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Summary

In this thesis we examine the failures of a system with phase-type distributed
times to failure. For this purpose we consider a finite homogeneous Markov
chain whose states are either transient or absorbing. We describe the stochas-
tic failure rate of the system by the developing of the failure intensities of
the Markov chain. This approach allows a straightforward interpretation:
We assume that the system may work in a finite number of different condi-
tions. These different conditions are the transient states of the Markov chain.
While the system is working in one condition, the stochastic failure rate is
constant. Changes of the system’s condition are caused by random shocks,
which are given by the jumps of the Markov chain. The time to failure of
the system is the time to absorption of the Markov chain. The distribution
of the time to absorption is a phase-type distribution.

We introduce different failure types which are represented by the absorbing
states of the Markov chain. By this, minor and major failures may be mod-
eled. In the main part of the thesis, we describe the user’s opportunities
of interaction. Having a failure, the system may be repaired. Furthermore,
while the system is working, we may perform a preventive maintenance ac-
tion. The maintenance actions are represented by stochastic matrices which,
as well as the intensity matrix of the Markov chain, are the essential math-
ematical objects investigated. Within this approach, we cover the classical
repair policies minimal repair, replacement and imperfect repair. Addition-
ally, we introduce a preventive maintenance policy which suits the model
and seems to be more feasible than the classical policies block replacement
and age replacement. We also try to give a satisfying explanation to the
question how to choose an optimal maintenance policy. The optimality cri-
terion considered is to maximize the expected gains rewarded by the system.
We discuss four approaches for solving the maximization problem, and we
provide source codes for the implementation of these approaches in the sta-
tistical software R. We finish with a discussion of possible extensions of the
model and subjects that may interest further research about this model.
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Zusammenfassung

In dieser Arbeit betrachten wir das Ausfallverhalten eines Systems, dessen
Ausfallzeitpunkt phase-type-verteilt ist. Dazu betrachten wir eine endliche
homogene Markov-Kette, deren Zustände entweder transient oder absorbie-
rend sind. Die stochastische Ausfallrate des Systems wird durch den Verlauf
der Ausfallintensitäten der Markov-Kette beschrieben. Wir können diesen
Ansatz wie folgt interpretieren: Wir nehmen an, dass das System in endlich
vielen unterschiedlichen Zuständen arbeiten kann. Diese Zustände sind die
transienten Zustände der Markov-Kette. Während das System in einem
dieser Zustände ist, bleibt die stochastische Ausfallrate konstant. Änderungen
des Zustandes und damit auch Änderungen der stochastischen Ausfallrate
erfolgen durch zufällige Schocks. Diese Änderungen sind die Sprünge der
Markov-Kette. Der Ausfallzeitpunkt des Systems ist der Absorptionszeit-
punkt der Markov-Kette. Die Verteilung der Absorptionszeit ist eine phase-
type-Verteilung.

Die absorbierenden Zustände der Markov-Kette stellen unterschiedliche Aus-
fallarten dar. So können wir geringfügige und schwerwiegende Ausfälle be-
schreiben. Im Hauptteil der Arbeit betrachten wir die Handlungsmöglichkei-
ten eines Anwenders des Systems. Nach einem Ausfall kann das System
durch Reparatur wieder in einen arbeitsfähigen Zustand versetzt werden,
und, während das System arbeitet, können vorbeugende Instandhaltungs-
maßnahmen durchgeführt werden. Die Instandhaltungsmaßnahmen werden
durch stochastische Matrizen dargestellt. Wir untersuchen das Zusammen-
spiel dieser stochastischen Matrizen mit der Intensitätsmatrix der Markov-
Kette. Diese Herangehensweise beinhaltet die klassischen Reparaturstrate-
gien minimale Reparatur, Erneuerung und unvollständige Reparatur. Zudem
führen wir eine vorbeugende Instandhaltungsstrategie ein, welche die Eigen-
schaften unseres Modells ausnutzt und anscheinend brauchbarer ist als die
klassischen Strategien Blockerneuerung und altersbedingte Erneuerung. Wir
versuchen außerdem befriedigend zu erklären, wie man eine optimale Instand-
haltungsstrategie auswählen kann. Als Optimalitätskriterium betrachten wir
die erwarteten Gewinne, die vom System erwirtschaftet werden. Wir betrach-
ten vier Verfahren zur Lösung dieses Problems und stellen Quellcodes zur
Implementierung dieser Verfahren in dem Statistiksoftwareprogramm R zur
Verfügung. Die Arbeit endet mit einer Diskussion über mögliche Erweiterun-
gen des Modells, sowie Ansätze für weitere Forschungen.
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Used symbols and acronyms:

N the set of integers, N0 = N ∪ {0}
R the set of real numbers, R+ = (0,∞), R+

0 = [0,∞),

R = R ∪ {±∞}, R+ = R+ ∪ {+∞}, R+
0 = R+

0 ∪ {+∞}
C the set of complex numbers
∀,∃, ∃! ∀ for all, ∃ exist/-s, ∃! exists exactly one
x ∈ A x is an element of the set A, ⊂ subset, ⊆ subset or equal
A ∪B union, A ∩B intersection of sets A,B, A complement of A
P(A) power set (set of all subsets) of a set A

δij Kronecker-symbol: δij =

1 if i = j

0 if i 6= j

0 null-matrix 0 ∈ Rn×m, n,m ∈ N (includes null-vector and number 0)
ei unit vectors v ∈ Rn: vj = δij , j = 1, . . . , n
1 one-vector v ∈ Rn: vi = 1 , i = 1, . . . , n
I identity matrix M ∈ Rn×n: Mij = δij , i, j = 1, . . . n
diag(a) diagonal matrix with diagonal entries a ∈ Rn: (diag(a))ij = aiδij
tr(A) trace of a quadratic matrix A
det(A) determinant of a quadratic matrix A
bxc integer part of a nonnegative real number x1

1A(x) indicator function: 1A(x) =

1 , if x ∈ A
0 , else

o(f(x)) Landau-symbol2

x→ x0+ right-hand convergence: x→ x0, x > x0, also f(x0+)
x→ x0− left-hand convergence: x→ x0, x < x0, also f(x0−)
iid independent, identically distributed
iff if and only if
a.s. almost surely3

wlg without loss of generality
cadlag continu à droit limité à gauche (right-continuous and left-hand limits)
SSM smooth semimartingale
MC Markov chain
cdf cumulative distribution function

1bxc = sup{n ∈ N0 : n ≤ x} , x ≥ 0 .

2We write a(x) = o(f(x)) for x→ x0 ∈ R if lim
x→x0

a(x)

f(x)
= 0

3An assertion A holds P-a.s. iff A is true on a set A with P(A) = 1

VI



Chapter 1

Introduction

In this thesis we examine the failures of a system, e.g. breakdowns of an
engine or diseases of a human being. We assume that the time to failure of
the system follows a probability distribution on the non-negative real line.
Before failure the proneness to failure is described by the failure rate λ(t) of
this distribution. Choosing an appropriate failure rate is the main aspect in
modeling.
We consider phase-type distributed times to failure. The class of phase-type
distributions was introduced by Neuts [45] as a generalization of the Erlang
method of stages. A phase-type distribution is the distribution of the time
to absorption τ of an absorbing finite homogeneous time-continuous Markov
chain J . Roughly spoken, the phase-type distributions are all mixtures of
convolutions of exponential distributions. They have a couple of appealing
properties (cf. Neuts [47] or O’Cinneide [51, 52]), and all the same they allow
a good mathematical tractability. There are many approaches to apply them
in areas concerning waiting times, killing times and times to failure, e.g. in
queuing theory (Neuts [46]), risk theory (Asmussen [6], Bladt [16], Jacobsen
[30]), survival analysis (Aalen [2]) and reliability theory (Neuts and Meier
[48]).
The failure rate of the system may now be represented by the absorption
rate of the underlying Markov chain. In fact, the current absorption rate
of the Markov chain λ(t) is the conditional failure rate of the system given
the current state of the Markov chain. While the (unconditional) failure rate
λ(t) is a rational function, the conditional failure rate λ(t) is a piecewise
constant jump process, hence we have an intuitional interpretation of the
latter. A random variable with a failure rate which depends on an underlying
random variable or stochastic process, like τ in our model, is called doubly
stochastic. For more on doubly stochastic random variables see Cox [21]
(regression model), Aalen [1] (multiplicative hazard model) or Finkelstein
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[26] (a general review).
Maintenance actions are the opportunities to interact provided by the sys-
tem. We distinguish between repair actions, which are performed in case
of a failure of the system, and preventive maintenance actions, which are
performed as long as the system is working. For the common repair policies
see Beichelt [10] (minimal repair), Brown and Proschan [20] (imperfect re-
pair), and for the common preventive maintenance policies see Barlow and
Proschan [9], Bosch [19], Jensen [32], Beichelt [11] or Aven and Jensen [8].

The aim of this thesis is to introduce a maintenance model for systems with
phase-type distributed times to failure. We want to introduce maintenance
policies which are suitable for the model of the times to failure, and we want
to give satisfying approaches for the optimization of the maintenance policy.
The structure of the thesis is as follows.
In Chapter 2 we present the mathematical framework of the thesis. We de-
fine basic terms of stochastic calculus and survival analysis. We derive a
method for the calculation of matrix exponentials by using matrix calcu-
lus from linear algebra. We give a deeper introduction into homogeneous
Markov chains, where the matrix exponentials appear as transition matri-
ces. Afterwards, phase-type distributions are defined and motivated. Next,
we introduce martingales and compensator, especially applied for counting
processes. We present an algorithm for generating a distribution on a finite
support. In this chapter we jump between different topics. But once we read
this chapter, we are prepared for the maintenance model presented later.
In Chapter 3 we define a failure model. We introduce the working states and
the failure states of the system. We investigate the obtained failure rate and
show that the conditional failure rate equals the canonical intensity process
of the failure indicator process (1[0,t](τ))t≥0.
Chapter 4 deals with maintenance actions in case of a failure. We represent
a repair action by a stochastic matrix R. We show that, if we relaunch
the system after a failure instantaneously with respect to the repair matrix
R, the state of the system is again driven by a homogeneous Markov chain
SR. We derive the expected number of failures in dependence of R, and
we use them to choose an optimal repair matrix. The optimality criterion
considered is to maximize the expected gains. We discuss four approaches
in order to optimize the expected gains. First, we calculate the expected
gains exactly, here we need the matrix exponentials from Chapter 2. Second,
we calculate the limiting behavior of SR in order to obtain a repair matrix
R which is finally optimal. The third approach is empirical. We simulate
the gains for the different repair policies, here we use the alias algorithm
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presented in Chapter 2. The last approach is a heuristic one. Similar to
dynamic programming we choose the repair matrix R which yields the best
results in a K-step algorithm.
In Chapter 5 we introduce a preventive maintenance policy P . Within this
policy a preventive maintenance action is performed, if the system enters a
critical working state. We discuss the behavior of the state of the system in
dependence of P . Again, we may use the four approaches from Chapter 4
for choosing an optimal maintenance policy (R,P ).
In Chapter 6 we give some concluding remarks, and we highlight possible
topics for further research. Especially, we show up possibilities for statistical
inference.
We clarify the model and the methods introduced with the help of an exam-
ple, which is presented throughout the Chapters 3 to 5.
We will provide additional informations for the interested reader by using
footnotes.
We conclude the introduction with some notations. Throughout the thesis
a vector v is always a column vector, the respective row vector is v′. The
dimensions of vectors and matrices are omitted if they are obvious. We use
the further conventions inf ∅ := ∞ and

∑
∅ · · · := 0. The upright P denotes

the probability measure and the italic P denotes a preventive maintenance
matrix.
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Chapter 2

Fundamentals and tools

2.1 Basic definitions of stochastic calculus

In this section we introduce basic terms and definitions of stochastic calculus
which should be familiar to undergraduates having attended first courses in
probability and stochastic processes. The main purpose is having a clear
nomenclature throughout the thesis.

Definition 2.1. Let Ω be a non-empty set.

i) A σ-algebra A over Ω is a collection of subsets of Ω satisfying

– Ω ∈ A,
– A is closed under complements:

A ∈ A⇒ A ∈ A, ∀ A ∈ A,

– A is closed under countable unions:

A1, A2, ... ∈ A⇒
⋃
i∈N

Ai ∈ A.

The elements of a σ-algebra are called events and the pair (Ω,A) is
called measure space.

ii) A probability measure P on a σ-algebra A is a function P : A → [0, 1]
satisfying

– P(Ω) = 1,
– A1, A2, ... ∈ A with Ai ∩ Aj = ∅ if i 6= j

⇒ P

(⋃
i∈N

Ai

)
=
∑
i∈N

P(Ai) .
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The triple (Ω,A,P) is called probability space.

iii) For two events A,B ∈ A with P(B) > 0 we define the conditional
probability of the event A given event B via

P(A|B) :=
P(A ∩B)

P(B)
.

The function PB : A → [0, 1] with PB(A) := P(A|B) is a probability
measure on A.

iv) The events (Ai)i∈I (I is an arbitrary index set) are called independent
if for all finite subsets B of I it holds

P

(⋂
i∈B

Ai

)
=
∏
i∈B

P(Ai) .

The events are called pairwise independent if for any two distinct ele-
ments i, j ∈ I it holds

P(Ai ∩ Aj) = P(Ai)P(Aj) .

Every σ-algebra A over Ω satisfies

{∅,Ω} ⊆ A ⊆ P(Ω)

and {∅,Ω}, P(Ω) are σ-algebras. The standard choice for a σ-algebra over a
topological space1 Ω is the Borel2-σ-algebra B(Ω) which is generated by the
topology (the open subsets) of Ω.

Definition 2.2. Let (Ω,A,P) be a probability space, and let (E,E) be a
measure space. A random variable X is a mapping X : Ω → E that is A-
E-measurable, i.e.

X−1(B) ∈ A ∀ B ∈ E .

We henceforth assume a universal probability space (Ω,A,P) for all random
variables considered and we assume that A is complete (if A ∈ A with P(A) =
0 and B ⊂ A, then also B ∈ A). The respective measure space (E,E) of
a random variable X will be referred to by calling X (E,E)-valued. If we
consider the Borel-σ-algebra E = B(E) we just note that X is E-valued. An
A-B(E)-measurable mapping is called Borel-measurable.

1A topological space is a set Ω together with O, a collection of subsets of Ω, satisfying
the following axioms:

- The empty set and Ω are in O.
- The union of any collection of sets in O is also in O.
- The intersection of any finite collection of sets in O is also in O.

2Named after Émile Borel (1871-1956), a French mathematician and politician.
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Example 2.1. The indicator function 1A is Borel-measurable iff A ∈ A.

Remark 2.1. A random variable X induces a probability measure PX on
(E,E) by

PX(B) := P(X−1(B)) = P({ω ∈ Ω : X(ω) ∈ B}) , B ∈ E .

Instead of PX(B) we will usually write P(X ∈ B). We call PX the distribution
of X. The set

σ(X) := {X−1(B) : B ∈ E}
is a σ-algebra. It is called the σ-algebra induced by X and it is the smallest
σ-algebra for which X is measurable3.

The next lemma is Lemma 1.13 from Kallenberg [33]

Lemma 2.1. For i = 1, 2 let Xi be an Ei-valued random variable. Then X1

is σ(X2)-measurable iff there exists some measurable mapping h : E2 → E1

with X1 = h(X2).

Definition 2.3. For R-valued random variables X, Y and functions
g : R→ R and h : R2 → R we define

i) the cumulative distribution function4 (cdf)

FX(x) := P(X ≤ x) , x ∈ R .

ii)

E(g(X)) :=

∫
g(X)dP ,

if the integral5 exists. We call E(X) mean, Var(X) := E((X −E(X))2)
variance and E(Xk) k-th moment of X (k ∈ N).

iii)

E(h(X, Y )) :=

∫
h(X, Y )dP ,

if the integral exists. We call Cov(X, Y ) := E((X −E(X))(Y −E(Y )))
covariance of X and Y .

3If X is A0-E -measurable for a σ-algebra A0, then σ(X) ⊆ A0
4The cdf F always satisfies
- F is right-continuous.
- F is monotone increasing.
- limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

5Integrals with respect to a measure P are matter of measure and integral theory and
will not be discussed here, but see e.g. Billingsley [14] or Kallenberg [33]
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Definition 2.4. Let X be a random variable with the cumulative distribu-
tion function F .

i) If there exists a non-negative function f : R→ [0,∞) with

F (t) =

∫ t

−∞
f(x)dx , ∀ t ∈ R ,

we call (the distribution of) X absolute continuous and the function f
is called density function6 of X.

ii) If there exists a discrete set A = {a1, a2, ...} ⊂ R with P(X ∈ A) = 1
and P(X = ai) > 0 ∀ i, we call (the distribution of) X discrete. The
set A is called support of X and the function P(X = x) , x ∈ A is called
probability function of X.

Example 2.2. A random variable X is called exponentially-(λ)-distributed
(short X ∼ Exp(λ)) if X is absolute continuous with the density function

f(x) = λe−λx1[0,∞)(x) , x ∈ R ,

for some λ > 0. The mean of the distribution is E(X) = 1/λ.

Example 2.3. A random variable X is called geometrically-(p)-distributed
(short X ∼ Geo(p)) if X is discrete with the probability function

P(X = k) = p(1− p)k−1, k ∈ N ,

for some p ∈ (0, 1]. The mean of the distribution is E(X) = 1/p.

These two distributions are connected in the following manner:

X ∼ Exp(λ) ⇒ bXc+ 1 ∼ Geo(p = 1− e−λ) .

Example 2.4. A random variable X is called uniformly-distributed

i) on a finite set {x1, ..., xn} ⊂ R (short X ∼ U({x1, ..., xn})), if

P(X = xi) =
1

n
, i = 1, ..., n .

ii) on an interval [a, b] ⊂ R with a < b (short X ∼ U([a, b])), if X is
absolute continuous with the density function

f(x) = (b− a)−11[a,b](x) , x ∈ R .

6The density function is not unique. If two functions f1, f2 satisfy Definition 2.4, then
f1 = f2 P-a.s.
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Definition 2.5. The random variables (Xi)i∈I (I is an arbitrary index set,
Xi is (Ei,Ei)-valued) are called independent if for all finite subsets B of I
holds

P

(⋂
i∈B

{Xi ∈ Ai}

)
=
∏
i∈B

P(Xi ∈ Ai) ,

for all Ai ∈ Ei , i ∈ B. They are called pairwise independent if for any two
distinct i, j ∈ I holds

P(Xi ∈ Ai, Xj ∈ Aj) = P(Xi ∈ Ai)P(Xj ∈ Aj) ,

for all Ai ∈ Ei, Aj ∈ Ej.

Remark 2.2. For R-valued random variables (Xi)i∈I with respective cumu-
lative distribution functions Fi independence is equivalent to

∀ n ∈ N ∀ i1, ..., in ∈ I ∀ x1, ..., xn ∈ R :

FXi1 ,...,Xin (x1, ..., xn) := P (Xi1 ≤ x1, ..., Xin ≤ xn) =
n∏
k=1

FXik (xk) .

The function FXi1 ,...,Xin is called joint distribution function of Xi1 , ..., Xin .

Definition 2.6. Let T be a non-empty set. A family of (E,E)-valued random
variables (Xt)t∈T is called stochastic process. The set T is called index set
and the set E is called state space.

We usually interpret a stochastic process as a random variable evolving in
time starting in t = 0, so T ⊆ [0,∞). Alongside with this interpretation
comes the definition of a filtration.

Definition 2.7. Let ∅ 6= T ⊆ [0,∞). A family of σ-algebras F = (Ft)t∈T
with Ft ⊆ A ∀ t ∈ T is called filtration if

∀ s < t : Fs ⊆ Ft , s, t ∈ T .

We call the quadruple
(Ω,A, (Ft)t∈T ,P)

a filtered probability space. A stochastic process (Xt)t∈T is called adapted to
a filtration F if

∀ t ∈ T : Xt is Ft-measurable .

Let σ(Xs, 0 ≤ s ≤ t) be the smallest σ-algebra for which all Xs : 0 ≤ s ≤ t
are measurable. For a stochastic process (Xt)t∈T the filtration FX = (FXt )t∈T
with

FXt := σ(Xs, 0 ≤ s ≤ t) , t ∈ T
is called canonical filtration of (Xt)t∈T and, of course, (Xt)t∈T is adapted to
FX .
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If a stochastic process (Xt)t∈T is adapted to a filtration F we interpret Fs
to be the amount of knowledge about (Xt)t∈T up to the time s. We assume
that all filtrations considered satisfy the usual conditions of right-continuity
and completeness (cf. Aven and Jensen [8] Definition 33).

Definition 2.8. A R+-valued stochastic process (Tn)n∈N is called point pro-
cess, if

i) for all n ∈ N : Tn ≤ Tn+1 P-a.s.

ii) for all n ∈ N with P(Tn <∞) > 0 : P(Tn < Tn+1|Tn <∞) = 1

iii) limn→∞ Tn =∞ P-a.s.

Tn is called n-th arrival time and ∆n := Tn − Tn−1 (when defined and with
∆1 := T1) is called n-th waiting time.

A point process is an unbounded monotone increasing series of random vari-
ables (strictly if finite). A typical application are failure times of a system.

Definition 2.9. Let (Tn)n∈N be a point process and let (Un)n∈N be an E-
valued stochastic process. The process (Tn, Un)n∈N is called marked point
process and E is the set of marks.

Definition 2.10. For a point process (Tn)n∈N we define the corresponding
counting process (Nt)t≥0 by

Nt :=
∞∑
n=1

1[0,t](Tn) , t ≥ 0.

A counting process is a monotone increasing N0-valued stochastic process
whose jump heights are equal to 1 P-a.s. For a counting process we obtain
the corresponding point process: Tn = inf{t ≥ 0 : Nt = n}, n ∈ N.

Definition 2.11. A point process is called renewal process if the waiting
times ∆1,∆2, ... are iid. The corresponding counting process is called renewal
counting process. If only the waiting times ∆2,∆3, ... are iid, the process is
called delayed renewal process.

A common application of renewal processes are failure times of a system, if
the system is repaired completely after failure (replacement). If we observe
such a system starting from an arbitrary time, the first time to failure may
have a different distribution than the following ones. Therefore the failure
times may be modeled by a delayed renewal process.
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Definition 2.12. A R+
0 -valued random variable τ on a filtered probability

space (Ω,A, (Ft)t∈T ,P) is called stopping time if

{τ ≤ t} ∈ Ft ∀ t ∈ T.

For a stochastic process (Xt)t≥0 and a P-a.s. finite stopping time τ the
random variable Xτ := Xτ(ω)(ω) gives the value of the process at the stopping
time.

Definition 2.13. Let X be a R-valued random variable. The characteristic
function ϕX(t) of X is:

ϕX(t) :=

∫
eitXdP , t ∈ R.

The characteristic function exists for all t ∈ R since |ϕX(t)| ≤ 1.

Example 2.5. Let X ∼ Exp(λ) with λ > 0. The characteristic function of
X is

ϕX(t) =

∫ ∞
0

eitxλe−λxdx = λ
[
(it− λ)−1e(it−λ)x

]∞
0

=
λ

λ− it
.

2.2 Classes of life-time distributions in sur-

vival analysis

In this section we introduce some non-parametric classes of distributions,
that are often considered, when life-times7 of a system are observed. An
overview can be found in Beichelt [12] or Marshall and Olkin [40]. We focus
only on two of the classes considered there, namely monotone failure rates
and bathtub-shaped failure rates. First we introduce the failure rate.

Definition 2.14. Let X ≥ 0 be an absolute continuous random variable
with the distribution function F and the density function f . The function
λ : [0,∞)→ [0,∞] with

λ(x) =


f(x)

1− F (x)
, x ≥ 0, F (x) < 1 ,

0 , x ≥ 0, F (x) = 1 .

is called failure rate.

7Life-times are usually non-negative, so we assume X ≥ 0 P-a.s.
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Since

f(x) = lim
δ→0+

P(x < X ≤ x+ δ)

δ
, x ≥ 0 ,

a straightforward interpretation of the failure rate is

P(X ≤ x+ δ|X > x) = λ(x)δ + o(δ) , x ≥ 0 , F (x) < 1 . (2.1)

The failure rate gives the proneness to failure of a system that is still working
and is therefore an important function for modeling the failure behavior of
a system. The distribution function may be calculated from the failure rate
via the exponential formula

F (x) = 1− exp

{
−
∫ x

0

λ(u)du

}
, x ≥ 0 . (2.2)

Changes of the failure rate may be interpreted in many applications as ageing
or rejuvenating of the system. Ageing of a system may be caused by wear
or stress and rejuvenation by maintenance actions or just by a change of the
environment. We are especially interested in the following kinds of failure
rates.

Definition 2.15. Let λ(x) be the failure rate of an absolute continuous
random variable X.

i) If λ(x) is monotone increasing (decreasing) we say that X has an in-
creasing failure rate (IFR) (resp. decreasing failure rate (DFR)) distri-
bution.

ii) If λ(x) is continuous and there exists 0 < x∗ <∞ with

λ(x)

{
monotone decreasing , x < x∗

monotone increasing , x > x∗
,

we say that X has a bathtub-shaped failure rate.

The IFR (DFR) distributions are the most obvious classes of failure rate
models. The bathtub models are often used if there’s a high probability of
an early failure because the system might start in a bad condition. The
typical graph of a bathtub-shaped failure rate resembles the bathtub curve
in Figure 2.1.8

8Figure 2.1 is from Wikipedia: en.wikipedia.org/wiki/Bathtub curve
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Figure 2.1: The bathtub curve

The definition of a bathtub-shaped failure rate is the one used by e.g. Block
et al. [17].9 For every parametric model it is an interesting question whether
one may deduce the belonging to some failure rate class easily for given
parameters.

2.3 Matrix exponentials

Let A ∈ Cn×n be a square matrix. Then eA is defined by the power series

eA := I +
∞∑
k=1

Ak

k!
.

Of course, the infinite sum converges for any matrix norm. There are several
ways how to compute such a matrix-exponential, which have been subject
to wide research. An overview of different methods was given by Moler and
van Loan [43, 44]. Here we have a closer look on a method, which uses the

9There is a different common definition used by e.g. Marshall and Olkin [40] which
assumes that the failure rate takes its minimum (and hence is constant) on an interval
[x∗1, x∗2]. But this condition is not fulfilled by the usual parametric life-time models,
including the one we are going to investigate.
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eigenvalues of A. We implement this procedure in the statistic software R10

and use the algorithm for the calculations in our examples. In this section
we need basic terms from linear algebra. Let A ∈ Cn×n be a square matrix.
Similar to the notation by Agaev and Chebotarev [4] we denote by R(A)
and N (A) the range respectively the null space of A and rank(A) gives the
maximal number of linear independent row vectors of A. The polynomial

cA(λ) = det(λI− A) =
k∏
i=1

(λ− λi)mi , m1 + ...+mk = n (2.3)

is the characteristic polynomial of A whose pairwise distinct zeros λ1, ..., λk
are the eigenvalues of A with respective algebraic multiplicities m1, ...,mk.

Definition 2.16. Let A ∈ Cn×n be a square matrix.

i) The index (or geometric multiplicity) ν of A is the smallest k ∈ N0 for
which rank(Ak+1) = rank(Ak) and we write ν = ind(A).

ii) Let λ be an eigenvalue of A and let νλ = ind(A − λI). The eigenpro-
jection Zλ of A at λ is the unique idempotent matrix with

R(Zλ) = N ((A− λI)νλ) , N (Zλ) = R ((A− λI)νλ) .

The index ν of a matrix A equals zero iff A is regular. If the eigenvalue λ
of A has the algebraic multiplicity m, then the index νλ is smaller or equal
to m. We quote a classic result about operators on matrices, Theorem 8,
Chapter VII in Dunford and Schwartz [25].

Theorem 2.1. Let A be a n× n matrix with characteristic polynomial

cA(λ) =
k∏
i=1

(λ− λi)mi , m1 + ...+mk = n ,

where λ1, ..., λk are the pairwise distinct eigenvalues of A with respective alge-
braic multiplicities m1, ...,mk and indexes νi = ind(A−λiI), i = 1, ..., k. Let
f(x) be a complex function analytic in some open set containing {λ1, ..., λk}
having the power series expansion f(x) =

∑∞
i=0 aix

i. Then f(A) can be
defined as f(A) =

∑∞
i=0 aiA

i and

f(A) =
k∑
i=1

νi−1∑
α=0

f (α)(λi)

α!
(A− λiI)αZλi ,

where Zλ is the eigenprojection of A at λ.

10See http://www.r-project.org/
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So if we know the matrices Zλ we have

eA =
k∑
i=1

νi−1∑
α=0

eλi

α!
(A− λiI)αZλi . (2.4)

Remark 2.3. Instead of a matrix A we might calculate the exponential of
the matrix At with t > 0. If A has the eigenvalues λ1, ..., λk with respective
indexes ν1, ..., νk, then the matrix At has the eigenvalues λ1t, ..., λkt with
respective indexes ν1, ..., νk.

We plug-in the matrix At in (2.4) and we obtain

eAt =
k∑
i=1

νi−1∑
α=0

eλit

α!
(At− λitI)αZλit =

k∑
i=1

νi−1∑
α=0

tαeλit

α!
(A− λiI)αZλit , t ≥ 0 ,

(2.5)
where Zλit is the eigenprojection of At at λit, i = 1, ..., k.

Remark 2.4. Formula (2.5) entails that every entry of f(t) = eAt is a linear
combination of the functions

e−λ1t, ..., tν1−1e−λ1t, ..., e−λkt, ..., tνk−1e−λkt . (2.6)

One approach has been discussed by Harris et al. [27] and Luther and Rost
[39]. They showed that one obtains the sought-for eigenprojections by invert-
ing the Wronski matrix11 of the functions in (2.6) (evaluated at t = 0), which
is a confluent Vandermonde matrix.12 There were several algorithms pro-
posed for the inversion of a Vandermonde matrix (cf. Turner [54] or Luther
and Rost [39]), but Agaev and Chebotarev [4] (Proposition 2) determined a
closed formula for the eigenprojections of a matrix at its eigenvalues.

Theorem 2.2. Let A ∈ Cn×n be a square matrix with eigenvalues λ1, ..., λk
and respective indexes ν1, ..., νk. Let u1, ..., uk be integers with ui ≥ νi,
i = 1, ..., k. If k ≥ 2 the eigenprojection Zλi of A at λi is given by

Zλi =

∏
j 6=i ((A− λiI)ui − (λj − λi)uiI)uj∏

j 6=i (−(λj − λi)ui)uj
. (2.7)

If k = 1 we have (A− λ1I)ν1 = 0 and because of Definition 2.16 ii) Zλ1 = I.

11Named after Józef Maria Hoëne-Wronski (1778-1853), the Wronski matrix W (t) =
(Wij(t))i,j=1,...,n of n− 1 times differentiable functions y1(t), ..., yn(t) is given by Wij(t) =

y
(i−1)
j (t) , i, j = 1, ..., n.
12Named after Alexandre-Thophile Vandermonde (1735-1796), a French musician and

chemist.
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Remark 2.5. In the paper by Moler and van Loan [44] this approach is
only presented for the case of n pairwise distinct eigenvalues λ1, ..., λn (the
non-confluent case).

Remark 2.6. In Proposition 2 from Agaev and Chebotarev [4] the denomi-
nator is not correct. The constant term of the annihilating polynomial used
in the proof is the denominator in Formula (2.7).

Remark 2.7. Formula (2.7) entails that the eigenprojection of A at λi equals
the eigenprojection of At at λit, i = 1, ..., k. If we calculate eA, it is no
problem to determine the function

f(t) := eAt =
k∑
i=1

νi−1∑
α=0

tαeλit

α!
(A− λiI)αZλi , t ≥ 0 . (2.8)

We will need these functions in Chapter 3.

Remark 2.8. If we implement this approach, distinguishing between the
non-confluent and the confluent case is crucial. A numerical derivation of
the eigenvalues often yields close but distinct eigenvalues in the confluent
case. Using the non-confluent case instead will cause the denominator in
(2.7) to be small, which may result in numerical problems. So we should
rather assume these close eigenvalues to be equal (by rounding) and use the
confluent case. For a further discussion of the properties of eigenvalue-based
methods and the effects of a pertubation of the matrix (e.g. by rounding)
see Moler and van Loan [44] and the references therein.

Example 2.6. We consider a matrixQ = (qij)i,j=1,2 ∈ R2×2. The eigenvalues
are the solutions of the characteristic polynomial (2.3)

cQ(λ) = λ2 − tr(Q)λ+ det(Q) ,

given by the real numbers

λ1,2 =
q11 + q22

2
±
√

(q11 − q22)2

4
+ q12q21 .

(i) The eigenvalues are equal iff q12q21 = 0 and q11 = q22 = λ1,2. In this

case we have wlg Q =

(
q11 q12

0 q11

)
. Since k = 1 we obtain Zq11 = I

and with (2.8)

eQt = eq11t(I + (Q− q11I)t) =

(
eq11t q12te

q11t

0 eq11t

)
, t ≥ 0 .
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(ii) If λ1 6= λ2 we have ν1 = ν2 = 1, and by using u1 = u2 = 1 in (2.7) we
obtain

Zλ1 = (λ2 − λ1)−1(λ2I−Q) ,

Zλ2 = (λ2 − λ1)−1(−λ1I +Q) ,

→ eQt = eλ1t(λ2 − λ1)−1(λ2I−Q) + eλ2t(λ2 − λ1)−1(−λ1I +Q) .

In the special case q12 = 0 this simplifies to λ1 = q11, λ2 = q22 and

eQt =

(
eq11t (q11 − q22)−1q12(eq11t − eq22t)

0 eq22t

)
, t ≥ 0 .

2.4 Homogeneous Markov chains

Markov13 chains are stochastic processes which are useful in many applica-
tions like decision theory or queuing theory. The definition and the properties
of Markov chains may be reviewed in many textbooks like the ones by Kijima
[34], Norris [50] and Serfozo [53]. Basic properties are presented as remarks
without proofs and references. We only consider a certain type of Markov
chains, namely homogeneous Markov chains with a finite state space. In
Chapter 3 use such processes in our model.

Definition 2.17. A right-continuous process (Jt)t∈T with finite state space
E = {1, ..., n} and index set T = R+

0 or T = N0 is called homogeneous
Markov chain with finite state space, if it satisfies the Markov property

∀ k ∈ N ∀ x1, ..., xk, x ∈ E, t1, ..., tk, t ∈ T : t1 < ... < tk < t

P(Jt = x|Jt1 = x1, ..., Jtk = xk) = P(Jt−tk = x|J0 = xk) ,
(2.9)

whenever the probabilities are defined. A Markov chain (MC) is called

i) time-discrete if T = N0,

ii) time-continuous if T = R+
0 ,

The distribution of J0 is called initial distribution of J .

In the following we investigate homogeneous Markov chains with finite state
space but we omit writing homogeneous and with finite state space. We
just distinguish between the time-discrete and the time-continuous case. We
define the transition probabilities

p(i, j, t) := P(Jt = j|J0 = i) , i, j = 1, ..., n , t ∈ T
13Named after Andrey Andreyevich Markov (1856-1922), a Russian mathematician.
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and the distribution of J

p(i, t) := P(Jt = i) , i = 1, ..., n , t ∈ T .

For a time-discrete MC we define the one-step transition probabilities πij for
a jump from state i to state j 6= i by

πij = p(i, j, 1) , i, j = 1, ..., n

and the probability πii that the MC stays in state i at time t by

πii = p(i, i, 1) , i = 1, ..., n.

The matrix Π := (πij)i,j=1,...,n is called transition matrix. Π is a stochastic
matrix (Π ≥ 0 and Π1 = 1). The probabilities p(i, j, t) , i, j = 1, ..., n , t ∈ N
may be calculated recursively

p(i, j, t) =
n∑
k=1

p(i, k, t− 1)p(k, j, 1) , i, j = 1, ..., n , 14

and hence the corresponding t-step transition matrix Π(t) = (p(i, j, t))i,j=1,...,n

equals Πt , t ∈ N. So the distribution of a time-discrete MC is completely
described by the transition matrix Π and the initial distribution a, where
a = (ai)i=1,...,n with ai := p(i, 0) , i = 1, ..., n. For a time-discrete MC we call
the pair (a,Π) representation of the MC.
For a time-continuous MC we also need the transition probabilities p(i, j, t),
t ≥ 0, i, j = 1, ..., n. Since the paths of a MC are right-continuous we have

lim
t→0+

p(i, i, t) = p(i, i, 0) = 1 , i = 1, ..., n .

This ensures that for i = 1, ..., n there exists qi ≥ 0 so that

qi = lim
t→0+

t−1(1− p(i, i, t)) , i = 1, ..., n .

The quantity qi is called exit rate of the state i. Further we define the
quantities qij , i, j = 1, ..., n, i 6= j by

qij = lim
t→0+

t−1p(i, j, t) , i, j = 1, ..., n, i 6= j .

These quantities are called jump-rates, qij is the rate of a jump from state i
to state j. Obviously qi =

∑
i 6=j qij , i = 1, ..., n holds. With qii := −qi for

i = 1, ..., n the matrix
Q = (qij)i,j=1,...,n

is called intensity matrix of the MC.

14This Formula is a discrete version of the Chapman-Kolmogorov equality (2.11).
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Remark 2.9. Let Q = (qij)i,j=1,...,n be the intensity matrix of a time-
continuous MC J . Then

i) qij ≥ 0 for i 6= j, qii ≤ 0 for i = 1, ..., n,
∑n

j=1 qij = 0 for i = 1, ..., n,

ii) for i, j = 1, ..., n the transition probabilities satisfy the forward equation

∂

∂t
p(i, j, t) =

n∑
k=1

p(i, k, t)qkj , t ≥ 0 ,

whose solution is given by

p(i, j, t) = e′ie
Qtej , i, j = 1, ..., n ,

where eQt is the matrix exponential of Qt.

iii) the one-step transition matrix Π defined by

πij = −qij
qii

, i 6= j ,πii = 0 , if qii 6= 0,

πij = 0 , i 6= j ,πii = 1 , if qii = 0.
(2.10)

gives the conditional distribution of J

P(Jτ = j|J0 = i) = πij , i, j = 1, ..., n , qii 6= 0 ,

at the first jump-time τ = inf{t ≥ 0 : Jt 6= J0}.

The distribution of a time-continuous MC J is completely described by the
intensity matrix Q and the initial distribution a. We call the pair (a,Q)
representation of the time-continuous MC J .

Remark 2.10. For i = 1, ..., n with qii 6= 0 the first jump time τ is condi-
tional exponentially distributed15:

Pτ |J0=i = Exp(−qii) .

Remark 2.11. For every time-continuous finite homogeneous MC J with
one-step transition matrix Π the process J̃ = (Jτi)i∈N0

, where τ0 = 0 and
(τi)i∈N are the jump times of J , is a time-discrete MC with transition matrix
Π from (2.10). If we order the states of J such that qii < 0 for i = 1, ..,m
and qii = 0 for i = m+ 1, ..., n we may write

Q =

(
Qm Q0

0 0

)
,

15Which means P(τ > t|J0 = i) = eqiit , t ≥ 0.
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where Qm is an m×m matrix. The matrix Π may now be written as

Π =

(
Πm Π0

0 I

)
,

where

Πm = I− diag(q−1
11 , ..., q

−1
mm) ·Qm and Π0 = −diag(q−1

11 , ..., q
−1
mm) ·Q0.

So we may calculate Q if we know Π and the exit intensities q11, ..., qmm:

Q =

(
diag(q11, ..., qmm) · (I− Πm) −diag(q11, ..., qmm) · Π0

0 0

)
.

Remark 2.12. The matrices
(
eQt
)
t≥0

((Πn)n∈N0 in the time-discrete case)

are linear operators with the semigroup property16

eQteQs = eQ(t+s) , t, s ≥ 0 , (resp. ΠnΠm = Πn+m , n,m ∈ N0) , (2.11)

that is also known as Chapman-Kolmogorov equality1718.

The next theorem which is proved by e.g. Norris [50] (Theorem 1.4.2 and
Theorem 6.5.4) generalizes the Markov property (2.9).

Theorem 2.3. Strong Markov property:
Let (Jt)t∈T be a MC with representation (a,Q) in the time-continuous case
with T = R+

0 (resp. (a,Π) in the time-discrete case with T = N0) and τ a
stopping time with respect to the canonical filtration FJ . Then, conditional
on τ < ∞ and Jτ = i, (Jτ+t)t∈T is a MC with representation (ei, Q) (resp.
(ei,Π)) and independent of (Js)s≤τ .

We now investigate absorbing MCs.

Definition 2.18. A state i of a MC J is called

i) recurrent if
lim
t→∞

p(i, i, t) > 0 ,

16A semigroup is a set S together with a binary operation × that satisfies:
- Closure: For all a, b ∈ S, the result of the operation a× b is also in S.
- Associativity: For all a, b, c ∈ S, the equation (a× b)× c = a× (b× c) holds.

17Named after Sydney Chapman (1888-1970), a British mathematician and geophysicist
and Andrey Nikolaevich Kolmogorov (1903-1987), a Soviet Russian mathematician.

18In general we have for all commutating matrices A,B: eAeB = eA+B .
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ii) transient if
lim
t→∞

p(i, i, t) = 0 ,

iii) absorbing if
p(i, i, t) = 1 , ∀ t ∈ T .

A MC J is called absorbing if every state i is either transient or absorbing.
Two states i, j of a MC J are connected if

∃ t1, t2 ≥ 0 : p(i, j, t1) > 0 , p(j, i, t2) > 0 .

A MC which states are all connected is called irreducible.

If a state i is transient, then also

lim
t→∞

p(j, i, t) = 0 , ∀ j = 1, ..., n .

Consequently,

lim
t→∞

p(i, t) =
n∑
j=1

ajp(j, i, t) = 0 .

In the notation of Remark 2.11 the absorbing states are the states m+1, ..., n.
Now we proof three lemmas on absorbing Markov chains where we use the
notation of Remark 2.11.

Lemma 2.2. A time-continuous MC J is absorbing iff the matrix Qm that
corresponds to the non-absorbing states is regular. If J is absorbing, let
τ := inf{t ≥ 0 : Jt > m} be the time to absorption. The probabilities

bij := P(Jτ = j +m|J0 = i) , i = 1, ...,m, j = 1, ..., n−m ,

that, starting in state i, the chain is absorbed in state j + m, are given by
the entries of the m× (n−m)-matrix

B = −Q−1
m Q0 .

The first part is proven by Neuts [47] (Lemma 2.2.1). The absorption prob-
abilities are also derived by Kijima [34] (Section 4.6). We have more general
assumptions than Kijima19, but his proof is still correct here. We present a
different approach:
Proof: We use Theorem 3.3.1. from Norris [50] which states that for every

19Kijima investigates lossy generators which have the property that Qm is irreducible.
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j = m + 1, ..., n the probabilities bij := P(Jτ = j + m|J0 = i) , i = 1, ..., n
solve the system of linear equations

bij = 1 , for i = j ,
n∑
k=1

qikbkj = 0 , for i 6= j .

Since bkj = 1 for k = j and bkj = 0 for j = m+ 1, ..., n , k 6= j this simplifies
to

m∑
k=1

qikbkj + qij = 0 , i = 1, ...,m .

We may write this in matrix form

QmB +Q0 = 0 ,

and because Qm is regular this equation has the unique solution

B = −Q−1
m Q0 .

Lemma 2.3. Let J be an absorbing MC with transient states {1, ...,m} and
τ = inf{t ≥ 0 : Jt > m} the time to absorption. Then the mean time to
absorption is given by

E(τ) = −a′Q−1
m 1 .

Proof: Since every state 1, ...,m is transient, the values

µτi := E(τ |J0 = i) , i = 1, ...,m ,

are finite and by conditioning on the first jump ξ := inf{t ≥ 0 : Jt 6= J0} of
J we obtain with Theorem 2.3

µτi =
n∑
i=1

E(τ |J0 = i, Jξ = j)P(Jξ = j|J0 = i)

=
1

−qii
+

m∑
j=1,j 6=i

qij
−qii

µτj , i = 1, ...,m .

This simplifies to
m∑
j=1

qijµ
τ
j = −1 , i = 1, ...,m ,
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and if we use µτ = (µτ1, ..., µ
τ
m)′ we have

Qmµ
τ = −1 ⇒ µτ = −Q−1

m 1 ⇒ E(τ) = a′µτ = −a′Q−1
m 1

because Qm is regular (Lemma 2.2).
We will have a different derivation of this result in Lemma 2.6.

Lemma 2.4. Let J be an absorbing MC with transient states {1, ...,m},
τ = inf{t ≥ 0 : Jt > m} the time to absorption and B be the matrix of
absorption probabilities from Lemma 2.2. Let

µij :=

{
E(τ |J0 = i, Jτ = j +m) , bij > 0

∞ , bij = 0
,

be the mean time to absorption if J starts in state i and is absorbed into
state j, i = 1, ...,m, j = 1, ..., n−m. Then

µij =


dij
bij

, bij > 0

∞ , bij = 0
, i = 1, ...,m, j = 1, ..., n−m ,

where D = (dij)i=1,...,m, j=1,...,n−m is given by

D = −Q−1
m B = Q−2

m Q0 .

Proof: Let 0 · ∞ := 0 to have all terms well-defined. Let

ξ := inf{t ≥ 0 : Jt 6= J0}

be the first jump-time of J . Now for every i = 1, ...,m, j = 1, ..., n−m with
bij > 0 we may condition on Jξ to obtain

µij = E(τ |J0 = i, Jτ = j +m)

=
n∑
k=1

E(τ |J0 = i, Jτ = j +m, Jξ = k)P(Jξ = k|J0 = i, Jτ = j +m) .

The terms in the sum with k = i or m < k 6= j + m vanish since for these
summands P(Jξ = k|J0 = i, Jτ = j + m) = 0. For the remaining terms we
have

P(Jξ = k|J0 = i, Jτ = j +m) =
P(Jξ = k, J0 = i, Jτ = j +m)

P(J0 = i, Jτ = j +m)

=
P(Jτ = j +m|J0 = i, Jξ = k)P(Jξ = k|J0 = i)

P(Jτ = j +m|J0 = i)
=


qik
−qiibij

, k = j +m

qikbkj
−qiibij

, k 6= j +m

,
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and

E(τ |J0 = i, Jτ = j +m, Jξ = k) =

{
−q−1

ii , k = j +m

−q−1
ii + µkj , k 6= j +m .

We obtain the linear system of equations

−qiiµijbij =
1

−qii

(
qi,j+m +

m∑
k=1,k 6=i

qikbkj

)
+

m∑
k=1,k 6=i

qikbkjµkj ,

for i = 1, ...,m, j = 1, ..., n−m. From Lemma 2.2 we know

m∑
k=1

qikbkj = −qi,j+m ,

which leads to

m∑
k=1

qikbkjµkj = −bij , i = 1, ...,m, j = 1, ..., n−m . (2.12)

If we define the matrix D = (dij)i=1,...,m, j=1,...,n−m by dij = bijµij, we may
solve (2.12) resulting in

QmD = −B ⇒ D = −Q−1
m B .

Remark 2.13. These three lemmas may be generalized for any subset of
transient states of a not necessarily absorbing time-continuous MC: Let J be

a time-continuous MC on {1, ..., n} with parameters a,Q =

(
Qm Q0

A B

)
.

If wlg the states {1, ...,m} are transient let τ := inf{t ≥ 0 : Jt > m} be
the first time when J is not in {1, ...,m}. Now the stopped MC J̃ with
J̃t = Jt∧τ , t ≥ 0 is absorbing with parameters a, Q̃ where

Q̃ =

(
Qm Q0

0 0

)
,

and τ = inf{t ≥ 0 : J̃t > m}, P(Jτ = j) = P(J̃τ = j), j = m + 1, ..., n.
This also yields E(τ |J0 = i, Jτ = j) = E(τ |J̃0 = i, J̃τ = j), i = 1, ...,m,
j = m+ 1, ..., n.
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Next we investigate the long time behavior of a time-continuous MC. A
probability vector x = (x1, ..., xn)′ is called steady-state distribution of a
Markov chain with intensity matrix Q, if

x′Q = 0 , x′1 = 1 , xi ≥ 0 , i = 1, ..., n .

For every initial distribution a and intensity matrix Q the vector x∗ given by

x∗i = lim
t→∞

p(i, t) , i = 1, ..., n

is a steady-state distribution but, in general, x∗ is not the only steady state
distribution. We may renumber the states of the MC in a way that the
intensity matrix Q has the form

Q =



Q00 Q01 Q02 · · · Q0k

0 Q1 0 · · · 0
...

. . . Q2
. . .

...
...

. . . . . . 0

0 · · · · · · 0 Qk


, (2.13)

where Q00 ∈ Rn0×n0 , Ql ∈ Rnl×nl , l = 0, ..., k, the states 1, ..., n0 are transient
and for every l ∈ {1, ..., k} the states in block Bl = {n0 + ... + nl−1 +
1, ..., n0 + ... + nl} are connected and recurrent (the blocks are then called
irreducible). For every l = 1, ..., k the matrix Ql is an intensity matrix of an
irreducible MC. An irreducible time-continuous MC has an unique steady-
state distribution.

Lemma 2.5. Let Q be the intensity matrix of a MC J like in (2.13) with
transient states 1, ..., n0 and irreducible blocks

Bl = {n0 + ...+ nl−1 + 1, ..., n0 + ...+ nl} , l = 1, ..., k .

The probability zul of entering block Bl when starting in the transient state
u is

zul = −euQ−1
00 Q0l1 , u = 1, .., n0 , l = 1, ..., k .

The steady-state distribution of J in dependence of the initial distribution
a = (a0, ..., ak)

′ (al is a vector of length nl, l = 0, ..., k) is given by:

xa =


0

(a′11 + a′0z·1)y1

...

(a′k1 + a′0z·k)y
k

 ,
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where yl is the unique probability vector that solves

(yl)′Ql = 0 , l = 1, ..., k .

Proof: We already know that p(i, t) → 0 for a transient state i = 1, ..., n0.
Let τ := inf{t ≥ 0 : Jt > n0} be the first time when J is not in a transient
state. Because of the strong Markov property from Theorem 2.3

lim
t→∞

P(Jt+τ = n0 + ...+ nl−1 + j|Jτ ∈ Bl) = ylj , j = 1, ..., nl , l = 1, ..., k .

Next

P(Jτ ∈ Bl) = P(J0 ∈ Bl) +

n0∑
u=1

P(Jτ ∈ Bl|J0 = u)P(J0 = u) , l = 1, ..., k .

Clearly P(J0 ∈ Bl) = a′l1 , l = 1, ..., k and for zul = P(Jτ ∈ Bl|J0 = u) we
again use Theorem 3.3.1. from Norris [50] to obtain for every l = 1, ..., k the
system of linear equations

n0∑
v=1

quvzvl +

nl∑
w=1

qu,n0+...+nl−1+w = 0 , u = 1, ..., n0 .

We may write in matrix form

Q00Z +Q = 0 ,

where Q is an n0×k matrix which columns are given by Q011, ..., Q0k1. Since
Q00 is regular the unique solution is

Z = −Q−1
00 Q .

All together if i = j + n0 + ...+ nl−1 ∈ Bl for t→∞

p(i, t+ τ) = P(Jt+τ = i|Jτ ∈ Bl)P(Jτ ∈ Bl)→ ylj(a
′
l1 + a′0z·l) ,

and since τ is finite P-a.s. this proves the Lemma.

Remark 2.14. For l = 1, ..., k the unique probability vector that solves
(yl)′Ql = 0 is the unique solution of

(yl)′Ql = 0 and (yl)′1 = 1 . (2.14)

The vector 1 is independent from the columns of Ql and every nl−1 columns
of Ql ∈ Rnl×nl are independent. We define the matrix Q̃l ∈ Rnl×nl by taking
Ql and replacing the last column with the vector 1. The matrix Q̃l is regular
and the solution of (2.14) is given by

(yl)′ = e′nlQ̃
−1
l .
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2.5 Phase-type distributions

In this section we introduce the class of phase-type distributions, which was
first described by Neuts [45]. The concept of phases is closely related to the
model introduced in Chapter 3.
Let J be a time-continuous homogeneous MC with state space {1, ...,m+1},
where the states 1, ...,m are transient and the state m+ 1 is absorbing. The
intensity matrix Q equals analogous to Remark 2.11

Q =

(
Qm Q0

0 0

)
,

where Qm is regular. We assume that the initial distribution is concentrated
on the transient states and define a = (P(J0 = 1), ...,P(J0 = m))′.

Definition 2.19. The distribution of the time to absorption of the MC J

τ := inf {t > 0 : Jt = m+ 1} (2.15)

is called phase-type distribution with representation (a,Qm) and we write
short τ ∼ PH(a,Qm)).

The matrix Qm also yields the vector Q0 because Q0 = −Qm1. The represen-
tation is not unique. For any pair of parameters a,Qm there exist infinitely
many pairs of parameters ã, Q̃m̃ with PH(a,Qm) = PH(ã, Q̃m) (cf. Neuts
[47]).

Lemma 2.6. Let τ be phase-type distributed with representation (a,Qm).
Then τ has the

i) cumulative distribution function

F (t) =

{
1− a′etQm1 , t ≥ 0

0 , t < 0 ,

ii) mean
E(τ) = −a′Q−1

m 1 ,

iii) density function

f(t) =

{
a′etQmQ0 , t ≥ 0 ,

0 , t < 0 ,
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The Lemma was proven by Neuts [45] and we recognize our result for the
mean from Lemma 2.3. The class of phase-type distributions includes roughly
spoken all finite mixtures of convolutions of exponential distributions, in par-
ticular the exponential, the hyper-exponential and the Erlang distribution.
For further pros of these distributions we quote in extracts Ahn and Ra-
maswami [5] Section 1.1:

“PH-distributions have received much attention in the applied prob-
ability literature related to queues, dams, insurance risks, reliability,
etc., and the reasons for that have been many:

– Denseness: The class of PH-distributions can be shown to be dense
(...) in the set of all probability distributions on [0,∞). (...)

– Closure: The class of PH-distributions is closed under finite con-
volutions and mixtures and under Boolean operations of taking
the max or min of (independent) PH-random variables. (...)

– Tractability: A very attractive feature of phase type distributions
is their computational tractability. Due to the connection with an
underlying Markov chain, in models involving phase type distribu-
tions, conditioning arguments become easier through the inclusion
of the state of the Markov chain as an auxiliary variable.”

The way how phase-type distributions are closed under convolutions is spec-
ified in the following Lemma.

Lemma 2.7. Let X1 ∼ PH(a,Qm1) and X2 ∼ PH(b, Rm2) be independent.
Then the sum X1 +X2 is again phase-type distributed with representation(

a

0

)
,

(
Qm1 Q0b

′

0 Rm2

)
.

A proof of this Lemma is given by Neuts [47] (Theorem 2.2.2.). The benefit
of this Lemma is that we may obtain the convolution of PH-distributions by
using matrix calculus instead of numerical integration.

2.6 Martingales and compensator

In this section we present the framework of decomposing counting processes.
Pioneer work was the famous Doob-Meyer decomposition, see Doob [23] and
Meyer [41, 42]. The theoretical background is conveniently presented in
Appendix A in Aven and Jensen [8]. We only highlight the results needed in
our further investigations.
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Definition 2.20. Let X be a R-valued random variable on (Ω,A,P) and let
A0 be a sub-σ-algebra A0 ⊆ A. A A0-measurable R-valued random variable
Z is called (a version of) the conditional expectation of X given A0 if∫

A

XdP =

∫
A

ZdP , ∀ A ∈ A0

and we write Z = E(X|A0).

If E|X|2 < ∞ the conditional expectation E(X|A0) is the projection (re-
garding the norm ‖ X ‖= E|X|2) of X onto the subspace of A0-measurable
random variables Y with E|Y |2 < ∞. Especially, E(X|A0) = X if X is A0-
measurable and E(X|A0) = E(X) if X is independent of A0 (we use this for
A0 = {∅,Ω}, since X is always independent of {∅,Ω}). Two versions of the
conditional expectation are equal P-a.s. If there exists an E-valued random
variable Y with A0 = σ(Y ), because of Lemma 2.1 there exists a mapping
h : E → R with

E(X|A0) = h(Y ) . (2.16)

Definition 2.21. Let X = (Xt)t∈T be a R-valued stochastic process adapted
to the filtration F = (Ft)t∈T .

i) X is called integrable if E|Xt| <∞ ∀ t ∈ T .

ii) X is called F-progressive if ∀ t ∈ T the mapping (s, ω) → Xs(ω) on
[0, t]× Ω is measurable with respect to the σ-algebra B([0, t])⊗ Ft.

iii) X is called F-predictable if the mapping (t, ω)→ Xt(ω) on (0,∞)× Ω
into R is P(F)-measurable, where the σ-algebra P(F) is generated by
the sets

(s, t]× A, 0 ≤ s < t, A ∈ Fs, t ≥ 0 .

iv) X is called martingale if E(Xt|Fs) = Xs ∀ s ≤ t ∈ T . We denote by
M0(F) the set of martingales with cadlag paths and with M0 = 0 P-a.s.

Every left- or right-continuous adapted process is F-progressive. Every left-
continuous adapted process is F-predictable and every F-predictable process
is F-progressive. If X is F-predictable, then Xt is Ft−-measurable ∀ t.

Theorem 2.4. LetN = (Nt)t≥0 be an integrable counting process adapted to
the filtration F. Then there exists a unique F-predictable process A = (At)t≥0

such that M := N − A ∈M0(F)
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This is Theorem 10 from Aven and Jensen [8]. A is called the F-compensator
of N . Let now N be adapted to F. In our applications there always exists a
non-negative F-progressive process λ = (λt)t≥0 such that

At =

∫ t

0

λsds , t ≥ 0 . (2.17)

The process λ is called F-intensity of N and the pair (λ,M) is called F-SSM
representation of N (smooth semimartingale representation).

Remark 2.15. If N has the SSM representation (λ,M), the mean value
function µ(t) := E(Nt) is given by

µ(t) = E(Nt) = E(At +Mt) =

∫ t

0

E(λu)du , t ≥ 0 .

Theorem 2.5. If N has the F-intensity λ we may calculate λt by

λt = lim
h→0+

h−1E(Nt+h −Nt|Ft) = lim
h→0+

h−1P(Nt+h −Nt = 1|Ft) , t ≥ 0 .

(2.18)

So, λt is the conditional intensity for a jump of N at time t.

Theorem 2.6. Let N have the F-intensity λ and G be a subfiltration of F
such that N is adapted to G. Then N has also a G-intensity ν and

νt = E(λt|Gt) , t ≥ 0 .

This theorem follows from Theorem 12 (projection theorem) from Aven and
Jensen [8] with E(Nt|Gt) = Nt.

2.7 Alias algorithm

We want to generate random variables X from a probability distribution Q
on a finite set Ω ⊂ R. The standard approach is to generate a uniformly
distributed random variable U ∼ U([0, 1]), and calculate the (generalized)
inverse

F−1
X (x) := inf{y ∈ R : FX(y) ≥ x} , 0 ≤ x ≤ 1

of the cdf FX . Then F−1
X (U) and X have the same distribution (cf. Devroye

[22], also for alternative methods). The alias algorithm is another approach.
It was developed by Walker [55] and refined by Kronmal and Peterson [36].
The latter proved this theorem:
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Theorem 2.7. Any probability measure Q on a finite set Ω = {s1, ..., sn}
can be expressed as an equiprobable mixture of n distributions Q1, ...,Qn on
{s1, ..., sn}

Q(A) =
1

n

n∑
i=1

Qi(A) , A ⊆ {s1, ..., sn} ,

such that there exist a1, ..., an ∈ {s1, ..., sn} with

0 < ki := Qi(si) = 1−Qi(ai) , i = 1, ..., n .

The proof of this theorem is constructive, and the distributions Q1, ...,Qn

are easily computed. We call ki the cutoff value for si, the respective other
mass point ai of Qi is called alias of si.
The alias algorithm needs a generator for uniform-distributed random num-
bers, which is usually implemented in standard statistic software. The algo-
rithm is given by the following four steps:

1. Generate a uniformly distributed random variable U ∼ U([0, n]).

2. Set I := bUc+ 1, now I ∼ U({1, ..., n}).

3. Set V := U − I, now V ∼ U([0, 1]) and V and I are independent.

4. If V ≤ kI return sI , else return aI .

The probability for obtaining the value si equals Q(si), i = 1, ..., n. The
benefit of this algorithm is that we only need one comparison of values instead
of up to n− 1 comparisons if we use the inverse of the cdf.
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Chapter 3

Failure model

In this chapter we define the failure model that is examined in this thesis
and we develop important analytic results about the behavior of the processes
that we consider in this model. We use PH-distributed times to failure, and
we allow different types of failures which are represented by failure states, so
minor and major failures may be modeled. We also have a closer look on the
obtained failure rates.

3.1 The time to failure

For the developing of the condition of a system we consider a homogeneous
Markov chain J = (Jt)t≥0 with state space {1, ..., n} (n ≥ 2), initial distribu-
tion ã and intensity matrix Q such that

i) the states 1, ...,m with m < n are transient (working states):

lim
t→∞

P(Jt ≤ m) = 0 , (3.1)

ii) the states m+ 1, ..., n are absorbing (failure states):

qii = 0 , i = m+ 1, ..., n , (3.2)

iii) the system starts in a working state:

P(J0 > m) = 0 . (3.3)

Within this setup the random times spent in state i are exponentially dis-
tributed with intensity −qii for i = 1, ...,m and the probability for a jump
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into state j being in state i equals −qij/qii for i = 1, ...,m, j = 1, ..., n. The
time to failure of the system is

τ = inf{t ≥ 0 : Jt > m}. (3.4)

We define a = (ã1, ..., ãm)′ (since (3.3) ãm+1 = ... = ãn = 0) and

Q =

(
Qm Q0

0 0

)
where Qm = (qij)i,j=1,...,m is the sub-intensity matrix belonging to the working
states. The distribution of τ is given by

P(τ > t) = P(Jt ≤ m) =
m∑

i,j=1

aiP(Jt = j|J0 = i) = a′etQm1 , (3.5)

which is a PH distribution defined in (2.15). The difference to the definition
of Neuts [45] is that we consider various absorbing states. We may interpret
the absorbing states as distinct types of failure. We usually omit writing the
rows of Q belonging to the failure states, since all entries are zero.

Remark 3.1. Because of (2.8) the cdf (3.5) may be written as a linear
combination of the fundamental solutions (2.6).

Definition 3.1. Let J be a homogeneous Markov chain on a finite state space
with parameters (a,Q) satisfying (3.1)-(3.3). We call the pair M = (a,Q) a
failure model.

In the analysis of phase-type distributions it is common to talk about equiva-
lent representations since different representations may have the same distri-
bution of the time to absorption. Finding equivalent representations with a
minimal number of states has been the topic of wide research (cf. Neuts [47]).
But unlike in these attempts to simplify PH models, in our model we want
to give every single state a physical description. Every state is important for
the maintenance policies introduced afterwards. Only simple manipulations
like permutation of states will not change the properties of the model that
we are interested in.

Definition 3.2. Let M (1) = (a(1), Q(1)) and M (2) = (a(2), Q(2)) be two failure
models having the same number of working states m and respective numbers
of failure states n(k) −m, k = 1, 2. For a given working state i ∈ {1, ...,m}
we define the sets of essential failure states

I
(k)
i := {j ∈ {m+ 1, ..., n(k)} : q

(k)
ij > 0} , k = 1, 2 . (3.6)

We call the failure models M (1) and M (2) equivalent (write M (1) 'M (2)) if
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(i)
∃ bijection g : {1, ...,m} → {1, ...,m} :

a
(1)
i = a

(2)
g(i), q

(1)
ij = q

(2)
g(i)g(j) ∀ i, j = 1, ...,m.

(ii)

∀i = 1, ...,m ∃ bijection hi : I
(1)
i → I

(2)
g(i) :

q
(1)
ij = q

(2)
g(i)hi(j)

∀ j ∈ I(1)
i .

Remark 3.2. Since Definition 3.2 only uses bijections and equality of inte-
gers the relation M (1) 'M (2) is, in fact, an equivalence relation.

We give an example to illustrate equivalent failure models:

Example 3.1. We consider the model M (1) with m = 3, n = 6 and

a(1) =

 1

0

0

 , Q(1) =

 −5 3 1 1 0 0

0 −4 2 1 1 0

0 0 −3 0 1 2

 .

Applying a bijection on the working states yields an equivalent failure model
M (2) with m = 3, n = 6 and

a(2) =

 0

0

1

 , Q(2) =

 −4 2 0 1 1 0

0 −3 0 0 1 2

3 1 −5 1 0 0

 .

The minimal number of failure states equals max{|I(1)
i |, i = 1, ...,m}, cf.

(3.6). For the failure model M (1) an equivalent failure model with the mini-
mal number of failure states is given by M (3) with m = 3, n = 5 and

a(3) =

 1

0

0

 , Q(3) =

 −5 3 1 1 0

0 −4 2 1 1

0 0 −3 1 2

 .

The maximal number of failure states (with no superfluous states) equals

|I(1)
1 | + ...|I(1)

m |. For the failure model M (1) an equivalent failure model with
the maximal number of failure states is given by M (4) with m = 3, n = 8
and

a(4) =

 1

0

0

 , Q(4) =

 −5 3 1 1 0 0 0 0

0 −4 2 0 1 1 0 0

0 0 −3 0 0 0 1 2

 .
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Since in this Markov model the behavior of the system only depends on the
current state, it would not make sense if the severeness of a failure depended
on more than the failure state Jτ and the level of damage just before failure
Jτ−. It would be convenient to call the pair (Jτ−, Jτ ) the failure type, but
we may reduce the severeness of a failure to Jτ only:

Remark 3.3. In a model with n states we have m(n −m) different failure
types. For every such a model there exists an equivalent model with at
most m(n − m) failure states such that each failure state has an unique
predecessor. So we may deduce the state before failure from the failure state.
This equivalent model is a model with the maximal number of failure states.
Due to simplification of some calculations we henceforth only consider models
with the maximal number of failure states, although the verbal description
of some failure states might be the same. Now Jτ− is specified by Jτ and it
is enough to call only Jτ the failure type.

In the next example we show that τ and Jτ are in general not independent.

Example 3.2. We consider the failure model (a,Q) with

a = e1 , Q =

(
−2 1 1 0

0 −2 0 2

)
.

Now we calculate with Example 2.6

etQm =

(
e−2t te−2t

0 e−2t

)
⇒ P(τ > t) = (1 + t)e−2t .

If we condition on {Jτ = 3} we know that τ is the first jump-time of the
chain and hence exponentially distributed with rate 2.

P(τ > t|Jτ = 3) = e−2t 6= P(τ > t) .

This shows that τ and Jτ are not independent.

An important special case are models that cannot return to a previous con-
dition without a maintenance action. We define these acyclic models.

Definition 3.3. We call a failure model M acyclic if there exists an equiv-
alent model M∗ 'M whose intensity matrix Q∗ is upper triangular.1

1Bobbio et al. [18] used the term Triangular Multistate Homogeneous Markov Model
for these acyclic models. They derived an estimating procedure for the cdf (3.5) using
only the observed failure times.
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3.2 Failure rates

We know from Lemma 2.6 that the failure intensity of τ from (3.4) equals

λ(t) =
−a′etQmQm1

a′etQm1
, t ≥ 0 . (3.7)

We want to investigate our failure model with regard to the properties of the
failure intensity and recall (2.1)

P(τ ≤ t+ h|τ > t) = h · λ(t) + o(h) , h→ 0 .

Conditioning on Jt yields (since P(Jt > m|τ > t) = 0)

P(τ ≤ t+ h|τ > t) =
n∑
i=1

P(τ ≤ t+ h|τ > t, Jt = i)P(Jt = i|τ > t)

=
m∑
i=1

P(τ ≤ t+ h|τ > t, Jt = i)P(Jt = i|τ > t) .

(3.8)

Now we may define for i = 1, ...,m

P(τ ≤ t+ h|τ > t, Jt = i) =: h · λ̃i(t) + o(h) , h→ 0 ,

where λ̃i(t) are conditional (state-dependent) intensities and, by construction

λ̃i(t) =
n∑

k=m+1

qik , resp. λ̃(t) =


λ̃1(t)

...

λ̃m(t)

 = −Qm1 .

Taking the limit h→ 0 in (3.8) yields

λ(t) =
m∑
i=1

λ̃i(t)P(Jt = i|τ > t) , t ≥ 0 . (3.9)

The conditional failure intensities λ̃(t) do not depend on t, so we just write λ̃.
We may use these intensities to define the stochastic failure intensity process

λ(t) :=
m∑
i=1

λ̃i1{i}(Jt) , t ≥ 0 . (3.10)

Lemma 3.1. The unconditional failure rate λ(t) equals the conditional ex-
pectation of the process (3.10) given τ > t.
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Proof:

E
[
λ(t)|τ > t

]
=

m∑
i=1

λ̃iE
[
1{i}(Jt)|τ > t

]
=

m∑
i=1

λ̃iP(Jt = i|τ > t) = λ(t) .

Remark 3.4. Consider a model for the time to failure like in Example 3.1
in Finkelstein [26]. The stochastic intensity of a time to failure τ̃ equals
λ(t, Z) , t ≥ 0 and given Z = z, the failure rate of τ̃ equals λ(t, z) , t ≥ 0.
Now the exponential formula (2.2) holds

P(τ̃ > t|Z = z) = exp

{
−
∫ t

0

λ(u, z) du

}
and by Theorem 6.2 from Finkelstein [26] the failure rate of τ̃ is smaller than
the mixture E(λ(t, Z)). The stochastic failure intensity process λ(t) from
(3.10) in our model behaves different. The failure time τ and λ(t) depend in
the meaning of

τ = sup{t ≥ 0 : λ(t) > 0} , P-a.s. .

The exponential formula (2.2) does not hold for λ(t) since∫ ∞
0

λ(t)dt <∞ , P-a.s. ,

and concerning the failure rate λ(t), it follows from Lemma 3.1 that

λ(t) > E(λ(t)) , t > 0 , λ(0) = E(λ(0)) .

Remark 3.5. It follows from (3.9) that the failure rate λ(t) is bounded

min
i=1,...,m

λ̃i ≤ λ(t) ≤ max
i=1,...,m

λ̃i , t ≥ 0 .

Remark 3.6. As pointed out by Neuts [47] Section 2.3, the density func-
tion of a PH-distribution with an irreducible matrix Qm is asymptotically
exponential, which means that the failure rate λ(t) converges to some value
λ∗ > 0 and with (3.9) it holds

λ∗ = lim
t→∞

m∑
i=1

λ̃iP(Jt = i|τ > t) .

The conditional probabilities P(Jt = i|τ > t) converge for all initial distribu-
tions a to a unique probability vector y∗ ∈ Rm (the so-called quasi-stationary
distribution) with

lim
t→∞

P(Jt = i|τ > t) = y∗i , i = 1, ...,m. (3.11)
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An irreducible matrix Qm has an unique eigenvalue λ0 with maximal real
part. The asymptotic failure rate λ∗ equals −λ0 and the quasi-stationary
distribution y∗ is obtained as the unique probability vector that solves

y′Qm = λ0y
′ , (3.12)

hence y∗ is a left-eigenvector for λ0. Doorn and Pollett [24] investigated
the reducible case. A sufficient criterion for the existence of a unique quasi-
stationary distribution is, that ind(Qm − λ0I) = 1 (λ0 has the geometric
multiplicity one).

Example 3.3. If m = 1 we have P(Jt = 1|τ > t) = 1 and λ(t) = −q11.
Hence λ(t) = −q11 which means that τ is exponentially distributed.

Example 3.4. If there is a constant b > 0 such that λ̃i = b for all i = 1, ...,m
we have

λ(t) =
m∑
i=1

λ̃iP(Jt = i|τ > t) = b .

So again, λ(t) = b is constant and τ is exponentially distributed.

Example 3.5. We consider the case m = 2. We may use the matrix expo-
nentials from Example 2.6 for to obtain the respective failure rates.

i) a = e1, Q2 =

(
q11 q12

0 q11

)
with −q11 ≥ q12 > 0. Now

λ(t) = − q12

1 + q12t
− q11 , λ′(t) =

q2
12

(1 + q12t)2
> 0 , ∀ t ≥ 0 .

So τ is IFR, and since λ(t) converges to −q11 and because of (3.9) there
exists the unique quasi-stationary distribution y∗ = e2 in the sense of
(3.11).

ii) a = e1, Q2 =

(
q11 q12

0 q22

)
with −q11 ≥ q12 > 0, q11 6= q22 < 0. Now

λ(t) = −q11e
q11t(q11 + q12 − q22)− q12q22e

q22t

eq11t(q11 + q12 − q22)− q12eq22t
,

λ′(t) = g(t)(q11 + q12 − q22) with g(t) > 0 ∀ t ≥ 0 .

37



So τ is


IFR

DFR

∼ Exp

 ⇔ q11 + q12


>

<

=

 q22. Again, λ(t) converges:

For q11 < q22 we have

lim
t→∞

λ(t) = −q22 and y∗ = e2 .

For q11 > q22 we have

lim
t→∞

λ(t) = −q11 and y∗ =

(
q11 − q22

q11 + q12 − q22

,
q12

q11 + q12 − q22

)′
.

iii) a = e1, Q2 =

(
q11 q12

q21 q22

)
with −q11 ≥ q12 > 0, −q22 > q21 > 0.

Lengthy, but straightforward calculations yield

λ′(t) = g(t)(q11 + q12 − (q22 + q21)) with g(t) > 0 ∀ t ≥ 0 .

So τ is


IFR

DFR

∼ Exp

 ⇔ q11 + q12


>

<

=

 q22 + q21. The matrix Q2

is irreducible and (3.12) is solved by u = (u1, u2)′ with

u1 =
q21

q21 + λ1 − q11

, u2 =
λ1 − q11

q21 + λ1 − q11

.

The failure rate converges, of course, to −λ1

λ∗ = lim
t→∞

2∑
i=1

λ̃iP(Jt = i|τ > t) =
2∑
i=1

λ̃iui = −λ1 ,

where λ1 is the larger one of the eigenvalues from Example 2.6.

For m = 2 the sign of the failure rate λ(t) only depends on the conditional

failure intensities λ̃1, λ̃2, since τ is

{
IFR

DFR

}
⇔ λ̃1

{
≤
≥

}
λ̃2.

For m > 2 there are of course other possible shapes of λ(t) like in the next
examples.
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Example 3.6. Let m = 3, a = e1, Q3 =

 −10 5 0

0 −10 9

0 0 −10

. This is an

acyclic model with conditional failure intensities λ̃ =

 5

1

10

. The failure

rate λ(t) may be calculated:

eQ3t = e−10t

(
I +Q3t+ 10tI +

1

2
(Q3t+ 10tI)2

)
= e−10t

 1 5t 22.5t2

0 1 9t

0 0 1


⇒ λ(t) =

10(1 + t+ 45t2)

2 + 10t+ 45t2
.

Now τ has a bathtub-shaped failure rate.

Figure 3.1: Failure rate in Example 3.6
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The parameters in the above example have been chosen in order to obtain a
stochastic failure rate process (3.10) that is first decreasing and later increas-
ing, but this does not generally imply a bathtub shaped failure rate. It is
not straightforward seen from the conditional failure intensities λ̃ what λ(t)
might look like. Aalen and Gjessing [3] write ”The shape of the hazard rate
is in many cases determined by how the starting distribution of the process
relates to the quasi-stationary one, whether it is closer to or further apart
from the absorbing state.” A second approach to a bathtub-shaped failure
rate is the burn-in phenomenon.

Example 3.7. Assume that a system usually starts well conditioned but
with a small probability it starts in a very bad condition. The corresponding
mixture of probability measures might be modeled by M = (a,Q) with

a =

 p

0

1− p

 , Q3 =

 −2 1 0

0 −5 0

0 0 −20

 , p ∈ (0, 1) .

Again we obtain with Example 2.6

eQ3t =

 e−2t 1
3
e−2t − 1

3
e−5t 0

0 e−5t 0

0 0 e−20t

 .

Hence by (3.7) we have

λ(t) =
p(8e−2t − 5e−5t) + 60(1− p)e−20t

p(4e−2t − e−5t) + 3(1− p)e−20t
, t ≥ 0 .

For e.g. p = 0.95 the failure rate is bathtub-shaped (Figure 3.2).

The Examples 3.6 and 3.7 satisfy the bathtub property ii) from Definition
2.15 but they are not really convincing, since the part of the failure rate that
looks similar to the bathtub curve in Figure 2.1 (0 ≤ t ≤ 0.2 in Figure 3.1,
0 ≤ t ≤ 0.6 in Figure 3.2) describes only the smallest 60% of failure times
in Example 3.6 (resp. 63% in Example 3.7). We obtain a more complete
description of the failure times by introducing more stages.
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Figure 3.2: Failure rate in Example 3.7

Example 3.8. We consider a system pretty similar to that in Example 3.7
with m = 10 and

a =



0.95

0

0

0

0

0

0

0

0

0.05



, Q10 =



−2 1 0 0 0 0 0 0 0 0

0 −2 1 0 0 0 0 0 0 0

0 0 −2 1 0 0 0 0 0 0

0 0 0 −2 1 0 0 0 0 0

0 0 0 0 −2 1 0 0 0 0

0 0 0 0 0 −2 1 0 0 0

0 0 0 0 0 0 −2 1 0 0

0 0 0 0 0 0 0 −2 1 0

0 0 0 0 0 0 0 0 −5 0

0 0 0 0 0 0 0 0 0 −5



.

The failure rate looks like
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Figure 3.3: Failure rate in Example 3.8

Here the smallest 99, 9% of failure times are in the interval [0, 7] and so
almost all failure times may be described by a failure rate which resembles
the bathtub curve in Figure 2.1.

In the next examples we show that the monotony of the intensity process
λ(t) does not imply the monotony of the failure rate λ(t) and vice versa.

Example 3.9. Consider the failure model with m = 3 and

a = e1 , Q3 =

 −2 1 0

0 −6 3

0 0 −2

 .

We calculate the failure rate

λ(t) =
22 + 24t− 6e−4t

17 + 12t− e−4t
, λ′(t) =

16(9 + 23e−4t + 12te−4t)

(17 + 12t− e−4t)2
> 0 , t ≥ 0 .
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Although the intensity process (3.10) is not monotone with probability 0.25
(this happens when the MC visits all 3 working states before absorption),
the failure rate is monotone increasing.

Example 3.10. Consider the failure model with m = 3 and

a = e1 , Q3 =

 −3 1 1

0 −2 0

0 0 −10

 .

We calculate the failure rate

λ(t) =
14 + 3e−t − 10e−8t

7 + e−t − e−8t
, λ′(t) = −7(e−t − 64e−8t − 7e−9t)

(7 + e−t − e−8t)2
, t ≥ 0 .

The intensity process is a.s. monotone increasing, but the failure rate λ(t) is
monotone decreasing for t ≥ 0.604.

A non-trivial class of failure models where one knows that the failure rate is
increasing is a class of skip-free models (cf. Aalen [2], Kijima [35]).

3.3 Information level

The failure rate process (3.10) provides accurate information about the fail-
ure behavior of a working system, but for its evaluation we have to be able
to observe the MC J . In some applications the user has only partial infor-
mation about the condition of the system or even no information at all. We
introduce three information levels (the three respective filtrations F1,F2,F3)
which allow appealing interpretations.

Definition 3.4. In the concept of failure models on the probability space
(Ω,A,P) we call a filtration F = (F)t≥0 of A information level.

Example 3.11. No information about the state of a running system means
that we only may observe the failure time τ from (3.4). In this case F1 is
given by the canonical filtration of the process (1[0,t](τ))t≥0

F1
t = σ

(
1[0,s](τ) : 0 ≤ s ≤ t

)
, t ≥ 0 .

Example 3.12. Let us assume that the user may observe whether a running
system is in a critical state or not (e.g. signalized by warning lights). So
there is a partition A1, ..., Al of {1, ...,m} and we may decide in which block
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Ai the current state of the system is. But if |Ai| > 1 we may not determine
the state. F2 is defined via

F2
t = σ (1Ai(Js) : 0 ≤ s ≤ t, i = 1, ..., l) , t ≥ 0 .

Of course the failure time is observed because

l∑
i=1

1Ai(Jt) = 1(t,∞)(τ) , t ≥ 0 .

Example 3.13. All information about J is given by FJ . Any filtration that
covers FJ also contains this information but for convenience we set F3 = FJ

F3
t = σ(Js : 0 ≤ s ≤ t) = σ(1{i}(Js) : 0 ≤ s ≤ t, i = 1, ...,m) , t ≥ 0 .

If we compare the filtrations from Examples 3.11 - 3.13 we obtain

F1
t ⊆ F2

t ⊆ F3
t , t ≥ 0 .

If l = 1 we have F1 = F2, if l = m we have F2 = F3 and if m = l = 1 we have
F1 = F2 = F3.

3.4 SSM representation

We want to derive the SSM representations of the indicator point process Z
of the failure time τ

Zt = 1[0,t](τ) , t ≥ 0 (3.13)

with respect to the filtrations F1 and F3 from the Examples 3.11 and 3.13.
The process Z is the counting process belonging to the point process (Ti)i∈N
with T1 = τ , Ti =∞ , i ≥ 2. Since F3 is the bigger one of the two filtrations,
we first determine the F3-intensity from (2.17) of Z and then use Theorem
2.6 to obtain the F1-intensity of Z.

Lemma 3.2. Let τ be the time to failure (3.4) and Z its indicator point pro-
cess (3.13). Let F3 be the canonical filtration with respect to the underlying
MC J . Now Z has a F3-SSM representation

Zt =

∫ t

0

λ3
s1(s,∞)(τ)ds+Mt , t ≥ 0 ,

where λ3
s = λ(s) from (3.10) and M = (Mt)t≥0 ∈M(F3).
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This result is a standard example for the compensator of a so-called piecewise
deterministic Markov process (cf. Section 7.5 in Last and Brandt [37] or
Section 7.2 in Jacobsen [31]). Nevertheless, we present a proof and use only
the definition of the conditional expectation (Definition 2.20).
Proof: We have to show that M = (Mt)t≥0 ∈ M(F3). Obviously, M is
cadlag and M0 = 0. Now for 0 ≤ s < t holds

E(Mt|F3
s) = E

(
1[0,t](τ)|F3

s

)
− E

(∫ t

0

λ3
u1(u,∞)(τ)du | F3

s

)
= Ms + E

(
1(s,t](τ)|F3

s

)
− E

(∫ t

s

λ3
u1(u,∞)(τ)du | F3

s

)
.

The σ-algebra F3
s is generated by the events

⋂N
i=1{Jti = ki} , with arbitrary

N ∈ N , 0 ≤ t1 ≤ ... ≤ tN ≤ s , k1, ..., kN ∈ {1, ..., n}. For any such event
A =

⋂N
i=1{Jti = ki} with P(A) > 0 we show that∫

A

1(s,t](τ)dP =

∫
A

∫ t

s

λ3
u1(u,∞)(τ)dudP .

The first integral simplifies because of the Markov property (2.9)

P(s < τ ≤ t, A) = P(s < τ ≤ t|A)P(A) = P(s < τ ≤ t|JtN = kN)P(A) .

In the second integral we use again the Markov property (2.9) and the ho-
mogeneity of the MC∫

Ω

∫ t

s

m∑
i=1

λ̃i1A1{i}(Ju)dudP =

∫ t

s

m∑
i=1

λ̃iP(Ju = i, A)du

=

∫ t

s

m∑
i=1

λ̃iP(Ju = i|τ > u,A)P(τ > u|A)P(A)du

= P(A)

∫ t

s

m∑
i=1

λ̃iP(Ju = i|τ > u, JtN = kN)P(τ > u|JtN = kN)du

= P(A)

∫ t

s

λJ0=kN (u− tN)P(τ > u− tN |J0 = kN)du

= P(A)

∫ t

s

fJ0=kN
τ (u− tN)du

= P(A)P(s− tN < τ ≤ t− tN |J0 = kN) = P(A)P(s < τ ≤ t|JtN = kN) .

This proves that both conditional expectations coincide and we obtain

E(Mt|F3
s) = Ms .
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Remark 3.7. We may verify a specific version Y of E
(
1(s,t](τ)|F3

s

)
, namely

Y =
m∑
i=1

P(s < τ ≤ t|Js = i)1{i}(Js) .

Clearly, Y is F3
s-measurable. For A ∈ F3

s we have with Chapman-Kolmogorov
(2.11)∫
A

m∑
i=1

P(s < τ ≤ t|Js = i)1{i}(Js)dP =
m∑
i=1

P(s < τ ≤ t|Js = i)P(A, Js = i)

=
m∑
i=1

P(s < τ ≤ t|Js = i)P(Js = i|A)P(A)

= P(s < τ ≤ t|A)P(A) .

Lemma 3.3. Let τ be the time to failure (3.4) and Z its indicator point
process (3.13). Let F1 be the canonical filtration FZ from Example 3.12.
Now the F1-intensity λ1 = (λ1

t )t≥0 of Z is given by

λ1
t = λ(t)1(t,∞)(τ) , t ≥ 0 .

with λ(t) from (3.7).

Proof: : It follows from Theorem 2.6 that

λ1
t = E(λ3

t |F1
t ) .

Since λ3
t = λ(t)1(t,∞)(τ) we obtain with (2.16)

λ1
t = h({1[0,s](τ) : 0 ≤ s ≤ t}) ,

and since λ3
t = 0 on {τ ≤ t} this simplifies to λ1

t = h(1[0,t](τ)). With Lemma
3.1 we obtain

λ1
t =

{
E(0|τ ≤ t) , τ ≤ t

E(λ(t)|τ > t) , τ > t
=

{
0 , τ ≤ t

λ(t) , τ > t
.
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Chapter 4

Maintenance actions in case of
a failure

When the system has a failure, we want to repair it. Repairing means that
we set the system again into a working state. The repair action depends
on the failure type, since for different failure types different repair actions
might be applicable. We still assume that we always have a failure model
M = (a,Q) with the maximal number of failure states.

4.1 Repair matrices

We assume that for every failure type we have a finite number of possible
repair actions (but at least one). A repair action is described by a probability
vector r ∈ Rm where ri gives the probability that after repair the system
restarts in state i, i = 1, ...,m.

Definition 4.1. Let M be a failure model with n states and m working
states and for i = 1, ..., n − m let Ri = {ri,1, ..., ri,ni} ⊂ Rm, ni ∈ N, be a
non-empty finite set of probability vectors. An matrix R ∈ R(n−m)×m whose
rows (r1,j1)′, ..., (rn−m,jn−m)′ are probability vectors ri ∈ Ri is called repair
matrix. We define the set

R(M) := {R : R is a repair matrix for model M}

of possible repair matrices. We call the pair (M,R(M)) a repair model.

A repair matrix is build by choosing an appropriate repair action for ev-
ery failure type. Repair is performed by one multinomial trial with respect
to the probability vector belonging to the given failure type. The system
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restarts in the state that results from this trial. For computational pur-
poses we may order the repair matrices. We may identify a repair matrix
R = (r1,j1|...|rn−m,jn−m)′ ∈ R(M) by its index vector j = (j1, ..., jn−m)′. We
order all possible repair matrices by the lexicographical order of the respec-
tive index vectors and write R(M) = {R1, ..., R|R(M)|}.

Example 4.1. Consider again the failure model M (4) from Example 3.1 with
n−m = 5 failure states. Assume that we have the repair opportunities

R1 = {e1} , R2 =

e2,

 0.8

0.2

0


 , R3 =

e2,

 0.6

0.3

0.1


 ,

R4 =

e3,

 0.5

0.3

0.2


 , R5 =

e3,

 0.2

0.6

0.2


 .

Since n1 = 1, n2, n3, n4, n5 = 2 we may construct |R(M)| = 16 different
repair matrices. One choice could be

R =


1 0 0

0.8 0.2 0

0 1 0

0 0 1

0.2 0.6 0.2

 .

The corresponding index vector equals j = (1, 2, 1, 1, 2) and the lexicograph-
ical order of R(M) is given by

1 1 1 1 1 1 9 1 2 1 1 1

2 1 1 1 1 2 10 1 2 1 1 2

3 1 1 1 2 1 11 1 2 1 2 1

4 1 1 1 2 2 12 1 2 1 2 2

5 1 1 2 1 1 13 1 2 2 1 1

6 1 1 2 1 2 14 1 2 2 1 2

7 1 1 2 2 1 15 1 2 2 2 1

8 1 1 2 2 2 16 1 2 2 2 2

Hence the index vector j = (1, 2, 1, 1, 2) belongs to the repair matrix R10.
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Definition 4.2. We define a marked point process (τR, UR) = (τRk , U
R
k )k∈N

and a process SR = (SRt )t≥0 using a repair matrix R = (r1|...|rn−m)′ ∈
R(M) and copies J (k) of the MC J from Definition 3.1 with different initial
distributions a(k) ∈ Rm, k ∈ N (let τR0 = 0):

• a(1) := a, τR1 := inf{t ≥ 0 : J
(1)
t > m}, UR

1 := J
(1)

τR1
,

• for k ≥ 2:

SRt := J
(k−1)

t−τRk−2
, for τRk−2 ≤ t < τRk−1 ,

a(k) := rU
R
k−1−m ,

τRk := τRk−1 + inf{t ≥ 0 : J
(k)
t > m} ,

UR
k := J

(k)

τRk −τ
R
k−1

.

Now (τR, UR) gives the failure times and the corresponding failure types,
whereas SR gives the actual state of the repaired system.

Remark 4.1. The construction in Definition 4.2 generalizes the construction
of a PH-renewal process (cf. Neuts [46] and [47] Section 2.4).

Remark 4.2. The process (UR
k )k∈N is a discrete-time MC with index set N

and state space {m+ 1, ..., n}. The transition probabilities are given by

P(UR
k+1 = j|UR

k = i) = (ri−m,ji−m)′Bej−m i, j = m+ 1, ..., n ,

where (ri−m,ji−m)′ is the (i−m)-th row of R and B is the matrix of absorption
probabilities from Lemma 2.2. If Uk = i, the inter-failure time τRk+1 − τRk is
PH-distributed with representation (ri−m,ji−m , Qm), i = m + 1, ..., n, k ∈ N.

Hence the process ŨR = (ŨR
t)t≥τR1 with

ŨR
t =

∞∑
k=1

UR
k 1[τRk ,τ

R
k+1)(t) , t ≥ τR1

is a semi-Markov process (cf. Limnios and Oprisan [38]).

Theorem 4.1. The process SR = (SRt )t≥0 from Definition 4.2 is a homo-
geneous MC with state space {1, ...,m}, initial distribution a and intensity
matrix ΨR =

(
ψRij
)
i,j=1,...,m

∈ Rm×m with

ΨR = Qm +Q0 ·R .

The distribution of SRt is hence given by:

P(SRt = i) = a′etΨ
R

ei , t ≥ 0 .
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Proof: Obviously, a is the initial distribution of SR. First we consider the
case ψii = 0. This occurs if

−qii =
n∑

l=m+1

qilRl−m,i =
n∑

l=m+1

qil ,

which means that if the MC J jumps from state i into a failure state, the
system always restarts in state i. Also since e′iQ1 = 0 the MC J may not
jump from state i into another working state j 6= i. Applying the repair
matrix R means that i is now an absorbing state.
Consider now a fixed (non-absorbing) starting point SR0 = i with ψRii 6= 0.
We have to show that for the first jump-time Y = inf{t > 0 : SRt 6= i} holds

i) PY |SR0 =i = Exp(−ψRii ),

ii) P(SRY = j|SR0 = i) = −
ψRij
ψRii

for i 6= j.

to i) Let N be the number of failures τRk until Y (τRN ≤ Y < τRN+1). Now
N + 1 ∼ Geo(p), where

1− p =
n∑

l=m+1

qil
−qii

Rl−m,i

is the probability of having a failure with SR remaining in state i. The
distribution of Y is the (N + 1)-th convolution of Exp(−qii)

PY |SR0 =i = (Exp(−qii))∗(N+1) .

Since N is independent of the waiting times, conditioning on N yields

PY |SR0 =i =
∞∑
k=1

(Exp(−qii))∗kP(N+1 = k) =
∞∑
k=1

(Exp(−qii))∗kp(1−p)k−1 .

The characteristic function of Y is

ϕY (t) = EeitY =
∞∑
k=1

(
−qii
−qii − it

)k
p(1− p)k−1

= p · −qii
−qii − it

·
∞∑
k=0

(
−qii
−qii − it

)k
(1− p)k

= p · −qii
−qii − it

· 1

1− −(1−p)qii
−qii−it

= p · −qii
−qii − it

· −qii − it
−pqii − it

=
−pqii
−pqii − it

.
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This shows that Y is exponentially distributed with rate −pqii = −ψRii .

to ii) Obviously the rate of entering state j is given by ψRij and independent
of Y . Since the exit rate for state i is −ψRii , the one-step transition

probability is P(SRY = j|SR0 = i) = −
ψRij
ψRii

for i 6= j.

Remark 4.3. We may generalize the construction considered in Definition

4.2 and Theorem 4.1. Let Q =

(
Qm Q0

∗

)
be the intensity matrix of MCs

J (1), J (2), ... on {1, ..., n} where Qm ∈ Rm×m with 1 ≤ m < n. Let

δk := inf{t ≥ 0 : J
(k)
t > m}

and assume that δk is finite P-a.s., k ∈ N. Furthermore let R ∈ R(n−m)×m be
a stochastic matrix. Let the initial distribution a(1) of J (1) be concentrated
on {1, ...,m} and the respective initial distributions a(k+1) of J (k+1) be the

row J
(k)
δk
−m of R, k ∈ N. Then connecting the paths of J (1), J (2), ... up to

the respective times τ1, τ2, ... yields the process J̃ (let τi := δ0 + ...+ δi, i ∈ N
and τ0 := 0):

J̃t :=
∞∑
i=0

J
(i+1)
t−τi 1[τi,τi+1)(t) , t ≥ 0 .

Now J̃ is a MC with intensity matrix Qm + Q0 · R and initial distribution
a(1)|{1,...,m}.
Example 4.2. We call a repair matrix R determined repair matrix if its row
vectors are unit vectors

R = (ej1 , ..., ejn−m)′ , j1, ..., jn−m ∈ {1, ...,m} .

If we use a determined repair matrix, repair is always performed with cer-
tainty. Special cases of determined repair matrices are the minimal repair
matrix R for which holds

qi,j+m > 0 ⇒ Rji = 1 , i = 1, ...,m , j = 1, ...n−m ,

and the replacement repair matrices R1, ..., Rm with

Ri
ji = 1 , i = 1, ...,m , j = 1, ..., n−m . (4.1)

A repair matrix that is not determined is called imperfect repair matrix. A
replacement repair matrix causes the system to be repaired into the same
state for each failure type. The point process of failure times is then a
(delayed) renewal process.
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4.2 Information level

So far we had no further restrictions on the repair matrix, but we may easily
think of situations where not all repair policies are applicable. Clearly, if
we are not able to observe the type of failure instantaneously we may not
perform a repair policy which depends on the type of failure. This motivates
us to introduce information levels for failure models.

Definition 4.3. In the concept of repair models (M,R(M)) on the proba-
bility space (Ω,A,P) we call a filtration F = (Ft)t≥0 of A information level.

Now we define what we understand by applicable repair matrices.

Definition 4.4. Let (M,R(M)) be a repair model with information level F
and l be maximal such that there exists a partition A1, ..., Al of {m+1, ..., n}
with

Ft ⊇ σ
(
1[0,s]×Ai(τ

R
k , U

R
k ) : 0 ≤ s ≤ t, i = 1, ..., l, k ∈ N , R ∈ R(M)

)
, t ≥ 0 .

A repair matrix R is applicable if its rows (r1)′, ..., (rn−m)′ fulfill

i, j ∈ Ak ⇒ ri−m = rj−m , k = 1, ..., l .

So the rows of the repair matrix are the same for indistinguishable failure
types.

Remark 4.4. The partition in Definition 4.4 is unique up to permutations
of the sets A1, ..., Al.

We give some examples for obvious choices of information levels if we consider
the process (τRk , U

R
k )k∈N from Definition 4.2.

Example 4.3. The minimal information level we should investigate is that
we only may observe the failure times (τRk )k∈N. If we were not able to observe
those failure times, we could not perform any repair policy. In this case F1

is given by the canonical filtration of the processes (1[0,t](τ
R
k ))t≥0, k ∈ N and

for t ≥ 0 we have

F1
t = σ

(
1[0,s](τ

R
k ) : 0 ≤ s ≤ t, k ∈ N , R ∈ R(M)

)
.

The applicable repair matrices are all possible repair matrices whose rows
are equal. If we consider the determined repair model from Example 4.2
the applicable repair matrices are the replacement matrices R1, ..., Rm from
(4.1).
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Example 4.4. Since repair actions only depend on the failure type, we
may perform any possible repair policy if the failure type is observed in-
stantaneously. In this case F2 is the canonical filtration of the processes
(1[0,t]×{j}(τ

R
k , U

R
k ))t≥0, j = m+ 1, ..., n, k ∈ N and for t ≥ 0 we have 1

F2
t = σ

(
1[0,s]×{j}(τ

R
k , U

R
k ) : 0 ≤ s ≤ t, j = m+ 1, ..., n, k ∈ N , R ∈ R(M)

)
.

Example 4.5. Let A1, ..., Al be a partition of {m+1, ..., n}. An information
level F3 is defined by

F3
t = σ

(
1[0,s]×Ai(τ

R
k , U

R
k ) : 0 ≤ s ≤ t, i = 1, ..., l, k ∈ N , R ∈ R(M)

)
, t ≥ 0.

The applicable repair matrices are the possible repair matrices whose rows
are equal on the respective sets A1, ..., Al. This information level might make
sense, if one originally does not have a failure model with the maximal num-
ber of failure states. Assume that there is a failure state with two predeces-
sors and we may only observe the failure state. If we consider an equivalent
failure with the maximal number of failure states, there are now two indistin-
guishable failure states. We only may observe, that either of the two failures
occurs.

Example 4.5 covers Example 4.3 with l = 1 and Example 4.4 with l = n−m.

4.3 Failure counting processes

If we want to quantify the performance of a repair model (M,R(M)), the
most interesting aspect is the number of failures for a given repair matrix
R ∈ R(M). We define the canonical counting processes for the marked point
process (τR, UR) from Definition 4.2.

Definition 4.5. Let (M,R(M)) be a repair model from Definition 4.1, R ∈
R(M) and A ⊆ {m+ 1, ..., n}. The process N(R,A) with

Nt(R,A) :=
∞∑
k=1

1[0,t]×A(τRk , U
R
k ) , t ≥ 0

is the canonical counting process for the repair matrix R and the set of
marks A.

1or any filtration that covers this filtration
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We write short: N(R, i) := N(R, {i}) , i = m + 1, ..., n and N(R) :=
N(R, {m + 1, ..., n}). There is a one-to-one relation between the marked
point process (τR, UR) and the canonical counting processes N(R,A), since

τRk = inf{t ≥ 0 : Nt(R) = k} , UR
k =

n∑
i=m+1

i(Nτk(R, i)−Nτk−(R, i)) , k ∈ N .

So, the filtrations F1,F2,F3 from Examples 4.3 - 4.5 may be written as

F1
t = σ(Ns(R), 0 ≤ s ≤ t) , t ≥ 0 ,

F2
t = σ(Ns(R, i), 0 ≤ s ≤ t, i = m+ 1, ..., n) , t ≥ 0 ,

F3
t = σ(Ns(R,Ai), 0 ≤ s ≤ t, i = 1, ..., l) , t ≥ 0 .

4.3.1 SSM representation

We now derive the F-intensity of the counting processes, where

Ft = σ(Nu(R, i), i = m+ 1, ..., n, SRu , 0 ≤ u ≤ t)

is the canonical filtration of the processes N(R, i) , i = m + 1, ..., n and SR

from Definition 4.2.

Lemma 4.1. Let (M,R(M)) be a repair model (Definition 4.1), R ∈ R(M)
and Ft = σ(Nu(R, i), i = m+ 1, ..., n, SRu , 0 ≤ u ≤ t) , t ≥ 0. The F-intensity
of the counting process N(R, i) from Definition 4.5 is given by

λit =
m∑
j=1

qji1{j}(S
R
t ) , t ≥ 0 , i = m+ 1, ..., n .

Again, this result is a standard example for the compensator of a so-called
piecewise deterministic Markov process (cf. Section 7.5 in Last and Brandt
[37] or Section 7.2 in Jacobsen [31]). We may see this directly from (2.18).
Let τ i := inf{u > t : Nu(R, i) = Nt(R, i) + 1} be the time of the next failure
of type i. Then

λit = lim
h→0+

h−1

m∑
j=1

P(τ i ≤ t+ h|SRt = j)1{j}(S
R
t ) , t ≥ 0 .

We have the F-SSM representation

Nt(R, i) =

∫ t

0

λiudu+Mt . (4.2)

We may now determine the mean value function of N(R, i) just by taking
expectations.
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Corollary 4.1. We use (4.2) for calculating the mean value functions

µ(t, R, i) := E(Nt(R, i)) =

∫ t

0

a′euΨRQ0ei−mdu , t ≥ 0 ,

µ(t, R) := E(Nt(R)) =

∫ t

0

a′euΨRQ01du , t ≥ 0 .

4.3.2 The distribution of the number of failures

The counting process N(R) gives the total number of failures

N(R) =
n∑

i=m+1

N(R, i).

We are able to derive the distribution of Nt(R). We have

P(Nt(R) = k) =

{
P(τRk+1 > t)− P(τRk > t) , k ≥ 1 ,

P(τR1 > t) , k = 0 .
(4.3)

Now P(τR1 > t) = a′etQm1 and τR2 is the sum of the two phase-type distributed
random variables τR1 and τR2 − τR1 which are in general not independent,
because the initial distribution of τR2 − τR1 might depend on τR1 . So we may
not apply Lemma 2.7 directly but the construction in Definition 4.2 yields a
phase-type representation for τR2 .

Lemma 4.2. The random variable τ2 from Definition 4.2 is phase-type dis-
tributed with representation

a(2) =

(
a

0

)
, Q(2) =

(
Qm Q0R

0 Qm

)
.

Proof: We define the MC J̃ =
(
J̃t

)
t≥0

by

J̃t =

{
J

(1)
t , 0 ≤ t < τR1

J
(2)

t−τR1
+m , t ≥ τR1

.

The MC J̃ takes values in {1, ..., n+m} where {1, ..., 2m} are transient states
and {2m+1, ..., n+m} are absorbing states. The initial distribution a(2) and
the intensity matrix Q(2) are as given above and τR2 is the time to absorption
of J̃ .

τR2 = inf{t ≥ 0 : J̃t > 2m} ⇒ τR2 ∼ PH(a(2), Q(2)) .
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Corollary 4.2. Per induction we obtain τRk ∼ PH(a(k), Q(k)) for k ≥ 3 with

a(k) =

(
a(k−1)

0

)
, Q(k) =

 Q(k−1)
0

Q0R
0 Qm

 .

The explicit form is

a(k) =

(
a

0

)
∈ Rkm , Q(k) =



Qm Q0R 0 · · · 0

0 Qm Q0R
. . .

...
...

. . . . . . . . . 0
...

. . . . . . Q0R

0 · · · · · · 0 Qm


∈ Rkm×km .

Formula (4.3) now becomes

P(Nt(R) = k) = (a(k+1))′etQ
(k+1)

1− (a(k))′etQ
(k)

1 . (4.4)

Again we have to calculate matrix exponentials. This time the dimension
of the matrix is not bounded for k → ∞. In the following we derive an
algorithm that approximates the distribution of Nt(R).

Lemma 4.3. For k ∈ N let Q(k) be defined as in Corollary 4.2. For l ∈ N
the l-th power of Q(k) is given by

(
Q(k)

)l
=


A0,l A1,l · · · Ak−1,l

0
. . . . . .

...
...

. . . . . . A1,l

0 · · · 0 A0,l

 , (4.5)

where for j = 0, ...,m− 1

Aj,l =
∑

x∈{0,1}l,|x|=j

l∏
i=1

Q1−xi
m (Q0R)xi .2 (4.6)

Proof: Let k ∈ N be fixed. The proof goes via induction on l ∈ N. First
we note that for l, j ∈ N the matrices Aj,l satisfy Aj,l = 0 if j > l, because

2The matrices Aj,l appear in the binomial formula: (Qm +Q0R)l = A0,l + ...+Al,l
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j gives the number of factors Q0R in a product with l factors. Also the
recursion

Aj,l+1 = Aj,lQm + Aj−1,lQ0R (4.7)

holds, because the first summand corresponds to all summands in (4.6) with
xl+1 = 0 whereas the second summand corresponds to all summands with
xl+1 = 1. Now the induction basis for l = 1 yields

A0,1 = Qm , A1,1 = Q0R , Aj,1 = 0 , j ≥ 2 .

For the induction step assume that (4.5) holds for some l ∈ N. Now(
Q(k)

)l+1
=
(
Q(k)

)l
Q(k) .

Because of the block structure Q(k) = (Buv)u,v=1,...,k,
(
Q(k)

)l
= (Cuv)u,v=1,...,k

with

Buv =


Qm , u = v

Q0R , u+ 1 = v

0 , else

, Cuv =

{
Av−u,l , u ≤ v

0 , else
.

It suffices to show

for u > v :
k∑

w=1

CuwBwv = 0 ,

for u ≤ v :
k∑

w=1

CuwBwv =

{
A0,lQm , u = v = 1

Av−u−1,lQ0R + Av−u,lQm , else
.

Because of the recursion formula (4.7), in the later case we have

k∑
w=1

CuwBwv = Av−u,l+1 .

Theorem 4.2. With the notation of (4.4), (4.6) and Definition 4.2 the dis-
tribution of Nt(R) is given by

P (Nt(R) = k) =
∞∑
l=k

tl

l!
a′Ak,l1 , t ≥ 0 , k ∈ N0 . (4.8)
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Proof: First we extend Q(k) to the m(k + 1)×m(k + 1) matrix

Q(k) =

(
Q(k) 0

0 0

)
.

Now (
Q(k)

)l
=

( (
Q(k)

)l
0

0 0

)
and (a(k))′Q(k)1 = (a(k+1))′Q(k)1 .

Using the power series expansion in (4.4) we obtain

P(Nt(R) = k) = (a(k+1))′
∞∑
l=0

tl

l!

(
Q(k+1)

)l
1− (a(k))′

∞∑
l=0

tl

l!

(
Q(k)

)l
1

=
∞∑
l=0

tl

l!
(a(k+1))′

((
Q(k+1)

)l − (Q(k)
)l)

1 .

For the difference of the matrix powers holds

(
Q(k+1)

)l − (Q(k)
)l

=



A0,l A1,l · · · Ak−1,l Ak,l

0
. . . . . .

...
...

...
. . . . . . A1,l

...
...

. . . A0,l A1,l

0 · · · · · · 0 A0,l



−



A0,l A1,l · · · Ak−1,l 0

0
. . . . . .

...
...

...
. . . . . . A1,l

...
...

. . . A0,l
...

0 · · · · · · 0 0


=

 0

Ak,l
...

A0,l

 .

Now
(a(k+1))′

((
Q(k+1)

)l − (Q(k)
)l)

1 = a′Ak,l1 ,

with Ak,l = 0 for l < k.
Using the recursion formula (4.7) we may now approximate the distribution
of Nt(R), because the summands in (4.8) tend to zero for l→∞.3

3For any matrix norm ‖Ak,l‖ ≤
(
l
k

)
(max{‖Qm‖, ‖Q0R‖})l. And so∥∥∥∥ tll!Ak,l

∥∥∥∥ ≤ (tmax{‖Qm‖, ‖Q0R‖})l

k!(l − k)!
→ 0 , for l→∞ .
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Remark 4.5. If the matrices Qm and Q0R commutate we have the much
simpler form

Ak,l =

(
l

k

)
Ql−k
m (Q0R)k

and therefore

P(Nt(R) = k) = a′
∞∑
l=k

tl

l!

(
l

k

)
Ql−k
m (Q0R)k1 =

tk

k!
a′(Q0R)ketQm1 .

Although this result seems promising, usually the matrices do not commu-
tate.

The mean number of failures µ(t, R) may be derived without the SSM rep-
resentation (4.2). For the case that (τRk )k∈N is a renewal process with irre-
ducible intensity matrix ΨR Theorem 2.4.1 from Neuts [47] states, that

µ(t, R) =
t

E(τ1)
+

Var(τ1) + (E(τ1))2

2E(τ1)
+

1

E(τ1)
a′
(

Π− etΨR
)
Q−1
m I ,

where the rows of Π are the unique steady-state distribution of ΨR. Using
the approach of the proof of this theorem for an arbitrary initial distribution
a and intensity matrix ΨR, we may obtain again the result of Corollary 4.1.

4.4 Optimality criterion

For a repair model (M,R(M)) we want to choose a repair matrix R ∈ R(M)
that is optimal in the following sense. Assume that a working system gives
some reward like e.g. engine power which is measured by monetary income.
The income cumulates due to rates d1, ..., dm > 0 which depend on the state of
the system and we write d = (d1, ..., dm)′. In case of a failure type i the repair
action ri,j ∈ Ri = {ri,1, ..., ri,ni} causes costs cij ≥ 0, i = 1, ..., n − m, j =
1, ..., ni. We denote the costs by the cost matrix C = (cij)i=1,...,n−m,j=1,...,nmax ,
where nmax = max{n1, ..., nn−m} and the entries cij that do not correspond
to a repair action is defined as zero. The cumulated income up to time T
equals

I(T,R) =

∫ T

0

m∑
j=1

dj1{j}(S
R
u )du ,

whereas the cumulated losses up to time T equal

L(T,R) =
n∑

i=m+1

cijiNT (R, i) .
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We call
G(T,R) = I(T,R)− L(T,R) (4.9)

the cumulated gains up to time T . The expected gains µG(T,R) = E(G(T,R))
up to time T > 0 are with Corollary 4.1

µG(T,R) = E(I(T,R)− L(T,R))

=

∫ T

0

m∑
j=1

djP(SRu = j)du−
n∑

i=m+1

ciriµ(T,R, i)

=

∫ T

0

m∑
j=1

P(SRu = j)

[
dj −

n∑
i=m+1

cijiqji

]
du .

(4.10)

Definition 4.6. We call

gRj := dj −
n∑

i=m+1

cijiqji (4.11)

the gain rate of state j, j = 1, ...,m, and we write gR = (gR1 , ..., g
R
m)′.

With Theorem 4.1 we obtain

µG(T,R) =

∫ T

0

a′euΨRgRdu . (4.12)

Definition 4.7. We call a repair matrix R∗ ∈ R(M)

i) optimal up to time T > 0, if

µG(T,R∗) ≥ µG(T,R) ∀ R ∈ R(M) .

ii) finally optimal, if

lim
T→∞

T−1µG(T,R∗) ≥ lim
T→∞

T−1µG(T,R) ∀ R ∈ R(M) .

Remark 4.6. Of course, if there exists a repair matrix R∗ with

µG(T,R∗) ≥ µG(T,R) ∀ R ∈ R(M), ∀ T > 0 ,

then R∗ is also finally optimal.
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4.5 Optimal repair matrices

We consider a repair model (M,R(M)), reward rates d1, ..., dm and respective
costs for a repair action cij , j = 1, ..., ni , i = 1, ..., n −m. The gain rates
(4.11) are obtained with small effort, hence the main part of the calculation of
the expected gains µG(T,R) from (4.10) is to determine the state probabilities
of the MC S from Definition 4.2. We investigate four ways how to choose
a repair matrix and we will illustrate the results by means of the following
example.

Example 4.6. We consider again the failure model M (4) from Example 3.1.

i) The possible repair matrices are given by the sets R1, ...,R5 from Ex-
ample 4.1. We assume reward rates d = (d1, d2, d3)′ = (100, 80, 50)′

and repair costs

C =


1 0

1 2

1 2

1 2

1 2

 .

ii) The possible repair matrices are all determined repair matrices of di-
mension 5 × 3 from Example 4.2. We assume constant reward rates
d = 1 and repair costs

C =


1 1 1

2 1 1

3 2 1

3 2 1

5 4 3

 .

4.5.1 Optimal in [0, T ]

The first approach is a global and therefore exact one. For a given time hori-
zon T we may calculate the expected gains for every possible repair matrix
and choose the repair matrix with the highest expected gains. The disadvan-
tage is the computational effort you need for calculating matrix exponentials
and the fact that the number of possible repair matrices

|R(M)| = n1 · ... · nn−m
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may be large even for models with a small number of working states m.
In order to simplify (4.12) we use the representation of the matrix exponential
etΨ

R
from (2.8) and obtain

µG(T,R) =

∫ T

0

a′euΨRgRdu =

∫ T

0

a′

(
k∑
i=1

νi−1∑
α=0

uαeλiu

α!
(ΨR − λiI)αZλi

)
gRdu ,

where the eigenvalues λi and the eigenprojections Zλi belong to the intensity
matrix ΨR. We just need the integrals

J(λi, α, T,R) :=

∫ T

0

uαeλiu

α!
du , α = 0, ..., νi − 1 , i = 1, ..., k .

The solution is

J(λi, α, T,R) =


Tα+1

(α + 1)!
, if λi = 0 ,

(−λi)−(α+1)

(
1− eλiT

∑α
l=0

(−λiT )l

l!

)
, else .

Hence we avoid numerical integration and the expected gains are given by

µG(T,R) = a′

(
k∑
i=1

νi−1∑
α=0

J(λi, α, T,R)(ΨR − λiI)αZλi

)
gR . (4.13)

Example 4.7. We consider the repair models from Example 4.6 and calcu-
late the expected gains up to T for all possible repair matrices.

i) For the 16 possible repair matrices from Example 4.6 i) we calculate
the expected gains (4.13). Figure 4.1 shows the functions µG(T,R)/T
for T ∈ [0, 1] respectively T ∈ [0, 25]. The functions in Figure 4.1
look smooth, they seem to converge to a constant. We evaluate the
expected gains for T = 1 and T = 25 (Figure 4.2). The number of a
repair matrix R = (r1,j1|...|rn−m,jn−m)′ is given by the lexicographical
order of the index vector j = (j1, ..., jn−m). The highest expected gains
result from repair matrix number 16, which corresponds to the index
vector j = (1, 2, 2, 2, 2) (cf. Example 4.1). This is the repair matrix

R16 =


1 0 0

0.8 0.2 0

0.6 0.3 0.1

0.5 0.3 0.2

0.2 0.6 0.2

 .
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Figure 4.1: Expected gains for the possible repair matrices in Example 4.6 i)

Figure 4.2: Expected gains at T = 1 and T = 25 for Example 4.6 i)
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ii) For T = 1 and T = 25 we calculate the expected gains (4.13) for the
35 = 243 possible determined repair matrices from Example 4.6 ii).

Figure 4.3: Expected gains at T = 1 and T = 25 for Example 4.6 ii)

For T = 1 the eight repair matrices with the highest expected gains are

no. 45 41 42 44 50 54 53 51
µG -3.41 -3.43 -3.43 -3.43 -3.46 -3.46 -3.47 -3.47

.

For T = 25 the seven repair matrices with the highest expected gains
are

no. 41 122 203 38 14 32 40
µG -118.6 -118.8 -119.0 -120.1 -120.6 -120.6 -121.5

.

The best repair matrix for T = 1 is R45. But for T = 25 this matrix
yields expected gains of µG(25, R45) = −147 which is not even close
to maximal expected gains. The repair matrix R41 looks promising for
small and large values of T . The corresponding index vector equals
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J = (1, 2, 2, 2, 2) which gives the repair matrix

R41 =


1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

 .

4.5.2 Finally optimal

Considering the ratio

µG(T,R)

T
=

m∑
j=1

gRj
1

T

∫ T

0

P(SRu = j)du , T > 0 (4.14)

we notice that the integrands converge to the components of the steady-state
distribution xa,R of SR (cf. Lemma 2.5):

lim
u→∞

P(SRu = j) = xa,Rj , j = 1, ...,m . (4.15)

Lemma 4.4. The ratio
µG(T,R)

T
from (4.14) converges for T →∞:

lim
T→∞

µG(T,R)

T
=

m∑
j=1

gRj x
a,R
j = (xa,R)′gR .

Proof: Since (4.15) for all δ > 0 exists uδ > 0 with

|P(SRuδ = j)− xa,Rj | ≤ δ , ∀ j = 1, ...,m .

Now for T > uδ holds∣∣∣∣∣
m∑
j=1

gRj
1

T

∫ T

0

P(SRu = j)du−
m∑
j=1

gRj x
a,R
j

∣∣∣∣∣
≤

m∑
j=1

|gRj |
1

T

∫ T

0

|P(SRu = j)− xa,Rj |du

≤
m∑
j=1

|gRj |
(

1

T

∫ uδ

0

|P(SRu = j)− xa,Rj |du+ δ

)
=: ε(T, δ) .

If we take T large enough and δ small enough, ε(T, δ) is arbitrarily close to
zero.
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Remark 4.7. For an irreducible MC with intensity matrix Q the rate of
convergence to the steady-state distribution equals e−ρt, where ρ = −Re(λ)
and λ is the non-zero eigenvalue of Q with largest real part (cf. Kijima [34]
Section 4.5 and note that all non-zero eigenvalues of Q have a negative real
part).

Now we just calculate this limit for every possible repair matrix.

Example 4.8. We consider the repair models from Example 4.6. The limit-
ing expected gains per time unit (xa,R)′gR from Lemma 4.4 for the possible
repair functions are shown in the next figure

Figure 4.4: Limiting expected gains per time unit for Example 4.6

i) The repair matrix R16 is finally optimal with (xa,R16)′gR16 = 67.88 .

ii) The three repair matrices R41, R122 and R203 are finally optimal with
(xa,R)′gR = −4.8. We know the first repair matrix from Example 4.7
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and the other two are given by

R122 =


0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

 , R203 =


0 0 1

0 1 0

0 1 0

0 1 0

0 1 0

 .

Remark 4.8. The limiting distribution can also be obtained in a different
way. Remember that for a given repair matrix R holds (4.15)

lim
t→∞

P(SRt = j) = lim
t→∞

a′etΨ
R

ej = xa,Rj .

If we apply (2.8)

xa,Rj = lim
t→∞

a′

(
k∑
i=1

νi−1∑
α=0

tαeλit

α!
(ΨR − λiI)αZλi

)
ej

we see that all summands vanish except for λi = 0. If ν = ind(ΨR) is the
index of the eigenvalue λ = 0, we have

xa,Rj = lim
t→∞

a′

(
ν−1∑
α=0

tα

α!
(ΨR)αZ0

)
ej .

Since xa,Rj is bounded and the right-hand side is the limit of a polynomial,
this polynomial has to be constant. This shows

xa,Rj = a′Z0ej , j = 1, ...,m .

Especially, the index of ΨR (and of any other intensity matrix) equals one.
The disadvantage of this approach is, that we need to calculate the eigenval-
ues of ΨR, which may again cause numerical instability (cf. Remark 2.8).

4.5.3 Empirical approach

Next we want to avoid calculating the distribution of S. First, we simulate
the processes N(R, i), i = m+ 1, ..., n in order to obtain estimates µ̂(T,R, i).
Let N1, ..., Nk be an iid sample with PN1 = PNT (R,i). A natural candidate as
an estimator for µ(T,R, i) is

µ̂(T,R, i) :=
1

k

k∑
j=1

Nj .
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Additionally, we can estimate covariances between the numbers of distinct
failure types if we observe these numbers simultaneously: Let N1, ...,Nk be
an iid sample of random vectors whose joint distribution PN1

equals the
joint distribution P(NT (R,m+1),...,NT (R,n)). Now the canonical estimators for
the mean vector µ(T,R) = (µ(T,R,m+1), ..., µ(T,R, n))′ and the covariance
matrix Σ(T,R) = (Cov(NT (R, i+m), NT (R, j +m)))i,j=1,...,n−m are

µ̂i(T,R) :=
1

k

k∑
l=1

Nl
i , i = 1, ..., n−m ,

Σ̂ii(T,R) :=
1

k − 1

k∑
l=1

(Nl
i − µ̂i(T,R))2 , i = 1, ..., n−m ,

Σ̂ij(T,R) :=
1

k − 2

k∑
l=1

(Nl
i − µ̂i(T,R))(Nl

j − µ̂j(T,R)) , i 6= j .

Neuts and Pagano [49] used the alias algorithm (Section 2.7) for generating
PH-distributed random variables. In detail you apply the alias algorithm for
the rows of the one-step transition matrix (2.10) of the MCs (J (k))k∈N from
Definition 4.2. The times between the jumps are exponentially distributed.
In a similar fashion we may also simulate the path of S, so we may in fact
simulate the cumulated gain G(T,R) from (4.9). An iid sample G1, ..., Gk

with PG1 = PG(T,R) leads to the estimators

µ̂G(T,R) :=
1

k

k∑
l=1

Gl , Σ̂G(T,R) :=
1

k − 1

k∑
l=1

(Gl − µ̂G(T,R))2 ,

for µG(T,R) and ΣG(T,R) := Var(G(T,R)). If the sample size k is large
enough we may use standard statistical tools to confirm whether a repair
matrix significantly leads to lower expected costs than another repair matrix.

Example 4.9. We consider the repair models from Example 4.6. For every
possible repair matrix we simulate k = 100 cumulated gains G(T,R) for T =
1 and for T = 25. We calculate the estimates for the parameters µG(T,R) and
ΣG(T,R) and calculate corresponding approximate 95% confidence intervals,
using the interval estimators

ÎµG(T,R) =

µ̂G(T,R)− 1.96

√
Σ̂G(T,R)

k
, µ̂G(T,R) + 1.96

√
Σ̂G(T,R)

k

 .

We plot the confidence intervals and the true values which we calculated in
Example 4.7.

68



i)

Figure 4.5: Confidence intervals for the expected gains for Example 4.6 i)

ii)

Figure 4.6: Confidence intervals for the expected gains for Example 4.6 ii),
T = 1
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Figure 4.7: Confidence intervals for the expected gains for Example 4.6 ii),
T = 25

4.5.4 Heuristic approach

The three first approaches have in common that we investigate all possible
repair matrices. Now we propose a heuristic approach, which investigates
only few repair matrices and which shall result in a good repair matrix.
In case of a failure of type j, j ∈ {m + 1, ..., n} one has to decide which
repair action from Rj−m to perform. The repair action rj−m,l ∈ Rj−m causes
immediate costs cj−m,l, l = 1, ..., nj−m, and until the next failure happens
income is yielded.

Lemma 4.5. Consider the failure model M = (a,Q). Let the system be in
state i ∈ {1, ...,m}. The expected income until the next failure µIi equals

µIi = −e′iQ−1
m D1 , 4

where D = diag(d1, ..., dm). We define µI := (µI1, ..., µ
I
m)′.

4This equals the expectation of a bilateral phase-type distribution (cf. Ahn and Ra-
maswami [5]) with representation (ei, Qm, D).
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Proof: Remember the processes J (1), S and (τR, UR) from Definition 4.2
and assume that SR0 = i. Now the income until the next failure is∫ τR1

0

m∑
j=1

dj1{j}(S
R
u )du .

Since the MC J (1) with a = ei equals SR on [0, τR1 ) and takes values in
{m+ 1, ..., n} on [τR1 ,∞) the income may be written as∫ ∞

0

m∑
j=1

dj1{j}(Ju)du .

Taking conditional expectations yields

µIi =

∫ ∞
0

m∑
j=1

djP(J (1)
u = j|J (1)

0 = i)du =

∫ ∞
0

m∑
j=1

dje
′
ie
Qmuejdu

=

∫ ∞
0

e′ie
QmuD1du = −e′iQ−1

m D1 .

Remember that in Lemma 2.3 we proved that

µτi = E(τR1 |J
(1)
0 = i) = −e′iQ−1

m 1 , 1 = 1, ...,m .

We write µτ = (µτ1, ..., µ
τ
m)′. A decision rule, which may be interpreted as

maximizing the gain rate until the next failure, is to maximize the ratio of
the expected gains per expected time until the next failure:

∀ j ∈ {m+ 1, ..., n} maximize
l=1,...,nj−m

(rj−m,l)′µI − cj−m,l
(rj−m,l)′µτ

. (4.16)

But this decision rule alone does not cope with the complexity of the model.
In the following example we see that maximizing the gain rates might cause
the system to evolve to more severe states.

Example 4.10. Let the system describe a mobile phone. If the mobile
phone is new, a failure may occur when the battery breaks down. Now we
may either buy a new battery from the original manufacturer, or we may buy
a low-budget battery from another manufacturer. Assume that a low-budget
battery does not simply break down, but implodes and destroys the mobile
phone. In the latter case we may either buy a new mobile phone with an
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original battery or we buy a new mobile phone with a low-budget battery.
Let the parameters of the model be m = 2, n = 4, a = e1 and

Q =

(
−1 0 1 0

0 −1 0 1

)
, R1 = R2 = {e1, e2} , C =

(
3 1

10 8

)
, d = 1 .

If we apply rule (4.16) with µI = −Q−1
2 D1 = 1 and µτ = −Q−1

2 1 = 1 we
obtain

j = 3 : l = 1 :
e′1µ

I − c11

e′1µ
τ

=
1− 3

1
= −2 ,

l = 2 :
e′2µ

I − c12

e′2µ
τ

=
1− 1

1
= 0 ,

j = 4 : l = 1 :
e′1µ

I − c21

e′1µ
τ

=
1− 10

1
= −9 ,

l = 2 :
e′2µ

I − c22

e′2µ
τ

=
1− 8

1
= −7 .

This results in the repair matrix R1 =

(
0 1

0 1

)
. Whether this is a good

repair matrix may be calculated with Example 2.6 and Lemma 4.4. We have

ΨR1 =

(
−1 1

0 0

)
, etΨ

R1 =

(
e−t 1− e−t

0 1

)
, xa,R = e2 , g

R
2 = −7

⇒ lim
T→∞

µG(T,R1)

T
= −7 .

We compare R1 with the repair matrix R2 =

(
1 0

1 0

)
.

ΨR2 =

(
0 0

1 −1

)
, etΨ

R2 =

(
1 0

1− e−t e−t

)
, xa,R = e1 , g

R
1 = −2

⇒ lim
T→∞

µG(T,R1)

T
= −2 .

This shows that R2 yields larger gains per time than R1 (In fact, R2 is finally
optimal.).

We need to take into account forthcoming failures. The approach is that we
use rule (4.16) to determine the repair matrix that we apply for a virtual
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last failure and then determine the repair matrix which is optimal for the
next to last failure and so on. If we restart after the next to last failure in
state i ∈ {1, ...,m} the probability that the last failure is of type j + m,
j ∈ {1, ..., n−m} equals bij from Lemma 2.2

bij = P(Jτ = j +m|J0 = i) ⇒ B = −Q−1
m Q0 .

The decision rule may now be interpreted as cumulated gain rate. We use
the following algorithm:

(Step 1) for each failure type j = m+ 1, ..., n do:

l∗ := argmax
l=1,...,nj−m

(rj−m,l)′µI − cj−m,l
(rj−m,l)′µτ

,

r
(1)
j−m := l∗,

G
(1)
j−m := (rj−m,l

∗
)′µI − cj−m,l∗ ,

T
(1)
j−m := (rj−m,l

∗
)′µτ .

(Step s) s ≥ 2, for each failure type j = m+ 1, ..., n do:

l∗ := argmax
l=1,...,nj−m

(rj−m,l)′µI − cj−m,l + (rj−m,l)′BG(s−1)

(rj−m,l)′µτ + (rj−m,l)′BT (s−1)
,

r
(s)
j−m := l∗,

G
(s)
j−m := (rj−m,l

∗
)′µI − cj−m,l∗ + (rj−m,l

∗
)′BG(s−1),

T
(s)
j−m := (rj−m,l

∗
)′µτ + (rj−m,l

∗
)′BT (s−1).

Here G(s) = (G
(s)
1 , ..., G

(s)
n−m)′ and T (s) = (T

(s)
1 , ..., T

(s)
n−m)′ are s-failure

gains respective s-failure times given the current failure type, and r(s) =
(r

(s)
1 , ..., r

(s)
n−m)′ gives the current repair matrix R(s), where the i-th row

of R(s) is given by ri,r
(s)
i ∈ Ri, i = 1, ..., n−m from Definition 4.1.

(STOP) Stop if for a fixed integer K ≥ 1

∃ s1, ..., sK : 1 ≤ s1 < ... < sK , r
(s1) = ... = r(sK) .

Then we choose the repair matrix R(sK).

According to this algorithm, we choose the first repair matrix that is optimal
in K iterations of the algorithm. In the next example we show that the result
of the algorithm may depend on the parameter K.

73



Example 4.11. Consider the repair model with m ≥ 2 fixed, a = e1 and

Q = (−I | I) ∈ Rm×2m ,

R1 = {e1, e2} ,
Rm = {em} ,
Ri = {ei+1} , i = 2, ...,m− 1 ,

d = 1 ,

C =



2 1

1 0
...

...

1 0

3 0

 .5

There are only two possible repair matrices. We calculate which one of them
is finally optimal.

R1 =



e′1
e′3
...

e′m
e′m

 ,
ΨR1 =

(
0 · · · 0

∗

)
⇒ xa,R = e1 ,

gR1 = 1− 2 = −1 , limT→∞
µG(R1, T )

T
= −1 .

R2 =



e′2
e′3
...

e′m
e′m

 ,

ΨR2 =


−1 1

. . . . . .

−1 1

0

 ⇒ xa,R = em ,

gRm = 1− 3 = −2 , limT→∞
µG(R2, T )

T
= −2 .

This shows that R1 is finally optimal. If we use the algorithm presented
above, the resulting repair matrices are

R(s) = R2 for 1 ≤ s ≤ m− 1 , and R(s) = R1 for m ≤ s .

Consequently, if we use the parameter K with K < m, the algorithm yields
the worse repair matrix.

The example above motivates us to take K ≥ m. We should also check the
repair matrix R(sK) that results from the algorithm by calculating the exact
gains (either in some interval [0, T ] or the limiting behavior) of R(1), ..., R(sK).
If one of these repair matrices yields gains larger than the gains of R(sK), we
should not accept R(sK) as best choice.

5If m = 2 we take C =

(
2 1

3 0

)
, R2 = {e2}, and if m = 3 we take C =

 2 1

1 0

3 0

 .
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Remark 4.9. In the algorithm presented above we choose the repair matrix
R ∈ R(M) row by row. The obtained repair matrix does not need to be
applicable with respect to an information level F. If we use one of the first
three approaches, we may detect the applicable repair matrix, and we may
only consider the applicable repair matrices for the optimization. This might
especially be effective if the number of possible repair matrices is small, and
if it is relatively small concerning the possible repair matrices.

Example 4.12. We consider the repair models from Example 4.6 and use
the algorithm presented above for choosing a repair matrix. We take the
parameter K = 5.

i) The steps of the algorithm yield the following repair matrices:

Step j1 j2 j3 j4 j5 no.
1 1 2 2 2 2 16
2 1 2 2 2 2 16
3 1 2 2 2 2 16
4 1 2 2 2 2 16
5 1 2 2 2 2 16

The repair matrix R16 is obtained in all steps of the algorithm. Ac-
cording to Example 4.8, the repair matrix R16 is finally optimal.

ii) The steps of the algorithm yield the following repair matrices:

Step j1 j2 j3 j4 j5 no.
1 1 2 3 3 3 54
2 1 2 2 2 2 41
3 1 2 2 2 2 41
4 1 2 2 2 2 41
5 1 2 2 2 2 41
6 1 2 2 2 2 41

The resulting repair matrix R41 is known to be finally optimal (Example
4.8) and also optimal in [0, 25] (Example 4.7). The repair matrix R54

which is obtained in the first step of the algorithm yields good results
for short time horizons (Example 4.7).
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Chapter 5

Preventive maintenance actions

We want to perform preventive maintenance actions in order to avoid failures
of the system. This makes sense if the costs for a preventive maintenance
action are small compared to the repair costs and if some working states of
the system are preferable, in particular if there exists a state which may be
interpreted as an ’as-good-as-new’ state. The usual idea is that the system
starts in this state and after the preventive maintenance action the system
relaunches in this state. We call this approach replacement of the system. A
replacement policy is given by a stopping time T with respect to some filtra-
tion F. We assume that we always have a filtration, such that the replacement
policy T is a stopping time. Assume that T has a finite but non-zero ex-
pectation and let G(T,R) be the cumulated gain up to time T . We want
to maximize the expected gains per time unit in the renewal interval [0, T ]
over suitable classes of stopping times. We present two classical maintenance
policies and derive a new policy which is more suitable for our model. Let
us first consider an example.

Example 5.1. Let us consider a system with two working states and two
failure types (m = 2, n = 4) with

a = e1 , Qm =

(
−1.1 1

0 −1

)
, Q0 =

(
0.1 0

0 1

)
, d = 0.

State 1 may be interpreted as good condition of the system and state 2 as
bad condition. In case of a failure the system is replaced, which means the

repair matrix is R =

(
1 0

1 0

)
. Repair costs are equal to 1. We calculate
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the limiting behavior of the expected gains from Lemma 4.4

ΨR =

(
−1 1

1 −1

)
, gR =

(
−0.1

−1

)
, xa,R =

(
0.5

0.5

)
,

⇒ lim
T→∞

µG(T,R)

T
= (xa,R)′gR = −0.55 .

The eigenvalues of ΨR are λ1 = 0 and λ2 = −2, both with index one. With
(2.7) the eigenprojections are

Z0 =
ΨR + 2I

2
=

(
0.5 0.5

0.5 0.5

)
, Z−2 =

ΨR + 2I− 2I

−2
=

(
0.5 −0.5

−0.5 0.5

)
.

We apply (4.13) and obtain

J(0, 0, T, R) = T , J(−2, 0, T, R) = 0.5(1− e−2T )

µG(T,R) = e′1

(
T

(
0.5 0.5

0.5 0.5

)
+ 0.5(1− e−2T )

(
0.5 −0.5

−0.5 0.5

))(
−0.1

−1

)
= −0.55T + 0.225(1− e−2T ) .

We investigate three inspection policies, where c > 0 are the costs for a
preventive replacement.

(1) At time T a preventive replacement is performed. The expected gains
in the interval [0, T ] are µG(T,R) − c. The expected gains per time
unit in the interval [0, T ] are hence

g(T, c) =
µG(T,R)− c

T
=
−22T + 9(1− e−2T )− 40c

40T

which we want to maximize with respect to T for a fixed c > 0. The
first order condition is

c =
9

40
(1− e−2T (1 + 2T ))

which has a unique solution T ∗(c) iff 0 < c < 9/40 with

g(T ∗(c), c) = −11/20 + 9/20e−2T ∗(c) .

(2) At time T a preventive replacement is performed if no failure happened
up to time T . After the first replacement at time τR1 ∧ T the same
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rule applies, say a preventive replacement is performed if no failure
happened up to time (τR1 ∧ T ) + T . The expected gains in the interval
[0, τR1 ∧ T ] are henceforth

−P(τR1 ≤ T )− c · P(τR1 > T ) .

The expected length of a renewal cycle equals∫ T

0

ufτR1 (u)du+ T · P(τR1 > T ) .

We have to maximize

g(T, c) =
(1− c)(10e−T − 9e−1.1T )− 1

20
11

+ 90
11
e−1.1T − 10e−T

with respect to T for a fixed c > 0. The first order condition yields

c =
9− 99eT + 90e1.1T

9− 198eT + 200e1.1T
.

The right-hand side is monotone increasing in T ≥ 0 with values in
[0, 0.45). Hence the first order condition has a unique solution T ∗(c)
for 0 < c < 9/20 with

g(T ∗(c), c) = 1.1
1989− 198eT

∗(c) + 200e1.1T ∗(c) − 891e−0.1T ∗(c) − 1100e0.1T ∗(c)

(9− 198eT ∗(c) + 200e1.1T ∗(c))(2− 11e−T ∗(c) + 9e−1.1T ∗(c))
.

(3) We perform a preventive replacement, if the system runs into state 2
(the bad condition state)

T = inf{t ≥ 0 : SRt = 2} .

Let N be the number of failures before T . N + 1 is geometrically
distributed with p = 10/11, so E(N) = 0.1. T is the (N + 1)-fold
convolution of exponentially distributed random variables with mean
10/11. Hence E(T ) = 10

11
E(N + 1) = 1. The expected gains per time in

a renewal circle are

g(c) =
−E(N)− c

E(T )
= −0.1− c .

This policy should only be applied if the expected gains per time are
at least equal to the gains per time without preventive maintenance,

g(c) ≥ −0.55 ⇔ c ≤ 0.45 .
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We compare the three policies graphically

Figure 5.1: Preventive maintenance: three policies

The graphical solution shows, that the third policy clearly outperforms the
first two policies if c < 0.45.

The first two policies in Example 5.1 are classical preventive maintenance
policies. The first policy is a block replacement policy and the second policy
is an age replacement policy. The third policy uses information about the un-
derlying MC SR, and it seems like, that this advance of knowledge about the
proneness to failure of the system helps to obtain larger expected gains than
the first two policies. We call the third policy a critical state maintenance
policy.

5.1 Block replacement policy

Let (M = (a,Q),R(M)) be a repair model. The original approach of the
block replacement policy is, that there exists an ’as-good-as-new’ state. As-
sume that state 1 is the ’as-good-as-new’ state. We now consider a = e1 and
assume that upon failure the system is repaired with respect to the repair
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matrix R. A preventive replacement at costs c > 0 is performed at a fixed
time T > 0. The expected gain per time unit is the ratio

g(T, c) =
µG(T,R)− c

T
.

Clearly, g(T, c) → −∞ for T → 0 and g(T, c) →
∑m

j=1 g
R
j x

a,R
j from Lemma

4.4 for T →∞. The first order condition states

c = µG(T,R)− T ∂

∂T
µG(T,R) .

Whether there exists a solution depends on c. Plugging-in (4.10) yields

∂

∂T
µG(T,R) = a′eTΨRgR ⇒ c =

m∑
j=1

gRj

∫ T

0

[
P(SRu = j)− P(SRT = j)

]
du .

If the right hand side of the upper equation is non-negative for all T > 0,
the system deteriorates in the sense that states with a high gain rate have a
high probability at early times. If the right hand side is non-positive for all
T > 0, the system rejuvenates and in this case clearly T =∞ is optimal. If
we don’t know whether there is an ’as-good-as-new’ state, we may identify the
state which is the preferred initial state. We have to calculate the optimized
expected gains per time for every initial state i = 1, ...,m. A simultaneous
optimization with respect to the initial state i, the replacement time T and
the repair matrix R seems again to need much computational effort.

5.2 Age replacement policy

Let M = (e1, Q) be a failure model with reward rates d. A preventive
replacement (the system relaunches in state 1) at costs c > 0 is performed
at a fixed time T > 0 if no failure has occurred before the time to failure τ
of the MC J from (3.4). In case of a failure before T the system is replaced
at costs c + k. A renewal interval has now the length T ∧ τ1. The expected
gains per time unit are

g(T, c, k) =

∫ T
0

∑m
j=1 djP(Ju = j)du− c− k · P(τ ≤ T )∫ T

0
ufτ (u)du+ T · P(τ > T )

,

where J is the MC corresponding to τ . The existence of a maximum again
depends on the costs c and k. As for the block replacement policy we can
check, which working state is closest to a ’as-good-as-new’ state, if we also
use the other working states as initial state.
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5.3 Critical state maintenance policy

Now we present a maintenance policy which takes into account the com-
plex structure of the failure model. We want to identify a set of critical
working states of the system and we perform a preventive maintenance ac-
tion in case the system enters this set. Assume that for every working
state j of the system we have a finite set of preventive maintenance actions
Pj = {pj,1, ..., pj,mj} with pj,1 = ej, j = 1, ...,m. So with pj,1 it is always
possible that no preventive maintenance is performed. The action pj,i causes
costs γji ≥ 0, where γj1 = 0 because nothing is done if we choose the action
pj,1.

Definition 5.1. Let (M,R(M)) be a repair model with n states and m
working states and for j = 1, ...,m let Pj = {pi,1, ..., pi,mj} ⊂ Rm be a non-
empty finite set of probability vectors with pj,1 = ej. An m ×m matrix P
whose rows (p1,l1)′, ..., (pm,lm)′ are probability vectors pj,lj ∈ Rj, j = 1, ...,m
is called preventive maintenance matrix. We define the set

P(M) := {P : P is a preventive maintenance matrix for model M}

of possible preventive maintenance matrices. We call the triple

(M,R(M),P(M))

a maintenance model.

For j = 1, ...,m the row j of a preventive maintenance matrix P defines which
preventive maintenance actions is performed when the system enters the state
j. We represent a preventive maintenance matrix P = (p1,j1 , ..., pm,jm)′ by its
index vector j = (j1, ..., jm) and use the lexicographical order of these index
vectors to order the set P(M) = {P1, ..., P|P(M)|}.

Definition 5.2. A working state j is called critical state under a preventive
maintenance matrix P = (pij)i,j=1,...,m if pjj < 1, j = 1, ..,m. The set

C(P ) := {j = 1, ...,m|pjj < 1}

is the set of all critical states under P and

C(P ) := {j = 1, ...,m|pjj = 1}

is the set of all non-critical states under P .
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The critical states are the working states at which we perform a preventive
maintenance action. Preventive maintenance actions are executed instanta-
neously. If the system enters a critical state j ∈ C(P ), a multinomial trial
with respect to the j-th row of the current preventive maintenance matrix
P is accomplished. If the trial results in a critical state j∗ ∈ C(P ) again a
multinomial trial is accomplished, this time with respect to the j∗-th row of
P . This procedure is continued until the state that results from a trial is not
critical. Then the system relaunches in this non-critical state.

Definition 5.3. Let (M,R(M),P(M)) be a maintenance model. A pre-
ventive maintenance matrix P ∈ P(M) is called admissible if being in a
critical state the system reaches a non-critical state P-a.s. by the procedure
described above.

An admissible preventive maintenance matrix ensures that the system is
eventually restarted after it has reached a critical state. Especially if C(P ) =
{1, ...,m}, a preventive maintenance matrix P is admissible, and if C(P ) =
{1, ...,m} it is not admissible. We want to specify the admissible preventive
repair matrices.

Remark 5.1. The case C(P ) = {1, ...,m} (which means that there is no
preventive maintenance) is covered by Chapter 4.

Let P be a preventive maintenance matrix with 1 ≤ |C(P )| ≤ m − 1. By
renumbering the states 1, ...,m we may write

P =

(
I 0

P1 P2

)
, (5.1)

where I is the identity matrix of dimension m̃× m̃ with m̃ = m− |C(P )| ∈
{1, ...,m − 1}. Now P is admissible if the probability of staying in C(P )
tends to zero for increasing number of trials

lim
k→∞

P k
2 = 0 .

Lemma 5.1. Let P be a preventive maintenance matrix like in (5.1). P is
admissible iff (P2 − I) is regular.

Proof: Let limk→∞ P
k
2 = 0 and take x ∈ Rm−m̃ with (P2 − I)x = 0. Now

x = P2x = P k
2 x→ 0 , for k →∞ .

Thus, x = 0 and (P2 − I) is regular.
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Now let (P2 − I) be regular and let A ⊆ C(R) be an irreducible class of
recurrent states. Then the part of P belonging to A is a stochastic matrix
P |A satisfying P |A1 = 1. This means there exists a vector x ∈ Rm−m̃ with
P2x = x what contradicts the regularity of (P2− I). Hence all states in C(R)
are transient and P k

2 → 0 for k →∞.

Remark 5.2. The number of preventive maintenance actions performed un-
til the system reaches a non-critical state has a discrete PH-distribution with
representation (ei, P2) with ei ∈ Rm−m̃ (cf. Neuts [45]).

Similarly to the construction in Definition 4.2, applying a repair matrix R and
an admissible preventive maintenance matrix P yields a marked point process
(τR,Pk , UR,P

k )k∈N (the maintenance times τR,Pk and corresponding failure types
respective critical states UR,P

k ) and a homogeneous MC that gives the current
non-critical state of the system. Let wlg C(P ) = {1, ..., m̃}. The probability
of restarting in state j ∈ C(P ) after reaching a state i ∈ {m̃ + 1, ..., n} is
obtained with the matrix

Υ̃(R,P ) :=

 I 0 0

P1 P2 0

R1 R2 0

 ,

where I is the identity matrix of dimension m̃ × m̃ and R = (R1 R2). The
sought-after probability is the entry (i, j) of the limiting matrix

Υ̃(R,P )∗ := lim
k→∞

Υ̃(R,P )k.

Lemma 5.2. The limiting matrix Υ̃(R,P )∗ := limk→∞ Υ̃(R,P )k is given by

Υ̃(R,P )∗ =

 I 0 0

(I− P2)−1P1 0 0

R1 +R2(I− P2)−1P1 0 0

 .

Proof: By induction we obtain for k ≥ 3

Υ̃(R,P )k =

 I 0 0

(I + P2 + P 2
2 + · · ·+ P k−1

2 )P1 P k
2 0

R1 +R2(I + P2 + P 2
2 + · · ·+ P k−2

2 )P1 R2P
k−1
2 0

 .

Since (I− P2) is invertible and

lim
k→∞

P k
2 = 0
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we have

I + P2 + P 2
2 + · · ·+ P k−1

2 = (I− P k
2 )(I− P2)−1 → (I− P2)−1 for k →∞ .

We denote the essential rows of Υ̃(R,P )∗ as probability vectors υ∗m̃+1, ..., υ
∗
n

with

Υ̃(R,P )∗ =


I

υ∗m̃+1

...

υ∗n

0


Taking the MC J from Definition 3.1 the initial distribution a may cause J to
start in a critical state. This means that already at time τ0 = 0 a preventive
maintenance action is carried out. This special type of maintenance will be
considered later, now we only need the real initial distribution a∗ after the
possible repair action at time zero. The initial distribution a∗ on {1, ..., m̃}
is given by

(a∗)′ = a′

(
I

(I− P2)−1P1

)
.

Definition 5.4. We define a marked point process (τR,Pk , UR,P
k )k∈N and a

process SR,P = (SR,Pt )t≥0 using a repair matrix R ∈ R(M), an admissible
preventive maintenance matrix P ∈ P with C(P ) = {1, ..., m̃} (1 ≤ m̃ ≤
m − 1) and copies

(
J

(k)
t

)
t≥0

, k = 1, ... of (Jt)t≥0 from Definition 3.1 with

different initial distributions a(k) ∈ Rm̃ (let τR,P0 = 0):

• a(1) := a∗, τR,P1 := inf{t ≥ 0 : J
(1)
t > m̃}, UR,P

1 := J
(1)

τR,P1

,

• for k = 2, ... do

SR,Pt := J
(k−1)

t−τR,Pk−2

, for τR,Pk−2 ≤ t < τR,Pk−1 ,

a(k) := υ∗
UR,Pk−1

,

τR,Pk := τR,Pk−1 + inf{t ≥ 0 : J
(k)
t > m̃} ,

UR,P
k := J

(k)

τR,Pk −τR,Pk−1

.

For the next theorem we split the intensity matrix Q into parts for the non-
critical states {1, ..., m̃}, the critical states {m̃ + 1, ...,m} and the failure
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states {m+ 1, ..., n}

Q =

(
Qm̃ Q(2) Q(3)

∗

)
, (5.2)

where Q(2) ∈ Rm̃×(m−m̃) and Q(3) ∈ Rm̃×(n−m).

Theorem 5.1. The process SR,P = (SR,Pt )t≥0 is a homogeneous MC with
state space {1, ..., m̃}, initial distribution a∗ and intensity matrix ΨR,P =(
ψR,Pij

)
i,j=1,...,m̃

∈ Rm̃×m̃ with

ΨR,P = Qm̃ +Q(2)(I− P2)−1P1 +Q(3)(R1 +R2(I− P2)−1P1) .

The distribution of SRt is hence given by:

P(SR,Pt = i) = (a∗)′etΨ
R,P

ei , i = 1, ..., m̃ , t ≥ 0 .

Proof: This is an immediate consequence of Remark 4.3 with

Q0 = (Q(2)|Q(3)) and R =

(
(I− P2)−1P1

R1 +R2(I− P2)−1P1

)

from (5.2) respectively from Lemma 5.2.
The processes defined above do not give informations about all maintenance
actions performed. The series of maintenance actions needed to reach a non-
critical state is at first only important for the costs of maintenance.

Lemma 5.3. Let γ ∈ Rm−m̃ be the vector of respective costs for the pre-
ventive maintenance actions given by an admissible preventive maintenance
matrix P and let c ∈ Rn−m be the vector of respective costs for the repair
actions given by a repair matrix R. Then the expected costs γ̃ and c̃ needed
to reach a non-critical state are given by

γ̃ = (I− P2)−1γ , c̃ = c+R2γ̃ .

Proof: We condition on the first maintenance action performed to obtain

γ̃ = γ + P2γ̃ , c̃ = c+R2γ̃ .
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Definition 5.5. Let (M,R(M),P(M)) be a maintenance model, R ∈ R(M),
P ∈ P(M) admissible with C(P ) = {1, ..., m̃} and i ∈ {m̃ + 1, ..., n}. The
process N(R,P, i) with

Nt(R,P, i) :=
∞∑
k=1

1[0,t]×{i}(τ
R,P
k , UR,P

k ) , t ≥ 0

is the canonical counting process for the maintenance actions of type i given
R and P .

The counting processes from Definition 5.5 are defined analogous to the
counting processes in Definition 4.5. Hence we obtain an analogous SSM-
representation as in Lemma 4.1.

Lemma 5.4. Let (M,R(M),P(M)) be a maintenance model, R ∈ R(M),
P ∈ P(M) admissible with C(P ) = {1, ..., m̃}, and let F be the canonical
filtration of the counting processes N(R,P, m̃ + 1), ..., N(R,P, n). For i ∈
{m̃+ 1, ..., n} the F-intensity of N(R,P, i) is given by

λit =
m̃∑
j=1

qji1{j}(S
R,P
t ) , t ≥ 0

and the mean value function of N(R,P, i) is

µ(t, R, P, i) := E(Nt(R,P, i)) =

∫ t

0

(a∗)′euΨR,P (Q2 | Q3)ei−m̃ du .

Since the costs caused by a failure or by reaching a critical state are random,
the cumulated losses up to time T > 0 differ from the case with no preventive
maintenance (4.4). For j ∈ {m̃ + 1, ..., n} let Cj(R,P ) be the random costs
occurring after reaching state j and NT (R,P, j) the number of failures re-
spective preventive maintenance actions of type j. Now the cumulated losses
up to time t > 0 are

L(T,R, P ) = C0 +
n∑

j=m̃+1

NT (R,P,j)∑
i=1

Cj
i (R,P ) , (5.3)

where Cj
1(R,P ), Cj

2(R,P ), ... is a series of random variables having the same
distribution as Cj(R,P ) and C0 are the costs for maintenance actions at
time zero. If a is the initial distribution of the system, a|C(P ) is the part
corresponding to the critical states. Analogous to Lemma 5.3 the mean of
C0 is

E(C0) = (a|C(P ))
′(I− P2)−1γ = (a|C(P ))

′γ̃ .
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For calculating the expected losses we need a generalized version of Wald’s
equation.1

Lemma 5.5. Let C = (Ci)i∈N be a series of identically distributed random
variables with finite mean. Let N be an N0-valued random variable with
finite mean and for n ∈ N let 1[0,n−1](N) and Cn be independent. Then

E

(
N∑
i=1

Ci

)
= E(N)E(C1) .

Proof: (due to N. Gaffke)
Wlg C1 is non-negative (else consider the positive and the negative part of
C1). Now due to monotone convergence (e.g. Billingsley [14] Theorem 16.2)

E

(
N∑
i=1

Ci

)
= E

(
∞∑
i=1

Ci1[i,∞)(N)

)
=
∞∑
i=1

E(Ci1[i,∞)(N)) .

The random variables Ci and 1[i,∞)(N) = 1 − 1[0,i−1](N) are independent,
hence

E

(
N∑
i=1

Ci

)
=
∞∑
i=1

E(Ci)E(1[i,∞)(N))

= E(C1)
∞∑
i=1

P(N ≥ i)

= E(C1)E(N) .

Concerning (5.3) we notice that the costs Cj
i (R,P ) and the processN(R,P, j)

need not be independent, but Cj
i (R,P ) may only influence the time until one

reaches state j the next time. Especially Cj
i (R,P ) is independent of the past

and therefore independent of 1[0,i−1](Nt(R,P, j)). Applying Lemma 5.5 yields
the expected losses up to time T

E(L(T,R, P )) = (a|C(P ))
′γ̃ +

m−m̃∑
j=1

γ̃jµ(T,R, P, j + m̃)

+
n−m∑
j=1

c̃jµ(T,R, P, j +m) .

1Wald’s equation (cf. Blackwell [15]) gives the result of Lemma 5.5 with the additional
assumption, that N is a stopping time with respect to the canonical filtration of the iid
series C.
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The expected income up to time T is similar to (4.10)

µI(T,R, P ) =

∫ T

0

m̃∑
j=1

djP(SR,Pu = j) du .

Altogether we calculate the expected gains

µG(T,R, P ) =− (a|C(P ))
′γ̃

+
m̃∑
i=1

∫ T

0

P(SR,Pu = i)
[
di − (ei)

′Q(2)γ̃ − (ei)
′Q(3)c̃

]
du .

(5.4)

Remark 5.3. Since it always holds that c̃ ≥ c (Lemma 5.3), the term

gR,Pi :=
[
di − (ei)

′Q(2)γ̃ − (ei)
′Q(3)c̃

]
, i = 1, ..., m̃

from (5.4) is never higher than the gain rate gRi from (4.11) in the model
without preventive maintenance. Hence a preventive maintenance action
only yields higher expected gains than without preventive maintenance, if
the probability that the system is in a state with a high gain rate is higher
than before. gR,Pi is the gain rate for the maintenance model.

Definition 5.6. Let (M,R(M),P(M) be a maintenance model. We call a
repair matrix R∗ ∈ R(M) and an admissible preventive maintenance matrix
P ∗ ∈ P(M)

i) optimal up to time T > 0, if

µG(T,R∗, P ∗) ≥ µG(T,R, P ) ∀ R ∈ R(M) and admissible P ∈ P(M) .

ii) finally optimal, if

lim
T→∞

T−1µG(T,R∗, P ∗) ≥ lim
T→∞

T−1µG(T,R, P )

∀ R ∈ R(M) and admissible P ∈ P(M) .

We call

Υ(R,P ) :=

 I 0

P1 P2

R1 R2


a maintenance matrix.
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The index vector j = (i1, ..., im, l1, ..., ln−m)′ of a maintenance matrix Υ(R,P )
is given by the index vector i = (i1, ..., im)′ of P = (p1,i1 , ..., pm,im)′ and the
index vector l = (l1, ..., ln−m)′ of R = (r1,l1 , ..., rn−m,ln−m)′. We order the
possible maintenance matrices by the lexicographical order of the respective
index vectors. We notice that the structure of the expected gain function
(5.4) is the same as in 4.10. This is why we may use the first three approaches
from Chapter 4 in order to obtain an optimal maintenance policy (R,P ). We
illustrate these approaches with an example.

Example 5.2. We consider the repair models from Example 4.6.

i) For the repair model from Example 4.6 we assume the possible preven-
tive maintenance actions

P1 = {e1, e2} , P2 = {e2, e1} , P3 =

e3,

 0.5

0.5

0


 ,

and the corresponding costs

Γ =

 0 0.1

0 0.3

0 0.5

 .

There are 8 possible replacement matrices, but the matrices

P7 =

 0 1 0

1 0 0

0 0 1

 , P8 =

 0 1 0

1 0 0

0.5 0.5 0


are not admissible. The expected gains (5.4) for T = 1 and T = 25 are
given in Figure 5.2.

In both cases the maintenance matrices Υ49, ...,Υ64 are optimal. For all
these matrices the only non-critical state is state 1. The only possible
failure state is state 4, so if we change the rows 2, ..., 5 of the repair
matrix R, it does not affect the expected gains. The maintenance
matrices Υ49, ...,Υ64 are also finally optimal, and since P(SR,Pt = 1) =
1 , t ≥ 0, the expected gains (5.4) for these maintenance matrices equal

µG(T,R, P ) = 97.45T , T ≥ 0 .

We simulate k = 100 cumulated gains, and similar to Example 4.9 we
calculate confidence intervals for the expected gains. The results are
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Figure 5.2: Expected gains for the maintenance model in Example 5.2 i)

Figure 5.3: Confidence intervals for the expected gains, Example 5.2 i)
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shown in Figure 5.3, where the red dots are the respective true param-
eters.

ii) For the repair model in Example 4.6 ii) we assume that the possible pre-
ventive maintenance actions are all determined preventive maintenance
actions :

Pi = {e1, ..., em} , i = 1, ...,m .

Note that due to computational reasons we differ slightly from Defini-
tion 5.1, since we have pi,i = ei instead of pi,1 = ei in the definition.
The corresponding costs are given by

Γ =

 0 0.1 0.1

0.1 0 0.1

0.1 0.1 0

 .

The matrix Γ = (γij)i,j=1,...,m in turn coincides with Definition 5.1,
because for i = 1, ...,m the preventive maintenance action ei ∈ Pi
causes costs γii = 0. There are 27 possible preventive maintenance
matrices, but 11 of them are not admissible, namely the 23 = 8 matrices
P with C(P ) = {1, 2, 3} (these are P10, P11, P16, P17, P19, P20, P25, P26)
and the 3 matrices with C(P ) = {j1, j2} and ij1 = j2 and ij2 = j1,
where i = (i1, i2, i3)′ is the index vector of P (these are the matrices
P8, P12, P22). The expected gains (5.4) are for T = 1 and T = 25 are
given in Figure 5.4. In both cases the maintenance matrices Υ1, ...,Υ81

are optimal. Again, for all these matrices the only non-critical state is
state 1 and the only possible failure state is state 4. The maintenance
matrices Υ1, ...,Υ81 are also finally optimal, and since P(SR,Pt = 1) =
1 , t ≥ 0, the expected gains (5.4) for these maintenance matrices equal

µG(T,R, P ) = −0.4T , T ≥ 0 .

We simulate k = 100 cumulated gains, and similar to Example 4.9 we
estimate the expected gains. The results are shown in Figure 5.5.
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Figure 5.4: Expected gains for the maintenance model in Example 5.2 ii)

Figure 5.5: Estimation of the expected gains, Example 5.2 ii)
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We may draw some conclusions from this example.

- There are maintenance matrices that yield higher expected gains than
without preventive maintenance, but there are also maintenance ma-
trices that yield lower expected gains (cf. Chapter 4).

- There are preventive maintenance matrices which are not admissible.
At least there are (m1 − 1) · ... · (mm − 1) matrices P with C(P ) =
{1, ...,m} (where mj = |Pj|, j = 1, ...,m).

- If two maintenance matrices only differ at rows, which correspond to
states that never occur, they yield the same expected gains.

We may again avoid to calculate the expected costs for all possible mainte-
nance matrices, if we use a sequential approach. We present and afterwards
discuss an algorithm, which does not take into account multiple simultaneous
maintenance actions. Let D = diag(d1, ..., dm), V = diag(−q−1

11 , ...,−q−1
mm),

v = (−q−1
11 , ...,−q−1

mm)′ and W = (V Qm + I, V Q0). So v is the vector of
waiting times until the next jump and W is basically the one-step transition
matrix (2.10) of the MC J . We use the following algorithm to optimize the
repair matrix and the preventive maintenance policy simultaneously:

(Step 1) for each failure type j = m+ 1, ..., n do:

l∗ := argmax
l=1,...,nj−m

(rj−m,l)′Dv − cj−m,l
(rj−m,l)′v

,

r
(1)
j−m := l∗ ,

G
(1)
j−m := (rj−m,l

∗
)′Dv − cj−m,l∗ ,

T
(1)
j−m := (rj−m,l

∗
)′v .

for each running state of the system i = 1, ...,m do:

l∗ := argmax
l=1,...,mi

(pj,l)′Dv − γi,l
(pi,l)′v

,

p
(1)
i := l∗ ,

Γ
(1)
i := (pj,l

∗
)′Dv − γi,l∗ ,

Θ
(1)
i := (pi,l

∗
)′v .
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(Step s) for each failure type j = m+ 1, ..., n do:

l∗ := argmax
l=1,...,nj−m

(rj−m,l)′Dv − cj−m,l + (rj−m,l)′W

(
Γ(s−1)

G(s−1)

)

(rj−m,l)′v + (rj−m,l)′W

(
Θ(s−1)

T (s−1)

) ,

r
(s)
j−m := l∗ ,

G
(s)
j−m := (rj−m,l

∗
)′Dv − cj−m,l∗ + (rj−m,l

∗
)′W

(
Γ(s−1)

G(s−1)

)
,

T
(s)
j−m := (rj−m,l

∗
)′v + (rj−m,l

∗
)′W

(
Θ(s−1)

T (s−1)

)
.

for each running state of the system i = 1, ...,m do:

l∗ := argmax
l=1,...,mi

(pj,l)′Dv − γi,l + (pi,l)′W

(
Γ(s−1)

G(s−1)

)

(pi,l)′v + (pi,l)′W

(
Θ(s−1)

T (s−1)

) ,

p
(s)
i := l∗ ,

Γ
(s)
i := (pj,l

∗
)′Dv − γi,l∗ + (pi,l

∗
)′W

(
Γ(s−1)

G(s−1)

)
,

Θ
(s)
i := (pi,l

∗
)′v + (pi,l

∗
)′W

(
Θ(s−1)

T (s−1)

)
.

(STOP) Stop if for a fixed integer K ≥ 1:

∃ s1, ..., sK : 1 ≤ s1 < ... < sK , r(s1) = ... = r(sK) , p(s1) = ... = p(sK) .

Then choose R = (r1,j1 |...|rn−m,jn−m)′ with ji = r
(s1)
i , i = 1, ..., n −m

as repair matrix, and choose P = (p1,j1|...|pn−m,jn−m)′ with ji = p
(s1)
i ,

i = 1, ...,m as preventive maintenance matrix. If the system enters
state i ∈ C(P ) we perform the preventive maintenance action pi,ji ..

This algorithm yields a maintenance policy which was optimal in K steps.
We will now use the algorithm for some examples.
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Example 5.3. We consider the maintenance models from Example 5.2 with
K = 5.

i) The steps of the algorithm yield the following maintenance matrices:

Step j1 j2 j3 j4 j5 j6 j7 j8 no.
1 1 2 2 1 2 2 2 2 64
2 1 2 2 1 2 2 2 2 64
3 1 2 2 1 2 2 2 2 64
4 1 2 2 1 2 2 2 2 64
5 1 2 2 1 2 2 2 2 64

The maintenance matrix Υ64 is obtained in all steps of the algorithm.
According to Example 5.2, the maintenance matrix Υ64 is finally opti-
mal and optimal in [0, 1] and [0, 25].

ii) The steps of the algorithm yield the following repair matrices:

Step j1 j2 j3 j4 j5 j6 j7 j8 no.
1 1 2 3 3 3 3 3 3 1458
2 1 1 1 1 2 2 2 2 41
3 1 1 1 1 2 2 2 2 41
4 1 1 1 1 2 2 2 2 41
5 1 1 1 1 2 2 2 2 41
6 1 1 1 1 2 2 2 2 41

The resulting maintenance matrix Υ41 is known to be finally optimal
and also optimal in [0, 1] (Example 5.2). The maintenance matrix Υ1458,
which is obtained in the first step of the algorithm, equals the repair
matrix R243 in Example 4.7.

For Example 5.3 we know, that the algorithm works well, because we may
compare the results with the exact calculations. Now we consider an example
which seems to be not manageable for the first three approaches, because the
number of possible maintenance matrices is large.

Example 5.4. We consider the determined maintenance model for a system
with m = 10 working states and n − m = 19 failure states. The number
of possible maintenance matrices equals 1029. We assume the parameters
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a = e1, d = 1 and

Q10 =



−3 1 1 0 0 0 0 0 0 0

0 −5 0 0 1 0 1 0 0 0

1 0 −5 0 0 1 0 0 1 0

0 0 0 −2 0 0 0 1 0 0

0 0 0 0 −4 0 0 0 0 0

0 1 0 0 0 −6 0 0 0 2

1 0 1 0 0 0 −5 1 0 0

0 0 0 2 0 0 0 −10 1 1

1 0 0 0 1 1 0 0 −8 1

0 0 0 0 0 0 0 1 0 −2



,

Q0 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

We consider equal costs for repairs C = (cij)i,j=1,...,10 with cij = 1, i, j =
1, ..., 10. The crucial point of the algorithm is, that the critical states are
not incorporated. Therefore we consider two different costs matrices for the
preventive maintenance actions Γ(1) and Γ(2).

Γ(1) =



0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0



,

Γ(2) =



0.0 0.01 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.3 0.0 0.01 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.3 0.3 0.0 0.01 0.3 0.3 0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.0 0.01 0.3 0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.0 0.01 0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.0 0.01 0.3 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.01 0.3 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.01 0.3

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.01

0.01 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0



.
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The effect of the costs for repairs is that at one step the algorithm yields
the same repair action for all failure types. Whereas for Γ(1) all preventive
maintenance actions are equal, the costs in Γ(2) show a path how to reach a
preferable state. We display the results from the algorithm with K = 10, and
we only show steps, at which the maintenance matrix changes, together with
the corresponding final behavior (xa,R,P )′gR,P of the expected gains (5.4).
For Γ(1) we obtain

Step j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 (xa,R,P )′gR,P

1 1 2 3 4 5 6 7 8 9 10 4 -0.495
2 1 1 1 4 1 1 1 1 1 10 4 -0.15
4 1 4 4 4 4 4 4 4 4 10 4 -0.1

.

The results make perfect sense. Since all preventive maintenance actions cost
the same, we jump to the most preferable state (in this case state 4). Only if
a state is already close to the most preferable state, we perform no preventive
maintenance action (in this case for the states 1 and 10). On the other hand
we obtain for Γ(2)

Step j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 (xa,R,P )′gR,P

1 1 2 3 4 5 6 7 8 9 10 4 -0.495
2 1 3 4 4 6 7 7 9 10 1 4 -0.03
3 1 3 4 4 1 7 7 1 10 1 4 -0.233
11 1 3 4 4 1 7 7 1 10 1 1 -0.165

.

These results are nonsense. First, the expected gains for the resulting mainte-
nance matrix are lower than the expected gains for the maintenance matrix
obtained in step 2. Second, and this is the structural problem, it makes
absolutely no sense to e.g. go directly to state 1 if one enters state 8 at
costs γ81 = 0.3. It would be cheaper to perform multiple preventive mainte-
nance actions, first go to state 9, then to state 10, then to state 1 at costs
γ89 + γ9,10 + γ10,1 = 0.03.

Summing up, we may say that there is evidence, that the algorithm results in
a suitable maintenance matrix, if the model is reasonable. In the determined
maintenance case, a reasonable model should always fulfill γij ≤ γik + γkj,
i, j, k = 1, ...,m. There is no guarantee, that the resulting preventive main-
tenance matrix is admissible. As a help to hand, one should always compare
the expected gains of the resulting maintenance matrix with the expected
gains corresponding to the other maintenance matrices, which appear at the
steps of the algorithm.
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Chapter 6

Conclusions

We summarize the properties of the maintenance model presented in the
Chapters 3 to 5.

Chapter 3: The failure model

- We consider PH-distributed times to failure. The class of PH-distributions
is rich enough to ensure a broad field of applications. Nevertheless, the
PH-distributions are mathematical tractable by using matrix calculus.

- Since the working states of the system are described by the condition
of the system, the states allow a straightforward verbal interpretation.

- We allow different failure types. Again, they may be described verbally.

- In many applications one observes only a finite number of different
conditions of the system. The condition of an engine is given by warn-
ing lights, and the condition of a human being is given by a medical
diagnosis.

- The assumption that changes of the system’s condition occur due to
random shocks and not continuously may be plausible in some appli-
cations.

Chapter 4: The repair model

- The repair model may offer a variety of different possible repair actions,
including repair actions of a different quality.

- The repair policies minimal repair, replacement and imperfect repair
are included (if these are possible repair actions).
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- We offer a flexible optimality criterion. State-dependent rewards are
typical characteristics of systems subject to ageing.

- Exact calculations are possible, but extensive.

- We offer a useful heuristic approach for finding an optimal repair policy.

Chapter 5: The maintenance model

- The critical state replacement policy seems to be more feasible for this
model than the block and the age replacement policy.

- There is again a straightforward interpretation: If the system enters
a critical state, one should immediately start with a countermeasure.
Therefore, the maintenance policy is easy to apply.

- We simultaneously optimize the repair policy and the preventive main-
tenance policy.

- Exact calculations are possible, but even more extensive.

- We offer a useful heuristic approach for reasonable models, but the
general behavior is unacquainted.

Potential topics for further research are

- If we consider hierarchical structures like acyclic failure models, are
there options to improve the presented methods?

- There are many approaches for the calculation of matrix exponentials.
Especially for sparse matrices, are there better methods than the one
presented?

- How may we use concepts from risk theory (e.g. ruin probabilities for
the cumulated gains)?

- How can one modify the heuristic approaches, if one has only partial
information?

- Are there better algorithms for choosing a maintenance policy?

- There is a broad theory for renewal processes. How can one apply these
techniques for our model?

- How may we estimate the parameters of the model?
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Concerning the last point we give a brief review. Assume that we have
observed the processes (τRn , U

R
n )n∈N and (SRt )t≥0 from Definition 4.2 in the

interval [0, T ]. How should we estimate Q?

The first step is to estimate the generator ΨR of (SRt )t≥0. Maximum-likelihood
estimation of the generator of a Markov chain has been examined by e.g.
Billingsley [13] and Jacobsen [29]. One condition on the regularity of the
likelihood function is, that ΨR is irreducible which is not fulfilled in this
model. Anyway, the MLE under regularity gives us an idea how to estimate
in this model.
Let (T1, ..., TN) resp. (∆1, ...,∆N) be the jump times respectively the inter-
jump times of SR in [0, T ], ∆N+1 the next inter-jump time and Y0 = SR0 ,
Yn = SRTn for n = 1, ..., N . The likelihood function given one path {SRt : 0 ≤
t ≤ T} is

L(ΨR) =
m∏
i=1

∏
j 6=i

(ΨR
ij)

Nij(T ) exp

(
−ΨR

ij

∫ T

0

1{i}(S
R
t )dt

)
,

where Nij(T ) is the number of jumps from state i to state j in [0, T ].

The maximum likelihood estimator of ΨR = (ΨR
ij)i,j=1,...,m is (when defined):

Ψ̂R
ij =

Nij(T )∫ T
0
1{i}(SRt )dt

, i 6= j and Ψ̂R
ii = −

∑
j 6=i

Ψ̂R
ij .

Let now Ñij(T ) be the number of failures τRk of type UR
k = j with SR

τRk −
= i

in [0, T ]. We plug-in and obtain an estimator for Q0:

Q̂ij =
Ñij(T )∫ T

0
1{i}(SRt )dt

, i = 1, ...,m, j = m+ 1, ..., n .

Denote this matrix by Q̂0 and plug-in for an estimator for Qm:

Q̂m = Ψ̂R − Q̂0 ·R .

This should give a first impression about statistical inference for this model
and we advert to some different approaches given by Asmussen et al. [7]
(EM algorithm), Bladt and Sörensen [16] (discrete observations) and Hjort
and Varin [28] (partial likelihood and quasi likelihood).
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