

S E L E C T I V E L E A R N I N G F O R R E C O M M E N D E R S Y S T E M S

pawel matuszyk

D I S S E RTAT I O N Z U R E R L A N G U N G D E S A K A D E M I S C H E N G R A D E S
D O K T O R I N G E N I E U R (D R . - I N G .)

First Supervisor: Prof. Myra Spiliopoulou

Second Supervisor: Prof. Alípio Mário Guedes Jorge

Third Supervisor: Prof. Ernesto William De Luca

Knowledge Management and Discovery
Faculty of Computer Science
Otto von Guericke University

September 13, 2017

Pawel Matuszyk: Selective Learning for Recommender Systems, Dissertation zur Er-
langung des akademischen Grades Doktoringenieur (Dr.-Ing.), © September 13,
2017

A B S T R A C T

Recommender systems learn models of users’ preferences towards
items and use those models to predict future items of interest. They
aim to solve the problem of information overload that users are con-
fronted with. In the age of digital information users are especially
often overwhelmed by the number of available products (e.g. books,
websites, music, medications) from which only a few are relevant for
them. The task of recommender systems is to find and recommend
the relevant items to users in a personalized way.

To learn models of preferences recommender systems use users’
feedback. Since the feedback is, typically, extremely sparse, learning
algorithms use all available data for learning. However, we argue that
it is beneficial to be selective about what information is used for learn-
ing of preference models. Thus, we introduce the term of selective
learning for recommender systems. We propose three types of selective
learning approaches for both: stream-based and batch-based learning.

In this work we focus on the stream-based learning, since it has
several advantages over the conventional, batch-based learning. One
of the advantage is the ability to immediately incorporate new infor-
mation into a preference model without relearning the entire model.
This is an essential feature for real-life recommender systems, as their
application scenarios are highly dynamic. Therefore, new information
typically appears at a high rate.

Our first type are forgetting methods for stream-based recommender
systems. Selecting what information to forget is equivalent to selecting
which information to learn from. We propose eleven different forget-
ting strategies that select the obsolete information to be forgotten and
three different algorithms that enforce forgetting on a stream of rat-
ings. We stress that obsolete information is not necessarily old. Next
to incorporating new information into a preference model, our forget-
ting techniques are the second way of adapting to concept drift or
shift.

In our second type of selective learning we introduce selective neigh-
bourhood for collaborative filtering methods. It encompasses a novel
selection criterion based on the Hoeffding Bound for removing unre-
liable users from a neighbourhood. Our criterion considers both, the
number of common ratings between users and the value of their simi-
larity.

Our last selective approach is based on semi-supervised learning
(SSL) for stream-based recommender systems. In this approach a rec-
ommender system exploits the abundant unlabelled information (user-

5

item-pairs without ratings), which, typically, reaches 99% of all infor-
mation. To exploit this information for training of preference models
we propose the first stream-based semi-supervised recommendation
framework. In semi-supervised learning, predictions are used as la-
bels. However, not all predictions are equally reliable. We propose
components that selectively and incrementally estimate reliability of
predictions and filter out the unreliable ones. Only highly reliable
predictions are used for training in one of two SSL approaches: co-
training and self-learning.

Our evaluation on real-world datasets shows that selective learning
yields a substantial improvement in quality of recommendations as
compared to recommender systems without selective learning.

In the process of evaluation, many recommender systems, includ-
ing our methods, require setting of hyperparameters. To make reliable
conclusions about the performance of the algorithms, it is necessary
to optimize their hyperparameters and compare their optima. How-
ever, hyperparameter optimization is not a trivial task and it has not
been researched thoroughly in recommender systems. Therefore, as
our last contribution, we conduct the first comparative study on hy-
perparameter optimization for recommender systems. Furthermore,
we propose a distributed experimentation framework using Apache
Hadoop.

6

Z U S A M M E N FA S S U N G

Empfehlungsmaschinen (recommender systems) lernen Modelle der
Nutzerpräferenzen und verwenden sie, um zukünftigt relevante Pro-
dukte vorherzusagen. Das Ziel der Empfehlungsmaschinen ist es, das
Problem der Informationsüberladung zu lösen. Im Zeitalter der dig-
italen Information sind zahlreiche Nutzer mit diesem Problem kon-
frontiert. Dieses Problem entsteht bei einer großen Zahl von Produk-
ten (z.B. bei Büchern, Filmen, Musik, oder Medikamenten), von denen
nur Wenige relevant sind. Die Aufgabe der Empfehlungsmaschinen
besteht darin, die relevanten Produkte zu finden und sie den Nutzern
auf eine personalisierte Art und Weise zu empfehlen.

Um Präferenzmodelle zu lernen, nutzen Empfehlungsmaschinen
Daten zum Nutzefeedback aus der Vergangenheit. Da dieses Feed-
back typischerweise extrem rar ist, werden alle verfügbaren Daten
verwendet. In dieser Dissertationsschrift argumentieren wir jedoch,
dass es vorteilhaft ist, bei der Wahl der Trainingsdaten selektiv zu
sein. Deswegen führen wir den Begriff vom selektiven Lernen für Emp-
fehlungsmaschinen ein. Wir entwickeln drei Typen von Ansätzen zum
selektiven Lernen, sowohl für strombasierte, als auch für batch-basierte
Algorithmen.

Der Fokus dieser Arbeit liegt bei den strombasierten Algorithmen,
da sie gegenüber den batch-basierten Methoden zahlreiche Vorteile
aufweisen. Einer der wichtigsten Vorteile ist die Fähigkeit, neue Infor-
mation sofort in ein Präferenzmodell zu integrieren, ohne das Modell
neu lernen zu müssen. Da die Anwendungsszenarien von Empfehlungs-
maschinen typischerweise dynamisch und volatil sind, ist dies eine
essenzielle Eigenschaft.

Unser erste Ansatz zum selektiven Lernen sind Vergessensmetho-
den für strombasierte Empfehlungsmaschinen. Die Selektion von Daten,
die vergessen werden sollten, ist äquivalent zur Selektion von Train-
ingsdaten. Wir schlagen elf unterschiedliche Vergessensstrategien vor,
die entscheiden, welche Daten obsolet sind und vergessen werden soll-
ten. Weiterhin entwickeln wir drei Algorithmen, die das Vergessen der
selektierten Daten auf einem Strom von Nutzerfeedback umsetzen.
Wir betonen hierbei, dass obsolete Daten nicht notwendigerweise alte
Daten sind. Unsere Vergessensmethoden stellen, neben der Berück-
sichtigung neuer Information, eine weitere Möglichkeit dar, wie Mod-
elle inkrementell an Veränderungen über die Zeit angepasst werden
können.

In unserem zweiten Ansatz zum selektiven Lernen führen wir ein
neuartiges Kriterium zum selektiven Entfernen von Nutzern aus einer
Nachbarschaft in nachbarschaftsbasiertem Collaborative Filtering ein.

7

Dieses Kriterium basiert auf der Hoeffding-Ungleichung und berück-
sichtigt sowohl die Anzahl der gemeinsamen Ratings, als auch den
Wert der Ähnlichkeit zwischen Nutzern.

Unser letzter selektiver Ansatz basiert auf teilüberwachten Tech-
niken (SSL). In diesem Ansatz nutzt eine Empfehlungsmaschine die
ungelabelte, im großen Umfang vorhandene Information. Die Menge
der ungelabelten Information erreicht oft 99% aller Information und
ist extrem groß im Vergleich zur gelabelten Information. Um das Poten-
zial dieser ungelabelten Information auszunutzen, schlagen wir das
erste strombasierte Framework für teilüberwachtes Lernen für Emp-
fehlungsmaschinen vor. In diesem Framework werden Vorhersagen
für die ungelabelte Information zum Lernen verwendet. Nicht alle
Vorhersagen sind jedoch im gleichen Maß vertrauenswürdig. Deswe-
gen führen wir Komponenten ein, welche die Zuverlässigkeit der Vorher-
sagen inkrementell schätzen und nur die zuverlässigsten Vorhersagen
selektieren. Nur diese Vorhersagen werden in einem von zwei SSL-
Ansätzen (Co-Training und Self-Learning) zum Lernen verwendet.

Unsere Evaluierung auf reellen Daten zeigt, dass selektives Lernen
eine wesentliche Verbesserung der Qualität der Empfehlungen im Ver-
gleich zu Systemen ohne selektives Lernen mit sich bringt.

Viele Empfehlungsalgorithmen, einschließlich unserer Methoden,
sind parametrisch. Um zwei parametrische Algorithmen zuverlässig
vergleichen zu können, ist es erforderlich, ihre Hyperparameter zu
optimieren. Nach der Optimierungsphase können dann die Optima
der Algorithmen verglichen werden. Die Optimierung der Hyperpa-
rameter ist allerdings eine komplexe Aufgabe, die im Kontext von
Empfehlungsmaschinen nicht ausführlich erforscht wurde. Deswegen
ist unser letzter Beitrag in dieser Dissertationsschrift eine vergleichende
Studie zu Hyperparameteroptimierung im Kontext von Empfehlungs-
maschinen. Darüber hinaus schlagen wir ein experimentelles Frame-
work zur verteilten Berechnung von Experimenten im Prozess der Hy-
perparameteroptimierung unter Nutzung von Apache Hadoop vor.

8

A C K N O W L E D G M E N T S

Throughout my work on this thesis I received support from many
people, to all of whom I am deeply thankful.

First of all, I would like to thank my mentor and first supervisor,
Prof. Myra Spiliopoulou, for the opportunity to work under her super-
vision. During this time I have learned a lot from her and greatly im-
proved my professional skills. Many fruitful discussions and valuable
feedback helped me progress with my research and with the work on
this thesis.

My cordial thanks also go to my second supervisor, Prof. Alípio
Mário Guedes Jorge. Discussions with him, his feedback and insight-
ful questions helped me to critically assess my research and to see it
from a different perspective.

I would also like to express my gratitude to Prof. Ernesto William
De Luca, who agreed to review my thesis and gave me many valuable
advices regarding writing of the thesis.

During my time at the KMD lab I had the opportunity to work with
remarkable colleagues. I am very grateful too all of them for providing
a great working atmosphere. In particular, I thank Dr. Georg Krempl
and Daniel Kottke for many enriching discussions that inspired some
of our research.

Furthermore, I am very grateful to my co-authors for their contri-
butions to our research, as well as for inviting me to contribute to
their research. In particular, I am very happy to have collaborated
with Dr. João Vinagre, who shares my enthusiasm for recommender
systems. We exchanged many ideas that helped me immensely with
my research and resulted in common publications.

Finally, I give my greatest thanks to my beloved wife, who encour-
aged and supported me unconditionally throughout the entire thesis
and my research work.

Thank you all!

9

C O N T E N T S

i introduction and preliminaries 21

1 introduction 23

1.1 Motivation for Selective Learning 24

1.1.1 Selective Forgetting 24

1.1.2 Selective Neighbourhood 28

1.1.3 Stream-based Semi-supervised Learning 31

1.2 Research Questions . 32

1.3 Summary of Scientific Contributions 34

1.4 Outline of the Thesis . 35

2 preliminaries on recommender systems 37

2.1 Overview on Types of Recommendation Algorithms . . 37

2.2 Collaborative Filtering . 37

2.2.1 Neighbourhood-based Methods 39

2.2.2 Matrix Factorization 42

2.2.3 Tensor Factorization 45

2.3 Content-based Methods 46

2.4 Hybrid Methods . 47

ii selective learning methods 49

3 formal definition of selective learning 51

3.1 General Algorithm for Selective Learning 51

3.2 Selective Learning as an Optimization Problem 53

3.2.1 Optimization Problem in Non-selective Learning 54

3.2.2 Optimization Problem in Selective Learning . . . 55

3.2.3 Answering the Core Research Question 56

4 forgetting methods 57

4.1 Related Work on Forgetting Methods 57

4.2 Forgetting Strategies . 59

4.2.1 Rating-based Forgetting 60

4.2.2 Latent Factor Forgetting 63

4.3 Enforcing Forgetting on a Stream of Ratings 66

4.3.1 Baseline Algorithm 66

4.3.2 Matrix factorization for Rating-based Forgetting . 69

4.3.3 Matrix factorization for Latent Factor Forgetting . 70

4.3.4 Approximation of Rating-based Forgetting 70

4.4 Evaluation Settings . 71

4.4.1 Dataset Splitting 72

4.4.2 Evaluation Measure 73

4.4.3 Parameter Selection 73

4.4.4 Significance Testing 74

11

12 contents

4.5 Experiments . 75

4.5.1 Impact of Forgetting Strategies 76

4.5.2 Impact of the Approximative Implementation . . 82

4.6 Conclusions from Forgetting Methods 82

5 selective neighbourhood 89

5.1 Related Work on Reliable Neighbourhood 89

5.2 Reliable Neighbourhood 90

5.2.1 Baseline Users . 91

5.2.2 Reliable Similarity between Users 91

5.2.3 Algorithms . 95

5.3 Experiments . 95

5.3.1 Evaluation Settings 97

5.3.2 Results . 98

5.3.3 Summary of Findings 101

5.4 Conclusions from Selective Neighbourhood 102

6 semi-supervised learning 105

6.1 Related Work on SSL in Recommender Systems 105

6.2 Semi-supervised Framework for Stream Recommenders 106

6.2.1 Incremental Recommendation Algorithm 107

6.2.2 Stream Co-training Approach 108

6.2.3 Stream-based Self-learning 112

6.3 Instantiation of Framework Components 113

6.3.1 Incremental Recommendation Algorithm - extBRISMF113

6.3.2 Training Set Splitter 114

6.3.3 Prediction Assembler 116

6.3.4 Selector of Unlabelled Instances 117

6.3.5 Reliability Measure 118

6.4 Evaluation Protocol . 120

6.4.1 Parameter Optimization 120

6.4.2 Dataset Splitting 121

6.4.3 Significance Testing 122

6.5 Experiments . 124

6.5.1 Datasets . 124

6.5.2 Performance of SSL 125

6.5.3 Analysing the Impact of Component Implemen-
tations . 128

6.6 Conclusions from Semi-supervised Learning 131

7 experimental framework 135

7.1 Comparative Study on Hyperparameter Optimization . 135

7.1.1 Motivation for Hyperparameter Optimization . . 135

7.1.2 Related Work on Hyperparameter Optimization . 136

7.1.3 Hyperparameter Optimization Algorithms 137

7.1.4 Full Enumeration 138

7.1.5 Random Search . 138

7.1.6 Random Walk . 139

contents 13

7.1.7 Genetic Algorithm 139

7.1.8 Sequential Model-based Algorithm Configuration 142

7.1.9 Greedy Search . 143

7.1.10 Simulated Annealing 144

7.1.11 Nelder-Mead . 145

7.1.12 Particle Swarm Optimization 147

7.1.13 Evaluation Settings 147

7.1.14 Experiments . 151

7.1.15 Conclusions on Hyperparameter Optimization . 154

7.2 Distribution of Experiments 156

iii conclusions and future work 161

8 conclusions 163

8.1 Selective Forgetting . 163

8.2 Selective Neighbourhood 164

8.3 Semi-supervised Learning 164

8.4 Core Research Question 165

8.5 Limitations . 166

8.6 Future Work . 167

iv appendix 169

a correcting the usage of the hoeffding bound 171

a.1 Related Work on Hoeffding Bound 171

a.2 Hoeffding Bound - Prerequisites and Pitfalls 172

a.2.1 Violation of Prerequisites 172

a.2.2 Insufficient Separation between Attributes 173

a.3 New Method for Correct Usage of the Hoeffding Bound 173

a.3.1 Specifying a Correct Decision Bound 174

a.3.2 Specifying a HB-compatible Split Function 175

a.4 Validation . 176

a.4.1 Satisfying the Assumptions of the Hoeffding Bound176

a.4.2 Is a Correction for Multiple Testing Necessary? . 176

a.5 Experiments . 178

a.5.1 Experimenting under Controlled Conditions . . . 179

a.5.2 Experiments on a Real Dataset 181

a.6 Conclusions on the Usage of the Hoeffding Bound . . . 182

bibliography 185

L I S T O F F I G U R E S

Figure 1 A simplified classification of recommendation
algorithms . 38

Figure 2 Overview of the selective forgetting framework 60

Figure 3 Split of the dataset between the initialization
and online phase 72

Figure 4 Results of our forgetting strategies vs. "No For-
getting Strategy" with positive-only feedback . . 78

Figure 5 Results of our forgetting strategies vs. "No For-
getting Strategy" with explicit feedback 81

Figure 6 Incremental recall of approximative rating-based
forgetting . 86

Figure 7 Observed vs. true similarity values (correct con-
clusion) . 94

Figure 8 Observed vs. true similarity values (incorrect
conclusion) . 94

Figure 9 Results of our selective CF algorithm vs. com-
parison baselines 102

Figure 10 A simplified overview of the framework com-
ponents . 107

Figure 11 Division of a dataset into batch and stream mode
in SSL . 109

Figure 12 Function of a training set splitter 109

Figure 13 Stream mode in SSL and prediction assembler . 110

Figure 14 Unsupervised learning with a unlabelled instance
selector and a reliability measure 111

Figure 15 Unsupervised learning in the self-learning ap-
proach . 113

Figure 16 Splitting of the dataset between the batch and
streaming mode for evaluation in SSL 122

Figure 17 SSL vs. noSSL: incremental recall on the Movie-
lens 1M dataset 125

Figure 18 SSL vs. noSSL: incremental recall on the Movie-
lens 100k dataset 126

Figure 19 SSL vs. noSSL: incremental recall on the Flixster
dataset . 126

Figure 20 SSL vs. noSSL: incremental recall on the Epin-
ions dataset . 126

Figure 21 SSL vs. noSSL: incremental recall on the Netflix
dataset . 126

Figure 22 Analysis of the impact of SSL components . . . 130

14

List of Figures 15

Figure 23 Explanation of learning curves in hyperparam-
eter optimization 150

Figure 24 Median learning curves of hyperparameter op-
timization algorithms on the Netflix dataset . . . 153

Figure 25 Median learning curves of hyperparameter op-
timization algorithms on the ML1M dataset . . . 154

Figure 26 Median learning curves of hyperparameter op-
timization algorithms on the Flixster dataset . . 155

Figure 27 Median learning curves of hyperparameter op-
timization algorithms on the ML100k dataset . . 156

Figure 28 Observed vs. real averages of two random vari-
ables . 174

Figure 29 Separable means of random variables 177

Figure 30 Likelihood of all possible outcomes of two Ho-
effding Bounds 178

L I S T O F TA B L E S

Table 1 Example of an unreliable similarity (few co-ratings) 29

Table 2 Example of an unreliable similarity (many co-
ratings) . 30

Table 3 Exemplary matrix in collaborative filtering with
explicit rating feedback 38

Table 4 Description of datasets used in experiments on
forgetting . 76

Table 5 Results of the Friedman rank sum test on for-
getting strategies 77

Table 6 Forgetting results on datasets with positive only
feedback (Lastfm 600k and ML1M GTE5) 79

Table 7 Forgetting results on datasets with positive only
feedback (Music-Listen and Music-Playlist) . . . 80

Table 8 Forgetting results on datasets with explicit rat-
ing feedback (Epinions and ML100k) 83

Table 9 Forgetting results on datasets with explicit rat-
ing feedback (ML1M and Netflix) 84

Table 10 Runtime of the approximative and rating-based
implementation of forgetting 85

Table 11 Samples of users used in experiments on Hoeffding-
CF . 97

Table 12 Results of Hoeffding-CF on Ml100k and Flixter
datasets . 99

Table 13 Results of Hoeffding-CF on Netflix and Epin-
ions datasets . 100

Table 14 Summary of notation and abbreviations used
in this chapter . 108

Table 15 An exemplary input to the McNemar’s test . . . 123

Table 16 Datasets used in SSL experiments 125

Table 17 Results of SSL vs. noSSL 129

Table 18 P-values from the McNemar’s test on SSL results131

Table 19 Summary of datasets and samples used in hy-
perparameter optimization experiments 151

Table 20 Parameters of the hyperparameter optimization
methods . 152

Table 21 Number of parallel experiments by different op-
timization algorithms 158

Table 22 Joint probability distribution of the synthetic
dataset . 179

16

List of Tables 17

Table 23 Results of 100 000 repetitions of decision pro-
cess on a split attribute at a node in a decision
tree . 180

Table 24 Results of 100 000 repetitions of decision pro-
cess on a split attribute at a node in a decision
tree (confidence = 0.99) 181

Table 25 Performance of VFDT and correctedVFDT . . . 181

L I S T O F A L G O R I T H M S

Algorithm 1 Incremental Selective Training 52

Algorithm 2 Selective Prediction 53

Algorithm 3 Incremental Learning - Baseline without forget-
ting . 67

Algorithm 4 Extend and initialize new dimensions 68

Algorithm 5 Incremental Learning with Rating-based For-
getting . 69

Algorithm 6 Incremental Learning with Latent Factor For-
getting . 70

Algorithm 7 Incremental Learning with Approximative Rating-
based Forgetting 71

Algorithm 8 Reliable CF . 96

Algorithm 9 isReliable(ua, uB, ux, δ, θ) 96

Algorithm 10 extBRISMF - trainIncrementally(ru,i) 114

Algorithm 11 Random Walk Algorithm 140

Algorithm 12 Genetic Algorithm 141

Algorithm 13 Get Next Population 141

Algorithm 14 Sequential Model Based Algorithm 143

Algorithm 15 Greedy search algorithm 144

Algorithm 16 Simulated annealing algorithm 145

Algorithm 17 Nelder-Mead algorithm 146

Algorithm 18 Particle Swarm Optimization 148

Algorithm 19 Evaluation Framework 149

Algorithm 20 Map (hyperparameter optimization) 157

Algorithm 21 Reduce (hyperparameter optimization) 157

18

A C R O N Y M S

CF Collaborative Filtering

MF Matrix Factorization

RS Recommender System

HB Hoeffding Bound

SSL Semi-supervised Learning

SL Self-learning

USL Unsupervised Learning

NN Nearest Neighbours

SGD Stochastic Gradient Descent

ALS Alternating Least Squares

BRISMF Biased Regularized Incremental Simultaneous Matrix
Factorization

RMSE Root Mean Square Error

SVD Singular Value Decomposition

RQ Research Question

HPO Hyperparameter Optimization

RW Random Walk

GA Genetic Algorithm

SMAC Sequential Model-based Algorithm Configuration

SMBO Sequential Model-Based Optimization

SA Simulated Annealing

PSO Particle Swarm Optimization

19

S Y M B O L S

A learning algorithm . 47

I set of items . 25, 34, 64

Mt model at the time point t . 49

P latent user matrix . 38

Q latent item matrix. 38

S u a stream of ratings S u = (rt1
u,i1 , rt2

u,i2 , . . . , rtn
u,i3) 22

Te test data set . 50, 153

Tr training data set . 47–49, 153

Trt training data set at the time point t 47, 48

U set of users . 25, 34, 36, 64

η learning rate in SGD 39, 62, 70, 123, 133, 147

λ regularization parameter in matrix factorization 39,
62, 70, 116, 123, 133, 147

τ similarity threshold defining neighbourhood of an
active user . 36

ε deviation of an observed mean from the true mean
according to the Hoeffding Bound. 88–90

r̂u,i prediction for a rating ru,i . 39

k number of latent dimensions in matrix factorization
38, 39, 62, 70, 123, 133, 146, 147

pu latent user vector. 38, 57, 59, 63, 65, 114

qi latent item vector . 38, 59

ru,i rating by the user u towards the item i . . . 25, 34, 35,
49, 50, 57, 63

rt
u,i rating by the user u to the item i at the time point t

22

ua active user . 36, 87, 88, 90, 91

20

Part I

I N T R O D U C T I O N A N D P R E L I M I N A R I E S

1
I N T R O D U C T I O N

Recommender systems alleviate the problem of information overload
that occurs in presence of abundant choices, from which only a few
are relevant. This problem is characteristic, but not limited to, digital
information. Considering the continuous growth of digital informa-
tion, it can be expected that the information overload problem will
be aggravated even further in the future. Therefore, it is essential to
address this problem in research.

A challenge in finding the relevant information lies in its relative
nature. Relevance depends, among others, on such factors as the pref-
erences of the person in need of information, context in wide sense
(social, temporal, geo-spacial, etc.), historical interests and many more.
Therefore, recommender systems (RS) aim to find the relevant informa-
tion in a personalized way, i.e. in a way that is tailored to its recipient
and often to her/his context.

Possible application scenarios for recommender systems are man-
ifold. They encompass e-commerce [Lin14; SKR99; PNH15], recom-
mending friends in social networks [NGL11; Che+09; Hsu+06], rec-
ommending medication for patients [WP14; Che+12], tags in informa-
tion systems [SVR09], educational materials [Man+11; WLZ15], news
articles [LW15; Plu+11] and many more. Recommender systems have
shown to be indispensable in many applications. They benefit not only
their users, who search for relevant information, but also information
providers, as recent studies suggest [GH16; Dia+08; LH14].

Recommender systems operate with high-dimensional data. Typical
dimensions reach many millions of users and items. Since human per-
ception is limited, each user can perceive only a few items, from which
only a subset is relevant. Possibly, for each of the users it is a different
subset of items. Considering the large dimensions typical to the RS

domain, it is clear that recommendations cannot be created manually
by human experts. This signifies the necessity for automated recom-
mender systems. To provide accurate recommendations those systems
build models of users’ preferences based on past data. Those models
are then used to predict future items of interest to selected users.

Since data in the recommender systems domain is typically sparse,
state-of-the-art algorithms use all available data for building models.
We argue that this is not beneficial and propose selective learning for
recommender systems. In the next section we further motivate the
need for selective learning.

23

24 introduction

1.1 motivation for selective learning

Learning users’ preferences poses numerous challenges to learning
algorithms. Those challenges encompass high volatility of preferences,
concept drift or shift, sparse data, outliers, etc. We address them by
proposing three types of selective learning methods:

• stream-based learning with selective forgetting

• selective neighbourhood

• stream-based semi-supervised learning

All these methods focus on selecting different aspects of data or
models. In the first type of methods we select the information to learn
from, instead of using all available information. This is equivalent to
forgetting of selected information. Therefore, this type is called selec-
tive forgetting.

In the selective neighbourhood we focus on neighbourhood-based colla-
borative filtering methods. Usually, those methods rely on a definition
of a neighbourhood based merely on a similarity threshold. We pro-
pose a more selective criterion for deciding, whether a neighbour be-
longs to a neighbourhood.

The last type of selective learning algorithms are semi-supervised al-
gorithms. In those algorithms several learners provide predictions to
each other. Those predictions are then used for training preference
models. Since not all predictions can be trusted, we propose methods
for selecting only the reliable ones for the purpose of learning.

The motivation behind each of the selective learning methods is
explained below in more detail.

1.1.1 Selective Forgetting

Users’ preferences are volatile - they are subject to change over time.
Ideally, a recommender system should adapt to those changes. The
adaptation can be implemented in three ways:

• by relearning an entire model from the scratch

• by incorporating new information into a model

• by forgetting obsolete information

The first way of adapting to changes is often implemented in so-
called batch learning. In this scenario an algorithm considers all data
to be available at once, i.e. all data is provided to the algorithm in form
of a batch. The learning is carried out only on the provided batch of
data. New data that accumulates after the last time point of learning

1.1 motivation for selective learning 25

is temporarily disregarded. To incorporate the new data into a model,
a new batch containing the new data is provided to the algorithm
and the learning procedure is repeated from the beginning. The old
model is completely discarded and substituted by a new model from
the updated batch.

Clearly, this type of adapting to changes carries several disadvan-
tages with it. It is computationally expensive to relearn the entire
model periodically. Considering that, typically, only a part of the model
needs to be updated when new data is collected, discarding the entire
model is not efficient. Furthermore, in real-world applications new
data constantly comes in after a model has been retrained. Conse-
quently, the model becomes gradually out of date with respect to the
new data, until the next retraining time point. In dynamic domains,
such as recommending news articles, the period between retraining
time points must be short to adapt to new events and changing users’
interests. With a growing database of news articles and users the re-
learning time might become longer than the period, in which a model
is considered up to date. In this case, the algorithm in the batch learn-
ing mode becomes infeasible. Also storing all data in the main mem-
ory of a computer might become infeasible when the numbers of users
and items continuously grow.

To alleviate those problems researchers proposed stream-based learn-
ing algorithms. Unlike in the batch mode, here, algorithms only re-
quire a sequential, often one-pass access to the data. Changes are
incorporated into models by performing incremental updates using
only the new data. Consequently, the old model is not entirely dis-
carded, but only adjusted to be up-to-date with respect to the new
data.

Stream-based learning algorithms use the second way of adaptation
to changes, i.e. incorporating new data into a model. If the newly ac-
quired data contains a change of the learned concept, then through
the incremental update this change will be incorporated into a model.
A side effect of incorporating new data is that the importance of the
old data will decrease over time, as the total amount of data increases.
This way of adaptation has been investigated thoroughly in the re-
cent research on stream-based recommender systems [Cha+11; LW15;
Cha+17].

However, we argue that incorporating new information is not suffi-
cient as an adaptation mechanism. Even, if the importance of the old
data diminishes over time, its impact onto a model always remains to
some extent in the the model. Its impact tends to go to zero as time
goes to infinity. However, in real-life applications this consideration is
not applicable.

Therefore, to remove the impact of the obsolete data from a model
we propose selective forgetting methods. Selective forgetting is equiva-

26 introduction

lent to selective learning, since by selecting what to forget, we select
what to learn from. The obsolete data is candidate to be forgotten by
our selective learning algorithms.

The data used for model learning in the past can become obsolete
for several reasons1. In data stream mining, common terms used to
describe this phenomenon are concept drift or shift, i.e. a gradual
or sudden change in concept (user’s preferences in our case). Further
reasons that are typical to recommender systems are purchasing items
for other people, multiple persons sharing one account, noise, etc.

Motivating example 1 presents a hypothetical user u, who is subject
to a concept drift.

Motivating Example 1 (Concept Drift). — Let u be a user, who pro-
vides a stream of ratings S u = (rt1

u,i1 , rt2
u,i2 , . . . , rtn

u,i3). Where rt
u,i is a rat-

ing that the user u gave to the item i at the time point t. If the time
interval between t1 and tn spans several years, then it is likely that at
the time point tn the rating rt1

u,i1 is obsolete, since it does not reflect
the current preferences any more. Possibly, considering this rating
in the model is even counterproductive, as in the course of years the
user u gradually changed preferences. In a hypothetical scenario of
recommending movies, this happens e.g. when a user stops watch-
ing animated movies and starts watching thriller movies as she/he
grows up.

In the medical scenario, of e.g. recommending medication to pa-
tients [Che+12], concept drift can occur as the condition of a patient
worsens and new symptoms start occurring.

The change in users’ preferences does not have to be gradual. Often
external events trigger a sudden change of preferences that make con-
siderable parts of a model obsolete. Motivating example 2 illustrates
such an event.

Motivating Example 2 (Concept Shift). — Consider the user u with a
stream of ratings S u from the previous example. An external event
at a time point ti, 0 < i < n, where i is typically unknown to the
system, might change the preferences of the user u drastically. Such
a change makes large parts of a preference model obsolete, since the
preferences they reflect are not valid any more. Consequently, the
information obtained before the time point ti, i.e. S ′u = (rt1

u,i1 , . . . , rti
u,ix

)

,should be forgotten by the system.
Such an external event might be, for example, birth of a child,

which results in a sudden change in the type of relevant products.
A new parent, probably, focusses mostly on baby products, while
previous interests become secondary.

1 note that obsolete does not necessarily mean old

1.1 motivation for selective learning 27

The examples 1 and 2 motivate that past preferences are often sub-
ject to change and the data that becomes obsolete due to this change
should be removed from a preference model. However, forgetting ap-
plies not only to old or outdated data. Often a newly obtained piece of
information (e.g. in form of a rating rt

u,i) is obsolete as well. Example
3 motivates a possible scenario of this type.

Motivating Example 3 (Outliers). — Similarly to the example 2 at the
time point ti a user might provide a rating that is not consistent with
the past behaviour of this user. In the e-commerce scenario this hap-
pens frequently, when a user buys an item as a present for someone
else. Also, users often share their account with other people, where
next to the main user there are further, non-identified users - e.g. in
a household, where a whole family shares an account. Such a rat-
ing rti

u,i is an outlier to the main user’s profile and should, therefore,
not be considered for learning this user’s preferences. Note that in
the previous example all ratings before ti would be forgotten. Here,
only the rating rti

u,i is affected. Ratings of this type can occur several
times for each user. Despite the name "outlier" this phenomenon
is not uncommon in the recommender system domain. Repeated
occurrence of such outliers results in a selective, non-consecutive
forgetting, where the forgotten data instances do not need to be
close to each other with respect to the time dimension.

Examples 1 - 3 focus on the motivation from the machine learn-
ing perspective. They depict a situation, where it is beneficial for the
quality of a model to forget certain data. Apart from this type of mo-
tivation, there is also a motivation from the user’s perspective.

Recommender systems build user profiles, which often contain sen-
sitive data. A well-designed system should consider privacy concerns
of its users. One way of giving the users more control over their
privacy is implementing their right to forget selected information.
Note that forgetting is more than just deleting an information from
a database. While deleting information might prevent unwanted ac-
cess, it does not remove the impact of this information from a prefer-
ence model (e.g. latent matrices). Consequently, a model would still
contain the removed information implicitly and it would continue to
give recommendations to a user based on the removed information.
Example 4 illustrates such a scenario.

Motivating Example 4 (Privacy). — Consider an example of an online
pharmacy, where users buy medications and receive recommenda-
tions based on their historical purchases. A user who does not need
a certain medication any more might be interested in removing it
from the recommendation model. Some users might be afraid of an
accidental disclosure of their preferences (drugs used in the past)
by receiving unwanted recommendations in a non-private context

28 introduction

(e.g. at work). Implementing forgetting mechanisms that remove
the selected information not only from a database but also from a
preference model provides a solution to this problem.

In the example 4 a user decides which information should be for-
gotten. In all other cases, it is a challenge to correctly identify such
information. Typically, there is no ground truth that defines, which in-
formation should be forgotten. Therefore, no supervised methods are
applicable here. Thus, we propose 11 unsupervised forgetting strate-
gies that determine obsolete information. We then evaluate experimen-
tal results of a recommender system with forgetting strategies and of
a system without forgetting. From our results we conclude that selec-
tive forgetting significantly improves the predictive power of a recom-
mender system (cf. Section 4.5.1 for more results). Furthermore, we
address more research questions regarding forgetting methods, such
as, how to identify obsolete information (cf. Sec. 1.2).

1.1.2 Selective Neighbourhood

Our second type of selective methods is selective neighbourhood. This
type of selective learning focuses on the neighbourhood-based colla-
borative filtering (CF). Those methods use a similarity measure to find
a neighbourhood for the active user (i.e. the user, for whom recom-
mendations are to be made). To define which users belong to the
neighbourhood of the active user, a threshold value for the similarity
can be defined. All users, who are above this threshold are considered
neighbours to the active user.

Alternatively, a fixed number n of users is defined. All users are
then sorted with respect to the similarity to the active user and the
top n most similar users are considered neighbours (cf. Sec. 2.2.1 for
more details on those methods).

However, in any of those methods considering the similarity value
alone is often problematic, since the calculation of similarity is often
based on a few common ratings (the so-called "co-ratings"). Motivat-
ing example 5 illustrates this problem using cosine similarity.

Note that there is more than one way of calculating the cosine sim-
ilarity between users. The main difference between them is the way
they define user vectors. In our examples we use the cosine similarity
that operates on vectors with co-ratings only (cf. Eq. 2.5 in [Agg16],
Eq. 24.6 in [AMK11] and Fig. 2 (for item-based CF) in [Sar+01]). Nev-
ertheless, the problem illustrated in this example is not specific to this
way of calculating cosine similarity only. Pearson correlation coeffi-
cient, adjusted cosine similarity, Spearman Rank Correlation, etc. are
also affected by this problem.

1.1 motivation for selective learning 29

Motivating Example 5 (Unreliable Similarity). — Consider the fol-
lowing (simplified) user-item-rating matrix. The set of users is de-
noted as U = {u1, u2, u3} and the set of items as I = {i1, i2, i3, i4}. En-
tries in the matrix are ratings from the range [1, 5], where 5 means
a high preference and 1 a low preference. Hereafter, we use the no-
tation ru,i for the rating of the user u towards the item i. The last
column represents the cosine similarity to the user u1.

Users \ Items i1 i2 i3 i4
cosine sim.

to u1

u1 4 5 5 5 –

u2 4 1

u3 4 5 5 4 0.9956

Table 1.: Example of an unreliable similarity between users u1 and u2 due to
a small number of co-ratings.

The similarity measures in the last column of the figure are based
on co-ratings only. The only co-rating those users share is the one
for the item i1. Therefore, the similarity between the users u1 and u2
is equal to 1.

The similarity between the users u1 and u3 is lower than 1, because
they diverge in their ratings of the item i4. Consequently, the user
u2 is considered more similar to u1 than u3 is. This is a non-reliable
conclusion, since similarity(u1, u2) could be this high only due to a
chance. Because similarity(u1, u3) is based on more observations, it
should be considered more reliable.

Adjusting the similarity threshold does not solve the problem, as a
higher threshold would still favour unreliable but high similarities (i.e.
the similarity of u1 to u2 rather than to u3 in the motivating example 5).
To solve the problem of unreliable similarities in RS, researchers pro-
posed several extensions to CF, including e.g. shrinkage [BKV07] and
significance weighting [Her+99]. Those methods assign lower weights
to similarities that are based on few observations only.

However, we argue that those extension are not sufficient to solve
the reliability problem in collaborative filtering. In example 6 we present
a scenario, where similarity between users is unreliable even though
they have many co-ratings.

Motivating Example 6 (Unreliable Similarity despite Many Obser-
vations). — Consider an extension of the matrix from example 5.
We assume that items i1 − i4 are highly popular, i.e. they are rated
by nearly all users highly (marked in red). In contrast, items i5 − i7

30 introduction

are known only to few users, whose opinions on these items differ
(marked in blue).

Users \ Items i1 i2 i3 i4 i5 i6 i7
cosine sim.

to u1

u1 4 5 5 5 2 4 5 –

u2 4 1

u3 4 5 5 4 0.9956

u4 2 3 5 0.9915

Table 2.: Example of an unreliable similarity between users u1 and u3 despite
many co-ratings.

As in the previous example the similarity(u1, u2) is considered un-
reliable due to the low number of co-ratings. This can be achieved
by applying e.g. the shrinkage method [BKV07] or significance weight-
ing [Her+99]. Using those extensions, the similarity(u1, u3) would be
considered the most reliable. However, we claim that similar ratings
upon items that are uncommon and controversial are more infor-
mative for a recommender system than ratings upon items liked by
everyone. Therefore, a reliable similarity measure should not only
consider the number of observations, but also the characteristics of
items those observations relate to.

To solve the problem shown in example 6 we propose a method for
a reliable selection of neighbours based on the Hoeffding Bound [Hoe63]
and the notion of a baseline user. Informally, a baseline user is, for
instance, an average user (cf. Sec. 5.2 for a formal definition). By this
definition a baseline user rates popular items highly. Using the Hoeffd-
ing Bound (HB) we test if a potential neighbour is significantly more
similar to the active user than the baseline user (e.g. an average user)
is. By doing so we consider the additional information about popular
items and typical user behaviour and penalize the neighbours, who
have a high similarity just due to the typical behaviour. If the test
using the HB is positive, then a user is included into the neighbour-
hood of the active user. Therefore, our method selectively learns the
neighbourhood of an active user.

We again show that selective usage of information, also in neigh-
bourhood based CF methods, improves the quality of recommenda-
tions.

1.1 motivation for selective learning 31

1.1.3 Stream-based Semi-supervised Learning

The last of our selective learning methods is semi-supervised learn-
ing (SSL). With this method we address the problem of data spar-
sity. Sparsity in recommender systems often reaches an extreme value
of 99%, i.e. there is only 1% of labelled data. We consider a triplet
(u, i, ru,i) as labelled information, where ru,i is considered a label (in
analogy to data mining and machine learning literature). Unlabelled
information is then a triplet (u, i, NULL), where the corresponding rat-
ing is not known.

Sparsity is inherent to recommender systems due to large dimen-
sions in typical application scenarios. Motivating example 7 illustrates
such a scenario.

Motivating Example 7 (SSL). — Consider an e-commerce application
of an online shop that has 10,000 items in its assortment and 1 mil-
lion users. Typically, a user can provide ratings to only few items.
Assuming that an average user buys 20 items, but rates only 10 of
them, then we obtain a sparsity rate of 99.9%.

An additional challenge in this scenario lies in the non-uniform
distribution of the rated items. While some items are popular and
frequently rated, the majority of items receive ratings only sporadi-
cally. Next to sparsity, this also leads to the problem of recommend-
ing items from the co-called "long tail" of the distribution (cf. e.g.
[Yin+12] for more information on the long tail problem).

As shown in the example 7, recommender systems face the problem
of inferring users’ preferences about all items given only few labels
that are non-uniformly distributed in the item space. To alleviate this
problem we propose two stream-based SSL methods: co-training and
self-learning. Both of those methods utilize the abundant unlabelled
information.

In the co-training approach there are multiple learners that run in
parallel and learn not only using the provided ratings (labelled infor-
mation), but also they train each other using their predictions (unla-
belled information). The predictions of one learner are provided to
another as labels.

In the self-learning approach a learner provides labels to itself by
making predictions about the unlabelled information, i.e. by predict-
ing the value of ru,i in the (u, i, NULL) triplet.

Since the number of possible unlabelled triplets in recommender
systems is large, it is essential to perform a well-informed selection
of predictions ru,i that can be used as label information. Therefore, in
both approaches we propose unsupervised methods to select reliable
predictions that can be used as labels.

Since SSL in recommender systems is a new field, we propose a
novel stream-based framework with several components and we test

32 introduction

their influence onto the quality of recommendations. An important
aspect of our framework is being able to work on streams of ratings,
which yields several advantages. One of them is incorporating the
unlabelled information incrementally without relearning the entire
model. Consequently, the trained models can benefit from the unla-
belled information nearly immediately. Furthermore, a method that
incorporates new information as the stream goes on can adapt to po-
tential changes without the need of periodical retraining.

Finally, also in this aspect of selective learning, we show that se-
lective usage of unlabelled information in recommender systems signifi-
cantly improves their predictive power.

1.2 research questions

The motivation described in this chapter leads us to the following
research questions, including the core research question (RQ).

Core research question:
Does selective learning improve the quality of predictions in recom-
mender systems?

This question is central for the thesis, as it focusses on selective
learning. It can be answered positively, if any of the following three
research questions (RQ 1 - RQ 3) is answered positively.

RQ 1 Does forgetting improve the quality of recommendations?

Our first type of selective learning is based on forgetting in-
formation selectively. To answer this question we compare
recommender systems that apply our forgetting mechanisms
to ones without forgetting. If the performance in terms of
recommendation quality of the former is significantly higher
than the performance of the latter, then the answer is positive.
However, to answer this question, we first need to address the
following subquestions:

RQ 1.1 How to select information to be forgotten?

RQ 1.2 How can forgetting be implemented in a state-of-the-
art recommendation algorithm?

RQ 2 Does selective removal of users from a neighbourhood im-
prove the quality of neighbourhood-based CF?

To answer this question we measure the predictive perfor-
mance of a CF algorithm with and without our method for
selective removal of users from a neighbourhood. The result
of this comparison determines the answer to this research
question. To make the comparison possible we, first, answer
the following subquestion:

1.2 research questions 33

RQ 2.1 How to select users to be removed from a neighbour-
hood?

RQ 3 Does selective learning from predictions (semi-supervised
learning) improve the quality of recommendations?

The answer to this question depends on the result of the com-
parison between our SSL method and a conventional method
without SSL. If the SSL method performs significantly better in
terms of recommendation quality, then the answer is positive.
However, to be able to use SSL methods for recommender
systems in a stream setting, we, first, answer the following
subquestions:

RQ 3.1 How to select unlabelled instances for SSL?

In the SSL setting recommender systems learn from un-
labelled instances (user-item-pairs without ratings). As
discussed in the motivation, the number of unlabelled
instances is typically large. Therefore, only a subset of
them can be used for training. To answer this question
we propose methods for defining this subset.

RQ 3.2 How to select reliable predictions to learn from?

Ratings of unlabelled instances, which are selected as
specified in the previous answer, are predicted using
models trained on a stream of ratings. Those predicted
rating values can be used for training in SSL. However,
not all of the predictions are reliable. To answer this
question we propose measures that determine if a pre-
diction can be considered reliable.

RQ 3.3 How to assemble predictions from an SSL system using
co-training into a single prediction?

In the co-training approach there are multiple learners
that run in parallel on a stream. Assuming that we use
n learners, for each unlabelled instance we obtain n pre-
dictions. For this prediction to be used in real-world ap-
plication, i.e. to rank items with respect to user’s prefer-
ences, these n predictions have to be aggregated into a
single value. To answer this question we propose several
aggregation mechanisms for rating predictions.

RQ 3.4 How to divide labelled instances among multiple learn-
ers in an SSL system?

In the co-training approach the labelled information is
used to train multiple learners. However, to gain an ad-
vantage from such a system, the learners have to differ
from each other. Otherwise, they would provide same

34 introduction

or similar (for non-deterministic algorithms) predictions
given the same input. Difference in the learners is ben-
eficial, since it allows for specialization of learners on
different aspects of a dataset. To achieve this specializa-
tion of learners, they receive different views onto the
labelled instances that they learn from. To answer this
question we propose several mechanisms that divide the
labelled information among the learners, i.e. create dif-
ferent views for the learners.

1.3 summary of scientific contributions

Our contributions span three different types of selective learning, as
discussed in Sec. 1.1, a formal definition that unites them and aux-
iliary contributions, such as hyperparameter optimization for recom-
mender systems, which helped achieving reliable results in the re-
maining fields discussed in this thesis.

To summarize, in this thesis, we make the following contributions:

• We propose methods for selective forgetting on streams of rat-
ings that encompass:

– eleven forgetting strategies of two types

– three alternative algorithms enforcing forgetting, i.e. remov-
ing impact of selected data from a preference model

– an evaluation protocol including significance testing and
incremental recall

• We provide insights on forgetting with positive-only feedback
and with rating feedback.

• We propose a method for selective removal of users from a
neighbourhood in CF that includes the following sub-contributions:

– We introduce the notion of baseline users.

– We define a reliable similarity measure for CF based on the
Hoeffding Bound.

– We point out problems in the usage of the Hoeffding Bound
in data stream mining and propose a correction.

• We design semi-supervised learning methods for stream-based
recommender systems. To achieve that we provide the following
sub-contributions:

– We propose a novel framework for stream-based recom-
mender systems with two approaches:

* co-training

1.4 outline of the thesis 35

* self-learning

– We propose several components in the framework, such as:

* reliability measures

* aggregation mechanisms for multiple predictions in co-
training

* methods for creating views onto ratings for co-trainers

* methods for selecting unlabelled instances as predic-
tion candidates

– We introduce a new evaluation protocol with significance
testing for stream-based recommender systems.

• We provide a unified definition of selective learning for recom-
mender systems.

• We implement an experimental framework including parallel
processing with Apache Hadoop and hyperparameter optimiza-
tion.

• We conduct the first comparative survey on hyperparameter op-
timization for Recommender System (RS) (as a part of our exper-
imental framework) that includes comparison of nine optimiza-
tion algorithms on four real-world, public, benchmark datasets.

1.4 outline of the thesis

This thesis is divided into three parts and an appendix. The first part
consists of the introduction, including a summary of our scientific
contributions and research questions, and of preliminaries on recom-
mender systems in Ch. 2. In the preliminaries we shortly introduce
the topic of recommender systems and provide knowledge and liter-
ature necessary to obtain a basic understanding of the research field.
In this chapter we also position this thesis in the broader context of
related work. The related work on each aspect of selective learning,
however, is discussed in the corresponding chapters separately.

The second part of the thesis describes our main contributions. In
this part we describe our three types of selective learning. We start
in Ch. 3 with a formal definition of selective learning. In this chapter,
we also provide a theoretical framework for evaluation of our core
research question.

In Chapt. 4 we propose our first type of selective learning - forget-
ting methods. This chapter contains parts of our papers [Mat+17]2

and [MS14b; Mat+15]. The reused parts in this thesis are always indi-
cated at the beginning of the corresponding chapter with a reference

2 This paper is currently under review. The submitted version (draft) can be found
under: http://pawelmatuszyk.com/download/Forgetting-techniques-for-RS.pdf

http://pawelmatuszyk.com/download/Forgetting-techniques-for-RS.pdf

36 introduction

to the used source. Their reuse in this dissertation is in accordance
with guidelines regarding "Self-plagiarism and good scientific prac-
tice" by Prof. Christoph Meinel (ombudsman of University Regens-
burg) [Mei13].

The second type of selective learning, selective neighbourhood, is
described in Ch. 5. This chapter is based on our publications [MS14a;
MKS13]. Semi-supervised learning, as the last type of selective learn-
ing methods, is addressed in Ch. 6, where we present results pub-
lished in the following papers [MS17; MS15].

Our last contribution encompasses the experimental framework that
involves distributed computing of experiments using Apache Hadoop
and a study on hyperparameter optimization for recommender sys-
tems [Mat+16].

The third part of the thesis concludes our work with a summary of
results and answers to our research questions. We also discuss possi-
ble limitations of our methods and potential future work.

In the appendix we discuss our work related to the Hoeffding Bound.
We used the results of this work in Ch. 5, where we present our se-
lective neighbourhood method that is also based on the Hoeffding
Bound. The appending is followed by a bibliography.

2
P R E L I M I N A R I E S O N R E C O M M E N D E R S Y S T E M S

In this section we discuss preliminary knowledge necessary to under-
stand our contributions in the further sections. Furthermore, we posi-
tion our research in the broader context of existing work. The related
work to topics of selective learning will be discussed in more detail in
the respective sections (cf. Sections 4.1, 5.1, 6.1, 7.1.2).

2.1 overview on types of recommendation algorithms

One of the first recommender systems was Tapestry, a system for
personalized filtering of electronic documents [Gol+92]. Already in
1992 the authors recognized that the amount of documents (including
emails) often overwhelms users. Therefore, they proposed a system
for automatic filtering of relevant information. The relevance of infor-
mation in Tapestry is determined using content-based features and
annotations from users. Thus, this systems also has a collaborative
filtering component, because users collaborate indirectly to help fil-
tering relevant documents for other users by providing annotation to
items they know.

Since then, a plethora of different methods for personalized infor-
mation filtering has been created and it is still an active and devel-
oping research area. Those methods encompass several types of algo-
rithms. In Fig. 1 we provide a simplified overview over those types.
The sub-disciplines that we focus on in this thesis are marked in red.
This overview is not exhaustive, as it only serves the purpose of po-
sitioning our research in the broader context and giving introductory
knowledge necessary to understand the following sections.

In the following subsections we provide a detailed description of
each type of RS algorithms, focussing on the CF algorithms.

2.2 collaborative filtering

Collaborative filtering algorithms use user feedback to make predic-
tions about future items of interest without the need of analysing the
content of items. They use structured feedback that can be represented
as a matrix. The example in Tab. 3 illustrates such a matrix.

37

38 preliminaries on recommender systems

Recommender Systems
Algorithms

Content-based
Methods

Collaborative
Filtering

Neighbourhood-based
Methods

Matrix
Factorization

Tensor
Factorization

Hybrid
Methods

Figure 1.: A simplified classification of main types of recommendation algo-
rithms. In this thesis we focus on the algorithm types marked in
red.

Users \ Items i1 i2 i3 i4 i5

u1 4 5 5 3

u2 4 2 1

u3 4 2 1 2

Table 3.: Exemplary matrix in collaborative filtering with explicit rating feed-
back

In the matrix, we denote users from a set U as ui with i ∈ {1, ..., |U |}

and items from an item set I as i j with j ∈ {1, ..., |I|}. The cells in the
matrix stand for the relevance feedback of user ui to the item i j, which
is denoted as ru,i. The user feedback can be of different types. Depend-
ing on the way the feedback was acquired we distinguish between:

• explicit feedback

• implicit feedback

The explicit feedback is acquired from users, who specify directly
how relevant an item is to them, e.g. by answering a questionnaire or
rating an item on a ordinal scale. The implicit feedback is acquired in-
directly by analysing users’ behaviour and inferring a relevance score
from it, e.g. a value of 1, if a user purchased an item and 0 otherwise.

With respect to the range of values the relevance feedback can as-
sume, we distinguish between:

• rating feedback

• binary feedback

• positive-only (unary) feedback

2.2 collaborative filtering 39

Rating feedback involves a discrete multi-level or a real-numbered
ordinal scale, over which a total order can be defined. The ordinal
scale expresses the level of preference. Typically, the higher the value
of ru,i, the more relevant is the item i to user u. The example in Tab.
3 uses such rating feedback with the range {1, ..., 5}, where 5 means a
high preference and 1 means a low preference.

The rating feedback can be of both types: explicit or implicit. For
the explicit type users are often asked to rate an item with a score
corresponding to their level of preference (e.g. 5 stars). The rating
feedback can also be inferred from the user behaviour by mapping it
to a real-valued number (e.g. a high percentage of a watched video
implies a high relevance).

The binary feedback allows users to rate items with only two values
(e.g preference vs. no preference), whereas the positive-only feedback
allows only for one value (i.e. expressing preference only). Those two
types of relevance feedback can also be implicit or explicit.

In this thesis we conduct experiments with rating and positive-only
feedback of both explicit and implicit types.

All collaborative filtering algorithms share this type of data. How-
ever, they differ in the way they predict the ratings ru,i, where those
ratings are missing in the user-item-rating matrix. In the following
subsections, we describe main types of CF algorithms, starting with
neighbourhood-based methods.

2.2.1 Neighbourhood-based Methods

Neighbourhood-based CF methods can be divided into user-based and
item-based variants. We focus on the explanation of the user-based
variant, as they are more intuitive and, otherwise, nearly equivalent
to the item-based CF.

According to Sarwar et al. the work of neighbourhood-based algo-
rithms can divided into two phases [Sar+01]:

• prediction phase

• recommendation phase

In the prediction phase the missing rating values of the active user
(i.e. the user, for whom the recommendations are made) are predicted.
Once this phase is completed, then the predicted values are ranked
with most relevant items first. From this ranking, top n items are rec-
ommended to the active user, where n is specified either by an expert
or it is derived from domain-specific constraints (e.g. screen real es-
tate). These tasks belong to the recommendation phase.

While the recommendation phase is straightforward and can be
found in the same form in many recommendation algorithms, the pre-

40 preliminaries on recommender systems

diction phase is what defines a recommendation algorithm and poses
more challenges.

To predict missing ratings of an active user (the user for whom
recommendations are made), the user-based method works with the
assumption that similar users have similar preferences. Therefore, the
first step of this method is to determine a neighbourhood of the active
user, i.e. a set of similar users with respect to their rating behaviour.
For this purpose users are modelled as rows in the matrix (cf. the
matrix in Tab.3). Consequently, each user ui ∈ U is a rating vector.
To determine the neighbourhood of the active user, denoted hereafter
as ua, a similarity measure to all remaining users is calculated. This
results in the following set of |U |− 1 user similarities:

{∀u ∈ U ∧ u 6= ua : sim(ua, ui)} (1)

This set is then sorted in descending order and only top k users with
highest similarity form a neighbourhood. Alternatively, instead of the
parameter k, a threshold value τ for the similarity measure can be
used. In this case, all users with sim(ua, ui) > τ form a neighbourhood,
i.e. the following user set (NN for nearest neighbours):

NN(ua) = {u ∈ U | sim(ua, u) > τ∧ u 6= ua} (2)

In both cases the parameters k or τ are set by a domain expert. How-
ever, even for domain experts, it is a difficult task to set them well,
which motivates our research on hyperparameter optimization (cf. Sec.
7.1).

In the literature there are several similarity measures sim(ua, ub) that
can be used in neighbourhood-based CF. Widely used measures in-
clude e.g. the cosine similarity [Agg16] (notation adjusted):

cos(u, v) =

∑
i∈Iuv

ru,i · rv,i√∑
i∈Iuv

r2u,i ·
√∑

i∈Iuv

r2v,i

(3)

and the Pearson-correlation coefficient [DK11]:

PCC(u, v) =

∑
i∈Iuv

(ru,i − ru)(rv,i − rv)√∑
i∈Iuv

(ru,i − ru)2
∑

i∈Iuv

(rv,i − rv)2
(4)

with u, v ∈ U and Iuv ⊆ I containing items rated both by u and v, i.e.
a set of their co-ratings. ru denotes an average rating by user u and Iu

a set of items rated by the user u [DK11].
Once a neighbourhood of the active user is defined using a simi-

larity measure, the ratings for items not rated by ua are predicted by

2.2 collaborative filtering 41

aggregating ratings of neighbours. A commonly used way of aggrega-
tion is a weighted average of neighbours’ ratings using their similar-
ities as weights. Accordingly, a rating prediction is calculated using
the following formula [DK11]:

r̂ui =

∑
v∈NN(ua)

wuv · rv,i∑
v∈NN(ua)

|wuv|
(5)

Different extensions and variations to this formula are possible, as
e.g. in case of significance weighting [Her+99] and shrinkage [BKV07]
(cf. Sec.5.1 for more details) or in case of different normalization schemas
[DK11].

Once the predictions for all missing ratings of user ua have been
calculated, we obtain the following rating set:

{∀i ∈ I : r̂ua,i | i /∈ Iua} (6)

At this stage, the prediction phase of the algorithm is completed. It is
followed by the recommendation phase, in which the items with high-
est predicted preference score are recommended. Usually, the number
of recommendations is restricted by the application domain to only
top-n recommendations.

2.2.1.1 Stream-based Neighbourhood methods

So far, we have discussed only batch-based algorithms that suffer from
several disadvantages, as mentioned in the introduction. The most
important ones are problems with scalability, missing adaptivity and
need for regular relearning of the entire model. Also batch-based CF

suffers from these problems.
To alleviate them, Papagelis et al. proposed a method called "in-

cremental collaborative filtering" (ICF) [Pap+05]. According to their
method, there is no need for recalculating the entire user similarity
matrix, when new ratings occur in the system. Their method performs
incremental updates of similarity measures between users. They pro-
vide incremental update operations for the Pearson correlation coef-
ficient in user-based CF. Those update operations replace vector op-
erations with a scalar operation, which are more efficient in terms of
computation time.

Miranda and Jorge proposed an incremental algorithm for CF with
binary feedback [MJ08] [MJ09]. To update the similarity matrix in
an incremental manner they maintain an auxiliary matrix containing
counts of item pairs that have been rated within the same user session.
Updating the auxiliary matrix can be performed with little computa-
tional effort. Miranda and Jorge show that the similarity matrix can
be derived directly from the auxiliary matrix for the cosine similarity

42 preliminaries on recommender systems

[MJ09]. Compared to the approach by Papagelis et al., here, there is
no need for rescanning the rating database, which further saves com-
putation time.

2.2.2 Matrix Factorization

Despite simplicity and a good predictive performance of neighbourhood-
based methods, a different type of collaborative filtering algorithms
established their position as state-of-the-art. They are based on matrix
factorization (MF). Similarly to neighbourhood-based methods the in-
put to MF is a rating matrix, as e.g. shown in Example 3. However,
the process of predicting missing ratings for an active user is different
from the neighbourhood-based methods and will be explained in this
section.

MF works by decomposing the original rating matrix, denoted here-
after as R, into a product of, typically two, other matrices. This can be
expressed by the following formula:

Rm×n ≈ Pm×k · Qk×n (7)

The original rating matrix R has dimensions m = |U | and n = |I|.
Rows of this matrix are user vectors u ∈ {F ∪ NULL}n and items are
column vectors i ∈ {F ∪ NULL}m. F stands for the range of possible
values of the rating feedback. Often the feedback is real-valued, then
F = R, or it is a finite subset of natural numbers, e.g. F = {1, 2, ..., 5}.
NULL represents a missing value.

P and Q denote a matrix with latent user features and a matrix
with latent items features respectively. The matrix P contains m latent
user vectors pu∈ P. The vectors pu lie in a real-valued, latent space of
dimensionality k, i.e. pu ∈ Rk. Similarly, the item matrix Q contains
n latent, real-valued item vectors also of the same dimensionality as
the user vectors qi ∈ Rk. The dimensionality of the latent space k is an
exogenous parameter defined by a domain expert.

As indicated by the dimensionality k, the latent user and item vec-
tors share the same latent space. The dimensions of the latent vectors
are latent features of, usually, unknown meaning. In case of latent
item vectors, a value in a cell of a vector, denoted hereafter as qi f with
f ∈ {1, ...,k}, expresses to what degree the item i has the feature f .
Analogously, the values in the cells of the user vectors, denoted as pu f ,
express to what degree a feature is relevant to a user.

As shown in Eq. 7, the decomposition is approximative. It is ob-
tained by solving a minimization problem. To define this problem for-
mally, we first introduce a formula used for rating prediction [Tak+09]:

r̂u,i ≈ pu · qᵀi =

k∑
f=1

pu, f · qi, f (8)

2.2 collaborative filtering 43

A prediction of a rating by the user u towards item i, denoted here-
after as r̂u,i, is a product of the corresponding latent vectors, i.e. the la-
tent user vector pu and the latent item vector qi. This rating prediction
formula, when carried out for all cells in the matrix R, is equivalent to
the multiplication of the latent matrices as in Eq. 7.

Using this formula the minimization problem can be defined in the
following way [Tak+09]:

(P∗, Q∗) = arg min
(P,Q)

∑
(u,i)∈T

(ru,i − r̂u,i)
2 (9)

P∗ and Q∗ denote the optimal user and item matrices and T stands
for a test set, which is a subset of all available ratings. Therefore, the
goal of this optimization problem is to find matrices P∗ and Q∗ that
minimize the squared rating prediction error.

By using the Eq. 8 we obtain the following formula, as proposed by
Takács et al. [Tak+09]:

(P∗, Q∗) = arg min
(P,Q)

∑
(u,i)∈T

(ru,i −

k∑
f=1

pu, f · qi, f)
2 (10)

This problem can be solved using different optimization methods.
In the literature on recommender systems two methods are preva-
lent in this context: stochastic gradient descent (SGD) (used e.g. in
[Tak+09]) and alternating least squares (ALS) (used e.g. in [HKV08]).
In SGD, which is the most frequently used method, the latent matrices
are initialized randomly and they are improved incrementally using
the iterative gradient formulas. For the derivation of these formulas
we refer to [Tak+09]. Usage of SGD introduces the parameter η into the
system, which controls the learning rate of SGD. Same as other param-
eters, such as k and λ (defined below), η also needs to be optimized,
which further motivates our research in Sec. 7.1.

This basic prediction model from Eq. 8 suffers from a few problems.
One of them is overfitting. Without countermeasures the aforemen-
tioned minimization problem result in unnecessarily long latent vec-
tors that do not generalize well. To alleviate this problem, several MF

methods incorporate regularization.
Takács et al. proposed the following implementation of regulariza-

tion (notation was adapted) [Tak+09]:

(P∗, Q∗) = arg min
(P,Q)

∑
(u,i)∈T

(ru,i −

k∑
f=1

pu, f ·qi, f)
2+λ · pu · pᵀu +λ ·qi ·qᵀi (11)

Adding the scalar products of the latent vectors to the minimization
formula automatically penalizes solutions with high values in the vec-
tors. Additionally, to control the impact of this penalty, Takács et al.
introduced a control parameter λ.

44 preliminaries on recommender systems

Koren implemented regularization in a similar way. However, in-
stead of adding scalar products of latent vectors, the Frobenius norm
of these vectors [Kor09] is used. This translates to the following mini-
mization problem:

(P∗, Q∗) = arg min
(P,Q)

∑
(u,i)∈T

(ru,i −

k∑
f=1

pu, f · qi, f)
2+ λ(||pu||

2+ ||qi||
2) (12)

To further improve the predictive performance of matrix factoriza-
tion models, they can be extended by user biases. Koren proposed to
extend the rating prediction formula in the following way [Kor09]:

r̂u,i ≈ µ+ bu + bi + pu · qᵀi (13)

The added components stand for biases at different levels. µ stands
for a global bias, i.e. an average tendency of all users towards a given
value, bu is a user-specific bias, and bi is specific for an item. Consid-
ering those biases allows matrix factorization models to focus on the
part of users’ preferences that cannot be explained by the different
level of neutral ratings.

Takács et al. also implemented user and item biases in the BRISMF

algorithm (biased regularized incremental simultaneous matrix factor-
ization), however, they did so in a different way [Tak+09]. In BRISMF,
the baselines are implemented by fixating one latent dimension in the
matrices P and Q (a different one in each matrix). This means that
those latent dimensions are kept at a constant value of 1 and are not
updated in the training phase of the SGD algorithm. This results in
the corresponding dimension of the remaining matrix assuming the
values of the baselines. For instance, if the latent dimension f1 (the
first column) in the user feature matrix, P, is kept equal to an identity
vector, then the corresponding latent dimension f1 (the first row) in
the item feature matrix, Q, will assume values of the user biases. The
same applies for item biases, but with a different latent dimension.
Therefore, BRISMF implements user and item biases without the need
of explicitly modelling them in the optimization formula (cf. Eq. 12).

In this thesis, we use the BRISMF algorithm frequently, as it serves as
a representative of the class of matrix factorization algorithms. While
there is a plethora of different extensions to MF algorithms, in their
core many of them work in the same way as the BRISMF algorithm does.
Therefore, to maximize the generalization potential of our methods
and transferability of our results, we apply them to extend the BRISMF

algorithm. This shows that our methods do not depend on a specific
extension to MF, but can be applied to any algorithm that works in a
similar way to BRISMF.

A further extension to the basic matrix factorization model has
been proposed by Koren in his algorithm timeSVD++ [Kor09]. Ko-
ren declared model variables as functions of time. Those variables

2.2 collaborative filtering 45

include user and item biases and the latent user vectors. To model
changes over time Koren used different method for different aspects
of a model. Those methods encompass linear regression, splines and
of parameter estimation for discretized time intervals. Despite consid-
ering the time dimension, timeSVD++ is not a stream-based method
and it is not adaptive. For more methods that exploit the time infor-
mation we refer to recent studies by Vinagre et al. [VJG15a] and by
Campos et al. [CDC14].

2.2.2.1 Stream-based Matrix Factorization

The MF algorithms discussed so far are batch-based, i.e. they have
access to any rating information also from the past and they assume
that the concept they model (i.e. users’ preferences) is stationary. Since
those algorithms do not adapt and do not incorporate new informa-
tion, as it appears in an online system, they need regular retraining.
That leads to problems with scalability, because retraining an entire
model from scratch is computationally expensive. Therefore, in this
work we focus on stream-based methods that incorporate new infor-
mation incrementally without the expensive retraining.

Incremental matrix factorization was first used in recommender sys-
tems in [Sar+00], where the fold-in method for Singular Value De-
composition (SVD) [BDO95] was used. However, due to the reasons
of computational efficiency and due to a high degree of missing data,
state-of-the-art methods mostly use SGD [Pat07]. Incremental matrix
factorization for positive-only feedback was investigated by Vinagre
et al. in [VJG14]. Here however, we focus more on the ratings feedback.
Therefore, we use an incremental MF algorithm proposed by Takács et
al. [Tak+09]. Next to a batch-based version, Takács et al. also proposed
an incremental version of BRISMF (cf. Algorithm 2 in [Tak+09]).

The incremental BRISMF algorithm preforms iterations of gradient
descent using new rating information and, therefore, updating the af-
fected latent user vectors in the matrix P. However, the incremental
BRISMF algorithm does not update the latent item features in the ma-
trix Q. Thus, it requires a sporadic retraining to update latent item
features. We lift this limitation in our extension described in Chap-
ter 6.

2.2.3 Tensor Factorization

In matrix factorization algorithms, users and items are considered di-
mensions in the preference learning problem. However, in real-world
scenarios these are not the only dimensions that affect recommenda-
tions. Tensor factorization algorithms offer an additional flexibility in
modelling those dimensions. Additionally to the user and item di-
mensions, tensors allow to add an arbitrary number of further dimen-

46 preliminaries on recommender systems

sions such as users’ context [HT12; Kar+10], time dimensions [Xio+10],
topics of items [Zhe+16], or tags in social tagging systems [SNM08;
SNM10].

However, typically tensors of third order (i.e. with three dimensions)
are used, as higher orders aggravate the problem of data sparsity and
the factorization algorithms often suffer from scalability problems.

Often tensor factorization is considered a generalization of the ma-
trix factorization task. A matrix can be considered a tensor of sec-
ond order. Both matrix and tensor factorization share a common goal,
which is predicting missing values in a matrix or in a tensor respec-
tively. Also a commonly used method in tensor factorization, HOSVD
(Higher Order SVD), is a generalization of the SVD method (Singular
Value Decomposition) [LMV00].

As tensor factorization is not essential to this thesis, we refer to
recent surveys for more details on HOSVD and other tensor factoriza-
tion algorithms [FO16; RGS14].

2.3 content-based methods

The focus of this thesis is not on content-based methods. However,
to make the fundamental differences between content-based and CF

methods clear, we also describe them shortly in this section.
Unlike collaborative filtering algorithms, which only analyse users’

feedback, content-based methods also analyse content of items. The
content can be of manifold types, typically represented by unstruc-
tured or semi-structured data. Depending on the application domain
the content can have form of music, videos, text, etc. Therefore, one
of the challenges in content-based recommenders is transforming the
data into a structured form.

Lops et al. propose an abstract framework shared by all content-
based recommender systems [LGS11]. One of the components, the
content analyser, is responsible for transforming unstructured data
into a structured representation. For textual data a common model
used in this transformation is the word-vector-model. Some of the
transformation also include e.g. semantic information [Gem+15]. This
transformation is domain-specific and needs to be designed differ-
ently for different types of data (e.g. music and videos). Therefore,
we do not cover this topic in detail here.

Once the data in a structured form is available, a further component
from the framework by Lops et al. [LGS11], the profile learner, takes
them as an input. The task of profile learner is often a classification
or a regression task. To train a model, the profile learner relates the
content-related features of items to a relevance class or score provided
by a given user in the past.

2.4 hybrid methods 47

In case of a classification task, the profile learner trains the following
function:

f (Θ) : F→ C (14)

where F = { f1× f2× ...× fn} is an n-dimensional item feature space cre-
ated by the content analyser, C = {c1, ..., cm} is a set of relevance classes
(e.g. {relevant, irrelevant}) and Θ denotes parameters of the classifier.

In case of a regression task this function changes as follows:

f (Θ) : F→ S (15)

where the set S determines the range of relevance scores. Typically, it
is a subset of real numbers S ⊆ R.

For training the function f (Θ), next to the features from the fea-
ture space F, the profile learner additionally uses users’ feedback that
plays the role of a target variable. A profile trained this way is a user-
specific predictive model trained on users’ preferences.

Typically, conventional data and stream mining algorithms are ap-
plied as a profile learners. Pazzani et al. applied decision trees, nearest
neighbours classifier, Rocchio’s algorithm, Naive Bayes, etc. as a learn-
ing component [PB07].

Once each user has a personal profile, this profile can be employed
by a filtering component to predict the relevance of an item unknown
to the user. Finally, users’ feedback is collected and used for further
training.

2.4 hybrid methods

The last type of methods from Fig. 1 are hybrid methods. While we
do not focus on them in this thesis, we still explain the basic concept
behind them to clarify the differences to the methods within the scope
of the thesis.

Hybrid recommender systems combine two or more methods to
potentially achieve a better quality of recommendations than any of
these methods alone. Since all methods have specific weaknesses, it
is possible to compensate them by using a hybrid RS in combination
with a method that does not share this weakness.

Ghazanfar et al., for instance, proposed a cascading hybrid RS that
combines rating, feature, and demographic information and showed
that it outperforms other state-of-the-art algorithms [GP10].

Furthermore, using hybrid recommender systems allows for em-
ploying different sources of information in one system. A hybrid sys-
tem encompassing e.g. a matrix factorization algorithm and a content-
based algorithm can use both rating feedback and textual features of
items. While a matrix factorization algorithm struggles with the new-
item-problem, content-based algorithms easily provide a solution in

48 preliminaries on recommender systems

such a case, thus, improving the overall quality of recommendations
by the system [Bur07].

Also in case, when one of the methods cannot provide a recom-
mendation to a given user e.g. due to missing data in one of the
information sources, a hybrid system that uses different sources of
information can potentially still make a recommendation. Therefore,
it can outperform a single method in terms of user space coverage
[GP10].

Combining multiple algorithms into one hybrid system is a non-
trivial task. Robin Burke, in his studies, defined and compared seven
ways of hybridizing recommendation algorithms [Bur02; Bur07]. He
concluded that cascading algorithms are very effective, particularly
when combining algorithms with different strengths [Bur07].

In this chapter on preliminaries of recommender systems, we de-
scribed main classes of recommendation algorithms. While there are
further types, e.g. demographic or knowledge-based recommender
systems, they are not directly relevant to this thesis. Therefore, for
further information on those algorithms we refer to recent studies
[Par+12; Lü+12; Bob+13; Bee+16].

Part II

S E L E C T I V E L E A R N I N G M E T H O D S

3
F O R M A L D E F I N I T I O N O F S E L E C T I V E L E A R N I N G

In this chapter, we define selective learning for recommender systems
and provide a formal framework for evaluating our core research
question.

Definition: Selective learning in recommender systems en-
compasses methods for learning and predicting users’ pref-
erences not by using all available data and models, but by
selecting data and aspects of models that maximise the
quality of recommendations.

In the next section we define a general algorithm common for all
of these methods. Afterwards, we define selective learning as an opti-
mization problem and, finally, we use those definitions to formulate a
logical criterion for evaluating our core research question.

3.1 general algorithm for selective learning

We focus on selective learning for stream-based methods. Therefore,
in Alg. 1 we present a generalized algorithm for incremental selective
training. As inputs it takes a training set Trt at time point t, a storage
of training instances Tr, a learning algorithm A, a model Mt−1 from the
previous time point and a selection strategy S t−1, also from the pre-
vious time point, as some selections strategies are adaptive and learn
over time. A selection strategy can be one of the three types mentioned in
the introduction.

Note that this is an incremental algorithm that is called at every
time point t of a stream, beginning from t = 0. Since it is a training
algorithm, its sole purpose is to train the model (i.e. adjust their in-
ternal parameters and store them for the next iteration) and not to
output predictions.

Trt contains only ratings that arrive in a stream of ratings at the time
point t and it is not a cumulative training set. Usually, this set contains
only the newest rating that needs to be incorporated into a preference
model. Lines 1-4 initialize the necessary variables at the beginning of
a stream. Tr stores training instances over a longer period of time,
as opposed to Trt. The algorithm A is responsible for initialization
of a model if the previous model Mt−1 is not known. A can be any
incremental collaborative filtering algorithm (including incremental
matrix factorization).

51

52 formal definition of selective learning

Algorithm 1 Incremental Selective Training

Input: Trt, Tr, Mt−1, A, S t−1

1: if t = 0 then
2: Tr = ∅
3: Mt−1 = A.initializeModel()
4: end if
5: Trselection := S t−1.S electTrainingInstances(Tr, Mt−1)

6: TrtoForget = Tr \ Trselection

7: TrtoAdd = S t−1.S electTrainingInstances(Trt, Mt−1)

8: Mt := A. f orget(Mt−1, TrtoForget)

9: Mt := A.updateModel(TrtoAdd, Mt, S t−1)

10: S t = S t−1.adapt(TrtoAdd, Mt)

11: Tr := Trselection ∪ Trt

Output: Mt, S t, Tr

In line 5 the selection strategy S decides which ratings should be
used for learning by removing unwanted ratings from the set Tr. To
decide upon this selection, the strategy also considers the currently
available preference model Mt−1. Considering the model in this pro-
cess is essential as it allows to decide upon a rating e.g. based on its
utility to the model.

Different selection strategies employ different mechanisms to carry
out this selection. Those strategies will be defined in more detail in the
chapters on forgetting methods (cf. Ch. 4) and SSL (cf. Ch. 6). Despite
the diametric differences in the selection strategies between forgetting
methods and semi-supervised learning, Algorithm 1 unifies them into
one common framework.

Formally, the function S electTrainingInstances of a selection strategy
S , which is used in lines 5 and 7, maps a training set of ratings into
another set of ratings

f : Tr → Trselection (16)

such that Trselection ⊆ Tr.
After the selection is completed, in line 6 the set of ratings to be

forgotten, TrtoForget, is determined. In line 7 the selection is also car-
ried out for the set Trt. If the set contains only one new rating, the
selection is equivalent to deciding, if the preference model should be
updated using this rating or not. In case of SSL this set contains several
candidate ratings that are filtered e.g. based on their reliability (cf. Ch.
6).

In lines 8 and 9 the preference model M is incrementally updated.
Line 9 carries out an iterative update of the model using the set TrtoAdd,
determined before. This update operation is typical to stream-based
algorithms. Additionally, this function takes a selection strategy as an

3.2 selective learning as an optimization problem 53

argument, because the strategy can also modify the model selectively
by e.g. giving more importance to selected parts of the model.

Line 8 implements the forgetting of ratings from the set TrtoForget.
Forgetting a ratings is equivalent to reversing its impact that it had
on the preference model in the learning process. We describe possible
implementations in Chapt. 4.

In line 10 the selection strategy is adapted using the new data from
the stream TrtoAdd and the adjusted preference model Mt. Finally, in
line 11 the training set Tr is adapted so that it contains the ratings
currently reflected by the preference model.

In Algorithm 1 the selective strategies affect the way an algorithm
trains its preference model. However, our selective strategies also change
the way an algorithm calculates predictions by using an existing pref-
erence model M partially in a selective way. This is shown abstractly
in Algorithm 2.

Algorithm 2 Selective Prediction

Input: ru,i, M, A, S
1: r̂u,i = A.selectivePredicting(ru,i, M, S)
2: return r̂u,i

While conventional algorithms calculate their predictions for a rat-
ing ru,i considering only a given preference model M, our methods
additionally consider the selection strategy S , which, in this case,
controls which parts of the model are used for calculating this pre-
diction. This type of selection strategies are particularly useful in
neighbourhood-based models, where a part of a model, e.g. a neigh-
bourhood of a user, can be selectively modified, e.g. by removing unre-
liable users from the neighbourhood. The selective prediction shown
in Algorithm 2 can also be used in static algorithms (not only in
stream-based ones) as we present it in Chapt. 5. There, we also pro-
pose a possible definition and implementation of such strategy.

3.2 selective learning as an optimization problem

Learning preference models in recommender systems can be under-
stood as an optimization problem. In this section we formally define
the problems that our methods aim to solve. First, to show the differ-
ence between the conventional, non-selective learning and our meth-
ods, we define the optimization problems for the non-selective meth-
ods.

54 formal definition of selective learning

3.2.1 Optimization Problem in Non-selective Learning

Let Q be a quality measure that needs to be maximized. In the conven-
tional batch learning we define the quality measure as the following
function:

Q : (Te, M)→ R (17)

The quality function takes a test data set Te and a predictive model M
as arguments. Then, this function internally uses the model M to cal-
culate predictions for all ratings ru,i ∈ Te. Based on those predictions
a quality value for each rating is calculated and aggregated into one,
real-valued quality measure.

For the non-selective, stream-based methods the quality measure is
calculated for each time point. Therefore, we denote it as follows:

Qt : (Tet, Mt)→ R (18)

with Tet begin a test set used at the time point t and Mt the current
model at the time point t.

Accordingly, the goal of non-selective batch-based methods is to
find an optimal model:

M∗ = arg max
M

Q(Te, M) (19)

For the definition of the optimization problem for stream-based
methods we, first, introduce the term of a model series M:

M = (M0, ..., Mt) (20)

The model series is composed of different versions of a model M for
different time points. Since models in stream-based methods adapt
over time, there is no single model M for all time points, but there is
a series of models with one model for each time point, i.e. Mt.

Considering this definition, the goal of stream-based recommender
systems is to find an optimal series of models M∗:

M∗ = arg max
M

∑
t

Qt(Tet, Mt) (21)

with Mt ∈M.
According to this definition, the optimal series of models is one that

has the maximal sum of quality measures over time. Ideally, but not
necessarily, it is a model series that dominates all other model series
at all time points with respect to their quality.

3.2 selective learning as an optimization problem 55

3.2.2 Optimization Problem in Selective Learning

In selective learning we introduce the selection strategies both: in
stream-based and batch-based learning. This additional component af-
fects also the optimization problems our methods aim to solve. There-
fore, in this section we introduce definitions and a specification of the
optimization problem for selective learning.

To measure the quality of batch-based selective methods, we define
a quality measure as follows:

QS : (Te, M, S)→ R (22)

This quality measures additionally considers a selection strategy S ,
when calculating the quality value. To visually differentiate it from
the non-selective counterpart, this quality measure is denoted with S
in index.

Analogously, we also define a quality measure for stream-based se-
lective methods:

QS ,t : (Tet, Mt, S t)→ R (23)

Additionally to its non-selective counterpart, this measure also consid-
ers the selection strategy S t at the time point t. Since some selection
strategies are adaptive and change over time, there is no single strat-
egy S for all time points, but they are specific for each time point. Also
here, we denote the selective variant with S in the index to ease the
differentiation.

Since a selection strategy is time-point-specific, we introduce the
definition of series of selection strategies:

S = (S 0, ..., S t) (24)

Given those definitions, we define the goal of selective batch-based
methods as finding the optimal pair (M, S)∗:

(M, S)∗ = arg max
(M,S)

QS (Te, M, S) (25)

Accordingly, stream-based methods optimise the following pair of
series of models and selection strategies:

(M, S)∗ = arg max
(M,S)

∑
t

QS ,t(Tet, Mt, S t) (26)

with S t ∈ S and Mt ∈ M. The optimal pair of (M, S) has the maximal
sum of prediction quality over all time points.

56 formal definition of selective learning

3.2.3 Answering the Core Research Question

The definitions given in the proceeding sections allow us to answer
our core research question from Sec. 1.2 by evaluating the following
logical expression:

[∃(M, S) :
∑

t

QS ,t(Tet, Mt, S t) >
∑

t

Qt(Tet, M∗t)]∨

[∃(M, S) : QS (Te, M, S) > Q(Te, M∗)] (27)

where Mt ∈ M, S t ∈ S, M∗t ∈ M∗, M∗ is the optimal solution from
Eq. 21 and M∗ is a solution from Eq. 19.

If the expression in Eq. 27 is true, then we answer the core research
question positively, i.e. we conclude that selective learning improves
the quality of predictions in recommender systems.

The first part of Eq. 27 (before ∨) is true if there exists a series of
models and selections strategies used by our method that outperform
the optimal series of models M∗ of a corresponding non-selective method.
The second part of the equation is true if our batch-based selective
method outperforms the corresponding, optimal, non-selective batch-
based method. Since those two parts are connected with a logical OR,
the expression is true, if any of the parts is true.

In the following chapters we provide answers necessary to evaluate
this logical expression.

4
F O R G E T T I N G M E T H O D S

The first type of our selective learning techniques for recommender
systems is selective forgetting, as motivated in Sec. 1.1.1. In this chapter
we address the following research questions:

RQ 1: Does forgetting improve the quality of recommenda-
tions?

RQ 1.1: How to select information to be forgotten?

RQ 1.2: How can forgetting be implemented in a state-of-the-
art recommendation algorithm?

We begin with work related to forgetting techniques. In Sec. 4.2 we
present our forgetting techniques, i.e. how to select information which
should be forgotten. In the following section we show how the forget-
ting of selected information can be enforced on a stream of ratings. In
Sec. 4.4 we present our evaluation settings and in Sec. 4.5 our exper-
imental results. Finally, in Sec. 4.6 we conclude this chapter and give
answers to the aforementioned research questions. The sections 4.1 -
4.6 come (with modifications) from our previous publications on this
topic [Mat+17; MS14b; Mat+15].

4.1 related work on forgetting methods

In real world systems, data used by recommender systems has all
characteristics of a data stream. Data streams arrive on-line, at unpre-
dictable order and rate, and they are potentially unbounded [Bab+02].
Once a data element is processed it must be discarded or archived,
and subsequent access to past data gets increasingly expensive. Algo-
rithms that learn from data streams should process data in one pass, at
least as fast as data elements arrive, and memory consumption should
to be independent from the number of data points [DH01].

Forgetting past data is a model maintenance strategy frequently
used in data stream mining. The underlying assumption is that some
data points are more representative than others of the concept(s) cap-
tured by the algorithm. Common forgetting strategies in stream min-
ing encompass a sliding window and weighting with an exponential
decay function [Gam+14] [Gam12].

Although recommendation is seldom approached as a data stream
mining problem, the following contributions must be pointed out.
Two of them apply generic data stream mining algorithms in recom-
mender systems. In [LBD07], Li et al. propose an approach to drifting

57

58 forgetting methods

preferences of individual users using the CVFDT algorithm [HSD01b].
This is a popular classification algorithm for high speed data streams.
The CVFDT algorithm is used to build a decision tree for each item in
the dataset, given the ratings of other highly correlated items. The rat-
ings given by users to these correlated items are used to predict the rat-
ings for the target item. The mechanics of CVFDT provides automatic
adjustment to drifts in user interests, avoiding accuracy degradation.
In [Nas+07] Nasraoui et al. use the TECHNO-STREAMS stream clus-
tering algorithm [Nas+03], using a sliding window through user ses-
sions to compute a clustering-based recommendation model. How-
ever, those two approaches do not use dedicated recommendation al-
gorithms, but rather rely on conventional stream-mining techniques.

In recommender systems, forgetting was introduced by Koychev
in a content-based algorithm [Koy00]. The technique assigns higher
weights to recent observations, forgetting past data gradually. This
way, the algorithm is able to recover faster from changes in the data,
such as user preference drift. A similar approach is used with neigh-
bourhood-based collaborative filtering by Ding and Li in [DL06]: the
rating prediction for an item is calculated using a time decay function
over the ratings given to similar items. In practice, recently rated items
have a higher weight than those rated longer ago. In [Liu+10], Liu et
al. use the same strategy, additionally introducing another time decay
function in the similarity computation, causing items rated closely in
time to be more similar than those rated far apart in time.

Another contribution is made by Vinagre and Jorge in [VJ12]. The
authors use two different forgetting strategies with neighbourhood-
based algorithms for positive-only data. Forgetting is achieved either
abruptly, using a fixed-size sliding window over data and repeatedly
training the algorithm with data in the window, or gradually, using
a decay function in the similarity calculation causing older items to
be less relevant. However, these techniques are only effective in the
presence of sudden changes with a high magnitude global impact, i.e.
for all users, and do not account for more subtle and gradual changes
that occur on the individual users’ level. In our experiments we also
compare to those strategies.

In [Kor09] Koren modelled users in a dynamic way, i.e. he tried to
capture changes in latent user vectors by using linear regression and
splines. However, his method was not able to recognize and forget ob-
solete information. Additionally, unlike our method, Koren’s method
is not able to work on streams of ratings. In 2014 Sun et al. introduced
collaborative Kalman filtering [SPV14]. This method also attempts to
model changes in users’ preferences, but similarly to Koren’s method,
it is not designed for streams of data and it does not forget any in-
formation. Chua et al. modelled temporal adoptions using dynamic
matrix factorization [COL13]. Their approach is not stream-based, but

4.2 forgetting strategies 59

works on chunks of data and combines models of single chunks us-
ing a linear dynamic system. Similarly to Sun et al., in [COL13] the
authors also used Kalman filters.

The focus of this chapter is on stream-based recommender systems
due to their relevance to real-world applications. As a representative
of stream-based recommender systems we use an incremental matrix
factorization algorithm BRISMF [Tak+09] explained in Chap. 2.

Forgetting for this type of algorithms had not been studied be-
fore the work in [MS14b] and [Mat+15]. Since matrix factorization
in recommender systems is an active research field, there are numer-
ous recommendation algorithms based on it. Those algorithms en-
compass several extensions, e.g. for implicit feedback [HKV08], time
aspects (different than forgetting) [KBV09; Kor09], semi-supervised
learning [MS15], active learning [Kar+11], etc. Despite different exten-
sions, many of those algorithms work in the core in the same or similar
way to BRISMF. Therefore, we show the effectiveness of our forgetting
methods using this typical representative of MF algorithms.

4.2 forgetting strategies

In this section we discuss how to select information that should be for-
gotten. We introduce the term of forgetting strategies as methods for se-
lecting this obsolete information. They work in an unsupervised way,
since there is no ground truth determining when a rating becomes
obsolete.

While detailed explanation on how those forgetting strategies are
used is provided in Sec. 4.3, in Fig. 2 we give a simplified overview
over the function and components of our framework with selective
forgetting. Fig. 2 illustrates how selecting forgetting is embedded into
the learning process on a stream of ratings. The process in Fig. 2 is
repeated for every rating in a stream. Forgetting strategies play an
essential role in this framework.

In total we present 11 forgetting strategies. We divide them into two
categories based on their output. The first category is rating-based for-
getting (cf. Sec. 4.2.1). As the name suggests, all strategies of this type
take a user-specific list of ratings as input and decide which ratings
should be forgotten. Data returned by those strategies is a filtered list
of ratings of a user.

Forgetting strategies of the second type are based on latent factors
from the matrix factorization model. The latent-factor-based strategies
(cf. Sec. 4.2.2) modify a latent factor of a user or of an item in a way
that lowers the impact of past ratings.

60 forgetting methods

Rating
from a
Stream

Rating
Prediction

Forgetting
Strategy

Updating
Model

tr
u1,i1 r

u7,i2
r
u3,i5

r
u4,i9

Stream of Ratings

Model
t

Model
t -1

Evaluation
Measure

t -1

Evaluation
Measure

t

Substitutes at the
next time point

Substitutes at the
next time point

Figure 2.: Overview of the selective forgetting framework. The process pre-
sented here is repeated for every rating in the stream.

4.2.1 Rating-based Forgetting

This category of forgetting strategies operates on sets of users’ ratings.
We define R(u) as a set of ratings provided by the user u. Formally, a
rating-based forgetting strategy is a function f (R(u)):

f : R(u)→ R(u) ′ (28)

where R(u) ′ ⊆ R(u). Furthermore, for each user we define a threshold
of n ratings a user must have, before forgetting is applied. This thresh-
old ensures that no new users are affected by forgetting and that no
users or items are forgotten completely. Therefore, it is not possible
that a badly chosen forgetting strategy forgets everything and is un-
able to make recommendations. In our experiments we use n = 5.

In the context of our formal definition from Chapt. 3, those for-
getting strategies are used in line 5 in Alg. 1, when the function
S electTrainingInstances(Tr, Mt−1) is called.

4.2 forgetting strategies 61

4.2.1.1 Sensitivity-based Forgetting

As the name suggests this strategy is based on sensitivity analysis.
We analyse how much a latent user vector pu changes after including
a new rating of this user ru,i into a model. A latent user vector should
always reflect user’s preferences. With a new rating ru,i we gain more
information about a user and we can adjust the model of his/her
preferences (the latent vector pu) accordingly. If the new rating is con-
sistent with the preferences that we know so far of this particular user,
the change of the latent vector should be minimal. However, if we
observe that the latent vector of this user changed dramatically after
training on the new rating, then this indicates that the new rating is
not consistent with the past preferences of this user. Thus, we forget
this rating, i.e. we do not update the user’s latent vector using this
rating, since it does not fit to the rest of user’s preferences.

In real life recommenders this occurs frequently, e.g. when users
buy items for other people as presents, or when multiple persons
share one account. Those items are outliers with respect to preferences
observed so far. Learning model based on those outliers distorts the
image of user’s preferences.

In order to identify those outlier ratings, we first store the latent
user vector at time point t, denoted hereafter as pt

u. Then, we simulate
our incremental training on the new rating ru,i without making the
changes permanent. We obtain an updated latent user vector pt+1

u . Our
next step is then calculating a squared difference between those two
latent vectors using the following formula:

∆pu =

k∑
i=0

(pt+1
u,i − pt

u,i)
2 (29)

Furthermore, for each user we store and update incrementally at
each time point the standard deviation of the squared difference. The
notation x stands for a mean value of vector x and S D(x) is standard
deviation of this vector. If the following inequality is true, then it indi-
cates that the new rating ru,i is an outlier:

∆pu > ∆pu + α · S D(∆pu) (30)

Where α is a parameter that controls the sensitivity of the forgetting
strategy. It is specific for every dataset and has to be determined ex-
perimentally.

4.2.1.2 Global Sensitivity-based Forgetting

Similarly to the previous strategy, Global Sensitivity-based Forgetting
is also based on sensitivity analysis. However, in contrast to Sensitivity-
based Forgetting, this strategy does not store the standard deviation

62 forgetting methods

of squared differences of latent vectors separately for each user but
rather globally. Formally, it means that the inequality (30) needs to be
changed into:

∆pu > ∆+ α · S D(∆) (31)

Where ∆ is a squared difference of latent user vectors before and after
including a new rating for all users.

4.2.1.3 Last N Retention

To the category of rating-based forgetting we also count the Last N Re-
tention strategy. This forgetting strategy uses sliding window, which
often finds an application in stream mining and adaptive algorithms.
Here however, a sliding window is defined for each user separately.
LastNRetention means that the last N ratings in a stream of a user are
retained and all remaining ratings are forgotten. If a user has fewer
ratings than N, then forgetting will not be applied onto this user.

4.2.1.4 Recent N Retention

This forgetting strategy is also based on a user-specific sliding window
[MS14b]. However, here the size of a window is not defined in terms
of ratings, but in terms of time. Therefore, unlike last N retention it
considers the time that has passed between providing ratings. If N =

3days, then only ratings from the last three days are retained and all
the remaining ones will be forgotten. This strategy can be also set up
to use only ratings from e.g. the last session. In contrast to the Last N
Retention, this strategy allows to define a lifetime of a rating, which
is especially beneficial in highly dynamic environments, such as news
recommendations.

4.2.1.5 Recall-based Change Detection

In many applications a change of preferences takes place gradually.
However, there are applications where a change can happen abruptly
and without prior indication. For instance, a person who becomes a
parent is likely to start preferring items suitable for children. A recom-
mender system that adapts gradually is not able to capture this abrupt
change. Consequently, the importance of these new preferences will
be underestimated for a long period of time. Therefore, we propose a
forgetting strategy that detects a change in preferences and forgets all
ratings from before the change. This is equivalent to resetting a single
profile of the affected user without discarding the entire model.

In recall-based change detection, incremental recall (or a different
incremental quality measure) for each user is monitored. A high drop
in the quality measure indicates a change of preferences.

4.2 forgetting strategies 63

In more quantitative terms, let incremental recall for user u at time-
point t be denoted as incrRecalltu. A change is detected, if the following
inequality is true:

incrRecalltu < incrRecallu − α · S D(incrRecallu) (32)

i.e. when the current recall of a user is lower than this user’s mean
recall by at least α · S D(incrRecallu). The parameter α controls the sen-
sitivity of the detector.

4.2.1.6 Sensitivity-based Change Detection

Similarly to the previous forgetting strategy, this one is also a change
detector. We assume that, if incorporating a new rating from the stream
provided by a user changes the underlying user’s model dramatically,
then this new rating does not fit into the old model. Consequently, we
conclude that the user’s preferences have changed.

To express the relative change of a user’s model over time we use
the notion of local model sensitivity and the formula 29. Let ∆t

pu
be the

change of user’s model after incorporating a new rating at timepoint
t. A change is detected, if the following inequality holds:

∆t
pu
> ∆pu + α · S D(∆pu) (33)

i.e. when the change to the current model is higher than the stan-
dard deviation of all changes of this user multiplied with a control
parameter α.

This strategy is similar to Sensitivity-based Forgetting, because it also
uses the idea of an outlier-rating that does not fit into the learnt model.
However, the key difference is that, here, we conclude that it is the
model learnt so far that should be forgotten due to a concept shift
and not the single outlier-rating.

4.2.2 Latent Factor Forgetting

Latent factor forgetting is the second type of our forgetting strategies.
Unlike rating-based forgetting, this type of strategies operates directly
on preference models and not on the ratings. Therefore, in the con-
text of our formal definition in Alg. 1, the usage of these strategies is
equivalent to function updateModel(TrtoAdd, Mt, S t−1) (cf. line 9 in Alg.
1). In this function the model Mt is adjusted in a way controlled by the
forgetting strategy.

In matrix factorization, preference models have form of latent user
vectors, denoted as pu, or latent item vectors, denoted as qi. This type
of forgetting is triggered when a new rating of the corresponding user
u towards item i has been observed in a stream.

64 forgetting methods

Formally, a latent factor forgetting strategy is a linear transforma-
tion of a latent user vector (cf. Eq. 34) or of a latent item vector (cf. Eq.
35):

→
pt+1

u = γ ·
→
pt

u + β (34)

→
qt+1

i = γ ·
→
qt

i + β (35)

The parameters γ and β are dictated by the strategies described in
the following subsections. Since those strategies transform latent vec-
tors, it is also not possible that users or items are forgotten completely.
This could happen only if γ and β are equal to 0, which we do not
allow in the following strategies.

4.2.2.1 Forgetting Unpopular Items

In this forgetting strategy unpopular items are penalized. Latent item
vectors are multiplied with a value that is lower for unpopular items
to decrease their importance in the prediction of interesting items. For-
mally, this strategy is expressed by the following formula:

→
qt+1

i = (−α−|R(i)| + 1) ·
→
qt

i (36)

R(i) is the set of ratings for item i. α is a parameter that controls,
how much the latent item vector is penalized. (−α−|R(i)| + 1) is an
exponential function that takes low values for items with few ratings
(for α values > 1). Additionally, this function has an advantage of
being limited to value range of [0, 1), for α > 1.

4.2.2.2 User Factor Fading

User Factor Fading is similar to using fading factors in stream mining.
In this strategy latent user factors are multiplied by a constant α ∈
(0, 1]

→
pt+1

u = α ·
→
pt

u (37)

The lower is this constant, the higher is the effect of forgetting and
the less important are the past user’s preferences.

4.2.2.3 SD-based User Factor Fading

As in user factor fading, this strategy alters latent user vectors. Hov-
erer, the multiplier here is not a constant but it depends on the volatil-
ity of user’s factors. The assumption behind this strategy is that highly

4.2 forgetting strategies 65

volatile latent vectors (the ones that change a lot), are unstable. There-
fore, forgetting should be increased until the latent vectors stabilize.

Similarly to sensitivity-based forgetting, in this strategy we measure
how much the latent user factor changed compared to the previous
time point. We calculate again the squared difference between pt+1

u
and pt

u and denote it as ∆pu (cf. Equation 29). Subsequently, we use the
standard deviation of ∆pu in an exponential function:

→
pt+1

u = α−S D(∆pu) ·
→
pt

u (38)

For high standard deviation of ∆pu the exponential function takes
low values, penalizing unstable user vectors. The parameter α controls
the extent of the penalty. For α > 1 this function always takes values
in the range [0, 1).

4.2.2.4 Recall-based User Factor Fading

As in the previous strategy, users’ latent vectors are also multiplied
with a weight, which, here is based on user-specific recall. The idea is
as follows: if a prediction model performs poorly for a user in terms of
incremental recall, this forgetting strategy assumes that preferences of
this user are changing. Therefore, forgetting should be amplified. In
contrast, if the performance of the model is high, then forgetting is
suppressed, so that a stable and well functioning model is not altered
by the forgetting. To model this strategy we use the following formula:

→
pt+1

u = (−α−incrRecalltu + 1) ·
→
pt

u (39)

The exponential term −α−incrRecalltu + 1 takes high values for high
recall values (for α > 1). Therefore, if a model performs well, this
term is close to 1, which makes the effect of the forgetting strategy
low. Otherwise, a lower value of the exponential function increases
the forgetting rate.

4.2.2.5 Forgetting Popular Items

This strategy is opposite to the one presented in Section 4.2.2.1. Here,
popular items are penalized, so that their impact on the model is re-
duced. Forgetting popular items can be used to decrease the impact
of mainstream products onto a preference model.

To achieve that, an exponential function is used that decreases the
multiplier of the latent item vector (for α > 1), when an item was rated
by many users.

→
qt+1

i = α−|R(i)| ·
→
qt

i (40)

66 forgetting methods

4.3 enforcing forgetting on a stream of ratings

Thus far, we have described how to select information that should
be forgotten. In this section we discuss how the forgetting is imple-
mented, i.e. how an impact of selected information can be removed
from a model. We propose three alternative implementations. First
however, we describe our baseline algorithm that does not use forget-
ting techniques. We use this algorithm in all our implementations and
also in experiments as a comparison baseline.

4.3.1 Baseline Algorithm

We extend a state-of-the-art matrix factorization algorithm BRISMF by
Takács et al. [Tak+09]. BRISMF is a batch method, however, Tákacs et
al. also proposed an algorithm for retraining latent users features (cf.
Algorithm 2. in [Tak+09]) that can be used as a stream-based algo-
rithm. Latent user features are updated as new observations arrive
in a stream, ideally in real time. Since item features are not updated
online (as dictated by Tákacs et al. [Tak+09]), the method requires an
initial phase, in which the latent item features are trained. We adopted
this procedure also in our extension of this algorithm.

4.3.1.1 Initial Phase

Similarly to [Tak+09], in this phase we use stochastic gradient descent
(SGD) to decompose the user-item-rating matrix R into two matrices of
latent factors R ≈ P ·Q, where P is the latent user matrix and Q the la-
tent item matrix with elements pu, f and qi, f respectively. f is an index
of the corresponding latent factor. In every iteration of SGD we use the
following formulas to update latent factors [Tak+09] (notation adjusted):

pu, f ← pu, f + η · (predictionError · qi, f − λ · pu, f) (41)

qi, f ← qi, f + η · (predictionError · pu, f − λ · qi, f) (42)

Where η is a learning rate of the SGD and λ is a regularization pa-
rameter that prevents SGD from overfitting and f ∈ {1, 2, ..., k} with k
equal to the number of latent dimensions.

4.3.1.2 Online Phase

Once the initial phase is finished the online phase starts. Here, eval-
uation and prediction tasks run in parallel (cf. Section 4.4 for more
information on the evaluation setting). With every new rating arriv-
ing in a data stream the corresponding latent user factor is updated.

4.3 enforcing forgetting on a stream of ratings 67

The pseudo code showing our extended incremental training ap-
proach is presented in Algorithm 3. The algorithm takes as input the
original rating matrix R, two factor matrices P and Q learnt in the ini-
tial phase and the aforementioned parameters required by the SGD.
ru,i is most recent rating in a data stream that the algorithm uses to
update the preference model, i.e. the latent user vector pu. The up-
date is carried out by performing further iterations of SGD using the
new rating. optimalNumberO f Epochs is determined during the initial
phase. The complexity of updating a model with one rating is O(E),
where E = optimalNumberO f Epochs.

Algorithm 3 Incremental Learning - Baseline

Input: ru,i, R, P, Q, η, k, λ, optimalNumberO f Epochs
1: pu ← getLatentUserVector(P, u)
2: qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(pu, qi, P, Q, R)
4: r̂u,i = pu · qi //predict a rating for ru,i

5: evaluatePrequentially(̂ru,i, ru,i) //update evaluation measures
6: R.storeRating(ru,i)
7: epoch = 0

8: while epoch < optimalNumberO f Epochs do
9: epoch++

10: predictionError = ru,i − pu · qi

11: for all latent dimensions f 6= 1 in pu do
12: pu, f ← pu, f + η · (predictionError · qi, f − λ · pu, f)

13: end for
14: end while

In the pseudo code two of our extensions to the BRISMF algorithm
are visible (cf. line 3 in Algorithm 3 and Algorithm 4):

• extending dimensions of the matrix

• different initialization of new dimensions

Extending dimensions of the matrix is an essential feature for stream-
based algorithms. In a stream new users and items are introduced into
the system frequently. Those users and items do not appear in the
user/item matrix from the training phase of the algorithm. In order
to make predictions for those users we extend the original matrix by
new rows or columns. In experiments with offline datasets this exten-
sion allows to reduce the number of missing predictions considerably.

Our second extension regards initialization of new dimensions in
the matrix. According to Takács et al. [Tak+09] latent matrices are
initialized with small random values centered around zero. In batch
algorithms this type of initialization is not problematic, since after the

68 forgetting methods

initialization those values are overridden in multiple iterations of gra-
dient descent that scans several times over a training set. In a data
stream, however, scanning a training set multiple times is not pos-
sible. Ideally, stream-based algorithms are one-pass algorithms that
scan all data only once. Therefore, we adjust the initialization of new
dimensions in the matrix to be more meaningful from the start. We
initialize new latent dimensions with average values over all latent
users/items. After the initial phase of the algorithm, the latent matri-
ces already contain meaningful values, therefore, their averages are
different from just random values. Additionally, we add a uniformly
distributed random component Z as in [Tak+09] from a small range
of (−0.02, 0.02). Thus, a new user vector pnew_user and new item vector
qnew_item are initialized as follows:

pnew_user, f =
1

|U |
·
|U|∑
i=1

pi, f + Z ∼ U(−0.02, 0.02) (43)

qnew_item, f =
1

|I|
·

|I|∑
i=1

qi, f + Z ∼ U(−0.02, 0.02) (44)

Where f is the index of a latent dimension, U is a set of all users
and I a set of all items. Accordingly, new user and items are treated as
average users/items until there is enough learning examples to make
them more specialized. The pseudo code presenting the initialization
of new dimensions is shown in Algorithm 4.

Algorithm 4 Extend and initialize new dimensions

Input: pu, qi, P, Q, R
1: if pu == null then {if u is a new user}
2: R.addNewUserDimension(u)

3: ∀ f : pu, f =
1
|U|
·
|U|∑
i=1

pi, f + Z ∼ U(−0.02, 0.02)

4: P.addLatentUserVector(pu)
5: end if
6: if qi == null then {if i is a new item}
7: R.addNewItemDimension(i)

8: ∀ f : qi, f =
1
|I| ·

|I|∑
i=1

qi, f + Z ∼ U(−0.02, 0.02)

9: Q.addLatentItemVector(qi)
10: end if

Those two extensions are necessary adaptations of the BRISMF algo-
rithm to the streaming scenario. However, our central contributions
are the extensions to follow in the next subsections together with the
forgetting strategies discussed before. Our goal is to investigate their
impact.

4.3 enforcing forgetting on a stream of ratings 69

Algorithm 5 Incremental Learning with Rating-based Forgetting

Input: ru,i, R, P, Q, η, k, λ
1: pu ← getLatentUserVector(P, u)
2: qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(pu, qi, P, Q, R)
4: r̂u,i = pu · qi //predict a rating for ru,i

5: evaluatePrequentially(̂ru,i, ru,i) //update evaluation measures
6:→ru∗ ← getUserRatings(R, u)
7: (→ru∗).addRating(ru,i)
8: rating-basedForgetting(→ru∗) //obsolete ratings removed
9: epoch = 0

10: while epoch < optimalNumberO f Epochs do
11: epoch++
12: for all ru,i in→ru∗ do
13: pu ← getLatentUserVector(P, u)
14: qi ← getLatentItemVector(Q, i)
15: predictionError = ru,i − pu · qi

16: for all latent dimensions f 6= 1 in pu do
17: pu, f ← pu, f + η · (predictionError · qi, f − λ · pu, f)

18: end for
19: end for
20: end while

4.3.2 Matrix factorization for Rating-based Forgetting

In this subsection we present incremental matrix factorization with
rating-based forgetting in the online phase. This implementation ex-
tends the baseline algorithm from the previous subsection. Therefore,
all differences in the performance between this algorithm and the base-
line are due to our forgetting techniques. Those forgetting strategies
can be also applied to different incremental matrix factorization meth-
ods analogously.

Algorithm 5 shows pseudo code of our rating-based forgetting. First,
we introduce a new notation, where→ru∗ is a vector of all ratings of user
u. In line 6 such a user vector is retrieved from the matrix and in line
8 a rating-based forgetting strategy is called. Consequently, all rating
from the user’s vector that have been deemed obsolete by the forget-
ting strategy are removed. Subsequently, the user’s latent vector pu is
retrained using all remaining ratings from the→ru∗ rating vector.

This procedure introduces a further loop into the algorithm, due to
which its complexity of a model update rises to O(E · ||→ru∗||).

70 forgetting methods

4.3.3 Matrix factorization for Latent Factor Forgetting

In Algorithm 6 we present an implementation that uses latent factor
forgetting strategies. In lines 6 and 7 a forgetting strategy is invoked
to modify the corresponding latent user or item vectors.

Algorithm 6 Incremental Learning with Latent Factor Forgetting

Input: ru,i, R, P, Q, η, k, λ
1: pu ← getLatentUserVector(P, u)
2: qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(pu, qi, P, Q, R)
4: r̂u,i = pu · qi //predict a rating for ru,i

5: evaluatePrequentially(̂ru,i, ru,i) //update evaluation measures
6: pu ← latentForgetting(pu)
7: qi ← latentForgetting(qi)
8: epoch = 0

9: while epoch < optimalNumberO f Epochs do
10: epoch++
11: predictionError = ru,i − r̂u,i

12: for all latent dimensions f 6= 1 in pu do
13: pu, f ← pu, f + η · (predictionError · qi, f − λ · pu, f)

14: end for
15: end while

Other than that, no further changes compared to the baseline algo-
rithm are necessary. Latent factor forgetting does not require retrain-
ing on past ratings, therefore the complexity is here again at O(E).

4.3.4 Approximation of Rating-based Forgetting

Since rating-based forgetting increased the complexity of updating a
preference model to O(E · ||→ru∗||), we propose a faster approximative
method of implementing this type of forgetting.

The implementation in Algorithm 7 eliminates the need for the ad-
ditional loop for retraining of the user latent vector on past ratings.
Instead of this loop, impact of learning upon a rating is stored in a
deltaS torage (cf. line 25). The impact in form of δpu results from sub-
traction of a latent user vector before and after learning. If at a later
time point this rating has to be forgotten, the impact of this rating is
retrieved from the deltaS torage (cf. line 12) and subtracted from the
corresponding latent user vector (cf. line 13).

Update of the preference model upon a new rating is done in the
same way as in the baseline algorithm. The complexity of an update
is again O(E). However, the procedure requires a higher memory con-
sumption due to the deltaS torage.

4.4 evaluation settings 71

Algorithm 7 Incremental Learning with Approximative Rating-based
Forgetting

Input: ru,i, R, P, Q, η, k, λ
1: pu ← getLatentUserVector(P, u)
2: qi ← getLatentItemVector(Q, i)
3: Extend and initialize new dimensions(pu, qi, P, Q, R)
4: r̂u,i = pu · qi //predict a rating for ru,i

5: evaluatePrequentially(̂ru,i, ru,i) //update evaluation measures
6:→ru∗ ← getUserRatings(R, u)
7: (→ru∗).addRating(ru,i)
8: remainingRatings = ratingBasedForgetting(→ru∗)

9: ratingsToBeForgotten =→ru∗ − remainingRatings
10: for all ratingu,i in ratingsToBeForgotten do
11: pu ← getLatentUserVector(P, u)
12: δpu = deltaS torage.getUserVectorImpact(ratingu,i)
13: pu ← pu − δpu

14: end for
15: epoch = 0

16: pbe f oreU pdate
u = pu

17: while epoch < optimalNumberO f Epochs do
18: epoch++
19: predictionError = ru,i −

→pu · qi

20: for all latent dimensions f 6= 1 in pu do
21: pu, f ← pu, f + η · (predictionError · qi, f − λ · pu, f)

22: end for
23: end while
24: δpu = pbe f oreU pdate

u − pu

25: deltaS torage.storeImpactOnUser(δpu)

4.4 evaluation settings

In this section we describe how we evaluate our methods. Our evalu-
ation protocol encompasses

• a method for splitting datasets for incremental matrix factoriza-
tion

• incremental recall measure by Cremonesi et al. [CKT10]

• parameter optimization

• significance testing

We applied this evaluation protocol to all 8 datasets used in our
experiments (cf. Sec. 4.5).

72 forgetting methods

4.4.1 Dataset Splitting

Our method operates on a stream of ratings. However, matrix factor-
ization requires an initialization phase. According to the description
of the BRISMF algorithms, which we adopted here with modifications
(cf. baseline algorithm in Sec. 4.3.1), latent item features are trained
only in the initial phase. Therefore, this phase is of even higher impor-
tance to the BRISMF algorithm.

Because our methods operate in two phases, we use the evaluation
protocol from [Mat+15; MS15], briefly explained hereafter. Figure 3

represents an entire dataset with with three parts. Part 1) is used for
initial training in the batch mode. To evaluate training of latent factors
on part 1), we use the part 2) of the dataset ("batch testing"). After
the initial training is finished, our method changes into the streaming
mode, which is its main mode.

In this mode we use prequential evaluation, as proposed by Vinagre
et al. [VJG15b] for recommender systems and by Gama et al. for gen-
eral data stream mining [GSR09]. As Vinagre et al. described in their
paper, the prequential evaluation offers several advantages compared
to the conventional offline evaluation. Those advantages include con-
tinuous monitoring of selected metrics over time, usage of the real-
time metrics in the logic of the algorithms, respecting the time dimen-
sion (unlike e.g. cross validation, which shuffles the data instances),
etc. Due to those benefits of the prequential evaluation we use it in
our streaming mode.

The main idea behind it is as follows. For each new rating, first, a
prediction is made and evaluated. Only after that, the new rating is
used for updating the corresponding preference model. Due to this
temporal separation of prediction and update procedures, separation
of the training and test datasets is guaranteed. In our experiments we
use the following split ratios for the datasets: 20% for batch training,
30 % for batch testing and 50 % for the stream mode.

Figure 3.: Split of the dataset between the initialization and online phase
(figure from [MS15]).

Since part 1) and 3) are used for training, part 2) of the dataset
would represent a temporal gap in the training data. For stream-based

4.4 evaluation settings 73

methods that rely heavily on time aspects it is highly beneficial to
maintain time continuity in the model. Therefore, we also use part 2)
of the dataset for stream training. However, since it was used for batch
testing, we don’t use it as test set for the streaming mode.

4.4.2 Evaluation Measure

As quality measure we use incremental recall, as proposed by Cre-
monesi et al. [CKT10]. It measures how often a recommender system
can find a relevant item among random items in a stream. This mea-
sure should not be confused with the conventional recall. Also, while
conventional precision and recall are complementary to each other
and should always be considered together, it is not the case with the
incremental recall and incremental precision. If the incremental recall
was measured, then incremental precision can be derived from it and,
therefore, it is redundant. For readers unfamiliar with this measure we
refer to [CKT10] and summarise the process of measuring it briefly.

First, in the process of measuring incremental recall, a relevance
threshold is defined, above which items are considered relevant e.g.
more than 4 out of 5 stars. If a relevant item is encountered in a stream,
1000 further items are chosen randomly. Those additional 1000 items
are assumed to be irrelevant. All those 1000 random items and the
relevant item are put into one set without indication of relevance. Sub-
sequently, a recommender systems ranks all 1001 items from this set.
If the relevant item has been ranked as one of top N items, then a
hit is counted. The final value of incremental recall for a given N is
calculated using the following formula:

incrementallRecall@N =
#hits

|Testset|
(45)

In our experiments we use incrementalRecall@10. In experiments
with explicit rating feedback, the ranking made by the recommender
systems is sorted with respect to the relevance score (highest first).
In experiments with positive-only feedback, the value of 1 indicates
the existence of feedback. Therefore, the ranking in this case is sorted
with respect to the proximity of a predicted rating to 1.

4.4.3 Parameter Selection

Each of our forgetting strategies uses an additional parameter that
needs to be set in advance (e.g. the size of a sliding window). To find
the optimal values of the parameters we used a grid search algorithm
that optimizes the average incremental recall for each dataset sepa-
rately.

74 forgetting methods

To avoid overfitting, the grid search was performed on a small sam-
ple from our datasets, called optimization set. The size of the opti-
mization sets, expressed as a percentage of all users, ranged between
0.01 and 0.1 depending on the dataset size (cf. Table 4, column "Ratio
of Users for Parameter Optimization"). Using the optimization set, we
determined an approximately optimal parameter value. This value
was then applied onto the holdout dataset, which is the remaining,
bigger part of a dataset. The results reported in the next section are
results on the holdout sets.

The remaining parameters used by matrix factorization and SGD

were set to the following, approximately optimal values: number of
dimensions k = 40, learning rate η = 0.003 and regularization parame-
ter λ = 0.01.

4.4.4 Significance Testing

To study the effect of our forgetting strategies we use significance test-
ing. However, in the streaming scenario following all requirements of
statistical tests is not a trivial task. One of the prerequisites of statisti-
cal tests is independence of observations of a random variable.

In our case the random variable is the average incremental recall.
However, considering two measurements of incremental recall at time-
point t and t + 1 as independent would be wrong, since incremental
recall is a cumulative measure. Therefore, quality at timepoint t af-
fects the measurement of quality at timepoint t + 1. Consequently, the
prerequisite of independent observations is violated.

As a solution to this problem we propose an alternative understand-
ing of an observation. We partition every dataset into n disjoint, con-
secutive parts along the time dimension (imagine Fig. 3 n times along
the time axis). Each of the parts is a sample of the entire dataset i.e. a
sample from the same population. Since the samples are disjoint, they
are also independent. As one observation we define the average incre-
mental recall on one such sample. Consequently, on each dataset we
observe n realisations of the random variable for each forgetting strat-
egy. In our experiments we use n = 10, except for the ML100k dataset,
where n = 5 due to its small size (cf. Table 4, column "Observations
for Significance Testing").

Having n observations for each forgetting strategy and for our base-
line, the "No Forgetting Strategy", we first test, if there is a signifi-
cant difference among the strategies. Since we have several forgetting
strategies and each one has n observations, we use the Friedman test
for this purpose . It is more appropriate here than e.g. ANOVA, since
it does not assume the normal distribution of the random variable
and it is not parametric. If the null hypothesis is rejected, then it can

4.5 experiments 75

be assumed that there is a significant difference among the forgetting
strategies.

If this is the case, we perform post-hoc tests to find out, which for-
getting strategies are significantly better than our baseline, the "No
Forgetting Strategy". Therefore, we use the Wilcoxon signed rank test
(paired measurements with no assumption of normal distribution)
with the following null hypothesis:

incr.RecallS trategyX = incr.RecallNoForgettingS trategy (46)

and alternative hypothesis:

incr.RecallS trategyX > incr.RecallNoForgettingS trategy (47)

where x denotes the median of the vector x.
If the null hypothesis is rejected, then the forgetting strategy X is sig-

nificantly better than no forgetting. Since we test multiple hypothesis,
we apply a correction for multiple testing according to the Hommel’s
method [Sha95] to avoid the alpha error accumulation. In the next sec-
tion we report the corresponding adjusted p-values and a summary
of significant improvements.

4.5 experiments

In this section we present results of our experiments on eight real-
world datasets. We divide the results into ones showing the effects of
the forgetting strategies (cf. Sec. 4.5.1) and ones showing the effects of
our approximation of the rating-based implementation of forgetting
(cf. Sec. 4.5.2). In total we conducted more than 1040 experiments on
a cluster running a (Neuro)Debian operating system [HH12]. In those
experiments we used datasets from Table 4.

The first type of datasets encompasses data with explicit rating feed-
back: MovieLens 1M and 100k1 [HK16], a sample of 10 000 users from
the extended Epinions [MA06] dataset and a sample of the same size
from the Netfilx dataset. In this type of datasets our selection is lim-
ited, because many forgetting strategies require timestamp informa-
tion.

The second type of datasets is based on positive-only feedback.
Those datasets contain chronologically ordered user-item pairs in the
form (u, i). Music-listen consists of music listening events, where each
pair corresponds to a music track being played by a user. Music-
playlist consists of a timestamped log of music track additions to per-
sonal playlists. Contrary to Music-listen, Music-playlist contains only
unique (u, i) pairs – users are not allowed to add a music track twice to
the same playlist. Both Music-listen and Music-playlist are extracted

1 http://www.movielens.org/

http://www.movielens.org/

76 forgetting methods

Dataset Ratings Users Items Sparsity

Ratio of
Users for
Parameter
Optimiza-

tion

Observa-
tions for
Signifi-
cance

Testing

Music-listen 335,731 4,768 15,323 99.54% 0.1 10

Music-playlist 111,942 10,392 26,117 99.96% 0.1 10

LastFM-600k 493,063 164 65,013 95.38% 0.1 10

ML1M GTE5 226,310 6,014 3,232 98.84% 0.1 10

ML100k 100,000 943 1,682 93.7% 0.1 5

Netflix(10k users) 2,146,187 10,000 17,307 98.76% 0.01 10

Epinions (10k
users)

1,016,915 10,000 365,248 99.97% 0.03 10

ML1M 1,000,209 6,040 3,706 95.53% 0.05 10

Table 4.: Description of datasets used in experiments. The column "Ratio of
Users for Parameter Optimization" indicates what ratio of users was
used to create an optimization dataset for the grid search. "Observa-
tions for Significance Testing" indicates the number of partitions of
a dataset used as observations for significance testing. Table from
[Mat+17]

from Palco Principal2, an online community of portuguese-speaking
musicians and fans. Furthermore, we also use a subset of the LasfFM3

dataset [Cel10] – LastFM-600k – and a binarized version of Movie-
Lens 1M dataset that we call ML1M-GTE5 hereafter. In ML1M-GTE5

we assume that a rating value of 5 indicates a positive feedback. All
remaining ratings have been removed and considered negative.

4.5.1 Impact of Forgetting Strategies

To show the impact of our forgetting strategies we compare them with
the baseline algorithm from Sec. 4.3.1. This baseline employs no forget-
ting strategy. Therefore, we call it "No Forgetting Strategy" hereafter.
In this subsection no approximation from Alg. 7 was used (for results
using the approximation, see the next subsection).

First, we tested if the application of forgetting strategies has a sig-
nificant impact on the quality of recommendations measured in incre-
mental recall. For this purpose we used the Friedman rank sum test
for each dataset separately as an omnibus test. The null hypothesis of
this test states that all recall values are equal, no matter what forget-
ting strategy or no forgetting strategy was used (cf. Sec. 4.4.4 for more
details on the test and motivation behind it).

In Table 5 we present results of the test on each dataset. The null hy-
pothesis was clearly rejected on all datasets, which is indicated by low

2 http://www.palcoprincipal.com

3 http://last.fm

http://www.palcoprincipal.com
http://last.fm

4.5 experiments 77

p-values. Consequently, we conclude that forgetting strategies make a
significant difference in incremental recall values. Further in this sec-
tion, we use post-hoc tests to find out which forgetting strategies are
significantly better than no forgetting.

Dataset
p-value

(Friedman rank
sum test)

Epinions Extended (10k users sample) 4.381e-16

Lastfm 600k 1.852e-04

ML1M GTE5 1.911e-09

ML1M 4.565e-11

ML100k 3.389e-09

Netflix (10k users sample) 1.735e-09

Music-listen 2.773e-05

Music-Playlist 7.246e-15

Table 5.: Results of the Friedman rank sum test as an omnibus test for each
dataset. Very low p-values indicate that forgetting makes a signif-
icance difference in the quality of recommendations (table from
[Mat+17]).

In Figure 4 we visualize the results of forgetting strategies on datasets
with positive-only feedback. This figure contains box plots of incre-
mental recall (higher values are better). Incremental precision in the
streaming setting can be derived from the recall measure and is, there-
fore, redundant (cf. [CKT10]). Thus, we do not present the incremental
precision.

Horizontal bars in each box in Fig. 4 represent medians of incremen-
tal recall from multiple partitions of a dataset (cf. Sec. 4.4). The hinges
of each box represent the first and the third quartile of the distribution.
Dots stand for outliers.

In the figure we, again, see that forgetting strategies have a great im-
pact on the quality of recommendations as compared to the "No For-
getting Strategy" (leftmost in the plots). The latent factor forgetting
strategies are particularly successful. On three out of four positive-
only datasets the "SD-based User Factor Fading" was the best strategy.
The "Forget Unpopular" strategy (also a latent factor forgetting strat-
egy) performed the best on the MLGTE5 dataset only.

From this group of forgetting strategies the "Forget Popular" strat-
egy is not recommendable. It performed better than the baseline on
the Lastfm dataset only and otherwise considerably worse. The per-
formance of rating-based strategies was generally worse than the one
of the latent factor forgetting, often marginally different from the base-
line.

78 forgetting methods

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●● ●● ●●

●

●

●

●

●

Lastfm 600k ML1M GTE5

Music−listen Music−Playlist

0.025

0.050

0.075

0.100

0.02

0.03

0.04

0.05

0.05

0.10

0.15

0.02

0.03

0.04

0.05

0.06

0.07

Forgetting Strategy

In
cr

em
en

ta
l R

ec
al

l

Forgetting Strategy

No Forgetting Strategy

Recall−based User Factor Fading

SD−based User Factor Fading

User Factor Fading

Forget Unpopular

Forget Popular

Last N Retention

Recent N Retention

Global Sensitivity−based Forgetting

Sensitivity−based Change Detection

Sensitivity−based Forgetting

Recall−based Change Detection

Figure 4.: Results of our forgetting strategies vs. "No Forgetting Strategy"
(leftmost in the plots) on datasets with positive-only feedback
(higher values are better). Latent factor based strategies are par-
ticularly successful (figure from [Mat+17]).

In Tabs. 6 and 7 we present the corresponding results of experi-
ments with positive only feedback. The column "Param." describes
the parameter setting for each forgetting strategy. The meaning of the
parameter depends on the strategy itself (cf. Sec. 4.2). The parameter
was determined by a grid search on a separate dataset not used for
the final evaluation.

The column with mean incremental recall uses the following no-
tation: mean±std. deviation. The values of mean and standard deviation
are based on multiple runs on different, consecutive parts of each
dataset (cf. Sec. 4.4.4). The number of runs is indicated in Tab. 4 by
column "Observations for Significance Testing". The forgetting strat-
egy with the best value of mean incremental recall is marked in red.

P-values in the table refer to the Wilcoxon signed rank test, which
we used as a post-hoc test (cf. Sec. 4.4.4). They are adjusted using
Hommel’s method to account for multiple testing. Values in bold font
and a single asterisk indicate that the given strategy is better than the
"No Forgetting Strategy" with significance level of 0.1. Values marked
by two asterisks are significant at level of 0.05 and by three asterisks at
level of 0.01. The column "Runtime" follows the same notation as the
mean incremental recall. Values in each cell of this column represent
a mean runtime in seconds on one partition of each dataset.

Tabs. 6 and 7 show that on all datasets with positive only feedback
there is at least one forgetting strategy that is significantly better than
no forgetting at the significance level better than 0.054. On three out of

4.5 experiments 79

Forgetting Strategy Param.
Mean Incr.
Recall

Adjusted
P-value

Runtime
(ms)

Lastfm 600k
No Forgetting Strategy 0 0.01583±0.00361 - 65.84±5.23

Recall-based User Factor
Fading

1012 0.0525±0.00909 0.00684*** 74.11±7.78

SD-based User Factor
Fading

1.2 0.06953±0.00768 0.00684*** 64.21±4.91

User Factor Fading 0.5 0.05541±0.00889 0.00684*** 64.31±3.2

Forget Unpopular 2 0.02458±0.00465 0.00684*** 66.41±4.87

Forget Popular 1.005 0.04436±0.02379 0.00684*** 66.24±5.11

Last N Retention 10 0.01496±0.00241 0.88379 88.7±9.4

Recent N Retention 1h 0.01519±0.00183 0.88379 86.04±7.31

Global Sensitivity-based
Forgetting

0.1 0.01718±0.00424 0.32032 55.99±5.77

Sensitivity-based Change
Detection

0.5 0.01716±0.00426 0.32032 58.29±3.48

Sensitivity-based Forgetting 10 0.01716±0.00426 0.32032 58.14±5.61

Recall-based Change
Detection

0.05 0.01478±0.00225 0.88379

1284.42±196.36

ML1M GTE5
No Forgetting Strategy 0 0.04005±0.00501 - 9.04±1.36

Recall-based User Factor
Fading

10
12

0.02787±0.00621 0.99903 9.38±1.28

SD-based User Factor
Fading

1.08 0.04075±0.00795 0.99903 9.78±2.46

User Factor Fading 0.99 0.04627±0.00545 0.00977*** 8.94±1.38

Forget Unpopular 1.2 0.05094±0.00452 0.00977*** 8.9±0.69

Forget Popular 1.00001 0.03706±0.00403 0.99903 9.74±2.41

Last N Retention 5 0.03692±0.00517 0.99903 13.67±2.06

Recent N Retention 1h 0.03803±0.00342 0.99903 43.77±13.41

Global Sensitivity-based
Forgetting

0.1 0.03792±0.00405 0.99903 11.3±1.92

Sensitivity-based Change
Detection

0.5 0.03789±0.00408 0.99903 10.59±1.61

Sensitivity-based Forgetting 10 0.03795±0.00407 0.99903 10.81±1.53

Recall-based Change
Detection

0.05 0.03808±0.00335 0.99903 45.06±10.74

Table 6.: Results on datasets with positive only feedback (Lastfm 600k and
ML1M GTE5). Best value of incremental recall is marked in red.
Asterisks indicate that a given strategy is significantly better than
the no forgetting strategy (* at 0.1; ** at 0.05; *** at 0.01). Table from
[Mat+17]

80 forgetting methods

Forgetting Strategy Param.
Mean Incr.
Recall

Adjusted
P-value

Runtime
(ms)

Music-Listen
No Forgetting Strategy 0 0.07083±0.02328 - 68.42±4.09

Recall-based User Factor
Fading

10
12

0.09178±0.02308 0.58887 61.36±5.35

SD-based User Factor
Fading

1.2 0.12713±0.02976 0.01075** 61.19±5.7

User Factor Fading 0.5 0.1033±0.02649 0.18555 67.83±8.67

Forget Unpopular 2 0.06078±0.02505 1 66.58±9.02

Forget Popular 1.005 0.02227±0.00241 1 73.01±9.58

Last N Retention 40 0.05588±0.01745 1 101.73±14.09

Recent N Retention 1 week 0.05527±0.01885 1 224.31±108.35

Global Sensitivity-based
Forgetting

0.1 0.07082±0.02473 1 34.99±1.88

Sensitivity-based Change
Detection

0.5 0.07082±0.02476 1 36.8±4.57

Sensitivity-based Forgetting 10 0.0709±0.02473 1 35.97±4.59

Recall-based Change
Detection

0.05 0.05477±0.01661 1 249.34±93.92

Music-Playlist
No Forgetting Strategy 0 0.03712±0.00946 - 4.12±0.9

Recall-based User Factor
Fading

10
12

0.0366±0.01358 0.99805 4.16±0.75

SD-based User Factor
Fading

1.2 0.04708±0.01214 0.05372* 4.2±0.49

User Factor Fading 0.99 0.04058±0.01232 0.99805 3.85±0.63

Forget Unpopular 1.5 0.02972±0.0109 0.99805 4.09±0.91

Forget Popular 1.00001 0.03679±0.00986 0.99805 4.1±0.67

Last N Retention 40 0.03393±0.01201 0.99805 10.94±1.5

Recent N Retention 1 year 0.03333±0.01231 0.99805 39.64±48.78

Global Sensitivity-based
Forgetting

0.1 0.03609±0.01171 0.99805 4.2±0.66

Sensitivity-based Change
Detection

0.5 0.03604±0.01171 0.99805 4.06±0.75

Sensitivity-based Forgetting 10 0.03616±0.0116 0.99805 4±0.56

Recall-based Change
Detection

0.05 0.03333±0.01231 0.99805 38.75±48.41

Table 7.: Results on datasets with positive only feedback (Music-Listen and
Music-Playlist). Best value of incremental recall is marked in red.
Asterisks indicate that a given strategy is significantly better than
the no forgetting strategy (* at 0.1; ** at 0.05; *** at 0.01). Table from
[Mat+17]

4.5 experiments 81

four datasets the best strategy was the SD-based User Factor Fading,
on the remaining dataset it was the Forget Unpopular strategy.

Forgetting strategies brought on this type of datasets an improve-
ment in the incremental recall of 118.18 % on average (as a result of
comparison of the best strategy with the "No Forgetting Strategy"). Es-
pecially on the Lastfm 600k dataset recall improved from 0.01583 to
0.06953 . The median of improvement is 53,34%.

Not only did quality improve, the computation time decreased for
the best strategy by 3,21 % on average. However, considering the
high variance of runtime, this decrease is not substantial. Some strate-
gies, e.g. "Recall-based Change Detection" showed higher computa-
tion time.

In Fig. 5 and in Tabs. 8 and 9 we present analogous results of experi-
ments with datasets with explicit rating feedback. Also here, the latent
factor based strategies perform the best except for the "Forget Popu-
lar" strategy. In Tabs. 8 and 9 we show improvements in quality of rec-
ommendations over the baseline. The significance level on three out of
four of the datasets is better than 0.01. Only on the ML100k dataset no
significant improvement could be shown. ML100k is a small dataset
with only five observations, therefore, it is difficult to show signifi-
cance on this dataset.

●

●

●

●

●

●

● ●● ● ● ● ● ●●

● ●

●

●

●

Epinions Extended (10k users sample) ML100k

ML1M Netflix (10k users sample)

0.000

0.003

0.006

0.009

0.012

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.06

0.08

0.10

0.12

0.14

0.16

0.10

0.15

0.20

Forgetting Strategy

In
cr

em
en

ta
l R

ec
al

l

Forgetting Strategy

No Forgetting Strategy

Recall−based User Factor Fading

SD−based User Factor Fading

User Factor Fading

Forget Unpopular

Forget Popular

Last N Retention

Recent N Retention

Global Sensitivity−based Forgetting

Sensitivity−based Change Detection

Sensitivity−based Forgetting

Recall−based Change Detection

Figure 5.: Results of our forgetting strategies vs. "No Forgetting Strategy"
(leftmost in the plots) on datasets with explicit rating feedback
(higher values are better). Latent factor based strategies are partic-
ularly successful (figure from [Mat+17]).

The improvement of quality due to forgetting reached 147,83 % on
average (best strategy vs. no forgetting). The percentage is so high
because of the extreme improvement on the Epinions dataset. The
median of the improvement amounts to 19,67%. The runtime, when

82 forgetting methods

using the best strategy, increased on average by 48.62%, the median of
the percentual runtime increase is 9,63%, though.

4.5.2 Impact of the Approximative Implementation

Since the rating-based forgetting strategies have a higher complexity
than the latent factor based ones, we implemented also an approxima-
tive way of using them (cf. Sec. 4.3.4). This implementation stores a
past impact of a rating and undoes it in an approximative way when
the rating should be forgotten.

In Figure 6 we present the incremental recall values achieved by
this approximative implementation (dashed line) in comparison to the
original implementation of rating-based forgetting (solid line). The ap-
proximation performed similarly to the original implementation. In
few cases it performed better (e.g. for the "Last N Retention" strategy
on the ML1M GTE5 dataset). However, those cases are rather excep-
tional and no significant improvement can be concluded based on
them. There are also cases with a decrease of the performance, such
as on ML100k dataset.

Nevertheless, the goal of the approximation is to maintain a simi-
lar level of quality while decreasing the runtime. We present such a
runtime comparison of those two implementations in Table 10. Values
in the table represent median of a runtime of multiple runs of our
algorithms. The values are grouped by dataset and implementation
(approximation vs. the original rating-based implementation).

The approximation decreased the computation time for the strate-
gies Last N Retention, Recent N Retention, Recall-based Change De-
tection. For the remaining three strategies the approximation often
took more time despite lower complexity. This is explained by the
fact that the approximative implementation of forgetting changes the
latent model in a different way than the rating-based implementation
does. Therefore, a forgetting strategy can select different ratings to for-
get depending on which implementation is used (approximative vs.
rating-based). Consequently, a given forgetting strategy can decide
to forget more, if the approximative implementation is used. Then,
due to more storing and retrieving operations from the delta storage,
the approximative implementation can require a longer computation
time.

Consequently, we recommend the usage of the approximation only
after prior testing of its behaviour with a given forgetting strategy.

4.6 conclusions from forgetting methods

Before our work, adaptation to changes in recommender systems was
implemented only by incorporating new information from a stream

4.6 conclusions from forgetting methods 83

Forgetting Strategy Param.
Mean Incr.
Recall

Adjusted
P-value

Runtime
(ms)

Epinions Extended (10k users sample)
No Forgetting Strategy 0 0.0005±0.00084 - 160.03±16.1

Recall-based User Factor
Fading

1010 0.00307±0.00357 0.00879*** 451.89±38.52

SD-based User Factor
Fading

1.08 0.00219±0.00163 0.00879*** 154.45±11.68

User Factor Fading 0.5 0.00274±0.00297 0.00879*** 152.92±14.87

Forget Unpopular 2 0.00035±0.00057 1 156.5±15.81

Forget Popular 1.00001 0.0005±0.00084 1 161.76±18.74

Last N Retention 10 0.0005±0.00084 1 192.48±24.29

Recent N Retention 4 weeks 0.0005±0.00084 1 2923±601.75

Global Sensitivity-based
Forgetting

0.1 0.00052±0.00087 1 148.81±16.9

Sensitivity-based Change
Detection

0.5 0.00052±0.00087 1 143.67±10.98

Sensitivity-based Forgetting 10 0.00052±0.00087 1 144.04±13.9

Recall-based Change
Detection

0.05 0.00051±0.00085 1

5857.13±4815.21

ML100k
No Forgetting Strategy 0 0.07336±0.0093 - 3.22±0.39

Recall-based User Factor
Fading

10
10

0.07201±0.0155 1 3.24±0.19

SD-based User Factor
Fading

1.04 0.08708±0.01319 0.1875 1.72±0.12

User Factor Fading
0.99999999

0.07336±0.0093 1 1.63±0.09

Forget Unpopular 1.5 0.08307±0.01151 0.1875 1.8±0.11

Forget Popular 1.00001 0.07039±0.01093 1 1.96±0.28

Last N Retention 10 0.08112±0.00476 0.1875 9.42±0.83

Recent N Retention 1h 0.08186±0.01331 0.1875 70.55±7.59

Global Sensitivity-based
Forgetting

0.1 0.07462±0.00901 0.375 3.47±0.39

Sensitivity-based Change
Detection

0.5 0.07462±0.00901 0.375 3.5±0.3

Sensitivity-based Forgetting 10 0.07462±0.00901 0.375 3.51±0.34

Recall-based Change
Detection

0.05 0.08185±0.01331 0.1875 72.89±7.98

Table 8.: Results on datasets with explicit rating feedback (Epinions and
ML100k). Best value of incremental recall is marked in red. Aster-
isks indicate that a given strategy is significantly better than the
no forgetting strategy (* at 0.1; ** at 0.05; *** at 0.01). Table from
[Mat+17]

84 forgetting methods

Forgetting Strategy Param.
Mean Incr.
Recall

Adjusted
P-value

Runtime
(ms)

ML1M
No Forgetting Strategy 0 0.10211±0.01104 - 32.41±7.35

Recall-based User Factor
Fading

10
12

0.11249±0.01479 0.10547 63.63±16.63

SD-based User Factor
Fading

1.1 0.1244±0.01697 0.02051** 33.65±7.07

User Factor Fading 0.99 0.11327±0.01237 0.00586*** 33.41±7.33

Forget Unpopular 1.2 0.14088±0.01014 0.00586*** 37.44±9.3

Forget Popular 1.00001 0.06073±0.01053 1 37.52±8.69

Last N Retention 10 0.10679±0.01115 0.00586*** 64.18±3.56

Recent N Retention 1 week 0.10585±0.01056 0.00782*** 939.05±103.08

Global Sensitivity-based
Forgetting

0.1 0.1041±0.01153 0.01172** 25.88±2.03

Sensitivity-based Change
Detection

0.5 0.10412±0.01154 0.01172** 25.95±2.19

Sensitivity-based Forgetting 10 0.10408±0.01151 0.01172** 25.81±2.07

Recall-based Change
Detection

0.05 0.10585±0.01056 0.00782*** 951.31±107.55

Netflix (10k users sample)
No Forgetting Strategy 0 0.15455±0.0165 - 38.24±9.32

Recall-based User Factor
Fading

10
10

0.16687±0.02184 0.64063 73.58±13.47

SD-based User Factor
Fading

1.02 0.18644±0.01707 0.00977*** 39.67±9.25

User Factor Fading 0.99 0.17442±0.0163 0.00977*** 38.16±7.61

Forget Unpopular 1.1 0.18341±0.01988 0.06153* 47.64±7.61

Forget Popular 1.00001 0.08305±0.0129 1 47.2±7.93

Last N Retention 5 0.1454±0.01463 1 78.61±12.89

Recent N Retention 1 year 0.14521±0.0125 1 1446.4±342.16

Global Sensitivity-based
Forgetting

0.5 0.14935±0.01454 1 61.86±13.76

Sensitivity-based Change
Detection

0.5 0.14933±0.01465 1 58.37±10.4

Sensitivity-based Forgetting 3 0.14942±0.01439 1 59.43±11.4

Recall-based Change
Detection

0.05 0.14521±0.01251 1

1508.71±333.19

Table 9.: Results on datasets with explicit rating feedback (ML1M and Net-
flix). Best value of incremental recall is marked in red. Asterisks
indicate that a given strategy is significantly better than the no for-
getting strategy (* at 0.1; ** at 0.05; *** at 0.01). Table from [Mat+17]

4.6 conclusions from forgetting methods 85

Forgetting Strategy Approx. Rating-
based

Approx. Rating-
based

Epinions (10k users) Lastfm 600k

Last N Retention 106.22 185.60 74.74 91.48

Recent N Retention 235.61 3068.94 91.59 86.51

Global Sensitivity-based
Forgetting

381.59 142.08 198.23 56.16

Sensitivity-based
Change Detection

439.96 142.07 211.40 59.68

Sensitivity-based
Forgetting

387.46 143.43 208.36 58.69

Recall-based Change
Detection

375.18 3352.39 128.50 1255.23

ML100k ML1M

Last N Retention 2.27 23 621.00 16.99 65.18

Recent N Retention 2.52 69.52 35.37 948.10

Global Sensitivity-based
Forgetting

4.16 16 497.00 64.84 26.33

Sensitivity-based
Change Detection

3.87 16 862.00 60.44 26.73

Sensitivity-based
Forgetting

3.63 23 802.00 55.35 26.52

Recall-based Change
Detection

4.30 72.60 46.72 955.87

ML1M GTE5 Music-listen

Last N Retention 9.41 42 627.00 49.13 100.29

Recent N Retention 9.22 45.27 51.63 187.98

Global Sensitivity-based
Forgetting

9.66 33 909.00 47.86 35.11

Sensitivity-based
Change Detection

10.22 42 411.00 55.00 36.17

Sensitivity-based
Forgetting

9.58 34 608.00 55.75 35.06

Recall-based Change
Detection

8.85 47.31 51.55 225.22

Music-Playlist Netflix (10k users)

Last N Retention 3.61 43 405.00 63.72 77.04

Recent N Retention 3.82 42 571.00 81.58 1299.18

Global Sensitivity-based
Forgetting

4.84 44 287.00 156.48 62.35

Sensitivity-based
Change Detection

4.57 30 376.00 161.85 59.99

Sensitivity-based
Forgetting

3.79 42 404.00 158.41 61.00

Recall-based Change
Detection

3.40 19.22 153.33 1327.40

Table 10.: Median runtime (in seconds) of the approximative and rating-
based implementation of forgetting (table from [Mat+17]).

86 forgetting methods

● ●
●

● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ●

●

●

● ●
● ● ● ●

Epinions Extended (10k users sample)

ML100k

ML1M GTE5

Music−Playlist

0.0000
0.0005
0.0010
0.0015
0.0020

0.06

0.07

0.08

0.09

0.10

0.03

0.04

0.05

0.02
0.03
0.04
0.05
0.06

●

●

●

●

●

●

●

● ● ● ●● ● ●● ● ●● ●

Lastfm 600k

ML1M

Music−listen

Netflix (10k users sample)

0.010

0.015

0.020

0.025

0.08
0.09
0.10
0.11
0.12

0.050

0.075

0.100

0.12

0.14

0.16

0.18

Forgetting Strategy

In
cr

em
en

ta
l R

ec
al

l

Implementation
Approximation
Rating−based Forgetting

Forgetting Strategy
Last N Retention
Recent N Retention
Global Sensitivity−based Forgetting
Sensitivity−based Change Detection
Sensitivity−based Forgetting
Recall−based Change Detection

Figure 6.: Incremental recall of approximative rating-based forgetting is sim-
ilar to the non-approximative variant (figure from [Mat+17]).

into a preference model. While this is a valid method of adaptation, it
is not sufficient. In this chapter, we have shown that forgetting obso-
lete information (additionally to incorporating new one) significantly
improves predictive power of recommender systems. Therefore we an-
swer our research question RQ 1 positively, as we have shown that the
following expression from Ch. 3 is true:

∃(M, S) :
∑

t

QS ,t(Tet, Mt, S t) >
∑

t

Qt(Tet, M∗t) (48)

for Q being incremental recall. In our statistical tests we compared
average incremental recall with forgetting (left side of the inequality)
and without forgetting (right side of the inequality). As the time a rec-
ommender system observes is discrete, the average incremental recall
over time is proportionate to its sum.

4.6 conclusions from forgetting methods 87

To answer the RQ 1.1, we proposed eleven unsupervised strategies
to select the obsolete information and three algorithms to enforce
forgetting. In our experiments we used a state-of-the-art incremen-
tal matrix factorization algorithm, BRISMF [Tak+09], and extended it
by the ability to forget information and to add new dimensions to
the matrix. Our forgetting strategies can be applied to any matrix
factorization algorithm. Rating-based strategies are also applicable to
neighbourhood-based methods.

Further, we proposed a new evaluation approach that includes sig-
nificance testing. We conducted more than 1040 experiments on eight
real world datasets with explicit rating feedback and positive only
feedback. On seven out of eight of those datasets we observed a sig-
nificantly better performance when using forgetting. On five of them the
improvement was significant at level better than 0.01.

From all our forgetting strategies, the latent factor based ones were
particularly successful in terms of quality of recommendations and in
terms of computation time. On five out of eight datasets the SD-based
User Factor Fading strategy achieved the best result, followed by the
Forget Unpopular strategy with best result on two out of eight datasets.
Therefore, we answer the RQ 1.1 about how to select information to
be forgotten with those two forgetting strategies.

Rating-based forgetting strategies also showed significant improve-
ments over the "No Forgetting" strategy, however, their improvement
was not as high, as in the case of latent-based strategies. We remark
that not all of the forgetting strategies achieved a significant improve-
ment. The strategy that achieved highly significant improvement on
the most datasets (6 out of 8) is the SD-based user factor fading strategy.

Rating-based forgetting strategies have higher complexity and, there-
fore, a higher runtime than latent factor based strategies. Therefore,
we proposed an approximative implementation that maintains a sim-
ilar level of incremental recall as the original, rating-based implemen-
tation. For half of the strategies it reduced the computation time con-
siderably. For the other half the computation often took longer. There-
fore, we recommend to use this approximation only in time-critical
applications and after prior testing.

Our recommendation to practitioners is to, first, use the latent factor
based forgetting strategies (e.g. the SD-based user factor fading strategy)
due to their outstanding performance in terms of incremental recall
and only slightly increased computation time. This also answers our
research question RQ 1.2 about how to implement forgetting in rec-
ommender systems (cf. Alg. 6). The rating-based implementation for-
getting is the next best alternative.

In the next chapter we address our research questions related to
another form of selective learning - selective neighbourhood.

5
S E L E C T I V E N E I G H B O U R H O O D

In this chapter we demonstrate that selective learning methods are
also applicable in neighbourhood-based collaborative filtering and we
answer the following two research questions:

RQ 2: Does selective removal of users from a neighbourhood
improve the quality of neighbourhood-based CF?

RQ 2.1: How to select users to be removed from a neighbour-
hood?

As motivated in Sec. 1.1.2, we propose a method for selecting re-
liable users in a neighbourhood of an active user and evaluate its
effect onto the quality of recommendations. In Sec. 5.1 we discuss re-
lated work on selective neighbourhood. In Sec. 5.2 we introduce our
method, which is evaluated in Sec. A.5. We conclude the chapter on
selctive neighbourhood in Sec. 5.4, where we also give answers to the
above research questions. Sections 5.1 - 5.4 come (with modifications)
from our publication on this topic [MS14a].

5.1 related work on reliable neighbourhood

Neighbourhood-based collaborative filtering has been studied thor-
oughly in numerous publications (cf. studies on the most important
aspects of them [DK11; Lü+12; Bob+13; Bee+16] and Ch. 2 for more
details). In the existing work much emphasis is put on the predictive
quality of a recommender’s output. However, only little work focuses
on selecting reliable neighbours. Reliability of neighbours should not
be confused with the reliability of conclusions made about recom-
mender systems, in the process of evaluation using hypothesis testing,
as described in [SG11]. In contrast to statistical testing in the evalua-
tion that aims to measure the significance of results, we investigate
the significance of users’ neighbourhood.

Herlocker et al. noticed that user similarity based on few co-ratings
is unreliable [Her+99] (cf. example 5 in Ch. 1). Researchers have al-
ready proposed solutions to this problem, such as thresholds on the
number of ratings two users should share to be considered similar, or
assigning lower weights to users that have too few ratings in common
[Her+99; BKV07; MKL07].

Herlocker et al. introduced the term of significance weighting [Her+99].
They recognized that similarity based on only few co-ratings is not
representative and the amount of trust in this value should be lim-

89

90 selective neighbourhood

ited. To limit the influence of those unreliable similarity values they
weight them with a term min(n,γ)

γ , where n is the number of co-ratings
and γ a control parameter that is fit to data (usually around 50). If n
is greater than γ, then the weight is set to 1. Otherwise, the weight
is always lower than 1, which gives lower importance to users with
fewer co-ratings than γ.

Ma et al. use a similar but adjusted weighting schema [MKL07]. Bell
et al. also define a different weighting schema, which they call "shrink-
age" [BKV07]. They shrink the similarities towards zero to an extent
that is inversely proportional to the number of co-ratings. The fewer
co-ratings between users exist, the less influence does the particular
similarity value have on the predicted rating value. Formally, they also
use an additional weighting that is derived using the following term

n
n+β . n is again the number of co-ratings and β is a control parameter,
which is also fit to the data.

However, none of these methods answers the question "how many
co-ratings are enough?", nor addresses the more important underly-
ing question "whose co-ratings are useful enough?". They are based
only on the number of co-ratings. We formalize the latter question
and proposed a criterion for selecting neighbours. Instead of using
weights, we can decide whether a similarity between two users can be
relied upon. We stress that our method is not a solution to the cold
start problem, where no enough information about users is known.
Our goal is to quantify the reliability of the known information.

In our approach, we first formalize the concept of baseline user – in-
formally, an average user for the population under observation. Then,
we introduce the concept of reliable similarity: we use the Hoeffding
Bound (HB), derived from Hoeffding’s Inequality [Hoe63] to test
whether a given user is more similar to the active user than the base-
line user is. We then consider neighbours to the active user only those
users whose similarity to the active user satisfies the bound. Hence,
the recommender system decides on statistical grounds whether it
can make a recommendation on neighbourhood-based similarity, no
matter how small this neighbourhood is.

5.2 reliable neighbourhood

Our approach consists of a formal model on reliable similarity of a user,
an adjusted CF-based recommendation method and a mechanism that
builds a user’s neighbourhood by only considering users that are truly
similar to the active user and ignoring all other users. We concentrate
on user-user collaborative filtering, but our approach can be used for
item-item CF analogously.

5.2 reliable neighbourhood 91

5.2.1 Baseline Users

To compute the neighborhood of the active user ua, for whom recom-
mendations must be formulated, we first introduce the notion of a
"baseline user" uB – a default, fictive user. Informally, a user x is re-
liably similar to ua, if ua is more similar to x than to uB; then, the
neighbourhood of ua consists of the users who are reliably similar to
her. Formally, uB is a vector:

uB = [ir1, ir2, ..., irn−1, irn] (49)

where ir j is a rating of the item j and n is the total number of items.
We consider three types of baseline users: the average user, the random
Gaussian user and the random uniform user. For the computation of the
baseline users, we use an initial sample of ratings Rtrain for training.

average user : This baseline is computed by defining ir j for an
item j as the average rating of j in Rtrain:

ir j =
1

|U(j)|

∑
x∈U(j)

rx, j (50)

where rx, j ∈ Rtrain is the rating of user x for item j and U(j) = {x|rx, j ∈
Rtrain} is the set of users who rated j.

random gaussian user : Each item j in this baseline is assumed
to follow the normal distribution with parameters µ and σ approxi-
mated on Rtrain. The value of ir j for any j is drawn from this distribu-
tion:

ir j ∼ N(µ,σ2) (51)

random uniform user : Each item j in this baseline follows the
discrete uniform distribution with rmin and rmax being the extreme rat-
ing values. Hence:

ir j ∼ U{rmin, ..., rmax} (52)

For example, if a rating can assume values between one and five stars,
then rmin = 1 and rmax = 5.

We use the term of a baseline user to define the concept of reliable
similarity, which is based on the Hoeffding Bound (HB).

5.2.2 Reliable Similarity between Users

To define reliable similarity, we begin with an arbitrary similarity func-
tion sim(). We will specify sim() explicitly later.

92 selective neighbourhood

Definition 1 (Reliable similarity). Let sim() be a similarity function, and
let uB be the baseline user learned on Rtrain. We define the "reliable similarity"
simrel between a user ua , for whom recommendations must be formulated,
and an arbitrary other user ux as

simrel(ua, uB, ux) =

sim(ua, ux) , if sim(ua, ux)� sim(ua, uB)

0 , otherwise
(53)

where we use the symbol� for "significantly greater than". User ux is "reli-
ably similar" to ua if simrel(ua, uB, ux) > 0.

5.2.2.1 Testing significance.

We implement the "significantly greater than"-test of Def. 1 with help
of the Hoeffding Inequality [Hoe63]:

Pr(X̂ − X > ε) 6 exp(
−2nε2

R2
) (54)

The Hoeffding Inequality quantifies the probability that the devia-
tion of an observed average X̂ from the real average X of a random
variable X is greater than or equal to ε. It takes the range R of the
random variable and the number of observed instances n as inputs.
The Hoeffding Inequality is independent of any probability distribu-
tion, however, it is thereby more conservative than other distribution-
specific bounds [DH00]. The inequality can be transformed into the
Hoeffding Bound that specifies the maximal allowed deviation ε given
a confidence level of 1− δ:

X̂ − X < ε , where ε =

√
R2 · ln(1/δ)

2n
(55)

We apply the Hoeffding Bound to ensure that the true similarity be-
tween two users is inside the ε-vicinity of the observed similarity. In
particular, let u1, u2 be two users. Then, X̂ stands for the observed dif-
ference in similarity between them and X stands for the difference of
their true similarities, thereby demanding that the similarity function
is an average, as dictated in [Hoe63].

Definition 2 (Similarity Function for Significance Testing). Let u1, u2
be two users and let Ico-rated(u1, u2) be the set of items that both have rated.
Then, the similarity between u1, u2 is the following average (for a rating scale
between 0 and 1, otherwise normalization is required):

sim(u1, u2) = 1−

∑
j∈Ico-rated(u1,u2)

|ru1 j − ru2 j|

|Ico-rated(u1, u2)|
(56)

5.2 reliable neighbourhood 93

On the basis of this similarity function, we state with confidence 1−
δ that the non-observable true average similarity, denoted as sim(u1, u2),
is within the ε-vicinity of the observed average similarity, denoted as
ŝim(u1, u2). The bound ε represents the uncertainty of the observed
information. The fewer co-rated items we have for the two users, the
larger is the possible deviation from the true unobserved values. This
is captured by the number of observations n, which is here the car-
dinality of Ico-rated(u1, u2). The smaller the value of n, the larger the
bound ε (cf. Ineq.82) for a given confidence 1− δ.

The use the Hoeffding Bound in the significance test in Def. 1 means
the following: when we observe that ŝim(ua, ux) > ŝim(ua, uB), we want
to test with confidence 1 − δ if sim(ua, ux) > sim(ua, uB), subject to a
bound ε.

To this purpose, we first need to ensure that the same number of
observations is used for both the observed similarity ŝim(ua, ux) and
for the observed similarity ŝim(ua, uB). Evidently, the set of co-rated
items between ua, uB is the set of items rated by ua, since the baseline
user uB has a rating for every item. Therefore, for each user ux, whom
we consider as potential neighbour of ua, we compute sim(ua, uB) on
Ico-rated(ua, ux) rather than on Ico-rated(ua, uB). Thus, the number of ob-
servations is fixed to n = |Ico-rated(ua, ux)|.

Figures 7 and 8 explain this procedure visually. In Fig. 7, we depict
the relative positions of ŝim(ua, ux), sim(ua, ux), ŝim(ua, uB), sim(ua, uB)

in a case where both the observed and the true average similarity
between ua, ux is larger than the corresponding values for ua, uB. In Fig.
8, we depict again the relative positions in a case where the observed
average similarity between ua, ux is larger than the observed similarity
between ua, uB, but the true similarity between ua, ux is smaller than
the true similarity between ua, uB. Clearly, this is undesirable. Hence,
we need a bound ρ such that it holds:

if ŝim(ua, ux) − ŝim(ua, uB) > ρ then sim(ua, ux) > sim(ua, uB)

To ensure with confidence 1 − δ that sim(ua, ux) > sim(ua, uB) for
any values of ŝim(ua, ux), ŝim(ua, uB), we consider the extreme case,
where ŝim(ua, ux) is smallest and ŝim(ua, uB) is largest, i.e. sim(ua, ux) =

ŝim(ua, ux) − ε and sim(ua, uB) = ŝim(ua, uB) + ε. Then, to ensure that
sim(ua, ux) > sim(ua, uB), following must hold:(

ŝim(ua, ux) − ε
)
−
(

ŝim(ua, uB) + ε
)
> 0

i.e. ŝim(ua, ux) − ŝim(ua, uB) > 2ε

This means that ρ = 2ε. Thus, we specify that:

sim(ua, ux)� sim(ua, uB)⇐⇒ ŝim(ua, ux) − ŝim(ua, uB) > 2ε (57)

94 selective neighbourhood

ŝim(uA ,uB) sim(uA , uB)

ŝim (uA ,)sim(uA ,ux) ux

ε ε

ε ε

Figure 7.: Relative positions of the observed similarity between ua, ux and
between ua, uB and true similarity within the ε-vicinity of the cor-
responding observed similarity; the observed similarities allow the
conclusion that the true similarity between ua, ux is larger than the
true similarity between ua, uB (figure from [MS14a]).

ŝim(uA ,uB) sim(uA ,uB)

ŝim (uA ,ux)sim(uA ,ux)

ε ε

ε ε

Figure 8.: Unlike in Fig. 7, the observed similarities, here, would lead to an
erroneous conclusion, since their ε-regions overlap (figure from
[MS14a]).

Due to our application of the Hoeffding Bound in recommender
systems, which was inspired by numerous algorithms from the stream
mining domain, we noticed that many algorithms in this domain use
a border of only one ε for deciding between two means. Furthermore,
more prerequisites for the application of the Hoeffding Bound are
often not fulfilled. We investigated this problem and its effects in our
work [MKS13]. We describe it in more detail in the Appendix A.

Definition 3 (Reliable Neighbourhood). Let ua be an active user. Subject
to Def. 1, the similarity function of Eq. 56 and the two invocations of the
Hoeffding Bound, we define her reliable neighbourhood as:

relNeighbourhood(ua, θ) = {ux ∈ U |simrel(ua, uB, ux) > θ} (58)

where U is a set of users and the similarity threshold θ is applied on reli-
able neighbours only. All unreliable neighbours are excluded, even if their
similarity to ua is larger than θ.

5.3 experiments 95

5.2.3 Algorithms

Algorithms 8 and 9 show a pseudocode of our extensions to collabora-
tive filtering. Algorithm 8 computes a neighbourhood of an active
user ua using our method of checking the reliability of neighbours
isReliableNeighbour, presented in Algorithm 9.

These algorithms require two hyperparameters: θ is a similarity
threshold, also used in conventional CF, and δ that controls the confi-
dence of the Hoeffding Bound used for checking the reliability. Since
the criterion of the reliable similarity is much stricter than the conven-
tional similarity, it can happen that no neighbours for an active user
can be found at all. For this case we also adjusted the conventional
CF algorithm. Our method can either abstain from recommending
any items until more information about the given user is collected,
or it provides non-personal recommendations e.g. the most popular
items from the trainings dataset. We state that it is beneficial to make
fewer, but reliable recommendations, than to recommend items that
will cause a negative attitude or a distrust of users towards the recom-
mender system.

5.3 experiments

We evaluate our method on the datasets MovieLens (100k), Flixter,
Netflix and Epinions [MA06], comparing it to: a conventional user-
based collaborative filtering recommender with cosine similarity, de-
noted as CF, to the method by Bell et al. called shrinkage[BKV07] and
to significance weighting by Herlocker et al.[Her+99]. Since our goal is
to compare different ways of building a neighbourhood, we imple-
mented only the weighting schemas from the methods described in
[BKV07] and [Her+99] and coupled them with the conventional CF
algorithm. To ensure a fair comparison, all methods use the same core
CF algorithm with no further extensions, so that only the way they
build and weight their neighbourhoods differs.

We name our method Hoeffding-CF, abbreviated hereafter as H-CF.
We consider one variant of our method per type of baseline user, de-
noted as H-CF_Gauss (Gaussian user), H-CF_Uniform (uniform user)
and H-CF_Avg (average user). To optimise the parameters of the meth-
ods we run multiple experiments using a grid search over the pa-
rameter space. Since the number of experiments in the grid search is
high, we chose a sample of users per dataset, taking over all their rat-
ings. The evaluation settings are detailed below. Further information
regarding datasets and our samples is summarized in Table 11.

96 selective neighbourhood

Algorithm 8 Reliable CF

Input: θ similarity threshold
δ confidence in the Hoeffding Bound
ua the active user
U set of users
Rtrain training set

reliableNeighbourhood(ua)← {}

uB ← initializeBaseline(Rtrain, baseline_type)
for all {ux ∈ U |ux 6= ua} do

ux reliable← isReliable(ua, uB, ux, δ, θ)
if ux reliable then

reliableNeighbourhood(ua).add(ux)
end if

end for
if reliableNeighbourhood(uA) == ∅ then

abstain or recommend most popular items
else

for all item i ∈ missingValues(ua) do
r̂ua,i =weightedAverage(reliableNeighbourhood(ua))
ranking.add(̂rua,i)

end for
ranking.sort()
return top ranked items

end if

Algorithm 9 isReliable(ua, uB, ux, δ, θ)

Input: ua active user
uB baseline user
ua any other user
δ confidence in the Hoeffding Bound
θ similarity threshold

ux_reliable← true
if sim(ua, ux) 6 θ then

ux_reliable← false
end if
ε← computeHoeffdingBound(δ, Range, numberCoRatings(ua, ux))
(cf. Ineq. 82 and Eq. 58)
if ŝim(ua, ux) − ŝim(ua, uB) 6 2ε then

ux_reliable← false
end if
return ux_reliable

5.3 experiments 97

Dataset total Ratings sampled ratings

Flixter 572531 59560

MovieLens 100k 100k 100k (no sampling)

Netflix 100 M 216329

Epinions 550823 165578

Table 11.: Samples of users on four datasets used in experiments (table from
[MS14a]).

5.3.1 Evaluation Settings

As basis for our evaluation we use (a) the Root Mean Square Er-
ror (RMSE) of the predictions made by each method, and (b) the num-
ber of cases where the method encounters an empty neighbourhood
and cannot make a neighbourhood-based prediction; this is denoted
as Missing Predictions. However, a prediction is still provided using
a fallback-strategy explained later. We further compute the Average
Neighbourhood Size, the average size of non-empty neighbourhoods
built by each method.

It is evident that the RMSE values for the three variants of our method
are not directly comparable, because the value of Missing Predictions
varies among the methods. Hence, we refine RMSE into following mea-
sures:

• Neighbourhood-based RMSE: the RMSE of the predictions made us-
ing the neighbourhoods of the users; limited to users with non-
empty neighbourhoods (abbreviated hereafter as CF-RMSE)

• Fallback-strategy RMSE: the RMSE of the predictions made using
the fallback strategy; limited to users with empty neighbour-
hoods

• Global RMSE: total RMSE by both Neighbourhood-based RMSE and
Fallback-strategy RMSE

As fallback strategy we use the recommendation of the most popu-
lar items not rated by the active user. The impact of this strategy is
encapsulated in Fallback-strategy RMSE.

For the variants of our method, we vary δ: the lower the value, the
more restrictive is the confidence level of the Hoeffding Inequality and
the less users are considered reliably similar to a given user. Hence, we
expect that a decrease of δ will negatively affect the Average Neighbour-
hood Size and the Missing Predictions. For shrinkage and significance
weighting we also optimize β and γ.

98 selective neighbourhood

We further consider different similarity threshold values. Setting the
threshold to a high value is not adequate for prohibiting recommen-
dations on the basis of unreliable neighbourhoods. It must be noted
that the CF may also fail to build neighbourhoods for some users,
if the threshold is set very restrictively. In total, we performed more
than 250 experiments, all of which were evaluated using 5-fold cross
validation.

5.3.2 Results

In Tables 12 and 13, we present our results on each of the four datasets.
For each of the methods we present only the best value found by the
grid search in course of the optimization. The symbol "— " indicates
that there are no applicable values for this position (e.g. δ is not appli-
cable for the CF). The sizes of the neighbourhood in Tables 12 and 13

is seemingly high, however, these are the values found as approxima-
tively optimal by the grid search.

The best result on on the Movie Lens 100k dataset was achieved by
our method (1st row in the Table) with a setting of δ = 0.999, a uniform
baseline user, and distance threshold of 0.25. The best value of global
RMSE was 0.9864. The best result achieved by the conventional CF was
1.0207 (5th row in the table). This is a stable improvement verified
using the 5-fold cross validation. Shrinkage and significance weight-
ing yielded a result close to the conventional CF. When we compare
our method with e.g. shrinkage with respect to the average neighbour-
hood size (row 1 and 3), then we notice an essential reduction from
ca. 898 to 447 users. This means that our method reduced the neigh-
bourhoods by 451 users on average and still performed better than
the conventional CF. Regarding the baseline users on the Movie Lens
dataset, the best results were achieved by the uniform random base-
line. The average user baseline led to small neighbourhoods. This can
be explained by the fact that many users in the MovieLens dataset
are similar to the average user. Using this baseline makes the differ-
ences between user vectors insignificant and, consequently, many of
the users are not considered as reliable neighbours to the active user.

If no reliable neighbours of an active user can be found, then is not
possible to estimate the rating. We counted the occurrences of this
case in our method (column "missing predictions"). In this situation
a fallback-strategy (e.g. popular items) takes over the task of provid-
ing a recommendation (prediction error is included in global RMSE).
We observed that those cases become more frequent when δ is low.
This causes a more extensive pruning behaviour of our method, be-
cause more neighbourhoods are considered unreliable. If we allow our
method to abstain from recommendation instead of using the fallback-
strategy the improvement of RMSE is even higher (0.9683; row 1, col-

5.3 experiments 99

R
ow

M
et

ho
d

D
is

ta
nc

e
T

hr
es

ho
ld

Se
tt

in
g

M
is

si
ng

Pr
ed

ic
ti

on
s

av
gN

ei
gh

-
bo

rh
oo

dS
iz

e
gl

ob
al

R
M

SE
C

F-
R

M
SE

fa
llb

ac
k-

R
M

SE

M
ov

ie
Le

ns
10

0k

1
H

-C
F_

U
ni

fo
rm

0
.2

5
δ
=
0
.9
9
9

2
9
0
5

4
4
7

0
.9

8
6
4

0
.9

6
8
3

1
.4

9
2
9

2
H

-C
F_

G
au

ss
0
.2

5
δ
=
0
.9
5

3
2
2
9

2
5
9
.5

5
0
.9

8
7
5

0
.9

6
8
4

1
.4

6
9
3

3
Sh

ri
nk

ag
e

0
.2

β
=
5
0
0

2
1
5

8
9
8
.0

8
1
.0

1
9
2

1
.0

1
9
2

—

4
Si

g.
W

ei
gh

ti
ng

0
.2

γ
=
2
0
0

2
1
5

8
9
8
.0

8
1
.0

1
9
2

1
.0

1
9
2

—

5
C

F
0
.2

—
2
1
5

8
9
8
.0

8
1
.0

2
0
7

1
.0

2
0
7

—

6
H

-C
F_

A
vg

0
.4

δ
=
0
.9
9
9

1
3
0
7
9

1
3
2
.3

8
1
.0

3
2
1

1
.0

3
9
0

0
.9

8
3
9

Fl
ix

te
r

(s
am

pl
e

of
1
0
0
0

us
er

s)

7
H

-C
F_

G
au

ss
0
.8

δ
=
0
.9
5

7
0
4
7

7
8
.1

4
1
.0

1
4
9

1
.0

1
3
3

1
.0

3
8
1

8
H

-C
F_

A
vg

0
.8

δ
=
0
.9
5

4
9
9
1
8

5
.8

4
1
.0

2
2
1

1
.1

3
5
5

0
.9

9
6
9

9
H

-C
F_

U
ni

fo
rm

0
.4

δ
=
0
.9
5

4
3
5
7

2
4
1
.3

5
8
0

1
.0

5
4
9

1
.0

5
3
2

1
.1

5
7
6

1
0

C
F

0
.7

—
3
9
9
8

4
4
2
.7

5
6
4

1
.0

8
5
6

1
.0

8
5
6

—

1
1

Sh
ri

nk
ag

e
0
.7

β
=
5
0

3
9
9
8

4
4
2
.7

5
6
4

1
.0

8
7
2

1
.0

8
7
2

—

1
2

Si
g.

W
ei

gh
ti

ng
0
.7

γ
=
5
0

3
9
9
8

4
4
2
.7

5
6
4

1
.0

8
8
9

1
.0

8
8
9

—

Ta
bl

e
1

2
.:

R
es

ul
ts

on
M

l1
0
0
k

an
d

Fl
ix

te
r

da
ta

se
ts

so
rt

ed
w

it
h

re
sp

ec
t

to
gl

ob
al

R
M

SE
(l

ow
er

va
lu

es
ar

e
be

tt
er

),
gr

ou
pe

d
by

th
e

da
ta

se
t

(t
ab

le
fr

om
[M

S1
4
a]

).

100 selective neighbourhood

R
ow

M
ethod

D
istance

Threshold
Setting

M
issing

Predictions
avgN

eigh-
borhoodSize

global
R

M
SE

C
F-

R
M

SE
fallback-
R

M
SE

N
etflix

(sam
ple

of
1
0
0
0

users)

1
3

H
-C

F_G
auss

0.
2

δ
=
0.9

5
1
3
6
0
1

1
9
9.

6
6

0.
9
6
1
9

0.
9
5
1
1

1.
1
5
5
1

1
4

H
-C

F_U
niform

0.
2

δ
=
0.9

5
1
1
1
7
1

3
8
2.

7
4

0.
9
6
2
2

0.
9
5
2
9

1.
1
8
4
9

1
5

H
-C

F_A
vg

0.
2

δ
=
0.9

9
9

6
0
3
9
4

9
6.

9
4

1.
0
0
7
5

1.
0
2
2
5

0.
9
6
6
9

1
6

Shrinkage
0.

2
β
=
2
0
0

4
0
2
3

9
1
6.

2
5
1
9

1.
0
2
1
0

1.
0
2
1
0

—

1
7

Sig.W
eighting

0.
2

γ
=
1
0
0

4
0
2
3

9
1
6.

2
5
1
9

1.
0
2
1
4

1.
0
2
1
4

—

1
8

C
F

0.
2

—
4
0
2
3

9
1
6.

2
5
1
9

1.
0
2
3
3

1.
0
2
3
3

—

Epinions
(sam

ple
of

1
0

0
0
0

users)

1
9

H
-C

F_A
vg

0.
3

δ
=
0.5

1
6
5
5
7
8

0
1.

0
0
7
4

—
1.

0
0
7
4

2
0

H
-C

F_G
auss

0.
8

δ
=
0.5

1
6
4
9
4
8

0.
2
7
7
0

1.
0
1
1
0
0

1.
3
9
6
4

1.
0
1
0
6

2
1

H
-C

F_U
niform

0.
4

δ
=
0.5

1
5
9
8
4
2

1.
5
1
1
3

1.
0
2
7
9

1.
3
2
1
5

1.
0
1
0
9

2
2

C
F

0.
7

—
1
1
3
1
1
7

4
6
1.

3
9

1.
2
8
4
3

1.
2
8
4
3

—

2
3

Shrinkage
0.

7
β
=
5
0

1
1
3
1
1
7

4
6
1.

3
9

1.
2
8
9
4

1.
2
8
9
4

—

2
4

Sig.W
eighting

0.
7

γ
=
1
0
0

1
1
3
1
1
7

4
6
1.

3
9

1.
2
9
0
7

1.
2
9
0
7

—

Table
1

3.:R
esults

on
N

etflix
and

Epinions
datasets

sorted
w

ith
respectto

global
R

M
SE

(low
er

values
are

better),grouped
by

the
dataset

(table
from

[M
S

1
4a]).

5.3 experiments 101

umn CF-RMSE). Also the conventional CF, shrinkage and significance
weighting exhibit some missing predictions. They are caused by either
new users or new items that are not known from the training dataset.

We performed similar experiments on a random sample of 1000

users on the Flixter dataset. Also on this dataset our method achieved
the best globalRMSE value of 1.0149 this time using a Gaussian base-
line. The conventional CF (row 10) yielded a value of 1.0856 using
neighbourhoods bigger by 365 users on average. Shrinkage and signif-
icance weighting were not able to outperform CF.

Also on a random sample of 1000 users from the Netflix dataset
our method outperformed other approaches with respect to global
RMSE, reaching the level of 0.9619 using the Gaussian user baseline.
When abstention was allowed, the improvement was even more sub-
stantial and reached the level of 0.9511, compared to e.g. shrinkage
with 1.0210 (row 16). Again here, we observed an essential reduc-
tion of the neighbourhood cardinality from ca. 916 by the shrinkage
method down to ca. 200 by our approach. This proves that our ap-
proach selects the reliable neighbours, who are more informative for
the preferences of an active user than the competitive methods.

The last dataset we performed our experiments on is the (small)
Epinions dataset (cf. Table 13). Here our method clearly dominated the
conventional CF. Hoeffding-CF achieved an RMSE of 1.0074 compared
to 1.2843 by the conventional CF. Significance weighting and shrink-
age performed worse than CF. Our approach recognized unreliable
neighbourhoods and switched from the neighbourhood-based recom-
mendation to the fallback-strategy that performs better on this dataset
(cf. the columns CF-RMSE and fallback-RMSE). The average number
of neighbours in the first row shows that the neighbourhood was lim-
ited to the minimum and this yielded the best result. Differently than
on the other datasets, here the average user baseline performed the
best. The statement about its strictness in the significance testing still
holds. This very strictness was beneficial on this dataset. In row 19

we see that the neighbourhood was reduced to 0 i.e. there was no
neighbourhood-based recommendations. All recommendations were
provided by the fallback-strategy that, in this case, performed better.

5.3.3 Summary of Findings

Our experiments show that Hoeffding-CF is capable of recognizing
unreliable neighbourhoods and selecting neighbours that are informa-
tive for the preferences of an active user. It outperformed the conven-
tional collaborative filtering, shrinkage and significance weighting on
all datasets. When abstention from providing recommendations was
allowed, the improvement in terms of RMSE was often even more sub-
stantial. All of the best results were achieved using a smaller neigh-

102 selective neighbourhood

0.9

1.0

1.1

1.2

1.3

Epinions Flixter ML100k Netflix
Dataset

gl
ob

al
 R

M
S

E
Method

Hoeffding−CF
Shrinkage
Significance Weighting
CF

Figure 9.: Best results achieved by each method. Lower values of global
RMSE are better. Our method, Hoeffding-CF, achieves best results
on each dataset (figure from [MS14a]).

bourhood than in case of conventional CF and remaining approaches.
A summary of the best results by each method is presented in Fig. 9.

We also observed that the parameter δ plays an important role in
finding the optimal results. The lower its value, the stricter is the
testing of the neighbourhood and the smaller is the average neigh-
bourhood. Consequently, the number of predictions provided by the
baseline method rises. The optimal value of δ varies across different
dataset around 0.95. Cross-validation can be used for tuning on each
dataset.

The choice of the baseline user has also an effect on the performance.
We observed that the random-based user (Gaussian and uniform base-
line) perform better than the average user baseline on most datasets.
The reason for that is that many users are similar to the average user,
so it is difficult to identify a user that is significantly more similar to a
given user than the average. Hence, when the average user is the base-
line, each user has only a few significant neighbours. On the Epinions
dataset, however, this led to an improvement of accuracy.

5.4 conclusions from selective neighbourhood

We investigated the problem of neighbourhood-based recommenda-
tions when the similarity between users cannot be fully trusted. This
problem does not emanate solely from data sparsity: even users with
many ratings may be uninformative. We introduced the concepts of
baseline user and of reliable similarity, and we use the Hoeffding Bound
to select, for a given active user, those users who are informative, ig-
noring users that do not contribute more information than the base-
line user.

5.4 conclusions from selective neighbourhood 103

Experiments on real datasets show that the use of reliable similar-
ity improves recommendation quality. Our method outperforms the
conventional CF, shrinkage and significance weighting on all datasets.
However, the superior performance on the forth dataset is mainly
owed to a good performance of the fallback-strategy rather than to
neighbourhood-based recommendations. Our method outperforms other
approaches despite using smaller neighbourhoods. This means that
the reliability, rather than the size of a neighbourhood is decisive for
good predictions.

By proposing our selective criterion for excluding of neighbours
from a neighbourhood we answer the RQ 2.1. Our experimental re-
sults show that removing selected neighbours from a neighbourhood
improves the predictive performance of CF algorithms. Therefore, we
answer the RQ 2 positively.

6
S E M I - S U P E RV I S E D L E A R N I N G

In this chapter we address the third type of selective learning for rec-
ommender systems - semi-supervised learning. Our SSL framework
learns from selected unlabelled data instances as motivated in Sec.
1.1.3. Furthermore, we answer the following research questions:

RQ 3: Does selective learning from predictions (semi-supervised
learning) improve the quality of recommendations?

RQ 3.1: How to select unlabelled instances for SSL?

RQ 3.2: How to select reliable predictions to learn from?

RQ 3.3: How to assemble predictions from an SSL system using
co-training into a single prediction?

RQ 3.4: How to divide labelled instances among multiple learn-
ers in an SSL system?

First however, we discuss related work and the differences between
our approach and existing work. In the following section we present
an overview and components of our framework. Section 6.4 discusses
the evaluation settings used in our experiments. In Sec. 6.5 we present
our experimental results and we conclude this chapter in Sec. 6.6. Sec-
tions 6.1 - 6.6 come (with modifications) from our previous publica-
tions on this topic [MS17; MS15].

6.1 related work on ssl in recommender systems

SSL has been investigated thoroughly in conventional data mining
and machine learning [ZZQ07], also in the stream setting [DCP14;
Sou+15]. A comprehensive survey of those techniques can be found
in [Zhu05]. Those techniques encompass both co-training [SNB05]
and self-learning techniques [RHS05]. Semi-supervised approaches
for regression problems also have been proposed [ZL07]. However,
the problem in recommender systems is inherently different from the
conventional classification or regression. In recommender systems an
entire matrix of real, binary or positive-only values is predicted. This
matrix is extremely sparse (typically, around 99% of missing values)
and there are no further features for a conventional regressor to train
upon. Therefore, the methods from the conventional SSL are not appli-
cable to recommender systems.

Dedicated SSL methods for recommender systems have been re-
searched far less. Christakou et al. proposed in 2005 a model-based

105

106 semi-supervised learning

recommender system using the k-means algorithm with SSL [Chr+05].
Nevertheless, this is not a dedicated recommender systems method,
but clustering applied to the recommendation problem.

To decide which predictions can be used as labels, semi-supervised
methods use reliability measures. A prediction with high estimated re-
liability can be then used for training. Hernando et al. proposed such
a reliability measure, however, they did not use it in semi-supervised
learning, but presented it to users to indicate certainty of the recom-
mendation algorithm [Her+13]. Rodrigues et al. [RGB08] and Bosnić
et al. [Bos+14] also proposed reliability measures, however, not for rec-
ommender systems, but for classification problems on streams. Never-
theless, we adopted their idea of reliability based on local sensitivity
and adapted it to recommender systems (cf. Sec. 6.3.5).

Zhang et al. proposed a SSL method for batch-based recommender
systems. In their approach they assess the reliability of a rating pre-
diction based on frequency of occurrence of items and users [Zha+14].
They assume that popular items and active users are easier to predict,
since there is more data about them. We implemented this reliability
measure, that we call hereafter "popularity-based reliability measure",
and we compare it to results of other measures. The method by Zhang
et al. is batch-based. Once the model is trained, it cannot be changed
incrementally. As a consequence, it is also not adaptive to changes
and not responsive to new users and items. With our stream-based
framework we lift those limitations.

Preisach et al. proposed a graph-based tag recommender system
that employs untagged items [PMS10]. In this method the authors
used a semi-supervised relational classification to find relevant tags.
Therefore, this method is also not applicable to the typical rating pre-
diction task in recommender systems.

Zhu et al. proposed a recommender system for web pages that uses
conventional classification with self-learning on natural language data
[Zhu+10]. Also this method is not applicable to the general collabora-
tive filtering scenario in recommender systems.

6.2 semi-supervised framework for stream recommenders

In this section we present our semi-supervised framework together
with its components. We start with an incremental recommendation
algorithm in Sec. 6.2.1 and then explain how it is applied in two alter-
native approaches: co-training (cf. Sec. 6.2.2) and self-learning (SL) (cf.
Sec. 6.2.3). In Tab. 14 we present a summary of notation and abbrevi-
ations used in this work. Fig. 10 gives a simplified overview over the
framework components and their interaction.

6.2 semi-supervised framework for stream recommenders 107

Dataset Training
Set Splitter

Batch Mode Initial
Training

Co-Tr
1

Co-Tr
n

Streaming Mode

Training
Stream

Test
Stream

Supervised
Learning

Unsupervised
Learning

Incremental
Update of Co-

Trainers

Predictions
by all Co-
Trainers

Prediction
Assembler

Aggregated
Prediction Evaluation

...

Unlabelled
Instance
Selector

Predictions
by Co-

Trainers

Reliability
Measure

Reliable Co-
Trainers Provide

Labels to
Unreliable Ones

Incremental
Update

view 1

view
n

Unlabelled
Instances

Figure 10.: A simplified overview of the framework visualizing the key
components of the framework (in red) and their interplay (from
[MS17] with modifications).

6.2.1 Incremental Recommendation Algorithm

The core of our framework is a recommendation system algorithm.
Fig. 11 depicts two modes of a stream-based recommendation algo-
rithm. The entire rectangle in the figure represents a dataset consisting
of ratings. The dataset is split between a batch mode (blue part) and a
stream mode (yellow part). The stream mode is the main mode of an
algorithm, where information about new ratings is incorporated incre-
mentally into the model, so that it can be used immediately in the next
prediction. Semi-supervised learning takes place in this phase (green
bars stand for Unsupervised Learning (USL)).

Before the stream mode can start, the algorithm performs an initial
training in the batch mode. The batch mode data is, therefore, split
again into training and test set. On the training dataset latent factors
are initialized and trained. The corresponding prediction error is then
calculated on the test dataset (second blue rectangle) and the latent
factors are readjusted iteratively. Once the initial training is finished,
the algorithm switches into the streaming mode, where learning and
predicting take place simultaneously. Any incremental MF algorithm
is applicable. We use our extended version of the BRISMF algorithm,
etxBRISMF, as described in Section 6.3.1.

108 semi-supervised learning

Notation Meaning

SSL3 Semi-supervised Learning with co-training using 3

parallel learners

USL Unsupervised Learning

noSSL Algorithm without SSL (i.e. supervised learning only);
it is used as a comparison baseline

SL Self-Learning

IR@10 Incremental Recall at 10 (cf. [CKT10])

CoTrn The n-th Co-Trainer; one of incremental MF algo-
rithms running in parallel

C A set of all Co-Trainers

rx True value of rating x (ground truth)

r̂x A prediction of value of rating x

r̂x CoTrn A prediction of value of rating x made by the Co-
Trainer n

r̂x Agg An aggregate of all predictions of rating x made by all
Co-Trainers from C

rel(r̂i CoTra) Reliability of prediction r̂i by CoTra

Table 14.: Summary of notation and abbreviations used in this chapter (table
partially from [MS17]).

6.2.2 Stream Co-training Approach

In semi-supervised learning we use two approaches: self-learning and
co-training. The latter was proposed by Zhang et al. for batch recom-
mender systems [Zha+14]. In this section we focus on the co-training
approach. According to this approach we run in parallel multiple
stream-based recommendation algorithms that are specialized on dif-
ferent aspects of a dataset and can teach each other. Due to this spe-
cialization an ensemble of co-trainers can outperform a single model
that uses all available information.

6.2.2.1 Initial Training.

The specialization of the models takes place already in the initial train-
ing. In Figure 12 we present the batch mode from Figure 11. Here,
the initial training set is divided between N co-trainers from the set
C = {CoTr1, ..., CoTrN}, where N > 2.

The component that decides, how the initial training set is divided
between the co-trainers is called training set splitter (marked in red
in Fig. 12; cf. Sec. 6.3.2 for instances of this component). Formally, a

6.2 semi-supervised framework for stream recommenders 109

Figure 11.: Division of a dataset (entire rectangle) into batch (blue part) and
stream mode (yellow part). The stream mode is the main part of
an algorithm with incremental learning. Batch mode is used for
initial training (figure from [MS15; MS17]).

Figure 12.: Different co-trainers are trained on different parts of the initial
training set. The component responsible for splitting the training
set is training set splitter (figure from [MS15; MS17]).

training set splitter is a function that relates all co-trainers to subsets
of all ratings in the initial training set RinitialTrain:

f : C → P(RinitialTrain) (59)

such that f (CoTr) = RCoTr
initialTrain and P(X) is a power set of X. Therefore,

RCoTrn
initialTrain ⊆ RinitialTrain. This function is not a partitioning function,

since overlapping between different RCoTrn
initialTrain is allowed and often

beneficial. Implementations of this component are provided in Sec.
6.3.2.

6.2.2.2 Streaming Mode - Supervised and Unsupervised Learning.

After the initial training is finished, all co-trainers switch into the
streaming mode. In this mode a stream of ratings rt is processed in-
crementally. Figure 13 is a close-up of the stream mode from Figure

110 semi-supervised learning

11. It represents a stream of ratings r1, r2, ... 1. The yellow part of the
figure depicts the supervised learning, whereas the green part stands
for the unsupervised learning (cf. next section).

In the supervised learning we distinguish between training and test-
ing i.e. making recommendations. In the training all co-trainers calcu-
late predictions for each rating rx in the stream:

∀n : CoTrn(rx) = r̂x CoTrn (60)

Please, note that co-trainers are instances of the extBRISMF algo-
rithm (cf. Sec. 6.3.1). Consequently, all extBRISMF instances calculate
predictions for the rating in the stream. Once the predictions are made,
all co-trainers receive the true value of the predicted rating. This value
is then used to update the models of the co-trainers incrementally (cf.
Algorithm 10).

Figure 13.: A close-up of the stream mode from Figure 11. The yellow part
represents the supervised learning and the green one unsuper-
vised learning. Predictions made by co-trainers are aggregated
by a prediction assembler (figure from [MS15; MS17]).

For the evaluation and for making recommendations, one more
step is necessary. Since the co-trainers provide multiple predictions,
they need to be aggregated into one common prediction of the entire
system. Because the co-trainers had a different view of the training
data in the batch mode, they can provide different predictions. In the
stream mode all co-trainers receive the same ground truth.

In order to aggregate all predictions made by co-trainers into one
prediction r̂xAgg we use a component called prediction assembler. The
most simple implementation is arithmetical average (further imple-
mentations in Section 6.3.3). The function of prediction assembler is
as follows:

predictionAssembler(rx, C) = r̂x Agg (61)

In Fig. 13 this process is visualized only for the rating r1 due to
space constraints, however in a real application, it is repeated for all

1 Note that we diverge from the standard notation of ru,i for clarity. A rating rx is still
a triplet of user, item and a rating value, just the user u and item i are not relevant in
this context. Different index x signifies different ratings.

6.2 semi-supervised framework for stream recommenders 111

ratings in the stream with known ground truth (supervised learning).
For instances with no ground truth the procedure is different.

6.2.2.3 Unsupervised Learning.

Unsupervised Learning (USL) takes place periodically in the stream.
After every m-th rating (m can be set to 1) our framework executes the
following procedure. First, a component called unlabelled instance selec-
tor selects z unlabelled instances (cf. Fig. 14). Unlabelled instances in
recommender systems are user-item-pairs that have no ratings. We in-
dicate those instances with the purple colour in the following figures.
The unlabelled instance selector is important, because the number of
unsupervised instances is much larger then the number of supervised
ones. Processing all unsupervised instances is not possible, therefore,
with this component we propose several strategies of instance selec-
tion (cf. Sec. 6.3.4).

Figure 14.: The procedure of unsupervised learning. User-item-pair without
ratings are selected using an unlabelled instance selector. Predic-
tions and their reliability values are estimated. The most reliable
predictions are used as labels for the least reliable co-trainers (fig-
ure from [MS15; MS17]).

Once the unlabelled instances r1, ..., rz are selected, co-trainers are
used again to make predictions:

∀n, i : CoTrn(ri) = r̂i CoTrn (62)

where i = 1, ..., z and n = 1, ..., N. After this step we use a reliability
measure (cf. Sec. 6.3.5 for instantiation) to assess in an unsupervised
way, how reliable is a prediction made by each co-trainer. Formally, a
reliability measure is the following function:

reliability : (CoTrn, r̂i CoTrn)→ [0, 1] (63)

112 semi-supervised learning

This function takes a co-trainer and its prediction as arguments and
maps them into a value range between 0 and 1, where 1 means the
maximal and 0 the minimal reliability. Subsequently, we calculate pair-
wise differences of all reliability values of the predictions for ri :

∆ = |rel(r̂i CoTra) − rel(r̂i CoTrb)| (64)

for all a, b = 1, ..., N and a 6= b. All values of ∆ are stored temporarily
in a list, which is then sorted. From this list we extract the top-q high-
est differences of reliability i.e. cases, where one co-trainer was very
reliable and the second one very unreliable. In such cases the reliable
co-trainer provides a label to the unreliable co-trainer, who then trains
incrementally using the provided label.

6.2.3 Stream-based Self-learning

Our second approach to semi-supervised learning on streams is self-
learning (SL). According to this approach, a single learner is responsi-
ble for generating labels. Those labels are then scored with respect to
their reliability values. The most reliable labels are used to train the
learner. Our co-training framework described in the previous section
is flexible, therefore it can be used for self-learning as well. In the fol-
lowing we describe the few changes that are necessary to adapt it to
self-learning.

The first of those changes is in the initial training. While the co-
training approach uses several learners and splits the initial training
set among them, there is only one learner in the self-learning ap-
proach. Therefore, the entire initial training dataset is used by this
learner. Consequently, there is no need for a co-training splitter.

Since there is only one learner, there is also no need for a prediction
assembler that, otherwise, is responsible for aggregating predictions
from several learners.

As a consequence of those changes the procedure shown in Fig.
14 changes as shown in Fig. 15. Unlabelled instances (user-item-pairs
without a rating) are selected by the component called "unlabelled in-
stance selector". Subsequently, the self-learner makes predictions for
each of the selected instances r1, r2, ..., rz. The reliability of this predic-
tions is assessed using a reliability measure (cf. Sec. 6.3.5). Differently
than in co-training, here the difference in reliability of learners, ∆ from
Equation 64, cannot be calculated. Therefore, the best label candidates
are the predictions with highest reliability.

A further change affects the unlabelled instance selector. Its func-
tion remains the same, however, the possible implementations of this
component are restricted to the ones working with a single learner.
That criterion excludes, for example, implementations based on dis-
agreement among multiple trainers (cf. Section 6.3.4 for details).

6.3 instantiation of framework components 113

Figure 15.: Adjusted procedure of unsupervised learning from Fig. 14 for the
self-learning approach. In this approach there is only one learner,
whose predictions are assessed using a reliability measure (figure
partially from [MS15; MS17]).

6.3 instantiation of framework components

In the previous section we provided definitions of the components
of our framework and explained their interplay. In this section we
present several instances for each of the components. The reliability
measure, for example, has many possible implementations (cf. Sec
6.3.5).

6.3.1 Incremental Recommendation Algorithm - extBRISMF

The core of our framework is a matrix factorization algorithm. We
extended the BRISMF algorithm by Takács et al. [Tak+09] by the abil-
ity to deal with changing dimensions of the matrix over time. We
named this new variant of the algorithm extBRISMF for dimensional-
ity extending BRISMF. The original BRISMF keeps the dimensions of
the matrix fixed and does not update latent item factors. In our algo-
rithm we lift those limitations. This ability is important in SSL, because
the algorithms often encounter items and users not seen before.

In Alg. 10 we present our extBRISMF. Apart from expanding dimen-
sions of latent matrices, we also introduced a different type of initial-
ization for new user/item vectors. Next to the initialization of the first
column of P and second row of Q with a fixed constant value, which
is typical for BRISMF, we initialize the vectors as an average vector of
the corresponding matrix plus a small random component instead of
just a random vector.

114 semi-supervised learning

Algorithm 10 extBRISMF - trainIncrementally(ru,i)

Input: ru,i, P, Q, η, k, λ
1: pu ← getLatentUserVector(P, u)
2: qi ← getLatentItemVector(Q, i)
3: if pu = null then
4: pu ← getAverageVector(P) + randomVector
5: pu1 ← 1

6: P← P.append(pu)

7: end if
8: if qi = null then
9: qi ← getAverageVector(Q) + randomVector

10: qi2 ← 1

11: Q← Q.append(qi)

12: end if
13: r̂u,i = pu · qi //predict a rating for ru,i

14: evaluatePrequentially(̂ru,i, ru,i) //update evaluation measures
15: epoch = 0

16: for all epoch ∈ {1, ..., optimalNumberO f Epochs} do
17: pu ← getLatentUserVector(P, u)
18: qi ← getLatentItemVector(Q, i)
19: predictionError = ru,i − pu · qi

20: for all latent dimensions k do
21: if k 6= 1: pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)

22: if k 6= 2: qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k)

23: end for
24: end for

6.3.2 Training Set Splitter

Training set splitters are used in the co-training approach to divide
the initial training set among co-trainers. In the following we propose
several types of training set splitters (cf. Fig. 11). All of them have
one parameter p that controls the degree of overlapping between the
co-trainers.

6.3.2.1 User Size Splitter

This splitter discriminates between users of different sizes. Size of a
user is defined as the number of rating she/he has provided. Users
are divided into segments based on their sizes and assigned to co-
trainers. In case of only two co-trainers, for instance, one of them
will be trained on so called "power users" and the other one on small
users. This method is based on a histogram of user sizes. It creates
N segments (N = number of co-trainers) using equal density binning

6.3 instantiation of framework components 115

(each segment has the same number of users). Analogously, we also
experiment with an item size splitter.

6.3.2.2 Random Splitter

Ratings are divided between co-trainers randomly. This method serves
as a baseline for comparisons.

6.3.2.3 Dimension Preserving Random Splitter

This splitter also assigns ratings randomly to co-trainers, however, in
contrast to the previous method, it guarantees that all co-trainers have
a matrix with same dimensions. This means that all co-trainers have
at least one rating from each user and item that appeared in the initial
training set. This might be beneficial for methods not able to extend
the dimensions of their matrices over time.

6.3.2.4 User Variance Splitter

As the name suggests, this splitter assigns users to different co-trainers
based on their rating variance. For each users her/his rating variance
is calculated. Using the histogram method and equal density binning,
as in the user size splitter, different types of users are divided among
co-trainers.

The rationale behind this splitter is that users with high variance
tend to give differentiated ratings i.e. they rate both items they like
and the ones they do not like. Users with low rating variance tend to
give a standard rating to all items. This splitter utilizes this difference
in users’ behaviour and allows different co-trainers to specialize on
separate groups of users.

6.3.2.5 Item Variance Splitter

Similarly to the user variance splitter, this splitter is also based on rat-
ing variance. However, here the variance is calculated for single items
(within item). Based on this variance, ratings of items are divided
among co-trainers.

The rationale behind this splitter is different than in the previous
one. Items with a small rating variance are the ones that users agree
upon. i.e. all users rate those items with approximately same value
(e.g. 5 stars). Items with a high rating variance are not agreed upon
by users. It means that there is a group of users rating a given item
highly and a different group having an opposite opinion of it.

6.3.2.6 Average Rating Splitter

The division of ratings is performed by this splitter with respect to
average rating of a user. Users with a high average rating are assigned

116 semi-supervised learning

to a different co-trainer than the ones with a low average rating. This
splitter can be used analogously for items.

6.3.3 Prediction Assembler

Prediction assembler aggregates rating predictions from all co-trainers
into a single value. We propose several ways of calculating this aggre-
gation that have the form of the following formula, but with different
weights w(r̂u,i, CoTr j):

r̂u,iAgg =

∑N
j=0 w(r̂u,i, CoTr j) · r̂u,iCoTr j∑N

j=0 w(r̂u,i, CoTr j)
(65)

Each of the following components defines the weight w(r̂u,i, CoTr j)

in a different way.

6.3.3.1 Recall-based Prediction Assembler

Recall-based prediction assembler aggregates predictions of N co-trainers
using a weighted average with weights depending on their past recall
values. Accordingly:

w(r̂u,i, CoTr j) = recall(CoTr j) (66)

In the above formula recall is measured globally for each co-trainer.
Alternatively, recall can be measured also on user or item level. In this
case recall(CoTr j) can be substituted with recall(CoTr j, u) or recall(CoTr j, i).

6.3.3.2 RMSE-based Prediction Assembler

Similarly to the previous method, this prediction assembler uses a
weighted average, however, here the RMSE measures (root mean square
error) serve as weights. Also here, measuring RMSE on user and item
levels are possible.

w(r̂u,i, CoTr j) = RMS E(CoTr j) (67)

6.3.3.3 Reliability-weighted Prediction Assembler.

This prediction assembler uses a reliability measure to give more
weight to more reliable co-trainers.

w(r̂u,i, CoTr j) = relr̂u,i
CoTr j

(68)

6.3 instantiation of framework components 117

6.3.3.4 Maximum Reliability Prediction Assembler

Differently than in the previous prediction assembler, here only the
prediction of the most reliable co-trainer is used. The aggregation is,
therefore, performed using the following formula:

w(r̂u,i, CoTr j) =


1, if relr̂u,i

CoTr j
= max

k=1,...,N
relr̂u,i

CoTrk

0, otherwise
(69)

6.3.4 Selector of Unlabelled Instances

This component is used in unsupervised learning to select unlabelled
instances as candidates for training. Due to a large number of unla-
belled instances a method for selecting them is needed. We propose
such methods that as parameter take the number of instances to be
selected.

6.3.4.1 Random Selector

Random combinations of known users and items are generated by se-
lecting random users and random items independently. This method
is used as a baseline for comparisons.

6.3.4.2 Latent Disagreement Selector

For each user each co-trainer stores a latent vector. We denote this
vector as pCoTrn

u . In this method we search for those users, whose dis-
agreement of the latent user vectors among the co-trainers is the high-
est. For each user u and a pair of co-trainers CoTra and CoTrb, we
define the disagreement as follows:

disagreement(CoTra, CoTrb, u) = |pCoTra
u − pCoTrb

u | (70)

This measure can be computed for all known users and all co-trainer
pairs. Users with highest disagreement are then selected as candidates
together with a random selection of items. The motivation behind this
method is that the instances with highest disagreement can contribute
the most to the learners. This method can be applied analogously onto
latent item vectors.

6.3.4.3 User-specific Incremental-recall-based Selector

This selector chooses users with best incremental recall achieved by
the framework. For those users it selects random items to generate un-
labelled instances (user-item pairs without a rating). The rationale be-
hind this selector is that users, for whom the past predictions were ac-
curate, are good candidates for semi-supervised learning. Predictions

118 semi-supervised learning

for those users should be reliable, assuming that the performance on
the selected instances is consistent with the performance observed so
far.

To avoid selecting instances from the user with highest incremental
recall only, we create a list of best user candidates. From this list, the
user on the first position is used for creating twice as many unlabelled
instances as the second user, etc. This procedure is repeated, until the
specified number of unlabelled instances is created.

Analogously to this selector, we experiment also with the Item-specific
Incremental-recall-based Selector. The incremental measure of recall can
be substituted by, e.g. the RMSE measure, creating User-specific and Item-
specific RMSE-based Selector.

6.3.5 Reliability Measure

Reliability measures are used in our framework to assess the reliability
of a rating prediction in an unsupervised way. Based on prediction
reliability, decisions on which co-trainer teaches which one are made.

6.3.5.1 Sensitivity-based Reliability Measure

This is a novel measure of reliability for recommender systems that is
based on local sensitivity of a matrix factorization model. As a user
model in matrix factorization we understand a latent user vector pu.
This vector changes over time as new rating information from the
stream is incorporated incrementally into the model. The changes of
this vector can be captured using the following formula:

∆pu =

k∑
i=0

(pt+1
u,i − pt

u,i)
2 (71)

where pt+1
u,i and pt

u,i are latent feature values in the i-th position in the
user vector pu at different time points. If ∆pu is high, then it means
that the user model is not stable and it changes considerably over
time. Therefore, predictions made by this model can be trusted less.
Similarly to the user sensitivity we can also measure a global sensitiv-
ity of the entire model as a different variant of this measure. Since ∆pu

has a value range [0,∞) a normalization is needed (cf. Par. 6.3.5.5).

6.3.5.2 Popularity-based Reliability Measure

Zhang et al. proposed in [Zha+14] a reliability measure based on pop-
ularity. This measure uses the idea that the quality of recommenda-
tions increases as the recommender system accumulates more ratings.
They used the absolute popularity of users and items normalized by
a fixed term. We implemented this reliability measure in our frame-
work for comparison, however, with a different normalization method.

6.3 instantiation of framework components 119

Normalisation on streams is different and more challenging (cf. Par.
6.3.5.5).

6.3.5.3 Random Reliability Measure

A random number from the range [0, 1] is generated and used as a
reliability value. This measure is used as a baseline.

6.3.5.4 RMSE-based Reliability Measure

Another approach to assess the reliability of a prediction is to assume
that the current performance of a prediction model will be consistent
with its past performance. For instance, if a co-trainer performed bet-
ter than others in the past, the reliability of the current prediction by
this co-trainer can also be assumed higher then the reliability of the
remaining co-trainers.

The reliability measure presented here uses the RMSE measure to
evaluate the past performance of co-trainers. Other quality or error
measures are also applicable. We also experiment with the incremental-
recall-based reliability measure.

Furthermore, the performance of co-trainers can be measured on
a finer level. For instance, on the level of single users or items. It
could be that the past performance of a co-trainer is better for a spe-
cific user, even though on a global level, it performs worse than other
co-trainers. In our experiments we use the reliability measures with
different abstraction levels, e.g. the RMSE-based reliability measure
on a user level is called "user-RMSE-based reliability measure". In our
results we followed this naming convention.

6.3.5.5 Normalization of Reliability Measures

As defined in Section 6.2.2, a reliability measure is a function with
value range of [0, 1]. With many aforementioned reliability measures
this is not the case, therefore, a normalization is necessary. Normaliza-
tion on a stream, however, is not trivial. Division by a maximal value
is not sufficient, since this value can be exceeded in a stream and a
retrospective re-normalization is not possible. Let rel be a reliability
value returned by one of our reliability measures. In our framework
we use the following sigmoid function for normalization:

f (rel) =
1

1+ eα·(rel−µ) (72)

where α controls the slope of the function and µ is the mean of the dis-
tribution. The parameters can be set either manually, or automatically
and adaptively in a self-tuning approach. While the adaptive calcula-
tion of µ in a stream is trivial, the calculation of α requires more effort.

120 semi-supervised learning

For that purpose we store 1000 most recent arguments of this func-
tion and determine their fifth percentile. We define that the value of
the sigmoid function for this percentile should be equal to 0.9. From
that, the optimal value of α can be derived. Note that α also controls
if the function is monotonically increasing or decreasing. Reliability
measures using this adaptive normalization can be recognized in our
notation by the prefix "ST" (for self-tuning).

6.4 evaluation protocol

We propose a novel evaluation protocol for stream-based recommender
systems that encompasses the following components:

• parameter optimization on a separate dataset

• a method for dataset splitting that allows for hypothesis testing

• an incremental recall measure by Cremonesi et al. [CKT10]

• significance testing

The incremental recall measure was explained in Sec. 4.4.2 in detail.
In the following subsections we describe each of the remaining com-
ponents.

6.4.1 Parameter Optimization

Our semi-supervised method consists of multiple components, each
of which has several possible instantiations (e.g. a reliability measure
can be instantiated as sensitivity-based, or popularity-based reliability
measure, etc.). Additionally, matrix factorization itself requires setting
of parameters, such as number of latent dimensions and the regular-
ization constant λ. To find the optimal setting for the parameters and
components, we perform an initial optimization step.

For that we hold out a small subset of an original dataset and run a
grid search in the parameter space on it. The approximately optimal
parameter settings from the grid search are then used in the final
evaluation (cf. Ch. 7).

To create the holdout subsets we sample randomly a small percent-
age of users from the original dataset. Those percentages are listed
in Tab. 16 for all datasets. Sampling users instead of ratings has the
advantage of not artificially increasing the sparsity of the data.

Optimization of the parameters on a separate subset prevents fa-
vorizing methods with more parameters. Otherwise, such methods
could be tuned more than methods with fewer parameters to perform
best on the test dataset. This procedure ensures that all methods, no
matter how many parameters they have, are run only once on the final
evaluation set.

6.4 evaluation protocol 121

6.4.2 Dataset Splitting

Splitting the data set into training and testing in our evaluation is
inspired by the prequential evaluation proposed by Vinagre et al. for
recommender systems [VJG15b] and by Gama et al. for data stream
mining [GSR09]. We described this evaluation protocol in detail in Sec.
4.4.1.

However, the prequential evaluation has a major disadvantage. Eval-
uation measures calculated on a stream at time point t and t + 1 are
statistically not independent from each other, even if the evaluation
measure is not cumulative. This is due to the fact that the learner at
the time point t + 1 already trained on an instance from time point t.

In consequence, due to the lack of statistical independence, running
of hypothesis tests is not possible on an instance level. For instance, let
Qt be a quality measure at time point t. We consider Qt, Qt+1, ..., Qt+n

observations for a hypothesis test. The most basic prerequisite for a
hypothesis test is the independence of those observations. In the pre-
quential evaluation this prerequisite is violated and, therefore, hypoth-
esis testing is not permitted.

To solve this problem, we propose to use two disjoint streams of
ratings (one stream for training and one for evaluation). Because of
this separation the observations Qt, Qt+1, ..., Qt+n for a hypothesis test
are independent for non-cumulative quality measures. In section 6.4.3
we describe how to use a state-of-the-art evaluation measure in this
setting.

A stream-based matrix factorization, the state-of-the-art in recom-
mender systems, usually starts with a batch-based initialization phase.
Before the algorithm switches into the streaming-mode, a short batch-
training is performed, where the initial latent matrices are trained in
a supervised way. While it is not strictly necessary to perform this ini-
tial phase, it is realistic to assume that in nearly all applications there
is some historical data that can be used for this purpose. By using it, a
bad initial performance at the beginning of the stream can be avoided.

Therefore, this initial phase also has to be considered, when split-
ting a dataset. Therefore, our method for splitting datasets incorpo-
rates all the following aspects:

• initial training and testing in batch mode

• a training stream for incremental updates of a model

• a disjoint test stream for evaluation and significance testing

A schematic representation of dataset splitting is in Fig. 16. Part
1) in the figure is used for batch training in the initialization phase.
Since this is a supervised method, it also needs a test set in the batch

122 semi-supervised learning

Figure 16.: Splitting of the dataset between the batch and streaming mode.
Separation of training and test datasets in each of the modes (fig-
ure from [MS17]).

mode (part 2 in the figure). After the initialization phase the algo-
rithm switches to the streaming mode, which is the main mode of
this method.

In the streaming mode (part 3 of the dataset) there are two disjoint
streams, one stream for training and one for testing. The results we
present in the next section are calculated on the test stream.

If we consider the parts of the dataset used for training, so far it
was part 1) and a subset of part 3). Part 2) would represent a temporal
gap in the training data. Since many of methods in recommender sys-
tems rely heavily on the time aspect present in the data, such a gap
would be problematic. Therefore, we include part 2) of the dataset
into the training stream (represented by the colour gradient in the fig-
ure). Since this part was used once for batch testing already, we do
not include it into the test stream.

The split ratios between the subsets of the dataset can be adjusted
to the need of an application scenario. For our experiments we use the
following ratios: 30% of a dataset are used for the batch training, 20%
for batch testing. Those 20% are also included into the training stream.
The remaining part of the dataset is used in the streaming mode, 30%
of which is used as the test stream.

6.4.3 Significance Testing

To show that the improvement due to the application of semi-super-
vised learning is statistically significant, we incorporate hypothesis
tests into our evaluation protocol. Hypothesis testing on instance level
is possible, since we use two separate streams (one for evaluation and
one for testing), which guarantees the independence of observations
for non-cumulative quality measures.

As a quality measure for the hypothesis testing we use a binary hit
count from the incremental recall@10. An example for observations of
this quality measure is represented in Tab. 15.

6.4 evaluation protocol 123

Timepoint (rating)

Algorithm t0 (rua,iw) t1 (rub,ix) t2 (ruc,iy) t3 (rud ,iz) ...

Alg1 1 0 1 1 ...

Alg2 1 0 0 1 ...

Table 15.: An exemplary input to the McNemar’s test. Rows indicate perfor-
mance of algorithms over time. 1 means a hit in the sense of incre-
mental recall. Therefore, an algorithm with significantly more hits
is considered better (table from [MS17]).

The columns of the table indicate a time point in the stream with
the corresponding rating (in the parenthesis). Rows represent the per-
formance of algorithms over time. The performance is the binary rep-
resentation of a hit. For instance, at the time point t0 the rating rua,iw
occurred in the stream. The Alg1 was able to rank the item iw in top
10 (we measure the incremental recall at 10) among 1000 additional
random items. Therefore, for this rating the Alg1 scores a hit (1 in
binary notation). At time point t1 none of the algorithm was able to
rank the relevant item in top 10, therefore they both score zero in the
table.

In this exemplary table we see that the Alg1 scored more hits than
the Alg2. However, the evidence in this example is not sufficient to
consider any of them superior. To test if the improvement of the Alg1

is statistically significant, we use the McNemar’s test [McN47]. This
test is used for paired, nominal, dichotomous data, same as presented
here.

For this test, our exemplary input from Table 15 is transformed
into a contingency table and odds ratio (OR) is calculated. The null
hypothesis of the test is: H0 : OR = 1 and the alternative hypothesis
is H1 : OR > 1. If the null hypothesis is rejected, we can say that Alg1

is significantly better than Alg2. All p-values reported in Section 6.5
result from this test (lower p-values are better).

In [GSR09] Gama et al. suggested to apply a sliding window or
forgetting factors onto the test statistic in the McNemar test. By doing
so, information about the dynamics of the learning process can be
obtained. In this case, the test statistic reflects mostly the recent time
interval and, therefore, allows to test hypotheses specific to a selected
time period.

In this work, however, we are interested in the global effect of SSL,
i.e., we test if there is a significant improvement due to SSL without
restricting the time interval. Therefore, we do not apply sliding win-
dows or forgetting factors and use the entire test stream for out signif-
icance testing.

124 semi-supervised learning

Since we perform tests several times (e.g. SSL vs. noSSL and self-
learning vs. noSSL, etc.), there is a risk of alpha error inflation. To
account for this fact we correct the reported p-values for multiple
testing. For this purpose we use the Hommel’s method [Sha95]. All
p-values in Section 6.5 have been corrected using this method.

6.5 experiments

In this section we report the results of empirical evaluation on five
real world datasets (cf. next subsection). To show the improvements
by our method we compare the semi-supervised framework to a sin-
gle learner without semi-supervised learning (noSSL). In both cases
the algorithm used is the extBRISMF (cf. Sec. 6.3.1), so that the only
difference between the compared algorithms is the application of SSL.

Within the SSL framework we distinguish between three cases:

• self-learning (SL)

• co-training with two learners (SSL2)

• co-training with three learners (SSL3)

• comparison baseline without SSL (noSSL)

Our framework is also capable of using more that 3 co-trainers in
an analogous way. However, the computation time rises with every
additional co-trainer.

Results reported in this section are all calculated using the approxi-
mately optimal parameter and component settings from the grid search
performed on hold-out datasets (cf. Sec. 6.4). Therefore, for each of the
methods we have only one setting used in the final evaluation.

The grid search was performed on a cluster running the (Neuro)Debian
operating system [HH12]. In total we conducted more than 700 exper-
iments. In Section 6.5.3 we analyse the impact of different instances of
framework components (e.g. which reliability measure performs the
best).

6.5.1 Datasets

In Table 16 we present summary statistics of five real-world dataset
that we used in our evaluation. Those datasets are: MovieLens 1M
and 100k2 [HK16], a sample of 5000 users from the extended Epinions
[MA06] dataset, a sample of 10 000 users from the Netflix dataset3 and
a sample of the same size from the Flixster dataset4. From some of the

2 http://www.movielens.org

3 https://www.netflix.com

4 https://www.flixster.com

http://www.movielens.org
https://www.netflix.com
https://www.flixster.com

6.5 experiments 125

Dataset Ratings Users Items Sparsity
Ratio of Users for

Parameter Optimization

ML1M 1,000,209 6,040 3,706 95.53% 0.05

ML100k 100,000 943 1,682 93.7% 0.1

Flixster (10k users) 569,623 10,000 18,108 99.69% 0.01

Epinions (5k users) 496,222 5000 250,488 99.96% 0.03

Netflix(10k users) 2,143,622 10,000 17,249 98.76% 0.01

Table 16.: Dataset statistics; "Ratio of Users for Parameter Optimization" in-
dicates what percentage of users was used for parameter optimiza-
tion using a grid search. Extreme sparsity values show the abun-
dance of unlabelled information (table from [MS17]).

big dataset we took a sample of users because of a huge number of
experiments we run in our grid search.

The last column in the table shows what percentage of users has
been held out for parameter optimization. The sparsity values in the
fifth column are extremely high. They show that more than 90% of
the user/item combinations are unknown.Our semi-supervised frame-
work exploits this abundantly available information.

6.5.2 Performance of SSL

In Figs. 17 - 21 we present the IncrementalReall@10 for each of the
datasets. In Tab. 18 we report the significance of the differences in
performance among the algorithms per dataset. and in Tab. 17 we
summarize the results.

Figure 17.: Incremental Recall@10 over time on the Movielens 1M dataset
achieved by different SSL methods as compared to noSSL (higher
values are better). The box plot on the right visualizes an aggre-
gated distribution of incremental recall. Figure from [MS17].

In Fig. 17 we present a comparison of those methods on the ML1M
dataset. The figure presents incremental recall@10 over time (higher
results are better). The right part of the figure shows a box plot with
a simplified distribution of incremental recall. The middle bars of the
boxes represent the median of recall values and the hinges stand for
the first and third quartile of the distribution.

126 semi-supervised learning

Figure 18.: Incremental Recall@10 over time on the Movielens 100k dataset
achieved by different SSL methods as compared to noSSL (higher
values are better). Figure from [MS17]

Figure 19.: Incremental Recall@10 over time on the Flixster (10k users) dataset
achieved by different SSL methods as compared to noSSL (higher
values are better). Figure from [MS17]

Figure 20.: Incremental Recall@10 over time on the Epinions (5k users) dataset
achieved by different SSL methods as compared to noSSL (higher
values are better). Figure from [MS17]

Figure 21.: Incremental Recall@10 over time on the Netflix (10k users) dataset
achieved by different SSL methods as compared to noSSL (higher
values are better). Figure from [MS17]

6.5 experiments 127

Fig. 17 shows that SSL3, i.e. co-training with three learners, per-
formed the best on the Movielens 1M dataset, followed by the SSL2

method. Self-learning performed worse than noSSL and converged
towards the noSSL-level towards the end of the dataset.

Tab. 17 shows the corresponding numerical values together with
the parameter and component settings used in this experiment. This
table is grouped with respect to datasets and methods. For instance,
for the ML1M dataset and the SSL3 method the optimal number of
dimensions k was 30, the regularization λ was 0.03 and the best reli-
ability estimator was the global sensitivity estimator. In the table we
do not present the learning rate parameter η, since its optimal value
was 0.003 for all methods on all datasets. Also the periodicity of unsu-
pervised learning (USL) m was set to 50 (USL every 50 rating), where
z = 100 unlabelled instances were selected. SSL3 improved the incre-
mental recall by ca. 8 % compared to noSSL on this dataset. However,
the computation time was longer by ca. 18 milliseconds on average for
each data instance.

To show that this improvement is statistically significant and not
due to a chance, we performed the McNemar’s test, as described in
Sec. 6.4.3. In Table 18 we show the resulting p-values corrected for
multiple testing using the Hommel’s method. The columns in the ta-
ble represent different hypothesis. The second column, for instance,
indicates the p-values from the comparison of SSL3 to noSSL. For the
ML1M dataset this value is extremely low indicating that the improve-
ment due to SSL3 is highly significant (low p-values are better). Also
SSL2 achieves a significant improvement compared to noSSL. Self-
learning was not significantly better on the ML1M dataset.

While the improvement on ML1M dataset was 8%, on the ML100k
dataset it reached a substantial improvement from 0.0872 (noSSL) to
0.2718 (SSL3). The comparison for this dataset is presented in Fig. 18.
Similarly to ML1M, SSL3 is the best performing method, followed
by SSL2. SL achieved no substantial improvement. Also here, the im-
provement is at cost of computation time that increased by 11.5% for
SSL3 (cf. Tab. 17). Statistical significance was achieved by both SSL3

and SSL2 (cf. Tab. 18).
On the Flixster dataset (random sample of 10 000 users) the self-

learning method showed the best performance (cf. Fig. 19). SSL3 im-
proved the results towards the end of the dataset and SSL2 preformed
lower than noSSL. Consequently, only SL and SSL3 achieved statistical
significance in the McNemar’s test.

On the Epinions dataset (random sample of 5 000 users), which
shows the highest sparsity of all tested datasets, SSL2 performed the
best. SSL3 achieved a similar performance at the end of the data
stream, but it was dominated by the noSSL baseline on parts of the
data stream. SL preformed well initially, but did not achieve a sig-

128 semi-supervised learning

nificant improvement over noSSL (cf. Tab. 18). Both SSL2 and SSL3

yielded a significant improvement over noSSL. However, the compu-
tation time for a data instance rose from 18.3 ms with noSSL to 311.7
ms with SSL3.

On the Netflix dataset (random sample of 10 000 users) improve-
ments of recommendation quality are clear for all SSL methods. This
is also reflected by p-values in Table 18.

To summarise, our SSL framework achieved significant improve-
ments in the recommendations quality on all datasets. However, the
computation time rose, especially when SSL3 was used. Nevertheless,
the average processing time of a single data instance remained in the
range of milliseconds, ensuring that our approach can be used in real
time.

6.5.3 Analysing the Impact of Component Implementations

In our framework we propose multiple components and several possi-
ble implementations for each of them. To find the best implementation
for each of the components, in this section we present an analysis of
impact of the implementations onto the quality of recommendations
(IncrementalRecall@10).

In Fig. 22 we present the results of this analysis. Each sub-plot repre-
sents the impact analysis of one component. To quantify the impact an
implementation has, we performed a series of experiments with the
approximately optimal parameter setting from the grid search. Only
the implementation of the analysed component varied between sin-
gle experiments. Those experiments were run on all datasets. In the
stacked bar plot in Fig. 22 we observe the cumulative performance of
each implementation on all datasets.

Since not all datasets are equally difficult (e.g. incremental recall
of 0.009 on Epinions dataset is a high result, while on other datasets
it would be considered low), we normalized the bar height for each
dataset separately. This gives the same importance to each dataset in
the cumulative sum. The labels within the bars, however, indicate the
incremental recall before normalization. This is the reason why in the
first column, for instance, the bar with IncrementalRecall@10 of 0.006

on the Epinions dataset is higher that 0.058 on the ML1M dataset.
In the upper left subplot of Fig. 22 we see several instances of the

reliability estimator component together with their cumulative perfor-
mance on all datasets (cf. colour legend). The best cumulative perfor-
mance was reached by the "STUser Popularity" reliability estimator
with the stream-based normalization (ST for self-tuning). It is followed
by the "Item Recall-based" estimator, "User Popularity" estimator and
"User Recall-based" estimator with similar results. Those implementa-

6.5 experiments 129

Method k λ
Reliability

Estim.
Prediction
Assembler

Unlabelled
Instance
Selector

Training Set
Splitter

Avg.
IR@10

t̂
(ms)

ML1M
noSSL 30 0.03 - - - - 0.1103 0.2

SL 30 0.03 Random
Reliability-
weighted

Item-RMSE-
based

- 0.1082 1.2

SSL3 30 0.03

Global
Sensitivity

Reliability-
weighted

User-Recall-
based

Dim.-preserving
Random

0.1190 18.1

SSL2 30 0.03

Global
Sensitivity

Global-
Recall-based

Latent User
Disagreement

Dim.-preserving
Random

0.1160 9.1

ML100k
noSSL 50 0.03 - - - - 0.0872 0.2

SL 50 0.03

ST-User
Popularity

Max.
Reliability

Item-RMSE-
based

- 0.0884 0.5

SSL3 30 0.01

ST-User
Popularity

Max.
Reliability

Random
Dim.-preserving

Random
0.2718 2.3

SSL2 30 0.01

ST-User
Popularity

Max.
Reliability

Item-Recall-
based

User Size Splitter 0.2016 2.6

Flixter 10k users
noSSL 50 0.03 - - - - 0.2147 0.3

SL 30 0.03

Global
Sensitivity

Global-
Recall-based

Random - 0.2205 1.1

SSL3 30 0.03

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

Dim.-preserving
Random

0.2144 30.9

SSL2 30 0.03

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

Item Size Splitter 0.2085 16.2

Epinions 5k users
noSSL 50 0.01 - - - - 0.0018 18.3

SL 30 0.03

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

- 0.0024 41.9

SSL3 30 0.01

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

User Size Splitter 0.0020 311.7

SSL2 30 0.01

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

User Variance
Splitter

0.0031 165.8

Netflix 10k users
noSSL 50 0.01 - - - - 0.2337 0.4

SL 50 0.01

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

- 0.2412 3.1

SSL3 30 0.01

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

Dim.-preserving
Random

0.2409 57.8

SSL2 50 0.01

Global
Sensitivity

Global-
Recall-based

Item-Recall-
based

Item Average
Splitter

0.2388 34.2

Table 17.: Results of our SSL framework in comparison to the noSSL method
on five datasets together with the corresponding parameter set-
tings. Values of average incremental recall (Avg. IR@10) better than
in noSSL are marked in bold. On all datasets our SSL framework
achieved an improvement, however, at cost of average computation
time for a data instance t̂. (table from [MS17])

130 semi-supervised learning

STUser Popularity

Item Recall-based

User Popularity

User Recall-based

Item Popularity

Item RMSE-based

Global Sensitivity

STGlobal Sensitivity

STItem Popularity

Random

STUser Sensitivity

User Sensitivity

User RMSE-based

Im
p
le

m
e
n
ta

tio
n

Avg. Incremental Recall

0
.2

7
2

0
.0

8
7

0
.0

8
6

0
.0

8
6

0
.0

8
7

0
.0

8
7

0
.0

8
6

0
.0

8
6

0
.0

8
7

0
.0

8
5

0
.0

8
5

0
.0

8
5

0
.0

8
5

0
.0

0
6

0
.0

0
7

0
.0

0
7

0
.0

0
7

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
1

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

5
8

0
.1

1
7

0
.1

1
8

0
.1

1
7

0
.1

1
7

0
.1

1
8

0
.1

1
9

0
.1

2
0

0
.1

2
5

0
.1

2
1

0
.1

1
9

0
.1

1
8

0
.1

1
8

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
5

0
.2

1
4

0
.2

1
5

0
.2

1
4

0
.2

1
4

0
.2

4
0

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
0

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
0

R
e
lia

b
ility

 E
stim

a
to

r

Latent Item Disagreement

User-Recall-based

Random

User-RMSE-based

Latent User Disagreement

Item-Recall-based

Item-RMSE-based

Im
p
le

m
e
n
ta

tio
n

Avg. Incremental Recall

0
.2

6
8

0
.2

6
2

0
.2

7
2

0
.2

6
5

0
.2

6
0

0
.2

6
6

0
.2

6
7

0
.0

0
9

0
.0

0
7

0
.0

0
6

0
.0

0
6

0
.0

0
6

0
.0

0
2

0
.0

0
0

0
.1

0
5

0
.1

1
9

0
.1

1
8

0
.1

1
7

0
.1

1
7

0
.1

1
2

0
.1

1
3

0
.2

0
7

0
.2

1
3

0
.2

1
5

0
.2

1
4

0
.2

1
1

0
.2

1
4

0
.2

1
4

0
.2

2
6

0
.2

4
1

0
.2

4
2

0
.2

4
1

0
.2

4
2

0
.2

4
1

0
.2

4
1

U
n
la

b
e
lle

d
 In

sta
n
ce

s S
e
le

cto
r

Max. Reliability

Item-Recall-based

User-Recall-based

User-RMSE-based

Global-RMSE-based

Reliability-weighted

Item-RMSE-based

Global-Recall-based

Im
p
le

m
e
n
ta

tio
n

Avg. Incremental Recall

0
.2

7
2

0
.0

8
6

0
.0

8
6

0
.0

8
6

0
.0

8
6

0
.0

0
8

0
.0

8
6

0
.0

8
6

0
.0

0
8

0
.0

0
8

0
.0

0
5

0
.0

0
5

0
.0

0
4

0
.0

0
5

0
.0

0
2

0
.0

0
2

0
.1

1
9

0
.1

1
9

0
.1

1
9

0
.1

1
9

0
.1

1
9

0
.1

1
9

0
.1

1
9

0
.1

1
9

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
4

0
.2

1
5

0
.2

1
4

0
.2

3
8

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

0
.2

4
1

P
re

d
ictio

n
 A

sse
m

b
le

r

Item Average Splitter

Dim.-preserving Random

User Average Splitter

Random

User Size Splitter

User Variance Splitter

Im
p
le

m
e
n
ta

tio
n

Avg. Incremental Recall

0
.2

7
2

0
.2

7
2

0
.2

7
1

0
.2

6
0

0
.2

6
7

0
.2

6
0

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.1

2
3

0
.1

1
9

0
.1

1
6

0
.1

1
5

0
.1

1
0

0
.1

2
4

0
.2

0
8

0
.2

1
4

0
.2

0
6

0
.2

0
6

0
.2

0
1

0
.2

0
5

0
.2

3
2

0
.2

4
1

0
.2

3
1

0
.2

3
1

0
.2

3
4

0
.2

3
1

T
ra

in
in

g
 S

e
t S

p
litte

r

D
a
ta

se
t

M
L1

0
0
k

E
p
in

io
n
s 5

k
M

L1
M

Flix
te

r 1
0
k

N
e
tflix

 1
0
k

Figure
2

2.:A
nalysis

of
im

pact
of

com
ponent

instances
onto

the
quality

of
recom

m
endations

(avg.increm
ental

recall).W
e

conducted
experim

ents
w

ith
the

optim
alparam

eter
setting,w

here
only

one
com

ponent
varied

(e.g.reliability
estim

ator
in

the
upper

left
subplot).C

om
ponent

instances
w

ith
the

highest
cum

ulative
sum

of
perform

ance
on

alldataset
are

the
best

(leftm
ost

in
allsubplots).Figure

from
[M

S
1

7]

6.6 conclusions from semi-supervised learning 131

P-values

Dataset SSL3 vs. noSSL SSL2 vs. noSSL SL vs. noSSL

ML1M 4.400e-16 4.400e-16 0.6058

ML100k 4.400e-16 4.400e-16 0.5722

Flixster (10k users) 0.006648 0.992 4.431e-10

Epinions (5k users) 1.9592e-08 6.6e-16 1

Netflix(10k users) 4.400e-16 2.612e-15 4.400e-16

Table 18.: P-values from the McNemar’s test, corrected for multiple testing
according to the Hommel’s method (cf. Sec. 6.4.3). P-values lower
than 0.05 are marked in red. They indicate a statistically significant
improvement over the noSSL algorithm (lower values are better).
Table from [MS17]

tions of the reliability estimator answer our research question about
how to select reliable predictions to learn from (RQ 3.2).

The upper right subplot presents the same analysis for the unla-
belled instance selector component. Here, the "Latent Item Disagree-
ment" reached the best performance. However, the random selector
achieved a similar result while being computationally less expensive.
Therefore, in time-critical application scenarios we recommend the us-
age of the random unlabelled instance selector. This is also our answer
to RQ 3.1 about how to select unlabelled instances as candidates for
semi-supervised learning.

The best implementation of the prediction assembler component is
based on "Max.l Reliability", i.e. the prediction with maximal relia-
bility serves as the final prediction of all co-trainers. This prediction
assembler answer our question about how to aggregate multiple pre-
dictions of a co-training approach into one prediction of the entire
system (RQ 3.3). Using reliability estimates as weights performed rel-
atively poor (sixth place in the figure).

As a method of splitting the training dataset among co-trainers the
"Item Average Splitter" works the best. It assigns items with differ-
ent average ratings to different co-trainers (e.g. good items to one co-
trainer, bad items to the other one), so that they can specialize on each
subgroup. This implementation answers our research question regard-
ing the division of labelled instances among different co-trainers in a
semi-supervised setting (RQ 3.4).

6.6 conclusions from semi-supervised learning

Recommender systems suffer from extreme data sparsity. Only few
items are labelled by users. Therefore, the number of unlabelled items
is unproportionally higher than the number of labelled ones. We pro-

132 semi-supervised learning

pose a novel framework for stream-based semi-supervised learning
for recommender systems that selectively exploits this abundant unla-
belled information and alleviates the sparsity problem.

We proposed the first such framework for stream-based recommender
systems. We implemented two semi-supervised learning approaches:
self-learning and co-training and evaluated them in a streaming set-
ting on five real-world datasets. We have shown that our SSL frame-
work achieves statistically significant improvements in the quality of
recommendations. The best performing approach is co-training with
three learners (SSL3). This approach achieved significant improvements
compared to noSSL on all datasets. Co-Training with two learners
(SSL2) was significantly better than noSSL on four out of five datasets.
The improvements achieved by the self-learning method were not con-
sistent on all datasets. Therefore, we recommend this technique only
after prior testing.

The improvements due to the co-training approach show that se-
lective learning from unlabelled information improves the quality of
recommendations. Therefore, we answer the RQ 3 positively.

Even though the computation time increased, especially with the
SSL3 method, the resulting computation time for each data instance
remained in the range of milliseconds (maximally 311.7 ms on the
Epinions dataset). This proves the applicability of our framework to
real-time applications.

In our experiments we used the BRISMF algorithm by Takács et
al. [Tak+09], a state-of-the-art matrix factorization algorithm. We ex-
tended the it by the ability to add dimensions to a rating matrix dur-
ing runtime, as new users and items appear in the stream. This is an
important feature, especially for volatile applications.

We also introduced a new evaluation protocol for stream-based rec-
ommender systems that incorporates statistical testing, a correction
for multiple tests and a sophisticated method of splitting datasets for
an unbiased stream-based evaluation.

A limitation of our method is the computation time, which forced
us to limit the number of co-trainers. While three co-trainers still
showed to be applicable in real-time, their number cannot be much
higher at the current state-of-the-art. This problem could be alleviated
by parallelization and distributed computing.

Also, in our current framework, co-trainers use different views of
the training data during the batch training phase. In the streaming
mode, all co-trainers receive the same training instances. While it is
not a problem for short streams, in potentially infinite streams the co-
trainers can approximate each other (i.e. they can converge to predict
the same values). In this case the advantage of SSL would slowly de-
grade and the performance of the algorithm would converge towards
the performance of a noSSL algorithm. Once this happens, a retrain-

6.6 conclusions from semi-supervised learning 133

ing of the models with new data is needed. In our future work, we
plan to extend our framework so that views are also applied online
onto the stream instances. Thus, the potential retraining of models
would not be necessary.

7
E X P E R I M E N TA L F R A M E W O R K

To answer our research questions we have developed an experimen-
tal framework that made extensive experimentation possible. In this
chapter, we describe two essential aspects of our framework:

• a component for automatic hyper-parameter optimization

• a mechanism for distributed computation of experiments

In Sec. 7.1 we explain the motivation behind hyperparameter op-
timization and describe our comparative study of different optimiza-
tion algorithms in the context of recommendation algorithms.

To answer our research questions in a reliable way a large number
of experiments is necessary. To conduct such a large number of ex-
periments our framework includes a mechanism for distributing the
computation. In Sec. 7.2 we explain this mechanism and describe how
the numerous experiments can be distributed across multiple comput-
ers using Apache™ Hadoop ® 1. Sec. 7.1 comes (with modifications)
from our paper on hyperparameter optimization [Mat+16].

7.1 comparative study on hyperparameter optimization

in recommender systems

In this section, we discuss hyperparameter optimization (HPO) in rec-
ommender systems. First, in Sec. 7.1.1, we motivate the need for HPO.
Sec. 7.1.2 describes the related work on HPO techniques. In Sec. 7.1.3,
we describe the implemented algorithms. In Sec. 7.1.13 we explain
our evaluation protocol. Experiments and results are presented in Sec.
7.1.14. In Sec. 7.1.15 we draw conclusion from this study.

7.1.1 Motivation for Hyperparameter Optimization

Hyperparameter optimization is an indispensable tool for researchers
and practitioners working with machine learning and data mining al-
gorithms. Many of those algorithms are highly sensitive to parameter
setting, which is considered a task of a human expert. An example is
the k-means algorithm that requires setting of the parameter k, i.e. the
number of centroids. Setting a non-optimal number results in cluster-
ing of a bad quality. Often human experts have no means to know in
advance what a good hyperparameter setting is. Therefore, they try

1 http://hadoop.apache.org/

135

http://hadoop.apache.org/

136 experimental framework

several settings blindly until an acceptable setting is found. Hyperpa-
rameter optimization algorithms offer a solution to this problem.

For researchers hyperparameter optimization is essential, for in-
stance, when comparing two algorithms. Let A and B be two algo-
rithms with different hyperparameters that need to be tuned. After
experimental evaluation we obtain the error measure H of the two
algorithms: HA and HB. Let HA < HB. When the tuning is done man-
ually by a human, it is unknown if the difference in the measured
error is due to the algorithm A being better than B, or it is because the
human expert tuned A better than B. A reliable conclusion is not pos-
sible. To marginalize the influence of the human expert, an objective
and fair tuning component is required. Hyperparameter optimization
methods play the role of the objective component.

Formally, we define the hyperparameter optimization task as fol-
lows. Let A be the target algorithm with n number of parameters to
be tuned. Each parameter θi can be a value taken from an interval
[ai, bi] in parameter configuration space Θ = [a1, b1]× . . .× [an, bn]. Let
the vector

→
θ = [θ1, θ2, . . . , θn] represent a parameter configuration and

H : Θ → R be an error measure that maps
→
θ to a numeric score com-

puted over a set of instances. Therefore, the optimization problem
aims to find

→
θ ∈ Θ that minimizes H(

→
θ). In our problem definition we

partially adopted the notation proposed by Lindawati et al. [LLL11].
As many other algorithms, RS are also sensitive to setting param-

eters correctly. We first investigate which hyperparameter optimiza-
tion method is the most appropriate for them compare nine optimiza-
tion algorithms on four real-world, public, benchmark datasets. As result
of our research, we give clear recommendations to practitioners and
researchers in the RS domain (cf. Sec. 7.1.15).

7.1.2 Related Work on Hyperparameter Optimization

Two main classes of algorithms in the hyper-parameter optimization
are model based (MB) and derivative-free (DF) approaches. MB ap-
proaches approximate the response surface with another function by
sampling points using the current model. DF approaches make use of
heuristics in order to achieve the best parameter combination.

Recently, MB approaches are gaining popularity over DF approaches
due to the fact that evaluating a surrogate model instead of the re-
sponse surface is computationally cheaper. Jones et al. proposed the
Efficient Global Optimization algorithm (EGO), which computes the
expected improvement using a combination of a linear regression
model and a noise-free stochastic Gaussian process model (also known
as DACE model)[JSW98]. Many Sequential Model Based Optimiza-
tion algorithms (SMBO) are based on EGO [Ber+11],[SLA12], among
others also the SMAC algorithm [HHL11] (cf. Sec. 7.1.8). The main

7.1 comparative study on hyperparameter optimization 137

competitor of SMAC is a meta-heuristic called genetic algorithm GGA
[AST09], which combines the power of heuristics and model-based ap-
proaches. A recent direct search approach is CALIBRA. It uses a sim-
ple local search algorithm combined with fractional factorial design
[AL09]. Frank Hutter et al. (the authors of SMAC, which we used in
our experiments, cf. Sec. 7.1.8) implemented another prominent local
search algorithm called PARAMILS[Hut+14], and proved its superior-
ity over CALIBRA.

There is also a wide range of stochastic optimization algorithms.
However, most of them depend on the availability of a gradient (e.g.
stochastic gradient descent, alternating least squares, etc.), making
them inapplicable to our problem. The gradient can be, however, finely
approximated by heuristic algorithms or DF approaches. Commonly
used heuristics encompass genetic algorithms (Sec. 7.1.7), simulated
annealing and particle swarm optimization.

To our knowledge, this is the first such comparative study for rec-
ommender systems. While hyperparameter optimization has been in-
vestigated for classification or regression problems, recommender sys-
tems pose additional challenges that do not occur in conventional re-
gression or classification problems. In contrast to regression problems,
the challenge in RS is often to predict a real-valued sparse matrix of
ratings that express the degree of preference of users towards items.
This results in a different response surface in the optimization prob-
lem than in the case of regression or classification. Consequently, opti-
mization methods known to perform well for the conventional regres-
sion or classification do not necessarily perform well in recommender
systems.

We focus on matrix factorization as recommendation algorithms. MF

algorithms are one of the most successful types of algorithms in rec-
ommender systems. In the current research they are considered state-
of-the-art, since they have shown their superiority in terms of pre-
dictive performance and runtime in numerous publications [Tak+09]
[KBV09]. Hence, in this work we use a generic representative of those
algorithms, the BRISMF algorithm by Takács. et al. [Tak+09], which re-
quires optimization of three parameters: learn rate η, regularization
λ and the number of latent dimensions k. While there are numerous
MF methods, most of them are based on the same principle that the
BRISMF algorithm also uses. Since it is not possible to experiment with
countless variants of MF algorithms, we focus on BRISMF, which is rep-
resentative to most of them and, therefore, allows for generalization.

7.1.3 Hyperparameter Optimization Algorithms

In this section, we provide descriptions of the implemented hyperpa-
rameter optimization algorithms. In the following, we assume without

138 experimental framework

loss of generality that the goal of the algorithms is minimization of an
error function (and not maximization of a quality function). For all of
the described algorithms we use an the same stopping criterion, i.e. a
predefined budget of E experiments. 2

7.1.4 Full Enumeration

Full enumeration (also known as grid search) attempts to calculate all
possible parameter settings. It works only with discrete parameters,
since the number of possible combinations with continuous parame-
ters is infinite. Therefore, it often requires a discretization of parame-
ters. Even then, it is highly inefficient, because the number of possible
combinations grows combinatorially with the number of parameters.

This method iterates over the whole multi-dimensional grid start-
ing from a randomly selected dimension. The dimensions of the grid
are the hyperparameters. A grid point is, therefore, a point in this
hyperparameter space and is equivalent to a hyperparameter setting.
For the sake of feasibility and of a fair comparison to other methods,
we cap this process after 50 experiments (cf. Sec. 7.1.13). This capping
is performed equally with all tested methods.

This method serves to us as a comparison baseline that simulates
behaviour of a user, who starts an optimization, intending to test all
combinations, but interrupts the process due to the excessive compu-
tation time and uses the best result found so far.

7.1.5 Random Search

We use two versions of random search. Random search with discretized
parameters is equivalent to the random grid search. In our experiment
we call it “Random discrete”. The second version works in the con-
tinuous search space and is, therefore, called “Random continuous”
hereafter.

Despite its simplicity the random method has several advantages. It
is highly parallelizable, in contrast to sequential methods, such as Se-
quential Model-based Algorithm Configuration (SMAC). This feature
of random search is particularly useful when a computational cluster
or multi-core processors are available.

Furthermore, it is possible to specify theoretical guarantees on the
goodness of the found optimum, as Bergstra and Bengio did [BB12].
They define a hyper-cube around the optimal point in the search space.
Let v be volume of the hypercube and V volume of the search space.

2 All algorithms presented in this section (except for SMAC) have been implemented
within our framework. In this context we thank our students: Renê Tatua Castillo,
Ananth Murthy, Elson Serrao, Ajay Jason Andrade and Prashanth Siddagangaiah for
their help with the implementation.

7.1 comparative study on hyperparameter optimization 139

Then the likelihood of finding a point in this hypercube after T trials
is equal to:

1− (1−
v
V
)T (73)

If we define v
V as 5%, then the likelihood of finding a setting within

this hypercube after 50 trials amounts to 0.9231.

7.1.6 Random Walk

In random walk (RW), the entire search space can be seen as a (high-
dimensional) grid, where each point represents a specific hyperpa-
rameter setting

→
θ ∈ Θ. The RW algorithm is an iterative method. First,

it selects a random point on the grid and considers it a central grid
point

→
θt

c. Then, it computes the performance of each neighbour sur-
rounding that specific grid point. Using a selection mechanism which
is described later, we select one of the neighbours and make a step
towards this neighbour. This neighbour then becomes the new cen-
tral grid point

→
θt+1

c . The whole process is repeated until a stopping
criterion is satisfied which is either a maximum number of steps t
(iterations) or a maximum number of experiments.

In each iteration of RW a selection of a neighbour is made. We ap-
ply a roulette selection algorithm. According to this algorithm, neigh-
bours with high fitness values have a higher chance to be selected. The
fitness value is computed as follows. We have K neighbours

→
θ1, . . . ,

→
θK

and their error measures H(
→
θ1), . . . , H(

→
θK). We sort them and obtain a

ranking H1, . . . , HK , so that H1 6 . . . 6 Hi 6 . . . 6 HK . Then, the fitness
value fi, assigned for the neighbour at the position i in the ranking is
fi = 1

i·Hi
.

The error measure Hi is multiplied with its ranking i to give more
priority to higher ranked settings. Otherwise, the roulette selection
would be nearly equivalent to a random selection, since H1, ..., Hn are
very similar to each other. Consequently, the probability pi, for select-
ing a neighbour at the position i is:

pi =
fi∑n

i=1 fi
(74)

The pseudo-code for RW is shown in Alg. 11. In our algorithms we
used the naming convention proposed by Hutter et al. [HHL11].

7.1.7 Genetic Algorithm

Genetic algorithms are widely used for solving optimization prob-
lems by exploiting the process of natural selection present in evolu-
tion. Over the last decades, many GA have been proposed by the re-
search community. One of the best known ones is the Simple Genetic

140 experimental framework

Algorithm 11 Random Walk Algorithm
Input: R storage of all runs and their performances;

N the current neighbours;
Θ the configuration space for target algorithm A;
S the max. number of steps;
E the max. number of experiments

Output: Optimized parameter configuration
→
θinc

1: [
→
θinc, R]= Initialization(Θ)

2: while S and E are not exhausted do
3: [N]=GetCurrentNeighbors(

→
θinc,Θ)

4: for i := 1,, length(N) do
5: [R]=RunExperiment(N(i), R)
6: end for
7: [
→
θinc]= GetCurrentGridPointbyRoulette(

→
θinc, R)

8: end while

Algorithm (SGA) by Holland [Hol93], which lays the foundations of
genetic algorithm (GA). GA aims to optimize a function by evolving a
population of candidate solutions (called phenotypes). The informa-
tion of each candidate solution is encoded into an array (called chro-
mosomes) which can be mutated and altered. The symbols that form
the array are called genes.

The GA evolution process is iterative. Usually the first population
is generated randomly, and at each generation the fitness of each
member of the population is evaluated. Only those individuals with
high fitness are likely to transfer their information to the next gener-
ation. The process continues until it reaches a stopping mechanism.
For instance, when a maximum number of generations is reached or
by obtaining a target value within a given threshold. More details
about how GA works can be found in [Hol93]. In Alg. 12 we show the
pseudo-code for the GA.

A selection mechanism is required to evaluate who are the fittest
members in the population. Since the differences in the fitness values
are not high we use selection by ordering. It sorts the candidate so-
lutions in decreasing order of fitness value. The population is then
trimmed to the original population size. Therefore, only the best can-
didate solutions (those with high fitness value) are kept and passed
to the next generation. In our experiments we used the population
size of 4. The pseudo-code for this process is shown in Alg. 13. This
version of genetic we call "GA-ordering" in our experiments. Addi-
tionally, we use another version "GA-roulette", where the selection is
performed by a roulette algorithm.

The recombination (also known as chromosomal crossover) is a con-
vergence operation that is intended to pull the population towards a

7.1 comparative study on hyperparameter optimization 141

Algorithm 12 Genetic Algorithm
Input: R storage of all runs and their performances;

P the current population;
si the original population size;
parameter configuration space Θ;

G maximum number of generations;
E maximum number of experiments (budget)

Output: Optimized parameter configuration
→
θinc

1: [P, R]= Initialization(Θ)
2: while G and E are not exhausted do
3: for i := 1,, length(P) do
4: [R]=RunExperiment(P(i), R)
5: end for
6: SortPopulation(P)
7: TrimPopulation(si)
8: [
→
θinc]=P(0)

9: [P]= GetNextPopulation(P)
10: end while

Algorithm 13 Get Next Population
Input: P a population;

C a chromosome
Output: New population Pnew

1: for i := 1,, length(P) do
2: Pnewadd(P(i))
3: end for
4: for i := 1,, length(P) do
5: C = GetChromosomebyIndex(i)
6: Cmutated = MutateChromosome(C)

7: Crandom = GetRandomChromosome(P)
8: [Ccross1, Ccross2] = Crossover(C, Crandom)

9: Pnewadd(Cmutated)

10: Pnewadd(Ccross1)

11: Pnewadd(Ccross2)

12: end for
13: return Pnew

142 experimental framework

local minimum/maximum by combining genes. On the other hand,
mutation is a divergence operation that acts as a source of diversity.
The GA requires a trade-off between exploitation and exploration sim-
ilarly to other optimization algorithms.

In our application, a chromosome is the parameter vector
→
θ (cf. the

definition in Sec. 7.1.1). Mutation in the chromosome
→
θ is equivalent to

changing a parameter value at a random position m from this vector
into a random value θrandom

m from the predefined interval [am, bm]. The
resulting, mutated chromosome is

→
θ = [θ1, . . . , θrandom

m , . . . , θn] (75)

Crossover is a binary operation that swaps parts of two chromo-
somes with each other. Let

→
θy and

→
θz be chromosomes of length n. A

result of crossover on
→
θy and

→
θz looks as follows:

→
θy = [θy1 , . . . , θym , θzm+1 , . . . , θzn] (76)

and

→
θz = [θz1 , . . . , θzm , θym+1 , . . . , θyn] (77)

where m is a random number from [0, . . . , n].

7.1.8 Sequential Model-based Algorithm Configuration

Sequential Model-based Algorithm Configuration (SMAC) [HHL11] is
a state-of-the-art, model-based algorithm using Sequential Model-Based
Optimization (SMBO). SMBO tackles optimization problems by using
four components: an initialization mechanism, a surrogate model, a
selection mechanism, and an intensification phase. As described in
[HHL11], the first step in SMBO algorithm is the “initialization mech-
anism” which aims to find the best initial configuration

→
θinc. Random

or default selection is commonly used in this step. In the next step a
model M is fitted in order to characterize the response surface H (the
surface defined by the error measure). M uses all target algorithm
runs performed so far as training data . In other words, a training set
of K instances can be seen as

{(
→
θ1, H(
→
θ1)), . . . , (

→
θK , H(

→
θK))} (78)

where a parameter configuration is
→
θi and H(

→
θi) is the corresponding

target algorithm’s observed performance. The selection mechanism’s
main goal is to select the most promising parameter configurations
based on M and the configuration’s expected improvement EI. EI(

→
θ)

tells us how promising a configuration
→
θ could be by giving a trade-off

7.1 comparative study on hyperparameter optimization 143

between exploration and exploitation. More details about the calcula-
tion of expected improvement can be found in [JSW98]. Finally, the in-
tensification mechanism compares a list of promising configurations
P against the current incumbent

→
θinc in order to select the new incum-

bent for the next iteration. The SMBO algorithm is shown in Alg. 14.
This pseudo-code comes from [HHL11] and was minimally adjusted
to our problem definition.

Algorithm 14 Sequential Model Based Algorithm [HHL11]
Input: R storage of all runs and their performances;

M a model;
P list of promising configurations;
t f it the run times required to fit the;
E the maximum number of experiments (budget) model
tselect the run times required to select configurations;

c the cost metric.
Output: Optimized parameter configuration

→
θinc

1: [
→
θinc, R]= Initialize(Θ)

2: while total time for configuration or budget not exhausted do
3: [M, t f it]= FitModel(R)
4: [P, tselect]= S electCon f igurations(M,

→
θinc,Θ)

5: [R,
→
θinc]=Intensi f y(P,

→
θinc, M, R, t f it, tselect, c)

6: reduce available time and budget
7: end while
8: return(

→
θinc)

Internally, SMAC models are based on random forests [Bre01], a ma-
chine learning technique for classification and regression tasks. Ran-
dom forest models are, in this case, an ensemble of regression trees.
SMAC uses random forest models to compute EI and implements its
own simple multi-start local search for finding configuration

→
θ with

large EI(
→
θ). In [HHL11], SMAC is explained in more detail. In our ex-

periments we used the SMAC software developed by Hutter et al.3.
While SMAC can use two types of stopping criteria: a time budget or

a maximal number of experiments, we use only the latter for the sake
of comparison with other algorithms.

7.1.9 Greedy Search

Greedy search optimizes only one dimension/parameter at a time,
while keeping other dimensions fixed. To optimize one dimension, it
sets the value of the corresponding parameter to a random value. For

3 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

144 experimental framework

Algorithm 15 Greedy search algorithm
Input: R storage of all runs and their performances;

E the maximum number of experiments (budget)
Output: Optimized parameter configuration

→
θinc

1: [
→
θinc, R]= RandomInitialization(Θ)

2: while E is not exhausted do
3: for ∀θi ∈

→
θinc do

4: for i := 1,,
√

E
|
→
θinc|

do

5: θnew
i = random ∼ U{ai, bi}

6:
→
θinc = [θ1, ..., θnew

i , ..., θn]

7: [R]=RunExperiment(
→
θinc, R)

8: end for
9: θi = R.getBest

→
θ.get(θi)

10: end for
11: end while

each parameter it selects m random samples. m is determined accord-
ing to a heuristic rule m =

√
E/n, where E is the maximal number

of experiments (so called budget) and n is the dimensionality of the
search space. Then, the value of the parameter is fixated to the best
setting from the random samples and the procedure is repeated with
all remaining parameters. A pseudo-code explaining this procedure
in detail in shown in Alg. 15.

7.1.10 Simulated Annealing

Simulated Annealing (SA) is a method motivated by the cooling pro-
cesses observed in metals. SA uses temperature as a control variable
that determines the probability of acceptance of worse solutions than
the current one. As temperature goes down, the probability of accept-
ing worse solutions also decreases.

SA systematically compares the current incumbent (parameter set-
ting) with random configurations (so called neighbours). Then, a dif-
ference ∆ in the error measure between the incumbent and each neigh-
bour is computed. The probability of accepting a neighbour as new
incumbent depends on the current temperature and ∆. It is calculated

using the formula e−(
∆

Temp). Finally, the temperature is updated using a
cooling schedule (e.g. linear or geometric). The algorithm stops when
it reaches a maximum number of experiments or when a temperature
threshold is reached. The pseudo-code in Alg. 16 describes SA.

In our experiments we use two versions of SA with a different defini-
tion of a neighbourhood. The first version "SA-discrete" uses a discrete
grid and considers adjacent nodes in the grid neighbours. The second

7.1 comparative study on hyperparameter optimization 145

version "SA-Gaussian" uses a Gaussian distribution with mean equal
to current parameter value and standard deviation adjusted so that
98% of points lay in the range of parameter values. According to this
variant of SA, a neighbouring value is a sample from this distribution.
For more details and the initial publication on SA we refer to [KJV83].

Algorithm 16 Simulated annealing algorithm
Input: R storage of all runs and their performances;

E the maximum number of experiments;
Tini the initial temperature;
Tmin the minimal temperature;
N current neighbours;
Trate temperature cooling rate.

Output: Optimized parameter configuration
→
θinc

1: [
→
θinc, R]= RandomInitialization(Θ)

2: Temp = Tini

3: while E is not exhausted and Temp > Tmin do
4: [N]=GetCurrentNeighbors(Θ)
5: for i := 1,, lenght(N) do
6: [R]=RunExperiment(N(i))
7: ∆ = RN(i) − R→

θinc

8: P = e−(
∆

Temp)

9: if P > random ∼ U{ai, bi} then
10:

→
θinc = N(i)

11: end if
12: end for
13: Temp = Temp ∗ Trate

14: return(
→
θinc)

15: end while

7.1.11 Nelder-Mead

This algorithm, also called downhill simplex method, minimizes a
function by spanning a simplex in the parameter space. This simplex
has k + 1 vertices, where k is the number of dimensions of the param-
eter space. In two dimensional space, for instance, the simplex is a
triangle.

The position of the vertices of the first simplex is determined ran-
domly. After that, the simplex is transformed iteratively by using a
set of operations: reflection, contraction and expansion described in
[NM65]. For every new vertex determined by those operations the
function value is calculated. Based on its value, further transforma-

146 experimental framework

Algorithm 17 Nelder-Mead algorithm [NM65]
Input: E the maximum number of experiments;

α reflection coefficient;
γ expansion coefficient;
ρ contraction coefficient;
σ shrink coefficient;
n number of parameters to be tuned.

Output: Optimized parameter configuration
→
θ0

1: initialize n + 1 points randomly→→θ0,
→
θ1, ...,
→
θn

2: while E is not exhausted do
3: sort the points

→
θ0,
→
θ1, ...,
→
θn (best first)

4: calculate a centroid
→
θm of
→
θ0, ...,
→
θn−1(without the worst point)

5: calculate the reflection
→
θr of the worst point

→
θn using the centroid

→
θr = (1+ α)

→
θm − α ·→θn

6: if H(
→
θ0) 6 H(

→
θr) < H(

→
θn−1) then

7:
→
θn :=
→
θr

8: GoTo line 2

9: end if
10: if H(

→
θr) < H(

→
θ0) then

11: calculate the expanded point
→
θe =
→
θm + γ · (→θr −

→
θm)

12:
→
θn := arg min

x∈{→θe,
→
θr}

H(x)

13: GoTo line 2

14: end if
15: if H(

→
θr) > H(

→
θn−1) then

16:
→
θc :=
→
θm + ρ(

→
θn −
→
θm)

17: if H(
→
θc) < H(

→
θn) then

18:
→
θn :=
→
θc

19: GoTo line 2

20: end if
21: end if
22: for i ∈ {1, ..., n} do
23:

→
θi =
→
θ0 +σ(

→
θi −
→
θ0)

24: end for
25: GoTo line 2

26: end while
27: Return

→
θ0

7.1 comparative study on hyperparameter optimization 147

tions are carried out iteratively to minimize the values associated with
vertices.

An important feature of the Nelder-Mead algorithm is that is does
not require the function to be differentiable, in contrast to e.g. gra-
dient descent. Its transformations are based solely on the function
values evaluated at the vertices of the simplex. This advantage is es-
sential when optimizing e.g. RMSE as a function of hyperparameters in
recommender systems. In Alg. 17 we present the pseudo-code of this
algorithm. For details on the transformations, we refer to the work by
Nelder and Mead [NM65].

7.1.12 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization method pro-
posed originally by Eberhart and Kennedy [EK95]. It is inspired by
the behaviour of swarms in nature. Accordingly, this optimization
methods maintains a population of particles (parameter settings in
our case) called "swarm".

First, the positions of the particles in the swarm are initialized ran-
domly (cf. pseudo-code in Alg. 18). Each particle maintains addition-
ally its velocity vector and its best position. The entire swarm also
stores its best position. Subsequently, guided by the optimum of the
swarm and their local optima, each particle in the swarm adjusts its
position using the previous position and its velocity. The velocity is de-
rived from the distance of a particle from its own optimum and from
the swarm’s optimum. Additionally, updating the velocity contains a
random component.

7.1.13 Evaluation Settings

Our evaluation framework provides a fair and realistic comparison
of different hyperparameter optimization methods for recommender
systems. In particular:

• The hyperparameter optimizer cannot access information from
a hold-out evaluation set (it provides a parameter configuration
using only the given training data),

• We repeat the experiments several times to exclude random ef-
fects,

• In every repetition each algorithm uses the same permutation of
data.

This evaluation framework is given in Alg. 19. As input, it uses a
list of different hyperparameter optimization algorithms to be evalu-
ated, a dataset, a recommender system algorithm, and the number of
repetitions of experiments.

148 experimental framework

Algorithm 18 Particle Swarm Optimization
Input: E the maximum number of experiments;

S number of particles;
n number of parameters to optimize;
ω parameter controlling the impact of past particle speed;
ϕp parameter controlling the impact of the distance from the

particle optimum;
ϕg parameter controlling the impact of the distance from the

swarm optimum.
Output: Optimized parameter configuration

→
θ∗G

1: for s ∈ {1, ..., S } do
2: the position of the particle

→
θs ∈ Rn is initialized randomly

3: the velocity of the particle→vs ∈ Rn is initialized randomly
4: particle’s best position is initialized

→
θ∗s :=
→
θs

5: end for
6: swarm’s best position is initialized

→
θ∗G := arg min

x∈{→θ1,...,
→
θS }

H(x)

7: while E is not exhausted do
8: for s ∈ {1, ..., S } do
9: random numbers a and b are generated

10: particle’s
→
θs velocity is updated→vs := ω ·→vs + ϕp · a · (

→
θ∗s −
→
θs) +

ϕg · b · (
→
θ∗G −
→
θs)

11:
→
θs :=
→
θs +
→vs

12: if H(
→
θs) < H(

→
θ∗s) then

13:
→
θ∗s :=
→
θs

14: end if
15: if H(

→
θs) < H(

→
θ∗G) then

16:
→
θ∗G :=

→
θs

17: end if
18: end for
19: end while
20: Return

→
θ∗G

7.1 comparative study on hyperparameter optimization 149

Algorithm 19 Evaluation Framework
Input: HO (list of hyperparameter optimizers)

X (dataset)
RS (recommender system)
M (number of repetitions, e.g., 100)
N (number of experiments, e.g., 50)

1: for i ∈ {1, . . . , M} do
2: res∗ ← { }

3: for j ∈ {1, . . . , N} do
4: (XRS Tr, XRS Te, Xeval)← randSplit(X)
5: for HO ∈ HO do
6: Training phase
7: θ← nextParam(HO, resHO)

8: rstr ← trainRS(RS , θ, XRS Tr)

9: per ftr ← evalPerf(rstr, XRS Te)

10: resHO ← resHO ∪ {(θ, per ftr)}

11: Evaluation phase
12: θ∗ ← getBestParam(resHO)

13: rsev ← trainRS(RS , θ∗, XRS Tr ∪ XRS Te)

14: per f (i,HO, j)
ev ← evalPerf(rsev, Xeval)

15: end for
16: end for
17: end for

The outer loop repeats the whole experiment a given number of
times (in this work: M = 100). To decide on the best parameter setting,
each optimizer has to store all tested parameter configurations and the
corresponding performances. This is done in res∗ which is initialized
with an empty set (∗ indicates that all cells are initialized accordingly).
The optimizer is allowed to conduct a given number of experiments
(in this work: N = 50) with different parameters.

In each experiment, we split the dataset into three non-overlapping
subsets (40%, 27%, 33%). The first two of them (XRS Tr, XRS Te) are train-
ing sets for the hyperparameter optimizer. More specific, the first one
is used to train a recommender system with a chosen parameter set-
ting and the second one to test the recommender. The evaluation set
is not accessible to the optimizer to ensure unbiased results.

After splitting the dataset, each hyperparameter optimizer HO se-
lects its next parameter setting θ. The recommender RS is trained on
the training set XRS Tr with the chosen parameters, which are then
evaluated on XRS Te to obtain a performance score. Each parameter-
performance-tuple (θ, per ftr) is added to the optimizer’s result set
resHO.

150 experimental framework

In the evaluation phase, we determine the best parameter setting
based on the calculated parameter-performance-tuples, i.e. the one
with the best training performance. Using this parameters θ∗, we train
a recommender on all available training data (XRS Tr ∪ XRS Te), and eval-
uate it on Xeval to obtain the evaluation performance. To evaluate the
quality of a recommender system, we use the RMSE measure.

Since every optimization method can request RMSE values for a se-
quence of 50 parameter settings, the result is a learning curve that
shows how this method reduces the RMSE with every further experi-
ment performed. Example of such learning curves are shown in Fig.
23 (any blue curve). This figure shows the evaluation RMSE score of
each repetition (blue) of the greedy algorithm w.r.t. the experiment
number on the Netflix dataset. Since comparing 100 learning curves
of one method to sets of curves of a different method would be im-
possible, we aggregate all those 100 curves into one median curve and
plot its 25th and 75th percentiles using the shaded area. This means
that half of all curves lies in the shaded area (cf. the red curve in
Fig. 23). This enables a simple comparison of many methods. Conse-
quently, all curves in the next section are the median curves.

0 10 20 30 40
Experiment Number

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

R
M

S
E

Netflix

Figure 23.: An example of learning curves of the greedy algorithm on the
Netflix dataset. To prevent random effects, every algorithm was
run 100 times (blue curves). For comparison, we aggregate them
into a median learning curve (in red) and indicate the 25th and
75th percentile by red shaded area (figure from [Mat+16]).

7.1 comparative study on hyperparameter optimization 151

7.1.14 Experiments

To evaluate different hyperparameter optimization methods, we use
four real-world datasets from the RS domain. The datasets are Movie-
Lens 1M and 100k4 [HK16], a sample of 2000 users from the Netflix
dataset5 and 2000 random users from the Flixster dataset6. A descrip-
tion of these datasets is given in Table 19. Since we performed more
than 160,000 experiments in our evaluation, we took a random sample
of 2000 users from the big datasets (i.e. Netflix and Flixter). Without
sampling a comparative study of this size would be not feasible due
to a long computation time. For our computations, we used a cluster
running the (Neuro)Debian operating system [HH12].

Dataset Ratings Users Items Sparsity

ML1M 1,000,209 6,040 3,706 95.53%

ML100k 100,000 943 1,682 93.7%

Flixster (2k) 101,106 2,000 8,419 99.4%

Netflix (2k) 427,223 2,000 13,588 98.43%

Table 19.: Summary of datasets and samples used in hyperparameter opti-
mization experiments (table from [Mat+16]).

For our experiments, we define a search space with three dimen-
sions. The first dimension is k from the matrix factorization algorithm.
k is the number of latent dimensions and it is an integer number in the
range [10, 200]. The second parameter is η, which is a learn rate used
by the stochastic gradient descent in the process of factorizing a rating
matrix. For η we define a range of [0.001, 0.1]. The last parameter is λ.
It is a regularization parameter used also by the gradient descent to
prevent overly high latent factors in the matrix factorization. Its range
is also set to [0.001, 0.1].

Some of the hyperparameter optimization algorithms require dis-
crete parameters. One of them is e.g. the full enumeration (cf. Sec.
7.1.4). Using this method in a continuous search space is not possible
because of the infinite number of parameter values. Therefore, we dis-
cretize the parameters for those methods by determining 20 different,
equidistant values in the aforementioned range. For λ this results in
the following set of possible values: λ ∈ {0.0010, 0.0062, ..., 0.1}.

The same discretization procedure is also applied to the remaining
parameters. According to this discrete definition of parameters, the

4 http://www.movielens.org

5 https://www.netflix.com

6 https://www.flixster.com

http://www.movielens.org
https://www.netflix.com
https://www.flixster.com

152 experimental framework

entire search space encompasses 8000 possible parameter combina-
tions. Every optimization method used in our experiments is allowed
to request computation of maximally 50 parameter combinations.

Since some hyperparameter optimization methods are also paramet-
ric, we specify the parameters that were set manually for this applica-
tion in Tab. 20. Ideally, they should also be optimized, however, it is
not feasible to also optimize the parameters of the optimizers.

Method Parameters

GA pop. size = 4; mutation perc. = 0.5

PSO swarm size = 5; influence by local opt. = 1; influence
by global opt. = 3;

Nelder-Mead reflection coeff.=1; expansion coeff.=2; contraction
coeff.=0.5; shrinking coeff.=0.5

SA cooling schedule=geometric; cooling rate=0.8; iter.
for equilibrium=10; init. temp.=100

Table 20.: Parameters of the hyperparameter optimization methods (table
from [Mat+16]).

In Fig. 24, we present the median learning curves (cf. Sec. 7.1.13) on
a sample of 2000 random users from the Netflix dataset. Every learn-
ing curve represents a median of cumulative minimum achieved over
K experiments, where K is on the horizontal axis. The curves visual-
ize the results of all methods described in Sec. 7.1.3 except for the full
enumeration. The results of this method are considerably worse than
the rest (full enumeration was capped after 50 experiments, same as
all other methods). Therefore, plotting its curve would make the plot
unreadable.

On the Netflix dataset only the random walk algorithm and the full
enumeration worked considerably worse than other methods (lower
values are better). Other optimization methods converged to a similar
level as random methods. The Nelder-Mead algorithm performed the
best most of the time, but only with slightly better results than random
methods or simulated annealing. A high degree of overlapping in the
shaded areas suggests that the differences between the algorithms are
not substantial.

Fig. 25 shows the learning curves on the ML1M dataset. The ran-
dom walk and the full enumeration (not plotted due to high error)
were outperformed by the random methods. Also on this dataset
the Nelder-Mead algorithm dominated other algorithms with only a
marginal improvement as compared to random sampling. At the end

7.1 comparative study on hyperparameter optimization 153

0 10 20 30 40
Experiment Number

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R
M

S
E

Ne tflix

Random Walk GA-Roule tte SA-discre te
GA-Ordering PSO SA-gauss ian

SMAC Random (disc.)
Greedy Random (cont.) Ne lder-Mead

Figure 24.: Median learning curves on a random sample of 2000 users
from the Netflix dataset (lower results are better). Figure from
[Mat+16]

of the optimization, simulated annealing with Gaussian neighbour-
hood reached nearly the same result as the Nelder-Mead algorithm.

We observe similar results on a sample from the Flixster dataset (cf.
Fig. 26). Here, also the Nelder-Mead algorithm achieves the best result
by converging to a similar level as the random algorithms.

Results on the ML100k dataset in Fig. 27 are consistent with previ-
ous observations. The Nelder-Mead algorithm performs the best. Ran-
dom walk and the greedy algorithm are considerably worse.

154 experimental framework

0 10 20 30 40
Experiment Number

0.84

0.86

0.88

0.90

0.92

0.94

0.96

R
M

S
E

ML1M

Random Walk GA-Roule tte SA-discre te
GA-Ordering PSO SA-gauss ian

SMAC Random (disc.)
Greedy Random (cont.) Ne lder-Mead

Figure 25.: Median learning curves on ML1M (figure from [Mat+16]).

7.1.15 Conclusions on Hyperparameter Optimization

In this study we compared nine hyperparameter optimization algo-
rithms. To our knowledge, this is the first such study in the domain of
recommender systems. We performed more than 160,000 experiments
on four real-world datasets.

From our experiments, we conclude that random walk, greedy algo-
rithm and full enumeration (also known as grid search) are certainly
not recommendable. Those algorithms were outperformed by the ran-
dom search on all datasets or, in the best case, converged to the level
of random search.

SMAC, PSO and genetic algorithms performed similarly to the ran-
dom search. The best results were achieved by the Nelder-Mead algo-

7.1 comparative study on hyperparameter optimization 155

0 10 20 30 40
Experiment Number

0.96

0.98

1.00

1.02

1.04

1.06

1.08

R
M

S
E

Flixs te r

Random Walk GA-Roule tte SA-discre te
GA-Ordering PSO SA-gauss ian

SMAC Random (disc.)
Greedy Random (cont.) Ne lder-Mead

Figure 26.: Median learning curves on a random sample of 2000 users from
the Flixster dataset (figure from [Mat+16]).

rithm on all datasets, followed by simulated annealing. Their improve-
ment compared to the random search was, however, only marginal.

Considering the advantages of random search, such as full paral-
lelization, simplicity, constant and nearly negligible computation time,
we clearly recommend the random search for optimizing hyperparam-
eters in the domain of recommender systems. Only in application sce-
narios, where marginal improvements play an important role, the pa-
rameters are numerical and paralleization is not necessary, we recom-
mend the application of the Nelder-Mead algorithm or of simulated
annealing.

156 experimental framework

0 10 20 30 40
Experiment Number

0.90

0.92

0.94

0.96

0.98

1.00

1.02

R
M

S
E

ML100k

Random Walk GA-Roule tte SA-discre te
GA-Ordering PSO SA-gauss ian

SMAC Random (disc.)
Greedy Random (cont.) Ne lder-Mead

Figure 27.: Median learning curves on the ML100k dataset (figure from
[Mat+16]).

7.2 distribution of experiments

To conduct a large number of experiments, e.g. in the process of hy-
perparameter optimization, we extend our framework by the ability
to run several experiments in parallel using the Apache™ Hadoop ®

framework. In HPO we understand as experiment the computation
of a single parameter setting, i.e. computation of a function f that
transforms a parameter setting

→
θ into a real-valued quality or error

measure:

f :
→
θ→ R (79)

HPO is ideal for distributed computing, for the following reasons:

7.2 distribution of experiments 157

• experiments in the optimization process are independent from
each other

• after distribution of the computation, only little communication
between nodes is required

• networking overhead is minimal, since the transferred informa-
tion contains only parameter settings and results (assuming ex-
istence of a distributed storage system for datasets)

• the ratio of networking time to computation time is low

To exploit this potential for parallelization, we express the execution
of HPO in terms of map-reduce functions that the Hadoop ® framework
can parallelize easily. Algs. 20 and 21 show these functions 7.

Algorithm 20 Map

Input:
→
θi a candidate configuration

A a learning algorithm
Tr training set (from a distributed file system)
Te test set (from a distributed file system)

1: A.setParameters(
→
θi)

2: M = A.trainModel(Tr)
3: RMS Ei = M.testModel(Te)

Output: a tuple <
→
θi, RMS Ei >

Algorithm 21 Reduce

Input: list L of <
→
θi, RMS Ei > pairs, |L| = n

1: RMS E∗ = ∞
2: for i := 1,, n do
3: if RMS Ei < RMS E∗ then
4:

→
θ∗ =
→
θi

5: RMS E∗ = RMS Ei

6: end if
7: end for

Output: the optimal tuple <
→
θ∗, RMS E∗ >

The process of hyperparameter optimization starts with an opti-
mization algorithm that defines which parameter combinations are
calculated. This algorithm, e.g. one of the algorithms discussed in the

7 These functions are based on results of a team projects by our students: Renê Tatua
Castillo and Tugce Habip.

158 experimental framework

previous section, creates a list of n parameter configurations
→
θ1, ...,
→
θn.

This list of configurations serves as input to a splitter in the Hadoop
framework. The splitter divides the configurations among several map-
pers. A mapper takes a configuration

→
θi as input and invokes the map

function described in Alg. 20.
In the map function the main part of the computation takes place.

The mapper runs an experiment with the given configuration
→
θi. The

result of this computation is a quality or an error measure. Once the
computation of the given experiment is completed, the mapper issues
a <key,value> pair. In this case it is a <

→
θi, RMS Ei > pair. This process

is repeated by several mappers until the results of all n configurations
are known. This results in a set of <

→
θi, RMS Ei > pairs for all n configu-

rations. They are input to a reducer that calls the function described in
Alg. 21. The goal of the reducer is to aggregate all given <key,value>
pairs into one final result. In our case the reducer returns the opti-
mal parameter setting together with the corresponding RMSE value:
<
→
θ∗, RMS E∗ >. Generally, the Hadoop framework supports usage of

several reducers, however, in our application scenario it is sufficient
to use only one of them. Once the reducer returns the optimal config-
uration

→
θ∗ the distributed hyperparameter optimization is completed.

For the distribution of the optimization process the choice of the
optimization algorithm is essential. This algorithm creates the list of n
candidate configurations. However, the number n is different for each
algorithm. Genetic algorithms, for instance, can create only n equal to
the size of a population. If the desired total number of experiments,
the so-called budget, is higher than this n, then several iterations of
the algorithm are necessary.

Algorithm Number of parallel experiments

Genetic algorithm Size of a population

SMAC 1 (fully sequential)

PSO Number of particles

Random Walk Number of neighbours

Nelder-Mead 1 (fully sequential)

Sim. Annealing Number of exp. for the equilibrium state

Random Size of a budget (fully parallel)

Table 21.: Number of parallel experiments by different optimization algo-
rithms

In Tab. 21, we present the maximal number n for different optimiza-
tion algorithms. Algorithms, such as SMAC or Nelder-Mead are fully

7.2 distribution of experiments 159

sequential, i.e. for them n = 1. Only after calculation of this single
experiment, the optimization algorithm can determine the next candi-
date configuration.

Random algorithms, on the other hand, are fully parallelizable. For
those algorithms n = E (budget). They can create an arbitrary number
of candidate configurations in a single iteration. Combined with a low
computational effort and a good performance in finding the optimal
configuration, it makes the random algorithms the preferred choice
for the HPO in recommender systems.

Part III

C O N C L U S I O N S A N D F U T U R E W O R K

8
C O N C L U S I O N S

In this thesis we proposed selective learning for recommender sys-
tems. Since recommender systems suffer from the data sparsity prob-
lem, it is commonly believed that all available data should be used
to train preference models. We, however, argue that it is beneficial to
select the data used for training. We proposed three types of selec-
tive learning and formulated corresponding research questions that
we address in the subsections below.

Furthermore, in this chapter we answer our core research question
using the formalism proposed in Ch. 3 and draw final conclusions
from the combined contributions of this thesis. Finally, we discuss
limitations of the proposed approaches and directions for future re-
search.

8.1 selective forgetting

First of our selective learning approaches is selective forgetting. Select-
ing what to forget is complementary to selecting what to learn from.
Our first research question is related to this approach:

RQ 1: Does forgetting improve the quality of recommenda-
tions?

To answer this one and further questions we proposed 11 forgetting
strategies and three algorithms that enforce forgetting in matrix factor-
ization. We also proposed a new evaluation protocol for stream-based
evaluation that includes significance testing.

In our evaluation we used a state-of-the-art matrix factorization al-
gorithm, BRISMF, and compared its performance with and without
forgetting strategies. Our experimental results on eight real-world
datasets with positive-only and rating feedback show that the same
algorithm with forgetting methods performs significantly better than
the same algorithm without forgetting.

This enables us to validate the following inequality (cf. Ch. 3 for
notation and details):

∃(M, S) :
∑

t

QS ,t(Tet, Mt, S t) >
∑

t

Qt(Tet, M∗t) (80)

Our results show that this inequality is true, as there is a pair of
model series and selection strategy series (M, S) that, in sum, out-
performs the optimal model without a selection strategy over time.
Therefore we answer the RQ 1 affirmatively.

163

164 conclusions

This answer has consequences for practitioners and researchers in
the recommender systems domain. Improvement of prediction qual-
ity due to forgetting proves the existence of concept drift in typical
RS applications. Forgetting techniques, for instance, provide a further
way of adaptation to such changes over time. With those techniques it
is also possible to the providers of recommendations to support users’
privacy. Recommendation providers can give their users a possibility
to decide what should be forgotten.

8.2 selective neighbourhood

Our second approach to selective learning is selective neighbourhood
computation. We proposed a method that builds a reliable neighbour-
hood, i.e. it selectively excludes non-reliable neighbours from a neigh-
bourhood of the active user. We introduced the notion of a baseline
user and a selection criterion based on the Hoeffding Bound, in order
to answer the following research question:

RQ 2: Does selective removal of users from a neighbourhood
improve the quality of neighbourhood-based CF?

To address RQ 2, we have studied CF methods and have enhanced
them with our new selective approach. We then compared them with
two other variants of CF algorithms, shrinkage and significance weighting
that also attempt to decrease the impact of unreliable users in the
neighbourhood.

Our results on four datasets show that our method with selective
learning outperforms the remaining ones with respect to the quality
of recommendations. Therefore, we have shown that the following
inequality from Ch. 3 is true:

∃(M, S) : QS (Te, M, S) > Q(Te, M∗) (81)

as there is a pair of a model and of a selection strategy, which out-
performs the best model that can be built without selection of neigh-
bours. Therefore, we answer the RQ 2 positively.

By answering this question we have shown that selective learning
improves the predictive power not only in the streaming setting, but
also in frequently used and simple algorithms, such as neighbourhood-
based CF.

8.3 semi-supervised learning

Our last type of selective learning is SSL. We proposed a stream-based
framework for SSL in recommender systems. In this type of selective
learning a recommender system exploits some of the abundantly avail-
able unlabelled information (user-item-pairs without ratings). A semi-

8.4 core research question 165

supervised system makes predictions for those unrated pairs in a se-
lective way and uses those predictions for training.

We proposed two approaches to stream-based SSL in recommender
systems:

• co-training

• self-learning

In the co-training approach there are several different learners that
teach each other by providing their predictions as labels. Not all pre-
dictions are used for training.We proposed criteria for the selection of
the pairs and of the predicted ratings.

In the self-learning approach a learner provides labels to itself. Also
in this case the labels are selected using our criteria.

We conducted a thorough evaluation to answer the following re-
search question:

RQ 3: Does selective learning from predictions (semi-supervised
learning) improve the quality of recommendations?

We compared the results of a representative of MF algorithms, the
BRISMF algorithm, with our selective SSL techniques and without them.
Our results show that the co-training approach significantly outper-
forms the method without SSL in terms of quality of recommendations.
From our two approaches, the co-training approach showed better re-
sults. Results of the self-training method were not consistent across
datasets.

Those results allow us to validate the Ineq. 80 in the SSL setting. As
there is a series of models and selection strategies that outperform the
best model without any selection, the inequality is true. Therefore, we
answer the RQ 3 affirmatively.

This answer has impact on numerous applications of recommender
systems that suffer from an extreme data sparsity. Our research shows
that it is possible to selectively exploit the abundant unlabelled infor-
mation to improve the quality of recommendations, however, at cost
of computation time.

8.4 core research question

Our core research question, as defined in Sec. 1.2, is:

Does selective learning improve the quality of predictions in recom-
mender systems?

In Ch. 3 we described a formalism to determine the answer to this
question. According to this formalism, which combines Ineq. 80 and
Ineq. 81, the answer is positive if any of selective learning types out-
performs the optimal non-selective model (cf. Ineq. 27). Given that this

166 conclusions

is the case and all aforementioned research questions were answered
positively, we conclude that selective learning does improve the quality
of predictions in recommender systems. This answer applies, obviously, to
carefully designed and tuned selection strategies, as described in this
thesis and to any thinkable selective learning.

This conclusion has many consequences for numerous application
scenarios. We show that selective learning can be combined with many
different methods, which makes it relevant to practitioners and re-
searchers. For practitioners it is not strictly necessary to implement
new recommendation methods. It is possible to combine selective
learning of various types with existing methods to potentially benefit
from them.

The fact that selective learning improves predictive performance of
recommender systems, shows the challenges of real world data. This
data is often affected by concept drift or shift. User behaviour is often
unpredictable, e.g. when account is shared with other parties, or items
are purchased for other people. This causes even new data instances to
be obsolete. Therefore, instances used for training should be selected
carefully. Also when learning from other algorithms, as in the SSL

setting, not all of the available training instances are trustworthy or
useful. In this thesis we investigated those challenges and proposed
selective learning methods that tackle them.

Lastly, next to answering the aforementioned research questions we
conducted the first comparative study on hyperparameter optimiza-
tion for recommender system. To further aid researchers and practi-
tioners we additionally proposed a distributed HPO framework using
Apache Hadoop.

8.5 limitations

In our experiments with matrix factorization algorithms we used a
representative of this class of algorithms, the BRISMF algorithm by
Takács et al. [Tak+09]. As recommender systems are an active research
field, there are numerous extensions of matrix factorization and sev-
eral different versions of it. The number of different algorithms is so
high that it is not feasible to use all of them in experiments. Therefore,
we decided to use an algorithm that is representative for all of them.
Despite the abundance of different MF algorithms, most of them inter-
nally work in the same way as BRISMF. To ensure generalizability and
transferability of results it is meaningful to use this basic version of
MF without any extensions.

Similarly to a high number of algorithms, there is also a high num-
ber of possible application domains in recommender systems. Also
in this case it is not feasible to test all of them. Therefore, we focus
on domains with available benchmark datasets. Those include movie

8.6 future work 167

recommendation (Movielens, Flixster and Netflix datasets), music rec-
ommendation (Lastfm, Palco Principal) and general product opinions
(Epinions dataset). Those datasets include positive-only and rating
feedback. While it is not clear how our results and findings would
transfer to other domains, the diversity and number of the datasets
used in our evaluation together with strict evaluation protocols imply
that our results are general.

Even though selection strategies can be combined with different
types of methods, they cannot be understood as a preprocessing step.
For a successful application of these strategies, it is necessary to em-
bed them into a learning algorithm. Many of them cannot be de-
coupled from the learning algorithm, as e.g. forgetting strategy that
is based on local sensitivity of latent features, excluding neighbours
from a neighbourhood or measuring a reliability of an SSL prediction
based on past error measured on a stream.

Selective learning from predictions, i.e. SSL, also has a drawback
of highly increased computation time. This issue, however, will be
addressed in our future work (cf. Sec. 8.6).

8.6 future work

During our work on selective learning in recommender systems we
recognized further domains where selective learning can be applied.
Our techniques can be transferred to e.g. conventional regression prob-
lems and other data mining and machine learning algorithms. While
there are approaches in data mining that use sliding window for adap-
tation, it can be investigated if the selective forgetting of parts of a
model leads to improved predictive power.

Another problem, which has been addressed in the conventional
data mining already, but needs more investigation in RS, is change
detection. In recommender systems this problem is particularly chal-
lenging, as a sudden change in user’s preferences is difficult to pre-
dict or detect. Unlike in conventional data mining, in recommender
systems the change manifests itself in form of only few data instances.
A successful change detector could be coupled with our forgetting
strategies, so that information from before the change is forgotten.

Our definition of selective learning could be also extended to cap-
ture active learning methods. These methods let the learner select
what labels / ratings it would like to use for training. Those selected
labels are then requested from users. Active learning for recommender
systems is already an active research field with work e.g. by Karimi et
al. [Kar+12; Kar+15], Eliahi et al. [ERR16], etc.

Our selective forgetting enables providers of recommender systems
to let their users decide what should be forgotten. The application
of forgetting methods as means of privacy preservation should be

168 conclusions

researched more in the future work. A relevant topic in this context is,
for instance, the possibility to allow users to select parts / aspects of
a model to be forgotten instead of single items only.

A further topic worth investigating is combining different selective
learning methods e.g. forgetting strategies with SSL, different forget-
ting strategies with each other or active learning with one of our se-
lective learning methods. The interplay and synergies in such combi-
nations are not clear and require more research.

In this work we have shown that not all data instances should be
used for learning. This can have many possible reasons, such as con-
cept drift and shift, or several persons sharing one account. Especially
the latter is an unresolved challenge in recommender systems. In such
a case, a user profile is a compound of preferences of several persons.
Ideally, a recommender system should recognize this phenomenon
and create sub-profiles. The learning should then take place selectively
with ratings corresponding to a sub-profile. As the detection of such
sub-profiles is challenging and, probably, not possible in a clear way,
probabilistic or fuzzy methods are promising in this setting.

Also within our selective learning methods there is potential for
future work. Our framework is designed in a modular way, so that ex-
tending it by implementing more components is easily possible. One
of the components worth extending in the future are dataset splitters
in the SSL framework. The extension could encompass the capability
to apply views onto the stream instances adaptively, so that no retrain-
ing is necessary. Especially for our SSL methods, reducing the compu-
tation time also remains a challenge. One of possible solutions can
exploit distributed computing of models in the co-training approach.

Part IV

A P P E N D I X

A
C O R R E C T I N G T H E U S A G E O F T H E H O E F F D I N G
B O U N D

Our work on selective neighbourhood (cf. Ch. 5) relies on the appli-
cation of the Hoeffding Bound. To build selective neighbourhoods in
Ch. 5 we use findings presented in this appendix. For instance, the test
for significance of two users’ similarities and the width of the applied
bound (cf. Sec. 5.2.2.1) is based on results presented here.

The Hoeffding Inequality is often used to derive theoretical bounds.
In particular, we have observed that the assumptions, on which the
Hoeffding Inequality builds, are often not satisfied in stream mining.
This leads to invalid bounds. In this chapter we investigate the impact
of the problem and propose a correction. The following sections of
the appendix come (with modifications) from our paper on this topic
[MKS13].

a.1 related work on hoeffding bound

After the seminal work of Domingos and Hulten on a Very Fast Deci-
sion Tree for stream classification [DH00], several decision tree stream
classifiers have been proposed, including CVFDT [HSD01a], Hoeffd-
ing Option Tree [PHK07], CFDTu [Xu+11], etc. All of them apply the
Hoeffding Bound [Hoe63] to decide whether a tree node should be
split and how. We show that the bounds derived from the Hoeffding
Inequality do not hold due to not fulfilled prerequisites.

Concerns on the reliability of stream classifiers using the Hoeffding
Bound have been raised in [PHK07]: Pfahringer et al. point out that
"Despite this guarantee, decisions are still subject to limited looka-
head and stability issues." In Section A.5, we show that the instability
detected in [PHK07] is quantifiable.

Rutkowski et al. [Rut+12] state that the Hoeffding Inequality [Hoe63]
is too restrictive, since it only operates on numerical variables and
since it demands an input that can be expressed as a sum of the inde-
pendent variables, which is not the case for Information Gain and Gini
Index. They recommend McDiarmid’s Inequality instead, and design
a McDiarmid’s Bound for Information Gain and Gini Index [Rut+12].
However, as we explain in Section A.2, the violation of the Hoeffding
Inequality in stream classification concerns the independence of obser-
vations. This violation of the Inequality’s assumptions is not peculiar
to the Hoeffding Inequality. It would apply even if the McDiarmid’s
Bound would be used in this setting without further changes. Hence,

171

172 correcting the usage of the hoeffding bound

we rather replace the split criterion with one that satisfies the prereq-
uisites.

We propose correctedVFDT, which uses the Hoeffding Bound with
a new split criterion that satisfies the prerequisites. Thus, correctedVFDT
provides the expected performance guarantees. We stress that our aim
is not to propose a more accurate method, but one, whose theoretical
bounds are reliable and can be interpreted.

a.2 hoeffding bound - prerequisites and pitfalls

The Hoeffding Inequality proposed by Wassily Hoeffding [Hoe63]
states that for a random variable Z with range R, the true average
of Z, Z, deviates from the observed average Ẑ not more than ε, subject
to an error-likelihood δ:

|Z − Ẑ| < ε , where ε =

√
R2 · ln(1/δ)

2n
(82)

where n is the number of instances. Inequality 82 has the following
Prerequisites:

1. The random variables must be identically distributed and al-
most surely bounded; the variable ranges are used when com-
puting the bound.

2. Random observations of the variables must be independent of
each other.

In many stream classification algorithms, Z is the value returned by
the function computing the ’goodness’ of a split attribute. Given a sig-
nificance level δ, the Hoeffding Inequality states whether the instances
n seen thus far are enough for choosing the best split attribute. This
is essential, since wrong splits (especially for nodes close to the root)
affect the performance of the classifier negatively. In the presence of
drift, this may also lead to uninformed decisions about discarding or
replacing a subtree. We show that stream classification methods vi-
olate the prerequisites of the Hoeffding Inequality (subsection A.2.1)
and that the decision bound is wrongly set (A.2.2).

a.2.1 Violation of Prerequisites

Domingos and Hulten [DH00] proposed Information Gain (IG) and
Gini Index (GI) as exemplary split functions appropriate for the Ho-
effding Bound: at each time point, the data instances in the tree node
to be split are considered as the observations input to the Hoeffd-
ing Inequality, and the values computed upon them by IG/GI are
assumed to be averages.

A.3 new method for correct usage of the hoeffding bound 173

violation 1 : The Hoeffding Inequality applies to arithmetical av-
erages only [Hoe63]. IG and GI are clearly not arithmetical averages.

violation 2 : The variables, i.e. the observations used for the com-
putation of the split criterion must be independent (Prereq. 2). How-
ever, consider a sliding window of length 4 and assume the window
contents w1 = [x1, x2, x3, x4] and then w2 = [x3, x4, x5, x6], after the win-
dow has moved by two positions. Obviously, the window contents
overlap. When a function like IG computes a value over the contents
of each window, it considers some instances more than once. Thus,
the computed values are not independent.

a.2.2 Insufficient Separation between Attributes

Domingos and Hulten specify that the Hoeffding Bound should be
applied as follows. Xa is the best attribute and Xb be the second-best
attribute with respect to a split function G after seeing n examples.
∆G = G(Xa) − G(Xb) > 0 is the difference between their observed
heuristic values. The Hoeffding Bound guarantees with probability
1− δ that Xa is indeed the best attribute if ∆G > ε. 1 [DH00]

Claim 1. The Hoeffding Bound does not provide the guarantee expected in
[DH00].

Proof. Assume that the split candidates are X, Y with IG values GX and
GY , observed averages ĜX , ĜY and real averages GX , GY (cf. Figure 28).
Considering n observations in range R (of the split test), the probabil-
ity that the real average Z deviates from the observed one Ẑ by more
than ε is bounded by Ineq. 82 [Hoe63]:

Pr(Ẑ − Z > ε) 6 exp(
−2nε2

R2
) (83)

In Figure 28, we see that ĜY is greater then ĜX by more than ε, but
this does not hold for the real averages GY and GX . Hence, a span of
one ε is not sufficient to guarantee separation of the gain values.

This claim holds also when we consider GX −GY as a single random
variable ∆G (as done in [DH00]): the range of ∆G is the sum of ranges
of GX and GY , again requiring a change of the decision bound. We
give the correct bound in A.3.1.

a.3 new method for correct usage of the hoeffding bound

Our new core correctedVFDT encompasses a correction on the deci-
sion bound, and a new split function that satisfies the prerequisites of
[Hoe63] (cf. section A.2).

1 Note: we use ε instead of ε, Z for the true average and Ẑ for the observed one.

174 correcting the usage of the hoeffding bound

Ĝ X G X

ĜYGY

ε ε

ε ε

Figure 28.: Observed vs. real averages of two random variables: the observed
averages differ by more than ε, but the Hoeffding Bound does not
guarantee that GY is superior (figure from [MKS13]).

a.3.1 Specifying a Correct Decision Bound

Domingos and Hulten define ∆G = GY − GX as a random variable
with range R = log(c) (for Information Gain IG, c is the number of
classes) and check whether ∆̂G − ∆G exceeds ε [DH00], where ε is
a positive number. However, this definition of ∆G assumes that it is
already non-negative, i.e. there exists some non-negative constant k,
so that |GY −GX | > k holds.

Assume that there exists a k > 0 so that E(|GY −GX |) > k, where we
denote the true average of Z as E(Z) instead of Z for better readability.
The absolute value is a convex function and |GY −GX | does not follow
a degenerate distribution, so Jensen’s inequality [JZ00] holds in its
strict form, i.e.:

E(|GY −GX |) > |E(GY −GX)| ≡ |E(GY) − E(GX)| (84)

So, we cannot conclude that |GY − GX | > k, i.e. even if the true aver-
age of |GY −GX | exceeds some positive value, we cannot say that Y is
superior to X.

We must thus perform two tests with the Hoeffding Inequality, (1)
for ∆G1 := GY − GX under the assumption that ∆G1 > 0, and (2) for
−∆G1 := GX − GY , assuming that ∆G1 < 0. Equivalently, we can per-
form a single modified test on a variable ∆G := GY − GX that ranges
over [− log c;+ log c], i.e. it may take negative values. Consequently,
the new range of the variable ∆G that we denote as R ′ is twice as high
as the original range R. To apply the Hoeffding Inequality on such a
variable, we must reset the decision bound to:

ε ′ =

√
R ′2 · ln(1/δ)

2n
=

√
4

R2 · ln(1/δ)
2n

= 2 ·
√

R2 · ln(1/δ)
2n

(85)

i.e. to twice the bound dictated by Ineq. 82. Then, the correctness of
the split decision is guaranteed given δ. Alternatively, we can keep the

A.3 new method for correct usage of the hoeffding bound 175

original decision bound and adjust the error-likelihood to δ4. Further,
a larger number of instances is required to take a split decision. We
study both effects in Section A.5.

a.3.2 Specifying a HB-compatible Split Function

Functions such as information gain cannot be used in combination
with the Hoeffding Inequality, because they are not arithmetic aver-
ages [Rut+12]. We propose a split function that is an arithmetic av-
erage and satisfies the two prerequisites of the Hoeffding Bound (cf.
Section A.2). We call it HB-compatible.

In the new split function we perform the computation of the ex-
pected quality of a node split on each element of the node indepen-
dently. We propose Quality Gain, which we define as the improvement
on predicting the target variable at a given node v in comparison to
its parent Parent(v), i.e.

QGain(v) = Q(v) − Q(Parent(v)) (86)

where the quality function Q() is the normalized sum:

Q(v) =
1

|v|

∑
o∈v

oq(o) (87)

and oq() is a function that can be computed for each instance o in v.
Two possible implementations of oq() are: isCorrect() (Eq. 88), whereas
Q() corresponds to the conventional accuracy, and lossReduction() (Eq.
89) that can capture the cost of misclassification in skewed distribu-
tions:

isCorrect(o) =

1, if o is classified correctly

0, is misclassified
(88)

lossReduction(o) = 1− misclassificationCost(o) (89)

We use isCorrect() to implement oq() hereafter, and term the so im-
plemented QGain() function as AccuracyGain. However, the validation
in the next Section holds for all implementations of oq(). In the re-
search regarding split measures the misclassification error has been
indicated as a weaker metric than e.g. information gain [Has+09]. Our
goal is, however, not to propose a metric that yields higher accuracy of
a model, but one that can be used together with the Hoeffding Bound
without violating its prerequisites and thus allowing for interpreta-
tion of the performance guarantees given by this bound. In Section
A.5.2 we show that this metric is competitive to information gain in
terms of accuracy and it reveals further positive features important
for a streaming scenario.

176 correcting the usage of the hoeffding bound

a.4 validation

We first show that our new split function satisfies the prerequisites of
the Hoeffding Inequality. Next, we show that no correction for multi-
ple testing is needed.

a.4.1 Satisfying the Assumptions of the Hoeffding Bound

Quality Gain, as defined in Eq. 86 using a quality function as in Eq.
87, satisfies the Prerequisites of the Hoeffding Inequality. Prereq 1

(cf. Section A.2) says that the random variable has to be almost surely
bounded. The implementations of oq() in Eq. 88, range in [0, 1] and the
same holds for the quality function Q() in Eq. 87 by definition. Hence
Prereq 1 is satisfied.

Prereq 2 (cf. Section A.2) demands independent observations. In
stream mining, the arriving data instances are always assumed to be
independent observations of an unknown distribution. However, as
we have shown in subsection A.2.1, when Information Gain is com-
puted over a sliding window, the content overlap and the combina-
tion of the instances for the computation of entropy lead to a vio-
lation of Prereq 2. In contrast, our Quality Gain considers only one
instance at each time point for the computation of Q() and builds
the arithmetical average incrementally, without considering past in-
stances. This ensures that the instances are statistically independent
from each other. The Quality Gain metric uses those independent in-
stances to compute the goodness of a split. The result of this computa-
tion depends, however, on the performance of the classifier. Since, we
consider a single node in a decision tree, the classifier and the entire
path to the given node remains constant during the computation of
the Hoeffding Bound. Consequently, all instances that fall into that
node are conditionally independent given the classifier. This condi-
tional independence of instances given the classifier allows us to use
the Hoeffding Bound upon our split function.

a.4.2 Is a Correction for Multiple Testing Necessary?

As explained in subsection A.3.1, the split decision of correctedVFDT
requires two tests on the same data sample: we compute ε for the
best and second-best attributes. Since the likelihood of witnessing a
rare event increases as the number of tests increases, it is possible that
the α-errors (errors of first type) accumulate. To verify whether a cor-
rection for multiple tests (e.g. Bonferroni correction) is necessary, we
consider the different possible areas of value combinations separately.
The areas, enumerated as I-IV, are depicted in Figure 29.

A.4 validation 177

Figure 29.: When stating that Y is superior to X with confidence 1− δ, the
error likelihood is δ; error and non-error areas are represented by
numbers I - IV (figure from [MKS13]).

Figure 29 depicts a situation where the Hoeffding Bounds of at-
tributes X and Y are separable, and allow us to state with confidence
1− δ that Y is superior to X. There is a chance of δ that this statement
is wrong. We distinguish three cases for variable X (and equivalently
for Y):

case (1): the true average X is indeed in the ε-vicinity of X̂: X̂ − ε 6
X 6 X̂ + ε (area represented by II in Figure 29)

case (2): X is left to the ε-vicinity of X̂: X < X̂ − ε (area I)

case (3): X is right to the ε-vicinity of X̂: X > X̂ + ε (areas III and IV)

According to the Hoeffding Inequality, the likelihood of the Case
(1) is 1− δ; we denote this case as normal or (n). We assume that the
likelihood of error δ is distributed symmetrically around the ε-vicinity
of X̂, hence the likelihood of Case (2) and of Case (3) is equal to δ/2.
In Case (2), the real average X is at the left of the ε-vicinity, hence the
split decision would be the same as in Case (1). Therefore, we mark
Case (2) as not_harmful (nh). In contrast, Case (3) for variable X may
lead to a different split decision, because we would incorrectly assume
that X is higher than it truly is. This is represented by areas III and IV
in Figure 29. We mark Case (3) as harmful (h).

In Figure 30 we show all possible combinations of cases and their
likelihoods. This tree depicts the likelihood of the outcome of each
combination; the middle level corresponds to the first test, the leaf-
level contains the outcomes after the first and the second test. For
instance, the left node on the middle level denotes the not_harmful

(nh) error of the first test. At its right we see the normal case (n) with
likelihood 1− δ. The leaf nodes of the tree represent the likelihood of
outcomes after performing two tests: green nodes correspond to the
not_harmful outcomes (n), (nh); red ones are potentially harmful (h);
the blue ones contain both harmful and not_harmful outcomes.

Even if we consider all blue solid nodes as harmful, the sum of
the likelihoods of harmful outcomes (cf. Eq. 90) is still smaller than δ,

178 correcting the usage of the hoeffding bound

1

δ/2

δ2/4

nh

δ
2 (1− δ)

n

δ2/4

h

nh

1− δ

δ
2 (1− δ)

nh

(1− δ)2

n

δ
2 (1− δ)

h

n

δ/2

δ2/4

nh

δ
2 (1− δ)

n

δ2/4

h

h

Figure 30.: Likelihood of all possible test outcomes. The middle level of the
tree stands for outcomes of the first test. The leafs correspond to
likelihood of outcomes after performing two tests. Green dashed
leafs stand for no error (n) or not_harmful error (nh). Red dot-
ted ones denote harmful error (h). Blue solid leafs combine
harmful and not_harmful errors, so they have no label (figure
from [MKS13]).

hence a correction for multiple tests (e.g. Bonferroni correction) is not
necessary.

δ2

4
+
δ

2
(1− δ) +

δ2

4
+
δ

2
(1− δ) +

δ2

4
= δ−

δ2

4
(90)

a.5 experiments

We evaluate our correctedVFDT with oq() implemented as isCorrect()
(Eq. 88), i.e. with AccuracyGain as our split function (cf. end of Section
5.2). We measure the impact of the modifications to VFDT [DH00] on
classifier performance.

To quantify the impact of the incorrect use of the Hoeffdingin In-
equality we use two indicators: the number of Incorrect Decisions and
the average number of instances (Average n) considered before taking a
split decision. For this experiment, a dataset with known ground truth
is necessary. The artificial dataset and the experiment are described in
A.5.1.

When experimenting on real data, we quantify the performance of
the stream classifier as Avg. Accuracy and the tree size as Avg. # Nodes.
For this experiment, presented in subsection A.5.2, we use the Adult
dataset from the UCI repository[FA10].

A.5 experiments 179

a.5.1 Experimenting under Controlled Conditions

For the experiment under controlled conditions, we generate a dataset
with a discrete multivariate distribution, as described in Table 22. The
dataset has two attributes: A1 with three discrete values in {A, B, C},
and A2 with two discrete values in {D, E}. The target variable takes
values from {c1, c2}.

A2 D E

A1

A c1 : 0.0675 c2 : 0.1575 c1 : 0.0675 c2 : 0.1575

B c1 : 0.1350 c2 : 0.0900 c1 : 0.1575 c2 : 0.0675

C c1 : 0.0450 c2 : 0.0050 c1 : 0.0450 c2 : 0.0050

Table 22.: Joint probability distribution of the synthetic dataset (table from
[MKS13]).

In this experiment, we simulate a decision tree node and observe
what split decision is taken in it. Since the distribution of the dataset
is known , the attribute that each split function should choose at each
moment is known. As we show in Table 23, we consider VFDT with
IG - denoted as ’InfoGain’ (cf. first two rows of Table 23 below the
legend) for a decision bound of 1ε and 2ε, and we compare with
our correctedVFDT with Accuracy Gain - denoted as ’AccuracyGain’
(cf. last two rows of Table 23), again for 1ε and 2ε. This means that
we consider both the erroneous decision bound 1ε and the corrected
invocation of the Inequality with 2ε (cf. A.3.1) for both VFDT and
correctedVFDT.

In Table 23 we show the results, aggregated over 100,000 runs. In
the second column, we count the ’Incorrect Decisions’ over a total of
100,000 decisions. The third column ’Average n’ counts the number of
instances seen before deciding to split a node. The confidence level of
the Hoeffding Inequality was set to 1− δ = 0.95, hence only 5,000 (5%)
incorrect split decisions are theoretically permitted. We run a binomial
test to check whether the difference between the observed error and
the expected one is significant (column before last) and return the
computed p-value (last column of Table 23).

The original VFDT (1st row below legend in Table 23) exceeds the
theoretical threshold of 5000 Incorrect Decisions by far. The corrected
invocation of the Hoeffding Inequality (subsection A.3.1) reduces the
number of incorrect decisions by 92.497% (cf. 2

nd row in Table 23), but
at the cost of increasing the number of instances required to make a
split from 117.31 to 1671.53. This means that the learner would wait
approximatively 10 times longer to take a split decision and would

180 correcting the usage of the hoeffding bound

Setup Incorrect
Decisions

Average n Alternative Hypothesis p-value

InfoGain, 1ε 25738 117.31 P(incorrect decision) > 0.05 < 2.2e − 16

InfoGain, 2ε 1931 1671.53 P(incorrect decision) < 0.05 < 2.2e − 16

AccuracyGain, 1ε 3612 17.68 P(incorrect decision) < 0.05 < 2.2e − 16

AccuracyGain, 2ε 22 37.45 P(incorrect decision) < 0.05 < 2.2e − 16

Table 23.: Results of 100 000 repetitions of decision process on a split at-
tribute at a node in a decision tree. We compare VFDT with ’In-
foGain’ to correctedVFDT with ’AccuracyGain’ for the incorrect
invocation of the Hoeffding Inequality (decision bound 1ε) and for
the correct invocation (decision bound 2ε). For the performance
indicators ’Incorrect Decisions’ and ’Average n’ lower values are
better. The last column shows the results of the significance test on
the deviation of the measured error from the theoretically permit-
ted one, depicted in the ’Alternative Hypothesis’ column, where
the error-likelihood δ of the Hoeffding Bound is set to 0.05 (table
from [MKS13]).

abstain from possibly good split decisions. In contrast, correctedVFDT
makes less incorrect decisions and decides sooner, as seen in the last
two rows of Table 23. The 3

rd row shows that even with the incorrect
decision bound, correctedVFDT makes less incorrect decisions than
the theoretic threshold. Best results are achieved for the correct deci-
sion bound of course (4th row): only 22 of the total 100,000 decisions
are wrong, corresponding to an improvement of 99.915 %. At the same
time, our method for 2ε needs only 2.24% of the instances needed by
VFDT, i.e. correctedVFDT converges much sooner than VFDT.

To ensure that these results are statistically significant we present
the results of the binomial tests. The alternative hypothesis in the 4

th

column in Table 23 differs from row to row. In the first row, the alter-
native hypothesis says that the number of incorrect decisions will be
higher than the theoretic bound (by the Hoeffding Inequality); the p-
value in the last column states that the alternative hypothesis should
be accepted already at a confidence level lower then 2.2e − 16. Hence,
the theoretical bound is clearly violated by the original VFDT. The al-
ternative hypothesis in the other three rows states that the number of
incorrect decisions will stay within bound; this hypothesis is accepted.

In Table 24, we compare VFDT to correctedVFDT at a confidence
level 1 − δ =99%. The results are similar to Table 23, except for the
correctedVFDT with incorrect decision bound: the theoretic bound is
violated (significantly, see last column), i.e. even a good method will
ultimatively fail if the Hoeffding Inequality is used erroneously: both
the corrected decision bound and a HB-compatible split function are
necessary for good performance (see last row).

A.5 experiments 181

Setup Incorrect
Decisions

Average n Alternative Hypothesis p-value

InfoGain, 1ε 14034 347.55 P(incorrect decision) > 0.01 < 2.2e − 16

InfoGain, 2ε 339 2872.24 P(incorrect decision) < 0.01 < 2.2e − 16

AccuracyGain, 1ε 1062 22.42

P(incorrect decision) < 0.01 0.9757

P(incorrect decision) > 0.01 0.02617

AccuracyGain, 2ε 2 49.7 P(incorrect decision) < 0.01 < 2.2e − 16

Table 24.: Results analogous to those in Table 23, but with a confidence level
of 0.99 (table from [MKS13]).

a.5.2 Experiments on a Real Dataset

We have shown that the correctedVFDT with Accuracy Gain and cor-
rect decision bound (2ε) leads to an essential reduction of incorrect
split decisions and that the decisions are taken much sooner. We now
investigate how these new components influence the classification per-
formance and size of created models on a real dataset. We use the
dataset "Adults" from the UCI repository [FA10].

Stream mining algorithms are sensitive to the order of data instances
and to concept drift. To minimize the effect of concept drift in the
dataset, we created 10 permutations of it and repeated our tests on
each permutation, setting the grace period of each run to 1. Therefore,
the results presented in this section are averages over ten runs. This
also increases the stability of the measures and lowers the effect of
random anomalies.

For the two algorithms, we used the parameter settings that lead
to best performance. For VFDT, these were 1− δ = 0.97 and decision
bound ε = 0.05, i.e. the use of the Hoeffding Inequality is incorrect.
According to subsection A.3.1, the true confidence is therefore much
lower. For correctedVFDT, the correct decision bound 2ε was used, the
confidence level was set to 1− δ = 0.6. The second column of Table 25

shows the average accuracy over the 10 runs, the third columns shows
the average number of nodes of the models built in all runs.

Algorithm Avg. Accuracy Avg. # Nodes

VFDT 81,992 863.7

correctedVFDT 80,784 547.2

Table 25.: Performance of VFDT and correctedVFDT of it on the "Adult
dataset". The columns "Avg. Accuracy" and "Avg. # Nodes" de-
note the accuracy and the number of nodes of the decision trees,
as averaged over ten runs (table from [MKS13]).

182 correcting the usage of the hoeffding bound

According to the results in Table 25, VFDT reached a high accuracy,
but it also created very large models with 863.7 nodes on average. That
high amount of nodes not only consumes a lot of memory, but it also
requires much computation time to create such models. Furthermore,
such extensive models often tend to overfit the data distribution. In
the second row of the table we see that correctedVFDT maintained
almost the same accuracy, but needed only 63.36% of the nodes that
were created by VFDT.

Our correctedVFDT does not only have the advantage of lower com-
putation costs regarding time and memory usage, but also a split con-
fidence that is interpretable. As we have shown in the previous sub-
section, the Hoeffding Bound of the VFDT cannot be trusted, for it
does not bound the error the way it is expected. Consequently, setting
the split confidence to 0.97 does not mean that the split decisions are
correct with this level of confidence. In contrast to that, our method
does not violate the requirements for using the Hoeffding Bound and
thus, we can rely on the split decisions with the confidence that we
have set.

For this particular amount of data and concept contained in this
dataset (approximatively) optimal results have been achieved using
the confidence of 0.6. This is much lower than 0.97 used with the
VFDT, but this is only an illusory disproportion. In fact, the confidence
guaranteed by the VFDT was much lower due to the violations of the
requirements of the Hoeffding bound and it is probably not possible
to estimate it. Usage of our method allows to interpret the results. We
can see that it is necessary to give up the high confidence to achieve
the best result on a so small dataset.

a.6 conclusions on the usage of the hoeffding bound

We have shown that the prerequisites for the use of the Hoeffding
Inequality in stream classification are not satisfied by the VFDT algo-
rithm [DH00] and its successors. In a controlled experiment, we have
demonstrated that the prerequisite violations do have an impact in
classifier performance.

To alleviate this problem, we have first shown that the Hoeffding
Inequality must be applied differently, to cater for an input that may
take negative values. We have adjusted the decision bound accord-
ingly. We have further specified a family of split functions that sat-
isfies the Inequality’s prerequisites and incorporated them into our
correctedVFDT.

Our experiments on synthetic data show that correctedVFDT achieves
significantly more correct split decisions and needs less instances to
make a decision than the original VFDT. Our experiments on real
data show that correctedVFDT produces smaller models, converges

A.6 conclusions on the usage of the hoeffding bound 183

faster and maintains a similar level of accuracy. More importantly, the
split decision of correctedVFDT are reliable given the predefined con-
fidence level, while those of the original VFDT are not guaranteed by
the Hoeffding Inequality.

Those findings allowed us to design our selective neighbourhood
method in Ch. 5 in a way that satisfies the prerequisites of the Hoeffd-
ing Bound. The design decisions influenced by these findings encom-
pass specifying a sufficient ε-distance between two mean similarities
and applying a HB-compatible similarity measure that can be rep-
resented as a mean difference in independent observations (ratings).
This allowed us to design a theoretically correct method for selecting
neighbours (cf. Ch. 5) with a reliable confidence setting in the Hoeffd-
ing Bound.

B I B L I O G R A P H Y

[AL09] Belarmino Adenso-Díaz and Manuel Laguna. “Fine-Tuning
of Algorithms Using Fractional Experimental Designs and
Local Search.” In: OR (Sept. 7, 2009).

[AMK11] Gediminas Adomavicius, Nikos Manouselis, and Youn-
gOk Kwon. “Multi-Criteria Recommender Systems.” In:
Recommender Systems Handbook. Ed. by Francesco Ricci,
Lior Rokach, Bracha Shapira, and Paul B. Kantor. Springer,
2011, pp. 769–803. isbn: 978-0-387-85819-7.

[Agg16] Charu C. Aggarwal. Recommender Systems - The Textbook.
Springer, 2016. Chap. 2, pp. 1–498. isbn: 978-3-319-29659-
3.

[AST09] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney.
“A Gender-Based Genetic Algorithm for the Automatic
Configuration of Algorithms.” In: LNCS. Oct. 1, 2009.

[Bab+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Mot-
wani, and Jennifer Widom. “Models and Issues in Data
Stream Systems.” In: PODS. Ed. by Lucian Popa, Serge
Abiteboul, and Phokion G. Kolaitis. ACM, 2002, pp. 1–16.
isbn: 1-58113-507-6.

[Bee+16] Jöran Beel, Bela Gipp, Stefan Langer, and Corinna Bre-
itinger. “Research-paper recommender systems: a litera-
ture survey.” In: Int. J. on Digital Libraries 17.4 (2016), pp. 305–
338.

[BKV07] Robert Bell, Yehuda Koren, and Chris Volinsky. “Model-
ing relationships at multiple scales to improve accuracy
of large recommender systems.” In: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discov-
ery and data mining. 2007.

[Ber+11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. “Algorithms for Hyper-Parameter Optimization.” In:
NIPS. 2011.

[BB12] James Bergstra and Yoshua Bengio. “Random Search for
Hyper-Parameter Optimization.” In: JMLR (2012).

[BDO95] M.W. Berry, S.T. Dumais, and G.W. O’Brien. “Using linear
algebra for intelligent information retrieval.” In: SIAM re-
view (1995), pp. 573–595.

185

186 Bibliography

[Bob+13] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and
Abraham Gutiérrez. “Recommender systems survey.” In:
Knowl.-Based Syst. 46 (2013), pp. 109–132.

[Bos+14] Zoran Bosnić, Jaka Demšar, Grega Kešpret, Pedro Pereira
Rodrigues, João Gama, and Igor Kononenko. “Enhancing
data stream predictions with reliability estimators and ex-
planation.” In: Engineering Applications of Artificial Intelli-
gence 34 (2014), pp. 178–192. issn: 0952-1976.

[Bre01] Leo Breiman. “Random Forests.” In: Machine Learning 45

(2001), pp. 5–32.

[Bur02] Robin Burke. “Hybrid Recommender Systems: Survey and
Experiments.” In: User Modeling and User-Adapted Interac-
tion 12.4 (2002), pp. 331–370.

[Bur07] Robin Burke. “Hybrid Web Recommender Systems.” In:
The Adaptive Web. Ed. by Peter Brusilovsky, Alfred Kobsa,
and Wolfgang Nejdl. Vol. 4321. Lecture Notes in Com-
puter Science. Springer, 2007. isbn: 978-3-540-72078-2.

[CDC14] Pedro G. Campos, Fernando Díez, and Iván Cantador.
“Time-aware recommender systems: a comprehensive sur-
vey and analysis of existing evaluation protocols.” In: User
Modeling and User-Adapted Interaction 24.1 (2014), pp. 67–
119. issn: 1573-1391.

[Cel10] O. Celma. Music Recommendation and Discovery in the Long
Tail. Springer, 2010.

[Cha+11] Badrish Chandramouli, Justin J. Levandoski, Ahmed El-
dawy, and Mohamed F. Mokbel. “StreamRec: a real-time
recommender system.” In: SIGMOD Conference. Ed. by
Timos K. Sellis, Renée J. Miller, Anastasios Kementsiet-
sidis, and Yannis Velegrakis. ACM, 2011, pp. 1243–1246.
isbn: 978-1-4503-0661-4.

[Cha+17] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi
Chang, Mark A. Hasegawa-Johnson, and Thomas S. Huang.
“Streaming Recommender Systems.” In: ACM International
World Wide Web Conference. WWW. 2017.

[Che+09] Jilin Chen, Werner Geyer, Casey Dugan, Michael Muller,
and Ido Guy. “Make new friends, but keep the old: rec-
ommending people on social networking sites.” In: Pro-
ceedings of the 27th international conference on Human factors
in computing systems. CHI ’09. Boston, MA, USA: ACM,
2009, pp. 201–210. isbn: 978-1-60558-246-7. doi: 10.1145/
1518701.1518735.

http://dx.doi.org/10.1145/1518701.1518735
http://dx.doi.org/10.1145/1518701.1518735

Bibliography 187

[Che+12] Rung-Ching Chen, Yun-Hou Huang, Cho-Tsan Bau, and
Shyi-Ming Chen. “A recommendation system based on
domain ontology and SWRL for anti-diabetic drugs se-
lection.” In: Expert Systems with Applications 39.4 (2012),
pp. 3995–4006. issn: 0957-4174. doi: 10 . 1016 / j . eswa .

2011.09.061.

[Chr+05] C. Christakou, L. Lefakis, S. Vrettos, and A. Stafylopatis.
“A Movie Recommender System Based on Semi-supervised
Clustering.” In: Computational Intelligence for Modelling, Con-
trol and Automation, 2005 and International Conference on In-
telligent Agents, Web Technologies and Internet Commerce, In-
ternational Conference on. Vol. 2. Nov. 2005, pp. 897–903.

[COL13] Freddy Chong Tat Chua, Richard Jayadi Oentaryo, and
Ee-Peng Lim. “Modeling Temporal Adoptions Using Dy-
namic Matrix Factorization.” In: ICDM. Ed. by Hui Xiong,
George Karypis, Bhavani M. Thuraisingham, Diane J. Cook,
and Xindong Wu. IEEE Computer Society, 2013, pp. 91–
100. isbn: 978-0-7695-5108-1.

[CKT10] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. “Per-
formance of Recommender Algorithms on Top-n Recom-
mendation Tasks.” In: Proceedings of ACM RecSys. RecSys
’10. ACM, 2010, pp. 39–46. isbn: 978-1-60558-906-0. doi:
10.1145/1864708.1864721.

[DK11] Christian Desrosiers and George Karypis. “A Compre-
hensive Survey of Neighborhood-based Recommendation
Methods.” In: Recommender Systems Handbook. Ed. by Francesco
Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor.
Springer US, 2011, pp. 107–144. isbn: 978-0-387-85819-7.

[Dia+08] M. Benjamin Dias, Dominique Locher, Ming Li, Wael El-
Deredy, and Paulo J. G. Lisboa. “The value of person-
alised recommender systems to e-business: a case study.”
In: RecSys. Ed. by Pearl Pu, Derek G. Bridge, Bamshad
Mobasher, and Francesco Ricci. ACM, Oct. 27, 2008, pp. 291–
294. isbn: 978-1-60558-093-7.

[DL06] Yi Ding and Xue Li. “Time weight collaborative filtering.”
In: CIKM. Ed. by Otthein Herzog, Hans-Jörg Schek, Nor-
bert Fuhr, Abdur Chowdhury, and Wilfried Teiken. ACM,
Feb. 10, 2006, pp. 485–492. isbn: 1-59593-140-6.

[DH00] P. Domingos and G. Hulten. “Mining High Speed Data
Streams.” In: ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining. 2000.

http://dx.doi.org/10.1016/j.eswa.2011.09.061
http://dx.doi.org/10.1016/j.eswa.2011.09.061
http://dx.doi.org/10.1145/1864708.1864721

188 Bibliography

[DH01] Pedro Domingos and Geoff Hulten. “Catching up with
the Data: Research Issues in Mining Data Streams.” In:
DMKD. 2001.

[DCP14] Karl B. Dyer, Robert Capo, and Robi Polikar. “COMPOSE:
A Semisupervised Learning Framework for Initially La-
beled Nonstationary Streaming Data.” In: IEEE Trans. Neu-
ral Netw. Learning Syst. 25.1 (2014), pp. 12–26.

[EK95] R C Eberhart and J Kennedy. “A new optimizer using par-
ticle swarm theory.” In: International Symposium on Micro
Machine and Human Science (1995).

[ERR16] Mehdi Elahi, Francesco Ricci, and Neil Rubens. “A survey
of active learning in collaborative filtering recommender
systems.” In: Computer Science Review 20 (2016), pp. 29–50.

[FA10] A. Frank and A. Asuncion. UCI Machine Learning Reposi-
tory. 2010.

[FO16] Evgeny Frolov and Ivan Oseledets. “Tensor Methods and
Recommender Systems.” In: CoRR abs/1603.06038 (2016).

[Gam12] João Gama. “A Survey on Learning from Data Streams:
Current and Future Trends.” In: Progress in Artificial Intel-
ligence 1.1 (2012), pp. 45–55. issn: 2192-6352. doi: 10.1007/
s13748-011-0002-6.

[GSR09] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues.
“Issues in evaluation of stream learning algorithms.” In:
KDD. 2009.

[Gam+14] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pech-
enizkiy, and Abdelhamid Bouchachia. “A survey on con-
cept drift adaptation.” In: ACM Comput. Surv. 46.4 (2014),
44:1–44:37.

[Gem+15] Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelu-
cio Narducci, and Giovanni Semeraro. “Semantics-Aware
Content-Based Recommender Systems.” In: Recommender
Systems Handbook. Ed. by Francesco Ricci, Lior Rokach,
and Bracha Shapira. Boston, MA: Springer US, 2015, pp. 119–
159. isbn: 978-1-4899-7637-6. doi: 10.1007/978-1-4899-
7637-6_4.

[GP10] Mustansar Ali Ghazanfar and Adam Prügel-Bennett. “A
Scalable, Accurate Hybrid Recommender System.” In: WKDD.
IEEE Computer Society, 2010, pp. 94–98. isbn: 978-0-7695-
3923-2.

[Gol+92] David Goldberg, David Nichols, Brian M. Oki, and Dou-
glas Terry. “Using Collaborative Filtering to Weave an In-
formation Tapestry.” In: Commun. ACM (1992).

http://dx.doi.org/10.1007/s13748-011-0002-6
http://dx.doi.org/10.1007/s13748-011-0002-6
http://dx.doi.org/10.1007/978-1-4899-7637-6_4
http://dx.doi.org/10.1007/978-1-4899-7637-6_4

Bibliography 189

[GH16] Carlos A. Gomez-Uribe and Neil Hunt. “The Netflix Rec-
ommender System: Algorithms, Business Value, and In-
novation.” In: ACM Trans. Management Inf. Syst. 6.4 (2016),
p. 13.

[HH12] Yaroslav O. Halchenko and Michael Hanke. “Open is Not
Enough. Let’s Take the Next Step: An Integrated, Community-
Driven Computing Platform for Neuroscience.” In: Front.
Neuroinform. (2012).

[HK16] F. Maxwell Harper and Joseph A. Konstan. “The Movie-
Lens Datasets: History and Context.” In: TiiS 5.4 (2016),
p. 19.

[Has+09] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and
Ebooks Corporation. The Elements of Statistical Learning.
Dordrecht: Springer, 2009. Chap. 9.2.3, pp. 324–329. isbn:
9780387848587 0387848584.

[Her+99] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers,
and John Riedl. “An algorithmic framework for perform-
ing collaborative filtering.” In: Proceedings of the 22nd An-
nual International ACM SIGIR Conference on Research and
Development in Information Retrieval. New York, NY, USA:
ACM, 1999, pp. 230–237.

[Her+13] Antonio Hernando, Jesús Bobadilla, Fernando Ortega, and
Jorge Tejedor. “Incorporating reliability measurements into
the predictions of a recommender system.” In: Information
Sciences 218 (2013), pp. 1–16. issn: 0020-0255.

[HT12] Balázs Hidasi and Domonkos Tikk. “Fast ALS-based ten-
sor factorization for context-aware recommendation from
implicit feedback.” In: CoRR abs/1204.1259 (2012).

[Hoe63] Wassily Hoeffding. “Probability inequalities for sums of
bounded random variables.” In: J. Amer. Statist. Assoc. 58

(1963), pp. 13–30. issn: 0162-1459.

[Hol93] J. H. Holland. Adaptation in Natural and Artificial Systems.
MIT Press, 1993.

[Hsu+06] William H. Hsu, Andrew L. King, Martin S. R. Paradesi,
Tejaswi Pydimarri, and Tim Weninger. “Collaborative and
Structural Recommendation of Friends using Weblog-based
Social Network Analysis.” In: Computational Approaches to
Analyzing Weblogs - Papers from the 2006 Spring Symposium
(2006). AAAI Press Technical Report SS-06-03. Stanford,
USA, March 2006., pp. 24–31.

190 Bibliography

[HKV08] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collabora-
tive Filtering for Implicit Feedback Datasets.” In: Proceed-
ings of the 8th IEEE International Conference on Data Min-
ing (ICDM 2008), December 15-19, 2008, Pisa, Italy. 2008,
pp. 263–272. doi: 10.1109/ICDM.2008.22.

[HSD01a] G. Hulten, L. Spencer, and P. Domingos. “Mining Time-
Changing Data Streams.” In: ACM SIGKDD (2001).

[HSD01b] Geoff Hulten, Laurie Spencer, and Pedro Domingos. “Min-
ing time-changing data streams.” In: KDD. Ed. by Doheon
Lee, Mario Schkolnick, Foster J. Provost, and Ramakrish-
nan Srikant. ACM, 2001, pp. 97–106. isbn: 1-58113-391-X.

[HHL11] Frank Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequen-
tial Model-Based Optimization for General Algorithm Con-
figuration.” In: LION. LNCS. 2011.

[Hut+14] Frank Hutter, Thomas Stützle, Kevin Leyton-Brown, and
Holger H. Hoos. “ParamILS: An Automatic Algorithm
Configuration Framework.” In: CoRR (2014).

[JSW98] Donald R. Jones, Matthias Schonlau, and William J. Welch.
“Efficient Global Optimization of Expensive Black-Box Func-
tions.” In: J. Global Optimization (1998).

[Kar+10] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas,
and Nuria Oliver. “Multiverse Recommendation: N-dimensional
Tensor Factorization for Context-aware Collaborative Fil-
tering.” In: Proceedings of the Fourth ACM Conference on
Recommender Systems. RecSys ’10. Barcelona, Spain: ACM,
2010, pp. 79–86. isbn: 978-1-60558-906-0.

[Kar+11] Rasoul Karimi, Christoph Freudenthaler, Alexandros Nanopou-
los, and Lars Schmidt-Thieme. “Towards Optimal Active
Learning for Matrix Factorization in Recommender Sys-
tems.” In: ICTAI. IEEE, 2011, pp. 1069–1076. isbn: 978-1-
4577-2068-0.

[Kar+12] Rasoul Karimi, Christoph Freudenthaler, Alexandros Nanopou-
los, and Lars Schmidt-Thieme. “Exploiting the character-
istics of matrix factorization for active learning in recom-
mender systems.” In: RecSys. Ed. by Padraig Cunning-
ham, Neil J. Hurley, Ido Guy, and Sarabjot Singh Anand.
ACM, 2012, pp. 317–320. isbn: 978-1-4503-1270-7.

[Kar+15] Rasoul Karimi, Christoph Freudenthaler, Alexandros Nanopou-
los, and Lars Schmidt-Thieme. “Comparing Prediction Mod-
els for Active Learning in Recommender Systems.” In:
LWA. Ed. by Ralph Bergmann, Sebastian Görg, and Gilbert
Müller. Vol. 1458. CEUR Workshop Proceedings. CEUR-
WS.org, 2015, pp. 171–180.

http://dx.doi.org/10.1109/ICDM.2008.22

Bibliography 191

[KJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. “Opti-
mization by Simulated Annealing.” In: Science (1983).

[KBV09] Y. Koren, R. Bell, and C. Volinsky. “Matrix Factorization
Techniques for Recommender Systems.” In: Computer 42.8
(Aug. 2009), pp. 30–37. issn: 0018-9162. doi: 10.1109/MC.
2009.263.

[Kor09] Yehuda Koren. “Collaborative filtering with temporal dy-
namics.” In: KDD. Paris, France, 2009. isbn: 978-1-60558-
495-9. doi: 10.1145/1557019.1557072.

[Koy00] I. Koychev. “Gradual Forgetting for Adaptation to Con-
cept Drift.” In: ECAI 2000 Workshop on Current Issues in
Spatio-Temporal Reasoning, Berlin, Germany. 2000, pp. 101–
106.

[LMV00] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.
“A Multilinear Singular Value Decomposition.” In: SIAM
J. Matrix Anal. Appl. 21.4 (2000), pp. 1253–1278. issn: 0895-
4798. doi: 10.1137/S0895479896305696.

[LH14] Dokyun Lee and Kartik Hosanagar. “Impact of Recom-
mender Systems on Sales Volume and Diversity.” In: ICIS.
Ed. by Michael D. Myers and Detmar W. Straub. Associa-
tion for Information Systems, 2014. isbn: 978-0-615-15788-
7.

[LBD07] Xue Li, Jorge M. Barajas, and Yi Ding. “Collaborative fil-
tering on streaming data with interest-drifting.” In: Intell.
Data Anal. 11.1 (2007), pp. 75–87.

[Lin14] Zhijie Lin. “An empirical investigation of user and sys-
tem recommendations in e-commerce.” In: Decision Sup-
port Systems 68 (2014), pp. 111–124.

[LLL11] Lindawati, Hoong Chuin Lau, and David Lo. “Instance-
Based Parameter Tuning via Search Trajectory Similarity
Clustering.” In: LION. 2011.

[Liu+10] Nathan Nan Liu, Min Zhao, Evan Wei Xiang, and Qiang
Yang. “Online evolutionary collaborative filtering.” In: Proc.
of the ACM RecSys. 2010.

[LW15] Andreas Lommatzsch and Sebastian Werner. “Optimiz-
ing and Evaluating Stream-Based News Recommendation
Algorithms.” In: CLEF. Ed. by Josiane Mothe, Jacques Savoy,
Jaap Kamps, Karen Pinel-Sauvagnat, Gareth J. F. Jones,
Eric SanJuan, Linda Cappellato, and Nicola Ferro. Vol. 9283.
Lecture Notes in Computer Science. Springer, 2015, pp. 376–
388. isbn: 978-3-319-24026-8.

http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1145/1557019.1557072
http://dx.doi.org/10.1137/S0895479896305696

192 Bibliography

[LGS11] Pasquale Lops, Marco de Gemmis, and Giovanni Semer-
aro. “Content-based Recommender Systems: State of the
Art and Trends.” In: Recommender Systems Handbook. Ed.
by Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul
B. Kantor. Springer, 2011, pp. 73–105. isbn: 978-0-387-85819-
7.

[Lü+12] Linyuan Lü, Matus Medo, Chi Ho Yeung, Yi-Cheng Zhang,
Zi-Ke Zhang, and Tao Zhou. “Recommender Systems.” In:
CoRR abs/1202.1112 (2012).

[MKL07] Hao Ma, Irwin King, and Michael R. Lyu. “Effective miss-
ing data prediction for collaborative filtering.” In: Proceed-
ings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. SIGIR
’07. 2007. doi: 10.1145/1277741.1277751.

[Man+11] Nikos Manouselis, Hendrik Drachsler, Riina Vuorikari, Hans
Hummel, and Rob Koper. “Recommender Systems in Tech-
nology Enhanced Learning.” In: Recommender Systems Hand-
book. Ed. by Francesco Ricci, Lior Rokach, Bracha Shapira,
and Paul B. Kantor. Boston, MA: Springer US, 2011, pp. 387–
415. isbn: 978-0-387-85820-3. doi: 10.1007/978-0-387-
85820-3_12.

[MA06] Paolo Massa and Paolo Avesani. “Trust-aware bootstrap-
ping of recommender systems.” In: ECAI Workshop on Rec-
ommender Systems. Citeseer. 2006, pp. 29–33.

[Mat+16] Pawel Matuszyk, Rene Tatua Castillo, Daniel Kottke, and
Myra Spiliopoulou. “A Comparative Study on Hyperpa-
rameter Optimization for Recommender Systems.” In: Work-
shop on Recommender Systems and Big Data Analytics (RS-
BDA’16) @ iKNOW 2016. Ed. by Elisabeth Lex, Roman
Kern, Alexander Felfernig, Kris Jack, Dominik Kowald,
and Emanuel Lacic. 2016.

[MKS13] Pawel Matuszyk, Georg Krempl, and Myra Spiliopoulou.
“Correcting the Usage of the Hoeffding Inequality in Stream
Mining.” In: IDA. Ed. by Allan Tucker, Frank Höppner,
Arno Siebes, and Stephen Swift. Vol. 8207. Lecture Notes
in Computer Science. Springer, 2013, pp. 298–309. isbn:
978-3-642-41397-1.

[MS14a] Pawel Matuszyk and Myra Spiliopoulou. “Hoeffding-CF:
Neighbourhood-Based Recommendations on Reliably Sim-
ilar Users.” English. In: User Modeling, Adaptation, and Per-
sonalization. Ed. by Vania Dimitrova, Tsvi Kuflik, David
Chin, Francesco Ricci, Peter Dolog, and Geert-Jan Houben.
Vol. 8538. Lecture Notes in Computer Science. Springer

http://dx.doi.org/10.1145/1277741.1277751
http://dx.doi.org/10.1007/978-0-387-85820-3_12
http://dx.doi.org/10.1007/978-0-387-85820-3_12

Bibliography 193

International Publishing, 2014, pp. 146–157. isbn: 978-3-
319-08785-6. doi: 10.1007/978-3-319-08786-3_13.

[MS14b] Pawel Matuszyk and Myra Spiliopoulou. “Selective For-
getting for Incremental Matrix Factorization in Recom-
mender Systems.” In: Discovery Science. Vol. 8777. LNCS.
Springer International Publishing, 2014, pp. 204–215.

[MS15] Pawel Matuszyk and Myra Spiliopoulou. “Semi-supervised
Learning for Stream Recommender Systems.” In: Discov-
ery Science. Ed. by Nathalie Japkowicz and Stan Matwin.
Vol. 9356. LNCS. Springer International Publishing, 2015,
pp. 131–145. isbn: 978-3-319-24281-1.

[MS17] Pawel Matuszyk and Myra Spiliopoulou. “Stream-based
semi-supervised learning for recommender systems.” In:
Machine Learning (2017), pp. 1–28. issn: 1573-0565.

[Mat+15] Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alí-
pio Mário Jorge, and João Gama. “Forgetting Methods for
Incremental Matrix Factorization in Recommender Sys-
tems.” In: Proceedings of the ACM SAC. SAC ’15. Salamanca,
Spain: ACM, 2015, pp. 947–953.

[Mat+17] Pawel Matuszyk, João Vinagre, Myra Spiliopoulou, Alí-
pio Mário Jorge, and João Gama. “Forgetting Methods for
Incremental Matrix Factorization in Recommender Sys-
tems.” In: (under review). 2017.

[McN47] Quinn McNemar. “Note on the Sampling Error of the Dif-
ference between Correlated Proportions or Percentages.”
In: Psychometrika 12.2 (1947), pp. 153–157.

[Mei13] Christoph Meinel. ‚Selbstplagiat’ und gute wissenschaftliche
Praxis. 2013. url: http : / / www . uni - regensburg . de /

universitaet/ombudspersonen/medien/selbstplagiat-

memo.pdf (visited on 12/22/2016).

[MJ08] C. Miranda and A.M. Jorge. “Incremental Collaborative
Filtering for Binary Ratings.” In: Web Intelligence and Intel-
ligent Agent Technology, 2008. WI-IAT ’08. IEEE/WIC/ACM
International Conference on. Vol. 1. Dec. 2008, pp. 389–392.
doi: 10.1109/WIIAT.2008.263.

[MJ09] Catarina Miranda and AlípioMário Jorge. “Item-Based and
User-Based Incremental Collaborative Filtering for Web
Recommendations.” In: Progress in Artificial Intelligence. Ed.
by Luís Seabra Lopes, Nuno Lau, Pedro Mariano, and
LuísM. Rocha. Vol. 5816. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2009, pp. 673–684. isbn:
978-3-642-04685-8.

http://dx.doi.org/10.1007/978-3-319-08786-3_13
http://www.uni-regensburg.de/universitaet/ombudspersonen/medien/selbstplagiat-memo.pdf
http://www.uni-regensburg.de/universitaet/ombudspersonen/medien/selbstplagiat-memo.pdf
http://www.uni-regensburg.de/universitaet/ombudspersonen/medien/selbstplagiat-memo.pdf
http://dx.doi.org/10.1109/WIIAT.2008.263

194 Bibliography

[NGL11] Jeffrey Naruchitparames, Mehmet Hadi Gunes, and Sushil
J. Louis. “Friend recommendations in social networks us-
ing genetic algorithms and network topology.” In: IEEE
Congress on Evolutionary Computation. IEEE, 2011, pp. 2207–
2214. isbn: 978-1-4244-7834-7.

[Nas+07] Olfa Nasraoui, Jeff Cerwinske, Carlos Rojas, and Fabio
A. González. “Performance of Recommendation Systems
in Dynamic Streaming Environments.” In: SDM. SIAM,
Sept. 6, 2007.

[Nas+03] Olfa Nasraoui, Cesar Cardona Uribe, Carlos Rojas Coro-
nel, and Fabio A. González. “TECNO-STREAMS: Track-
ing Evolving Clusters in Noisy Data Streams with a Scal-
able Immune System Learning Model.” In: Proceedings of
the IEEE ICDM 2003. 2003, pp. 235–242.

[NM65] J. A. Nelder and R. Mead. “A simplex method for function
minimization.” In: Computer Journal 7 (1965).

[Pap+05] Manos Papagelis, Ioannis Rousidis, Dimitris Plexousakis,
and Elias Theoharopoulos. “Incremental Collaborative Fil-
tering for Highly-Scalable Recommendation Algorithms.”
In: Proceedings of the 15th International Symposium on Method-
ologies of Intelligent Systems (ISMIS’05. 2005.

[PNH15] D. Paraschakis, B. J. Nilsson, and J. Holländer. “Compara-
tive Evaluation of Top-N Recommenders in e-Commerce:
An Industrial Perspective.” In: 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA).
Dec. 2015, pp. 1024–1031. doi: 10.1109/ICMLA.2015.183.

[Par+12] Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and
Jae Kyeong Kim. “A literature review and classification
of recommender systems research.” In: Expert Syst. Appl.
39.11 (2012), pp. 10059–10072.

[Pat07] Arkadiusz Paterek. “Improving regularized singular value
decomposition for collaborative filtering.” In: Proc. KDD
Cup Workshop at SIGKDD’07. 2007.

[PB07] Michael J. Pazzani and Daniel Billsus. “Content-Based Rec-
ommendation Systems.” In: The Adaptive Web. Ed. by Pe-
ter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Vol. 4321.
Lecture Notes in Computer Science. Berlin / Heidelberg:
Springer, 2007, pp. 325–341.

[PHK07] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby.
“New Options for Hoeffding Trees.” In: Australian Confer-
ence on Artificial Intelligence. 2007, pp. 90–99.

http://dx.doi.org/10.1109/ICMLA.2015.183

Bibliography 195

[Plu+11] Till Plumbaum, Andreas Lommatzsch, Ernesto William
De Luca, and Sahin Albayrak. “SERUM: Collecting Se-
mantic User Behavior for Improved News Recommenda-
tions.” In: UMAP Workshops. Ed. by Liliana Ardissono and
Tsvi Kuflik. Vol. 7138. Lecture Notes in Computer Science.
Springer, 2011, pp. 402–405. isbn: 978-3-642-28508-0.

[PMS10] Christine Preisach, Leandro Balby Marinho, and Lars Schmidt-
Thieme. “Semi-supervised Tag Recommendation - Using
Untagged Resources to Mitigate Cold-Start Problems.” In:
Advances in Knowledge Discovery and Data Mining. 14th Pacific-
Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24,
2010. Proceedings. Part I. Ed. by Mohammed Javeed Zaki,
Jeffrey Xu Yu, B. Ravindran, and Vikram Pudi. Vol. 6118.
Lecture Notes in Computer Science. Springer, 2010, pp. 348–
357. isbn: 978-3-642-13656-6. doi: 10.1007/978-3-642-
13657-3_38.

[RGS14] Giuseppe Ricci, Marco de Gemmis, and Giovanni Semer-
aro. “Mathematical Methods of Tensor Factorization Ap-
plied to Recommender Systems.” In: New Trends in Databases
and Information Systems: 17th East European Conference on
Advances in Databases and Information Systems. Ed. by Bar-
bara Catania, Tania Cerquitelli, Silvia Chiusano, Giovanna
Guerrini, Mirko Kämpf, Alfons Kemper, Boris Novikov,
Themis Palpanas, Jaroslav Pokorný, and Athena Vakali.
Cham: Springer International Publishing, 2014, pp. 383–
388. isbn: 978-3-319-01863-8. doi: 10.1007/978-3-319-
01863-8_40.

[RGB08] Pedro Pereira Rodrigues, João Gama, and Zoran Bosnic.
“Online Reliability Estimates for Individual Predictions in
Data Streams.” In: ICDM Workshops. IEEE Computer Soci-
ety, 2008, pp. 36–45.

[RHS05] Chuck Rosenberg, Martial Hebert, and Henry Schneider-
man. “Semi-Supervised Self-Training of Object Detection
Models.” In: WACV/MOTION. IEEE Computer Society, Feb. 9,
2005, pp. 29–36. isbn: 0-7695-2271-8.

[Rut+12] Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Ma-
ciej Jaworski. “Decision Trees for Mining Data Streams
Based on the McDiarmid’s Bound.” In: IEEE Trans. on
Knowledge and Data Engineering (2012). accepted in 2012.

[Sar+00] Badrul M. Sarwar, George Karypis, Joseph A. Konstan,
and John T. Riedl. “Application of Dimensionality Reduc-
tion in Recommender System - A Case Study.” In: In ACM
WEBKDD Workshop. 2000.

http://dx.doi.org/10.1007/978-3-642-13657-3_38
http://dx.doi.org/10.1007/978-3-642-13657-3_38
http://dx.doi.org/10.1007/978-3-319-01863-8_40
http://dx.doi.org/10.1007/978-3-319-01863-8_40

196 Bibliography

[Sar+01] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Riedl. “Item-based collaborative filtering recommendation
algorithms.” In: WWW ’01. Hong Kong, Hong Kong, 2001.
isbn: 1-58113-348-0. doi: 10.1145/371920.372071.

[SKR99] J. Schafer, J. Konstan, and J. Reidl. “Recommender Sys-
tems in E-Commerce.” In: Proceedings of ACM Conference
on Electronic Commerce. Denver, Colorado, USA, Nov. 1999.

[SVR09] Shilad Sen, Jesse Vig, and John Riedl. “Tagommenders:
connecting users to items through tags.” In: WWW. Ed.
by Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and
Wolfgang Nejdl. ACM, 2009, pp. 671–680. isbn: 978-1-60558-
487-4.

[Sha95] J P Shaffer. “Multiple Hypothesis Testing.” In: Annual Re-
view of Psychology 46.1 (1995), pp. 561–584.

[SG11] Guy Shani and Asela Gunawardana. “Evaluating Recom-
mendation Systems.” In: Recommender Systems Handbook.
Ed. by Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B. Kantor. 2011.

[SNB05] V. Sindhwani, P. Niyogi, and M. Belkin. “A Co–Regularized
Approach to Semi–supervised Learning with Multiple Views.”
In: Proceedings of the ICML Workshop on Learning with Mul-
tiple Views. 2005.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Prac-
tical Bayesian Optimization of Machine Learning Algo-
rithms.” In: NIPS. 2012.

[Sou+15] Vinícius M. A. de Souza, Diego Furtado Silva, João Gama,
and Gustavo E. A. P. A. Batista. “Data Stream Classifi-
cation Guided by Clustering on Nonstationary Environ-
ments and Extreme Verification Latency.” In: SDM. Ed. by
Suresh Venkatasubramanian and Jieping Ye. SIAM, 2015,
pp. 873–881. isbn: 978-1-61197-401-0.

[SPV14] John Z. Sun, Dhruv Parthasarathy, and Kush R. Varshney.
“Collaborative Kalman Filtering for Dynamic Matrix Fac-
torization.” In: IEEE Trans. Signal Processing 62.14 (2014),
pp. 3499–3509.

[SNM10] P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos. “A
Unified Framework for Providing Recommendations in
Social Tagging Systems Based on Ternary Semantic Anal-
ysis.” In: IEEE Transactions on Knowledge and Data Engineer-
ing 22.2 (Feb. 2010), pp. 179–192. issn: 1041-4347.

http://dx.doi.org/10.1145/371920.372071

Bibliography 197

[SNM08] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yan-
nis Manolopoulos. “Tag recommendations based on ten-
sor dimensionality reduction.” In: RecSys ’08: Proceedings
of the 2008 ACM conference on Recommender systems. Lau-
sanne, Switzerland: ACM, 2008, pp. 43–50. isbn: 978-1-
60558-093-7. doi: 10.1145/1454008.1454017.

[JZ00] “Fourier, Laplace, and Mellin Transforms.” In: Table of In-
tegrals, Series, and Products (Sixth Edition). Ed. by Alan Jef-
frey and Daniel Zwillinger. Sixth Edition. San Diego: Aca-
demic Press, 2000, pp. 1099–1125. isbn: 978-0-12-294757-5.
doi: 10.1016/B978-012294757-5/50021-0.

[Tak+09] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos
Tikk. “Scalable Collaborative Filtering Approaches for Large
Recommender Systems.” In: J. Mach. Learn. Res. 10 (2009).
issn: 1532-4435.

[VJ12] João Vinagre and Alípio Mário Jorge. “Forgetting mecha-
nisms for scalable collaborative filtering.” In: Journal of the
Brazilian Computer Society 18.4 (2012), pp. 271–282. issn:
0104-6500.

[VJG14] João Vinagre, Alípio Mário Jorge, and João Gama. “Fast
Incremental Matrix Factorization for Recommendation with
Positive-Only Feedback.” In: UMAP. 2014, pp. 459–470.

[VJG15a] João Vinagre, Alípio Mário Jorge, and João Gama. “An
overview on the exploitation of time in collaborative filter-
ing.” In: Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery 5.5 (2015), pp. 195–215. issn: 1942-
4795.

[VJG15b] João Vinagre, Alípio Mário Jorge, and João Gama. “Evalu-
ation of recommender systems in streaming environments.”
In: CoRR abs/1504.08175 (2015).

[WP14] Wiesner Martin and Pfeifer Daniel. “Health Recommender
Systems: Concepts, Requirements, Technical Basics and
Challenges.” In: International Journal of Environmental Re-
search and Public Health 11.3 (Feb. 2014), pp. 2580–2607.
issn: 1661-7827 1660-4601.

[WLZ15] Dianshuang Wu, Jie Lu, and Guangquan Zhang. “A fuzzy
tree matching-based personalized e-learning recommender
system.” In: IEEE Transactions on Fuzzy Systems 23.6 (2015),
pp. 2412–2426.

[Xio+10] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider,
and Jaime G Carbonell. “Temporal collaborative filtering
with bayesian probabilistic tensor factorization.” In: Pro-

http://dx.doi.org/10.1145/1454008.1454017
http://dx.doi.org/10.1016/B978-012294757-5/50021-0

198 Bibliography

ceedings of the 2010 SIAM International Conference on Data
Mining. SIAM. 2010, pp. 211–222.

[Xu+11] Wenhua Xu, Zheng Qin, Hao Hu, and Nan Zhao. “Min-
ing Uncertain Data Streams Using Clustering Feature De-
cision Trees.” In: ADMA (2). Ed. by Jie Tang, Irwin King,
Ling Chen, and Jianyong Wang. Vol. 7121. Lecture Notes
in Computer Science. Springer, 2011, pp. 195–208. isbn:
978-3-642-25855-8.

[Yin+12] Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen.
“Challenging the Long Tail Recommendation.” In: PVLDB
5.9 (2012), pp. 896–907.

[Zha+14] Mi Zhang, Jie Tang, Xuchen Zhang, and Xiangyang Xue.
“Addressing cold start in recommender systems: a semi-
supervised co-training algorithm.” In: SIGIR. ACM, 2014.

[Zhe+16] Xiaolin Zheng, Weifeng Ding, Zhen Lin, and Chaochao
Chen. “Topic tensor factorization for recommender sys-
tem.” In: Inf. Sci. 372 (2016), pp. 276–293.

[ZL07] Zhi-Hua Zhou and Ming Li. “Semisupervised Regression
with Cotraining-Style Algorithms.” In: IEEE Transactions
on Knowledge and Data Engineering 19.11 (2007). issn: 1041-
4347.

[ZZQ07] Zhi-Hua Zhou, De-Chuan Zhan, and Yang Qiang. “Semi-
Supervised Learning with Very Few Labeled Training Ex-
amples.” In: AAAI. AAAI Press, 2007, pp. 675–680. isbn:
978-1-57735-323-2.

[Zhu+10] T. Zhu, B. Hu, J. Yan, and X. Li. “Semi-Supervised Learn-
ing for Personalized Web Recommender System.” In: Com-
puting and Informatics 29.4 (2010), pp. 617–627.

[Zhu05] Xiaojin Zhu. Semi-supervised learning literature survey. Tech.
rep. 1530. Computer Sciences, University of Wisconsin-
Madison, 2005.

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of September 14, 2017 (classicthesis version 4.1).

http://code.google.com/p/classicthesis/

E H R E N E R K L Ä R U N G

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzuläs-
sige Hilfe Dritter und ohne Benutzung anderer als der angegebenen
Hilfsmittel angefertigt habe; verwendete fremde und eigene Quellen
sind als solche kenntlich gemacht. Insbesondere habe ich nicht die
Hilfe eines kommerziellen Promotionsberaters in Anspruch genom-
men. Dritte haben von mir weder unmittelbar noch mittelbar geld-
werte Leistungen für Arbeiten erhalten, die im Zusammenhang mit
dem Inhalt der vorgelegten Dissertation stehen.
Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwie-
gen,

• statistische Verfahren absichtlich missbraucht, um Daten in un-
gerechtfertigter Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterla-
ssungs- und Schadensersatzansprüche des Urhebers sowie eine straf-
rechtliche Ahndung durch die Strafverfolgungsbehörden begründen
kann. Die Arbeit wurde bisher weder im Inland noch im Ausland in
gleicher oder ähnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veröffentlicht.

Magdeburg, 13.09.2017

Pawel Matuszyk

201

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	List of Symbols
	Introduction and Preliminaries
	1 Introduction
	1.1 Motivation for Selective Learning
	1.1.1 Selective Forgetting
	1.1.2 Selective Neighbourhood
	1.1.3 Stream-based Semi-supervised Learning

	1.2 Research Questions
	1.3 Summary of Scientific Contributions
	1.4 Outline of the Thesis

	2 Preliminaries on Recommender Systems
	2.1 Overview on Types of Recommendation Algorithms
	2.2 Collaborative Filtering
	2.2.1 Neighbourhood-based Methods
	2.2.2 Matrix Factorization
	2.2.3 Tensor Factorization

	2.3 Content-based Methods
	2.4 Hybrid Methods

	Selective Learning Methods
	3 Formal Definition of Selective Learning
	3.1 General Algorithm for Selective Learning
	3.2 Selective Learning as an Optimization Problem
	3.2.1 Optimization Problem in Non-selective Learning
	3.2.2 Optimization Problem in Selective Learning
	3.2.3 Answering the Core Research Question

	4 Forgetting Methods
	4.1 Related Work on Forgetting Methods
	4.2 Forgetting Strategies
	4.2.1 Rating-based Forgetting
	4.2.2 Latent Factor Forgetting

	4.3 Enforcing Forgetting on a Stream of Ratings
	4.3.1 Baseline Algorithm
	4.3.2 Matrix factorization for Rating-based Forgetting
	4.3.3 Matrix factorization for Latent Factor Forgetting
	4.3.4 Approximation of Rating-based Forgetting

	4.4 Evaluation Settings
	4.4.1 Dataset Splitting
	4.4.2 Evaluation Measure
	4.4.3 Parameter Selection
	4.4.4 Significance Testing

	4.5 Experiments
	4.5.1 Impact of Forgetting Strategies
	4.5.2 Impact of the Approximative Implementation

	4.6 Conclusions from Forgetting Methods

	5 Selective Neighbourhood
	5.1 Related Work on Reliable Neighbourhood
	5.2 Reliable Neighbourhood
	5.2.1 Baseline Users
	5.2.2 Reliable Similarity between Users
	5.2.3 Algorithms

	5.3 Experiments
	5.3.1 Evaluation Settings
	5.3.2 Results
	5.3.3 Summary of Findings

	5.4 Conclusions from Selective Neighbourhood

	6 Semi-supervised Learning
	6.1 Related Work on SSL in Recommender Systems
	6.2 Semi-supervised Framework for Stream Recommenders
	6.2.1 Incremental Recommendation Algorithm
	6.2.2 Stream Co-training Approach
	6.2.3 Stream-based Self-learning

	6.3 Instantiation of Framework Components
	6.3.1 Incremental Recommendation Algorithm - extBRISMF
	6.3.2 Training Set Splitter
	6.3.3 Prediction Assembler
	6.3.4 Selector of Unlabelled Instances
	6.3.5 Reliability Measure

	6.4 Evaluation Protocol
	6.4.1 Parameter Optimization
	6.4.2 Dataset Splitting
	6.4.3 Significance Testing

	6.5 Experiments
	6.5.1 Datasets
	6.5.2 Performance of SSL
	6.5.3 Analysing the Impact of Component Implementations

	6.6 Conclusions from Semi-supervised Learning

	7 Experimental Framework
	7.1 Comparative Study on Hyperparameter Optimization
	7.1.1 Motivation for Hyperparameter Optimization
	7.1.2 Related Work on Hyperparameter Optimization
	7.1.3 Hyperparameter Optimization Algorithms
	7.1.4 Full Enumeration
	7.1.5 Random Search
	7.1.6 Random Walk
	7.1.7 Genetic Algorithm
	7.1.8 Sequential Model-based Algorithm Configuration
	7.1.9 Greedy Search
	7.1.10 Simulated Annealing
	7.1.11 Nelder-Mead
	7.1.12 Particle Swarm Optimization
	7.1.13 Evaluation Settings
	7.1.14 Experiments
	7.1.15 Conclusions on Hyperparameter Optimization

	7.2 Distribution of Experiments

	Conclusions and Future Work
	8 Conclusions
	8.1 Selective Forgetting
	8.2 Selective Neighbourhood
	8.3 Semi-supervised Learning
	8.4 Core Research Question
	8.5 Limitations
	8.6 Future Work

	Appendix
	A Correcting the Usage of the Hoeffding Bound
	A.1 Related Work on Hoeffding Bound
	A.2 Hoeffding Bound - Prerequisites and Pitfalls
	A.2.1 Violation of Prerequisites
	A.2.2 Insufficient Separation between Attributes

	A.3 New Method for Correct Usage of the Hoeffding Bound
	A.3.1 Specifying a Correct Decision Bound
	A.3.2 Specifying a HB-compatible Split Function

	A.4 Validation
	A.4.1 Satisfying the Assumptions of the Hoeffding Bound
	A.4.2 Is a Correction for Multiple Testing Necessary?

	A.5 Experiments
	A.5.1 Experimenting under Controlled Conditions
	A.5.2 Experiments on a Real Dataset

	A.6 Conclusions on the Usage of the Hoeffding Bound

	Bibliography
	Colophon
	Ehrenerklärung

