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Zusammenfassung

Wir sind an Problemen interessiert, die mit der Existenz, Multiplizität, Po-
sitivität und dem Verhältnis von Lösungen von elliptischen partiellen Diffe-
rentialgleichungen zweiter und höherer Ordnung zu tun haben.

In allgemeinem erfüllen Probleme in der Form (−∆)mu = f in Ω ⊂ R2,
∂j/(∂ν)ju = 0 auf ∂Ω, mit m > 1, 0 ≤ j ≤ m − 1 weder die Maximum-
prinzipien noch die Positivitätserhaltungseigenschaft. Wir werden zeigen,
dass die Positivitätserhaltungseigenschaft für Gebiete erfüllt wird, die zu
einer Scheibe nah sind.

Dann werden wir einige Ergebnisse von Existenz und Multiplizität von
Lösungen des Steklov Problems von zweiter und vierter Ordnung darstellen.

Abschließend werden wir die singulären radialen Lösungen von ∆2u = λeu

in der Einheitsscheibe mit den Randbedingungen u = ∂u/∂ν = 0 charakte-
risieren. Wir werden zeigen, dass diese Lösungen schwach singulär sind, das
heißt, dass limr→0 ru

′(r) ∈ R existiert.



Abstract

We are interested in questions related with existence, multiplicity, positivity
and behaviour of solutions of elliptic boundary value problems of second and
higher order.

In general problems (−∆)mu = f in Ω ⊂ R2, ∂j/(∂ν)ju = 0 on ∂Ω, where
m > 1, 0 ≤ j ≤ m− 1 do not satisfy a maximum principle or the positivity
preserving property. We will show that for domains near to a circle positivity
preserving property is satisfied.

Then we will give some results of existence and multiplicity of solutions
of the Steklov problem of second and fourth order.

Finally we will characterize singular radial solutions of ∆2u = λeu in the
unit disk, with boundary conditions u = ∂u/∂ν = 0. We will show that
its radial singular solutions are weakly singular, it means limr→0 ru

′(r) ∈ R
exists.
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1 Introduction

We are interested in questions related with existence, multiplicity, positivity
and behaviour of solutions of boundary value problems of the kind{

(−∆)mu = f(u) in Ω,(
∂
∂ν

)j
u = 0 on ∂Ω, for j = 0, . . . ,m− 1

and related eigenvalue problems. Here is Ω ⊂ Rn a sufficient smooth domain
with external normal unitary vector ν; n,m ∈ N.

Many techniques familiar from second order equations do not extend even
to biharmonic equations, we just mention any form of a strong maximum
principle. We think that it is this reason that - up to now - the theory of
higher order nonlinear elliptic problems is by far less well developed than the
theory of second order elliptic equations.

On the other hand, significant progress has been achieved in the past
years, as far as e.g. comparison principles [40], positivity preserving proper-
ties, existence for semilinear biharmonic problems [32, 27] are concerned.

Among these questions we shall address the following

• For which domains do polyharmonic problems with homogeneous boun-
dary conditions assume positive solutions?

• When do exist solutions for the Steklov problem?

• Which is the behaviour of critical solutions for the nonlinear biharmonic
eigenvalue problem with exponential growth?

In what follows we sketch in which direction the mentioned questions are
investigated in the present thesis.

1.1 Positivity in perturbations of the two dimensional
disk

Strong maximum principles are known for elliptic equations of second order,
it means, given a linear elliptic differential operator of the form

Lu = aij(x)Diju+ bi(x)Diu+ c(x)u

with coefficients aij, bi, c, where i, j = 1 . . . , n defined on a bounded domain
Ω ⊂ Rn, with the matrix [aij] symmetric positive everywhere in Ω, which
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smallest eigenvalue is λ(x), such that |bi(x)|
λ(x)

≤ const ≤ ∞ is satisfied for
every i = 1, . . . , n, c = 0 and Lu ≥ 0, if u achieves its maximum in the
interior of Ω, then u is constant (see [35, Theorem 3.5])

For elliptic equations of higher order, the principle is not more available,
like for the polyharmonic function ũ := −|x|2 + 1 shows: on the domain
B = {x ∈ Rn : |x| ≤ 1} we have that ∆2ũ = 0 on B, but supB ũ = 1 is
achieved in the interior of Ω.

For more than one century mathematicians are asking, if and when maxi-
mum and comparison principles can be extended to problems of higher order,
for example in order to study the physical problem of the clamped plate: an
elastic horizontally clamped plate Ω ⊂ R2 subject to a vertical force f is
described by the system {

∆2u = f in Ω,
u = ∂

∂ν
u = 0 on ∂Ω.

(1)

We could suppose that, in reasonable regular domains, with a positive
load on the plate (it means with f ≥ 0), then the complete body should
move up, like conjectured Boggio [12] in 1901 or Hadamard [44] in 1908.
This hypothesis is correct in the case of Ω equal to a ball B, like Boggio [13]
proved. Even in the more general case, with Ω = B ⊂ Rn and substituting
∆2 with (−∆)m. In [13] (see also [37]), positivity of the Green function on
the ball B was shown. But in 1909 Hadamard [45] displayed that in an
annulus with small inner radius, the solution u could be negative, also if
f ≥ 0. Even assuming convexity for the domain Ω is not enough to prove
the positivity of the solution. Duffin [25] in 1949 was the first to disprove
this conjecture in an unbounded domain, then were found other examples of
convex domains in which, for suitable f ≥ 0, the solution changes sign, like
in [19, 20, 47, 54, 57, 63, 67]. In [31] is proved that the Green function for
(1) changes sign in oblong ellipses, Coffman and Duffin obtained the same
result in the case of a square.

But the circle is not the only domain that guarantees positivity for the
Green function for the clamped plate, like was explained by Grunau and
Sweers in [42]. Their work proved that if the domain is sufficiently near to
a disk in R2 in a certain sense, then 0 6≡ f ≥ 0 ⇒ u ≥ 0. In Section 2 we
will relax the required notion of closeness: it will be enough that the two-
dimensional domain has a curvature close to a constant in C0,α and no more
in C2.

Our results are restricted to two dimensions, because we will work with
conformal maps: in R2 the conformal maps are the holomorphic functions
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with non-zero derivative in C and we can use a suitable bjiective conformal
function that maps the domain Ω onto a unitary disk. In Rn, with n 6= 2,
the conformal functions map balls onto another ball, it means we can’t find
any bjiective conformal function from Ω onto a unitary ball.

1.2 Steklov boundary eigenvalue problems

Elliptic problems with parameters in the boundary conditions are called
Steklov problems from their first appearance in [64]. The system{

∆2u = g in Ω,
u = ∆u− (1− σ)κuν = 0 on ∂Ω

(2)

is interesting for its physical applications: when Ω is a planar domain with
smooth boundary, (2) describes the deformation of a linear elastic supported
plate Ω under the action of a vertical load g = g(x) is described by (2), where
κ is the curvature of its boundary and σ ∈ (−1, 1/2) is the Poisson ratio,
a measure for the transversal expansion or contraction when the material is
under the load of an external force. The Poisson ratio is given by the negative
transverse strain divided by the axial strain in the direction of the stretching
force. We refer to [51, 69] for more details. There are some materials (see
[51]) which have a negative Poisson ratio. This problem is connected to the
eigenvalue problem {

∆2u = 0 in Ω,
u = ∆u− δu = 0 on ∂Ω.

(3)

Moreover, as pointed out by [49], the least positive eigenvalue δ1 of (3) is the
sharp constant for a priori estimates for the Laplace equation{

∆v = 0 in Ω,
v = g on ∂Ω,

where g ∈ L2(Ω).
The boundary conditions of (3) are in some sense intermediate between

Dirichlet conditions (corresponding to δ = −∞) and Navier conditions (cor-
responding to δ = 0). Berchio, Gazzola, Mitidieri in [8] had shown that, for
suitable values of δ, (3) enjoys of the positivity preserving property.

In Section 3 we will study some Steklov problems of second and fourth
order.
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1.3 Semilinear biharmonic eigenvalue problems with
exponential growth

For many years nonlinear second order elliptic problems have been studied
in bounded and unbounded domains, looking for existence and multiplicity
of solutions, using many different techniques, like variational and topological
methods.

The Gelfand problem{
−∆u = λeu in Ω,
u = 0 on ∂Ω,

(4)

where Ω is a bounded smooth domain in Rn and λ a nonnegative parameter,
was first considered in 1853 by Liouville in [53] for the case n = 1, then by
Bratu in [14] for n = 2 and by Gelfand in [34] for n ≥ 1. For this reason is
also known as Liouville-Gelfand problem and as Bratu-Gelfand problem.

It has been deeply studied for its applications, like in the Chandrasekhar
model for the expansion of the universe (see [18]), or for the connection with
combustion problem, for example with the quasilinear parabolic problem of
the solid fuel ignition model{

ut = ∆u+ λ(1− εu)me(u/(1+εu)), in Ω,
u = 0 on ∂Ω.

(5)

Equation (5) describes the thermal reaction process in a combustible non-
deformable material of constant density during the ignition period, where u
is the temperature, 1/ε is the activation energy, λ is the Frank-Kamenetskii
parameter, a parameter determined by the reactivity of the reactants. The
system answers to the question to model a combustible medium placed in a
vessel whose walls are mantained at a fixed temperature, see [29]. Nontrivial
solutions of (4) arise as steady-state solutions of (5), with the approximation
ε� 1.

Problem (4) may have both unbounded (singular) and bounded (regular)
solutions ([16, 30]) and from the works [15, 23] we know, there exists a λ? > 0
such that for λ > λ? there is not any solution of (4) and for 0 ≤ λ < λ? there
exists a minimal regular solution Uλ for (4) and the map λ 7→ Uλ is smooth
and increasing.

The study of fourth order equations has often a physical application, as
it is explained in [59]: they can model cellular flows, water waves driven by
gravity and capillarity or travelling waves in suspension bridges.
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In order to gain a better comprehension of the behaviour of fourth order
equations, we study the problem{

∆2u = λeu in B,
u = ∂u

∂ν
= 0 on ∂B;

(6)

here B denotes the unit ball in Rn (n ≥ 5) centered at the origin and ∂
∂ν

the differentiation with respect to the exterior unit normal, i.e. the radial
direction. λ ≥ 0 is a parameter.

In particular, we will characterize the behaviour of critical solution of (6)
near the origin, extending the results obtained by Arioli, Gazzola, Grunau,
Mitidieri ([6]), using techniques of Ferrero, Grunau ([27]).

Simultaneously and independently Davila, Dupagne, Guerra, Montenegro
obtained quite similar results by different techniques, in [21].

1.4 Acknowledgment

I am deeply indebted to Profs. F. Gazzola and H.-Ch. Grunau for their
patience, time and support they offered to me, in order to pursue this goal.
And for their suggestions in order to grow professionally and humanly. They
have shown me, by their examples, how a good mathematician (and person)
should be.

I am grateful to all of those whom I have had the pleasure work with or
only know, during my time spent for my Ph.D., in particular to Marco, the
other colleagues and all the friends that have made my days so nice.

Nobody has been more important to me than my parents and my sister,
whose attachment and support are with me in whatever I pursue. Thank
you to be here.
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2 Positivity in perturbations of the two di-

mensional disk

2.1 Introduction

We are looking for positivity preserving property for the polyharmonic op-
erator of arbitrary order under homogeneous Dirichlet boundary conditions
on domains Ω ⊂ R2:

{
(−∆)mu = f in Ω,
∂j

∂νj
u = 0 on ∂Ω, 0 ≤ j ≤ m− 1.

We ask, which condition do we have to impose on the domain Ω, such
that nonnegativity of the right-hand side 0 6≡ f ≥ 0 implies a positivity of
the solution u.

The analogous problem with the Laplacian operator is solved by the
strong maximum principle, if the boundary of Ω is sufficiently smooth.

Looking at the past works, we can find that Boggio [13] in 1905 deter-
mined explicitly the Green function Gm,n for (−∆)m on the unit ball B ⊂ Rn

and proved the positivity Gm,n(x, y) > 0 for x, y ∈ B, x 6= y. Some years ago,
a work of Grunau and Sweers [42] gave conditions for regularity and close-
ness of the two-dimensional domain for polyharmonic operators, such that
the positivity preserving property holds. In particular, Ω has to be close to
a circle. Here, we will improve their results, showing that the property holds
also for domains that differ a bit more from B. In the first subsection of this
work is demonstrated the existence of a biholomorphic function h from B
to Ω, while closeness of Ω to B implies closeness of the map to the identity.
In the second subsection we will pull back the differential operator (−∆)m

from Ω to B using h. We obtain a new operator, whose principal part is
polyharmonic, such that we can involve results that ensure the positivity of
the solution for such an operator on the disk.

2.2 Perturbation of the domain

In order to estimate the regularity of a domain we recall the following defi-
nition of [35, section 6.2]:

Definition 2.1 A bounded domain Ω ⊂ Rn and its boundary are of class
Cm,γ, 0 ≤ γ ≤ 1, if at each point x0 ∈ ∂Ω there is a ball B0 = B(x0) and a
one-to-one mapping ψ of B0 onto D ⊂ Rn such that:
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i) ψ(B0 ∩ Ω) ⊂ Rn
+;

ii) ψ(B0 ∩ ∂Ω) ⊂ ∂Rn
+;

iii) ψ ∈ Cm,γ(B0), ψ−1 ∈ Cm,γ(D).

Here we will explain the meaning of Ω close to a ball:

Definition 2.2 Let ε ≥ 0. We call Ω ε-close in Cm,γ-sense to Ω?, if there
exists a Cm,γ mapping g : Ω? → Ω such that g

(
Ω?
)

= Ω and

‖g − Id‖Cm,γ(Ω?) ≤ ε.

We are now ready to introduce our first result:

Theorem 2.3 Let δ be given. Then there is some ε0 = ε0(δ,m) > 0 such
that for ε ∈ [0, ε0) we have the following:

If the Cm,γ domain Ω is ε-close in Cm,γ-sense to B, then there is a
biholomorphic mapping h : B → Ω, h ∈ Cm,γ(B), h−1 ∈ Cm,γ(Ω) with
‖h− Id‖Cm,γ(B) ≤ δ.

Comparing this result with the analogous one by Grunau and Sweers [40],
we gain an order of derivative in the estimate for h − Id. There are some
similar results also in [60, 62].

In order to build the function h, we introduce the following lemma:

Lemma 2.4 Let Ω be a domain ε-close to a disk B in Cm,γ-sense. Let g be
a map satisfying g : B → Ω, with ‖g−Id‖Cm,γ(B) < ε, and let ϕ1(x) = log |x|
on the boundary of Ω.

Then there exists a function ϕ̂ ∈ Cm,γ(B) such that ϕ̂ = ϕ1 ◦ g on ∂B
and ‖ϕ̂‖Cm,γ(B) ≤ O(ε).

Proof: Let

ψb(θ) := ϕ1(g(cos θ, sin θ)), ψi(x) := ϕ1

(∣∣∣∣g( x

|x|

)∣∣∣∣) .
So ψb takes the values of ϕ1 from the boundary of Ω to the boundary of B
and ψi is the radial extension of these values in the interior of B. Namely
if we evaluate the function ψi(x) when x := f(θ) = (cos(θ), sin(θ)), that is
when x ∈ ∂B:

ψi(x) =
1

2
log

(
g2

1

(
x

|x|

)
+ g2

2

(
x

|x|

))
= log

(
g2

1(cos(θ), sin(θ)) + g2
2(cos(θ), sin(θ))

)
= ψb(θ).
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Notice that ψi is not defined in the origin and has not a compact support.
For these reasons we choose a function ϕ2 such that

ϕ2 ∈ C∞0 (R2), ϕ2(x) =


1 1

2
≤ |x| ≤ 2,

0 |x| < 1
4
, |x| > 4,

0 < ϕ2 < 1 otherwise.

Define
ϕ̂(x) := ϕ2(x)ψi(x).

It is the aimed function: on ∂B is ϕ̂ = ϕ1◦g, in B 1
4

is ϕ̂ = 0 and ϕ̂ ∈ Cm,γ(B).
Then, the norm

‖ϕ̂‖Cm,γ(B) = ‖ϕ̂‖
Cm,γ

(
B\B 1

4

)

≤ C1

(
m∑
j=0

(
j∑

k=0

∣∣∣∣ ∂jϕ̂

∂rk∂θj−k

∣∣∣∣
0; Ω

)
+

[
∂mϕ̂

∂rj∂θm−j

]
γ; Ω

)
, (7)

with polar coordinates (r, θ) and a suitable constant C1. Because of ϕ̂ = ϕ2ψi,
the regularity of ϕ2 and all the derivatives of ψi with respect to r being zero,
we obtain

(7) ≤ C2

(
m∑
j=0

∥∥∥∥∂jψi∂θj

∥∥∥∥
C0(Ω)

+

∥∥∥∥∂mψi∂θm

∥∥∥∥
C0,γ(Ω)

)
,

again with a suitable constant C2. Because of the radial indipendence of ϕ1,
then

∂jψi
∂θj

(x) =
∂jψi
∂θj

(
x

|x|

)
=
∂jψb
∂θj

(θ).

Let g̃(θ) := g(f(θ)) = g(cos(θ), sin(θ)); then(
d

dθ

)j
ψb =

(
d

dθ

)j
(ϕ1 ◦ g̃)

=

j∑
|~α|=1

((D~αϕ1) ◦ g̃)

 ∑
p1+···+p|~α|=j

1≤pl

dj,~α,~p

|~α|∏
l=1

(
d

dθ

)pl
g̃(βl)

 ,
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with some suitable coefficients dj,~α,~p, βl = 1 for l = 1, . . . , α1 and βl = 2 for
l = α1 + 1, . . . , |~α|. Let g̃0(θ) := Id(f(θ)). We observe first that

‖g̃ − g̃0‖C1,0([0,2π]) = sup
θ∈[0,2π]

|g̃(θ)− g̃0(θ)|+ sup
θ∈[0,2π]

|g̃′(θ)− g̃′0(θ)|

≤ sup
θ∈[0,2π]

|g(f(θ))− Id(f(θ))|

+ sup
i=1,2

sup
θ∈[0,2π]

|∂xi(g(f(θ)))fi(θ)− ∂xi(Id(f(θ)))fi(θ))|

≤ sup
x∈B
|g(x)− Id(x)|

c7 + sup
i=1,2

sup
x∈B

θ∈[0,2π]

|∂xi(g(x)− Id(x))fi(θ)|

≤ sup
x∈B
|g(x)− Id(x)|+ sup

i=1,2
sup
x∈B
|∂xi(g(x)− Id(x))|

= ‖g − Id‖C1,0(B) ≤ O(ε).

And further:(
d

dθ

)j
ψb =

j∑
|~α|=1

((D~αϕ1) ◦ g̃ − (D~αϕ1) ◦ g̃0 + (D~αϕ1) ◦ g̃0)

×
∑

p1+···+p|~α|=j
1≤pl

dj,~α,~p

|~α|∏
l=1

((
d

dθ

)pl
g̃(βl) −

(
d

dθ

)pl
g̃

(βl)
0

+

(
d

dθ

)pl
g̃

(βl)
0

)
.

Observing that ϕ1(g̃0(θ)) = log |(cos(θ), sin(θ))| ≡ 0, then all derivatives of
ϕ1(g̃0(θ)) are zero. It remains to study(

d

dθ

)pl
g̃(βl) −

(
d

dθ

)pl
g̃

(βl)
0 (8)

and (
D~αϕ1

)
◦ g̃ −

(
D~αϕ1

)
◦ g̃0. (9)
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Because of the sufficient regularity of ϕ1, it is much easier to estimate (9) in
the norm ‖ . ‖C1,0([0,2π]), than in ‖ . ‖C0,γ([0,2π]):∥∥(D~αϕ1

)
◦ g̃ −

(
D~αϕ1

)
◦ g̃0

∥∥
C1,0([0,2π])

= sup
θ∈[0,2π]

∣∣(D~αϕ1

)
◦ g̃(θ)−

(
D~αϕ1

)
◦ g̃0(θ)

∣∣ (10)

+ sup
θ∈[0,2π]

∣∣∣[(D~αϕ1

)
◦ g̃(θ)−

(
D~αϕ1

)
◦ g̃0(θ)

]′∣∣∣ . (11)

The equation ϕ1(x) = log(|x|) implies

sup
~̃α

max
x∈B1+ε(0)

x 6∈B1−ε(0)

|D~α+~̃αϕ1(x)| < C3, sup
|~α|=2

max
x∈B1+ε(0)

x 6∈B1−ε(0)

|D~α+~αϕ1(x)| < C4,

with suitable constants C3 and C4. Then

(10) ≤ sup
|~̃α|=1

max
x∈B1+ε(0)

x 6∈B1−ε(0)

|D~α+~̃αϕ1(x)| sup
θ∈[0,2π]

|g̃(θ)− g̃0(θ)|

≤ C3 sup
θ∈[0,2π]

|g̃(θ)− g̃0(θ)| ≤ O(ε); (12)

(11) = sup
θ∈[0,2π]

∣∣∣∣∣
2∑
i=1

((∂xiD
αϕ1) ◦ g̃(θ) · g̃′i(θ)

−(∂xiD
αϕ1) ◦ g̃0(θ) · g̃′0i(θ))| . (13)

We subtract and add
∑2

i=1 [((∂xiD
αϕ1) ◦ g̃(θ)) · g̃′0i(θ)] to (13) and recall that

|g̃′0(θ)| = |(− sin(θ), cos(θ))| = 1:

(13) = sup
θ∈[0,2π]

∣∣∣∣∣
2∑
i=1

{(∂xiDαϕ1) ◦ g̃(θ) · [g̃(θ)− g̃0(θ)]′i

− [(∂xiD
αϕ1) ◦ g̃0(θ)− (∂xiD

αϕ1) ◦ g̃(θ)] · g̃′0i(θ)}

∣∣∣∣∣
≤ sup

|α̃|=1

max
x∈B1+ε(0)

x 6∈B1−ε(0)

∣∣Dα+α̃ϕ1(x)
∣∣ sup
θ∈[0,2π]

|[g̃(θ)− g̃0(θ)]′|

+ sup
|α|=2

max
x∈B1+ε(0)

x 6∈B1−ε(0)

∣∣Dα+αϕ1(x)
∣∣ sup
θ∈[0,2π]

|[g̃(θ)− g̃0(θ)]|

≤ C3 sup
θ∈[0,2π]

|[g̃(θ)− g̃0(θ)]′|+ C4 sup
θ∈[0,2π]

|[g̃(θ)− g̃0(θ)]|

≤ C3O(ε) + C4O(ε) ≤ O(ε). (14)
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So, combining (12) and (14), we have

‖(Dαϕ) ◦ g̃ − (Dαϕ) ◦ g̃0‖C1,0([0,2π]) ≤ O(ε).

It rest to evaluate (8) with respect to the norm ‖ · ‖C0,γ([0,2π]):∥∥∥∥( d

dθ

)pl (
g̃(βl) − g̃(βl)

0

)∥∥∥∥
C0,γ([0,2π])

≤ max
x∈∂B
|α|=m

|Dα (g(x)− Id(x)) |

+ max
x,y∈∂B
|α|=m

1

|x− y|γ
|Dα (g(x)− Id(x))

−Dα (g(y)− Id(y)) |. (15)

The maximum, estimated only for elements on the boundary of B is smaller
than the maximum evaluated on B, so

(15) ≤ ‖g − Id‖Cm,γ(B) ≤ O(ε).

2

Now we can proceed with:
Proof of Theorem 2.3: According to [22, 66], the holomorphic mapping h,
which has the desired qualitative properties, may be constructed in the fol-
lowing way. By Lemma 2.4 there is a function ϕ̂ such that

‖ϕ̂‖Cm,γ(B) ≤ O(ε).

We know, there exists a solution r for the problem{
∆r = 0 x ∈ B,
r(x) = ϕ̂(x) x ∈ ∂B

and in view of [35, Corollary 6.7, Paragraph 6.4] we obtain the estimation
‖r(x)‖Cm,γ(B) ≤ O(ε). Let G(x, 0) be the Green function for −∆ in B under
homogeneous Dirichlet condition, it means

G(x, 0) := − 1

2π
(log |x| − r(x))

and set

ω(x) := 2πG(x, 0).
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Then we define the harmonic conjugated function of ω

ω∗(x) :=

∫ x

1
2

(
− ∂

∂ξ2

ω(ξ) dξ1 +
∂

∂ξ1

ω(ξ) dξ2

)
,

where the integral is taken with respect to any curve from 1
2

to x in Ω \ {0}.
The integral is well defined up to multiples of 2π and we can define

h−1(x) := e−ω(x)−iω∗(x),

such that its inverse is the function that satisfies Theorem 2.3: h−1 is holo-
morphic, h−1(Ω) ⊂ B. One finds that h−1(0) = 0, h−1

(
1
2

)
∈ R+ and if

x ∈ ∂Ω, then |h−1(x)| = |e−iω∗(x)| = 1, it means that h−1(∂Ω) = ∂B, for
x ∈ Ω \ {0}, ω(x) > 0, |h−1(x)| < 1 and then h−1(Ω) ⊂ B. 2

2.3 Pull back of the operator

The purpose of this subsection is to find a property that ensures the positivity
preserving property for the problem{

(−∆)mu = f in Ω,
∂j

∂νj
u = 0 on ∂Ω, 0 ≤ j ≤ m− 1.

(16)

In Theorem 2.3 we have seen, if Ω is sufficiently close to the unit ball B, then
there is a biholomorphic function h that maps B on Ω. We can use h to pull
back the polyharmonic operator from Ω to the ball, where we know that the
positivity preserving property applies. We will see in details what happens.

By Theorem 2.3 let h : B → Ω, h : (ξ1, ξ2) 7→ (x1, x2), h ∈ Cm,γ(B). We
compose both parts of the first equation of (16) with h:

((−∆)mu) ◦ h = f ◦ h on B, (17)

where ∆ is the Laplacian with respect to x = (x1, x2). Let us denote by
∆∗ the Laplacian with respect to z = ξ1 + iξ2 = (ξ1, ξ2), such that we can
identify the real and the complex variables z ∈ C; let v := (u ◦ h) and h′

the complex derivative of h. The Laplacian in complex coordinates can be
rewritten as

∆∗ = 4
∂

∂z

∂

∂z
.
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Let g be a twice continuously differentiable function, g : C→ R;

∂

∂z
g =

1

2

(
∂

∂ξ1

− i ∂
∂ξ2

)
g;

∂

∂z
g =

1

2

(
∂

∂ξ1

+ i
∂

∂ξ2

)
g;

4
∂

∂z

∂

∂z
g =

4

4

[(
∂

∂ξ1

− i ∂
∂ξ2

)(
∂

∂ξ1

+ i
∂

∂ξ2

)
g

]
=

∂

∂ξ1

(
∂

∂ξ1

g + i
∂

∂ξ2

g

)
− i ∂

∂ξ2

(
∂

∂ξ1

g + i
∂

∂ξ2

g

)
=

(
∂

∂ξ1

)2

g +

(
∂

∂ξ2

)2

g = ∆g.

We see that if equation (17) holds in B then

∆∗ (u ◦ h) = ∆∗v = [(∆u) ◦ h] |h′|2 ;

− 1

|h′|2
∆∗(u ◦ h) = (∆u) ◦ h;

f ◦ h =

(
−1

|h′|2
∆∗
)m

(u ◦ h) =

(
−1

|h′|2
∆∗
)m

v.

We turn our attention to the operator
(
− 1
|h′|2 ∆∗

)m
:

Lemma 2.5 Let h be a holomorphic function and let v be a function in
C2m(B), then the operator (

−1

|h′|2
∆

)m
v

contains no derivatives of h of order larger than m. Here h′ denotes the
complex derivative of h.

Proof: We identify C with R2 and denote z = ξ1 + iξ2 for (ξ1, ξ2) ∈ R2.
We proceed by induction: obviously the claim holds for m = 1. In order

to show the underlying idea how to exploit h being holomorphic, we first
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treat the case m = 2:(
−1

|h′|2
∆

)2

v =
−4

|h′|2
∂z∂z

[(
− 1

|h′|2
∆

)
v

]
=

4

|h′|2

[
(∂z∂z∆v)

1

|h′|2
+ (∂z∆v)

(
∂z

1

h′

)
1

h′

+ (∂z∆v)

(
∂z

1

h′

)
1

h′
+ ∆v

(
∂z

1

h′

)(
∂z

1

h′

)]
=

1

|h′|2

[
1

|h′|2
∆2v − 4

1h′′

h′h′
2∂z∆v − 4

h′′

h′2h′
∂z∆v + 4

|h′′|2

|h′|4
∆v

]
.

Now, we suppose that our hypothesis is true for some m ≥ 2.(
−1

|h′|2
∆

)m
v = (−1)m

m∑
β1,β2=1

(m)

F β1β2

(
h(m+1−β1), . . . , h′, h(m+1−β2), . . . , h′

)
×∂β1

z ∂
β2

z v, (18)

where
(m)

F β1β2=
(m)

F β1β2 (η1, . . . , ηm+1−k, ζ1, . . . , ζm+1−j) is a smooth function of
both h and h derivatives except for h′ = 0 and with β1, β2 ≤ m. Then we
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show that the (18) is also true replacing m by m+ 1:(
−1

|h′|2
∆

)m+1

v = (−1)m+1

(
1

|h′|2
∆

)[(
1

|h′|2
∆

)m
v

]
= 4

(−1)m+1

|h′|2
∂z∂z

m∑
β1,β2=1

[
(m)

F β1β2 (h(m−β1+1), . . . , h′, h(m−β2+1), . . . , h′)

×∂β1
z ∂

β2

z v

]

= 4
(−1)m+1

|h′|2
∂z


m∑

β1,β2=1

∂ (m)

F β1β2

∂ζ1

h(m−β2+2) + · · ·+ ∂
(m)

F β1β2

∂ζm+1−β2

h′′


×∂β1

z ∂
β2

z v +

[
m∑

β1,β2=1

(m)

F β1β2 ∂
β1
z ∂

β2

z ∂zv

]}

= (−1)m+1 4

|h′|2
∂z


m∑

β1,β2=1

m+1−β2∑
k=1

∂
(m)

F β1β2

∂ζk
h(m+3−β2−k)

 ∂β1
z ∂

β2

z v

+

[
m∑

β1,β2=1

(m)

F β1β2

(
h(m+1−β1), . . . , h′, h(m+1−β2), . . . , h′

)
∂β1
z ∂

β2

z ∂zv

]}

= (−1)m+1 4

|h′|2

{
m∑

β1,β2=1

[A+B + C +D]

}
,

where

A =

(
m+1−β1∑
j=1

m+1−β2∑
k=1

∂2
(m)

F β1β2

∂ηj∂ζk
h(m+3−β1−j)h(m+3−β2−k)

)
∂β1
z ∂

β2

z v,

B =

(
m+1−β2∑
k=1

∂
(m)

F β1β2

∂ζk
h(m+3−β2−k)

)
∂β1+1
z ∂β2

z v,

C =

(
m+1−β1∑
j=1

∂
(m)

F β1β2

∂ηj
h(m+3−β1−j)

)
∂β1
z ∂

β2+1
z v,

D =

(
(m)

F β1β2

)
∂β1+1
z ∂β2+1

z v.

Note that every
(m)

F β1β2 and its derivatives contain derivatives of h (re-
spectively h) of order at most m−β1 + 1 (resp. m−β2 + 1). The derivatives



2 POSITIVITY IN PERTURBATIONS OF THE DISK 20

of
(m)

F β1β2 are multiplied by h(m+3−β2−k) and/or h(m+3−β1−j), so the highest
derivatives of h and h have order m+ 1. 2

We report here a result obtained by Grunau and Sweers, [42, Theorem
5.1], which we will involve in proving our main result:

Let ñ ≥ 1 and B the unit ball in Rñ. Consider the equation{
((−∆)m +A)u = f in B,
Dmu = 0 on ∂B, (19)

where

A =
∑
|α|<2m

aα(x)Dα, Dmu = (Dku)k∈Nn,|k|≤m−1

and aα ∈ C(B). The operator A is a lower order perturbation of (−∆)m.

Lemma 2.6 There exists ε0 > 0 such that, if ‖aα‖∞ ≤ ε0 for all α with
|α| < 2m, then the following holds.

i) For all f ∈ Lp(B) there exists a solution u ∈ W 2m,p(B) ∩Wm,p
0 (B) of

(19).

ii) Moreover, if f ∈ Lp(B) and 0 6≡ f ≥ 0 in B, then the solution of (19)
satisfies u > 0 in B.

Now we can introduce our main result:

Theorem 2.7 Let m ≥ 2, 0 < γ < 1. Then there is some ε0 = ε0(m, γ) > 0
such that for 0 < ε < ε0, the following holds:

If the domain Ω ⊂ R2 is Cm,γ − smooth and ε-close to the disk in Cm,γ-
sense and f ∈ C0,γ(Ω), 0 6≡ f ≥ 0, then the uniquely determined solution
u ∈ Cm,γ(Ω) of{

(−∆)mu = f in Ω,
∂j

∂νj
u = 0 on ∂Ω, 0 ≤ j ≤ m− 1

is strictly positive.

Proof: The existence and unicity of the solution of this problem has been
proved by Agmon, Douglas and Nirenberg, [2, Section 8], cfr. also [35].
Theorem 2.3 ensures the existence of a sufficient regular and close to identity
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map h, that we can use to pull back (−∆)m to the unit disk. Here the
differential operator becomes(

− 1

|h′|2
∆

)m
v,

and contains derivatives of order no more than m of h and h, that are next
to disappear. So we can apply Theorem 2.6 in the case ñ = 2 and obtain the
positivity of the solution. 2

Theorems 2.3, 2.7 use Definition 2.2 of ε-closeness. It needs the knowl-
edge of a sufficient regular map g

(
Ω?
)

= Ω, that is a quite unconfortable
requireness. It is easier and more natural to define the closeness only with
the boundaries:

Lemma 2.8 Let ∂Ω be given by the curve: α : R → R2, α 2π−periodic,
α ∈ Cm,γ, with ‖α(t) − (cos(t), sin(t))‖Cm,γ([0,2π]) ≤ ε. Then Ω is ε̃-close to
B1(0) in Cm,γ-sense, where ε̃ = ε̃(ε,m) = O(|ε|).

Proof: Let (x1, x2) = (ρ cos(ϕ), ρ sin(ϕ)) ∈ B1(0); we set

g : (ρ cos(ϕ), ρ sin(ϕ)) 7→ (ρα1(ϕ), ρα2(ϕ)).

Its differential is

Dg =

(
α1(ϕ) ρα′1(ϕ)
α2(ϕ) ρα′2(ϕ)

)
1

ρ

(
ρ cos(ϕ) ρ sin(ϕ)
− sin(ϕ) cos(ϕ)

)
=

(
α1(ϕ) cos(ϕ)− α′1(ϕ) sin(ϕ) α1(ϕ) sin(ϕ) + α′1(ϕ) cos(ϕ)
α2(ϕ) cos(ϕ)− α′2(ϕ) sin(ϕ) α2(ϕ) sin(ϕ) + α′2(ϕ) cos(ϕ)

)
.(20)

So we obtain

∂g1

∂x1

= α1(ϕ) cos(ϕ)− α′1(ϕ) sin(ϕ)

= (cos(ϕ) +O(ε)) cos(ϕ) + (sin(ϕ) +O(ε)) sin(ϕ) = 1 +O(ε).

That is

(20) =

(
1 +O(ε) O(ε)
O(ε) 1 +O(ε)

)
.
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Calculating the second derivatives we obtain

D
∂g

∂x1

=

(
0 (α′1(ϕ)− α′1(ϕ)) cos(ϕ)− (α1(ϕ) + α′′1(ϕ)) sin(ϕ)
0 (α′2(ϕ)− α′2(ϕ)) cos(ϕ)− (α2(ϕ) + α′′2(ϕ)) sin(ϕ)

)
×1

ρ

(
ρ cos(ϕ) ρ sin(ϕ)
− sin(ϕ) cos(ϕ)

)
=

1

ρ

(
sin2(ϕ)(α1(ϕ) + α′′1(ϕ)) − sin(ϕ) cos(ϕ)(α1(ϕ) + α′′1(ϕ))
sin2(ϕ)(α2(ϕ) + α′′2(ϕ)) − sin(ϕ) cos(ϕ)(α2(ϕ) + α′′2(ϕ))

)
.

We observe, the second derivatives have a discontinuity in the point (0, 0).
In order to solve this problem of regularity in a neighborhood of the origin,
we define a cut-off function ψ ∈ C∞ with

ψ(x) = 0 |x| < 1
4
,

0 ≤ ψ(x) ≤ 1 1
4
≤ |x| ≤ 1

2
,

ψ(x) = 1 |x| > 1
2
.

We introduce the function

g̃(x) :=


g(x) |x| > 1

2
,

g(x)ψ(x) + x(1− ψ(x)) 1
4
≤ |x| ≤ 1

2
,

x |x| < 1
4
.

We shall now prove that g̃ has the desired properties. On Ω \B 1
2
(0)

∂|j| (g̃ − Id)i
∂xj11 ∂x

j2
2

=
∂|j|
{
ρ
[
α− Id

ρ

]}
i

∂xj11 ∂x
j2
2

=
1

ρ|j|−1
µ~j(ϕ), (21)

where

µ~j(ϕ) =
|j|∑
h=0

νh,i,~j(ϕ)σh,i,~j(ϕ),

νh,i,~j(ϕ) =
(

∂
∂ϕ

)h
(α1(ϕ)− cos(ϕ), α2(ϕ)− sin(ϕ))i ,

σh,i,~j(ϕ) =
∑

k1+k2=|j|
k1,k2≥0

ch,i,~j,~k(cos(ϕ))k1(sin(ϕ))k2 ,

with some suitable coefficients ch,i,~j,~k. We imposed

‖α(ϕ)− (cos(ϕ), sin(ϕ))‖Cm,γ([0,2π]) ≤ O(ε).
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So for every ~j, such that |j| ≤ m we have(
∂

∂ϕ

)h
(α1(ϕ)− cos(ϕ), α2(ϕ)− sin(ϕ)) ≤ O(ε)

and then (21) ≤ O(ε). We consider only the Hölder seminorm of the highest
order derivative, because lower order derivatives are more regular. If we set
w := ρ1(cos(ϕ1), sin(ϕ1)) and z := ρ2(cos(ϕ2), sin(ϕ2)), then

[g̃ − Id]m,γ,Ω\B 1
2

(0) = sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣∂|j|(g̃−Id)i
∂x
j1
1 ∂x

j2
2

(w)− ∂|j|(g̃−Id)i
∂x
j1
1 ∂x

j2
2

(z)
∣∣∣

|w − z|γ

= sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣ 1
ρm−1

1

µ~j(ϕ1)− 1
ρm−1

2

µ~j(ϕ2)
∣∣∣

|w − z|γ
. (22)

Applying the notation of (21), we add and subtract to the numerator the
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quantity 1
ρm−1

1

µ~j(ϕ2):

(22) ≤ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣ 1
ρm−1

1

(
µ~j(ϕ1)− µ~j(ϕ2)

)∣∣∣
|w − z|γ

+ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣( 1
ρm−1

1

− 1
ρm−1

2

)
µ~j(ϕ2)

∣∣∣
|w − z|γ

≤ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣∣∣ 1
ρm−1

1

|j|∑
h=0

[
νh,i,~j(ϕ1)

(
σh,i,~j(ϕ1)− σh,i,~j(ϕ2)

)]∣∣∣∣∣
|w − z|γ

+ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣∣∣ 1
ρm−1

1

|j|∑
h=0

[(
νh,i,~j(ϕ1)− νh,i,~j(ϕ2)

)
σh,i,~j(ϕ2)

]∣∣∣∣∣
|w − z|γ

+ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣( 1
ρm−1

1

− 1
ρm−1

2

)
· µ~j(ϕ2)

∣∣∣
|w − z|γ

≤ sup
|j|=m

w,z∈Ω\B 1
2

(0)

1

ρm−1
1

|j|∑
h=0

[∣∣νh,i,~j(ϕ1)
∣∣ ∣∣(σh,i,~j(ϕ1)− σh,i,~j(ϕ2)

)∣∣
|w − z|γ

]
(23)

+ sup
|j|=m

w,z∈Ω\B 1
2

(0)

1

ρm−1
1

|j|∑
h=0

[∣∣νh,i,~j(ϕ1)− νh,i,~j(ϕ2)
∣∣

|w − z|γ
∣∣σh,i,~j(ϕ2)

∣∣] (24)

+ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣ 1
ρm−1

1

− 1
ρm−1

2

∣∣∣
|w − z|γ

∣∣µ~j(ϕ2)
∣∣. (25)

Studying term by term (23), (24) and (25), we can show that they are all
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sufficiently small:

(23) ≤ sup
|j|=m

w,z∈Ω\B 1
2

(0)

1

ρm−1
1︸ ︷︷ ︸

≤2m−1

|j|∑
h=0

[
sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣νh,i,~j(ϕ1)
∣∣

︸ ︷︷ ︸
≤O(ε)

× sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣ ∈C∞︷ ︸︸ ︷
σh,i,~j(ϕ1)− σh,i,~j(ϕ2)

∣∣
|w − z|γ︸ ︷︷ ︸

≤C5

]
≤ O(ε),

(24) ≤ sup
|j|=m

w,z∈Ω\B 1
2

(0)

1

ρm−1
1︸ ︷︷ ︸

≤2m−1

|j|∑
h=0

[
sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣ ∈C0,γ︷ ︸︸ ︷
νh,i,~j(ϕ1)− νh,i,~j(ϕ2)

∣∣
|w − z|γ︸ ︷︷ ︸

≤O(ε)

× sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣ ∈C∞︷ ︸︸ ︷
σh,i,~j(ϕ2)

∣∣
︸ ︷︷ ︸

≤C6

]
≤ O(ε),

(25) ≤ sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣∣∣∣
∈C∞︷ ︸︸ ︷

1

ρm−1
1

− 1

ρm−1
2

∣∣∣∣∣
|w − z|γ︸ ︷︷ ︸

C7

sup
|j|=m

w,z∈Ω\B 1
2

(0)

∣∣ ∈C0,γ︷ ︸︸ ︷
µ~j(ϕ2)

∣∣
︸ ︷︷ ︸

≤O(ε)

≤ O(ε).

It means, (22) ≤ O(ε). On A :=
{
x : 1

4
≤ |x| ≤ 1

2

}
we have the same esti-

mate, multiplied with another constant:

‖g̃ − Id‖Cm,γ(A) = ‖g · ψ + Id · (1− ψ)− Id‖Cm,γ(A)

= ‖(g − Id) · ψ‖Cm,γ(A) ≤ O(ε).

Finally, g̃ on B 1
4
(0) is the Id, so

‖g̃ − Id‖Cm,γ(B 1
4

(0)) = 0.

2
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3 Steklov boundary value problems

3.1 Introduction

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with ∂Ω ∈ C2, let d, δ ∈ R and
consider the linear problems

(P2)

{
−∆u = f in Ω,
uν − du = 0 on ∂Ω ,

(P4)

{
∆2u = g in Ω,
u = ∆u− δuν = 0 on ∂Ω ,

where uν denotes the outer normal derivative of u on ∂Ω and f, g ∈ L2(Ω).
If d = 0, then (P2) becomes a Neumann problem.

By solution of (P2) and (P4) we mean, respectively, a function u ∈ H1(Ω)
and u ∈ H2 ∩H1

0 (Ω) such that∫
Ω

∇u∇v dx = d

∫
∂Ω

uv dS +

∫
Ω

fv dx for all v ∈ H1(Ω)

and∫
Ω

∆u∆v dx = δ

∫
∂Ω

uνvν dS +

∫
Ω

gv dx for all v ∈ H2 ∩H1
0 (Ω).

We obtain these formulations by multiplying the first equation of (P2) by a
function v ∈ H1(Ω) and integrating by parts on Ω:∫

Ω

fv dx =

∫
Ω

−∆uv dx = −
∫
∂Ω

uνv dS +

∫
Ω

∇u∇v dx

= −
∫
∂Ω

duv dS +

∫
Ω

∇u∇v dx.

In the same way, multiplying by v ∈ H2 ∩H1
0 (Ω), problem (P4) becomes∫

Ω

gv dx =

∫
Ω

∆2uv dx =

∫
Ω

∇∆u∇v dx =

∫
∂Ω

∆uvν dS −
∫

Ω

∆u∆v dx.

A crucial role in the solvability of (P2) and (P4) is played by the eigen-
value problems

(E2)

{
∆u = 0 in Ω,
uν − du = 0 on ∂Ω ,

(E4)

{
∆2u = 0 in Ω,
u = ∆u− δuν = 0 on ∂Ω .

We say that d (resp. δ) is an eigenvalue of (E2) (resp. (E4)) if the problem
admits nontrivial solutions u 6≡ 0, the corresponding eigenfunctions.
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In the following subsection we will study (E2), (E4), (P2) and (P4) in
one dimension: when do these problems admit solutions and their equations.
In the second and third subsections we will describe the spectrum of (E2)
and (E4) in a general domain and in the case of Ω equal to the unit ball B.
In the fourth subsection we will report a result of existence of solution for
problem (P4) when δ is equal to an eigenvalue. In the fifth we introduce a
nonlinearity in (P2) and (P4), we will see, there are infinitely many solutions
in this case.

3.2 The one-dimensional case

Dimension 1 is a special case with particular properties. Namely,

Proposition 3.1 System (E2) becomes
u′′(x) = 0 on (−1, 1),
u′(−1) = −du(−1),
u′(1) = du(1)

(26)

and it admits nontrivial solutions only for the two eigenvalues d1 = 0 and
d2 = 1 with eigenfunctions respectively ϕ1(x) = b, for any b ∈ R and ϕ2(x) =
ax, for any a ∈ R.

Proof: From u′′(x) = 0 it follows that the solution u is a polynomial of
first order u(x) = ax + b. Consequently the boundary conditions of (26)
become{

a = da− db,
a = da+ db,

that is

(
1− d d
1− d −d

)(
a
b

)
=

(
0
0

)
.

The system admits nontrivial solution only for the eigenvalues, that are d1 =
0 and d2 = 1. Substituting these values in the boundary conditions, it is easy
to obtain the eigenfunctions. 2

Proposition 3.2 System (E4) becomes
u(4)(x) = 0 on (−1, 1),
u′′(−1) = −δu′(−1),
u′′(1) = δu′(1),
u(−1) = 0,
u(1) = 0

(27)

and it admits nontrivial solution only for the two eigenvalues δ1 = 1, δ2 = 3
with eigenfunction respectively ψ1(x) = bx2 − b, for any b ∈ R and ψ2(x) =
ax3 − ax, for any a ∈ R.
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Proof: From u(4)(x) = 0 it follows that the solution u is a polynomial of
the third grade u(x) = ax3 + bx2 + cx+ d.

Consequently the boundary conditions of (27) become
−6a+ 2b = −3δa+ 2δb− δc,
6a+ 2b = 3δa+ 2δb+ δc,
−a+ b− c+ d = 0,
a+ b+ c+ d = 0,

that is 
−6 + 3δ 2− 2δ δ 0

6− 3δ 2− 2δ −δ 0
−1 1 −1 1

1 1 1 1




a
b
c
d

 =


0
0
0
0

 . (28)

The system has nontrivial solutions if δ1 = 1 or δ2 = 3. Solving (28) with δ1

we determine the eigenfunctions ψ1(x) = bx2 − b for any b ∈ R. In case of
δ2 = 3, we obtain the eigenfunctions ψ2(x) = ax3 − ax for any a ∈ R. 2

In the one dimensional case, (P2) and (P4) become

(ODE2)


−u′′ = f on (−1, 1),
−u′(−1)− du(−1) = 0,
u′(1)− du(1) = 0;

(ODE4)


u(4) = g on (−1, 1),
u(−1) = 0,
u(1) = 0,
u′′(−1) + δu′(−1) = 0,
u′′(1)− δu′(1) = 0.

The second order system has the following property:

Proposition 3.3 Let f ∈ L1([−1, 1]).

a) If d 6∈ {0, 1}, then for every f problem (ODE2) admits a unique solu-
tion given by

u(x) =
(1− d− dx)

∫ 1

−1

[
f(t)− d

∫ t
−1
f(τ) dτ

]
dt

2d2 − d

−
∫ x

−1

∫ t

−1

f(τ) dτ dt. (29)

b) If d = 0, then (ODE2) admits solutions if and only if∫ 1

−1

f(t) dt = 0;
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in such case there are infinitely many solutions given by

u(x) = −
∫ x

−1

∫ t

−1

f(τ) dτ dt+ C, ( C ∈ R ) .

c) If d = 1, then (ODE2) admits solutions if and only if∫ 1

−1

∫ t

−1

f(τ) dτ dt =

∫ 1

−1

f(t) dt;

in such case there are infinitely many solutions given by

u(x) = −
∫ x

−1

∫ t

−1

f(τ) dτ dt− Cx, ( C ∈ R ) .

Proof: We assume that u solves (ODE2). System (ODE2) implies

u′(x) = −
∫ x

−1

f(t) dt+ u′(−1) = −
∫ x

−1

f(t) dt− u(−1)d,

u(x) = −
∫ x

−1

∫ t

−1

f(τ) dτ dt+ u(−1)(1− d− dx). (30)

On the boundary we obtain

u′(1) = −
∫ 1

−1

f(t) dt− du(−1), (31)

u(1) = −
∫ 1

−1

∫ t

−1

f(τ) dτ dt+ u(−1)(1− 2d).

Imposing

0 = u′(1)− du(1)

then

0 =

∫ 1

−1

(
f(t)− d

∫ t

−1

f(τ) dτ

)
dt+ u(−1)(2d− 2d2). (32)

a) In case of d 6∈ {0, 1}, we have

u(−1) =

∫ 1

−1

(
f(t)− d

∫ t
−1
f(τ) dτ

)
dt

2d2 − 2d
.

Substituting this value in (30) we obtain (29) and indeed, this gives a
solution of (ODE2).
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b) If d = 0, then u′(−1) = u′(1) = 0, so (31) becomes∫ 1

−1

f(t) dt = 0 (33)

and there is no condition on u(−1). Hence we have solutions if and
only if (33) is satisfied and there for any C ∈ R

u(x) = −
∫ x

−1

∫ t

−1

f(τ) dτ dt+ C.

c) If d = 1, condition (32) yields

0 =

∫ 1

−1

(
f(t)−

∫ t

−1

f(τ) dτ

)
dt,

it means there is no condition on u(−1). Hence (30) becomes

u(x) = −
∫ x

−1

∫ t

−1

f(τ) dτ dt− xu(−1),

for any u(−1) ∈ R.

2

Proposition 3.4 Let g ∈ L1([−1, 1]).
a) If δ 6= {1, 3}, then for every g (ODE4) admits a unique solution given by

u(x) =

∫ x

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ +
u′′′(−1)

6
(x+ 1)3

+u′(−1)(1 + x)

[
1− δ

2
(x+ 1)

]
, (34)

where

u′′′(−1) =

∫ 1

−1

∫ γ
−1

[
−g(ζ) +

∫ ζ
−1

(
δg(η) +

∫ η
−1
−δg(ξ) dξ

)
dη
]
dζ dγ

−2
3
δ + 2

,

u′(−1) =

∫ 1

−1

∫ γ
−1

[g(ζ) +
∫ ζ
−1

(−δg(η) +
∫ η
−1

(
3
2
δ − 3

2

)
g(ξ) dξ)dη]dζ dγ

(δ − 1)(δ − 3)
.
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b) If δ = 1, then (ODE4) admits solutions if and only if∫ 1

−1

∫ γ

−1

(
g(ζ)−

∫ ζ

−1

g(η) dη

)
dζ dγ = 0

and the solutions are as in (34), where

u′′′(−1) = −3

4

∫ 1

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ

and u′(−1) is arbitrary.
c) If δ = 3, then (ODE4) admits solutions if and only if∫ 1

−1

∫ γ

−1

[
g(ζ) +

∫ ζ

−1

(
−3g(η) +

∫ η

−1

3g(ξ) dξ

)
dη

]
dζ dγ = 0 (35)

and the solutions are as in (34) where u′(−1) is arbitrary and

u′′′(−1) = −3

4

∫ 1

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ + 3u′(−1).

Proof: We assume that u solves (ODE4). System (ODE4) implies

u′′′(x) =

∫ x

−1

g(γ) dγ + u′′′(−1),

u′′(x) =

∫ x

−1

∫ γ

−1

g(ζ) dζ dγ + u′′′(−1)(x+ 1) + u′′(−1),

u′(x) =

∫ x

−1

∫ γ

−1

∫ ζ

−1

g(η) dη dζ dγ +
u′′′(−1)

2
(x+ 1)2

+u′′(−1)(x+ 1) + u′(−1),

u(x) =

∫ x

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ +
u′′′(−1)

6
(x+ 1)3

+
u′′(−1)

2
(x+ 1)2 + u′(−1)(x+ 1) + u(−1).

Then on the boundary we obtain that

u′′(1) =

∫ 1

−1

∫ γ

−1

g(ζ) dζ dγ + 2u′′′(−1)− δu′(−1),

u′(1) =

∫ 1

−1

∫ γ

−1

∫ ζ

−1

g(η) dη dζ dγ + 2u′′′(−1) + (1− 2δ)u′(−1),

u(1) =

∫ 1

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ +
4

3
u′′′(−1) + (2− 2δ)u′(−1).
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Since u(1) = 0 and u′′(1)− δu′(1) = 0, we obtain the system(
4
3

2− 2δ
2− 2δ 2δ2 − 2δ

)(
u′′′(−1)
u′(−1)

)
=

(
−
∫ 1

−1

∫ γ
−1

∫ ζ
−1

∫ η
−1
g(ξ) dξ dη dζ dγ∫ 1

−1

∫ γ
−1

[
−g(ζ) +

∫ ζ
−1
δg(η) dη

]
dζ dγ

)
, (36)

that is not singular if δ 6= {1, 3}.
a) If δ 6= {1, 3}, solving system (36) we obtain

u′(−1) =
1

2(δ − 1)(δ − 3)

∫ 1

−1

∫ γ

−1

[
2g(ζ) +

∫ ζ

−1

(
(−2δ)g(η)

+

∫ η

−1

3(δ − 1)g(ξ) dξ

)
dη

]
dζ dγ,

u′′′(−1) =

∫ 1

−1

∫ γ
−1

[
−g(ζ) +

∫ ζ
−1

(
δg(η) +

∫ η
−1

(−δ)g(ξ) dξ
)
dη
]
dζ dγ

−2
3
δ + 2

.

With these choices, u indeed is a solution.
b) If δ = 1, then (36) implies∫ 1

−1

∫ γ

−1

[
g(ζ) +

∫ ζ

−1

(−1)g(η) dη

]
dζ dγ = 0, (37)

and

u′′′(−1) = −3

4

∫ 1

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ, (38)

then there is no condition on u′(−1). Hence, we have solutions if and only if
condition (37) is satisfied and there are

u(x) =

∫ x

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ +
u′′′(−1)

6
(x+ 1)3

+u′(−1)(1 + x)

[
1− 1

2
(x+ 1)

]
,

where u′′′(−1) as in (38) and u′(−1) free.
c) If δ = 3, (36) yields

4u′′′(−1)− 12u′(−1) = −3

∫ 1

−1

∫ γ

−1

∫ ζ

−1

∫ η

−1

g(ξ) dξ dη dζ dγ

= −
∫ 1

−1

∫ γ

−1

[
−g(ζ) +

∫ ζ

−1

3g(η) dη

]
dζ dγ.
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So we obtain condition (35) and u′′′(−1). 2

3.3 The spectrum in general domains

It is known (see [17, Theorem 3], that the first nontrivial eigenvalue d1 =
d1(Ω) of problem (E2) is defined by

d1(Ω) := inf
u∈H(Ω)

∫
Ω

|∇u|2∫
∂Ω

u2

with H(Ω) :=

{
u ∈ H1(Ω) \H1

0 (Ω),

∫
∂Ω

u = 0

}
.

The inverse of its square root d
−1/2
1 is the norm of the compact linear operator

H(Ω)→ L2(∂Ω), defined by u 7→ u|∂Ω. A lower bound for d1(Ω) was obtained
by [48, 58] and extended to more dimensional cases by [26].

In order to characterize the other eigenvalues, we seek solutions of (E2)
in the Hilbert space H1(Ω), endowed with the scalar product

(u, v) :=

∫
∂Ω

uv dS +

∫
Ω

∇u∇v dx. (39)

Consider the subspace

Z2 := {v ∈ C∞(Ω) : ∆u = 0} (40)

and denote by V2 its completion with respect to the scalar product (39).
Then we have the following:

Proposition 3.5 Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded domain
with C2 boundary. Then problem (E2) admits infinitely many (countable)
eigenvalues. The only eigenfunction of one sign is the one corresponding
to the first eigenvalue. The set of the eigenfunctions forms a complete or-
thonormal system in V2. Moreover, the space H1(Ω) admits the following
orthogonal decomposition with respect to the scalar product (39):

H1(Ω) = V2 ⊕H1
0 (Ω).

Finally, if v ∈ H1(Ω) and v = v1 + v2 with v1 ∈ V2 and v2 ∈ H1
0 (Ω), then v1

and v2 are weak solutions of{
∆v1 = 0 in Ω,
v1 = v on ∂Ω;

and

{
∆v2 = ∆v in Ω,
v2 = 0 on ∂Ω.
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Proof:
Let Z2 be as in (40) and define on Z2 the scalar product given by

(u, v)W2 =

∫
∂Ω

uv dS, ∀u, v ∈ Z2

and we denote by W2 the completion of Z with respect to this scalar product.
Then V2 is compactly embedded into the space W2:

‖u‖W2 =

∫
∂Ω

u2 dS ≤
∫
∂Ω

u2 dS +

∫
Ω

|∇u|2 dx = ‖u‖V2

and hence any Cauchy sequence in Z2 with respect to the norm of V2 is a
Cauchy sequence with respect to the norm of W2. Since V2 is the completion
of Z2 with respect to (39), it follows immediately that V2 ⊂ W2.

More, the embedding is compact. Let um ⇀ u in V2, so that um ⇀ u in
H1. Then by trace embedding and compact embedding we obtain um → u
in W2.

We denote by I1 : V2 → W2 the embedding V2 ⊂ W2 and I2 : W2 → V ′2
the continuous linear operator defined by

〈I2u, v〉 = (u, v)W2 , ∀u ∈ W2,∀v ∈ V2.

Let L2 : V2 → V ′2 be the linear operator given by

〈L2u, v〉 =

∫
∂Ω

uv dS +

∫
Ω

∇u · ∇v dx, ∀u, v ∈ V2.

Then L2 is an isomorphism and the linear operator K := L−1
2 I2I1 : V2 → V2

is compact. Since for n ≥ 2, V2 is an infinite dimensional Hilbert space and
K is a compact self-adjoint operator with strictly positive eigenvalues, then
V2 admits an orthonormal base of eigenfunctions of K. Moreover, the set
of eigenvalues of K can be ordered in a strictly decreasing sequence {µi}
which converges to zero. It follows, problem (E2) admits an infinite set of
eigenvalues given by di = 1

µi
and the eigenfunctions of (E2)coincide with the

eigenfunctions of K.
Then we prove that if dk is an eigenvalue of (E2) corresponding to a

positive eigenfunction ϕk, then dk = d1.
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Suppose that ϕk is an eigenfunction corresponding to the eigenvalue dk.
Then

dk

∫
∂Ω

ϕkϕ1 dS =

∫
∂Ω

(ϕk)νϕ1 dS

=

∫
Ω

∇ϕk · ∇ϕ1 dx+

∫
Ω

∆ϕk︸︷︷︸
=0

ϕ1 dx

=

∫
∂Ω

ϕk(ϕ1)ν dS −
∫

Ω

ϕk ∆ϕ1︸︷︷︸
=0

dx

= d1

∫
∂Ω

ϕkϕ1 dS;

so dk = d1.
Let v1 ∈ Z2 and v2 ∈ H1

0 (Ω), then ∆v1 ≡ 0 in Ω and v2 ≡ 0 on ∂Ω; it
implies

(v1, v2) =

∫
∂Ω

v1v2 dS +

∫
Ω

∇v1 · ∇v2 dx

=

∫
∂Ω

(v1)νv2 dS −
∫

Ω

∆v1v2 dx = 0.

Let now v ∈ H1(Ω) and consider the problem{
∆v1 = 0 in Ω,
v1 = v on ∂Ω;

⇔
{
−∆(v1 − v) = ∆v in Ω,
v1 − v = 0 on ∂Ω.

By applying the Lax-Milgram theorem to the problem on the right hand
side, we find a weak solution v1 ∈ H1(Ω), i.e. v1 ∈ V2. Let v2 := v− v1, then
v2 ∈ H1(Ω), (v2) = 0 on the boundary of Ω and v2 ∈ H1

0 (Ω). 2

For problem (E4) the first eigenvalue δ1 is

δ1(Ω) := inf
u∈H(Ω)

∫
Ω

|∆u|2∫
∂Ω

u2
ν

with H(Ω) := [H2 ∩H1
0 (Ω)] \H2

0 (Ω).

The norm of the compact linear operator H2 ∩ H1
0 (Ω) → L2(∂Ω), defined

by u 7→ uν |∂Ω is δ
−1/2
1 . Moreover, δ1 has also the following property: given

ϕ ∈ L2(∂Ω) and the Laplace equation{
∆v = 0 in Ω,
v = ϕ on ∂Ω,

(41)
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by using Fichera’s principle of duality [28], for the solution v of (41) we obtain

δ1(Ω)‖v‖2
L2(Ω) ≤ ‖ϕ‖2

L2(∂Ω),

where δ1 is the largest possible constant for this inequality, as proved by
Kuttler in [49].

The eigenvalue δ1 has also a key role in the positivity preserving property
for the biharmonic operator ∆2 under the boundary conditions u = ∆u −
δuν = 0 on ∂Ω, as proved in [8, 33]: if δ ≥ δ1, then the positivity preserving
property fails while it holds when δ is in a left neighborhood of δ1, possibly
δ ∈ (−∞, δ1). We also refer to [50] for several inequalities between the
eigenvalues of (E4) and other eigenvalue problems.

In the case of problem (E4) we endow the Hilbert space H2∩H1
0 (Ω) with

the scalar product

(u, v) :=

∫
Ω

∆u∆v dx. (42)

Consider the subspace

Z4 :=
{
v ∈ C∞(Ω) : ∆2u = 0, u = 0 on ∂Ω

}
and denote by V4 the completion of Z4 with respect to the scalar product in
(42). Then, we recall from [26] the following two theorems:

Proposition 3.6 Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded domain
with C2 boundary. Then problem (E4) admits infinitely many (countabel)
eigenvalues. The only eigenfunction of one sign is the one corresponding to
the first eigenvalue. The set of eigenfunctions forms a complete orthonormal
system in V4.

Proposition 3.7 Assume that Ω ⊂ Rn (n ≥ 2) is an open bounded do-
main with C2 boundary. Then, the space H2 ∩ H1

0 (Ω) admits the following
orthogonal decomposition with respect to the scalar product (42)

H2 ∩H1
0 (Ω) = V4 ⊕H2

0 (Ω).

Moreover, if v ∈ H2∩H1
0 (Ω) and if v = v1+v2 is the corresponding orthogonal

decomposition, then v1 ∈ V4 and v2 ∈ H2
0 (Ω) are the weak solutions of

∆2v1 = 0 in Ω
v1 = 0 on ∂Ω
(v1)ν = vν on ∂Ω

and


∆2v2 = ∆2v in Ω
v2 = 0 on ∂Ω
(v2)ν = 0 on ∂Ω .



3 STEKLOV BOUNDARY VALUE PROBLEMS 37

3.4 The spectrum when Ω is the unit ball

When Ω = B (the unit ball) we may determine explicitly all the eigenvalues
of (E2) and (E4).

To this end, consider the spaces of harmonic homogeneous polynomials,
see [5]:

Dk := {P ∈ C∞(Rn); ∆P = 0 in Rn,

P is an homogeneous polynomial of degree k − 1}.

Also, denote by µk the dimension of Dk. In particular, we have

D1 = span{1}, µ1 = 1,
D2 = span{xi; (i = 1, . . . , n)}, µ2 = n,
D3 = span{xixj; x2

1 − x2
h; (i, j = 1, . . . , n, i 6= j, h = 2, . . . , n)},

µ3 = n2+n−2
2

,
Dk = span{p(x) =

∑
|α|=k−1 cαx

α : ∆p(x) = 0},

µk =

(
n+ k − 3
k − 1

)
+

(
n+ k − 4
k − 2

)
, (n ≥ 2, k ≥ 2)

where α = (α1, α2, . . . , αn), |α| =
∑n

i=1 αi, x = (x1, x2, . . . , xn), cα =
cα1,α2,...,αn , xα = xα1

1 x
α2
2 . . . xαnn with αi nonnegative integers.

Harmonic polynomials of different degrees are orthogonal with respect to
scalar product (39): let Hk(x) and Hj(x) be homogeneous harmonic polyno-
mials in n variables of degrees k and j respectively with j 6= k. Let r := |x|
and ξ := x

|x| . It was shown in [5, subsection 9.4] that, using the fact that the
normal derivative on the sphere is in the radial direction

∂

∂ν
Hk(x)|∂B =

∂

∂ν
Hk(rξ)|∂B y =

∂

∂r
Hk(rξ)|∂B =

∂

∂r
(rkHk(ξ))

∣∣
∂B

= kHk(ξ) = kHk(x) (43)

and from Green’s Theorem follows that∫
∂B

HjHk dS = 0. (44)

So combining (43) and (44), we obtain for j 6= k

(Hj, Hk) =

∫
∂B

HjHk dS +

∫
B

∇Hj · ∇Hk dx

=

∫
∂B

Hj(Hk)ν dS −
∫
B

Hj∆Hk dx

= k

∫
∂B

HjHk dS = 0
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Let us recall how to determine the eigenvalues of the second order Steklov
problem (E2) when Ω = B, the unit ball. In radial and angular coordinates
(r, θ), equation ∆ϕ = 0 becomes

∂2ϕ

∂r2
+
n− 1

r

∂ϕ

∂r
+

1

r2
∆θϕ = 0 ,

where −∆θ denotes the Laplace-Beltrami operator on ∂B. It is known by [9,
p.160] the following

Lemma 3.8 The Laplace-Beltrami operator −∆θ admits a sequence of ei-
genvalues {λk} having multiplicity µk equal to the number of independent
harmonic homogeneous polynomials of degree k − 1. Moreover, λk = (k −
1)(n+ k − 3).

We denote by e`k (` = 1, . . . , µk) the independent eigenfunctions corre-
sponding to λk such that ∫

∂B

|elk|2 dS = 1.

This system can be chosen to be orthonormal in L2(∂B) and is complete in
this space. Then, to determine the Steklov eigenvalues and eigenfunctions,
one seeks functions ϕ = ϕ(r, θ) of the kind

ϕ(r, θ) =
∞∑
k=1

µk∑
`=1

ϕ`k(r)e
`
k(θ) .

Hence, by differentiating the series, we obtain

∆ϕ(r, θ) =
∞∑
k=1

µk∑
`=1

(
d2

dr2
ϕ`k(r) +

n− 1

r

d

dr
ϕ`k(r)−

λk
r2
ϕ`k(r)

)
e`k(θ) = 0 .

Therefore, we must solve the equations

d2

dr2
ϕ`k(r) +

n− 1

r

d

dr
ϕ`k(r)−

λk
r2
ϕ`k(r) = 0, k = 1, 2, . . . , ` = 1, . . . , µk.

(45)
With the change of variables r = et (t ≤ 0), equation (45) becomes a constant
coefficients linear equation. It has two linearly independent solutions, but
one is singular. Hence, up to multiples, the only regular solution of (45) is
given by ϕ`k(r) = akr

k−1 because

2− n+
√

(n− 2)2 + 4λk
2

= k − 1.
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Since the boundary condition in (E2) reads d
dr
ϕ`k(1) = dϕ`k(1) we immediately

infer that d = k̄ − 1 for some integer k̄ ≥ 1.
By means of the Poisson integral formula we see directly that the nor-

malized harmonic polynomials form a complete orthonormal system in the
space of the harmonic H1 functions.

Summarizing, we have

Proposition 3.9 The number d is an eigenvalue of (E2) with corresponding
eigenfunction ϕ if and only if d is a nonnegative integer and ϕ ∈ Dd+1. In
this case, the multiplicity of d is µd+1.

By [26] the following results are known:

Proposition 3.10 The number δ is an eigenvalue of (E4) with correspond-
ing eigenfunction ψ if and only if ϕ defined by ψ(x) = (1 − |x|2)ϕ(x) is an
eigenfunction of (E2) with d = δ−n

2
.

By combining Propositions 3.9 and 3.10, we infer that the eigenvalues of
(E4) are

δk̄ = n+ 2(k̄ − 1).

Theorem 3.11 If n ≥ 2 and Ω = B, then for all k = 1, 2, 3, . . . :

i) the eigenvalues of (E4) are δk = n+ 2(k − 1);

ii) the multiplicity of δk equals µk;

iii) for all ϕk ∈ Dk, the function ψk(x) := (1− |x|2)ϕk(x) is an eigenfunc-
tion corresponding to δk.

Theorem 3.12 If n ≥ 2 and Ω = B, then for all k = 1, 2, 3, · · · :

i) the eigenvalues of (E2) are d = (k − 1);

ii) the multiplicity of dk equals µk =

(
n+ k − 3
k − 1

)
+

(
n+ k − 4
k − 2

)
, that

is the dimension of the vector space Dk of homogeneous polynomials of
degree k − 1;

iii) all ϕk ∈ Dk, are eigenfunctions corresponding to dk.
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Corollary 3.13 Assume that n ≥ 2 and that Ω = B. Assume moreover
that for all k ∈ N the set {ϕ`k : ` = 1, . . . , µk} is a basis of Dk chosen in
such a way that the corresponding functions ψ`k := rk−1ϕ`k are orthonormal
with respect to the scalar product (39). Then, for any u ∈ V4 there exists a
sequence {α`k} ∈ `2 (k ∈ N; ` = 1, . . . , µk) such that

u(x) = (1− |x|2)
∞∑
k=1

µk∑
`=1

α`kϕ
`
k(x) for a.e. x ∈ B .

3.5 Solvability of linear problems at resonance

Here we will report an interesting result on the existence of solution for
problem (P4). Before, it is helpful to introduce the following theorem, from
[35, p.84, Theorem 5.11] that we will use for the proof:

Theorem 3.14 (Fredholm alternative) Let H be a Hilbert space, T a
compact mapping of H into itself and T ? its adjoint. Then there exists a
countable set Λ ⊂ R having no limit points except possibly λ = 0, such that
if λ 6= 0, λ 6∈ Λ the equations

λx− Tx = y, λx− T ?x = y (46)

have uniquely determined solutions x ∈ H for every y ∈ H, and the inverse
mappings (λI − T )−1, (λI − T ?)−1 are bounded. If λ ∈ Λ, the null spaces of
the mappings λI−T , λI−T ? have positive finite dimension and the equations
(46) are solvable if and only if y is orthogonal to the null space of λI − T ?
in the first case and λI − T in the other.

Theorem 3.15 Assume that d is an eigenvalue for (E2) and u its eigen-
function. Then problem (P2) is solvable if and only if f satisfies

∫
Ω
uf dx.

Proof: We endow the Hilbert space H1(Ω) with the scalar product (39)
and decompose system (P2) with the help of two weak solution operators:

S2 : H1(Ω)→ H2(Ω),

S2 : w ∈ H1(Ω) 7→ v1 ∈ H2(Ω) :

{
−∆v1 + v1 = 0 in Ω,
v1ν = w on ∂Ω,

G2 : L2(Ω)→ H2(Ω),

G2 : f ∈ L2(Ω) 7→ H2(Ω) :

{
−∆v2 + v2 = f in Ω,
v2ν = 0 on ∂Ω,
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Consider U such that {
−∆U = f in Ω,
Uν = dU on ∂Ω;

(47)

it means {
−∆U + U = f + U in Ω,
Uν = dU on ∂Ω.

Let U ∈ H2(Ω) ⊂ H1(Ω) given; we define

v1 := dS2U, ⇒
{
−∆v1 + v1 = 0 in Ω,
v1ν = dU on ∂Ω;

v2 := G2f, ⇒
{
−∆v2 + v2 = f in Ω,
v2ν = 0 on ∂Ω;

v3 := G2U, ⇒
{
−∆v3 + v3 = U in Ω,
v3ν = 0 on ∂Ω;

It follows that{
−∆(v1 + v2 + v3) + (v1 + v2 + v3) = f + U in Ω,
(v1 + v2 + v3)ν = dU on ∂Ω.

If the solution U of (P2) exists, then

U = v1 + v2 + v3

= dS2U +G2f +G2U.

It is equivalent to
(I − dS2 −G2)U = G2f ;

the operator dS + G : H1 → H2 ↪→ H1 is compact, so defining λ := 1
d
,

T2 := S2 + 1
d
G2 and y := 1

d
G2f , we obtain a formulation like (46) and we can

use Fredholm alternative.
We are looking for the dual T ?2 of T2: if we determine it, then there exists

a solution for (P2) if and only if

y =
1

d
G2f ∈ N

(
1

d
I − T ?2

)⊥
.

Let v ∈ H1(Ω), we define ṽ := T2v, then{
−∆ṽ + ṽ = 1

d
v in Ω,

ṽν = v on ∂Ω.
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We will see, T2 is selfadjoint in H1:

(T2v, w) =

∫
Ω

ṽw dx+

∫
Ω

∇ṽ · ∇w dx

=

∫
Ω

ṽw dx+

∫
∂Ω

ṽνw dS −
∫

Ω

w∆ṽ dx

=

∫
Ω

ṽw dx+

∫
∂Ω

vw dS +

∫
Ω

(
1

d
v − ṽ

)
w dx

=

∫
∂Ω

vw dS +
1

d

∫
Ω

vw dx = (v, T2w) , ∀v, w ∈ H1(Ω)

because of the symmetry in v and w.
Then N

(
1
d
I − T ?2

)
= N

(
1
d
I − T2

)
= {w ∈ H1(Ω) : −∆w = 0 in Ω, wν =

dw on ∂Ω}, that is the eigenspace of d for problem (E2). We need now to
determine the orthogonal complement of N

(
1
d
I − T2

)
in H1(Ω). Let u ∈

N
(

1
d
I − T2

)
be arbitrary and y := 1

d
G2f . Then

0 = (u, y) =

∫
Ω

uy dx+

∫
Ω

∇u · ∇y dx

=

∫
Ω

uy dx+

∫
∂Ω

uyν dS −
∫

Ω

u∆y dx =

∫
Ω

u(y −∆y) dx =
1

d

∫
Ω

uf dx.

2

Theorem 3.16 Assume that δ is an eigenvalue for (E4) and u its eigenfunc-
tion. Then, problem (P4) is solvable if and only if g satisfies

∫
Ω
ug dx = 0.

When Ω = B and δ = n+ 2(m−1) for some nonnegative integer m, problem
(P4) is solvable if and only if g satisfies

∫
B

(1− |x|2)ϕmg dx = 0.

Proof: We endow the Hilbert space H2(Ω)∩H1
0 (Ω) with the scalar prod-

uct (42) and decompose system (P4) with the help of two weak solution
operators:

S4 : H1/2(∂Ω)→ H2(Ω) ∩H1
0 (Ω),

S4 : w ∈ H1/2(∂Ω) 7→ v1 ∈ H2(Ω) ∩H1
0 (Ω) :


∆2v1 = 0 in Ω,
v1 = 0 on ∂Ω,
∆v1 = w on ∂Ω;

G4 : L2(Ω)→ H2 ∩H1
0 (Ω),

G4 : g ∈ L2(Ω) 7→ H2 ∩H1
0 (Ω) :


∆2v2 = g in Ω,
v2 = 0 on ∂Ω,
∆v2 = 0 on ∂Ω.
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It means,

(v1, ϕ) =

∫
Ω

∆v1∆ϕdx = 0
(
∀ϕ ∈ H2 ∩H1

0 (Ω)
)
,

If it exists, the solution U of (P4) satisfies

U = δS4Uν +G4g

⇒ U =

(
I − δS4

∂

∂ν

)−1

G4g

=

(
1

δ
I − S4

∂

∂ν

)−1
1

δ
G4g.

Defining λ := 1
δ
, T4 := S4

∂
∂ν

and y := 1
δ
G4g, we obtain a formulation like

(46).
The operator T4 is compact. We are looking for its dual T ?4 : if we deter-

mine it, then there exists a solution for (P4) if and only if

y =
1

δ
G4g ∈ N

(
1

δ
I − T ?4

)⊥
.

Let v ∈ H2(Ω) ∩H1
0 (Ω), we define ṽ := T4v, then

∆2ṽ = 0 in Ω,
ṽ = 0 on ∂Ω,
∆ṽ = vν on ∂Ω.

We will see, T4 is self-adjoint:

(T4v, w) = (ṽ, w) =

∫
Ω

∆ṽ∆w dx

=

∫
Ω

w∆2ṽ dx+

∫
∂Ω

wν∆ṽ − w∆ṽν dS

=

∫
∂Ω

vνwν = (v, T4w), ∀v, w ∈ H2(Ω) ∩H1
0 (Ω)

because of the symmetry in v and w.
Then, N

(
1
δ
I − T ?4

)
= N

(
1
δ
I − T4

)
= {w ∈ H2(Ω) ∩ H1

0 (Ω) : ∆2w =
0 in Ω, w = 0 on ∂Ω, ∆w = δwν}, that is the eigenspace of δ for problem
(E4).
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We need now to determine the orthogonal complement of N (δI − T4) in
H2(Ω) ∩H1

0 (Ω). Let u ∈ N
(

1
δ
I − T4

)
be arbitrary and y := 1

δ
G4g:

0 = (u, y) =

∫
Ω

∆u∆y dx =

∫
∂Ω

uν∆y − u(∆y)ν dS +

∫
Ω

u∆2y dx

=

∫
Ω

u
1

δ
g dx. (48)

In the special case of the ball Ω = B, then (48) becomes

0 = (u, v) =

∫
B

∆u∆v dS =

∫
B

(1− |x|2)ϕmg dx. (49)

2

3.6 Nonlinear problems

Now we consider the nonlinear problems

(NL2)

{
−∆u = |u|p−1u in Ω,
uν − du = 0 on ∂Ω;

(NL4)

{
∆2u = |u|q−1u in Ω,
u = ∆u− δuν = 0 on ∂Ω.

In order to prove existence results for problems (NL2), (NL4), we will adopt
a version of the mountain pass lemma of [4] and introduce some concepts:

Definition 3.17 Let E a functional on a Banach space V such that E ∈
C1(V ). A sequence (um) in V is a Palais-Smale sequence for E if |E(um)| ≤ c
uniformly in m, while ‖DE(um))‖ → 0 as m→∞.

The following condition is known as Palais-Smale condition:

(P.S.)
Any Palais Smale sequence
has a strongly convergent subsequence.

It plays a fundamental role for the following theorem (see [65, 6.5 Theorem])

Theorem 3.18 Suppose V is an infinite dimensional Banach space and sup-
pose E ∈ C1(V ) satisfies (P.S.), E(u) = E(−u) for all u, and E(0) = 0.
Suppose V = V − ⊕ V +, where V − is finite dimensional, and assume the
following conditions:
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i) ∃α > 0, ρ > 0 : ‖u‖ = ρ, u ∈ V + ⇒ E(u) ≥ α.

ii) For any finite dimensional subspace W ⊂ V there is R = R(W ) such
that E(u) ≤ 0 for u ∈ W , ‖u‖ ≥ R.

Then E possesses an unbounded sequence of critical values.

We will apply Theorem 3.18:

Theorem 3.19 Assume that 1 < p < n+2
n−2

(n ≥ 3). Assume moreover that
d < 0 and Ω ∈ C2. Then problem (NL2) admits infinitely many solutions.

Proof: Consider the energy functional of problem (NL2):

J2(u) :=
1

2

∫
Ω

|∇u|2 dx− d

2

∫
∂Ω

u2 dS − 1

p+ 1

∫
Ω

|u|p+1 dx

in the space H1(Ω) endowed with the norm

‖u‖2
2 :=

∫
Ω

|∇u|2 dx+

∫
∂Ω

|u|2 dS.

This functional is clearly even, that is J2(u) = J2(−u), moreover we have
J2(0) = 0. Let now {um}m∈N ⊂ H1(Ω) be a Palais-Smale sequence, that is
there exists a constant C > 0 such that

|J2(um)| =
∣∣∣∣12
∫

Ω

|∇um|2 dx−
d

2

∫
∂Ω

|um|2 dS −
1

p+ 1

∫
Ω

|um|p+1 dx

∣∣∣∣ < C

uniformly in m, while

J ′2(um)→ 0 in (H1(Ω))∗ as m→∞,

where (H1(Ω))∗ is the dual of H1(Ω). Then

J ′2(um)[um] =

∫
Ω

|∇um|2 dx− d
∫
∂Ω

|um|2 dS −
∫

Ω

|um|p+1 dx = o(‖um‖2)

We can prove that {um}m∈N is bounded:

(p+ 1)C + o(1) + o(‖um‖2) ≥ (p+ 1)J2(um)− J ′2(um)[um]

=
p− 1

2

(∫
Ω

|∇um|2 dx− d
∫
∂Ω

|um|2 dS
)

≥ p− 1

2
min{1,−d}‖um‖2

2 = C1‖um‖2
2,
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with C1 = p−1
2

min{1,−d}.
It follows, there exists a subsequence {umj}j∈N of {um}m∈N and a function

u ∈ H1(Ω) such that umj converges weakly to u in H1(Ω). Moreover, by
compact embedding, weak convergence in H1(Ω) implies strong convergence
of umj to u in Lp+1(Ω), that is∫

Ω

|umj |p+1 dx→
∫

Ω

|u|p+1 dx.

By [1, Theorem 5.22], we know that the linear trace operator

γ : H1(Ω)→ Lq(∂Ω), γ : u 7→ u|∂Ω

is a compact map if 2 ≤ q < 2(n−1)
n−2

, so it follows that∫
∂Ω

|umj |2 dx→
∫
∂Ω

|u|2 dx.

In order to prove that u is a solution of (NL2), we see that

J ′2(umj)[ϕ] =

∫
Ω

∇umj · ∇ϕdx− d
∫
∂Ω

umjϕdS −
∫

Ω

|um|p−1umjϕdx

→ 0, ∀ϕ ∈ H1(Ω),

and that

J ′2(umj)[ϕ] →
∫

Ω

∇u · ∇ϕdx− d
∫
∂Ω

uϕ dS −
∫

Ω

|u|p−1uϕ dx

= J ′2(u)[ϕ], ∀ϕ ∈ H1(Ω).

Finally,

O(1)− 0 = J ′2(umj)[umj ]− J ′2(u)[u]

=

∫
Ω

(
|∇umj |2 − |∇u|2

)
dx

−d
∫
∂Ω

(
|umj |2 − |u|2

)
dS

−
∫

Ω

(
|umj |p+1 − |u|p+1

)
dx

=

∫
Ω

(∣∣∇umj ∣∣2 − |∇u|2) dx+O(1)

→ 0
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so that
∫

Ω
|∇umj |2 dx→

∫
Ω
|∇u|2 dx which, combined with weak convergence

implies that umj converges to u in H1(Ω) strongly, that is the Palais-Smale
condition is satisfied.

We need now to verify properties i) and ii) of Theorem 3.18 for the func-
tional J2. First, we define V − := {0} and V + = H1(Ω).

i) Let C2 := min
{

1
2
,−d

2

}
and u ∈ H1(Ω), such that ‖u‖2 = ρ; by Sobolev

imbedding (see [35][Corollary 7.11]) there exists a constant C3 > 0 such that
‖u‖Lp+1(Ω) ≤ C3‖u‖2. So

J2(u) =
1

2

∫
Ω

|∇u|2 dx− d

2

∫
∂Ω

u2 dS − 1

p+ 1

∫
Ω

|u|p+1 dx

≥ C2‖u‖2
2 −

Cp+1
3

p+ 1
‖u‖p+1

2 .

Defining C4 :=
Cp+1

3

p+1
and ψ1(t) := C2t

2 − C4t
p+1, we see that J2(u) ≥

ψ1(‖u‖2).

The function ψ1(t) attains a positive maximum M =
(

2C2

(p+1)C4

) p+1
p−1 (p−1)

2
C4

at tM = p−1

√
2C2

(p+1)C4
, so the functional J2 satisfies the condition i) for ρ :=

p−1

√
2C2

(p+1)C4
and α := M .

ii) Let W be any finite dimensional subspace of H1(Ω) and let u ∈ W ,
such that ‖u‖2 = 1. So

J2(u) ≤ 1− d
2
− 1

p+ 1

∫
Ω

|u|p+1 dx

and

J2(tu) ≤ 1− d
2

t2 − tp+1

p+ 1

∫
Ω

|u|p+1 dx.

Since W is finite dimensional, there exists

C5 := inf
u∈W,‖u‖2=1

∫
Ω

|u|p+1 dx > 0.

We define C6 := C5

p+1
and ψ2(t) := C2t

2 − C6t
p+1, which is negative for

t >
(
C2

C6

) 1
p−1

. So we obtain that

J2(tu) ≤ ψ2(t) < 0, ∀t >
(
C2

C6

) 1
p−1

,
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that is J2(u) < 0 if ‖u‖2 >
(
C2

C6

) 1
p−1

and ii) follows. 2

Theorem 3.20 Assume that 1 < q < n+4
n−4

(n ≥ 5). Assume moreover that
δ < 0 and Ω ∈ C2. Then problem (NL4) admits infinitely many solutions.

Proof: We consider the energy functional of problem (NL4):

J4(u) :=
1

2

∫
Ω

|∆u|2 dx− δ

2

∫
∂Ω

u2
ν dS −

1

q + 1

∫
Ω

|u|q+1 dx

in the space H2(Ω) ∩H1
0 (Ω) endowed with the norm

‖u‖2
4 :=

∫
Ω

|∆u|2 dx

This functional is clearly even, that is J4(u) = J4(−u), moreover we have
J4(0) = 0.

Let now {um}m∈N ⊂ H2(Ω) ∩H1
0 (Ω) be a Palais-Smale sequence, that is

there exists a constant C > 0 such that

|J4(um)| =
∣∣∣∣12
∫

Ω

|∆um|2 dx−
δ

2

∫
∂Ω

|umν |2 dS −
1

q + 1

∫
Ω

|um|q+1 dx

∣∣∣∣ < C

uniformly in m, while

J ′4(um)→ 0 in (H2(Ω) ∩H1
0 (Ω))∗ as m→∞,

where (H2(Ω) ∩H1
0 (Ω))∗ is the dual of H2(Ω) ∩H1

0 (Ω)
Then

J ′4(um)[um] =

∫
Ω

|∆um|2 dx− δ
∫
∂Ω

|umν |2 dS −
∫

Ω

|um|q+1 dx

= o(‖um‖4)

We can prove that {um}m∈N is bounded:

(q + 1)C + o(1) + o(‖um‖4) ≥ (q + 1)J4(um)− J ′4(um)[um]

=
q − 1

2

(∫
Ω

|∆um|2 dx− δ
∫
∂Ω

|umν |2 dS
)

≥ q − 1

2
min{1,−δ}‖um‖2

4 = C1‖um‖2
4,
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with C1 = q−1
2

min{1,−δ}.
It follows, there exist a subsequence {umj}j∈N of {um}m∈N and a function

u ∈ H2(Ω) ∩H1
0 (Ω) such that umj converges weakly to u in H2(Ω) ∩H1

0 (Ω):
By compact embedding H2(Ω) in Lq+1(Ω) for every q < n+4

n−4
, then weak

convergence in H2(Ω) implies strong convergence in Lq+1(Ω) of umj to u, for
any q < n+4

n−4
.

Then we can conclude that∫
Ω

|umj |q+1 dx→
∫

Ω

|u|q+1 dx.

In order to prove that u is a solution of (NL4), we see that

J ′4(umj)[ϕ] =

∫
Ω

∆umj∆ϕdx− δ
∫
∂Ω

(umj)ν(ϕ)ν dS

−
∫

Ω

|um|q−1umjϕdx→ 0, ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω),

and that

J ′4(umj)[ϕ] →
∫

Ω

∆u∆ϕdx− δ
∫
∂Ω

uνϕν dS −
∫

Ω

|u|q−1uϕ dx

= J ′4(u)[ϕ], ∀ϕ ∈ H2(Ω) ∩H1
0 (Ω).

Finally,

J ′4(umj)[umj ]− J ′4(u)[u] =

∫
Ω

(
|∆umj |2 − |∆u|2

)
dx

−δ
∫
∂Ω

(
|(umj)ν |2 − |uν |2

)
dS

−
∫

Ω

(
|umj |q+1 − |u|q+1

)
dx→ 0,

so that
∫

Ω
|∆umj |2 dx→

∫
Ω
|∆u|2 dx which, combined with weak convergence

implies that umj converges to u in H2(Ω)∩H1
0 (Ω) strongly, that is the Palais-

Smale condition is satisfied.
We need now to verify properties i) and ii) of Theorem 3.18 for the func-

tional J4. First, we define V − := {0} and V + = H2(Ω) ∩H1
0 (Ω).

i) Let C2 := min
{

1
2
,− δ

2

}
and u ∈ H2(Ω)∩H1

0 (Ω), such that ‖u‖4 = ρ; by
Sobolev imbedding (see [35][Corollary 7.11]) there exists a constant C3 > 0
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such that ‖u‖Lq+1(Ω) ≤ C3‖u‖4. So

J4(u) =
1

2

∫
Ω

|∆u|2 dx− δ

2

∫
∂Ω

u2
ν dS −

1

q + 1

∫
Ω

|u|q+1 dx

≥ C2‖u‖2
4 −

Cq+1
3

q + 1
‖u‖q+1

4 .

Defining C4 :=
Cq+1

3

q+1
and ψ1(t) := C2t

2 − C4t
q+1, we see that J4(u) ≥

ψ1(‖u‖4).

The function ψ1(t) attains a positive maximum M =
(

2C2

(q+1)C4

) q+1
q−1 (q−1)

2
C4

at tM = q−1

√
2C2

(q+1)C4
, so the functional J4 satisfies the condition i) for ρ :=

q−1

√
2C2

(q+1)C4
and α := M .

ii) Let W be any finite dimensional subspace of H2(Ω) ∩ H1
0 (Ω) and let

u ∈ W , such that ‖u‖4 = 1. So

J4(u) ≤ 1− δ
2
− 1

q + 1

∫
Ω

|u|q+1 dx

and

J4(tu) ≤ 1− δ
2

t2 − tq+1

q + 1

∫
Ω

|u|q+1 dx.

Since W is finite dimensional, there exists

C5 := inf
u∈W,‖u‖4=1

∫
Ω

|u|q+1 dx > 0.

We define C6 := C5

q+1
and ψ2(t) := C2t

2 − C6t
q+1, which is negative for

t >
(
C2

C6

) 1
q−1

. So we obtain that

J4(tu) ≤ ψ2(t) < 0, ∀t >
(
C2

C6

) 1
q−1

,

that is J4(u) < 0 if ‖u‖4 >
(
C2

C6

) 1
q−1

and ii) follows. 2
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4 Semilinear biharmonic eigenvalue problems

with exponential growth

4.1 Introduction

Let n ≥ 5, B the unit ball centered at the origin and ∂
∂ν

the differentiation
with respect to the exterior unit normal, i.e. the radial direction. We will
study in this section the problem{

∆2u = λeu in B,
u = ∂u

∂ν
= 0 on ∂B;

(50)

where λ ≥ 0 is a parameter.
In particular, we try to give a partial answer to a question of Lions, who

in [52, Section4.2(c)] asked if it is possible to describe the solution set of
semilinear systems; (50) is a special case of the latter.

Some answers were given by Arioli, Gazzola, Grunau, Mitidieri ([6]).
They proved also the existence of a λ? such that if λ < λ? problem (50)
admits a minimal regular solution Uλ and not even a weak solution if λ > λ?.
Moreover, they gave a characterization of the regular and weakly singular ra-
dial solutions, that is the solutions show, in some sense, a limited irregularity
in the center of the domain. We will show in the next subsections, that any
radial singular solution is also weakly singular i.e. that limr→0 ru

′(r) ∈ R
exists.

The section is organized as follows: in the next subsection a precise for-
mulation of our results is given. In subsection 4.3 system (50) is transformed
into an autonomous system of ordinary differential equations. Subsection 4.4
displays properties of regular and weakly singular solutions. In subsection
4.5 we will use energy functions in order to obtain more information on the
properties of singular radial solutions.

4.2 Definition and main results

Let p fixed, with p > n
4

and p ≥ 2. According to [6] and using [27] as a guide
to solve the problem, we will use the following definitions:

Definition 4.1 We say that u ∈ L2(B) is a solution of (50) if eu ∈ L1(B)
and ∫

B

u∆2v = λ

∫
B

euv for all v ∈ W 4,p(B) ∩H2
0 (B).
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We say that a solution u of (50) is regular (resp. singular) if u ∈ L∞(B)
(resp. u 6∈ L∞(B) ).

Regular and singular solutions are all possible radial solutions of the problem.
It follows from elliptic regularity that any regular solution of (50) is in C∞(B).

Definition 4.2 We say that a radial singular solution u = u(r) of (50) is
weakly singular if the limit lim

r→0
ru′(r) exists.

This definition states that weakly singular solutions blow up with a well de-
fined asymptotic behaviour at 0. However, we prove that any radial singular
solution has this specified behaviour:

Theorem 4.3 Any radial singular solution of (50) is also weakly singular.

This result was showed also by Davila, Dupagne, Guerra, Montenegro.
We restrict ourselves study to the ball because of for the proof we need

the positivity preserving property of the biharmonic operator, which implies
in particular [13], that any solution of (50) is positive. This property holds
on balls but fails in general domains.

Finally, we can give an explicit estimate from below for radial singular
solutions and the corresponding singular parameter, using the energy con-
siderations of subsection 4.5

Theorem 4.4 Assume that us is a singular radial solution of (50) with pa-
rameter λs. Then λs > λ0 = 8(n− 2)(n− 4) and near zero the behaviour of
the singular solution is

us(x) = −4 log |x|+ log
λ0

λs
+ o(1),

us(x) > −4 log |x|+ log
λ0

λs
.

As a direct consequence we can draw a conclusion concerning the regularity
of the extremal solution U? ∈ H2

0 (B), eU
? ∈ L1(B).

Theorem 4.5 If 5 ≤ n ≤ 12, the extremal solution is regular.

This result was obtained independently and by using different techniques by
Davila, Dupagne, Guerra, Montenegro, see [21].
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4.3 Autonomous system

We quote here some results of [6], that we will employ for our next proofs.
Looking for radial solutions, then (50) can be rewritten in the form (as 0 <
r ≤ 1) u(4)(r) + 2(n−1)

r
u′′′(r) + (n−1)(n−3)

r2 u′′(r)− (n−1)(n−3)
r3 u′(r) = λeu(r),

u(1) = 0,
u′(1) = 0.

(51)

Like in the works [6] and [27], we introduce

s := log(r), v : (−∞, 0]→ R, v(s) := u(es),

such that (51) becomes

λ(ev(s)+4s) = v(4)(s) + 2(n− 4)v′′′(s) + (n2 − 10n+ 20)v′′(s)

−2(n2 − 6n+ 8)v′(s), (52)

with the conditions v(0) = 0 and v′(0) = 0. Using the following substitution
v1(s) = v′(s) + 4,
v2(s) = −v′′(s)− (n− 2)v′(s),
v3(s) = −v′′′(s) + (4− n)v′′(s) + 2(n− 2)v′(s),
v4(s) = −λev(s)+4s,

we obtain the autonomous system
v′1(s) = (2− n)v1(s)− v2(s) + 4(n− 2),
v′2(s) = 2v2(s) + v3(s),
v′3(s) = (4− n)v3(s) + v4(s),
v′4(s) = v1(s)v4(s).

(53)

together with the initial conditions v1(0) = 4, v4(0) = −λ. System (53) has
two stationary points

P1 = (4, 0, 0, 0) and P2 = (0, 4n− 8, 16− 8n,−8(n− 2)(n− 4)), (54)

these correspond to v1(0) = 4 and v1(0) = 0.
Near P1 we can linearize the problem and substitute the equation

v′4(s) = v1(s)v4(s) with v′4(s) = 4v4(s)
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such that the associated matrix to the problem is

M1 =


2− n −1 0 0

0 2 1 0
0 0 4− n 1
0 0 0 4

 .

Its eigenvalues are µ1 = 2, µ2 = 4 and the negative µ3 = 2−n and µ4 = 4−n.
It means, P1 is a hyperbolic point and that both the stable and unstable
manifolds are two-dimensional.

In the same way, near P2 we adopt the substitution of

v′4(s) = v1(s)v4(s) with v′4(s) = −8(n− 2)(n− 4)v1(s).

So we obtain the associated matrix M2 of the form

M2 =


2− n −1 0 0

0 2 1 0
0 0 4− n 1

−8(n− 2)(n− 4) 0 0 0

 .

Its eigenvalues are the solutions of the equation

(ν − 2 + n)(ν − 2)(ν − 4 + n)ν − 8(n− 2)(n− 4) = 0,

that is

ν1,2,3,4 =
1

2

(
4− n±

√
M1(n)±M2(n)

)
,

where M1(n) = n2−4n+8 > (n−2)2 and M2(n) = 4
√

68− 52n+ 9n2. Then

ν1 =
1

2

(
4− n+

√
M1(n) +M2(n)

)
, ν2 =

1

2

(
4− n−

√
M1(n) +M2(n)

)
are real numbers and ν2 < 0 < ν1 for all n ≥ 4.

For 5 ≤ n ≤ 12 it follows that M1(n) −M2(n) < 0, while for n ≥ 13 we
have M1(n)−M2(n) > 0. Then for n between 5 and 12,the eigenvalues

ν3 =
1

2

(
4− n+

√
M1(n)−M2(n)

)
, ν4 =

1

2

(
4− n−

√
M1(n)−M2(n)

)
are complex conjugate with real part 1

2
(4− n) < 0. In the case of n ≥ 13, ν3

and ν4 are both real and negative. We can summarize here:
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Proposition 4.6 • For any n ≥ 5 we have ν1, ν2 ∈ R and ν2 < 0 < ν1.

• For any 5 ≤ n ≤ 12 we have ν3, ν4 6∈ R and Re(ν3) = Re(ν4) < 0.

• For any n ≥ 13, ν3, ν4 ∈ R and both negative.
Moreover, the point P2 is hyperbolic, its stable manifold is 3-dimensional

and the unstable 1-dimensional. There is a direction in the stable manifold,
along this there is no oscillation.

4.4 Characterisation of regular and weakly singular so-
lutions

Here we recall [6, Theorem 3]:

Theorem 4.7 Let u = u(r) be a radial solution of (50) and let

W (t) = (w1(t), w2(t), w3(t), w4(t))

be the corresponding trajectory relative to (53). Then

• u is regular (i.e. u ∈ L∞(B)) if and only if

lim
t→−∞

W (t) = P1.

• u is weakly singular if and only if

lim
t→−∞

W (t) = P2.

In order to prove Theorem 4.3, which states, that every radial singular solu-
tion is weakly singular, we introduce the function

z : [0,∞)→ R, z(s) := v(−s)− 4s+ log λ− log λ0, (55)

where λ0 := 8(n− 2)(n− 4). Consequently equation (52) becomes

z(4) − 2(n− 4)z′′′ + (n2 − 10n+ 20)z′′ + 2(n2 − 6n+ 8)z′ = λ0(ez − 1). (56)

The Theorem 4.8 and Proposition 4.10 will give a qualitative description
of the behaviour of z to infinity:

Theorem 4.8 Let u be a radial solution of the Dirichlet problem (50) and
define the corresponding function z = z(s) according to (55). Then z is
bounded from above.
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Proof: i) Assume by contradiction that z is not bounded from above.
Then it can happen that the limit as t → ∞ does not exist or exists and
equals +∞. We assume that the limit does not exist, meaning that

lim inf
t→∞

z(t) < lim sup
t→∞

z(t) = +∞.

Then, there is a sequence tk →∞ of local maxima for z such that for all k,
z′(tk) = 0 and limk→∞ tk =∞. We define

z̃k(t) = z(t+ tk), t ∈ (−tk,∞)

such that, if z(t) solves (56), then z̃k is an admissible solution too. Let now

ũk(r) := z̃k(− log r)− 4 log r − log λ+ log λ0

= z(− log r + tk)− 4 log r − log λ+ log λ0 = u(re−tk)− 4tk,

ũ′k(r) = −z
′(− log r + tk)

r
− 4

r
.

When we pull back the function ũk on B we obtain that
∆2ũk = λeũk in B,
ũk(1) = z(tk) > 0 on ∂B,

−∂ũk
∂ν

(1) = z′(tk)
r

+ 4 = 4 > 0 on ∂B.

We define Uk(x) := ũk(x)− z(tk) = u(re−tk)− tk − z(tk) and λk = λez(tk), so
we obtain 

∆2Uk = λke
Uk in B,

Uk(1) = 0 on ∂B,

−∂Uk
∂ν

(1) = z′(tk)
r

+ 4 = 4 > 0 on ∂B.

The boundary problem is solved in weak sense since Uk is a rescaled and
translated version of the original weak solution u. We can observe that there
is a comparison principle in B with respect to the boundary datum −∂uk

∂ν
,

see [43]. This shows that Uk is a weak supersolution for the problem{
∆2u = λke

u, u > 0 in B,
u = ∂u

∂ν
= 0 on ∂B.

(57)

We can infer by standard arguments, like in [7, Lemma 3.3] that for any λk
problem (57) admits a weak solution. Since λk → ∞, this contradicts the
nonexistence of solutions of (50), like proved in [6] for large λ.
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ii) Now, suppose that limt→∞ z(t) = +∞. There exists a T ∈ R such
that ∀t ≥ T

f ′(t) := z(4)(t)− 2(n− 4)z′′′(t) + (n2 − 10n+ 20)z′′(t)

+(2n2 − 12n+ 16)z′(t) >
λ

2
ez(t). (58)

By integrating (58) over [T, t], for all t ≥ T , we get

f(t) = z′′′(t)− 2(n− 4)z′′(t) + (n2 − 10n+ 20)z′(t)

+(2n2 − 12n+ 16)z(t) >
λ

2

∫ t

T

ez(s) ds+ C1,

where

C1 = C1(T ) = f(T )

= z′′′(T )− 2(n− 4)z′′(T ) + (n2 − 10n+ 20)z′(T )

+(2n2 − 12n+ 16)z(T ).

Because of for t→ +∞ it follows z(t)→ +∞, ez(t) → +∞ and also f ′(t)→
+∞, then there is a T ′ ≥ T such that f(T ′) = C(T ′) > 0. Since (56) is
autonomous, we may assume that T ′ = 0. It is

λ

2

∫ t

T

ez(s) ds < z′′′(t)− 2(n− 4)z′′(t) + (n2 − 10n+ 20)z′(t)

+(2n2 − 12n+ 16)z(t)

C1(0) = z′′′(0)− 2(n− 4)z′′(0) + (n2 − 10n+ 20)z′(0)

+(2n2 − 12n+ 16)z(0) > 0. (59)

We now apply the test function method developed by Mitidieri-Pohozahev
[55]. More precisely, fix T1 > T > 0 and a nonnegative function ϕ ∈ C4

c [0,∞)
such that

ϕ(t) =

{
1 for t ∈ [0, T ],
0 for t > T1.

Then ϕ(k)(T1) = 0, for all k ∈ N. Hence, multiplying (58) by ϕ(t), integrating
by parts and recalling (59) yields∫ T1

0

[
ϕ(4)(t) + 2(n− 4)ϕ′′′(t) + (n2 − 10n+ 20)ϕ′′(t)

−(2n2 − 12n+ 16)ϕ′(t)
]
z(t) dt >

λ

2

∫ T1

0

ez(t)ϕ(t) dt+ C1(0). (60)
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We apply Young’s inequality in the following form: For any ε > 0 there exists
C2 = C2(ε) > 0 such that

zϕ(i) = zϕ
1
2
ϕ(i)

ϕ
1
2

≤ εz2ϕ+ C2(ε)
|ϕ(i)|2

ϕ
, ϕ(i) =

diϕ

dti
, (∀i = 1, 2, 3, 4).

Then, provided ε sufficiently small, (60) becomes

C3

4∑
i=1

∫ T1

0

|ϕ(i)(t)|2

ϕ(t)
dt ≥ λ

4

∫ T

0

ez(t) dt+ C(0), (61)

where C3 = C3(ε, n). Now we choose ϕ(t) = ϕ0

(
t
T

)
, where ϕ0 ∈ C4

c ([0,∞)),
ϕ0 ≥ 0 and

ϕ0(τ) =

{
1 0 ≤ τ ≤ 1,
0 τ ≥ τ1 > 1.

As noticed in [55], there exists a function ϕ0 in such class satisfying moreover∫ τ1

0

|ϕ(i)
0 (τ)|2

ϕ0(τ)
dτ = Ai <∞ (i = 1, 2, 3, 4).

Then, thanks to a change of variables in the integrals and with the right
choose of constants, (61) becomes

C4

4∑
i=1

AiT
1−2i ≥ λ

4

∫ T

0

ez(t) dt+ C1(0), ∀T > 0.

Letting T →∞, the previous inequality contradicts limt→∞ z(t) = +∞. 2

Proposition 4.9 Let z be a solution of (56) and assume there exists L ∈
(−∞,+∞] such that

lim
t→∞

z(t) = L.

Then, L = 0.

Proof: For contradiction, assume that L 6= 0.
It can not be that L = +∞ because of Theorem 4.8.
Suppose L is finite positive. Then λ0(ez(t)−1)→ α = λ0(eL−1) > 0 and

for all ε > 0 there exists T > 0 such that

α− ε ≤ z(4)(t)− 2(n− 4)z′′′(t) + (n2 − 10n+ 20)z′′(t)

+2(n2 − 6n+ 8)z′(t) ≤ α + ε, ∀t ≥ T. (62)
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Take ε < α so that α− ε is positive and let

δ = sup
t≥T
|z(t)− z(T )| <∞.

Integrating (62) over [T, t] for any t ≥ T , we obtain

(α− ε)(t− T ) + C5 − |K|δ ≤ z′′′(t)

−2(n− 4)z′′(t) + (n2 − 10n+ 20)z′(t)

≤ (α + ε)(t− T ) + C5 + |K|δ, ∀t ≥ T,

where C5 = C5(T ) is a constant containing all the terms z(T ), z′(T ), z′′(T )
and z′′′(T ) and K = 2(n2 − 6n + 8). Repeating twice more this procedure
gives

α− ε
6

(t− T )3 +O(t2) ≤ z′(t) ≤ α + ε

6
(t− T )3 +O(t2) as t→∞.

This contradicts the assumption that z admits a finite positive limit as t→
∞.

Let us now suppose that L is finite negative, where we may proceed
similarly. Then λ(ez(t) − 1) → α = λ(eL − 1) < 0 and for all ε > 0 there
exists T > 0 such that

α− ε ≤ z(4)(s)− 2(n− 4)z′′′(s) + (n2 − 10n+ 20)z′′(s)

+2(n2 − 6n+ 8)z′(s) ≤ α + ε, ∀t ≥ T. (63)

Take ε < |α| so that α + ε is negative and let

δ = sup
t≥T
|z(t)− z(T )| <∞.

Integrating (63) over [T, t] for any t ≥ T , we obtain

(α− ε)(t− T ) + C5 − |K|δ ≤ z′′′(t)− 2(n− 4)z′′(t)

+(n2 − 10n+ 20)z′(t)

≤ (α + ε)(t− T ) + C5 + |K|δ, ∀t ≥ T,

Repeating twice more this procedure gives

α− ε
6

(t− T )3 +O(t2) ≤ z′(t) ≤ α + ε

6
(t− T )3 +O(t2) as t→∞.

This contradicts the assumption that z admits a finite negative limit as t→
∞. 2

The boundedness of z has interesting influence on its derivatives:
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Proposition 4.10 Assume that z : [T0,∞) → R exists for some T0, solves
(56) and satisfies lims→∞ z(s) = 0. Then for all k ∈ N, we have

lim
s→∞

z(k)(t) = 0.

This proposition comes directly from [27, Proposition 1], that we report
here:

Proposition 4.11 Assume that z : [T0,∞) → R exists for some T0 and
solves a constant coefficient fourth order equation

z(4)(t)−K3z
′′′(t) +K2z

′′(t)−K1z
′(t) = f(z(t)), (t > T0), (64)

where f ∈ C1(R) and where the coefficients may be considered as arbitrary
real numbers Kj ∈ R. Moreover, let z0 be such that f(z0) = 0 and assume
that z satisfies limt→∞ z(t) = z0. Then for k = 1, . . . , 4, one also has:

lim
t→∞

z(k)(t) = 0. (65)

If f ∈ Ck0+1 in a neighbourhood of z0, then (65) holds true for all k < k0 +4.

Proof of Proposition 4.10: Equation (56) is equivalent to (64) if we fix
K3 = 2(n− 4), K2 = (n2 − 10n + 20), K1 = −2(n2 − 6n+ 8) and f(z(t)) =
λ0(ez(t) − 1).

We took limt→∞ z(t) = 0; if we fix z0 = 0, we see that f(z0) = λ0(e0−1) =
0, that is all conditions of Proposition 4.11 are satisfied. 2

Now, we consider the case z is singular.

Lemma 4.12 Let z be a solution of (56), such that limt→+∞ z(t) = −∞,
which corresponds to the solution u(r) = z(− log r)− 4 log r + log λ0 − log λ
of (50). Then u is regular (at r = 0).

Proof:

0 ≤ ∆2u(r) = λ0e
z(− log r) · r−4, r ∈ (0, 1].

The function z is bounded from above in [0,+∞), it means z(t) ≤ M for
t ∈ [0,∞) and limt→+∞ z(t) = −∞. So we can say that ∀ε ≥ 0, ∀K > 0
∃R1 ∈ (0, 1] :

0 ≤ ∆2u(r) ≤ εr−4, 0 ≤ u(r) ≤ −4 log r −K, r ∈ (0, R1].
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Making use of the polar form of the Laplacian for radial functions ∆v(r) =
r1−n(rn−1v′(r))′, we obtain

∀r ∈ (0, R1] : 0 ≤
(
rn−1(∆u)′(r)

)′ ≤ εrn−5.

Integrating on [0, r] yields with a suitable number C1 ∈ R that

∀r ∈ (0, R1] : 0 ≤ rn−1(∆u)′(r) + C1 ≤
ε

n− 4
rn−4,

0 ≤ (∆u)′(r) + C1r
1−n ≤ ε

n− 4
r−3.

We integrate this on [r, R1] and obtain with suitable numbers C2, C3 ∈ R :

∀r ∈ (0, R1] : 0 ≤ −∆u(r) + C2 + C3r
2−n ≤ ε

2(n− 4)
r−2,

0 ≤ −
(
rn−1u′

)′
+ C2r

n−1 + C3r ≤
ε

2(n− 4)
rn−3.

Integrating on [0, r), yields with suitable real numbers C4, C5, C6 ∈ R.

∀r ∈ (0, R1], 0 ≤ −rn−1u′(r) + C4 + C5r
2 + C6r

n ≤ ε

2(n− 4)(n− 2)
rn−2,

0 ≤ −u′(r) + C4r
1−n + C5r

3−n + C6r ≤
ε

2(n− 4)(n− 2)
r−1.

We integrate a last time on [r, R1] and with suitable numbers C7, . . . , C10 ∈ R

0 ≤ u(r) + C7 + C8r
2−n + C9r

4−n + C10r
2 ≤ − ε

2(n− 4)(n− 2)
log(r).

Since for r close to 0 we know from the assumption that 0 ≤ u(r) ≤ −4 log(r)
we conclude that C8 = C9 = 0, so that

∀r ∈ (0, R1] : 0 ≤ u(R) ≤ − ε log r

2(n− 4)(n− 2)
− C7 − C10r

2.

This proves that u(r) = o(| log(r)|) for r ↘ 0.
Hence, for any ε > 0, there exist R2 > 0 and a constant K2 such that

∀r ∈ (0, R2] : 0 ≤ ∆2u ≤ K2r
−ε.

For our purposes it is enough to consider ε = 1:

∀r ∈ (0, R2) : 0 ≤ ∆2u ≤ K2r
−1.
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The same procedure as before yields

∀r ∈ (0, R2] : 0 ≤ u(r) + C8r
2−n + C9r

4−n ≤ C10,

where C8, C9 ∈ R, C10 > 0. As before we conclude that C8 = C9 = 0, so
that

0 ≤ u(r) ≤ C10.

This means that u is regular. 2

4.5 Energy considerations

Let u solution of (50) and z the function such that it solves (56) for t > 0.
We introduce the energy functional

E(s) :=
1

2
z′′(s)2 − 1

2
(n2 − 10n+ 20)z′(s)2 + λ

(
ez(s) − z(s)

)
, (66)

that is useful in order to prove Theorem 4.3.

Lemma 4.13 Let u be a radial singular solution of (50) and z : [0,∞)→ R
the corresponding solution of (56). Then z is bounded from above and for
k = 1, . . . , 4, the functions z(k) are bounded in [0,∞).

Proof: By Proposition 4.8 follows also that e−4s+z(s) is bounded from
above in [0,∞). Hence, by local Lq−estimates for fourth order elliptic equa-
tions, we infer that for any q > 1 there exists a constant Cq such that, for
any s > 1, we have

‖z(i)( . )‖W 4,q(s−1,s+2) ≤ Cq(λe
sup z + 1)

Sobolev embedding together with local Schauder estimates give us, there
exists a positive constant Cq indipendent of s, such that

‖z(i)( . )‖C4,α(s,s+1) ≤ Cq(λe
sup z + 1).

2

In the next lemmas we will prove some summability property for the
functions z and its derivatives. In what follows we always assume that z
corresponds via (55) to a radial singular solution.
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Lemma 4.14 We have∫ ∞
0

|z′(s)|2 ds+

∫ ∞
0

|z′′(s)|2 ds <∞

Proof: Let E(t) be the function defined in (66). For every t > 0, inte-
grating by parts and exploiting, we have

E(t)− E(0) =

∫ t

0

E ′(s) ds

=

∫ t

0

(
z′′z′′′ − (n2 − 10n+ 20)z′z′′ + λ(ez − 1)z′

)
ds

= z′(t)z′′′(t)− z′(0)z′′′(0)

+

∫ t

0

z′(−z(4) − (n2 − 10n+ 20)z′′ + λ(ez − 1)) ds

= z′(t)z′′′(t)− z′(0)z′′′(0)

+

∫ t

0

z′(−2(n− 4)z′′′ + 2(n− 2)(n− 4)z′) ds

= z′(t)z′′′(t)− z′(0)z′′′(0)− 2(n− 4)z′(t)z′′(t)

+2(n− 4)z′(0)z′′(0)

+

∫ t

0

(2(n− 4)z′′(s)2 + 2(n− 2)(n− 4)z′(s)2) ds.

By Lemma 4.13 E(t) and the functions z′(t), z′′(t), z′′′(t) are bounded in
(0,∞) while around 0 they are smooth. In view of Lemmas 4.12 and 4.13,
there exists at least a sequence tk ↗ ∞, where z(tk) remains bounded. We
recall that we always assume z( . ) to correspond to a singular solution.

So, for tk ↗∞, also the left-hand side of the previous calculation remains
bounded. This proves the claim. 2

Lemma 4.15 We have ∫ ∞
0

|z′′′(s)|2 ds <∞.

Proof: We multiply equation (56) by z′′ and integrate over (0, t):∫ t

0

λ(ez − 1)z′′ ds =

∫ t

0

(
z(4) + 2(n− 4)z′′′ + (n2 − 10n+ 20)z′′

−2(n− 2)(n− 4)z′) z′′ ds
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By Lemma 4.14 and Hölder’s inequality we have∣∣∣∣∫ t

0

z′(s)z′′(s) ds

∣∣∣∣ ≤ (∫ t

0

|z′(s)|2 ds
)2(∫ t

0

|z′′(s)|2 ds
)2

= O(1) as t→∞

By Lemma 4.13, integrating by parts∣∣∣∣∫ t

0

(ez(s) − 1)z′′(s) ds

∣∣∣∣ ≤ |(ez(t) − 1)z′(t)|+ |(ez(0) − 1)z′(0)|

+

∫ t

0

ez(s)|z′(s)|2 ds = O(1)

as t→∞ because of ez = O(1). By Lemma 4.13 we have∣∣∣∣∫ t

0

z′′′(s)z′′(s) ds

∣∣∣∣ ≤ 1

2
|z′′(t)|2 +

1

2
|z′′(0)|2 = O(1) as t→∞;∫ t

0

|z′′′(s)|2 ds = z′′′(t)z′′(t)− z′′′(0)z′′(0)−
∫ t

0

z(4)(s)z′′(s) ds = O(1)

as t → ∞. All together these inequalities complete the proof of the lemma.
2

Lemma 4.16 We have ∫ ∞
0

|z(4)(s)|2 ds <∞.

Proof: We multiply equation (56) by z(4) and integrate over (0,∞) to
obtain∫ t

0

|z(4)(s)|2 ds =

∫ t

0

(2(n− 4)z′′′(s)− (n2 − 10n+ 20)z′′(s)

−(2n2 − 12n+ 16)z′(s)− (2n2 − 12n+ 16)z′(s)

+λ(ez(s) − 1))z(4)(s) ds. (67)

It the same way as in Lemma 4.15, we can prove that (67) remains bounded
as t→∞. 2

Lemma 4.17 We have ∫ ∞
0

|ez(s) − 1|2 ds <∞.
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Proof: Using (56) we obtain

λ2(ez(s) − 1)2 =
[
z(4)(s)− 2(n− 4)z′′′(s)

+(n2 − 10n+ 20)z′′(s) + (2n2 − 12n+ 16)z′(s)
]2

Together with Lemmas 4.14, 4.15, 4.16, the proof is done.
2

Proof of Theorem 4.3: Let W = {w1, w2, w3, w4} be the solution of the
dynamical system (53), corresponding to a radial singular solution u of (50),
and let P1 and P2 the stationary points introduced in (54). Because of Lemma
4.12, there exists a sequence {σk}, σk → +∞ such that z(σk) is bounded. It
follows that E(σk) is bounded too.

Using Lemmas 4.14-4.17 at least one of the following must be true:

∃{σk} : σk+1 < σk, lim
k→∞

σk = −∞,

lim
k→∞
|σk+1 − σk| = 0, lim

k→∞
W (σk) = P1 (68)

∃{σk} : σk+1 < σk, lim
k→∞

σk = −∞

lim
k→∞
|σk+1 − σk| = 0, lim

k→∞
W (σk) = P2 (69)

Arguing as in [32], we can conclude that

lim
t→−∞

W (t) = P1 or lim
t→−∞

W (t) = P2,

respectively in the case (68) or (69). From Theorem 4.7, we may exclude
the case (69), because we supposed u to be singular. So u must be weakly
singular. 2

The energy functional defined in (66) is also useful to understand the
behaviour of singular solutions of (50) when r → 0. Suppose that

lim
t→∞

z(t) = L.

Lemma 4.18 Let us be a weakly singular solution of (50) with parameter
λs and z : (0,∞) → R the corresponding solution to (56). Then it cannot
happen that z′(s0) = 0 for some s0.
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Proof: Assume for contradiction that z′(s0) = 0. Since z′(0) = −4, the
function z is not constant, z′. So, we suppose now s0 is a point different from
0, such that z′(s0) = 0. We use the the energy functional defined in (66) and,
like in Lemma 4.14

E(t)− E(s0) = z′(t)z′′′(t)− z′(s0)z′′′(s0)− 2(n− 4) [z′(t)z′′(t)

+z′(s0)z′′(s0)] +

∫ t

s0

(
2(n− 4)z′′(s)2

+2(n− 2)(n− 4)z′(s)2
)
ds. (70)

If we evaluate (70) for t → ∞, then z′(t), z′′(t), z′′′(t), z′(s0) = 0 for
hypotesis, then

E(∞)− E(s0) = 2(n− 4)

∫ ∞
s0

z′′(s)2 + (n− 2)z′(s)2 ds > 0, (71)

It means E(∞) > E(s0), that is

λ >
1

2
z′′(s0)2 + λ(ez(s0) − z(s0)) ≥ λ(ez(s0) − z(s0)).

Then 1 > ez(s0) − z(s0) ≥ infx∈R e
x − x = 1,which is absurd. 2

Proof of Theorem 4.4: Since lims→∞ z(s) = 0, z′(0) = 4, we have by
Lemma 4.18 that z(s) > 0, i.e.

v(−s)− 4s+ log λs − log λ0 > 0.

When s = 0, we obtain log λs > log λ0, so it follows λs > λ0.
Moreover, u(e−s)−4s > log λ0

λs
and then with the substitution s = − log r

we obtain

u(r) > −4 log r + log
λ0

λs

When letting z → 0 we obtain

|v(−s)− 4s+ log λs − log λ0| =
∣∣∣∣u(r)−

(
−4 log r + log

λ0

λs

)∣∣∣∣→ 0.

2 Proof of Theorem 4.5 From [6] we know that for λ ∈ [0, λ?) the minimal
regular solution is stable, i.e.

∀ϕ ∈ C∞0 (B),

∫
B

(∆ϕ)2 dx− λ
∫
B

eUλϕ2 dx ≥ 0.



4 SEMILINEAR BIHARMONIC PROBLEMS 67

By taking the monotone limit for λ↗ λ? we find that

∀ϕ ∈ C∞0 (B),

∫
B

(∆ϕ)2 dx− λ?
∫
B

eU
?

ϕ2 dx ≥ 0.

Let us assume that U? is singular. Then

λ? > 8(n− 2)(n− 4),

U? > −4 log |x|+ log
λ0

λ?
,

which gives a Hardy-inequality

∀ϕ ∈ C∞0
∫
B

(∆ϕ)2 dx ≥ 8(n− 2)(n− 4)

∫
B

r−4ϕ2 dx. (72)

It is well known that 1
16
n2(n − 4)2 is the optimal constant for the Hardy

inequality (72). So, necessarily it holds that

8(n− 2)(n− 4) ≤ 1

16
n2(n− 4)2.

For integer n this is equivalent to n ≥ 13. This shows that for n ≤ 12, the
extremal solution is bounded. 2
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[67] G. Szegö, Remark on the preceding paper of Charles Loewner, Pacific J.
Math. 3 (1953), 437-446.



REFERENCES 73

[68] G. Talenti, On the first eigenvalue of the clamped plate, in: H. Brezis,
J. L. Lions (eds.), Nonlinear partial differential equations and their ap-
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