Framework of Quality Measurement in CASE Tool
Based Software Development

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultat fir Informatik
der Otto-von-Guericke-Universitdat Magdeburg

von: M.Sc. in DKE Hashem Yazbek
geb.am 17.10.1974 in Homs, Syrien

Gutachter:

Prof. Dr.-Ing. habil. Reiner Dumke
Prof. Dr.-Ing. habil. Georg Paul

Prof. Dr. Juan José Cuadrado-Gallego

Magdeburg, den 28.09.2010

Contents

Acknowledgement
List of Figures

List of Tables

List of Abbreviations

1 Introduction
1.1 Motivation
1.2 Research Questions

1.3 Thesis Structure

2 Software Process Descriptions and Models

2.1 Software Process Characteristics

2.2 Software Process Modelling

2.3 Software Process Improvement and Evaluation Approaches

2.3.1 General Maturity Models
2.3.2 The CMMI Approach

2.3.3 The SPICE Approach

2.3.4 The Six Sigma Approach

2.3.5 The ITIL Approach

2.3.6 Further Software Process Evaluation
2.4 Summary

3 CASE-Based Software Development
3.1 CASE Tools
3.2 CASE-Based Processes

3.3 Summary

4 Software Process Measurement and Evaluation
4.1 Software Process Indicators and Criteria

4.2 Software Process Laws

4.3 Software Process Principles and Rules

4.4 Software Process Rules of Thumb

4.5 Software Process Experiments

4.6 Software Process Case Studies

4.7 Software Process Metrics and Measures

4.8 Process Metrics Repositories

vii

N R R

17

18
20

25
26
27
29
31

33
33
36
40

41
42
45
47
58
59
63
64
76

4.9 Process Measurement Levels 84
4.9.1 Software Process Establishment by Indicators and Criteria 85
4.9.2 Software Process Improvement Modelling by Laws, Process Principles and Rules 86
4.9.3 Empirical Software Process Modelling by Rules of Thumb, Process Experiments

and Case Studies 87
4.9.4 Software Process Measurement Model by Process Metrics 88
4.9.5 Software Process Management Models by Process Improvement Approaches 89
4.10 Summary 91
5 Framework of Quality Assurance Using CASE Tools 93
5.1 Framework Principles: CASE Tool Based Software Processes 93
5.1.1 General Principles 93
5.1.2 CASE-Based Orientation 94
5.1.3 CASE Tool Based Process Evaluation 95
5.2 Framework Kernel: Quality Measurement and Improvement 96
5.2.1 Software Measurement Components 96
5.2.2 Software Measurement Process Evaluation 103
5.2.3 Software Measurement Improvements 106
5.3 Framework Steps: Phases and Contents 107
5.3.1 Analyzing the CASE Tool Based Process Situation 107
5.3.2 Planning the CASE Tool Based Process Improvements 111
5.3.3 Implementing the CASE Tool Based Process Improvements 112
54 Summary 113
6 Framework Application and Validation 115
6.1 Chosen CASE Tool Situation 115
6.2 CASE-Based Test Scenario 116
6.3 Appraisal of CASE Tool Evaluation Results 116
6.3.1 Together Measurement Level 116
6.3.2 Metrication in Visual Studio 118
6.3.3 Measurement in Enterprise Architect 120
6.3.4 Metrics Eclipse Plug-in 122
6.3.5 Metrics One Measurement Level 123
6.3.6 Metrication in Embarcadero RAD Studio 2010 125
6.4 Evaluation of CASE-Based Quality Assurance 126
6.5 Summary 129
7 Conclusions and Future Work 131

References 133

Acknowledgement

| would like to thank my supervisor, Prof. Dr. Reiner Dumke for the help throughout this work.
Especially his patience and advice that he provided over the years.

A special thanks goes out to Prof. Georg Paul and Prof. Juan J. Cuadrado-Gallego for their efforts in
reviewing and providing their expert opinions on the thesis at hand.

Magdeburg, September 2010
Hashem Yazbek

List of Figures

Figure 1: Managerial foundations of software engineering

Figure 2: Context diagram for software process models

Figure 3: Activities supporting by process models

Figure 4: The software process improvement cycle by Lepasaar et al.

Figure 5: Roles of technology in software applications or products

Figure 6: Components of the software product

Figure 7: Dimensions of the software engineering

Figure 8: Components of the software process

Figure 9: Components of the software development resources

Figure 10: Components of the software maintenance

Figure 11: Components of the software product application

Figure 12: Dependencies of software process evaluation methods and standards

Figure 13: Overview of chosen process maturity and improvement models

Figure 14: The CMMI model components

Figure 15: The CMMI project management process areas

Figure 16: The SPICE process assessment model

Figure 17: Basic characteristics of the Six Sigma approach

Figure 18: The relationship between the service standards and ITIL

Figure 19: The “What to Build” pattern for product line project management

Figure 20: The PSP approach

Figure 21: Simplified CASE tool architecture

Figure 22: Eclipse tool GUI architecture

Figure 23: Four essential types of CASE tool integration

Figure 24: CASE tools in the dimensions of the software engineering

Figure 25: CASE and software process evaluation methods and standards

Figure 26: Overview of chosen process maturity and improvement models

Figure 27: A model showing the stages of measurement that organizations
typically go through

Figure 28: Intentions of chosen software engineering laws

Figure 29: User’s cognitive structure of software evaluation by Wong and Jeffery

Figure 30: The LIPE activities and product flow among them by Zettel et al.

Figure 31: Metrics depends on stakeholder needs

Figure 32: The enterprise project management model

Figure 33: Schema of a IT Balanced Scorecard

Figure 34: Project definition, priorities and incremental development

Figure 35: Function Points per hour in different IT domains

Figure 36: The history of function point methods development

Figure 37: Layers of metrics data bases

Figure 38: Distribution by business domain of ISBSG projects that provided
defect data in percentage

Figure 39: The ISBSG repository using in the Web

Figure 40: The concept of Basili’s Experience Factory

Figure 41: The measurement data warehouse approach

Figure 42: The mediated measurement repository

Figure 43: The service bus-oriented measurement repository

Figure 44: A holistic presentation of the software process involvements

80
81
82
82
83
83
84

Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:

The SPE based process network

The PIM based process related semantic network
An EMP based process related semantic network
A SMP based process related semantic network
The different process semantic network levels
metrics tools integrated into CASE-Tool
Together metrics dialog

Visual Studio Code Metrics Results Window
Enterprise Architect Use Case Metrics dialog
Eclipse metrics view

Metrics One Class metrics

Kiviat charts in RAD Studio

Vi

85
86
87
88
90
112
117
118
120
123
124
125

List of Tables

Table 1: Chosen maturity models

Table 2: Characteristics of different sigma levels

Table 3: Software Quality Drivers

Table 4: Expenditures by activity for a conventional software project

Table 5: Percentage of respondents in a European survey of management practices

Table 6: Delivered defects per Function Points

Table 7: Percentages of process activities in different kinds of projects

Table 8: Percentage of Organizations having QA and metrics efforts in
place Based on a worldwide survey

Table 9: Attributes of the ISBSG Benchmarking Data CD Release 8

Table 10: The supported metrics in Metrics Eclipse Plug-in

Table 11: Overview of metrics concept

Vi

19
26
44
59
63
63
64

64
80
122
127

viii

List of Abbreviations

AOP Aspect-Oriented Programming

ANSI American National Standards Institute
AOSE Agent-Oriented Software Engineering
API Application Programming Interface

ASG Allen Systems Group

BPMN Business Process Modeling Notation
BPEL Business Process Execution Language
CASE Computer-Aided Software Engineering
CAME Computer Assisted software Measurement and Evaluation
CBSE Component-Based Software Engineering
CBO Coupling Between Objects

CFP Cosmic Function Point

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

COCOMO Constructive Cost Model

coM Component Object Model

CORBA Common Object Request Broker Architecture

COosMmIC the Common Software Measurement International Consortium
COTS Commercial, Off-The-Shelf

Ccsv Comma-Separated Values

CWM Common Warehouse Metamodel

C&K Chidamber and Kemerer

DACS Data & Analysis Center for Software

DAML

DBMS

DBS

DCE

DDL

DML

DIT

DPDS

DTD

EAI

EBD

EF

ERP

ETL

FOD

FP

Gam

GUI

HTML

ICASE

ICT

IDL

IEC

IEEE

DARPA Agent Markup Language

Database Management System

Database System

Distributed Computing Environment

Data Definition Language

Data Manipulating Language

Depth of Inheritance Tree

DACS Productivity Center

Document Type Definition

Enterprise Application Integration
Event-Based Design

Experience Factory

Enterprise Resource Planning

Extract Transform Load

Feature-Oriented Design

Function Point

Goal-Question-Metric

Graphical User Interface

Hyper Text Markup Language

Integrated Computer Aided Software Engineering
Information and Communication Technology
Interactive Data Language

International Electrotechnical Commission

Institute of Electrical & Electronics Engineers

IFPUG International Function Point Users Group

IPD-CMM Integrated Product Development CMM

IPSE Integrated Project Support Environment
ISBSG International Software Benchmarking Standard Group
ISO International Standardization Organization
IT Information Technology

J2EE Java Platform, Enterprise Edition

KDSI Kilo Delivered Source Instructions

LCOM Lack of Cohesion in Methods

LOC Lines of Code

MAS Multi-Agent System

MP Measurement Process

NASA National Aeronautics & Space Administration
NOC Number Of Children

ODMG Object Data Management Group

OIM Open Information Model

OLAP Online Analytical Processing

oMG Object Management Group

omMT Object Modeling Technique

OOAD Object-Oriented Analysis and Design
OOMO Object-Oriented Measurement Ontology
OOSE Object-Oriented Software Engineering
OWL Ontology Web Language

PDF Portable Document Formant

Xi

PNG Portable Network Graphics

PSM Practical Software Measurement

Qlp Quality Improvement Paradigm

QoS Quality of Service

QuabD? Quality Driven Design

Qmp Quality Model

RFC Response For a Class

ROI Return On Investment

RTF Rich Text Format

SAM Structured Analysis Methods

SANTA Solution Architecture for N-Tier Applications
sD Software Development Process

SDK Software Development Kit

SDP Software Development Project

SE Software Engineering

SECM Software Engineering Capability Model
SEMS Software Engineering Measurement System
SLED Software Lifecycle Empirical/Experience Database
SMDB Software Measurement Data-Base

SML@b Software Measurement Laboratory

SMP Software Measurement Program

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOMDB Service-Oriented Measurement Database

xii

SOSE Service-Oriented Software Engineering

SP Software Product

SPARC Standards Planning and Requirements Committee
SPC Statistical Process Control

SPICE Software Process Improvement and Capability Determination
sqQL Structured Query Language

SR Software Development Resources

TIM Type Information Model

TLB Type Libraries

UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language

UREP Universal Repository

URI Unified Resource Identifier

W3C Word Wide Web Committee

WBSE Web-Based Software Engineering

WMC Weighted Methods per Class

WS Web Service

WS-CDL Web Service Choreography Description Language
WSDL Web Service Description Language

XML eXtensible Markup Language

XSD XML Schema Definition

xiii

Xiv

1 Introduction

1.1 Motivation

The role of software in the daily life has an increasing effect in the information society
worldwide. The quality of software is an essential aspect of the reliability and safety of our
life in all domains such as working, living, travelling, shopping etc. The same is true for
software development process itself as well. The quality of this process decides over success
or failure in the human related fields characterized above.

Among the kernel elements of such software processes are CASE tools as computer-aided
software engineering tools. The quality related ingredients of these tools play an important
role in ensuring quality of software products.

Many process models and quality assurance (QA) approaches exist (such as CMMI, SPICE,
ITIL etc.) to evaluate current situations and to improve these situations in a better direction.
These approaches attempt to consider all IT aspects and summarize the essential experience
mostly in a verbal manner. Typically, the role of CASE tools is implicitly considered in these
process descriptions. Hence, the developer has no clear suggestions which kind of quality
assurance based on direct software measurement should be applied or should be necessary
in the different system development context.

Otherwise, CASE-based software development is one of the great important components in
the software process in the different paradigms and methodologies. Quality techniques and
methods in CASE tools are basically for the system quality. This thesis considers the quality
assurance in the CASE-based software development explicitly founded on the exact
determination of the quality situation as software measurement and evaluation.

1.2 Research Questions

CASE tools based software development is one of the engineering characteristics in the field
of software engineering. The experience-based measurement and evaluation determine the
other essential side of engineering and helps to motivate, consider and implement quality
aspects in a quality assurance manner.

Therefore, the following research questions in the domain of CASE-based software
development can be identified:

» What are the general software process characteristics and which process levels can
be built in order to evaluate and ensure software quality assurance?

» How the CASE tool component is embedded in the software process methodologies,
phases and artefacts?

» What are the quality assurance levels in the software process that are determined by
CASE tools?

» Which kind of improvement would be achieved by different metrics supported in
CASE tools?

» How can it be determined what the next step of process improvement in the CASE-
based software development is?

Finding meaningful answers of the most of theses questions is the intention of this thesis
and leads to framework as a measurement based concept for the determination of the QA
level of the CASE-based software development and for the suggestion of the (next steps) QA
improvements of this software process basics.

1.3 Thesis Structure

In this first chapter we give a short introduction of the necessity and meaningfulness of
software quality determination in the CASE tool based software development area.

The general basics of software development processes, their kinds of modelling, process
evaluations and process oriented (improvement) standards and approaches would be
considered in the chapter two.

In the third chapter we describe the software engineering field of CASE tools. Especially the
CASE-based processes are characterized and their activities are shown with examples.

The different kinds of software process evaluations including the CASE-based development
are summarized in chapter four. Here we consider the variants of measurement and
evaluation levels such as nomination (with criteria and indicators), classification (using
ordinal based evaluation) and measurement using metrics and measures for the software
development phases and artefacts.

In the fifth chapter we describe our framework in order to evaluate the quality
measurement and assurance level in a given practical situation. Furthermore, we define a
measurement level determination that can be used in order to identify quality measurement
improvements explicitly.

The application of our framework and the validation are the contents of the sixth chapter in
this thesis.

Finally, some conclusions and next steps of investigations are discussed in the seventh and
final chapter.

2 Software Process Descriptions and Models

2.1 Software Process Characteristics

The software process is one of the central components in the software engineering field of
research, practice and application. Especially, the managerial foundations play an essential
role in the nature of software processes. The following figure 1 shows some categories of
managerial foundations of software engineering defined by Wang ([Wang 2000], see also
[Boehm 2000b] and [Royce 2005]).

SIJ.'!\'.IIE'
Anthropology Systems General systens theory

. 1
Sefmdathcs] Basic theories theary System dessign and analyiis

Linguistics \ / I, System modeling and simulation
Papchology
Managerial
foundations of 5E

Quality system

Strategic planming

Total guality management
4 Y 8 Dpirat ional theory

¥ & !
Business process reengineering | principles Management science | Decision thecry
The Defming cirche: | r X 1
Plan-Do-Chasck-Act (PDCA) | Drganization methods

|, Management economics

Figure 1: Managerial foundations of software engineering

In following we will give some definitions in order to clarify the management and controlling
background of the software processes considered in this Thesis.

The first (basic) definition of software processes was presented by Wang [Wang 2000] and
characterizes the general software engineering process.

“The software engineering process is a set of sequential practices that are
functionally coherent and reusable for software engineering organization,
implementation, and management. It is usually referred to as the software
process, or simply the process.”

An appropriate method for software process handling consists of creating and applying
process models. Different implications for this kind of abstraction are shown in the following
figure 2 based on [Deek 2005].

Time Dimension

Interdisciplinary
Impacts

Techrology

Common
Process
Model

Critical Factors

Behavioral
Considerations

Methodology

Problam Domiain

Problem Mature l

Figure 2: Context diagram for software process models

Software engineering processes exist in different kinds of context such as different
technologies or systems like multimedia software engineering [Chang 2000] or Web
engineering [Dumke 2003]. Software processes include a set of involvements which forms
the special characteristics and directions of such operationalities. Therefore, we will use
some appropriate definitions by Wang and King [Wang 2000].

“A practice is an activity or a state in a software engineering process that carries
out a specific task of the process.”

“A process is a set of sequential practices (or base process activities (BPAs)) which
are functionally coherent and reusable for software project organization,
implementation, and management.”

“A process category is a set of processes that are functionally coherent and
reusable in an aspect of software engineering.”

“A process subsystem is a set of process categories that are functionally coherent
and reusable in a main part of software engineering.

“A process system is an entire set of structured software processes described by a
process model.”

Considering the different process domains, we can establish the following kinds of processes
cited from [Wang 2000].

“A domain of a process model is a set of ranges of functional coverage that a
process model specifies at different levels of the process taxonomy.”

“Organization processes are processes that belong to a top level administrative
process subsystem, which are practiced above project level within a software
development organization.”

“Development processes are processes that belong to a technical process
subsystem, which regulate the development activities in software design,
implementation, and maintenance.”

“Management processes are processes that belong to a supporting process
subsystem, which control the development processes by means of resource, staff,
schedule, and quality.”

Note that the software process could change in a dynamic environment itself. Therefore, a
so-called software engineering process group (SEPG) must be established in order to
maintain the change management. A SEPG (see [Kandt 2006]): “obtains support from all
levels of management, facilitates process assessments, helps line managers define and set
expectations for software processes, maintains collaborative working relationships with
practitioners, arranges for software process improvement training, monitors and reports on
the progress of specific software process improvements efforts, creates and maintains
process definitions and a process database, and consults with projects on software
development processes.”

In order to characterize the different approaches and structures of process models we will
use the helpful definitions by Wang [Wang 2000] as given below:

“A process model is a process of a model system that describes process
organization, categorization, hierarchy, interrelationship, and tailor-ability.”

“An empirical process model is a model that defines an organized and
benchmarked software process system and best practices captured and elicited
from the software industry.”

“A formal process model is a model that describes the structure and
methodology of a software process system with an algorithmic approach or by an

abstractive process description language.”

“A descriptive process model is a model that describes ‘what to do’ according to
a certain software process system.”

“A prescriptive process model is a model that describes ‘how to do’ according to
a certain software process systems.”

Especially, the software process as defined by NASA Software Engineering Laboratory
consists of a series of phases [Donzelli 2006]:

e Requirements: requirements changes, requirement increments

e Specification: specification changes, specification increments, specification correction
reports

e High-level design: high-level design changes, high-level design increments, high-level
design correction reports

o Low-level design: low-level design changes, low-level design increments, low-level
design corrections reports

e (Code: code changes, code increments, code correction reports

e System-tested code : system-tested code changes, system-tested code increments,
system-tested code corrections reports

e Acceptance-tested code: acceptance-tested code changes, acceptance-tested code
increments (final SW product)

In general we can establish the following four categories of processes in the software
development ([Kulpa 2003], [SEI 2002]): the project management processes, the process
management processes, the engineering processes, and the support processes. Based on
process models like the CMMI we can evaluate main activities shown in the Figure 3.

Process Management .
9 Project Management
Process capabilly study
Frocess control
Process Improvement
Frocess oplimization

Strategic management
Technology management
Knowledge management
Uncertainty management

Process model
activities

Forecasting Learning

Process characierizalion

Prediclion ’ -
Risk aﬂ?".._qa Process simlation
i Decision analysis

Esfimation Problam salving

Planning FOOIEM SUving

Training and learming

Figure 3: Activities supporting by process models

Finally we will cite some definitions which are helpful in order to prepare some intentions or
model for software process measurement and evaluations (also chosen from [Wang 2000]).

“Software process establishment is a systematic procedure to select and
implement a process system by model tailoring, extension, and/or adaptation
techniques.”

“Software process assessment (SPA) is a systematic procedure to investigate the
existence, adequacy, and performance of an implemented process system against
a model, standard, or benchmark.”

“Process capability determination is a systematic procedure to derive a
capability level for a process, and/or organization based on the evidence of
existence, adequacy, and performance of the required practices defined in a
software engineering process system.”

“Software process improvement (SPI) is a systematic procedure to improve the
performance of an existing process system by changing the current processes or
updating new processes in order to correct or avoid problems identified in the old
process system by means of a process assessment.”

Based on these aspects of evaluation are defined the following concepts, methods and
models of process evaluations (see [Wang 2000]).

“A generic model of the software development organization is a high-level
process model of an organization which is designed to regulate the functionality
and interactions between the roles of developers, managers, and customers by a
software engineering process system.”

“A process reference model is an established, validated, and proven software
engineering process model that consists of a comprehensive set of software
processes and reflects the benchmarked best practices in the software industry.”

“A process capability model (PCM) is a measurement scale of software process
capability for quantitatively evaluating the existence, adequacy, effectiveness,
and compatibility of a process.”

“A process capability scope is an aggregation of all the performing ratings, such
as existence, adequacy, and effectiveness, of the practice which belong to the
process.”

“A project process capability scope is an aggregation of all process capability
levels of processes conducted in a project.”

“An organization process capability scope is an aggregation of the process
capability levels from a number of sampled projects carried out in a software
development organization.”

“A process capability determination model is an operational model that specifies
how to apply the process capability scales to measure a given process system
described by a process model.”

“A process improvement model (PIM) is an operational model that provides
guidance for improving a process system’s capability by changing, updating, or

enhancing existing processes based on the findings provided in a process
assessment.”

“A model-based process improvement model is an operational model that
describes process improvement based on model- or standard-based assessment
results.”

“A benchmark-based process improvement model is an operational model that
describes process improvement methods based on benchmark-based assessment
results.”

A general software process improvement cycle is defined by Lepasaar et al. [Lepasaar 2001]
in the following manner:

1. Examing
oganisation’s
needs

Institutionalised
improvemeanis

Improvement
initiation

7. Sustain
improvemeant
gains

Identified scope
and priorties

Walidated
Imgrovement
resulls

2, Initlate
process
improvement

Re-assessment
request

6. Confirm
improvements

Praliminary process

;;ﬁ[?m;m;;n Analysad Implemented
Prog P rE-ASSasSmen improvements
results

. Prepare and
conduct process
assessment

5. Implement
improvemeants

4. Analyse results
and deriva
action plan

Assessment
results

Approved
action plan

Figure 4: The software process improvement cycle by Lepasaar et al.

In this thesis we will characterize a software project as an instance of a software process.
Hence, we must consider the detailed aspects of project management in the process domain
also. Typical project management phases are project definition, project planning, and project
control which involves the process measurement, communication and the corrective actions
[Verzuh 2005].

2.2 Software Process Modelling

The main intention of software engineering is to create/produce software products with a
high quality for the customers [Dumke 2005]. A software system or software product SPis

developed by the software process SZ1J and is based on the supporting resources SIR. At
first, we will define the software product as a (software) system:

SP = (Msp, Rsp) = ({programs, documentations}, Rsp) (2.1)

where the two sets are divided in the following elements or components (without achieving
completeness)

programs < {sourceCode, objectCode, template, macro, library, script, plugin, setup, demo}
documentations = {userManual, referenceManual, developmentDocumentation}
and Rsp describes the set of the relations over the S elements.
The given subsets could be described in following

developmentDocumentation = {documentationElements, productRequirements,
productSpecification, productDesign, implementationDescription}

documentationElements < {model, chart, architecture, diagram, estimation, review,
audit, verificationScript, testCase, testScript, pseudoCode,
extensionDescription, qualityReport }

productRequirements = systemRequirement < {functionalRequirements,
qualityRequirements, platformRequirements, processRequirements}

functionalRequirements < {execution, mapping, information, construction,
controlling, communication, learning, resolution, cooperation, coordination}l

qualityRequirements < {functionality, reliability, efficiency, usability, maintainability,
portability}

platformRequirements < {systemSoftware, hardwareComponent,
hardwarelnfrastructure,peripheralDevice, host}

processRequirements S {developmentMethod, resources, cost, timeline, milestone,
criticalPath, developmentManagement, lifecycleModel}

Here, we can define a software product as a software system as following ([Chung 2000],
[Dumke 2003], [Horn 2002], [Maciaszek 2001], [Marciniak 1994], [Mikkelsen 1997])

SE-SoftwareSystems < {informationSystem, constructionSystem, (2.2)
embeddedSystem, communicationSystem, distributedSystem,
knowledgeBasedSystem}

! The kind of the functional requirements depends on the kind of the software system which we characterize
later.
% This set of quality characteristics is related to the 1SO 9126 product quality standard.

9

Relations involving general aspects of software products are [Messerschmitt 2003]: software
is different, software is ubiquitous, software makes our environment interactive, software is
important, software is about people, software can be better, software industry is undergoing
radical changes, creating software is social, software is sophisticated and complex, and
software can be tamed. We can derive some of the examples of the relations in Rsp as given

next:

The process of the software testing on some software product components:

r(stss” € Rsp: sourceCode x verificationScript x testScript— testDescription

The elements of the product design considering the necessary components:

r{%9) e Rep: architecture x review x template x library

x pseudoCode— productDesign

A special kind of a programming technique could be defined as following:

rprogrammingTechniaue) = Roo: template x macro — sourceCode

The process of the software implementation could be defined as following:

pelementation) e Reo: coding x unitTest x integrationTest — implementation

The following figure by [Messerschmitt 2003] shows different roles of technology in
software applications or products.

Technology. |
Processing Storage Communication
Algorithmic

Document
= Database
3

Publication
Collaboration

" Sociotechnical

Figure 5: Components of the software product

The following figure summarizes the components and elements of the software product
described in the text above.

10

Software Product

obpciCeds
LG

-eler- celdanual au'.ll er dicationSoriph

(SE-SofrwareSystem) mu dal

'—/” { ™ -:'u: clurs
fﬂp{ngmms X dm:um antations —-_____ dwum'nm - Ele n““_ satimetion
astiCane

soufcand druel-bpmemmumenm -‘\"‘\.
Ay un-mm Ly bl]

t e
s —arrs y

nismabesSyalam

consbructionSyatem

embaddeaSyaiem
deirbutedSystem
communicabanSyulem

Tuncticnal Reguinements

saLubon

g
Edary
on p -:-1uc|‘-;|--:|ln:al-o rralemcf abonlescrption
praductDesgn
hqasneﬁyum

n asudzCode
sxtsnakalles cription
productReguirements

quall.‘y‘-'lepm‘

pr! it"!‘lhl tl'l'ltl'llﬂ
eCyCielioded
'Hl.'lul' L3]

m-hl-
miastons
Sarpalopmeniil shad

:ltcnﬂalh
develpmantdanagamant

plal'lorrnﬁequ rements

s FEL]
controling

s! smSofiwars
hardaareComponsnt

conatructon q_uallh‘ﬂequ irements

sariphs rnl'_'n VDR
cooperation
Tunict nnnt\,

rehatdy

CaemnunCalion

=

coardnation

hardwarsin bralsinachry
aEhan
Baming

nTormadnn

w kil
ponsbity
i sn s by

||t_|-r|¢_5,l

Figure 6: Components of the software product
Now, we will define the software development process S itself (note, that the concrete

software process is known as software project). So, we can define the software process S1)
as following (including the essential details of every development component)

SD = (Msp, Rsp) =

({developmentMethods, lifecycle, softwareManagement} U Msg, Rsp) (2.3)
developmentMethods c {formalMethods, informalMethods} = SE-Methods
formalMethods € {CSP, LOTOS, SDL, VDM, Z}

We can see a plenty of “classical” informal development methods as structured methods
(SAM). Actually, the informal methods are based on the objects (OOSE), the components
(CBSE), or the agents (AOSE). Therefore, we can define

informalMethods € {SAM, OOSE, CBSE, AOSE}

and especially
SAM e {SA/SD, Jackson, Warnier, HIPO}

OOSE € {UML, OMT, OOD, OOSE, RDD, Fusion, HOOD, OOSA}
CBSE € {DCOM, EJB, CURE, B-COTS, SanFrancisco}

AOSE € {AAll, AUML, DESIRE, IMPACT, MAS, MaSE, MASSIVE, SODA}

The life cycle aspects could be explained by the following descriptions

11

lifecycle = {lifecyclePhase, lifecycleModel}

lifecyclePhase e {problemDefinition®, requirementAnalysis, specification,
design, implementation, acceptanceTest, delivering}

lifecycleModel € {waterfallModel, Vmodel, evolutionaryDevelopment,
prototyping, incrementalDevelopment, spiralModel, ..., winWinModel}

Finally, the software management component of the Msp could be described in the following
manner

softwareManagement = developmentManagement < {projectManagement,
qualityManagement, configurationManagement }

Note that the software development process could be addressed as a special kind of a
software system. Hence, we can make the following characterization

Y Y Y
‘SDinformationSystem + bDembeddedSystem + deistributedSystem

+ SDknowledgeBased System (2 -4)

Furthermore, some of the examples of the relations in Rsp could be derived in the following
manner
e The process of building an appropriate life cycle model:

rip™) € Rep: lifecyclePhase x ... x lifecyclePhase, — lifecycleModel

e The defining of software development based on the waterfall model:

ridee™) e Rop: problemDefinition x specification x design

x implementation x acceptanceTest — waterfallModel

e The definition of software development based on the V model:

rii™®) e Rgp: (problemDefinition, softwareApplication)

x (specification, acceptanceTest) x (design, integrationTest),
x (coding, unitTest) — Vmodel

e The characterization of the tool-based software development based on UML:

(UMLdev)

r'sp € Rsp: UML x developmentEnvironmentyy, x systemOfMeasuresyn,

x experienceyy x standardyy, — developmentinfrastructureyy,
These descriptions lead us to the following general model of the software engineering

considering the three dimensions of the software methodology, the software technology
and the related application domains or kinds of systems.

® Problem definition is a verbal form of the defined system or product requirements.

12

SE technology
—— ADSE

—4— CBEE
—— QO5E

4 SAM

| ' SE methodology

Life cyde Development Kinds of
Basad methads FESOURCES maAnagemen

Information systames

Constuction systams.
Embeddad systames

Kiowleston-ased
syshames

Diskibutad
SyELEmS.

Commurication
sysiams

SE application
systems

Figure 7: Dimensions of the software engineering

Finally, the components and aspects of the software development process are shown in the
following Figure 8.

Enﬂware Prm:en
Software Development
davahpmamﬂelhnds Illuq.rcla somunraﬂnmgement Rasources
I‘nq'mal!.lel.hm‘l: |rrh:|rmuIMe!hn-d=- \
:uﬂ'.l‘tﬂ“l'\l"ﬂ'ft"” confiurabionliana gemen
ep]\\ // \\ quaktyllanagement
LOToS
AL DDSE CBH
Saad) Ille:'n:lephule lidecyeleMaodel
.cc 1]
=;-u'=" unL n:: -UHL Y‘: Vinadsl
prnthrn..-lrln:n
Jat :1.¢|1 ouT Ehgn CURE DESERE weaterTaldgdel
- l-\:_..-l--v-nl,-n:'ysll
WA oD O05a B-LOTE dPaC g profotyping
HIPS OOSE HOOD SanFrancisce las Hpecilicaton spirabdodel
- design
004 HasE S meantatio iRt
T MASSNE TS
soceplanceT el rcremeniaDeyvelopment

dalbyaring
evolutonaryDevelopmend

Figure 8: Components of the software process

In order to develop a software product we need resources such as developers, CASE tools
and variants of hardware. Therefore, we define the software development resources SIR as
following

SR = (Msg, Rsg) = ({personnelResources, softwareResources, platformResources}, Rsg) (2.5)

where the software resources play a dual role in the software development: as a part of the
final system (as COTS or software components) and as the support for the development (as
CASE or integrated CASE as ICASE). We continue our definition as follows

13

softwareResources = {COTS} U {ICASE}

ICASE = CASE U CARE U CAME

where CARE stands for computer-aided reengineering and CAME means computer-assisted
measurement and evaluation tools. Considering the WWW aspects and possibilities for
software development infrastructures based on CASE environments, the set of CASE tools
could be divided as following

CASEinfrastructure = {({UpperCASE} U {LOWEI'CASE})environment }

Further, we can define

UpperCASE = {modellingTool, searchTool, documentationTool, diagramTool,
simulationTool, benchmarkingTool, communicationTool}

LowerCASE = {assetLibrary, programmingEnvironment, programGenerator,
compiler, debugger, analysisTool, configurationTool}

Especially, we can describe the following incomplete list of personnel resources as

personnelResources = {analyst, designer, developer, acquisitor, reviewer,
programmer, tester, administrator, qualityEngineer, systemProgrammer,
chiefProgrammer, customer}

SE-Communities = {personnelDevelopmentResources, ITadministration, softwareUser,
computerSociety}

Accordingly, some of the examples of the relations in Rsz could be derived in the following
manner

e The process of building an appropriate development environment:
r(devEnv)
SR

€ Rsg: ICASE x platformResources — developmentEnvironment
e The defining of software developer teams for the agile development:

(agile)

r "’ € Rsg: programmer x programmer x customer —

agileDevelopmentTeam

Now, we summarize different elements and components of the resources as the basics of
the software development and maintenance in the following figure.

14

Software Development Resources

personnelResources softwareResources platformResources
/ \ maber / \
aanlst adesinasirator COTS ICASE
FEhagnay A g RaaT //\
[1= T iy sysbsmProgrammsr
Pl s chisProgrammss CARE CAME CASE
programener | customar /
S .Communities UpperCASE LenwerCa SE
/ -
sEpiLibrary
softwareliser -
"~ e programOenerabor
computsrSaciety modedingToal EeachmaskingTasl Ssbugger -
nalysaTool
searchTool diagramTogl compier st
Madminisdrator - con figurabisnTaal
simulationT ool comrmcabgn Tl nterpreter
perscancDevelopmentResources deCunansan TeaM e siegrammngEreT anmeal

Figure 9: Components of the software development resources

The different aspects and characteristics of the software maintenance are summarized by
the following formulas [April 2005]

SM = (Msy, Rsy) = ({maintenanceTasks, maintenanceResources} U SP, Rsy) (2.6)

where
maintenanceTasks = {extension, adaptation, correction, improvement, prevention}

maintenanceResources = ICASE U {maintenancePersonnel, maintenancePlatform}
maintenancePersonnel = {maintainer, analyst, developer, customer, user}

Accordingly, some of the examples of the relations in Rsy, could be derived in the following
manner

e The process of building the extension activity of the maintenance:

rienon) e Ray: SPx functionalRequirements — S extended)

e The defining of software correction:

r{&ometion) ¢ oy SPx qualityRequirements — SIe %

e The defining of software adaptation:

p{aptation) & g1 - SPx platformRequirements — SIPte?

e The defining of software improvement:

(perform)

re € Rsy: SPx performanceRequirements — SI*™Proved)

e The defining of software prevention:

15

(prevention)

re € Rew: SPx preventionRequirements — SIP™7)

e The characterization of a special kind of software maintenance as remote
maintenance:

(remoteMaint)

g%y € Rsy: ICASE romote X maintenanceTasks

x maintenancePersonnel — remoteMaintenance

Software Maintenance

_— SN

maintenanceTasks maintenanceResources

B2 A\ T

prevention ICASE maintenancePersonnel maintenancePlatform
adaptation improvement / \\
correction maintainer customer
analyst
¥ user
developer

Figure 10: Components of the software maintenance

After the software development, the software product goes in two directions: first (in the
original sense of a software product) to the software application SA, and second in the
software maintenance SM. We define the different aspects in the following

SA = (Msp, Rsa) =

({applicationTasks, applicationResources, applicationDomain} U Msp, Rsa) (2.7)

where
applicationTask € {delivering, operation, migration, conversion, replacement}

applicationResources = {applicationPlatform, applicationPersonnel, applicationDocuments}
applicationPersonnel < {customer, user, operator, administrator, consultant, trainer}

applicationDocument < {userManual, trainingGuideline, acquisitionPlan, setup,
damageDocument, troubleReport}

applicationDomain < {organisationalDocument, law, contract, directive, rightDocument}

Based on these definitions, some of the examples of the relations in Rss could be derived in
the following manner

e The process of the first introduction of the software product as deliveration:
rie™) e Rss: SP x trainer x applicationPersonnel x applicationPlatform
— deliveration

e The defining of software migration based on essential requirements:

16

r{19@on) e Re,: productExtension x SIP? x migrationPersonnel— migration

e The characterization of software operation:

(operation)

rep € Rsa: applicationPersonnel x applicationPlatform x SIPP

x user — operation

o The defining of the outsourcing of the software operation by extern IT contractors:

riomoureng) e Re,: systeminputs x contractors x systemFeedback — outsourcing

Software Application

uppllwtlunl'uks applicationResources oapplicationDomain
/ ‘\‘:-\-h- dx
contract
. re la-.'-ﬂenI
dekverng Iredinag
Sofradrin fshIDe cundnl
[Fo g as
raficin eganarationaCaocument
= applicaticnMatiorm applicationParionnel lm:lhcllu:llﬂlmulnnnl: P .
/ \ !-H-'!-’- i
Cusiomer O—
|||||
cperalor -:-:'\-:ulanl :- quis tionPiss
LR T
damagedocument

HoubieFessr
Figure 11: Components of the software product application

This formal concept demonstrates the wide area of the software process artefacts and
involvements which must be considered in order to analyse, measure, evaluate, improve and
control software development and maintenance.

2.3 Software Process Improvement and Evaluation Approaches

Examples of software process improvement standards and approaches are summarized as
following (described in [Emam 1998], [Garcia 2005], [Royce 1998] and [Wang 2000])

e /SO 9001:2000 as a standard for process assessment and certification comparable to
other business areas and industries.

o TickiT inform the developer about the actual quality issues and best practices
considering the process improvement.

o |SO 12207 defines the software life cycle processes for a general point of view and
involves the process quality implicitly.

e SO 15504 is also known as SPICE (Software Process Improvement and Capability
Determination) and was described shortly later in this Thesis.

e Bootstrap process evaluation is based on the assessment process, the process model
(including the evaluation as incomplete, performed, managed, established,
predictable and optimising), the questionnaires and the scoring, rating and result
presentation .

17

e SEI-CMMI is the well-known capability maturity model which integrated some of
other process improvement standards and approaches (see below).

e Trillium is a Canadian initiative for software process improvement and provides to
initiate and guide a continuous improvement program.

e EFQM as European Foundation of Quality Management considers soft factors like
customer satisfaction, policy and strategy, business results, motivation, and leading
in order to evaluate the process effectiveness and success.

The following semantic network shows some classical approaches in the software process
evaluation without any comments [Ferguson 1998] or [Ebert 2007].

Requirements to

(S0 15504 + S0 9001:2000

Process .

assessments
I-.»\‘ \

Process as- @M‘@@ / (TL 9000

sessment and ‘ \ ISO/TS 16949
@‘-_ﬁ‘! IEC 61508
SN A

50 WD2E262

A
150 15288
/X R
FProcess PrMBC .‘t - U ifi
i o 150 16085 nified
.__.- @

implementation .‘F‘

Frocess
and govemance "’ & @

Froduct and
development DoD 2167
life-cycles

Measurement S
and estimation @ﬁ 20926
—NCIS0 20968

Figure 12: Dependencies of software process evaluation methods and standards
2.3.1 General Maturity Models

Based on the idea of process improvement, a lot of maturity models (MM) were defined and
implemented in order to classify different aspects of software products, processes and
resources. Some of these maturity evaluation approaches are described in the following
table (see [April 2005] and [Braungarten 2005])

Model Description Model Description

PEMM Performance Engineering MM CcMm3 Configuration Management MM

TMM Testing Maturity Model ACMM IT Architecture Capability MM
ITS-CMM | IT Service Capability MM oMMM Outsourcing Management MM

18

iCMM Integrated CMM PM2 Project Management Process
Model
TCMM Trusted CMM IMM Internet MM
SSE-CMM | System Security Engineering CMM IMM Information MM
OoPM3 Organizational Project PMMM Program Management MM
Management MM
oMM Operations MM PMMM Project Management MM
M-CMM Measurement MM IPMM Information Process MM
SAMM Self-Assessment MM CPMM Change Proficiency MM
uvm Usability MM ASTMM Automated Software Testing MM
ECM2 E-Learning CMM Lm3 Learning Management MM
WSMM Web Services MM ISmM3 Information Security Management
MM
eGMM e-Government MM TMM Team MM
EVM3 Earned Value Management MM SRE-MM | Software Reliability Engineering
MM
WMM Website MM EDMMM | Enterprise Data Management MM
DMMM Data Management MM S3MM Software Maintenance MM

Table 1: Chosen maturity models

The following figure summarizes some of these maturity models and chosen improvement
models in a layer structure of software process evaluation.

Figure 13: Overview of chosen process maturity and improvement models

19

In following we will consider some of the essential approaches of software process
evaluation and improvement.

2.3.2 The CMMI Approach

CMMI stands for Capability Maturity Model Integration and is an initiative for changing the
general intention of an assessment view based on the “classical” CMM or I1SO 9000 to an
improvement view integrating the System Engineering CMM (SE-CMM), the Software
Acquisition Capability Maturity Model (SA-CMM), the Integrated Product Development Team
Model (IDP-CMM), the System Engineering Capability Assessment Model (SECAM), the
Systems Engineering Capability Model (SECM), and basic ideas of the new versions of the I1SO
9001 and 15504 [Chrissis 2003]. The CMMI is structured in the five maturity levels, the
considered process areas, the specific goals (SG) and generic goals (GG), the common
features and the specific practices (SP) and generic practices (GP). The process areas are
defined as follows [Kulpa 2003]:

“The Process Area is a group of practices or activities performed collectively to
achieve a specific objective.”

Such objectives could be the part of requirements management at the level 2, the
requirements development at the maturity level 3 or the quantitative project management
at the level 4. The difference between the “specific” and the “general” goals, practices or
process area is the reasoning in the special aspects or areas which are considered in
opposition to the general IT or company-wide analysis or improvement. There are four
common features:

* The commitment to perform (CO)

* The ability to perform (AB)

* The directing implementation (DI)

= The verifying implementation (VE).

The CO is shown through senior management commitment, the AB is shown through the
training personnel, the DI is demonstrated by managing configurations, and the VE is
demonstrated via objectively evaluating adherence and by reviewing status with higher-level
management. The following Figure 14 shows the general relationships between the different
components of the CMMI approach.

20

Specific Practices

[Process Area 1 l [Process Area 2] ’ Process Area n

Specific Goals

Generic Practices

Capability Levels

Figure 14: The CMMI model components

The CMMI gives us some guidance as to what is a required component, an expected
component, and simply informative. There are six capability levels (but five maturity levels),
designated by the numbers 0 through 5 [SEI 2002], including the following process areas:

0.
1.
2.

Incomplete: -
Performed: best practices;

Managed: requirements management, project planning, project monitoring and
control, supplier agreement management, measurement and analysis, process
and product quality assurance;

Defined: requirements development, technical solution, product integration,
verification, validation, organizational process focus, organizational process
definition, organizational training, integrated project management, risk
management, integrated teaming, integrated supplier management, decision
analysis and resolution, organizational environment for integration;

Quantitatively Managed: organizational process performance, quantitative
project management;

Optimizing: organizational innovation and deployment, causal analysis and
resolution.

Addressing the basics of the project management CMMI considers the following
components for the management of the IT processes [SEI 2002]:

21

Process Performance

objectives, baselines, models Risk exposure due to

unstable processes

\J

Statistical Mgmt Data

Quantitative objectives

Organization’s standard ~ SUbprocesses to
processes and statistically manage

supporting assets

\ Identified risks » [RSKM

Coordination and ¢ollaboration

, v, Lessons Learned, among project stakeholders
! Planning and Risk
Performance Data Shared vision taxonomies

and integrated team

. & parameters
structure for the proje

process areas

Integrated team Risk status

Project's
defined

1
1
1
1
1
Process Management
1
)
1
1
1
1 process

. Risk mitigation plans
ct's

Product
architecture
for
structuring
teams

Coordination, Corrective action
commitments,
issues to

resolve

Configuration management,
verification, and integration
data o

i
:
1
environment and ')
people practices . Basic
Engineering and Support ' Project Management
1
.
1
1
1
1

1

1

1

1

1
process areas , process areas

1

1

1

\ Monitoring data as

part of supplier)
agreement M e e . / ' ’
N -

Figure 15: The CMMI project management process areas

where QPM stands for Quantitative Project Management, IPM for Integrated Project
Management, IPPD for Integrated Product and Process Development, RSKM for risk

management, and ISM for Integrated Supplier Management.

In order to manage the software process quantitatively, CMMI defines a set of example

metrics. Some of these appropriate software measurement intentions are [SEI 2002]:

e Examples of quality and process performance attributes for which needs and
priorities might be identified include the following: Functionality, Reliability,
Maintainability, Usability, Duration, Predictability, Timeliness, and Accuracy;

e Examples of quality attributes for which objectives might be written include the
following: Mean time between failures, Critical resource utilization, Number and
severity of defects in the released product, Number and severity of customer
complaints concerning the provided service;

e Examples of process performance attributes for which objectives might be written
include the following: Percentage of defects removed by product verification
activities (perhaps by type of verification, such as peer reviews and testing),
Defect escape rates, Number and density of defects (by severity) found during
the first year following product delivery (or start of service), Cycle time,
Percentage of rework time;

22

Examples of sources for objectives include the following: Requirements,
Organization's quality and process-performance objectives, Customer's quality
and process-performance objectives Business objectives, Discussions with
customers and potential customers, Market surveys;

Examples of sources for criteria used in selecting sub processes include the
following: Customer requirements related to quality and process performance,
Quality and process-performance objectives established by the customer, Quality
and process-performance objectives established by the organization,
Organization’s performance baselines and models, Stable performance of the sub
process on other projects, Laws and regulations;

Examples of product and process attributes include the following: Defect density,
Cycle time, Test coverage;

Example sources of the risks include the following: Inadequate stability and
capability data in the organization’s measurement repository, Sub processes
having inadequate performance or capability, Suppliers not achieving their
quality and process-performance objectives, Lack of visibility into supplier
capability, Inaccuracies in the organization’s process performance models for
predicting future performance, Deficiencies in predicted process performance
(estimated progress), Other identified risks associated with identified
deficiencies;

Examples of actions that can be taken to address deficiencies in achieving the
project’s objectives include the following: Changing quality or process
performance objectives so that they are within the expected range of the
project’s defined process, Improving the implementation of the project’s defined
process so as to reduce its normal variability (reducing variability may bring the
project’s performance within the objectives without having to move the mean),
Adopting new sub processes and technologies that have the potential for
satisfying the objectives and managing the associated risks, Identifying the risk
and risk mitigation strategies for the deficiencies, Terminating the project;

Examples of sub process measures include the following: Requirements volatility,
Ratios of estimated to measured values of the planning parameters (e.g., size,
cost, and schedule), Coverage and efficiency of peer reviews, Test coverage and
efficiency, Effectiveness of training (e.g., percent of planned training completed
and test scores), Reliability, Percentage of the total defects inserted or found in
the different phases of the project life cycle Percentage of the total effort
expended in the different phases of the project life cycle;

Sources of anomalous patterns of variation may include the following: Lack of
process compliance, Undistinguished influences of multiple underlying sub
processes on the data, Ordering or timing of activities within the sub process,
Uncontrolled inputs to the sub process, Environmental changes during sub
process execution, Schedule pressure, Inappropriate sampling or grouping of
data;

23

Examples of criteria for determining whether data are comparable include the
following: Product lines, Application domain, Work product and task attributes
(e.g., size of product), Size of project;

Examples of where the natural bounds are calculated include the following:
Control charts, Confidence intervals (for parameters of distributions), Prediction
intervals (for future outcomes);

Examples of techniques for analyzing the reasons for special causes of variation
include the following: Cause-and-effect (fishbone) diagrams, Designed
experiments, Control charts (applied to sub process inputs or to lower level sub
processes), Sub grouping (analyzing the same data segregated into smaller
groups based on an understanding of how the sub process was implemented
facilitates isolation of special causes);

Examples of when the natural bounds may need to be recalculated include the
following: There are incremental improvements to the sub process, New tools
are deployed for the sub process, A new sub process is deployed, The collected
measures suggest that the sub process mean has permanently shifted or the sub
process variation has permanently changed;

Examples of actions that can be taken when a selected sub process’ performance
does not satisfy its objectives include the following: Changing quality and process-
performance objectives so that they are within the sub process’ process
capability, Improving the implementation of the existing sub process so as to
reduce its normal variability (reducing variability may bring the natural bounds
within the objectives without having to move the mean), Adopting new process
elements and sub processes and technologies that have the potential for
satisfying the objectives and managing the associated risks, Identifying risks and
risk mitigation strategies for each sub process’ process capability deficiency;

Examples of other resources provided include the following tools: System
dynamics models, Automated test-coverage analyzers, Statistical process and
quality control packages, Statistical analysis packages

Examples of training topics include the following: Process modelling and analysis,
Process measurement data selection, definition, and collection;

Examples of work products placed under configuration management include the
following: Sub processes to be included in the project’s defined process,
Operational definitions of the measures, their collection points in the sub
processes, and how the integrity of the measures will be determined, Collected
measures;

Examples of activities for stakeholder involvement include the following:
Establishing project objectives, Resolving issues among the project’s quality and
process-performance objectives, Appraising performance of the selected sub

24

processes, ldentifying and managing the risks in achieving the project’s quality
and process-performance objectives, Identifying what corrective action should be
taken;

Examples of measures used in monitoring and controlling include the following:
Profile of sub processes under statistical management (e.g., number planned to
be under statistical management, number currently being statistically managed,
and number that are statistically stable), Number of special causes of variation
identified;

Examples of activities reviewed include the following: Quantitatively managing
the project using quality and process-performance objectives, Statistically
managing selected sub processes within the project’s defined process;

Examples of work products reviewed include the following: Sub processes to be
included in the project’s defined process Operational definitions of the measures,
Collected measures;

Based on these quantifications CMMI defines: “A 'managed process’ is a performed process
that is planned and executed in accordance with policy; employs skilled people having
adequate resources to produce controlled outputs; involves relevant stakeholders; is
monitored, controlled, and reviewed; and is evaluated for adherence to its process
description”.

2.3.3 The SPICE Approach

The Software Process Improvement and Capability dEtermination (SPICE) is defined as an
ISO/IEC standard TR 15504 [Emam 1998]. The SPICE process model considers the following
process activities

Customer — supplier: acquire software product, establish contract, identify customer
needs, perform joint audits and reviews, package, deliver and install software,
support operation of software, provide customer service, assess customer
satisfaction

Engineering: develop system requirements, develop software requirements, develop
software design, implement software design, integrate and test software, integrate
and test system, maintain system and software

Project: plan project life cycle, establish project plan, build project teams, manage
requirements, manage quality, manage risks, manage resources and schedule,
manage subcontractors

Support: develop documentation, perform configuration management, perform
quality assurance, perform problem resolution, perform per reviews

Organization: engineer the business, define the process, improve the process,
perform training, enable reuse, provide software engineering environment, provide
work facilities

25

Based in these process activities, SPICE defines the different capability levels such as
incomplete, performed, managed, established, predictable, and optimizing. The principles of
the process assessment of SPICE are given in the following semantic network [SPICE 2006].

Process

is exa-

identifies mined by identifies
changes to capability
Y and risks of

Process
Assessment

leads to leads o

Process
Improvement]
motvates

Figure 16: The SPICE process assessment model

Capability
Determination

The SPICE using and evaluation process is based on different documents: concepts and
introductory guide, guide for use in process improvement, guide for use in determining
supplier process capability, qualification and training of assessors, rating processes, guide to
conducting assessment, construction, selection and use of assessment instruments and tools,
a model for process management.

2.3.4 The Six Sigma Approach

Sigma (o) stands for standard deviation of anything. The Six Sigma approach in the software
development field was considered an interval (six: three at both sides) which keeps a 99.9
percent correctness as absence of any defects [Tayntor 2003]. The following table shows the
defect percentage depending upon the different sigma levels.

Sigma level Percent correct #defects per million
opportunities
3 93.3193 66807
4 99.3790 6210
5 99.9767 233
6 99.99966 3.4

Table 2: Characteristics of different sigma levels

The cornel process of the Six Sigma approach includes/uses five phases referred to as the
DMAIC model which means

1. Define the problem and identify what is important (define the problem, form a team,
establish a project charter develop a project plan, identify the customers, identify key
outputs, identify and prioritize customer requirements, document the current
process).

26

Measure the current process (determine what to measure, conduct the
measurements, calculate the current sigma level, determine the process capability,
benchmark the process leaders).

Analyze what is wrong and potential solutions (determine what cause the variation,
brainstorm ideas for process improvements, determine which improvements would
have the greatest impact on meeting customer requirements, develop a proposed
process map, and assess the risk associated with the revised process).

Improve the process by implementing solutions (gain approval for the proposed
changes, finalize the implementation plan, implement the approved changes).

Control the improved process by ensuring that the changes are sustained (establish
key metrics, develop the control strategy, celebrate and communicate success,
implement the control plan, measure and communicate improvements).

The general aspects of the Six Sigma approach are shown in the following figure [Dumke

2005].
artefactBased quantificationBased valueBased experienceBased
operation operation operation operation
Measurement
artefacts/objects Measurement Measurement Measurement
) models evaluation goals
Product
(architecture,
Implementaic
documentatig

Process

(management,

life cycle,
CASE)

Resources
(personnel,
software,
hardware)

Flow graph
Callgraph

Structure tree

analysis

visualization

Code schema

calibration

Furthermore, the Six Sigma approach is available for [Tayntor 2003] traditional software
development life cycle, legacy systems, package software implementation, and outsourcing.

interpretation

transformation

DMAIC model

Figure 17: Basic characteristics of the Six Sigma approach

2.3.5 The ITIL Approach

ITIL (the IT Infrastructure Library) is a set of documents that are used to aid the
implementation of a framework for IT Service Management ([ITIL 2006], [Johnson 2007]).
This framework characterises how Service Management is applied within an organisation.
ITIL was originally created by the CCTA, a UK Government agency, it is now being adopted
and used across the world as the de facto standard for best practice in the provision of IT

Service.

27

ITIL is organized into a series of sets as a best practice approach, which themselves are
divided into eight main areas

1.

Service Support is the practice of those disciplines that enable IT Services to be
provided effectively (service-desk, incident management, problem management,
change management, configuration management, release management).

Service Delivery covers the management of the IT services themselves (service level
management, financial management for IT services, capacity management, service
continuity management, availability management).

Security Management considers the installation and realization of a security level for
the IT environment (trust, integrity, availability, customer requirements, risk analysis,
authority, and authenticity).

ICT Infrastructure Management describes four management areas: design and
planning, deployment, operations, technical support.

Application Management describes the service life cycle as requirements — design —
build- deploy — operate — optimise.

Planning to Implement Service Management defines a guide in order to deploy the
ITIL approach in a concrete IT environment.

The Business Perspective describes the relationships of the IT to the customers and
users.

Software Asset Management defines the processes and the life cycles for managing
the software assets.

The following triangle characterizes the different relationships between the service
management standards and ITIL.

Self —

assessment

Achieve this

BS 15000
Specification

PD 0005 Management overview
Code of Practice

ITIL
(IT Infrastructure Library)

Process definition

In-house procedures Deployed solution

Figure 18: The relationship between the service standards and ITIL

where BS 15000 is the service management standard, ISO 20000 describes the specification
for service management, and PD 0005 stands for code of practice for the IT service
management (ITSM). Usually, the implementation of the ITIL approach is supported by any
ITIL toolkits.

28

2.3.6 Further Software Process Evaluation

Further process measurement approaches are addressed to special process aspects or IT
characteristics such as

e Assessment software processes for small companies [Wangenheim 2006]
considering CMMI, ISO 9001 and SPICE and definition of a Métodode Avaliacao de
Processo de Software (MARES) that includes that assessment phases planning,
contextualization, execution, monitoring and control, and post-mortem which will be
applied continuously.

e The agile process management could be described as follows (see [Augustine 2005]
and [Boehm 2005])

0 The agile methods are lightweight processes that employ short iterative

cycles, actively involve users to establish, prioritize, and verify
requirements and rely on a team’s tacit knowledge as opposed to
documentation

The ability to manage and adapt to change

A view of organization’s fluid, adaptive systems composed of intelligent
people

Recognition of the limits of external control in establishing order

An overall humanistic problem-solving approach (considers all members to
be skilled and valuable stakeholders in team management, relies on the
collective ability of autonomous teams as the basic problem-solving
mechanism, minimizes up-front planning, stressing instead adaptability to
changing conditions)

e Management issues of internet/Web systems [Walter 2006] which defines the
priority of management aspects as

Ok LN R

7.
8.
9.

protecting information about consumers,

holistic thinking of company activities,

linking internet strategic planning with corporate strategic planning,

aligning internet development projects with corporate strategies,

prioritizing company’s internet objectives,

providing adequate reassurance to consumers that information is fully
protected,

recruiting trained internet personnel,

intranets remain security problems,

retaining trained internet personnel,

10. making company logistics system compatible with the internet,
11. providing data privacy and data security to costumer companies,

29

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

providing adequate firewall,s

the site objectives requires definition,

recognizing potential benefits available from the internet,

intellectual property rights have become a major concern,

internet personnel should be strategists,

making WWW sites user friendly,

costs/benefits analyses fir internet systems are difficult,

keeping up to the dynamism of the internet-based marketplace,
providing quality customer service through interne systems,

the speed of change makes internet technology forecasting difficult,
integrating internet systems across multiple sites within a company,
linking internet systems to other internet systems

distribution channel conflicts inhibit more widespread use of e-commerce,
developing new cots/benefits analysis methodologies to evaluate internet
project,

competitors may be leaping ahead.

Product line project management [Clements 2005] is based on the product line
development phases as core asset development, product development, and
management. This management involves the typical project input as products
requirements, product line scope, core assets, and a production plan. The following
figure shows the “What to Build” pattern used in this management area.

Understanding
relevant domains

- - Technolo
Marketing analysis ol
forecasting
Technology
Product Market predicilons Technology
climate Market predictions
Domain climate
models
Justification
- - Build a
Scoping .
> business case
Product set
Product-line scope Business case

Figure 19: The “What to Build” pattern for product line project management

Personal Software Process (PSP) considers the quality of the IT personnel
themselves by analysis, evaluation and improvement of their activities [Humphrey
2000]. The following figure shows the essential steps of the PSP.

30

PSP3

Cyclic development

PSP2 PSP2.1

Code reviews | Design templates
Design reviews

T

PSPO

Current process
Basic measures

PSP1 PSP1.1
Size estimation Task planning
Test report Schedule planning
PSP0D.1

Coding standard
Process improvement
proposal
Size measurement

Figure 20: The PSP approach

Based on the Telemetry project from Johnson et al. [Johnson 2005] Ullwer has
defined and implemented a background measurement and repository in order to
automate the PSP using the so called Hackystat technology for Open Office [Ullwer

2006].

Currently, an experience in the industrial area is available and shows the relevance

of this approach ([Kamatar 2000], [Zhong 2000]).

2.4 Summary

This chapter describes the software engineering field in general and motivates the quality
assurance aspects considering the software process respectively. For our thesis approach we

can establish that

» Software processes can be defined in different levels using experiences, considering
development paradigms and determine process activities, categories and (sub)

systems

» The main area of software processes
systems/products using software resources such as personnel, COTS, hardware and

(basically) CASE tools

» Different approaches of software process descriptions such as CMMI or ITIL helps to
improve the process but define the quality assurance implicitly and in a verbal

manner mostly

In order to evaluate the software processes involving CASE tools we describe the CASE based

development in the next chapter.

31

Cyclic
Personal Process

Personal Quality
Management

Personal Project
Management

Baseline
Personal Process

is the development on

32

3 CASE-Based Software Development
3.1 CASE Tools

In the chapter before (formula (2.5)) we have CASE (Computer-Aided Software Engineering)
characterizes as CASE tools mainly summarizing as Integrated CASE or ICASE as

ICASE = CASE U CARE U CAME

(3.1)
where CARE stands for computer-aided reengineering and CAME means computer-assisted

measurement and evaluation tools. A simple example of a CASE tools architecture is given in
the following figure.

Main menu 3
\\
~
A Y
. L] \\
]
' S .
Project d ipti - I"\ BN
roject description ’
) P ' b X
* +
yoh
Yo]
/ Documentation
_ H ‘1
Data Dictionary P Y
(Repository) oo
\
)
" '
‘ A
r
’ ~
[
Programming Consistency
Diagram designer test

===+ Control flow

— Data flow
Figure 21: Simplified CASE tool architecture

tools as

CASE could be used in different software development phases and software maintenance
activities. Adapting formula (2.3) for different development paradigm we can identify CASE

{CAS E developmentMethods, CASE, lifecycles CASE. softwareManagemen t}
and

(3.2)

{CAS E, problemDefinition, CASE, requirementAnalysis, CASE. specification, CASE, design,
CASE, implementation, CASE, acceptanceTests CASE, delivering}

(3.3)

33

and
{CASEsan, CASEoose, CASE cgse, CASE pose} (3.4)

Considering formula (2.4) we can classify different CASE tools for the development of
different software systems such as

{CAS E informationSystemy CASE constructionSystem, CASE embeddedSystem, CASE, communicationSystem, (3.5)
CASE, distributedSystem, CASE, knowledgeBasedSystem}

Relating to formula (2.6) we can identify CASE tools in the software maintenance area as

{CAS E extensions CASE, adaptation, CASE, correction, CASE, improvement, CASE, prevention} (3. 6)

A simple example of a CASE Tool architecture is given in the following figure characterizing
the Eclipse tool.

Operation menu
(Refactor, Source, Run)

Management menu
{File, Edit, Search, Navigate,
Project, Window, Help)

Source code

oo \
. | _____
| Directory r

— [— | ———————
= = = \ Warninglerrors and |

resulis

—_— — — — —]
Program errors

Program docu-
Programs mentations

Projects

Figure 22: Eclipse tool GUI architecture

CASE tools could be built as software development infrastructures based on CASE
environments as following

CASEinfrastructure = {({UpperCASE} U {LOWEI’CASE})environment } (3-7)

Therefore, we had defined

UpperCASE = {modellingTool, searchTool, documentationTool, diagramTool,
simulationTool, benchmarkingTool, communicationTool}

LowerCASE = {assetLibrary, programmingEnvironment, programGenerator,
compiler, debugger, analysisTool, configurationTool}

34

Kinds of CASE tool integration as presentation, controlling, platform and data integration are
shown in the following figure by [Wasserman 1990].

Al— Common user interface -
(Presentation integration)

Reengineering
tools

Simulation
toolz

Te=t
toolz

Anahyziz
toolz

Coding
toolz

De=ign
toolz

Requirements tracing toolz Controlling

Configuration management toole integration

Project/Process management toolz

Documentation toclz

Digtributed repositony
{Data integration)

Virtual operation environment
(Platformintegration) ¥

Figure 23: Four essential types of CASE tool integration

Finally, CASE tools could be identified for different paradigms, system and development
support characterized in the following figure.

SE technology
—— ADOSE
-4 CBSE
. 4 ’
Y e DOSE
. . O o
7’ -
e T L%
L& - o .

'1 i~ | ke “ag f
nformation syele v | A SE methodology
nformation sys 1I'I'I‘Eu Ure c‘fde Development /', Kinds of

Conzstruction systens . Bals _r:emads resourcas /_, management
Embeddad systems ". <-\ A /./
y Y P
Knowledge-based s NN .
systems 4 0y ’
o

Distributed .,

SySLEMSs CASE03

Communication
syslems

SE application
systems

Figure 24: CASE tools in the dimensions of the software engineering

This figure demonstrates the large “space” of CASE tools variants and categories in the
software development processes.

35

3.2 CASE-Based Processes

Using our process descriptions in the chapter before we can adapt these definitions in a
CASE tool based manner as following (based on [Wang 2000]).

CASE tool based development processes are processes that belong to a technical
process subsystem, which regulate the development activities in software design,
implementation, and maintenance using tools for supporting, performing and
managing these process activities.

A CASE tool based empirical process model is a model that defines an organized
and benchmarked software process system and best practices captured and
elicited from the software industry involved in the used and adapted CASE tools.

Furthermore, in order to analyze and improve the development processes we adapt the
following definitions of kinds of process evaluations.

CASE-based software process establishment is a systematic procedure to select
and implement a process system by model tailoring, extension, and/or
adaptation techniques and appropriate tools.

CASE-based software process assessment (CSPA) is a systematic procedure to
investigate the existence, adequacy, and performance of an implemented and
tool-based process system against a model, standard, or benchmark.

CASE-based process capability determination is a systematic procedure to derive
a capability level for a process, and/or organization based on the evidence of
existence, adequacy, and performance of the required practices defined in a CASE
tool based software engineering process system.

CASE-based software process improvement (CSPI) is a systematic procedure to
improve the performance of an existing CASE tool based process system by
changing the current processes or updating new processes in order to correct or
avoid problems identified in the old process system by means of a process
assessment.

Otherwise existing standards and approaches for software process evaluation considers the

CASE tool application in an implicit but meaningful manner from an automation point of
view.

The following semantic network showing in the chapter before can be used in order to
characterize these intentional aspects.

36

Requirements to

CASE-based aspects P> process

assessments

» Process as-

: d <ASPICED)
CASE-based level .Srﬁ,sjgjlz;: an “l’l L
duct and .‘l‘\\v /ﬂ
CASE based phasenT doviopment 195> 150 1220wl
life-cycles I’ ‘
\
* Process “hy'ié Unified
implementation <’--"~‘@ Process
CASE-based support and governance ﬂ@i’@ &
—
» Measurement @

~
S0 20926

CASE-based measure- and estimation
3¢ ISO 20968

ment

Figure 25: CASE and software process evaluation methods and standards

The following adapted figure summarizes the mainly CASE-based area of the maturity
models and chosen improvement models of software process evaluation.

IT process systam

Procass subsystam

PEMM
15015939

[Key@Process areas/ categonies Fagans

Law

Process activily
WM
cocoMo

CASE tool integration ' I I /

CASE tool support

Figure 26: Overview of chosen process maturity and improvement models

Chosen CMMI-based software measurement intentions in order to manage the software
process quantitatively considering CASE-based development are [SEI 2002]:

e (CASE tool based support for the examples of quality and process performance
attributes for which needs and priorities might be identified include the following:
Functionality, Reliability, Maintainability, Usability, Duration, Predictability,
Timeliness, and Accuracy;

37

CASE tool based determination of the examples of quality attributes for which
objectives might be written include the following: Mean time between failures,
Critical resource utilization, Number and severity of defects in the released
product, Number and severity of customer complaints concerning the provided
service;

CASE tool based support for the examples of process performance attributes for
which objectives might be written include the following: Percentage of defects
removed by product verification activities (perhaps by type of verification, such
as peer reviews and testing), Defect escape rates, Number and density of defects
(by severity) found during the first year following product delivery (or start of
service), Cycle time, Percentage of rework time;

CASE tool based support for the examples of sources for objectives include the
following: Requirements, Organization's quality and process-performance
objectives, Customer's quality and process-performance objectives Business
objectives, Discussions with customers and potential customers, Market surveys;

CASE tool based support for the examples of sources for criteria used in selecting
sub processes include the following: Customer requirements related to quality
and process performance, Quality and process-performance objectives
established by the customer, Quality and process-performance objectives
established by the organization, Organization’s performance baselines and
models, Stable performance of the sub process on other projects, Laws and
regulations;

CASE tool based determination of the examples of product and process attributes
include the following: Defect density, Cycle time, Test coverage;

CASE tool based support for the example sources of the risks include the
following: Inadequate stability and capability data in the organization’s
measurement repository, Sub processes having inadequate performance or
capability, Suppliers not achieving their quality and process-performance
objectives, Lack of visibility into supplier capability, Inaccuracies in the
organization’s process performance models for predicting future performance,
Deficiencies in predicted process performance (estimated progress), Other
identified risks associated with identified deficiencies;

CASE tool based determination of the examples of sub process measures include
the following: Requirements volatility, Ratios of estimated to measured values of
the planning parameters (e.g., size, cost, and schedule), Coverage and efficiency
of peer reviews, Test coverage and efficiency, Effectiveness of training (e.g.,
percent of planned training completed and test scores), Reliability, Percentage of
the total defects inserted or found in the different phases of the project life cycle
Percentage of the total effort expended in the different phases of the project life
cycle;

38

CASE tool based support for the examples of criteria for determining whether
data are comparable include the following: Product lines, Application domain,
Work product and task attributes (e.g., size of product), Size of project;

CASE tool based determination of the examples of where the natural bounds are
calculated include the following: Control charts, Confidence intervals (for
parameters of distributions), Prediction intervals (for future outcomes);

CASE tool based support for the examples of techniques for analyzing the reasons
for special causes of variation include the following: Cause-and-effect (fishbone)
diagrams, Designed experiments, Control charts (applied to sub process inputs or
to lower level sub processes), Sub grouping (analyzing the same data segregated
into smaller groups based on an understanding of how the sub process was
implemented facilitates isolation of special causes);

CASE tool based support for the examples of actions that can be taken when a
selected sub process’ performance does not satisfy its objectives include the
following: Changing quality and process-performance objectives so that they are
within the sub process’ process capability, Improving the implementation of the
existing sub process so as to reduce its normal variability (reducing variability
may bring the natural bounds within the objectives without having to move the
mean), Adopting new process elements and sub processes and technologies that
have the potential for satisfying the objectives and managing the associated risks,
Identifying risks and risk mitigation strategies for each sub process’ process
capability deficiency;

CASE tool based determination of the examples of other resources provided
include the following tools: System dynamics models, Automated test-coverage
analyzers, Statistical process and quality control packages, Statistical analysis
packages

CASE tool based determination of the examples of training topics include the
following: Process modelling and analysis, Process measurement data selection,
definition, and collection;

CASE tool based determination of the examples of work products placed under
configuration management include the following: Sub processes to be included in
the project’s defined process, Operational definitions of the measures, their
collection points in the sub processes, and how the integrity of the measures will
be determined, Collected measures;

CASE tool based support for the examples of activities for stakeholder
involvement include the following: Establishing project objectives, Resolving
issues among the project’s quality and process-performance objectives,
Appraising performance of the selected sub processes, Identifying and managing
the risks in achieving the project’s quality and process-performance objectives,
Identifying what corrective action should be taken;

39

e (CASE tool based determination of the examples of measures used in monitoring
and controlling include the following: Profile of sub processes under statistical
management (e.g., number planned to be under statistical management, number
currently being statistically managed, and number that are statistically stable),
Number of special causes of variation identified;

e (CASE tool based support for the examples of activities reviewed include the
following: Quantitatively managing the project using quality and process-
performance objectives, Statistically managing selected sub processes within the
project’s defined process;

Finally, the best practice approach of ITIL considers the essential CASE-based aspects as
“Service Support is the practice of those disciplines that enable IT Services to be provided
effectively (service-desk, incident management, problem management, change
management, configuration management, release management)” [Johnson 2007].

3.3 Summary

The third chapter has described the CASE-based foundations of software process supports
and implementations. For our thesis approach we can establish that

» CASE tools can be found in all software engineering dimensions such as technologies
(OOSE, CBSE etc.) kinds of systems (embedded, information, knowledge-based etc.)
and development process aspects (lifecycle, management etc.)

» An effective use of CASE tool requires their consistent integration over the different
process activities and phases

» CASE tools can be used as monolithic tools, tool sequences, tool compositions and as
(Web) services respectively

» CASE tool could be integrated in the software development process as CASE-based
software process assessment and CASE-based software process improvement

» Evaluation and improvement standards and approaches define the functional
background of CASE tools and their meaningful and effective application as CASE
tool based support and determination

The different kinds of software process analysis, evaluation and measurement involving
CASE tools are described in the next chapter.

40

4 Software Process Measurement and Evaluation

Process metrics or measures are involved in software measurement processes and are based
on process experiences. Therefore, we will define these activities and information basics at
first. The measurement methods M could be classified as following [Dumke 2005]

M = {artefactBasedOperation, quantificationBasedOperation, (4.1)
valueBasedOperation, experienceBasedOperation}
where

artefactBasedOperation = {modelling, measurement, experimentation, assessment}

quantificationBasedOperation < {transformation, regression, factorAnalysis,
calibration}

valueBasedOperation S {unitTransformation, correlation, visualization, analysis,
adjustment, prediction}

experienceBasedOperation S {trendAnalysis, expertise, estimation, simulation,
interpretation, evaluation, application}

The measurement experiences summarize the general aspects of the concrete measurement
results in different forms of aggregation, correlation, interpretation and conclusion based on
a context-dependent interpretation.

Note that the measurement experience is divided in the experiences of the measurement
results and the (evaluated-based) experience of the measurement itself. In following we only
consider the first aspect. Some kinds of measurement experience are ([Armour 2004], [Davis
1995], [Endres 2003], [Kenett 1999])

F c {analogies, axioms, correlations, criterions, intuitions, laws, lemmas, (4.2)
formulas, methodologies, principles, relations, ruleOfThumbs, theories}

Some examples of these kinds of experience are (see also [Basili 2001], [Boehm 1989],
[Dumke 2003], [Halstead 1977] and [Putnam 2003])

analogies € {analogicalEstimation, systemAnalogy, hardwareSoftwareAnalogy}
criteria € {fulfilCondition, qualityAspect, minimality, maximality}

laws € {BrooksLaw, DijkstraMillsWirthLaw, FagansLaw, GlassLaw,
GraySerlinLaw, McllroysLaw, MooresLaw, SimonsLaw}

lemmas € {‘any system can be tuned’, ‘installability must be designed in’,
‘human-based methods can only be studied empirically’}

methodologies € {agileMethodology, cleanroomMethodology,
empiricalBasedMethodology}

41

principles € {‘don’t set unrealistic deadlines’, ‘evalvate alternatives’,
‘manage by variance’, ‘regression test after every change’}

rulesOfThumb € {‘one dollar in development leads to two dollars maintenance’,
‘1 KLOC professional developed programs implies 3 errors’,
‘more than 99 percent of all executing computer instructions come from
COTS’, ‘more than the half of the COTS features go unused’}

On the other hand, there are three different types of empirical strategies: survey, case study
and experiment (see [Juristo 2003], [Kitchenham 1997]). In following we will cited some
examples from the literature for these kinds of measurement and experience addressed to
the software process.

4.1 Software Process Indicators and Criteria

Special indicators or criteria for project management are defined by [Lecky-Thompson 2005]
in the following manner:

Specification project management: invoice generation, reporting, payment tracking,
order processing, account maintenance, customer management, stock management,
and tax return;

Promoting corporate quality: projecting quality (communicating quality,
documentation, rewarding quality), managing quality (quality reviews, quality
checklists, total quality management, quality circles), document quality (process
description documents, benchmark reporting, badges);

Feedback techniques: reporting line (documenting the reporting line, the reporting line
document, specification, design, implementation, integration), central communication
(quality management, change management, quality measurement), supporting the
reporting process (external documentation, motivation via improvement),

Client satisfaction: pre- and post-project surveys, planning for failure, poor quality
requirements capture, poor quality implementation, managing client dissatisfaction,
poor quality specifications.

Another taxonomy of project management considers the special aspects of managing virtual
teams [Haywood 1998]. These are

Virtual team characteristics: geographical separation of team members, skewed
working hours, temporary or matrix reporting structures, multi-corporation or multi-
organizational teams

Virtual team members: individual located at other corporate site, joint venture
partners, telecommuters, consultants, third-party developers, vendors, suppliers,
offshore development and manufacturing groups, satellite work groups, customers,
clients;

42

Factors driving the prevalence of distributed teams: mergers, acquisitions, downsizing,
outsourcing, technology, clean air laws, offshore development and manufacturing,
technical specialization;

Manager’s perspective of the advantages of a distributed team: access to a less
expensive labor pool, reduced office space, greater utilization of employees, round-
the-clock work force, greater access to technical experts, larger pool of possible job
candidates;

Team member’s perspective of the advantages of a distributed team: increased
independence, less micro management, larger pool of jobs to choose from, greater
flexibility, opportunity for travel;

Expectations to research: increased productivity, improved disaster recovery
capabilities, increased employee satisfaction and retention, reduced office space
requirements, environmental benefits, closer proximity to customers, increased
flexibility, greater access to technical experts, larger pool of potential job candidates;

Manager’s perspective of the challenges of distributed teams: team building, cultural
issues, cost and complexity of technology, process and workflow;

Team member’s perspective of the challenges of distributed teams: communication,
technical support, recognition, inclusion vs. isolation, management resistance.

As key success factors for software process improvement (SPI) identify Lepasaar et al.
[Lepasaar 2001] the following:

© N o U B~ W e

SPI related training;

External guidance of the SPI work;

Company’s commitment to SPI activities;

External support for SPI activities;

Managements support for SPI;

SPI environment support for a sufficiently long period of time (external mentoring);
Availability of company’s own resources;

Measurable targets set to SPI work.

Kandt gives a summarizing about different software quality drivers shown in the following

table

[Kandt 2006].

43

Boehm’s Ranking Clark’s Ranking Neufelder’s Ranking
1 Personnel/Team Product complexity Domain knowledge
2 Product complexity Analyst capability Non-programming
managers
3 Required reliability Programmer capability Use of unit testing
tools
4 Timing constraint Constraint on execution Use of supported
time operating systems
5 Application experience Personnel continuity Testing of user
documentation
6 Storage constraint Required reliability Use of automated
tools
7 Modern programming Documentation Testing during each
practice phase
8 Software tools Multi-site development Reviewed
requirements
9 Virtual machine volatility | Application experience Use of automated
fracas
10 Virtual machine Platform volatility Use of simulation
experience

Table 3: Software Quality Drivers

An overview about the essential indicators in order to characterize defects is given in [Emam

2005] as following:

e Defects and usage: usage is a function of the number of end users using the product,
the number of actual machines executing the product, the time since release

e Raw defect counts: defect density = (number of defects found)/size

e Adjusted defect density: e. g. adjusted by comparisons to “standard company”

e Defect classification: as defect priorities, defect severities, classification by problem

type

A stage model applying the defect analysis is shown in the following figure [Emam 2005].

Evalufionary Plan

&
@
& bk
o / .
o Defect Detection
el Process Management / Effectiveness (Testing)
&
& / Slze (and productivity
& .
@a‘b Productivity Managemem/ avluation
ﬁﬁ
Defect Management /:-:lde Defects G{-P
2
o
Planning and Tracking / Resource and &a&
/] Timescale i
/ &
Product Support Post-lmplementation é“
Zl Problems Reports logged ¢

Start
— 4

/

Figure 27: A model showing the stages of measurement that organizations
typically go through

44

The IT controlling could be classified in the following sub processes defined by Gadatsch and
Mayer [Gadatsch 2005]: ADV controlling, DV controlling, EDV controlling, INF controlling, IV
controlling, IS controlling, IT controlling. Typical tools in order to support these processes are
the IT strategy, IT standards, IT portfolio management, and IT analysis and indicators. A
simple classification of IT indicators by [Gadatsch 2005] is

e Absolute indicators: as counting of anything,
e Relative indicators: as structural indicators, relational indicators, and index indicators.

Putnam and Meyers define the Five Core Metrics for software process analysis,
improvement and controlling in the following manner [Putnam 2003]

1. quantity of function, usually measured in terms of size (such as source lines of code
or function points), that ultimately execute on the computer

2. productivity, as expressed in terms of the functionality produced for the time and
effort expended

3. time, the duration of the project in calendar months

4. effort, the amount of work expended in person-months

5. reliability, as expressed in terms of defect rate (or its reciprocal, mean time effort)
The relationship of these core metrics are described by Putnam and Meyers as follows

[Putnam 2003, p. 34]

“People, working at some level of productivity, produce a quantity of function or
a work product at a level of reliability by the expenditure of effort over a time
interval.”

Another relationship between the five core metrics defined by Putnam and Meyers
characterizes a first level with the time and effort metric, a second level including the quality
and productivity and a third (highest) level considering the function.

4.2 Software Process Laws
The following kinds of laws and hypothesis are cited from [Endres 2003]:

Fagan’s law: “Inspections significantly increase productivity, quality, and project stability”.
There are three kinds of inspection: design, code, and test inspection. They are applicable in
the development of all information or knowledge intensive products. This form of inspection
is wide spread throughout the industry today. Inspection also has a key role in the Capability
Maturity Model (CMM). The benefit of inspections can be summarized as followed: they
“create awareness for quality that is not achievable by any other method”.

45

Porter-Votta law: “Effectivness of inspections is fairly independent of its organizational
form”. A. Porter and L. Votta investigated the inspection process introduced by Fagan and
came up with the following results: physical meetings are overestimated. It can be helpful
while introducing the inspection process to new people. When education and experience are
extant it is not that important anymore. Another point revealed was that it is not true that
adding more persons to the inspection team increases the detection rate.

Hetzel-Myers law: “A combination of different Verification and Validation methods
outperforms any single method alone”. W. Hetzel and G. Myers claim that it is better to use
all three methods in combination to gain better results at the end. This is due to the fact that
design, code and test inspection are not competitors.

Mills-Jones hypothesis: “Quality entails productivity”. It is also known as “the optimist’s law”
and can be seen as a variation of P. Cosby’s proverb “quality is free”. It is a very intuitive
hypothesis: on the one hand, when the quality is high, less rework has to be done which
results in better productivity. On the other hand, when quality is poor more rework has to
be considered. Therefore productivity rate drops, as well.

Mays’ hypothesis: “Error prevention is better than error removal”. No matter when an error
is detected a certain amount of rework has to be done (this amount increases the later it is
detected). Therefore it is better to prevent errors. To be able to do so, the circumstances of
errors have to be investigated, identified and then removed. It is still a hypothesis because it
is extremely difficult to prove.

Basili-Rombach hypothesis: “Measurements require both goals and models”. Metrics and
measurement need goals and questions otherwise they do not have a meaning. It is also
preferable to use a top-down approach when specifying the parameters. This leads to the
Goal-Question-Metric (GQM) paradigm.

Conjecture a: “Human-based methods can only be studied empirically”. The human-based
methods involve (human) judgement and depend on experience and motivation. This is why
the results also depend on these different factors. To be able to understand and control
those factors empirical studies are needed.

Conjecture b: “Learning is best accelerated by a combination of controlled experiments and
case studies”. Observing software development helps the developers to learn. The case
studies supply the project characteristics, (realistic) complexity, project pressure etc. The
lack of cause and effect insights can be provided through controlled experiments.

Conjecture c: “Empirical results are transferable only if abstracted and packaged with
context”. The information that has been gained needs to be transformed into knowledge
with the context borne in mind. This can be achieved with the help of abstraction. It offers
the opportunity to reuse the results. When the results are abstracted and packaged only two
guestions remain to be answered: “Do the results apply to this environment?” and “What
are the risks of reusing these results?”

The following figure shows the variety of intentions of such laws. The detailed content of
these laws is described in [Endres 03].

46

Bayes'law processindicators Miller’s law
systemOCfMeasures ,
Dijikstra’s law standards Parnas’law .
experience Curtis’ law
Glass’ law Simon’s law Humphrey's 1'31}*'/ applicationDamain \\Lehman’s faw
. ¥ \

softwareProcess { softwareProduct]
systemRequirements) I
for software methods programs J

lifecycle LY B

docurmentations /
management N\ /
et Y
W I ‘\:‘* - - “DeRemer’s law
e B
personnelResources softwareR esources platformR es ources
develoﬁsrgfgtStaff coTs systemSoftware
custrmers ICASE hardwarelnfrastructures
Corbato’s law Mecliroy's law Moore's law
Weinberg's law Basili's law Cooper’s law

Figure 28: Intentions of chosen software engineering laws

4.3 Software Process Principles and Rules

Software value chains [Messerschmitt 2003]: ,, There are two value chains in software, in
which participants in one chain add value sequentially to the others. The supply chain
applies to the execution phase, tarts with the software vendor, and ends by providing
valuable functionality and capability to the user. The requirements value chain applies to the
software implementation phase, starts with the business and application ideas, gathers and
adds functional and performance objectives from user, and finally end with a detailed set of
requirements for implementation. Many innovations starts with software developers, who
can better appreciate the technical possibilities but nevertheless require end-user
involvement for their validation and refinement.”

A cognitive structure of software evaluation is defined by [Wong 2001] shown in the
following figure and consider the developer side as an essential software development
resources.

47

Jab Security Better Life (Quality of Life)

Status (Impress Others) Job is Safe / \

~ Spend time with family Better Health
In Contral

-
Feel Confident Looks Good at waork

// Geat more done / Less Stress
Easier to make ‘ Mt feel rushed / \
miore

decisions

Feel Comforiable

Accurate Reporting Flexible
Can do Safe TIME)
can do better -~ Convenient
Can do job faster
Mare ogtions to Can do more
choose from Time for
\ }h&l lhings
HIGH QUALITY
——
Extrinsic Cuas Intrirsic Cuas
Support Economic Institutional sability Funtianal Operational

Figure 29: User’s cognitive structure of software evaluation by Wong and Jeffery

The organizational and management-oriented activities of a lightweight process on extreme
programming (LIPE) are defined by Zettel et al. [Zettel 2001] in the following manner:

N AXXK XHHAK
WX X ey
W 0 K
AN 00K YOOOK
Scenarios Issue Reparts Mor-Functional
| - - System Test Report
Research and =" T I
Training * - -
P - +

O O @,

Manage Project Control Quality
. | Measurement »
- -
- -~ | - Da[a - -
- - et ~ - -
- - l - - -
- Y ~—~ ¥ -
KHAK HAKN FRET]
¥ HXX XK
X KX XX
et e BN NHHE
. Project Status Measurament
Project Plan Raports Data

Figure 30: The LIPE activities and product flow among them by Zettel et al.

The typical issues of software evaluation in the IT area are shown in the following figure
defined by [Ebert 2004]

48

Senior Management: Project Management:

on business performance

» Forecasts and indicators quality, schedule and budget
where action is needed

= Drill-down into underlying
information and commitments

= Status and forescasts for

» Follow-up of action points
» Reports based on consistent

_ raw data
m Flexible resource refocus
Engineers:
i = Immediate access to team planning and progress
Z "\ / = Get visibility into own performance and how it can be
¢ 9 A improved
N = Indicators that show weak spots in deliverables

= Focus energy on software development (instead of
rework or reports)

Figure 31: Metrics depends on stakeholder needs

A set of principles for the different areas of software quality are defined by Kandt in the
following manner [Kandt 2006]:

e Practice for Management Personnel to Follow

O O0OO0OO0OO0OO0OO0OO0OO0o0OOo

Inculcate an organizational vision

Commit to a software process improvement program

Create a software engineering steering group

Create a software engineering process group

Align the human resources organization

Assess the maturity of the organizational development processes
Identify changes and their scope

Demonstrate a quantitative financial benefit for each change
Obtain the commitment of practitioners

Measure personnel productivity and product quality

e Practice for Staffing an Organization

0]

O O 0O

O O

O O 0O

Define minimal standards of knowledge for software personnel

Use a defined process to evaluate a candidate’s knowledge

Hire summer interns and contractors a short-term basis

Hire personnel who have actually delivered software systems

Define graduated career opportunities to support growth in workface
competencies

Define an orientation program for new personnel

Specify the number of days each year that people are expected to further
develop their skills

Provide recent hires with on-the-job training

Train developers in the application domain

Relate skill development activities to the needs of individuals and projects
Reward outstanding accomplishments

49

OO O0OO0OO0OO0OO0OO0o0OOo

Define individuals performance goals and objects with each employee

Provide small meeting rooms that can hold ten people

Provide private, noise-free office space for software professionals

Control problem employees

Remove poor performers

Challenge personnel

Motivate employees

Foster team cohesion

Do not allow software engineers to work overtime beyond 40 consecutive days

e Practice for Planning a Project

O O0OO0O0OO0OO0OO0OO0OO0OO0OO0oOOo

Conduct feasibility studies

Develop a project schedule following a defined procedure

Perform a risk assessment of a project following a defined procedure

Estimate the effort and cost of a software project following a defined procedure
Use metrics to manage a software project

Track milestones for large projects

Establish a project office for large projects

Use a hierarchical organizational structure for software projects

Collocate teams and the resources allocated to them

Assign personnel to projects ho are expects in key technology areas

Never add developers to a late project

Place an operational infrastructure into the work environment before the real
work starts

e Practices for Managing Versions of Software Artefacts

0
0

O O0OO0O0OO0OO0OO0OO0OO0OO0OO0oOOo

O O O0OO0Oo

All sources artefacts should be under configuration control

All artefacts used to produce an artefact of a delivery should be under
configuration control

Work within managed, private workspace

Save artefacts at the completion of intermediate steps of a larger change
Regularly synchronize development with the work of others

Define policies for branches, codelines, and workspaces

Document identified software defects

Create a defined process for requesting and approving changes

Apply defect repairs to existing releases and ongoing development efforts
Use shared, static build processes and tools

Build software on a regular, preferable daily, basis

Maintain a unique read-only copy of each release

A version manifest should describe each software release

Software artefacts that comprise a release should adhere to defined acceptance
criteria

Configuration management tools should provide release updates

Use a software tool perform configuration management functions
Repositories should exist on reliable physical storage elements
Configuration management repositories should undergo periodic backups
Test and confirm the backup process

50

e Practice for Eliciting Requirements

O 0000000000000 0D0DO0DO0DO0DO0OO0ODO0OODO0ODODOODObODObOOOOOo

Identify and involve stakeholders

Identify the reason for developing a system

Define a clear, crisp project vision

Identify applicable operational policies

Identify user roles and characteristics

Describe systems similar to the “to be” system

Identify all external interfaces and enabling systems

Define a concept of operations

Emphasize the definition of vital non-functional requirements
Include specific quality targets in the requirements

Classify requirements using multidimensional approach

Verify the source of a requirement

Develop conceptual models

Record assumptions

Prioritize software requirements

Capture requirements rationales and discussions of them

Analyze the risk of each requirement

Allocate requirements in a top-down manner

Define a glossary

Uniquely identify each requirement and ensure its uniqueness
Differentiate between requirement, goal, and declaration statements
Use good writing style

Write consistent statements

Define a verification method for each requirement

Identify the relationships among requirements

Do not exclude higher-level requirements

Write requirements that are independent of each other

Fully specify all requirements

Assess the quality of each requirement

Validate the completeness of the defined requirements

Inspect requirements using a defined process

Use bilateral agreements

Monitor the status of software requirements following a defined procedure
Measure the number and severity of defects in the defined requirements
Control how requirements are introduced, changed, and removed

e Practices for Designing Architectures

0]

O O0OO0OO0OO0OO0OO0oOOo

Reduce large systems into module realized by 5,000 to 10,000 lines of source
code

Use different views to convey different ideas

Separate control logic from functions that provide services

Define and use common protocols for common operations

Provide models of critical system-level concepts

Use functions to encapsulate individual behaviours

Minimize the use of goto statements

Use program structuring techniques that optimize locality of reference

Avoid creating and using redundant data

51

Design and implement features that only satisfy the needed requirements
Periodically analyze and simplify software systems

Create prototype of critical components to reduce risk

Use a notation having precise semantics to describe software artefacts

Define and use criteria and weightings for evaluating software design decisions
Record the rationale for each design decision

Compute key design metrics

O O O0OO0OO0OO0Oo

e Practice for General-Purpose Programming
0 Use the highest-level programming language possible
Use integrated development environments
Adopt a coding standard that prevents common types of defects
Prototype user interfaces and high-risk components
Define critical regions

O O OO

e Practices for Inspecting Artefacts

0 Provide explicit training in software inspection techniques

0 Require that the appropriate people inspect artefacts

0 Use checklist-based inspection techniques

0 Use two people to inspect artefacts

0 Conduct meeting-less inspections

O Generate functional test cases from defined scenarios

0 Use a code coverage tool

0 Perform basis path testing

0 Examine the boundary conditions affecting the control flow of a program

0 Verify data and file usage patterns of a program

0 Verify that invalid and unexpected inputs are handled, as well as valid and
expected ones

0 Verify all critical timing modes and time-out conditions

0 Verify that systems work in a variety of configurations

0 Verify the accuracy of the documentation

e Practice for Writing Useful User Documentation

Orient the documentation around descriptions of real tasks

Organize the presentation of information

Provide an overview of the information of each major section of a document
Clearly present information

Use visual techniques to effectively convey information

Provide accurate information

Provide complete information

O O O0OO0OO0OO0Oo

Verzuh suggests that an essential part of project management consists in the project rules
such as [Verzuh 2005]

1. Agreement on the goals of the project among all parties involved
2. Control over the scope of the project

3. Management support

52

A responsibility matrix should be helpful in order to avoid communication breakdowns
between departments and organizations. The steps for setting a responsibility matrix are
[Verzuh 2005]

1. List the major activities of the project

2. List the stakeholder groups

3. Code the responsibility matrix

4. Incorporate the responsibility matrix into the project rules
Project start should be based on the following steps [Verzuh 2005]

1. The project proposal assembles the information necessary for a sponsor of project
selection board.

2. A project sponsor can use the charter template to formally authorize the project and
project manager.

3. The statement of work represents the formal agreement between project
stakeholders about the goals and constraints of the project.

4. The responsibility matrix clarifies the role and authority of each project stakeholder.

5. Effective communication is no accident. Use the communication planning matrix to
identify who needs what information and how you’ll sure to get it to them.
Remember that having more mediums of communication increases the likelihood
your message will get through.

6. Asyou initiate the project, use the definition checklist to guide the team.

In order to develop the detailed project plan it must consider the following steps [Verzuh
2005]): create the project definition, develop a risk management strategy, build a work
breakdown structure, identify task relationships, estimate work packages, calculate initial
schedule, assign and level resources.

The process of resource levelling also defined by Verzuh should keep the following: forecast
the resource requirements throughout the project for the initial schedule, identify the
resource peaks, at each peak, delay non-critical tasks within their float, eliminate the
remaining peaks by re-evaluating the work package estimates.

The typical project constraints are the time, money and resources [Verzuh 2005].
Furthermore, for balancing the project level these steps should be taken: re-estimate the
project, change task assignments to take advantage of schedule float, add people to the
project increase productivity by using experts from within the firm, increase productivity by
using experts from outside the firm, outsourcing the entire project or a significant portion of
it, crashing the schedule, working overtime.

53

Besides, some rules for effective communication in project teams are defined by Verzuh in
the following manner [Verzuh 2005]:

1. Responsibility. Each team member needs to know exactly what part of the project he
or she is responsible for.

2. Coordination. As team members carry out their work, he relies on each other.
Coordination information enables them to work together efficiently.

3. Status. Meeting the goal requires tracking progress along the way to identify
problems and take corrective action. The team members must be kept up to seed in
the status of the project.

4. Authorization. Team members need to know about all the decisions made by
customers, sponsors, and management that relate to the project and its business
environment. Team members need to know these decisions to keep all project
decisions synchronized.

The measurement of progress is one of the essential aspects for controlling the software
project. Some rules are [Verzuh 2005]:

e Measuring schedule performance: using the 0-50-100 rule, take completion criteria
seriously, schedule performance measures accomplishment, measuring progress
when there are many similar tasks

e Measuring cost performance: every work package has cost estimates for labour,
equipment, and materials; as each one is executed, be sure to capture the actual

costs

e Farned value reporting: calculating the cost variance using earned value, us the cost
variance to identify problems early.

Finally, Verzuh defines the following project management model (ERM) [Verzuh 2005].

Technology

/

Project portfolio
management

v I | Program ——
management

T T oot

Project
management

Process

a|doayg

o

Organization

Figure 32: The enterprise project management model

54

The Zachman’s Framework includes a two-dimensional classification of the various
components of an information system in the following manner [Keyes 2003]

First framework dimension: scope description, business model, information-system
model, technology model, detailed description

Second framework dimension: data description, process description, and network
description

The following figure shows the essential components of the IT Balanced Scorecard defined
by Gadatsch and Mayer [Gadatsch 2005].

Financial Perspectives

Marketingfﬂl._lstomer v'?” Intemal Process
Perspactives Stragtegy Perspectives

Educational and
Evolutional Perspeciives

Figure 33: Schema of a IT Balanced Scorecard

The Corbin’s Methodology for Establishing a Software Development Environment (SDE)
includes the following procedures and issues (see [Keyes 2003])

The elements of SDE: project management, business plan, architecture,
methodologies, techniques, tools, metrics, policies and procedures, technology
platform, support, standards, education and training

The benefits of SDE: improved problem definition, selection of the “right” problem
according to the customer, joint customer and IS responsibilities and accountability,
acknowledgement of customer ownership of system, reduced costs of system
development and maintenance, reusability of software, models, and data definitions,
acceptance of the disciplined approach to software engineering using a consistent
methodology, productivity improvements through team efforts and tools such as
CASE

Sample goals of SDE: reduce system development costs, reduce maintenance costs,
reduce MIS turnover rate

The Shetty’s Seven Principles of Quality Leaders are the following (see [Keyes 2003])

55

1. Establish and communicate a clear vision of corporate philosophy, principles, and
objectives relevant of product and service quality

2. Quality is a strategic issue

3. Employees are the key to consistent quality

4. Quality standards and measurement must be customer-driven

5. Many programs and techniques can be used to improve quality

6. All company activities have potential for improving product quality
7. Quality is a never-end process

The Kemayel’s Controllable Factors in Programmer Productivity consists of the following
principles and issues (see [Keyes 2003])

1. Programmer productivity paradoxes: There is enormous variance in the productivity
of programmers, productivity invariance with respect to experience, productivity
invariance with respect to tools, suitability of motivation factors

2. The 33 productivity factors that are proposed can be divided into three categories:
factors related to personnel, factors related to the software process, factors related
to the user community

3. Personnel factors: two sets of controllable factors are likely to affect the productivity
of data processing personnel: motivation factors and experience factors

4. Personnel motivation consists of many factors, 16 derive from research appear
below: recognition, achievement, the work, responsibility, advancement, salary,
possibility of growth, interpersonal relations with subordinates, status, interpersonal
relations: superiors, interpersonal relations: peers, technical supervision, company
policy and administration, working conditions, factors interpersonal life, job security

5. Personal experience is equally important.

6. Two classes of controllable factors pertaining to the software process have been
identified by the authors: project management and programming environments

7. Project management consists of four controllable factors: using a goal structure,
adherence to a software life cycle, adherence to an activity distribution, usage of cost
estimation procedures

8. Programming environment is composed of four controllable factors: programming

tools, modern programming practice, programming standards, power of equipment
used

56

9. The participation of users has been found to have an important impact on
programmer productivity.

The Redmill’s Quality Considerations in the Management of software-based development
projects was defined in five steps as following (see [Keyes 003])

1. Most common reasons given by project managers for failure to meet budget, time
scale, and specification are as follows: incomplete and ambiguous requirements,
incomplete and imprecise specifications, difficulties in modelling systems,
uncertainties in cost and resource estimation, general lack of visibility, difficulties with
progress monitoring, complicated error and change control, lack of agreed-upon
metrics, difficulties in controlling maintenance, lack of terminology, uncertainties in
software or hardware apportionment, raid changes in technology, determining
suitability of languages, measuring and predicting reliability, problems with
interfacing, problems with integration

2. Audits of systems development efforts reveal shortcomings in projects: lack of
standards, failure to comply with existing standards, non-adherence to model in use,
no sin-off at end of stages, lack of project plans, no project control statistics recorded
or stored, no quality assurance procedures, no change-control procedures, no
configuration control procedures, no records of test data and results

3. The three causes for the lack of control of projects: attitude to quality, attitude to
management, attitude to project

4. In finding solutions, the principal reasons for project management shortcomings
should be reviewed.

5. Solutions: Training, management, standards, guidelines, procedures, and checklists,
quality assurance (QA), QA team, audits, planning, reporting, feedback, continuo
review, project manager, non-technical support team.

The Hewlett Packard’s TQC Guidelines for Software Engineering Productivity involves the
following procedures and policies (see [Keyes 2003])

e The HP’s productivity equation
Productivity = function_of _doing_the_right_things x function_of _doing_things_right

e Cultural organizational issues are addressed to be able to motivate support positive
changes. Productivity managers are used in each division: understand productivity
and quality issues, evaluate, select, and install CASE tools, communicate best
software engineering practices, training, establish productivity and quality metrics,
a group productivity council created to share the best R&D practices across divisions,
metrics definition, metrics tracing, productivity councils, software quality and
productivity assessment, communication best practices

e A software metrics council was created consisting of QA managers and engineers
whose objective was to identify key software metrics and promote their use.

57

e Project/product quality metrics: break-even time measures return on investment,
time-to-market measures responsiveness and competitiveness, kiviat diagram
measures variables that affect software quality and productivity.

e Progress quality metrics: turnover rate measures morale, training measures
investment in career development.

e Basic software quality metrics: Code size (KNCSS which is thousands of lines
noncomment source statements), number of pre-release defects requiring fix, pre-
release defect density, calendar months for pre-release QA, total pre-release QA test
hours, number of post-release defect reported after one year, post-release defect
density, calendar months from investigation checkpoint to release.

e The system software certifications program was established to ensure measurable,
consistent, high-quality software. The four metrics chosen were: breadth (measures
the testing coverage of user-accessible and internal functionality of the product),
depth (measures the proportion of instructions or blocks of instructions executed
during the testing process), reliability (measures the stability and robustness of a
product and its ability to recover gracefully from error conditions, defect density
(measures the quantity and severity of reported defects found and a product’s
readiness for use).

4.4 Software Process Rules of Thumb
Considering the process related aspects in requirements engineering, Ebert has founded the

following general experience about the project phases [Ebert 2005].

Collection Analysis Project start Realization

1-4 month 1-3 month 1-3 month 4-10 month '

l_-_-_-_'_'—'—-—.

Marketing, collecion, analysis rch. Top Level Design Increments until delivery

N /

Priority 1: stabil Dresign for all
Priority 2: available charge raquirements Inﬁ?gﬁ{g' ?_ﬁ:ilaﬂmnt
Decision at the project start (Priority 1 and 2} pricilty
Priority 1
~75% 750, | Priority 1
pasc | Reiremers
budget —* ;
uege 1and 2 Prioity2 | 20-25%
~ a5y [Priority 2
Reserve 5- 0% ’

Figure 34: Project definition, priorities and incremental development

An estimation of the expenditures based on activity for a conventional project is given by
[Royce 1998] shown in the following table.

58

ACTIVITY COST
Management 5%
Requirements 5%

Design 10%

Code and unit testing 30%
Integration and test 40%
Deployment 5%
Environment 5%

Total 100%

Table 4: Expenditures by activity for a conventional software project

Two examples of the rules of thumb are given by Verzuh in [Verzuh 2005] considering the

cost of mistakes in a project:

“If a defect caused by incorrect requirements is fixed in the construction of
maintenance phase, it can cost 50 to 200 times as much to fix as it would have in

the requirements phase.”

“Each hour spent on quality assurance activities such as design reviews saves 3 to

10 hours on downstream costs.”

Experiences related to the function points (FP) are summarized by Sneed [Sneed 2005] and
consider the “produced” FP per hour during the software development in different industrial

domains shown in the following diagram.

350+

300+

250+

200+
150+

100
50+

0+

Banking
Assurance
Governance

Trading

Industry

Figure 35: Function Points per hour in different IT domains

4.5 Software Process Experiments

Experiments are usually performed in an environment resembling a laboratory to ensure a
high amount of control while carrying out the experiment. The assignments of the different
factors for the experiment are allotted totally at random. More about this random
assignment can be found in the following sections. The main task of an experiment is to
manipulate variables and to measure the effects they cause. This measurement data is the

59

basis for the statistical analysis that is performed afterwards. In case that it is not possible to
assign the factors through random assignment, so-called quasi-experiments can be used
instead of the experiments described above.

Experiments are used for instance to confirm existing theories, to validate measures or to
evaluate the accuracy of models [Wohlin 2000]. Other than surveys and case studies the
experiments only provide data for a quantitative study. The difference between case studies
and experiments is that case studies have a more observational character. They track
specific attributes or establish relationships between attributes but do not manipulate them.
In other words they observe the on-going project. The characteristic of an experiment in this
case is that control is the main aspect and that the essential factors are not only identified
but also manipulated.

It is also possible to see a difference between case studies and surveys. A case study is
performed during the execution of a project. The survey looks at the project in retrospect.
Although it is possible to perform a survey before starting a project as a kind of prediction of
the outcome, the experience used to do this is based on former knowledge and hence based
on those experiences gained in the past.

Carrying out experiments in the field of Software Engineering is different from other fields of
application [Juristo 2003]. In software engineering several aspects are rather difficult to
establish. These are: Find variable definitions that are accepted by everyone, Prove that the
measures are nominal or ordinal scale, Validation of indirect measures: models and direct
measures have to be validated.

To be able to carry out an experiment several steps have to be performed [Basili 1986]: The
definition of the experiment, The planning, Carrying out the experiment, Analysis and
Interpretation of the outcomes, Presentation of the results.

Now we take a more detailed look on the different steps mentioned above. The Experiment
definition is the basis for the whole experiment. It is crucial that this definition is performed
with some caution. When the definition is not well founded and interpreted the whole effort
spent could have been done in vain and one worse thing to happen is that the result of the
experiment is not displaying what was intended. The definition sets up the objective of the
experiment. Following a framework can do this. The GQM templates could supply such a
framework for example [Solingen 1999].

After finishing the definition, the planning step has to be performed. While the previous step
was to answer the question why the experiment is performed, this step answers the
question how the experiment will be carried out. 6 different stages will be needed to
complete the planning phase [Wohlin 2000].

Context selection: The environment in which the experiment will be carried out is selected.

Hypothesis formulation and variable selection: Hypothesis testing is the main aspect for
statistical analysis when carrying out experiments. The goal is to reject the hypothesis with
the help of the collected data gained through the experiment. In the case that the
hypothesis is rejected it is possible to draw conclusion out of it. More details about
hypothesis testing can be read in the following sections. The selection of variables is a

60

difficult task. Two kinds of variables have to be identified: dependent and independent ones.
This also includes the choice of scale type and range of the different variables. The section
above also contains more information about dependent and independent variables.

Subject selection: |t is performed through sampling methods. Different kinds of sampling can
be found at the end of this chapter. This step is the fundament for the later generalisation.
Therefore the selection chosen here has to be representative for the whole population. The
act of sampling the population can be performed in two ways either probabilistic or non-
probabilistic. The difference between those two methods is that in the latter the probability
of choosing a sample of the selection is not known. Simple random sampling and systematic
sampling, just to name two, are probability-sampling techniques. Those and other methods
can be found at the end of this chapter. The size of the sample also has influence on the
generalisation. A rule of thumb is that the larger the sample is the lower the error in
generalising the results will be. There are some general principles described in [Juristo 2003]:

o If there is large variability in the population, a large sample size is needed.

e The analysis of the data may influence the choice of the sample size. It is therefore
needed to consider how the data shall be analysed already at the design stage of the
experiment.

Experiment design: The design tells how the tests are being organized and performed. An
experiment is so to speak a series of tests. A close relationship between the design and the
statistical analysis exists and they have effect on each other. The choices taken before
(measurement scale, etc.) and a closer look at the null-hypothesis help to find the
appropriate statistical method to be able to reject the hypothesis. The following sections
provide a deeper view into the subject described shortly above.

Instrumentation: In this step the instruments needed for the experiment are being
developed. Therefore three different aspects have to be addressed: experiment objects (i.e.
specification and code documents), guidelines (i.e. process description and checklists) and
measurement. Using instrumentation does not affect the outcome of the experiment. It is
only used to provide means for performing and to monitor experiments [Wohlin 2000].

Validity evaluation: After the experiments are carried out the question arises how valid the
results are. Therefore, it is necessary to think of possibilities to check the validity.

The following components are an important vocabulary needed for the software engineering
experimentation process: Dependent & Independent variables: Variables that are being
manipulated or controlled are called independent variables. When variables are used to
study the effects of the manipulation etc. they are called dependent; Factors: independent
variables that are used to study the effect when manipulating them. All the other
independent variables remain unchanged; Treatment: a specific value of a factor is called
treatment; Object & Subject: an example for an object is a review of a document. A subject is
the person carrying out the review. Both can be independent variables; Test (sometimes
referred to as Trial): an experiment is built up using several tests. Each single test is
structured in treatment, objects and subjects. However, these tests should not be mixed up
with statistical tests, Experimental error: gives an indication of how much confidence can be
put in the experiment. It is affected by how many tests have been carried out; Validity: there

61

are four kinds of validity: internal validity (validity within the environment and reliability of
the results), external validity (how general are the findings), construct validity (how does the
treatment reflects the cause construct) and conclusion validity (relationship between
treatment and outcome), Randomisation: the analysis of the data has to be done from
independent random variables. It can also be used to select subjects out of the population
and to average out effects, Blocking: is used to eliminate effects that are not desired,
Balancing: when each treatment has the same number of subjects it is called balanced.

Software engineering experimentation could be supported by the following sampling
methods [Wohlin 2000]: Simple random sampling: the subjects that are selected are
randomly chosen out of a list of the population. Systematic sampling: only the first subject is
selected randomly out of the list of the population. After that every n-the subject is chosen.
Stratified random sampling: first the population is divided into different strata, also referred
to as groups, with a known distribution between the different strata. Second the random
sampling is applied to every stratum. Convenience sampling: the nearest and most
convenient subjects are selected. Quota sampling: various elements of the population are
desired. Therefore convenience sampling is applied to get every single subject.

CONTROLLED EXPERIMENTS: The advantage of this approach is that it promotes comparison
and statistical analysis. Controlled here means that the experiment follows the steps as
mentioned above (Basili 1986], [Zelkowitz 1997]):

Experiment definition: it should provide answers to the following questions: “what is
studied?” (object of study),”what is the intention?” (purpose), “which effect is studied?”
(quality focus), “whose view is represented?” (perspective) and “where is the study
conducted?” (context).

Experiment planning: null hypothesis and alternative hypothesis is formulated. The details
(personnel, environment, measuring scale, etc.) are determined and the dependent and
independent variables are chosen. First thoughts about the validity of the results.

Experiment realization: the experiment is carried out according to the baselines established
in the design and planning step. The data is collected and validated.

Experiment analysis: the data collection gathered during the realization is the basis for this
step. First descriptive statistics are applied to gain an understanding of the submitted data.
The data is informally interpreted. Now the decision has to be made how the data can be
reduced. After the reduction the hypothesis test is performed. More about hypothesis
testing can be found in the following sections.

Portrayal of the results and conclusion about the hypothesis: the analysis provides the
information that is needed to decide whether the hypothesis was rejected or accepted.
These conclusions are collected and documented. This thesis comprises the lessons learned.

The quality of the design decides whether the study is a success or a failure. So it is very
important to meticulously design the experiment [Juristo 2003]. Several principles of how to
design an experiment are known. Those are randomisation, blocking and balancing. In
general a combination of the three methods is applied. The experimental design can be

62

divided into several standard design types. The difference between them is that they have
distinct factors and treatment. The first group relies on one factor, the second on two and
the third group on more than two factors.

4.6 Software Process Case Studies

A case study is used to monitor the project. Throughout the study data is collected. This data
is then investigated with statistical methods. The aim is to track variables or to establish
relationships between different variables that have a leading role or effect on the outcome
of the study. With the help of this kind of strategy it is possible to build a prediction model.
The statistical analysis methods used for this kind of study consists of linear regression and
principle component analysis. A disadvantage of this study is the generalisation. Depending
on the kind of result it can be very difficult to find a corresponding generalisation. This also
influences the interpretation and makes it more difficult. Like the survey the case study can
provide data for both qualitative and quantitative research.

The following table shows an overview about used management practices in European
companies from Dutta et al. cited from [Emam 2005].

Organizational Structure and Management Practices Adoption
Percentage

Nominating software project managers for each project 92
Having the software project manager report to a business 81
project manager responsible for the project’s overall benefits
to the business
Software quality assurance function with independent 48
reporting line from software development project
management
Establishing a change control function for each project 55
Required training program for new project managers to 40
familiarize them
Maintaining awareness of CASE or other new software 41
engineering technologies
Ensuring user/customer/marketing input at all stages of the 64
project
Ensure availability of critical non-software resources according 45
to plan

Table 5: Percentage of respondents in a European survey of management practices

An overview about the delivered defects per Function Points is shown in the following table
by [Emam 2005].

Small projects Medium projects Large projects
Business Domain Average Best Average Best Average Best
MIS 0.15 0.025 0.588 0.066 1.062 0.27
System software 0.25 0.013 0.44 0.08 0.726 0.15
Commercial 0.25 0.013 0.495 0.08 0.792 0.208
Military 0.263 0.013 0.518 0.04 0.816 0.175

Table 6: Percentage of respondents in a European survey of management practices

63

The following table shows the distribution of software process activities for different kinds of
projects by [Emam 2005].

Process activity System project Commercial project Military project

(%) (%) (%)
Design 21 16 19
Requirements Definition 11 6 13
Project Management 17 16 17
Documentation 10 16 13
Change Management 14 8 15
Coding 27 39 23

Table 7: Percentages of process activities in different kinds of projects

The following case study from Rubin is cited from [Emam 2005] and considers QA and
metrics programs in companies worldwide.

Business Domain Existence of a QA Existence of a Metrics
Function (%) Program (%)

Aerospace 52 39
Computer manufacturing 70 42
Distribution 16 -

Finance 57 25
Government 30 5

Health 51 8

Manufacturing 52 25
Oil and gas 40 20
Software 60 36
Telecommunication 54 44
Transportation 33 33
Utility 40 10

Table 8: Percentage of Organizations having QA and metrics efforts in place Based on a
worldwide survey

4.7 Software Process Metrics and Measures

A special form of formulas for measuring software reliability based on the failure rates and
probabilistic characteristics of software systems are [Singpurwalla 1999]:

e Jelinski-Moranda model: Jelinski and Moranda assume that the software contains an
unknown number of, say N, of bugs and that each time the software fails, a bug is
detected and corrected and the failure rate T;is proportional to N —i + 1 the number
of remaining the code.

e Baysian reliability growth model: This model devoid a consideration that the
relationship between the relationship between the number of bugs and the
frequency of failure is tenuous.

64

e Musa-Okumoto models: These models are based on the postulation a relationship
between the intensity function and the mean value function of a Poisson process that
has gained popularity with users.

e General order statistics models: This kind of models is based on statistical order
functions. The motivation for ordering comes from many applications like hydrology,
strength of materials and reliability.

e Concatenated failure rate model: These models introduce the infinite memories for
storage the failure rates where the notion infinite memory is akin to the notion of

invertibility in time series analysis.

A simple evaluation of the priorities of the requirements based on a relationship matrix is
defined by Kandt in the following manner [Kandt 2006]:

pi = n/]_[ai,j (4.3)
j=1

The priorities of each attribute g;; were executed as an approximation by computing p;.
Another formula by Kandt helps to evaluate the SQA situation as

Requirements coverage = (Number of Requirements traced to functional test cases)/
(Number of requirements) (4.4)
System architecture statement coverage = (Executed SLOC of system architecture)/
(Total SLOC of system architecture)
System architecture edge coverage =
(Executed decision outcomes of system architecture)/
(Total decision outcomes of system architecture)

System Statement coverage = (Executed SLOC of system)/(Total SLOC of system)

System edge coverage = (Executed decision outcomes of system)/
(Total decision outcomes of system)

Otherwise, the defect estimation techniques are summarized by Kandt in the following
manner [Kandt 2006]

D;=(l xd) - Dy (4.5)
where D; stands for the number of remaining defects in a module, [is the number code
lines, dis the typical number of defects per source line of code, and Dy is the number of

detected defects.

D,=((N;+ N>)log(n;+ n3))/3000 - D4

65

as an estimation based on the Halstead’s software science. Finally as a capture-recapture
technique for defect estimation the formula

D3=(m; xmy)/(m>-(m; + my;—mjy) (4.6)

where mj; and m, are the number of defects found in these research groups and mj,
denotes the common defects found in both groups.

The customer cost of a software product was executed by Emam [Emam 2005] in the
following manner.

Customer Cost = Defect_density x KLOC x Cost_per_defect (4.7)
x Defects_find_by_customer
The return on investment (ROI) was executed by Emam as [Emam 2005] as
ROI; = (Cost saved — Investment)/ Investment (4.8)
ROI, = (Cost saved — Investment)/ Original cost
New cost= Original cost x (1- ROI,)

Schedule reduction = (Original schedule — New schedule)/
Original schedule [personal month]

The general relationship between different indicators of quality, quantity, effort and
productivity are defined by Sneed in the following manner [Sneed 2005]:

1. quantity = (productivity x effort) / quality (4.9)
2. quality = (productivity x effort) / quantity
3. productivity = (quantity x quality) / effort
4. effort = (quantity x quality) / productivity

Especially, different kinds of software process effort estimation are using the point approach
[Lother 2001]. Some of these point metrics are:

(IFPUG) Function Points: The function point method is based on counting system
components relating to their functionality such as input, output, inquiries, files, and
interfaces ([Albrecht 1983], [Dreger 1989]). These characteristics were weighted by a
classification of simple, average and complex (s, a, c) and leads to the (unadjusted)
function points (UFP) as

UFP =a xinputs + b xoutputs + ¢ xrequires + d x files + e x interfaces (4.10)

66

with the (s, a, c) for a =(3,4,6), b=(4,5,7), c=(3,4,6), d=(7,10,15), and e=(5,7,10). The
adjusted function points (FP) are executed by application of a weighted number (0 ... 5)
for every 14 factors (cost drivers) as data communication, distributed functions,
performance requirement, hardware configuration, high transaction rate, online data
entry, end-user efficiency, online update, complex processing, reusable requirements,
ease of installation, operational ease, multiple sites, and ease of modification. The
special kind of execution is

FP =0.65 + 0.01 xcost drivers

The effort estimation is based on experience data and could be executed by
[Bundschuh 2000]

Person month ~ 0.015216 FP%°

The IFPUG Function Point method is well-established and was supported by the
International Function Point User Group (IFPUG).

Mark Il Function Points: This method is modification of the function point method
described above by changing the viewpoint to the data-based system approach
[Symons 1993]. The counting characteristics are input, entities referenced, and output.
The weight factors are quite different to the FP method (0.58 for inputs, 1.66 for
entities referenced and 0.26 for outputs).

FP=0.58 W;+ 1.66 W.+0.26 W, (4.11)
The 14 FP adjustment factors were extended by six other factors considering actual
system aspects and leads to the possibility of effort estimation.
Data Points: The data point method was created by Sneed and is based on the analysis
of information systems [Sneed 1990]. The general execution of the data point is
Data point = information points + communication points (4.12)
The information points are counted from the data model and the communication

points evaluate the user interface. The estimation process was supported by different
weight factors for the different system

Object Points: One of the objects point method was defined by Sneed and consider the
different characteristics of OO system design [Sneed 1996]. The counted elements for
object points (OP) are

e in the class diagram: class=4, non inherited attribute: 1, non inherited method:
3, class association: 2

67

e in the sequence diagram: message: 2, parameter: 1,sender: 2, potential
receiver: 2

e in the use case diagram: online use case: 2x#outputs, batch use case:
4x#outputs, system use case: 8x#outputs

The consideration of the complexity leads a classification of low (75 percent of the OP),
average complexity (100 percent of the OP), and high complexity (12 percent of the
OP).

Feature Points: The feature point method (FPM) was defined by Jones considers the
other/new kinds of systems like real time, embedded or communication software
[Jones 1991]. The execution of the unadjusted feature points is

FPM =#algorithms x3 + #inputs x4 + #outputs x5 + #inquiriesx4 (4.13)
+ #data_files x7 + #interfaces x7

In order to estimate the effort adjustment principle was used like in the IFPUG FP
methodology described above.

3-D Function Points: This point metric considers the following three evaluation areas
(dimensions) and was defined by Whitmire [Whitmire 1992]:

e the data model according to IFPUG FP),
e the functional model considering the number of functions and their complexity

e the process model counting the control statements as system states and state
transitions

Use Case Points: The use case point metric is addressed to UML-based software
modelling and implementing (see [Sneed 2005]). The use case points (UCP) are
computed as

UCP =TCP xECF x UUCP x PF (4.14)

where TCP stands for the technical complexity factors which evaluate by weights the
technological type of the system such as distributed system, reusability, concurrent
etc., ECF the environmental complexity factors which characterize the system
background like stability of the requirements, experience in OO and UML etc., UUCP
the unadjusted use case points which counts the different use case diagram
components, PF the productivity factors which weights the UCP considering the person
hours per use case.

68

COSMIC FFP: The COSMIC Full Function Point (FFP) method was developed in the
Common Software Measurement International Consortium (COSMIC) and s
established as ISO/IEC 19761 (see [Ebert 2004]). A full function point only considers a
data movement which means that there are not a (weighted) difference between
inputs, outputs etc. The Cfsu (COSMIC functional size unit) is the FFP measurement
unit. The basic for COSMIC FFP counting is

CFP = counting(((entry,exits),(reads,writes))archictureteveri) [Cfsul (4.15)

The COSMIC FFP measurement method is designed to be independent of the
implementation decisions embedded in the operational artefacts of the software to be
measured. To achieve this characteristic, measurement is applied to the (functional
user requirement) FUR of the software to be measured expressed in the form of the
COSMIC FFP generic software model. This form of the FUR is obtained by a mapping
process from the FUR as supplied in or implied in the actual artefacts of the software.
The architectural reasoning of boundaries is given through the software layers such as
tiers, service structures or component deployments. The functional size of software is
directly proportional to the number of its data transactions. All data movement sub
processes move data contained in exactly one data group. Entries move data from the
users across the boundary to the inside of the functional process; exits move data from
the inside of the functional process across the boundary to the users; reads and writes
move data from and to persistent storage.

An overview about the history of function points is shown in the following figure created in
[Fetcke 1999], [Lother 2001] and [Dumke 2005a].

DeMarco's . . . ISO FSM
Bang Metric Data Points Object Points Standards

DeMarco 1982 Sneed 1989 Sneed 1994 1501996
and 14143

Full Function

Feature 3-D Function .
Points Points Points (FFP)
1.0
Jones 1986 Boeing 1991 St.Pierre et al.
1997
Function Point Function Point | A Function Point Function Point Function Point CosMIC COSMIC-FFP
Analysis (FPA) Analysis Analysis 3.4 Analysis 4.0 Analysis 4.1 FFP 2.0 2.2 Standard
P
\ 1@;/'5 IFPUG 1994 IFPUG 1999 CCZ)SOMS|C\
— N2

Mark Il FPA
131

Symons 1988 =®A 1996

Mark Il FPA

Figure 36: The history of function point methods development
Further methods of estimation are based on the size of the developed software system.

Examples of these estimation methods are (see also [Bielak 2000], [Boehm 2000a], and [Hale
2000]):

69

COCOMO: The Constructive Cost Model (COCOMO) was defined by Boehm [Boehm
1984] and is based on the formula

Personal effort = scale_factors x KDS[?Pe-C-Proect [pp) (4.16)

where KDSI means Kilo Delivered Source Instruction that must be estimated at the
beginning. The scale factors define the cost drivers Boehm classify three types of
projects: organic, semidetached, and embedded.

COCOMO II: The COCOMO Il approach extends the set of cost drivers and considers
the different/new aspects of software systems like code adaptation, reuse and
maintenance. Furthermore, it is possible to execute/estimate the development time
TDEV as

TDEV = scale_factors x PMreten (4.17)

Helpful variants of COCOMO Il are COPSEMO (Constructive Phased Schedule and Effort
Model), CORADMO (Constructive Rapid Application Development cost Model), COCOTS
(Constructive COTS cost model), COQUALMO (Constructive Quality cost Model) and
COPROMO (Constructive Productivity cost Model). A special kind of COCOMO is called
as early design model equation and was executed by (see also [Keyes 2003])

Effort = KLOC x adjustment_factor

SLIM: Considering the Software Life Cycle Management (SLIM) Putnam adapted the
Rayleigh curve for the software development area in the following manner [Putnam
1992]

Current_effort = (Total_effort/duration)xt x el ¥2xduration) (4.18)

where duration stands for the square of total duration of the development and t
means the time point of evaluation. The current effort was measured in personal
years. Another kind of estimation based on the Rayleigh formula is known as software
equation (see also [Keyes 2003]) as

1/3

System_size =technology_constant x Total_effort x duration”?

where the technology_constant depends on the development methodology.

WOA: The Weighted Average of Individual Offsets (WOA) model supports the defect
estimation based on inspection data [Biffl 2000]. The WOA model uses weights for
individual estimation contributions and calculates the number of unique defects found
by e team as

#defects = D + X](defect_before-inspection — exported_defects)xweights)/ (4.19)
2 weights

A special method of project visualization is defined by Hansen and uses different colours in
order to mark different levels of development like implementation proposal, function
description, design description, code and test [Hansen 2006].

The following set of metrics is defined by Kulpa and Johnson in order to keep the quantified
requirements for the different CMMI levels [Kulpa 2003].

70

CMMI LEVEL 2 Metrics: (4.20)

Requirements Management

1.
2.
3.

00N O WU»n

9.
10

Requirements volatility- (percentage of requirements changes)

Number of requirements by type or status (defined, reviewed. approved. and implemented)

Cumulative number of changes to the allocated requirements, including total number of changes
proposed, open, approved, and incorporated into the system baseline

. Number of change requests per month, compared to the original number of requirements for the

project

. Amount of time spent, effort spent, and cost of implementing change requests

. Number and size of change requests after the Requirements phase is completed

. Cost of implementing a change request

. Number of change requests versus the total number of change requests during the life of the

project
Number of change requests accepted but not implemented
. Number of requirements (changes and additions to the baseline)

Project Planning

11.

12.

13.
14.
15.
16.
17.

Completion of milestones for the project planning activities compared to the plan (estimates
versus actuals)

Work completed, effort and funds expended in the project planning activities compared to the
plan

Number of revisions to the project plan

Cost, schedule, and effort variance per plan revision

Replanning effort due to change requests

Effort expended over time to manage the hmject compared to the plan

Frequency, causes, and magnitude of the replanning effort

Project Monitoring and Control

18.
19.

20.
21.
22.
23.
24.
25.

Effort and other resources expended in performing monitoring and oversight activities

Change activity for the project plan, which includes changes to size estimates of the work
products, cost/resource estimates, and schedule

Number of open and closed corrective actions or action items

Project milestone dates (planned versus actual)

Number of project milestone dates made on time

Number and types of reviews performed

Schedule, budget, and size variance between planned and actual reviews

Comparison of actuals versus estimates for all planning and tracking items

Measurement and Analysis

26
27

. Number of projects using progress and performance measures
. Number of measurement objectives addressed

Supplier Agreement Management

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

Cost of the COTS (commercial off-the-shelf) products

Cost and effort to incorporate the COTS products into the project

Number of changes made to the supplier requirements

Cost and schedule variance per supplier agreement

Costs of the activities for managing the contract compared to the plan

Actual delivery dates for contracted products compared to the plan

Actual dates of prime contractor deliveries to the subcontractor compared to the plan
Number of on-time deliveries from the vendor, compared with the contract

Number and severity of errors found after delivery

Number of exceptions to the contract to ensure schedule adherence

Number of quality audits compared to the plan

Number of Senior Management reviews to ensure adherence to hudget and schedule plan
Number of contract violations by supplier or vendor

Process and Product Quality Assurance (QA)

41
42
43

. Completions of milestones for the QA activities compared to the plan
. Work completed, effort expended in the QA activities compared to the plan
. Number of product audits and activity reviews compared to the plan

44. Number of process audits and activities versus those planned

71

45. Number of defects per release and/or build

46. Amount of time/effort spent in rework

47. Amount of QA time/effort spent in each phase of the life cycle

48. Number of reviews and audits versus number of defects found

49. Total number of defects found in internal reviews and testing versus those found by the customer or end
user after delivery

50. Number of defects found in each phase of the life cycle

51. Number of defects injected during each phase of the life cycle

52. Number of noncompliances written versus the number resolved

53. Number of noncompliances elevated to senior management

54. Complexity of module or component (McCabe, MeClure, and Halstead metrics)

Configuration Management (CM)

55. Number of change requests or change board requests processed per unit of time

56. Completions of milestones for the CM activities compared to the plan

57. Work completed, effort expended, and funds expended in the CM activities

58. Number of changes to configuration items

59. Number of configuration audits conducted

60. Number of fixes returned as "Not Yet Fixed"

61. Number of fixes returned as "Could Not Reproduce Error"

62. Number of violations of CM procedures (non-compliance found in audits)

63. Number of outstanding problem reports versus rate of repair

64. Number of times changes are overwritten by someone else (or number of times people have the wrong
initial version or baseline)

65. Number of engineering change proposals proposed, approved, rejected, and implemented

66. Number of changes by category to code source, and to supporting documentation

67. Number of changes by category, type, and severity

68. Source lines of code stored in libraries placed under configuration control

CMMI LEVEL 3 Metrics:

Requirements Development

69. Cost, schedule, and effort expended for rework

70. Defect density of requirements specifications

71. Number of requirements approved for build (versus the total number of requirements)

72. Actual number of requirements documented (versus the total number of estimated requirements)

73. Staff hours (total and by Requirements Development activity)

74. Requirements status (percentage of defined specifications out of the total approved and proposed;
number of requirements defined)

75. Estimates of total requirements, total requirements definition effort, requirements analysis effort,
and schedule

76. Number and type of requirements changes

Technical Solution

77. Cost, schedule, and effort expended for rework

78. Number of requirements addressed in the product or productcomponent design

79. Size and complexity of the product, product components, interfaces, and documentation

80. Defect density of technical solutions work products (number of defects per page)

81. Number of requirements by status or type throughout the life of the project (for example, number
defined, approved, documented, implemented, tested, and signed-off by phase)

82. Problem reports by severity and length of time they are open

83. Number of requirements changed during implementation and test

84. Effort to analyze proposed changes for each proposed change and cumulative totals

85. Number of changes incorporated into the baseline by category (e.g., interface, security, system
configuration, performance, and useability)

86. Size and cost to implement and test incorporated changes, including initial estimate and actual size
and cost

72

87. Estimates and actuals of system size, reuse, effort, and schedule 88. The total estimated and actual
staff hours needed to develop the system by job category and activity
89. Estimated dates and actuals for the start and end of each phase of the life cycle
90. Number of diagrams completed versus the estimated total diagrams
91. Number of design modules/units proposed
92. Number of design modules/units delivered
93. Estimates and actuals of total lines of code - new, modified, and reused
94. Estimates and actuals of total design and code modules and units
95. Estimates and actuals for total CPU hours used to date
96. The number of units coded and tested versus the number planned
97. Errors by category, phase discovered, phase injected, type, and severity
98. Estimates of total units, total effort, and schedule
99. System tests planned, executed, passed, or failed
100. Test discrepancies reported, resolved, or not resolved
101. Source code growth by percentage of planned versus actual
Product Integration
102. Product-component integration profile (i.e., product-component assemblies planned and
performed, and number of exceptions found)
103. Integration evaluation problem report trends (e.g., number written and number closed)
104. Integration evaluation problem report aging (i.e., how long each problem report has been open)
Verification
105. Verification profile (e.g., the number of verifications planned and performed, and the defects
found; perhaps categorized by verification method or type)
106. Number of defects detected by defect category
107. Verification problem report trends (e.g., number written and number closed)
108. Verification problem report status (i.e., how long each problem report has been open)
109. Number of peer reviews performed compared to the plan
110. Overall effort expended on peer reviews compared to the plan
111. Number of work products reviewed compared to the plan
Validation
112. Number of validation activities completed (planned versus actual)
113. Validation problem reports trends (e.g., number written and number closed)
114. Validation problem report aging (i.e., how long each problem report has been open)
Organizational Process Focus
115. Number of process improvement proposals submitted, accepted, or implemented
116. CMMI maturity or capability level
117. Work completed, effort and funds expended in the organization's activities for process assessment,
development, and improvement compared to the plans for these activities
118. Results of each process assessment, compared to the results and recommendations of previous
assessments
Organizational Process Definition
119. Percentage of projects using the process architectures and process elements of the organization's
set of standard processes
120. Defect density of each process element of the organization's set of standard processes
121. Number of on-schedule milestones for process development and maintenance
122. Costs for the process definition activities
Organizational Training
123. Number of training courses delivered (e.g., planned versus actual)
124. Post-training evaluation ratings
125. Training program quality surveys
126. Actual attendance at each training course compared to the projected attendance

73

127.
128.

Progress in improving training courses compared to the organization's and projects' training plans
Number of training waivers approved over time

Integrated Project Management for IPPD

129.
130.
131.

Number of changes to the project's defined process
Effort to tailor the organization's set of standard processes
Interface coordination issue trends (e.g., number identified and closed)

Risk Management

132.
133.

134.
135.
136.
137.
138.
139.
140.
141.

Number of risks identified, managed, tracked, and controlled
Risk exposure and changes to the risk exposure for each assessed risk, and as a summary
percentage of management reserve
Change activity for the risk mitigation plans (e.g., processes, schedules, funding)
Number of occurrences of unanticipated risks
Risk categorization volatility
Estimated versus actual risk mitigation effort
Estimated versus actual risk impact
The amount of effort and time spent on risk management activities versus the number of risks
The cost of risk management versus the cost of actual risks
For each identified risk, the realized adverse impact compared to the estimated impact

Integrated Teaming

142.

143.
144.

145.

Performance according to plans, commitments, and procedures for the integrated team, and
deviations from expectations

Number of times team objectives were not achieved

Actual effort and other resources expended by one group to support another group or groups, and
vice versa

Actual completion of specific tasks and milestones by one group to support the activities of other
groups, and vice versa

Integrated Supplier Management

146.
147.
148.
149.
150.

Effort expended to manage the evaluation of sources and selection of suppliers
Number of changes to the requirements in the supplier agreement

Number of documented commitments between the project and the supplier

Interface coordination issue trends (e.g., number identified and number closed)
Number of defects detected in supplied products (during integration and after delivery)

Decision Analysis and Resolution

151.

Cost-to-benefit ratio of using formal evaluation processes

Organizational Environment for Integration

152.

Parameters for key operating characteristics of the work environment

CMMI LEVEL 4 Metrics:

Organizational Process Performance

153.

Trends in the organization's process performance with respect to changes in work products and
task attributes (e.g., size growth, effort, schedule, and quality)

Quantitative Project Management

154.
155.
156.
157.
158.

159.
160.

161.

Time between failures

Critical resource utilization

Number and severity of defects in the released product

Number and severity of customer complaints concerning the provided service

Number of defects removed by product verification activities (perhaps by type of verification, such
as peer reviews and testing)

Defect escape rates

Number and density of defects by severity found during the first year following product delivery or
start of service

Cycle time

74

162. Amount of rework time

163. Requirements volatility (i.e., number of requirements changes per phase)

164. Ratios of estimated to measured values of the planning parameters (e.g., size, cost, and schedule)

165. Coverage and efficiency of peer reviews (i.e., number/amount of products reviewed compared to
total number, and number of defects found per hour)

166. Test coverage and efficiency (i.e., number/amount of products tested compared to total number,
and number of defects found per hour)

167. Effectiveness of training (i.e., percent of planned training completed and test scores)

168. Reliability (i.e., mean time-to-failure usually measured during integration and systems test)

169. Percentage of the total defects inserted or found in the different phases of the project life cycle

170. Percentage of the total effort expended in the different phases of the project life cycle

171. Profile of subprocesses under statistical management (i.e., number planned to be under statistical
management, number currently being statistically managed, and number of statistically stable)

172. Number of special causes of variation identified

173. The cost over time for the quantitative process management activities compared to the plan

174. The accomplishment of schedule milestones for quantitative process management activities
compared to the approved plan (i.e., establishing the process measurements to be used on the
project, determining how the process data will be collected, and collecting the process data)

175. The cost of poor quality (e.g., amount of rework, re-reviews and re-testing)

176. The costs for achieving quality goals (e.g., amount of initial reviews, audits, and testing)

CMMI LEVEL 5 Metrics:

Organizational Innovation and Deployment

177. Change in quality after improvements (e.g., number of reduced defects)

178. Change in process performance after improvements (e.g., change in baselines)

179. The overall technology change activity, including number, type, and size of changes

180. The effect of implementing the technology change compared to the goals (e.g., actual cost saving
to projected)

181. The number of process improvement proposals submitted and implemented for each process area

182. The number of process improvement proposals submitted by each project, group, and department

183. The number and types of awards and recognitions received by each of the projects, groups, and
departments

184. The response time for handling process improvement proposals

185. Number of process improvement proposals accepted per reporting period

186. The overall change activity including number, type, and size of changes

187. The effect of implementing each process improvement compared to its defined goals

188. Overall performance of the organization's and projects' processes, including effectiveness, quality,
and productivity compared to their defined goals

189. Overall productivity and quality trends for each project

190. Process measurements that relate to the indicators of the customers' satisfaction (e.g., surveys
results, number of customer complaints, and number of customer compliments)

Causal Analysis and Resolution

191. Defect data (problem reports, defects reported by the customer, defects reported by the user,
defects found in peer reviews, defects found in testing, process capability problems, time and
cost for identifying the defect and fixing it, estimated cost of not fixing the problem)

192. Number of root causes removed

193. Change in quality or process performance per instance of the causal analysis and resolution process
(e.g., number of defects and changes in baseline)

194. The costs of defect prevention activities (e.g., holding causal analysis meetings and implementing
action items), cumulatively

195. The time and cost for identifying the defects and correcting them compared to the estimated cost
of not correcting the defects

196. Profiles measuring the number of action items proposed, open, and completed

197. The number of defects injected in each stage, cumulatively, and over-releases of similar products

198. The number of defects

75

4.8 Process Metrics Repositories

The following section includes the main activities for defining and implementing
measurement repositories using in an organizational context. The repository contains both
product and process measures that are related to an organization's set of standard
processes ([SEI 2002]). It also contains or refers to the information needed to understand
and interpret the measures and assess them for reasonableness and applicability. For
example, the definitions of the measures are used to compare similar measures from
different processes.

Typical Work Products:

1. Definition of the common set of product and process measures for the organization's
set of standard processes

2. Design of the organization’s measurement repository

3. Organization's measurement repository (i.e., the repository structure and support
environment)

4. Organization’s measurement data
Sub practices:

1. Determine the organization's needs for storing, retrieving, and analyzing
measurements.

2. Define a common set of process and product measures for the organization's set of
standard processes. The measures in the common set are selected based on the
organization's set of standard processes. The common set of measures may vary for
different standard processes. Operational definitions for the measures specify the
procedures for collecting valid data and the point in the process where the data will
be collected. Examples of classes of commonly used measures include the following:

= Estimates of work product size (e.g., pages)

= Estimates of effort and cost (e.g., person hours)

= Actual measures of size, effort, and cost

= Quality measures (e.g., number of defects found, severity of defects)
= Peer review coverage

= Test coverage

= Reliability measures (e.g., mean time to failure).

Refer to the Measurement and Analysis process area for more information about
defining measures.

3. Design and implement the measurement repository.
4. Specify the procedures for storing, updating, and retrieving measures.

5. Conduct peer reviews on the definitions of the common set of measures and the
procedures for storing and retrieving measures. Refer to the Verification process
area for more information about conducting peer reviews.

76

6. Enter the specified measures into the repository. Refer to the Measurement and
Analysis process area for more information about collecting and analyzing data.

7. Make the contents of the measurement repository available for use by the
organization and projects as appropriate.

8. Revise the measurement repository, common set of measures, and procedures as
the organization’s needs change. Examples of when the common set of measures
may need to be revised include the following:

New processes are added

Processes are revised and new product or process measures are needed
Finer granularity of data is required

Greater visibility into the process is required

Measures are retired.

Especially the CMMI level four involves a metrics-based management of all parts and
elements of software product, processes and resources.

During software process measurement the results are stored in different kinds of metrics
databases and metrics repositories [Braungarten 2005]. Special kinds of metrics exploration
lead to experience bases known as experience factories. The following figure shows some
layers about metrics data bases (MDB).

measurement values
infrastructura

measurement values data
base

sat of values

measurement value

(data)

(file)
(data base)

Figure 37: Layers of metrics data bases

MDB’s are built from any kind of measurement and evaluation. A special kind of process-
related MDB, the International Software Benchmarking Standards Group (ISBSG), maintains
a repository of data from numerous organizations’ completed software projects ([Hill 1999],
[Lokan 2001]). The ISBSG database includes the following parameters of a project
[Braungarten 2005].

77

Project Data Parameters

Project ID
(A primary key, for identifying projects.)

Function Points
(The adjusted function point count number.
Adjusted by the Value Adjustment Factor.)

Value Adjustment Factor

(The adjustment to the function points, applied
by the project submitter, that takes into account
various technical and quality characteristics e.g.:
data communications, end user efficiency etc.
This data is not reported for some projects, (i.e. it
equals 1).)

Development Platform

(Defines the primary development platform, (as

determined by the operating system used). Each
project is classified as either, a PC, Mid Range or
Mainframe.)

Resource Level

(Data is collected about the people whose time is
included in the work effort data reported. Four
levels (1 to 4) are identified in the data collection
instrument.)

Max Team Size
(The maximum number of people that worked at
any time on the project, (peak team size).)

Reference Table Approach
(This describes the approach used
to handle counting of tables of code
or reference data, (a comment
field).)

Language Type
Defines the language type used for the project:
e.g. 3GL, 4GL, Application Generator etc.

DBMS Used
(Whether the project used a DBMS.)

Lower CASE Used (with code generator)
(Whether project used lower CASE tool with code
generator.)

Used Methodology
(States whether a methodology was used.)

Development Techniques
(Techniques used during development. (e.g.: JAD,
Data Modeling, OO Analysis etc.).)

Project Inactive Time

(This is the number of months in which no
activity occurred, (e.g. awaiting client sign off,
awaiting acceptance test data). This time,
subtracted from Project Elapsed Time, derives
the elapsed time spent working on the project.)

Count Approach
(A description of the technique used to count the function
points; e.g. IFPUG, MKII, NESMA, COSMIC-FFP etc.)

Function Size Metric Used
(The functional size metric used to record the size of the
project, e.qg.. IFPUG3, IFPUGA4, in-house etc.)

Counting Technique

(The technology used to support the counting process.
Certain technologies used in function point counting can
impact on the count’s potential accuracy.)

Summary Work Effort

(Provides the total effort in hours recorded against the
project by the development organization. The three
methods provided for are A, B and C.)

Data Quality Rating

(This field contains an ISBSG rating code of A, B, Cor D
applied to the project data by the ISBSG quality
reviewers.)

Development Type
(This field describes whether the development was a new
development, enhancement or re-development.)

Architecture
(Defines the architecture type of the project. e.g.:
Client/Server, LAN, WAN etc.)

Primary Programming Language
The primary language used for the development: JAVA,
C++, PL/1, Natural, Cobol etc.

Upper CASE Used
(Whether project used upper CASE tool.)

Integrated CASE Used
(Whether project used integrated CASE tool.)

Project Elapsed Time
(Total elapsed time for project in months.)

How Methodology Acquired
(Describes whether the methodology was purchased or
developed in-house.)

Implementation Date
(Actual date of implementation. (Note: the date is shown
in the data in date format 1/mm/yy).)

78

Defects Delivered

(Defects reported in the first month of system
use. Three columns in the data covering the
number of Extreme, Major and Minor defects
reported.)

User Base — Locations
(Number of physical locations being
serviced/supported by the installed system.)

Organization Type

(This identifies the type of organization that
submitted the project. (e.g.: Banking,
Manufacturing, and Retail).)

Application Type

(This identifies the type of application being
addressed by the project. (e.g.: information
system, transaction/production system, process
control.))

Degree of Customization

(If the project was based on an existing package,
this field provides comments on how much
customization was involved.)

Work Effort Breakdown

(When provided in the submission, these fields
contain the breakdown of the work effort
reported by five categories: Plan, Specify, Build,
Test and Implement.)

Percentage of Uncollected Work Effort

(The percentage of Work Effort not reflected in
the reported data. i.e. an estimate of the work
effort time not collected by the method used.)

Enhancement Data

(When provided in the submission, for
enhancement projects the three fields Additions,
Changes, and Deletions, which breakdown the
Function Point Count are provided.)

Source Lines of Code (SLOC)
(A count of the SLOC produced by the project.)

Normalized Work Effort

User Base — Business Units
(Number of business units that the system services, (or
project business stakeholders).)

User Base — Concurrent Users
(Number of users using the system concurrently.)

Business Area Type

(This identifies the type of business area being addressed
by the project where this is different to the organization
type. (e.g.: Manufacturing, Personnel, and Finance).)

Package Customization
(This indicates whether the project was a package
customization. (Yes or No).)

Project Scope

(This data indicates what tasks were included in the
project work effort data recorded. These are: Planning,
Specify, Design, Build, Test, and Implement.)

Ratio of Project Work Effort to Non-Project Activity
(The ratio of Project Work Effort to Non-Project Activities.)

Function Point Categories
(When provided in the submission, the following five fields
which breakdown the Function Count are provided:
external Inputs, external Outputs, external Enquiries,
internal logical files, and external interface files.)

Total Defects Delivered

(Defects reported in the first month of system use. This
column shows the total of Extreme, Major and Minor
defects reported. Where no breakdown is available, the
single value is shown here.)

Unadjusted Function Points
(The unadjusted function point count (before any
adjustment by a Value Adjustment Factor if used).)

Work Effort Unphased

(Where no phase breakdown is provided in the
submission, this field contains the same value as the
Summary Work Effort. Where phase breakdown s
provided in the submission, and the sum of that
breakdown does not equal the Summary Work Effort, the
difference is shown here.)

(For projects covering less than a full
development life-cycle, this value is an estimate
of the full development life-cycle effort. For
projects covering the full development life-cycle,
and projects where development life-cycle
coverage is not known, this value is the same as
Summary Work Effort.)

Unadjusted Function Point Rating

(This field contains an ISBSG rating code of A, B,
C or D applied to the unadjusted function point
count data by the ISBSG quality reviewers.)

79

Productivity Rates Parameters

Project ID Normalized Productivity Delivery Rate

(The primary key, for identifying projects.) (Project productivity delivery rate in hours per function
point calculated from Normalized Work Effort divided by
Unadjusted Function Point count. Use of normalized effort
and unadjusted count should render more comparable

rates.)
Project Productivity Rate Normalized Productivity Delivery Rate (adjusted)
(Project productivity delivery rate in hours per (Project productivity delivery rate in hours per function
function point calculated from Summary Work point calculated from Normalized Work Effort divided by
Effort divided by Unadjusted Function Point Adjusted Function Point count.)

count.)

Reported Productivity Delivery Rate (adjusted)
(Project productivity delivery rate in hours per function point calculated from Summary Work Effort divided by
Adjusted Function Point count.)

Table 9: Attributes of the ISBSG Benchmarking Data CD Release 8

The following diagram shows the distribution of projects (stored in the ISBSG repository
2003) considering provided defect data [Emam 2005].

14,00+ |

12,00+

10,00+

8,00+

6,00+

4,00+

2,00+

o

Figure 38: Distribution by business domain of ISBSG projects that provided
defect data in percentage

Currently, it is possible to use the ISBSG data repository in the Web showing the following
component of the Functional Size e-Measurement Portal (FSeMP) [Lother 2004].

80

16f4764.0

Matches found: 1065

linear regression curve:

Effort
y=4.593 * x + { 3500.089)
R*=0.197
10p842.664 -rCustomize Calculation
| | Conf. Interval: 80% |
” Project Size (FP): | _1.800/=
Recalculate
§4921.332° -Interval Separation
| Manual | | Reset |
Auto
-Remaoval of Outliers
-, X FRl || mark | | Remove |
0 6350.0 12700.0 19050
Undo
(@) Effort/Project Size () Time/Project Size | Perform new DB-Query
Lower Estimate Upper # Projects
Project Work Effort 0o 11768.203 26934.19 1065
(hours)
Elapsed Time 1443 10.9499 20.455 245
(months)
Project Delivery Rate oo 6.538 14.963 1065
(hours 7 FP)
Speed of Delivery 87.997 164.398 1247 565 945
(FPs/ month)

Access granted to user: braungar Status: Customer! + Present balance: 9968

Figure 39: The ISBSG repository using in the Web

Aiming at the development of higher quality software systems at lower costs complying with
the Quality Improvement Paradigm (QIP), this challenge leads to the development of so
called Experience Factories incorporating repositories, which Basili defines as following (see

[Braungarten 2005]):

“The Experience Factory is the organization that supports reuse of experience and
collective learning by developing, updating and delivering upon request to the project

organizations clusters of competencies [..] as experience packages.”

“The Experience Factory is a logical and/or physical organization that supports project
developments by analyzing and synthesizing all kinds of experience, acting as a
repository for such experience, and supplying that experience to various projects on

demand.”

81

Project Organization (PO) | | Experience Factory (EF)

Environment

PROJECT
SUPPORT

\A 4

A

Project Planning

(characterize, set 4

goals, choose
Goals, processes,

tools, products, \4 PACKAGE

resource models,
Generalize
Tailor

process)

Execution defect models EXPERIENCE

BASE (EB)

Formalize

A 4
Project €

Oata, lessons learped
Management A 4

ANALYZE

(Execute process) [«

Project analysis

Figure 40: The concept of Basili’s Experience Factory

Finally, we will characterize very shortly three approaches of measurement repositories
described in [Braungarten 2006] and [Wille 2006].

e Measurement Data Warehouse
0 Data Integration Approach: Data Consolidation

0 Data Integration Technology: ETL
O Storage: Analytical Transactional-processing databases, DW

>

Metadata
Repository

Analysis

Spreadsheets Extract
Transform Data
Load Warehouse Serve Reporting
Integrator \ Data Mining
CASE tool's 9 400

measurement stores / @ @ @
Operational DB y >

Data Marts OLAP Servers| Tools
Measurement Data Integration Measurement Storage Analysis
(Consolidation) (Data Warehouse)

Figure 41: The measurement data warehouse approach

e Mediated Measurement Repository:

0 Data Integration Approach: Data Federation
O Data Integration Technology: Ell

O Storage: Mediated schema provides access to measurement data sources
(type does not matter)

82

Metadata
Repository
query Analysis
\
query Reporting
Spreadsheets)
P Mediator >
query / Data Mining
s Wrapper query
CASE tool's
measurement stores / Tools
Measurement) Measurement Data Integration a Analysis -
Storage (Mediator-based system)
(type does not
matter)

Figure 42: The mediated measurement repository

e Service Bus-oriented Measurement Repository:

O Data Integration Approach: Data Propagation

0 Data Integration Technology: EAI

O Storage: propagation from measurement application via service bus to
storage or analysis service

Measurement Applications Storage
Measurement
Web Service Database
SOAP/HTTP Adaptor Measurement
Measurement Database
Service .NET
SOAP/HTTP

- y Service Bus
egacy Measuremen) i o
Application C/C++ ﬂ: Analysis Applications (Ylsuallzatlon,...)
App. Adapter :{l Legacy Analysis
Legacy Measuremeni:: IMSIICA Web Service,..
JMSIICA

Application J2EE SOAP/HTTP
App. Adapter

Measurement Measurement Data Integration " Measurement
(interface (EAI) Usage
availability?)

Figure 43: The service bus-oriented measurement repository

83

4.9 Process Measurement Levels

We will start with a definition of software process modelling using a description from Wang
and King [Wang 2000] as given below:

“Software process model (SPM) is a process of a model system that describes
process organisation, categorization, hierarchy, interrelationships, and
tailorability.”

A complete presentation of the process based aspects which we must consider in the
management of software processes is shown in following chartbased on the process
modelling figures in chapter two.

ApplicationDomain

—vre P B

Requirements Process Product

Resources B B

Figure 44: A holistic presentation of the software process involvements

Based on this description we will investigate different relationships of process aspects in
order to qualify the process management.

Our approach will consider the software process involvements in an explicit (shown) manner
by using different detailed semantic networks which should guarantee the following:

e In every level of measurement-based process management we can see the
missing parts or the parts of weak kinds of evaluation

e The semantic relationships between the process related aspects should be
explained definitely and could be analyzed through their appropriateness in a

changing IT area.

We will point to the fact again that the following discussion is based on our technical report
in [Dumke 2008] that includes process metrics descriptions and levels.

84

4.9.1 Software Process Establishment by Indicators and Criteria

At first, the following definition given in chapter two is helpful as a kind of improvement of
our SPM.

“The software process establishment (SPE) is a systematic procedure to select
and implement a process system by model tailoring, extension, and/or
adaptation techniques.”

The general software process model (SPM) is qualifying to a software process establishment
(SPE) as a concrete IT adaptation. We use this consideration in order to improve our SPM
with more details. The next figure includes a refinement of the general structure described
in the figure above and the derived process indicators and criteria from [Emam 2005],
[Gadatsch2005], [Haywood 198], [Kandt 2006], [Lecky-Thompson 2005], [Lepaaar 2001],
[Putnam 2003], and [Zettel 2001].

ApplicationDomain

Organization IT area
Society Promating
Companies corporate quallly T balanced
committment

scorecard

Requirements Process Lifa cycle Managemeant Product

; Non- Methodol - Documen-
Functional g nctional i Sedbadk Project Programs tations
lechnigues plan Dafacts

lient satis= =
I ime stalls repor
Specification S rapor
project managmi, easurement 3]
dala Reliability
Resources Software

Platforms
Parsoninel SPI
training coTS CASE

Figure 45: The SPE based process network

Note that our SPE refinement of the SPM based on the scientific investigation leads us to the
nodes of our semantic network approach only. But we could establish the following
situation:

e The aspects of process evaluation do not involve the area of software (as COTS
or CASE), platforms and society aspects like cultural background and
marketplace.

e Simple process management criteria are not addressed to the product
documentations as is the typical situation in the agile development approaches.

4.9.2 Software Process Improvement Modelling by Laws, Process Principles and Rules

Considering the improvement context of software processes, the following definition also
given in chapter two is helpful again:

“A process improvement model (PIM) is an operational model that provides
guidance for improving a process system’s capability by changing, updating, or
enhancing existing processes based on the findings provided in a process
assessment.”

We will choose some laws exemplary from [Endres 2003] and process principles and rules
from [Kandt 2006], [Keyes 2003], [Messerschmitt 2003], [Verzuh 005], [Walter 2006], and
[Wong 2001] and derive the following simple kind of a process related semantic network.

ApplicationDomain
Society

batter
lifer

Organization IT area

nterprise project
anagement mode|

Ideniify reasons for
devaloping a system

Management Product Documen-
Prevent more Programs tations

nctionalit
Responsibility & capabilit
matrix
—
-

mor®
Project plan

Process
Methodology

v

e

6

quality

Figure 46: The PIM based process related semantic network

Analyzing this simple kind of process related semantic network, we can establish the
following:

e Based on the considered approaches in the literature, we can see a better
coverage of the involved software process related areas

e The derived semantic network is helpful for identifying quality improvements
principles and laws for process controlling

e Considering the roots of this semantic network gives a good orientation for the
essential process aspects that would lead to best process improvement and

management.

86

4.9.3 Empirical Software Process Modelling by Rules of Thumb, Process Experiments and
Case Studies

In order to qualify our process semantic network by quantitative experience, we consider an
empirical (based) process model. Therefore, the following definition given in chapter two is
helpful again:

“An empirical process model (EPM) is a model that defines an organized and
benchmarked software process system and best practices captured and elicited
from the software industry.”

As rules of thumb, experiments and case studies will chose some typical kinds from [Basili
2001], [Dumke 2005], [Emam 2005], and [Sneed 2005] which include a lot of such
experience. The following figure shows the involvement of such empirical studies in our kind
of semantic network.

ApplicationDomain

Saciety

Requirements
Funciional

n-
functional

Resources
Parsonnel

Jprod{p1)= 10prod(p2)

Figure 47: An EMP based process related semantic network

Of course, our network presentation is very simple but suggests some of the following short
characteristics:

e The relationships between the network components are quantified and can
support the process management in this manner

e Using the kinds of semantic network applied before, we can identify some tasks
for improving the process relationships for higher software process control.

87

Note that we have chosen some examples of rules of thumb, experiments and case studies
in order to avoid confusion in the figure above. You can find further examples in our process
measurement technical report in [Dumke 2008].

4.9.4 Software Process Measurement Model by Process Metrics

Using metrics leads us to the highest level of process related semantic network because of
quantified relationships between different process involvements. We will start with a simple
definition again addressing to the process measurement as following:

“Software process measurement model (SPM) is a model that defines an
organized and benchmarked software process system and applies process metrics
and measures with quantitative measurement characteristics.”

ApplicationDomain
Society

Ovrganization

Process
Methodology

Resources

training

Figure 48: A SMP based process related semantic network

In order to derive a semantic network based on these characteristics we will consider the
experiences in [Dumke 2004], [Dumke 2006], [Ebert 2004], [Kandt 2006], [Keyes 2003],
[Kulpa 2003], [Pandian 2004], [Putnam 2003], [Sneed 2005], and [Walter 2006]. We will
choose only some of these process metrics in the figure above in order to better see the
principal structuring of process related involvements.

This kind of semantic process related network helps us in the following manner:

e The semantic network shows the process components which are involved in the
quantitative process management

88

e |t is possible to find out the components which are necessary to measure in
order to apply the chosen process metrics

e Ffinally it is possible to estimate the level of quantitative management as a
fundamental basis of process management level.

4.9.5 Software Process Management Models by Process Improvement Approaches

We will start with the following definition from Wang and King [Wang 2000] addressing the
management area:

“The software management processes (SMP) are processes that belong to a
supporting process subsystem, which control the development processes by
means of resources, staff, schedule, and quality.”

Involving improvement/maturity level (evaluation) approaches like CMMI, SPICE, ITIL or Six
Sigma (described in principle in [Dumke 2006]), we can analyze the process metrics
structuring in the following manner:

° SMP(SPE) S CMMI Best Pr actices

levelTwo

o SMPPY > cMMI

levelThree

° SMP(EPM) 9 CMMI SixSigma

levelThree

o SMPEPM > cMMIY

levelFour

This means that the improvement or evaluation approaches cover special areas of our
general process involvement structure.

Hence, our derived figures of semantic process networks show different kinds of
management levels shown in the following figure.

89

R

SPE

Pt P) _
e — e — e —
e i T, e = — =
o —
S— - r Ee——
.d. -
"
.I_ —p— E
.
off
r - . i
Er S i
EPM — B
- s = e
=
-
—
-'. -
B
. £ -
e :l -
"
SPM — = e =
- i e
L . o) it
sl -r.. =l -
- e e il
e L ——
- T
P g .
— == !
- —

Figure 49: The different process semantic network levels

This visualization suggests that process management should consider all levels of process
evaluation identified as software process establishment (SPE), principles, laws and rules by
process improvement models (PIM), experimentation or rules of thumb by empirical process
models (EPM) and process metrics by a software process measurement model (SPM)) in
order to cover the process areas as much as possible.

On the other hand, our investigations and considerations have also clarified the current

situation of process measurement using an appropriate method of structuring of (all) the
software process involvements.

90

4.10 Summary

The fourth chapter has described the different existing experiences in software process
measurement and evaluation. We have considered the different levels of evaluation as
criteria and indicators (as nomination), as experiments and case studies (in an ordinal
manner) and metrics or measures for the quantification of software development processes.
For our thesis approach we can summarize that

>

CASE tool evaluation could be based on software process indicators and criteria such
as project management (invoice generation, reporting, payment tracking, order
processing, account maintenance, customer management, stock management, and
tax return) and promoting corporate quality (projecting quality (communicating
quality, documentation, rewarding quality), managing quality (quality reviews,
quality checklists, total quality management, quality circles), document quality
(process description documents, benchmark reporting, badges))

The efficiency of CASE tools could be improved by adaptation of essential process
principles such as the use of highest-level programming language possible, the use
of integrated development environments, adopting a coding standard that prevents
common types of defects, and prototyping user interfaces and high-risk components

CASE tools are essential quality drivers and should be used in all phases and
activities of development processes

CASE tools should be integrated in the software development management
processes based on balanced scorecards, dashboards, SDE’s productivity models
and process metrics

In CASE tools should be considered the current product metrics for quality
assurance for the given development paradigm as system aspects

CASE tools should implement and update a measurement repository in order to
keep the quality improvement in future projects and developments

CASE tools should consider external experiences such as experience factories or the
ISBSG initiative

A framework using the different kinds of software process analysis, evaluation and
measurement for a CASE tool based software development is described in the next chapter.

91

92

5 Framework of Quality Assurance Using CASE-Tools

5.1 Framework Principles: CASE Tool Based Software Processes

5.1.1 General Principles

The general intention of the framework is to evaluate and improve the CASE tool based
measurement processes itself. In chapter two we have summarized that,

» Software processes can be defined in different levels using experiences, considering
development paradigms and determine process activities, categories and (sub)
systems

» The main area of software processes is the development on software
systems/products using software resources such as personnel, COTS, hardware and
(basically) CASE tools

» Different approaches of software process descriptions such as CMMI or ITIL help to
improve the process but define the quality assurance implicitly and in a verbal
manner mostly

Using the process evaluation definitions of Wang and King [Wang 2000] we prefer a
declarative evaluation and improvement model described in section 5.2 in details. The
general principles can be characterized by the following definitions addressing the CASE tool
based orientation of [Wang 2000]:

A generic model of the CASE tool based software development organization is a
high-level process model of an organization which is designed to regulate the
functionality and interactions between the roles of developers, managers, and
customers by a CASE tool based software engineering process system.

A CASE tool based process reference model is an established, validated, and
proven software engineering process model that consists of a comprehensive set
of software processes and reflects the CASE tool based benchmarked best
practices in the software industry.

A CASE tool based process capability model (CPCM) is a measurement scale of
software process capability for quantitatively evaluating the existence, adequacy,
effectiveness, and compatibility of a CASE-based process.

A CASE tool based process improvement model (CPIM) is an declarative model
that provides guidance for improving a CASE-based process system’s capability by
changing, updating, or enhancing existing processes based on the findings
provided in a process assessment.

These definitions are based on the detailed process descriptions in chapter two and the
adapted definitions of CASE-based software process assessment (CSPA) and the CASE-based
software process improvement (CSPI) explained in the chapter three.

93

5.1.2 CASE-Based Orientation

The special kind of evaluation and improvement of CASE-based processes is an essential
circumscription of our framework. In chapter three we have summarized:

» CASE tools can be found in all software engineering dimensions such as technologies
(OOSE, CBSE etc.) kinds of systems (embedded, information, knowledge-based etc.)
and development process aspects (lifecycle, management etc.)

» An effective use of CASE tool requires their consistent integration over the different
process activities and phases

» CASE tools can be used as monolithic tools, tool sequences, tool compositions and as
(Web) services respectively

» CASE tool could be integrated in the software development process as CASE-based
software process assessment and CASE-based software process improvement

» Evaluation and improvement standards and approaches define the functional
background of CASE tools and their meaningful and effective manner as CASE tool
based support and determination

That means that we intend to consider the CASE tool applications in the software processes
as we have described in details in chapter three as

CASE tool based support for the examples of quality and process performance
attributes for which needs and priorities might be identified, of process
performance attributes for which objectives might be written, of sources for
objectives, of sources for criteria used in selecting sub processes, of sources of the
risks, of criteria for determining whether data are comparable, of techniques for
analyzing the reasons for special causes of variation, of actions that can be taken
when a selected sub process’ performance does not satisfy its objectives, of
activities for stakeholder involvement, of activities reviewed

CASE tool based determination of the examples of quality attributes for which
objectives might be written, of product and process attributes, of sub process
measures, examples of where the natural bounds are calculated, of other
resources provided, of training topics, of work products placed under
configuration management, of measures used in monitoring and controlling

Otherwise, we want to keep the different dimensions of CASE tool variations and
applications as we have characterized in chapter three for the

different kinds of software engineering methodologies as

{CAS E developmentMethods, CASE, lifecycles CASE, softwareManagement}

different kinds of software engineering technologies as

{CASEsam, CASEoose, CASE cse, CASE pose}

different kinds of software engineering systems as

{CAS E informationSystems CASE, constructionSystemy CASE, embeddedSystem, CASE, communicationSystemy
CASE, distributedSystem, CASE knowledgeBaseds) ystem}

94

5.1.3 CASE Tool Based Process Evaluation

The existing process evaluations can be and should be used in order to analyze the situation
of CASE-based software development and suggest any improvements. In chapter four we
have summarized

>

>

CASE tool evaluation could be based on software process indicators and criteria such
as project management (invoice generation, reporting, payment tracking, order
processing, account maintenance, customer management, stock management, and
tax return) and promoting corporate quality (projecting quality (communicating
quality, documentation, rewarding quality), managing quality (quality reviews,
quality checklists, total quality management, quality circles), document quality
(process description documents, benchmark reporting, badges))

The efficiency of CASE tool could be improved by adaptation of essential process
principles such as the use the highest-level programming language possible, the use
integrated development environments, adopting a coding standard that prevents
common types of defects, and prototyping user interfaces and high-risk components

CASE tools are essential quality drivers and should be used in all phases and
activities of development processes

CASE tool should be integrated in the software development management processes
based on balanced scorecards, dashboards, SDE’s productivity models and process
metrics

In CASE tools should be considered the current product metrics for quality
assurance for the given development paradigm an system aspects

CASE tools should implement and update a measurement repository in order to
keep the quality improvement in future projects and developments

CASE tools should consider external experiences such as experience factories or the
ISBSG initiative

This complex background intends the possibility of adaptation of the following process
experiences in principle

Software process indicators and criteria: CASE-based processes should involve
the management and lifecycle indicators for the (corporate) quality assurance

Software process laws, principles and rules: the CASE tool evaluation should be
based on the software engineering methodology principles and frameworks

Software process rules of thumb: CASE-based processes must be founded on
industrial experiences of real system applications

Software process experiments and case studies: it must be consider the
appropriate system and method related CASE tool variations in practice

Software process metrics and measures: measurement should be involved in
CASE tool directly or integrated by measurement supports

Software measurement repositories: CASE-based processes must be implement
an experience data base that can be connected with (international) experience
data

95

5.2 Framework Kernel: Quality Measurement and Improvement
5.2.1 Software Measurement Components

Considering the measurement systems aspects we define a software measurement system in
a declarative manner as following ([Ebert 2007], [Skyttner 2005]):

MS = (MIVIS/ RMS) = ({G/ A/ M/ Q/ ‘// U/ E/ T; P}r RIVIS) (51)

where G is the set of the measurement goals, A the set of measured artefacts or
measurement objects, M the set of measurement methods, objects or entities, Q the set of
measurement quantities, V the set of measurement values (especially we could have the
situation Q =V), U the set of measurement units, E the set of measurement-based
experience, T the set of measurement CASE tools (respectively CAME tools), and P the set of
the measurement personnel. Rys defines all meaningful relations between the elements of
M. Especially, the measurement process MP as one of the instantiations of a software
measurement system could be explained by the following sequence of relations ([Dumke
2008], [Yazbek 2010b])

MP: (GxAXM)rp—>(QxE)rp > (VxU)p—>ExA (5.2)

This measurement process description explains the process results as quantities including
some thresholds, values involving their units and/or extended experiences combined with
improved or controlled measurement artefacts. £’ is the set of extended experience and A’
the set of improved artefacts or measurement objects. Special variants of this general
measurement description are

e the simple metrication ~ MP: (G x Ax M)rp > (Q X E)
e the software measurement MP:(G x A x M)rp > (V x U)
e the different kinds of measurement and improvement as
MP: (G xAxM)rp > (QxE)rp > ExA
MP: (GxAXxM)rp> (VxU)p—>ExA

Based on our software measurement experiences we can derive the following refinement*
on the process description above. Furthermore, we give a first graduation of the described
software measurement characteristics. The idea of classification of measurement aspects
and processes is not new. Examples are

1. Zelkowitz defines a ranking of validation of research papers as a 14-scale taxonomy in
decreasing manner as: project monitoring, case study, field study, literature search, legacy
data, lessons learned, static analysis, replicated experiment, synthetic, dynamic analysis,
simulation, theoretical, assertion, no experimentation [Zelkowitz 2007].

2. A consideration of the experiment levels by Kitchenham leads to (also decreasing):
industrial case studies, quasi experiment, and formal experiment [Kitchenham 2007].

* This refinement does not fulfil the principle of completeness.

96

We will use these experiences and some of the results from our industrial projects at Alcatel,
Siemens, Bosch and German Telekom (see in [Abran 2006], [Ebert 2007] and [Farooq 2008])
in order to achieve a holistic approach. Furthermore, we use the general kind of

process paradigm

operation Component situation (5'3)
as measurement process component description. The ordinal classifications of the
measurement process components in an increasing manner are described in the next
section.

MEASUREMENT INGREDIENTS

The tuple of (G x A x M) as measurement goals, artefacts and methods describes the input
and basis for any software measurement. The detailed characteristics of these three sets
are:

Measurement Goals G:

Evidence: In order to describe the evidence of the measurement goal we define based on the
general viewpoint of evidence levels (see the measurement graduation in the ISO/IEC
product quality standard in [ISO 9126]) such as internal goals/quality, external goals/quality
and goals/quality in use:

evidence € {internal_goals, external_goals, goals_in_use}

Viewpoint: On the other hand the goals depend on the special viewpoint such as
development phase, implemented product and the use of the product in the marketplace
(adapting the different levels of software products by Bundschuh and Dekkers in [Bundschuh
2008]):

viewpoint € {development, product, in_marketplace}

Intention: We will consider in our approach the goal intentions as understanding, evaluation,
improving and managing. This enumeration corresponds to an increasing level of
measurement goals (see the classification by Basili in [Basili 1986]):

intention € {understanding, evaluation, improving, managing}

Purpose: Finally, the goals depend on the special purposes such as characterization,
evaluation and motivation (using the distinctions of motivation by Basili in [Basili 1986]):

purpose € {characterization, evaluation, motivation}
These descriptions lead to the general characterization of the measurement goal as

evidence ~ intention
viewpoint G purpose (5-4)

Measurement Artefacts A:

Domain: The considered measurement artefacts should be the general classification (based
on the Fenton/Pfleeger classification in [Fenton 1997]) of software as products (systems),
processes (e. g. project) and resources (including their different parts or aspects (e. g. product
model, process phases or personal resources)):

97

domain € {(product_aspects v process_aspects v resources_aspects),
(product v process v resources), (product A process A resources)}

Dependence: The measurement artefact could be aggregated with other in the cases of
integrated, associated, and monolithic (using the Laird consideration of measurement
difficulties in [Laird 2006]):

dependence e { integrated, associated, monolithic }

State: The state of the measurement artefact as measurement ingredient means that the
artefact is only identified for the measurement process:

state € {referred}

Origin: Note that we could consider a pendant or analogical artefact of measurement that
led us to the kinds of measurement as analogical conclusion. Analogy can be defined as
tuning (where we use a pendant in the same class of software systems) and as adaptation
(where we use another pendant of artefact) (see the Pandian graduation in [Pandian 2004]):

origin € { other_pendant, pendant_in_same_domain, original }

Therefore, the measurement artefacts could be described as

domain A state (5.5)

dependence /™ origin

Measurement Methods M:

Usage: The usage of the measurement method depends on the IT process environment and
considers aspects such as outsourced or based on methodology of global production or in-
house (adapting the classification by Dumke et al. in [Dumke 2010]):

usage € { outsourced, global_production, inhouse }

Method: The chosen measurement methods should be classified here as experiment/case
study, assessment, improvement and controlling. That means that measurement should
contain the partial phases as referencing, modelling, measurement, analysis, evaluation and
application and could cover different parts of these phases. Note that the dominant use of
experiences could lead to the kinds of measurement as estimation or simulation (considering
the Munson classification in [Munson 2003]):

method € {experiment/case study, assessment, improvement, controlling}

Application: On the other hand the measurement application could be embedded in closed
IT processes and can be differed in closed component, remote application and Web service
(see the measurement infrastructure principles of Dumke et al. in [Dumke 2010]):

application € {closed_component, remote_application, Web service}

Sort: Furthermore, depending on the measured artefact(s) that is involved in the
measurement, we will distinguish between analogical conclusion, estimation, simulation and
measurement (using the measurement overview by McConnel in [McConnel 2006]):

sort € {analogical_conclusion, estimation, simulation, measurement}

98

These characteristics lead to the following description of the measurement methods as

usage application
method V! sort (5.6)

MEASUREMENT OUTPUT

The immediate output of software measurement consists of numbers that would be
interpreted by using any experience described by the pair as (Q x E). The typical properties
of these sets are:

Measurement Quantities Q:

Evaluation: The kind of evaluation of the measurement output as quantities includes aspects
such as threshold, (min, max) criteria, gradient and formula (see the criteria classification by
Pandian in [Pandian 2004]) and is based on the measurement experience E that is explained
below:

evaluation € {threshold, min_max_criteria, gradient, formula}

Exploration: On the measurement experience E again the output could be analyzed/
explained by principles such as intuition, rules of thumb, trend analysis and calculus
(considering the measurement exploration by Abran in [Abran 2006] and Endres in [Endres
2003])):

exploration € { intuition, rules_of thumb, trend_analysis, calculus }

Value: This set of metrics values/numbers characterises a qualitative measurement and are
given in a nominal scale or ordinal scale (see the metrics scale classification by Whitmire in
[Whitmire 1997]):

value e {identifier/nomination, ordinal_scale}

Structure: Measured values could be structured in different kinds of presentations and
transformations such as single value, normalization and aggregation (adapting the
measurement evaluation by Juristo in [Juristo 2003] and Pfleeger in [Pfleeger 1998]):

structure € {single_value, (normalization v transformation), aggregation}

These aspects are summarized in the following description of the measurement output as

quantities
luati [
exploration & structure (5.7)
MEASUREMENT RESULTS

As a higher level of measurement output we want to achieve real measures including their
units. Characteristics of the sets in the tuple (V x U) as values and their units are:

99

Measurement Values V:

Measure: This set of metrics values characterises a quantitative measurement and is given
an interval scale or ratio scale (considering the metrics scale analysis by Zuse in [Zuse 1998]):

measure € {interval_scale, ratio_scale}

Aggregation: The values could be built as different structures and aggregations such as
measurement repositories, simple visualizations (e. g. diagrams scatter plots), dashboards
and cockpits (see the measurement process description in the ISO 15939 standard in [ISO
15939]):

aggregation € {values, (data_basis v repository), (dashboard v cockpit)}

Unit: The measurement unit U could be CFP (COSMIC FFP functional size), program length of
Halstead, kilo delivered lines of code (KDSI), cyclomatic complexity of McCabe etc. (using the
measurement unit mentioned by Ebert in [Ebert 2007]):

unit € { sociological_unit, economical_unit, physical_unit, hardware_unit,
software_unit}

Interpretation: Furthermore, the measurement values could be interpreted based on
experiences such as analogical project, IT project data base and (international) ISBSG project
data base (adapting the benchmark concept of the International Software Benchmark
Standard Group (ISBSG) in [ISBSG 2003]):

interpretatione {analogical_project, project_data_base, ISBSG_data_base }

These characteristics lead to the following description of the measurement results as values

as
it
aggnr]gg;ligen 4 iLlnrl:erpretation (5-8)
MEASUREMENT RESOURCES

Every phase of the software measurement process is supported by tools used by personnel.
The detailed characteristics of these sets are:

Measurement Tools T:

Level: The level of the measurement tool and the tool support should be classified as manual
(without any tools), semi-automatic and automatic (using the support classification by
Pfleeger in [Pfleeger 1998]):

level € {manual, semi-automatic, automatic}

Support: On the other hand the tool could be applied in the IT area (as internal
measurement) or by vendors (as external measurement) (see the IT situation described by
Bundschuh in [Bundschuh 2008]):

100

support € { external_measurement, internal_measurement }

Context: Furthermore, the measurement tool could be applied as simple task application,
embedded in a measurement task sequence or as an integrated part of the measurement
process (adapting the Munson graduation in [Munson 2003]):

contexte {simple_task, task_sequence, intergrated_task}

Degree: This characteristic determines the availability of the tool application as a simple tool,
decision-supported tool and experience-based measurement and evaluation tool (see the
measurement levels described by Dumke et al. in [Dumke 2008]):

degree € {simple_tool, decision_based, experience-based }

These descriptions lead to the general characterization of the measurement tool as

level + context
support T degree (5'9)

Measurement Personnel P:

Kind: The measurement personnel involve different kinds of measurement and intentions
and could be distinguished as measurement researchers, practitioners and managers (see
the different IT roles by Pfleeger in [Pfleeger 1998]):

kind € {manager, researcher, practitioner}

Area: Furthermore, the measurement personnel could be divided in origin measurement
staff (measurement analyst, certifier, librarian, metrics creator, user and validator) and in IT
staff who use the software measurement indirectly (administrator, analyst, auditor,
designer, developer, programmer, reviewer, tester, maintainer, customer and user)
(considering the Pandian classification in [Pandian 2004]):

areac { measurement_application_staff, measurement_expert_staff }

Qualification: As an essential aspect the qualification of the measurement personnel can be
distinguished as beginners, certified user and experienced user (using the experience
classification by Ebert in [Ebert 2007]):

qualificatione { beginners, certified _user, experienced_user }

Coaching: This aspect considers the motivation and intention of the measurement personnel
and can be distinguished as engaged user, extern motivated user and self motivated user
(adapting the different roles by Dumke et al. in [Dumke 2008a]):

coachinge { engaged_user, extern_motivated_user, self_motivated _user }

Therefore, the measurement personnel could be described as

101

kind 5 qualification
area P coaching (5'10)

MEASUREMENT REPERCUSSIONS

Finally, the software measurement could/should lead to extensions of the experience and to
improvements of the measures artefacts explained in the tuple (E” x A’). Typical properties
are:

Measurement Experience E’:

Form: The appropriate experiences for Q and V are given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesises and rules of
thumb (see the different kind of experience by Davis in [Davis 1995]):

form e {(intuition v law v trend v principle), analogy,
(criteria v rules_of thumb), (axiom v lemma v formula)}
Contents: The contents or kinds of experience could be thresholds, lower and upper limits,
gradients, calculus and proofs (considering the causal-based levels of experience by Dumke
et al. in [Dumke 2008]):

contents € {(limits v threshold), (gradient v calculus), proof}

Source: Furthermore, the experience could be derived from different sources such as case
study, project-based and long years practice (adapting the Kitchenham classification in
[Kitchenham 2007]):

source € { case study, project-based, long years practice }

Extension: Especially the marked set of experiences explains the extended knowledge based
on the measurement, evaluation and exploration and can produce formula correction,
principle refinement, criteria approximation and axiom extension (see the Pandian
graduation in [Pandian 2004]):

extension € {correction, (refinement v approximation v adaptation), extension}

These aspects are summarized in the following description of the measurement experience

form E’ source (5-11)

contents extension

A’: The application of software measurement leads to changed measurement artefacts.
Therefore, this description only extends the state characteristic of the measurement artefact
as

State: Depending on the measurement process goals and methods, the artefact could be
understood, evaluated, improved, managed or controlled (consider the graduation by
Bundschuh in [Bundschuh 2008] and Ebert in [Ebert 2007]):

statee {referred, understood, improved, managed, controlled}

102

The measurement process MP itself should be characterized by the level of
covered/measured artefacts (as approach) and by the kind of IT relationship (as IT process).
Hence, we could define the essential measurement process characteristics in the following
formal manner (adapted from [Yazbek 2010b]):

ITprocess approach evidence ~ intention
solution mp realisation * (viewpointG purpose (5-12)
domain A Sté_lt(-l_‘ usageM application) level context kind _ qualification
dependence * origin method sort support ! degree # area ! coaching
S (evaluation Q value level _ context kind _ qualification
exploration structure / sypport ' degree # area " coaching
9 (measure V P'nit .) level _context kind _ qualification
aggregation interpretation supportTdegree 7 area' coaching
S (form [Source x domain A state)
contents = extension dependence /™ origin

where E and U are involved in the sets of Q and V. The classification of the measurement
process MP itself is based on the measured characteristics. Hence, the MP is defined by
their involvements and meaningfulness in the IT processes themselves. In a first
approximation we consider the IT processes as quality evaluation, quality improvement and
quality assurance:

ITprocess € { quality evaluation, quality improvement, quality assurance }

The solution aspect considers the measurement process depending on the kind of
application such as ad hoc usage, scheduled usage and ubiquitous usage as [Dumke 2008]

solution € { ad_hoc, scheduled, ubiquitous }

The measurement of aspects (aspect of a product, process or resources) leads us to the
aspect-oriented measurement. The measurement of all aspects of a product or all aspects of
the process or all aspects of the resources would be called as capability-oriented
measurement. If we involve all software artefacts (product and process and resources) we
will call this as a whole measurement. These characteristics build the “approach” attribute of
measurement process [Dumke 2008]:

approach € { aspect-oriented_measurement, capability-oriented_measurement,
whole_measurement }

Otherwise, the “realisation” characteristic defines the measurement process based on the
existing research approaches, wide-used methodologies and established standards as [Ebert
2007]

realisation € {research approach, wide-used methodology, established standard}

5.2.2 Software Measurement Process Evaluation

In the following we will present some examples of this kind of measurement aspects
scaling. The different aspects of the measurement process component are defined as a first
assumption in an ordinal manner/scale (considering also [Dumke 2008], [Farooq 2008] and
[Kulpa 2003]). Note that the exponents address the main characteristics and the indexes

103

show the sub characteristics. This assumption explains some first relationships. We use the

I H/ ”

symbo in order to explain the difference of main levels (process and paradigm of the

4

measurement component) and the symbol “<” in order to explain the difference of sub
levels (operation and situation of the measurement component) as characterization of the

so-called evidence level (see [Kitchenham 2007]). The sign “<” would be used for any
combined ordering between measurement characteristics.

MEASUREMENT LEVELS

Related to the measurement artefacts we can establish

product_aspect state _, product state _, product processA zesoutces state
dependence A origin < dependenceA origin < dependence A origin (5-13)
and
domain A xeferred 2 domain A undetstood 2 domain A controlled
dependence /™ origin dependence “* origin dependence /™ origin

Otherwise, considering the sub criteria we can constitute

domain state domain state domain state
intag'zatedA origin < uubociatedA origin < m.on.olit/ucA origin

and also

domain A state < domain A state < domain A domain
dependence “* other_pendant dependence " same_domain T dependence ' owiginal

Comparing both aspects leads to the following consideration

/:toduct_mpecté tefet’ced < Ftodu.ct tefe’:ted < ptaduct m.an.aged

associated ottguuzl auociated oxiginal monolithic oxiginal

Addressing the measurement methods we can establish

outsoured component global _/)toductlon. component globa/ _/z‘tod. Web_service
case_study M estimation < case_study M simulati < imp M s t

Using our formal approach we can characterize the measurement process in plenty of

graduations. This aspect will be used to evaluate the different measurement process levels in

the next section.

MEASUREMENT PROCESS EVALUATION

In order to characterize the different software measurement approaches and methodologies

I "

we can establish an ordinal scaled multi-dimensional “space” of software measurement

aspects that consists of the lowest measurement level as

quality_evaluation aspect_oriented .
ad_hoc mpP xeseatch_approach (5 . 14)

intexnal_goals G undevstanding aspect xeferred
devel t h izati integrated " other_pendant

7

X b t) manual __ simple_task begi

logical_conclusion) st T s , s P
g - simple_tool meas._appl._staff engaged_uset

/\/l
threshold nomination
> Q)

intuition single_value

104

some immediate levels or measurement situations such as

quality_impr, t MP < bility _orxiented .
scheduled wide_used_methodology *
extetnal_goals G improving process zeferted
(product evaluation associated other_pendant

lobal_production M zemote_applicati) semi_ o task fiod user

seg g i lea_t
estimation 3 4 xtexnal T decision_based ’ meas._appl._staff P motivated_user

threshold nomination formula project_based process impreoved
9 (gradient Q n.otm.ali.zation) 9 (gradient E adaptation integrated A other, _/:en.dan.t)

and the highest software measurement level

quality_assutance MP whole_measurement

ubiguitous established_standard *
3aab_in._u5e managing P duct A P ufeued
(ln._ ketple G ivati x lithic A oxiginal
inhouse Web_service cgrated_task p user
X comollllg M 3 4) intetnal | ypetience_based ’ meas._expext._staff P self_motivated_user

KN (tatio_Acale v software_unit)
dashboard V 98 BES_data_base

Airot

9 (formula E long_years_p % P A process controlled)
proof extension monolithic oxiginal

Some first applications consider the different software paradigms and technologies shows first
graduations in software measurement [Yazbek 2010b] such as SOA-based metrication versus
traditional product quality assurance or e-Measurement services versus agent-based
controlling (see also [Dumke 2008] for more details).

In this thesis we describe the measurement characteristics based on our extended approach
for well-known standards and (process) improvement methodologies. At first we consider the
ISO/IEC 9126:2000 product quality standard [ISO 9126]. The (kernel) measurement process is
based on many metrics whose scale types are ratio and absolute at mostly. We will not discuss
such evaluation here to avoid confusions. Indeed we describe the ISO 9126 based
measurement process as following

uality_evaluation oduct
MP(|SO 9126): fc/u.,{;td mpP IpSrOQliZG_metrics

The Six Sigma approach is the next considered process improvement methodology [Tayntor
2003]. The basic idea is reduction of errors to a small o based on the DMAIC (define, measure,
analyze, improve, control) measurement process. Therefore, the measurement process of Six
Sigma can be described as

MP(Six Sigma): Tcl-inprorement qp product errors
Furthermore, the Goal Question Metric (GQM) paradigm helps for the orientation of software
measurement for any (special) goals. The GQM+Strategy approach involves the business
(strategy) aspect [Basili 2007] and extends the GQM method by any business improvements.
The measurement process could be characterized as

MP(GQM+Strategy): Z‘;ﬁf’:w’°me"t MP g”éi,cless—“pe"t

105

Finally, the Capability Maturity Model Integration (CMMI) is one of the complex methodologies
for process improvement including quality assurance aspects based on the higher CMMI level
four. In [Kulpa 2003] we can find the essential metrics in the different CMMI levels. Therefore,
the CMMI-based measurement process could be described as

. quality assurance whole_process_components
MP(CMMI): | heduted MP crmilevel 4

This general characterization gives first information about the general support of quality
assurance and their effectiveness by applying these methods and standards. In following we
will discuss the improvement aspect using different levels of software measurement.

5.2.3 Software Measurement Improvements

In this section we will differentiate the following graduation of measurement improvements
as a first kind of improvement classification:

e Weak measurement improvement:. This kind of improvement consists of an
improvement of a measurement sub characteristic to the next level (as one step using

II<II).

e Moderate measurement improvement: The improvement of the measurement process
based on more than one step of a/some sub characteristic(s) building this kind of
measurement process improvement (using “<,").

e Essential measurement improvement: This kind of improvement consists of an
improvement of a measurement main characteristic to the next level (as one step using
114").

e Remarkable measurement improvement: The improvement of the measurement
process based on more than one step of a/some main characteristic(s) building this kind

of measurement process improvement (using “<X"”).

Note, that we define some preferences for the general software measurement process
description as

ITprocess » 1o approach (5.15)

solution realisation

The criteria of the left side prefers the criteria on the right side. That means that a higher
value of the (main/sub) criteria on the left side defines an improvement against the lower
values of the (main/sub) criteria on the right side. Therefore, based on the formal described
measurement process methods of measurement improvement are identified easily.
Considering our examples in the section before we can establish

iented

uali luat bility o
MP (ISO 9126) . de;ﬁd MP u—:ablu/?g—d_ﬂtmdatd

quality_improvement MP aspect_oriented

M P (S IX S I g ma) : scheduled widg_ued_mct/zodo{g#

. quality_improvement aspect_oriented
MP(G QM @ Stra tEgy) * ad_hoc mpP xeseatch_approach

106

. quality_assutance whole_mesutement
MP (CM Mi) . scheduled mpP wide_used_methodology

That leads to the relationships between these measurement processes as

MP(ISO 9126) X MP(GQM@Strategy) <n MP(Six Sigma) <" MP(CMMI) (5.16)

Otherwise, using the methodologies above including their existing measurement approaches

we can establish

e changing the paradigm from MP(ISO 9126) to MP(GQM@Strategy) leads to essential
measurement improvements

e the further adaptation of the MP(Six Sigma) can led to a moderate measurement
improvement

e finally, changing to the MP(CMMI) based measurement could led to a remarkable
measurement improvement.

5.3 Framework Steps: Phases and Contents

5.3.1 Analyzing the CASE Tool Based Process Situation

The whole purpose of employment of CASE-Tools and software measurement tools should
be considered. However it is still difficult to answer some questions like:

Which measurement tools support the used programming language?
Is the measurement tool combinable with the used CASE-tool?
How many metrics and measurement tools are necessary?

If more than one measurement tool are needed, can be combined the selected
measurement tools?

Another problem is the long-term dependency of tool manufacturers, especially
when they disappear from the market.

In order to evaluate the CASE-based situation we establish the following fifteen criteria
[Yazbek 2010]:

Metrics coverage: Within the literature there are a large amount of metrics, including
sets of metrics that try to cover a large area of the (object-oriented) quality
refinements (Chidamber & Kemerer metrics suite [Chidamber 1994], the MOOD
metrics [Harrison 1998] or the collection in [Lorenz 1994]). Unfortunately, the
software characteristics that can be easily measured, such as size and cyclomatic
complexity, don’t have a clear and consistent relationship with quality attributes such
as understandability and maintainability. However, individual software metric cannot
measure the overall quality characteristic of the product. Moreover, a combination of
metrics can be used to make such an analysis more focused and thus more effective
(cf. e.g. [Bauer 1999]). Therefore, a CASE tool should provide the maximum possible
number of different metrics of the supported programming paradigm.

107

V.

That means that we must evaluate the covered areas defined in the quality
measurement goals in

evidence G intention
viewpoint purpose

Metrics providing: It should be absolutely clear what the metrics are measuring. The
metrics should provide objective information on the metrics dialog as following:

e Name and abbreviation: The name should be determined. The abbreviations
should reflect the well-known and universally accepted abbreviations.

e Description: The description explains how the metric is calculated, and how the
results can be used.

These aspects are determined by the chosen measurement method described as

usage M application
method sort

Metrics suites: For non- or less experienced developers should a default subset of all
available metrics be active.

Moreover, the experienced developer will not want to run every metric in the default
active set every time, but rather some specific subset of available metrics, it should
allow him to create saved sets of active metrics that can be loaded and processed as
he choose.

Here we intend the responsability and qualification of the measurement personal
described in

kind p qualification
area " coaching

Metrics Customizing: For each metric should be there settings for options such as
limits and granularity. The default values of limits should be general recommended.
The developer can change the settings if necessary.

These characteristics are defined considering the metrics quantities and values
respectively as

measure unit
4

aggregation ¥ interpretation

evaluation value
Q and

exploration structure

Metrics Extending: It should support the measurement of known metrics like for
example the metrics suite (cf. [Chidamber 1994]) but it should also allow the
definition of self defined metrics.

This essential characteristic could be considered in the measurement component as

level T context
support * degree

108

VI.

VII.

VIIL.

Metrics feedback: The most interesting result of every measurement is the
consequences that can be extracted from the interpretation and the improvements
that can be reached through them. Metrics should be able to give tips on how to
interpret the results and on what to do to improve them. Metrics results should
highlight parts of code that need to be redesigned.

The application of the quality measurement should be usable to the measured
artefact themselves as

domain A state
dependence 7 origin

Metrics filtering: Depending of the project size the calculation of the metrics might
yield tons of numbers. A technique for handling this amount of data is to use

o Value filters: Like suggested in I1SO 9126 it is possible to define several
classification limits (cf. [ISO 1926]). These limits can be used to filter from the
large amount of measurement values only the interesting ones, e.g. the upper
limit one. Another filter would be to concentrate on the x (or x %) largest or
smallest measurement values, because they are extreme in some way and should
be interpreted at first.

e Component filtering: Today’s software development is based more and more on
existing software components (e.g. libraries, frameworks, generators etc.) Most
of these reused components are not in control of the engineer because they are
fixed. The measurement values might be interesting for the self-written parts or
only for some component (e.g. packages, classes, methods etc.)

Especially for measure we must consider the meaningfulness of unit transformations
etc. as

form E source
contents = extension

Sorting results: When viewing the output of metrics, it should be able to compare
and organize the items in the results table. A technique for handling this amount of
data is to use

e Sorting by one column: Ascending and descending sorting all the items according
to the values for a specific column

e Complex sorting: it should be able to prioritize several columns for sorting.

These characteristics are defined considering the metrics quantities and values also
as

evaluation value measure unit
exploration Q structure and aggregation 4 interpretation

Metrics visualization: As we know from our experiences that a well chosen
visualization of metrics values has the largest potential to handle the large amount of
numbers and to help us interpreting these numbers. It emphasizes the knowledge
that “a picture tells more than thousand words”. Visualization as process of

109

Xl.

Xil.

Xil.

representing data can combine all previous techniques. Metrics results should be
viewed as graphical output and metrics should use different kinds of visualization of
the measurement data, e.g. Bar chart, Distribution Graph, Kiviat Graph, Histogram,
Scatter plot and Pareto chart etc. To make these charts more efficient, it should be
colored, e. g. green for acceptable values, red for values exceeding the upper limit,
etc.

This further characteristic could be considered in the measurement tool support as

level T context
support * degree

Saving and loading metrics results: After run a metrics analysis, it should be able to
save the results and later view the results table independently of the project.
Developer can also use results files to share metrics results with other users.

Especially for measure we must consider the possibility of building repositories based
on the experiences as

form E source
contents = extension

Comparing metrics results: The metrics should help developers to control his work
by comparing projects or by comparing changes in a project over time. Metrics
should help developers to compare the “present state” with the “target state”, the
“present sate” with the “old state” and the sates from two or more systems.
Differences between results can be both highlighted.

In this kind of metrics application should be involved the tool facilities and the
measurement users

level T context d kind p qualification
support ' degree area " coaching

Printing results: Preview and print results either by printing the table or by printing
graphs.
This characteristic could be considered in the measurement tool support also as

level T context
support * degree

Exporting results: For metrics results, it should be possible to generate a report in
separate file in various formats (text, HTML, csv, etc.).

In the same manner this characteristic could be considered in the measurement tool
support as

level T context
support ' degree

110

XIv.

XV.

Copying metrics results to the clipboard: Developers should able also to copy results
from the Code Metrics Results to the clipboard and paste them to another
application, such as a text editor or word processor.

Essential metrics application should be involved the tool facilities and the
measurement users as developers as

level T context d kind p qualification
support ' degree area " coaching

Metrics verification: The results of metrics analysis are tightly connected with source
code. From any line of the results table, Developers should able to navigate to the
appropriate location both in the diagram and in the source code.

form E source d kind p qualification
contents & extension 3N9 area coaching

Afterwards, we can summarize these evaluation steps in a final presentation as (quality)
measurement level such as

quality imp t Mp bility_oriented .
scheduled wide_uﬁed_met/mdolog# .
(extexnal_goals improving process referred
product evaluation associated other_pendant
global_r ducti M te_ T licat) semi_ i task_seg 191 ified_user
estimation 5 t xtetnal T decisi _based / meas._appl._staff P motivated_user

threshold ~ nomination foxmula - project_based process improved
9 (gradient Q lizati ,,) 9 (gradient E adaptation integrated A other. _/)en.dant)

Therefore, we have built a general characterization of the quality measurement level that
help us to improve the situation in a wanted or necessary manner.

5.3.2 Planning the CASE Tool Based Process Improvements

In order to plan the appropriate improvements we use the quality measurement
improvement definition from the section 5.2. In the quality assurance of CASE-based
software development it means

e Weak quality measurement improvement: This kind of improvement consists of an
improvement of a measurement sub characteristic to the next level (as one step using

II<H).

e Moderate quality measurement improvement: The improvement of the measurement
process based on more than one step of a/some sub characteristic(s) building this kind

of measurement process improvement (using “<,").

111

e Essential quality measurement improvement: This kind of improvement consists of an
improvement of a measurement main characteristic to the next level (as one step using

“x”).

e Remarkable quality measurement improvement: The improvement of the
measurement process based on more than one step of a/some main characteristic(s)
building this kind of measurement process improvement (using “<").

These general intentions of improvement can also be used in order to plan special activities

for chosen systems, paradigms and/or methodologies in the CASE-based software
development area.

5.3.3 Implementing the CASE Tool Based Process Improvements

The implementation depends on the current application field, IT situation, corporate
intentions and development environments.

An example of quality measurement implementation in general is a solution using separate
tools in which development and measuring tools are integrated (Figure 50).

== ————— -
| CASE Tool !
e e e e e e - — Product
f
|[m——— = ———— -~ Process
Designer/Developer/
Manager + Quality Assurance Personal | measurementSUpport
e - - Resources

SOAP/HTTP
TCP/IP

Experiences (limits, sets, ...}
User Feedbacks, Work Items
file attachments, Queries ...

Figure 50: metrics tools integrated into CASE-Tool

The metricDB is to save team experiences (e. g. limits and metrics sets), and to export
metrics results to share them with team members or compare them later with other results.
Some CASE tool manufacturers thought of this solution and have built some metrics into
their tool or provided it as plug-in. However there is no concept how to integrate metrics
into the CASE-tools. So the provided solutions are still not really helpful.

112

5.4 Summary

In this chapter we have defined a framework that can be helpful to evaluate a special
situation of the quality measurement level in a CASE-based software development IT area.
The framework could be characterized as following.

» The framework principles are directed on the determination of the quality
measurement level explicitly. The basic would be built by an CASE tool based process
improvement model (CPIM) as a declarative model that provides guidance for
improving a CASE-based process system’s capability by changing, updating, or
enhancing existing processes based on the findings provided in a process
assessment. We consider that a CASE-based software development evaluation could
be based on software process indicators and criteria such as project management
and promoting corporate quality (managing quality and document quality). In CASE
tools would be considered the current product metrics for quality assurance for the
given development paradigm as system aspects, the implemented and updated
measurement repository in order to keep the quality improvement in future projects
and developments, and considered external experiences such as external experience
factories or the ISBSG initiative.

» The framework kernel considers the measurement systems aspects as a software
measurement system in a declarative manner. Hence, we can determine the quality
measurement level explicitly in an ordinal manner. Therefore, considering quality
assurance of CASE-based software development we can classify in a weak quality
measurement improvement, moderate quality measurement improvement, essential
quality measurement improvement and remarkable quality measurement
improvement.

» The framework steps of determination of the CASE-based situation would be
considered at the metrics application in CASE tools. Therefore, we established the
fifteen criteria such as metrics coverage, metrics providing, metrics suites, metrics
customizing, metrics extending, metrics feedback, metrics filtering, sorting results,
metrics visualization, saving and loading metrics results, comparing metrics results,
printing results, exporting results, copying metrics results to the clipboard and
metrics verification. Afterwards we can improve this situation by a meaningful
guality measurement implementation. This implementation depends on the current
application field, IT situation, corporate intentions and development environments.

The created framework using different kinds of software process analysis, evaluation and
measurement for a CASE tool based software development is described formally. An
application of this framework is presented in the next chapter. Furthermore, aspects of
framework validation are discussed.

113

114

6 Framework Application and Validation

6.1 Chosen CASE Tool Situation

In order to apply our framework, an industrial situation was chosen as a CASE-based
software development. That means that we can establish the three CASE characterizations
as

CASEdevelopmentMethods' CASEOOSE) and CASEinformationSystem- (61)

Plenty of CASE tools exist but for this work we chose among the CASE tools currently offered
on the market which provide some metrics as well. The metrics are either integrated into the
tool, or available as a plug-in in a separate component.

The considered CASE tools are the following:

1. The Borland Together product family is well-known in practice especially for object-
oriented system development using current OO languages such C++ and Java
[Together 2010]. Variants of this CASE tool are

O Together 2008 (Release Date 04/07/2009)
0 Together 2006 Release 2 for Eclipse

0 Together 2006 for Visual Studio

0 ControlCenter 6.2

2. The Microsoft Visual Studio 2010 product family is well-used in the .NET developer
community world-wide and support the visual programming mainly [VS 2010].
Variants of this CASE tool are

O Visual Studio 2010 Premium
O Visual Studio 2010 Ultimate

3. The Enterprise Architect Version 8.0 was used in the enterprise application
integration community (EAI) and prefer the building of infrastructures of business
applications [EA 2010].

4. The Metrics Eclipse Plug-in Version 1.3.6 from an IBM initiative for education and
training was more and more used in practice [Eclipse 2010].

5. The metricsOne Rational Rose Plug-in is one of the well-known metrics extensions
for the UML-based software development based on the Rational Unified Process
(RUP) kind of development [Rational 2004].

6. The Embarcadero RAD Studio 2010 (Delphi and C++Builder) was mainly used in the
non IT area for scientific and government applications [RAD 2010].

The special industrial background of our framework application was characterized in the
next section.

115

6.2 CASE-Based Test Scenario

To present information on how the quality assurance metrics available in the inspected
CASE-Tools and its results, we have constructed here a project for an airline agency with
different programming language (Java, C++, C# and Delphi) based on UML approach. The
project is a simple example that nevertheless contains all important phases and structure
elements of a real IT project. This prototype was important not only for manipulating and
comparing the implemented metrics, but also for inspecting their suggested limits and
feedbacks [Yazbek 2007].

As a minimum goal, the tools should first be able to use its metrics and show the results
[Yazbek 2010a].

Furthermore, we have considered the software development processes using these CASE
tools in three industrial environments in the south of Germany that we don’t describe
explicitly because of confidential reasons.

6.3 Appraisal of CASE Tool Evaluation Results

In following we describe the quality measurement situation of the different CASE tools
considering the available metrics and their appropriateness for quality assurance.

6.3.1 Together Measurement Level

Together [Together 2010] provides object oriented metrics as Quality Assurance features.
The metrics quantify the source code. It is up to the developer to examine the results and
decide whether they are acceptable. Parts of code that need to be redesigned can be
highlighted in the code editor, and metrics results can be used for creating reports and for
comparing the overall impact of changes in a project. Together provides tips for using the full
set of metrics and interpreting results.

Availability of metric features depends on the project language. Together supports a wide
range of metrics for java projects. Other languages have smaller sets of metrics that have
been adapted or created to fit the particular language. These metrics are listed as the
following:

o 55 metrics available for Java
. 54 for C#t

J 52 for Visual Basic .NET

. 52 for C++

o 17 for Visual Basic 6

116

Java Metrics

Title: Abbreviation Litnits: Lowver Upper
= Basic
I Pack [0 L]
Lines Of Code Loc sckage: | | |
Nurber Of Attrigutes oA Class: |0 | f1a00 |
Number Of Classes Inoc . - 1
humber OF Constructors HOCON S
MNumber Of Members MR
Number Of Memibers o o =
Mumber OF Operations. oo i |
Number Of Import Statements Nois GiapUlarty: | Gas

1 Cohesion
Cornplexdty
Coupling
Encapsulation
Halstead
Inhettance
H Inherttance-Based Coupling
[Maimum
Palytmarphism

|+

[] Court documentation comments
D Count implementation comments

[Court klank lines

OENEOEONEEDONNNERES

| Selectan || Unselectan || SetDefauts || SaveSetas.. || LosdSet.. |

LOC - Lines Of Code

Thiz iz the traditional measure of size. k counts the number of code lines. Documentation and implementation comments as well as blank
lines can be optionally interpreted as code,

Documertation comtments are Javadoo comiments for Java, C++ and C#.
Implemertation comments are any other type of comments.

Suppored languages: Java, C++, Visual Basic, VisualBasic.Met, C#

| Start || Cancel || Help |

Figure 51: Together metrics dialog

However, if developers have more specific needs, they can create their own custom metric
plug-ins to extend the QA module. Together provides settings for options such as limits and
granularity for each metric. Developers can change the settings if necessary. Metrics results
are displayed as a table: the classes, packages, or diagrams that were analyzed will be
showed in the rows, and in the columns will be showed the corresponding values of selected
metrics. The results of metrics analysis are tightly connected with source code. The
developer can select any element in the table to navigate directly to it in the diagram or
source code. The developer can also sort, update and export the result table. For comparing
projects or for comparing changes in a project over time the developer can also compare the
values in one table against the values in another table. Metrics results can be represented as
graphic output (Bar Graph, Distribution Graph, or Kiviat Graph).

Together provides the most international and globally accepted metrics from Chidamber &
Kemerer, the MOOD- metrics from Abreu, and the McCabe and Halstead metrics. Among
these metrics are two metrics for the documentation (CR und TCR) as well as five metrics for
management (CDBC, PPkgM, PPrivM, PProtM, PPubM) [Together 2010].

117

e Comment Ratio (CR): Counts the ratio of implementation and documentation
comments to total lines of code (comments are included in the code count).

e True Comment Ratio (TCR): Counts the ratio of implementation and documentation
comments to total lines of code (all comments are excluded from the code count).

e Change Dependency Between Classes (CDBC): measures the class level coupling.

But Together also includes metrics that are not documented in various standards as TRDu,
TRDp, TRAu, TRAp. They are only provided in Together. These metrics are documented only
in the Marinescu’s diploma [Marinescu 1998].

The abbreviations for the metrics in Together do not correspond to known acronyms. The
metrics WMC, DIT, NOC and LCOM by Chidamber & Kemerer are described for example in
Together as WMPC1, DOIH, NOCC and LOCOM1.

6.3.2 Metrication in Visual Studio

Visual Studio [VS 2010] only provides five basic object oriented metrics to give developers
better insight into the code they are developing - Lines of Code, Class Coupling, Depth of
Inheritance, Cyclomatic Complexity und Maintainability Index. Visual Studio helps developers
to generate code metrics data that measure the complexity and maintainability of their
developed code. Code metrics data can be generated for a complete solution or a single
project.

Code Metrics Results > 1 x
=] | Filker: | None - | Min: Maix: 5 NN !

Hierarchy Maintainability Index Cyilomatic Complexicy Depth of Inheritance Class Coupling Lines of Code

=58 TCO(Debug) 7] 72 1.275 1z 269 34,452

=] TE 1.183 12 245 34163

= “t§ FormDataEntry =] o7 g2 17 61 1.275

% AddCategory(Category, boal) @ vaid =] 94 71 16 51

% AddCategory(Category, bool, PropertyvalueList) @ vaid] 20 40 =i 63

% AddCategoryListiCategoryList, boal) : vaid @ 94 1z 16 51

W AddCateqgoryListiCategoryList, hoal, Property¥aluelist) @ void @ 9 az 16 52

3% AppendCategoryToPanel{ohjerct, AjaxEventargs) @ void @ 95 41 1z a0

2% AppendTresdint, Tree) : void @ 94 17 12 50

4% CategoryExists(Category) : bool @ 71 13 16 55

2% CreatelD(Category, CategoryMember) : string =] gl 16 10 9z

ﬁ“ DocumentId.get() : string =] 95 1z 1z 71

ﬁ“ DocumentId. set{string) : void =] a5 21 10 22

% FillZategorySelector(Tree) : woid =] 95 11 1z 51

4% Find({CategoryMemberlist, PropertyValue) : CategoryMember N 13 32 15 25

o FormData.get() : PropertyvalueList @ 32 12 17 45

W FormDataEntry() N 19 15 13 10

¥ FormDataSessiorfame(DoxObject) @ string =] 24 31 1z 32

3% Page_Loadiohject, Eventérgs) @ void =] 38 10 1z 90

j‘j Propertyvaluelist. get() @ PropertyWaluelisk @ g9 12 10 42

7 Tabstyle.get() : bool m B 35 60 81

ﬁ Tabstyle, setibool) ¢ void @ 95 1z 10 3]

f Title. set{string) : woid =] 95 12 15 51

#-{} TCOHander. IHitp a 57 10 13 28 34,639

Figure 52: Visual Studio Code Metrics Results Window
The following list shows the code metrics results that Visual Studio calculates. However,

Visual Studio does not provide abbreviations for the metrics and info on how to interpret
received numbers.

118

e Lines of Code: It is the known LOC and it counts the lines of source code of an
executable software entity. It excludes Comments, white space, braces and the
declarations of members, types and namespaces.

e Class Coupling: It measures the coupling that the class has on other classes through
local variables, parameters, base classes, interface implementations, return types,
method calls, generic or template instantiations, attribute decoration and fields that
are defined on external types. It excludes primitive and built-in types such as string,
int32 and object.

o Depth of Inheritance: It indicates the number of class definitions that are above the
type in the inheritance tree starting from 0 and excludes interfaces.

e Cyclomatic Complexity: It is the known metric by McCabe. It is calculated by counting
the number of different code paths in the flow of the program such as if blocks,
switch cases, and do, while, for each and for loops.

e Maintainability Index: 1t is an index from 0 to 100 and is based on three other
metrics - Halstead Volume, Cyclomatic Complexity and Lines of Code. A low value
means worse maintainability as following:

0 Index between 20 and 100 indicates that the code has good maintainability.
0 Index between 10 and 19 indicates that the code is moderately maintainable.

0 Index between 0 and 9 indicates low Maintainability.

After Visual Studio analyzes the code, it displays the results as a simple table in the Code
Metrics Results window. A toolbar is at the top of this window, and the columns are for
displaying the results of metrics that are calculated. The toolbar at the top is used to filter
the results displayed in the Code Metrics Results window. For example, developers might
want to see only the results with a Cyclomatic Complexity below 7.

It is worth mentioning that metrics are only valid for source code that can compile. If the
source code contains errors, or some libraries and paths are not included, audits and metrics
might produce inaccurate results. Developers can also copy results from the Code Metrics
Results window to the clipboard and paste them to another application, such as a text editor
or word processor. Each copy puts multiple lines of information into the clipboard contains
e.g. Project name, Configuration mode and metrics name and its values.

Developers can also export results from the Code Metrics Results window to a Microsoft
Excel spreadsheet. Microsoft Excel will be launched if it is installed and the results list will be
imported. Developers can then visualize the results in Microsoft Excel. However, this way of
presenting results is not meaningful, because the results of metrics are not connected with
source code and developers cannot navigate to elements in the source code. Developers
also cannot extend this QA module if they have more specific needs and cannot customize it
and define limitations for these metrics.

119

6.3.3 Measurement in Enterprise Architect

Enterprise Architect [EA 2010] is a UML-based CASE tool for developing and building
software systems with UML. Enterprise Architect currently supports Round-trip engineering
in the following programming languages: Java, C#, C, C++, ActionScript, Delphi, PHP, Python,
Visual Basic and Visual Basic.NET.

Enterprise Architect supports techniques for testing, change control and maintenance.
Enterprise Architect also provides support for managing projects. Project Managers can use
Enterprise Architect to measure risk and effort, estimate the size of a project, and assign
resources to elements. Project estimation is working out how much time and effort is
required to build and deploy a solution. Enterprise Architect provides the Use Case metrics
facility to measure the complexity of a system and getting an indication of the effort
required to implement the model, and the project timescale. Project estimation is based on
Karner's Use Case Points Method, which is based on this two metrics

e FWE (Estimated Work Effort) und
e FC (Estimated Cost).

Use Case Metrics g|
Jze Cazes Technical Complexity Factor
Roct Package: Unadjusted TCF Yalue [Ty} 47
Phase like i Bookmarked: | Al v TCF Weight Factor [Tw/F): 0,01
Kepword like Use Cazes 3] E:ctlgrdse TCF Constant [TC]: 0.6
Fackage M arne Type Complexity | Phaze TCF = TC + [T # LTV 1.07
Frimary Uze Cases |ze Cazel UzeCase & 1.0
Frimary Uze Cazes |Jse Case? UzeCaze B 1.0
lJse Case Model Use Casel UseCaze 5 1.0 Erviranment Cormplexity Factor
Unadjusted ECF % alue [LEY]: 215
ECF “Weight Factor [EMWF]: 0,03
ECF Constant [EC]: 1.4
P 5 ECF =EC + [E"/F = LUEV]: 0.755
nadjusted Use Case Paints [UUCP] = Sum af Complesity 15 Awe Hours per Easy. 40 Med: 80 Diff: 120
|Jze Cage
Total Estimate
Use Case Points [UCP] = UUCP * TCF * ECF = 15| = 1,07 = D.?‘55| = 12| Lcr
Estimated Work Effart [haurs] = 10/ * 12 = 120| Haurs
E stimated Cost = EWE * Default hourly Rate = 120] = 4E|| = 43001 Cost
Re-Calculate] [Report] l Yiew Report] [Default B ate] [Close] l Help

Figure 53: Enterprise Architect Use Case Metrics dialog

However, before estimating project size, the following values must be carefully calibrated in
order to gain the best possible estimates:

120

e TCF — Technical Complexity Factors: These are editable values that indicate the
degree of difficulty and complexity of the work in hand such as portable, easy to
install and easy to use

e ECF - Environment Complexity Factors: These are editable values that indicate the
degree of non-technical complexities such as team size, team experience, knowledge
and motivation

o Default Hour Rate: This sets the project defaults for duration and hourly rate per Use
Case point.

e Use case complexity: This value indicates the complexity for each Use Case as the
following:

0 Easy (5 points): The use case is considered a simple piece of work. That means
it uses a simple user interface and attends only to a single database entity; its
success scenario consists of less than 3 steps; its implementation needs not
more than 5 classes

0 Medium (10 points): The use case is more difficult, involves more interface
design and attends to 2 or more database entities; its success scenario
consists of between 4 to 7 steps; its implementation needs between 5 to 10
classes

0 Complex (15 points): The use case is very difficult, involves a complex user
interface or processing and attends to 3 or more database entities; its success
scenario consists of over seven steps; its implementation needs more than 10
classes.

Modifying these factors requires, in fact, a lot of experience, because the factors and the
complexity are depending on the project and current situation. The most difficult factor in an
accurate estimation is setting an hourly rate - which is best defined using experience with
similar projects. Typical ranges can vary from 10 to 30 hours per Use Case point. The default
value for each Use Case point is 10 hours. Once the user has entered all the calibration
values, the project timescale will be estimated as following:

EWE = Duration * sum of Complexity * TCF * ECF (6.2)
EC = EWE * Default Hour Rate

The results can be exported to a RTF file. Enterprise Architect provides no way of graphical
representation of results, and the results are in no way comparable with other
measurements, so that an improvement in the project is not visible.

121

6.3.4 Metrics Eclipse Plug-in

Metrics Eclipse Plug-in [Eclipse 2010] provides 23 object-oriented metrics for Java as Lines of
Code, Number of Packages, Number of Methods, Chidamber & Kemerer metrics and McCabe
Cyclomatic Complexity.

NSM — Number of Static methods NOC — Number Of Classes
MLOC — New Method Lines Of Code SIX — Specialization Index
WMC — Weighted Methods per Class RMI — Instability

NORM — Number of Overridden Methods NOF — Number Of Attributes
LCOM — Lack of Cohesion Of Methods PAR — Number of Parameters
VG — McCabe Cyclomatic Complexity NBD — Nested Block Depth
NSF — Number of Static Attributes NOM — Number Of Methods
DIT — Depth of Inheritance Tree RMA — Abstractness

NOP — Number Of Packages NOI — Number Of Interfaces
TLOC — Total Line Of Code CE — Efferent Coupling

CA — Afferent Coupling NSC — Number of Children
RMD — Normalized Distance

Table 10: The supported metrics in Metrics Eclipse Plug-in

As we see, the metrics are presented with names and abbreviations.
Lines of code has been changed and separated into:

e TLOC: Total lines of code will count the lines of source code of an executable
software entity. It excludes comments and white spaces. Useful for those interested
in computed KLOC.

e MLOC: Method lines of code will count the lines of source code inside method
bodies. It excludes comments and white spaces.

The results are displayed as a simple table. However, we cannot in no way sort, save,
compare or print these results. The minimum and maximum limits for each metric can be
set; however, there are no default values for these limits. Out-of-range and in-range results
will be colored in the table. Results can be exported to an XML file. Package Dependency
Graph is the only way to plot the metric results.

122

[Metrics - /nek.sourceforge metrics A0~ x
Metric |__Total| Mean | std. Dev. | Maximum | Resource causing Maximum | Method |
= Number of Packages 18
= Number of Methods (avgima per type) 1310 6,65 5,553 76 fretsourceforge. mebricsfbgseefcomytouchgrap. ..

[+ tgsre 489 7.191 11,544 76 fret.sourceforge. metricsfrgsrefcomftouchgrap. ..

[Flsre 761 6.238 6.553 45 Jnet.sourceforge.mebricsfsrc/net lsourceforgey...
[#] net. sourceforge. metrics, core, sources 108 15.429 12,129 45 Jret,sourceforge, mebricsfsrc/net jsourceforge/...
[#] net. sourceforge. metrics. Ui 77 9.625 10,111 33 Jret.sourceforge.metricsfsrc/net fsourceforge/...
[+ nat. sourcefargs.metrics . core 193 6.6 7.093 27 fret.sourceforge. metricsfsec/net lsourceforge)...
[+ net. sourceforge.metrics ui. preferences 52 6.5 7467 26 fret.sourceforge. mebricsfsrc/net lsourceforge/...
[#] net.sourceforge.metrics, ui, dependencies 95 5.588 3727 15 fret,sourceforge, mebricsfsrc/net jsourceforgey...
[l net, sourcefarge.metics mternal persistence 15 4.5 4.33 12 fret.sourceforge, mebricsfsic/net fsourcef orge)...
[#] net.sourcefarge. metrics internal prevaylerimplementa. . 54 5.4 2,871 10 fret.sourceforge. mebricsfsrcinet fsourceforge/...
[#] net.sourceforge.metrics internal cml 41 4.1 .02z 9 Jret.sourceforge, mebricsfsrc/net isourceforge)...
[#] net.sourceforge.metrics, caloulators 73 4,158 2,254 B fret.sourceforge. metricsfsrc/net lsourceforge)...
[+ net. sourceforge.metrics propagators 31 5.167 1.067 7 [Jret.sourceforge. metricsfsrc/net lsourceforge) ...
[+ net. sourcefarge.metrics inkernal kests 8 2.667 1,886 4 frst.sourceforge. metricsfsrc/net jsourceforge) ...
[+l net. sourceforge.metrics internal prevayler 1] 0 i}

[¥] classycle 60 8.571 2,556 13 fret.sourceforge, mebricsfdassyvcle/classyely. ..

[Lines of Code {avg/max per type) 6993 33.467 49,02 339 fret,sourceforge, metrics s foomftouchgrag...

[hurnber of Inkerfaces (svgimax per packageFragment) 16 1 1.414 4 Jret.sourceforge. mebricsfsrc/net isourceforge)...

[= Lires of Code {avgfmax per method) £593 4.812 7.355 69 [ret.sourceforge. metricsfdassyelefclassyclefa... | caloulstesetributes
[# dassycle 324 5.4 9,594 69 fret.sourceforge. metricsfdassycle/classyclefg... calolatedttributes
[H bgsre 2321 4.661 8.278 59 fret.sourceforge. metricsfrgsrecomyftouchgrap... scrollSelectPanel
= sre 3943 4.562 6,473 52 Jretsourceforge. metricsfsrcinet fsourceforge/... | setMetrics

[=] net. sourceforge.metrics Ui 544 6.8 §.707 52 fret.sourceforge mebricsfsrcinet fsourceforge/... | setMetrics

= MetricsTable, java 194 10.778 13,831 52 fretsourceforge. mebricsfsrcinet fsourceforge/... setMetrics

[MetricsTable 194 10.778 13,831 52 [Jret.sourceforge. mebricsfercinet fsourceforge/... | setMetrics
sethetrics 52 e

| I Ll_,

|

Figure 54: Eclipse metrics view

The Metrics Eclipse Plug-in does not contain any description for the metrics and does not
give any tips how to interpret the results. However, the most of these metrics are good
documented in [Henderson-Sellers 1996]. The coupling metrics have been mentioned by
Robert Martin in [Martin 2002]

e Afferent Coupling (CA): 1t measures the total number of classes outside a package
that directly depend upon classes inside the package.

e Efferent Coupling (CE): It measures the total number of classes inside a package that
directly depend upon classes outside the package.

e Instability (RMI): It is the ratio of efferent coupling to total coupling (afferent plus
efferent). This will be a number between 0 and 1

o Abstractness (RMA): The ratio of the number of internal abstract classes (and
interfaces) to the total number of internal classes (and interfaces) in a package

e Normalized Distance from Main Sequence (RMD): | Abstractness + Instability - 1 |;
the range for this metric is 0 to 1. This number should be small, close to zero for good
packaging design.

The abbreviations for the coupling metrics do not correspond to known acronyms by Martin
[Martin 2002]. He defined it in his book as Ca, Ce, I, A, D.

6.3.5 Metrics One Measurement Level

MetricsOne [Rational 2004] works as a Plug-in to Rational Rose and provides 46 object-
oriented analysis and design metrics. The measurements computed by MetricsOne are
grounded in the work done at MIT by Chidamber & Kemerer [Chidamber 1994], and are
based primarily upon pragmatic insights and recommendations from Lorenz and Kidd

123

[Lorenz 1994]. The metrics that MetricsOne gathers are grouped into the following
categories:

e Class metrics: calculate for example the number of classes, their attributes, and the
relationships among it.

e Use Case metrics: calculate for example the number of Use Cases, actors and its
relationship with the system

e Operations metrics: calculate for example the number of parameters (arguments)
that are in the signature of the operation, the export control of the operation, that is,
whether it is public, protected, private, or implementation.

e Packages metrics: calculate for example the number of classes, the dependencies
among these classes, coupling between it and its Instability.

Metrics OME - More Clazses Step 3 of 6 |

Mewt, zelect operation anddor attribute metrics o be included in the report by first zelecting the
desired metrics, then optionally adding threshold walues. &ny metric that exceeds the entered
threzhald will be nated in the output,

b etric Threshold
— Operations
I Public Operations | \Watch the sverage
Class Metrics [V Protected Operations | rumber of attributes as

"b Attoil i : : at indicatar of the

[V Private Operations I storage requiremerits for
S nerations . . the runtime S_I,lstn_am, as
Ll P () [V Operation Overides I well as any persistent

¥ Operation Summation I data store.

— Attnbutes
¥ Public Attributes I

¥ Protected Attributes I

¥ Private Attibutes

Count Aszociations Az
W ="
V Attributes

< Back I et = Cancel Help

Figure 55: Metrics One Class metrics

It is possible to use existing limits or to define it. New user of MetricsOne can simply take the
defaults. More sophisticated users of the tool will collect particular metrics, based upon the
issues that are important to their particular project. All settings are saved for use on the
next run.

Results will be sent to an Excel spreadsheet, one with a page for each of the metrics
categories. Values of any metrics that exceeded limits will appear for example in red.
Microsoft Excel must be installed in order for MetricsOne to succeed. Otherwise results can

124

optionally be sent to a text file (comma delimited) that can later be loaded into Excel or any
other tabular-data-oriented application. Developers can then visualize the results in
Microsoft Excel.

MetricsOne provides tips about how to use the metrics and how to interpret its results. If
specified limits are exceeded, results will appear in a different color (red).

6.3.6 Metrication in Embarcadero RAD Studio 2010

Embarcadero RAD Studio 2010 [RAD 2010] is an integrated CASE-Tool for creating Windows
applications. The RAD Studio IDE provides a comprehensive set of tools that streamline and
simplify the development life cycle (analysis, design, and implementation). It supports also
to make unit tests. RAD Studio supports UML modelling. RAD Studio supports Round-trip
engineering for the programming languages C++ and Delphi.

RAD Studio provides 89 object-oriented code metrics for C++ and Delphi. For example
Chidamber & Kemerer metrics, MOOD metrics, McCabe- und Halstead metrics. This feature
is only for code metrics, it is not available for design projects. For the documentation, the
metrics CR and TCR are available. RAD Studio provides tips for using metrics and interpreting
results. However, it is up to developers to examine the results and decide whether they are
acceptable. Metrics results can show up parts of code that should be redesigned.

FO HPLean
DOIH L LCOM3
DAC LoC
N
<
CR MMOL
) £ :.-’f il
,|r T
CRO f MO0
' I
1
1
e ! g
WKPC » \ NOA,
¥ b { ..1 #
RFC { 5 NOAM

NORM NOC

NOOKM NOO

Figure 56: Kiviat charts in RAD Studio

125

RAD Studio can also show Metrics results graphically. Two graphic views allow summarizing
metrics results: bar charts and Kiviat charts. Metrics charts will be created in temporary files,
which will be deleted when the charts are closed. However, developers can save information
of the chart in text files, export it to the preferred graphical format, and include graphics in
the project.

A default subset of all available metrics is active. However, developer can define, save, and
reuse sets of metrics that can be loaded and processed if they rather some specific subset.
For each metric there are settings for options such as limits and granularity. Some metrics
have already editable default values for this feature. When viewing metric results developers
can sort results by column, filter and update results, navigate to the source code, view the
metric description. The results can be exported to a XML or HTML file to share them with
team members or review them later.

6.4 Evaluation of CASE-Based Quality Assurance

It is no surprise that the tools meet different requirements at measuring. There is a common
question that is asked and discussed remains: How efficient and mature is this
measurement? This may be due to the missing of quality model by CASE tools. In addition, in
some CASE tools it is difficult to learn how to use the metrics and it requires high hardware
resources to calculate the values.

Our first evaluation summarizes the general framework steps in their fulfilling
characteristics. We use the evaluation as “+” for “fulfilled”, “-“ as “not fulfilled” and “0” as
“part fulfilled”. The following table shows this kind of metrics-based evaluation of CASE tool

based measurement support.

Tool Metrics Metrics Metrics Metrics Metrics Metrics | Metrics | Sorting
coverage | providing suites customizing | extending | feedback | filtering results

Together o o + + + + + +

Visual - o - - - + + +

Studio

Enterprise - o] - + - - - -

Architect

Metrics o o - + - + - +

Eclipse Plug-

in

metricsOne + o o) + - + + +

RAD Studio + o) + + + + + +

126

Tool Metrics Saving Comparing Printing Exporting Copying Metrics
visualization results results results results results verification

Together o + + + + - +

Visual Studio - o - - + + -

Enterprise - - - - + - -

Architect

Metrics Ecli- o - - - + - +

pse Plug-in

metricsOne o + + + + + _

RAD Studio o + o + + - +

Table 11: Overview of metrics concept

As we see, the described CASE tools don’t support all the defined criteria for metrics in

different levels and ways.

From the quality measurement point of view we can establish the following general situation
considering the CASE tools above.

MP(conisdered CASE_tools) =

goals_in_use impreoving
(./ 4 -G Luati
P

quality_improvement
scheduled

product_aspects xeferred
Py A

inhouse
im;ptovement

X

M closed_component)

automatic

oxiginal

simple_task

threshold
9 (tulu_of_t/uun.é

a‘ggtegation.

{ simple_tool ¥

Q otdin.al_.‘male) 9 (ﬁ)tmula

MPpP

aspect_oriented
wulc used. mgt/l.odolo#

meas._appl._staff P

/ng'ect_baﬁed
daptat

L
motivated_uset

oduct. ect
X D el

(6.3)

lI’lf?tOVad)

ouguuzl

In order to simply identify where the possible improvements are, we will add in the formula
above the MAX” and the “MIN” characterization. Hence, we obtain the following formula.

MIN
motivated_uset

. - guali{#_imﬁtovemmt
MP(conisdered_CASE-tools) = %, ~,
MAX G improving /nodact_upecﬂ MAX
MIN luati lithi MAX
MAX MIN "y max _ mIN
X impreovement m MAX)MAX MIN * meas._agpl._staff P
threshold MAX MAX
9 (tuleA_of_t/mm.b MAX) é (gradient

mMp

MIN .
wida_med_m.et/l.odolo&y *

E project_based
adaptatmn.

product_aspect
MAX

impreoved
MAX

)

(6.4)

Some kinds of improvement are obvious. We must only consider the “MIN” characterization.
Therefore we can conclude that,

e The measurement of the product aspects (in the MP description) using some code
metrics in the considered CASE tools could be improved by adding metrics for the

127

whole product measurement such as artefact metrics (for the product model) and
documentation metrics (for the developer documentation and the manual)

The quality measurement goal as “viewpoint” could be improved by using any other
product metrics in the acceptance test field or experiences based in their application

The two kinds of “MIN” in the (measurement) tool description are based on the
missing measurement context (such as model and implementation metrics) and the
missing experience base in these tools because of threshold use only

The “MIN” in the personal characterization is an assumption and could be improved
by the training of the developer as “certified metrics user” etc.

Furthermore, we will use our classification of quality measurement improvement. Some
kinds of improvement of the considered CASE tools are as following

At first we describe a weak quality measurement improvement that is the fact when
we use some “trend analysis” in order to consider the quantities Q in the Visual
Studio tool as

MP(CASEVsiuaI_Studio) < MP(CASEVisuaI_Studio @ Ttrend_analysis) (65)

Otherwise a moderate quality measurement improvement that could be achieved by
adding a stored threshold history over the development of different projects in the
Together tool exemplary as

MP(CASETogether) <n MP(CASETogether ® Texperience_based) (66)

An essential quality measurement improvement would be achieved when we add
some product metrics in order to achieve a whole product quality measurement in
the Metrics Eclipse Pug-in as

MP(CASEMetris_Eclipse) < MP(CASEMetrics_Eclispe@ PmductA) (67)

Finally remarkable quality measurement improvement could be achieved when we
add any project metrics in the Metrics One tool that we achieved a “capability
oriented” quality measurement level

MP(CASEMetrics_One) (n MP(CASEMetrics_One@ pton&mt/\ptowaA) (68)

Note, that the change by using measures (V) indeed of metrics (Q) would obviously be a
remarkable quality measurement improvement in this quality measurement consideration.

128

6.5 Summary

In this chapter we have used our framework in order to evaluate a real CASE tool situation in
an industrial IT environment. The results of our framework application can be described as
follows

» Our investigation of CASE-based software development was circumscribed to the
development of object-oriented information systems

» We have considered a typical practical situation of software development in small
companies using well-known CASE tools that includes metrics application

» In afirst evaluation we have identified any quality measurement characteristics of six
CASE tools and shown that none of these CASE tools support all essential metrics
aspects

» Using our framework we have seen that many possibilities exist in order to improve
the quality measurement situation for every considered CASE tool for process and
resources measurement mainly

The different kinds of our framework application have demonstrated the essential aspects of
validation of this framework respectively.

129

130

7 Conclusions and Future Research

Our measurement experiences show that software product measurement can be helpful for
software developers and software managers. Though metrics are not a “magic bullet”, they
can be useful tool to understand and control the development of complex software
application.

The development of software metrics is about 40 years old [cf. Ebert 2007]; nevertheless,
software developers and managers in most companies don’t use it or don’t have enough
knowledge and experiences in software measurement.

Software developers and managers should have some knowledge about measurement
theory and about its techniques, e.g. what metrics are measuring and how to interpret the
results. This measurement theory can be provided in the development tool itself. One of the
problems with measuring software projects is to understand what the values really mean.
There exist many techniques to support this. Of course, there are many development tools
available which provide techniques for software measurement, but most of these
techniques are difficult to adjust and ambiguous to understand.

We presented in this thesis a framework that could be helpful in order to determine the
current (quality) measurement situation. Furthermore we can identify the possibilities of
measurement improvement and can plan the meaningful extensions in an industrial
environment. Our description of the existing software process evaluations in chapter four
gives more information extending our framework with process-based experiences and
knowledge as we have used in this thesis.

The application of our framework for existing industrial processes and used CASE tools
shows the appropriateness of our approach and gives essential kinds of quality
measurement improvement obviously.

Next steps of research in order to improve the quality assurance situation in the CASE-based
software development could be

» The refinement of the CASE tool evaluation in order to identify more extensions for
quality improvement in the software development

» The prototypical implementation of the CASE tool extension and their practical
application

> The extension of the ordinal-based values used in the framework in order to consider
more kinds of practical situations.

131

» The consideration of further software processes including maintenance, evolution
and migration in order to build essential experience bases for quality measurement
and evaluation

» The investigation of further kinds of CASE tool including modern infrastructures and
services

The consideration of the CASE-based software development from a process point of view
should also improve the CASE tool situation themselves.

132

References

[Abran 2006] Abran, A. et al.: Applied Software Measurement. Shaker Publ., Aachen, 2006

[Albrecht 1983] Albrecht, A. J.; Gaffney, J. E.: Software Function, Source Lines of Code, and
Development Effort Prediction. IEEE Transactions on Software Engineering, 9(183)6, pp.
639-648

[Aloisio 2006] Aloisio, G.; Caffaro, M.; Epicoco, I. : A Grid Software Process. In: Cunha/Rana:
Grid Computing — Software Environments and Tools, Springer Publ., 2006, pp. 75-98

[April 2005] April, A.: S3m-Model to Evaluate and Improve the Quality of Software
Maintenance Process. Shaker Publ., Aachen, Germany 2005

[Armour 2004] Armour, P. G.: The Laws of Software Process — A New Model for the
Production and Management of Software. CRC Press, 2004

[Augustine 2005] Augustine, S.; Payne, B.; Sencindiver, F.; Woodcock, S.: Agile Project
Management: Steering from the Edges. Comm. Of the ACM, 8(2005)12, pp. 85-89

[Basili 2001] Basili, V. R.; Boehm, B. W.: COTS-Based Systems Top 10 List. IEEE Computer,
May 2001, pp. 91-95

[Basili 2007] Basili, V. R. et al.: GQM+Strategies. In: Buren/Bundschuh/Dumke: Praxis der
Software-Messung, Shaker Publ., Aachen, 2007, pp. 253-266

[Basili 1986] Basili, V. R.; Selby, R. W.; Hutchens, D. H.: Experimentation in Software
Engineering. |IEEE Transactions on Software Engineering, 12(1986)7, pp. 733-743

[Bauer 1999] Bauer, M.: Analyzing Software Systems by Using Combinations of Metrics.
Technical Report, Forschungszentrum Informatik Karlsruhe, 1999

[Bergstra 2001] Bergsta, J. A.; Ponse, A.; Smolka, S. .: Handbook of Process Algebra. Elsevier
Publ., 2001

[Bielak 2000] Bielak, J.: Improving Size Estimate Using Historical Data. |EEE Software,
Nov./Dec. 2000, pp. 27-35

[Biffl 2000] Biffl, S.: Using Inspection Data for Defect Estimation. |EEE Software, Nov./Dec.
2000, pp. 36-43

[Blazey = 2002] Blazey, M.: Softwaremessansdtze fiir komponentenbasierte
Produkttechnoogien am Beispiel der EJB. Diploma Thesis, University of Magdeburg,
Dept. of Computer Science, 2002

[Boehm 2000] Boehm, B. W.: Software Cost Estimation with COCOMO II. Prentice Hall, 2000

[Boehm 1984] Boehm, B. W.: Software Engineering Economics. |EEE Transactions on
Software Engineering, 10(19841, pp. 4-21

[Boehm 1989] Boehm , B.W.: Software Risk Management. IEEE Computer Society Press, 1989

133

[Boehm 2000a] Boehm, B. W.: Software Estimation Perspectives. |EEE Software, Nov./Dec.
2000, pp. 22-26

[Boehm 2000b] Boehm, B. W.; Basili, V. R.: Gaining Intellectual Control of Software
Development. IEEE Software, May 2000, pp. 27-33

[Boehm 2005] Boehm, B. W.; Turner, R.: Management Challenges to Implementing Agile
Processes in Traditional Development Organizations. |EEE Software, Sept./Oct. 2005,
pp. 30-39

[Braungarten 2006] Braungarten, R.; Kunz, R.; Dumke, R.: Service-orientierte Software-
Messinfrastrukturen. Presentation at the Bosch Metrics Community, Stuttgart, March
2006

[Braungarten 2005] Braungarten, R.; Kunz, M.; Dumke, R.: An Approach to Classify Software
Measurement Storage Facilities. Preprint No 2, University of Magdeburg, Dept. of
Computer Science, 2005

[Braungarten 2005a] Braungarten, R.; Kunz, M.; Farooq, A.; Dumke, R.: Towards Meaningful
Metrics Data Bases. Proc. of the 15™ IWSM, Montreal, Sept. 2005, pp. 1-34

[Bundschuh 2000] Bundschuh M.: Aufwandschdtzung von IT-Projekten, MITP Publ., Bonn,
2000

[Bundschuh 2008] Bundschuh, M.; Dekkers, C.: The IT Measurement Compendium. Springer
Publ., 2008

[Chang 2000] Chang, S. K.: Multimedia Software Engineering. Kluwer Academic Publisher,
2000

[Chidamber 1994] Chidamber S. R.; Kemerer, C. F.: A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6), pp. 476-98, 1994

[Chrissis 2003] Chrissis, M. B.; Konrad, M.; Shrum, S.: CMMI — Guidelines for Process
Integration and Product Improvement. Addison-Wesley 2003

[Chung 2000] Chung, L.; Nixon, B. A.; Yu, E.; Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publ., 2000

[Clements 2005] Clements, P. C.; Lawrence, G. J.; Northop, L. M.; McGregor, J. D.: Project
Management n a Software Product Line Organization,. |EEE Software, Sept./Oct. 2005,
pp. 54-62

[Davis 1995] Davis, A. M.: 201 Principles of Software Development. McGraw Hill Publ., 1995

[Deek 2005] Deek, F. P.; McHugh, J. A. M.; Eljabiri, O. M.: Strategic Software Engineering —
An Interdisciplinary Approach. Auerbach Publications, Boca Raton London New York,
2005

[Donzelli 2006] Donzelli P.: A Decision Support System for Software Project Management.
IEEE Software July/August 2006, pp. 67-74

134

[Dreger 1989] Dreger, J. B.: Function Point Analysis. Prentice Hall, 1989

[Dumke 1999] Dumke, R.; Foltin, E.: An Object-Oriented Software Measurement and
Evaluation Framework. Proc. of the FESMA, October 4-8, 1999, Amsterdam, pp. 59-68

[Dumke 2000] Dumke, R.; Foltin, E.; Schmietendorf, A.: Metriken-Datenbanken in der
Informations-verarbeitung. Preprint No 8 University of Magdeburg, Dept. of Computer
Science, 2000

[Dumke 2003] Dumke, R.; Lother, M.; Wille, C.; Zbrog, F.: Web Engineering. Pearson
Education Publ., 2003

[Dumke 2003a] Dumke, R.: Software Engineering — Eine Einfiihrung fiir Informatiker und
Ingenieure. (4™ edn) Vieweg Publ., 2003

[Dumke 2004] Dumke, R.; Cote, I|.; Andruschak, O.: Statistical Process Control (SPC) — A
Metrics-Based Point of View of Software Processes Achieving the CMMI Level Four.
Preprint No. 7, University of Magdeburg, Fakultat fir Informatik, 2004

[Dumke 2005] Dumke, R.; Schmietendorf, A.; Zuse, H.: Formal Descriptions of Software
Measurement and Evaluation - A Short Overview and Evaluation. Preprint No. 4,
Fakultat fur Informatik, University of Magdeburg, 2005

[Dumke 2005a] Dumke, R.; Richter, K.; Fetcke, T.: FSM Influences and Requirements in
CMMI-Based Software Processes. In: Abran et al.: Innovations in Software
Measurement. Shaker Publ., 2005, pp. 179-194

[Dumke 2005b] Dumke, R.; Kunz, M.; Hegewald, H.; Yazbek, H.: An Agent-Based
Measurement Infrastructure. Proc. of the IWSM 2005, Montreal, Sept. 2005, pp. 415-
434

[Dumke 2005c] Dumke, R.: Software Measurement Frameworks. Proc. of the 3" World
Congress on Software Quality, Munich, Sept. 2005, Online Proceedings

[Dumke 2006] Dumke, R.; Blazey, M.; Hegewald, H.; Reitz, D.; Richter, K.: Causalities in
Software Process Measurement. Accepted to the MENSURA 2006, Cardiz, Spain, Nov.
2006

[Dumke 2008] Dumke, R.;Kunz, M.; Farooq, A.; Georgieva, K.; Hegewald, H.: Formal
Modeling of Software Measurement Levels of Paradigm-Based Apporaches. Technical
Report FIN-013-2008, University of Magdeburg, Germany

[Dumke 2008a] Dumke, R. et al.: Software Process and Product Measurement. LNCS 5338,
Springer Publ, 2008

[Dumke 2010] Dumke, R.; Mencke, S.; Wille, C.: Quality Assurance of Agent-Based and Self-
Managed Systems. CRC Press, Boca Raton 2010

[EA 2010] Enterprise Architect 8.0: http://www.sparxsystems.de/ (accessed 2010-07)

135

[Ebert 2004] Ebert, C.; Dumke, R.; Bundschuh, M.; Schmietendorf, A.: Best Practices in
Software Measurement. Springer Publ., 2004

[Ebert 2005] Ebert, C.: Systematisches Requirements Engineering. dpunkt.Verlgag, Germany,
2005

[Ebert 2007] Ebert, C.; Dumke, R.: Software Measurement. Springer Publ., 2007

[Eclipse 2010] Metrics Eclipse Plug-in: http://metrics.sourceforge.net/ (accessed 2010-07)

[Emam 2005] Eman, K. E.: The ROl from Software Quality. Auerbach Publ., 2005

[Emam 1998] Emam, K. E.; Drouin, J. N.; Melo, W.: SPICE — The Theory and Practie of
Software Process Improvement and Capability Determination IEEE Computer Society
Press, 1998

[Endres 2003] Endres, Albert; Rombach, D.: A Handbook of Software and System
Engineering. Pearson Education Limited, 2003

[Farooq 2008] Farooq, A.; Kernchen, S.; Dumke, R. R.; Wille, C.: Web Services based
Measurement for IT Quality Assurance. In: Cuadrado-Gallege t al.: Software Product
and Process Measurement. LNCS 4895, Springer Publ., Berlin Heidelberg, 2008

[Fenton 1997] Fenton, N. E.; Pfleeger, S. L.: Software Metrics - a rigorous and practical
approach. Thompson Publ., 1997

[Ferguson 1998] Ferguson, J.; Sheard, S.: Leveraging Your CMM Efforts for IEEE/EIA 12207.
IEEE Software, September/October 1998, pp. 23-28

[Fetcke 1999] Fetcke, T.: A Generalized Structure for Function Point Analysis. Proc. of the 11"
IWSM, Lac Superieur, Canada, Sept. 1999, pp. 143-153

[Florac 1999] Florac, W. A.; Carleton, A. D.: Measuring the Software Process — Satistical
Process Conrol for Software Process Improvement. Addison-Wesley Publ., 1999

[Florac 2000] Floac, W. A.; Carleton, A. D.; Barnard, J. R.: Statistical Process Control: Analyzin
a Spac Shuttle Onboard Software Process. |EEE Software, July/August 2000, pp. 97-106

[Gadatsch 2005] Gadatsch, A.; Mayer, E.: Masterkurs — IT Controlling. Vieweg Publ., 2005

[Garcia 2005] Garcia, S.: How Standards Enable Adoption of Project Management Practice.
IEEE Software, Sept./Oct. 2005, pp. 22-29

[Hale 2000] Hale, J.; Parrish, A.; Dixon, B.; Smith, R. K.: Enhancing the Cocomo Estimation
Models. |EEE Software, Nov./Dec. 2000, pp. 45-49

[Halstead 1977] Halstead, M. H.: Elements of Software Science. Prentice Hall, New York, 1977

[Hansen 2006] Hansen, K. T.: Project Visualization for Software. |IEEE Software, July/August
2006, pp. 84-92

136

[Harrison 1998] Rachel Harrison R; Counsell, S. J.: An Evaluation of the MOOD Set of Object-
oriented software metrics. |EEE Transactions on Software Engineering, Vol. 24, No. 6,
June 1998

[Haywood 1998] Haywood, M.: Managing Virtual Teams — Practical Techniques for High-
Technology Project Managers. Artech House, Boston, London, 1998

[Hegewald 1991] Hegewald, H.: Implementation des Prototyps eines
Softwarebewertungsplatzes. Diploma Thesis, University of Magdeburg, Dept. of
Computer Science, 1991

[Henderson-Sellers 1996] Henderson-Sellers, B.: Object-Oriented Metrics, measures of
Complexity. Prentice Hall, 1996
[Hill 1999] Hill, P.: Software Project Estimation. KWIK Publ., Melbourne, 1999

[Horn 2002] Horn, E.; Reinke, T.: Softwarearchitektur und Softwarebauelemente. Hanser
Publ., 2002

[Humphrey 2000] Humphrey, W. S.: The Personal Software Process: Status and Trends. |EEE
Software, Nov/Dec. 2000, pp. 71-75

[ISBSG 2003] ISBSG Software Project Estimation — A Workbook for Macro-Estimation of
Software Development Effort and Duration. Melbourne, 2003

[ISO 15939] ISO/IEC 15939: Information Technology — Software Measurement Process.
Metrics News, Vol. 6, No. 2, pp. 11-46, 2001

[1ISO 9126] ISO/IEC 9126: Software Engineering — Product Quality. 2003
[ITIL 2006] The ITIL Home Page, http.//www.itil.org.uk/what.htm, (see July 24, 2006)

[Johnson 2007] Johnson, B.; Higgins, J.: ITIL and the Software Lifecycle: Practical Strategy and
Design Principles. Van Haren Publ., Netherlands, 2007

[Johnson 2005] Johnson, P. M.; Kou, H.; Paulding, M.;Zhang, Q.; Kagaw, A.; Yamashita, T.:
Improving Software Development Management through Software Project Telemetry.
IEEE Software, July/August 2005, pp. 78-85

[Jones 1991] Jones, C.: Applied Software Measurement — Assuring Productivity and Quality
McGraw Hill Publ., 1991

[Juristo 2003] Juristo, N.; Moreno, A. M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers, Boston, 2003

[Kamatar 2000] Kamatar, J.; Hayes, W.: An Experience Report on the Personal Software
Process. |IEEE Software, Nov/Dec. 2000, pp. 85-89

[Kandt 2006] Kandt, R. K.: Software Engineering Quality Practices. Auerbach Publications,
Boca Raton New York, 2006

[Kenett 1999] Kenett, R. S.; Baker, E. R.: Software Process Quality — Management and
Control. Marcel Dekker Inc., 1999

137

[Keyes 2003] Keyes, J.: Software Engineering Handbook Auerbach Publ., 2003

[Kitchenham 2007] Kitchenham, B: Empirical Paradigm — The Role of Experiments. In: Basili
et al.: Empirical Software Engineering, Springer Publ., pp. 25-32, 2007

[Kitchenham 1997] Kitchenham et al.: Evaluation and assessment in software engineering.
Information and Software Technology, 39(1997), pp. 731-734

[Kulpa 2003] Kulpa, M. K.; Johnson, K. A.: Interpreting the CMMI — A Process Improvement
Approach. CRC Press Company, 2003

[Kunz 2006] Kunz, M.; Schmietendorf, A.; Dumke, R.; Wille, C.: Towards a Service-Oriented
Measurement Infrastructure. Proc. of the 3rd Software Measurement European Forum
(SMEF), May 10-12, 2006, Rome, lItaly, pp. 197-207

[Laird 2006] Laird, L. M.; Brennan, M. C.: Software Measurement and Estimation — A Practical
Approach. IEEE Computer Science, 2006

[Lanza 2006] Lanza, M.; Marinescu, R.: Object-Oriented Metrics in Practice. Springer Pbl.,
Hdelberg, New York 2006

[Lecky-Thompson 2005] Lecky-Thompson, G. W.: Corporate Software Project Management.
Charles River Media Inc., USA, 2005

[Lepasaar 2001] Lepasaar, M.; Varkoi, T.; Jaakkola, H.: Models and Succes Factors of Process
Change. In: Bomarius/Komi-Sirvio: Product Focused Software Process Improvement.
PROFES 2001, Kaiserslautern, Sept. 2001, LNCS 2188, Springer Publ., 2001, pp. 68-77

[Lewerentz 2000] Lewerentz C.; Rust, H.; Simon, F.: Quality — Metrics — Numbers —
Consequences. In: Dumke, R.; Lehner, .F: Software-Metriken, DUV Publ., Wiesbaden.
2000

[Lewerentz 1998] Lewerentz C.; Simon, F.: A Product Metrics Tool Integrated into a Software
Development Environment. Technical Report, University of Cottbus, 1998

[Lokan 2001] Lokan, C.; Wright, T.; Hill, P. R; Stringer, M.: Organizational Benchmarking
Using the ISGSG Data Repository. IEEE Software, Sept./Oct. 2001, pp. 26-32

[Lorenz 1994] Lorenz M.; Kidd, J.: Object-Oriented Software metrics — A practical guide.
Prentice Hall, New Jersey, 1994

[Lother 2004] Lother, M.; Braungarten, R.; Kunz, M.; Dumke, R.: The Functional Size e-
Measurement Portal (FSeMP). In: Abran et al: Software Measurement — Research and
Application, Shaker Publ., 2004, pp.27-40

[Lother 2001] Lother, M.; Dumke, R.: Point Metrics — Comparison and Analysis. In
Dumke/Abran: Current Trend in Software Measurement, Shaker Publ., 2001

[Maciaszek 2001] Maciaszek, L. A.: Requirements Analysis and System Design — Development
Informatik Systems with UML. Addison Wesley Publ., 2001

138

[Marciniak 1994] Marciniak, J. J.: Encyclopedia of Software Engineering. Vol. | and Il, John
Wiley & Sons Inc., 1994

[Marinescu 1998] Marinescu, R.: An Object Oriented Metrics Suite on Coupling. Universitatea
,Politehnica“Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software, Diploma Thesis, September 1998.

[Martin 2002] Martin, R. C.: Agile Software Development. Principles, Patterns, and Practices.
Prentice Hall International, 2002

[McConnel 2006] McConnel, S.: Software Estimation — Demystifying the Black Art. Microsoft
Press, 2006

[Messerschmitt 2003] Messerschmitt, D. G.; Szyperski, C.: Software Ecosystem -—
Understanding an Indispensable Technology and Industry. MIT Press, 2003

[Mikkelsen 1997] Mikkelsen, T.; Phirego, S.: Practical Software Configuration Management.
Prentice Hall Publ. 1997

[Milner 1989] Milner, R.: Communication and Concurrency. Prentice Hall Publ., 1989

[Munson 2003] Munson, J., C.: Software Engineering Measurement. CRC Press Company,
Boca Raton London New York, 2003

[Nidiffer 2005] Nidiffer, K. .; Dolan, D.: Evolving Distributed Project Management. |EEE
Software, Sept./Oct. 2005, pp. 63-72

[Pandian 2004] Pandian, C. R.: Software Metrics — A Guide to Planning, Analysis, and
Application. CRC Press Company, 2004

[Pfleeger 1998] Pfleeger, S. L.:. Software Engineering — Theory and Practice. Prentice-Hall
Publ., 1998

[Putnam 2003] Putnam, L. H.; Myers, W.: Five Core Metrics — The Intelligence Behind
Successful Software Management. Dorset House Publishing, New York, 2003

[Putnam 1992] Putnam, L. H.; Myers, W.: Measures for Excellence — Reliable Software in
Time, within Budgets. Yourdon Press Publ., 1992

[RAD 2010] Embarcadero RAD Studio 2010: http://www.embarcadero.com/products/rad-
studio (accessed 2010-07)

[Rational 2004] metricsOne Rational Rose Plug-in: Tools and associated documentation are
available at the University Magdeburg, 2004

[Reitz 2005] Reitz, D.; Schmietendorf, A.; Dumke, R.: Tool supported monitoring and
estimations in EAl multi projects. Proc. of the IWSM 2005, Montreal, Sept. 2005, pp.
53-66

139

[Reitz 2003] Reitz, D.; Schmietendorf, A.; Dumke, R.; Lezius, J.; Schlosser, T.: Aspekte des
empirischen Software Engineering im Umfeld von Enterprise Application Integration.
Preprint No 5, University of Magdeburg, Dept. of Computer Science, 2003

[Richter 200] Richter, K.: Softwaregréffenmessug im Kontext von Software-
Prozessbewertungsmodellen. Diploma Thesis, University of Magdeburg, 2005

[Royce 1998] Royce, W.: Software Project Management. Addison-Wesley, 1998

[Royce 2005] Royce, W.: Successful Software Management Style: Steering and Balance. |EEE
Software, Sept./Oct. 2005, pp. 40-47

[Schmietendorf 2003] Schmietendorf, A.; Dumke, R.: Performance analysis of an EA|
application integration. Proc. of the UKPE, Warwick, July 2003, pp. 218-230

[Schmietendorf 2004] Schmietendorf, A.; Reitz D.; Dumke, R.: Project reporting in the context
of an EAl project with the aid of Web-based portal. Proc. of the CONQUEST 2004,
Nuremberg, Sept. 2004, pp. 47-57

[SEI 2002] SEI: Capability Maturity Model Integration (CMMF"), Version 1.1, Software
Engineering Institute, Pittsburgh, March 2002, CMMI-SE/SW/IPPD/SS, V1.1

[Singpurwalla 1999] Singpurwalla, N. D.; Wilson, S. P.: Statistical Methods in Software
Engineering. Springer Publ., 1999

[Skyttner 2005] Skyttner, L.: General Systems Theory — Problems, Perspectives, Practice.
World Scientific Publ., New Jersey, 2005

[Sneed 1990] Sneed, H.: Die Data-Point-Methode. Online, DV Journal, May 1990, pp.48

[Sneed 1996] Sneed, H.: Schéitzung der Entwicklungskosten von objektorientierter Software.
Informatik-Spektrum, 19(1996)3, pp. 133

[Sneed 2005] Sneed, H.: Software-Projektkalkulation. Hanser Publ., 2005

[Solingen 1999] Solingen, v. R.; Berghout, E.: The Goal/Question/Metric Method. McGraw Hill
Publ., 1999

[Sommerville 2007] Sommerville, I.: Software Engineering. Addison Wesley — Eighth Edition ,
2007

[SPICE 2006] The SPICE Web Site, http://www.sqi.gu.edu.au/spice/ (seen July 24, 2006)
[Tayntor 2003] Tayntor, C. B.: Six Sigma Software Development. CRC Press, 2003

[Together 2010] Together: http://techpubs.borland.com/together/ (accessed 2010-07)

[Ullwer 2006] Ullwer, C.: Konzeption und prototypische Realisierung einer Telemetrie-
basierten Mess-Architektur. Diploma Thesis, University of Magdeburg, Dept. of
Computer Science, July 2006

[Venugopal 2005] Venugopal, C.: Single Goal Set: A New paradigm for IT Megaproject
Success. |EEE Software, Sept./Oct. 2005, pp. 48-53

140

[Verzuh 2005] Verzuh, E.: The Fast Forward MBA in Project Management. John Wiley & Sons,
2005

[VS 2010] Microsoft Visual Studio 2010: http://www.microsoft.com/visualstudio/en-us
(accessed 2010-07)

[Walter 2006] Walter, Z.; Scott, G.: Management Issues of Internet/Web Systems. Comm. of
the ACM, 49(2006)2, pp.87-91

[Wang 2000] Wang, Y.; King, G.: Software Engineering Processes — Principles and
Applications. CRC Press, Boca Raton London New York, 2000

[Wangenheim 2006] Wangenheim, C. .v.; Anacleto, A.; Saliano, C. F.: Helping Small
Companies Assess Software Processes. |EEE Software, Jan./Febr. 2006, pp. 91-98

[Wasserman 1990] Wasserman, A.: Tool Integration in Software Engineering Environments.
Proc. of the Int. Workshops on Environments, LNCS 322, Springer Publ., 1990, pp. 137-
149

[White 2004] White, S.A.: Introduction to the BPMN. IBM Corporation, 2004

[Whitmire 1997] Whitmire, S.A.: Object Oriented Design Measurement. John Wiley & Sons,
1997

[Whitmire 1992] Whitmire, S.: 3-D Function Points: Scientific and Real-time Extensions of
Function Points. Proc. of the Pacific Northwest Software Quality Conference, 1992

[Wille 2006] Wille, C.; Braungarten, R.; Dumke, R.: Addressing Drawbacks of Software
Measurement Data Integration. Proc. o the SMEF 2006, Rome, Italy, May 2006

[Wohlin 2000] Wohlin, C, Runeson, P, Host, M, Ohlsson, M, Regnell, B, Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Boston, 2000

[Wong 2001] Wong, B. Jefferey, R.: Cognitive Structures of Software Evaluation: A Means-
End Chain Analysis of Quality. In: Bomarius/Komi-Sirvio: Product Focused Software
Process Improvement. PROFES 2001, Kaiserslautern, Sept. 2001, LNCS 2188, Springer
Publ., 2001, pp. 6-26

[Yazbek 2007] Yazbek, H.: Metrikenkonzepte von CASE-Tools am Beispiel von Together.
Master Thesis, University of Magdeburg, Faculty of Computer Science, 2007

[Yazbek 2010] Yazbek, H.: A Conept of Quality Assurance for Metrics in CASE Tools. Software
Engineering Notes, Sept. 2010, p. 32

[Yazbek 2010a] Yazbek, H.: Metrics Support in Industrial CASE Tools. Software Measurement
News, 15(2010)2, pp. 13-26

[Yazbek 2010b] Yazbek, H.: Service-oriented Measurement Infrastructure. In: O.
Ormandjieva; C. Constantinides; A. Abran; R. Lee: IEEE-SERA 2010, IEEE Computer
Society Los Alamitos, California, pp. 303-308

141

[Zelkowitz 207] Zelkowitz, M. V.. Techniques for Empirical Validation. In: Basili et al.:
Empirical Software Engineering, Springer-Publ., pp. 4-9, 2007

[Zelkowitz 1997] Zelkowitz, M. V.; Wallace, D. R.: Experimental Models for Validating
Technology. IEEE Computer, May 1998, pp. 23-31

[Zettel 2001] Zettel, J.; Maurr, F.; Minch, J.; Wong, L.: LIPE: A Lightweight Process for E-
Business Startup Companies Based on Extreme Programming. In: Bomarius/Komi-
Sirvio: Product Focused Software Process Improvement. PROFES 2001, Kaiserslautern,
Sept. 2001, LNCS 2188, Springer Publ., 2001, pp. 255-270

[Zhong 2000] Zhong, X.; Madhavji, N. H. Emam, K. E.: Critical Factors Affecting Personal
Software Processes. |EEE Software, Nov./Dec. 2000, pp. 76-83

[Zuse 1998] Zuse, H.: A Framework of Software Measurement. de Gruyter Publ., Berlin, 1998

[Zuse 2003] Zuse, H.: What can Practioneers learn from Measurement Theory. In: Dumke et
al.: Investigations in Software Measurement, Proc. of the IWSM 2003, Montreal,
September 2003, pp. 175-176

142

	Acknowledgement
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Structure

	2 Software Process Descriptions and Models
	2.1 Software Process Characteristics
	2.2 Software Process Modelling
	2.3 Software Process Improvement and Evaluation Approaches
	2.3.1 General Maturity Models
	2.3.2 The CMMI Approach
	2.3.3 The SPICE Approach
	2.3.4 The Six Sigma Approach
	2.3.5 The ITIL Approach
	2.3.6 Further Software Process Evaluation

	2.4 Summary

	3 CASE‐Based Software Development
	3.3 Summary
	3.1 CASE Tools
	3.2 CASE‐Based Processes

	4 Software Process Measurement and Evaluation
	4.2 Software Process Laws
	4.1 Software Process Indicators and Criteria
	4.3 Software Process Principles and Rules
	4.4 Software Process Rules of Thumb
	4.5 Software Process Experiments
	4.6 Software Process Case Studies
	4.7 Software Process Metrics and Measures
	4.8 Process Metrics Repositories
	4.9 Process Measurement Levels
	4.9.1 Software Process Establishment by Indicators and Criteria
	4.9.2 Software Process Improvement Modelling by Laws, Process Principles and Rules
	4.9.3 Empirical Software Process Modelling by Rules of Thumb, Process Experiments and
	4.9.4 Software Process Measurement Model by Process Metrics
	4.9.5 Software Process Management Models by Process Improvement Approaches

	4.10 Summary

	5 Framework of Quality Assurance Using CASE‐Tools
	5.1 Framework Principles: CASE Tool Based Software Processes
	5.1.1 General Principles
	5.1.2 CASE‐Based Orientation
	5.1.3 CASE Tool Based Process Evaluation

	5.2 Framework Kernel: Quality Measurement and Improvement
	5.2.1 Software Measurement Components
	5.2.2 Software Measurement Process Evaluation
	5.2.3 Software Measurement Improvements

	5.3 Framework Steps: Phases and Contents
	5.3.1 Analyzing the CASE Tool Based Process Situation
	5.3.2 Planning the CASE Tool Based Process Improvements
	5.3.3 Implementing the CASE Tool Based Process Improvements

	5.4 Summary

	6 Framework Application and Validation
	6.1 Chosen CASE Tool Situation
	6.2 CASE‐Based Test Scenario
	6.3 Appraisal of CASE Tool Evaluation Results
	6.3.1 Together Measurement Level
	6.3.2 Metrication in Visual Studio
	6.3.3 Measurement in Enterprise Architect
	6.3.4 Metrics Eclipse Plug‐in
	6.3.5 Metrics One Measurement Level
	6.3.6 Metrication in Embarcadero RAD Studio 2010

	6.4 Evaluation of CASE‐Based Quality Assurance
	6.5 Summary

	7 Conclusions and Future Research
	References

