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Abstract

In this work we prove convergence results in Riemannian geometry with scale
invariant bounds on the curvature.

The first part of this work (Chapter 2) is about sequences of Riemannian
4-manifolds with almost vanishing L?-norm of a curvature tensor and a non-
collapsing bound on the volume of small balls.

Here, in Theorem 1.1, we consider a sequence of closed Riemannian 4-
manifolds, whose L2-norm of the Riemannian curvature tensor tends to zero.
Under the assumption of a uniform non-collapsing bound and a uniform di-
ameter bound, we prove that there exists a subsequence that converges with
respect to the Gromov-Hausdorff topology to a flat manifold.

In Theorem 1.2, we consider a sequence of closed Riemannian 4-manifolds,
whose L?-norm of the Riemannian curvature tensor is uniformly bounded from
above, and whose L2-norm of the traceless Ricci-tensor tends to zero. Here,
under the assumption of a uniform non-collapsing bound, which is very close
to the euclidean situation, and a uniform diameter bound, we show that there
exists a subsequence which converges in the Gromov-Hausdorff sense to an
Einstein manifold.

In order to prove Theorem 1.1 and Theorem 1.2, we use a smoothing tech-
nique, which is called L2-curvature flow or L2-flow, introduced by Jeffrey
Streets in the series of works [36], [32], [31], [33], [34] and [35]. In particu-
lar, we use his "tubular averaging technique", which he has introduced in |35,
Section 3|, in order to prove distance estimates of the L*-curvature flow which
only depend on significant geometric bounds. This is the content of Theorem
1.3.

In the second part of this work (Chapter 3) we introduce the notion of a
harmonic radius which is based on a definite L™-bound on the first derivative
of the metric and a fixed C%“®-seminorm bound on the metric, here n > 3 is the
dimension of the manifold. Assuming uniform control of this harmonic radius,
we are able to show in Theorem 1.4, that a sequence of open Riemannian
manifolds, whose local Lz-norm of the Ricci-tensor tends to zero, contains a
subsequence that converges on a smaller domain, in the W% -sense, to an open

Ricci-flat manifold.



Zusammenfassung

In der vorliegenden Arbeit werden Konvergenzresultate in der Riemannschen
Geometrie bewiesen, welche skalierungsinvariante Kriimmungsschranken vor-
aussetzen.

Im ersten Teil der Arbeit, in Kapitel 2, betrachten wir Folgen von Riemann-
schen Mannigfaltigkeiten der Raumdimension 4, deren L?-Norm der Kriim-
mung im Unendlichen verschwindet. In diesem Abschnitt setzen wir voraus,
dass das Volumen eines hinreichend kleinen Balls in gewisser Hinsicht nicht
kollabiert.

In Theorem 1.1 betrachten wir eine Folge von Riemannschen Mannigfaltig-
keiten der Raumdimension 4, deren L?-Norm des Kriimmungstensors gegen
0 geht. Unter der Annahme einer geeigneten gleichméfigen unteren Schranke
an das Volumen-Wachstum von Baillen mit kleinem Radius, und einer obe-
ren Schranke an den Durchmesser zeigen wir, dass eine Teilfolge existiert, die,
beziiglich der Gromov-Hausdorff Topologie gegen eine flache Mannigfaltigkeit
konvergiert.

In Theorem 1.2 betrachten wir eine Folge von Riemannschen Mannigfaltig-
keiten der Raumdimension 4, deren L2-Norm des Kriimmungstensors gleichmi-
#ig von oben beschrinkt ist, und deren L?-Norm des spurfreien Ricci-Tensors
gegen 0 geht. Unter der Annahme einer Wachstumsbedingung fiir das Volu-
men kleiner Bélle, welche sehr nah an der euklidischen Situation ist, zeigen
wir, dass eine Teilfolge existiert, die in der Gromov-Hausdorff Topologie gegen
eine Einstein Mannigfaltigkeit konvergiert.

Um Theorem 1.1 und Theorem 1.2 zu beweisen, verwenden wir eine Glét-
tungstechnik, die von Jeffrey Streets in den Arbeiten [36], [32], [31], [33], [34]
und [35] eingefiihrt und analysiert wurde, wir nennen diese Methode den so-
genannten L2-Kriimmungsfluss. Hierbei verwenden wir die, vom Autor in [35,
Section 3| eingefiihrte, tubular averaging“-Methode. Diese Methode erlaubt es,
Distanz-Abschitzungen des L2-Kriimmungsflusses herzuleiten, die nur von si-
gnifikanten geometrischen Grofen abhéngen. Das ist Gegenstand von Theorem
1.3.

Im zweiten Teil der Arbeit, in Kapitel 3, fiihren wir eine Notation eines
harmonischen Radius ein, die auf einer festen oberen L™-Schranke an die erste

Ableitung der Metrik, und auf einer festen oberen C%®-Seminorm-Schranke



an die Metrik basiert, hierbei ist n > 3 die Dimension der Mannigfaltigkeit.
Unter der Annahme, dass dieser harmonische Radius gleichméfig nach un-
ten beschriankt ist, zeigen wir in Theorem 1.4, dass eine Folge von offenen
Riemannschen Mannigfaltigkeiten, dessen lokale Lz-Norm des Ricci-Tensors
gegen 0 geht, eine Teilfolge besitzt, die auf einer kleineren Menge, in der W22 -

Topologie gegen eine glatte Ricci-flache Mannigfaltigkeit konvergiert.
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Chapter 1

Introduction and statement of

results

In order to approach minimization problems in Riemannian geometry, it is
often useful to know if a minimizing sequence of smooth Riemannian manifolds
contains a subsequence that converges with respect to an appropriate topology
to a sufficiently smooth space. Here, in general, the minimization problem
refers to a certain geometric functional, for instance the area functional, the
total scalar curvature functional, the Willmore functional or the LP-norm of a
specific curvature tensor on a Riemannian manifold, to name just a few. Latter
functionals are the main interest in this work. That means that we consider
sequences of Riemannian manifolds that have a uniform LP-bound on the full

curvature tensor, the Ricci tensor and the traceless Ricci tensor respectively.

Naturally, the situation is more transparent, if we have more precise infor-
mation about the LP-boundedness of curvature tensors of the underlying Rie-
mannian manifolds, that is, that we have a uniform LP-bound, where p € [1, 00|
is large. In particular, a uniform L°°-bound should give the most detailled in-

formation about geometric quantities.

One of the basic results in this context is stated in [1, Theorem 2.2, p.
464-466]. Here, for instance, one assumes a uniform L*°-bound on the full
Riemannian curvature tensor, a uniform lower bound on the injectivity radius
and a uniform two sided bound on the volume, to show the existence of a
subsequence that converges with respect to the C%*topology to a Riemannian

manifold of regularity C*®. The proof uses the fact, that it is possible to find



uniform coverings of the underlying manifolds with harmonic charts, which
follows from [18].

In [44], Deane Yang has considered sequences of Riemannian manifolds sat-
isfying a suitable uniform L”-bound on their full Riemannian curvature tensors,
where p > 7, and a uniform bound on the Sobolev constant. In order to show
compactness and diffeomorphism finiteness results, he examines Hamilton’s
Ricci flow (cf. [16], [10] and [37]) and he shows curvature decay estimates and

existence time estimates that only depend on the significant geometric bounds.

In [42] and [43], Deane Yang has approached a slightly more general prob-
lem. Here, he has considered sequences of Riemannian n-manifolds, n > 3,
having a uniform LZ-bound on their full Riemannian curvature tensors and
a suitable uniform LP-bound on their Ricci tensors instead of a uniform LP-
bound on their full Riemannian curvature tensors, where p > 4. Due to the
scale invariance of the bound on the Riemannian curvature tensors - we name
such bound a "critical curvature bound" - the situation becomes much more
difficult, than in the "supercritical" case, that is, when p is bigger than 7. In
particular, in general, it is doubtful whether the global Ricci flow is applicable

in this situation.

In [42], the author has introduced the idea of a "local Ricci flow" which is,
by definition, equal to the Ricci flow weighted with a truncation function that
is compactly contained in a local region of a manifold. The author shows that
on regions, where the local Lz-norm of the full Riemannian curvature tensor
is sufficiently small, the local Ricci flow satisfies curvature decay estimates
and existence time estimates that only depend on significant local geometric
bounds. So, on these "good" regions one may apply [1, Theorem 2.2, pp. 464-
466] to a slightly mollified metric, to obtain local compactness with respect to
the C%-topology. Since the number of local regions having too large Lz-norm
of the full Riemannian curvature tensor is uniformly bounded, the author is
able to show that each sequence of closed Riemannian manifolds, satisfying
a uniform diameter bound, a uniform non-collapsing bound on the volume of
small balls, a uniform bound on the Lz-norm of the full Riemannian curvature

tensor and a sufficiently small uniform bound on the LP-norm of the Ricci

n

curvature tensor, where p > 2,

contains a subsequence that converges in the

Gromov-Hausdorff sense to a metric space, which is, outside of a finite set of



points, an open C'-manifold with a Riemannian metric of regularity C°.

In [43], the author has used the local Ricci flow to find a suitable harmonic
chart around each point in whose neighborhood the local Lz -norm of the full

Riemannian curvature tensor and the local LP-norm of the full Riemannian

n
2

author is able to improve the statements about the convergence behavior in

curvature tensor, where p > is not too large. Using these estimates, the
the convergence results in [42] on regions having a sufficiently small curvature

concentration.

It seems so, that the reliability of the Ricci flow in [44], and the local Ricci
flow in [42] and [43] is based on the appearance of the supercritical curvature
bounds. For instance, in order to develop the parabolic Moser iteration in [44]
and [42] one uses a well-controlled behavior of the Sobolev constant. As shown
in [42, 7, pp. 85-89] this behavior occurs, if one assumes suitable supercritical
bounds on the Ricci curvature. The examples in [3] show that the critical case

is completely different.

Another important issue is the absence of important comparison geometry
results under critical curvature bounds. In order to understand the rough
structure of Riemannian manifolds, satisfying a fixed lower bound on the Ricci
tensor, one uses the well-known "Bishop-Gromov volume comparison theorem"
(cf. [26,9.1.2., pp. 268-270]) which allows a one-directed volume comparison of
balls in Riemannian manifolds satisfying a fixed lower Ricci curvature bound
with the volume of balls in a such called "space form" (cf. [23, p. 206]),
which is a complete, connected Riemannian manifold with constant sectional
curvature. Later, in [27], Peter Petersen and Guofang Wei have shown that it
is possible to generalize this result to the situation, in that an LP-integral of
some negative part of the Ricci tensor is sufficiently small. Here the authors

assume that p is bigger that 7.

It seems that the treatment of Riemannian manifolds with pure critical
curvature bounds needs to be based on methods that are different from the
approaches we have just mentioned. Instead of considering the Ricci flow,
which is closely related to the gradient flow of the Einstein-Hilbert functional
(cf. [10, Chapter 2, Section 4, pp. 104-105]), one could try to deform a Rie-
mannian manifold of dimension 4 into the direction of the negative gradient

of the L2-integral of the full curvature tensor, in order to analyze slightly de-



formed approximations of the initial metric, having a smaller curvature energy
concentration. This evolution equation was examined by Jeffrey Streets in [36],
[32], [31], [33], [34], [35]. In this series of works, J. Streets has proved a plenty
of properties of this geometric flow and he also shows a couple of applications.

Using J. Streets technique, in Chapter 2, we show compactness results for
Riemannian 4-manifolds, that only assume a uniform diameter bound, a uni-
form non-collapsing bound on the volume of sufficiently small balls and critical
curvature bounds.

In the first theorem, we consider a sequence of Riemannian 4-manifolds
having almost vanishing Riemannian curvature tensor in some rough sense and
we show that a subsequence converges with respect to the Gromov-Hausdorff

topology to a flat Riemannian manifold:

Theorem 1.1. Given D,dy > 0, 0 € (0,1) and let (M;, g;)ien be a sequence of

closed Riemannian 4-manifolds, satisfying the following assumptions:

d() S diamgi (Mz)

D Vie N
Vol (B, (x,7)) > 0

<
> dw,r" VieN, z e M;, Vre|0,1]
1
1

IN

| Rmy, VieN (1.1)

L2(M;,9:)

then, there exists a subsequence (Mij,dgij)jeN that converges in the Gromov-

Hausdorff sense to a flat manifold (M, g).

Throughout, a closed Riemannian is defined to be a smooth, compact and
connected oriented Riemannian manifold without boundary.

In the second theorem, we consider a sequence of Riemannian 4-manifolds
with uniformly bounded curvature energy and almost vanishing traceless Ricci
tensor in some rough sense. Under these assumptions, we show that a subse-
quence converges with respect to the Gromov-Hausdorff topology to an Ein-
stein manifold, provided that the volume of small balls behaves almost eu-

clidean:

Theorem 1.2. Given D,dy, A > 0, there exists a universal constant 6 € (0,1)
close to 1 so that if (M;, g;)ien 1S a sequence of closed Riemannian 4-manifolds

satisfying the following assumptions:

do < diamg,(M;) < D Vie N



IN

| Rmg, || L2 vy g0 < A Vi € N
1
i

| Re,, Vie N

L2(M;,9:) < -

Voly,(By,(x,1)) > dw,r" Vie N,z € M;, re[0,1]

then there exists a subsequence (Mij,dgij )jen that converges in the Gromov-

Hausdorff sense to a smooth Einstein manifold (M, g).

As mentioned above, it is our aim to show these results, using the negative

gradient flow of the following functional:
Flg) := y |ng\§ avj (1.2)

That is, on a fixed sequence element (M?, gy), we want to evolve the initial

metric in the following manner:

%9 = —grad F = —2ddRc, + QRQ — %|ng|39 )
9(0) =go
where Rz‘j = R Rj,q in local coordinates and the gradient formula, which

appears in (1.3) can be found in |5, Chapter 4, 4.70 Proposition, p. 134]. Here,
d denotes the exterior derivative acting on the Ricci tensor and ¢ denotes the
adjoint of d. The gradient of a differentiable Riemannian functional is defined
in [5, Chapter 4, 4.10 Definition, p. 119].

In [36, Theorem 3.1, p. 252] J. Streets has proved short time existence
of the flow given by (1.3) on closed Riemannian manifolds. The author has
also proved the uniqueness of the flow (cf. [36, Theorem 3.1, p. 252]). In this
regard, the expression "the" L2-flow makes sense. In [35, Theorem 1.8, p. 260]
J. Streets has proved, that under certain assumptions, the flow given by (1.3)
has a solution on a controlled time interval and the solution satisfies certain
curvature decay and injectivity radius growth estimates.

In Section 2.1, we use J. Streets ideas, in order to show that, under certain
assumptions, the distance between two points does not change too much along
the flow. This allows us to bring the convergence behavior of a slightly mollified
manifold back to the initial sequence. That means we will prove the following

theorem:



Theorem 1.3. Let (M*, gy) be a closed Riemannian 4-manifold. Suppose that
(M, g(t))teo,1 45 a solution to (1.3) satisfying the following assumplions:

[ 1Rl v, < (1.4)
| Rmggo) = argeny < Kt™2 Vit € (0,1 (1.5)
i (M) > it vt € [0, 1] (1.6)
diamgy (M) < 2(1+ D) (1.7)

Then we have the following estimate:

|d($,y,t2> - d(x7y7t1)‘ S C<K7 L, D)A% (252g —t

— ool
~
&
+
Q
=
-
-
N~—
—~
St
NS
|
~
=S
~

for all t1,t € [0, 1] where t; < to.

These estimates allow one to prove Theorem 1.1 and Theorem 1.2 which
are the main goals of Section 2.2 and Section 2.3. Here, in Section 2.2, we
may refer to the estimates in 35, 1.3, Theorem 1.8, p. 260|. In Section 2.3,
we write down an existence result which allows to apply Theorem 1.3 to the
elements of the sequence occurring in Theorem 1.2.

In Chapter 3 we focus our attention on harmonic coordinates. As explained
above, in the context of determined L>°-bounds on the full Riemannian curva-
ture tensor, the proof of [1, Theorem 2.2, pp. 464-466]| is based on the existence
of appropriate coverings with suitable harmonic charts. Here, in these local
charts, the Riemannian metric and their derivatives have fixed bounds with
respect to the L>*-norm.

Using blow-up arguments as in [6, Section 2, pp. 9-14] and [30, Appendix
B, pp. 54-64], one may also prove the existence of suitable harmonic charts in
the context of integral curvature bounds, where locally, a non-collapsing / non-
inflating condition on the volume of small balls, a supercritical bound on the
Ricci tensor and a smallness condition on the LZ-norm of the full Riemannian
curvature is assumed. In this situation, in harmonic charts, the Riemannian
metric has a fixed L*-bound and their derivatives have fixed bounds with
respect to the Li-norm, where ¢ depends on the space dimension, the order
of the derivative k and the supercritical LP-bound on the Ricci curvture. The

order ¢ is always strictly bigger than 2, and £ is at least one or two. Using the



theory of Sobolev spaces (cf. [15, Chapter 7, p. 144-173]) one obtains always a

fixed C*“-bound on the metric in such a harmonic chart. As p tends to 5 from
n
k
Since the critical Sobolev spaces W% () are not continuously embedded into

above, the order ¢ tends to % and the Holder exponent v > 0 tends to zero.
the space C°(€), it is doubtful, if the concept of a harmonic radius with pure
critical Sobolev bounds would be a convenient tool, in order to control the
C%-behavior of Riemannian manifolds with scale invariant curvature bounds.

In order to do a step in this direction, in Definition 3.2, we introduce the
notation of a harmonic radius r, which slightly generalizes the notation of
the harmonic radius introduced in [6, Section 2, Definition 2.1, p. 9]. Our
notation of the harmonic radius requires locally a fixed L"-bound on the first
derivative of the Riemannian metric combined with a C'%%semi norm bound
on the metric. Assuming an appropriate behavior of this harmonic radius, we
are able to prove the following result, which generalizes |6, Section 2, Theorem

2.3, pp. 13-14] from the view point of the regularity

Theorem 1.4. Letn € N, n >3, 0 < 01 < 0y be fized, let (M, g;, pi)ien be a

)

sequence of smooth complete pointed Riemannian manifolds without boundary

such that for alli € N the ball B,,(p;, 1) € M, satisfies the following properties:

Jm 1ol 15 (5, 1.9 = O (1.9)

Tn

for all x € By,(p;, 1), v € (0, 1] such that By,(x,r) C By, (pi, 1) and

re(x) >ro(s) >0 Va e By (p;,s) andi € N;s <1 (1.11)

Then, there exists a smooth Ricci flat manifold (X, g,p) containing the ball
B,(p,1/10) so that, after taking a subsequence, for each i € N there erists
a diffeomorphism F; : By(p,1/10) — Fi(B,(p,1/10)) C By, (p;, 1) such that
Fg; converges to g with respect to the W2 (By(p,1/10))-topology, as i tends
to infinity.






Chapter 2

Convergence of Riemannian
4-manifolds with almost vanishing

L*-integral of the curvature

In this chapter we prove Theorem 1.1 and Theorem 1.2 which are consequences
of Theorem 1.3. In order to prove Theorem 1.3 we use the "tubular averaging
technique" from [35, Section 3, pp. 269-282|. Our method is derived from
[35, Section 3|, although it is necessary to make some modifications, see for
example Lemma 2.3 here. In Subsection 2.1.3, we apply the "tubular averaging
technique" to the time-reversed flow. For the sake of understanding, we give
detailed explanations of the steps in the proof, even if the argumentation is
based on the content of [35, Section 3]. In order to get a very rough feeling
for J. Streets "tubular averaging technique" we recommend to read the first

paragraph of [35, p. 270].

2.1 Distance control under the L?-flow in 4 di-

mensions (Proof of Theorem 1.3)

In this section we prove Theorem 1.3. The proof is divided in two principal
parts:
In the first part of this section we show that, along the flow, the distance

between two points in manifold M does not increase too much, i.e.: we derive

9
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the estimates of the shape d(x,y,t) < d(z,y,0) + € for small t(¢) > 0. We say
that this kind of an estimate is a "forward estimate".

The second part in this section is concerned with the opposite direction, i.e:
we show that, along the flow, the distance between two points does not decay
too much, which means that we have d(z,y,t) > d(x,y,0) — € for t(e) > 0
sufficiently small.

We point out that the estimate of the length change of a vector v € TM
along a geometric flow usually requires an integration of the metric change
|9’ (t)] g1y from O to a later time point 7" (cf. (A.2)). With a view to (1.3) and
(1.5) we note that, on the first view, this would require and integration of the
function t~! from 0 to 7" which is not possible.

In order to overcome this difficulty, we follow the ideas in [35, Section 3], i.e.
we introduce some kind of connecting curves which have almost the properties
of geodesics. Then we construct an appropriate tube around each of these con-
necting curves so that the integral f7 lgrad F| do, which occurs in the estimate
of |4 L(y,t)] (cf. (A.1)), can be estimated from above against a well-controlled
average integral along the tube plus an error integral which behaves also well
with respect to t. We point out that we do not widen J. Streets ideas in |35,
Section 3| by fundamental facts, we merely write down detailed information
which allow to understand the distance changing behavior of J. Streets L?-flow

in a more detailed way.

2.1.1 Tubular neighborhoods

We quote the following definition from [35, Definition 3.3., pp. 271-272]

Definition 2.1. Let (M", g) be a smooth Riemannian manifold without bound-
ary, and let 7 : [a,b] — M be an smooth curve. Given r >0, and s € [a, D]
then we define

D(y(s),r) := expy( {B(0,7) N (§(s))" }

and

D(y,r):= |J D((s),7)

s€la,b]
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We say "D(v,r) is foliated by (D(¥(s),7))seap " o
D(v(s1),m) N D(7(s2),7) =0
for all a < s1 < s9 <D.
The following definition is based on |35, Definition 2.2., p. 267|.

Definition 2.2. Let (M",g) be a closed Riemannian manifold, k € N and
x € M, then we define

k

ful,g) = S (799 Rmy |27 ()

J=0

and

fk<M7 g) ‘= sup fk(xvg)

xeM

At this point we refer to the scaling behavior of fi(x,¢) which is outlined
in Lemma A.2.

The following result is a slight modification of [35, Lemma 3.4., pp. 272-
274]. To be more precise: in this result we allow the considered curve to have

a parametrization close to unit-speed, and not alone unit-speed.

Lemma 2.3. Given n,D,K,. > 0 there exists a constant $(n, D, K, 1) > 0
and a constant p(n) > 0 so that if (M", g) is a complete Riemannian manifold

satisfying

diamg(M)
f3(Mn79)
ingg(M)

IN

D
K

IN

v

L

and v : [0, L] — M is an injective smooth curve satisfying

L) < d(v(0),7(L)) + B (2.1)
Viy| < B (2.2)
L <pi<i+p (2.3)

1+6~
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then D(v, R) is foliated by (D(y(s), R))cpor) for R = ,umin{L,K_%}. Fur-
thermore, if

7 : D(v,R) — ~([0, L])

is the projection map sending a point ¢ € D(p, R), where p € ([0, L]), to p,
which 1s well-defined by the foliation property, then

|dm| <2 on D(v, R) (2.4)

Here dm denotes the differential and |dr| denotes the operator norm of the

differential of the projection map.

Proof. Above all, we want to point out, that, due to the injectivity of the
curve, we can construct a tubular neighborhood around ([0, L]). This is a
consequence of [24, 26. Proposition, p. 200]. But the size of this neighborhood
is not, controlled at first. Via radial projection we can ensure that the velocity
field of the curve is extendible in the sense of [23, p. 56]. We follow the ideas
of the proof of [35, Lemma 3.4, pp. 272-274| with some modifications.

Firstly, we describe how u(n) > 0 needs to be chosen in order to ensure that
the curve has a suitable foliation which can be used to define the projection
map.

Secondly, we show that the desired smallness condition of the derivative of
the projection map is valid, i.e.: we show (2.4). Here we allow pu(n) > 0 to
become smaller.

Let

P 1 1
p(n) ;= min {u(n), 207 m} (2.5)

where fi(n) > 0 and Cy(n) > 0 are taken from Lemma A.8 and Cy(n) > 0 will

be made explicit below. Let
R := ,umin{L,K*%}

Suppose there exists a point p € D(y(so), R)ND(y(s1), R) where sq, s1 € [0, L],
sg < s1 and s; —sg < 10R at first. By definition, there exists a normal chart of
radius 20R around p (cf. |23, pp. 76-81]). In this chart we have the following
estimate

1
sup  pK 2T

< G100 2.6
B, (p,20R) = 64C5(n) (2:6)
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Choosing § € (0, 1) small enough compared to R we ensure that v([so, s1]) lies
in this chart. From [23, Theorem 6.8., pp. 102-103] we obtain

o0 .
()=
~(s0)
where 5 (s)
V(s
< — il 2.7
or | Tr(s)) Oheo (27)

and 01, ..., 0, denote the coordinate vector fields and ~+*,...,7" denote the co-

ordinates of v in this normal chart and

(cf. |23, Lemma 5.10, (5.10), p. 77]). We show that it is possible to take
B(n, K,t) > 0 small enough to ensure that

(&)

This would be a contradiction to the fact that [23, Theorem 6.8., pp. 102-103|

(&)

From [23, Lemma 5.2 (c), p. 67| we infer on [sg, s1]
0 < 0 > < 0 > < 0 >
— (77 =(Ds727 + { 52, Ds7
O0s \Or ~(s) *or ~(s) or’
24, a2,
()

#0 Vs € (s, s1]

v(s)

also implies

=0 (2.8)

v(s1)

(s)

(2.9)
><D 0 ¢> 0 Vi) 7(s)]
= s — | 4a. Y(s)
o' [l |Orle !
22
> <DS£7> _B

0

3

v(s)

Using (2.7) together with [23, Lemma 4.9 (b), p. 57| and [23, p. 56 (4.9)| we

calculate

p 2 T Gy o 1D,0, = 7a——”<’y’f”’“>a+ =D,
or r2 r2
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This implies

et , 1]/, 0 o .2
S <%§>’ <7"5,7>‘—Cz(n)\ﬂlv\
1 1 0
> “ A 2__ . i . - F <12
> 15 = 1l g2.7)| - Catolil
231 2|/0 .
&= 2| (4| - acatmin

_1-4Gy(n \<6T,7>\ 16C5(n)r|T)|

Here, in order to obtain the first estimate, we refer to Definition C.9 and the

fact that

n

o Lol < Gl

Hence, (2.9) implies

0 <a > 1—=8[(Z,4)| — 16Co(n)r|T| — 48r
Sl 7) 2
ds \ Or

4r

S 1-8[(E - 160y (n)uK =3 |T| — 4uK =23

- 4r

= 1—8(<%ﬁ>|4—i—4ﬂf(_23 (2.10)
r

18231

- 4r

581G 1 9
2 or’ _ _ A
n 4r -~ 8r [1 16‘<3T’V>H

We show that this differential inequality implies the desired contradiction. Let
w : [so,51] — R, w(s) := <ar77>| (s): Then (2.10) is equivalent to

1
w2 (1 16ju])

on [sg, s1]. Since w(sg) = 0, there exists § > 0 such that w’ > 0 on [sg, sp + ¢].
This implies w > 0 on (sg, So + 6]. We show that we have w > 0 on (so, 1],

which contradicts (2.8). Assumed

$ = sup {s € (50, s1)| W59 > O} < 5
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which implies

w(s) = (2.11)
Then (2.10) is equivalent to
w' > i(1 — 16w)
8r
on [so,8]. The function z : [so,s1] — R, 2(s) = (1 — 6_2(%50)) satisfies

7= g%(l — 16z) on [sg, s1] and z(sg) = 0. Thus we have

(w—2) > —%(w —2z) on [sg,3]

(w = 2)(s0) = 0

(2.12)

and we define a new function ¢ : [sy, s1] — R as follows ((s) := er*(w(s) —
2(s)). Then (2.12) implies

C(s) =262 (w(s) — 2(5)) + 2 (w/(s) — (s))
>2eB(w(s) — 2(s) — 2eP(w(s) — 2(s)) =0

Hence

from this we obtain

w(E) > 2(5) = (1 — =252y 5 0
which contradicts (2.11). Consequently, we have w > 0 on [sg, s1]. The same
argumentation as above, adapted to the interval [s, s1], implies w(s;) > 0 in
contradiction to (2.8). This proves that two discs D(7y(so), R) and D(v(s1), R)
cannot intersect, when |s; — so| < 10R.

Now, we show that two discs D((sg), R) and D(v(s1), R) cannot intersect
if we assume sg,s1 € [0, L], sp < s1, to be far away from each other, which
means that s; — sg > 10R holds.

We suppose that there exists a point p € D(v(sg), R) N D(v(s1), R). As in
[35, p. 273| we construct a curve « in the following manner: « follows 7 from

~(0) to v(sg), next o connects y(sg) and p by a minimizing geodesic, then «
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connects p and (s;) also by a minimizing geodesic, and finally « follows ~y

again from y(s1) to y(L). We infer the following estimate:

AO0LAD) < L) < [ ilds+ R+ R [ 15l

—~
I

04 B)so+ 2R+ (14 A)(L — 1)
(14 B)L+2R — (1+ B)(s1 — s0)

:(1+5)/ mds+2R (1+B)(s1 — s0)

233)(1 + 5)2/0 7| ds + 2R — (14 B)10R

< (14 B)°L(7) — 8R

< (14 B (dy((0).1(L) + B) — 8R
< (14281 8)(dy(1(0), 1(L)) + 46 — 8R
< (d( ( ) (L))+3ﬂD+4ﬁ S8R

—
e

and consequently:
0<(3D+4)5—8R

which yields a contradiction when f(n, D, K,t) > 0 is chosen small enough.
Hence, two discs D(v(so), R) and D(7y(s1), R) cannot intersect, provided they
are not identical. Thus, D(y, R) is foliated by (D(v(s), R)) (o 1-

It remains to show the estimate (2.4). We mentioned at the beginning of
the proof, that now, we allow i to become smaller.

As in the proof of [35, Lemma 3.4.] we suppose the assertion would be not
true, i.e. there exists a sequence of constants (u;);en, Where lim; o p; = 0,

and a sequence of closed Riemannian manifolds (M}, g;);en satisfying

f3(Mi, 9;) < K;  and
injg, (M;) > 1

for all i € N, and curves ~; : [0, L;] — M, satistying

L(7vi) < d(i(0),vi(Ls)) + Bi
V39l < B and (2.13)

< |l <1+05
1+6Z»—M B
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for all i € N, where (f3;)ien C (0, 1], so that for each i € N the tube D(v;, R;)
1
is foliated by (D(7i(s), 1)) e(o.1,» Where R; := yi; min {Li, K, ?® }, but for each

i € N there exists a point p; = v;(s;) and y; € D(p;, R;) such that |dm;|(y;) > 2.

From this we construct a blow-up sequence of pointed Riemannian manifolds
(M;, hi == R;%gi, p;)ien
which satisfies for each i € N and = € M,

fola,hs) = folw, B720:) ) B2 fo(w,00) < R K < i 250

(2

and

1 1—00
%

ingn,(M;) = injp-2,, (M;) = Ry ting,,(M;) > Ry 'y > p

Hence, using Theorem A.11, we may extract a subsequence that converges
with respect to the pointed C?“-sense t0 (R", gean, 0). Next, for each i € N we

reparametrize the curve ~; as follows: Let

Then for each ¢ € N we have for all s € [0, %]
7:(s)
=|3i(Ris) - Riln, = Ry - [3i(Ris)| g2y, = Ri - By '3 Ris)l,

23 [ 1
e |—,1
gi |:].+ﬁ7 +/B:|

hi

:"Vi(RiS>

and, using normal coordinates at 7(s)

s A, = (i (55 () = B - (g5 (515 (9)

=R (i) - B2 3*(Ris) - B2 -5 (Rys)
=R? - (g - 7 (Ris)5 (Rys)

(2.2)
Vs re Y (Ris)2, < RY- 5P < R

Hence

lim max
1—00 [07%]
1

hixg . 5| —
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Using the Arzela-Ascoli Theorem we conclude, that these curves converge with
respect to the C1%sense to a geodesic which goes through the origin. After
an eventual rotation, we may assume that v(t) = (¢,0,...,0). In the blow-up
metric h; each point y; has a distance to p; not bigger than 1. That means,
that this point can be considered as a point in By, (0,2) C R™. This sequence
of points will converge to a point y € B, (0,1)N{z € R": 2! =0}. We
recall that the projection maps m; : D(v;, R;)) — 7:([0, L;]) are satisfying
|dm;|(y;) > 2 by assumption. Due to the scaling invariance, this inequality is
also true with respect to the blow-up metric h;. Since the Riemannian metrics
h; converge in the C*%-sense to the euclidean space and the curves +; converge
in the Ch*-sense, the maps m; converge in the Cl-sense to a map on the limit
space, which will be denoted by w. Here we have used, that each tubular
neighborhood is a diffeomorphic image of a neighborhood of the zero section
in the normal bundle on the curve v; (|24, pp. 199-200, 25. Proposition /
26. Proposition|). Hence, we conclude |dr|(y) > 2, but the map 7 is explicitly
given as (z!,...,2") — (21,0, ...,0) and this map satisfies |[dn| < 1, which yields

a contradiction. ]

We want to point that it is also possible to deduce Lemma 2.3 from the
statement of [35, Lemma 3.4, p. 272| by use of unit-speed parametrization.
On doing so, it is possible to avoid the dependence of the constant 5 > 0 on

the diameter D > 0.

2.1.2 Forward estimates

In this paragraph we show that, under certain assumptions, distances do not
increase too much along the L2-flow.

Here, we prove the following estimate:

Lemma 2.4. Let (M* gy) be a closed Riemannian 4-manifold and let
(M*, g(t))ieo,1) be a solution to the flow given in (1.3) satisfying (1.4), (1.5),
(1.6) and (1.7), i.e.:

/ |ngo|g2go dvgo < A
M

_1
[Bmg || oo (v gy < Kt2
injg(t)(M) > Lti
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dz’amg(t)(M) < 2(1 + D)

for allt € (0,1]. Then we have the following estimate:

L/l INE 1
A, y,t2) = d(w,y, 1) < C(K, 1, D)NS (85 — 17 ) + C(K, 0, D) (157 — 177
1

for all ty,ts € [0, 1] where t; < to.

As mentioned at the beginning of this section, we aim to use some kind
of connecting curves between two points which are close to geodesics. These
curves can be surrounded by a tube such that the projection map has bounded
differential (c.f. Lemma 2.3).

The following definition is a modification of [35, Definition 3.1., p. 270].
Our definition is slightly stronger in some sense because we also assume a
stability estimate of the length of the velocity vectors along the subintervals.
We point out that we call the following objects S-quasi-forward-geodesics and
not merely [-quasi-geodesics, as in [35, Definition 3.1., p. 270|. In Subsection

2.1.3 we introduce a time-reversed counterpart to these family of curves.

Definition 2.5. Let (M™, g(t))icp, o) be a family of complete Riemannian
manifolds. Given 8 > 0 and x,y € M then we say that a family of curves
(Ve )tetite) ¢ [0,1] — M is a [3-quasi-forward-geodesic connecting x and y if

there is a constant S > 0 so that:

1. For allt € [t1,ts] one has v(0) = x and y(1) =y

2. For all j € Ny such that t1 + 7S < to, V455 98 a length minimizing

geodesic

3. For all j € Ny such that t1+35S < ty, and allt € [t +75S,t1+(7+1)S)N

[t1, t2] one has v = V1,15
4. For allt € [ty,ts] one has

5. For all j € Ny such that t,+3jS < ts, and allt € [t; +7S,t1+(j+1)S)N

[t1,1s] one has
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YOV 5, kg < B (@, y,t1 + §S) (2.17)

It is our aim to prove the following existence result:

Lemma 2.6. Let (M", g(t))icp 1, @ smooth family of closed Riemannian man-
ifolds. Given B >0 and x,y € M then there exists a [(3-quasi-forward-geodesic

connecting xr and .

Remark 2.7. The interval length S > 0 which will be concretized along the
following proof has a strong dependency on the given points x,y € M, > 0
and the flow itself. As it turns out in the proof of Lemma 2.4, this will not
cause problems because estimates on the subintervals will be put together to an

estimate on the entire interval [ty,1s] via a telescope sum.

Proof of Lemma 2.6. In order to obtain the desired existence result, we modify
the proof of [35, Lemma 3.2., p. 271|. Let

A= max |lg'(t)l| oo (s gey) T  nax IVG O] oo (1,901 (2.18)

te[tl,tz t N7 ]

At time ¢, 455 we choose a length minimizing geodesic 4, 4,5 : [0,1] — M

with respect to the metric g(¢; + jS) connecting x and y. This curve satisfies
‘V’Yt1+jsg)/t1+j5‘g(t1+j5) =0 (219)
and

".}/t1+j5|g(t1+j5) = d('r?y’tl _'_jS) (220)

Firstly, we show that an appropriate choice of S(8,z,y,g) > 0 implies
(2.16). Let v € TM be an arbitrary vector and ¢ € [t;+5S,t1+(j+1)S)N[t1, to]
Then, by (A.2), we have

Zt t (
log <|U||:A>' g/t 19" ) oo (ary g(ryy AT < AS<log[(1+6) ]

g(t1+49) 1158
(2.21)

Hence, we obtain the estimate

1 : 2

m|%+js’§(t1+j5) < el2y < A+ B)*Higttaasis ansss)
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Using (2.20) we infer (2.16) from this. Next we show (2.15). Using (A.1) we

obtain

o ) (2.18)

aL(%at) = aL(%ﬁjSat) < A L(y4s:t) = A+ L, t) (2.22)

on (t1 + jS,t1 + (j +1)S) N [t1,t2). This implies £ log L(7y:,t) < A, and we

infer

L(v,t
d(l’,y7t) SL<’tht> - L(’Yt +(S’ytt1)<|>]8)
1100

o (1o (L(vf(:tt 755 ) Hoessia 39

=exp (log (L(vi,t)) — log (L(iy4js, t1 4+ 39))) L(Ver4ss, t1 + 55)

<eA=OTINL (4, g ty + jS) = AN (3 y ¢, + 55)
(2.23)

L(%H—jSv b+ ]S)

In particular, we have
d(z,y,t) < e WLy, 1) = e d(z, y, 1) Vt € [t ta]  (2.24)
From (2.23) we obtain for all ¢ € (t; + jS,t1 + (7 + 1)5) N [ty, o]

L, t) <d(z,y,t, + jS) + (e — 1)d(z,y,t1 + jS)

(2.24)
< d(z,y,ty +4S) + (e — 1) d(x,y, 1)
B
2

Sd('xagﬁtl +]S) +

In order to prove (2.15) it suffices to show that we can choose S(5,x,y,g) > 0

small enough to ensure

d(ﬂ?,y,tl—l—jS) S d(x7y7t>+§ vt S (tl +j57t1+<j+1)s>m[tlat2] (225)

From (2.21) we conclude for all v € TM

e 20 ss < 0k < ek e VEE (435S i+ (i +1)S) N[ty b
(2.26)
At time ¢, we choose a length minimizing geodesic £ : [0,d(z,y,t)] — M

connecting x and y, then:

d(zyt)
A,y b+ S) <L(E, 1 + jS) = / €05 lg(ersss) ds
0
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(2.26)

d(z,y,t)
27 pas / €(8) oo ds = €S L(E, £) = eASd(, y, 1)
0

=d(z,y,t) + (e = 1)d(x,y,1)

(2.24)
< d(z,y,t) + (e = e d(z,y,t,) < d(z,y,t) +

o™

It remains to show that, under the assumption that S(5,z,y,g) > 0 is
sufficiently small, estimate (2.17) is also valid. From (A.3), (2.18) and (2.16)
we conclude for each t € (t1 + jS,t1 + (j + 1)S) N [t1, t2]

0 . . . .
ot ’v‘yt%‘i(t) <A ’V%’Yti(t) +4AC(n)d*(z,y,t1 + jS) ’v%%‘g(t)

(2.

0 (2.27)
< ANV5 gy + 4AC() AT (2, y, 1) [V,

g(t)
Now let x € M be arbitrary. We assume that
i=sup {t € (b + S, b+ (G + 1)S) N [t1,8)|
|V%%|z(7) (x,7) < min{ﬁc_ZQ, 1} Vr e ft1 +4S, t]}
< min{t; + (j +1)5, t2}

where

d:= min d(z,y,t) >0

te(t,to]
Then, (2.27) implies
0 . _ .
g ]V%%E(t) < A(1+4Ce* =Ry 1)) on {z} x [ty + 58S, 1]
Using this, from (2.19), we conclude:

=2 12 ~
win 5,1} = [Vl o)
<A(E = (t + 49)) (1 +4CA =@ (2, y, 1))
2
<AS(1+ 4062A(t2_t1)d2(x, y,t1)) < —mln{ﬁ;d 1}
which yields a contradiction, if S(f3,z,y,g) > 0 is small enough. O]

Now we prove Lemma 2.4. The argumentation is based on [35, pp. 277-280).
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Proof of Lemma 2.4. Let x,y € M be fixed and t1,t5 € [0, 1], t; < to. Initially,
we construct an appropriate S-quasi-forward geodesic in respect of Lemma, 2.3.
We choose

f:= min B >0 (2.28)

tG[tl,tQ}

where
By == B(n, diamgy (M), f3(M, g(t)), injgw (M))

is chosen according to Lemma 2.3 at time ¢. Next, using Lemma 2.6, we assume

the existence of a S-quasi-forward-geodesic
(&)teitr e = 10,1] — M

connecting x and y. It is our aim to construct an appropriate tubular neighbor-
hood around each & applying Lemma 2.3, the radii r; shall be time dependent,
where rg = 0, when t; = 0. After doing this, we notice that we are able to
estimate the integral f& lgrad F|do from above against an average integral of
|grad F|? along the tube plus an error term. Each of these terms is controllable.

By construction of the p-quasi-forward-geodesic, we have a finite set of

geodesics denoted by (&,4;s) 2ty where each of these geodesics is
S

J€{0,...,|
parametrized proportional to arc length, i.e.:

: . . to —t
[€hssslacervss) = d(y, 1y +jS) for all j € {0, [F——]}

we reparametrize these curves with respect to arc length, i.e: for each j €
{0,..., 252} let
Pt14+458 - [Oad(x7yvt1 +]S)] — [07 1]

(s) = >
(’0 o d(x7y7t1 +]S)

and let
Vt1+4S [Ovd($7y7t1 +.]S>} — M
V1448 = €t1+j5 © Pt1458

Of course, these curves are satisfying (2.1) (2.2) and (2.3). But we need to get
sure that, for each t € (t; + jS,t1(j + 1)S) N [t1, ta], the curve

Ve =& 0 Yr4js 1 [0,d(z,y, t + 5S)] = M
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is also satisfying these assumptions. Here g € (0, 1) is defined by (2.28). By
construction, using (2.16) for each t € (t; +jS,t1 + (j +1)S) N|t1, t2], we have

1 1 1
< < |~ =
T35 S 115 = o = G559

’étlg(t) <1+B8<1+5

and, using (2.17)

1
d<x7y7t1 +]S)

IV Telgry = Ve &ilyy < B < By

Thus, by Lemma 2.3, for each time ¢ € [jS5,(j + 1)S) N [t1,t2] the tubular

neighborhood D (v, pr) is foliated by (D(7:(s), pt)) sepo,a y Where

z,y,t1+7S
. .. _1
pr i= pmin { injgqr (M), f3(M, (1))~ | (2.29)

where p > 0 is fixed and the differential of the projection map satisfies (2.4).
For later considerations, we assume that p > 0 is also chosen compatible to
Lemma A.9. Although we have no control on ;, we can bound p; from below
if we can bound f3(M, g(t))~2 from below in the view of (2.29).

Using (A.10) and (1.5) we obtain for each m € {1,2,3}:

24m
| V™ Ringq L =C(m, Kt (2.30)

)HLoo(M,g(t)) < C(m, K) <t7%>

and consequently

S

fs(M,g(t)) < C(K)t~

Thus, we have for each ¢ € [ty, to]
pr > {Lti,C_%(K)ti} > pmin{e, C'_%(K)} 2 = R(1, K) - tan = ri(e, K)
(2.31)
Now, we may start to estimate the change of L(v;,t), where t € [t,+75,t1+(j+
1)S) N [t1,t2) and j € {0,..., | 25| }. From the explicit formula in (1.3) and
(2.30) we conclude |V grad Fyulen) < Co(K)t~3. Now let p be an arbitrary

point on the curve v, 45 and ¢ € D(p, ;) then we obtain
lgrad Fy(loe (p) < lgrad Fyn g (q) + Ca(K)ri(e, Kt (2.32)

In the following, we write r, instead of (¢, K') and grad F instead of grad F.
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We infer:
f D(p,rt) |grad F|g(t)(p)
Area(D(p, 1))
< Sotmn [|grad Flaw(q) + C5(K)rt—1] dA
- Area(D(p,rt))
_fD(p,rt) |grad g dA
Area(D(p,rt))
(poT |grad F12, dA)
Area: (D(p, )

lgrad Flg (p) =

(2.33)

%\U‘

+ C5(K)R(v, K)t2i~

+ C3(K)R(1, K)t™ 2

From Lemma A.9 we obtain for each ¢ € [t1,t5] that
Area(D(y:(s), 7)) > cri = cR*(1, K)t% (2.34)

Inserting this estimate into (2.33), we infer for each p € v, 45

\grad F |y (p) SC_%R_%(L»K)t_% </ |grad F|s21(t) dA)
D

+ C3(K)R(e, K)t™ 2

(2.35)

(pyrt)

Hence, on (t; + jS,t; + (j + 1)S) N [t1, t2) we have

d d (A1)

ELW“ t) = dtL('th—&-jS’t) < [/tms lgrad Fly do

(2.35) . 3
< ¢ 2R3 (L, K)t_lﬁ/ (/ |grad .7:|3(t) dA> do
Ve1+5S D(p,re)

+ C5(K)R(e, K)t 21 L7y 155, 1)

< IR, K)tT / / lerad Fljy dAdo | L2 (y,4s,1)
Ye1+55 < D(pyre)

+ C5(K)R(e, K)t~ 3 L7y 155, 1)

[N

(A.17)
< ¢ iR, K)T sup )\dﬂ% (/ lgrad f|§(t)dVg(t)> L2 (Y1455 1)
M

D(viy4js:mt
+ C5(K)R(t, K)t 3 Ly, 455, 1)
(24) :
< coR™ (L K)t~ 15 (/ |grad ]-“| dVg(t) L2 (Ve 445, 1)

+ Cy(K)R(e, K)U % L1, 14, 1)
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N

%
= ;R R(1, K)t 7 (/M lgrad F13, d‘@(t)) Lz (1)

+ Cy(K)R(s, Kt 5 (3, 1)
Using
(2.1) (1.7)
L(vy,t) < d(z,y,t1+55)+1 < 21+D)+1=3+2D (2.36)

we conclude

d 3
C L, 1) SCD)R3(, K}t~ (/ lgrad F[2, d, )

+ C(K, D)R(1, K)t™ 5

on [ty + 7S, t1 + (j + 1)S) N [t1,t2) where j € {0, ..., |25 | }. Integrating this
estimate along [t; + 7.5, t] yields:

d(I,y,t) - d(‘ray7t1 +]S) = d(l‘,y,t) - L(7t1+j57t1 +]S)
<L(ve,t) = LYty 44s:t1 + 35)

. ¢ 3
<C(D)R (1, K) / 2( / lgrad F2, dVy ) ds
t1+]5
t

+C(K,D)R(1, K) / s7 31 ds

t1+38
for each t € (t; + 7S, t1 + (7 + 1)S) N [t1, t2]. In particular, we obtain for each
j S {07 RS) L%J - 1}

3 t1+(j+1)S
SC’(D)R_Q(L,K)/ (/ |grad ]-"|g(5 ) ds

t1+j5S
t1+(j+1)S
+C(K, D)R(1, K) / ¥ ds

t1+35
and

to —t
d(x7yat2) _d($7y>tl+ L 2 S 1JS)

to %
<C(D)R™%(1, K) / s ( / lgrad Fg dVg(s)) ds
t1+[ 251 ]S M
to 5
+ C(K, D)R(1, K) / 3 ds
ti+[ 251 ]S
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and consequently

d(ﬂf, Y, t2) - d(1‘7 Y, tl)
|25
= Y @yt + (G +1)8) — d(z,y. 1+ jS)]
7=0

to — 1
+d($7y7t2) —d<1’7y,t1+ |_ 2 S 1JS)

to - %
gC(D)RS(L,K)/ s (/ |grad f\ﬁ@dvg(s)) ds
M

t1

t2 23
+C(K,D)R(:,K) / s 21ds

t1

to . % t2 %
SC(D)R_%(L, K) (/ s78 dS) (/ / |grad ]:13(3) dVy(s) ds)
t1 t1 M

t2 23
+C(K,D)R(1,K) / s 21ds

t1

Using (1.4) and (A.9) we conclude

1

1 1 1\ 32 1 1
d(l',y,tg) - d(xayatl) S C(K7L>D)A§ <t28 - tf>2 _'_C(K’ 2 D) (t224 _t124>

]

2.1.3 Backward estimates

In this subsection we reverse the ideas from Subsection 2.1.2 in order to prove
that, along the L2-flow, the distance between two points does not become too

small when ¢ > 0 is small.

Lemma 2.8. Let (M* gy) be a closed Riemannian 4-manifold and let
(M*, g(t))ieo,1) be a solution to the flow given in (1.3) satisfying (1.4), (1.5),
(1.6) and (1.7), i.e.:

dz’amg(t)(M S 2(1 —|— D)
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for allt € (0,1]. Then we have the following estimate:

L/l 1N 11
d(l’, y7t2) - d(l’,y, tl) Z _C(K7 L, D)A§ <t§ - 2f18> - C(K7 Ly D) <t224 - t124>
(2.37)
for all ty,ts € [0, 1] where t; < ts.

The notion of a S-quasi-backward-geodesic, which is introduced below, is an
analogue to the notion of a f-quasi-forward-geodesic, introduced in Subsection
2.1.2. The slight difference is that now, the minimizing geodesics are chosen

at the subinterval ends:

Definition 2.9. Let (M",g(1))ict 1.] be a family of complete Riemannian
manifolds. Given B > 0 and x,y € M then we say that a family of curves
(Ve)teftr o) = [0, 1] — M is a [-quasi-backward-geodesic connecting x and y if
(V4 )telts o) 18 @ B-quasi-forward-geodesic connecting x and y with respect to the
time-reversed flow (M", g(ts +1t1 —1))icft, 2], ©-€.: there is a constant S > 0 so
that:

1. For allt € [ty,t5] one has y(0) = x and (1) =y
2. For all j € Ny such that to — 7S > t1, Vi,—js 18 a minimizing geodesic

3. For all j € Ny such that to — jS > t1, and all t € (t3 — (7 + 1)S,ts —
7SO [t ta] one has v = 1,55

4. For allt € [t1,ts] one has

d(z,y,t) < L(y,t) < d(z,y,t) + (2.38)

5. For all j € Ny such that to — 7S > t1, and all t € (ty — (j + 1)S,ts —
7S] N [t1,ta] one has
1 . . .
|V"Yt"7t’g(t) < 5d2($a y>t2 - jS) (240)

Applying Lemma 2.6 to (M", g(ta +t1 — t))iejt; 15), We infer

Lemma 2.10. Let (M",g(t))icit, o) @ smooth family of closed Riemannian
manifolds. Given B > 0 and x,y € N then there exists a [-quasi-backward-

geodesic connecting r and .
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Using this concept, we prove Lemma 2.8:

Proof of Lemma 2.8. The proof is analogous to Lemma 2.4. We choose x,y €
M and ty,t; € [0,1] where t; < to. Tt is our aim to construct an appropriate
backward-geodesic. As in the proof of Lemma 2.4, let

f:= min B >0 (2.41)

te(t1,t2]

where
/6t = B(nv diamg(t)(M)> f3(M7 .g(t))’ Zn]g(t) (M))

is defined in Lemma 2.3, let (&§)cpt, 1) be a B-backward-geodesic, connecting
and y, whose existence is ensured by Lemma 2.10. As in the proof of Lemma 2.4
we use Lemma 2.3 to construct an appropriate tubular neighborhood around
each &, where t € [t1, 5], having a time depend radius r;.

In this situation we have a finite set of geodesics (&,—;s) ta=t1 |y Satis-
S

jefo,...,
fying

: ) . to — t
&t2—iS|gta—js) = d(x,y,ta — j5) for all j € {0, ..., | 2 S 1J}

Analogous to the proof of Lemma 2.4, we reparametrize these curves with

respect to arc length, i.e: for each j € {0, ..., |25 |} we define

Pto—js - [Oad(xayth _]S)] — [07 1]
S
xuy7t2 _]S>

p(s) = i
Vey—js : [0,d(x,y, t2 — jS)] — M
Vea—js = Ety—jS © Pio—js
and for each t € (to — (j + 1)S,t2 — 7S] N [t1, t2] we define
Ve =& 0@ [0,d(z,y,ta —jS)] = M

so that, for each ¢t € [t;,t5] the curve v, satisfies (2.1) (2.2) and (2.3) with
respect to ;. Hence, following Lemma 2.3, at each time t € (to — (j +
1)S,ty — 7S] N [t1, o] the tubular neighborhood D(+:, p;) around ~; is foliated

by (D((8), Pt) sefo.die.y.ta—js) Where py := prmin {mjg(t)(M), f3(M, g(t))_%}7
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again p > 0 shall also satisfy the requirements of Lemma 2.3. Using the same

arguments as in the proof of Lemma 2.4 we also obtain (2.31) and (2.32), i.e.:
pr > R(e, K)t% =: ry(1, K) for each ¢ € [t1, L]
and
lgrad Flo(p) < lgrad Flya(q) + Cs(K)re(s, K)t

for each p € vy = 1,—js and ¢ € D(p, r) where t € (to—(j+1)S, ta—35S]N[t1, to]
and j € {0, ..., |25 |}. From this we also obtain (2.33), i.e.:

1
2

<fD(p,m) |grad ]:|_¢2](t)(9) dA(Q))
Area? (D(p, 1))

lgrad Fl,u(p) < + C3(K)R(1, K)t™ 2

Using Lemma A.9 we obtain (2.34), i.e.:
Area(D(7(s)),r) > crd = cR3*

for all t € (t; — (j 4+ 1)S,t2 — 7S] N [t1,t2]. Hence, for each j € {0, ..., 252}
we infer on (to — (5 +1)S,ta — jS) N (1, t2] the following estimate
d (A1)

d
Ly t) = SL(ty — jS,1) > —
o (7e,t) o (ta —jS,t) > /%ﬁs lgrad Fly) do

2
> — C%R_%(L, K)t_176/ (/ |grad ]-"|§(t) dA) do
Yia—is N7 D(p,ri)

— Cy(K)R(t, Kt 3 LYy js, )

1
2

> — 2R3 (1L, KT ( / /D  larad Fy 4 da> L* (-5 1)
Vto—js piTt

— C3(K)R(1, K)t™ 2 L(yyy_js. 1)
> —c:R2(,K)t716  sup |drn|? / lgrad Fl;dVywy | L2 (Yip—js,t)
M

D('Ytz—jsﬂ”t)

— C5(K)R(1, K)t~ % L(y,_js, 1)

(2.4) 3 7 9 2
> — R 2(1,K)t 1 / lgrad F ) dVywy | L
M

— C3(K)R(1, K)t™ 2 L(74,_;5, 1)

D=

(7152—)'57 t)

— C(K,D)R(1, K)t &

N——
N|=

>~ COIR K ([ st 7 avig
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Here we have used the fact that 7, is nearly length minimizing and that the
diameter is bounded (cf. (2.36)). By integration along [¢,t — jS] we conclude
for each ¢t € (to — (j + 1)S,t2 — 5S] N [t1, t9]

d(l‘,y,tg _.]S> - d(l’,y7t) = L(’ym—jSatQ _]S) - d(xay)t)

>L(Vtp—js ta — 3S) — L, t)
1
( / lgrad FI3 dVg<s>> ds
M
23

to—3S
— (K, D)R(1, K) / ¥ ds
t

&l

v

3 ta—jS
— C(D)R 2(u, K)/ s 1
¢

In particular, we have for each j € {0,..., [&25%] — 1}

d(x,y,ty — jS) — d(z,y,t2 — (j + 1)5)

to—3S %
>~ C(D)R™3(1, K) / s ( / lgrad Fg dVg(s>) ds
to—(5+1)S M
t2—jS 23
—C(K,D)R(L,K)/ s 2 ds
ta—(j+1)S
and also
to — 1
d(x,y,tg— L JS)—d(ZE,y,tl)

s~

ta—| 251 |5 3
> ~C(D)R™2(1, K) / S s ( / |grad f@(s)dvg(s)) ds
t1 M

ta=| 25 ]S 23
— C(K,D)R(c, K)/ s 24 ds

t1

and finally

d($7 Y, t?) - CZ(.T, Y, tl)

a5t
= Y ld,y,t2 = jS) — d(x,y,t2 — (j +1)5)]
=0
to — 1
ey to - 251)8) - dieyn)

to . %

> — C’(D)R*%(L, K)/ 5716 (/ |grad ]:’2(8) dVg(S)) ds
t1 M

t2 23
—C’(K,D)R(L,K)/ s 2 ds

t1
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to % 2] %
> — C(K,D)R"2(1, K) </ 5% ds) (/ / lgrad F13 ) dVy(s) dS)
t1 t1 M

t2 28
— C(K, D)R(L,K)/ s ds

t1
we infer

1 1

)’ - ct, D) (i - o)

]

= ool

d<xay7t2) - d(xvyatl) 2 _C<K7 L, D)A% <t2% —t

Finally, (2.14) and (2.37) together imply (1.8), which finishes the proof of
Theorem 1.3. Using Theorem 1.3, the following result

Corollary 2.11. Let (M*, g(t))ico,1], where M* is a closed Riemannian 4-
manifold, be a solution to (1.3) satisfying the assumptions, (1.4), (1.5), (1.6)
and (1.7), then for each k € N there exists j(k,A, K,1,D) € N such that

dau((M,dy), (M, dg)) <

| =

for all t €10,1/4]
is a consequence of the following Lemma

Lemma 2.12. Let M™ be a closed manifold. Given two metrics g1 and gs on
M satisfying

sup |dg, (z,y) — dg, (7, y)| < €
z,yeM

then we have
€

don (M. dy,). (M. d,) < 5

Proof. The set R := {(x,2) € M x M|z € M} is a correspondence between
M and M itself (cf. Definition C.1) and the distorsion of R is (cf. Definition
C.2):

dis?R = sup |dg, (z,y) — dg,(x,y)| <€
z,yeM

From [7, Theorem 7.3.25., p. 257] we obtain

1 1
dGH((M7 d91)7 (M, d92)) S §d18% < 56
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2.2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 using Corollary 2.11. The conditions
(1.4), (1.5), (1.6) and (1.7) are ensured by the following result

Theorem 2.13. (c¢f. [35, Theorem 1.8, p. 260]) Given 6 € (0,1), there
are constants €(8),1(0), A(0) > 0 so that if (M*, go) is a closed Riemannian

manifold satisfying the following conditions

Foo €
Vol (Byy(z,7)) > Swyr? Vo e M,r €]0,1] (2.42)

then the flow given in (1.3) with initial metric go has a solution on [0, 1] and

we have the following estimates:

L1
”ng(t)”Loo(M,g(t)) < AF gt
injg(t)(M) Z Lti
diamgey (M) < 2(1 + diamgo)(M))

for all t € (0,1].

From these estimates we may conclude the following precompactness result,
at first

Corollary 2.14. Given D,6 > 0. Then there ezists ¢(§) > 0 so that the space
MA(D, §,€(5)) which consists of the set of all closed Riemannian 4-manifolds
(M, g) satisfying

diamgy(M) < D
Voly(By(x,7)) > dwyr? Vo e M,r €[0,1]

|Rmygl|r2(arg) < €

equipped with the Gromov-Hausdorff topology, is precompact.

Proof. Let (M, g) be an element in M*(D,d,¢(d)). Using Theorem 2.13 we
know that the L2-flow with initial metric g exists on the time interval [0, 1].

Together with (A.8) we ensure that the following estimates are valid

1 1 LemmaA.3 1
iE S AT

N[
N

< AF

alt) < g st

Hng(t) ”Loo(M,g(t))

—~
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diamg(t)(M) < 2(1 + D)

Hence, from the Bishop-Gromov comparison principle (cf. [26, Lemma 36. p.
269|) we infer

A.
Volyo)(M) "2 Voly) (M) = Volyay By (x,2(1+ D)) < Vp(D)  (2.43)

Now, let {z1,...,xn(m,)} € M be a maximal r-separated set (cf. Definition
C.4), which implies that {xq,...,zx} is an r-net (cf. Definition C.3). In this

situation the balls

r r
Bg(l’l, 5), ceey Bg(]}]v, 5)

are mutually disjoint and the balls By(z1,7), ..., Bg(xn,r) cover M. Using the

non-collapsing assumption (cf. (2.42)), we infer

Nuwyd (g)” < i Volg(By(x, g))

k=1
N
g (2.43)
Vol (| By(re, £)) < Voly(M) < V(D)
k=1
This implies that the number of elements in such an r-net is bounded from
above by a natural number N(r,d, D). The assertion follows from [7, Theorem

7.4.15, p. 264). O

Proof of Theorem 1.1. As in the proof of Corollary 2.14, we know that for
each 7 € N the L?-flow with initial metric g; exists on [0, 1] and that this flow

satisfies the following estimates

1 1 LemmaA.3 1 é 1 1
| R, <AFP Lt < A(S) tz<te

®) HLOO(M,gi(t)) gi(t) =

. 9.44
ingg, (M) > 1t1 (2.49)
diamy, (M) < 2(1 + D)

for all ¢ € (0,1]. Using Corollary 2.11, we may choose a monotone decreasing

sequence (t;);en C (0, 1] that converges to zero and that satisfies

1 .

Estimate (A.10) implies, that for each m € N

_24m

< C(m)t; | Vi,jeN  (2.45)

J

V™ Rmy,

(t5) HLOO(Mi,gi(tj))
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As in the proof of Corollary 2.14 we also have
’UQ(D, 5) S VOlgl(t])<Ml) = VOng(l)(MZ) S %(D)

where we have used the non-collapsing assumption in order to prove the lower
bound. Hence, at each time t;, we are able to apply Theorem A.11 to the se-
quence of manifolds (M;, ¢;(t;))ien, i.e.: for all j € N there exists a subsequence
(M k), 9ijk) (L) Jwen converging in the C™-sense, where m € N is arbitrary,
to a smooth manifold (N;, h;) as k tends to infinity. We may assume that the
selection process is organized so that each sequence (M), Gijk)(t;))ren is a
subsequence of (M;—1k), gi(j—1,k)(t;j))ren. The smooth convergence together
with (2.44) implies Rm;,, = 0 for each j € N.

In order to apply Theorem A.11 to the sequence (N, h;)jen, we need an
argument for a uniform lower bound on the injectivity radius because the
injectivity radius estimate in (2.44) is not convenient. To overcome this issue,
we recall that the volume of balls does not decay to quickly along the flow (cf.
Lemma A.5) and the convergence is smooth. So, the volume of suitable balls
is well-controlled from below. Since (Nj;, h;) is flat, we are able to apply |9,
Theorem 4.7, pp. 47-48|, which yields a uniform lower bound on the injectivity
radius for each (N;, h;). Hence, there exists a subsequence of (Nj, h;) ey that
converges in the C*°-sense, to a flat manifold (M, g). Finally we need to get
sure that (M;, g;);en contains a subsequence that also converges to (M, g), at
least in the Gromov-Hausdorff sense. For each m € N, we choose j(m) > m
so that

1
3m

dau((M, g), (Njm), Pjm))) <

and k(m) € N so that

1
der ((Njmys Piom))s (Migam) km)) > GiGim),km)) (Liem))) < .

This implies

dar (M, 9), (Migm) k(m))> Gi(i(m).k(m)))
<dcr((M,g), (Njwm), hjom)))
+ de((Njon)s Tijm))s (Migm) k(m))» 9i(0m) b(m)) (Eim))
+ dem (Migm) km))» itiom) km)) (Eim))s (Migiem) k(m))s Gii(m)(m)))))
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1 1 1 1 1 1
<

<3 T 3m T3 S3m 3w T am m

and this implies, that the sequence (M;(j(m)k(m))» Gi(j(m),k(m)))meN cODVerges
with respect to the Gromov-Hausdorff topology to (M, g) as m tends to infinity.
O

2.3 Proof of Theorem 1.2

In order to apply Theorem 1.3 to the situation in Theorem 1.2 we give a proof

of the following existence result

Theorem 2.15. Let D, A > 0. Then there are universal constants § € (0,1),
K > 0 and constants e(A), T(A) > 0 satisfying the following property: Let
(M, g) be a closed Riemannian 4-manifold satisfying

diamgy(M) < D
[Rmyg |l 2ar.g) < A
Voly(By(x,1)) > dw,r™ Vo e M, re|0,1]

[ BegllL2(ag) < €
then the L*-flow exists on [0,T], and we have the following estimates:

_1

[ Bmgo) | Lo gy < K2
1 (2.46)

mjg(t)(M) >t

and
diamg(t)(M) <2(1+ D) (2.47)

for all t € (0,T].

We point out that J. Streets has proved this result as a part of the proof of
[35, Theorem 1.21] (cf. [35, pp. 285-287]). For sake of completeness, we also
want to give a proof here, under the viewpoint of the dependence of € and T

on given parameters and that (2.47) is also satisfied.

Proof. We follow the lines of [35, pp. 285-286|, giving further details. At first,
we allow ¢ € (0,1) and K > 0 to be arbitrary but fixed. Along the proof, we

concretize these constants. We argue by contradiction.
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Suppose, there is a sequence of closed Riemannian 4-manifolds (M;, g;)ien

so that for all ¢ € N we have the following estimates:

/ Ry 2. dV,, < A
M;

VOlgi(Bgi (7)) = dwnr” Vr € [0, 1]

and

| —

aV,, <

2
9i

~

/ |]%Cgi
M;

but the estimates (2.46) hold on a maximal interval [0, 7;] where lim;_,, T; = 0.

We consider the following sequence of rescaled metrics:
1
9;() =T, *g:i(Tit)

Then, for each i € N the solution of the L*-flow exists on [0, 1] and satisfies:

ol
ol

1 1 _ _
[ R, )| o e gieyy = T3 ([ Bmg, iy | oo (ar i iy < T2 K(Tit) ™2 = Kt

)
_1 1
4 4

_1
gy (M) =T, “injg, ey > T; *(Tit)

%
1
4

=
(2.48)

on [0, 1], which means that the estimates (2.46) are formally preserved under
this kind of rescaling.

By assumption, for each i € N, one of the inequalities in (2.48) is an equality
at time ¢t = 1. In respect of the generalized Gauss-Bonnet Theorem (cf. [30,
Appendix Al), i.e.:

/ |Rm|2dVg:cO7r2x(M)+4/ |Rc|2dVg—/ R*dV,

M M M (2.49)

= com*x (M) +4/ | Re|? dV,
M

where we have used

2

. 1 1 1
|Rc|2 = |Rc — ZRQ = |Rc|2 — §<Rc, Rg) + ER2|g|2

B 2 1 I o o 1, 1.,
= |R¢| 2Rtr(Rc)+4R = |Rc| 2R +4R

1
=|Rc|” — ~R?
|[Bel” = 5
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we introduce the following functional
6, = [ Ifefav,
M
From (2.49) and [5, 4.10 Definition, p. 119] we infer
grad F =4 grad G

As in the proof of Lemma A.3 we obtain for each ¢ € N and t € [0, T}]

t
Gg:0) = Ygi(t) = / / lgrad Gy, (s)
0 M;

which implies Gy,;) < 3 for each i € N and ¢ € [0,7;]. Due to the scale

2
gi(s) dVZ(S) ds Z 0

invariance of the functional G, we have in particular

| —

ggi(l) <- forallieN

~

As already stated, (2.48) implies
1mg, o)l z=ugay = K oringg,(M;) =1

for each 7 € N.
At first, we assume that there is a subsequence (M;, 7, )ien (We do not change

the index) satisfying

[ Bmg, )|l Lo (a1, 3, 1)) = K
njg,a)(Mi) 2 1

for each ¢ € N. Using the compactness, for each 7 € N we may choose a point
7.y = K. From [34, Corollary 1.5, p. 42] we

conclude that there exists a subsequence of manifolds, also index by i, and a

pi € M; satisfying |Rmg, 1) (p;)

complete pointed 4-manifold (M, ps) together with a 1-parametrized family
of Riemannian metrics (goo(t))tef1/2,1] 00 Moo such that for each t € [1/2,1]

1—>00

(Mzagz(t)apz) — (Mooa goo(t>7p00)

in the sense of C'*-local submersions (cf. Definition C.13), and

[ Ry (1) 220 (Moo 9o (1)) = [BMgoe (1) (Poo) g (1) = K
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as well as, using |28, Theorem|

N Jge (1) (Moo) > 1

Since lim; o G5,1) = 0 we conclude that (M, g(1),Pso) needs to be an

Einstein manifold satisfying
/M ’ngm(l)@w(n dVyq) < A (2.50)

In particular, [23, Proposition 7.8, p. 125] implies that the scalar curvature is
constant. On the other hand, from the non-collapsing condition and (A.12) we
obtain that Volg 1)(M;) tends to infinity as i € N tends to infinity. Then, esti-
mate (2.50) implies that the scalar curvature needs to vanish on (M, G..(1)),

hence (My,G.(1)) is a Ricci-flat manifold. From Lemma A.12 we obtain
1Bmg, )l gy < C

where C' is a universal constant, since the space dimension is fixed and the
injectivity radius is bounded from below by 1. Choosing K = C'+ 1 we obtain
a contradiction to |[Rmyg_(1)(Poo)lg.. 1) = K. This finishes the part of the proof
that || Rimg, ) :
1€ N.

Now we assume that, after taking a subsequence, we are in the following

Lo (Mgi(13)) = KT * can only be valid for a finite number of

situation

[ Bmg, ) || Lo (ar; 3,01)) < K
ingg, o) (M) =1

Then, the non-collapsing assumption of the initial sequence implies the follow-

ing non-collapsing condition concerning the rescaled metrics
Volg. (0)(Bg, ) (z,7)) > dw,r" Vo € M;,r €0, Ti_i]
Hence, for each o > 1 there exists ig(0) € N so that
Volg.0)(Bg,0)(x,7)) > dwyr” Vo € M;,r € (0,0] (2.51)

for all i > ip(0). Now let A € (0,1) be fixed. This constant will be made
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explicit below. Using (A.13) we obtain for i > ig(0, A, J)

[NIES

ol
N

U“%mme%Mﬂ]ZU“%@@MM%MN}—C(>

e

(2.52)

(2§) [5w4(/\0)4}% —C (1)é =[(1-(1- 5))“4)‘404]% —¢ (%>

M=

> [(1—2(1 = 6))wsro?]

where the last estimate does not use that 75 depends on o, because, in order
to choose iy € N large enough one may fix 0 = 1 at first. Afterwards, one may
multiply the inequality by o2. Since o > 1, the desired estimate follows.

It is our intention to prove that

By 0)(z, Ao) C By, (1y(x,0) Vi > ig(o, A\, 0), Vo € M; (2.53)

Before proving this, we demonstrate that this fact implies a contradiction.

For each 7 € N we choose a point p; € M, satisfying
injg,)(Mi, pi) = injg,)(M;) = 1

As above, using |34, Corollary 1.5, p. 42|, we may assume that there exists
a subsequence of manifolds, again indexed by ¢, and a complete pointed 4-
manifold (M, ps) as well as a 1-parametrized family of metrics (goo(t))teq1/2,1]
on M, so that for each t € [1/2,1]

1—>00

(ngz(t)vpz) — (Moou gw(t>>poo)

in the sense of C*°-local submersions. Using |28, Theorem| we infer

injgm(1)<Mooapoo) =1 (254)

Let ¢ > 0 be equal to the non-collapsing parameter in [2, Gap Lemma 3.1,
p. 440] which is denoted by ”€” in that work and only depends on the space
dimension n = 4. We assume § € (0,1) and A € (0,1) to be close enough to 1
so that

(1—21=0)M*>1-¢ (2.55)

Assumed (2.53) is valid, then for each for i > iy(o, A, §) we obtain the following
estimate

(2.53) (2.52)/(2.55) 4
VOlgi(1)<B§i(1) (pu O')) Z VOZE-(I) (B@(O) (pz; )\O’)) Z (1 — C)W40’
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and finally, as ¢ € N tends to infinity
Volg. 1)(Bge(1)(Poo, o)) > (1 — Ouwyo* Vo >1

Then [2, Gap Lemma 3.1, p. 440] implies that (Mw, gso(1)) is isometric to
(R*, gean) which contradicts (2.54).

Hence, in order to prove the existence result and the validity of (2.46), it
remains to prove (2.53). From here on we do not write the subindex ¢ € N.
The following considerations shall be understood with ¢ € N fixed. That means
that p is one of the points p; and g(¢) is the metric g,(¢) on M = M, with the
same index. Let

Y € Byo)(p; Mo) (2.56)

be an arbitrary point. As in the proof of Lemma 2.4 we construct a suitable

forward-geodesic: Let

£ = min §; >0
te[0,1]

where

Br := B4, diamg) (M), f3(M,g(t)), injge (M))
is chosen according to Lemma 2.3. Next, using Lemma 2.6, we construct a
p-forward-geodesic connecting p and y which is denoted by (& ):cjo,1- Hence,
we have a finite set of geodesics (§js)j L] which are parametrized pro-
portional to arc length, i.e.:

. , . 1
&slgiis) = d(p,y, jS) for all j € {0, ..., LEJ}

Furthermore, for each j € {0, ..., | 5]} let

Pj - [O,d(p,y,jS)} — [07 1]

ols) = d(p,y,jS)

and let
Ve 1= ij e} (pjs fOI' each t e []S, (] + 1)S> N [Oa 1]

Applying the same argumentation as in the proof of Lemma 2.4 we ensure that
for each j € {0, ..., |§]} and t € [jS, (j+1)5)N|0,1] the tubular neighborhood

D(, pr) is foliated by (D(7:(s), pt)) sepo.apy.js) Where

pr := pnin {ingz (M), fo(Mg(t))”

NI
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and the differential of the projection map satisfies (2.4). Here > 0 is chosen
fixed but also compatible to Lemma A.9. We want to give a controlled lower
bound on p;. The curvature decay estimate from (2.48) together with (A.10)
implies for each m € {1, 2, 3}:

V™ Rimgq < C(m)t~"5" for all t € (0, 1] (2.57)

) HLoo(M,g(t))

From this, we infer

f3(M, g(t)) < Ct™2 on (0,1]

Combining this estimate with the injectivity radius estimate from (2.48), we

obtain, as in the proof of Lemma 2.4
111 : 1,7 id
e > u{t4,C’ 2t4} > pmin{l,C™2}t21 =: Rt21 =: ry

we also obtain the estimate

d 2
EL(%J) <CLR™ 3T (/ |grad fg(t>|2dVg(t>) Lz (v5s,1)
M

+ CyRt™ % L(v;s, )

(2.58)

on (jS,(j +1)S)N[0,1) where j € {1,..., [ 5]}. Now we assume that

Jo 1=
1
min {j e{1,.., ng} |3t €[5S, (5 +1)S)N(0,1] s. th. L(y,t) = a}
exists, and let
to :=sup {t € [joS, (jo+ 1)S) N (0, 1] | L(v7,7) < o VT € [joS, ]}

Then, for each j € {0,...,jo} and t € (jS,(j + 1)5) N (0,%) estimate (2.58)
implies

d 1 |
qrOnt) <o |CoR73 (/ |grad fg<t>l2dVg<t>) +CyRt™ 5
M

dt

and consequently
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<L(v,t) — L(vjs,75)

t 2
<oCyR™2 / 715 ( / |grad fg(s)IQdV};(@)
is M

In particular, for each j € {0, ..., jo — 1} we infer

¢
ds + JC’QR/ 5731 ds
s

d(p,y,(j +1)S) —d(p,y, jS)

. (UtDS
<ocCyR: / §716 ( |grad fg(s>|2dV9<s>)
is M

GHDs
ds + UCQR/ s 24 (s
js

D=

and

L(fytou tO) - d<p7 yaJOS)
<L(Yto: to) = L(Vjos, JoS)

s [ 4 3 o,
SUC?R_"’/ 5710 (/ |grad fg<s)l2d‘/g(s>) ds + UCQR/ s72 ds
JjoS M oS

and finally

L(’}/tm tO) - d<p7 Y, O)

=

<L (Vi o) — d(p, y, joS) + - [d(p,y, (j +1)S) —d(p,y,j9)]

Jj=0

to % to 5
SO' CQR_% / S_% (/ |grad f§(5)|2 dv‘rq(s)> dS —+ C2R/ 5_273 ds]
0 M 0

P 1 1
<o C’QR_S/ ~ (/ lgrad Fys)|* dVis) ) ds + CQR/ s ds]
0 0

SUC’2R_% (/ s 8d5) (/ / |grad fg( | dV (s) dS)

+ UCQR/ 573 ds
0

1 3 1 2
SO‘CgR_% (/ 578 ds) (/ / |grad g§(5)|2 dVy(s) dS)
0 0o JMm

1
+ UOQR/ 573 ds
0

CyR 2 (/ / lgrad Qgs)| dVi(s S) + 4R

SO'C4 292 +O'C4R

<o
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=0 C4R_%gg§(0) + C4R:|
Together with (2.56) we obtain
1
Ly to) < @ [ A+ CuR 3G, + CuR
Throughout, we may assume that R > 0 is small enough compared to Cy > 0

and A > 0 in order to ensure that

1—-A
C4R§T

and we may assume that ¢ € N is chosen large enough, so that Gy = G, <

— 1

is small enough compared to A > 0, R(A) > 0 and Cy > 0 so that

3 1 1—A
C4R 2992(0) S T

Hence, we have L(v,,t) < o, which contradicts L(v,,to) = o. This implies
that L(vy,t) < o is valid for each ¢ € [0,1] and consequently d(p,y,1) < o.
This finishes the proof of (2.53).

We have proved the existence time estimate as well as the curvature decay
estimate and the injectivity radius growth estimate. It remains to show the
diameter estimate (2.47). The argumentation is based on [35, p. 281]| but we
are in a different situation. Let x,y € M so that d(z,y, 1) = diamgq)(M). As
above, there exists 5 > 0, S > 0 and a family of curves (;)icpo,r) so that

e for each j € {0,..., L%J}
vis : 10, d(z,y,jS)] — M
is a unit-speed length minimizing geodesic
e for each j € {0,...,|Z|} and ¢ € [jS, (j + 1)S) N[0, T] the curve
Y0 [0,d(w,y,j5)] — M
satisfies

L(7tat) S d(xvyat) + 6
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o for each j € {0,...,|%|} and ¢ € [jS,(j + 1)S) N [0,7] the tubular

neighborhood D(v;, r¢) is foliated by (D(v(s), 1) (o 4 where

,y,55)]
z : _1y,I
ry = Rt21 ;= pmin{l,C 2}t

Furthermore, the projection map 7 satisfies (2.4), i.e.

|drr| < 2 for all x € D(vy,714)

Using these conditions we obtain (2.58), i.e.:

1
d 2
L0 t) <CLR 37T </ |grad fg(t)Pth](t)) Lz (vjs,1)
M
+ CQRti%L(PYjSH t)

on (jS,(j +1)S)N[0,T) where j € {1,...,|]}. In this situation we assume
that

Jo ==
1
min {j e{1,.., LEJ} |3t €[5S, (1 +1)S)N(0,7] s. th. L(y,t) =2(1+ D)}
exists, and we define
to .= Sup {t € [joS, (]0 + 1)5) N (O,T] ‘ L(’}/T,T) S 2(1 + D) V71 € [joS, ﬂ}

Thus, for each j € {0, ..., jo} we obtain

SIS

d 3
L) <C3R 2t T (/ |grad fg(t)|2dvg(t)) (1+ D)
M
+ C3Rt % (1 + D)

on (75,(j 4+ 1)S) N (0,%p). From this, we infer

L(ﬁ}/toatO) - d(l’,y, O)
Jo—1
SL(’WO?tO) - d(‘r7y7j0S) + [d<$7y7 (] + ]-)S) - d(l‘,y7j5)]
7=0

s [T 4 2 o g
Rz / s 16 (/ |grad fg(s)‘z dVg(S)> ds + R/ s 24 ds
0 M 0

<(1+ D)C;
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w

<(1+ D)Cj

. 1 3 to
R—z/ s~ 16 (/ |grad fg(s)Pdvg(s)) ds+R/ s751 ds
0 M 0
3 1 7 % 1 %
S(l + D)C3R7§ (/ s 8 d5> (/ / |grad fg(s)‘2 dVg(S) d8>
0 0 M

to 23
+ (1+D)C?,R/ s 2 ds
0

1 % 1 2
<(1+ D)C,R: (/ s7% ds> (/ lgrad Gy |* dVi(s) d8>
0 0 M

to
+(1+ D)C4R/ s34 ds
0

_3 g : L L.
§(1+D)C’4[R2(/038d5) ;(0)+R/0824dS]

1
<(1+D)Cs |[R73G, + R| <14+ D

Here, we have assumed that G2(g(0)) and R > 0 are sufficiently small with

respect to universal constants. Finally, we obtain
L(Ytg, to) < d(x,5,0) +1+D=D+1+ D <2(1+ D)

contradicting L(s,%0) = 2(1 + D). This shows, that we have diamg) (M) <
2(1+ D) for all ¢t € [0,T]. O

This existence result allows us to prove the following diffeomorphism finite-

ness result:

Corollary 2.16. Let D, A > 0. There ezists ¢(A) > 0 and a universal constant
5 € (0,1) so that there are only finitely many diffeomorphism types of closed
Riemannian 4-manifolds (M, g) satisfying

diamy(M) < D
[Rmg |l 2(arg) < A
Vol,(By(x,1)) > dw,r™ Ve e M, re|0,1]
1Regl 2 (arg) < €
Proof. We assume that there exists a sequence of Riemannian 4-manifolds

(M;, g;)ien satisfying the desired properties but the elements in this sequence

are pairwise not diffeomorphic. Using Theorem 2.15 we may smooth out each
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of these manifolds, then we may apply |1, Theorem 2.2, pp. 464-466| at a fixed
later time point which yields a contradiction.
O

Proof of Theorem 1.2. The proof is nearly analogous to the proof of Theorem
1.1 but the argumentation is slightly different. Throughout, using Corollary
2.16, we assume that M; = M for all © € N, applying Theorem 2.15, we may
assume, that for each i € N the L?-flow on M with initial data g; exists on
[0, T] and satisfies (1.4), (1.5), (1.6) and (1.7). Using Corollary 2.11, we choose
a monotone decreasing sequence (¢;);en C (0, 1] converging to zero, so that

1 o
dau((M, g;), (M, gi(t;))) < 3 Vi,j €N

(1.5) and (A.10) together imply

vangi(tj)HLOO(M,gz‘(tj)) =

for each m € N, (1.6) implies

1
Z'njgi(tj)(M) > t; Vi,j € N

Applying the same argumentation as in the proof of Theorem 1.1 we infer
UU((S) < VOlgi(tj)<M) < %(D7A>

for all 7,7 € N. We want to point out that 6 > 0 only depends on the
space dimension which is constant. Using the flow convergence result in
Theorem A.6 on each time interval [¢j4q,1;], starting with ¢y, we obtain a
subsequence (M;; k), 9i(jk) (tj)) ren as well as a family of Riemannian mani-
folds (M, goo,;(t))teft;,1.t,) SO that for each t € [t;,1,t;] the sequence of Rie-
mannian manifolds (M, g;(; k) (t))ken converges smoothly to (M, s ;(t)) and
(Mo j, oo, (t) i€t 11,t;) is also a solution to the L?-flow in the sense of Theo-
rem A.6. Since Gy,1y < Gy, < + for all i € N, we conclude that G, ) = 0 for
all t € [tj+1,t;]. Hence, at infinity, the metric does not change along the inter-
val [tjs1,1;], which means that (M j, oo,j(t5)) = (Mosjs oo,j(t41)) =2 (M, g)
is an Einstein manifold. Inductively, we obtain for each 7 € N a sequence
(M k), 9i(jk) (L) ke that is a subsequence from (M;_1.x), Gij—1.k) (t;))ken, SO
that the sequence (M;(; k), gi(jk)(t;))ken converges to the Einstein manifold
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(M, g). Using the same diagonal choice as in the Proof of Theorem 1.1, we
infer that there exists a subsequence of (M;, g;)ien that also converges in the
Gromov-Hausdorff topology to (M, g).

O



Chapter 3

Convergence of a sequence of open
Riemannian manifolds having

- n
almost vanishing L2-norm of the

Ricci curvature

In this chapter we consider a sequence of open Riemannian manifolds whose
n . .
L2-norm of the Ricci curvature converges to zero. Throughout we assume that

n is greater than or equal to 3. The considered manifolds shall satisfy
(a) a non-collapsing condition on the volume of small balls
(b) a non-inflating condition on the volume of small balls

(¢) a condition on the harmonic radius which consists of a uniform ellipticity
condition on the metric, a uniform L"-bound on the first derivative of the
metric and a uniform bound on the modulus of the Holder-continuity of

the metric in a harmonic chart

Under these assumptions, we show that there exists a subsequence that con-
verges with respect to the W?%-topology (cf. Definition C.7) to a smooth
Ricci-flat manifold. As distinct from [6, Theorem 5] we do not assume any
uniform bound on the LP-norm of the Ricci curvature satisfying p > 7.

In [6] the authors make use of the following result:

49
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Theorem 3.1. (¢f. [6, Theorem 5]) Givenn € N, p € (%,oo) and 0 < o1 <
09, there exists a constant €(n,p, o1, 09) > 0 such that the following holds. Let
(M, gi, pi)ien be a sequence of smooth complete pointed Riemannian manifolds

)

without boundary such that By, (p;, 1) € M; satisfies the following properties for
all i € N:

im {1y o, i) = O
wWpop < Voly By (@,7)) < w09
rn

for all x € By,(p;, 1), v € (0, 1] such that By,(x,r) C By, (pi, 1) and

H ngi

L By, (ois1)g) = €(n, p, 01, 02)

Then, for all s € (0,1), the sequence (By,(pi,s), 9i,pi)ien subconverges in
the pointed W?2P-topology to a smooth pointed Ricci-flat Riemannian mani-
fold (B, (Psos 8)s Goos Do) B-€2 for all s € (0,1), after taking a subsequence, for
each i € N there exists a diffeomorphism F; : By (pso,s) — Fi(By. (P, S)) C
By, (pi, 1) with F;(pso) = pi such that F}g; converges to g with respect to the
W?2P(B,_ (Poo, 5))-topology, as i tends to infinity.

The proof of this result uses the fact that LP-bounds on the Ricci curvature
(p > %) imply suitable estimates on the W'4®)-harmonic radius (¢(p) > n),
provided that the LZ-norm of the full Riemannian curvature is sufficiently
small on regions of interest, whereas the proof of these desired estimates can
be adapted from |2, Section 2|, (cf. [6, Section 2| and [29, Appendix B]).
These approaches are based on suitable L>°-bounds or LP-bounds on the local
integral of the Ricci curvature, where p > 7. In general, the situation becomes
more difficult when we consider scale invariant integral bounds on the Ricci
curvature, which means a bound on the LZ-norm of the Ricci curvature in
this case. In this context, we introduce the following notation of a harmonic
radius, which separates the L?-bound on the first derivative of the metric from
the Holder-bound of the metric:

Definition 3.2. Let (M", g) be a complete Riemannian manifold, By(q, Ry) C
M be a reference ball and x € By(q, Ry). Given a > 0 and Ky, Ky, K5 > 0
then we define the harmonic radius r4(x) as the supremum over all v > 0 such
that there exists a smooth chart ¢ : U — B(0,71), where x € U C By(q, Ro)
and p(x) = 0, satisfying the following properties:
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(i)
(1+ K1) 7 Efon < g5(2)67¢ < (14 K)o
for all z € B(0,r) and £ = (£',...,&") € R®

(i)

19911 (50.ryy = | 2% 2% (10435l (B0 < Ko

(iii)
< K,

“ o 9ij (%) — gij\y
r*[glceBory) =" max sup 1935 () ;( )|
1<i<j<n 2yE€B(0r), 2y |[E _ y|

(iv)
Agp™ =0

i.e.. ™ : U — R is harmonic for each m € {1,...,n}.

Here A, is the Laplacian, introduced in [23, p. 44, 3-4.] and g;; denotes the

local representation of the metric g with respect to the chart ¢.

Remark 3.3. Of course the definition of ry(x) depends on Ry, o, K1, Ky and
K3, but for the sake of simplicity, we suppress this explicit dependence in the

notation because these parameters are fized.

3.1 Proof of Theorem 1.4

Proof. The structure of the proof is inspired by |25, Theorem 2.2 (Fundamental
Theorem of Convergence Theory), p. 173]. We also subdivide the proof in
different "Facts" but these Facts are not identical to the Facts in |25, Theorem
2.2, p. 173|. Moreover, our assumptions are different from those assumptions
in |25, Theorem 2.2, p. 173]. Fact 1 proves the precompactness with respect
to the Gromov-Hausdorff distance. This part of the proof, together with Facts
2,3 and 4 are related to Fact 1-5 in [25, Theorem 2.2, p. 173]. Fact 4 in this
proof is also closely related to the argumentation in [29, p. 58]. The crucial
part of this proof is the proof of the regularity of the boundary space, which
is contained in Fact 5. The argumentation is inspired by the interpolation
argument in [19, pp. 18-19]. Our proof uses a part of the interpolation theory
of Sobolev spaces from [38], [39], [40] and [41]. An overview of the used results
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is given in Appendix B. We point out that Fact 5 has a substantial effect on the
rest of the proof, since the Riemannian metric on the limit manifold is smooth
as in the indirect proof of [29, Theorem B.7, pp. 56-64]. The proof of Fact 6
and Fact 7 are elementary, the content is closely related to the C'*°-regularity
discussion around [29, p. 60, (B.19)] and the flatness argument in |29, p. 63,
(B.25)], but we want to emphasize, that we are in a different situation than
in [29, Theorem B.7|. Finally, the construction of the desired diffeomorphisms
(cf. Fact 8) coincides with the construction in the proof of [29, Theorem B.7].
This construction is explained in [29, pp. 60-62|. Since we are in a different
situation, we give details here. Due to the fact that, in this chapter we are

working mainly locally, we write g(7) instead of g;.

3.1.1 Gromov-Hausdorff precompactness

Fact 1. There ezists a metric space (Qoo, doo, Do) SO that, after taking a sub-
sequence, the sequence of metric spaces (Byu)(pi,3/4), dg), i) converges to

(Qoos Aoy Do) in the Gromov-Hausdorff sense.

According to |7, Theorem 8.1.10., p. 274| it suffices to prove that for each
e € (0,1/10) there exists a number N(e) € N such that the metric space
(By(i) (i, 3/4), dg(s), pi) admits an e-net of no more than N(e) points (cf. Defi-
nition C.3).

Let ¢ € N be fixed, € € (0,1/10) and let {xy,...,2x} C By, (pi,3/4) be a
maximal e-separated set, which implies that {z1,...,xy} is an e-net, then the
balls

€ €

Bdg<i)($1, 5), ceny Bdg(i) (xN, 5)

are mutually disjoint. This yields

(1. 10 €
N - w,01 ( > ZVOZ g() l’k, 5))
(1.10)
=Voly U Ba, ., ( xk, ) < Volyi)(Ba,, (pi, 1) < w00
Hence, the number of elements in such an e-net is bounded from above by a

natural number N(€,n,0q,05). In particular, this number does not depend

on the index i € N and we write N(¢) instead of N(e,n,oq,02) because the
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other parameters are fixed. Hence, using |7, Theorem 8.1.10., p. 274]|, after
extracting a subsequence, the sequence (By(pi, 3/4), dy(i), Pi)ien converges to
a metric space (Qs, doo, Pso) in the Gromov-Hausdorff sense.

As explained in [26, pp. 296-297| there exists a metric dp on
B := Qo I [ [ By (pi> 3/4)
i=1

which is an extension, so that the sequence Eq(i) (pi, 3/4) converges with respect

to the Hausdorff topology, concerning dp, to (..

3.1.2 Compactness of the ambient space B

Fact 2. The metric space (B, dg) is compact.

Let (bj)jen € B an arbitrary sequence. If a subsequence of (b;);en is con-
tained in one of the spaces Eg(i) (pi,3/4) or contained in {2, then this sub-
sequence needs to contain a converging subsequence because the considered
spaces are compact. Thus, after possibly extracting a subsequence, we can
assume that for each j € N there exists a i(j) € N so that b; € B (pi, 3/4),
where lim;_,o i(j) = co. Since (By)(pi, 3/4), dy(i))ien converges in the Haus-
dorff topology to (2o, ds) We can assume that for each j € N there exists
an element /b\j € ., satisfying dB(bj,Bj) < Jl Since (o, ds) is compact, the
sequence (b;);en needs to contain a subsequence that converges with respect
to ds, and consequently with respect to dg, to an element b.,. This element
is also the limit of the sequence (b;);en € B with respect to the metric dp.

Let
1

. 1
0= Toooo " ™in {m,ro(i%/él)} (3.1)

where 79(3/4) is taken from (1.11) and let

Noo = {:L’OOJ? ceny 1‘007]\[(5)} Q Bdoo (pom 1/2)

be a maximal d-separated set. Using |21, 3.5. Proposition (a), p. 73| we can

choose for each 7 € N a 24-net

Ni = {1, ... 2 nw)} C Byay(pir 1/2)

such that N; converges to N, with respect to the Lipschitz distance (cf. [21,
3.1. Definition, p. 71]). Using (3.1), for each i € N and j € {1,..., N()} we
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may choose a smooth chart ¢, ; : U; ; — B(0,1000), centered at x;; € U; ; C

By (pi, 3/4), ie.: ¢ j(x; ;) = 0, satisfying the requirements (i) to (iv) from
Definition 3.2, i.e.:

(i) 1199(2)|| Ln(B(0,1008)) < Ko
(iil) (1000)*[g(@)]ce(B(0,1008) < K3

(iv) Ay =0 for all m € {1,...,n}

3.1.3 Distance distorsion of a coordinate chart

Fact 3. For eachi € N and j € {1,..., N(0)} we have the following estimates:
Yy1, y2 € B(0,500))

dg(z‘)(%_,jl(yl)v 901_,]'1 (y2)) < (1 + K1)y — 12| (3.2)

and

Aoy (03} (1), 05 (y2)) > ly1 — yo (3.3)

1
T 1+ Ky
We fix i € Nand j € {1,...,N()} , ie: ¢ = ¢;; and g = g(i). Let
y1,y2 € B(0,509) and v : [0,1] — B(0,500) be defined as
v(t) =y + s(2 — 1)
then, using [22, p. 70: Proposition 3.24] and [22, p. 60: (3.8)] we obtain from

property (i)

0y (), 0 () < / (o™ o) (8)lgds < (14 K2)|ys — wel

which proves estimate (3.2). Now let v : [0,1] — M; be a length minimizing

geodesic connecting ¢~ (y1) and ¢~ (y2), i.e: 7(0) = ¢~ (11), 7(1) = ¢~ ' (1)
and Y] = dy,(¢  (y1), ¢ (y2)). We need to differentiate between two cases:
At first we assume that ([0, 1]) C U. Then

s — ol < / (o) (s)ds < (1+K)) - dylio™ (), 0~ (1))
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If the assumption ([0, 1]) € U does not hold, then there exist s1,s9 € (0,1)
so that y(s1) ¢ U and ~y(s2) ¢ U but v([0,s1) C U and y((s2,1]) € U. Then
(pov)(s1) and (po~)(s2) are contained in the boundary of the set B(0,1000).

Hence
dy(p™ (1), 0 (12))
S1 1
> / (8] ds + / 4(8)1y ds
0 S2
M1
21+K1|(90ov)(81) — | + 1JrKl|yz — (pov)(s2)]
1
> — _
e (|(oy)(s1)] = |y1]) + e ([(woy)(s2)] = |yel)
1
— 1006 — 1008 —
1+K1< 008 — [y1]) + 1+K1( 006 — |y2])
1
— 2000 — || — > 1008 > _
1+K1( 000 — |y1| — |y2|) > e 006 > 1JrK1|y1 Yo

This proves the estimate (3.3).

3.1.4 (C?%P-regularity of the limit space
Fact 4. (By, (Poo, 1/2),ds) is a C*P-manifold, where 3 € (0, ).
From (3.2) and (3.3) we infer that for each j € {1,..., N(6)} the sequence
fort: B(0,500) — BYE,

is an equicontinuous sequence of functions between compact spaces. Thus |26,
10.1.3., Lemma 45, p. 299| implies that, for each j € {1,..., N(J)} there exists

a subsequence that converges uniformly to a function
—1 . =y
Yoy - B(0,500) — B

where 90;017 ; 1s a formal notation at first. Without loss of generality the sequence
itself satisfies the desired property. (3.2) and (3.3) together imply that for each
j€{1,...,N(6)} the function

@;{j : B(0,500) — Uy j = (p(;{j(B(o,m(;))

is continuous and there exists an inverse function ¢ ; : Us; —> B(0,500)

that is also continuous, thus ¢ ; is a homeomorphism. Furthermore, from
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the uniform convergence of these mappings, we obtain that the sequence of
metric spaces ¢; + (B(0,500)) converges to ¢ (B(0,508)) with respect to the
Hausdorff topology as ¢ tends to infinity. Due to the fact that for each : € N
the set goi_jl( (0,500)) is contained in By (pi, 3/4), and that the sequence of
balls (Byq)(pi, 3/4), dgs)) converges to (QOO, dw) With respect to the Hausdorff
topology concerning (IB%, dg) as i tends to infinity, we obtain that the domain
of definition Uy ; must be contained in {2,,. This procedure may be done for
each j € {1,...,N(0)}. Whenever we need to extract a subsequence we do not

change the notation. Hence, by choice of N;, we obtain the following covering

property

By (pi, 1/2) € Uwu (0,104)) U%J (0,508)) C By(oy (i, 3/4)

(3.4)
for each ¢ € N, and we conclude that
N(6)
B (P, 1/2) C U 0L (B(0,100)) U 0L (B(0,500)) C Qe (3.5)

This shows that By_(pso,1/2) can be covered by an appropriate system of
coordinate charts. Hence, the metric space (B (P, 1/2), dx) is a topological
manifold.

It remains to prove, that for each fixed choice s,t € {1,..., N(0)} satisfying
Usos N Usor # 0 the transition map

Ts,t : Sooo,t(Uoo,s N Uoo,t) — <)Ooo,s<[joo,s N Uoo,t) (36)
Ts,t = Poo,s © Spgo{t (37)

is a C%F-diffeomorphism, where 8 € (0,a). Let ¥ € Qoo t(Usos N Usos) C
B(0,506) and €(y,s,t) > 0 so that both B(y,2¢) C ¢Yeoi(Usos N Usoy) and
B(y, 2¢) C 0it(Uis NU;y) for each i > iy(y, s,t). Then

Tise = is © 03y + Bly,2¢) — B(0,500) (3.8)
converges uniformly to

Tt gy 20 * By, 2¢) — B(0,500)
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The property (iv) from Definition 3.2 and |11, Lemma 1.1] together imply
g (@)OOT, =0 Vme{l,..,n} (3.9)

for all m € {1,...,n}, where ¢g*!(i) is the inverse of the local representation of
the metric in a chart. These equations are linear elliptic equations of second
order in the fashion of [15, Chapter 6, (6.1), p. 87]. Using [15, Theorem 6.2,
p. 90] we obtain

|7z

l’s’tHCQ’O‘(B(y,e)) S 03(71,04, Kh ng 6) . H]"Zm

7S7tHCO(B(y,2E)) < C4(ﬂ, «, K17 K37 €, 6)

and using the Arzela-Ascoli theorem we can extract a subsequence from the se-
quence (T +)ien that converges with respect to the C#(B(y, €), R")-topology
to Ts7t|B(y o Where B € (0,a). This implies the desired regularity.

3.1.5 Local W?2-convergence to a smooth metric

Fact 5. There exists a smooth Riemannian metric g on By (poo, 1/2) so that
the sequence of metrics g(i) converges to g locally, in the harmonic coordinates

from above with respect to the W% -topology.

From [11, Lemma 4.1] we infer for each i € N, j € {1,...,N(0)} and k,[ €
{1,...,n}

9(1)*7 02039 (i) = —2Rc(i)w + (9(i) ™"+ g(i) ™" % 9g(i) * Dg(i))  (3.10)

on B(0,500), where * denotes a sum of contractions with a certain rule which
is not written down here. Using the C%“bound from (i) and (iii) in Definition
3.2. and the Arzela-Ascoli theorem we conclude that for each j € {1,..., N(0)}

there exists a system of functions
{gr : B(0,508) — R}pieq1. .y € C™(B(0,506)) where 8 <

so that, after extracting a subsequence, for each k,l € {1,...n} the sequence
g(i)r converges to gy with respect to the C%?(B(0,508))-topology as i tends
to infinity. For the sake of readability we do not write the index j here. Our
aim is to show that for each i € N, j € {1,...,N(6)} and k,l € {1,...,n} the
sequence g(i)y converges to gy with respect to the W22 (B(0,406))-topology

as ¢ tends to infinity. Firstly, using Theorem B.19, we want to prove that for
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each p € [n,C(a)n), where C'(a) > 1 is fixed, the sequence g(i)x converges
to gn with respect to the W1P(B(0,455))-topology. From (3.10) and [15,
Theorem 9.11, p. 235-236| we obtain

19(3) ki HWQ»%(B(OAE)&))
SC(TL, a, Kly K37 5)

||Rc(i)kl||L%(B(o7505 + ||ag(i)||%n(3(o,505)) + ||9(i)kl||L%(B(o,506))] (3.11)
SC’(n, a, Ky, K3, ) [”RC( )leLj B(0,506)) + K22 + Hg(i)kl”L%(B(o,g)oa))]

SC(TL, «, Kl; KQa K37 5)

Now we choose a cutoff function ¢ € C5°(B(0,500)) satistying ¥[p( 455 = 1
and ¢(z) € [0,1] for all z € B(0,505). For the sake of readability, we set
w:=g(i)g — 9(j)m- Let ¢ € (1,00) and S € (0, ) then

(Yu)(z) — (Yu)(y)|*
/n/n |$_ |n+5q dx dy
q
[ e st
(0,508) J B(0,506) |93_ |tha
q
/ / () — wfg)U(y)l d dy
B(0,506) J B(0,506) |x—y|" e
_ q
/ / u(y) %ﬁ(g)U(y)l dr dy
B(0,505) 0505 |$_ y[r+ha
|u(z) — uly)|
dx dy
/B(O 505)/ B(0,505) |I' - |”+5q
/ / V() — ¥y )L; u(y)l” dedy =:1-+1I
B(0,500) J B(0,500) |x—y|” 9

On the one hand we obtain

[ st
B(0,508) J B(0,508) |x — |’”r T4 | —y|

<C(n,q,0,a, ) [u ]ﬂ+a B(0,505)

Q

and on the other hand we obtain

_ q q
= ) = ST,
B(0,5068) J B(0,506)nNB(y,1) |z — y|m+ha

) — 4y (y)|e
+/ / () w(y2|+ﬁ| (v)] de dy
B(0,508) J B(0,508)N(R"\B(y,1)) |z — y|" P
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_ q
C(n,q,v) / / yl* lxn%yl dx dy
B(0,506) J B(y,1) \x— y|n P
q
/ / [uly )TLB dx dy
B(0,508) J B0,508)n(®R"\B(y,1)) [T — Y"1
1
~Cna.0) [ quwp [ L dray
B(0,506) B(0,508)NB(y,1) lz =yl

1
) .
B(0,505) B(0,508)N(RM\B(y,1)) [T — y["Th4
SCQ(TL, q, 67 67 w) HquCO(B(O,E)O(S)
Hence, from Theorem B.19 and (3.11) we obtain the desired
W1P(B(0,400))-convergence of the sequence gi(i), where p € [n, C(a)n). Us-

ing this fact, we can show, that for each k,l € {1,...,n} the sequence g(i)x
is a W23 (B(0,406))-Cauchy-sequence. In order to establish this, we need the

following consideration which follows from (3.10)

(1) 0a05(g(0)1a — 9()w) + (9(0)* = 9(j)*")0a059(j )
=9(0)*° 02039 — 9(7)* 0aDs9(j )1
= — 2Rc(i) + 2Re(f)u + (9(0) ™" 15 9(1) 7" %2, 9g(2) #3,5 Dg(i))1a
— (9(7) " 15 9() " %25 09 (j) *s5 Ag(J))m
where *,, ; denotes a sum of contractions of a rule m with respect to the metric
g(i) where m € {1,...,3} (cf. [11, Lemma 4.1]). Now, we rearrange the first

(3.12)

order term

i g(0) 7 w2 0g(0) %33 09(1) — 9(7) 7 *15 9(5) 7 %2, Ag(4) *3,5 09(3)

(1) 7" s g(0) " a3 Dg (i) %33 0g(i) — g(5) " w14 9(4) " %2, Dg(4) %3, Dg(i)
(7)™ #13 9() ™" %2, 99(3) *33 9g(i) — 9(7) " *15 9(5) ™" 2,5 Ag(4) *35 09(3)

= [g()) ™" 15 9(1) 7" = g(3) " #1 9(5) '] *2 Og (i) %35 Dg(3)

+9(5) " 1 g(F) 7 *a, [09(4) x3,; 0g(i) — Dg(j) *s,: Og(j)] + f

9(i)”
=g
g

*q
*1

_I_

*1
L
[9(0) ™ #1i (9(O) " = g() ™) + (9() ™" = g(1) ™) #13 9(7) ] 24 Dg(0) *3,: g (i)
+9(5) " #15 9(5) " 24 [09(i) #34 (9g(i) — 0g(j)) + (0g(i) — 0g(j)) *3.4 0g(j)]
+ f(l)
where f() arises from the change of the metric which is involved in the con-

traction. Due to Holder’s inequality, after possibly taking a subsequence, this
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expression satisfies the estimate

Oy, 1 1
1gﬁ>§<n\|sz ||L7(B(0,505)) < (z + j)

Hence, from (3.12) we obtain

9(0)*0a05(9()m — 9(j)x)
= “2Rc(i)u + 2Rc(j)u —(9()™ = 9(5)*")0a0s9(i)u

e =iy
+ [G1(i, ) %2, 09(i) *34 99(i)) I
@
Ikl
+ [Ga(i, j) #2,: [0g(i) %33 (0g(i) — Og(j)) + (9g(i) — 0g(5)) *3, Og(J)]lme
=
+ 1y
where -
lg}f}}én ||G1(i7j)leCO(B(O,SO&)) < (Z + ;) (3.13)
and
ér}:};(n "G2(i7j)leCO(B(O,SOJ)) < C(n, k) (3.14)

for all 7, j € N. Now, we show that each of the expressions f™, where m &
{2,...,5}, is sufficiently small with respect to the Lz-norm. Here, we allow

that the considered ball becomes smaller. We have

(2)
| fa HL%(B(0,505))

= || — 2Re(i)w + QRC(j)kl||L%(B(0,506))

. . (1.9) /1 1
< 2||RC<Z)MHL% (B(0,500)) + 2||RC(])7€ZHL% (B(0,506)) < (; + ;)

(3)
||sz ||L%(B(o,455)

= H(g(i)aﬁ - g(j)aﬁ)aaaﬁg(j)klHL%(B(OAM))

(3.11) - . .
< Z 1(g(0)* — g(5)*") | coB0.455) | 0a 089 (3 1|

1<a,B<n

(i+5)
< -+ =
(2

L% (B(0,455))
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(4)
”fkl HL%(B(0,506))
(3.13)

1 1 .
2 o 16,6 (; i 3) NG
1 1
S C(n7K1>K276) ’ (; + ;)

and

(5)
I fxi ||L%(B(o,456))

(3.14) . ) .
< C(n, K1,0) [109(0) || zr (80,45 10(9(3) — 9(3))|| 7 (B(0,455))
< C(n, K1, K3,9) [10(9(2) — 9(3)) |2~ (B(0.456)
<

)

Where in the last line, we have used that (g(i))ien is a WH"(B(0,454))-
Cauchy sequence which was proved above. Hence, [15, Theorem 9.11, pp. 235-
236] implies that (i) is a W2 (B(0, 406))-Cauchy sequence which converges
to gx; in this topology. From (1.9) we infer

-1

9000891 = (97 % g7 % Og % 09w Vi<k<Il<n (3.15)

in the limit. Using this system of equations, we show that g is smooth. First
we show that gy is contained in the space W?(B(0,r)) for each p € (1,00)
and 7 € (0,406).

From the considerations above, we already know that
g € WHC@(B(0, 400))

where C'(«) > 1. We proceed inductively: we assume, that for each r € (0, 406)
we have gy, € WH(B(0, %)) where ¢ € [C(a)n,2n) is fixed, then Holder’s

inequality implies:

1 -1
(g™ g~ " % Og * ag)leL%(B(o,%m)) =G

where Cy > 0 depends on the L%norm of dg. Then (3.15) and [14, Theorem
7.3, p. 140] together imply

Ha2gleL%(B(O,r)) = Imax Ha)\aﬁgkl|’L%(B(07T)) < CQ<01)

1<A<B<n
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Using the Sobolev embedding theorem (cf. [13, 5.6.3., Theorem 6, pp. 284-
285]) we obtain

10gll ng < C3(Cy)
L3 (B(0,r/2))

and the assumption ¢ € [C(a)n, 2n) implies that

n
2

Hence, we have more regularity than assumed and the ratio of the increase
of the regularity is bounded away from zero. This argument may be iterated,
where ¢ shall tend to 2n. This shows that gy, € W'?(B(0,r)) for all p € (1, 00).

Applying [14, Theorem 7.3, p. 140| to (3.15) again, we obtain gy €
W22(B(0,r)) forall p € (1,00) and r € (0,400). In this situation we may apply
Lemma A.7 to (3.15) and we infer that gy is also contained in € W3?(B(0,r))
for all p > 1 and r € (0,400).

Now, it is possible to apply the argumentation in the proof of Lemma A.7
iteratively so that the LP-regularity from a higher order derivative of the right
hand side in (3.15) carries over to the iterated higher order derivative of the
considered function on the left hand side, which is the metric g in that case.
This means, that we obtain gy € W*?(B(0,7)) for all k € N, p € (1,00) and
r € (0,400) and finally, using [15, Corollary 7.11., p. 158], we infer that gy is

smooth.

3.1.6 (C*°-regularity of the limit space
Fact 6. (By_ (P, 1/2),d) is a C*-manifold.

We continue the argumentation from Fact 4, using the fact that the limit
metric is smooth. From (3.9) we obtain

g" (0)0R0,(TYy — T

,8,t

) = gkl(i)akang; = (gkl(i) — gkl)akalT;ré + gklakﬁlTS”;
(3.16)
for all m € {1,..,n}. Using the fact that T}%, converges with respect to

the C?(B(y, €))-topology to Tstl gy and the fact, that g (i) converges with
respect to the C°(B(y, €))-topology to gy, we obtain the following equation
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in the limit. Since the coefficients are smooth, [13, 6.3.1, Theorem 3, p. 334|
implies that each component of the transition function 7, is also smooth. In

what follows, we show that the Ricci tensor vanishes on (B, (poo, 1/2), 9)

3.1.7 Ricci flatness of the limit manifold

Fact 7. (B, (P, 1/2),9) is Ricci-flat.

We have

3

2 N@®)

2
/ Rieiav,) < ( [ [Ricyl§ v,
B, (Poo;1/2) j=1 Y’;ol,j(B(OAOé))
and from Fact 5 and (3.10) we infer

/ Ricyl§ v, ) = lim | [Ricy|§ av, | =0
¥oo.;(B(0,400)) oo ¢; } (B(0,406))

Here, we have also used, that g(i) converges to g with respect to the C°-

-1
0,7
topology in the local charts.

3.1.8 Construction of the diffeomorphisms
Fact 8. For each i € N there exists a diffeomorphism
Fi 0 By(poo, 1/10) — Fi(Bg(poo, 1/10)) € Byiy (pi; 1)

such that Fg; converges to the metric g with respect to the W23 -topology, as
1 tends to infinity.

1111

1 k—1
5 = (30) 106 (3.18)

For each i € NU{oc} and k € {1,..., 7} we define

N(5)
V= el (B(0,41))
Jj=1
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so that, regarding (3.4), we have the following inclusions
By (pin 1/2) €V € .. € VI C By (pi, 3/4)

Now, let £ : [0,00) — [0, 1] be a smooth cut-off function satisfying

;

=1 if s € [0,55]

> B ifs€[ds,0
O 9%, 4 (3.19)
< 25 if s € (56757]

— 100

=0 if s € [07,00)

then for all i € N and k € {1, ..., 7} we define a smooth map

EV_(k) : Vi(k) — RN

K3

where Ny = No(n,0) =n - N(0) + N(0), as follows:

Eyw = [E(pil) - @ins s Ellpine)|) - pin@) Ewinl)s - Ellpine D] (3:20)

where £(|p; ;|) is considered as a global function, which is equal to zero when-

ever ¢, ; becomes undefined on the respective manifold.
Let i € NU{oo}, j € {1,..., N(6)} and k € {1, ..., 7}, then

E 1 : B(0,8;) — RMo
v P B(0,5%) (0,9%)

has the following shape

Evi(k>O<P;j1
=[e(|FON) - F, e FD ) - FY

1a] ]717].’

(|1d))1d, (3.21)
ENFD N - F s €UFSs D) - Fiils oo
ENFN, s €U, €01, ENFYT D), o € F Ny 1))

where, for all j,1 € {1,..., N(d)} the transition function

Fl(;) = Qi © 90;)]»1 : B(0, ;) — R"

is always combined with a suitable truncation function, so in this context, the

component functions of the function Ev.(’” are always well-defined.
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Let j € {1,..., N(0)}, for the sake of simplicity, we introduce the following
swapping map 7T} : RNo — R

7}'(”17@27 oo Uj—1, Vg, Ujt 1, -+, UN(8)5 1,5 "'7TN((5))

:(Uj,Um ey Uj—1, V1, Vjt1, -, UN(S), T'1, --->TN(5))
Clearly this function satisfies T o T; = Idgn,. From (3.21) we infer

T;o Evi”“) ° @Zjl
=le(d)1d, ... (1F2 ) - F2,
IFD - Y,

EUFLL ) - F s €UFS 5D - Fiils)

IR, o €UFY) A1), 601 Td]), UL AD), s (1 F il 1))
=:[&(|1d|)Id, u; ;]

(3.22)

where k € {1,...,7} and for each i € NU {o0}, j € {1,..., N(J)}, the function
u; ; is a well-defined map from B(0, d7) to RN,

From Fact 4 and Fact 6 we already know that for each j € {1,..., N(J)} and
ke {1,..,7} the sequence (u;;)ien € C*?(B(0,d;), RNo="), where § € (0, ),
converges with respect to the C2#(B(0,d;), RNo=")-topology to the smooth

function

Ussj : B(0,0;) — RN
as i tends to infinity. For each i € NU {oo} and k € {1,...,5} we define

N(5)

MY =B, w (V) = By U i (B(0.4)

N(5)
Eyw (1, (B(0,61))) (3.23)

||
1C

)
{Ty(x,usy(2)) « € B(0,6,)} S R™

I
—z
-

1

<
Il

It is our aim to prove that for each i € NU {oo} and k € {1,...,4} the
mapping E\@ is a smooth embedding. This would imply that Ml-(k) is an

n-dimensional smooth embedded manifold (cf. [22, Proposition 5.2, p. 99|).
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The appearance of the identity in (3.22) implies that for each k € {1,...,5}

the mapping E_ ) is an immersion. Furthermore, from the last N(J) compo-

v (®
nents in the deénition of (3.20), we infer that this mapping is also injective
because one of these components always needs to be equal to one and if the
functional values of two points in Vi(k) coincide, then they are contained in a
common domain of a coordinate chart. In this situation, the corresponding
part in the first N(J) - n components contains the information that these two
points need to coincide. Moreover, from the fact that for each j € {1,..., N(0)}
the function u ; has a bounded first derivative and from the choice of the trun-
cation function in (3.19), analogous to [29, p. 61, 1l. 27-40], we infer that for
each yp € VZ-(4) there exists a sufficiently small so(zo = ¢;;(v0)) > 0, where

j€{l,...,N(0)} such that y, € 90;]1(3(0,54)), so that for each s < sy we have
{T)(w, ui (@) @ € Bwo, )} = (T(B(wo, s) x Blui;(wo),0(s)))) 1 M

where O(s) C RM ™™ is an open set. Since the swapping map 7} and the chart
©;; are homeomorphisms, this would imply that for each ¢ € NU {oo} and
k € {1,..,4} the mapping E ) is also an open map and consequently an
embedding. Z

Using [24, Proposition. 26., p. 200], there exists an open set

Nc ] M)

peMY

where Np(Méél)) is the orthogonal complement of the tangent space Tp(Méf)),

Z = H)op

pEMéi

containing the zero section

and a set O C R, containing Mc@, such that

exp, N — O

is a diffeomorphism. Since Még’) - Méﬁ) C O there exists ¢ > 0 so that

BM®, o) = U B(p,o) CO

oo )

pE]Wég)

Thus the projection mapping

mi=myoerp,t: BIMP o) — MY (3.24)

oo 7 o0
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where
v N — M éf)
is the natural projection, mapping each element v, € N, to p, is well-defined.
Since exp,(0,) = p for all p € ML > M the map 7 satisfies | ,m =
Id\M<3>. Taking o > 0 sufficiently small, we may assume that
sup  |m(z) —z| <€ (3.25)
ZEB(MS),U)

It is our aim to show, that, for sufficiently large i € N, the mapping

ElyoroE VI — (B omo Eye) (V) SV (3.26)

(2) .
12 VZ-(Q)

is a diffeomorphism, satisfying

The first part of the following argumentation shows, that the map in (3.26) is
well-defined.
From Fact 4 and Fact 6 we already know, that for each j € {1,..., N(J)}
the sequence
(us5)ien € C*P(B(0, d3), R™ ™)

converges to the mapping

Uso; € C(B(0,83), RNo™™)

with respect to the C?#(B(0,d3), RNo~")-topology as i tends to infinity. In
particular, (3.23) and (3.20) imply, that Mi(g) converges to MY with respect
to the Hausdorff distance in R™. This allows to assume that Ev_<3>(Vz(3)) =

Mi(?’) C B(Még’), o) holds for all i € N. Hence, regarding (3.24),
o EV_(3> : Vi(g) — Mé;l)

is a well-defined mapping. Now, let 2o € B(0,d3), j € {1,....,N(d)}, yo =

V(o) € V) and zp = Uoo ;(20), then

T)(0,20) = By (0) € By (9325(B(0,65)))

Since Ey @ is a diffeomorphism onto his image, the set Ey @) (05;(B(0,5)))

<

is relatively open in M. Thus, there exists 7o > 0 so that

T;(Buq(20) % Byy(20)) N ME) C By (0,0;(B(0,63)))
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Here, we may assume that 7y > 0 is chosen to be small enough so that we also

have
m(Tj(Bry(w0) X Bry(20))) € By (0;(B(0,33))) (3.27)

Let sg € (0,79 so that

Tj(By© © ¢ j(®)) = (2, Ui (7)) € Bry(x0) X Byo(20)  Va € By (x0)

Due to the convergence of the sequence (u;;)ien € C*P(B(0,d3), RNo~") we

may also assume that
Tj(Eye 0 ¢;j () = (z,ui;(x)) € Byo(w0) X Bry(20)  Va € By (o)
respectively
Eyw © ¢} (x) € Ty(Byy(w0) X Byy(20)) N M® vz e B,,(x0)
for all i € N. In this situation, (3.27) implies
o EVi(g) o gp;jl(w) € E,e (gpgo{j(B(O, 93)))  Vax € By, (o)
Thus, the mapping

Poo,j © E;(14) oo E‘Q(S) o] : By (z9) — B(0,64) (3.28)

B,so ($O)

is well-defined. Now, we show that the map in (3.28) defines a diffeomorphism,
where the range needs to be restricted. This implies that the map, that is
defined in (3.26), is a local diffeomorphism. We have

Poo,j © E;é}) omo EVZ.(?’) o %—Jl

=(Eyw 0 ¢s;) omoTyo (- ui()

=(Tj 0 (oo (+)) om0 Ty o ( uiy(-))
Hence, using the C%*P-convergence of the sequence (wij)ien, we conclude that
the sequence (¢oo; © E‘;(ﬂ) omo K @ o go;jl)ieN converges with respect to the
C1(Bs,(z0), B(0, 44))-topology to

(Tj 0 (oo, (-)) T 0T 0 Tj 0 (¢, o ()

1

_ —1\— -1
=(Byw 0 ¢sy)” omo Eye o g
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=By 0 0) " © By © 0oy = Tdp,gan)

as ¢ € N tends to infinity. Consequently, since each immersion is a local
diffeomorphism, we may assume that
<poojoE*<14>o7roE(3)og0;1 :
; v v, 9| Bay (20)

By, (x0) — (@Yoo, © E;O(}) oMo E‘/;(?’) o gp;jl)(BSO (x0))

is a diffeomorphism, provided that sy > 0 is small enough. From this, we

conclude, that

B0, % ’5 %), B0,5,)

-1 —1 .
()0007] © EvQ(:}) oMo E‘/Z(Q) © (plaj B(O 52+53) ’
T2

is well-defined and converges with respect to the C2(B(0, %21%), B(0,4,))-
topology to IdB(& GERAY

Finally, we show that the mapping, which is defined in (3.26), is also a
global diffeomorphism. It remains to show the global injectivity (cf. [29, 1L
36-43|): Let y1,y2 € Vi(z) so that

(B omo Eye)(yr) = (B 4 om0 Bye) (1)

Using the fact that E @) : v s vl s bijective, we obtain

vy

(o Eye)(yn) = (7o Eye)(ys)

Then (3.25) implies

[Eyer (1) = By (12)]
=By (1) = (1o Epe)) () + (1o Byo)(y2) — Eye (1)l

<|Eye () = (o Epe)(y)| + (7o Byo)(ya) = B o (4]

Now, let j € {1,..., N(9)} such that y; € ng}(B(O,(Sg)), then, from the defini-
tion of £« (cf. (3.20)) we infer

03 — 03

: (3.29)

i (1) = §(lpii(W)]) - @i (ye))] < 26 < ———
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and
1 - €(puam)] < 26 < o (3:30)
Soz,] Y2 N 46 S 100 .
From (3.30) and (3.19), we infer g € o, | (B(0,dg)). Suppose that |p; ;(y2)| €
[65, 56)7 then

95 . 318) 95 10
> —05 = —— - —0;, >0
|2 100°° 100 9+~ ™

€ i (y2) )i (W)l = 1€ i (y2)D] - |i i (y2)
which yields a contradiction because (3.29) and ;;(y1) € B(0,d2) together
imply

1€ (i (y2) )i (y2))] < b4
Hence, we have y, € cp;jl(B(O, %2103)). This shows, that the mapping in (3.26)
is a diffeomorphism. Finally, we are interested in the inverse mappings. These
mappings shall satisfy the desired properties from the statement of the result.
For each 7 € N let

¢; = (EQQ omo E\/i<2>)_1 VI — By (pi 1)

vy
and let
E = dilp, (pwi/10) * Baoo (Poos 1/10) — By (pi, 1) (3.31)

It remains to show that Fg(i) converges to g in the W22 -topology, as i tends

to infinity. In local coordinates we have

(FFg(0))m = OFY g(4) 1,5, 01 F 7

Oy (7 9(0)) k1 = Oy O 9(0) 5o O F P + Ok O, g(4) 5,7, 01 FY”
+ Ok F () 5, jyOm, O FY?
and

OOy (Y 9(0) b1 = Oy Oy O 9(0) 515, O FY* + Oy O FY Oy 9(0) 5,5, O FY?

+ O, Ok F? 9(1) 1, Oy O F 2
+ Oy O F 0y 9(1) 1 s O+ Ok FY Oy Oy 9(3) . 55 O1 FY

+ OF O, 9(1) 1o O O FY?
+ Oy F 9(0) 150 Oy O F> + Ok F 01y 9(1) 5,5y Ormy O1 F

+ O FY 9(3) 1, Ormy Om, O F

(3.32)
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for all my,mq € {1,...,n}. We recall that for each ¢ € N the diffeomorphism
F; is, by definition (cf. (3.31)), the inverse mapping of El;if‘) omo By
the mappings E,,x) (cf. (3.20) / (3.21)), are constructed from the transition
maps in (3.8). 80: in order to analyze the convergence behavior of the sequence
(F})ien, we need to consider the transition maps T; ,; in (3.8), keeping Cramer’s
rule for the Jacobian of an inverse mapping in mind.

Since g (i) converges locally to g with respect to the W22-topology (cf.
Fact 5) and the transition maps converge locally with respect to the C%-
topology to the transition map in the limit space (cf. Fact 4), it remains to
consider the terms in (3.32) which contain a third order derivative of F;. In
order to get information about these derivatives we derive (3.16) having (3.17)

in mind, i.e.:

g ()0k00;(TT — T ) = — (8;9"(0)) 0k 0N (T2 — T} )

+8;(g" (i) — ¢RI, + (9™(i) — g™)0k0O; T
(3.33)

Furthermore, deriving (3.9), i.e.:

G (DODTT, = — (0,9 (AT, ¥m € {1, .o}

2,8,t

yields a uniform local L"-bound on 0;0,0,1}" ;, where we have used [15, The-

orem 9.11, p. 235-236]. Hence, also using [15, Theorem 9.11, p. 235-236],
(3.33) implies that T, converges locally with respect to the W*"-topology
to Ty} for each m € {1,...,n}. Consequently, (3.32) implies the desired W3-
convergence of the sequence Fg(i) to the limit.

]
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Appendix A

Auxilary Results and Results from

Riemannian geometry

A.1 Auxilary Results

Lemma A.1. Let (M", g(t))ic 1, be a smooth family of Riemannian mani-

folds and let v : [0, L] — M be a smooth curve. Then we have the estimates:

d

ZL(v.t
pm (7,1)

|U|2(t )
log L
[0 g(t1)

0 19
71 [ ViTlgw

on M x (tl,t2>.

< / 19" (0] gy dore
Y
t

2
< [T 19Ol @t VoETM

t1

.12 . .
<19'lyy IV 150y + C)Al50) Vsl IV g

(A.1)

(A.2)

(A.3)

Proof. Using a unit-speed-parametrization of v we infer (A.1). Estimate (A.2)

is proven in [16, 14.2 Lemma, p. 279|. In order to prove (A.3), we fix x € M

and t € (t1,t2) and use normal coordinates around x (cf. [23, pp. 76-81]). In

this point we have:

5120 =

(Y50 40 gy = Y (HF)?

k=1

73

(A4)
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and, using [23, Lemma 4.3., p. 51|

93312 =70k = T (9(0)57470k, 570, + T (9057 By
U S (A.5)
:(’Ykakv rynan)g(t) = Z (’Yk)2
k=1
We also need the variation of the Christoffel symbols from (cf. [10, Lemma
2.27, p. 108]), i.e

0 1
ark =59 (Vigﬁ-l + Vg — Vigi;) (A.6)
Here, we have suppressed the time dependency in the notation. Using (A.4),

(A5), (A.6) and T'}; = 0 in x, we obtain:

0 0 .
SV = | 5 GO+ T A0k, 570, + T35,
0 0 0
<|50 55O, 5P 0p) g ’a (5°0k, T5 440, )| + ’a (D544 0, T A ™0,
0 < .
< |gr 20 (40 00| + 2| 1 [T, 397000,
k=1
S 0 .
- Z(’Y ) (8k,(9k)g’ +2 at |:PY Flmﬁyﬁy (alﬁap)g]
k=1
n n 8
_ kN2 lam
=[G | 42 B () 3o,
n ) n 8
~ S0 6O a0 2| 3 5 (T ) 34
=1 ke lm=1

> ()

k,l,m=1

.12 . .
<lg'ls V53, + Co ()3 1V57141V gl

) . .
<|¢'lg V57, + Cr(n)[31FIV57lg

O

Lemma A.2. Let (M™,g) be a closed Riemannian manifold, k € N, x € M
and ¢ > 0. Then we have the following equality

iz, cg) = ™ ful@, 9) (A7)
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Proof. For each j € {0,...,k} we obtain in local coordinates
|CngRmcg|fg
=(clg™ ) (™) - () (e g (T ) (™)
© IVay,ooy Rikim (c9)V g, ... 3, Rpgrs(€g)
=c T 0P L goaBi Lt g gRa gl gms
- Ny, Ririm(9)?V 5,8, Rpgrs(9)
=cIT2 g g gPghigl g 9V,

—cU+2) |9Vijg|3

..... a; Riklm (g)gv,31,...,,5j RPqTS (g)

Here, we have used the fact that, the covariant derivative is invariant under
rescaling (cf. [10, p. 3, Exercise 1.2]) and the scaling behavior of the Rieman-
nian curvature tensor (cf. [10, p. 6, Exercise 1.11]).

[l

Lemma A.3. Let (M", g(t))icio,r] be a smooth solution to the flow given in
(1.3) then we have:

t

[ tarad Fyo P Vs = Fao) = Flgto) (A58)
for all t € ]0,T].

Proof. This follows from [5, 4.10 Definition, p. 119]. ]

In particular, we can see that the energy F(g(t)) is monotone decreasing

under the flow given in (1.3), and

t
/(; /M lgrad fg(s)|2 AVysyds < € (A.9)

for all t € [0, 7] under the assumption that F(go) < €

Theorem A.4. ([35, Lemma 2.11, p. 269]) Fix m,n > 0. There exists a
constant C(n,m) > 0 so that if (M",g(t))wcio,1) @5 a complete solution to the
L2-flow satisfying

<A (A.10)

sup t2 ||ng(t)HL°°(M,g(t)) -

te[0,7]
then for all t € (0,7,

1+

197 Bty a gy < € ((4+1)67%) (A1)
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Lemma A.5. Let M* be a closed Riemannian manifold and (M, g(t))iejo.r) be

a solution to the L*-flow. We have the following estimates

Volywy (M) = Volyoy (M) for all t € (0,7 (A.12)
and
1 Y _op :
VOlg(t)(U)Z = VOlg(o)(U 2 t2 (/ / |g7“(],d J—" )d‘/g(s) ds) (Al?))

for allt € (0,T) and U C M open

Proof. The equation (A.12) is a special case of the first equation in [34, p. 44].

Furthermore
[Volyw(U)]® — [VOlg(o)(U)}%
¢ 1 -
:/ d [Vol, s>(U)}zd$:l/ &5Voly» V)
ds 2 Jo [VOlg(s)(U)F
_ / fU trg(s) grad Fy 8) dViys) .
Vol (U)F
2 i 1

> / (fy ltrges) [Vgr?d .7(';(,]()}! dVy(s)) [Volyo(U)] ? ds

v

_C/ (/\grad]:sﬂ > ds
3
> Ctz ( /0 /U lgrad Fyol% s dVas) ds)

]

Lemma A.6. (cf. [34, Corollary 1.5]) Let (M}, (9:(t))ic(t,t2), Pi) be a sequence
of complete solutions to the flow given in (1.3). Suppose there exists a constant
K > 0 such that

sup |Rmy,
M; X(tl,tg)

W <K

Then there exists a subsequence (M, (i, (t))ieft 12, Pi;) and a one-parameler

familiy of complete pointed metric spaces (X, (d(t))ieft 15, ) such that for each
t € (t1,t9) the sequence (M{;,dgij(t),pij) converges to (X,d(t),x) in the sense
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of C*®-local submersions (cf. Definition C.12). The local lifted metrics hy(t)

are solutions to (1.3). If there exists a constant § > 0 so that

then the limit space (X, d(t), ) is a smooth n-dimensional Riemannian mani-
fold, and the limiting metric is the C*°-limit of the metrics g;(t).
Lemma A.7. Let Q C R"™ be a bounded domain, and u € W?**(Q), where
p = po(n), satisfying

akl&ﬁlu = f (A14)

where (a) <y 1<n € C%%(Q) satisfies

a =ad* Vkle{l,..,n}
alél? < a(2)6:8 < eolé* Vi €Q and £ €R”

kL(\ K
max  sup o (x) = a"(y)l <c3
Isklsn g yeQasty |z —y|*

a e Wh*(Q)  Vk,l€{l,..,n}

and f € WHP(Q), then u € W3P(Qq) for each Qo CC . Furthermore we have

the following estimate

||u||W31P(Q0)

kl
SC (n7p7 €1, C2, C3, &0, QO? Q7 12%};’” HCL le,2p(ﬂ)7 ||f||W11P(Q) ) ||U’||W272P(Q))
(A.15)

Proof. Let i € {1,...n}, h € (0,%dist(Ql,8Q)) where Q; C Q is a domain
satisfying Qg CC Q; CC Q. Asin [15, 7.11, (7.53), p. 168] we define for each
x € € the difference quotient in the direction e; of size h # 0 as follows
~u(z+h) —u(z)

h
An application of this operation to (A.14) implies

Ahu(z) :

a® (- 4+ h) (00, AM) = A f — (Ala*)0,0u (A.16)
on 1, [15, 9.5, Theorem 9.11., pp. 235-236] and [15, 7.11, Lemma 7.23., p.
168] imply
HA?UHWZP(QO) S C<n7p7 €1, C2,C3, 0, QO7 Q)
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1220 o+ 12| g + (AL 0001 1 |
< C(n,p, 1,2, 8,090, [ullyanay + 1 oo
+ C<n7p7 C1,C2, C3, (&, QO? Q) Z HAZLakl HLZP(Ql) Hak:alUHL?p(Q)

1<k,l<n
< C(n,p,e1, 02,65, 90,2) | [l + 1o

+ C<n7p7 1, C2,C3, 0, QOy Q) 1;}32;;” Hakl}lwlgp(Q) ||UHW2v2P(Q)

This implies (A.15).

A.2 Results from Riemannian geometry

Lemma A.8. (/35, Lemma 2.9, p. 268]) Let (M", g) be a complete Rieman-
nian manifold, satisfying f1(M,g) < K then there are constants C(n), u(n) >

0 such that in any normal coordinate chart around p one has

sup I < CK:
By(pyuk =)

Here, T is introduced in Definition C.9.

Lemma A.9. (/35, Lemma 2.7, p. 268]) Let (M", g) be a complete Rieman-

nian manifold with [|[Rmg|| ey < K and injg(M) = o, then there exists

(n) > 0 and c(n) > 0 so that for all r < pmin{i, K=2} and all p € M and
v € T,M one has the following estimate

Area [expp(Br(O) N <U>L)] > !

Lemma A.10. ([35, Lemma 2.8, p. 268]) Let (M,g) and (N,h) be smooth
Riemannian manifolds and let F' : M — N be a smooth submersion. Fur-

thermore, let ¢ : M — [0,00) be a smooth function, then one has:

B o(x) —1
/M bdv, — /y . / ) W @ (A17)

where N Jac F(z) is the determinant of the derivative restricted to the orthog-

onal complement of its kernel. This quantity is also called "normal Jacobian".
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Theorem A.11. (/1, Theorem 2.2]) Let (N[, h;)ien be a sequence of closed

Riemannian manifolds with the following properties: There exists k € N and

77777

Hlemgi||Lm(Mi7gi) <Iy VieN, Vic{0,.. k} (A.18)
injg,(M;) >¢ VieN (A.19)
vo<Vol, <V, VieN (A.20)

then there exists a subsequence (N[J?, hi;)jen converging in the CFe_sense to a

Ckrhe_Riemannian manifold.

Lemma A.12. Let n € N, ¢ > 0 and let (M™, g) be a complete n-dimensional

Riemannian manifold such that the following is true

Rc, =0
||ngHL°°(M”7g) <00

injg(M) >

then
| Ry e g gy < Cln,0).

Proof. We argue by contradiction. Suppose this statement would be wrong,
then we could find a sequence of complete n-dimensional Ricci-flat manifolds
(M, gi)ien so that

ingg, (M;) >t
and

H ngi

Loo(Mi,gi) — Ci
where

i—00

We construct a blow-up sequence as follows: for each i € N let

hi = C; - g
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so that

anhl(MJ Z \V CZ'L
and

HRmm 1

Loo(M;,hs) —

For each i € N we choose a fixed point p; € M;, so that |Rmy, (p;)

h >3
Using Rcy, = 0, the first equation on [1, p. 461] or [16, 7., 7.1. Theorem, p.
274] implies

Ay, Rmy, = Rmy,, * Rmy, (A.21)

and consequently

Furthermore, from [17, Lemma 1], we obtain uniform C°-bounds on the metrics
(h;)ien in normal coordinates. Hence, an iterative application of the theory of
linear elliptic equations of second order to (A.21), following the arguments of

[1, p. 478, second paragraph]|, we obtain uniform higher order estimates, i.e.:

< K(n,k)

Loo(M;,h;)

for all i,k € N. Hence, |1, Theorem 2.2, pp. 464-466| implies that there exists
a subsequence (M;, g, pi)ien that converges in the pointed C*“-sense, where

k € N is arbitrary, to a smooth manifold (X, h, p) satisfying

| R, (p)[n >

N =

and, using 28, Theorem)|
Zn]h(Xyp) =0

An iterative application of |8, Theorem 2| implies that (X, h,p) = (R", geue, 0)
which yields a contradiction.
O



Appendix B

Interpolation, Sobolev spaces and

Besov spaces

B.1 Interpolation theory

The following definition of an interpolation couple is a standard definition in
the interpolation theory. We refer to [41, 1.2.1., p. 18].

Definition B.1. An interpolation couple {Ag, A1} is a couple of complex Ba-
nach spaces Ay and Ay which are linear subspaces of a linear complex Hausdorff

space A and continuously embedded in A.

Lemma B.2. (41, 1.2.1., Lemma, p. 18]) Let {Ao, A1} be an interpolation
couple, then the space Ay N Ay endowed with the norm

lallaona, = max({laol o, llar]la,)

and the space Ay + Ay endowed with the norm
Jellaviss = it (laollag + lorlLa)
a]'EA]'
are Banach spaces.
In the following, we introduce the concept of complex interpolation (cf. [41,
1.9., pp. 55-61]). A part of the theory of analytic functions with values in

a Banach space is explained in [12, 111.14., pp. 224-232]. Throughout let
S:={z€C: Re(z) €(0,1)}.

81
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Definition B.3. (/41, 1.9.1., Definition., p. 56/) Let {Ao, A1} be an interpo-
lation couple and let v € R. Then by definition F(Ay, A1,7) is the set of all
functions f : S — Ag + Ay satisfying the following properties

e f is continuous with respect to the || - || ag4+4,-n0OTM
o flg is analytic with respect to the || - || ag+a,-norm, i.e.: for each z € S
o o 1im 1) = £
z—20 Z— 2

exists, where convergence is understood to be as convergence with respect

to the || - || 4o+, -norm.

® SUp,c35 67‘7‘.|1m(2)‘ ||f(z)||Ao+A1 < o0

e the map f(i-) : R — Ay (i.e. t— f(it)) is well-defined and continuous

with respect to the || - || a,-norm

o the map f(1+i): R — Ay (ie. t— f(1+it)) is well-defined and

continuous with respect to the || - || a,-norm

o |Ifllre) = max{sup,er e f(it) ]| 4, supper e M (L + i) ][4, } < 00

Theorem B.4. ([/1, 1.9.1., Theorem. (a), p. 56]) Let {Ag, A1} be an inter-
polation couple and let v € R then F(Ay, A1,7) endowed with the norm ||- || g

18 a Banach space.

Definition B.5. ([41, 1.9.2., Definition., p. 58]) Let {Ao, A1} be an interpo-
lation couple, 0 € (0,1) and v € R. Then we define

[Ao, Atlpy :={a € Ao+ A1+ 3f € F(Aog, A1,7) s. th. f(0) = a}

and

Ha||[AO7Aﬂ(M = inf{||a|]F(7) o feF(Ay, A,y) s. th. f(0) = a}

Theorem B.6. ([/1, 1.9.2., Theorem., pp. 58-59]) Let { Ao, A1} be an inter-
polation couple, 0 € (0,1) and v € R. Then [Ao, A1l endowed with the norm

I| - ||[A0,A1]M 18 a Banach space.
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Definition B.7. ([{1, 1.9.2., Convention., p. 59]) Let {Ao, A1} be an inter-
polation couple and 6 € (0,1). Then we define

[Ao, Al]a = [Ao, Al]e,o

There is a wide range of standard properties of the spaces [Ag, A1]p, where
0 € (0,1). Some of them are listed in [41, 1.9.3., Theorem., p. 59|. In our
context, the property that is stated in [41, 1.9.3., p. 59 (3)] is crucial:

Lemma B.8. ([41, 1.9.5., Theorem. (f), p. 59]) Let { Ao, A1} be an interpo-
lation couple and 0 € (0,1) then the following estimate holds:

lalliao,ais < CO) lall 5’ llally, Vo€ AN A (B.1)

B.2 Sobolev spaces and Besov spaces

The following two definitions are deduced from [39, 1.2.1]

Definition B.9. ([39, 1.2.1, pp. 12-13]) We define the Schwartz space S as

follows
S:=ucC®R",C): pp(u) = sup (1+[z))* Y |Du(z)| < coVk € N
rER"™
| <k

and we introduce the following metric on S(R",C)

ds(u,v) := i L_pe(u—v)

P 2k 1 —|—pk(u — ’U)

The topological dual space (in the distributional sense) S', equipped with the

strong topology, 1s called space of all tempered distibutions.

Definition B.10. ([39, 1.2.1, p. 13 (2) / (3)]) The mapping

F:8§—S8

[Ful(x) := (2%)_3/ e w8 y(6)de, xeR"

18 called Fourier transform. The inverse Fourier transform is given by
F71.:.8§—S

[F~tu)(z) == (2m) "2 /n @S () d¢, xeR"

The induced dual mapping on S’ is also denoted by F and F~*
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The following remark can be found in [41, 2.2.1, p. 152]

Remark B.11. ([/1, 2.2.1, p. 152]) The mapping F' an isomorphism from S
to S and from S’ to S'.

We also need the following consequence of the Paley-Wiener-Schwartz the-

orem:

Lemma B.12. ([/1, 2.2.1, p. 152]) Let v € 8" such that Fu has compact
support, then u is a reqular distribution that is induced by an analytic function

which shall be also denoted by u and we have the following estimate
lu(x)] < C(1+ |z Vv eR"
where C' and N do not depend on x.
The following definitions are introduced in [41, 2.3.1, pp. 168-169|

Definition B.13. We define the following system of sets

{r eR": |z| <2} ifj=0
{z eR": |z| € [227Y, 277} if j € N\{0}

Definition B.14. (a) For s € (—o00,00), p € (1,00) and q € [1,00) we set

J

B, ,R",C) IZ{U eS:u S Zuj s.th. supp(Fu;) C M;
=0

Q=

for all j € N and (Z (QSjHUjHLP(Rmc))q) < oo}
=0

B; ,(R"C) ::inf{ (Z (25j|‘uj”Lp(Rn’(C))q> DU E Zuj and
j=0

J=0

[l

supp(Fuj) C M; for all j € N}
and for s € (—00,00), p € (1,00) and q = 0o we set
B (R",C) ;:{u €S u 5 Zuj s.th. supp(Fu;) C M;
=0

for all j € N and sup 2% ||u;| porn c) < OO}
jeN
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[
||u| B3 o (R™,C) = 1nf{ sup 2Sj||u]’||Lp(Rn7(C) Lu ? ZUJ' and
JeN

=0
supp(Fuj) C M; for all j € N}
(b) For s € (—o00,00), p € (1,00) and g € (1,00) we set

F(R™,C) ::{u €S u S Zuj s.th. supp(Fu;) C M; and

J=0

D=

2
q

/n iZqu]uj(:cﬂq) dx <oo}

Qps
hSA

o0

Fq(R™,C) ‘:mf{ / (Z 28jq|“j($)|q> dr| us Zug‘ and
n ]:0 ]:0

supp(Fu;) C M; for all j € N}

[l

(c) For s € (—oo,00), p € (1,00) we set

Hj (R, C) = F},(R",C)

(d) Forp € (1,00) we set

H;(R*,C) if s € NU{0}

W(R",C) =
B (R",C) if s € Rug\N

The following result is a special case of a result which was suggested in [41,

pp. 179-180: Remark 4|. In order to clarify the continuous embeddedness we

give a proof.

Lemma B.15. For each s € (0,1), p € (1,00) and € > 0 such that s —e > 0

we have

B, (R",C) — H,“(R",C) (B.2)
Proof. Using [41, p. 172 (3)] or [39, p. 47 (7)| we obtain

B;,(R",C) < By’ (R",C)
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[41, p. 172 (4a) and (4b)| imply that
Byt (R,C) = Fyp* (R",C)

where the corresponding norms are equivalent. Finally [41, p. 172 (3)] or [39,
p. 47 (8)] implies

Fy? (®",C) = F3°(R",C)
By Definition B.14 (c), the space F;;5,“(R", C) coincides with H;~¢(R", C) which
finishes the proof. m

The first part of the following Lemma yields a characterization of the space
H;(R”, C) by means of Fourier transformations. The second part shows that,
in the case of s € N, the definition of the space W;(R", C) is equivalent to the
requirement that suitable weak derivatives exist and are bound in LP(R",C).
This establishes a connection to the "classical analysis". The content of the

following Lemma is stated in [41, 2.3.3, Theorem., p. 177|
Lemma B.16. (a) Let s € (—o00,00) and p € (1,00). Then

Hy(R",C) ={uecS: |ul

Hy(R",C) 1= ||F_1(1 + |$|2)%FU||LI)(RH,(C) < oo}

and the norms || - |

my®nc) and || - || s e c) are equivalent.

(b) If s € Nyg and p € (1,00) then

B =

W2 (R",C) = {u €S |ullws@nc) = Z HDQUHZ[),P(R",(C) < OO}

laf<s

and the norms || - |lwsnc) and || - | Hs@n,c) are equivalent.

We also want to give an appropriate characterization of the space W (R", C)
where s > 0 is not a natural number. The following result, whose content
can be deduced from [40, 1.2.5, Theorem., p. 8| together with [40, 1.5.1,
Definition., p. 28] shows, that for each s € (0,1) and p € (1, 00) the definition
of the the space B, (R",C) is equivalent to the definition of the Slobodeckij
space W3 (R", C), introduced in [39, 2.2.2., p. 36 (8)]. We also refer to [38,
p. 60: 9.2.11. Remark.| where the equivalence of the corresponding norms is

stated explicitly.
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Lemma B.17. Given s € (0,1) and p € (1,00), then

WE(R",C) = B:,(R",C)

:{u € W, (R",C) : |Jullwsnc) = (/ u(z)[? d:v)
Rn
|pd d

(// o= y) =

and the norm || - [lws®n~c) is equivalent to the norm || - ||ps ®nc) which was
introduced in Definition B.14 (a).

B =

B.3 Interpolation of Sobolev spaces and Besov
spaces

There are a lot of interpolation results concerning Fj -spaces. Some of them
are listed in [41, 2.4.2, Theorem 1., pp. 184-185]. We are interested in a special
case which is stated in [41, 2.4.2, Remark 2., p. 185|, i.e.:

Lemma B.18. (/41, 2.4.2, p. 185 (11)]) If so,s1 € (—00,0), po,p1 € (1,00)
and 6 € (0,1) then

[Hys (R",C), Hyl (R*, C)]p = H,(R", C)

where
s=(1—-0)so+0s; and L 1_9+£
p Do 2
It is our aim to use this theory to treat the following problem: Given a
function u € WE/Q(R”, C), then the Sobolev embedding theorem tells us that

u € WHR"™ C) and we have the following estimate:

[ullwy@nc) < Cn) HUHWS/Q(R",C)

Under the additional assumption that u is also contained in W (R™, C) where
e > 0 and p € (1,00), we want to know if we have more regularity than
WIR", C), i.e.: we are interested in the question if w is also contained in
W/ (R",C) where ¢ > n. This question will be answered in the following

theorem:
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Theorem B.19. Given n € N and ¢ € (0,1). Then for each p € (n, 44__26671)

there exists q(n, e, p) € (1,00) such that if u € Wg/Q(R", C)NWs (R, C) , then
u € W, (R",C) and we have the following estimate

HUprl(Rn,C) < C(n,q,e€) ||U|’W§/2(Rn,0) ||U||W;(Rn,<0)
Proof. By Definition B.14 (d)

and

)

€ n € n (B'2 € n
W(R",C) = B, (R",C) =" H{*(R",C) (B.3)

Now, we apply Lemma B.18 to the spaces HE/Q(R”,C) and HS/Q(R”,(C) ie.:

we set

€

80:2 8125

n

po—g P1=4q
and we choose 6 € (0,1) s.th. 1= (1 —6)2+40s;, = 1, i.e.: = 5=, then
2 1—s5 2 1 1 2—-2s5 1 1 1
_:(1_9)_+9_: 1.__|_ R 1.__|_ -
n qg 2—s51 n 2—8 ¢ 2—85 n 2—8 ¢

_2—c¢ 1+ 1 I 4-2¢ 1 2 1

2—-5 n 2-%5 ¢q 4—e n 4—€ ¢

Lemma B.8 implies

Jull g ey < Ol oyl
B.3
< C<n7p7 6) ||uHF3L/2 (R™,C) H’U/‘

,2

€/2
Fyl (®0)

Bgq(R",C)

The claim follows from the equivalence of the corresponding norms, stated in
Lemma B.16 (b) and Lemma B.17.
O



Appendix C

Notation and Definitions

C.1 Notation

Here, we give an overview of a huge part of the notation we are using in this
work. Sometimes it is clear that a quantity depends on a certain metric. In
this situation we often omit the dependency in the notation, i.e. Rm, = Rm

for instance.

e Forie{l,..,n} 0, = % denotes a coordinate vector in a local coordi-

nate system

e g;; is a Riemannian metric in a local coordinate system and g is the

inverse of the Riemannian metric
o dV, = dV is the volume form induced by a Riemannian metric g

e Vol,(-) = Vol(-) is the n-dimensional volume of a set in a Riemannian
manifold (M, g)

e dA, = dAis the n—1-dimensional volume form induced by a Riemannian

metric g

o Area,(-) = Area(-) is the n — 1-dimensional volume of a set in a Rie-

mannian manifold (M, g)

e (), is the euclidean volume of a euclidean unit ball

89
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Rm, = Rm is the Riemannian curvature tensor. As in [36], in local

coordinates, the sign convention is consistent with [10, p. 5], i.e. Rij; =

Rgbkgml

Rcy = Rc is the Ricci tensor

R, = R is the scalar curvature

%g = ¢’ is the time derivative of the metric

grad F, is the gradient of the functional F, with respect to g (cf. |5,
Chapter 4, 4.10 Definition, p. 119|)

Rocg = Rc is the traceless Ricci tensor, i.e.: Rocg = Rcy — %Rg
IVT—=VT is the covariant derivative of a tensor T with respect to g
IVTT=V™T is the covariant derivative of order m

A, is the Laplacian, introduced in (23, p. 44, 3-4.]

(T, S),=(T,S) is the inner product of two tensors (cf. |23, Exercise 3.8,
p. 29

|T|, = |T| is the norm of a tensor, i.e. [T, := \/<T,7T>g

diamgy(-) = diam(-) is the diameter of a set in a Riemannian manifold
inj,(M,x) is the injectivity radius in a point of a Riemannian manifold
inj,(M) is the injectivity radius of a Riemannian manifold

dy(z,y) = d(z,y) is the distance between the points x and y in a Rie-

mannian manifold

By(z,r) = B(x,r) is the ball of radius » > 0 around z in a metric space
d, is the metric which is induced by a Riemannian metric g

By(x,r) = Bg,(x,7) is a metric ball in a Riemannian manifold

d(x,y,t) is the distance between the points z and y in a Riemannian
manifold (M, g(t))
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L(~,t) is the length of a curve 7 in a Riemannian manifold (M, g(t))

The notation do, which occurs in an integral like fﬂ/ lgrad F| do, refers

to the integration with respect to arc length

D(~(t),r) / D(~,r) is a normal disc around a point in a curve v / a

(normal) tube around a curve v with radius r (cf. Definition 2.1)
fi(x,9) / fe(M,g) is introduced in Definition 2.2

dm denotes the push forward and |dr| denotes the operator norm of the

push forward of the projection map in the context of Theorem 2.3

I" denotes the local bilinear form in Definition C.9, |I'| is the norm of this

bilinear form which is also introduced in Definition C.9

WkP(Q) is / are the Sobolev space/-es defined in [15, Chapter 7, pp.
144-176] we point out, that in Definition B.14, we have also introduced
spaces which are denoted by W3 (R", C).

r4(x) is the harmonic radius, which is introduced in Definition 3.2. The
dependency of the constants Ry, o, Ki, Ky and K3 does not appear in
the notation, because these constants are assumed to be fixed along the

considered sequence

The expressions [|0g|| 1np(,) and [g]ce(p(o,) appear in the definition of
the harmonic radius in Definition 3.2. Other LP-norms of the derivative

of g are defined similar.

C.2 Definitions

Definition C.1. (/7, Definition 7.3.17., p. 256]) Let X andY be two sets. A
correspondence between X and Y is a set R C X X Y satisfying the following

condition: for each x € X there exists at least one y € Y such that (z,y) € R,

and for each y € Y there exists an element x € X such that (x,y) € R.

Definition C.2. ([7, Definition 7.3.21., p. 257]) Let R be a correspondence
between metric spaces (X, dx) and (Y,dy). The distorsion of R is defined by

dis R 1= SUP‘“dX(fEl,yl) - dY($2>?/2)| ’ (37171'2), (ylayQ) € 9{}
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Definition C.3. (/21, p. 35: 2.1}. Definition]) Let (X,d) be a metric space
and e > 0. A set S C X is called an e-net if

disty(x,S) = infd(z,y) <e VreX

yeSs
Definition C.4. (/7, Exercise 1.6.4., p. 14]) Let (X, d) be a metric space and
€ > 0. A subset S C X is called e-separated if d(x,y) > € for all z,y € S
satisfying x # y.
We want to mention that this definition is stronger than the definition of
an r-net in |7, Definition 1.6.1., p. 13|, i.e.: an r-net in the sense of [21] is also

an r-net in the sense of [7].

Definition C.5. (¢f. [7, Definition 8.1.1., p. 272]) A sequence (X, d;, p;)ien
of pointed metric spaces converges in the pointed Gromov-Hausdorff sense to
a pointed metric space (X,d,p) if the following holds: For every r > 0 and
e > 0 theres exists a number ig such that for every i > iy there exrists a map

fi : Ba,(pi,7) — X satisfying the following properties:
o f(pi) =p for all i > i
o dis(fi) = SUDy, myeny (i) A0S (21), f(22)) — di1, 22)| < € for all i > iy
e the e-neighborhood of the set f(Bq,(pi,r)) contains the ball By(p,r — €)

Definition C.6. A sequence of pointed Riemannian manifolds (M;, g, pi)ien
converges to (M, g,p) with in the C*®-sense, if for each R > 0 there exists a
domain Qr C M with B,(p, R) C Qg and embeddings f; : Qp —> M,;, where
i > Ip(R) € N so that fi(Qr) 2 By,(pi, R) and fg; converges to g in the

CF_sense on Qp.
Definition C.7. Let (M", g) be a Riemannian manifold. A sequence of tensors

(T})ien on M converges to a tensor T' with respect to the W23 -topology, if there

-----

smooth and the components of T;, considered as functions on ps(Us), converge

to the components of T with respect to the W% -topology.

Definition C.8. Let (M™, g) be a smooth Riemannian manifold, and let T' be
a k-tensor field, then for each q € [1,00) we define

1T wirry) = ( / |T|gdvg)
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and

1T oo (r,gy 7= esssup [T],
M
Here we assume, that the desired expressions exist.
The following definition is based on |20, (1), p. 261]

Definition C.9. Let (M", g) be a smooth Riemannian manifold p € M, U C
M a star-shaped neighborhood around p, and ¢ : U — V' a normal chart
centered at p, then for each q € U we define a symmetric, bilinear map I as

follows:
T T,M x T,M — T,M
(u,v) = TEu'v'oy,
and |T'| is defined to be the smallest value C > 0 so that
[P(w,v)]g < Clulglv]g
for all w,v € T,M.

In the following, we introduce the concept of convergence in the sense of
C*-local submersions which is needed in the proof of Theorem 2.15 and in the

proof of Theorem 1.2. Here, we quote [34, Definition 2.1-Definition 2.4, p. 45|

Definition C.10. A topological space G is a pseudogroup if there exist pairs
(a,b) € G X G such that the product ab € G is defined and satisfies

(1) If ab, be, (ab)e and a(be) are all defined, then (ab)c = a(be)

(2) If ab is defined, then for every neighborhood W of ab, there are neighbor-
hoods U > a and V' > b such that for allx € U, y € V, xy is defined and
xye W

(3) There exists an element e € G such that for all a € G, ae is defined and

ae = a

(4) If for (a,b) € G x G, ab is defined and ab = e, then a is a left-inverse for b
and we write a = b~'. If b has a left inverse, then for every neighborhood
U of b=t there is a neighborhood V' of b such that every y € V has a left

inverse y~1 € G
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Definition C.11. A pseudogroup G is a Lie group germ if a neighborhood of
the identity element e € G can be given a differentiable structure such that the

operations of multiplication and inversion are differentiable maps when defined.

Definition C.12. Fiz k € (0,00]\N. A sequence of pointed n-dimensional
Riemannian manifolds (M;, g, pi)ien locally converges to a pointed metric space
(X, d,z) in the sense of C*-local submersions at x, if there is a Riemannian
metric h on an open neighborhood of 0 € V- C R", a pseudo group I of local
isometries of (V,h) such that the quotient is well-defined, an open set U C X
and maps

®; : (V.0) — (M;, p:)
so that
(1) (M;,dg,,pi)ien converges to (X,d,z) in the pointed Gromov-Hausdorff
topology

(2) the identity component of T is a Lie group germ
(3) (V/T,dy) = (U,d) where dy, is the induced distance function on the quotient
(4) (®;)« is nonsingular on V for all i € N

(5) h is the Ck-limit of ®%g; in the sense of uniform convergence on compact
sets of the first k derivatives. Here, k € (0,00)\N is meant in the usual
Holder space.

Definition C.13. Fiz k € (0, 00]\N. A sequence of pointed n-dimensional Rie-
mannian manifolds (M;, g;, pi)ien converges to a pointed metric space (X, d, x)
in the sense of C*-local submersions if for everyy € X there are points q; € M;
such that (M;, gi, gi)ien converges to (X, d,y) in the sense of C*-local submer-

stons at .
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