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Abstract

This thesis describes the numerical analysis of finite volume schemes for population balance equa-
tions in particulate processes, incorporating aggregation, breakage, growth and source terms.
These equations are a type of partial integro-differential equations. Such equations can be
solved analytically only for some specific aggregation and breakage kernels. This motivates us
to study numerical schemes and the numerical analysis for these equations.

Several mathematical results are available on the existence of weak solutions for the aggregation-
breakage equations with different classes of aggregation and breakage kernels. Recently, Bour-
gade and Filbet [7] have investigated the convergence of finite volume approximated solutions
towards weak solutions of the continuous binary aggregation-breakage equations under the as-
sumptions of local boundedness of the kernels. Furthermore, they have shown a first order error
estimate only on uniform meshes with more restricted kernels. However, the case of multiple
fragmentation and error analysis on general meshes were not discussed. A similar approach is
also suitable to show the convergence of the finite volume discretized solutions towards weak
solution of the continuous equations when multiple breakage is taken into account. This is the
first aim of our work.

The second aim is to study the convergence analysis of a finite volume method for the aggrega-
tion and multiple breakage equations on five different types of uniform and non-uniform meshes.
We observe that the scheme is second order convergent independently of the grids for the pure
breakage problem. Moreover, for pure aggregation as well as for combined equations the tech-
nique shows second order convergence only on uniform, non-uniform smooth and locally uniform
meshes. In addition, we find only first order convergence on oscillatory and random grids.

A numerical scheme is said to be moment preserving if it correctly reproduces the time behaviour
of a given moment. Some authors have proposed different numerical methods which show
moment preservation numerically with respect to the total number or total mass for an individual
process of aggregation, breakage, growth and source terms. However, coupling of all the processes
causes no preservation for any moments. Up to now, there was no mathematical proof which
gives the conditions under which a numerical scheme is moment preserving or not. The third
aim of this work is to study the criteria for the preservation of different moments. Based on this
criteria we determine zeroth and first moments preserving conditions for each process separately.
Further, we propose one moment and two moment preserving finite volume schemes for all the
coupled processes. We analytically and numerically verify the moment preserving results. The
numerical verifications are made for several coupled processes for which analytical solutions are
available for the moments.

The fixed pivot (FP) method and the cell average technique (CAT) for solving two-dimensional
aggregation equations using a rectangular grid were implemented in J. Kumar et al. [44]. Re-
cently, Chakraborty and Kumar [9] have studied the FP scheme for the same problem on two
different types of triangular grids. They found that the method shows better results for num-
ber density on triangular grids as compared to rectangular grids. However, the discussion of
higher moments was ignored. In our work we compare different moments calculated by the
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FP technique on rectangular and triangular meshes with the analytical moments. Numerical
simulations show that the method does not improve the results for the higher moments. Fur-
ther we introduce a new mathematical formulation of the CAT for the two different types of
triangular grids as considered by Chakraborty and Kumar [9]. The new formulation is simple to
implement and gives better accuracy as compared to the rectangular grids. Three different test
problems are considered to analyze the accuracy of both schemes by comparing the analytical
and numerical solutions. The new formulation shows good agreement with the analytical results
both for number density and higher moments.

Finally we state some applications of aggregation-breakage equations in nano-technology. We
solve the equations using the cell average technique and compare the simulation results with
the experimental data by using a shear aggregation kernel together with two different breakage
kernels.
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Zusammenfassung

Diese Doktorarbeit beschreibt die numerische Analysis von Finite-Volumen-Methoden für Popu-
lationsbilanzgleichungen in Partikelprozessen, die Aggregation, Bruch, Wachstum und Quell-
terme einbeziehen. Diese Gleichungen sind eine Art von partiellen Integro-Differentialgleichungen.
Solche Gleichungen können nur für einige spezielle Aggregations- und Bruchkerne analytisch
gelöst werden. Dies motiviert uns, numerische Verfahren und die numerische Analysis für diese
Gleichungen zu studieren.

Es gibt mehrere mathematische Ergebnisse zur Existenz von schwachen Lösungen für die Aggre-
gations-Bruch-Gleichungen mit verschiedenen Klassen von Aggregations- und Bruchkernen. Vor
kurzem untersuchten Bourgade und Filbet [7] die Konvergenz von Finite-Volumen-approximierten
Lösungen gegen schwache Lösungen der kontinuierlichen binären Aggregations-Bruch-Gleich-
ungen unter der Annahme der lokalen Beschränktheit der Kerne. Weiterhin haben sie nur
Fehlerabschätzungen erster Ordnung auf gleichmässigen Gittern mit eingeschränkteren Kernen
gezeigt. Allerdings wurden der Fall multipler Fragmentation und die Fehleranalyse auf allge-
meinen Gittern nicht diskutiert. Ein ähnlicher Ansatz ist auch geeignet, um die Konvergenz
von Finite-Volumen-diskretisierten Lösungen gegen eine schwache Lösung des kontinuierlichen
Gleichungen zu zeigen, wenn multipler Bruch in Betracht gezogen wird. Dies ist das erste Ziel
dieser Arbeit.

Das zweite Ziel ist es, die Konvergenzanalyse des Finite-Volumen-Methode für die Aggregations-
und multiplen Bruchgleichungen auf fünf verschiedenen Arten von gleichmässigen und ungleich-
mässigen Gittern zu studieren. Wir stellen fest, dass das Schema von zweiter Ordnung konver-
gent ist, unabhängig vom Gitter für das reine Bruchproblem. Darüber hinaus zeigt sich sowohl
für reine Aggregations als auch für kombinierte Gleichungen Konvergenz zweiter Ordnung nur
auf gleichmässigen, ungleichmässigen glatten und lokal gleichmässigen Gittern. Zudem haben
wir Konvergenz nur erster Ordnung auf oszillierenden und zufälligen Gittern.

Ein numerisches Verfahren wird als Momente-erhaltend bezeichnet, falls es das zeitliche Verhal-
ten eines gegebenen Momentes korrekt wiedergibt. Einige Autoren haben verschiedene num-
erische Methoden vorgeschlagen, die die Momenteerhaltung numerisch zeigen bezüglich der
Gesamtanzahl oder Gesamtmasse für einen einzelnen Prozess der Aggregation, Bruch, Wach-
stum und Quellterme. Allerdings verursacht die Kopplung aller Prozesse keine Erhaltung ir-
gendwelcher Momente. Bis jetzt gab es keinen mathematischen Beweis, der die Bedingungen
angibt, unter denen ein numerisches Schema dann Momente-erhaltend ist oder nicht. Das dritte
Ziel dieser Arbeit ist es, die Kriterien für die Erhaltung der verschiedenen Momente zu studieren.
Auf der Grundlage dieser Kriterien bestimmen wir für jeden Prozess Bedingungen, unter denen
das nullte und erste Moment erhalten bleiben. Ferner schlagen wir Finite-Volumen-Schemen für
alle gekoppelten Prozesse vor, die ein Moment oder zwei Momente erhalten. Wir überprüfen
die Momente-erhaltenden Resultate analytisch und numerisch. Die numerischen Überprüfungen
werden für mehrere gekoppelte Prozesse ausgeführt, für die analytische Lösungen der Momente
verfügbar sind.

Die Fixed-Pivot (FP)-Methode und die Cell-Average-Technik (CAT) für des Lösen von zweidi-
mensionalen Aggregationsgleichungen unter Verwendung von einen rechteckigen Gitter wurde
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in J. Kumar et al. [44] umgesetzt. Kürzlich untersuchten Chakraborty und Kumar [9] das FP-
Schema für das gleiche Problem auf zwei verschiedenen Arten von Dreiecksgittern. Sie fanden
heraus, dass die Methode bessere Ergebnisse für die Anzahldichte liefert auf Dreiecksgittern
verglichen mit Rechteckgittern. Allerdings wurde die Diskussion von höheren Momenten ig-
noriert. In unserer Arbeit vergleichen wir verschiedene Momente, die durch die FP-Technik
auf Rechtecks- und Dreiecksgittern berechnet wurden, mit analytischen Momenten. Numerische
Simulationen zeigen, dass die Methode die Resultate für höhere Momente nicht verbessert. Des
Weiteren führen wir eine neue mathematische Formulierung der CAT ein für die beiden ver-
schiedenen Arten von Dreiecksgittern, die von Chakraborty und Kumar [9] betrachtet werden.
Die neue Formulierung ist einfach zu implementieren und liefert eine bessere Genauigkeit ver-
glichen mit den Rechteckgittern. Es werden drei verschiedene Testprobleme betrachtet, um die
Genauigkeit beider Schemata durch der Vergleich der analytischen und numerischen Lösungen
zu analysieren. Die neue Formulierung zeigt eine gute Übereinstimmung mit den analytischen
Ergebnissen sowohl für die Anzahldichte als auch für höhere Momente.

Schliesslich stellen wir einige Anwendungen von Aggregations-Bruch-Gleichungen in der Nano-
Technologie vor. Wir lösen die Gleichungen unter Verwendung der Cell-Average-Methode und
vergleichen die Simulationsergebnisse mit den experimentellen Daten mit Hilfe eines Scher-
Aggregationskernes zusammen mit zwei verschiedenen Bruchkernen.
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Chapter 1

Introduction

In this chapter a general introduction about the population balance equations is given. In
particular, we study the equations of aggregation or coagulation, breakage or fragmentation,
growth and source terms. Then we discuss the existing results and the issues which were not
discussed in the previous work. Followed by each such issue we describe the new results provided
in this thesis. At the end the outline of the thesis is summarized.

1.1 Population balance equations

This thesis deals with numerical analysis and computations for population balance equations
used for particulate processes. These processes are well-known in various branches of engineer-
ing and science such as nano-technology, crystallization, precipitation, polymerization, aerosol
dynamics and emulsion processes. These processes are characterized by the presence of a con-
tinuous phase and a dispersed phase composed of particles with a distribution of properties.
The particles might be crystals, grains, drops or bubbles and may have several properties such
as size, composition, porosity or enthalpy. However in this work we consider the size (volume)
as the only relevant particle property.

The particles may change their properties in a system due to various physical influences. The
major part of the current work deals with the aggregation and breakage processes which affect
the particle size distributions. However, we also study the case of growth and nucleation or
others described by source terms. Aggregation is a process where two or more particles combine
together to form a larger particle. When they merge into a single homogeneous particle, as
with droplets, this process is also called coagulation. On the other hand, in a fragmentation
process particles break into two or more fragments. In a growth process, the particles grow
when molecular matter is added to the surface of a particle. The size of a particle increases
continuously in this process. The formation of a new particle by condensation or crystallization
is called nucleation. The nuclei are usually treated as the smallest possible particles modeled in
the system and may be introduced via a source term. Harvesting of a certain particle size could
be modeled by a negative source term.

As a result of particle formation mechanisms particles change their properties and therefore
a mathematical model named population balance is frequently used to describe the changes of

1



CHAPTER 1. INTRODUCTION

particle properties. Population balances describe the dynamic evolution of the particle num-
ber distribution of one or more properties. Population balances are partial integro-differential
equations.

By using the basic assumption that two particles combine at a time, Smoluchowski [99] has
proposed the following infinite set of nonlinear differential equations for coagulation in 1917

∂fi(t)
∂t

=
1
2

i−1∑

j=1

βi−j,jfi−j(t)fj(t)− fi(t)
∞∑

j=1

βi,jfj(t). (1.1)

Here, the unknown non-negative function fi(t) with mass i, i ≥ 1 are the densities of particles
of discrete size i at time t. The function βi,j is known as coagulation kernel which describes the
intensity of interaction between particles of mass i and j. It is non-negative and symmetric, i.e.
βi,j ≥ 0 and βi,j = βj,i for all i, j ≥ 1. All physical properties of the process are included in the
kernel βi,j . Later in 1928, Müller [79] rewrote the equation (1.1) to the continuous form which
is an integro-differential equation for the time evolution of the particle mass density function. If
f(t, x) is the particle mass density function with mass x > 0 and time t ≥ 0 then the equation
is defined as

∂f(t, x)
∂t

=
1
2

∫ x

0
β(x− y, y)f(t, x− y)f(t, y)dy − f(t, x)

∫ ∞

0
β(x, y)f(t, y)dy. (1.2)

The aggregation kernel β(x, y) is introduced by assuming that the average number of coalescence
between particles of mass x and those of mass y is f(t, x)f(t, y)β(x, y) during at time t. The
first term on the right-hand side of the equation (1.2) describes the creation of particles of size x
when two particles of masses x− y and y collide. The second integral shows the disappearance
of particles of size x after colliding with any particles of size y. Therefore, these two terms are
known as the birth and the death terms, respectively. The term 1

2 is coming into the equation
to avoid the double counting. Similar to the discrete case, the aggregation kernel β(x, y) is
non-negative and symmetric, i.e. β(x, y) ≥ 0 and β(x, y) = β(y, x).

Further Melzak [76] in 1957 extended this binary aggregation model together with multiple
fragmentation equation where a particle splits into more than two small pieces at a time. He
introduced the following equation

∂f(t, x)
∂t

=
1
2

∫ x

0
β(x− y, y)f(t, x− y)f(t, y)dy − f(t, x)

∫ ∞

0
β(x, y)f(t, y)dy

+
∫ ∞

x
Γ(y, x)f(t, y)dy − f(t, x)

x

∫ x

0
yΓ(x, y)dy. (1.3)

The third integral in the above equation describes the formation of particles of size x when
particles of size y with x ≤ y < ∞ breaks. The fourth term reflects disappearance of particles
x due to their fragmentation into smaller particles of size y with 0 ≤ y ≤ x. The multiple
breakage kernel Γ(x, y) ≥ 0 is again introduced with the assumption that f(t, x)Γ(x, y) is the
average number of particles of mass y created from the breakage of particles of mass x at
time t. Hence, we take Γ(x, y) = 0 if x < y. If the breakage kernel Γ satisfies the condition
Γ(x, y) = Γ(x, x − y), the multiple breakage equation turns into the binary breakage equation.
This implies that the model allows breaking of particles only into two smaller pieces at a time.

2



1.1. POPULATION BALANCE EQUATIONS

This way we have the following form of the breakage equation given by Friedlander [25] in 1960
as

∂f(t, x)
∂t

=
∫ ∞

0
F̃ (x, y)f(t, x + y)dy − f(t, x)

2

∫ x

0
F̃ (x− y, y)dy. (1.4)

The term F̃ ≥ 0 is the binary fragmentation kernel and is related to the multiple breakage
kernel Γ by F̃ (x − y, y) = Γ(x, y). It should be mentioned that the fragmentation kernel F̃ is
symmetric, i.e.

F̃ (x, y) = Γ(x + y, y) = Γ(x + y, x) = F̃ (y, x)

unlike the multiple breakage kernel Γ(x, y).

As a special case for binary aggregation and binary breakage, Becker and Döring [5] introduced
a discrete model in 1935. In this model, they assumed that the particles can combine to form
larger particle or break to form smaller ones by an addition or loss of a particle of mass 1,
respectively. This equation reads

∂fi(t)
∂t

= Ji−1(f)− Ji(f), 2 ≤ i < ∞ (1.5)

where Ji(n) = aif1fi − bi+1fi+1 for i ≥ 1 and ai, bi being coagulation and breakage coefficients,
respectively. Becker and Döring’s model was adjusted in such a way that a stationary state is
achieved. In this state the number of monomers, i.e. particles of size 1 becomes measurable and
therefore, no evaluation is needed for f1(t). However, later in 1977, J. Burton [8] reconsidered
the Becker and Döring process as

∂fi(t)
∂t

= Ji−1(f)− Ji(f), 2 ≤ i < ∞ (1.6)

together with

∂f1(t)
∂t

= −J1(f)−
∞∑

i=1

Ji(f). (1.7)

Though this new model is also known as Becker and Döring model, the difference between these
two models is that the later one satisfies the total mass conservation.

In 1991 Ziff [102] gave another form of the multiple breakage equation by taking

Γ(y, x) = b(x, y)S(y) and S(x) =
∫ x

0

y

x
Γ(x, y)dy. (1.8)

Here, the term S(x) is called the selection function which describes the rate at which particles
of size x are selected to break. The breakage function b(x, y) for a given y > 0 gives the size
distribution of particle sizes x ∈]0, y[ resulting from the breakage of a particle of size y. The
breakage function has the following important properties

∫ y

0
b(x, y)dx = N(y) and

∫ y

0
xb(x, y)dx = y, (1.9)

3



CHAPTER 1. INTRODUCTION

for any y ∈]0,∞[. The function N(y), which may be infinite, represents the number of fragments
obtained from the breakage of a particle of size y. The second integral ensures the property that
the total mass created from the breakage of a particle of size y is again y.

By extension of the binary aggregation [99] and multiple breakage [102], if we include growth
[54, 42] and nucleation [54] or other sources, the general form of the population balance equation
is given as

∂f(t, x)
∂t

=
1
2

∫ x

0
β(x− y, y)f(t, x− y)f(t, y)dy −

∫ ∞

0
β(x, y)f(t, y)f(t, x)dy

+
∫ ∞

x
b(x, y)S(y)f(t, y)dy − S(x)f(t, x)− ∂[G(x)f(t, x)]

∂x
+ Bsrc(t, x). (1.10)

The fifth term on the right-hand side represents particle growth process with a growth rate
G. The source term is given by the last term Bsrc(t, x) where the abbreviation src stands for
source. The remaining terms were already explained above. In the case of binary fragmentation
b(x, y) = b(y − x, y) and by using the relation (1.9), it is easy to show that the number of
fragments produced in the process is 2, i.e.

∫ y

0
b(x, y)dx =

1
y

∫ y

0
xb(x, y)dx +

1
y

∫ y

0
(y − x)b(x, y)dx

=
1
y

∫ y

0
xb(x, y)dx +

1
y

∫ y

0
(y − x)b(y − x, y)dx =

2
y

∫ y

0
xb(x, y)dx = 2.

Besides the information given by the evolution of the particle number density distribution,
some integral properties of the distribution like moments are also of great interest in various
applications. The jth moment of the particle size distribution is defined as

µj(t) =
∫ ∞

0
xjf(t, x)dx. (1.11)

The first two moments are of special interest. The zeroth (j = 0) and first (j = 1) moments
are proportional to the total number and total mass of particles respectively. Furthermore, the
second moment is proportional to the light scattered by particles in the Rayleigh limit [53, p.
1325], [91, p. 267] in some applications. It is easy to show that the total number of particles
µ0(t) is an increasing function for the aggregation process and a decreasing function for the
breakage events, while the total mass µ1(t) should not vary during these two processes. For the
total mass conservation

∫ ∞

0
xf(t, x) dx =

∫ ∞

0
xf(0, x) dx, t ≥ 0, (1.12)

holds. Surprisingly, this depends on the aggregation and breakage kernels and is not always
true.

For some special class of kernels when the aggregation kernel β is sufficiently large enough
compared to the breakage kernel F or selection function S, a phenomenon called gelation occurs.
In this case the total mass of the particles is not conserved but decreasing after a certain point
of time. Drake, Leyvraz, Jeon and Escobedo have studied the gelation process in [14, 66, 65, 36,
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21, 20]. Several researchers have shown that for the pure aggregation equation the conservation
of total mass holds true for β(x, y) = (xy)α with α ∈ [0, 1/2] and breaks down in finite time
when α ∈]1/2, 1]. A detailed description can be found in Leyvraz and Tschudi [66], Leyvraz
[65] as well as in further citations. If we include the breakage process, the class of aggregation
kernels can be extended for the conservation of total mass, see Escobedo et al. [21, 20].

However, in most cases of the aggregation-breakage process mass conservation holds and the mass
density function xf is the conservative variable. Therefore, one can also rewrite the equation in
a conservative form of mass density xf(t, x) as

∂ [xf(t, x)]
∂t

+
∂

∂x

(
F agg(t, x) + F brk(t, x)

)
= 0. (1.13)

The abbreviations agg and brk are used for aggregation and breakage terms respectively. The
flux functions F agg and F brk are given by

F agg(t, x) =
∫ x

0

∫ ∞

x−u
uβ(u, v)f(t, u)f(t, v)dvdu, (1.14)

and

F brk(t, x) = −
∫ ∞

x

∫ x

0
ub(u, v)S(v)f(t, v)dudv. (1.15)

The flux formulation (1.15) is given for the multiple breakage equation. For the case of binary
breakage problem, the flux function is defined as

F brk(t, x) = −
∫ x

0

∫ ∞

x−u
uF̃ (u, v)f(t, u + v)dvdu. (1.16)

It should be mentioned that in our work we only deal with the multiple breakage equation.
Details about conservative formulations of aggregation and breakage can be found in Tanaka et
al. [95], Makino et al. [72] and J. Kumar [42], respectively. Note that both forms of aggregation-
breakage population balance equations (1.10) without growth and source terms and (1.13) are
interchangeable by using Leibniz integration rule. Therefore, in this thesis we use both forms
depending upon their convenience for calculations. The equivalence between the equations (1.10)
and (1.13) is used due to

−1
x

∂

∂x
F agg(t, x) =

1
2

∫ x

0
β(x− y, y)f(t, x− y)f(t, y)dy −

∫ ∞

0
β(x, y)f(t, y)f(t, x)dy, (1.17)

and

−1
x

∂

∂x
F brk(t, x) =

∫ ∞

x
b(x, y)S(y)f(t, y)dy − S(x)f(t, x). (1.18)

Here, we emphasize that in the equation (1.10) the growth process has no effect on the number of
particles but the total mass of the particles increases. Hence, if we neglect aggregation, breakage
and source terms in the equation (1.10) then we are left with a conservative differential equation
for the number density function f . In case of pure nucleation, i.e. β, S, G = 0 in the equation
(1.10), neither number density nor the total mass remains conserved.
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Mathematical results on existence and uniqueness of solutions of the equation (1.10) and further
citations can be found in McLaughlin et al. [75] and W. Lamb [56] for rather general aggregation
kernels, breakage and selection functions. The population balance equations (PBEs) (1.10) can
only be solved analytically for a limited number of simplified problems, see Ziff [102], Dubovskii
et al. [15] and the references therein. This certainly leads to the necessity of using numeri-
cal methods for solving general PBEs. Several numerical techniques including the method of
successive approximations [87], the method of moments [3, 70, 73], the finite element methods
[71, 81, 88], Monte Carlo simulation methods [41, 61, 67, 92] and sectional methods [43, 53, 98]
can be found in the literature to solve such PBEs.

Finite volume schemes are frequently used for solving conservation laws, see for example LeVeque
[64]. Bennett and Rohani [6] as well as Motz et al. [78] implemented this method to solve the
growth and some source terms. However, Filbet and Laurençot [23] were the first to apply this
approach for solving aggregation PBEs by discretizing a well-known mass balance formulation
(1.13) with F brk = 0. Further, Bourgade and Filbet [7] have extended their scheme to solve the
case of aggregation and binary breakage PBEs. Later the scheme has been applied to solve the
aggregation and multiple fragmentation equation (1.13) by J. Kumar et al. [48]. The scheme
has also been extended to two-dimensional aggregation problems by Qamar and Warnecke [84].
Finally it has been observed that the finite volume scheme is a good alternative to the meth-
ods mentioned above for solving the aggregation-breakage equations due to its automatic mass
conservation property.

1.2 Existing and new results

In this section we summarize the existing results and briefly highlight our new findings in the
theory of numerical solutions of the population balance equations. Our emphasis will be on
the numerical analysis of finite volume schemes (FVS) for the aggregation-breakage equations.
In particular, we study a finite volume method to solve the multiple fragmentation equations.
Furthermore, convergence analysis of the scheme is investigated for such non-linear coagulation-
fragmentation equations. In addition, we discuss analytically and numerically the question,
“why are certain numerical schemes one moment only or two moments preserving for the coupled
aggregation, breakage, growth and source terms?”. Thereafter, a small improvement is made
in the implementation of the sectional methods for the two-component aggregation problem.
Finally, we explain the applications of aggregation-breakage models in nano-technology. Now
we give a short description of the new findings mentioned above.

Finite volume scheme for multiple breakage

Several researchers showed the existence of weak solutions for the aggregation-breakage equa-
tions with non-increasing mass for a large class of aggregation and fragmentation kernels, see
Laurençot [57, 59] and the references therein. Some authors also explained the relationship
between discrete and continuous models. For instance, Ziff and McGrady [103] found this rela-
tionship for constant and sum breakage kernels while Laurençot and Mischler [59] gave results for
the aggregation-breakage models under more general assumptions on the kernels, i.e. for bilinear
growth. In the literature, there are various ways to approximate the continuous aggregation-
breakage equations. For example, deterministic method [19, 62], Monte Carlo method [30, 18]
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and further citations. Recently, Bourgade and Filbet [7] have used a finite volume approximation
for the binary aggregation-breakage model (1.13) with the binary breakage flux (1.16). They
gave the convergence result of the numerical solutions towards a weak solution of the continuous
equation by considering locally bounded kernels, i.e.

β, F̃ ∈ L∞loc([0,∞[×[0,∞[).

Further, they also provided the first order error estimates between the numerical approximated
and weak solutions of the continuous problem by assuming

β, F̃ ∈ W 1,∞
loc (]0,∞[×]0,∞[)

on uniform meshes.

Here, our aim in Chapter 2 is to study the finite volume schemes for the multiple fragmentation
equations. The analysis of the aggregation process can be taken from the work in Bourgade and
Filbet [7] and combined with our work to get the result for the coupled processes. The proof is
based on a weak L1 compactness method and the La Vallée Poussin theorem.

Convergence analysis of the finite volume scheme

As mentioned in the previous subsection, Bourgade and Filbet [7] studied the convergence of a
finite volume numerical solution towards a weak solution of the continuous binary aggregation-
breakage models on uniform meshes and proved first order accuracy. However, the convergence
analysis for aggregation with multiple breakage equation on general meshes was still missing in
the literature. In our further work in Chapter 3 we investigate the convergence analysis between
the exact and numerical solutions of the truncated coupled problem using the FVS. In particular,
we discuss the convergence analysis of the finite volume schemes for the non-linear aggregation
problem given by Filbet and Laurençot [23] and multiple breakage equation introduced by J.
Kumar [42]. The proof is based on some basic results from the book of Hundsdorfer and Verwer
[33] and from the paper of Linz [68]. By using these existing results, we study the consistency
first and then proceed further to find the Lipschitz conditions on numerical fluxes to get the
convergence of the schemes for a family of meshes. The analysis has been made for two times
smooth functions β, S and b.

We determine that the technique is second order consistent and convergent independently of
the meshes for the pure breakage problem. Non-linearity of the aggregation process causes
difficulties to check the consistency on general meshes. Therefore, in this case we evaluate the
consistency order on four different types of meshes separately. Finally, the analysis shows that
the scheme is second order consistent and convergent only on uniform and non-uniform smooth
meshes. In addition the method is only first order consistent and convergent on oscillatory
and non-uniform random meshes. Furthermore, for the coupled problem the scheme is again
second order accurate on uniform and non-uniform smooth grids while on the other two types
of grids it is of first order. The mathematical results of the convergence analysis are also
verified numerically by taking several numerical examples of pure aggregation, pure breakage
and combined processes on five different types of uniform and non-uniform grids.
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Moment preserving finite volume schemes for coupled processes

As stated before the moments defined in equation (1.11) are very important in many applications,
especially the zeroth moment and the first moment. Here, the term moment preservation implies
that we are interested to find the numerical schemes which reproduce the correct time behavior
of moments that are not conserved. There are several numerical methods which are in good
agreement with the analytical moments for an individual process. In particular, the finite
volume scheme is a promising method to predict the first moment, i.e. mass, for the coupled
aggregation-breakage equation due to its automatic mass conservation property. For details the
reader is referred to Filbet and Laurençot [23] for the pure aggregation problem and J. Kumar
et al. [42, 48] for the coupled problems. Furthermore, the upwind scheme has been implemented
for pure growth problems which automatically satisfies the zeroth moment, i.e. total number,
conservation [42]. Kumar and Ramkrishna [54] used a natural discretization for nucleation terms
which gives exactly the analytical solution for the zeroth moment.

Coupling of these particulate processes is also of interest in various applications. In coupling cor-
responding numerical discretizations it is important to understand which moments are preserved
by the coupled scheme. Recently, Kumar and Warnecke [47] have proposed two formulations;
one is a combination of FVS and method of characteristic and the other is a FVS to solve a
coupled aggregation-growth problem. These formulations are shown to be number and mass
preserving numerically. However, in the literature, there is no mathematical proof available to
explain why certain numerical schemes are better to preserve the number or mass for the coupled
problems.

In our work we present some moment preserving finite volume schemes for solving coupled
aggregation, breakage, growth and source terms. For this we first introduce the definition of
moment preservation as a new concept. Based upon this definition the zeroth and the first
moment preserving conditions are obtained for each process separately. Later, we present a
finite volume scheme which shows the preservation with respect to one moment depending upon
the processes under consideration. In case of aggregation and breakage it satisfies first moment
preservation whereas for the growth and source terms we observe zeroth moment preservation.
This is due to the well-known property of conservativity of finite volume schemes. However,
coupling of all the processes shows no preservation for any moments. To overcome this issue,
we reformulate the cell average technique [42, 45, 43] into a conservative formulation which is
coupled together with a modified upwind scheme to give moment preservation with respect to
the first two moments for all four processes under consideration. This allows for easy coupling
of these processes. The moment preservation is proved mathematically and verified numerically.
The numerical results for the zeroth and the first moments are verified for various coupled
processes where analytical solutions are available.

Two-dimensional aggregation problems

Numerical solution of the two-component aggregation population balance equation is difficult
due to the double integral and the non-linearity of the equation. The sectional methods, in par-
ticular the cell average technique (CAT) and the fixed pivot (FP) method, are better numerical
approaches over the classical schemes due to preservation of important properties of the distribu-
tion. In addition, these methods are computationally inexpensive. These schemes have already
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been implemented for the bi-component aggregation problem and the results were compared for
a rectangular grid, see J. Kumar et al. [44]. Recently, Chakraborty and Kumar [9] have studied
the FP scheme for the same problem and determined numerical results for number density on
two different triangular grids. Such triangular meshes were obtained by considering rectangular
grid as a starting point. They found better accuracy for number density on triangular grids as
compared to rectangular meshes. However, they did not compare the results for different higher
moments yet we know from Kostoglou and Karabelas [40] that improvement of the numerical
results for number density does not imply improvement of the moments of the distributions.

Therefore, we investigate different higher moments by using the FP method on rectangular and
triangular meshes and compare the results with the analytical moments. In this case we observe
that changing the grid does not improve the results for higher moments. But the main novelty
of our work is to discuss the CAT on two different types of triangular grids as considered by
Chakraborty and Kumar [9] and then compare the results between rectangular and triangular
grids. The triangular formulation is simple to implement and shows good agreement with the
analytical results both for number density and higher moments as compared to the rectangular
grids. For the numerical verification, three different test problems are considered.

Applications in nano-technology

Finally we discuss some applications of the aggregation-breakage equations in nano-technology.
This work has been done in colloboration with the Chemical Engineering Department at OVGU
Magdeburg. Titanium dioxide (TiO2) is one of the most useful oxide materials, because of its
widespread applications in photocatalysis, solar energy conversion, sensors and optoelectronics.
Controlling particle size of TiO2 nanoparticles is a challenging task which is of crucial importance
from a fundamental and an industrial point of view. We use the breakage equation to predict
the particle size distributions of TiO2. Moreover, in some cases this distribution gets disturbed
by the shear rate too. Therefore, we need to model the distributions using the simultaneous
aggregation-breakage equations. We solve these equations numerically by using the cell average
technique. The simulation results are compared with the experimental data using different
aggregation and breakage kernels. It is observed that the experimental data of the particle size
distributions at different shear rates of TiO2 are in good agreement with the numerical results.

1.3 Outline of contents

This thesis is organized as follows. In Chapter 2 we discuss a finite volume scheme for solving
multiple breakage equations. Like Bourgade and Filbet [7], we use a weak L1 compactness
method and the La Vallée Poussin theorem to show the convergence of the discretized solutions
towards the weak solution of the continuous breakage equations in L1 space.

Chapter 3 deals with the stability and convergence analysis of the finite volume method for
aggregation and multiple breakage equations. We point out that many researchers used this
scheme to solve such equations but did not include the error analysis for general grids. The
novelty of this work is to find the local and global discretization error on general meshes by
using the basic results from Hundsdorfer and Verwer [33] and the paper of Linz [67].
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We then proceed to demonstrate the moment preserving numerical techniques for solving cou-
pled aggregation, breakage, growth and source terms in Chapter 4. For instance we investigate
one moment and two moment preserving numerical methods for combined problems. The math-
ematical analysis behind these observations is given and the results are verified numerically for
several coupled processes taking various test problems.

Chapter 5 explains the numerical results of two-dimensional aggregation problems by using
sectional methods on triangular meshes. These methods have already been implemented on
rectangular grids. Here, we compare the numerical simulations between the rectangular and
triangular grids by using the cell average and the fixed pivot techniques.

In Chapter 6 we give an overview of applications of aggregation-breakage equations in different
engineering problems. In particular we discuss the application in nano-technology and compare
the numerical results with experimental data.

Chapter 7 describes general conclusions of this thesis and some open problems are pointed out
too.

Finally, we end our work by including some appendices which contain the calculations and
some mathematical derivations needed for this thesis. Analytical solutions for the moments for
coupled processes are also covered here.

The work in Chapter 3 [50] is submitted while Chapter 4 [51] is under revision in SIAM Journal
on Scientific Computing. We have the acceptance of Chapter 5 [52] in Computers and Chemical
Engineering Science. Three publications are also submitted from Chapter 6 [28, 29, 49] out of
which one is already accepted in Chemical Engineering Science.
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Chapter 2

Finite volume scheme for multiple
breakage

This chapter deals with the numerical solution using a finite volume scheme for the continu-
ous multiple breakage equation when the breakage and selection functions satisfy some growth
conditions. The proof is based on the Dunford-Pettis theorem by using the weak L1 compact-
ness method. The analysis of the method allows us to prove the convergence of the discretized
approximated solution towards a weak solution to the continuous problem in the weighted L1

space X+ given by

X+ =
{
f ∈ L1(R>0) ∩ L1(R>0, x dx) : f ≥ 0, ‖f‖ < ∞}

where ‖f‖ =
∫ ∞

0
(1 + x)|f(x)|dx

for the non-negative initial condition f in ∈ X+ and R>0 =]0,∞[. Here the notation L1(R>0, x dx)
stands for the space of the Lebesgue measurable real valued functions on R>0 which are inte-
grable with respect to the measure x dx. The result we give here is an extension of previous
result given by Bourgade and Filbet [7] which deals with aggregation and binary breakage equa-
tions. Note that the aggregation part can be added in this work in the same way as discussed
by Bourgade and Filbet [7].

The outline of this chapter is as follows. The conservative formulation of the continuous multiple
breakage equation, which is needed for further analysis, is discussed in the next section. Section
2.2 gives the numerical approximation of this equation. Finally in Section 2.3 we discuss the
convergence of the approximated solution using weak compactness.

2.1 Introduction

We recall from (1.13) that the fragmentation phenomena in the conservative form of mass density
are governed by the following equation

x∂f(t, x)
∂t

=
∂F(f)

∂x
(x), (t, x) ∈ R2

>0 =]0,∞[2 (2.1)

where the continuous flux is given as

F(f)(x) :=
∫ ∞

x

∫ x

0
ub(u, v)S(v)f(t, v)dudv, x ∈ R>0.
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Given f in ∈ X+, we consider the initial condition

f(0, x) = f in(x), x ∈ R>0.

The main aim of this work is to present a numerical scheme to solve the equation (2.1) built
upon an explicit Euler time discretization with respect to the time variable t and a finite volume
discretization with respect to the volume variable x. For the analysis, we have assumed that
the multiplicative kernel (product of breakage and selection functions) is locally bounded, i.e.
b S ∈ L∞loc(R>0 × R>0).

2.2 Numerical approximation

The discretization we propose here is to give a mass conservative truncation for the breakage
operator: Given a positive real R, it is defined as

FR
c (f)(x) :=

∫ R

x

∫ x

0
ub(u, v)S(v)f(t, v)dudv.

Therefore, a conservative formulation for multiple breakage is given by




x∂f
∂t = ∂FR

c (f)
∂x (x), (t, x) ∈ R>0×]0, R];

f(0, x) = f in(x), x ∈]0, R].
(2.2)

Mass conservation can easily be seen by integrating equation (2.2) with respect to x from 0 to
R.

Now, for the volume discretization of equation (2.2), let h ∈]0, 1[, Ih a positive integer such that
(xi−1/2)i∈{0,...,Ih} is a mesh of ]0, R] with the properties

x−1/2 = 0, xIh+1/2 = R, xi = (xi−1/2 + xi+1/2)/2, ∆xi = xi+1/2 − xi−1/2 ≤ h

and Λh
i =]xi−1/2, xi+1/2] for i ≥ 0. For the time discretization, let us assume that ∆t denotes

the time step such that N∆t = T for a large positive integer N and [0, T ] is the time domain
where we study the equation. We define the time interval

τn = [tn, tn+1[

with tn = n∆t, n ≥ 0.

Now we introduce the finite volume method for the equation. We consider the approximation of
f(t, x) for t ∈ τn and x ∈ Λh

i as fn
i for each integer i ∈ {0, . . . , Ih} and each n ∈ {0, . . . , N − 1}.

For the time being we discretize the selection function S(x) and the breakage function b(u, x)
in such a way that S(x) ≈ Sh(x) = Si and b(u, x) ≈ bh(u, x) = bj,i for x ∈ Λh

i and u ∈ Λh
j .

Integrating equation (2.2) with respect to x and t over a cell in space Λh
i and time τn respectively

gives
∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂(xf(t, x))
∂t

dx dt =
∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂FR
c (f)
∂x

(x)dx dt.
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This further implies that
∫ xi+1/2

xi−1/2

(xf(tn+1, x)− xf(tn, x))dx =
∫ tn+1

tn

FR
c (f(t, xi+1/2))−FR

c (f(t, xi−1/2))dt.

Finally we obtain the following discretization for the multiple breakage equation

xif
n+1
i = xif

n
i +

∆t

∆xi

(
Fn

i+1/2 −Fn
i−1/2

)
(2.3)

where Fn
i+1/2 is the numerical flux which is an approximation of the continuous flux function

FR
c (f)(x). It is defined as

FR
c (f)(xi+1/2) =

∫ R

xi+1/2

∫ xi+1/2

0
ub(u, v)S(v)fn(v)du dv

=
Ih∑

j=i+1

∫

Λh
j

S(v)fn(v)
i∑

k=0

∫

Λh
k

ub(u, v)du dv

≈
Ih∑

j=i+1

i∑

k=0

xkSjbk,jf
n
j ∆xj∆xk = Fn

i+1/2. (2.4)

The initial condition is taken as

f in
i =

1
4xi

∫

Λh
i

f in(x)dx, i ∈ {0, . . . , Ih}.

The breakage fluxes at the boundaries x−1/2 and xIh+1/2 are

Fn
−1/2 = Fn

Ih+1/2 = 0. (2.5)

For time we use the explicit Euler discretization while for the volume variable a finite volume
approach is considered, see LeVeque [63] and Eymard et al. [22]. Let us denote the characteristic
function χA(x) of a set A such that χA(x) = 1 if x ∈ A or 0 elsewhere. Then we define a function
fh on [0, T ]×]0, R] as

fh(t, x) =
N−1∑

n=0

Ih∑

i=0

fn
i χΛh

i
(x) χτn(t). (2.6)

This implies that the function fh depends on the time and volume steps and note that

fh(0, ·) =
Ih∑

i=0

f in
i χΛh

i
(·)

converges strongly to f in in L1]0, R] as h → 0. We also define the breakage and selection
functions in discrete form as

bh(u, v) =
Ih∑

j=0

Ih∑

i=0

bi,jχΛh
i
(u)χΛh

j
(v) where bi,j =

1
∆xi∆xj

∫

Λh
j

∫

Λh
i

b(u, v)dudv (2.7)
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and

Sh(v) =
Ih∑

i=0

SiχΛh
i
(v) where Si =

1
∆xi

∫

Λh
i

S(v)dv. (2.8)

Such discretization ensures that ‖bh − b‖L1(]0,R]×]0,R]) → 0 and ‖Sh − S‖L1(]0,R]) → 0 as h → 0.

2.3 Convergence of solution

In the following we state our main theorem for the convergence of approximated solutions towards
a weak solution of the equation (2.2).

Theorem 2.3.1. Let the breakage function b and the selection function S be such that bS ∈
L∞loc(R>0×R>0) and f in ∈ X+. We also assume that there exists a constant θ > 0 such that the
time step ∆t satisfies the stability condition

C(T,R)∆t ≤ θ < 1, (2.9)

where

C(T, R) := ‖bS‖L∞R. (2.10)

Then up to the extraction of a subsequence,

fh → f in L∞(0, T ; L1 ]0, R]),

where f is the weak solution to (2.2) on [0, T ] with initial data f in. Precisely, the function f ≥ 0
satisfies

∫ T

0

∫ R

0
xf(t, x)

∂ϕ

∂t
(t, x)dx dt +

∫ R

0
xf in(x)ϕ(0, x)dx =

∫ T

0

∫ R

0
FR

c (t, x)
∂ϕ

∂x
(t, x)dx dt (2.11)

for all continuously differential functions ϕ compactly supported in [0, T [×[0, R].

It is clear from this theorem that our main aim is to show that the sequence of functions
(fh)h∈N converges weakly to a function f in L1]0, R] as h and ∆t go to zero. The proof relies on
the following Dunford-Pettis theorem [17] which gives a necessary and sufficient condition for
compactness with respect to the weak convergence in L1.

Theorem 2.3.2. [17, Theorem 3.2] Let |Ω| < ∞ and fh : Ω 7→ R be a sequence in L1(Ω).
Suppose that the sequence {fh} satisfies

• {fh} is equibounded in L1(Ω), i.e.

sup ‖fh‖L1(Ω) < ∞ (2.12)

• {fh} is equiintegrable, iff
∫

Ω
Φ(|fh|)dx < ∞ (2.13)

for some increasing function Φ : [0,∞[7→ [0,∞[ satisfying

lim
r→∞

Φ(r)
r

→∞.

14
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Then fh lies in a weakly compact set in L1(Ω) which implies that there exists a subsequence of
fh that converges weakly in L1(Ω).

Therefore, in order to prove the Theorem 2.3.1, we must show the equiboundedness and the
equiintegrability of the family fh in L1 as in (2.12) and (2.13), respectively. In the following
proposition, we prove the non-negativity and equiboundedness of the function fh. For this we
use a mid-point approximation of a point x by Xh(x), i.e. Xh(x) = xi for x ∈ Λh

i .

Proposition 2.3.3. Let us assume that the time step ∆t satisfies (2.9). Then fh is a non-
negative function satisfying the mass conservation

∫ R

0
Xh(x)fh(t, x)dx =

∫ R

0
Xh(x)fh(s, x)dx, 0 ≤ s ≤ t ≤ T

and for all t ∈ [0, T ],

∫ R

0
fh(t, x)dx ≤ ‖f in‖L1 eR‖bS‖L∞ t. (2.14)

Proof. We prove the non-negativity and equiboundedness of fh by using induction. We know
that at t = 0, fh(0) ≥ 0 and belongs to L1]0, R]. Assume next that the function fh(tn) ≥ 0 and

∫ R

0
fh(tn, x)dx ≤ ‖f in‖L1 eR‖bS‖L∞ tn . (2.15)

Now we will prove that fh(tn+1) ≥ 0. We do this first for the cell at the boundary which has the
index i = 0. Note that by (2.4) we have Fn

i±1/2 ≥ 0. Therefore, in this case from the equation
(2.3) and by using the flux Fn

−1/2 = 0, we get

x0f
n+1
0 = x0f

n
0 +

∆t

∆x0
Fn

1/2 ≥ x0f
n
0 .

Hence we obtain fn+1
0 ≥ 0. Now for i ≥ 1,

xif
n+1
i = xif

n
i +

∆t

∆xi

(
Fn

i+1/2 −Fn
i−1/2

)
.

From the equation (2.4) and the nonnegativity of fh(tn), we calculate

Fn
i+1/2 −Fn

i−1/2

∆xi
=

1
∆xi

[ Ih∑

j=i+1

i∑

k=0

xkSjbk,jf
n
j ∆xj∆xk −

Ih∑

j=i

i−1∑

k=0

xkSjbk,jf
n
j ∆xj∆xk

]

=
1

∆xi

[
−

i−1∑

k=0

xkSibk,if
n
i ∆xi∆xk +

Ih∑

j=i+1

xiSjbi,jf
n
j ∆xj∆xi

]

≥−
i−1∑

k=0

xkSibk,if
n
i ∆xk. (2.16)

15
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Since k < i implies that xk < xi, we further simplify (2.16) into

Fn
i+1/2 −Fn

i−1/2

∆xi
≥−

i−1∑

k=0

xiSibk,if
n
i ∆xk

≥−
Ih∑

k=0

(Sibk,i∆xk)xif
n
i .

Therefore, we estimate that

xif
n+1
i ≥

(
1−∆t

Ih∑

k=0

Sibk,i∆xk

)
xif

n
i .

Finally, using the stability condition (2.9) on the time step ∆t and the L1 estimate (2.15) give

fh(tn+1) ≥ 0.

Next, the total mass conservation follows by summing (2.3) with respect to i and using (2.5)

Ih∑

i=0

∆xixif
n+1
i =

Ih∑

i=0

∆xixif
n
i + ∆t

Ih∑

i=0

(
Fn

i+1/2 −Fn
i−1/2

)
=

Ih∑

i=0

∆xixif
n
i .

Now, we prove that fh(tn+1) enjoys a similar estimate as (2.15). Multiplying equation (2.3) by
∆xi/xi and taking summation over i yield

Ih∑

i=0

∆xif
n+1
i =

Ih∑

i=0

∆xif
n
i + ∆t

Ih∑

i=0

Fn
i+1/2 −Fn

i−1/2

xi
.

Analogously as for (2.16) we may estimate

Ih∑

i=0

Fn
i+1/2 −Fn

i−1/2

xi
≤

Ih∑

i=0

∆xi

Ih∑

j=i+1

∆xjSjbi,jf
n
j (2.17)

and therefore

Ih∑

i=0

∆xif
n+1
i ≤ (1 + R‖bS‖L∞∆t)

Ih∑

i=0

∆xif
n
i .

Finally, using (2.15) at step n and the inequality 1 + x < exp(x) for all x > 0 gives

Ih∑

i=0

∆xif
n+1
i ≤ ‖f in‖L1eR‖bS‖L∞ tn+1

and therefore the result (2.14) follows.
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2.3. CONVERGENCE OF SOLUTION

Next we will prove the equiintegrability for the function fh. The following property on convex
functions, as stated in the La Vallée Poussin theorem [31, Proposition I.1.1], and Lemma 2.3.4
are used to show this result. Since f in ∈ L1 ]0, R], hence by the La Vallée Poussin theorem, there
exists a convex function Φ ≥ 0, continuously differentiable on R>0 with Φ(0) = 0, Φ

′
(0) = 1

such that Φ
′
is concave,

Φ(r)
r

→∞, as r →∞

and
∫ R

0
Φ(f in)(x)dx < +∞. (2.18)

Lemma 2.3.4. [58, Lemma B.1.] Let Φ ∈ C1(R>0) be convex such that Φ
′
is concave, Φ(0) =

0, Φ
′
(0) = 1 and Φ(r)/r →∞ as r →∞. Then for all (x, y) ∈ R>0 × R>0,

xΦ
′
(y) ≤ Φ(x) + Φ(y).

Now, we are in a position to prove the equiintegrability in the following.

Proposition 2.3.5. Let f in ≥ 0 ∈ L1]0, R] and let fh be defined for all h and ∆t by (2.3)
where ∆t satisfies (2.9). Then the family (fh)(h,∆t) is weakly relatively sequentially compact in
L1(]0, T [×]0, R]).

Proof. Our aim is to get a similar estimate as (2.18) for the function fh. We know that the
integral of Φ(fh) is related to the sequence fn

i through

∫ T

0

∫ R

0
Φ(fh(t, x))dx dt =

N−1∑

n=0

Ih∑

i=0

∫

τn

∫

Λh
i

Φ
( N−1∑

k=0

Ih∑

j=0

fk
j χΛh

j
(x)χτk

(t)
)

dx dt

=
N−1∑

n=0

Ih∑

i=0

∆t∆xiΦ(fn
i ).

Since Φ is a convex function, we can estimate

(
fn+1

i − fn
i

)
Φ
′
(fn+1

i ) ≥ Φ(fn+1
i )− Φ(fn

i ).

Hence, multiplying this equation by ∆xi and taking summation over i on both sides we get

Ih∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )

] ≤
Ih∑

i=0

∆xi

[
(fn+1

i − fn
i )Φ

′
(fn+1

i )
]
.

By using the discrete equation (2.3), it can be rewritten as

Ih∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )

] ≤
Ih∑

i=0

∆t

xi

(
Fn

i+1/2 −Fn
i−1/2

)
Φ
′
(fn+1

i ).

17
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Since Φ is a convex function, its derivative is non-decreasing. Therefore, Φ
′
(0) = 1 implies that

Φ
′
(x) > 0 for x ≥ 0. Further simplification as in (2.17) gives

Ih∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )

] ≤
Ih∑

i=0

∆t

xi

Ih∑

j=i+1

xiSjbi,jf
n
j ∆xj∆xiΦ

′
(fn+1

i )

≤‖bS‖L∞∆t

Ih∑

i=0

Ih∑

j=i+1

∆xj∆xif
n
j Φ

′
(fn+1

i ).

Using the property xΦ
′
(y) ≤ Φ(x) + Φ(y) from Lemma 2.3.4, it reduces to

Ih∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )

] ≤‖bS‖L∞∆t
Ih∑

i=0

∆xi

Ih∑

j=i+1

∆xj

(
Φ(fn

j ) + Φ(fn+1
i )

)

≤(‖bS‖L∞∆tR)




Ih∑

j=0

∆xjΦ(fn
j ) +

Ih∑

i=0

∆xiΦ(fn+1
i )


 .

Changing the index from j to i for the first term on the right-hand side and taking ‖bS‖L∞R =
C(T, R), we obtain

(1−∆tC(T, R))
Ih∑

i=0

∆xiΦ(fn+1
i ) ≤(1 + ∆tC(T, R))

Ih∑

i=0

∆xiΦ(fn
i ).

Equivalently, it can be rewritten as

(1−∆tC(T, R))
Ih∑

i=0

∆xi(Φ(fn+1
i )− Φ(fn

i )) ≤2∆tC(T, R)
Ih∑

i=0

∆xiΦ(fn
i ). (2.19)

This gives using λ = 2C(T,R)
1−∆tC(T,R) > 0

Ih∑

i=0

∆xiΦ(fn+1
i ) ≤(1 + λ∆t)

Ih∑

i=0

∆xiΦ(fn
i )

for any n. Hence, we achieve the result that

Ih∑

i=0

∆xiΦ(fn
i ) ≤(1 + λ∆t)n

Ih∑

i=0

∆xiΦ(f0
i )

≤ exp(λ∆tn)
Ih∑

i=0

∆xiΦ(f0
i ).

For time t ∈ τn = [tn, tn+1[ the above expression becomes

∫ R

0
Φ(fh(t, x))dx ≤ exp(λt)

Ih∑

i=0

∆xiΦ(f in
i )

≤ exp(λt)
Ih∑

i=0

∆xiΦ

(
1

∆xi

∫

Λh
i

f in(x)dx

)
.

18



2.3. CONVERGENCE OF SOLUTION

We apply Jensen’s inequality to get

∫ R

0
Φ(fh(t, x))dx ≤ exp(λt)

Ih∑

i=0

∆xi/∆xi

∫

Λh
i

Φ(f in(x))dx.

Equivalently, we have
∫ R

0
Φ(fh(t, x))dx ≤ exp

(
2C(T, R)t

1−∆tC(T, R)

) ∫ R

0
Φ(f in(x))dx.

As we know from (2.9) that 1−∆tC(T, R) ≥ 1− θ. This implies that
∫ R

0
Φ(fh(t, x))dx ≤ exp

(
2C(T, R)t

1− θ

) ∫ R

0
Φ(f in(x))dx, for all t ∈ [0, T [

and it concludes the proof.

Hence, the sequence (fh)h∈N is weakly compact in L1 due to the Dunford-Pettis theorem. Here,
the exponent is uniformly bounded with respect to h and ∆t as long as the time step re-
striction (2.9) holds. This implies that there exists a subsequence of (fh)h∈N and a function
f ∈ L1(]0, T [×]0, R]) such that fh ⇀ f as h → 0.

So far we have seen that the sequence fn
i is built from the numerical scheme as a sequence of

step functions fh depending on the mesh size h and the time step ∆t. We have already seen the
weak compactness of this sequence. Now in order to prove Theorem 2.3.1, it remains to show
that the discrete breakage flux converges weakly towards the continuous flux when it is written
in terms of the function fh. This is done in Lemma 2.3.7 later.

We use the following point approximations for further analysis. First we define the midpoint
approximation as

Xh : x ∈]0, R[→ Xh(x) =
Ih∑

i=0

xiχΛh
i
(x).

Then right and left endpoint approximations are taken respectively as

Ξh : x ∈]0, R[→ Ξh(x) =
Ih∑

i=0

xi+1/2χΛh
i
(x),

and

ξh : x ∈]0, R[→ ξh(x) =
Ih∑

i=0

xi−1/2χΛh
i
(x).

It should be mentioned that the approximations (Xh)h, (Ξh)h and (ξh)h converge pointwise, i.e.
for all x ∈]0, R[,

Xh(x) → x, Ξh(x) → x and ξh(x) → x

as h → 0. We also use the following classical lemma to prove the convergence of the numerical
flux towards the continuous flux. The proof of this lemma is based on the Dunford-Pettis and
Egorov theorems.
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Lemma 2.3.6. [58, Lemma A.2] Let Ω be an open subset of Rm and let there exist a constant
k > 0 and two sequences (vn)n∈N and (wn)n∈N such that (vn) ∈ L1(Ω), v ∈ L1(Ω) and

vn ⇀ v, weakly in L1(Ω), as n →∞,

(wn) ∈ L∞(Ω), w ∈ L∞(Ω), and for all n ∈ N, |wn| ≤ k with

wn → w, almost everywhere (a.e.) in Ω, as n →∞.

Then
lim

n→∞ ‖vn(wn − w)‖L1(Ω) = 0

and
vn wn ⇀ v w, weakly in L1(Ω), as n →∞.

Consider the definitions of fh, bh and Sh given by (2.6), (2.7) and (2.8) respectively. The
following lemma state the convergence result of the numerical flux towards the continuous flux.

Lemma 2.3.7. Let us define the approximation of the fragmentation terms as

Fh(t, x) =
∫ R

0

∫ R

0
χ[0,Ξh(x)](u)χ[Ξh(x),R](v)Xh(u)bh(u, v)Sh(v)fh(t, v)dudv.

There exists a subsequence of (fh)h∈N, such that

Fh ⇀ FR
c in L1(]0, T [×]0, R]) as h → 0.

Before proving this lemma, it is worth to mention that actually the Fh(t, x) coincide with Fn
i

whenever t ∈ τn and x ∈ Λh
i . It can be seen easily that for x ∈ Λh

i

Fh(t, x) =
∫ R

xi+1/2

∫ xi+1/2

0
Xh(u)bh(u, v)Sh(v)fh(t, v)dudv

=
Ih∑

j=i+1

∫

Λh
j

i∑

k=0

∫

Λh
k

[
Xh(u)

( Ih∑

`=0

Ih∑

m=0

bm,`χΛh
m

(u)χΛh
`
(v)

)( Ih∑

`=0

S`χΛh
`
(v)

)

·
( Ih∑

`=0

fn
` χΛh

`
(v)

)]
dudv

=
Ih∑

j=i+1

i∑

k=0

∫

Λh
j

∫

Λh
k

xkbk,jSjf
n
j dudv = Fn

i+1/2.

Proof. [Lemma 2.3.7]
We know that for all (t, x) ∈]0, T [×]0, R] and for u ∈]0, R] almost everywhere that the sequence

Xh(·)bh(·, v)Sh(v) ∈ L∞]0, R] for almost all v ∈]0, R].

It is uniformly bounded and

χ[0,Ξh(x)](u)χ[Ξh(x),R](v)Xh(u)bh(u, v)Sh(v) → χ[0,x](u)χ[x,R](v)ub(u, v)S(v)
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pointwise almost everywhere as h → 0. We also know that fh ⇀ f in L1]0, R]. Hence, applying
Lemma 2.3.6 yields

χ[0,Ξh(x)](u)χ[Ξh(x),R](v)Xh(u)bh(u, v)Sh(v)fh(t, v) ⇀ χ[0,x](u)χ[x,R](v)ub(u, v)S(v)f(t, v)

in L1]0, R]. Therefore, we have
∫ R

0
χ[0,Ξh(x)](u)χ[Ξh(x),R](v)Xh(u)bh(u, v)Sh(v)fh(t, v)dv →

∫ R

0
χ[0,x](u)χ[x,R](v)ub(u, v)S(v)f(t, v)dv. (2.20)

This implies that (2.20) holds for each t, x and almost every u. Finally, by applying dominated
convergence theorem we get

Fh(t, x) → FR
c (t, x)

for every (t, x) ∈]0, T [×]0, R]. As Fh is bounded, this pointwise convergence implies weak con-
vergence for Fh.

Now we have gathered all the results needed to prove Theorem 2.3.1. The proof is given below.
For this, let us consider a test function ϕ ∈ C1([0, T [×[0, R]) which is compactly supported. For
∆t small enough, the support of ϕ w.r.to t satisfies Supptϕ ⊂ [0, tN−1]. Define the finite volume
(in time) and left endpoint (in space) approximation of ϕ on τn × Λh

i by

ϕn
i =

1
∆t

∫ tn+1

tn

ϕ(t, xi−1/2)dt.

Multiplying (2.3) by ϕn
i and summing over n ∈ {0, ..., N − 1} as well as i ∈ {0, ..., Ih} give

N−1∑

n=0

Ih∑

i=0

[
∆xixi(fn+1

i − fn
i )ϕn

i −∆t
(
Fn

i+1/2 −Fn
i−1/2

)
ϕn

i

]
= 0.

If we open the summation for both i and n, discrete integration by parts yields

N−1∑

n=0

Ih∑

i=0

∆xixif
n+1
i (ϕn+1

i − ϕn
i ) +

Ih∑

i=0

∆xixif
in
i ϕ0

i −
N−1∑

n=0

Ih−1∑

i=0

∆tFn
i+1/2(ϕ

n
i+1 − ϕn

i ) = 0. (2.21)

Now, we evaluate the first two terms on the left-hand side by writing them in terms of the
function fh as

N−1∑

n=0

Ih∑

i=0

∆xixif
n+1
i (ϕn+1

i − ϕn
i ) +

Ih∑

i=0

∆xixif
in
i ϕ0

i =

N−1∑

n=0

Ih∑

i=0

∫

τn+1

∫

Λh
i

Xh(x)fh(t, x)
ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))

∆t
dxdt

+
Ih∑

i=0

∫

Λh
i

Xh(x)fh(0, x)
1

∆t

∫ ∆t

0
ϕ(t, ξh(x))dtdx.
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Further it can be written as
N−1∑

n=0

Ih∑

i=0

∆xixif
n+1
i (ϕn+1

i − ϕn
i ) +

Ih∑

i=0

∆xixif
in
i ϕ0

i =

∫ T

∆t

∫ R

0
Xh(x)fh(t, x)

ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))
∆t

dxdt

+
∫ R

0
Xh(x)fh(0, x)

1
∆t

∫ ∆t

0
ϕ(t, ξh(x))dtdx.

Since, ϕ ∈ C1([0, T [×[0, R]) with compact support and the derivative of ϕ is bounded, we have

1
∆t

∫ ∆t

0
ϕ(t, ξh(x))dt → ϕ(0, x)

uniformly with respect to t, x as max{h,∆t} goes to 0. Moreover, we know that Xh(x) converges
pointwise in [0, R] and fh(0, x) → f in in L1]0, R]. Thus we achieve by using Lemma 2.3.6

∫ R

0
Xh(x)fh(0, x)

1
∆t

∫ ∆t

0
ϕ(t, ξh(x))dtdx →

∫ R

0
xf in(x)ϕ(0, x)dx

as max{h,∆t} goes to 0.

Now, using Taylor expansion of the smooth function ϕ yields

ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))
∆t

=
ϕ(t, x) + (x− ξh(x))∂ϕ

∂x − ϕ(t, x) + ∆t∂ϕ
∂t − (x− ξh(x))∂ϕ

∂x + O(h∆t)
∆t

.

It implies that

ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))
∆t

→ ∂ϕ

∂t
(t, x)

uniformly as max{h, ∆t} goes to 0. Applying Lemma 2.3.6, together with Proposition 2.3.5,
ensures that for max{h,∆t} goes to 0

∫ T

0

∫ R

0
Xh(x)fh(t, x)

ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))
∆t

dx dt →
∫ T

0

∫ R

0
xf(t, x)

∂ϕ

∂t
(t, x)dx dt.

Hence, we obtain
∫ T

∆t

∫ R

0
Xh(x)fh(t, x)

ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))
∆t︸ ︷︷ ︸

A

dx dt =

∫ T

0

∫ R

0
Adx dt−

∫ ∆t

0

∫ R

0
Adx dt →

∫ T

0

∫ R

0
xf(t, x)

∂ϕ

∂t
(t, x)dx dt

as max{h, ∆t} → 0. Finally, writing the remaining third term of the equation (2.21) in terms
of Fh gives

N−1∑

n=0

Ih−1∑

i=0

∆tFn
i+1/2(ϕ

n
i+1 − ϕn

i ) =
N−1∑

n=0

Ih−1∑

i=0

∫

τn

∫

Λh
i

Fn
i+1/2

1
∆xi

[
ϕ(t, xi+1/2)− ϕ(t, xi−1/2)

]
dxdt

=
∫ T

0

∫ R−∆x
Ih

0
Fh(t, x)

∂ϕ

∂x
(t, x)dxdt.
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By using the weak convergence for the flux from Lemma 2.3.7, i.e. Fh ⇀ FR
c in L1(]0, T [×]0, R]),

we determine
∫ T

0

∫ R−∆x
Ih

0
Fh(t, x)

∂ϕ

∂x
(t, x)dxdt =

(∫ T

0

∫ R

0
−

∫ T

0

∫

∆x
Ih

)
Fh(t, x)

∂ϕ

∂x
(t, x)dxdt

→
∫ T

0

∫ R

0
FR

c

∂ϕ

∂x
(t, x)dxdt, as h → 0.

Therefore, the corresponding terms in (2.11) are obtained.
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Chapter 3

Convergence analysis of the finite
volume scheme

In this chapter we discuss the convergence analysis of the finite volume schemes for the aggre-
gation problem introduced by Filbet and Laurençot [23] and the multiple breakage equation
studied by J. Kumar [42]. We demonstrate the consistency and the convergence of the schemes.
We notice that the method shows second order convergence independently of the meshes for the
pure breakage problem. However, due to the non-linearity of the aggregation process we observe
that the scheme is second order convergent only on uniform and non-uniform smooth meshes for
the pure aggregation and combined aggregation-breakage problems. Furthermore, in these cases
the method is only first order accurate on oscillatory and non-uniform random meshes. Finally,
numerical simulations are performed by considering various examples of the pure aggregation,
pure breakage and the combined processes. These simulations are made on five different types
of uniform and non-uniform grids to verify the mathematical results of the convergence analysis.

The contents of this chapter are as follows. In the following section we give a short introduction
of the problem. Section 3.2 summarizes the numerical scheme. Then we recall from the book
of Hundsdorfer and Verwer [33] and from the paper of Linz [68], some useful definitions and
theorems, which are used in the further analysis of this work in Section 3.3. Here, we discuss
the consistency and the Lipschitz conditions which are needed to show the convergence of the
scheme. At the end in Section 3.4, numerical results are provided.

3.1 Introduction

From (1.13) we know that the non-linear aggregation and multiple breakage equation in a con-
servative form of mass density xf(t, x) is written as

∂ [xf(t, x)]
∂t

+
∂

∂x

(
F agg(t, x) + F brk(t, x)

)
= 0, (3.1)

where we have used the abbreviations agg and brk for aggregation and breakage terms respec-
tively. The flux functions F agg and F brk are given by

F agg(t, x) =
∫ x

0

∫ ∞

x−u
uβ(u, v)f(t, u)f(t, v)dvdu, (3.2)
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and

F brk(t, x) = −
∫ ∞

x

∫ x

0
ub(u, v)S(v)f(t, v)dudv. (3.3)

It is worth here to mention that the equation (3.1) reduces into the case of pure aggregation or
pure breakage process when F brk(t, x) or F agg(t, x) is zero, respectively.

In the population balance equation (3.1) the volume variable x ranges from 0 to ∞. In order to
apply a numerical scheme for the solution of the equation a first step is to fix a finite computa-
tional domain Ω :=]0, xmax] for an 0 < xmax < ∞. Hence, for x ∈ Ω and time t ∈ (0, T ] where
T < ∞, the aggregation and the breakage fluxes for the truncated conservation law for n, i.e.
for

∂ [xn(t, x)]
∂t

+
∂

∂x

(
F agg(t, x) + F brk(t, x)

)
= 0 (3.4)

are given as

F agg(t, x) =
∫ x

0

∫ xmax

x−u
uβ(u, v)n(t, u)n(t, v)dvdu, (3.5)

and

F brk(t, x) = −
∫ xmax

x

∫ x

0
ub(u, v)S(v)n(t, v)dudv. (3.6)

Here the variable n(t, x) denotes the solution to the truncated equation. We are given with
initial data

n(0, x) = f in(x), x ∈ Ω. (3.7)

For further analysis in this work we consider

β, b ∈ C2(]0, xmax]×]0, xmax]) and S ∈ C2]0, xmax]. (3.8)

Additionally we assume the boundedness of the kernels, namely

β(x, y) ≤ Q and b(x, y)S(y) ≤ Q1 (3.9)

for x, y ∈]0, xmax] and for some non-negative constants Q and Q1 depending on xmax.

Remark 3.1.1. The formulation we use here is a non-conservative truncation for the pure
aggregation operator as F agg(t, xmax) ≥ 0 while it is mass conserving for the pure breakage
equation, i.e. F brk(t, xmax) = 0. Hence, the combined formulation (3.4) is a non-conservative
truncation as used by Bourgade and Filbet [7]. One could make a conservative truncation by
replacing xmax by xmax − u in (3.5). This would give F agg(t, xmax) = 0. But it describes an
artificial interruption of the aggregation process without a real physical justification. With our
truncation particles that are too large leave the system.
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3.2 Finite volume scheme

Finite volume methods are a class of discretization schemes used to solve mainly conservation
laws, see LeVeque [64]. Conservation laws describe many physical processes. It has been observed
that many differential equations which we would like to solve come from conservation laws which
are integrals over volumes. For a semi-discrete scheme, the interval ]0, xmax] is discretized into
small cells

Λi :=]xi−1/2, xi+1/2], i = 1, ..., I,

with

x1/2 = 0, xI+1/2 = xmax, ∆xi = xi+1/2 − xi−1/2 ≤ ∆x,

where ∆x is the maximum mesh size. The representative of each size, usually the center of each
cell xi = (xi−1/2+xi+1/2)/2, is called pivot or grid point. The finite volume idea has been carried
over to the discretization of such equations by instead of interpreting n̂i(t) as an approximation
to a point value at a grid point, i.e. n(t, xi), rather taking an approximation of the cell average
of the solution on cell i at time t

n̂i(t) ≈ ni =
1

∆xi

∫ xi+1/2

xi−1/2

n(t, x)dx. (3.10)

Note that for n(t, x) ∈ C2(]0, xmax]), we have the relation ni = n(t, xi) + O(∆x2) by applying
mid-point rule. Integrating the conservation law on a cell in space Λi, the finite volume scheme
in a semi-discrete form is given as [64]

xidn̂i(t)
dt

= − 1
∆xi

[
Jagg

i+1/2 − Jagg
i−1/2 + Jbrk

i+1/2 − Jbrk
i−1/2

]
. (3.11)

The term J−i+1/2 is called the numerical flux which is an appropriate approximation of the
truncated continuous flux function F agg and/or F brk depending upon the processes under con-
sideration.
In case of a breakage process, the numerical flux may be approximated from the mass flux F brk

as follows

F brk(xi+1/2) = −
∫ xmax

xi+1/2

∫ xi+1/2

0
ub(u, ε)S(ε)n(t, ε) du dε

= −
I∑

k=i+1

∫

Λk

S(ε)n(t, ε)
i∑

j=1

∫

Λj

ub(u, ε) du dε. (3.12)

Using our assumptions that S ∈ C2(]0, xmax]), b ∈ C2(]0, xmax]×]0, xmax]) and applying the
mid-point rule we can rewrite (3.12) as

F brk(xi+1/2) = −
I∑

k=i+1

nk(t)S(xk)∆xk

i∑

j=1

xjb(xj , xk)∆xj

︸ ︷︷ ︸
=:Jbrk

i+1/2
(n)

+O(∆x2). (3.13)
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Similarly for the aggregation problem, we have

F agg(xi+1/2) =
∫ xi+1/2

0

∫ xmax

xi+1/2−u
uβ(u, v)n(t, u)n(t, v)dvdu. (3.14)

From Filbet and Laurençot [23], the above equation can be written as

F agg(xi+1/2) =
i∑

k=1

(xn)k∆xk

(
I∑

j=αi,k

(xn)j

∫

Λj

β(x, xk)
x

dx+(xn)αi,k−1

∫ xαi,k−1/2

xi+1/2−xk

β(x, xk)
x

dx

)

+O(∆x2).

Here, the parameter I denotes the number of cells. The integer αi,k corresponds to the index of
each cell such that

xi+1/2 − xk ∈ Λαi,k−1. (3.15)

Applying mid point approximation for the first term and Taylor series expansion of the second
term about the point xαi,k−1 give

F agg(xi+1/2) =
i∑

k=1

xknk∆xk

(
I∑

j=αi,k

njβj,k∆xj + nαi,k−1βαi,k−1,k(xαi,k−1/2 − (xi+1/2 − xk))

)

︸ ︷︷ ︸
=:Jagg

i+1/2
(n)

+O(∆x2). (3.16)

Note that the above conservative formulations for the numerical fluxes Jagg
i+1/2 and Jbrk

i+1/2 can
directly be obtained by discretizing the standard form of the population balance equations as
given in Appendix A.1.

Let us denote the average values of the exact solution n by the vector n := [n1, . . . , nI ] obtained
using (3.10). We also define the vectors

∆Jagg(n) := [∆Jagg
1 (n), . . . , ∆Jagg

I (n)] and ∆Jbrk(n) := [∆Jbrk
1 (n), . . . ,∆Jbrk

I (n)]

where

∆Jagg
i (n) =

1
xi∆xi

[
Jagg

i+1/2(n)− Jagg
i−1/2(n)

]
, ∆Jbrk

i (n) =
1

xi∆xi

[
Jbrk

i+1/2(n)− Jbrk
i−1/2(n)

]
.

(3.17)

Substituting the values of Jagg
i+1/2 and Jbrk

i+1/2 from the equations (3.16) and (3.13), respectively,
we get

∆xi∆Jagg
i (n) =

i−1∑

k=1

xk

xi
nk∆xk

(
−

αi,k−1∑

j=αi−1,k

njβj,k∆xj + βαi,k−1,knαi,k−1(xαi,k−1/2 − (xi+1/2 − xk))

− βαi−1,k−1,knαi−1,k−1(xαi−1,k−1/2 − (xi−1/2 − xk))
)

+ ni∆xi

(
I∑

j=αi,i

njβj,i∆xj

+ nαi,i−1βαi,i−1,i(xαi,i−1/2 − (xi+1/2 − xi))

)
(3.18)
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and

∆xi∆Jbrk
i (n) = −

I∑

k=i+1

S(xk)nk∆xkb(xi, xk)∆xi + S(xi)ni∆xi

i−1∑

j=1

xj

xi
b(xj , xi)∆xj . (3.19)

By denoting the vector n̂ := [n̂1, . . . , n̂I ] for the approximations of the average values of n(t, x),
the equation (3.11) can be rewritten as

dn̂(t)
dt

= −
[
∆Jagg(n̂) + ∆Jbrk(n̂)

]
= J(n̂). (3.20)

In order to retain the overall high accuracy, the semi-discrete scheme (3.20) can be combined
with any higher order time integration method. It is worth to mention here that for the pure
breakage problem ∆Jagg(n̂) = 0 while for the pure aggregation ∆Jbrk(n̂) = 0. Therefore, dealing
with the pure cases of aggregation or breakage is easy by setting one of the two numerical fluxes
is zero. Before proceeding further to establish the consistency, stability and convergence of the
semi-discrete scheme, we have the following obvious proposition to show some characteristic
features of the numerical solution.

Proposition 3.2.1. The semi-discrete formulation (3.11) is mass dissipating. Thus, we have

d

dt

∑

i

(xin̂i(t)∆xi) ≤ 0. (3.21)

Furthermore, if φ : [0, +∞[→ [0,+∞[ is a non-increasing function, then

d

dt

∑

i

(φ(xi)xin̂i(t)∆xi) ≥ 0 (3.22)

for the pure breakage problem and for the pure aggregation

d

dt

∑

i

(φ(xi)xin̂i(t)∆xi) ≤ 0. (3.23)

Proof. The volume dissipation property (3.21) and properties (3.22) and (3.23) can easily be
proved by multiplying the equation (3.11) by ∆xi and by φ(xi)∆xi, respectively, and summing
with respect to i.

It should also be mentioned that the mass dissipation (3.21) turns into the mass conservation,
i.e. d

dt

∑
i (xin̂i(t)∆xi) = 0 by making an assumption that the fluxes at the boundaries x1/2 = 0

and xI+1/2 = xmax are zero.

3.3 Convergence analysis

Before discussing the convergence of the semi-discrete scheme, let us review some useful defini-
tions and theorems that will be used in the subsequent analysis. Details can be found in the
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book of Hundsdorfer and Verwer [33] and the paper of Linz [68]. Let ‖ · ‖ denote the discrete
L1 norm on RI that is defined as

‖n̂(t)‖ =
I∑

i=1

|n̂i(t)|∆xi. (3.24)

In the subsequent analysis, we work with this norm by interpreting the discrete data as step
functions.

Definition 3.3.1. The spatial truncation error is defined by the residual left by substituting
the exact solution n(t) = [n1(t), . . . , nI(t)] into equation (3.20) as

σ(t) =
dn(t)

dt
+ (∆Jagg(n) + ∆Jbrk(n)). (3.25)

The scheme (3.20) is called consistent of order p if, for ∆x → 0,

‖σ(t)‖ = O(∆xp), uniformly for all t, 0 ≤ t ≤ T. (3.26)

Definition 3.3.2. The global discretization error is defined by ε(t) = n(t) − n̂(t). The
scheme (3.20) is called convergent of order p if, for ∆x → 0,

‖ε(t)‖ = O(∆xp), uniformly for all t, 0 ≤ t ≤ T. (3.27)

Remark 3.3.3. It should be mentioned that the actual error is

ε1(t, x) = n(t, x)− I∆xn̂(t) (3.28)

where I∆xn̂(t) =
∑I

i=1 n̂i(t)χΛi(x). The term χΛi(x) is the characteristic function, defined by
χΛi(x) = 1 if x ∈ Λi else 0 everywhere. We can rewrite (3.28) as

ε1(t, x) = n(t, x)− I∆xn(t) + I∆xn(t)− I∆xn̂(t).

Taking the L1 norm in space on both sides gives

‖ε1(t)‖L1(]0,xmax]) ≤ ‖n(t)− I∆xn(t)‖L1(]0,xmax]) + ‖I∆xn(t)− I∆xn̂(t)‖L1(]0,xmax]).

It is easy to show that ‖n(t)− I∆xn(t)‖L1(]0,xmax]) = O(∆x2) for n(t) ∈ C2(]0, xmax]) and

‖I∆xn(t)− I∆xn̂(t)‖L1(]0,xmax]) =
I∑

i=1

∆xi|ni(t)− n̂i(t)| = ‖ε(t)‖.

Hence, ‖ε1(t)‖L1(]0,xmax]) ≤ O(∆x2) + ‖ε(t)‖. Clearly, the order of convergence of the scheme is
at most 2. The actual order of convergence of the scheme may depend on ‖ε(t)‖.

It is important that our numerical solution remains non-negative for all times. This is guaranteed
by the next well known theorem. In the following theorem we write M̂ ≥ 0 for a vector M̂ ∈ RI

iff all its components are non-negative.
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Theorem 3.3.4. (Hundsdorfer and Verwer [33, Chap. 1, Theorem 7.1]). Suppose that ∆Jagg(n̂)
and ∆Jbrk(n̂) are continuous and satisfy the Lipschitz conditions

‖∆Jagg(n̂)−∆Jagg(m̂)‖ ≤ L1‖n̂− m̂‖ for all n̂, m̂ ∈ RI

and

‖∆Jbrk(n̂)−∆Jbrk(m̂)‖ ≤ L2‖n̂− m̂‖ for all n̂, m̂ ∈ RI .

Then the solution of the semi-discrete system (3.11) is non-negative if and only if for any vector
n̂ ∈ RI and all i = 1, . . . , I and t ≥ 0,

n̂ ≥ 0, n̂i = 0 =⇒ Ji(n̂) ≥ 0.

Now we state a useful theorem from Linz [68] which we use to show that the FVS is convergent.

Theorem 3.3.5. Let us assume that a Lipschitz condition on J(n) is satisfied for 0 ≤ t ≤ T
and for all n, n̂ ∈ RI where n and n̂ are the projected exact and numerical solutions defined in
(3.4) and (3.20), respectively. More precisely there exists a Lipschitz constant L < ∞ such that

‖J(n)− J(n̂)‖ ≤ L ‖n− n̂‖, (3.29)

holds. Then a consistent discretization method is also convergent and the convergence is of the
same order as the consistency.

We need the following Gronwall Lemma to prove this theorem. A more general result is proven
in Linz [68]. However, for completeness we give the short proof.

Lemma 3.3.6. If v(t) satisfies

|v(t)| ≤ k

∫ t

0
|v(τ)|dτ +

∫ t

0
|r(τ)|dτ (3.30)

with k > 0 and

max
0≤t≤T

|r(t)| ≤ R > 0,

then

|v(t)| ≤ R

k
[exp (kt)− 1]. (3.31)

Proof. Let z(t) be the solution of

z(t) = k

∫ t

0
z(τ)dτ + tR.

Since z(t) is a positive and increasing function of t, we have

z(t) ≥ k

∫ t

0
z(τ)dτ +

∫ t

0
|r(τ)|dτ.
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A comparison with (3.30) ensures that

z(t) ≥ |v(t)|.

But z(t) is given as

z(t) =
R

k
[exp (kt)− 1],

and therefore (3.31) follows.

Proof. [Theorem 3.3.5]
We know from the Definition 3.3.2 that

ε(t) = n(t)− n̂(t).

Differentiating with respect to time yields

d

dt
ε(t) =

dn
dt
− dn̂

dt
= σ(t) + J(n)− J(n̂).

Taking norm both sides, we obtain

d

dt
‖ε(t)‖ ≤ ‖σ(t)‖+ ‖J(n)− J(n̂)‖.

Integrating with respect to t, ε(0) = 0 and by Lipschitz condition on J(n), we get

‖ε(t)‖ ≤
∫ t

0
‖σ(τ)‖dτ + L

∫ t

0
‖n− n̂‖︸ ︷︷ ︸
‖ε(t)‖

dτ.

Hence, Gronwall’s lemma gives
‖ε(t)‖ ≤ eh

L
(eLt − 1)

where eh = max0≤t≤T ‖σ(t)‖. If the scheme is consistent then limh−→0 eh = 0 and then we have
convergence.

Therefore, due to Theorem 3.3.5, for the convergence of our scheme it remains to show that the
method is consistent and the Lipschitz condition (3.29) is satisfied by the fluxes.

3.3.1 Consistency

The following lemma gives the consistency order of the finite volume scheme for aggregation-
breakage population balance equations.

Lemma 3.3.7. Consider the function S ∈ C2]0, xmax] and b, β ∈ C2(]0, xmax]×]0, xmax]). Then,
for any family of meshes, the consistency of the semi-discrete scheme (3.20) is of second order
for the pure breakage process, i.e. with ∆Jagg(n̂) = 0. For the aggregation and coupled processes,
the scheme is second order consistent only on uniform and non-uniform smooth meshes while
on oscillatory and non-uniform random meshes it is first order consistent.
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Proof. The spatial truncation error (3.25) is given by

σi(t) =
dni(t)

dt
+ (∆Ji

agg(n) + ∆Ji
brk(n)). (3.32)

Integrating (3.4) over Λi and applying the mid-point rule in the time derivative term, we have

dni(t)
dt

=
−1

xi∆xi

[
F agg(xi+1/2)− F agg(xi−1/2) + F brk(xi+1/2)− F brk(xi−1/2)

]
+O(∆x2).

Substituting this into the equation (3.32) and using (3.17) give the following form

σi(t) =
−1

xi∆xi

[
F agg(xi+1/2)− F agg(xi−1/2)− Jagg

i+1/2(n) + Jagg
i−1/2(n)

+ F brk(xi+1/2)− F brk(xi−1/2)− Jbrk
i+1/2(n) + Jbrk

i−1/2(n)
]

+O(∆x2)

= σagg
i (t) + σbrk

i (t) +O(∆x2).

Let us now begin with

F brk(xi+1/2)− F brk(xi−1/2) = −
(

I∑

k=i+1

∫

Λk

S(ε)n(t, ε)
∫ xi+1/2

0
ub(u, ε) du dε

−
I∑

k=i

∫

Λk

S(ε)n(t, ε)
∫ xi−1/2

0
ub(u, ε) du dε

)
.

We now use Taylor series expansion of the functions Kxi±1/2
(ε) := n(t, ε)

∫ xi±1/2

0 ub(u, ε) du about
xk to get

F brk(xi+1/2)− F brk(xi−1/2) =−
( I∑

k=i+1

∫

Λk

S(ε)
(
Kxi+1/2

(xk) + (ε− xk)K ′
xi+1/2

(xk)
)

dε

−
I∑

k=i

∫

Λk

S(ε)
(
Kxi−1/2

(xk) + (ε− xk)K ′
xi−1/2

(xk)
)

dε

)
+O(∆x3).

Replacing Kxi±1/2
(xk) from the first and third terms on the right-hand side of the equation and

using the mid-point rule, we obtain

F brk(xi+1/2)− F brk(xi−1/2) =−
(
− Jbrk

i+1/2(n) +
I∑

k=i+1

∫

Λk

S(ε)(ε− xk)K ′
xi+1/2

(xk)dε

+ Jbrk
i−1/2(n)−

I∑

k=i

∫

Λk

S(ε)(ε− xk)K ′
xi−1/2

(xk)dε

)
+O(∆x3).
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Hence, we determine the local truncation error for the breakage process by

σbrk
i (t) =

1
xi∆xi

(
I∑

k=i+1

K′xi+1/2
(xk)

∫

Λk

S(ε)(ε− xk) dε−
I∑

k=i

K′xi−1/2
(xk)

∫

Λk

S(ε)(ε− xk) dε

+O(∆x3)

)

=
1

xi∆xi

(
I∑

k=i+1

[
K′xi+1/2

(xk)−K′xi−1/2
(xk)

] ∫

Λk

S(ε)(ε− xk) dε

−K′xi−1/2
(xi)

∫

Λi

S(ε)(ε− xi) dε +O(∆x3)

)
.

Applying again the mid-point rule, it should be noted that∫

Λk

S(ε)(ε− xk) dε = 0 +O(∆x3),

and K′xi+1/2
(xk)−K′xi−1/2

(xk) = O(∆x). Thus we obtain

σbrk
i (t) = O(∆x2). (3.33)

Hence, for the pure breakage process, the consistency of the semi-discrete scheme (3.20) is two
which is determined by using (3.24) as

‖σ(t)‖ =
I∑

i=1

|σbrk
i (t)|∆xi = O(∆x2),

independently of the type of meshes.

Due to the non-linearity of the aggregation problem, it is not easy to determine the consistency
order on general meshes. Therefore, we evaluate the consistency of the semi-discrete scheme
(3.20) in this case on various meshes separately. The results can be combined to the result of
breakage process to give the consistency of the coupled processes. We know from the equation
(3.14)

F agg(xi+1/2)− F agg(xi−1/2) =

(
i∑

j=1

∫

Λj

un(t, u)
∫ xmax

xi+1/2−u
β(u, v)n(t, v)dvdu

−
i−1∑

j=1

∫

Λj

un(t, u)
∫ xmax

xi−1/2−u
β(u, v)n(t, v)dvdu

)
.

Define Lxi±1/2
(u) := n(t, u)

∫ xmax

xi±1/2−u β(u, v)n(t, v)dv. Taylor series expansion of the functions
Lxi±1/2

(u) about xj gives

F agg(xi+1/2)− F agg(xi−1/2) =

(
i∑

j=1

∫

Λj

u
(
Lxi+1/2

(xj) + (u− xj)L′xi+1/2
(xj)

)
du

−
i−1∑

j=1

∫

Λj

u
(
Lxi−1/2

(xj) + (u− xj)L′xi−1/2
(xj)

)
du

)
+O(∆x3). (3.34)
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Applying the mid-point rule, it should again be noted that
∫

Λj

u(u− xj) du = O(∆x3),

and L′xi+1/2
(xj)−L′xi−1/2

(xj) = O(∆x). Therefore, by defining LHS := F agg(xi+1/2)−F agg(xi−1/2),
the equation (3.34) reduces to

LHS =

(
i∑

j=1

∫

Λj

uLxi+1/2
(xj)du−

i−1∑

j=1

∫

Λj

uLxi−1/2
(xj)du

)
+O(∆x3).

Substituting the values of Lxi±1/2
(xj) and using the relation ni = n(t, xi)+O(∆x2) yield (leaving

the third order terms)

LHS =

(
i∑

j=1

∫

Λj

unj

∫ xmax

xi+1/2−xj

β(xj , v)n(t, v)dvdu

︸ ︷︷ ︸
I1

−
i−1∑

j=1

∫

Λj

unj

∫ xmax

xi−1/2−xj

β(xj , v)n(t, v)dvdu

︸ ︷︷ ︸
I2

)
.

Now, I1 is equivalent to

I1 =
i∑

j=1

∫

Λj

unj




∫ xαi,j−1/2

xi+1/2−xj

+
I∑

k=αi,j

∫

Λk


β(xj , v)n(t, v)dvdu.

Applying the mid-point approximation for the second term, we obtain

I1 =
i∑

j=1

xjnj∆xj

[ ∫ xαi,j−1/2

xi+1/2−xj

β(xj , v)n(t, v)dv

+
I∑

k=αi,j

βj,knk∆xk +
I∑

k=αi,j

∫

Λk

(v − xk)2/2(β(xj , v)n(t, v))
′′
]
dv +O(∆x3).

Similarly, we estimate

I2 =
i−1∑

j=1

xjnj∆xj

[ ∫ xαi−1,j−1/2

xi−1/2−xj

β(xj , v)n(t, v)dv

+
I∑

k=αi−1,j

βj,knk∆xk +
I∑

k=αi−1,j

∫

Λk

(v − xk)2/2(β(xj , v)n(t, v))
′′
]
dv +O(∆x3).

Subtracting the third term from I2 to I1 gives

[ i∑

j=1

I∑

k=αi,j

−
i−1∑

j=1

I∑

k=αi−1,j

]
xjnj∆xj

∫

Λk

(v − xk)2/2(β(xj , v)n(t, v))
′′
dv =

[
−

i−1∑

j=1

k=αi,j−1∑

k=αi−1,j

]
xjnj∆xj

∫

Λk

(v − xk)2/2(β(xj , v)n(t, v))
′′
dv +O(∆x3).
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By using Lemma 3.3.8 which is stated in the next section, the summation over k is finite in this
term. Hence, the right-hand side of this equation becomes of order O(∆x3) and can be omitted.
Therefore, we calculate now

LHS =
i∑

j=1

xjnj∆xj

[ ∫ xαi,j−1/2

xi+1/2−xj

β(xj , v)n(t, v)dv

︸ ︷︷ ︸
I3

+
I∑

k=αi,j

βj,knk∆xk

]

−
i−1∑

j=1

xjnj∆xj

[ ∫ xαi−1,j−1/2

xi−1/2−xj

β(xj , v)n(t, v)dv

︸ ︷︷ ︸
I4

+
I∑

k=αi−1,j

βj,knk∆xk

])
+O(∆x3).

Open the Taylor series about the points xαi,j−1 in I3 and xαi−1,j−1 in I4 as well as by using the
relation (3.16), we finally obtain

LHS = Jagg
i+1/2 +

i∑

j=1

xjnj∆xj

∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)(β(xj , v)n(t, v))
′ |v=xαi,j−1dv

−Jagg
i−1/2 −

i−1∑

j=1

xjnj∆xj

∫ xαi−1,j−1/2

xi−1/2−xj

(v − xαi−1,j−1)(β(xj , v)n(t, v))
′ |v=xαi−1,j−1dv +O(∆x3).

Let f(xj , v) = β(xj , v)n(t, v) and ∂f
∂v |v=xαi,j

= f ′(xj , xαi,j ). This implies that

σagg
i (t) =

−1
xi∆xi

[ i∑

j=1

xjnj∆xj

∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)f ′(xj , xαi,j−1)dv

−
i−1∑

j=1

xjnj∆xj

∫ xαi−1,j−1/2

xi−1/2−xj

(v − xαi−1,j−1)f ′(xj , xαi−1,j−1)dv

]
+O(∆x2). (3.35)

Now we will evaluate the consistency order on four different types of meshes:

Uniform mesh

Let us assume that the first mesh is uniform, i.e. ∆xi = ∆x for all i. In this case xi+1/2 − xj

and xαi,j−1 become the same and are equal to the pivot point xi−j+1. Similarly,

xi−1/2 − xj = xαi−1,j−1 = xi−j . (3.36)

Applying the Taylor series expansion of the function f ′(xj , xαi−1,j−1+(xαi,j−1−xαi−1,j−1)) about
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the point xαi−1,j−1 in the equation (3.35) to get

σagg
i (t) =

−1
xi∆xi

[ i∑

j=1

xjnj∆xj

∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)f ′(xj , xαi−1,j−1)dv +O(∆x3)

−
i−1∑

j=1

xjnj∆xj

∫ xαi−1,j−1/2

xi−1/2−xj

(v − xαi−1,j−1)f ′(xj , xαi−1,j−1)dv

]
+O(∆x2)

=
−1

xi∆xi

[ i−1∑

j=1

xjnj∆xjf
′(xj , xαi−1,j−1)

( ∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)dv

−
∫ xαi−1,j−1/2

xi−1/2−xj

(v − xαi−1,j−1)dv

)]
+O(∆x2).

Further by simplifying the integrals and using the relation (3.36), we estimate

σagg
i (t) =

−1
xi∆xi

[ i−1∑

j=1

xjnj∆xjf
′(xj , xαi−1,j−1)

(∆x2
αi,j−1

8
−

∆x2
αi−1,j−1

8

)]
+O(∆x2).

Hence, for a uniform mesh σagg
i (t) = O(∆x2) and so the order of consistency is given by using

(3.24) as

‖σ(t)‖ =
I∑

i=1

|σagg
i (t)|∆xi = O(∆x2).

Therefore, the scheme is second order consistent on uniform grids.

Non-uniform smooth mesh

A smooth transformation from uniform grids leads to such meshes. In this case grids are assumed
to be smooth in the sense that ∆xi−∆xi−1 = O(∆x2) and 2∆xi− (∆xi−1 +∆xi+1) = O(∆x3),
where ∆x is the maximum mesh width. For example, let us consider a variable ξ with uniform
mesh and a smooth transformation x = g(ξ) to get non-uniform smooth mesh, see Figure 3.1.
For the analysis here, we have considered the exponential transformation as x = exp(ξ). Such
a mesh is also known as a geometric mesh, i.e. xi+1/2 = rxi−1/2 with r = exp(h̄). The term h̄
is the width of the uniform grid. Similar to the uniform mesh case we again have second order
consistency on such grids.

Equation (3.35) can be rewritten by setting j = j − 1 in second term as

σagg
i (t) =

−1
xi∆xi

[ i∑

j=1

xjnj∆xj

∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)f ′(xj , xαi,j−1)dv

︸ ︷︷ ︸
A

−
i∑

j=2

xj−1nj−1∆xj−1

∫ xαi−1,j−1−1/2

xi−1/2−xj−1

(v − xαi−1,j−1−1)f ′(xj−1, xαi−1,j−1−1)dv

︸ ︷︷ ︸
B

]
+O(∆x2).
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ξ

x

smooth transformation
x = g(ξ)

uniform mesh

non-uniform mesh

for example
x = exp(ξ)

Figure 3.1: Non-uniform smooth mesh.

Now we simplify A−B as

A−B =
i∑

j=2

xj−1nj−1∆xj

∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)f ′(xj−1, xαi−1,j−1−1)dv

−
i∑

j=2

xj−1nj−1∆xj−1

∫ xαi−1,j−1−1/2

xi−1/2−xj−1

(v − xαi−1,j−1−1)f ′(xj−1, xαi−1,j−1−1)dv +O(∆x3)

=
i∑

j=2

xj−1nj−1(∆xj −∆xj−1)
∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)f ′(xj−1, xαi−1,j−1−1)dv

+
i∑

j=2

xj−1nj−1∆xj−1

∫ xαi,j−1/2

xi+1/2−xj

(v − xαi,j−1)f ′(xj−1, xαi−1,j−1−1)dv

−
i∑

j=2

xj−1nj−1∆xj−1

∫ xαi−1,j−1−1/2

xi−1/2−xj−1

(v − xαi−1,j−1−1)f ′(xj−1, xαi−1,j−1−1)dv +O(∆x3).

It is worth to mention that we will prove the term A− B is of O(∆x3) to have a second order
consistency of the method. For such smooth meshes, we know that (∆xj −∆xj−1) = O(∆x2).
Setting

gi,j = xj−1nj−1∆xj−1f
′(xj−1, xαi−1,j−1−1)

and αi,j − 1 = α1 as well as αi−1,j−1 − 1 = α2 we obtain

A−B =
i∑

j=2

gi,j

(∫ xα1+1/2

xi+1/2−xj

(v − xα1)dv −
∫ xα2+1/2

xi−1/2−xj−1

(v − xα2)dv

)
+O(∆x3).

It can further be facilitated as

A−B =
i∑

j=2

gi,j

2

(
∆x2

α1

4
− ∆x2

α2

4
+

[
(xi−1/2 − xj−1)− xα2

]2 − [
(xi+1/2 − xj)− xα1

]2
)

+O(∆x3).

By our assumption, xi+1/2 − xj ∈ Λαi,j−1 and so xi−1/2 − xj−1 ∈ Λαi−1,j−1−1. Further notice
that xi+1/2 − xj = r(xi−1/2 − xj−1) and therefore α1 = α2 + 1. Again by using the condition
(∆xj −∆xj−1) = O(∆x2) for such smooth meshes, we determine ∆x2

α1
−∆x2

α2
= O(∆x3).
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Now, to get a second order consistency of the scheme, we are remained to show that
[
(xi−1/2 − xj−1)− xα2

]2 − [
(xi+1/2 − xj)− xα1

]2 = O(∆x3)

or equivalently,
[
(xi−1/2 − xj−1)− xα2

]− [
(xi+1/2 − xj)− xα1

]
= O(∆x2). (3.37)

Let us consider ξ1, ξ2 are corresponding points in the uniform mesh for xα2 and xi−1/2 − xj−1,
respectively. Consider h1 = ξ2 − ξ1 which is given as

h1 = ξ2 − ξ1 = log
(
xi−1/2 − xj−1

)− log (xα2) = log
(

xi−1/2 − xj−1

xα2

)
.

Similarly, taking h2 = ξ4− ξ3 where ξ3 and ξ4 are the points in the uniform mesh corresponding
to the points xα1 and xi+1/2 − xj , respectively, we evaluate

h2 = ξ4 − ξ3 = log
(
xi+1/2 − xj

)− log (xα1) = log
(

xi+1/2 − xj

xα1

)
= log

(
xi−1/2 − xj−1

xα2

)
= h1.

Hence, we obtain h = h1 = h2. Further we calculate

ξ3 − ξ1 = log (xα1)− log (xα2) = log
(

xα1

xα2

)
= log (r) = h̄.

Finally, we estimate (3.37) by using Taylor series expansion as
[
(xi−1/2 − xj−1)− xα2

]− [
(xi+1/2 − xj)− xα1

]
= [g(ξ2)− g(ξ1)]− [g(ξ4)− g(ξ3)]

=hg
′
(ξ1)− hg

′
(ξ3) +O(h2)

=h(g
′
(ξ1)− g

′
(ξ1 + h̄)) +O(h2)

=− hh̄g
′′
(ξ1) +O(h2) = O(h2).

Hence, σagg
i (t) = O(∆x2). Thus by using the definition of norm (3.24) the order of consistency

for the pure aggregation process is two for the smooth meshes xi+1/2 = rxi−1/2.

Oscillatory and non-uniform random meshes

A mesh is known to be oscillatory mesh, if for r > 0 (r 6= 1) it is given as

∆xi+1 :=

{
r∆xi if i is odd,
1
r∆xi if i is even.

(3.38)

From the equation (3.35), it is clear that the first two terms on the right-hand side can not be
cancel out for oscillatory or random mesh. Therefore, σagg

i (t) = O(∆x) and so the accuracy of
the semi-discrete scheme (3.20) is one by using the relation (3.24) on such meshes.

Now for the coupled aggregation and breakage problems, the local truncation error of each
process can be combined and give second order consistency on uniform and non-uniform smooth
meshes whereas it is only of first order on the other two types of grids.
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3.3.2 Lipschitz continuity of the fluxes

To prove the Lipschitz continuity of the numerical flux J(n̂) in (3.20), we use the following three
lemmas.

Lemma 3.3.8. Let us assume that the points xi+j− 1
2
− xk for given i, k and j = 1, 2, . . . , p

where p ≥ 2 lie in the same cell Λα for some index α. We also assume that our grid satisfies
the quasi-uniformity condition

∆xmax

∆xmin
≤ C (3.39)

for some constant C. Then p is bounded by C + 1.

Proof. Our assumption on the points implies that by (3.15), we have

αi,k − 1 = αi+1,k − 1 = . . . = αi+p−1,k − 1 = α.

Clearly, ∆xα ≥ ∆xi+1 + ∆xi+2 + . . . + ∆xi+p−1. This implies that

∆xα

∆xl
≤ ∆xmax

∆xmin
≤ C ⇒ ∆xα

C
≤ ∆xl for l = i + 1, · · · , i + p− 1.

Therefore, we obtain

∆xα ≥∆xα

C
+

∆xα

C
+ . . . +

∆xα

C

=(p− 1)
∆xα

C
,

giving p ≤ (C + 1).

In the next two lemmas we discuss the boundedness of the total number of particles for the
aggregation and multiple breakage equations.

Lemma 3.3.9. Let us assume that the kernels β, S and b satisfy the boundedness conditions
as stated in (3.9). Then the total number of particles for the continuous aggregation-breakage
equation (3.4) is bounded by a constant CT,xmax > 0 depending on T and xmax, namely

∫ xmax

0
n(t, x)dx = N(t) =

I∑

i=1

Ni(t) ≤ N(0) exp(xmaxQ1T ) = CT,xmax .

Proof. The proof can be found in Appendix A.2.1.

Lemma 3.3.10. Under the same assumptions on β, S and b considered in the previous lemma,
we have boundedness of the total number of particles for the discrete aggregation-breakage equa-
tion (3.11) by using the finite volume schemes. The bound in this case is again CT,xmax as before,
i.e.

I∑

i=1

n̂i∆xi = N̂(t) =
I∑

i=1

N̂i(t) ≤ N̂(0) exp(xmaxQ1T ) = CT,xmax (3.40)

provided that the initial data N̂(0) and N(0) are the same.
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Proof. The proof has been given in Appendix A.2.2.

Now, we prove the Lipschitz continuity of the numerical flux J(n̂) defined as in (3.20).

Lemma 3.3.11. Let us assume that our grid satisfies the quasi-uniformity condition (3.39).
We also assume that the kernels β, S and b satisfy the bounds (3.9) which are β ≤ Q and
bS ≤ Q1. Then there exists a Lipschitz constant L := (4C + 6)QCT,xmax + 2Q1xmax < ∞ for
some constants C, CT,xmax > 0 such that

‖J(n)− J(n̂)‖ ≤ L ‖n− n̂‖, (3.41)

holds.

Proof. From (3.20), we have the following discretized form of the equation

dn̂(t)
dt

= −
[
∆Jagg(n̂) + ∆Jbrk(n̂)

]
= J(n̂). (3.42)

To prove the Lipschitz conditions on J(n̂), it is sufficient to find the Lipschitz conditions on
∆Jagg(n̂) and ∆Jbrk(n̂) for the aggregation and breakage problems separately. For the aggre-
gation we have

‖∆Jagg(n)−∆Jagg(n̂)‖ =
I∑

i=1

∆xi|∆Jagg
i (n)−∆Jagg

i (n̂)|.

Substituting the value of ∆Jagg
i (n) from equation (3.18), we obtain

‖∆Jagg(n)−∆Jagg(n̂)‖ ≤
I∑

i=1

∣∣∣∣
i−1∑

k=1

xk

xi
∆xk

αi,k−1∑

j=αi−1,k

βj,k∆xj(−njnk + n̂jn̂k)
∣∣∣∣

+
I∑

i=1

∣∣∣∣
i−1∑

k=1

xk

xi
βαi,k−1,k∆xk(xαi,k−1/2 − (xi+1/2 − xk))(nknαi,k−1 − n̂kn̂αi,k−1)

∣∣∣∣

+
I∑

i=1

∣∣∣∣
i−1∑

k=1

xk

xi
βαi−1,k−1,k∆xk(xαi−1,k−1/2 − (xi−1/2 − xk))(nknαi−1,k−1 − n̂kn̂αi−1,k−1)

∣∣∣∣

+
I∑

i=1

(∣∣∣∣
I∑

j=αi,i

βj,i∆xi∆xj(ninj − n̂in̂j)

+βαi,i−1,i∆xi(xαi,i−1/2 − (xi+1/2 − xi))(ninαi,i−1 − n̂in̂αi,i−1)
∣∣∣∣
)

≤ S1 + S2 + S3 + S4. (3.43)

Now we evaluate the terms Si, i = 1, · · · , 4 in (3.43) one by one. First we simplify term S1

which may be estimated as

S1 ≤
I∑

i=1

i−1∑

k=1

xk

xi
∆xk

αi,k−1∑

j=αi−1,k

βj,k∆xj |njnk − n̂jn̂k|.
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Since k < i implies that xk < xi and by using the relation

xy − x̂ŷ = 1/2[(x− x̂)(y + ŷ) + (x + x̂)(y − ŷ)],

we get

S1 ≤
I∑

i=1

i−1∑

k=1

∆xk

2

αi,k−1∑

j=αi−1,k

βj,k∆xj |(nj + n̂j)(nk − n̂k) + (nj − n̂j)(nk + n̂k)|.

We have the estimate 0 ≤ β(x, y) ≤ Q for some constant Q ≥ 0 and x, y ∈ ]0, xmax]. Setting
Ni = ni∆xi gives

S1 ≤Q

2

I∑

i=1

( I∑

k=1

∆xk|nk − n̂k|
αi,k−1∑

j=αi−1,k

(Nj + N̂j) +
I∑

k=1

(Nk + N̂k)
αi,k−1∑

j=αi−1,k

∆xj |nj − n̂j |
)

.

Now we open the summation for each i to have

S1 ≤Q

2

I∑

k=1

∆xk|nk − n̂k|
αI,k−1∑

j=α0,k

(Nj + N̂j) +
Q

2

I∑

k=1

(Nk + N̂k)
αI,k−1∑

j=α0,k

∆xj |nj − n̂j |.

By using Lemmas 3.3.9 and 3.3.10, which say that the total number of particles is bounded by
a constant CT,xmax , we figure out

S1 ≤ 2QCT,xmax‖n− n̂‖.

Now we evaluate the term S2 from (3.43) which is taken as

S2 ≤
I∑

i=1

i−1∑

k=1

xk

xi
βαi,k−1,k∆xk(xαi,k−1/2 − (xi+1/2 − xk)) |nknαi,k−1 − n̂kn̂αi,k−1|.

Further simplifications as in the previous case yield

S2 ≤
I∑

i=1

i−1∑

k=1

Q

2
∆xk∆xαi,k−1

(
|(nk − n̂k)(nαi,k−1 + n̂αi,k−1) + (nk + n̂k)(nαi,k−1 − n̂αi,k−1)|

)

≤ Q

2

I∑

i=1

i−1∑

k=1

∆xk|nk − n̂k| (Nαi,k−1 + N̂αi,k−1) +
Q

2

I∑

i=1

i−1∑

k=1

∆xαi,k−1|nαi,k−1 − n̂αi,k−1|(Nk + N̂k).

Changing the order of summation gives

S2 ≤ Q

2

I∑

k=1

∆xk|nk − n̂k|
I∑

i=k+1

(Nαi,k−1 + N̂αi,k−1)

+
Q

2

I∑

k=1

(Nk + N̂k)
I∑

i=k+1

∆xαi,k−1|nαi,k−1 − n̂αi,k−1|.
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Note that for different values of i, we may have same indices of αi,k− 1. Therefore, by using the
Lemma 3.3.8 which shows that the number of repetition of index in a cell is finite and bounded
by some constant C, we obtain

S2 ≤2CQCT,xmax‖n− n̂‖.
The case of term S3 is similar and the difference is only that the index i− 1 is used instead of
i. Hence, we get the same bound on S2 as

S3 ≤ 2CQCT,xmax‖n− n̂‖.
Finally we simplify the term S4 from (3.43) as

S4 ≤
I∑

i=1

( I∑

j=αi,i

βj,i∆xi∆xj |ninj − n̂in̂j |

+ βαi,i−1,i∆xi(xαi,i−1/2 − (xi+1/2 − xi)) |ninαi,i−1 − n̂in̂αi,i−1|
)

≤ Q

2

I∑

i=1

I∑

j=αi,i

∆xi∆xj |(ni + n̂i)(nj − n̂j) + (ni − n̂i)(nj + n̂j)|

+
Q

2

I∑

i=1

∆xi∆xαi,i−1|(ni − n̂i)(nαi,i−1 + n̂αi,i−1) + (ni + n̂i)(nαi,i−1 − n̂αi,i−1)|

≤ Q

2

I∑

i=1

I∑

j=1

(Ni + N̂i)∆xj |nj − n̂j |+ Q

2

I∑

i=1

I∑

j=1

(Nj + N̂j)∆xi|ni − n̂i|

+
Q

2

I∑

i=1

∆xi|ni − n̂i|(Nαi,i−1 + N̂αi,i−1) +
Q

2

I∑

i=1

(Ni + N̂i)∆xαi,i−1|nαi,i−1 − n̂αi,i−1|.

Further simplification gives

S4 ≤ 4QCT,xmax‖n− n̂‖.
Adding all the results from S1, S2, S3 and S4, we get finally

‖∆Jagg(n)−∆Jagg(n̂)‖ ≤(4C + 6)QCT,xmax‖n− n̂‖, (3.44)

with a Lipschitz constant L1 = (4C + 6)QCT,xmax .

Similarly, for the breakage problem, we have

‖∆Jbrk(n)−∆Jbrk(n̂)‖ =
I∑

i=1

∆xi

∣∣∣∆Jbrk
i (n)−∆Jbrk

i (n̂)
∣∣∣ .

By using the equation (3.19), the above equation reduces to

‖∆Jbrk(n)−∆Jbrk(n̂)‖ ≤
I∑

i=1

∣∣∣∣∣∣

I∑

k=i+1

Sk(nk − n̂k)∆xk∆xibi,k − Si(ni − n̂i)
i−1∑

j=1

xj

xi
bj,i∆xj∆xi

∣∣∣∣∣∣
.
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Since xj < xi for j < i, it can be simplified as

‖∆Jbrk(n)−∆Jbrk(n̂)‖ ≤
I∑

i=1

I∑

k=i+1

Skbi,k∆xi∆xk |nk − n̂k|+
I∑

i=1

Si |ni − n̂i|
i−1∑

j=1

bj,i∆xi∆xj .

Using bS ≤ Q1 yields

‖∆Jbrk(n)−∆Jbrk(n̂)‖ ≤ Q1

I∑

i=1

I∑

k=i+1

∆xi∆xk |nk − n̂k|+ Q1

I∑

i=1

|ni − n̂i|
i−1∑

j=1

∆xi∆xj

≤ Q1

I∑

i=1

∆xi

I∑

k=1

∆xk |nk − n̂k|+ Q1

I∑

i=1

|ni − n̂i|∆xi

I∑

j=1

∆xj . (3.45)

Hence, we obtain

‖∆Jbrk(n)−∆Jbrk(n̂)‖ ≤ 2Q1xmax‖n− n̂‖,

with a Lipschitz constant L2 = 2Q1xmax. Hence, we have proved the Lipschitz conditions for
J(n̂) with a Lipschitz constant L = (4C + 6)QCT,xmax + 2Q1xmax.

Therefore, by applying Theorem 3.3.5 the order of convergence of the FVS for the pure aggre-
gation or pure breakage or coupled processes is same as the order of consistency which we have
stated before in Lemma 3.3.7.

3.4 Numerical results

The mathematical results on convergence analysis are verified numerically for aggregation and
breakage problems separately and also for the combined processes considering several test prob-
lems. All numerical simulations below were carried out to investigate the experimental order of
convergence (EOC) on the five different types of meshes discussed later. The detailed compar-
isons between the numerical results and the analytical solutions for number density and moments
can be found in [48].

We observed analytically that the finite volume scheme gives second order of convergence inde-
pendently of the meshes for the pure breakage problem while for the aggregation and simulta-
neous processes it is second order only on uniform and non-uniform smooth meshes. Moreover,
the scheme is only first order accurate on oscillatory and random grids for the aggregation and
coupled problems. It is important here to mention that we have done the numerical computa-
tions on a locally uniform mesh, which is defined little further down, and found that the method
is experimentally second order convergent for all the processes. Due to non-linearity of the
aggregation and combined aggregation-breakage problems, it is not easy to see mathematically
the consistency order of the method on such grids. Therefore, this case is still an open problem.

If the analytical solution is available for the problem, the following formula is used to calculate
the EOC

EOC = ln(EI/E2I)/ ln(2). (3.46)
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Here EI and E2I are the discrete relative error norms calculated by dividing the error ‖N − N̂‖
by ‖N‖ where N, N̂ are the number of particles obtained mathematically and numerically,
respectively. The symbols I and 2I correspond to the number of degrees of freedom.

Now, in case of unavailability of the analytical solutions for the problem, the EOC can be
computed as

EOC = ln
( ‖N̂I − N̂2I‖
‖N̂2I − N̂4I‖

)
/ ln(2). (3.47)

Here N̂I denotes the total number of particles obtained by the numerical scheme by using a
mesh with I degrees of freedom.

Before going into the details of the test cases, in the following we discuss briefly five different types
of uniform and non-uniform meshes where global truncation errors are obtained numerically.
Four of these mesh types have also been used in Kumar and Warnecke [46].

Meshes

Uniform mesh

A uniform mesh is obtained when we have ∆xi = ∆x for all i.

Non-uniform smooth mesh

We are familiar with such meshes from the previous section and Figure 3.1. For the numerical
computations we have considered a geometric mesh.

Locally uniform mesh

An example of a locally uniform mesh is considered in Figure 3.2. Let us consider that the
computational domain is divided into finitely many sub-domains and each sub-domain is divided
into an equal size mesh. In this way we get a locally uniform mesh. In our numerical simulation
a geometric mesh is taken initially with 30 mesh points and for further level of computations
each cell is divided into two equal parts.

x

uniform mesh uniform mesh

uniform mesh uniform mesh

Figure 3.2: Locally uniform mesh.
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Oscillatory mesh

The numerical verification has been done on an oscillatory mesh by taking r = 2 in the equa-
tion (3.38). We have evaluated the EOC in this case numerically by dividing the computation
domain into 30 uniform mesh points initially. Then we divide each cell by a 1:2 ratio on further
levels of computation.

Non-uniform random mesh

We also analyze the scheme for random grids. Similar to the previous case, we started again
with a geometric mesh with 30 grid points but then each cell is divided into two parts of random
width in the further refined levels of computation. Here, we performed ten runs on different
random grids and the relative errors are measured. The average of these errors over ten runs is
used to calculate the EOC.

Numerical examples
Now we consider various test problems of aggregation or breakage or simultaneous processes to
verify the convergence results.

Pure aggregation

Test case 1:

First we discuss the numerical verification of the experimental order of convergence of the FVS
for aggregation by taking two problems, namely the case of sum and product aggregation kernels.
The analytical solutions for both problems taking the negative exponential n(0, x) = exp(−αx)
as initial condition has been given in Scott [90]. Hence, the EOC is computed by using the
relation (3.46). Table 3.1 shows that the EOC is 2 on uniform, non-uniform smooth and locally
uniform meshes and is 1 on oscillatory and random grids in both cases. The computational do-
main in this case is taken as [1E−6, 1000] which corresponds to the ξ domain [ln(1E−6), ln(1000)]
for the exponential transformation x = exp(ξ) for the geometric mesh. The parameter α = 10
was taken in the initial condition. The simulation result is presented at time t = 0.5 and t = 0.3
respectively for the sum and the product aggregation kernels corresponding to the aggregation
extent N̂(t)/N̂(0) ≈ 0.80.

Pure breakage

Test case 2:

Here, we calculate the EOC for the binary breakage problem for which an analytical solution
is available. We consider the problem with the linear and quadratic selection functions, i.e.
S(x) = x and S(x) = x2 with uniform binary breakage b(x, y) = 2/y. A mono-disperse initial
condition of size unity n(0, x) = δ(x − 1) is used for the simulation. The analytical solution
for the problem has been given in Ziff and McGrady [103]. Hence, we use the relation (3.46)
to compute the EOC. Table 3.2 shows the order of convergence and we observe that the FVS
is second order convergent on all the grids. The computational domain in this case is taken
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as [1E − 3, 1]. Since the rate of breaking particles taking quadratic selection function is less
than that of linear selection function, we take t = 100, 200 for linear and quadratic selection
functions, respectively. The time has been chosen differently for both the selection functions to
have the same extent of breakage N̂(t)/N̂(0) ≈ 22.

Test case 3:

Now we consider the case of multiple breakage problem where an analytical solution is not
known. Therefore, the EOC has been calculated using the numerical results by (3.47). For this
problem we have used the normal distribution as an initial condition, i.e.

n(0, x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (3.48)

The computation has been done for two breakage functions considered by Diemer [13] and Ziff
[102], respectively

• case(i): b(x, y) =
pxc(y − x)c+(c+1)(p−2)[c + (c + 1)(p− 1)]!

ypc+p−1c![c + (c + 1)(p− 2)]!
, p ∈ N, p ≥ 2

• case(ii): b(x, y) =
12x
y2

(
1− x

y

)
.

We took the quadratic selection function S(x) = x2. In case(i) the relation
∫ y

0
b(x, y)dx = p

holds. So p gives the total number of fragments per breakage event. The parameter c ≥ 0
is responsible for the shape of the daughter particle distributions. For details concerning this
breakage function, the reader is also referred to Sommer et al. [93]. The numerical solutions have
been obtained using p = 4, c = 2. The second breakage function gives ternary breakage. For the
numerical simulations we have taken the minimum and maximum values of x as 1E − 3 and 1
respectively. The time t = 100 is set to get the breakage extent N̂(t)/N̂(0) ≈ 22 in case(i) while
t = 150 is used for case(ii). The experimental order of convergence (EOC) has been summarized
in Table 3.3. As expected from the mathematical analysis, we again observe from the table that
the finite volume scheme shows convergence of second order on all the meshes. We also made
computations for higher values of p up to 19 and observed that there is no marked difference in
the EOC.

Coupled aggregation-breakage

Test case 4:

Now we discuss the EOC for the simultaneous aggregation-breakage problems. We consider a
constant aggregation kernel β(x, y) = β0, uniform binary breakage b(x, y) = 2/y together with a
linear selection function S(x) = x. The analytical solutions for this problem are given by Lage
[55] for the following two different initial conditions
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• case(i): n(0, x) = N0

[
2N0

x0

]2

x exp
(
−2x

N0

x0

)

• case(ii): n(0, x) = N0

[
N0

x0

]
exp

(
−x

N0

x0

)
.

This is a special case where the number of particles stays constant. The later initial condition
is a steady state solution. For the simulation the computational domain [1E − 2, 10] with
N0 = x0 = 1 and time t = 0.3 is taken. From Table 3.4, we find that the FVS is second order
convergent on uniform, non-uniform smooth as well as on locally uniform meshes and it gives
first order on oscillatory and random meshes using (3.46).

Test case 5:

Now we consider the case of product aggregation kernel β(x, y) = xy and the linear selection
function S(x) = x taken together with two different general breakage functions as stated in Test
case 3. Analytical solutions are not available for such problems and so the EOC is calculated
from numerical solutions by formula (3.47). The computational domain and the time parameters
are taken same as in the previous case with the normal distributed initial condition (3.48). We
observe here again from Table 3.5 that the FVS shows similar results of convergence as obtained
in the previous case for all the meshes.
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Table 3.1: EOC (3.46) of the numerical schemes for Test case 1.

(a) Uniform mesh

Grid β(x, y) = x + y β(x, y) = xy
points Error EOC Error EOC

60 0.24E-3 - 0.0177 -
120 0.11E-3 1.95 0.0045 1.96
240 0.04E-3 1.93 0.0012 1.94
480 0.01E-3 1.94 0.0003 1.92

(b) Non-uniform smooth mesh

Grid β(x, y) = x + y β(x, y) = xy
points Error EOC Error EOC

60 0.0047 - 0.0086 -
120 0.0012 1.99 0.0023 1.90
240 0.0003 1.98 0.0006 1.96
480 0.0001 2.00 0.0001 1.99

(c) Locally uniform mesh

Grid β(x, y) = x + y β(x, y) = xy
points Error EOC Error EOC

60 0.0055 - 0.0092 -
120 0.0014 1.99 0.0026 1.85
240 0.0003 1.98 0.0007 1.94
480 0.0001 2.00 0.0002 1.96

(d) Oscillatory mesh

Grid β(x, y) = x + y β(x, y) = xy
points Error EOC Error EOC

60 0.0029 - 0.0048 -
120 0.0014 1.01 0.0019 1.29
240 6.05E-4 1.24 7.66E-4 1.31
480 2.20E-4 1.31 3.52E-4 1.12

(e) Non-uniform random mesh

Grid β(x, y) = x + y β(x, y) = xy
points Error EOC Error EOC

60 0.79E-3 - 0.0017 -
120 0.42E-3 0.98 8.22E-4 1.06
240 0.22E-3 1.02 2.82E-4 1.21
480 0.82E-4 1.21 1.46E-4 1.02
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Table 3.2: EOC (3.46) of the numerical schemes for Test case 2.

(a) Uniform smooth mesh

Grid S(x) = x S(x) = x2

points Error EOC Error EOC

60 0.3312 - 0.1870 -
120 0.0829 1.99 0.0482 1.95
240 0.0207 2.00 0.0126 1.94
480 0.0052 2.00 0.0034 1.90

(b) Non-uniform smooth mesh

Grid S(x) = x S(x) = x2

points Error EOC Error EOC

60 0.0526 - 0.1638 -
120 0.0136 1.95 0.0423 1.95
240 0.0034 1.99 0.0112 1.92
480 0.0009 2.00 0.0031 1.85

(c) Locally uniform mesh

Grid S(x) = x S(x) = x2

points Error EOC Error EOC

60 0.0530 - 0.1685 -
120 0.0136 1.96 0.0437 1.95
240 0.0034 1.99 0.0115 1.93
480 0.0009 2.00 0.0031 1.88

(d) Oscillatory mesh

Grid S(x) = x S(x) = x2

points Error EOC Error EOC

60 0.0577 - 0.1310 -
120 0.0157 1.88 0.0376 1.80
240 0.0042 1.91 0.0105 1.84
480 0.0011 1.91 0.0030 1.82

(e) Non-uniform random mesh

Grid S(x) = x S(x) = x2

points Error EOC Error EOC

60 0.3516 - 1.1106 -
120 0.1001 1.81 0.3301 1.75
240 0.0282 1.83 0.0944 1.81
480 0.0078 1.85 0.0268 1.82
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Table 3.3: EOC (3.47) of the numerical schemes for Test case 3.

(a) Uniform smooth mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 - - - -
120 2.0655 - 4.7916 -
240 0.6548 1.70 2.5829 2.16
480 0.1789 1.93 0.4364 1.91
960 0.0441 2.10 0.1792 1.67

(b) Non-uniform smooth mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 - - - -
120 0.0244 - 0.0113 -
240 0.0060 2.02 0.0028 2.01
480 0.0015 1.98 0.0007 2.00
960 0.0004 2.02 0.0002 2.00

(c) Locally uniform mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 - - - -
120 0.0244 - 0.0114 -
240 0.0060 2.02 0.0029 1.99
480 0.0015 1.98 0.0007 2.00
960 0.0004 2.02 0.0002 2.00

(d) Oscillatory mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 - - - -
120 0.0244 - 0.0114 -
240 0.0060 2.02 0.0029 1.99
480 0.0015 1.98 0.0007 2.00
960 0.0004 2.02 0.0002 2.00

(e) Non-uniform random mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 - - - -
120 0.0244 - 0.0114 -
240 0.0060 2.02 0.0029 1.99
480 0.0015 1.98 0.0007 2.00
960 0.0004 2.02 0.0002 2.00
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Table 3.4: EOC (3.46) of the numerical schemes for Test case 4.

(a) Uniform mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 0.3E-2 - 0.0032 -
120 0.1E-2 1.75 0.0009 1.83
240 0.3E-3 1.86 2.4E-3 1.90
480 0.7E-4 2.01 0.7E-4 1.89

(b) Non-Uniform smooth mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 0.0066 - 0.0018 -
120 0.0018 1.90 0.0005 1.95
240 0.0004 1.97 0.0001 1.98
480 0.0001 2.00 2.9E-5 2.00

(c) Locally uniform mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 0.0082 - 0.0021 -
120 0.0022 1.92 0.0006 1.91
240 0.0006 1.94 0.0001 1.99
480 0.0001 2.01 3.4E-5 2.02

(d) Oscillatory mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 0.0019 - 0.0053 -
120 0.62E-3 1.28 0.31E-2 0.98
240 0.29E-3 1.13 1.34E-3 1.07
480 0.15E-3 1.02 0.71E-3 1.06

(e) Non-uniform random mesh

Grid case(i) case(ii)
points Error EOC Error EOC

60 0.0082 - 0.0042 -
120 0.0037 1.07 0.0023 0.91
240 1.45E-3 1.22 0.0011 1.10
480 0.86E-3 1.01 0.04E-2 1.23
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Table 3.5: EOC (3.47) of the numerical schemes for Test case 5.

(a) Uniform mesh

Grid case(i) case(ii)
points Error, EOC Error, EOC

60 - - - -
120 0.13E-4 - 0.17E-4 -
240 0.03E-4 1.98 0.41E-5 2.04
480 0.01E-4 1.91 0.11E-5 1.94
960 0.03E-5 1.88 0.31E-6 1.86

(b) Non-Uniform smooth mesh

Grid case(i) case(ii)
points Error, EOC Error, EOC

60 - - - -
120 0.90E-3 - 0.97E-3 -
240 0.27E-3 1.71 0.28E-3 1.81
480 0.07E-3 1.89 0.07E-3 1.92
960 0.02E-3 1.96 0.02E-3 1.97

(c) Locally uniform mesh

Grid case(i) case(ii)
points Error, EOC Error, EOC

60 - - - -
120 0.83E-3 - 0.89E-3 -
240 0.23E-3 1.83 0.24E-3 1.89
480 0.06E-3 1.95 0.06E-3 1.97
960 0.01E-3 1.99 0.02E-3 1.99

(d) Oscillatory mesh

Grid case(i) case(ii)
points Error, EOC Error, EOC

60 - - - -
120 0.5552 - 0.3255 -
240 0.2878 0.95 0.1648 0.98
480 0.1434 1.08 0.0823 1.00
960 0.0711 1.12 0.0401 1.04

(e) Non-uniform random mesh

Grid case(i) case(ii)
points Error, EOC Error, EOC

60 - - - -
120 0.1489 - 0.1097 -
240 0.0837 0.84 0.0490 1.16
480 0.0426 0.98 0.0232 1.08
960 0.0232 0.92 0.0120 0.96
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Chapter 4

Moment preserving methods

This chapter deals with the moment preserving numerical schemes for solving general popula-
tion balance equations. We consider unified numerical approaches to simultaneous aggregation,
breakage, growth and source terms such as nucleation. We discuss the criteria for the preser-
vation of different moments. Further we present a finite volume scheme which is one moment
preserving depending upon the processes under consideration. For instance, in case of aggre-
gation or breakage or both problems it shows the first moment preservation whereas for the
growth and source terms we find the zeroth moment preservation. These preservation are due to
the well-known property of conservativity of finite volume methods. However, we observe that
coupling of all the processes causes non preservation for any moments.

Therefore, the question arises how to couple the zeroth and first moment preservation in an
efficient manner. For this we rewrite the cell average technique into a conservative formulation
for the aggregation, breakage and source terms. These formulations are coupled together with
a modified upwind scheme for the growth process to give moment preservation with respect to
the zeroth and first moments for all the coupled processes. We verify the moment preservation
mathematically and numerically. The numerical verifications are performed by taking several
coupled processes for which analytical solutions are available.

Let us now briefly outline the contents of this chapter. First we recall a brief description of
equations from Chapter 1 and then discuss the finite volume schemes in Section 4.2. Further, in
Section 4.3 issues of preservation with respect to the moments are given. Here, we also present
one moment and two moment preserving numerical methods. Finally we proceed in Section 4.4
to show the numerical results for many test problems under various coupled processes.

4.1 Introduction

We know from (1.10) the general form of continuous population balance equation for simulta-
neous aggregation [99], breakage [102], growth [42] and nucleation [54] or other sources is given
as
∂f(t, x)

∂t
+

∂[G(x)f(t, x)]
∂x

=
1
2

∫ x

0
β(x− u, u)f(t, x− u)f(t, u)du−

∫ ∞

0
β(x, u)f(t, u)f(t, x)du

+
∫ ∞

x
b(x, u)S(u)f(t, u)du− S(x)f(t, x) + Bsrc(t, x). (4.1)
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Here f denotes the number density distribution function. Note that the coagulation kernel β is
non-negative and satisfies the symmetry condition β(x, y) = β(y, x) and the breakage function
b has the following important properties

∫ x

0
b(u, x)du = N(x),

∫ x

0
ub(u, x)du = x, (4.2)

for any x ∈]0,∞[. In order to close the system, the equation (4.1) must be supplemented with
appropriate initial and possibly boundary conditions at x = 0. We also recall from (1.11) the
jth moment of the particle size distribution which is given as

µj(t) =
∫ ∞

0
xjf(t, x)dx. (4.3)

It should be mentioned that the total number of particles changes in an aggregation or breakage
process while the total mass (volume) remains conserved. Therefore, the mass density function
xf is the conservative variable for any aggregation-breakage processes. On the other hand the
growth process has no effect on the number of particles but the total mass of the particles
increases. If we neglect aggregation, breakage and source terms in the equation (4.1) then we
are left with a conservative differential equation for the number density function f . In case
of pure nucleation neither number density nor the total mass remains conserved. Since the
aggregation and breakage terms are mass conservative, we have the following conservative form
of the equations from (1.13) with mass density xf(t, x) as conserved quantity

∂ [xf(t, x)]
∂t

+
∂

∂x

(
F agg(t, x) + F brk(t, x)

)
= 0. (4.4)

The flux functions F agg and F brk are given by

F agg(t, x) =
∫ x

0

∫ ∞

x−u
uβ(u, v)f(t, u)f(t, v)dvdu, (4.5)

and

F brk(t, x) = −
∫ ∞

x

∫ x

0
ub(u, v)S(v)f(t, v)dudv. (4.6)

As stated before in Chapter 1 that both forms of aggregation-breakage population balance
equations (PBEs) (4.1), without growth and source terms and (4.4) are interchangeable. Hence,
we will be using both forms depending upon their convenience for calculations.

Analytical solutions are available only for a limited number of simplified problems and therefore
numerical solutions are frequently needed to solve the PBEs (4.1). In all PBEs mentioned above,
the volume variable may vary from 0 to ∞. In order to apply a numerical scheme we consider
truncated equations replacing ∞ by a sufficiently large number R ∈ R. This could involve an
extra boundary condition at x = R. To distinguish between the solutions of this truncated
system from the original one we use the number density n instead of f .
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4.2 Finite volume schemes

A typical conservation law with source term (nucleation) is given by the following equation

∂(xpn(t, x))
∂t

+
∂F (t, x)

∂x
= xpBsrc(t, x) for p = 0 or p = 1. (4.7)

Here n is the unknown variable and the function F is called flux function. The variable n
typically represents a number density for sizes x and the quantity xn a size density in the case
p = 1. The equation (4.7) represents different processes discussed above depending upon the
values of p or the nature of F and Bsrc. For example, it models the combined aggregation-
breakage processes for p = 1, F = F agg + F brk and Bsrc = 0. The case of pure growth is
obtained by setting p = 0, F = G(x)n(t, x), Bsrc = 0. Taking p = 0 or p = 1 and F = 0 leads
to a parameter dependent ordinary differential equation for the pure source term, e.g. for a
nucleation process.

We discretize the domain ]0, R] into small cells Λi =]xi−1/2, xi+1/2] for i = 1, . . . , I. We define
the mid points xi = (xi−1/2 + xi+1/2)/2, taking x1/2 = 0, xI+1/2 = R and the width of cell i to
be ∆xi = xi+1/2 − xi−1/2. We denote by ∆x = maxi=1,...,I∆xi the mesh size. If ∆xi = ∆x for
i = 1, . . . , I we call this a uniform mesh. For later use we also introduce a ghost cell at each
boundary by setting x0 = −x1,∆x0 = ∆x1, xI+1 = xI + ∆xI and ∆xI+1 = ∆xI . The finite
volume scheme in an almost semi-discrete form is given as [64]

xp
i

dni(t)
dt

= − 1
∆xi

(
Ji+1/2 − Ji−1/2

)
+

xp
i

∆xi

∫ xi+1/2

xi−1/2

Bsrc(t, x)dx, i = 1, . . . , I, (4.8)

where ni(t) numerically approximates the average number density 1
∆xi

∫ xi+1/2

xi−1/2
n(t, x)dx. The

term Ji+1/2 is called the numerical flux which is an appropriate approximation of the continuous
flux function F . Various numerical methods can be obtained from different choices of the
numerical flux Ji+1/2. For the source integral one would take exact integration when possible
or some numerical quadrature otherwise. When the values of the integral for each i have been
made precise, we have a fully semi-discrete form of the equation (4.8). For simplicity, we are
assuming the following compact supports

β(x, y) = 0, for x + y ≥ R,

S(x) = 0, for x > R (4.9)
Bsrc(t, x) = 0, for x > R or x < x1/2. (4.10)

We will be discussing mass or number preservation under the above mentioned conditions on
the kernels. The preservation with respect to the number and mass for the growth problem is
discussed for any growth rate without having compact support. For notational convenience, in
what follows we use ni for ni(t).

4.3 Issues of moment preservation

Besides the numerical prediction of the number density distribution, an accurate prediction of
moments is important in some applications. Also this turns out to be a desirable property for
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numerical schemes to preserve one or more moments. Therefore, before we go into a further
discussion of the numerical methods let us discuss some issues of moment preservation.

Definition of moment preservation

Assume that we are given an exact solution n of (4.7) and a numerical solution ni(t) of (4.8).
Let us define the jth numerical moment with respect to the number density n as

µ∆x
j =

I∑

i=1

xj
i∆xini. (4.11)

Multiplying the discretized equation (4.8) by xj−p
i ∆xi for p = 0 or p = 1 and summation over i

gives the following moment equation

dµ∆x
j

dt
= −

I∑

i=1

xj−p
i

(
Ji+1/2 − Ji−1/2

)
+

I∑

i=1

xj
i

∫ xi+1/2

xi−1/2

Bsrc(t, x)dx. (4.12)

Let us now transform the continuous equation (4.7) into a moment equation for the number
density n by multiplication with xj−p and integration from 0 to xI+1/2 to give

dµj

dt
=

d

dt

(∫ xI+1/2

0
xjn(t, x)dx

)
= −

∫ xI+1/2

0
xj−p ∂F (t, x)

∂x
dx +

∫ xI+1/2

0
xjBsrc(t, x)dx. (4.13)

From the preceding equation, we now wish to derive a differential equation similar to (4.12) for
the calculation of moments. This we do by inserting the numerical solution ni into (4.13) in
the following manner. We interpret the numerical solution as a singular measure. Clearly this
is possible if we interpret the L1-function n(t, x), which is an exact solution of equation (4.7)
truncated to ]0, R], in equation (4.13) as a density of a measure that is absolutely continuous
with respect to Lebesgue measure [16]. This we approximate by a discrete measure using the
average value given by the numerical solution ni on each grid cell. Using the Dirac measure δx,
we take as number density the time dependent discrete measure

n(t, ·) ≈
I∑

i=1

ni(t)∆xiδxi(·) (4.14)

obtained from the numerical solution. First note in passing that if we put this measure into the
right hand side of (4.3) and integrate with respect to the dδxi , we obtain the right hand side
of (4.11). We now replace in the first integral on the right hand side of (4.13) the integration
with respect to the measure dx by integration with respect to the singular measures dδxi . Note
that we are basically using the idea of Kumar and Ramkrishna [53] to interpret the numerical
data ni concentrated at what they termed the pivot point xi. After substitution of n as given
in (4.14) into the equation (4.13), we obtain

dµ̂j

dt
:= −

∫ xI+1/2

0
xj−p ∂F (t, x)

∂x

∣∣∣∣
n(t,·)≈(

PI
i=1 ni∆xiδxi (·))

dx +
∫ xI+1/2

0
xjBsrc(t, x)dx. (4.15)

Note that µ̂j(t) is obtained from the right-hand side by simple integration from 0 to t. For
clarification we have to explain how the first term on the right-hand side of the equation (4.15)

56



4.3. ISSUES OF MOMENT PRESERVATION

is actually computed. For aggregation or breakage, i.e. p = 1, we use the relations (1.17)
respectively (1.18) to replace the differential term for j = 0 and j = 1. Details can be found in
Appendix B.4. For growth we know p = 0. In this case we eliminate ∂F (t,x)

∂x by an integration
by parts as follows:

dµ̂j

dt
= −xjF (t, x)

∣∣∣∣
xI+1/2

0

+
∫ xI+1/2

0
jxj−1F (t, x)

∣∣∣∣
n(t,·)≈(

PI
i=1 ni∆xiδxi (·))

dx.

More precise formulation for each cases of pure growth, source, aggregation and breakage pro-
cesses is given in this section later.

Definition 4.3.1. A finite volume scheme (4.8) is said to be moment preserving with re-
spect to the jth moment if

dµ̂j

dt
=

dµ∆x
j

dt
, (4.16)

i.e., the right hand sides of equations (4.12) and (4.15) become the same, with the exception of
boundary terms in the case of growth. This will be more clear when we discuss the numerical
schemes, see Subsections 4.3.1 and 4.3.2. As a special case, moment conservation is given
if the right hand side of the moment ordinary differential equation is zero. ¤

This definition generalizes the concept of conservative scheme to other moments. A conserved
moment is one which remains constant in time. This is a property that is very easy to verify
numerically, because the time derivative of a conserved moment is zero. Our definition allows
us to compare schemes with respect to how well they reproduce the correct behavior in time
of moments that are not conserved but change in time. The discrete solution is treated like a
measure solution of the equations [24, 77]. Interestingly, we show that we can find schemes that
exactly give the right moment behavior for more than one moment. It should be emphasized here
that the finite volume scheme is automatically moment preserving with respect to the zeroth
moment (j = 0) for the pure growth using number as conserved dependent variable. It is moment
preserving with respect to the first moment (j = 1) for aggregation as well as for breakage with
mass as conserved dependent variable. In both cases this is due to its conservativity. Therefore,
our main concern is to see the moment preserving behavior of the numerical scheme for the first
moment (j = 1) in case of pure growth while for aggregation and breakage it is zeroth moment
(j = 0). Moreover, neither of these two moments are conserved by source terms. Hence, we
investigate both zeroth and first moment preservation in this case.

We can look at our definition of moment preservation also in the following manner. Rewrite
(4.13) in residual form as

d

dt

(∫ xI+1/2

0
xjn(t, x)dx

)
+

∫ xI+1/2

0
xj−p ∂F (t, x)

∂x
dx−

∫ xI+1/2

0
xjBsrc(t, x)dx = Rj(t). (4.17)

For any exact solution n of (4.7) we have the residual Rj(t) = 0. Now we insert our numerical
solution ni(t) in the form (4.14) as a discrete measure solution into the equation (4.17). Then
we will generally have a non-zero residual Rj(t). Moment preservation is now the special case
in which a scheme satisfies Rj(t) = 0 for certain j.
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Semi-discretization of moments

Let us now formulate the equation (4.15) for the first two moments in the case of the pure
growth or source terms and for the zeroth moment for breakage as well as aggregation processes
separately. For the pure growth processes we have p = 0 and F = G(x)n(t, x). In this case, the
zeroth moment is obtained from the equation (4.15) and is given as

dµ̂0

dt

∣∣
grt = −

∫ xI+1/2

x1/2=0

∂

∂x
(G(x)n(t, x))dx

= −G(xI+1/2)n(t, xI+1/2) + G(x1/2)n(t, x1/2). (4.18)

This reflects the conservativity of particle number, i.e. the total number changes only due to
fluxes at the boundaries of the domain.
The first moment is evaluated from the equation (4.15) after integration by parts as

dµ̂1

dt

∣∣
grt =−

∫ xI+1/2

x1/2

x
∂

∂x
(G(x)n(t, x))

∣∣∣∣
n(t,·)≈(

PI
i=1 ni∆xiδxi (·))

dx

=− xI+1/2G(xI+1/2)n(t, xI+1/2) + x1/2G(x1/2)n(t, x1/2)

+
∫ xI+1/2

x1/2

G(x)n(t, x)
∣∣∣∣
n(t,·)≈(

PI
i=1 ni∆xiδxi (·))

dx

=− xI+1/2G(xI+1/2)n(t, xI+1/2) + x1/2G(x1/2)n(t, x1/2) +
I∑

i=1

G(xi)ni∆xi. (4.19)

The case of source terms, for which the nucleation process or harvesting are an examples is
trivial. The formulations of the equation (4.15) for the zeroth and the first moments in this case
are given as

dµ̂0

dt

∣∣
src =

∫ xI+1/2

0
Bsrc(t, x)dx (4.20)

and

dµ̂1

dt

∣∣
src =

∫ xI+1/2

0
xBsrc(t, x)dx, (4.21)

respectively. Here, we assumed that the source functions Bsrc and xBsrc can be integrated
analytically. Otherwise the right-hand side has to be replaced by a quadrature formula.

To obtain the semi-discrete moment equation for the pure aggregation, we use the relationship
(1.17). In this case the equation (4.15) for j = 0 reduces to

dµ̂0

dt

∣∣
agg = −

j≥k∑

j,k
(xj+xk)≤xI+1/2

(
1− 1

2
δj,k

)
∆xj∆xkβ(xj , xk)njnk (4.22)

58



4.3. ISSUES OF MOMENT PRESERVATION

and for j = 1 it becomes

dµ̂1

dt

∣∣
agg = 0.

The calculation is summarized in Appendix B.4.

Finally we derive a similar semi-discrete equation of the zeroth and the first moment for breakage.
Again, we use the equation (4.15) and the relationship (1.18) to get

dµ̂0

dt

∣∣
brk =

I∑

i=1

S(xi)∆xini

(∫ xi

0
b(x, xi)dx− 1

)
(4.23)

and

dµ̂1

dt

∣∣
brk = 0. (4.24)

We provide the details in Appendix B.4.

4.3.1 One moment preserving methods

There are two straight forward applications of the finite volume method in this context. One is
to the growth term, when number density n is the computed variable that is conserved. The sec-
ond is for aggregation-breakage in the form (4.4) for the mass density xn as conserved quantity.
Therefore, the total mass or number preservation is obvious for the aggregation-breakage or the
growth problems, respectively. Since finite volume schemes automatically define conservative
difference schemes, these variables are respectively conserved on the discrete level as well. In
certain combined systems where e.g., growth and aggregation are combined, the two applications
of the finite volume method do not fit together. This causes a complete loss of moment preser-
vation in the formulation. Therefore, the question arises how to couple them efficiently. The
aim here is to present moment preserving formulations of the combined aggregation, breakage
and growth processes including source terms.

Following the idea of Kumar and Warnecke [47], we use the basic approaches of FVS for
aggregation-breakage and source terms as well as the simple upwind scheme (SUS) for growth
process to solve the general one-dimensional PBEs (4.1). In this and the following section, we
will present numerical methods which are moment preserving with respect to only one moment
or to two moments, respectively. However, in this section we also show that the straight for-
ward FVS for the aggregation-breakage is not the zeroth moment preserving. Analogously, this
is true for the first moment in the case of the growth process. The moment preservation and
non-preservation are shown analytically and are also verified numerically later on.

FVS for aggregation and breakage

We use the following discretization of the aggregation-breakage population balance equations

xidni

dt
= − 1

∆xi

[
Jagg

i+1/2 − Jagg
i−1/2 + Jbrk

i+1/2 − Jbrk
i−1/2

]
. (4.25)
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Here the numerical flux Jagg
i+1/2, given by Filbet and Laurençot [23] is defined as

Jagg
i+1/2 =

i∑

k=1

∆xk(xn)k




I∑

j=αi,k

∫

Λj

β(u, xk)
u

du (xn)j +
∫ xαi,k−1/2

xi+1/2−xk

β(u, xk)
u

du (xn)αi,k−1


 .

(4.26)

The parameter I denotes the number of cells. The integer αi,k corresponds to the index of each
cell such that xi+1/2 − xk ∈ Λαi,k−1. For breakage processes, we have the numerical flux Jbrk

i+1/2

from J. Kumar [42] as

Jbrk
i+1/2 =−

I∑

k=i+1

(xn)k

∫

Λk

S(ε)
ε

dε

∫ xi+1/2

0
ub(u, xk) du. (4.27)

Note that for the truncated fluxes F agg
R and F brk

R , which are obtained from (4.5) and (4.6) by
replacing ∞ by R, we have using our assumption (4.9)

F agg
R (t, 0) = F agg

R (t, R) = F brk
R (t, 0) = F brk

R (t, R) = 0,

implies
Jagg

1/2 = Jagg
I+1/2 = Jbrk

1/2 = Jbrk
I+1/2 = 0.

It is well known that the total mass conservation in this case can easily be obtained by multiplying
(4.25) by ∆xi, summing with respect to i and by using that the fluxes at the boundaries x1/2 = 0
and xI+1/2 = R are zero. This gives

I∑

i=1

xi∆xi
dni

dt
=

dµ∆x
1

dt
= 0.

Using counter examples, below we prove that the formulation (4.25) is not the zeroth moment
preserving in either the pure aggregation or the pure breakage problem.

Non preservation of the zeroth moment for aggregation and breakage

First we discuss the case of pure aggregation for the case of a uniform mesh, i.e., ∆xi = ∆x
for all i together with β(x, y) = β0 where β0 is a positive constant. Considering a uniform grid
leads to the following simplified form of the flux (4.26) as

Jagg
i+1/2 =

i∑

k=1

(xn)k∆x




I∑

j=i−k+2

∫

Λj

β(u, xk)
u

du (xn)j +
∫ xi−k+3/2

xi−k+1

β(u, xk)
u

du (xn)i−k+1


 .

Further simplification by taking the special case of the constant kernel β(x, y) = β0 gives,

Jagg
i+1/2 =

i∑

k=1

β0(xn)k∆x




I∑

j=i−k+2

(xn)j log
(

xj+1/2

xj−1/2

)
+ (xn)i−k+1 log

(
xi−k+3/2

xi−k+1

)
 . (4.28)
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Multiplying (4.25) by ∆xi/xi and taking summation over i with Jbrk
i±1/2 = 0, we obtain

dµ∆x
0

dt
=

I∑

i=1

− 1
xi

[
Jagg

i+1/2 − Jagg
i−1/2

]
.

Substituting the value of Jagg
i+1/2 from (4.28) yields

dµ∆x
0

dt
=

I∑

i=1

−1
xi

[ i−1∑

k=1

(xn)k∆xβ0

(
− (xn)i−k+1 log

(
xi−k+3/2

xi−k+1/2

)
+ (xn)i−k+1 log

(
xi−k+3/2

xi−k+1

)

− (xn)i−k log
(

xi−k+1/2

xi−k

) )
+ (xn)i∆xβ0




I∑

j=2

(xn)j log
(

xj+1/2

xj−1/2

)
+ (xn)1 log

(
x3/2

x1

)


]

=β0∆x
I∑

i=1

i−1∑

k=1

(xn)k

xi

(
(xn)i−k log

(
xi−k+1/2

xi−k

)
− (xn)i−k+1 log

(
xi−k+1/2

xi−k+1

))

− β0∆x

I∑

i=1

ni

(
I∑

k=2

(xn)k log
(

xk+1/2

xk−1/2

)
+ (xn)1 log

(
x3/2

x1

))
. (4.29)

Taking the same uniform mesh with the constant aggregation kernel, we get the following form
of the zeroth moment from (4.22) as

dµ̂0

dt
= −1

2
β0∆x2

I∑

i=1

I−i+1∑

k=1

nink. (4.30)

It is easy to see that the difference between the right hand side of the equations (4.29) and
(4.30) is not equal to zero for the particular value of I = 2. We did not find a way to show
where exactly the difference would be zero on a uniform mesh. But it looks very obvious that
the method is in general not the zeroth moment preserving in this case.

Now we consider the pure breakage case for b(x, y) = 2/y and S(x) = x on a uniform mesh of
size ∆x. We know from (4.25),

dµ∆x
0

dt
=

I∑

i=1

− 1
xi

[
Jbrk

i+1/2 − Jbrk
i−1/2

]

=
I∑

i=1

1
xi

[ I∑

k=i

2∆x2nkxi −∆xnix
2
i+1/2

]
.

Changing the order of summation for the first term and xi+1/2 = i∆x yields

dµ∆x
0

dt
=

I∑

i=1

ni∆x

[ i∑

k=1

2∆x−
x2

i+1/2

xi

]
= ∆x

I∑

i=1

ni

[
2 i∆x−

x2
i+1/2

xi

]

= ∆x2
I∑

i=1

ni
2i(i− 1)
2i− 1

. (4.31)
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For the above assumptions on breakage and selection functions, the equation (4.23) reduces to

dµ̂0

dt
=

I∑

i=1

S(xi)∆xini

(∫ xi

0
b(x, xi)dx− 1

)
=

I∑

i=1

xini∆x = ∆x2
I∑

i=1

(i− 1/2)ni. (4.32)

Hence, the difference between the right-hand side of the equations (4.31) and (4.32) becomes
∆x2

∑I
i=1 ni

−1
2(2i−1) which is not equal to zero for any values of I. Thus the scheme is not the

zeroth moment preserving for the breakage processes.

FVS for sources

For nucleation frequently two types of source terms are used. These are a singular measure for
monodisperse nucleation, i.e. Bsrc(t, x) = B0δxs for xs ∈]0, xmax] or a continuous source which
can be an exponential distribution of the nucleii, see [54, 85] for both possibilities. Another
possibility is a Gaussian distribution, which would also be used in a process of seeding with
small particles. Following the idea of Kumar and Ramakrishna [54], the source term Bsrc(t, x)
in the equation (4.7) can be handled by the following discretization

dni

dt
=

1
∆xi

∫ xi+1/2

xi−1/2

Bsrc(t, x)dx. (4.33)

For the particular case of monodisperse nucleation, the above equation reduces to

dni

dt
=





B0

∆xi
, xs ∈ Λi

0, elsewhere.
(4.34)

Note that the zeroth moment preservation in both cases is trivial by multiplying the equation
(4.33) and (4.34) respectively by ∆xi and taking summation over i.

Now we prove that the scheme is not the first moment preserving for any source terms except
for the constant source functions Bsrc(t, x) = B0.

Non preservation of the first moment for source terms

Multiplying the equation (4.33) by xi∆xi and summing with respect to i gives

dµ∆x
1

dt
=

I∑

i=1

xi

∫ xi+1/2

xi−1/2

Bsrc(t, x)dx. (4.35)

Similarly, for the monodisperse nucleation we obtain

dµ∆x
1

dt
=

I∑

i=1

xiB0 for xs ∈ Λi.

From (4.21), we have the following form of the first moment

dµ̂1

dt
=

I∑

i=1

∫ xi+1/2

xi−1/2

xBsrc(t, x)dx. (4.36)
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We conclude that the method is first moment preserving, i.e. the right-hand side of the equations
(4.35) and (4.36) are equal, only for the case of the constant source term. Any other source
functions will be non preserving with respect to the first moment, when exact integration is used.
It should be mentioned that the first moment preservation is obvious for the monodisperse source
only if the nucleation occurs exactly at the pivot points. This can be seen by substituting the
value of Bsrc(t, x) = B0δxs in the equation (4.36).

Remark 4.3.2. Another way to discretize the pure source terms using a finite volume scheme
is given as

xp
i

dni

dt
=

1
∆xi

∫ xi+1/2

xi−1/2

xpBsrc(t, x)dx. (4.37)

The moment preserving conditions for the zeroth and first moments in this case are the same as
mentioned in (4.20) and (4.21), respectively both for p = 0 or p = 1. However, this formulation
shows mass preservation but not the number preservation for p = 1. For the case of p = 0, both
the formulations (4.33) and (4.37) are the same. To see this, let us consider for p = 1

xidni

dt
=

1
∆xi

∫ xi+1/2

xi−1/2

xBsrc(t, x)dx. (4.38)

Multiplying it by ∆xi and summing over i to get the formulation for the first moment as

dµ∆x
1

dt
=

I∑

i=1

∫ xi+1/2

xi−1/2

xBsrc(t, x)dx =
∫ xI+1/2

0
xBsrc(t, x)dx,

which is exactly the same as (4.21) for the preservation of the mass. Now, multiplying (4.38)
again by ∆xi

xi
and taking summation with respect to i, we get the following formula for the zeroth

moment

dµ∆x
0

dt
=

I∑

i=1

1
xi

∫ xi+1/2

xi−1/2

xBsrc(t, x)dx.

A comparison with the equation (4.20) shows that the scheme is not zeroth moment preserving,
except for constant source functions.

Upwind scheme for growth

For solving growth problem we have considered two different choices of numerical schemes. First
choice is the following upwind scheme (US)

dni

dt
= − 1

∆xi

[
G(xi+1/2)ni −G(xi−1/2)ni−1

]
, (4.39)

which for advection with a variable coefficient can be found in LeVeque [64, Section 9.5.2].
Another form of simple upwind scheme (SUS) is, e.g. see again LeVeque [64, Section 9.2], given
as

dni

dt
= − 1

∆xi
[G(xi)ni −G(xi−1)ni−1] , (4.40)
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The above two formulations give preservation with respect to the zeroth moment but not for
the first moment.

Multiplying the equations (4.39) and (4.40) by ∆xi and summing with respect to i yields the
following expression, respectively for the zeroth moment, compare with (4.18),

dµ∆x
0

dt
= −G(xI+1/2)nI + G(x1/2)n0 (4.41)

and
dµ∆x

0

dt
= −G(xI)nI + G(x0)n0. (4.42)

As mentioned before, the moment preservation in this case is discussed with the exception of
boundary terms. Here and further on in this paper it implies that to avoid the zero boundary
conditions on the growth rate, i.e. requiring that

G(x) = 0 for x < x1 or x ≥ xI , (4.43)

we treat the growth rate and the number density at boundary cells differently. It can be seen
from the equations (4.41) and (4.42) that if we shift the pivot points for the number density
using US and both number density and the growth rate using SUS from the cell midpoint to
the right boundary point of the cell, then we get for both the schemes

dµ∆x
0

dt
= −G(xI+1/2)n(t, xI+1/2) + G(x1/2)n(t, x1/2)

which is the required condition (4.18) for the zeroth moment preservation. Naturally, zeroth
moment preservation should hold, since both are conservative schemes. This problem of the
interpretation of the boundary cell values, which are average values on those cells, occurs for
any conservative schemes, when the boundary fluxes are not zero.

In the following, we show that these two schemes are not the first moment preserving even for
a constant growth rate.

Non preservation of the first moment for growth

Multiplying the equations (4.39) and (4.40) by xi∆xi and summing with respect to i give the
formulation for the first moment as

dµ∆x
1

dt
=x1G(x1/2)n0 +

I−1∑

i=1

(xi+1 − xi)G(xi+1/2)ni − xIG(xI+1/2)nI

=x1G(x1/2)n0 +
I∑

i=1

1
2
(∆xi+1 + ∆xi)G(xi+1/2)ni − xI+1G(xI+1/2)nI . (4.44)

using the US while for SUS we obtain

dµ∆x
1

dt
=x1G(x0)n0 +

I−1∑

i=1

(xi+1 − xi)G(xi)ni − xIG(xI)nI

=x1G(x0)n0 +
I∑

i=1

1
2
(∆xi+1 + ∆xi)G(xi)ni − xI+1G(xI)nI . (4.45)
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A comparison of the equation (4.19) with the equations (4.44) and (4.45) shows that these two
schemes in general are not first moment preserving by applying the zero boundary condition
(4.43) to the growth rate too, for example taking a geometric grid xi+1/2 = rxi−1/2 for r 6= 1.
However, it is worth to mention that for the case of a uniform mesh and a constant growth
rate the upwind scheme is first moment preserving while the same follows for the simple upwind
scheme as well just by taking a uniform grid, again with the exception of the boundary cell
terms.

Coupling of the processes

Now the three discretizations (4.25), (4.33) and (4.39) can be coupled for combined aggregation,
breakage, nucleation and growth problems to give

xidni

dt
= − 1

∆xi

[
Jagg

i+1/2 − Jagg
i−1/2 + Jbrk

i+1/2 − Jbrk
i−1/2

]
− xi

∆xi

[
G(xi+1/2)ni −G(xi−1/2)ni−1

]

+
xi

∆xi

∫ xi+1/2

xi−1/2

Bsrc(t, x)dx.

The formulation given above is mass preserving, resp. number preserving, if G,Bsrc = 0, resp.
β, S,Bsrc = 0. Moreover, the formulation is also satisfying the zeroth moment preservation in
case of the pure nucleation process. However, coupling of all the processes together yields no
preservation for any of the moments. To overcome this, we introduce a new formulation in the
next section which is proven to be moment preserving with respect to two moments for coupled
processes.

4.3.2 Two moment preserving methods

In the previous subsection, we discussed the preservation with respect to one moment. In par-
ticular, they are number and mass conserving in case of pure growth/nucleation and aggrega-
tion/breakage, respectively. The foregoing discussion motivates us to derive numerical schemes
which are preserving with respect to two moments. In this subsection we present two-moments
preserving methods for solving source terms, aggregation, breakage and growth equation by
considering the cell average technique (CAT) as basis.

The CAT was obtained by discretizing a non-conservative form of the population balance equa-
tion (4.1). Following Kumar et al. [43, 45], the final formulation for the aggregation-breakage
problem together with an additional source term (nucleation) [42] in the equation (4.1) with
G = 0 by the CAT is given as

dni∆xi

dt
= BCA

i −DCA
i , i = 1, 2, ..., I. (4.46)

The abbreviation CA is used for cell average. The birth BCA
i , by using the CAT, is defined as

BCA
i =Bi−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Biλ

+
i (v̄i)H(v̄i − xi)

+ Biλ
−
i (v̄i)H(xi − v̄i) + Bi+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1), (4.47)

where Bi is the total birth of the particles due to aggregation, breakage or source in the ith cell
and v̄i is the average volume of all newborn particles coming into the same cell. Moreover, the
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particle birth Bi is sitting at the position v̄i ∈]xi−1/2, xi+1/2]. The two terms Bi and v̄i are to
be defined a little further below. The term λ±i and the Heaviside step function H are defined as

λ±i (x) =
x− xi±1

xi − xi±1
, H(x) =





1, x > 0
1
2
, x = 0

0, x < 0.

We get the following relations for λi

xiλ
+
i (v̄i) + xi+1λ

−
i+1(v̄i) = v̄i, xiλ

−
i (v̄i) + xi−1λ

+
i−1(v̄i) = v̄i. (4.48)

Now, the discrete particle birth rate Bi, the volume average v̄i and the discrete death DCA
i are

defined accordingly for the individual processes of aggregation, breakage and nucleation. Note
that it can easily be proven that

I∑

i=1

BCA
i =

I∑

i=1

Bi (4.49)

with the help of relations λ+
i (v̄i) + λ−i+1(v̄i) = 1 and H(v̄i − xi) + H(xi − v̄i) = 1. For the proof,

we have also used the condition

v̄1 > x1 and v̄I < xI . (4.50)

For the case of pure aggregation problem, the birth rate Bi and the volume average v̄i are given
as

Bagg
i =

j≥k∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
β(xj , xk)njnk∆xj∆xk, (4.51)

and

v̄agg
i =

1
Bagg

i

j≥k∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
β(xj , xk)njnk∆xj∆xk(xj + xk). (4.52)

The discrete death DCA
i has the following form

DCA,agg
i = ni∆xi

I∑

k=1

β(xi, xk)nk∆xk. (4.53)

Similarly, Bi and v̄i for pure breakage are defined as

Bbrk
i =

∑

k≥i

Sknk∆xk

∫ pi
k

xi−1/2

b(x, xk) dx, v̄brk
i =

1
Bbrk

i

∑

k≥i

Sknk∆xk

∫ pi
k

xi−1/2

xb(x, xk) dx,

(4.54)
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and the death term DCA
i as

DCA,brk
i = Sini∆xi (4.55)

where pi
k = xi for k = i and pi

k = xi+1/2 elsewhere. Note that the death terms for aggregation
and breakage using the CAT are the same as for fixed pivot method [53].

Since nucleation is a form of birth of particles, there is no nucleation term to be considered for
the death term DCA

i . We get the following form for the discrete birth rate Bi and for the volume
average v̄i

Bsrc
i =

∫ xi+1/2

xi−1/2

Bsrc(t, x)dx, (4.56)

while

v̄src
i =

1
Bsrc

i

∫ xi+1/2

xi−1/2

xBsrc(t, x)dx. (4.57)

CAT as a FVS for breakage

The numerical scheme we discuss here is a finite volume reformulation of the cell average tech-
nique (CAT) [43]. Therefore, here we present a conservative form of the cell average technique.
The reformulation steps are summarized in Appendix B.2.1. For the discrete equation (4.25)
with Jagg

i+1/2 = Jagg
i−1/2 = 0, the numerical flux Jbrk

i+1/2 function takes the following form

Jbrk,CA
i+1/2 =−

(
I∑

k=i+1

Sknk∆xk

∫ xi+1/2

0
xb(x, xk)dx

+Bbrk
i+1xiλ

+
i (v̄brk

i+1)H(xi+1 − v̄brk
i+1)−Bbrk

i xi+1λ
−
i+1(v̄

brk
i )H(v̄brk

i − xi)

)
. (4.58)

Note that a similar conservative formulation is also obtained in this case for the fixed pivot (FP)
technique, introduced by Kumar and Ramkrishna [53]. Here we get the numerical flux

Jbrk,FP
i+1/2 = −

I∑

k=i+1

Sknk∆xk

( ∫ xi

0
xb(x, xk)dx +

∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx

)
. (4.59)

Details of the calculation steps are provided in Appendix B.3.1. These numerical fluxes can be
treated as modified versions of the first moment preserving numerical flux (4.27). In addition,
we show that they preserve the zeroth moment as well. We begin with the formulation (4.58)
of the CAT.

Verification of the zeroth moment preservation

For pure breakage, we know from (4.25)

xidni

dt
= − 1

∆xi
(Jbrk

i+1/2 − Jbrk
i−1/2),
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where Jbrk
i+1/2 is given by the equation (4.58). Define Ni = ni∆xi. Multiplying the above equation

by ∆xi/xi and summing with respect to i yields

dµ∆x
0

dt
=

I∑

i=1

1
xi

[ I∑

k=i+1

SkNk

∫ xi+1/2

0
xb(x, xk)dx + Bbrk

i+1xiλ
+
i (v̄brk

i+1)H(xi+1 − v̄brk
i+1)

−Bbrk
i xi+1λ

−
i+1(v̄

brk
i )H(v̄brk

i − xi)−
I∑

k=i

SkNk

∫ xi−1/2

0
xb(x, xk)dx

−Bbrk
i xi−1λ

+
i−1(v̄

brk
i )H(xi − v̄brk

i ) + Bbrk
i−1xiλ

−
i (v̄brk

i−1)H(v̄brk
i−1 − xi−1)

]
.

By using the relations (4.54) and (4.2), we get

dµ∆x
0

dt
=

I∑

i=1

1
xi

[
v̄brk
i Bbrk

i −NiSixi + Bbrk
i+1xiλ

+
i (v̄brk

i+1)H(xi+1 − v̄brk
i+1)−Bbrk

i xi+1λ
−
i+1(v̄

brk
i )H(v̄brk

i − xi)

−Bbrk
i xi−1λ

+
i−1(v̄

brk
i )H(xi − v̄brk

i ) + Bbrk
i−1xiλ

−
i (v̄brk

i−1)H(v̄brk
i−1 − xi−1)

]
.

Using the equation (4.47), it follows that

dµ∆x
0

dt
=

I∑

i=1

1
xi

[
v̄brk
i Bbrk

i −NiSixi + BCA
i xi −Bbrk

i xiλ
−
i (v̄brk

i )H(xi − v̄brk
i )−Bbrk

i xiλ
+
i (v̄brk

i )H(v̄brk
i − xi)

−Bbrk
i xi+1λ

−
i+1(v̄

brk
i )H(v̄brk

i − xi)−Bbrk
i xi−1λ

+
i−1(v̄

brk
i )H(xi − v̄brk

i )
]
.

Replacing xiλ
±
i from the equation (4.48) and by the definition of Heaviside function, i.e.

H(v̄i − xi) + H(xi − v̄i) = 1,

we obtain

dµ∆x
0

dt
=

I∑

i=1

1
xi

[
BCA

i xi −NiSixi

]
=

I∑

i=1

(BCA
i −NiSi).

From the relation (4.49) and substituting the value of Bi from the equation (4.54) leads to

dµ∆x
0

dt
=

I∑

i=1

[
NiSi

∫ xi

xi−1/2

b(x, xi)dx +
I∑

k=i+1

NkSk

∫ xi+1/2

xi−1/2

b(x, xk)dx−NiSi

]
.

Further simplifications by interchanging the order of summation for the second term gives

dµ∆x
0

dt
=

I∑

i=1

NiSi

[ ∫ xi

0
b(x, xi)dx− 1

]
,

which is same as the required equation (4.23) for the zeroth moment preservation.
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In a similar way one can prove the zeroth moment preservation for the formulation (4.59) of the
FP scheme.

CAT as a FVS for aggregation

Let the index `i,j is defined to be the index such that

xi+1/2 − xj ∈ Λ`i,j (4.60)

holds. We set the term ri,j = χ(xi+1/2 − xj − x`i,j ) for the function χ, which is given as

χ(x) =

{
1, x > 0
−1, x ≤ 0.

(4.61)

A similar approach to the breakage process, the cell average technique for aggregation can be
rewritten in conservative form with the following numerical flux function

Jagg,CA
i+1/2 =

i∑

j=1

I∑

k=`i,j+
1
2
(1+ri,j)

(
β(xk, xj)xjnjnk∆xj∆xk + Bagg

i xi+1λ
−
i+1(v̄

agg
i )H(v̄agg

i − xi)

−Bagg
i+1xiλ

+
i (v̄agg

i+1)H(xi+1 − v̄agg
i+1)

)
, (4.62)

used in the equation (4.25) with Jbrk
i+1/2 = Jbrk

i−1/2 = 0.

FP method as a FVS for aggregation

Let us assume that γi,j is the index such that

xi+1 − xj ∈ Λγi,j , (4.63)

and we introduce the term

ri,j = χ(xi+1 − xj − xγi,j ) (4.64)

for the function χ defined as in (4.61). Then the FP formulation for the aggregation can also
be rewritten in the conservative formulation as the CAT with the numerical flux given as

Jagg,FP
i+1/2 =

i∑

j=1

I∑

k=γi,j+
1
2
(1+ri,j)

β(xj , xk)xjnjnk∆xj∆xk

+
j≥k∑

j,k
xi≤(xj+xk)<xi+1

(
1− 1

2
δj,k

)
xi+1λ

−
i+1(xj + xk)β(xj , xk)njnk∆xj∆xk. (4.65)

The reformulation of the CAT and the FP method into the above conservative forms can be found
in the Appendices B.2.2 and B.3.2, respectively. It should be mentioned that these formulations
show preservation with respect to the first two moments. The preservation with respect to
the total mass is certain due to the conservative flux formulation while below we discuss the
zeroth moment preservation for the CAT. A similar approach gives the desired result of number
preservation for the FP method as well. Note that the coupling of the aggregation and breakage
processes is done by adding the corresponding fluxes.
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Verification of the zeroth moment preservation

Proceeding same as in case of breakage problem, we find

dµ∆x
0

dt
=−

I∑

i=1

1
xi

[( i∑

j=1

I∑

k=`i,j+
1
2
(1+ri,j)

−
i−1∑

j=1

I∑

k=`i−1,j+
1
2
(1+ri−1,j)

)
β(xk, xj)xjNjNk

+ Bagg
i xi+1λ

−
i+1(v̄

agg
i )H(v̄agg

i − xi)−Bagg
i+1xiλ

+
i (v̄agg

i+1)H(xi+1 − v̄agg
i+1)

−Bagg
i−1xiλ

−
i (v̄agg

i−1)H(v̄agg
i−1 − xi−1) + Bagg

i xi−1λ
+
i−1(v̄

agg
i )H(xi − v̄agg

i )
]
.

Following the same approach to the previous case, by using the relation (4.47), replacing xiλ
±
i

and by the definition of the Heaviside function we have

dµ∆x
0

dt
= −

I∑

i=1

1
xi

[ I∑

k=`i,i+
1
2
(1+ri,i)

β(xk, xi)xiNiNk

+
i−1∑

j=1

( I∑

k=`i,j+
1
2
(1+ri,j)

−
I∑

k=`i−1,j+
1
2
(1+ri−1,j)

)
β(xk, xj)xjNjNk + Bagg

i v̄agg
i −BCA

i xi

]

= −
I∑

i=1

1
xi

[ I∑

k=`i,i+
1
2
(1+ri,i)

β(xk, xi)xiNiNk −
i−1∑

j=1

`i,j+
1
2
(−1+ri,j)∑

k=`i−1,j+
1
2
(1+ri−1,j)

β(xk, xj)xjNjNk

+ Bagg
i v̄agg

i −BCA
i xi

]
. (4.66)

We know from the equation (4.52)

v̄agg
i Bagg

i =
j≥k∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
β(xj , xk)NjNk(xj + xk).

This can be rewritten as

v̄agg
i Bagg

i =
1
2

∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

β(xj , xk)NjNk(xj + xk) =
∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

β(xj , xk)NjNkxj .

We can further rewrite the equation in the following form

v̄agg
i Bagg

i =
i−1∑

j=1

Njxj

∑

xi−1/2≤(xj+xk)<xi+1/2

β(xk, xj)Nk + Nixi

∑

(xi+xk)<xi+1/2

β(xk, xi)Nk.

The summations appearing in the above equation can be replaced using indices `i,j as follows

v̄agg
i Bagg

i =
i−1∑

j=1

Njxj

`i,j+
1
2
(−1+ri,j)∑

k=`i−1,j+
1
2
(1+ri−1,j)

β(xk, xj)Nk + Nixi

`i,i+
1
2
(−1+ri,i)∑

k=1

β(xk, xi)Nk. (4.67)
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From the relation (4.67), the equation (4.66) can be simplified as

dµ∆x
0

dt
= −

I∑

i=1

1
xi

[ I∑

k=`i,i+
1
2
(1+ri,i)

β(xk, xi)xiNiNk + Nixi

`i,i+
1
2
(−1+ri,i)∑

k=1

β(xk, xi)Nk −BCA
i xi

]

=
I∑

i=1

[
BCA

i −Ni

I∑

k=1

β(xk, xi)Nk

]
.

By using the relation (4.49) and thereafter substituting the value of Bi from the equation (4.51)
yields

dµ∆x
0

dt
=

I∑

i=1

j≥k∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
β(xj , xk)NjNk −

I∑

j=1

Nj

I∑

k=1

β(xk, xj)Nk

=
j≥k∑

j,k
(xj+xk)<xI+1/2

(
1− 1

2
δj,k

)
β(xj , xk)NjNk −

j≥k∑

j,k
(xj+xk)<xI+1/2

(2− δj,k) β(xj , xk)NjNk

−
j≥k∑

j,k
(xj+xk)≥xI+1/2

(2− δj,k) β(xj , xk)NjNk.

Finally, using the condition (4.9), the compact support on β leads to

dµ∆x
0

dt
= −1

2

j≥k∑

j,k
(xj+xk)<xI+1/2

(2− δj,k) β(xj , xk)NjNk,

which is the required formulation (4.22) for the preservation of the zeroth moment.

Modified upwind scheme for growth

As we have seen in the previous section that the upwind schemes are preserving only with respect
to the zeroth moment. Therefore, the aim here is to derive a scheme which is preserving at least
with the first two moments. We use the idea of the CAT to solve the growth problem. From
Kumar et al. [43], we have the following formulation

dni∆xi

dt
= G(xi−1)

ni−1∆xi−1

xi − xi−1
−G(xi)

ni∆xi

xi+1 − xi
. (4.68)

Equivalently, the equation (4.68) can be rewritten as

xidni

dt
=

xi

∆xi

[
G(xi−1)

ni−1∆xi−1

xi − xi−1
−G(xi)

ni∆xi

xi+1 − xi

]
. (4.69)

Note that the formula (4.69) looks similar to the upwind schemes (4.39) and (4.40). It is exactly
the same as US (4.39) for the case of equidistant grids with a constant growth rate and SUS (4.40)
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for equidistant meshes. Summing the equation (4.68) with respect to i give the formulation for
the zeroth moment as

dµ∆x
0

dt
=

I∑

i=1

[
G(xi−1)

ni−1∆xi−1

xi − xi−1
−G(xi)

ni∆xi

xi+1 − xi

]

=
[
G(x0)

n0∆x0

x1 − x0
−G(xI)

nI∆xI

xI+1 − xI

]
. (4.70)

By using the assumption on ghost cells, i.e. ∆x0 = ∆x1 and ∆xI = ∆xI+1 we have ∆x0 = x1−x0

and ∆xI = xI+1 − xI . Applying this and the same assumptions on the growth rate and the
number density at boundaries cells as we discussed before in Subsection 4.3.1, equation (4.70)
reduces to

dµ∆x
0

dt
= G(x1/2)n(t, x1/2)−G(xI+1/2)n(t, xI+1/2).

Hence, a comparison from (4.18) shows that the scheme is zeroth moment preserving. The
preservation with respect to the first moment is shown in the following.

Verification of the first moment preservation

Multiplying the equation (4.69) by ∆xi and taking summation over i give the following form

dµ∆x
1

dt
=

I∑

i=1

xi

[
G(xi−1)

ni−1∆xi−1

xi − xi−1
−G(xi)

ni∆xi

xi+1 − xi

]

=
x1G(x0)n0∆x0

x1 − x0
+

I−1∑

i=1

G(xi)ni∆xi − xIG(xI)nI∆xI

xI+1 − xI

=x1G(x0)n0 +
I∑

i=1

G(xi)ni∆xi − (∆xI + xI)G(xI)nI . (4.71)

Now we recall the assumption of a right ghost cell mid-point xI+1 = ∆xI + xI which was made
in Section 4.2. Equation (4.71) becomes

dµ∆x
1

dt
= x1G(x0)n0 +

I∑

i=1

G(xi)ni∆xi − xI+1G(xI)nI . (4.72)

This form of the right-hand side is almost identical to (4.19) except for the two boundary terms
on the cells Λ1 and ΛI . Since these terms needed a special interpretation even in the clear
case of zeroth moment preservation by the conservative upwind schemes, we are justified to
consider them as exceptional in this case too. Again we shift here the pivot points from the
cell midpoint to the right boundary point of the cells for both the growth rate and the number
density. In addition, the pivot points x1 and xI+1 are shifted to the left boundary point of the
cells. In this way the formulation (4.72) is exactly the same as (4.19) and therefore, the method
is first moment preserving. Note that if we apply the boundary condition (4.43) to the growth
rate, the formulations (4.72) and (4.19) are the same. It should also be mentioned that the
non-preservation result of Subsection 4.3.1 is not due to boundary cells.
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Moment preserving treatment of the source terms

Proceeding as before in the case of aggregation and breakage, the cell average scheme for an
additional source term can be reformulated in the following conservative form

xidni

dt
= − 1

∆xi
(J src,CA

i+1/2 − J src,CA
i−1/2 ). (4.73)

The numerical flux function J src,CA
i+1/2 is derived in Appendix B.2.3 as

J src,CA
i+1/2 = Bsrc

i xi+1λ
−
i+1(v̄

src
i )H(v̄src

i − xi)−Bsrc
i+1xiλ

+
i (v̄src

i+1)H(xi+1 − v̄src
i+1)−

∫ xi+1/2

0
xBsrc(t, x)dx.

(4.74)

The above formulation shows preservation for the first two moments. For the preservation of
the zeroth moment, a similar approach to the breakage process leads to

dµ∆x
0

dt
=

I∑

i=1

Bsrc
i =

∫ xI+1/2

0
Bsrc(t, x)dx

by substituting the value of Bsrc
i from the equation (4.56). Hence, the scheme is moment

preserving with respect to the zeroth moment for any source functions.

Verification of the first moment preservation

Multiplying the equation (4.73) by ∆xi and summing with respect to i gives

dµ∆x
1

dt
= J src,CA

1/2 − J src,CA
I+1/2 ,

where
J src,CA

1/2 = Bsrc
0 x1λ

−
1 (v̄src

0 )H(v̄src
0 − x0)−Bsrc

1 x0λ
+
0 (v̄src

1 )H(x1 − v̄src
1 )

and

J src,CA
I+1/2 = Bsrc

I xI+1λ
−
I+1(v̄

src
I )H(v̄src

I −xI)−Bsrc
I+1xIλ

+
I (v̄src

I+1)H(xI+1−v̄src
I+1)−

∫ xI+1/2

0
xBsrc(t, x)dx.

Applying the compact support (4.9) on source terms and using (4.56) we have Bsrc
0 = Bsrc

I+1 = 0.
Using the condition (4.70), i.e. v̄1 > x1 and v̄I < xI implies that H(x1− v̄src

1 ) = H(v̄src
I −xI) = 0.

Therefore, J src,CA
1/2 = 0 and J src,CA

I+1/2 = − ∫ xI+1/2

0 xBsrc(t, x)dx. Hence, we obtain

dµ∆x
1

dt
=

∫ xI+1/2

0
xBsrc(t, x)dx.

A comparison with the equation (4.21) shows that the technique is first moment preserving
independent of the type of sources.

Coupling of the processes

The coupling of various processes, i.e., aggregation, breakage, growth and nucleation, can be
done in a similar fashion as explained in the previous subsection. It should also be mentioned
that the coupled formulation in this case gives preservation for the first two moments in all
combined particulate processes. The preservation with respect to these two moments has been
verified numerically in the next section.
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4.4 Numerical results

In this section, we give numerical comparisons for the particle size distribution and its different
moments by using both the one moment preserving (OMP) and two moment preserving (TMP)
formulations. The performance of these formulations is evaluated for various simultaneous
processes such as combined aggregation-breakage, aggregation-growth, aggregation-breakage-
growth etc. In each case we consider different test problems. The exponential initial condition
is used in all comparisons. In each case, we have discretized the continuous domain into non-
uniform cells of a geometric mesh with the rule xi+1/2 = rxi−1/2. The computational domain is
taken to be xmin = 1e− 6, to avoid the singularity at x = 0 of the breakage function (4.75), and
xmax = 300 for the numerical simulations, unless otherwise specified. First we consider the case
of combined aggregation and breakage.

Simultaneous aggregation and breakage

We apply the numerical schemes to the aggregation-breakage problem with the following break-
age function using the gamma function Γ from Diemer [12]

b(x, y) =
pxc(y − x)c+(c+1)(p−2)Γ[c + (c + 1)(p− 1) + 1]

ypc+p−1Γ(c + 1)Γ[c + (c + 1)(p− 2) + 1]
. (4.75)

Here, the parameter p ∈ N, p ≥ 2 governs the number of fragments per breakage event and
the parameter c ≥ 0 is responsible for the shape of the daughter particle distributions [93].
The analytical solutions for various selection functions and aggregation kernels have been given
in Appendix B.1. Four test problems of constant and sum aggregation kernels together with
constant and linear selection functions have been considered. These problems can be solved
analytically for the zeroth and the first moments but not for the complete number density
distributions. For the simulation p = 2, c = 2 and 40 grid points have been used. Other
simulation parameters have been provided in corresponding figures.

Figure 4.1 presents the number density distribution and temporal evolution of the zeroth moment
for β = 1 and S(x) = 1. We observe from the Figure 4.1(a) that the number density distributions
are quite similar to each other for both the schemes. As expected from the mathematical analysis,
the simulation for zeroth moment in Figure 4.1(b) using TMP method is exactly matching with
the analytical solution. On the other hand, OMP scheme shows a very poor prediction of the
zeroth moment. Similar results are observed from the Figures 4.2, 4.3 and 4.4 for other three
cases. Note that due to the finite volume formulations, numerical results of the first moment
using both the OMP and TMP methods are giving exactly the analytical solutions and are
constant. Therefore, we omit the plots here.

Blow-up of moments, gelation

For the case of the pure aggregation problem considering the multiplicative kernel β(x, y) =
(xy)λ with λ ∈]1/2, 1], the total mass is not conserved anymore but mass is decreasing after
a certain point of time. This process is called gelation. In this case mass conservation breaks
down in finite time. Moreover, still from Figure 4.5, we observe that the TMP scheme gives
better results as compared to the OMP method. Further, if we include the breakage process the
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gelation time increases as can be seen from Figure 4.6. Again we find that the TMP method
is closer to the analytical solution in comparison to the OMP scheme. It is worth to mention
that for a large class of breakage kernels we can also avoid the mass conservation break down.
Mathematical details about such classes can be found in Escobedo et al. [20]. Another way to
avoid mass loss in finite time or to increase the gelation time is to increase the computational
domain by increasing xmax. Here we have taken xmax = 300. For various numerical results on
gelation using finite volume schemes, i.e. OMP method, with different values of xmax readers
are referred to Filbet and Laurençot [23].
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Figure 4.1: (a) Number density and (b) zeroth moment using one-moment preserving (OMP)
and two-moment preserving (TMP) methods, S(x) = 1, β(x, y) = 1, 40 grid points.
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Figure 4.2: (a) Number density and (b) zeroth moment using one-moment preserving (OMP)
and two-moment preserving (TMP) methods, S(x) = x, β(x, y) = 1, 40 grid points.

Simultaneous aggregation and growth

The accuracy of both the schemes is evaluated for the case of constant and sum aggregation
kernel together with linear growth rate. The analytical solutions for the number density and the
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Figure 4.3: (a) Number density and (b) zeroth moment using one-moment preserving (OMP)
and two-moment preserving (TMP) methods, S(x) = 1, β(x, y) = x + y, 40 grid points.
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Figure 4.4: (a) Number density and (b) zeroth moment using one-moment preserving (OMP)
and two-moment preserving (TMP) methods, S(x) = x, β(x, y) = x + y, 40 grid points.

first two moments can be found in Ramabhadran et al. [86]. We have plotted the number density
and the first two moments in Figures 4.7 and 4.8 for the case of constant and sum aggregation
kernel, respectively. For the constant kernel, it can be seen from the Figure 4.7(a) that the
number densities, using OMP and TMP methods, do not differ from each other and are in good
agreement with the analytical number density. In Figures 4.7(b) and 4.7(c), TMP is in excellent
agreement with the analytical first two moments whereas OMP over-predicts the results for the
total mass. For the case of sum aggregation kernel, Figure 4.8 shows that the TMP method is
not only providing the exact prediction with the analytical first two moments but also shows
good results for the number density as compared to the OMP scheme for large particle sizes.

Simultaneous breakage and growth

In this section the breakage problem coupled with linear growth has been considered. The
numerical results are shown for the zeroth and the first moments using a constant and a linear
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Figure 4.5: First moment using one-moment preserving (OMP) and two-moment preserving
(TMP) methods for (a) β(x, y) = (xy)3/4 and (b) β(x, y) = (xy)1 with 40 grid points.
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Figure 4.6: First moment using OMP and TMP methods for (a) β(x, y) = (xy)3/4, S(x) = 1
and (b) β(x, y) = (xy)1, S(x) = 1 with 40 grid points.

selection rate. We use the same breakage kernel (4.75) as taken in the previous section. We have
summarized the analytical solutions for the first two moments in Appendix B.1. The numerical
results are shown for p = 3, c = 2 and for 60 grid points. The simulation with a constant
selection rate has been plotted in Figure 4.9 whereas Figure 4.10 shows the comparison for a
linear selection rate. We observe from these figures that the TMP scheme gives exact prediction
with the analytical first two moments whereas the OMP shows poor prediction in each cases.

Combined aggregation, breakage and growth

In this section, numerical results are shown for the sum aggregation kernel together with the
breakage function (4.75) and for a linear growth rate. We do the computations for the constant
and linear selection rate. The analytical solutions are given in Appendix B.1. The simulations
are made for p = 2, c = 2 and for 60 grid points. As can be seen from Figures 4.11 and 4.12 that
the numerical results using TMP technique are exactly matching with the analytical first two
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Figure 4.7: (a) Number density (b) zeroth moment and (c) first moment using OMP and TMP
methods, β(x, y) = 1, G(x) = x, 60 grid points.

moments whereas the OMP method significantly gives poor predictions for both the moments.

Pure source

The numerical results for the first two moments and the number density are compared to the
analytical solutions using OMP and TMP methods. Negative exponential source term is taken
for the simulation. The analytical solutions are given in Appendix B.1. Again we observe from
Figure 4.13 that there is no significant change in number density for both the techniques. It is
visible that the OMP method gives exact prediction for the zeroth moment but shows diverging
behavior for the total mass. Moreover, the TMP scheme shows preservation with respect to the
first two moments. Finally, in the next section we will see that the coupling of source terms
with other processes causes no preservation for the zeroth moment by using OMP schemes.

Simultaneous breakage, growth and source

The simulation results are illustrated in this section for combined breakage, growth and source
processes. The breakage function (4.75) has been taken with linear selection, linear growth rate
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Figure 4.8: (a) Number density (b) zeroth moment and (c) first moment using OMP and TMP
schemes, β(x, y) = x + y, G(x) = x, 60 grid points.

and with exponential source term. We have given the analytical solutions in Appendix B.1. The
numerics has been shown for p = 2, c = 2 and for 60 grid points. From Figure 4.14, we observe
that the TMP method shows exact prediction with the analytical first two moments whereas
the OMP scheme over-predicts the results for both the moments.

Coupled aggregation, breakage, growth and source

The numerical simulations are presented here for all the four coupled processes. In addition to
the requirements in the previous case, a product aggregation kernel β(x, y) = xy is used for the
computations to account for the added aggregation term. The analytical solutions for the first
two moments are provided in Appendix B.1. It can easily be seen from Figure 4.15 that the
TMP scheme gives exactly the analytical first two moments while the prediction using OMP
method is very poor.
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Figure 4.9: (a) Zeroth moment and (b) first moment using OMP and TMP methods, S(x) =
1, G(x) = x, 60 grid points.
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Figure 4.10: (a) Zeroth moment and (b) first moment using OMP and TMP methods, S(x) =
x,G(x) = x, 60 grid points.
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Figure 4.11: (a) Zeroth moment and (b) first moment using OMP and TMP methods, β(x, y) =
x + y, S(x) = 1, G(x) = x, 60 grid points.
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Figure 4.12: (a) Zeroth moment and (b) first moment using OMP and TMP methods, β(x, y) =
x + y, S(x) = x,G(x) = x, 60 grid points.
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Figure 4.13: (a) Number density (b) zeroth moment and (c) first moment using OMP and TMP
methods, Bsrc(t, x) = exp(−x), 40 grid points.
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Figure 4.14: (a) Zeroth moment and (b) first moment using one-moment preserving (OMP)
and two-moment preserving (TMP) methods, Bsrc(t, x) = exp(−x), S(x) = x,G(x) = x, 60 grid
points.
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Figure 4.15: (a) Zeroth moment and (b) first moment using one-moment preserving (OMP) and
two-moment preserving (TMP) schemes, β(x, y) = xy, Bsrc(t, x) = exp(−x), S(x) = x,G(x) = x,
60 grid points.
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Chapter 5

Two-dimensional population balance

In this chapter we discuss the numerical schemes for solving two-dimensional aggregation popula-
tion balance equations. In particular, the cell average technique (CAT) and the fixed pivot (FP)
method are studied. Vale and McKeena [97] extended the FP method of Kumar and Ramkrishna
[53] to the bi-component aggregation processes on rectangular meshes. Further Chakraborty and
Kumar [9] as well as Nandanwar and Kumar [80] have implemented the FP method for multi-
component aggregation processes on various meshes. Very recently, Chauhan et al. [10] have
used the FP method to solve combined bivariate aggregation-breakage problems on rectangular
and radial meshes. Chakraborty and Kumar in [9] also considered two-dimensional problems
and determined numerical results for the number density on two different triangular grids. They
found out that the method shows better results on triangular meshes as compared to rectangular
grids. Moreover, the discussion on moments was ignored. The CAT was also developed to solve
bivariate aggregation processes on rectangular meshes and the results were compared to the FP
method by J. Kumar et al. [44].

Here in this chapter we compare different moments calculated by the FP technique on rectangular
and triangular meshes with the analytical moments. Further, the mathematical formulation of
the CAT for two different triangular grids as taken in Chakraborty and Kumar [9] is provided.
We observe that the CAT gives better accuracy for number density and higher moments on the
new formulation as compared to rectangular grids. It should also be mentioned that changing
the grid from rectangular to triangular does not improve the results for the higher moments
using the FP method. The numerical verifications are performed by taking three different test
problems.

The chapter is organized as follows. In the next section we give the mathematical equations
and then the numerical methods in Section 5.2. In the following two subsections we discuss the
cell average technique formulation for rectangular and triangular grids. Finally, in Section 5.3
numerical results are provided to see the efficiency of the new work.

5.1 Introduction

The population balance equation describes changes in a particulate system in which each par-
ticle has one or more characteristic properties. Aggregation is a size enlargement process in
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which two small particles are gathered together to form a larger particle. There are several par-
ticle properties which influence the particle density distribution in many aggregation processes.
Therefore, a one-dimensional population balance equation (PBE) where the most appropriate
particle property, namely particle size, is assumed to be the only particle property is not adequate
to simulate such processes. The two-dimensional or two component PBE for binary aggregation
is an extension of the one dimensional aggregation process and is given as in [69, 101]

∂f(t, x, y)
∂t

=
1
2

∫ x

0

∫ y

0
β(x− ε, ε, y − γ, γ)f(t, x− ε, y − γ)f(t, ε, γ)dγdε

−
∫ ∞

0

∫ ∞

0
β(x, ε, y, γ)f(t, x, y)f(t, ε, γ)dγdε, (5.1)

where β is the aggregation kernel and f(t, x, y) is the particle property distribution with two
independent granule characteristics x, y > 0 at time t ≥ 0. The first term on the right-hand side
is corresponding to the birth of particles of property (x, y) due to aggregation of smaller particles
of properties (x− ε, y−γ) and (ε, γ), respectively. The last term describes the death of particles
of property (x, y) due to the collision of particles having property (ε, γ). The aggregation kernel
β = β(x, ε, y, γ) describes the rate at which two particles of properties (x, ε) and (y, γ) combine
together to form a particle of property (x+y, ε+γ). It is a non-negative and symmetric function,
i.e.

0 ≤ β(x, ε, y, γ) = β(y, γ, x, ε).

Besides the particle property distribution f , we are also interested in some integral properties
like moments. The ijth moment of the particle size distribution is defined as

µij(t) =
∫ ∞

0

∫ ∞

0
xiyjf(t, x, y)dxdy. (5.2)

The first two orders of moments are of special interest. The zeroth order (i = j = 0) moment
denotes the total number where as the first order (i = 1, j = 0) and (i = 0, j = 1) moments
give the total amount of the particle properties x and y, respectively. If one of the properties is
particle mass then the corresponding first moment is the total mass. Simultaneous agglomeration
and drying in fluidized beds, wet granulation of a binary mixture of two solids, coagulation of a
two component mixture and tracer studies of high shear granulation are some examples of two
or multi-dimensional PBEs. For the details readers are referred to [32, 35, 69, 83].

Numerical solution of the PBE (5.1) is difficult due to the double integral and the non-linearity
of the equation. Several numerical techniques can be found in the literature for solving multi-
component aggregation problems such as the finite element scheme by Kim and Seinfeld [38] and
a Monte carlo method by Laurenzi et al. [60]. Some other numerical schemes were implemented
and can be found in Immanuel and Doyle [34], Xiong and Pratsinis [101], Strumendo and Aras-
toopour [94], Zucca et al. [104], Wright et al. [100] and the references therein. Following the idea
of Filbet and Laurençot [23], Qamar and Warnecke [84] have rewritten the bivariate aggregation
PBEs into the form of conservation laws and applied the well-known finite volume scheme to
solve the problem. However, these numerical methods are having problems either regarding
preservation of some important properties of the distributions or they are computationally very
expensive.
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The sectional methods, in particular the FP method and the CAT have proven to be better
approaches to avoid the above difficulties. The basic difference between the CAT and the
FP method is as follows: In the fixed pivot technique, all new born particles are assigned to
neighboring nodes separately. In case of a one-dimensional problem, the assignment is done
between two neighbouring nodes while for a two-component aggregation problem, the new born
particles are distributed among four or three neighbouring nodes depending on the rectangular
or triangular meshes, respectively. Now, in the CAT the solution strategy follows in two steps:
First, we calculate averages of the properties of all the newborn particles in a cell and then we
assign them to the neighbouring nodes. The number of nodes taken here is same as in the case
of the FP scheme. For both schemes, the assignment of newborn particles is done in such a
way that some properties, i.e. the zeroth and the first moments of the distribution are exactly
preserved. Recently, a new sectional approach known as the extended cell average technique was
introduced by Kostoglou [39] for solving one-dimensional aggregation problems. In this scheme,
the assignment of averages of newborn particles is done between three neighbouring nodes in
such a way that three moments namely the zeroth, first and second are exactly preserved.

5.2 Numerical methods for two-dimensional PBEs

In order to apply a numerical technique to solve the aggregation PBEs (5.1) we consider
truncated equations replacing ∞ by xmax and ymax in x and y directions, respectively with
xmax, ymax < ∞. With this assumption, we fix the two-dimensional computational domain in
the x and y directions as ]0, xmax] and ]0, ymax] respectively. For the rectangular grid the en-
tire two-dimensional property domain is divided into small cells Ci,j . The lower and upper
boundaries of the ijth cell are denoted by xi−1/2, xi+1/2 and yj−1/2, yj+1/2 in x and y directions,
respectively for i = 1, . . . , Ix and j = 1, . . . , Iy. Here, the terms Ix and Iy are two large integers
such that xIx+1/2 = xmax and yIy+1/2 = ymax. We set x1/2 = y1/2 = 0. We choose

xi = (xi−1/2 + xi+1/2)/2, yj = (yj−1/2 + yj+1/2)/2

and

∆xi = xi+1/2 − xi−1/2, ∆yj = yj+1/2 − yj−1/2.

The particles within a cell are assumed to be concentrated at a representative node pi,j of the
cell Ci,j . It should be noted that each node pi,j is associated with two properties xi and yj in
case of a two-dimensional problem. Now, we formulate the cell average idea mathematically.
Let us define the discrete number density Ni,j , i.e. the total number of particles in a cell by
integrating the number density over both properties as

Ni,j =
∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

f(t, x, y)dydx.

Since particles within a cell Ci,j are assumed to be concentrated at the representative node
pi,j = (xi, yj), the number density can be expressed using Dirac point masses as

f(x, y, t) =
Ix∑

i=1

Iy∑

j=1

Ni,jδ(x− xi)δ(y − yj), (5.3)
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where Ix and Iy are the total number of cells in the x and y directions, respectively. Integrating
the equation (5.1) over x and y and substituting the density f from (5.3), we obtain the following
equation

dNi,j

dt
= Bi,j −Di,j . (5.4)

For the details readers are referred to J. Kumar et al. [44]. Here Bi,j is the discrete birth in the
cell Ci,j and is given as

Bij =
k≥l∑

k,l
xi−1/2≤(xk+xl)<xi+1/2

m≥n∑
m,n

yj−1/2≤(ym+yn)<yj+1/2

(
1− 1

2
δk,lδm,n

)
βklmnNkmNln,

and Di,j is the discrete death term defined by

Dij =
Ix∑

p=1

Iy∑

q=1

βipjqNijNpq

where βklmn = β(xk, xl, ym, yn) and δm,n is Kronecker delta.

Numerical computations on uniform linear grids are quite expensive. To avoid this, we do the
computation on non-uniform grids such as geometric grids. Non-uniformity in the grids causes
inconsistency of the particle properties in the formulation. The birth term has to be modified to
resolve this problem, i.e. the reassignment of newborn particles to the neighbouring nodes has
to be done. In the CAT, we do the reassignment in such a way that some pre-chosen moments
are preserved. A detailed discussion on these issues can be found in J. Kumar et al. [45].

Let us assume that Vx,i and Vy,j are the net fluxes in the cell Ci,j of the property x and y
respectively due to the aggregation process and (x̄i, ȳj) is the position of average of all newborn
particles. Then we have

x̄i =
Vx,i

Bij
, ȳj =

Vy,j

Bij
.

If the average positions x̄i and ȳj of newborn particles are different from the grid points xi and
yj , we reassign the particles to the neighbouring nodes. It should be mentioned that in case of
linear grids in both directions, the averages x̄i and ȳj are always equal to xi and yj . Hence, all
particles will be assigned to the same cell they belong to without any reassignment. Now the
question arises: Which and how many neighbouring nodes should be taken for the assignment of
particles? The number of nodes for assignment depends on the choice of number of moments we
want to preserve during the assignment of particles. We are interested in preserving the zeroth
moment µ00 and first order of moments µ10 and µ01. To preserve these three moments, four
surrounding nodes have been used for the reassignment of particles in case of the rectangular
grid. In the following subsection, we discuss briefly the mathematical formulation of the CAT
for the rectangular grid. A detailed description can be found in J. Kumar et al. [44].
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5.2.1 Cell average technique for rectangular grids

As expected from the cell average idea, if the two-dimensional average value lies exactly at the
node of the cell, which is again rarely possible, we assign all newborn particles to the node,
otherwise these newborn particles must be reassigned to the neighbouring nodes depending
upon the position of average properties in the cell. A typical domain discretization with the
reassignment of newborn particles is shown in Figure 5.1. The reassignment process is done
in such a way that some pre-chosen moments namely the zeroth moment µ00 and first order
of moments µ10 and µ01 are exactly preserved. From Figure 5.1, we observe that there are

Figure 5.1: Domain discretization with distribution of particles.

9 surrounding nodes which may get a birth contribution from newborn particles in cell Cij .
The choice of four neighbouring nodes depends on the position of (x̄i, ȳj) in the cell Cij . For
(x̄i, ȳj) in the Figure 5.1, the particles will be assigned to the nodes pi−1,j−1 = (xi−1, yj−1),
pi,j−1 = (xi, yj−1), pi,j = (xi, yj) and pi−1,j = (xi−1, yj).

Let us suppose that a1, a2, a3 and a4 are the particle fractions assigned to the nodes pi−1,j−1,
pi,j−1, pi,j and pi−1,j , respectively. For the consistency of zeroth µ00 and first order moments
µ01 and µ10, we obtain the following relations

a1 + a2 + a3 + a4 = Bij ,

a1xi−1 + a2xi = (a1 + a2)x̄i,

a3xi + a4xi−1 = (a3 + a4)x̄i,

a1yj−1 + a4yj = (a1 + a4)ȳj ,

a2yj−1 + a3yj = (a2 + a3)ȳj .
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Since the last four equations are dependent, we get a unique solution given as

a1 = λ+,+
i−1,j−1(x̄i, ȳj)Bij ; a2 = λ−,+

i,j−1(x̄i, ȳj)Bij ,

a3 = λ−,−
i,j (x̄i, ȳj)Bij ; a4 = λ+,−

i−1,j(x̄i, ȳj)Bij ,

where

λ±,±
i,j (x, y) =

(x− xi±1)(y − yj±1)
(xi − xi±1)(yj − yj±1)

.

The final formulation considering all the birth contributions to the node pi,j is given in J. Kumar
[42] and J. Kumar et al. [44].

As mentioned earlier the number of nodes chosen for assignment depends on the number of
moments we want to preserve. For the rectangular grid case, we only preserve three moments,
namely the zeroth µ00 and the first order moments µ01 and µ10. In other words, for the preser-
vation of three moments in the case of rectangular grids we distribute the particles to four
neighbouring nodes. Therefore, one can expect that the assignment of the particles among three
nodes would give better numerical results as compared to the rectangular grids. This motivates
us to apply the scheme on the triangular grids. In 2007, Chakraborty and Kumar [9] introduce
two different triangular grids by taking the rectangular grid as basis and implemented the FP
method on such triangular meshes. The following subsection gives the mathematical formula-
tions of the bi-component aggregation problems by the CAT for both the triangular grids as
discussed in Chakraborty and Kumar [9].

5.2.2 Cell average technique for triangular grids

For a triangular grid, the assignment of the newborn particles is made to three neighbouring
nodes instead of four nodes as in the rectangular grid. Following the idea of Chakraborty and
Kumar [9], we discuss two different triangular grids which are known as along diagonal and across
diagonal triangulation. These grids are obtained by taking a rectangular grid and dividing the
rectangles into two triangles each other along the direction of the diagonal x = y or across
it, respectively. Figure 5.2 represents the domain discretization for a triangular grid in along
and across arrangements of the triangles, respectively. Here, it is worth to state the differences
between the implementation of the CAT and the FP method on such triangular meshes. In the
FP scheme, the reassignment of the newborn particles is done among three nodes of the lower or
upper triangles where the newborn particle lies. However, for the CAT, first we determine the
average position of all newborn particles in a rectangular cell. Next, we reassign them among
three nodes of the triangle formed by pivot points in which this average position lies.

Here, we explain the mathematical formulation of the CAT for an along diagonal triangular
grid. In a similar way one can obtain the formulation for the other grid. Figure 5.3(a) shows
the reassignment of the newborn particles for an along triangular grid. We observe from Figure
5.3(b) that there are 7 nodes which may get birth contributions from newborn particles in the
cell Cij . The choice of three neighbouring nodes depends on the position of (x̄i, ȳj) in the cell
Cij . For (x̄i, ȳj) in the Figure 5.3(a), if a1, a2 and a3 are the fractions of the newborn particles,
these are assigned to the nodes pi−1,j−1, pi,j−1 and pi,j , respectively. We obtain the following
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relations due to the preservation of zeroth µ00 as well as first order of moments µ01 and µ10

a1 + a2 + a3 = Bij ,

a1xi−1 + a2xi + a3xi = (a1 + a2 + a3)x̄i,

a1yj−1 + a2yj−1 + a3yj = (a1 + a2 + a3)ȳj .

Solving the above system of three equations with three unknowns yields a unique solution for
a1, a2 and a3 as

a1 = Bij

(
xi − x̄i

xi − xi−1

)
, a2 = Bij

(
x̄i − xi−1

xi − xi−1
− ȳj − yj−1

yj − yj−1

)
, a3 = Bij

(
ȳj − yj−1

yj − yj−1

)
.

Similarly, we can obtain a1, a2 and a3 for different average positions of (x̄i, ȳj) in the Figure
5.3(a).

Figure 5.2: (a) Along diagonal and (b) across diagonal arrangements of triangles.

Now we collect all birth contributions to the node pi,j in the cell Cij coming from the six
surrounding cells and the cell Cij itself. Introducing a characteristic function H as

H(x) =

{
1 if x ≥ 0,

0 if x < 0,
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(a) (b)

Figure 5.3: (a) Distribution of particles to neighbouring nodes and (b) collection of particles
from neighbouring nodes.

we obtain finally the following formulation

dNij

dt
=

1∑

p=0

1∑

q=0

Bi−p,j−q
yj−1 − ȳj−q

yj−1 − yj
H(xi − x̄i−p)H

(
(x̄i−p − xi)(yj − yj−1)

xi − xi−1
+ yj − ȳj−q

)

+
1∑

p=0

1∑

q=0

Bi−p,j−q
x̄i−p − xi−1

xi − xi−1
H(yj − ȳj−q)H

(
(ȳj−q − yj)(xi − xi−1)

yj − yj−1
+ xi − x̄i−p

)

+
1∑

p=0

1∑

q=0p+q≤1

Bi−p,j+q

(
1− ȳj+q − yj

yj+1 − yj
− x̄i−p − xi

xi−1 − xi

)
H(xi − x̄i−p)H(ȳj+q − yj)

+
1∑

p=0

1∑

q=0

Bi+p,j+q
yj+1 − ȳj+q

yj+1 − yj
H(x̄i+p − xi)H

(
ȳj+q − (x̄i+p − xi)(yj+1 − yj)

xi+1 − xi
+ yj

)

+
1∑

p=0

1∑

q=0

Bi+p,j+q
xi+1 − x̄i+p

xi+1 − xi
H(ȳj+q − yj)H

(
x̄i+p − (ȳj+q − yj)(xi+1 − xi)

yj+1 − yj
+ xi

)

+
1∑

p=0

1∑

q=0p+q≤1

Bi+p,j−q

(
1− ȳj−q − yj

yj−1 − yj
− x̄i+p − xi

xi+1 − xi

)
H(x̄i+p − xi)H(yj − ȳj−q)

−
Ix∑

p=1

Iy∑

q=1

βipjqNijNpq.

Figure 5.3(b) explains the birth terms in the above formulation. Note that the birth contributions
to the node pi,j from the nodes pi+1,j−1 and pi−1,j+1 are zero. We observe the same in the above
mathematical formulation. Six major terms (double sum in each) in the birth are corresponding
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to the six different domains, shown by the Figure 5.3(b). We find that each major term has a
contribution from three cells, numbered 1, 2, 3 in this figure. Therefore, each major term has
three terms again. There are a total of 18 terms and many of them may be zero at a particular
time depending upon the position of average properties in the cell.

Similarly, we obtain the final formulation for across diagonal triangulation grid as

dNij

dt
=

1∑

p=0

1∑

q=0p+q≤1

Bi−p,j−q

(
1− ȳj−q − yj

yj−1 − yj
− x̄i−p − xi

xi−1 − xi

)
H(xi − x̄i−p)H(yj − ȳj−q)

+
1∑

p=0

1∑

q=0

Bi−p,j+q
x̄i−p − xi−1

xi − xi−1
H(ȳj+q − yj)H

(
(ȳj+q − yj)(xi − xi−1)

yj − yj+1
+ xi − x̄i−p

)

+
1∑

p=0

1∑

q=0

Bi−p,j+q
yj+1 − ȳj+q

yj+1 − yj
H(xi − x̄i−p)H

(
ȳj+q − (x̄i−p − xi)(yj − yj+1)

xi − xi−1
+ yj

)

+
1∑

p=0

1∑

q=0p+q≤1

Bi+p,j+q

(
1− ȳj+q − yj

yj+1 − yj
− x̄i+p − xi

xi+1 − xi

)
H(x̄i+p − xi)H(ȳj+q − yj)

+
1∑

p=0

1∑

q=0

Bi+p,j−q
x̄i+p − xi+1

xi − xi+1
H(yj − ȳj−q)H

(
x̄i+p − (ȳj−q − yj)(xi+1 − xi)

yj−1 − yj
+ xi

)

+
1∑

p=0

1∑

q=0

Bi+p,j−q
ȳj−q − yj−1

yj − yj−1
H(x̄i+p − xi)H

(
(x̄i+p − xi)(yj−1 − yj)

xi+1 − xi
+ yj − ȳj−q

)

−
Ix∑

p=1

Iy∑

q=1

βipjqNijNpq.

It should be mentioned here that the birth contributions to the node pi,j from the nodes pi−1,j−1

and pi+1,j+1 are zero. In the following section we discuss numerical results of both the CAT and
the FP scheme by using the rectangular and the triangular grids.

5.3 Numerical results

Very few analytical results are available for two-dimensional PBEs, in particular for the number
density. Here, we consider three test problems to analyze the accuracy of the two schemes.
The numerical results are compared with the analytical solutions for higher moments. However,
we compare also the number density for two problems. In the first test case, we show the
computation on a complete two-dimensional problem and compare the results for number density
and its moments.

Test case 1

Consider the particular case of the constant aggregation kernel with the following initial condi-
tion

f(0, x, y) =
16N0

c10c20

(
x

c10

)(
y

c20

)
exp

(
− 2

x

c10
− 2

y

c20

)
.
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We have the analytical solutions for the number density and moments given by Gelbard and
Seinfeld [26]. In numerical simulations, the parameters c10 and c20 are taken to be 0.08. We set
N0 = 1 and the extent of evolution corresponds to the time for which the degree of aggregation is
Iagg = 1− µ00(t)/µ00(0) = 0.953. We show the numerical comparisons between the rectangular
and the triangular grids with along and across arrangements of triangles. The number of grid
points in each direction has been taken to be 26 on a geometric grid xi+1/2 = 2xi−1/2.

First we discuss the results for the fixed pivot scheme. Figure (5.4) shows the complete size
distribution for three types of grids. In this figure, we have shown the number of particles
corresponding to each pivot point. Here the pivot points are ordered in such a way that the
number of particles are monotonically decreasing. We observe that along triangulation grid
predicts better results among all the three grids. Figure 5.5(a) represents the first two moments
µ00 and µ10 or µ01. We find that the numerical results accurately reproduce the analytical
solutions. It should be mentioned that the mathematical formulations of the CAT and the FP
are in such a way that the first two moments are preserved. Therefore, from what follows on we
do not plot the results of moments µ00, µ10 and µ01 for any test problems. For the first cross
moment µ11 in Figure 5.5(b), the rectangular grid gives an exact prediction of the analytical
results where as the along and across diagonal triangulation grids over-predict and under-predict
the results, respectively. Figure 5.5(c) shows that the result for the moment µ21, using across
diagonal is in good agreement with the analytical where as the rectangular and along diagonal
over-predict the results.

The number of particles at each grid point is shown in Figure 5.6 by using the cell average
method. This figure shows that changing the grid does not influence the result for number
density and the results are in very good agreement with the analytical number density. Figure
5.7 indicates that the along diagonal triangulation grid gives an accurate prediction of the
analytical results for higher moments µ11 and µ21. We also observe that rectangular and across
triangulation grids under-predict the results.

So far we observed that the FP improves the results for number density using an along trian-
gultion grid whereas a diverging behavior with time has been found for the higher moments.
Furthermore, we find that the CAT shows significant improvements for the higher moments
using the along triangulation grid and also give similar results for the number density. However,
we cannot conclude the choice of a better method just from this one test problem. In the next
section we will see that the CAT predicts not only the higher moments accurately but also does
not suffer from the numerical diffusion, smearing effect, using an along triangulation mesh.

Test case 2

We compute a quasi one-dimensional problem with both the methods. Aggregation of mono-
disperse 2-mer granules, i.e. each granule is composed of two primary particles of different
properties has been considered. Whenever two granules aggregate they form a new granule with
an equal number of primary particles of each type. In this way it is a one-dimensional problem.
The new granules should be formed along the diagonal only. However, due to the non-linearity
of the grids, granules do not appear at the grid points exactly. Therefore, a granule reassignment
is done which causes diffusion. In the paper of J. Kumar et al. [44], we already have seen that
the CAT shows some diffusion using the rectangular grid. The computation here is done for
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Figure 5.4: Test case 1: Number density for (a) rectangular grid (b) along diagonal and (c)
across diagonal by using the FP method.

the constant aggregation kernel and the grid points in each direction is taken to be 13 with
xi+1/2 = 2xi−1/2. The number of grid points have been shown on the x and y axes.

Figure 5.8 and Figure 5.10 show the numerical diffusion between the rectangular and the tri-
angular grids using the FP scheme and the CAT, respectively. We observe from Figure 5.8(b)
and Figure 5.10(b) that the FP method and the CAT clearly indicate no diffusion for the along
arrangement of triangulation grids. The smearing effects using the other two grids are quite
similar to each other for both the methods. The moments µ11 and µ20 have been plotted in
Figures 5.9 and 5.11 by using the FP technique and the CAT, respectively. Once again the same
observations as in the previous case have been obtained for the FP method, i.e. the technique
only improves the results for particle size distributions but not for the moments by changing
the grids. However, we see clearly that the CAT shows no diffusion for the along triangulation
grids and also gives exact prediction of the analytical higher moments.

Test case 3

Now we consider a discrete aggregation problem of two different types of particles with the
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Figure 5.5: Test case 1: Moment (a) i-j moment (b) 1-1 moment and (c) 2-1 moment by the FP
scheme.

following initial condition from Lushnikov [69]

f(0, x, y) = c1δx−1 + c2δ1−y. (5.5)

For the simulation, two different types of mono-disperse particles with the concentration pa-
rameters c1 = 0.5 and c2 = 0.5 have been considered as an initial condition (5.5). The number
of pivot points in each direction has been taken to be 20 with the rule xi+1/2 = 2xi−1/2. The
numerics has been done at high degree of aggregation, Iagg = 1 − µ00(t)/µ00(0) = 0.98. The
initial condition is plotted in Figure 5.12. Figures 5.13 and 5.14 show the comparison between
the numerical and the analytical higher moments µ11 and µ20 by using the FP scheme and the
CAT, respectively. Again we observe that changing the grid from rectangular into triangular
does not improve the results for the higher moments using the FP method. However, the CAT
gives better prediction for the higher moments using the along triangulation grid as compared
to the other two grids. It should be mentioned that for this test problem we have also considered
the case of the sum kernel and obtained similar observations for both the schemes.
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Figure 5.6: Test case 1: Number density for (a) rectangular grid (b) along diagonal and (c)
across diagonal by using the CAT.
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Figure 5.7: Test case 1: Moment (a) 1-1 moment and (b) 2-1 moment by the CAT.
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Figure 5.8: Test case 2: Comparison of the FP scheme showing numerical diffusion for three
different grids.
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Figure 5.9: Test case 2: Moment (a) 1-1 moment and (b) 2-0 moment by the FP technique.

96



5.3. NUMERICAL RESULTS

2 4 6 8 10 12

2

4

6

8

10

12

x

y

Particles concentration

(a) Rectangular grid

2 4 6 8 10 12

2

4

6

8

10

12

x

y

Particles concentration

(b) Along diagonal

2 4 6 8 10 12

2

4

6

8

10

12

x

y
Particles concentration

(c) Across diagonal

Figure 5.10: Test case 2: Comparison of the CAT showing numerical diffusion for three different
grids.
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Figure 5.11: Test case 2: Moment (a) 1-1 moment and (b) 2-0 moment by the CAT.
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Figure 5.12: Test case 3: Initial condition.
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Figure 5.13: Test case 3: Moment (a) 1-1 moment and (b) 2-0 moment by the FP method.
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Figure 5.14: Test case 3: Moment (a) 1-1 moment and (b) 2-0 moment by the CAT.
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Chapter 6

Modeling in nano-technology

In this chapter we discuss the applications of aggregation and multiple breakage equations in
nano-technology. The kinetics of the aggregation and breakage processes during titanium dioxide
(TiO2) nano-particle sol-gel synthesis is presented. Nano-particle precipitation in the batch
reactor is discussed briefly and the particle size distributions (PSDs) are verified numerically by
solving these equations. We use the cell average technique (CAT) to solve these equations by
taking the shear flow aggregation kernel [89] together with two different breakage kernels given
by Austin [1] and Diemer [12]. There is a good agreement between the experimental data for
the PSDs and the simulation results.

The plan of the chapter is as follows. We start by giving a short introduction to the nano-
particles, their applications and the process to make TiO2 nano-particles in the experiment.
This section was written with the help of a chemical engineering student, Yashodhan Gokhale,
who did all the experimental work described below. Further in Section 6.2 we recall from Chapter
1 the aggregation-breakage equations, which are used to model the nano-particles. In this section
the CAT is also reviewed briefly from Chapter 4 with the aggregation-breakage kernels. Finally
in Section 6.3 we solve the model numerically and compare results with the experimental data.

6.1 Introduction

It is known that titanium dioxide has gained much attention in the last few years due to the
prospects presented in applying it as a cheap, environmental friendly and nontoxic photocatalyst
due to its high specific surface area and porosity. Due to these unique properties, the titanium
dioxide particle coating is a very important material. This material has multifunctional appli-
cations such as in solar cells, photochromic and electrochromic devices, gas sensors, biosensors,
corrosion protection, bactericides and optical devices, see [11, 96] and further citations. There-
fore, it is important that nano-particles have to be produced in sufficient amounts before they
can be applied on an industrial scale. For this application, the major problem encountered
is how the aggregation and breakage of the particles can be controlled during the production
process. Therefore, an active area of research in the particle technology is to study how the
aggregation and breakage take place with TiO2 nano-particles.

In the experiment, this control and the prediction of PSDs were based on the process conditions
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CHAPTER 6. MODELING IN NANO-TECHNOLOGY

and the nature of the chemicals. They investigated the synthesis of surface stabilized TiO2 nano-
particles with different surfactants. The steric stabilization of the polymer and various functional
groups of dispersants were also considered. The influence of various precursor concentrations and
different surfactants on the PSDs were observed. Narrow distributed spherical titania particles in
the size range 10-100 nm were produced in a sol-gel synthesis from titanium tetra-isopropoxide.

Many efforts have been made to develope appropriate processes to prepare titania nano-particles
experimentally. The most common procedures have been based on the hydrolysis of acidic
solutions of titanium salts, gas-phase oxidation reactions of TiCl4 and hydrolysis reactions of
titanium alkoxides [74, 4]. Another approach for preparing micron size particles, e.g. particles
with a very narrow size distribution was by dispersion polymerization [2]. Recently, chemical
vapour deposition was also used to make such nano-particles by thermal decomposition [37].

The sol-gel process for the preparation of nano-particles was preferred among other methods
mentioned above because it provided a possibility for deriving special shapes depending on the
gel state. This process was rapid, had a low cost and gave better stability at the end of the
reaction.

Below we briefly discuss the experimental methodology for synthesizing surfactant based tita-
nium dioxide nano-particles. We also explain in characterization of TiO2 nano-particles, how
the PSDs were measured. For a detailed description readers are referred to Gokhale [27].

Experimental methodology

Titanium dioxide nano-particles have been prepared in the laboratory in a beaker. This beaker
was kept inside a temperature bath and maintained at an optimum constant temperature of
500C for the redispersion reaction. They used the organic components titanium tetra iso-
propoxide (TTIP) Ti(OC3H7)4 as a precursor, Nitric acid (HNO3) as stabilizer and different
surfactants such as Polyethylene Glycol (PEG) (H(OCH2CH2)nOH), Ethylene Glycol (EG)
(HOCH2CH2OH) as well as Sodium Chloride (NaCl). Further, to generate such nano-particles
a specified amount of 0.1 M HNO3 (90 ml) was placed into the batch reactor. Then they mea-
sured 50 ml of surfactant (PEG, EG and NaCl with concentration of 0.1 M each) in separate
experiments and added this to the HNO3 in the beaker. The organic precursor TTIP (9.7 ml)
was also measured with the syringe and needle and then added to the heated solution under
stirrer shear rate Υ̇ = 350s−1 (corresponding to a stirred rotational speed of 500 revolutions per
minute). Precipitation reaction started instantaneously and the solutions or samples were taken
periodically on an hourly basis.

Characterization of TiO2 nano-particles

Particle sizes smaller than 1 µm have been measured via dynamic light scattering (Zetasizer,
Malvern Instruments) using a He-Ne laser as light source (λ = 633 nm). For particle size
distributions in the micrometer size range, a laser diffraction method was used (Mastersizer
2000, Malvern Instruments, He-Ne laser as red light source (λ = 633 nm), solid state laser as
blue light source (λ = 466 nm)) [82]. All size measurements have been performed at a scattering
angle of 90 degree and 25 degree. The first samples were taken after 4 hours into the experiment
as samples taken before this time were in the micro range.
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6.2. AGGREGATION-BREAKAGE MODEL

6.2 Aggregation-breakage model

Aggregation-breakage PBEs are the most frequently used modeling tool to describe and control
a wide range of particulate processes like comminution, crystallization, granulation, floccula-
tion, protein precipitation, aerosol dynamics and polymerization. An extensive review of the
applications of such equations to particulate systems in engineering is given by Ramkrishna [87].
In process modeling, mass and energy balances are essential tools to describe the changes that
occur during the physico-chemical reactions. We know from (1.10), the dynamic behavior of
the particle size distributions undergoing simultaneous aggregation and breakage processes is
governed by

∂f(t, x)
∂t

=
1
2

∫ x

0
β(x− y, y)f(t, x− y)f(t, y)dy −

∫ ∞

0
β(x, y)f(t, y)f(t, x)dy

+
∫ ∞

x
b(x, y)S(y)f(t, y)dy − S(x)f(t, x). (6.1)

To solve this equation numerically we first fix a computational domain ]0, R] with R < ∞ and
the truncated equation is obtained from (6.1) replacing ∞ by R. There are many numerical
methods to solve the problem. However, here we use the CAT.

The cell average technique

It was shown by Kumar and Warnecke [45] that the CAT is a very accurate and efficient num-
erical scheme. By using the CAT, reasonably good results are achieved for complete number
density distributions on a very coarse grid as well. The mathematical formulation relies on
approximating the number density using point masses concentrated at representative points in
the cell. Since, we are already familiar with the mathematical formulation of the CAT for these
equations from Subsection 4.3.2, we omit the details here.

For the numerical computations later, a shear aggregation kernel e.g.

β(x, y) =
√

8π

15η
Υ̇ (x1/3 + y1/3)3 (6.2)

is used, see Saffman and Turner [89]. Here, the parameter Υ̇ is known to be the shear rate and
η is the viscosity of the suspending fluid. Furthermore, for the breakage process, we use the
selection function

S(y) = S0 (y)µ (6.3)

where S0 and µ are positive constants. This selection function is used together with two different
breakage functions proposed by Austin [1] and Diemer [12] which are defined in the following.

Diemer kernel

We recall from Chapter 4, equation (4.75) that the Diemer kernel is given as follows

b(x, y) =
pxc(y − x)c+(c+1)(p−2)Γ[c + (c + 1)(p− 1) + 1]

ypc+p−1Γ(c + 1)Γ[c + (c + 1)(p− 2) + 1]
,

where the exponent p describes the number of fragments per breakage event and c determines
the shape of the daughter particle distributions.
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Austin Kernel

The normalized cumulative breakage function for the formation of particles of size x when a
particle of size y breaks has the form proposed by Austin as follows,

B(x, y) =

{
φ

(
x
y

)γ
+ (1− φ)

(
x
y

)α
; y > x

1; y = x,
(6.4)

where γ, φ and α are dimensionless material constants. The term φ is called the weight parameter
to quantify the mass content of first breakage distributions. The exponents γ and α are width
of the fragment distributions φ and 1−φ, respectively. For the simulation the breakage function
b(x, y) is used rather than cumulative function B(x, y). The calculation steps are provided below.

Since B(x, y) is the normalized cumulative breakage function, it can also be written as

B(x, y) =
1

N(y)

∫ x

0
b(z, y)dz

with N(y) the total number of particles of volume y. Equivalently, we have

dB
dx

=
1

N(y)
b(x, y). (6.5)

We can also use (6.4) to obtain

dB
dx

=
φγxγ−1

yγ
+

(1− φ)αxα−1

yα
.

Multiplying the equation (6.5) by x and integrating with respect to x from 0 to y give
∫ y

0
x

dB
dx

dx =
∫ y

0

x

N(y)
b(x, y)dx.

By using the mass conservation condition (1.9), i.e.
∫ y
0 xb(x, y)dx = y, this equation reduces to

∫ y

0

(
φγ

(
x

y

)γ

+ (1− φ)α
(

x

y

)α )
dx =

1
N(y)

y.

Thus we get

φγ

γ + 1
y +

(1− φ)α
α + 1

y =
1

N(y)
y

which implies that

1
N(y)

=
φγ

γ + 1
+

(1− φ)α
α + 1

.

Finally, this equation together with (6.5) imply that the breakage function b is given by

b(x, y) = N(y)
dB
dx

=

(
φγxγ−1

yγ + (1−φ)αxα−1

yα

)
(

φγ
γ+1 + (1−φ)α

α+1

) .
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6.3 Results and discussions

In this section, the simulation results are compared with experimental data by using a shear
aggregation and two breakage kernels. Here, we just mention few results. For more details and
findings, see [28, 29, 49].

The parameters used for our numerical computations with the Austin kernel are, γ = 0.18,
φ = 0.08, α = 10 and for the Diemer kernel p = 2, c = 10. The constants µ = 0.33, 0.70
are taken together with S0 = 1 in the selection function (6.3) for the Austin and the Diemer
kernel, respectively. The synthesis and the numerical results are given here for the shear rate
Υ̇ = 370s−1. Results using shear rates Υ̇ = 623, 960 and 1342s−1 can be found in Gokhale [27]
where the author has also summarized the calculations for these shear rates. It was observed
in [27] that Υ̇ = 1342s−1 is the optimum for generating the TiO2 nano-particles. A steady
state is reached at this value which implies that particle sizes no longer change with time. The
computational domain [4, 1e+4] is taken for all the cases. We have used the 4 hours experimental
result as our initial condition for the numerical computations. Then we compare the results at
6, 8 and 10 hours. The results with different surfactants; PEG, EG and NaCl are plotted. The
comparisons are done for the cumulative particle size distributions for each PSD at different
time intervals.

Figure 6.1 shows the comparisons for PEG-TiO2 between the experimental and the simulation
results by using the Austin and the Diemer kernels. We observe from Figure 6.1(a) that the
numerical results, using the Austin kernel, are in excellent agreement with the experimental
data for each time interval. From Figure 6.1(b), we find that the Diemer kernel gives also good-
predictions for the experimental results. For both cases there is a general decreasing trend of
the particle sizes with time from t = 4 hours to t = 10 hours.
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Figure 6.1: Experimental sol-gel TiO2 nano-particles in the presence of 0.374 g/ml Polyethylene
Glycol (PEG) and numerical results of PSD by (a) the Austin kernel and (b) the Diemer kernel.

It can be seen from Figure 6.2, during the initial stages at t = 6 and 8 hours, polydisperse
particles are obtained with Ethylene Glycol. Moreover, after the reaction period of 10 hours
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monodisperse particles are produced. We observe from these figures that the Austin and the
Diemer kernels show good accuracy with the experimental data.
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Figure 6.2: Experimental sol-gel TiO2 nano-particles in the presence of 0.372 g/ml Ethylene
Glycol and numerical simulations of PSD by (a) the Austin kernel and (b) the Diemer kernel.

Narrow size distributions are obtained after 8 hours with the NaCl. In general, polydisperse
particles are achieved during the initial stages of the precipitation reaction as can be seen from
Figure 6.3. However, we observe that after the reaction at t = 8 hours monodisperse particles
are achieved. Similar to the case of Polyethylene Glycol and Ethylene Glycol, here again we find
from Figures 6.3(a) and 6.3(b) that the Austin and Diemer kernels indicate the exact predictions
with the experimental data.
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Figure 6.3: Experimental sol-gel TiO2 nano-particles in the presence of 0.720 g/ml NaCl and
numerical simulations of PSD by (a) the Austin kernel and (b) the Diemer kernel.

104



Chapter 7

Conclusions

In this thesis we have studied the numerical analysis and computations for population balance
equations in particulate processes using finite volume schemes. Five different observations have
been made for such equations. Here we give the conclusions to each of these observations.
Finally some open problems are suggested.

Conclusions and future work

First we have discussed the convergence of the discretized finite volume solutions towards the
weak solutions to the continuous multiple fragmentation equations. The convergence proof has
been shown in L∞(]0, T ], L1]0, R]) space by using the weak L1 compactness method and the La
Vallée Poussin theorem. For the analysis, a locally bounded multiplicative breakage kernel was
considered.

In the second goal the stability and the convergence analysis of the finite volume technique
were studied for the non-linear aggregation and multiple breakage equations. We have shown
the consistency and then proved the Lipschitz continuity of the numerical fluxes to complete
the convergence results. This investigation was based on the basic theorems and definitions
from the book of Hundsdorfer and Verwer [33] and the paper of Linz [68]. It was noticed that
the scheme was second order consistent and convergent for a family of meshes for the pure
breakage problem. For the aggregation and combined aggregation-breakage processes, it was
not straightforward to evaluate the consistency and the convergence error on general meshes.
This depended upon the type of grids chosen for the computations. Moreover, in these cases
the technique gave second order consistency and convergence only on uniform, non-uniform
smooth and locally uniform meshes while on oscillatory and random grids it shown to be only
of first order. The mathematical results of the convergence analysis were verified numerically by
taking several examples of pure aggregation, pure breakage and the combined problems. These
numerical verifications were made on five different types of uniform and non-uniform meshes.

In our third aim we examined in detail the moment preservation issue for the coupled problems.
We introduced the definition of moment preservation as a new concept in this work. Based upon
this concept, the zeroth and first moment preserving conditions were obtained for aggregation,
breakage, growth and source terms separately. Later we have proposed one moment preserving
numerical schemes composed of finite volume methods for the aggregation-breakage terms as
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well as source terms and upwind scheme for the growth process. These schemes showed either
zeroth moment or first moment preservation depending upon the process under consideration.
In case of pure aggregation, pure breakage or both it was total mass preservation while for
growth or source terms we found total number preservation. This preservation was obvious due
to the well-known property of conservative schemes. Nevertheless, surprising numerical results
were observed by considering coupled mass and number preserving processes. In this case no
moment was preserved. To avoid the non-preservation for the coupled processes we took the cell
average technique as a basis, Kumar and Warnecke [42, 45, 43]. However, for the aggregation,
breakage and source terms we rewrote these formulations in a finite volume conservation law. For
the aggregation-breakage terms, these formulations gave mass conservation. Further, we found
out that the resulting formulations together with a modified upwind scheme for the growth
term showed both number and mass preservation for the combined problems. The moment
preservation or non-preservation were verified analytically. Finally it was demonstrated by
means of numerical results for several coupled processes that the prediction of the moments
using two moment preserving methods were very accurate while very poor for one moment
preserving schemes.

Further in our next target we introduced the mathematical formulations of the CAT for the
two-component aggregation PBEs for two different types of triangular grids, i.e. along and
across diagonal arrangement of the triangles. For the numerical investigations we considered
three test problems. The results obtained by the CAT and the FP technique for rectangular
and triangular grids were compared with the exact solutions. For an along triangulation grids,
the FP scheme showed a better prediction only for the number density but not for the higher
moments compared to rectangular meshes. Moreover, the CAT improved the results both for
the number density and for the higher moments. Therefore, the CAT is a quite stable scheme as
compared to the FP method. It should be noted that both schemes were implemented in such
a way that they reproduced exactly the analytical solutions for the zeroth and first moments
irrespective of the meshes chosen. The formulation of the CAT can easily be extended to more
than two-dimensional problems but it will be computationally very expensive.

Finally, we did numerical simulations with the CAT and compared our results with the experi-
mental data of TiO2 nano-particles by Gokhale et al. [28, 29]. These data were prepared in the
lab by sol-gel method using three different surfactants PEG, EG and NaCl. The modeling of
these nano-particles was based on the aggregation-breakage processes. We solved these equations
numerically by taking a shear aggregation kernel and two different breakage kernels proposed
by Austin and Diemer. It was observed that both the breakage kernels gave good agreement
with the experimental particle size distributions. Moreover, the Austin kernel was found to be
better in terms needed to the computational time.

Now, in the following we would like to mention some open problems related to our work for the
future developments.

• It would be interesting to study the finite volume schemes for aggregation and multiple
breakage equations which cover the case of singular kernels. Therefore, there is room for
improvement in the results of Chapter 2.
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• The complexity of the indices αi,k in the numerical flux for aggregation makes the con-
vergence analysis difficult for the case of locally uniform meshes using the finite volume
schemes. However, numerically we have observed second order convergence on such meshes.
Hence, it would be challenging to see how one can obtain the same order of convergence
by mathematical analysis.

• The second moment of the particle size distributions is also very important in some ap-
plications. There are no numerical schemes which show second moment preservation for
the coupled particulate processes. This is not even available for the individual process of
aggregation and breakage problems with simple kernels. Hence, there is much to be done
in this direction.

• So far we have discussed the case of bi-component aggregation problems. But the extension
for multi-component is still missing using the CAT. One can also include the breakage
process to solve the two or multi-dimensional combined equations by the CAT.

• A probable future work would be the implementation of the finite volume approaches
to solve the combined aggregation-breakage equations in two or higher dimensions. The
mathematical analysis has not been done for such problems as well.
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Appendix A

Finite volume analysis

A.1 Conservative formulation

Here we give the calculation steps of determining the finite volume formulations (3.11) of the
aggregation and breakage equations from the standard form of the population balance equations.

A.1.1 Finite volume scheme for aggregation

The mass balance population balance equation for aggregation is given by

∂xn(x, t)
∂t

=
x

2

∫ x

0
β(x− ε, ε)n(t, x− ε)n(t, ε)dε− x

∫ xmax

0
β(x, ε)n(t, x)n(t, ε)dε. (A.1)

The preceding equation can be rewritten as

∂xn(x, t)
∂t

=
∫ x

0
εβ(x− ε, ε)n(t, x− ε)n(t, ε)dε− x

∫ xmax

0
β(x, ε)n(t, x)n(t, ε)dε.

Integration over a cell gives

∂Gi(t)
∂t

=
∫ xi+1/2

xi−1/2

[∫ x

0
εβ(x− ε, ε)n(t, x− ε)n(t, ε)dε− x

∫ xmax

0
β(x, ε)n(t, x)n(t, ε)dε

]
dx.

Changing the order of integration of the birth term we get

∂Gi(t)
∂t

=
∫ xi−1/2

0

∫ xi+1/2

xi−1/2

εβ(x− ε, ε)n(t, x− ε)n(t, ε)dxdε

+
∫ xi+1/2

xi−1/2

∫ xi+1/2

ε
εβ(x− ε, ε)n(t, x− ε)n(t, ε)dxdε−

∫ xi+1/2

xi−1/2

x

∫ xmax

0
β(x, ε)n(t, x)n(t, ε)dεdx.

Simplifying first term and application of the mid point rule in the last two terms, we obtain

∂Gi(t)
∂t

=
i−1∑

k=1

∫ xk+1/2

xk−1/2

∫ xi+1/2

xi−1/2

εβ(x− ε, ε)n(t, x− ε)n(t, ε)dxdε

+xini∆xi

∫ xi+1/2

xi

β(x− xi, xi)n(t, x− xi)dx− xini∆xi

I∑

j=1

∫ xj+1/2

xj−1/2

β(xi, ε)n(t, ε)dε +O(∆x3).
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Further by applying the mid point rule in the first term entails that

∂Gi(t)
∂t

=
i−1∑

k=1

xknk∆xk

∫ xi+1/2

xi−1/2

β(x− xk, xk)n(t, x− xk)dx

+xini∆xi

∫ xi+1/2

xi

β(x− xi, xi)n(t, x− xi)dx− xini∆xi

I∑

j=1

∫ xj+1/2

xj−1/2

β(xi, ε)n(t, ε)dε +O(∆x3).

An appropriate substitution can be applied to get

∂Gi(t)
∂t

=
i−1∑

k=1

xknk∆xk

∫ xi+1/2−xk

xi−1/2−xk

β(ε, xk)n(t, ε)dε + xini∆xi

∫ xi+1/2−xi

0
β(ε, xi)n(t, ε)dε

− xini∆xi

I∑

j=1

∫

Λj

β(xi, ε)n(t, ε)dε +O(∆x3).

Denoting the integer αi,k by the index of a cell such that xi+1/2 − xk ∈ Λαi,k−1, we can rewrite
the above equation as

∂Gi(t)
∂t

=
i−1∑

k=1

xknk∆xk

∫ xαi−1,k−1/2

xi−1/2−xk

β(ε, xk)n(t, ε)dε−
i−1∑

k=1

xknk∆xk

∫ xαi,k−1/2

xi+1/2−xk

β(ε, xk)n(t, ε)dε

+
i−1∑

k=1

xknk∆xk

αi,k−1∑

j=αi−1,k

∫

Λj

β(ε, xk)n(t, ε)dε + xini∆xi

αi,i−1∑

j=1

∫

Λj

β(ε, xi)n(t, ε)dε

− xini∆xi

∫ xαi,i−1/2

xi+1/2−xi

β(ε, xi)n(t, ε)dε− xini∆xi

I∑

j=1

∫

Λj

β(xi, ε)n(t, ε)dε +O(∆x3).

It can be further simplified as

∂Gi(t)
∂t

=
i−1∑

k=1

xknk∆xk

[
(xn)αi−1,k−1

∫ xαi−1,k−1/2

xi−1/2−xk

β(ε, xk)
ε

dε− (xn)αi,k−1

∫ xαi,k−1/2

xi+1/2−xk

β(ε, xk)
ε

dε

]

+
i−1∑

k=1

xknk∆xk

αi,k−1∑

j=αi−1,k

xjnj

∫

Λj

β(ε, xk)
ε

dε + xini∆xi

αi,i−1∑

j=1

xjnj

∫

Λj

β(ε, xi)
ε

dε

− xini∆xi(xn)αi,i−1

∫ xαi,i−1/2

xi+1/2−xi

β(ε, xi)
ε

dε− xini∆xi

I∑

j=1

xjnj

∫

Λj

β(xi, ε)
ε

dε +O(∆x3).

Note that here we use (xn)j = xjnj . Combining the terms together we get

∂Gi(t)
∂t

=
i−1∑

k=1

xknk∆xk


(xn)αi−1,k−1

∫ xαi−1,k−1/2

xi−1/2−xk

β(ε, xk)
ε

dε +
αi,k−1∑

j=αi−1,k

xjnj

∫

Λj

β(ε, xk)
ε

dε




−
i∑

k=1

xknk∆xk(xn)αi,k−1

∫ xαi,k−1/2

xi+1/2−xk

β(ε, xk)
ε

dε− xini∆xi

I∑

j=αi,i

xjnj

∫

Λj

β(xi, ε)
ε

dε +O(∆x3).
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Again, some simplifications lead to

∆xi
∂xini(t)

∂t
= −

[
i∑

k=1

xknk∆xk

(
I∑

j=αi,k

xjnj

∫

Λj

β(xk, ε)
ε

dε + (xn)αi,k−1

∫ xαi,k−1/2

xi+1/2−xk

β(ε, xk)
ε

dε

)

−
i−1∑

k=1

xknk∆xk

(
I∑

j=αi−1,k

xjnj

∫

Λj

β(xk, ε)
ε

dε + (xn)αi−1,k−1

∫ xαi−1,k−1/2

xi−1/2−xk

β(ε, xk)
ε

dε

)]
+O(∆x3)

= −[I1 − I2] +O(∆x3). (A.2)

Here, it should be mentioned that the above formulation gives exactly the same aggregation
numerical flux using a finite volume scheme as proposed by Filbet and Laurençot [23]. However,
considering β is a two times smooth function in our work we can still apply the mid point
approximation on I1 to get

I1 =
i∑

k=1

xknk∆xk

(
I∑

j=αi,k

xjnj
β(xk, xj)

xj
∆xj + (xn)αi,k−1

∫ xαi,k−1/2

xi+1/2−xk

β(ε, xk)
ε

dε

)
+O(∆x2).

Taylor series expansion of the second term about the point xαi,k−1 gives

I1 =
i∑

k=1

xknk∆xk

(
I∑

j=αi,k

njβj,k∆xj + nαi,k−1βαi,k−1,k (xαi,k−1/2 − (xi+1/2 − xk))

)
+O(∆x2)

= Jagg
i+1/2 +O(∆x2).

The term I2 is same as I1 but we replace i by i − 1. Hence, from (A.2) the finite volume
formulation for aggregation can be written as

∆xi
∂xini(t)

∂t
= −

[
Jagg

i+1/2 − Jagg
i−1/2

]
,

where the numerical flux

Jagg
i+1/2 =

i∑

k=1

xknk∆xk

(
I∑

j=αi,k

njβjk∆xj + nαi,k−1βαi,k−1,k (xαi,k−1/2 − (xi+1/2 − xk))

)
. (A.3)

This is exactly the same finite volume discretization (3.16) for the aggregation obtained by app-
lying the finite volume schemes on modified form, i.e. mass conservation laws of the aggregation
population balance equations.

A.1.2 Finite volume scheme for breakage

The mass balance population balance equation for breakage is given by

∂xn(x, t)
∂t

= x

∫ xmax

x
b(x, ε)S(ε)n(t, ε) dε− xS(x)n(t, x).

Substituting x =
∫ x
0 εb(ε, x) dε, the above equation can be rewritten as

∂xn(x, t)
∂t

= x

∫ xmax

x
b(x, ε)S(ε)n(t, ε) dε− S(x)n(t, x)

∫ x

0
εb(ε, x) dε.
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Integration over a cell gives

∂Gi(t)
∂t

=
∫ xi+1/2

xi−1/2

x

∫ xmax

x
b(x, ε)S(ε)n(t, ε) dεdx−

∫ xi+1/2

xi−1/2

S(x)n(t, x)
∫ x

0
εb(ε, x) dεdx.

Changing the order of integration of the first term we get

∂Gi(t)
∂t

=
(∫ xi+1/2

xi−1/2

∫ ε

xi−1/2

+
∫ xmax

xi+1/2

∫ xi+1/2

xi−1/2

)
xb(x, ε)S(ε)n(t, ε)dx dε

−
∫ xi+1/2

xi−1/2

S(x)n(t, x)
∫ x

0
εb(ε, x) dεdx.

Further simplification gives

∂Gi(t)
∂t

= −
∫ xi+1/2

xi−1/2

S(x)n(t, x)
∫ xi−1/2

0
xb(x, ε)dx dε

+
I∑

k=i+1

∫ xk+1/2

xk−1/2

S(ε)n(t, ε)
∫ xi+1/2

0
xb(x, ε) dxdε−

I∑

k=i+1

∫ xk+1/2

xk−1/2

S(ε)n(t, ε)
∫ xi−1/2

0
xb(x, ε) dxdε.

Applying mid point rule in all terms, we obtain finally

∂Gi(t)
∂t

=− S(xi)ni∆xi

i−1∑

j=1

xjb(xj , xi)∆xj +
I∑

k=i+1

S(xk)nk∆xk

i∑

j=1

xjb(xj , xk)∆xj

−
I∑

k=i+1

S(xk)nk∆xk

i−1∑

j=1

xjb(xj , xk)∆xj +O(∆x2)

=Jbrk
i+1/2 − Jbrk

i−1/2 +O(∆x2).

Thus finite volume discretization for breakage is given as

∆xi
∂xini(t)

∂t
= −

[
Jbrk

i+1/2 − Jbrk
i−1/2

]
,

where

Jbrk
i+1/2 = −

I∑

k=i+1

S(xk)nk∆xk

i∑

j=1

xjb(xj , xk)∆xj . (A.4)

This is again the same formulation we obtained as in (3.13) using the finite volume schemes on
the mass conserving form of the breakage population balance equations.
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A.2 Bound on total number of particles

We give the proof of Lemmas 3.3.9 and 3.3.10 in Appendices A.2.1 and A.2.2, respectively.

A.2.1 Continuous aggregation and multiple breakage equation

Proof. [Lemma 3.3.9]
Integrating the equation (3.4) with respect to x from 0 to xmax gives

d

dt

∫ xmax

0
n(t, x)dx =

∫ xmax

0
−1

x

∂

∂x
(F agg + F brk)dx. (A.5)

We know from (3.5) that

∂

∂x
(F agg(t, x)) =

∂

∂x

∫ x

0

∫ xmax

x−u
uβ(u, v)n(t, u)n(t, v)dvdu.

Applying the Leibniz integration rule we obtain

∂

∂x
(F agg(t, x)) =

∫ x

0

∂

∂x

∫ xmax

x−u
uβ(u, v)n(t, u)n(t, v)dvdu +

∫ xmax

0
xβ(x, v)n(t, x)n(t, v)dv

= −
∫ x

0
uβ(u, x− u)n(t, u)n(t, x− u)du +

∫ xmax

0
xβ(x, v)n(t, x)n(t, v)dv. (A.6)

From (3.6) we have

∂

∂x
(F brk(t, x)) = − ∂

∂x

∫ xmax

x

∫ x

0
ub(u, v)S(v)n(t, v)dudv.

Again with the Leibniz integration rule we determine

∂

∂x
(F brk(t, x)) = −

∫ xmax

x
xb(x, v)S(v)n(t, v)dv +

∫ x

0
ub(u, x)S(x)n(t, x)du (A.7)

Inserting (A.6) and (A.7) into (A.5) to get

dN(t)
dt

=
∫ xmax

0

∫ x

0

u

x
β(u, x− u)n(t, u)n(t, x− u)dudx−

∫ xmax

0

∫ xmax

0
β(x, v)n(t, x)n(t, v)dvdx

+
∫ xmax

0

∫ xmax

x
b(x, v)S(v)n(t, v)dvdx−

∫ xmax

0

∫ x

0

u

x
b(u, x)S(x)n(t, x)dudx. (A.8)

Changing the order of integration for the first and third integrals on the right-hand side of (A.8),
we obtain

dN(t)
dt

=
∫ xmax

0

∫ xmax

u

u

x
β(u, x− u)n(t, u)n(t, x− u)dxdu−

∫ xmax

0

∫ xmax

0
β(x, v)n(t, x)n(t, v)dvdx

+
∫ xmax

0

∫ v

0
b(x, v)S(v)n(t, v)dxdv −

∫ xmax

0

∫ x

0

u

x
b(u, x)S(x)n(t, x)dudx. (A.9)
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Since x ≥ u for the first integral, this implies that u/x ≤ 1. Substituting x = z + u such that
dx = dz, we estimate this equation as

dN(t)
dt

≤
∫ xmax

0

∫ xmax−u

0
β(u, z)n(t, u)n(t, z)dzdu−

∫ xmax

0

∫ xmax

0
β(x, v)n(t, x)n(t, v)dvdx

+
∫ xmax

0
S(v)n(t, v)

∫ v

0
b(x, v)dxdv −

∫ xmax

0

S(x)n(t, x)
x

∫ x

0
ub(u, x)dudx.

We observe that the first two integrals combined give a negative value. Using the mass conserving
property (1.9) of the breakage function in the last integral, we obtain the estimate

dN(t)
dt

≤
∫ xmax

0
S(v)n(t, v)

∫ v

0
b(x, v)dxdv −

∫ xmax

0
S(x)n(t, x)dx

≤
∫ xmax

0
n(t, v)

∫ v

0
S(v)b(x, v)dxdv.

From the bounds (3.9) we know that bS ≤ Q1. It leads to

dN(t)
dt

≤ Q1

∫ xmax

0
v n(t, v)dv.

Finally, estimating v ≤ xmax, we get

dN(t)
dt

≤ Q1xmaxN(t).

Therefore, the total number of particles is bounded and the bound is given as

N(t) ≤ N(0) exp(xmaxQ1t) ≤ N(0) exp(xmaxQ1T ) = CT,xmax .

A.2.2 Discrete aggregation and multiple breakage equation

Proof. [Lemma 3.3.10]
Multiplying the equation (3.11) by ∆xi/xi and summing with respect to i gives

d(
∑I

i=1 n̂i(t)∆xi)
dt

= −
I∑

i=1

1
xi

[
Jagg

i+1/2 − Jagg
i−1/2 + Jbrk

i+1/2 − Jbrk
i−1/2

]
. (A.10)

We write out the summation over i of the aggregation fluxes Jagg
i±1/2 to get

−
I∑

i=1

1
xi

[
Jagg

i+1/2 − Jagg
i−1/2

]
= −

[
1
x1

(Jagg
1+1/2 − Jagg

1−1/2) +
1
x2

(Jagg
2+1/2 − Jagg

2−1/2) + · · ·

+
1
xI

(Jagg
I+1/2 − Jagg

I−1/2)
]

= −
[
− 1

x1
Jagg

1/2 + Jagg
1+1/2

(
1
x1
− 1

x2

)
+ · · ·+ Jagg

I−1/2

(
1

xI−1
− 1

xI

)
+

1
xI

Jagg
I+1/2

]
.
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For the breakage fluxes Jbrk
i±1/2 in (A.10) we substitute the definition (3.13). Introducing the

notations N̂i(t) = n̂i(t)∆xi and N̂(t) =
∑I

i=1 N̂i(t), we obtain

dN̂(t)
dt

=
1
x1

Jagg
1/2 −

I−1∑

i=1

Jagg
i+1/2

(
1
xi
− 1

xi+1

)
− 1

xI
Jagg

I+1/2

+
I∑

i=1

I∑

k=i+1

N̂k(t)S(xk)b(xi, xk)∆xi −
I∑

i=1

N̂i(t)S(xi)
i−1∑

j=1

xj

xi
b(xj , xi)∆xj .

Due to positivity of Jagg
i+1/2 for all i and Jagg

1/2 = 0, we estimate

dN̂(t)
dt

≤
I∑

i=1

I∑

k=i+1

N̂k(t)S(xk)b(xi, xk)∆xi −
I∑

i=1

N̂i(t)S(xi)
i−1∑

j=1

xj

xi
b(xj , xi)∆xj .

Changing the order of summation for the first term and the summation indices in the second
term yield

dN̂(t)
dt

≤
I∑

k=1

k−1∑

i=1

N̂k(t)S(xk)b(xi, xk)∆xi −
I∑

k=1

N̂k(t)S(xk)
k−1∑

i=1

xi

xk
b(xi, xk)∆xi

=
I∑

k=1

N̂k(t)S(xk)

[
k−1∑

i=1

b(xi, xk)∆xi(1− xi/xk)

]
.

Since i < k implies that xi < xk we have 1− xi/xk < 1. Similar to the previous lemma we have
bS ≤ Q1. This implies that

dN̂(t)
dt

≤xmaxQ1N̂(t).

Therefore, we obtain the following bound on the total number of particles by using the finite
volume scheme as

N̂(t) ≤ N̂(0) exp(xmaxQ1t) ≤ N̂(0) exp(xmaxQ1T ) = CT,xmax ,

which is the same bound as explained in the previous lemma, provided N̂(0) = N(0).
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Moment preservation

B.1 Analytical solutions of moments for coupled processes

In this section, we determine the exact solutions for the zeroth and the first moments for various
coupled processes by solving the population balance equations (4.1).

Combined aggregation and breakage

Multiplying the aggregation, breakage (G,Bsrc = 0) equation (4.1) by xr and integrating from
0 to ∞, we obtain the following differential equation for rth moment as

dµr(t)
dt

=
∫ ∞

0

∫ ∞

0

[
1
2
(x + y)r − xr

]
β(x, y)f(t, x)f(t, y)dxdy

+
∫ ∞

0

[∫ y

0
xrb(x, y)dx− yr

]
S(y)f(t, y)dy.

It is easy to show that dµ1(t)/dt = 0 provided
∫ ∞

0

∫ ∞

0
xβ(x, y)f(t, x)f(t, y)dxdy < ∞ and

∫ ∞

0
yS(y)f(t, y)dy < ∞.

Now we derive ordinary differential equation for zeroth moment

dµ0(t)
dt

=− 1
2

∫ ∞

0

∫ ∞

0
β(x, y)f(t, x)f(t, y)dxdy +

∫ ∞

0

[
p(y)− 1

]
S(y)f(t, y)dy.

Here the function p(y) denotes the number of fragmentation per breakage event. It is given by

p(y) =
∫ y

0
b(x, y)dx.

If we assume that p(y) is constant, the preceding equation can be further simplified as

dµ0(t)
dt

=− 1
2

∫ ∞

0

∫ ∞

0
β(x, y)f(t, x)f(t, y)dxdy +

(
p− 1

) ∫ ∞

0
S(y)f(t, y)dy.

Table B.1 summarizes the analytical results for the zeroth moment using several combinations
of kernels with β0 and S0 are positive constants.
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Table B.1: Analytical solutions for zeroth moment

Case β(x, y) S(x) Analytical solution µ0(t)

1 β0 S0
2C1µ0(0) exp(β0C1t)

(2C1−µ0(0))+µ0(0) exp(β0C1t)

2 β0 S0x µ1

√
C1

1+C2 exp(−β0µ1
√

C1t)

1−C2 exp(−β0µ1
√

C1t)

3 β0xy S0
µ2

1
2C1

+
(
µ0(0)− µ2

1
2C1

)
exp

(
β0C1t

)

4 β0xy S0x µ0(0) +
(−1

2β0µ
2
1 + β0C1µ1

)
t

5 β0(x + y) S0 µ0(0) exp
(− β0µ1t + β0C1t

)

6 β0(x + y) S0x C1 +
(
µ0(0)− C1

)
exp(−β0µ1t)

C1 = ((p− 1)S0)/β0, C2 =
(µ0(0)−µ1

√
C1)

(µ0(0)−µ1
√

C1)

Simultaneous breakage and growth

Similar to the previous case, multiplying the breakage, growth (β,Bsrc = 0) PBEs (4.1) by 1 and
x, integrating from 0 to ∞ and by doing simple calculations, we obtain the following expressions
in Table B.2 for the zeroth and the first moments, respectively. The same breakage function
(4.75) has been used. The parameters S0 and G0 are positive constants.

Table B.2: Analytical solutions for zeroth and first moments

Case S(x) G(x) Analytical solution µ0(t) Analytical solution µ1(t)

1 S0 G0x µ0(0) exp(S0(p− 1)t) µ1(0) exp(G0t)

2 S0x G0x µ0(0) + (p−1)S0µ1(0)
G0

(exp(G0t− 1)) µ1(0) exp(G0t)

S0 > 0,G0 > 0

Combined aggregation, breakage and growth

By multiplying the general aggregation, breakage and growth (Bsrc = 0) PBEs (4.1) by 1 and x,
integrating from 0 to ∞ and some mathematical computation leads to the analytical solutions
in Table B.3 for the zeroth and the first moments, respectively. The breakage function (4.75)
and the sum aggregation kernel, i.e., β(x, y) = β0(x + y) have been considered. As discussed
above β0, S0 and G0 are positive constants.
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B.1. ANALYTICAL SOLUTIONS OF MOMENTS FOR COUPLED
PROCESSES

Table B.3: Analytical solutions for zeroth and first moments

Case S(x) G(x) Analytical solution µ0(t) Analytical solution µ1(t)

1 S0 G0x µ0(0) exp
(

β0µ1(0)
G0

(1− exp(G0t))
)

exp(Ct) µ1(0) exp(G0t)

2 S0x G0x
1
β0

(
C − (C − µ0(0)β0) exp

(
β0µ1(0)

G0
(1− exp(G0t))

))
µ1(0) exp(G0t)

C = (p− 1)S0,β0 > 0, S0 > 0, G0 > 0

Pure source

In case of an exponential source term, i.e., Bsrc(t, x) = exp(−mx) for m is given positive constant,
we solve the following PBEs

∂f(t, x)
∂t

= Bsrc(t, x)

for the first two moments and the number density. The analytical solutions are as follows.

µ0(t) = 1/m, µ1(t) = 1/m2, f(t, x) = f(0, x) + exp(−mx)t.

Simultaneous breakage, growth and source

Proceeding as before, the analytical solutions for the first two moments are provided in Table
B.4 using the linear selection rate together with the breakage function (4.75) and for linear
growth rate. The negative exponential function has been taken for the source terms.

Table B.4: Analytical solutions for zeroth and first moments

Case S(x) G(x) Analytical solution µ0(t) Analytical solution µ1(t)

1 S0x G0x µ0(0) + t + (p− 1)S0(A exp(G0t)−A− t/G0) AG0 exp(G0t)− 1/G0

A = (1 + µ1(0)G0)/G2
0, S0 > 0, G0 > 0

Coupled aggregation, breakage, growth and source

Analogously to the previous case if we add the aggregation terms too and take β(x, y) = β0(xy),
the analytical solutions for the zeroth and first moments considering all the four combined
processes are given by, respectively

µ0(t) = µ0(0) + t +
β0G

2
0A

2

4
(1− exp(2G0t))− β0

(
A−A exp(G0t) + t/(2G2

0)
)

+ (p− 1)S0G0

(
A exp(G0t)−A− t/G2

0

)

and

µ1(t) = AG0 exp(G0t)− 1/G0.
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B.2 Reformulation of the CAT into conservative formulations

Substituting the number density n(t, x) ≈ ∑I
k=1 nk(t)∆xkδ(x − xk) we know from (4.46) that

the cell average technique for aggregation, breakage and source is given by

dni∆xi

dt
= BCA

i −DCA
i , i = 1, 2, ..., I.

Replacing BCA
i from (4.47) gives

dni∆xi

dt
=Bi−1λ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Biλ

+
i (v̄i)H(v̄i − xi)

+ Biλ
−
i (v̄i)H(xi − v̄i) + Bi+1λ

+
i (v̄i+1)H(xi+1 − v̄i+1)−DCA

i , (B.1)

where Bi, v̄i and DCA
i are defined according to the problem under consideration. From (4.48),

we know

xiλ
+
i (v̄i) + xi+1λ

−
i+1(v̄i) = v̄i, xiλ

−
i (v̄i) + xi−1λ

+
i−1(v̄i) = v̄i.

By using the notation Ni = ni∆xi and multiplying the equation (B.1) by xi we get

xidNi

dt
=Bi−1xiλ

−
i (v̄i−1)H(v̄i−1 − xi−1) + Bixiλ

+
i (v̄i)H(v̄i − xi)

+ Bixiλ
−
i (v̄i)H(xi − v̄i) + Bi+1xiλ

+
i (v̄i+1)H(xi+1 − v̄i+1)− xiD

CA
i . (B.2)

Replacing xiλ
±
i (v̄i) from the equation (B.2)

xidNi

dt
= Bi−1xiλ

−
i (v̄i−1)H(v̄i−1 − xi−1)−Bixi+1λ

−
i+1(v̄i)H(v̄i − xi) + v̄iBi

[
H(v̄i − xi)

+ H(xi − v̄i)
]−Bixi−1λ

+
i−1(v̄i)H(xi − v̄i) + Bi+1xiλ

+
i (v̄i+1)H(xi+1 − v̄i+1)− xiD

CA
i . (B.3)

By the definition of Heaviside function, i.e.

[H(v̄i − xi) + H(xi − v̄i)] = 1, (B.4)

the equation (B.3) becomes

xidNi

dt
=Bi−1xiλ

−
i (v̄i−1)H(v̄i−1 − xi−1)−Bixi+1λ

−
i+1(v̄i)H(v̄i − xi) + v̄iBi

−Bixi−1λ
+
i−1(v̄i)H(xi − v̄i) + Bi+1xiλ

+
i (v̄i+1)H(xi+1 − v̄i+1)− xiD

CA
i . (B.5)

B.2.1 Conservative formulation for breakage

Replacing Bi by Bbrk
i , v̄i by v̄brk

i and substitutions of v̄brk
i Bbrk

i , DCA
i from (4.54) and (4.55),

respectively in the equation (B.5) yield

xidNi

dt
=Bbrk

i+1xiλ
+
i (v̄brk

i+1)H(xi+1 − v̄brk
i+1)−Bbrk

i xi+1λ
−
i+1(v̄

brk
i )H(v̄brk

i − xi)

−Bbrk
i xi−1λ

+
i−1(v̄

brk
i )H(xi − v̄brk

i ) + Bbrk
i−1xiλ

−
i (v̄brk

i−1)H(v̄brk
i−1 − xi−1)

+
∑

k≥i

NkSk

∫ pi
k

xi−1/2

xb(t, x, xk) dx− SiNi

∫ xi

0
xb(x, xi)dx.
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Further simplifications give the following form

xidNi

dt
=Bbrk

i+1xiλ
+
i (v̄brk

i+1)H(xi+1 − v̄brk
i+1)−Bbrk

i xi+1λ
−
i+1(v̄

brk
i )H(v̄brk

i − xi)

−Bbrk
i xi−1λ

+
i−1(v̄

brk
i )H(xi − v̄brk

i ) + Bbrk
i−1xiλ

−
i (v̄brk

i−1)H(v̄brk
i−1 − xi−1)

+
I∑

k=i+1

SkNk

∫ xi+1/2

0
xb(x, xk)dx−

I∑

k=i

SkNk

∫ xi−1/2

0
xb(x, xk)dx.

In the flux form we can now write the conservative formulation for breakage as

xidni

dt
= − 1

∆xi

(
Jbrk,CA

i+1/2 − Jbrk,CA
i−1/2

)
,

where the flux is given as

Jbrk,CA
i+1/2 = −

(
I∑

k=i+1

Sknk∆xk

∫ xi+1/2

0
xb(x, xk)dx

+ Bbrk
i+1xiλ

+
i (v̄brk

i+1)H(xi+1 − v̄brk
i+1)−Bbrk

i xi+1λ
−
i+1(v̄

brk
i )H(v̄brk

i − xi)

)
.

B.2.2 Conservative formulation for aggregation

Substituting DCA
i from (4.53) and replacing Bi by Bagg

i , v̄i by v̄agg
i in the equation (B.5), we get

the following form of the cell average technique for aggregation

xidNi

dt
= Bagg

i−1xiλ
−
i (v̄agg

i−1)H(v̄agg
i−1 − xi−1)−Bagg

i xi+1λ
−
i+1(v̄

agg
i )H(v̄agg

i − xi) + v̄agg
i Bagg

i

−Bagg
i xi−1λ

+
i−1(v̄

agg
i )H(xi − v̄agg

i ) + Bagg
i+1xiλ

+
i (v̄agg

i+1)H(xi+1 − v̄agg
i+1)−Nixi

I∑

k=1

β(xi, xk)Nk.

(B.6)

From the equation (4.52), the third term on the right-hand side becomes

v̄agg
i Bagg

i =
j≥k∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

(
1− 1

2
δj,k

)
β(xj , xk)NjNk(xj + xk)

=
∑

j,k
xi−1/2≤(xj+xk)<xi+1/2

β(xj , xk)NjNkxj

=
i−1∑

j=1

Njxj

∑

xi−1/2≤(xj+xk)<xi+1/2

β(xk, xj)Nk + Nixi

∑

(xi+xk)<xi+1/2

β(xk, xi)Nk.
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By using the indices `i,j from (4.60), the above equation can be formulated as

v̄agg
i Bagg

i =
i−1∑

j=1

Njxj

`i,j+
1
2
(−1+ri,j)∑

k=`i−1,j+
1
2
(1+ri−1,j)

β(xk, xj)Nk + Nixi

`i,i+
1
2
(−1+ri,i)∑

k=1

β(xk, xi)Nk

=
i−1∑

j=1

Njxj

I∑

k=`i−1,j+
1
2
(1+ri−1,j)

β(xk, xj)Nk −
i−1∑

j=1

Njxj

I∑

k=`i,j+
1
2
(1+ri,j)

β(xk, xj)Nk

+ Nixi

`i,i+
1
2
(−1+ri,i)∑

k=1

β(xk, xi)Nk.

Substituting this in the equation (B.6) we get

xidNi

dt
= Bagg

i−1xiλ
−
i (v̄agg

i−1)H(v̄agg
i−1 − xi−1)−Bagg

i xi+1λ
−
i+1(v̄

agg
i )H(v̄agg

i − xi)−Bagg
i xi−1·

λ+
i−1(v̄

agg
i )H(xi − v̄agg

i ) + Bagg
i+1xiλ

+
i (v̄agg

i+1)H(xi+1 − v̄agg
i+1)−Nixi

I∑

k=`i,i+
1
2
(1+ri,i)

β(xk, xi)Nk

+
i−1∑

j=1

Njxj

I∑

k=`i−1,j+
1
2
(1+ri−1,j)

β(xk, xj)Nk −
i−1∑

j=1

Njxj

I∑

k=`i,j+
1
2
(1+ri,j)

β(xk, xj)Nk.

Finally, we obtain

xidNi

dt
=−




i∑

j=1

I∑

k=`i,j+
1
2
(1+ri,j)

−
i−1∑

j=1

I∑

k=`i−1,j+
1
2
(1+ri−1,j)


β(xk, xj)xjNjNk

−Bagg
i xi+1λ

−
i+1(v̄

agg
i )H(v̄agg

i − xi) + Bagg
i+1xiλ

+
i (v̄agg

i+1)H(xi+1 − v̄agg
i+1)

+ Bagg
i−1xiλ

−
i (v̄agg

i−1)H(v̄agg
i−1 − xi−1)−Bagg

i xi−1λ
+
i−1(v̄

agg
i )H(xi − v̄agg

i ).

In the flux form we can write
xidni

dt
= − 1

∆xi

(
Jagg,CA

i+1/2 − Jagg,CA
i−1/2

)
,

where

Jagg,CA
i+1/2 =

i∑

j=1

I∑

k=`i,j+
1
2
(1+ri,j)

β(xk, xj)xjnjnk∆xj∆xk+Bagg
i xi+1λ

−
i+1(v̄

agg
i )H(v̄agg

i − xi)

−Bagg
i+1xiλ

+
i (v̄agg

i+1)H(xi+1 − v̄agg
i+1).

B.2.3 Conservative formulation for source terms

Since there is no death term for source, therefore replacing Bi by Bsrc
i and v̄i by v̄src

i in (B.5)
leads to the following equation for source terms by using the CAT

xidNi

dt
=Bsrc

i−1xiλ
−
i (v̄src

i−1)H(v̄src
i−1 − xi−1)−Bsrc

i xi+1λ
−
i+1(v̄

src
i )H(v̄src

i − xi) + v̄src
i Bsrc

i

−Bsrc
i xi−1λ

+
i−1(v̄

src
i )H(xi − v̄src

i ) + Bsrc
i+1xiλ

+
i (v̄src

i+1)H(xi+1 − v̄src
i+1). (B.7)
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In the case of sources Bsrc(t, x) > 0 means that we have a birth term and a negative source
Bsrc(t, x) < 0 is a sink or death term. Substituting the value of v̄src

i Bsrc
i from (4.57), we have

xidNi

dt
=Bsrc

i−1xiλ
−
i (v̄src

i−1)H(v̄src
i−1 − xi−1)−Bsrc

i xi+1λ
−
i+1(v̄

src
i )H(v̄src

i − xi) +
∫ xi+1/2

xi−1/2

xBsrc(t, x)dx

−Bsrc
i xi−1λ

+
i−1(v̄

src
i )H(xi − v̄src

i ) + Bsrc
i+1xiλ

+
i (v̄src

i+1)H(xi+1 − v̄src
i+1).

Furthermore, we can now write the above equation in the flux form as

xidni

dt
= − 1

∆xi

(
J src,CA

i+1/2 − J src,CA
i−1/2

)
,

for the numerical flux given as

J src,CA
i+1/2 = Bsrc

i xi+1λ
−
i+1(v̄

src
i )H(v̄src

i − xi)−Bsrc
i+1xiλ

+
i (v̄src

i+1)H(xi+1 − v̄src
i+1)−

∫ xi+1/2

0
xBsrc(t, x)dx.

B.3 Reformulation of the FP method into conservative formu-
lations

In the following two subsections we rewrite the FP formulations, given by Kumar and Ramkr-
ishna [53], for the aggregation and breakage equations into the mass conservation laws.

B.3.1 Conservative formulation for breakage

The fixed pivot technique for pure breakage is defined as

dNi

dt
=

I∑

k=i

SkNk

∫ xi+1

xi

λ+
i (x)b(x, xk)dx +

I∑

k=i

SkNk

∫ xi

xi−1

λ−i (x)b(x, xk)dx− SiNi. (B.8)

where the function λ±i (x) are used for the redistribution of particles and is given as

λ±i (x) =
x− xi±1

xi − xi±1
. (B.9)

Multiplying the equation (B.8) by xi gives

dxiNi

dt
=

I∑

k=i

SkNk

∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx +

I∑

k=i

SkNk

∫ xi

xi−1

xiλ
−
i (x)b(x, xk)dx− SiNixi.

(B.10)

Note that the first term in the first summation on the right-hand side is zero since b(x, xi) is
zero in ]xi, xi+1]. Furthermore, it can be seen that

xiλ
−
i (x) + xi−1λ

+
i−1(x) = x. (B.11)
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Substituting the value of λ−i (x) in the equation (B.10) we obtain

dxiNi

dt
=

I∑

k=i+1

SkNk

∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx +

I∑

k=i

SkNk

∫ xi

xi−1

(
x− xi−1λ

+
i−1(x)

)
b(x, xk)dx

− SiNixi.

Using the property of the breakage function
∫ xi

0 xb(x, xi)dx = xi, the above equation can be
rewritten as

dxiNi

dt
=

I∑

k=i+1

SkNk

∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx−

I∑

k=i

SkNk

∫ xi

xi−1

xi−1λ
+
i−1(x)b(x, xk)dx

+
I∑

k=i

SkNk

∫ xi

xi−1

xb(x, xk)dx− SiNi

∫ xi

0
xb(x, xi)dx.

Again after some rearrangements of the terms we get

dxiNi

dt
=

I∑

k=i+1

SkNk

∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx−

I∑

k=i

SkNk

∫ xi

xi−1

xi−1λ
+
i−1(x)b(x, xk)dx

+
I∑

k=i

SkNk

∫ xi

0
xb(x, xk)dx−

I∑

k=i

SkNk

∫ xi−1

0
xb(x, xk)dx− SiNi

∫ xi

0
xb(x, xi)dx.

The last term can be combined with the third term on the right-hand side to give

dxiNi

dt
=

I∑

k=i+1

SkNk

∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx−

I∑

k=i

SkNk

∫ xi

xi−1

xi−1λ
+
i−1(x)b(x, xk)dx

+
I∑

k=i+1

SkNk

∫ xi

0
xb(x, xk)dx−

I∑

k=i

SkNk

∫ xi−1

0
xb(x, xk)dx.

Finally by using Ni = ni∆xi, we have

dxini

dt
=

1
∆xi

[ I∑

k=i+1

Sknk∆xk

(∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx +

∫ xi

0
xb(x, xk)dx

)

−
I∑

k=i

Sknk∆xk

(∫ xi

xi−1

xi−1λ
+
i−1(x)b(x, xk)dx +

∫ xi−1

0
xb(x, xk)dx

)]
.

Hence, in the flux form we can write as

dxini

dt
= − 1

∆xi

[
Jbrk,FP

i+1/2 − Jbrk,FP
i−1/2

]
,

where the numerical flux

Jbrk,FP
i+1/2 = −

I∑

k=i+1

Sknk∆xk

(∫ xi+1

xi

xiλ
+
i (x)b(x, xk)dx +

∫ xi

0
xb(x, xk)dx

)
.
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B.3.2 Conservative formulation for aggregation

Again from Kumar and Ramkrishna [53], the FP method for pure aggregation is defined as

dNi

dt
=

j≥k∑

j,k
xi−1≤(xj+xk)<xi

(
1− 1

2
δj,k

)
λ−i (xj + xk)β(xj , xk)NjNk

+
j≥k∑

j,k
xi≤(xj+xk)<xi+1

(
1− 1

2
δj,k

)
λ+

i (xj + xk)β(xj , xk)NjNk −Ni

I∑

k=1

β(xi, xk)Nk. (B.12)

Similar to the case of breakage, multiplying the above equation by xi and using the relation
xi+1λ

−
i+1(x) + xiλ

+
i (x) = x, we determine

dxiNi

dt
=

j≥k∑

j,k
xi−1≤(xj+xk)<xi

(
1− 1

2
δj,k

)
xiλ

−
i (xj + xk)β(xj , xk)NjNk −Nixi

I∑

k=1

β(xi, xk)Nk

−
j≥k∑

j,k
xi≤(xj+xk)<xi+1

(
1− 1

2
δj,k

)
xi+1λ

−
i+1(xj + xk)β(xj , xk)NjNk

+
j≥k∑

j,k
xi≤(xj+xk)<xi+1

(
1− 1

2
δj,k

)
(xj + xk)β(xj , xk)NjNk

︸ ︷︷ ︸
S4

. (B.13)

The last term (S4) on the right-hand side of the equation (B.13) is formulated by using the
index γi,j from (4.63) and the function ri,j from (4.64) as

S4 =
i∑

j=1

γi,j+
1
2
(−1+ri,j)∑

k=γi−1,j+
1
2
(1+ri−1,j)

xjβ(xj , xk)NjNk

=
i−1∑

j=1

γi,j+
1
2
(−1+ri,j)∑

k=γi−1,j+
1
2
(1+ri−1,j)

xjβ(xj , xk)NjNk +
γi,i+

1
2
(−1+ri,i)∑

k=γi−1,i+
1
2
(1+ri−1,i)

xiβ(xi, xk)NiNk.

Further simplification gives

S4 =
i−1∑

j=1

[ I∑

k=γi−1,j+
1
2
(1+ri−1,j)

−
I∑

k=γi,j+
1
2
(1+ri,j)

]
xjβ(xj , xk)NjNk

+
[ I∑

k=γi−1,i+
1
2
(1+ri−1,i)

−
I∑

k=γi,i+
1
2
(1+ri,i)

]
xiβ(xi, xk)NiNk.
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Hence, we obtain

S4 =
[
−

i∑

j=1

I∑

k=γi,j+
1
2
(1+ri,j)

+
i−1∑

j=1

I∑

k=γi−1,j+
1
2
(1+ri−1,j)

]
xjβ(xj , xk)NjNk +

I∑

k=1

xiβ(xi, xk)NiNk.

Substituting the value of S4 into the equation (B.13), we evaluate

dxiNi

dt
=

j≥k∑

j,k
xi−1≤(xj+xk)<xi

(
1− 1

2
δj,k

)
xiλ

−
i (xj + xk)β(xj , xk)NjNk

−
j≥k∑

j,k
xi≤(xj+xk)<xi+1

(
1− 1

2
δj,k

)
xi+1λ

−
i+1(xj + xk)β(xj , xk)NjNk

+
[ i−1∑

j=1

I∑

k=γi−1,j+
1
2
(1+ri−1,j)

−
i∑

j=1

I∑

k=γi,j+
1
2
(1+ri,j)

]
xjβ(xj , xk)NjNk.

Finally in the flux form we obtain

xidni

dt
= − 1

∆xi

[
Jagg,FP

i+1/2 − Jagg,FP
i−1/2

]
,

where the flux is defined as

Jagg,FP
i+1/2 =

i∑

j=1

I∑

k=γi,j+
1
2
(1+ri,j)

xjβ(xj , xk)njnk∆xj∆xk

+
j≥k∑

j,k
xi≤(xj+xk)<xi+1

(
1− 1

2
δj,k

)
xi+1λ

−
i+1(xj + xk)β(xj , xk)njnk∆xj∆xk.
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B.4 Conditions for the moment preservation

In this section, we derive the conditions for the preservation of the zeroth and the first moment
for aggregation and breakage processes separately. It should be mentioned that these conditions
are obtained by using the truncated PBEs.

Aggregation

Multiplying the equation (4.1) by xp and integrate over 0 to xI+1/2 yields the following moment
equation of the truncated aggregation equation (G = S = Bsrc = 0)

∫ xI+1/2

0
xp dn(t, x)

dt
dx =

1
2

∫ xI+1/2

0

∫ x

0
xpβ(x− u, u)n(t, x− u)n(t, u)dudx

−
∫ xI+1/2

0

∫ xI+1/2

0
xpβ(x, u)n(t, x)n(t, u)dudx. (B.14)

Changing the order of integration for the first term in the right-hand side, equation (B.14) can
be further simplified as

d

dt

∫ xI+1/2

0
xpn(t, x)dx =

1
2

∫ xI+1/2

0

∫ xI+1/2−u

0
(x + u)pβ(x, u)n(t, x)n(t, u)dxdu

−
∫ xI+1/2

0

∫ xI+1/2

0
xpβ(x, u)n(t, x)n(t, u)dxdu.

Taking p = 0 and p = 1 in the above equation gives the following form for the zeroth and the
first moment, respectively

d

dt

∫ xI+1/2

0
n(t, x)dx = −1

2

∫ xI+1/2

0

∫ xI+1/2−u

0
β(x, u)n(t, x)n(t, u)dxdu

−
∫ xI+1/2

0

∫ xI+1/2

xI+1/2−u
β(x, u)n(t, x)n(t, u)dxdu, (B.15)

and

d

dt

∫ xI+1/2

0
xn(t, x)dx = −

∫ xI+1/2

0

∫ xI+1/2

xI+1/2−u
xβ(x, u)n(t, x)n(t, u)dxdu. (B.16)

Substituting the number density as point masses, i.e. n(t, x) ≈ ∑I
j=1 nj∆xjδ(x − xj), in the

right-hand side integrals of the equations (B.15) and (B.16), we get

dµ̂0

dt
= −1

2

∑

j,k
(xj+xk)<xI+1/2

β(xj , xk)njnk∆xj∆xk −
∑

j,k
xI+1/2≤(xj+xk)

β(xj , xk)njnk∆xj∆xk,

and

dµ̂1

dt
= −

∑

j,k
xI+1/2≤(xj+xk)

xjβ(xj , xk)njnk∆xj∆xk.

125



APPENDIX B. MOMENT PRESERVATION

By using the compact support on the kernel β from (4.9) leads to the following conditions for
the first two moments preservation

dµ̂0

dt
= −

j≥k∑

j,k
(xj+xk)<xI+1/2

(1− 1
2
δjk)β(xj , xk)njnk∆xj∆xk, (B.17)

whereas

dµ̂1

dt
= 0.

Breakage

Similarly, multiplying the equation (4.1) by xp and integrating over 0 to xI+1/2 for breakage
(β = G = Bsrc = 0) we get the following moment equation
∫ xI+1/2

0
xp dn(t, x)

dt
dx =

∫ xI+1/2

0

∫ xI+1/2

x
xpb(x, u)S(u)n(t, u)dudx−

∫ xI+1/2

0
xpS(x)n(t, x)dx.

The preceding equation can be further simplified by changing the order of summation in the
first term on the right-hand side as

∫ xI+1/2

0
xp dn(t, x)

dt
dx =

∫ xI+1/2

0
S(u)n(t, u)

∫ u

0
xpb(x, u)dxdu−

∫ xI+1/2

0
xpS(x)n(t, x)dx.

Taking p = 0, 1 and substituting the number density same as taken in the previous case leads to

dµ̂0

dt
=

I∑

i

S(xi)ni∆xi

(∫ xi

0
b(x, xi)dx− 1

)
,

and

dµ̂1

dt
= 0

for the preservation of the zeroth and the first moment, respectively.
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