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Abstract

In this work we prove convergence results in Riemannian geometry with scale

invariant bounds on the curvature.

The �rst part of this work (Chapter 2) is about sequences of Riemannian

4-manifolds with almost vanishing L2-norm of a curvature tensor and a non-

collapsing bound on the volume of small balls.

Here, in Theorem 1.1, we consider a sequence of closed Riemannian 4-

manifolds, whose L2-norm of the Riemannian curvature tensor tends to zero.

Under the assumption of a uniform non-collapsing bound and a uniform di-

ameter bound, we prove that there exists a subsequence that converges with

respect to the Gromov-Hausdor� topology to a �at manifold.

In Theorem 1.2, we consider a sequence of closed Riemannian 4-manifolds,

whose L2-norm of the Riemannian curvature tensor is uniformly bounded from

above, and whose L2-norm of the traceless Ricci-tensor tends to zero. Here,

under the assumption of a uniform non-collapsing bound, which is very close

to the euclidean situation, and a uniform diameter bound, we show that there

exists a subsequence which converges in the Gromov-Hausdor� sense to an

Einstein manifold.

In order to prove Theorem 1.1 and Theorem 1.2, we use a smoothing tech-

nique, which is called L2-curvature �ow or L2-�ow, introduced by Je�rey

Streets in the series of works [36], [32], [31], [33], [34] and [35]. In particu-

lar, we use his "tubular averaging technique", which he has introduced in [35,

Section 3], in order to prove distance estimates of the L2-curvature �ow which

only depend on signi�cant geometric bounds. This is the content of Theorem

1.3.

In the second part of this work (Chapter 3) we introduce the notion of a

harmonic radius which is based on a de�nite Ln-bound on the �rst derivative

of the metric and a �xed C0,α-seminorm bound on the metric, here n ≥ 3 is the

dimension of the manifold. Assuming uniform control of this harmonic radius,

we are able to show in Theorem 1.4, that a sequence of open Riemannian

manifolds, whose local L
n
2 -norm of the Ricci-tensor tends to zero, contains a

subsequence that converges on a smaller domain, in theW 2,n
2 -sense, to an open

Ricci-�at manifold.



Zusammenfassung

In der vorliegenden Arbeit werden Konvergenzresultate in der Riemannschen

Geometrie bewiesen, welche skalierungsinvariante Krümmungsschranken vor-

aussetzen.

Im ersten Teil der Arbeit, in Kapitel 2, betrachten wir Folgen von Riemann-

schen Mannigfaltigkeiten der Raumdimension 4, deren L2-Norm der Krüm-

mung im Unendlichen verschwindet. In diesem Abschnitt setzen wir voraus,

dass das Volumen eines hinreichend kleinen Balls in gewisser Hinsicht nicht

kollabiert.

In Theorem 1.1 betrachten wir eine Folge von Riemannschen Mannigfaltig-

keiten der Raumdimension 4, deren L2-Norm des Krümmungstensors gegen

0 geht. Unter der Annahme einer geeigneten gleichmäÿigen unteren Schranke

an das Volumen-Wachstum von Bällen mit kleinem Radius, und einer obe-

ren Schranke an den Durchmesser zeigen wir, dass eine Teilfolge existiert, die,

bezüglich der Gromov-Hausdor� Topologie gegen eine �ache Mannigfaltigkeit

konvergiert.

In Theorem 1.2 betrachten wir eine Folge von Riemannschen Mannigfaltig-

keiten der Raumdimension 4, deren L2-Norm des Krümmungstensors gleichmä-

ÿig von oben beschränkt ist, und deren L2-Norm des spurfreien Ricci-Tensors

gegen 0 geht. Unter der Annahme einer Wachstumsbedingung für das Volu-

men kleiner Bälle, welche sehr nah an der euklidischen Situation ist, zeigen

wir, dass eine Teilfolge existiert, die in der Gromov-Hausdor� Topologie gegen

eine Einstein Mannigfaltigkeit konvergiert.

Um Theorem 1.1 und Theorem 1.2 zu beweisen, verwenden wir eine Glät-

tungstechnik, die von Je�rey Streets in den Arbeiten [36], [32], [31], [33], [34]

und [35] eingeführt und analysiert wurde, wir nennen diese Methode den so-

genannten L2-Krümmungs�uss. Hierbei verwenden wir die, vom Autor in [35,

Section 3] eingeführte, �tubular averaging�-Methode. Diese Methode erlaubt es,

Distanz-Abschätzungen des L2-Krümmungs�usses herzuleiten, die nur von si-

gni�kanten geometrischen Gröÿen abhängen. Das ist Gegenstand von Theorem

1.3.

Im zweiten Teil der Arbeit, in Kapitel 3, führen wir eine Notation eines

harmonischen Radius ein, die auf einer festen oberen Ln-Schranke an die erste

Ableitung der Metrik, und auf einer festen oberen C0,α-Seminorm-Schranke



an die Metrik basiert, hierbei ist n ≥ 3 die Dimension der Mannigfaltigkeit.

Unter der Annahme, dass dieser harmonische Radius gleichmäÿig nach un-

ten beschränkt ist, zeigen wir in Theorem 1.4, dass eine Folge von o�enen

Riemannschen Mannigfaltigkeiten, dessen lokale L
n
2 -Norm des Ricci-Tensors

gegen 0 geht, eine Teilfolge besitzt, die auf einer kleineren Menge, in derW 2,n
2 -

Topologie gegen eine glatte Ricci-�ache Mannigfaltigkeit konvergiert.
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Chapter 1

Introduction and statement of

results

In order to approach minimization problems in Riemannian geometry, it is

often useful to know if a minimizing sequence of smooth Riemannian manifolds

contains a subsequence that converges with respect to an appropriate topology

to a su�ciently smooth space. Here, in general, the minimization problem

refers to a certain geometric functional, for instance the area functional, the

total scalar curvature functional, the Willmore functional or the Lp-norm of a

speci�c curvature tensor on a Riemannian manifold, to name just a few. Latter

functionals are the main interest in this work. That means that we consider

sequences of Riemannian manifolds that have a uniform Lp-bound on the full

curvature tensor, the Ricci tensor and the traceless Ricci tensor respectively.

Naturally, the situation is more transparent, if we have more precise infor-

mation about the Lp-boundedness of curvature tensors of the underlying Rie-

mannian manifolds, that is, that we have a uniform Lp-bound, where p ∈ [1,∞]

is large. In particular, a uniform L∞-bound should give the most detailled in-

formation about geometric quantities.

One of the basic results in this context is stated in [1, Theorem 2.2, p.

464-466]. Here, for instance, one assumes a uniform L∞-bound on the full

Riemannian curvature tensor, a uniform lower bound on the injectivity radius

and a uniform two sided bound on the volume, to show the existence of a

subsequence that converges with respect to the C0,α-topology to a Riemannian

manifold of regularity C1,α. The proof uses the fact, that it is possible to �nd

1



2

uniform coverings of the underlying manifolds with harmonic charts, which

follows from [18].

In [44], Deane Yang has considered sequences of Riemannian manifolds sat-

isfying a suitable uniform Lp-bound on their full Riemannian curvature tensors,

where p > n
2
, and a uniform bound on the Sobolev constant. In order to show

compactness and di�eomorphism �niteness results, he examines Hamilton's

Ricci �ow (cf. [16], [10] and [37]) and he shows curvature decay estimates and

existence time estimates that only depend on the signi�cant geometric bounds.

In [42] and [43], Deane Yang has approached a slightly more general prob-

lem. Here, he has considered sequences of Riemannian n-manifolds, n ≥ 3,

having a uniform L
n
2 -bound on their full Riemannian curvature tensors and

a suitable uniform Lp-bound on their Ricci tensors instead of a uniform Lp-

bound on their full Riemannian curvature tensors, where p > n
2
. Due to the

scale invariance of the bound on the Riemannian curvature tensors - we name

such bound a "critical curvature bound" - the situation becomes much more

di�cult, than in the "supercritical" case, that is, when p is bigger than n
2
. In

particular, in general, it is doubtful whether the global Ricci �ow is applicable

in this situation.

In [42], the author has introduced the idea of a "local Ricci �ow" which is,

by de�nition, equal to the Ricci �ow weighted with a truncation function that

is compactly contained in a local region of a manifold. The author shows that

on regions, where the local L
n
2 -norm of the full Riemannian curvature tensor

is su�ciently small, the local Ricci �ow satis�es curvature decay estimates

and existence time estimates that only depend on signi�cant local geometric

bounds. So, on these "good" regions one may apply [1, Theorem 2.2, pp. 464-

466] to a slightly molli�ed metric, to obtain local compactness with respect to

the C0,α-topology. Since the number of local regions having too large L
n
2 -norm

of the full Riemannian curvature tensor is uniformly bounded, the author is

able to show that each sequence of closed Riemannian manifolds, satisfying

a uniform diameter bound, a uniform non-collapsing bound on the volume of

small balls, a uniform bound on the L
n
2 -norm of the full Riemannian curvature

tensor and a su�ciently small uniform bound on the Lp-norm of the Ricci

curvature tensor, where p > n
2
, contains a subsequence that converges in the

Gromov-Hausdor� sense to a metric space, which is, outside of a �nite set of
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points, an open C1-manifold with a Riemannian metric of regularity C0.

In [43], the author has used the local Ricci �ow to �nd a suitable harmonic

chart around each point in whose neighborhood the local L
n
2 -norm of the full

Riemannian curvature tensor and the local Lp-norm of the full Riemannian

curvature tensor, where p > n
2
, is not too large. Using these estimates, the

author is able to improve the statements about the convergence behavior in

the convergence results in [42] on regions having a su�ciently small curvature

concentration.

It seems so, that the reliability of the Ricci �ow in [44], and the local Ricci

�ow in [42] and [43] is based on the appearance of the supercritical curvature

bounds. For instance, in order to develop the parabolic Moser iteration in [44]

and [42] one uses a well-controlled behavior of the Sobolev constant. As shown

in [42, 7, pp. 85-89] this behavior occurs, if one assumes suitable supercritical

bounds on the Ricci curvature. The examples in [3] show that the critical case

is completely di�erent.

Another important issue is the absence of important comparison geometry

results under critical curvature bounds. In order to understand the rough

structure of Riemannian manifolds, satisfying a �xed lower bound on the Ricci

tensor, one uses the well-known "Bishop-Gromov volume comparison theorem"

(cf. [26, 9.1.2., pp. 268-270]) which allows a one-directed volume comparison of

balls in Riemannian manifolds satisfying a �xed lower Ricci curvature bound

with the volume of balls in a such called "space form" (cf. [23, p. 206]),

which is a complete, connected Riemannian manifold with constant sectional

curvature. Later, in [27], Peter Petersen and Guofang Wei have shown that it

is possible to generalize this result to the situation, in that an Lp-integral of

some negative part of the Ricci tensor is su�ciently small. Here the authors

assume that p is bigger that n
2
.

It seems that the treatment of Riemannian manifolds with pure critical

curvature bounds needs to be based on methods that are di�erent from the

approaches we have just mentioned. Instead of considering the Ricci �ow,

which is closely related to the gradient �ow of the Einstein-Hilbert functional

(cf. [10, Chapter 2, Section 4, pp. 104-105]), one could try to deform a Rie-

mannian manifold of dimension 4 into the direction of the negative gradient

of the L2-integral of the full curvature tensor, in order to analyze slightly de-
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formed approximations of the initial metric, having a smaller curvature energy

concentration. This evolution equation was examined by Je�rey Streets in [36],

[32], [31], [33], [34], [35]. In this series of works, J. Streets has proved a plenty

of properties of this geometric �ow and he also shows a couple of applications.

Using J. Streets technique, in Chapter 2, we show compactness results for

Riemannian 4-manifolds, that only assume a uniform diameter bound, a uni-

form non-collapsing bound on the volume of su�ciently small balls and critical

curvature bounds.

In the �rst theorem, we consider a sequence of Riemannian 4-manifolds

having almost vanishing Riemannian curvature tensor in some rough sense and

we show that a subsequence converges with respect to the Gromov-Hausdor�

topology to a �at Riemannian manifold:

Theorem 1.1. Given D, d0 > 0, δ ∈ (0, 1) and let (Mi, gi)i∈N be a sequence of

closed Riemannian 4-manifolds, satisfying the following assumptions:

d0 ≤ diamgi(Mi) ≤ D ∀i ∈ N

V olgi(Bgi(x, r)) ≥ δωnr
n ∀i ∈ N, x ∈Mi, ∀r ∈ [0, 1]

‖Rmgi‖L2(Mi,gi)
≤ 1

i
∀i ∈ N (1.1)

then, there exists a subsequence (Mij , dgij )j∈N that converges in the Gromov-

Hausdor� sense to a �at manifold (M, g).

Throughout, a closed Riemannian is de�ned to be a smooth, compact and

connected oriented Riemannian manifold without boundary.

In the second theorem, we consider a sequence of Riemannian 4-manifolds

with uniformly bounded curvature energy and almost vanishing traceless Ricci

tensor in some rough sense. Under these assumptions, we show that a subse-

quence converges with respect to the Gromov-Hausdor� topology to an Ein-

stein manifold, provided that the volume of small balls behaves almost eu-

clidean:

Theorem 1.2. Given D, d0,Λ > 0, there exists a universal constant δ ∈ (0, 1)

close to 1 so that if (Mi, gi)i∈N is a sequence of closed Riemannian 4-manifolds

satisfying the following assumptions:

d0 ≤ diamgi(Mi) ≤ D ∀i ∈ N



5

‖Rmgi‖L2(Mi,gi) ≤ Λ ∀i ∈ N

‖R̊cgi‖L2(Mi,gi) ≤
1

i
∀i ∈ N

V olgi(Bgi(x, r)) ≥ δωnr
n ∀i ∈ N, x ∈Mi, r ∈ [0, 1]

then there exists a subsequence (Mij , dgij )j∈N that converges in the Gromov-

Hausdor� sense to a smooth Einstein manifold (M, g).

As mentioned above, it is our aim to show these results, using the negative

gradient �ow of the following functional:

F(g) :=

∫
M

|Rmg|2g dVg (1.2)

That is, on a �xed sequence element (M4, g0), we want to evolve the initial

metric in the following manner:

 ∂
∂t
g = −grad F = −2δdRcg + 2Řg − 1

2
|Rmg|2gg

g(0) = g0

(1.3)

where Řij := Rpqr
i Rjpqr in local coordinates and the gradient formula, which

appears in (1.3) can be found in [5, Chapter 4, 4.70 Proposition, p. 134]. Here,

d denotes the exterior derivative acting on the Ricci tensor and δ denotes the

adjoint of d. The gradient of a di�erentiable Riemannian functional is de�ned

in [5, Chapter 4, 4.10 De�nition, p. 119].

In [36, Theorem 3.1, p. 252] J. Streets has proved short time existence

of the �ow given by (1.3) on closed Riemannian manifolds. The author has

also proved the uniqueness of the �ow (cf. [36, Theorem 3.1, p. 252]). In this

regard, the expression "the" L2-�ow makes sense. In [35, Theorem 1.8, p. 260]

J. Streets has proved, that under certain assumptions, the �ow given by (1.3)

has a solution on a controlled time interval and the solution satis�es certain

curvature decay and injectivity radius growth estimates.

In Section 2.1, we use J. Streets ideas, in order to show that, under certain

assumptions, the distance between two points does not change too much along

the �ow. This allows us to bring the convergence behavior of a slightly molli�ed

manifold back to the initial sequence. That means we will prove the following

theorem:
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Theorem 1.3. Let (M4, g0) be a closed Riemannian 4-manifold. Suppose that

(M, g(t))t∈[0,1] is a solution to (1.3) satisfying the following assumptions:∫
M

|Rmg0|2g0 dVg0 ≤ Λ (1.4)

‖Rmg(t)‖L∞(M,g(t)) ≤ Kt−
1
2 ∀t ∈ (0, 1] (1.5)

injg(t)(M) ≥ ιt
1
4 ∀t ∈ [0, 1] (1.6)

diamg(t)(M) ≤ 2(1 +D) (1.7)

Then we have the following estimate:

|d(x, y, t2)− d(x, y, t1)| ≤ C(K, ι,D)Λ
1
2

(
t
1
8
2 − t

1
8
1

) 1
2

+ C(K, ι,D)
(
t

1
24
2 − t

1
24
1

)
(1.8)

for all t1, t2 ∈ [0, 1] where t1 < t2.

These estimates allow one to prove Theorem 1.1 and Theorem 1.2 which

are the main goals of Section 2.2 and Section 2.3. Here, in Section 2.2, we

may refer to the estimates in [35, 1.3, Theorem 1.8, p. 260]. In Section 2.3,

we write down an existence result which allows to apply Theorem 1.3 to the

elements of the sequence occurring in Theorem 1.2.

In Chapter 3 we focus our attention on harmonic coordinates. As explained

above, in the context of determined L∞-bounds on the full Riemannian curva-

ture tensor, the proof of [1, Theorem 2.2, pp. 464-466] is based on the existence

of appropriate coverings with suitable harmonic charts. Here, in these local

charts, the Riemannian metric and their derivatives have �xed bounds with

respect to the L∞-norm.

Using blow-up arguments as in [6, Section 2, pp. 9-14] and [30, Appendix

B, pp. 54-64], one may also prove the existence of suitable harmonic charts in

the context of integral curvature bounds, where locally, a non-collapsing / non-

in�ating condition on the volume of small balls, a supercritical bound on the

Ricci tensor and a smallness condition on the L
n
2 -norm of the full Riemannian

curvature is assumed. In this situation, in harmonic charts, the Riemannian

metric has a �xed L∞-bound and their derivatives have �xed bounds with

respect to the Lq-norm, where q depends on the space dimension, the order

of the derivative k and the supercritical Lp-bound on the Ricci curvture. The

order q is always strictly bigger than n
k
, and k is at least one or two. Using the
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theory of Sobolev spaces (cf. [15, Chapter 7, p. 144-173]) one obtains always a

�xed C0,α-bound on the metric in such a harmonic chart. As p tends to n
2
from

above, the order q tends to n
k
and the Hölder exponent α > 0 tends to zero.

Since the critical Sobolev spaces W k,n
k (Ω) are not continuously embedded into

the space C0(Ω), it is doubtful, if the concept of a harmonic radius with pure

critical Sobolev bounds would be a convenient tool, in order to control the

C0-behavior of Riemannian manifolds with scale invariant curvature bounds.

In order to do a step in this direction, in De�nition 3.2, we introduce the

notation of a harmonic radius rg which slightly generalizes the notation of

the harmonic radius introduced in [6, Section 2, De�nition 2.1, p. 9]. Our

notation of the harmonic radius requires locally a �xed Ln-bound on the �rst

derivative of the Riemannian metric combined with a C0,α-semi norm bound

on the metric. Assuming an appropriate behavior of this harmonic radius, we

are able to prove the following result, which generalizes [6, Section 2, Theorem

2.3, pp. 13-14] from the view point of the regularity

Theorem 1.4. Let n ∈ N, n ≥ 3, 0 ≤ σ1 ≤ σ2 be �xed, let (Mn
i , gi, pi)i∈N be a

sequence of smooth complete pointed Riemannian manifolds without boundary

such that for all i ∈ N the ball Bgi(pi, 1) ⊆Mi satis�es the following properties:

lim
i→∞
‖Rcgi‖Ln2 (Bgi (pi,1),gi)

= 0 (1.9)

ωnσ1 ≤
V olgi(Bgi(x, r))

rn
≤ ωnσ2 (1.10)

for all x ∈ Bgi(pi, 1), r ∈ (0, 1] such that Bgi(x, r) ⊆ Bgi(pi, 1) and

rg(x) ≥ r0(s) > 0 ∀x ∈ Bgi(pi, s) and i ∈ N, s < 1 (1.11)

Then, there exists a smooth Ricci �at manifold (X, g, p) containing the ball

Bg(p, 1/10) so that, after taking a subsequence, for each i ∈ N there exists

a di�eomorphism Fi : Bg(p, 1/10) −→ Fi(Bg(p, 1/10)) ⊆ Bgi(pi, 1) such that

F ∗i gi converges to g with respect to the W 2,n
2 (Bg(p, 1/10))-topology, as i tends

to in�nity.
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Chapter 2

Convergence of Riemannian

4-manifolds with almost vanishing

L2-integral of the curvature

In this chapter we prove Theorem 1.1 and Theorem 1.2 which are consequences

of Theorem 1.3. In order to prove Theorem 1.3 we use the "tubular averaging

technique" from [35, Section 3, pp. 269-282]. Our method is derived from

[35, Section 3], although it is necessary to make some modi�cations, see for

example Lemma 2.3 here. In Subsection 2.1.3, we apply the "tubular averaging

technique" to the time-reversed �ow. For the sake of understanding, we give

detailed explanations of the steps in the proof, even if the argumentation is

based on the content of [35, Section 3]. In order to get a very rough feeling

for J. Streets "tubular averaging technique" we recommend to read the �rst

paragraph of [35, p. 270].

2.1 Distance control under the L2-�ow in 4 di-

mensions (Proof of Theorem 1.3)

In this section we prove Theorem 1.3. The proof is divided in two principal

parts:

In the �rst part of this section we show that, along the �ow, the distance

between two points in manifold M does not increase too much, i.e.: we derive

9
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the estimates of the shape d(x, y, t) < d(x, y, 0) + ε for small t(ε) > 0. We say

that this kind of an estimate is a "forward estimate".

The second part in this section is concerned with the opposite direction, i.e:

we show that, along the �ow, the distance between two points does not decay

too much, which means that we have d(x, y, t) > d(x, y, 0) − ε for t(ε) > 0

su�ciently small.

We point out that the estimate of the length change of a vector v ∈ TM
along a geometric �ow usually requires an integration of the metric change

|g′(t)|g(t) from 0 to a later time point T (cf. (A.2)). With a view to (1.3) and

(1.5) we note that, on the �rst view, this would require and integration of the

function t−1 from 0 to T which is not possible.

In order to overcome this di�culty, we follow the ideas in [35, Section 3], i.e.

we introduce some kind of connecting curves which have almost the properties

of geodesics. Then we construct an appropriate tube around each of these con-

necting curves so that the integral
∫
γ
|grad F| dσ, which occurs in the estimate

of
∣∣ d
dt
L(γ, t)

∣∣ (cf. (A.1)), can be estimated from above against a well-controlled

average integral along the tube plus an error integral which behaves also well

with respect to t. We point out that we do not widen J. Streets ideas in [35,

Section 3] by fundamental facts, we merely write down detailed information

which allow to understand the distance changing behavior of J. Streets L2-�ow

in a more detailed way.

2.1.1 Tubular neighborhoods

We quote the following de�nition from [35, De�nition 3.3., pp. 271-272]

De�nition 2.1. Let (Mn, g) be a smooth Riemannian manifold without bound-

ary, and let γ : [a, b] −→ M be an smooth curve. Given r > 0, and s ∈ [a, b]

then we de�ne

D(γ(s), r) := expγ(s)

{
B(0, r) ∩ 〈γ̇(s)〉⊥

}
and

D(γ, r) :=
⋃

s∈[a,b]

D(γ(s), r)
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We say "D(γ, r) is foliated by (D(γ(s), r))s∈[a,b] " if

D(γ(s1), r) ∩D(γ(s2), r) = ∅

for all a ≤ s1 < s2 ≤ b.

The following de�nition is based on [35, De�nition 2.2., p. 267].

De�nition 2.2. Let (Mn, g) be a closed Riemannian manifold, k ∈ N and

x ∈M , then we de�ne

fk(x, g) :=
k∑
j=0

|g∇jRmg|
2

2+j
g (x)

and

fk(M, g) := sup
x∈M

fk(x, g)

At this point we refer to the scaling behavior of fk(x, g) which is outlined

in Lemma A.2.

The following result is a slight modi�cation of [35, Lemma 3.4., pp. 272-

274]. To be more precise: in this result we allow the considered curve to have

a parametrization close to unit-speed, and not alone unit-speed.

Lemma 2.3. Given n,D,K, ι > 0 there exists a constant β(n,D,K, ι) > 0

and a constant µ(n) > 0 so that if (Mn, g) is a complete Riemannian manifold

satisfying

diamg(M) ≤ D

f3(Mn, g) ≤ K

injg(M) ≥ ι

and γ : [0, L]→M is an injective smooth curve satisfying

L(γ) ≤ d(γ(0), γ(L)) + β (2.1)

|∇γ̇ γ̇| ≤ β (2.2)

1

1 + β
≤ |γ̇| ≤ 1 + β (2.3)
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then D(γ,R) is foliated by (D(γ(s), R))s∈[0,L] for R := µmin
{
ι,K−

1
2

}
. Fur-

thermore, if

π : D(γ,R) −→ γ([0, L])

is the projection map sending a point q ∈ D(p,R), where p ∈ γ([0, L]), to p,

which is well-de�ned by the foliation property, then

|dπ| ≤ 2 on D(γ,R) (2.4)

Here dπ denotes the di�erential and |dπ| denotes the operator norm of the

di�erential of the projection map.

Proof. Above all, we want to point out, that, due to the injectivity of the

curve, we can construct a tubular neighborhood around γ([0, L]). This is a

consequence of [24, 26. Proposition, p. 200]. But the size of this neighborhood

is not controlled at �rst. Via radial projection we can ensure that the velocity

�eld of the curve is extendible in the sense of [23, p. 56]. We follow the ideas

of the proof of [35, Lemma 3.4, pp. 272-274] with some modi�cations.

Firstly, we describe how µ(n) > 0 needs to be chosen in order to ensure that

the curve has a suitable foliation which can be used to de�ne the projection

map.

Secondly, we show that the desired smallness condition of the derivative of

the projection map is valid, i.e.: we show (2.4). Here we allow µ(n) > 0 to

become smaller.

Let

µ(n) := min

{
µ̂(n),

1

20
,

1

64C1(n)C2(n)

}
(2.5)

where µ̂(n) > 0 and C1(n) > 0 are taken from Lemma A.8 and C2(n) > 0 will

be made explicit below. Let

R := µmin
{
ι,K−

1
2

}
Suppose there exists a point p ∈ D(γ(s0), R)∩D(γ(s1), R) where s0, s1 ∈ [0, L],

s0 < s1 and s1−s0 ≤ 10R at �rst. By de�nition, there exists a normal chart of

radius 20R around p (cf. [23, pp. 76-81]). In this chart we have the following

estimate

sup
Bg(p,20R)

µK−
1
2 |Γ| ≤ 1

64C2(n)
(2.6)
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Choosing β ∈ (0, 1) small enough compared to R we ensure that γ([s0, s1]) lies

in this chart. From [23, Theorem 6.8., pp. 102-103] we obtain〈
∂

∂r
, γ̇

〉∣∣∣∣
γ(s0)

= 0

where
∂

∂r

∣∣∣∣
γ(s)

:=
γi(s)

r(γ(s))
∂i|γ(s) (2.7)

and ∂1, ..., ∂n denote the coordinate vector �elds and γ1, ..., γn denote the co-

ordinates of γ in this normal chart and

r(γ(s)) :=

√√√√ n∑
i=1

(γi(s))2

(cf. [23, Lemma 5.10, (5.10), p. 77]). We show that it is possible to take

β(n,K, ι) > 0 small enough to ensure that〈
∂

∂r
, γ̇

〉∣∣∣∣
γ(s)

6= 0 ∀s ∈ (s0, s1]

This would be a contradiction to the fact that [23, Theorem 6.8., pp. 102-103]

also implies 〈
∂

∂r
, γ̇

〉∣∣∣∣
γ(s1)

= 0 (2.8)

From [23, Lemma 5.2 (c), p. 67] we infer on [s0, s1]

∂

∂s

〈
∂

∂r
, γ̇

〉∣∣∣∣
γ(s)

=

〈
Ds

∂

∂r
, γ̇

〉∣∣∣∣
γ(s)

+

〈
∂

∂r
,Dsγ̇

〉∣∣∣∣
γ(s)

≥
〈
Ds

∂

∂r
, γ̇

〉∣∣∣∣
γ(s)

−

∣∣∣∣∣
〈
∂

∂r
,Dsγ̇

〉∣∣∣∣
γ(s)

∣∣∣∣∣
≥
〈
Ds

∂

∂r
, γ̇

〉∣∣∣∣
γ(s)

−

∣∣∣∣∣ ∂∂r
∣∣∣∣
γ(s)

∣∣∣∣∣ ∣∣∇γ̇(s)γ̇(s)
∣∣
g

(2.2)

≥
〈
Ds

∂

∂r
, γ̇

〉∣∣∣∣
γ(s)

− β

(2.9)

Using (2.7) together with [23, Lemma 4.9 (b), p. 57] and [23, p. 56 (4.9)] we

calculate

Ds
∂

∂r
=
γ̇i · r − γi

〈
γ̇, ∂

∂r

〉
r2

∂i +
γi

r
Ds∂i =

γ̇i

r
∂i −

γi
〈
γ̇, ∂

∂r

〉
r2

∂i +
γi

r
Ds∂i
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This implies〈
Ds

∂

∂r
, γ̇

〉
=

1

r
|γ̇|2 − 1

r2

〈
γ̇,

∂

∂r

〉〈
γi∂i, γ̇

〉
+
γi

r
〈Ds∂i, γ̇〉

(2.7)

≥ 1

r
|γ̇|2 − 1

r2

∣∣∣∣〈γ̇, ∂∂r
〉∣∣∣∣ ∣∣∣∣〈r ∂∂r , γ̇

〉∣∣∣∣− C2(n)|Γ||γ̇|2

≥ 1

r
|γ̇|2 − 1

r
|γ̇|
∣∣∣∣〈 ∂

∂r
, γ̇

〉∣∣∣∣− C2(n)|Γ||γ̇|2

(2.3)

≥ 1

4r
− 2

r

∣∣∣∣〈 ∂

∂r
, γ̇

〉∣∣∣∣− 4C2(n)|Γ|

=
1− 4C2(n)

∣∣〈 ∂
∂r
, γ̇
〉∣∣− 16C2(n)r|Γ|

4r

Here, in order to obtain the �rst estimate, we refer to De�nition C.9 and the

fact that
1

r(γ(t))

n∑
i=1

|γi(t)| ≤ Ĉ(n)

Hence, (2.9) implies

∂

∂s

〈
∂

∂r
, γ̇

〉
≥

1− 8
∣∣〈 ∂
∂r
, γ̇
〉∣∣− 16C2(n)r|Γ| − 4βr

4r

≥
1− 8

∣∣〈 ∂
∂r
, γ̇
〉∣∣− 16C2(n)µK−

1
2 |Γ| − 4µK−

1
2β

4r
(2.6)

≥
1− 8

∣∣〈 ∂
∂r
, γ̇
〉∣∣− 1

4
− 4µK−

1
2β

4r

≥
1− 8

∣∣〈 ∂
∂r
, γ̇
〉∣∣− 1

4
− 1

4

4r

=
1
2
− 8

∣∣〈 ∂
∂r
, γ̇
〉∣∣

4r
=

1

8r

[
1− 16

∣∣∣∣〈 ∂

∂r
, γ̇

〉∣∣∣∣]
(2.10)

We show that this di�erential inequality implies the desired contradiction. Let

w : [s0, s1] −→ R, w(s) :=
〈
∂
∂r
, γ̇
〉∣∣
γ(s)

. Then (2.10) is equivalent to

w′ ≥ 1

8r
(1− 16|w|)

on [s0, s1]. Since w(s0) = 0, there exists δ > 0 such that w′ > 0 on [s0, s0 + δ].

This implies w > 0 on (s0, s0 + δ]. We show that we have w > 0 on (s0, s1],

which contradicts (2.8). Assumed

ŝ := sup
{
s ∈ (s0, s1]| w|(s0,s] > 0

}
< s1
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which implies

w(ŝ) = 0 (2.11)

Then (2.10) is equivalent to

w′ ≥ 1

8r
(1− 16w)

on [s0, ŝ]. The function z : [s0, s1] −→ R, z(s) := 1
16

(1 − e−
2(s−s0)

r ) satis�es

z′ = 1
8r

(1− 16z) on [s0, s1] and z(s0) = 0. Thus we have(w − z)′ ≥ −2
r
(w − z) on [s0, ŝ]

(w − z)(s0) = 0
(2.12)

and we de�ne a new function ζ : [s0, s1] −→ R as follows ζ(s) := e
2
r
s(w(s) −

z(s)). Then (2.12) implies

ζ ′(s) =
2

r
e

2
r
s(w(s)− z(s)) + e

2
r
s(w′(s)− z′(s))

≥2

r
e

2
r
s(w(s)− z(s))− 2

r
e

2
r
s(w(s)− z(s)) = 0

Hence

e
2
r
ŝ(w(ŝ)− z(ŝ)) = ζ(ŝ) =

∫ ŝ

s0

ζ ′(τ) dτ ≥ 0

from this we obtain

w(ŝ) ≥ z(ŝ) =
1

16
(1− e−

2(ŝ−s0)
r ) > 0

which contradicts (2.11). Consequently, we have w ≥ 0 on [s0, s1]. The same

argumentation as above, adapted to the interval [s0, s1], implies w(s1) > 0 in

contradiction to (2.8). This proves that two discs D(γ(s0), R) and D(γ(s1), R)

cannot intersect, when |s1 − s0| ≤ 10R.

Now, we show that two discs D(γ(s0), R) and D(γ(s1), R) cannot intersect

if we assume s0, s1 ∈ [0, L], s0 < s1, to be far away from each other, which

means that s1 − s0 > 10R holds.

We suppose that there exists a point p ∈ D(γ(s0), R) ∩D(γ(s1), R). As in

[35, p. 273] we construct a curve α in the following manner: α follows γ from

γ(0) to γ(s0), next α connects γ(s0) and p by a minimizing geodesic, then α
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connects p and γ(s1) also by a minimizing geodesic, and �nally α follows γ

again from γ(s1) to γ(L). We infer the following estimate:

dg(γ(0), γ(L)) ≤ L(α) ≤
∫ s0

0

|γ̇| ds+R +R +

∫ L

s1

|γ̇| ds

(2.3)

≤ (1 + β)s0 + 2R + (1 + β)(L− s1)

= (1 + β)L+ 2R− (1 + β)(s1 − s0)

= (1 + β)

∫ L

0

|γ̇|
|γ̇|

ds+ 2R− (1 + β)(s1 − s0)

(2.3)

≤ (1 + β)2

∫ L

0

|γ̇| ds+ 2R− (1 + β)10R

≤ (1 + β)2L(γ)− 8R

(2.1)

≤ (1 + β)2(dg(γ(0), γ(L)) + β)− 8R

≤ (1 + 2β + β2)(dg(γ(0), γ(L)) + 4β − 8R

≤ (dg(γ(0), γ(L)) + 3βD + 4β − 8R

and consequently:

0 ≤ (3D + 4)β − 8R

which yields a contradiction when β(n,D,K, ι) > 0 is chosen small enough.

Hence, two discs D(γ(s0), R) and D(γ(s1), R) cannot intersect, provided they

are not identical. Thus, D(γ,R) is foliated by (D(γ(s), R))s∈[0,L].

It remains to show the estimate (2.4). We mentioned at the beginning of

the proof, that now, we allow µ to become smaller.

As in the proof of [35, Lemma 3.4.] we suppose the assertion would be not

true, i.e. there exists a sequence of constants (µi)i∈N, where limi→∞ µi = 0,

and a sequence of closed Riemannian manifolds (Mn
i , gi)i∈N satisfying

f3(Mi, gi) ≤ Ki and

injgi(Mi) ≥ ιi

for all i ∈ N, and curves γi : [0, Li] −→Mi satisfying

L(γi) ≤ d(γi(0), γi(Li)) + βi,

|∇γ̇i γ̇i| ≤ βi and

1

1 + βi
≤ |γ̇i| ≤ 1 + βi

(2.13)
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for all i ∈ N, where (βi)i∈N ⊆ (0, 1], so that for each i ∈ N the tube D(γi, Ri)

is foliated by (D(γi(s), Ri))s∈[0,Li]
, where Ri := µi min

{
ιi, K

− 1
2

i

}
, but for each

i ∈ N there exists a point pi = γi(si) and yi ∈ D(pi, Ri) such that |dπi|(yi) > 2.

From this we construct a blow-up sequence of pointed Riemannian manifolds

(Mi, hi := R−2
i gi, pi)i∈N

which satis�es for each i ∈ N and x ∈Mi

f3(x, hi) = f3(x,R−2
i gi)

(A.7)
= R2

i f3(x, gi) ≤ R2
i Ki ≤ µ2

i
i→∞−→ 0

and

injhi(Mi) = injR−2
i gi

(Mi) = R−1
i injgi(Mi) ≥ R−1

i ιi ≥ µ−1
i

i→∞−→ ∞

Hence, using Theorem A.11, we may extract a subsequence that converges

with respect to the pointed C2,α-sense to (Rn, gcan, 0). Next, for each i ∈ N we

reparametrize the curve γi as follows: Let

γ̂i : [0,
Li
Ri

] −→Mi

γ̂i(s) := γ(Ris)

Then for each i ∈ N we have for all s ∈ [0, Li
Ri

]

| ˙̂γi(s)|hi
=|γ̇i(Ris) ·Ri|hi = Ri · |γ̇i(Ris)|R−2

i gi
= Ri ·R−1

i |γ̇i(Ris)|gi

=|γ̇i(Ris)|gi
(2.3)
∈
[

1

1 + β
, 1 + β

]
and, using normal coordinates at γ̂(s)

|hi∇ ˙̂γ(s)
˙̂γ(s)|2hi = (hi)kl ¨̂γ

k
(s)¨̂γ

l
(s) = R−2

i · (gi)kl · ¨̂γ
k
(s)¨̂γ

l
(s)

=R−2
i · (gi)kl ·R2

i · γ̈k(Ris) ·R2
i · γ̈l(Ris)

=R2
i · (gi)kl · γ̈k(Ris)γ̈

l(Ris)

=R2
i · |gi∇γ̇(Ris)γ̇(Ris)|2gi

(2.2)

≤ R2
i · β2

i ≤ R2
i

Hence

lim
i→∞

max
[0,

Li
Ri

]

|hi∇ ˙̂γ
˙̂γ|hi = 0
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Using the Arzelà-Ascoli Theorem we conclude, that these curves converge with

respect to the C1,α-sense to a geodesic which goes through the origin. After

an eventual rotation, we may assume that γ(t) = (t, 0, ..., 0). In the blow-up

metric hi each point yi has a distance to pi not bigger than 1. That means,

that this point can be considered as a point in Bgcan(0, 2) ⊆ Rn. This sequence

of points will converge to a point y ∈ Bgcan(0, 1) ∩ {x ∈ Rn : x1 = 0}. We

recall that the projection maps πi : D(γi, Ri) −→ γi([0, Li]) are satisfying

|dπi|(yi) > 2 by assumption. Due to the scaling invariance, this inequality is

also true with respect to the blow-up metric hi. Since the Riemannian metrics

hi converge in the C2,α-sense to the euclidean space and the curves γi converge

in the C1,α-sense, the maps πi converge in the C1-sense to a map on the limit

space, which will be denoted by π. Here we have used, that each tubular

neighborhood is a di�eomorphic image of a neighborhood of the zero section

in the normal bundle on the curve γi ([24, pp. 199-200, 25. Proposition /

26. Proposition]). Hence, we conclude |dπ|(y) ≥ 2, but the map π is explicitly

given as (x1, ..., xn) 7→ (x1, 0, ..., 0) and this map satis�es |dπ| ≤ 1, which yields

a contradiction.

We want to point that it is also possible to deduce Lemma 2.3 from the

statement of [35, Lemma 3.4, p. 272] by use of unit-speed parametrization.

On doing so, it is possible to avoid the dependence of the constant β > 0 on

the diameter D > 0.

2.1.2 Forward estimates

In this paragraph we show that, under certain assumptions, distances do not

increase too much along the L2-�ow.

Here, we prove the following estimate:

Lemma 2.4. Let (M4, g0) be a closed Riemannian 4-manifold and let

(M4, g(t))t∈[0,1] be a solution to the �ow given in (1.3) satisfying (1.4), (1.5),

(1.6) and (1.7), i.e.: ∫
M

|Rmg0|2g0 dVg0 ≤ Λ

‖Rmg(t)‖L∞(M,g(t)) ≤ Kt−
1
2

injg(t)(M) ≥ ιt
1
4
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diamg(t)(M) ≤ 2(1 +D)

for all t ∈ (0, 1]. Then we have the following estimate:

d(x, y, t2)− d(x, y, t1) ≤ C(K, ι,D)Λ
1
2

(
t
1
8
2 − t

1
8
1

) 1
2

+ C(K, ι,D)
(
t

1
24
2 − t

1
24
1

)
(2.14)

for all t1, t2 ∈ [0, 1] where t1 < t2.

As mentioned at the beginning of this section, we aim to use some kind

of connecting curves between two points which are close to geodesics. These

curves can be surrounded by a tube such that the projection map has bounded

di�erential (c.f. Lemma 2.3).

The following de�nition is a modi�cation of [35, De�nition 3.1., p. 270].

Our de�nition is slightly stronger in some sense because we also assume a

stability estimate of the length of the velocity vectors along the subintervals.

We point out that we call the following objects β-quasi-forward-geodesics and

not merely β-quasi-geodesics, as in [35, De�nition 3.1., p. 270]. In Subsection

2.1.3 we introduce a time-reversed counterpart to these family of curves.

De�nition 2.5. Let (Mn, g(t))t∈[t1,t2] be a family of complete Riemannian

manifolds. Given β > 0 and x, y ∈ M then we say that a family of curves

(γt)t∈[t1,t2] : [0, 1] −→ M is a β-quasi-forward-geodesic connecting x and y if

there is a constant S > 0 so that:

1. For all t ∈ [t1, t2] one has γt(0) = x and γt(1) = y

2. For all j ∈ N0 such that t1 + jS ≤ t2, γt1+jS is a length minimizing

geodesic

3. For all j ∈ N0 such that t1 + jS ≤ t2, and all t ∈ [t1 + jS, t1 +(j+1)S)∩
[t1, t2] one has γt = γt1+jS

4. For all t ∈ [t1, t2] one has

d(x, y, t) ≤ L(γt, t) ≤ d(x, y, t) + β (2.15)

5. For all j ∈ N0 such that t1 + jS ≤ t2, and all t ∈ [t1 + jS, t1 +(j+1)S)∩
[t1, t2] one has

1

1 + β
d(x, y, t1 + jS) ≤ |γ̇t|g(t) ≤ (1 + β)d(x, y, t1 + jS) (2.16)
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|g(t)∇γ̇t γ̇t|g(t) ≤ β d2(x, y, t1 + jS) (2.17)

It is our aim to prove the following existence result:

Lemma 2.6. Let (Mn, g(t))t∈[t1,t2] a smooth family of closed Riemannian man-

ifolds. Given β > 0 and x, y ∈M then there exists a β-quasi-forward-geodesic

connecting x and y.

Remark 2.7. The interval length S > 0 which will be concretized along the

following proof has a strong dependency on the given points x, y ∈ M , β > 0

and the �ow itself. As it turns out in the proof of Lemma 2.4, this will not

cause problems because estimates on the subintervals will be put together to an

estimate on the entire interval [t1, t2] via a telescope sum.

Proof of Lemma 2.6. In order to obtain the desired existence result, we modify

the proof of [35, Lemma 3.2., p. 271]. Let

A := max
t∈[t1,t2]

‖g′(t)‖L∞(M,g(t)) + max
t∈[t1,t2]

‖∇g′(t)‖L∞(M,g(t)) (2.18)

At time t1 +jS we choose a length minimizing geodesic γt1+jS : [0, 1] −→M

with respect to the metric g(t1 + jS) connecting x and y. This curve satis�es

|∇γ̇t1+jS
γ̇t1+jS|g(t1+jS) ≡ 0 (2.19)

and

|γ̇t1+jS|g(t1+jS) ≡ d(x, y, t1 + jS) (2.20)

Firstly, we show that an appropriate choice of S(β, x, y, g) > 0 implies

(2.16). Let v ∈ TM be an arbitrary vector and t ∈ [t1+jS, t1+(j+1)S)∩[t1, t2]

Then, by (A.2), we have∣∣∣∣∣log

(
|v|2g(t)
|v|2g(t1+jS)

)∣∣∣∣∣ ≤
∫ t

t1+jS

‖g′(τ)‖(L∞(M),g(τ)) dτ
(2.18)

≤ AS ≤ log[(1 + β)2]

(2.21)

Hence, we obtain the estimate

1

(1 + β)2
|γ̇t1+jS|2g(t1+jS) ≤ |γ̇t|2g(t) ≤ (1 + β)2|γ̇g(t1+jS)|2g(t1+jS)
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Using (2.20) we infer (2.16) from this. Next we show (2.15). Using (A.1) we

obtain

∂

∂t
L(γt, t) =

∂

∂t
L(γt1+jS, t)

(2.18)

≤ A · L(γt1+jS, t) = A · L(γt, t) (2.22)

on (t1 + jS, t1 + (j + 1)S) ∩ [t1, t2). This implies ∂
∂t

logL(γt, t) ≤ A, and we

infer

d(x, y, t) ≤L(γt, t) =
L(γt, t)

L(γt1+jS, t1 + jS)
L(γt1+jS, t1 + jS)

= exp

(
log

(
L(γt, t)

L(γt1+jS, t1 + jS)

))
L(γt1+jS, t1 + jS)

= exp (log (L(γt, t))− log (L(γt1+jS, t1 + jS)))L(γt1+jS, t1 + jS)

≤eA(t−(t1+jS))L(γt1+jS, t1 + jS) = eA(t−(t1+jS))d(x, y, t1 + jS)

(2.23)

In particular, we have

d(x, y, t) ≤ eA(t2−t1)L(γt1 , t1) = eA(t2−t1)d(x, y, t1) ∀t ∈ [t1, t2] (2.24)

From (2.23) we obtain for all t ∈ (t1 + jS, t1 + (j + 1)S) ∩ [t1, t2]

L(γt, t) ≤d(x, y, t1 + jS) + (eAS − 1)d(x, y, t1 + jS)

(2.24)

≤ d(x, y, t1 + jS) + (eAS − 1)eA(t2−t1)d(x, y, t1)

≤d(x, y, t1 + jS) +
β

2

In order to prove (2.15) it su�ces to show that we can choose S(β, x, y, g) > 0

small enough to ensure

d(x, y, t1 +jS) ≤ d(x, y, t)+
β

2
∀t ∈ (t1 +jS, t1 +(j+1)S)∩ [t1, t2] (2.25)

From (2.21) we conclude for all v ∈ TM

e−AS|v|2g(t1+jS) ≤ |v|2g(t) ≤ eAS|v|2g(t1+jS) ∀t ∈ (t1 +jS, t1 +(j+1)S)∩ [t1, t2]

(2.26)

At time t, we choose a length minimizing geodesic ξ : [0, d(x, y, t)] −→ M

connecting x and y, then:

d(x, y, t1 + jS) ≤L(ξ, t1 + jS) =

∫ d(x,y,t)

0

|ξ̇(s)|g(t1+jS) ds
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(2.26)

≤ eAS
∫ d(x,y,t)

0

|ξ̇(s)|g(t) ds = eASL(ξ, t) = eASd(x, y, t)

=d(x, y, t) + (eAS − 1)d(x, y, t)

(2.24)

≤ d(x, y, t) + (eAS − 1)eA(t2−t1)d(x, y, t1) ≤ d(x, y, t) +
β

2

It remains to show that, under the assumption that S(β, x, y, g) > 0 is

su�ciently small, estimate (2.17) is also valid. From (A.3), (2.18) and (2.16)

we conclude for each t ∈ (t1 + jS, t1 + (j + 1)S) ∩ [t1, t2]

∂

∂t
|∇γ̇t γ̇t|

2
g(t) ≤A |∇γ̇t γ̇t|

2
g(t) + 4AC(n)d2(x, y, t1 + jS) |∇γ̇t γ̇t|g(t)

(2.24)

≤ A |∇γ̇t γ̇t|
2
g(t) + 4AC(n)e2A(t2−t1)d2(x, y, t1) |∇γ̇t γ̇t|g(t)

(2.27)

Now let x ∈M be arbitrary. We assume that

t̂ := sup
{
t ∈ (t1 + jS, t1 + (j + 1)S) ∩ [t1, t2) |

|∇γ̇τ γ̇τ |
2
g(τ) (x, τ) ≤ min{β d2

, 1} ∀τ ∈ [t1 + jS, t]
}

< min{t1 + (j + 1)S, t2}

where

d := min
t∈[t1,t2]

d(x, y, t) > 0

Then, (2.27) implies

∂

∂t
|∇γ̇t γ̇t|

2
g(t) ≤ A(1 + 4Ce2A(t2−t1)d2(x, y, t1)) on {x} × [t1 + jS, t̂]

Using this, from (2.19), we conclude:

min{β d2
, 1} =

∣∣∇γ̇t̂
γ̇t̂
∣∣2
g(t̂)

(x, t̂)

≤A(t̂− (t1 + jS))(1 + 4Ce2A(t2−t1)d2(x, y, t1))

≤AS(1 + 4Ce2A(t2−t1)d2(x, y, t1)) ≤ min{β d2
, 1}

2

which yields a contradiction, if S(β, x, y, g) > 0 is small enough.

Now we prove Lemma 2.4. The argumentation is based on [35, pp. 277-280].
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Proof of Lemma 2.4. Let x, y ∈M be �xed and t1, t2 ∈ [0, 1], t1 < t2. Initially,

we construct an appropriate β-quasi-forward geodesic in respect of Lemma 2.3.

We choose

β := min
t∈[t1,t2]

βt > 0 (2.28)

where

βt := β(n, diamg(t)(M), f3(M, g(t)), injg(t)(M))

is chosen according to Lemma 2.3 at time t. Next, using Lemma 2.6, we assume

the existence of a β-quasi-forward-geodesic

(ξt)t∈[t1,t2] : [0, 1] −→M

connecting x and y. It is our aim to construct an appropriate tubular neighbor-

hood around each ξt applying Lemma 2.3, the radii rt shall be time dependent,

where r0 = 0, when t1 = 0. After doing this, we notice that we are able to

estimate the integral
∫
ξt
|grad F| dσ from above against an average integral of

|grad F|2 along the tube plus an error term. Each of these terms is controllable.

By construction of the β-quasi-forward-geodesic, we have a �nite set of

geodesics denoted by (ξt1+jS)
j∈{0,...,b t2−t1

S
c}, where each of these geodesics is

parametrized proportional to arc length, i.e.:

|ξ̇t1+jS|g(t1+jS) ≡ d(x, y, t1 + jS) for all j ∈ {0, ..., bt2 − t1
S
c}

we reparametrize these curves with respect to arc length, i.e: for each j ∈
{0, ..., b t2−t1

S
c} let

ϕt1+jS : [0, d(x, y, t1 + jS)] −→ [0, 1]

ϕ(s) :=
s

d(x, y, t1 + jS)

and let

γt1+jS : [0, d(x, y, t1 + jS)] −→M

γt1+jS := ξt1+jS ◦ ϕt1+jS

Of course, these curves are satisfying (2.1) (2.2) and (2.3). But we need to get

sure that, for each t ∈ (t1 + jS, t1(j + 1)S) ∩ [t1, t2], the curve

γt := ξt ◦ ϕt1+jS : [0, d(x, y, t1 + jS)]→M
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is also satisfying these assumptions. Here β ∈ (0, 1) is de�ned by (2.28). By

construction, using (2.16) for each t ∈ (t1 + jS, t1 + (j+ 1)S)∩ [t1, t2], we have

1

1 + βt
≤ 1

1 + β
≤ |γ̇t|g(t) =

1

d(x, y, t1 + jS)
|ξ̇t|g(t) ≤ 1 + β ≤ 1 + βt

and, using (2.17)

|∇γ̇t γ̇t|g(t) =
1

d(x, y, t1 + jS)2
|∇ξ̇t

ξ̇t|g(t) ≤ β ≤ βt

Thus, by Lemma 2.3, for each time t ∈ [jS, (j + 1)S) ∩ [t1, t2] the tubular

neighborhood D(γt, ρt) is foliated by (D(γt(s), ρt))s∈[0,d(x,y,t1+jS)] where

ρt := µmin
{
injg(t)(M), f3(M, g(t))−

1
2

}
(2.29)

where µ > 0 is �xed and the di�erential of the projection map satis�es (2.4).

For later considerations, we assume that µ > 0 is also chosen compatible to

Lemma A.9. Although we have no control on βt, we can bound ρt from below

if we can bound f3(M, g(t))−
1
2 from below in the view of (2.29).

Using (A.10) and (1.5) we obtain for each m ∈ {1, 2, 3}:

∥∥∇mRmg(t)

∥∥
L∞(M,g(t))

≤ C(m,K)
(
t−

1
2

) 2+m
2

= C(m,K)t−
2+m

4 (2.30)

and consequently

f3(M, g(t)) ≤ C(K)t−
1
2

Thus, we have for each t ∈ [t1, t2]

ρt ≥ µ
{
ιt

1
4 , C−

1
2 (K)t

1
4

}
≥ µmin{ι, C−

1
2 (K)} · t

7
24 =: R(ι,K) · t

7
24 =: rt(ι,K)

(2.31)

Now, we may start to estimate the change of L(γt, t), where t ∈ [t1+jS, t1+(j+

1)S) ∩ [t1, t2) and j ∈
{

0, ..., b t2−t1
S
c
}
. From the explicit formula in (1.3) and

(2.30) we conclude |∇ grad Fg(t)|g(t) ≤ C2(K)t−
5
4 . Now let p be an arbitrary

point on the curve γt1+jS and q ∈ D(p, rt) then we obtain

|grad Fg(t)|g(t)(p) ≤ |grad Fg(t)|g(t)(q) + C3(K)rt(ι,K)t−
5
4 (2.32)

In the following, we write rt instead of rt(ι,K) and grad F instead of grad Fg(t).
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We infer:

|grad F|g(t)(p) =

∫
D(p,rt)

|grad F|g(t)(p) dA
Area(D(p, rt))

≤

∫
D(p,rt)

[
|grad F|g(t)(q) + C3(K)rtt

− 5
4

]
dA

Area(D(p, rt))

=

∫
D(p,rt)

|grad F|g(t) dA
Area(D(p, rt))

+ C3(K)R(ι,K)t
7
24
− 5

4

≤

(∫
D(p,rt)

|grad F|2g(t) dA
) 1

2

Area
1
2 (D(p, rt))

+ C3(K)R(ι,K)t−
23
24

(2.33)

From Lemma A.9 we obtain for each t ∈ [t1, t2] that

Area(D(γt(s), rt)) ≥ cr3
t = cR3(ι,K)t

7
8 (2.34)

Inserting this estimate into (2.33), we infer for each p ∈ γt1+jS

|grad F|g(t)(p) ≤c−
1
2R−

3
2 (ι,K)t−

7
16

(∫
D(p,rt)

|grad F|2g(t) dA
) 1

2

+ C3(K)R(ι,K)t−
23
24

(2.35)

Hence, on (t1 + jS, t1 + (j + 1)S) ∩ [t1, t2) we have

d

dt
L(γt, t) =

d

dt
L(γt1+jS, t)

(A.1)

≤
∫
γt1+jS

|grad F|g(t) dσ

(2.35)

≤ c−
1
2R−

3
2 (ι,K)t−

7
16

∫
γt1+jS

(∫
D(p,rt)

|grad F|2g(t) dA
) 1

2

dσ

+ C3(K)R(ι,K)t−
23
24L(γt1+jS, t)

≤ c−
1
2R−

3
2 (ι,K)t−

7
16

(∫
γt1+jS

∫
D(p,rt)

|grad F|2g(t) dAdσ

) 1
2

L
1
2 (γt1+jS, t)

+ C3(K)R(ι,K)t−
23
24L(γt1+jS, t)

(A.17)

≤ c−
1
2R−

3
2 (ι,K)t−

7
16 sup
D(γt1+jS ,rt)

|dπ|
1
2

(∫
M

|grad F|2g(t) dVg(t)
) 1

2

L
1
2 (γt1+jS, t)

+ C3(K)R(ι,K)t−
23
24L(γt1+jS, t)

(2.4)

≤ c2R
− 3

2 (ι,K)t−
7
16

(∫
M

|grad F|2g(t) dVg(t)
) 1

2

L
1
2 (γt1+jS, t)

+ C3(K)R(ι,K)t−
23
24L(γt1+jS, t)
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= c2R
− 3

2R(ι,K)t−
7
16

(∫
M

|grad F|2g(t) dVg(t)
) 1

2

L
1
2 (γt, t)

+ C3(K)R(ι,K)t−
23
24L(γt, t)

Using

L(γt, t)
(2.1)

≤ d(x, y, t1 + jS) + 1
(1.7)

≤ 2(1 +D) + 1 = 3 + 2D (2.36)

we conclude

d

dt
L(γt, t) ≤C(D)R−

3
2 (ι,K)t−

7
16

(∫
M

|grad F|2g(t) dVg(t)
) 1

2

+ C(K,D)R(ι,K)t−
23
24

on [t1 + jS, t1 + (j + 1)S) ∩ [t1, t2) where j ∈
{

0, ..., b t2−t1
S
c
}
. Integrating this

estimate along [t1 + jS, t] yields:

d(x, y, t)− d(x, y, t1 + jS) = d(x, y, t)− L(γt1+jS, t1 + jS)

≤L(γt, t)− L(γt1+jS, t1 + jS)

≤C(D)R−
3
2 (ι,K)

∫ t

t1+jS

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

+ C(K,D)R(ι,K)

∫ t

t1+jS

s−
23
24 ds

for each t ∈ (t1 + jS, t1 + (j + 1)S) ∩ [t1, t2]. In particular, we obtain for each

j ∈ {0, ..., b t2−t1
S
c − 1}

d(x, y, t1 + (j + 1)S)− d(x, y, t1 + jS)

≤C(D)R−
3
2 (ι,K)

∫ t1+(j+1)S

t1+jS

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

+ C(K,D)R(ι,K)

∫ t1+(j+1)S

t1+jS

s−
23
24 ds

and

d(x, y, t2)− d(x, y, t1 + bt2 − t1
S
cS)

≤C(D)R−
3
2 (ι,K)

∫ t2

t1+b t2−t1
S
cS
s−

7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

+ C(K,D)R(ι,K)

∫ t2

t1+b t2−t1
S
cS
s−

23
24 ds
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and consequently

d(x, y, t2)− d(x, y, t1)

=

b t2−t1
S
c−1∑

j=0

[d(x, y, t1 + (j + 1)S)− d(x, y, t1 + jS)]

+ d(x, y, t2)− d(x, y, t1 + bt2 − t1
S
cS)

≤C(D)R−
3
2 (ι,K)

∫ t2

t1

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

+ C(K,D)R(ι,K)

∫ t2

t1

s−
23
24 ds

≤C(D)R−
3
2 (ι,K)

(∫ t2

t1

s−
7
8 ds

) 1
2
(∫ t2

t1

∫
M

|grad F|2g(s) dVg(s) ds
) 1

2

+ C(K,D)R(ι,K)

∫ t2

t1

s−
23
24 ds

Using (1.4) and (A.9) we conclude

d(x, y, t2)− d(x, y, t1) ≤ C(K, ι,D)Λ
1
2

(
t
1
8
2 − t

1
8
1

) 1
2

+ C(K, ι,D)
(
t

1
24
2 − t

1
24
1

)

2.1.3 Backward estimates

In this subsection we reverse the ideas from Subsection 2.1.2 in order to prove

that, along the L2-�ow, the distance between two points does not become too

small when t > 0 is small.

Lemma 2.8. Let (M4, g0) be a closed Riemannian 4-manifold and let

(M4, g(t))t∈[0,1] be a solution to the �ow given in (1.3) satisfying (1.4), (1.5),

(1.6) and (1.7), i.e.: ∫
M

|Rmg0|2 dVg0 ≤ Λ

‖Rmg(t)‖L∞(M,g(t)) ≤ Kt−
1
2

injg(t)(M) ≥ ιt
1
4

diamg(t)(M) ≤ 2(1 +D)
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for all t ∈ (0, 1]. Then we have the following estimate:

d(x, y, t2)− d(x, y, t1) ≥ −C(K, ι,D)Λ
1
2

(
t
1
8
2 − t

1
8
1

) 1
2 − C(K, ι,D)

(
t

1
24
2 − t

1
24
1

)
(2.37)

for all t1, t2 ∈ [0, 1] where t1 < t2.

The notion of a β-quasi-backward-geodesic, which is introduced below, is an

analogue to the notion of a β-quasi-forward-geodesic, introduced in Subsection

2.1.2. The slight di�erence is that now, the minimizing geodesics are chosen

at the subinterval ends:

De�nition 2.9. Let (Mn, g(t))t∈[t1,t2] be a family of complete Riemannian

manifolds. Given β > 0 and x, y ∈ M then we say that a family of curves

(γt)t∈[t1,t2] : [0, 1] −→ M is a β-quasi-backward-geodesic connecting x and y if

(γt)t∈[t1,t2] is a β-quasi-forward-geodesic connecting x and y with respect to the

time-reversed �ow (Mn, g(t2 + t1− t))t∈[t1,t2], i.e.: there is a constant S > 0 so

that:

1. For all t ∈ [t1, t2] one has γt(0) = x and γt(1) = y

2. For all j ∈ N0 such that t2 − jS ≥ t1, γt2−jS is a minimizing geodesic

3. For all j ∈ N0 such that t2 − jS ≥ t1, and all t ∈ (t2 − (j + 1)S, t2 −
jS] ∩ [t1, t2] one has γt = γt2−jS

4. For all t ∈ [t1, t2] one has

d(x, y, t) ≤ L(γt, t) ≤ d(x, y, t) + β (2.38)

5. For all j ∈ N0 such that t2 − jS ≥ t1, and all t ∈ (t2 − (j + 1)S, t2 −
jS] ∩ [t1, t2] one has

1

1 + β
d(x, y, t1 − jS) ≤ |γ̇t|g(t) ≤ (1 + β)d(x, y, t2 − jS) (2.39)

|∇γ̇t γ̇t|g(t) ≤ β d2(x, y, t2 − jS) (2.40)

Applying Lemma 2.6 to (Mn, g(t2 + t1 − t))t∈[t1,t2], we infer

Lemma 2.10. Let (Mn, g(t))t∈[t1,t2] a smooth family of closed Riemannian

manifolds. Given β > 0 and x, y ∈ N then there exists a β-quasi-backward-

geodesic connecting x and y.
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Using this concept, we prove Lemma 2.8:

Proof of Lemma 2.8. The proof is analogous to Lemma 2.4. We choose x, y ∈
M and t1, t2 ∈ [0, 1] where t1 < t2. It is our aim to construct an appropriate

backward-geodesic. As in the proof of Lemma 2.4, let

β := min
t∈[t1,t2]

βt > 0 (2.41)

where

βt := β(n, diamg(t)(M), f3(M, g(t)), injg(t)(M))

is de�ned in Lemma 2.3, let (ξt)t∈[t1,t2] be a β-backward-geodesic, connecting x

and y, whose existence is ensured by Lemma 2.10. As in the proof of Lemma 2.4

we use Lemma 2.3 to construct an appropriate tubular neighborhood around

each ξt, where t ∈ [t1, t2], having a time depend radius rt.

In this situation we have a �nite set of geodesics (ξt2−jS)
j∈{0,...,b t2−t1

S
c} satis-

fying

|ξ̇t2−jS|g(t2−jS) ≡ d(x, y, t2 − jS) for all j ∈ {0, ..., bt2 − t1
S
c}

Analogous to the proof of Lemma 2.4, we reparametrize these curves with

respect to arc length, i.e: for each j ∈ {0, ..., b t2−t1
S
c} we de�ne

ϕt2−jS : [0, d(x, y, t2 − jS)] −→ [0, 1]

ϕ(s) :=
s

d(x, y, t2 − jS)

γt2−jS : [0, d(x, y, t2 − jS)] −→M

γt2−jS := ξt2−jS ◦ ϕt2−jS

and for each t ∈ (t2 − (j + 1)S, t2 − jS] ∩ [t1, t2] we de�ne

γt := ξt ◦ ϕt2−jS : [0, d(x, y, t2 − jS)]→M

so that, for each t ∈ [t1, t2] the curve γt satis�es (2.1) (2.2) and (2.3) with

respect to βt. Hence, following Lemma 2.3, at each time t ∈ (t2 − (j +

1)S, t2 − jS] ∩ [t1, t2] the tubular neighborhood D(γt, ρt) around γt is foliated

by (D(γt(s), ρt))s∈[0,d(x,y,t2−jS)] where ρt := µmin
{
injg(t)(M), f3(M, g(t))−

1
2

}
,
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again µ > 0 shall also satisfy the requirements of Lemma 2.3. Using the same

arguments as in the proof of Lemma 2.4 we also obtain (2.31) and (2.32), i.e.:

ρt ≥ R(ι,K)t
7
24 =: rt(ι,K) for each t ∈ [t1, t2]

and

|grad F|g(t)(p) ≤ |grad F|g(t)(q) + C3(K)rt(ι,K)t−
5
4

for each p ∈ γt = γt2−jS and q ∈ D(p, rt) where t ∈ (t2−(j+1)S, t2−jS]∩[t1, t2]

and j ∈ {0, ..., b t2−t1
S
c}. From this we also obtain (2.33), i.e.:

|grad F|g(t)(p) ≤

(∫
D(p,rt)

|grad F|2g(t)(q) dA(q)
) 1

2

Area
1
2 (D(p, rt))

+ C3(K)R(ι,K)t−
23
24

Using Lemma A.9 we obtain (2.34), i.e.:

Area(D(γt(s)), rt) ≥ cr3
t = cR3t

7
8

for all t ∈ (t2 − (j + 1)S, t2 − jS] ∩ [t1, t2]. Hence, for each j ∈ {0, ..., b t2−t1
S
c}

we infer on (t2 − (j + 1)S, t2 − jS) ∩ (t1, t2] the following estimate

d

dt
L(γt, t) =

d

dt
L(t2 − jS, t)

(A.1)

≥ −
∫
γt2−jS

|grad F|g(t) dσ

≥− c
1
2R−

3
2 (ι,K)t−

7
16

∫
γt2−jS

(∫
D(p,rt)

|grad F|2g(t) dA
) 1

2

dσ

− C3(K)R(ι,K)t−
23
24L(γt2−jS, t)

≥− c
1
2R−

3
2 (ι,K)t−

7
16

(∫
γt2−jS

∫
D(p,rt)

|grad F|2g(t) dAdσ

) 1
2

L
1
2 (γt2−jS, t)

− C3(K)R(ι,K)t−
23
24L(γt2−jS, t)

(A.17)

≥ − c
1
2R−

3
2 (ι,K)t−

7
16 sup
D(γt2−jS ,rt)

|dπ|
1
2

(∫
M

|grad F|2g(t)dVg(t)
) 1

2

L
1
2 (γt2−jS, t)

− C3(K)R(ι,K)t−
23
24L(γt2−jS, t)

(2.4)

≥ − c2R
− 3

2 (ι,K)t−
7
16

(∫
M

|grad F|2g(t) dVg(t)
) 1

2

L
1
2 (γt2−jS, t)

− C3(K)R(ι,K)t−
23
24L(γt2−jS, t)

≥− C(D)R−
3
2 (ι,K)t−

7
16

(∫
M

|grad F|2g(t) dVg(t)
) 1

2

− C(K,D)R(ι,K)t−
23
24
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Here we have used the fact that γt is nearly length minimizing and that the

diameter is bounded (cf. (2.36)). By integration along [t, t2− jS] we conclude

for each t ∈ (t2 − (j + 1)S, t2 − jS] ∩ [t1, t2]

d(x, y, t2 − jS)− d(x, y, t) = L(γt2−jS, t2 − jS)− d(x, y, t)

≥L(γt2−jS, t2 − jS)− L(γt, t)

≥− C(D)R−
3
2 (ι,K)

∫ t2−jS

t

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

− C(K,D)R(ι,K)

∫ t2−jS

t

s−
23
24 ds

In particular, we have for each j ∈ {0, ..., b t2−t1
S
c − 1}

d(x, y, t2 − jS)− d(x, y, t2 − (j + 1)S)

≥− C(D)R−
3
2 (ι,K)

∫ t2−jS

t2−(j+1)S

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

− C(K,D)R(ι,K)

∫ t2−jS

t2−(j+1)S

s−
23
24 ds

and also

d(x, y, t2 − b
t2 − t1
S
cS)− d(x, y, t1)

≥ −C(D)R−
3
2 (ι,K)

∫ t2−b t2−t1S
cS

t1

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

− C(K,D)R(ι,K)

∫ t2−b t2−t1S
cS

t1

s−
23
24 ds

and �nally

d(x, y, t2)− d(x, y, t1)

=

b t2−t1
S
c−1∑

j=0

[d(x, y, t2 − jS)− d(x, y, t2 − (j + 1)S)]

+ d(x, y, t2 − b
t2 − t1
S
cS)− d(x, y, t1)

≥− C(D)R−
3
2 (ι,K)

∫ t2

t1

s−
7
16

(∫
M

|grad F|2g(s) dVg(s)
) 1

2

ds

− C(K,D)R(ι,K)

∫ t2

t1

s−
23
24 ds
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≥− C(K,D)R−
3
2 (ι,K)

(∫ t2

t1

s−
7
8 ds

) 1
2
(∫ t2

t1

∫
M

|grad F|2g(s) dVg(s) ds
) 1

2

− C(K,D)R(ι,K)

∫ t2

t1

s−
23
24 ds

we infer

d(x, y, t2)− d(x, y, t1) ≥ −C(K, ι,D)Λ
1
2

(
t
1
8
2 − t

1
8
1

) 1
2 − C(K, ι,D)

(
t

1
24
2 − t

1
24
1

)

Finally, (2.14) and (2.37) together imply (1.8), which �nishes the proof of

Theorem 1.3. Using Theorem 1.3, the following result

Corollary 2.11. Let (M4, g(t))t∈[0,1], where M4 is a closed Riemannian 4-

manifold, be a solution to (1.3) satisfying the assumptions, (1.4), (1.5), (1.6)

and (1.7), then for each k ∈ N there exists j(k,Λ, K, ι,D) ∈ N such that

dGH((M,dg), (M,dg(t))) <
1

k

for all t ∈ [0, 1/j]

is a consequence of the following Lemma

Lemma 2.12. Let Mn be a closed manifold. Given two metrics g1 and g2 on

M satisfying

sup
x,y∈M

|dg1(x, y)− dg2(x, y)| < ε

then we have

dGH((M,dg1), (M,dg2)) <
ε

2

Proof. The set R := {(x, x) ∈ M ×M |x ∈ M} is a correspondence between

M and M itself (cf. De�nition C.1) and the distorsion of R is (cf. De�nition

C.2):

disR = sup
x,y∈M

|dg1(x, y)− dg2(x, y)| < ε

From [7, Theorem 7.3.25., p. 257] we obtain

dGH((M,dg1), (M,dg2)) ≤
1

2
disR <

1

2
ε



33

2.2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 using Corollary 2.11. The conditions

(1.4), (1.5), (1.6) and (1.7) are ensured by the following result

Theorem 2.13. (cf. [35, Theorem 1.8, p. 260]) Given δ ∈ (0, 1), there

are constants ε(δ), ι(δ), A(δ) > 0 so that if (M4, g0) is a closed Riemannian

manifold satisfying the following conditions

Fg0 ≤ ε

V olg0(Bg0(x, r)) ≥ δω4r
4 ∀x ∈M, r ∈ [0, 1] (2.42)

then the �ow given in (1.3) with initial metric g0 has a solution on [0, 1] and

we have the following estimates:∥∥Rmg(t)

∥∥
L∞(M,g(t))

≤ AF
1
6

g(t)t
− 1

2

injg(t)(M) ≥ ιt
1
4

diamg(t)(M) ≤ 2(1 + diamg(0)(M))

for all t ∈ (0, 1].

From these estimates we may conclude the following precompactness result,

at �rst

Corollary 2.14. Given D, δ > 0. Then there exists ε(δ) > 0 so that the space

M4(D, δ, ε(δ)) which consists of the set of all closed Riemannian 4-manifolds

(M, g) satisfying

diamg(M) ≤ D

V olg(Bg(x, r)) ≥ δω4r
4 ∀x ∈M, r ∈ [0, 1]

‖Rmg‖L2(M,g) ≤ ε2

equipped with the Gromov-Hausdor� topology, is precompact.

Proof. Let (M, g) be an element in M4(D, δ, ε(δ)). Using Theorem 2.13 we

know that the L2-�ow with initial metric g exists on the time interval [0, 1].

Together with (A.8) we ensure that the following estimates are valid∥∥Rmg(t)

∥∥
L∞(M,g(t))

≤ AF
1
6

g(t)t
− 1

2

LemmaA.3

≤ AF
1
6

g(0)t
− 1

2 ≤ t−
1
2
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diamg(t)(M) ≤ 2(1 +D)

Hence, from the Bishop-Gromov comparison principle (cf. [26, Lemma 36. p.

269]) we infer

V olg(0)(M)
(A.12)

= V olg(1)(M) = V olg(1)Bg(1)(x, 2(1 +D)) ≤ V0(D) (2.43)

Now, let {x1, ..., xN(M,g)} ⊆M be a maximal r-separated set (cf. De�nition

C.4), which implies that {x1, ..., xN} is an r-net (cf. De�nition C.3). In this

situation the balls

Bg(x1,
r

2
), ..., Bg(xN ,

r

2
)

are mutually disjoint and the balls Bg(x1, r), ..., Bg(xN , r) cover M . Using the

non-collapsing assumption (cf. (2.42)), we infer

Nω4δ
(r

2

)n
≤

N∑
k=1

V olg(Bg(xk,
r

2
))

=V olg(
N⋃
k=1

Bg(xk,
ε

2
)) ≤ V olg(M)

(2.43)

≤ V0(D)

This implies that the number of elements in such an r-net is bounded from

above by a natural number N(r, δ,D). The assertion follows from [7, Theorem

7.4.15, p. 264].

Proof of Theorem 1.1. As in the proof of Corollary 2.14, we know that for

each i ∈ N the L2-�ow with initial metric gi exists on [0, 1] and that this �ow

satis�es the following estimates

∥∥Rmgi(t)

∥∥
L∞(M,gi(t))

≤ AF
1
6

gi(t)
t−

1
2

LemmaA.3

≤ A

(
1

i

) 1
6

t−
1
2 ≤ t−

1
2

injgi(t)(M) ≥ ιt
1
4

diamgi(t)(M) ≤ 2(1 +D)

(2.44)

for all t ∈ (0, 1]. Using Corollary 2.11, we may choose a monotone decreasing

sequence (tj)j∈N ⊆ (0, 1] that converges to zero and that satis�es

dGH((Mi, gi), (Mi, gi(tj))) <
1

3j
∀i, j ∈ N

Estimate (A.10) implies, that for each m ∈ N∥∥∇mRmgi(tj)

∥∥
L∞(Mi,gi(tj))

≤ C(m)t
− 2+m

4
j ∀i, j ∈ N (2.45)
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As in the proof of Corollary 2.14 we also have

v0(D, δ) ≤ V olgi(tj)(Mi) = V olgi(1)(Mi) ≤ V0(D)

where we have used the non-collapsing assumption in order to prove the lower

bound. Hence, at each time tj, we are able to apply Theorem A.11 to the se-

quence of manifolds (Mi, gi(tj))i∈N, i.e.: for all j ∈ N there exists a subsequence

(Mi(j,k), gi(j,k)(tj))k∈N converging in the Cm,α-sense, where m ∈ N is arbitrary,

to a smooth manifold (Nj, hj) as k tends to in�nity. We may assume that the

selection process is organized so that each sequence (Mi(j,k), gi(j,k)(tj))k∈N is a

subsequence of (Mi(j−1,k), gi(j−1,k)(tj))k∈N. The smooth convergence together

with (2.44) implies Rmhj ≡ 0 for each j ∈ N.
In order to apply Theorem A.11 to the sequence (Nj, hj)j∈N, we need an

argument for a uniform lower bound on the injectivity radius because the

injectivity radius estimate in (2.44) is not convenient. To overcome this issue,

we recall that the volume of balls does not decay to quickly along the �ow (cf.

Lemma A.5) and the convergence is smooth. So, the volume of suitable balls

is well-controlled from below. Since (Nj, hj) is �at, we are able to apply [9,

Theorem 4.7, pp. 47-48], which yields a uniform lower bound on the injectivity

radius for each (Nj, hj). Hence, there exists a subsequence of (Nj, hj)j∈N that

converges in the C∞-sense, to a �at manifold (M, g). Finally we need to get

sure that (Mi, gi)i∈N contains a subsequence that also converges to (M, g), at

least in the Gromov-Hausdor� sense. For each m ∈ N, we choose j(m) ≥ m

so that

dGH((M, g), (Nj(m), hj(m))) ≤
1

3m

and k(m) ∈ N so that

dGH((Nj(m), hj(m)), (Mi(j(m),k(m)), gi(j(m),k(m))(tj(m))) ≤
1

3m

This implies

dGH((M, g), (Mi(j(m),k(m)), gi(j(m),k(m)))

≤dGH((M, g), (Nj(m), hj(m)))

+ dGH((Nj(m), hj(m)), (Mi(j(m),k(m)), gi(j(m),k(m))(tj(m)))

+ dGH((Mi(j(m),k(m)), gi(j(m),k(m))(tj(m)), (Mi(j(m),k(m)), gi(j(m),k(m)))))
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≤ 1

3m
+

1

3m
+

1

3j(m)
≤ 1

3m
+

1

3m
+

1

3m
=

1

m

and this implies, that the sequence (Mi(j(m),k(m)), gi(j(m),k(m)))m∈N converges

with respect to the Gromov-Hausdor� topology to (M, g) asm tends to in�nity.

2.3 Proof of Theorem 1.2

In order to apply Theorem 1.3 to the situation in Theorem 1.2 we give a proof

of the following existence result

Theorem 2.15. Let D,Λ > 0. Then there are universal constants δ ∈ (0, 1),

K > 0 and constants ε(Λ), T (Λ) > 0 satisfying the following property: Let

(M, g) be a closed Riemannian 4-manifold satisfying

diamg(M) ≤ D

‖Rmg‖L2(M,g) ≤ Λ

V olg(Bg(x, r)) ≥ δωnr
n ∀x ∈M, r ∈ [0, 1]

‖R̊cg‖L2(M,g) ≤ ε

then the L2-�ow exists on [0, T ], and we have the following estimates:

‖Rmg(t)‖L∞(M,g(t)) ≤ Kt−
1
2

injg(t)(M) ≥ t
1
4

(2.46)

and

diamg(t)(M) ≤ 2(1 +D) (2.47)

for all t ∈ (0, T ].

We point out that J. Streets has proved this result as a part of the proof of

[35, Theorem 1.21] (cf. [35, pp. 285-287]). For sake of completeness, we also

want to give a proof here, under the viewpoint of the dependence of ε and T

on given parameters and that (2.47) is also satis�ed.

Proof. We follow the lines of [35, pp. 285-286], giving further details. At �rst,

we allow δ ∈ (0, 1) and K > 0 to be arbitrary but �xed. Along the proof, we

concretize these constants. We argue by contradiction.
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Suppose, there is a sequence of closed Riemannian 4-manifolds (Mi, gi)i∈N

so that for all i ∈ N we have the following estimates:∫
Mi

|Rmgi |2gi dVgi ≤ Λ

V olgi(Bgi(x, r)) ≥ δωnr
n ∀r ∈ [0, 1]

and ∫
Mi

|R̊cgi |2gi dVgi ≤
1

i

but the estimates (2.46) hold on a maximal interval [0, Ti] where limi→∞ Ti = 0.

We consider the following sequence of rescaled metrics:

gi(t) := T
− 1

2
i gi(Tit)

Then, for each i ∈ N the solution of the L2-�ow exists on [0, 1] and satis�es:

‖Rmgi(t)‖L∞(M,gi(t)) = T
1
2
i ‖Rmgi(Tit)‖L∞(M,gi(Tit)) ≤ T

1
2
i K(Tit)

− 1
2 = Kt−

1
2

injgi(t)(Mi) = T
− 1

4
i injgi(Tit) ≥ T

− 1
4

i (Tit)
1
4 = t

1
4

(2.48)

on [0, 1], which means that the estimates (2.46) are formally preserved under

this kind of rescaling.

By assumption, for each i ∈ N, one of the inequalities in (2.48) is an equality
at time t = 1. In respect of the generalized Gauss-Bonnet Theorem (cf. [30,

Appendix A]), i.e.:∫
M

|Rm|2 dVg = c0π
2χ(M) + 4

∫
M

|Rc|2 dVg −
∫
M

R2 dVg

= c0π
2χ(M) + 4

∫
M

|R̊c|2 dVg
(2.49)

where we have used

|R̊c|2 =

∣∣∣∣Rc− 1

4
Rg

∣∣∣∣2 = |Rc|2 − 1

2
〈Rc,Rg〉+

1

16
R2|g|2

= |Rc|2 − 1

2
R tr(Rc) +

1

4
R2 = |Rc|2 − 1

2
R2 +

1

4
R2

= |Rc|2 − 1

4
R2
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we introduce the following functional

Gg :=

∫
M

|R̊cg|2g dVg

From (2.49) and [5, 4.10 De�nition, p. 119] we infer

grad F ≡ 4 grad G

As in the proof of Lemma A.3 we obtain for each i ∈ N and t ∈ [0, Ti]

Ggi(0) − Ggi(t) =

∫ t

0

∫
Mi

|grad Ggi(s)|2gi(s) dVgi(s) ds ≥ 0

which implies Ggi(t) ≤ 1
i
for each i ∈ N and t ∈ [0, Ti]. Due to the scale

invariance of the functional G, we have in particular

Ggi(1) ≤
1

i
for all i ∈ N

As already stated, (2.48) implies

‖Rmgi(1)‖L∞(M,gi(1)) = K or injgi(Mi) = 1

for each i ∈ N.
At �rst, we assume that there is a subsequence (Mi, gi)i∈N (we do not change

the index) satisfying  ‖Rmgi(1)‖L∞(Mi,gi(1)) = K

injgi(1)(Mi) ≥ 1

for each i ∈ N. Using the compactness, for each j ∈ N we may choose a point

pi ∈ Mi satisfying |Rmgi(1)(pi)|gi(1) = K. From [34, Corollary 1.5, p. 42] we

conclude that there exists a subsequence of manifolds, also index by i, and a

complete pointed 4-manifold (M∞, p∞) together with a 1-parametrized family

of Riemannian metrics (g∞(t))t∈[1/2,1] on M∞ such that for each t ∈ [1/2, 1]

(Mi, gi(t), pi)
i→∞−→ (M∞, g∞(t), p∞)

in the sense of C∞-local submersions (cf. De�nition C.13), and

‖Rmg∞(1)‖L∞(M∞,g∞(1)) = |Rmg∞(1)(p∞)|g∞(1) = K
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as well as, using [28, Theorem]

injg∞(1)(M∞) ≥ 1

Since limi→∞ Ggi(1) = 0 we conclude that (M∞, g∞(1), p∞) needs to be an

Einstein manifold satisfying∫
M∞

|Rmg∞(1)|2g∞(1) dVg∞(1) ≤ Λ (2.50)

In particular, [23, Proposition 7.8, p. 125] implies that the scalar curvature is

constant. On the other hand, from the non-collapsing condition and (A.12) we

obtain that V olgi(1)(Mi) tends to in�nity as i ∈ N tends to in�nity. Then, esti-

mate (2.50) implies that the scalar curvature needs to vanish on (M∞, g∞(1)),

hence (M∞, g∞(1)) is a Ricci-�at manifold. From Lemma A.12 we obtain

‖Rmg∞(1)‖L∞(M∞,g∞(1)) ≤ C

where C is a universal constant, since the space dimension is �xed and the

injectivity radius is bounded from below by 1. Choosing K = C + 1 we obtain

a contradiction to |Rmg∞(1)(p∞)|g∞(1) = K. This �nishes the part of the proof

that ‖Rmgi(Ti)‖L∞(M,gi(Ti)) = KT
− 1

2
i can only be valid for a �nite number of

i ∈ N.
Now we assume that, after taking a subsequence, we are in the following

situation  ‖Rmgi(1)‖L∞(Mi,gi(1)) ≤ K

injgi(1)(Mi) = 1

Then, the non-collapsing assumption of the initial sequence implies the follow-

ing non-collapsing condition concerning the rescaled metrics

V olgi(0)(Bgi(0)(x, r)) ≥ δωnr
n ∀x ∈Mi, r ∈ [0, T

− 1
4

i ]

Hence, for each σ ≥ 1 there exists i0(σ) ∈ N so that

V olgi(0)(Bgi(0)(x, r)) ≥ δωnr
n ∀x ∈Mi, r ∈ (0, σ] (2.51)

for all i ≥ i0(σ). Now let λ ∈ (0, 1) be �xed. This constant will be made
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explicit below. Using (A.13) we obtain for i ≥ i0(σ, λ, δ)

[
V olgi(1)(Bgi(0)(x, λσ))

] 1
2 ≥

[
V olgi(0)(Bgi(0)(x, λσ))

] 1
2 − C

(
1

i

) 1
2

(2.51)

≥
[
δω4(λσ)4

] 1
2 − C

(
1

i

) 1
2

=
[
(1− (1− δ))ω4λ

4σ4
] 1

2 − C
(

1

i

) 1
2

≥
[
(1− 2(1− δ))ω4λ

4σ4
] 1

2

(2.52)

where the last estimate does not use that i0 depends on σ, because, in order

to choose i0 ∈ N large enough one may �x σ = 1 at �rst. Afterwards, one may

multiply the inequality by σ2. Since σ ≥ 1, the desired estimate follows.

It is our intention to prove that

Bgi(0)(x, λσ) ⊆ Bgi(1)(x, σ) ∀i ≥ i0(σ, λ, δ), ∀x ∈Mi (2.53)

Before proving this, we demonstrate that this fact implies a contradiction.

For each i ∈ N we choose a point pi ∈Mi satisfying

injgi(1)(Mi, pi) = injgi(1)(Mi) = 1

As above, using [34, Corollary 1.5, p. 42], we may assume that there exists

a subsequence of manifolds, again indexed by i, and a complete pointed 4-

manifold (M∞, p∞) as well as a 1-parametrized family of metrics (g∞(t))t∈[1/2,1]

on M∞ so that for each t ∈ [1/2, 1]

(Mi, gi(t), pi)
i→∞−→ (M∞, g∞(t), p∞)

in the sense of C∞-local submersions. Using [28, Theorem] we infer

injg∞(1)(M∞, p∞) = 1 (2.54)

Let ζ > 0 be equal to the non-collapsing parameter in [2, Gap Lemma 3.1,

p. 440] which is denoted by ”ε” in that work and only depends on the space

dimension n = 4. We assume δ ∈ (0, 1) and λ ∈ (0, 1) to be close enough to 1

so that

(1− 2(1− δ))λ4 ≥ 1− ζ (2.55)

Assumed (2.53) is valid, then for each for i ≥ i0(σ, λ, δ) we obtain the following

estimate

V olgi(1)(Bgi(1)(pi, σ))
(2.53)

≥ V olgi(1)(Bgi(0)(pi, λσ))
(2.52)/(2.55)

≥ (1− ζ)ω4σ
4
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and �nally, as i ∈ N tends to in�nity

V olg∞(1)(Bg∞(1)(p∞, σ)) ≥ (1− ζ)ω4σ
4 ∀σ ≥ 1

Then [2, Gap Lemma 3.1, p. 440] implies that (M∞, g∞(1)) is isometric to

(R4, gcan) which contradicts (2.54).

Hence, in order to prove the existence result and the validity of (2.46), it

remains to prove (2.53). From here on we do not write the subindex i ∈ N.
The following considerations shall be understood with i ∈ N �xed. That means

that p is one of the points pi and g(t) is the metric gi(t) on M = Mi with the

same index. Let

y ∈ Bg(0)(p, λσ) (2.56)

be an arbitrary point. As in the proof of Lemma 2.4 we construct a suitable

forward-geodesic: Let

β := min
t∈[0,1]

βt > 0

where

βt := β(4, diamg(t)(M), f3(M, g(t)), injg(t)(M))

is chosen according to Lemma 2.3. Next, using Lemma 2.6, we construct a

β-forward-geodesic connecting p and y which is denoted by (ξt)t∈[0,1]. Hence,

we have a �nite set of geodesics (ξjS)j∈{0,...,b 1
S
c} which are parametrized pro-

portional to arc length, i.e.:

|ξ̇jS|g(jS) ≡ d(p, y, jS) for all j ∈ {0, ..., b 1

S
c}

Furthermore, for each j ∈ {0, ..., b 1
S
c} let

ϕj : [0, d(p, y, jS)] −→ [0, 1]

ϕ(s) =
s

d(p, y, jS)

and let

γt := ξjS ◦ ϕjS for each t ∈ [jS, (j + 1)S) ∩ [0, 1]

Applying the same argumentation as in the proof of Lemma 2.4 we ensure that

for each j ∈ {0, ..., b 1
S
c} and t ∈ [jS, (j+1)S)∩ [0, 1] the tubular neighborhood

D(γt, ρt) is foliated by (D(γt(s), ρt))s∈[0,d(p,y,jS)] where

ρt := µmin
{
injg(t)(M), f3(M,g(t))−

1
2

}
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and the di�erential of the projection map satis�es (2.4). Here µ > 0 is chosen

�xed but also compatible to Lemma A.9. We want to give a controlled lower

bound on ρt. The curvature decay estimate from (2.48) together with (A.10)

implies for each m ∈ {1, 2, 3}:∥∥∇mRmg(t)

∥∥
L∞(M,g(t))

≤ C(m)t−
2+m

4 for all t ∈ (0, 1] (2.57)

From this, we infer

f3(M, g(t)) ≤ Ct−
1
2 on (0, 1]

Combining this estimate with the injectivity radius estimate from (2.48), we

obtain, as in the proof of Lemma 2.4

ρt ≥ µ
{
t
1
4 , C−

1
2 t

1
4

}
≥ µmin{1, C−

1
2}t

7
24 =: Rt

7
24 =: rt

we also obtain the estimate

d

dt
L(γt, t) ≤C2R

− 3
2 t−

7
16

(∫
M

|grad Fg(t)|2 dVg(t)
) 1

2

L
1
2 (γjS, t)

+ C2Rt
− 23

24L(γjS, t)

(2.58)

on (jS, (j + 1)S) ∩ [0, 1) where j ∈ {1, ..., b 1
S
c}. Now we assume that

j0 :=

min

{
j ∈ {1, ..., b 1

S
c} | ∃t ∈ [jS, (j + 1)S) ∩ (0, 1] s. th. L(γt, t) = σ

}
exists, and let

t0 := sup {t ∈ [j0S, (j0 + 1)S) ∩ (0, 1] |L(γτ , τ) ≤ σ ∀τ ∈ [j0S, t]}

Then, for each j ∈ {0, ..., j0} and t ∈ (jS, (j + 1)S) ∩ (0, t0) estimate (2.58)

implies

d

dt
L(γt, t) ≤σ

[
C2R

− 3
2 t−

7
16

(∫
M

|grad Fg(t)|2 dVg(t)
) 1

2

+ C2Rt
− 23

24

]

and consequently

d(p, y, t)− d(p, y, jS)
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≤L(γt, t)− L(γjS, jS)

≤σC2R
− 3

2

∫ t

jS

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+ σC2R

∫ t

jS

s−
23
24 ds

In particular, for each j ∈ {0, ..., j0 − 1} we infer

d(p, y, (j + 1)S)− d(p, y, jS)

≤σC2R
− 3

2

∫ (j+1)S

jS

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+ σC2R

∫ (j+1)S

jS

s−
23
24 ds

and

L(γt0 , t0)− d(p, y, j0S)

≤L(γt0 , t0)− L(γj0S, j0S)

≤σC2R
− 3

2

∫ t0

j0S

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+ σC2R

∫ t0

j0S

s−
23
24 ds

and �nally

L(γt0 , t0)− d(p, y, 0)

≤L(γt0 , t0)− d(p, y, j0S) +

j0−1∑
j=0

[d(p, y, (j + 1)S)− d(p, y, jS)]

≤σ

[
C2R

− 3
2

∫ t0

0

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+ C2R

∫ t0

0

s−
23
24 ds

]

≤σ

[
C2R

− 3
2

∫ 1

0

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+ C2R

∫ 1

0

s−
23
24 ds

]

≤σC2R
− 3

2

(∫ 1

0

s−
7
8 ds

) 1
2
(∫ 1

0

∫
M

|grad Fg(s)|2 dVg(s) ds
) 1

2

+ σC2R

∫ 1

0

s−
23
24 ds

≤σC3R
− 3

2

(∫ 1

0

s−
7
8 ds

) 1
2
(∫ 1

0

∫
M

|grad Gg(s)|2 dVg(s) ds
) 1

2

+ σC2R

∫ 1

0

s−
23
24 ds

≤σ

[
C4R

− 3
2

(∫ 1

0

∫
M

|grad Gg(s)|2 dVg(s) ds
) 1

2

+ C4R

]
≤σC4R

− 3
2G

1
2

g(0) + σC4R
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=σ
[
C4R

− 3
2G

1
2

g(0) + C4R
]

Together with (2.56) we obtain

L(γt0 , t0) < σ
[
λ+ C4R

− 3
2G

1
2

g(0) + C4R
]

Throughout, we may assume that R > 0 is small enough compared to C4 > 0

and λ > 0 in order to ensure that

C4R ≤
1− λ

2

and we may assume that i ∈ N is chosen large enough, so that Gg(0) = Ggi ≤ 1
i

is small enough compared to λ > 0, R(λ) > 0 and C4 > 0 so that

C4R
− 3

2G
1
2

g(0) ≤
1− λ

2

Hence, we have L(γt0 , t0) < σ, which contradicts L(γt0 , t0) = σ. This implies

that L(γt, t) < σ is valid for each t ∈ [0, 1] and consequently d(p, y, 1) < σ.

This �nishes the proof of (2.53).

We have proved the existence time estimate as well as the curvature decay

estimate and the injectivity radius growth estimate. It remains to show the

diameter estimate (2.47). The argumentation is based on [35, p. 281] but we

are in a di�erent situation. Let x, y ∈M so that d(x, y, 1) = diamg(1)(M). As

above, there exists β > 0, S > 0 and a family of curves (γt)t∈[0,T ] so that

• for each j ∈
{

0, ...,
⌊
T
S

⌋}
γjS : [0, d(x, y, jS)] −→M

is a unit-speed length minimizing geodesic

• for each j ∈
{

0, ...,
⌊
T
S

⌋}
and t ∈ [jS, (j + 1)S) ∩ [0, T ] the curve

γt : [0, d(x, y, jS)] −→M

satis�es

L(γt, t) ≤ d(x, y, t) + β
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• for each j ∈
{

0, ...,
⌊
T
S

⌋}
and t ∈ [jS, (j + 1)S) ∩ [0, T ] the tubular

neighborhood D(γt, rt) is foliated by (D(γt(s), rt)s∈[0,d(x,y,jS)] where

rt := Rt
7
24 := µmin{1, C−

1
2}t

7
24

Furthermore, the projection map π satis�es (2.4), i.e.

|dπ| ≤ 2 for all x ∈ D(γ, rt)

Using these conditions we obtain (2.58), i.e.:

d

dt
L(γt, t) ≤C2R

− 3
2 t−

7
16

(∫
M

|grad Fg(t)|2 dVg(t)
) 1

2

L
1
2 (γjS, t)

+ C2Rt
− 23

24L(γjS, t)

on (jS, (j + 1)S) ∩ [0, T ) where j ∈ {1, ..., bT
S
c}. In this situation we assume

that

j0 :=

min

{
j ∈ {1, ..., b 1

S
c} | ∃t ∈ [jS, (j + 1)S) ∩ (0, T ] s. th. L(γt, t) = 2(1 +D)

}
exists, and we de�ne

t0 := sup {t ∈ [j0S, (j0 + 1)S) ∩ (0, T ] |L(γτ , τ) ≤ 2(1 +D) ∀τ ∈ [j0S, t]}

Thus, for each j ∈ {0, ..., j0} we obtain

d

dt
L(γt, t) ≤C3R

− 3
2 t−

7
16

(∫
M

|grad Fg(t)|2 dVg(t)
) 1

2

(1 +D)
1
2

+ C3Rt
− 23

24 (1 +D)

on (jS, (j + 1)S) ∩ (0, t0). From this, we infer

L(γt0 , t0)− d(x, y, 0)

≤L(γt0 , t0)− d(x, y, j0S) +

j0−1∑
j=0

[d(x, y, (j + 1)S)− d(x, y, jS)]

≤(1 +D)C3

[
R−

3
2

∫ t0

0

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+R

∫ t0

0

s−
23
24 ds

]
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≤(1 +D)C3

[
R−

3
2

∫ 1

0

s−
7
16

(∫
M

|grad Fg(s)|2 dVg(s)
) 1

2

ds+R

∫ t0

0

s−
23
24 ds

]

≤(1 +D)C3R
− 3

2

(∫ 1

0

s−
7
8 ds

) 1
2
(∫ 1

0

∫
M

|grad Fg(s)|2 dVg(s) ds
) 1

2

+ (1 +D)C3R

∫ t0

0

s−
23
24 ds

≤(1 +D)C4R
− 3

2

(∫ 1

0

s−
7
8 ds

) 1
2
(∫ 1

0

∫
M

|grad Gg(s)|2 dVg(s) ds
) 1

2

+ (1 +D)C4R

∫ t0

0

s−
23
24 ds

≤(1 +D)C4

[
R−

3
2

(∫ 1

0

s−
7
8 ds

) 1
2

G
1
2

g(0) +R

∫ 1

0

s−
23
24 ds

]
≤(1 +D)C5

[
R−

3
2G

1
2

g(0) +R
]
< 1 +D

Here, we have assumed that G 1
2 (g(0)) and R > 0 are su�ciently small with

respect to universal constants. Finally, we obtain

L(γt0 , t0) < d(x, y, 0) + 1 +D = D + 1 +D < 2(1 +D)

contradicting L(γt0 , t0) = 2(1 + D). This shows, that we have diamg(t)(M) ≤
2(1 +D) for all t ∈ [0, T ].

This existence result allows us to prove the following di�eomorphism �nite-

ness result:

Corollary 2.16. Let D,Λ > 0. There exists ε(Λ) > 0 and a universal constant

δ ∈ (0, 1) so that there are only �nitely many di�eomorphism types of closed

Riemannian 4-manifolds (M, g) satisfying

diamg(M) ≤ D

‖Rmg‖L2(M,g) ≤ Λ

V olg(Bg(x, r)) ≥ δωnr
n ∀x ∈M, r ∈ [0, 1]

‖R̊cg‖L2(M,g) ≤ ε

Proof. We assume that there exists a sequence of Riemannian 4-manifolds

(Mi, gi)i∈N satisfying the desired properties but the elements in this sequence

are pairwise not di�eomorphic. Using Theorem 2.15 we may smooth out each
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of these manifolds, then we may apply [1, Theorem 2.2, pp. 464-466] at a �xed

later time point which yields a contradiction.

Proof of Theorem 1.2. The proof is nearly analogous to the proof of Theorem

1.1 but the argumentation is slightly di�erent. Throughout, using Corollary

2.16, we assume that Mi = M for all i ∈ N, applying Theorem 2.15, we may

assume, that for each i ∈ N the L2-�ow on M with initial data gi exists on

[0, T ] and satis�es (1.4), (1.5), (1.6) and (1.7). Using Corollary 2.11, we choose

a monotone decreasing sequence (tj)j∈N ⊆ (0, 1] converging to zero, so that

dGH((M, gi), (M, gi(tj))) <
1

3j
∀i, j ∈ N

(1.5) and (A.10) together imply∥∥∇mRmgi(tj)

∥∥
L∞(M,gi(tj))

≤ C(m)t
− 2+m

4
j ∀i, j ∈ N (2.59)

for each m ∈ N, (1.6) implies

injgi(tj)(M) ≥ t
1
4
j ∀i, j ∈ N

Applying the same argumentation as in the proof of Theorem 1.1 we infer

v0(δ) ≤ V olgi(tj)(M) ≤ V0(D,Λ)

for all i, j ∈ N. We want to point out that δ > 0 only depends on the

space dimension which is constant. Using the �ow convergence result in

Theorem A.6 on each time interval [tj+1, tj], starting with t0, we obtain a

subsequence (Mi(j,k), gi(j,k)(tj))k∈N as well as a family of Riemannian mani-

folds (M, g∞,j(t))t∈[tj+1,tj ] so that for each t ∈ [tj+1, tj] the sequence of Rie-

mannian manifolds (M, gi(j,k)(t))k∈N converges smoothly to (M, g∞,j(t)) and

(M∞,j, g∞,j(t))t∈[tj+1,tj ] is also a solution to the L2-�ow in the sense of Theo-

rem A.6. Since Ggi(t) ≤ Ggi ≤ 1
i
for all i ∈ N, we conclude that Gg∞,j(t) = 0 for

all t ∈ [tj+1, tj]. Hence, at in�nity, the metric does not change along the inter-

val [tj+1, tj], which means that (M∞,j, g∞,j(tj)) = (M∞,j, g∞,j(tj+1)) =: (M, g)

is an Einstein manifold. Inductively, we obtain for each j ∈ N a sequence

(Mi(j,k), gi(j,k)(tj))k∈N that is a subsequence from (Mi(j−1,k), gi(j−1,k)(tj))k∈N, so

that the sequence (Mi(j,k), gi(j,k)(tj))k∈N converges to the Einstein manifold
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(M, g). Using the same diagonal choice as in the Proof of Theorem 1.1, we

infer that there exists a subsequence of (Mi, gi)i∈N that also converges in the

Gromov-Hausdor� topology to (M, g).



Chapter 3

Convergence of a sequence of open

Riemannian manifolds having

almost vanishing L
n
2 -norm of the

Ricci curvature

In this chapter we consider a sequence of open Riemannian manifolds whose

L
n
2 -norm of the Ricci curvature converges to zero. Throughout we assume that

n is greater than or equal to 3. The considered manifolds shall satisfy

(a) a non-collapsing condition on the volume of small balls

(b) a non-in�ating condition on the volume of small balls

(c) a condition on the harmonic radius which consists of a uniform ellipticity

condition on the metric, a uniform Ln-bound on the �rst derivative of the

metric and a uniform bound on the modulus of the Hölder-continuity of

the metric in a harmonic chart

Under these assumptions, we show that there exists a subsequence that con-

verges with respect to the W 2,n
2 -topology (cf. De�nition C.7) to a smooth

Ricci-�at manifold. As distinct from [6, Theorem 5] we do not assume any

uniform bound on the Lp-norm of the Ricci curvature satisfying p > n
2
.

In [6] the authors make use of the following result:

49
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Theorem 3.1. (cf. [6, Theorem 5]) Given n ∈ N, p ∈
(
n
2
,∞
)
and 0 ≤ σ1 ≤

σ2, there exists a constant ε(n, p, σ1, σ2) > 0 such that the following holds. Let

(Mn
i , gi, pi)i∈N be a sequence of smooth complete pointed Riemannian manifolds

without boundary such that Bgi(pi, 1) ⊆Mi satis�es the following properties for

all i ∈ N:

lim
i→∞
‖Rcgi‖Lp(Bgi (pi,1),gi) = 0

ωnσ1 ≤
V olgi(Bgi(x, r))

rn
≤ ωnσ2

for all x ∈ Bgi(pi, 1), r ∈ (0, 1] such that Bgi(x, r) ⊆ Bgi(pi, 1) and

‖Rmgi‖Ln2 (Bgi (pi,1),gi)
≤ ε(n, p, σ1, σ2)

Then, for all s ∈ (0, 1), the sequence (Bgi(pi, s), gi, pi)i∈N subconverges in

the pointed W 2,p-topology to a smooth pointed Ricci-�at Riemannian mani-

fold (Bg∞(p∞, s), g∞, p∞), i.e: for all s ∈ (0, 1), after taking a subsequence, for

each i ∈ N there exists a di�eomorphism Fi : Bg∞(p∞, s) −→ Fi(Bg∞(p∞, s)) ⊆
Bgi(pi, 1) with Fi(p∞) = pi such that F ∗i gi converges to g∞ with respect to the

W 2,p(Bg∞(p∞, s))-topology, as i tends to in�nity.

The proof of this result uses the fact that Lp-bounds on the Ricci curvature

(p > n
2
) imply suitable estimates on the W 1,q(p)-harmonic radius (q(p) > n),

provided that the L
n
2 -norm of the full Riemannian curvature is su�ciently

small on regions of interest, whereas the proof of these desired estimates can

be adapted from [2, Section 2], (cf. [6, Section 2] and [29, Appendix B]).

These approaches are based on suitable L∞-bounds or Lp-bounds on the local

integral of the Ricci curvature, where p > n
2
. In general, the situation becomes

more di�cult when we consider scale invariant integral bounds on the Ricci

curvature, which means a bound on the L
n
2 -norm of the Ricci curvature in

this case. In this context, we introduce the following notation of a harmonic

radius, which separates the Lq-bound on the �rst derivative of the metric from

the Hölder-bound of the metric:

De�nition 3.2. Let (Mn, g) be a complete Riemannian manifold, Bg(q, R0) ⊆
M be a reference ball and x ∈ Bg(q, R0). Given α > 0 and K1, K2, K3 ≥ 0

then we de�ne the harmonic radius rg(x) as the supremum over all r > 0 such

that there exists a smooth chart ϕ : U −→ B(0, r), where x ∈ U ⊆ Bg(q, R0)

and ϕ(x) = 0, satisfying the following properties:
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(i)

(1 +K1)−1|ξ|2Rn ≤ gij(x)ξiξj ≤ (1 +K1)|ξ|2Rn

for all x ∈ B(0, r) and ξ = (ξ1, ..., ξn) ∈ Rn

(ii)

‖∂g‖Ln(B(0,r)) := max
1≤i≤j≤n

max
1≤k≤n

‖∂kgij‖Ln(B(0,r)) ≤ K2

(iii)

rα[g]Cα(B(0,r)) := rα max
1≤i≤j≤n

sup
x,y∈B(0,r), x 6=y

|gij(x)− gij(y)|
|x− y|α

≤ K3

(iv)

∆gϕ
m = 0

i.e.: ϕm : U −→ R is harmonic for each m ∈ {1, ..., n}.

Here ∆g is the Laplacian, introduced in [23, p. 44, 3-4.] and gij denotes the

local representation of the metric g with respect to the chart ϕ.

Remark 3.3. Of course the de�nition of rg(x) depends on R0, α, K1, K2 and

K3, but for the sake of simplicity, we suppress this explicit dependence in the

notation because these parameters are �xed.

3.1 Proof of Theorem 1.4

Proof. The structure of the proof is inspired by [25, Theorem 2.2 (Fundamental

Theorem of Convergence Theory), p. 173]. We also subdivide the proof in

di�erent "Facts" but these Facts are not identical to the Facts in [25, Theorem

2.2, p. 173]. Moreover, our assumptions are di�erent from those assumptions

in [25, Theorem 2.2, p. 173]. Fact 1 proves the precompactness with respect

to the Gromov-Hausdor� distance. This part of the proof, together with Facts

2,3 and 4 are related to Fact 1-5 in [25, Theorem 2.2, p. 173]. Fact 4 in this

proof is also closely related to the argumentation in [29, p. 58]. The crucial

part of this proof is the proof of the regularity of the boundary space, which

is contained in Fact 5. The argumentation is inspired by the interpolation

argument in [19, pp. 18-19]. Our proof uses a part of the interpolation theory

of Sobolev spaces from [38], [39], [40] and [41]. An overview of the used results
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is given in Appendix B. We point out that Fact 5 has a substantial e�ect on the

rest of the proof, since the Riemannian metric on the limit manifold is smooth

as in the indirect proof of [29, Theorem B.7, pp. 56-64]. The proof of Fact 6

and Fact 7 are elementary, the content is closely related to the C∞-regularity

discussion around [29, p. 60, (B.19)] and the �atness argument in [29, p. 63,

(B.25)], but we want to emphasize, that we are in a di�erent situation than

in [29, Theorem B.7]. Finally, the construction of the desired di�eomorphisms

(cf. Fact 8) coincides with the construction in the proof of [29, Theorem B.7].

This construction is explained in [29, pp. 60-62]. Since we are in a di�erent

situation, we give details here. Due to the fact that, in this chapter we are

working mainly locally, we write g(i) instead of gi.

3.1.1 Gromov-Hausdor� precompactness

Fact 1. There exists a metric space (Ω∞, d∞, p∞) so that, after taking a sub-

sequence, the sequence of metric spaces (Bg(i)(pi, 3/4), dg(i), pi) converges to

(Ω∞, d∞, p∞) in the Gromov-Hausdor� sense.

According to [7, Theorem 8.1.10., p. 274] it su�ces to prove that for each

ε ∈ (0, 1/10) there exists a number N(ε) ∈ N such that the metric space

(Bg(i)(pi, 3/4), dg(i), pi) admits an ε-net of no more than N(ε) points (cf. De�-

nition C.3).

Let i ∈ N be �xed, ε ∈ (0, 1/10) and let {x1, ..., xN} ⊆ Bdg(i)(pi, 3/4) be a

maximal ε-separated set, which implies that {x1, ..., xN} is an ε-net, then the

balls

Bdg(i)(x1,
ε

2
), ..., Bdg(i)(xN ,

ε

2
)

are mutually disjoint. This yields

N · ωnσ1

( ε
2

)n (1.10)

≤
N∑
k=1

V olg(i)(Bdg(i)(xk,
ε

2
))

=V olg(i)(
N⋃
k=1

Bdg(i)(xk,
ε

2
)) ≤ V olg(i)(Bdg(i)(pi, 1))

(1.10)

≤ ωnσ2

Hence, the number of elements in such an ε-net is bounded from above by a

natural number N(ε, n, σ1, σ2). In particular, this number does not depend

on the index i ∈ N and we write N(ε) instead of N(ε, n, σ1, σ2) because the
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other parameters are �xed. Hence, using [7, Theorem 8.1.10., p. 274], after

extracting a subsequence, the sequence (Bg(i)(pi, 3/4), dg(i), pi)i∈N converges to

a metric space (Ω∞, d∞, p∞) in the Gromov-Hausdor� sense.

As explained in [26, pp. 296-297] there exists a metric dB on

B := Ω∞ q
∞∐
i=1

Bg(i)(pi, 3/4)

which is an extension, so that the sequence Bg(i)(pi, 3/4) converges with respect

to the Hausdor� topology, concerning dB, to Ω∞.

3.1.2 Compactness of the ambient space B

Fact 2. The metric space (B, dB) is compact.

Let (bj)j∈N ⊆ B an arbitrary sequence. If a subsequence of (bj)j∈N is con-

tained in one of the spaces Bg(i)(pi, 3/4) or contained in Ω∞, then this sub-

sequence needs to contain a converging subsequence because the considered

spaces are compact. Thus, after possibly extracting a subsequence, we can

assume that for each j ∈ N there exists a i(j) ∈ N so that bj ∈ Bg(i)(pi, 3/4),

where limj→∞ i(j) = ∞. Since (Bg(i)(pi, 3/4), dg(i))i∈N converges in the Haus-

dor� topology to (Ω∞, d∞) we can assume that for each j ∈ N there exists

an element b̂j ∈ Ω∞ satisfying dB(bj, b̂j) <
1
j
. Since (Ω∞, d∞) is compact, the

sequence (̂bj)j∈N needs to contain a subsequence that converges with respect

to d∞, and consequently with respect to dB, to an element b∞. This element

is also the limit of the sequence (bj)j∈N ⊆ B with respect to the metric dB.

Let

δ :=
1

10000
·min

{
1

10(1 +K1)
, r0(3/4)

}
(3.1)

where r0(3/4) is taken from (1.11) and let

N∞ := {x∞,1, ..., x∞,N(δ)} ⊆ Bd∞(p∞, 1/2)

be a maximal δ-separated set. Using [21, 3.5. Proposition (a), p. 73] we can

choose for each i ∈ N a 2δ-net

Ni := {xi,1, ..., xi,N(δ)} ⊆ Bg(i)(pi, 1/2)

such that Ni converges to N∞ with respect to the Lipschitz distance (cf. [21,

3.1. De�nition, p. 71]). Using (3.1), for each i ∈ N and j ∈ {1, ..., N(δ)} we
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may choose a smooth chart ϕi,j : Ui,j −→ B(0, 100δ), centered at xi,j ∈ Ui,j ⊆
Bg(i)(pi, 3/4), i.e.: ϕi,j(xi,j) = 0, satisfying the requirements (i) to (iv) from

De�nition 3.2, i.e.:

(i) (1 +K1)−1δkl ≤ g(i)kl(x) ≤ (1 +K1)δkl ∀x ∈ B(0, 100δ)

(ii) ‖∂g(i)‖Ln(B(0,100δ)) ≤ K2

(iii) (100δ)α[g(i)]Cα(B(0,100δ)) ≤ K3

(iv) ∆g(i)ϕ
m
i,j = 0 for all m ∈ {1, ..., n}

3.1.3 Distance distorsion of a coordinate chart

Fact 3. For each i ∈ N and j ∈ {1, ..., N(δ)} we have the following estimates:

∀y1, y2 ∈ B(0, 50δ))

dg(i)(ϕ
−1
i,j (y1), ϕ−1

i,j (y2)) ≤ (1 +K1)|y1 − y2| (3.2)

and

dg(i)(ϕ
−1
i,j (y1), ϕ−1

i,j (y2)) ≥ 1

1 +K1

|y1 − y2| (3.3)

We �x i ∈ N and j ∈ {1, ..., N(δ)} , i.e.: ϕ = ϕi,j and g = g(i). Let

y1, y2 ∈ B(0, 50δ) and γ : [0, 1]→ B(0, 50δ) be de�ned as

γ(t) := y1 + s(y2 − y1)

then, using [22, p. 70: Proposition 3.24] and [22, p. 60: (3.8)] we obtain from

property (i)

dg(ϕ
−1(y1), ϕ−1(y2)) ≤

∫ 1

0

|(ϕ−1 ◦ γ)′(s))|g ds ≤ (1 +K1)|y1 − y2|

which proves estimate (3.2). Now let γ : [0, 1] → Mi be a length minimizing

geodesic connecting ϕ−1(y1) and ϕ−1(y2), i.e.: γ(0) = ϕ−1(y1), γ(1) = ϕ−1(y2)

and |γ̇| ≡ dg(ϕ
−1(y1), ϕ−1(y2)). We need to di�erentiate between two cases:

At �rst we assume that γ([0, 1]) ⊆ U . Then

|y1 − y2| ≤
∫ 1

0

|(ϕ ◦ γ)′(s)| ds ≤ (1 +K1) · dg(ϕ−1(y1), ϕ−1(y2))
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If the assumption γ([0, 1]) ⊆ U does not hold, then there exist s1, s2 ∈ (0, 1)

so that γ(s1) /∈ U and γ(s2) /∈ U but γ([0, s1) ⊆ U and γ((s2, 1]) ⊆ U . Then

(ϕ◦γ)(s1) and (ϕ◦γ)(s2) are contained in the boundary of the set B(0, 100δ).

Hence

dg(ϕ
−1(y1), ϕ−1(y2))

≥
∫ s1

0

|γ̇(s)|g ds+

∫ 1

s2

|γ̇(s)|g ds

(i)

≥ 1

1 +K1

|(ϕ ◦ γ)(s1)− y1|+
1

1 +K1

|y2 − (ϕ ◦ γ)(s2)|

≥ 1

1 +K1

(|(ϕ ◦ γ)(s1)| − |y1|) +
1

1 +K1

(|(ϕ ◦ γ)(s2)| − |y2|)

=
1

1 +K1

(100δ − |y1|) +
1

1 +K1

(100δ − |y2|)

=
1

1 +K1

(200δ − |y1| − |y2|) ≥
1

1 +K1

· 100δ ≥ 1

1 +K1

|y1 − y2|

This proves the estimate (3.3).

3.1.4 C2,β-regularity of the limit space

Fact 4. (Bd∞(p∞, 1/2), d∞) is a C2,β-manifold, where β ∈ (0, α).

From (3.2) and (3.3) we infer that for each j ∈ {1, ..., N(δ)} the sequence

{ϕ−1
i,j : B(0, 50δ) −→ B}∞i=1

is an equicontinuous sequence of functions between compact spaces. Thus [26,

10.1.3., Lemma 45, p. 299] implies that, for each j ∈ {1, ..., N(δ)} there exists
a subsequence that converges uniformly to a function

ϕ−1
∞,j : B(0, 50δ) −→ B

where ϕ−1
∞,j is a formal notation at �rst. Without loss of generality the sequence

itself satis�es the desired property. (3.2) and (3.3) together imply that for each

j ∈ {1, ..., N(δ)} the function

ϕ−1
∞,j : B(0, 50δ) −→ U∞,j := ϕ−1

∞,j(B(0, 50δ))

is continuous and there exists an inverse function ϕ∞,j : U∞,j −→ B(0, 50δ)

that is also continuous, thus ϕ∞,j is a homeomorphism. Furthermore, from
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the uniform convergence of these mappings, we obtain that the sequence of

metric spaces ϕ−1
i,j (B(0, 50δ)) converges to ϕ−1

∞,j(B(0, 50δ)) with respect to the

Hausdor� topology as i tends to in�nity. Due to the fact that for each i ∈ N
the set ϕ−1

i,j (B(0, 50δ)) is contained in Bg(i)(pi, 3/4), and that the sequence of

balls (Bg(i)(pi, 3/4), dg(i)) converges to (Ω∞, d∞) with respect to the Hausdor�

topology concerning (B, dB) as i tends to in�nity, we obtain that the domain

of de�nition U∞,j must be contained in Ω∞. This procedure may be done for

each j ∈ {1, ..., N(δ)}. Whenever we need to extract a subsequence we do not

change the notation. Hence, by choice of Ni, we obtain the following covering

property

Bg(i)(pi, 1/2) ⊆
N(δ)⋃
j=1

ϕ−1
i,j (B(0, 10δ)) ⊆

N(δ)⋃
j=1

ϕ−1
i,j (B(0, 50δ)) ⊆ Bg(i)(pi, 3/4)

(3.4)

for each i ∈ N, and we conclude that

Bd∞(p∞, 1/2) ⊆
N(δ)⋃
j=1

ϕ−1
∞,j(B(0, 10δ)) ⊆

N(δ)⋃
j=1

ϕ−1
∞,j(B(0, 50δ)) ⊆ Ω∞ (3.5)

This shows that Bd∞(p∞, 1/2) can be covered by an appropriate system of

coordinate charts. Hence, the metric space (Bd∞(p∞, 1/2), d∞) is a topological

manifold.

It remains to prove, that for each �xed choice s, t ∈ {1, ..., N(δ)} satisfying
U∞,s ∩ U∞,t 6= ∅ the transition map

Ts,t : ϕ∞,t(U∞,s ∩ U∞,t) −→ ϕ∞,s(U∞,s ∩ U∞,t) (3.6)

Ts,t := ϕ∞,s ◦ ϕ−1
∞,t (3.7)

is a C2,β-di�eomorphism, where β ∈ (0, α). Let y ∈ ϕ∞,t(U∞,s ∩ U∞,t) ⊆
B(0, 50δ) and ε(y, s, t) > 0 so that both B(y, 2ε) ⊆ ϕ∞,t(U∞,s ∩ U∞,t) and

B(y, 2ε) ⊆ ϕi,t(Ui,s ∩ Ui,t) for each i ≥ i0(y, s, t). Then

Ti,s,t := ϕi,s ◦ ϕ−1
i,t : B(y, 2ε) −→ B(0, 50δ) (3.8)

converges uniformly to

Ts,t|B(y,2ε) : B(y, 2ε) −→ B(0, 50δ)
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The property (iv) from De�nition 3.2 and [11, Lemma 1.1] together imply

gkl(i)∂k∂lT
m
i,s,t = 0 ∀m ∈ {1, ..., n} (3.9)

for all m ∈ {1, ..., n}, where gkl(i) is the inverse of the local representation of

the metric in a chart. These equations are linear elliptic equations of second

order in the fashion of [15, Chapter 6, (6.1), p. 87]. Using [15, Theorem 6.2,

p. 90] we obtain∥∥Tmi,s,t∥∥C2,α(B(y,ε))
≤ C3(n, α,K1, K3, ε) ·

∥∥Tmi,s,t∥∥C0(B(y,2ε))
≤ C4(n, α,K1, K3, ε, δ)

and using the Arzelà-Ascoli theorem we can extract a subsequence from the se-

quence (Ti,s,t)i∈N that converges with respect to the C2,β(B(y, ε),Rn)-topology

to Ts,t|B(y,ε), where β ∈ (0, α). This implies the desired regularity.

3.1.5 Local W 2,n2 -convergence to a smooth metric

Fact 5. There exists a smooth Riemannian metric g on Bd∞(p∞, 1/2) so that

the sequence of metrics g(i) converges to g locally, in the harmonic coordinates

from above with respect to the W 2,n
2 -topology.

From [11, Lemma 4.1] we infer for each i ∈ N, j ∈ {1, ..., N(δ)} and k, l ∈
{1, ..., n}

g(i)αβ∂α∂βg(i)kl = −2Rc(i)kl + (g(i)−1 ∗ g(i)−1 ∗ ∂g(i) ∗ ∂g(i))kl (3.10)

on B(0, 50δ), where ∗ denotes a sum of contractions with a certain rule which

is not written down here. Using the C0,α-bound from (i) and (iii) in De�nition

3.2. and the Arzelà-Ascoli theorem we conclude that for each j ∈ {1, ..., N(δ)}
there exists a system of functions

{gkl : B(0, 50δ) −→ R}k,l∈{1,...n} ⊆ C0,β(B(0, 50δ)) where β < α

so that, after extracting a subsequence, for each k, l ∈ {1, ...n} the sequence

g(i)kl converges to gkl with respect to the C0,β(B(0, 50δ))-topology as i tends

to in�nity. For the sake of readability we do not write the index j here. Our

aim is to show that for each i ∈ N, j ∈ {1, ..., N(δ)} and k, l ∈ {1, ..., n} the
sequence g(i)kl converges to gkl with respect to the W 2,n

2 (B(0, 40δ))-topology

as i tends to in�nity. Firstly, using Theorem B.19, we want to prove that for
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each p ∈ [n,C(α)n), where C(α) > 1 is �xed, the sequence g(i)kl converges

to gkl with respect to the W 1,p(B(0, 45δ))-topology. From (3.10) and [15,

Theorem 9.11, p. 235-236] we obtain

‖g(i)kl‖W 2, n2 (B(0,45δ))

≤C(n, α,K1, K3, δ)·[
‖Rc(i)kl‖Ln2 (B(0,50δ))

+ ‖∂g(i)‖2
Ln(B(0,50δ)) + ‖g(i)kl‖Ln2 (B(0,50δ))

]
≤C(n, α,K1, K3, δ)

[
‖Rc(i)kl‖Ln2 (B(0,50δ))

+K2
2 + ‖g(i)kl‖Ln2 (B(0,50δ))

]
≤C(n, α,K1, K2, K3, δ)

(3.11)

Now we choose a cuto� function ψ ∈ C∞0 (B(0, 50δ)) satisfying ψ|B(0,45δ) ≡ 1

and ψ(x) ∈ [0, 1] for all x ∈ B(0, 50δ). For the sake of readability, we set

u := g(i)kl − g(j)kl. Let q ∈ (1,∞) and β ∈ (0, α) then∫
Rn

∫
Rn

|(ψu)(x)− (ψu)(y)|q

|x− y|n+βq
dx dy

=

∫
B(0,50δ)

∫
B(0,50δ)

|ψ(x)u(x)− ψ(y)u(y)|q

|x− y|n+βq
dx dy

≤2q
∫
B(0,50δ)

∫
B(0,50δ)

|ψ(x)u(x)− ψ(x)u(y)|q

|x− y|n+βq
dx dy

+ 2q
∫
B(0,50δ)

∫
B(0,50δ)

|ψ(x)u(y)− ψ(y)u(y)|q

|x− y|n+βq
dx dy

≤2q
∫
B(0,50δ)

∫
B(0,50δ)

|u(x)− u(y)|q

|x− y|n+βq
dx dy

+ 2q
∫
B(0,50δ)

∫
B(0,50δ)

|ψ(x)− ψ(y)|q|u(y)|q

|x− y|n+βq
dx dy =: I + II

On the one hand we obtain

I =

∫
B(0,50δ)

∫
B(0,50δ)

1

|x− y|n+β−α
2
q
· |u(x)− u(y)|q

|x− y|β+α2 q
dx dy

≤C(n, q, δ, α, β) [u]qβ+α
2
,B(0,50δ)

and on the other hand we obtain

II =

∫
B(0,50δ)

∫
B(0,50δ)∩B(y,1)

|ψ(x)− ψ(y)|q|u(y)|q

|x− y|n+βq
dx dy

+

∫
B(0,50δ)

∫
B(0,50δ)∩(Rn\B(y,1))

|ψ(x)− ψ(y)|q|u(y)|q

|x− y|n+βq
dx dy
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≤C(n, q, ψ)

∫
B(0,50δ)

∫
B(y,1)

|u(y)|q|x− y|q

|x− y|n+βq
dx dy

+

∫
B(0,50δ)

∫
B(0,50δ)∩(Rn\B(y,1))

|u(y)|q

|x− y|n+βq
dx dy

=C(n, q, ψ)

∫
B(0,50δ)

|u(y)|q
∫
B(0,50δ)∩B(y,1)

1

|x− y|n+(β−1)q
dx dy

+

∫
B(0,50δ)

|u(y)|q
∫
B(0,50δ)∩(Rn\B(y,1))

1

|x− y|n+βq
dx dy

≤C2(n, q, δ, β, ψ)‖u‖qC0(B(0,50δ)

Hence, from Theorem B.19 and (3.11) we obtain the desired

W 1,p(B(0, 40δ))-convergence of the sequence gkl(i), where p ∈ [n,C(α)n). Us-

ing this fact, we can show, that for each k, l ∈ {1, ..., n} the sequence g(i)kl

is a W 2,n
2 (B(0, 40δ))-Cauchy-sequence. In order to establish this, we need the

following consideration which follows from (3.10)

g(i)αβ∂α∂β(g(i)kl − g(j)kl) + (g(i)αβ − g(j)αβ)∂α∂βg(j)kl

=g(i)αβ∂α∂βg(i)kl − g(j)αβ∂α∂βg(j)kl

=− 2Rc(i)kl + 2Rc(j)kl + (g(i)−1 ∗1,i g(i)−1 ∗2,i ∂g(i) ∗3,i ∂g(i))kl

− (g(j)−1 ∗1,j g(j)−1 ∗2,j ∂g(j) ∗3,j ∂g(j))kl

(3.12)

where ∗m,i denotes a sum of contractions of a rule m with respect to the metric

g(i) where m ∈ {1, ..., 3} (cf. [11, Lemma 4.1]). Now, we rearrange the �rst

order term

g(i)−1 ∗1,i g(i)−1 ∗2,i ∂g(i) ∗3,i ∂g(i)− g(j)−1 ∗1,j g(j)−1 ∗2,j ∂g(j) ∗3,j ∂g(j)

= g(i)−1 ∗1,i g(i)−1 ∗2,i ∂g(i) ∗3,i ∂g(i)− g(j)−1 ∗1,i g(j)−1 ∗2,i ∂g(i) ∗3,i ∂g(i)

+ g(j)−1 ∗1,i g(j)−1 ∗2,i ∂g(i) ∗3,i ∂g(i)− g(j)−1 ∗1,j g(j)−1 ∗2,j ∂g(j) ∗3,j ∂g(j)

= [g(i)−1 ∗1,i g(i)−1 − g(j)−1 ∗1,i g(j)−1] ∗2,i ∂g(i) ∗3,i ∂g(i)

+ g(j)−1 ∗1,i g(j)−1 ∗2,i [∂g(i) ∗3,i ∂g(i)− ∂g(j) ∗3,i ∂g(j)] + f (1)

=

[g(i)−1 ∗1,i (g(i)−1 − g(j)−1) + (g(i)−1 − g(j)−1) ∗1,i g(j)−1] ∗2,i ∂g(i) ∗3,i ∂g(i)

+ g(j)−1 ∗1,i g(j)−1 ∗2,i [∂g(i) ∗3,i (∂g(i)− ∂g(j)) + (∂g(i)− ∂g(j)) ∗3,i ∂g(j)]

+ f (1)

where f (1) arises from the change of the metric which is involved in the con-

traction. Due to Hölder's inequality, after possibly taking a subsequence, this
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expression satis�es the estimate

max
1≤k,l≤n

‖f (1)
kl ‖Ln2 (B(0,50δ))

≤
(

1

i
+

1

j

)
Hence, from (3.12) we obtain

g(i)αβ∂α∂β(g(i)kl − g(j)kl)

= −2Rc(i)kl + 2Rc(j)kl︸ ︷︷ ︸
=:f

(2)
kl

−(g(i)αβ − g(j)αβ)∂α∂βg(j)kl︸ ︷︷ ︸
=:f

(3)
kl

+ [G1(i, j) ∗2,i ∂g(i) ∗3,i ∂g(i))]kl︸ ︷︷ ︸
=:f

(4)
kl

+ [G2(i, j) ∗2,i [∂g(i) ∗3,i (∂g(i)− ∂g(j)) + (∂g(i)− ∂g(j)) ∗3,i ∂g(j)]]kl︸ ︷︷ ︸
=:f

(5)
kl

+ f
(1)
kl

where

max
1≤k,l≤n

‖G1(i, j)kl‖C0(B(0,50δ)) ≤
(

1

i
+

1

j

)
(3.13)

and

max
1≤k,l≤n

‖G2(i, j)kl‖C0(B(0,50δ)) ≤ C(n,K1) (3.14)

for all i, j ∈ N. Now, we show that each of the expressions f (m), where m ∈
{2, ..., 5}, is su�ciently small with respect to the L

n
2 -norm. Here, we allow

that the considered ball becomes smaller. We have

‖f (2)
kl ‖Ln2 (B(0,50δ))

= ‖ − 2Rc(i)kl + 2Rc(j)kl‖Ln2 (B(0,50δ))

≤ 2‖Rc(i)kl‖Ln2 (B(0,50δ))
+ 2‖Rc(j)kl‖Ln2 (B(0,50δ))

(1.9)

≤
(

1

i
+

1

j

)

‖f (3)
kl ‖Ln2 (B(0,45δ)

= ‖(g(i)αβ − g(j)αβ)∂α∂βg(j)kl‖Ln2 (B(0,45δ))

(3.11)

≤
∑

1≤α,β≤n

‖(g(i)αβ − g(j)αβ)‖C0(B(0,45δ))‖∂α∂βg(j)kl‖Ln2 (B(0,45δ))

≤
(

1

i
+

1

j

)
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‖f (4)
kl ‖Ln2 (B(0,50δ))

(3.13)

≤ C(n,K1, δ) ·
(

1

i
+

1

j

)
· ‖∂g(i)‖2

Ln(B(0,50δ))

≤ C(n,K1, K2, δ) ·
(

1

i
+

1

j

)
and

‖f (5)
kl ‖Ln2 (B(0,45δ))

(3.14)

≤ C(n,K1, δ) ‖∂g(i)‖Ln(B(0,45δ))‖∂(g(i)− g(j))‖Ln(B(0,45δ))

≤ C(n,K1, K2, δ) ‖∂(g(i)− g(j))‖Ln(B(0,45δ))

≤
(

1

i
+

1

j

)
Where in the last line, we have used that (g(i)kl)i∈N is a W 1,n(B(0, 45δ))-

Cauchy sequence which was proved above. Hence, [15, Theorem 9.11, pp. 235-

236] implies that g(i)kl is a W
2,n

2 (B(0, 40δ))-Cauchy sequence which converges

to gkl in this topology. From (1.9) we infer

gαβ∂α∂βgkl = (g−1 ∗ g−1 ∗ ∂g ∗ ∂g)kl ∀1 ≤ k ≤ l ≤ n (3.15)

in the limit. Using this system of equations, we show that g is smooth. First

we show that gkl is contained in the space W 1,p(B(0, r)) for each p ∈ (1,∞)

and r ∈ (0, 40δ).

From the considerations above, we already know that

gkl ∈ W 1,C(α)n(B(0, 40δ))

where C(α) > 1. We proceed inductively: we assume, that for each r ∈ (0, 40δ)

we have gkl ∈ W 1,q(B(0, r+40δ
2

)) where q ∈ [C(α)n, 2n) is �xed, then Hölder's

inequality implies:

‖(g−1 ∗ g−1 ∗ ∂g ∗ ∂g)kl‖L q2 (B(0, r+40δ
2

))
≤ C1

where C1 ≥ 0 depends on the Lq-norm of ∂g. Then (3.15) and [14, Theorem

7.3, p. 140] together imply

‖∂2gkl‖L q2 (B(0,r))
:= max

1≤λ≤β≤n
‖∂λ∂βgkl‖L q2 (B(0,r))

≤ C2(C1)
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Using the Sobolev embedding theorem (cf. [13, 5.6.3., Theorem 6, pp. 284-

285]) we obtain

‖∂gkl‖
L

n
q
2

n− q2 (B(0,r/2))

≤ C3(C2)

and the assumption q ∈ [C(α)n, 2n) implies that

n q
2

n− q
2

=
n
2

n− q
2

· q ≥
n
2

n− C(α)n
2

· q > q

Hence, we have more regularity than assumed and the ratio of the increase

of the regularity is bounded away from zero. This argument may be iterated,

where q shall tend to 2n. This shows that gkl ∈ W 1,p(B(0, r)) for all p ∈ (1,∞).

Applying [14, Theorem 7.3, p. 140] to (3.15) again, we obtain gkl ∈
W 2,p(B(0, r)) for all p ∈ (1,∞) and r ∈ (0, 40δ). In this situation we may apply

Lemma A.7 to (3.15) and we infer that gkl is also contained in ∈ W 3,p(B(0, r))

for all p > 1 and r ∈ (0, 40δ).

Now, it is possible to apply the argumentation in the proof of Lemma A.7

iteratively so that the Lp-regularity from a higher order derivative of the right

hand side in (3.15) carries over to the iterated higher order derivative of the

considered function on the left hand side, which is the metric g in that case.

This means, that we obtain gkl ∈ W k,p(B(0, r)) for all k ∈ N, p ∈ (1,∞) and

r ∈ (0, 40δ) and �nally, using [15, Corollary 7.11., p. 158], we infer that gkl is

smooth.

3.1.6 C∞-regularity of the limit space

Fact 6. (Bd∞(p∞, 1/2), d∞) is a C∞-manifold.

We continue the argumentation from Fact 4, using the fact that the limit

metric is smooth. From (3.9) we obtain

gkl(i)∂k∂l(T
m
s,t − Tmi,s,t) = gkl(i)∂k∂lT

m
s,t = (gkl(i)− gkl)∂k∂lTms,t + gkl∂k∂lT

m
s,t

(3.16)

for all m ∈ {1, ..., n}. Using the fact that Tmi,s,t converges with respect to

the C2(B(y, ε))-topology to Ts,t|B(y,ε) and the fact, that gkl(i) converges with

respect to the C0(B(y, ε))-topology to gkl, we obtain the following equation

gkl∂k∂lT
m
s,t = 0 (3.17)
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in the limit. Since the coe�cients are smooth, [13, 6.3.1, Theorem 3, p. 334]

implies that each component of the transition function Ts,t is also smooth. In

what follows, we show that the Ricci tensor vanishes on (Bd∞(p∞, 1/2), g)

3.1.7 Ricci �atness of the limit manifold

Fact 7. (Bd∞(p∞, 1/2), g) is Ricci-�at.

We have(∫
Bd∞ (p∞,1/2)

|Ricg|
n
2
g dVg

) 2
n

≤
N(δ)∑
j=1

(∫
ϕ−1
∞,j(B(0,40δ))

|Ricg|
n
2
g dVg

) 2
n

and from Fact 5 and (3.10) we infer(∫
ϕ−1
∞,j(B(0,40δ))

|Ricg|
n
2
g dVg

) 2
n

= lim
i→∞

(∫
ϕ−1
i,j (B(0,40δ))

|Ricgi |
n
2
g dVg

) 2
n

= 0

Here, we have also used, that g(i) converges to g with respect to the C0-

topology in the local charts.

3.1.8 Construction of the di�eomorphisms

Fact 8. For each i ∈ N there exists a di�eomorphism

Fi : Bg(p∞, 1/10) −→ Fi(Bg(p∞, 1/10)) ⊆ Bg(i)(pi, 1)

such that F ∗i gi converges to the metric g with respect to the W 2,n
2 -topology, as

i tends to in�nity.

We introduce a set of radii (δk)k∈{1,...,7} which is de�ned as follows:

δk :=

(
10

9

)k−1

· 10δ (3.18)

For each i ∈ N ∪ {∞} and k ∈ {1, ..., 7} we de�ne

V
(k)
i :=

N(δ)⋃
j=1

ϕ−1
i,j (B(0, δk))
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so that, regarding (3.4), we have the following inclusions

Bg(i)(pi, 1/2) ⊆ V
(1)
i ⊆ ... ⊆ V

(7)
i ⊆ Bg(i)(pi, 3/4)

Now, let ξ : [0,∞) −→ [0, 1] be a smooth cut-o� function satisfying

ξ(s)



= 1 if s ∈ [0, δ5]

> 95
100

if s ∈ [δ5, δ6]

≤ 95
100

if s ∈ (δ6, δ7]

= 0 if s ∈ [δ7,∞)

(3.19)

then for all i ∈ N and k ∈ {1, ..., 7} we de�ne a smooth map

E
V

(k)
i

: V
(k)
i −→ RN0

where N0 = N0(n, δ) = n ·N(δ) +N(δ), as follows:

E
V

(k)
i

:= [ξ(|ϕi,1|) · ϕi,1, ..., ξ(|ϕi,N(δ)|) · ϕi,N(δ), ξ(|ϕi,1|), ..., ξ(|ϕi,N(δ)|)] (3.20)

where ξ(|ϕi,j|) is considered as a global function, which is equal to zero when-

ever ϕi,j becomes unde�ned on the respective manifold.

Let i ∈ N ∪ {∞}, j ∈ {1, ..., N(δ)} and k ∈ {1, ..., 7}, then

E
V

(k)
i
◦ ϕ−1

i,j

∣∣∣
B(0,δk)

: B(0, δk) −→ RN0

has the following shape

E
V

(k)
i
◦ ϕ−1

i,j

=[ξ(|F (i)
1,j |) · F

(i)
1,j , ..., ξ(|F

(i)
j−1,j|) · F

(i)
j−1,j,

ξ(|Id|)Id,

ξ(|F (i)
j+1,j|) · F

(i)
j+1,j, ..., ξ(|F

(i)
N(δ),j|) · F

(i)
N(δ),j,

ξ(|F (i)
1,j |), ..., ξ(|F

(i)
1,j−1|), ξ(|Id|), ξ(|F

(i)
1,j+1|), ..., ξ(|F

(i)
N(δ),j|)]

(3.21)

where, for all j, l ∈ {1, ..., N(δ)} the transition function

F
(i)
l,j := ϕi,l ◦ ϕ−1

i,j : B(0, δk) −→ Rn

is always combined with a suitable truncation function, so in this context, the

component functions of the function E
V

(k)
i

are always well-de�ned.
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Let j ∈ {1, ..., N(δ)}, for the sake of simplicity, we introduce the following

swapping map Tj : RN0 −→ RN0

Tj(v1, v2, ..., vj−1, vj, vj+1, ..., vN(δ), r1, ..., rN(δ))

=(vj, v2, ..., vj−1, v1, vj+1, ..., vN(δ), r1, ..., rN(δ))

Clearly this function satis�es Tj ◦ Tj = IdRN0 . From (3.21) we infer

Tj ◦ EV (k)
i
◦ ϕ−1

i,j

=[ξ(|Id|)Id, ..., ξ(|F (i)
j−1,j|) · F

(i)
j−1,j,

ξ(|F (i)
1,j |) · F

(i)
1,j ,

ξ(|F (i)
j+1,j|) · F

(i)
j+1,j, ..., ξ(|F

(i)
N(δ),j|) · F

(i)
N(δ),j,

ξ(|F (i)
1,j |), ..., ξ(|F

(i)
1,j−1|), ξ(|Id|), ξ(|F

(i)
1,j+1|), ..., ξ(|F

(i)
N(δ),j|)]

=:[ξ(|Id|)Id, ui,j]

(3.22)

where k ∈ {1, ..., 7} and for each i ∈ N ∪ {∞}, j ∈ {1, ..., N(δ)}, the function
ui,j is a well-de�ned map from B(0, δ7) to RN0−n.

From Fact 4 and Fact 6 we already know that for each j ∈ {1, ..., N(δ)} and
k ∈ {1, ..., 7} the sequence (ui,j)i∈N ⊆ C2,β(B(0, δk),RN0−n), where β ∈ (0, α),

converges with respect to the C2,β(B(0, δk),RN0−n)-topology to the smooth

function

u∞,j : B(0, δk) −→ RN0−n

as i tends to in�nity. For each i ∈ N ∪ {∞} and k ∈ {1, ..., 5} we de�ne

M
(k)
i :=E

V
(k)
i

(V
(k)
i ) = E

V
(k)
i

N(δ)⋃
j=1

ϕ−1
i,j (B(0, δk))


=

N(δ)⋃
j=1

E
V

(k)
i

(
ϕ−1
i,j (B(0, δk))

)
=

N(δ)⋃
j=1

{Tj(x, ui,j(x))|x ∈ B(0, δk)} ⊆ RN0

(3.23)

It is our aim to prove that for each i ∈ N ∪ {∞} and k ∈ {1, ..., 4} the

mapping E
V

(k)
i

is a smooth embedding. This would imply that M
(k)
i is an

n-dimensional smooth embedded manifold (cf. [22, Proposition 5.2, p. 99]).
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The appearance of the identity in (3.22) implies that for each k ∈ {1, ..., 5}
the mapping E

V
(k)
i

is an immersion. Furthermore, from the last N(δ) compo-

nents in the de�nition of (3.20), we infer that this mapping is also injective

because one of these components always needs to be equal to one and if the

functional values of two points in V
(k)
i coincide, then they are contained in a

common domain of a coordinate chart. In this situation, the corresponding

part in the �rst N(δ) · n components contains the information that these two

points need to coincide. Moreover, from the fact that for each j ∈ {1, ..., N(δ)}
the function u∞,j has a bounded �rst derivative and from the choice of the trun-

cation function in (3.19), analogous to [29, p. 61, ll. 27-40], we infer that for

each y0 ∈ V
(4)
i there exists a su�ciently small s0(x0 = ϕi,j(y0)) > 0, where

j ∈ {1, ..., N(δ)} such that y0 ∈ ϕ−1
i,j (B(0, δ4)), so that for each s ≤ s0 we have

{Tj(x, ui,j(x))|x ∈ B(x0, s)} = (Tj(B(x0, s)×B(ui,j(x0), O(s)))) ∩M (k)
i

where O(s) ⊆ RN0−n is an open set. Since the swapping map Tj and the chart

ϕi,j are homeomorphisms, this would imply that for each i ∈ N ∪ {∞} and
k ∈ {1, ..., 4} the mapping E

V
(k)
i

is also an open map and consequently an

embedding.

Using [24, Proposition. 26., p. 200], there exists an open set

N ⊆
∐

p∈M(4)
∞

Np(M
(4)
∞ )

where Np(M
(4)
∞ ) is the orthogonal complement of the tangent space Tp(M

(4)
∞ ),

containing the zero section

Z :=
∐

p∈M(4)
∞

0p

and a set O ⊆ RN0 , containing M
(4)
∞ , such that

exp⊥ : N −→ O

is a di�eomorphism. Since M
(3)
∞ ⊆M

(4)
∞ ⊆ O there exists σ > 0 so that

B(M (3)
∞ , σ) :=

⋃
p∈M(3)

∞

B(p, σ) ⊆ O

Thus the projection mapping

π := πN ◦ exp−1
⊥ : B(M (3)

∞ , σ) −→M (4)
∞ (3.24)
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where

πN : N −→M (4)
∞

is the natural projection, mapping each element vp ∈ Np to p, is well-de�ned.

Since exp⊥(0p) = p for all p ∈ M
(4)
∞ ⊇ M

(3)
∞ the map π satis�es π|

M
(3)
∞

=

Id|
M

(3)
∞
. Taking σ > 0 su�ciently small, we may assume that

sup
z∈B(M

(3)
∞ ,σ)

|π(z)− z| ≤ ε (3.25)

It is our aim to show, that, for su�ciently large i ∈ N, the mapping

E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

∣∣∣
V

(2)
i

: V
(2)
i −→ (E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

)(V
(2)
i ) ⊆ V (4)

∞ (3.26)

is a di�eomorphism, satisfying

(E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

)(V
(2)
i ) ⊇ V (1)

∞

The �rst part of the following argumentation shows, that the map in (3.26) is

well-de�ned.

From Fact 4 and Fact 6 we already know, that for each j ∈ {1, ..., N(δ)}
the sequence

(ui,j)i∈N ⊆ C2,β(B(0, δ3),RN0−n)

converges to the mapping

u∞,j ∈ C∞(B(0, δ3),RN0−n)

with respect to the C2,β(B(0, δ3),RN0−n)-topology as i tends to in�nity. In

particular, (3.23) and (3.20) imply, that M
(3)
i converges to M

(3)
∞ with respect

to the Hausdor� distance in RN0 . This allows to assume that E
V

(3)
i

(V
(3)
i ) =

M
(3)
i ⊆ B(M

(3)
∞ , σ) holds for all i ∈ N. Hence, regarding (3.24),

π ◦ E
V

(3)
i

: V
(3)
i −→M (4)

∞

is a well-de�ned mapping. Now, let x0 ∈ B(0, δ3), j ∈ {1, ..., N(δ)}, y0 =

ϕ−1
∞,j(x0) ∈ V (3)

∞ and z0 = u∞,j(x0), then

Tj(x0, z0) = E
V

(3)
∞

(y0) ∈ E
V

(3)
∞

(ϕ−1
∞,j(B(0, δ3)))

Since E
V

(3)
∞

is a di�eomorphism onto his image, the set E
V

(3)
∞

(ϕ−1
∞,j(B(0, δ3)))

is relatively open in M
(3)
∞ . Thus, there exists r0 > 0 so that

Tj(Br0(x0)×Br0(z0)) ∩M (3)
∞ ⊆ E

V
(3)
∞

(ϕ−1
∞,j(B(0, δ3)))
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Here, we may assume that r0 > 0 is chosen to be small enough so that we also

have

π(Tj(Br0(x0)×Br0(z0))) ⊆ E
V

(3)
∞

(ϕ−1
∞,j(B(0, δ3))) (3.27)

Let s0 ∈ (0, r0] so that

Tj(EV (3)
∞
◦ ϕ−1
∞,j(x)) = (x, u∞,j(x)) ∈ Br0(x0)×Br0(z0) ∀x ∈ Bs0(x0)

Due to the convergence of the sequence (ui,j)i∈N ⊆ C2,β(B(0, δ3),RN0−n) we

may also assume that

Tj(EV (3)
i
◦ ϕ−1

i,j (x)) = (x, ui,j(x)) ∈ Br0(x0)×Br0(z0) ∀x ∈ Bs0(x0)

respectively

E
V

(3)
i
◦ ϕ−1

i,j (x) ∈ Tj(Br0(x0)×Br0(z0)) ∩M (3)
i ∀x ∈ Bs0(x0)

for all i ∈ N. In this situation, (3.27) implies

π ◦ E
V

(3)
i
◦ ϕ−1

i,j (x) ∈ E
V

(3)
∞

(ϕ−1
∞,j(B(0, δ3))) ∀x ∈ Bs0(x0)

Thus, the mapping

ϕ∞,j ◦ E−1

V
(4)
∞
◦ π ◦ E

V
(3)
i
◦ ϕ−1

i,j

∣∣∣
Bs0 (x0)

: Bs0(x0) −→ B(0, δ4) (3.28)

is well-de�ned. Now, we show that the map in (3.28) de�nes a di�eomorphism,

where the range needs to be restricted. This implies that the map, that is

de�ned in (3.26), is a local di�eomorphism. We have

ϕ∞,j ◦ E−1

V
(4)
∞
◦ π ◦ E

V
(3)
i
◦ ϕ−1

i,j

=(E
V

(4)
∞
◦ ϕ−1
∞,j)

−1 ◦ π ◦ Tj ◦ (·, ui,j(·))

=(Tj ◦ (·, u∞,j(·))−1 ◦ π ◦ Tj ◦ (·, ui,j(·))

Hence, using the C2,β-convergence of the sequence (ui,j)i∈N, we conclude that

the sequence (ϕ∞,j ◦ E−1

V
(4)
∞
◦ π ◦ E

V
(3)
i
◦ ϕ−1

i,j )i∈N converges with respect to the

C1(Bs0(x0), B(0, δ4))-topology to

(Tj ◦ (·, u∞,j(·))−1 ◦ π ◦ Tj ◦ (·, u∞,j(·))

=(E
V

(4)
∞
◦ ϕ−1
∞,j)

−1 ◦ π ◦ E
V

(3)
∞
◦ ϕ−1
∞,j
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=(E
V

(4)
∞
◦ ϕ−1
∞,j)

−1 ◦ E
V

(3)
∞
◦ ϕ−1
∞,j = IdBs0 (x0)

as i ∈ N tends to in�nity. Consequently, since each immersion is a local

di�eomorphism, we may assume that

ϕ∞,j ◦ E−1

V
(4)
∞
◦ π ◦ E

V
(3)
i
◦ ϕ−1

i,j

∣∣∣
Bs0 (x0)

:

Bs0(x0) −→ (ϕ∞,j ◦ E−1

V
(4)
∞
◦ π ◦ E

V
(3)
i
◦ ϕ−1

i,j )(Bs0(x0))

is a di�eomorphism, provided that s0 > 0 is small enough. From this, we

conclude, that

ϕ∞,j ◦ E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i
◦ ϕ−1

i,j

∣∣∣
B(0,

δ2+δ3
2

)
: B(0,

δ2 + δ3

2
) −→ B(0, δ4)

is well-de�ned and converges with respect to the C2(B(0, δ2+δ3
2

), B(0, δ4))-

topology to Id
B(0,

δ2+δ3
2

)
.

Finally, we show that the mapping, which is de�ned in (3.26), is also a

global di�eomorphism. It remains to show the global injectivity (cf. [29, ll.

36-43]): Let y1, y2 ∈ V (2)
i so that

(E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

)(y1) = (E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

)(y2)

Using the fact that E
V

(4)
∞

: V
(4)
∞ −→M

(4)
∞ is bijective, we obtain

(π ◦ E
V

(2)
i

)(y1) = (π ◦ E
V

(2)
i

)(y2)

Then (3.25) implies

|E
V

(2)
i

(y1)− E
V

(2)
i

(y2)|

=|E
V

(2)
i

(y1)− (π ◦ E
V

(2)
i

)(y1) + (π ◦ E
V

(2)
i

)(y2)− E
V

(2)
i

(y2)|

≤|E
V

(2)
i

(y1)− (π ◦ E
V

(2)
i

)(y1)|+ |(π ◦ E
V

(2)
i

)(y2)− E
V

(2)
i

(y2)|

≤2ε

Now, let j ∈ {1, ..., N(δ)} such that y1 ∈ ϕ−1
i,j (B(0, δ2)), then, from the de�ni-

tion of E
V

(2)
i

(cf. (3.20)) we infer

|ϕi,j(y1)− ξ(|ϕi,j(y2)|) · ϕi,j(y2))| ≤ 2ε ≤ δ3 − δ2

4
(3.29)
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and

|1− ξ(|ϕi,j(y2)|)| ≤ 2ε ≤ 1

100
(3.30)

From (3.30) and (3.19), we infer y2 ∈ ϕ−1
i,j (B(0, δ6)). Suppose that |ϕi,j(y2)| ∈

[δ5, δ6), then

|ξ(|ϕi,j(y2)|)ϕi,j(y2)| = |ξ(|ϕi,j(y2)|)| · |ϕi,j(y2)| ≥ 95

100
δ5

(3.18)
=

95

100
· 10

9
δ4 > δ4

which yields a contradiction because (3.29) and ϕi,j(y1) ∈ B(0, δ2) together

imply

|ξ(|ϕi,j(y2)|)ϕi,j(y2))| < δ4

Hence, we have y2 ∈ ϕ−1
i,j (B(0, δ2+δ3

2
)). This shows, that the mapping in (3.26)

is a di�eomorphism. Finally, we are interested in the inverse mappings. These

mappings shall satisfy the desired properties from the statement of the result.

For each i ∈ N let

φi := (E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

)−1
∣∣∣
V

(1)
∞

: V (1)
∞ −→ Bg(i)(pi, 1)

and let

Fi := φi|Bd∞ (p∞,1/10) : Bd∞(p∞, 1/10) −→ Bg(i)(pi, 1) (3.31)

It remains to show that F ∗i g(i) converges to g in the W 2,n
2 -topology, as i tends

to in�nity. In local coordinates we have

(F ∗i g(i))kl = ∂kF
j1
i g(i)j1j2∂lF

j2
i

∂m1(F
∗
i g(i))kl = ∂m1∂kF

j1
i g(i)j1j2∂lF

j2
i + ∂kF

j1
i ∂m1g(i)j1j2∂lF

j2
i

+ ∂kF
j1
i g(i)j1j2∂m1∂lF

j2
i

and

∂m2∂m1(F
∗
i g(i))kl = ∂m2∂m1∂kF

j1
i g(i)j1j2∂lF

j2
i + ∂m1∂kF

j1
i ∂m2g(i)j1j2∂lF

j2
i

+ ∂m1∂kF
j1
i g(i)j1j2∂m2∂lF

j2
i

+ ∂m2∂kF
j1
i ∂m1g(i)j1j2∂lF

j2
i + ∂kF

j1
i ∂m2∂m1g(i)j1j2∂lF

j2
i

+ ∂kF
j1
i ∂m1g(i)j1j2∂m2∂lF

j2
i

+ ∂m2∂kF
j1
i g(i)j1j2∂m1∂lF

j2
i + ∂kF

j1
i ∂m2g(i)j1j2∂m1∂lF

j2
i

+ ∂kF
j1
i g(i)j1j2∂m2∂m1∂lF

j2
i

(3.32)
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for all m1,m2 ∈ {1, ..., n}. We recall that for each i ∈ N the di�eomorphism

Fi is, by de�nition (cf. (3.31)), the inverse mapping of E−1

V
(4)
∞
◦ π ◦ E

V
(2)
i

and

the mappings E
V

(k)
i

(cf. (3.20) / (3.21)), are constructed from the transition

maps in (3.8). So, in order to analyze the convergence behavior of the sequence

(Fi)i∈N, we need to consider the transition maps Ti,s,t in (3.8), keeping Cramer's

rule for the Jacobian of an inverse mapping in mind.

Since gkl(i) converges locally to gkl with respect to the W 2,n
2 -topology (cf.

Fact 5) and the transition maps converge locally with respect to the C2,β-

topology to the transition map in the limit space (cf. Fact 4), it remains to

consider the terms in (3.32) which contain a third order derivative of Fi. In

order to get information about these derivatives we derive (3.16) having (3.17)

in mind, i.e.:

gkl(i)∂k∂l∂j(T
m
s,t − Tmi,s,t) =− (∂jg

kl(i))∂k∂l(T
m
s,t − Tmi,s,t)

+ ∂j(g
kl(i)− gkl)∂k∂lTms,t + (gkl(i)− gkl)∂k∂l∂jTms,t

(3.33)

Furthermore, deriving (3.9), i.e.:

gkl(i)∂k∂l∂jT
m
i,s,t = −(∂jg

kl(i))∂k∂lT
m
i,s,t ∀m ∈ {1, ..., n}

yields a uniform local Ln-bound on ∂k∂l∂jT
m
i,s,t, where we have used [15, The-

orem 9.11, p. 235-236]. Hence, also using [15, Theorem 9.11, p. 235-236],

(3.33) implies that Tmi,s,t converges locally with respect to the W 3,n-topology

to Tms,t for each m ∈ {1, ..., n}. Consequently, (3.32) implies the desired W 2,n
2 -

convergence of the sequence F ∗i g(i) to the limit.
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Appendix A

Auxilary Results and Results from

Riemannian geometry

A.1 Auxilary Results

Lemma A.1. Let (Mn, g(t))t∈[t1,t2] be a smooth family of Riemannian mani-

folds and let γ : [0, L] −→M be a smooth curve. Then we have the estimates:

∣∣∣∣ ddtL(γ, t)

∣∣∣∣ ≤ ∫
γ

|g′(t)|g(t) dσt (A.1)∣∣∣∣∣log

(
|v|2g(t2)

|v|2g(t1)

)∣∣∣∣∣ ≤
∫ t2

t1

‖g′(t)‖L∞(M,g(t)) dt ∀v ∈ TM (A.2)∣∣∣∣ ∂∂t |∇γ̇ γ̇|2g(t)

∣∣∣∣ ≤ |g′|g(t) |∇γ̇ γ̇|2g(t) + C(n)|γ̇|2g(t) |∇γ̇ γ̇|g(t) |∇g
′|g(t) (A.3)

on M × (t1, t2).

Proof. Using a unit-speed-parametrization of γ we infer (A.1). Estimate (A.2)

is proven in [16, 14.2 Lemma, p. 279]. In order to prove (A.3), we �x x ∈ M
and t ∈ (t1, t2) and use normal coordinates around x (cf. [23, pp. 76-81]). In

this point we have:

|γ̇|2g(t) = (γ̇k∂k, γ̇
l∂l)g(t) =

n∑
k=1

(γ̇k)2 (A.4)
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and, using [23, Lemma 4.3., p. 51]

|∇γ̇ γ̇|2g(t) =(γ̈k∂k + Γkij(g(t))γ̇iγ̇j∂k, γ̈
p∂p + Γplm(g(t))γ̇lγ̇m∂p)g(t)

=(γ̈k∂k, γ̈
n∂n)g(t) =

n∑
k=1

(γ̈k)2
(A.5)

We also need the variation of the Christo�el symbols from (cf. [10, Lemma

2.27, p. 108]), i.e.:

∂

∂t
Γkij =

1

2
gkl(∇ig

′
jl +∇jg

′
il −∇lg

′
ij) (A.6)

Here, we have suppressed the time dependency in the notation. Using (A.4),

(A.5), (A.6) and Γkij = 0 in x, we obtain:∣∣∣∣ ∂∂t |∇γ̇ γ̇|2g

∣∣∣∣ =

∣∣∣∣ ∂∂t(γ̈k∂k + Γkij γ̇
iγ̇j∂k, γ̈

p∂p + Γplmγ̇
lγ̇m∂p)g

∣∣∣∣
≤
∣∣∣∣ ∂∂t(γ̈k∂k, γ̈p∂p)g

∣∣∣∣+ 2

∣∣∣∣ ∂∂t(γ̈k∂k,Γplmγ̇lγ̇m∂p)g
∣∣∣∣+

∣∣∣∣ ∂∂t(Γkij γ̇iγ̇j∂k,Γplmγ̇lγ̇m∂p)g
∣∣∣∣

≤

∣∣∣∣∣ ∂∂t
n∑
k=1

(γ̈k)2(∂k, ∂k)g

∣∣∣∣∣+ 2

∣∣∣∣ ∂∂t [γ̈kΓplmγ̇lγ̇m(∂k, ∂p)g
]∣∣∣∣

=

∣∣∣∣∣
n∑
k=1

(γ̈k)2(∂k, ∂k)g′

∣∣∣∣∣+ 2

∣∣∣∣ ∂∂t [γ̈kΓplmγ̇lγ̇m(∂k, ∂p)g
]∣∣∣∣

=

∣∣∣∣∣
n∑
k=1

(γ̈k)2(∂k, ∂k)g′

∣∣∣∣∣+ 2

∣∣∣∣∣
n∑

k,l,m,p=1

γ̈k
(
∂

∂t
Γplm

)
γ̇lγ̇m(∂k, ∂p)g

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

(γ̈k)2(∂k, ∂k)g′

∣∣∣∣∣+ 2

∣∣∣∣∣
n∑

k,l,m=1

γ̈k
(
∂

∂t
Γklm

)
γ̇lγ̇m

∣∣∣∣∣
≤|g′|g |∇γ̇ γ̇|2t + C1(n)|γ̇|2t |∇γ̇ γ̇|g

∣∣∣∣∣
n∑

k,l,m=1

(
∂

∂t
Γklm

)∣∣∣∣∣
≤|g′|g |∇γ̇ γ̇|2g + C2(n)|γ̇|2t |∇γ̇ γ̇|g|∇g′|g

Lemma A.2. Let (Mn, g) be a closed Riemannian manifold, k ∈ N, x ∈ M
and c > 0. Then we have the following equality

fk(x, cg) = c−1fk(x, g) (A.7)
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Proof. For each j ∈ {0, ..., k} we obtain in local coordinates

|cg∇jRmcg|2cg
=(c−1gα1β1) · ... · (c−1gαjβj) · (c−1gip)(c−1gkq)(c−1glr)(c−1gms)

· cg∇α1,...,αjRiklm(cg)cg∇β1,...,βjRpqrs(cg)

=c−j · gα1β1 · ... · gαjβj · c−4 · gipgkqglrgms

· c2 · g∇α1,...,αjRiklm(g)g∇β1,...,βjRpqrs(g)

=c−j−2 · gα1β1 · ... · gαjβj · gipgkqglrgms · g∇α1,...,αjRiklm(g)g∇β1,...,βjRpqrs(g)

=c−(j+2)|g∇jRmg|2g

Here, we have used the fact that, the covariant derivative is invariant under

rescaling (cf. [10, p. 3, Exercise 1.2]) and the scaling behavior of the Rieman-

nian curvature tensor (cf. [10, p. 6, Exercise 1.11]).

Lemma A.3. Let (Mn, g(t))t∈[0,T ] be a smooth solution to the �ow given in

(1.3) then we have:∫ t

0

∫
M

|grad Fg(s)|2 dVg(s)ds = F(g(0))−F(g(t)) (A.8)

for all t ∈ [0, T ].

Proof. This follows from [5, 4.10 De�nition, p. 119].

In particular, we can see that the energy F(g(t)) is monotone decreasing

under the �ow given in (1.3), and∫ t

0

∫
M

|grad Fg(s)|2 dVg(s) ds ≤ ε (A.9)

for all t ∈ [0, T ] under the assumption that F(g0) ≤ ε

Theorem A.4. ([35, Lemma 2.11, p. 269]) Fix m,n ≥ 0. There exists a

constant C(n,m) > 0 so that if (Mn, g(t))t∈[0,T ] is a complete solution to the

L2-�ow satisfying

sup
t∈[0,T ]

t
1
2

∥∥Rmg(t)

∥∥
L∞(M,g(t))

≤ A (A.10)

then for all t ∈ (0, T ],∥∥∇mRmg(t)

∥∥
L∞(M,g(t))

≤ C
(

(A+ 1)t−
1
2

)1+m
2

(A.11)
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Lemma A.5. Let M4 be a closed Riemannian manifold and (M, g(t))t∈[0,T ] be

a solution to the L2-�ow. We have the following estimates

V olg(t)(M) = V olg(0)(M) for all t ∈ (0, T ] (A.12)

and

V olg(t)(U)
1
2 = V olg(0)(U)

1
2 − Ct

1
2

(∫ t

0

∫
U

|grad Fg(s)|2g(s) dVg(s) ds
) 1

2

for all t ∈ (0, T ] and U ⊆M open

(A.13)

Proof. The equation (A.12) is a special case of the �rst equation in [34, p. 44].

Furthermore[
V olg(t)(U)

] 1
2 −

[
V olg(0)(U)

] 1
2

=

∫ t

0

d

ds

[
V olg(s)(U)

] 1
2 ds =

1

2

∫ t

0

d
ds
V olg(s)(U)[

V olg(s)(U)
] 1

2

dt

=− 1

4

∫ t

0

∫
U
trg(s) grad Fg(s) dVg(s)[

V olg(s)(U)
] 1

2

ds

≥− 1

4

∫ t

0

(∫
U
|trg(s) grad Fg(s)|2 dVg(s)

) 1
2[

V olg(s)(U)
] 1

2

[
V olg(s)(U)

] 1
2 ds

≥− C
∫ t

0

(∫
U

|grad Fg(s)|2g(s) dVg(s)
) 1

2

ds

≥− Ct
1
2

(∫ t

0

∫
U

|grad Fg(s)|2g(s) dVg(s) ds
) 1

2

Lemma A.6. (cf. [34, Corollary 1.5]) Let (Mn
i , (gi(t))t∈(t1,t2), pi) be a sequence

of complete solutions to the �ow given in (1.3). Suppose there exists a constant

K > 0 such that

sup
Mi×(t1,t2)

|Rmgi |gi ≤ K

Then there exists a subsequence (Mn
ij
, (gij(t))t∈[t1,t2], pij) and a one-parameter

familiy of complete pointed metric spaces (X, (d(t))t∈[t1,t2], x) such that for each

t ∈ (t1, t2) the sequence (Mn
ij
, dgij (t), pij) converges to (X, d(t), x) in the sense
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of C∞-local submersions (cf. De�nition C.12). The local lifted metrics hy(t)

are solutions to (1.3). If there exists a constant δ > 0 so that

injgi(t)(Mi, pi) ≥ δ

then the limit space (X, d(t), x) is a smooth n-dimensional Riemannian mani-

fold, and the limiting metric is the C∞-limit of the metrics gi(t).

Lemma A.7. Let Ω ⊆ Rn be a bounded domain, and u ∈ W 2,2p(Ω), where

p ≥ p0(n), satisfying

akl∂k∂lu = f (A.14)

where (akl)1≤k,l≤n ⊆ C0,α(Ω) satis�es

akl ≡ alk ∀k, l ∈ {1, ..., n}

c1|ξ|2 ≤ akl(x)ξkξl ≤ c2|ξ|2 ∀x ∈ Ω and ξ ∈ Rn

max
1≤k,l≤n

sup
x,y∈Ω,x 6=y

|akl(x)− akl(y)|
|x− y|α

≤ c3

akl ∈ W 1,2p(Ω) ∀k, l ∈ {1, ..., n}

and f ∈ W 1,p(Ω), then u ∈ W 3,p(Ω0) for each Ω0 ⊂⊂ Ω. Furthermore we have

the following estimate

‖u‖W 3,p(Ω0)

≤C
(
n, p, c1, c2, c3, α,Ω0,Ω, max

1≤k,l≤n

∥∥akl∥∥
W 1,2p(Ω)

, ‖f‖W 1,p(Ω) , ‖u‖W 2,2p(Ω)

)
(A.15)

Proof. Let i ∈ {1, ..., n}, h ∈
(
0, 1

2
dist(Ω1, ∂Ω)

)
where Ω1 ⊆ Ω is a domain

satisfying Ω0 ⊂⊂ Ω1 ⊂⊂ Ω. As in [15, 7.11, (7.53), p. 168] we de�ne for each

x ∈ Ω1 the di�erence quotient in the direction ei of size h 6= 0 as follows

∆h
i u(x) :=

u(x+ h)− u(x)

h

An application of this operation to (A.14) implies

akl(·+ h) (∂k∂l∆
h
i u) = ∆h

i f − (∆h
i a

kl)∂k∂lu (A.16)

on Ω1, [15, 9.5, Theorem 9.11., pp. 235-236] and [15, 7.11, Lemma 7.23., p.

168] imply∥∥∆h
i u
∥∥
W 2,p(Ω0)

≤ C(n, p, c1, c2, c3, α,Ω0,Ω)·



78

[∥∥∆h
i u
∥∥
Lp(Ω1)

+
∥∥∆h

i f
∥∥
Lp(Ω1)

+
∥∥(∆h

i a
kl)∂k∂lu

∥∥
Lp(Ω1)

]
≤ C(n, p, c1, c2, c3, α,Ω0,Ω)

[
‖u‖W 1,p(Ω) + ‖f‖W 1,p(Ω)

]
+ C(n, p, c1, c2, c3, α,Ω0,Ω)

∑
1≤k,l≤n

∥∥∆h
i a

kl
∥∥
L2p(Ω1)

‖∂k∂lu‖L2p(Ω)

≤ C(n, p, c1, c2, c3, α,Ω0,Ω)
[
‖u‖W 1,p(Ω) + ‖f‖W 1,p(Ω)

]
+ C(n, p, c1, c2, c3, α,Ω0,Ω) max

1≤k≤l≤n

∥∥akl∥∥
W 1,2p(Ω)

‖u‖W 2,2p(Ω)

This implies (A.15).

A.2 Results from Riemannian geometry

Lemma A.8. ([35, Lemma 2.9, p. 268]) Let (Mn, g) be a complete Rieman-

nian manifold, satisfying f1(M, g) ≤ K then there are constants C(n), µ(n) >

0 such that in any normal coordinate chart around p one has

sup
Bg(p,µK−

1
2 )

|Γ| ≤ CK
1
2

Here, Γ is introduced in De�nition C.9.

Lemma A.9. ([35, Lemma 2.7, p. 268]) Let (Mn, g) be a complete Rieman-

nian manifold with ‖Rmg‖L∞(M,g) ≤ K and injg(M) ≥ ι, then there exists

µ(n) > 0 and c(n) > 0 so that for all r < µmin{i,K− 1
2} and all p ∈ M and

v ∈ TpM one has the following estimate

Area
[
expp(Br(0) ∩ 〈v〉⊥)

]
≥ crn−1

Lemma A.10. ([35, Lemma 2.8, p. 268]) Let (M, g) and (N, h) be smooth

Riemannian manifolds and let F : M −→ N be a smooth submersion. Fur-

thermore, let φ : M −→ [0,∞) be a smooth function, then one has:∫
M

φ dVg =

∫
y∈N

∫
x∈F−1(y)

φ(x)

NJacF (x)
dF−1(y) dVh (A.17)

where NJacF (x) is the determinant of the derivative restricted to the orthog-

onal complement of its kernel. This quantity is also called "normal Jacobian".
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Theorem A.11. ([1, Theorem 2.2]) Let (Nn
i , hi)i∈N be a sequence of closed

Riemannian manifolds with the following properties: There exists k ∈ N and

{Γl}l∈{1,...,k} ⊆ R>0, ι, v0, V0 > 0 such that:∥∥∇lRmgi

∥∥
L∞(Mi,gi)

≤ Γl ∀i ∈ N, ∀l ∈ {0, ..., k} (A.18)

injgi(Mi) ≥ ι ∀i ∈ N (A.19)

v0 ≤ V olgi ≤ V0 ∀i ∈ N (A.20)

then there exists a subsequence (Nn
ij
, hij)j∈N converging in the Ck,α-sense to a

Ck+1,α-Riemannian manifold.

Lemma A.12. Let n ∈ N, ι > 0 and let (Mn, g) be a complete n-dimensional

Riemannian manifold such that the following is true

Rcg ≡ 0

‖Rmg‖L∞(Mn,g) <∞

injg(M) ≥ ι

then

‖Rmg‖L∞(Mn,g) ≤ C(n, ι).

Proof. We argue by contradiction. Suppose this statement would be wrong,

then we could �nd a sequence of complete n-dimensional Ricci-�at manifolds

(Mi, gi)i∈N so that

injgi(Mi) ≥ ι

and

‖Rmgi‖L∞(Mi,gi)
= Ci

where

lim
i→∞

Ci =∞

We construct a blow-up sequence as follows: for each i ∈ N let

hi := Ci · gi
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so that

injhi(Mi) ≥
√
Ciι

and

‖Rmhi‖L∞(Mi,hi)
= 1

For each i ∈ N we choose a �xed point pi ∈ Mi, so that |Rmhi(pi)|hi ≥ 1
2
.

Using Rchi ≡ 0, the �rst equation on [1, p. 461] or [16, 7., 7.1. Theorem, p.

274] implies

∆hiRmhi = Rmhi ∗Rmhi (A.21)

and consequently

‖∆hiRmhi‖L∞(Mi,hi)
≤ K(n)

Furthermore, from [17, Lemma 1], we obtain uniform C0-bounds on the metrics

(hi)i∈N in normal coordinates. Hence, an iterative application of the theory of

linear elliptic equations of second order to (A.21), following the arguments of

[1, p. 478, second paragraph], we obtain uniform higher order estimates, i.e.:∥∥∇k
hi
Rmhi

∥∥
L∞(Mi,hi)

≤ K(n, k)

for all i, k ∈ N. Hence, [1, Theorem 2.2, pp. 464-466] implies that there exists

a subsequence (Mi, gi, pi)i∈N that converges in the pointed Ck,α-sense, where

k ∈ N is arbitrary, to a smooth manifold (X, h, p) satisfying

|Rmh(p)|h ≥
1

2

and, using [28, Theorem]

injh(X, p) =∞

An iterative application of [8, Theorem 2] implies that (X, h, p) = (Rn, geuc, 0)

which yields a contradiction.



Appendix B

Interpolation, Sobolev spaces and

Besov spaces

B.1 Interpolation theory

The following de�nition of an interpolation couple is a standard de�nition in

the interpolation theory. We refer to [41, 1.2.1., p. 18].

De�nition B.1. An interpolation couple {A0, A1} is a couple of complex Ba-

nach spaces A0 and A1 which are linear subspaces of a linear complex Hausdor�

space A and continuously embedded in A.

Lemma B.2. ([41, 1.2.1., Lemma, p. 18]) Let {A0, A1} be an interpolation

couple, then the space A0 ∩ A1 endowed with the norm

‖a‖A0∩A1 := max(‖a0‖A0 , ‖a1‖A1)

and the space A0 + A1 endowed with the norm

‖a‖A0+A1 := inf
a=a0+a1
aj∈Aj

(‖a0‖A0 + ‖a1‖A1)

are Banach spaces.

In the following, we introduce the concept of complex interpolation (cf. [41,

1.9., pp. 55-61]). A part of the theory of analytic functions with values in

a Banach space is explained in [12, III.14., pp. 224-232]. Throughout let

S := {z ∈ C : Re(z) ∈ (0, 1)}.
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De�nition B.3. ([41, 1.9.1., De�nition., p. 56]) Let {A0, A1} be an interpo-

lation couple and let γ ∈ R. Then by de�nition F (A0, A1, γ) is the set of all

functions f : S −→ A0 + A1 satisfying the following properties

• f is continuous with respect to the ‖ · ‖A0+A1-norm

• f |S is analytic with respect to the ‖ · ‖A0+A1-norm, i.e.: for each z0 ∈ S

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0

exists, where convergence is understood to be as convergence with respect

to the ‖ · ‖A0+A1-norm.

• supz∈S e
−|γ|·|Im(z)| ‖f(z)‖A0+A1

<∞

• the map f(i·) : R −→ A0 (i.e. t 7→ f(it)) is well-de�ned and continuous

with respect to the ‖ · ‖A0-norm

• the map f(1 + i·) : R −→ A1 (i.e. t 7→ f(1 + it)) is well-de�ned and

continuous with respect to the ‖ · ‖A1-norm

• ‖f‖F (γ) := max{supt∈R e
−γ|t|‖f(it)‖A0 , supt∈R e

−γ|t|‖f(1 + it)‖A1} <∞

Theorem B.4. ([41, 1.9.1., Theorem. (a), p. 56]) Let {A0, A1} be an inter-

polation couple and let γ ∈ R then F (A0, A1, γ) endowed with the norm ‖·‖F (γ)

is a Banach space.

De�nition B.5. ([41, 1.9.2., De�nition., p. 58]) Let {A0, A1} be an interpo-

lation couple, θ ∈ (0, 1) and γ ∈ R. Then we de�ne

[A0, A1]θ,γ := {a ∈ A0 + A1 : ∃f ∈ F (A0, A1, γ) s. th. f(θ) = a}

and

‖a‖[A0,A1]θ,γ := inf
{
‖a‖F (γ) : f ∈ F (A0, A1, γ) s. th. f(θ) = a

}
Theorem B.6. ([41, 1.9.2., Theorem., pp. 58-59]) Let {A0, A1} be an inter-

polation couple, θ ∈ (0, 1) and γ ∈ R. Then [A0, A1]θ,γ endowed with the norm

‖ · ‖[A0,A1]θ,γ is a Banach space.
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De�nition B.7. ([41, 1.9.2., Convention., p. 59]) Let {A0, A1} be an inter-

polation couple and θ ∈ (0, 1). Then we de�ne

[A0, A1]θ := [A0, A1]θ,0

There is a wide range of standard properties of the spaces [A0, A1]θ, where

θ ∈ (0, 1). Some of them are listed in [41, 1.9.3., Theorem., p. 59]. In our

context, the property that is stated in [41, 1.9.3., p. 59 (3)] is crucial:

Lemma B.8. ([41, 1.9.3., Theorem. (f), p. 59]) Let {A0, A1} be an interpo-

lation couple and θ ∈ (0, 1) then the following estimate holds:

‖a‖[A0,A1]θ ≤ C(θ) ‖a‖1−θ
A0
‖a‖θA1

∀a ∈ A0 ∩ A1 (B.1)

B.2 Sobolev spaces and Besov spaces

The following two de�nitions are deduced from [39, 1.2.1]

De�nition B.9. ([39, 1.2.1, pp. 12-13]) We de�ne the Schwartz space S as

follows

S :=

u ∈ C∞(Rn,C) : pk(u) := sup
x∈Rn

(1 + |x|)k
∑
|α|≤k

|Dαu(x)| <∞∀k ∈ N


and we introduce the following metric on S(Rn,C)

dS(u, v) :=
∞∑
k=1

1

2k
pk(u− v)

1 + pk(u− v)

The topological dual space (in the distributional sense) S ′, equipped with the

strong topology, is called space of all tempered distibutions.

De�nition B.10. ([39, 1.2.1, p. 13 (2) / (3)]) The mapping

F : S −→ S

[Fu](x) := (2π)−
n
2

∫
Rn
e−i〈x,ξ〉 u(ξ) dξ, x ∈ Rn

is called Fourier transform. The inverse Fourier transform is given by

F−1 : S −→ S

[F−1u](x) := (2π)−
n
2

∫
Rn
ei〈x,ξ〉 u(ξ) dξ, x ∈ Rn

The induced dual mapping on S ′ is also denoted by F and F−1
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The following remark can be found in [41, 2.2.1, p. 152]

Remark B.11. ([41, 2.2.1, p. 152]) The mapping F an isomorphism from S
to S and from S ′ to S ′.

We also need the following consequence of the Paley-Wiener-Schwartz the-

orem:

Lemma B.12. ([41, 2.2.1, p. 152]) Let u ∈ S ′ such that Fu has compact

support, then u is a regular distribution that is induced by an analytic function

which shall be also denoted by u and we have the following estimate

|u(x)| ≤ C(1 + |x|2)N ∀x ∈ Rn

where C and N do not depend on x.

The following de�nitions are introduced in [41, 2.3.1, pp. 168-169]

De�nition B.13. We de�ne the following system of sets

Mj :=

{x ∈ Rn : |x| ≤ 2} if j = 0

{x ∈ Rn : |x| ∈ [2j−1, 2j+1]} if j ∈ N\{0}

De�nition B.14. (a) For s ∈ (−∞,∞), p ∈ (1,∞) and q ∈ [1,∞) we set

Bs
p,q(Rn,C) :=

{
u ∈ S ′ : u =

S′

∞∑
j=0

uj s.th. supp(Fuj) ⊆Mj

for all j ∈ N and

(
∞∑
j=0

(2sj‖uj‖Lp(Rn,C))
q

) 1
q

<∞
}

‖u‖Bsp,q(Rn,C) := inf

{(
∞∑
j=0

(2sj‖uj‖Lp(Rn,C))
q

) 1
q

: u =
S′

∞∑
j=0

uj and

supp(Fuj) ⊆Mj for all j ∈ N

}

and for s ∈ (−∞,∞), p ∈ (1,∞) and q =∞ we set

Bs
p,∞(Rn,C) :=

{
u ∈ S ′ : u =

S′

∞∑
j=0

uj s.th. supp(Fuj) ⊆Mj

for all j ∈ N and sup
j∈N

2sj‖uj‖Lp(Rn,C) <∞
}



85

‖u‖Bsp,∞(Rn,C) := inf

{
sup
j∈N

2sj‖uj‖Lp(Rn,C) : u =
S′

∞∑
j=0

uj and

supp(Fuj) ⊆Mj for all j ∈ N

}

(b) For s ∈ (−∞,∞), p ∈ (1,∞) and q ∈ (1,∞) we set

F s
p,q(Rn,C) :=

{
u ∈ S ′ : u =

S′

∞∑
j=0

uj s.th. supp(Fuj) ⊆Mj and

∫
Rn

(
∞∑
j=0

2sjq|uj(x)|q
) p

q

dx

 1
p

<∞
}

‖u‖F sp,q(Rn,C) := inf

{∫
Rn

(
∞∑
j=0

2sjq|uj(x)|q
) p

q

dx

 1
p

: u =
S′

∞∑
j=0

uj and

supp(Fuj) ⊆Mj for all j ∈ N

}

(c) For s ∈ (−∞,∞), p ∈ (1,∞) we set

Hs
p(Rn,C) := F s

p,2(Rn,C)

(d) For p ∈ (1,∞) we set

W s
p (Rn,C) :=

Hs
p(Rn,C) if s ∈ N ∪ {0}

Bs
p,p(Rn,C) if s ∈ R>0\N

The following result is a special case of a result which was suggested in [41,

pp. 179-180: Remark 4]. In order to clarify the continuous embeddedness we

give a proof.

Lemma B.15. For each s ∈ (0, 1), p ∈ (1,∞) and ε > 0 such that s− ε > 0

we have

Bs
p,p(Rn,C) ↪→ Hs−ε

p (Rn,C) (B.2)

Proof. Using [41, p. 172 (3)] or [39, p. 47 (7)] we obtain

Bs
p,p(Rn,C) ↪→ B

s− ε
2

p,p (Rn,C)
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[41, p. 172 (4a) and (4b)] imply that

B
s− ε

2
p,p (Rn,C) = F

s− ε
2

p,p (Rn,C)

where the corresponding norms are equivalent. Finally [41, p. 172 (3)] or [39,

p. 47 (8)] implies

F
s− ε

2
p,p (Rn,C) ↪→ F s−ε

p,2 (Rn,C)

By De�nition B.14 (c), the space F s−ε
p,2 (Rn,C) coincides withHs−ε

p (Rn,C) which

�nishes the proof.

The �rst part of the following Lemma yields a characterization of the space

Hs
p(Rn,C) by means of Fourier transformations. The second part shows that,

in the case of s ∈ N, the de�nition of the space W s
p (Rn,C) is equivalent to the

requirement that suitable weak derivatives exist and are bound in Lp(Rn,C).

This establishes a connection to the "classical analysis". The content of the

following Lemma is stated in [41, 2.3.3, Theorem., p. 177]

Lemma B.16. (a) Let s ∈ (−∞,∞) and p ∈ (1,∞). Then

Hs
p(Rn,C) = {u ∈ S ′ : ‖u‖Hs

p(Rn,C) := ‖F−1(1 + |x|2)
s
2Fu‖Lp(Rn,C) <∞}

and the norms ‖ · ‖Hs
p(Rn,C) and ‖ · ‖F sp,2(Rn,C) are equivalent.

(b) If s ∈ N>0 and p ∈ (1,∞) then

W s
p (Rn,C) =

{
u ∈ S ′ : ‖u‖W s

p (Rn,C) =

∑
|α|≤s

‖Dαu‖pLp(Rn,C)

 1
p

<∞
}

and the norms ‖ · ‖W s
p (Rn,C) and ‖ · ‖Hs

p(Rn,C) are equivalent.

We also want to give an appropriate characterization of the spaceW s
p (Rn,C)

where s > 0 is not a natural number. The following result, whose content

can be deduced from [40, 1.2.5, Theorem., p. 8] together with [40, 1.5.1,

De�nition., p. 28] shows, that for each s ∈ (0, 1) and p ∈ (1,∞) the de�nition

of the the space Bs
pp(Rn,C) is equivalent to the de�nition of the Slobodeckij

space W s
p (Rn,C), introduced in [39, 2.2.2., p. 36 (8)]. We also refer to [38,

p. 60: 9.2.11. Remark.] where the equivalence of the corresponding norms is

stated explicitly.
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Lemma B.17. Given s ∈ (0, 1) and p ∈ (1,∞), then

W s
p (Rn,C) = Bs

pp(Rn,C)

=

{
u ∈ W s

p (Rn,C) : ‖u‖W s
p (Rn,C) :=

(∫
Rn
|u(x)|p dx

) 1
p

+

(∫
Rn

∫
Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy

) 1
p

<∞

}

and the norm ‖ · ‖W s
p (Rn,C) is equivalent to the norm ‖ · ‖Bspp(Rn,C) which was

introduced in De�nition B.14 (a).

B.3 Interpolation of Sobolev spaces and Besov

spaces

There are a lot of interpolation results concerning F s
p,q-spaces. Some of them

are listed in [41, 2.4.2, Theorem 1., pp. 184-185]. We are interested in a special

case which is stated in [41, 2.4.2, Remark 2., p. 185], i.e.:

Lemma B.18. ([41, 2.4.2, p. 185 (11)]) If s0, s1 ∈ (−∞,∞), p0, p1 ∈ (1,∞)

and θ ∈ (0, 1) then

[Hs0
p0

(Rn,C), Hs1
p1

(Rn,C)]θ = Hs
p(Rn,C)

where

s = (1− θ)s0 + θs1 and
1

p
=

1− θ
p0

+
θ

p1

It is our aim to use this theory to treat the following problem: Given a

function u ∈ W 2
n/2(Rn,C), then the Sobolev embedding theorem tells us that

u ∈ W 1
n(Rn,C) and we have the following estimate:

‖u‖W 1
n(Rn,C) ≤ C(n) ‖u‖W 2

n/2
(Rn,C)

Under the additional assumption that u is also contained in W ε
p(Rn,C) where

ε > 0 and p ∈ (1,∞), we want to know if we have more regularity than

W 1
n(Rn,C), i.e.: we are interested in the question if u is also contained in

W 1
q (Rn,C) where q > n. This question will be answered in the following

theorem:
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Theorem B.19. Given n ∈ N and ε ∈ (0, 1). Then for each p ∈ (n, 4−ε
4−2ε

n)

there exists q(n, ε, p) ∈ (1,∞) such that if u ∈ W 2
n/2(Rn,C)∩W ε

q (Rn,C) , then

u ∈ W 1
p (Rn,C) and we have the following estimate

‖u‖W 1
p (Rn,C) ≤ C(n, q, ε) ‖u‖W 2

n/2
(Rn,C) ‖u‖W ε

q (Rn,C)

Proof. By De�nition B.14 (d)

W 2
n/2(Rn,C) = H2

n/2(Rn,C)

and

W ε
q (Rn,C) = Bε

qq(Rn,C)
(B.2)
↪→ Hε/2

q (Rn,C) (B.3)

Now, we apply Lemma B.18 to the spaces H2
n/2(Rn,C) and H

ε/2
q (Rn,C) i.e.:

we set

s0 = 2 s1 =
ε

2

p0 =
n

2
p1 = q

and we choose θ ∈ (0, 1) s.th. 1 = (1− θ)2 + θs1 = 1, i.e.: θ = 1
2−s1 , then

1

p
= (1− θ) 2

n
+ θ

1

q
=

1− s1

2− s1

· 2

n
+

1

2− s1

· 1

q
=

2− 2s1

2− s1

· 1

n
+

1

2− s1

· 1

q

=
2− ε
2− ε

2

· 1

n
+

1

2− ε
2

· 1

q
=

4− 2ε

4− ε
· 1

n
+

2

4− ε
· 1

q

Lemma B.8 implies

‖u‖F 1
p,2(Rn,C) ≤ C(ε) ‖u‖F 2

n/2,2
(Rn,C) ‖u‖F ε/2q,2 (Rn,C)

(B.3)

≤ C(n, p, ε) ‖u‖F 2
n/2,2

(Rn,C) ‖u‖Bεq,q(Rn,C)

The claim follows from the equivalence of the corresponding norms, stated in

Lemma B.16 (b) and Lemma B.17.



Appendix C

Notation and De�nitions

C.1 Notation

Here, we give an overview of a huge part of the notation we are using in this

work. Sometimes it is clear that a quantity depends on a certain metric. In

this situation we often omit the dependency in the notation, i.e. Rmg = Rm

for instance.

• For i ∈ {1, ..., n} ∂i = ∂
∂xi

denotes a coordinate vector in a local coordi-

nate system

• gij is a Riemannian metric in a local coordinate system and gij is the

inverse of the Riemannian metric

• dVg = dV is the volume form induced by a Riemannian metric g

• V olg(·) = V ol(·) is the n-dimensional volume of a set in a Riemannian

manifold (M, g)

• dAg = dA is the n−1-dimensional volume form induced by a Riemannian

metric g

• Areag(·) = Area(·) is the n − 1-dimensional volume of a set in a Rie-

mannian manifold (M, g)

• ωn is the euclidean volume of a euclidean unit ball

89
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• Rmg = Rm is the Riemannian curvature tensor. As in [36], in local

coordinates, the sign convention is consistent with [10, p. 5], i.e. Rijkl =

Rm
ijkgml.

• Rcg = Rc is the Ricci tensor

• Rg = R is the scalar curvature

• ∂
∂t
g = g′ is the time derivative of the metric

• grad Fg is the gradient of the functional Fg with respect to g (cf. [5,

Chapter 4, 4.10 De�nition, p. 119])

• R̊cg = R̊c is the traceless Ricci tensor, i.e.: R̊cg = Rcg − 1
n
Rg

• g∇T=∇T is the covariant derivative of a tensor T with respect to g

• g∇mT=∇mT is the covariant derivative of order m

• ∆g is the Laplacian, introduced in [23, p. 44, 3-4.]

• 〈T, S〉g=〈T, S〉 is the inner product of two tensors (cf. [23, Exercise 3.8,

p. 29])

• |T |g = |T | is the norm of a tensor, i.e. |T |g :=
√
〈T, T 〉

g

• diamg(·) = diam(·) is the diameter of a set in a Riemannian manifold

• injg(M,x) is the injectivity radius in a point of a Riemannian manifold

• injg(M) is the injectivity radius of a Riemannian manifold

• dg(x, y) = d(x, y) is the distance between the points x and y in a Rie-

mannian manifold

• Bd(x, r) = B(x, r) is the ball of radius r > 0 around x in a metric space

• dg is the metric which is induced by a Riemannian metric g

• Bg(x, r) = Bdg(x, r) is a metric ball in a Riemannian manifold

• d(x, y, t) is the distance between the points x and y in a Riemannian

manifold (M, g(t))
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• L(γ, t) is the length of a curve γ in a Riemannian manifold (M, g(t))

• The notation dσ, which occurs in an integral like
∫
γ
|grad F| dσ, refers

to the integration with respect to arc length

• D(γ(t), r) / D(γ, r) is a normal disc around a point in a curve γ / a

(normal) tube around a curve γ with radius r (cf. De�nition 2.1)

• fk(x, g) / fk(M, g) is introduced in De�nition 2.2

• dπ denotes the push forward and |dπ| denotes the operator norm of the

push forward of the projection map in the context of Theorem 2.3

• Γ denotes the local bilinear form in De�nition C.9, |Γ| is the norm of this

bilinear form which is also introduced in De�nition C.9

• W k,p(Ω) is / are the Sobolev space/-es de�ned in [15, Chapter 7, pp.

144-176] we point out, that in De�nition B.14, we have also introduced

spaces which are denoted by W s
p (Rn,C).

• rg(x) is the harmonic radius, which is introduced in De�nition 3.2. The

dependency of the constants R0, α, K1, K2 and K3 does not appear in

the notation, because these constants are assumed to be �xed along the

considered sequence

• The expressions ‖∂g‖Ln(B(0,r)) and [g]Cα(B(0,r)) appear in the de�nition of

the harmonic radius in De�nition 3.2. Other Lp-norms of the derivative

of g are de�ned similar.

C.2 De�nitions

De�nition C.1. ([7, De�nition 7.3.17., p. 256]) Let X and Y be two sets. A

correspondence between X and Y is a set R ⊆ X × Y satisfying the following

condition: for each x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ R,

and for each y ∈ Y there exists an element x ∈ X such that (x, y) ∈ R.

De�nition C.2. ([7, De�nition 7.3.21., p. 257]) Let R be a correspondence

between metric spaces (X, dX) and (Y, dY ). The distorsion of R is de�ned by

dis R := sup {|dX(x1, y1)− dY (x2, y2)| | (x1, x2), (y1, y2) ∈ R}
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De�nition C.3. ([21, p. 35: 2.14. De�nition]) Let (X, d) be a metric space

and ε > 0. A set S ⊆ X is called an ε-net if

distd(x, S) := inf
y∈S

d(x, y) < ε ∀x ∈ X

De�nition C.4. ([7, Exercise 1.6.4., p. 14]) Let (X, d) be a metric space and

ε > 0. A subset S ⊆ X is called ε-separated if d(x, y) ≥ ε for all x, y ∈ S

satisfying x 6= y.

We want to mention that this de�nition is stronger than the de�nition of

an r-net in [7, De�nition 1.6.1., p. 13], i.e.: an r-net in the sense of [21] is also

an r-net in the sense of [7].

De�nition C.5. (cf. [7, De�nition 8.1.1., p. 272]) A sequence (Xi, di, pi)i∈N

of pointed metric spaces converges in the pointed Gromov-Hausdor� sense to

a pointed metric space (X, d, p) if the following holds: For every r > 0 and

ε > 0 theres exists a number i0 such that for every i ≥ i0 there exists a map

fi : Bdi(pi, r) −→ X satisfying the following properties:

• f(pi) = p for all i ≥ i0

• dis(fi) := supx1,x2∈Bdi (pi,r)
|d(f(x1), f(x2))− di(x1, x2)| < ε for all i ≥ i0

• the ε-neighborhood of the set f(Bdi(pi, r)) contains the ball Bd(p, r − ε)

De�nition C.6. A sequence of pointed Riemannian manifolds (Mi, gi, pi)i∈N

converges to (M, g, p) with in the Ck,α-sense, if for each R > 0 there exists a

domain ΩR ⊆ M with Bg(p,R) ⊆ ΩR and embeddings fi : ΩR −→ Mi, where

i ≥ I0(R) ∈ N so that fi(ΩR) ⊇ Bgi(pi, R) and f ∗i gi converges to g in the

Ck,α-sense on ΩR.

De�nition C.7. Let (Mn, g) be a Riemannian manifold. A sequence of tensors

(Ti)i∈N onM converges to a tensor T with respect to theW 2,n
2 -topology, if there

exists a covering of charts (ϕs : Us −→ Rn)s∈{1,...,N} so that the overlap is

smooth and the components of Ti, considered as functions on ϕs(Us), converge

to the components of T with respect to the W 2,n
2 -topology.

De�nition C.8. Let (Mn, g) be a smooth Riemannian manifold, and let T be

a k-tensor �eld, then for each q ∈ [1,∞) we de�ne

‖T‖Lq(M,g) :=

(∫
M

|T |qg dVg
) 1

q
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and

‖T‖L∞(M,g) := ess sup
M
|T |g

Here we assume, that the desired expressions exist.

The following de�nition is based on [20, (1), p. 261]

De�nition C.9. Let (Mn, g) be a smooth Riemannian manifold p ∈ M , U ⊆
M a star-shaped neighborhood around p, and ϕ : U −→ V a normal chart

centered at p, then for each q ∈ U we de�ne a symmetric, bilinear map Γ as

follows:

Γ : TqM × TqM −→ TqM

(u, v) 7→ Γkiju
ivi∂k

and |Γ| is de�ned to be the smallest value C > 0 so that

|Γ(u, v)|g ≤ C|u|g|v|g

for all u, v ∈ TpM .

In the following, we introduce the concept of convergence in the sense of

Ck-local submersions which is needed in the proof of Theorem 2.15 and in the

proof of Theorem 1.2. Here, we quote [34, De�nition 2.1-De�nition 2.4, p. 45]

De�nition C.10. A topological space G is a pseudogroup if there exist pairs

(a, b) ∈ G×G such that the product ab ∈ G is de�ned and satis�es

(1) If ab, bc, (ab)c and a(bc) are all de�ned, then (ab)c = a(bc)

(2) If ab is de�ned, then for every neighborhood W of ab, there are neighbor-

hoods U 3 a and V 3 b such that for all x ∈ U , y ∈ V , xy is de�ned and

xy ∈ W

(3) There exists an element e ∈ G such that for all a ∈ G, ae is de�ned and

ae = a

(4) If for (a, b) ∈ G×G, ab is de�ned and ab = e, then a is a left-inverse for b

and we write a = b−1. If b has a left inverse, then for every neighborhood

U of b−1 there is a neighborhood V of b such that every y ∈ V has a left

inverse y−1 ∈ G
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De�nition C.11. A pseudogroup G is a Lie group germ if a neighborhood of

the identity element e ∈ G can be given a di�erentiable structure such that the

operations of multiplication and inversion are di�erentiable maps when de�ned.

De�nition C.12. Fix k ∈ (0,∞]\N. A sequence of pointed n-dimensional

Riemannian manifolds (Mi, gi, pi)i∈N locally converges to a pointed metric space

(X, d, x) in the sense of Ck-local submersions at x, if there is a Riemannian

metric h on an open neighborhood of 0 ∈ V ⊆ Rn, a pseudo group Γ of local

isometries of (V, h) such that the quotient is well-de�ned, an open set U ⊆ X

and maps

Φi : (V, 0) −→ (Mi, pi)

so that

(1) (Mi, dgi , pi)i∈N converges to (X, d, x) in the pointed Gromov-Hausdor�

topology

(2) the identity component of Γ is a Lie group germ

(3) (V/Γ, dh) ∼= (U, d) where dh is the induced distance function on the quotient

(4) (Φi)∗ is nonsingular on V for all i ∈ N

(5) h is the Ck-limit of Φ∗i gi in the sense of uniform convergence on compact

sets of the �rst k derivatives. Here, k ∈ (0,∞)\N is meant in the usual

Hölder space.

De�nition C.13. Fix k ∈ (0,∞]\N. A sequence of pointed n-dimensional Rie-

mannian manifolds (Mi, gi, pi)i∈N converges to a pointed metric space (X, d, x)

in the sense of Ck-local submersions if for every y ∈ X there are points qi ∈Mi

such that (Mi, gi, qi)i∈N converges to (X, d, y) in the sense of Ck-local submer-

sions at y.



Bibliography

[1] M. T. Anderson. Ricci curvature bounds and Einstein metrics on compact

manifolds. Journal of the American Mathematical Society, pages 455�490,

1989.

[2] M. T. Anderson. Convergence and rigidity of manifolds under Ricci cur-

vature bounds. Inventiones mathematicae, 102(1):429�445, 1990.

[3] E. Aubry. Finiteness of π1 and geometric inequalities in almost positive

Ricci curvature. Annales Scienti�ques de l'École Normale Supérieure,

40(4):675�695, 2007.

[4] Y. Bernard. Fundamentals of Interpolation theory, WS 2009/10. Albert-

Ludwigs-Universität Freiburg, AG Geometrische Analysis.

[5] A. L. Besse. Einstein manifolds. Springer Science & Business Media,

1987. First Reprint 2002.

[6] C. Böhm, R. Lafuente, and M. Simon. Optimal curvature estimates for

homogeneous Ricci �ows. arXiv preprint arXiv:1604.02625, 2016. version

2.

[7] D. Burago, Y. Burago, and S. Ivanov. A course in metric geometry,

volume 33. American Mathematical Society Providence, 2001.

[8] J. Cheeger, D. Gromoll, et al. The splitting theorem for manifolds of

nonnegative Ricci curvature. Journal of Di�erential Geometry, 6(1):119�

128, 1971.

[9] J. Cheeger, M. Gromov, M. Taylor, et al. Finite propagation speed, ker-

nel estimates for functions of the Laplace operator, and the geometry

95



96

of complete Riemannian manifolds. Journal of Di�erential Geometry,

17(1):15�53, 1982.

[10] B. Chow, P. Lu, and L. Ni. Hamilton's Ricci �ow, volume 77. American

Mathematical Soc., 2006.

[11] D. M. DeTurck and J. L. Kazdan. Some regularity theorems in Rie-

mannian geometry. Annales scienti�ques de lÉcole Normale Supérieure,

14(3):249�260, 1981.

[12] N. Dunford and J. T. Schwartz. Linear operators. Part I. General theory.

With the assistance of William G. Bade and Robert G. Bartle. Reprint of

the 1958 original. Wiley Classics Lib. A Wiley-Interscience Publication.

John Wiley & Sons, Inc., New York, 1988.

[13] L. Evans. Partial Di�erential Equations. Graduate studies in mathemat-

ics. American Mathematical Society, 2010.

[14] M. Giaquinta and L. Martinazzi. An introduction to the regularity theory

for elliptic systems, harmonic maps and minimal graphs. Springer Science

& Business Media, 2012.

[15] D. Gilbarg and N. S. Trudinger. Elliptic Partial Di�erential Equations of

Second Order, volume 224. Springer Science & Business Media, 2001.

[16] R. S. Hamilton. Three-manifolds with positive Ricci curvature. Journal

of Di�erential Geometry, 17(2):255�306, 1982.

[17] S. Hildebrandt, H. Kaul, and K.-O. Widman. An existence theorem

for harmonic mappings of Riemannian manifolds. Acta Mathematica,

138(1):1�16, 1977.

[18] J. Jost and H. Karcher. Geometrische Methoden zur Gewinnung von a-

priori-Schranken für harmonische Abbildungen. manuscripta mathemat-

ica, 40(1):27�77, 1982.

[19] V. Julin, T. Liimatainen, and M. Salo. p-harmonic coordinates for Hölder

metrics and applications. arXiv preprint arXiv:1507.03874, 2015. version

1.



97

[20] H. Kaul. Schranken für die Christo�elsymbole. manuscripta mathematica,

19(3):261�273, 1976.

[21] J. LaFontaine, M. Katz, M. Gromov, S. M. Bates, P. Pansu, P. Pansu,

and S. Semmes. Metric structures for Riemannian and non-Riemannian

spaces. Springer, 2007.

[22] J. Lee. Introduction to smooth manifolds, volume 218. Springer, 2012.

[23] J. M. Lee. Riemannian manifolds: An Introduction to Curvature, volume

176. Springer Science & Business Media, 1997.

[24] B. O'Neill. Semi-Riemannian Geometry With Applications to Relativity,

103, volume 103. Academic press, 1983.

[25] P. Petersen. Convergence theorems in Riemannian geometry. MSRI Pub-

lications, 30:167�202, 1997.

[26] P. Petersen. Riemannian geometry, volume 171. Springer, 2006.

[27] P. Petersen and G. Wei. Relative volume comparison with integral cur-

vature bounds. Geometric & Functional Analysis GAFA, 7(6):1031�1045,

1997.

[28] T. Sakai. On continuity of injectivity radius function. Math. J. Okayama

Univ, 25(1):91�97, 1983.

[29] M. Simon. Extending four dimensional Ricci �ows with bounded scalar

curvature. arXiv preprint arXiv:1504.02910, 2015. version 1.

[30] M. Simon. Some integral curvature estimates for the Ricci �ow in four

dimensions. arXiv preprint arXiv:1504.02623, 2015. version 1.

[31] J. Streets. The gradient �ow of the L2 curvature energy near the round

sphere. Advances in Mathematics, 231(1):328�356, 2012.

[32] J. Streets. The gradient �ow of the L2 curvature functional with small

initial energy. Journal of Geometric Analysis, 22(3):691�725, 2012.

[33] J. Streets. Collapsing in the L2 Curvature Flow. Communications in

Partial Di�erential Equations, 38(6):985�1014, 2013.



98

[34] J. Streets. The long time behavior of fourth order curvature �ows. Calcu-

lus of Variations and Partial Di�erential Equations, 46(1-2):39�54, 2013.

[35] J. Streets. A Concentration-Collapse Decomposition for L2 Flow Singular-

ities. Communications on Pure and Applied Mathematics, 69(2):257�322,

2016.

[36] J. D. Streets. The gradient �ow of
∫
M
|Rm|2. Journal of Geometric

Analysis, 18(1):249�271, 2008.

[37] P. Topping. Lectures on the Ricci �ow, volume 325. Cambridge University

Press, 2006.

[38] H. Triebel. Spaces of distributions of Besov type on Euclidean n-space.

Duality, interpolation. Arkiv för Matematik, 11(1):13�64, 1973.

[39] H. Triebel. Theory of Function Spaces. Akademische Verlagsgesellschaft

Geest & Portig K.-G., Leipzig, 1983.

[40] H. Triebel. Theory of Function Spaces II. Monographs in Mathematics.

Springer Basel, 1992.

[41] H. Triebel. Interpolation Theory, Function spaces, Di�erential operators.

Johann Ambrosius Barth, 1995.

[42] D. Yang. Convergence of Riemannian manifolds with integral bounds

on curvature. I. Annales scienti�ques de l'École normale supérieure,

25(1):77�105, 1992.

[43] D. Yang. Convergence of Riemannian manifolds with integral bounds

on curvature. II. Annales scienti�ques de l'École normale supérieure,

25(2):179�199, 1992.

[44] D. Yang. Lp pinching and compactness theorems for compact Riemannian

manifolds. Forum Mathematicum, 4(4):323�334, 1992.



Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe

Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-

fertigt habe; verwendete fremde und eigene Quellen sind als solche kenntlich

gemacht.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerecht-

fertigter Weise zu interpretieren,

• fremde Ergebnisse oder Verö�entlichungen plagiiert oder verzerrt wieder-

gegeben.

Mir ist bekannt, dass Verstöÿe gegen das Urheberrecht Unterlassungs- und

Schadenersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch

die Strafverfolgungsbehörden begründen kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder

ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch nicht

verö�entlicht.

(Ort, Datum)

(Unterschrift)


	Introduction and statement of results
	Convergence of Riemannian 4-manifolds with almost vanishing L2-integral of the curvature
	Distance control under the L2-flow in 4 dimensions (Proof of Theorem 1.3)
	Tubular neighborhoods
	Forward estimates
	Backward estimates

	Proof of Theorem 1.1
	Proof of Theorem 1.2

	Convergence of a sequence of open Riemannian manifolds having almost vanishing Ln2-norm of the Ricci curvature
	Proof of Theorem 1.4
	Gromov-Hausdorff precompactness
	Compactness of the ambient space B 
	Distance distorsion of a coordinate chart
	C2beta-regularity of the limit space
	Local W2n2-convergence to a smooth metric 
	C infinity-regularity of the limit space
	Ricci flatness of the limit manifold
	Construction of the diffeomorphisms


	Auxilary Results and Results from Riemannian geometry
	Auxilary Results
	Results from Riemannian geometry

	Interpolation, Sobolev spaces and Besov spaces
	Interpolation theory
	Sobolev spaces and Besov spaces
	Interpolation of Sobolev spaces and Besov spaces

	Notation and Definitions
	Notation
	Definitions

	Bibliography

