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1 Introduction

The question of a sustainable use of fossil fuels becomes nowadays more and more impor-
tant due to the shrinking natural resources. The modern reactor chemistry takes advantage
of using catalysts in order to increase yields, selectivity of products or to achieve the better
control over reaction processes. In the last decade computational fluid dynamics turned
out to be a convenient method for development of more efficient chemical reactors and for
prediction of their behaviour. We present in this work a mathematical model for flows
in packed bed membrane reactors and a simple model equation of convection-diffusion-
reaction type.

The aim of this work is to elaborate robust numerical schemes which can be applied to
subproblems resulting from models of chemical reactors, like flow or transport equations
of diffusion-convection-reaction type. Moreover, we provide rigorous numerical analysis of
our new schemes and test them by solving academic problems as well as by simulating
flow behaviour in the packed bed reactor. A good source for readers more interested in
questions of reactor modelling and in new trends in the membrane reactor engineering is a
practical approach book [71].

The underlying work is devoted to mathematicians interested in scientific computing
and finite element analysis of problems related to mass or heat transfer in chemical re-
actors as well as to engineers dealing with simulations of chemical reactors. The novel
methods presented in this work are addressed also for graduates being engaged in scientific
computing.

All of the chapters which deal with the numerical analysis are complemented by com-
putational results. Our new schemes have been successfully implemented into the object
oriented in-house finite element package MooNMD, see [46], and the computations have
been performed on an ordinary Linux workstation.

Notation Throughout the work we use the following notations for function spaces. For
m ∈ N0 and bounded subdomain G ⊂ Ω let Hm(G) be usual Sobolev space equipped with
norm ‖·‖m,G and seminorm | · |m,G. We denote by D(G) the space of C∞(G) functions with
compact support contained in G. Furthermore, Hm

0 (G) stands for the closure of D(G) with
respect to the norm ‖ · ‖m,G. The counterparts spaces consisting of vector valued functions
will be denoted by bold faced symbols like Hm(G) := [Hm(G)]n or D(G) := [D(G)]n.
The L2 inner product over G ⊂ Ω and ∂G ⊂ ∂Ω will be denoted by (·, ·)G and 〈·, ·〉∂G,
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respectively. In the case G = Ω the domain index will be omitted. Throughout the paper
we denote by C the generic constant which is usually independent of the mesh and model
parameters, otherwise dependences will be indicated. �

The following two examples are intended as small appetisers illustrating the problem of
ensuring stability and accuracy of numerical solutions.

1.1 Why to stabilise Galerkin scheme?

Let us consider the two-point boundary value problem for singularly perturbed one-dimensional
convection-diffusion equation which has been discussed in [68]

−εu′′ + bu′ = 0 in Ω = (0, 1),

u(0) = 0 ,

u(1) = 1 ,

 (1.1)

whereby the perturbation parameter is ε > 0 and the convection field b > 0 is constant.
The exact solution of (1.1)

u(x) =
ebx/ε − 1

eb/ε − 1

exhibits a boundary layer of width O(ε/b) near to x = 1 if 0 < ε/b � 1. Galerkin
discretisation by piecewise-linear finite elements over a uniform grid

xj = jh , j = 0, . . . ,M , M ∈ N , h :=
1

M
,

leads to the following tridiagonal linear system for the unknown nodal values of the discrete
solution uh(

− ε
h
− b

2

)
ui−1 +

2ε

h
ui +

(
− ε
h

+
b

2

)
ui+1 = 0 , i = 1, . . . ,M − 1 ,

whereby ui := uh(xi), u0 = 0, uM = 1. Assuming that 2ε 6= bh, the solution vector is given
by

ui =

(
1 + Pe

1− Pe

)i
− 1(

1 + Pe

1− Pe

)M
− 1

, i = 1, . . . ,M − 1 , (1.2)

where

Pe :=
bh

2ε
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is the Péclet number. Pe > 1 implies 1+Pe
1−Pe < 0 and consequently the discrete solution uh

exhibits unphysical oscillations. They can be eliminated if the mesh size h gets small so
that Pe < 1. If ε/b� 1 the mesh refinement leads to big systems which are, especially in
higher dimensions, infeasible from the numerical point of view.

1.2 Taking advantage of superconvergence phenomena

The following small example illustrates the superconvergence phenomenon that has been
discussed in [72]. Let us consider the two-point boundary value problem

−u′′ = f in Ω = (0, 1),

u(0) = 0 ,

u(1) = 0 ,

 (1.3)

whereby f is assumed to be sufficiently smooth. We use the same equidistant grid as in
the example (1.1)

Th = {K = (xi, xi+1), i = 0, . . . ,M−1} , hi = xi+1−xi = h =
1

M
, ∀ i = 0, . . . ,M−1 ,

and look for the discrete solution uh in the space of continuous piecewise linear polynomials
over Th and with zero boundary conditions

Vh = {vh ∈ C(Ω̄) : vh|K ∈ P1(K), vh(0) = vh(1) = 0 ∀K ∈ Th}

The finite element discretisation of problem (1.4) reads as follows

Find uh ∈ Vh, such that

(u′h, v
′
h) = (f, vh), ∀vh ∈ Vh . (1.4)

In the space H1
0 (Ω) the semi–norm |u|1 =

√
(u′, u′) becomes a norm due to Poincaré

inequality. Furthermore, we define by ihu the finite element interpolant of the weak solution
u ∈ V := H1

0 (Ω). Employing the Galerkin orthogonality, one can easily show that the error
between the finite element solution and the finite element interpolant satisfies

|ihu− uh|1 = sup
vh∈Vh

(
(ihu− u)′, v′h

)
|vh|1

. (1.5)

Employing Cauchy–Schwarz inequality and interpolation estimate, we obtain for u ∈ H2(Ω)
the estimates (

(i1hu− u)′, v′h
)
≤ |i1hu− u|1 |vh|1 ≤ Ch|u|1|vh|1
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and due to (1.5)
|i1hu− uh|1 ≤ Ch|uh|2 . (1.6)

Now, we improve the bound of the term
(
(ihu − u)′, v′h

)
using the nodal interpolation

operator i1h : V → Vh with

i1hu(xi) = u(xi), i = 1, . . . ,M − 1,

u(x0) = u(xM) = 0 .
(1.7)

For piecewise linear test functions vh ∈ Vh we get the following identity

(
(i1hu− u)′, v′h

)
=

M−1∑
i=0

xi+1∫
xi

(i1hu− u)′v′hdx

=
M−1∑
i=0

vh(xi+1)− vh(xi)
h︸ ︷︷ ︸

=v′h

∣∣
(xi,xi+1)

xi+1∫
xi

(i1hu− u)′dx

=
M−1∑
i=0

vh(xi+1)− vh(xi)
h

(
i1hu− u

) ∣∣∣∣xi+1

xi

=
M−1∑
i=0

vh(xi+1)− vh(xi)
h

{(
i1hu(xi+1)− u(xi+1)

)
−
(
i1hu(xi)− u(xi)

)}
= 0 ,

and from (1.5) we infer
|i1hu− uh|1 = 0 . (1.8)

Thus, the nodal interpolant i1hu coincides with the conforming piecewise linear discrete
solution uh, see Figure 1.1.

Using the fact that the error |i1hu − uh|1 is superconvergent, we can post-process our
discrete solution in order to obtain the higher accuracy. Let τ = (xi, xi+2) ∈ T2h be
a macro–cell consisting of two child–cells Ki = (xi, xi+1) and Ki+1 = (xi+1, xi+2), i =
0, . . . ,M − 1, which originate from the regular refinement. We denote by P2(τ) the space
of quadratic polynomials over the macro–cell τ . Our aim is to construct a global post-
processing operator

I2
2h : V → S2

2h = {v ∈ H1
0 (Ω) : v|τ ∈ P2(τ)}

which satisfies

I2
2hi

1
hu = I2

2hu ∀ u ∈ V , (1.9a)

|I2
2hu|1 ≤ C|u|1 ∀ u ∈ Vh . (1.9b)
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Figure 1.1: The piecewise linear conforming finite element solution uh coincides with the
nodal interpolant i1hu.

The post-processing interpolant can be defined on each τ ∈ T2h in the following way

I2
2hu|τ ∈ P2(τ) ,

I2
2hu(xi) = u(xi) , I2

2hu(xi+1) = u(xi+1) , I2
2hu(xi+2) = u(xi+2) .

(1.10)

The operator I2
2h is then globally well–defined due to the continuity of u. The post-

processing interpolator from (1.10) satisfies obviously (1.9a). Moreover, we have

I2
2hu = u ∀u ∈ P2(τ) .

Let τ̂ = (−1, 1) and Fτ : τ̂ → τ denote the reference cell and the affine reference mapping,

respectively. Furthermore, we denote by V̂ the space of continuous, piecewise P1 functions
on τ . Setting û = u|τ ◦ Fτ and (I2hu)|τ = (Î2hû) ◦ F−1

τ , it holds

|Î2hû|1,τ̂ ≤ C|û|1,τ̂ ∀ û ∈ V̂

since |Î2h · |1,τ̂ and | · |1,τ̂ are norms on the finite dimensional factor space V̂ /R and since

constant functions on τ̂ are exactly reproduced by the interpolator Î2h. Using scaling
arguments, we obtain

|I2
2hu|1,τ ≤ C|u|1,τ ∀u ∈ Vh .
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Property (1.9b) follows by summing up over all macro–cells τ . From Bramble–Hilbert
lemma we obtain

|u− I2
2hu|1,τ ≤ Ch2|u|3,τ ,

due to scaling arguments, and thus we get

|u− I2
2hu|1 ≤ Ch2|u|3 ∀u ∈ H3(Ω) . (1.11)

From (1.9a) it follows

u− I2
2huh = u− I2

2hu+ I2
2h(i

1
hu− uh) .

Then, the triangle inequality implies

|u− I2
2huh|1 ≤ |u− I2

2hu|1 + |I2
2h(i

1
hu− uh)|1 . (1.12)

Collecting (1.11), (1.9b) and (1.8), we get from (1.12) the global superconvergence

|u− I2
2huh|1 ≤ Ch2|u|3 . (1.13)

The error between the post-processed solution and the weak solution u ∈ H3(Ω) is with
respect to the H1 semi–norm one order better. Applying post-processing to the piecewise
linear elements, we can obtain the accuracy of piecewise quadratic elements.



2 Reactor flow problem

2.1 Mathematical model

In this section we introduce the mathematical model describing incompressible isothermal
flow without reaction. The considered equations for the velocity and pressure fields are
related to those of fluid saturated porous media. Most of them use the Darcy law as a
suitable model. However, there are restrictions of Darcy model, e.g. closely packed medium,
flows at slow velocity. They can be circumvented with the Brinkman–Forchheimer-extended
Darcy equation. Let Ω ⊂ Rn, n = 2, 3, represent the reactor channel. We denote its
boundary by Γ = ∂Ω. The conservation of volume-averaged values of momentum and
mass in the packed reactor reads as follows

−div (εν∇u− εu⊗ u) +
ε

%
∇p+ σ(u) = f in Ω ,

div (εu) = 0 in Ω ,
(2.1)

where u : Ω → Rn, p : Ω → R denote the unknown velocity and pressure, respectively.
The positive quantity ε = ε(x) stands for porosity which describes the proportion of the
non-solid volume to the total volume of material and varies spatially in general. The ex-
pression σ(u) represents the friction forces caused by the packing and will be specified later
on. The right-hand side f represents an outer force (e.g. gravitation), % the constant fluid
density and ν the constant kinematic viscosity of the fluid, respectively. The expression
u⊗ u symbolises the dyadic product of u with itself.

The formula given by Ergun [22] will be used to model the influence of the packing on
the flow inertia effects

σ(u) = 150ν
(1− ε)2

ε2d2
p

u+ 1.75
1− ε
εdp

u|u| . (2.2)

Thereby dp stands for the diameter of pellets and |·| denotes the Euclidian vector norm. The
linear term in (2.2) accounts for the head loss according to Darcy and the quadratic term
according to Forchheimer law, respectively. For the derivation of the equations, modelling
and homogenisation questions in porous media we refer to e.g. [9, 38]. To close the system
(2.1) we prescribe Dirichlet boundary condition

u|Γ = g , (2.3)
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whereby ∫
Γi

εg · n ds = 0 (2.4)

has to be fulfilled on each connected component Γi of the boundary Γ. We remark that
in the case of polygonally bounded domain the outer normal vector n has jumps and thus
the above integral should be replaced by a sum of integrals over each side of Γ.

The distribution of porosity ε is assumed to satisfy the following bounds

0 < ε0 ≤ ε(x) ≤ ε1 ≤ 1 ∀x ∈ Ω , (A1)

with some constants 0 < ε0, ε1 ≤ 1. In the next section we use the porosity distribution
which is estimated for packed beds consisting of spherical particles and takes the near wall
channelling effect into account. This kind of porosity distribution obeys assumption (A1).

Let us introduce dimensionless quantities

u∗ =
u

U0

, p∗ =
p

%U2
0

, x∗ =
x

dp
, g∗ =

g

U0

,

whereby U0 denotes the magnitude of some reference velocity. For simplicity of notation we
omit the asterisks. Then, the reactor flow problem reads in dimensionless form as follows

−div
( ε

Re
∇u− εu⊗ u

)
+ ε∇p+

α

Re
u+ βu|u| = f in Ω ,

div (εu) = 0 in Ω ,
u = g on Γ ,

(2.5)

where

α(x) = 150κ2(x) , β(x) = 1.75κ(x) (2.6)

with

κ(x) =
1− ε(x)

ε(x)
, (2.7)

and the Reynolds number is defined by

Re =
U0 dp
ν

.

The existence and uniqueness of solution of nonlinear model (2.5) with the constant porosity
and without the convective term has been established in [47].

Remark 2.1 (2.5) becomes a Navier-Stokes problem if ε ≡ 1.



2.2 Existence and uniqueness results 9

2.2 Existence and uniqueness results

In the following the porosity ε is assumed to belong to W 1,3(Ω) ∩ L∞(Ω). We start with
the weak formulation of problem (2.5) and look for its solution in suitable Sobolev spaces.

2.2.1 Variational formulation

Let
L2

0(Ω) := {v ∈ L2(Ω) : (v, 1) = 0}

be the space consisting of L2 functions with zero mean value. We define the spaces

X := H1(Ω) , X0 := H1
0(Ω) , Q := L2(Ω) , M := L2

0(Ω) ,

and
V := X0 ×M .

Let us introduce the following bilinear forms

a : X ×X→ IR , a(u,v) =
1

Re

(
ε∇u,∇v

)
,

b : X ×Q → IR , b(u, q) =
(
div(εu), q

)
,

c : X ×X→ IR , c(u,v) =
1

Re

(
αu,v

)
.

Furthermore, we define the semilinear form

d : X ×X ×X → IR , d(w;u,v) =
(
β|w|u,v

)
,

and trilinearform

n : X ×X ×X → IR , n(w,u,v) =
(
(εw · ∇)u,v

)
.

We set
A(w;u,v) := a(u,v) + c(u,v) + n(w,u,v) + d(w;u,v) .

Multiplying momentum and mass balances in (2.5) by test functions v ∈ X0 and q ∈ M ,
respectively, and integrating by parts implies the weak formulation:

Find (u, p) ∈X ×M with u|Γ = g such that

A(u;u,v)− b(v, p) + b(u, q) = (f ,v) ∀ (v, q) ∈ V . (2.8)

First, we recall the following result from [8]:
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Theorem 2.2 The mapping u 7→ εu is an isomorphism from H1(Ω) onto itself and from
H1

0 (Ω) onto itself. It holds for all u ∈ H1(Ω)

‖εu‖1 ≤ C{ε1 + |ε|1,3} ‖u‖1 and
∥∥∥u
ε

∥∥∥
1
≤ C

{
ε−1

0 + ε−2
0 |ε|1,3

}
‖u‖1 .

In the following the closed subspace of H1
0(Ω) defined by

W = {w ∈H1
0(Ω) : b(w, q) = 0 ∀ q ∈ L2

0(Ω)}.

will be employed. Next, we establish and prove some properties of trilinear form n(·, ·, ·)
and nonlinear form d(·; ·, ·).

Lemma 2.3 Let u,v ∈ H1(Ω) and let w ∈ H1(Ω) with div (εw) = 0 and w · n|Γ = 0.
Then we have

n(w,u,v) = −n(w,v,u) . (2.9)

Furthermore, the trilinear form n(·, ·, ·) and the nonlinear form d(·; ·, ·) are continuous, i.e.

|n(u,v,w)| ≤ Cε ‖u‖1‖v‖1‖w‖1 ∀ u,v,w ∈H1(Ω) , (2.10)

|d(u,v,w)| ≤ Cε ‖u‖1‖v‖1‖w‖1 ∀ u,v,w ∈H1(Ω) , (2.11)

and for u ∈W and for a sequence uk ∈W with lim
k→∞
‖uk − u‖0 = 0, we have also

lim
k→∞

n(uk,uk,v) = n(u,u,v) ∀ v ∈W . (2.12)

Proof. We follow the proof of [30, Lemma 2.1, §2, Chapter IV] and adapt it to the
trilinear form

n(w,u,v) =
(
(εw · ∇)u,v

)
=

n∑
i,j=1

(
εwj∂jui, vi

)
which has the weighting factor ε. Hereby, symbols with subscripts denote components of
bold faced vectors, e.g. u = (ui)i=1,...,n. Let u ∈ H1, v ∈ D(Ω) and w ∈W . Integrating
by parts and employing density argument, we obtain immediately (2.9)

n∑
i,j=1

(
εwj∂jui, vi

)
= −

n∑
i,j=1

(
∂j (εwjvi) , ui

)
+

n∑
i,j=1

〈εwjnjui, vi〉

= −
n∑

i,j=1

(
εwj∂jvi, ui

)
−
(
div (εw)u,v

)
+
〈
(εw · n)u,v

〉
= −n(w,v,u).

From Sobolev embedding H1(Ω) ↪→ L4(Ω) (see [1]) and Hölder inequality follows∣∣(εwj∂jui, vi)∣∣ ≤ |ε|0,∞ ‖wj‖0,4 ‖∂jui‖0 ‖vi‖0,4 ≤ C |ε|0,∞ ‖wj‖1 |ui|1 ‖vi‖1 ,
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and consequently the proof of (2.10) is completed. Since lim
k→∞
‖uki ukj − uiuj‖0,1 = 0 and

ε∂jvi ∈ L∞(Ω), the continuity estimate (2.10) implies

lim
k→∞

n(uk,uk,v) = − lim
k→∞

n(uk,v,uk) = − lim
k→∞

n∑
i,j=1

(
εukj ∂jv

k
i , u

k
i

)
= −

n∑
i,j=1

(
εuj∂jvi, ui

)
= −n(u,v,u) = n(u,u,v) .

The continuity of d(·; ·, ·) follows from Hölder inequality and Sobolev embedding H1(Ω) ↪→
L4(Ω) (see [1])

|d(u;v,w)| ≤ |β|∞ ‖u‖0,4 ‖v‖0,4 ‖w‖0 ≤ Cε‖u‖1 ‖v‖1 ‖w‖1 .

�

In the next stage we care about difficulties caused by prescribing inhomogeneous Dirich-
let boundary condition. Analogous difficulties are already encountered in the analysis of
Navier–Stokes problem. We carry out the study of three dimensional case. The extension
in two dimensions is constructed analogously. Since g ∈ H1/2(Γ), we can extend g inside
of Ω in the form of

g = ε−1 curlh

with some h ∈H2(Ω). The operator curl is defined then as

curlh = (∂2h3 − ∂3h2, ∂3h1 − ∂1h3, ∂1h2 − ∂2h1) .

We note that in the two dimensional case the vector potential h ∈ H2(Ω) should be
replaced by a scalar function h ∈ H2(Ω) and the operator curl is then redefined as curlh =
(∂2h,−∂1h). Our aim is to adapt the extension of Hopf (see [37]) to our model. We recall
that for any parameter µ > 0 there exists a scalar function ϕµ ∈ C2(Ω̄) such that

• ϕµ = 1 in some neighbourhood of Γ (depending on µ) ,

• ϕµ(x) = 0 if dΓ(x) ≥ 2 exp (−1/µ) , where dΓ(x) := inf
y∈Γ
|x− y|

denotes the distance of x to Γ ,

• |∂jϕµ(x)| ≤ µ/dΓ(x) if dΓ(x) < 2 exp (−1/µ) , j = 1, . . . , n .


(Ex)

For the construction of ϕµ see also [30, Lemma 2.4, §2, Chapter IV].

Let us define
gµ := ε−1 curl (ϕµh) . (2.13)

In the following lemma we establish bounds which are crucial for proving existence of
velocity.
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Lemma 2.4 The function gµ satisfies the following conditions

div (εgµ) = 0, gµ|Γ = g ∀µ > 0 , (2.14)

and for any δ > 0 there exists sufficiently small µ > 0 such that

|d(u+ gµ; gµ,u)| ≤ δ ‖β‖0,∞ |u|1
(
|u|1 + ‖gµ‖0

)
∀ u ∈X0 , (2.15)

|n(u, gµ,u)| ≤ δ |u|21 ∀ u ∈W . (2.16)

Proof. The relations in (2.14) are obvious. We follow [47] in order to show (2.15). Since
h ∈ H2(Ω) Sobolev’s embedding theorem implies h ∈ L∞(Ω), so we get according to the
properties of ϕµ in (Ex) the following bound

|gµ| ≤ C ε−1
0

{
|∇h|+ µ

dΓ(x)
|h|
}
≤ C

{
µ

dΓ(x)
+ |∇h|

}
.

Defining
Ωµ := {x ∈ Ω : dΓ(x) < 2 exp(−1/µ)}

we obtain from Cauchy-Schwarz and triangle inequalities

|
(
β|u+ gµ|, gµ · u

)
| ≤ ‖β‖0,∞ ‖u‖0 ‖u · gµ‖0,Ωµ + ‖β‖0,∞ ‖gµ‖0 ‖u · gµ‖0,Ωµ , (2.17)

‖u · gµ‖2
0,Ωµ ≤

∫
Ωµ

|u|2|gµ|2dx

≤ C

∫
Ωµ

|u|2
{(
µ/dΓ(x)

)2
+ 2µ/dΓ(x) |∇h|+ |∇h|2

}
dx

≤ C
{
µ2‖u/dΓ‖2

0,Ωµ + 2µ‖u/dΓ‖0,Ωµ ‖u‖0,4,Ωµ

∥∥|∇h|∥∥
0,4,Ωµ

+ ‖u‖2
0,4,Ωµ

∥∥|∇h|∥∥2

0,4,Ωµ

}
≤ C

{
µ‖u/dΓ‖0,Ωµ + ‖u‖0,4

∥∥|∇h|∥∥
0,4,Ωµ

}2

,

and consequently

‖u · gµ‖0,Ωµ ≤ C
{
µ‖u/dΓ‖0,Ωµ + ‖u‖0,4

∥∥|∇h|∥∥
0,4,Ωµ

}
. (2.18)

Applying Hardy inequality (see [1])

‖v/dΓ‖0 ≤ C|v|1 ∀ v ∈ H1
0 (Ω)

and using Sobolev embedding H1(Ω) ↪→ L4(Ω), estimate (2.18) becomes

‖u · gµ‖0,Ωµ ≤ Cλ(µ)‖u‖1, (2.19)

where
λ(µ) := max

{
µ,
∥∥|∇h|∥∥

0,4,Ωµ

}
.
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From (2.17), (2.19), Poincaré inequality and from the fact that lim
µ→0

λ(µ) = 0 we conclude

that for any δ > 0 we can choose sufficiently small µ > 0 such that

|(β |u+ gµ|gµ,u)| ≤ δ ‖β‖0,∞ |u|1
(
|u|1 + ‖gµ‖0

)
holds. Therefore the proof of estimate (2.15) is completed. Now, we take a look at the
trilinear convective term

n(u, gµ,u) =
(
(εu · ∇)gµ,u

)
Ωµ

=

(
(εu · ∇)

{
ε−1 curl (ϕµh)

}
,u

)
Ωµ

=

(
(u · ∇) {curl (ϕµh)} ,u

)
Ωµ

−
(
(u · ∇ε) gµ,u

)
Ωµ
.

The first term of above difference becomes small due to [30, Lemma 2.3, §2, Chapter IV]∣∣∣((u · ∇) {curl (ϕµh)} ,u
)

Ωµ

∣∣∣ =
∣∣∣((u · ∇)(εgµ),u

)
Ωµ

∣∣∣ ≤ δ|u|21 (2.20)

as long as µ > 0 is chosen sufficiently small. Using Hölder inequality, Sobolev embedding
H1(Ω) ↪→ L6(Ω) yields∣∣∣((u · ∇ε) gµ,u)Ωµ

∣∣∣ ≤ C‖ε‖1,3 ‖gµ · u‖0 ‖u‖1

which together with (2.19) implies for sufficiently small µ > 0 the bound∣∣∣((u · ∇ε) gµ,u)Ωµ

∣∣∣ ≤ δ|u|21 . (2.21)

From (2.20) and (2.21) follows the desired estimate (2.16). �

While the general framework for linear and non-symmetric saddle point problems can
be found in [8], our problem requires more attention due to its nonlinear character. Setting
w := u− gµ, the weak formulation (2.8) is equivalent to the following problem

Find (w, p) ∈ V such that

A(w + gµ;w + gµ,v)− b(v, p) + b(w + gµ, q) = (f ,v) ∀ (v, q) ∈ V . (2.22)

Let us define the nonlinear mapping G : W →W with[
G(w),v

]
:=a(w + gµ,v) + c(w + gµ,v)− (f ,v)

+ n(w + gµ,w + gµ,v) + d(w + gµ;w + gµ,v) ,
(2.23)

whereby [·, ·] defines the inner product in W via [u, v] := (∇u,∇v). Then, the variational
problem (2.22) reads in the space of ε-weighted divergence free functions W as follows

Find w ∈W such that [
G(w),v

]
= 0 ∀ v ∈W . (2.24)
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2.2.2 Solvability of nonlinear saddle point problem

We start our study of nonlinear operator problem (2.24) with the following lemma.

Lemma 2.5 The mapping G defined in (2.23) is continuous and there exists r > 0 such
that [

G(u),u
]
> 0 ∀ u ∈W with |u|1 = r. (2.25)

Proof. Let (uk)k∈IN be a sequence in W with lim
k→∞
‖uk − u‖1 = 0. Then, applying

Cauchy–Schwarz inequality and (2.16), we obtain for any v ∈W∣∣[G(uk)−G(u),v
]∣∣ ≤ 1

Re

∣∣(ε∇(uk − u),∇v
)∣∣+

1

Re

∣∣(α(uk − u),v
)∣∣

+
∣∣(β|uk + gµ|(uk − u),v

)∣∣+
∣∣(β(|uk + gµ| − |u+ gµ|)(u+ gµ),v

)∣∣
+
∣∣n(uk,uk,v)− n(u,u,v)

∣∣+
∣∣n(uk − u, gµ,v)

∣∣+
∣∣n(gµ,u

k − u, ,v)
∣∣

≤ ε1

Re
|uk − u|1|v|1 +

1

Re
‖α‖0,∞‖uk − u‖0‖v‖0

+ ‖β‖0,∞‖uk + gµ‖0,4‖uk − u‖0‖v‖0,4 + ‖β‖0,∞‖u+ gµ‖0,4‖uk − u‖0‖v‖0,4

+
∣∣n(uk,uk,v)− n(u,u,v)

∣∣+ C‖uk − u‖1‖gµ‖1‖v‖1 .

The boundedness of uk in W , (2.12) and Poincaré inequality imply∣∣[G(uk)−G(u),v
]∣∣→ 0 as k →∞ ∀v ∈W .

Thus, employing

|G(uk)−G(u)|1 = sup
v∈W
v 6=0

[
G(uk)−G(u),v

]
|v|1

,

we state that G is continuous. Now, we note that for any u ∈W we have[
G(u),u

]
=

1

Re

(
ε∇(u+ gµ),∇u

)
+

1

Re

(
α(u+ gµ),u

)
+
(
β|u+ gµ|(u+ gµ),u

)
+ n(u+ gµ,u+ gµ,u)− (f ,u)

≥ ε0

Re
|u|21 −

ε1

Re
|(∇gµ,∇u)|+ 1

Re
(αu,u)− 1

Re
|(αgµ,u)|

+ (β|u+ gµ|, |u|2)−
∣∣(β|u+ gµ|gµ,u)

∣∣
+ n(u, gµ,u) + n(gµ, gµ,u)− ‖f‖0‖u‖0

≥ ε0

Re
|u|21 −

ε1

Re
|gµ|1|u|1

− 1

Re
‖α‖0,∞‖gµ‖0‖u‖0 −

∣∣(β|u+ gµ|gµ,u)
∣∣

−
∣∣n(u, gµ,u)

∣∣− C‖gµ‖2
1‖u‖1 − ‖f‖0‖u‖0 .

(2.26)
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From Poincaré inequality we infer the estimate

‖v‖1 ≤ C|v|1 ∀ v ∈ H1
0 (Ω),

which together with (2.15), (2.16) and (2.26) results in[
G(u),u

]
≥
{ ε0

Re
− δ(1 + ‖β‖0,∞)

}
|u|21

−
{ ε1

Re
|gµ|1 + C1

1

Re
‖α‖0,∞‖gµ‖0 + δ‖β‖0,∞‖gµ‖0 + C2‖gµ‖2

1 + C3‖f‖0

}
|u|1.

Choosing δ such that

0 < δ < δ0 :=
ε0

Re

(
1 + ‖β‖0,∞

)−1
,

and r > r0 with

r0 :=

ε1

Re
|gµ|1 +

1

Re
C1‖α‖0,∞‖gµ‖0 + δ‖β‖0,∞‖gµ‖0 + C2‖gµ‖2

1 + C3‖f‖0

ε0

Re
− δ(1 + ‖β‖0,∞)

, (2.27)

leads to the desired assertion (2.25). �

The following lemma plays a key role in the existence proof.

Lemma 2.6 Let Y be finite-dimensional Hilbert space with inner product [·, ·] inducing a
norm ‖ · ‖, and T : Y → Y be a continuous mapping such that[

T (x), x
]
> 0 for ‖x‖ = r0 > 0.

Then there exists x ∈ Y , with ‖x‖ ≤ r0, such that

T (x) = 0.

Proof. See [59]. �

Now we are able to prove the main result concerning existence of velocity.

Theorem 2.7 The problem (2.24) has at least one solution u ∈W .

Proof. We construct the approximate sequence of Galerkin solutions. Since the space
W is separable, there exists a sequence of linearly independent elements (wi)i∈IN ⊂ W .
Let Xm be the finite dimensional subspace of W with

Xm := span{wi , i = 1, . . . ,m}
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and endowed with the scalar product of W . Let um =
m∑
j=1

ajw
j, aj ∈ IR , be a Galerkin

solution of (2.24) defined by[
G(um),wj

]
= 0, ∀ j = 1, . . . ,m . (2.28)

From Lemma 2.5 and Lemma 2.6 we conclude that[
G(um),w

]
= 0 ∀ w ∈Xm (2.29)

has a solution um ∈Xm. The unknown coefficients aj can be obtained from the algebraic
system (2.28). On the other hand, multiplying (2.28) by aj, and adding the equations for
j = 1, . . . ,m we have

0 =
[
G(um),um

]
≥
{

1

Re
− δ(1 + ‖β‖0,∞)

}
|um|21

−
{ 1

Re
|gµ|1 + C1

1

Re
‖α‖0,∞‖gµ‖0 + δ‖β‖0,∞‖gµ‖0 + C2‖gµ‖2

1 + C3‖f‖0

}
|um|1.

This gives together with (2.27) the uniform boundedness in W

|um|1 ≤ r0,

therefore there exists u ∈W and a subsequence mk → ∞ ( we write for the convenience
m instead of mk ) such that

um ⇀ u in W .

Furthermore, the compactness of embedding H1(Ω) ↪→ L4(Ω) implies

um → u in L4(Ω).

Taking the limit in (2.29) with m→∞ we get[
G(u),w

]
= 0 ∀ w ∈Xm. (2.30)

Finally, we apply the continuity argument and state that (2.30) is preserved for anyw ∈W ,
therefore u is the solution of (2.24). �

For the reconstruction of the pressure we need inf-sup-theorem

Theorem 2.8 Assume that the bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈M

sup
v∈X0

b(v, q)

|v|1 ‖q‖0

≥ γ > 0. (2.31)

Then, for each solution u of the nonlinear problem (2.24) there exists a unique pressure
p ∈M such that the pair (u, p) ∈ V is a solution of the homogeneous problem (2.22).
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Proof. See [30, Theorem 1.4, §1, Chapter IV]. �

We end up this subsection by constituting existence of the pressure.

Theorem 2.9 Let w be solution of problem (2.24). Then, there exists unique pressure
p ∈M .

Proof. We verify the inf-sup condition (2.31) of Theorem 2.8 by employing the isomor-
phism of Theorem 2.2. From [30, Corollary 2.4, §2, Chapter I] follows that for any q in
L2

0(Ω) there exists v in H1
0(Ω) such that

(divv, q) ≥ γ∗‖v‖1‖q‖0

with a positive constant γ∗. Setting u = v/ε and applying the isomorphism in Theorem
2.2, we obtain the estimate

b(u, q) = (divv, q) ≥ γ∗‖v‖1‖q‖0 ≥ γε‖u‖1‖q‖0

where γε =
γ∗

C
{
ε−1

0 + ε−2
0 |ε|1,3

} . From the above estimate we conclude the inf-sup condi-

tion (2.31). �

2.2.3 Uniqueness of weak solution

We exploit a priori estimates in order to prove uniqueness of weak velocity and pressure.

Theorem 2.10 If ‖gµ‖1, ‖f‖−1 := sup
0 6=v∈H1(Ω)

(f ,v)

‖v‖1

are sufficiently small, then the solu-

tion of (2.24) is unique.
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Proof. Assume that (u1, p1) and (u2, p2) are two different solutions of (2.22). From (2.9)
in Lemma 2.3 we obtain n(w,u,u) = 0 ∀ w,u ∈W . Then, we obtain

0 =
[
G(u1)−G(u2),u1 − u2

]
= a(u1 − u2,u1 − u2) + c(u1 − u2,u1 − u2)− (f ,u1 − u2)

+ n(u1 + gµ,u1 + gµ,u1 − u2)− n(u2 + gµ,u2 + gµ,u1 − u2)

+ (β|u1 + gµ|(u1 + gµ),u1 − u2)

−
(
β|u2 + gµ|(u2 + gµ),u1 − u2)

≥ ε0

Re
|u1 − u2|21 − ‖f‖−1‖u1 − u2‖1

+ n(u1 − u2,u2 + gµ,u1 − u2)

+
(
β|u1 + gµ|(u1 − u2),u1 − u2

)
+
(
β(|u1 + gµ| − |u2 + gµ|)(u2 + gµ),u1 − u2

)
≥ ε0

Re
|u1 − u2|21 − ‖f‖−1‖u1 − u2‖1

− |n(u1 − u2,u2,u1 − u2)| −
∣∣n(u1 − u2, gµ,u1 − u2)

∣∣
− ‖β‖0,∞

∣∣(|u1 + gµ| · |u1 − u2|, |u1 − u2|
)∣∣

− ‖β‖0,∞
∣∣(∣∣|u1 + gµ| − |u2 + gµ|

∣∣ · |u2 + gµ|, |u1 − u2|
)∣∣ .

(2.32)

From Cauchy-Schwarz inequality and Sobolev embedding H1(Ω) ↪→ L4(Ω) we deduce∣∣(|u1 + gµ| · |u1 − u2|, |u1 − u2|
)∣∣ ≤ C

{
‖u1‖0 + ‖gµ‖0

}
‖u1 − u2‖2

1 , (2.33)∣∣(∣∣|u1 + gµ| − |u2 + gµ|
∣∣ · |u2 + gµ|, |u1 − u2|

)∣∣
≤ C

{
‖u2‖0 + ‖gµ‖0

}
‖u1 − u2‖2

1,
(2.34)

and according to (2.10) we have

|n(u1 − u2,u2,u1 − u2)| ≤ C‖u2‖1‖u1 − u2‖2
1, (2.35)

and by (2.14) we can find µ such that

|n(u1 − u2, gµ,u1 − u2)| ≤ ε0

4Re
‖u1 − u2‖2

1. (2.36)

Now, we find upper bounds for u1 and u2. Testing the equation (2.22) with u results in

ε0

Re
‖u‖2

1 ≤ ‖f‖−1‖u‖1 +
ε0

Re
‖gµ‖1‖u‖1 + C‖gµ‖0‖u‖0

+ C‖gµ‖2
1‖u‖1 + C‖β‖0,∞‖gµ‖0‖u‖2

1 + C‖β‖0,∞‖gµ‖2
0,4‖u‖1 .

From Sobolev embedding H1(Ω) ↪→ L4(Ω) we deduce for sufficiently small ‖gµ‖1

‖u‖1 ≤
‖f‖−1 + C1‖gµ‖1 + C2‖gµ‖2

1
ε0

Re
− C3‖β‖0,∞‖gµ‖1

=: C
(
‖gµ‖1, ‖f‖−1

)
. (2.37)
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Putting (2.33)-(2.37) into (2.32) and using the inequality

‖f‖−1‖u1 − u2‖1 ≤
ε0

4Re
‖u1 − u2‖2

1 +
2Re

ε0

‖f‖2
−1

we obtain

0 ≥ ε0

2Re
‖u1 − u2‖2

1 −
2Re

ε0

‖f‖2
−1 − C

(
‖gµ‖1, ‖f‖−1

)
‖β‖0,∞‖u1 − u2‖2

1

− ε0

4Re
‖u1 − u2‖2

1 − C
(
‖gµ‖1, ‖f‖−1

)
‖u1 − u2‖2

1 .
(2.38)

For sufficiently small ‖gµ‖1, ‖f‖−1 the constant C(‖gµ‖1, ‖f‖−1) in (2.37) gets small and
consequently the right hand side of (2.38) is nonnegative. This implies u1 = u2 and ac-
cording to Theorem 2.9 is p1 − p2 = 0. �

2.3 Finite element analysis

2.3.1 Discrete problem

For the finite element discretisation of (2.8), we are given a shape regular family {Th}h>0

of decompositions of Ω into quadrilaterals (n = 2) or hexahedrons (n = 3). The diameter
of the cell K will be denoted by hK and the mesh size parameter h is defined by h :=
maxK∈Th hK . Let FK : K̂ → K be the multilinear reference mapping acting on the

reference cell K̂ := (−1, 1)n. Now, we pay more attention to the strengthened shape
regularity assumption given in [64]. Expanding FK we get

FK(x̂) = bK +BKx̂+GK(x̂)

where

bK := FK(0) , BK := DFK(0) and GK(x̂) := FK(x̂)− FK(0)−DFK(0)(x̂) .

Let Ŝ ⊂ K̂ be the reference n-simplex having the following vertices (0, . . . , 0), (1, 0, . . . , 0),
. . ., (0, . . . , 0, 1). Its image via the affine mapping x̂ 7→ BK x̂ + bK is denoted by SK .
Furthermore, we denote by hSK := diam(SK) and ρSK the diameter of SK and the diameter
of the largest ball inscribed into SK , respectively. For each cell K ∈ Th we define

γK := sup
x̂∈ bK ‖B

−1
K DFK(x̂)− I‖ (2.39)

which is a measure of the deviation of K from a parallelogram (n = 2) or a parallelepiped
(n = 3) with respect to the matrix norm ‖ · ‖ induced by the Euclidian vector norm. We
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note that γK = 0 holds iff FK is affine. We call a family of triangulations Th shape regular
if the conditions

hSK
ρSK
≤ C (2.40)

and
γK ≤ γ0 < 1 (2.41)

hold for all K ∈ Th . For this type of mesh the mapping FK exhibits following properties

‖BK‖ ≤ ChSK ≤ ChK , ‖B−1
K ‖ ≤ Ch−1

SK
, ∀ K ∈ Th , (2.42)

sup
x̂∈ bK ‖DFK(x̂)‖ ≤ (1 + γK)‖BK‖ , sup

x∈K
‖DF−1

K (x)‖ ≤ (1− γK)−1‖B−1
K ‖ ∀ K ∈ Th

(2.43)

and

ChnK ≤ n!(1−γK)n |SK | ≤ | det(DFK(x̂))| ≤ n!(1+γK)n |SK | ≤ C ′hnK ∀ x̂ ∈ K̂ . (2.44)

Moreover, the reference mapping FK is bijective. We note that the above condition is
more restrictive than the usual one for simplices

hK/ρK < C ∀ K ∈ Th

where ρK denotes the diameter of the largest ball inscribed into K. We mention also that
there are further variants of shape regularity condition which are frequently used in the
literature, see the review articles [66, 65] for quadrilateral meshes.

Now, we want to prepare definitions of finite element spaces which will be used in the
following. We denote discrete velocity and pressure finite element spaces by Xh and Qh,
respectively. Furthermore we define

Xh0 := Xh ∩H1
0(Ω) , Mh = Qh ∩ L2

0(Ω) ,

and
V h := Xh ×Mh , V h0 := Xh0 ×Mh .

In the following we consider conforming finite element spaces, i.e. V h ⊂X ×M . We set

Ã(wh;uh,vh) := a(uh,vh) + c(uh,vh) + ñ(wh,uh,vh)

+ d(wh;uh,vh) ,

where

ñ(wh,uh,vh) :=
1

2

[
n(wh,uh,vh)− n(wh,vh,uh)

]
.

We remark that according to Lemma 2.3 we have

ñ(w,u,v) = n(w,u,v) if div (εw) = 0 and v ∈X0 . (2.45)
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The finite element discretisation of equation (2.8) leads to the following nonlinear problem

Find (uh, ph) ∈ V h with uh|Γ = gh|Γ such that

Ã(uh;uh,vh)− b(vh, ph) + b(uh, qh) = (f ,vh) ∀ (vh, qh) ∈ V h0 . (2.46)

Here gh ∈ Xh is some approximation of extension of g, e.g. gh = ihg with ihg being an
appropriate finite element interpolant of g.
First, we pay attention to the fixed point linearisation

For given uoldh ∈Xh find (uh, ph) ∈ V h with uh|Γ = gh|Γ such that

Ã(uoldh ;uh,vh)− b(vh, ph) + b(uh, qh) = (f ,vh) ∀ (vh, qh) ∈ V h0 . (2.47)

We want to study its solvability in the spirit of mixed finite elements, see [30]. To this end,
we define the space

W h := {wh ∈Xh0 : b(wh, qh) = 0 ∀ qh ∈ Qh}

of finite element functions satisfying the modified divergence constraint in the discrete
sense. Note that in general W h * W . The linear saddle point problem (2.47) formulated
on the subspaceW h ⊂Xh0 simplifies to an elliptic one. Then, the existence and uniqueness
of the discrete velocity follow obviously from the Lax-Milgram Lemma.

2.3.2 Verifying the discrete inf-sup condition

It is well known in mixed finite element method for incompressible fluids that velocity and
pressure have to be approximated by suitable finite element pairs which satisfy the Babuška-
Brezzi compatibility condition, otherwise the pressure approximation can be deteriorated
by unphysical oscillations. One can expect similar difficulties when solving the discrete
saddle point problem (2.47). The general result concerning this issue is established by the
following lemma.

Lemma 2.11 Let the pair (Xh0,Mh) satisfy the discrete inf-sup condition

∃ γ > 0 : inf
qh∈Mh

sup
vh∈Xh0

b(vh, qh)

|vh|1 ‖qh‖0

≥ γ ∀ h > 0 . (2.48)

Then the discrete problem (2.47) has a unique solution (uh, ph) ∈Xh ×Mh.

Proof. See the proof of [30, Theorem 1.1, §1, Chapter II]. �
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Remark 2.12 The inf-sup condition (2.48) can be reformulated as follows

∃ γ > 0 ∀ qh ∈Mh ∃ vh ∈Xh0 :

b(vh, qh) = ‖qh‖2
0 , |vh|1 ≤

1

γ
‖qh‖0 ∀ h > 0 .

(2.49)

Remark 2.13 In the case of γ = γ(h) > 0 the existence of discrete pressure can be also
guaranteed. However, the optimal error bounds can not be derived using such type of inf-sup
constant.

Let P̂k denote the space of polynomials of degree at most k ≥ 0, and Q̂k be the space
of polynomials of degree at most k ≥ 0 in each variable separately. In the following we
consider a family of mapped finite elements with discontinuous pressure. Let

Pk(K) := {v = v̂ ◦ F−1
K : v̂ ∈ P̂k} and Qk(K) := {v = v̂ ◦ F−1

K : v̂ ∈ Q̂k}

be the local finite element spaces defined on a given cell K via reference mapping FK . The
vector valued counterparts of them we denote by bold faced symbols Qk(K) := [Qk(K)]n.
For k ≥ 2 we look for the pressure and velocity approximations in the following finite
element spaces

Xh := {v ∈ C0(Ω) : v|K ∈ Qk(K) ∀ K ∈ Th}

and

Mh := {q ∈ L2
0(Ω) : q|K ∈ Pk−1(K) ∀ K ∈ Th} ,

respectively. Note that the inf-sup condition for this finite element pair in case of the
Stokes–Problem in two and three dimensions has been proved in [64] by means of the
macro-element technique of Boland and Nicolaides [10]. We extend these results in order
to prove the inf-sup condition for the bilinear form corresponding to the modified divergence
constraint of model equations (2.5). Let the domain Ω be decomposed into non-overlapping,
open domains Ωr, r = 1, . . . , R with Lipschitz continuous boundary,

Ω =
R⋃
r=1

Ωr , Ωr ∩ Ωs = ∅ , r 6= s .

Furthermore we define the following finite element subspaces on the subdomains Ωr

Xh(Ωr) : = {v|Ωr : v ∈Xh0 , v = 0 in Ω \ Ωr}
Qh(Ωr) : = {q|Ωr : q ∈ Qh}
Mh(Ωr) : = Qh ∩ L2

0(Ωr)

and

Mh := {q ∈ L2
0(Ω) : q|Ωr = const , r = 1, . . . , R} .
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Let us formulate the local inf-sup condition

∃ λ > 0 ∀ r = 1, . . . , R ,

∀ qh ∈Mh(Ωr) : sup
vh∈Xh(Ωr)

b(vh, qh)

|vh|1,Ωr
≥ λ‖qh‖0,Ωr .

(2.50)

The following lemma gives a connection between the local and global inf-sup conditions in
order to establish stable finite element pairs.

Lemma 2.14 Assume that the bilinear form b : X0 ×M → R is continuous and satisfies
b(qh,vh) = 0 for all piecewise constant pressures qh and vh ∈ Xh0 with vh|Ωr ∈ Xh(Ωr),
r = 1, . . . , R. Let the local inf-sup condition (2.50) be satisfied with a constant λ > 0
independent of r and the mesh size parameter h. Furthermore, we assume that there exists
a subspace Xh ⊂ Xh0 such that (Xh,Mh) is globally inf-sup stable with a constant γ̄ > 0
independent of h. Then, there exists a constant γ > 0 independent of h such that the pair
(Xh0,Mh) satisfies the global inf-sup condition (2.48).

Proof. We follow the proof of [30, Theorem 1.12, §1, Chapter II] and adapt it to
the abstract continuous bilinear form b(·, ·). From the local orthogonal decomposition
Qh(Ωr) = Mh(Ωr)⊕ R we deduce that each function qh ∈Mh can be split Ωr as follows

qh = q̃h + q̄h

where q̄h|Ωr :=
(qh, 1)Ωr

|Ωr|
and q̃h|Ωr ∈ Mh(Ωr). From the orthogonal decomposition follows

obviously the global relation
‖qh‖2

0 = ‖q̃h‖2
0 + ‖q̄h‖2

0 . (2.51)

Now, we reformulate the local inf-sup condition (2.50) by analogy to Remark 2.12 and
state that there exists a function ṽr ∈Xh(Ωr) such that

b(ṽr, q̃r) = ‖q̃r‖2
0,Ωr and |ṽr|1,Ωr ≤

1

λ
‖q̃r‖0,Ωr (2.52)

where q̃r = q̃h|Ωr . Applying the same argument to the globally inf-sup stable pair (Xh,Mh)
we conclude that there exists a function v̄h ∈Xh such that

b(v̄h, q̄h) = ‖q̄h‖2
0 and |v̄h|1 ≤

1

γ̄
‖q̄h‖0 . (2.53)

Let us define for t > 0 the function vh ∈Xh0 defined by

vh := ṽh + tv̄h

where t > 0. We adjust the parameter t > 0 such that the pair (vh, qh) obeys the global
inf-sup condition reformulated in Remark 2.12. To this end, we evaluate

b(vh, qh) = b(ṽh, q̃h) + b(ṽh, q̄h) + tb(v̄h, q̃h) + tb(v̄h, q̄h) . (2.54)
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We have
b(ṽh, q̄h) = 0 (2.55)

due to the assumptions on b(·, ·). From (2.52) and (2.53) follows

b(ṽh, q̃h) = ‖q̃h‖2
0 (2.56)

and
b(v̄h, q̄h) = ‖q̄h‖2

0 . (2.57)

The continuity of the bilinear form b(·, ·), i.e.,

|b(v, q)| ≤Mb|v|1‖q‖0 ∀ v ∈X0 ∀ q ∈M ,

and (2.53) implies

b(v̄h, q̃h) ≤
Mb

γ̄
‖q̃h‖0 ‖q̄h‖0 . (2.58)

Collecting (2.54)-(2.58) and employing the inequality

‖q̃h‖0‖q̄h‖0 ≤ ϑ‖q̃h‖2
0 +

1

4ϑ
‖q̄h‖2

0 ∀ ϑ > 0 ,

we get for all ϑ > 0 the lower bound

b(vh, qh) ≥
{

1− Mbtϑ

γ̄

}
‖q̄h‖2

0 + t

{
1− Mb

4ϑγ̄

}
‖q̄h‖2

0 . (2.59)

Choosing ϑ = γ̄
2t
√
Mb

and t = γ̄
Mb

in the above estimate, we obtain

b(vh, qh) ≥ min

{
1

2
,
γ̄2

2Mb

}
‖qh‖2

0 . (2.60)

Furthermore, the following bound

|vh|1 ≤ |ṽh|1 + t|v̄h|1 ≤
1

λ
‖q̃h‖0 +

γ̄

Mb

‖q̄h‖0 ≤

{(
1

λ

)2

+

(
γ̄

Mb

)2
}1/2

‖qh‖0 . (2.61)

holds according to (2.51)-(2.53). From (2.60) and (2.61) we conclude

b(vh, qh)

|vh|1
≥ γ‖qh‖0 ∀ h > 0

with the inf-sup constant

γ =

min

{
1

2
,
γ̄2

2Mb

}
{(

1

λ

)2

+

(
γ̄

Mb

)2
}1/2

. (2.62)

�
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Remark 2.15 We observe that the bilinear form b(v, q) =
(
div(εv), q

)
satisfies assump-

tions of Lemma 2.14. Indeed, b(·, ·) is continuous with the constant Mb = C{ε1 + |ε|1,3}
√
n

since
|b(v, q)| ≤

√
n |εv|1 ‖q‖0 ≤ C{ε1 + |ε|1,3}

√
n |v|1‖q‖0

due to Theorem 2.2 and Poincaré inequality. It holds also b(vh, qh) = 0 for all piecewise
constant pressures qh and vh ∈Xh0 with vh|Ωr ∈Xh(Ωr), r = 1, . . . , R, since by virtue of
Gauss theorem we have

b(vh, qh) =
(
div(εvh), qh

)
= qh|Ωr

∫
Ωr

div(εvh) dx

= qh|Ωr
∫
∂Ωr

εvh · nds = 0

whereby n denotes the outer normal vector on Ωr.

Now, we want to find a pair of subspaces (Xh,Mh) which satisfies the global inf-sup
condition. We recall the notation given in [64] in order to establish appropriate enrichment
of Q1-velocity which together with the piecewise constant pressure results in an inf-sup
stable pair. Let E(K) be a set of all (n − 1)-dimensional faces of an element K ∈ T
and nEK the unit normal vector to the face E ∈ E(K). Furthermore, we denote by E the
set of all faces E ∈ E(K) of all elements K ∈ T , by E(Γ) we denote the set of all faces

located at the domain boundary Γ. The reference cell Ê = F−1
K (E) corresponds to the face

E ∈ E(K). We denote by n0
E = nE(mE) the unit normal vector nE at the point mE being

the image of the barycentre of the reference face Ê under the reference transformation FK ,
i.e. mE = FK

(
m̂Ê

)
. Note that the above definition is justified by the fact that the unit

normal vector in three dimensions is in general no longer constant. Let us introduce the
scalar function ψE ∈ Q2(K) which is uniquely defined on K = K(E) (adjacent cell to the
face E) by nine nodes aj ∈ K

ψE(aj) :=

{
1 if aj = mE ,

0 otherwise .

We define the face bubble function by

ΦE(x) := ψE(x)n0
E ∀ x ∈ Ω .

Within the extended local finite element space

Q+
1 (K) = Q1(K) + span{ΦE , E ∈ E(K)}

we define the subspace

Xh = {v ∈ C0(Ω) : v|K ∈ Q+
1 (K) ∀ K ∈ Th v|∂Ω = 0} . (2.63)

The proof of global inf-sup stability of the pair (Xh,Mh) involves the following lemma.



26 Reactor flow problem

Lemma 2.16 The global inf-sup condition (2.48) holds if and only if there exists an op-
erator Πh ∈ L(X0,Xh0) satisfying:

b(v, qh) = b(Πhv, qh) ∀ qh ∈Mh ∀ v ∈X0 , (2.64)

|Πhv|1 ≤ C|v|1 ∀ v ∈X0 (2.65)

with a constant C > 0 independent of h > 0.

Proof. See the proof [30, Lemma 1.1, §1, Chapter II] for an abstract bilinear form b(·, ·).
�

Remark 2.17 From the proof of [30, Lemma 1.1, §1, Chapter II] follows that the discrete
inf-sup constant in condition (2.48) is determined by

γ = γε/C

where C > 0 is the stability constant in (2.65) and γε > 0 is the inf-sup constant in
condition (2.31) for the continuous spaces.

Now, we construct the H1 stable operator Πh explicitly. To this end, let ih : H1(Ω)→Xh

be the interpolation operator of Scott–Zhang type. This type of interpolation operators
defined for non-smooth functions on affine equivalent meshes and preserving Dirichlet ho-
mogeneous boundary condition was introduced in [70], and extended in [35] to the case of
shape regular meshes including hanging nodes. A good source which supplies construction
principles of Scott–Zhang operator for higher order elements is the text book of Ern and
Guermond [24]. Following ideas therein we explain briefly the construction of Scott–Zhang
operator ih : H1(Ω)→Xh for vector valued functions. Let {a1, . . . ,aN} be the Lagrange
nodal points and let {ϕ1, . . . ,ϕN} be the set of the global shape functions of Xh. With
each node ai we associate

σi :=


Ki , if ai is in interior of Ki ∈ Th ,
Ei , if ai /∈ ∂Ω and ai is on the face Ei ∈ Eh ,
Ei ⊂ ∂Ω , if ai ∈ ∂Ω and ai is on the face Ei ∈ Eh .

We note that the choice of Ei in the definition of σi is not unique. Let ni be the number of
nodes belonging to σi. We denote the local shape functions restricted to σi and associated
with the nodes lying in σi by {ϕi,1, . . . ,ϕi,ni}, and set conventionally ϕi,1 = ϕi, i =
1, . . . , N . For each such set of nodal functions on σi we construct a dual L2(σi) basis
{ψi,1, . . . ,ψ1,ni

} with ∫
σi

ϕi,qψi,r = δqr , 1 ≤ q, r ≤ ni .
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Furthermore, we define nodal functionals Ni : H1(Ω)→ R by

Ni[v] :=

∫
σi

vψi .

Then, the Scott-Zhang interpolation operator is defined for v ∈H1(Ω) by the condition

Ni[v − ihv] = 0 ∀i = 1, . . . , N

which implies the following representation

(ihv)(x) =
N∑
i=1

Ni[v]ϕi(x)

Obviously, the Scott–Zhang operator preserves homogeneous boundary conditions, i.e.,
v|∂Ω = 0 ⇒ (ihv) |∂Ω = 0, and furthermore satisfies ihvh = vh for all vh ∈ Xh. It has
been proven that this kind of interpolation operator is H1 stable

|ihv|1,K ≤ C|v|1,ω(K) ∀ v ∈H1(Ω) (2.66)

and satisfies on each K ∈ Th the approximation property

‖v − ihv‖0,K + hK |v − ihv|1,K ≤ ChlK |v|l,ω(K) ∀ v ∈H l(ω(K)) 1 ≤ l ≤ k + 1 , (2.67)

where ω(K) denotes a certain local neighbourhood of K. Furthermore we define the global
operator Ih : X0 →Xh by

Ihv =
∑
E∈E

〈v · nE, ε〉E
〈ΦE · nE, ε〉E

ΦE .

Integrating by parts for qh ∈ Mh, qK := qh|K and taking into account the fact that the
bubble function ΦE vanishes on E(K) \ E, implies

(div(εIhv), qh) =
∑
K∈Th

(
div(εIhv), qK

)
K

=
∑
K∈Th

∑
E∈E(K)

qK〈Ihv · nEK , ε〉E

=
∑
K∈Th

∑
E∈E(K)

∑
E′∈E

qK
〈v · nE′ , ε〉E′
〈ΦE′ · nE′ , ε〉E′

〈ΦE′ · nEK , ε〉E

=
∑
K∈Th

∑
E∈E(K)

〈v · nEK , εqK〉E =
∑
K∈Th

(
div(εv), qK

)
K

=
(
div(εv), qh

)
.

(2.68)
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Employing the estimates from [36]

〈ΦE · nE, ε〉E ≥ Cε0h
n−1
K ∀ E ∈ E(K) , (2.69)

‖v‖0,E ≤ Ch
1/2
K

{
h−1
K ‖v‖0,K + |v|1,K

}
∀ v ∈H1(K) (2.70)

and
|ΦE|1,K ≤ Ch

n/2−1
K ∀ K ∈ Th (2.71)

yields for shape regular meshes

|Ihv|21,Ω ≤ C
∑
K∈Th

{
h−2
K ‖v‖

2
0,K + |v|21,K

}
∀ v ∈H1

0(Ω) . (2.72)

Now, we define the interpolation operator Πh : H1
0(Ω)→Xh0 by

Πhv := ihv + Ih(v − ihv) ∀ v ∈H1
0(Ω) . (2.73)

Its main properties are summarised in the following lemma.

Lemma 2.18 For the shape regular meshes the operator Πh defined in (2.73) is H1 stable
in the sense of (2.65) and satisfies the condition (2.64) .

Proof. From the stability of ih in (2.66) and of Ih in (2.72) we obtain for the operator
Πh defined in (2.73) the following estimate

|Πhv|21,Ω ≤ 2|ihv|21,Ω + 2|Ih(v − ihv)|21,Ω

≤ C

{
|v|21,Ω +

∑
K∈Th

{
h−2
K ‖v − ihv‖

2
0,K + |v − ihv|21,K

}}
≤ C|v|21,Ω .

(2.74)

In (2.68) we have already shown that the operator Πh satisfies the condition (2.64). �

The main result concerning the global inf-sup stability of the pair (Xh,Mh) is established
by the following lemma.

Lemma 2.19 The global inf-sup condition (2.48) holds for the finite element pair (Xh,Mh)
on shape regular meshes.

Proof. Apply Lemma 2.16 and 2.18 . �

Now, we are able to state our main result.

Theorem 2.20 Let Th be shape regular. Then, the pair (Xh,Mh) of mapped (Qk, P
disc
k−1 )

finite element spaces satisfies the discrete inf-sup condition (2.48).
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Proof. Let the partition of Ω be Th itself. Therefore each subdomain Ωr is a certain cell
K ∈ Th. From the previous lemma follows that the pair (Xh,Mh) satisfies the global inf-
sup condition (2.48). In view of Lemma 2.14 it remains to prove the local inf-sup condition
(2.50). To this end, we define for the arbitrary pressure q ∈ Mh(K), q 6= 0, the velocity

v̂ : K̂ → R by
v̂(x̂) := −B−TK ·

(
∇̂(q ◦ FK)

)
(x̂) · b̂(x̂) (2.75)

where FK is the multilinear reference transformation explained in Subsection 2.3.1,∇̂ =(
∂

∂x̂1

, . . . ,
∂

∂x̂n

)T
denotes the column nabla operator with respect to the reference coor-

dinates x̂1, . . . , x̂n, and

b̂(x̂) :=
n∏
i=1

(
1− x̂2

i

)
(2.76)

stands for the bubble function which is positive in the interior of K̂. Obviously, we have
v̂|∂ bK = 0, v̂ ∈ Q̂k due to ∇̂(q ◦ FK) ∈ P̂ k−2, and therefore v = v̂ ◦ F−1

K ∈ Xh(K). By
virtue of the chain rule we have(

∇̂q̂
)
(x̂) = BT

K ·
{
I +B−1

K DGK(x̂)
}T · (∇q)(FK(x̂)

)
(2.77)

where q̂ = q◦FK . Then, integrating by parts, using reference transformation and employing
(2.75) yields(
div(εv), q

)
K

= −(εv,∇q)K

= −
∫
bK
ε
(
FK(x̂)

)
· v̂T (x̂) ·

(
∇q
)(
FK(x̂)

)
· | detDFK(x̂)| dx̂

=

∫
bK
ε
(
FK(x̂)

)
· b̂(x̂) ·

(
∇q
)T (
FK(x̂)

)
·
{
I +B−1

K DGK(x̂)
}
·
(
∇q
)(
FK(x̂)

)
· | detDFK(x̂)| dx̂ .

(2.78)

Next, the shape regularity assumptions (2.40) and (2.41) imply

zT
{
I +B−1

K DGK(x̂)
}
z ≥ (1− γ0) ‖z‖2 ∀ z ∈ Rn .

Consequently, we obtain for b̂ ≥ 0 and ε ≥ ε0 > 0 the lower bound of (2.78)(
div(εv), q

)
K
≥ (1− γ0)ε0

∫
bK
b̂(x̂) ·

∣∣(∇q)(FK(x̂)
)∣∣2 · | detDFK(x̂)| dx̂ . (2.79)

From (2.77), (2.40) and (2.41) we get for the shape regular meshes

1

(1 + γ0)2‖BK‖2

∣∣(∇̂q̂)(x̂)
∣∣2 ≤ ∣∣(∇q)(FK(x̂)

)∣∣2 ≤ ‖B−1
K ‖2

(1− γ0)2

∣∣∇̂q̂)(x̂)
∣∣2 . (2.80)



30 Reactor flow problem

Then, we infer from (2.44) and (2.42) that∫
bK b̂(x̂) ·

∣∣(∇q)(FK(x̂)
)∣∣2 · | detDFK(x̂)| dx̂∫

bK
∣∣(∇q)(FK(x̂)

)∣∣2 · | detDFK(x̂)| dx̂

≥ (1− γ0)2+n

(1 + γ0)2+n‖BK‖2 ‖B−1
K ‖2

∫
bK b̂(x̂)

∣∣(∇̂q̂(x̂)
∣∣2 dx̂∫

bK
∣∣(∇̂q̂(x̂)

∣∣2 dx̂ .

(2.81)

Collecting (2.79),(2.81) and (2.42) implies

(
div(εv), q

)
K
≥ C1ε0

(
1− γ0

1 + γ0

)2+n

(1− γ0) |q|21,K . (2.82)

Hereby C1 > 0 is the constant satisfying

‖
√
b̂ ∇̂q̂‖0, bK ≥√C1 ‖∇̂q̂‖0, bK

due to the equivalence of the norms
∥∥√b̂ ∇̂

(
·
)∥∥

0, bK and ‖∇̂
(
·
)
‖0, bK on the finite dimensional

factor space P̂k−1/R. Next, we deduce from v = v̂ ◦ F−1
K and (2.77)

v̂(x̂) = −b̂(x̂) ·
{
I +B−1

K DGK(x̂)
}T · (∇q)(FK(x̂)

)
,

and therefore we obtain with b̂ ≤ 1 the estimate

‖v‖0,K ≤ (1 + γ0) |q|1,K . (2.83)

Employing twice transformation rule, (2.44) and(
∇v
)(
FK(x̂)

)
=
{
I +B−1

K DGK(x̂)
}−T

B−TK · (∇̂v̂)(x̂) ,

we get

|v|21,K ≤ (1− γ0)−2 ‖B−TK ‖2

∫
bK

(∇̂v̂)(x̂) : (∇̂v̂)(x̂) | detFK(x̂)| dx̂

≤ n!(1 + γ0)n |SK | (1− γ0)−2 ‖B−TK ‖2 |v̂|2
1, bK .

From the fact that the norms | · |1, bK and ‖ · ‖0, bK are equivalent on the finite dimensional

space Q̂k∩H1
0(K̂) follows the existence of a constant C2 > 0 such that |v̂|1, bK ≤ √C2‖v̂‖0, bK .

Then, using again transformation rule, (2.43) and (2.42), we get

|v|1,K ≤ C2

(
1 + γ0

1− γ0

)n/2
(1− γ0)−1 h−1

SK
‖v‖0,K ∀ v ∈Xh(K) . (2.84)
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Analogously, we can state

‖q‖0,K ≤ C3

(
1 + γ0

1− γ0

)n/2
(1 + γ0)hSK |q|1,K ∀ q ∈Mh(K) , (2.85)

where the constant C3 > 0 satisfies

‖q̂‖0, bK ≤ C3|q̂|1, bK ∀ q̂ ∈ P̂k−1/R

due to the fact that the norms ‖ · ‖0, bK and | · |1, bK are equivalent on the finite dimensional

factor space P̂k−1/R. Finally, using (2.82)-(2.85) we state the estimate

(
div(εv), q

)
K
≥ C1ε0

(
1− γ0

1 + γ0

)2+n

(1− γ0) |q|21,K

≥ C1ε0

(
1− γ0

1 + γ0

)2+n
1− γ0

1 + γ0

‖v‖0,K |q|1,K

≥ C1C2C3ε0

(
1− γ0

1 + γ0

)2

|v|1,K ‖q‖0,K

from which we conclude immediately the local inf-sup (2.50) condition with

λ = C1C2C3ε0

(
1− γ0

1 + γ0

)2

.

�

Remark 2.21 The inf-sup constant in (2.48) satisfies

γ =

min

{
1

2
,

γ2
ε

2MbC2

}
{

1

C2
1C

2
2C

2
3ε

2
0

(
1 + γ0

1− γ0

)4

+

(
γε
CMb

)2
}1/2

(2.86)

due to (2.62) and Remark 2.17. The constant C > 0 in the above relation corresponds to
the stability constant in (2.65).

Combining results of Theorem 2.20 and Lemma 2.11, we deduce

Theorem 2.22 Let Th be shape regular. Then, the discrete problem (2.47) has a unique
solution (uh, ph) in the space of mapped (Qk, P

disc
k−1 ).
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2.3.3 Solvability of nonlinear discrete saddle point problem

Let g∗h be the extension of gh such that

g∗h = rhgµ and g∗h|Γ = (rhgµ)|Γ

where rh : W →W h denotes the special interpolation operator which satisfies the mod-
ified divergence constraint in discrete sense and has the usual approximation properties.
We consider mapped elements (Qk, P

disc
k−1 ). The existence of the interpolation operator

rh : W →W h guarantees the following lemma.

Lemma 2.23 There exists an interpolation operator rh : W →W h such that

|v − rhv|1 ≤ Chl−1 ‖v‖l ∀ v ∈W ∩H l(Ω) 1 ≤ l ≤ k + 1 , (2.87)

and
b(rhv, qh) = 0 ∀ qh ∈Mh ∀ v ∈W . (2.88)

Proof. Let Bh : W h →M ′
h be the linear continuous operator defined by

〈Bhvh, qh〉Mh
:= b(vh, qh) ∀ vh ∈W h ∀ qh ∈Mh .

After [30, Lemma 4.1, §4, Chapter I], the operator Bh is an isomorphism from W⊥
h onto

M ′
h with

γ |vh|1 ≤ ‖Bhvh‖M ′
h

∀ vh ∈W⊥
h (2.89)

if and only if the inf-sup condition (2.48) holds. Here, M ′
h denotes the dual space of Mh

and W⊥
h is L2 orthogonal complement of W h in Xh0. Then, for each v ∈W there exists

a unique zh(v) ∈W⊥
h such that

〈Bhzh(vh), qh〉Mh
= b(zh(v), qh) = −b(ihv, qh) ∀ qh ∈Mh (2.90)

where ih : H1(Ω)→Xh0 is the interpolation operator of Scott–Zhang type with the usual
stability and approximation properties (2.66) and (2.67). Thus, for all v ∈W holds

b(zh(v), qh) = −b(ihv − v, qh) ∀ qh ∈Mh , (2.91)

and according to (2.89) we obtain

|zh(v)|1 ≤
Cε
γ
|ihv − v|1 , (2.92)

Taking
rhv = ihv + zh(v)

and using (2.67), we obtain

|v − rhv|1 ≤
(

1 +
Cε
γ

)
|v − ihv|1 ≤ Chl−1‖v‖l
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for all v ∈W and 1 ≤ l ≤ k + 1. The property (2.88) follows from the definition of rhv
and identity (2.90). �

We can state discrete estimates.

Lemma 2.24 Let gµ be the extension of g defined by (2.13) and g∗h = rhgµ . For any
δ > 0 there exist sufficiently small parameters h > 0, µ > 0 such that

|d(uh + g∗h; g
∗
h,uh)| ≤ δ ‖β‖0,∞ |uh|1

(
|uh|1 + ‖g‖0

)
∀ u ∈Xh0 , (2.93)

|ñ(uh, g
∗
h,uh)| ≤ δ |uh|21 ∀ uh ∈Xh0 . (2.94)

Proof. Let uh ∈Xh0. Employing stability of interpolation and extension operators

‖rhgµ‖0 ≤ ‖rhgµ‖1 ≤ C‖gµ‖1 ≤ C‖g‖0 , (2.95)

implies

|d(uh + g∗h; g
∗
h,uh)| ≤ |d(uh + g∗h, g

∗
h − gµ,uh)|+ |d(uh + g∗h, gµ,uh)|

≤ ‖β‖0,∞ (‖uh‖0 + ‖g‖0) ‖g∗h − gµ‖0 ‖uh‖0

+ ‖β‖0,∞ (‖uh‖0 + ‖g‖0) ‖uh · gµ‖0 .

The bound of the interpolation error follows from the properties of extension gµ|Γ = g

‖g∗h − gµ‖l ≤ Ch|gµ|1 ≤ Ch‖g‖0 , l = 0, 1. (2.96)

Then, according to Lemma 2.4 we can state that for each δ > 0 there exists µ > 0 such
that

|d(uh + g∗h; g
∗
h,uh)| ≤ δ ‖β‖0,∞ |uh|1 (‖uh‖0 + ‖g‖0)

holds for sufficiently small h > 0. For the trilinear term we have the estimate

|ñ(uh, g
∗
h,uh)| ≤ |ñ(uh, g

∗
h − gµ,uh)|+ |ñ(uh, gµ,uh)| . (2.97)

Using (2.10), (2.96) and Poincaré inequality, we obtain for sufficiently small h > 0

|ñ(uh, g
∗
h − gµ,uh)| ≤ Ch‖g‖0 ‖uh‖2

1 ≤ δ ‖g‖0 ‖uh‖2
1 . (2.98)

Next, we have

ñ(uh, gµ,uh) =
1

2

[
n(uh, gµ,uh)− n(uh,uh, gµ)

]
. (2.99)

The first term in the above square bracket gets small due to Lemma 2.4 and the smallness of
the second one follows from the Cauchy-Schwarz inequality, (2.19) and Poincaré inequality

n(uh,uh, gµ) ≤ C‖uh‖1‖uh · gµ‖0 ≤ Cδ|uh|1 . (2.100)

Collecting (2.97)-(2.100), we deduce the estimate (2.94). �
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Remark 2.25 The extension g∗h is used only for the sake of error analysis and does not
need to be constructed during numerical calculations.

Let Gh : W h →W h be the operator defined by[
Gh(wh),vh

]
:=a(wh + g∗h,vh) + c(wh + g∗h,vh)− (f ,vh)

+ ñ(wh + g∗h,wh + g∗h,vh) + d(wh + g∗h;wh + g∗h,vh) .
(2.101)

Then, the discrete problem (2.46) can be rewritten as operator problem

Find wh ∈W h such that[
Gh(wh),vh

]
= 0 ∀ vh ∈W h. (2.102)

Now, we show that the discrete anologon of Lemma 2.5 holds.

Lemma 2.26 The mapping Gh defined in (2.101) is continuous and there exists r > 0 s.t.[
Gh(uh),uh

]
> 0 ∀ uh ∈W h with |uh|1 = r. (2.103)

Proof. The continuity of the operator Gh can be shown in the same way as in the proof
of Lemma 2.5. From Lemma 2.24 we deduce by analogy to the proof of Lemma 2.5[

G(uh),uh
]
≥
{ ε0

Re
− δ(1 + ‖β‖0,∞)

}
|uh|21

−
{ ε1

Re
‖g‖0 + C

1

Re
‖α‖0,∞‖g‖0 + δ‖β‖0,∞‖g‖0 + C‖g‖2

0 + C‖f‖0

}
|uh|1.

The choice

0 < δ < δ0 :=
ε0

Re

(
1 + ‖β‖0,∞

)−1
,

and r > r0 with

r0 :=

ε1

Re
‖g‖0 +

1

Re
C‖α‖0,∞‖g‖0 + δ‖β‖0,∞‖g‖0 + C‖g‖2

0 + C‖f‖0

ε0

Re
− δ(1 + ‖β‖0,∞)

, (2.104)

yields the assertion (2.103). �

Now, we can state the main result concerning solvability of the discrete nonlinear problem
(2.46).

Theorem 2.27 The discrete nonlinear problem (2.46) has at least one solution belonging
to the space of mapped (Qk, P

disc
k−1 ) elements.
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Proof. Employing results of Lemma 2.26, the existence of the discrete velocity is a
straightforward consequence of Lemma 2.6 applied to the operator Gh. The reconstruction
of the discrete pressure can be proceeded in the same way as in the continuous problem.
From the inf-sup condition satisfied due to Theorem 2.20 we deduce the existence of the
discrete pressure. �

For sufficiently small data we can also show that the discrete solution is unique.

Theorem 2.28 If ‖g‖0, ‖f‖−1 are sufficiently small, then the solution of the discrete
problem (2.46) is unique.

Proof. We follow the proof line of Theorem 2.10. Assume that (uh1, ph1) and (uh2, ph2)
are two different solutions of (2.46). Then, we obtain

0 =
[
G(uh1)−G(uh2),uh1 − uh2

]
= a(uh1 − uh2,uh1 − uh2) + c(uh1 − uh2,uh1 − uh2)− (f ,uh1 − uh2)

+ ñ(uh1 + g∗h,uh1 + g∗h,uh1 − uh2)− ñ(uh2 + g∗h,uh2 + g∗h,uh1 − uh2)

+ (β|uh1 + g∗h|(uh1 + g∗h),uh1 − uh2)

−
(
β|uh2 + g∗h|(uh2 + g∗h),uh1 − uh2)

≥ ε0

Re
‖uh1 − uh2‖2

1 − ‖f‖−1‖uh1 − uh2‖1

− |ñ(uh1 − uh2,uh2,uh1 − uh2)| − |ñ(uh1 − uh2, g
∗
h,uh1 − uh2)|

− ‖β‖0,∞
∣∣(|uh1 + g∗h|(uh1 − uh2),uh1 − uh2

)∣∣
− ‖β‖0,∞

∣∣((|uh1 + g∗h| − |uh2 + g∗h|)(uh2 + g∗h),uh1 − uh2

)∣∣ .

(2.105)

From stability estimate (2.95) and Cauchy-Schwarz inequality we deduce∣∣(|uh1 + g∗h| (uh1 − uh2),uh1 − uh2

)∣∣ ≤ C {‖uh1‖0 + ‖g‖0} ‖uh1 − uh2‖2
1 , (2.106)∣∣((|uh1 + g∗h| − |uh2 + g∗h|)(uh2 + g∗h),uh1 − uh2

)∣∣
≤ C {‖uh2‖0 + ‖g‖0} ‖uh1 − uh2‖2

1 .
(2.107)

According to (2.10) we have

|ñ(uh1 − uh2,uh2,uh1 − uh2)| ≤ C‖uh2‖1‖uh1 − uh2‖2
1, (2.108)

and by (2.94) we can find µ such that

|ñ(uh1 − uh2, g
∗
h,uh1 − uh2)| ≤ ε0

4Re
‖uh1 − uh2‖2

1. (2.109)

Employing stability estimate (2.95) we find by analogy to the continuous case the upper
bound for the discrete solution

‖uh‖1 ≤
‖f‖−1 + C1‖g‖0 + C2‖g‖2

0
ε0

Re
− C3‖β‖0,∞‖g‖0

:= C
(
‖g‖0, ‖f‖−1

)
∀ uh ∈W h . (2.110)
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Combining (2.105)-(2.110) and using the inequality

‖f‖−1‖uh1 − uh2‖1 ≤
ε0

4Re
‖uh1 − uh2‖2

1 +
2Re

ε0

‖f‖2
−1 ,

we state

0 ≥ ε0

2Re
‖uh1 − uh2‖2

1 −
2Re

ε0

‖f‖2
−1 − C

(
‖g0‖0, ‖f‖−1

)
‖β‖0,∞‖uh1 − uh2‖2

1

− ε0

4Re
‖uh1 − uh2‖2

1 − C
(
‖g‖0, ‖f‖−1

)
‖uh1 − uh2‖2

1 .
(2.111)

The upper bound C(‖g‖0, ‖f‖1) in (2.110) gets small for sufficiently small ‖g‖0, ‖f‖1.
Consequently, the right hand side of (2.111) is nonnegative. This implies uh1 = uh2. From
Theorem 2.20 follows immediately ph1 − ph2 = const. �

2.3.4 Error estimates

Let ξh ∈W h. Combining equations (2.8) and (2.46) we deduce

0 = a(uh − u, ξh) + c(uh − u, ξh)
+ ñ(uh,uh, ξh)− n(u,u, ξh)

+ d(uh;uh, ξh)− d(u;u, ξh)

− b(ξh, ph − p) .

Choosing ξh = uh − vh with vh such that vh − g∗h ∈W h, we obtain the identity

a(ξh, ξh) + c(ξh, ξh) = a(u− vh, ξh) + c(u− vh, ξh)
+
{
n(u,u, ξh)− ñ(vh,vh, ξh)

}
+
{
ñ(vh,uh, ξh)− ñ(uh,uh, ξh)

}
− ñ(vh, ξh, ξh)

+
{
d(u;u, ξh)− d(uh;uh, ξh)

}
+ b(ξh, ph − p) .

(2.112)

The first two terms on the right hand side we estimate by using Cauchy-Schwarz inequality

a(u− vh, ξh) ≤ ‖ε‖0,∞ |u− vh|1 |ξh|1 , (2.113)

c(u− vh, ξh) ≤ Cε ‖u− vh‖1 ‖ξh‖1 . (2.114)
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We denote by jh : L2
0(Ω) ∩ Hk(Ω) → Mh the finite element interpolation operator for

the pressure. Applying Hölder inequality and the optimal interpolation estimate for the
pressure, implies

b(ξh, ph − p) = b(ξh, jhp− p)
≤ (|ε|1,3 + ‖ε‖0,∞) ‖ξh‖1 ‖jhp− p‖0

≤ Cε h
k ‖ξh‖1 |p|k .

(2.115)

Employing a priori estimate and the continuity of the trilinear form n(·, ·, ·), we obtain for
the difference in the first brace

n(u,u, ξh)− ñ(vh,vh, ξh)

= n(u,u− vh, ξh) + n(u− vh,vh − u, ξh) + n(u− vh,u, ξh)
≤ Cε‖u‖1 ‖u− vh‖1 ‖ξh‖1 + Cε‖u− vh‖2

1 ‖ξh‖1 .

(2.116)

From the a priori estimate for the discrete velocity we deduce the bound for the difference
in the second brace

ñ(vh,uh, ξh)− ñ(uh,uh, ξh) = −ñ(ξh,uh, ξh)

≤ C(‖g‖0, ‖f‖−1)‖ξh‖2
1 .

(2.117)

From the definition of ñ(·, ·, ·) follows immediately

ñ(vh, ξh, ξh) = 0 . (2.118)

We rewrite the third difference in the brace

d(u;u, ξh)− d(uh;uh, ξh)

= d(u;u− vh, ξh) + d(u;vh − uh, ξh)
+ d(u;uh, ξh)− d(vh;uh, ξh)

+ d(vh;uh, ξh)− d(uh;uh, ξh) .

(2.119)

Employing continuity of d(·; ·, ·), a priori estimate (2.110) and the inverse triangle inequal-
ity, implies

d(u;u, ξh)− d(uh;uh, ξh)

≤ Cε‖u‖1 ‖u− vh‖1 ‖ξh‖1

+ C(‖g‖0, ‖f‖−1) ‖ξh‖2
1

+ Cε‖u− vh‖1 ‖w‖1

+ C(‖g‖0, ‖f‖−1) ‖ξh‖2
1 .

(2.120)

Collecting (2.113)-(2.120) and using Poincaré inequality, we obtain the estimate{
ε0

Re
− C(‖g‖0, ‖f‖−1)

}
|ξh|1 ≤ ‖ε‖0,∞ |u− vh|1 + C‖u− vh‖1

+ C‖u‖1 ‖u− vh‖1 + C‖u− vh‖2
1 .

(2.121)

Now, we are able to state the error estimates for finite element discretisation of nonlinear
reactor flow problem.
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Theorem 2.29 Let (u, p) ∈ X ×M be solution of the weak problem (2.8). The discrete
solution (uh, ph) ∈Xh×Mh belonging to the space of mapped (Qk, P

disc
k−1 ) elements satisfies

the following error estimates

|u− uh|1 ≤ Chk and ‖p− ph‖0 ≤ Chk , (2.122)

provided that Re > 0, ‖g‖0, ‖f‖−1 and h > 0 are sufficiently small.

Proof. Let u = w + gµ ∈ X and p ∈ M be the weak solution of problem (2.46) where
w ∈W solves (2.24) and gµ is the extension defined by (2.13). We consider the solution of
discrete problem (2.46) in the mapped space pair (Qk, P

disc
k−1 ). We set as usual uh = wh+g∗h

where wh ∈W h solves (2.102) and g∗h = rhgµ as in Lemma 2.24. The weak solution can
be interpolated by rhw + g∗h where rhw is the finite element interpolant established in
Lemma 2.23. Setting ξh = wh − rhw ∈W h and using triangle inequality, implies

|u− uh|1 ≤ |w − rhw|1 + |gµ − rhgµ|1 + |ξh|1 .

Taking vh = rhw+ g∗h in (2.121) and employing interpolation estimates (2.87) and (2.67),
we obtain for sufficiently small data and mesh parameter h > 0

|ξh|1 ≤ Chk . (2.123)

Consequently, the error bound for velocity holds. In the next stage we estimate the pressure
error. To this end, we taking qh = ph−jhp. The bound for the pressure error can be derived
from the following identity

−b(ξh, qh) = −b(ξh, p− jhp) + a(u− uh, ξh) + c(u− uh, ξh)
+ n(u,u, ξh)− ñ(uh,uh, ξh)

+ d(u;u, ξh)− d(uh;uh, ξh) .

Again, using the continuity of bilinear form b(·, ·), the interpolation error estimate for
the pressure, exploiting bounds in (2.113)-(2.120), applying the discrete inf-sup condition
(2.48), we get from (2.123)

‖qh‖0 ≤
C

γ
hk +

C

γ
hk|ξh|1 ≤ Chk .

Taking qh = ph−jhp and invoking interpolation error estimate, we deduce from the triangle
inequality the error bound

‖p− ph‖0 ≤ ‖p− jhp‖0 + ‖qh‖0 ≤ Chk

which completes the proof. �
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Remark 2.30 The construction of rhgµ is not required during the numerical computa-
tions. Theoretical results stated in [26, 33] and our numerical tests indicate that the re-
striction

(
rhgµ

)
|Γ can be replaced by the usual Lagrange interpolant of g.

Remark 2.31 Results stated in [8] can be applied to our model problem. The error analysis
done for the nonsymetric saddle point problem involves more sophisticated techniques and
gives not optimal order of convergence since the order of L2 interpolation error for the used
pressure elements is suboptimal.

2.4 Numerical results

2.4.1 Problem with smooth solution

We start our numerical investigations solving a two dimensional problem which is posed on
the domain Ω = (0, 1)2. We apply stable (Q2, P

disc
1 ) and (Q3, P

disc
2 ) elements on cartesian

meshes. The coarse mesh consists of 2 × 2 squares and will be uniformly refined. The

Table 2.1: Total number of degrees of freedom (dof) for velocity and pressure.

level dofs
Q2 P disc

1 Q3 P disc
2

0 50 12 98 24
1 162 48 338 96
2 578 192 1,250 384
3 2,178 768 4,802 1,536
4 8,450 3,072 18,818 6,144
5 33,282 12,288 74,498 24,576
6 132,098 49,152 296,450 98,304

corresponding numbers of degrees of freedom for velocity and pressure are shown in Table
2.1. First, we report results for Stokes-like problem

Find (u, p) ∈X ×M , with u|Γ = g, such that

a(u,v)− b(v, p) + b(u, q) = (f ,v) ∀ (v, q) ∈ V . (2.124)

The right hand side f and boundary condition g are chosen such that
u(x, y) =

1

ε(x, y)

(
sin (πx) sin (πy)
cos (πx) cos (πy)

)
p(x, y) = 2 cos (πx) sin (πy)

(2.125)
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is the solution of the problem. The fictitious porosity distribution is defined as

ε(x, y) = 1− 1

2
sin (πx) sin (πy) . (2.126)

The velocity and pressure error measured with H1 seminorm and L2 norm, respectively, are
presented in Table 2.2 and Table 2.3. Additionally, we report the velocity error measured
with L2 norm.

Table 2.2: Stokes-like problem: velocity and pressure errors with rates of convergence for
(Q2, P

disc
1 ) elements

level |u− uh|1 rate ‖p− ph‖0 rate ‖u− uh‖0 rate
0 1.070e+0 3.143e−1 7.765e−2
1 2.777e−1 1.947 6.969e−2 2.173 1.038e−2 2.903
2 6.528e−2 2.088 1.568e−2 2.153 1.243e−3 3.062
3 1.642e−2 1.991 3.828e−3 2.034 1.579e−4 2.977
4 4.113e−3 1.998 9.520e−4 2.008 1.981e−5 2.994
5 1.029e−3 1.999 2.377e−4 2.002 2.479e−6 2.999
6 2.572e−4 2.000 5.940e−5 2.000 3.100e−7 3.000

Table 2.3: Stokes-like problem: Velocity and pressure errors with rates of convergence for
(Q3, P

disc
2 ) elements.

level |u− uh|1 rate ‖p− ph‖0 rate ‖u− uh‖0 rate
0 2.539e−1 6.894e−2 1.349e−2
1 3.051e−2 3.057 8.061e−3 3.096 7.720e−4 4.127
2 5.639e−3 2.436 9.939e−4 3.020 7.410e−5 3.381
3 7.161e−4 2.977 1.219e−4 3.028 4.713e−6 3.975
4 8.983e−5 2.995 1.511e−5 3.012 2.957e−7 3.994
5 1.124e−5 2.999 1.881e−6 3.005 1.850e−8 3.998
6 1.405e−6 3.000 2.348e−7 3.003 1.157e−9 4.000

Next, we report in the same way results for Brinkman–Forcheimer problem with Reynolds
number Re = 1. We stop the fixed point iteration (2.47) if two successive solutions of
algebraic systems differ less than 1e− 8 with respect to the Euclidian norm. In Table 2.4
and 2.5 results are presented for (Q2, P

disc
1 ) and (Q3, P

disc
2 ) elements, respectively. The

calculated rates of convergence are in good agreement with theoretical results from Section
2.3. The asymptotic behaviour of total error |u−uh|1 + ‖p− ph‖0 is shown in Figures 2.1
and 2.2 for Stokes-like and Brinkman problem, respectively.
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Table 2.4: Velocity and pressure errors with rates of convergence for (Q2, P
disc
1 ) elements.

level |u− uh|1 rate ‖p− ph‖0 rate ‖u− uh‖0 rate
0 1.114e+0 1.886e+0 6.949e−2
1 2.799e−1 1.992 1.257e−1 3.907 9.508e−3 2.870
2 6.532e−2 2.200 1.663e−2 2.918 1.219e−3 2.964
3 1.642e−2 1.991 3.845e−3 2.113 1.572e−4 2.955
4 4.113e−3 1.998 9.523e−4 2.013 1.979e−5 2.989
5 1.029e−3 1.999 2.377e−4 2.002 2.479e−6 2.997
6 2.572e−4 2.000 5.940e−5 2.001 3.100e−7 2.999

Table 2.5: Velocity and pressure errors with rates of convergence for (Q3, P
disc
2 ) elements.

level |u− uh|1 rate ‖p− ph‖0 rate ‖u− uh‖0 rate
0 2.512e−1 8.567e−2 1.277e−2
1 3.047e−2 3.043 8.329e−3 3.363 7.614e−4 4.068
2 5.638e−3 2.434 1.005e−3 3.051 7.334e−5 3.376
3 7.160e−4 2.977 1.221e−4 3.041 4.697e−6 3.965
4 8.983e−5 2.995 1.511e−5 3.014 2.954e−7 3.991
5 1.124e−5 2.999 1.882e−6 3.006 1.850e−8 3.997
6 1.405e−6 3.000 2.348e−7 3.003 1.157e−9 3.999

2.4.2 Channel flow problem in packed bed reactors

Let the reactor channel be represented by Ω = (0, L)× (−R,R) where R = 5 and L = 60.
In all computations we use the porosity distribution which is determined experimentally
and takes into account the effect of wall channelling in packed bed reactors

ε(x, y) = ε(y) = ε∞

{
1 +

1− ε∞
ε∞

e−6(R−|y|)
}
. (2.127)

We distinguish between the inlet, outlet and membrane parts of domain boundary Γ, and
denote them by Γin, Γout and Γw, respectively. Let

Γin = {(x, y) ∈ Γ : x = 0} ,
Γout = {(x, y) ∈ Γ : x = L} ,
Γw = {(x, y) ∈ Γ : y = −R, y = R} .

At the inlet Γin and at the membrane wall we prescribe Dirichlet boundary conditions,
namely the plug flow conditions

u|Γin = uin = (uin, 0)T ,

and

u|Γw = uw =

{
(0, uw)T for y = −R ,
(0,−uw)T for y = R ,
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Figure 2.1: Stokes-like problem: discretisation error.

whereby uin > 0, uw > 0. At the outlet Γout we set the following outflow boundary
condition

− 1

Re

∂u

∂n
+ pn = 0

where n denotes the outer normal. In order to avoid discontinuity between the inflow
and wall conditions we replace constant profile by trapezoidal one with zero value at the
corners. Our computations are carried out on the cartesian mesh which on the coarse level
consists of 20 stretched rectangular cells (see Figure 2.3) and will be three times uniformly
refined. The plots of velocity magnitude in fixed bed reactor (uw = 0) are presented along
the vertical axis x = 50. In the investigated reactor the inlet velocity is assumed to be
normalised (uin = 1). Due to the variation of porosity we might expect higher velocity
at the reactor walls Γw. This tunnelling effect can be well observed in Figure 2.4 which
shows the velocity profiles for different Reynolds numbers. We remark that the maximum
of velocity magnitude decreases with increasing Reynolds numbers. Next, we investigated
the effect of dosing through the reactor wall Γw. This configuration corresponds to the
packed bed reactor (uw > 0). The uniform dosing becomes manifest in self-similar velocity
profiles which are presented in Figure 2.5. The self-similarity of velocity profiles in packed
bed reactor can be also confirmed by Figure 2.6 which shows the maxima of velocity
magnitude

umax(x) := max
−5≤y≤5

|u(x, y)| .
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Figure 2.2: Brinkman problem: discretisation error.

Figure 2.3: Initial mesh for reactor flow problem.

The considered maximal values of velocity grow almost linearly. The slopes given in the
legend of Figure 2.6 correspond to the ratio of the wall velocity to the inlet velocity. We call
the flow in fixed bed reactor developed if the vertical component of velocity vanishes and
the horizontal component of velocity depends only on the vertical direction, i.e. u(x, y) =
(u(y), 0)T . In this case one can show that the pressure depends linearly on the length
coordinate. The short developing zone which is characteristic of this type of reactors can
be recognised in Figures 2.7 and 2.8 whereas the linear distribution of the pressure is
demonstrated in Figure 2.9. We refer to [76] for discussion concerning a short length of
developing zone in fixed bed reactors.

The effect of dosing through membrane wall in packed bed membrane reactors can be
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Figure 2.4: Flow profiles in fixed bed reactor at x = 50.

observed in Figure 2.10 which shows the magnitude of velocity. The inlet velocity is set to
be uin = 0.1 and the wall velocity uw is chosen such that the total mass flux (εu) · n at
the position x = 50 is equal to that in the fixed bed reactor without dosing. The vertical
component of velocity and its depth of penetration is presented in Figure 2.12. We remark
that the pressure in packed bed membrane reactor seems to be superlinear, see Figure 2.11.
The impact of dosing onto the pressure distribution can be observed in Figure 2.13 which
shows pressure profiles along the axis y = 0 for different Reynolds numbers. Next, we
present results for fixed bed reactors with constant porosity

ε̄ =
1

10

5∫
−5

ε(y) dy .

In contrast to reactors with varying porosity the velocity is almost constant with the
exception of a small boundary layer near the reactor walls, see Figures 2.14 and 2.15. The
linear character of pressure in fixed bed reactors is once again demonstrated in Figure 2.16.
In Figure 2.17 we can see how the varying porosity affects the velocity maxima and how fast
the velocity gets developed. The porosity ε = 1 corresponds to reactors without packing.
It is well known that in this case the constant inlet velocity develops a parabolic profile.
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Figure 2.5: Self-similar flow profiles in packed bed membrane reactor, Re = 10.
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Figure 2.6: Distribution of maximum of absolute velocity along x-axis.
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Figure 2.7: Absolute velocity in fixed bed reactor, Re = 10.

Figure 2.8: Vertical velocity in fixed bed reactor, Re = 10.
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Figure 2.9: Linear pressure in fixed bed reactor, Re = 10.

Figure 2.10: Absolute velocity in packed bed membrane reactor, Re = 10.
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Figure 2.11: Superlinear pressure in packed bed membrane reactor, Re = 10.

Figure 2.12: Vertical velocity in packed bed membrane reactor, Re = 10.
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Figure 2.13: Profiles of pressure in fixed bed (solid line) and packed bed membrane reactors
(dashed line) along x-axis for various Reynolds numbers.
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Figure 2.14: Flow profiles in fixed bed reactor with constant porosity ε̄ = 0.4683 at x=50.
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Figure 2.15: Absolute velocity in fixed bed reactor with constant porosity ε̄ = 0.4683 and
Re = 10.

Figure 2.16: Linear pressure in fixed bed reactor with constant porosity ε̄ = 0.4683 and
Re = 1.
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Figure 2.17: Entrance zone for Re = 10.



3 Stabilisation by local projection for
linearised problem

3.1 Oseen-like Problem

Let us consider the linearisation of (2.5) in the form of the homogeneous Oseen–like problem
−div

( ε

Re
∇u− εb⊗ u

)
+ ε∇p+

( α
Re

+ β|b|
)
u = f in Ω ,

div (εu) = 0 in Ω ,
u = 0 on Γ ,

(3.1)

whereby we assume b ∈ W 1,∞(Ω) and div (εb) = 0. For the sake of abbreviation we
introduce on V the bilinear form A given by

A
(
(u, p), (v, q)

)
:= a(u,v) + ñ(b,u,v) + (su,v)− b(v, p) + b(u, q) .

Hereby, we set

s :=
1

Re
α + β|b| ≥ 0 .

Then, the corresponding weak formulation of (3.1) reads as follows

Find (u, p) ∈ V such that for all (v, q) ∈ V :

A
(
(u, p); (v, q)

)
= (f ,v).

(3.2)

We note that if ε = 1 then α = β = 0 due to (2.6)-(2.7), and consequently s = 0. Then,
(3.1) has the usual form of Oseen equation. The property

ñ(b,u,u) = 0

which holds due to (2.9) allows us to apply the Lax–Milgram Lemma in the subspace W
and to establish a unique velocity field u. A unique pressure p ∈ M such that (u, p) ∈ V
solves (3.2) follows from the inf-sup condition (2.31).
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3.2 Galerkin discretisation

For the finite element discretisation of the Oseen problem (3.1), we use a shape regular
decomposition Th of Ω into n-dimensional quadrilaterals or hexahedrons from the previous
chapter. Let Yh ⊂ H1(Ω) be a finite element space of continuous, piecewise polynomial
functions defined over Th in Subsection 2.3.1.

Assumption A1: There exists an interpolation operator ih : H1(Ω) → Yh such that
ih : H1

0 (Ω)→ Yh ∩H1
0 (Ω) and

‖w − ihw‖0,K + hK |w − ihw|1,K ≤ C hlK‖w‖l,ω(K) ∀ w ∈ H l(ω(K)), ∀ K ∈ Th,
1 ≤ l ≤ k + 1 ,

(3.3)

where ω(K) denotes a certain local neighbourhood of K which appears in the definition of
these interpolation operators for non-smooth functions, see [19, 70] for more details. �

We will also apply this type of interpolation operator to vector-valued functions in a
component-wise manner. In this case we use boldfaced symbols like ih : X0 → Y n

h ∩X0.
The construction of such an interpolation operator has been explained in Subsection 2.3.2,
see also [3, 19, 70]. In the following, we consider the case of equal-order interpolation, thus
assuming

Xh0 := Y n
h ∩X0 and Mh := Yh ∩ L2

0(Ω) .

We set
V h := Xh0 ×Mh .

Now, the standard Galerkin discretisation of (3.2) reads:

Find (uh, ph) ∈ V h such that for all (vh, qh) ∈ V h :

A
(
(uh, ph); (vh, qh)

)
= (f ,vh) .

(3.4)

It is a well known fact that the discretisation of the Oseen-like problem by finite element
methods may suffer from two reasons:

• the violation of the discrete inf-sup condition (2.48)

∃ γ > 0 : inf
qh∈Mh

sup
vh∈Xh0

(div (εvh), qh)

‖qh‖0 |vh|1
≥ γ ∀ h > 0 , (3.5)

• the dominating advection in case of Re� 1.

In general, these two shortcomings of Galerkin discretisation lead to unphysical oscillations
of the discrete solution.
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3.3 Local projection stabilisation

The local projection method has been originally designed for equal-order interpolation for
the Stokes problem in [5], extended to the transport equation in [6], and analysed for
low order discretisations of the Oseen equations in [11]. It allows to stabilise pressure
and velocity by separate terms. In [11], the case of low order Qk-elements (k = 1, 2)
on quadrilaterals (n = 2) and hexahedrons (n = 3) has been considered. There, the
projection onto the large scale finite element space has been chosen to be the L2-projection
onto the space of discontinuous Qk−1-elements on a coarser mesh. Unfortunately, this
two-level approach leads to a stencil being less compact than for the SUPG/PSPG-type
stabilisation. We propose to handle both instability phenomena by the local projection
technique based on enrichment. It is well known that stabilised methods can also be derived
from a variational multiscale formulation [39, 41, 42, 75]. Based on a scale separation of
the underlying finite element spaces, it has been shown that it is sufficient to stabilise
only the fine scale fluctuations. This results into a stabilising term which gives a weighted
L2-control over the gradient of fluctuations instead of the fluctuations of gradients [23, 32].

In the following, we apply results of [62] to the Oseen-like problem (3.1). Our analysis
is restricted to the method based on enrichment of velocity spaces. The extension to the
approach based on projection onto the coarser meshes will be not discussed in this work.
Now, we want to explain the main ingredients of the local projection scheme.

Let Dh denote a discontinuous finite element space defined on the decomposition Th and

Dh(K) := {qh
∣∣
K

: qh ∈ Dh} .

Further, let
πK : L2(K)→ Dh(K)

be a local projection which defines the projection πh : L2(Ω)→ Dh by (πhw)
∣∣
K

:= πK(w
∣∣
K

).
Associated with the projection πh is the fluctuation operator κh : L2(Ω) → L2(Ω) defined
by

κh := id− πh ,

where id : L2(Ω) → L2(Ω) is the identity. As in the previous subsection, we apply these
operators to vector-valued functions in a component-wise manner and indicate this by using
boldface notations, e.g. πh : L2(Ω)→Dh and κh : L2(Ω)→ L2(Ω).

Assumption A2: Let the fluctuation operator κh satisfy the following approximation
property:

‖κhq‖0,K ≤ C hlK |q|l,K ∀ q ∈ H l(K), ∀ K ∈ Th, 0 ≤ l ≤ k . (3.6)

�
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In the following, we define πh as the L2-projection in Dh. In the case of Dh(K) con-
taining the space Pk−1(K) of polynomials of degree less than or equal to k − 1, k ≥ 1, we
have

(πhw − w,wh) = 0 ∀ wh ∈ Dh, w ∈ L2(Ω), (3.7)

and ⊕
K∈Th

Pk−1(K) ⊂ Dh. (3.8)

Since Dh is discontinuous over the element faces, (3.7) can be localised and πK : L2(K)→
Dh(K) is locally defined by

(πKw − w,wh)K = 0 ∀ wh ∈ Dh(K), w ∈ L2(K). (3.9)

In this case, the L2-projection πK : L2(K)→ Dh(K) becomes the identity on the subspace
Pk−1(K) ⊂ H l(K). Now, the Bramble–Hilbert lemma gives the approximation properties
for κh = id− πh stated in assumption A2.

We will modify the discrete problem (3.4) by adding the stabilisation term

Sh
(
(uh, ph); (vh, qh)

)
:=
∑
K∈Th

{
τK
(
κh(∇uh),κh(∇vh)

)
K

+ αK
(
κh(∇ph),κh(∇qh)

)
K

}
,

(3.10)

where τK and αK are user-chosen constants. Their optimal mesh-dependent choice will
follow from the error analysis of the method. Now, our stabilised scheme reads:

Find (uh, ph) ∈ V h such that for all (vh, qh) ∈ V h:

A
(
(uh, ph); (vh, qh)

)
+ Sh

(
(uh, ph); (vh, qh)

)
= (f ,vh). (3.11)

Existence, uniqueness, and convergence properties of the solutions (uh, ph) ∈ V h will be
studied in the next section.

3.4 Convergence analysis

3.4.1 Special interpolant

The key ingredient of the error analysis of the local projection method is the construction
of an interpolant jh : H1(Ω) → Yh such that the error w − jhw is L2-orthogonal to Dh

without loosing the standard approximation properties. Let us define

Yh(K) := {wh|K : wh ∈ Yh, wh = 0 on Ω\K} .
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Assumption A3: Let the local inf-sup condition

∃ β1 > 0, ∀ h > 0 ∀ K ∈ Th : inf
qh∈Dh(K)

sup
vh∈Yh(K)

(vh, qh)K
‖vh‖0,K ‖qh‖0,K

≥ β1 > 0 (3.12)

be satisfied. �

We note that a necessary requirement on the spaces Yh(K) and Dh(K) is

dimYh(K) ≥ dimDh(K). (3.13)

Since the spaces Yh(K) and Dh(K) are defined on the same mesh, Dh(K) will be chosen
such that A2 holds and Yh(K) will be enriched by additional functions to fulfil A3.

Now, we recall the main theorem concerning the existence of the special interpolation
operator.

Theorem 3.1 Let assumptions A1, A3 be satisfied. Then, there are interpolation oper-
ators jh : H1(Ω) → Yh and jh : X0 → Xh0 satisfying the following orthogonality and
approximation properties:

(w − jhw, qh) = 0 ∀ qh ∈ Dh, ∀ w ∈ H1(Ω) , (3.14)

‖w − jhw‖0,K+hK |w − jhw|1,K ≤ C hlK‖w‖l,ω(K)

∀ w ∈ H l(Ω) , 1 ≤ l ≤ k + 1 , ∀ K ∈ Th ,
(3.15)

(w − jhw, qh) = 0 ∀ qh ∈Dh, ∀ w ∈ V , (3.16)

‖w − jhw‖0,K+hK |w − jhw|1,K ≤ C hlK‖w‖l,ω(K)

∀ w ∈X0 ∩H l(Ω) , 1 ≤ l ≤ k + 1, ∀ K ∈ Th .
(3.17)

Proof. See the proof of Theorem 2.2 in [62]. �

Projection spaces based on mapped finite elements

Let us introduce

P disc
k−1,h := {v ∈ L2(Ω) : v|K ◦ FK ∈ Pk−1(K̂) ∀ K ∈ Th}

finite element spaces for the projection space Dh. In order to obtain the optimal order of the
interpolation error for the mapped projection space, families of uniformly refined quadri-
lateral/hexahedral meshes are required, see again [4, 60]. We extend the approximation
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spaces in order to ensure the local inf-sup condition A3. To this end, let

b̂(x̂) =
n∏
i=1

(1− x̂2
i ) ∈ Q2(K̂) , x̂ = (x̂1, . . . , x̂n) ∈ K̂ , n = 2, 3 , (3.18)

be a bubble function associated with the reference cell K̂ = (−1, 1)n. The enriched finite
element space is set to be

Q+
k (K̂) := Qk(K̂)⊕ span

{
b̂ x̂k−1

i , i = 1, . . . , n
}
.

We define a pair of finite element spaces

(Yh, Dh) := (Q+
k,h, P

disc
k−1,h)

via the reference mapping

Q+
k,h : = {v ∈ H1(Ω) : v|K ◦ FK ∈ Q+

k (K̂) ∀ K ∈ Th} .

We note that in general the functions of spaces Q+
k,h, P

disc
k−1,h are not polynomials. Since

Qk(K̂) ⊂ Q+
k (K̂), the assumption A1 is satisfied. Assumption A2 holds on uniformly

refined meshes, see [4, 60].

Lemma 3.2 Let the local projection scheme be defined for the pair (Yh, Dh) = (Q+
k,h, P

disc
k−1)

with an arbitrary but fixed polynomial degree k ∈ N. Then, the local inf-sup condition A3
holds with a constant β1 independent of h.

Proof. For an arbitrary q ∈ Dh(K) we choose v(x) := (q̂ · b̂) ◦ F−1
K (x) where b̂ ≥ 0

is the nonnegative bubble function from (3.18), q̂ ∈ Pk−1(K̂). Since q̂ = q̂0 + q̂1 with

q̂0 ∈ span
{
xk−1
i , i = 1, . . . , n

}
and q̂1 ∈ Qk−2, we have v̂(x̂) := q̂(x̂)b̂(x̂) ∈ Q+

k (K̂).

Moreover, we have v̂(x̂) ∈ Ŷ (K̂), since b̂|∂ bK = 0. Then, it follows from the estimate (2.44)

(q, v)K =

∫
K

q(x)v(x) dx =

∫
bK
q̂(x̂)v̂(x̂) | detDFK(x̂)| dx̂

=

∫
bK
q̂(x̂)q̂(x̂)b̂(x̂) | detDFK(x̂)| dx̂

≥ Cn!(1− γK)n hnK

∫
bK

(q̂(x̂))2 b̂(x̂) dx̂ .

The equivalence of norms on the finite dimensional space Qk−1(K̂) implies

‖q̂ ·
√
b̂‖0, bK ≥ C‖q̂‖0, bK ∀ q̂ ∈ Qk−1(K̂)
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and hence
(q, v)K ≥ Cn!(1− γK)n hnK ‖q̂‖2

0, bK . (3.19)

Using |b̂(x̂)| ≤ 1 ∀ x̂ ∈ K̂, we get

‖v‖2
0,K ≤

∫
bK

(q̂(x̂))2 | detDFM(x̂)| dx̂ ≤ Cn!(1 + γK)n hnK‖q̂‖2
0, bK . (3.20)

Evoking (2.43), we obtain

‖q‖2
0,K ≤ Cn!(1 + γK)nhnK‖q̂‖2

0, bK ∀q ∈ Dh(K) . (3.21)

From (3.19)–(3.21) it follows immediately

∀ q ∈ Dh(K) ∃ v ∈ Yh(K) :
(q, v)K

‖q‖0,K‖v‖0,K

≥ C

(
1− γK
1 + γK

)n
≥ C

(
1− γ
1 + γ

)n
=: β1 .

This implies the local inf-sup condition A3. �

Remark 3.3 A comparison of the dimensions of the spaces Yh(K) and Dh(K) shows that

dim Ŷ (K̂) = (k − 1)n + n ≥
(
k − 1 + n

n

)
= dimPk−1(K̂) ∀ k ∈ N ∀ n ∈ N .

In particular, the enrichment is optimal for biquadratic and bicubic elements on quadrilat-
erals and for triquadratic elements on hexahedra.

Remark 3.4 Note that the space Q+
k (K̂) has for k ≥ 2 exactly n basis functions more

than Qk(K̂), independent of k.

3.4.2 Stability

Let us introduce the mesh-dependent norm on the product space V by

|||(v, q)||| :=
(
Re−1‖

√
ε∇v‖2

0 + ‖
√
sv‖2

0 + (Re−1 + ‖s‖0,∞)‖q‖2
0 + Sh

(
(v, q); (v, q)

))1/2

.

(3.22)
We show that the bilinear form (A+ Sh) satisfies an inf-sup condition on V h.

Lemma 3.5 Assume A1, A3, ε ∈ W 1,∞(Ω) and max(Re−1, ‖s‖0,∞, τK , h
2
K/αK) ≤ C for

all K ∈ Th. Then, there is a positive constant β2 independent of Re−1 and h such that

inf
(vh,qh)∈V h0

sup
(wh,rh)∈V h0

(A+ Sh)
(
(vh, qh); (wh, rh)

)
|||(vh, qh)||| |||(wh, rh)|||

≥ β2 > 0 (3.23)

holds true.
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Proof. Let us consider an arbitrary (vh, qh) ∈ V h0. Choosing (wh, rh) = (vh, qh), we
have

(A+ Sh)
(
(vh, qh); (vh, qh)

)
= Re−1‖

√
ε∇vh‖2

0 + ‖
√
svh‖2

0 + Sh
(
(vh, qh); (vh, qh)

)
(3.24)

due to property (2.9).

Now we consider another choice to generate an L2-norm control over the pressure. For
any qh ∈Mh, the continuous inf-sup condition (2.31) guarantees the existence of a function
vqh ∈X0 such that (

div (εvqh), qh
)

= −(qh, qh), ‖vqh‖1 ≤ C‖qh‖0 . (3.25)

We choose (wh, rh) = (jhvqh , 0) where jh is the interpolant of Theorem 3.1 satisfying (3.16)
and (3.17). Thus, we obtain

A
(
(vh, qh); (jhvqh , 0)

)
= ‖qh‖2

0 −
(
qh, div (ε(jhvqh − vqh))

)
+
(
(εb · ∇)vh, jhvqh

)
+Re−1(ε∇vh,∇jhvqh) + (svh, jhvqh) .

(3.26)

We estimate the last four terms on the right hand side. Starting with an integration by
parts of the first term, we get

−
(
qh, div (ε(jhvqh − vqh))

)
=
(
ε∇qh, (jhvqh − vqh)

)
=
(
κh(ε∇qh), (jhvqh − vqh)

)
. (3.27)

Now, let ε be the L2-projection of ε in the space of piecewise constant functions with
respect to the decomposition Th. Using the L2-stability of κh, Bramble–Hilbert lemma, an
inverse inequality, κh(ε∇qh) = εκh(∇qh), we get for ε ∈ W 1,∞(Ω)∥∥κh(ε∇qh)∥∥0,K

≤
∥∥κh((ε− ε)∇qh)∥∥0,K

+
∥∥κh(ε∇qh∥∥0,K

≤ C hK |ε|1,∞,K‖∇qh‖0,K + ‖ε‖0,∞,K
∥∥κh(∇qh)∥∥0,K

≤ C|ε|1,∞,K‖qh‖0,K +
∥∥κh(∇qh)∥∥0,K

(3.28)

due to the model assumption (A1). Then, from (3.27) and (3.17) we deduce

∣∣(qh, div (ε(jhvqh − vqh))
)∣∣ ≤ (∑

K∈Th

αK‖κh∇qh‖2
0,K

)1/2(∑
K∈Th

1

αK
‖jhvqh − vqh‖2

0,K

)1/2

+ C|ε|1,∞‖qh‖0

(∑
K∈Th

‖jhvqh − vqh‖2
0,K

)1/2

≤ C
(
Sh
(
(vh, qh); (vh, qh)

))1/2 ‖vqh‖1 + Ch|ε|1,∞‖qh‖0‖vqh‖1

≤ C
(
Sh
(
(vh, qh); (vh, qh)

))1/2 ‖qh‖0 + Ch|ε|1,∞‖qh‖2
0

≤
(

1

16
+ Ch|ε|1,∞

)
‖q‖2

0 + C Sh
(
(vh, qh); (vh, qh)

)
≤ 1

8
‖q‖2

0 + C Sh
(
(vh, qh); (vh, qh)

)
,

(3.29)
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provided that C|ε|1,∞h ≤ 1/8 holds. Integrating by parts, using the H1 stability of jh
which follows from Theorem 3.1, and (3.25), we obtain for the third term in (3.26)

|((εb · ∇)vh, jhvqh)| = |(vh, (εb · ∇)jhvqh)| ≤ C ‖vh‖0 |jhvqh|1

≤ ‖qh‖
2
0

8
+ C ‖vh‖2

0 .
(3.30)

For estimating the remaining terms in (3.26), we use max(Re−1, ‖s‖0,∞) ≤ C to get∣∣Re−1(ε∇vh,∇jhvqh) + (svh, jhvqh)
∣∣ ≤ (Re−1‖

√
ε∇vh‖0 + ‖

√
svh‖0

)
‖jhvqh‖1

≤ C
{
Re−1/2‖

√
ε∇vh‖0 + ‖

√
svh‖0

}
‖qh‖0

≤ ‖qh‖
2
0

8
+ C

{
Re−1‖

√
ε∇vh‖2

0 + ‖
√
svh‖2

0

}
. (3.31)

The Cauchy–Schwarz inequality and the L2-stability of κh give∣∣Sh((vh, qh); (jhvqh , 0)
)∣∣ ≤ C

(
Sh
(
(vh, 0); (vh, 0)

))1/2 |jhvqh|1
≤ C

(
Sh
(
(vh, qh); (vh, qh)

))1/2 ‖qh‖0

≤ ‖qh‖
2
0

8
+ C Sh

(
(vh, qh); (vh, qh)

)
. (3.32)

Let

X :=
(
Re−1‖

√
ε∇vh‖2

0 + ‖
√
svh‖2

0 + Sh
(
(vh, qh); (vh, qh)

))1/2

denote the part of the triple norm without L2-control over the pressure. Using (3.29)–
(3.32), we get from (3.26)

(A+ Sh)
(
(vh, qh); (jhvqh , 0)

)
≥ 1

2
‖qh‖2

0 − C X2 − C ‖vh‖2
0 (3.33)

Now, we multiply (3.33) by t := 2(Re−1 + ‖s‖0,∞) and use the Poincaré inequality and
properties of ε and s to estimate

t‖vh‖2
0 ≤ C

(
Re−1‖

√
ε∇vh‖2

0 + ‖
√
svh‖2

0

)
.

Hence, we obtain

(A+ Sh)
(
(vh, qh); t(jhvqh , 0)

)
≥
(
Re−1 + ‖s‖0,∞

)
‖qh‖2

0 − C1X
2 (3.34)

with a suitable constant C1. We define for an arbitrary (vh, qh) ∈ V h

(wh, rh) := (vh, qh) +
t

1 + C1

(jhvqh , 0) ∈ V h.
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Then, we have

(A+ Sh)
(
(vh, qh); (wh, rh)

)
≥ (Re−1 + ‖s‖0,∞)

1 + C1

‖qh‖2
0 +

(
1− C1

1 + C1

)
X2

=
1

1 + C1

|||(vh, qh)|||2
(3.35)

and

|||(wh, rh)||| ≤ |||(vh, qh)|||+
t

1 + C1

|||(jhvqh , 0)|||

≤ |||(vh, qh)|||+ C{Re−1 + ‖s‖0,∞}‖jhvqh‖1

≤ |||(vh, qh)|||+ C{Re−1 + ‖s‖0,∞}‖qh‖0

≤ C2|||(vh, qh)|||.

(3.36)

From (3.35) and (3.36) we state (3.23) with the inf-sup constant β2 = 1/(C2(1 + C1)). �

Remark 3.6 The unique solvability of the stabilised discrete problem (3.11) follows directly
from Lemma 3.5.

3.4.3 Approximated Galerkin orthogonality

In contrast to residual-based stabilisation schemes [12], we do not have the Galerkin or-
thogonality. Therefore, we estimate the consistency error.

Lemma 3.7 Let (u, p) ∈ V be the solution of (3.2) and (uh, ph) ∈ V h0 be the solution
of (3.11), respectively. Then,

A((u− uh, p− ph); (vh, qh)) = Sh((uh, ph); (vh, qh)) ∀(vh, qh) ∈ V h0 . (3.37)

Proof. We get (3.37) simply by subtracting (3.11) from (3.2). �

Next, we estimate the consistency error.

Lemma 3.8 Let the fluctuation operator κh satisfy A2. Then, for (u, p) ∈ Hk+1(Ω) ×
Hk+1(Ω) we have

∣∣Sh((u, p); (vh, qh)
)∣∣ ≤ C

( ∑
K∈Th

h2k
K

[(
τK‖u‖2

k+1,K + αK‖p‖2
k+1,K

])1/2

|||(vh, qh)||| (3.38)

for all (vh, qh) ∈ V h0.
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Proof. From the definition of the stabilising term we get

|Sh((u, p); (vh, qh))| ≤
(
Sh((u, p); (u, p))

)1/2(
Sh((vh, qh); (vh, qh))

)1/2

≤
(
Sh((u, p); (u, p))

)1/2

|||(vh, qh)|||.

Using the approximation properties of κh, we see that

Sh
(
(u, p); (u, p)

)
≤ C

∑
K∈Th

h2k
K

(
τK |∇u|2k,K + αK |∇p|2k,K

)
and (3.38) follows. �

3.4.4 A-priori error estimate

We get from stability and consistency an a-priori error estimate in the usual way. We
derive error bounds with constants, which will be independent of the Reynolds number Re
and h.

Theorem 3.9 Assume A1–A3. Let (u, p) ∈
(
H1

0(Ω) ∩Hk+1(Ω)
)
×
(
L2

0(Ω) ∩ Hk+1(Ω)
)

be the weak solution of (3.2) and (uh, ph) ∈ V h0 be the solution of the local projection
method (3.11). Then, for s > 0 there is a positive constant C independent of Re such that

|||(u− uh, p− ph)|||

≤ C

( ∑
K∈Th

h2k
K

[
Re−1 + h2

K ‖s‖0,∞,K + h2
K‖s‖−1

0,∞,K{|b|
2
1,∞,K + |ε|21,∞,K‖b‖2

0,∞,K + 1}

+ τ−1
K h2

K‖b‖2
0,∞,K + h2

K α
−1
K + τK + αK

](
‖u‖2

k+1,ω(K) + ‖p‖2
k+1,ω(K)

))1/2

(3.39)

holds true for sufficiently small h > 0. The choice

τK ∼ hK and αK ∼ hK

is asymptotically optimal and leads to

|||(u− uh, p− ph)||| ≤ Cs

( ∑
K∈Th

(Re−1 + hK)h2k
K

(
‖u‖2

k+1,ω(K) + ‖p‖2
k+1,ω(K)

))1/2

(3.40)

with a constant Cs independent of Re but depending on s.
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Proof. Starting with Lemma 3.5, we get for sufficiently small h > 0 an estimate for the
error to the interpolants:

|||(jhu− uh, jhp− ph)|||

≤ 1

β2

sup
(wh,rh)∈V h0

(A+ Sh)
(
(jhu− uh, jhp− ph); (wh, rh)

)
|||(wh, rh)|||

≤ 1

β2

sup
(wh,rh)∈V h0

(A+ Sh)
(
(u− uh, p− ph); (wh, rh)

)
|||(wh, rh)|||

+
1

β2

sup
(wh,rh)∈V h0

(A+ Sh)
(
(jhu− u, jhp− p); (wh, rh)

)
|||(wh, rh)|||

.

(3.41)

Using Lemmata 3.7 and 3.7, we estimate the first term by

(A+ Sh)
(
(u− uh, p− ph); (wh, rh)

)
= Sh

(
(u, p); (wh, rh)

)
≤ C

( ∑
K∈Th

h2k
K

[
τK‖u‖2

k+1,K + αK‖p‖2
k+1,K

])1/2

|||(wh, rh)||| .
(3.42)

For the estimation of the second term, we consider each individual term in

(A+ Sh)((jhu− u, jhp− p); (wh, rh))

separately. The estimation of

Re−1
(
ε∇(jhu− u),∇wh

)
+
(
s(jhu− u),wh

)
≤ C

( ∑
K∈Th

h2k
K

(
Re−1 + ‖s‖0,∞,K h

2
K

)
‖u‖2

k+1,ω(K)

)1/2

|||(wh, rh)|||
(3.43)

is standard. When estimating the next three terms, we use the interpolant constructed in
Theorem 3.1. Integrating by parts, we get∣∣∣((εb · ∇)(jhu− u),wh

)∣∣∣ =
∣∣(jhu− u, (εb · ∇)wh

)∣∣
=
∣∣(jhu− u,κh(εb · ∇)wh

)∣∣
≤ C

∑
K∈Th

hk+1
K ‖u‖k+1,ω(K)

∥∥κh(εb · ∇)wh

∥∥
0,K

.

(3.44)

Now, let εb be the L2-projection of εb in the space of piecewise constant functions with
respect to the decomposition Th. Using the L2-stability of κh, an inverse inequality, and
κh(εb · ∇)wh = εb · κh(∇wh), we get for ε ∈ W 1,∞(Ω)∥∥κh(εb · ∇)wh

∥∥
0,K
≤
∥∥κh((εb− εb) · ∇)wh

∥∥
0,K

+
∥∥κh(εb · ∇)wh

∥∥
0,K

≤ C hK |εb|1,∞,K‖∇wh‖0,K + ‖b‖0,∞,K
∥∥κh(∇wh)

∥∥
0,K

≤ C
{
|ε|1,∞,K‖b‖0,∞,K + |b|1,∞,K

}
‖wh‖0,K

+ ‖b‖0,∞,K
∥∥κh(∇wh)

∥∥
0,K
.

(3.45)
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Assuming s > 0, we conclude from (3.44)

∣∣((εb · ∇)(jhu− u),wh

)∣∣
≤ C

∑
K∈Th

hk+1
K ‖u‖k+1,ω(K) ×

×
(
{|ε|1,∞,K‖b‖0,∞,K + |b|1,∞,K} ‖wh‖0,K + ‖b‖0,∞,K‖κh(∇wh)‖0,K

)
≤ C

( ∑
K∈Th

h2k
K

[
h2
K‖s‖−1

0,∞
{
|b|21,∞,K + |ε|21,∞,K‖b‖2

0,∞,K
}

+ h2
K τ
−1
K ‖b‖

2
0,∞,K

]
‖u‖2

k+1,ω(K)

)1/2

×

×
(
‖
√
swh‖2

0 + Sh
(
(wh, 0); (wh, 0)

))1/2

.

Analogously, we can estimate the next term by using (3.28)

∣∣(p− jhp,∇ ·wh)
∣∣ =

∣∣(p− jhp, κh∇ · (εwh)
)∣∣

≤ C
∑
K∈Th

hk+1
K ‖p‖k+1,ω(K)

{
|ε|1,∞,K‖wh‖0,K + ‖κh∇ ·wh)‖0,K

}
≤ C

( ∑
K∈Th

h2k
K

[
h2
K‖s‖−1

0,∞|ε|21,∞,K + h2
Kτ
−1
K

]
‖p‖2

k+1,ω(K)

)1/2

×

×
(
‖
√
swh‖2

0 + Sh
(
(wh, 0); (wh, 0)

))1/2

.

Obviously, it holds

∣∣(rh,∇ · (ε(jhu− u)
))∣∣ =

∣∣(∇rh, ε · (jhu− u)
)∣∣ =

∣∣(κh(∇rh), ε · (jhu− u)
)∣∣

≤ C

( ∑
K∈Th

h2k+2
K α−1

K ‖u‖
2
k+1,ω(K)

)1/2(
Sh
(
(0, rh); (0, rh)

))1/2

.

Finally, we obtain

∣∣Sh((jhu− u, jhp− p); (wh, rh)
)∣∣

≤
(
Sh
(
(jhu− u, jhp− p); (jhu− u, jhp− p)

))1/2(
Sh
(
(wh, rh); (wh, rh)

))1/2

≤ C

( ∑
K∈Th

h2k
K

[(
τK ‖u‖2

k+1,ω(K) + αK ‖p‖2
k+1,ω(K)

])1/2

|||(wh, rh)|||.
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Collecting all estimates above, we have shown

|||(jhu− uh, jhp− ph)|||

≤ C

( ∑
K∈Th

h2k
K

[
Re−1 + h2

K ‖s‖0,∞,K + h2
K‖s‖−1

0,∞,K{|b|
2
1,∞,K + |ε|21,∞,K‖b‖2

0,∞,K + 1}

+ h2
K τ
−1
K ‖b‖

2
0,∞,K + h2

K α
−1
K + τK + αK

](
‖u‖2

k+1,ω(K) + ‖p‖2
k+1,ω(K)

))1/2

.

By using the triangle inequality

|||(u− uh, p− ph)||| ≤ |||(u− jhu, p− jhp)|||+ |||(jhu− uh, jhp− ph)|||

and the approximation property

|||(u− jhu, p− jhp)|||

≤ C

( ∑
K∈Th

h2k
K

[
Re−1 + h2

K ‖s‖0,∞,K + (Re−1 + ‖s‖0,∞)h2
K + τK + αK

]
×

×
(
‖u‖2

k+1,ω(K) + ‖p‖2
k+1,ω(K)

))1/2

,

we get

|||(u− uh, p− ph)|||

≤ C

( ∑
K∈Th

h2k
K

[
Re−1 + h2

K ‖s‖0,∞,K + h2
K‖s‖−1

0,∞,K{|b|
2
1,∞,K + |ε|21,∞,K‖b‖2

0,∞,K + 1}

+ τ−1
K h2

K‖b‖2
0,∞,K + h2

K α
−1
K + τK + αK

](
‖u‖2

k+1,ω(K) + ‖p‖2
k+1,ω(K)

))1/2

which proves (3.39). Minimising the upper bound results in the choice τK ∼ hK , and
αM ∼ hK , which implies (3.40). �

3.5 Numerical results

3.5.1 Problem with smooth solution

We proceed our numerical investigations with solving a two dimensional problem (3.1)
which is posed on the domain Ω = (0, 1)2 and has the exact solution (u, p) from (2.125).
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The porosity distribution is chosen as (2.126) and the convection field is prescribed by

b(x, y) = u(x, y) =
1

ε(x, y)

(
sin (πx) sin (πy)
cos (πx) cos (πy)

)
. (3.46)

The right hand side f and boundary condition g are chosen such that (3.46) is the solution
of the problem.

We apply equal order elements Q+
k , k = 1, 2, 3 on cartesian meshes and choose for

projection spaces P disc
0 , P disc

1 and P disc
2 , respectively. The coarse mesh consists of 2 × 2

Table 3.1: Total number of degrees of freedom (dof) for enriched spaces

level dofs
Q+

1 Q+
2 Q+

3

0 13 33 57
1 41 113 201
2 145 417 753
3 545 1,601 2,913
4 2,113 6,273 11,457
5 8,321 24,833 45,441
6 33,025 98,817 180,993

squares and will be uniformly refined. The corresponding numbers of degrees of freedom
for one scalar solution component (velocity component or pressure) are shown in Table 3.1.
We report errors for Oseen-like problem using a stronger triple-norm

|||(v, q)|||∗ :=
(
Re−1|v|21 + ‖s‖0,∞‖v‖2

0 + (Re−1 + ‖s‖0,∞)‖q‖2
0 + Sh

(
(v, q); (v, q)

))1/2

.

In our computations we set the Reynolds number to Re = 1e+ 6. The calculated rates of

Table 3.2: Oseen-like problem: LPS-error for (Q+
1 , P

disc
0 ) stabilisation

level |||(u− uh, p− ph)|||∗ rate
0 4.078e+0
1 1.304e+0 1.645
2 3.697e−1 1.818
3 1.271e−1 1.541
4 4.484e−2 1.503
5 1.585e−2 1.500
6 5.605e−3 1.500

convergence are in good agreement with theoretical results from Section 3.4, see Tables 3.2-
3.4. The asymptotic behaviour of the LPS-error |||(u − uh, p − ph)|||∗ is shown in Figure
3.1.
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Table 3.3: Oseen-like problem: LPS-error for (Q+
2 , P

disc
1 ) stabilisation

level |||(u− uh, p− ph)|||∗ rate
0 1.284e+0
1 3.051e−1 2.074
2 5.514e−2 2.468
3 9.529e−3 2.533
4 1.589e−3 2.584
5 2.602e−4 2.611
6 4.127e−5 2.656

Table 3.4: Oseen-like problem: LPS-error for (Q+
3 , P

disc
2 ) stabilisation

level |||(u− uh, p− ph)|||∗ rate
0 7.147e−1
1 6.933e−2 3.366
2 6.162e−3 3.492
3 5.452e−4 3.498
4 4.800e−5 3.506
5 4.233e−6 3.503
6 3.738e−7 3.501
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Figure 3.1: Oseen-like problem: LPS error.



4 Enhancing accuracy of numerical
solution

Several types of superconvergence in finite element methods, as indicated by Brandts and
Kř́ıžek [13], have been studied in the last two decades. We consider a superconvergence
property of post-processing type [57] which increases the order of convergence of the orig-
inal finite element solution in case of the Stokes-like and Brinkman–Forchheimer problem,
respectively. Such a post-processing is nothing but a higher order interpolation on a coarser
mesh of the original finite element solution. For proving the superconvergence property we
need two main ingredients:

• An interpolation (in the same finite element space) approximating the finite element
solution of higher order. Often such an interpolation does exist if the underlying
mesh has a special construction, cf. [67]. This special interpolation is called to satisfy
a superclose property, cf. [80].

• A higher order interpolation of the original finite element solution to achieve higher
order accuracy. The interpolated finite element solution resulting from the post-
processing is called to satisfy a superconvergence property, cf. [13].

The two steps above have been examined for many different conforming finite elements
including mixed finite elements (cf. [53, 56]). For nonconforming finite elements applied to
the Poisson equation we refer to [58].
The superclose phenomena for the Stokes problem in the two-dimensional case have been
already reported in [54, 55]. In [54] the (4 × Q1, Q1) element has been studied whereas
in [55] the Bernardi–Raugel element [7] and the (Q2, P

disc
1 ) element are considered. The

estimates in both papers are based on exact integral identities where some details are
missing. Unfortunately, the post-processing operators in [55] are not unisolvent and cannot
be used to derive a superconvergence result. This lack has been overcome in [61]. The
superconvergence results have been stated therein for Stokes and stationary Navier–Stokes
problems in three dimensions by using (Q2, P

disc
1 ) conforming elements.
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4.1 Superconvergence of finite elements applied to

Brinkman–Forchheimer problem

In this section we recall the general principle of superconvergence applied to saddle point
problems for conforming finite element pairs satisfying the discrete inf-sup condition.

We denote by Th a shape regular decomposition of Ω = (0, 1)2 into (open) cells K such
that

Ω =
⋃
K∈Th

K.

We denote by ih : H2(Ω) → Xh and jh : M → Mh appropriate interpolation operators.
We assume that ihu|∂Ω depends on g = u|∂Ω only and set gh := ihu|∂Ω.

We start our analysis with the following discrete stability result from [30]: There is a
positive constant C independent of h such that

ε0

Re
|wh|1 + ‖rh‖0 ≤ C sup

(vh,qh)∈Xh0×Mh

(vh,qh)6=(0,0)

a(wh,vh) + c(wh,vh)− b(vh, rh) + b(wh, qh)

|vh|1 + ‖qh‖0

,

holds for all (wh, rh) ∈Xh0 ×Mh see also [72, Chapter 5.1] for detailed proof for abstract
saddle point problems. Setting wh := uh− ihu ∈Xh0, rh := ph− jhp ∈Mh and using the
Galerkin orthogonality

0 = a(uh − u,vh) + c(uh − u,vh)− b(vh, ph − p) + b(uh − u, qh)
+ ñ(uh,uh,vh)− ñ(u,u,v)

+ d(uh;uh,vh)− d(u;u,v) ∀(vh, qh) ∈Xh0 ×Mh,

(4.1)

we obtain

ε0

Re
|uh − ihu|1 + ‖ph − jhp‖0

≤ C sup
(vh,qh)∈Xh0×Mh

(vh,qh) 6=(0,0)

E(u, p;vh, qh) + ñ(u,u,vh)− ñ(uh,uh,vh) + d(u;u,vh)− d(uh;uh,vh)

|vh|1 + ‖qh‖0

(4.2)

with

E(u, p;vh, qh) := a(u− ihu,vh) + c(u− ihu,vh)
−b(vh, p− jhp) + b(u− ihu, qh) . (4.3)

Remark 4.1 Standard error estimates are based on the continuity of
E(u, p; ·, ·) on X ×M resulting in

|E(u, p;vh, qh)| ≤ C (|u− ihu|1 + ‖p− jhp‖0) (|vh|1 + ‖qh‖0) . (4.4)
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For a pair of finite element spaces of k-th order, which means that there are interpolation
operators ih and jh such that

|u− ihu|1 + ‖p− jhp‖0 ≤ C hk (|u|k+1 + |p|k) ,

we conclude
|E(u, p;vh, qh)| ≤ C hk (|u|k+1 + |p|k) (|vh|1 + ‖qh‖0) .

However, in the next section we will show that for a special finite element pair of order k
and suitable chosen interpolation operators the estimate

|E(u, p;vh, qh)| ≤ C hk+1 (|u|k+2 + |p|k+1) (|vh|1 + ‖qh‖0) . (4.5)

can be established for all (vh, qh) ∈Xh0×Mh. Thus, in view of (4.2) the supercloseness of
the discrete solution (uh, ph) to the interpolated solution (ihu, jhp) can be shown if it holds
also ∣∣ñ(u,u,vh)− ñ(uh,uh,vh) + d(u;u,vh)− d(uh;uh,vh)

∣∣ ≤ Chk+1 (4.6)

Now we consider a coarser decomposition T2h of Ω into patches P such that

Ω =
⋃

P∈T2h

P

and each closed patch P consists of a fixed number of closed cells K. Often the decompo-
sition Th can be generated from T2h by a regular refinement, i.e., a patch consists of 8 cells.
On this new decomposition, we introduce finite element spaces Y 2h and N2h and corre-
sponding interpolation operators I2h : C(Ω)→ Y 2h and J2h : M → N2h, respectively. For
a pair of k-th order finite element spaces Xh, Mh we assume that the following conditions
are satisfied:

I2hihu = I2hu ∀u ∈ C(Ω),
(A)

J2hjhp = J2hp ∀p ∈M,

|u− I2hu|1 ≤ C hk+1 |u|k+2 ∀u ∈Hk+2(Ω),
(B) ‖p− J2hp‖0 ≤ C hk+1 |p|k+1 ∀p ∈ Hk+1(Ω),

|I2huh|1 ≤ C |uh|1 ∀uh ∈Xh,
(C) ‖J2hph|0 ≤ C ‖ph‖0 ∀ph ∈Mh.

Then, we can also derive a superconvergence result for the error of the post-processed
solution (I2huh, J2hph) to the solution (u, p) of (2.8) which is assumed to belong to
Hk+2(Ω)×Hk+1(Ω). More precisely, the estimates

|u− I2huh|1 ≤ |u− I2hihu|1 + |I2hihu− I2huh|1
≤ |u− I2hu|1 + C |ihu− uh|1,

|u− I2huh|1 ≤ C hk+1 (|u|k+2 + |p|k+1) (4.7)
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and

‖p− J2hph‖0 ≤ ‖p− J2hjhp‖0 + ‖J2hjhp− J2hph‖0

≤ ‖p− J2hp‖0 + C ‖jhp− ph‖0,

‖p− J2hph‖0 ≤ C hk+1 (|u|k+2 + |p|k+1) (4.8)

hold true. Note that in general all interpolation operators are nonstandard.

4.2 Supercloseness of the (Q2, P
disc
1 ) element

In this section we specify the finite element spaces Xh and Mh and prove an estimate of
type (4.5) for k = 2 and appropriate interpolation operators on a family of quadrilateral
meshes. We assume that the edges of each cell K are parallel to the coordinate axes and
that K is a rectangle with sides of length 2hx,K , 2hy,K . We suppose that the family of
meshes is shape regular in the following sense: there is a positive constant C such that

C
√
h2
x,K + h2

y,K ≤ min(hx,K , hy,K) ∀K ∈ Th.

Furthermore, we set hK = diam K = 2
√
h2
x,K + h2

y,K and h = maxK∈Th{hK}.

We use the space of continuous, piecewise biquadratic functions for the velocity, and
and the space of discontinuous, piecewise linear functions having mean value zero for the
pressure. From Theorem 2.20 it is known that this finite element pair fulfils the discrete
inf-sup condition (2.48). Due to the interpolation properties of the standard interpolation
operators we get from (4.4)

|E(u, p;vh, qh)| ≤ C h2 (|u|3 + |p|2) (|vh|1 + ‖qh‖0) .

We want to show that for nonstandard interpolation operators a stronger result can be
obtained.

The interpolation operators ih : H2(Ω)→ Xh and jh : M → Mh are locally defined on
each cell K by mapping K onto the reference cell K̂ = (−1,+1)2 via the affine, bijective

mapping F−1
K : K → K̂. We denote the 4 vertices of K̂ by âi, i = 1, . . . , 4, the 4 edges of

K̂ by l̂i, i = 1, . . . , 4. On the reference cell K̂ we define first a scalar interpolation operator
i bK : H2(K̂)→ Q2 by the 9 nodal functionals

ni(v̂) = v̂(ai), i = 1, . . . , 4, ni+4(v̂) =
1

2

∫
l̂i

v̂dŝ, i = 1, . . . , 4, n9(v̂) =
1

4

∫
bK
v̂dξdη,
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such that
nj(iK̂ v̂) = nj(v̂), j = 1, . . . , 9.

Now the scalar interpolation ih : H2(Ω)→ Xh is piecewise defined by

ih(v)
∣∣∣
K

:= (i bK(v|K ◦ FK)) ◦ F−1
K ,

and for v = (v1, v2) ∈H2(Ω) the vector-valued interpolation ihv is given by

ih(v) := (ih(v1), ih(v2)).

Note that the piecewise defined interpolation ih(v) fits to a global continuous function be-

cause the restriction of a function of Q2 onto a face of K̂ is a quadratic function of one
variable which is uniquely defined by the subset of 2 vertex and 1 edge nodal functionals
living on this edge. In addition the property that ihu|∂Ω depends only on u|∂Ω is satisfied.

The nodal functionals for the pressure space on the reference element K̂ are defined by

mi(q̂) :=
1

4

∫
bK
q̂ ri dξdη i = 1, . . . , 3, (4.9)

where r1 = 1, r2 = ξ, r3 = η. The canonical interpolation j bK : L2(K̂) → P1 is the
L2-projection given by

mi(j bK q̂) = mi(q̂), i = 1, . . . , 3 ,

resulting into the global interpolation jh : M →Mh with

jh(q)
∣∣∣
K

=
(
(j bK(q ◦ FK)

)
◦ F−1

K .

In the following we shall use the abbreviations

∂xW := {∂xw : w ∈ W} and ∂yW := {∂yw : w ∈ W} .

Lemma 4.1 Let ε ∈ W 1,∞(Ω), u ∈ H4(Ω) and let ihu be the interpolant defined above.
Then, on a family of rectangular meshes we have∣∣(ε∇(u− ihu),∇vh

)∣∣ ≤ Ch3(|u|3 + |u|4) |vh|1 ∀vh ∈Xh (4.10)∣∣(div (ε(u− ihu)), qh
)∣∣ ≤ Ch3(|u|3 + |u|4) ‖qh‖0 ∀qh ∈Mh. (4.11)∣∣(α(u− ihu),vh
)∣∣ ≤ Ch3|u|3 |vh|1 ∀vh ∈Xh0 (4.12)

Proof. Let ε be the L2-projection of ε in the space of piecewise constant functions with
respect to the decomposition Th. We set

ε|K = εK ∈ R ∀ K ∈ Th . (4.13)
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Furthermore, let us assume ε ∈ W 1,∞(Ω). We have∣∣(ε∇(u− ihu),∇vh
)∣∣

≤
∑
K∈Th

∣∣((ε− εK)∇(u− ihu),∇vh
)
K

∣∣+
∑
K∈Th

|εK |
∣∣(∇(u− ihu),∇vh

)
K

∣∣ . (4.14)

The first sum from the above splitting can be bounded by using Hölder inequality, Bramble–
Hilbert lemma and interpolation estimate

|
(
(ε− εK)∇(u− ihu),∇vh

)
K
≤ |ε− εK |0,∞,K |u− ihu|1,K |vh|1,K
≤ Ch3

K |ε|1,∞,K |u|3,K |vh|1,K
(4.15)

The second sum from (4.14) can be estimated using the fact |εK | ≤ ‖ε‖0,∞,K and employing
the supercloseness of ih, see [74, 72, 57] (n = 2) and [61] (n = 3). To this end, we consider
the scalar case and for each mesh rectangle K define EK , FK : K → R with

EK(x) =
1

2

[
(x− xK)2 − h2

x,K

]
,

FK(y) =
1

2

[
(y − yK)2 − h2

y,K

]
,

(4.16)

whereby (xK , yK) denotes the barycentre of K, see Figure 4.1.

K

l1

0

(xK , yK) nl2
Knl4

K

l2

l3

l4

X

nl3
K

nl1
K

Y

Figure 4.1: Mesh rectangle cell K, |l1| = |l3| = 2hx,K , |l2| = |l4| = 2hy,K
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After [57] it holds

(
∂x(w − ihw), ∂xvh

)
K

= − 1

30

∫
K

F 2
K(y)F ′K(y)∂xyyyw(x, y)∂xyyvh(x, yK) dxdy

− 1

6

∫
K

F 2
K(y)∂xyyyw(x, y)∂xyvh(x, yK) dxdy

(4.17)

for all w ∈ H4(K) and vh ∈ Q2(K). Using the facts that

|F 2
K(y)| ≤

(
h2
y,K

2

)2

and |F ′K(y)| ≤ hy,K , (4.18)

∂xyyvh(x, yK) = ∂xyyvh(x, y) ∀ vh ∈ Q2(K) ,

∂xyvh(x, yK) = ∂xyvh(x, y)− (y − yK)∂xyyvh(x, y) ∀ vh ∈ Q2(K)

as well as the inverse inequalities, we get the superclose bound

|
(
∂x(w − ihw), ∂xvh

)
K
| ≤ Ch3

y,K‖∂xyyyw‖0,K ‖∂xvh‖0,K , (4.19)

and by analogy

|
(
∂y(w − ihw), ∂yvh

)
K
| ≤ Ch3

x,K‖∂xxxyw‖0,K ‖∂yvh‖0,K . (4.20)

Therefore, we obtain (
∇(u− ihu),∇vh

)
K
≤ Ch3

K |u|4,K |vh|1,K . (4.21)

Collecting (4.14)-(4.21), we deduce (4.10). Now, we have(
div (ε(u− ihu)), qh

)
=
(
u− ihu, qh∇ε

)
+
(
ε div (u− ihu), qh

)
. (4.22)

Applying Hölder inequality and interpolation estimate, we get∣∣(u− ihu, qh∇ε)K∣∣ ≤ C|ε|1,∞,Kh3
K |u|3,K‖qh‖0,K ,

and consequently ∣∣(u− ihu, qh∇ε)∣∣ ≤ Ch3|u|3‖qh‖0 . (4.23)

Now, we get from the triangle inequality∣∣(ε div (u− ihu), qh
)∣∣ ≤ ∣∣(ε ∂x (u1 − ihu1), qh

)∣∣+
∣∣(ε ∂y (u2 − ihu2), qh

)∣∣ .
Approximating ε by piecewise constants with respect to the triangulation Th, taking into
consideration the fact

qh|K ∈ P1 ⊂ ∂xQ2 ∩ ∂yQ2
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and using the local estimates (4.19) and (4.20), we conclude by analogy to the proof of
(4.10) the global bound∣∣(ε div (u− ihu), qh

)∣∣ ≤ Ch3(|u|3 + |u|4) ‖qh‖0 . (4.24)

Collecting (4.22)-(4.24) gives the assertion (4.11). Finally, the Hölder inequality, interpo-
lation estimate imply the local bound∣∣(α(u− ihu),vh

)
K

∣∣ ≤ C‖α‖0,∞,K‖u− ihu‖0,K‖vh‖0,K

≤ C‖α‖0,∞,Kh
3
K |u|3,K‖vh‖0,K .

(4.25)

Employing Poincaré inequality, yields the global bound (4.12). �

Next, we bound the term b(vh, p − jhp). To this end, we assume that the mesh is quasi
uniform in each coordinate direction, i.e., for two cells K and K ′ with a common face let

max (|hK − hK′|, |kK − kK′|) ≤ C h2 . (4.26)

Lemma 4.2 Let p ∈ H3(Ω), ε ∈ W 2,∞(Ω) and let the mesh be quasi uniform in each
coordinate direction. Then, we have for each vh ∈Xh0

|(div (εvh), p− jhp)| ≤ Ch3 ‖p‖3|vh|1. (4.27)

Proof. First, we observe

(div (εvh), p− jhp) = (∇ε · vh, p− jhp) + (ε div (vh), p− jhp) . (4.28)

Using the fact that due to (4.9) jh is L2 projection onto Mh, employing Cauchy–Schwarz
inequality, interpolation estimates, we obtain

|(∇ε · vh, p− jhp)K | =
∣∣(∇ε · vh − jh(∇ε · vh), p− jhp

)
K

∣∣
≤ ‖∇ε · vh − jh(∇ε · vh)‖0,K ‖p− jhp‖0,K

≤ Ch3
K |∇ε · vh|1,K |p|2,K

≤ Ch3
K‖ε‖2,∞,K |p|2,K‖vh‖1,K .

From Poincaré inequality follows then the global bound

|(∇ε · vh, p− jhp)| ≤ Ch3‖ε‖2,∞|p|2|vh|1 . (4.29)

Next, we get for εK from (4.13)

(ε div (vh), p− jhp)

=
∑
K∈Th

(
(ε− εK)div (vh), p− jhp

)
K

+
∑
K∈Th

εK
(
div (vh), p− jhp

)
K
. (4.30)
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The first sum can be estimated by employing locally Hölder-inequality, Bramble-Hilbert
lemma and interpolation estimate

∣∣((ε− εK)div (vh), p− jhp
)
K

∣∣ ≤ Ch3
K |ε|1,∞,K |p|2,K |vh|1,K . (4.31)

Let us recall the supercloseness result from [72] (n = 2) in order to get a bound for the
second sum from (4.30)

(ε̄∂xvh1, p− jhp) =
∑
K∈Th

εK

[
− 1

36

∫
K

{(
(F 2

K)′(E2
K)′′ − 2h2

x,K(F 2
K)′
)
∂xyyp− 2h2

y,K(E2
K)′∂xxyp

}
∂xxyvh1 dxdy

+
1

36

∫
K

{(
(F 2

K)′(E2
K)′′ − 2h2

x,K(F 2
K)′
)
∂xyyp− 2h2

y,K(E2
K)′∂xxyp

}
F ′K∂xxyyvh1 dxdy

− 4

36
h2
x,Kh

2
y,K

∫
K

∂xyyp∂xxvh1dxdy

+
4

36
h2
x,Kh

2
y,K

∫
l3

∂xyp∂xxvh1dx−
4

36
h2
x,Kh

2
y,K

∫
l1

∂xyp∂xxvh1dx

+
4

36
h2
x,Kh

2
y,K

∫
K

FK∂xyyp∂xxyyvh1dxdy

− 1

6

∫
K

∂xyypF
2
K∂yyvh1dxdy

+
1

6

∫
l2

∂yypF
2
K∂yyvh1dy −

1

6

∫
l4

∂yypF
2
K∂yyvh1dy

]

(4.32)

whereby vh1 stands the first component of vh ∈Xh0 and l1, l3 and l2, l4 denote horizontal
and vertical edges of the cell K, respectively (see Figure 4.1). The formula (4.32) can be
derived using the expansion of vh1 ∈ Q2(K)

∂xvh1(x, y) = ∂xvh1(x, yK) + F ′K∂xyvh1(xK , yK) + E ′KF
′
K∂xxyvh1(x, yK)

+
1

6

(
(F 2

K)′′ + h2
y,K

)
∂xyyvh1(x, y) ,

integrating by parts and employing the properties of the pressure interpolation operator jh
and functions EK , FK . The estimates of the cell integrals from the above sum follow from
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the Hölder and inverse inequalities and properties of functions EK , FK and ε, e.g.,∣∣∣∣−εK36

∫
K

{(
(F 2

K)′(E2
K)′′ − 2h2

x,K(F 2
K)′
)
∂xyyp− 2h2

y,K(E2
K)′∂xxyp

}
∂xxyvh1 dxdy

∣∣∣∣
≤ C‖ε‖0,∞,K

[
‖(F 2

K)′‖0,∞,K‖(E2
K)′′‖0,∞,K + 2h2

x,K‖(F 2
K)′‖0,∞,K

]
‖∂xyyp‖0,K‖∂xxyvh1‖0,K

+ C‖ε‖0,∞,K h
2
y,K‖(E2

K)′‖0,∞,K‖∂xxyp‖0,K‖∂xxyvh1‖0,K

≤ C‖ε‖0,∞,K(h3
y,Kh

2
x,K + h2

x,Kh
3
y,K)‖∂xyyp‖0,Kh

−1
x,Kh

−1
y,K‖∂xvh1‖0,K

+ C‖ε‖0,∞,Kh
2
y,Kh

3
x,K‖∂xxyp‖0,Kh

−1
x,Kh

−1
y,K‖∂xvh1‖0,K

≤ C‖ε‖0,∞,Kh
3
K |p|3,K |vh1|1,K .

Let K and K ′ denote two neighbour cells. On the common vertical edge l2 = l′4 (or l4 = l′2)
we get from Hölder and inverse inequalities, Bramble-Hilbert lemma and properties of FK∣∣∣∣16εK

∫
l2

∂yypF
2
K∂yyvh1dy −

1

6
εK′

∫
l′4

∂yypF
2
K′∂yyvh1dy

∣∣∣∣
=

∣∣∣∣16
∫
l2

(εK − ε)∂yypF 2
K∂yyvh1dy −

1

6

∫
l′4

(εK′ − ε)∂yypF 2
K′∂yyvh1dy

∣∣∣∣
≤ C {|εK − ε|0,∞,∂K + |εK′ − ε|0,∞,∂K′} ‖∂yyp‖0,∂K h

4
K ‖∂yyvh‖0,∂K

≤ Ch3 |ε|1,∞,K∪K′‖p‖3,K |vh|1,K

(4.33)

according to the continuity of FK and ∂yyvh at l2 (or l4), the trace theorem and scaling
argument

‖r‖0,∂K ≤ Ch−1/2(‖r‖0,K + h|r|1,K) ∀ r ∈ H1(K) (4.34)

and due to ε ∈ H2(Ω) ↪→ C(Ω). Similarly, it holds on the common horizontal edge l1 = l′3
(or l3 = l′1)∣∣∣∣ 4

36
h2
x,Kh

2
y,KεK

∫
l3

∂xyp∂xxvh1dx−
4

36
h2
x,K′h2

y,K′εK′

∫
l′1

∂xyp∂xxvh1dx

∣∣∣∣
≤ 4

36
|εK ||h2

x,Kh
2
y,K − h2

x,K′h2
y,K′|

∣∣∣∣∫
l3

∂xyp∂xxvh1dx

∣∣∣∣+
4

36
h2
x,K′h2

y,K′

∣∣∣∣∫
l3

(ε− εK)∂xyp∂xxvh1dx

∣∣∣∣
+

4

36
h2
x,K′h2

y,K′

∣∣∣∣∫
l′1

(ε′K − ε)∂xyp∂xxvh1dx

∣∣∣∣
≤ Ch3 |ε|1,∞,K∪K′‖p‖3,K |vh1|1,K

(4.35)

due to assumption (4.26). Summing up and taking into consideration that vh1 vanishes on
the boundary ∂Ω, we conclude the global bound

|(ε̄∂xvh1, p− jhp)| ≤ Ch3‖ε‖1,∞‖p‖3|vh|1 . (4.36)
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The estimate
|(ε̄∂yvh1, p− jhp)| ≤ Ch3‖ε‖1,∞‖p‖3|vh|1 (4.37)

can be obtained analogously. Collecting (4.28),(4.29),(4.30),(4.31) and (4.36) implies the
assertion (4.27). Using expansion techniques from [61] one can show in analogous way the
superclose estimate for n = 3. �

Combining above superclose estimates, yields

Theorem 4.2 Let the weak solution (u, p) of the Stokes-like problem (2.124) satisfy the
regularity assumption (u, p) ∈H4(Ω)×H3(Ω) and let the mesh be quasi uniform in each
coordinate axis. Let jh be the L2-projection onto Mh and ihu be the nonstandard interpo-
lation onto Xh defined above. Then, for the (Q2, P

disc
1 ) finite element solution (uh, ph) we

have the superclose estimate

|uh − ihu|1 + ‖ph − jhp‖0 ≤ Ch3
(
|u|3 + |u|4 + ‖p‖3

)
, (4.38)

provided that ε ∈ W 2,∞(Ω).

Proof. Use (4.2) and the estimates of the Lemmata 4.1 and 4.2. �

Let us assume that we have the standard error estimate

‖u− uh‖0 + h (|u− uh|1 + ‖p− ph‖0) ≤ C hk+1 , (4.39)

with C = C(Re−1, ‖u‖k+1, ‖p‖k) and a superclose property for the corresponding linear
problem based on

|E(u, p;vh, qh)| ≤ C hk+1(|vh|1 + ‖qh‖0) , (4.40)

where C = C(‖u‖k+2 +‖p‖k+1). Sufficient conditions that (4.39) holds true can be found in
[30] for ε = 1. The numerical tests from Chapter 2 indicate that (4.39) holds. In Section 4.2
the validity of (4.40) for k = 2 has been shown in case of the (Q2, P

disc
1 ) element pair and

appropriate interpolation operators.

Lemma 4.3 Let the weak solution (u, p) of the Brinkman–Forchheimer problem (2.5) sat-
isfy the regularity assumption u ∈ Hk+1(Ω), k ≥ 1, and let the discrete solution (uh, ph)
satisfy (4.39). Then,

|ñ(u,u,vh)− ñ(uh,uh,vh)| ≤ C hk+1|vh|1 ∀vh ∈Xh0 (4.41)

and
|d(u;u,vh)− d(uh;uh,vh)| ≤ C hk+1‖β‖0,∞‖vh|1 ∀vh ∈Xh0 . (4.42)

Proof. Following the proof of Lemma 4.1 from [61], we split the difference into

ñ(u,u,vh)− ñ(uh,uh,vh) =
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ñ(u− uh,u,vh) + ñ(uh − u,u− uh,vh) + ñ(u,u− uh,vh)

and estimate term by term. Applying Poincaré and Hölder inequalities, the fact ‖ε‖0,∞ ≤ 1,
the continuity of the embeddings

H1(Ω) ↪→ L6(Ω) , Hk+1(Ω) ↪→W 1,3(Ω) , Hk+1(Ω) ↪→ L∞(Ω) , (4.43)

(4.39), (2.10) and (2.45), we get for all vh ∈Xh0

|ñ(u− uh,u,vh)| ≤ C ‖u− uh‖0 (|u|1,3‖vh‖0,6 + ‖u‖0,∞|vh|1)

≤ C hk+1|vh|1
|ñ(uh − u,u− uh,vh)| ≤ C ‖u− uh‖1 ‖u− uh‖1 ‖vh‖1

≤ C h2k|vh|1
|ñ(u,u− uh,vh)| = |(εu · ∇vh,u− uh)|

≤ C ‖u‖0,∞ |vh|1 ‖u− uh‖0 ≤ C hk+1|vh|1 .

Summarising all estimates we conclude (4.41).
Next, we estimate the following splitting

d(u;u,vh)− d(uh;uh,vh)

= d(u;u,vh)− d(uh;u,vh) + d(uh;u,vh)− d(uh;uh,vh) .
(4.44)

Using the Hölder inequality, Sobolev embeddings (4.43), Poincaré inequality and (4.39),
we get

|d(u;u,vh)− d(uh;u,vh)| ≤ ‖β‖0,∞‖u− uh‖0‖u‖0,3‖vh‖0,6

≤ Chk+1|vh|1
(4.45)

due to ‖β‖0,∞ ≤ 1.75(1 − ε0)/ε0. From the Hölder inequality, a priori bound (2.110),
Sobolev embedding H1(Ω) ↪→ L6(Ω) follows also

|d(uh;u,vh)− d(uh;uh,vh)| ≤ ‖β‖0,6‖uh‖0,6‖u− uh‖0‖vh‖0,6

≤ Chk+1|vh|1 .
(4.46)

The assertion (4.42) follows from (4.44) by applying triangle inequality and using (4.45)
and (4.46). �

As a consequence we have the superclose property for the Brinkman–Forchheimer problem:

Theorem 4.3 Let the weak solution (u, p) of the Brinkman–Forchheimer problem satisfy
the regularity assumption (u, p) ∈ Hk+2(Ω) × Hk+1(Ω), k ≥ 1, let the discrete solution
(uh, ph) satisfy (4.39), and let the interpolation operators ih, jh fulfil the estimate (4.40).
Then,

|uh − ihu|1 + ‖ph − jhp‖0 ≤ C(Re−1,u, p)hk+1. (4.47)
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Proof. The theorem follows directly from (4.2), (4.40), and Lemma 4.3. �

Remark 4.4 In particular, if ε ∈ W 2,∞(Ω) and the weak solution (u, p) of the Brinkman–
Forchheimer problem satisfies the regularity assumption (u, p) ∈ H4(Ω) × H3(Ω) we get
the superclose estimate

|uh − ihu|1 + ‖ph − jhp‖0 ≤ C(Re−1,u, p)h3

for the (Q2, P
disc
1 ) element pair to the nonstandard interpolants defined in Section 4.2.

4.3 (Q3, P
disc
2 ) Post-processing

In this section we will define the interpolation operators I2h and J2h which fulfil the prop-
erties (A), (B), and (C). In the following we assume that the triangulation Th was obtained
from the triangulation T2h by regular refinement, i.e., each patch P ∈ T2h consists of 4
congruent child cells Ki ∈ Th, i = 1, . . . , 4.

In view of property (B), a suitable candidate for post-processing the discrete solution
(uh, ph) obtained with the finite element pair (Q2, P

disc
1 ) is the finite element pair (Q3, P

disc
2 ),

i.e., the space Y 2h consists of vector-valued function where each component is a continu-
ous, piecewise Q3 function while the space N2h contains functions which are piecewise P2

polynomials with no continuity requirements across cell borders.

To ensure property (A), the nodal functionals which define the operators I2h and J2h

are built by using linear combinations of the nodal functionals from ih and jh, respectively.
Note however, that arbitrary linear combinations may lead to interpolation operators which
are not unisolvent.

Our aim is to construct the operators I2h and J2h by

I2h(v)|P := I2h (v|P ) , J2h(q)|P := J2h (q|P ) ,

i.e., the interpolation operators I2h and J2h act patch-wise locally.

The construction of the restrictions of I2h and J2h on P will be done via the reference
patch P̂ = (−1,+1)2. To this end, let F P : P̂ → P be a bijective reference mapping. Then
we define

I2h(v)|P := Î2h(v̂P ) ◦ F−1
P , J2h(q)|P := Ĵ2h(q̂P ) ◦ F−1

P ,

where v̂P = v|P ◦ FP and q̂p = q|P ◦ F P .

Since the child cells Ki are obtained by regular refinement of a patch P ∈ T2h, they are
images of child cells K̂i of P̂ .
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On P̂ let X̂ denote the space of continuous, piecewise Q2 functions and M̂ the space of
piecewise P1 functions.

4.3.1 Velocity post-processing

For v̂ = (v̂1, v̂2) we define Î2h by

Î2h(v) :=
(
Î2h(v1), Î2h(v2)

)
.

The scalar interpolation operator Î2h is defined by

N̂j

(
Î2h(ŵ)

)
= N̂j(ŵ), j = 1, . . . , 16,

where the nodal functionals N̂j, j = 1, . . . , 16, are given by

N̂j(ŵ) := ŵ(âj), j = 1, . . . , 4,

N̂j+8(ŵ) :=
1

|l̂j|

∫
l̂j

ŵ dŝ, j = 1, . . . , 8,

N̂i+12(ŵ) :=
1

|K̂i|

∫
bKi
ŵ dξ dη , i = 1, . . . , 4.

Here, âj, j = 1, . . . , 4, are the vertices of P̂ ; l̂j, j = 1, . . . , 8, are all outer edges of children

of P̂ , i.e., l̂j ⊂ ∂P̂ ; and K̂i, i = 1, . . . , 4, are the children of P̂ , see Figure 4.2.

s

K̂3K̂4

K̂1

l̂2l̂1 â2

â4

â1 â5

â6

â7

l̂4
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l̂3

l̂5l̂6
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l̂7
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l̂12
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l̂10â8 â9

â3

ξ

η

Figure 4.2: Macro-cell P̂ = (−1, 1)2
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Note that due to the embedding H2(Ω) ↪→ C0(Ω) all nodal functionals are well defined
and that the locally on each patch P defined interpolations I2h build a continuous global
interpolation, which we denote again by I2h.

Since the nodal functionals N̂j, j = 1, . . . , 16, are suitable linear combinations of nodal

functionals for îh the property (A) is fulfilled. It is easy to check that Î2h is Q3-unisolvent

and any Q3 function on P̂ is reproduced. Thus, the property (B) follows from the Bramble–
Hilbert lemma together with the standard estimates for the reference mapping F P . Since
|Î2h · |1, bP and | · |1, bP are norms on the finite dimensional space X̂/R we have the equivalence

|Î2h(v̂i)|1, bP ≤ C|v̂i|1, bP ∀vi ∈ X̂, i = 1, 2 .

Using the estimates for F P we obtain

|I2h(vh)|1,P ≤ C|vh|1,P ∀vh ∈Xh

with a constant C independent of P . Property (C) follows by summing up over all patches
P .

4.3.2 Pressure post-processing

We define the following unions of child cells K̂i, see Figure 4.3. Let D̂j, j = 1, . . . , 2,

denote the union of each two diagonally lying children. Let Â1
ξ and Â2

ξ be the union of

those children which lie in the half space ξ < 0 and ξ > 0, respectively. The unions Â1
η, Â

2
η

are defined in an analogous way.

We define the interpolation operator Ĵ2h according to

M̂i(Ĵ2h(q̂)) = M̂i(q̂), i = 1, . . . , 6 ,

where

M̂j(q̂) :=
1

|D̂j|

∫
bDj

1 · q̂ dξ dη, j = 1, 2,

M̂j+2(q̂) :=
1

|Âjξ|

∫
bAjξ
ξ · q̂ dξ dη, j = 1, 2,

M̂j+4(q̂) :=
1

|Âjη|

∫
bAjη
η · q̂ dξ dη j = 1, 2.
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â3
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Figure 4.3: Examples of union cells required for pressure-postprocessing

One can check that these nodal functionals are P2-unisolvent and that the interpolation
operator Ĵ2h reproduces P2 polynomials on P̂ . Together with the estimates for the reference
mapping F P and the Bramble–Hilbert lemma this results in property (B). Furthermore,
the above given nodal functionals are linear combinations of the nodal functionals used for
defining ĵh. Thus, property (A) is fulfilled. For the proof of property (C) we use the fact
that Ĵ2h is a linear and unisolvent interpolation operator. Furthermore, we apply again
estimates for the reference mapping and its inverse and we exploit the equivalence of the
norm ‖Ĵ2h · ‖0, bK and ‖ · ‖0, bK on the finite dimensional space M̂/R.

Remark 4.5 Due to the construction of J2h we get that ph ∈ L2
0(Ω) implies J2h(ph) ∈

L2
0(Ω).

4.3.3 Superconvergence result

Now we can formulate our superconvergence result.

Theorem 4.6 Let (u, p) be the solution of the Stokes-like or Brinkman–Forchheimer prob-
lem which fulfils the regularity assumption u ∈ H4(Ω) and p ∈ H3(Ω). Furthermore, let
(uh, ph) be the discrete solution of the corresponding problem with the finite element pair
(Q2, P

disc
1 ). Then, we have the estimate

|u− I2huh|1 + ‖p− J2hph‖0 ≤ C(Re−1,u, p)h3 , (4.48)

provided that ε ∈ W 2,∞(Ω).
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Proof. The proof follows directly from the superclose estimates (4.38) and (4.47), re-
spectively, and the properties (A), (B), and (C). �

Remark 4.7 In order to post-process the discrete solution (uh, ph) ∈ Xh ×Mh we need
only the action of the locally defined operators I2h and J2h on discrete functions. These
mappings can be represented by local matrices which describe the action of I2h and J2h on
vh and qh, respectively, in terms of appropriate bases.

4.4 Numerical results

The test problem from Chapter 2 with the smooth solution (2.125) was computed on a
family of uniform meshes. Level 0 corresponds to a partition of the unit square Ω = (0, 1)2

into 4 subcubes. A refinement step divides each mesh cell into 4 congruent cells.

Table 4.1: Velocity errors in the Brinkman–Forchheimer problem, Re = 1.0, discretised
with (Q2, P

disc
1 ), post-processed by (Q3, P

disc
2 ).

l. |u− uh|1 order |uh − ihu|1 order |u− Ihuh/2|1 order
0 1.114e+0 5.157e+0 2.493e−1
1 2.799e−1 1.992 6.086e−2 3.083 3.015e−2 3.048
2 6.531e−2 2.100 5.463e−3 3.478 5.590e−3 2.431
3 1.642e−2 1.991 6.334e−4 3.108 7.097e−4 2.978
4 4.113e−3 1.998 7.838e−5 3.015 8.901e−5 2.995
5 1.029e−3 1.999 9.808e−6 2.998 1.114e−5 2.999
6 2.572e−4 2.000 1.229e−6 2.997

The errors for the Brinkman-Forchheimer problem (with Re = 1.0) are shown in Ta-
bles 4.1 and 4.2. Note that in order to determine the post-processed (Q3, P

disc
2 ) solution

(Ihuh/2, Jhph/2) on the level l the discrete (Q2, P
disc
1 ) solution (uh/2, ph/2) on the next finer

level l + 1 has to be calculated. The convergence rates are in good agreement with the
theoretical rates given in Theorem 4.6. This can also be seen in the Figure 4.4. The
benefit of the post-processing is visible in this figure. In order to achieve the accuracy
of the (Q2, P

disc
1 ) solution on level l = 5 it is sufficient to determine the post-processed

(Q3, P
disc
2 ) solution on 2-3 level coarser. In Table 4.3 we compare the errors of two third

order methods, namely the post-processed (Q2, P
disc
1 ) solution and the (Q3, P

disc
2 ) solution.

The two discrete solutions are compared on the same mesh, which means that the lower
order solution has been determined on the next finer mesh. Since the errors are approxi-
mately of the same size and the number of degrees of freedom for the (Q2, P

disc
1 ) solution

on the next finer level is higher compared to those for the (Q3, P
disc
2 ) solution, it seems
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Figure 4.4: Convergence rates for the Brinkman–Forchheimer problem, Re = 1.0.
−�− (Q2, P

disc
1 ) finite element error |u− uh|1 + ‖p− ph‖0,

−×− superclose error |uh − ihu|1 + ‖ph − jhp‖0,
−◦− post-processing error |u− Ihuh/2|1 + ‖p− Jhph/2‖0.

Table 4.2: Pressure errors in the Brinkman–Forchheimer problem, Re = 1.0, discretised
with (Q2, P

disc
1 ), post-processed by (Q3, P

disc
2 ).

l. ‖p− ph‖0 order ‖ph − jhph‖0 order ‖p− Jhph/2‖0 order
0 1.886e−0 1.873e+0 1.286e−1
1 1.257e−1 3.907 1.108e−1 4.079 1.183e−2 3.443
2 1.663e−2 2.918 6.941e−3 3.997 1.351e−3 3.130
3 3.845e−3 2.113 6.147e−4 3.497 1.641e−4 3.041
4 9.523e−4 2.013 6.684e−5 3.201 2.040e−5 3.008
5 2.377e−4 2.002 8.019e−6 3.059 2.547e−6 3.002
6 5.940e−5 2.001 9.926e−7 3.014

to be inefficient to use the post-processing technique. But the opposite is the case: when
solving the discrete systems by a multilevel approach the costs to solve the discrete system
for the (Q3, P

disc
2 ) solution is much higher than those for the (Q2, P

disc
1 ) solution on the

next finer mesh, which means that the size of the system (number of degrees of freedom) is
not an appropriate measure for the solving complexity. Indeed, if different discretisations
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Table 4.3: Errors of the post-processed (Q2, P
disc
1 ) solution (Ihuh/2, Jhph/2) and the

(Q3, P
disc
2 ) finite element solution (wh, rh) for the Brinkman–Forchheimer prob-

lem, Re = 1.0.

l. |u− Ihuh/2|1 |u−wh|1 ‖p− Jhph/2‖0 ‖p− rh‖0
0 2.493e−1 2.512e−1 1.286e−1 8.567e−2
1 3.015e−2 3.047e−2 1.183e−2 8.329e−3
2 5.590e−3 5.638e−3 1.351e−3 1.005e−3
3 7.097e−4 7.160e−4 1.641e−4 1.221e−4
4 8.901e−5 8.983e−5 2.040e−5 1.511e−5
5 1.114e−5 1.124e−5 2.547e−6 1.882e−6

are compared, the costs for generating and solving the local systems in the smoothing pro-
cedure are more important. Thus, although there are more unknowns to be determined for
the (Q2, P

disc
1 ) solution on the next finer level, we can solve the system cheaper and obtain

by post-processing the same accuracy with less overall effort.



5 Physically reliable stabilisation
method for scalar problems

Convection-diffusion-reaction equations occur for instance in chemical engineering. De-
pending on the problem, different types of boundary conditions are applied on different
parts of the domain boundary. A common feature of these problems is the small diffu-
sion coefficient, i.e., the process is convection and/or reaction dominant. Since standard
Galerkin discretisations will produce unphysical oscillations for this type of problems,
stabilisation techniques have been developed. The streamline-upwind Petrov–Galerkin
method (SUPG) has been successfully applied to convection-diffusion-reaction problems. It
was proposed by Hughes and Brooks [40]. One fundamental drawback of SUPG is that sev-
eral terms which include second order derivatives have to be added to the standard Galerkin
discretisation in order to ensure consistency. Alternatively, continuous interior penalty
methods [2, 15], residual free bubble method [27, 28, 29], or subgrid modelling [23, 32] can
be used for stabilising the discretised convection-diffusion-reaction problems.

Despite of well investigated stabilising effects of the local projection method (LPS) for
scalar convection-diffusion problems and its relations to other stabilisation methods like
SUPG and continuous interior penalty methods (CIP), see [63, 69, 51], the problem of spu-
rious oscillations at the boundary layer arises. This lack of numerical stability can lead to
solutions which do not preserve physical properties, e.g., non-negativity of concentration of
chemical species. Expressing this issue mathematically, we can say that numerical solutions
do not satisfy the maximum principle in the certain sense. The pioneering work on the field
of discrete maximum principle for finite elements is [18]. Authors established there that
the solution with continuous piecewise linears satisfies the discrete maximum principle for
Poisson equation on weakly acute triangular meshes. Since then many many improvements
and extensions have been done. We mention [43, 81, 21, 79, 78, 77, 73, 50, 14, 49, 34, 48, 52]
as the most important results of the last decades. Undesired spurious oscillations can be
also reduced or even eliminated by employing a suitable choice of stabilising parameters
in order to get a nodally exact solutions, see [69]. Another possibility of satisfying the
discrete maximum principle is the use of additional terms, see review article [44] and [45]
for the detailed discussion of the optimal choice of stabilising parameters. It has been
proved that the first-order artificial viscosity scheme of [20] and nonlinear artificial scheme
of [16] produce solutions which satisfy the discrete maximum principle. The rigorous proof
for discrete maximum principle for CIP scheme perturbated by shock capturing term has
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been established in [17]. Since our proof techniques do not involve algebraic arguments
and the behaviour of the discretised Laplace operator is well studied for triangular meshes,
we decide to change our mesh topology into triangles.

Our aim is to establish a discrete maximum principle of the local projection scheme mod-
ified by shock capturing (LPSSC) and to provide the convergence theory of this method
applied to convection-diffusion-reaction problems with Dirichlet boundary conditions. Fur-
thermore, several test problems with different types of interior and boundary layers will be
presented. They show that the local projection stabilisation with the edge oriented shock
capturing allows to obtain numerical solutions which are physically reliable.

5.1 Model problem and local projection method with

shock capturing

5.1.1 Weak formulation

We consider the following Dirichlet problem for the scalar convection-diffusion-reaction
equation in two dimensions

−D∆u+ b · ∇u+ cu = f in Ω,

u = g on Γ = ∂Ω ,

}
(5.1)

where D > 0 is a small diffusion constant. We are looking for the distribution of concen-
tration or temperature u in a polygonally bounded reactor domain Ω ⊂ R2. The reaction
coefficient c ∈ L∞(Ω) is assumed to be non-negative. Let f ∈ L2(Ω), g ∈ H1/2(Γ) be given
functions. Furthermore, we require that the convection field b ∈

(
W 1,∞(Ω)

)n
, n = 2, and

the reaction coefficient c fulfils for some c0 > 0 the following condition

c(x)− 1

2
∇ · b(x) ≥ c0 > 0 ∀x ∈ Ω. (5.2)

We define the function spaces

V = H1(Ω) and V0 = {v ∈ V : v|Γ = 0}.

A weak formulation of (5.1) reads

Find u ∈ V with u|Γ = g such that

a(u, v) = (f, v) ∀ v ∈ V0 (5.3)

where the bilinear form a : H1(Ω)×H1(Ω)→ R is defined by

a(u, v) = D(∇u,∇v) + (b · ∇u, v) + (cu, v). (5.4)



5.1 Model problem and local projection method with shock capturing 89

The condition (5.2) guarantees the V0-coercivity of the bilinear form a(·, ·). The existence
and uniqueness of a weak solution of problem (5.3) can be concluded from the Lax–Milgram
lemma. In the following we assume that the weak solution is H2 regular. The higher
regularity of the weak solution of Dirichlet problems on convex domains is a well known
fact, see [31].

5.1.2 Stabilisation by local projection

For the finite element discretisation of (5.3), we are given a shape regular family {Th} of
decomposition of Ω into triangles. The diameter of the triangular cell K will be denoted
by hK and the mesh size parameter h is defined by h := maxK∈Th hK . For Th, let Eh denote
the set of all interior edges E of cells K ∈ Th which belong to Ω.

It is a well known fact that the standard Galerkin discretisation of (5.3) can fail in the
convection dominated regime D � 1. In the following, we use stabilisation method by
local projection.

Let K̂ denote a reference cell and FK : K̂ → K the affine mapping from the reference
triangle onto an arbitrary cell K ∈ Th. Furthermore, let

b̂(x̂, ŷ) = 27
3∏
i=1

λ̂i(x̂, ŷ)

be the normalised bubble function which achieves the value 1 at the barycentre of K̂. In
the above definition λ̂i, i = 1, 2, 3, are barycentric coordinates on K̂. The local linear space
enriched by the cubic bubble b̂ is denoted by

P+
1 (K̂) := P1(K̂)⊕ span{b̂} .

Let

(Vh, Dh) := (P+
1,h, P

disc
0,h ) (5.5)

be the pair of finite element spaces defined via the reference mapping

P+
1,h : = {v ∈ H1(Ω) : v|K ◦ FK ∈ P+

1 (K̂) ∀K ∈ Th} ,

P disc
0,h : = {v ∈ L2(Ω) : v|K ◦ FK ∈ P0(K̂) ∀K ∈ Th} .

Furthermore, we introduce the linear finite element space

P1,h := {v ∈ H1(Ω) : v|K ◦ FK ∈ P1(K̂) ∀K ∈ Th} .

and set

V L
h := P1,h .
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The following approximation property of fluctuation operator can be stated

‖κhq‖0,K ≤ Ch|q|1,K ∀ q ∈ H1(K) , ∀ K ∈ Th . (5.6)

Moreover, the pair of enriched continuous piecewise linears and discontinuous piecewise
constants fulfils the compatibility condition (3.12), see [62, Lemma 4.1]. Then, the existence
of special interpolant jh : H2(Ω) → Vh satisfying the orthogonality condition (3.14) and
approximation properties (3.15) is provided according to Theorem 3.1.
We define the stabilising term Sh : V × V → R in the usual way

Sh(uh, vh) :=
∑
K∈Th

τK
(
κh(∇uh), κh(∇vh)

)
K

(5.7)

where τK = τ0hK , τ0 > 0, K ∈ Th, denote user-defined parameters. Let

Vh0 = {v ∈ Vh : vh|Γ = 0}

be the discrete test space and

V L
h0 = {v ∈ V L

h : vh|Γ = 0}

its part containing piecewise linears. The local projection stabilisation of the discretisation
of (5.3) reads as follows

Find uh ∈ Vh with uh|Γ = gh such that

a(uh, vh) + Sh(uh, vh) = (f, vh) ∀ vh ∈ Vh0 (5.8)

where gh denotes a suitable approximation of gh, e.g. gh = jhg. For the associated local
projection norm

|‖vh|‖ :=
{
D|vh|21 + c0‖vh‖2

0 + Sh(vh, vh)
}1/2

(5.9)

the following error estimate holds

|‖u− uh|‖ ≤ C

(∑
K∈Th

(D + hK)h2
K ‖u‖2

2,K

)1/2

, (5.10)

see [63].

5.1.3 Edge oriented shock capturing scheme

The numerical examples given in [63] lead us to suspect that the discrete solution exhibits
in general undesired spurious oscillations at boundary layers. The effect of non-uniform
pointwise convergence is also known for discrete solutions obtained by SUPG method and
in general can be explained as manifestation of Gibb’s phenomenon, see [23]. To circumvent
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this shortcoming we propose the perturbation of the stabilised bilinear form a(·, ·)+Sh(·, ·)
by the semilinear shock capturing operator jh : Vh×Vh → R which adds a lot of dissipation
in the regions where the discrete solution is oscillatory and does not act in the regions
where the solution is constant. Let us decompose the finite element solution uh ∈ Vh in
the following way

uh = uLh + uBh , (5.11)

where uLh ∈ V L
h and uBh ∈ Vh \ V L

h denote linear and bubble part of uh, respectively. In the
spirit of [17] we define the edge oriented shock capturing operator

jh(uh; vh) := cp
∑
E∈Eh

γE(b, c)h3
E sign

(
∂uh
∂tE

) ∣∣∣[[∇uLh ]]E

∣∣∣ ∂vh
∂tE

, (5.12)

where cp > 1 is a user-defined parameter, the constant γE(b, c) > 0 will be exploited in

the next section, hE denotes the length of the edge E, and
∂vh
∂tE

stands for the tangential

derivative of vh. We define by

[[∇uh]]E :=
(
(∇uh)|K · nK + (∇uh)|K′ · nK′

)
E
.

the scalar jump of ∇uh across the edge E = K ∩K ′. For x ∈ R we set sign(x) := x
|x| for

x 6= 0 and sign(0) := 0. We note that the operator j is nonlinear in the first argument and
it holds

jh(−uh; vh) = −jh(uh; vh) . (5.13)

Our discrete shock capturing scheme reads as follows

Find uh ∈ Vh with uh|Γ = gh such that

a(uh, vh) + Sh(uh, vh) + jh(uh; vh) = (f, vh) ∀ vh ∈ Vh0 . (5.14)

In the next section we want to answer the question whether the scheme (5.14) with the
edge oriented shock capturing operator obeys the discrete maximum principle.

5.2 Discrete maximum principle

5.2.1 Maximum principle for continuous problem

First, we recall results concerning maximum principle for the classical solutions of contin-
uous problem (5.1). Following the textbook of Evans [25], we state

Theorem 5.1 Let u ∈ C2(Ω) ∩ C(Ω) be a classical solution of (5.1). Then, it holds

f ≤ 0 in Ω ⇒ max
x∈Ω

u(x) ≤ max{0,max
x∈∂Ω

u(x)} (5.15)



92 Physically reliable stabilisation method for scalar problems

and
f ≥ 0 in Ω ⇒ min

x∈Ω
u(x) ≥ min{0, min

x∈∂Ω
u(x)} . (5.16)

Theorem 5.1 tells us nothing else than that the solution achieves extrema on the boundary,
provided that the right hand side f and g are properly signed. From the numerics of
elliptic partial differential equations we know already that many properties of the elliptic
operators are transferred to their discrete counterparts. The natural question which now
arises is whether the solution of (5.14) can satisfy the maximum principle in the certain
sense.

5.2.2 Discrete maximum principle (DMP)

Let Pi, i = 1, . . . , N and Pi, i = N + 1, . . . ,M denote interior and boundary vertices
resulting from the triangulation Th, respectively. We confine ourselves to study the principle
of discrete minimum. By analogy to (5.16) we want to show that the discrete solution of
(5.14) satisfies

f ≥ 0 in Ω ⇒ min
i=1,...,N+M

uh(Pi) ≥ min{0, min
i=N+1,...M

uh(Pi)} . (5.17)

Let us assume that the following abstract semilinear scheme is solvable.

Find uh ∈ Vh with uh|Γ = gh such that

A(uh; vh) = (f, vh) ∀ vh ∈ Vh0 . (5.18)

Hereby, A(·; ·) : Vh × Vh → R is linear in the second argument.

We denote by Ωi, for i = 1, . . . , N , the union of all cells K ∈ Th which share the vertex
Pi. Furthermore, let nK be the outer unit normal on ∂K, and let E(Pi) denote a set of all
edges E to which a vertex Pi belongs. We define the set of all indices j of vertices pj that
are neighbours of pi by Λi := {j 6= i : ∃ K ∈ Th with pi, pj ∈ K}.

Now, we define the discrete minimum principle property of schemes with a semilinear
form A(· ; ·).

Definition 5.2 A semilinear form A(· ; ·) satisfies discrete minimum principle property
(DMPP) if for all uh ∈ Vh, uh|Γ = gh and for all interior vertices Pi, i = 1, . . . , N the
following holds:
If uh takes at Pi a negative local minimum over the corresponding patch Ωi, then there exist
αE > 0 such that

A(uh;ϕi) ≤ −
∑

E∈E(Pi)

αE
[[∇uLh ]]E

 , (5.19)

where ϕi ∈ P1 denotes a nodal Lagrange base function associated with Pi, i.e., ϕi(Pj) = δij
for all j ∈ {1, . . . , N +M}.
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The following theorem can be applied to the general framework of shock capturing schemes.

Theorem 5.3 Let a semilinear form A(· ; ·) satisfy DMP of Definition 5.2 and (f, ϕi) ≥ 0.
Then, for the finite element solution of (5.18) it holds:

uh(Pi) ≥ min
j=N+1,...,M

{0, uh(Pj)} ∀ i = 1, . . . , N +M . (5.20)

Proof. We observe, that if uh attains a nonnegative minimum, or a negative minimum at
a boundary vertex, then the assertions follows immediately. Let uh take a global negative
minimum at Pi, i ∈ {1, . . . , N}. Due to assumptions we get from (5.18)

0 ≤ (f, ϕi) = A(uh;ϕi) ≤ −
∑

E∈E(Pi)

αE
[[∇uLh ]]E


which implies that uLh is already constant over Ωi and the minimum is attained also at a
boundary node of Ωi. Next, we proceed the same on the patch containing the boundary
vertex of Ωi. Repeating this argument we reach some boundary node of ∂Ω. �

Remark 5.4 The relation (5.17) with the changed sign holds for the discrete maximum
property.

Now, we prove DMP for the semilinear form

A(uh; vh) := a(uh, vh) + Sh(uh, vh) + jh(uh; vh)

by estimating all appearing terms separately. We start with the estimate of the Laplacian.

Lemma 5.5 Let ϕi be the piecewise linear Lagrange basis function that satisfies ϕi(Pj) =
δij. If uh achieves a local minimum at an inner vertex Pi, i.e.,

uh(Pj) ≥ uh(Pi) ∀ j ∈ Λi ,

then

(∇uh,∇ϕi) ≤ 0 (5.21)

Proof. Let φBK denote the bubble function on K. Then, the bubble part of the solution
uh|K can be represented as uBh |K = uKϕ

B
K , uK ∈ R. First, we observe

(∇uBh ,∇ϕi) = (∇uBh ,∇ϕi)Ωi =
∑
K⊂Ωi

uK(∇ϕBK ,∇ϕi)K =
∑
K⊂Ωi

uK

∫
∂K

ϕBK
∂φi
∂n

ds = 0 (5.22)
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due to the integration by parts and ϕBK |∂K = 0. Then, following [69], we get for uh = uLh+uBh

(∇uh,∇ϕi) = (∇uLh ,∇ϕi) =
∑

E∈Eh(Pi)

hE
2

[[∇uLh ]]E ,

and it holds for an inner vertex Pi

(∇uh,∇ϕi) = −
∑

E∈Eh(Pi)

hE
2

∣∣[[∇uLh ]]E
∣∣ ,

provided that uh has at Pi a local minimum. �

Now, we estimate
∣∣(∇uLh )|K

∣∣ by the certain sum of jumps
∣∣[[∇uLh ]]E

∣∣.
Corollary 5.6 If wh ∈ P1,h with wh|Γ = gh, has a local minimum at the vertex Pi, then∣∣(∇wh)|K∣∣ ≤ ∑

E∈Eh(Pi)

|[[∇wh]]E| ∀ K ⊂ Ωi . (5.23)

Proof. See [17, Lemma 2.7]. �

In the following, we assume that the family of meshes {Th}h>0 is shape regular. This
implies that there exists a positive constant ρ such that

max
K⊂Ωi

|K| ≤ ρ min
E∈E(Pi)

h2
E , (5.24)

and that the maximum number of cells contained in Ωi is bounded independently of the
mesh size h. Then, we can estimate the convection and reaction term.

Lemma 5.7 Let f = 0. If uh takes a local minimum at an inner vertex Pi, then

(b · ∇uh,∇ϕi) + (cuh, ϕi) + Sh(uh, ϕi) ≤
∑

E∈Eh(Pi)

γ1,E(b, c)
hE
2

∣∣[[∇uLh ]]E
∣∣ , (5.25)

whereby ϕi is the piecewise linear Lagrange basis function that satisfies ϕi(Pj) = δij and
the positive quantities γ1,E(b, c) depend on the data b and c.

Proof. Let uh take a negative local minimum at the inner vertex Pi. Using Corollary
5.6, we get for the piecewise linear Lagrange basis function ϕi with ϕi(Pj) = δij and for
the family of shape regular meshes {Th}h>0, the following estimate

(b · ∇uLh , ϕi) =
∑
K∈Ωi

(b · ∇uLh , ϕi)K ≤
∑
K⊂Ωi

|K|
3
‖b‖0,∞,K

∣∣(∇uLh )|K
∣∣

≤
∑

E∈E(Pi)

h2
E

∣∣[[∇uLh ]]E
∣∣(∑

K⊂Ωi

|K|
3h2

E

‖b‖0,∞,Ωi

)
≤ C1

∑
E∈E(Pi)

h2
E‖b‖0,∞,ω(E)

∣∣[[∇uLh ]]E
∣∣ ,

(5.26)
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whereby we set ω(E) = Ωi∪Ωj if the edge E joins the vertices Pi and Pj. Now, we consider
the reaction term for K ⊂ Ωi. If uLh changes the sign in K, then ‖uLh‖0,∞,K ≤ hK‖∇uh‖0,∞,K
and we get

(cuLh , ϕi)K ≤ ‖c‖0,∞,K‖uLh‖0,∞,K‖ϕi‖0,1,K ≤
|K|
3
‖c‖0,∞,K

∣∣(∇uLh )|K
∣∣ . (5.27)

If uLh < 0 on K, then (5.27) holds true, since the left-hand side is negative. Thus, repeating
arguments from (5.26), we obtain

(cuLh , ϕi)K ≤ C2

∑
E∈E(Pi)

h3
E‖c‖0,∞,ω(E)

∣∣[[∇uLh ]]E
∣∣ . (5.28)

Now, we consider the bubble part of uh. To this end, we test (5.14) with ϕBK ∈ Vh0 and get
for f = 0

D(∇uBh ,∇ϕBK)K + (b · ∇uBh , ϕBK)K + (cuBh , ϕ
B
K)K + Sh(u

B
h , ϕ

B
K)

= −D(∇uLh ,∇ϕBK)K − (b · ∇uLh , ϕBK)K − (cuLh , ϕ
B
K)K − Sh(uLh , ϕBK)

= −(b · ∇uLh , ϕBK)K − (cuLh , ϕ
B
K)K

since (5.22) and κh(∇uLh ) = 0 are satisfied. Consequently, we obtain for uBh |K = uKϕ
B
K by

integrating by parts

uK = − (b · ∇uLh , ϕBK) + (cuLh , ϕ
B
K)

(D + τK) |ϕBK |21,K +
(
c− 1

2
∇ · b, (ϕBK)2

)
K

(5.29)

which together with (5.26), (5.28) and |ϕBK |1,K ∼ 1 yields

|uK | ≤ C3(b, c)
h2
K

D + τK

∣∣(∇uLh )|K
∣∣ . (5.30)

Taking τK ∼ hK into consideration, we end up with

(b · ∇uBh , ϕi) =
∑
K⊂Ωi

uK(b · ∇ϕBK , ϕi)K ≤
∑

E∈E(Pi)

C4(b, c)h2
E

∣∣[[∇uLh ]]
∣∣ ,

(cuBh , ϕi) =
∑
K⊂Ωi

uK(cϕBK , ϕi)K ≤
∑

E∈E(Pi)

C5(b, c)h3
E

∣∣[[∇uLh ]]
∣∣ . (5.31)

Finally, we have for the stabilising term

Sh(uh, ϕi) = 0 (5.32)

since κh(∇ϕi) = 0. From (5.26), (5.28), (5.31) and (5.32) we conclude the assertion (5.25).
�

Now, we are able to state the main result concerning the discrete minimum principle
property (DMPP).
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Theorem 5.8 Let f = 0. Then for sufficiently large cp > 1 the semilinear form

A(uh; vh) = a(uh, vh) + Sh(uh, vh) + jh(uh; vh)

satisfies discrete minimum principle property from Definition (5.2).

Proof. Let uh attain a negative local minimum at an inner node Pi. Then we have

jh(uh;ϕi) = −cp
∑

E∈E(Pi)

γ1,E(b, c)h2
E

∣∣[[∇uLh ]]E
∣∣ . (5.33)

Then, it follows from Lemma 5.5 and 5.7 the estimate

A(uh;ϕi) ≤ −
∑

E∈E(Pi)

{
D

2
hE + (cp − 1)γ1,E(b, c)h2

E

} ∣∣[[∇uLh ]]E
∣∣ . (5.34)

Setting

αE :=
D

2
hE + (cp − 1)γ1,E(b, c)h2

E ,

we get αE > 0 for sufficiently large cp > 1. Thus, A(·; ·) satisfies the discrete minimum
principle property from Definition 5.2. �

5.3 Linear convergence of edge oriented shock

capturing scheme

Lemma 5.9 Let uh be the solution of (5.14) and let u ∈ H2(Ω) be solution of (5.4). Then,
it holds for τk ∼ hK, D ∼ 1 and sufficiently small h

|‖u− uh|‖ ≤ Ch . (5.35)

Proof. Let ũh be solution of linear scheme (5.8). Starting with Vh-coercivity of the
bilinear form a(·, ·) + Sh(·.·), we can follow

|‖ũh − uh|‖ ≤ sup
vh∈Vh0

a(ũh − uh, vh) + Sh(ũh − uh, vh)
|‖vh|‖

= sup
vh∈Vh0

jh(uh; vh)

|‖vh|‖

= sup
vh∈V Lh0

jh(uh; vh)

|‖vh|‖

(5.36)
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due to the fact that ∂vh
∂tE

= 0 holds for all vh ∈ Vh0 \ V L
h0. Next, we apply Cauchy–Schwarz

inequality in order to bound jh(uh; vh)

j(uh, vh) ≤ C

(∑
E∈Eh

h3
E

∣∣[[∇uLh ]]
∣∣2)1/2(∑

E∈Eh

h3
E|vh|21,∞,ω(E)

)1/2

.

Employing scaling arguments and using the fact (∇uLh ,∇uBh ) = 0, we get consequently

j(uh, vh) ≤ Ch|uh|1|vh|1 .

Combining this with (5.36), we conclude from |‖vh|‖ ≥ D1/2|vh|1 and (5.10) the estimate

|‖ũh − uh|‖ ≤ C
h√
D
|uh|1 ≤ C

h

D
|‖uh − ũh|‖+ C

h

D
|‖u− ũh|‖+ C

h

D
|‖u|‖

≤ C
h√
D
|‖uh − ũh|‖+ C

h2

D
|u|2 + C

h

D
|‖u|‖

from which we infer for D ∼ 1 and sufficiently small h

|‖ũh − uh|‖ ≤ Ch . (5.37)

Using the triangle inequality

|‖u− uh|‖ ≤ |‖ũh − uh|‖+ |‖u− ũh|‖

and a priori estimate (5.10) together with (5.37), we end up the proof. �

Our numerical tests show that the solution uh of the scheme (5.14) converges to the solution
u of (5.4) linearly also in the convection dominating case D � |b| and for D � h.

5.4 Numerical tests

In this section we present some numerical result for the shock capturing method for local
projection stabilisation applied to convection-diffusion-reaction problem.

We perform computations on the unit square Ω = (0, 1)2. The coarser triangular mesh is
refined regularly. The discretised nonlinear problems are linearised by fixed point iteration.
Let u0

h ∈ Vh be some prescribed initial solution. In each iteration step k ∈ N we solve the
following discrete problem

Find u
(k+1)
h ∈ Vh with u

(k+1)
h |Γ = gh such that

a(u
(k+1)
h , vh) + Sh(u

(k+1)
h , vh) = (f, vh)− j̃h(u(k)

h , vh) ∀ vh ∈ Vh0 (5.38)
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The operator j̃h stands for the smoothed nonlinear shock capturing operator jh which is
created by the following approximation of the discontinuous function

sign(t) ≈ tanh (t/µ)

where µ > 0 is a suitable chosen regularisation parameter. The above procedure results in
the sequence of the linear systems

Ahx
(k+1)
h = F h(x

(k)
h ) , k = 0, 1, 2, . . .

where the stiffness matrix Ah corresponds to the Galerkin and LPS parts, the right hand
side F h corresponds to the right hand side of (5.38) and is updated in each iteration step.

The solution vector in the iteration step k is denoted by x
(k+1)
h . In our computations

we set µ = 1.0 and abort the nonlinear iteration process if the euclidian norm satisfies
‖x(k+1)

h − x(k)
h ‖ ≤ 1e − 6. For small values of perturbation parameter D > 0 we use

damping procedure in order to enforce the convergence of the iteration (5.38).

5.4.1 Numerical study of convergence for smooth solution

At first, we investigate the rate of convergence for the problem with

b = (0.1, 0)T , c = 1

in the diffusion dominating (D = 1.0) and convection dominating (D = 1e− 7) cases. The
right hand side f is such that the exact solution is given by

u(x, y) = exp

(
−(x− 0.5)2

aw
− 3(y − 0.5)2

aw

)
,

with parameter aw = 0.2, see Figure 5.1.

The coarsest mesh of Friedrichs-Keller type consists of 8 triangular cells and the number
of degrees of freedom (dof) on each level is given in Table 5.1. In Tables 5.2 and 5.3

Table 5.1: Total number of degrees of freedom.

level 0 1 2 3 4 5 6 7
dofs 17 57 209 801 3137 12417 49409 197121

we report errors and rates of convergence for D = 1.0. For both methods the orders of
convergence are almost the same.
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Figure 5.1: The Gaussian as exact solution.

Table 5.2: Errors and rates of convergence for LPS solution, D = 1.0.

level error and rate
‖u− ũh‖0 |u− ũh|1 |‖u− ũh|‖

0 1.082e-1 9.902e-1 9.988e-1
1 6.092e-2 0.829 7.526e-1 0.396 7.558e-1 0.402
2 1.857e-2 1.714 4.310e-1 0.804 4.316e-1 0.808
3 4.819e-3 1.947 2.196e-1 0.973 2.197e-1 0.974
4 1.216e-3 1.986 1.103e-1 0.993 1.103e-1 0.994
5 3.048e-4 1.997 5.522e-2 0.998 5.523e-2 0.998
6 7.624e-5 1.999 2.762e-2 1.000 2.762e-2 1.000
7 1.906e-5 2.000 1.381e-2 1.000 1.381e-2 1.000

Table 5.3: Errors and rates of convergence for LPS solution with shock capturing, D = 1.0.

level error and rate
‖u− uh‖0 |u− uh|1 |‖u− uh|‖

0 1.083e-1 9.902e-1 9.988e-1
1 6.092e-2 0.829 7.527e-1 0.396 7.559e-1 0.402
2 1.858e-2 1.714 4.310e-1 0.804 4.316e-1 0.808
3 4.819e-3 1.947 2.196e-1 0.973 2.197e-1 0.974
4 1.216e-3 1.986 1.103e-1 0.993 1.103e-1 0.994
5 3.048e-4 1.997 5.522e-2 0.998 5.523e-2 0.998
6 7.624e-5 1.999 2.762e-2 1.000 2.762e-2 1.000
7 1.906e-5 2.000 1.381e-2 1.000 1.381e-2 1.000
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Table 5.4: Errors and rates of convergence for LPS solution, D = 1e− 7.

level error and rate
‖u− ũh‖0 |u− ũh|1 |‖u− ũh|‖

0 8.501e-2 1.116e+0 1.166e-1
1 3.909e-2 1.121 9.306e-1 0.262 5.470e-2 1.092
2 8.833e-3 2.146 5.011e-1 0.893 1.770e-2 1.628
3 2.023e-3 2.126 2.461e-1 1.026 5.932e-3 1.577
4 4.936e-4 2.035 1.227e-1 1.005 2.053e-3 1.531
5 1.226e-4 2.010 6.134e-2 1.000 7.187e-4 1.514
6 3.059e-5 2.003 3.069e-2 0.999 2.529e-4 1.507
7 7.641e-6 2.001 1.535e-2 1.000 8.923e-5 1.503

Table 5.5: Errors and rates of convergence for LPS solution with shock capturing, D =
1e− 7.

level error and rate
‖u− uh‖0 |u− uh|1 |‖u− uh|‖

0 1.981e-1 1.307e+0 2.150e-1
1 1.473e-1 0.427 1.267e+0 0.044 1.519e-1 0.5012
2 6.834e-2 1.108 7.545e-1 0.748 6.980e-2 1.122
3 3.490e-2 0.969 3.913e-1 0.947 3.528e-2 0.984
4 1.750e-2 0.996 1.987e-1 0.978 1.760e-2 1.004
5 8.754e-3 0.999 1.061e-1 0.905 8.780e-3 1.003
6 4.380e-3 0.999 6.058e-2 0.809 4.387e-3 1.001
7 2.174e-3 1.011 3.678e-2 0.720 2.176e-3 1.012

The results from Tables 5.4 and 5.5 indicate that the order of convergence for the errors
in L2 and LPS norm are reduced in the convection dominating case (D = 1e − 7) by one
and by one half compared to the LPS method, respectively.

In the following we plot usually only the linear part of solutions, otherwise we specify
the plotted values.

5.4.2 Skew flow problem with exponential and internal layers

We start our numerical study for problems possessing boundary layers of different kinds.
First, we apply LPSSC method to the skew flow problem with the following constant data

b = (− sinα,− cosα)T , c = 0 , f = 0
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and discontinuous boundary condition

g(x, y) =


0 for 0 ≤ x ≤ 1, y = 0

0 for x = 1, 0 ≤ y < 0.75

1 otherwise .

The discontinuity at the boundary is transported in the direction of the convection field b
until reaching the boundary part with zero condition since the diffusion parameter is very
small. The solution possesses a steep gradient and thus exhibits a boundary layer in the
region of discontinuity and at the part of the outlet boundary

{(x, y) : 0 ≤ x ≤ 1 , y = 0} ⊂ Γ .

We observe that the solution stabilised by the local projection method is stable away from
the boundary layers. However, it exhibits still spurious oscillations in the region of the
exponential boundary layer at the part of the outflow boundary which has been mentioned
above, see Figures 5.2-5.15.
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Figure 5.2: Solutions of skew flow problem obtained by LPS (left) and (right), τK = 0.01hK ,
α = 45˚.
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Figure 5.3: Contour lines of solution obtained by LPS (left) and LPSSC (right), τK =
0.01hK , α = 45˚.
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Figure 5.4: Profiles of solution at y = 0.25 (left) and x = 0.125 (right), α = 45˚, τK =
0.01hK .

In Figure 5.8 we plot sections of the whole solutions ũh and uh obtained by LPS and LPSSC
methods, respectively. The smoothing effect of the jump operator jh can be well observed
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Figure 5.5: Solutions of skew flow problem obtained by LPS (left) and (right), τK = 0.1hK ,
α = 45˚.
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Figure 5.6: Contour lines of solution obtained by LPS (left) and LPSSC (right), τK =
0.1hK , α = 45˚.

for α = 45˚ and α = 55˚. The choice of the stabilisation parameter τk = 0.01hK seems
to be quite good if no additional edge stabilisation is applied, see Figures 5.2 and 5.4 for
α = 45˚ and Figures 5.9 and 5.11 for α = 55˚. The discrete maximum principle is much
more violated if τK = 0.1hK , see Figures 5.5 and 5.7 for α = 45˚ and Figures 5.12 and
5.14 for α = 55˚.
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Figure 5.7: Profiles of solution at y = 0.25 (left) and x = 0.125 (right), α = 45˚, τK =
0.1hK .
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) on level 2, α = 45˚, τK = 0.01hK (left),
τK = 0.1hK (right) .
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Figure 5.9: Solutions of skew flow problem obtained by LPS (left) and (right), τK = 0.01hK ,
α = 55˚.
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Figure 5.10: Contour lines of solutions obtained by LPS (left) and LPSSC (right), τK =
0.01hK , α = 55˚.

5.4.3 Rotating flow problem with exponential and interior layers

Our next problem is a benchmark for problems with an interior layer and an exponential
layer. It has boundary conditions of mixed type. Let

D = 10−7, b =
(
8xy(1− x),−4(2x− 1)(1− y2)

)T
, c = 0
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Figure 5.11: Profiles of solution at y = 0.25 (left) and x = 0.125 (right), α = 55˚, τK =
0.01hK .
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Figure 5.12: Solutions of skew flow problem obtained by LPS (left) and (right), τK = 0.1hK ,
α = 55˚.

and
ΓN :=

{
(x, y) ∈ ∂Ω : 1/2 < x < 1, y = 0

}
, ΓD := ∂Ω \ ΓN .

We prescribe on the Dirichlet boundary ΓD the piecewise constant function

gD(x, y) =


1 for 1/4 ≤ x ≤ 1/2 , y = 0,

1 for 0 ≤ y ≤ 1 , x = 1,

0 otherwise,

while the homogeneous Neumann condition gN = 0 will be used on ΓN . The right hand
side in (5.1) is given by f = 0. The streamlines of the convection field b are shown
in Figure 5.16. We observe that the unstabilised Galerkin solution exhibits non-physical
oscillations over the whole domain Ω and therefore is completely useless, see Figure 5.17.
Applying a first order upwind stabilisation, we obtain a stable solution. However, the
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Figure 5.13: Contour lines of solutions obtained by LPS (left) and LPSSC (right), τK =
0.1hK , α = 55˚
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Figure 5.14: Profiles of solution at y = 0.25 (left) and x = 0.125 (right), α = 55˚, τK =
0.1hK .

sharp inflow profile at {(x, y) : x ≥ 1/4, y = 0} is smeared out, see Figure 5.21. The
discrete solution obtained by LPSSC method satisfies the discrete maximum principle, see
Figures 5.18 and 5.20.
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5.4.4 Solution with parabolic layer

The solution of our last example exhibits two parabolic boundary layers. Let

D = 10−7, b = (0, 1 + x2)T , c = 0

and
ΓN :=

{
(x, y) ∈ ∂Ω : 0 < x < 1, y = 1

}
, ΓD := ∂Ω \ ΩN .

We use homogeneous Neumann condition gN = 0 on ΓN while the Dirichlet boundary
condition gD on ΓD is given by

gD =

{
1 for 0 ≤ x ≤ 1, y = 0,

1− y otherwise.

Furthermore, the right hand side of (5.1) is f = 0. The solution of (5.1) exhibits parabolic
layers at the vertical walls x = 0 and x = 1. The discrete solution obtained by LPS violates
the discrete maximum principle whereas the discrete solution obtained by LPSSC satisfies
it well, see Figures 5.22 and 5.24.
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Figure 5.18: Solution of rotating flow problem, LPS (left) and LPSSC (right), τK = 0.01hK .
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Figure 5.19: Contour lines of solution obtained by LPS (left) and LPSSC (right), τK =
0.01hK .
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Figure 5.21: Solution obtained by upwind stabilisation with the smeared out the inflow
front at {(x, y) : x ≥ 1/4, y = 0}.
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Figure 5.22: Solution of parabolic flow problem, LPS (left) and LPSSC (right), τK =
0.01hK .
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Figure 5.23: Contour lines of solution obtained by LPS (left) and LPSSC (right), τK =
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and LPSSC, τK = 0.01hK .



6 Summary

The question how to establish stable and accurate discretisation methods for singularly
perturbed problems belongs to the challenging problems of numerical mathematics. This
work deals with a stable finite element discretisation of Dirichlet problem for extended
Brinkman–Forchheimer equations in two and three dimensional domains. The governing
equations describe flow dynamics in fixed bed reactors. This type of reactors is widely
used in chemical engineering. Since the considered model problem is rare, it has not been
intensively studied until now. Its nonlinear character and nonstandard form of differential
operators occurring in the equations require a special handling. There are three “daemons”
which we have forced to get back:

• nonlinearity

• inf-sup instability (improper choice of approximation spaces)

• high Reynolds numbers (convection dominance)

We present analytical results concerning the existence of solution in suitable Sobolev
spaces using abstract theory of saddle point problems. To this end, we adapt Hopf extension
known from the theory of Navier–Stokes equations and apply a version of Schauder’s fixed
point theorem.

After the analytical part, we establish stability and a priori estimates for finite element
solutions. The key point in the proof of stability is the discrete inf-sup condition for the
bilinear form which is nonstandard in our case. This is the second daemon which occurs
when the approximation spaces for the velocity and pressure are improperly chosen. Em-
ploying the patch techniques of Boland–Nicolaides, we show that the choice of a certain
family of finite element pairs with discontinuous pressure approximation leads on quadri-
laterals/hexahedrons to stable and accurate solutions in the case of low Reynolds numbers.

Another “daemon” in the fluid dynamics is the case of high Reynolds numbers. We
present a stabilisation method for equal order elements which are not inf-sup stable. Using
the one-level variant of the local projection stabilisation, we are able to obtain stable
solutions for the velocity and pressure. Based on the published results from the unified
convergence analysis for Oseen equations, we prove again the optimal order of convergence
for the linearised model equations.

After controlling three “daemons”, we present a method for enhancing the accuracy of
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the finite element solution. Using the fact that the error of the special finite interpolant
to the finite element solution is of one order better on the axis parallel grids, we can apply
sophisticated extrapolation techniques in order to increase the accuracy of the computed
finite element solution. The already published superconvergence results for three dimen-
sional Navier–Stokes equations can be successfully applied to our model. We show that
the superclose estimates for the nonstandard bilinear forms hold in two dimensions and
we estimate errors caused by the nonlinear terms. Applying post-processing to the inf-sup
stable pair of the continuous piecewise biquadratic velocity and discontinuous piecewise
linear pressure, we get a numerical solution which is convergent of one order better.

Plenty of numerical tests and simulations of flows in fixed bed and packed bed membrane
reactors are performed in order to verify our theoretical results. The proposed schemes pro-
duce stable and accurate solutions and can be successfully applied on desktop computers.

In the last part of our work we enhance the stability of the low order local projection
scheme for scalar convection-diffusion-reaction problems. While the solution obtained by
the local projection method is stable away of boundary layer, it can still exhibit spurious
oscillations at the boundary layer. This can be called as “the last revenge” of the third
daemon. To avoid the undesired instability we propose an edge oriented shock capturing
scheme for triangular meshes. Here we let the first and the third daemon clash with each
other. Finally, the nonlinear “daemon” hidden in the shock capturing term can be banished
using a simple fixed point iteration. We prove that the finite element solution obtained
from our scheme satisfies a discrete maximum principle and is at least linearly convergent
in the diffusion-dominated case. Our numerical results are in a good agreement with the
developed theory.
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ciple for FE solutions of the diffusion-reaction problem on prismatic meshes. J. Com-
put. Appl. Math., 226(2):275–287, 2009.

[35] V. Heuveline and F. Schieweck. H1-interpolation on quadrilateral and hexahedral
meshes with hanging nodes. Computing, 80(3):203–220, 2007.

[36] V. Heuveline and F. Schieweck. On the inf-sup condtion for higher order mixed fem
on meshes with hanging nodes. M2AN, 41(1):1–20, 2007.

[37] E. Hopf. Ein allgemeiner Endlichkeitssatz der Hydrodynamik. Math. Ann., 117:764–
775, 1941.

[38] U. Hornung. Homogenization and Porous Media. Springer-Verlag, 1997.

[39] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet–to–Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods. Com-
put. Methods Appl. Mech. Eng., 127(1-4):387–401, 1995.

[40] T. J. R. Hughes and A. Brooks. A multidimensional upwind scheme with no crosswind
diffusion. In Finite element methods for convection dominated flows (Papers, Winter
Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), volume 34 of AMD, pages
19–35. Amer. Soc. Mech. Engrs. (ASME), New York, 1979.



118 Bibliography

[41] T. J. R. Hughes and G. Sangalli. Variational multiscale analysis. projection, optimiza-
tion, the fine-scale Greens’ function, and stabilized methods. USNCCM8, Austin July,
27-29, 2005.

[42] T. J. R. Hughes and G. Sangalli. Variational multiscale analysis: The fine-scale Green’s
function, projection, optimization, localization, and stabilized methods. Technical
Report 05-46, Institute for Computational Engineering and Sciences, University of
Texas at Austin, 2005.

[43] Tsutomu Ikeda. Maximum principle in finite element models for convection-diffusion
phenomena, volume 4 of Lecture Notes in Numerical and Applied Analysis. Kinokuniya
Book Store Co. Ltd., Tokyo, 1983. North-Holland Mathematics Studies, 76.

[44] Volker John and Petr Knobloch. On spurious oscillations at layers diminishing (SOLD)
methods for convection-diffusion equations. I. A review. Comput. Methods Appl. Mech.
Engrg., 196(17-20):2197–2215, 2007.

[45] Volker John and Petr Knobloch. On spurious oscillations at layers diminishing (SOLD)
methods for convection-diffusion equations. II. Analysis for P1 and Q1 finite elements.
Comput. Methods Appl. Mech. Engrg., 197(21-24):1997–2014, 2008.

[46] Volker John and Gunar Matthies. MooNMD—a program package based on mapped
finite element methods. Comput. Vis. Sci., 6(2-3):163–169, 2004.

[47] P. N. Kaloni and Jianlin Guo. Steady nonlinear double-diffusive convection in a
porous medium based upon the Brinkman-Forchheimer model. J. Math. Anal. Appl.,
204(1):138–155, 1996.
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