρ1

ρ3/ρ1

−c/ρ1

c21
ρ2c

2
2/ρ1

ρ3c
2
3/ρ1


, (8.A.3)

Thus, the system (8.2.8) is non strictly hyperbolic.
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Chapter 9

Closure conditions for
multi-component models

Bibliographic note: The content of this chapter is published in [H13]: Siegfried Müller, Maren Hantke,
and Pascal Richter. Closure conditions for non-equilibrium multi-component models, Continuum Mech.
Thermodyn. (2016). 28:1157.

Abstract: A class of non-equilibrium models for compressible multi-component fluids in multi-dimensions
is investigated taking into account viscosity and heat conduction. These models are subject to the choice
of interfacial pressures and interfacial velocity as well as relaxation terms for velocity, pressure, tem-
perature and chemical potentials. Sufficient conditions are derived for these quantities that ensure
meaningful physical properties such as a non-negative entropy production, thermodynamical stability,
Galilean invariance as well as mathematical properties such as hyperbolicity, subcharacteristic property
and existence of an entropy-entropy flux pair. For the relaxation of chemical potentials a two-component
and a three-component model for vapor-water and gas-water-vapor, respectively, is considered.

9.1 Introduction

Flows of compressible multi-component fluids, where the single components may be in the liquid or the
gas phase, respectively, have a wide range of applications. Difficulties in the modeling result from the
interaction of the fluids, especially from the exchange of mass and energy across the phase interfaces. So
the treatment of the phase interfaces is in the focus of the modeling.

Our particular interest is on a two-phase flow where we consider one liquid phase and one gaseous
phase. The liquid phase is assumed to consist of one species. The gaseous phase may consist of K − 1
species where one of these species is the same as in the liquid phase but in a different aggregate state.
To model this flow we use a K component model where in each point all K − 1 species are present
with one species in both aggregate states. Only a species that is present in both aggregate states can
undergo a phase change. Typical applications are evaporation and drying processes as can be observed
in daily live, e.g. cooking pot or puddle, or formation of clouds. A technical application is the spherical
collapse of a laser-induced bubble at elevated temperatures to investigate the influence of the amount of
non-condensable gas inside the bubble, see [21,42,46].

In the literature several models are available that are distinguished in sharp interface and diffuse
interface models. A detailed survey of these models can be found in Zein [44]. Here our interest is on
multi-component fluids derived from an ensemble averaging procedure of Drew [12]. A comprehensive
introduction to these models can be found in the classical book of Drew and Passman [13].

Baer and Nunziato [5] proposed a two-phase model for detonation waves in granular explosives. This
model is a full non-equilibrium model, which means, each component has its own pressure, velocity and
temperature and is governed by its own set of fluid equations. It was modified and generalized by several
authors. For instance, Saurel and Abgrall [38] also included relaxation terms for the pressure and the
velocities of the components. By instantaneous relaxation procedures equilibrium values for the pressure
and the velocity can be found. Using further relaxation procedures to drive the temperatures and the
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chemical potentials into equilibrium mass transfer between the phases can be modeled, see Abgrall et
al. [36, 41] or Zein et al. [45].

There are simplified models available in the literature that can be derived from the above general
model by assuming zero relaxation times, see [25]. Typically these are classified by the number of
equations in case of two phases in one space dimension. For instance, a six-equation model with a single
velocity is derived by assuming a zero velocity relaxation time. Assuming zero relaxation time for both
the velocity and the pressure a five-equation model with mechanical equilibrium, i.e., single velocity and
single pressure, is deduced in the asymptotic limit. The four-equation model has a single velocity, single
pressure and also single temperature coinciding with the single-fluid reactive Euler equations. While
the three-equation model is the system of Euler equations. It has single velocity, pressure, temperature,
and also single chemical potential, i.e., it is in full equilibrium. A detailed discussion of these models is
beyond the scope of this work. For this purpose the interested reader is referred to [44] and the references
cited therein.

Typically reduced models suffer from some short-comings. For instance, conservation of energy
might be violated or the system looses its hyperbolicity. Therefore we prefer a full non-equilibrium
model taking into account viscosity and heat conduction. For this purpose we consider a general class
of non-equilibrium models that is a generalization of the three-phase model investigated by Hérard, see
Remark 7 in [23]. For instance, the Saurel-Abgrall approach [38] fits into this class.

Characteristic for models based on ensemble averaging is the problem to close the set of equations,
i.e., find appropriate interfacial pressures and interfacial velocity as well as relaxation terms for velocity,
pressure, temperature and chemical potentials. Since the closing procedure is not unique, there is some
freedom left for modeling. However, a reasonable model that is acceptable from a physical point of view
has to be consistent with the fundamental principles of thermodynamics, e.g., the second law of thermo-
dynamics. Besides this there are also constraints from a mathematical point of view that are related to
existence and uniqueness of solutions to the model, e.g., the existence of entropy-entropy flux pairs. When
it comes to the numerical solution additional properties are helpful for the design of appropriate schemes,
e.g., the hyperbolicity of the transport operator or the sub-characteristic condition. The objective of this
paper is to derive constraints for the closing terms such that the aforementioned physical, analytical and
numerical properties hold for the non-equilibrium multi-component model. Similar investigations have
been performed in case of two-phase models [3, 16, 37, 44] and three-phase models [7, 23]. Here we do
not confine ourselves to two and three components but on an arbitrary number of components. Drew
and Passmann [13] consider multi-component fluids from a physical point of view but do not investigate
analytical and numerical properties of the models.

The paper is organized as follows. In Section 9.2 we introduce the non-equilibrium multi-component
model and derive the model for the mixture as well the model at equilibrium. Then we rewrite these mod-
els in terms of primitive quantities in Section 9.3. Neglecting viscosity and heat conduction some math-
ematical properties of the models are investigated. In particular, we verify hyperbolicity and the sub-
characteristic condition, see Section 9.4. Furthermore, a physical meaningful model should be Galilean
invariant. This is investigated in Section 9.5. In Section 9.6 we are concerned with the entropies corre-
sponding to the non-equilibrium model and the mixture model. From the 2nd law of thermodynamics we
derive constraints for the definition of the interfacial velocity and pressures. In Section 9.7 we introduce
the relaxation terms for mechanical and thermal relaxation as well as relaxation of chemical potentials.
In particular, we verify that they are in agreement with the 2nd law of thermodynamics.

9.2 Mathematical model

First of all, we describe the full non-equilibrium model and then derive from this the mixture model and
the equilibrium model.

9.2.1 Non-equilibrium model

The multi-component flow is described by a non-equilibrium model where all components are present
in each point of the space-time continuum. Each component k = 1, . . . ,K has density ρk, velocity vk
and pressure pk, The amount of each component is determined by its volume fraction αk. The volume
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fractions are related by the saturation constraint

K∑
k=1

αk = 1, αk ∈ (0, 1). (9.2.1)

In analogy to the three-phase model of Hérard [23] the fluid equations for each component can be written
as

∂t (αk ρk) +∇ · (αk ρk vk) = Sαρ,k, (9.2.2)

∂t (αk ρk vk) +∇ · (αk ρk vk v
T
k + αk pk I) = (9.2.3)

−
K∑
l=1

Pk,l∇αl +∇ · (αk T k) + Sαρv ,k,

∂t (αk ρk Ek) +∇ · (αk ρk vk (Ek + pk/ρk)) = (9.2.4)

−
K∑
l=1

Pk,l V I · ∇αl +∇ · (αk (vk · T k − qk)) + SαρE,k,

taking into account viscosity and heat conduction via the stress tensor T k and the heat flux qk, but
neglecting effects due to surface tension and gravity. In our notation Ek = ek +v2

k/2 is the total specific
energy with ek the specific internal energy of component k. There may be other contributions to be
accounted for, see [13], p. 68 ff and 144 ff. In particular, the term Pk,l accounts for different pressures at
the phase interface. Without loss of generality we may assume

Pk,k = 0. (9.2.5)

Otherwise we replace Pk,l by Pk,l −Pk,k due to the saturation condition (9.2.1). The interfacial velocity
is denoted by V I . Obviously, the equations cannot be written in conservative form. Finally, the fluid
equations are supplemented by an equation of state

pk = pk(ρk, ek) resp. ek = ek(ρk, pk) (9.2.6)

for each of the components.
The evolution of the volume fractions is characterized by the non-conservative equation

∂t αk + V I · ∇αk = Sα,k, k = 1, . . . ,K. (9.2.7)

Due to the saturation condition (9.2.1) we only need K − 1 equations. Without loss of generality we
express αK by the other volume fractions, i.e.,

αK = 1−
K−1∑
k=1

αk, ∇αK = −
K−1∑
k=1

∇αk, Sα,K = −
K−1∑
k=1

Sα,k. (9.2.8)

The source terms Sα,k, Sρ,k, Sρv ,k and SρE,k on the right-hand sides of (9.2.2), (9.2.3), (9.2.4) and
(9.2.7) describe the relaxation process due to mass, momentum, energy transfer and volume fraction
between the different components corresponding to the relaxation of velocity, pressure, temperature and
chemical potentials, ξ ∈ {v, p, T, µ}, i.e.,

Sα,k :=
∑
ξ

Sξα,k, Sαρ,k :=
∑
ξ

Sξαρ,k, Sαρv ,k :=
∑
ξ

Sξαρv ,k, SαρE,k :=
∑
ξ

SξαρE,k. (9.2.9)

These depend on the specific components at hand discussed in Section 9.7.
So far, the model is not yet closed. For this purpose, we have to find closing conditions for the

pressures Pk,l, the interfacial velocity V I and the relaxation terms Sα,k, Sαρ,k, Sαρv ,k and SαρE,k. In
the following sections we will derive appropriate constraints. However, these will not specify a unique
model but some options are still remaining for the choice of the interfacial velocity, the relaxation terms,
the stress tensor and the heat conduction.
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9.2.2 Mixture model

From the non-equilibrium model we can derive the equations for the mixture. For this purpose we
introduce the mixture quantities

p :=

K∑
k=1

αk pk, ρ :=

K∑
k=1

αk ρk, v :=
1

ρ

K∑
k=1

αk ρk vk, (9.2.10)

for pressure, density and velocity. Accordingly, we define the specific internal energy, the specific total
energy and the specific total enthalpy of the mixture as

e :=
1

ρ

K∑
k=1

αk ρk ek, E :=
1

ρ

K∑
k=1

αk ρk Ek, H :=
1

ρ

K∑
k=1

αk ρkHk = E +
p

ρ
(9.2.11)

with Hk := Ek + pk/ρk the total enthalpy of component k. The stress tensor and the heat flux of the
mixture are determined by

T :=

K∑
k=1

αkT k, q :=

K∑
k=1

αkqk. (9.2.12)

In order to ensure conservation of mass, momentum and energy of the mixture the relaxation terms
(9.2.9) have to satisfy the conservation constraints

K∑
k=1

Sξα,k = 0,

K∑
k=1

Sξαρ,k = 0,

K∑
k=1

Sξαρv ,k = 0,

K∑
k=1

SξαρE,k = 0 (9.2.13)

for each relaxation type ξ ∈ {v, p, T, µ}. In addition, we need that the interfacial pressures satisfy

Pl :=

K∑
k=1

Pk,l ≡ P = const ∀l = 1, . . . ,K. (9.2.14)

Then by summation of the single-component fluid equations (9.2.2), (9.2.3), (9.2.4) and employing
the saturation constraint (9.2.1) as well as the conservation constraints (9.2.13) and (9.2.14) we obtain

∂t ρ+∇ · (ρv) = 0, (9.2.15)

∂t (ρv) +∇ · (ρv vT + p I) = ∇ · T − (9.2.16)

∇ ·

(
K∑
k=1

αk ρk (v − vk) (v − vk)T

)
,

∂t (ρE) +∇ · (ρv (E + p/ρ)) = ∇ · (v · T − q)− (9.2.17)

∇ ·

(
K∑
k=1

αk T k (vk − v)

)
−∇ ·

(
K∑
k=1

αk ρk (Hk −H) (vk − v)

)
.

We note that there are contributions corresponding to the slip between the mixture velocity v and the
velocities of the components vk. In the multi-component model of Drew and Passman these terms are
added to the mixture stress tensor and the mixture heat flux, see [13], p. 82-83. In contrast to the
non-equilibrium model, the mixture model is in conservative form if and only if the conditions (9.2.13)
and (9.2.14) hold.

9.2.3 Equilibrium model

If the relaxation processes are much faster than the transport and dissipation effects, then the fluid can
be considered to be at equilibrium. This state is characterized by vanishing relaxation terms, i.e.,

Sα,k = 0, Sαρ,k = 0, Sαρv ,k = 0, SαρE,k = 0. (9.2.18)
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At equilibrium the velocities, pressures and temperatures coincide, i.e.,

v1 = . . . = vK = v , p1 = . . . = pK = p, T1 = . . . = TK = T, (9.2.19)

and the chemical potentials of reacting components are equal. In particular, for the interfacial pressures
and interfacial velocity it holds

Pk,l = p, k 6= l, V I = v . (9.2.20)

Then the mixture model (9.2.15), (9.2.16) and (9.2.17) reduces to the the equilibrium model

∂t ρ+∇ · (ρv) = 0, (9.2.21)

∂t (ρv) +∇ · (ρv vT + p I) = ∇ · T , (9.2.22)

∂t (ρE) +∇ · (ρv (E + p/ρ)) = ∇ · (v · T − q). (9.2.23)

Note that by definition (9.2.10) and (9.2.12) the mixture pressure p, the mixture stress tensor T and the
mixture heat flux q depend on the volume fractions αk. These are determined by the algebraic conditions
(9.2.18) and (9.2.19), e.g., [31, 45].

9.3 Primitive variables

For the verification of some physical and mathematical properties it will be helpful to rewrite the systems
of equations for the non-equilibrium, mixture and the equilibrium model in terms of primitive quantities

9.3.1 Non-equilibrium model

By means of the system (9.2.2), (9.2.3), (9.2.4) and (9.2.7) we derive evolution equations for the density
ρk, the velocity vk and the pressure pk for each component k. Inserting the evolution equation for the
volume fraction (9.2.7) into the continuity equation (9.2.2) we obtain

∂t ρk +
ρk
αk

(vk − V I) · ∇αk + vk · ∇ ρk + ρk∇ · vk =
1

αk
(Sαρ,k − ρkSα,k) . (9.3.1)

From the momentum equation (9.2.3) we deduce with (9.2.2) Cauchy’s equation of motion

∂t vk + (∇vk)vk +
1

ρk
∇ pk +

pk
αkρk

∇αk = (9.3.2)

1

αkρk

(
−

K∑
l=1

Pk,l∇αl +∇ · (αk T k)

)
+

1

αkρk
(Sαρv ,k − Sαρ,kvk) .

Here the gradient of the velocity is defined as ∇vk = (∇ vk,1, . . . ,∇ vk,d)T . Then we immediately obtain
the evolution equation for the kinetic energy uk := v2

k/2

∂t uk + vk · (∇vk vk) +
1

ρk
vk · ∇ pk +

pk
αkρk

vk · ∇αk = (9.3.3)

1

αkρk
vk ·

(
−

K∑
l=1

Pk,l∇αl +∇ · (αk T k)

)
+

1

αkρk
vk · (Sαρv ,k − Sαρ,kvk) .

Since the total energy is composed of the internal energy and the kinetic energy, we derive the evolution
equation for the internal energy ek = Ek−uk from the energy equation (9.2.4), where we employ (9.2.2)
and (9.3.3). Finally we obtain

∂t ek + vk · (∇ ek) =
1

αkρk

K∑
l=1

Pk,l (vk − V I) · ∇αl −
pk
ρk
∇ · vk + (9.3.4)

1

ρk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i −
1

αkρk
∇ · (αkqk) +

1

αkρk
Se,k
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with the relaxation term

Se,k := SαρE,k − vk · Sαρv ,k + Sαρ,k(uk − ek). (9.3.5)

Next we derive the evolution equation for the pressure pk. For this purpose we first note that for any
equation of state (9.2.6) the following relation holds

dpk = (∂pk/∂ρk) dρk + (∂pk/∂ek) dek. (9.3.6)

By means of the continuity equation (9.3.1) and the energy equation (9.3.4) we then derive from (9.3.6)

∂t pk +

K∑
l=1,l 6=k

ρk
αk
C2
k,l(vk − V I) · ∇αl + vk · ∇ pk + ρkc

2
k∇ · vk = (9.3.7)

(∂pk/∂ek)

 1

ρk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i −
1

αkρk
∇ · (αkqk)

+
1

αkρk
Sp,k

with the relaxation term

Sp,k := ρk(∂pk/∂ρk) (Sαρ,k − ρkSα,k) + (∂pk/∂ek)Se,k. (9.3.8)

Here the interfacial sound speed and the phase sound speed are defined as

C2
k,l := −

(
(∂pk/∂ek)Pk,l/ρ

2
k + (∂pk/∂ρk)

)
, c2k := ∂pk/∂ρk + pk/ρ

2
k(∂pk/∂ek). (9.3.9)

9.3.2 Mixture model

Similar to the non-equilibrium model we derive evolution equations for the mixture quantities ρ, v , e
and p defined by (9.2.10) and (9.2.11) from the evolution equations (9.2.15), (9.2.16) and (9.2.17). First
of all, we determine Cauchy’s equation of motion from the momentum equation (9.2.16) where we use
the continuity equation (9.2.15) and the constraint (9.2.14):

∂t v + (∇v)v +
1

ρ
∇ p = (9.3.10)

1

ρ
∇ · T − 1

ρ

K∑
l=1

Pl∇αl −
1

ρ
∇ ·

K∑
k=1

αkρk(vk − v)(vk − v)T .

Since definition (9.2.11) of the mixture energy e implies that ρe =
∑K
k=1 αkρkek, we obtain by (9.3.4)

and (9.2.2) the evolution equation for the internal energy

∂t e+ v · ∇ e+
1

ρ

K∑
k=1

αkpk∇ · vk =
1

ρ

K∑
l,k=1

Pk,l (vk − V I) · ∇αl

−1

ρ

K∑
k=1

αkρkek(vk − v) +
1

ρ

K∑
k=1

d∑
i,l=1

∂ vk,l
∂ xi

αk(T k)l,i −
1

ρ
∇ · q (9.3.11)

−1

ρ

K∑
k=1

(vk · Sαρv ,k − Sαρ,kuk).

Finally we determine the evolution equation for the mixture pressure p. Applying the time derivative to
the definition (9.2.10) of p and using (9.2.7) and (9.3.7) we obtain

∂t p+ v · ∇ p+ ρc2∇ · v =

−
K∑
k=1

ρk

K∑
l=1,l 6=k

C2
k,l(vk − V I) · ∇αl −

K∑
k=1

αk (v · ∇ (pk − p)) (9.3.12)

+(vk − v) · ∇ pk −
K∑
k=1

αkρkc
2
k∇ · (vk − v) +

K∑
k=1

(
pkSα,k +

1

ρk
Sp,k

)

+

K∑
k=1

1

ρk
(∂pk/∂ek)

αk d∑
i,l=1

∂ vk,l
∂ xi

(T k)i,l −∇ · (αkqk)

 .
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Here the sound speed of the mixture is defined as

c2 :=
1

ρ

K∑
k=1

αk ρk c
2
k. (9.3.13)

9.3.3 Equilibrium model

In case of the equilibrium model the evolution equations for the primitive variables can be directly
determined from those of the mixture model where we make use of the equilibrium assumptions (9.2.18),
(9.2.19) and (9.2.20) and the saturation condition (9.2.1). Then Cauchy’s equation of motion reads

∂t v + (∇v)v +
1

ρ
∇ p =

1

ρ
∇ · T . (9.3.14)

The energy equation reduces to

∂t e+ v · ∇ e+
p

ρ
∇ · v =

1

ρ

d∑
i,l=1

∂ vl
∂ xi

(T )l,i −
1

ρ
∇ · q. (9.3.15)

Finally the pressure equation becomes

∂t p + v · ∇ p+ ρc2∇ · v = (9.3.16)

K∑
k=1

1

ρk
(∂pk/∂ek)

αk d∑
i,l=1

∂ vl
∂ xi

(T k)i,l −∇ · (αkqk)

 .

9.4 Mathematical properties: hyperbolicity and sub-characteristic
condition

Neglecting viscosity and heat conduction as well as relaxation processes in the fluid equations introduced
in Section 9.2 the models reduce to first order systems describing transport effects only. Therefore these
systems should be hyperbolic. This ensures that all wave speeds are finite and the system may be locally
decoupled. From a mathematical point of view, this property is helpful in the construction of Riemann
solvers. Therefore we determine the eigenvalues and eigenvectors corresponding to the non-equilibrium
model. From a numerical point of view the relation between the eigenvalues of the non-equilibrium and
the equilibrium model are of special interest. We conclude this section with a note on the symmetrization
of the hyperbolic system.

9.4.1 Non-equilibrium model

Starting point are the evolution equations for the primitive variables (9.2.7), (9.3.1) , (9.3.2) and (9.3.7).
The corresponding first order system then reads

∂t αk +

d∑
i=1

VI,i
∂ αk
∂ xi

= 0 (9.4.1)

∂t ρk +

d∑
i=1

(
ρk
αk

(vk,i − VI,i)
∂ αk
∂ xi

+ vk,i
∂ ρk
∂ xi

+ ρk
∂ vk,i
∂ xi

)
= 0, (9.4.2)

∂t vk +

d∑
i=1

vk,i ∂ vk
∂ xi

+

K∑
l=1,l 6=k

1

αk ρk
(Pk,l − pk) ei,d

∂ αl
∂ xi

+
1

ρk
ei,d

∂ pk
∂ xi

 = 0, (9.4.3)

∂t pk +

d∑
i=1

vk,i ∂ pk
∂ xi

+

K∑
l=1,l 6=k

ρk
αk

C2
k,l (vk,i − VI,i)

∂ αl
∂ xi

+ ρk c
2
k

∂ vk,i
∂ xi

 = 0, (9.4.4)
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where ei,d ∈ Rd denotes the unit vector in the ith coordinate direction. In order to characterize hy-
perbolicity of this system we consider its projection onto normal direction ξ := x · n for arbitrary unit
direction n ∈ Rd. Introducing the vector of primitive variables

w = (α1, . . . , αK−1,w
T
1 , . . . ,w

T
K)T , wk = (ρk,v

T
k , pk)T (9.4.5)

the projected system can be written in quasi-conservative form as

∂tw +Bn(w)
∂w

∂ ξ
= 0. (9.4.6)

The matrix Bn is determined by the block matrix

Bn :=

d∑
i=1

Bi ni =


VI,n IK−1

A1,n B1,n

...
. . .

AK,n BK,n

 , (9.4.7)

with the blocks defined as

Ak,n :=


ρk
αk

(vk,n − VI,n) (eTk,K−1(1− δk,K)− 1TK−1 δk,K)

nβTk
ρk
αk

(vk,n − VI,n)γTk

 , (9.4.8)

Bk,n :=


vk,n ρk n

T 0

0d vk,n Id
1
ρk
n

0 ρk c
2
kn

T vk,n

 . (9.4.9)

Here ek,K−1 is the kth unit vector in RK−1. In particular, we make the convention eK,K−1 = 0.
Furthermore, Id and IK−1 are the unit matrices in Rd×d and R(K−1)×(K−1), respectively, and 0d and
1K−1 are vectors in Rd and R(K−1) with value 0 or 1, respectively. The vectors βk and γk are defined
by their components l = 1, . . . ,K − 1 as

βk,l :=
1

αkρk
((Pk,l − pk)(1− δk,l)− (Pk,K − pk)(1− δk,K)) , (9.4.10)

γk,l := C2
k,l(1− δk,l)− C2

k,K(1− δk,K) (9.4.11)

with δk,l the Kronecker symbol. The normal components of the velocities and the interfacial velocity are
defined as

vk,n := vk · n, VI,n := V I · n. (9.4.12)

Obviously, the eigenvalues of the matrix (9.4.7) can now be easily computed where we employ the block
structure:

det(Bn − λ I) = det(Vn,I IK−1 − λ IK−1)

K∏
k=1

det(Bk,n − λ Id+2) = 0 (9.4.13)

Since the matrices Bk,n coincide with those in case of a single-phase fluid, we then compute

det(Bk,n − λ Id+2) = (vk,n − λ)d ((vk,n − λ)2 − c2k) (9.4.14)

Hence we obtain the following eigenvalues:

λI,k = VI,n, k = 1, . . . ,K − 1 (9.4.15)

λk,i = vk,n, k = 1, . . . ,K, i = 1, . . . , d (9.4.16)

λk,± = vk,n ± ck, k = 1, . . . ,K. (9.4.17)
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Motivated by the block structure of the matrix Bn we make the following ansatz for computing the
corresponding left and right eigenvectors

Rn :=


R0
I,n

R1
I,n R1,n

...
. . .

RK
I,n RK,n

 , Ln :=


L0
I,n

L1
I,n L1,n

...
. . .

LKI,n LK,n

 (9.4.18)

with blocks

R0
I,n := κ0IK−1, κ0 ∈ R, L0

I,n ∈ R(K−1)×(K−1),

Rk
I,n,L

k
I,n ∈ R(d+2)×(K−1), Rk,n,Lk,n ∈ R(d+2)×(d+2), k = 1, . . . ,K.

Here the matrices Rn and Ln are composed of the right and left eigenvectors in their columns and
rows, respectively. To determine the blocks Rk,n we note that λk,i and λk,± are also eigenvalues of
the matrix Bk,n and the eigenvalue problem for Bn decouples into eigenvalue problems for the matrices
Bk,n corresponding to a single component. In a first step, we therefore compute the eigenvectors to these
sub-problems where we first determine an orthonormal basis {n, t1, . . . , td−1} of Rd such that ti ·tj = δi,j
and ti · n = 0. Then the right and left eigenvectors to the eigenvalues (9.4.16) and (9.4.17) are

rk,d = (1,0Td , 0)T , rk,i = (0, tTi , 0)T , rk,± = (1,±ck/ρknT , c2k)T , (9.4.19)

lk,d = (1,0Td ,−c−2
k )T , lk,i = (0, tTi , 0)T , lk,± = 0.5c−2

k (1,±ckρknT , 1)T (9.4.20)

for i = 1, . . . , d− 1. Thus there exists an eigenvalue decomposition of the matrix Bk,n, i.e.,

Lk,nBk,nRk,n = Λk,n, (9.4.21)

where Lk,n and Rk,n are defined by the left and right eigenvectors and Λk,n is a diagonal matrix with
eigenvalues on the diagonal

Rk,n :=

 1 0 . . . 0 1 1
−ck/ρkn t1 . . . td−1 0d ck/ρkn

c2k 0 . . . 0 0 c2k

 , (9.4.22)

Lk,n :=
1

2c2k

 0 0 . . . 0 2c2k 0
−ckρkn 2c2kt1 . . . 2c2ktd−1 0d ckρkn

1 0 . . . 0 −2 1

T

, (9.4.23)

Λk,n :=

vk,n − ck 0Td 0
0d vk,nId 0d
0 0Td vk,n + ck

 . (9.4.24)

To calculate the eigenvectors to the multiple eigenvalue λI,i we employ the knowledge of the matrices
Rk,n. According to the block structure of the matrix Rn the matrix of corresponding right eigenvectors
needs to satisfy

(Bn − λI,iI)Rn = 0⇔ (Bk,n − λI,iId+2)Rk
I,n = −Ak,nR

0
I,n = −κ0Ak,n

for k = 1, . . . ,K. Assuming that the eigenvalue λI,i does not coincide with one of the eigenvalues λk,i and

λk,±, then Bk,n − λI,iId+2 is regular and there exists a unique solution for Rk
I,n. For its representation

we introduce

κ0 :=

K∏
l=1

αlσl, κk :=

K∏
l=1,l 6=k

αlσl, k = 1, . . . ,K

with δnk := vk,n − VI,n and σk := (δnk )2 − c2k. Then we obtain

R0
I,n := κ0 IK−1, (9.4.25)

Rk
I,n := κk ρk

 αkc
2
kβ

T
k−(δnk )2γTk

−n(αkβ
T
k−γTk )δnk /ρk

−σk(eTi,K−1(1− δk,K)− 1TK−1δk,K) + αkβ
T
k−γTk

 (9.4.26)



212 CHAPTER 9. CLOSURE CONDITIONS FOR MULTI-COMPONENT MODELS

Since αk ∈ (0, 1) according to (9.2.1), these matrices are regular, i.e., the columns are linearly indepen-
dent, if and only if

σk 6= 0 ∀ k = 1, . . . ,K, (9.4.27)

holds. This condition is referred to as the non-resonance condition, see [8] in case of a two-velocity-two-
pressure model in two-phase flows. Thus the corresponding left eigenvectors are determined by the rows
of the inverse of Rn. Since LnRn = I, the blocks turn out to be

Lk,n = R−1
k,n, k = 1, . . . ,K, (9.4.28)

L0
I,n = (R0

I,n)−1 = κ−1
0 IK−1, (9.4.29)

LKI,n = −Lk,nRK
I,n(R0

I,n)−1 = −κ−1
0 Lk,nR

K
I,n, k = 1, . . . ,K, (9.4.30)

and we obtain for the right eigenvectors

rI,l := κ0

(
(r0
I,l)

T , (r1
I,l)

T , . . . , (rKI,l)
T
)T
, l = 1, . . . ,K − 1. (9.4.31)

where r0
I,l = el,K−1 and rkI,l = (xk,l,y

T
k,l, zk,l)

T is determined by the components

zk,l = ρk
(
αkc

2
kβk,l−(δnk )2γk,l

)
/(αkσk), (9.4.32)

yk,l = −n (αkβk,l−γk,l) δnk /(αkσk), (9.4.33)

xk,l = (−σk(δk,l(1− δk,K)− δk,K) + αkβk,l−γk,l) ρk/(αkσk). (9.4.34)

These are well-defined also in case of αk = 0 or σk = 0. Similar to (9.4.31) the left eigenvectors are then
given by

lI,l :=
(

(l1I,0)T , (l1I,l)
T , . . . , (lKI,l)

T
)T

, l = 1, . . . ,K − 1. (9.4.35)

with

l0I,l =

K∏
k=1

(αkσk)−1 el,K−1, lkI,l =
ρk

2c2kαkσk
(alk, 0, . . . , 0, b

l
k, c

l
k)T

and

alk := −ck(αkβk,l−γk,l)δnk + σk(δk,l(1− δk,K)− δk,K)− αkβk,l+γk,l,
blk := 2c2k((δnk )2γk,l−αkc2kβk,l)− 2σk(δk,l(1− δk,K)− δk,K)

+2(αkβk,l−γk,l),
clk := ck(αkβk,l − γk,l)δnk + σk(δk,l(1− δk,K)− δk,K)− αkβk,l+γk,l.

After having determined the eigenvalues and the corresponding linearly independent right and left
eigenvectors we finally end up with the eigenvalue decomposition of the matrix Bn

LnBnRn = Λn (9.4.36)

with the block-diagonal matrix Λn = diag(Λ0,n,Λ1,n, . . . ,ΛK,n) and Λ0,n := VI,nIK−1. To verify

this decomposition we make use of the identity Bk,nR
k
I,n = Rk

I,nΛ0,n − Ak,nR
0
I,n. To conclude the

investigation on the hyperbolicity we summarize the findings in the following theorem.

Theorem 9.4.1. (Hyperbolicity) Let the interfacial pressures satisfy the conditions (9.2.5) and (9.2.14).
Let the interfacial velocity V I be chosen such that for arbitrary normal direction n the normal interfacial
velocity vI,n does not coincide with one of the eigenvalues λk,i and λk,± of Bn, i.e., the non-resonance
condition (9.4.27) is satisfied. Then the first order system (9.4.1), (9.4.2), (9.4.3) and (9.4.4) is hyper-
bolic, i.e., (i) the eigenvalues of the matrix (9.4.7) are all real but not necessarily distinct and (ii) there
exists a system of linearly independent left and right eigenvectors with (9.4.36).

This theorem holds true also for the non-equilibrium model (9.2.2), (9.2.3), (9.2.4) and (9.2.7) ne-
glecting viscosity and heat conduction as well as relaxation processes, because eigenvalues are invariant
under a regular, bijective change of variables and the corresponding eigenvectors can be determined by
scaling of the original eigenvectors by the Jacobian of the transformation and its inverse, respectively.

Finally we want to remark that the eigenvectors coincide with the one given in [3, 44] in case of a
7-equation model in one space dimension (K = 2, d = 1).
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9.4.2 Equilibrium model

Similar to the non-equilibrium case we can determine the eigenvalues of the equilibrium model. A starting
point is the evolution equations (9.2.21), (9.2.22) and (9.2.23). The corresponding first order system then
reads

∂t ρ+

d∑
i=1

(
vi
∂ ρ

∂ xi
+ ρ

∂ vi
∂ xi

)
= 0, (9.4.37)

∂t v +

d∑
i=1

(
vi
∂ v

∂ xi
+

1

ρ
ei

∂ p

∂ xi

)
= 0, (9.4.38)

∂t p+

d∑
i=1

(
vi

∂ p

∂ xi
+ ρ c2

∂ vi
∂ xi

)
= 0, (9.4.39)

Again we consider its projection onto normal direction ξ := x · n for arbitrary unit direction n ∈ Rd
that can be written in quasi-conservative form

∂tw +Bn(w)
∂w

∂ ξ
= 0 (9.4.40)

with the vector of primitive variables w = (ρ,vT , p)T and matrix

Bn :=


vn ρnT 0

0d vn Id
1
ρ n

0 ρ c2nT vn

 . (9.4.41)

The normal component of the velocity is defined as

vn := v · n. (9.4.42)

The eigenvalues of Bn are then characterized by the roots of the characteristic polynomial

det(Bn − λ Id+2) = (vn − λ)d ((vn − λ)2 − c2).

Hence we obtain the following eigenvalues:

λ± = vn ± c, λi = vn, i = 1, . . . , d. (9.4.43)

With regard to a stable numerical discretization of the non-equilibrium model in the limit of vanishing
relaxation terms, the so-called sub-characteristic condition, see Whitham [43] and Liu [28], has to hold
true. For this purpose we evaluate the eigenvalues (9.4.15), (9.4.16) and (9.4.17) with respect to an
equilibrium state, i.e.,(9.2.18), (9.2.19) and (9.2.20) hold,

λI,k = V I,n = vI · n = v · n = vn, k = 1, . . . ,K − 1 (9.4.44)

λk,i = vk,n = vk · n = v · n = vn, k = 1, . . . ,K, i = 1, . . . , d (9.4.45)

λk,± = vk,n ± ck = vn ± ck, k = 1, . . . ,K. (9.4.46)

Here the bar indicates evaluation with respect to an equilibrium state. Then by definition (9.3.13) and
(9.2.10) of the mixture sound speed and the mixture density we conclude from the positivity of the
densities ρk and the volume fractions αk

c ∈
[

min
k=1,...,K

ck, max
k=1,...,K

ck

]
=: [cmin, cmax] .

A straight forward estimate gives

min
k=1,...,K

λk,+ ≤ λ+ ≤ max
k=1,...,K

λk,+,

min
k=1,...,K

λk,− ≤ λ− ≤ max
k=1,...,K

λk,−.
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In the second estimate we use that

−c ∈
[
− max
k=1,...,K

ck,− min
k=1,...,K

ck,

]
=

[
min

k=1,...,K
−ck, max

k=1,...,K
−ck

]
.

This immediately implies that the following theorem holds true.

Theorem 9.4.2. (Sub-characteristic condition) Let αk, ρk and ck, k = 1, . . . ,K, be non-negative. Then
the eigenvalues (9.4.15), (9.4.16), (9.4.17) and (9.4.44), (9.4.45), (9.4.46) of the non-equilibrium model
and the equilibrium model, respectively, evaluated with respect to an equilibrium state, i.e., (9.2.18),
(9.2.19) and (9.2.20) hold, satisfy the sub-characteristic condition

λi ∈
[
min

(
min
k
λI,k, min

k,i
λk,i

)
,max

(
max
k

λI,k, max
k,i

λk,i

)]
= {vn},

λ± ∈
[
min
k
λk,±,max

k
λk,±

]
.

Note that similar results have been proven recently by Flatten and Lund [15] for a hierarchy of
two-phase relaxation models.

9.4.3 Symmetrization

From Kato’s theorem [26] it follows that there exists a local-in-time smooth solution to the Cauchy
problem of the projected system (9.4.6), if the problem is symmetrizable, i.e., there exists a symmetric
positive definite matrix P n = P n(w) such that the matrix P nBn is symmetric. To construct such a
symmetrizer we first observe that the matrix

P k =


1 0Td −1/c2k

0d 0.5(ρk/ck)2 Id 0d

−1/c2k 0Td 1.5/c4k

 .

is a symmetrizer of the phasic problem

∂twk +Bk,n(wk)
∂wk

∂ ξ
= 0.

We then make the following ansatz for a symmetrizer of (9.4.6):

P n =


K Pα,nIK−1 P

T
1,α,n · · · P

T
K,α,n

P 1,α,n P 1

...
. . .

PK,α,n PK

 ,

where
P k,α,n = LTk,n (Λk,n − VI,nId+2)

−1
Rk,nP kAk,n

with Ak,n, Rk,n, Lk,n and Λk,n defined by (9.4.8), (9.4.22), (9.4.23) and (9.4.24). Note that P k,α,n is
well-defined if the non-resonance condition (9.4.27) holds true. Obviously, P n is symmetric. It turns
out that P nBn is symmetric whenever P T

k,α,nAk,n is symmetric. The latter holds true provided that

P T
k,nRk,n = LTk,n. This condition is only satisfied in the one-dimensional case, i.e., d = 1. It remains to

verify that P n is positive definite. For this purpose we have to verify for any a = (aTα ,a
T
1 , . . . ,a

T
K)T 6= 0

with aα ∈ RK−1, ak ∈ Rd+2, k = 1, . . . ,K that aTP na is positive. A straightforward calculus yields

aTP na = Pα,n

K−1∑
k=1

K−1∑
i=1

(
aα,i + (P T

k,α,nak)i/Pα,n

)2

+

K∑
k=1

P−1
α,na

T
kQak

with Q := Pα,nP k−P k,α,nP
T
k,α,n. Since P k is symmetric positive definite, the Cholesky decomposition

P k = CkC
T
k exists. Furthermore, the matrix Ek := C−1

k P
T
k,α,nP k,α,nC

T
k is symmetric and, thus, there
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exists an orthogonal matrix T k such that T kEkT
T
k = Dk where Dk is a diagonal matrix with the

eigenvalues µki of Ek as entries. Then we obtain

aTkQak = bTk (Pα,nId+2 −Dk)bk =

d+2∑
i=1

b2k,i
(
Pα,n − µki

)
with bk := T TkC

T
k ak. Choosing Pα,n > maxi,k

{
|µki |

}
> 0 the term aTkQak is non-negative and is

positive for ak 6= 0. Thus, we have finally verified that in the one-dimensional case the matrix P n is
a symmetrizer of (9.4.6) provided the non-resonance condition (9.4.27) holds true. This generalizes the
result in [8] for a two-phase model.

9.5 Frame invariance, objectivity and Galilean transformation

Since the results of an experiment should be independent of the observer’s position in the Euclidean
space, a physical meaningful model should reflect this behavior. This property is referred to as frame
indifference and objectivity in the literature, cf. [13], p. 31 ff, and [29]: performing the general Euclidean
change of frame

t∗ = t+ a, x∗ = x∗0(t) +Q(t)(x− x0), (9.5.1)

with constant values a and x0 and Q an orthogonal matrix, i.e.,

QQT = QQT = I, (9.5.2)

then a scalar f , a vector u and a tensor T are called objective, if

f∗(t∗,x∗) = f(t, x), u∗(t∗,x∗) = Q(t)u(t, x), T ∗(t∗,x∗) = Q(t)T (t, x)QT (t). (9.5.3)

To rewrite the fluid equations in terms of the general Euclidean change of frame we introduce the change
of variables

f(t,x) = f(t∗ − a,x0 +QT (t)(x∗ − x∗0(t)), (9.5.4)

u(t,x) = u(t∗ − a,x0 +QT (t)(x∗ − x∗0(t)), (9.5.5)

T (t,x) = T (t∗ − a,x0 +QT (t)(x∗ − x∗0(t)). (9.5.6)

It is well-known that the fluid equations for a single phase are not invariant under a general Euclidean
frame of change. For instance, Coriolis forces enter in case of a time-dependent rotation. However, the
fluid equations are invariant under a Galilean transformation where we choose

ẋ0 = 0, Q̇ = 0 equiv. Q = const, x∗0(t) = c0 + c1t, c1, c2 = const (9.5.7)

in (9.5.1). For this transformation the velocity vector is still not objective but the acceleration and the
rotation tensor are objective.

In the following we will confine ourselves to a Galilean transformation and derive constraints for the
source terms Sα,k, Sαρ,k, Sαρv,k and SαρE,k. For this purpose we apply a Galilean frame of change to
the fluid equations (9.2.2), (9.2.3), (9.2.4) and (9.2.7). A detailed derivation can be found in [34]. Here
we will confine ourselves to the main results. First of all, we derive from the evolution equation (9.2.7)
of the volume fractions assuming that the volume fractions are objective, i.e., α∗k = αk,

∂t∗ α
∗
k + V ∗I · ∇x∗ α∗k = S∗α∗,k, k = 1, . . . ,K, (9.5.8)

where the interfacial velocity and the source term are given as

V ∗I := ẋ∗0 +QV I + Q̇(x− x0) = ẋ∗0 +QV I = c1 +QV I , (9.5.9)

S∗α∗,k := Sα,k. (9.5.10)

Next we consider the evolution of mass. Assuming that the mass is objective, i.e., ρ∗k = ρk, we derive
from (9.2.3)

∂t∗ (α∗k ρ
∗
k) +∇x∗ · (α∗k ρ∗k v∗k) = S∗α∗ρ∗,k, (9.5.11)
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with source term
S∗α∗ρ∗,k := Sαρ,k. (9.5.12)

Note that (9.5.8) and (9.5.11) hold true for a general Euclidean change of frame (9.5.1). The transfor-
mation of the momentum equation (9.2.3) is cumbersome. It significantly simplifies in case of a Galilean
transformation. Starting from (9.2.3) one has to incorporate (9.5.11). Assuming that the pressures pk
and Pk,l and the stress tensors T k are objective, i.e., p∗k = pk, P ∗k,l = Pk,l and T ∗k = QT kQ

T , we obtain

∂t∗ (α∗k ρ
∗
k v
∗
k) +∇x∗ · (α∗k ρ∗k vk∗ v∗k

T + α∗k p
∗
k I) = (9.5.13)

−
K∑
l=1

P ∗k,l∇x∗ α∗l +∇x∗ · (α∗k T
∗
k) + S∗α∗ρ∗v∗,k,

with source term
S∗α∗ρ∗v∗,k := Sαρ,k ẋ

∗
0 +QSαρv ,k. (9.5.14)

Finally we apply the Galilean transformation to the energy equation (9.2.4). Since the velocity is not an
objective vector, the kinetic energy in the Galilean frame becomes

e∗kin,k = ekin,k + ẋ∗0 · v∗k −
1

2
(ẋ∗0)2, ekin,k :=

1

2
v2
k. (9.5.15)

Thus the total energy and the total enthalpy are

Ek := ek +
1

2
v2
k = E∗k − ẋ∗0 · v∗k +

1

2
(ẋ∗0)2, E∗k := e∗k +

1

2
(v∗k)2, (9.5.16)

Hk := Ek +
pk
ρk

= H∗k − ẋ∗0 · v∗k +
1

2
(ẋ∗0)2, H∗k := E∗k +

p∗k
ρ∗k
, (9.5.17)

where we also assume objectivity of the internal energy, i.e., e∗k = ek. Again, after some tedious work
of calculus using (9.5.2) and incorporating (9.5.11), (9.5.13), the energy equation (9.2.4) in the Galilean
frame becomes

∂t∗ (α∗k ρ
∗
k E
∗
k) +∇x∗ · (α∗k ρ∗k v∗k (E∗k + p∗k/ρ

∗
k)) = (9.5.18)

−
K∑
l=1

P ∗k,l V
∗
I · ∇x∗ α∗l +∇x∗ · (α∗k (v∗k · T

∗
k − q∗k)) + S∗α∗ρ∗E∗,k,

with source term

S∗α∗ρ∗E∗,k := SαρE,k +QSαρv ,k · ẋ∗0 +
1

2
(ẋ∗0)2Sαρ,k. (9.5.19)

Here we again assume objectivity of the pressure Pk,l and the heat flux qk, i.e., P ∗k,l = Pk,l and q∗k = Qqk.
Finally, we conclude with summarizing our findings in the following

Theorem 9.5.1. (Galilean Invariance) Let the following assumptions hold true

1. αk, ρk, pk, ek and Pk,l are objective scalars,

2. qk, T k are objective vectors and tensors, respectively,

3. all material parameters, e.g., the viscosity coefficient µk, the heat conduction coefficient λk intro-
duced in Section 9.6.3.1, are objective,

4. the source terms (9.5.10), (9.5.12), (9.5.14), (9.5.19) are invariant under a Galilean transforma-
tion, i.e.,

S∗α∗,k = Sα∗,k, S
∗
(αρ)∗,k = S(αρ)∗,k, S

∗
(αρv)∗,k = S(αρv)∗,k, S

∗
(αρE)∗,k = S(αρE)∗,k. (9.5.20)

Then the non-equilibrium model (9.2.2), (9.2.3), (9.2.4) and (9.2.7) with velocity v∗k = ẋ∗0 + Qvk,
interfacial velocity velocity ẋ∗0 + QV I and total energy (9.5.16) is Galilean invariant. This also holds
true for the system without the source term terms as well as for the mixture model and the equilibrium
model because the latter are derived from the non-equilibrium model by summation.
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9.6 Thermodynamical properties: 2nd law of thermodynamics

From a physical point of view, a model is admissible if it is in agreement with the principles of ther-
modynamics. For this purpose we first derive the entropy law for the non-equilibrium model. Then we
determine the entropy production terms of the mixture. To be consistent with the 2nd law of thermody-
namics we have to check the sign of the entropy production terms. This will provide us with admissibility
criteria for the interfacial pressures and velocity as well as the relaxation terms.

9.6.1 Entropy

In order to investigate thermodynamical properties of the non-equilibrium model (9.2.2), (9.2.3), (9.2.4)
and (9.2.7), we assume that the entropy of each component satisfies

dek = Tkdsk − pkdτk, (9.6.1)

where τk := 1/ρk is the specific volume of component k. Thus the pressure and the temperature are the
partial derivatives of ek(τk, sk) that are assumed to be positive, i.e.,

pk(τk, sk) = −∂ek
∂τk

(τk, sk) ≥ 0, Tk(τk, sk) =
∂ek
∂sk

(τk, sk) ≥ 0.

Furthermore, to ensure thermodynamical stability we assume that the Hessian of ek is a convex function
with respect to τk and sk, i.e.,

∂2ek
∂2τk

(τk, sk) ≥ 0,
∂2ek
∂2sk

(τk, sk) ≥ 0,

∂2ek
∂2τk

(τk, sk)
∂2ek
∂2sk

(τk, sk) ≥
(

∂2ek
∂τk∂sk

(τk, sk)

)2

.

Finally, the third law of thermodynamics implies

τk ≥ 0, sk ≥ 0.

Assuming that pk and Tk are strictly positive, then ek becomes a monotone function in τk and sk and
we may change variables, i.e., sk = sk(τk, ek) satisfying

Tkdsk = dek + pkdτk (9.6.2)

with partial derivatives
∂sk
∂τk

(τk, ek) =
pk
Tk

> 0,
∂sk
∂ek

(τk, ek) =
1

Tk
> 0. (9.6.3)

It is well-known that sk = sk(τk, ek) is a concave function, i.e., the Hessian is negative-definite

∂2sk
∂2τk

(τk, ek) ≤ 0,
∂2sk
∂2ek

(τk, ek) ≤ 0, (9.6.4)

∂2sk
∂2τk

(τk, ek)
∂2sk
∂2ek

(τk, ek) ≥
(

∂2ek
∂τk∂ek

(τk, ek)

)2

,

if and only if ek(τk, sk) is a convex function, i.e., thermodynamic stability holds.

9.6.2 Entropy equation

In order to derive the entropy equation we rewrite (9.6.2) as

Tkdsk = dek −
pk
ρ2
k

dρk. (9.6.5)
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By means of the evolution equations (9.3.1) and (9.3.4) for the density and the internal energy we then
deduce the entropy law

∂t sk + vk · ∇ sk =
1

αkρkTk

(
K∑
l=1

Pk,l (vk − V I) · ∇αl+pk(vk − V I) · ∇αk

+ αk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i −∇ · (αkqk) + Ss,k

 (9.6.6)

with the relaxation term
Ss,k := Se,k −

pk
ρk
Sαρ,k + pkSα,k. (9.6.7)

For the volume specific entropy we then obtain together with (9.2.2)

∂t (αkρksk) +∇ · (αkρkskvk) +∇ · (
1

Tk
αkqk) =

1

Tk

(
K∑
l=1

Pk,l (vk − V I) · ∇αl

+pk(vk − V I) · ∇αk + αk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i − αk
1

Tk
qk · ∇Tk

+ Sαρs,k (9.6.8)

with the relaxation term

Sαρs,k :=
1

Tk
Ss,k + skSαρ,k. (9.6.9)

Introducing the entropy of the components of the mixture

ρs :=

K∑
k=1

αkρksk (9.6.10)

we finally obtain with (9.2.12) the entropy law of the mixture

∂t (ρs) +∇ ·

(
K∑
k=1

αkρkskvk

)
+∇ ·

(
K∑
k=1

1

Tk
αkqk

)
= (9.6.11)

K∑
k=1

(αkΣk + αk∆k + Πk + Sαρs,k),

where the production terms are defined as

Πk :=
1

Tk

(
K∑
l=1

Pk,l (vk − V I) · ∇αl + pk(vk − V I) · ∇αk

)
, (9.6.12)

Σk :=
1

Tk

d∑
i,l=1

∂ vk,l
∂ xi

(T k)l,i, (9.6.13)

∆k := − 1

T 2
k

qk · ∇Tk. (9.6.14)

Note that the total entropy of a homogeneous mixture is determined by the sum of ρs and the non-
negative mixture entropy, [32], p. 320. We discuss the mixture entropy in the context of the relaxation
terms for chemical potentials for a three-component mixture, see Section 9.7.3.2.

9.6.3 Entropy production

According to the 2nd law of thermodynamics the production terms (9.6.12), (9.6.13) and (9.6.14) have
to be non-negative. In the subsequent sections we will derive sufficient conditions that ensure thermo-
dynamical compatibility.
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9.6.3.1 Entropy production due to viscosity and heat conduction

In order to verify the physically admissible sign of the entropy production term Σk we have to specify
the viscous stress tensor T k for each component. For an isotropic Newtonian fluid the stress tensor reads

T k = µk

(
∇vk +∇vkT −

2

3
(∇ · vk)I

)
, (9.6.15)

where µk denotes the viscosity coefficient of component k. Thus the components of this symmetric tensor
are

(T k)l,i = µk

∂ vk,l
∂ xi

+
∂ vk,i
∂ xl

− 2

3

d∑
j=1

∂ vk,j
∂ xj

δl,i

 = (T k)i,l.

Then we compute for the entropy production term (9.6.13)

Tk
µk

Σk = 2

d∑
i=1

i−1∑
l=1

(
∂ vk,l
∂ xi

+
∂ vk,i
∂ xl

)2

+
2

3
Γ

with

Γ :=

d∑
i=1

2

(
∂ vk,i
∂ xi

)2

−
d∑

j=1,j 6=i

∂ vk,j
∂ xj

∂ vk,i
∂ xi



=


2
(
∂ vk,1
∂ x1

)2

, d = 1(
∂ vk,1
∂ x1

)2

+
(
∂ vk,2
∂ x2

)2

+
(
∂ vk,1
∂ x1

− ∂ vk,2
∂ x2

)2

, d = 2(
∂ vk,1
∂ x1

− ∂ vk,2
∂ x2

)2

+
(
∂ vk,2
∂ x2

− ∂ vk,3
∂ x3

)2

+
(
∂ vk,1
∂ x1

− ∂ vk,3
∂ x3

)2

, d = 3

.

Obviously, the following theorem holds true.

Theorem 9.6.1. (Entropy production due to viscosity) The viscous stress tensors are determined by
(9.6.15). Let the temperatures Tk and the viscosity coefficients µk, k = 1, . . . ,K, be non-negative. Then
the production terms (9.6.13) are non-negative. In addition, assuming the saturation condition (9.2.1),

then the entropy production due to viscosity
∑K
k=1 αkΣk is non-negative.

The heat fluxes are modeled by Fourier’s law of heat conduction for a fluid with isotropic material
property

qk = −λk∇Tk, (9.6.16)

where λk denotes the heat conduction coefficient of component k.

Then the entropy production term (9.6.14) reads

∆k =
1

T 2
k

λk∇Tk · ∇Tk.

From this we directly conclude

Theorem 9.6.2. (Entropy production due to heat conduction) The heat fluxes are determined by (9.6.16).
Let the temperatures Tk and the heat conduction coefficients λk, k = 1, . . . ,K, be non-negative. Then
the production terms (9.6.14) are non-negative. In addition, assuming the saturation condition (9.2.1),

the entropy production due to heat conduction
∑K
k=1 αk∆k is non-negative.

Note that Theorems 9.6.1 and 9.6.2 are counterparts of the results of Guillemaud [20] in case of a
two-component model.
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9.6.3.2 Interfacial velocity and pressure

To investigate the admissibility of the production terms Πk we first make use of the assumptions (9.2.5)
and (9.2.14) for the interfacial pressures. Then these terms become

Πk =
1

Tk

K∑
l=1,l 6=k

(Pk,l − pk) (vk − V I) · ∇αl.

Obviously, we cannot control the sign of Πk. According to the conservation constraints (9.2.14) all Pk,l,
k 6= l, are coupled. Therefore we determine the interfacial pressures Pk,l and the interfacial velocity V I

such that the sum Π :=
∑K
k=1 Πk vanishes. For this purpose we substitute ∇αK by the other gradients

using (9.2.8). According to the saturation condition (9.2.1) the gradients ∇αk, k = 1, . . . ,K − 1, are
linearly independent. Thus rearranging the terms in Π with respect to the K − 1 gradients of αk the
coefficients in front of these gradients must be zero when Π vanishes. This yields the following K − 1
conditions

K−1∑
k=1,k 6=l

1

Tk
((Pk,l − pk)− (Pk,K − pk)) (vk − V I) +

1

TK
(PK,l − pK)(vK − V I) = 0 (9.6.17)

for l = 1, . . . ,K − 1. Next we assume that the interfacial velocity is a convex combination of the single
component velocities vk, i.e.,

V I =

K∑
k=1

βkvk, βk ∈ [0, 1],

K∑
k=1

βk = 1. (9.6.18)

This is motivated by Gallouët et al. [16] and Hérard [23] for a two-phase and a three-phase model,
respectively. Then we may rewrite the velocity differences in (9.6.17) as

vK − V I =

k−1∑
i=1

i∑
j=1

(−βj) (vi − vi+1) +

K−1∑
i=k

K∑
j=i+1

βj (vi − vi+1).

Rearranging (9.6.17) in terms of the independent differences vi − vi+1, i = 1, . . . ,K − 1, we obtain the
following conditions

i∑
k=1

1

Tk
((Pk,l − pk)(1− δl,k)− (Pk,K − pk))

K∑
j=i+1

βj + (9.6.19)

(
K−1∑
k=i+1

1

Tk
((Pk,l − pk)(1− δl,k)− (Pk,K − pk)) +

1

TK
(PK,l − pK)

)
i∑

j=1

(−βj) = 0

or, equivalently,

i∑
k=1,6=l

 1

Tk

K∑
j=i+1

βj

Pk,l −
i∑

k=1

 1

Tk

K∑
j=i+1

βj

Pk,K − (9.6.20)

K−1∑
k=i+1,6=l

 1

Tk

i∑
j=1

βj

Pk,l +

K−1∑
k=i+1

 1

Tk

i∑
j=1

βj

Pk,K −
1

TK

i∑
j=1

βjPK,l =

−
i∑

k=1

1

Tk
pkδl,k

K∑
j=i+1

βj +

(
K−1∑
k=i+1

1

Tk
pkδl,k −

1

TK
pK

)
i∑

j=1

βj

for l, i = 1, . . . ,K− 1. This gives (K− 1)2 equations for (K− 1)K unknowns Pk,l, k, l = 1, . . . ,K, k 6= l.
Thus we need additional K − 1 equations to ensure uniqueness for fixed parameters β1, . . . , βK . These
equations are determined by the conservation constraints (9.2.14) that read

K∑
k=1,k 6=l

Pk,l = PI = const, l = 1, . . . ,K. (9.6.21)
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These equations are equivalent to

K∑
k=1,k 6=l

Pk,l −
K−1∑
k=1

Pk,K = 0, l = 1, . . . ,K − 1, (9.6.22)

Then (9.6.20) and (9.6.22) form a linear system for the interfacial pressures. To solve the system it is
convenient to rewrite it in blockwise form

AlΛlP l +BΛKPK = dl, l = 1, . . . ,K − 1 (9.6.23)

for the unknowns P l := (P1,l, . . . , Pl−1,l, Pl+1,l, . . . , P1,K)T , l = 1, . . . ,K with matrix Λl = diag(T−1
1 , . . . , T−1

l−1, T
−1
l+1, . . . , T

−1
K )

assuming positive temperatures Tk, and Al = (a1, . . . ,al−1,al+1, . . . ,aK) and B = (b1, . . . , bK−1) in
RK×(K−1) defined by the columns

ak = (−c1, . . . ,−ck−1, c
k, . . . , cK−1, Tk)T ∈ RK , k = 1, . . . ,K,

bk = (c1, . . . , ck−1,−ck, . . . ,−cK−1, Tk)T ∈ RK , k = 1, . . . ,K − 1

and right-hand side dl,i = ci(pl/Tl − PK/TK), 1 ≤ i ≤ l − 1 and dl,i = ci(pl/Tl − PK/TK) − pl/Tl,

l ≤ i ≤ K − 1. Here we define ck :=
∑k
j=1 βj , c

k :=
∑K
j=k+1 βj . Note that by the convexity assumption

(9.6.18) it holds ck + ck = 1, k = 1, . . . ,K. Manipulating the rows and columns of (9.6.23) we obtain
the equivalent system AP = d with

A =


A1 B

A2 B
. . .

...
AK−1 B

S, P = S
−1


S−1P 1

S−1P 2

...

S−1PK

 , r =


Ld1

Ld2

...
LdK−1


with Al = LAlΛlS, B = LBΛKS and Frobenius matrices

S = IK−1 −
K−2∑
j=1

ej+1 ⊗ ej , L = IK +

K−1∑
j=1

(Tj+1 − Tj)ej ⊗ eK

and the transpose of a Frobenius matrix

S = I(K−1)K +

K−1∑
k=1

k−2∑
j=1

ej′(k,j) ⊗ ej′(K,j)+

K−2∑
j=k

ej′(k,j) ⊗ ej′(K,j+1) + ej′(k,K−1) ⊗ ej′(K,K−1)


with indices j′(k, j) = j + (k − 1)(K − 1). Here we make the convention that in case of K = 2
empty sums in S and S correspond to zero matrices. Since the determinant of Frobenius matrices is

one, it follows that det(A) =
(
T̂ /
∏K
k=1 Tk

)K−1

with T̂ =
∑K
k=1 βkTk. Thus, the system has a unique

solution. This can be determined by successively solving the subsystems ǍlP̌ l = řl, l = 1, . . . , L−1 with
Ǎl = (ǎl1, . . . , ǎ

l
K−1, b̌l)

T with ǎlk = ek, k = 1, . . . , l− 2, ǎll−1 = el−1 + el, ǎ
l
k = ek+1, k = l, . . . ,K − 2,

ǎlK−1 = (−c1, . . . ,−cK−1, T̂ )T and b̌
l

k = −ek, k = l − 1, l and b̌
l

k = 0 otherwise. The right-hand side is

determined by řl = rl +el−1P l−1+(K−2)K . A tedious calculation finally gives the unique solution to the
system (9.6.20) and (9.6.22) and we conclude with the following

Theorem 9.6.3. (Entropy production due to interfacial states) Let the assumptions (9.2.5) and (9.2.14)
hold true. If the temperatures Tk are all positive, then for any convex combination (9.6.18) for the
interfacial velocity V I there uniquely exist interfacial pressures

Pk,l =
1

T̂

βkplTk + pk

K∑
j=1,6=k

βjTj

 , T̂ :=

K∑
k=1

βkTk (9.6.24)
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solving the linear system (9.6.20) and (9.6.22) and, thus, the production term Π =
∑K
k=1 Πk vanishes.

In particular, the interfacial pressures are all positive and it holds

PI =

K∑
k=1

pk

K∑
j=1,6=k

βjTj/T̂ . (9.6.25)

.

Since by means of the linear system (9.6.20) and (9.6.22) the interfacial pressures Pk,l depend on
the convex combination (9.6.18) for the interfacial velocity V I , the 2nd law of thermodynamics does
not uniquely characterize interfacial velocity. There are several options discussed in the literature for
two-component and three-component models, cf. [16, 23,37]. We comment on this in Section 9.7.4.

9.6.3.3 Entropy production due to relaxation

According to the entropy law (9.6.8) of a single component the entropy production due to the relaxation
processes is determined by

Sαρs,k =
1

Tk
(pkSα,k + (uk − gk)Sαρ,k − vk · Sαρv ,k + SαρE,k) , (9.6.26)

where we plug (9.6.7) and (9.3.5) into (9.6.9). Here the Gibbs free energy of component k is defined as

gk = ek + pk/ρk − Tksk (9.6.27)

In addition to the conservation constraints (9.2.13) the relaxation terms (9.2.9) have to satisfy

Sρs,k ≥ 0, k = 1, . . . ,K or

K∑
k=1

Sαρs,k ≥ 0. (9.6.28)

to ensure that the mixture is consistent with the 2nd law of thermodynamics.

9.6.4 Thermodynamic stability

According to Menikoff and Plohr [30] thermodynamic stability of a single component k requires that
ek is a convex function of the specific volume τk and the specific entropy sk, see also Section 9.6.1.
In [19], p. 99 ff, it is proven that this holds true, if the entropy Uk := −ρksk is a convex function of
uk := (ρk, ρkv

T
k , ρkEk)T . In the following we will verify that

U(u) := −
K∑
k=1

αkρksk = −ρs (9.6.29)

is a convex function of the quantities u := (α, α1u
T
1 , . . . , αKu

T
K)T with α := (α1, . . . , αK−1)T . For this

purpose we extend the proof in [37], Appendix A, for a two-phase model to our K-component model.
To verify the convexity of U we need to prove that the Hessian is positive semi-definite. First of all,

we note that by (9.2.1)

∂αk
∂αl

= δk,l − δk,K ,
∂uk
∂αl

= − 1

αk
uk(δk,l − δk,K),

∂uk
∂αlul

=
1

αk
δk,lId+2

holds for k = 1, . . . ,K, l = 1, . . . ,K − 1. Then it follows for the gradient of U :

∂U

∂αl
(u) = Ul(ul)− UK(uK)− ∂Ul

∂ul
(ul) · ul +

∂UK
∂uK

(uK) · uK ,
∂U

∂αlul
(u) =

∂Ul
∂ul

(ul). (9.6.30)

The Hessian of U is determined by the second order derivatives

∂2U

∂αk∂αl
(u) = δk,l

1

αl
uTl

∂2Ul
∂2ul

(ul)ul +
1

αK
uTK

∂2UK
∂2uK

(uK)uK , k, l = 1, . . . ,K,

∂2U

∂αk∂αlul
(u) = − 1

αl
(δk,l − δK,l)

∂2Ul
∂2ul

(ul)ul, l = 1, . . . ,K, k = 1, . . . ,K − 1,

∂2U

∂αkuk∂αlul
(u) =

1

αl
δk,l

∂2Ul
∂2ul

(ul), k, l = 1, . . . ,K.
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For a compact representation of the Hessian we introduce the notation

Uα,α :=

(
∂2U

∂αk∂αl
(u)

)
l,k=1,...,K−1

∈ R(K−1)×(K−1),

Uαkuk,αkuk :=
∂2U

∂αkuk∂αkuk
(u) ∈ R(d+2)×(d+2),

Uαkuk,α :=

(
∂2U

∂αkuk∂α1
(u), . . . ,

∂2U

∂αkuk∂αK−1
(u)

)
∈ R(d+2)×(K−1).

According to the above second order derivatives these are determined by

Uα,α =
1

αK
uTKU

′′
KuK1K−1 + diag

((
1

αk
uTkU

′′
kuk

)
k=1,...,K−1

)
, (9.6.31)

Uαkuk,αkuk =
1

αk
U ′′k , (9.6.32)

Uαkuk,α =

(
− 1

αk
(δk,l − δK,k)U ′′kuk

)
l=1,...,K−1

= UT
α,αkuk , (9.6.33)

where U ′′k denotes the Hessian of the entropy Uk = Uk(uk) of component k. Then the Hessian can be
represented as block-matrix

U ′′(u) =


Uα,α Uα,α1u1 . . . Uα,α1uK

Uα1u1,α Uα1u1,α1u1

...
. . .

UαKuK ,α Uα1uK ,αKuK

 . (9.6.34)

To verify positive semi-definiteness of the Hessian we introduce the vector x = (aT , bT1 , . . . , b
T
K)T with

a ∈ RK−1 and bk ∈ Rd+2, k = 1, . . . ,K. Then we obtain by the block-structure (9.6.34) of the Hessian

xTU ′′x = aTUα,αa+

K∑
k=1

aTUα,αkukbk +

K∑
k=1

bTk (Uαkuk,αa+Uαkuk,αkukbk) . (9.6.35)

By means of (9.6.31), (9.6.32) and (9.6.33) we determine

aTUα,αa =
1

αK
(auK)TU ′′K(auK) +

K−1∑
k=1

1

αk
(akuk)TU ′′k (akuk), a :=

K−1∑
l=1

al,

aTUα,αkukbk = −
K−1∑
l=1

1

αk
(δk,l − δk,K)bTkU

′′
k (aluk),

bTkUα,αkuka =
1

αK
δk,Kb

T
KU

′′
K (auK)− 1

αk
(1− δk,K)bTkU

′′
k (akuk),

bTkUαkuk,αkukbk =
1

αk
bTkU

′′
k bk.

Incorporating this into (9.6.35) we finally conclude after some calculus with

xTU ′′x =

K−1∑
k=1

1

αk
(bk − akuk)TU ′′k (bk − akuk)

+
1

αK
(bK − auK)TU ′′K (bK − auK) ≥ 0,

because the Hessians U ′′k are assumed to be positive semi-definite. Note that for x 6= 0 we cannot ensure
xTU ′′x to be positive even if U ′′k is strictly convex because all the terms bk − akuk, k = 1, . . . ,K − 1,
and bK − auK may vanish at the same time. Thus we have proven the following

Theorem 9.6.4. (Convexity of entropy function) Let ek be a convex function of (τk, sk), k = 1, . . . ,K.
Then the entropy U is a convex function of u, i.e, the Hessian of U is positive semi-definite.
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9.6.5 Remarks on entropy-entropy flux pairs

From a mathematical point of view, the concept of entropy-entropy flux pairs, cf. [18], has been intro-
duced to characterize a unique weak solution of an initial (boundary) value problem of (inhomogeneous)
conservation laws that in quasi-conservative form reads

∂t u+

d∑
i=1

Ai(u)∂xi u = S(u), Ai(u) :=
∂ f i
∂ u

(u) (9.6.36)

where u : R+ × Ω → D ⊂ Rm with Ω ⊂ Rd, f i : D → Rm, i = 1, . . . , d and S : D → Rm, denote the
vector of m conserved quantities, the fluxes in the ith coordinate direction, i = 1, . . . , d, and the source
function, respectively. Motivated by thermodynamics, the entropy inequality

∂t U(u) +

d∑
i=1

∂xi F i(u) ≤ 0 (9.6.37)

has to hold in a weak sense for any convex function U : D → R and functions Fi : D → R, i = 1, . . . , d,
referred to as entropy and entropy flux, that satisfy the compatibility conditions

∇uU(u)T Ai(u) = ∇uFi(u)T , i = 1, . . . , d. (9.6.38)

Due to these conditions we infer for smooth solutions of (9.6.36) the entropy equation

∂t U(u) +

d∑
i=1

∂xi Fi(u) = ∇uU(u)T S(u), (9.6.39)

Obviously, the entropy inequality (9.6.37) holds if and only if the entropy production is negative, i.e.,

∇uU(u)T S(u) ≤ 0. (9.6.40)

Motivated by the entropy equation (9.6.11) a candidate for an entropy-entropy flux pair for our non-
equilibrium model (9.2.2), (9.2.3), (9.2.4) and (9.2.7) neglecting viscosity and heat conduction is

U(u) := −
K∑
k=1

αkρksk = −ρs, Fi(u) := −
K∑
k=1

αkρkskvk,i, i = 1, . . . , d. (9.6.41)

In [34] it has been proven that the entropy-entropy flux pairs (U,Fi) satisfies the compatibility
conditions (9.6.38), if the conditions (9.6.17) hold. Furthermore, it was shown that inequality (9.6.40) is
equivalent to Sρs ≥ 0 provided that the entropies sk = sk(τk, ek), k = 1, . . . ,K, are concave functions,
i.e., (9.6.4) holds.

9.7 Relaxation model

The non-equilibrium model presented in Section 9.2.1 allows for different values for velocities, pressures,
temperatures as well as chemical potentials at the same point. Therefore one has to introduce a relax-
ation mechanism, that drives all these quantities into equilibrium. Typically it is distinguished between
mechanical and thermal relaxation processes that relax either pressures and velocities or temperatures
and chemical potentials to equilibrium.

The relaxation terms are of major importance when dealing with interface problems, see for instance
Saurel and Abgrall [38] or Lallemand et al. [27] for mechanical relaxation terms and Métayer et al. [31]
for pressure, temperature and Gibbs free energy relaxation terms. Typically, it is assumed that pressure
and velocity relax instantaneously, see [38], whereas the thermal relaxation and the relaxation of chemical
potentials are much slower, see Zein [44]. For particular applications the orders of the relaxation times
can be precised, for instance in the barotropic case, cf. [2].

Note that in the equilibrium model the equilibrium state is characterized by vanishing relaxation
terms rather than the transient relaxation process itself. Since the equilibrium state does not depend on
the order of relaxation, the relaxation times have not to be known explicitly.

In the subsequent sections we present the relaxation terms for mechanical, thermal and chemical
potential relaxation. For each relaxation process we verify the constraints due to conservation (9.2.13)
and entropy production (9.6.28). Note that for all relaxation processes the corresponding source terms
satisfy the constraint (9.5.20) due to Galilean invariance.
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9.7.1 Mechanical relaxation

The pressure relaxation implies volume variations, that induce energy variations due to the interfacial
pressure work. Here we extend the pressure relaxation vector given in [38] for a two-phase model
according to [44] by introducing a pressure average that we choose as the mixture pressure. The pressure
relaxation terms then read

Spα,k := θp αk (pk − p), Spαρ,k := 0, Spαρv ,k := 0, SpαρE,k := θp αk p(p− pk). (9.7.1)

Here θp denotes the pressure relaxation parameter. Similarly the velocity relaxation terms read

Svα,k = Svαρ,k := 0, Svαρv ,k := θv αk ρk (v − vk), SvαρE,k := θv αk ρk v · (v − vk) (9.7.2)

with the velocity relaxation parameter θv. For more details on mechanical relaxation see Baer and
Nunziato [5] or Baer [14] for two-phase models.

Obviously, the mechanical relaxation terms (9.7.1) and (9.7.2) satisfy the conservation constraints
(9.2.13) as can be validated by the definition of the mixture pressure and the mixture velocity (9.2.10)
and the saturation condition (9.2.1). Furthermore we determine by (9.6.26) and (9.7.1), (9.7.2) the
entropy production terms

Svαρs,k = θv
αkρk
Tk

(v − vk)2, Spαρs,k = θp
αk
Tk

(p− pk)2. (9.7.3)

This immediately implies

Theorem 9.7.1. (Entropy production due to mechanical relaxation) Let ρk ≥ 0, Tk > 0 and the relax-
ation parameters θp, θv ≥ 0. Then the entropy production due to mechanical relaxation is non-negative,
i.e.,

Sp,vαρs,k ≥ 0, k = 1, . . . ,K and

K∑
k=1

Sp,vαρs,k ≥ 0. (9.7.4)

9.7.2 Thermal relaxation

For the modeling of temperature relaxation we follow in principal Zein [44]. First of all, we introduce a
general class of temperature relaxation models

STα,k := θT
Qk
κk
, STαρ,k := 0, STαρv ,k := 0, STαρE,k := θT Qk, (9.7.5)

with the relaxation parameter θT and
Qk = γk(T̂ − Tk). (9.7.6)

According to the conservation constraint (9.2.13) the terms Qk have to satisfy

K∑
k=1

Qk = 0 and

K∑
k=1

Qk
κk

= 0. (9.7.7)

In order to guarantee the first constraint, we choose for T̂ the following expression

T̂ =

K∑
k=1

βTk Tk (9.7.8)

with coefficients

βTk = γk/γ, γ :=

K∑
k=1

γk. (9.7.9)

Obviously, T̂ is a convex combination of the temperatures Tk because

K∑
k=1

βTk = 1. (9.7.10)
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For instance, we may choose (a) γk = αk. Then βTk = αk and T̂ coincides with the mixture temperature

(9.6.10). In case of (b) γk = 1 or (c) γk = K we compute βTk = 1/K and T̂ is given as the averaged

mixture T̂ =
∑K
k=1 Tk/K. For these three cases we obtain (a) Qk = αk(T̂ − Tk), (b) Qk = (T̂ − Tk) and

(c) Qk =
∑K
l=1(Tl − Tk), respectively.

Next we determine by (9.6.26) and (9.7.5) the entropy production term

STρs,k = θT
1

Tk
Qk

(
pk
κk

+ 1

)
. (9.7.11)

Thus the entropy production due to thermal relaxation becomes

STρs :=

K∑
k=1

STαρs,k = θT

K∑
k=1

1

Tk
Qk

(
pk
κk

+ 1

)
= θT

K∑
k=1

1

Tk
Qk + θT

K∑
k=1

pk
Tkκk

Qk. (9.7.12)

We note that by the definitions (9.7.6) and (9.7.9) of Qk and βk, respectively, the relation

K∑
k=1

1

Tk
Qk = γ

K∑
k,l=1

1

Tk
βTk β

T
l (Tl − Tk)

holds. Here we employ (9.7.8) and (9.7.10) to compute the difference T̂ − Tk =
∑K
l=1 β

T
l (Tl − Tk).

Furthermore we observe that for any bk and ak,l = −al,k, l, k = 1, . . . , k we have

K∑
k,l=1

bkak,l =

K∑
k=2

bk

k−1∑
l=1

ak,l +

K−1∑
k=1

bk

K∑
l=k+1

ak,l =

K−1∑
k=1

K∑
l=k+1

(bk − bl)ak,l.

Choosing bk = 1/Tk and ak,l = βTk β
T
l (Tl − Tk) we thus conclude with

K∑
k=1

1

Tk
Qk = γ

K−1∑
k=1

K∑
l=k+1

βTk β
T
l

(Tk − Tl)2

TkTl
.

Obviously, the sum is non-negative whenever the temperatures are positive. Thus the first term on the
right-hand side of (9.7.12) is non-negative. To ensure that the second term is also non-negative, we
rewrite the sum by means of the conservation constraints (9.7.7) as

K∑
k=1

pk
Tkκk

Qk =

K−1∑
k=1

(
pk
Tk
− pK
TK

)
1

κk
Qk.

and choose κk such that (
pk
Tk
− pK
TK

)
1

κk
= akQk, k = 1, . . . ,K − 1

holds for some positive parameters ak, i.e.,

κk =
TKpk − TkpK
akTkTKQk

, k = 1, . . . ,K − 1. (9.7.13)

The missing parameter κK is determined by the conservation constrains (9.7.7) as

κK = −QK

(
K−1∑
k=1

Qk
κk

)−1

. (9.7.14)

Finally we summarize our results in the following

Theorem 9.7.2. (Entropy production due to thermal relaxation) Let the temperatures and the relaxation
parameter be strictly positive, i.e., Tk > 0 and θT > 0. Let Qk satisfy (9.7.6) where T̂ is defined as convex
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combination (9.7.8) of the temperatures Tk with coefficients βk satisfying (9.7.9) and (9.7.10). Then the
mixture entropy production due to thermal relaxation is non-negative, i.e.,

STρs = θT

K∑
k=1

1

Tk
Qk

(
pk
κk

+ 1

)
≥ 0, (9.7.15)

provided that the condition
K∑
k=1

pk
Tkκk

Qk ≥ 0

holds. In particular, this condition holds for the parameters κk determined by (9.7.13) and (9.7.14) with
non-negative coefficients ak. It also holds in case of pressure equilibrium, i.e., p1 = . . . = pK = p, and
constant parameters κ1 = . . . = κK = κ.

When the temperature relaxation approaches thermal equilibrium, the parameters κk, k = 1, . . . ,K−
1, tend to κk = p/(akγkT

2) provided that the pressure relaxes faster to its equilibrium state. If the
pressure is not at equilibrium when thermal equilibrium is reached, then κk =∞, i.e., STα,k = 0. However,
it is widely accepted that the mechanical relaxation proceeds faster than the thermal relaxation.

Finally we conclude with some remarks on existing relaxation models. In [44] a constant parameter
κk = κ is chosen such that pressure stays at equilibrium during the temperature relaxation. More details
on its definition in case of a two-phase and a three-phase model can be found in Zein [44] and Zein et
al. [45], respectively. Note that the coefficient κ in [44] results in a non-negative entropy production if
the pressures are at equilibrium. In the non-equilibrium case (9.7.15) cannot be proven to hold.

In the thermal relaxation model considered by Saleh [37] there is no relaxation term accounted for in
the evolution equations for the volume fractions, i.e., STα,k = 0. This fits into our model when choosing
ak = 0, i.e., κk = ∞, for k = 1, . . . ,K. Then the investigation of the entropy production simplifies
because the second term on the right-hand side in (9.7.12) does not exist.

9.7.3 Chemical potential relaxation

Mass transfer between different phases of the same substance occurs, whenever these phases are not in
chemical equilibrium. This physical matter of fact is the decisive factor for the idea to model the mass
transfer by relaxation of the chemical potentials. The mass transfer is driven by the difference of the
chemical potentials. It is obvious, that from now on it is necessary to identify the phases.

9.7.3.1 Chemical potential relaxation for two-component mixtures

For a two-component mixture (K = 2) the relaxation of chemical potentials is modeled according to [44]
by

Sµα,1 := θµ
ṁ

%
, Sµαρ,1 := θµ ṁ, S

µ
αρv ,1 := θµ ṁ v̂, S

µ
αρE,1 := θµ ṁ

(
ε+

v̂2

2

)
,

Sµα,2 := −Sµα,1, S
µ
αρ,2 := −Sµαρ,1, S

µ
αρv ,2 := −Sµαρv ,1, S

µ
αρE,2 := −SµαρE,1, (9.7.16)

with the relaxation parameter θµ. Similar to the interfacial velocity (9.6.18) we choose for the velocity
v̂ a convex combination

v̂ =

K∑
k=1

βvkvk, βvk ∈ [0, 1],

K∑
k=1

βvk = 1. (9.7.17)

Since for a two-component mixture the Gibbs free energy coincides with the chemical potential, chemical
equilibrium is achieved, if the Gibbs free energies of the two components coincide, i.e., g1 = g2.

Obviously, the conservation constraints (9.2.13) are satisfied. Note that due to these constraints we
are not allowed to introduce εk and %k differently for each component k = 1, 2. Furthermore, the entropy
production terms are determined by (9.6.26) and (9.7.16) as

Sµαρs,k = (−1)k+1θµ ṁ
1

Tk

(
ε+

1

2
(v̂ − vk)2 − gk +

pk
%

)
, k = 1, 2. (9.7.18)
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These terms may become negative also when θµ, ṁ and Tk are positive. However, for an appropriate
choice of ε, % and v̂ the entropy production due to the sum of the phasic entropies

Sµρs = θµ ṁ

2∑
k=1

(−1)k+1 1

Tk

(
ε+

1

2
(v̂ − vk)2 − gk +

pk
%

)
(9.7.19)

can be verified to be non-negative. For this purpose, we first note that in case of mechanical and thermal
equilibrium, i.e.,

v1 = . . . = vK = v , p1 = . . . = pK = p, T1 = . . . = TK = T, (9.7.20)

the entropy production term becomes

Sµρs =
1

T
ṁ θµ (g2 − g1)

as was already proven in [44]. Obviously this term is non-negative if

ṁ = a(g2 − g1) (9.7.21)

with a ≥ 0. This is an agreement with the kinetic relation in [11].
At mechanical and thermal non-equilibrium we may enforce a non-negative entropy production by

choosing the parameters ε and % such that

2∑
k=1

(−1)k+1 1

Tk

(
ε+

1

2
(v̂ − vk)2 − gk +

pk
%

)
= b (g2 − g1) (9.7.22)

for some non-negative b. Note that for the parameters ε and % in [44] this condition does not hold true.
To verify (9.7.22) we proceed in three steps to determine v̂, ε and %:

1. The velocity v̂ is chosen in such a way, that the velocity terms in (9.7.19) vanish:

1

T1
(v̂ − v1)2 − 1

T2
(v̂ − v2)2 = 0. (9.7.23)

This is reasonable because the entropy production (9.7.19) should be a product of the relaxed mass
flux θµ ṁ and an interfacial entropy sI that should not depend on any velocity. Because the velocity
v̂ is assumed to be a convex combination of the single component velocities, i.e. v̂ = βv1v1 + βv2v2

with βv2 = 1− βv1 according to (9.7.17), we derive from (9.7.23)

βv1 :=

√
T2√

T1 +
√
T2

, βv2 :=

√
T1√

T1 +
√
T2

. (9.7.24)

2. In the next step we determine ε such that

1

T1
(ε− c g1)− 1

T2
(ε− c g2) = bε(g2 − g1), with bε =

2c

T1 + T2

resulting in

ε = c
g2T1 + g1T2

T1 + T2
.

3. Finally we determine % such that

1

T1

(
p1

%
− dg1

)
− 1

T2

(
p2

%
− dg2

)
= b%(g2 − g1), with b% =

2d

T1 + T2

resulting in

% =
1

d

T1 + T2

g2T1 + g1T2

p2T1 − p1T2

T1 − T2
.



9.7. RELAXATION MODEL 229

Choosing

d =
1

2
sign

(
p2T1 − p1T2

T1 − T2

)
, c = 1− d, (9.7.25)

then with the above choice of v̂, ε and % we obtain (9.7.22) with b = bε + b% = ((T1 + T2)/2)−1 the
reciprocal of the mean temperature of the components. Note that in the equilibrium case ε and % tend
to g/2 and 2p/g, respectively, assuming that the pressure relaxes faster than the Gibbs free energy.

Again we conclude with the following

Theorem 9.7.3. (Entropy production due to relaxation of Gibbs free energies) At mechanical and ther-
mal equilibrium, i.e., (9.7.20) holds, the mixture entropy production due to relaxation of Gibbs free
energies is non-negative, i.e.,

Sµρs ≥ 0, (9.7.26)

if the mass flux is chosen as the kinetic relation (9.7.21) and the relaxation parameter θµ as well as
the equilibrium temperature T are positive. In the non-equilibrium case, the entropy production is non-
negative, if the parameters ε and % are chosen such that (9.7.22) holds.

9.7.3.2 Chemical potential relaxation for three-component mixtures

Exemplarily, we consider three components, i.e., K = 3, with water vapor (k = 1), liquid water (k = 2)
and inert gas (k = 3). Then the vector for relaxation of chemical potentials is given by

Sµα,1 := θµ
ṁ

%1
, Sµαρ,1 := θµ ṁ, Sµαρv ,1 := θµ ṁ v̂, SµαρE,1 := θµ ṁ

(
ε1 +

v̂2

2

)
,

Sµα,2 := θµ
ṁ

%2
, Sµαρ,2 := −θµ ṁ, Sµαρv ,2 := −θµ ṁ v̂, SµαρE,2 := −θµ ṁ

(
ε2 +

v̂2

2

)
,

Sµα,3 := −θµ ṁ
(

1

%1
+

1

%2

)
, Sµαρ,3 := 0, Sµαρv ,3 := 0, SµαρE,3 := θµ ṁ (ε2 − ε1) , (9.7.27)

with the relaxation parameter θµ and v̂ given by (9.7.17). For details on the physics see the book of Müller
and Müller [33]. Again we note that the conservation constraints (9.2.13) are satisfied. Furthermore the
entropy production terms can be determined by (9.6.26) and (9.7.16)

Sµαρs,1 = θµ ṁ
1

T1

(
ε1 +

1

2
(v̂ − v1)2 − g1 +

p1

%1

)
,

Sµαρs,2 = −θµ ṁ
1

T2

(
ε2 +

1

2
(v̂ − v2)2 − g2 −

p2

%2

)
, (9.7.28)

Sµαρs,3 = θµ ṁ
1

T3

(
ε2 − ε1 − p3(

1

%1
+

1

%2
)

)
.

These terms may become negative also when θµ, ṁ and Tk are non-negative. For the sum of the phasic
entropy production Sµρs = Sµρs,1 + Sµρs,2 + Sµρs,3 we obtain

Sµρs = ṁ θµ

(
2∑
k=1

(−1)k+1

Tk

(
εk +

1

2
(v̂ − vk)2 − gk − (−1)k

pk
%k

)
+

1

T3

(
ε2 − ε1 − p3

(
1

%1
+

1

%2

)))
. (9.7.29)

In the following we distinguish between a non-homogeneous and a homogeneous mixture, respectively.

Non-homogeneous mixture. In a non-homogeneous mixture velocity, pressure and temperature are
not necessarily in equilibrium. Therefore we need not to account for the mixture entropy. Thus, the
chemical potentials and the Gibbs free energies of water vapor and liquid water, respectively, coincide,
i.e., gk = µk, k = 1, 2, and the mass flux is proportional to the difference in the Gibbs free energies, i.e.,
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(9.7.21) holds. Similar to the two- component case, see Section (9.7.3.1), we may enforce a non-negative
entropy production by choosing the parameters εk and %k such that the condition

2∑
k=1

(−1)k+1

Tk

(
εk +

1

2
(V I − vk)2 − gk − (−1)k

pk
%k

)
(9.7.30)

+
1

T3

(
ε2 − ε1 − p3

(
1

%1
+

1

%2

))
= b (g2 − g1)

holds for some non-negative b analogously to (9.7.22). Note that the parameters εk and %k in [44,46] do
not satisfy this condition.

As already assumed in the two-component mixture, we expect that the entropy production of the
three-component mixture (9.7.28) should not depend on any velocity. This assumption gives us a condi-
tion for the velocity v̂ and delivers us the same result as above (9.7.24):

βv1 :=

√
T2√

T1 +
√
T2

, βv2 :=

√
T1√

T1 +
√
T2

, βv3 := 0. (9.7.31)

The remaining parameters εk, %k, k = 1, 2, can be determined similar to the two-component case. We
omit details here.

Homogeneous mixture. In a homogeneous mixture velocity, pressure and temperature are in equi-
librium. Therefore, as already mentioned in Section 9.6.2, in the total entropy we also have to account
for the mixture entropy given by

SM = −
∑
k=1,3

αkρk
κb
mk

ln

(
αk

α1 + α3

)
, (9.7.32)

with κb the Boltzmann constant and mk the mass of a single molecule of component k, see [32], p. 54,
298, 320. Moreover, the chemical potential of the vapor phase is now given by

µ1 = g1 +
κbT

m1
ln

(
α1

α1 + α3

)
(9.7.33)

i.e., it does not coincide with its Gibbs free energy. Note that for vanishing third component, i.e., α3 = 0,
the chemical potential of the vapor phase reduces to the vapor Gibbs free energy. Again, the chemical
potential of the liquid phase equals its Gibbs free energy, i.e., µ2 = g2. In chemical equilibrium the
chemical potentials of the vapor and the liquid phase equal each other. Accordingly, the mass flux is
now a function of µ2 − µ1, i.e.,

ṁ = a(µ2 − µ1) (9.7.34)

with a ≥ 0 that again is an agreement with the kinetic relation in [11].
For a homogeneous mixture the entropy production (9.7.29) reduces to

Sµρs =
1

T
ṁ θµ (g2 − g1) =

1

T
ṁ θµ

(
µ2 − µ1 +

κbT

m1
ln

(
α1

α1 + α3

))
.

Analogously to Section 9.6.2, we determine the entropy production of the mixture entropy SM

SµSM = − 1

T
ṁ θµ

κbT

m1
ln

(
α1

α1 + α3

)
. (9.7.35)

Then the total entropy production is given by

Sµρs + SµSM =
1

T
ṁ θµ (µ2 − µ1) . (9.7.36)

Thus we conclude with the following theorem.

Theorem 9.7.4. (Entropy production due to relaxation of chemical potentials) For a homogeneous
mixture the total entropy production is non-negative, i.e.,

Sµρs + SµSM ≥ 0, (9.7.37)

if the relaxation parameter θµ as well as the equilibrium temperature T are positive.

Finally we would like to remark that the above procedure for a particular three-component mixture
can be extended to a multi-component mixture.
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9.7.4 Remarks on the closure of the interfacial velocity

According to the ansatz (9.6.18) for the interfacial velocity we have some freedom in the choice of the
parameters βk. One option might be the velocity v̂ determined in Section 9.7.3. However, these are
state-dependent, i.e., βvk = βvk(w), see (9.7.24) and (9.7.31). As a consequence the linear field associated
with the eigenvalue λI,i, i = 1, . . . ,K − 1, will not be linearly degenerated, i.e.,

rI,i · ∇wλI,i = κ0

(
∂ VI,n
∂ αi

+

K∑
k=1

(
xk,i

∂ VI,n
∂ ρk

+ yk,i · ∇vkVI,n + zk,i
∂ VI,n
∂ pk

))
6= 0.

Since the non-equilibrium model contains non-conservative products in the phasic momentum and energy
equations, see eqns. (9.2.3) and (9.2.4), there is no way to cope with these terms in case of genuinely
nonlinear fields. If fields associated to the non-conservative products only occur in linearly degenerated
fields, then Riemann invariants of the associated field can be enforced and, thus, the exact solution
of the Riemann problem exists as has been verified for Baer-Nunziato type models in [17]. Therefore,
it is suggested in [16] and [23] to determine the interfacial velocity such that the associated field is
linearly degenerated. Obviously, at mechanical and thermal equilibrium this field is linearly degenerate
for arbitrary convex combinations (9.6.18) provided that βk 6= βk(α) because yk,i = 0, xk,i = zk,i =
∂βk/∂αi = 0. At non-equilibrium this no longer holds true.

To derive appropriate closing conditions in this case we extend the ansatz of Saleh [37], eqn. (4.3.40),
in case of a two-phase mixture. For this purpose we introduce another arbitrary but fixed convex
combination

∑K
k=1 ck = 1 with constant coefficients ck ∈ [0, 1]. Then we define the coefficients βk in

(9.6.18) as

βk :=
ckαkρk
ρ̂

, ρ̂ :=

K∑
k=1

ckαkρk.

By a straightforward calculation using (9.4.32), (9.4.33) and (9.4.34) we can verify that rI,i · ∇wλI,i
vanishes. Then the interfacial pressure and velocity are given by

PI =

K∑
k=1

pk(1− ckαkρkTk/(ρ̂T̂ )), V I =

K∑
i=1

ciαiρivi

/
K∑
k=1

ckαkρk. (9.7.38)

For special choices of c ∈ [0, 1]K these interfacial values coincide with those in the literature in case of
two and three components. For instance, choosing c = ei for some i ∈ {1, . . . ,K} we obtain

PI =

K∑
k=1,6=i

pk, V I = vi. (9.7.39)

For i = 1 these coincide with those given in [16] and [23] for K = 2 and K = 3, respectively. In case of
uniform coefficients ck = 1/K, k = 1, . . . ,K, the interfacial pressure and velocity are given by

PI =

K∑
k=1

pk(1− αkρkTk/(ρT̂ )), V I =

K∑
i=1

αiρivi

/
K∑
k=1

αkρk = v. (9.7.40)

where ρ and v are the density and the velocity of the mixture, see (9.2.10), respectively.
Obviously, the interfacial states (9.7.38) do not satisfy (9.7.23) for an arbitrary non-equilibrium

state meaning that (9.7.26) and (9.7.37) might not hold in general, i.e., the 2nd law of thermodynamics
might be violated. To overcome this contradiction, it is recommended in [24] to use different interfacial
velocities for the convective system and the relaxation terms. This is admissible because the conservation
constraint (9.2.13) is satisfied for any convex combination (9.6.18). Moreover, the source term cannot
be derived from the ensemble averaging procedure, see [13], Chapter 11, but the averaged model has
to be closed by modeling these terms appropriately. Therefore, we are free to choose another velocity
in the chemical relaxation model. Note that in the Drew-Passman model different interfacial velocities
have been introduced in the evolution equations for volume fraction, momentum and energy, see [13],
formulae (11.8), (11.39) and (11.41).
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9.8 Conclusion

In the present work we discussed some properties of a non-equilibrium multi-component model of Baer-
Nunziato type taking into account viscosity and heat conduction. This model is non-conservative due
to exchange terms between different components. However, these terms vanish in the mixture model
derived from the non-equilibrium model by averaging over all components and the resulting equilibrium
model, i.e., the mixture model as well as the equilibrium model are conservative. Furthermore, the first
order model, i.e., neglecting viscosity and heat conduction, could be verified to be hyperbolic, i.e., all
eigenvalues are real and there exists a family of linearly independent eigenvectors provided that the
non-resonance condition is satisfied and none of the components of the mixture vanishes. This holds true
for both the non-equilibrium and the equilibrium model. In particular, the corresponding eigenvalues
satisfy the sub-characteristic condition.

The main interest was on the derivation of closure conditions for the relaxation model as well as
the interfacial pressures and the interfacial velocity. These were set up by verifying the second law of
thermodynamics. It turned out that the pressures and the interfacial velocity can be chosen such that
their contribution in the entropy law of the mixture vanishes. However, this does not characterize a unique
choice for the interfacial pressures and the interfacial velocity because a physically reasonable choice of
the interfacial velocities could not be derived so far in the general case of K > 2 components. The entropy
production due to mechanical relaxation could be proven to be non-negative. The entropy production due
to thermal and chemical relaxation is non-negative when assuming mechanical and thermal equilibrium,
respectively. In the non-equilibrium case, sufficient conditions are given that pose constraints on the
relaxation parameters to ensure a non-negative entropy production. Finally, we obtained constraints for
the relaxation terms to ensure Galilean invariance.

We conclude with some remarks on the numerical discretization of the multi-component model. The
main difficulty arises from the non-conservative products in the momentum equation (9.2.3) and the
energy equation (9.2.4) as well as the evolution equation for the volume fractions (9.2.7). A popular
approach to deal with those products is based upon so-called path-conservative schemes, see [35]. How-
ever, it was verified by Abgrall and Karni [1] that path-conservative schemes may not be able, in general,
to compute correctly the solution of non-conservative hyperbolic problems. In case of a stiffened gas
equation of state for the single components one may employ the Saurel-Abgrall trick [38] that couples
the discretization of the evolution equations of the volume fractions with the discretization of the fluid
equations of the components resulting in a non-conservative finite volume discretization. Numerical re-
sults for inviscid computations have been reported in [45] and [21,46] for two-phase fluids and three-phase
fluids. There are many other publications available in the literature using different discretizations, see
the aforementioned publications and citations therein.
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Chapter 10

Efficient and robust relaxation
procedures

Bibliographic note: The content of this chapter is published in [H15]: Ee Han, Maren Hantke, and
Siegfried Müller. Efficient and robust relaxation procedures for multi-component mixtures including
phase transition, Journal of Computational Physics, Vol. 338 (2017), pp. 217-239.

Abstract: We consider a thermodynamic consistent multi-component model in multi dimensions that
is a generalization of the classical two-phase flow model of Baer and Nunziato. The exchange of mass,
momentum and energy between the phases is described by additional source terms. Typically these terms
are handled by relaxation procedures. Available relaxation procedures suffer from efficiency and robust-
ness resulting in very costly computations that in general only allow for one-dimensional computations.
Therefore we focus on the development of new efficient and robust numerical methods for relaxation
processes. We derive exact procedures to determine mechanical and thermal equilibrium states. Further
we introduce a novel iterative method to treat the mass transfer for a three component mixture. All new
procedures can be extended to an arbitrary number of inert ideal gases. We prove existence, uniqueness
and physical admissibility of the resulting states and convergence of our new procedures. Efficiency
and robustness of the procedures is verified by means of numerical computations in one and two space
dimensions.

10.1 Introduction

Flows of compressible multi-component fluids, where the single components may be in the liquid or the
gas phase, respectively, have a wide range of applications. Difficulties in the modeling result from the
interaction of the fluids, especially from the exchange of mass and energy across the phase interfaces. In
the literature several models are available that are distinguished in sharp interface and diffuse interface
models. A detailed survey of these models can be found in Zein [40].

In our work we focus on models of Baer-Nunziato type derived from an ensemble averaging procedure
of Drew [12]. A comprehensive introduction to these models can be found in the classical book of Drew
and Passman [13].

Saurel and Abgrall modified the original two-phase non-equilibrium model of Baer and Nunziato [5]
by including relaxation terms for the pressure and the velocities of the components. By additional
relaxation processes for the temperatures and the chemical potentials the transfer of thermal energy and
mass between the components and phases, respectively, can be modeled, see Saurel et al. [36] or Zein et
al. [41]. By instantaneous relaxation procedures equilibrium values for pressures, velocities, temperatures
and chemical potentials can be found.

Typically the relaxation procedures are based on iterative algorithms that are very much time-
consuming, see Zein et al. [42]. Thus multi-dimensional applications are only feasible in acceptable
computational time on massive parallel architectures. In order to reduce the high computational cost
we need highly efficient and robust relaxation procedures. In the literature there are three contributions
in this context. In [42] Zein et al. consider a third inert component. Here the Gibbs free energies are

237



238 CHAPTER 10. EFFICIENT AND ROBUST RELAXATION PROCEDURES

relaxed to model phase transition between the vapor and the liquid phase instead of relaxing the chemical
potentials. Thus, for a three component mixture a physically incorrect equilibrium state is determined.
Pelanti and Shyue [30] improved one of the relaxation procedures. In particular, they modified the relax-
ation procedure for Gibbs free energies presented in [42] in case of a two component mixture. However,
this is not sufficient because the assumption of pure phases is no longer justified apart from laboratory
conditions. Moreover, they restrict their investigations to a six-equation model assuming velocity equi-
librium. Also Le Métayer et al. [23] consider an inert component. As in Zein et al. [42] a physically
incorrect equilibrium state is determined due to relaxing Gibbs free energies. Beside this Le Métayer et
al. suggest a simultaneous temperature-pressure relaxation but do not give any details on the iterative
procedures used. In particular, they cannot guarantee existence and uniqueness of an equilibrium state
or positivity of the equilibrium temperature.

Our main objective is to improve all the relaxation procedures where, in particular, we account for a
third inert component. Thus, the main focus of this work is the development of new relaxation procedures.
Starting from the ideas of Zein et al. [42] we enhance the simulations in several aspects: (1) First of
all, we simplify the relaxation procedures for pressure and temperature for multi-component mixtures.
(2) Furthermore, we prove existence and uniqueness results and physical admissibility of the equilibrium
states. (3) Opposite to [42] we avoid the calculation of model parameters that allows us to find the
relaxed pressures and temperatures directly without performing an iterative procedure. (4) Instead of
Gibbs free energies we relax the chemical potentials. Therefore we may take into account additional
components in the phases by considering the mixture entropy and, thus, the model becomes physically
correct. (5) A new procedure for the chemical relaxation is developed that performs significantly better
than available procedures. (6) Furthermore, we avoid the artificial definition of an interfacial region. This
allows us to simulate physical cavitation, which means that we can start from a pure liquid phase. The
vapor phase will be created by expansion. In previous work it was necessary to start with an appreciable
amount of vapor, for instance 1% in [41] and also in [30]. Nevertheless in our simulations we avoid
unphysical nucleation or unphysical cavitation. We will give evidence for this by numerical examples.
(7) Another essential difference to [41] is that we do not restrict mass transfer to metastable states with
liquid temperature larger than the saturation temperature. Typically, condensation processes are not
considered due to this restriction, cf. [41] and [30], whereas we are able to deal with these processes.
(8) Moreover, we perform temperature relaxation also when no mass transfer occurs. This is physically
reasonable as it may occur, for instance, in gas mixtures. (9) Furthermore, we improve the efficiency of
the relaxation procedure where we perform pressure and temperature relaxation simultaneously resulting
in explicit formulae for the equilibrium state rather than an iterative procedure as in Le Métayer et
al. [23]. By this we avoid the approximate pressure relaxation procedure, see [21] or [40], that may cause
numerical instabilities and, thus, very small time steps. (10) In contrast to Le Métayer et al. [23] we
prove existence and uniqueness of the equilibrium states as well as physical admissibility, e.g. positivity
of the equilibrium temperature.

The new relaxation procedures in combination with efficient discretization techniques using multi-
resolution-based grid adaptation, see Müller [27,28], allow for highly efficient multi-dimensional compu-
tations. To illustrate the efficiency and robustness of our enhanced relaxation procedures we investigate
the interaction of a collapsing bubble with a planar shock wave. This genuinely two-dimensional applica-
tion is motivated by lithotripter shock wave experiments, see [1]. Here we perform computations where
the bubble is filled with vapor and non-condensable gas. In addition we make several comparisons with
the literature.

The paper is organized as follows. In Section 10.2 we introduce the non-equilibrium multi-component
model. The main part of the present work is Section 10.3 where we develop and investigate new pro-
cedures for mechanical, temperature and chemical relaxation. Details of the algorithms are given. In
Section 10.4 we discretize the model by an operator splitting. Finally in Section 10.5 we give numerical
results. We discuss several test cases in one and two space dimensions to underline the robustness and
efficiency of our new procedures. Furthermore we investigate physical cavitation. We conclude with a
brief summary.
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10.2 Mathematical formulation of the model

In the literature there are numerous simplified two-phase models available, e.g., see [40] and the refer-
ences cited therein. Reduced models may suffer from some short-comings. For instance, conservation
of energy might be violated or the system looses its hyperbolicity. There exist reduced models that
preserve hyperbolicity as well as conservation of mass, momentum and energy. For instance, see the
four equations model in [34] where both phases are in mechanical and thermal equilibria or the model
in [22] corresponding to the homogeneous Euler equations combined with the vapor pressure function
as equation of state. The aforementioned reduced models do not suffer from short-comings and may
be solved efficiently and robustly when using appropriate numerical schemes. However, their domain of
validity is restricted due to the equilibria hypothesis.

Therefore we prefer a full non-equilibrium model, where each component has its own pressure, velocity
and temperature and is governed by its own set of fluid equations. For this generalized model closure
conditions have been derived ensuring thermodynamically consistency, see [29]. In the following we first
describe the full non-equilibrium model, see Section 10.2.1. To close the model we specify the equations
of state in Section 10.2.2 and the source terms in Section 10.2.3.

10.2.1 Non-equilibrium multi-component model

For the multi-component model we use the Saurel-Abgrall approach [32] that is derived by the ensemble
averaging procedure of Drew [12] and neglecting all dissipative terms everywhere except at the interfaces.
It can be considered as a modified form of the Baer and Nunziato model [5].

Thus the multi-component flow is described by a non-equilibrium model where all components are
present in each point of the space-time continuum. Each component k = 1, . . . ,K has density ρk, velocity
vk and pressure pk. The amount of each component is determined by its volume fraction αk. The volume
fractions are related by the saturation constraint

K∑
k=1

αk = 1, αk ∈ [0, 1]. (10.2.1)

In analogy to the two-phase model of Saurel and Abgrall [32] the fluid equations for each component can
be written as

∂t (αk ρk) +∇ · (αk ρk vk) = Sρ,k, (10.2.2)

∂t (αk ρk vk) +∇ · (αk ρk vk v
T
k + αk pk I) = PI∇αk + Sρv ,k, (10.2.3)

∂t (αk ρk Ek) +∇ · (αk ρk vk (Ek + pk/ρk)) = PIV I · ∇αk + SρE,k, (10.2.4)

where we neglect effects due to viscosity, heat conduction, surface tension and gravity. Nevertheless,
due to the thermal relaxation procedures we account for heat exchange between the components. In our
notation Ek = ek + v2

k/2 is the total specific energy with ek the specific internal energy of component
k. The terms PI and V I are the interfacial pressure and velocity, respectively. The fluid equations are
supplemented by an equation of state

pk = pk(ρk, ek) resp. ek = ek(ρk, pk) (10.2.5)

for each of the components, see Section 10.2.2 for the specific choice. The evolution of the volume
fractions is characterized by the non-conservative equations

∂t αk + V I · ∇αk = Sα,k, k = 1, . . . ,K. (10.2.6)

Due to the saturation condition (10.2.1) we only need K − 1 equations. Without loss of generality we
express αK by the other volume fractions, i.e.,

αK = 1−
K−1∑
k=1

αk, ∇αK = −
K−1∑
k=1

∇αk, Sα,K = −
K−1∑
k=1

Sα,k. (10.2.7)

The source terms Sα,k, Sρ,k, Sρv ,k and SρE,k on the right-hand sides of (10.2.2), (10.2.3), (10.2.4)
and (10.2.6) describe the interaction of the components corresponding to mass, momentum and energy
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transfer via the relaxation of velocity, pressure, temperature and chemical potentials, ξ ∈ {v, p, T, µ},
i.e.,

Sα,k :=
∑
ξ

Sξα,k, Sρ,k :=
∑
ξ

Sξρ,k, Sρv ,k :=
∑
ξ

Sξρv ,k, SρE,k :=
∑
ξ

SξρE,k.

These depend on the specific components at hand that will be discussed in Section 10.2.3. Due to
conservation of mass, momentum and energy these terms satisfy the conservation constraints

K∑
k=1

Sξα,k = 0,

K∑
k=1

Sξρ,k = 0,

K∑
k=1

Sξρv ,k = 0,

K∑
k=1

SξρE,k = 0 (10.2.8)

for each relaxation type ξ ∈ {v, p, T, µ}.
It remains to define the interfacial pressure PI and the interfacial velocity V I . We choose

PI :=

K∑
k=2

pk and V I := v1 . (10.2.9)

In [29] it has been proven that this is an admissible choice which is in agreement with the 2nd law of
thermodynamics. A different numbering of the components would not affect the results due to relaxing
towards equilibrium.

10.2.2 Equation of state

Each component is complemented by its own equation of state (EOS) as a pure material. Here we choose
the stiffened gas model that was introduced by Harlow and Amsden [18]. It can be considered as a
combination of the perfect gas law and the barotropic Tait equation supplemented with an appropriate
energy law [37]. The corresponding thermal and caloric EOS read

pk(ρk, ek) = (γk − 1) ρk (ek − qk)− γk πk, (10.2.10)

Tk(ρk, ek) = (ek − qk − πk/ρk)/cv,k, (10.2.11)

where Tk is the temperature and the material parameters are the ratio of specific heats γk, the specific
heat at constant volume cv,k, the minimal pressure πk and the heat of formation qk. Equivalently, these
equations can be rewritten as

ek(ρk, pk) =
pk + γkπk
ρk (γk − 1)

+ qk, (10.2.12)

Tk(ρk, pk) =
pk + πk

cv,k ρk (γk − 1)
. (10.2.13)

From the equation of states we conclude by

Tkdsk = dek −
pk
ρ2
k

dρk (10.2.14)

from equilibrium thermodynamics for the specific entropy sk and the Gibbs free energy gk

sk(pk, Tk) = cv,k ln

(
T γkk

(pk + πk)γk−1

)
+ q′k, (10.2.15)

gk(pk, Tk) = ek + pk/ρk − Tksk. (10.2.16)

Here q′k is another material parameter. Furthermore the speed of sound is given by

c2k :=
∂pk
∂ρk

∣∣∣∣
sk=const

=
pk
ρ2
k

∂pk
∂ek

∣∣∣∣
ρk=const

+
∂pk
∂ρk

∣∣∣∣
ek=const

=
(pk + πk)γk

ρk
. (10.2.17)

Note that the stiffened gas EOS allows for negative pressures while pk + πk remains positive, i.e., the
system is hyperbolic.
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component γ π [Pa] cv [J/kg/K] q [J/kg] q′ [J/kg/K]
vapor (1) 1.327 0 1200 1.995000× 106 2.410× 103

water (2) 2.057 1.066× 109 3449 −1.994674× 106 3.578× 104

gas (3) 1.4 0 10100 0 0

Table 10.1: Material parameters for three component simulations, taken from [40].

component γ π [Pa] cv [J/kg/K] q [J/kg] q′ [J/kg/K]
vapor (1) 1.43 0 1040 2.03× 106 0
water (2) 2.35 109 1816 −1.167× 106 −2.3× 104

Table 10.2: Material parameters for two component simulations, taken from [40].

In particular, we are interested in the three-component model, i.e., K = 3, with water vapor (k = 1),
liquid water (k = 2) and inert gas (k = 3).

The corresponding material parameters used for the two-component and the three-component simu-
lations are listed in Table 10.1 and 10.2, respectively.

The source terms describing the mass transfer depend on the chemical potentials of the vapor and the
liquid. In the model under consideration the gas is a mixture of water vapor and some other constituent,
where both components are modeled as an ideal gas. Accordingly the chemical potential of the vapor is
given by

µ1 = g1 + (γ1 − 1)cv,1T1 ln

(
α1p1

α1p1 + α3p3

)
. (10.2.18)

In the special case of vanishing third component, i.e., α3 = 0, the chemical potential of the vapor reduces
to the vapor Gibbs free energy. The chemical potential µ2 of the liquid equals its Gibbs free energy g2,
i.e.,

µ2 = g2 .

In chemical equilibrium the chemical potentials of the vapor and the liquid equal each other. For details
see the book of Müller and Müller [26], Section 8.2.4.

10.2.3 Relaxation terms

The non-equilibrium model without relaxation terms allows for different values for velocities, pressures,
temperatures as well as chemical potentials at the same point. The relaxation mechanism described
by the source terms drives all these quantities into equilibrium. Typically it is distinguished between
mechanical and thermal relaxation processes that relax either pressures and velocities or temperatures
and chemical potentials to equilibrium.

Mechanical relaxation. The pressure relaxation implies volume variations that induce energy varia-
tions due to the interfacial pressure work. The pressure relaxation terms read

Spα,k := θp αk (pk − p), Spρ,k := 0, Spρv ,k := 0, SpρE,k := θp αk p(p− pk) , (10.2.19)

see [40] or [32] for a two-component model. By θp we denote the pressure relaxation parameter. Similarly
the velocity relaxation terms read

Svα,k = Svρ,k := 0, Svρv ,k := θv αk ρk (v − vk), SvρE,k := θv αk ρk v · (v − vk) (10.2.20)

with the velocity relaxation parameter θv. Performing velocity and pressure relaxation the fluid mixture
is in mechanical equilibrium, i.e., pk = p∞ and vk = v∞, k = 1, . . . ,K. Using the definition

p :=

K∑
k=1

αk pk, ρv :=

K∑
k=1

αk ρk vk (10.2.21)
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for the mixture pressure and mixture velocity it is obvious, that the conservation constraints (10.2.8) are
satisfied. In this context we further define the mixture density as well as the mixture total energy by

ρ :=

K∑
k=1

αk ρk, ρE :=

K∑
k=1

αk ρk Ek . (10.2.22)

Thermal relaxation. The source terms corresponding to the temperature relaxation are given by

STα,k :=
θT
κk

αk (T̂ − Tk), STρ,k := 0, STρv ,k := 0, STρE,k := θT αk (T̂ − Tk), (10.2.23)

where θT denotes the temperature relaxation parameter and the mean of the temperature is defined as

T̂ :=

K∑
k=1

αk Tk.

By the definition of T̂ the conservation constraints (10.2.8) are satisfied and at temperature equilibrium,
i.e., Tk = T∞, k = 1, . . . ,K, it coincides with the equilibrium temperature, i.e., T̂ = T∞. Note, that
T̂ has no physical meaning and other choices for T̂ are possible. The quantity T̂ is a technical one. Its
choice does not affect the equilibrium state, but the relaxation path.

The relaxation parameters κk were introduced in Zein [40] and Zein et al. [41] in case of a two-
component and a three-component model, respectively, to ensure the pressure keeping equilibrium during
the temperature relaxation.

However, in our new thermal relaxation procedure these parameters do not enter explicitly the com-
putation of the equilibrium state, cf. [30] and, thus, are not given here.

Chemical potential relaxation. Mass transfer between different phases of the same substance occurs,
whenever these phases are not in thermal equilibrium. This physical fact is the key idea to model the
mass transfer by relaxation of the chemical potentials. It is obvious, that from now on it is necessary to
identify the components. The gas phase is assumed to be a mixture of water vapor and some further gas.
Here we only consider three components, i.e., K = 3, with water vapor (k = 1), liquid water (k = 2) and
inert gas (k = 3). Thermal equilibrium is achieved, if the chemical potential of the water vapor phase
equals the Gibbs free energy of the liquid water phase. In the limit case of no inert gas the expression of
the chemical potential of the water vapor phase reduces to the Gibbs free energy, see (10.2.18). The mass
flux ṁ between the liquid and the vapor phase is driven by the difference of their chemical potentials,
i.e., ṁ = ṁ(µ1 − µ2). In particular, the mass flux vanishes if and only if the difference of the chemical
potentials is zero, i.e., µ1 = µ2.

The relaxation terms of chemical potentials are given by

Sµα,1 := θµ
ṁ

%1
, Sµρ,1 := θµ ṁ, S

µ
ρv ,1 := θµ ṁV I , S

µ
ρE,1 := θµ ṁ

(
ε1 +

V 2
I

2

)
,

Sµα,2 := θµ
ṁ

%2
, Sµρ,2 := −θµ ṁ, Sµρv ,2 := −θµ ṁV I , S

µ
ρE,2 := −θµ ṁ

(
ε2 +

V 2
I

2

)
,

Sµα,3 := −θµ ṁ
(

1

%1
+

1

%2

)
, Sµρ,3 := 0, Sµρv ,3 := 0, SµρE,3 := θµ ṁ (ε2 − ε1) , (10.2.24)

with the relaxation parameter θµ. Formulas for the parameters %1, %2, ε1, ε2 can be found in [40,42]. For
details on the physics see the book of Müller and Müller [26].

The relaxation terms (10.2.19), (10.2.20), (10.2.23), (10.2.24) are of major importance when dealing
with interface problems, see for instance Saurel and Abgrall [32] or Lallemand and Saurel [21] for mechan-
ical relaxation terms. Typically, it is assumed that pressure and velocity relax instantaneously, see [32],
whereas the thermal relaxation and the relaxation of chemical potentials are much slower, see Zein [40].
Here we are interested only in the equilibrium state that is characterized by vanishing relaxation terms
rather than the transient relaxation process itself. Since the equilibrium state does not depend on the
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order of relaxation, the relaxation parameters θξ, ξ ∈ {p, v, T, µ}, drop out and have not to be known
explicitly.

As already mentioned and as will be explained later on in Section 10.3 in our new procedure to de-
termine the thermal equilibrium state the parameters κk and εk, %k, k = 1, 2, respectively, do not enter
explicitly and, thus, are not given here. This is an important improvement to the approach proposed
in [40,42], since we avoid an additional iteration process in the relaxation procedure.
Furthermore, our modeling of the mass transfer is physically correct because we take into account chem-
ical potentials instead of Gibbs free energies. In [40,42] the Gibbs free energy is relaxed, which neglects
the effect of mixture entropy in cases of impure substances. The expression for the chemical potential is
based on the assumption that the vapor phase is modeled as an ideal gas.

10.3 Relaxation procedures

The main objective of our work is to develop new, efficient and robust relaxation procedures. For
this purpose we split the relaxation process from the fluid motion by formally performing an operator
splitting. Since the relaxation times differ for the different relaxation types, we solve the initial value
problem

dw(t)

d t
= Sξ(w(t)), t ∈ [tn, tn+1], w(tn) = w0 (10.3.1)

with Sξ = ((Sξαk)k=1,...,K−1, (S
ξ
ρ,k,S

ξ
ρv,k, S

ξ
ρE,k)k=1,...,K)T separately for each relaxation type ξ ∈ {v, p, T, µ}.

To avoid the explicit computation of the relaxation times θξ in (10.2.19), (10.2.20), (10.2.23) and
(10.2.24), we may perform the change of variables t := (tn − t)θξ and w(t) := w(t) in (10.3.1), i.e.,

dw(t)

d t
=

1

θξ
Sξ(w(t)), t ∈ [0,∆tθξ], w(0) = w0. (10.3.2)

Then by definition of the relaxation terms, the relaxation parameter cancels on the right-hand side of
(10.3.2). Since for all relaxation processes the conservation constraints (10.2.8) are satisfied we conclude
from (10.3.1) that

K∑
k=1

dαk(t)

d t
= 0,

d ρ(t)

d t
= 0,

d (ρv)(t)

d t
= 0,

d (ρE)(t)

d t
= 0. (10.3.3)

Hence, the bulk quantities for mixture density, momentum and energy as well as the saturation condition
(10.2.1) remain constant during the relaxation process and it holds

K∑
k=1

α∞k =

K∑
k=1

α0
k = 1, ρ∞ = ρ0, (ρv)∞ = (ρv)0, (ρE)∞ = (ρE)0. (10.3.4)

Furthermore, the conservation of bulk mass and momentum imply that the bulk velocity remains constant

dv

d t
= 0 (10.3.5)

and, thus, it holds

v∞ = v0. (10.3.6)

As already discussed in Section 10.2.3 we are only interested in the equilibrium state rather the transient
relaxation behavior. Therefore we assume that the relaxation process is infinitely fast, i.e., θξ → ∞
and we do not need to determine the relaxation parameters. To compute the equilibrium state, where
the source terms (10.2.19), (10.2.20), (10.2.23) and (10.2.24) vanish, we perform integration of the ODE
system to infinity. This results in a system of algebraic equations for the equilibrium state that will be
derived and solved in the subsequent sections. For ease of notation we will use w instead of w in (10.3.2).
In the following we consider one by one the different relaxation processes to equilibrium. Note that the
equilibrium state is independent of the order of the relaxation procedures.
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10.3.1 Velocity relaxation

In order to determine the equilibrium state of the velocity relaxation process we proceed similar to Saurel
and Le Métayer in [35]. The equilibrium state of the velocity relaxation process is determined by solving
the system of ODEs

dαk
d t

= 0, (10.3.7)

dαk ρk
d t

= 0, (10.3.8)

dαk ρk vk
d t

= αk ρk(v − vk), (10.3.9)

dαk ρk Ek
d t

= αk ρk v · (v − vk) (10.3.10)

resulting from (10.3.2) with the source terms (10.2.20). Since we assume that the relaxation process is
infinitely fast, the solution of the system of ODEs converges towards the equilibrium state where the
right-hand side vanishes. This holds true for

vk = v∞, t→∞. (10.3.11)

Integration of (10.3.7), (10.3.8) over [0,∞] then results in the algebraic equations

α∞k = α0
k, (10.3.12)

α∞k ρ∞k = α0
k ρ

0
k equiv. ρ∞k = ρ0

k. (10.3.13)

From the equilibrium condition (10.3.11) and (10.3.6) we conclude that

v∞k = v∞ = v0. (10.3.14)

To determine the energy at equilibrium we first observe that by (10.3.9) and (10.3.10)

dαk ρk Ek
d t

= v
dαk ρk vk

d t
. (10.3.15)

Since the bulk velocity remains constant according to (10.3.5), we obtain by integration of (10.3.15) over
[0,∞] and (10.3.14)

α∞k ρ∞k E∞k = α0
k ρ

0
k E

0
k + α0

k ρ
0
k v

0 · (v0 − v0
k) (10.3.16)

or, equivalently by (10.3.13),

E∞k = E0
k + v0 · (v0 − v0

k). (10.3.17)

Finally, we end up with the algebraic system (10.3.6), (10.3.12), (10.3.13), (10.3.14) and (10.3.17) by
which we determine the velocity equilibrium state. The procedure is summarized in the following algo-
rithm.

Algorithmus 10.3.1 (Velocity Relaxation Procedure).

1. Compute the equilibrium mixture velocity according to (10.2.21) as

v∞ =

K∑
k=1

α0
kρ

0
kv

0
k

/
K∑
k=1

α0
kρ

0
k; (10.3.18)

2. Update the velocities of the components using (10.3.14);

3. Update the specific total energies of the components using (10.3.17).

The equilibrium state coincides with the results of Saurel and Le Métayer in [35] for the two-phase
model although the derivation is slightly different considering e instead of E.
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Figure 10.1: Equilibrium states.

10.3.2 Pressure relaxation

For the pressure relaxation we may proceed similarly to [21] for two- and multi-component models.
Lallemand et al. [21] give eight different procedures based on a closure of the interfacial pressure that
become physically non-admissible for more than two components, see [29]. These procedures predict
different values for the equilibrium pressure.

The equilibrium pressure is path-depending and accordingly non-unique. In fact, there are infinitely
many equilibrium states that can be obtained by conservative pressure relaxation procedures. This can
be seen clearly in Figure 10.1 where all possible equilibrium states for the following set of initial data
are given

αG = 0.9, pG = 130000, TG = 293, pL = 50000, TL = 303.

Obviously small differences in the equilibrium volume fractions cause appreciable changes in the corre-
sponding equilibrium pressure and significant variations in the phase temperatures. Note in particular
the temperature of the vapor phase.

One of the eight approaches given in [21] is based on the following approximation of the intermediate
interfacial pressure state

p̄ ≈ p0 + p∞

2
. (10.3.19)

In [17] we give a procedure in case of a K component mixture using a physically admissible closure of
the interfacial pressure resulting in a polynomial of degree K. However, for large pressure differences
between the initial pressure and the equilibrium pressure the approximation (10.3.19) may cause stability
problems resulting in very small CFL numbers. These instabilities are induced by the non-uniqueness
of the equilibrium state. Small differences in the equilibrium pressure and in the corresponding volume
fractions may cause large variations of the phase temperatures.

Alternatively, uniqueness can be enforced by the additional condition of temperature equilibrium. For
this purpose we suggest to simultaneously relax pressure and temperature and, thus, determine a unique
equilibrium pressure by avoiding iteration processes. This results in an efficient and stable procedure.
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10.3.3 Simultaneous pressure-temperature relaxation

For the pressure-temperature relaxation process we have to solve the system of ODEs

dαk
d t

=
θT
θp
αk (pk − p)+

αk
κk

(T̂ − Tk), (10.3.20)

dαk ρk
d t

= 0, (10.3.21)

dαk ρk vk
d t

= 0, (10.3.22)

dαk ρk Ek
d t

=
θT
θp
αk p(p− pk)+αk (T̂ − Tk), (10.3.23)

resulting from (10.3.2) with the source terms (10.2.23). Since we assume that the relaxation process is
infinitely fast, the solution of the system of ODEs converges towards the equilibrium state where the
right-hand side vanishes. This holds true for

p∞k = p∞, T∞k = T∞, t→∞. (10.3.24)

Note that we also impose pressure equilibrium.
Again, equations (10.3.21), (10.3.22) and (10.3.23) entail conservation of mass, momentum and bulk

energy, i.e.,

α∞k ρ
∞
k = α0

kρ
0
k, (10.3.25)

v∞k = v0
k, (10.3.26)

K∑
k=1

(αkρkek)∞ =

K∑
k=1

(αkρkek)0. (10.3.27)

Due to the mass conservation (10.3.25) and the equation of state (10.2.12) the latter is equivalent to

K∑
k=1

α∞k
p∞k + γkπk

(γk − 1)
=

K∑
k=1

α0
k

p0
k + γkπk
(γk − 1)

=: Λ. (10.3.28)

The temperature equilibrium (10.3.24) implies T∞k = T∞k0
for all phases k, where we fix an arbitrary

phase k0 to be specified below. Since we also assume pressure equilibrium, i.e., p∞k = p∞, we conclude
together with the equation of state (10.2.13) that

α∞k = α∞k0

ak
ak0

p∞ + πk0

p∞ + πk
with ak := cv,k(γk − 1)α0

kρ
0
k. (10.3.29)

Then the saturation condition (10.2.1) yields

α∞k0
=

(
K∑
k=1

ak
ak0

p∞ + πk0

p∞ + πk

)−1

(10.3.30)

We now substitute α∞k in (10.3.28) by (10.3.29) and replace α∞k0
by (10.3.30). For ease of representation

we introduce the sets

E := {k : πk = πk0
, k ∈ {1, . . . ,K}}, N := {k : πk 6= πk0

, k ∈ {1, . . . ,K}}. (10.3.31)

Together with the assumption of pressure equilibrium (10.3.24) we finally obtain after some algebraic
manipulations ∑

k∈E

ak
ak0

(
p∞ + γkπk
γk − 1

− Λ

) ∏
l∈N

(p∞ + πl) + (10.3.32)

∑
k∈N

ak
ak0

(
p∞ + γkπk
γk − 1

− Λ

)
(p∞ + πk0

)
∏

l∈N ,l 6=k

(p∞ + πl) = 0.
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Hence, the equilibrium pressure p∞ is characterized as the root of a polynomial of degree #N + 1. By
the conditions α∞k ∈ (0, 1) and p∞ > 0 we may single out the unique physically admissible solution
as we will do for some models at the end of this section. To reduce the number of roots we therefore
recommend that the index k0 should be chosen such that the cardinality of N is smallest. In particular,
if all πk coincide, then we may compute p∞ directly as

p∞ =

K∑
k=1

ak
ak0

(
Λ− γkπk

γk − 1

)( K∑
k=1

ak
ak0

1

γk − 1

)−1

. (10.3.33)

Another special case is the three-component model composed of water vapor, liquid water and gas, see
Section 10.2.3 and Table 10.1 where in particular π1 = π3 ≡ π1,3 and, thus, equation (10.3.32) becomes a
quadratic rather than a cubic polynomial in p∞. Choosing k0 = 1 and multiplying (10.3.32) by ak0

= a1

we obtain
A (p∞)2 +B p∞ + C = 0, (10.3.34)

where the coefficients are determined by

A :=

3∑
k=1

ak
γk − 1

,

B := a1

(
γ1π1,3 + π2

γ1 − 1
− Λ

)
+ a2

(
γ2π2 + π1,3

γ2 − 1
− Λ

)
+ a3

(
γ3π1,3 + π2

γ3 − 1
− Λ

)
,

C := a1π2

(
γ1π1,3

γ1 − 1
− Λ

)
+ a2π1,3

(
γ2π2

γ2 − 1
− Λ

)
+ a3π2

(
γ3π1,3

γ3 − 1
− Λ

)
.

Note that the equilibrium temperature T∞ may be directly computed from the equilibrium pressure.
Starting from the equation of state (10.2.13) we first employ mass conservation (10.3.25) and replace α∞k
by (10.3.29) and (10.3.30). Finally we obtain together with (10.3.30)

T∞k =

(
K∑
l=1

al
p∞ + πl

)−1

= T∞ (10.3.35)

After having determined p∞, the volume fractions α∞k0
and α∞k , k 6= k0, can be computed by (10.3.30) and

(10.3.29), respectively. Then the mass conservation (10.3.25) provides us with ρ∞k . Finally we compute
the internal energies e∞k according to the equation of state (10.2.12).

For convenience of the reader we summarize the relaxation procedure in the following algorithm.

Algorithmus 10.3.2 (Pressure and Temperature Relaxation Procedure).
Determine the index k0 such that the cardinality of the set N is smallest.

1. Compute Λ and a∞k , k = 1, . . . ,K, by (10.3.28) and (10.3.29), respectively;

2. Determine the roots of the polynomial (10.3.32);

3. For each root i = 1, . . . ,#N + 1 determine α∞,ik , k = 1, . . . ,K, from (10.3.30) and (10.3.29);

4. Single out the unique physically admissible solution by verifying the conditions α∞,ik ∈ (0, 1) and
p∞,i > 0 for all k = 1, . . . ,K;

5. By means of this solution compute the equilibrium temperature using (10.3.35);

6. Update the partial densities ρ∞k and partial energies e∞k using (10.3.25) and (10.2.12), respectively.

For special cases we can prove the existence and uniqueness of admissible equilibrium states, see Step
4 in the above algorithm.

Theorem 10.3.1 (Positivity of equilibrium pressure and temperature).
For all of the three cases (1) two components with π2 6= π1 = 0, (2) three components with π1 = π2 6= π3

and (3) K components with π1 = . . . = πK there exist unique equilibrium pressure and equilibrium
temperature with p∞ > 0 and T∞ > 0.
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Proof :
Case 1: In this case π2 6= π1 = 0. There exist two roots of (10.3.34) with a3 = 0 because A =
a1/(γ1 − 1) + a2/(γ2 − 1) > 0 and C = −a1Λπ2 < 0. The only admissible solution is

p∞ = − B

2A
+

√
B2

4A2
− C

A
> 0. (10.3.36)

From (10.3.30) and (10.3.35) we then conclude

α∞1 =
a1(p∞ + π2)

(a1 + a2)p∞ + a1π2
= 1− α∞1 ∈ [0, 1], T∞ =

p∞(p∞ + π2)

(a1 + a2)p∞ + a1π2
> 0.

Case 2: In this case we assume that π1 = π2 6= π3. Then we observe that again A > 0 and C < 0 in
(10.3.34) and thus (10.3.36) is the only admissible root. From (10.3.30), (10.3.29) and (10.3.35) we then
conclude α1 ∈ [0, 1], α2, α2 > 0 and T∞ > 0.

Case 3: In this case there only exists one root of (10.3.32) given by (10.3.33). Equations (10.3.28)
and (10.3.29) imply that the equilibrium pressure is positive. Accordingly, the equilibrium temperature
given by (10.3.35) is positive. 2

It is worthwhile mentioning that in [23] Le Métayer et al. also develop a simultaneous pressure-
temperature relaxation. However, their relaxation requires an iterative procedure to determine the
pressure-temperature equilibrium whereas we derive an explicit expression for the equilibrium state.
Moreover, they do not prove existence and uniqueness of the equilibrium state as well as physical admis-
sibility. To the best of our knowledge no positivity results have been reported so far in the literature for
the equilibrium temperature.

10.3.4 Relaxation of chemical potentials

The equilibrium state of the chemical potential relaxation process is determined by solving the system
of ODEs

dαk
d t

=
ṁ

%k
, k = 1, 2,

d α3

d t
= −ṁ

(
1

%1
+

1

%2

)
, (10.3.37)

dαk ρk
d t

= (−1)k+1ṁ, k = 1, 2,
d α3 ρ3

d t
= 0, (10.3.38)

dαk ρk vk
d t

= (−1)k+1ṁV I , k = 1, 2,
d α3 ρ3 v3

d t
= 0, (10.3.39)

dαk ρk Ek
d t

= (−1)k+1ṁ

(
εk +

V 2
I

2

)
, k = 1, 2,

d α3 ρ3E3

d t
= ṁ (ε2 − ε1) (10.3.40)

resulting from (10.3.2) with the source terms (10.2.24). Again we assume that the relaxation process
is infinitely fast such that the solution of the system of ODEs converges towards the equilibrium state,
where the right-hand side vanishes. According to [40,42] this holds true for

p∞1 = p∞2 = p∞3 = p∞, t→∞, (10.3.41)

T∞1 = T∞2 = T∞3 = T∞, t→∞, (10.3.42)

µ∞1 = g∞2 , t→∞. (10.3.43)

Note that due to these equilibrium conditions the muss flux ṁ vanishes at equilibrium and, thus, the
right-hand sides in (10.3.37), (10.3.38), (10.3.39) and (10.3.40) become zero. Obviously, the equations
(10.3.37) are in agreement with the saturation condition (10.2.1), i.e.,

α∞1 + α∞2 + α∞3 = 1. (10.3.44)

In the following we start with relaxed values for velocity, pressure and temperature obtained by the
previous mechanical and thermal relaxation procedures described in Section 10.3.1 and 10.3.3 and, thus,
it holds

p0
1 = p0

2 = p0
3, T 0

1 = T 0
2 = T 0

3 , v0
1 = v0

2 = v0
3. (10.3.45)
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During the chemical relaxation procedure we now assume that mechanical and thermal equilibrium is
maintained but the corresponding equilibrium values may change. Due to conservation of total mass and
total momentum it is obvious that the equilibrium velocity does not change, i.e.,

v∞ = v∞k = v0
k = v0, k = 1, 2, 3. (10.3.46)

The mass equations (10.3.38) induce

α∞3 ρ
∞
3 = α0

3ρ
0
3, (10.3.47)

α∞1 ρ
∞
1 + α∞2 ρ

∞
2 = α0

1ρ
0
1 + α0

2ρ
0
2 =: W . (10.3.48)

Then we conclude with (10.3.40) that

3∑
k=1

α∞k ρ
∞
k e
∞
k =

3∑
k=1

α0
kρ

0
ke

0
k=: E . (10.3.49)

Motivated by the equilibrium condition (10.3.43) the aim is now to derive a function

fµ(α1ρ1) := µ∞1 (α1ρ1)− g∞2 (α1ρ1) (10.3.50)

depending only on the product α1ρ1 such that the root α∞1 ρ
∞
1 is the solution for the relaxed mass density

for the first component. For this purpose we have to express α∞1 , α∞2 , T∞ and p∞ in terms of α∞1 ρ
∞
1 .

Then the chemical potential for water vapor µ2 and the Gibbs free energies gk, k = 1, 2, see Section
10.2.2, can be written as

µ∞1 (α1ρ1) = g∞1 (α1ρ1) + (γ1 − 1)cv,1T
∞(α1ρ1) ln

(
α1(α1ρ1)

1− α2(α1ρ1)

)
, (10.3.51)

g∞k (α1ρ1) = (cv,kγk − q′k)T∞(α1ρ1)− cv,kγkT∞(α1ρ1) ln(T∞(α1ρ1)) +

T∞(α1ρ1)cv,k(γk − 1) ln(p∞(α1ρ1) + πk) + qk. (10.3.52)

Note that a root of (10.3.50) may not exist. Beside the existence of an equilibrium solution the water
vapor may completely condensate or the liquid water may completely evaporate. Therefore in a first
step one has to figure out, which of the four cases occurs:

(i-a) condensation process with equilibrium solution,

(i-b) total condensation,

(ii-a) evaporation process with equilibrium solution,

(ii-b) total evaporation.

In case (i-b) and (ii-b) the result can be directly obtained. In the cases (i-a) and (ii-a) a bisection method
is provided to find the equilibrium state. Due to the fact that the pressure-temperature relaxation
method is simple and always gives a unique, physical solution, we base the bisection method to find the
equilibrium state on the temperature relaxation procedure.

According to thermodynamics a condensation process and an evaporation process are characterized
by a positive or negative sign of µ1−g2, respectively. Thus, using the data from the pressure-temperature
relaxation procedure we may identify condensation and evaporation processes.

Condensation. If a condensation process is identified by µ1 − g2 > 0 the expression α0
1ρ

0
1 is too

large and α1ρ1 has to decrease. The smallest admissible value for this expression is α∗1ρ
∗
1 = tol > 0. This

means that all water vapor has condensated except a small amount due to numerical reasons. Using
the pressure-temperature relaxation procedure according to Section 10.3.3 with α∗1ρ

∗
1 instead of α0

1ρ
0
1 we

determine the corresponding values for all variables of the phases. Using these data one has to check the
sign of the difference of the chemical potentials. If still µ1 − g2 ≥ 0 holds, then total condensation will
occur. We keep α∗1ρ

∗
1 = tol > 0 and the corresponding data. Otherwise the interval [α∗1ρ

∗
1 = tol, α0

1ρ
0
1] is

admissible for the bisection method.
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Evaporation. If an evaporation process is identified by µ1− g2 < 0 the expression α0
1ρ

0
1 is too small

and α1ρ1 has to increase. Because of (10.3.48) we have the bound α∗1ρ
∗
1 ≤ W . Moreover, we have to

guarantee that

E − α1ρ1q1 −Wq2 + α1ρ1q2 =

3∑
k=1

αk
p+ γkπk
γk − 1

≥ 0 .

Here the left-hand side is derived from (10.3.49) where we plug in (10.3.48) and (10.2.12) and use π1 = 0
and q3 = 0. Thus we conclude

α∗1ρ
∗
1 = min

{
W − tol, E −Wq2

q1 − q2

}
.

Again using the pressure-temperature relaxation procedure according to Section 10.3.3 with α∗1ρ
∗
1 instead

of α0
1ρ

0
1 we find the corresponding values for all variables of the phases. Using these data one has to check

the sign of the difference of the chemical potentials. If still µ1 − g2 ≤ 0 holds, then total evaporation
will occur. We keep α∗1ρ

∗
1 = tol > 0 and the corresponding data. Otherwise the interval [α0

1ρ
0
1, α
∗
1ρ
∗
1] is

admissible for the bisection method.

Again, we summarize the relaxation procedure in the following algorithm.

Algorithmus 10.3.3 (Chemical Relaxation Procedure).

1. Identify condensation or evaporation processes (i) or (ii) by the sign of µ1 − g2;

2. Check, whether an equilibrium solution exists; this leads to four possible cases (i-a), (i-b), (ii-a),
(ii-b):

• if (i-a): Apply the bisection method to find the root α1ρ1 of (10.3.50) in the interval [α∗1ρ
∗
1 =

tol, α0
1ρ

0
1] and perform pressure-temperature relaxation with α1ρ1, see Alg. 10.3.2;

• if (i-b): Apply the pressure-temperature relaxation procedure, see Alg. 10.3.2, to α∗1ρ
∗
1 = tol;

• if (ii-a): Apply the bisection method to find the root α1ρ1 of (10.3.50) in the interval [α0
1ρ

0
1, α
∗
1ρ
∗
1]

with α∗1ρ
∗
1 = min

{
W − tol, E−Wq2

q1−q2

}
and perform pressure-temperature relaxation, see Alg. 10.3.2,

with α1ρ1;

• if (ii-b): Apply the pressure-temperature relaxation procedure, see Alg. 10.3.2, to α∗1ρ
∗
1 =

W − tol.

A direct consequence of the algorithm is the following theorem.

Theorem 10.3.2. The chemical relaxation procedure given by Alg. 10.3.3 provides a unique solution.
In particular, the resulting states for the equilibrium pressure and equilibrium temperature are positive.

The above relaxation procedure can be considered as an essential improvement of the original one
presented in [40, 42] due to the following aspects: In the original procedure the Gibbs free energies are
relaxed, i.e., the influence of the mixture entropy, which is described by the difference of the chemical
potential and the Gibbs free energy of the vapor phase, is neglected. This extra term cancels in pure
phases. Moreover, in the original procedure a nested iteration method was used. We now reduce the
numerical costs significantly by simplifying the equilibrium system to a scalar equation depending only on
α1ρ1 that has to be solved by a single iteration process. Thus, the computational costs are significantly
reduced, see Section 10.5.

Finally we point out that in complete analogy the above procedure can also be applied to mixtures
with an arbitrary number of additional inert ideal gases.

10.3.5 Application of relaxation procedures

We conclude the section on the relaxation to equilibrium by some remarks on (i) the order of performing
the relaxation procedures and (ii) where to apply them.
From a physical point of view the equilibrium state should not depend on the order of the relaxation
processes. For instance, performing relaxation of the chemical potentials does not require to perform
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mechanical and thermal relaxation before. According to (10.3.41) and (10.3.42) pressures and tempera-
tures are relaxed to equilibrium together with the mass. On the other hand, the equilibrium velocity is
not changed by neither of the other relaxation procedures and vice versa as becomes obvious from the
definition (10.2.19), (10.2.20), (10.2.23) and (10.2.24) of the relaxation terms. However, from a numer-
ical point of view performing the latter relaxation procedures will provide a better initial guess for the
bisection method involved in performing the mass transfer.
For the same reasons we do not have to perform pressure relaxation first when performing temperature
relaxation without accounting for mass transfer, see Section 10.3.3, because the pressures are relaxed
simultaneously to equilibrium together with the temperatures according to (10.3.24).

Since by both the thermal and the chemical relaxation procedure we also relax the pressures simul-
taneously there is no need to perform the pressure relaxation, see Section 10.3.2. The advantage is
twofold: First of all, for our three-component model we do not have to compute the roots of a cubic
polynomial but the quadratic polynomial (10.3.34) where the admissible root can be singled out a priori.
Furthermore, we avoid the approximation step (10.3.19) as usually performed, cf. [23,30,41,42], that can
cause instabilities in case of strong non-equilibrium, i.e., the differences p0

k − p∞ are large. In particular,
we observe that by the pressure relaxation small oscillations may be triggered that spoil significantly
the performance of locally adaptive computations due to denser grids. Consequently, the computational
costs of our computations could be significantly reduced.

Furthermore we strongly recommend that temperature relaxation should always be accounted for
in the computations. We performed investigations for a spherical bubble collapse not reported here. It
turned out that without temperature relaxation unphysically high temperatures for water vapor and inert
gas may occur in the order of 100000 K. This caused high sound speeds that triggered very small time
steps due to the CFL number restriction. When performing the same computation with temperature
relaxation, the equilibrium temperatures stayed in a physically admissible range and the computations
run much faster because the CFL number was moderate and the time steps did not become as small as
before.

Finally, we note that after each evolution step the phases may be in non-equilibrium. Therefore
the relaxation procedures have to be performed in each cell of the computational domain, see Section
10.4. In [40] an interfacial region or a mixture zone has been introduced to avoid unphysical nucleation
or cavitation. In Section 10.5.2 we will verify that these do not occur in our model due to the sign
of the difference of the chemical potentials. On the other hand, the model is able to describe physical
cavitation by expansion. For this reason we avoid introducing an artificial interfacial region to avoid
numerical instabilities.

10.4 Discretization

For a condensed presentation of the discretization it is convenient to rewrite the system (10.2.2), (10.2.3),
(10.2.4) and (10.2.6) in matrix-vector representation

∂t αk + V I · ∇αk = Sα,k(w), k = 1, . . . ,K − 1, (10.4.1)

∂t uk +∇ · (fk(αk,uk)) = H(w)∇αk + Su,k(w), k = 1, . . . ,K, (10.4.2)

where we make use of the convention (10.2.7). This forms a coupled system for the volume fractions
α := (α1, . . . , αK−1)T and the vectors uk of the conserved quantities of phase k = 1, . . . ,K. These are
condensed in the vector w := (αT ,uT1 , . . . ,u

T
K)T , where the field fk := (fk,1, . . . ,fk,d) of the fluxes in

the ith coordinate direction and the vector of relaxation terms Su,k corresponding to uk as well as the
matrices H are defined by

uk :=

 αk ρk
αk ρk vk
αk ρk Ek

 , fk,i :=

 αk ρkvk,i
αk ρkvk,i vk + αk pkei
αk ρkvk,i (Ek + pk/ρk)

 , (10.4.3)

H :=

 0T

PIId×d
PIV

T
I

 , Su,k :=

 Sρ,k
Sρv ,k
SρE,k

 . (10.4.4)
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Here ei ∈ Rd and Id×d ∈ Rd×d denote the ith unit vector and the identity matrix in Rd and Rd×d,
respectively. Note that because of the choice (10.2.9) of the interfacial pressure PI and interfacial
velocity V I , the fluid equations of all phases are coupled, i.e., PI = PI(w), V I = V I(w), whereas the
left-hand side of (10.4.2) only depends on wk := (αk,u

T
k )T . Again note that for k = K we make use of

the convention (10.2.7).
Following [32] we do not discretize the coupled system (10.4.1) and (10.4.2) but perform an operator

splitting according to Godunov or Strang, see [38,39], resulting in the system of equations of fluid motion

∂t αk + V I · ∇αk = 0, k = 1, . . . ,K − 1, (10.4.5)

∂t uk +∇ · (fk(αk,uk)) = H(w)∇αk, k = 1, . . . ,K, (10.4.6)

and the system of relaxation

dαk
d t

= Sα,k(w), k = 1, . . . ,K − 1, (10.4.7)

duk
d t

= Su,k(w), k = 1, . . . ,K. (10.4.8)

Note that the differential equation (10.4.5), (10.4.6) describes a variation in time and space, whereas the
system (10.4.7), (10.4.8) is an evolution in time only although the state w depends on both time and
space. Therefore we use different symbols for the differentiation.

In each time step we thus perform alternately the evolution of the fluid and the new relaxation process.
Since our interest is in equilibrium processes we replace the transient relaxation procedure (10.4.7) and
(10.4.8) by the relaxation procedures introduced in Section 10.3. The discretization of the fluid system
(10.4.5) and (10.4.6) is briefly summarized for the convenience of the reader.

A finite volume scheme is applied to the fluid equations (10.4.6). Due to the non-conservative term
on the right-hand side this discretization is linked to the discretization of the non-conservative evolution
equation (10.4.5) for the volume fractions. In order to avoid oscillations in the pressures and velocities
at the phase interface Saurel and Abgrall [32] suggest to use a special upwind discretization of (10.4.5)
that preserves homogeneous pressure and velocity fields. Let be {Vi}i the spatial discretization of the
computational domain Ω ⊂ Rd and {tn}n≥0 the temporal discretization which for ease of representation
is assumed to be uniform, i.e., tn+1 = tn + ∆t. Then the resulting scheme reads

(αk)n+1
i =(αk)ni −

∆t

|Vi|
∑

j∈N(i)

|Γij | (V I)ij · (∇αk)nij , (10.4.9)

(uk)n+1
i =(uk)ni −

∆t

|Vi|
∑

j∈N(i)

|Γij |Gn
ij , (10.4.10)

where the fluxes Gn
ij and the gradients of the volume fractions in normal direction are determined by

Gn
ij := F k(wn

ij ,w
n
ji,nij)−H(wij)(∇αk)nij , (10.4.11)

(∇αk)nij := ((αk)ij − (αk)ni )nij , (10.4.12)

and |Vi| and |Γij | denote the volume and the interface area of the cell Vi and the cell interface Γij ,
respectively. Here the quantities (αl)ij , (V I)ij and wij are determined by the solution of a Riemann
problem at the cell interface Γij evaluated |Γ| from the interior of the cell Vi. For details on the derivation
we refer to Appendix A in [17].

At each cell interface Γij of cell Vi with a neighbor cell Vj , j ∈ N(i), a numerical flux in outer normal
direction nij to the cell interface is computed in two steps:

(i) In each of the two neighboring cells a quasi-one-dimensional 2nd order ENO reconstruction of the
primitive variables (ρk,vk, pk) with van Leer limiter and the volume fractions αk is computed for all
components to determine two states wn

ij , w
n
ji left and right of the cell interface. Note that for the

volume fractions we switch to 1st order reconstruction whenever the higher order reconstruction
of the volume fractions lies outside a tolerance range [αTol, 1 − αTol] with αTol = 10−18 in our
computations.
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(ii) A multi-phase multi-component Riemann problem determined by wn
ij , w

n
ji is approximately solved

using an HLLC-type Riemann solver, see Appendix B in [17], providing us with an intermediate
state w := (αT ,uT1 , . . . ,u

T
k )T at the cell interface by which we evaluate the flux at the cell interface

in normal direction n, i.e,

F k(wn
ij ,w

n
ji,nij) :=

d∑
l=1

fk,l(w(wn
ij ,w

n
ji)) (nij)l. (10.4.13)

Note that the intermediate state also enters the approximation (10.4.9) of the volume fractions and
their gradients (10.4.12). In principle, any numerical flux is admissible that is consistent with the
flux, i.e.,

F k(w,w,n) =

d∑
i=1

fk,i(αk,uk)ni, ∀w = (αT ,uT1 , . . . ,u
T
K)T , (10.4.14)∑

j∈N(i)

|Γij |nij = 0. (10.4.15)

Finally, we remark that in order to use the multi-component model also in absence of one or several
components, the fluid must be modeled as a mixture of all components in the entire computational
domain. Therefore the fluid contains at least a negligible amount of each fluid. Thus we require αk ≥ ε
for the initial data. This is common practice, see for instance [3, 7, 21,32]. In [7] ε is chosen to be 10−6,
in [3] ε = 10−8. In our computation we mostly choose ε = 10−8, see also Section 10.3.4.

During the computation αk may become smaller. In that case αk often is set to ε. However, this
leads to the violation of conservation of mass, momentum and energy. We avoid this by allowing smaller
values for αk. To guarantee that αk always stays positive, we terminate the computation whenever αk
drops below a tolerance value of 10−18 that never happened in our computations.

Finally, the efficiency of the scheme is improved by local grid adaption where we employ the multi-
resolution concept based on biorthogonal wavelets. The key idea is to perform a multi-resolution analysis
on a sequence of nested grids providing a decomposition of the data on a coarse scale and a sequence
of details that encode the difference of approximations on subsequent resolution levels. The detail
coefficients become small when the underlying data are locally smooth and, hence, can be discarded
when dropping below a threshold value εthresh. By means of the thresholded sequence a new, locally
refined grid is determined. Details on this concept can be found in [27,28].

10.5 Numerical results

By means of several numerical computations using our new relaxation procedures we want to (i) validate
their reliability, the efficiency and robustness, (ii) verify that they can deal with physical cavitation and
(iii) apply them for the investigation of complex 2D problems.

10.5.1 Validation

For the validation we consider different configurations summarized in the following.
Test case C1: water liquid–vapor expansion tube problem. This configuration is a benchmark problem

taken from Zein [40] that has been originally proposed in [36]. It is a two-component 1d-Riemann
problem given by the initial data summarized in Table 10.3. Note that the vapor density has not been
given in [36, 40]. Here we choose the vapor density determined by the pressure and temperature of the
liquid. For this problem we use the material parameters given in Table 10.2. The computations for this
configuration are performed with velocity and temperature relaxation.

Test case C2: Vapor–liquid–gas expansion and compression problem. To investigate cavitation phe-
nomena we consider two 1d-Riemann problems: an expansion problem (C2a) and a compression problem
(C2b) for a three-component fluid. The data are listed in Table 10.4 with material parameters given
in Table 10.1. The computations for these configurations are performed with all relaxation processes:
velocity, temperature and chemical relaxation.
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αvapor ρvapor ρwater p [bar] vleft [m/s] vright [m/s]
0.01 0.63 1150 100000 -2 +2

Table 10.3: Initial data for Riemann problem: water liquid–vapor expansion tube problem (C1).

αvapor αwater p [bar] T [K] vleft [m/s] vright [m/s]
C2a ε 1− 2ε 1 293 -10 +10
C2b ε 1− 2ε 1 293 +10 -10

Table 10.4: Initial data for Riemann problems: vapor–liquid–gas expansion problem (C2a) and compres-
sion problem (C2b) with ε = 10−8.

Grid convergence. Due to the lack of exact solutions we present here a grid convergence study for the
validation of our code. For this purpose we consider the water liquid – vapor expansion tube problem
(C1). The solution has been computed at time t = 3.2ms on the domain Ω = [0, 1] discretized by
5× 2L cells performing L = 6, . . . , 12 uniform refinements and time discretization using a CFL number
of 0.9. The performance of the computations is listed in Table 10.5 (left). In Figure 10.2 we show

L CPU (sec) # cells # steps
6 6 320 1629
7 20 640 3258
8 82 1280 6516
9 331 2560 13031

10 1274 5120 26062
11 5029 10240 52123
12 20493 20480 104245

L CPU (sec) # cells # steps speed up
6 3 184 1628 1.7
7 7 248 3255 2.8
8 20 340 6509 4.0
9 50 527 13017 6.7

10 137 742 26029 9.3
11 382 964 52053 13.2
12 3193 1514 104101 20.0

Table 10.5: Water liquid–vapor expansion tube problem (C1): performance for computations with tem-
perature relaxation for uniform (left) and adaptive (εthresh = 10−4) (right) discretization.

the convergence behavior for the mixture pressure, the mixture velocity, the mixture density and the
vapor volume fraction. We observe that with increasing resolution the leading and trailing front of the
rarefaction fans become less smeared and finally a sharp kink is reproduced. The solution is in agreement
with the one presented in Zein [40], Figure 3.7.

For the vapor–liquid–gas expansion problem (C2a) we perform a similar grid convergence study. The
solution has been computed at time t = 0.2ms on the domain Ω = [0, 1] discretized by 5 × 2L cells
performing L = 6, . . . , 12 uniform refinements and time discretization using a CFL number of 0.9. The
performance of the computations is listed in Table 10.6 (left). In Figure 10.3 we show the convergence
behavior for the mixture pressure, the mixture velocity, the mixture density and the vapor volume
fraction. The convergence behavior is similar to the test case (C1).

Robustness and efficiency of temperature relaxation. For the water liquid–vapor expansion
tube problem (C1) computational times are given in [40]: the CPU time was 14.772 hours (4 core AMD
Opteron(tm) 2218, 2.6 GHz, 32 GB Ram) for performing 763,550 time steps were performed on a uniform
grid with 5000 cells. In comparison to our uniform computation (4 core AMD Opteron 8356, 2.3 GHz,
256 GB Ram) for L = 10 (5120 cells) this is a speed up of 41.7. The number of time steps is reduced
by 29.3. Note that the AMD Opteron 8356 is 4–5 times faster than the AMD Opteron(tm) 2218. There
are mainly two reasons for the significant speed up:

(i) It is mentioned in [40], p. 74, that “...this test case requires a small time step to obtain a stable
solution ... indicating that there is a stiffness coming from the relaxation”. Therefore he used a
CFL number of 0.03 that is 30 times smaller than we used for our computations. This clearly
indicates that our new temperature relaxation procedure is significantly more robust.
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(a) Mixture pressure. (b) Mixture velocity.

(c) Mixture density (d) Vapor volume fraction

Figure 10.2: Water liquid–vapor expansion tube problem (C1): convergence study.

(ii) In our new temperature relaxation procedure we avoid an iterative process. Instead we perform an
explicit computation of the equilibrium state. We point out that we perform temperature relaxation
in all cells whereas Zein applies the temperature relaxation only at the phase interface.

Furthermore, the computations are significantly accelerated using local grid adaptation. For this
purpose we also performed the parameter study with multi-resolution based adaptation using a constant
threshold value of 10−4, see Table 10.5 (right). As can be observed in Table 10.5 the speed up between
uniform and adaptive computation is increasing with higher number of refinement level L. For configu-
ration (C2a) the grid adaptation does not perform as good and the speed up of about 4 is moderate, see
Table 10.6.

Robustness and efficiency of chemical relaxation. The most important speedup is achieved by
our new relaxation procedure driving the chemical potentials into equilibrium. To our knowledge the only
numerical results accounting for chemical relaxation in a three-component model have been reported in
[42]. There a spherically symmetric cavitation bubble is considered with initial radius R = 0.75mm. The
initial data are summarized in Table 10.7. Due to the high computational cost Zein et al. used reduced
models to simulate three-component flows, see [42]. Nevertheless, the simulation of a collapsing cavitation
bubble (t = 150µs, 66000 cells) took about two months on the system 4 core AMD Opteron(tm) 2218,
2.6 GHz, 32 GB Ram. Using our improved numerical method including the new relaxation procedures
and local grid adaptation the computational time is reduced to at most 60 CPU hours on the system
84 core AMD Opteron 8356, 2.3 GHz, 256 GB Ram, although the full model is considered and the
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L CPU (sec) # cells # steps
6 1 320 107
7 5 640 213
8 19 1280 425
9 73 5120 849

10 293 5120 1698
11 1109 10240 3396
12 4374 20480 6792

L CPU (sec) # cells # steps speed up
6 1 214 107 1.6
7 2 342 213 2.4
8 7 604 425 2.7
9 24 1234 849 3.0

10 86 2256 1698 3.4
11 290 4068 3396 3.8
12 1017 7674 6792 4.3

Table 10.6: Vapor–liquid–gas expansion problem (C2a): performance for computations with temperature
relaxation for uniform (left) and adaptive (εthresh = 10−4) (right) discretization.

αvapor αgas T p v
inside the bubble 1− εI − αgas 0.1 293 2339 0
outside εO εO 293 100000 0

Table 10.7: Initial data for cavitation bubble with εI = 10−8, εO = 10−6

.

computations have been performed on a four times larger computational domain for a longer time period
(t = 240µs) with higher local resolution. For details on the numerical discretization see [17]. Note,
that the simplification in [42] of relaxing Gibbs free energies leads to slightly different (physically wrong)
equilibrium states, what is also avoided in our new procedure.

10.5.2 Physical cavitation

Cavitation induced by expansion is a frequently investigated problem in the literature. For instance,
in [41] an expansion tube filled with liquid water is investigated. For numerical reasons it is necessary
that some amount of vapor exists initially. In [41] a large initial vapor volume fraction, αvapor = 0.01,
was necessary due to the definition of an interfacial region and the constraints for the thermal relaxation
procedures. Here we use αvapor = 10−8. Although the vapor volume fraction may decrease during the
computation it always stays positive. This also holds true for all phases that may be initialized by a
small value. Furthermore, we avoid to introduce technical parameters, e.g., the definition of an interfacial
region or a tolerance range [ε, 1−ε] for the volume fractions. These may trigger oscillations and unphysical
phenomena in the solution, e.g. wave splitting. In the worst case these effects lead to a breakdown of the
simulation. Nevertheless, we are able to simulate cavitation without causing unphysical cavitation. For
illustration we consider two symmetric examples where the pressure, velocity and temperature of each
component is in equilibrium. The volume fractions as well as the pressure and the velocity are constant,
whereas the velocity exhibits a discontinuity. The fluid consists of almost pure liquid water perturbed
by a small amount ε = 10−8 of the other components. The parameters are listed in Table 10.4.

For all our computations, the computational domain is Ω = [0, 1] m, where for boundary conditions
we set the initial left and right state, respectively. The initial jump is located at x = 0.5 m. The
domain is discretized by N0 = 5 cells on coarsest level and successively refined using L = 10 refinement
levels. The threshold value is set to εthresh = 10−4. The temporal discretization is adjusted during the
computation by a fixed CFL number of 0.5. The computations terminate at the final time T = 2× 10−4

s.

In test case (C2a) the almost pure liquid water phase is expanded and the pressure drops. This leads
to cavitation, i.e., water vapor is created due to the phase transition where mass is transferred from
liquid water to water vapor, see Figure 10.4. Thus we can simulate cavitation without having initialized
a significant amount of water vapor.

Next we present the results for test case (C2b), see Figure 10.5. The liquid phase is now compressed.
The water volume fraction remains constant, i.e., no unphysical cavitation occurs. This confirms that
we do not have to introduce an interfacial region but may perform relaxation of chemical potentials
throughout the computational domain.
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(a) Mixture pressure. (b) Mixture velocity.

(c) Mixture density (d) Vapor volume fraction

Figure 10.3: Vapor–liquid–gas expansion problem (C2a): convergence study.

Figure 10.4: Test case (C2a): Pressure and velocity (left), volume fractions (middle) and temperature
(right).

10.5.3 Application: 2d-shock-bubble interaction

For a multi-dimensional application we consider the interaction of a collapsing bubble with a planar
shock wave. This problem is important for medical applications such as shock wave lithotripsy, as
well as from a more fundamental point of view because bubbles in a cloud are exposed to the collapse
shock waves of neighboring bubbles. This problem has been investigated both by so-called lithotripter
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Figure 10.5: Test case (C2b): Pressure and velocity (left), volume fractions (middle) and temperature
(right).
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Figure 10.6: Computational setup.

shock wave (LSW) experiments and numerical simulations. For a detailed review we refer to [1, 4] and
references cited therein. Since in this paper the main objective is on the feasibility of multi-dimensional
multi-component simulations the focus is on the numerical simulation rather than the comparison with
experiments, we therefore confine ourselves to a simplified quasi-two-dimensional computational setting
employing rotational symmetry as sketched in Figure 10.6.

Note that a quantitative comparison with the experiments is not feasible due to significant uncertain-
ties in the numerical setup. For instance, the initial data cannot be depicted from the experiment but has
to be guessed. Furthermore, measurement techniques only provide qualitative results using high-speed
cameras that do not allow for quantitative data inside the bubble.

Computational setup. The computation is initialized with a bubble of radius 0.8 mm filled with
liquid vapor and non-condensable gas. Since the state inside the bubble cannot be observed experimen-
tally, we assume that the state is homogeneous and at rest with temperature 293 K and corresponding
saturation pressure 2339 Pa referred to as state Sb. The bubble is embedded in water at rest where the
ambient state S0 is chosen to be the atmospheric pressure 1 bar at temperature 293 K. The computation
is first started without perturbation in the water. Then at time T0 = 37.45µs a pressure pulse with
pressure condition Sp of 80 MPa starts propagating from the left boundary. The pressure pulse lasts
0.23µs before recovering the initial water state at rest S0. The boundary conditions at the left boundary
are thus given by

S(t) =

{
S0, t < T0 or t > T1

Sp, T0 ≤ t ≤ T1
(10.5.1)

with T1 = 37.68µs. The initial conditions are recorded in Table 10.8.
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Sb S0 Sp
p [Pa] 2339 1× 105 8× 107

T [K] 293 293 293
v [m/s] 0 0 0
αvapor 0.1− ε2 ε1 ε1
αwater ε2 1− 2ε1 1− 2ε1
αgas 0.9 ε1 ε1

Table 10.8: Initial data with ε1 = 10−4 and ε2 = 10−8. The state inside the bubble Sb, the ambient
water state S0 and the pressure pulse Sp are assumed to be in equilibrium.

Discretization. Since the problem is inherently two-dimensional due to rotational symmetry, we
perform quasi-two-dimensional computations where we have to take the change of metric into account
in the fluid discretization (10.4.9) and (10.4.10). For a structured grid in a two-dimensional space with
longitudinal coordinate z and radial coordinate r, i.e., Vi = [zi− 1

2
, zi+ 1

2
] × [rj− 1

2
, rj+ 1

2
] with i = (i, j),

the resulting scheme can be written as

(αk)n+1
i =(αk)ni −

∆t

‖Vi‖
∑
j∈N(i)

‖Γij‖ (V I)ij · (∇αk)nij , (10.5.2)

(uk)n+1
i =(uk)ni −

∆t

‖Vi‖
∑
j∈N(i)

‖Γij‖Gn
ij +

∆t|Vij |
‖Vij‖

Snij , (10.5.3)

with the volumes |V(i,j)| := ∆zi ∆rj = (zi+ 1
2
− zi− 1

2
) (rj+ 1

2
− rj− 1

2
), ‖V(ij)‖ := rj∆rj∆zi, rj :=

(rj+ 1
2

+ rj− 1
2
)/2 and the interface areas ‖Γ(i,j),(i,j±1)‖ := ∆zi rj± 1

2
and ‖Γ(i,j),(i±1,j)‖ := rj ∆rj . Here

the fluxes and the derivatives of the volume fractions are given by (10.4.11) and (10.4.12), respectively.
Note that uk = αk(ρk, ρk(vz)k, ρk(vr)k, Ek)T is now composed of the density, the momentum in longi-
tudinal and radial direction and total energy of component k. The additional metric term is defined by
Sk(w) = (0, αkpk, 0, 0)T . This quasi-two-dimensional scheme can be derived from the three-dimensional
discretization applied to a special grid similar to [6] and, in more details, in [4], Appendix A. For our
problem we choose the computational domain as Ω = [0, 0.0445] × [0, 0.00445] m2 to avoid unphysical
reflections from the right boundary and a short distance between the pressure pulse and the bubble at
the left boundary. The domain is discretized by 50× 5 cells on the coarsest level using L = 7 refinement
levels. The threshold value is chosen as εthresh = 10−3. We perform 120000 time steps with CFL number
0.5. The computation is performed with mass transfer.

Numerical results. The initial phase of the computation is characterized by a rarefaction wave
and a shock wave both emanating from the bubble interface and running into the liquid and towards the
bubble center, respectively, see Fig. 10.7(a). The shock wave is focusing in the bubble center where it
is reflected. The reflected shock wave is then interacting with the bubble interface where it is partially
transmitted into the liquid and partially reflected. Thus the shock wave is bouncing between the bubble
center and the bubble interface. Due to the interactions the bubble starts shrinking.
The second phase starts at time t = T0 where the pressure pulse enters the computational domain at the
left boundary, see Fig. 10.7(b). It hits the bubble at about t = 39.5 µs with the bubble at a radius of
approximately 0.59 mm, see Fig. 10.8. The LSW is partially transmitted and reflected at the interface,
see Figs. 10.7(c) and 10.7(d). The reflected LSW causes a significant pressure drop in the water causing
vaporization, see Fig. 10.7(e). With advancing time the pressure raises again and the vapor condensates
again causing pressure waves, see Fig. 10.7(f).
In a final phase the bubble interface is significantly accelerated due to the interaction with the LSW and
the bubble collapses, see Fig. 10.7(f). When the bubble collapses at about t = 44.32 µs shock waves are
emanated into the liquid, see Fig. 10.8.
An overview of the wave dynamics is given in Fig. 10.8 where we extract data on the symmetry axis
every 50 time steps. The pressure gradient magnitude shows very well the collapse of the bubble and
the emanated shock waves.
Finally we present in Fig. 10.9 a pressure probe taken on the symmetry axis at a distance of 1.88
mm behind the initial bubble center, see probe location in Fig. 10.6. The first peak is the pressure
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measurement of the LSW and the second one is shock-induced by the collapse.

10.6 Conclusion

A generalized multi-component fluid model has been introduced. This model is thermodynamically
consistent as proven in [29]. It accounts for relaxation of velocity, pressure, temperature, and chemical
potentials.

Opposite to previous work, cf. [30,41], pressure and temperature are relaxed simultaneously. Typically
pressure relaxation relies on an approximation process that can cause numerical instabilities in case of
strong pressure non-equilibrium, cf. [21]. Alternatively, iterative procedures can be used that make
computations very expensive, in particular in multi-dimensions. This is avoided in our new pressure-
temperature relaxation procedure. In particular, we have proven that for particular mixtures the unique
equilibrium state exists such that the equilibrium temperature as well as the equilibrium pressure are
positive and the volume fractions are in the admissible range.

Instead of relaxing Gibbs free energies as in [23,42] we perform relaxation of the chemical potentials
in case of three or more components. Exemplarily for a three-component model consisting of water
vapor, liquid water and inert gas we have verified that either a unique equilibrium state exists or one
phase vanishes. This model is consistent with the two-component model if the inert gas is not present.
We emphasize that determining the equilibrium state only requires a single iteration procedure whereas
in [42] an additional internal iteration is needed. This significantly speeds up the computation.

This model is solved numerically by applying an operator splitting where the evolution of the fluid
and the relaxation to equilibrium are separated in each time step. For the solution of the homogenized
fluid equations we apply a second order finite volume solver based on ENO reconstruction and the
HLLC Riemann solver. Computations are performed on a locally refined grid where grid adaptation is
triggered by advanced multi-scale techniques, cf. [27, 28]. We emphasize that local grid adaptation is a
key ingredient to perform the computations in affordable time. Moreover, we apply thermal and chemical
relaxation throughout the computational domain instead of an artificial interface region near the phase
boundary as done for instance in [30,42].

By means of parameter studies for several 1d-Riemann problems we have validated the robustness
and efficiency of the new relaxation procedures. Moreover, we have verified that multi-dimensional
computations are feasible for the model at hand. For this purpose we have considered the interaction
of a collapsing bubble with a planar shock wave. This problem is important for medical applications
such as shock wave lithotripsy. To our knowledge this is one of the first 2D-computations presented
using this type of model besides the two-component simulations in [30]. However, we emphasize that
our computations are more complex due to three components and taking into account also chemical
potentials, but are more efficient and robust due to grid adaptation and enhanced relaxation procedures,
respectively.
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(a) 3.50 µs (b) 38.74 µs

(c) 39.80 µs (d) 40.80 µs

(e) 44.39 µs (f) 45.40 µs

Figure 10.7: Pressure gradient magnitude with bubble interface IF identified by αwater = 0.5, rarefaction
wave RW, lithotripter shock wave LSW, vaporization region V and collapse shock CS.
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Figure 10.8: Pressure gradient magnitude with bubble interface IF identified by αwater = 0.5, rarefaction
wave RW, shock wave SW, lithotripter shock wave LSW and collapsing shock waves CS.

Figure 10.9: Pressure probe.
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Chapter 11

Bubble evolution models

Bibliographic note: The content of this chapter is published in [H5]: Wolfgang Dreyer, Frank Duder-
stadt, Maren Hantke, and Gerald Warnecke. On phase change of a single vapor bubble in liquid water,
Continuum mechanics and thermodynamics 24 (2012), pp. 461-483.

Abstract: In the forthcoming second part of this paper a system of balance laws for a multi-phase
mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account.
The exchange terms for mass, momentum and energy explicitely depend on evolution laws for total mass,
radius and temperature of single bubbles.

Therefore in the current paper we consider the dynamics of a single fully developed bubble of vapor
and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation,
is not taken into account. We study the behavior of this bubble due to condensation and evaporation
at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble,
which should be as simple as possible but consider all relevant physical effects.

Special attention is given to the effects of surface tension and heat production on the bubble dynamics
as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase.
Separately we study the influence of the three phenomena heat conduction, elastic waves, and phase
transition on the evolution of the bubble.

We find ordinary differential equations that describe the bubble dynamics.

It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the
bubble radius. The phase transition has a strong influence on the evolution of the temperature, in
particular at the interface. Furthermore the phase transition leads to a drastic change of the water
content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition
an inert gas.

In Part 2 of the current paper the equations derived are sought in order to close the system of
equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.

11.1 Introduction

Mathematical modeling of fluid flow with phase change between liquid water and its vapor has many
applications in science and technology, such as the study of cloud formation, of bubbles in boiling
water, spray cooling in metal production or damage of ship propellers due to cavitation. For numerical
computations of such flows, via mathematical equations describing the balances of mass, momentum
and energy, one needs appropriate terms modeling the transfer of these physical quantities between the
phases. It is a commonly found situation that one phase is dispersed in the other. Normally we do not
have pure substances but mixtures, for instance in cloud formation or spray cooling we have mixtures of
water vapor and air. Therefore in this paper we also take into account further phases, in particular we
consider vapor bubbles containing some additional inert gas in liquid water.

The subproblem concerning the precise modelling of the evolution of a single bubble is a challenge,
because various different phenomena are involved and strongly couple with each other. For example,
here we meet heat conduction, elastic waves, phase transitions and diffusion.
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The theoretical study of a spherical bubble surrounded by liquid has quite a long history. Much of the
literature is an extension of the 1917 paper of Rayleigh [27] on the pressure during collapse of a spherical
bubble. He considered a constant outer pressure and basically integrated the equations of motion, under
the assumption of complete radial symmetry, of an incompressible, inviscid liquid. The work was then
extended 1949 by Plesset [23] in a study on cavitation considering the case of a non-constant external
pressure P (t) leading to a bubble which grows and then collapses. This was observed in the cavitation
experiments he discussed. Let us consider the density ρ of the liquid and the pressure of the liquid at the
interface p(R). In his paper he derived the second order nonlinear ordinary differential equation for the
time dependent bubble radius R

RR̈+
3

2
Ṙ2 +

P (t)− p(R)

ρ
= 0 (11.1.1)

which has become known as the Rayleigh-Plesset equation of bubble dynamics, see also [10], [30], [13], [11]
for further early studies on this topic.

The latter occurs if the initial bubble is created by a laser beam, see e.g. Akhatov et al. [1] and
especially Müller et al. [20], so that the bubble might contain inert gas, i.e. most probably hydrogen
and oxygen, in the vapor due to the high temperature during the bubble creation process. Experimental
results were obtained by the group of Lauterborn in Göttingen, see Müller et al. [20]. We will refer to this
as the Göttingen experiment in this paper. In the experiment one observes a collapsing and rebounding
bubble. In fact, the bubble radius increases to a maximum, then decreases to a non-zero minimum, and
hereafter the cycle is repeated, however, an apparent damping is observed. Müller et al. investigate two
different discretizations to describe the dynamics of the laser induced cavitation bubble without taking
into account phase transitions.

In Akhatov et al. [1] the problem is treated numerically by a full system of coupled partial differential
equations, which obviously is the correct description. However, the objective of our paper is to explore
if a description by a much simpler system of equations than in [1] and [20] is possible with respect to
total mass and radius of the bubble as well as its temperature. The creation of bubbles by nucleation is
not investigated.

The aim of our work is to find evolution laws for the quantities mentioned above. The laws should be
as simple as possible, but should consider all relevant physical effects. The evolution laws obtained will
be used in the forthcoming second part of this paper to close a system of partial differential equations
describing a finite number of well separated bubbles in liquid, taking into account phase transitions.

To this end it is important to determine the influence of the various participating phenomena on
the observed evolution. Thus we describe the problem by a hierarchy of model systems of increasing
complexity. We start out with the model of the undamped oscillation of a bubble immersed in an
incompressible liquid at constant temperature without phase transition, given by the Rayleigh-Plesset
equation [23], [17], [4], [7]. Hereafter we take the liquid-vapor phase transition into account. Next we
consider in addition heat conduction. Finally elastic waves due to the compressibility of the liquid are
incorporated.

In the Göttingen experiment a laser pulse is focussed inside a vessel of water. This leads to the
formation of a plasma and creation of a vapor bubble that collapses and rebounds. If a liquid-vapor
phase transition is allowed, the latter effect is only possible when an inert gas is present in the bubble. A
pure water vapor phase cannot persist beyond the first collapse since the vapor phase is unstable under
the conditions of the experiment. Currently it is not known by measurements what constitutes the inert
gas. The most likely seem to be oxygen and hydrogen. So for this paper we are assuming this to be the
case. We are considering the data described in Müller et al. [20]. Earlier experimental work on this topic
is described in Akhatov et al. [1, 2] and Kurz et al. [15].

Later extensions were summarized by Lauterborn [16] and studied numerically. Next Keller and
Miksis [14] were interested in the acoustics of oscillating bubbles and included the effect of acoustic
radiation by considering compressibility. Also they carried the viscosity term with viscosity µ through
the derivation. Further their derivation involved the speed of sound c in the liquid and the pressure
inside the bubble pb(R). They considered a pressure at infinity perturbed by an incoming sound wave
P (t) = p∞ − P sinω

(
t+ R

c

)
. Assuming that the interface velocity is equal to the liquid velocity at the

interface, i.e. the phase transition is ignored, this leads to the Keller-Miksis equation [14, (3.9)], [26]
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which in our notation is

R̈

(
4µ

ρ
−R(Ṙ− c)

)
=

1

2
Ṙ3 + Ṙ

pb(R)− p∞
ρ

− c

(
3

2
Ṙ2 +

4µṘ

ρR
+

2σ

ρR
− pb(R)− p∞

ρ

)

+R
ṗb(R)

ρ
+

(
1 +

Ṙ

c

)
cP

ρ
sinω

(
t+

R

c

)
.

This equation is only valid for small Mach numbers. We simplyfy the equation by setting µ = 0. Then
we divide by c and use the Laplace-Young relation pb(R) = p(R) + 2σ

R to obtain

RR̈

(
1− Ṙ

c

)
=

3

2
Ṙ2

(
Ṙ

3c
− 1

)
+ Ṙ

pb(R)− P (t)

ρc
−
(
P (t)− p(R)

ρ

)
+R

ṗb(R)

ρc
. (11.1.2)

Taking the limit c → ∞ reduces this equation to the Rayleigh-Plesset equation (11.1.1). Prosperetti
and Lezzi [26] have generalized these equations even further using singular perturbation methods. Wu
and Roberts [31] considered a version of this equation coupled to radially symmetric Euler equations in
order to study sonoluminescence. In Akhatov et al. [1] a model for the laser induced bubble experiment
ist introduced. Near the recollapse of the bubble the bubble radius velocity becomes very high, so the
Euler equations of gas dynamics are used to simulate this part of the bubble dynamics. The paper [1]
includes quite extensive citations of the relevant literature.

As a result of our considerations we obtain a hierarchy of models consisting of a system of ordinary and
partial differential equations describing the evolution of the bubble with the main objective to identify
the various driving forces involved. From the numerical computations we can clearly see that the elastic
waves in the liquid are of greatest importance to the evolution of the bubble radius in comparison with
the experiment. Phase transition and heat conduction play no significant role for movement of the bubble
radius. The phase transition has an enormous influence on the evolution of the temperature, in particular
at the interface. Furthermore the phase transition leads to a drastic change of the water content in the
bubble, so that a rebounding bubble is only possible, if it contains in addition an inert gas. For further
investigations we refer to [22], [24], [29], [8], [25], [32], [21], [33].

After this introduction we have organized the paper as follows. In Section 11.2 we first start with the
balances of mass, momentum and internal energy for an inviscid compressible fluid in Subsection 11.2.2,
including the jump relations that describe the conservation properties at moving interfaces. Appropriate
constitutive relations for mixtures are introduced in Subsection 11.2.3 and complemented by the entropy
principle in the bulk and in Subsection 11.2.4 at liquid-vapor interfaces. The entropy principle is exploited
in Subsection 11.2.5 to introduce the interfacial mobility. In Subsection 11.2.6 the constitutive relations
for a vapor phase containing water vapor and oxygen as well as hydrogen as inert gases are formulated.
Next we derive in Subsection 11.2.7 a kinetic equation for the evolution of the bubble mass under
phase transition. The condensation rate may be taken from well established kinetic considerations. An
important point is that the evaporation rate at the interface is derived in a thermodynamically consistent
way. In Section 11.3 we recall the data from the laser induced bubble experiment that we are modelling.

The central part of the paper is Section 11.4 in which we give a hierarchy of models for radially
symmetric bubbles in order to study numerically which physical effects are important to explain the
experimentally observed dynamics of laser induced bubbles. Starting point is the well known second
order Rayleigh-Plesset equation in Subsection 11.4.3. In Subsection 11.4.4 the mass dynamics due to
phase transition is introduced to give a system of implicit first order ordinary differential equations. Then
we add in Subsection 11.4.5 the heat conduction in the liquid. Finally a wave equation for acoustic waves
is coupled to the other phenomena. The details of the derivations of these models are given in Section
11.5. In Section 11.6 we present some of our numerical computations within the setting of these models.
We will present numerical results using four different models in order to give an indication which terms
are important. A comparison of the observed evolution of a bubble with a model is a subtle problem,
because the initial states of all physical quantities involved cannot be precisely measured experimentally.
At this time we have to work with very incomplete experimental data. The paper ends with a short
summary of the main conclusions.
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11.2 Variables, equations of balance and local entropy principle

11.2.1 Basic variables and constitutive quantities

As a starting point we take a spherical bubble B = BR(0) = {x ∈ R3| |x| < R(t)} of vapor sitting at the
origin surrounded by the liquid. Here t is time and R the time dependent radius of the bubble. However,
later on we also will treat the case of a bounded planar interface between liquid and vapor. For the case
of the bubble we will work in radial coordinates assuming that all physical quantities depend on time
and distance from the origin. All vector fields are then assumed to be radial.

We have one vapor bubble in a closed, very large control volume. One could assume either that the
control volume is subject to a given constant outer pressure p0 or that the volume in the control volume
remains constant in time. Note that the physics of phase transition depends considerably on whether the
pressure or the volume is held constant in the control volume. In the first case the phases cannot coexist
in equilibrium, whereas in the second case they may coexist. In nature the gas phase usually consists
of a mixture of several constituents, for example vapor, oxygen, and nitrogen. This again changes the
physics of the phase transition, allowing for fog in the pressure controlled situation found in nature.

In this paper we do not consider the case of constant volume. We only consider the case that the
outer pressure p0 of the global control volume is held constant, e.g. in a container with a moveable piston
that is controled by the outer pressure.

11.2.2 Equations of balance in regular and singular points

Here we exclusively consider the gas and the liquid phase as inviscid heat conducting fluids. The gas
consists of water vapor, oxygen, and hydrogen. The appearance of oxygen and hydrogen is due to the fact
that a bubble is created by a focussed laser beam in water. This initially leads to a high temperature
so that some of the water vapor dissociates into O2 and H2. In the following we will only consider
temperatures under which no further chemical reactions take place. Futhermore, we study short time
bubble evolutions during which hydrogen and in particular oxygen cannot leave the bubble into the
liquid. Consequently the liquid consists of pure water only, thus we describe the liquid by 5 variables
which are the mass density ρ, velocity v, and temperature T . In the gas we have as variables three
partial mass densities ρa, with a = W,H,O for water, hydrogen, and oxygen. Further, there are the
velocity of the mixture v and the temperature T . Unless stated otherwise, physical fields are assumed
to depend on the time variable t ∈ R and space variable x ∈ R3.

The determination of the variables relies on the local conservation laws for mass and momentum, as
well as the balance law for internal energy. In regular points of the liquid phase these are

∂ρ

∂t
+ div(ρv) = 0 (11.2.1)

∂ρv

∂t
+ div(ρv ⊗ v + p1) = 0 (11.2.2)

∂ρu

∂t
+ div(ρuv + q) = −p1 · gradv . (11.2.3)

Here we use the second order tensor 1 = (δij)1≤i,j≤3 with δij = 1 for i = j and = 0 for i 6= j, the
tensor product of vectors ⊗ giving a second order tensor. The divergence of a second order tensor is the
vector of divergences of each row and the product · of two such tensors is the scalar obtained by double
contraction.

In these equations there are further quantities which are not among the basic variables. We call them
constitutive quantities, and these are the internal energy density u, the heat flux q and the pressure p.
The constitutive quantities are related to the basic variables in a material dependent manner, which will
be given in Section 11.2.6.

In the gas phase, the equations for momentum and energy of the mixture have the same structure as
(11.2.2) and (11.2.3). However here we have to consider 3 conservation laws for the partial mass densities

∂ρa
∂t

+ div(ρava) = 0. (11.2.4)
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The partial mass densities are defined so that they sum up to the mass density of the mixture, and the
weighted sum of partial velocities gives the (barycentric) velocity of the mixture, i.e.

ρ =
∑
a

ρa, v =
∑
a

ρa
ρ

va which implies with (11.2.4)
∂ρ

∂t
+ div(ρv) = 0.

The constitutive quantities are pressure p, internal energy e, and heat flux q, as before, and the partial
velocities va, but these are usually substituted by the diffusion fluxes Ja = ρa(va − v).

We will use the superscripts L, V and the subscript I to specify physical quantities Ψ in the liquid, the
vapor, and on the interface respectively. The combination of the subscript I with one of the superscripts
denotes the one sided limit ΨL,V

I (t, xI) = limxL,V→xI Ψ(t, x) of the quantity in the respective bulk fluid
at the interface. The superscript η together with I denotes the scalar obtained by projection of a vector
on the chosen normal vector η on the surface. We denote vectors, except for the spatial coordinate vector
of a point, and higher order tensors in boldface.

Along the singular surface I between the phases we consider the normal vector η pointing into
the liquid region. It is moving with normal speed wη. Across this interface we use the jump bracket
JΨK = ΨL

I −ΨV
I for any physical quantity Ψ. We have the following relations

Jρa(vηa − wη)K = 0 (11.2.5)

ρ(vη − wη)JvK + JpηK = 2σkmη (11.2.6)

ρ(vη − wη)Ju+
p

ρ
+

1

2
(v −w)2K + JqηK = 0 . (11.2.7)

Here the interface is exclusively equipped with surface tension σ. This is the term appearing on the
right hand side of the momentum balance. We ignore for example tangential heat and diffusion fluxes.
Additionally we assume that the interface has no mass and no inertia, and in particular we ignore the
dependence of the surface tension on the concentration of the constituents of the gas and the temperature.
The complete interface relations may be found in Dreyer [5, Sections 5-14] and Müller [19, Section 2.2.2,
Chapter 3]. The term km is the mean curvature of the surface, with km = − 1

R for a sphere and km = 0
for a plane.

The assumption that there is no oxygen and hydrogen in the liquid phase implies that the equations
(11.2.5) can be written as

vηO = vηH = wη and JρW (vηW − w
η)K = 0 . (11.2.8)

In contrast to the need of partial mass balances, even for a mixture we only have to take a single energy
balance, as it was given above, because there is only one temperature of the mixture. However, for
a reduction of the necessary numerical data, which are needed to evaluate the energy balance, it is
useful to decompose the internal energy density, the pressure, and the heat flux of the mixture into
the corresponding quantities of the constituents, according to the detailed description in [19] without
quadratic terms of the diffusion fluxes we have

ρu =
∑

a∈{W,H,O}

ρaua, p =
∑

a∈{W,H,O}

pa, and q =
∑

a∈{W,H,O}

(
qa +

(
ua +

pa
ρa

)
Ja

)
. (11.2.9)

In terms of these quantities the balance of internal energy (11.2.3) in the gas phase now reads

∑
a∈{W,H,O}

(
ρau̇a + div(qa + Ja

pa
ρa

)

)
=
p

ρ
ρ̇ , (11.2.10)

where ()· = ∂
∂t () + vgrad() denotes the material time derivative. Across the interface the internal energy

balance (11.2.7) assumes the form

qηL −
∑

a∈{W,H,O}

qηa = ρL(uL +
pL

ρL
)(vηL − w

η)−
∑

a∈{W,H,O}

ρa(ua +
pa
ρa

)(vηa − wη) . (11.2.11)
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11.2.3 General constitutive model and local entropy principle for the bulk
phases of the two phase system

The general constitutive model for the system under consideration relies on two functions for the specific
Helmholtz free energy

ψ = u− Ts (11.2.12)

that is a combination of specific internal energy u and specific entropy s. We assume that we have in the
liquid resp. the vapor phase

ψL = ψ̂L(T, ρL) and ψV = ψ̂V (T, ρW , ρH , ρO) = ψ̃V (T, ρV , XW , XH),

where the mole fractions are defined by Xa = ρa/ma∑
b ρb/mb

. The knowledge of the specific free energy allows

in combination with the local entropy principle for the bulk phases to calculate the pressure p, the specific
entropy s, the specific Gibbs free energy g, and the chemical potentials µa, see Müller [19],

p = ρ2 ∂ψ̂

∂ρ
, s = −∂ψ̂

∂T
, g = ψ +

p

ρ
, µa =

∂ρψ̃

∂ρa
. (11.2.13)

Moreover the Gibbs-Duhem equation for the two phases, viz.

gL = µLW , gV =

∑
a=W,H,O µ

V
a ρa

ρ
(11.2.14)

is likewise a consequence of the entropy principle, which also gives the entropy flux φ, and an inequality
that controls the flow of heat

φL =
qL

T
, φV =

qV

T
−
∑
a=W,H,O µaJa

T
, q · grad

1

T
≥ 0. (11.2.15)

11.2.4 The local entropy principle across the liquid-vapor interface

The entropy principle holds point wise in a given body, thus we also must have an entropy principle
at the interface. In the current study that principle relies on two basic assumptions: (i) There is no
tangential entropy flux within the surface, (ii) the tangential velocities of the bulk phases at the interface
are zero.

In this case the entropy principle at the interface consists of two parts

JT K = 0 ρ(vη − wη)JsK + JφηK ≥ 0 . (11.2.16)

The continuous temperature at the interface is denoted by TI . In equilibrium the equality sign holds,
whereas in nonequilibrium the left hand side of the inequality in (11.2.16) must be greater than zero.
The axiom of continuous temperature across the interface can be given up. However, in this case the
subsequent treatment of the problem becomes very involved.

Remark 11.2.1. The energy balance (11.2.7) as well as the entropy balance (11.2.16) also contain
contributions due to the liquid/vapor interface. However, due to two assumptions and a consequence of
the exploitation of the interfacial entropy inequality, the interface contributions drop out. The inequality
implies here that the interfacial free energy density is equal to the surface tension. The two assumptions
are: (i) radial symmetry, (ii) the surface tension is a constant, i.e. it does not depend on temperature
or concentrations of the constituents.

11.2.5 Exploitation of the entropy principle

We introduce the jump of the specific kinetic energy at the interface JekinK = J 1
2 (v−w)2K = J 1

2 (vη−wη)2K.
Next we multiply the entropy inequality (11.2.16) by T , subtract the result from the energy equation at
the interface (11.2.7), and use (11.2.13) to obtain

ρ(vη − wη)Jg + ekinK + J
∑

a=W,H,O

µaJaK ≤ 0 . (11.2.17)
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Now we assume that oxygen and hydrogen cannot cross the interface from the bubble into the liquid,
i.e. vηO = vηH = wη. In this case the inequality (11.2.17), using gL = µLW , can be reduced to

ρW (vηW − w
η)JµW + ekinK ≤ 0. (11.2.18)

In nonequilibrium the flux ρW (vηW −wη) of mass across the interface is driven by JµW + ekinK. For this
reason that factor is called the driving force. The left hand side of (11.2.18) is of the form flux × driving
force.

In thermodynamics it can be shown that in equilibrium the driving force must be zero. Thus the
product assumes its maximum in equilibrium. We now assume that there is a relation between the flux
and the driving force in non-equilibrium which usually is called kinetic relation. A consequence of the
existence of the kinetic relation is that

JµW + ekinK = 0 ⇐⇒ ρW (vηW − w
η) = 0 , (11.2.19)

see [12].
The simplest ansatz to satisfy the inequality in nonequilibrium is to assume that the two factors of

the product are positively proportional to each other. We write

− 4πR2ρW (vηW − w
η) = 4πR2BIJµW + ekinK with BI > 0 , (11.2.20)

the quantity BI is called interfacial mobility which must be measured or calculated from an underlying
model. Such a model will be discussed in Section 11.2.7. The sign in (11.2.20) is due to (11.2.18).

11.2.6 Special constitutive model for the two phase system

The vapor phase consists of the three constituents water vapor, hydrogen and oxygen. These are described
by the ideal thermal and the caloric equations of state for the partial pressures and for the partial internal
energies, for details see Müller and Müller [18]. These are for a ∈ {W,H,O}

pa(T, ρa) = ρa
kT

ma
and ua(T ) = za

k

ma
(T − T∗) + ua(T∗) (11.2.21)

with

za =

3/2 for a monoatomic,
5/2 ′′ diatomic,
3 ′′ polyatomic gas.

The Boltzmann constant is denoted by k, the molecular mass of constituent a is ma. We use the symbol
∗ to denote arbitrary reference values.

The constitutive laws for the partial specific entropies are also needed here

sa(T, ρa) = za
k

ma
log

T

T∗
− k

ma
log

ρa
ρ∗a

+ sa(T∗, ρ
∗
a) . (11.2.22)

Likewise to (11.2.9) the entropy density ρs for the mixture is given by

ρs =
∑

a∈{W,H,O}

ρasa . (11.2.23)

We have already assumed that the vapor mixture is inviscid but we allow heat conduction. From
now on we exclusively consider a bubble with homogenous distributions of matter. Note that this does
not mean that the bubble is homogeneous. For example, a simple integration of the continuity equation
leads for a time dependent ρ(t) to a velocity field that depends on the radius. Due to this homogeneity
assumption in the bubble we do not need the constitutive law for the heat flux q.

The liquid phase consists only of water which is modeled as a compressible inviscid liquid. We use
the following constitutive laws for the liquid pressure and energy

pL = p∗ +K

(
ρ

ρ∗
− 1

)
(11.2.24)
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and

uL(T, ρ) = c(T − T∗) + (p∗ −K)

(
1

ρ∗
− 1

ρ

)
+
K

ρ∗
ln

ρ

ρ∗
+ uL(T∗, ρ∗) . (11.2.25)

The pressure is related to the density variation by a linear law, and additionally we ignore thermal
expansion and the temperature dependence of the modulus of compression K. Thus the pressure is
assumed to be independent of temperature. For the specific heat capacities we have cp = cv = c. This
implies that the specific entropy of the liquid does not depend on the mass density, and we have

sL(T ) = c log
T

T∗
+ sL(T∗) .

The constitutive law for the heat flux in the liquid is given by Fourier’s law, i.e.

qL = −κLgradT with κL > 0 . (11.2.26)

The liquid heat conductivity κL is assumed to be constant.
From the above constitutive equations for the vapor we obtain

µVa (T, p,Xa) = ga(T, p) +
kT

ma
lnXa , (11.2.27)

where the terms have been combined, s.t. the chemical potential of constituent a can be written as the
specific Gibbs free energy for the pure substance a under the total pressure of the mixture pV plus the
so called entropy of mixing. Thus ga(T, p) is defined by

ga(T, p) = ga(T∗, p
∗
a) +

kT

ma
ln

(
p

p∗a

)
+ (za + 1)

k

ma

[
T − T∗ − T ln

(
T

T∗

)]
− (T − T∗)sa(T∗) . (11.2.28)

Recall that the liquid consists of the single substance water. Its specific Gibbs free energy can easily be
calculated and reads

gL(T, p) = gL(T∗, p∗) +
K

ρ∗
ln

(
1 +

p− p∗
K

)
+ c

[
T − T∗ − T ln

(
T

T∗

)]
− (T − T∗)sL(T∗) . (11.2.29)

The incompressible liquid is included here as the limiting case K →∞ that gives

gL(T, p) = gL(T∗, p∗) +
1

ρ∗
(p− p∗) + c

[
T − T∗ − T ln

(
T

T∗

)]
− (T − T∗)sL(T∗) . (11.2.30)

11.2.7 Simple kinetic model for the evolution of a single bubble

In this section we introduce a kinetic model for the case at hand. To this end we consider a bubble with
radius R(t) filled with the vapor mixture from above. The bubble is immersed in the liquid, and the
evolution ṁ of the total bubble mass is given by

dm

dt
=

d

dt

∫
ΩV

ρV dx = −
∮
∂ΩV

ρV (vη − wη) dS = −4πR2ρV (vη − wη) , (11.2.31)

where we have used the continuity equation (11.2.1) and Reynolds transport theorem [28]. Now we
calculate ṁ by a simple kinetic model. We start from the representation

ṁ = mW (γE − γC) (11.2.32)

where γE and γC are the evaporation respectively the condensation rate. The latter results from the
encounters of the gas molecules with the interface of the bubble. We assume that each incoming water
molecule leads to condensation, and furthermore we assume that the two other constituents remain in
the bubble. In this case the kinetic theory of ideal gases gives the condensation rate by the expression

γC(R, TI , pW ) = 4πR2

√
kTI

2πmW

ρW
mW

= 4πR2 pW√
2πmW kTI

. (11.2.33)



11.2. VARIABLES, EQUATIONS OF BALANCE AND LOCAL ENTROPY PRINCIPLE 277

This expression is well-known. It results from the Maxwell distribution, see Dreyer and Duderstadt [6].
The relation (11.2.32) is usually called kinetic relation, but it is also known as the classical Hertz-

Knudsen-theory, see Struchtrup [3].
Next we calculate the evaporation rate γE . At first we calculate γE in equilibrium, and according to

(10.3.43) and (11.2.31) we have here ṁ = 0. As stated in (11.2.32) this is equivalent to γ̃E = γ̃C , where
˜ indicates an equilibrium state.

The necessary condition can be read from (10.3.43)1 with ekin = 0. At the interface it states that
µLW (TI , p

L
I , X

L) = µVW (TI , p
V , XW ). In the liquid we have XL = 1. For the vapor we insert into

(11.2.27) the relation XW = pW /p
V , which holds for ideal gases. Thus we obtain from (11.2.28) that

gL(TI , p
L
I ) = gW (T, pW ). Thus for given TI and pLI we may solve this condition for pW = p̃(TI , p

L
I ), so

that the condensation rate in equilibrium can be written as

γ̃C = γC(R, TI , p̃(TI , p
L
I )) = 4πR2 p̃(TI , p

L
I )√

2πmW kTI
. (11.2.34)

Next we introduce a trick to represent the function pW = p̃(TI , p
L
I ) by a form that does not explicitly

refer to equilibrium. To this end we introduce the saturation pressure p̄, which denotes the equilibrium
pressure at a planar interface between the vapor and the liquid phase of pure water. In such a situation
the equation gL(TI , p) = gW (TI , p) holds for the equilibrium pressure p̄. Consequently for a given TI we
have p = p̄(TI).

Using (11.2.28) we calculate gW (TI , p̃) and gW (TI , p̄) to obtain the difference

gW (TI , p̃)− gW (TI , p̄) =
kT

mW
ln
p̃

p̄
. (11.2.35)

From gL(TI , p
L
I ) = gW (TI , p̃) we conclude

gL(TI , p
L
I ) = gW (TI , p̄(TI)) +

kT

mW
ln
p̃

p̄
, (11.2.36)

thus we get

p̃ = p̄ exp

(
mW

gL(TI , p
L
I )− gW (TI , p̄)

kT

)
. (11.2.37)

In equilibrium we have γ̃E = γ̃C , so using (11.2.37) the evaporation rate in equilibrium can be calculated
according to

γ̃E = γ̃C = 4πR2 p̃√
2πmW kTI

= 4πR2 p̄(TI)√
2πmW kTI

exp

(
mW

gL(TI , p
L
I )− gW (TI , p̄(TI))

kTI

)
. (11.2.38)

Analogously to (11.2.35) we obtain from (11.2.28)

gW (TI , p̄) = gW (TI , pW )− kT

mW
ln
pW
p̄
. (11.2.39)

Using this expression the equilibrium evaporation rate can be given in the following form

γ̃E = 4πR2 pW√
2πmW kTI

exp

(
mW

gL(TI , p
L
I )− gW (TI , pW )

kTI

)
. (11.2.40)

Finally, due to gL(TI , pL) = µL(TI , pL, 1) and gVW (T, pVW ) = µVW (T, pV , XW ) using (11.2.33) we obtain

γ̃E = γC exp

(
mW

kTI
JµW K

)
. (11.2.41)

It is important to note that the equilibrium evaporation rate is now given in terms of non-equilibrium
quantities. This fact motivates to assume that the condensation rate γE in non-equilibrium is given
by the same expression as γ̃E . However, the presented motivation has ignored the contribution of the
kinetic energy to the chemical potential. A more careful study leads to

γE = γC exp

(
mW

kTI
JµW + ekinK

)
. (11.2.42)
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For small deviations from equilibrium the expression

γE = γC
(

1 +
mW

kTI
JµW + ekinK

)
(11.2.43)

gives a good approximation. A comparison with the phenomenological ansatz (11.2.20) identifies the
mobility BI as

BI = mW
pW√

2πmW kTI

mW

kTI
. (11.2.44)

As the final result we use

ṁ = 4πR2mW
pW√

2πmW kTI

mW

kTI
JµW + ekinK . (11.2.45)

Here we would like to make two remarks. (i) If the liquid were incompressible, a case that we do not
consider here, the relation (11.2.42) can be derived without the assumption from above. (ii) If we were
to ignore the kinetic energy the same result can also be obtained by the principle of detailed balance.
However, that principle must be handled with care. An important counterexample is given by Dreyer
and Duderstadt in [6].

11.3 The Göttingen laser induced bubble experiment

Our objective is to apply the developed model to a single spherical bubble that is produced by laser
pulses. The bubble is created in a cuvette filled with clean destilled water. The temperature and the
pressure far from the bubble are kept constant at 20◦C and 1 bar. Everything that is seriously known
from the experiment can be read of from the Figure 11.1 that gives the bubble radius versus the time.

Figure 11.1: Evolution of bubble radius, experimental data from [20].

Aparently there is a growing bubble that reaches its maximum radius Rmax = 7.469 · 10−3m at 70.7
µs and collapses hereafter to a minimal radius Rmin = 12.467µm which is assumed at 140µs. Hereafter
the bubble starts to grow again, however, the new maximal radius is very much smaller than the first
one, so that one may conclude that a large damping mechanism accompanies the observed process. The
experimental researchers in Göttingen report that the second cycle is followed by further cycles that
almost show no damping. It is also reported that presumably there is plasma in the bubble, which
is created by the laser, which has completely recombined at time t = 0. Further observations and in
particular data, that give information on the thermodynamic state of bubble and liquid, are not available.
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Obviously, on this slim data basis a serious simulation of the described process is not possible without
further speculations. We do not describe here speculations that are given in [20]. Instead from now on
we present our point of view to formulate at least the necessary initial conditions. For simplification we
start the simulation at the first maximum radius so that we need to know the thermodynamic state of
the bubble-liquid system at that instant.

According to our point of view the main assumption to reach coincidence between measured and
simulated data concern the permanent existence of an inert gas in the bubble. We believe that oxygen
and hydrogen molecules have survived the dramatic period that followed the bubble creation by the
laser, and we properly adjust their amount at the first maximal radius of the bubble, so that the first
subsequent minimal radius is met. Thus the initial data for our simulation are given by

T = 293.15K NW = 7.5 · 1015 NO = 2.5 · 1013 implying NH = 2NO pV (t = 0) = 17350Pa

The temperature is assumed to be homogeneous in the bubble-liquid system at t = 0 and is equal to the
liquid temperature far away from the bubble. Initially we take R(0) = Rmax and vL = 0.

We already mention here that agreement with the experimental data can only be achieved if the
bubble-liquid system enters a single phase state for a finite period of the evolution. This happens if the
interfacial temperature TI exceeds the critical temperature. In the above model the single phase region
is characterized by ṁ = 0.

11.4 Special cases

11.4.1 Introduction of special cases

The evolution of the bubble radius is accompanied by three damping mechanisms which are due to:
phase transition, heat conduction and generation of waves in the liquid. In order to see their influence
on the damping of the bubble radius we separately consider the three phenomena.

In this section we give only the main results for the bubble dynamics. The detailed derivation of the
formulas is given in Section 11.5.

11.4.2 Spherical symmetry and homogeneous bubble

We consider exclusively a bubble-liquid system with spherical symmetry which implies that the conser-
vation laws assume in the bubble as well as in the liquid the following form

∂ρ

∂t
+

1

r2

∂(r2ρv)

∂r
= 0 (11.4.1)

∂ρv

∂t
+

1

r2

∂(r2ρv2)

∂r
+
∂p

∂r
= 0 (11.4.2)

∂ρu

∂t
+

1

r2

∂(r2ρuv)

∂r
+

1

r2

∂(r2q)

∂r
= − p

r2

∂(r2v)

∂r
. (11.4.3)

The corresponding constitutive equations will be separately inserted for the various special cases.
The interfacial conservation laws (3.2.3), (11.2.6) and (11.2.7) in spherical coordinates are with wη =

Ṙ

vHI (t) = vOI (t) = Ṙ(t) and JρW (vW − Ṙ)K = 0, (11.4.4)

ρ(vI − Ṙ)JvK + JpK = −2σ

R
, (11.4.5)

−ρ(v − Ṙ)Ju+
p

ρ
+

1

2
(v − Ṙ)2K + JqK = 0 . (11.4.6)

The total mass of the spherical bubble B is given by m(t) = 4π
∫ R(t)

0
r2ρV (t, r)dr. From now on we

exclusively consider a homogeneous bubble, thus we have

m(t) =
4

3
πR(t)3ρV (t) implying ṁ = 4πR2ṘρV +

4

3
πR3ρ̇V . (11.4.7)
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We eliminate ṁ by means of the mass balance (11.2.31) and obtain

ρ̇V = −3ρV vVI
R

, (11.4.8)

so that (11.4.7)2 can be written as

ṁ = 4πR2ρV (Ṙ− vVI ) = 4πR2ρLI (Ṙ− vLI ) . (11.4.9)

Now (11.4.9)2 is used to calculate the liquid velocity at the interface

vLI = Ṙ− ṁ

4πR2ρLI
. (11.4.10)

The assumption of a homogeneous gas phase means, that the processes of diffusion and heat conduction
are much faster than the adjustment to mechanical equilibrium. In the homogeneous case from (3.3.2)1

and (11.2.23)1 we obtain

pVI (t) =
3N(t)kT

4πR(t)3
, (11.4.11)

where the quantity N(t) = NW (t) +NH +NO gives the total number of particles in the bubble. With

m(t) = NW (t)mW +NHmH +NOmO (11.4.12)

we have
ṁ = mW Ṅ . (11.4.13)

11.4.3 Case 1: The undamped oscillation of a bubble immersed in an incom-
pressible liquid at constant temperature without phase transition

In this case the evolution law for the bubble radius can be reduced to a single ODE that reads

R̈+
3Ṙ2

2R
+

1

ρLR

(
p0 −

3NkT

4πR3
+

2σ

R

)
= 0 , (11.4.14)

which is known as the Rayleigh-Plesset equation. The total number of particles in the bubble N is
constant, because in this case the number of water molecules in the bubble does not change. The equation
describes an undamped periodic oscillation around the equilibrium radius Req with p0 + 2σ

Req
= 3NkT

4πR3
eq

.

With the initial conditions R(0) = R0 > 0 and Ṙ(0) = Ṙ0 integration of (11.4.14) leads to two solutions
for the interfacial velocity

Ṙ = ± 1

R3/2

√
Ṙ2

0R
3
0 −

1

ρL

(
2

3
p0(R3 −R3

0)− 3NkT

2π
ln

R

R0
+ 2σ(R2 −R2

0)

)
, (11.4.15)

which describe a closed curve, see Subsection 11.5.1.

11.4.4 Case 2: The oscillation of a bubble immersed in an incompressible
liquid at constant temperature with damping due to phase transition

Next we take into account phase transition, that means Ṅ 6= 0. This case can be described by three
ordinary first order differential equations

Ṅ =
4πR2pW√
2πmW kT

mW

kT

[
1

ρL
(pLI − p̄)−

kT

mW
ln
pW
p̄

+
1

2

(
1

(ρL)2
− 1

(ρV )2

)(
mW Ṅ

4πR2

)2
]

(11.4.16)

Ṙ =
F

R2
+

mW Ṅ

4πR2ρL
(11.4.17)

Ḟ =
F 2

2R3
− R

ρL
(p0 − pLI ) , (11.4.18)
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where the explicit representations of pW , pLI , ρ
V are given in Subsection 11.5.2. The resulting system

describes a damped oscillation.

The system is implicit with respect to Ṅ . We are interested in solutions that lie in the domain
of positive R and NW , i.e. (R,NW , F ) ∈ ]0,∞[ × ]0,∞[ × R. The system is solveable for the initial
conditions R(0) = R0, Ṙ(0) = Ṙ0 and N(0) = N0.

Case 1 is included here by replacing equation (11.4.16) with Ṅ = 0.

11.4.5 Case 3: The oscillation of a bubble immersed in an incompressible
liquid with damping due to phase transition and heat conduction

In contrast to the previous cases the temperature field is unknown and controlled by heat conduction.
Therefore we now have to consider the energy balance equations.

The resulting ODE system is almost the same as before but coupled to the energy balance equation
in the liquid and to the corresponding interfacial boundary condition

Ṅ =
4πR2pW√
2πmW kTI

mW

kTI

[
1

ρL(T0)
(pLI − p̄(T0))− kTI

mW
ln

pW
p̄(T0)

+
1

2

(
1

(ρL(T0))2
− 1

(ρV )2

)(
mW Ṅ

4πR2

)2

+(cL − cW )(TI − T0 − TI ln
TI
T0

)− (sL − sW )(TI − T0)

]
(11.4.19)

Ṙ =
F

R2
+

mW Ṅ

4πR2ρL(T0)
(11.4.20)

Ḟ =
F 2

2R3
− R

ρL(T0)
(p0 − pLI ) (11.4.21)

∂T

∂r

∣∣∣∣∣
r=R

=
kṪ

4πR2κL

∑
a∈{W,H,O}

Naza +
Ṙp

κL
− kTṄ

4πR2κL
+
λmW Ṅ

4πR2κL
(11.4.22)

∂T

∂t
= aL

(
∂2T

∂r2
+

2

r

∂T

∂r

)
− F

r2

∂T

∂r
. (11.4.23)

In addition to R(0) = R0, Ṙ(0) = Ṙ0 and N(0) = N0 we need for the temperature the initial condition
TL(0, r) = TL0 (r) and at the outer boundary r = Ra we choose ∂T

∂r = 0 for Ra sufficiently large.

11.4.6 Case 4: The oscillation of a bubble immersed in a weakly compressible
liquid with damping due to phase transition, heat conduction and
acoustic waves

In the previous cases the liquid was assumed to be incompressible. This assumption is too restrictive
for the experiment at hand. Thus now we take weak compressibility of the liquid into account. The
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necessary modifications lead to the following system

Ṅ =
4πR2pW√
2πmW kTI

mW

kTI

[
K

ρL(T0)
ln

(
1 +

pLI − p̄(T0)

K

)
− kTI
mW

ln
pW
p̄(T0)

+
1

2

(
1

(ρL(T0))2
− 1

(ρV )2

)(
mW Ṅ

4πR2

)2

+(cL − cW )(TI − T0 − TI ln
TI
T0

)− (sL − sW )(TI − T0)

]
(11.4.24)

Ṙ =
φ(2Ra −R− c0t)− φ(R− c0t)

R2
+
φ′(2Ra −R− c0t) + φ′(R− c0t)

R

+
mW Ṅ

4πR2ρL(T0)
(11.4.25)

R

ρL(T0)c0
(pLI − p0) = φ′(R− c0t)− φ′(2Ra −R− c0t) (11.4.26)

∂T

∂r

∣∣∣∣∣
r=R

=
kṪ

4πR2κL

∑
a∈{W,H,O}

Naza +
Ṙp

κL
− kTṄ

4πR2κL
+
λmW Ṅ

4πR2κL
(11.4.27)

∂T

∂t
= aL

(
∂2T

∂r2
+

2

r

∂T

∂r

)
− vL ∂T

∂r
. (11.4.28)

The newly introduced function φ describes in- and outgoing waves.

11.5 Detailed derivations

11.5.1 Case 1: A bubble immersed in an incompressible liquid at constant
temperature without phase transition

In the isothermal case the temperature T is given and considered to be constant. Therefore we do not
need the energy balance equation, we merely have to solve the mass and momentum balance equations.
The liquid is assumed to be incompressible, i.e. we require that the liquid mass density ρL does not
depend on pressure. Then mass conservation of the liquid (11.4.1) simplifies to

∂(r2vL)

∂r
= 0 (11.5.1)

and leads to the liquid velocity

vL(t, r) =
F (t)

r2
(11.5.2)

with the time dependent function F . For an incompressible liquid the momentum balance equation
(11.4.2) reduces to

∂vL

∂t
+

∂

∂r

(
(vL)2

2

)
= − 1

ρL
∂pL

∂r
. (11.5.3)

Using (11.5.2) we replace vL in the time derivative and obtain

Ḟ

r2
+

∂

∂r

(
(vL)2

2

)
= − 1

ρL
∂pL

∂r
.

We integrate the equation over [R(t),∞[ assuming the velocity vL to vanish at infinity and here the
pressure p becomes the outer pressure. The result is

Ḟ =
F 2

2R3
− R

ρL
(p0 − pLI ) . (11.5.4)

Without phase transition the mass balance (11.4.4)2 at the interface I simplifies to

vLI (t) = vVI (t) = Ṙ(t) . (11.5.5)
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This implies

vLI (t) = vL(t, R(t)) =
F (t)

R(t)2
= Ṙ(t) i.e. F = ṘR2 . (11.5.6)

The velocity field in the liquid domain is given by

vL(t, r) = Ṙ(t)

(
R(t)

r

)2

. (11.5.7)

Using (11.5.6) in (11.5.4) we end up with

R̈R+
3

2
Ṙ2 = − 1

ρL
(p0 − pLI ) . (11.5.8)

The momentum balance (11.4.5) at the interface can be written as

pLI (t) = pVI (t)− 2σ

R(t)
=

3NkT

4πR(t)3
− 2σ

R(t)
. (11.5.9)

We replace pLI in (11.5.8) and obtain the oscillation equation

R̈R3 +
3R2Ṙ2

2
+

1

ρL

(
p0R

2 − 3NkT

4πR
+ 2σR

)
= 0 . (11.5.10)

This ordinary second order differential equation describes an oscillation around the stationary radius
Rstat, that solves the equation p0R

3 + 2σR2 = 3NkT
4π . The left hand side of this equation is monotone

increasing in R and it is zero for R = 0. The right hand side of the equation is positive. Thus there is a
only one real positive solution Rstat.

Obviously we have (
R̈R3 +

3R2Ṙ2

2

)
Ṙ =

1

2
(Ṙ2R3)i̇ , (11.5.11)

and by integration of (11.5.10) we derive

1

2
(Ṙ2R3 − Ṙ2

0R
3
0) +

1

ρL

(
1

3
p0(R3 −R3

0)− 3NkT

4π
ln

R

R0
+ σ(R2 −R2

0)

)
= 0 , (11.5.12)

where the integration constant is determined by the initial condition. This is a quadratic equation in Ṙ
with two solutions (11.4.16), which only depend on R and the initial conditions R0, Ṙ0. Together these
solutions describe a closed curve. We conclude, that (11.5.10) describes an undamped oscillation.

11.5.2 Case 2: A bubble immersed in an incompressible liquid at constant
temperature with phase transition

In the case of phase transition we have to make some modifications in the interfacial mass and momentum
balance. We already derived the formula vLI = F/R2 in Subsection 11.5.1. Using the mass balance
equation (11.4.10) at the interface and ṁ = mW Ṅ we obtain

F = R2Ṙ− mW Ṅ

4πρL
. (11.5.13)

The momentum balance equation (11.4.5) at the interface gives

pLI =
3NkT

4πR3
− 2σ

R
−
(

1

ρL
− 1

ρV

)(
mW Ṅ

4πR2

)2

. (11.5.14)

For convenience we define the number of particles of the inert gas Ni := NH +NO and the corresponding
mass mi := NH ·mH + NO ·mO. This notation allows to apply all the formulas to any arbitrary inert
gas. Then the density of the gas phase assumes the following form

ρV =
3(mW · (N −Ni) +mi)

4πR3
. (11.5.15)
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We replace pLI in (11.5.4) and obtain

Ḟ =
F 2

2R3
− R

ρL

(
p0 −

3NkT

4πR3
+

2σ

R
+

(
1

ρL
− 4πR3

3(mW · (N −Ni) +mi)

)(
mW Ṅ

4πR2

)2
)
. (11.5.16)

The evolution of the water particles in the bubble is described by (11.2.45). Here we replace ṁ = mW Ṅ ,
choose T ∗ = T and calculate JµW + ekinK using (11.2.27), (11.2.28), (11.2.30) and (11.4.4). The partial
pressure pW is given by

pW =
3(N −Ni)kT

4πR3
.

Finally we have to replace the liquid pressure at the interface pLI and the vapor density ρV as in the
previous subsection, using (11.5.14) and (11.5.15). We thus obtain

Ṅ =
3(N −Ni)mW

R
√

2πmW kT

(
1

ρL

(
3NkT

4πR3
− 2σ

R
−
(

1

ρL
− 4πR3

3(mW · (N −Ni) +mi)

)(
mW Ṅ

4πR2

)2

− p̄
)

− kT

mW
ln

(
3(N −Ni)kT

4πR3p̄

)
+

1

2

(( 1

ρL

)2

−
( 4πR3

3(mW · (N −Ni) +mi)

)2
)(

mW Ṅ

4πR2

)2
)
,

which can be simplified to

Ṅ =
3(N −Ni)mW

R
√

2πmW kT

(
1

ρL

(
3NkT

4πR3
− 2σ

R
− p̄
)
− kT

mW
ln

(
3(N −Ni)kT

4πR3p̄

)
−1

2

(
1

ρL
− 4πR3

3(mW · (N −Ni) +mi)

)2(
mW Ṅ

4πR2

)2
)
. (11.5.17)

This equation together with (11.5.13) and (11.5.16) gives the resulting system in the considered case.

11.5.3 Case 3: A bubble immersed in an incompressible liquid with phase
transition and heat conduction

Now we take heat conduction into account, so that the temperature field is determined by the energy
balance equations of the phases and at the interface.

The energy balance of the phases can be written in the general form

ρ

(
∂u

∂t
+ v gradu

)
+ div q =

p

ρ

(
∂ρ

∂t
+ v gradρ

)
. (11.5.18)

In the liquid phase this can be reduced, with temperature independent compressibility K and using
(11.2.12), (11.2.13)1 as well as (11.2.13)2, to

ρLcL
(
∂TL

∂t
+ vL gradTL

)
+ div qL = 0 ,

which holds for the incompressible as for the compressible case. Here qL is determined by Fourier’s law
(11.2.26) and with the thermal conductivity aL = κL/(ρLcL) the heat conduction equation reads

∂TL

∂t
+ vL

∂TL

∂r
= aL

(
∂2TL

∂r2
+

2

r

∂TL

∂r

)
. (11.5.19)

In the gas phase we also start from (11.5.18) and replace the internal energy respectively the pressure
by the constitutive laws (3.3.2) and (11.2.23) and after some rearrangements of terms we obtain∑

a∈{W,H,O}

ρa(
∂ua
∂t

+ va gradua) + div
∑

a∈{W,H,O}

(qa + (va − v)pa) =
p

ρ
(
∂ρ

∂t
+ v gradρ) . (11.5.20)
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We use (3.3.2)2 to substitue ∂ua
∂t + va gradua, integrate (11.5.20) and get

∑
a∈{W,H,O}

qIa = − kṪ

4πR2

∑
a∈{W,H,O}

Naza − Ṙp+
kTṄ

4πR2
. (11.5.21)

From the balance of internal energy at the interface we obtain

qLI −
∑

a∈{W,H,O}

qIa = −λmW Ṅ

4πR2
. (11.5.22)

We use Fouriers law (11.2.26) on the liquid side of the interface to get

∂T

∂r
=

kṪ

4πR2κ

∑
a∈{W,H,O}

Naza +
Ṙp

κ
− kTṄ

4πR2κ
+
λmW Ṅ

4πR2κ
. (11.5.23)

The equations (11.5.13) and (11.5.16) remain the same as before, when we ignored heat conduction. In
the equation (11.5.17), which describes the mass transfer across the interface, the temperature dependent
function µ(T ) = (cL − cpW )(T − T0 − T ln T

T0
) − (sL − sW )(T − T0) does not drop out any longer here,

and we set therein the reference temperature T ∗ = T0. This leads to

Ṅ =
3(N −Nf )mW

R
√

2πmW kT

(
1

ρL

(
3NkT

4πR3
− 2σ

R
− p̄
)
− kT

mW
ln

(
3(N −Nf )kT

4πR3p̄

)
−1

2

(
1

ρL
− 4πR3

3(mW · (N −Nf ) +mf )

)2(
mW Ṅ

4πR2

)2

+(cL − cpW )(T − T0 − T ln
T

T0
)− (sL − sW )(T − T0)

)
. (11.5.24)

Finally we couple the system (11.5.13), (11.5.16), (11.5.24) with the energy balance equation (11.5.19)
and (11.5.23). In (11.5.19) we substitute vL(t, r) by (11.5.2) and get

∂TL

∂t
+
F

r2

∂TL

∂r
= aL

(
∂2TL

∂r2
+

2

r

∂TL

∂r

)
. (11.5.25)

11.5.4 Case 4: A bubble immersed in a weakly compressible liquid with
phase transition and heat conduction

The model from the previous subsection leads to a damping of the bubble oscillations that is not suffi-
ciently strong to describe the experimental data. A further damping effect is related to the propagation
of waves in the liquid, which are induced by the motion of the bubble. In this case we must skip the
assumption of an incompressible liquid. For this reason we now consider a weak compressible liquid and
in order to avoid extreme difficulties we linearize the mass conservation law and the momentum balance,
which then read

∂ρ

∂t
+ ρ0

∂v

∂r
= 0 (11.5.26)

ρ0
∂v

∂t
+
∂p

∂r
= 0 . (11.5.27)

With the definition v := ∂f
∂r and ∂p

∂ρ = c20 we can rewrite these equations in the following form

1

c20

∂p

∂t
+ ρ0∆f = 0 (11.5.28)

∂

∂r

(
ρ0
∂f

∂t
+ p

)
= 0 . (11.5.29)

Integration of (11.5.29) leads to

p− p0 = −ρ0
∂f

∂t
. (11.5.30)
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Thus for the potential f we obtain the wave equation

1

c20

∂2f

∂t2
= ∆f . (11.5.31)

For radial symmetry its general solution is known to be

f(t, r) =
φ(r − c0t)

r
+
ϕ(r + c0t)

r
, (11.5.32)

where φ and ϕ describe outgoing respectively ingoing waves. We consider p = p0 at the outer boundary
r = Ra. This leads to the reflection condition ϕ(r+ c0t) = −φ(r+ c0t− 2(Ra− r)) = −φ(2Ra− r− c0t).
We calculate

p(t, r) = p0 + ρ0c0
φ′(r − c0t)

r
− ρ0c0

φ′(2Ra − r − c0t)
r

and (11.5.33)

v(t, r) = −φ(r − c0t)
r2

+
φ′(r − c0t)

r
+
φ(2Ra − r − c0t)

r2
+
φ′(2Ra − r − c0t)

r
. (11.5.34)

Using the balance of mass at the interface we end up with

φ(2Ra −R− c0t)− φ(R− c0t)
R2

+
φ′(2Ra −R− c0t) + φ′(R− c0t)

R
= Ṙ− mW Ṅ

4πR2ρ0

(11.5.35)

and pLI = p0 + ρ0c0
φ′(R− c0t)− φ′(2Ra −R− c0t)

R
. (11.5.36)

Unlike (11.5.13) and (11.5.16) we now get two differential equations including the unknown function φ
which depends on time explicitely and on the unknown time dependent bubble radius R.

The consideration of weak compressibility leads to a small modification in the derivation of the
equation to describe the mass transfer. In contrast to the previous cases in Subsection 11.5.2 and 11.5.3
we have to use (11.2.29) instaed of (11.2.30) to calculate JµW + ekinK. Equation (11.5.24) modifies to

Ṅ =
3(N −Nf )mW

R
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ln
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3(mW · (N −Nf ) +mf )

)2(
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4πR2

)2

+(cL − cpW )(T − T0 − T ln
T

T0
)− (sL − sW )(T − T0)

)
. (11.5.37)

The now more complicated resulting system consists of the ordinary differential equation (11.5.37), the
delay equations (11.5.35) and (11.5.36) which are coupled to the partial differential equation

∂TL

∂t
+ vL

∂TL

∂r
= aL

(
∂2TL

∂r2
+

2

r

∂TL

∂r

)
. (11.5.38)

and to the corresponding interfacial boundary condition (11.5.23). The liquid velocity vL in (11.5.38)
can be calculated with (11.5.34).

11.6 Numerical results

In this section we will discuss the four described cases on the basis of the numerical computations for
the corresponding systems of equations.

For all computations we choose the external pressure p0 = 101300Pa, initial radius R0 = 0.00075m,
initial interface velocity Ṙ = 0, initial particle numbers NO = 2.5 · 1013, NH = 5 · 1013, NW = 7.5 · 1015,
and initial temperature T = 293.15K.

The cases 1 and 2 are concerned with isothermal evolution, i.e. the temperature does not change.
However the given initial value determines the reference values for those quantities that are listed in the
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table below. Such values may be found in Grigull et. al. [9]. The composition of the gas in the bubble
plays no role in the dynamics of the first case. The sum of the three particle numbers is used in order to
determine the initial pressure.

Case 1: A bubble immersed in an incompressible liquid at constant temperature without phase
transition.
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Figure 11.2: Calculated bubble radius according to Case 1. Dots: Experimental data, solid line: Com-
putation.
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Figure 11.3: Calculated bubble radius, bubble mass, liquid velocity and temperature at the interface
according to Case 2. Dots: Experimental data, solid line: Computation.

The numerical solution of the second order ordinary differential equation is obtained by solving the
corresponding first order system with one of the second order Runge Kutta methods.

As was shown above, the bubble radius oscillates without damping in this case. This result is
compared in Figure 11.2 with experimental data. We observe that computational oscillation period is
longer than the experimental one.

Case 2: A bubble immersed in an incompressible liquid at constant temperature with phase transition.
Again a second order Runge Kutta method is used for the system of three ordinary first order equations,
including a standard step size control. Due to stability restrictions on the numerical scheme this is
needed in the vicinity of the minimal radius.

The incorporation of the phase transition leads to a damping, that however is too small to describe
the experimental observations. Moreover the comparison of this case with the experimental data in
Figure 11.3. The computational oscillation period is smaller now than in Case 1.

Case 3: A bubble immersed in an incompressible liquid with phase transition and heat conduction.
The non-isothermal evolution is described by a system of three first order ordinary differential equations
that are coupled now to the partial differential equation for the evolution of the temperature. The latter
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Figure 11.4: Calculated bubble radius, bubble mass, liquid velocity and temperature at the interface
according to Case 3. Dots: Experimental data, solid line: Computation.

equation is solved numerically by the method of lines. The resulting large system of ordinary differential
equations is again solved with a second order Runge Kutta method. For the spatial discretization finite
differences of second order are used.

In this case we observe an enormous variation of the temperature. However its influence on the
evolution of the bubble radius can be ignored, in particular there is only a small additional damping in
comparison to Case 2, see Figure 11.4 and Figure 11.3 for comparison.

The temperature variation has large impact on the phase transition. At the minimal radius there
is a large increase of temperature that leads to a change of the gas-liquid phase transition. In fact,
we observe here evaporation leading for some time to a reduction of the released latent heat. During
that period where the temperature exceeds the critical temperature we turn off the phase transition, by
setting Ṅ = 0. Note, that in addition to the initial data from above we start here with v = 0 at t = 0 in
the whole liquid domain.

Case 4: A bubble immersed in a weakly compressible liquid with phase transition and heat conduction.
Recall that in the cases 1 - 3 the momentum balance is reduced to an ordinary differential equation.
This is not possible anymore if the compressibility of the liquid is taken into account. In order to reduce
numerical complexity we restrict here to the case where the momentum balance becomes a linear wave
equation, that is now coupled to a modified version of the equations of Case 3. The wave equation is
solved by means of in- and outgoing waves and the resulting system of two delay equations is likewise
solved with a second order Runge-Kutta method. Note, that we meet a free boundary here, and in Case
3, i.e. at constant cell number we have a variable spatial mesh size.

Figure 11.5 reveals a sufficiently strong damping now, so that we can observe good agreement with the
experimental data. On the other hand the oscillation period is slightly smaller than in the experiment.
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Figure 11.5: Calculated bubble radius, bubble mass, liquid velocity and temperature at the interface
according to Case 4. Dots: Experimental data, solid line: Computation.
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Figure 11.6: Calculated bubble radii according to Cases 1 - 4. Dots: Experimental data, dashed line:
Case 1, dash-dotted line: Case 2, dotted line: Case 3, solid line: Case 4. (Remark: Case 2 and Case 3
are nearly the same.)

σ = 0.07274N/m surfacial tension
p̄ = 2330Pa saturation pressure

ρ = 998.2kg/m3 liquid density
cLp = 4183J/kg/K specific heat capacity of liquid water at constant pressure
cpW = 1882J/kg/K specific heat capacity of water vapor at constant pressure
sL = 296J/kg/K specific entropy of liquid water

sW = 8665J/kg/K specific entropy of water vapor
r = 2453300J/kg specific heat of evaporation

λ = 0.5984W/m/K heat conductivity
c = 1482m/s speed of sound in liquid water

mH = 2 · 1.0079g/mol molecular weight of hydrogen
mO = 2 · 15.9994g/mol molecular weight of oxygen

Table 11.1: Thermodynamic data at reference pressure p0 = 101300Pa and at reference temperature
T = 293.15K
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11.7 Conclusions

The main conclusions of this study concern the evolution of a laser induced bubble as it is described in
Section 3, and can be summarized in five statements.

• Isothermal treatment of liquid-vapor phase transitions is not appropriate if the two phase system
is exposed to atmospheric pressure.

• The modelling of the liquid as an incompressible body ignores the crucial effect that controls the
damping of the bubble oscillation.

• The exclusive description of the evolution of the bubble radius, as it is done in the framework of
Keller-Miksis type approximation like (11.1.2), where the phase transition is ignored, is possible.
However, if the obtained data are used we calculate presssures and temperatures in the bubble as
well as in the liquid, one observes unplausible values for those quantities. This is related to the
fact, that the Keller-Miksis approximation relies on a small Mach number expansion, that becomes
unrealistic in the region of minimal bubble radius.

• If a liquid-vapor phase transition is allowed, the rebound of the bubble is only possible when an
inert gas is present in the bubble. A pure water vapor phase cannot persist beyond the first collapse
since the vapor phase is unstable under the conditions of the experiment.

• Surprisingly, the non-isothermal treatment including phase transition has no large impact on the
evolution of the bubble radius but on the other variables of the thermodynamic states of the
bubble-liquid system. However, the bubble radius is the only quantity, that currently can easily be
measured.

Finally we have collected the evolutions of the bubble radius corresponding to the four cases considered
in a common plot, see Figure 11.6.

In the second part of this paper, which is in progress, we will use the models developed in this paper
for the derivation of two-phase mixture conservation laws with phase transition. These are obtained
using averaging procedures.
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Chapter 12

Mixture theories for dispersed
particles

Bibliographic note: The content of this chapter is published in [H14]: Wolfgang Dreyer, Maren Han-
tke, and Gerald Warnecke. On balance laws for mixture theories of disperse vapor bubbles in liquid with
phase change, Continuum mechanics and thermodynamics (2013). DOI 10.1007/s00161-013-0316-7

Abstract: We study averaging methods for the derivation of mixture equations for disperse vapor
bubbles in liquids. The carrier liquid is modeled as a continuum, whereas simplified assumptions are
made for the disperse bubble phase. An approach due to Petrov and Voinov is extended to derive mixture
equations for the case that there is a phase transition between the carrier liquid and the vapor bubbles
in water. We end up with a system of balance laws for a multi-phase mixture, which is completely in
divergence form. Additional non-differential source terms describe the exchange of mass, momentum
and energy between the phases. The sources depend explicitly on evolution laws for the total mass, the
radius and the temperature of single bubbles. These evolution laws are derived in a prior article [4] and
are used to close the system. Finally numerical examples are presented.

12.1 Introduction

The aim of the paper is to derive mixture balance laws for fluid flows with phase transition. We derive
balance laws for mass and momentum as a first step. Analogously, we derive balances for the energy of
the phases.

We are considering a mixture of a disperse phase of small ball shaped bubbles of water vapor, immersed
in a carrier fluid of the corresponding other liquid phase. The advantage of considering a dispersed phase
is that one may use a simpler specific averaging technique to describe it. In a more general approach for
two phase mixtures one would use for both phases the averaging that we use only for the carrier fluid.

There are many techniques available to go from some microscopic modeling to macroscopic models.
All of them involve a form of averaging in some sense. There is the theory of homogenization which
mostly considers periodic structures, see Bensoussan et al. [3], and does the averaging by considering
weak limits of periodically fluctuating physical states. There are the methods of moments, which may be
seen as weighted global averages, such as those described in Müller and Ruggieri [14] or local averaging
techniques such as those we want to consider. There are a number of such local averaging techniques,
namely ensemble averaging, time averaging and spatial averaging, see Drew and Passman [5]. Also we
want to mention Ishii [10], Stewart and Wendroff [19], Nigmatulin [16] among many other publications.
All forms of averaging lead to the same type of macroscopic equations. We pursue spatial averaging.

It is not too difficult to arrive at averaged equations, but most approaches lead to additional variables
which need closure relations in the form of state equations. This is not so surprising, since most theories at
the level of continuum mechanics need such closure relations to completely determine the mathematical
model equations. In the case we consider here, already the microscopic equations for the continuous
phase used for the averaging come with equations of state.

There are also some numerical techniques along this line, see for instance Engquist and Hou [6].

293
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Our approach is based on volume averaging techniques due to Voinov and Petrov [23] for the same
problems which were studied in detail in a diploma thesis of Rydzewski [17]. In our approach we aim
at taking the compressible Euler equations to describe the microscopic flow in the carrier phase whereas
Voinov and Petrov [22–24] assumed a potential flow field and made explicit use of the known solution of
potential flow around a sphere. Our results are therefore more general than those. But we do take up the
idea to use a potential flow in order to determine the interfacial terms on the spherical surfaces between
the phases. The remarkable difference to other two phase models is, that our model is completely in
divergence form.

We average by using a type of sliding average over a ball of radius a > 0 in space. The diameter of
the ball d = 2a is the scale at which we want to derive macroscopic equations for the mixture of a liquid
phase L occupying most of the space and a dispersed phase consisting of bubbles B consisting of small
balls with radii considerably smaller than a.

This averaging is a specific case of volume averaging as described in Drew and Passman [5], though
our notation is different and taken from Voinov and Petrov [23]. Drew and Passman argue at the end
of Chapter 10 that ensemble averaging, i.e. an approach of statistical physics, is the preferred form of
averaging to be used for multi-component fluids. We believe that we are considering a mere change of scale
and therefore a fixed scale d introduced by the size of the balls is more adequate to describe the micro-
macro transition in modeling. We are assuming that we have a deterministic microscopic model with
a given unique dynamics, though existence and uniqueness currently cannot be proven mathematically
rigorously for the model equations we are using.

For the microscopic phases we assume that they are not in equilibrium with each other and we want
to focus on modeling their interacting dynamics including phase changes between them.

The paper is organized as follows. In Section 12.2 we introduce the averaging procedures and obtain
meaningful averaged quantities. We prove a bubble and a general transport theorem. In the next section
we derive balance laws for the carrier and the dispersed phase. In Section 11.4 we obtain closure relations
for the sources to describe the exchange of mass, momentum and energy between the phases. In Section
12.5 we give some mathematical properties of a radial symmetric submodel. We recall the evolution laws
obtained in [4] in Section 12.6 and give some numerical examples in Section 12.7. Finally, some detailed
calculations for the proofs can be found in the appendix.

12.2 Local spatial averaging techniques

We assume that the space R3 contains a mixture of two separated fluids. In this study we consider an
ensemble of N bubbles immersed in a liquid, thus forming the dispersed phase resp. the carrier phase.
Further we require that the number of bubbles is constant. In order to take care of nucleation and
dissolution of bubbles, we allow for bubbles with zero radius. The merging or breakage of bubbles are
excluded in our approach since this would require an additional evolution law for the number of bubbles.
The number N thus gives the maximal number of real bubbles in the system.

Both phases are represented here by different types of averaging operators. Mean values of properties
of the dispersed phase consisting of bubbles, indicated by B, are given by sums over the bubbles, whereas
in the liquid, indicated by L, we will have integrals over the liquid domain.

For the averaging we take a ball Ba(0) of radius a > 0 at the origin, i.e. for a general ball we set
Ba(x) = {x′ ∈ R3 | |x′ − x| < a }, and denote its volume by Va = 4π

3 a
3. Thereby we define the volume

averaging characteristic function or window function

χ
a(x) =

{ 1
Va

x ∈ Ba(0)

0 otherwise.

Note that by standard smoothing techniques with Friedrichs mollifiers one could also take a smoothed
approximation of the characteristic function over Ba(0). If we consider derivatives of non-smooth func-
tions to be taken in the sense of distributions we may avoid this. Either way, it should be noted that
there is a mathematical theory making all the arguments below completely rigorous, but care has to be
taken in each step. Since we want to concentrate on basic properties of the resulting system of differen-
tial equations, we leave out these technical details. They would only obscure the theory without giving
additional insight.
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Further, we assume that any bounded subset of R3 contains at most finitely many balls Bα(t) of
radius Rα(t) > 0 with Rα(t) � a, with midpoints at qα(t) ∈ R3, and volume Vα(t), i.e. Bα(t) = {x ∈
R3 | |x − qα(t)| < Rα(t)} and Vα(t) = 4π

3 Rα(t)3. Let ηα be the vector field of outer unit normals
to the surface of Bα(t). To describe the surface points of the balls, we introduce the radial vectors
Rα(t,ηα) = Rα(t)ηα such that the points qα(t) + Rα(t,ηα) lie on the surface of the respective ball.
For the surface area we set Oα(t) = 4πRα(t)2. We denote by mα(t) the mass of the ball Bα(t), by
vα(t) = q̇α(t) the velocity of its midpoint, by wα(t,ηα) = q̇α(t)+Ṙα(t,ηα) the velocity of its boundary,
and by ρα(t) = mα(t)/Vα(t) its mass density. For notational convenience we will not always explicitly
write out the dependence of the radial vectors and velocities on the unit normals.

The balls just described contain solely the dispersed bubbles B whereas their complement ΩL(t)

ΩL(t) = R3\
⋃
α

Bα(t)

is filled completely with only the carrier fluid L. Then we define the volume fraction of the disperse
phase as

c(t,x) =
∑
α

χ
a(x− qα(t))Vα(t). (12.2.1)

The sum is finite for each x ∈ R3 and is taken over all small balls containing the dispersed phase that
have their midpoint within a distance a of x. The volume fraction of the carrier fluid is then set to be
1− c(t,x) in order to preserve volume. These volume fractions are step functions, i.e. not smooth.

Note that we are purposely making a small error by taking the full volume of any ball with its center
in Ba(x), even if it is not contained completely in Ba(x). At the same time we neglect the volume of some
balls that have their center outside and cut it. Otherwise we could have replaced in (12.2.1) Vα(t) by the
volume measure |Bα(t) ∩Ba(x)|. This would add a notational complication to the averaging formula of
the dispersed phase without leading to any substantial changes in the outcome of the averaging. Note
that our definition implies that the function c is not continuous where the midpoint of a dispersed phase
ball Bα(t) leaves or enters the averaging ball Ba(x).

The dispersed phase is assumed to consist of well separated very small balls. We are aware that in
reality a dynamic dispersed phase will not come in spherical shapes, but do not wish to complicate the
averaging procedure unnecessarily at this point. So we further assume for simplicity that certain physical
properties Ψ, namely density, pressure and temperature are spatially constant and only time dependent
within each ball, but may be different in neighboring balls. Note that the velocity must then be radially
dependent in order to guarantee local mass conservation. We generically denote these quantities by
Ψα(t). In the carrier fluid any field quantity Ψ depends on t and the spatial point x′ ∈ ΩL(t).

Next we define the spatial liquid average for extensive physical variables by

(1− c)Ψ(t,x) =

∫
ΩL(t)

Ψ(t,x′) χa(x− x′) dx′ . (12.2.2)

Extensive variables describe those quantities that double in case the system size is doubled. In case that
no bubble is cut by the averaging ball Ba, this is equivalent to the definition

Ψ(t,x) =

∫
ΩL(t)

Ψ(t,x′) χa(x− x′) dx′∫
ΩL(t)

χ
a(x− x′) dx′

(12.2.3)

In this study we need both averages, where (12.2.2) is used for establishing the evolution equation, while
(12.2.3) is more convenient for numerical calculations.

Correspondingly we define the spatial average of the dispersed phase for extensive physical variables
as

cΨα(t,x) =
∑
α

Ψα(t) χa(x− qα(t))Vα(t). (12.2.4)

Note that the form of spatial averaging in (12.2.4) is somewhat different from taking (12.2.2) and assuming
that Ψ has piecewise constant values Ψα on subsets of volume Vα containing representative points
x′ = qα. The spatial average (12.2.4) leads to step functions whereas the integration in (12.2.3) leads
to continuous functions in this case. Also there is a slight deviation due to the fact that (12.2.4) is
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taken only over the balls with at least their center point in Ba(x) and we take their full volume, not
just their intersection with Ba(x) as a precise application of (12.2.2) would require. On the other hand
balls with an intersection having their center outside the averaging domain are completely neglected.
This small error is carried through all the arguments. It does not have any influence on the form of
the averaged equations to be derived. There is only an imprecision for quantitative predictions. Also
note, that our averaging procedure is similar to, but slightly different from the procedure in the book of
Nigmatulin [16, p. 28], who also uses spatial averaging techniques.

Further, we point out that in the spatial averaging (12.2.2) we do not have the property Ψ = Ψ. The
double average involves integration over a ball or radius 2a. Such a property is only true for ensemble
averages or periodic functions averaged over their periods. For our discrete average (12.2.4) a double
average is not meaningful because it gives a density that is independent of α. We only use the notation
Ψα to point out that the averaged variable is related to the dispersed balls. Microscopic quantities for
the carrier fluid have no index.

Quantities related to the interfaces

Iα(t) = ∂Bα(t) = {x ∈ R3 | |x− qα(t)| = Rα(t)}

will have an index Iα.
Next we consider special choices for the properties Ψα resp. Ψ for the bubbles and the liquid. The

only meaningful choices are densities of additive quantities. See Section 11.4 for more details. Note that
Nigmatulin [16] did not discuss this point

The simplest choice is Ψα ≡ 1. This results in representation (12.2.1) of the concentration of the
bubbles which is the local mean value of their volumes. The mean values of mα/Vα, 1/Vα, mαq̇α/Vα and
mαeα/Vα give the mass density ρB , the number density n, the momentum density ρBvB and the total
energy density ρBeB of the bubbles. The latter is assumed to be the sum of the internal and the kinetic
energy

cρB(t,x) =
∑
α

mα(t) χa(x− qα(t)), (12.2.5)

cn(t,x) =
∑
α

χ
a(x− qα(t)), (12.2.6)

cρBvB(t,x) =
∑
α

mα(t)q̇α(t) χa(x− qα(t)), (12.2.7)

cρBeB(t,x) =
∑
α

mα(t)eα(t) χa(x− qα(t)) . (12.2.8)

In the liquid we only have to define the mass density, the momentum density and the total energy density
by the corresponding formulas

(1− c)ρL(t,x) =
∫

ΩL(t)
ρ(t,x′) χa(x− x′) dx′, (12.2.9)

(1− c)ρLvL(t,x) =
∫

ΩL(t)
ρ(t,x′)v(t,x′) χa(x− x′) dx′ , (12.2.10)

(1− c)ρLeL(t,x) =
∫

ΩL(t)
ρ(t,x′)e(t,x′) χa(x− x′) dx′ . (12.2.11)

Note that now we have at each point in space a partial density cρB of the bubbles and a partial density
(1− c)ρL of the liquid. The same is true for the momentum and the energy. All further quantities have
to be obtained from the above variables using an equation of state or other closure relations.

Now we study the most important properties of the averaging.

Lemma 12.2.1 (Preservation property). Let Ψ(t, ·) ∈ L1(ΩL(t)) and Ψα for finitely many bubbles be
any extensive variable, then we have∫

ΩL(t)

Ψ(t,x) dx +
∑
α

Ψα(t)Vα(t) =

∫
R3

(1− c)Ψ(t,x) + cΨα(t,x) dx .

Proof. Using the definitions (12.2.4), (12.2.2), the Fubini Theorem as well as the fact that
∫
R3
χ
a dx = 1
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we find ∫
R3

(1− c)Ψ(t,x) + cΨα(t,x) dx

=

∫
R3

[∫
ΩL(t)

Ψ(t,x′) χa(x− x′) dx′ +
∑
α

Ψα(t) χa(x− qα(t))Vα(t)

]
dx

=

∫
ΩL(t)

Ψ(t,x′)

∫
R3

χ
a(x− x′) dx dx′ +

∑
α

Ψα(t)

∫
R3

χ
a(x− qα(t)) dx Vα(t)

=

∫
ΩL(t)

Ψ(t,x′) dx′ +
∑
α

Ψα(t)Vα(t).

Next we derive the transport theorems that describe the dynamics of the averaged quantities.

Lemma 12.2.2 (Bubble transport equation). We consider any extensive quantity Ψα(t) describing the

bubble. We use the notation ∇x =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
for the spatial gradient. Then the averaged quantity

Ψα satisfies the transport equation

∂cΨα

∂t
(t,x) +∇x · (cΨαq̇α(t,x)) = c

(
(ΨαVα)̇

Vα

)
(t,x). (12.2.12)

Proof. Using the definition (12.2.4) we find by differentiation in the sense of distributions, see also
Appendix B, and again use of (12.2.4)

∂

∂t
cΨα(t,x) =

∑
α

∂

∂t

(
Ψα(t) χa(x− qα(t))Vα(t)

)
=
∑
α

[
Ψα(t)∇qα

χ
a(x− qα(t)) · q̇α(t)Vα(t) + Ψ̇α(t) χa(x− qα(t))Vα(t)

+ Ψα(t) χa(x− qα(t))V̇α(t)
]

=−∇x ·
∑
α

Ψα(t) χa(x− qα(t))Vα(t)q̇α +
∑
α

Ψ̇α(t) χa(x− qα(t))Vα(t)

+
∑
α

Ψα(t)
V̇α(t)

Vα(t)
χ
a(x− qα(t))Vα(t)

=−∇x ·
(
cΨαq̇α(t,x)

)
+ c

(
Ψ̇αVα
Vα

)
(t,x) + c

(
ΨαV̇α
Vα

)
(t,x).

Note that from the proof we have

c Ψ̇α(t,x) =
∂

∂t
(cΨα(t,x)) +∇x ·

(
cΨαq̇α(t,x)

)
− c

(
ΨαV̇α
Vα

)
(t,x).

Taking Ψα = 1 in (12.2.12) we obtain

∂c

∂t
(t,x) +∇x · (c q̇α(t,x)) = c

(
V̇α
Vα

)
(t,x). (12.2.13)

This result states that the volume fraction of the bubbles gets transported by the local average
velocity of the balls q̇α. According to (12.2.13) the volume fraction can also be produced by the source
term of the right hand side. This fact indicates that we allow liquid-vapor phase transitions. Note that
in Drew and Passman [5] this equation is replaced by the so-called topological equation for the averaged
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characteristic function of the set microscopically occupied by one phase. But they have not accounted
for the phase transition term.

Since we are assuming a spherical shape of Vα note that

V̇α
Vα

= 3
Ṙα
Rα

. (12.2.14)

The next equation of our hierarchy describes the evolution of the number density of bubbles. Taking
(12.2.6) and Ψα = 1/Vα gives

∂cn

∂t
(t,x) +∇x · (c q̇α/Vα(t,x)) = 0 . (12.2.15)

Note that the total number of bubbles in the system does not change. Taking Ψα = ρα resp. Ψα = ραq̇α
we obtain the transport equations for mean bubble mass

∂cρB
∂t

(t,x) +∇x · (cρBvB(t,x)) = c

(
ṁα

Vα

)
(t,x) (12.2.16)

and mean bubble momentum

∂cρBvB
∂t

(t,x) +∇x · (c ραq̇α ⊗ q̇α(t,x)) = c

(
(ραq̇αVα)̇

Vα

)
(t,x) = c

(
(mαq̇α)̇

Vα

)
(t,x) . (12.2.17)

Further we obtain with Ψα = ραeα the transport equation for the mean bubble energy

∂cρBeB
∂t

(t,x) +∇x · (cραeαq̇α(t,x)) = c

(
(mαeα)̇

Vα

)
(t,x) . (12.2.18)

In order to obtain the corresponding transport equations for the liquid phase we will need differentiation
in time of integrals with time dependent integrand and domain of integration of the form

d

dt

∫
Ω(t)

Ψ(t, y) dy.

This is achieved by the well known Reynolds Transport Theorem assuming that we know a continuously
differentiable family of continuously differentiable transformations Xt : Ω(0) → Ω(t) whereby for each
point y0 we have a trajectory y(t) = Xt(y0) leading to a velocity field u(t, y) = ẏ(t).

Theorem 12.2.1 (Reynolds Transport Theorem). Let Ψ : R×RN → R be a continuously differentiable
scalar field and the transformations Xt : RN → RN also continuously differentiable with the velocity field
u as defined above. Then for any bounded control volume Ω(t) the transport equation

d

dt

∫
Ω(t)

Ψ(t, y) dy =

∫
Ω(t)

[
∂Ψ

∂t
(t, y) + ∇y ·

(
Ψ(t, y)u(t, y)

)]
dy (12.2.19)

holds, where η(t) is the velocity of the boundary.

Proof. A proof can be found in Serrin [18] or Warnecke [21].

Also see Drew and Passman [5, p. 102] for the topological equation. For our purposes we will modify
the equation (12.2.19) using the Gauss theorem with the outer unit normal field η(t) on the boundary
∂Ω(t) giving

d

dt

∫
Ω(t)

Ψ(t, y) dy =

∫
Ω(t)

∂Ψ

∂t
(t, y) dy +

∮
∂Ω(t)

(
Ψ(t, y)u(t, y)

)
· η(t, y) dS . (12.2.20)

Lemma 12.2.3 (General transport equation). Let us assume that a physical quantity Ψ for the carrier
fluid satisfies a microscopic balance law

∂

∂t
Ψ(t,x′) +∇x′ · F(t,x′) = G(t,x′) (12.2.21)
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for some given flux function F and right hand side G, e.g. an external force or a source. We set
Iα(t) = ∂Bα(t) and take ηα to be the outer unit normal vector of these balls on their surface. We further
denote by Rα(t) = Rα(t)ηα the vector of length Rα(t) so that qα(t) + Rα(t) gives an arbitrary point on
∂Bα(t). We set wα = q̇α + Ṙα. Further, we assume that the boundary ∂ of the ball Ba(x) does not
intersect any of the small balls Bα(t). Then we have by averaging

∂

∂t
(1− c)Ψ(t,x) +∇x · (1− c)F(t,x) (12.2.22)

=
∑
α

qα∈Ba(x)

∮
Iα(t)

[F(t,x′)−Ψ(t,x′)wα] · ηα χa(x− x′) dS + (1− c)G(t,x).

The summation is finite and by assumption the quantities q̇α, Ṙα are constant with respect to integration
on each sphere.

Proof. We have to take into account that our general averaging integral in (12.2.2) has a time dependent
domain of integration and use (12.2.20). The unit normals ηα are inner unit normals to ΩL(t), so we
obtain

∂

∂t
(1− c)Ψ(t,x) =

∂

∂t

∫
ΩL(t)

Ψ(t,x′) χa(x− x′) dx′ (12.2.23)

=

∫
ΩL(t)

∂Ψ

∂t
(t,x′) χa(x− x′) dx′ −

∑
α

∮
Iα(t)

Ψ(t,x′)wα · ηα(t) χa(x− x′) dS.

The summation is taken over all balls with their center in the support of χa(x − x′). Now we use the
conservation law (12.2.21) and (12.2.2) as well as the shift of differentiation formula for the distribution
∇x′

χ
a(x− x′) given in Appendix 12.B to obtain

∂

∂t
(1− c)Ψ(t,x) =−

∫
ΩL(t)

∇x′ · F(t,x′) χa(x− x′) dx′ +

∫
ΩL(t)

G(t,x′) χa(x− x′) dx′

−
∑
α

∮
Iα(t)

Ψ(t,x′)wα · ηα(t) χa(x− x′) dS

=−
∫

ΩL(t)

∇x′ ·
[
F(t,x′) χa(x− x′)

]
dx′ +

∫
ΩL(t)

F(t,x′)∇x′
χ
a(x− x′) dx′

−
∑
α

∮
Iα(t)

Ψ(t,x′)wα · ηα(t) χa(x− x′) dS + (1− c)G(t,x).

Using the shift of differentiation formula from Appendix 12.B this gives

∂

∂t
(1− c)Ψ(t,x) =−

∫
ΩL(t)

∇x′ ·
[
F(t,x′) χa(x− x′)

]
dx′ −∇x ·

∫
ΩL(t)

F(t,x′) χa(x− x′) dx′

−
∑
α

∮
Iα(t)

Ψ(t,x′)wα · ηα(t) χa(x− x′) dS + (1− c)G(t,x)

=
∑
α

∮
Iα(t)

F(t,x′) · ηα(t,x′) χa(x− x′) dS −∇x · (1− c)F(t,x)

−
∑
α

∮
Iα(t)

Ψ(t,x′)wα · ηα(t) χa(x− x′) dS + (1− c)G(t,x).

All terms involving derivatives of χa have to be interpreted in the sense of distributions, see Appendix
12.B.

For the case that small balls Bα(t) intersect ∂Ba(x) we take the same formula (12.2.22) and again
make a small error, as in the definition of c.
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For a first illustration we consider the special case Ψ = 1 to obtain an equation for the concentration
c in the liquid setting. We have

∂

∂t
(1− c)(t,x) =− ∂c

∂t
(t,x) = − ∂

∂t

∫
ΩL(t)

χ
a(x− x′) dx′

=−
∑
α

∮
Iα(t)

wα · ηα(t) χa(x− x′) dS

=−
∑
α

∮
Iα(t)

(
q̇α + Ṙα

)
· ηα(t) χa(x− x′) dS

=−
∑
α

∫
Bα(t)

∇x′ ·
[
q̇α χa(x− x′)

]
dx′ −

∑
α

∮
Iα(t)

Ṙα χa(x− x′) dS.

=∇x ·
∑
α

∫
Bα(t)

[
q̇α χa(x− x′)

]
dx′ −

∑
α

∮
Iα(t)

Ṙα χa(x− x′) dS.

Now we may set χa(x−qα(t)) =χa(x−x′), because we note that in case a > 2Rα(t) for all α, which we
assume throughout, we have Bα(t) ⊂ Ba(qα(t) + Rα(t)). So for x ∈ Ba(qα(t)) ∩Ba(qα(t) + Rα(t)) we
have using x′ = qα(t) + Rα(t) ∈ Iα(t)

χ
a(x− qα(t)) =χa(x− (qα(t) + Rα(t)) =χa(x− x′) =

1

Va
. (12.2.24)

This gives

∂c

∂t
(t,x) +∇x ·

(
c(t,x)q̇α(t,x)

)
= 3c

(
Ṙ

R

)
.

Here we refer the reader to the corresponding equations (12.2.13) and (12.2.14) for the concentration in
the bubble setting, which gives the same result.

12.3 Mixture balance laws

12.3.1 The microscopic conservation laws within each phase

The liquid is assumed to be described by the inviscid, compressible balances for mass, momentum and
energy for the microscopic variables mass density ρ : R×R3 → R, velocity v : R×R3 → R3 and energy
e : R× R3 → R.

∂ρ

∂t
+∇x · (ρv) = 0 , (12.3.1)

∂(ρv)

∂t
+∇x((ρv ⊗ v) + p(ρ)1) = ρg , (12.3.2)

∂ρe

∂t
+∇x · ((ρe+ p)v + Q) = ρg · v . (12.3.3)

The pressure p : R×R3 → R is given by the equation of state due to Hooke’s law applied to an isotropic
liquid

p = pref +K(
ρ

ρref
− 1) , (12.3.4)

where K is the liquid bulk modulus. This means, that the liquid density does not depend on temperature,
we neglect thermal expansion. Corresponding to equation (12.3.4) the speed of sound aL of the liquid is
given by

aL =

√
K

ρref
(12.3.5)

and is obviously constant. The gravitational acceleration is given by g = −g(0, 0, 1). For the energy we
have

e = u+
1

2
v2 ,
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where we use the following constitutive law for the internal energy u

u(T, ρ) = c∗(T − Tref ) + (pref −K)

(
1

ρref
− 1

ρ

)
+

K

ρref
ln

ρ

ρref
+ u(Tref , ρref ) (12.3.6)

with the specific heat capacity c∗. Further we have Fourier’s law the constitutive law for the heat flux

Q = −κ∇T

with the heat conductivity κ.
We assume that the content of the bubbles behaves as an ideal gas. It is described by the ideal

thermal and the caloric equation of state for the pressure and the internal energy

pα =
ραkTα
m0

and uα(Tα) = z
k

m0
(Tα − Tref ) + u(Tref ) (12.3.7)

where m0 is the molecular mass, k is the Boltzmann constant and z = 3 for a polyatomic gas.
The thermodynamic states inside the bubbles are assumed to be homogeneous in space. For this

reason we do not need local balance laws here. Instead we take Newton’s law of motion for the evolution
of the bubble centers qα, which concerns a moving bubble with changing bubble radius that may gain
or lose mass

(mα(t)q̇jα(t))˙ = −
∮
Iα

pηjαdS +mαg
j +

ṁα(t)

4πRα(t)2

∮
Iα

vj(t,x′)dS , (12.3.8)

for j = 1, 2, 3. The first term on the right hand side is the pressure exerted by the fluid onto the particle,
the second is the gravitational force and the third term is a momentum change due to mass being lost
to the carrier fluid. The special form of these equations is explained in Appendix 12.A.

Further, we have the respective mass, momentum, and energy balance at the interface

Jρ(vη − wη)K = 0 , (12.3.9)

ρ(vη − wη)JvK + JpηK = 2σkmη , (12.3.10)

ρ(vη − wη)Ju+
p

ρ
+

1

2
(v −w)2K + JQK = 0 , (12.3.11)

where the jump brackets denote JΨK = ΨI
L − ΨI

α for any physical quantity Ψ, σ denotes the surface
tension and km denotes the mean curvature.

For a simplified study one can ignore the energy equation. In that case one has to introduce a rule
that controls the variation of temperature. For instance we can consider either the isothermal or the
adiabatic case. In this paper for simplicity we only investigate the isothermal system mathematically, see
Section 12.5. Moreover we illustrate how to deal with source terms resp. evolution laws for the isothermal
system, see Section 12.6 and Section 12.7.

12.3.2 Macroscopic mass balances

We first use for the liquid phase (12.2.22) with Ψ = ρ, F = ρv and the definition (12.2.10) to obtain
from (12.3.1)

∂

∂t
[(1− c)ρL](t,x)+∇x · [(1− c)ρLvL](t,x) (12.3.12)

=
∑
α

∮
Iα(t)

ρ(t,x′) [v(t,x′)−wα(t)] · ηα χa(x− x′) dS .

For the bubbles we take (12.2.12) with Ψα(t) = mα(t)/Vα(t), the definitions (12.2.7) and obtain

∂(cρB)

∂t
(t,x) +∇x · (c ρBvB)(t,x) = c

(
ṁα

Vα

)
(t,x). (12.3.13)

Overall the total mass of both phases must be conserved. Therefore, we must have a mass balance
across the interfaces. The terms on the right hand side must cancel when both equations are added
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together. In fact this happens because we conclude: For x′ = qα(t) + Rα(t) ∈ Iα(t) we have using
(12.2.24) for the right hand side of (10.3.48)

c

(
ṁα

Vα

)
(t,x) =

∑
α

ṁα
χ
a(x− (qα(t) + Rα(t)) =

∑
α

ṁα
χ
a(x− x′) .

Now for x′ ∈ ∂Bα(t) and x ∈ Ba(qα(t)) ∩Ba(qα(t) + Rα(t)) we obtain the relation∮
Iα(t)

ρ(t,x′) [v(t,x′)−wα(t)] · ηα χa(x− x′) dS = −ṁα
χ
a(x− x′)

for the liquid phase. This equation relates the rate of mass change ṁα to the flow and boundary velocities.
We use the rate of mass change

ṁα = −
∮
Iα(t)

ρ(t,x′) [v(t,x′)−wα(t)] · ηα dS . (12.3.14)

The total rate of change of mass in Bα(t) equals the mass flux at the moving fluid boundary. A change
of bubble mass corresponds to a positive (gain) resp. negative (loss) boundary velocity wα = wα · ηα =
(q̇α + Ṙα) · ηα.

Therefore, summation over α gives identical right hand sides of equations (12.3.12) and (10.3.48), i.e.
total mass conservation.

12.3.3 Macroscopic momentum balances

For the liquid phase we use (12.2.22) with Ψ = ρv, F = ρv ⊗ v + p1, set G = ρg and take p given by
the equation of state (12.3.4) to obtain

∂

∂t
[(1− c)ρLvL](t,x) +∇x · ([(1− c)ρv ⊗ v](t,x) + (1− c)pL1)− (1− c)ρLg (12.3.15)

=
∑
α

∮
Iα(t)

[ρv(t,x′)⊗ [v(t,x′)−wα] + p(t,x′)1] · ηα χa(x− x′) dS

=
∑
α

(∮
Iα(t)

ρv(t,x′)⊗ [v(t,x′)−wα] · ηα χa(x− x′) dS

+

∮
Iα(t)

p(t,x′)ηα χa(x− x′) dS

)
.

For the disperse phase we now take (12.2.12) with Ψα(t) = ρα(t)q̇α(t). This gives

∂(cρBvB)

∂t
(t,x) +∇x · (c ραq̇α ⊗ q̇α)(t,x) = c

(
(ραq̇αVα)̇

Vα

)
(t,x) = c

(
(mαq̇α)̇

Vα

)
(t,x).

Now we may consider (12.3.8) on the right hand side. We obtain using (12.2.4)

c

(
(mαq̇α)̇

Vα

)
(t,x) = −c

(∮
Iα

pηαdS/Vα

)
+ c

(
mα

Vα

)
g + c

(
ṁα(t)

4πRα(t)2

∮
Iα

vdS/Vα

)
=
∑
α

(
−
∮
Iα

pηαdS +
ṁα(t)

4πRα(t)2

∮
Iα

vdS

)
χ
a(x− qα(t)) + cρBg. (12.3.16)

Again the momenta must balance across the interfaces. In analogy to the above arguments for the mass
balance, we obtain the momentum balance on the interfaces∮

Iα

pηjαdS −
ṁα(t)

4πRα(t)2

∮
Iα

vjdS

=

∮
Iα

ρvj [v −wα] · ηα dS +

∮
Iα

pηjα dS .

This equation obviously holds, because of the mass balance at the interface

− ṁα(t)

4πRα(t)2

∮
Iα

vjdS =

∮
Iα

ρvj [v −wα] · ηα dS . (12.3.17)
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12.3.4 Macroscopic energy balances

To obtain an energy balance equation for the liquid phase, we again use (12.2.22) with Ψ = ρe, F =
(ρe+ p)v + Q and G = ρg · v. We get

∂

∂t
(1− c)ρLeL + ∇x · (1− c)(ρe+ p)v + Q− (1− c)ρLg · vL

=
∑
α

∮
Iα

((ρe+ p)v − ρew + Q) · ηχa(x− qα) dS

=
∑
α

∮
Iα

(ρ(v −w)e+ pv + Q) · ηχa(x− qα) dS (12.3.18)

Again we take for the disperse phase (12.2.12) with Ψα(t) = ρα(t)eα(t) to obtain

∂cρBeB
∂t

+∇x · (cραeαq̇α)(t,x) = c

(
(mαeα)̇

Vα

)
(t,x) . (12.3.19)

For the right hand side of (12.3.19) we have

c

(
(mαeα)̇

Vα

)
(t,x) + cρBg · vB = −

∑
α

∮
Iα

(ρ(v −w)e+ pv + Q) · ηχa(x− qα) dS .

This implies energy conservation at the interface.

12.4 Closure relations

The PDE system, we are interested in, relies on the balance equations that were derived in the last
section. In these equations several quantities appear that must be related to the variables of the model,
namely (

q̇α
Vα

)
,

(
Ṙα
Rα

)
,

(
ṁα

Vα

)
, ρα(t)q̇α ⊗ q̇α,

1

Vα

∮
Iα

pηjαdS, (ρe+ p)v + Q,

(
ṁα(t)

4πRα(t)2

∮
Iα

vjdS/Vα

)
, ρv ⊗ v, ραeαq̇α,

1

Vα

∮
(ρ(v −w)e+ pv + Q) · η ds.

Now we will modify these expressions in order to obtain a closed system of equations. At first we
introduce the cold closure assumption to simplify the first and fourth term. To this end we decompose
the bubble velocity q̇α as q̇α = vB + Cα. The cold closure assumption ignores the excess velocity Cα,
this means we ignore any stochastic motion of the bubbles. Using (12.2.6) and (12.2.5) this assumption
leads to (

q̇α
Vα

)
= nvB and ρα(t)q̇α ⊗ q̇α = ρBvB ⊗ vB . (12.4.1)

Alternatively one could introduce a Reynolds stress tensor. This requires additional modeling in order
to close the system. It is no easy task, see e.g. Drew and Passman [5].

Similarly we set

ρv ⊗ v = ρLvL ⊗ vL , ραeαq̇α = ρBvBeB and (ρe+ p)v = (ρLeL + pL)vL

and define the averaged bubble resp. liquid internal energy

uB := eB −
1

2
v2
B and uL := eL −

1

2
v2
L .

Further we define the averaged temperatures of the phases

TB := (uB − uref (Tref ))
m0

zk
+ Tref and
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TL :=
1

c∗

(
uL − uref (Tref , ρref )− (pref −K)

(
1

ρref
− 1

ρL

)
− K

ρref
ln

ρ

ρref

)
+ Tref

with the same reference data as in (12.3.6) and (12.3.7). With this definition we set

Q = −κ∇TL .

Next we calculate the second and third expression of our list. At first we have by definition

c

(
Ṙα
Rα

)
(t,x) =

∑
α

Ṙα(t)

Rα(t)
χα(x− qα(t))Vα(t) , c

(
ṁα

Vα

)
(t,x) =

∑
α

ṁα(t)χα(x− qα(t)) .

The evolution of Rα(t) and mα(t) was studied in [4] for a single bubble. There we considered various

model equations without and with phase transition. These equations are used here to determine Ṙ = Ṙα
and ṁ = ṁα by the simplifying assumption that we set(

Ṙα
Rα

)
=
Ṙ

R
and

(
ṁα

Vα

)
=
ṁ

V
, (12.4.2)

where R and V denote the mean bubble radius resp. the mean bubble volume. These quantities are
related to the volume fraction c and the number density cn. We have

c

cn
=

1

n
= V =

4πR3

3
. (12.4.3)

The right hand sides of (12.4.2) are calculated by means of the models from [4], see Section 6 for more
details.

Further, we now replace the fifth term and the seventh term of the list. We use equation (12.3.17)
and the interfacial momentum balance equation (12.3.10). For the spherical bubble with index α the
mean curvature is given by −1/Rα. Therefore we have∮

Iα

(
ρvj [v −wα] · ηα + pηjα

)
dS =

∮
Iα

(
ραv

j
α[vα −wα] · ηα + (pα −

2σ

Rα
)ηjα

)
dS

= − ṁα

4πR2
α

∮
vjα dS = − ṁα

4πR2
α

∮
q̇jα dS

= −ṁαq̇
j
α . (12.4.4)

This expression is zero in the radially symmetric case of a single spherical bubble.
In order to modify the last expression of the list, we use the interface balances for energy (12.3.11)

and momentum (12.3.10) as well as the mass balance at the interface (12.3.9) to obtain

1

Vα

∮
(ρ(v −w)e + pv + Q) · η ds =

1

Vα

∮
(ρα(vα −w)eα + pαvα + Qα + 2σkmw) · η ds

= −ṁαeα
Vα

− pαṁα

ραVα
+

3pαṘα
Rα

− 6σṘα
R2
α

+
1

Vα

∮
Qα · η ds

with
1

Vα

∮
Qα · η ds =

3QIα
Rα

.

Integrating the energy balance equation for a radial symmetric homogeneous bubble

r2pα
∂

∂t
ln
T zα
ρα

+
∂r2Qα
∂r

= 0

over the whole bubble domain we obtain

3QIα
Rα

= −ραṪα
kz

m0
+
pαṁα

ραVα
− 3pαṘα

Rα
.
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As above, we set Πm = Πm with

Πj
m = −c

ṁvjB
4
3πR

3
. (12.4.5)

Similarly, we define

Πc = 3c
Ṙ

R
, Πρ = c

ṁ
4
3πR

3
and Πe = c

ṁeB
4
3πR

3
+ cρBṪ

kz

m0
+ 6c

σṘ

R2
. (12.4.6)

Thus we end up with 8 partial differential equations for the determination of the variables number density
n, volume fraction of the disperse phase c, densities of the phases ρL, ρB , velocities of the phases vL, vB
and energy of the phases eL, eB . In summary the system of partial differential equations can be written
as

∂cn

∂t
+∇x · (c nvB) =0 ,

∂c

∂t
+∇x · (cvB) =Πc ,

∂

∂t
[(1− c)ρL] +∇x · [(1− c)ρLvL] =−Πρ ,

∂cρB
∂t

+∇x · (c ρBvB) =Πρ , (12.4.7)

∂

∂t
[(1− c)ρLvjL] +∇x · [(1− c)ρLvjLvL] +

∂(1− c)pL
∂xj

− (1− c)ρLgj =−Πj
m ,

∂(cρBv
j
B)

∂t
(t,x) +∇x · (c ρBvjBvB)− cρBgj =Πj

m ,

∂

∂t
(1− c)ρLeL +∇x · (1− c) ((ρLeL + pL)vL + QL)− (1− c)ρL g · vL =−Πe ,

∂cρBeB
∂t

+∇x · (cρBeBvB)− cρB g · vB =Πe .

Using (12.4.3), the balance equation for the number density can easily be rewritten in terms of the
more descriptive quantity R. We obtain

∂cR

∂t
+∇x · (cRvB) =

4

3
RΠc .

With the definition ΠR := 4cṘ, we give the alternative system (12.4.8) of 8 partial differential equations
for the determination of the variables mean bubble radius R, volume fraction of the disperse phase c,
densities of the phases ρL, ρB , velocities of the phases vL, vB and energy of the phases eL, eB

∂cR

∂t
+∇x · (cRvB) =ΠR ,

∂c

∂t
+∇x · (cvB) =Πc ,

∂

∂t
[(1− c)ρL] +∇x · [(1− c)ρLvL] =−Πρ ,

∂cρB
∂t

+∇x · (c ρBvB) =Πρ , (12.4.8)

∂

∂t
[(1− c)ρLvjL] +∇x · [(1− c)ρLvjLvL] +

∂(1− c)pL
∂xj

− (1− c)ρLgj =−Πj
m ,

∂(cρBv
j
B)

∂t
(t,x) +∇x · (c ρBvjBvB)− cρBgj =Πj

m ,

∂

∂t
(1− c)ρLeL +∇x · (1− c) ((ρLeL + pL)vL + QL)− (1− c)ρL g · vL =−Πe ,

∂cρBeB
∂t

+∇x · (cρBeBvB)− cρB g · vB =Πe .
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Finally it remains to give the equation of state for the liquid pressure. The averaging process is simple
here. It relies on the corresponding microscopic equation of state (12.3.4)

(1− c)pL = (1− c)[pref +K(ρ/ρref − 1)] = (1− c) [pref +K(ρL/ρref − 1)]

since pref , K and ρref are constants giving a linear relation between ρ and p.
The volume fraction of the carrier phase is always taken to be 1−c and does not need to be determined.

To solve the system presented one needs a complete set of initial data. In addition to the initial data for
the unknowns in (12.4.7), we need initial data for Ṙ. Analogously to previous calculations these data
can be found using

Ṙ(t) =

∑
αR

2
α(t)Ṙα(t) χa(x− qα(t))

c/R(t,x)
(12.4.9)

at t = 0, which results from the averaging of the change of volume density, see also the following sections.
Next we will explicitly study four problems, in which simplified flows are involved. To illustrate

clearly, how to deal with the source terms resp. evolution laws, we restrict ourselves to the isothermal
subproblem for a single spherical bubble. First we investigate the mathematical properties of the resulting
model in Section 12.5. Several evolution laws are available for the computation of Ṙ, ṁ and Ṫ , see [4].
In Section 12.6 we summarize the results of [4] and we explain their application to the system (12.4.7).
Numerical results are then presented in Section 12.7.

12.5 Mathematical properties of the radial symmetric system

Considering spherical symmetry and assuming an isothermal process we get the simplest case. This
means that we have a bubble with its center in the origin which gives us some test cases for comparisons
with the results of our paper [4].

As already mentioned, the gravity terms drop out, further Πm = 0 and the energy balances become
redundant. The system corresponding to (12.4.7) consists of 6 equations of the following form

∂c

∂t
+
∂cvB
∂r

= −2

r
cvB + Πc (12.5.1)

∂cn

∂t
+
∂cnvB
∂r

= −2

r
cRvB (12.5.2)

∂cρB
∂t

+
∂cρBvB
∂r

= −2

r
cρBvB + Πρ (12.5.3)

∂cρBvB
∂t

+
∂cρBv

2
B

∂r
= −2

r
cρBv

2
B (12.5.4)

∂(1− c)ρL
∂t

+
∂(1− c)ρLvL

∂r
= −2

r
(1− c)ρLvL −Πρ (12.5.5)

∂(1− c)ρLvL
∂t

+
∂(1− c)ρLv2

L

∂r
+
∂(1− c)pL

∂r
= −2

r
(1− c)ρLv2

L . (12.5.6)

Due to the radial symmetry, one obtains additional geometric source terms on the right hand side of the
equations. All sources are non-differential, this means, that the system is in divergence form in contrast
to other two-phase models, see for instance Baer and Nunziato [2] or Stewart and Wendroff [19].

For a single bubble in the origin it must hold that vB(t, r) = 0 for all t. Indeed, this is the unique
solution of the above system with the initial data vB(0, r) = 0. With vB(t, r) = 0 for all t equation
(12.5.2) reduces to ∂cn

∂t = 0 and becomes redundant for given initial data n(0, r). Further, the equation
(12.5.4) drops out. The system (12.5.1-12.5.6) reduces to a system of only 4 equations of the much more
simple form

∂c

∂t
= Πc (12.5.7)

∂cρB
∂t

= Πρ (12.5.8)

∂(1− c)ρL
∂t

+
∂(1− c)ρLvL

∂r
= −2

r
(1− c)ρLvL −Πρ (12.5.9)

∂(1− c)ρLvL
∂t

+
∂(1− c)ρLv2

L

∂r
+
∂(1− c)pL

∂r
= −2

r
(1− c)ρLv2

L . (12.5.10)
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The non-differential sources on the right hand side do not influence the mathematical type of the system.

Therefore it is sufficient to investigate the homogeneous system. Using ∂pL
∂ρL

=
a2
L

ρL
with the sound speed

aL of the liquid for convenience we write the homogeneous system in primitive variables

∂u

∂t
+ A(u)

∂u

∂r
= 0 ,

where u = (c, ρB , ρL, vL)T denotes the independent unknowns. The matrix A is given by

A =


0 0 0 0
0 0 0 0

−ρLvL1−c 0 vL ρL

− pL
(1−c)ρL 0

a2
L

ρL
vL

 (12.5.11)

with pL = pref +K(ρref/ρL − 1). After some simple calculations one gets the eigenvalues of A as

λ1 = vL − aL λ2 = λ3 = 0 (= vB) λ4 = vL + aL . (12.5.12)

and 4 corresponding linearly independent eigenvectors

e1 =


0
0
− ρLaL

1

 e2 =


0
1
0
0

 e3 =


a2
L−v

2
L

pL−ρLv2
L

(1− c)
0
1

vL
ρL

ρLa
2
L−pL

pL−ρLv2
L

 e4 =


0
0
ρL
aL
1

 . (12.5.13)

Obviously, the system is non-strictly hyperbolic.
Considering a Riemann problem one obtains the Riemann invariants c, ρB of a 1-wave and the 4-wave.

This means, that these quantities do not change across the 1- and 4-wave. For the double eigenvalue
λ = 0 one has a contact discontinuity. Here all quantities change. The Riemann invariants are given by

(1− c)ρLvL = const and (1− c)(ρLv2
L + pL) = const . (12.5.14)

Remark 12.5.1. If one further excludes phase transition, then we have Πρ = 0 and the bubble mass
balance becomes redundant as well for given initial data ρB(0, r). The system reduces to the equations
(12.5.7), (12.5.9), and (12.5.10). In the Jacobian matrix A the second row and column drop out and
one obtains the eigenvalues

λ1 = vL − aL λ2 = 0 (= vB) λ3 = vL + aL

and the corresponding eigenvectors

e1 =

 0
− ρLaL

1

 e2 =


a2
L−v

2
L

pL−ρLv2
L

(1− c)
1

vL
ρL

ρLa
2
L−pL

pL−ρLv2
L

 e3 =

 0
ρL
aL
1

 .

The system is strictly hyperbolic with the Riemann invariant c of the 1- and 3- wave. For the eigenvalue
λ = 0 one has a contact discontinuity with the same Riemann invariants as above, see (12.5.14).

12.6 Production terms

In order to calculate the production terms (12.4.6)1, (12.4.6)2, and (12.4.5), we need evolution laws for
the radius Ṙ as well as the total mass ṁ of a single bubble. In [4] several models for a single bubble
system were derived. These models take into account resp. neglect the effects of mass transfer, heat
conduction, and compressibility of the surrounding liquid according to various choices one can make.

To model the production terms in the paper at hand we use isothermal models for a pure water vapor
bubble, see [4]. To derive such a model one assumes a single pure water vapor bubble in a sufficiently large
domain, surrounded by pure liquid water. For simplicity we assume spherical symmetry and homogeneity
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in the vapor phase. This means that the density ρB , and consequently the pressure, depends only on
time and is constant in space.

The mass transfer is described by a kinetic relation, based on the classical Hertz-Knudsen theory.
For details we refer to Section 2 in [4]. With the further assumption of incompressible liquid water, the
evolution of the bubble can be described by the following system of ordinary differential equations

ṁ =
4πR2ρBm0√

2πm0kT

[
1

ρL

(
ρBkT

m0
− 2σ

R
− p̄
)
− kT

m0
ln
ρBkT

p̄m0
− 1

2

(
1

ρL
− 1

ρB

)2(
ṁ

4πR2

)2
]

, (12.6.1)

Ḟ =
F 2

2R3
− R

ρL

(
p0 −

ρBkT

m0
+

2σ

R
+

(
1

ρL
− 1

ρB

)(
ṁ

4πR2

)2
)
, (12.6.2)

Ṙ =
F

R2
+

ṁ

4πR2ρL
. (12.6.3)

This is a special case of Case 2 in [4]. There a mixture of water vapor and an inert gas is assumed. The
dot ˙ denotes the time derivative.

Using (12.6.1) one can calculate ṁ. The equation (12.6.1) is quadratic. The positive root gives the
solution. To solve this system of ordinary differential equations one needs values for R, ρB and ρL. The
values ρB and ρL are given by the values of the system (12.5.7-12.5.10) of partial differential equations.
As mentioned before the averaged volume V is given by V = 1/n. Therefore, the averaged radius R can

be calculated using R = 3

√
3

4πn . In our case we have ∂cn
∂t = 0. This means that

R = R0
3

√
c

c0
with R0 = 3

√
3

4πn0
.

Further one needs the mass of a single water molecule m0, the Boltzmann constant k, the outer
pressure p0, the temperature T , and the reference values for the surficial tension σ of water as well as
for the saturation pressure p̄ corresponding to T .

For a complete set of initial data one needs initial values for Ṙ, see (12.4.9). Alternatively one can
assume the system initially to be at rest and set F (0) = 0. This implies initial data for Ṙ.

For F we have F = vIL ·R2, see [4]. Using (12.6.2) and for instance a Runge-Kutta method one gets
values for F in a new time step. Using (12.6.1) together with equation (12.6.3) gives values for Ṙ.

In [4] it was shown, that for large pressure differences the compressibility of the liquid plays an
important role. Taking into account compressibility of the liquid in a weak sense, one starts with the
linearized Euler equations and obtains a wave equation. Its solution we denote by Φ. Assuming that the
domain is large enough that the bubble is not affected by reflections at the outer boundary, one derives
instead of (12.6.2) and (12.6.3) the following equations

Φ′(R− aLt) =
R

ρLaL

(
ρBkT

m0
− 2σ

R
−
(

1

ρL
− 1

ρB

)(
ṁ

4πR2

)2

− p0

)
(12.6.4)

Ṙ = −Φ(R− aLt)
R2

+
Φ′(R− aLt)

R
+

ṁ

4πR2ρL
, (12.6.5)

where aL denotes the speed of sound in the liquid. As before ˙ denotes the time derivative, whereas ′

denotes the derivative for the argument.
Instead of (12.6.1) one gets

ṁ =
4πR2ρBm0√

2πm0kT

K
ρL

ln

1 +

ρBkT
m0
− 2σ

R −
(

1
ρL
− 1

ρB

) (
ṁ

4πR2

)2
K


−kT
m0

ln
ρBkT

m0p̄
+

(
1

ρ2
L

− 1

ρ2
B

)(
ṁ

4πR2

)2
]

(12.6.6)

with the liquid bulk modulus K. Because of the logarithm term this equation is transcendent. The
calculation of ṁ by an iterative method is expensive. Further one has to discuss the non-uniqueness,
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what is unnecessarily complicated here. By linearization of the logarithm term one obtains equation
(12.6.1), which is a sufficiently good approximation.

Therefore for a compressible model we use the equations (12.6.1), (12.6.4) and (12.6.5). In that case
we need initial data for Φ.

Now we have two models taking into account phase transition to calculate the production terms in
(12.5.7-12.5.10). If we exclude mass transfer we have ṁ = 0. The equations (12.6.2) and (12.6.3) resp.
(12.6.4) and (12.6.5) then simplify.

12.7 Numerical results

For the current section we choose specific initial data. For these data we give numerical results for the
two systems (12.6.1), (12.6.2), (12.6.3) resp. (12.6.1), (12.6.4), (12.6.5) of ordinary differential equations,
in each case with and without phase transition. This gives us four test cases.

With the same initial data we solve the system (12.5.7-12.5.10) of partial differential equations for
the radial symmetric case numerically and compare these results with the previous for all the four test
cases.

12.7.1 Initial data

Let us assume a pure water vapor bubble in the origin surrounded by pure liquid water. This means, for
the midpoint of the bubble we have r = 0 where r denotes the space coordinate. The outer boundary
is chosen to be at r = RA = 0.3m. This guaranties that the bubble is not affected by reflections at
the outer boundary during the computation time. The temperature T is assumed to be T = 293.15K
and the outer pressure p0 is the atmospheric pressure, p0 = 101300Pa. Corresponding to T we give the
reference values for the surficial tension σ = 0.0725N/m and the saturation pressure p̄ = 2330Pa, see [8]
or [25]. The mass of one water molecule is given by m0 = 2.9915 · 10−26kg and the Boltzmann constant
by k = 1.380658 · 10−23J/K. Beside this we need the liquid bulk modulus K, which we chose to be
K = 2.08 · 109Pa.

We choose the initial radius R(0) = R0 = 6 · 10−4m and assume that the bubble contains 1016 water
molecules. Therefore the initial bubble mass is given by m(0) = 2.9915 · 10−10kg. Whereas, the initial
bubble density is given by ρB(0) = 0.3306kg/m3.

Further, in the beginning the system is assumed to be at rest. This means that the liquid velocity
vL(0) equals to zero everywhere.

Especially at the interface, we have vIL(0) = 0. For the incompressible case vIL = F/R2 holds, see [4].
We have F (0) = 0. According to the compressible case we have Φ(R(0)) = 0.

12.7.1.1 Initial data for the averaged system (12.5.7-12.5.10)

The derivation of the corresponding initial data for the system (12.5.7-12.5.10) of partial differential
equations for constant or piecewise constant data is quite simple. For that we need the formulas (12.2.3)
and (12.2.4) as well as the radius Ra of the averaging ball. We choose Ra = 5 ·R0 = 3 · 10−3m. For the
concentration we get c = 0.0008 for 0 ≤ r ≤ 3 · 10−3m and c = 0 otherwise. For numerical aspects we
choose c = 10−8 instead of c = 0.

The computation of the initial data for the densities ρB , ρL, and the velocity vL is trivial. We
summarize the initial data in the neighborhood of the bubble in Figure 12.1. Besides the plots for the
four unknowns c, ρB , ρL, vL, we give plots for the averaged radius R and the liquid pressure pL.

12.7.2 Numerical results for the ODE-systems

For the initial data given in the previous subsection we now want to calculate numerical results for the
four test cases. We use a Runge-Kutta method method and obtain for the two cases without phase
transition the results presented in Figure 12.2. In the case of an incompressible liquid one obtains an
undamped oscillation for the evolution of the bubble radius, for a compressible liquid the oscillation is
damped.
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Figure 12.1: Initial data for (12.5.7-12.5.10) in the neighborhood of the bubble
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Figure 12.2: Bubble radius vs. time without phase transition, ODE-system

Taking into account mass transfer, it is clear from the physics of this situation that the bubble
vanishes, see [4]. The numerical results for the test cases with phase transition are given in the following
Figure 12.3.

12.7.3 Numerical results for the averaged system (12.5.7-12.5.10)

To solve the system (12.5.7-12.5.10) numerically we use Godunov operator splitting, see Toro [20], and
further a Roe type Riemann solver for the homogeneous part of the system. For the latter finite volume
method we follow the procedure in [1] resp. [7].

We denote the conserved variables c, cρB , (1−c)ρL, (1−c)ρLvL by v. Then the system (12.5.7-12.5.10)
can be written in the form

vt + F(v)r = S(v) with v(tn, r) = vn .

The vector S(v) denotes the sources. By the splitting procedure one first solves the homogeneous part

vt + F(v)r = 0 with v(tn, r) = vn , (12.7.1)

to obtain vn+1. In a second step one determines

d

dt
v = S(v)
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Figure 12.3: Bubble radius and bubble mass vs. time with phase transition, ODE-system

with initial data vn+1 to obtain the data for the new time step vn+1.
To solve the homogeneous system (12.7.1) numerically, we again as in Section 12.5 rewrite the system

in primitive variables u
∂u

∂t
+ A(u)

∂u

∂r
= 0 , (12.7.2)

where A(u) is given in (12.5.11) and u = (c, ρB , ρL, vL)T . At each cell boundary rj+1/2 we consider the
Riemann problem for (12.7.2) with initial data

u(0, r) =

{
uj r ≤ rj+1/2

uj+1 r > rj+1/2 .

We calculate the Jacobian A(u) in the average state uj+1/2 = (uj + uj+1)/2. By eigenvector decompo-
sition of uj+1 − uj

∆u = uj+1 − uj =

4∑
n=1

xnen

we determine the coefficients xn to find the intermediate state

u∗j+1/2 = uj +
∑
λn<0

xnen

in the solution of the above Riemann problem, where the eigenvalues λn resp. eigenvectors en of A are
given in (12.5.12) resp. (12.5.13). We get

x1 =
−∆ρL + ρL

aL
∆vL + ∆c

1−c
1
aL

pL−ρLaLvL
aL−vL

2ρL/aL
x2 = ∆ρB

x3 =
∆c

1− c
pL − ρLv2

L

a2
L − v2

L

x4 =
∆ρL + ρL

aL
∆vL − ∆c

1−c
1
aL

pL−ρLaLvL
aL−vL

2ρL/aL
.

Using the values u∗ in a Finite Volume method we calculate approximations V
n+1

for vn+1

V
n+1

= vn − ∆t

∆r

[
v(u+)nj+1/2 − v(u∗)nj−1/2

]
.
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Remark 12.7.1. If we exclude phase transition the above calculations simplify according to Section 12.5.

Finally, for the source term integration we again use the explicit Euler method. For our calculations we
chose a CFL number of 0.9 and a spatial step size of ∆r = 1.2 ·10−5m and compute the following results.
Note, that we do not plot the whole computational domain but only the bubble and its neighborhood.
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Figure 12.4: Numerical solution for t = 40µs, incompressible liquid without phase transition

Obviously the solutions for the radius evolution of the ODE systems are in very good agreement with
the solutions of the averaged system with the corresponding sources.

12.A Appendix: Newton’s second law with non-constant mass

Most textbook examples in classical mechanics deal only with the dynamics of bodies with constant
mass. The following argument is taken mostly from Müller [15, Subsection 1.4.6]. Consider a closed
system of a rocket R emitting burnt gases B. The masses mR of the rocket and mB of the burnt gas
are changing in time. The burning rate is −ṁR. Let v be the constant speed relative to the rocket of
the gas emitted in the direction of an axis chosen parallel to the movement of the rocket. Let vR be the
speed of the rocket along this axis. The speed of the burnt gas in the resting frame satisfies vB = vR−v.
We have mass conservation ṁR(t) + ṁB(t) = 0. The total momentum of the burnt gas is given as

mBvB = −
∫ t

t0

ṁR(τ)(vR(τ)− v) dτ.

Momentum conservation states that

0 =
d

dt
(mRvR +mBvB) = ṁRvR +mRv̇R −

d

dt

∫ t

t0

ṁR(τ)(vR(τ)− v) dτ

The fundamental theorem of calculus gives

0 = ṁRvR +mRv̇R − ṁR(t)(vR(t)− v) = mRv̇R + ṁRv.

This implies

mR(t)v̇R(t) = −ṁR(t)v
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Figure 12.5: Numerical solution for t = 40µs, compressible liquid without phase transition

i.e. the thrust of the rocket is Θ = −ṁRv. The above equation leads to

d

dt
(mRvR) = ṁRvR +mRv̇R = ṁR(vR − v) = ṁRvB .

Identifying the particles with the rocket and the carrier phase with the burnt gas the term on the right
hand side motivates the last term in (12.3.8).

12.B Appendix: Distributional derivatives

For the definition of distributional derivatives see e.g. Hörmander [9, Chapter 2], Warnecke [21, Appendix
C]. Here we first consider the case of superposition of functions f ∈ L1

loc(R3) with f(x − q(t)) for a
smooth vector field q ∈ R3 needed in proofs of Section 2. We consider this as a distribution in R4. Take
φ ∈ C∞0 (R4) then

〈 d
dt
f(· − q(t)) , φ 〉 =− 〈 f(· − q(t)) ,

∂

∂t
φ 〉

=−
∫
R4

f(x− q(t))
∂

∂t
φ(t,x) dt dx

=−
∫
R4

f(y)
∂

∂t
φ(t, y + q(t)) dt dy

=−
∫
R4

f(y)

[
d

dt
φ(t, y + q(t))−∇yφ(t, y + q(t)) · q̇

]
dt dy

=

∫
R4

f(y)∇yφ(t, y + q(t)) · q̇ dt dy

=

∫
R4

f(x− q(t))q̇ · ∇xφ(t,x) dt dx

= 〈 f(· − q(t))q̇ , ∇φ 〉
=− 〈∇xf(· − q(t)) · q̇ , φ 〉.

The derivative ∇x
χ
a(x − x′) has to be taken in the sense of distributions on R3 and is a singular

signed vector measure µ∂Ba(x) on the boundary ∂Ba(x) with mass −η given by the outer normal. Take
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Figure 12.6: Numerical solution for t = 40µs, incompressible liquid with phase transition

φ ∈ C∞0 (R3) then

〈 ∂

∂xj
χ
a(· − x′) , φ 〉 =− 〈χa(· − x′) ,

∂

∂xj
φ 〉 = −

∫
R3

χ
a(x− x′)

∂

∂xj
φ(x) dx

=−
∫
Ba(x′)

∂

∂xj
φ(x) dx = −

∫
∂Ba(x′)

ηjφ(x) dx

=

∫
R3

φ(x) dµj∂Ba(x′) = 〈µj∂Ba(x′) , φ 〉.

Now we derive the shift of differentiation formula that we needed in the proof of the general transport
equation in Lemma 12.2.3. We consider arbitrary test functions φx, ψx′ ∈ C∞0 (R3), use a change of
variables and integration by parts to get

〈 ∂

∂(x′)j
χ
a , φ

xψx′ 〉 =−
∫
R3

∫
R3

χ
a(x− x′)

∂

∂(x′)j
ψx′(x′) dx′ φx(x) dx

=

∫
R3

∫
R3

χ
a(y)

∂

∂xj
ψx′(x− y) dy φx(x) dx

=

∫
R3

∫
R3

∂

∂xj
ψx′(x− y)φx(x) dx χ

a(y) dy

=−
∫
R3

∫
R3

ψx′(x− y)
∂

∂xj
φx(x) dx χ

a(y) dy

=−
∫
R3

∫
R3

χ
a(y)ψx′(x− y) dy

∂

∂xj
φx(x) dx

=

∫
R3

∫
R3

χ
a(x− x′)ψx′(x′) dx′

∂

∂xj
φx(x) dx

=− 〈 ∂

∂xj
χ
a , φ

xψx′ 〉.

12.C Appendix: Exterior potential flow

We take a flow domain around one ball BR(q) of radius R centered at the the moving point q with
velocity q̇ at time t. Note that in this appendix R is not identical to the macroscopic field for the radius
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Figure 12.7: Numerical solution for t = 40µs, compressible liquid with phase transition

equation and here we have Ṙ = dR
dt . We want to use this notation to conform with presentations of

the exterior potential problem such as in Landau and Lifshitz [12] or Michlin [13]. We introduce the
coordinates x to be at rest and r = x−q the moving coordinate for which we will formulate a potential.
We consider a flow potential Φ satisfying the linear potential equation ∆Φ = 0 and v∞ · r at infinity.
Since Φ(r) = |r|−1 = r−1 is a solution to this equation outside any ball around the origin, so is any
derivative. Due to Maxwell is the ansatz using derivatives of r−1, see Lamb [11, Section 82], using the
summation convention where indices appearing twice in a term are summed over 1,2,3,

Φ(t, r) = vi∞r
i +A

1

r
+Bi

∂

∂xi
1

r
+ Cij

∂

∂xi∂xj
1

r
+ . . . .

We will truncate the series after the Bi

Φ = vi∞r
i +A

1

r
+Bi

∂

∂xi
1

r
.

We will see that then we have enough terms to pose appropriate boundary conditions on the ball. We
use

∂r

∂xi
=
xi − qi

r
=
ri

r
and thereby

∂r−1

∂xi
= −x

i − qi

r3
= − r

i

r3

to obtain

Φ = vi∞r
i +A

1

r
−Bi r

i

r3
.

We denote by R with R = |R| the coordinates on the surface of the ball. Then the velocity components
for j = 1, 2, 3 there are given as

vj

∣∣∣∣∣
R

=
∂Φ

∂xj

∣∣∣∣∣
R

= vj∞ −A
Rj

R3
+Bi

(
3RiRj

R5
− δij
R3

)
. (12.C.1)

Using the assumption that all quantities are constant on the surface (12.3.14) gives

ṁ = −ρL
∮
∂BR(0)

[v(t,x′)−w(t)] · η dS = −4πR2ρL [v −w(t)] · η.



316 CHAPTER 12. MIXTURE THEORIES FOR DISPERSED PARTICLES

0 100 200 300 400

0,4

0,6

Time in µs

Incompressible Liquid

N
o

 p
h

a
s
e

 t
ra

n
s
it
io

n

0 100 200 300 400
0,2

0,4

0,6

Time in µs

Compressible liquid

R
a

d
iu

s
 i
n
 m

m

0 20 40 60

0

0.2

0.4

0.6

0.8

Time in µs

P
h

a
s
e

 t
ra

n
s
it
io

n

0 20 40 60

0

0.2

0.4

0.6

0.8

Time in µs

R
a

d
iu

s
 i
n

 m
m

Figure 12.8: Radius vs. time, compressible and incompressible liquid, with and without phase transition,
grey: solution of the PDE-system, black: solution of the ODE-system

Note that w = Ṙ + q̇, η = R/R, and then Ṙ = η · Ṙ giving

v · η = − ṁ

4πρLR2
+ Ṙ+

q̇ ·R
R

. (12.C.2)

Multipying ηj = Rj/R to (12.C.1) and comparing the result with (12.C.2) we have

vjηj

∣∣∣∣∣
R

=
∂Φ

∂xj
ηj

∣∣∣∣∣
R

=
vj∞R

j

R
− A

R2
+BjRj

2

R4

= Ṙ− ṁ

4πρLR2
+ q̇j

Rj

R
.

There is a unique solution to the exterior Neumann problem for the potential equation that decays to
v∞ · r like r−1, see e.g. Michlin [13, Satz 13.2.2]. It can be expanded uniquely by spherical harmonics,
see e.g. Michlin [13, Section 15.4]. This implies that the coefficients in our case are

A =
ṁ

4πρL
− ṘR2, Bj =

1

2
R3(q̇j − vj∞)

leading to

Φ(t,x) = vj∞r
j +

ṁ

4πρLr
− ṘR2

r
− R3rj(q̇j − vj∞)

2r3
. (12.C.3)

We take the Bernoulli equation, see Lamb [11]

f(t) =
∂Φ

∂t
+

1

2

∂Φ

∂xj
∂Φ

∂xj
+

p

ρL
+ gx3.

The aim is to determine the pressure. Using (12.D.1) we obtain

1

ρL

∮
∂BR(0)

pηi dS = −
∮
∂BR(0)

(
−f(t) +

1

2

∂Φ

∂xj
∂Φ

∂xj
+
∂Φ

∂t
+ gx3

)
ηi dS

= −
∮
∂BR(0)

(
1

2

∂Φ

∂xj
∂Φ

∂xj
+
∂Φ

∂t
+ gx3

)
ηi dS. (12.C.4)
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Now we compute the derivative terms of the potential needed in the Bernoulli equation

∂Φ

∂xj
∂Φ

∂xj

∣∣∣∣∣
R

= vj∞v
j
∞ + 2vj∞B

i

(
3RiRj

R5
− δij
R3

)
− 2vj∞A

Rj

R3

+A2 1

R4
+BiBk

(
3RiRj

R5
− δij
R3

)(
3RkRj

R5
− δkj
R3

)
− 4ABi

Ri

R6
.

We turn to the time derivative and note that

∂rj

∂t
=

∂

∂t
(xj − qj) = −q̇j .

This gives

∂r

∂t
= −r

j

r
q̇j

and we obtain

∂Φ

∂t

∣∣∣∣∣
R

=
∂

∂t

(
vj∞r

j +A
1

r
−Bj r

j

r3

) ∣∣∣∣∣
R

= −vj∞q̇j + Ȧ
1

R
−A 1

R2

∂r

∂t

∣∣∣∣∣
R

− ḂjR
j

R3
−Bj 1

R3

∂rj

∂t

∣∣∣∣∣
R

+ 3BjRj
1

R4

∂r

∂t

∣∣∣∣∣
R

= −vj∞q̇j + Ȧ
1

R
+A

Rj

R3
q̇j − ḂjR

j

R3
+Bj

1

R3
q̇j − 3BjRjRiq̇i

1

R5
.

The derivatives obtained are now inserted into the formula (12.C.4) for the pressure. We make use of the
fact that formulae (12.D.1-12.D.3) imply that we only have to retain terms where the integrand contains
a constant times the product of two normal components ηi or depends on a space variable, as in the
gravitational term,

1

ρL

∮
∂BR(0)

pηi dS =

∮
∂BR(0)

(
vj∞A

Rj

R3
+ 2ABj

Rj

R6
−AR

j

R3
q̇j + Ḃj

Rj

R3
− gδi3

)
ηi da

=
4

3
πvi∞A+

8

3
πABi

1

R3
− 4

3
πAq̇i +

4

3
πḂi − gδi3

4

3
πR3

=
4

3
πvi∞A+

4

3
πA(q̇i − vi∞)− 4

3
πAq̇i +

4

3
πḂi − gδi3

4

3
πR3

=
4

3
πḂi − gδi3

4

3
πR3

giving ∮
∂BR(0)

pηi dS = ρL

(
4

3
πḂi − gδi3

4

3
πR3

)
= ρL

(
2

3
π
(
R3q̇i

)
˙− 2πR2Ṙvi∞ − gδi3

4

3
πR3

)
.

With vi∞ = 0 we obtain ∮
∂BR(0)

pηi dS = ρL

(
2

3
π
(
R3q̇i

)
˙− gδi3

4

3
πR3

)
. (12.C.5)

We compute the v term in (12.3.8). Note that A and the Bj are constant and contain no normal
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components ηi = Ri/R. Therefore we can use (12.D.1) and (12.D.2) to obtain∮
∂BR(0)

vj dS =

∮
∂BR(0)

∂Φ

∂xj
dS

=

∮
∂BR(0)

(
vj∞ −A

Rj

R3
+Bi

(
3RiRj

R5
− δij
R3

))
dS

= 4πR2vj∞ +

∮
∂BR(0)

Bi
(

3RiRj

R5
− δij
R3

)
dS

= 4πR2vj∞ +
Bi

R3

∮
∂BR(0)

(
3
RiRj

R2
− δij

)
dS

= 4πR2vj∞ +
Bi

R3

(
3

4

3
πR2 − 4πR2

)
δij = 4πR2vj∞ = 0 . (12.C.6)

12.D Appendix: Surface integrals

In Appendix C we had to evaluate a number surface integrals for integrands consisting of one, two or
three components of the exterior normal vector on ∂BR(q). For an arbitrary domain Ω allowing the use
of the Gauss theorem we have ∮

∂Ω

ηi dS =

∫
Ω

∂xi1 dx = 0. (12.D.1)

We extend the vector field η = R/R by (x− q)/R to the interior of BR(q)∮
∂BR(q)

ηiηj dS =

∫
BR(q)

∂xiη
j dx =

δij
R

∫
BR(q)

dx =
4

3
πR2δij . (12.D.2)

Noting that the functions ηj are odd with respect to a plane through the center of the ball we obtain∮
∂BR(q)

ηiηjηk dS =

∫
BR(q)

∂xi
(
ηjηk

)
dx

=

∫
BR(q)

ηj∂xiη
k + ∂xi(η

j)ηk dx

=
1

R

∫
BR(q)

ηjδik + ηkδij dx

=
δik
R

∫
BR(q)

ηj dx +
δij
R

∫
BR(q)

ηk dx

= 0. (12.D.3)
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