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Abstract

Illustrations provide visual support for transmitting a communication goal with re-
gard to an illustration subject and a target audience. A set of presentation variables
exists supporting this task. This set has proven valuable for expressing illustration
information. To broaden the spectrum of illustration techniques, this work intro-
duces the notion of dynamic presentations for illustration purposes. Herein, tempo-
rally parameterised dynamics aim at maximising the expression capabilites while
economising as much on cognitive load as possible. To this end, a collection of com-
ponents is presented: (1) an overview of fundamentals of dynamics including cog-
nitive aspects; (2) a temporal model for parameterising presentation of dynamics;
(3) a set of exemplary dynamics with some special emphasis on non-photorealistic
renderings; and (4) some aspects on system modelling for implementing the intro-
duced concepts. Lastly, use of the presented components is exemplified by drawing
on some applications using dynamics for illustration purposes. Inspirations for fu-
ture research are derived for broadening the set of dynamic presentation techniques.
This is expected to widen their field of application as well as further promoting the
potential of dynamics as an independent expression dimension.

Kurzfassung

Illustrationen bieten visuelle Unterstützung für die Vermittlung eines Kommunika-
tionszieles gegenüber einer Zielgruppe mit Bezug auf ein Illustrationsobjekt. Für
diesen Zweck existiert bereits eine Gruppe von Präsentationsvariablen. Diese ha-
ben sich als wertvoll zur Repräsentation von Informationen in Illustrationen erwie-
sen. Um dieses Spektrum von Illustrationstechniken zu erweitern, werden in die-
ser Arbeit dynamische Darstellungen zu Illustrationszwecken eingeführt. Auf der
einen Seite zielen hierbei zeitlich parameterisierte dynamische Darstellungen auf
eine Maximierung der Ausdrucksmöglichkeiten ab, während auf der anderen Seite
die kognitive Last möglichst gering gehalten wird. Zu diesem Zweck wird eine Rei-
he von Komponenten vorgestellt: (1) ein Überblick über Grundlagen dynamischer
Darstellungen einschließlich kognitiver Aspekte; (2) ein Zeitmodell zur Paramete-
risierung von dynamischen Präsentationen; (3) eine Sammlung von dynamischen
Darstellungstechniken, wobei ein besonderes Augenmerk auf nicht-fotorealistisch-
en Methoden liegt sowie (4) einige Aspekte der Systemmodellierung zur Imple-
mentierung der vorgestellten Konzepte. Schlussendlich wird die Praktikabilität der
geschilderten Methoden am Beispiel einiger Anwendungen aufgezeigt, die dynami-
sche Darstellungen zu Illustrationszwecken verwenden. Daraus werden Inspiratio-
nen für weiterführende Forschungsaufgaben abgeleitet, die auf eine Ausweitung
der Menge dynamischer Darstellungsmethoden abzielen. Es wird erwartet, dass
damit eine Erweiterung des Anwendungsfeldes dynamischer Präsentationsmetho-
den ebenso erreicht werden kann wie das weitere Propagieren des Potenzials von
Dynamik als eine eigenständige Ausdrucksdimension.
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1 Introduction
In today’s world, digital technologies and a steady increase of information density
are of growing influence in daily and scientific life. Illustrations take part in the
interplay of presentation systems. Such systems are used to dig into the bulk of
available information sources with the goal of filtering out relevant information for
a specific task. Thereby, illustration systems specifically target examination of geo-
metric models. Supportive illustrations help a user to explore an available model
and any possible annotation information provided along with it. Examples include
the analysis of technical objects by an engineer, the examination of anatomical ob-
jects by medical students, or the investigation of geometric information spaces con-
structed as part of a broader information retrieval process by means of a visualisa-
tion pipeline.

Illustrations are subject to increased personalisation. That is, users utilise as
much of the technical illustration basis as needed to meet their illustration goal.
Along with the illustration models, these goals get more and more complex. This
results in steadily more dense illustrative presentations. To prevent visual over-
load, flexible and powerful illustration techniques are required. This request is
further deepened by the demand to reflect dynamics in illustration models. Pos-
sible causes for such dynamics span a broad range of areas. A technical illustra-
tion model may be provided with dynamic functionality such as flows of fluids or
gases through a pipeline system. Another example of dynamics in an illustration
model is in a flexible information retrieval process. Such process consists of a set
of individual information transformation components possibly including a visuali-
sation pipeline providing a geometric illustration model [Baeza-Yates and Ribeiro-
Neto, 2002]. This model is of dynamic nature as it reflects a varying composition of
employed information transformation components throughout the whole retrieval
process. Such model dynamics can be reflected in multiple ways, such as textual
annotations or a time line reflecting dynamic model behaviour.

Besides the set of existing presentation techniques, motion is regarded as an ex-
pression dimension of its own [Bartram, 2001]. It allows to provide changing pre-
sentations reflecting dynamics of the illustration model. Thereby, motion is charac-
terised by a rich expressiveness combined with a low perceptive load as long as it
is constrained accordingly. Based on this presentational power of motion, dynam-
ics can be created that include motion without being limited to it. Thereby, any
visual variation of a presentation over time is regarded as a dynamic presentation,
also referred to as dynamics. Such dynamics can be used to reflect either dynamic
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Chapter 1 Introduction

characteristics of an illustration model or any other model behaviour. Thus, the
information that is to be conveyed is encoded by means of dynamics.

A special challenge in the construction of dynamic presentation techniques is in
respecting their perceptual and cognitive limitations. These limitations provide a
demand for constraining and parameterisation in the temporal dimension of dy-
namics.

The overall goal of an illustration is in communicating information about an il-
lustration model to a targeted user. This is specifically achieved by directing user
attention to relevant aspects of the illustration model. For this purpose, illustrative
presentations are used. A variety of such techniques exists and is used in illus-
tration systems. Due to increased complexity and personalisation of information
models, these techniques suffice only partially in the goal to match behaviour of
an illustration model visually. A task for dynamics-enhanced illustration systems
is now to provide techniques and solutions for information management systems,
that allow to extend the available expression set and reflect dynamic characteristics
of illustration models and their context.

1.1 Illustration—Visualisation—Presentation

This work targets presentations for illustration purposes. Figure 1.1 points out the
relationship and dependency between an illustration and the presentation used
therein. Furthermore, the figure embeds visualisation and arranges all three terms
forming a hierarchic layer model. This model provides the taxonomy of these fun-
damental terms in the context of this work.

Figure 1.1: The relationship of illustration, visualisation, and presentation.

Illustrations are centred on communicating information to satisfy a user’s goal of
information seeking. For this purpose, they might make use of visual metaphors
as defined by visualisation techniques. For this reason, the hierarchic model is de-
signed such that illustrations form as an extension of visualisation whereas both
build on presentations as principle basis.

2



1.1 Illustration—Visualisation—Presentation

Illustration

The topmost layer of the hierarchy model is represented as illustration. The purpose
of illustration is the visual presentation of an illustration subject or model to an illus-
tration target. The illustration subject is referred to as the illustration model whereas
the target is a user with the overall goal of fulfilling an illustration target function
by this kind of presentation. For this purpose, a set of possible annotations may be
used to lead the user throughout the illustration process. These annotations are typ-
ically of textual nature [Hartmann et al., 2002]. An example is presented by Ritter
et al. [2003] where illustrative shadows are used to present the annotating text in the
shadow of objects as integral part of the presented illustration model.

While illustrations are typically enriched by annotations, their accentuation is on
a visual rather than textual metaphor as a means of conveying information [Beall
et al., 1996]. Visual presentation techniques are used to direct user attention to
specific aspects of the illustration model.

Visualisation

The potential for gaining information is no longer in the exclusive and automatic ex-
traction of information from existing data sources. It is visualisation which supports
the user in gaining information and deciding on influencing this process [Wong,
1999]. Such visualisation forms the second level of the representational layer model
addressed here. Subject of visualisation is the computer-based visual presentation
of data and information for the purpose of human interpretation depending on ap-
plication and context of the visualisation data [Schumann and Müller, 2000]. This
data-centred characteristic distinguishes visualisation from illustrations which are
centred on the goal of communicating information.

Visualisation techniques and their geometric results might serve as basis for an
illustration. For the context of this work, illustrations based on visualisation is re-
ferred to as data-driven illustration. Alternatively, illustrative presentations of geo-
metric models are labelled as geometry-based illustrations.

Presentation

The lowest level of this layer model is referred to as presentation. Thereby, presenta-
tion is understood as any kind of visual output that is perceived by a targeted user.
In contrast to visualisation as subject of the parent layer, a presentation describes
only the concrete visual output as gained by using a set of available presentation
variables. Any information about the source or ways of production of presented
entities is not of relevance with regard to a presentation description.

A concrete implementation of presentation systems might span output by means
of multiple media [Bordegoni et al., 1997]. Presentations for illustration purposes

3



Chapter 1 Introduction

as subject of this work concentrate on use of graphical media. Even though integra-
tion of multimedia components in illustration systems might be a valuable goal to
achieve, it is not focused here but left as a task for further work.

1.2 Objectives of this Work

The main goal of this work is to extend the set of available presentation techniques.
Even though a variety of such techniques already exists, these do not always suffice
in meeting modern information seeking needs. A specific challenge in current illus-
tration scenarios is reflection of dynamic behaviour in illustration models. Such
model dynamics may be caused by a variety of reasons. For geometric illustration
models, dynamic behaviour might be flow of functionality throughout the model.
Examples for this case include physical flow such as gases running through a series
of pipeline systems of the model or logic flow expressing interplay of individual
model components. For an engine model, a specific logic flow may include the fly-
wheel as well as the whole cooling aggregate due to internal model semantics. For
a data-driven illustration model, dynamic behaviour may be reasoned in a stream-
ing data source, in temporal data, or in variations of the data caused by operations
constantly applied to it.

A further challenge for current illustration systems lies in the limited number of
available presentation techniques. An increase in complexity of illustration models
along with steadily refined illustration goals of a user result in the need to reflect
increasingly more model characteristics. Thereby, classic presentation variables are
often used to represent the illustration model only. For a geometric model, its in-
dividual parts are rendered by their respective shape, colour, and position. Data-
driven illustrations use these presentation variables to reflect different attribute di-
mensions of the original data set. Specifically for complex geometric models and
high-dimensional illustration data, the available space of expression variables is
easily exhausted.

To address the above shortcomings of the set of presentation techniques currently
available, this set is to be enriched by dynamics. Thereby, the notion of dynamics is
understood as presentations that change over time. In order to exemplify the vari-
ety of expression capabilities of dynamics, a set of such techniques is to be devel-
oped.

For the purpose of evaluating the potential of dynamics as well as any possible
drawbacks, cognitive fundamentals have to be derived from published studies. A
specific focus should be placed on respective value and risk of motion, as motion
forms an elemental basis of dynamic presentation techniques.

Depending on the results of deriving cognitive fundamentals of dynamics, a
model for constraining dynamic presentations is to be constructed. The goal of
such constraining is to allow use of dynamics up to their full potential while avoid-
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1.3 Results and Contributions

ing cognitive and perceptual overload due to their over-excessive use. A constraint
model for dynamics includes temporal modelling aspects. The respective set of tem-
poral characteristics is to be worked out, that defines all necessary parts of control-
ling and parameterising dynamic presentation techniques for illustration purposes.
Based on these characteristics, it is to be evaluated whether and how available tem-
poral modelling approaches may be suitably employed for the constraining task at
hand.

1.3 Results and Contributions

Contributions of this work are split into a set of areas. The core result of this thesis is
in the introduction of a notion of dynamics as a set of presentation techniques result-
ing in varying presentations. A set of exemplary dynamics is developed. This set
spans motion by oscillations as well as structural changes, dynamic use of hybrid
rendering styles, and distortion histories at the example of fisheye zoom extensions.
These dynamics form a basis for further investigations regarding the development
of dynamic presentation techniques either from scratch or by defining dynamic ex-
tensions of existing presentation techniques.

In support of dynamics, underlying cognitive and perceptual fundamentals are
analysed. Notions of a dynamics stimulus window as well as a hierarchy model for
dynamics materialise these fundamentals and provide them in a compact fashion
for general use. Based on the fundamentals, dynamics are temporally constrained.
This allows to use dynamic presentations as effectively as possible. A set of require-
ments for a supportive temporal model is propagated. In addition to presenting a
model fulfilling these requirements, underlying cognitive and perceptive fundamen-
tals are analysed.

The individual parts of this thesis are combined by a discussion of exemplary
applications. These span a variety of possible illustration subjects to present an
overview of the range of possible applications of dynamics: simple presentational
illustrations, information retrieval processes, and the reflection of dynamic sources
of information for an illustration. These illustration scenarios are expected to serve
as a starting point to motivate further use of dynamic presentation techniques for
illustration purposes.

The contribution of this work is in the design and definition of dynamic presen-
tation techniques that are temporally constrained on the basis of an evaluation of
cognition-related studies. Such an integrated approach of using dynamic presen-
tations for illustration purposes has not yet been addressed before. It is shown
that new presentation techniques extend the available means of reflecting dynamic
characteristics and behaviour of illustration models. Thereby, the set of expres-
sion dimensions is extended to address the increase of information density in to-
day’s world. The analysis of cognitive fundamentals of dynamics substantiates the
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achieved temporal presentation constraints. These constraints ensure that the tar-
geted user is not subject to cognitive overload. By using dynamic presentation tech-
niques, illustration systems are provided with a means of appropriately presenting
dynamic illustration models. This allows to address modern information needs.

1.4 Structure of this Thesis

This thesis is split into four major parts as outlined in Figure 1.2. The first part
presents a foundation of dynamics. This is followed by the development of a set of
dynamic presentation techniques. Temporal aspects of dynamic presentations are
discussed in the third part whereas the last main part addresses implementation
and application work.

Figure 1.2: Structure of this thesis. Four main parts are outlined. The fundamentals are outlined in
Chapter 2, dynamics are subject of Chapter 3, temporal aspects of controlling and parameterising dy-
namics are addressed in Chapter 4, and implementations as well as exemplary application scenarios
are presented in Chapters 5 and 6, respectively.

In detail, this work is structured as follows: The next chapter concentrates on fun-
damentals of dynamics. First of all, aspects of perceiving dynamics are discussed.
This is based on an analysis of published studies addressing various aspects of
dynamics perception. Thereby, a specific focus is put on motion. This is due to
motion acting as an elemental dynamic presentation technique. Findings of the dis-
cussed literature study are collected in two definitions: the notion of a dynamics
stimulus window and construction of a hierarchy model of dynamic presentation
variables. The dynamics stimulus window summarises perceptual information re-
lated to temporal stimulus characteristics. Based on this information, the window
defines the temporal frame of dynamic presentations for the purpose of maximising
the use of their expression potential. The hierarchy model of dynamic presentation
techniques classifies different kinds of dynamics and partitions these classes into
disjunct layers. These layers are arranged according to their respective perceptual
influence. In addition to both presented definitions, that summarise fundamentals
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of dynamics for the remaining parts of this thesis, the relationship between dynam-
ics and the representation of time is analysed. This is done because an intrinsic
characteristic of dynamics is the representation of changes over time. The presented
overview of temporal change representation points out that dynamics not only play
well in this regard but promise to support further illustration areas equally well.

The second main part of this thesis is represented by Chapter 3. Here, a set
of exemplary dynamic presentation techniques is introduced. These are divided
into three main groups: motion, non-realism, and distortion histories. For each
group, some dynamic presentation techniques are constructed that express the re-
spective group’s main characteristics. In order to embed the dynamic presentation
techniques in a flexible framework, the notion of an illustration target function is
presented. A target function is used to express an illustration goal and its context.
This helps to identify specific illustration components and to determine appropriate
use of dynamics to fulfil the overall illustration goal. Additionally, the illustration
target function is accompanied with the discussion of a presentation framework
notation. This notation is used consistently throughout the remaining parts of the
thesis.

Based on the fundamentals of Chapter 2, temporal control of dynamics is ad-
dressed in Chapter 4. For this purpose, a set of temporal requirements is presented.
These requirements describe the functional frame that is to be fulfilled by a tempo-
ral model used for dynamics constraining. A variety of already existing temporal
modelling approaches is analysed with respect to the requirements. These mod-
els are classified according to their modelling principles. A temporal model for
parameterisation and constraining of dynamics is developed next. This model is
based on elements and modelling approaches which are derived out of the differ-
ent modelling classes. This new model fulfils all presented temporal requirements
for dynamics constraints. A formal specification of a control function meeting this
model is introduced. This function allows to provide a formal basis of an imple-
mentation using the shown temporal model. To deepen the support of such an
implementation, a model for script-based control of dynamic presentations is intro-
duced. Such script allows real-world illustration applications to employ dynamics
with integrated temporal constraints.

Chapter 5 and 6 form the fourth and last part of this thesis. Implementation
of the concepts introduced in Chapters 3 and 4 are addressed in Chapter 5. Four
main components define the implementation basis: a motion toolkit, an integration
of dynamics in OpenNPAR, a temporal server, and a workbench for information
fusion. The first two components address dynamics as discussed in Chapter 3. The
temporal server acts as application basis for the model of Chapter 4. Finally, the
workbench provides an application testbed for complex illustration tasks that may
be enriched by temporally constrained dynamics.

A set of concrete application examples is shown in Chapter 6. First of all, an
illustration scenario is presented where dynamic presentations are used to reflect
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Chapter 1 Introduction

dynamics of the illustration model. Such model dynamics are gained by retrieving
illustration information through queries sent to a search engine. Depending on
results retrieved from such search engine, the illustration presentation is modified.
Secondly, a set of application areas in the context of information fusion is presented.
These examples are framed by a presentation of some characteristics of information
fusion. Finally, use of dynamics for presenting geometric models is shown. A set
of two distinct types of models is used: technical models and anatomical models.
In addition to the remaining illustration scenarios presented earlier, this reveals the
flexibility of possible use of dynamic presentations for illustration purposes.

Chapter 7 concludes this thesis. On one hand, this provides a summary of the
achieved work and contributions. On the other hand, prominent research directions
are put forward. These directions are derived from the presentation framework in-
troduced within this thesis and are expected to extend it in a most valuable way.
Thereby, these research directions cover refinement of concepts and algorithms pre-
sented within this thesis as well as the development of new dynamic presentation
techniques and two concrete real-world application scenarios.
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2 Fundamentals of Dynamics

The perception of dynamics evolved as a fundamental key element of the human
cognition system [Gregory, 1998, p. 98]. Stimuli caused by motion are processed by
the brain to allow for fast handling of dynamics perception. This builds the basis
for fast response and reaction times. Historically, fast reactions were of vital impor-
tance. However, even though this has changed to some degree in modern civilised
environments, fast reaction to changing events still proves to be a key element of
the human cognitive system. This way, any design of illustration systems can take
advantage of perception capabilities that stem from evolutionary survival needs.

This chapter contributes an analysis of the fundamentals of dynamics perception.
Furthermore, the notion of a dynamics stimulus window is introduced. This defines
the temporal space and limitations for the parameterisation of dynamics. A dis-
cussion of a set of existing systems addressing the representation of temporal data
analyses the value of dynamics for this purpose. Finally, a hierarchy model of dy-
namic presentation variables helps to order the different techniques according to their
perceptual influence.

2.1 Fundamentals of Dynamics Perception

The discussion of an analysis of the value of dynamics is based on available studies
about perception of motion. First of all, some basis of motion recognition is defined.
This specifically includes various kinds of movement perception. After a confronta-
tion of the value and risk of motion, specific advantages of motion with regard to
object recognition are discussed.

2.1.1 Seeing Movement

Specific anatomic characteristics of the eye hold responsible for recognition of mo-
tion [Gregory, 1998, ch. 6]. Two alternative movement processing systems with
regard to human perception are presented by Gregory: image-retina movement
and eye-head movement.

The image-retina system provides recognition of movement caused by moving
objects that run along the retina while the eyes are held still. Sequential firing of the
retina’s receptors causes information about movement being deduced by the brain.
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This perception property proves powerful compared to the remaining characteris-
tics of the retina. Especially the edges of the retina are sensitive only to movement,
not to the perception of static objects. That is, a moving object is perceived as such
but the shape and colour of the object are not recognised. Stopping an object’s mo-
tion therefore stops its respective perception.

Eye-head movement describes an alternative way of perceiving motion. The mov-
ing objects do not change their position regarding to the retina. The image of a re-
spective moving object remains stationary upon the retina. In order to still see the
movement, the eyes follow the objects along their motion trajectories. The required
commands for eye movement as well as any possibly needed head movement are
processed by the brain along with the image information provided by the retina.
This way, the brain itself provides the necessary scenic background and maps sta-
tionary retinal information onto respective real-world motion.

2.1.2 Apparent Movement

Apparent movement plays a vital role in the field of dynamics perception. It is
denoted as a form of motion that is implicitly deduced [Goldstein, 2002, ch. 8].
This perception is explained by phenomenological methods. Motion is perceived
without moving stimuli. Instead it is induced by the perception of another object.

Different kinds of apparent movement exist. An overview is presented in Fig-
ure 2.1 at the example of a pinpoint of light. Any real movement is presented as
a straight arrow. Dashed arrows illustrate perceived movement. Normal move-
ment of light is perceived as it is. Thus, it is considered as real movement which
is included in the figure for reference. The remaining cases presented in the figure
point out specific cases of apparent movement.

Stroboscopic motion is perceived in case two, where a pair of lights flash shortly
after each other. The perceived movement implies that the light moves from one
location to the other. A set of parameters influences this motion: distance of the pin-
points of light, their brightness, and the temporal distance of the flashes. Increased
brightness results in increased motion perception. The smaller the spatial and tem-
poral distance of both positions, the easier is the motion perceived. Some specific
details about the temporal frame for stroboscopic motion will be discussed shortly
in Section 2.2 addressing the dynamics stimulus window.

The effect of stroboscopic motion is widely used in a variety of application areas
[Carmesin and Arndt, 1995, Krekelberg and Lappe, 1999, Kruse et al., 1996, Lappe
and Krekelberg, 1998, Zagier, 1997]. Movies and animations in general depend on
this effect. Both are composed of a sequence of images where consecutive images
do not need to vary too much from each other. This results in the perception of a
smooth and continuous motion. In case consecutive images differ or in case of a
too restrict temporal frame, frame coherency is lost. This results in perception of a
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Figure 2.1: Five different setups that result in the perception of apparent motion. (based on [Guski,
1996, p. 172])

lack in smoothness.
Another kind of apparent movement is denoted in the figure as induced motion.

This case specifically underlines that motion is always relative with regard to a
reference point (cf.q chapter five in Masuch [2001]). In the figure’s arrangement,
the pinpoint of light is perceived to be moving to the right even though its position
is not changed. Instead, the environment of the light is subject of a translation to the
left. As the viewer focuses on the light, the environment functions as a positional
reference and the light appears to move.

An autokinetic motion describes the perception of automatically self-moving ob-
jects. It is derived from the illusion of movement that occurs when a stationary
pinpoint of light is displayed in a totally dark room. That is, a very small or sharp
point is perceived to be moving in case it is presented just by itself in a completely
dark environment. After some amount of time of watching this setup, the percep-
tive system is tricked to see the light moving randomly [Sherif, 1935]1. This per-
ception cannot be controlled reliably which makes any practical use of this effect a
challenging task.

1 The study published by Sherif [1935] is the first known publication on the effect of autokinetic
movement. Others picked up on this observation and support it [Comalli, Jr. et al., 1957, Ni-
jhawan, 1997].
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A common case of apparent movement is the aftereffect. After an ongoing obser-
vation of a steadily moving setup that abruptly stops, the stopped objects seem to
move in the opposite direction as before. This effect holds valid for the duration
of a couple of seconds. In the arrangement shown in the figure, the light was mov-
ing steadily from left to right before it stopped. Afterwards—as indicated by the
dashed line—the light is perceived to move to the left.

Other well-known examples of the aftereffect include the waterfall and archimedic
spiral. After a lasting gaze at a waterfall with its permanent motion and an abrupt
stopping of this motion (or, more realistically, after changing focus to a neutral and
static area) the impression of an oppositely directed motion is engendered. The
archimedic spiral shown in Figure 2.2 rotates continuously around its centre. As
soon as the rotation stops, an apparently opposite rotation is seen.

Figure 2.2: Archimedic Spiral.

The different effects of apparent movement promise to be helpful for the commu-
nication of information in an illustration system. Generated images and especially
dynamic presentations are enriched by providing expression of motion without a
need to invest valuable resources from the set of available presentation variables.
This specifically holds as there is ample evidence that the same area of the brain
are activated by both types of movement: apparent movement created by flashing
lights and real movement created by actual movement through space [Stevens et al.,
2000].

2.1.3 Recognition of Motion Patterns

Early studies express that the visual gathering of groups of semantically connected
data is eased in case these groups are expressed by similar motion patterns instead
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of static displays [Johansson, 1964]. Ware [2000] presents another survey by Johans-
son [1973] revealing that even abstract motion patterns are conceived as represen-
tations of concrete facts [Ware, 2000, p. 237f]. Visual metaphors defined by motion
patterns can even be resolved in case the motion is only visible for parts of a second.
Likewise, the causal connection of data is easily perceivable by users if represented
by either the same motion patterns or patterns that are temporally connected [Ware,
2000, p. 235f]. Bartram et al. [2001] show that object movements are recognised
faster and less error-prone than changes in colour or shape of an object.

Furthermore, Gregory [1998] presents demonstrations of Johansson [1975] show-
ing how little information is needed in order to see moving humans and animals. In
the example presented, lights are attached to the joints of arms and legs in an oth-
erwise completely dark environment. In case they move, the people in the scene
are recognised as such. Even a distinction between male and female can be made
because of slight differences of their respective movements.

2.1.4 The Value and Risk of Motion

Motion is deemed as an expression dimension of its own. It allows easy perception
of any changes in the presentation without putting a high cognitive load on the
user. The early study by Johansson [1964] points out that changes in two dimen-
sions are easily perceived as a motion in 3D. That is, different frequencies in the x-
and y-directions of a stimulus pattern provide perceptions involving motion in the
z-direction. Even though this cognitive conclusion does follow some restrictions
(such as velocity), it shows that motion provides a rich expression capability. In
case animation is effectively used, this cognitive task can be transformed into a per-
ceptual one [Robertson et al., 1991]. The expression potential of motion is picked up
by Bartram [1998, 2001] for the purpose of enriching information visualisations by
motion. To support this attempt, a set of user studies has been carried out [Bartram,
1997a,b, Ware et al., 1999]. These point out a valuable potential for increasing user
interface bandwidth by motion.

Motion provides an extensive interpretation scope. Complex psychological im-
pressions can be produced by simple actions that are relatively inexpensive to com-
pute [Lethbridge and Ware, 1990]. This allows to make information accessible
which is not directly expressed in available data but is semantically encoded therein.
A set of studies by Arthur et al. [1993] and Ware et al. [1993] reveals that motion
provides more valuable perceptual clues than stereopsis. According to Ware and
Franck [1996], motion is also a more effective method than stereo in regard to the
disambiguation of three-dimensional graphs.

However, as promising as the use of motion as a display dimension of its own
sounds, an eventual cognitive overload caused by motion should be avoided. For
this reason, any real implementation either needs to follow a set of restriction guide-
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lines or needs to be questioned at all. By analysing the results of a set of user studies
on the perception of motion, Pylyshyn et al. [1993] present several basic properties
of visual spatial attention. One is »that it is possible to track about 4 randomly
moving objects and to keep them distinct from visually identical distractors, so that
events taking place on the tracked targets can be quickly detected and identified«
[Pylyshyn et al., 1993, p. 21]. This puts a considerable restriction on the set of mo-
tion techniques that can be employed simultaneously in a scene, even though the
fixed limit of four objects is loosened by the authors. Thus, several (up to five) items
can be precued from among a larger set of items. The cued items will be treated by
the human visual system as though they were the only ones in the scene [Ibid.].
Thereby, the cognitive task depends on various kinds of stimuli. Chey et al. [1997]
discuss neural dynamics of motion processing at the example of speed discrimi-
nation. Four dimensions define the respective motion parameter space: stimulus
contrast, dot density, duration, and spatial frequency. While the first two of them
are specifically related to speed discrimination, the latter two directly affect motion
perception and influence the motion parameter space.

A more scenario based reason for limiting the use of motion by means of anima-
tion is presented by Harrison [1995]. In a scenario of an online help system that
includes still graphics as well as animated visuals, the animations did not succeed
in providing either considerably more information or a more sustainable learning
experience. This result is questioned to some degree as the animations provided
in the study were segmented to emphasise each stop of a procedural task. That is,
the task at hand was not specifically designed to benefit from animated assets in
the help system. This study is picked up by Morrison et al. [2000]. They extend the
argument of an animation’s limited use for conveying information by analysing the
available literature on user studies targeting the perception of animation. In most
cases, animations fail the expectations because they are difficult to perceive or be-
cause they mismatch the user’s conception of motion, which seem to be more often
discrete rather than continuous.

Hudson and Parkes [2003] present a study on possible visual overload by us-
ing animated graphical layering. Their setup includes animated transparent layers.
These permit the user to selectively view elements that overlap. Compared to man-
ual rearrangement of overlapping layers, animation helps to lower the cognitive
load for interactive selection tasks. However, the study points out that visual clut-
tering is not completely avoided by substituting static layers with animated ones.
The proposed solution combines transparent animations with alternating contrast-
ing bands that progress over the display. This way, the interaction object to be
emphasised is made prominent to peripheral vision.
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2.1.5 Supportive Object Perception in Illustrations

A central requirement for the illustration of geometric objects is the guarantee to
present all parts of an object such that they can be visually distinguished. Figure-
ground perception provides for the distinction of objects from their scenic back-
ground as well as other objects. The field of perception is thereby divided into a
set of distinct areas. This process happens pre-attentively. That is, figure-ground
perception is neither controlled directly by the perceiving person nor influenced by
a knowingly controlled attention. A set of characteristics of the visual information
presented determines the success of this perceptive process. An appropriate pa-
rameterisation of an illustration system helps to make use of these characteristics
in order to influence figure-ground perception.

In case of a dynamic scenery, figure-ground perception is based on the decou-
pling of surface recognition of a dynamic object compared to surfaces of static scene
elements. Early studies show that the distinction of an object from its background
is based on detection of an edge marking the junction from one to the other [Gibson
et al., 1969]2. Shifting this edge indicates a motion of the respective object.

Maglio and Campbell [2000] discuss a set of experiments addressing expressive
power of motions by periphery presentations. For this purpose, they employ a two-
task-study: While subjects work on a text, additional text is displayed in the periph-
ery margin. In case this additional text scrolls continuously at constant speed, the
subjects are more distracted than in case the text is scrolled slowly and on demand.
Furthermore, answers to a questionnaire point out, that in the latter case, more in-
formation is extracted from the text by the subjects. The use of discrete targeting
dynamics proves more useful than its continuous and ongoing counterpart.

2.2 Dynamics Stimulus Window

In order to assure the perception of different stimuli as such, they are to be pre-
sented to the user with a minimum distance defined by the temporal-order threshold
of 20 − 40 ms. Thus, events are not perceived to happen separately and consecu-
tively unless they are separated by at least this interval. This minimum event sep-
aration time span is also referred to as inter-stimulus interval [Hirsh and Sherrick,
1961, Pöppel, 1997, von Steinbüchel et al., 1996]. The temporal-order threshold can
be subject to training. However, this training mainly addresses brain-injured pa-
tients. In case of a healthy audience, the temporal window of 20 − 40 ms holds
[Mates et al., 2001].

So called stimulus parameters determine the synchronisation window. These de-
scribe inputs to the perceptive system that cause an action. A reaction at the lower

2 Referenced by Guski [1996].
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boundary of the stimulus window (20 ms) is caused by modifying two stimuli simul-
taneously with regard to their quality and spatial location. A variation occurring
at the same position, exclusively, results in a reaction at the upper limit of 40 ms
[Swisher and Hirsh, 1972]3.

Further support for the specification of an perception-based interval separating
event is provided by an evaluation by Kanabus et al. [2002]: The minimal temporal
interval enclosing the perception of a correct distinction of two acoustic or visual
events exceeds 40 ms. This number is based on a 75% quota4 of correct answers of
all test persons. This directly leads to the conclusion that a frame rate of not neces-
sarily more than 25 f ps suffices to produce an impression of smooth dynamics.

Studies of various stimulus ranges (acoustic and visual) furthermore show, that
the human time-organisation system is independent from periphery sensory mech-
anisms [Efron, 1963, Tallal et al., 1998, von Steinbüchel et al., 1999b,a]5. Thus, it
directly relates to the lower boundaries of the event identification.

The maximum possible time frame allowing the perception of an event as being
unique and separated from others varies between two and three seconds [Pöppel,
1994]. Pöppel [1997] references a set of studies supporting this [Elbert, 1991, Pöppel,
1971, 1978]. Furthermore, any comparison of two stimuli has to take place in less
than four seconds in order to ensure that the first stimulus does node fade. As a
side effect, unrelated events are recognised as belonging together in case they occur
in a time frame of up to two to three seconds. In case a visual event exceeds this
limit, it is likely not to be perceived as an individual unit by the user.

An example of these dynamic stimulus capabilities is the Necer cube by the Swiss
crystallographer Louis Albert Necker. He recognised in 1832 that the cubic shapes
spontaneously reverse in perspective. This only holds for a cube drawn in an ortho-
graphic projection as shown in Figure 2.3. The human perspective system receives
the two-dimensional shadow of a cube as a three-dimensional object. However,
the 2D image does not distinguish the front and back faces. Either one may be
perceived as being in front. This cube and its attached perception information are
presented by Pöppel [1997]. Even though this cube is a static image, the perception
of its perspective characteristic is dynamic. In case, subjects are able to perceive
the perspectives of the cube, there is an automatic shift between both perspectives.
This shift occurs in regular intervals of approximately three seconds duration [von
Steinbüchel et al., 1996].

Some interesting support for the derivation of the temporal presentation frame
is provided by studies on apparent movement (see also Subsection 2.1.2 above). An
example is presented in Figure 2.4. It has been observed that the shown line (a) is
perceived to be moving from left to right in case it is presented at its two distinct

3 Referenced by Kanabus et al. [2002].
4 A quota of 75% is deemed as the boundary between the denomination of correct and approxima-

tive results in such user studies [Tallal et al., 1998].
5 Referenced by Kanabus et al. [2002].
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Figure 2.3: The Necker cube. As long as the perspectives are recognised at all, the subject’s percep-
tion switches between both perspectives at regular intervals of circa 3 s. (following Pöppel [1997]
and based on data presented by von Steinbüchel et al. [1996])

(a) Flash line on left (b) 50 ms of darkness (c) Flash line on right (d) Perception: move-
ment from left to
right

Figure 2.4: (a) Flashing a light in one position and then, (b) after a brief pause, (c) flashing it in
another position, creates (d) an illusion called apparent movement [Goldstein, 2002].

positions in the time frame of 50 ms, as denoted in image (b) of the figure. The
motion is induced by any arbitrary real-world object changing its position from
A (left) to B (right). How much apparent movement follows the outlined motion
stimulus time frame is documented by Goldstein [2002] as outlined in Figure 2.5.
The lower limit of movement perception is herein extended from 40 ms to a time
frame of 30− 60 ms. Other temporal constraints hold as described above.

Whereas some visual perception parameters (such as colour) depend on cultural
influences, the temporal limits for event perception do not [Gerstner and Fazio,
1995, Schleidt et al., 1987]. Furthermore, the aforementioned time spans are pre-
semantic, that is, independent of the concrete task at hand [Pöppel, 1997, p. 59].
Therefore, the transition between two distinct dynamic presentation techniques is
best presented in a time frame ranging from 30 ms to three seconds. This time span
is referred to as the dynamics stimulus window.
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Figure 2.5: The perception of apparent movement depends on the time interval between the flashing
of two lights. As the time interval is increased, the observer’s perception goes through the stages
shown in the figure [Goldstein, 2002].

2.3 Dynamics and the Representation of Temporal
Change

An intrinsic characteristic of dynamics is the representation of changes over time.
This holds especially for animations. Presentation of varying images directly cor-
relates to temporal changes of the state of the animated subject. In order to reflect
this bounding of dynamics and time representation, a selected set of approaches is
presented here. This outlines various attempts to use dynamics for the representa-
tion of temporal behaviour of their subject. This composed collection presents an
overview of dynamics-based time representation is presented. Each system is cho-
sen according to its appropriateness and how well suited the system is with regard
to representing its underlying presentation role.

For each presented system, its presentation domain is outlined. The domain de-
scribes the concrete application example for the respective system. While most sys-
tems are designed to be independent from any concrete application domain, these
domains still provide some background on system design considerations. One ef-
fected aspect is the dimensionality of presented information. This is mainly pro-
vided by the available data sets and therefore the application domain. Any relevant
aspects of the systems’ internal temporal modelling are discussed in Section 4.2.

2.3.1 Flow Along a Time Line

The most basic kind of a diagram representing temporal behaviour are time lines.
These use a two-dimensional, Cartesian coordinate system. One axis represents
time. This is typically the horizontal axis. The other axis is divided into a set of
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Figure 2.6: Simple example of a temporal diagram using a time line.

level for the display of temporal data. A simple example is shown in Figure 2.6.
The construction of a diagram on the basis of a time axis is presented by Tufte

[1990] on the example of the railroad schedules from the Japanese Shinkansen trains.
The horizontal axis of the diagram is reserved for the temporal dimension. Respec-
tive schedules for the train stations are placed along the vertical axis. In order to
allow for a readable presentation of multiple train schedules, a line is drawn for
every station connecting all points in time when a train stops there. As a side effect,
this allows to visually deduce connections between trains at a station. The price for
the hard-coded connections of train events is its inapplicability to express temporal
uncertainty in such a diagram based on time axes.

For the visual display of temporal information, the Time Line Browser system is
presented by Cousins and Kahn [1991]. At the example of patient data, this browser
allows to detect temporal relationships among time-ordered data. In support of
this, all temporal data is represented as events on a time line. Using a set of five
operations on the time line (slice , filter , overlay , new, and add ) allows the
user to browse the set of events and locate any specific data of interest.

LifeLines as introduced by Plaisant et al. [1996] are an extension of the classic con-
cept of time lines. A specific extension introduced is the concept of facets. These
facets represent vertical segments that group similar temporal entities. For the pur-
pose of providing a means to explore all data and structures therein, the facets can
be opened and closed as desired. This possibly prevents the diagram from being
cluttered by an overwhelming set of represented groups of data. Thereby, a tem-
poral zoom-in/zoom-out is allowed for examined ranges of time. The dynamic
rearrangement of events and intervals is specifically displayed. Hierarchical time
lines with time cues are presented by Jensen [2003]. These extend the notion of
facets and allow to collapse and expand individual temporal entities as opposed to
whole groups of entities.

A simplified version of LifeLines are gantt charts. These charts lack the ability of
showing different facets of the same task. However, compared with LifeLines, gantt
charts provide the additional ability of displaying hierarchies in the temporal data.
This makes them well suitable for handling of task-oriented models as illustrated
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in Figure 2.7. Beale et al. [2001] present another variation of using a time line model
for the representation of temporal behaviour. In order to support a CSCW project
that is based on a chat system, temporal processes in the chat are presented by use
of two time lines.

Figure 2.7: Exemplary gantt chart.

Diagrams that employ not only one but two time axes are presented as Sets of
Possible Occurrences (SOPOs) by Rit [1986]. The two axes respectively represent the
begin and end of an interval. This way, a single point in the diagram specifies a
whole interval. A single SOPO is created as an area including all intervals meet-
ing a set of modelling criteria including earliest and latest start, earliest and latest
end, and minimum as well as maximum durations. An example is shown in Fig-
ure 2.8. However, compared with other diagrams based on time lines, SOPOs not
necessarily provide an intuitive interface to the representation of temporal data.

Another approach is presented by Havre et al. [2002] with the system ThemeRiver.
Therein, a river metaphor is used in order to represent multiple data dimensions
that vary over time. Figure 2.9 presents an example. Input data is represented
by visual data streams that flow along the time axis. Different input dimensions
are thereby mapped onto different flows that are encoded by respectively varying
colours. As these flows change over time, their width changes according to the
data value at the respective points in time. Additional context information may
be provided. In the figure, this is done at the top of the display window. Specific
events are placed at their related time points. This way, these annotation events
indicate possible causes for patterns in the river’s flow.

Weber et al. [2001] introduce an extension of a time line by bounding the line and
forming a spiral. Figure 2.10 illustrates this idea. Thereby, time-series information is
mapped on the spiral and the respective spiral subparts are colourised accordingly.
As analysed by Weber et al. [2001], use of the spiral results in about the same spatial
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2.3 Dynamics and the Representation of Temporal Change

Figure 2.8: Example of a diagram showing Sets of Possible Occurances. (based on Kosara et al. [2001])

requirements as a classical time line approach. In contrast, periodic patterns can
easier be compared in the spiral than in the line as repetitive data sets may be placed
more close to each other.

2.3.2 Flow Representation of an Impulse Response Function

For the purpose of generating real-time dynamic deformable models using simula-
tors, James and Fatahalian [2003] introduce a precomputed data-driven state space
modelling approach. That is, they precompute dynamic deformable scenes for in-
teractive exploration. For the purpose of the final simulation responding to interac-
tions as expected, these are precomputed as well. To robustly support runtime inter-
actions that correlate with their precomputed counterparts, parameterised impulse
response functions are sampled. The progression of this sampling is presented as a
visual annotation during runtime.

Figure 2.11 shows a snapshot of using a flow representation of the impulse re-
sponse function’s temporal progress as presented by James and Fatahalian [2003].
Subject of the dynamic deformation is a dinosaur as shown in the lower right part
of the window. The remaining part of the presented screen space is used for illus-
trating the respective flow of function evaluation. The bright dots near the top of
the display represent the current state of functional progress. The remaining value
space of the function is shown in order to provide necessary context on past and
upcoming positions.
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Figure 2.9: Exemplary use of the ThemeRiver system for the presentation of multiple input dimen-
sions along a time line. The river metaphor enables to directly compare individual dimensions at
any specific point in time. Some temporal dependent annotation information is presented above the
river display. [Havre et al., 2002]

Both presentations—the flow through the value space of the impulse response
function as well as the deformation of the dinosaur—are shown synchronously. On
one side, this helps to understand the function evaluation, on the other side, this
supports the user in interacting with the dinosaur’s deformation.

2.3.3 Dynamic Metaphor

The system Tardis as presented by Carpendale et al. [1999] addresses the represen-
tation of landscape dynamics over time. At the example of a simulated landscape
the effect of fire covering a large area is illustrated. For this purpose, a set of land-
scape patterns is used. These patterns are mapped onto a spatio-temporal block as
shown in Figure 2.12. For the purpose of supporting development of ecosystems,
Tardis uses three dimensions for presentation: two spatial and one temporal. These
are constructed by piling up two-dimensional landscapes along a temporal axis.
The overall sum of these staples form the Tardis-block.

As the fire-affected landscape changes over time, the respective staple in the block
changes with respect to its surrounding staples, as well. This is revealed by a direct
comparison of both images in Figure 2.12. The left image shows the complete block.
The righthand image represents only the changes for the individual staples over
time. For each specific point in time the changes reflected by its staple directly
correlate to the changes in the underlying data set. That is, landscape changes
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(a) (b)

Figure 2.10: Mapping of information onto a spiral as an extension of a simple time line [Weber et al.,
2001]. Subfigure (a) shows the mapping of stock values of two companies in five years on two spirals
(respectively encoded in red and yellow). The use of annotative scales on a spiral is shown in (b).

caused by fire are shown.
To provide an interaction technique for the temporal landscape patterns, a book

metaphor is introduced. In order to compare two specific time points of the data set,
the spatial-temporal block may be opened similar to a book. This presents the user
with two opposite pages: one to the left side of the block and one to the right. This is
illustrated in Figure 2.13. Each of these sides represents one of the respective points
in time, that are currently of interest. As the granularity of the block is variable, the
temporal difference between the two pages might vary as well. This allows for the
interactive analysis of a wide span of temporal intervals.

2.3.4 Dynamic Textures

The idea of mapping information onto textures is presented by van Wijk [1991] as
Spot noise. The principle of this technique is outlined in Figure 2.14. Modelling
primitives are spots of random intensity such as the example spot shown in the
leftmost image of the figure. A texture is generated by drawing these spots at var-
ious positions on a plane. Finally, the spots are blended together randomly, which
results in the final texture as shown in the rightmost image of the figure.

Mapping of information onto this texture is now achieved by variations of the
spots. These variations include rotation, scaling, and bending by deformations of
spots using a mesh [de Leeuw and van Wijk, 1995]. For the presentation of vector
data, each spot thereby reflects some input vector. It is first rotated according to the
vector’s orientation. Scaling is applied to the spot according to the respective value
of the vector. Deformations may finally be used in order to reflect overall patterns
in the vector set.
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Figure 2.11: Snapshot of an animation showing impulse response function time-steps coloured by
an impulse palette index. (The snapshot is taken from a video accompanying the work presented
by James and Fatahalian [2003].)

The Spot noise technique is extended by de Leeuw and van Liere [1999] to repre-
sent the dynamic flow of information. Temporal information is thereby represented
by variations of the constructed texture. Possible applications of dynamic Spot noise
specifically include the illustration of vector data such as climate data or numerical
simulation results. The sports are thereby positioned along streamlines and particle
paths. In contrast to arrows or streamlines, the generated texture allows for a con-
tinuous display of flowing data. Figure 2.15 shows a snapshot of a dynamic Spot
noise presentation of numerical simulation data.

2.3.5 Discussion

Dynamic presentations prove to be well suited for the representation of time and
temporal behaviour. Various methods exist for the mapping of temporal informa-
tion onto visual parameters. Dynamics fit this task specifically well as they are
characterised by a presentation that changes over time. Two systems have been
presented which use this change and represent flow-based information of the un-
derlying data model. These techniques are contrasted by two cases of dynamics
which employ visual metaphors for a representation of temporal data. One uses a
metaphor-based approach and maps data onto a spatio-temporal block. The other
employs dynamic textures which allows to use the geometric shape of presented
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Figure 2.12: Landscape patterns as used by the Tardis system. [Carpendale et al., 1999]

objects to convey further data attributes.
The expressive power of dynamics promises to be useful for more than just the

representation of time. Therefore, a hierarchy model of dynamic presentation vari-
ables is introduced in the following section. This helps to classify dynamic tech-
niques and to point out their respective effects.

2.4 Hierarchy Model of Dynamic Presentation
Variables

Dynamics span a broad range of presentation techniques: from simple colour blink-
ing to sophisticated motion patterns. Changes in rendering styles of hybrid pre-
sentations are considered to be dynamic as well. All the individual techniques
are therefore respective subsets of dynamics. As motion is part of this collection,
dynamic presentations in general promise to share at least some of its expressive
power.

For a discussion of using well parameterised dynamics for illustrations, it is
meaningful to differentiate between their dynamic character and influence. This
section concludes the chapter on fundamentals of dynamics and addresses the no-
tion of different dynamics with regard to each other. The individual techniques
are arranged in a set of four layers: colour blinking, variable rendering styles, dis-
tortions, and motion. For the purpose of maximising an effective use of dynamics,
the techniques of these layers are ranked according to their perceptive influence.
Based on this ranking, a set of general design guidelines for the use of dynamics is
derived. This is supported by a discussion of presentation effects of the respective
layers.
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Figure 2.13: The book metaphor introduced by the Tardis system. In order to compare represented
data characteristics at specific points in time, the user may browse through the temporal block as
through a book. In case the block is opened, the opposite pages represent consecutive points in time.
[Carpendale et al., 1999]

2.4.1 Partition of Dynamics into a Layer Model

A partition of dynamic presentation techniques in a layer model is presented in Fig-
ure 2.16. As of its fast perception and ease of use, colour blinking forms the bottom
layer of the model. Section 3.2 will discuss the change of colour as a classic illustra-
tion technique which can mainly be classified as being of static nature. However, a
continuous and repetitive use of colour changes results in blinking. This blinking
is regarded as most basic form of dynamics that has long been used in awareness
tools [Bartram, 2001]. For the purpose of attracting and directing visual attention,
much use is made of blinking as a human interrupt.

Variable rendering styles form the next layer. These include changes of a specific
rendering style as well as combinations of different styles and modifications thereof.
Details of the design and implementation of dynamic changes of rendering styles
will be presented in Section 3.4. Generally, the set of techniques on this layer can be
divided in two categories: (1) fading of otherwise static renderings by use of vary-
ing transparency and (2) the simultaneous use of multiple rendering styles forming
hybrid renderings. The effect of variable rendering styles is always of local nature.
That is, the dynamics of this layer only influence a directly affected object. The
remainder of the scene is not touched.

Even though in-depth studies on their affect on cognitive load have not yet been
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Figure 2.14: The principle of Spot noise texture construction. A single spot is shown to the left. The
middle image represents an in-between state of drawing a set of spots on a plane. Blending them
together randomly, finally results in the texture of the rightmost image. [de Leeuw and van Liere,
1999]

Figure 2.15: Dynamics by texture variation as introduced by the SpotNoise system. [de Leeuw and
van Liere, 1999]

published, variable rendering styles are expected to share a fair amount of influ-
ence in this regard with blinking. This assumption is based on studies comparing
cognitive load and power of blinking and motion [Bartram, 2001, ch. 5]. However,
rendering style variations are parameterisable in a more extended and flexible way
than blinking. This is due to the circumstance that all parameterisation dimensions
of blinking are available for dynamic rendering styles as well. Whereas blinking
switches constantly between two alternating colours, two styles alternate analo-
gously. Furthermore, the whole range of parameter dimensions for each rendering
style employed adds to this set. Overall, this rich parameterisation space allows for
a more fine-grained control of dynamics on this layer compared to blinking. This
positively effects its perceptive influence and justifies these two layer’s ordering.

The third layer represents dynamics by distortions. These are constructed by
modifying an object’s shape, size, or both. A broad range of distortion techniques is
available [Carpendale et al., 1997]. Generally, the catalogue of distortion techniques
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Figure 2.16: Partition of dynamic presentation techniques in a layer model.

consists of morphing [Blanz and Vetter, 1999, Cohen-Or et al., 1998], zooming [Fur-
nas, 1986, Preim et al., 1997], and transformation such as variable text presentations
[Maglio and Campbell, 2000]. Dynamic distortion histories based on zooming will
be presented in Section 3.5.

Distortion techniques provide for local effect as well as global effect. Local effect
can be generated by modifying only a well-defined region. Examples are the mor-
phing of an object in case the smallest possible convex hull of the object is thereby
not changed in size. Furthermore, text transformations are characterised by local
effect as long as the textual region is not modified. This is illustrated by Figure 2.17
where the legibility of text in a region is turned up in order to provide dual use of
image space by presenting text explanations for images within image space [Chig-
ona and Strothotte, 2002a].

Any change of an object’s size and shape influences not only the object itself, but
also the surrounding parts of the scene. This is regarded as global effect. For the
above example of dual use of image space by text modifications, this holds in case
the textual region is modified as illustrated in Figure 2.18.

The layer with the highest perception influence of the model is represented by
motion. Thereby, the notion of motion includes explicit motion techniques as well
as apparent motion techniques. Explicit motion spans the whole range of modifica-
tions of an image over time caused by a position change or modification of the kind
of object presentation [Masuch, 2001, ch. 5]. Specifically, explicit motion techniques
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Figure 2.17: Dual use of image space by text modifications of a region. The effected region is mod-
ified. As the modification influences only the region itself, the effect of this distortion is of local
nature. [Chigona and Strothotte, 2002b]

Figure 2.18: Variation of Figure 2.17 where the effected region is modified in shape and size [Chig-
ona and Strothotte, 2002b]. This also influences the surrounding scene elements. Therefore, the
effect is of global nature.

consist of rotations, translations, and combinations thereof. Motion can be of sin-
gle, repeating, or oscillating character. As introduced above in the discussion of the
dynamics stimulus window, apparent motion describes the illusion of an explicit
motion technique (see also [Goldstein, 2002, ch. 8]).

Similar to the distortions layer, the effect of motion may either be of local or of
global effect. Translation-based motions affect not only the moving object itself but
its surroundings as well. Therefore, these are respected as global dynamics. In case
of rotation-based motions, the effect depends on the rotation centre and shape of
the affected object. Rotations around an regular object’s geometric centre provide
local dynamics whereas any other rotation results in a global effect. Any oscillation
inherits the characteristics of its underlying translation, rotation, or combination
thereof.

2.4.2 Composite Dynamics Patterns

Techniques from individual layers may of course be combined in order to form com-
posite dynamics patterns. The effect of composites is determined by logical deriva-
tion: In case one of the involved techniques provides a global effect, the whole
combination provides a global effect.
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2.4.3 Local versus Global Dynamics

The visual effect of the two lowest layers in the hierarchy model provides local
effect only. However, global judgements to objects can still be derived. This is
supported by a study addressing the perception of global object information based
on the integration of local stimuli [Gerlach et al., 2002]. For this, stored structural
knowledge about affected objects holds responsible. Areas previously associated
with access to stored structural knowledge are found during the processing of recog-
nisable stimuli.

On the other hand, the study also reveals that even an exclusive use of global
object information allows for the recognition of concrete objects. This cognitive
resolving task is based on the same structural knowledge as before. It is to be noted,
that the effect does not hold for unrecognisable stimuli. That is, natural objects are
easier and faster recognised than artifacts.

2.5 Summary

It is the intention of this chapter to outline fundamentals of dynamics for the pur-
pose of presenting their expressive potential as well as a motivation for constraints
of their use. The effectiveness of an illustration results from task suitability of all
illustration techniques used [Knight, 2001]. Any single generic collection of presen-
tation variables does not suit all possible application areas. This holds regardless of
them being of static or dynamic nature.

It has been shown that dynamic presentation techniques are capable of commu-
nicating their classic illustration goal: the representation of time and temporal be-
haviour. Furthermore, the potential of dynamics to enrich the expression set of an
illustration system is discussed. As pointed out, any use of dynamics needs to be
subject of constraining parameterisation. The dynamics stimulus window in com-
bination with a hierarchic layer model of the set of dynamics provide the formal
basis for this.

The following chapter introduces a set of selected dynamic presentation tech-
niques in detail. Temporal aspects of controlling dynamics-enhanced presentations
will be discussed in Chapter 3.
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3 Illustrative Dynamics by Motion
and Non-Realism

The essence of illustration is a form of communicating information about a model.
While a variety of illustration techniques exists for this purpose, most of them can
be classified as being static by nature. These do not necessarily provide enough
communication bandwidth in order to meet the illustration goals.

Use of photorealism has the advantage of a representation of rendered objects
that appears to be true to the original. However, for an illustration goal of present-
ing some—possibly complex—context information, the availability of a variety of
detail information does not necessarily increase the communication bandwidth. In
order to focus on objects of interest in a scene, this information can be aggregated
and simplified visually. This directly leads to non-photorealistic representations.
To be precise, the set of non-photorealistic images includes all renditions that are
not photorealistically illuminated.

This way, non-photorealism acts as an extension of the set of classic presentation
variables as presented by Noik [1994]. So far, these variables include shape, posi-
tion, materials, and metaphorical mappings. As discussed in the previous chapter,
some work has been done to evaluate the potential of motion as a presentation
dimension of its own. This chapter contributes a set of dynamic presentation tech-
niques. These include motion-based methods, distortions, and changing combina-
tions of multiple rendering styles, simultaneously used.

The chapter is divided into two major parts. These parts are illustrated in Fig-
ure 3.1: At first, the notion of an illustration target function is defined. This func-
tion provides the context and goals of an illustration. In addition, the notation of
a presentation framework is introduced here. This framework is used consistently
throughout the remainder of this work. An overview of classic and static illustra-
tion techniques follows. The second part of this chapter introduces dynamic presen-
tation techniques in Sections 3.3 up to 3.5. Three types of dynamics are discussed:
motion-based dynamics, hybrid rendering style variations, and distortion histories.

The figure points out how this chapter is glued to the remaining parts of this
work. Fundamentals of dynamics are presented in the previous chapter. The next
chapter picks up the dynamics presented here. Thereby, temporal controlling of
dynamics will be introduced on a script basis.
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Figure 3.1: Structural chapter overview.

3.1 Illustration Target Function

Target functions are used to express expected behaviour of a system and provide
a means of comparing the system’s output with these expectations. They are com-
monly used in a variety of areas such as automatic learning of neural networks
[Fukumizu, 1999].

In order to determine the effectiveness of an illustration and the adequacy of em-
ployed illustration techniques, the illustration goal needs to be materialised. This is
accomplished by defining an illustration target function. In addition to expressing
the illustration goal, this function respects the represented world as well as its mod-
elled counterpart and a user model. Following Wegner [1997], the illustration target
function captures semantic properties of the illustration domain by a syntactic rep-
resentation for the pragmatic benefit of users. Thereby, the user information needs
[Baeza-Yates and Ribeiro-Neto, 2002] are a key element in retrieving information
by means of an illustration.

Four steps are used in this section to describe the illustration target function.
First of all, some context on target functions and user models is presented in Sub-
section 3.1.1. Before the definition of the function is given in Subsection 3.1.4, the
notation of the underlying framework is outlined in 3.1.2 along with the target func-
tion’s model basis in 3.1.3. Finally, Subsection 3.1.5 discusses evaluation issues with
regard to illustration modelling.

3.1.1 Context

Use of an iteratively defined target function for modelling purposes is presented
by Zorc [1995]. This function concentrates on defining a single object of interest.
Contextual information is not explicitly respected. That is, the model wholly con-
centrates on the modelling subject without regard to external model constraints,
the represented world, or the modelling user. Steps of iteration are used for grad-
ually refining the model described by the function. For the example of optical film
presented by Zorc [1995], this results in steady refinements of multiple thin layers
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defining the film.
Cohen et al. [2001] motivate the use of an user model for the automatic evaluation

of system responses. The context of their work is in fulfilling the complex infor-
mation needs a user has. They employ the user model to address the question of
when and how a system should react to user interaction. The model is evaluated
before any output of the system is presented. For that purpose, the system needs
to pass a set of tests before reaction is shown. Each test compares internal system
information with assumptions about the user’s needs and information based on the
user model. Depending on the test results, the system might aquire supportive user
interaction in order to solve the task at hand.

The role of an user model plays in interactive illustrations is also of central na-
ture. Interactivity of an illustration directly leads to higher load put on the user.
This may be rewarded with an increase in illustration result quality [Beall et al.,
1996]. For the purpose of targeting this repayment of interactive illustrations, an il-
lustration target function has to include a user model. This model allows to respect
the user’s goals and capabilities as well as system restrictions that address possible
illustration constraints.

3.1.2 Framework Notation

The design of the presentation framework is formally based on the work presented
by Kreuseler and Schumann [2002]. Their model was developed in the context of
Visual Data Mining. But its general nature allows for application in other domains
as well. In principle, the model is based on the definition of information objects IOi
that combine to an information set IM:

IM = {IO1, . . . , IOn} with IOi = IOj ⇔ i = j, 1 ≤ i, j ≤ n, and i, j, n ∈N.

Each information object represents some real world data. In order to parameterise
these objects according to their represented data characteristics, an attribute func-
tion attr is provided:

AM = attr({IO1, IO2, . . . , IOn}) = {A1, A2, . . . , Ak}

with Ai = Aj ⇔ i = j, 1 ≤ i, j ≤ n, and i, j, k, n ∈ N. Thereby, AM is the attribute
set of the respective information objects. The individual attributes of this set act
as dimensions of information objects and span an information space IR. For the
purpose of defining relations between IOi the information structure IS is introduced
as IS ⊆ IM× IM.

This framework formalisation has proved applicable for a variety of application
areas. As already noted, its roots are in Visual Data Mining. By extending the for-
mal basis with a set of application dependent preprocessing functions, the frame-
work can be adapted to the various stages of data processing and presentation.
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Kreuseler and Schumann [2002] present examples for three such cases: preprocess-
ing, reduction of the information space, and visualisation. For preprocessing, inter-
active user-driven approaches are used as well as automatic obtainment of struc-
tures and patterns in the data by algorithmic computational procedures. For reduc-
tion of the gained information space, a set of exemplary algorithms is employed.
This includes visual previews by data tables, Self-Organising Maps, and Dynamic Hi-
erarchy Computation. Exemplary visualisation techniques presented for use within
this framework include Magic Eye View for hierarchy visualisation and Shape Vis for
exploration of multidimensional information sets.

3.1.3 Model Basis

An interactive system which is supported by a visually enriched user interface re-
flects multi layered representation models. This set of models consists of a repre-
sentation of a world combined with a human or mechanical interpretation [Wegner,
1997]. For illustrations, this set’s granularity is refined by distinguishing between
a represented world and a modelled world and furthermore including a distinct user
model.

The highest abstraction level acts as represented world, which reflects entirely
the system’s underlying semantics. For different illustration contexts, different rep-
resented worlds exist. Overall, this level is classified as W rep, a set of represented
worlds:

W rep = {worldrep
1 , worldrep

2 , . . . , worldrep
n } n ∈N.

Thereby, each represented world describes a set consisting of the user model, the
scene model, relations between different components of the scene, and operations
defined in this world:

worldrep = {user, scene, relations, operations}.

A typical user model is determined by:

user = {percept, actions, scope}.

The perception of the user as well as her or his actions are represented by the sets
percept and actions. The scope describes a set of user model parameters that influ-
ences the individual target function of a user with regard to the system.

The scene model describes a geometric description of the illustration subject. With
regard to the illustration target function, the source of this model is not of rele-
vance. Specifically, a distinction between geometry-based and data-driven illustra-
tion models is not addressed. Both may fit well into an illustration scenario. Exam-
ples of geometry-based models typically include medical or technical objects that
are to be explained by an illustration. A common source for data-driven models is
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the whole field regarded as information visualisation wherein arbitrary—and often
numerical—data is mapped onto geometric representations.

Semantic background for individual elements of the scene model is provided by
relations. These relations define an ordering of all scene elements as well as any
groups of these elements. Various structures may be used to express the relations.
Typical examples include relational filters and scene graphs [Strauß and Carey, 1992].
It is to be noted specifically that relations define the context of a set of objects and
not how to render them.

A subset of the represented world is expressed as modelled world:

worldmod = worldrep \ user = {scene, relations, operations}.

That is, the modelled world reflects the represented world excluding the user model.
A concrete instance of worldmod includes all information of worldrep that is relevant
for fulfilling the requirements defined by the user model.

Another part of the modelled world are operations bridging between the scene
and the user model. These operations include interaction techniques, use of presen-
tation variables, and scene modifications. Modifications target the scene elements
and are a combination of state changes as well as adding new elements to the scene
and removing elements from the scene. An explicit part of the operations is the
temporal model. A concrete temporal model for this purpose will be discussed
in the following chapter. This ensures consistency as well as regard to temporal
constraints for all presentations.

Figure 3.2 shows the individual components building the model basis of the illus-
tration target function. The individual parts are grouped according to their respec-
tive role in the function.

Figure 3.2: Schematic representation of the illustration target function’s components.
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3.1.4 Function Definition

The illustration target function itf is a tuple ( S , M, P) consisting of the user’s
scope S , the illustration modelM, and the system properties P where:

S specifies the user’s scope and is given as S = {s1, . . . , sn}.
It is defined by the formulation of a set of questions to be
answered by the illustration process.

M represents the illustration model and correlates to the scene
model to be illustrated and relations from the above model
basis. Therefore,M constitutes asM = {scene, relations}.

P denotes properties of the illustration system and includes
operations and system restrictions: P = {OP, SR}.

The function describes the illustration model as well as all questions to be an-
swered by the illustration. It implicitly bridges between the user’s target function
with regard to the illustration and any system properties providing the illustration
context.

Correlating the illustration modelM with the presentation framework, scene di-
rectly corresponds to an information space IM whereas relations merge in an in-
formation structure IS, thusM = {IM, IS}. Individual objects IOi ∈ IM are rep-
resentations of real world objects in an illustration scene. The model is not only
the illustration subject but provides the overall context limitations. This context
might be enriched by another illustration component: a set of predefined model
annotations. While these might include some static annotation material, dynamic
querying of a variety of annotation sources is common. This will be discussed in
some more detail with specific examples in Chapter 6.

Operations as part of the system properties P are defined as a set of functions:

OP = {doi(IO),D(IM), INT(IM)}.

The set SR of system restrictions is defined as:

SR = SRδ ∪ SRm.

Part of the operation set is a degree of interest function, doi(IO), that determines an
interest value for any given object IOi ∈ IM in the scene. This value correlates with
the user’s scope as defined above but is also influenced by system behaviour and
user interaction. Support of this interaction as well as any restrictions is represented
by INT(IM). That is, for the whole illustration model presented by an illustration
system, a set of interaction techniques is available. This provides an interface to the
model and available annotation information. In general this set holds valid for the
whole model as represented by IM. The definition allows to respect specific ways
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of interaction for individual objects, though:

INT(IM) = {int1(IO1), int2(IO2), . . . , intn(IOn)} n ∈N.

This is reasoned in providing different means of interacting with different illustra-
tion entities, such as text and 3D renderings.

In addition to the doi() and INT() functions, a set of presentation techniques is
available as a system property. This is denoted as Dp(IM). In the context of this
work, this set specifically includes dynamic presentation techniques. However, this
is not a fundamental restriction required by the illustration target function defini-
tion. Precisely, Dp = Ds ∪ Dd includes all available presentation variables as a
combination of static (Ds) and dynamic (Dd) techniques:

Dp = Ds ∪Dd = {d(IO) : d(IO) ∈ Ds or d(IO) ∈ Dd }.

Different presentations may be used for different objects. Furthermore, elements of
this set do not need to be disjunct. That is, any two information objects may well be
presented using the same presentation technique. Overall, the parameterisation of
Dp represents the attribute set AM of all information objects. The discussion in the
remaining parts of this chapter concentrate on Dd. For simplicity reasons, this will
be referred to as D.

The union, SRδ ∪ SRm, of the sets SRδ and SRm defines the set of system restric-
tions. Similar to the presentation techniques defined above, this set consists of all
the elements of SRδ and SRm together:

SRδ ∪ SRm = {sr : sr ∈ SRδ or sr ∈ SRm}.

Thereby, elements of SRδ represent the temporal restrictions manifested by a tem-
poral parameterisation function. Details of such a function will be discussed in
the following chapter. Elements of SRm are application dependent restrictions that
need to be modelled explicitly.

Using the illustration target function for describing an illustration goal is outlined
in Example 3.1. Figure 3.3 shows the engine model used in the example.

Example 3.1 Given is a geometric model of an engine. Using this model, all ele-
ments of the cooling system are to be illustrated as well as flow through this system.

The scope is defined as S = {s1, s2, s3} with:

s1 Which parts make up the cooling system?
s2 What is the flow through the cooling system?
s3 Is the workload of the system balanced?
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The information space IM of the modelM is given as an triangulated face set. The
model’s information structure for defining relations of all IOi ∈ IM is modelled by
a scene graph containing all geometric elements ordered with respect to each other.

The system properties are defined as P = {doi(IM),D, INT(IM)}. The degree
of interest is defined as a boolean function:

doi(IM) =
{

1 for all elements of the cooling system
0 for all other parts of the geometric model.

Assuming
IScs = {IO : IO ∈ cooling system}, (3.1)

the doi function is defined as:

doi(IO) =
{

1 ∀IO ∈ IScs
0 otherwise.

The method set constitutes of D = Dm ∪Dcs with:

Dm global presentation of the whole model, and
Dcs specific presentation of all IO ∈ IScs as defined in equa-

tion (3.1).

Following the interests expressed by S , the specific case of Dm ⊂ Dcs holds. This
requires that no part of the engine model is presented with a method d ∈ Dcs in
case it does not belong to the cooling system.

Finally, the set of interaction techniques required for fulfilling the target function
is a union INT(IM) = INTg(IM) ∪ INTcs(IM). Thereby, INTg specifies global in-
teraction and navigation techniques, suitable for exploring the whole engine model.
Interaction with all objects IO : doi(IO) = 1 is expressed by:

INTcs = {int(IO) : IO ∈ IScs}

with IScs from equation (3.1) and int(IO) providing a means of selecting an ob-
ject. This way, the individual parts of the cooling system can be examined in detail
whereas the remaining engine model may be explored for context purposes. �

More details about the specifics of rendering in Example 3.1 as well as more im-
ages of the resulting illustration will be presented in Section 3.4.1 and in a concrete
illustration scenario in Chapter 6.
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Figure 3.3: Geometric engine model as used in Example 3.1. The left image shows the illustration
model of an engine without any emphasis techniques employed. The righthand image shows an
exemplary use of hybrid rendering styles for pointing out specifics of the engine’s cooling system.

3.1.5 Evaluation and Limitation

A fully automated evaluation of the target function is not subject of this subsection.
This is specifically due to the intention of the function as described above. The goal
of the illustration target function is to express the illustration task. This supports the
modelling process. This support is due to the central goal of the modelling process
being to meet the illustration task. This can only be achieved in case this task is
both: well known and specified clearly. Therefore, a fully defined illustration target
function points out interests to be addressed by an illustration and some directions
of meeting these interests.

Some restrictions apply to any instantiation of the function, though. These ad-
dress the relationship between the modelled and the represented world. This rela-
tionship is to be complete and sound . Soundness requires that the modelled world
worldmod captures behaviour in the represented world worldrep. Completeness builds
on soundness by requiring that all relevant behaviour of worldrep is captured by
worldmod. Thereby, the notion of relevance with regard to capturing behaviour cor-
relates to fulfilling the scope S of the user model. These two relationships limit
the overall flexibility of the target function. Soundness restricts the creation of a
modelled world such that it does not depend on information external to the illus-
tration target function. Completeness prohibits to leave out information from the
represented world that is of relevance to fulfilling the function. Figure 3.4 points
out this two-way caused limitation of the illustration target function.
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Figure 3.4: Restrictions of the illustration target function due to limited expressability of the repre-
sented world by the modelled world (based on Wegner [1997]).

3.2 Classic and Static Illustration Techniques

Before a set of dynamic presentation techniques is presented in the main part of
this chapter, this section discusses classic presentation techniques. These form the
basis for dynamic enhancements. All presented techniques are in principle of static
nature. As the following sections will point out, at least some of the techniques
shown here might be used as part of composing dynamic presentations.

Specifically, subsections 3.2.2 to 3.2.4 present selected classic techniques that are
used for dynamics construction later on. This presentation is based on a discussion
of two classification systems for illustration techniques in subsection 3.2.1. Finally,
subsection 3.2.5 concludes this excursion into classic presentations.

3.2.1 Classification

Various approaches have been published providing overviews of presentation tech-
niques [Noik, 1994, Preim and Ritter, 2002, Schroeder et al., 1998, Schumann and
Müller, 2000]. This section presents two approaches for classifying illustrative pre-
sentation variables: an early overview of presentation emphasis techniques by Noik
[1994] and a more recent classification by Preim and Ritter [2002]. Both collections
specifically target techniques suitable for illustration purposes and provide classifi-
cations of these techniques.

Noik’s Six-Dimensional Presentation Space

Noik [1994] describes an abstract space of presentation techniques for emphasis pur-
poses. This space addresses an initiation of a common framework for comparing
emphasis techniques in the context of relational data visualisation. For this purpose,
Noik divides his presentation space into six dimensions. Each dimension describes
an emphasis property of presentation. In order to refine the six-dimensional gran-
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ularity to some degree, a set of subtypes is created for some of the properties. The
resulting classification is shown in Table 3.5.

Emphasis Dimension Subtype Comment/Description
Transformation Vis-to-Vis The emphasised view is obtained from the

normal view.
Graph-to-Vis The emphasised view is obtained from graph

topology.
Emphasis Technique Implicit Derive emphasis from effect of point perspec-

tive in 3D.
Filtered Display of a subset of elements and suppress-

ing the rest.
Distorted Distortion of sizes, shapes, and positions.
Adorned Variations of other variables such as colour,

shading, and line style, and thickness.
Priorities Supplied Priorities supplied by user or a priority

algorithm .
Built-in api Priority computation by a built-in prior-

ity algorithm .
Built-in dist Computation of the distance by a built-in

priority algorithm .
Client api Possibility of client-specific importances.
Client dist Possibility of client-specific distances.

Focal Points None No notion of focal points used.
Single One single focal point used.
Multiple Multiple focal points used.

Animation None provided Indicate whether or not animation is used for
emphasis.

Inputs Sequences One-dimensional data.
Hierarchies Hierarchical graphs.
Flat graphs General graphs.
Nested graphs Graphs with hierarchic nesting allowed.
Beyond nested
graphs

Arbitrary graphical presentation.

Table 3.5: Six-dimensional space of presentation emphasis techniques presented by Noik [1994].

The transformation dimension describes the kinds of transformation an empha-
sis algorithm uses. Two types are presented here: a visualisation-to-visualisation
transformation where the emphasis is derived from the normal view and a graph-to-
visualisation transformation characterised by using a graph topology for determin-
ing an emphasis.

The somewhat misleading name emphasis techniques for the second presentation
dimension describes types of views for adding emphasis to a presentation. An im-
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plicit technique derives an emphasis by evaluating point perspective in 3D. Nearby
points are presented more obtrusively, that is, they are possibly loomed large, whereas
distant points are presented in a less dominant manner. A filtered technique uses
ways of determining a subset of the original scene and presenting only this by use
of an emphasis technique. The remaining parts of the scene are either untouched or
completely suppressed. Distorted presentations modify objects in shape, size, or po-
sition. Emphasis techniques are classified as being adorned in case any other presen-
tation variable is used. These include—without being limited to—colour, shading,
line style, and thickness.

Priorities describe means of obtaining relevance values usable for applying any
emphasis. Two supportive definitions are used for priority classification: An a priori
importance (api) determines the global importance of a given point or object in a
scene; and the distance (dist) determines the conceptual distance between any two
points or objects. This conceptual distance describes the pathlength between the
two respective end points.

Three different classes of priority designation are defined: supplied priorities,
built-in priorities, and client priorities. A supplied priority results from either user
interaction or a pre-defined priority algorithm. The built-in priorities represent on-
demand calculations based on either:

• A priori importance, or

• Distance values.

The same distinction holds for client priorities. The notion of a client respects appli-
cation dependent functions. That is, each possible client in the sense of this classifi-
cation directly correlates to an application where the respective function is defined.

The notion of a focal point describes a point selected as current focus of interest.
In case an emphasis technique works independently from any specific focus of in-
terest, no focal point needs to be supported. In case focal points are used, the above
mentioned priority is affected. For a single focal point, the priority of a point or
object increases along with its a priority importance and decreases with its distance
from the focal point. Multiple focal points extend the priority function by multiple
variation degrees. Any precise instantiation of a priority function in this case is to
be specified on a per-case basis.

Whether or not animation is used by an emphasis technique is subject of the fifth
dimension of this classification. This use of animation is bound to variations in
priorities. In case the priority values change, animation may help to eliminate or
reduce abrupt transitions in presentation variables. The notion of animation used
in this context represents a subset of the overall range of dynamic presentations as
only positional changes (i. e. motion) are addressed.

The set of inputs making up the sixth dimension is ordered by increasing expres-
siveness. Each level of input represents possible data sources required by an empha-
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sis technique, whereby each level is fully contained in the more expressive one. The
most simplest case is a sequence representing one-dimensional data. Hierarchies, flat
graphs, and nested graphs describe varying complexities of graphs as input. Finally,
beyond nested graphs is simply a synonym for unrestricted input for an emphasis
technique. It is to be noted that Noik’s notion of an input source concentrates on
graph-based emphasis techniques. This way, geometric input topologies are not
addressed.

Given the classification presented in the table, any presentation technique may be
characterised according to its emphasis dimensions. This directly implies that tech-
niques are not placed directly into one of the dimensions. Instead, different grades
of completeness are reached with regard to the respective property dimensions.

Preim and Ritter’s Emphasis Classification

A different approach to classify emphasis presentations is presented by Preim and
Ritter [2002]. Here, the presentation techniques act as keys to the classification. For
each individual technique, its completeness with regard to a presentation property
is given. These properties correlate to some degree with the dimensions presented
above. However, Preim and Ritter specifically address the presentation context of
medical visualisations. Table 3.6 lists this classification of emphasis techniques and
their respective characteristics.

The parameter space for the classified techniques includes the applicability of any
given technique. This may either affect a single or multiple objects. Based on this dis-
tinction, the geometric context of an object can be respected during its emphasis.
Single objects can be targeted by any of the presented techniques. In case multiple
objects can be affected by a technique, the relation between a specific object of inter-
est and other objects may be illustrated. Techniques targeting only a single object
allow to concentrate on representation of the object’s state.

Whether or not an emphasis technique ensures visibility of a targeted object is
addressed by another classification parameter. Depending on the illustration goal
as expressed by the illustration target function, visibility of any specific object of
interest might be a requirement. This parameter is associated with the previous
one. In case a technique targets only a single object but cannot ensure this object’s
visibility, the resulting emphasis provides no visual effect.

The grade of variation describes the effect an emphasis technique has with regard
to the overall scene. A local grade affects only the targeted object whereas a global
grade results in a variation of the whole scene. An in-between grade of affecting
not only the targeted object but its direct surrounding as well is regarded as regional
grade of variation. This is to be distinguished from the former parameter address-
ing the level of emphasis targeting. Some techniques, such as transparency applied
to all objects besides the illustration target, only address a single object but result in
a global grade of variation.
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Besides respecting the individual parameters for the listed techniques, the classi-
fication also includes an analysis of the respective implementation overhead. This
varies considerably. Even though the technique-oriented parameters determine ap-
propriateness of an emphasis technique, any real-world application might respect
its cost of implementation as well. Depending on the application’s context, some
unclassified notes describing specific advantages or restrictions may deepen deci-
sions made during illustration design.

Emphasis technique Multiple
objects

Visibility
ensured

Grade of
variation

Implemen-
tation
overhead

Notes

1. Change of colour yes no local minimal emphasis by
increased sat-
uration

2. Shadow yes rather not local moderate
Shadow volume yes yes local high

3. Contour lines yes no local high demarcation
to other
objects

4. Transparency
of hiding objects cond. yes regional moderate
all other objects no yes global minimal

5. Adjustment of
view direction

no yes global high unnatural
view in most
cases

6. Cutaway view yes yes regional high good for vol-
ume data

7. Bounding box cond. no local minimal generally
inappropri-
ate as single
technique

8. Crosshair cond. no local moderate
9. Arrows yes no local high
10. 3D fisheye cond. rather yes regional high inappropriate

for med. di-
agnosis

Table 3.6: Emphasis techniques and their characteristics according to Preim and Ritter [2002].

The following three subsections discuss selected specific classic illustration tech-
niques in more detail. These techniques form the basis for some of the dynamic
presentation techniques presented in the remaining sections of this chapter.
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3.2.2 Change of Colour

The simple change of an object’s colour provides an expressive tool for object em-
phasis. Preim and Ritter [2002] differentiate between two variants of emphasis by
colour:

• Deployment of one colour that is globally used for the emphasis of all objects.

• Consideration of the current object’s colour. Emphasis is gained by a modi-
fication of the objects previous colour. An exemplary option of doing this is
by substituting a colour with low saturation by a colour of the same hue but
with higher saturation.

A set of cognitive limitations is to be regarded in order to preserve expressiveness.
An emphasis is ineffective in case the chosen colour occurs at surrounding objects
as well. Furthermore, colour is mainly used for objects of at least moderate size or
filling of long or strong lines. In case of small objects, the perception of differences
in colour remains as a challenge as colour perception is affected by an object’s sur-
rounding [Foster, 2003, Wuerger et al., 2000].

Generally, the cultural effect of colour is to be considered when designing an illus-
tration making use of it. Stankowski and Dushek [1994] present a colour classifica-
tion with regard to its emotional effect. They point out that variations of the yellow-
red area activate the emotional state positively whereas the green-blue-purple areas
provide a negative effect. Specifically, dark purple is perceived as a representation
of grief and yellow-black combinations as positive appeal. Making use of this cul-
tural background for use of colour in an illustration environment allows to commu-
nicate an illustration message that helps to meet the illustration goal.

The value of blinking as a dynamic variation of colour changes is discussed in
Section 2.4. Using a change in an object’s emissive colour as a basis of dynamic
rendering styles is addressed in Section 3.4.1.

3.2.3 Transparency

Transparency provides a means of ensuring visibility of an object of interest [Hamel
et al., 1998]. It is an alleviated variation of simply disguising all objects in a scene
that possibly hide the target object. In contrast to completely hiding objects, trans-
parency allows to preserve scene-related context as all objects remain visible. De-
pending on the illustration target function, two different ways of applying trans-
parency to an object may be used: (1) using transparency on objects hiding the
object of interest or (2) making the whole scene transparent with exception of the
object of interest.

The first case targets visibility of the opaque object of interest. It is emphasised by
applying transparency to all objects that hide this object with regard to the current
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camera position and viewing direction. This way, the formerly hidden object gets
visible without a need to adjust the overall scene layout and camera position [Hel-
bing et al., 1998]. Therefore, the grade of variation is of regional nature. For each
affected object, a level of transparency needs to be determined. This level specifies
how much the object’s colour contributes to rendering the scene. It needs to be low
enough to provide the desired see-through effect but simultaneously high enough
to keep the object visible.

The second case of applying transparency to the whole scene with the exception
of the object of interest addresses the problem in case (1) where too many objects
hide the target. In this case, the see-through effect may not be achievable as the re-
maining colour values of all those objects accumulate and prohibit a visual effect of
the final rendering of the hidden object. This is avoided by applying an exhaustive
amount of transparency to the whole scene and just rendering the object of interest
opaque. An example is shown in Figure 3.5.

Figure 3.5: Use of transparency for the whole scene with the exception of an object of interest for the
purpose of emphasising this object.

As a variation of transparency, wireframe rendering may be used. Overall, the
achieved effect provides exclusive emphasis of the opaque object with regard to
the remaining scene. Complete visibility is ensured at the cost of a global grade of
variation.

An alternative to these two classical approaches for using transparency for em-
phasis is in providing an emphasis effect similar to a change in colour as discussed
previously above. Thereby, the visual presentation of a single object is changed
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with regard to its surrounding scene. Depending on the grade of transparency ap-
plied, the object is accentuated by a low amount of transparency or de-accentuated
as it gets invisible due to complete transparency [Snowden and Verstraten, 1999].
This use of transparency is of local effect as only the presentation of the targeted
object is modified. In contrast to both above approaches, visibility of the targeted
object cannot automatically be ensured.

Transparency may also be used as a basis for dynamics of hybrid rendering styles.
Section 3.4 discusses this in detail.

3.2.4 Fisheye

The notion of fisheye distortion for presentation purposes is presented by Furnas
[1986]. For the purpose of examining hierarchical graphs, a 2D view is created that
allows for local browsing of subgraphs of interest. This is supported by defining
a degree of interest (doi) function as well as an a priori importance
(api) for all nodes in the graph. Using a distance function determining the
pathlength between any two objects, the doi can be derived from the api . The local
area of the object with the highest doi is than presented with some increased detail
at the cost of presenting the remaining scene elements in a more dense fashion.

Fisheye distortions are applicable in a variety of areas. The span of applications
includes data-driven illustration tasks as well as geometry-based illustrations. Ex-
amples of the former include Tree-Maps [Johnson and Shneiderman, 1991], hyper-
text illustrations [Noik, 1993, Bartram et al., 1995, Yang et al., 2002], hierarchy pre-
sentations like Cone Trees [Robertson et al., 1991] or hyperbolic layouts [Lamping et al.,
1995, Lamping and Rao, 1996, Munzner, 1997, Robinson, 1998]. Geometry-based
fisheye illustrations include pliable surfaces [Carpendale et al., 1995], combinations
of fisheye with text in 2D [Rauschenbach et al., 2001], and 3D [Preim et al., 1997]. A
survey of illustration techniques including fisheye variations is presented by Her-
man et al. [2000].

The first extension of a fisheye zoom from 2D to 3D is presented by Mackinlay
et al. [1991] with their Perspective Wall. Thereby, the third dimension is created by
mapping the overall display onto a surface (the wall) that is folded at borders close
to the area with highest doi . As the folded surface is of two-dimensional nature,
the Perspective Wall can be respected as a 21

2D presentation instead of true three-
dimensionality. Another approach for using a fisheye zoom in 3D is illustrated by
Carpendale et al. [1995]. Here, the information is mapped onto a stretchable surface
that blobs out the area of interest while the remaining part of the scene is scaled
down accordingly. The use of additional navigation hints, such as a cartographical
grid, is provided by Carpendale et al. [1997]. Raab and Rüger [1996] present a 3D
fisheye algorithm for coherent zooming. This algorithm allows to flexibly adjust
the size of all objects affected by a zoom operation.
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A fisheye view is usually a highly interactive emphasis technique [Olwal and
Feiner, 2003]. While some part of the available information is presented in detail
(the focus), the rest is still available in smaller size (the detail). This interaction is
referred to as focus and context browsing [Leung and Apperley, 1994]. A variety of
further interaction techniques exist that are build on top of fisheye zooms. These
include Magic Lenses by Bier et al. [1993] for interactive filtering of information,
Macroscope by Lieberman [1994] which combines multiple translucent layers for the
purpose of providing extended pan and zooming interaction.

Section 3.5 presents two dynamic variations of a fisheye zoom that concentrate
on preserving structural information of the zoomed objects. This information is
presented by means of navigational hints which are build dynamically on the basis
of the zoomed object.

3.2.5 Discussion

Two classification systems for emphasis techniques are presented in this section.
Both of these systems mainly concentrate on static presentation techniques. Still,
they provide different approaches for classifying presentation techniques. One char-
acterises the respective techniques according to their property dimensions. The
other uses the techniques instead of their properties as key to the classification.
These orthogonal approaches point out the flexibility in respecting presentation
techniques.

Overall, the presented analysis of the two classification systems show the variety
of classic and static presentation techniques. Dynamic techniques as presented in
the following are not isolated from these techniques but are based on static ones
and extend them in various ways. The following sections present such extensions.

3.3 Motion Techniques

This section is the first out of three presenting dynamic presentation techniques.
Based on the fundamentals of dynamics as discussed in Chapter 2, the set of pre-
sentation variables for an illustration system can be enhanced using dynamic tech-
niques. Using temporal constraints as presented in Chapter 4 helps to make use of
dynamics up to their full expression potential. It is specifically to be noted that this
does not aim at an exclusive use of dynamics for any presentation. Instead, dynam-
ics extend the set of presentation capabilities and are to be used in combination with
any classic and static illustration techniques.

For the discussion of not only motion but all dynamic presentation techniques,
the framework presented in Section 3.1.2 is used. That is, the illustration model
is presented as an information set IM with a set of attributes AM for all informa-
tion objects IOi ∈ IM. For the presentation of these objects a set of presentation
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techniques Dp is used. This set denotes all available techniques. As introduced in
Section 3.1.4, the set of dynamic presentation techniques is denoted as Dd. Again,
for reasons of simplicity of the discussion, this will be referred to as D.

The individual techniques of set D are labelled d(IO). That is, each d ∈ D may
be used to present a specific information object. This relation is not mutually exclu-
sive. Therefore, for any two objects IOi and IOj with i 6= j, the same presentation
technique may be used: dk(IOi) = dk(IOj). Any concrete parameterisation and
presentation of d depends on the dynamics class.

The first class introduced is motion. That is, a set DM ⊆ D is defined with DM =
{d1, . . . , dn} (n ∈ N) that provides presentation techniques with moving effects for
information objects IO. Further classes of dynamics include changing rendering
styles and distortions as presented in upcoming sections.

Three different subclasses of motion techniques are presented here: oscillations,
structural changes, and a motion-enhanced information mural. These techniques
do not introduce any new motion algorithms. Instead, they make use of existing
approaches and introduce an entry point for dynamic presentation techniques. Spe-
cific applications making use of motion are not included in this section but are part
of Section 6.2 in the application chapter.

3.3.1 Oscillations

Repeating motion patterns provide an expressive means of communicating infor-
mation about groups of objects [Johansson, 1964]. This subsection introduces os-
cillations as motion in the framework of dynamic presentation techniques. First
of all, construction of information objects is discussed as underlying prerequisite.
This is followed by a description of translations and rotations as basis techniques
of oscillations. Ways of specifying an oscillation’s parameter space completes this
part.

Construction of Information Objects

According to the presentation framework, information objects IO are described by
a set of n attributes. These have a continuous range of values. In an n-dimensional
information space, each IO is described by AM = {A1, . . . , An} ∈ IR. Individual at-
tributes Ai with 1 ≤ i ≤ n specify the role of the respective information object IO in
its information space IR. This concept is generalised such that concrete positioning
information of IO is not required for applying oscillation.

This way, oscillation can be applied to an information set without depending on
specifics on the origin of information objects. Examples of such origins include
the output of a mapping pipeline as it is used in information visualisation systems
or the manual design and construction of a geometric model that is subject of an
illustration. A concrete example of the former case is presented in the context of
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information fusion in Section 6.2.3, an example of the latter case is shown with the
illustration of a generator model in Section 6.3.3.

Basis Techniques

Two types of basis techniques for oscillations may be used:

1. Translation: The position of an object IO is constantly changed. In case transla-
tion modification affects multiple scene objects, their influence on scene coher-
ence is regarded as a group. That possibly allows for these objects to change
their spatial structure without influencing other (possibly unrelated) parts of
the display.

2. Rotation: Hereby, an information object IO is rotated constantly. The rota-
tion centre is thereby part of the parameter space. An advantage of using
the object’s central point is that the scene’s coherence is not considerably in-
validated. However, spotting this motion might require an intense cognitive
approach by the user. To avoid this, the rotation centre might vary from the
object’s centre. It does not necessarily need to be a point inside the volume of
the object. This flexibility is of course paid for by the potential of invalidating
the scene coherence.

Both techniques can be combined to create sophisticated motion patterns. In addi-
tion, multiple methods can be used simultaneously in a scene to express different
data characteristics by means of different motion application.

An oscillation is defined by repeating a motion continuously. For translation-
based motions, three variations of translation paths are defined:

1. a straight path between two fixed positions,

2. a fixed path passing key positions, and

3. a free path restricted by an area.

These paths are illustrated in Figure 3.6. Depending on their respective path lengths,
the three different motion trajectories vary in influence on scene coherence. The
first two cases possibly cause local, regional, and global effects on the scene. Their
positional influence is not restricted. This is different for the third case of paths
that are restricted to an area. This area naturally limits the oscillation’s influence to
local neighbourhood and the region spanned by the area. It is possible that the area
extends over the complete scene borders. In this case influence of this path would
be of global nature. However, this specific case is regarded as regional influence as
well, because the illustration designer specifically modelled the region as spanning
the whole scene. This way, the notion of a region applies by chance to an larger area
as usual.

Two distinct cases exist for rotation-based oscillations:
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Figure 3.6: Three ways of defining translation paths for oscillating motion trajectories: 1) moves
an object along a straight path between two fixed positions, 2) moves an object along a fixed path
passing key positions, and 3) constraints an otherwise free path by a region.

1. regular shape with midpoint rotation and

2. irregular shape with rotation around arbitrary point.

The first case preserves scene consistency and has only local influence. Case two
possibly affects remaining parts of the scene as well. Figure 3.7 represents these
two cases. In case the rotation centre is located at the midpoint of an information
object with regular shape, its local region is affected. In case the object is either
of irregular shape or the rotation centre is chosen arbitrarily, global effects on the
scene coherence may result.

Figure 3.7: Effects of rotation-based oscillations. The dots mark the respective rotation centres.

Parameter Space for Motion Mapping

For the purpose of mapping oscillations onto information objects in an illustration,
these objects are grouped into information structures of similar objects: ISM =
{IOi | IOi ∈ IM, i ∈ N}. Following the algorithmic preprocessing description of
the framework as discussed by Kreuseler and Schumann [2002], a measuring func-
tion s( IOi, IOj) = s ij is used to decide whether or not two information objects
IO belong to the same group. As already demonstrated by Ankerst et al. [1998], this
similarity measurement is a domain-specific task. Depending on context and user
scope defined by the illustration target function, the construction of ISM is achieved
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independently for each illustration scenario. An example will be presented in Sec-
tion 6.2.3 for the context of representing groups of information objects retrieved out
of data from the field of bioinformatics.

The parameter space for presentation techniques d ∈ DM is determined by the
grouping function s . For each group of translations, rotations, or combinations
thereof, a set of parameters may be modified:

• frequency of the oscillation,

• amplitude of the basis technique, and

• motion progression function describing the trajectory appropriately depend-
ing on a concrete application context at hand.

The evaluation of these parameters is handled by an oscillation function f OS( IS M,
s, DOS, δ) with:

ISM specifying the information structure containing all infor-
mation objects affected by oscillating motion.

s being the measuring function determining the groups of
information objects in ISM.

DOS providing the set of available oscillating motion tech-
niques. This set consists of the basis techniques and vary-
ing combinations thereof.

δ being the temporal parameterisation function presented
in the following chapter.

The oscillation function maps oscillation techniques dM ∈ DOS onto groups of in-
formation objects IS ∈ ISM that correlate with each other according to the measur-
ing function s . The resulting dynamic presentation is temporally constrained by δ
for the purpose of complying to cognitive and temporal restrictions as outlined in
Chapters 2 and 4.

3.3.2 Structural Changes

A classical approach to motion by structural changes is flow representation. Such
flows either affect particle systems as introduced by Reeves [1983] or are repre-
sented as flows on a surface. Particle systems basically describe object-based mo-
tion. As discussed for the case of oscillations above, they are not subject of this
section.
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Early works on flow representations by structural changes of surfaces are drawn
by Max [1981] at the example of ocean waves. This work was picked up and refined
continuously [Fournier and Reeves, 1986, Peachey, 1986, Tso and Barsky, 1987].
These approaches target structural change of a surface such as a wave. Others ad-
dress flow of patterns on a surface [Turk, 1991, Stam, 2003] or dynamic smoothing
out of surfaces [Desbrun et al., 1999].

Procedural models may be used for the description of structural changes of ob-
jects. Continuing the work on ocean wave representations, such a model is pre-
sented by Hinsinger et al. [2002]. Jeschke et al. [2003] extend this approach by
allowing to model breaking of such waves. Functions are used in this model for
describing the movement and appearance of the waves.

In contrast to oscillations as discussed above, the approach of functionally de-
scribing a motion of structural changes is continued here. Two examples are pre-
sented for this purpose: a folding function as well as the description of a free-form
function with user-specified constraints of a structural change. Before the discus-
sion of both techniques, some underlying foundation regarding the organisation of
information objects is presented.

Organisation of Information Objects

The motion by structural changes as presented here targets object surfaces. Changes
of this surface are applied on a per-face basis. That is, a specific motion technique
only affects a single surface of the respective information object. Thereby, local influ-
ence of the motion technique is ensured by not only touching no other information
object but also limiting the changes to parts of the targeted information object.

The overall set of presentations using dynamic structural changes is given as
DST(IM). This set is a union of sets of structural change-based presentationsDST(IO)
for the single information objects making up the information set:

DST(IM) = DST(IO1) ∪DST(IO2) ∪ . . . ∪DST(IOn) IOi ∈ IM, 1 ≤ i ≤ n, n ∈N.

These individual sets are collections of motions applied to surface-based subparts
of the respective information object:

DST(IO) = {dST1(IO), dST2(IO), . . . , dSTm(IO)} m ∈N. (3.2)

Here, m describes the number of presentation techniques resulting in structural
changes of surfaces of this information object. This number is not fixed but depends
on the object’s number of faces s:

IO = { f c1, f c2, . . . , f cs} s ∈N, s ≤ m.

Each face might be subject of an individual local motion. This way, m = s holds.
That is, the number of structural motion techniques for an object potentially equals
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the number of faces of the object. However, sets of faces may be grouped for the
purpose of applying such motion to the group instead of just single faces. These
groups are denoted as FC consisting of faces f c:

FC ⊆ IO = { f c1, f c2, . . . , f cg} g ∈N, g ≤ s.

Therefore, the definition of the available set of motion presentations for an informa-
tion object as expressed in equation (3.2) changes to:

DST(IO) = DST(FC) = {dST1( f ci), dST2( f ci), . . . , dSTm( f ci)} f ci ∈ FC, 1 ≤ i ≤ g.

In case a face set group consists of a single face only, it’s presentation is denoted as:

dST( f c)⇔ dST(FC) holds and FC = { f c}.

This extends the overall number of possible motions applicable for the information
object. Naïvely, this results in m = s!, that is, the number of applicable motion
patterns to an information object spans all possible permutations of combining the
object’s faces into sets. This number is limited to some degree. First of all, double
pairs of faces are regarded equally. Furthermore, visual cluttering is to be avoided
by not applying a technique dSTi to a face f ci as well as to a group of faces including
f ci:

dSTi( f ca)⇔6 ∃dSTi( f cb) with { f ca, f cb} ∈ FC and f ca = f cb.

Figure 3.8 illustrates this grouping of object faces. The leftmost image shows the
set of sixteen faces defining a part of an information object. A subgroup of this face
set is highlighted in the middle image of the figure. This subgroup my be used for
applying motion based on structural changes of the individual faces in the group.
Using such motion on two disjunct groups of the overall face set is sketched out
in the rightmost image. Either the same motion pattern or two patterns different
from each other may be used on both groups. In case the same pattern is used,
some repeating attributes of the information object can be reflected. Using different
techniques outlines varying structures of these attributes.

Principle Motion Basis

As stated above, motion by structural change refers to modification of surfaces.
These modifications are constructed by altering vertex positions. Description of
this vertex altering is done by a function fv(v). This function is a tuple (sr, f unc,
amp, f req, P) with:
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(a) (b) (c)

Figure 3.8: Sketch of a part of an information object and a set of faces defining this part’s surface.
Image (a) shows the raw set of faces. A concrete group of faces which may be subject to motion by
structural change is emphasised in (b). To the right, (c) shows the definition of two face sets which
are defined independently from each other.

sr describing the rate at which the function is sampled,
f unc being the motion function which describes the motion trajec-

tory of the affected point,
amp being the maximum amplitude constraint valid for all sampled

function values,
f req being the frequency constraint, specifying how often the func-

tion is iterated per second,
P holding a variable set of parameters depending on a concrete

function definition.

Figure 3.9 points out the principle of this function. The figure shows the surface
defined as a group of faces FC = { f c1, f c2, . . . , f c16} as introduced in Figure 3.8.
This group is modelled by a set of 25 vertices vi (1 ≤ i ≤ 25). Now, a subgroup of
faces is defined to which a motion by structural change is to be applied:

FCST ⊂ FC = { f c2, f c3, f c6, f c7}.

This equals the scenario discussed for Figure 3.8(b) above. This set of faces is now
modified by use of fv(v8). Modification of the point’s position results in changes of
all faces edged by the point. The concrete positional function values of fv(v8) are
determined by the motion function f unc and constrained by amp and f req.

For the purpose of smooth face modifications, an application using this function
fv(v) should not only respect alteration of a single vertex at a time. Instead, the
respective functions fv(v) for the surrounding vertices are to be synchronised. In
the specific example presented here, these are v2 . . . v5, v7, v9, and v12 . . . v14. Syn-
chronisation of this kind is not inherently ensured by each fv(v) automatically. This
is due to limiting the function’s influence to one vertex at a time and to provide for
a maximum of flexibility in using it.

The sample rate sr has no direct effect on the motion pattern. Instead it influences
presentation performance and is to be used as a knob for controlling the motion
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(a) (b)

Figure 3.9: Principle motion basis for motion by structural change targeting surfaces. To the left, (a)
shows the face set defining the surface. The faces subject to motion are highlighted. In (b), these
faces are changed in their structure by altering vertex v8.

externally. This proves useful for integrating motion by structural changes with the
temporal presentation framework as presented in the following chapter.

The following two subsections present exemplary motion techniques based on
structural changes. First, a motion based on folding is described. Secondly, a notion
of describing the change by a free-form function is introduced. This allows for a
flexible description of motion depending on the respective field of application. Both
concrete examples show that the above definition of the function forms as a basis
for motion by structural change. This basis provides enough flexibility to construct
different motion techniques.

Structural Change by Folding

This section introduces motion based on structural change of surfaces by folding.
Thereby, each dST( f c) is defined by modifying f c such that an effect of folding this
face is gained. This effect is specifically of local influence and applied to each face
separately.

Figure 3.10 shows a sketch that outlines the folding. It is a two-dimensional rep-
resentation defined by a cut through the z axis parallel to the (x, y)-plane. This
exemplary cut is made for simplicity reasons. The folding is not restricted to take
place in any axis-parallelism. Instead it is based on the notion of a fold plane. This
plane is determined by any three neighbouring vertices of the current vertex of
interest. In this case, this is just the (x, y)-plane.

A folding is defined by a tuple of five parameters:

f old = {ampmin, ampmax, loopmin, loopmax, lap f old}.

The description depends on function fv(v) as it defines a set of two amplitudes
instead of just one and uses the notion of loops in contrast to frequency.
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Figure 3.10: 2D cut view of folding a surface.

The amplitude range of the fold is given as ampmax − ampmin. In between, the
current amplitude is determined at each step of the folding process:

ampcur =
∫ i≤π

i=0
| sin(i)| · stretch (3.3)

Thereby, stretch is defined as a constant stretch factor that ensures restriction of the
amplitude to its range of ampmax− ampmin. Using only the absolute value of the sin
at each step i of iteration ensures to avoid a negative folding effect.

Similarly to the amplitude, the length of the fold equals the distance of loopmax −
loopmin. An amount of overlapping of a fold is labelled as lap f old. To be precise,
this describes the maximum expansion of the lap whereas the amount of overlapping
equals lap f old − loopmax. The folding may be applied repetitively to the face. De-
pending on the distance between two folds, both may overlap. If these folds are
given as f olda and f oldb, this implies:

loopmaxa ≤ loopminb ≤ lap f olda .

The current loop value in range [loopmin, laploop] is determined at each step i by:

loopcur = loopmin + i · flap(i)

flap(i) =
{

cos(i) · i ⇔ π/2 < i ≤ π
i otherwise

(3.4)

The lap function flap(i) helps to achieve the horizontal fold effect as it is sketched in
Figure 3.10. Overall, iterations of the fold function fv(v) are normalised to the range
[0, π]. This is only done to achieve the fold effect and does not restrict application
of the folding spatially.
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The single steps to be carried out for achieving a motion by structural change
based on folding are sketched out in Algorithm 3.1. The end of the presentation
is marked temporally in line 7. All other steps of the algorithm follow the above
discussion.

Algorithm 3.1 Motion by structural change based on folding.
Require: ISST

1: Determine current vertex of interest vi ∈ ISST
2: Determine fold plane for vi
3: repeat
4: Determine ampcur based on Equation 3.3
5: Determine position loopcur based on Equation 3.4
6: Render image
7: until temporal end of presentation

The resulting effect of this motion is shown in Figure 3.11 at the example of a flat
plane. From left to right, this plane is shown in its original planar state and with
increasing amplitude. The folding is applied starting at the plane’s upper right
hand corner.

Figure 3.11: Exemplary use of a folding motion.

Free-Form Function

Creating a motion by structural changes of surfaces as outlined at the example of
folding above can be generalised to some degree. This is done by using a free-form
function to describe the changes in structure of a face. Depending on concrete ap-
plication context, this function is provided by modelling it as part of the illustration
target function or by specifying it interactively. The free-form modelling of struc-
tural changes of object surfaces is supported by a set of function primitives. This
set is not limited by nature but defined by a concrete implementation of this motion
technique. Section 5.2 presents such an exemplary implementation which includes
basic trigonometric functions.

Trigonometry is used to construct an exemplary free-form function. This func-
tions defines waves on a surface. Such a wave is specified in the illustration model
which is part of the illustration target function. For the example shown here, this
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specification uses a simplified version of the folding as described above. If i de-
scribes the current loop position, ampcur the current amplitude value of the wave,
and stretch a user-defined stretch factor for the motion, the free-form function val-
ues are given as:

f unc = i
ampcur =

∫ i≤π
i=0 sin(i− ((ampmax − ampmin) · stretch).

The resulting effects of this function definition are shown in Figures 3.12 and 3.13.
The first set of images applies waves to the complete set of surfaces of a geometrical
model consisting of three information objects. Each object represents a letter. The
objects are modelled by a set of relatively large faces. From left to right, repetitive
waves are applied to an increasing set of surfaces. This helps to gradually illustrate
the organisational structure of the model. In order to make use of this illustration
in a context which is not of object-intrinsic nature, this motion-enhanced informa-
tion set may be placed in a motion-less context. There, the folding helps to outline
specific parts of the overall scene consisting of a more complex information set.

Figure 3.12: Snapshots expressing the effect of a local motion by structural change applied to the
complete set surfaces in the model.

This is done in the example shown by the second set of images in Figure 3.13.
Here, the overall information set consists of a geometric model of an eye. This set
is composed of a variety of information objects defining the individual parts of this
eye:

IM = {IOi} 1 ≤ i ≤ |IM|, IOi = part of the eye.

From this set, an information structure ISST is derived. The elements of this struc-
ture are subject to a folding motion. Specifically, this structure is defined as:

ISST = {IOj} 1 ≤ j ≤ i, IOj = external eye muscle.

That is, the waving motion is used to illustrate the external eye muscles in contrast
to the remaining model. This adds to the colour coding of the model presentation.
Colour is used to emphasise an information structure containing all muscles of the
eye, including the external ones. If IScol labels this structure, ISST ⊆ IScol holds.
Therefore, using motion helps in pointing out the location differences of external
muscles with respect to the set of all eye muscles.
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Figure 3.13: Snapshots expressing the effect of a local motion by structural change applied to only
parts of the model. The images show different status of folding the eye movement muscles to the left
and at the eye’s top. This allows to disambiguate them from the eye’s focal length muscles which
are coloured the same and located nearby.

Effects on Scene Coherence

In contrast to object-based oscillations, motion by structural changes provides local
effects to a scene only. If ISST is an information structure containing all objects
which are subject to structural motion, no object IO ∈ IM \ ISST exists that is
influenced by structural motion as well. This locality of motion influence insures
that scene coherence is not invalidated.

3.3.3 Motion-enhanced Information Mural

This subsection introduces the use of motion for the purpose of enhancing the in-
formation mural as it is presented by Jerding and Stasko [1998]. The information
mural is an illustration technique that provides a representation of an entire infor-
mation space and fits this representation onto an available display window. This is
achieved by providing a miniature version of the original information space. Cre-
ation of this version is supported by use of visual mapping of input data onto small
information objects, variations in size and colour as well as intensity specifications
of these objects. As the whole information space is presented at once, the informa-
tion mural allows to browse the information space and to focus on items appearing
as interesting.

The original mural by Jerding and Stasko [1998] is a two-dimensional illustration
technique. All information objects are constructed by mapping input data onto
coloured pixels forming lines in the mural. For the purpose of a motion-enhanced
mural presented here, this presentation is extended to 3D. This way, the mural lines
are modified to form cuboids. These cuboids allow to use their depth value as a fur-
ther expression dimension. This helps to loosen the spatial presentation limits to
some degree. Furthermore, using a three-dimensional presentation helps to explore
the information space interactively by providing another degree of freedom for pos-
sible viewing directions. Precisely, instead of just providing a frontal view of the
mural as in the original algorithm, it may be rotated around the different axes for
detailed investigation.
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Motion is used to enhance the mural and provide some means for presenting
structural information of input data distribution. Using threshold values for the dif-
ferent dimensions of input data represented in the mural, a set of motion techniques
is parameterised accordingly. This provides a practical illustration algorithm com-
bining oscillations and motion by structural change. The presentation of a motion-
enhanced information mural is divided into three parts:

1. construction of the information objects defining the mural;

2. ways of mapping motion onto these objects;

3. a practical step-by-step algorithm for constructing illustrations using the motion-
enhanced mural.

Construction of Information Objects

As an information mural’s main goal is to display the complete information set in
a display, all IOi ∈ IM are created initially. An update of the input data set neces-
sarily results in an update of IM. The same holds in case of streaming where the
amount of available input data steadily increases. Any changes resulting from user
interaction are expressed by a manipulation of the attribute set AM and informa-
tion structures IS.

The creation of IOi correlates to the available input data sets. The information
mural technique is based on the idea of mapping an input data image onto a rep-
resentation image. Thereby, the notation of an image does not necessarily describe
the output of a rendering task but the collection of k× l data points, where k, l ∈N.
The input image is an information space with dimensions n × m. This is to be
mapped onto the representation image with resolution i× j with i, j, n, m ∈ N and
i ≤ n, j ≤ m. As a result, an information set is constructed consisting of i × j
information objects: IM = {IO11, IO12, . . . , IOij}. Construction of the individual
IOi ∈ IM follows the original mural algorithm as outlined by Jerding and Stasko
[1998]. Overall, this creates a 2D image representing the original information space.
The third dimension is now used to convey an additional attribute of the input data.
The values of this attribute dimension are simply mapped onto the depth of their
respective information objects.

The geometric shape of an information object is a vertical line in 2D respectively
a cuboid in 3D. This allows to order all IOi along the x axis. Other object characteris-
tics as well as the mural restrictions are ensured by assigning appropriate attributes
Ai ∈ AM. These attributes include position, shape modification, and colour. The
x position is determined by appropriately moving along the axis according to the
overall coordinate maximum of the display. Figure 3.14 shows the principle map-
ping of the mural as well as the layout of all information objects. Mapping of a
concrete example of the mural is presented in Chapter 6.
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(a) (b)

Figure 3.14: Principle mural layout: Subfigure (a) shows mapping of an n × m input image onto
its i× j representation [Jerding and Stasko, 1998]. In (b), a sketch of the 3D layout is shown where
data is mapped onto cuboids and all three spatial dimensions are used to express attributes of the
information space. (based on Pehrs [2004])

Main Interest Scalar

The notation of a main interest scalar is introduced for the case of high-dimensional
input data exceeding the capacity of direct mapping onto the 3D information mu-
ral. This scalar represents a specific attribute dimension of the original information
space. Assumed, the attribute set of this space consists of k dimensions and the
main interest scalar is an attribute As, a set of s × (k − 1) virtual input images is
available. Thereby, r = k− 1 represents respective data dimensions that vary while
s changes. As a result, an illustration is constructed that outlines variations of r
input dimensions with respect to the current interest scalar dimension. In order
to illustrate all such variation combinations, multiple presentations need to be con-
structed with a varying main interest scalar s.

Motion Mapping

In order to extract patterns from data distribution, a set of information structures
{ISM1 , . . . , ISMn} is composed that merges similar objects into groups. The overall
number n of these structures is less than or equal to the number of information
objects in the information set IM. The metrics used to obtain similarities and struc-
tures are parameterisable interactively and depend on the specific application do-
main at hand. Exploration at arbitrary levels of detail are thereby possible. The
user is actively involved in supervising and steering the search for patterns.

Parameters controllable by the user are referred to as threshold dimensions. Ele-
ments of these dimensions directly represent an emphasis limit of respective input
dimensions. The threshold dimension set is given as:

TD = {th1, th2, . . . , thn} n ∈N, n ≤ dim(IR), n ≤ dim(IM).
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Thereby, n does neither exceed the overall number of available attributes in AM that
is specified as dim(IR) nor the number of information objects defined in the infor-
mation space IR (dim(IM)). The individual threshold dimensions represent values
of attributes A ∈ AM that are used for determining whether or not a respectively
affected information object belongs to an information structure ISM:

ISM = {IO : ∆th(IO, thi) > 0}.

This definition makes use of a threshold function ∆th determining the distance
between a threshold and the respective attribute value of an information object IO.
Using the attribute function attr(IO, Ai), which returns the value of an attribute Ai
of a given information object, the distance ∆th is defined as:

∆th(IO, th) = attr(IO, Ai)− thi 1 ≤ i ≤ n.

The index of attribute Ai and the threshold thi are the same as both specify the
same dimension of the original information space. Precisely, only values of the
same attribute dimensions in the input data can be compared with each other. It is
specifically to be noted that a threshold defined as minimum function reverses this
definition. That is, in this case all information objects with an attribute value smaller
than the threshold are included in ISM.

All information objects IOi ∈ ISM are subject to a presentation with a motion
technique di ∈ DM whereby:

DM = DOS ∪DST.

That is, the set of available motion techniques for enhancing an information mu-
ral results as a union of oscillation techniques and structural changes. Parameter-
isation of individual motion techniques is influenced by a motion constraint factor
(mcf):

mc f =
∆th

max−min
.

The max and min values correspond to the limits of the overall value range of all
attributes in IR. Therefore, the mc f normalises the dynamic parameters of all avail-
able motion techniques. As the mc f depends on the individual thresholds, a set of
such factors exists. Each mc f corresponds to a specific threshold used for grouping
information objects. This way, distinct motion parameterisations are derived that
allow different presentations of different groups and patterns in the underlying
data. Similar to the motion techniques discussed in the previous sections, a mu-
ral motion function fMM(ISM, TD,DM, mc f , δ) is defined employing the following
components:
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ISM specifying the information structure containing all infor-
mation objects affected by motion.

TD specifying the set of threshold dimensions, whereby each
thi ∈ TD acts as key into the respective groups of infor-
mation objects in ISM.

DM providing the set of available motion techniques.
mc f being the distance-based motion constraint factor for pa-

rameterisation of dm ∈ DM.
δ being the temporal parameterisation function from Chap-

ter 4.

This function applies motion techniques to a subset of all available information ob-
jects in an information mural. Objects included within this mural are specified by
structure ISM. The thresholds of set TD are used to differentiate classes in this struc-
ture. Different classes may be illustrated by different motion techniques dm ∈ DM.
Furthermore, the individual techniques are to be parameterised differently. This
parameterisation is based on mc f . Last, but not least, presentation parameterisa-
tion as provided by δ is also supported by mc f which is specific to motion in an
information mural.

Practical Use

For the purpose of describing the practical use of the motion-enhanced information
mural, a step-by-step algorithm for doing so is presented here. This approach illus-
trates the principle use of the mural for dynamic presentation. Section 6.2.2 shows
a concrete example of using this mural technique for illustration of a climate data
set.

Algorithm 3.2 describes the general approach for using the motion-enhanced in-
formation mural for illustrating a high-dimensional information space. The overall
goal of this illustration as much as any other is in fulfilling the illustration target
function. Thus, this illustration is an interactive process and all steps with the ex-
ception of 3, 7, and 8 require input from the user.

3.4 Dynamic Changes of Rendering Styles

In order to achieve rendering style dynamics, hybrid presentations are required.
These hybrids combine use of different styles in a scene simultaneously. Dynamics
are created by blending between styles.

At first, an overview of hybrid presentations is given. An introduction to style
blending follows. Two concrete approaches of such blending are discussed and
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Algorithm 3.2 Practical use of the motion-enhanced information mural.
Require: Modelling of the illustration target function itf .

1: while user scope of itf not fulfilled do
2: for all As ∈ AM do
3: Construction of mural presentation.
4: Selection of threshold dimensions TD.
5: while Scope of itf with regard to As not fulfilled do
6: Select thi ∈ TD.
7: Designate parameterisation of di ∈ DM by means of fMM.
8: Illustration presentation.
9: Interactive exploration with respect to itf .

10: end while
11: end for
12: end while

round up this section. The work presented here results out of a cooperation with
Bernd Nettelbeck and Tobias Isenberg [Nettelbeck, 2003, Jesse and Isenberg, 2003].

3.4.1 Hybrid Presentations

In recent years, non-photorealistic rendering (NPR) has received a great deal of
attention. Two books have been published which give a comprehensive overview
about the subject [Gooch and Gooch, 2001, Strothotte and Schlechtweg, 2002]. How-
ever, the group of non-photorealistic rendering styles are typically considered to be
separated from photorealistic styles. Only little attempt has been made to combine
the two into individual renditions in a systematic way.

Saito and Takahashi [1990] were the first to add non-photorealistic elements such
as silhouettes to photorealistically shaded objects in order to create more expressive
renditions. Gooch et al. [1998] combine an adapted photorealistic shading with non-
photorealistic elements such as silhouettes to create a non-photorealistic lighting
model. Their main application domain is automatic technical illustration. Gooch
et al. [1999] explore techniques to speed up the computation of the lighting model
in order to allow for interactive technical illustrations. Although both create a some-
what hybrid style, they apply it coherently to the whole scene. I. e., the rendering
itself only uses one style. It is, thus, not hybrid in the sense of this work.

In contrast, Masuch and Strothotte [2001] combine different styles in one image.
They use a photorealistic rendering or photographic image as a background and
add a non-photorealistically rendered object as foreground in order to visualise
the uncertainty and the degree of trust in the reconstruction of ancient architec-
ture. When using a photo, it is natural that only still images are produced (see
also Strothotte et al. [1999]). However, when including the NPR renditions into the
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photorealistic background, real-time animations can be created. On the other hand,
a continuous transition from the photorealistic style to non-photorealism or vice
versa cannot be achieved by the presented approach.

Ritter et al. [2003] use additional silhouettes for semi-transparent objects in inter-
active medical illustrations to increase the user’s ability to recognise these objects.

Halper et al. [2002] present an interface for easy combination of various different
rendering styles. Being conceived as a tool for designers to assemble and experi-
ment with renditions it makes it easy to come up with new combinations of styles
including the possibility to create hybrid renditions.

A different kind of hybrid animation is used in movies such as »Who Framed
Roger Rabbit« (1988) or »Space Jam« (1996). In this type of movies, real footage
is combined with hand-drawn cartoon characters. Johnston [2002] improves the
appearance of the cartoon characters by creating toon renditions using the light
positions from the real scene. When combining it with real video footage, the more
coherent 21

2D look of the character with correct highlights is achieved by estimating
normals from the hand-drawn silhouette using a set of heuristics.

Jesse and Isenberg [2003] describe a hybrid rendering system which combines
non-photorealistic styles with regular photorealistic shading techniques. In order
to provide a maximum of rendering and application flexibility, the use of each ren-
dering style is controlled either interactively or by a script based scene description.
The overall script structure as well as a specific application example is presented by
Jesse [2003].

3.4.2 Overview of Style Blending

Non-photorealistic rendering techniques can roughly be divided into surface shad-
ing techniques and line-oriented methods. In addition, combinations of both are
possible. Usually, both variants of NPR techniques can be used individually, e. g.,
a cartoon shading can be used as well as just displaying the visible silhouettes of
a model. However, when combining NPR techniques with photorealistically ren-
dered models this does not necessarily hold anymore. For example, using a pho-
torealistically shaded model and only displaying one object of the model using sil-
houettes can be very confusing since the rest of the model is visible through the
silhouette lines (see Figure 3.15). Thus, in cases where line-based NPR techniques
are used, it is usually advisable to combine these techniques with some kind of
surface shading, either photorealistic or non-photorealistic (see Figure 3.16).

As an example for a line-based NPR technique, stylised silhouette rendering is
employed [Isenberg et al., 2003]. This implies that line stylisation and rendering
happens after the model has been rendered because a correct z-buffer is necessary
for the hidden line removal of the silhouette.

For a smooth transition between the regular photorealistic shading of an object’s
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(a) (b)

Figure 3.15: When the shading of an object is exchanged with a line-based NPR technique, the pho-
torealistically rendered remainder of the model is seen in the background, which is very distracting
for many applications.

(a) (b)

Figure 3.16: Using a shading to enhance the appearance of the line-based NPR style. In contrast to
Figure 3.15, hidden surfaces do not shine through the non-photorealistically rendered parts of the
models.

surface to non-photorealistic shading, one style has to be continuously de-emphasised
while the other style is successively emphasised. Typically, this type of transition
is achieved by using α-blending. This method will be discussed in Section 3.4.3.
An alternative way to create the background shading for line-based NPR styles as
mentioned above will be introduced in Section 3.4.4.

3.4.3 α-Blending

An intuitive implementation of a transition between different rendering styles pro-
duces renditions of both styles and uses the α-channel for blending. That is, trans-
parency is used in order to allow for the perception of different object representa-
tions and their respective rendering styles. Besides the use of classical illumination
models for photorealistic rendering, this allows for a transition to various NPR-
shadings of a model, such as gray-scale or Gooch shading [Gooch et al., 1998].

Figure 3.17 shows an example of using variations in a non-photorealistically ren-
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dered scene. In the upper row of the figure, three renditions are shown that reflect
increased transparency from left to right. In contrast, the lower row shows varia-
tions of the scene’s rendering where the shapes’ surface colour is changed as well
as the colour of shape edges. This illustrates the bandwidth of variations in a ren-
dering that also form the basis of the dynamics as presented here.

Figure 3.17: Variations of rendering a scene non-photorealistically based on transparency in contrast
to colour changes [Nettelbeck, 2003].

Different kinds of blending can be used with regard to the order of rendering of
all objects. When using a normal blending order, all objects are rendered as they
are represented in the geometric model. An alternative is delayed blending which
cares about opaque objects first and renders transparent objects afterwards. By
using sorted blending, all opaque and transparent objects are rendered in an order
depending on their respective distance from the camera’s position.

This is illustrated by Figure 3.18. Normal blending is used in 3.18(a). Clearly visi-
ble is a partial occlusion of the cube by the sphere, caused by an unfortunate order-
ing of both objects in the geometric scene description. On the contrary, the correct
ordering of the sphere with regard to the cylinder causes the latter to stay com-
pletely visible throughout the transparent sphere. Figure 3.18(b) shows the same
scene as rendered with sorted blending. That is, all objects are handled according
to their distance from the camera. As a result, the sphere appears transparent to
both remaining objects.

This directly leads to the see-through effect in α-blending: As one object is rendered
in two different styles, these styles visually interact with each other by being visi-
ble through their respective transparent counterpart. This effect is well visible in
the third and forth image of Figure 3.19 that shows a series of snapshots from an
animation created by blending an eye’s muscle continuously from a realistic ren-
dering style to silhouette line style by steady adjustments to the α-channel. A naïve
approach to avoid the (unwanted) see-through effect is to render the NPR shading
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(a) Normal. (b) Sorted.

Figure 3.18: Problems with sorting when using α-blending [Nettelbeck, 2003].

non-transparently first, followed by an opaque rendering of the realistic shading
style. The latter is then continuously made more transparent until it is completely
blended out. This guarantees a smooth transition from a realistic rendering style to
a non-realistic style.

Figure 3.19: Snapshots from an animation created by blending from a realistic rendition to a non-
realistic rendition regarding a part of the model. For this purpose, α-blending is used. Note the
see-through effect in the third and forth image causing faces hidden by the blended object to shine
through for some period of time during the animation.

However, this approach is challenged by the problem that the size of non-pho-
torealistically rendered objects usually extends the size of its respective realistic
counterparts slightly. An example of this effect are stylistic silhouette renditions.
This especially holds for the case of silhouette lines shaped as waves, but is valid
for other line shapes as well. As an alternative, the stencil buffer might be used in
order to render the face content in an opaque manner early on and blend in the face
border. As of now, the see-through effect is just accepted as a rendering artifact.

Another challenge when dealing with simultaneous rendering of two different
styles for the same object is in possible flickering caused by »triangle fights«. As
triangles in both styles are located at approximately the same depth with regard to
the camera viewpoint, they appear to flicker because of limited z-buffer resolution.
At some angles, one of two respective triangles appears to be closer to the viewer, at
other angles the other triangle does. In order to avoid this visually unpleasing effect,
the triangles need to be layered accordingly. This is achieved by using OpenGL’s
polygon offset for defining how to offset specific triangles with respect to others.
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3.4.4 Emissive Colour Blending

An alternative to modifying the α-channel of a material is in adjusting the emissive
colour of objects in a scene. In order to blend from one style to another, the RGB val-
ues of the colour are continuously changed from 0.0 to 1.0. A vector of (0.0, 0.0, 0.0)
does not influence the colour representation of an object’s material at all. A colour
triple of 1.0 values results in the object being rendered completely white. By incre-
mentally selecting appropriate steps in between, blending from a realistic rendering
style to a non-realistic style can be achieved. Similarly to α-blending, the remaining
part of the scene is not influenced, as all modifications are local and no light source
is touched. Figure 3.20 shows a series of snapshots taken from an animation created
by increasing the RGB values of an eye’s muscle from 0.0 to 1.0.

Figure 3.20: Snapshots from an animation created by changing the emissive colour RGB values of a
muscle continually from 0.0 to 1.0. Note that no shading artifacts are visible for this specific muscle
and that the see-through effect from Figure 3.19 is avoided.

In order to achieve the effect of white lines on black background, the RGB values
are reduced to the range (−1.0,−1.0,−1.0). This way an effect of the illumination
model is used that is not possible in physics. The objects »suck in« the light from
regular shading. To get an even better appearance, the background of the rendition
can be changed to black as well.

Depending on the choice of colours to be used as RGB values, two visual meta-
phors can be created: the effect of sketching with a pencil on a white sheet of paper
or the effect of using chalk on a blackboard. Only black and white pen colours
are to be used in case a rendition without any shading artifacts is to be achieved.
Using alternative colours not only results in shading still being represented but in
the visual metaphors being less perceivable.

An effect of modifying the emissive colour of an object in order to blend from
one style to another is in completely covering the affected faces. This holds espe-
cially for large RGB values (1.0 − ε, with a small ε). On one hand, this explains
why shading artifacts are avoided. Furthermore, only a single shading technique
is used and no transition between two shadings and transparency made necessary.
On the other hand, this prevents other NPR shading techniques—such as Gooch
shading [Gooch et al., 1998]—from being usable simultaneously. Figure 3.21 shows
a series of snapshots from blending different rendering styles based on changing
the emissive colour of the affected objects.
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Figure 3.21: Snapshots of an illustration emphasising the individual bones of a toe by use of dynamic
rendering styles achieved through changes of the emissive colour of the affected bones.

3.4.5 Comparing Style Transitions

Given the above discussion, dynamics by variation of hybrid rendering styles are
defined as:

DRS = DRSα
∪DRScol .

That is, dynamic rendering styles are formed as a union of blending by transparency
changes inDRSα

and blending by adjusting the emissive colour of an object inDRScol .
This definition allows for styles derived as combinations of both subsets.

Figure 3.22 presents two snapshots of the same scene. One object in the scene is
rendered with a silhouette line shape whereas the remaining objects in the scene are
rendered with a photorealistic style. Figure 3.22(a) represents the use of α-blending
for this purpose and the result of changing the emissive colour is shown in Fig-
ure 3.22(b), respectively.

(a) α-blending a shading. (b) Manipulating the emissive colour.

Figure 3.22: Comparison of both methods for generating hybrid renditions. In both cases, the sil-
houette in form of a line stroke is combined with a background [Nettelbeck, 2003].

As can be seen clearly, the shading artifacts are still visible in the left image, that
is for α-blending. Even though flat shading is used in this specific case in order
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to illustrate the effect, it holds for advanced shading techniques as well. Besides
avoiding the shading effect, Figure 3.22(b) expresses the pen on paper metaphor.

Both blending techniques are capable of fulfilling the requirements according
to cognitive limitations as expressed by the dynamics stimulus window from Sec-
tion 2.2. Stepping over the lower window boundary is automatically ensured as
each individual rendering style already fulfils this requirement. Therefore, any
combination of multiple styles does not fall below the lower temporal boundary.
In order to guarantee not to extend the dynamic stimulus window’s upper limit as
well, any style changes need to be parameterised accordingly. For the worst case of
very complex scenes and low rendering bandwidth, a transition from one render-
ing style to another can be presented in as less as two steps—one for each end of the
blending pipeline. However, both presented blending techniques are designed to
provide for smooth transitions between different styles within the complete range
of the dynamic stimulus window.

The use of more than just one shading technique is only possible with α-blending.
This requires two rendering passes of the scene, though: once using a classic photo-
realistic style and once for the desired NPR style. The resulting drawback in render-
ing time is at least partially compensated by α-blending often being implemented
directly in graphics hardware. Due to the visual metaphors achieved by the emis-
sive colour technique, its rendering results appear more artistic. This allows for the
perception of an extended degree of abstraction compared to α-blending.

3.5 Zoom-based Distortion Histories

The third part of this chapter’s collection of dynamic presentation techniques is
formed by distortion histories. These histories represent steady changes of an ob-
ject’s shape over time. Steady changes of shape can be divided in two distinct types:

1. Changes of an individual object’s shape, and

2. Changes of the relative positions of a group of related objects.

Changing only a single object provides a means of dynamics without manipulating
the overall scene construction. The object’s spatial correlation to other objects is not
affected. This technique is therefore to be used preferably when the shape consis-
tency of a specific object is of minor importance compared to its influence on scene
context. The change in shape can be done either by repetitive scaling or switching
the shape’s kind.

Changing the relative positions of a group of respective objects allows to express
inherent relation characteristics of these objects. The respective objects can be ma-
nipulated by similar changes in shape. Additionally, translation changes as subject
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of Section 3.3 help to create distortions providing an effect of explosion. The exem-
plary distortion techniques presented here are variations of the fisheye zoom. As
discussed in Section 3.2.4, fisheye is a powerful tool for interactive exploration pur-
poses. Magnification and demagnification work in tandem to create a distortion
that emphases information of interest in an area of context information.

An overview of distortion techniques including fisheye zooms is presented by
Leung and Apperley [1994]. The presented techniques have two problems in com-
mon:

1. A spatial challenge of fitting the information space onto the presentation space
while preserving spatial relationships.

2. An information density challenge where the actual information is to be fitted
into its context.

Addressing both challenges is a central design goal for various zooming techniques.
The second case is specifically addressed by fisheyes. The extensions presented in
this section target at providing a distortion history by spatial relationship informa-
tion. This deepens context information communication.

Extending fisheye-based views with distortion history information is further sup-
ported by two studies carried out by Skopik and Gutwin [2003]. These studies ad-
dress how navigating fisheyes is to be carried out with regard to memorability. This
memorability describes the ability to find and go back to objects and respective fea-
tures in the data. That is, during the process of examining some information object
of interest supported by a fisheye zoom, visual presentation of connectivity and
history information between the zoomed object and its un-zoomed original coun-
terpart might prove helpful. These connectivity presentations of an illustration act
like landmarks in an information space.

A combination of non-photorealistic rendering techniques with zoom metaphors
promises to extend the expression capabilities of an illustration system. Context
information for individual objects may potentially be lost by making those objects
subject to zooming. This information can possibly be preserved by applying an
appropriate NPR style for displaying information on the history of distorting the
objects. Zooming possibly results in an invalidation of the spatial relation of two
objects. In this case, a suitable parameterisation of NPR styles helps to convey this
relation. This results in distortions without spatial gaps for the purpose of preserv-
ing spatial relations while local details are explored. Two techniques are presented
for this purpose: speedlines supporting coherent zooming and the chewing gum
zoom.1 Before the discussion of these extension techniques for a fisheye zoom,
some necessary basis of the zoom will be presented. Both techniques are subject
of Subsection 3.5.2 and 3.5.3, respectively.

1 This section presents the principles and design of both techniques. A prototypical implementa-
tion has been subject of a diploma thesis rendered in the context of this work [Davydova, 2003].
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3.5.1 Zoom Basis

A classic zooming technique is the fisheye lens as proposed by Furnas [1986]. This
visual metaphor is derived from the field of photography. A fisheye lens is a very
wide-angle lens. It provides detailed information in the projection centre. With
increasing distance from this centre, surrounding areas represent respectively less
information. Using this metaphor for illustrating computer graphics provides de-
tailed local focus information with less detailed global context. The first exemplary
fisheye browser for 2D layouts is presented by Sarkar and Brown [1992].

A discussion of further works based on the fisheye lens is presented in Section 3.2.4.
While the original fisheye algorithm by Furnas [1986] presented a 2D approach,
some of the extensions provide a 3D presentation. One such extension is the 3D
Zoom by Raab and Rüger [1996]. This introduces a 3D zooming technique based on
interval structures. These structures reflect spatial object boundaries and are used
for determining flexibility values for object movement and resizing in support of
a zoom operation. Some details of this technique are discussed below as this algo-
rithm forms the basis of both dynamic zooming techniques that follow.

Fundamental Zoom Algorithm

The 3D-Zoom provides support for multiple focus points in a 3D scene. Spatial vari-
ations are based on the notion of an interval structure. The intervals of this structure
specify the zoom boundaries and are derived from the object’s bounding boxes. Fig-
ure 3.23 illustrates this. The lefthand image of the figure shows a 2D representation
of intervals derived from two objects. It is obvious that intervals may overlap in
case their respective objects overlap as well. The righthand image points out con-
straints with regard to neighbouring objects which will be discussed shortly.

The individual steps of Raab and Rüger’s zoom are outlined in Algorithm 3.3.
Lines 1 to 5 of the algorithm describe the initial creation of the interval structure.
First, all intervals are constructed by an evaluation of available object bounding
boxes. The gained intervals are normalised such that for each spatial dimension
(x, y, z) the overall value is one. The remaining lines 6 through 18 describe the
algorithm’s work necessary for each single zooming step.

For each step of the zoom, the interval structure is evaluated and updated. Based
on the degree of interest of the available information objects (doi( IO) ) the object’s
new size and position are determined. After finishing this process for the whole
information set, some optional adjustments to individual objects are applied for
an increase in fulfilling the user scope. These include deformations of objects af-
fected by a low doi . As these objects are of less importance with regard to the user
scope, they may be deformed by changing their aspect ratio. This provides some
increase in communicating object relations specifically for objects far away from the
user [Raab and Rüger, 1996, Sec. 3.3]. Additionally, some low doi values may be
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(a) (b)

Figure 3.23: Interval structures of the 3D Zoom [Raab and Rüger, 1996]. Subfigure (a) shows the 2D
interval structure for the zoom, in (b) constraints with regard to neighbouring objects are shown.

mapped onto transparency for the purpose of deemphasising the respective objects.
For this, care should be taken with regard to accumulating doi -based transparency
values which possibly results in misinterpretations of the illustration.

3.5.2 Trace Line Support for Zoom Histories

This subsection introduces an enhancement to zooming that provides dynamically
created traces of a zooming motion. These traces are shaped analogous to speed-
lines representing the moving objects’ contours. This allows to present simultane-
ously the history of objects which are subject to a zooming motion and the objects
them-self.

Context

Speedlines are classically used for the presentation of motion of objects in (com-
puter generated) still images as outlined in Figure 3.24 [Masuch et al., 1999]. The
motion of an object is thereby depicted by a set of contour lines that are drawn
at intermediate motion steps. These lines illustrate the motion itself, the motion
direction, and possibly some spatial relations of moving object parts. The motion
trajectory is thereby depicted by a gradually decreasing intensity of drawn speed-
lines. Therefore, the original location of a moved object can still be derived after the
motion has been completed.

Different types of speedlines are depicted in the figure. The two innermost cases
use contour lines of the moving object as speedlines. Whereas the first of these
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Algorithm 3.3 Basis for the zoom extensions following Raab and Rüger [1996].
1: Define set of intervals SI in each spatial dimension (x, y, z)
2: for all i ∈ SI do
3: Reduce size of empty i
4: Normalise i such that ∑ i = 1 for each dimension holds
5: end for
6: for all zoom steps do
7: for all i ∈ SI do
8: for all IO ∈ IM in i do
9: Determine scale value si

IO
10: Define size of IO as min(doi( IO),size( i · si

IO))
11: Determine position of IO
12: Optional deformation of IO with low doi
13: Optional increase of α for IO with low doi
14: Update i
15: end for
16: end for
17: Render zoom step
18: end for

Figure 3.24: Speedline supported illustration of a moving ball. Contours are used respectively with
varying transparency. In addition, parts of contours as well as an arrow extend the expression of
dynamics. [Masuch et al., 1999]

two approaches makes use of the whole contour, a simplified version is derived
for the other approach where only parts of the contour define the speedlines. The
remaining two cases draw lines parallel to the motion trajectory. In the leftmost
case, this helps to point out the trajectory along which the object moved so far. The
rightmost approach for a speedline differs from all other cases as it adds an arrow
to the speedline for the purpose of pointing out a future motion and not one that
has already taken place.

Algorithm

The idea of using speedlines for motion representation is now introduced to zoom-
ing based on Algorithm 3.3. As these lines represent traces of objects along their
zoom paths, the speedlines are referred to as trace lines. Two characteristics define
these lines:
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1. Trace lines repeat the contour of zoomed objects, thereby representing their
shape and position along the zoom trajectory.

2. The intensity of a trace line decreases with an increase in distance of the
zoomed object with respect to its origin.

The effect addressed by the trace line enhanced zoom is shown in Figure 3.25.
This shows a scene which is simply a collection of six basic objects. Originally, all
of these objects are placed in a bulk. A zoom is used to stretch the space between
all objects. For this purpose, the doi of the cone is selected higher compared to
all other objects. Therefore, these are moved away from the cone which stays in
the centre. For each of the zoomed out objects, a set of trace lines is drawn that
renders the respective motion path. This way, the objects’ original composition is
still communicated while all objects are placed with enough space in between to
allow for individual exploration.

Figure 3.25: Effect achieved by a trace line supported zoom [Davydova, 2003].

Figure 3.26 shows another set of snapshots of a zoom animation supported by
trace lines. The spatial relation of an object part that is moved out of its original spa-
tial scope is outlined by trace lines which are rendered at intermediate animation
steps.

For the creation of trace lines, a set of presentation techniques is maintained dur-
ing an active zoom operation:

∀IO ∈ IM : DTL(IO) = {dTL1(IO), . . . , dTLn(IO)} n ∈N.

Thereby, each dTL describes a set of presentation characteristics:
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• Translation: The position of the trace line.

• Scale: The scale factor of the trace line with regard to the original size of its
respective information object before the zoom.

• Intensity: The current intensity of the trace line which is constantly decreased
while the zoom operation is in progress.

• Contour: The shape of the trace line as derived from the information object.

Figure 3.26: Use of speedline inspired trace hints in order to outline object relations after a zooming
distortion. (courtesy of a co-work with Davydova [2003])

Using the complete contour information of the information object for the pre-
sentation of its trace lines might result in an overly cluttered illustration. To over-
come this effect, only parts of the contour may be used for which the normals face
away from the current zoom direction of the object. Figure 3.27 shows both of
these cases. The lefthand image represents the use of complete contours for pre-
senting traces. The righthand image simplifies the traces by using partial contours
with back-facing normals. The intensity is adjusted during each step of zooming.

(a) (b)

Figure 3.27: Creating traces based on contours of the respective information object. Subfigure 3.27(a)
shows the naïve approach of using the complete contour. Subfigure 3.27(b) points out use of partial
contours to simplify the presentation and provide for a less cluttered illustration.

While the distance of the information object to its original position before the zoom
increases, the distance to the traces already drawn increases as well. If pos( IO) de-
termines the current position of an information object during a zooming operation
and dist(pos( IO1), pos( IO2)) determines the distance of two such positions,
the intensity (lightness) l is given as:

lcur(IO) =
lorig(IO)

dist(pos cur( IO), pos orig( IO))
. (3.5)
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Thereby, lcur(IO) describes the intensity of the trace described by the current dTL,
lorig(IO) describes the original intensity of the information object IO. As is obvi-
ous from the equation, the lightness of a trace decreases with an increase of the
respective information object’s distance from its origin.

As the last component of the trace description by dTL, the contour of the informa-
tion object is determined by a silhouette rendering. No specific silhouette extrac-
tion and rendering techniques are developed. Instead, existing approaches such as
those described by Isenberg et al. [2003] are used.

Algorithm 3.4 summarises the general procedure used for trace line enhanced
zooming. This basically extends the zoom basis as described above by the creation
and constantly maintenance of trace representations of each information object sub-
ject to zooming.

Algorithm 3.4 Trace line enhanced zoom operating after line 13 in Algorithm 3.3.
for all dTL ∈ DTL do

Determine lcur(IO) according to equation (3.5)
end for
Define current dTLcur(IO)
Add dTLcur(IO) to DTL

3.5.3 The Chewing Gum Zoom History

The idea of this zoom extension builds on two objects being glued together by a
chewing gum. In case these two objects get zoomed out from each other, the gum
is stretched but outlines the spatial relation of both objects. This connectivity infor-
mation is incrementally thinned out while the objects are moved farther away from
each other. As soon as the distance of both objects with regard to each other ex-
ceeds a connection threshold, the glueing gum gets ripped up. Visually, both objects
no longer belong to each other.

Using this idea for a zoom-based illustration helps to reflect the spatial dynamics
history of a zoom-affected information object as well as its spatial relations with
regard to other objects. Similar to the trace line enhanced zoom as presented above,
the zoom path of an object is illustrated by the chewing gum. In contrast, though,
this information is made more explicit by providing continuous connection from
the zoomed object to its zoom origin. Removing this connection gum based on a
connection threshold helps to avoid visual cluttering and to reflect spatial connec-
tivity limitations.
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Context

For the creation of a chewing gum, the gum needs to be derived from the shape
and position of affected information objects. A variety of approaches exists for this
purpose. These include point-based geometry as display primitive, such as the sur-
face elements surfals by Pfister et al. [2000]. Surfals are based on work presented by
Levoy and Whitted [1985] as well as the work by Grossman and Dally [1998]. An-
other approach for point-based geometry is the hierarchy of bounding spheres in
the QSplat system [Rusinkiewicz and Levoy, 2000, 2001]. Boolean operations sup-
port variations of free-form solids such as a gum-like volume [Adams and Dutré,
2003]. Merging of polyhedral shapes with scattered features is discussed by Alexa
[2000]. This merging acts as basis for a 3D morphing process. Morphing in the
sense of transforming the gum volume by use of a metamorphosis function as pre-
sented by Cohen-Or et al. [1998] is used for animating the chewing gum throughout
the zoom process below.

Algorithm

The chewing gum connecting an information object affected by zooming with its
origin is defined by the following four characteristics:

1. The length of the chewing gum correlates to the zoom distance of the respec-
tive information object.

2. The amount of volume of the chewing gum does not change during zooming.

3. The chewing gum is ripped up if the zoom distance of the respective informa-
tion object exceeds an connection threshold.

4. The shape of the chewing gum is described by a set of faces forming a solid
with an inverse cubic bezier surface boundaries.

A basic sketch of constructing the chewing gum is outlined in Figure 3.28. For
simplicity reasons, the figure shows a 2D representation. The real application in 3D
works analogously whereby the gum’s volume is derived by a shape preserving ex-
trusion of the 2D volume. The figure shows an information object that is subject to a
zoom operation. This causes the object to move from its origin position p0(x0, y0) to
a zoom position pz(xz, yz). This zoom position changes constantly while the zoom
is active.

The chewing gum itself is introduced as a representation G(IO) reflecting the
spatial relation of an information object IO with regard to its un-zoomed origin. G
is defined as a set of transformations:

G(IO) = {Gt(IO) | 1 ≤ t ≤ nz}. (3.6)
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Thereby, nz is defined as the overall number of zooming steps to be carried out.
Each G in this set is defined by a chewing gum morph function :

G(IO) = fCG(bCG(IO), l, dmin).

That is, this function is defined as a set of constraints consisting of:

bCG being a function determining the connection diameters of
the gum.

l specifies the current length of the gum.
dmin holds the current minimum diameter at position l/2.

Figure 3.28: Sketch of the chewing gum in 2D.

The function bCG determines the border diameters of the gum based on the respec-
tive information object. This is a three step procedure illustrated in Algorithm 3.5.
First of all, the gum is attached to the faces of the information object which have
normals pointing towards the zoom direction. Secondly, the midpoint of the gum
is determined based on the middle of these faces. Finally, the width of the chewing
gum is derived by using the information object’s width (yt − y0) scaled by the user-
supplied range factor. As this factor is applied to only one half of the information
object’s overall width, symmetry is gained by multiplying the result with 2.

The function fCG is initially used once to determine the starting shape of the gum
at position p0. For each zooming step, the function is used to update the end shape
of the gum at the current zoom position pt.

Besides the shape and position of the respective information object, G(IO) is de-
fined by two constraints defining the chewing gum: the length of the gum and its
minimum diameter at position l/2. These constraints are pointed out in Figure 3.28.

This definition of gradually deforming the chewing gum follows the idea of a dis-
tance field metamorphosis as presented by Cohen-Or et al. [1998]. This metamor-
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Algorithm 3.5 Border diameter function bCG for the chewing gum zoom.
Require: range: user-defined range factor in [0, 1]
Require: p0: initial position of IO before zoom
Require: pt: current zoom position of IO

1: s f ← faces of IO where normals point towards zoom direction
2: cgmid ← mid(s f )
3: cgwidth = 2 · range · (y(pt)− y(p0))

Return: bcg(cgmid, cgwidth)

phosis describes a transformation of an object’s shape. This is a two-step function
consisting of a rigid and an elastic transformation. For this purpose, the distance
field calculations are done on a volumetric representation of the object in question.
A set of anchor points controls the warp function. These anchor points are described
by a sequence of keyframe models. The remaining field distances get interpolated.

Applied to the chewing gum morph function , this metamorphosis results in
an iteratively defined chewing gum . Each iteration corresponds to one zoom step.
At each step intermediate images from zooming are reused. As a result, the chew-
ing gum is stretched depending on the current position with regard to start and
end of the zoom. The chewing gum is transformed from its original source shape
GS to its final target shape GT. The source shape of the chewing gum is defined
absolutely at the point in time, the zoom is initiated. The target shape depends on
the zoom progress and is not necessarily known initially. All intermediate steps of
the zoom are derived as a morph as stated by Equation (3.6). This leaves each entry
G ∈ G as:

G(IO) =


GS(IO) initial chewing gum,
GT(IO) final chewing gum,
Gt(IO) gum constantly adjusted at each zooming step.

Thereby, GS(IO) and GT(IO) are special cases of Gt(IO) with t = 0 and t = nz,
respectively. The only two anchor points in the sense of Cohen-Or et al. [1998] are
given as the initial chewing gum GS(IO) and the gum with the minimum diameter
corresponding to the connection threshold dε. This latter case defines a rip up of
the chewing gum before the zoom operation is finished. Therefore, two cases of
finishing the gum presentation are defined:

Gt = GT ⇔
{

t = nz
dmin ≤ dε

The current minimum diameter of the chewing gum at each zoom step, dmin, is de-
termined logarithmically on the basis of l. This ensures that the gum is thinned out
smoothly throughout the zoom process. Overall, Algorithm 3.6 points out the assig-
nation of the gum at each zoom step. The special case of ripping up the chewing
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gum when its minimum diameter gets too small is handled in line 4 where the gum
is set to 0.

Algorithm 3.6 Chewing gum function fCG applied at each zoom step.
Require: pz: current position of IO
Require: dε: user-defined minimum chewing gum diameter

1: l = pz − p0
2: dmin = log(l/2)
3: if dmin ≤ dε then
4: G(IO)← 0
5: else
6: G(IO)← {bCG(IO), l, dmin}
7: end if

Return: G(IO)

The individual parts forming the chewing gum can now be assembled as illus-
trated in Algorithm 3.7. This enhances the basis algorithm for zooming (3.3) by the
chewing gum. Algorithms 3.5 and 3.6 are used as parts of the assembly. Integration
of the individual chewing gum steps into the original Algorithm 3.3 takes part right
before the first step as well as between step three and four. This latter case ensures
that the chewing gum is updated at every iteration of the overall zoom loop.

Algorithm 3.7 Zoom enhanced by a chewing gum for spatial connectivity.
Require: Steps 1 to 5 of Algorithm 3.3

1: Create initial chewing gum G0(IO) based on Algorithm 3.5
2: Gp(IO) = G0(IO)
3: pz = p0

Require: Steps 6 to 14 of Algorithm 3.3
Require: IS← IM∪ Gp(IO)

4: Update pt
5: Gt(IO)← fCG by Algorithm 3.6
6: IS = IS \ Gp(IO)
7: if Gt(IO) 6= 0 then
8: IS = IS∪ Gt(IO)
9: end if

Return: IS and continue Algorithm 3.3

Figure 3.29 shows a series of exemplary snapshots of a presentation where a pro-
totypical implementation of the chewing gum is employed. A gum is applied to
the individual objects in the scene. From left to right, the figure represents differ-
ent stages throughout the zoom process. The gums are stretched and thinned out,
respectively. They finally break up as shown in part in the rightmost image.
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Figure 3.29: Exemplary snapshots of a presentation using a prototypical implementation of the
chewing gum [Davydova, 2003]. Different gums are used for the individual objects. From left to
right, different stages throughout the zoom process are shown.

3.5.4 Discussion

Two approaches are presented above for the purpose of defining dynamic distor-
tion histories based on extending a zoom presentation: trace lines and a chewing
gum. Both serve as examples for principle approaches of extending an already exist-
ing dynamic technique. These extensions may be used for communicating history
information about an object which is subject to zoom-based distortion. This pro-
vides not only information about the particularly affected object but possibly about
other objects as well.

Both extensions provide a means of spatially limiting the influence they have on
scene coherence. Early drawn trace lines are gradually faded out by an increase
of their transparency while the zoom progresses. Thinning out the chewing gum
is one of its central characteristics. Furthermore, a connection threshold helps to
stop an active chewing gum illustration in case its overall spatial effect exceeds the
desired goal as expressed in the illustration target function. As of these constraints,
both zoom extensions avoid a global effect on scene coherence and restrict it to be
of regional influence.

The combination of the trace line zoom extension with the chewing gum does
not promise to provide for an extended expressiveness. Both approaches affect the
same spatial region: the distortion volume spanned by the object which is subject to
zooming. In order to avoid interference of both techniques, a combination is only
reasonable after a rip up of the chewing gum. This rip up is caused by the goal
of limiting the influence of the zoom on scene coherence, though. Using any con-
secutive combinations of zoom extensions results in extending this spatial window.
This extends the overall effect from a regional to a global influence.

3.6 Classification Based on Effect on Scene Coherence

Table 3.10 classifies the dynamic presentation techniques discussed in this chapter
with respect to their influence on scene coherence. This puts all techniques in rela-
tion with regard to each other.

Three kinds of translations are defined for oscillations as sketched in Figure 3.6 of
Section 3.3.1:
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Techniques Effect on scene coherence
motion

oscillations
translations (1) regional, global
translations (2) regional, global
translations (3) regional
rotations (1) local, regional
rotations (2) regional, global

structural change local
mural local, regional

hybrid styles local
distortion histories

chewing gum zoom regional, global
trace line zoom regional, global

Table 3.10: Effect on scene coherence of presented dynamic presentation techniques.

1. movement of an object along a straight path between two fixed positions,

2. movement of an object along a fixed path passing key positions, and

3. movement along a free path in a constraining region.

These classes differ in their respective degrees of freedom of applying motion to
affected information objects. The first two classes possibly result in not only a re-
gional, but a global effect on scene coherence. Restriction of motion to a region is
an inherent characteristic of the third class. This directly correlates with its effect
on scene coherence.

The two kinds of rotation differ in the shape of the affected information object and
the rotation centre as sketched in Figure 3.7:

1. The rotation centre is placed at the midpoint of the affected object. In case of
a regular shaped object, local effect on scene coherence results. In case of an
irregular shaped object, the effect is regional.

2. Rotation around an arbitrary point with regard to the object results in either
regional or global effect on scene coherence.

As motion by structural change is applied to the surface of an object only, its ef-
fect is of local nature. The information mural combines oscillating and structural
motion techniques. However, the mural algorithm applies motion only to individ-
ual information objects or groups thereof. Thus, global effect on scene coherence is
avoided.

85



Chapter 3 Illustrative Dynamics by Motion and Non-Realism

Dynamics by variations of hybrid rendering styles provide a local effect on scene
coherence. This is due to the principle of rendering styles: These are always isolated
to the objects they are applied to.

The effect of distortion histories depends on the underlying distortion techniques.
For the zoom used here, scene coherence is effected either regional or globally. Al-
ternative distortions possibly restrict this effect to a region only.

The results of this classification will be picked up in the next chapter. Thereby,
the different effects on scene coherence will be used as part of a script layout. Con-
crete scripts which are materialised on the basis of this layout are to be used for
parameterising and controlling dynamics.

3.7 Summary

This chapter provides an overview of exemplary dynamic presentation techniques.
These techniques cover a broad range of ways to construct dynamics. First of all,
the most intuitive approach of creating animations based on motion is presented.
Thereby, two inherently different approaches for creating motions are addressed:
oscillations affecting whole information objects and motion by structural change
which influences only local areas of a specific object. Another approach to ad-
dress dynamics is presented by variations of hybrid rendering styles. Thereby, no
translation-based animation is used to achieve a dynamic presentation. The collec-
tion of dynamic techniques is further filled with a discussion of two approaches for
dynamically presenting distortion histories: trace lines and a chewing gum.

The presentation of dynamics throughout this chapter is framed by two compo-
nents: the notion of an illustration target function and a classification of dynamics
based on their effect on scene coherence. The former provides the necessary con-
text for an illustration to address a specific task and user goal. The latter will be
picked up in the next chapter. Therein, the classification is used as part of a script-
layout for parameterisation of dynamics. Such script may be used for instantiating
a concrete illustration meeting the user’s goals as defined by the illustration target
function.

86



4 Temporal Control of Dynamics

For the purpose of controlling dynamics as motivated in Chapter 2, temporal con-
straints need to be complied to. These constraints address a set of various temporal
characteristics. By defining seven requirements for temporal behaviour of any dy-
namic presentation, these characteristics are placed into a structured framework.

The main contribution of this chapter is the introduction of a temporal control
function for parameterising dynamic presentations. As a basis of this function, a
temporal model is presented which fulfils the defined requirements. In support of
this model, an overview of already existing temporal models is presented. These
models are evaluated and classified with regard to the requirements.

4.1 Requirements

The temporal control of dynamics is a manifold task. As motivated in the previous
chapter, any use of dynamic presentations needs to be restricted in order to employ
dynamics to their full potential. Technique-based parameterisation of dynamics is
subject of the next chapter. Here, the focus is on temporal constraints.

In order to describe temporal behaviour, the notion of a temporal entity is intro-
duced. Such entity represents a presentation unit associated with some temporal
characteristic such as points in time or intervals. Thereby, a presentation unit de-
scribes some aspect of a presentation. An exemplary presentation unit is the em-
phasis of a specific object in a scene for a defined duration by use of a concrete
presentation technique.

For temporal management of dynamic presentations in an illustration system, the
following basic requirements can be derived:

R1: Comparison of events; In order to schedule the usage of presentation techniques,
temporal entities need to be comparable. These entities label presentation ac-
tions, such as present , start , stop , and fade . Comparable events allow
for these actions to follow each other or be combined to presentation com-
posites. Any possibly derived comparison of intervals by consideration of
bordering events is explicitly not subject of this requirement.

R2: Insertion of new events; In order to support input of system-external informa-
tion in a presentation system, new events need to be inserted into the tem-
poral presentation model. These events form external sources of temporal
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information and include user interaction as well as interaction with external
processes and databases, such as knowledge-bases, search engines , or fusions
thereof. A specific challenge for the task of inserting new events into the tem-
poral model is in the preservation of temporal constraints, orders, relations,
and dependencies.

R3: Relational operations on intervals; In addition to the consideration of pure tempo-
ral events, intervals need to be manageable, too. Allen [1983] introduces the
notion of thirteen basic interval relationships. These form the basis for the
management of intervals with regard to the integration and evaluation of the
dynamics stimulus window as presented in the previous chapter. Relational
interval operations allow for an accordingly restricted use of concurrency of
dynamic presentation techniques.

R4: Merging of intervals; Besides the introduction of new events and intervals to the
temporal model, the reduction of the model’s dimensionality helps to reflect
the dynamics of presentation techniques. In case events are removed from the
model, the affected intervals need to be adjusted. This adjustment results in
merging at least two intervals in order to close the gained gap. Furthermore,
the combination and merging of intervals helps to express the respective cor-
relation of presentation techniques and presented information.

R5: Discretisation of intervals; Similar to the motivation for merging intervals in R4,
some given interval might need to be divided into a set of intervals. This
reflects the need to parameterise the dynamics of an individual interval as
temporal entity.

R6: Constrained concurrency; Multiple dynamic presentation techniques may be em-
ployed simultaneously. In order to comply to cognitive restrictions as ex-
pressed in the previous chapter, any use of these techniques possibly needs
to be subject to restricting parameterisation. The main focus of these restric-
tions is in limiting the concurrency of presentation techniques.

R7: Preservation of temporal consistency; A presentation using either static or dynamic
techniques or combinations thereof is to be modelled consistently. That is, at
any given point in time, the state of the presentation model needs to be de-
fined. This state includes currently active presentations as well as scheduling
of upcoming ones. The notion of consistency furthermore spans annotation
information provided by all previous requirements.

These requirements form three basic categories: event-based requirements, those
based on intervals, and structural requirements for global temporal control. The
following subsections discuss these categories.
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4.1.1 Event-based Requirements

Parts of the requirements target temporal events. This subsection discusses these
requirements. Of specific interest is thereby the use of events as time steps in a
temporal model. This discussion is accompanied by a reflection on the correlation
of events as temporal modelling entities versus events as basis for presentation of
specific data.

Handling of Events

The first two requirements specify handling of events. These events can be consid-
ered as points in time and are specifically not duration-based. This way, R1 and R2
are useful for specifying momentaneous actions in the temporal model and allow
for user interaction.

Requirement R1 describes comparison of events. Usually, any two points in time
can be compared easily based on their time stamps. This requirement is listed to
provide a means of validating various approaches of addressing singular events in
different temporal models. Such models do not necessarily need to be based on
points in time as their modelling basis. In case they do not, it will be discussed
whether and how they address handling of events or use an interval-based mod-
elling alternative instead.

Based on R1, an insertion of new events is required by R2. Specifically, this ad-
dresses handling of events which are not known prior to modelling a presentation.
One source of such events is user interaction. Any interaction possibly invalidates
the current state of a presentation’s temporal model. This results in a need of up-
dating the state if events are inserted.

Correlation to Event-based Feature Tracking

The notion of event-based presentations has recently been used for data-driven illus-
trations [Reinders et al., 2001, Post et al., 2003]. Thereby, events are detected in flow
visualisation techniques. For time-dependent data sets, the evolution of features
are described. Detecting and extracting specific events during an evolution allows
to illustrate temporal characteristics of features.

The intention of this chapter is to develop a temporal model for controlling dy-
namic presentation techniques. In support of this, the requirements target specific
aspects of such model. Thereby, the notion of event-based temporal entities is used
in the tradition of temporal modelling [Allen, 1983, 1991, Freksa, 1992a, Bettini et al.,
2000, Artale et al., 2001].

Both uses of the notion of events differ in their underlying intentions. On one
hand, event-based presentations target illustration of selected time-dependent data
out of a larger data set. On the other hand, event-based temporal modelling tar-
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gets specification of time-related behaviour in support of an illustration. These two
event-based use cases coexist. For the context of this work, the notion of events
for temporal modelling is used. Thereby, events serve as a fundamental key of the
model requirements discussed here.

4.1.2 Interval-based Requirements

Requirements R3 through R5 are related to modelling of intervals. First of all, the
set of reference intervals as defined by Allen will be discussed. This describes the
basis for R3. The discussion is followed by reflections on handling interaction and
its influence on determinism of temporal models. This is implicitly contained in R4
and R5.

Interval Relations

Allen [1983] introduces the notion of thirteen reference intervals for the description
of temporal relations between two entities A and B: A happens entirely before B,
A meets B (which means that B starts at the same temporal instant that A ends),
A overlaps B (where the begin of B happens before the end of A), A starts B (in
contrast to the meet-relation, A and B now start at the same time), A occurs during
B, and A finishes B (that is the end of A results in an simultaneous end of B). These
six relations may be reversed and an additional similarity relation representing A
equals B completes the set. In order to clarify these relations to some degree, they
are illustrated in Figure 4.1.

Figure 4.1: Allen’s set of temporal relations. With the exception of equals, all relations can be reverted.
Overall, this results in thirteen interval relations being defined.

These relations are based on the exclusive consideration of time as intervals.
Singular time points are not considered but modelled as intervals with duration
t < εtime where εtime specifies a lower interval threshold for respecting events. The
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relations introduced by Allen are complete in the sense that they allow the descrip-
tion of all possible relations of two given intervals. Thereby, relative time specifi-
cations are used exclusively. Modelling of absolute times is avoided. In order to
ease modelling of the variety of relations between intervals, Allen uses his notion
of so called reference intervals. These are used for the description of groups (clusters)
of intervals, whereas the temporal dependencies in each of these groups is already
calculated completely. As a side effect, these reference intervals are usable for the
construction of object hierarchies and controlling propagation therein. This eases
the representation of complex temporal models.

This model is picked up by Freksa [1992a] who expands it by the notion of Semi-
Intervals. These are characterised by start- and endpoints only. For these interval
borders, the relations >, =, and < are defined. These relations are transitive. An
additional restriction is put on them by constraining the begin of an event (interval)
to always take place before its end. Two relations are therefore satisfactory in order
to describe the relation between two arbitrary intervals. The equality relation (=)
is derived as a combination of both. Furthermore, this model allows to describe
the complete temporal knowledge about a set of intervals using a more simplified
notion compared to Allen.

Freksa [1992b] picks up this notion, which is defined as conceptional neighbourhood
and extends it to spatial knowledge. Orientation information is thereby limited to
relative positions without including the degree of variation of a given position ac-
cording to its orientation. As an example, relations specifying left/right or fron-
t/back orientation are part of this model, whereas relations expressing »too much
on left/right site« are not.

Interaction and Determinism of Temporal Models

Handling of interval flexibility as described by requirements R4 and R5 is reasoned
and motivated by a variety of system characteristics. Freedman et al. [1996] present
a two-folded classification of temporal systems: time-driven and interrupt-driven
systems. This distinction is based on the comparison of an exemplary telecom-
munication application and computerised control systems. Common to both is
the »integration of temporal specifications into data and control flow« [Freedman
et al., 1996]. Interrupt-driven systems represent some class of temporal pushing be-
haviour. New temporal information is provided on a per-availability basis. Time-
driven systems are characterised by temporal determinism being employed in a
periodic way where physical constraints determine the frequency of evaluating tem-
poral inputs and sending out temporal control events. The specific kind of these
physical constraints is defined by the concrete operating environment. Examples
include sensors sending out signals or output sampled from a computing operation.
Timing requirements are thereby associated with reactivity regarding detection and
processing of alarms such as interrupts or sensor signals.
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Fleischmann et al. [2001] present an internet media lab system for supporting
knowledge discovery in mixed realities composed of awareness, memory space,
and knowledge discovery. Their media lab consists of a set of categories providing
access to various information storage areas. This allows for provision of collabo-
rative information pools. The categories are either predefined (which results in a
static set of categories) or are obtained by working with the alternative »Seman-
tic Web« interface. Access to these categories is provided by a time line interface.
Thereby, the time points act as access points for the categories.

Wahl and Rothermel [1994] analyse the usability of temporal models for interac-
tive multi-media presentations. They conclude that modelling temporal behaviour
of individual presentation components cannot be sufficiently supported by exclu-
sive use of a time line as long as interactivity of the presentation is desired. This
is reasoned in the requirement of a complete pre-modelling of all events in case of
a time line, which correlates to a deterministic model. But, interactive systems are
intrinsically characterised by not conforming to this model. Therefore, alternative
models are required in order to support modelling of nondeterministic temporal
behaviour.

A distinction between internal and external nondeterministic events is introduced
by Santos et al. [1999]. Even though their work is presented in the context of tempo-
ral consistency of hyper-media documents, the idea can be applied for the context
of this work, too. Internal events correlate to temporal relations in the geometry-
based illustration model. External events are introduced by means of user inter-
action. This distinction proves useful for the designation as well as for solving
temporal inconsistency. Inconsistencies caused by internal events are to be solved
by a temporal evaluation entity of the system. In case an external event causes a
temporal inconsistency, the latter might not be solvable. This is due to the unpre-
dictability of external events such as user interaction. A solution for this challenge
is in guaranteeing temporal determinism by the temporal evaluation entity. This is
achievable by conforming to the above requirements R4 and R5.

4.1.3 Structural Requirements

Requirements R6 and R7 are classified as being of structural nature. That is, both
do not describe specification of temporal entities directly. Instead they address con-
textual constraints to be put onto the modelling. Whereas R6 describes concurrency
and limitations thereof, R7 requires consistency of the temporal model.

Concurrency

Concurrency occurs when presentation techniques in an illustration system overlap
in time. This is also referred to as parallelism. Fundamentals of dynamics percep-
tion are discussed in Section 2.1. These include limits of the cognitive system with
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regard to multiple, simultaneous dynamics patterns.
As it is an illustration system’s task to communicate information, these limita-

tions need to be respected. This directly leads to requirement R6 addressing concur-
rency. A specific emphasis of R6 is in constraining concurrency. That is, a temporal
model has not only to allow for concurrent presentations but also to provide some
means of limiting parallelism. This ensures to comply to cognitive restrictions and
model a presentation that meets its communicative goal.

Temporal Consistency

Consistency of temporal entities needs to be ensured for the purpose of defining a
temporal model for dynamics presentations. This is expressed by requirement R7.
The notion of temporal consistency as introduced by Courtiat and de Oliveira [1996]
describes matching begin and end pairs in a reachability graph. The description
and definition of this graph and its consistency is to be supported just as much as
ways of validation. Other ways of discussing consistency make use of a notion of
temporal coherence [Lascarides and Oberlander, 1993, Yang and Das, 1994].

Due to the restrictions of computational systems, the lack of infinitely compu-
tation and communication resources leads to the possible violation of constraints
between status in an interface. Dix and Abowd [1996] characterise this discrepancy
as temporal incoherence. They recommend the use of a tolerance interval which is
to be used at system modelling time. Using this interval allows to regard tempo-
ral constraints in a flexible manner. This is achieved by placing constraint entities
in a temporal frame defined by the tolerance interval. Constraints are then trans-
fered from the entity to the interval, which allows to overcome possible constraint
violations.

Bourdev [1998] defines and uses the term coherence of non-photorealistic rendering.
He thereby uses a combination of temporal coherence and arc-length coherence. Tem-
poral coherence in this context is defined by disallowing distracting trembling of
silhouette strokes over frames. The arc-length coherence describes maintaining of a
constant period of repetition of a pattern in a given stroke. Both goals are mutually
exclusive.

The notion of temporal coherence is also referred to as frame-to-frame coherency.
Masuch et al. [1998] use it in the context of line drawings for illustrative purposes.
A parameterised line model is presented for the purpose of preserving frame coher-
ent animations of characteristic line deviations. A focus of the rendering parame-
terisation is in the reconstruction of line segments in order to achieve the desired
coherence. Modelling and automatic derivation of temporal events is not specifi-
cally considered.

For the remainder of this work, the term temporal coherence describes the use of
dynamic presentation techniques according to temporal constraints defined by the
dynamics stimulus window as presented in Section 2.2.
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4.2 Classification of Temporal Models

The following subsections present existing approaches for temporal modelling. For
this purpose, a task-oriented presentation of the models is chosen. For each pre-
sented model, its principle is outlined and its potential for fulfilling the aforemen-
tioned requirements is sounded. In order to allow for a comparison of the pre-
sented models, the notion of temporal entities is used as basic modelling elements.
These entities possibly correspond to dynamic presentation techniques that are to
be scheduled in an illustration system. For the individual models presented, tem-
poral entities might specify different targets, depending on the specific context at
hand.

The contribution of this section is in the presentation of an overview and classifi-
cation of temporal models. A specific and unique accentuation is thereby put on its
appropriateness for constraining graphical presentation and illustration systems.

4.2.1 Time Lines

As outlined in Section 2.3, time lines are a classical technique for the representation
of temporal data. However, a time line model can also be used for the construction
of temporal models.

A basis for temporal modelling by time lines is presented by Keim [2002]. Even
though his work presents the representation of multidimensional data by pointed
plots, the author introduces the notion of one-dimensional data typically being tem-
poral data. Each time point is thereby associated with one or more data values.
Individual events make up the temporal model. The same notion of single time
points as model basis consolidates time lines. This is already used by Leith and
Cunningham [1997] who present time lines as an »intuitive modelling data struc-
ture.« The authors use it for modelling readings of simple sentences in order to
analyse linguistic categories of the subjective text.

A concrete definition of time lines as a temporal model basis is presented by
Jónsson and Frank [2000]. They introduce the time line as a combination of state
variables and intervals, where the evolution of a state variable is expressed as a
sequence of intervals, connected by temporal constraints. Smith et al. [2001] use a
similar notion and define the time line by a series of events and required system
responses. The latter represent reactions on events. The requirements of these reac-
tions results from the application of the model. The authors use the time line model
as an interaction key of an editor for temporal model requirements. This editor
is used for the formalisation of temporal models forming the basis for automatic
model checkers such as Spin as presented by Holzmann [1997].

Kosara and Miksch [2001] present the AsbruView system and enrich use of time
lines to 3D. The third dimension is used to model and convey further information.
Time axis are employed without a scale but for indication of ordering directions.
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Temporal constraints are employed by means of time annotations. These are com-
posed of: earliest starting shift, latest starting shift, earliest finishing shift, and latest
finishing shift. Furthermore, a minimum and a maximum duration might be speci-
fied. This allows to model sequences, parallel entities denoted as »some-together«
relation, any-order, and cyclical relations.

The comparison of exact time steps is easily derived from the events’ respective
position on the time line. This fulfils requirement R1. New events may be inserted
into the time line model as long as their time stamps are known exactly. The inser-
tion of events without exact time stamps is only supported in a handicapped way:
In order to handle inexact events, an interpolation scheme may be developed. A
temporally fuzzy event e f is thereby placed just between two existing events ea and
eb, as long as ea ≤ e f ≤ eb holds. Thus, requirement R2 is supported in part. In or-
der to handle intervals in the model, their respective beginning and ending events
are used. This looses the notion of the interval as such as long as no additional meta
data is stored as well. R3 is affected as not being fully supported.

The notion of time lines for temporal modelling is easy to grasp as of its simplistic
nature. This simplicity reasons the main disadvantage of the concept, though. Time
lines are of restricted nature and do not provide a flexible modelling basis. Only
exact time stamps can be handled. Therefore, only exact points in time that are
known can be modelled. A consideration of uncertain and possibly undefined parts
of an event set is not provided. This prevents support of requirements R4 and R5,
that is interaction support by non-determinism.

Concurrency in its simplest form is supported by time lines via modelling of a
set of parallel temporal axes. Any way of expressing constraints to this parallelism
cannot be expressed, though. R6 is only partially supported.

Temporal consistency as denoted by requirement R7 is not supported by a time
line based temporal model as well. As branching of a time line is not allowed, begin
and end pairs with regard to reachability do always match. Therefore, the notion of
a possible inconsistency in this regard does not apply.

A Reference Scenario

In order to illustrate the scheduling of hierarchic composition compared with a
time line model, a concrete assignment of a set of dynamic presentation techniques
D = {d1, d2, d3, d4, d5, d6} is presented in Example 4.1.

Example 4.1 The setD = {d1, . . . , d6} used in Figure 4.2 may be instantiated by the
following use of concrete dynamic presentation techniques combined with classic
presentations:

d1 rotation,
d2 change in rendering style,
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d3 static realistic rendering,
d4 motion-less but otherwise unrestricted,
d5 oscillating translation, and
d6 static non-photorealistic rendering.

�

This shows the dynamics-enhanced presentation of multiple objects. Use of a mo-
tion technique d1 for the duration of t1 → t2 might possibly effect the same object
as the use of d4 in the time-frame of t2 → t3. It is to be noted explicitly that d4 may
be decomposed further in order to define its presentation in some more detail. This
allows for the effected object to be presented dynamically for the complete duration
t1 → t3: first by d1, than by d4.

Figure 4.2: Time line representation of the exemplary reference scenario. This scenario represents
the temporal composition of a dynamic presentation as described in Example 4.1.

4.2.2 Graph-based Models

Different approaches exist for temporal modelling based on graphs. A first overview
is presented by Allen [1991] who presents three types of graphs:

1. graphs using exact time stamps,

2. constrained propagation graphs, and

3. duration-based graphs.

All three approaches form the basis of further temporal graph models. Two of these
are presented: Firefly and Hyperstories.

It is to be noted that other forms of temporal models make use of graphs, too. In-
deed, these models employ graphs for representation purposes whereas modelling
and fulfilment of the listed requirements is achieved by other means. An example
for such a case are petri nets which will be discussed later on.
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Graph with Exact Time Stamps

For a model based on exact time stamps, two dates are to be specified for each tem-
poral entity: it’s earliest possible starting point as well as it’s latest possible starting
point. In case that only the linear order of events is known, pseudo dates can be
used in order to comply to the model constraints. Figure 4.3 shows the basic model
structure whereas a concrete example of using the model in order to schedule a set
of events is shown in Figure 4.4.

Figure 4.3: Temporal modelling based on exact time stamps. Each block represents a temporal entity
characterised by its earliest and latest possible starting time.

Figure 4.4: A concrete allocation of the scenario from Figure 4.3 showing the temporal model based
on exact time stamps. The numbers express time stamps in an abstract notion.

This graph naturally supports requirements R1 and R2. The model’s basis is
formed by events. Comparison is explicitly provided by placing the individual
temporal entities in the graph. The same holds for inserting an event into the graph.

Handling of temporal intervals is not supported by this model. Even though
some interval information may be derived by relating events to each other, this
information is not handled explicitly in the graph. Therefore, requirements R3
through R5 are not supported.

Concurrency in the sense of requirement R6 is supported in part. Modelling
of parallel temporal entities is possible by simply adding branches to the graph.
Any constraints to be applied to concurrent branches cannot be expressed explicitly,
though.

Support for requirement R7 is provided as much as for all other graph-based
models as well. As the graph is of acyclic nature, its temporal state is always con-
sistent. This fulfils this requirement entirely.
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Graph Based on Constrained Propagation

Constrained propagation describes a graph-based modelling approach that is based
on temporal relations. The graph is defined by placing events at the nodes and
temporal relations at the edges. The insertion of new events into an existing graph
may result in the necessity for a complete reordering.

Figure 4.5 points out a snapshot of a constrained propagation graph during its
modelling phase. The time points shown in the figure directly correlate to their
counterparts of the reference scenario as shown in Figure 4.2. At this stage, the
relations between the shown time points are still very flexible. Introducing the
missing point in time t2 results to the graph is shown in Figure 4.6. Therein, all
time points are placed correctly with respect to each other.

Figure 4.5: Temporal modelling of the reference scenario from Figure 4.2 by use of constrained
propagation. Temporal relations are used in order to express dependencies between model entities.
(based on Allen [1991])

Figure 4.6: Temporal modelling by constrained propagation. In contrast to Figure 4.5, the presenta-
tion at t2 has been inserted into this model. This results in a need to update some of the specified
relations. (based on Allen [1991])

As the model of constrained propagation is built on relations between events, re-
quirement R1 is supported well. Inserting new events as expressed by R2 possibly
leads to modifications of relations in large parts of the graph. Any deduction of
intervals from the model proves even more challenging. A precise notion of inter-
vals is not provided. However, as Allen [1991] points out, alternative approaches
for modelling constrained propagation based on intervals instead of events are pos-
sible. Thereby, interval representation is expressed by point-based constraints. On
one hand, this provides support for fulfilling requirement R3. On the other hand,
this approach does not specifically meet complete handling of intervals in the sense
of R4 and R5 as splitting or merging sets of constrained events is not provided.
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This graph does not specifically provide a means of specifying concurrency. Specif-
ically constraining concurrency as expressed in R6 cannot be modelled. Support of
requirement R7 basically follows the notion of exact time stamps above. That is,
this requirement is met due to the graphs inherent nature of fulfilling consistency
as long as it is of acyclic nature. For constrained propagation, this is always the case
[Allen, 1991].

Duration-based Graph

In contrast to both former approaches, the duration-based temporal modelling ap-
proach, as outlined in Figure 4.7, makes use of intervals as model basis. The single
nodes in the graph still contain time stamps: the earliest possible starting time as
well as the latest possible starting time for any given event in the system. These
time stamps do not make up the model basis, though. They are derived from inter-
vals defining event durations. These durations are placed at the graph’s edges and
denoted as intervals I in Figure 4.7. The graph is constructed as a PERT network
[Stoyan and Daley, 1984]. Partial ordering of events is maintained in an acyclic di-
rected graph. The first and the last entity in this graph are explicitly specified, thus
ensuring fulfilment of requirement R7.

Figure 4.7: Exemplary PERT network representing temporal modelling by duration-based interval
specifications. (based on Allen [1991])

Figures 4.8 through 4.10 present an exemplary use of duration based modelling.
The first node in the graphs represents the initial temporal entity. The earliest pos-
sible starting time is set to 0. As the models execution is to be started as early as
possible, the latest possible starting time is set to 0 as well. All other time points
and durations are left open. This is expressed by Figure 4.8.

The edges in the graph are assigned with respective durations of executing the
temporal entities of the model. Figure 4.9 shows the graph with all durations speci-
fied. Using these duration values, all earliest possible starting times of the temporal
entities can be derived as shown in the figure. The latest possible starting time for
the last entity in the graph is set to its earliest possible counterpart. Similar to the
first entity this is due to the desired effect of ending the graph’s execution as early
as possible.

Based on the complete knowledge of the last entity’s temporal settings, the re-
maining graph can be calculated. The result is shown in Figure 4.10. For each tem-
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Figure 4.8: The PERT network from Figure 4.7 with still no durations being specified. The earliest
possible starting times are set to 0 expressing the motivation to start as soon as possible.

Figure 4.9: The exemplary graph from Figure 4.8 with durations specified. The earliest starting
points are derived.

poral entity in the graph, its respective earliest and latest possible starting points in
time are now known. Using these intervals for scheduling allows to comply to the
desired temporal model.

As the example points out, events are not specified explicitly but derived from
the respective durations of the temporal entities. This still supports requirement R1
as the derived points in time can be compared by the respective positions of entities
in the graph. Inserting new events as required by R2 is not supported.

Handling of intervals is the model’s principle basis. Requirements R3 through R5
are all fully supported. An insertion of new duration elements into the graph only
affects all or part of the entities that temporally follow the new entity. An explicit
handling of concurrency is not provided by the model. Branches in the graph are
not necessarily related to each other which prevents constraints as defined in R6 to
be modelled.

The temporal graph representing the reference scenario by duration-based tem-

Figure 4.10: Complete calculation of the exemplary graph from Figure 4.9. This includes all ear-
liest starting points as well as all latest possible starting points in order to meet the presentation
constraints.
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poral modelling is shown in Figure 4.11.

Figure 4.11: Using a duration-based temporal graph for modelling the reference scenario of Fig-
ure 4.2.

Further Temporal Graph Models

Firefly: The temporal graph provided by the Firefly system presented by Buchanan
and Zellweger [1992] consists of three modelling entities: square nodes, circular
nodes, and edges. Square nodes indicate starting and ending times of temporal en-
tities. Circular nodes provide for intra-object synchronisation. That is, they provide
for a granularity refinement compared to square nodes. For this purpose, circular
nodes may be placed in between any two square nodes which discretises the respec-
tive interval (fulfilling R5). Edges finally combine all nodes and provide temporal
relations between events. The relations are defined by annotating edges with con-
straints. The exemplary Firefly graph notation for the reference scenario is shown
in Figure 4.12.

Figure 4.12: Firefly’s graph notation for the reference scenario of Figure 4.2.

Two types of constraints may be used in a Firefly model: temporal equalities and
temporal inequalities. Equality constraints either specify that two events happen
simultaneous with each other or that both events differ by a fixed temporal
distance. That is, one event occurs with a distance of t before the other. The
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simultaneous with constraint provides concurrency modelling as noted by re-
quirement R6. Any explicit restriction of a maximum number of parallel compo-
nents cannot be expressed in the model. Inequality constraints open the determin-
istic limitation of a fixed temporal specification. This support for indeterminism
includes two expression classes: preceding one event by another one by a fixed
time and limiting this relation by an additional upper limit. Even though these
constraints underpin support for requirement R1 as it is inherent to graph-based
models, they also restrict compliance of R2. Insertion of new events possibly inval-
idates the graph and might therefore require the graph’s reconstruction.

Relations on intervals, as required by R3, are not supported directly by Firefly
graphs as these are based on the modelling of events as points in time. Similarly,
merging intervals (R4) needs to be handled indirectly by merging respective in-
terval borders. In this case, constraints need to be re-evaluated. Buchanan and
Zellweger [1993] present an analysis tool for consistency checking of a Firefly graph.
Even though this does not solve any inconsistencies possibly introduced by R4, it
helps to identify problem-causing model entities. This directly influences support
of the temporal consistency requirement R7.

Hyperstories: A variation of the Firefly model is presented by Kim and Song [1995].
Their Hyperstories system uses the concept of elastic time for the scheduling of tem-
poral entities. These entities represent elements of a story, such as text or video.
Such entities are to be arranged in a flexible manner for the purpose of meeting a
scheduling goal that fits all available entities into a given time range.

Instead of events as a model basis, this system is build on top of intervals. Com-
pared to the Firefly model, this directly affects an almost opposite compliance to
requirements R2 through R5. Introduction of new events into the model (R2) is
not supported directly. Instead, they need to be derived from intervals. The inter-
val requirements R3, R4, and R5 are met because central key characteristics of the
model are the fulfilment of Allen’s interval relations (R3), the merging of intervals
(R4), and the discretisation of intervals (R5) for the purpose of flexible scheduling
of temporal entities.

The handling of concurrency as defined by requirement R6 in the Hyperstories
model is similar to the Firefly model. Different branches in the scheduling graph rep-
resent different parallel temporal sequences. This fulfils the requirement to some
extent. Though, just as in the Firefly model, no notion of limiting the set of parallel
sequences is available in the model. Requirement R7 is met as the graph provides
complete reachability as an intrinsic characteristic.

102



4.2 Classification of Temporal Models

4.2.3 Petri Net Models

The notion of petri nets for the modelling and specification of a broad family of re-
active systems is introduced by Petri [1962]. An overview of possibilities to utilise
temporal actions of a user by employing petri nets is presented by Palanque and
Bastide [1996]. Petri nets are defined as a graph that connects a set of states. Tran-
sitions represent actions that may move from state to state along the graph’s edges.
By characterising states with temporal information, intervals and concurrency can
be handled.

Formally, petri nets form a state chart. A generic notion of state charts is pre-
sented by Harel [1987, 1988]. Conditions for the temporal order of modelling enti-
ties can be formulated exactly by these charts. A state chart is defined as a tuple
(Q, Σ, δ, q0, F). Thereby, Q describes a finite set of states, Σ the set of input values,
q0 ∈ Q a designated starting state and F ⊆ Q the set of end states.

Figure 4.13: Petri net model for the reference scenario of Figure 4.2.

Petri nets are usually represented as state diagrams. Figure 4.13 presents such
a diagram for the exemplary reference scenario. Therein, state transitions are ex-
pressed directly. Each state describes a temporal interval. The interval starts at
the event of entering the state by a transition. Leaving a state ends its represented
interval. As any transition only seizes one state at a time, all intervals are disjunct.

Petri nets easily fulfil requirement R1, as the comparison of events can be derived
from the respective state placements in the graph. The insertion of new events is a
natural process in a petri net. For any possible case of invalidating constraints and
relations in the network, a solution can be derived [Keller et al., 1994]. Therefore,
requirement R2 is met.

Handling of the whole set of Allen’s thirteen temporal relations as expressed
in R3 is supported by petri nets [Little and Ghafoor, 1990]. Any merging and
discretisation of intervals as stated by requirements R4 and R5 can be achieved
as long as no intermediate or branching states are affected. That is, for a set of
states S = {s1, s2, s3}, the merging of s1 and s3 is prohibited by s2 if, and only if,
se

1 ≤ sb
2 ∧ se

2 ≤ sb
3. That is, the beginning of state s2 happens later than the end of s1,

and s2 finishes before s3 begins.
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Concurrency and its constraints as required by R6 need to be modelled explicitly
by use of multiple transitions. In case of a single transaction floating through the
petri network, the concurrency of two or more presentations cannot be represented
by the temporal model. However, a set of extensions for petri nets has been pre-
sented that addresses concurrency constraints [Biberstein et al., 1997, Kiepuszewski
et al., 2002, Little and Ghafoor, 1993]. Using such a model helps to fulfil R6 in its
entirety.

An explicit temporal modelling approach addressing true concurrency is intro-
duced as evolving concurrent object petri nets: Co-nets [Aoumeur, 2002]. Such nets
allow to model behaviour of information systems with a rewriting-logic based se-
mantics. Object-orientation and true concurrency support is achieved by dividing
the model construction up onto a set of three layers: data-layer, object-level, and
meta-level [Aoumeur and Saake, 2000]. This decomposition of the modelling pro-
cess allows to adjust to changes of the underlying system behaviour and therefore
support requirement R6 to its complete extent.

Requirement R7 is met as long as the petri net is given as an acyclic graph. Then,
the graph ordering represents temporal consistency. The case of cyclic petri nets
is discussed by Allan et al. [1995]: If a petri net is cyclic, a state may possibly be
reached through which the net has already passed. As the decisions made through-
out the petri net execution are deterministic, the respective behaviour of the net
repeats. Thus, any cyclic parts in the graph result in cyclic presentations. This
invalidates R7.

4.2.4 Object-oriented Models

Defining temporal entities as a set of objects allows to model their scheduling by use
of object-oriented design principles. A temporal scheduling scenario is composed
by modelling the set of objects with relation to each other. Thereby, temporal order
is achieved by means of object attributes. Classically, these attributes are defined as
methods to be invoked on concrete object instances.

The following subsections present six different models for object-oriented tempo-
ral behaviour specifications. In the order presented, these modes are based on each
other.

Interaction Diagrams

The concept of interaction diagrams is introduced by Jacobson et al. [1992] and Booch
[1993]. Some practical use of them is described by the UML modelling specification
[OMG, 2003]. Based on event trace diagrams [Rumbaugh et al., 1991] these diagrams
are used in order to schedule the temporal behaviour of object-oriented system
components during the system’s design process. Thereby, methods as reaction to
temporal events are encapsulated. These methods provide a means of complying to
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requirement R1. As methods are generated and passed from object to object freely
and in an unrestricted manner, requirement R2 is also met.

The modelling of temporal behaviour and constraints of objects and their pre-
sentation methods is expressed graphically. An exemplary interaction diagram
for modelling a dynamics-based presentation according to the reference scenario
is shown in Figure 4.14.

Figure 4.14: Temporal order of message passing between objects in an interaction diagram at the
example of the reference scenario from Figure 4.2.

The dashed lines express instances of the system’s time axis. All lines represent
the same time axis. That is, no distribution of temporal behaviour is shown in the
figure. Each axis shows the presentation of an object oi over time. The rectangles
specify the duration of an active dynamic presentation technique for the respective
object.

The methods m1 through m5, which are passed between the objects represent
temporal synchronisation points. Any temporal entity might be modelled without
an initiating method as shown for d1, d2, and d3. Sending m2 at the end of d1 results
in a modified presentation of d2. This intra-object style modification is also possible
to be caused by self-referential methods. An example is shown for d6 which is
changed during its life cycle by passing m5 to itself.

The notion of intervals is derived from combinations of events that build inter-
val borders. This allows to derive interval relations from event specifications and
thereby supporting requirement R3. The merging of intervals requires to modify
the set of available events. Support of such a model modification is restricted to ob-
ject flexibility. That is, requirement R4 is only met in case affected objects provide
methods for handling such coarser temporal granularity.

As the modelled intervals correlate with objects in the diagrams, an arbitrary
discretisation of intervals is not provided by the model. As an objects presentation
and its underlying temporal structure might change to some degree, requirement
R5 is supported at least partially.

Concurrency of multiple actions is ensured by managing separate sets of events
for different objects. However, a means of automatically constraining the sequen-
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tiality is not provided. Requirement R6 is therefore only partially supported.
Ensuring temporal consistency of an interaction diagram model is left as a mod-

elling task. That is, no automatic validation of consistency is provided as required
by R7.

Interaction Machines

Wegner [1997] extends the notion of interaction diagrams to interaction machines.
The purpose of these machines is to advance from pure computing-based algorith-
mic programming approaches to interaction controlled computer systems.

Figure 4.15: Interaction machines as defined by Wegner [1997].

Figure 4.15 shows the principle of interaction machines as presented by Wegner
[1997]. This basically shows that the observable behaviour of these machines is
characterised by interaction histories. Information about temporal actions of state
changes in the machine are stored in these histories. Model entities that are tempo-
rally affected, like a specific emphasis of parts of a geometric model, are marked
with time-stamped traces. Sets of these traces form the action intervals. Histories
are capable of handling non-sequential time-stamp traces.

The temporal model of interaction machines follows the model presented for in-
teraction diagrams with the exception of providing additional history information.
Even though this helps in the process of modelling an interaction-based temporal
scenario, it does not affect support of the requirement set R1 through R7. Therefore,
the requirement support presented for interaction diagrams holds for interaction
machines as well.

Interval Diagrams

Weber [2000] extends both former models and introduces the notion of interval di-
agrams for the modelling and preservation of interval coherence in the sense of
requirement R7. While concentrating on the integration of visual and non-visual
user interfaces, the author introduces hierarchic temporal intervals in order to comply
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to human perception of time. The hierarchic character of the model results from its
handling of intervals. Even single events are respected as being intervals. There-
fore, requirements R1 and R2 are not directly supported. Hierarchic combinations
of individual intervals to interval composites form the temporal model. By reusing
the interval relations from Allen [1983], qualitative and quantitative intervals and
relations can be defined by the model. This fully supports R3.

While this does not extend the semantics of intervals compared to interaction di-
agrams or machines, it makes the distinction between single events and durations
explicit. Each point in time possibly belongs not only to one interval but to a set
of intervals. This allows to respect temporal constraints of finer granularity. Espe-
cially the possibility of a point in time to belong to an interval as well as to one of its
sub-intervals is of relevance for controlling dynamic presentations. This allows to
directly bind to the composite character of dynamic presentation techniques as out-
lined in Section 2.4. Furthermore, it provides interval merging and discretisation as
required by R4 and R5.

The nested character of the interval specification allows for the modelling of con-
current events. This only holds in case the upper limit of any given interval is spec-
ified as an interval as well. As this requires forwarding relations, a need for meeting
Allen’s during relation can be derived, whereby requirement R6 is only fulfilled
partially.

Hierarchic Composition

Herrtwich and Delgrossi [1990]1 present modelling of temporal relations by use of
a tree structure. This model is an extension to the standard document architecture
ODA [ISO]. The documents which are subject of ODA are to be respected as tem-
poral entities in case they are stamped with temporal characteristics and temporal
relations between multiple documents are defined [Bertino and Ferrari, 1998].

The tree is composed of timed objects for the purpose of expressing temporal re-
quirements for a multimedia presentation. Two kinds of timed objects are used:
basic timed objects and composite objects. Basic objects are denoted by leaves of
the tree. Composite objects are represented by internal nodes. The duration of a
basic object may be specified either explicitly or implicitly. An explicit modelling
is done by associating the object with a respective interval representing the object’s
presentation time. An implicit specification results from deriving the presentation
interval from the intervals of the object’s associated content portions.

This model does not provide for a specification of exact time points as required
by R1 and R2. Instead, ordering of multiple presentations is modelled with respect
to each other. An exemplary hierarchic composition model representing the equiv-
alent to the reference scenario is outlined in Figure 4.16.

1 Referenced by Section 7 of Bertino and Ferrari [1998].
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Figure 4.16: Graph showing the hierarchic composition model of the reference scenario of Figure 4.2.

Support of requirement R3 is essential for hierarchic compositions. It is the set of
interval relations that is used for model construction. Handling of interval merging
and discretisation is not automatically provided by the model. Depending on the
composition of relations used for all modelled intervals, both operations can be
achieved manually, though. Thus, requirements R4 and R5 are supported in part.

Modelling of concurrency is not explicitly prohibited by the model. However,
specific support for synchronisation extending the equal relationship is not pro-
vided. For this reason, an explicit constraining of concurrency is not provided
which leaves only rudimentary support of requirement R6.

As all entities of the model are specified by a tree structure, consistency in the
sense of requirement R7 is supported well. The reachability criteria is met by trav-
elling along any path from the tree’s root node to the respective leaf.

Path Expressions

Other extensions to ODA for the handling of temporal entities are presented by
Hoepner [1991]. In contrast to concentrating on modelling temporal logics, these
extensions base temporal scheduling on rearrangements of an object layout struc-
ture.

Two basic concepts form this model: actions and path expressions. An action
represents a temporal entity or, more precisely, its presentation. Path expressions
were introduced first by Campbell and Habermann [1974] and are now used for the
specification of synchronisation constraints.

Temporal scheduling is achieved by combining actions with path operators. As-
suming that A and B are temporal actions, the ordered list of operators that may be
used for this purpose is: parallel-last (A ∧ B) denoting a simultaneous start
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Figure 4.17: Example of using path expressions for modelling the scenario from Figure 4.2.

of A and B where the ending of the composition is determined by the last ending
of either A or B; parallel-first (A ∨ B) denoting the same operator as before
with the difference that the first ending of either A or B determines the composite’s
ending; sequential (A; B) denoting a start of B after A has ended; selective
(A|B) stating that either A or B may be executed; repetition (Ai∗) noting how
often (i) an action might be repeated; and concurrency (n : A) resulting in n exe-
cutions of A simultaneously. An example of using these operators for defining path
expressions is shown in Figure 4.17 for the reference scenario from Figure 4.2.

Similar to the hierarchic composition model above, the path expressions opera-
tors do not provide information about single events or relations thereof. Require-
ments R1 and R2 are therefore not met. Relational operations on intervals (R3)
are a central characteristic of the model, though. In order to provide for merging
as well as discretisation of intervals (R4 and R5), any preservation of the validity
of relations between all affected actions needs to be handled manually as it is not
provided by the operators. Even though an explicit operator is provided for han-
dling of concurrency (R6), an automatic constraint concurrency mechanism is not
available. Consistency in the sense of requirement R7 is always preserved by the
model.

Active Objects

The active objects model is an object-oriented model based on time lines [Gibbs,
1991, Gibbs et al., 1993, 1994]. Objects are denoted as being active because they may
activate methods even in case no causing event is sent to the object. Therefore, each
active object represents a temporal entity. The methods defined on these entities
control temporal activities: start , stop , pause , and resume . These methods
denote actions on individual objects. For the purpose of defining a whole model
schedule, a set of further scheduling method groups is defined: coordinate manage-
ment methods, composition methods, and synchronisation methods.

Coordinate management methods hold responsible for transitions between differ-
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ent time granularities used throughout the model. This allows to specify temporal
behaviour of a single entity with another granularity than behaviour of the overall
model. Coordinations in this sense support requirements R1 and R3 as events and
intervals of different granularities need to be put into relation to each other during
a coordination process.

Composition methods allow to merge different temporal entities and form com-
posite entities. Thereby, these entities are placed into a temporal sequence. This di-
rectly affects support of requirement R4 which addresses the merging of intervals.
This support is only of partial nature, though, as only sequential intervals may be
merged. A reverse operation of construction of new intervals by discretisation as
stated by requirement R5 is not provided.

Synchronisation of multiple temporal entities is supported. This handles concur-
rency in the sense of R6. The overall number of simultaneously active entities is not
handled explicitly, though.

Support of R2 is provided by inserting new objects into the model. As no over-
all evaluation entity holds responsible for consistency validation throughout the
model, requirement R7 is not met. Figure 4.18 presents the reference scenario from
Figure 4.2 modelled with active objects.

Figure 4.18: Time line with Active Objects modeled on the basis of the reference scenario shown in
Figure 4.2.

4.2.5 Temporal Logic

Instead of using temporal entities as the principle modelling basis, temporal logic
uses a state-based approach to modelling temporal behaviour. This is achieved
by defining temporal languages or temporally extending existing ones. Two ex-
emplary approaches are presented and their respective fulfilment of the temporal
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requirements discussed. Inherent group characteristics of temporal logic with re-
gard to these requirements are not specifically outlined as different languages may
address handling of temporal logic individually. These discussions are followed by
a brief overview of a set of temporal models based on grammars. Such models aim
at introducing a language targeting exclusive modelling of temporal behaviour.

TCSP as Exemplary Language Extension

Based on the language of Communicating Sequential Process, Davies et al. [1991]
present TCSP as Timed Communicating Sequential Process. This language aims at spec-
ifying temporal scenarios for synchronisation purposes. A set of operators is used.
These operators explicitly depend on time: termination, skip, timed delay, timed prefix,
external choice , internal choice, timeout, sequential composition, relabelling, binary paral-
lel composition, asynchronous parallel composition, recursive program, input from channel,
synchronised parallel composition, hybrid parallel composition , event prefix, and interrupt.

The modelling basis of TCSP are time units . Functioning as events, these units
directly fulfil requirements R1 andR2, as relations on them are defined by the timed
delay and prefix operations as well as combinations thereof. In support of R2,
new events can always be introduced to the model.

Intervals are defined out of event compositions. Operations on these composi-
tions correlate to those on events. Ates et al. [1996] show that TCSP is powerful
enough in order to fulfil all of Allen’s interval relations. Using event compositions
recursively on intervals defined by compositions helps to support requirement R4.
That is, intervals might be merged by treating them as compositions of either events
or other intervals. This also supports requirement R5 to some extent. The composi-
tion of an interval can be split up again. Such splitting basically results in an event
discretisation. This splitting is restricted to the finest granularity formerly used for
any given interval.

Concurrency of time units is provided by parallel composition operations.
However, inter-object synchronisation is not specified by TCSP. This results in only
limited fulfilment of requirement R6.

Theoretically, any language-based temporal model is capable of providing auto-
matic consistency validation and therefore supports the fulfilment of requirement
R7. An automatic validation tool for TCSP is not available, though. As no graph-
based validation mechanism is provided as well, R7 is not met entirely.

111



Chapter 4 Temporal Control of Dynamics

Evolving Temporal Logic

Conrad and Saake [1996] introduce handling of dynamic object behaviour to tempo-
ral logic. They develop this extension as Evolving Temporal Logic (ETL). According
to Conrad et al. [1997], the specification language used for this purpose can be con-
sidered as an extension of the object-oriented language Troll [Jungclaus et al., 1996].

ETL provides behaviour specification based on events. To comply to dynamics
in object behaviour, conditions can be specified for these events. Such conditions
allow to directly fulfil requirements R1 and R2.

Intervals are derived from event specifications. Thereby, the notion of life cycles
for object behaviour is introduced. Temporal conditions and constraints do not
operate on these life cycles directly but on their underlying events. Relational op-
erations on intervals as required by R3 are still supported to some degree, though.
This is achieved by defining a set of axioms. These axioms express temporal prop-
erties of objects that hold valid for the duration of an interval. Support of require-
ments R4 and R5 is provided analogously. Both—merging of intervals as well as
their discretisation—depend on constraints defined for respective interval-limiting
events.

By introducing a concept of local time for an object, requirement R6 is supported.
Synchronisation occurs due to communication between objects. By an according
use of these communication channels, constrained concurrency can be achieved.

Similar to TCSP as discussed above, requirement R7 is met in principle as the
given formalised specification of ETL allows for verification of temporal consis-
tency. As neither automatic proof system tools nor graph-based verification are
available, only partial support of R7 results.

Other Temporal Description Logics

On the example of specifying temporal logic of reactive and concurrent systems,
Manna and Pnueli [1992] introduce a set of operators for the construction of tempo-
ral formulas. Artale et al. [2001] take this further by introducing a temporal descrip-
tion logic that is based on the snapshot representation of abstract temporal databases.
Thereby, a temporal database is regarded as a map from time points to standard
(relational) databases. This direct bounding to databases is of intrinsic nature for
the presented DLRUS description logic. The logic’s idea of a snapshot-notion for
temporal modelling holds for other fields of application as well, though.

In order to describe scheduling of interaction events, temporal models based
on grammars are used by Moran [1981], Reisner [1981], and Shneiderman [1981].
These approaches share the implicit assumption that the sum of all individual steps
define the duration of an action. These steps include interaction events and the no-
tion of an action corresponds to a temporal entity.
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4.2.6 Discussion

A summary of the discussed models of this section is presented in Table 4.2. This
table lists all models and their respective support of the requirements from Sec-
tion 4.1.

Model R1 R2 R3 R4 R5 R6 R7
Time lines 2� 2 2 2 2 2 #
Graph-based 2� (no group characteristics) 2�

Exact Time Stamps � 2� # # # 2 �
Constrained Propagation � 2 2� 2 2 # �
Duration-based � # 2� 2� 2� 2 �
Firefly � 2 # # 2� 2 �
Hyperstories � # 2� 2 2� 2 �

Petri nets 2� 2� 2� 2 2 2� 2
Object-oriented (no inherent group characteristics)

Interaction Diagrams 2� 2� 2� 2 2 2 #
Interaction Machines 2� 2� 2� 2 2 2 #
Interval Diagrams # # 2� 2� 2� 2 2�
Hierarchic Composition # # 2� 2 2 2 2�
Path Expressions # # 2� 2 2 2 2�
Active Objects 2� 2� 2� 2 # 2 #

Temporal Logic (no inherent group characteristics)
TCSP 2� 2� 2� 2� 2 2 2
ETL 2� 2� 2 2 2 2� 2

Table 4.2: Evaluation of temporal models with regard to the requirements of parameterising dy-
namic presentations. Checked boxes (2�) indicate that a requirement is met directly. A check mark
without a box (�) resembles indirect fulfilment of a requirement in case the model’s class already
fulfils it. An empty box (2) stands for marginal support of a requirement whereas a circle (#) stands
for a missed requirement.

As can be expected, not one single model supports all requirements equally well.
It is of specific interest, though, that petri nets and language-based temporal logic
approaches provide the best matches. Both models are powerful with regard to
temporal model specification. However, especially in the case of models extending
existing programming languages, this is payed for by a task-dependence that is
not easily integrated in an arbitrary modelling scenario. More precisely, modelling
any temporal scenario by this approach requires use of a specific programming
language in question.

An outstanding advantage of petri nets for temporal modelling is its possibility
to provide for modelling of constrained concurrency. Even though, not every petri
net model provides this, a set of petri net model extensions doing so is available.
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The variety of presented object-oriented modelling techniques promises to pro-
vide for a set of useful modelling approaches. These may need to be derived from
combinations of the models. This holds especially with regard to support of events
as well as intervals in a single model.

The following section presents the model for temporal presentation used through-
out the remainder of this work. This model is constructed by using a set of concepts
from petri nets combined with object-oriented modelling techniques. A temporal
presentation function will be presented providing a program-based interface to the
model.

4.3 Model for Temporal Presentation

Based on the above evaluation of temporal models, this section introduces a tem-
poral presentation framework for illustrations enhanced by dynamics. For this pur-
pose, the notion of a dynamics trajectory is used. Such a trajectory describes the
scheduling of dynamic presentation techniques along a single time line. Multiple
trajectories make use of multiple parallel time lines and define concurrent presenta-
tion of dynamics.

This section is divided into two main parts: behaviour in a single trajectory and
modelling of concurrent trajectories. Besides complying to the requirements listed
in Section 4.1, some motivation for this is provided by three main characteristics as-
sociated with temporal information of the presentation of any object [Prabhakaran,
1997, p. 128]:

1. Time instant of the object presentation,

2. Duration of its presentation, and

3. Synchronisation of the object presentation with those of others.

The first two characteristics basically describe temporal actions in a single dynamics
trajectory. The third one supports concurrency and requires multiple trajectories.

A concrete control function based on the model presented here will be discussed
in the next section.

4.3.1 Behaviour in a Single Trajectory

Scheduling presentation entities on a single trajectory builds the basis for temporal
modelling of a dynamics-enhanced presentation. Use of concurrent trajectories as
discussed in Subsection 4.3.2 enhances this concept and requires some additional
constraints.
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Events

The most atomic temporal term of the model is an event. Similar to the graph-based
model of exact time stamps, each event directly corresponds to a specific point in
time. That is, an event is of instantaneous nature. The set of all events in a scenario
is given as E = {e1, . . . , en}.

A set of comparison relations is defined for the purpose of scheduling events
along a trajectory’s time line. Comparing an event ei ∈ E with another event ej ∈ E,
both may be equal to each other (ei = ej), the first might be placed earlier than the
other (ei < ej) or vice versa. For flexible handling of ranges of events, combinations
may be used. The overall set of six relations defined for events is summarised in
Table 4.3.

notation relation
e1 < e2 e1 happens before e2.
e1 > e2 e1 happens after e2.
e1 = e2 e1 and e2 represent the same point in time.
e1 ≤ e2 e1 precedes or equals e2.
e1 ≥ e2 e1 does not happen before e2.
e1 6= e2 e1 and e2 are disjunct.

Table 4.3: Set of relations defined for events.

Any set of events belonging together may be combined into an event group de-
noted as EG. Such an event group defines an event-composite. Each group can be
used for parameterisation of a temporal entity associated with it. Precisely, each
event ei ∈ EG represents a point in time at which the state of the temporal entity
might change. Behaviour between two events in a group is not explicitly defined
for at any point in time. This defines event groups as a kind of interval with holes.
Groups my overlap. That is, an event that is element of any one event group EG1
may also be element of group EG2 . A group is only limited by its elements. This
directly implies that any given group may contain other groups either in whole or
in part.

The insertion of new events into a concrete temporal model instance is handled
by an event function fe. This function uses the set of relations defined above for
comparing the inserted event with the existing event set E. Initially, a new event
is not put into any specific event group. This mapping of events onto groups is
addressed by a separate group function fg.

This group function provides a set of grouping cases. First of all, a newly inserted
event may equal an already existing event. This directly leads to the creation of a
new event group that contains both events. Any other groups are not affected. As a
second case, the new event is simply inserted into an already existing event group.
For each new event, this may be repeated depending on the number of affected
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temporal entities. Besides the insertion of new events, to more cases are handled
by fg: removal and rearrangement. As much as any event can be inserted to an
event group, it may also be removed from it in case its causing context does not
hold anymore. Rearrangement does not affect the number of events in a group. It
is used for internal reorganisation. This results in the creation of subgroups that
may be used for fine grained parameterisation purposes. The function’s operation
is defined as

fg(ei, EGj) =


EGk ⇔ ek ∈ EGj and ei = ek [double entry]
EGj ∪ {ei} [insertion]
EGj − {ei} [removal]
EGj ∪ EGl |EGl ⊆ EGj [rearrangement].

Example 4.2 illustrates the insertion of an event.

Example 4.2 Given is an event group EG = {e1, e2, e3} describing the temporal be-
haviour of an object’s presentation. Starting at tie point in time represented by e1,
the object is rotated repeatedly around the same axis. Event e2 causes this rotation
to change into an oscillating rotation, that is, the direction of rotation is repeatedly
changed while the rotation axis remains the same. A doubling of the rotation’s fre-
quency is modelled with e3. A user interaction event e4 is now introduced into this
group. This event is characterised by e2 < e4 < e3. The effect of e4 is an immediate
stop of the rotation. As e4 happens before e3, the change in frequency causes no
visual effect. �

Intervals

To schedule the number of employed dynamic techniques in a single trajectory, use
of each given technique is modelled with a constraint of its use over time. For man-
aging temporal dependencies a set of relations is used. This is based on the interval
relations discussed in Section 4.1.2. A relation between two given intervals Ii and Ij
is expressed by Ii ◦ Ij with ◦ ∈ {<,≤, =,≥, >}. An interval I = {ebegin, eend} with
an implicit interval duration of eend − ebegin is given as a further model primitive.
For easier notation, the interval borders can be specified by Ib and Ie directly.

Given a set D of available dynamic presentation techniques, D = {d1, . . . , dj},
and a set I of intervals, I = {I1, . . . , Ik}, the mapping from I to D is specified
by a dynamics function fd : I → D. For the application of consecutive dynamics
patterns this function maps disjunctive intervals onto disjunctive methods:

fd(Ii) = dn 1 ≤ i ≤ k, 1 ≤ n ≤ j.

Modifiable dynamics patterns are characterised by a set of temporal dependent
attributes AM = {a1, . . . , ak}. This denotes the dynamics methods as dAM

n ∈ Dwith
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1 ≤ n ≤ j. Individual interpretations of AM are determined by use of an attribute
function:

fa(Ii) = ao 1 ≤ i ≤ k, 1 ≤ o ≤ k.

In order to allow modifications of the parameter space during the time span Ie
i −

Ib
i , interpolation of respective interpretations ao is possible.

As noted above, the set of known events for the overall system runtime is named
E. To determine the correlation of any given event ei ∈ E to an interval I ∈ I , a
function ψ : E→ I is defined as noted in equation (4.1).

ψ(e) =


I0 single interval
Ii ⇔ Ib

i ≤ e ≤ Ie
i |i = [1, 2] double interval

Ij ⇔ Ib
j ≤ e ≤ Ie

j |1 ≤ j ≤ n otherwise
(4.1)

Thereby, ψ(e) maps the event’s point in time onto its corresponding interval by
using plain comparison operations. As Ib and Ie represent events, the relations
expressed in Table 4.3 apply.

An interval can be discretised by use of an interpolation function τ : I → I .
Thereby, a change between different instances of the parameter space can be accom-
plished fluently. This allows for acceleration and deceleration as well as for fading
individual motion techniques.

Exemplary Interval Layers

For illustration purposes, a set of interval layers is presented in Figure 4.19. It shows
use of different representations of temporal behaviour depending on the number of
modelled time intervals.

The single interval level represents the most simplistic model complexity. Apply-
ing any presentation method—including dynamics—is not timely restricted but the
method’s influence is shown for the whole interval duration. As soon as the inter-
val ends, i.e. at point Ie

1, any possibly active dynamic display vanishes.
This method level allows for easy interaction support as the user is not disturbed

by any dynamic activities. Thus, possible manipulations of object positions are
avoided along with invalidations of (parts of) the scene coherence. Preemptive vi-
sual clues provided by use of this method level are possibly not satisfactory enough
for all user requirements.

The double interval provides two different ways of representing dynamics: tem-
porally limited continuous dynamics as well as a sequence of two consecutive dy-
namic techniques. Their duration results from the interval bounds of I1 and I2. As
Ie
1 = Ib

2 , a continuous motion presentation is limited by Ie
1 − Ib

1 which is the com-
plete duration of the first interval. The remaining time can be used analogously to
the single interval level.
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Figure 4.19: Layer model for temporally constrained dynamics presentation.

Sophisticated dynamics patterns may be employed for a given interval sequence.
First of all, variations provided on both former interval levels are applicable on
this level as well. This explicitly includes the exclusive use of classic presentation
variables only, or a combined use of these and object based dynamics. Application
of dynamics on this level is parameterisable by means of two categories: display of
consecutive dynamics patterns or display of modifiable dynamics patterns.

Presentation Example

Specifying temporal behaviour in a single dynamics trajectory allows to model con-
secutive presentations. These presentations may either be definite or flexible. In the
following, a respective example is shown for both cases.

Example 4.3 describes a model for a definite scheduling of a single object presen-
tation. Temporal status of this description is definite as the temporal entity is static
by nature. Its exact starting event is known as well as its precise duration of presen-
tation.
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Example 4.3 Present the object of interest with dynamic presentation dj starting at
event ek for the duration of exactly three seconds. �

A flexible presentation description is given in Example 4.4. Possibly depending
on presentation of other objects, specific presentation of the object in question is
started in a temporal frame defined by two events. The precise duration of this
presentation is flexible as well. This possibly influences scheduling of another pre-
sentation based on a flexible description.

Example 4.4 Present the object of interest with a fading presentation technique dj
at some point in time between event em and event en until the fading is completed.

�

4.3.2 Concurrent Trajectories

As discussed in Section 2.1.4 any simultaneous use of dynamic presentation vari-
ables needs to be subject to restricting parameterisation for the purpose of com-
plying to cognitive limitations. In support of this, a concurrency layer model for
dynamics is introduced here. Based on this model, a parameterisation function is
defined for the purpose of evaluating the number of simultaneously active tempo-
ral entities and allowing to constrain them.

Layer Model

A set of four different layers is defined for temporally restricting concurrent dynam-
ics trajectories. These are illustrated in Figure 4.20.

The simplest layer of this model employs a single trajectory only. This directly
correlates to the scenario presented in the previous subsection. Along the time line
of this trajectory, dynamics can be scheduled freely without any further need of
temporal restriction.

On top of this, a layer is placed consisting of two parallel trajectories. This allows
for a combination of up to two concurrently dynamic presentations. Each of these
may be scheduled individually as described above. From the cognitive point of
view, no restriction needs to be put onto two trajectories. For the purpose of using
both as separate presentation paths, though, any concurrently presented dynamics
should be parameterised such that they clearly distinct from each other.

Adding another trajectory to the double layer results in tripled concurrency. Be-
sides the distinction property of the previous layer, further synchronisation is to
be provided here. This synchronisation holds responsible for ensuring scene con-
sistency as well as avoiding the dynamics to interfere with each other. Scene con-
sistency is affected in case a dynamic presentation causes objects to be taken out of
their former context. This happens in case objects belonging together get affected by
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Figure 4.20: Concurrency layer model for restricted use of dynamic presentation variables.

different dynamic presentation techniques, respectively. Interference of dynamics
may occur specifically in case involved dynamics include positional change. This
way, affected objects possibly collide, which is to be avoided.

Simultaneously employing more than three dynamics trajectories is subject of the
multiset layer. Any restriction valid for the previous layer holds for this one as well.
In addition, the number of simultaneous dynamics eventually needs to be limited.
This is specifically due to visual overload caused by multiple dynamics as outlined
in Section 2.1.4. This is furthermore combined with temporal limitations as defined
by the dynamics stimulus window (see Section 2.2). Besides a pure limitation of
the number of simultaneously allowed dynamics, different techniques can be com-
bined to form dynamics classes. As elements of such classes share visual attributes, a
whole class provides less cognitive load than the sum of its members on their own.
The backside of merging dynamics into classes is in loosing some of their expres-
sion capabilities. Dynamics of a given task are not freely parameterisable but need
to follow constraints of the classes.

Concurrency Evaluation

Based on the concurrency layer model, a concurrency evaluation function γ is de-
fined. This function takes scheduled dynamic presentations and evaluates the sched-
ules based on the set of currently active dynamic trajectories. This is a transaction-
based operation consisting of six single steps:
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1. Start transaction: A snapshot of the system’s temporal state is taken and any
other modification of this state is blocked until the transaction is committed.

2. Determine pre-evaluation layer: All currently active dynamics trajectories are
evaluated and their respective status is analysed.

3. Evaluation of scheduled dynamics: All scheduled techniques are arranged such
that an optimum distribution along as less trajectories as possible is constructed.

4. Determine post-evaluation layer: The state from step (2) and the result from step
(3) are merged and a new state of concurrency is constructed. This state corre-
sponds to one of the layers.

5. Re-scheduling of dynamics: The resulting state from step (4) is evaluated with
respect to the layer model and the former state of step (2). In case, the layer has
changed compared to step (2), the scheduling of the dynamics is re-calculated.

6. Committing transaction: The overall transaction as finalised in step (5) is com-
mitted. This also re-opens the system to further modifications.

Constructing a transaction for handling of scheduled dynamics ensures their en-
capsulation. All outstanding dynamic presentations are handled the same. That
is, either all of them are applied unmodified, all are blocked or all are constrained.
This respects any possible reason for grouping the scheduled techniques in the first
place.

Constraining Concurrency

Parallel partitioning of employment of dynamic presentation techniques helps to
make use of their full range of expression capabilities. For the purpose of min-
imising possible caveats, implementations of the parameter function fp are to be
restricted appropriately. A possible switch back to classic presentation variables
by according parameterisation of fp is provided as well. This allows to avoid any
drawback in interaction support as possibly caused by dynamics such as motion.

Three different ways of constraining dynamic presentations may be used:

Restricting dynamic character; The parameterisation of an individual dynamic pre-
sentation technique is modified such that the dynamic character is loosened.
In case of a motion technique this can be achieved by either lowering the am-
plitude or the frequency of the motion. In case of rendering style dynamics,
the time frame of the blending may be stretched.

Merging multiple dynamic techniques; Instead of modifying a single technique, mul-
tiple dynamic presentations are merged. Overall, this results in a reduced
number of active dynamics. The merging of techniques is only to be applied
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in case the same information objects are effected. Otherwise, the communica-
tion goal of individual techniques gets easily de-constructed.

Fading out dynamic techniques; In case both above approaches fail in fulfilling the
constraining requirements, selected techniques might need to be removed
from the presentation. In order to not disturb the overall presentation compo-
sition, any dynamic presentation is not just switched off abruptly but faded
out smoothly. The fading parameterisation is to be chosen such that it com-
plies with the launching of any possibly new technique in the presentation,
regardless if this technique is of static or dynamic nature.

4.4 Specification of Control Function

This section presents the specification of a control function that is used as basis for
temporal control of dynamics. For the purpose of controlling presentation methods,
a combination of absolute dates and duration specification is used in the context of
this work. This allows for generation of a complete linear order of all events as
well as generation of temporal networks with a fine grained model granularity in
accordance with Bettini et al. [2000].

4.4.1 Notation

The notion of a specification is meant as the description of desired behaviour of a
dynamic presentation system, while avoiding concrete references to its methods or
implementation details. The specification of the temporal control function builds
on the presentation framework notation introduced in the previous chapter. Thus,
the framework is extended by means of temporal constraints and parameterisation.

In order to name the different relation sets, some variables are introduced. The
parameter set for a specific presentation is denoted as δ. All defined rendering
styles (methods) are represented by D:

D = {d1, d2, . . . , dn} n ∈N.

The available interval set is named I whereas an individual interval is labelled I:

I = {I1, I2, . . . , Im} m ∈N.

The set of time stamped events is described by E. The functions τ and ψ are used
for operations on events and intervals. Discretisation of an interval resulting in an
interval set is accomplished by τ and the mapping of any specific event onto its
respective interval results from ψ.

The specification of the temporal model is given as tuple SPEC =< S, OP, REL,
X, REQ >. The elements of S represent all sorts (types). S∗ names the set of all
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sort chains. For each sa ∈ S∗ and each sb ∈ S, the set of all possible operators
is named OPsa,sb . The elements op of OPaa,sb are therefore projections op : S∗ ×
S → S. For each sa ∈ S∗ represents RELsa the set of all possible relations. The
set < S, OP, REL > is commonly referred to as signature of the specification. X
marks the defined variable set. Last, but not least, names REQ ⊂ FSIG(X) the set of
formulas that define the algebra of the specification.

For the benefit of readability this syntax is simplified to some degree. The differ-
ent tuple components are presented in a tabular form whereby each set is prefaced
with a keyword. The sorts are presented after the keyword sorts, the operations
follow opns, relations are listed after rels. All variables are prefaced by vars and the
formulas follow reqs.

4.4.2 Function

A function δ(D, AM, I ,F ) is defined for temporal parameterisation of dynamic pre-
sentations. Thereby, D names the set of available dynamic presentation techniques,
AM represents the set of visual attributes of presented objects as it is modified by
the function, I names the set of all currently defined temporal intervals, and F
holds a set of transformation functions.

Presentation parameterisation δ(D, AM, I ,F )
sorts: I, I , E, D, AM,W rep

opns: ψ : E→ I
τ : I → I
+ : I → I
dsw : I → I
fa : I → AM
fd : I → D
fe : E→ E
fg : E→ E

rels: <,≤, =, 6=, >,≥: ee
◦ = {<,≤, =,≥, >} : I I
⊂,⊆, =: I I
6=: D D
6=:W rep W rep

vars: e1, . . . , en : E
I1, . . . , In : I
d1, . . . , dn : D
worldrep

1 , . . . , worldrep
n :W rep

reqs: ψ(en) < ψ(em)⇔ en < em
limiting interval borders:
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τ : ∀Ii ∈ I ⇒ Ib
1 ≤ Ib

i ∧ Ie
n ≥ Ie

i
da 6= db ⇔ fd(Ia) 6= fd(Ib) ∧ Ia 6= Ib
AMa 6= AMb ⇔ fa(Ia) 6= fa(Ib) ∧ Ia 6= Ib

cardinality of the dynamics stimulus window:
dsw(I) ⊆ I ∧ |dsw(I)| ≤ |I|

limiting interval lengths:
Ia < Ib ⇔ Ib

a ≥ Ib
b ∧ Ie

a < Ib
b

Ia = Ib ⇔ Ib
a = Ib

b ∧ Ie
a = Ie

b
Ia > Ib ⇔ Ib

a ≤ Ib
b ∧ Ie

a > Ie
b

I + λ = I
interval continuity:
Ia = {I1, . . . , Ia} ∧ Ib = {Ia+1, . . . , Ib} ⇒ Ia + Ib = {I1, . . . , Ib}

transitivity:
Ia ⊆ Ib ∧ Ib ⊆ Ic ⇒ Ia ⊆ Ic

seclusiveness of dynamics:
da 6= db ⇔ worldrep

a 6= worldrep
b

Table 4.4: Specification of a parameterisation function for dy-
namic presentations.

Table 4.4 presents the specification of the temporal presentation function. This
function basically maps instances of the overall set of representable worlds (W rep)
onto a concrete presentation. A represented world worldrep ∈ W rep holds an il-
lustration model. This illustration model represents the information space IM =
{IO1, . . . , IOn}. Each represented world also includes an illustration target function,
and some contextual scope for the illustration. Some more details of represented
worlds are discussed in the context of the illustration target function in Section 3.1.

The set of transformation functions is defined as F = {ψ, τ, dsw, fa, fd, fe, fg}.
Principles of the respective modes of operation for the individual functions directly
correspond to the temporal presentation model as introduced in Section 4.3. Any
concrete function parameterisation is application specific. Examples will be pre-
sented in Chapter 6.

For each predefined or otherwise determined interval, a combination of dynamic
presentation techniques (di ∈ D) can be defined and parameterised. The intervals
determining a presentation are both—complete and self-contained. That is, any
time stamp (event) can be mapped onto an interval (by use of ψ) and no interval
of the model exceeds the interval set for the overall presentation. This is denoted
in the table as limiting interval borders. The respective constraints for a concrete
allocation of I are outlined in the previous section. These include interval length
limitations as well as continuity constraints and transitivity.
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4.4.3 Graphical Representation

The graphical representation of the presented model and its control function is de-
fined as a temporal graph. This graph uses some concepts from petri nets as it rep-
resents flow through a network of states with a set of transformations in between.
In addition, the graph supports modelling of different temporal granularities by re-
specting events as well as intervals. Explicit support of constraint concurrency can
be expressed in the graph.

All temporal entities in the graph are marked with shadows. This visually rep-
resents their temporal floating character and distinguishes them from transforma-
tions that are represented as plain objects.

Events

For the purpose of placing events in the graph, each event is represented by a rect-
angular block. An excerpt of placing an event group containing two events into the
graph is shown to the left of Figure 4.21. Both events in the figure define the tem-
poral border of a presentation di. That is, di operates on an interval spawned by eb
and ee. To the right of the figure, consecutive scheduling of event-based qdynamic
presentation techniques is shown.

Figure 4.21: Graphical representation of events and intervals for the δ transformation function. To
the left, the interval limitation by eb and ee is shown. To the right, consecutive scheduling of a set of
dynamics is pointed out.

Intervals

Intervals are represented in the graph by rectangular blocks with rounded corners.
This visually distinguishes them from events. Intervals are implicitly created out
of any two elements of an event group. For the example shown in Figure 4.21,
the individual presentations d{i,j,k} are active for their respective time spans of an
interval. This representation furthermore helps to express the lack of precise time
stamps. This lack is due to the circumstance that the graph does not provide direct
support of modelling precise time stamps for interval borders. However, any points
in time can be specified by using the notion of event groups as discussed above.
Scheduling of a set of interval-based presentations on a single dynamics trajectory
is expressed in the righthand side of Figure 4.21.
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Concurrency

Explicit support of expressing concurrency in the graph is provided by a δ trans-
former . This transformer contains a set of transformation functions. These directly
correlate with the γ, τ and dsw elements of the control function. The transformer is
placed at each point in the graph where it either branches or merges the presenta-
tion. Figure 4.22 points out both cases. On the lefthand side of the figure, γ and τ
control an initiation of concurrency by branching the graph. A single dynamics tra-
jectory is divided up into a set of three trajectories. Internally, the transformer may
make use of the dynamics function fd for proper parameterisation of the individual
techniques. This has no visual impact on the graph.

Figure 4.22: Graphical representation of concurrency constraining by the δ transformer. The trans-
former contains three constraining elements for this purpose: ψ, τ, and dsw. For clarity purposes,
these are divided into two groups here: one for ψ and τ and one for dsw.

Reference Scenario

Figure 4.23 shows the graph for the exemplary reference scenario presented in Fig-
ure 4.2 of Section 4.2. Compared directly with the petri net model from Figure 4.13,
it is to be noted that less steps are needed to express the scenario. This is specifi-
cally reasoned in the concurrency transformers that handle immediate evaluation
and verification at all branching and merging points.

Figure 4.23: Model of the reference scenario from Figure 4.2.
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4.4.4 Fulfilling the Requirements

Table 4.5 lists the elements of the temporal control function for dynamics that re-
spectively fulfil the requirements introduced in Section 4.1. Both event-based re-
quirements are basically addressed by handling of event groups and supportive
functions. Relational operations on intervals as required by R3 is naturally subject
of the dynamics stimulus window function dsw and the relational operators defined
on intervals (I) and interval sets (I). The main interval handling functions ψ and
τ address merging and discretisation of intervals which are subject of R4 and R5.
Even though constraining concurrency (R6) is explicitly handled by γ, this is addi-
tionally supported by ψ and τ as well. Both of these functions also ensure temporal
consistency as required by R7. This is furthermore provided by the graph being of
acyclic nature.

Requirements R1 R2 R3 R4 R5 R6 R7
Function EG, EG, dsw, ψ τ γ ψ, τ,
Elements rels(E) fe, fg rels( I, I) (ψ, τ) graph

Table 4.5: Fulfilling the requirements presented in Section 4.1 by elements of the temporal control
function.

As a result, the temporal control function δ presented in this section is capable
of fulfilling all stated requirements for temporal management of dynamic presen-
tations in an illustration system. Compared with existing temporal models as dis-
cussed in Section 4.2, this provides a considerable potential for constraining the
dynamic presentations of the previous chapter. This allows for these presentations
to comply to cognitive fundamentals as outlined in Chapter 2.

4.5 Script-Based Controlling of Dynamics

Using a script for parameterisation of dynamics allows to provide for a means of
an interface to consistently control illustrations enriched by these dynamic presen-
tation techniques. Such consistent interface regards the different characteristics and
effects of the individual techniques.

As motivated by the fundamentals of dynamics in Chapter 2, use of dynamic
presentations needs to be constrained and accordingly parameterised. Temporal
control provides one such option of restricting dynamics parameterisation. While
the following chapter presents a dynamics management unit for this purpose, the
script as outlined here bridges between the motivations for controlling dynamics
and a concrete implementation of it.
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4.5.1 Script Basis

Continuing the temporal presentation framework from Section 4.4.2, the function
δ is used in the script for temporally constraining any use of dynamic presentation
variables. Precisely, δ is used to limit the set of currently active dynamic presenta-
tion techniques di ∈ D. The set of presentation techniques D is composed as:

D = DOS ∪DST ∪DRS ∪DDI .

Thereby, the individual sets of techniques correspond to the dynamics presented
throughout Chapter 3:

DOS refers to the set of oscillating motion from Section 3.3.1.
DST describing the set of motion by structural changes from

Section 3.3.2.
DRS including the set of dynamic combinations of hybrid ren-

dering styles as discussed in Section 3.4.
DDI holding the set of distortion-based dynamics as presented

in Section 3.5.

Each currently active or scheduled dynamic presentation of an information object
IO is denoted as d(IO) with d ∈ D. Each information object is part of the informa-
tion set describing the illustration model: IO ∈ IM. Out of this information set,
multiple information structures may be derived:

ISOS structure containing all information objects subject to os-
cillating motion.

ISST all information objects subject to motion by structural
changes.

ISRS all information structures subject to dynamic changes of
hybrid rendering styles.

ISDI all information objects to be distorted by DDI .

These structures may be combined, that is, any specific information object may be-
long to more than one structure at a time.
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4.5.2 Script Composition

Figure 4.24 outlines the structure of the individual script components. The dashed
lines point out is-part-of -relationships between elements of the script. The connec-
tion lines between the individual script components annotated with cardinalities
describe quantitative relationships between elements. Two different kinds of such
relationships exist:

1. One-to-one (1 : 1)relationship: An instance of an element type is connected
with exactly one instance of another type.

2. One-to-many (1 : n) relationship: An instance of an element type is connected
with multiple instances of another type. This may either be an open relation-
ship (1 : n) or a fixed relationship with a constrained upper limit of n (such as
1− 3).

An example for the second case is the relationship between temporal presentation
constraints δ and scene coherence constraints. The former constraints refer to as many
as three coherence constraints whereas each instance of the latter is combined with
exactly one instance of δ.

Each dynamic presentation d(IO) (with d ∈ D, IO ∈ IM) is parameterised by a
parameter list. The layout of this list in the script specification is generic. This al-
lows for a flexible description of different types of dynamic presentation techniques.
A parameter list PL is given as:

PL = {psi} with psi = {key, value} i ∈N.

That is, the list consists of a set of parameters psi. Each of these parameters is de-
fined by a key-value pair. The concrete interpretation of the content of such pairs in
a parameter list is left to the implementation of the concrete dynamic presentation
technique at hand.

As stated above, the parameterisation function δ holds responsible for temporal
control of concurrent dynamic presentations. Representation of the temporal con-
straints described by δ is expressed by a combination of scene coherence constraints
and temporal presentation descriptions. Recalling Section 3.6, the former constraints
include any combination out of the local, regional, or global character of a dynamic
presentation technique.

A presentation description is composed as pd = {start, duration}. With respect
to each instance of a presentation d(IO) this description is combined with a 1 : 1
relationship. Overall, the temporal presentation constraints as defined by δ provide
the available set of presentation descriptions by a 1 : n relationship.

A concrete implementation of parameterising dynamically enhanced presenta-
tions on a script bases will be shown in the next chapter. Therein, XML is used
which allows to integrate the presented dynamic techniques in an webservice-based
illustration environment.
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Figure 4.24: Structure of the individual components of a script for controlling dynamic presenta-
tions.

4.6 Summary

Subject of this chapter is the development of a temporal model. The purpose of this
model is support of constraining and parameterisation of dynamic presentations
for illustration purposes as presented in the previous chapter. In support of this,
a set of requirements is introduced for such a temporal model. Based on these re-
quirements, an overview of existing temporal models is presented. These models
are classified according to their characteristics. Resulting classes along with their
respective models are evaluated with regard to the listed requirements. Based on
the evaluation results, a temporal model is developed that fully meets the temporal
presentation requirements. For this model, a control function is presented as well
as a graphical notation. The results of this chapter will be picked up in the follow-
ing. Chapter 5 includes discussion of a Temporal Server based on this model whereas
Chapter 6 presents a set of applications making use of temporally constrained dy-
namic presentations.
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5 Toolkits for Temporally
Constrained Dynamic Presentations

Figure 5.1 shows the four main components which form the basis for an implemen-
tation of temporally constrained dynamic presentations as presented in this work.
An overview of the common basis for these components is presented in Section 5.1
along with a discussion of the relationship between the different implemented parts.
This is followed by a discussion of a Motion Toolkit, an integration of dynamic non-
realism in OpenNPAR, a Temporal Server, and a Workbench for Information Fusion in
Sections 5.2 to 5.5, respectively.

Figure 5.1: Four main components forming the basis for temporally constrained dynamic presenta-
tions.

5.1 Implementation Basis

The individual components implemented in the context of this work share some
common basis and stand in relation to each other. This basis as well as the rela-
tions are subject of this section. First of all, using a scene graph for materialising
geometry information is introduced in Subsection 5.1.1. Secondly, Subsection 5.1.2
presents the principle interplay of the four toolkit components. Sections that follow
will discuss specifics of the separate components, respectively.

5.1.1 Scene Graph

Presentations for illustration purposes target handling of geometric models. The
origin of these model may either be a design construction process or some (semi-)
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Chapter 5 Toolkits for Temporally Constrained Dynamic Presentations

automated mapping task such as an information visualisation pipeline. The geom-
etry at hand is part of the illustration model. As expressed in the context of an
illustration target function in Section 3.1, this model is part of the modelled world
worldmod and contains the scene and relations therein.

The scene itself is expressed as an information set IM consisting of information
objects IO. A scene graph [Strauß and Carey, 1992] is used to materialise the in-
dividual objects. Furthermore, this graph allows to reflect relations between the
different objects as well. Relations are modelled by placing objects in the graph
according to their respective reference to each other.

Face set

root

������ ���	
�

teapot
geometry

knot cone teapot

geometry
coneknot

geometry

Face set Face set Face set Face set Face set

MaterialTranslationMaterialTranslationMaterialTranslation

Figure 5.2: Simple example for a scene graph layout representing a geometric model consisting of
an information set IM = {IOknot, IOcone, IOteapot}.

Figure 5.2 shows a simple example scene graph to illustrate this principle. This
graph represents an information set consisting of three information objects: a knot,
a cone, and a teapot. This is an arbitrary collection of objects, not corresponding to a
realistic illustration scenario and only used for simplicity reasons here. For each of
these objects, some transformation and material information is stored in the graph.
The example shows that different granularity level may be used for representing
the geometry of each object. While the cone is specified directly by a graphical
primitive, the knot as well as the teapot are constructed out of a set of primitives. A
resulting rendition of this exemplary scene graph is shown in Figure 5.3.
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5.2 Motion Toolkit

Figure 5.3: Resulting rendition of the exemplary scene graph from Figure 5.2.

5.1.2 Layout of Toolkits

Out of the four toolkit components, two are inherently graphics-based: the Mo-
tion Toolkit and dynamics as part of OpenNPAR1. Both handle geometry by use of
a scene graph. The precise scene graph implementation used here is Open Inven-
tor [Wernecke, 1994a,b]. As of this, an abstraction from the underlying graphics
hardware is achieved. Figure 5.4 illustrates the resulting abstraction layer of the
implemented components with regard to their graphical basis. Thereby, the figure
references OpenGL as an intermediate layer between concrete graphics hardware
and Open Inventor. Even though this is no inherent requirement of the abstraction
layer or the Open Inventor specification as presented by Wernecke [1994a,b], any
available real-world implementation of Open Inventor is using OpenGL for this pur-
pose.

The remaining two toolkit components are not directly graphics-based but serve
as illustration helper function and integration testbed for complex illustration sce-
narios. A Temporal Server evaluates temporal constraints as presented in the previ-
ous chapter. This way, it provides support of controlling dynamic presentations. A
Workbench for Information Fusion represents a multi-component application basis for
information retrieval purposes. The illustration parts of this workbench allow to
make use of OpenNPAR as well as the Motion Toolkit.

5.2 Motion Toolkit

The algorithmic basis for motion as a dynamic presentation variable is subject of
Section 3.3. There, a distinction is made between motion by oscillation and mo-
tion by structural change. As a further extension, a motion-enhanced information
mural is described which combines both approaches for motion in an illustration
algorithm. This section describes implementation issues of the first two motion
techniques. The information mural is subject of a more in-depth discussion in the

1 OpenNPAR is a toolkit for non-photorealistic rendering and animation [Halper et al., 2003]. Some
details of this toolkit and an extension thereof will be discussed in Section 5.3.
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Figure 5.4: Abstraction layer of the implemented toolkit components and their relation to underly-
ing graphics toolkits.

next chapter at the example of a concrete illustration scenario.
For each of the two approaches presented, the respective scene graph construc-

tion is shown. Specific elements and structures are introduced that provide mo-
tion effects based on the scene graph. Subsection 5.2.1 targets oscillation-based
motion whereas implementation of motion by structural changes is subject of Sub-
section 5.2.2.

5.2.1 Oscillating Motion

An oscillation function f OS( IS M,s, DM, δ) is introduced in Section 3.3.1. The pa-
rameter space for oscillations is addressed by this function. With regard to the scene
graph implementation, this parameter space is encoded in a set of nodekits. A node-
kit is a collection of nodes combined to provide uniform access to a sub scene graph
representing a geometric object. The individual objects of the information structure
ISM to which the motion is applied are represented separately in respective node-
kits. That is, for each IOM ∈ ISM, a nodekit instance is created. The measuring
function s holds and manages a list of all these objects. The method set DM of all
available oscillation techniques is given as a collection of nodekits forming the basis
of oscillations:

• ShuttleKit: providing a transition between a set of key positions. A cosine
function is used from the underlying Open Inventor implementation to create
a smooth motion.
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5.2 Motion Toolkit

• PendelKit: providing an oscillating rotation based on a set of key positions.

• PulseKit: providing a pulsating oscillation. The pulse is characterised as an
accelerated variation of the above nodekits.

Using these oscillation primitives, different motion techniques can be constructed
by varying parameterisation. For this purpose, each nodekit consists of a variety
of parameterisation nodes that address classic presentation variables as well as dy-
namic ones. As need arises, this set can easily be extended by creating a new node-
kit based on any existing one. The new kit inherits all behaviour from its predeces-
sor and only adds what is missing.

An exemplary oscillation nodekit is given in Figure 5.5 for an oscillating shut-
tle node. Motion is thereby controlled by a path with two endpoints, which are
specified by translations. The oscillation frequency is noted as a float value for the
number of cycles per second. Other motion definitions are integrated in the nodekit
structure analogously.

A separator node is used for encapsulation of motion with regard to the remaining
scene. This node saves all configuration of the rendering system’s status machine.
After successful traversal of the nodekit scene graph, this configuration is restored.
This prevents motion effects to influence any information object IO not contained
in ISM.
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Figure 5.5: Structure of implementing oscillating motion. Subfigure (a) shows the nodekit contain-
ing an information object. The details of a shuttle node as part of this nodekit are outlined in (b).
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5.2.2 Motion by Structural Change

The general layout of handling information objects IOi ∈ ISM in the scene graph
is the same for motion by structural changes as for oscillating motion as described
above. The motion is achieved by manipulating individual vertices of the geometry
subgraphs. The concrete vertex manipulation is based on evaluating a motion func-
tion fv(v) which operates on a vertex v. This evaluation is done by use of an engine.
Such an engine takes a set of input values, uses a transfer function description to op-
erate on these values, and outputs a set of resulting vertex positions. Figure 5.6(a)
shows the scene graph layout for this process.

Face set

f (v)v

Function
Parameter
Space

geometry

Translation

Face set Face set

������

Material

IO

(a)

(b)

Figure 5.6: Scene graph layout for motion by structural change. Subfigure (a) shows the general
scene graph including the information object which is subject to motion as well as the engine causing
vertex modifications. The engine layout for free form function evaluation is shown in some more
details in Subfigure (b).

A more detailed view of the engine used for determining vertex transformations
is shown in Figure 5.6(b). The engine allows for a set of input parameters. These
form a parameter list PL:

PL = {p1, p2, . . . , pn}.
Furthermore, a free-form definition of the vertex manipulation is provided by func-
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tion f unc. Combining both of these inputs allows the engine to produce a set of
outputs forming the result list RL which is used for parameterising motion of ver-
tex v:

f unc(PL) = RL = {o1, o2, . . . , om}.
For the specification of f unc, a variety of primitive functions may be used that oper-
ate on PL. The concrete set of such functions is based on using the class SoCalculator
from Open Inventor for implementing the free-form function evaluation. Basically,
the following list builds the functional basis:

Scalar functions
cos(pi) cosine function (pi in radians)
sin(pi) sinus function
tan(pi) tangent function
a cos(pi) arc cosine function
a sin(pi) arc sinus function
a tan(pi) arc tangent function
a tan 2(pk, pi) arc tangent function of two variables (pk, pi).
cosh(pi) hyperbolic cosine function
sinh(pi) hyperbolic sinus function
tanh(pi) hyperbolic tangent function
sqrt(pi) square root function (

√
pi)

pow(pi, pk) pi raised to the power of pk
exp(pi) e to the power of pi
log(pi) natural logarithm of pi
log10(pi) base-10 logarithm of pi
ceil(pi) rounds pi upwards to the nearest integer
f loor(pi) rounds pi downwards to the nearest integer
f abs(pi) absolute value
f mod(pi, pk) remainder of dividing pi by pk
rand(pi) pseudo-random value between 0 and 1

Vector functions
cross(pi, pk) cross product of pi and pk
dot(pi, pk) dot product of pi and pk (returns scalar value)
length(pi) length of pi (returns scalar value)
normalize(pi) returns normalized version of pi
pi[pk] access components in pi (pk should be a scalar

value in the range [0, 2])

Using these primitive functions, a mapping of PL→ RL can be defined. In case, this
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functional basis is not sufficient for some specific application context, the concrete
engine instance may be substituted by a more appropriate reimplementation as
long as it conforms to the engine interface provided by Open Inventor.

5.3 OpenNPAR Integration of Dynamic Non-Realism

This section contributes a discussion of the implementation of dynamic changes of
rendering styles as introduced in Section 3.4. As the implementation basis, Open-
NPAR is used. By extending this already existing system, a variety of implemented
rendering styles can be used for creating sophisticated dynamic presentation pat-
terns.

Most parts of this extension to OpenNPAR are implemented as part of a diploma
thesis rendered in the context of this work [Nettelbeck, 2003]. Part of this work has
also been published otherwise [Jesse and Isenberg, 2003].

For the purpose of clarifying the implementation basis, Subsection 5.3.1 points
out some fundamental information about an essential data structure used through-
out the OpenNPAR system. While this discussion includes all relevant information
needed for the dynamic extensions discussed in Subsections 5.3.2 and 5.3.3, it is
kept as brief as possible.

5.3.1 Fundamental Data Structure

The basis for using any NPR style in this system is a photorealistic rendition of
the scene [Halper, 2003, ch. 3]. To allow for fast edge lookup, a data structure
is used here that provides local neighbourhood information for individual edges
and their affected faces. Baumgart [1975] presents the WingedEdge data structure as
meeting this criteria. Approaches of continuously maintaining such structure are
discussed by Glassner [1991]. Figure 5.7 shows a schematic view of the WingedEdge
data structure as presented by Glassner.

The structure is composed of four types of elements:

1. Shapes: are defined as compositions of instances of the three types below. A
shape represents the geometry of an information object.

2. Faces: are defined by lists of edges. For efficiency reasons, some supportive
data (such as normals) and functions (such as getCenter and direction-
Turn ) are stored along with each face.

3. Edges: separate faces from each other. For this purpose, references to the faces
are stored with each edge.

138

http://www.sgi.com/software/inventor/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/
http://www.opennpar.org/


5.3 OpenNPAR Integration of Dynamic Non-Realism

(a) (b)

Figure 5.7: The WingedEdge data structure as introduced by Baumgart [1975]. Subfigure (a) shows
a schematic view of the WingedEdge data structure [Glassner, 1991, p. 192]. The information stored
along with each edge in the structure is shown in Subfigure (b).

4. Vertices: are defined by their positions and normals. In addition, each vertex
keeps track of the shape it belongs to, stores all edges around this vertex, and
maintains a radian map. For each pair of edges, this map contains the angle
in between in radians.

Faces, edges, and vertices are stored in respective lists. These lists are represented
in the figure as rings which make the double-linked character of the respective lists
obvious.

5.3.2 Use of Hybrid Rendering Styles

Before the implementation of a dynamic transition of multiple rendering styles is
discussed in Subsection 5.3.3, use of more than one rendering style in a scene based
on OpenNPAR is presented here. For this purpose, the following paragraph intro-
duces OpenNPAR’s way of defining non-photorealistic rendering styles. This is fol-
lowed by a discussion of an extension of this behaviour which allows to employ
multiple styles simultaneously.

Exclusive Use of a Single NPR Style

In order to apply an OpenNPAR rendering style to an information object in a scene,
its respective scene graph needs to be prepared accordingly. The initial geometry
graph is preserved and integrated into a wrapper scene graph. This wrapper con-
sists of an WingedEdge containing the geometry as a subgraph as well as NPR sup-
plements. The preparation process furthermore adds a material node for each scene
object in case it does not yet exist. This node is part of the geometry subgraph and
holds responsible for blending styles.
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The general scene graph layout for rendering of non-photorealistic images us-
ing OpenNPAR is shown in Figure 5.8. The NPR line rendering subgraph represents
the stylisation pipeline allowing for a variety of styles to be used. As an example,
stylised silhouettes as discussed by Isenberg et al. [2003] are employed here. The
silhouette edges need to be detected first. After concatenating the edges appropri-
ately, hidden lines are removed. This is followed by a parameterisation of stroke
styles. Finally, the strokes can be rendered.

data structure

Geometry
subgraph

Detect
silhouette edges

Build geometry NPR surface
rendering

NPR line
rendering

Hidden
line removal

silhouette edges
Concatenate Modify strokes

(width, shape,
texture, ...)

Render
line stroke

Figure 5.8: General scene graph composition for presentation in a non-photorealistic style using
OpenNPAR.

A set of OpenNPAR nodes holds responsible for maintaining the WingedEdge data
structure:

• SbWingedEdge: is the data structure itself.

• SoGenerateWingedEdge: creates an instance of the structure and saves it for
future references.

• SoWingedEdgeElement: keeps a pointer to the instance of the WingedEdge data
structure as created by SoGenerateWingedEdge.

In case a new instance of the WingedEdge is created, the pointer stored in SoWinged-
EdgeElement is overwritten. This allows to automatically use the most recent in-
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5.3 OpenNPAR Integration of Dynamic Non-Realism

stance of an WingedEdge for rendering. Figure 5.9 shows this interplay of the above
nodes.

Figure 5.9: Interplay of the nodes SbWingedEdge, SoGenerateWingedEdge, and SoWingedEdgeElement.
The dashed arrows represent processing data of the SbWingedEdge data structure.

Simultaneous Use of Multiple NPR Styles

In order to employ more than a single NPR style in a scene, the scene graph from
Figure 5.8 is extended as shown in Figure 5.10. The geometry subgraph is divided
into a number of further subgraphs. For each of these, a separate WingedEdge data
structure is constructed. This allows to store geometry data for all respective objects
in the scene. Thereby, the scene graph layout is designed such that hierarchical
object handling is possible. This ensures a maximum of flexibility with regard to
applying individual styles to either whole objects or parts of an object that belong
together.

For each rendering style, a separate style pipeline is to be put into the scene graph.
The set of geometry data nodes is referenced by separate selection nodes. These
map a style onto its respective object or object hierarchy. Parameterisation of the
individual styles remains as described above, but is now independent from each
other.

A set of new nodes is provided for OpenNPAR to allow multiple rendering styles
to be used simultaneous in a scene:

• SoWingedEdgeListElement: holds pointers to SbWingedEdges.

• SoStoreWingedEdge: stores each pointer as created by a SoGenerateWingedEdge
node in an instance of SoWingedEdgeListElement.
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Figure 5.10: Scene graph extended to allow for multiple styles being used simultaneously as well
as to apply a style to parts of the scene only. The NPR rendering subgraphs follow the description
presented in Figure 5.8.

• SoSelectWingedEdge: contains the address of an associated SoStoreWingedEdge
node. This address is used to access the SoWingedEdgeListElement, retrieve the
pointer of the respective SbWingedEdge and store it in a SoWingedEdgeElement.

Figure 5.11 shows the interplay of these nodes on the basis of the scenario shown
in Figure 5.9 above. The figure points out how to overcome the shortcomings of
each SoWingedEdgeElement storing only the most recent pointer to a SbWingedEdge.
The new nodes allow to take this pointer, store it permanently, and provide access
as demand arises. The general interface of handling the different classes used for
accessing the WingedEdge data structure is not affected by the new nodes. There-
fore, this extension is easily integrated into existing systems whereby legacy code
is ensured to be supported as well.
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Figure 5.11: Interplay of the nodes maintaining the SbWingedEdge data structure. This is an exten-
sion to the scenario of Figure 5.9 for handling multiple rendering styles simultaneously.

5.3.3 Transition Between Styles

The information structure ISRS holds all information objects that are subject to a
dynamic presentation of multiple rendering styles. Dynamics are thereby achieved
by blending from one style to another as described in Section 3.4.1. In order to
blend the presentation of an information object IOi ∈ ISRS from one rendering
style to another, the object is rendered twice: once for the source style and once for
the target style.

Two blending approaches are used for dynamic rendering styles:

1. blending by variation of transparency and

2. blending by adjustments of an object’s emissive colour.

Both kinds of transition are achieved by use of a Transition Engine. This engine is
used to provide a set of control values affecting either transparency of an object’s
material, its emissive colour, or both. Figure 5.12 points out this interplay. The en-
gine uses some temporal parameterisation values as input. These are transformed
into two different kind of outputs:

1. control values for the source rendering style and

2. control values for the target rendering style.

That is, the output fields of the engine are connected to the material node of the
sub scene graph used for rendering the source style as well as to the material node
which holds responsible for rendering the target style. Depending on the type of
transition, these material nodes are then modified automatically.
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Figure 5.12: Achieving dynamic rendering styles by use of a Transition Engine. This engine provides
control values for continously adjusting transparency and emissive colour values throughout the
transition process.

In case of a transparency-based transition, the respective materials’ α-elements
are connected with the engine. Whereas the transparency of the source style is
gradually increased, transparency of the target style subgraph decreases. In case
the transition is complete, the engine connection for both styles are reversed and
the transition is restarted.

If a transition is based on changes in an object’s emissive colour, a pair of engine
outputs is used for each rendering style subgraph. This pair consists of:

1. a vector for changing the light emission and

2. a scalar for adjusting the α-channel of the source style subgraph.

Adjusting the transparency of the source rending style is used to avoid overlap of
both styles. Furthermore, using this pair of engine outputs allows to merge both
kinds of transition in order to overcome the see-through effect as discussed in Sec-
tion 3.4.1.
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5.4 Temporal Server

The principle of evaluating temporal presentation constraints is discussed in Chap-
ter 4. Here, a Temporal Server component is presented that is part of a framework of
temporally influenced geometry presentation (Tigeop). This framework furthermore con-
sists of a specification of parameterisation documents that build the foundation of
a script-based controlling of dynamic presentation techniques for illustration pur-
poses. These documents are described in Appendix A.

First of all, the design and layout of the server component is presented. This is
followed by a discussion of its core: the Dynamics Management Unit. A presentation
of the web service interfaces provided by the framework rounds up this section.

5.4.1 System Design

The overall layout of the temporal server is shown in Figure 5.13. This system con-
sists of a set of components build around the Dynamics Management Unit (DMU).
The DMU holds responsible for evaluating temporal constraints of a presentation
and scheduling of individual presentation techniques. Its working principle is de-
scribed in the following subsection.

Other parts of the server layout include a set of catalogues used for maintaining
available dynamic presentation techniques as well as intervals valid throughout
the duration of an illustration. These catalogues are referenced as Set of Dynamics
D and Interval Catalogue, respectively. Whereas the set of available dynamic presen-
tation techniques is not modified by the DMU, the interval catalogue is constantly
updated.

The design of handling concrete instances of illustration clients follows Silva et al.
[1997]. They present a Proxy design pattern in a client/server-based environment.
This pattern is employed here to construct and maintain a list of clients currently
operating in the context of the Tigeop framework.

Communication between different instances of illustration clients and the Tem-
poral Server is done on a Web Service basis. Following the discussion presented by
Stal [2002], this provides the basis of employing a wide variety of illustration client
systems. All kinds of illustration systems should be able to be connected to the Tem-
poral Server. This flexibility is provided by using a set of well-defined documents
to bridge the interface-gap between such illustration clients and the server. Sub-
section 5.4.3 below discusses the principles of this communication in some more
detail. Before this is done, the following Subsection 5.4.2 points out specifics of the
Dynamics Management Unit.
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Figure 5.13: Layout of the Temporal Server for temporal control of presentations on a script basis.

5.4.2 Dynamics Management Unit

The Dynamics Management Unit (DMU) builds the core of the Temporal Server. It
evaluates the fundamental temporal constraints as presented in Chapter 2 by use
of the parameterisation function δ presented in Section 4.4. Thereby, it controls the
temporal parameterisation of any illustration output. This is done on two levels:

1. Respective dynamic illustration techniques are to be specified; and

2. The temporal parameters for these techniques need to be determined.

For temporal constraining purpose, the DMU maintains a list of scheduled dynamic
presentation techniques. Each time, an illustration client sends a request Qp(d(IO))
of using dynamics for the presentation of an information object IO, one out of four
possible operation reactions is applied to the object by the DMU:

1. Pass : The request d(IO) is allowed immediately and the dynamic presenta-
tion may be used without any further constraints.
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2. Constrain : The request is allowed but the dynamic character of the pre-
sentation technique d(IO) in question is constrained. This effects dynamic
characteristics such as the frequency or type of d.

3. Schedule : The request is not passed immediately but the presentation of
d(IO) is added to the queue of scheduled dynamics.

4. Regret : The request for d(IO) is not allowed to pass.

Temporal mapping is done based on an analysis of a given set of intervals. This
is retrieved from the overall interval catalogue maintained by the Temporal Server.
Interval consistency is checked by δ as outlined in Section 4.4.

Overall, by use of δ, the DMU combines the set of scheduled dynamics and the
set of intervals for the purpose of updating and parameterising the set of currently
active dynamics. For each illustration client connected to the server, this results in
a constrained presentation using dynamics such that their expression potential is
used up to its maximum whereas cognitive overload due to its over-excessive use
is avoided.

5.4.3 Web Service Interface

Context

Distributed applications are characterised by consisting of a set of individual ap-
plication components. Typically, these components interplay on the basis of mid-
dleware technologies such as Corba [Dogac et al., 1996, Roantree et al., 1996], HLA
[Lorenz et al., 1997, Lorenz and Ritter, 1997, Straßburger et al., 1998, Jesse and Schu-
mann, 2000], or Grid Services [Foster et al., 2002, Furmento et al., 2001].

An alternative approach to combine a set of application components is regarded
to as a web service environment whereby the individual components are referred to
as web services [Yang and Papazoglou, 2002]. In order to allow for interoperability of
these individual services, a communication interface protocol is needed. One such
protocol is SOAP as defined by the W3C.

SOAP is a protocol for the exchange of structured XML documents in distributed
environments. It is described by a set of four documents:

1. The Primer [Mitra, 2003] targets the interested end user and provides a general
overview of SOAP.

2. The Messaging Framework [Gudgin et al., 2003a] targets developers. Details of
SOAP messages are documented as well as the request/response mechanism
and the possibility to transport SOAP messages by use of arbitrary protocols.

3. The Adjuncts [Gudgin et al., 2003b] point out optional protocol extensions.
The transport of SOAP messages via HTTP is documented here as well.
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4. Finally, the Assertions and Test Collection [Haas et al., 2003] complete the pro-
tocol specification by documenting numerous test cases for the validation of
SOAP processors.

Overall, the documents describing SOAP provide an open interface description
for web services. On this basis, flexible frameworks can be constructed which pro-
vide adaptivity for new application areas as demand arises. For this reason, web
services form the basis of defining the interface for the Temporal Server.

Layout of Documents

A set of three documents describes the Tigeop service:

1. The Tigeop implementation description provides information about accessing the
Tigeop service from within illustration applications.

2. The Tigeop interface description documents information about the service pro-
vided by the Temporal Server.

3. The Tigeop Schema describing the structure of documents as provided by the
Temporal Server. These documents control an illustration enhanced by dy-
namic presentation techniques.

The first two documents are instances of the Web Service Description Language (WSDL)
as defined by Christensen et al. [2001]. Such WSDL documents consist of four dif-
ferent elements:

1. Messages: specify structures and types of operations provided by the web ser-
vice.

2. Bindings: describe the protocol implementation of the web service. The com-
mon basis for bindings is the SOAP protocol.

3. PortTypes: define the interface of a web service in terms of operations and their
input and output messages.

4. Ports: define the bindings used by the system.

The concrete instances of the two WSDL documents describing the Tigeop service
are shown in Appendix A.3.2 for the implementation description and A.3.1 for the
interface description. This latter description follows the script as discussed in Sec-
tion 4.5 whereas the former document simply defines access information for the
server.
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The output script constructed by the Temporal Server follows the syntax described
as XML Schema2 as defined by the W3C. The Tigeop Schema is shown in detail in
Appendix A.1. It contains the three following elements: a set of employed dynamic
presentation techniques D, a reference to the geometric illustration model, refer-
enced as scene description, as well as a set of object presentation definitions.

5.5 Workbench for Information Fusion

The process known as information fusion targets retrieval of information from a
set of heterogeneous data sources. First of all, some context information about
fusion is given in the next subsection. Secondly, a set of fusion requirements is
derived. These requirements motivate the individual implemented components of
the workbench for information fusion. Layout of these components is presented
in an architectural fashion. This architecture is accompanied by a description of
integrating the Temporal Server for handling temporal fusion characteristics. Further
details on using information fusion will be presented in the following chapter at the
example of a set of applications.

5.5.1 Context

Given the current state of the art in database technology and modern communi-
cation networks large volumes of data cannot only be stored and managed but
are subject to the providence of world-wide distribution and access. The resulting
increase in the number of available information sources leads to what users per-
ceive as information overload. Information providers often represent their data in
a heterogeneous fashion regarding structure and semantics. The task of presenting
deduced information can be derived. Attempts have been made to access varying
data sources via a uniform user interface, thereby hiding the heterogenous nature
of the underlying data [Bellgard et al., 1999, Fischer et al., 1999]. These efforts are
restricted to specific application domains and are not generally applicable. In addi-
tion, they do not answer the open question of limited expression capabilities pro-
vided by the set of classic presentation variables like colour, shape, transparency,
and position of an object.

Information fusion is seen as a process of integrating heterogeneous data sources,
examining stored data, and extracting possibly hidden information [Dunemann
et al., 2002b]. It helps to handle and access potentially large data sets. For that
purpose, the fusion process is defined as a concatenation of various fusion opera-
tors. These operators include but are not limited to database integration, machine

2 Information about XML Schema, according tools, and documentation is available at http://
www.w3.org/XML/Schema .
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learning, and data mining techniques. The execution of the fusion process is of it-
erative nature and controlled by user interaction. Behaviour of information fusion
as an interactive process is characterised by temporal parameters regarding two
aspects: user interaction and process execution.

5.5.2 Requirements

The objective of information fusion results in important requirements of methods
and techniques for interactive information exploration and manipulation. Though
various potential fusion applications result in different requirements, a set of tasks
can be identified which are similar for a wide range of fusion applications [Jesse
and Strothotte, 2001]:

Data access: At first, we have to support a uniform access to different sources. This
involves usage of database gateways in order to hide the heterogeneity, to
access Web sources via the appropriated protocols, and extracting semistruc-
tured data from these sources, as well as query translation, optimisation, and
processing.

Data integration: An integrated view should represent data from the different sour-
ces in a homogeneous model. This involves mending conflicts at schema or in-
stance level and dealing with aspects of data quality. In addition, inter-source
relationships have to be represented and managed at the global layer.

Analysis and abstraction: Filtering or condensing data and extracting dependencies
or abstractions offers the opportunity to yield information of a new quality.
The notion of new quality depends on the concrete application.

Presentation and processing: The discovered information has to be presented accord-
ing to the problem domain or be prepared for further processing. The illus-
tration needs to allow a user exploration of the information space and offer
ways of interactive manipulation of the fusion process as well as of the fu-
sioned data.

Representation of meta-information: An important prerequisite for fusion is the exis-
tence of information about sources, fusion objects, and the problem domain.
Such meta-information should be managed by the system and updated or
extended during the fusion process, e.g. for optimisation and interactive ex-
ploration purposes.

This section concentrates on the presentation and processing stage. Of interest are
aspects of illustration and its specific characteristics in the fusion process. Informa-
tion fusion is a process which is heavily influenced by user interaction. On one
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hand, users need to decide on kinds of fusion operations to apply. On the other
hand, the process of fusion needs to be presented in a comprehensible manner. Af-
ter all, a possibility is needed to modify single aspects of the fusion process.

Access to such fusion characteristics is provided by illustrations. Navigation tech-
niques for exploring complex information spaces are outlined by Strothotte [1998].
Special emphasis is put on various zooming methods, including fish-eye views, dis-
tortions, and displacements. Such techniques along with individual implementa-
tions of dynamics may be integrated as part of a workbench for information fusion.
This characterises such a workbench as an implementation testbed for dynamics as
presented earlier.

5.5.3 Components and Layout

To provide a testbed for user-centred dynamic presentations in support of informa-
tion fusion, an architecture has been developed [Dunemann et al., 2002a, Jesse et al.,
2001, Dunemann et al., 2001, 2002b]. This architecture is shown in Figure 5.14 and
allows to fulfil the requirements of information fusion as presented above. This
architecture basically consists of two main components:

1. InFuse: as a database-centred and component-based middleware system. This
system includes with FraQL [Sattler et al., 2000] a query processor for data
management of heterogeneous sources. On top of this query processor, a
fusion engine holds responsible for processing and managing meta data of a
fusion process.

2. Angie: provides different means of illustrating information about the fusion
process, its composition, and results. For this purpose, Angie is composed of
a set of plugins for access to a variety of illustration techniques. These include
dynamics.

Dividing up the architecture into these two main components allows to address the
listed fusion requirements in a flexible manner. The fusion process consists of sev-
eral steps which partially depend on each other. The fusion engine allows to manage
the components and information needed for this flexibility. The definition and per-
sistence of processes is handled as well as control of process execution. Supportive
process information is stored in the meta data repository. A set of information gath-
ering operators is available within InFuse as well. These operators act on data at
various stages throughout fusion process execution and perform operations such
as data mining or machine learning algorithms.

The front end Angie is designed component-based as well. It basically consists
of a core application holding responsible for window management as well as user
interaction, and a set of plugins providing illustration techniques. These plugins
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Figure 5.14: Architectural layout of the Workbench for Information Fusion [Dunemann et al., 2002b].
Subfigure (a) shows the global architecture of the underlying InFuse layout whereas (b) shows the
layout of the front end Angie integrating dynamic illustrations.

provide an interface to the individual implementations of dynamic illustration tech-
niques presented earlier throughout this chapter. This way, Angie characterises the
workbench as an integration of individual and independent techniques. In addition
to this integration, the visualisation toolkit (VTK) [Schroeder et al., 1998] adds to the
set of techniques employed by the various plugins. Corba is used for communica-
tion between InFuse and Angie to provide a maximum of interface flexibility.

5.5.4 Interaction and Temporal Fusion Characteristics

A fusion process is characterised as a composition of multiple fusion operations
as sketched in Figure 5.15. These operations are arranged in varying order as any
given operation possibly depends on results produced by another operation. Such
dependencies and respective operation scheduling result in temporal information
inherent to the fusion process execution. To reflect these information in the execu-
tion graph, temporal components may be inserted as shown in Figure 5.16.

User interaction is expressed by events which occur consecutively. Each inter-
action event might cause some action that changes the current state of the system.
This change is valid until another user event occurs or until it is outdated by system
progress. The effect of any user based event is therefore valid for a specific time
interval. Therefore, any supporting illustration technique needs to be temporally
parameterised to ease interaction and follow its temporal constraints.

The temporal nature of the fusion process execution itself results out of the ex-
ecution of fusion operators. Two operators with a dependency between them are
always executed consecutively. Independent operators can possibly be executed in
parallel. The order of operator execution results as an acyclic graph. At every ex-
ecution step, intermediate results are gained. These may be illustrated in order to
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Figure 5.15: Gaining information in a fusion network. This graph layouts the principle structure of
an exemplary information fusion process.

Figure 5.16: Extension of the fusion execution network from Figure 5.15. The network is enhanced
by temporal components controlling the result presentation based on an analysis of process execu-
tion supported by the Temporal Server.

support the user in interacting with fusion process execution. The temporal com-
ponent of each result set closely correlates to the time dependent position of its
causal operator in the execution graph. Some results are gained earlier then others.
Some results are kept valid for longer periods whereas others need to be revised as
parameterisation of their corresponding operators is to be changed depending on
user decisions. The completeness of a result set needs to be expressible by an ac-
companying illustration. Temporal influence on presentation variables is suitable
for complying to this requirement.

5.6 Summary

This Chapter contributes implementation issues regarding dynamics as discussed
in Chapter 3 as well as a supportive Temporal Server based on the discussion from
Chapter 4. In doing so, this chapter bridges from the two conceptual chapters 3
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and 4 to the application-oriented part of this thesis. The following chapter deepens
this application part further by presenting some examples of using the implemen-
tations shown here to construct illustration scenarios enriched by dynamic presen-
tations.
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A set of different applications is shown here for the purpose of pointing out possi-
ble uses of dynamic presentation techniques for illustration purposes. The exam-
ples shown span a broad range of application fields. First of all, dynamic rendering
styles are applied to a presentation for reflecting dynamic behaviour of the illustra-
tion model. Thereby, model dynamics are gained by retrieving illustration informa-
tion from a search engine. This is followed by the discussion of a set of applications
framed by the common context of information fusion. This set contains use of the
motion-enhanced information mural for illustration of climate data, a scatter plot
enriched by motion to reveal underlying data characteristics, and construction of
an abstract dynamic landscape in support of online aggregation. Finally, a set of il-
lustrations is shown that address exploration of geometric models or parts thereof.
These models are of technical nature as well as stemming from the field of anatomy.

The contribution of this chapter is in pointing out the potentials of dynamics for
enriching illustrations. Thereby, use of dynamics enhances the expression set of the
shown presentations. On one hand, this supports illustration of dynamic behaviour
of illustration models. On the other hand, dynamics extend the means of directing
user attention to specific aspects of an illustration model.

6.1 Enhancing Illustrations with Search Engines

Classic illustration systems are often enriched by manually prepared model annota-
tions. Subject of current work is the automatic coupling of a model with supportive
external information sources. The use of a knowledge base as the fundamental
source of illustration information is presented by Hartmann et al. [2002]. That is,
a geometric model is illustrated whereby annotating information as well as some
structural information about the model is derived from a knowledge base. The pre-
sented system is an extension of the Text Illustrator by [Schlechtweg and Strothotte,
1999, 2000].

However, in most cases these external annotation information sources are of
static nature. Documents need to be collected and knowledge bases need to be com-
posed. These processes are characterised as being highly interactive and dependent
on manual input. This section addresses the coupling of an illustration model’s ob-
jects with queries sent to a search engine. This way, the search engine is employed
as a dynamic source of illustration annotations. They are dynamic in a sense that
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there is mainly no manual updating of the information storage required. The re-
trieval of this dynamic information is used in order to control and parameterise
use of dynamic presentation techniques. The selection of these dynamic techniques
concentrates on fading transitions between different rendering styles.

The contribution of this section is in enhancing illustrations by accessing external
dynamic annotation sources. For this purpose, dynamic presentation techniques
are used. These specifically include non-realistic rendering styles. Implementation
issues of this section’s contribution are published as part of a diploma thesis con-
ducted in the context of this work [Funke, 2003].

6.1.1 Scenario

For this specific search scenario, Google1 is used as search engine. However, this is
not a restriction immanent to the system. In principle, any accessible search engine
can be used. Google is only chosen for practicability reasons. Besides its classic web
access, Google provides a web service based programming interface for querying
the search engine directly.2 This allows for easy integration into the illustration
system as presented here.

The exemplary subject of the illustration is an engine model. A realistically ren-
dered view of this model is shown in Figure 6.1. The engine model consists of
multiple parts that are of interest for the illustration process. These specifically in-
clude the cooling system (1), the flywheel (2), and the propulsion system (3). Search
queries are now used for these parts in order to retrieve and finally express any pos-
sible inter-object relations and to provide some information not yet provided by the
model. This may be some new annotations as well as just a keyword collection or
an importance value derived from the number of retrieved search results.

6.1.2 Context on Search Engine Handling

Two techniques for the search for related pages in the World Wide Web are pre-
sented by Dean and Henzinger [1999]. However, instead of using traditional search
engine queries, the authors present the search for related web pages based on their
URL. This allows for the identification of related pages without a need to analyse
the source web page first. A similar approach is addressed by the application pre-
sented here as the search queries to be performed are in part build on the basis of
available short model labels.

A search engine for 3D models is presented by Funkhouser et al. [2003]. Their
system provides access to a set of models by a query interface. Different kinds

1 The Google search engine can be accessed via http://www.google.com/ .
2 Further information about Google’s programming interface is available at http://www.

google.com/apis/ .
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Figure 6.1: The illustration model.

of queries are accepted for model lookup: text-based queries, similarity queries or
combinations out of these two. A text-based query references the model by name
or some context that is possibly stored in the model database. In order to settle for
a similarity query, a VRML model is to be provided and the search engine returns
a set of similar models. The degree of similarity is based on a shape-analysis of the
provided model. Regardless of the type of the query, the 16 most similar models
found in the database will be returned by the search engine.

Challenges in the evaluation of a web search are discussed by Hawking et al.
[1999]. The authors explicitly address common ranking systems as used by existing
search engines. As a result of an analysis of the rankings combined with an evalu-
ation framework, weaknesses of rankings are pointed out. The authors state, that
even though modern search engine ranking systems have been subject to a steady
refinement, the rankings are to be handled with care regarding their expressiveness.

A set of techniques for the presentation of multimedia web search results are
outlined by Mukherjea et al. [1996]. These presentations are constructed in 3D and
include a tabular listing of all results as well as a scatter plot. Both are of interactive
nature which allows for an analysis of the available search results without the need
to directly access the underlying web pages. At the example of the system Grouper,
a dynamic clustering interface for web search results is presented by Zamir and
Etzioni [1999]. Herein, clusters are created out of the results retrieved from the
search engine. This allows to present some more meta information about results as
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in case of classical search engines where the querying user is confronted with a list
of document snippets. This approach is extended by the Kartoo meta search engine3

that presents the search results by circular glyph representations of the clusters. The
size of these glyphs depends on the respective result rankings.

6.1.3 Design of the Illustration Process

Use of search engines for the purpose of enhancing an illustration of a geomet-
ric model is a highly interactive task. In support of this, the following subsection
points out three elemental classes of queries useful for this task. An overview of
the system’s architecture is presented thereafter.

Querying for Illustration

The kinds of query to be executed can be divided into the following three classes:

Querying individual objects; For a specific object of the illustration model, a query is
submitted to the search engine. This query includes the object’s name or any
possibly available annotation. The results retrieved can than be used in order
to reflect additional information about the object.

Querying Multiple Objects; The same queries as used for individual objects can be
applied to multiple objects in parallel. That is, different search queries are
sent to the search engine in order to retrieve information about respectively
different objects. The individual queries are sent independently from each
other. That is, they are OR-combined. This allows to reveal formerly hidden
inter-object relationships. Finally, it possibly leads to an observation of seman-
tically linked object clusters in an illustration model.

External Documents; In case, external documents are available that provide some
information about the illustration model, these can be included in the search
scenario. In this case, some excerpts of the document—such as specifically
marked keywords—are added to the set of potential search terms. The results
retrieved for the document may be combined with results from both query
classes above. The similarity between the results for both types of queries is
then to be presented. This helps to illustrate matching of an appropriateness
of the object-document relationships.

An interactive refinement of the search strategy is possible for each querying class.
The presentation of this section concentrates on the first two classes. However, sup-
port of including external documents into the illustration scenario can easily be
integrated in the framework as presented. A test implementation has already been

3 The Kartoo meta search engine can be accessed via http://www.kartoo.com/ .
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approached. Even though first results sound promising, a set of questions were
raised that are subject to future work.

Architecture

Figure 6.2 presents the principle architecture of the search illustration system. This
system is designed in a component-based manner in order to allow for easy inte-
gration of new components as well as easy reuse. As shown on the left side of the
figure, this architecture integrates the OpenNPAR system as well as the Temporal
Server. Both serve as parameterisation basis for the illustration client.

Figure 6.2: Architecture for the illustration system combining geometric model presentation with
information gathering by querying search engines.

A central component of the system is the search server. This server holds responsi-
ble for any communication with search engines. Its design is of generic nature and
allows to address a set of different search engines. However, as of now, access to
Google has been implemented only.

The illustration client acts as the interface to the user. It provides a dynamically
enhanced rendition of the 3D illustration model as well as interaction facilities for
the definition of queries and respective selection of objects. Therefore, the client
provides the presentation of the geometric model as well as any supporting illustra-
tion information. For this purpose, it includes a result viewer. This viewer presents
the search results in order to allow for their direct exploration by the user. The re-
sult viewer is discussed in some detail in Section 6.1.5 whereas specific rendering
effects of the illustration client are subject of Section 6.1.6.

A search mediator bridges between the client illustration application and the server.
It helps to decouple both components. This way, multiple illustration clients may
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benefit from information retrieved by the search server. Furthermore, the decou-
pling allows to provide web service interoperability whenever desired.

The architecture allows for single components to easily fit into a web service en-
vironment. This provides for relatively fast and easy creation and integration of
alternative application domains. An example is the Temporal Server as a component
providing integration of temporal constraints in order to parameterise the simulta-
neous use of dynamic presentation variables.

6.1.4 Search Result Evaluation

Retrieving information from search engines results in multi-dimensional informa-
tion sets. Combined with available query information these information sets form
ResultSets as provided by the search server. A ResultSet is defined as a six-tuple
(q, u, t, p, d, r) where

q is the search term,
u is the URL of the result page,
t is the title of the result document,
p is the first part of the result providing a document summary,
d holds an excerpt from a possibly existing DMOZ4 entry, and
r represents a boolean value indicating whether or not related

web pages are available (specific to Google).

Multiple strategies may be employed for the analysis of the ResultSets for the sake
of extracting as much information as possible [Baeza-Yates and Ribeiro-Neto, 2002,
p. 99ff]. For the work presented here, the ResultSet elements q, u, t, p, and combi-
nations thereof are evaluated. URL matching is done in two ways: counting occur-
rences of q in u and counting of multiple instances of u for separate terms of q. The
latter case gets active in case the search for multiple objects results in a result URL
retrieved more than once. This way, some similarity for the respective objects can
be derived. The former case of URL matching builds the basis for evaluating other
pairs of occurances of q in any of {u, t, p} as well. Besides an analysis of occurrences
of q in u, the same can be determined for q in t, q in p, and combinations thereof.
Matching of q ∈ p is to be treated with a lower score than matching of q ∈ u and
q ∈ t. This values the importance of a document’s location and its title compared
to the document body.

Besides an analysis of the ResultSet contents, ranking information is used for pa-
rameterisation of search result presentation. In order to consider ranking, some con-

4 DMOZ is the Open Directory Project accessible at http://www.dmoz.org/ . This directory is
also available via http://directory.google.com/ .
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text information about results retrieved from the search engine is evaluated. The
ordering of the results is not given arbitrarily. Instead it represents some informa-
tion about the relevance of the results with regard to the query submitted. This
ordering varies from search engine to search engine. Google’s ranking system is ex-
plained to some degree by Page and Brin [1998] as well as Calishain and Dornfest
[2003]. This ranking system is popularity-based, as a web page gets ranked high in
case it is often referenced by other pages.

6.1.5 Search Result Illustration

In addition to using search results for rendering parameterisation as will be pre-
sented in Subsection 6.1.6, they are illustrated in a result viewer. This allows to
provide some background information on the dynamic illustration as well as the
ability for the user to examine the results by itself. As both—the dynamic illus-
tration presentation and the search results—correlate with each other, the result
viewer supports the user in crossing the cognitive gap of resolving these relations.
For this purpose, elements of the illustration model which are subject to a search
query are presented along with their respective search results.

The result viewer follows the principle idea of the Kartoo meta search engine.
That is, the viewer does not simply list all retrieved search results on a textual basis.
Instead, search results regarding their respective objects of the illustration model
are evaluated and a graphical representation of this analysis is created. Figure 6.3
illustrates this.

Figure 6.3: Screenshot of the result viewer.

At the left side of the viewer, a graphical representation of the search results is
shown. This scene always represents the search results retrieved for a single object.
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Multiple instances of the viewer may be opened at any time in order to investi-
gate results for different objects. To allow for a detailed in-depth analysis of the
presented results, the right hand view of the result viewer window lists all results
textually. A complete listing of all search result data possibly exceeds the avail-
able presentation space. Therefore, only relevant parts are shown. The relevance is
specified interactively in two ways: browsing the textual result list combined with
selection of interest items and selection of results of interest in the graphical scene
view. This latter case is shown in Figure 6.3 where an object of interest is selected in
the scene view to the left and its respective search results are presented on the right
hand site.

The scenic presentation shows a selected set of all search results. The object which
is subject of the respective search is used as the geometric basis for the glyphs
shown. Each of these glyphs is accompanied by a textual label containing the
domain of the result’s URL. All objects are arranged along a virtual spiral. Even
though the spiral itself is not shown explicitly, this ordering helps to provide some
maximum visibility of all objects and their labels simultaneously. Each shown re-
sult is scaled according to its relevance. A higher relevance causes an increased
scale factor. The relevance value may be determined by any means outlined in the
previous subsection. Currently, the number of occurrences of the search terms in
the result’s title and summary are used.

6.1.6 Mapping of Search Results onto Rendering Parameterisation

All defined rendering styles are available as set D. Each element of this set is de-
fined by its rendering parameterisation. Therefore, the parameter set for a specific
presentation is denoted as di ∈ D. The parameterisation of each di depends on the
respective attribute set AM of the represented illustration object IO. The parame-
terisation function δ provides temporal description of the dynamic rendering.

All objects IOi that are currently affected by a dynamic presentation reflecting
the evaluation of causally related search results are summarised in an information
structure IS. Therefore, such a structure includes all affected objects in each of the
specific parameterisation cases as presented below.

The Illustration Client Application

A screenshot of the illustration client application is provided in Figure 6.4. As the
main task of the application is the presentation of the illustration model, the render-
ing window takes up the largest part of the application space. This is accompanied
with a set of annotation windows to the right. These are grouped by a set of tabbed
widgets. The Scene tab which is displayed in the figure provides a tree view of
the geometric model description at the top and all currently active search queries
at the bottom. Other tabbed widgets provide information on annotations for the

162



6.1 Enhancing Illustrations with Search Engines

model, any collected search results which are grouped into clusters, and illustration
settings.

Figure 6.4: Screenshot of the illustration client application. The main part of the application’s win-
dow is consumed by the rending display of the geometric illustration model. To its right, a set of
varying annotation spaces is provided.

Active Search Queries

An information structure ISa is composed of all objects that are currently subject
of an active search query. This may explicitly affect multiple objects. For instance,
a user might simultaneously search for the engine’s cooling system parts, the fly-
wheel, and parts of the propulsion system. These individual objects IOi ∈ ISa are
emphasised by transparency blinking as illustrated in Figure 6.5. This provides
some visual progress freedback. As soon as the search action is finished or a search
timeout is reached, the blinking is stopped.

As any other collection of simultaneous use of dynamic presentation techniques,
the respective application of an emphasis to an information object IOi ∈ ISa is sub-
ject to restriction by the Temporal Server. Figure 6.6 points out how this restriction is
applied. Overall, a set of dynamic presentations D(ISa) is available for emphasis-
ing specific objects or parts thereof. In this specific case, the set includes blinking
in addition to the techniques introduced in Chapter 3. This plain extension of D
shows that dynamic presentation techniques are handled in a flexible manner and
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Figure 6.5: Snapshots of transparency blinking in order to illustrate objects affected by active search
queries.

can easily be enriched by any dynamics not included so far. In case a specific dy-
namic presentation is to be used by the illustration system, a presentation query
is sent to the dynamics management unit (DMU). In the example shown in the fig-
ure, this is done by Qp(di(IOak)). Thereby, di(IOak) represents blinking of object
IOak . The presentation query Qp is evaluated by the DMU with respect to the tem-
poral presentation parameterisation function δ. As discussed in Section 5.4.2 this
results in the request to be allowed (pass ), to be constrained , scheduled , or
regretted . This general principle holds for the application of any other dynamic
presentation technique used for an illustration enhanced by search engine queries
as well.

Figure 6.6: Using presentation queries for restricted use of dynamic presentation techniques by the
illustration client. The currently active query is labelled as Qp(di(IOak )). Scheduled and finished
queries are marked by dashed arrow lines.

Use of Transparency-based Rendering Style Dynamics

In order to illustrate by rendering parameterisation based on search query results,
an information structure ISs is constructed. This structure is based on the evalua-
tion of a former search targeting a single object such as the cooling system. That is,
all objects IOi ∈ ISs are determined out of results retrieved from a search engine.
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Figure 6.7 shows an illustration with an emphasised ISs containing the four tubes
of the cooling system. Searching for their respective object labelling, these tubes are
found to belong together as indicated by matching search results. Even though this
relationship seems obvious to the user by itself, the method proves to be generally
applicable.

Figure 6.7: Illustrating a group of objects based on an evaluation of a respective search query. The
illustration is supported by blending of two rendering styles using changes in transparency.

The transparency-based dynamic rendering style dt ∈ D used for all IOi ∈ ISs is
constructed by a cyclic transition from a realistically shaded rendering to an NPR
shading. This transition is achieved by a double rendering of the objects. That is,
the dynamic style is a composition of two other styles, or short dt ← dr × dn. By
gradually adjusting the respective style’s transparency values, the styles are trans-
formed into each other. The drawback in rendering time resulting from the double
rendering passes is somewhat compensated by fast α-blending as it is often imple-
mented directly in hardware.

Use of Colour-based Rendering Style Dynamics

The illustration of Figure 6.7 reveals the see-through effect as it is discussed in Sec-
tion 3.4.3. In order to overcome this effect here, the above information structure ISs
may be illustrated by an alternative dynamic presentation technique. Instead of the
transparency-based transition technique dt, an alternative technique dc ← dr × dn
is constructed that employs the emissive colour of each IOi ∈ ISs for the change
from one style to the other. This colour’s RGB values are gradually increased from
0.0 to 1.0. A colour vector of (0.0, 0.0, 0.0) does not effect the material rendering at
all. Setting all RGB values to 1.0 naturally results in the respective objects being ren-
dered completely white. The stroke technique is blended in simultaneously. This
way, only one rendering pass is needed.

Snapshots of the application of dc to all IOi ∈ ISs are shown in Figure 6.8. This
reveals a site-effect, though. The use of a completely saturated emissive colour on
a stylised silhouette rendering as shown here looses some shape information. This
is best expressed by the rightmost image of the figure.
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Figure 6.8: Illustration of the same group of objects as in Figure 6.7. Instead of blending between
the different rendering styles by varying transparency, colour changes are used.

Combined Presentation of Multiple Search Results

In order to express different search results and their relevance, the mapping ef-
fects presented above can be combined. For this purpose, an information structure
ISm ← ISs × ISs is constructed, whereby ISm labels an information structure con-
taining objects affected by multiple searches and ISs respectively represent struc-
tures due to single search queries. This structure not only contains the information
objects affected by a single search but all information objects that are subject to any
of the set of multiple queries sent. Typically, these objects are grouped into sets of in-
formation structures. Each of these structures contains objects that belong together
and are affected by the same search query.

The illustration of ISm results in the employment of more than one dynamic pre-
sentation technique in the scene. That is, instead of constructing a single dynamic
style d ∈ D, a set of techniques Dm ⊂ D is used. Each dm ∈ Dm can now be used
for the illustration of all IOm ∈ ISi ⊂ ISm.

This is illustrated in Figure 6.9. Three information structures are derived from
the evaluation of all available search queries. One structure contains a cooling
system tube, one structure consists of the flywheel, and one structure includes
the propulsion system. Subject of dynamics-based illustration is therefore the set
ISm = {ISm1 , ISm2 , ISm3}. These are presented by means of Dm = {dm1 , dm2 , dm3}.
To be precise, all IOmi ∈ ISm1 are rendered by the dynamic presentation technique
dm1 , all IOmj ∈ ISm2 by dm2 , and all IOmk ∈ ISm3 by dm3 . All of these dynamics are
instantiated by varying hybrid rendering styles, parameterised differently for each
respective information structure.

6.2 Information Fusion

The main context and requirements of information fusion are presented in Sec-
tion 5.5. This section shows a set of exemplary application scenarios. First of all,
an exemplary temporal scenario is presented in Subsection 6.2.2. This is followed
by an illustration of climate data in Subsection 6.2.2, an exemplary scatter plot in
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Figure 6.9: Illustration of multiple information sets resulting from a set of queries sent to a search
engine. As different parts of the illustration model are also affected differently by search results,
their presentation varies from each other.

6.2.3 and a discussion of online aggregation in Subsection 6.2.4.

6.2.1 Principle Fusion Result Presentation

Fig. 6.10 shows an exemplary set of presentation methods and their scheduling or-
der throughout the duration of a session of an information fusion process execution.
Different fusion operations lead to different result sets that are available during the
illustration process. These result sets are referred to as:

RS = {r1, r2, . . . , rn} n ∈N.

Each result set ri ∈ RS (with i = 1 . . . n) is illustrated by a set of information objects
forming respective information structures:

ISri = {IO1, IO2, . . . , IOm} 1 ≤ i ≤ n, m ∈N.

A set of four dynamic presentation techniques is used for illustrating these infor-
mation structures: D = {d1, d2, d3, d4}. These are represented by bars in the figure.
Detailed information about the information sets and presentation parameterisation
is left out of the figure for brevity.

After a preparation period of the illustration session, the execution of the fusion
process is started at time t0 = start and finished at time t10 (act3) because of a
terminating user interaction event. Beginning at t1, the user is presented with visual
representations of gained results of executed fusion operators. Some results might
not be represented visually but only be used internally. An example for such case
is result set r3.

As time advances and process execution progresses, the parameterisation of any
used method d is subject to change. An exemplary change of illustrating result set
r1 happens at time t2 because of internal process events. Thereby, user interaction
is not involved. On the other hand, an interaction event at t7 = act2 leads to the
extraction of result set r4 and its immediate presentation. More process execution
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Figure 6.10: Scheduling of presentation methods during fusion process execution. Time points t5,
t7, and t10 are defined by user interaction events and are denoted as act1, act2, and act3, respectively.
Note that result set r3 does not lead to any visual display and that only one result set (rn) is valid
until the final user event.

time is obviously needed in order to gain r5 after user action happening at t5 = act1.
The illustration of result set rn changes multiple times throughout the whole session
depending on both—user interaction and fusion process events.

All of r1, r2, r4, and r5 represent intermediate result sets that are discarded and not
used for final information gathering. Only r2 is discarded explicitly by the user at
time t7 (which is equivalent to act2). As discussed above, r3 is only used internally
and not represented visually.

Figure 6.11 shows the temporal graph for this exemplary presentation schedule.
This graph follows the notation introduced in Chapter 4.

Figure 6.11: Temporal graph of the presentation schedule of Figure 6.10. This model uses the nota-
tion introduced in Chapter 4.
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6.2.2 Climate Data

As introduced in Section 5.5, a goal of information fusion is in communicating in-
formation hidden in a collection of data retrieved from a variety of sources. This
subsection shows an exemplary case of illustrating climate data as retrieved by sim-
ulation. For illustration, the motion-enhanced information mural is used. This il-
lustration scenario is a result of an cooperation with Knud Pehrs and manifested in
a diploma thesis [Pehrs, 2004].

Scenario

Possible interest in climate data spans a wide range of potential analysis areas. A
common approach is the investigation of a curvilinear grid defined by longitude,
latitude, and altitude. This allows to compare different area’s data and is useful
for weather forecasts. Another approach is to investigate data for a specific loca-
tion only by sampling data at concrete location points. This preserves a reasonable
amount of data and allows to examine data spanning a more extensive time frame.
This latter case forms the basis of the work presented here. Precisely, daily weather
data are used.

As available weather databases provide incomplete data in this regard, ClimGen
is used to generate synthetic daily climate data.5 This tool allows for the generation
of data containing total solar radiation, maximum and minimum temperature, rain-
fall, and wind-run. In order to generate any reliable data, the simulator needs to be
parameterised accordingly. This is done by specifying a set of location parameters.

As an exemplary location, the place Magdeburg (Germany) is used. The location
»Magdeburg« is described by a latitude of 52.13◦, a longitude of 11.62◦, and an
elevation of 79.00 m. ClimGen allows various degrees of input data completeness.
Possibly missing parameters are estimated by the program. The following monthly
mean values for minimum temperature, maximum temperature, and precipitation
are used as basis for data generation:

5 More information about ClimGen, its availability, and a comparison compendium of ClimGen
and other climate data generators is available at http://c100.bsyse.wsu.edu/climgen/
For information about why the program is used at all, see Jesse [2002].
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month mean(Tmin) mean(Tmax) mean(prec.)
January −1.8◦C 13.0◦C 34.8 mm
February −0.6◦C 12.0◦C 30.0 mm
March 0.6◦C 13.0◦C 35.0 mm
April 4.6◦C 16.9◦C 39.2 mm
May 6.1◦C 37.1◦C 47.6 mm
June 14.3◦C 24.3◦C 63.8 mm
July 13.0◦C 29.0◦C 58.4 mm
August 12.4◦C 24.5◦C 52.3 mm
September 10.5◦C 20.5◦C 38.1 mm
October 5.4◦C 15.7◦C 33.8 mm
November −5.6◦C 10.9◦C 37.3 mm
December −7.0◦C 11.2◦C 39.2 mm

This input data is partially retrieved from freely accessible web sources6 and par-
tially estimated. Using this input, ClimGen generates usable data about precipita-
tion and temperature. Due to the estimation of some parameters, possibly gen-
erated data about solar radiation and wind-speed are not of reliable nature and
therefore not used.

Approaches for Climate Data Illustration

The field of climate data illustration is very diverse and only a brief overview of
existing techniques is outlined here.

Max and Crawfis [1995] present cloud rendering methods for the purpose of
analysing clouds and their behaviour over time. The presented methods include
mapping of a 3D texture to cloudiness contour surfaces as well as volume render-
ing of clouds by splatting.

A set of web based applications is available that target the collection, handling,
visualisation, and interpretation of climate data. Such a system is presented by
Collins and Schweitzer [1997]. Their GrADS system provides a variety of tech-
niques to present climate data. These techniques include but are not limited to
graphs, scatterplots, contours, and streamlines. Another example of a web based
climate data visualisation application is FERRET [Hankin et al., 1998]. Its set of
provided techniques spans from various plots to different contour displays.

A different approach is shown by de Leeuw and van Liere [1999]. They use tex-
tures as expression variables for the purpose of presenting temporal data flow. As
input data changes over time, texture does too. An exemplary application shows
the temporal relation between atmospheric pollution and changes in wind fields.

6 Precisely, some climate data about Magdeburg is retrieved from http://www.
worldclimate.com/ , http://www.stadtklima.de/ , and the home page of the Ger-
man Environment Agency (»Umwelt-Bundesamt«).
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Most geographic information systems (GIS) are capable of handling some amount
of climate data. Their purpose is in management of geographic knowledge. A GIS
usually works map based and provides support for raster analysis of complex areas.
Exemplary GIS systems are ArcInfo and ArcView.

Mural Parameterisation

The initial attribute set AM is created automatically depending on data dimensions
such as temperature and precipitation. Based on the discussions in Section 4.5 and
5.4, the mural presentation is described by a script document. Listing 6.1 shows an
excerpt of such a document. This excerpt describes d1(IO6) which starts after 11 s of
the illustration and holds valid for a duration of 10 s. A snapshot of an illustration
client including the mural presentation based on the document this excerpt belongs
to is shown in Figure 6.12.

Listing 6.1: Document excerpt for generating the presentation shown in Figure 6.12

. . .
< s c e n e o b j e c t s >

< o b j e c t id = " 6 " name="wideSpanningDay">
<present method = " 1 " s t a r t ="PT11S " durat ion ="PT10S " / >

</o b j e c t >
</s c e n e o b j e c t s >
. . .

The threshold dimensions controllable by the user are the mean temperature
threshold and the precipitation threshold. This allows to construct a structure
ISm containing all IOi with a represented temperature span larger than the thresh-
old as well as a precipitation higher than specified. If the motion threshold func-
tion mt(IOi, Tthres, Pthres) defines a function returning all objects meeting this cri-
teria, the information structure results as ISm = {IO1, IO2, . . . , IOn} with IOi =
mt(IOi, Tthres, Pthres) and 1 ≤ i, j ≤ n. The objects IOi ∈ ISm are emphasised by
applying an oscillating motion.

6.2.3 Exemplary Scatterplot

For the purpose of representing fusion results, a wide range of illustration tech-
niques is available. An extensive overview of a toolkit providing supportive visual-
isation methods is given by Schroeder et al. [1998]. Figure 6.13 shows a snapshot of
the information fusion workbench including a motion-enhanced scatterplot presen-
tation. The snapshot also includes a list of meta-data representations to the left and
the layout of a fusion process. Executing this process results in the shown scatter-
plot illustration. The concrete data forming the basis of the fusion process and its
resulting illustration stems from a financial application scenario. Dunemann et al.
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Figure 6.12: Snapshot of the illustration application using the Motion-enhanced Information Mural.

[2002a] describe this scenario in detail. The overall goal of this application case is in
determining specific classes of bank customers for the purpose of intensifying the
bank-customer relationship. An alternative application scenario for this workbench
is discussed by Dunemann et al. [2002b] at the context of bioinformatics.

Especially for large data sets such a scatterplot includes the potential of hiding
relevant information by overlapping object locations. A motion-enhanced scatter-
plot supports in finding such overloaded plot areas. For this purpose, an oscillat-
ing motion is applied to selected information objects. Assumed, the information
set IMSP defines the overall scatterplot presentation. In order to apply oscillation
to objects therein, an according information structure ISOS is composed. The indi-
vidual objects contained in this structure are determined by a scatterplot motion
function spmf( IMSP, IOi) . For each information object IOi ∈ IMSP, this func-
tion returns an overlap value of the object’s position with regard to all remaining
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Figure 6.13: Snapshot of the workbench for information fusion including a fusion process based on
financial data along with a motion-enhanced scatterplot illustration [Dunemann et al., 2002a].

objects (IMSP \ IOi). For including an object in ISOS, an overlap threshold εsp is
defined. Putting these components together results in the following composition of
the information structure ISOS:

ISOS = {IOi | IOi ∈ IMSP ∧ spmf (IMSP, IOi) > εsp}.

All information objects of this structure are subject to oscillating motion. Using
this dynamic presentation allows to visually identify classes in the underlying data.
These classes may support the application user in the original task of bank-customer
relationship optimisation.

6.2.4 Online Aggregation

Many data analysis scenarios are challenged by questions about how to provide
access to data sources and how to represent the data. Aggregation is deemed as
a common basis for providing access to data objects with similar characteristics.
As aggregation is generally a time consuming batch operation, online aggregation
was developed as an extension to provide access to intermediate results that are
gradually refined.

173



Chapter 6 Applications

For the purpose of representing data to the user, a variety of illustration tech-
niques exists. Some of these techniques were developed by following a visualisa-
tion metaphor. One such metaphor is an abstract information landscape that is cre-
ated by dynamically mapping currently available aggregation data onto geometric
landscape objects. This enables an adaptive illustration that adjusts to online ag-
gregation. The specific context on aggregation is discussed in detail by Jesse et al.
[2003].

Landscape Mapping

The purpose of this section is not to present an enrichment of the catalogue of avail-
able visualisation techniques as presented by Schroeder et al. [1998], Schumann and
Müller [2000], or Ware [2000]. Rather, a general description of methods for the repre-
sentation of aggregated database content is targeted. For this purpose, an abstract
landscape metaphor is used. That is, all data is mapped onto objects that form a
landscape.

The individual landscape objects represent aggregation data. The attribute set
AM of the data is mapped onto presentation dimensions such as position according
to the landscape coordinates, the height of a landscape object, its material informa-
tion, and rendering style information. An information object IO is positioned as a
cuboid on a two-dimensional landscape grid which is described as L = {p0, dx, dy}.
Thereby, the landscape consists of an origin p0 and two vectors spanning the x and
y coordinate axis, respectively. The height and material attributes of information ob-
jects represent attributes of the respective data sets as retrieved in the aggregation
process.

Resulting snapshots of a constructed landscape are shown in Figure 6.14. From
left to right, the images represent increased availability of data as retrieved from
a database management system. That is, the information set IM is initially empty
and individual information objects IO are added with increased data availability.

Figure 6.14: Landscape snapshots. The leftmost image represents a landscape without any mapped
data. The remaining images show the representation of an increasing amount of mapped data.

Layered Styles

Figure 6.15 shows some results of applying hybrid rendering styles to the landscape
illustration for the purpose of latency representation. Any possible delay in the re-
trieval of aggregated data is mapped onto the presentation of currently investigated
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information objects IOi ∈ IS. As outlined in Section 3.4.1, multiple rendering styles
are combined to a hybrid composition. Selected attributes Am, . . . , An ∈ AM with
1 ≤ (m, n) ≤ k (cf. section on landscape mapping above) are used to parameterise the
respective rendering style. Such attributes include—without being limited to—line
style, line thickness, texturing, and colouring.

Figure 6.15: Rendering of the landscape with hybrid styles as presented in Section 3.4.1. The dif-
ferent styles are used to emphasise possible delays in data retrieval as caused by the database man-
agement system. The leftmost image shows an initial data set. The remaining images represent the
addition of context data whereby the initial set still remains visible. The styles for this initial set
and the remaining scene are gradually combined and finally form the representation shown in the
rightmost image.

In order to link to the current status of aggregated data retrieval, the rendering
parameters are chosen such that the rendering produces images that appear par-
tially incomplete. This visual incompleteness is gradually refined. In case all data
is finally retrieved completely, the result shown is to be constructed by a single
homogeneous rendering style.

A discussion of interaction issues for feedback in the online aggregation process
is provided by Jesse et al. [2003]. This includes an analysis of focus and context
techniques for browsing the aggregation landscape, the presentation of an interac-
tion layer model for influencing aggregation and resulting query refinement and
aggregation control.

6.3 Model Presentations

This section addresses the use of dynamic presentation techniques for an illustra-
tive presentation of geometric models. Subsection 6.3.1 presents use of hybrid ren-
dering styles for illustration purposes in a technical model whereas use of the same
techniques in a medical object is subject of Subsection 6.3.2. Finally, Subsection 6.3.3
presents use of oscillating motion to support exploration of a technical generator
model.

6.3.1 Presentation of Technical Objects

The construction and maintenance life cycle for engineering models spans a broad
area of activities. This includes the refinement of the model or parts thereof during
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the detailed design phase [Fox and Salustri, 1994]. As an example, the model of an en-
gine is used here. In order to examine the utilisation of individual engine elements,
the design engineer is supported by visual feedback on the status of current items
of interest.

Hybrid rendering styles may be used to highlight specific model parts by present-
ing them in another rendering style in contrast to the remaining parts of the model.
Listing 6.2 shows an excerpt of a Tigeop document instance describing the varying
use of an NPR style for the tube parts of a geometric engine model. Each tube is
assigned a unique object id (4–7 in this case) and a name. The highlighting is done
consecutively for all tubes according to the starting time stamps and durations as
specified in the document.

Listing 6.2: Excerpt of a possible Tigeop documents describing the presentation shown in Figure 6.16

. . .
< s c e n e o b j e c t s >

< o b j e c t id = " 4 " name=" tube1 ">
<present method = " 2 " s t a r t ="PT7 . 5 S " durat ion ="PT4 . 2 S " / >

</o b j e c t >
< o b j e c t id = " 5 " name=" tube2 ">

<present method = " 2 " s t a r t ="PT12S " durat ion ="PT3 . 7 S " / >
</o b j e c t >
< o b j e c t id = " 6 " name=" tube3 ">

<present method = " 2 " s t a r t ="PT14S " durat ion ="PT4 . 2 S " / >
</o b j e c t >
< o b j e c t id = " 7 " name=" tube4 ">

<present method = " 2 " s t a r t ="PT18 . 5 S " durat ion ="PT1 . 3 S " / >
</o b j e c t >

</s c e n e o b j e c t s >
. . .

Figure 6.16 shows a series of snapshots from a dynamic presentation illustrating
the utilisation of the engine model. The current item of interest is its cooling system.
Four tubes form this system and are supported by a cooling aggregate located at
the lower right side. The snapshots express the consecutive usage of all individual
tubes with a smooth transition from one tube to the next. The work load of the
small extra tube connected to the cooling aggregate is emphasised incrementally
while going through the main tubes. The trained design engineer is now in charge
of interpreting the scenario in order to decide on a potential lack of capacity for the
bandwidth of this connection tube.
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Figure 6.16: Snapshots of an engine model. The tubes of the engine’s cooling system are gradually
emphasised by being rendered in a line shaped silhouette style. The style changes reflect the possible
utilisation of the single tubes and their interplay with the cooling aggregate located ad the bottom
right side.

6.3.2 Examination of Anatomical Objects

A typical goal in medical studies is in teaching students anatomical context of spe-
cific body parts. As stated by Ritter et al. [2000], a good way to approach this goal
is in active exploration and examination of a geometric model of the object in ques-
tion.

A series of snapshots for the example of a foot model presentation is shown in
Figure 6.17. Therein, dynamic changes of hybrid rendering style are used to com-
municate the spatial relationship of phalangis—the bones of the toes. Beginning at
a cuneiform bone, a silhouette line rendering is used in order to gradually empha-
sise the individual bones forming a toe and associated bones. Precisely, the order
of bones as pointed out in the figure is: Os cuneiformie I, Os metatarsale I, Phalanx
proximalis I, and Phalanx distalis I.

Figure 6.17: Snapshots of an animation pointing out specific parts of an anatomical example. Os
cuneiformie I, Os metatarsale I, Phalanx proximalis I, and Phalanx distalis I are emphasised in order to
illustrate their relationship.

This presentation can be run cyclical at varying speeds. Now, a sophisticated
learning environment could possibly provide multiple parameterisations of the an-
imation cycle to the students. By spanning the whole spectrum of the presented
stimulus intervals and analysing the learning effect of the students, studies about
respectively modified learning curves can be derived.
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6.3.3 Motion-enhanced Model Exploration

The final example of this section addressing illustrative presentation of geometrical
models makes use of motion instead of dynamic rendering styles. For this purpose,
the Motion Toolkit has been integrated into an interactive system for user centred
assembly of a geometric model that is presented by [Ritter et al., 2000]. This system
allows to gain information about a model by means of active exploration.

The model of interest is the bearing device of a generator as shown in Figure 6.18.
Specifically, Figure 6.18(a) shows the complete bearing in its fully assembled state.
It consists of a shaft, a surrounding shield, and a set of supportive parts such as
screws. All these parts are available as individual objects IOi ∈ IMB where IMB
describes the whole bearing.

(a) (b)

Figure 6.18: Constructing a bearing device out of its components. The completely assembled device
is shown in 6.18(a) whereas 6.18(b) shows a construction snapshot in an early stage of assembly.

The task of active exploration of the model is accomplished by letting the user
assemble the whole model out of its individual components. Figure 6.18(b) shows
a snapshot of such an assembly task at an early construction state.

Oscillating motion is used to support the user in the exploration process. Specif-
ically, motion is applied to provide visual feedback on objects which are currently
of interest. The interest value of such objects is determined by an evaluation of user
interaction. Two functions are defined in support of this:

1. interact( IMB) returns the current object IOi ∈ IMB the user is interacting
with.

2. class( IO) determines the model class of an object. The notion of a class is
part of the illustration model.
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Using these functions, an information structure ISOS is maintained which consists
of all objects of interest:

ISOS = {IOi | IOi ∈ IMB ∧ class (IOi) = class (interact (IMB))}

The individual objects IOi ∈ ISOS are subject to oscillating motion. For the example
shown in Figure 6.18(b), ISOS contains all screws of the bearing device model. All
of the screws are positioned inside of the shield surrounding the shaft. For this
reason, the screws are mainly hidden which prevents them from being available to
the user immediately. The motion helps to reveal the screws. The motion can be
faded out interactively in order to progress with the assembly process.

6.4 Summary

This chapter describes a set of exemplary applications which point out the use of dy-
namic presentations for illustration purposes. The individual dynamic techniques
introduced in Chapter 3 are used along with the temporal parameterisation model
of Chapter 4 by means of the respective components of Chapter 5.

The set of applications spans a broad range of areas. At first, an illustration
scenario is presented where dynamic presentations are used to reflect dynamic be-
haviour of the illustration model. These latter dynamics are caused by using search
engines to retrieve information about the illustration model. This information is
of dynamic nature as the concrete contents of the results retrieved from a search
engine are not known beforehand. Dynamic rendering styles support the resulting
illustration and are used to reflect the results retrieved from the search engine along
with its correlation to the illustration model.

This application example is followed by a set of illustrations rooted in the field
of information fusion. First of all, the principle presentation of fusion results is
shown. Use of the motion-enhanced information mural is presented at the example
of climate data. This is followed by employing oscillating motion to enrich a scat-
ter plot presentation of a financial data set. Finally, the creation of an illustration
supporting online aggregation by means of a landscape metaphor rounds up the
set of information fusion presentations. The chapter is completed with a set of illus-
trative presentations of geometric models. These models are of technical as well as
of medical nature. For the purpose of illustrating the models, dynamic rendering
styles are used as well as oscillating motion.

Overall, the applications shown point out that dynamic presentations can be used
to enrich a variety of illustrations. The selection is intended to serve as a starting
point for investigations of further illustration scenarios which might profit from
dynamic presentations. The set of applications shown is by no means complete but
can only serve to reveal the diversity of potential illustrations based on dynamics.
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7 Concluding Remarks

Along with the steady increase of information density goes an increase of informa-
tion need in daily life as well as in the scientific world. Illustrations play a vital
role in satisfying this need. They form as an element in the set of presentation
systems which communicate information by means of visual presentations. In sup-
port of this, a variety of presentation techniques is available. These techniques are
characterised by a broad spectrum of property dimensions. Some techniques are
specifically employed to ensure visibility of an object which is part of an illustra-
tion model. Examples include according use of transparency as well as appropriate
translations of the object in question. Other illustrative presentation techniques con-
centrate on the task of emphasising an illustration object of interest. Examples are
changes of colour of the respective object or use of a supportive helper object such
as a bounding box, a crosshair, or arrows.

While these existing illustration techniques provide a broad means of present-
ing a variety of information, there is a need for visually reflecting more and more
complex illustration scenarios. In such scenarios, stored information may be avail-
able in a constantly varying state. Furthermore, complex illustration goals of a user
require advanced illustration techniques.

To overcome these deficits, this thesis introduces the concept of dynamic presen-
tations for illustration purposes. Thereby, the notion of dynamics is defined as pre-
sentations that change over time. Dynamics are constructed in multiple ways and
include motion as well as variations and combinations of other already existing
techniques. Such dynamics support illustrations in multiple ways. As an intrinsical
characteristic, they allow to represent temporal behaviour of an illustration model.
In addition, they help to support visibility of objects as well as specific emphasis.
The concrete value of a dynamic presentation technique depends on its underlying
presentation variables.

The following section summarises the main contribution of this thesis: The mod-
els and techniques for dynamic presentations for illustration purposes. Section 7.2
outlines further research directions stemming from the work presented in this the-
sis.
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7.1 Summary of Contributions

For the purpose of constructing the cognitive basis for dynamic presentations, an
analysis of published studies on the perception of varying presentations is pro-
vided. The results of this analysis are manifested in the definition of a dynamics
stimulus window and a hierarchy layer model of dynamics. Both of these frame all
further investigations and provide limitations to which all developed models and
techniques need to comply. For this reason, this in-depth analysis of user-centred
fundamentals serves as a substitute for carrying out a set of user studies on the
general usefulness of dynamics. This does not attempt to role out such studies
for the purpose of evaluating presentation techniques. Instead, it values the pre-
application character of the techniques targeted by this work. While a set of exem-
plary applications points out prospective use of dynamic presentations for illustra-
tion purposes, dynamics and supportive models as presented in this thesis are of
generic nature. Whether a dynamic presentation technique is more valuable than
any other depends on the precise application at hand.

The diversity of dynamics is outlined by a discussion of classes of multiple such
techniques. These classes define the spectrum of exemplary dynamic presentation
techniques: motion, dynamic changes of rendering styles, and zoom-based distor-
tion histories. This way, dynamics are composed as a collection of techniques rang-
ing from classic motion-based animations to variable non-photorealism and exten-
sions of presentation techniques which are already of dynamic nature.

The presented set of dynamics by motion is divided into three areas: oscilla-
tions, structural changes, and a motion-enhanced information mural. Oscillations
describe object-based motion, structural changes affect object surfaces, and the in-
formation mural is a classic illustration technique which is extended to make use of
both other motion dynamics.

Dynamics by changes of rendering styles are based on non-photorealism as presen-
tation technique. Hybrid renderings are created which combine this non-photorea-
lism with classic realistic renditions. Thus, such renderings contribute to the goal
of developing new presentation techniques. Dynamic presentations are derived
by continuously blending between different rendering styles. Two different ap-
proaches are shown for such blending: adjustments of transparencies and changes
in an object’s emissive colour. The discussion of rendering style dynamics is ac-
companied with a description of the see-through effect. This effect possibly occurs
when different rendering styles are used simultaneously. This is rather undesirable,
since it results in parts of the scene to shine through even though they are origi-
nally hidden by other scene elements. Strategies are presented for avoiding this
effect while still maintaining the derived rendering style transitions.

Presentation of distortion histories form the third class of exemplary dynamics.
At the specific case of a fisheye-zoom, two ways of constructing a zoom history are
introduced: trace lines and a chewing gum. The trace lines use the concept of speed
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lines to indicate zoom progression. The chewing gum provides a means of inserting
constantly updated intermediate objects in a scene which is subject to distortion.
These objects reflect the distortion history by being stretched continuously until
they rip up.

All discussed presentation techniques are analysed and compared to each other
regarding their influence on scene coherence. Thereby, scene coherence is defined
as the influence of a dynamic presentation—which is applied to a specific object—
on the remaining scene’s presentation. Using the results of this comparison allows
to support design decisions for an illustration scenario. To embed use of dynamics
for illustrations in a broader set of presentation techniques, supportive overviews
and classifications of such techniques are discussed.

For the purpose of designing illustrations that include dynamic presentation tech-
niques, the notion of an illustration target function is introduced. This function in-
cludes all elements of the illustration model along with supportive context infor-
mation as well as relations and operations defined for the model. The definition of
a target function for a specific illustration task at hand helps to identify and mate-
rialise the overall illustration goal as well as necessary presentation techniques to
meet this goal.

A further contribution of this thesis is the construction of a temporal model for
parameterising and constraining dynamic presentations. This model’s design is
based on a set of requirements that are identified to support the control of dynam-
ics with respect to the cognitive limitations presented earlier. An evaluation and
classification of existing temporal modelling approaches provides further design
inspirations, as modelling ideas of these approaches are reused. The developed
model is accompanied by the specification of a temporal control function. This
function serves as basis for materialising any temporal parameterisation of dynam-
ics. Presented examples for concrete use of this function include the design of a
presentation script as well as an implementation of a dynamics management unit.

The individual contributions are instantiated by a set of implemented system
components which form a temporally constrained illustration framework based on
dynamic presentation techniques.

As a summary, Figure 7.1 provides an abstract view on the relationship of the
individual parts of this thesis. Concrete real-world scenarios build the basis of
the illustration context within the overall goal to achieve and manage information.
Such scenarios are addressed by illustration models as manifested by an illustra-
tion target function. This function expresses an illustration goal which is targeted
by compositions of presentation techniques. These techniques include dynamics
without being limited to them. At the core of an illustration stands the user who
defines limitations of any presentation based on cognitive restrictions. These are
addressed by temporal constraints which parameterise a presentation. Overall, all
components need to interplay such that the user is supported in the search for de-
sired information in the real world.
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Figure 7.1: Interplay of the individual contributions of this thesis and their overall context.

7.2 Further Research Directions

Throughout this thesis, the notion of dynamic presentation techniques was dis-
cussed along with supportive models. Thereby, the first crucial step towards en-
riching illustrations by dynamics is made. However, much remains to be explored
before the potential for dynamics-enhanced illustrations can be realised to its full
extent. In the following, interesting research directions resulting from this thesis
are discussed.

7.2.1 Extend Use of Distortion Histories

All dynamic presentation techniques discussed throughout this thesis are charac-
terised by some prototypical status. They are designed to illustrate the notion of
dynamics as presentation which varies over time. Thus, all of these techniques
provide potential for further refinement and extensions.

As an example, distortion histories can and should be extended to further distor-
tions besides the fisheye-zoom. The trace lines used to present coherent zooming
stem from the concept of speed lines rooted in motion representation in still im-
ages. As much as use of these lines migrated from still images to fisheye-zoom, it
can continue to move on to other presentations as well. As the lines reflect spa-
tial history information, those presentations should be motion-based or provide
alternative means of spatial variation. The second dynamic presentation technique
introduced for display of distortion histories is the chewing gum. This gum rep-
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resents an intermediate object, created exclusively for representation of distortion
progression. Similar to trace lines, this follows a spatial-oriented dynamic presenta-
tion approach. Thus, the chewing gum may possibly be of use in any presentation
which results in spatial variation. As in the case of trace lines, this includes motion-
based techniques as well as further distortions.

7.2.2 Extend General Field of Dynamics

The set of dynamic presentation techniques introduced in this thesis provides an
idea of the broad range of dynamics. This set spans a variety of underlying presen-
tation techniques: motion, different and hybrid rendering styles, and distortions.

However, all of the techniques discussed so far concentrate on visual presenta-
tions only. The derived notion of dynamics does not yet value any integration of
multi-media components in illustration systems. Specifically, the extension of dy-
namics to include sound and variations thereof promises to add considerably to the
set of dynamic presentation techniques.

Supportive studies on perceptual issues of sound are published by the Interna-
tional Community for Auditory Display (ICAD1). In the context of this community
and related conferences, approaches to sonification as data-controlled sound have
been presented. Integration of these approaches with dynamic graphical display
techniques poses as challenge worth to be pursued.

7.2.3 Extend Field of Applications

The applications discussed throughout this thesis provide an impression of the va-
riety of principle use of dynamics for illustration purposes. Further improvements
can be achieved for each application shown as much as new illustration scenarios
can be created with dynamics as an illustrative expression dimension.

A selected continuation of one of the presented applications is in support of ex-
ternal documents in the illustration scenario of querying search engines for illus-
tration information. As of now, the respective illustration client concentrates on
handling queries defined interactively during runtime of an illustration-supported
model exploration. External documents may provide textual descriptions and an-
notations for the illustration model. This text and parts thereof may now be used
to refine queries sent to the search engine. In case the documents are composed
by experts with valuable background knowledge about the illustration model, this
promises to enhance search result quality considerably. Support for such external
model documents has already been implemented as an early draft. First results

1 Information about ICAD—the International Community for Auditory Display— is available at
http://www.icad.org/ .
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sound promising, even though test documents were created without a specific do-
main knowledge at hand. Furthermore, first tests point out that appropriate inter-
action techniques need to be developed to access not only whole documents for
inclusion in the search process but to extract most relevant subparts of a document.
Such document access may even be combined with linguistic text analysis tools in
order to optimise the model-text relationship before the user is involved in docu-
ment handling.

Communication of conflict information serves as basis for a potential application
of dynamics for data-driven illustrations. Such an illustration serves to represent
information gained throughout a retrieval application in the context of informa-
tion fusion. Thereby, a possible user information goal is to determine the quality
of intermediate and final results. During a fusion process, different stages of data
integration are employed. At each level of integration, resulting data may be sub-
ject to conflicts and mismatches of the integration process. Such dirty data may
now be mapped onto dynamic presentation. This helps to reveal possible errors
throughout the retrieval process as early as possible. Depending on the integration
level, appropriate interaction can result to solve any conflicts. By using different
dynamics for different layers, the user is directly informed about the respectively
responsible system components.

An exemplary new application area for geometry-based illustrations enhanced
by dynamic presentation techniques is in support of industrial design. Here, illus-
trations allow to reflect different stages throughout a design process. An example is
the design of a car engine. Different parts of this engine are designed independently
from each other. At various stages throughout the overall design process, parts of
the engine model are combined. Supportive illustrations point out relationships
between these parts as well as conflicts or weaknesses in the engine composition.
Dynamics may be used here to point out such conflicts and weaknesses. According
parameterisation of concrete dynamic presentation techniques employed for this
purpose helps to respect the grade of conflict. This supports the designer in the
process of identifying intermediate model weaknesses as early as possible during
the design phase.

7.2.4 Application-centred User Studies

As discussed in the previous section, a set of user studies may be carried out to eval-
uate the potential of dynamics for specific application areas. Such studies should
specifically target the application of dynamics for a concrete task at hand. This
allows to respect the context of the application domain. By using this context in-
formation at the designing stage of a user study, this study can address application
specific needs that possibly influence the value of dynamics in the concrete case at
hand.
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A Description of Document Formats

A.1 Definition of the Tigeop Schema

Listing A.1 shows the Tigeop Schema definition. Individual types of the Schema
represent direct mappings of the formal notations presented in Sections 4.3 and 4.4.
Lines 11–18 of the listing define the overall structure of a document instance. As
presented in Section 5.4.3, a Tigeop document consists of:

• A description of employed dynamics presentation techniques,

• The geometric scene description, and

• A set of object presentation definitions.

The string type for the geometry definition in line 13 is to be interpreted as contain-
ing a scene graph in Open Inventor format.

Presentation methods are defined in lines 19–33 and bridge between the attribute
set AM of Kreuseler and Schumann’s framework as outlined in Section 4.3 and
the set D of the temporal parameterisation function δ from Section 4.4. Attributes
for the individual methods are defined as methodPropertys in lines 30–33. Their
content model is empty. Therefore the property element for each presentation method
conveys both the name and the value of a specific method attribute. Depending
on the content of these attributes in a document instance, its resulting rendering
is to be interpreted as producing either photorealistic or non-photorealistic image
components.

The heart of a document in regard to the temporal modelling of hybrid rendering
styles is the definition of object presentations in lines 34–48. These presentations
represent the evaluation of individual rendering styles at defined time points for
the given durations. The temporal dependencies conform to the above algebra defi-
nition. Similar to the method properties mentioned above, the content model for an
object’s present description is empty which results in all parameters being specified
as element attributes. Exemplary excerpts of document instances showing the use
of hybrid rendering style descriptions are presented in the next section.

Listing A.1: XML Schema definition for Tigeop.

<?xml vers ion = ’ 1 . 0 ’ encoding = ’UTF−8’?>
<xsd : schema xmlns : xsd =" ht tp ://www. w3 . org /2001/XMLSchema">
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<xsd : annotation >
<xsd : documentation xml : lang ="en">

Schema f o r temporal ly inf luenced geometry p r e s e n t a t i o n .
Copyright ( c ) 2002−4 Univers i ty of Magdeburg .
Al l r i g h t s reserved .

</xsd : documentation >
</xsd : annotation >
<xsd : element name=" t igeop " type =" tigeopType "/>

<xsd : complexType name=" tigeopType ">
<xsd : sequence >

<xsd : element name=" presentationmethods "
type =" presentationMethodType "
minOccurs="0"/ >

<xsd : element name=" ivscene "
type =" xsd : s t r i n g "
minOccurs = " 1 " maxOccurs="1"/ >

<xsd : element name=" s c e n e o b j e c t s "
type =" sceneObjectsType "
maxOccurs="unbounded"/>

</xsd : sequence >
</xsd : complexType>
<xsd : complexType name=" presentationMethodType ">

<xsd : sequence >
<xsd : element name="method "

type ="methodType "
maxOccurs="unbounded">

</xsd : sequence >
</xsd : complexType>
<xsd : complexType name="methodType">

<xsd : a t t r i b u t e name=" id " type =" xsd : i n t e g e r "/>
<xsd : a t t r i b u t e name="name " type =" xsd : s t r i n g "/>
<xsd : sequence >

<xsd : element name=" property "
type =" methodPropertyType "
maxOccurs="unbounded"/>

</xsd : sequence >
</xsd : complexType>
<xsd : complexType name=" methodPropertyType">

<xsd : a t t r i b u t e name="name " type =" xsd : s t r i n g "/>
<xsd : a t t r i b u t e name=" value " type =" xsd : s t r i n g "/>

</xsd : complexType>
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<xsd : complexType name=" sceneObjectsType ">
<xsd : sequence >

<xsd : element name=" o b j e c t "
type =" sceneObjectType "
maxOccurs="unbounded"/>

</xsd : sequence >
</xsd : complexType>
<xsd : complexType name=" sceneObjectType ">

<xsd : a t t r i b u t e name=" id " type =" xsd : s t r i n g "/>
<xsd : a t t r i b u t e name="name " type =" xsd : s t r i n g "/>
<xsd : element name=" present " type =" presentObjectType "/>

</xsd : complexType>
<xsd : complexType name=" presentObjectType ">

<xsd : a t t r i b u t e name="method " type =" xsd : i n t e g e r "/>
<xsd : a t t r i b u t e name=" s t a r t " type =" xsd : dateTime"/>
<xsd : a t t r i b u t e name=" duration " type =" xsd : time "/>

</xsd : complexType>
</xsd : schema>

A.2 Exemplary XML Document According to the
Tigeop-Schema

Listing A.2 shows a small example of a presentation document based on the above
Tigeop Schema. This presentation consists of a scene with only one object. This
object is rendered with silhouette NPR style using a chalk texture. Use of this NPR
emphasis is only valid for a specific interval during the overall presentation.

Listing A.2: Example of a Tigeop presentation document.

<?xml vers ion = " 1 . 0 " encoding ="UTF−8"?>
<t igeop xmlns : x s i =" ht tp ://www. w3 . org /2001/XMLSchema−i n s t a n c e "

x s i : noNamespaceSchemaLocation =" Tigeop . xsd">
<presentationmethods >

<method id = " 1 " name=" Chalky">
<property name=" t e x t u r e " value =" chalky .xpm" / >
<property name=" l i n e t h i c k n e s s " value ="7" / >

</method>
</presentationmethods >
<ivscene >

# Inventor V2 . 1 a s c i i
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Separator {
BaseColor {

rgb 0 . 5 0 . 5 0 . 9 5
}
Complexity {

value 0 . 2
}
Sphere {
}

}
</ivscene >
< s c e n e o b j e c t s >

< o b j e c t id = " 1 " name=" Sphere ">
<present method = " 1 " s t a r t ="PT7 . 5 S " durat ion ="PT4 . 2 S " / >

</o b j e c t >
</s c e n e o b j e c t s >

</tigeop >

The temporal specifications are constructed as follows:

• Each time stamp respectively each specification of a duration starts with a P.

• Year, month, and day specifications follow.

• The specification of time stamps shorter than a day are prefixed with a T.

• Each number is followed by its »unit« (H for hours, M for minutes, S for sec-
onds).

Undocumented time spans with regard to rendering styles are to be presented clas-
sically, that is by use of photorealistic rendering.

A.3 WSDL Schema

As discussed in Section 5.4.3, a WSDL document describes the interface and imple-
mentation of a web service protocol. The following two subsections present the
according Tigeop documents.

A.3.1 Description of the Tigeop Interface

Listing A.3 shows the interface description of Tigeop. The following possible mes-
sages qare specified by this WSDL description:
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• setScene with String as parameter type which requires a scene description
in Open Inventor format.

• presentObject with following parameter/type pairs:

– id : String

– start : Date

– duration : Date

– property : StringSequence

The operations that follow out of this specification are direct representations of
the messages and therefore setScene and presentObject .

Listing A.3: Tigeop interface description.

<?xml vers ion = " 1 . 0 " encoding ="UTF−8"?>
<wsdl : d e f i n i t i o n s name=" T i g e o p I n t e r f a c e D e s c r i p t i o n "

targetNamespace =" urn : T i g e o p I n t e r f a c e "
xmlns : tns =" urn : T i g e o p I n t e r f a c e "
xmlns : soap =" ht tp :// schemas . xmlsoap . org/wsdl/soap /"
xmlns : wsdl=" ht tp :// schemas . xmlsoap . org/wsdl/">

<wsdl : message name=" setScene ">
<part name="name " type =" xsd : s t r i n g " / >

</wsdl : message>

<wsdl : message name=" presentObjec t ">
<part name=" id " type =" xsd : s t r i n g " / >
<part name=" s t a r t " type =" xsd : dateTime " / >
<part name=" duration " type =" xsd : time " / >
<part name=" property " type =" str ingSequence " / >

</wsdl : message>

<wsdl : portType name=" T i g e o p I n t e r f a c e ">
<wsdl : operat ion name=" setScene ">

<wsdl : input message =" tns : se tScene " / >
</operation >
<wsdl : operat ion name=" presentObjec t ">

<wsdl : input message =" tns : presentObjec t " / >
</wsdl : operation >

</wsdl : portType >

<wsdl : binding name=" TigeopBinding "
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type =" tns : T i g e o p I n t e r f a c e ">
<!−− This i s no c l a s s i c RPC over HTTP−−>
<!−− but a custom Qt t r a n s p o r t . −−>
<soap : binding

s t y l e =" rpc "
t r a n s p o r t =" ht tp :// schemas . xmlsoap . org/soap/http " / >

<wsdl : operat ion name=" setScene ">
<soap : operat ion soapAction =" urn : Tigeop " / >
<wsdl : input >

<soap : body
use =" encoded "
namespace =" urn : Tigeop "
encodingStyle=
" ht tp :// schemas . xmlsoap . org/soap/encoding /" / >

</wsdl : input >
</wsdl : operation >
<wsdl : operat ion name=" presentObjec t ">

<soap : operat ion soapAction =" urn : Tigeop " / >
<wsdl : input >

<soap : body
use =" encoded "
namespace =" urn : Tigeop "
encodingStyle=
" ht tp :// schemas . xmlsoap . org/soap/encoding /"

/>
</wsdl : input >

</wsdl : operation >
</wsdl : binding >

</wsdl : d e f i n i t i o n s >

A.3.2 Description of the Tigeop Implementation

The Tigeop implementation description is provided in Listing A.4. This description
defines that the Tigeop service is provided via host arthur.cs.uni-magdeburg.de as a
web service.

Listing A.4: Tigeop implementation description.

<?xml vers ion = " 1 . 0 " encoding ="UTF−8"?>
<wsdl : d e f i n i t i o n s name=" TigeopImplementationDescription "

targetNamespace =" urn : TigeopImplementation "
xmlns : tns =" urn : TigeopImplementation "
xmlns : soap =" ht tp :// schemas . xmlsoap . org/wsdl/soap /"
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xmlns : wsdl=" ht tp :// schemas . xmlsoap . org/wsdl/">

<wsdl : import namespace=" urn : T i g e o p I n t e r f a c e "
l o c a t i o n =" T i g e o p I n t e r f a c e D e s c r i p t i o n . wsdl " / >

<wsdl : s e r v i c e name=" TigeopService ">
<wsdl : port name=" TigeopPort "

binding =" TigeopBinding ">
<!−− Location of the Tigeop s e r v i c e −−>
<soap : address

l o c a t i o n =" t igeop :// arthur . cs . uni−magdeburg . de/" / >
</wsdl : port >

</wsdl : serv ice >
</wsdl : d e f i n i t i o n s >
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3D fisheye, 44
3D illustration model, 161
3D-Zoom, 74

a priority importance, 42, 47
absolute dates, 124
abstract information landscape, 176
abstraction

from graphics hardware, 135
access to data sources, 175
actions, 34, 110
active exploration, 179
active objects, 111
active search queries, 165
acyclic graph, 106, 154
adaptive illustration, 176
adaptivity for application areas, 149
adjuncts, 149
aftereffect, see movement→apparent
aggregation, 175

control, 177
alarms

detection and processing, 93
α-blending, 68
alter vertex positions, 55
altitude, 171
amount of overlapping, 57
amount of volume, 80
amplitude range, 57
analysis and abstraction, 151
anatomical context, 179
Angie, 152

animated
graphical layering, 14
transparent layers, 14

application
telecommunication, 93

applications, 157
archimedic spiral, 12
ArcInfo, 173
ArcView, 173
arrows, 44
artifacts, see stimuli→unrecognisable
AsbruView, 96
aspect ratio, 75
assertions and test collection, 149
asynchronous parallel composition, 113
attribute

function, 33
set, 33

automatic learning, 32
available information sources, 151
awareness, 94

tools, 26
axioms, 114

bank-customer relationship, 174
batch operation, 175
bearing device, 180
beyond nested graphs, 43
binary parallel composition, 113
bindings, 150
bioinformatics, 174
blinking, 165
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bounding box, 44
branching states, 105
browsing, 164
built-in priorities, 42

cartoon shading, 66
change

of colour, 26, 45
over time, 18

chewing gum
iteratively defined, 82

chewing gum
morph function, 81
ripped up, 80

circular glyph representations, 160
civilised environments, 9
classes of bank customers, 174
client priorities, 42
client/server environment, 147
climate data, 24, 170
cloud rendering, 172
clusters, 159
Co-nets, 106
cognitive

load, 27
resolving task, 30

cognitive limitations, 45
cognitive restrictions, 95
coherence

arc-length, 95
frame-to-frame, 95

collaborative information pools, 94
colour

cultural background, 45
dark purple, 45
emotional state, 45
green-blue-purple area, 45
grief, 45
negative effect, 45
positive appeal, 45
saturation, 45
yellow-black combinations, 45

yellow-red area, 45
colour blinking, 26
communicating sequential process, 113
communication bandwidth, 31
communication interface protocol, 149
complete

knowledge, 101
reordering, 100
temporal knowledge, 93

completeness, 43
of a result set, 155

component-based, 161
middleware, 152

components, 133
composition methods, 111
computerised control systems, 93
computing operation, 93
computing-based algorithms, 108
conceptional neighbourhood, 93
concrete location points, 171
concurrency, 94, 111

constrained, 90
evaluation function, 122

concurrent
systems, 114
trajectories, 121

concurrent dynamics
layer model, 121

cone trees, 47
connection threshold, 80
consecutive scheduling, 127
constrain, 148
constraining parameterisation, 30
constraints

violation of, 95
construction of information objects, 49,

61
context information, 31
continuity constraints, 127
contour, 78
contour lines, 44, 76
contours, 172
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control function
temporal, 124

convex hull, 28
cooling aggregate, 178
coordinate management methods, 111
Corba, 148
cosine function, 136
crosshair, 44
crossing the cognitive gap, 163
CSCW, 20
curvilinear grid, 171
cutaway view, 44
cycles per second, 137
cyclic

petri nets, 106
relations, 97

daily weather data, 171
data

access, 151
daily weather, 171
extract patterns from distribution,

62
heterogeneous sources, 150
integration, 151
mining, 151
multidimensional, 96
real world, 33
semantically connected, 12
sources, 42
stream, 20
tables, 34
temporal, 96
temporal flow, 172

database
integration, 151
technology, 150

databases, 90
deformation

dinosaur, 21
degree

of interest, 47, 75

of similarity, 159
of variation, 93

degrees of freedom, 86
delayed blending, 68
demagnification, 73
demarcation, 44
detailed design phase, 178
detection of silhouette edges, 141
dimensionality, 90
dimensions, 33
directionTurn, 140
disguise objects, 45
distance, 41, 63, 79

function, 47
distance field metamorphosis, 82
distant points, 42
distinction property, 121
distorted presentation, 42
distortion

fisheye, 47
histories, 72

distributed applications, 148
DMOZ, 162
document summary, 162
dot density, 14
double

interval, 119
pairs of faces, 54

double-linked lists, 141
dual use of image space, 28
duration, 14
duration specification, 124
dynamic

hierarchy computation, 34
textures, 23

dynamics
by distortions, 28
by rendering styles, 65

use of, 164, 166, 167, 176, 177
classes, 122
cognition, 9
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effective use of, 25
evaluation of schedules, 123
fading out, 124
full potential, 89
fundamentals of, 9
global, 29
landscape, 22
local versus global, 30
merging, 124
patterns

consecutive, 118, 120
modifiable, 118, 120

perception, 9
reduced number of, 124
representation

parameterisation, 120
set of, 146
trajectory, 116

events, 117
intervals, 118
single, 116

use of, 157
dynamics management unit, 148
dynamics stimulus window, 15–17, 72,

90, 122, 129

edge
concatenation, 141
lookup, 140

edges, 141
effect on scene coherence, 85
elastic

time, 104
transformation, 82

emissive colour, 144
blending, 70

emotional state, 45
emphasis

classification, 43
property, 40

engine, 138
engineering models, 177
ensure visibility, 43, 45
ensuring scene consistency, 121
essence of information, 31
ETL, see evolving temporal logic
event

function, 117
group, 117
prefix, 113
trace diagrams, 106

events
as time steps, 91
being intervals, 109
comparison of, 89
complete linear order, 124
external, 94
handling of, 91
inexact, 97
insertion of, 89
internal, 94
nondeterministic, 94
pre-modelling of, 94
reactions on, 96

evolving temporal logic, 114
examination

of anatomical objects, 179
of results, 163

exemplary scatterplot, 173
expressive renditions, 65
expressiveness, 42, 45
external

choice, 113
documents, 187

external documents, 160
extracting information, 162
extrusion, 81
eye

anatomic characteristics, 9
geometric model of, 59
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FERRET, 172
filtered technique, 42
financial application scenario, 173
finishing shift, 97
Firefly, 103
fisheye, 47
fisheye text combination, 47
flat graphs, 43
flexible frameworks, 149
flow

of function evaluation, 21
of patterns on a surface, 53
representation, 53

focal point, see focus point
focus and context, 48
focus point, 42
fold plane, 56
foot model, 179
formulas

in a specification, 125
framework formalisation, 33
FraQL, 152
free-form

function, 58
function evaluation, 138
vertex manipulation, 138

fusion, 90
engine, 152
operators, 151
process, 151, 152

layout of, 173

gantt charts, 19
geographic information systems, 173
geometric

description, 34
input topologies, 43

geometry
data nodes, 142
point-based, 80

getCenter, 140
GIS, 173
global

effect, 28
grade of variation, 43
object information, 30

Gooch shading, 68, 71
Google, 158
grade of variation, 43
GrADS, 172
granularity

level, 134
refinement, 103

graph
acyclic directed, 101
constrained propagation, 100
duration-based, 101
exact time stamps, 99

grid services, 149
group function, 117
group of related objects, 72
Grouper, 159
groups

merge similar objects, 62

helper function, 135
heterogeneous data sources, 150
hidden line removal, 141
hierarchic

composition, 109
temporal intervals, 108
time lines, 19

hierarchies, 43
hierarchy model

of concurrency layers, 121
of dynamic presentation variables,

25
of interval layers, 119

hierarchy of bounding spheres, 80
high-dimensional data, 62
HLA, 148
human time-organisation system, 16

XVII



Index

hybrid
parallel composition, 113
presentation, 65
rendering styles, 141

hyper-media documents, 94
hyperbolic layouts, 47
Hyperstories, 104
hypertext illustration, 47

illumination model, 70
illusion, 29
illustration

effectiveness of, 32
goal, 30, 32
model, 126

data-driven, 3, 34
geometry-based, 3, 34, 94

result quality, 33
scenario, 34
subject, 34
target function, 32, 126

complete relations, 39
evaluation and limitation, 39
fully defined, 39
limit flexibility, 39
restrictions, 39
sound relations, 39
system properties, 36

techniques
classic and static, 40
classification systems, 40

illustration domain
properties of, 32

implementation, 133
basis, 133
overhead, 44

implicit technique, 42
importance value, 158
impulse response function, 21
inequality constraints, see temporal→

inequalities
information

dimensionality, 18
gathering operators, 153
objects, 33
overload, 151
set, 33
space, 33
storage areas, 94
structure, 33
system-external, 89

information density challenge, 73
information fusion, 169

context, 150
testbed, 152

information mural
motion-enhanced, 60
use of, 173

information space
miniature version of, 60

InFuse, 152
input data image, 61
input from channel, 113
instance counting, 162
intensity, 78, 79
inter-object

relationships, 160
inter-stimulus interval, 15
interaction, 90

computer systems, 108
diagrams, 106
histories, 108
layer model, 177
machines, 108
pan and zoom, 48
techniques, 35

interactive
definition of queries, 161
illustrations, 33

intermediate results
gradually refined, 175

internal
choice, 113
system information, 33
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internet media lab, 94
interoperability of services, 149
interplay

of nodes, 142
of toolkits, 135

interpolation
function, 119
scheme, 97

interpretation
human or mechanical, 34

interrupt, 113
interval

catalogue, 147
coherence, 108
composites, 109
diagrams, 108
flexibility, 93
handling functions, 129
length limitations, 127
limiting borders, 127
relations, 92
relationships, 90
sequence, 120
structure, 74

intervals
combination, 90
complete, 126
discretisation, 90
groups of, 93
management of, 90
merging and discretisation of, 129
merging of, 90
modelling of, 92
relational operations, 90
self-contained, 126
separation, 120

intra-object style modification, 107
invalidation of spatial relation, 73
irregular shape, 51
iterative fusion, 151
iteratively defined chewing gum, 82
itf, see illustration target function

Japanese Shinkansen trains, 19

Kartoo, 160, 163
keys to classification, 43
keyword collection, 158
knowledge

base, 90, 157
discovery, 94

landmarks, 73
landscape mapping, 176
lap function, 58
large data sets, 174
large volumes of data, 150
latency representation, 176
latitude, 171
layers, 25
layout

of a fusion process, 173
of documents, 149
of toolkits, 135

level of transparency, 46
LifeLines, 19
lightness, 79
limit function influence, 56
linguistic categories, 96
list of scheduled dynamics, 148
local

effect, 28
grade of variation, 43
time, 114

location parameters, 171
longitude, 171

machine learning, 151
macroscope, 48
Magdeburg, 171
magic eye view, 34
magic lenses, 48
magnification, 73
main interest scalar, 62
maintain

dynamics, 146
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intervals, 146
maintenance life cycle, 177
mapping

onto textures, 23
material information, 134
materialise individual objects, 134
mean

temperature threshold, 173
values, 171

measuring function, 52
memorability, 73
memory space, 94
messages, 150
messaging framework, 149
meta data, 97, 152
meta search engine, 160
meta-data

representations, 173
meta-information

representation of, 152
metamorphosis function, 80
metaphor

book, 23
dynamic, 22
river, see ThemeRiver

method groups, 111
methods

invoked on object instances, 106
line-oriented, 66
self-referential, 107

middleware, 148
component-based, 152

midpoint rotation, 51
minimum function, 63
mixed realities, 94
model

automatic checkers, 96
exploration, 180
granularity, 124
graph-based, 98
organisational structure of, 59
task-oriented, 19

model annotations
manually prepared, 157
predefined, 36

model presentations, 177
modelled world, 34
models

object-oriented, 106
petri nets, 105

modern communication networks, 150
morphing, 28
motion

abstract patterns, 13
apparent, see movement→apparent
autokinetic, 11
by structural change, 53
by structural change, 138
constraint factor, 63
explicit techniques, 29
function, 138
mapping, 52, 62
oscillation, 136
oscillations, 29
recognition, 9
rotations, 29
stroboscopic, 10
techniques, 48
threshold function, 173
toolkit, 135
trajectory, 10, 76
translations, 29
value and risk, 13

motion-enhanced
information mural, 60
scatterplot, 173

movement
apparent, 10, 16, 29
eye-head, 10
image-retina, 9
perception, 9
recognition, 9

multi layered representation models, 34
multimedia

XX



Index

web search, 159
multimedia presentation, 109

interactive, 94
multiple

focus points, 42, 74
NPR styles, 142
objects, 43
translucent layers, 48

multiset layer, 122
mural

motion function, 64
parameterisation, 173

navigating fisheye, 73
nearby points, 42
necer cube, 16
negative folding effect, 57
neighbouring vertices, 56
nested graphs, 43
neural networks, 32
nodekits, 136
non-photorealistic rendering, 65

coherence of, 95
normal blending, 68
NPR, 65

line rendering, 141
numerical simulation data, 24

object
attributes, 106
deformations, 75
flexibility, 107
hierarchies, 93

object-document relationships, 160
object-oriented

design principles, 106
model based on time lines, 111

occurrence counting, 162
ocean waves, 53
ODA, see standard document architec-

ture
online aggregation, 175

open interface description, 149
Open Inventor, 135
OpenGL, 135
OpenNPAR, 135, 139
operating environment, 93
operations, 35

in a specification, 125
OR-combined, 160
ordering of scene elements, 35
organisation of information objects, 53
orientation information, 93
oscillating motion, 136
oscillation, 49

frequency, 137
function, 52, 136

overlap value, 174
overlapping object locations, 174

page rank, 163
parallel composition, 113
parallel-first, 111
parallel-last, 110
parallelism, 94
parameter list, 138
parameterisation

documents, 146
function, 121
of stroke styles, 141

particle paths, 24
pass, 148
path expressions, 110
patient data, see time line browser
pattern

landscape, 22
motion, 25
periodic, 21

pen on paper metaphor, 71
PendelKit, 137
percept, 34
perception

figure-ground, 15
of objects, 15
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perceptive influence, 28
period of repetition, 95
peripheral vision, 14
permutations of object faces, 54
Perspective Wall, 47
PERT network, 101
petri nets, 105

evolving concurrent object, 106
physical constraints, 93
pliable surfaces, 47
point-based geometry, 80
port types, 150
ports, 150
post-evaluation layer, 123
practical use of a mural, 64
pre-evaluation layer, 123
precipitation, 171

threshold, 173
preemptive visual clues, 119
presentation

and processing, 152
aspect of, 89
context

medical visualisations, 43
definite, 120
example, 120
flexible, 120
framework, 33
model

state of, 90
of multiple search results, 168
of technical objects, 177
ordering, 109
performance, 56
periphery, 15
scheduling, 90
space, 40
techniques

overview, 40
temporal border of, 127
unit, 89

preserve scene-related context, 45

primer, 149
primitive functions, 138
priorities, 42
priority

algorithm, 41
designation, 42

programming interface, 158
propagation, 93
proxy design pattern, 147
pseudo dates, 99
PulseKit, 137

QSplat, 80
queries

sent to a search engine, 157
query

interface, 158
processor, 152
refinement, 177

querying
individual objects, 160
multiple objects, 160

railroad schedules, see Japanese Shinkansen
trains

rainfall, 171
range factor, 82
ranking information, 163
re-scheduling of dynamics, 123
reachability graph, 95
reaction times, 9
reactive systems, 105, 114
reactivity, 93
readings of simple sentences, 96
real world data, 33
recursive program, 113
reference intervals, 92
regional

grade of variation, 43
regret, 148
regular shape, 51
relabelling, 113
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related web pages, 162
relation

some-together, 97
relational filters, 35
relations, 33, 35

any order, 97
between objects, 134
complete, 93
forwarding, 109
in a specification, 125
inter-object, 158
transitive, 93

relative positions, 93
relevance, 164
repeating

attributes, 54
motion patterns, 49

repetition, 111
representation image, 61
represented world, 32, 34, 126
restricting dynamic character, 123
result

list, 138
page URL, 162
viewer, 161

ResultSet, 162
retina, 9
retrieval, 150
rewriting logic, 106
rigid transformation, 82
rings, 141
rotation, 50

around arbitrary point, 51
centre, 29

sampled output, 93
SbWingedEdge, 141
scale, 77

factor, 164
scatterplot, 172

motion function, 174
scene coherence

limit influence on, 84
motion, 50

scene description, 150
scene graph, 35, 133

uniform access, 136
wrapper, 141

scene model, 34
scene modifications, 35
schedule, 148
scope, 34
screws, 180
search

engine, 90, 157
for 3D models, 158

illustration system, 161
mediator, 162
result

evaluation, 162
illustration, 163
mapping onto rendering param-

eterisation, 164
server, 161
term, 162
timeout, 165

see-through effect, 46, 69–70, 145, 167
selection nodes, 142
selection of interest items, 164
selective, 111
self-organising maps, 34
semantic

background, 35
web, 94

semantically linked object clusters, 160
Semi-Intervals, 93
sensors, 93
separator node, 137
sequence, 43
sequential, 111

composition, 113
set of

catalogues, 146
control values, 144
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key positions, 137
possible occurrences, 20

shading artifacts, 70
shadow volume, 44
shaft, 180
shape analysis, 159
shape vis, 34
shapes, 140
shield, 180
ShuttleKit, 136
signals, 93
signature, 125
silhouette rendering, 79
silhouettes, 66
similarity queries, 159
simultaneous dynamics

limit, 122
single

interval, 119
NPR style, 141
objects, 43

skip, 113
smooth transition, 72
snapshot representation, 114
SOAP, 149
SoCalculator, 138
SoGenerateWingedEdge, 141
solar radiation, 171
SOPOs, see set of possible occurrences
sorted blending, 68
sorts

in a specification, 125
SoSelectWingedEdge, 143
SoStoreWingedEdge, 143
SoWingedEdgeElement, 142
SoWingedEdgeListElement, 143
spatial

challenge, 73
correlation, 73
frequency, 14
gaps, 74
knowledge, 93

structure, 50
spatio-temporal block, 22
specification, 124
speed discrimination, 14
speedlines, 75
spiral, 20
splatting, 172
splitting, 113
spot noise, 23
standard document architecture, 109
starting shift, 97
state

diagrams, 105
invalidation, 91
updating, 91
variables, 96

states
in petri nets, 105

steady changes of shape, 72
steering search for patterns, 63
stencil buffer, 69
stimuli, 9

local, 30
recognisable, 30
unrecognisable, 30

stimulus
contrast, 14
parameters, 15
ranges, 16

stored structural knowledge, 30
streamlines, 24, 172
structural change

by folding, 56
structural changes, 53
styles

transition between, 143
stylisation pipeline, 141
stylised silhouette rendering, 67
subjective text, 96
suck in light, 70
supplied priorities, 42
surface shading techniques, 66

XXIV
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surfals, 80
synchronisation

constraints, 110
intra-object, 103
methods, 111
window, 15

synchronised parallel composition, 113
system

expected behaviour of, 32
interrupt-driven, 93
properties, 36
response

automatic evaluation of, 33
restrictions, 37
semantics, 34
time-driven, 93

tabbed widgets, 164
Tardis, 22
target function, 32

evaluation and limitation, 39
fully defined, 39
illustration, 32
iteratively defined, 32
restrictions, 39
system properties, 36

taxonomy, 2
TCSP, 113
temperature, 171

span, 173
temporal

actions, 89, 108
actions of a user, 105
activities, 111
behaviour, 18
behaviour distribution, 107
change, 18
coherence, 95
complex models, 93
consistency, 95
constraints, 89, 90
control events, 93

control function, 124
databases, 114
dependencies, 90, 93
distance, 10
entity, 89
equalities, 103
evaluation entity, 94
event encapsulation, 106
external source of information, 90
frame, 10, 95
frequency of evaluation, 93
fusion characteristics, 153
granularities, 127
granularity, 109
graph, 127, 170

events, 127
intervals, 127, 128
reference scenario, 128

incoherence, 95
inconsistency, 94
inequalities, 103
languages, 112
logic, 112
model, 35

classification of, 96
graphical representation, 127
interaction and determinism, 93

modelling, 96
state-based approach, 112

networks, 124
nondeterministic behaviour, 94
orders, 90
parameterisation values, 144
presentation model, 116
preservation of consistency, 90
pushing behaviour, 93
reference scenario, 97
relations, 90, 92, 100
requirements, 89

event-based, 91
interval-based, 92
structural, 94
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restricted, 89
server, 145
structure, 107
synchronisation points, 107
zoom, 19

temporal data flow, 172
temporal-order threshold, 15
temporally influenced geometry presen-

tation, 145
terminating user event, 169
termination, 113
text

legibility of, 28
transformations, 28

Text Illustrator, 157
text-based queries, 159
textual result list, 164
ThemeRiver, 20
threshold

dimensions, 63
values, 61

threshold dimensions, 173
Tigeop, 145

documents, 149
service, 149

time
absolute, 93
annotations, 97
as intervals, 92
axis, 19, 96, 107
granularities, 112
human perception of, 109
relative specification, 93
representation, 18
stamps, 101
units, 113

time line, 18, 96
browser, 19
interface, 94

time-stamped traces, 108
timed

delay, 113

objects, 109
prefix, 113

timeout, 113
timing requirements, 93
toolkits, 133

layout of, 135
trace line, 75
transaction

commit, 123
start, 123

transfer function description, 138
transformation

dimension, 41
functions, 125

transformer, 128
information, 134

transformer, 128
transition

between styles, 143
engine, 144
in petri nets, 105

transitivity, 127
translation, 50, 77
transparency, 45, 68, 144
tree structure, 109
tree view, 164
tree-maps, 47
triangle fights, 70
true concurrency, 106
two pass rendering, 72

UML, 106
URL, 158

matching, 162
use of presentation variables, 35
user

assembly, 180
information needs, 32
interaction, 91, 94
interface

non-visual, 108
visual, 108
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model, 32, 33
parameters, 34

perception, 34

validation, 95
variable

rendering styles, 26
set, 125
text, 28

variables
in a specification, 125

vertex of interest, 56
vertices, 141
viewing directions

degree of freedom, 61
virtual spiral, 164
visual

attention
attracting and directing, 26

data mining, 33
metaphors, 13

visualisation toolkit, 153
visually identify, 175
VTK, 153

W3C, 149
warp function, 82
waterfall, 12
waves

breaking of, 53
weather forecasts, 171
web search evaluation, 159
web service, 148

description language, 149
environment, 149
interoperability, 162

widgets
tabbed, 164

wind-run, 171
WingedEdge data structure, 140
work load, 178
workbench for information fusion, 150

world-wide distribution, 150
WSDL, 149

XML Schema, 150

yellow-black combinations, 45

zoom
boundaries, 74
loop, 83
path

of an object, 80
zooming, 28
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