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1 INTRODUCTION

”Conjoint analysis” is concerned with understanding how people make choice between prod-
ucts or services or a combination of product and service, so that businesses can design new
products or services that better meet customers underlying needs. A key benefit of ”conjoint
analysis” is the ability to produce dynamic market models that enable companies to test out
what steps they would need to take to improve their market share, or how competitors behavior
will affect their customers. ”Conjoint analysis”, also called multi-attribute compositional mod-
els, is a statistical technique that originated in mathematical psychology. Today it is used in
many of the social sciences and applied sciences including marketing, product management, and
operations research. The objective of ”Conjoint analysis” is to determine what combination of
a limited number of attributes is most preferred by respondents.

Discrete choice experiments play an important role in psychology and market research for
measuring the consumer’s preferences. Usually, the choice behavior is modeled by a multinomial
response, where the probabilities of preferences are given by a logistic model.

(Thurston 1927) has introduced his law of comparative judgment, a model based on utility
function Uij = vij + εij with a normal error where i and j denote individual and alternative.
He has also showed that the probability Pi(j,j′) that alternative j is chosen over alternative j′

has a form that now it is called binomial probit. (Marschak 1960) generalized Thurston’ law
of comparative judgment to stochastic utility maximization in multinomial choice sets which is
called the Random Utility Maximization (RUM) model. (Luce 1959) introduced an axiomatic
treatment of choice behavior that the ratio of choice probabilities for j and j′ not depends
on the other alternatives (in every choice set) which is called Independence from Irrelevant
Alternatives (IIA). In continuation, the strict utilities in Luce model has been parameterized
in a form suitable for econometric applications which is called conditional logit, now known as
multinomial logit (MNL)(McFadden 1974). Also, (Williams 1977), (Daly and Zachary 1978)
and (Ben-Akiva and Lerman 1985) have developed RUM justifications for the Nested MNL
(NMNL) model. The decade has seen extensive development and use of open (Multinomial
Probit (MNP)) and closed form choice models consistent with RUM, including General Extreme
Value (GEV) models and mixing in the parameters of MNL and NMNL models. These models
belong to a family of models which are called discrete choice models. From these models are used
to analyze data in classical discrete choice experiment, where the respondent is asked to choose
an alternative with the highest utility among alternatives in a choice set. But there is the other
experiments from discrete choice experiments that the respondent is asked to rank a number
of alternatives instead of preferred one which are called Rank-Order experiments. Data from a
rank-order experiment can be analyzed by the rank-ordered exploded Logit models (Beggs, et
al. 1981), (Hausman and Ruud 1987).
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1 INTRODUCTION

Discrete choice models have been applied in divers fields and are increasingly employed in
the social sciences. Of the existing discrete choice model, the Probit, Logit and the Nested logit
models are the most commonly used in practice. The logit and the Nested logit models belong
to the family of generalized extreme value (GEV) models. The Probit model, although allow-
ing for flexible covariance structures for the disturbance terms, is computationally burdensome
for problems with more than a few alternatives because it requires the evaluation of multiple
integrals. Such that until recently, the model was not feasible for choice problems with more
than three alternatives. The GEV class, unlike the Probit model, is computationally manage-
able for large choice sets because it involves at most one dimensional integration regardless
of the number of choice alternatives in the model. However, it suffers from the restriction of
Homoscedastic disturbance. Homoscedasticity is a troubling assumption, since choice models
are most often used with micro-level data that are frequently Heteroscedastic.

The error distribution function of the GEV class in particular is less familiar than the normal
distribution for the Probit models, and the fact that the distribution imposes Homoscedasticity
is not readily noticed. The effect of Heteroscedasticity in choice models is for more serious
than in linear models. In a linear model, if Heteroscedasticity is ignored, the least squares
estimate is still unbiased and consistent, although inefficient. In a choice model, the maximum
likelihood estimators are not only biased and inefficient but even inconsistent (Yatchew and
Griliches 1985), (Greene 1997).

(Zeng 2000) has explained a technique to relax the restriction of homoscedasticity in the
entire GEV class of models to allow for heteroscedasticity across alternatives as well as across
decision makers.

Optimal design for conjoint analysis is the topic of this thesis. The design of a choice exper-
iment comprises a select number of choice sets administered to each respondent. The aim of
a choice experiment is to estimate the importance of each attribute and their levels based on
the respondents preferences. The estimates are then used to mimic real marketplace choices
by making predictions about consumer future purchases. At present, two design approaches
are prevalent; (i) The Linear design approach and (ii) The Baysian design approach. Bayesian
choice designs have so far been constructed for the Logit models. Since the Logit models are
nonlinear in the parameters, the quality of a given design depends on the unknown parameter
vector. The Bayesian design approach deals with this problem by assuming a prior distribu-
tion of likely parameters. To date, most of the Bayesian research focus has been on designs
for main-effects models. (Sandor and Wedel 2001) were the first to introduce the Bayesian
design procedure in the choice design literature. They generated Bayesian designs using the
D-optimality criterion for the MNL model. This design criterion seeks to minimize the determi-
nate of the variance-covariance matrix of the parameter estimators. In the Bayesian framework,
it is referred to as the Db-optimality criterion. Of course, four optimality criteria are used in
the Bayesian context which are labeled the Db- ,Ab-,Gb- and Vb-optimality criteria. In this the-
sis, we use D-optimality criterion, since, (Yu, et al. Preprint) have written that D-optimality
criterion is invariance to the scale or coding of the attributes. Also, the relative efficiency of the
designs does not change when different codings of the attributes are used (Goos 2002). Also,
(Kessels, et al. 2006b) have denoted that D-and A-optimal designs are nearly as good as the
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G-and V-optimal designs in terms of prediction quality but much faster to compute compared
to G- and V -optimal designs.

The thesis is organized as follows.

In chapter 2, two kinds of logit models will be discussed, which are called Multinomial logit
(MNL) and Nested MNL model. According to similarity between alternatives in a choice set,
the Nested MNL model may be Two-level, Three-level,... . Of course, in this thesis we have
just discussed about Two and Three-level NMNL model.

Optimal design and some of optimal criteria like D- and A-criterion are explored in chapter
3. In this chapter, we concentrate of D-criterion which is a function of the determinant of the
information matrix. Bayesian criterion, which is one of the suitable criteria to obtain optimal
design in nonlinear model (specially), is introduced in this chapter. In addition, in Subsection
3.7.1 of chapter three have been discussed about optimal design in the MNL model.

The three remaining chapters are the principle chapters of the thesis. In chapter 4 we cal-
culate the information matrix for the two-level NMNL model with M nests. Afterwards, we
illustrate two examples based on the local D-optimality criterion. In Chapter 5 the information
matrix for a three-level nested MNL model will be calculated. With respect to Random Utility
Maximization (RUM) conditions and D-optimality criterion we obtain the locally D-optimal
design based on experiments 23/5/6 (there are three attributes each with two levels, where six
choice sets each with five alternatives has been selected from population). In chapter 6, we
introduce a model of the logit family, which also includes the probabilities of choosing alter-
natives with lower utility, in a choice set. In this situation, the alternatives with upper utility
(Ranking) are removed when we want to obtain the choice probabilities of the alternatives with
lower utility. This model is called Rank-Order logit model. In this chapter 6 we have intro-
duced the likelihood function of the Rank-Order Nested MNL model, then we have calculated
the information matrix for this model. Also, we have obtained Locally D-optimal design for
this model.
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2 MODEL SPECIFICATION

Modeling the individual behavior of consumers is one of the main topics in marketing research.
This individual behavior is influenced by socio-economic characteristics, marketing instruments
or latent variables. The connection between these influencing variables and the choice of a
product is typically studied by using a statistical choice model for disaggregated data.

A classic choice model is the conditional logit model of (McFadden 1974). It is widely dis-
cussed and a standard in marketing (Guadagni and Little 1983). This model however has some
disadvantages in particular the IIA (Independence of Irrelevant Alternatives) and a very restric-
tive assumption about the errors. This led to many approaches for relaxing these assumptions.
For overviews see (Ben-Akiva, 1973) and (Horowitz, et al. 1994).

All these approaches present alternative ways for modeling consumer purchase and obtain
results which adapt better to the data than the classic approach. How ever, to our knowledge
no general statistical test to check adequateness of the logit model was applied to marketing
data until now.

(Bartelts, et al. 1999) have introduced a test procedure which will help in finding an ap-
propriate consumer purchase model. The test is based on a nonparametric test statistic which
makes it a very flexible and general tool.

The simplest model in logit family is Multinomial logit model. But this model has a retraction
that all of alternatives are independent in choice set and it is called IIA. In logit model family
there are other models that this property dose not hold between all of alternatives like Nested
MNL model which hold just between alternatives in each of nests. And there are some models
in this family that IIA dose not hold between all of alternatives like Probit logit model. But,
we concentrate on two models of logit model, multinomial and nested logit models.

2.1 Multinomial Logit Model

Many researchers use data on individuals to analyze postsecondary attendance behavior. With
these data the enrollment choices of the individuals are made over a limited number of ”discrete”
alternatives that constitute the exhaustive set of available education options. It is now well-
known that using ordinary least squares (OLS) to analyze relationships in which the dependent
variable is discrete or qualitative is not appropriate. If there are just two alternatives in the
choice set, logit or probit analyzes are often used to estimate the relationship between the
option selected and the characteristics of the alternatives and of the individuals in the data
sample. In analysis of enrollment choices these methods have been used to explain the choice
between attendance and nonattendance or between attendance at a particular institution and
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2 MODEL SPECIFICATION

not attending that institution.

It is clearly of interest to extend the analysis to choice among several types of attendance
options or even to a limited number of individual institutions. When there are more than two
alternatives in the choice set, the most widely used approach is multinomial or conditional logit
(MNL). This method is computationally simple with today’s software and computers and also
has another desirable property: It is easy to use the estimated results to forecast choices when
a new alternative is introduced or when an existing one is eliminated so long as no parameters
are added or deleted as a result. This is a useful property, for example, in estimating the effects
of either opening or closing a postsecondary educational institution. However, MNL also has a
distinct limitation, a property known as ”independence of irrelevant alternatives” (IIA), which
implies that the odds of choosing alternative j relative to alternative j′ are independent of the
characteristics of or the availability of alternatives other than j and j′. This is clearly a very
restrictive property when the alternatives being studied have different degrees of ”nearness” or
similarity.

Now, here, we consider choice models based on the assumption of stochastic utility maximiza-
tion. Under this assumption, a decision maker chooses the alternative that maximizes his or her
utility function, which has both a deterministic component and a stochastic component. In for-
mal notations, assume a sample of I decision makers, each choosing among C choice sets which
each of them include Jc discrete alternatives, where Jc > 1;∀c ∈ C. Now, if we suppose that C
is choice set, which consists all of alternatives,J , (C = {ã1, . . . , ãj, . . . , ãJ }) and Cc is a choice

set which includes Jc alternatives then we can write that
⋃C
c=1 Cc = C : ∃c, c′; Cc

⋂
Cc′ 6= φ,

where 2J − (J + 1) is the number of choice sets in set C (C is the set of all of choice sets each
with Jc > 1;∀c alternatives). Here, it has been used notation Cc to denote a choice set with Jc
alternatives, where Cc = {a1c, . . . , ajc, . . . , aJcc} (ajc denotes the jth alternative of choice set c).
In this situation, it has been supposed that there are K attributes each with Lk; k = 1, 2, . . . , K
levels. Consequently, it has been considered S choice sets each with Js alternatives to fit model.

Obtaining the probability related to choosing an alternative with the highest utility is prin-
ciple aim in the MNL models. In this thesis, for each individual i, each alternative j provides
utility (ignoring index i):

Ujc = vjc + εjc. (2.1)

In above function, vjc is a deterministic component, usually specified as a linear function of
observed independent variables, such as:

vjc = fT (ajc)β =
K∑
k=1

fTk (ajc)β
T
k ,

where:

• βT = (βT1 , . . . ,β
T
k , . . . ,β

T
K); βTk = (βk,1, . . . , βk,`, . . . , βk,Lk),

• f(ajc) = (fT1 (ajc), . . . , f
T
k (ajc), . . . , f

T
K(ajc))

T ; fk(ajc) = (fk1(ajc), . . . , fk`(ajc), . . . , fkLk(ajc))
T .
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2.1 Multinomial Logit Model

In this case, βTk and fTk (ajc) denote the part-worth parameter and the characterizes of attribute
k in choice set Cc. The εjc is an unobserved, stochastic disturbance (i.i.d) with mean zero and
variance σ2 (for each choice set), thus:

cov(Ujc, Uj′c) =

{
σ2, j = j′;
0, j 6= j′.

Thus the variance-covariance matrix for the vector Uc = (U1c, . . . , Ujc, . . . , UJcc)
T is as below:

V (Us) = ΣUs =


σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2

=σ2IJc .

Under stochastic utility maximization, an individual i chooses alternative j (in choice set Cc)
if and only if Ujc > Uj′c, ∀j 6= j′:

Ujc = max
j′∈Cc

Uj′c, (2.2)

where Cc denotes a choice set with Jc alternatives.

Here, we are going to calculate the probability of choosing alternative j which has the highest
utility among the other (in the choice set). Therefore, the observation variables to calculate
the choice probabilities are defined as follows:

Yjc =

{
1, Ujc = maxj′∈Cc Uj′c;
0, otherwise.

,

where:
pjc = P (Yjc = 1) = P (Ujc = max

j′∈Cc
Uj′c) = P (Ujc > Uj′c; ∀j′ 6= j ∈ Cc), (2.3)

where P (A) denotes the probability related to occur event A. In this situation, E(Yjc) = pjc
and

cov(Yjc, Yj′c) =

{
pjc · (1− pjc), j = j′;
−pjc · pj′c, j 6= j′.

Thus the variance-covariance matrix for the vector Yc = (Y1c, . . . , Yjc, . . . , YJcc)
T is calculated

as follow:

V (Yc) = ΣYc =


p1c · (1− p1c) · · · −p1c · pjc · · · −p1c · pJcc

...
. . .

... · · · ...
−pjc · p1c · · · pjc · (1− pjc) · · · −pjc · pJcc

... · · · ...
. . .

...
−pJcc · p1c · · · −pJcc · pjc · · · pJcc · (1− pJcc)


= Pc − pcp

T
c ,

where:
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2 MODEL SPECIFICATION

• Pc = diag[p1c, . . . , pjc, . . . , pJcc],

• pc = [p1c, . . . , pjc, . . . , pJcc]
T .

According to (2.1) we rewrite (2.3) as follow:

pjc = P (εj′c < (vjc − vj′c + εjc);∀j′ 6= j ∈ Cc). (2.4)

For calculating this probability, we need to know the distribution of ”ε”s. There are two
important criteria for choosing the error distribution function are functional flexibility and
computational efficiency. The Probit model is obtained by assuming the multivariate normal
distribution for the disturbances. Because, there are no prior restrictions on the form of the
covariance matrix of a multivariate normal distribution, hence, the probit model is functionally
flexible (Hausman and Wise 1978). However, under the multivariate normal distribution there
is no closed form solution to (2.4) when there are more than three alternatives. With the
recent development of simulation methods (McFadden 1989), has made it theoretically possible
to apply the model to a large number of choice. Due to problems of fragile identification,
however, in practice it is still rarely used for more than three or four alternatives. Because
many theoretically important decisions involve more than a few alternatives, researchers must
often turn to alternatives models, usually the Generalized Extreme Value (GEV) class, which
includes the familiar logit and nested logit model. Now, we first introduce the GEV classes
then the MNL model will be obtained.

2.1.1 The Generalized Extreme Value(GEV)

In this section, it is introduced a family of choice models derived from Stochastic Utility Max-
imization (SUM) or Random Utility Maximization (RUM), which includes multinomial and
nested logit model.

GEV distributions have application in the study of discrete choice behavior, and were initially
studied by (McFadden 1978a), (McFadden 1981), (McFadden 1984), (McFadden 2001) with the
following result, which characterizes this family (ignoring index i for simplicity and considering
a choice set (Cc) with Jc alternatives).

Theorem 2.1. (McFadden 1981) Suppose that GJc(z1c, . . . , zjc, . . . , zJcc) is non-negative, ho-

mogeneous of degree one function of (z1c, . . . , zjc, . . . , zJcc) ≥ 0 such that;

lim
zjc→+∞

GJc(z1c, . . . , zjc, . . . , zJcc) = +∞;∀j = 1, 2, . . . , Jc,

where GJc : <Jc → <. Also for any distinct (j1, . . . , jn) from {1, . . . , Jc} have that:

∂nGJc(z1c, . . . , zjc, . . . , zJcc)

∂zj1 , . . . , ∂zjn

{
≥ 0, if n be odd;

≤ 0, if n be even.
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2.1 Multinomial Logit Model

In this case: pjs =
zjs·GjcJc (z1c,...,zjc,...,zJcc)

G(z1c,...,zjc,...,zJcc)
, where Gjc

Jc
=

∂GJc (z1c,...,zjc,...,zJcc)

∂zjc
and with assumption

zjc = exp(vjc) will be:

pjc =
exp(vjc) ·Gjc

Jc
(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))

GJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))
. (2.5)

Example 2.1. suppose that:

G(z) = GJc(z1c, . . . , zjc, . . . , zJcc) =
Jc∑
j=1

zjc,

where G(αz) = αG(z) is a generating function with the homogeneous of degree one. According

to assumption zjc = exp(vjc), we will have:

∂GJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))

∂ exp(vjc)
= 1 ⇒ pjc =

exp(vjc)∑Jc
j′=1 exp(vjc)

. (2.6)

Consequently, the model (2.6) is called the MNL model. Under the assumptions of Theorem
2.1, the expectation of maximum utility is calculated as follow (McFadden 1984):

E(max
j∈Cc

Ujc) = logGJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc)) + γ, (2.7)

where γ is Euler ’s constant and logGJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc)) is called inclusive
value, IVc (the expected utility for the choice of alternative within choice set Cc). In this
situation and by noting to Equation (2.7) and Theorem 2.1 we will have:

∂E(maxj∈Cc Ujc)

∂vjc
=

∂GJc (exp(v1c),...,exp(vjc),...,exp(vJcc))

∂vjc

GJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))

=
exp(vjc) ·Gjc

Jc
(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))

GJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))
= pjc

Now, since (based on Euler ’s Law):

Jc∑
j=1

exp(vjc)·Gjc
Jc

(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc)) = GJc(exp(v1c), . . . , exp(vjc), . . . , exp(vJcc))

thus:
Jc∑
j=1

∂E(maxj∈Cc Ujc)

∂vjc
=

Jc∑
j=1

pjc = 1.
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2 MODEL SPECIFICATION

A Special Case: According to the utility (2.1), it has been assumed that εj’s have i.i.d
extreme value distribution type(II) (ε1c, . . . , εJcc have i.i.d EVD type II), so that:

Fεj(t) = exp(− exp(−t)); t ∈ <. (2.8)

With regards to the definition of the choice probability related to choosing alternative j (in a
choice set, Cc) will be:

pjc = P (Ujc > Uj′c; ∀j′ 6= j ∈ Cc) = P (vjc + εjc > vj′c + εj′c;∀j′ 6= j ∈ Cc)

=

∫ +∞

−∞
P (ε1c < vjc − v1c + εjc, . . . , εJcc < vjc − vJcc + εjc︸ ︷︷ ︸

without jth component

)fεjc(εjc)dεjc

=

∫ +∞

−∞
Fε1c(vjc − v1c + εjc) . . . FεJcc(vjc − vJcc + εjc)︸ ︷︷ ︸

without jth distribution function

)fεjc(εjc)dεjc.

By noting Equation (2.8) the solution of the above integral is obtained as follow:

pjc =
exp(vjc)∑Jc
j′=1 exp(vj′c)

; j = 1, 2, . . . , Jc. (2.9)

Model (2.9) is called standard multinomial logit model. Since, the variance of this model for all
of decision makers are as the same, then this model is also called Homoscedastic MNL model.

2.1.2 Consistency with Random Utility Maximization (RUM)

(McFadden 1981) has showed that any set of choice probabilities that satisfies a set of com-
patibility conditions defines a stochastic utility maximization model (based on the maximum
utility of alternatives) with an implied joint distribution of the stochastic utility components.
These compatibility conditions are as follow (ignoring index i and with respect to a choice set
with Jc alternatives):

pjc = pj(vc) ≥ 0,
Jc∑
j=1

pj(vc) = 1, pj(vc) = pj(vc + r1),∀r ∈ <, (2.10)

∂pj(vc)

∂vj′c
=
∂pj′(vc)

∂vjc
, (2.11)

∂(n)pj(vc)

∂v1c∂v2c . . . [∂vjc] . . . ∂vnc︸ ︷︷ ︸
is not with respect to vjc

{
≥ 0 n is even
≤ 0 n is odd

; n ≤ Jc, (2.12)

18



2.1 Multinomial Logit Model

where pjc : <Jc → [0, 1]. Here, vjc is the mean utility of the alternative ajc and vc =
(v1c, . . . , vjc, . . . , vJcc)

T .

Condition (2.10) represents the basic requirements of non-negativity and adding-up of the
Jc choice probabilities as well as the dependence of the comparison only on the difference in
utilities (translation invariance).

Condition (2.11) guarantees the integrability of the pjc and is a straightforward analogue to
the (Slutsky 1952) condition in continuous demand analysis (integrability).

Condition (2.12) is the essential requirement for the implied distribution function to be
property defined, to have a non-negative density function, mean that pjc must have non-negative
even and non-positive odd mixed partial derivatives with respect to components of vc other
than vjc (nonnegative density function).

Three above conditions have been proved by (Koning and Ridder 2002), completely.

Example 2.2. According to the MNL model (2.9), three conditions (2.10), (2.11) and (2.12)

are held out, so that:

• pj(vc) ≥ 0;
∑Jc

j=1 pj(vc) =
∑Jc
i=1 exp(vjc)∑Jc
j′=1

exp(vj′c)
= 1;

pj(vc + r1) =
exp(vjc + r)∑Jc
j′=1 exp(vj′c + r)

=
exp(vjc)∑Jc
j′=1 exp(vj′c)

= pj(vc), ∀r ∈ <.

• ∂pj(vc)

∂vj′c
= − exp(vjc)·exp(vj′c)

(
∑Jc
l=1 exp(vlc))2

= − exp(vj′c)·exp(vjc)

(
∑Jc
l=1 exp(vlc))2

=
∂pj′ (vc)

∂vjc

• ∂Jc−1pj(vc)

∂v1c, . . . , [∂vjc], . . . , ∂vJcc︸ ︷︷ ︸
without jth

= (−1)Jc−1(Jc−1)!

(
∑Jc
l=1 exp(vlc))Jc−1

{
≥ 0, Jc − 1 is even;

≤ 0, Jc − 1 is odd.

Hence, the MNL model (2.9) is consistency with RUM.

2.1.3 Independence from Irrelevant Alternative (IIA)

The MNL model (2.9) is the most widely used discrete choice model due to its closed-form choice
probabilities and consistency with random utility maximization. But there exist a problem in
this model. The problem arise with the standard MNL because it is derived from random utility
maximization, based on the assumption that the error terms are independent across alternatives,
choice set, and subjects. This leads to the property of Independence from Irrelevant Alternatives
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2 MODEL SPECIFICATION

(IIA). This property (at really restriction), which arises from the assumption of independent
random errors and equal variance for the choice alternative mean that; for any two alternatives,
the ratio of probabilities is independent of the attributes or existence of all other alternative:

pjc
pj′c

=

exp(vjc)∑Jc
l=1 exp(vlc)

exp(vj′c)∑Jc
l=1 exp(vlc)

=
exp(vjc)

exp(vj′c)
;∀j, j′ ∈ Cc; ∀c ∈ C,

where vjc = vc(aj); Cc = {a1c, . . . , ajc, . . . , aJcc}. According to the IIA property we consider
the two following corollary.

Corollary 2.1. If A be a subset of Cc, (A ⊂ Cc), In this case:

pjA
pj′A

=
pjCs
pj′Cs

; ∀j, j′ ∈ A,

where pjc = pjCc.

Corollary 2.2. If Cc = {a1c, . . . , ajc, . . . , aJcc} is a choice set and A is a subset of Cc with

element exclusive mutually then pjc = pjCc = pjA · pACc = pjA · pAc and with respect to the MNL

model pjc = pjA · pAc, where pAc =
∑

a∈A pac. In this situation, we will have:

pjc = pjA ·
∑
a∈A

pac

= pjA ·
∑

a∈A exp(vac)∑
j∈Cc exp(vjc)

,

thus pjA =
exp(vjc)∑
a∈A exp(vac)

.

Then it can be told that the probability of choosing alternative j by individual i in choice
set A is independent of the other alternatives in choice set Cc.

2.1.4 Likelihood Function and Parameters Estimator

It was defined that the observation yijc of the variables Yijc equals 1 if the ith individual selects
the jth alternative (in choice set Cc) and 0, otherwise, where:

Yijs =

{
1, if Uijc > Uij′c, ∀j′ 6= j ∈ Cc;
0, otherwise

Now, for a random sample size I of the population of individual and with regards to pijc, which
denotes the probability of choosing alternative j by individual i, the log-likelihood function
based on choice set Cc is defined as follow:

`(Cc,β) = ln(L(Cc,β)) =
I∑
i=1

Jc∑
j=1

yijc ln(pij(vc)), (2.13)
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where vc = (v1c, . . . , vjc, . . . , vJcc)
T ; vjc = fT (ajc)β (see Section 2.1). The parameters of a MNL

model can be estimated by standard maximum likelihood techniques. Substituting the choice
probabilities of expression (2.9) into the log-likelihood function gives an explicit function of the
parameters of this model. The values of the parameters that maximize this function are, under
fairly general conditions, consistent and efficient (Brownstone and Small 1989).

(Manski and McFadden 1981) and (Cosslett 1981) have described estimation methods un-
der a variety of sampling procedures. (Train 2003) has discussed estimation under the most
prominent of these sampling schemes. He has first described estimation when the sample is
exogenous and all alternatives are used in estimation. He has then discussed estimation on a
subset of alternatives and with certain types of choice-based (i.e., non-exogenous) samples.

Now, based on Equation (2.13) the estimator is the value of β, which maximizes this func-
tion. (McFadden 1974) has showed that (C denotes the number of choice sets each with Jc
alternatives, see Section 2.1):

`(β) = `(C1, . . . ,Cc, . . . ,CC;β) =
C∑
c=1

`(Cc,β)

is globally concave for linear-in-parameters utility, and many statistical packages are available
for estimation of these models. When parameters enter the representative utility nonlinearly,
the researcher may need to write her own estimation code using the procedures which were
described by (Train 2003), Chapter 8.

Maximum likelihood estimation in this situation can be reexpressed and reinterpreted in a
way that assists in understanding the nature of the estimates. At the maximum of the likelihood
function, its derivative with respect to each of the parameters is zero (if maximum exists):

∂`(β)

∂β
= 0, (2.14)

the maximum likelihood estimates are therefore the values of β, which satisfy this first-order
condition. For convenience, let the representative utility be linear in parameters as Equation
(2.1). This specification is not required, but makes the notation and discussion more succinct.
Using the log-likelihood function (2.13) and the formula for the logit probabilities, we show at
the end of this subsection that the first-order condition (2.14) becomes:

∂`(β)

∂β
=

C∑
c=1

I∑
i=1

Jc∑
j=1

fT (aijc)(yijc − pijc) = 0. (2.15)

2.2 Nested Multinomial Logit Model (NMNL)

The standard logit model (MNL) exhibits IIA, which implies proportional substitution across
alternatives. As already was discussed, this property can be seen either as a restriction imposed
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by the model or as the natural outcome of a well specified model that captures all source of
correlation over alternatives into representative utility, so that only white noise remains. Often
the researcher is unable to capture all source of correlation explicitly, so that the unobserved
options of utility are correlated and IIA does not hold. In this cases, a more general model
than standard logit is needed.

Generalized extreme value (GEV) models constitute a large class of models that exhibit a
variety of substitution patterns. The unifying attribute of these models is that the unobserved
portions of utility for all alternatives are jointly distributed as a generalized extreme value. This
distribution allows for correlations over alternatives and, as its name implies, is a generalization
of the univariate extreme value distribution, which is used for standard logit models. When all
correlations are zero, the GEV distribution becomes the product of independent extreme value
distribution and the GEV model becomes standard logit. The class therefore includes logit
but also includes a variety of other models. Hypothesis tests on the correlation within a GEV
model can be used to examine whether the correlations are zero, which is equivalent to testing
whether standard logit provides an accurate representation of the substitution patterns.

The most widely used member of the GEV family is called the nested logit model. This model
has been applied by many researchers in a variety of situations, including energy, transforma-
tion, housing, telecommunications, and a host of other fields; see, for example, (Ben-Akiva,
1973), (Train 1986) and (Train, et al. 1987), (Forinash and Koppelman 1993) and (Lee 1999).

The nested logit model has become an important tool for the empirical analysis of discrete
outcomes. It is attractive since it relaxes the strong assumptions of the multinomial (or condi-
tional) logit model. At the same time, it is computationally straightforward and fast compared
to the multinomial probit, mixed logit, or other even more flexible models due to the existence
of a closed-form expression for the likelihood function. There is some confusion about the spec-
ification of the outcome probabilities in the nested logit models. Two substantially different
formulas and many minor variations of them are presented and used in the empirical literature
and in textbooks. Many researchers are neither aware of this issue nor of which version is ac-
tually implemented by the software they use. This obscures the interpretation of their results.
This problem has been previously discussed by (Hensher and Greene 2002), Hunt, (2000),
(Koppelman and Wen 1998) and (Louviere, et al. 2000).

(McFadden 1978a), (McFadden 1981) has described a useful generalization of the MNL
model and a way to relax the restrictive IIA assumption, namely the Nested Multinomial Logit
model (NMNL) that uses a nested structure to estimate the probability of choosing a specific
alternative. Another more general type of MNL models that also relaxes IIA assumption is the
Mixed Multinomial Logit model (MMNL) introduced by (Boyed and Mellman 1980).

2.2.1 Two-Level Nested MNL Model

In this section we consider a two-level nested MNL model, which the Jc alternatives (in a choice
set Cc) are grouped into M subsets (nests), each consisting of Jmc;m = 1, 2, . . . ,M alternatives:

Cmc = {a1mc, a2mc, . . . , aJmcmc},
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so that:

Cc =
M⋃
m=1

Cmc; Cmc

⋂
Cm′c = φ, ∀m 6= m′,

where Cmc denotes the choice set, which includes the alternatives of nest m based on choice set
Cc of size Jmc (Jc =

∑M
m=1 Jmc). In this situation, we face to two steps for choosing. First step,

choosing a nest with the highest utility and choosing an alternative with the highest utility, in
second step. For this propose we consider the utility related to choice alternative j and nest m
by individual i as follow (ignoring index i):

Ujmc = Umc + Uj|mc;

{
j = 1, 2, . . . , Jmc, Alternatives;
m = 1, 2, . . . ,M Nests,

(2.16)

where:

1. Umc = vmc + εmc; vmc = E(maxj∈Cmc Uj|mc),

2. Uj|mc = vj|mc + εj|mc; vj|mc = fT (ajmc)β (Section 2.1)

• β = (βT1 , . . . ,β
T
k , . . . ,β

T
K)T ; βk = (βk,1, . . . , βk,`, . . . , βk,Lk),

• f(ajmc) = (fT1 (ajmc), . . . , f
T
k (ajmc), . . . , f

T
K(ajmc))

T ;

fk(ajmc) = (fk1(ajmc), . . . , fk`(ajmc), . . . , fkLk(ajmc))
T ,

so that εmc have the same distribution (i.i.d) such as maxj∈Cmc Uj|mc and εj|mc have EVD (Ben-
Akiva, 1973). In this situation we consider the variances of εmc and εj|mc with symbols σ2

and σ2
m, respectively. In this model εj|mc’s are correlated in the same nest, corr(εj|mc, εj′|mc) =

ρm; ∀j 6= j′ ∈ Cmc, but corr(εmc, εm′c) = 0;∀m 6= m′, also, εmc and εj|mc are independence then
we will have:

cov(Ujmc, Uj′m′c) =


σ2
m + σ2, j = j′,m = m′;

(1− λ2
m)σ2

m + σ2, j 6= j′,m = m′;
0, m 6= m′,

where λm =
√

1− ρm. Also, based on vector Uc = (U1c, . . . , Umc, . . . , UMc)
T , the variance-

covariance matrix of Uc is calculated as below:

V (Uc) = ΣUc =


ΣU1c · · · 0 · · · 0

...
. . .

... · · · ...
0 · · · ΣUmc · · · 0
... · · · ...

. . .
...

0 · · · 0 · · · ΣUMc

 ,
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where:

ΣUmc =


σ2
m + σ2 · · · ρmσ

2
m + σ2 · · · ρmσ

2
m + σ2

...
. . .

... · · · ...
ρmσ

2
m + σ2 · · · σ2

m + σ2 · · · ρmσ
2
m + σ2

... · · · ...
. . .

...
ρmσ

2
m + σ2 · · · ρmσ

2
m + σ2 · · · σ2

m + σ2

 .

Thus,
ΣUmc = σ2

m(1− ρm)IJm + (σ2
mρm + σ2)JJm ; ∀c ∈ C, m = 1, 2, . . . ,M,

where Ir is r × r identity matrix and Jr denotes a r × r matrix, which all of its elements are
one.

In this case, the observation variables to obtain choice probabilities in two-level NMNL models
are introduced as follow:

Yj|mc =

{
1, Uj|mc = maxj′∈Cmc Uj′|mc;
0, otherwise.

Ymc =

{
1, Umc = maxm′ Um′c;
0, otherwise.

In this situation:
Yjmc = Yj|mc × Ymc ⇒ pjmc = pj|mc × pmc,

where pjmc = P (Yjmc = 1) and pmc = P (Ymc = 1) and pj|mc = P (Yj|mc = 1) have the famil-
iar functional form of simple marginal and conditional logit choice probabilities, respectively.
According to the definition of variables Yc we will have, E(Yjmc) = pjmc and:

cov(Yjmc, Yj′m′c) =


pjmc · (1− pjmc), j = j′,m = m′;
−pjmc · pj′mc, j 6= j′,m = m′;
−pjmc · pj′m′c, m 6= m′.

According to the vector Yc = (Y1c, . . . , Ymc, . . . , YMc)
T we will have:

V (Yc) = ΣYc =



Σ1,c · · · Σ1m,c · · · Σ1m′,c · · · Σ1M,c

..

.
. . .

..

. · · ·
... · · ·

...

Σm1,c · · · Σm,c · · · Σmm′,c · · · ΣmM,c
... · · ·

...
. . .

... · · ·
...

Σm′1,c · · · Σm′m,c · · · Σm′,c · · · Σm′M,c
... · · ·

...
. . .

...
. . .

...

ΣM1,c · · · ΣMm,c · · · ΣMm′,c · · · ΣM,c


,

where:

Σm,c =



p1mc · (1− p1mc) · · · −p1mc · pjmc · · · −p1mc · pJmcmc
...

. . .
... · · ·

...

−pjmc · p1mc · · · pjmc · (1− pjmc) · · · −pjmc · pJmcmc
... · · ·

...
. . .

...

−pJmcmc · p1mc · · · −pJmcmc · pjmc · · · pJmcmc · (1− pJmcmc)


; m = 1, 2, . . . ,M,
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2.2 Nested Multinomial Logit Model (NMNL)

with:

Σmm′,c =



−p1mc · p1m′c · · · −p1mc · pjm′c · · · −p1mc · pJm′cm′c
...

. . .
... · · ·

...

−pjmc · p1m′c · · · −pjmc · pjm′c · · · −pjmc · pJm′cm′c
... · · ·

...
. . .

...

−pJmcmc · p1m′c · · · −pJmcmc · pjm′c · · · −pJmcmc · pJm′cm′c


; m 6= m′ = 1, 2, . . . ,M .

With regards to the generating function Gc(z) (Subsection 2.1.1), which is defined by the
dissimilarity parameter λm of nest m as follow:

Gc(z11, . . . , zjm, . . . , z1M , . . . , zJMM) =
M∑
m=1

(
Jmc∑
j=1

zjmc

)λm

,

where zjmc = exp(
−εjmc
λm

). Thus, according to FZ(z) = exp(−Gc(z11, . . . , zjm, . . . , z1M , . . . , zJMM)),
we will have:

FNMNL(ε;λ) = exp

− M∑
m=1

(
Jm∑
j=1

exp(
−εjm
λm

)

)λm
. (2.17)

Distribution (2.17) is a type of GEV distribution . This distribution for unobserved components
of utility gives rise to following the choice probability for alternative j and nest m based on
choice set Cc (McFadden 1978a):

pj|mc =
exp(

vj|mc
λm

)∑Jmc
j′=1 exp(

vj′|mc
λm

)
, pmc =

exp(λmvmc)∑M
m′=1 exp(λm′vm′c)

,

where vj|mc = fT (ajmc)β (Equation (2.16)) and according to:

E(Umc) = E(vmc + εmc)

= vmc + v′mc − ln

(
Jmc∑
j=1

exp(
vj|mc
λm

)

)

then vmc = µ′mc+ln
(∑Jmc

j=1 exp(
vj|mc
λm

)
)

, where µ′ms = E(Umc)−v′mc. Now, suppose that µ′mc = 0

thus vmc = ln
(∑Jmc

j=1 e
vj|mc
λm

)
. In hence, pjmc can be rewritten as follows:

pjmc =
exp(

vj|mc
λm

)∑Jmc
l=1 exp((

vl|mc
λm

))
·

(∑Jmc
l=1 exp((

vl|m
λm

))
)λm

∑M
m′=1

(∑Jm′c
l=1 exp((

vl|m′c
λm′

))
)λm′ , (2.18)

where λm is the so-called dissimilarity parameter of subset m. The parameter λm is a measure
of the degree of independence in unobserved utility among the alternatives in nest m. A higher
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2 MODEL SPECIFICATION

value of λm means greater independence and less correlation. The statistic 1−λm is a measure
of correlation, in the sense that as λm rises, indicating less correlation, this statistic drops.
As (McFadden 1978a), (McFadden 1978b) points out, the correlation is actually more complex
than 1−λm, but 1−λm can be used as an indication of correlation. A value of λm = 1 indicates
complete independence within nest m, that is, no correlation. When λm for all m representing
independence among all the alternatives in all nests, the GEV distribution becomes the produce
of independent extreme value term, whose distribution is given in (2.8). In this case, the nested
logit model reduces to the standard logit model.

IIA and IIN Properties

We can use Equation (2.18) to show that IIA holds within each nest of alternatives but not
across nest. Considering alternatives j ∈ Cmc and j′ ∈ Cm′c (based on choice set Cc). Since
the denominator of (2.18) is the same for all alternatives, the ratio of probabilities is the ratio
of numerators:

pjmc
pj′m′c

=
exp(

vj|mc
λm

)
(∑Jmc

l=1 exp((
vl|mc
λm

))
)λm

exp(
vj′|m′c
λm′

)
(∑Jm′c

l=1 exp((
vl|m′c
λm′

))
)λm′ . (2.19)

In this situation, if m = m′ (i.e., j and j′ are in the same nest) then we will have:

pjmc
pj′mc

=
exp(

vj|mc
λm

)

exp(
vj′|mc
λm

)
.

This ratio just depends on two alternatives j and j′ and is independent of all other alternatives.
This means that the IIA property is hold in nest, each. But, for m 6= m′ (i.e., j and j′ are in
the different nests), Equation (2.19) denotes that this ratio dependents on all of alternatives in
nests m and m′ and is independent of all other alternatives. A form of IIA holds, therefore, even
for alternatives in different nests. This form of IIA can be loosely described as Independent
from Irrelevant Nests or IIN. Thus, with a nested logit model, IIA holds over alternatives in
each nest and IIN holds over alternatives in different nests.

Consistency with RUM

(McFadden 1981) has shown that any set of the choice probabilities that satisfy the compati-
bility conditions (2.10), (2.11), (2.12) are consistent with RUM. In the case of the Nested logit
model only (2.12) compatibility condition is restrictive.

(Daly and Zachary 1978), (McFadden 1978a), (McFadden 1978b) and (Williams 1977)
showed, independently and using different proofs, that the two-level nested logit model is con-
sistent with random utility maximization (RUM). Such that this the dissimilarity parameter
for the nested are restricted to lie within the unit interval:

λm ≤ 1,∀m = 1, 2, . . . ,M,

where m is index relative to mth nest and λm is dissimilarity parameter associated to mth nest.
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2.2 Nested Multinomial Logit Model (NMNL)

(Börsch-Supan 1990) showed that the Daly, Zachary, McFadden(DZM) conditions of the va-
lidity of stochastic utility maximization in nested MNL model is unnecessarily strong. Therefore
it may be too often rejected NMNL model because of their large dissimilarity parameter, since
by noting to these conditions (DZM), λm should be in unit interval, means, 0 < λm ≤ 1,m =
1, 2, . . . ,M , at really, it reveals that nested MNL models with large dissimilarity parameters
are only compatible with stochastic utility maximization are sufficiently large (Theorem 2.2).

Theorem 2.2. (Börsch-Supan 1990): In two-level NMNL models, a necessary criterion for

the nonnegativity condition are sufficiently large marginal choice probabilities of the subsets of

similar alternatives (w.r.t Choice set Cc):

pmc ≥
λm − 1

λm
;∀m = 1, 2, . . . ,M.

(Herriges and Kling 1996) extended the results of Börsch-Supan’s theorem and examining
the extent to which it is likely to expand the set of consistent NMNL models.

Theorem 2.3. (Herriges and Kling 1996): In two-level NMNL models, the following are nec-

essary conditions for consistency with stochastic utility maximization (based on choice set Cc).

Let τm = λm−1
λm

then:

pmc ≥ τm;m = 1, 2, . . . ,M (2.20)

(
2(τm − pmc)2 + τmpmc

)
≥ τm;∀m ∈M3 ≡ {m|Jmc ≥ 3} (2.21)

[
6(pmc − τm)3 + τm [2(pmc − 1)− τm] (1− pmc)

]
≥ 0; ∀m ∈M4 ≡ {m|Jmc ≥ 4}, (2.22)

where Jmc is the number of alternatives in the mth nest andM3,M4 denote the sets of nests,
which have at least three and four alternatives. To proof Theorem 2.3 from the first, second
and third mixed partial derivations of Equation (2.18) have been used.

Corollary 2.3. In two-level NMNL models, consistency with stochastic utility maximization

places the following necessary restrictions on dissimilarity coefficients:

λm ≤
1

1− pmc
,m = 1, 2, . . . ,M, (2.23)

λm ≤
4

3(1− pmc) + [(1 + 7λm)(1− λm)]
1
2

,∀m ∈M3 ≡ {m|Jmc ≥ 3}, (2.24)

where the condition (2.12) is to be valid for all deterministic utility components vc ∈ <Jc.
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2 MODEL SPECIFICATION

Example 2.3. Suppose that there is a choice set with three alternatives, C = {ã1c, ã2c, ã3c},
and due to alternatives ã1c and ã2c have common properties, thus, we divide all of alternatives

into two nests, C1 = {a11c(ã1c), a21c(ã2c)} and C2 = {a12c(ã3c)}. In this situation, generating

function is denoted by:

G(exp(−ε1), exp(−ε2), exp(−ε3)) =
2∑

m=1

(
Jm∑
j=1

exp((−εj|m)
1
λm )

)λm

=

(
exp(− ε1

λ1

) + exp(− ε2

λ1

)

)λ1

+

(
exp(− ε3

λ2

)

)λ2

and we will have:

• p1c=

(
exp
( va11c|1c

λ1

)
+exp

( va21c|1c
λ1

))λ1

exp(va12c|2c)+
(

exp
( va11c|1c

λ1

)
+exp

( va21c|1c
λ1

))λ1
,

• p2c=
exp(va12c|2c)

exp(va12c|2c)+
(

exp(
va11c|1c

λ1
)+exp

( va12c|1c
λ1

))λ1
,

• pj|1c=
exp(

vj|1c
λ1

)

exp
( va11c|1c

λ1

)
+exp

( va21c|1c
λ1

) ; j ∈ {a11c, a12c}, pa12c|2c = 1.

Let, λ1 = λ thus:

pa11c1c = p1c · pa11c|1c =

(
exp

(va11c|1c
λ

)
+ exp

(va21c|1c
λ

))λ−1 · exp
(va11c|1c

λ

)(
exp

(
va12c|2c

)
+
(
exp

(va11c|1c
λ

)
+ exp

(va21c|1c
λ

))λ) , (2.25)

pa21c1c = p1c · pa21c|1c =

(
exp

(va11c|1c
λ

)
+ exp

(va21c|1c
λ

))λ−1 · exp
(va21c|1c

λ

)(
exp

(
va12c|2c

)
+
(
exp

(va11c|1c
λ

)
+ exp

(va21c|1c
λ

))λ) , (2.26)

pa12c2c = p2c · pa12c|2c =
exp

(
va12c|2c

)
exp

(
va12c|2c

)
+
(
exp

(va11c|1c
λ

)
+ exp

(va21c|1c
λ

))λ , (2.27)

where pjmc, pj|mc and pmc denote the joint, conditional and marginal choice probabilities related
to choosing alternative j and nest m in choice set c. Since, Jmc ≤ 2;m = 1, 2 then Condition
(2.20) must be just considered. In this case, the NMNL model , which has been denoted by
Equations (2.25), (2.26) and (2.27) is consistent with RUM when λ ≤ 1

1−p1c . In this situation, if
λ = 1 then the NMNL model reduce to the MNL model, thus testing H0 : λ = 1 via H1 : λ 6= 1
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2.2 Nested Multinomial Logit Model (NMNL)

can be interesting. According to the normalized log-likelihood function of the NMNL model,
which is defined as follow:

`(Cc, β, λ) =
I∑
i=1

M∑
m=1

Jmc∑
j=1

yijmc ln(pijmc). (2.28)

Let us, suppose that f(a11c) = 1 and f(a21c) = f(a12c) = 0, where vj|mc = fT (ajmc)β; j ∈
{a11c, a21c, a12c}, m = 1, 2. According to Equations (2.25), (2.26) and (2.27) we will have:

pa11c1c =

(
1 + exp

(
β
λ

))λ−1
· exp

(
β
λ

)
(

1 + (1 + exp
(
β
λ

)
)λ
) , pa21c1c =

(
1 + exp

(
β
λ

))λ−1(
1 + (1 + exp

(
β
λ

)
)λ
) , pa12c2c =

1

1 + (1 + exp
(
β
λ

)
)λ
.

Let, δ = β
λ

and I1 + I2 + I3 = I (See Example 2.3) thus:

`(δ, λ) = I1δ + (I1 + I2)(λ− 1) ln(1 + exp (δ))− I · ln(1 + (1 + exp (δ))λ). (2.29)

Then, the maximum likelihood estimators for δ and λ are calculated as below:

δ̂ = ln(
I1

I2

), λ̂ =
ln(I1+I2

I3 )

ln(I1+I2
I2 )

. (2.30)

Based on the definition of the information matrix, we will have:

I(δ, λ) = −E(
∂2`(δ, λ)

∂δ∂λ
) = −E

(
∂2`(δ,λ)
∂δ2

∂2`(δ,λ)
∂δ∂λ

∂2`(δ,λ)
∂δ∂λ

∂2`(δ,λ)
∂λ2

)
.

Suppose that:

I(δ, λ) =

(
Iδδ Iδλ
Iδλ Iλλ

)
⇒ I−1(δ, λ) =

1

IδδIλλ − I2
δλ

(
Iλλ −Iδλ
−Iδλ Iδδ

)
.

With regards to the properties of the maximum likelihood estimator (MLE), we know:

λ̂ ∼a N(λ, I−1(λ)),

where ∼a denotes the asymptotically distribution and Σλ = I−1(λ). According to asymptoti-
cally distribution of λ̂, the rejection region for above hypothesis is obtained as follow:

r.r =
{
λ̂|λ̂ >

(
1 + zα

2
I−

1
2 (λ)

)
or λ̂ <

(
1− zα

2
I−

1
2 (λ)

)}
Since, I−1(δ, λ) is a function of unknown parameters (λ, δ) then we use their estimators (λ̂, δ̂)
to obtain the inverse of the information matrix (I−1(δ, λ)), so that:

r.r =
{
λ̂|λ̂ >

(
1 + zα

2
Σ̂λ

)
or λ̂ <

(
1− zα

2
Σ̂λ

)}
,
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where Σλ = σ2
λ = a

b
with:

a =
[
(Iλ− (I1 + I2)(λ− 1)) (1 + exp (δ))2λ +

(
Iλ2 exp (δ) + Iλ− 2(I1 + I2)(λ− 1)

)
(1 + exp (δ))λ − (I1 + I2)(λ− 1)

]
×
[
1 + (1 + exp (δ))λ

]

b = exp (δ) (−I1 − I2 + I)2 (1 + exp (δ))3λ + (−(Iλ− (I1 + I2)(λ− 1))I(ln(1 + exp (δ)))2

+2I exp (δ)λ(−I1 − I2 + I) ln(1 + exp (δ)) + exp (δ) (−3I1 − 3I2 + I)(−I1 − I2 + I))((1 + exp (δ))λ)2

−2

[
−

1

2
I(λ− 1)(ln(1 + exp (δ)))2 + exp (δ) I ln(1 + exp (δ))λ+ exp (δ) (−

3

2
I1 −

3

2
I2 + I)

]
×
[
(I1 + I2)(1 + exp (δ))λ + exp (δ) (I1 + I2)2

]
.

According to (2.25) Λ = (0, 1
1−p1 ] is parameter space of λ then λ̂ must vary in Λ, thus;

• if (1− zα
2
Σ̂λ) < 0 < 1

1−pI
< (1 + zα

2
Σ̂λ) ⇒ r.r =

{
λ̂|λ̂ < 1

1−pI

}
,

• if 0 < (1 + zα
2
Σ̂λ) <

1
1−pI

⇒ r.r =
{
λ̂|(1 + zα

2
Σ̂λ) < λ̂ < 1

1−pI

}
; pI >

zα
2

Σ̂λ

(1+zα
2

Σ̂λ)
,

• if 0 < (1−zα
2
Σ̂λ) < (1+zα

2
Σ̂λ) <

1
1−pI

⇒ r.r =
{
λ̂|λ̂ >

(
1 + zα

2
Σ̂λ

)
orλ̂ <

(
1− zα

2
Σ̂λ

)}
,

• if 0 < (1− zα
2
Σ̂λ) <

1
1−pI

< (1 + zα
2
Σ̂λ) ⇒ r.r =

{
λ̂|(1− zα

2
Σ̂λ) > λ̂

}
.

WALD’s Test-Statistic : λ̂ has asymptotically normal distribution, thus;

W = (λ̂− λ)T
(
I−1(λ)

)−1
(λ̂− λ) (2.31)

has Chi-Square distribution asymptotically under null hypothesis, H0 : λ = λ0, means that:

W = (λ̂− λ0)T
(
Iλλ −

I2
δλ

Iδδ

)
(λ̂− λ0) ∼a χ2

1, (2.32)

where (I−1(λ))
−1

= Iλλ −
I2αλ
Iδδ

.

Test statistic (2.32) is called WALD’s test statistic and if W > χ2
α,1, H0 : λ = λ0 = 1 will be

rejected, else, H0 will be accepted, means that the MNL model is true.

LRT’s Test-Statistic: The above hypothesis can be done by the LRT test statistic, also. In

this case, we assume that: L(δ̂, λ̂) = L

(
ln
(
I1
I2

)
ln
(
I3
I1+I2

)
ln
(
I2
I1+I2

)
)

is maximum likelihood function

without restriction and L(δ̃, λ̃) = L
(

ln
(

2I1
I−I1

)
, 1
)

is likelihood restricted, thus:

LRT = −2 ln

(
L(δ̃, λ̃)

L(δ̂, λ̂)

)
∼a χ2

(2−1). (2.33)
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Test statistic (2.33) also has Chi-square distribution asymptotically with 1 degree of freedom,
then:

LRT = 2I2 ln

(
2I2

I2 + I3

)
+ 2I3 ln

(
2I3

I2 + I3

)
∼a χ2

1.

Similarity, if LRT > χ2
α,1, H0 : λ = λ0 = 1 will be rejected, else, the MNL model is true.

Noting to (2.25), since 1
1−pms ≥ 1 then it is possible that ∃m;λm > 1. However, we can

construct a set like D(λ) so that for all of points in this set the NMNL choice probabilities do
indeed represent a choice system compatible with stochastic utility maximization (See (Börsch-
Supan 1990)).

Totaly, suppose that there is a NMNL model by M nests. In this case if λm = 1; ∀m then
NMNL model reduces to MNL model. for this purpose we define the following hypothesis test:{

H0 : Λ = 1M
H1 : Λ 6= 1M

,

where Λ =


λ1

λ2
...
λM

 and 1M =


1
1
...
1

 . To do this test, the Wald test can be considered. Thus

we suppose that Λ̂ be the MLE for Λ, which has the properties of the MLE (asymptotically).
Now if ΣΛ is variance-covariance matrix related to all of the dissimilarity parameters then the
Wald statistic is as follow:

W = (Λ̂− Λ0)Σ−1
Λ (Λ̂− Λ0)T .

This statistic under H0 has chi-square distribution with M degree of freedom. Now, according
to Λ0 = 1M we will have:

W = (Λ̂− 1M)Σ−1
Λ (Λ̂− 1M)T ∼ χ2

M .

In this situation, if W > χ2
α,M then null hypothesis will be rejected else it will be accepted.

2.2.2 Three-Level Nested MNL Model

The nested logit model (McFadden 1978a), (McFadden 1981) allows partial relaxation of the
assumption of independence of the stochastic components of utility of alternatives. In some
choice situations, the IIA property holds for some pairs of alternatives but not all. In these
situations, the nested logit model can be used if the set of alternatives faced by an individual
can be partitioned into subsets such that the IIA property holds within subsets but not across
subsets. In the nested logit model, the joint distribution of the errors is generalized extreme
value (GEV). This is a generalization of the type I extreme-value distribution that gives rise
to the conditional logit model. Note that all within each subset are correlated with each other.
Nested logit models can be described analytically following the notation of (McFadden 1981).
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In subsection 2.2.1 was told that if there are some alternatives, which are more similar than
the others, the alternatives of the choice set are divided into several sets which are called nests.
In this situation, we can divide alternatives in some nests to sub-nests if it is necessary (if IIA
be not hold in at least one nest). By dividing the alternatives of some (all) nests into sub-nests,
we will confront with a new model of logit family which is called three-level nested logit models,
due to there are three kind of choice probabilities.

We first introduce utility and observation variables to obtain the choice probabilities in the
three-level NMNL models. In this case, the utility related to choosing alternatives include three
component as follow (based on choice set Cc):

Ujhmc = Umc + Uh|mc + Uj|hmc;


j = 1, 2, . . . , Jhmc, (alternative in sub-nest hm );
h = 1, 2, . . . , Hm, (sub-nest);
m = 1, 2, . . . ,M, (nest).

(2.34)

The alternatives are divided into M nests, with Hm sub-nests in nest m and Jhmc alternatives
in sub-nest hm. The choice can be considered as first choosing among the M nests, then among
the Hm sub-nests in the chosen nest m, and finally among the Jhmc alternatives in the chosen
sub-nest hm so that:

Chmc = {a1hmc, a2hmc, . . . , aJhmcmc}.

In this case, we define Cc a choice set, which includes Jc alternatives, where Jc =
∑M

m=1

∑Hm
h=1 Jhmc.

The alternatives of the choice set Cc will be divided into M nests each with Jmc alternatives
while the choice set of nest m is denoted by Cmc. According to the definition of three-level
NMNL model, the alternatives of each nest(at least one of them) are divided to several sub-nests
each with Jmhc alternatives (choice set Chmc), where:

M⋃
m=1

Cmc = Cc; Cmc

⋂
Cm′c = φ and

Hm⋃
h=1

Chmc = Cmc; Chmc

⋂
Ch′mc = φ.

Consequently, Jc =
∑M

m=1 Jmc and Jmc =
∑Hm

h=1 Jhmc.
Also, Equation (2.34) can be rewritten by (ignoring index i):

1. Umc = vmc + εmc

• vmc = E(maxh∈Hm Uh|mc).

2. Uh|mc = vh|mc + εh|mc

• vh|mc = E(maxj∈Cc Uj|hmc).

3. Uj|hmc = vj|hmc + εj|hmc

• vj|hmc = fT (ajhmc)β, f(ajhmc) = (fT1 (ajhmc), . . . , f
T
k (ajhmc), . . . , f

T
K(ajhmc))

T ;

fk(ajhmc) = (fk1(ajhmc), . . . , fk`(ajhmc), . . . , fkLk(ajhmc))
T ,
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where suppose that εj|hmc have EVD with variance σ2
hm and they are correlated in the same sub-

nest (ρhm = corr(εj|hmc, εj′|hmc)), εh|mc has distribution such as maxj∈Chmc Uj|hmc (Chmc denotes
a set of alternatives in sub-nest hm) and we use of symbol σ2

m to denote for its variance. εh|mc
are correlated in the same nest (ρm = corr(εh|mc, εh′|mc)). εmc have (i.i.d) distribution such as
maxh∈Hm Uh|mc, with variance σ2, where corr(εmc, εm′c) = 0; m 6= m′ (for simplicity it has been
used three symbols σ2

hm
, σ2

m and σ2 instead of their variances). In this situation, εj|hmc, εh|mc
and εmc has been assumed that are independence. In this case we will have:

cov(Ujhmc, Uj′h′m′c) =


σ2
hm + σ2

m + σ2, j = j′, h = h′,m = m′;
ρhmσ

2
hm + σ2

m + σ2, j 6= j′, h = h′,m = m′;
ρmσ

2
m + σ2, h 6= h′,m = m′;

0, m 6= m′.

Thus with respect to vector Uc = (U1c, . . . , Umc, . . . , UMc)
T we will have:

ΣUc = Cov(Umc, Um′c) =


Σ1 · · · 0 · · · 0
...

. . .
... · · · ...

0 · · · Σm · · · 0
... · · · ...

. . .
...

0 · · · 0 · · · ΣM

 .

Also, the variance-covariance matrix of the vector Umc = (U1mc, . . . , Uhmc, . . . , UHmmc)
T is cal-

culated as follow:

Σm = Cov(Uhmc, Uh′mc) =



Σ1m · · · Σ1m,hm · · · Σ1m,h′m · · · Σ1m,Hm
...

. . .
... · · · ... · · · ...

ΣT
1m,hm · · · Σhm · · · Σhm,h′m · · · Σhm,Hmm

... · · · ...
. . .

... · · · ...
ΣT

1m,h′m · · · ΣT
hm,h′m · · · Σh′m · · · Σh′m,Hmm

... · · · ... · · · ...
. . .

...
ΣT

1m,Hmm
· · · ΣT

hm,Hmm
· · · ΣT

h′m,Hmm
· · · ΣHmm


,

where (Let r = Jhmc):

Σhm = Cov(Ujhmc, Uj′hmc) =σ2
hm(1− ρhm)Ir + (ρhmσ

2
hm + σ2

m + σ2)Jr,

Σhm,h′m = Cov(Ujhmc, Uj′h′mc) =(ρmσ
2
m + σ2)Jr

where Ir and Jr have been defined in subsection 2.2.1.
According to the Utility (2.34) the observation variables can be introduced as below (ignoring

index i):

• Ymc =

{
1, Umc = maxm′ Um′c;
0, otherwise.
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• Yh|mc =

{
1, Uh|mc = maxh′∈Hm Uh′|mc;
0, otherwise.

• Yj|hmc =

{
1, Uj|hmc = maxj′∈Chmc Uj′|hmc;
0, otherwise.

With regards to independence between above three error terms (Equation (2.34)) we will have:

Yjhmc = Yj|hmc × Yh|mc × Ymc.

Thus:
pjhmc = pj|hmc × ph|mc × pmc, (2.35)

where pjhmc = P (Yjhmc = 1), pj|hmc = P (Yj|hmc = 1), ph|mc = P (Yh|mc = 1) and pmc = P (Ymc =
1) so that (McFadden 1981):

• pmc = exp(µmIVmc)∑M
m′=1 exp(µm′IVm′c)

,

• ph|mc =
exp
(
λhm
µm

IVhmc

)
∑Hm
h′=1

exp
(
λh′m
µm

IVh′ms

) ,

• pj|hmc =
exp
( vj|hmc

λhm

)
∑Jhmc
j′=1

exp
( vj′|hmc

λhm

) .
In the above choice probabilities, IVmc and IVhmc are the inclusive values of nest m and sub-nest
hm, respectively, where:

• IVms = E
(
maxh∈Hm Uh|mc

)
= ln

(∑Hm
h=1 exp

(
λhm
µm

IVhmc

))
,

• IVhmc = E
(
maxj∈Chmc Uj|hmc

)
= ln

(∑Jhmc
j=1 exp

(
vj|hmc
λhm

))
and the parameters µm and λhm are the measures of the degree of independence in unobserved
utility among the sub-nests in nest, m, and the alternatives in sub-nest, hm, respectively.

Based on the definition of the observations variable (Yc) we will have:

cov(Yjhmc, Yj′h′m′c) =


pjhmc · (1− pjhmc), j = j′, h = h′,m = m′;
−pjhmc · pj′hmc, j 6= j′, h = h′,m = m′;
−pjhmc · pj′h′mc, h 6= h′,m = m′;
−pjhmc · pj′h′m′c, m 6= m′.

Thus the variance-covariance of the vector Yc = (Y1c, . . . , Ymc, . . . , YMc)
T :

ΣYc = Cov(Yms, Ym′s) =


Σ1c · · · Σ1m,c · · · Σ1M,c

...
. . .

... · · · ...
Σm1,c · · · Σmc · · · ΣmM,c

... · · · ...
. . .

...
ΣM1,c · · · ΣMm,c · · · ΣMc

 ,
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2.2 Nested Multinomial Logit Model (NMNL)

where based on vector Ymc = (Y1mc, . . . , Yhmc, . . . , YHmmc)
T we will have:

Σmc = Cov(Yhmc, Yh′mc)=



Σ1,mc · · · Σ1h,mc · · · Σ1h′,mc · · · Σ1Hm,mc
...

. . .
... · · · ... · · · ...

Σh1,mc · · · Σh,mc · · · Σhh′,mc · · · ΣhHm,mc
... · · · ...

. . .
... · · · ...

Σh′1,mc · · · Σh′h,mc · · · Σh′,mc · · · Σh′Hm,mc
... · · · ... · · · ...

. . .
...

ΣHm1,mc · · · ΣHmh,mc · · · ΣHmh′,mc · · · ΣHm,mc


,

Σmm′,c =


Σ1m,1m′c · · · Σ1m,h′m′c · · · Σ1m,Hm′m

′c
...

. . .
... · · · ...

Σhm,1m′c · · · Σhm,h′m′c · · · Σhm,Hm′m
′c

... · · · ...
. . .

...
ΣHmm,1m′c · · · ΣHmm,h′m′c · · · ΣHmm,Hm′m

′c

 ,

Σh,mc =


p1hms · (1− p1hmc) · · · −p1hmc · pjhmc · · · −p1hmc · pJhmhmc

...
. . .

... · · · ...
−p1hmc · pjhmc · · · pjhms · (1− pjhmc) · · · −pjhmc · pJhmhmc

... · · · ...
. . .

...
−p1hmc · pJhmhmc · · · · · · · · · pJhmhms · (1− pJhmhmc)

 ,

Σhh′,mc =


−p1hmc · p1h′mc · · · −p1hmc · pj′h′mc · · · −p1hmc · pJh′mh′mc

...
. . .

... · · · ...
−pjhmc · p1h′ms · · · −pjhmc · pj′h′mc · · · −pjhmc · pJh′mh′mc

... · · · ...
. . .

...
−pJhmhmc · p1h′ms · · · −pJhmhmc · pj′h′mc · · · −pJhmhmc · pJh′mh′mc

 ,

Σhm,h′m′c =


−p1hmc · p1h′m′c · · · −p1hmc · pj′h′m′c · · · −p1hmc · pJh′m′h′m′c

...
. . .

... · · · ...
−pjhmc · p1h′m′c · · · −pjhmc · pj′h′m′c · · · −pjhmc · pJh′m′h′m′c

... · · · ...
. . .

...
−pJhmhmc · p1h′m′c · · · −pJhmhmc · pj′h′m′c · · · −pJhmhmc · pJh′m′h′m′c

 .

Consistency with RUM in the Three-Level NMNL Models

According to RUM Conditions (2.10), (2.11) and (2.12), it has been showed that the following
conditions are necessary for consistency with random utility maximization.
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Theorem 2.4. (Gil-Molton and Hole 2004): The necessary conditions for compatibility three

-level nested multinomail logit models with RUM are as follow (w.r.t Choice set Cc):

µm ≤
1

1− pmc
,∀m = 1, 2, . . . ,M, (2.36)

µm ≤
4

3(1− pmc) + [(1 + 7pmc)(1− pmc)]
1
2

, ∀m ∈M3 ≡ {m|Hm ≥ 3}, (2.37)

λhm ≤
1

1−pmc
µm

+ (1− pm)ph|mc
,∀h,m (2.38)

λhm ≤
4

3
µm

+ 3ph|mc − 3( 1
µm

+ pmc)ph|mc +D
1
2

,∀h,m ∈M′3 ≡ {h,m|Jhmc ≥ 3}, (2.39)

with:

D = (1 + 7pmc)(1− pmc)p2
h|mc +

(1 + 7ph|mc)(1− ph|mc)
µ2
m

−
6(1− pmc)(1− ph|mc)ph|mc

µm
,

where M denotes a set of choice sets with at least three sub-nests in each nest and M′ is the set

of all choice sets with at least three alternatives in sub-nests.

Obtaining the above four conditions, it has been used of differentiation of equation (2.35).
The conditions (2.36) and (2.37) correspond to the conditions in (Herriges and Kling 1996) and
the conditions (2.38) and (2.39) are implied by the first and the second order mixed derivative
of (2.35) according to vj′|hms for j′ ∈ Chms, where j′ 6= j. The above conditions are necessary
and sufficient for a model with three alternatives per sub-nest and three sub-nest per nest.

For a model with two alternatives per sub-nest and two sub-nest per nest the conditions
(2.36) and (2.38) are necessary and sufficient. The conditions are not sufficient when there
are more than three alternative per sub-nest, but in practical applications testing the first and
second-order conditions may be considered satisfactory.
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3 OPTIMAL DESIGN

The design of experiments is an important part of scientific research. Design involves speci-
fying all aspects of an experiment and choosing the values of variables that can be controlled
before the experiment starts. Control variables might include: Choosing which treatments to
study, defining the treatments precisely, choosing blocking factors, choosing how to randomize,
specifying the experimental unites to be used, specifying a length of time for the experiment to
be performed, choosing a sample size and choosing the proportion of observations to allocate
to each treatment. These are all relevant aspects in design.

When designing an experiment, decisions must be made before data collection, and data
collection is restricted by limited resources. Because information is usually available prior to
experimentation and, indeed, often motivates doing the experiment, Bayesian methods are
ideally suited to contributed to experimental design. Bayesian decision theory also motivates
precise specification of the reason the experiment is being conducted. Like most areas of
Bayesian statistics, Bayesian experimental design has gained popularity in the past two decades.
But also like many areas of Bayesian statistics, applications to actual experiments still lag
behind the theory. The basic idea in experimental design is that statistical inference about
the quantities of interest can be improved by appropriately selecting the values of the control
variables. In estimation problems, estimators with small variance are usually desirable. Control
variables should therefore be selected to achieve small variability for the estimator chosen.
Much depends however on what is to be estimated, and how it will be estimated. Specifying
the purpose of the experiment generates various criteria for the choice of a design. (Chaloner
and Verdinelli 1995) have addressed the fundamental principles of design by providing a general
Bayesian decision theoretic framework for a coherent approach.

In this chapter is presented the definition of various optimality and collected the correspond-
ing equivalence theorems (for linear and non-linear model) which are useful tools for checking
optimality. Collecting this chapter, we have used of various paper and books like (Fedorov
1972), (Silvey 1980), (Pukelsheim 1993), (Schwabe 1996) and others.

Design are represented by the measure ξ over X . If the design has trials at n distinct points
in X , we write;

ξ =

{
x1 x2 · · · xn
w1 w2 · · · wn

}
∈ Ξ, (3.1)

where Ξ = {ξ|xi ∈ X and
∑n

i=1wi = 1; 0 < wi < 1;∀i}.
In this situation, X is design region and the first line gives the values of the factors (ex-

planatory variables) at the design points with the wi the associated design weights. Since ξ is
a measure then

∫
X ξ(dx) = 1.

Now, if we wish to stress that a measure refers to an exact design, realizable in integers for
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3 OPTIMAL DESIGN

a specific N , the measure is written:

ξN =

{
x1 x2 . . . xn
r1
N

r2
N

. . . rn
N

}
∈ ΞN ⊂ Ξ, (3.2)

where ri is the integer number of trials at xi and
∑n

i=1 ri = N . Obtaining the optimal design for
design (3.1) and (3.2) we need to have design criterion. The most important design criterion
in applications is that of D-optimality, in which the generalized variance, or its logarithm
− log(det(M(ξ))), is minimized (M(ξ) is information matrix which is proportional with the
inverse of variance of parameters estimator). In this situation, according to E(Y|x) = fT (x)β,
we will have:

M(ξ) =

∫
x∈X

f(x)fT (x)dx or M(ξ) =
n∑
i=1

wif(xi)f
T (xi).

Designs which maximize det(FTF) = det(M(.)) are called D-optimum (for determinant),
where (p is the number of parameters):

E(Y|x) = FTβ, V ar(Y) = σ2In;

• F = (f(x1), . . . , f(xn))T , β = (β1, . . . , βp)
T ,

• f(xi) = (f1(xi), . . . , fp(xi))
T .

(Atkinson, et al. 2007) showed that how different designs can be in the values the yield of
det(FTF), in the curve of d(x, ξ) = fT (x)M−1(ξ)f(x) over the design region X , and in the
maximum value of the variance over X . An ideal design for these models would simultaneously
minimize the generalized variance of the parameter estimates and minimize d(x, ξ) over X .
Usually a choice has to be made between these desiderate. Three possible design criteria which
relate to these properties are as follows;

• D-optimality: A design is D-optimum if, it maximizes the value of det(M(ξ)). The
generalized variance of the parameter estimates is minimized.

• G-optimality: A G-optimum design minimizes the maximum over the design region
X of the standardized variance d(x, ξ). This maximum value equals p (the number of
parameters). For continuous designs this optimum design measure ξ∗ will also be D-
optimum and minξ∈Ξ maxx∈X d(x; ξ) = p. Of course, can be showed that (by example)
this equivalence may not hold for exact designs. For an exact design, we may have
minξ∈Ξ maxx∈X d(x; ξ) > p.

• V -optimality : An alternative to G- optimality is V - optimality in which the average of
d(x, ξ) over X is minimized.

A design in which the distribution of trials over X is specified by a measure ξ, regardless of N ,
is called continuous or approximate. An approximate design can be rounded to an exact design
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without losing too much efficiency (Pukelsheim 1993). Without the relaxation to non-integer
designs, the design problem is that of a hard integer programming problem. (Majumdar 1988),
(Majumdar 1992) has derived Bayesian exact designs for a two way analysis of variance model
considering a special subclass of prior distributions. This is a particularly useful approach when
dealing with the constraints of incomplete blocks. (Toman 1994) has derived Bayes optimal
exact designs for two- and three level factorial experiments, with and without blocking. One of
the important problems she has solved is that of choosing a fraction of the full factorial design.

Already (Hoel 1958) noticed that the D- and G- optimum designs coincide in the model of
a one-dimensional polynomial regression, and (Kiefer and Wolfowitz 1959) proved that this is
true for every linear model and in general, only for continuous designs (design for a specified
number of trials are called exact). We must note that the designs depend on the number of
trials N , the number of factors, the design region, and the permitted number of factor levels.

In practice all designs are exact. For moderate N good exact designs can frequently be found
by integer approximation to the optimum continuous measure ξ∗. Often for simple models with
p parameters, there will be p designs points with equal weight 1

p
, so that the exact design with

N = p trials is optimum. However, if the design weights are not rational, it will not be possible
to find an exact design which is identical with the continuous optimum design. Difficulties
in finding exact designs usually arise when N is close to the number of support points of the
optimum continuous design, leading to a poor approximation to ξ∗. For example, for an N -
trials design the information matrix for β in the model E(Y|x) = Fβ was defined as FTF,
where:

FTF =
N∑
i=1

f(xi)f
T (xi)

and fT (xi) is the ith row of F. For the continuous design ξ, the information matrix is (m(x) is
the information matrix in one point, x) ;

M(ξ) =

∫
X

m(x)ξ(dx) =

∫
X

f(x)fT (x)ξ(dx) =
n∑
i=1

fT (xi)f(xi)wi

which is summed over the n design points, because of the presence of the weights wi, becomes
a scaled version for the exact design ξN ,i.e

M(ξN) =
FTF

N
⇒ V ar(Ŷ (x)) = σ2fT (x)(FTF)−1f(x)

and for continuous designs the standardized variance of the predicted response is as follows:

d(x, ξ) = fT (x)M−1(ξ)f(x).

3.1 The General Equivalence Theorem

In the theory for continuous designs we consider minimization of the general measure of im-
precision Ψ(M(ξ)) (a function of information matrix). Under very mild assumption, the most
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important of which are the compactness of X and the convexity and differentiability of Ψ,
designs which minimize Ψ also satisfy a second criterion. One example is D-optimality, in
which Ψ(M(ξ)) = ln det(M−1(ξ)) = − ln det(M(ξ)) so that the determinant of the information
matrix M(ξ) is maximized. It has been showed (Schwabe 1996) that compared to many other
criteria the D-criterion has the advantage that it is not affected by re-parameterizations of
the model. Continuous designs which are D-optimum are also G-optimum, they minimize the
maximum over X of the variance (White 1973).

The general equivalence theorem can be viewed as an application of the result that the
derivatives are zero at a minimum of a function. However, the function depends on the measure
ξ through the information matrix M(ξ). Let the measure ξ̄ put unit mass at the point x and
let the measure ξ′ be given by, ξ′ = (1− α)ξ + αξ̄ then, we will have

M(ξ′) = (1− α)M(ξ) + αM(ξ̄),

where ξ̄ = ξx (ξx denotes a design for only one point). Accordingly, the derivative of Ψ in the
direction ξ̄ is (Fedorov 1972), pp.71 :

φ(x, ξ; ξ̄) = lim
α−→0+

Ψ((1− α)M(ξ) + αM(ξ̄))−Ψ(M(ξ))

α
. (3.3)

The general equivalence theorem then states the equivalence of the following three conditions
on ξ∗;

1. The design ξ∗ minimizes Ψ(M(ξ)).

2. The minimum of φ(x, ξ∗) ≥ 0;∀x ∈ X .

3. The derivative minx∈X φ(x, ξ∗) = 0 achieves its minimum at the points of the design.

Theorem 3.1. (Kiefer and Wolfowitz 1959) The following assertion are equivalence;

1. The design ξ∗ maximizes det(M(ξ)), ( minimizes det(V ar(β̂))),

2. The design ξ∗ minimizes maxx∈X λ(x)d(x, ξ),

3. maxx∈X λ(x)d(x, ξ∗) = p,

where p is the number of parameters, λ(x) is efficiency function (See (Fedorov 1972), pp.71-73)
and

M(ξ) =
n∑
i=1

wiλ(xi)f(xi)f
T (xi).

This theorem provides methods for the construction and checking of optimum designs. How-
ever, it says nothing about n, the number of support points of the design. The information
matrix of any design can be represented as a weighted sum of, at most, p(p+1)

2
information

matrices m(ξ̄i) where ξ̄i puts unit weight at the design point xi.
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The bound an the number of design points depends on the linear structure of M(ξ) and
so holds for any criterion which is a function of a single information matrix. The general
equivalence theorem holds for continuous designs represented by the measure ξ. In general, it
does not hold for exact designs. For D-optimality the implication is that there may be some
values of N for which on design will be D-optimum and another G-optimum.

As it was told, for the linear model, a design measure ξ∗ is called G-optimum if d(x, ξ∗),
which is proportional to the variance (for homoscedastic case) of the least squares estimator of
the response at x satisfies:

sup
x∈X

d(x, ξ∗) = min
ξ∈Ξ

sup
x∈X

d(x, ξ).

In order to formulate an analogue to the General Equivalence Theorem for the more general
model (non-linear model) an analogue of d(x, ξ) is needed. (White 1973) has taken the function:

d(x, ξ,θ) = tr
(
I(x,θ)M−1(ξ,θ)

)
as this analogue, for non-linear models, whenever M(ξ,θ) is nonsingular and I(x,θ) = M(ξx,θ)
is information matrix for only one point. Motivation for this choice is given below but it should
be noted that (i) it reduces to d(x, ξ) for the linear model with normally distributed errors, and
(ii) it is invariant under nonlinear transformation of Yx and of θ. Then, a design measure ξ∗ is
called G(θ)-optimum if

sup
x∈X

d(x, ξ∗,θ) = min
ξ∈Ξ

sup
x∈X

d(x, ξ,θ) (3.4)

for θ taking its true value. Let us consider:

D(θ) = − ln det (M(ξ,θ)) , G(θ) = λ(x)fT (x)M−1(ξ,θ)f(x)

thus analogue of Kiefer and Wolfowitz ’s result becomes;

Theorem 3.2. (White 1973): The following conditions on a design measure ξ are equivalent:

1. ξ∗ is D(θ)-optimum : D(ξ∗,θ) = minξ∈Ξ D(ξ,θ)

2. ξ∗ is G(θ)-optimum :tr (I(x,θ)M−1(ξ∗,θ)) ≤ p ; ∀x ∈ X

3. tr (I(x∗,θ)M−1(ξ∗,θ)) = p

for θ taking its true value.

Based on Theorem 3.2, the third condition is necessary but it is not sufficient. That means
that, the first and second condition are equivalent and if those be hold the third condition is
hold, also. But, if the third condition be hold we can not say the two conditions first and
second are hold.
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3.2 Other Optimality Criteria

It was told that the most important design criterion in applications is that of D-optimality
in which the generalized variance, or its logarithm − ln det(M(ξ)), is minimized. But, there
exist other optimality criteria that we can check optimality by using them, like; A-optimality
which minimizes the average variance of the parameter estimates (trM−1(ξ)). It was defined
that φ(x, ξ) is derivative of Ψ(M(ξ)) = ln det(M−1(ξ)). Now in order to state the equivalence
theorems for D- and A-Optimality criterion it can be rewritten the derivative of Ψ(M(ξ)) as
(See Equation (3.3));

φ(x, ξ) = tr

(
M(ξ).

∂Ψ(M(ξ)

∂M(ξ)

)
− ψ(x, ξ), (3.5)

where:

ψ(x, ξ) = fT (x)
∂Ψ(M(ξ))

∂M(ξ)
f(x). (3.6)

With respect to (3.5) and (3.6) we will have (p is the number of parameters):

• if Ψ(M(ξ) = ln(det(M−1(ξ))) then:

∂Ψ(M(ξ))

∂M(ξ)
= M−1(ξ)⇒ φ(x, ξ) = p− fT (x)M−1(ξ)f(x)

• if Ψ(M(ξ) = tr(M−1(ξ))) then:

∂Ψ(M(ξ))

∂M(ξ)
= M−2(ξ)⇒ φ(x, ξ) = tr(M−1(ξ))−

(
fT (x)M−1(ξ)

) (
fT (x)M−1(ξ)

)T
,

An advantage of D-optimality is that the optimum designs for quantitative factors do not
depend upon the scale of the variables. Linear transformations leave the D-optimum design
unchanged, which is not in general the case for A-optimum design. But, for designs with all
factors qualitative, such as block designs the problem of scale does not arise and A-optimum
design are frequently employed. Such that, D-optimum designs are more readily constructed for
experiments with quantitative factors. We now consider an useful extension to D-optimality.

Dq-Optimality

Dq-optimum designs are appropriate when interest is in estimating a subset of q of the param-
eters as precisely as possible. Let the terms of the model be divided into two groups;

E(Y|x) = fT (x)θ = fT1 (x)θ1 + fT2 (x)θ2,
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where the θ1 are the q parameters of interest, the p − q parameters θ2 are then treated as
nuisance parameters. On example is when θ1 corresponds to the experimental factors and θ2

corresponds to the parameters for the blocking factors. In this situation, we will have;

M(ξ) =

(
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)
⇒M−1(ξ) =

(
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

)
,

where the covariance matrix for the least squares of θ1 is M11(ξ) which is showed by

M11(ξ) =
(
M11(ξ)−M12(ξ)M−1

22 (ξ)MT
12(ξ)

)−1
. (3.7)

The Dq-optimum design for θ1 accordingly maximizes the determinant:

det
(
M11(ξ)−M12(ξ)M−1

22 (ξ)MT
12(ξ)

)
=

det(M(ξ))

det(M22(ξ))
(3.8)

such that;
dq(x, ξ) = fT (x)M−1(ξ)f(x)− fT2 (x)M−1

22 (ξ)f2(x)

and for Dq-optimum design ξ∗, dq(x, ξ
∗) ≤ q.

These results follow from those for DA-optimality by taking A = (Iq, 0), where Iq is the q× q
identity matrix (Atkinson, et al. 2007), pp.137.

(White 1973) has expanded Dq-optimality for nonlinear model. She has assumed that if the
parameters θ1,θ2, . . . ,θq; (q < p) are the only parameters of interest, it can be partitioned
information matrix into:

M(ξ,θ) =

(
M11(ξ,θ) M12(ξ,θ)
MT

12(ξ,θ) M22(ξ,θ)

)
, (3.9)

where M11(ξ,θ) is an q × q sub-matrix and M22(ξ,θ) is assumed nonsingular. Thus a design
measure ξ∗ is called Dq(θ)-optimum if

det[M(ξ∗,θ)]

det[M22(ξ∗,θ)]
= max

ξ∈Ξ

det[M(ξ,θ)]

det[M22(ξ,θ)]

for θ taking its true value.

Note 3.1: The quantity n−1
(

M(ξ,θ)

M22(ξ,θ)

)−1

is the asymptotic generalized variance of the esti-

mators of θ1,θ2, . . . ,θq.
In this situation, by noting to (3.4) and (3.9) can be told that a design measure ξ∗ is called

Gq(θ)-optimum if supx∈Ξ dq(x, ξ
∗,θ) = minξ∈Ξ maxx∈X dq(x, ξ,θ), where:

dq(x, ξ,θ) = tr
(
I(x,θ)M−1(ξ,θ)

)
− tr

(
I22(x,θ)M−1

22 (ξ,θ)
)

and I(x,θ) is partitioned in the same way as M(ξ,θ). That means;

I(x,θ) =

(
I11(x,θ) I12(x,θ)
IT12(x,θ) I22(x,θ)

)
.

(White 1973) has also introduced based on Kiefer’s theorem (Kiefer 1961) the following theorem
for the nonlinear models;
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Theorem 3.3. (White 1973): The following conditions on a design measure ξ are equivalent

(for a subset of parameters):

1. ξ∗ is Dq(θ)-optimum,

2. ξ∗ is Gq(θ) -optimum,

3. supx∈X dq(x, ξ
∗,θ) = q

for θ taking its true value.

3.3 The General Properties of D-Optimal Designs

The general properties of D-optimum designs are as follows:

1. TheD-optimum design ξ∗ maximizes det(M(ξ)) or, equivalently, minimizes det(M−1(ξ)).

2. The D-efficiency of an arbitrary design ξ is defined as;

Deff. =

(
det(M(ξ))

det(M(ξ∗))

) 1
p

,

where p is the number of parameters.

3. A generalized G-optimum design over the region < is one for which,

max
x∈<

w(x)d(x, ξ∗) = min
ξ∈Ξ

max
x∈<

w(x)d(x, ξ).

Here, usually < is taken as the design region X and w(x) = 1, when the equivalence of
D-and G-optimum designs results. Then, with d̄(ξ) = maxx∈X d(x, ξ) the G-efficiency of

a design ξ is defined by Geff. = d̄(ξ∗)
d̄(ξ)

= p
d̄(ξ)

4. The D-optimum design need not be unique. If ξ∗1 and ξ∗2 are D-optimum designs, the
design; ξ∗ = αξ∗1 + (1 − α)ξ∗2 ; 0 ≤ α ≤ 1 is also D-optimum. Of course, M(.) is unique,
means that M(ξ1) = M(ξ2) = M(ξ) (Atkinson, et al. 2007), pp.152.

5. The D-optimality criterion is model dependent. However, the design is invariant to non-
degenerate linear transformation of the model. Thus, a design D-optimum for the model
η = βT f(x) is alsoD-optimum for the model η = γTg(x), if g(x) = Af(x) and det(A) 6= 0,
where β and γ are both p×1 vectors of unknown parameters. (Schwabe 1996) has defined
that a design ξ is invariant with respect to transformation group, G,if ξg = ξ;∀g ∈ G,
where a group G of transformations of X induces linear transformations of the regression
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function f : X → <p if every g ∈ G (g : X → X , one-one function) induces a linear
transformation of f . We know that a transformation g of X induces a linear transformation
of the regression function f : X ⇀ <p if there exists a p × p matrix Qg with f(g(x)) =
Qgf(x);∀x ∈ X . In this case, it is defined that a design ξ is information invariant with
respect to G and the linear regression function f , if QgM(ξ)QT

g = M(ξ);∀g ∈ G criterion
function Ψ : Ξ → < is invariant with respect to G if Ψ(ξg) = Ψ(ξ);∀ξ ∈ Ξ , ∀g ∈ G.
Based on previous descriptions (Schwabe 1996) has proved the following theorem;

Theorem 3.4. (Schwabe 1996): Let G induce linear transformation of f then;

• The D-criterion is invariant.

• If G is orthogonal for f , then every Ψk-criterion, 0 ≤ k ≤ ∞,( (Atkinson, et al.

2007), pp.136) including A- and E-criterion, is invariant, where a group G is or-

thogonal for f if for every g ∈ G the transformation matrix Qg is orthogonal, i.e.

QT
g = Q−1

g .

3.4 The Properties of Information Matrices

The properties of information matrices are as follow :

Theorem 3.5. (Fedorov 1972), pp.66:

1. For any design ξ the information matrix M(ξ) is a symmetric positive-semi-definite ma-

trix; aTMa ≥ 0;∀a ∈ <p.

2. The matrix M(ξ) is degenerate (det(M(ξ)) = 0), if the support points of the design ξ

contains less than p points.

3. The family of matrices M(ξ), corresponding to all possible normalized designs, is convex.

If the function f(x) and the efficiency function λ(x) are continuous in the region X of

possible measurements, and X is compacted, then, the set of information matrices is

compacted.

4. For any design ξ the matrix M(ξ) can be represented in the form (λ(xi) denotes the

efficiency function based on xi):

M(ξ) =
n∑
i=1

wiλ(xi)f(xi)f
T (xi),

where n ≤
(
p(p+1)

2

)
+ 1, 0 ≤ wi ≤ 1,

∑n
i=1wi = 1.
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3.5 Bayesian Optimal Design Theory

Design is more difficult when the model is not linear or when a nonlinear function of the co-
efficients of a linear model is of interest. Such problems are referred to as nonlinear design
problems. It will be shown that the design problem can be formulated as maximizing expected
utility but approximations must typically be used as the exact expected utility is often a com-
plicated integral. Designs can still be denoted by a probability measure ξ over the design space
X and the set of all such measures be denoted Ξ. The measures may be arbitrary probability
measures representing approximate, or continuous, designs, or measures corresponding to exact
designs which have mass 1

n
on n, not necessarily distinct, points.

The frequents’s strategy for designing a nonlinear model is to assume a best guess of the
parameter values. This approach leads to what are termed local optimal designs (obtaining
optimal design based on special values of parameters). A natural generalization is to use
a prior . (Chaloner and Larntz 1989) argued that under mild conditions, the joint posterior
distribution of parameters is approximately a multivariate normal distribution with mean equals
to the maximum likelihood estimate, and variance covariance matrix equals to the inverse of
the observed Fisher information matrix evaluated at the MLE’ s.

Further, the prior distribution of parameters can be used as the predictive distribution of
their MLE’s. If Ψ is a convex functional of the Fisher information matrix M(ξ,θ), a Bayesian
optimality given by (Chaloner 1993) is;

Ψ(ξ) = Eθ (Ψ(M(ξ,θ))) , (3.10)

where Eθ denotes the expectation of Ψ(M(ξ,θ)) with respect to prior distribution of parameters.
Bayesian optimal design is a logical outgrowth of classical design for cases where the criterion
is a function of unknown parameters.

Following (Lindley, 1956) suggestion, several authors (Stone 1959a),(DeGroot, 1962), (De-
Groot, 1986) and (Bernardo, 1979) considered the expected gain in Shannon information given
by an experiment as a utility function (Shannon, 1948). These authors purposed choosing a
design that maximizes the expected gain in Shannon information or, equivalently, maximizes
the expected Kullback-Leibler distance (Kullback and Leibler 1951) between the posterior and
the prior distributions: ∫

Θp,Y
ln
p(θ|y, ξ)
π(θ)

p(y,θ|ξ)dθdy.

(Zacks 1977) has considered problems where the data are to be sampled from an experimen-
tal family with known scale parameter and where some function of the mean is linear in an
explanatory variable. This class of generalized linear models includes quantal response models
and models for exponential lifetimes. The Fisher information matrix has a common form for
these models and (Zacks 1977) has considered designs that maximize the expected value of the
determinant of M(ξ,θ), that is:

D(ξ) =

∫
Θp

[det(nM(ξ,θ))] π(θ)dθ.
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Also, (Atkinson, et al. 2007), (Chapter 18) have used the following design criterion to obtain
optimal design, for generalized linear models;

D(ξ) =

∫
Θp
{[det(nM(ξ,θ))]}−

1
pπ(θ)dθ,

where p is the number of parameters.

But, a crude approximation to expected utility would be to approximate the marginal dis-
tribution of θ̂ by a one point distribution. The one point would represent a best guess. This
approach, known as local optimality, has been used extensively in nonlinear design and is due
to (Chernoff 1953). It is also used in the pioneering paper of (Box and Lucas 1959) where
the important issues in design for nonlinear regression were identified. Although they used
local optimality, (Box and Lucas 1959) suggested extending this by taking into account a prior
distribution on the parameter values. (White 1973), (White 1975) showed how results from
linear design theory can be adapted to apply to local optimality in nonlinear models and she
also derived locally optimal designs for binary regression experiments.

As local optimality is a very crude approximation to expected utility, it can be considered as
being approximately Bayesian although it is typically not justified in this way and is usually
used in a non-Bayesian framework. The experimenter is required to specify a best guess, θ0

for the unknown parameters θ. Local D-optimality involves choosing the design ξ maximizing
Dθ0(ξ) = det (M(ξ,θ0)) or minimizing D̃θ0(ξ) = ln (det (M(ξ,θ0)))−1 for fixed value θ0.

For local optimality there are several papers deriving closed form expressions for designs:
for example (White 1973), (Kitsos, et al. 1988), (Ford, et al. 1992) and (Wu 1988). For a
particular value of the unknown parameters the problem often reduces to an equivalent linear
problem. Finding optimal Bayesian designs algebraically is much hard and thus implementing
Bayesian design criteria requires that designs be found by numerical optimization. Exceptions
to this are simple special cases: these cases are not very useful in practice, but they give
insight into properties of the optimal designs for more realistic and practical situations. Exact,
algebraic results are quite difficult to derive as none of the tools from local optimality are very
helpful.

In (Chaloner 1993) for example, in a one parameter problem, with prior distributions with
only two support points, it is possible to examine exactly how the transition from a one point
optimal design to a two point optimal design occurs as the prior distribution is changed.
(Mukhopadhyay and Haines 1995), (Haines 1995), (Dette and Neugebauer 1996) and (Dette
and Neugebauer 1997) all considered some nonlinear regression problems involving an exponen-
tial mean function, and gave conditions under which the optimal design is of a particular form.
Loosely speaking these results can be generalized to say that if the prior distribution is not too
dispersed and does not have heavy tails then an optimal Bayesian design has the same number
of support points as there are unknown parameters. (Haines 1995) gave an insightful geometric
interpretation of this and demonstrated how, for a prior distribution with finite support, the
problem reduces to a particular convex programming problem.
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3.6 Support Points

In most non-Bayesian linear problem an upper bound on the number of support points in an
optimal design is available, see (Pukelsheim 1993), pp.188-189). The D-optimality criterion
in linear models (in univariate regression) leads to an optimal number of support points that
is the same as the number of unknown parameters and the design takes an equal number of
observations at each point (Silvey 1980).

The bound also applies to most local optimality criteria and Bayesian criteria for linear models
(Chernoff 1972), pp.27). In contrast for nonlinear models there is no such bound available on
the number of support points.

(Chaloner and Larntz 1989) have given the first examples of how the number of support
points in an optimal Bayesian design increases as the prior distribution becomes more dis-
persed. They found that for prior distributions that have supported over a very small region
the Bayesian optimal designs are almost the same as the locally optimal design and they have
the same number of support points as the number unknown parameters. For more dispersed
prior distributions there are more support points. This is a useful feature for a design as
if there are more support points than unknown parameters, the model assumptions can be
checked with data from the experiment. In locally D-optimal designs for various non-linear
models follow Caratheodory theorem (Fedorov 1972), pp.66) and (Silvey 1980),appendix 2 )

that for p-parameter nonlinear model, the number of support points is between p and p(p+1)
2

.
When we search for a D-optimal design, we only need to search for the optimal design in the
class of design measures with number of support points between p and p(p+1)

2
for which the

information matrices are nonsingular.

A common tool for the construction of efficient designs in nonlinear regression models are
Bayesian or maximin criteria. Both optimality criteria require prior information regarding the
parameters which enter in the model nonlinearly. It was observed numerically by many authors
that the number of support points of Bayesian and maximin D-optimal designs is increasing with
the amount of uncertainty about the location of the nonlinear parameters. (Braess and Dette
2004) have established sufficient conditions for the nonlinear regression models under which the
number of support points of Bayesian and maximin D-optimal designs can become arbitrarily
large if the prior information regarding the unknown nonlinear parameters in the optimality
criterion is reduced. These conditions apply to many of the commonly used regression models
(in fact they did not find any model, where these conditions were not satisfied).

(Braess and Dette 2004) restricted their investigations to one- and two parametric regres-
sion models, where at most one parameter appears nonlinearly in the model. However, their
approach is a general one and can also be applied to regression models with more nonlin-
ear parameters, where some of technicalities have to be adapted to the specific model under
consideration. For example, consider a nonlinear regression model with two parameters, say
θ = (θ1, θ2); such that the local D-optimal design depends on both components of θ. (Braess
and Dette 2004) have showed that the number of the support points of the standardized max-
imin D-optimal design becomes arbitrarily large provided that the sufficient conditions in their
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theorem are satisfied. They have obtained a similar result which is also available for the
Bayesian D-optimality criterion. (Braess and Dette 2004) have considered several examples
which in all them the number of support points of the standardized maximin and Bayesian
D-optimal designs exceeds any given bound if the knowledge about the underlying parameter
space, which is incorporated in the optimality criteria, is diminished. This gives a rigorous
proof of a phenomenon which was conjectured in many nonlinear regression models for a long
time in the literature.

3.7 Optimal Design for Logit Models

Suppose that there are K attributes each with Lk; k = 1, 2, . . . , K levels. In this situation, we
will face to a population, which includes

∏K
k=1 Lk = J possible alternatives. To analyze data,

we can consider C choice sets each with Jc alternatives (See Section 2.1). Obtaining optimal
design for logit models, experiments J /J/S can be considered, where there are S choice sets,
C1, . . . ,Cs, . . . ,CS , each with Js; ∀s ∈ S alternatives. In this situation, S ⊂ C. This means that
there are S choice sets each with Js;∀s ∈ S alternatives and we suppose that Js = J ;∀s ∈ S,
also. In Section 2.1 was told that C includes 2J − (J + 1) choice sets each with Jc > 1;∀c ∈ C
alternatives, where:

J∑
Jc=2

(
J
Jc

)
denotes the number of choice sets each with at least two alternatives and:

S =

(
J
Js

)
denotes a subset of C, which includes choice sets each with the same number of alternatives,
Js = J ;∀s ∈ S. Of course, to experiment the number S (p ≤ S ≤ S) choice sets each with
Js;∀s ∈ S alternatives can be considered, where p =

∑K
k=1 Lk− 1 is the number of parameters.

Now, according to the utility Ujs = vjs + εjs (Section 2.1), which consists the deterministic
component (vjs) and the probabilistic component (εjs) we consider:

1. Obtaining the optimal design when Js = 2;∀s ∈ S (Bradley-Terry type logistic model).

2. Obtaining the optimal design when Js > 2;∀s (MNL Models (Subsection 3.7.1) and
NMNL Models (Chapters 4, 5 and 6)).

Obtaining the Optimal Design when Js = 2;∀s (Bradley-Terry type logistic Model)

In this sub-section, suppose that the error terms of the utility function have extreme value
distribution (type II). The preference for alternative j over alternative j′ can be expressed by
a binary variable

Yj,j′s =

{
1 Ujs > Uj′s
0 otherwise.
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A classical approach to describe these preferences is given by the Bradley-Terry model (Bradley
and Terry 1952). Under EVD for error terms the probability of preference is as follow: (Mc-
Fadden 1974)

P (Yj,j′s = 1) =
exp (vjs)

exp (vjs) + exp (vj′s)
.

In the logistic model based on direct observations under the one-way layout situation with
L varieties a design ξ is defined by its nonnegative weight wj on the settings from the set

{1, 2, . . . , L};
∑L

j=1 wj = 1. Then the information matrix results in (Graßhoff and Schwabe
2008):

M(ξ,β) =
L∑
j=1

w′jλ(fTd (j)β)fd(j)f
T
d (j)

=
S∑
s=1

ws.M(Cs,β),

where β denotes the part-worth parameters, d related to design defined and S the number of
choice sets (Cs) each with two alternatives (Js = J = 2;∀s ∈ S).

Example 3.1. Suppose that there are three attributes each comprised of two levels. In this

case, the alternatives are determined as follow:

alternative attribute1 attribute2 attribute3
ã1 +1 +1 +1
ã2 +1 +1 −1
ã3 +1 −1 +1
ã4 +1 −1 −1
ã5 −1 +1 +1
ã6 −1 +1 −1
ã7 −1 −1 +1
ã8 −1 −1 −1

,

where ãj denotes the alternative j in choice set C = {ã1, . . . , ãj, . . . , ãJ } (Section 2.1). In this
case, we will have:

S =

(
8
2

)
= 28.

This means that, there are S = 28 choice sets each with two alternatives. In this experiment,
there are three parameters (there are three attributes each with two levels) then we can consider
3 ≤ S ≤ 28. Now, let us consider S = 4. In this situation, four choice sets with their two
alternatives can be considered as follow:

C1 =

[
+1 +1 +1
−1 −1 −1

]
, C2 =

[
+1 +1 −1
−1 −1 +1

]
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C3 =

[
+1 −1 +1
−1 +1 −1

]
, C4 =

[
+1 −1 −1
−1 +1 1

]
,

where f(ajs) = (f1(ajs), f2(ajs), f3(ajs))
T denotes the characterizes of three attributes related

to alternative j of choice set Cs (Section 2.1). For example, f1(a11) = 1, f2(a11) = 1, f3(a11) = 1
and f1(a21) = −1, f2(a21) = −1, f3(a21) = −1 and so on. Now, based on the definition of the
information matrix of design ξ, which consists four above choice sets as follow:

ξ =

{
C1 C2 C3 C4

w1 w2 w3 w4

}
∈ Ξ

we will have:

M(ξ,β) =
4∑
s=1

ws ·M(Cs,β),

which is calculated by:

M(ξ,β) =


∑4
s=1 wsγs w1γ1 + w2γ2 − (w3γ3 + w4γ4) w1γ1 + w3γ3 − (w2γ2 + w4γ4)

w1γ1 + w2γ2 − (w3γ3 + w4γ4)
∑4
s=1 wsγs w1γ1 + w4γ4 − (w2γ2 + w3γ3)

w1γ1 + w3γ3 − (w2γ2 + w4γ4) w1γ1 + w4γ4 − (w2γ2 + w3γ3)
∑4
s=1 wsγs


with the corresponding determinant:

det(M(ξ,β)) = 16
4∑
`=1

4∑
m=1

4∑
n=1︸ ︷︷ ︸

`<m<n

w`wmwnh`mn; h`mn = γ`γmγn,

where:

• γ1 = (exp ((β1 + β2 + β3)) + exp (−(β1 + β2 + β3)))−2,

• γ2 = (exp ((β1 + β2 − β3)) + exp ((−β1 − β2 + β3)))−2,

• γ3 = (exp ((β1 − β2 + β3)) + exp ((−β1 + β2 − β3)))−2,

• γ4 = (exp ((β1 − β2 − β3)) + exp ((−β1 + β2 + β3)))−2 .

In this situation, β = (β1,β2,β3)T is the full parameters vector with β1 = (β1,1,−β1,1)T

(related to the first attribute), βT2 = (β2,1,−β2,1) (related to the second attribute) and β3 =
(β3,1,−β3,1)T (related to the third attribute). This corresponds to type-effect coding leading to
β1,1 = −β1,2, β2,1 = −β2,2 and β3,1 = −β3,2, then we are faced to the three parameters β1,1, β2,1

and β3,1 instead of six. Now for the sake of simplicity, suppose that β1,1 = β1, β2,1 = β2 and
β3,1 = β3 (See Section 2.1).

In this situation, we must solve the optimization problem, maxw1,...,w4 det(M(ξ,β)) subject
to the natural constraints

∑4
s=1ws = 1 by a multiplier δ0 > 0 and the conditions ws ≥

0, s = 1, · · · , 4 are imposed by the multipliers δ1, δ2, δ3, δ4 ≥ 0, where Ψ(ξ,β) = det(M(ξ,β)
as local D-optimality criterion is considered. To obtain a solution w∗1, w

∗
2, w

∗
3, w

∗
4, the weights

must correspond to the existence of multipliers solving the equations based on the first order
conditions:
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Figure 3.1: Partition of the (β1, β2)-plane into regions, where different types of designs are

optimal, for different values of β3, for example, a) β3 = 1, b) β3 = 0.5, and so on

w∗2w
∗
4h124 + w∗3w

∗
4h134 + w∗2w

∗
3h123 + δ1 = δ0,

w∗1w
∗
4h124 + w∗1w

∗
3h123 + w∗3w

∗
4h234 + δ2 = δ0,

w∗1w
∗
4h134 + w∗1w

∗
2h123 + w∗2w

∗
4h234 + δ3 = δ0,

w∗1w
∗
2h124 + w∗1w

∗
3h134 + w∗2w

∗
3h234 + δ4 = δ0,∑4

s=1 δsw
∗
s = 0,∑4

s=1 ws = 1.

Next consider the case in which three multipliers are equal to zero, δ` = δm = δn = 0, while
the other is positive, δr > 0. Thus, w∗r = 0 and the reduced system is solved by δ0 = h`mn

9
and

w∗` = w∗m = w∗n = 1
3
, if the condition:

h`mn > (h`mr + h`nr + hmnr)

hold out. The above is equivalent to:

γ`γmγn > γr(γ`γm + γ`γn + γmγn).
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In this Example 3.1, this notation ξ`mn is used to denote a design including three support points
(choice sets) C`, Cm and Cn as follow:

ξ`mn =

{
C` Cm Cn

w` wm wn

}
∈ Ξ`mn;∀` 6= m 6= n,

where Ξ`mn ⊂ Ξ.
Figure 3.1 exhibits the contours which separate the parameter regions for the optimal three-

point designs, with respect to parameter β3. When β3 is positive, it can be used for four
different designs ξ123, ξ124, ξ234 and ξ134 to obtain optimal design nevertheless when considering
different regions for β1 and β2. To obtain a locally optimal design based on the design ξ123,
we must assume β2 > 0 and β1 < 0, while for the β1 > 0 and β2 > 0 design, ξ234 must be
used. Also, we compare design ξ134 with the negative values for both β1, β2 while based on
β1 > 0, β2 < 0 the locally optimal design ξ234 can be obtained. Note that we must consider
condition γ`γmγn > γr(γ`γm + γ`γn + γmγn) in the all of the described cases. There is a similar
result when β3 is negative (Figure 3.1 (d),(e),(f)). For β3 < 0 can be described in a similar
way based on the parameters spaces (for all of designs) with the difference that the regions
related to ξ123, ξ124 and ξ134, ξ234 will be replaced respectively (Figure 3.1). In the other case,
let β3 tends to zero from the right. In this situation, to obtain a locally optimal design very
big positive values of β2 must be considered and very small negative values for β1, based on
the design ξ123. In addition, very large positive values for β1, β2 must be considered in order
to obtain a locally optimal design based on design ξ234. Now, if β3 tends to zero from left, the
large positive values of β1 and very low negative values for β2 must be considered to obtain a
locally optimal design based on the design ξ123. By Figure 3.1, we can observe all the different
conditions required to obtain a locally optimal design when β3 tends to zero from the right or
left. Note that the condition γ`γmγn > γr(γ`γm + γ`γn + γmγn) does not hold when β3 = 0.

For the next case, consider all of the multipliers are equal to zero, δ1 = δ2 = δ3 = δ4 = 0,
but with the assumption that β3 = 0. This situation will result in γ1 = γ2, γ3 = γ4 with the

system begging solved by δ0 =
γ4
1γ

4
3D

2

(γ1γ3
3−D2(γ3−2γ1))2

and:

w∗1 = w∗2 =
γ3(γ1γ

2
3 −D2)

2(γ1γ3
3 −D2(γ3 − 2γ1))

, w∗3 = w∗4 =
γ1D

2

γ1γ3
3 −D2(γ3 − 2γ1)

,

where γ1γ
2
3 > D2 and γ1γ

3
3 > D2(γ3 − 2γ1) with

D = −
√
γ2

1γ3 +
√
γ1γ3(γ1 + γ3); D > 0.

In particular, let β2 = β1. See Figure 3.2(c) denoting that w∗3 = w∗4 > 0 when |β1| < 3, but for
the values of β1 out of the interval (−3, 3), it can be showed that w∗3 = w∗4 = 0. In this case,
the minimum of w∗1 and the maximum of w∗3 occurs for β1 = 0, naturally w∗1 is always greater
than w∗3. But, when β2 = −β1, Figure 3.2(d) demonstrates that the maximum of w∗1 and the
minimum value of w∗3 occur for β1 = 0 (See Figure 3.2(e), where two Figures 3.2(c) and 3.2(d)
have been overlapped).
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Figure 3.2: β3 = 0: optimal weight (a) w∗1 = w∗2, (b) w∗3 = w∗4 based on (β1, β2) and two special

cases; (c) β2 = β1 and (d) β2 = −β1, where (e) is overlapped Figure w.r.t Figures (c), (d)
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Obtaining the Optimal design when Js > 2;∀s (MNL)

The design of a choice experiment comprises a select number of choice sets administered to each
respondent. The aim of a choice experiment is to estimate the importance of each attribute
and their levels based on the respondent’s preferences. The estimates are then used to mimic
real marketplace choices by making predictions about consumer future purchases. At present,
two design approaches are prevalent; (i) The Linear design approach and (ii) The Baysian
design approach.

Bayesian choice designs have so far been constructed for the Logit models. Since the Logit
models are nonlinear in the parameters, the quality of a given design depends on the unknown
parameter vector. The Bayesian design approach deals with this problem by assuming a prior
distribution of likely parameters. To date, most of the Bayesian research focus has been on
designs for main-effects models. (Sandor and Wedel 2001) were the first to introduce the
Bayesian design procedure in the choice design literature. They generated Bayesian designs
using the D-optimality criterion for the MNL model. This design criterion seeks to minimize the
determinate of the variance-covariance matrix of the parameter estimators. In the Bayesian
framework, it is referred to as the Db-optimality criterion.

Optimum design for nonlinear models depends on the values of the vector of unknown pa-
rameters θ. Of course, we can solve this problem by replacing θ, by a prior point estimate, θ0,
use which yield locally optimum designs. Now, we want to the cases consider that there is a
prior distribution for θ, which may be either discrete or continuous.

An efficient algorithm for constructing Bayesian optimal choice designs conjoint choice ex-
periments or more succinctly, choice experiments, are widely used in marketing to measure how
the attributes of a product or service jointly affect consumer preferences.

As before was told the aim of a choice experiment is to estimate the importance of each
attribute and its levels based on the respondents preferences. The four optimality criteria in
the Bayesian context are labeled the Db- ,Ab-,Gb- and Vb-optimality criteria. In this thesis, we
use D-optimality criterion, since, (Yu, et al. Preprint) have written that D-optimality criterion
is invariance to the scale or coding of the attributes. Also, the relative efficiency of the designs
does not change when different codings of the attributes are used (Goos 2002) and (Kessels,
et al. 2006b) have denoted that D-and A-optimal designs are nearly as good as the G-and
V -optimal designs in terms of prediction quality but much faster to compute compared to G-
and V -optimal designs.

The task of the analyst is to find a parameter estimate for β in pjc (choice probabilities,
Section 2.1) that maximizes the Likelihood given the data. Under very general conditions, the
maximum likelihood estimator is consistent and asymptotically normal with covariance matrix
M−1(C,β), the inverse of the information matrix.

The fact the information on the parameters depends on the unknown values of those pa-
rameters through the probabilities. Therefore, are adopted a Bayesian design strategy that
integrates the design criteria over a prior parameter distribution π(β). The multivariate normal
distribution N(β0,Σ0) (part-worth parameters) was chosen for this purpose.

The D-and A-optimality criteria both are concerned with a precise estimation of the param-
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eters β in the Multinomial logit models. But the G-and V -optimality criteria were developed
to make precise response predictions. In this situation the D-optimality criterion aims at
designs that minimize the determinant of the variance-covariance matrix of the parameters
estimators, while the A-optimality criterion aims at designs that minimize the trace of the
variance-covariance matrix. Thus, the criteria have distinguished related to; (i) The parameter
space and (ii) The predicted response. In this situation, the Baysian D-optimality criterion is
(Kessels, et al. 2006b):

Db =

∫
<p
{det(M−1(ξ,β))}

1
pπ(β)dβ (3.11)

with the Db-optimal design minimizing integral (3.11). A widely accepted one dimensional
measure of information is the determinant of the information matrix. It is motivated from the
confidence ellipsoid for β (MNL model) that equals:

{β : (β − β̂)TM(C, β̂)(β − β̂) ≤ constant},

where β̂ is the ML estimator of β. Researchers usually employ the Dp-error:

Dp − error = det (M(C,β))−
1
p

as a one dimensional measure of the efficiency of a design. Here, p is the dimensionality of the
parameter vector and the exponent serves to ”adjust” the information for the dimensionality
of the parameter vector. The power 1

p
normalizes the determinate of the information matrix,

making it proportional to the number of respondents. But, the Ab-optimal design minimizes:

Ab =

∫
<p
tr(M−1(ξ,β))π(β)dβ. (3.12)

The G- and V -optimality criteria are also important, since predicting consumer responses is
the goal of choice experiments. In this situation, the G-optimal design minimizes the maximum
prediction variance over the design region X , while a V -optimal design minimizes the average
prediction variance over this region.

Adopting a Bayesian approach to design construction, it is used the prior distribution of
the logit coefficients π(β) thus obtained to reflect subjective beliefs in the probabilities that
particular parameter values occur. For example, the optimal design is the one that minimizes
the Db criterion is, the expectation of the Dp-error over the prior distribution of the parameter
values (3.11).

We note that criterion (3.11) is necessarily approximate, as it is based on an asymptotic
approximation to the posterior distribution. The expected information is approximated by
drawing R times from π(β), and computing:

D̃b(ξ) '
1

R

R∑
r=1

det (M(ξ,βr))
− 1
p . (3.13)
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The main difficulty in the construction of a proper choice design is that the probabilistic choice
models are non-linear in the parameters, implying that the efficiency of the design depends on
the unknown parameter vector.

Consequently, researchers need to assume values for the parameters before deriving the ex-
perimental design. To circumvent this circular problem, three approaches have been introduced
that, (Kessels, et al. 2006b) are discussed them for logit choice model, the best known of which
is the MNL model. The first approach is to use zero prior parameter values so that methods of
linear experimental design can be applied. It is implicitly assumed that the respondents prefer
all attribute levels and, thus, all alternatives equally (Großmann, et al. 2002). The second
approach, attributed to the work of (Huber and Zwerina 1996) advocates the use of nonzero
prior values. The resulting locally Db-optimal designs prove to be more efficient than the D-
optimal designs based on zero prior values to generate the D-optimal designs. Finally, the most
recent approach has been introduced by (Sandor and Wedel 2001) and consists of integrating
the associated uncertainty on the assumed parameter values by the use of Bayesian design
techniques if there is substantial uncertainty about the unknown parameters, the so-called
Bayesian Db-optimal designs outperform the locally Db-optimal designs.

(Kessels, et al. 2006b) discussed the Db-, Ab-, Gb- and Vb-optimality criteria for the multino-
mial logit model. After that, they described the approach to generate the optimal designs with
the modified Fedorov algorithm, because it is faster than the adjusted RSC algorithm (Huber
and Zwerina 1996) in generating Bayesian optimal designs. They have also constructed Db-,
Ab-, Gb- and Vb- optimal designs of two class with the Bayesian Modified Fedorov choice
algorithm.

According to above explanations, it has been told that conjoint choice experiments are widely
used in marketing to measure how the attributes of a product or service jointly affect consumer
preferences. In a choice experiment, a product or service is characterized by a combination of
attribute levels called a profile or an alternative. Respondents then choose one from a group
of profiles called a choice set. They respect this task for several other choice sets presented
to them. All submitted choice sets make up the experimental design. Designing an efficient
choice experiment involves selecting those choice sets that result in an accurately estimated
model providing precise predictions. (Kessels, et al. 2006b) compared four different design
criteria based on the multinomial logit model to reach this goal. Because, the MNL model is
nonlinear in the parameters, the computation of the optimality criteria depends on the unknown
parameter vector. To solve this problem, (Kessels, et al. 2006a) adopted a Bayesian design
procedure as proposed by (Sandor and Wedel 2001). They approximated the design criteria
using a Monte Carlo sample (Monte Carlo sampling involves taking a large number of random
draws from a probability distribution as a surrogate for that distribution) from a multivariate
normal prior parameter distribution.

The most serious criticism of optimal design is typically, that with nonlinear models the
researcher must know the parameter values before deriving his or her design.

Optimal design addresses only the statistical aspects of the experimental design problem.
Yet, the placement of attributes and combinations of attributes that are presented in choice
sets can affect respondent behavior in ways that are not necessarily addressed in standard
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choice models. For example, when alternatives within a choice set offer similar utility levels but
contain large attribute differences, respondents can have a hard time distinguishing among them
and identifying their most preferred. This might lead to heteroskedasticity among responses.
Because of, perhaps of most concern is feature of logit models that utility is a function only of
attribute level differences, so that the change in utility for a price change from 5 (Euro) to 15
(Euro), for example, is equivalent to price change from 50 (Euro) to 60 (Euro).

More efficient designs enable a reduction in the number of equations asked from a respondent
as well as a reduction in the number of respondents. We are interested in generating designs
for conjoint choice experiments. Complications in the construction of the these designs arise
from the analysis of the data from conjoint choice experiments with the multinomial logit
model (MNL) contrary to experimental design methods for linear regression, for the MNL
the consternation of an efficient experimental design requires knowledge of the values of the
parameters. This is so because the information on the parameters provided by the design is
dependent on the value of those parameters.

Unfortunately, the parameter values are unknown at the time the design is constructed,
and researchers need to assume values to enable a design to be generated. Often, researchers
construct designs by assuming that the parameters are zero. This construction can be motivated
by the argument that the design achieves optimality under the null hypothesis of no effect of
the attribute level in question.

(Huber and Zwerina 1996) have provided a first and important effort to construct designs
with improved efficiency when the parameters are assume to be nonzero. They have argued that
in practice, conjoint questionnaires are often pretested on small samples, the results of which
may provide reasonable priors for the construction of the design. Researchers must obtain
designs that take the uncertainty about the assumed parameter values into account.

3.7.1 Optimal Design in MNL Model

Suppose that there is a population including J possible alternatives. In Chapter 2 the choice
probability related to choosing alternative j by individual i, which has the highest utility have
been introduced. Based on the utility function Ujs = vjs+εjs (for Choice set Cs, which includes
Js = J ; ∀s ∈ S) that its error terms have i.i.d extreme value distribution (type II), the model
(2.6) was called the standard MNL model.

Theorem 3.6. According to the model (2.6) and the likelihood function (2.13), the information

matrix for the choice set Cs is calculated as follows:

I(Cs,β) = FT
s (Ps − psp

T
s )Fs. (3.14)
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Proof:

I(Cs,β) = −E
(
∂2` (Cs,β)

∂β∂βT

)
= −

J∑
j=1

pjs ·
∂2 ln(pjs)

∂β∂βT

=
J∑
j=1

[
pjs ·

(
J∑
j=1

f(ajs)pjsf
T (ajs)

)
− pjs.

(
J∑
j=1

f(ajs)pjs

)(
J∑
j=1

pjsf
T (ajs)

)]

=

[(
J∑
j=1

f(ajs)pjsf
T (ajs)

)
−

(
J∑
j=1

f(ajs)pjs

)(
J∑
j=1

pjsf
T (ajs)

)]
J∑
j=1

pjs

= FT
s PsFs − FTpsp

T
s F = FT

s (Ps − psp
T
s )Fs,

where E(Yjs) = pjs,
∑J

j=1 pjs = 1;∀s ∈ S. Let us,
∑Lk

l=1 βk,l = 0 thus βk,Lk = −
∑Lk−1

l=1 βk,l. In
this situation, we can introduce the following elements of the information matrix:

• Fs = (f(a1s), . . . , f(ajs), . . . , f(aJs))
T ; f(ajs) = (f1(ajs), . . . , fk(ajs), . . . , fK(ajs))

T ;

fk(ajs) = (fk1(ajs), . . . , fk`(ajs), . . . , fkLk−1(ajs))
T ,

• β = (β1, . . . ,βk, . . . ,βK)T ; βk = (βk,1, . . . , βk,l, . . . , βk,Lk−1)T ,

• ps = (p1s, . . . , pjs, . . . , pJs)
T , Ps = diag(p1s, . . . , pjs, . . . , pJs),

• pjs =
exp(fT (ajs)β)∑J
l=1 exp(fT (als)β)

;∀j = 1, 2, . . . , J.

According to the above descriptions, let us consider β1,1 = β1, . . . , βK,LK−1 = βp and f11(ajs) =
f1(ajs), . . . , fKLK−1(ajs) = fp(ajs) then we will have:

• β = (β1, . . . , βh, . . . , βp)
T ,

• f(ajs) = (f1(ajs), . . . , fh(ajs), . . . , fp(ajs))
T .

Corollary 3.1. Based on above descriptions, the elements of the information matrix (3.14)

are calculated as follow:

I(Cs,β) =



Iβ1β1 · · · Iβ1βh · · · Iβ1βh′
· · · Iβ1βp

...
. . .

... · · · ... · · · ...

Iβhβ1 · · · Iβhβh · · · Iβhβh′ · · · Iβhβp
... · · · ...

. . .
... · · · ...

Iβh′β1 · · · Iβh′βh · · · Iβh′βh′ · · · Iβh′βh
... · · · ... · · · ... · · · ...

Iβpβ1 · · · Iβpβh · · · Iβpβh′ · · · Iβpβp


,
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where −E
(
∂2`(Cs,β)

∂βh∂βh′

)
= Iβhβh′ and:

Iβhβh′ =

(
J∑
j=1

fh(ajs)pjsfh′(ajs)

)
−

(
J∑
j=1

fh(ajs)pjs

)(
J∑
j=1

fh′(ajs)pjs

)
.

Now, to introduce a design the experiments J /J/S are considered. This means that J
alternatives from a population with J possible alternatives will be selected, where S (p ≤ S ≤
S) denotes the number of choice sets, which include Js = J ;∀s alternatives, each. Based on
experiments J /J/S (selecting J alternatives from population with J possible alternatives),
the following design will be defined:

ξ =

{
C1 C2 · · · CS

w1 w2 · · · wS

}
∈ Ξ, S ≥ p, (3.15)

where Ξ =
{
ξ|0 ≤ ws ≤ 1;

∑S
s=1 ws = 1 and Cs ∈ X

}
, X denotes the design space. In this

case, the information matrix of design (3.15) is obtained by:

M(ξ,β) =
S∑
s=1

ws ·M(Cs,β), (3.16)

where ws is the weight (frequency) of the choice set Cs, respectively. Moreover, M(Cs,β)
denotes the information matrix of the choice set Cs and the local D-criterion at β is denoted
by:

Ψ(ξ,β) = det(M(ξ,β)). (3.17)

Based on (3.17), the ξ∗ which maximizes the Ψ(ξ,β) criterion is called locally D-optimal design,
where ξ∗ = arg maxξ∈Ξ Ψ(ξ,β0) (true value of parameter), and

ξ∗ =

{
C∗1 C∗2 · · · C∗S
w∗1 w∗2 · · · w∗S

}
. (3.18)

The MNL model is a model of the non-linear models family. In this kind of models, there is
any boundary for support points (to obtain optimal design), opposite linear models which their

support points must be in interval [p, p(p+1)
2

] (See Caratheodory’s Theorem, (Silvey 1980), where
p denotes the number of the part-worth parameters). In design (3.15) choice sets have the role
of support points. In this case, to avoid singularity for the information matrix of design (3.15),
consider S ≥ p (S denotes the number of choice set which has been selected from population
to fit model). Based on the possible alternatives in population, J , and the random sample
alternatives, J , which will be selected from population, thus:

S =

(
J
J

)
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is the total number of choice sets (each with Js = J ;∀s alternatives) that can be considered to
define a design. In this chapter, we consider p ≤ S ≤ S. In this case, it must be considered S
choice sets to analyze data. Moreover, based on the total number of choice sets (each with J
alternatives), we will face to:

NS =

(
S
S

)
,

where NS denotes the number of classes, which make the designs each with S choice sets. In

this case, we consider S = p, p + 1, . . . ,S, for example, when S = p we will face to

(
S
p

)
designs each with p choice sets (support points) and so on. Corresponding to the information
matrix (it depends on unknown parameters) two cases may be occurred: Firstly, obtaining D-
optimal design for different designs based on the same parameter space. In this case (the same
parameter space) we calculate locally D-optimal design (weight) for each design (the number
of support points are equal) as follow:

Ψ(ξn,β) = det(M(ξn,β)),

where:

ξn =

{
Cn1 Cn2 · · · CnS

wn1 wn2 · · · wnS

}
∈ Ξn;n = 1, 2, . . . , NS, (3.19)

where Ξ =
⋃NS
n=1 Ξn.

Now, if ∃n′ ∈ NS; Ψ(ξn′ ,β) ≥ Ψ(ξn,β) thus ξn′ is the most suitable design with S support
points (choice sets) to fit model. But to compare two designs with different support points
relative efficiency can be used as a measure (Tekle, et al. 2008). In this case, suppose that ξS
and ξp denote two designs with S (S ≥ p) and p support points, respectively. Then the relative
efficiency (RE) of ξS compared to ξp is given by:

RE(ξS, ξp,β) =
p

S

(
det(M(ξS,β))

det(M(ξp,β))

) 1
p

.

The concept of the RE(ξS, ξp) is equal to the relative combination of alternatives in extra choice
sets that must be taken under ξS to obtain the same efficiency as under the ξp. Here, ξp (a design
with the number of support points equal to the number of parameters) is arbitrarily selected as
a reference design to compare with the other designs. In the optimal design subject, a design
with the number of support point equal to the number of parameters is called a saturated
design, however, the saturated design may not always be the optimal design. Secondly, in this
case we do not able to compare two designs with together, because the optimal design will be
obtained based on the partitioned space of parameters. This means that the optimal design for
each design (with equality support points or not equality) can be obtained based on a special
part of parameters space (Example 3.2), for example, when a design with two support points in
a part of parameters space can be optimal, the other designs in the same region of parameters
space can not be optimal.
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Table 3.1: MNL Model: Discrete choice experiment with four choice sets, C1, . . . ,C4 each with

three alternatives (Js = 3; ∀s ∈ S), there are two attributes each with two levels; ajs denotes

the jth alternative of the choice set Cs

Choice set Alternatives(ajs) Attribute(I) (f1(ajs)) Attribute(II) (f2(ajs))

C4

a14 = ã1

a24 = ã2

a34 = ã3

+1

+1

−1

+1

−1

+1

C2

a12 = ã1

a22 = ã2

a32 = ã4

+1

+1

−1

+1

−1

−1

C3

a13 = ã1

a23 = ã3

a33 = ã4

+1

−1

−1

+1

+1

−1

C1

a11 = ã2

a21 = ã3

a31 = ã4

+1

−1

−1

−1

+1

−1

Example 3.2. Consider two attributes both of them with two levels, where J =
∏2

k=1 =

L1 × L2 = 2 × 2; C = {ã1, ã2, ã3, ã4}. In this situation, the experiments 2 × 2/3/S has been

considered, this means that there are S choice sets each with three alternatives (Table 3.1),

where 2 ≤ S ≤ 4. Therefore, to obtain local D-optimal design with different support points the

following general design has been considered:

ξ =

{
C1 C2 C3 C4

w1 w2 w3 w4

}
∈ Ξ.

The information matrix of above design is calculated by: M(ξ,β) =
∑4

s=1ws ·M(Cs,β),
where Cs; s = 1, 2, 3, 4 denote the choice sets with three alternatives. With regards to the
definition (3.14) to obtain the information matrix of the choice set Cs, will be (Table 3.1):

M(C1,β) =

[
4(γ11 + γ21) −4γ11

−4γ11 4(γ11 + γ31)

]
, M(C2,β) =

[
4(γ22 + γ32) 4γ22

4γ22 4(γ12 + γ22)

]

M(C3,β) =

[
4(γ13 + γ23) 4γ23

4γ23 4(γ23 + γ33)

]
, M(C4,β) =

[
4(γ24 + γ34) −4γ34

−4γ34 4(γ14 + γ34)

]
,

where:
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Figure 3.3: MNL Model: Partition of the (β1, β2)-plane into regions, where different type

designs are optimal
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• β = (β1,β2)T ; β = (β1, β2)T , where (w.r.t effect type codding):

• β1 = (β1,1, β1,2)T ; β1,2 = −β1,1, β1,1 = β1,

• β2 = (β2,1, β2,2)T ; β2,2 = −β2,1, β2,1 = β2,

• γ1s = p1s · p2s, γ2s = p1s · p3s and γ3s = p2s · p3s;

• pjs =
exp(fT (ajs)β)∑3
j′=1 exp(fT (aj′s)β)

and the choice sets Cs; s = 1, 2, 3, 4 include the design matrix corresponding to each choice set
and its alternatives:

FT
s = (f(a1s), f(a2s), f(a3s)); f(ajs) = (f1(ajs), f2(ajs))

T ; j = 1, 2, 3.

For every design ξ, the determinant of M(ξ,β) becomes:

det(M(ξ,β)) =
∑3

m=1

∑4
n=m+1 bmnwmwn +

∑4
m=1 bmmw

2
m,

where:

b11 =16(γ11(γ21 + γ31) + γ21γ31),

b22 =16(γ12(γ22 + γ32) + γ22γ32),

b33 =16(γ13(γ23 + γ33) + γ23γ33),

b44 =16(γ14(γ24 + γ34) + γ24γ34),

b12 =16[(γ11 + γ21)(γ12 + γ22) + (γ11 + γ31)(γ22 + γ32) + 2γ11γ22],

b13 =16[(γ11 + γ31)(γ13 + γ23) + (γ11 + γ21)(γ23 + γ33) + 2γ11γ23],

b14 =16[γ11(γ14 + γ24) + γ21(γ14 + γ34) + γ31(γ24 + γ34)],

b23 =16[γ12(γ13 + γ23) + γ22(γ13 + γ33) + γ32(γ23 + γ33)],

b24 =16[(γ12 + γ22)(γ24 + γ34) + (γ22 + γ32)(γ14 + γ34) + 2γ22γ34],

b34 =16[(γ13 + γ23)(γ14 + γ34) + (γ23 + γ33)(γ24 + γ34) + 2γ23γ34].

To obtain a local D-optimality design for β the maximization problem max det(I(ξ,β)) must
be solved. In this situation, we consider the following function:

G(λ0, λs, w) =det(M(ξ,β)) +
∑4

s=1 λsws − λ0(
∑4

s=1ws − 1),

64



3.7 Optimal Design for Logit Models

where
∑4

s=1 λsws = 0; λs ≥ 0, ws ≥ 0∀s = 1, 2, 3, 4) and
∑4

s=1 ws = 1.
Now, corresponding to the existence of multipliers (λs, λ0) and two above restrictions, we

consider the following first order conditions to obtain local D-optimality design:

b12w2 + b13w3 + b14w4 + 2b11w1 + λ1 = λ0,

b12w1 + b23w3 + b24w4 + 2b22w2 + λ2 = λ0,

b13w1 + b23w2 + b34w4 + 2b33w3 + λ3 = λ0,

b14w1 + b24w2 + b34w3 + 2b44w4 + λ4 = λ0,∑4
s=1 λsws = 0,∑4
s=1 ws = 1.

For the case that λ` = λm = 0, λn > 0, λr > 0, we obtain w∗n = w∗r = 0 and:

• w∗` = b`m−2bmm
2(b`m−b``−bmm)

,

• w∗m = b`m−2b``
2(b`m−b``−bmm)

,

• λ0 =
b2`m−4b``bmm

2(b`m−b``−bmm)
; bij = bji; i, j ∈ {1, 2, 3, 4}.

According to λn > 0, λr > 0 two conditions:

1. (b2
`m − 4b``bmm) > b`n(b`m − 2bmm) + bmn(b`m − 2b``),

2. (b2
`m − 4b``bmm) > b`r(b`m − 2bmm) + bmr(b`m − 2b``)

must be held. By comparing two quantities in the right of two above inequality, we can consider
one of them instead of both of them.

For the case that λ` = λm = λn = 0, λr > 0 (w∗r = 0), we obtain w∗` = Q`
Q

, w∗m = Qm
Q

,

w∗n = Qn
Q

and λ0 = Q0

Q
. In this situation Q0 is always positive (Q0 > 0). Thus with respect to

assumptions λ0 > 0 and λr > 0 the following conditions must be held:

1. Q > 0, Q` > 0, Qm > 0, Qn > 0,

2. Q0 − (bnrQn + bmrQm + b`rQ`) > 0,

where:

Q =4(b``bmm + b``bnn + bmmbnn)− 4(b``bmn + bmmb`n + bnnb`m)− (b`m − b`n − bmn)2 + 4b`nbmn,

Q0 =8b``bmmbnn + 2b`mb`nbmn − 2(b``b
2
mn + bmmb

2
`n + bnnb

2
`m),

Q` =4bmmbnn − 2(bmmb`n + bnnb`m) + bmn(b`m + b`n)− b2
mn,
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3 OPTIMAL DESIGN

Figure 3.4: MNL Model: Locally D-optimal design; (a); β2 = 0.5 and (b); β2 = −0.5, based on

three-point (ξ`mr) optimal designs (w.r.t Example 3.2) and Figure 3.3)
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Qm =4b``bnn − 2(b``bmn + bnnb`m) + b`n(b`m + bnm)− b2
`n,

Qn =4b``bmm − 2(b``bnm + bmmb`n) + b`m(b`n + bmn)− b2
`m.

Figure 3.3 denotes the contours which separate parameter regions for optimal two-and three-
point designs. In this Figure 3.3, regions were marked by ξ`m denote that two-point designs
are optimal. Also, for parameter setting in regions marked by ξ`mn three-point designs are
optimal. It can be seen that the regions which two-point designs are locally D-optimal do not
have common regions, means that, there are regions for three-points designs between them.

Specially, let β2 = 0. In this situation we can find optimal design to estimate parameters
based on four two-point designs ξ12, ξ13, ξ24 and ξ34 as follow:

• For 0.0 < β1 ≤ 0.5:

w∗1 = w∗3 = 0.5, w∗2 = w∗4 = 0.0,

• For −0.5 ≤ β1 < 0.0:

w∗1 = w∗3 = 0.0, w∗2 = w∗4 = 0.5

• For β1 = 0.0:

w∗1 = w∗2 = w∗3 = w∗4 = 0.25.

In particular, let β2 = 0.5. We investigate this particulate case in order to denote locally
D-optimal solutions which are dependent on parameter β1. In this situation we consider two
three-point designs ξ123 and ξ124, where their optimal design conditions in interval (0, 0.82)
(w.r.t, ξ123) and (−0.82, 0) (w.r.t, ξ124) for parameter β1 are hold (Figure 3.3). By Figure 3.4
we have similar situation for two optimal designs. For example, w∗1 and w∗2 tend to 1

2
when β1

tends to zero (both from right and left) while w∗3 and w∗4 tend to zero (Figure 3.4 (a)). This
means that the optimal design ignores choice set C3 for low values (close to zero from right)
of β1 (with respect to design ξ123) and don’t use of choice set C4 to fit model (with respect
to design ξ124) when β1 tends to zero from left. By Figure 3.4(a) has been showed that the
optimal weight for choice set C1 increases as β1 increases and it is always greater than the two
others. In interval (0, 0.25), w∗2 decreases and w∗3 increases as β1 increases, but, the optimal
weight for choice set C2 is greater than the optimal wight of choice set C3. Also, it is seen that
at two points β1 = 0.24, 0.5 the two optimal weights w∗2 and w∗3 are equal and for β1 > 0.5, w∗2
is greater than the optimal weight for choice set C3. Based on design ξ124, there exist similar
description about the optimal weights for choice sets C1, C2 and C4 (Figure 3.4 (a)).

To discuss about β2 = −0.5 and β1 ∈ (−0.82, 0.82) we consider two three-point designs ξ134

and ξ234 to obtain the optimal design (Figures 3.4(b)).

In the other hand, let β2 = 0 again. In this case, the equations p12 = p14 = p22 = p24,
p11 = p13, p21 = p23, p11 = 1 − 2p21 will be held, where pjs is the choice probability related
to choosing alternative j from choice set s, so that γ12 = γ14, γ22 = γ32 = γ24 = γ34 and
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γ11 = γ13, γ21 = γ23, γ31 = γ33. Due to symmetry considerations we can derive an optimal
solution with wights w1 = w3 and w2 = w4, where w2 = 1

2
− w1, thus:

ξ =

{
C1 C2 C3 C4

w1
1
2
− w1 w1

1
2
− w1

}
∈ Ξ.

In this situation, the determinate of the the information matrix of the above design is calculated
by:

det(M(ξ,β)) = 16 (−w1 · p11 + 2 · p12 · w1 + w1 · p11
2 − 4 · w1 · p12

2 − p12 + 2 · p12
2)×

(−w1 + 4 · p12 · w1 + w1 · p11
2 − 4 · w1 · p12

2 − 2 · p12 + 2 · p12
2) ,

where:

w∗1 =
1

2
· (−4 · p12 · p11 + 3 · p11 − 8 · p12 + 1 + 8 · p12

2) p12

p11
3 − 2 · p12 · p11

2 + 4 · p12 · p11 − p11 − 4 · p12
2 · p11 − 8 · p12

2 + 2 · p12 + 8 · p12
3

maximizes Ψ(ξ,β) = det(M(ξ,β)). In this result, w∗1 can be written according to p11 =
exp(β1)

2·exp(−β1)+exp(β1)
and p12 = exp(β1)

exp(−β1)+2·exp(β1)
as follow:

w∗1 =
1

12
· (2 · exp (2 · β1) + 2− exp (−2 · β1)) (2 · exp (−β1) + exp (β1))2

exp (4 · β1) + exp (2 · β1)− exp (−4 · β1)− exp (−2 · β1)
.

Hence, when β1 ∈ (−∞,−0.503]
⋃

[0.503,+∞) the condition 0 ≤ w∗1 ≤ 1
2

holds. In this
situation, w∗1 decreases as β1 increases in each of these segments. It has been seen that w∗1 = 0
for β1 ∈ (−0.503, 0) and w∗1 = 1

2
for β1 ∈ (0, 0.503).

In Example 3.2, we introduced a MNL model with two attributes each with two levels. To
estimate parameters four choice sets has been considered, which each include three alternatives.
In the other case, we can consider six choice sets each with two alternatives to fit model (See
Table 3.2).

G-Optimality Criterion:

Based on Theorem 3.2 the G-optimality criterion for Example 3.2 can be defined as follow:

tr(M(Cs,β)M−1(ξ∗`m,β)), tr(M(Cs,β)M−1(ξ∗`mn,β)).

The above criteria for two-point (denoted by ξ`m) and three-point design (denoted by ξ`mn) has
been defined, for example, based on the two-point design ξ12 we will have:

tr(M(Cs,β)M−1(ξ∗12,β)) = 2; s = 1, 2.

Thus it can be told, C1 and C2 in design ξ12 are support points. Also, for three-point design
ξ123 it has been calculated:

tr(M(C`,β)M−1(ξ∗123,β)) = 2; ` = 1, 2

and with this order we can calculate the G-optimality criterion for the other choice sets and
the other designs, also.
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Table 3.2: MNL model with two attributes each with two levels: Locally D-optimal design based on experi-

ments 2× 2/3/4 (Ψ1(ξ1,β), Four choice sets each with three alternatives) and 2× 2/2/6 (Ψ2(ξ2,β), Six choice

stes each with two alternatives) and locally D-optimal criterion Ψr(ξr,β) = (det M(ξr,β))−1; r=1,2
β1 β2 w∗1 w∗2 w∗3 w∗4 Ψ1(ξ∗1 ,β0) w

′∗
1 w

′∗
2 w

′∗
3 w

′∗
4 w

′∗
5 w

′∗
6 Ψ2(ξ∗2 ,β0)

-1 .627 .000 .000 .373 1.939 .140 .140 .000 .440 .140 .140 2.920
-.8 .601 .000 .000 .399 1.835 .202 .074 .000 .449 .074 .202 2.691
-.1 .425 .102 .473 .000 1.770 .072 .000 .414 .441 .000 .072 2.358

-1 0.0 .268 .268 .232 .232 1.788 .069 .000 .431 .431 .000 .069 2.350
.4 .000 .573 .000 .427 1.725 .131 .000 .459 .278 .000 .131 2.458
1 .000 .627 .373 .000 1.939 .140 .140 .441 .000 .140 .140 2.920
-1 .665 .335 .000 .000 1.790 .050 .220 .000 .460 .220 .050 2.608
-.8 .660 .249 .091 .000 1.611 .000 .034 .442 .490 .034 .000 2.361
-.1 .465 .232 .303 .000 1.400 .000 .000 .500 .500 .000 .000 1.585

-.7 0.0 .368 .368 .132 .132 1.410 .000 .000 .500 .500 .000 .000 1.575
.4 .099 .579 .000 .322 1.411 .000 .000 .500 .500 .000 .000 1.744
1 .335 .665 .000 .000 1.790 .050 .220 .460 .000 .220 .050 2.608
-1 .268 .232 .268 .232 1.788 .000 .069 .431 .431 .069 .000 2.350
-.8 .326 .174 .326 .174 1.519 .000 .000 .500 .500 .000 .000 1.789
-.1 .500 .000 .500 .000 1.114 .000 .000 .500 .500 .000 .000 1.010

0.0 0.0 .250 .250 .250 .250 1.125 .000 .000 .500 .500 .000 .000 1.000
.4 .000 .500 .000 .500 1.178 .000 .000 .500 .500 .000 .000 1.169
1 .232 .268 .232 .268 1.788 .000 .069 .431 .431 .069 .000 2.350
-1 .000 .000 .573 .427 1.725 .000 .131 .459 .278 .131 .000 2.458
-.8 .032 .000 .587 .381 1.500 .000 .000 .500 .500 .000 .000 1.957
-.1 .041 .000 .520 .439 1.182 .000 .000 .500 .500 .000 .000 1.179

.4 0.0 .000 .000 .500 .500 1.178 .000 .000 .500 .500 .000 .000 1.169
.4 .000 .221 .221 .557 1.234 .000 .000 .500 .500 .000 .000 1.337
1 .000 .000 .427 .573 1.725 .000 .131 .278 .459 .131 .000 2.458
-1 .000 .373 .627 .000 1.939 .140 .140 .440 .000 .140 .140 2.920
-.8 .000 .399 .601 .000 1.835 .202 .074 .450 .000 .074 .202 2.691
-.1 .473 .000 .425 .102 1.770 .073 .000 .441 .414 .000 .073 2.358

1 0.0 .232 .232 .268 .268 1.788 .069 .000 .431 .431 .000 .069 2.350
.4 .000 .427 .000 .573 1.725 .131 .000 .278 .459 .000 .131 2.458
1 .373 .000 .000 .627 1.939 .140 .140 .000 .441 .140 .140 2.920
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3.7.2 Maximin Efficient Designs

We know that a design, ξ, will be called locally Ψ-optimal if it maximizes Ψ(M(ξ,β)) for a
given β. (Melas 2006) has written that a design will be called maximin efficient Ψ-optimal if
it maximizes:

effβ(ξ) = inf
β

(
Ψ(M(ξ,β))

Ψ(M(ξ∗,β))

) 1
p

,

where β is a given set of possible values of the vector parameter, p is the number of parameters
and Ψ(M(ξ,β)) = det(M(ξ,β)). effβ(ξ) is the efficiency of the design ξ with respect to a

locally Ψ-optimal design for a least favorable value of β in parameter space. In this case,
maximin efficient means that how many more experiments will be needed under the design ξ
with respect to an ideal design to achieve the same accuracy of estimating in the worst case.
Therefore, maximin efficient designs can be considered to obtain optimal design equally well
for all possible parameter values.

Now, for our Example 3.2 we can rewrite effβ(ξ) as follow,

eff2(ξ,β) ≤ det(M(ξ,β))

det(M(ξ∗,β))
,

where (Example 3.2):

ξ =

{
C1 C2 C3 C4

w1 w2 w3 w4

}
∈ Ξ.

Based on two-point optimal designs ξ∗12 we have:

det(M(ξ∗12,β)) =
b12(b12 − 2b22)(b12 − 2b11) + b11(b12 − 2b22)2 + b22(b12 − 2b11)2

4(b12 − b11 − b22)2
.

In this case, let β2 = 0 and β1 tends to minus infinity, hence,

inf
β

eff2(ξ;β) ≤ 3

4
(w1 + w3)2 + 3(w1w2 + w1w4 + w2w3 + w3w4). (3.20)

Similarity we can obtain previous inequality for two-points optimal designs ξ∗14, ξ∗23 and ξ∗34, too.
Thus the right sid of previous inequality is maximized for w1 = 1

3
, w2 = 1

6
, w3 = 1

3
and w4 = 1

6
.

Since the optimal weights satisfy w∗` ≤ 1

dimβ
= 1

2
, equality is achieved (Kiefer and Wolfowitz

1959) and infβ eff2(ξ;β) = 1. Then, design ξ on all four points C1, C2, C3 and C4 with wights

w1 = 1
3
, w2 = 1

6
, w3 = 1

3
and w4 = 1

6
is maximin efficient.

Now, let β2 = 0 but β1 tends to plus infinity. In this case, with respect to four two-points
optimal design ξ∗12, ξ∗14, ξ∗23 and ξ∗34 we have:

inf
β

eff2(ξ,β) ≤ 3

4
(w2 + w4)2 + 3(w1w2 + w1w4 + w2w3 + w3w4). (3.21)
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In this case, the right side of previous inequality is maximized for w1 = 1
6
, w2 = 1

3
, w3 = 1

6
and

w4 = 1
3
.

Consequently, let β2 = 0 and β1 tends to infinity (minus and plus). Thus, according to
Equations (3.20) and (3.21) we will have:

inf
β

eff2(ξ,β) ≤ 3

4
min

(
(w2 + w4)2, (w1 + w3)2

)
+ 3(w1w2 + w1w4 + w2w3 + w3w4). (3.22)

The right side of Equation (3.22) is maximized when w1 = w2 = w3 = w4 = 1
4
, where

infβ eff2(ξ,β) = 0.9375.

In continuation, we can obtain maximin efficient for the vice versa of previous case. Then
let β1 = 0 and β2 tends to minus infinity. In this case and based on four two-points optimal
designs ξ∗13, ξ∗14, ξ∗23 and ξ∗24 we will have:

inf
β

eff2(ξ,β) ≤ 3

4
(w1 + w2)2 + 3(w1w3 + w1w4 + w2w3 + w2w4) (3.23)

and the right hand side is maximized for w1 = w2 = 1
3

and w3 = w4 = 1
6
, and based on these

optimal weights equality is achieved, infβ eff2(ξ,β) = 1.

Now, let β1 = 0 and β2 tends to plus infinity. Similarity:

inf
β

eff2(ξ,β) ≤ 3

4
(w3 + w4)2 + 3(w1w3 + w1w4 + w2w3 + w2w4) (3.24)

with respect to four two-points designs ξ∗13, ξ∗14, ξ∗23 and ξ∗24. According to weights w1 = w2 = 1
6

and w3 = w4 = 1
3
, the right side of previous inequality will be maximized, infβ eff2(ξ;β) = 1.

According to Equations (3.23) and (3.24), we consider β1 = 0 and β2 tends to infinity. In
this situation, we will have:

inf
β

eff2(ξ,β) ≤ 3

4
min

(
(w3 + w4)2, (w1 + w2)2

)
+ 3(w1w3 + w1w4 + w2w3 + w2w4). (3.25)

The right side of Equation (3.25) will be maximized when w1 = w2 = w3 = w4 = 1
4
, where

infβ eff2(ξ,β) = 0.9375.

In total, based on Equations (3.22) and (3.25) the following inequality can be considered:

inf
β

eff2(ξ,β) ≤ 3
4

min
(
(w1 + w3)2, (w2 + w4)2, (w1 + w2)2, (w3 + w4)2

)
+3 min((w1w2 + w1w4 + w2w3 + w3w4), (w1w3 + w1w4 + w2w3 + w2w4)),

The previous inequality will be changed to equality, because of w∗s ≤ 1
2
, means that:

inf
β

eff2(ξ,β) =
3
4

min
(
(w1 + w3)2, (w2 + w4)2, (w1 + w2)2, (w3 + w4)2

)
+3 min((w1w2 + w1w4 + w2w3 + w3w4), (w1w3 + w1w4 + w2w3 + w2w4)),

for any design ξ. The uniform four point design ξ̄ with w∗1 = w∗2 = w∗3 = w∗4 = 1
4

maximizes
infβ eff2(ξ,β) with eff(ξ̄,β) = 0.9682 and is, hence, maximin efficient.
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3.7.3 Invariance

Based on linear model Y (x) = fT (x)β + ε (E(Y |x) = FTβ), where ε are homoscedastic with
var(ε) = σ2, E(ε) = 0 (uncorrelated) and according to the following design:

ξ =

{
x1 x2 · · · xp
w1 w2 · · · wp

}
the information matrix is calculated by M(ξ) =

∑p
i=1 wif(xi)f

T (xi). With regards to the
definition of the local D-optimality criterion, means that Ψ(M(ξ)) = − ln(det(M(ξ))), consider
the following definitions (Schwabe 1996);

1. i) A one-to-one mapping g : X → X is called a transformation of the design region X .

ii) A transformation g of X induces a linear transformation of the regression function
F : X → <p if there exists a p × p-matrix Qg with F(g(x)) = QgF(x);∀x ∈ X where
F(x) = (f(x1), . . . , f(xn))T .

2. A group G of transformations of X induces linear transformation of the regression function
F : X → <p if every g ∈ G induces a linear transformation of F.

3. A deign ξ is invariant with respect to G if ξg = ξ; ∀g ∈ G.

4. A design ξ is information invariant with respect to G and the linear regression function
F, if ∃Qg ∈ <p×p; QgM(ξ)QT

g = M(ξ);∀g ∈ G

5. For every design ξ the symmetrization ξ̄ = 1
|G|
∑

g∈G ξ
g is a design (the summarized design

of ξ with respect to G). Moreover, every symmetrized design ξ̄ is invariant. Hence, a
design ξ coincides with its symmetrization ξ̄ if ξ is invariant. Also, if Ψ : Ξ→ < is convex
and invariant with respect to G, then Ψ(ξ̄) ≤ Ψ(ξ);∀ξ ∈ Ξ. The concept of invariant
is helpful if the transformations do not affect the value of the criterion function under
consideration.

6. A criterion function Ψ : Ξ → < is invariant with respect to G if Ψ(ξg) = Ψ(ξ);∀ξ ∈
Ξ,∀g ∈ G

7. i) A group G is orthogonal for F if ∀g ∈ G the transformation matrix Qg is orthogonal
i.e QT

g = Q−1
g .

ii) A group G is uni-modal for F if ∀g ∈ G the transformation matrix Qg is uni-modal i.e
det(Qg) = 1.

iii) If G is orthogonal for F , then G is also uni-modal.

8. If Ξ′ ⊂ Ξ is a class of invariant design, means that Ξ′ = {ξ′|ξ′ = ξ
′g,∀g ∈ G} and

there exists an invariant design in Ξ′ as ξ
′∗ such that Ψ(ξ

′∗) ≤ Ψ(ξ
′
),∀ξ′ ∈ Ξ′ then

Ψ(ξ
′∗) ≤ Ψ(ξ),∀ξ ∈ Ξ.
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Now, suppose that G is a group of transformations g : X → X (one-to-one), then g is linear
transformation with respect to f(x) if:

∃Q′g ∈ <1×p;∀x ∈ X , f(g(x)) = Q′gf(x).

We define the following design (by noting to group transformation):

ξg =

{
g(x1) g(x2) · · · g(xp)
w1 w2 · · · wp

}
with information matrix:

M(ξg) =

p∑
i=1

wif(g(xi))f
T (g(xi))

=

p∑
i=1

wiQ
′
gf(xi)f

T (xi)Q
′T
g

= QgM(ξ)QT
g .

In hence, Ψ is linear invariant for g (and f) if (Schwabe 1996)

Ψ(M(ξg)) = Ψ(M(ξ)).

Invariance D-Optimal Criterion for MNL Model

ObtainingD-optimal design for estimating parameters, a random sample with J size are selected

from a papulation with J alternatives (Subsection 3.7.1). In this situation

(
J
J

)
= S choice

sets each with J alternatives are considered. Now, based on experiments J /J/S (based on
p ≤ S ≤ S choice sets each with J alternatives) the following design is defined (Equation
(3.15)):

ξ =

{
C1 C2 · · · CS

w1 w2 · · · wS

}
∈ Ξ,

where choice set Cs includes the characterizes of K attributes as follow (Subsection 3.7.1):

Fs =


fT1 (a1s) fT2 (a1s) · · · fTK(a1s)
fT1 (a2s) fT2 (a2s) · · · fTK(a2s)

...
...

. . .
...

fT1 (aJs) fT2 (aJs) · · · fTK(aJs)

 , fk(ajs) =


fk1(ajs)
fk2(ajs)

...
fkLk−1(ajs)

 , fk`(ajs) ∈ {−1, 0, 1}.

As previously stated, the information matrix corresponding to the design ξ (the MNL model)
has been calculated by:

M(ξ) =
S∑
s=1

ws · FT
s DsFs,

73



3 OPTIMAL DESIGN

where Ds = Ps − psp
T
s (Equation (3.14)).

Suppose that G is a group of transformations, where g : X → X (one-to-one). According to
this transformation group (G), the following design is considered:

ξg =

{
g(F1) g(F2) · · · g(FS)
w1 w2 · · · wS

}
∈ Ξg.

The information matrix of design ξg is calculated by (Let g(Xs) = Xg
s):

M(ξg) =
S∑
s=1

ws · FgT
s Dg

sF
g
s,

where gk : fTk (ajs) → gk(f
T
k (ajs)); k = 1, 2, . . . , K (gk induced by permutation of levels of an

attribute), Dg
s = Pg

s − pgsp
gT
s and :

Xg
s = g(Xs) =


g1(fT1 (a1s)) g2(fT2 (a1s)) · · · gK(fTK(a1s))
g1(fT1 (a2s)) g2(fT2 (a2s)) · · · gK(fTK(a2s))

...
...

. . .
...

g1(fxT1 (aJs)) g2(fT2 (aJs)) · · · gK(fTK(aJs))


is the design matrix of choice set Cg

s. Now, if:

∃Qk ∈ <(Lk−1)×(Lk−1); Qk,gk = fTk (ajs)Q
T
k ,∀fk(ajs)

then it can be written:

QgFT
s =


Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · QK




f1(a1s) f1(a2s) · · · f1(aJs)
f2(a1s) f2(a2s) · · · f2(aJs)

...
...

. . .
...

fK(a1s) fK(a2s) · · · fK(aJs)

 ,

for example, Qk which depends on grope G may be a permutation matrix.
Consequently, if ∃Qg ∈ <p×p;∀Fs ∈ X ; FgT

s = QgFT
s ; s = 1, 2, . . . , S, then:

M(ξg) =
S∑
s=1

ws · FgT
s Dg

sF
g
s

=
S∑
s=1

ws ·QgFT
s D

g
sFsQ

Tg

= Qg

(
S∑
s=1

ws · FT
s D

g
sFs

)
QTg.
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Now, if β = 0 then:

Dg
s = Ds

=

(
1

J
· IJ −

1

J2
· 1J1TJ

)
; ∀s = 1, 2, . . . , S.

In this situation, we will have:

M(ξg) = Qg

(
S∑
s=1

ws · FT
s DsFs

)
QTg

= QgM(ξ)QTg,

where
∑S

s=1ws · FT
s DsFs = M(ξ). According to the definition of the D-optimality criterion,

Ψ(M(ξ)) = − ln (det(M(ξ))), it can be told that Ψ is linear invariant for g ( and X), if
Ψ(M(ξg)) = Ψ(M(ξ)). In this case, we will have:

Ψ(M(ξg)) = − ln (det(M(ξg)))

= − ln
(
det(QgM(ξ)QTg)

)
= −2 ln (det(Qg))− ln (det(M(ξ))) .

In this result,| det(Qg)| = 1 (uni-modal) then Ψ(M(ξg)) = Ψ(M(ξ)).
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4 OPTIMAL DESIGN IN TWO-LEVEL NMNL

MODELS

Conjoint analysis or more precisely, discrete choice experiments are widely used in marketing
to measure how the attributes of a product or service jointly affect consumer preferences.

In a choice experiment, a product or service is characterized by a profile or an alternative
which is combination of different attribute levels and respondents are asked to choose one of
these profiles from the choice set. This task is repeated several times for different choice sets.

The set of choice sets presented constitute the experimental design. The aim of a choice
experiment is to estimate the importance of each attribute and its levels based on the respon-
dent’s preferences. The estimates are then used to mimic real marketplace decisions by making
predictions about consumers’future purchasing behavior.

Designing an efficient choice experiment involves selecting those choice sets which result most
precise predictions in accurately estimated models.

Because conjoint choice experiments have become preferred tools for the collection of infor-
mation on consumers’ preference structures (Louviere and Woodworth 1983), the question of
how to improve the design of such experiments is of growing importance. More recently, there
is some progress in choice experiments that improve the efficiency of designs (see ( Burgess and
Street 2003); (Huber and Zwerina 1996); (Sandor and Wedel 2001), (Sandor and Wedel 2002);
besides others).

(Sandor and Wedel 2005) showed that the construction of heterogeneous designs is preferable,
because they produce more accurate estimates of conjoint choice parameters. Heterogeneous
designs consist of several sub-designs that are offered to different consumers and can be con-
structed with relative ease for a wide range of conjoint analysis models.

The chapter is organized as follows. Section 4.1, discusses the model specifications of nested
multinomial logit (NMNL) models which has been discussed in subsection 2.2.1 previously.
Section 4.2 presents the D-optimality criterion for two-level NMNL models (with M nests).

4.1 Model Specifications

The simplest model in conjoint analysis is called Multinomial Logit model (MNL, Section 3.7).
We will take a sample of I consumers with the choice of J discrete alternatives in C choice
sets, each of them with Jc (Jc > 1;∀c ∈ C) alternatives (Section 2.1). The MNL model has the
property that pjc (2.9)) is Independence from Irrelevant Alternative(IIA) (Subsection 2.1.3).
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4 OPTIMAL DESIGN IN TWO-LEVEL NMNL MODELS

In this situation, to define a design and obtain optimal design we consider some experiments
which consist S ⊂ C choice sets each with Js = J ; ∀s ∈ S alternatives (Section 3.7).

As stated previously told, the MNL model has a restriction which is called IIA. The most
widely used relaxation of the independence assumption is the nested multinomial Logit (NMNL)
model (McFadden 1978a), (Williams 1977) and (Daly and Zachary 1978). A NMNL model
is appropriate when the set of alternatives faced by a decision maker can be partitioned into
subsets, called nests, in such a way that the following properties hold:

• For any two alternatives that are in the same nest, the ratio of probabilities (
P (Yj|mc=1)

P (Yj′|mc=1)

; j, j′ ∈ Cmc) is independent of the attributes or existence of all other alternatives where
Cm is the set of alternatives in nest m. That is, IIA holds within each nest.

• For any two alternatives in different nests, the ratio of probabilities (
P (Yj|mc=1)

P (Yj′|m′c=1)
; j ∈

Cmc, j
′ ∈ Cm′c) can depend on the attributes of other alternatives in the two nests. IIA

does not hold in general for alternatives in different nests.

• For any two nests, the ratio of probabilities ( P (Ymc=1)
P (Ym′c=1)

;m 6= m′) is independent of the

attributes of all other nests. Then a form of IIA holds, therefore, even for alternatives in
different nests. This form of IIA can be loosely described as ” independent from irrelevant
nest” or IIN. Thus, with a nested logit model, IIA holds over alternatives in each nest
and IIN holds over alternatives in different nests.

As stated (Subsection 2.2.1) in the NMNL model, all possible alternatives (J =
∏K

k=1 Lk)
are divided into groups which are called nests (m = 1, 2, . . . ,M), dividing these alternatives
into nests depends upon dissimilarly parameters, λ = (λ1, . . . , λm, . . . , λM)T (M -dimensional
vector) and part-worth parameter, β (p-dimensional vector, where p=

∑K
k=1(Lk − 1), Section

2.1). In this case, we are considering the utility Ujmc = Umc + Uj|mc (Uj|mc = vj|mc + εj|mc and
Umc = vmc+εmc, Subsection 2.2.1) related to choosing the alternative j in nest m (Train 2003),
where εj|mc and εmc are independent and they have EVD.

4.2 Information Matrix for The NMNL Model

For the NMNL model, the local information matrix at θ = (β,λ)T of the choice set Cs, (for one
individual) is calculated by (Considering S choice sets each with Js;∀s ∈ S ⊂ C alternatives):

I(Cs,θ) = −E
(
∂2`(Cs,θ)

∂θ∂θT

)
=

(
Iβ Iβλ
ITβλ Iλ

)
, (4.1)

where

`(Cs,θ) =
M∑
m=

Jms∑
j=1

yjms ln(pjms)
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Figure 4.1: (a):The NMNL Model with M nests each with Jms alternatives (w.r.t Choice Set

Cs) and (b): when M = 2 (Lemma 4.1)

is the log-likelihood function for a nested MNL model with M nests and Jms is the number of
alternatives in nest m of choice set s (Figure 4.1(a)) such that Cs =

⋃S
s=1 Cms,

Cms = {a1ms, . . . , ajms, . . . , aJmsms},

where ajms denotes the jth alternative of the mth nest. Based on the choice probability (2.18)
(for choice set Cs and one individual) we will have:

`(Cs,θ) =
M∑
m=1

Jms∑
j=1

yjms

 fT (ajms)β
λm

+ (λm − 1) ln

(
Jms∑
l=1

exp
(

fT (ajms)β
λm

))
− ln

M∑
n=1

(
Jns∑
l=1

exp(
fT (ajns)β

λn
)

)λn .
As we know that to obtain the elements of the information matrix we must first calculate the

partial derivatives of degree two of the likelihood function, which are calculated as follow;

∂2`(Cs,θ)

∂βh∂βh′
=

M∑
m=1

yms(λm − 1)− λmpms
λ2
m

Jms∑
j=1

fh(ajms)pj|msfh′ (ajms)

−
Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′ (ajms)pj|ms


+

 M∑
m=1

pms(

Jms∑
j=1

fh(ajms)pj|ms)

 M∑
m=1

pms(

Jms∑
j=1

fh′ (ajms)pj|ms)

− M∑
m=1

pms

Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′ (ajms)pj|ms

 ,

∂2`(Cs,θ)

∂βh∂λm
=

Jms∑
j=1

fh(ajms)(ymspj|ms − yjms)
λ2
m

−
βh(yms(λm − 1) + λmpms)

λ3
m

Jms∑
j=1

f2
h(ajms)pj|ms − (

Jms∑
j=1

fh(ajms)pj|ms)
2


−pms

 M∑
n=1

pns(

Jns∑
j=1

fh(ajns)pj|ns)−
Jms∑
j=1

fh(ajms)pj|ms

×
 βh

λm

Jms∑
j=1

fh(ajms)pj|ms − ln

Jms∑
j=1

exp

(
fT (ajms)β

λm

) ,

∂2`(Cs,θ)

∂λ2
m

=
yms(λm − 1)− λmpms

λ4
m

βT

Jms∑
j=1

f(ajms)pj|msf
T (ajms)− (

Jms∑
j=1

f(ajms)pj|ms)(

Jms∑
j=1

pj|msf
T (ajms))

β

−pms(1− pms)

ln

Jms∑
j=1

exp

(
fT (ajms)β

λm

)− 1

λm
βT

Jms∑
j=1

f(ajms)pj|ms

2

+
2βT

λ3
m

Jms∑
j=1

fT (ajms)(yjms − ymspj|ms)
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∂2`(Cs,θ)

∂λm∂λm′
=

pmspm′s
λmλm′

λm ln

Jms∑
j=1

exp

(
fT (ajms)β

λm

)− βT
Jms∑
j=1

f(ajms)pj|ms


×

λm′ ln
Jm′s∑
j=1

exp

(
fT (ajm′s)β

λm

)−
Jm′s∑
j=1

pj|msf
T (ajms)

β

 ; m 6= m′,

where Yjms = Yj|ms × Yms (Subsection 2.2.1) with
∑Jms

j=1 yj|ms = 1 and
∑M

m=1 yms = 1. The

elements of information matrix, I(Cs,θ) are obtained by −E(∂
2`(Cs,θ)
∂θ∂θT

), where θ = (β,λ)T ;

• β = (β1, . . . ,βk, . . . ,βK)T ; βk = (βk,1, . . . , βk,`, . . . , βk,Lk−1)T

and for simplicity we suppose that β1,1 = β1, . . . , βK,LK−1 = βp (p =
∑K

k=1 Lk − 1) then we can
rewrite:

β = (β1, . . . , βh, . . . , βp)
T .

Corresponding to the part-worth parameters vector, β, we denote the design matrix for alter-
native j by:

• f(ajms) = (f1(ajms), . . . , fk(ajms), . . . , fK(ajms))
T ;

fk(ajms) = (fk1(ajms), . . . , fk`(ajms), . . . , fkLk−1(ajms))
T .

Now, let us consider f11(ajms) = f1(ajms), . . . , fKLK−1(ajms) = fp(ajms), thus we can write:

f(ajms) = (f1(ajms), . . . , fh(ajms), . . . , fp(ajms))
T

. In this situation based on dissimilarity parameters vector λ = (λ1, . . . , λm, . . . λM)T , the full
parameters vector is

θ = (β1, . . . , βh, . . . , βp, λ1, . . . , λm, . . . , λM)T .

Theorem 4.1. According to Subsection 2.2.1 (E(Yj|ms) = pj|ms, E(Yms) = pms) and with
respect to the partial derivatives of degree two of the likelihood function (previous page), the
elements of information matrix (4.1) are calculated as follow:

Iβ =



Iβ1β1 · · · Iβ1βh
· · · Iβ1βh′

· · · Iβ1βp

.

.

.
.
.
.

.

.

. · · ·
.
.
. · · ·

.

.

.

Iβhβ1
· · · Iβhβh

· · · Iβhβh′
· · · Iβhβp

.

.

. · · ·
.
.
.

.
.
.

.

.

. · · ·
.
.
.

Iβ
h′β1

· · · Iβ
h′βh

· · · Iβ
h′βh′

· · · Iβ
h′βh

.

.

. · · ·
.
.
. · · ·

.

.

. · · ·
.
.
.

Iβpβ1 · · · Iβpβh
· · · Iβpβh′

· · · Iβpβp



; −E
(
∂2`(Cs, θ)

∂βh∂βh′

)
= Iβhβh′

,
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Iλ =



Iλ1λ1 · · · Iλ1λm · · · Iλ1λm′
· · · Iλ1λM

.

.

.
.
. .

.

.

. · · ·
.
.
. · · ·

.

.

.

Iλmλ1 · · · Iλmλm · · · Iλmλm′
· · · IλmλM

.

.

. · · ·
.
.
.

.
. .

.

.

. · · ·
.
.
.

Iλ
m′λ1 · · · Iλ

m′λm
· · · Iλ

m′λm′
· · · Iλ

m′λM
.
.
. · · ·

.

.

. · · ·
.
.
.

. .
.

.

.

.

IλMλ1 · · · IλMλm · · · IλMλ
m′

· · · IλMλM



;−E
(
∂2`(Cs, θ)

∂λm∂λm′

)
= Iλmλm′

,

Iβλ =



Iβ1λ1 · · · Iβ1λm · · · Iβ1λM
.
.
.

. .
.

.

.

. · · ·
.
.
.

Iβhλ1 · · · Iβhλm
· · · IβhλM

.

.

. · · ·
.
.
.

.
.
.

.

.

.

Iβpλ1 · · · Iβpλm · · · IβpλM


;−E

(
∂2`(Cs, θ)

∂βh∂λm

)
= Iβhλm

Proof:

−E
(
∂2`(Cs,θ)

∂βh∂βh′

)
=

M∑
m=1

pms

λ2
m

Jms∑
j=1

fh(ajms)pj|msfh′ (ajms)

−
Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′ (ajms)pj|ms


−

 M∑
m=1

pms

Jms∑
j=1

fh(ajms)pj|ms

 M∑
m=1

pms

Jms∑
j=1

fh′ (ajms)pj|ms


+

M∑
m=1

pms

Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′ (ajms)pj|ms

 .

−E
(
∂2`(Cs,θ)

∂βh∂λm

)
= −

βhpms

λ3
m

Jms∑
j=1

f2
h(ajms)pj|ms −

Jms∑
j=1

fh(ajms)pj|ms

2
+pms

 M∑
n=1

pn

 Jn∑
j=1

fh(ajns)pj|n

− Jms∑
j=1

fh(ajms)pj|ms

 βh

λm

Jms∑
j=1

fh(ajms)pj|ms − ln

Jms∑
j=1

exp

(
fT (ajms)β

λm

) ,

−E
(
∂2`(Cs,θ)

∂λ2
m

)
=
pms

λ4
m

βT

Jms∑
j=1

f(ajms)pj|msf
T (ajms)−

Jms∑
j=1

f(ajms)pj|ms

Jms∑
j=1

pj|msf
T (ajms)

β

+pms(1− pms)

ln

Jms∑
j=1

exp

(
fT (ajms)β

λm

)− 1

λm
βT

Jms∑
j=1

f(ajms)pj|ms

2

,

−E
(
∂2`(Cs,θ)

∂λm∂λm′

)
= −

pmspm′s
λmλm′

λm ln

Jms∑
j=1

exp

(
fT (ajms)β

λm

)− βT
Jms∑
j=1

f(ajms)pj|ms


×

λm′ ln
Jm′s∑
j=1

exp

(
fT (ajm′s)β

λm

)−
Jm′s∑
j=1

pj|m′sf
T (ajm′s)

β

 , m 6= m′.
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Lemma 4.1. As stated previously was told, the NMNL model will be reduced to the MNL

model when λm = 1;∀m = 1, 2, . . . ,M (Subsection 2.2.1). In this situation, according to the

elements of the information matrix (4.1) and Theorem 4.1, the sub-information matrix Iβ =

−E
(
∂2`(Cs,θ)

∂β∂βT

)
will be equal to the information matrix depend on the MNL model (Equation

(3.14)) with the following elements:

Iβhβh′ =

(
J∑
j=1

fh(ajs)pjsfh′(ajs)

)
−

(
J∑
j=1

fh(ajs)pjs

)(
J∑
j=1

fh′(ajs)pjs

)
.

Proof: According to Theorem 4.1 and λm = 1;∀m we will have:

−E
(
∂2`(Cs,θ)

∂βh∂βh′

)
=

M∑
m=1

pms

1

Jms∑
j=1

fh(ajms)pj|msfh′ (ajms)

− M∑
m=1

pms

1

Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′ (ajms)pj|ms


−

 M∑
m=1

Jms∑
j=1

fh(ajms)pj|mspms

 M∑
m=1

Jms∑
j=1

fh′ (ajms)pj|mspms


+

M∑
m=1

pms

Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′ (ajms)pj|ms

 .

In this situation, we can write:

−E
(
∂2`(Cs,θ)
∂βh∂βh′

)
=

M∑
m=1

Jms∑
j=1

fh(ajms)pj|mspmsfh′(ajms)−
M∑
m=1

pms

Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′(ajms)pj|ms


−

 M∑
m=1

Jms∑
j=1

fh(ajms)pj|mspms

 M∑
m=1

Jms∑
j=1

fh′(ajms)pj|mspms


+

M∑
m=1

pms

Jms∑
j=1

fh(ajms)pj|ms

Jms∑
j=1

fh′(ajms)pj|ms

 .

Then:

−E
(
∂2`(Cs,θ)
∂βh∂βh′

)
=

M∑
m=1

Jms∑
j=1

fh(ajms)pj|mspmsfh′(ajms)

−

 M∑
m=1

Jms∑
j=1

fh(ajms)pj|mspms

 M∑
m=1

Jms∑
j=1

fh′(ajms)pj|mspms

 .

Now, we can write:

•
∑M

m=1

∑Jms
j=1 fh(ajms)pj|mspmsfh′(ajms) =

∑J
j=1 fh(ajs)pjsfh′(ajs),

•
(∑M

m=1

∑Jms
j=1 fh(ajms)pj|mspms

)
=
∑J

j=1 fh(ajs)pjs,
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•
(∑M

m=1

∑Jms
j=1 fh′(ajms)pj|mspms

)
=
∑J

j=1 fh′(ajs)pjs

thus:

Iβhβh′ = −E
(
∂2`(Cs,θ)
∂βh∂βh′

)
=

 J∑
j=1

fh(ajs)pjsfh′(ajs)

−
 J∑
j=1

fh(ajs)pjs

 J∑
j=1

fh′(ajs)pjs

 ,

where Js =
∑M

m=1 Jms denotes the number of alternatives in choice set Cs and (The MNL
model, Section 2.1):

pjs =
exp

(
fT (ajs)β

)∑J
j′=1 exp (fT (aj′s)β)

.

4.3 D-Optimal Design for NMNL Model

The information matrix of a design (ξ) with S choice sets, (C1, . . . ,Cs, . . . ,CS) is calculated by
(Equation (4.1)):

I(ξ,θ) =
S∑
s=1

ws.I(Cs,θ), (4.2)

which depends on unknown parameters, θ, where ws is the weight (frequency) of the choice
set Cs. Moreover, the local D-optimality criterion at θ is Ψ(ξ,θ) = ln det (I(ξ,θ)). In this
situation, the ξ∗ which maximizes the local D-optimality criterion:

ξ∗ = arg max
ξ∈Ξ

Ψ(ξ,θ)

is called locally D-optimal design where:

ξ∗ =

{
C∗1 C∗2 · · · C∗S
w∗1 w∗2 · · · w∗S

}
.

Thus, in this chapter also the local D-optimality criterion Ψ(ξ,θ) for true values of parameters
will be considered.

To do experiment based on the NMNL model, we select Js = J ;∀s ∈ S alternatives from
the population with J possible alternatives (S ⊂ C, See Section 3.7) which have been divided
into M nests, where each nest consists of Jm alternatives, i.e

∑M
m=1 Jm = J (Table4.1). In an

arbitrary choice set, the number of alternatives which are selected from each nest may vary.
The set of all choice sets of a given size Js = J ;∀s ∈ S, may be split up into N different classes,
which are characterized by the corresponding number Jnms of alternatives coming from each
nest m, i.e.

∑M
m=1 Jnms = Jns;n ∈ N, s ∈ S. Note that some of the numbers Jnms may be

equal to zero, where Jnms denotes the number of alternatives, which are selected from nest m
of size Jm in the nth class (w.r.t choice set Cs).
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Table 4.1: NMNL Model: The total number of alternatives has been divided into M nests

each with Jm alternatives; ãjm denotes alternative j in nest m

1st Nest . . . mnd Nest . . . M th Nest

ã11, ã21, . . . , ãJ11︸ ︷︷ ︸
sizeJ1

. . . ã1m, ã2m, . . . , ãJmm︸ ︷︷ ︸
sizeJm

. . . ã1M , ã2M , . . . , ãJMM︸ ︷︷ ︸
sizeJM

In order to obtain the optimal design, we first select the Jn1s, . . . , Jnms, . . . , JnMs alterna-
tives of the 1st, . . . ,mth, . . . ,M th nest in nth class, in order where N is the number of classes,
which form the experiment (n = 1, 2, . . . , N). The number Sn of all possible choice sets
(Cn1, . . . ,Cns, . . . ,CnSn) in each class n is calculated by:

Sn =

(
J1

Jn1s

)
· · ·
(
Jm
Jnms

)
· · ·
(
JM
JnMs

)
=

M∏
m=1

(
Jm
Jnms

)
, (4.3)

where
∑M

m=1 Jnms = Js = J ;∀n ∈ N, s ∈ Sn. This means that the number of alternatives which
are selected from the population in each of class (n) and for each choice set (s) are equal. In
this situation, Jnms = Jnms′ ;∀s 6= s′ ∈ Sn, but Jnms and Jn′ms′ may or may not be equal.

According to Equation (4.3) we can define the following designs (on class n):

ξn =

{
Cn1 Cn2 · · · CnSn
wn1 wn2 · · · wnSn

}
∈ Ξn, (4.4)

where Ξ =
⋃N
n=1 Ξn. Based on these designs (above), the information matrixes of designs ξn

can be calculated as follows:

I(ξn,θ) =
Sn∑
s=1

wns.I(Cns,θ); ∀n = 1, 2, . . . , N, (4.5)

where Cns denotes choice set s, which has been created in the nth class with Jns =
∑M

m=1 Jnms
alternatives (Jnms is the number of alternatives in class n and the mth nest of choice set s).
Naturally in this chapter the same number of alternatives will be considered in each of the
choice sets, resulting in Jns = J ;∀n ∈ N, ∀s ∈ Sn.

In Section 3.7 was discussed about number S choice sets (p ≤ S ≤ S) for doing experiment
and obtaining optimal design. Here, we can consider a similar situation for NMNL models, for
example, considering Sn choice sets (p + M ≤ Sn ≤ Sn) based on class n to obtain optimal
design within class n, where p + M is the number of parameters. The design ξn can not be
considered when attempting to obtain an optimal design if Sn < p + M or more generality its
information matric is singular (To obtain optimal design within class n).

In this situation, to obtain optimal design based on all of classes, ξn;∀n ∈ N must be
combined to produce a design. For example, consider the two following designs (N = 2):

ξ1 =

{
C11 C12 · · · C1S1

w11 w12 · · · w1S1

}
, ξ2 =

{
C21 C22 · · · C2S2

w21 w22 · · · w2S2

}
.
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Now, a new design can be defined by ξ = αξ1 + (1− α)ξ2; 0 ≤ α ≤ 1 as follows:

ξ =

{
C11 C12 · · · C1S1 C21 C22 · · · C2S2

αw11 αw12 · · · αw1S1 (1− α)w12 (1− α)w22 · · · (1− α)w2S2

}
,

where I(ξ,θ) = αI(ξ1,θ) + (1− α)I(ξ2,θ). More general I(ξ,θ) =
∑N

n=1 αnI(ξn,θ), where:

Ξ =

{
N∑
n=1

αnξn| ξn ∈ Ξn,
N∑
n=1

αn = 1, αn ≥ 0

}
and with respect to local D-optimality criterion, where Ψ′(ξ,θ) = − ln(det(I(ξ,θ))) there

will be convexity:
Ψ′(ξ,θ) ≤ αΨ′(ξ1,θ) + (1− α)Ψ′(ξ2,θ).

In this case, we can say that:
ξ∗ = arg min

ξ∈Ξ
Ψ′(ξ,θ)

is locally D-optimal design for θ takes true values.

Lemma 4.2. Consider a NMNL with two nests (M = 2). The information matrix of a choice

set Cs and each with J1s and J2s alternatives in the first and second nest, respectively, is given

by (Figure 4.1(b)):

I(Cs,θ) = −E(
∂2`(Cs,θ)
∂θ∂θT

) =

 I11s I12s I13s

IT12s I22s I23s

IT13s I23s I33s

 .

According to Section 4.2, and Theorem 4.1, we assume that:

• Ams = FT
msp.|ms; m = 1, 2,

• Bms = FT
msP.|msFms;,

• p.|ms = (p1|ms, . . . , pj|ms, . . . , pJms|ms)
T ,

• P.|ms = diag[p1|ms, . . . , pj|ms, . . . , pJms|ms],

• Xms = (f(a1ms), . . . , f(ajms), . . . , f(aJmsms))
T ,

• f(ajms) = (f1(ajms), . . . , fh(ajms), . . . , fp(ajms))
T ,

• vms = ln
(∑Jms

j=1 exp
(

fT (ajms)β
λm

))
,

• pj|ms =
exp

(
fT (ajms)β

λm

)
∑Jms
l=1 exp

(
fT (alms)β

λ1

) ,
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• pms =

(∑Jms
l=1 exp

(
fT (alms)β

λm

))λm
(∑J1s

l=1 exp

(
fT (al1s)β

λ1

))λ1

+

(∑J2s
l=1 exp

(
fT (al2s)β

λ2

))λ2
.

Thus (with respect to the elements of information matric by Theorem 4.1)

[I11s]p×p = p1s
λ2

1
(B1s −A1sAT

1s) + p2s
λ2

2
(B2s −A2sAT

2s) + p1sp2s(A1sAT
1s + A2sAT

2s −A1sAT
2s −A2sAT

1s)

[I12s]p×1 = −p1s
λ3

1
(B1s −A1sAT

1s)β + p1sp2s
λ1

(A1s −A2s)(λ1.v1s −AT
1sβ)

[I13s]p×1 = −p2s
λ3

2
(B2s −A2sAT

2s)β + p1sp2s
λ2

(A2s −A1s)(λ2.v2s −AT
2sβ)

[I22s]1×1 = p1s
λ4

1
βT (B1s −A1sAT

1s)β + p1sp2s
λ2

1
(λ1.v1s − βTA1s)(λ1.v1s −AT

1sβ)

[I33s]1×1 = p2s
λ4

2
βT (B2s −A2sAT

2s)β + p1sp2s
λ2

2
(λ2.v2s − βTA2s)(λ2.v2s −AT

2sβ)

[I23s]1×1 = − 1
λ1.λ2

p1sp2s(λ1.v1s − βTA1s)(λ2.v2s −AT
2sβ)

Here FT
1s, FT

2s denote the p×J1s and p×J2s-design matrices with respect to the first and second
nest. pT.|1s, pT.|2s are 1 × J1s and 1 × J2s vectors, which consist of the probabilities related to

choosing alternatives for the first and second nest (See Subsection 2.2.1). J1s and J2s are the
number of alternatives that have been selected from the first and second nest.
Proof : To proof Lemma 4.2 we use Section 4.2.

The information matrix (Lemma 4.2) was created for one choice set (Cs) with J1s and J2s

alternatives selected from the two nests, each with J1 and J2 alternatives. There are

S =

(
J1

J1s

)
×
(
J2

J2s

)
choice sets each with J1s + J2s alternatives, where J1s + J2s = J1s′ + J2s′ ;∀s 6= s′ ∈ S.

Corollary 4.1. For β = 0, the information matrix of choice set Cs (Lemma 4.2) was calculated

as follows:

[I11s] =( J1s
λ1

J1sλ2
1(J1s

λ1+J2s
λ2 )

)[FT1s(IJ1s − 1
J1s

1J1s1
T
J1s

)F1s]+( J2s
λ2

J2sλ2
2(J1s

λ1+J2s
λ2 )

)[FT2s(IJ2s − 1
J2s

1J2s1
T
J2s

)F2s]

−( J2s
λ2J1s

λ1

(J1s
λ1+J2s

λ2 )2
)( 1
J2
2s

FT1s1J1s1
T
J1s

F1s + 1
J2
2s

FT2s1J2s1
T
J2s

F2s − 1
J1sJ2s

FT1s1J1s1
T
J2s

F2s − 1
J1sJ2s

FT2s1J2s1
T
J1s

F1s)

[I12s]=
J2s

λ2J1s
λ1 ln(J1s)

(J1s
λ1+J2s

λ2)2

[
1
J1s

FT1s1J1s − 1
J2s

FT2s1J2s

]
[I13s]=

J2s
λ2J1s

λ1 ln(J2s)

(J1s
λ1+J2s

λ2)2 [ 1
J2s

FT2s1J2s − 1
J1s

FT1s1J1s ]

[I22s]= J1s
λ1J2s

λ2

(J1s
λ1+J2s

λ2)2 (ln(J1s))2,

[I23s]=− J1s
λ1J2s

λ2

(J1s
λ1+J2s

λ2)2 ln(J1s) ln(J2s),

[I33s]= J1s
λ1J2s

λ2

(J1s
λ1+J2s

λ2)2 (ln(J2s))2,

86



4.4 Example

Corollary 4.2. For β = 0 and λ1 = λ2 = λ, the information matrix of choice set Cs (Lemma

4.2) was calculated as follows:

[I11s] =( J1s
λ

J1sλ2(J1s
λ+J2s

λ)
)[FT1s(IJ1s − 1

J1s
1J1s1

T
J1s

)F1s]+( J2s
λ

J2sλ2(J1s
λ+J2s

λ)
)[FT2s(IJ2s − 1

J2s
1J2s1

T
J2s

)F2s]

−( J2s
λJ1s

λ

(J1s
λ+J2s

λ)2
)( 1
J2
2s

FT1s1J1s1
T
J1s

F1s + 1
J2
2s

FT2s1J2s1
T
J2s

F2s − 1
J1sJ2s

FT1s1J1s1
T
J2s

F2s − 1
J1sJ2s

FT2s1J2s1
T
J1s

F1s)

[I12s]=
J2s

λJ1s
λ ln(J1s)

(J1s
λ+J2s

λ)2

[
1
J1s

FT1s1J1s − 1
J2s

FT2s1J2s

]
[I13s]=

J2s
λJ1s

λ ln(J2s)

(J1s
λ+J2s

λ)2 [ 1
J2s

FT2s1J2s − 1
J1s

FT1s1J1s ]

[I22s]= J1s
λJ2s

λ

(J1s
λ+J2s

λ)2 (ln(J1s))2,

[I23s]=− J1s
λJ2s

λ

(J1s
λ+J2s

λ)2 ln(J1s) ln(J2s),

[I33s]= J1s
λJ2s

λ

(J1s
λ+J2s

λ)2 (ln(J2s))2,

Corollary 4.3. For β = 0, λ1 = λ2 = λ and J1s = J2s = a the information matrix of choice

set Cs (Lemma 4.2) was calculated as follows:

[I11s] = 1
2aλ2

[
FT1s

(
Ia − 1

a1a1
T
a

)
F1s + FT2s

(
Ia − 1

a1a1
T
a

)
F2s

]
− 1

4a2

(
FT1s1a1

T
aF1s + FT2s1a1

T
aF2s − FT1s1a1

T
aF2s − FT2s1a1

T
aF1s

)
[I12s]=

ln(a)
4a

[
FT1s1a − FT2s1a

]
[I13s]=

ln(a)
4a

[
FT2s1a − FT1s1a

]
[I22s]= 1

4 (ln(a))2

[I23s]=− 1
4 (ln(a))2

[I33s]= 1
4 (ln(a))2

where Ir and 1r denote the identity matrix with the dimensional r and a vector r × 1 when
all of its elements are one, respectively.

4.4 Example

Now consider subclasses, which are invariant with respect to a certain group of translations,
i.e. orbits of the group on the design region. Moving on, let us consider two nested logit models.
Consider one of them with the assumption β = 0 (Example 4.1) and the other with β 6= 0
(Example 4.2).

Example 4.1. There is a two-level NMNL model with two attributes (one attribute has three

levels and the other attribute contains two). The alternatives are divided into two nests, each

of them with three alternatives as follows:
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First Nest Second Nest

Alt. At.(11)(f1(ãj1)) At.(12)(f2(ãj1)) At(21)(f3(ãj1))

ã11 +1 0 +1

ã21 0 +1 +1

ã31 −1 −1 +1

Alt. At.(11)(f1(ãj2)) At.(12)(f2(ãj2)) At.(21)(f3(ãj2))

ã12 +1 0 −1

ã22 0 +1 −1

ã32 −1 −1 −1

,

where ãjm denotes the jth alternative of the mth nest. In above Table At.(k`) shows the level

` of the attribute k, where ` = 1, 2, . . . , Lk − 1; ∀k = 1, 2.

In this model, there are 15 choice sets of size J = 4 in three classes, where (Table 4.2)).
In this situation, there are three cases (N = 3), where S1 = 9,S2 = 3,S3 = 3 and J11s =
2, J12s = 2;∀s ∈ S1 and J21s = 3, J22s = 3;∀s ∈ S2 and J31s = 3, J32s = 3;∀s ∈ S3, while
Jn1s + Jn2s = J = 4;∀n ∈ N, ∀s Sn (Table 4.2, where ajnms denotes alternative j w.r.t class n
in the mth nest of choice set Cs). Therefore, according to Table 4.2 the three different designs
and their information matrices are as follows:

• ξ1 =

{
C11 C12 · · · C19

w11 w12 · · · w19

}
∈ Ξ1; I(ξ1,θ) =

∑9
s=1 w1s · I(C1s,θ),

• ξ2 =

{
C21 C22 C23

w21 w22 w23

}
∈ Ξ2; I(ξ2,θ) =

∑3
s=1w2s · I(C2s,θ),

• ξ3 =

{
C31 C32 C33

w31 w32 w33

}
∈ Ξ3; I(ξ3,θ) =

∑3
s=1w3s · I(C3s,θ),

where θ = (β, λ1, λ2)T and β = (β1,1, β1,2,−β1,1 − β1,2, β2,1,−β2,1)T and for the sake of clarity,
let it be assumed that: β1 = β1,1, β2 = β1,2, β3 = β2,1, based on the effects-type coding since
β1,3 = −β1,1 − β1,2 and β2,2 = −β2,1 thus it can be written as β = (β1, β2, β3)T . Due to λ1 dose
not occur in design ξ2 then that is not identifiable, λ2 is not also identifiable because that dose
not occur in design ξ1 then the determinant of the information matrices I(ξ2,θ), I(ξ3,θ) will be
equal to zero. Now, we must combine the three designs ξ1, ξ2 and ξ3 to obtain optimal design
in a new design as below:

ξ =

{
C11 C12 · · · C19 C21 C22 C23 C31 C32 C33

w′11 w′12 · · · w′19 w
′
21 w

′
22 w

′
23 w

′
31 w

′
32 w

′
33

}
∈ Ξ,

where w′1s = α1 · w1s; s ∈ S1 and w
′
ns = αn · wns;n = 2, 3, s ∈ Sn (α1 + α2 + α3 = 1, αn ≥

0;∀n ∈ Sn). With respect to assumption β = 0, and the permutation consideration between
the levels of the first attribute we can consider equality between the weights of above design,
ξ, in the following two cases:

Firstly : Let us suppose that λ1 = λ2 = λ. In this situation, we consider the following
equality between the weights of design ξ (based on permutation considerations):

1. w′11 = w′15 = w′19 = w′1,
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4.4 Example

Table 4.2: NMNL Model with two nests and the Choice sets related to Example 4.1: There

are three (N = 3) classes , J11s = J12s = 2;∀s ∈ S1, J21s = 1, J22s = 3;∀s ∈ S2 and J31s =

3, J32s = 1;∀s ∈ S3 (ajnms denotes jth alternative by class n from nest m w.r.t choice set s.)

First Class



C1s First Nest Second Nest

C11 a1111 = ã11, a2111 = ã21 a1121 = ã12, a2121 = ã22

C12 a1112 = ã11, a2112 = ã21 a1122 = ã12, a2122 = ã32

C13 a1113 = ã11, a2113 = ã21 a1123 = ã22, a2123 = ã32

C14 a1114 = ã11, a2114 = ã31 a1124 = ã12, a2124 = ã22

C15 a1115 = ã11, a2115 = ã31 a1125 = ã12, a2125 = ã32

C16 a1116 = ã11, a2116 = ã31 a1126 = ã22, a2126 = ã32

C17 a1117 = ã21, a2117 = ã31 a1127 = ã12, a2127 = ã22

C18 a1118 = ã21, a2118 = ã31 a1128 = ã12, a2128 = ã32

C19 a1119 = ã21, a2119 = ã31 a1129 = ã22, a2129 = ã32

Second Class


C2s First Nest Second Nest

C21 a1211 = ã11 a1221 = ã12, a2221 = ã22, a3221 = ã32

C22 a1212 = ã21 a1222 = ã12, a2222 = ã22, a3222 = ã32

C23 a1213 = ã31 a1223 = ã12, a2223 = ã22, a3223 = ã32

Third Class


C3s First Nest Second Nest

C31 a1311 = ã11, a2311 = ã21, a3311 = ã31 a1321 = ã12

C32 a1312 = ã11, a2312 = ã21, a3312 = ã31 a1322 = ã22

C33 a1313 = ã11, a2313 = ã21, a3313 = ã31 a1323 = ã32

2. w′12 = w′13 = w′14 = w′16 = w′17 = w′18 = w′2,

3. w
′
21 = w

′
22 = w

′
23 = w

′
31 = w

′
32 = w

′
33 = w′3,

where 3 · w′1 + 6 · w′2 + 6 · w′3 = 1, 0 ≤ w′1 ≤ 1
3

and 0 ≤ w′i ≤ 1
6
;∀i = 2, 3. Table 4.3 shows that

w
′∗
1 = 0.000 for all of values of λ and w

′∗
2 decreases as λ increases. Also, we can see that w

′∗
3

has an increasing trend when λ increases.

Now, according to the obtained results of Table 4.3 we define a new design so that:

1. w′11 = w′15 = w′19 = w′1 = 0.00,

2. w′12 = w′13 = w′14 = w′16 = w′17 = w′18 = w′2,

3. w
′
21 = w

′
22 = w

′
23 = w

′
31 = w

′
32 = w

′
33 = w′3.
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Table 4.3: NMNL model, β = 0, λ1 = λ2 = λ (two nests) with two attributes, one of them

with three levels and the other with two: Locally D-optimal design for Cns;n = 1, s = 1, 2, . . . , 9

and Cns;n = 2, 3, s = 1, 2, 3, where 3w′1 + 6w′2 + 6w′3 = 1, with Local D-optimality criterion:

Ψ(ξ,θ0) = ln(det(I(ξ,θ0))) for Example 4.1 (with initial value w′1 = 0.1, w′2 = 0.1, w′3 = 1
60

so

that all of results converge), Here w
′∗
1 , w

′∗
2 , w

′∗
3 have been rounded to four digits.

λ w
′∗
1 w

′∗
2 w

′∗
3

0.100 0.0000 0.0650 0.1020

0.200 0.0000 0.0630 0.1030

0.300 0.0000 0.0620 0.1050

0.400 0.0000 0.0610 0.1060

0.500 0.0000 0.0590 0.1070

0.600 0.0000 0.0580 0.1090

0.700 0.0000 0.0572 0.1093

0.800 0.0000 0.0565 0.1100

0.900 0.0000 0.0556 0.1111

1.000 0.0000 0.0556 0.1111

where 6 · w′2 + 6 · w′3 = 1 and 0 ≤ w′i ≤ 1
6
;∀i = 2, 3. In this situation, the determinant of the

information matrix:

I(ξ,θ) = w′2
∑

s∈{2,3,4,6,7,8}

I(C1s,θ) + w′3

(
3∑
s=1

I(C2s,θ) +
3∑
s=1

I(C3s,θ)

)
,

will be calculated by:

det(I(ξ,θ)) = c(λ) · w′2 · w
′2
3 (B2 · w′2 +B3 · w′3)

2
,

where:

• c(λ) = 81
32
· ln2(3)(ln(3)−2 ln(2))2(p22(1−p22))2

λ4 ,

• B2 = 3(λ2 + 4),

• B3 = 16p22(λ2(1− p22) + 1)

and p22 = p22s = 3λ

1+3λ
;∀s ∈ S2, where p22s denotes the marginal choice probability of the second

nest (m = 2) with respect to the second class (n = 2) in choice set C2s.
Now, the optimization problem can be solved maxw′2,w′3 ln (det(I(ξ,θ))), subject to the natural

restrictions of 6 ·w′2 + 6 ·w′3 = 1, w′2, w
′
3 ≥ 0 by a multiplier δ > 0 (Lagrange coefficient). Thus,

w
′∗
2 , w

′∗
3 can be a solution for the weights, based on first order conditions
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Figure 4.2: NMNL Model (two nests), β = 0, λ1 = λ2 = λ (0 < λ < 1): Optimal weights w
′∗
2

(dotted line) and w
′∗
3 (solid).

• 1

w
′∗
2

+ 2·B2

B2·w
′∗
2 +B3·w

′∗
3

= δ,

• 2

w
′∗
3

+ 2·B3

B2·w
′∗
2 +B3·w

′∗
3

= δ,

• w′∗2 + w
′∗
3 = 1

6
.

Thus this system is solved by (0 < λ < 1):

• δ = 5,

• w′∗2 = 1
60
·
B3

(
−7B2+4B3+

√
9B2

2−16B2B3+16B3
2
)(
−2− 1

4

−7B2+4B3+

√
9B2

2−16B2B3+16B3
2

B2−B3

)

(B2−B3)B2

(
−1− 1

4

−7B2+4B3+

√
9B2

2−16B2B3+16B3
2

B2−B3

) ,

• w′∗3 = 1
60
· 7B2−4B3−

√
9B2

2−16B2B3+16B3
2

B2−B3
.

The model, which has been defined by Example 4.1, will be consistent with the Random
Utility Maximization dependent on the following conditions (Theorem 2.3 and Corollary 2.3):

1. (λ− 2)2λ ≤ 0,

2. λ ≤ (1 + 3λ),

3. λ ≤ 4
3

1+3λ
+
√

(1+7λ)(1−λ)
.
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In this case, the above conditions will hold up if λ ∈ (0, 1). Figure 4.2 denotes the optimal
weights based on design ξ, where w

′∗
2 tends (decreases) to 0.055 as λ tends (increases) to one.

Also, w
′∗
3 is always greater than w

′∗
2 :

w
′∗
3 > w

′∗
2 ; ∀λ ∈ (0, 1).

Secondly: Let us suppose that λ1 6= λ2. In this situation, we consider the following equality
between the weights of design ξ (permutation considerations):

1. w′11 = w′15 = w′19 = w1,

2. w′12 = w′13 = w′14 = w′16 = w′17 = w′18 = w2,

3. w′21 = w′22 = w′23 = w3,

4. w′31 = w′32 = w′33 = w4,

where 3w1 + 6w2 + 3w3 + 3w4 = 1, 0 ≤ wi ≤ 1
3
;∀i = 1, 3, 4 and 0 ≤ w2 ≤ 1

6
. Table 4.4 shows

that w∗1 = 0.000 for all values of λ1, λ2 and we can observe different trends for w∗2, w∗3 and w∗4
when λ2 is fixed and λ1 increases. In this situation we can say that (Table 4.4):

w∗3 > w∗4 ⇔ λ1 > λ2.

Now, according to the obtained results of Table 4.4 we define a new design so that:

1. w′11 = w′15 = w′19 = w1 = 0.00,

2. w′12 = w′13 = w′14 = w′16 = w′17 = w′18 = w2,

3. w′21 = w′22 = w′23 = w3,

4. w′31 = w′32 = w′33 = w4

where 6w2 + 3w3 + 3w4 = 1, 0 ≤ wi ≤ 1
3
;∀i = 3, 4 and 0 ≤ w2 ≤ 1

6
.

Similarly, the determinant of the information matrix (based on three weights w2, w3, w4):

I(ξ,θ) = w2

∑
s∈{2,3,4,6,7,8}

I(C1s,θ) + w3

3∑
s=1

I(C2s,θ) + w4

3∑
s=1

I(C3s,θ),

is obtained by:

det(I(ξ,θ)) = c(λ1, λ2) · w2 · w3 · w4 (A2 · w2 − A3 · w3 − A4 · w4)2 ,

where:

• c(λ1, λ2) = 81
2
· ln2(3)(ln(3)−2 ln(2))2p11·p22·p31·(1−p11)(1−p22)(1−p31)

λ4
1·λ4

2
,
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Table 4.4: NMNL model, β = 0, λ1 6= λ2 (two nests) with two attributes, one of them with

three levels and the other with two: Locally D-optimal design for Cns;n = 1, s = 1, 2, . . . , 9 and

Cns;n = 2, 3, s = 1, 2, 3, where 3w1 + 6w2 + 3w3 + 3w4 = 1, with Locally D-optimal criterion:

Ψ(ξ,θ0) = ln(det(I(ξ,θ0))) for Example 4.1 (with initial value w1 = 0.1, w2 = 1
60
, w3 = 0.1, w4 =

0.1 so that all of results are converge), Here w∗1, w
∗
2, w

∗
3, w

∗
4 have been rounded to our digits.

λ2= 0.050 λ2= 0.250

λ1 w∗1 w∗2 w∗3 w∗4 w∗1 w∗2 w∗3 w∗4
0.100 0.0000 0.0612 0.1344 0.0766 0.0000 0.0580 0.0736 0.1437

0.200 0.0000 0.0567 0.1507 0.0693 0.0000 0.0624 0.0927 0.1158

0.300 0.0000 0.0550 0.1555 0.0679 0.0000 0.0619 0.1144 0.0952

0.400 0.0000 0.0537 0.1585 0.0674 0.0000 0.0592 0.1304 0.0845

0.500 0.0000 0.0526 0.1610 0.0672 0.0000 0.0567 0.1410 0.0790

0.600 0.0000 0.0516 0.1631 0.0671 0.0000 0.0547 0.1481 0.0758

0.700 0.0000 0.0506 0.1651 0.0670 0.0000 0.0530 0.1533 0.0739

0.800 0.0000 0.0497 0.1670 0.0669 0.0000 0.0517 0.1574 0.0725

0.900 0.0000 0.0488 0.1688 0.0669 0.0000 0.0505 0.1608 0.0716

1.000 0.0000 0.0480 0.1706 0.0668 0.0000 0.0494 0.1637 0.0709

λ2= 0.550 λ2= 0.850

λ1 w∗1 w∗2 w∗3 w∗4 w∗1 w∗2 w∗3 w∗4
0.100 0.0000 0.0526 0.0684 0.1597 0.0000 0.0495 0.0676 0.1668

0.200 0.0000 0.0545 0.0735 0.1508 0.0000 0.0504 0.0702 0.1624

0.300 0.0000 0.0567 0.0816 0.1383 0.0000 0.0518 0.0742 0.1556

0.400 0.0000 0.0583 0.0917 0.1249 0.0000 0.0533 0.0796 0.1472

0.500 0.0000 0.0588 0.1024 0.1130 0.0000 0.0546 0.0859 0.1382

0.600 0.0000 0.0583 0.1131 0.1037 0.0000 0.0556 0.0928 0.1292

0.700 0.0000 0.0571 0.1223 0.0966 0.0000 0.0562 0.1000 0.1210

0.800 0.0000 0.0559 0.1302 0.0914 0.0000 0.0563 0.1071 0.1137

0.900 0.0000 0.0545 0.1368 0.0875 0.0000 0.0560 0.1138 0.1075

1.000 0.0000 0.0532 0.1424 0.0845 0.0000 0.0555 0.1200 0.1023
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4 OPTIMAL DESIGN IN TWO-LEVEL NMNL MODELS

• A2 = 6 [(1− p11)λ2
1 − p11 · λ2

2 (1 + (1− p11)λ2
1)],

• A3 = 4λ2
1 · p22 (1 + (1− p22)λ2

2),

• A4 = 4λ2
2 · p31 (1 + (1− p31)λ2

1),

• p11 = 2λ1

2λ1+2λ2
, p22 = 3λ1

1+3λ1
, p31 = 3λ2

1+3λ2

and pnms denotes the marginal choice probability of the mth nest, according to the nth class in
choice set Cns, where p11s = p11;∀s ∈ S1, p22s = p22;∀s ∈ S2 and p31s = p31;∀s ∈ S3.

We have to solve the optimization problem, maxw2,w3,w4 ln (det(I(ξ,θ))) subject to the natural
restrictions 6w2 +3w3 +3w4 = 1, w2, w3, w4 ≥ 0 by a multiplier δ > 0. Thus, it can be supposed
that w∗2, w∗3, w∗4 is a solution for the weights based on first order conditions

• 1
w∗2

+ 2A2∑4
s=2 As·w∗s

= 6δ,

• 1
w∗3

+ 2A3∑4
s=2 As·w∗s

= 3δ,

• 1
w∗4

+ 2A4∑4
s=2 As·w∗s

= 3δ,

• 6w∗2 + 3w∗3 + 3w∗4 = 1.

According to the inequality between the two dissimilarity parameters, λ1 and λ2, the following
conditions must hold for consistency (Model) with RUM (Theorem 2.3 and Corollary 2.3):

1. λ1 · 2λ2 ≤ (2λ1 + 2λ2) , λ2 · 2λ1 ≤ (2λ1 + 2λ2),

2. λ1 ≤ (1 + 3λ1) , λ2 ≤ (1 + 3λ2),

3. λ1 ≤ 4(1+3λ1 )

3+(1+3λ1 )
√

(1+7λ1)(1−λ1)
, λ2 ≤ 4(1+3λ2 )

3+(1+3λ2 )
√

(1+7λ2)(1−λ2)
.

In this situation, if 0 < λ1 ≤ 1 and 0 < λ2 ≤ 1, the above six RUM conditions are satisfied.
The Locally D-optimal weights w∗2, w

∗
3, w

∗
4 can be similar the first part obtained .

Example 4.2. For a NMNL model (two nests) with two attributes each with two levels as
follow:

First Nest Second Nest

Alternative At.(1)(f1(ãj1)) At.(2)(f2(ãj1))
ã11 +1 +1
ã21 −1 +1

Alternative At.(1)(f1(ãj2)) At.(2)(f2(ãj2))
ã12 +1 −1
ã22 −1 −1

,

where ãjm denotes the jth alternative of the mth nest. In above Table, At.(k) shows the
attribute k = 1, 2. In this situation, it has been considered experiments 2× 2/3/4. Then there
are two classes, N = 2 each with two choice sets (Table 4.5):
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4.4 Example

Table 4.5: NMNL Model (two nests): There are two classes (N = 2), each class with two choice

sets (Cns;n = 1, 2, s = 1, 2) which include three alternatives in two nests, where ajnms denote

the jth alternative of the mth nest in choice set s by class n

Choice set First Nest(I) Second Nest(II)

C11 a1111 = ã11 , a2111 = ã21 a1121 = ã12

C12 a1112 = ã11 , a2112 = ã21 a1122 = ã22

C21 a1213 = ã11 a1223 = ã12 , a2223 = ã22

C22 a1214 = ã21 a1223 = ã12 , a2223 = ã22

Table 4.6: NMNL model (two nests), β2 = 0, λ1 = λ2 = λ: Locally D-optimal weights w∗1 , w∗2 , w∗3 and w∗4 ,

according to local D-optimality criterion Ψ(ξ,θ) = ln(det(I(ξ,θ))) and w.r.t β1 ∈ (−1, 1), λ ∈ (0, 1] (based on

RUM conditions), for design ξ Example 4.2 with initial values w1 = w2 = w3 = 0.2, w4 = 0.4 (all of results are

converge)
λ=0.100 λ=0.500 λ=1.000

β1 w∗1 w∗2 w∗3 w∗4 w∗1 w∗2 w∗3 w∗4 w∗1 w∗2 w∗3 w∗4
0.900 0.000 0.459 0.376 0.165 0.000 0.461 0.380 0.159 0.000 0.472 0.421 0.107
0.700 0.000 0.464 0.294 0.242 0.000 0.465 0.303 0.232 0.000 0.473 0.364 0.163
0.500 0.000 0.477 0.176 0.347 0.000 0.477 0.200 0.323 0.000 0.478 0.302 0.220
0.300 0.000 0.500 0.000 0.500 0.000 0.495 0.048 0.457 0.037 0.454 0.247 0.262
0.100 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.184 0.330 0.232 0.254
0.001 0.000 0.500 0.000 0.500 0.246 0.257 0.244 0.253 0.257 0.259 0.242 0.242
-0.001 0.500 0.000 0.500 0.000 0.257 0.245 0.253 0.245 0.258 0.258 0.242 0.242
-0.010 0.500 0.000 0.500 0.000 0.500 0.000 0.500 0.000 0.330 0.184 0.254 0.232
-0.300 0.500 0.000 0.500 0.000 0.495 0.000 0.457 0.048 0.454 0.037 0.262 0.247
-0.500 0.477 0.000 0.348 0.175 0.477 0.000 0.323 0.200 0.478 0.000 0.220 0.302
-0.700 0.464 0.000 0.243 0.293 0.465 0.000 0.232 0.303 0.473 0.000 0.163 0.364
-0.900 0.460 0.000 0.164 0.376 0.461 0.000 0.159 0.380 0.472 0.000 0.108 0.420
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4 OPTIMAL DESIGN IN TWO-LEVEL NMNL MODELS

Table 4.7: NMNL Model with two nests and the Choice sets related to Example 4.2: There

are two (N = 2) classes , J11s = 2, J12s = 1; ∀s ∈ S1, J21s = 1, J22s = 2; ∀s ∈ S2 (ajnms denotes

jth alternative by class n from nest m w.r.t choice set s).

First Class


C1s First Nest (J11s = 2;∀s ∈ S1) Second Nest (J12s = 1;∀s ∈ S1)

C11 a1111 = ã11, a2111 = ã21 a1121 = ã12

C12 a1112 = ã11, a2112 = ã21 a2122 = ã22

Second Class


C2s First Nest (J21s = 1;∀s ∈ S2) Second Nest (J22s = 2;∀s ∈ S2)

C21 a1211 = ã11 a1221 = ã12, a2221 = ã22

C22 a2212 = ã21 a1222 = ã12, a2222 = ã22

• S1 =

(
2
2

)(
2
1

)
,

• S2 =

(
2
1

)(
2
2

)
,

Now, according to above table and Table 4.5 four choice sets C11,C12,C21,C22 and their alter-
natives has been showed in Table 4.7:

In this Example 4.2 the parameters are as follow:

• θ = (β1,β2, λ1, λ2)T ; β1 = (β1,1,−β1,1)T , β2 = (β2,1,−β2,1)T .

Let us, suppose that β1,1 = β1 and β2,1 = β2 thus parameter vector can be rewritten as:

• θ = (β1, β2, λ1, λ2)T .

According to Table 4.5 we can define:

• ξ1 =

{
C11 C12

w11 w12

}
∈ Ξ1; I(ξ1,θ) = w11 · I(C11,θ) + w12 · I(C12,θ)

• ξ2 =

{
C21 C22

w21 w22

}
∈ Ξ2; I(ξ2,θ) = w21 · I(C21,θ) + w22 · I(C22,θ).

Thus, we will have:

ξ =

{
C11 C12 C21 C22

w′11 w′12 w′21 w′22

}
∈ Ξ,

where w′ns = αn · wns;∀n ∈ N, s ∈ Sn, α1 + α2 = 1; 0 ≤ αn ≤ 1 and Ξn ⊂ Ξ, ∀n ∈ N . In this
situation we will have:

I(ξ,θ) =
2∑

n=1

αn · I(ξn,θ).
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4.4 Example

Now, for simplicity, we consider C11 = C1, C12 = C2, C21 = C3, C22 = C4 and w1, w2, w3, w4

instead of w′11, w′12, w′21, w′22, respectively. According to the new notations the following design
is defined:

ξ =

{
C1 C2 C3 C4

w1 w2 w3 w4

}
∈ Ξ,

where S1 +S2 = p = 4 (Some locally D-optimal designs has been calculated in Table 4.6, when
β2 = 0, λ1 = λ2 = λ where β1 ∈ (−1, 1), λ ∈ (0, 1] (based on RUM conditions)).

In particular, let us assume that β2 = 0 and λ1 = λ2 = λ. In this situation based on Table 4.5,
it will follow that pI1 = pII3 and pI2 = pII4, where pms denotes the marginal choice probability
related to choose nest m with respected to choice set Cs (Subsection 2.2.1). Now, according to
the permutation of the levels of the second attribute, consider the following design:

ξ′ =

{
C1 C2 C3 C4

w 1
2
− w w 1

2
− w

}
∈ Ξ′, (4.6)

where Ξ′ ⊂ Ξ and w1 = w3 = w, w2 = w4 = 1
2
− w; 0 ≤ w ≤ 1

2
. In this case, the RUM

conditions are as follows (Theorem 2.3, Corollary 2.3):

1. λ · exp(β1) ≤
(

exp(β1) +
(
exp(β1

λ
) + exp(−β1

λ
)
)λ)

,

2. λ · exp(−β1) ≤
(

exp(−β1) +
(
exp(β1

λ
) + exp(−β1

λ
)
)λ)

.

These inequations support, uphold β1 ∈ (−1, 1), λ ∈ (0, 1]. In this case, w∗ decreases when β1

(β1 < 0) decreases, agreeing with the fixed values of λ. The optimal weight, w∗ increases in
fixed amounts of λ when β1 (β1 > 0) increases. Furthermore, Table 4.8 also denotes that the
optimal weight, w∗ is equal to 0.5 for low values of β1 (−0.5 ≤ β1 < −0.05) but that is equal
to 0.0 when β1 belongs to the interval (0.05, 0.5]. Notwithstanding, these cases will occur with
low values of λ (0.0 < λ ≤ 0.5). Then, as such a situation, two kind of optimal designs can be
considered as follows:

ξ∗(−0.5≤β1<−0.05) =

{
C1 C2 C3 C4

0.5 0.0 0.5 0.0

}
, ξ∗(0.05<β1≤0.5) =

{
C1 C2 C3 C4

0.0 0.5 0.0 0.5

}
,

where 0.0 < λ ≤ 0.5 (Table 4.8). On the other hand, the optimal weight (w∗) decreases (based
on the fixed negative values of β1 (β1 < 0)) as λ increases. But, for the positive fixed amounts
of β1, we can say that optimal weight, w∗, increases when λ increases.

The other important note is about locally D-optimal design when β1 tends to zero and λ = 1.
In this case, w∗ tends to value 1

4
as β1 tends to zero (from both left and right) when λ = 1.

As previously stated, the NMNL model collapse to the MNL model when λm = 1;∀m. In this
situation, it has been achieved the same result as MNL model when λ = 1 and β1 tends to zero,
means that (Table 3.2):

ξ∗λ=1 =

{
C1 C2 C3 C4
1
4

1
4

1
4

1
4

}
as β1 tends to zero from both left and right.
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4 OPTIMAL DESIGN IN TWO-LEVEL NMNL MODELS

Table 4.8: NMNL model (two nests), β2 = 0, λ1 = λ2 = λ: Locally optimal weight w∗, w.r.t

local D-optimality criterion Ψ(ξ,θ) = ln(det(I(ξ,θ))) for design (4.6), where β1 ∈ (−1, 1), λ ∈
(0, 1] (based on RUM conditions)

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1.0

0.9 0.183 0.183 0.183 0.184 0.186 0.189 0.193 0.200 0.208 0.213 0.218

0.8 0.150 0.150 0.150 0.151 0.154 0.159 0.167 0.177 0.188 0.195 0.202

0.7 0.104 0.104 0.105 0.107 0.113 0.121 0.133 0.149 0.166 0.175 0.185

0.6 0.042 0.042 0.043 0.048 0.058 0.073 0.093 0.116 0.142 0.155 0.168

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.082 0.119 0.136 0.153

0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.052 0.103 0.126 0.146

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.105 0.130 0.152

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.072 0.133 0.155 0.173

0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.087 0.148 0.185 0.198 0.208

0.05 0.000 0.000 0.000 0.000 0.000 0.108 0.166 0.198 0.217 0.223 0.229

0.005 0.000 0.000 0.121 0.197 0.224 0.236 0.241 0.245 0.247 0.247 0.248

β1 0.001 0.000 0.161 0.224 0.239 0.245 0.247 0.248 0.249 0.249 0.249 0.249

-0.001 0.500 0.339 0.274 0.261 0.255 0.253 0.252 0.251 0.251 0.251 0.250

-0.005 0.500 0.500 0.379 0.303 0.276 0.264 0.259 0.253 0.253 0.253 0.252

-0.05 0.500 0.500 0.500 0.500 0.500 0.392 0.334 0.302 0.283 0.277 0.271

-0.1 0.500 0.500 0.500 0.500 0.500 0.500 0.413 0.352 0.315 0.302 0.292

-0.2 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.428 0.367 0.345 0.327

-0.3 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.458 0.395 0.367 0.348

-0.4 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.448 0.397 0.374 0.354

-0.5 0.500 0.500 0.500 0.500 0.500 0.488 0.455 0.418 0.381 0.364 0.347

-0.6 0.459 0.458 0.457 0.452 0.442 0.427 0.407 0.384 0.358 0.345 0.332

-0.7 0.396 0.396 0.395 0.393 0.387 0.379 0.367 0.351 0.334 0.325 0.315

-0.8 0.350 0.350 0.350 0.349 0.346 0.341 0.333 0.323 0.311 0.305 0.298

-0.9 0.316 0.316 0.316 0.316 0.314 0.311 0.307 0.300 0.292 0.287 0.282
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NMNL MODEL

The multinomial logit (MNL) model is most widely used in discrete choice models due to
its closed-form choice probabilities and its consistency with the random utility maximization
(RUM). However, the MNL model suffers from restrictive independence from irrelevant alter-
natives (IIA) property, which states that the ratio of two choice probabilities is independent of
the other alternatives in the model. This implies that a change in an attribute of one alterna-
tive will have the same proportional impact on the probability of each of the other alternatives
being chosen. The NMNL model relaxes the IIA property by dividing the alternatives into
subsets or nests, allowing the IIA assumption to hold within each nest but not for alternatives
in different nests. Notwithstanding that there is the same IIA property for the nests that it
is the IIN (Independence from Irrelevant Nest). As opposed to the more flexible Multinomial
Probit and Mixed Logit models, the NMNL model has closed-form choice probabilities which
can be estimated without resorting to simulation methods. Due to its simplicity and allowing
for a variety of substitution patterns, the NMNL model remains the most common extension
of the MNL model in applied work. (Daly and Zachary 1978) and (McFadden 1978a) have
shown that the two-level NMNL model is consistent with RUM under the condition that the
dissimilarity parameters are constrained within the unit interval. In many practical applica-
tions, however, this condition has not been met. (Börsch-Supan 1990) argues that the DZM
(Daly, Zachary and McFadden) condition is unnecessarily strong given that the NMNL model
should be viewed as a local approximation. Based on the work of Börch-Supan, (Herriges
and Kling 1996) who derive the necessary conditions for local consistency with random utility
maximization for two-level NMNL models; the two-level NMNL model is consistent with RUM
when dissimilarity parameters vary in interval (0, 1] and when the dissimilarity parameters are
greater than one. Therefore, the two-level NMNL model is consistent for some range of the
characteristics of attributes with RUM. A two-level NMNL model is not consistent with RUM
when there is a dissimilarity parameter less than zero.

In some cases of two-level NMNL models, the IIA property may not hold within some or all
of the nests. In this situation, we can divide the alternatives of these nests into several sub-sets,
called sub-nests. This kind of Nested logit model is termed the three-level NMNL model, since
within it there are three kinds of choice probabilities that will be discussed in the section 5.1.

The rest of this chapter is structured as follows. Section 5.1 discusses the model specifications
of three-level NMNL models. Section 5.2 presents the information matrix for a three-level
NMNL models (with two nests). We will introduce the D-optimal criterion by section 5.4.
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5 OPTIMAL DESIGN IN A THREE-LEVEL NMNL MODEL

5.1 Model Specifications

Following (Gil-Molton and Hole 2004), let us consider a sample of I individuals with J discrete
possible alternatives (as in choice set C), produced by K attributes, each with Lk levels. In
this chapter, for a three-level NMNL model, the total number of alternatives is showed by∑M

m=1

∑Hm
h=1 Jhm, where Jhm is the number of alternatives in the sub-set h of nest m (Figure

5.1). In this case, there are C choice sets each containing Jc alternatives to fit model, where if
Cc is a choice set with Jc alternatives then C =

⋃C
c=1 Cc, where Jc =

∑M
m=1

∑Hm
h=1 Jmhc, Jmhc

denotes the number of alternatives in sub-nest of the nest m with respect to choice set Cc

(Subsection 2.2.2). Certainly, in such a model, the total numbers of alternatives in choice set
C is denoted by

∏K
k=1 Lk, with regard to the attributes and their levels.

This model was obtained based on selection of an alternative with the highest utility. The
utility related to three-level nested logit model (w.r.t choice set Cc), where the individual i
is derived when choosing alternative j as denoted by Ujhms. This utility is partitioned into
systematic component, vjhmc, and a random component, εjhmc (c denotes the choice set Cc), to
produce (ignoring index i):

Ujhmc = Uj|hmc + Uh|mc + Umc, (5.1)

where:
Uj|hmc = vj|hmc + εj|hmc, Uh|mc = vh|mc + εh|mc, Umc = vmc + εmc, (5.2)

where εj|hms has EVD (extreme value distribution (type II)) with variance σ2
hm (They are

correlated in the same sub-nest, ρhm = corr(εj|hmc, εj′|hmc)) and the distributions of εh|mc is
such that variable maxj∈Chmc Uj|hmc with variance σ2

m (They are correlated in the same nest,
ρm = corr(εh|mc, εh′|mc) ) and εmc is such that variable maxh∈Hm Uh|mc will have EVD (type II)
with variance σ2 (McFadden 1978b), where corr(εmc, εm′c) = 0; m 6= m′. Naturally, these three
error terms are independent. Now, with consideration to utility (5.2) observation variables as
follows (subsection 2.2.2) can be introduced:

Yj|hmc =

{
1, Uj|hms = maxj′∈Chmc Uj′|hmc;
0, otherwise.

, Yh|mc =

{
1, Uh|mc = maxh′∈Hm Uh′|mc;
0, otherwise.

Ymc =

{
1, Umc = maxm′ Um′c;
0, otherwise.

Thus, when the variables Yj|hmc, Yh|mc and Ymc are independent:

pjhmc = pj|hmc × ph|mc × pmc, (5.3)

where P (A) denotes the probability of event A and pj|hmc = P (Yj|hmc = 1) is the conditional
probability of choosing alternative j, given that sub-nest h and nest m have been chosen,
ph|mc = P (Yh|mc = 1) is the conditional probability of choosing sub-nest h when nest m is
chosen and pmc = P (Ymc = 1) is the marginal probability of choosing nest m (with respect to
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5.1 Model Specifications

Figure 5.1: NMNL Model: There are M nests each with Hm;m = 1, 2, . . . ,M sub-nests and

each sub-nest consists Jhm alternatives

choice set Cc). Based on the distribution of the error terms of utility, these probabilities can
be calculated by (McFadden 1981):

pj|hmc =
exp

(
vj|hmc
λhm

)
∑Jhmc

j′=1 exp
(
vj′|hmc
λhm

) , ph|mc =
exp

(
λhm
µm

IVhmc

)
∑Hm

h′=1 exp
(
λh′m
µm

IVh′mc

) , pmc =
exp (µmIVmc)∑M

m′=1 exp (µm′IVm′c)
,

(5.4)
where IVmc and IVhmc (Subsection 2.2.2) are the inclusive values of nest m and sub-nest hm,
respectively and

• IVmc = E
(
maxh∈Hm Uh|mc

)
= ln

(∑Hm
h=1 exp

(
λhm
µm

IVhmc

))
,

• IVhmc = E
(
maxj∈Chmc Uj|hmc

)
= ln

(∑Jhmc
j=1 exp

(
vj|hmc
λhm

))
,

• vj|hmc = fT (ajhmc)β =
∑K

k=1 fTk (ajhmc)βk;

• β = (β1, . . . ,βk, . . . ,βK)T ;

• βk = (βk,1, . . . , βk,`, . . . , βk,Lk)
T ,

• f(ajhmc) = (f1(ajhmc), . . . , fk(ajhmc), . . . , fK(ajhmc))
T ;

• fk(ajhmc) = (fk1(ajhmc), . . . , fk`(ajhmc), . . . , fkLk(ajhmc))
T ,

where fk(ajhmc) denotes the characteristics of the attribute k related to choosing alternative
j by individual i (ignored) in the sub-nest h of the nest m according to choice set Cc. In
Subsection 2.2.2, it was demonstrated that the three-level nested logit model is consistent with
RUM (Theorem 2.4), where it has been used the three RUM conditions (Subsection 2.1.2) and
based on model (5.3).
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5 OPTIMAL DESIGN IN A THREE-LEVEL NMNL MODEL

In this chapter, to define design and obtain optimal design, S (S ⊂ C) choice sets each with
Js (Js = J ;∀s ∈ S) alternatives will be considered. As stated previously told, the number of
choice sets C are as follow:

C =
∑
Jc∈J

(
J
Jc

)
,

where the number of alternatives Jc depend on the number of nests and sub-nests. In this
situation, the number of choice sets S, which is considered to define a design is as follows:

S =

(
J
Js

)
,

where Js =
∑M

m=1

∑Hm
h=1 Jmhs.

5.2 Information Matrix

As in the previous chapters, we use D-optimal criterion (a function of the determinant of
the information matrix) in order to obtain an optimal design. Thus, first we must obtain
the information matrix for a three-level nested logit model. In this situation, a log-likelihood
function is required, defined for the choice set Cs and one individual as follow:

`(Cs,θ) =
M∑
m=1

Hm∑
h=1

Jhms∑
j=1

Yjhms ln (pjhms) ,

where Jhms denotes the number of alternatives in sub-nest hm corresponding to choice set Cs

and Yjhms as defined in Subsection (2.2.2). In this situation, based on Equation (5.4) and the
number choice sets S each with Js alternatives we can write:

`(Cs,θ) =
M∑
m=1

Hm∑
h=1

Jhms∑
j=1

Yjhms

((
vj|hmc

λhm

)
+
(
λhm
µm

IVhms

)
+ (µmIVms)

)

−
M∑
m=1

Hm∑
h=1

Jhms∑
j=1

Yjhms ln

Jhmc∑
j′=1

exp
(
vj′|hmc

λhm

)( Hm∑
h′=1

exp
(
λh′m
µm

IVh′ms

))( M∑
m′=1

exp (µm′IVm′s)

)
.

Now, based on the definition of the information matrix (based on choice set Cs) and E(Yjhms) =
pjhms we will have:

−E
(
∂2`(Cs,θ)
∂θ∂θT

)
=

M∑
m=1

Hm∑
h=1

Jhms∑
j=1

pj|hmsph|mspms

(−∂2 ln(pj|hms)
∂θ∂θT

+
−∂2 ln(ph|ms)

∂θ∂θT
+
−∂2 ln(pms)
∂θ∂θT

)
,

where

I(Cs,θ) =

 Iβ Iβµ Iβλ
ITβµ Iµ Iµλ
ITβλ ITµλ Iλ

 (5.5)

is the information matrix of choice set Cs and θ is the full parameters vector, so that:
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• Iβ = −E
(
∂2`(Cs,θ)

∂β∂βT

)
, Iβµ = −E

(
∂2`(Cs,θ)

∂β∂µT

)
, Iβλ = −E

(
∂2`(Cs,θ)

∂β∂λT

)
,

• Iµ = −E
(
∂2`(Cs,θ)

∂µ∂µT

)
, Iµλ = −E

(
∂2`(Cs,θ)

∂µ∂λT

)
, Iλ = −E

(
∂2`(Cs,θ)

∂λ∂λT

)
,

• θ = (β,µ,λ)T ;

• β = (β1, . . . ,βk, . . . ,βK)T

• µ = (µ1, . . . , µm, . . . , µM)T ,

• λ = (λ1, . . . ,λm, . . . ,λM)T ;

• λm = (λ1m, . . . , λhm, . . . , λHmm)T ,

where k = 1, 2, . . . , K, h = 1, 2, . . . , Hm, m = 1, 2, . . . ,M.
According to effect type coding (

∑Lk
`=1 βk,` = 0; βk,` = −

∑Lk−1
`=1 βk,`) we can write:

• βk = (βk,1, . . . , βk,`, . . . , βk,Lk−1)T .

In this case, we suppose that β1,1 = β1, . . . , βK,LK−1 = q1 then we will have:

• β = (β1, . . . , βr, . . . , βq1)
T .

This means that parameter βk,` is related to the `th level of attribute k, µm, the dissimilarity
parameter of nest m and λm is the dissimilarity parameters vector of nest m, where λhm denotes
the dissimilarity parameter of sub-nest hm in nest m, thus we will have:

• Iβ =



Iβ1 · · · Iβ1βr · · · Iβ1βq1
...

. . .
... · · ·

...
Iβrβ1 · · · Iβr · · · Iβrβq1

... · · ·
...

. . .
...

Iβq1β1 · · · Iβq1βr · · · Iβq1


; −E

(
∂2`(Cs,θ)
∂βr∂βr′

)
=

{
Iβrβr′ , r 6= r′;
Iβr , r = r′.

• Iβµ =



Iβ1µ1 · · · Iβ1µm · · · Iβ1µM

...
. . .

... · · ·
...

Iβrµ1 · · · Iβrµm · · · IβrµM
... · · ·

...
. . .

...
Iβq1µ1 · · · Iβq1µm · · · Iβq1µM


; −E

(
∂2`(Cs,θ)
∂βr∂µm

)
= Iβrµm ,

• Iβλ =
(

Iβλ1 · · · Iβλm · · · IβλM
)

;

• Iβλm =



Iβ1λ1m · · · Iβ1λhm · · · Iβ1λHmm

...
. . .

... · · ·
...

Iβrλ1m · · · Iβrλhm · · · IβrλHmm
... · · ·

...
. . .

...
Iβq1λ1m · · · Iβq1λhm · · · Iβq1λHmm


; −E

(
∂2`(Cs,θ)
∂βr∂λhm

)
= Iβrλhm ,
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• Iµ =



Iµ1 · · · Iµ1µm · · · Iµ1µM

...
. . .

... · · ·
...

Iµmµ1 · · · Iµm · · · IµmµM
... · · ·

...
. . .

...
IµMµ1 · · · IµMµm · · · IµM


; −E

(
∂2`(Cs,θ)
∂µm∂µm′

)
=

{
Iµmµm′ , m 6= m′;
Iµm , m = m′.

,

• Iµλ =
(

Iµλ1 · · · Iµλm · · · IµλM
)

;

• Iµλm =



Iµ1λ1m · · · Iµ1λhm · · · Iµ1λHmm

...
. . .

... · · ·
...

Iµmλ1m · · · Iµmλhm · · · IµmλHmm
... · · ·

...
. . .

...
IµMλ1m · · · IµMλhm · · · IµMλHmm


; −E

(
∂2`(Cs,θ)
∂µm∂λhm

)
= Iµmλhm ,

• Iλ =



Iλ1 · · · Iλ1λm · · · Iλ1λM

...
. . .

... · · ·
...

Iλmλ1 · · · Iλm · · · IλmλM
... · · ·

...
. . .

...
IλMλ1 · · · IλMλm · · · IλM


; −E

(
∂2`(Cs,θ)

∂λm∂λ
T

m′

)
=

{
Iλmλm′ , m 6= m′;
Iλm , m = m′.

;

• Iλm =



Iλ1m · · · Iλ1mλhm · · · Iλ1mλHmm

...
. . .

... · · ·
...

Iλhmλ1m · · · Iλhm · · · IλhmλHmm
... · · ·

...
. . .

...
IλHmmλ1m · · · IλHmmλhm · · · IλHmm


; −E

(
∂2`(Cs,θ)
∂λhm∂λh′m

)
=

{
Iλhmλh′m =, h 6= h′;
Iλhm , h = h′.

• Iλmλm′ =



Iλ1mλ1m′ · · · Iλ1mλh′m′ · · · Iλ1mλH
m′m

′

...
. . .

... · · ·
...

Iλhmλ1m′ · · · Iλhmλh′m′ · · · IλhmλH
m′m

′

... · · ·
...

. . .
...

IλHmmλ1m′ · · · IλHmmλh′m′ · · · IλHmmλHm′m′


; −E

(
∂2`(Cs,θ)
∂λhm∂λh′m′

)
= Iλhmλh′m′ .

According to above descriptions, the number of parameters in three-level nested logit model
are as follows:

q =
K∑
k=1

(Lk − 1) +
M∑
m=1

Hm +M = q1 + q2 +M,

where q1 is the number of part-worth parameters, q2 is the number of the dissimilarity param-
eters of the sub-nests and M is the number of the dissimilarity parameters of the nests, hence,
the information matrix (5.5) is a symmetric positive semi definite q × q-matrix.
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In order to define a design based on the three-level NMNL model, let us consider the following
experiments:

M∑
m=1

Hm∑
h=1

Jhm/Js/S, (5.6)

where J =
∑M

m=1

∑Hm
h=1 Jhm denotes the total number of alternatives in population and Js =∑M

m=1

∑Hm
h=1 Jhms denotes the number of alternatives in choice set s, selected from population,

J , randomly. In particular, suppose that Js = J ; ∀s then in this case, there will be S choice
sets each with J alternatives. However, based on (5.6), the q ≤ S ≤ S choice sets can be
considered instead of S. Also, the number of alternatives, which will be selected from sub-
nests, may vary. Thus, there are different classes can be used in order to obtain a sample with
size J from the population by (as similar as Chapter 4):

Sn =

(
J11

Jn11s

)
. . .

(
JH11

JnH11s

)
. . .

(
Jhm
Jnhms

)
. . .

(
J1M

Jn1Ms

)
. . .

(
JHMM
JnHMMs

)
=

M∏
m=1

Hm∏
h=1

(
Jhm
Jnhms

)
,

(5.7)
where

∑M
m=1

∑Hm
h=1 Jnhms = J ; ∀n ∈ N, ∀s ∈ Sn and Sn is the number of choice sets, each

including Js = J alternatives. Based on class n to create an experiment, Js can be rewrite as
Jns =

∑M
m=1

∑Hm
h=1 Jnhms, where Jns = J ;∀s ∈ Sn,∀n ∈ N and Jnhms = Jnhms′ ;∀s 6= s′ ∈ Sn

but Jnhms and Jn′hms′ (for different class and different choice set) may be equal or not equal.
According to reduce the total number of choice sets (S) to a reasonable number (S), we reduce
Sn to Sn in each class, where q ≤ Sn ≤ Sn;∀n ∈ N (avoiding singular information matrix) then
consider

∑M
m=1

∑Hm
h=1 Jhm/J/Sn , q ≤ Sn; ∀n ∈ N instead of (5.6). This involves choosing Sn

choice sets each of them with J alternatives in each class.
According to the type of experiment, it is possible that Sn < q;∀n ∈ N . In this situation,

the information matrix of design ξn (ξn ∈ Ξn;∀n ∈ N , where Ξn ⊂ Ξ), which consists of choice
sets Cn1, . . . ,Cns, . . . ,CnSn may be singular. In such a case and in order to avoid a singularity
information matrix, we must combine them (ξn) together to create a new design. Although, to
obtain optimal design (totally) we must combine all of ξn;∀n ∈ N in a design as follow:

ξ =
N∑
n=1

αnξn,

where the information matrix of design ξ is calculated by:

I(ξ,θ) =
N∑
n=1

αn · I(ξn,θ);
N∑
n=1

αn = 1, αn ≥ 0;∀n ∈ N.

Calculating the information matrix I(ξ,θ), we must first calculate the information matrix of
each choice set, means that I(Cns,θ), because of I(ξn,θ) =

∑Sn
s=1wns · I(Cns,θ). Therefore, to

obtain the information matrix related of choice set Cs for a special class (ignoring index n),
Equation (5.5) will be considered.
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5 OPTIMAL DESIGN IN A THREE-LEVEL NMNL MODEL

Figure 5.2: NMNL model: There are two nests, the first nest includes two sub-nests (with J11

and J21 alternatives) and the second does not have any sub-nest with J2 alternatives

Lemma 5.1. The information matrix is related to a three-level nested logit model (choice set

Cs) with two nests, the first nest has two sub-nests with J11s and J21s alternatives and the

second, J12s alternatives (Table 5.1 and Figure 5.2 denote a population with J11 + J21 + J12

alternatives, where ãjhm denotes the jth alternative in sub-nest h of nest m) is calculated as

follows:

I(Cs,θ) = −E(
∂2`(Cs,θ)

∂θ∂θT
) =


I11s I12s I13s I14s I15s

IT12s I22s I23s I24s I25s

IT13s I23s I33s I34s I35s

IT14s I24s I34s I44s I45s

IT15s I25s I35s I45s I55s

 ,

where (with respect to Information matrix (5.5)):

• Iβ = I11s, Iβµ1 = I12s, Iβµ2 = I13s, Iβλ1 = I14s, Iβλ2 = I15s,

• Iµ =

(
Iµ1 = I22s Iµ1µ2 = I23s

Iµ1µ2 = I23s Iµ2 = I33s

)
, Iµ1λ1 = I24s, Iµ1λ2 = I24s,

• Iλ =

(
Iλ1 = I44s Iλ1λ2 = I45s

Iλ1λ2 = I45s Iλ2 = I55s

)
.

In this situation, θ = (β, µ1, µ2, λ11, λ21)T . For simplicity, suppose that λ1 = λ11, λ2 = λ21 then
θ = (β1, . . . , βq1 , µ1, µ2, λ1, λ2)T , where q2 = 2 and M = 2.

Now, with respect to the following considerations:

• Bh|1s = FT
h1sP.|h1sFh1s; h = 1, 2,
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• B1|2s = FT
12sP.|12sF12s = B2s,

• Ah|1s = FT
h1sp.|h1s; h = 1, 2,

• A1|2s = FT
12sp.|12s = A2s,

• Fh1s = (f(a1h1s), . . . , f(ajh1s), . . . , f(aJh1sh1s))
T ; h = 1, 2,

f(ajh1s) = (f1(ajh1s), . . . , fk(ajh1s), . . . , fK(ajh1s))
T ,

fk(ajh1s) = (fk1(ajh1s), . . . , fk`(ajh1s), . . . , fkLk−1(ajh1s))
T ; q1 =

∑K
k=1 Lk − 1,

Let f11(ajh1s) = f1(ajh1s), . . . , fKLK−1(ajh1s) = fq1(ajh1s) then:

• f(ajh1s) = (f1(ajh1s), . . . , fr(ajh1s), . . . , fq1(ajh1s))
T ; h = 1, 2

• F12s = (f(a112s), . . . , f(aj12s), . . . , f(aJ12s12s))
T ;

• f(aj12s) = (f1(aj12s), . . . , fr(aj12s), . . . , fq1(aj12s))
T

• P.|h1s = diag
(
p1|h1s, . . . , pj|h1s, . . . , pJh1s|h1s

)
; h = 1, 2,

• P.|12s = diag
(
p1|12s, . . . , pj|12s, . . . , pJ12s|12s

)
,

• p.|h1s =
(
p1|h1s, . . . , pj|h1s, . . . , pJh1s|h1s

)T
; h = 1, 2,

• p.|12s =
(
p1|12s, . . . , pj|12s, . . . , pJ12s|12s

)T
,

• bh|1s = ln
(∑Jh1s

j=1 exp
(

fT (ajh1s)β
λ1

))
; h = 1, 2,

• b2s = ln
(∑J12s

j=1 exp
(

fT (aj12s)β
µ2

))

• pj|11s =
exp

(
fT (aj11s)β

λ1

)
∑J11s
l=1 exp

(
fT (al11s)β

λ1

) ; j = 1, 2, . . . , J11s,

• pj|21s =
exp

(
fT (aj21s)β

λ2

)
∑J21s
l=1 exp

(
fT (al21s)β

λ2

) ; j = 1, 2, . . . , J21s,

• pj|12s =
exp

(
fT (aj12s)β

µ2

)
∑J12s
l=1 exp

(
fT (al12s)β

µ2

) ; j = 1, 2, . . . , J12s,

• b21|1s = ln

((∑J11s

j=1 exp
(

fT (aj11s)β
λ1

))λ1
µ1

+
(∑J21s

j=1 exp
(

fT (aj21s)β
λ2

))λ2
µ1

)
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Table 5.1: NMNL Model: There are two nests, the first nest includes two sub-nests (with J11

and J21 alternatives) and the second does not have any sub-nest with J2 alternatives, where

ãjhm denotes the jth alternative in sub-nest h of nest m.

First Nest(1) Second Nest(2)

Sub-Nest(1) Sub-Nest(2)

ã111, . . . , ãj11, . . . , ãJ1111 ã121, . . . , ãj21, . . . , ãJ2121

ã112, . . . , ãj12, . . . , ãJ1212

• p1s =

∑2
h=1

(∑Jh1s
l=1 exp

(
fT (alh1s)β

λh

))λh
µ1


µ1

(∑J12s
j=1 exp

(
fT (aj12s)β

µ2

))µ2

+

∑2
h=1

(∑Jh1s
l=1 exp

(
fT (alh1s)β

λh

))λh
µ1


µ1 ; p2s = 1− p1s,

• p1|1s =

(∑J11s
l=1 exp

(
fT (al11s)β

λ1

))λ1
µ1

∑2
h=1

(∑Jh1s
l=1 exp

(
fT (alh1s)β

λh

))λh
µ1

; p2|1s = 1− p1|1s

the elements of the above information matrix, defined by Lemma 5.1 are as follow:

I11s

= 1
λ2
1
·p1s·p1|1s

(
B1|1s −A1|1sA

T
1|1s

)
+ 1
λ2
2
·p1s·p2|1s·

(
B2|1s −A2|1sA

T
2|1s

)
+ 1
µ2

2
·p2s·

(
B2s −A2sA

T
2s

)
+

1
µ2

1
· p1s · p1|1s · p2|1s ·

(
A1|1sA

T
1|1s + A2|1sA

T
2|1s −A1|1sA

T
2|1s −A2|1sA

T
1|1s

)
+ p1s · p2s ·(

p2
1|1s ·A1|1sA

T
1|1s + p2

2|1s ·A2|1sA
T
2|1s + A2sA

T
2s

)
+p1s ·p2s ·p1|1s ·p2|1s ·

(
A1|1sA

T
2|1s + A2|1sA

T
1|1s

)
−

p1s · p2s ·
[(
p1|1s ·A1|1s + p2|1s ·A2|1s

)
AT

2s + A2s

(
p1|1s ·AT

1|1s + p2|1s ·AT
2|1s

)]
,

I12s = 1
µ3

1
· p1s · p1|1s · p2|1s ·

(
λ2 · b2|1s − λ1 · b1|1s

) (
A1|1s −A2|1s

)
− 1

µ1
· p1s · p2s ·(

λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s − µ1 · b21|1s
) (
p1|1s ·A1|1s + p2|1s ·A2|1s −A2s

)
,

I13s

= − 1
µ3

2
· p2s ·

(
B2s −A2sA

T
2s

)
β+ p1s · p2s ·

(
p1|1s ·A1|1s + p2|1s ·A2|1s −A2s

) (
1
µ2
·AT

2sβ − b2s

)
,

I14s =

− 1
λ3
1
·p1s ·p1|1s ·

(
B1|1s −A1|1sA

T
1|1s

)
β+ 1

λ1·µ2
1
p1s ·p1|1s ·p2|1s ·

(
A1|1s −A2|1s

) (
λ1 · b1|1s −AT

1|1sβ
)

+

1
λ1
· p1s · p2s · p1|1s ·

(
p1|1sA1|1s + p2|1s ·A2|1s −A2s

) (
λ1 · b1|1s −AT

1|1sβ
)
,
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I15s =

− 1
λ3
2
·p1s ·p2|1s ·

(
B2|1s −A2|1sA

T
2|1s

)
β+ 1

λ2·µ2
1
·p1s ·p1|1s ·p2|1s

(
A2|1s −A1|1s

) (
λ2 · b2|1s −AT

2|1sβ
)

+

1
λ2
· p1s · p2s · p2|1s ·

(
p2|1s ·A2|1s + p1|1s ·A1|1s −A2s

) (
λ2 · b2|1s −AT

2|1sβ
)
,

I22s = 1
µ4

1
· p1s · p1|1s · p2|1s · (λ1 · b1|1s − λ2 · b2|1s)

2 + 1
µ2

1
· p1s · p2s(λ1 · p1|1s · b1|1s + λ2 · p2|1s ·

b2|1s)
2 − 2

µ1
· p1s · p2s · b21|1s(λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s) + p1s · p2s · b2

21|1s,

I23s = 1
µ1·µ2

· p1s · p2s · (µ1 · b21|1s − λ1 · p1|1s · b1|1s − λ2 · p2|1s · b2|1s)(A
T
2sβ − µ2 · b2s),

I24s = 1
λ1·µ3

1
· p1s · p1|1s · p2|1s(λ1 · b1|1s − λ2 · b2|1s)

(
AT

1|1sβ − λ1 · b1|1s

)
+ 1

λ1·µ1
p1s · p2s · p1|1s ·(

λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s − µ1 · b21|1s
) (

AT
1|1sβ − λ1 · b1|1s

)
,

I25s = 1
λ2·µ3

1
· p1s · p1|1s · p2|1s · (λ2 · b2|1s − λ1 · b1|1s)

(
AT

2|1sβ − λ2 · b2|1s

)
+ 1

λ2·µ1
p1s · p2s ·

p2|1s(λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s − µ1 · b21|1s)
(
AT

2|1sβ − λ2 · b2|1s

)
,

I33s = 1
µ4

2
· p2s · βT

(
B2s −A2sA

T
2s

)
β + 1

µ2
2
· p1s · p2s ·

(
βTA2s − µ2 · b2s

) (
AT

2sβ − µ2 · b2s

)
,

I34s = − 1
λ1·µ2

· p1s · p2s · p1|1s ·
(
βTA2s − µ2 · b2s

) (
AT

1|1sβ − λ1 · b1|1s

)
,

I35s = − 1
λ2·µ2

p1s · p2s · p2|1s
(
βTA2s − µ2 · b2s

) (
AT

2|1sβ − λ2 · a2|1s

)
,

I44s = 1
λ4
1
· p1s · p1|1s · βT

(
B1|1s −A1|1sA

T
1|1s

)
β + 1

λ2
1·µ2

1
· p1s · p1|1s · (p2|1s + µ2

1 · p2s ·

p1|1s)
(
βTA1|1s − λ1 · b1|1s

) (
AT

1|1sβ − λ1 · b1|1s

)
,

I45s = − 1
λ1·λ2·µ2

1
p1s · p1|1s · p2|1s · (1− p2s · µ2

1)
(
βTA1|1s − λ1 · b1|1s

) (
AT

2|1sβ − λ2 · b2|1s

)
,

I55s = 1
λ4
2
· p1s · p2|1s · βT

(
B2|1s −A2|1sA

T
2|1s

)
β + 1

λ2
2·µ2

1
p1s · p2|1s(p1|1s + µ2

1 · p2s ·

p2|1s)
(
βTA2|1s − λ2 · b2|1s

) (
AT

2|1sβ − λ2 · b2|1s

)
.

Here, I11s is a q1×q1-matrix and I12s, I13s, I14s and I15s are q1×1-matrix and the other elements,
which have been denoted by I..s are 1× 1 matrix (scalar).

In this situation and with respect to class n we will have:

Sn =

(
J11

Jn11s

)(
J21

Jn21s

)(
J21

Jn21s

)
; ∀n ∈ N.
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5 OPTIMAL DESIGN IN A THREE-LEVEL NMNL MODEL

Corollary 5.1. When β = 0 then the above information matrix (Lemma 5.1) should be rewrit-

ten by (Considering a special class, we ignore index n):

• Bh|1s = 1
Jh1s

(
FT
h1sIJh1s

Fh1s

)
; h = 1, 2,

• Ah|1s = 1
Jh1s

FT
h1s1Jh1s

; h = 1, 2,

• B1|2s = 1
J12s

(
FT

12sIJ12sF12s

)
= B2s,

• A1|2s = 1
J12s

FT
12s1J12s = A2s,

• Fh1s = (f(a1h1s), . . . , f(ajh1s), . . . , f(aJh1sh1s))
T ; h = 1, 2,

• f(ajh1s) = (f1(ajh1s), . . . , fr(ajh1s), . . . , fq1(ajh1s))
T ; h = 1, 2, j = 1, 2, . . . , Jh1s,

• F12s =
(
f(a112s), . . . , f(aj12s), . . . , f(aJ12s12s)

)T
,

• fT (aj12s) = (f1(aj12s), . . . , fr(aj12s), . . . , fq1(aj12s)) ; j = 1, 2, . . . , J12s,

• b1|1s = ln (J11s), b2|1s = ln (J21s), b2s = ln (J12s), b21|1s = ln
(

(J11s)
λ1
µ1 + (J21s)

λ2
µ1

)
,

• p1s =

(∑2
h=1(Jh1s)

λh
µ1

)µ1

(J2s)
µ2+

(∑2
h=1(Jh1s)

λh
µ1

)µ1 ; p2s = 1− p1s,

• p1|1s = (J11s)
λ1
µ1∑2

h=1(Jh1s)
λh
µ1

; p2|1s = 1− p1|1s.

Thus we will have that:

I11s = 1
λ2
1
p1s · p1|1s

(
B1|1s −A1|1sA

T
1|1s

)
+ 1

λ2
2
p1s · p2|1s

(
B2|1s −A2|1sA

T
2|1s

)
+

1
µ2

2
p2s

(
B2s −A2sA

T
2s

)
+ 1

µ2
1
p1s · p1|1s · p2|1s

(
A1|1sA

T
1|1s + A2|1sA

T
2|1s −A1|1sA

T
2|1s −A2|1sA

T
1|1s

)
+

p1s · p2s

(
p2

1|1s ·A1|1sA
T
1|1s + p2

2|1s ·A2|1sA
T
2|1s + A2sA

T
2s

)
+ p1s · p2s · p1|1s ·

p2|1s

(
A1|1sA

T
2|1s + A2|1sA

T
1|1s

)
− p1s ·

p2s

[(
p1|1s ·A1|1s + p2|1s ·A2|1s

)
AT

2s + A2s

(
p1|1s ·AT

1|1s + p2|1s ·AT
2|1s

)]
,

I12s = 1
µ3

1
· p1s · p1|1s · p2|1s

(
λ2 · b2|1s − λ1 · b1|1s

) (
A1|1s −A2|1s

)
− 1

µ1
· p1s ·

p2s

(
λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s − µ1 · b21|1s

) (
p1|1s ·A1|1s + p2|1s ·A2|1s −A2s

)
,

I13s = −b2s · p1s · p2s

(
p1|1s ·A1|1s + p2|1s ·A2|1s −A2s

)
,
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I14s

= 1
µ2

1
·b1|1s ·p1s ·p1|1s ·p2|1s

(
A1|1s −A2|1s

)
+b1|1s ·p1s ·p2s ·p1|1s

(
p1|1s ·A1|1s + p2|1s ·A2|1s −A2s

)
,

I15s

= 1
µ2

1
·b2|1s ·p1s ·p1|1s ·p2|1s ·

(
A2|1s −A1|1s

)
+b2|1s ·p1s ·p2s ·p2|1s ·

(
p2|1s ·A2|1s + p1|1s ·A1|1s −A2s

)
,

I22s = 1
µ4

1
· p1s · p1|1s · p2|1s · (λ1 · b1|1s − λ2 · b2|1s)

2 + 1
µ2

1
· p1s · p2s(λ1 · p1|1s · b1|1s + λ2 · p2|1s ·

b2|1s)
2 − 2

µ1
· p1s · p2s · b21|1s(λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s) + p1s · p2s · b2

21|1s,

I23s = − 1
µ1
· b2s · p1s · p2s · (µ1 · b21|1s − λ1 · p1|1s · b1|1s − λ2 · p2|1s · b2|1s),

I24s = − 1
µ3

1
· b1|1s · p1s · p1|1s · p2|1s(λ1 · b1|1s − λ2 · b2|1s)− 1

µ1
· b1|1s · p1s · p2s ·

p1|1s
(
λ1 · p1|1s · b1|1s + λ2 · p2|1s · b2|1s − µ1 · b21|1s

)
,

I25s = − 1
µ3

1
· b2|1s · p1s · p1|1s · p2|1s(λ2 · b2|1s − λ1 · b1|1s)− 1

µ1
· b2|1s · p1s · p2s · p2|1s(λ1 · p1|1s ·

b1|1s + λ2 · p2|1s · b2|1s − µ1 · b21|1s),

I33s = b2
2s · p1s · p2s,

I34s = −b2s · b1|1s · p1s · p2s · p1|1s,

I35s = −b2s · b2|1s · p1s · p2s · p2|1s,

I44s = 1
µ2

1
· b2

1|1s · p1s · p1|1s · (p2|1s + µ2
1 · p2s · p1|1s),

I45s = − 1
µ2

1
· b1|1s · b2|1s · p1s · p1|1s · p2|1s · (1− p2s · µ2

1),

I55s = 1
µ2

1
· b2

2|1s · p1s · p2|1s · (p1|1s + µ2
1 · p2s · p2|1s),

where Ir denotes an r × r-identity matrix and 1r is a r dimensional vector which all of its
elements are one.

5.3 D-Optimal Criterion

Taking into account (5.6) and (5.7), consider the following designs to fit the model, which was
introduced in Table 5.1:

ξn =

{
Cn1 Cn2 · · · CnSn
wn1 wn2 · · · wnSn

}
∈ Ξn;n = 1, 2, . . . , N. (5.8)
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5 OPTIMAL DESIGN IN A THREE-LEVEL NMNL MODEL

Table 5.2: NMNL Model: There are two nests, the first nest includes two sub-nest each with

two alternatives and the second nest does not sub-nest and contains two alternatives.
First nest(1) Second nest(2)

Sub-nest(1) Sub-nest(2)

ã111 , ã211 ã121 , ã221 ã112 , ã212

The information matrix of the design (5.8) is calculated as follows:

I(ξn,θ) =
Sn∑
s=1

wns · I(Cns,θ), (5.9)

where wns is the weight (frequency) of the choice set Cns. Moreover, the local D-optimality
criterion at θ is considered by:

Ψ(ξ,θ) = (det(I(ξ,θ)))−1,

where I(ξ,θ)) =
∑N

n=1 αn · I(ξn,θ));
∑N

n=1 αn = 1, 0 ≤ αn ≤ 1;∀n ∈ N . This case, in which
ξ∗ minimizes the local D-optimal criterion, is called the locally D-optimal design and will be
obtained by the solution:

ξ∗ = arg min
ξ∈Ξ

Ψ(ξ,θ), (5.10)

where Ξn ⊂ Ξ and

Ξn =

{
ξn|

Sn∑
s=1

wns = 1, 0 ≤ wns ≤ 1; s ∈ Sn

}
.

5.4 Example

Here is a population with three attributes, each comprised of two levels. In this situation,
consider a three-level NMNL model, which includes six possible alternatives in two nests (Ta-
ble 5.2;

∑2
m=1

∑Hm
h=1 Jhm = 2 + 2 + 2 = J , where (1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1),

(−1, 1, 1), (−1, 1,−1) characterize alternatives ã111, ã211, ã121, ã221, ã112 and ã212, respectively).
In this situation, we consider experiments, which include six choice sets each with five alterna-
tives (Table 5.3, Where ajnhms denotes jth alternatives in class n of sub-nest h of the nest m in
choice set s), where there are three classes each with two choice sets as follow:

• S1 =

(
2
2

)(
2
2

)(
2
1

)
,

• S2 =

(
2
2

)(
2
1

)(
2
2

)
,
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Table 5.3: NMNL Model (two nests, the first nest with two sub-nests and the second does not

sub-nest): There are three classes, N = 3, each with two choice sets (Cns = Cs′ ;∀n ∈ N, s ∈
Sn, s′ = 1, . . . , 6), based on ajnhms, which denotes the jth alternative in class n of the sub-nest

h of the nest m in choice set s.
Choice Set (Cns) First Nest(1) Second Nest(2)

Sub-Nest(1) Sub-Nest(2)

C11 = C1 a11111(ã111), a21111(ã211) a11211(ã121), a21211(ã221) a11121(ã112)

C12 = C2 a11112(ã111), a21112(ã211) a11212(ã121), a21212(ã221) a11122(ã212)

C21 = C3 a12111(ã111), a22111(ã211) a12211(ã121) a12121(ã112), a22121(ã212)

C22 = C4 a12112(ã111), a22112(ã211) a12212(ã221) a12122(ã112), a22122(ã212)

C31 = C5 a13111(ã111) a13211(ã121), a23211(ã221) a13121(ã112), a23121(ã212)

C32 = C6 a13112(ã211) a13212(ã121), a23212(ã221) a13122(ã112), a23122(ã212)

• S3 =

(
2
1

)(
2
2

)(
2
2

)
.

In this case, three classes (N = 3) we found to define the design and because of Sn < 7;∀n =
1, 2, 3, we have to combine them in order to define a suitable design. Thus there are six
choice sets (Table 5.3) with their design matrixes, as shown by Table 5.4. In this situation,
θ = (β1, β2, β3, µ1, µ2, λ1, λ2)T is full parameters vector. In this case and keeping to RUM
conditions (Subsection 2.2.2), we will encounter the two conditions as follows:

1. µm ≤ 1
1−pms ;m = 1, 2

2. λh1 ≤ µ1

(1+µ1ph|1s)(1−p1s))
;h = 1, 2 and ∀s ∈ S,

where S = {S1,S2,S3}.
For estimating the parameters of the model, which have been described on Table 5.2 and based
on experiments 2 + 2 + 2/5/6 (considering six choice sets each with five alternatives), consider
the following design:

ξ =

{
C11 C12 C21 C22 C31 C32

w11 w12 w21 w22 w31 w32

}
∈ Ξ. (5.11)

The information matrix of design (5.11) is calculated by I(ξ,θ) =
∑3

n=1

∑2
s=1wns · I(Cns,θ).

Specifically, let β = 0. Now, according to Lemma 5.1 and Corollary 5.1, the following
assumptions are used to calculate the elements of the information matrix I(Cns,θ);∀s ∈ Sn, n =
1, 2, 3 (To adapt to Lemma 5.1 we consider Cns = Cs′ ; s

′ = 1, 2, . . . ,
∑N

n=1

∑Sn
s=1):

For C1 = C11:
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Table 5.4: MNL Model (two nests, the first nest with two sub-nests and the second does not

sub-nest): The characterizes of three attributes each with two levels; considering six choice sets

each with five alternatives, Cns = Cs′ ;∀n ∈ N, s ∈ Sn, s′ = 1. . . . , 6.

Choice Set(Cns = Cs′) (Fhms′) = F11s′ (Fhms′) = F21s′ (Fms) = F2s

C11 = C1

[
+1 +1 +1

+1 +1 −1

] [
+1 −1 +1

+1 −1 −1

] [
−1 +1 +1

]
C12 = C2

[
+1 +1 +1

+1 +1 −1

] [
+1 −1 +1

+1 −1 −1

] [
−1 +1 −1

]
C21 = C3

[
+1 +1 +1

+1 +1 −1

] [
+1 −1 +1

] [
−1 +1 +1

−1 +1 −1

]

C22 = C4

[
+1 +1 +1

+1 +1 −1

] [
+1 −1 −1

] [
−1 +1 +1

−1 +1 −1

]

C31 = C5

[
+1 +1 +1

] [
+1 −1 +1

+1 −1 −1

] [
−1 +1 +1

−1 +1 −1

]

C32 = C6

[
+1 +1 −1

] [
+1 −1 +1

+1 −1 −1

] [
−1 +1 +1

−1 +1 −1

]

A1|11 =

 +1
+1
0

 , A2|11 =

 +1
−1
0

 , A21 =

 −1
+1
+1

 , B21 =

 +1 −1 −1
−1 +1 +1
−1 +1 +1

 ,
B1|11 =

 +1 +1 0
+1 +1 0
0 0 +1

 , B2|11 =

 +1 −1 0
−1 +1 0
0 0 +1

 , b1|11 = ln(2), b2|11 = ln(2),

b21 = 0, b21|11 = ln
(

2
λ1
µ1 + 2

λ2
µ1

)
, p

(1)
2 = 1

1+

(
2
λ1
µ1 +2

λ2
µ1

)µ1 , p1|11 = 2
λ1
µ1

2
λ1
µ1 +2

λ2
µ1

,

p1|111 = 1
2
, p1|211 = 1

2
.

For C2 = C12:

A1|12 = A1|11, A2|12 = A2|11, A22 =

 −1
+1
−1

 , B22 =

 +1 −1 +1
−1 +1 −1
+1 −1 +1

 ,
B1|12 = B1|11, B2|12 = B2|11, b1|12 = b1|11, b2|12 = b2|11, b22 = 0,
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b21|12 = b21|11, p1|12 = p1|11, p22 = p21, p1|111 = p1|211 = 1
2
.

For C3 = C21:

A1|13 = A1|11, A2|13 =

 +1
−1
+1

 , A23 =

 −1
+1
0

 , B2|13 =

 +1 −1 +1
−1 +1 −1
+1 −1 +1

 ,
B23 =

 +1 −1 0
−1 +1 0
0 0 +1

 , B1|13 = B1|11, b1|13 = b1|11, b2|13 = 0,

b23 = ln(2), b21|13 = ln
(

2
λ1
µ1 + 1

)
, p1|113 = p1|111, p1|23 = 1

2
,

p23 = 2µ2

2µ2+

(
2
λ1
µ1 +1

)µ1 , p1|13 = 2
λ1
µ1

2
λ1
µ1 +1

.

For C4 = C22:

A1|14 = A1|11, A2|14 =

 +1
−1
−1

 , A24 = A23, B24 = B23,

B1|14 = B1|11, B2|13 =

 +1 −1 −1
−1 +1 +1
−1 +1 +1

 , b1|14 = b1|11, b2|14 = 0,

b24 = b23, b21|14 = ln
(

2
λ1
µ1 + 1

)
, p1|114 = p1|111, p1|24 = p1|23,

p1|14 = 2
λ1
µ1

2
λ1
µ1 +1

, p24 = 2µ2

2µ2+

(
2
λ1
µ1 +1

)µ1 .

For C5 = C31:

A1|15 =

 +1
+1
+1

 , A2|15 = A2|11, A25 = A23, B25 = B23,

B1|15 =

 +1 +1 +1
+1 +1 +1
+1 +1 +1

 , B2|15 = B2|11, b1|15 = 0, b25 = b23,
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Table 5.5: NMNL Model, µ1 = 2λ, µ2 = 4λ (two nests, first nest with two sub-nests and

the second does not sub-nest): Locally D-optimal design when 0 < λ ≤ 0.25 (based on RUM

conditions) with initial values w1 = 0.1, w2 = w3 = 0.2 and w.r.t local D-optimality criterion

Ψ(ξ′′,θ0) = (det(I(ξ′′,θ0)))−1.

λ 0.01000 0.05000 0.10000 0.15000 0.17000 0.20000 0.25000

w∗1 0.30920 0.31200 0.31500 0.31800 0.31950 0.32100 0.32500

w∗2 0.09540 0.09400 0.09250 0.09100 0.09050 0.08990 0.08900

w∗3 0.09540 0.09400 0.09250 0.09100 0.09000 0.08910 0.08600

Ψ(ξ′′,θ0) 0.00368 0.08985 0.35081 0.77476 0.98940 1.36021 2.11334

b2|15 = ln(2), b21|15 = ln
(

2
λ2
µ1 + 1

)
, p1|215 = 1

2
, p1|25 = p1|23,

p25 = 2µ2

2µ2+

(
2
λ2
µ1 +1

)µ1 , p1|15 = 1

2
λ2
µ1 +1

.

For C6 = C32:

A1|16 =

 +1
+1
−1

 , A2|16 = A2|11, A26 = A23, B26 = B23,

B1|16 =

 +1 +1 −1
+1 +1 −1
−1 −1 +1

 , B2|16 = B2|11, b1|16 = 0, b26 = a23,

b2|16 = b2|11, b21|16 = ln
(

2
λ2
µ1 + 1

)
, p1|216 = p1|215, p1|26 = p1|23,

p26 = 2µ2

2µ2+

(
2
λ2
µ1 +1

)µ1 , p1|16 = 1

2
λ2
µ1 +1

.

According to the rule of permutation, the levels of third attribute in choice sets C1 and C2 will
acquire permutation between these two choice sets. Also, a permutation between the two choice
sets C3 and C4 exists with respect to the permutation of the levels of the third attribute. By
permutation, the levels of the third attribute, we will encounter permutation between the two
choice sets C5 and C6. Thus, we can define a new design to fit the model, already introduced
by Table 5.2 and according to Table 5.4, as follows:

ξ′ =

{
C2 C1 C4 C3 C6 C5

w1 w2 w3 w4 w5 w6

}
∈ Ξ′, (5.12)
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Table 5.6: NMNL Model, µ1 = 0.15, µ2 = 0.25 and λ1 = 0.1 (two nests, first nest with two sub-

nests and the second does not sub-nest): Locally D-optimal design when 0 < λ2 ≤ 0.150 (based

on RUM conditions) with initial values w1 = 0.1, w2 = w3 = 0.2 and w.r.t local D-optimality

criterion Ψ(ξ′′,θ0) = (det(I(ξ′′,θ0)))−1.

λ2 0.01000 0.05000 0.06000 0.08000 0.10000 0.12000 0.15000

w∗1 0.33100 0.33380 0.32440 0.31330 0.30950 0.31030 0.31650

w∗2 0.00000 0.00010 0.02820 0.06570 0.09530 0.11830 0.14580

w∗3 0.16900 0.16610 0.14740 0.12100 0.09520 0.07140 0.03770

Ψ(ξ′′,θ0) 0.05879 0.15900 0.17522 0.19926 0.21502 0.22534 0.23478

Table 5.7: NMNL Model, µ1 = µ2 = λ1 = λ2 = λ (two nests, first nest with two sub-nests

and the second does not sub-nest): Locally D-optimal design when 0 < λ ≤ 1 (based on RUM

conditions) with initial values w1 = 0.1, w2 = w3 = 0.2 and w.r.t local D-optimality criterion

Ψ(ξ′′,θ0) = (det(I(ξ′′,θ0)))−1.

λ 0.05000 0.10000 0.15000 0.20000 0.30000 0.40000 0.50000 0.60000

w∗1 0.28890 0.29080 0.29260 0.29430 0.29790 0.30110 0.30400 0.30680

w∗2 0.10560 0.10460 0.10370 0.10290 0.10120 0.09980 0.09880 0.09820

w∗3 0.10550 0.10460 0.10370 0.10280 0.10090 0.09910 0.09710 0.09500

Ψ(ξ′′,θ0) 0.02689 0.10466 0.22959 0.39868 0.86051 1.47810 2.24747 3.17183
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where Ξ′ ⊂ Ξ; Ξ′ =
{
ξ′|
∑6

s′=1ws′ = 1, ws′ ≥ 0; ∀s′ = 1, 2, . . . , 6
}
.

In this situation, in order to have an equation between the two designs ξ (5.11) and ξ′ (5.12),
the following design can be considered:

ξ
′′

=

{
C1 C2 C3 C4 C5 C6

w1 w1 w2 w2 w3 w3

}
∈ Ξ. (5.13)

Here w1 + w2 + w3 = 1
2
.

For simplicity, suppose that λ1 = λ2 = λ. Then, it is seen that p21 = p22, p23 = p2s′ ;∀s′ =
4, 5, 6. According to the RUM conditions and the six choice sets, C1 to C6, we will encounter
the following conditions:

1) µ1 ≤ (1 + 2λ+µ1),

2) µ1 · 2µ2 ≤ (2µ2 + (1 + 2
λ
µ1 )µ1),

3) µ2 · 2λ+µ1 ≤ (1 + 2λ+µ1),

4) µ2 · (1 + 2
λ
µ1 )µ1 ≤ (2µ2 + (1 + 2

λ
µ1 )µ1),

5) λ(1 + µ1

2
) ≤ µ1 · (1 + 2λ+µ1),

6) λ · 2µ2 · (1 + µ1

2
) ≤ µ1 · (2µ2 + (1 + 2

λ
µ1 )µ1).

Moreover, we know that λ ≤ µ1 and according to Table 5.2, it is to be expected that µ2 ≥ µ1

(there is any sub-nest, it has been supposed that there are not the alternatives more similar
(there are not enough similarity) than the others to make sub-nests). According to above
conditions, let us consider µ1 = 2λ and µ2 = 4λ, thus det(I(ξ,θ) will be changed to a more
function of λ, w1 and w2 where w3 = 1

2
− (w1 +w2). In this situation, the six above conditions

(RUM) will be upheld when 0 < λ ≤ 0.25. According to this condition for λ, some locally
optimal design has been calculated in Table 5.5. Table 5.5 shows that w∗1 increases as λ
increases but w∗2 and w∗3 decrease when λ increases because of the combination of alternatives
(and attributes) in the two choice sets C1 and C2 are less similar than in the other choice sets.
According to Table 5.4, we can observe that two sub-nests of the first nest in the choice sets
C1 and C2 are equal but there are two different alternatives in second nest. In this situation
because of equation between λ1 and λ2, it is observed that w∗1 increases as λ increases. In choice
sets C3 and C4, there are two different alternatives in second sub-nest of the first nest. We can
see a similar situation for choice sets C5 and C6, naturally, there are two different alternatives
in the first sub-nest of the first nest (there is no change in the second nest for choice sets C3 to
C6). With respect to the combination of the alternatives in the four choice sets C3 to C6, then
a similar result for w∗2 and w∗3 will be obtained, so that these two weights are almost equal and
decrease as λ increases (0 < λ ≤ 0.15). But, the decreasing trend of w∗3 is faster than w∗2 as
λ ≥ 0.17, then the combination of these attributes and their levels in the two C5 and C6 are
more similar than the choice sets C3 and C4.
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Table 5.8: NMNL Model, µ1 = 0.1, λ1 = λ2 = 0.08 (two nests, first nest with two sub-nests and

the second does not sub-nest): Locally D-optimal design when 0.1 ≤ µ2 ≤ 1 (based on RUM

conditions) with initial values w1 = 0.1, w2 = w3 = 0.2 and w.r.t local D-optimality criterion

Ψ(ξ′′,θ0) = (det(I(ξ′′,θ0)))−1.

µ2 0.10000 0.15000 0.20000 0.25000 0.30000 0.40000 0.50000 0.70000

w∗1 0.29640 0.30380 0.30740 0.30950 0.31100 0.31340 0.31520 0.31860

w∗2 0.10180 0.09810 0.09630 0.09530 0.09450 0.09330 0.09240 0.09070

w∗3 0.10180 0.09810 0.09630 0.09520 0.09450 0.09330 0.09240 0.09070

Ψ(ξ′′,θ0) 0.09941 0.10191 0.10319 0.10409 0.10484 0.10619 0.10750 11025

Table 5.9: NMNL Model, µ2 = 0.5, λ1 = 0.1, λ2 = 0.2 (two nests, first nest with two sub-nests

and the second does not sub-nest): Locally D-optimal design when 0.2 ≤ µ1 ≤ 0.5 (based on

RUM conditions) with initial values w1 = 0.1, w2 = w3 = 0.2 and w.r.t local D-optimality

criterion Ψ(ξ′′,θ0) = (det(I(ξ′′,θ0)))−1.

µ1 0.20000 0.25000 0.30000 0.35000 0.40000 0.45000 0.50000

w∗1 0.33330 0.33470 0.33550 0.33600 0.33630 0.33640 0.33640

w∗2 0.16670 0.16530 0.16450 0.16400 0.16370 0.16360 0.16360

w∗3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Ψ(ξ′′,θ0) 0.39644 0.56598 0.75789 0.97082 1.20394 1.45688 1.72959

Now, suppose that µ1 = 0.15, µ2 = 0.25 and λ1 = 0.1, then the RUM conditions hold if
0 < λ2 ≤ 0.15. In Table 5.6 several locally optimal designs based on Table 5.4 were obtained.
In this situation, w∗2 increases as λ2 increases (Table 5.6) but w∗3 decreases. That means the
alternatives in the second sub-nest (first nest) of choice sets C5 and C6 are much similar, but
the alternatives in choice sets C3 and C4 (w.r.t, second sub-nest) are much more dissimilar.

Another Table 5.7 which includes was calculated some locally optimal designs based on
µ1 = µ2 = λ and 0 < λ ≤ 1. In this case, RUM conditions hold. Table 5.7 denotes: w∗1
increases as λ increases, but w∗2 and w∗3 decrease. Noting the decreasing trend of w∗2 and w∗3,
we can observe that the decreasing trend of w∗3 is faster than w∗2, because of more similarity
(alternatives) in the choice sets C5 and C6 in contrast of that between C3 and C4.

With respect to fixed amounts for µ1 = 0.1 and λ1 = λ2 = 0.08 (Table 5.8), w∗2 and w∗3 are
equal and they decrease as µ2 increases, but w∗1 increases. Then, the alternatives in the second
nest (choice sets C3 to C6) are more similar than the alternatives in the second nest of the
choice sets C1 and C2.

Suppose that µ2 = 0.5, λ1 = 0.1, λ2 = 0.2. In this situation, RUM conditions hold if 0.2 ≤
µ1 ≤ 0.5. Table 5.9 showed that w∗1 increases (almost as always, with a decreasing trend) as µ1
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5 OPTIMAL DESIGN IN A THREE-LEVEL NMNL MODEL

increases. The third row of Table 5.9 denotes, w∗2 decreases (with a very weak decreasing trend)
and w∗3 is equal zero as µ1 increases. That means that the alternatives in the choice sets C5 and
C6 are much more similar than are the others. And we can say, if µ2 = 0.5, λ1 = 0.1, λ2 = 0.2
and 0.45 ≤ µ1, then:

ξ
′′∗ =

{
C1 C2 C3 C4 C5 C6

0.3364 0.3364 0.1636 0.1636 0 0

}
is a locally D-optimal design in Ξ.

According to the results which were obtained in the different classes in Table 5.5 to Table
5.9, we can say that the alternatives in the two choice sets C1 and C2 are less dissimilar than
the others (because, the optimal weights of these two choice sets increase when dissimilarity
parameters increase, although, we had sometimes faced to decreasing trend) and the alternatives
in the choice sets C5 and C6 are more similar than the others (the optimal weights of these two
choice sets decrease when dissimilarity parameters increase).

Note: To obtain a locally D-optimal (Ψ(ξ′′,θ0) = (det(I(ξ′′,θ0)))−1) design (Tables 5.5 to
5.9), Maple has been used with the initial values w1 = 0.1 and w2 = w3 = 0.2 (all of solutions are
converge). The sequential Quadratic Programming (SQP) method was also used and naturally
the number 1000 was implemented for the iteration limit.
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6 OPTIMAL DESIGN IN THE RANK-ORDER

TWO-LEVEL NMNL MODEL

A discrete choice experiment measures the importance of the features of a goods or service in
making a purchase decision. This is achieved by asking each respondent to choose his/her pre-
ferred alternative from a number of choice sets. In stated-preference experiments, respondents
may be asked to rank the alternatives instead of just identifying the one alternative that they
would choose. This ranking can be requested in a variety of ways. The respondents can be
asked to state which alternative they would choose and then, after they have made this choice,
can be asked which of the remaining alternatives they would choose, continuing through all the
alternatives. Instead, respondents can simply be asked to rank the alternatives from best to
worst. In any case, the data that the researcher obtains constitute a ranking of the alternatives
that presumably reflects the utility that the respondent obtains from each alternative.

A rank-order conjoint experiment measures the importance of the features of a goods or
service by asking the respondent to rank a certain number of alternatives within the choice
sets. Data from a rank-order experiment can be analyzed by the rank-ordered exploded Logit
(MNL, NMNL, . . . ) models (Beggs, et al. 1981), (Hausman and Ruud 1987).

The design of an experiment has a significant impact on the accuracy of the estimated
parameters of the fitted model. Choosing the appropriate alternatives and grouping them in
choice sets in the best possible way according to an optimality criterion, yields an optimal
design which guarantees precise parameter estimates and therefore an accurate view on the
preference of the customer.

In theory, when individuals are asked to rank the alternatives instead of only choosing the
most preferred option, the parameters of the choice model and hence the preferences can be
estimated more efficiently. However, in practice respondents may be unable to perform (part
of) the ranking task. This may be due to several reasons. First of all, respondents may not
be able to perform the task itself. In some cases there may be too many alternatives to rank.
Secondly, the respondent may not be able to distinguish between his less-preferred alternatives.
In any case, straightforwardly using reported rankings may lead to a substantial bias in the
parameter estimates in the rank-order logit model, see (Chapman and Staelin 1982). To solve
this issue, (Chapman and Staelin 1982) suggest to only use the first few ranks in the estimation.
They consider several rules to determine the appropriate number of ranks to use, in their words
”the explosion depth”. One of these rules is based on a pooling test for the equality of the
parameter estimates based on different rank information. (Hausman and Ruud 1987) proposed
an alternative method to test the number of ranks to use in the estimation. However, in both
approaches this number is assumed to be the same for all respondents. If ranking capabilities
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differ across individuals, this may lead to an efficiency loss.

(Vermeulen, et al. (2007) have proposed to use the D-optimality criterion which focuses on
the accuracy of the estimates of the rank-ordered MNL model (its parameters).

In this chapter we study the use of the D-optimality criterion to estimate a rank-ordered
NMNL model (full parameters). The central question is then whether the corresponding
Bayesian Db-optimal ranking design results in significantly more precise estimates and pre-
dictions than commonly used design strategies in marketing.

In the next section 6.1, we review the rank-ordered multinomial logit model (Vermeulen, et
al. (2007), then in section 6.2 we obtain the information matrix related to the rank-ordered
NMNL model and we define a special class of design and the method of obtaining locally
D-optimal design for that.

6.1 Rank-Order MNL (RO.MNL) Model

The Rank-Order Logit Model was introduced into literature by (Beggs, et al. 1981). The
model can be used to analyze the preferences of individuals over a set of alternatives,where the
preferences are partially observed through surveys or conjoint studies. Any rank order can be
regarded as a sequence of choices made by the respondent. This was used as the starting point
for the extension of the multinomial logit model to the rank-order multinomial logit model by
(Beggs, et al. 1981) where the alternatives with lower ranking are considered. In this approach,
each ranking of a choice set is converted into a number of independent pseudo-choices. In this
way, each ranking of alternatives in a choice set is considered as a sequential and conditional
choice task. The alternative with the first rank is imagined as the preferred alternative (with
the highest utility in the classical method) of the entire choice set. The next ranked alternatives
are viewed as the preferred alternatives of the choice sets consisting of all alternatives except the
ones with a better ranking. In the resulting rank-ordered multinomial logit model, a ranking
of a set of Jc alternatives is thus seen as a series of Jc − 1 choices. In this situation as classical
MNL model there are J alternatives. Then we consider C choice sets each with Jc > 1;∀c
alternatives (Section 2.1).

The rank of an alternative is determined by its utility. The utility of the alternative j in
choice set Cc experienced by respondent i is modeled as (by effects-type coding, Section 2.1),

Ujc = fT (ajc)β + εjc =
K∑
k=1

Lk−1∑
`=1

fk`(ajc)βk,` + εjc; j = 1, 2, . . . , Jc, (6.1)

where:

• f(ajc) = (f1(ajc), . . . , fk(ajc), . . . , fK(ajs))
T ;

fk(ajc) = (fk1(ajc), . . . , fk`(ajc), . . . , fkLk−1(ajc))
T (See Section 2.1)
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6.1 Rank-Order MNL (RO.MNL) Model

is the characteristics of attributes (there are K attributes each with Lk;∀k = 1, 2, . . . , K levels)
related to alternative j (Main-effects model), which is chosen by the individual i and:

• β = (β1, . . . ,βk, . . . ,βK)T ; βk = (βk,1, . . . , βk,`, . . . , βk,Lk−1)T

is p-dimensional vector of parameters (p =
∑K

k=1(Lk−1)) where
∑Lk

`=1 βk` = 0 and εjs are error
terms which have i.i.d extreme value distribution (type II) (Section 2.1).

Now, suppose that Y(1), . . . , Y(j), . . . , Y(Jc) denote the rank-alternative variables of a choice set
with Jc alternatives. For example, Y(1) = r(1) means that alternative r(1); (r(1) ∈ {1, 2, . . . , Jc})
has the first rank with the highest utility (Ur(1)c = maxj∈Cc Ujc) and Y(2) = r(2) means that
alternative r(2) has the second rank, its utility is less than the utility of r(1) and greater than
the remaining alternatives (Ur(2)c = maxj∈Cc(r(1))

Ujc and Ur(2)c < Ur(1)c) or we can say, Y(2)

denotes an alternative with the second rank in original choice set. However, after removing
the alternative with the first rank, Y(2) will be denoted an alternative with the first rank in the
new choice set (a choice set without first rank alternative). In this situation Cc(j) denotes a
choice set (choice set c), which excludes alternative j. In this situation and to obtain choice
probabilities, we can also define the observation variables as follows:

Yr(1)c =

{
1, Ur(1)c = maxj∈Cc Ujc;

0, otherwise.
, Yr(2)s =

{
1, Ur(2)c = maxj∈Cc(r(1)) Ujc;

0, otherwise.

and so on. Now, we can define the probabilities of rank-order alternatives as follows:

P (Y(1) = r(1)) = Pr(1)c =
exp

(
fT (ar(1)c)β

)∑
a`∈Cs exp (fT (a`c)β)

; ar(1) ∈ Cc,

P (Y(2) = r(2)) = Pr(2)c =
exp

(
fT (ar(2)c)β

)∑
a`∈Cc(r(1))

exp (fT (a`c)β)
; ar(2) ∈ Cc(r(1)),

P (Y(3) = r(3)) = Pr(3)c =
exp

(
fT (ar(3)c)β

)∑
a`∈Cc(r(1),r(2))

exp (fT (a`c)β)
; ar(3) ∈ Cc(r(1),r(2)),

...

P (Y(Jc) = r(Jc)) = Pr(Jc)c = 1; ar(Jc) ∈ Cc(r(1),r(2),...,r(Jc−1)),

where P (A) denotes probability of an event A. In this model, we expect to obtain more infor-
mation about the preferences of respondents than in the classical conjoint choice experiment.
Also, if we use the same number choice sets (to compare with classical conjoint experiment)
then the parameters of model can be more accurately estimated. (Chapman and Staelin 1982)
have also attempted to achieve a desired degree of precision of the estimates, less choice sets
are required in a rank-order conjoint experiment.

This model may be better than the classical model but there are some problems in its
application, for example, the major disadvantage of using a rank-order conjoint experiment is
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6 OPTIMAL DESIGN IN THE RANK-ORDER TWO-LEVEL NMNL MODEL

the weak link with reality: in real life, respondents choose the alternative, which they like most
and hardly ever select a second best item and the other is the alternatives with lower ranking.

According to (Chapman and Staelin 1982), lower rankings are less reliable if the number of
alternatives to rank is high. Of course, we try to solve this problem by considering the number
of alternatives less than the total number of alternatives(in a choice set).

Now, consider a combination of alternatives like (r(1), r(2), . . . , r(Jc)); r(1), r(2), . . . , r(Jc) ∈
{1, 2, . . . , Jc} to analyze data, means that the alternative r(1) has the first rank, alternative
r(2) has the second rank and so on (r(j) 6= r(j′), j 6= j′ = 1, 2, . . . , Jc). Because there are Jc cases
for r(1) and Jc−1 cases for r(2) and at last there is just one case for r(Jc), we define the following
variable to introduce variable observations in rank-order MNL model:

Y(r(1)r(2)...r(Jc))
=

{
1, if Y(1) = r(1), Y(2) = r(2), . . . , Y(Jc) = r(Jc);
0, otherwise,

(6.2)

where:

E(Y(r(1)r(2)...r(Jc))
) =Pr(1)c · Pr(2)c . . . Pr(Jc)c.

As stated previously was told, we consider S (S ⊂ C) choice sets each with Js = J ;∀s alterna-
tives to obtain optimal design. In this chapter, we act as similar previous Chapters (Chapters
3, 4 and 5). Thus, according to the choice rank probabilities and Equation (6.2), the Likelihood
function can be defined as follows:

L(Cs,β) =
J∏

r(1)=1

J∏
r(2)=1

. . .
J∏

r(J)=1︸ ︷︷ ︸
r(1) 6=r(2) 6=... 6=r(J)

(
Pr(1)s · Pr(2)s . . . Pr(J)s

)Y(r(1)r(2)...r(J))

and the log-likelihood function as:

`(Cs,β) =
J∑

r(1)=1

J∑
r(2)=1

. . .

J∑
r(J)=1︸ ︷︷ ︸

r(1) 6=r(2)... 6=r(J)

Y(r(1)r(2)...r(J)) · ln
(
Pr(1)s · Pr(2)s . . . Pr(J)s

)

=
J∑

r(1)=1

J∑
r(2)=1

. . .
J∑

r(J)=1︸ ︷︷ ︸
r(1) 6=r(2)... 6=r(J)

Y(r(1)r(2)...r(J)) ·
(

lnPr(1)s + lnPr(2)s + . . .+ lnPr(J)s

)
. (6.3)
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Lemma 6.1. The information matrix based on Log-Likelihood (6.3) is obtained by:

IR(MNL)(Cs,β) = IMNL(Cs,β) +
J∑

r(1)=1

Pr(1)s · IMNL(Cs(r(1)),β)

+
J∑

r(1) 6=r(2)

Pr(1)sPr(2) · IMNL(Cs(r(1),r(2)),β) +

+ . . .+
J∑

r(1) 6=r(2) 6=... 6=r(J−2)

Pr(1)Pr(2) . . . Pr(J−2)
· IMNL(Cs(r(1),r(2),...,r(J−2)),β),

Proof:

IR(MNL)(Cs,β) = −E
(
∂2`(Cs,β)
∂β∂βT

)
=

J∑
r(1)=1

J∑
r(2)=1

. . .

J∑
r(J)=1︸ ︷︷ ︸

r(1) 6=r(2)... 6=r(J)

Pr(1)s · Pr(2)s . . . Pr(J)s ·

(
−
∂2 lnPr(1)s
∂β∂βT

−
∂2 lnPr(2)s
∂β∂βT

−
∂2 lnPr(J)s

∂β∂βT

)

=
J∑

r(1)=1

Pr(1)s

(
−∂2 lnPr(1)s
∂β∂βT

)
+

J∑
r(1)=1

Pr(1)s

J∑
r(2)=1

Pr(2)s ·

(
−∂2 lnPr(2)s
∂β∂βT

)

+
J∑

r(1)=1

J∑
r(2)=1︸ ︷︷ ︸

r(1) 6=r(2)

Pr(1)s · Pr(2)s
J∑

r(3)=1

Pr(3)s

(
−∂2 lnPr(3)s
∂β∂βT

)
+ . . .+

+
J∑

r(1)=1

J∑
r(2)=1

. . .

J∑
r(J−2)=1︸ ︷︷ ︸

r(1) 6=r(2)...6=r(J−2)

Pr(1)s · Pr(2)s . . . Pr(J−2)s

J∑
r(J−1)=1

Pr(J−1)s

(
−
∂2 lnPr(J−1)s

∂β∂βT

)
,

where:

•
∑J

r(1)=1 Pr(1)s

(
−∂2 lnPr(1)s

∂β∂βT

)
= IMNL(Cs,β),

•
∑J

r(2)=1 Pr(2)s ·
(
−∂2 lnPr(2)s

∂β∂βT

)
= IMNL(Cs(r(1)),β),

•
∑J

r(3)=1 Pr(3)s

(
−∂2 lnPr(3)s

∂β∂βT

)
= IMNL(Cs(r(1),r(2)),β),

•
∑J

r(J−1)=1 Pr(J−1)s

(
−
∂2 lnPr(J−1)s

∂β∂βT

)
= IMNL(Cs(r(1),r(2),...,r(J−2)),β).
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where:

• IMNL(Cs,β) = Fs
T (Ps − psps

T )Fs: The information matrix of a discrete choice experi-
ment (classic) (3.14) by choice set with size J (Sandor and Wedel 2001),

• IMNL(Cs(j),β) = FT
s(j)(Ps(j) − ps(j)p

T
s(j))Fs(j);

• Cs(j) denotes a choice set without alternative j.

• ps(j) = (p1s, . . . , pj−1s, pj+1s, . . . , pJs)
T : is a (J − 1)-dimensional vector containing the

probabilities.

• Ps(j): is a diagonal matrix with the elements of ps(j) on its diagonal.

• Fs(j) = (f(a1s), . . . , f(aj−1s), f(aj+1s), . . . , f(aJs))
T : is the ((J − 1) × p) design matrix

containing all attribute levels of the profiles in choice set, except profile j.

The expression for the information matrix of a rank-order experiment proves that asking the
respondents to rank the alternatives in a choice set provides extra information. Because this
difference IR(MNL)

(Cs,β)− IMNL(Cs,β) is a nonnegative definite matrix, which ensures that the
amount of information in a ranking experiment is more extensive than in classical experiments
in a choice experiment. In other words, ranking is always better.

Similar to a discrete choice experiment which was used the criterion (Atkinson, et al. 2007):

Ψ′(ξ,β) = ln (det(IMNL(ξ,β)))−1

to obtain the local D-optimal criterion, in this case (rank-order MNL) is also used a similar
situation, means that:

Ψ′R(ξ,β) = ln
(
det(IR(MNL)(ξ,β))

)−1

to obtain locally D-optimal design, where ξ is a design which includes S choice sets, C1, . . . ,Cs, . . . ,Cs.

6.2 Rank-Order Two-Level Nested MNL (RO.NMNL)

Models

Suppose that there are J alternatives (in choice set Cs), which have an upper ranking in
comparison to the others and which have been divided into M nests. In this case, the utility of
choosing an alternative j and nest m by individual i is calculated as follows (subsection 2.2.1;
ignored index i):

Ujms = Uj|ms + Ums,

where Uj|ms = vj|ms + εj|ms and Ums = vms + εms (see Chapters 2 and 4).
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Now, consider that (Y(1), Z(1)),. . . , (Y(j), Z(j)), . . . , (Y(Js), Z(Js)) denote the joint rank alterna-
tive variables of a choice set with Js alternatives, where variable Y(r) and Z(r) denote an alterna-
tive and a nest with rank r. For example, (Y(1) = r(1), Z(1) = m(1)) means that the alternative
r(1) ∈ Cm(1)s from nest m(1) ∈M have the first rank, where Ur(1)|m(1)s = maxj∈Cm(1)s

Uj|m(1)s and

Um(1)s = maxm∈M Ums, also (Y(2) = r(2), Z(2) = m(2)) means that alternative r(2) from nest m(2)

have the second rank. Certainly in the original choice set, but in the new choice set (it is denoted
by Cs(r(1)) after removing the alternative r(1)) alternative r(2) and nest m(2) will have the first
rank, where m(2) may be the same as nest m(1) or not. In this situation, if there is m(1) = m(2)

then r(1) and r(2) selected from the same nest, then Ur(2)|m(2)s = maxj∈Cm(2)s(r(1))
Uj|m(2)s, where

Cms(j) denotes the choice set of nest m, which excludes the alternative j.
We know that if corr(εj|m(1)s, εj′|m(1)s) = ρm(1)

; j 6= j′ and corr(εj|m(2)s, εj′|m(2)s) = ρm(2)
; j, j′ 6=

j(1) then ρm(1)
= ρm(2)

if m(1) = m(2). In this case, keeping to the relation between ρ. and λ.
(Subsection 2.2.1), it can be written that λm(1)

= λm(2)
, where λm(1)

and λm(2)
are dissimilar-

ity parameters related to nests, which include the first rank alternative and the second rank
alternative, respectively.

In this situation, we denote the choice probability related to choosing an alternative with the
rank r as follows (w.r.t the choice set Cs):

Pr(j)m(r)s = P (Y(r) = r(j), Z(r) = m(r))

= P (Y(r) = r(j)|Z(r) = m(r)) · P (Z(r) = m(r))

= Pr(j)|m(r)s · Pm(r)s.

Now, for alternative with the first rank we will have:

Pr(1)m(1)s =
exp

(
fT (ar(1)s)β

λm(1)

)
∑Jm(1)s

j=1 exp
(

fT (ajs)β
λm(1)

) ·
(∑

aj∈Cm(1)s
exp

(
fT (ajs)β
λm(1)

))λm(1)

(∑
j∈Cm(1)s

exp
(

fT (ajs)β
λm(1)

))λm(1)

+
∑M
m 6=m(1)

(∑
aj∈Cms exp

(
fT (ajs)β

λm

))λm
and Cms denotes a choice set, which includes all of alternatives in nest m (subsection 2.2.1) and
Cm(1)s denotes a set of all of alternatives in nest m(1) which has the first rank with respect to
choice set Cs. Also, vector xr(j)s denotes the characterizes of the attributes related to alternative
r(j), which has the rank r (w.r.t choice set Cs)

Similarly, the choice probabilities of the second rank alternative and nest are obtained by:

Pr(2)m(2)
= P (Y(2) = r(2), Z(2) = m(2))

= P (Y(2) = r(2)|Z(2) = m(2)) · P (Z(2) = m(2))

= Pr(2)|m(2)s · Pm(2)s,

where:

Pr(2)|m(2)s =

exp

 fT (ar(2)s
)β

λm(1)


∑J

r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

) ; m(1) = m(2),
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=

exp

 fT (ar(2)s
)β

λm(2)


∑Jm(2)

s

j=1 exp

(
fT (ajs)β

λm(2)

) ; m(1) 6= m(2)

and

Pm(2)s =

∑J
r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

∑J
r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+

M∑
m=1︸︷︷︸

(m6=m(1))

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ;m(1) = m(2),

=

(∑Jm(2)s

j=1 exp

(
fT (ajs)β
λm(2)

))λm(2)

∑J
r(1)
m(1)

s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+

(∑Jm(2)s

j=1 exp

(
fT (ajs)β
λm(2)

))λm(2)
+

M∑
m=1︸︷︷︸

(m 6=m(1),m(2))

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ; m(1) 6=

m(2),

where:

• Jms denotes the number of alternatives in nest m of choice set Cs.

• Jm(1)s is the number of alternatives in nest m(1) which has the first rank, with respect to
choice set Cs.

• Jm(2)s denotes the number of alternatives in nest m(2) which has the second rank based
on the original choice set and has the first rank with respect to a new choice set (after
removing alternative r(1)) so that if m(1) = m(2) then Jm(2)s = Jm(1)s − 1.

• Jr(1)m(1)s is the number of alternatives in nest m(1) after choosing alternative r(1) and remov-
ing it.

Also, the conditional choice probabilities related to the third rank alternative have been calcu-
lated by:

Pr(3)|m(3)s =

exp

 fT (ar(3)s
)β

λm(1)


∑J

r(1),r(2)
m(1)

s

j=1 exp

(
fT (ajs)β
λm(1)

) ; m(3) = m(2) = m(1),

=

exp

 fT (ar(3)s
)β

λm(2)


∑J

r(2)
m(2)s

j=1 exp

(
fT (ajs)β
λm(2)

) ; m(3) = m(2) 6= m(1),
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=

exp

 fT (ar(3)s
)β

λm(1)


∑J

r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

) ; m(3) = m(1) 6= m(2),

=

exp

 fT (ar(3)s
)β

λm(3)


∑Jm(3)s

j=1 exp

(
fT (ajs)β
λm(3)

) ; m(3) 6= m(2) = m(1)

=

exp

 fT (ar(3)s
)β

λm(3)


∑Jm(3)s

j=1 exp

(
fT (ajs)β
λm(3)

) ; m(3) 6= m(2) 6= m(1).

The marginal choice probabilities related to the third rank nest for difference cases are calculated
as follows:

Pm(3)s =

∑J
r(1),r(2)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

∑J
r(1),r(2)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+
∑M
m=1

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ; m(3) = m(2) = m(1),

=

∑J
r(2)
m(2)s

j=1 exp

(
fT (ajs)β
λm(2)

)
λm(2)

∑J
r(2)
m(2)s

j=1 exp

(
fT (ajs)β
λm(2)

)
λm(2)

+

∑J
r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+
∑M
m=1

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ; m(3) = m(2) 6= m(1),

=

∑J
r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

∑J
r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+

∑J
r(2)
m(2)s

j=1 exp

(
fT (ajs)β
λm(2)

)
λm(2)

+
∑M
m=1

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ; m(3) = m(1) 6= m(2),

=

(∑Jm(3)s

j=1 exp

(
fT (ajs)β
λm(3)

))λm(3)

(∑Jm(3)s

j=1 exp

(
fT (ajs)β
λm(3)

))λm(3)
+

∑J
r(1),r(2)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+
∑M
m=1

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ; m(3) 6= m(1) = m(2),

=

(∑Jm(3)s

j=1 exp

(
fT (ajs)β
λm(3)

))λm(3)

(∑Jm(3)s

j=1 exp

(
fT (ajs)β
λm(3)

))λm(3)
+

∑J
r(1)
m(1)s

j=1 exp

(
fT (ajs)β
λm(1)

)
λm(1)

+

∑J
r(2)
m(2)s

j=1 exp

(
fT (ajs)β
λm(2)

)
λm(2)

+
∑M
m=1

(∑Jms
j=1 exp

(
fT (ajs)β

λm

))λm ;

m(3) 6= m(1) 6= m(2),

where m 6= m(1) (in the first row), m 6= m(1),m(2) (in the second and third row), m 6=
m(1),m(3) (in the forth row) and m 6= m(1),m(2),m(3) (in the last row). Also, to obtain the other
choice probabilities related to the alternatives with lower ranking like Pr(4)m(4)

, . . . , Pr(J)m(J)
, we
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act as similar way, where Js =
∑M

m=1 Jms for each choice set, Cs, and J j,j
′

ms denotes the number
of alternatives in nest m after removing the alternatives j and j′.

In this situation, we define the following observation variables to analyze the RO.NMNL
model:

Y((r(1),m(1)),(r(2),m(2)),...,(r(J),m(J))) =

{
1, (Y(1) = r(1), Z(1) = m(1)), . . . , (Y(J) = r(J), Z(J) = m(J));
0, otherwise,

where:
E(Y((r(1),m(1)),(r(2),m(2)),...,(r(J),m(J)))) = Pr(1)m(1)s · Pr(2)m(2)s . . . Pr(J)m(J)s

and J =
∑M

m=1 Jms is the number of alternatives in choice set Cs so that:

M∑
m(1)=1

M∑
m(2)=1

. . .
M∑

m(J)=1︸ ︷︷ ︸
some nests maybe equal

Jm(1)∑
r(1)=1

Jm(2)∑
r(2)=1

. . .

Jm(J)∑
r(J)=1︸ ︷︷ ︸

r(1) 6=r(2)... 6=r(J)

Pr(1)m(1)s · Pr(2)m(2)s . . . Pr(J)m(J)s = 1.

6.2.1 Information Matrix for RO.NMNL Model

In this subsection, we obtain the information matrix for the two-level RO.NMNL model. After-
wards, we define the local D-optimality criterion, which is a function based on the determinate
of the information matrix. As we know the information matrix is calculated by log-likelihood
function, where Likelihood function for RO.NMNL model is calculated as follows (w.r.t choice
set Cs):

L(Cs,θ) =
M∏

m(1)=1

M∏
m(2)=1

. . .

M∏
m(J)=1

Jm(1)s∏
r(1)=1

Jm(2)s∏
r(2)=1

. . .

Jm(J)s∏
r(J)=1︸ ︷︷ ︸

r(1) 6=r(2) 6=... 6=r(J)

(
Pr(1)m(1)s · Pr(2)m(2)s . . . Pr(J)m(J)s

)Y ′
,

where Y ′ = Y((r(1),m(1)),(r(2),m(2)),...,(r(J),m(J))).
The log-likelihood function for the two-level RO.NMNL model and was based on the above

likelihood function is calculated by:

`(Cs,θ) =
M∑

m(1)=1

M∑
m(2)=1

. . .

M∑
m(J)=1︸ ︷︷ ︸

some nests maybe equal

Jm(1)s∑
r(1)=1

Jm(2)s∑
r(2)=1

. . .

Jm(J)s∑
r(J)=1︸ ︷︷ ︸

r(1) 6=r(2)...6=r(J)

Y ′ ·Gs
(
(r(1),m(1)), (r(2),m(2)), . . . , (r(J),m(J))

)
,

(6.4)
where Gs : Cs → <− and:

Gs

(
(r(1),m(1)), (r(2),m(2)), . . . , (r(J),m(J))

)
) = lnPr(1)m(1)s + lnPr(2)m(2)s + . . .+ lnPr(J)m(J)s.
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According to the number of attributes, K, each with Lk; k = 1, 2, . . . , K levels, we define
parameters vector and the characterizes of attributes as follow (Chapter 4):

• θ = (β,λ)T ;

• β = (β1, . . . ,βk, . . . ,βK)T ;

• βk = (βk,1, . . . , βk,`, . . . , βk,Lk−1)T (w.r.t effect type codding,
∑Lk

`=1 βk` = 0),

• λ = (λ1, . . . , λm, . . . , λM)T ,

where λm have been introduced by symbol λm(r)
, which is the dissimilarity parameter related to

a nest with rank r (or it had rank r). In reality, parameters vector θ includes p+M parameters,
where p =

∑K
k=1(Lk − 1) (see Chapter 4). Also:

• vr(j)|m(r)s = fT (ar(j)m(r)s)β,

• f(ar(j)m(r)s) = (f1(ar(j)m(r)s), . . . , fk(ar(j)m(r)s), . . . , fK(ar(j)m(r)s))
T ;

• fk(ar(j)m(r)s) = (fk1(ar(j)m(r)s), . . . , fk`(ar(j)m(r)s), . . . , fkLk−1(ar(j)m(r)s))
T ,

where fk`(ar(j)m(r)s) denotes the characterize of the `th level of attribute k for alternative r(j)

(has the rank r) in nest m(r) (with rank r).

Corresponding to Equation (6.4) and definition −E
(
∂2`(Cs,θ)

∂θ∂θT

)
for the local information

matrix, we obtain:

−E
(
∂2`(Cs,θ)

∂θ∂θT

)
=

M∑
m(1)=1

M∑
m(2)=1

. . .

M∑
m(J)=1

Jm(1)s∑
r(1)=1

Jm(2)s∑
r(2)=1

. . .

Jm(J)s∑
r(J)=1︸ ︷︷ ︸

r(1) 6=r(2)... 6=r(J)

E(Y ′) ·
−∂2Gs(r(1), r(2) . . . r(J))

∂θ∂θT
,

which is the information matrix of the two-level RO.NMNL model, where:

• E(Y ′) = Pr(1)m(1)s · Pr(2)m(2)s . . . Pr(J)m(J)s

• −∂
2Gs(r(1),r(2)...r(J))

∂θ∂θT
= −

∂2 lnPr(1)m(1)s

∂θ∂θT
−

∂2 lnPr(2)m(2)s

∂θ∂θT
− · · · −

∂2 lnPr(J−1)m(J−1)s

∂θ∂θT
.
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Lemma 6.2. According to above descriptions, the information matrix of RO.NMNL model is
calculated as follow:

IR(NMNL)(Cs,θ) = INMNL(Cs,θ) +
M∑

m(1)=1

Jm(1)s∑
r(1)=1

Pr(1)m(1) · INMNL(Cs(r(1)),θ)

+
M∑

m(1),m(2)=1︸ ︷︷ ︸
maybe equal

Jm(1)s,Jm(2)s∑
r(1),r(2)=1︸ ︷︷ ︸
r(1) 6=r(2)

Pr(1)m(1) · Pr(2)m(2)INMNL(Cs(r(1),r(2)),θ) + . . .+

+
M∑

m(1),...,m(J−2)=1︸ ︷︷ ︸
maybe equal

Jm(1)s,...,Jm(J−2)s∑
r(1),...,r(J−2)=1︸ ︷︷ ︸
r(1) 6=...6=r(J−2)

Pr(1)m(1) . . . Pr(J−2)m(J−2)INMNL(Cs(r(1),...,r(J−2)),θ),

Proof:

IR(NMNL)(Cs,θ) = −E
(
∂2`(Cs,θ)
∂θ∂θT

)
=

M∑
m(1)=1

Jm(1)s∑
r(1)=1

Pr(1)m(1)s ·

(
−∂2 lnPr(1)m(1)s

∂θ∂θT

)

+
M∑

m(1)=1

Jm(1)s∑
r(1)=1

Pr(1)m(1)s

M∑
m(2)=1

Jm(2)s∑
r(2)=1

Pr(2)m(2)s ·

(
−∂2 lnPr(2)m(2)s

∂θ∂θT

)
+ · · ·+

+
M∑

m(1)=1

M∑
m(2)=1

. . .

M∑
m(J−2)=1

Jm(1)s∑
r(1)=1

Jm(2)s∑
r(2)=1

. . .

Jm(J−2)s∑
r(J−2)=1︸ ︷︷ ︸

r(1) 6=r(2)... 6=r(J−2)

Pr(1)m(1)s · Pr(2)m(2)s . . . Pr(J−2)m(J−2)s

×

 M∑
m(J−1)=1

Jm(J−1)s∑
r(J−1)=1

Pr(J−1)m(J−1)s ·

(
−∂2 lnPr(J−1)m(J−1)s

∂θ∂θT

) ,

where:

•
∑M

m(1)=1

∑Jm(1)s

r(1)=1 Pr(1)m(1)s ·
(
−∂2 lnPr(1)m(1)s

∂θ∂θT

)
= INMNL(Cs,θ),

•
∑M

m(2)=1

∑Jm(2)s

r(2)=1 Pr(2)m(2)s ·
(
−∂2 lnPr(2)m(2)s

∂θ∂θT

)
= INMNL(Cs(r(1)),θ),

•
∑M

m(J−1)=1

∑Jm(J−1)s

r(J−1)=1 Pr(J−1)m(J−1)s.

(
−∂2 lnPr(J−1)m(J−1)s

∂θ∂θT

)
= INMNL(Cs(r(1),...,r(J−2)),θ).

where Cs(j) denotes a choice set without considering alternatives j. In this case, because of
Pr(J)m(J)

= 1 then lnPr(J)m(J)
= 0. In this situation, for calculating:

• INMNL(Cs,θ) (full alternatives),
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• INMNL(Cs(r(1)),θ) (without alternative ar(1)),

• INMNL(Cs(r(1),r(2)),θ) (without alternatives (ar(1) , ar(2))),

• INMNL(Cs(r(1),...,r(J−2)),θ) (without alternatives (r(1), . . . , r(J−2)))

are used in Chapter 4, Section 4.2. For example, according to a NMNL model with two nest each
with J1s and J2s alternatives, Lemma 4.2 can be used to obtain above information matrices. In
this situation, the information matrix INMNL(Cs,θ) is calculated by Lemma 4.2, directly. But,
to obtain the information matrix INMNL(Cs(j),θ), Lemma 4.2 will be considered as follows:

I(Cs(j),θ) = −E(
∂2`(Cs(j),θ)

∂θ∂θT
) =

 I11s(j) I12s(j) I13s(j)

IT12s(j) I22s(j) I23s(j)

IT13s(j) I23s(j) I33s(j)

 ,

where I..s(j) and I..s(j) denote the elements of above information matrix without considering
alternative j and according to the following assumptions (Section 4.2):

• Ams(j) = FT
ms(j)p.|ms(j),

• Bms(j) = FT
ms(j)P.|ms(j)Fms(j),

• p.|ms(j) = (p1|ms(j), . . . , pj−1|ms(j), pj+1|ms(j), . . . , pJms(j)|ms(j))
T ,

• P.|ms(j) = diag[p1|ms(j), . . . , pj−1|ms(j), pj+1|ms(j), . . . , pJms(j)|ms(j)],

• Fms(j) = (f(a1ms), . . . , f(aj−1,ms), f(aj+1,ms), . . . , f(aJjmsms))
T ,

• f(aj′ms) = (f1(aj′ms), . . . , fh(aj′ms), . . . , fp(aj′ms))
T ; j′ 6= j,

• vms(j) = ln

(∑Jjms
j′=1 exp

(
fT (aj′ms)β

λm

))
,

• pj′|ms(j) =
exp

(
fT (aj′ms)β

λm

)
∑J

j
ms
l=1 exp

(
fT (alms)β

λ1

) ,

• pms(j) =

(∑J
j
ms
l=1 exp

(
fT (alms)β

λm

))λm
(∑J

j
1s
l=1 exp

(
fT (al1s)β

λ1

))λ1

+

(∑J
j
2s
l=1 exp

(
fT (al2s)β

λ2

))λ2
.

We will have:

[I11s(j)]p×p = p1s(j)
λ2

1
(B1s(j)−A1s(j)AT

1s(j))+
p2s(j)
λ2

2
(B2s(j)−A2s(j)AT

2s(j))+p1s(j)p2s(j)(A1s(j)AT
1s(j)+A2s(j)AT

2s(j)−
A1s(j)AT

2s(j) −A2s(j)AT
1s(j))

[I12s(j)]p×1 = −p1s(j)
λ3

1
(B1s(j) −A1s(j)AT

1s(j))β + p1s(j)p2s(j)
λ1

(A1s(j) −A2s(j))(λ1 · v1s(j) −AT
1s(j)β)
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Table 6.1: NMNL Model: There are two Nests each with J1 and J2 alternatives (Chapter 4)

nest(I) nest(II)

ã11, . . . , ãj1, . . . , ãJ11 ã12, . . . , ãj2, . . . , ãJ22

[I13s(j)]p×1 = −p2s(j)
λ3

2
(B2s(j) −A2s(j)AT

2s(j))β + p1s(j)p2s(j)
λ2

(A2s(j) −A1s(j))(λ2 · v2s(j) −AT
2s(j)β)

[I22s(j)]1×1 = p1s(j)
λ4

1
βT (B1s(j) −A1s(j)AT

1s(j))β + p1s(j)p2s(j)
λ2

1
(λ1 · v1s(j) − βTA1s(j))(λ1 · v1s(j) −AT

1s(j)β)

[I33s(j)]1×1 = p2s(j)
λ4

2
βT (B2s(j) −A2s(j)AT

2s(j))β + p1s(j)p2s(j)
λ2

2
(λ2 · v2s(j) − βTA2s(j))(λ2 · v2s(j) −AT

2s(j)β)

[I23s(j)]1×1 = − 1
λ1·λ2

p1s(j)p2s(j)(λ1 · v1s(j) − βTA1s(j))(λ2 · v2s(j) −AT
2s(j)β)

In above information matrix, all of notations with (j) will be calculated without alternative
j and J jms denotes the number of alternatives in nest m of choice set s without alternative j,
such that J jms = Jms − 1.

6.2.2 D-Optimal Design

Similar to the classical choice experiments, which have been used (Chapter 4):

Ψ(ξ,θ) = ln det
(
I−1
NMNL(ξ,θ)

)
to obtain the local D-optimal criterion, in the RO.NMNL is also used:

ΨR(ξ,θ) = ln det
(
I−1
R(NMNL)(ξ,θ)

)
to calculate the localD-optimal criterion, where ξ is a design with choice sets C1, . . . ,Cs, . . . ,CS .
In this case, ξ∗, which minimizes ΨR(ξ,θ) for true value of θ is called local D-optimality design,
where:

ξ∗ = arg min
ξ∈Ξ

ΨR(ξ,θ)

for true value of parameters.

6.2.3 Example

Imagine that there is a two-level NMNL model with two nests such that one of them has J1

alternatives and the other includes J2 alternatives (Table 6.1), where J1 + J2 = J .
In this situation, we select three alternatives, Js = 3;∀s ∈ S, from Table 6.1 (It is assumed

that just three alternatives have suitable ranking). In this case, we will encounter two classes
(N = 2), where:

• S1 =

(
J1

1

)
×
(
J2

2

)
,
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• S2 =

(
J1

2

)
×
(
J2

1

)
.

According to the dimension of parameters, β (p-dimensional)) and λ (2-dimensional), there is
a (p + 2)-dimensional parameters vector. In most of non-Bayesian linear problems, an upper
bound on the number of support points in an optimal design is available, see (Pukelsheim 1993).
The D-optimality criterion in linear models typically leads to an optimal number of support
points that is the same number of unknown parameters and the design takes an equal number
of observations at each point (Silvey 1980). The bound also applies to most local optimality
criteria and Bayesian criteria for linear models (see, (Chernoff 1972)). In contrast for nonlinear
models, there is no such bound available on the number of support points. Thus we define the
following design based on two classes (Chapter 4):

ξn =

{
Cn1 Cn2 · · · CnSn
wn1 wn2 · · · wnSn

}
∈ Ξn;n = 1, 2. (6.5)

Similarity (Chapter 4), the information matrix corresponding to ξn (6.5) is calculated by:

IR(NMNL)(ξn,θ) =
Sn∑
s=1

wnsIR(NMNL)(Cns,θ),

where the local D-optimality criterion is defined as follows:

ΨR(ξn,θ) = ln det
(
I−1
R(NMNL)(ξn,θ)

)
.

Now, with respect to ξn;n = 1, 2 and the combination of them, ξ =
∑2

n=1 αnξn, we will have:

ξ∗ = arg min
ξ∈Ξ

ΨR(ξ,θ) (6.6)

is locally D-optimal design in Ξ (Ξ =
⋃2
n=1 Ξn), where (

∑2
n=1 αn = 1, αn ≥ 0;n = 1, 2):

ΨR(ξ,θ) ≤
2∑

n=1

αnΨR(ξn,θ).

Lemma 6.3. The information matrix of a choice set which includes two nests, so that one of

them includes two alternatives and the other has one (Figure 6.1), is calculated by:

IR(NMNL)
(Cs,θ) = INMNL(Cs,θ) +

2∑
m(1)=1

Jm(1)s∑
r(1)=1

Pr(1)m(1)s · INMNL(Cs(r(1)),θ),
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6 OPTIMAL DESIGN IN THE RANK-ORDER TWO-LEVEL NMNL MODEL

Figure 6.1: NMNL Model: There are two nests(for choice set Cs), one of them with two

alternatives and one for another (ajms denotes the jth alternative of the mth nest from choice

set s)

where Pr(1)m(1)s = Pr(1)|m(1)s · Pm(1)s and

Pr(1)|m(1)s =


exp

 fT (ar(1)s
)β

λm(1)


exp

 fT (ar(1)s
)β

λm(1)

+exp

(
fT (ajs)β
λm(1)

) if Cm(1)s = {ar(1)m(1)s, ajm(1)s}

1 if Cm(1)s = {ar(1)m(1)s}

, (6.7)

Pm(1)s =



exp

 fT (ar(1)s
)β

λm(1)

+exp

(
fT (ajs)β
λm(1)

)λm(1)

exp

 fT (ar(1)s
)β

λm(1)

+exp

(
fT (ajs)β
λm(1)

)λm(1)

+exp (fT (aj′s)β)

if Cm(1)s = {ar(1)m(1)s, ajm(1)s}

exp
(
fT (ar(1)s)β

)
(

exp

(
fT (ajs)β

λm

)
+exp

(
fT (aj′s)β

λm

))λm
+exp

(
fT (ar(1)s)β

) if Cm(1)s = {ar(1)m(1)s}

,

(6.8)
with r(1), j, j

′ ∈ Cs; r(1) 6= j 6= j′ and m(1),m = 1, 2 (two nests) and λm(1)
is the dissimilarity

parameter of a nest, which includes alternative with the highest utility (first rank). In Equations
(6.7) and (6.8), notation Cm(1)s denotes the choice set with the first rank nest.

Now, consider a special case (Figure 6.1, Case1). In this case, IR(NMNL)(Cs,θ) is calculated
as follows:

136



6.2 Rank-Order Two-Level Nested MNL (RO.NMNL) Models

IR(NMNL)
(Cs,θ) =



I11s(0) I12s(0) I13s(0)︸ ︷︷ ︸
0

IT12s(0) I22s(0) I23s(0)︸ ︷︷ ︸
0

IT13s(0)︸ ︷︷ ︸
0T

I23s(0)︸ ︷︷ ︸
0

I33s(0)︸ ︷︷ ︸
0


+ Pa11s1s



I11s(a11s) I12s(a11s)︸ ︷︷ ︸
0

I13s(a11s)︸ ︷︷ ︸
0

IT12s(a11s)︸ ︷︷ ︸
0T

I22s(a11s)︸ ︷︷ ︸
0

I23s(a11s)︸ ︷︷ ︸
0

IT13s(a11s)︸ ︷︷ ︸
0T

I23s(a11s)︸ ︷︷ ︸
0

I33s(a11s)︸ ︷︷ ︸
0



+Pa21s1s



I11s(a21s) I12s(a21s)︸ ︷︷ ︸
0

I13s(a21s)︸ ︷︷ ︸
0

IT12s(a21s)︸ ︷︷ ︸
0T

I22s(a21s)︸ ︷︷ ︸
0

I23s(a21s)︸ ︷︷ ︸
0

IT13s(a21s)︸ ︷︷ ︸
0T

I23s(a21s)︸ ︷︷ ︸
0

I33s(a21s)︸ ︷︷ ︸
0


+ Pa12s2s



I11s(a12s) I12s(a12s) I13s(a12s)︸ ︷︷ ︸
0

IT12s(a12s)
I22s(a12s) I23s(a12s)︸ ︷︷ ︸

0

IT13s(a12s)︸ ︷︷ ︸
0T

I23s(a12s)︸ ︷︷ ︸
0

I33s(a12s)︸ ︷︷ ︸
0


where:

• Pa11s1s = P (Y(1) = a11s, Z(1) = 1) = Pa11s|1s · P1s,

• Pa21s1s = P (Y(1) = a21s, Z(1) = 1) = Pa21s|1s · P1s,

• Pa12s2s = P (Y(1) = a12s, Z(1) = 2) = Pa12s|2s · P2s

are calculated by (6.7) and (6.8), where Pr(j)m(r)s has already been defined (See Subsection 6.2),

I``′s(0) (I``′(0)) denote the `th row and `′th column of the information matrix I (based on choice
set Cs) with respect to all of alternatives in choice set Cs. But, I``′(j) (I``′(j)) denotes the `th

row and `′th column of the information matrix I (based on choice set Cs) without alternative
j. Moreover,

• I11s(j) = p1s(j)p2s(j)(F
T
1s(j)F1s(j) + FT

2s(j)F2s(j) − FT
1s(j)F2s(j) − FT

2s(j)F1s(j));∀j = a11s, a21s,

• I11s(a12s) = 1
λ2
1
(B1s(a12s) −A1s(a12s)A

T
1s(a12s)

),

• I12s(a12s) = − 1
λ3
1
(B1s(a12s) −A1s(a12s)A

T
1s(a12s)

)β,

• I22s(a12s) = 1
λ4
1
βT (B1s(a12s) −A1s(a12s)A

T
1s(a12s)

)β,

• p1s(j) =
exp (fT (aj′s)β)

exp (fT (aj′s)β)+exp (fT (a12ss)β)
; j, j′ ∈ {a11s, a21s}; j 6= j′ (see Section 6.2.1),

where Fms(j), pms(j) denote design matrix and the probability of choosing nest (in choice set
Cs) when alternative j has been removed, also, B and A have same definition with the element
of the information matrix calculated in Lemma 4.2.

137



6 OPTIMAL DESIGN IN THE RANK-ORDER TWO-LEVEL NMNL MODEL

Table 6.2: Two-level Nested MNL model: Four choice sets,Cs; s = 1, 2, 3, 4, each with three

alternatives (ajms denote the jth alternative of the nest m in choice set s)

Choice set (Cns) First nest(I) Second nest(II)

C1 a111 = ã11 , a211 = ã21 a121 = ã12

C2 a112 = ã11 , a212 = ã21 a122 = ã22

C3 a113 = ã11 a123 = ã12 , a223 = ã22

C4 a114 = ã21 a124 = ã12 , a224 = ã22

Example 6.1. For a two-level RO.NMNL model, we have two attributes each with two lev-

els, where C = {ã11, ã21, ã12, ã22}. Let us consider experiments, which include four choice

sets each with three alternatives (Table 6.2, Figure 6.1), where β1 = (β1,1,−β1,1)T , β2 =

(β2,1,−β2,1)T and for simplicity we consider β1,1 = β1, β2,1 = β2 (Section 4.2) thus we can write

θ = (β1, β2, λ1, λ2)T . Also, according to Table 6.2 the characterizes of the alternatives of choice

sets are as follow:

• f(ã11) = [ +1 +1 ]T and f(ã21) = [ −1 +1 ]T

• f(ã12) = [ +1 −1 ]T and f(ã22) = [ −1 −1 ]T

Thus we define the following general design (See Example 4.2):

ξ =

{
C1 C2 C3 C4

w1 w2 w3 w4

}
∈ Ξ. (6.9)

The information matrix of the design (6.9) is calculated by:

IR(NMNL)(ξ,θ) =
4∑
s=1

wsIR(NMNL)
(Cs,θ), (6.10)

where IR(NMNL)
(Cs,θ) for each of choice sets are calculated by (Lemma 6.3 and Subsection

6.2.1):

For C1:

IR(NMNL)
(C1,θ) =

 I111(0) I121(0) 0
IT121(0) I221(0) 0

0 0 0

+ Pa11111

 I111(a111) 0 0
0 0 0
0 0 0



+Pa21111

 I111(a211) 0 0
0 0 0
0 0 0

+ Pa12121

 I111(a121) I121(a121) 0
I121(a121) I221(a121) 0

0 0 0
,
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6.2 Rank-Order Two-Level Nested MNL (RO.NMNL) Models

where

I111(0) =4p11(0)

[
(1− p1|11)

(
p1|11
λ2
1

+ (1− p11(0))(1− p1|11)
)
−(1− p11(0))(1− p1|11)

−(1− p11(0))(1− p1|11) (1− p11(0))

]

I121(0) =2p11(0)

[
(1− p1|11)

(
−2β1p1|11

λ3
1

+
(1−p11(0))(λ1 ln(1−p1|11)+2β1p1|11)

λ1

)
− (1−p11(0))(λ1 ln(1−p1|11)+2β1p1|11)

λ1

]

I221(0) =
4p1|11p11(0)(1−p1|11)β2

1

λ4
1

+
p11(0)(1−p11(0))(λ1 ln(1−p1|11)+2β1p1|11)2

λ2
1

I111(a111) =4p11(a111)(1− p11(a111))

[
1 −1
−1 1

]
, I111(a211) =4p11(a211)(1− p11(a211))

[
0 0
0 1

]

I111(a121) =
4p1|11(1−p1|11)

λ2
1

[
1 0
0 0

]
, I121(a121)=−

4p1|11(1−P1|11)

λ3
1

[
β1

0

]
I221(a121)=

4p1|11(1−p1|11)

λ4
1

β2
1 , p11(a111) = exp (−β1+β2)

exp (−β1+β2)+exp (β1−β2)
, p11(a211) = exp (β1+β2)

exp (β1+β2)+exp (β1−β2)

p11(0) =

(
exp

(
β1+β2
λ1

)
+exp

(
−β1+β2
λ1

))λ1(
exp

(
β1+β2
λ1

)
+exp

(
−β1+β2
λ1

))λ1
+exp (β1−β2)

, p1|11 =
exp

(
β1+β2
λ1

)
exp

(
β1+β2
λ1

)
+exp

(
−β1+β2
λ1

) .
Now, let β = 0, then the previous information matrix is calculated by:

IR(NMNL)
(C1,θ) =



1
2
.2.2

λ1+1+2.4λ1+6.2λ1−1λ1
2+λ1

24λ1+2

λ1
2(1+2λ1)

2 −1
2
.10.2λ1−1+4λ1

(1+2λ1)
2 − 2λ1 ln(2)

(1+2λ1)
2 0

−1
2
.10.2λ1−1+4λ1

(1+2λ1)
2

5.2λ1+4λ1

(1+2λ1)
2

2λ1+1 ln(2)

(1+2λ1)
2 0

− 2λ1 ln(2)

(1+2λ1)
2

2λ1+1 ln(2)

(1+2λ1)
2

2λ1 (ln(2))2

(1+2λ1)
2 0

0 0 0 0


.

For C2:

IR(NMNL)
(C2,θ) =

 I112(0) I122(0) 0
IT122(0) I222(0) 0

0 0 0

+ Pa11212

 I112(a112) 0 0
0 0 0
0 0 0



+Pa21212

 I112(a212) 0 0
0 0 0
0 0 0

+ Pa12222

 I112(a122) I122(a122) 0
IT122(a122) I222(a122) 0

0T 0 0
,


where
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I112(0) =4p12(0)

[
p1|11

(
1−p1|11
λ2
1

+ p1|11(1− p12(0))
)

p1|11(1− p12(0))

p1|11(1− p12(0)) (1− p12(0))

]

I122(0) =−2p12(0)

[
p1|11

(
2β1(1−p1|11)

λ3
1

+
(1−p12(0))(λ1 ln(1−p1|11)+2β1p1|11)

λ1

)
− (1−p12(0))(λ1 ln(1−p1|11)+2β1p1|11)

λ1

]

I222(0) =
4p1|11p12(0)(1−p1|11)β2

1

λ4
1

+
p12(0)(1−p12(0))(λ1 ln(1−p1|11)+2β1p1|11)2

λ2
1

I112(a112) =4p12(a112)(1− p12(a112))

[
0 0
0 1

]
, I112(a212) =4p12(a212)(1− p12(a212))

[
1 1
1 1

]

I112(a122) =
4p1|11(1−p1|11)

λ2
1

[
1 0
0 0

]
, I122(a122)=−

4p1|11(1−p1|11)

λ3
1

[
β1

0

]
I222(a122)=

4p1|11(1−p1|11)

λ4
1

β2
1 , p12(a112) = exp (−β1+β2)

exp (−β1+β2)+exp (−β1−β2)
, p12(a212) = exp (β1+β2)

exp (β1+β2)+exp (−β1−β2)

p1|11 =
exp

(
β1+β2
λ1

)
exp

(
β1+β2
λ1

)
+exp

(
−β1+β2
λ1

) , p12(0) =

(
exp

(
β1+β2
λ1

)
+exp

(
−β1+β2
λ1

))λ1(
exp

(
β1+β2
λ1

)
+exp

(
−β1+β2
λ1

))λ1
+exp (−β1−β2)

.

When β = 0, then the information matrix (w.r.t C2) is calculated as follows:

IR(NMNL)
(C2,θ) =



1
2
.2.2

1+λ1+2.4λ1+6.2λ1−1λ1
2+λ1

24λ1+2

λ1
2(1+2λ1)

2
1
2

10.2λ1−1+4λ1

(1+2λ1)
2

2λ1 ln(2)

(1+2λ1)
2 0

1
2

10.2λ1−1+4λ1

(1+2λ1)
2

5.2λ1+4λ1

(1+2λ1)
2

21+λ1 ln(2)

(1+2λ1)
2 0

2λ1 ln(2)

(1+2λ1)
2

21+λ1 ln(2)

(1+2λ1)
2

2λ1 (ln(2))2

(1+2λ1)
2 0

0 0 0 0


For C3:

IR(NMNL)
(C3,θ) =

 I113(0) 0 I133(0)

0 0 0
IT133(0) 0 I333(0)

+ Pa11313

 I113(a113) 0 I133(a113)

0 0 0
IT133(a113) 0 I333(a113)



+Pa22323

 I113(a223) 0 0
0 0 0
0 0 0

+ Pa12323

 I113(a123) 0 0
0 0 0
0 0 0

 ,
where

I113(0) =4(1− p13(0))

[
(1− p3|23)

(
p3|23
λ2
2

+ p13(0)(1− p3|23)
)

p13(0)(1− p3|23)

p13(0)(1− p3|23) p13(0)

]
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I133(0) =2(1− p13(0))

[
(1− p3|23)

(
−2β1p3|23

λ3
2

+
p13(0)(λ2 ln(1−p3|23)+2β1p3|23)

λ2

)
p13(0)(λ2 ln(1−p3|23)+2β1p3|23)

λ2

]

I333(0) =
4p3|23(1−p13(0))(1−p3|23)β2

1

λ4
2

+
p13(0)(1−p13(0))(λ2 ln(1−p3|23)+2β1p3|23)2

λ2
2

I113(a223) =4p13(a223)(1− p13(a223))

[
0 0
0 1

]
, I113(a123) =4p13(a123)(1− p13(a123))

[
1 1
1 1

]

I113(a213) =
4p3|23(1−p3|23)

λ2
2

[
1 0
0 0

]
, I133(a213)=−

4p3|23(1−p3|23)

λ3
2

[
β1

0

]
I333(a213)=

4p3|23(1−p3|23)

λ4
2

β2
1 , p13(a223) = exp (β1+β2)

exp (β1+β2)+exp (β1−β2)
, p13(a123) = exp (β1+β2)

exp (−β1−β2)+exp (β1+β2)

p13(0) = exp (β1+β2)

exp (β1+β2)+
(

exp
(
β1−β2
λ2

)
+exp

(
−β1−β2

λ2

))λ2
.

And with the assumption β = 0 thus:

IR(NMNL)
(C3,θ) =



1
2
.2.2

1+λ2+2.4λ2+6.2λ2−1λ2
2+λ2

24λ2+2

λ2
2(1+2λ2)

2
1
2
.10.2λ2−1+4λ2

(1+2λ2)
2 0 − 2λ2 ln(2)

(1+2λ2)
2

1
2
.10.2λ2−1+4λ2

(1+2λ2)
2

5.2λ2+4λ2

(1+2λ2)
2 0 −21+λ2 ln(2)

(1+2λ2)
2

0 0 0 0

− 2λ2 ln(2)

(1+2λ2)
2 −21+λ2 ln(2)

(1+2λ2)
2 0 2λ2 (ln(2))2

(1+2λ2)
2


.

For C4:

IR(NMNL)
(C4,θ) =

 I114(0) 0 I134(0)

0 0 0
IT134(0) 0 I334(0)

+ Pa11414

 I114(a114) 0 I134(a114)

0 0 0
IT134(a114) 0 I334(a114)



+Pa22424

 I114(a224) 0 0
0 0 0
0 0 0

+ Pa12424

 I114(a124) 0 0
0 0 0
0 0 0


where

I114(0) =4(1− p14(0))

[
p3|23

(
1−p3|23
λ2
2

+ p3|23p14(0)

)
−p3|23p14(0)

−p3|23p14(0) p14(0)

]

I134(0) =−2(1− p14(0))

[
p3|23

(
2β1(1−p3|23)

λ3
2

+
p14(0)(λ2 ln(1−p3|23)+2β1p3|23)

λ2

)
−p14(0)(λ2 ln(1−p3|23)+2β1p3|23)

λ2

]
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I334(0) =
4p3|23(1−p14(0))(1−p3|23)β2

1

λ4
2

+
p14(0)(1−p14(0))(λ2 ln(1−p3|23)+2β1p3|23)2

λ2
2

I114(a224) =4p14(a224)(1− p14(a224))

[
1 −1
−1 1

]
, I114(a124) =4p14(a124)(1− p14(a124))

[
0 0
0 1

]

I114(a114) =
4p3|23(1−p3|23)

λ2
2

[
1 0
0 0

]
, I134(a114)=−

4p3|23(1−p3|23)

λ3
2

[
β1

0

]
I334(a114)=

4p3|23(1−p3|23)

λ4
2

β2
1 ,

p14(a224) = exp (−β1+β2)
exp (−β1+β2)+exp (β1−β2)

, p14(a124) = exp (−β1+β2)
exp (−β1+β2)+exp (−β1−β2)

,

p14(0) = exp (−β1+β2)

exp (−β1+β2)+
(

exp
(
β1−β2
λ2

)
+exp

(
−β1−β2

λ2

))λ2
, p3|23 =

exp
(
β1−β2
λ2

)
exp

(
β1−β2
λ2

)
+exp

(
−β1−β2

λ2

) .
When β = 0 we will have ;

IR(NMNL)
(C4,θ) =



1
2
.2 21+λ2+2.4λ2+6.2λ2−1λ2

2+λ2
24λ2+2

λ2
2(1+2λ2)

2 −1
2
.10.2λ2−1+4λ2

(1+2λ2)
2 0 2λ2 ln(2)

(1+2λ2)
2

−1
2

10.2λ2−1+4λ2

(1+2λ2)
2

5.2λ2+4λ2

(1+2λ2)
2 0 −21+λ2 ln(2)

(1+2λ2)
2

0 0 0 0

2λ2 ln(2)

(1+2λ2)
2 −21+λ2 ln(2)

(1+2λ2)
2 0 2λ2 (ln(2))2

(1+2λ2)
2


,

where pj|ms denotes the conditional probabilities and I..s(j), pms(j) denote the elements of the
information matrix and marginal probabilities without considering alternative j, respectively.
We can see Table 6.3, which includes some locally D-optimal design based on the RO.NMNL
model.

Table 6.4 denotes some locally D-optimal designs for C.NMNL (Classical NMNL) model.
Based on Table 6.4 and Table 6.5, it is seen that:

ΨR(ξ∗,θ) = (det(IR(NMNL)(ξ
∗,θ)))−1 ≤ (det(INMNL(ξ∗,θ)))−1 = Ψ(ξ∗,θ)

for all of values of the parameters (true values). Then, it can be argued that the Rank-Order
choice experiment is better than the classical choice experiment for estimating NMNL models.

Specially, let β2 = 0 and λ1 = λ2 = λ. Now, based on the two choice sets C1 and C3, we will
have p1|11 = p1|23, p2|11 = p2|23 (Marginal choice probabilities w.r.t all of alternatives in choice
sets Cs; s = 1, 3, Chapter 4) and p11 = p23, also there exist similar considerations for two others
choice sets C2 and C4 so that p1|12 = p1|24, p2|12 = p2|24 and p12 = p24. Due to the symmetry
considerations, we can derive an optimal solution with weights w1 = w3 and w2 = w4 for the
design (6.9), where 2w1 + 2w2 = 1 or w2 = 1

2
− w1 as follows:

ξ =

{
C1 C2 C3 C4

w1
1
2
− w1 w1

1
2
− w1

}
∈ Ξ (6.11)
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6.2 Rank-Order Two-Level Nested MNL (RO.NMNL) Models

Table 6.3: RO.NMNL model λ1 = .6, λ2 = .4 (Two nests): Locally D-optimal design for

Design (6.9), where there are four choice sets each with three alternatives; w.r.t local D-optimal

criterion, ΨR(ξ,θ0) = (det(IR(NMNL)(ξ,θ0)))−1

β1 β2 w∗1 w∗2 w∗3 w∗4 ΨR(ξ∗,θ0)

-.7 .489 .000 .297 .214 1.370

-.4 .534 .000 .466 .000 1.233

-.8 0.0 .500 .000 .500 .000 1.164

.3 .473 .000 .527 .000 1.183

.6 .459 .000 .541 .000 1.269

-.7 .487 .019 .494 .000 1.383

-.4 .501 .000 .499 .000 1.170

-.3 0.0 .504 .000 .496 .000 1.061

.3 .505 .000 .495 .000 1.096

.6 .507 .000 .493 .000 1.230

-.7 .235 .242 .260 .263 3.680

-.4 .249 .248 .252 .251 2.974

0.0 0.0 .273 .260 .235 .232 2.702

.3 .293 .268 .223 .217 2.943

.6 .309 .273 .212 .206 3.619

-.7 .000 .528 .232 .240 1.183

-.4 .000 .533 .060 .407 1.102

.6 0.0 .000 .509 .000 .491 1.069

.3 .256 .262 .000 .482 1.088

.6 .467 .079 .000 .454 1.146

-.7 .000 .465 .360 .175 1.551

-.4 .000 .496 .119 .385 1.493

.9 0.0 .124 .369 .000 .507 1.447

.3 .460 .024 .000 .516 1.382

.6 .521 .000 .000 .479 1.359
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6 OPTIMAL DESIGN IN THE RANK-ORDER TWO-LEVEL NMNL MODEL

Table 6.4: C.NMNL model, λ1 = .6, λ2 = .4 (two nests): Locally D-optimal design for

Design (6.9), where there are four choice sets each with three alternatives; w.r.t local D-optimal

criterion, ΨR(ξ,θ0) = (det(IR(NMNL)(ξ,θ0)))−1 (Comparing to Table 6.3)

β1 β2 w∗1 w∗2 w∗3 w∗4 Ψ(ξ∗,θ0)

-.7 .500 .000 .500 .000 2.099

-.4 .500 .000 .500 .000 1.829

-.8 0.0 .500 .000 .500 .000 1.716

.3 .500 .000 .500 .000 1.785

.6 .500 .000 .500 .000 2.004

-.7 .469 .066 .464 .000 2.123

-.4 .486 .028 .486 .000 1.756

-.3 0.0 .500 .000 .500 .000 1.606

.3 .500 .000 .500 .000 1.721

.6 .500 .000 .500 .000 2.058

-.7 .272 .272 .228 .228 4.769

-.4 .284 .284 .216 .216 3.960

0.0 0.0 .305 .305 .195 .195 3.762

.3 .324 .324 .176 .176 4.234

.6 .341 .341 .159 .159 5.345

-.7 .000 .605 .000 .395 1.691

-.4 .000 .574 .000 .426 1.495

.6 0.0 .000 .537 .000 .463 1.445

.3 .000 .521 .000 .479 1.550

.6 .000 .512 .000 .488 1.807
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6.2 Rank-Order Two-Level Nested MNL (RO.NMNL) Models

Table 6.5: RO.NMNL model, β1 = β2 = 0.0 (two nests): Locally D-optimal design for De-

sign (6.9), where there are four choice sets each with three alternatives; w.r.t local D-optimal

criterion, ΨR(ξ,θ0) = (det(IR(NMNL)(ξ,θ0)))−1

λ1 λ2 w∗1 w∗2 w∗3 w∗4 ΨR(ξ∗,θ0)

0.1 0.321 0.293 0.196 0.190 1.251

0.2 0.367 0.325 0.158 0.150 1.341

0.3 0.376 0.331 0.151 0.143 1.358

0.4 0.378 0.332 0.149 0.140 1.366

0.1 0.5 0.379 0.333 0.148 0.140 1.371

0.6 0.380 0.333 0.148 0.139 1.356

0.7 0.380 0.332 0.149 0.139 1.381

0.8 0.380 0.332 0.149 0.139 1.386

0.9 0.379 0.332 0.150 0.139 1.392

0.1 0.220 0.218 0.281 0.280 1.493

0.2 0.247 0.239 0.258 0.255 2.018

0.4 0.3 0.286 0.268 0.226 0.220 2.306

0.5 0.336 0.306 0.182 0.175 2.539

0.8 0.358 0.321 0.164 0.156 2.649

1.0 0.363 0.324 0.161 0.152 2.693

0.1 0.214 0.213 0.286 0.286 1.526

0.2 0.221 0.219 0.280 0.279 2.121

0.8 0.3 0.234 0.229 0.269 0.268 2.529

0.5 0.268 0.257 0.239 0.236 3.031

0.8 0.309 0.291 0.202 0.197 3.368
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6 OPTIMAL DESIGN IN THE RANK-ORDER TWO-LEVEL NMNL MODEL

In this case, w∗1 = 0.5 when β1 < −0.05 (Table 6.6) so that we can consider a locally D-optimal
design, when λ = 0.1, as follows:

ξ∗(β1<−0.05) =

{
C1 C2 C3 C4

0.5 0.0 0.5 0.0

}
.

But if β1 is positive then w∗1 first decreases (when 0 ≤ β1 < 0.01, for too small values of β1)
then increases (when 0.05 ≤ β1) as β1 increases (Table 6.6). For example, in comparison, when
w∗1(β1=0.3) = 0.000, w∗1(β1=0.6) = 0.005, w∗1(β1=0.9) = 0.068 and w∗1(β1=1.0) = 0.315, more cases were

calculated in Table 6.6 (the Sequential Quadratic Programming method by MAPLE).
Let us consider λ = 1.0. In this situation, Table 6.6 denotes that w∗1 decreases as β1 increases.

So that, we will face to (approximately) the following locally D-optimal design:

ξ∗ =

{
C1 C2 C3 C4

0.25 0.25 0.25 0.25

}
,

where β1 tend to zero from both right and left.
In the other cases we suppose that β = 0, λ2 = 0.1. Based on the combination of alternatives

in choice sets C1 to C4, there will be permutation between the two choice sets C1 and C2, by
permuting the levels of the first attribute in the second nest. Furthermore, by permutation,
the levels of the first attribute in the first nest will have permutation between the two nests C3

and C4. In this situation, we consider the following invariant design instead:

ξ =

{
C1 C2 C3 C4

w w 1
2
− w 1

2
− w

}
∈ Ξ. (6.12)

Based on design (6.12) and the assumptions β = 0, λ2 = 0.1, the determinate of the information
matrix of design (6.12) is calculated as follows:

det(IR(NMNL)
(ξ,θ)) = {w[ 2λ1+1

(2λ1+1)
(λ−2

1 + 1− 2λ1

2λ1+1
) +

2λ1 (λ2
1+3)+4

λ2
1(2λ1+1)(2λ1+2)

] + 100.5083608

−201.0167216w}(−2.961797575w2λ1 − 1.997599657w22λ1−1 − 1.997599657w2λ1−1

−0.2583504347 (2λ1)2 − 0.5167008694 2λ1 − 0.2583504347 + 0.5167008694w(2λ1)2

+0.5167008694w)(w2λ1 (ln(2))4(−1+2w)

(2λ1+1)4
).

Table 6.7 denote that w∗ increases as λ1 decreases, when λ2 = 0.1. For different values of λ1 and
λ2, optimal weight has been showed by Table 6.7 (It has been used the Sequential Quadratic
Programming method by MAPLE). It can be seen that the optimal weight, w∗, decreases when
λ1 and λ2 are equal and also increase (Table 6.7). Also, with respect to the fixed values for
the dissimilarity parameter λ2, Table 6.7 denotes that the optimal weight, w∗, decreases as λ1

increases. That means that the alternatives of the two choice sets C1,C2 are more similar than
the combination of the alternatives in the two other choice sets; C3,C4. But, based on fixed
amounts of λ1 optimal weight, w∗, has an increasing trend (expect when 0 < λ1 < 0.2) as λ2
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6.2 Rank-Order Two-Level Nested MNL (RO.NMNL) Models

Table 6.6: RO.NMNL model, β2 = 0, λ1 = λ2 = λ (two nests): Locally D-optimal design, w∗1,

with respect to Design (6.11)

λ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9 0.068 0.056 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.041

0.8 0.044 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.047

0.7 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.059

0.6 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.078

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.048 0.101

0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.084 0.129

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.080 0.125 0.159

0.2 0.000 0.000 0.000 0.000 0.000 0.041 0.101 0.141 0.169 0.191

0.1 0.000 0.000 0.000 0.062 0.127 0.161 0.184 0.200 0.212 0.222

0.05 0.000 0.024 0.154 0.188 0.201 0.211 0.220 0.228 0.234 0.238

β1 0.001 0.263 0.257 0.257 0.257 0.257 0.257 0.256 0.256 0.255 0.255

-0.001 0.281 0.265 0.263 0.261 0.260 0.259 0.258 0.257 0.257 0.256

-0.05 0.500 0.500 0.500 0.424 0.356 0.322 0.303 0.290 0.281 0.275

-0.1 0.500 0.500 0.500 0.500 0.492 0.408 0.360 0.330 0.310 0.296

-0.2 0.500 0.500 0.500 0.500 0.500 0.500 0.498 0.425 0.377 0.343

-0.3 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.454 0.398

-0.4 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.458

-0.5 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

-0.6 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

-0.7 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

-0.8 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

-0.9 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
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6 OPTIMAL DESIGN IN THE RANK-ORDER TWO-LEVEL NMNL MODEL

Table 6.7: RO.NMNL model, β = 0: Locally D-optimal design, w∗, with respect to Design

(6.12)

λ1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.307 0.243 0.225 0.219 0.217 0.215 0.214 0.214 0.213 0.213

0.2 0.346 0.306 0.265 0.243 0.232 0.226 0.223 0.220 0.219 0.217

0.3 0.353 0.335 0.305 0.277 0.257 0.245 0.237 0.232 0.228 0.225

0.4 0.355 0.345 0.327 0.305 0.283 0.267 0.255 0.246 0.240 0.236

λ2 0.5 0.356 0.349 0.337 0.321 0.304 0.287 0.273 0.263 0.254 0.248

0.6 0.356 0.351 0.342 0.331 0.317 0.303 0.289 0.278 0.269 0.261

0.7 0.356 0.352 0.345 0.336 0.325 0.313 0.301 0.290 0.281 0.273

0.8 0.356 0.353 0.347 0.340 0.331 0.321 0.310 0.300 0.291 0.283

0.9 0.356 0.353 0.348 0.342 0.334 0.326 0.317 0.308 0.299 0.291

1.0 0.355 0.353 0.349 0.343 0.337 0.329 0.321 0.313 0.305 0.298

increases. That means that the combination of the alternatives in the two choice sets C3,C4 are
less similar than the alternatives in two choice sets C1,C2. Table 6.7 also denotes that for fixed
small values of λ1 (0 < λ1 < 0.2), the optimal weight first has an increasing then a decreasing
trend when λ2 increases.
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7 DISCUSSION and EXTENSIONS

In this thesis, we have applied optimal design theory to the area of conjoint analysis, in
particular to find optimal combination of alternatives in the choice sets. We have used some
models from discrete choice models (MNL, NMNL) to analyze data. When the variance of
the MNL model for all of decision makers are as the same, then this model is also called
Homoscedastic MNL model (Section 2.1). But, when the error terms in the utility function,
Uij = vijc + εijc, are in fact heteroscedastic across decision makers, the general form of the
extreme value distribution suggests the use of the following distribution (w.r.t Choice Cc):

Fεijc(εijc) = exp((− exp((−εijcµi)))).

Since in this distribution the variance of εijc is π2

6µ2
i

which can vary with i. In practice, µi can

take the form of a function of an independent variable that takes different values across decision

makers. Thus if µi > 0 ( for example, µi = ez
T
i δ), the choice probabilities from this distribution

can be derived in a simple manner analogous to weighted least squares in the linear model. In
the new heteroscedastic utility model, weight both sides of the equation with µi:

Uijcµi = vijcµi + εijcµi,

where vijcµi is new deterministic component and εijcµi is new probabilistic component and zi
(which may or may not be part of xijs) believed to influence the error variances. Then, the

new error terms will have a constant variance π2

6
, like the logit model and:

pijc = Pr (Uijc > Uij′c,∀j 6= j′) = Pr (Uijcµi > Uij′cµi,∀j 6= j′) =
exp(vijcµi)∑Jc
j′=1 exp(vij′cµi)

. (7.1)

According to model (7.1) can be considered a specification test for heteroscedasticity model as
follow: {

H0 : µi = 1; ∀i
H1 : µi 6= 1; ∃i or

{
H0 : δ = 0
H1 : δ 6= 0

.

Since, the estimator of the heteroscedastic model is not difficult, the likelihood ratio test can

be easily performed. In this case, LRT = −2 ln
L

(
˜β,δ=0

)
Lh

(
ˆβ,ˆδ

) has chi-square distribution (asymp-

totically) with degree of freedom, which is equal to the number of parameters in δ, where Lh is
the likelihood at convergence from the heteroscedastic logit model. Thus, if LRT > χ2

α,p′ then
H0 will be rejected, else it is accepted, where p′ is dimension of parameter δ.
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7 DISCUSSION and EXTENSIONS

7.1 Discuss about IIA

In the Chapter 2 it has been described the property of the MNL model, mean that IIA. As
has stated previously told, we can use the MNL model to analyze data if IIA be held. In
this situation, the statistical tests can be performed to test, which the IIA property hold a
particular application. When these tests show that the IIA holds the MNL model can be used.
For example, one way can be to test the IIA assumption by estimating (Two-way) interaction
effects.

The second way for testing IIA, the Corollary 2.2 can be used, so that the MNL model
specification will test by comparing parameter estimates obtained from choice data from the
full choice set with estimates obtained from conditional choice data from a restricted choice
set.

Also, we can consider a generalization of the MNL model which is called the Nested Logit
model, which has been discussed about it in the Section 2.2.

A Test for IIA

As stated previously (Subsection 2.1.2), the MNL model has a property that is called Indepen-
dence from Irrelevant Alternative, this mean that, if A be a subset of Cc thus (Corollary 2.1):

pijA =
exp(f ′T (aijc)β)∑
j′∈A exp(f ′T (aj′c)β)

, (7.2)

where f ′T (ajc) denotes the characterizes of attributes in choice set A ([f ′k(aijc)]
j=1,2,...,J ′c
k=1,2,...,K′ ⊂

[fk(aijc)]
j=1,2,...,Jc
k=1,2,...,K ; i = 1, 2, . . . , I; K ′ ≤ K and J ′c ≤ Jc). In this situation, the Hausman’ test is

on the based on eliminating one or more alternatives from the choice set to see if underlying
choice behavior from the restricted choice set obeys the IIA property .

We estimate the unknown parameters from both the restricted and unrestricted choice sets.
If the parameter estimates are here approximately the same, then we do not reject the MNL
model specification, otherwise it will be rejected. In this case, we act as follow:

Suppose that i = 1, 2, . . . , I be a random sample of individuals and f(aijc) be the attractive
of the Cc (choice set) for alternative j, and define yijc = 1 if individual i chooses alternative
j (in choice set Cc) and yijc = 0 otherwise. In this case, the normalized log-likelihood of the
sample is showed by:

`(Cc,β) =
I∑
i=1

∑
j∈Cc

yijc ln(pijCc).

If we have:
∂`(Cc,β)

∂β
= 0⇒ β̂ = β̂C, (7.3)

where β̂ is the MLE (Maximum Likelihood Estimator) for β, which is showed by β̂C (w.r.t
unrestricted model, means that there are all of alternatives in choice set, Cc).
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7.1 Discuss about IIA

Note 7.1: We know that:

1. β̂C is consistent asymptotically, means;

P

(
lim
I→+∞

β̂C

)
= β

2. β̂C has normal distribution asymptotically;

β̂C ∼a Np(β, I
−1(β)) ; (β̂C − β) ∼a Np(0, I

−1(β))

where notation ∼a≡ denotes asymptotically distribution, I−1(β) is the inverse of the

information matrix; I(β) = −E
(
∂2`(β;Cc)
∂β∂βT

)
= −E


∂2`(β;Cc)

∂β2
1

. . .
∂2`(β;Cc)
∂β1∂βp

...
. . .

...
∂2`(β;Cc)
∂βp∂β1

. . .
∂2`(β;Cc)

∂β2
p

 and p

is the number of parameters.

3. β̂C is efficiency asymptotically. This means that, if there exist other consistent estimators
with normal distribution asymptotically, for example β̃C, in this case V (β̃C) ≥ V (β̂C)
(V (β̃C)− V (β̂C) is p.s.d matrix).

Now, suppose that A ⊂ Cc and the IIA property be hold. The likelihood function is defined
by:

`(A,β) =
I∑
i=1

∑
j∈A

yijc ln(pijA), (7.4)

where (Subsection 2.1.3):

pijA =
pijCc
piACc

;∀j ∈ A.

Here, some component of β, such as the coefficients of alternative specific variables for ex-
cluded alternatives are not identified by choice from A. Thus, we suppose that fT (aijc) =
(f ′′T (aijc), f

′T (aijc)) be a partition of the explanatory variable into a vector f ′′T (aijc), which
only varies outside A and a vector f ′T (aijc), which only varies within A, and let βT = (γT , δT )
be a commensurate partition of the parameter vector, thus:

pijA =
exp(f ′T (aijc)δ)∑

j′∈A exp(f ′T (aij′c)δ)
; f ′′(aijc) = f ′′(aij′c), ∀j, j′ ∈ A.

In this situation, `(A,β) can be rewritten as follow:

`(A, δ) =
I∑
i=1

∑
j∈A

yijc ln(pijA). (7.5)
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7 DISCUSSION and EXTENSIONS

By setting to zero ∂`(A,δ)

∂δ
we can find (if there exist) δ̂A, which is the MLE of δ in subset A.

The δ̂A includes all of properties in Note 7.1.
The specification test statistic is based on the parameter difference θ = βA − δC, where

βC = (γC, δC)T and βA = δA when the regularity assumption hold and the MNL is true,
P (limI−→∞ θ) = 0 conversely, when the MNL specification is false, the IIA property fails, and:

pijC 6= pijA.piACc ,

that means, (7.5) is not maximized in δ̂A.
Now, for testing the hypothesis H0 : θ = 0 or H0 : δA − δC = 0 we need a suitable test

statistic. (McFadden and Hausman 1984) have demonstrated that the asymptotic covariance
matrix of

√
I(δ̂A − δ̂C) is ϕ = ΣA −ΣCδδ , the difference of the asymptotic covariance matrices

of δ̂A and δ̂C, where:

ΣC =

(
ΣCγγ ΣCγδ
ΣT

Cγδ ΣCδδ

)
.

Thus the test statistic:

χ = I.(δ̂A − δ̂C)Tϕ−(δ̂A − δ̂C)|H0
∼a χ2

p, (7.6)

has asymptotically distributed Chi-Square with degrees of freedom equal to the rank of ϕ,
under the null hypothesis, where ϕ− is a generalized inverse of ϕ.

Result:

if


χ > χ2

α,p we reject H0 with significance level α,

χ < χ2
α,p we accept H0 : δA = δC and the MNL is true.

Example 7.1. Let Cc = {a1c, a2c, a3c} (a choice set) and f(a1c) = 1 , f(a2c) = f(a3c) = 0 (there

is an attribute with two levels one and zero), in this situation we assume that A1 = {a1c, a2c},
A2 = {a1c, a3c} and A3 = {a2c, a3c} are three subsets of choice set Cc. In this case, we are going

to test:

H0 : δC = δAr ; r = 1, 2, 3.

Based on all of alternatives in choice set Cc, the log-likelihood function is defined as follow
(Section 2.1):

`(Cc,β) =
I∑
i=1

∑
j∈Cc

yijc ln(pijCc). (7.7)

If, we assume I = I1 + I2 + I3 are the number of individuals, where Ij; j = 1, 2, 3 denote the
number of individuals, which selected the alternative j, thus we can rewrite `(Cc,β) as follows:

`(Cc,β) = I1 ln(pa1Cc) + I2 ln(pa2Cc) + I3 ln(pa3Cc).
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7.1 Discuss about IIA

According to Uijc = fT (aijc)β+εijc (here, fT (aijc) has just one element to determine alternative
j) and with assumption the IIA we will have:

pa1Cc =
exp(β)

(2 + exp(β))
, pa2Cc =

1

(2 + exp(β))
= pa3Cc .

Hence, Equation (7.7) will be rewritten by:

`(Cc,β) = I1β − I1 ln(2 + exp(β))− I2 ln(2 + exp(β))− I3 ln(2 + exp(β)).

By setting derivative `(Cc,β) with respect to β into zero will be:

exp(β̂) =
2I1

I2 + I3

⇒ β̂ = β̂C = ln(
2I1

I2 + I3

).

Since β has one dimension then, let us β = βC:

I−1(βC) =
I

I1(I2 + I3)
= ΣβC ⇒ (β̂C − βC) ∼a N(0,

I
I1(I2 + I3)

).

Now, according to subset A1 we can write:

`(A1, δ1) =
I∑
i=1

∑
j∈A1

yijc ln(pjA1) = I1δ1 − I1 ln(1 + eδ1)− I2 ln(1 + eδ1).

Withe regards to ∂`(A1,δ1)
∂δ1

= 0 ⇒ δ̂1 = δ̂A1 = ln(I1I2 ), since δ1 has one dimension thus:

I−1(δA1) =
I1 + I2

I1I2

= ΣA1 ⇒ ϕ1 = ΣA1 − ΣCδδ =
I3

I2(I2 + I3)

and

χ(1) = (δ̂A1 − β̂C)Tϕ−1(δ̂A1 − β̂C) =

(
ln

(
I2 + I3

2I2

)2

.
I2(I2 + I3)

I3

)
∼a χ2

1. (7.8)

Hence if χ(1) > χ2
α,1 then we reject H0 : δ1 − β = 0, else it will be accepted.

Similarity and based on subset A2 we will have, δ̂2 = δ̂A2 = ln(I1I3 ), where:

I−1(θA2) =
I1 + I3

I1I3

= ΣA2 (7.9)

then:

χ(2) = (δ̂A2 − β̂C)Tϕ−2 (δ̂A2 − β̂C) = (ln
I2 + I3

2I3

)2 · I3(I2 + I3)

I2

∼a χ2
1. (7.10)

Consequently, if χ(2) > χ2
α,1, H0 : δ2 − β = 0 will be rejected, else it will be accepted.

In this case, because of f ′′(a2c) = f ′′(a3c) = 0, then χ(3) can not be calculated (dose not exist
any parameter). Hence, if either χ(1) or χ(2) are not significant, then the MNL model is true,
else the MNL is false and we shall not use this model to analyze data. In this situation, the
Nested logit model can be used to analyze data (Section 2.2).
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7.2 More About NMNL Models

In Section 2.2 have been described about the standard NMNL models. (Zeng 2000) has
proposed another particularity useful case of the heteroscedastic GEV model, which is the
heteroscedastic nested logit model. For example if there is a choice set with three alternatives
(Cc = {a1c, a2c, a3c}, ajc denotes alternative j in choice set c), which have been grouped in two
nests, so that first nest includes two alternative C1c = {a11c = a2c, a21c = a3c}; J1c = 2 (ajmc
the alternative j of the nest m in choice set c) and the second nest includes remain alternative
C2c = {a12c = a1c}; J2c = 1. Thus, we will have:

• pi2c =
exp(via1|2cµi1)

exp(via1|2cµi1)+(exp(
via2|1c

µi2

λ
)+exp(

via3|1c
µi3

λ
))λ

,

• pi1s =
(exp(

via2|1c
µi2

λ
)+exp(

via3|1c
µi3

λ
))λ

exp(via1|2cµi1)+(exp(
via2|1c

µi2

λ
)+exp(

via3|1c
µi3

λ
))λ

,

where pimc denotes the marginal choice probability related to nest m in choice set Cc by indi-
vidual i and the conditional probabilities are as follow:

pij|2c =
exp(

vij|2cµij
λ

)

exp(
via2|2cµi2

λ
) + exp(

via3|2cµi3
λ

)
; j = a2c, a3c.

The standard nested logit model avoids the IIA restriction of the standard logit model. The
heteroscedastic nested logit model further relaxes the assumption of homoscedastic errors (in
nests) in the nested logit model, the achieving greater functional flexibility.

In general, estimation of the heteroscedastic GEV model can be carried out using standard
maximum likelihood techniques, similar to the heteroscedastic logit model.

Now, let µij be a function of observable variables that takes positive values only, for example:

µij = exp((1 + zjδ1 + ziδ2)), (7.11)

or:
µij = exp((zjδ1 + ziδ2)), (7.12)

where zj and zi can be vectors varying with choice alternatives and decision makers (individ-
uals), respectively. The Z variables can be part of the independent variables, X, that enter
the utility functions of the choice model or they can be other observable variables believed to
influence the error variances.

Here, we suppose that have sample data (Yijmc, Xijmc), where Yijmc = 1 if individual i chooses
alternative j and nest m, Yijmc = 0 otherwise, and Xijmc are the independent variables in the
utility functions. Then, the log-likelihood function is (based on one choice set, Cc):

`(yijmc, xijmc,θ) =
I∑
i=1

M∑
m=1

Jmc∑
j=1

yijmc ln(pijmc), (7.13)
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where θ is the vector of all unknown parameters of pijmc (β and λ), including the parameters β
in vij|mc (when, as usual, vij|mc take the linear form xTij|mcβ), δ in µij and λ = (λ1, λ2, . . . , λM)T .
In this situation, the maximum likelihood estimates for θ can then be obtained using standard
numerical maximization methods.

Also, specification test for heteroscedasticity in the GEV model amounts to the test of:{
H0 : {δ1 = 0}

⋂
{δ2 = 0}

H0 : {δ1 6= 0}
⋃
{δ2 6= 0}.

Because, the restricted model is a parametric special case of the unrestricted model, classi-
cal test such as WALD, Likelihood Ratio and Lagrange Multiplier (LM) can be applied in a
straightforward manner, for example:

LRT = ln

(
L(β̃, λ̃, δ1 = δ2 = 0)

L(β̂, λ̂, δ̂1, δ̂2)

)
∼a χ2

d1+d2
,

where LRT denotes likelihood ratio statistic, which has asymptotically chi-square with degree
of freedom d1 + d2 (the dimension of parameters δ1 and δ2, respectively) and:

WALD =

((
δ̂1

δ̂2

)
−
(

0
0

))T
I−1
δδT

((
δ̂1

δ̂2

)
−
(

0
0

))
∼a χ2

d1+d2
,

where according to the information matrix I(Cc,θ) we will have:

I(θ) =

 LββT LβλT LβδT
LλβT LλλT LλδT
LδβT LδλT LδδT

 and I−1(θ) =

 IββT IβλT IβδT
IλβT IλλT IλδT
IδβT IδλT IδδT


with

IδδT =

(
Iδ1δT1 Iδ1δT2
Iδ2δT1 Iδ2δT2

)
.

In particular, the Lagrange Multiplier(LM) test does not require the estimation of the new
model, which can be convenient in the same case.

7.3 About Optimal Design

As we know, in the inference statistics we face to unknown parameters, which be estimated (if
those are identifiable). In this science subject we try to find the best estimator for parameters.
One of criteria that we can distinguish which kind of estimator (every function of random
sample) is better that the other is the variance of the estimator. In the optimal situation, this
criterion is proportional to the inverse of the information matrix. Therefore, and basis of the
Fisher information matrix some alphabet optimal criteria have been introduced to select the
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best elements of population in sample. One of these criteria which have been concentrated
in this thesis is D-optimal criterion that is a function of the determinant of the information
matrix. This criterion has some properties, which have been introduced in Chapter 3.

As stated previously were told selecting an alternative with the highest utility is the basic
assumption to obtain the logit models. Then if we want to have the best selection, we must have
the optimal combination of the levels in attributes for creating alternatives and the optimal
combination of alternatives in choice sets. Thus, to define a design the choice sets are considered
as support points. Based on this philosophy a MNL model which includes two attributes each
with two levels have been considered (Chapter 3) and the design region for two-point and
three-point design have been achieved.

We know that the MNL model is useful to analyze data when the property IIA be upheld.
But, if there are some alternatives more similar than the others this property will not be hold.
Thus, it must be considered the others models like Nested logit model to analyze data.

In Chapter 4 have been discussed about the NMNL models which consist M nests and to
obtain optimal design we have considered Bayesian D-optimal criterion. But, since there is
no closed form for this quantity, we have used local D-optimality criterion for optimal design.
Opposite the MNL models, in this kind of logit models (NMNL) there are some extra parameters
(dissimilarity parameters) in addition part-worth parameters. In this situation, we encounter
more complex work than the MNL models to calculate optimal design.

To obtain optimal designs we could define designs with equal or not equal support points,
but in the some of them some parameters were not identifiable, thus we had to combine them
for creating a suitable new design with together. Of course, with respect to the total number
of parameters which were much more, we had to fixed some of them and discussed about the
remain of them.

According to similarity which exist between alternatives in the some nests, it may be used
the other models of the logit family to analyze data that one of them in Chapter 5 have been
considered.

As have been already told, the respondents choose just one alternative with the highest
utility. But, in most times, the alternatives with the lower utility may be considered, also. In
this situation, a model of the logit family have been applied, which is called Rank-Order (RO)
logit models. In the last Chapter 6, we have first introduced the choice probabilities for this
model and after defining optimal criterion the locally D-optimal design have been calculated.
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A NOMENCLATURE

A NOMENCLATURE

MNL Multinomial Logit 9

NMNL Nested Multinomial Logit 9

C Complete set of all choice sets 14

Cc a choice set with Jc alternatives 14

J number of all alternatives 14

β part-worth parameters vector 14

In n-dimensional identity matrix 15

ε error term 15

Cov covariance between two random variables 15

Σ variance-covariance matrix 15

∂ partial derivative 16

< set of real numbers 16

φ empty set 23

ρ Correlation coefficient 23

i.i.d independent identically distribution 23

ξ design 37

X design region 37

Ξ set of designs 37

M(ξ) information matrix of design ξ 38
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Ψ optimality criterion 40

det(A) the determinate of matrix A 40

λ(x) efficiency function 41

sup(f(x)) the spermium of function f(x) 41

tr(A) the trace of matrix A 41

E(.) the expectation of a random variable 46

π(.) prior distribution 46

S a set of choice sets with the same alternatives 49

inf(f(x)) the infimium of function f(x) 70

dim(A) dimension of matrix A 71

1r a r-dimension vector with elements one 75
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