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„Don’t go wasting your emotion“
- ABBA





Zusammenfassung

In der heutigen Zeit der zunehmenden Autonomie im Straßenverkehr, gewinnen Sy-
steme zur Erkennung des Fahrerzustandes immer mehr an Bedeutung. Über die
Anaylse des Lenkverhaltens und des Blickverhaltens des Fahrers können einige Zu-
stände bereits zum Stand der Technik in der Automobilindustrie gezählt werden.
Der tatsächliche intrinsische Zustand des Fahrers, der z.B. durch Feedbacksignale
aus Sprache, Mimik oder Gestik wiedergegeben werden kann, wird momentan noch
vollständig außer Acht gelassen.

Ziel dieser Arbeit ist es, diese Forschungslücke weiter zu schließen, indem die Emo-
tionalität des Fahrers anhand seiner Sprache erkannt und systemseitig berücksichtigt
werden kann. Um dieses Ziel zu erreichen, muss die vollständige Prozesskette von
der Datenerhebung, über die Datenvoranalyse und ggf. die Durchführung digita-
ler Signalverarbeitungs-Schritte, bis hin zur Datenklassifizierung und schlussendlich
der Bewertung der erhaltenen Ergebnisse im Vergleich zu anderen Forschungsergeb-
nissen aus diesem Bereich, berücksichtigt werden. Die Gesamtheit jedes einzelnen
Prozessschrittes muss hierzu dem Leser nähergebracht werden. Dies begründet auch
den Umfang der vorliegenden Arbeit.

Zu Beginn der Arbeit werden dem Leser folgende drei Forschungshypothesen vorge-
stellt, die im Laufe der Arbeit wiederholt aufgegriffen werden:

1. Hypothese: Es ist möglich dem Fahrer während der Fahrt naturalistische Emo-
tionen zu induzieren.

2. Hypothese: Es ist möglich Störungen des Sprachsignales zu kompensieren.

3. Hypothese: Falls Hypothese 1 und 2 bestätigt werden, ist es möglich automa-
tisch den emotionalen Zustand des Fahrers anhand prosodischer Sprachmerk-
male zu erkennen.

Durch die sehr geringe Datenlage in diesem Forschungsgebiet wurden zwei Daten-
aufnahmen durchgeführt (simuliert und real). Anhand erster simulierter emotiona-
ler Sprachdaten im Fahrzeug konnten erste Erkenntnisse über die Beschaffenheit der
Daten und das Potential zur Erkennung des emotionalen Zustandes, erlangt werden.
Anhand einer weiteren Datenaufnahme, induzierter Emotionen unter realen Fahrbe-
dingungen, konnten Detailinformationen zur Erkennung von vier Fahrerzuständen
ermittelt werden (neutral, positiv, verärgert und ängstlich). Die aufgenommenen Da-
ten wurden, anhand der Selbsteinschätzung des Fahrers (unter Verwendung des Ge-
neva Emotional Wheel und den Self-Assessment Manikins) und einer Auswertung
ihrer bio-physiologischen Daten, auf ihre emotionalen Inhalte und ihre Verwendbar-
keit validiert.
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Da realitätsnahe verrauschte Sprachdaten sehr zeitaufwändig in ihrer Generierung
sind und zu Beginn der Arbeit noch nicht vorlagen, wurden erste Untersuchun-
gen anhand komprimierter Sprachdaten durchgeführt. Anhand dieser Daten wur-
de der Effekt digitaler Signalverarbeitungs-Algorithmen auf das Sprachsignal, die
Sprach- und Signalqualität und die Erkennung der Emotionen analysiert. Es konn-
te festgestellt werden, dass die angewendeten Audio-Codecs je nach ihrem desi-
gnierten Einsatzgebiet unterschiedliche Einflüsse auf die Sprach- und Signalqualität
und die Erkennungsleistung der Emotionen haben. Vor allem Codecs, die für die
Komprimierung von Musik entwickelt wurden, haben einen geringeren Einfluss auf
die Emotionserkennung als Codecs, die für die Telekommunikation entwickelt wur-
den. Im Fall der Anwendung von Musik-Codecs konnte sogar eine Verbesserung
der Erkennungsleistung im Vergleich zu unkomprimierten Sprachdaten erzielt wer-
den. Ähnliche Untersuchungen wurden anhand der simulierten emotionalen Sprache
im Fahrzeug durchgeführt, indem die im Original unverrauschten Sprachdaten mit
ihren künstlich verrauschten Versionen verglichen wurden. Diese Untersuchung zeig-
te, dass die Natürlichkeit der Emotionen in der Sprache und die Natürlichkeit der
Datenaufnahmen selbst, den Effekt der Fahrgeräusche auf die Signalqualität beein-
flusst. Des Weiteren konnte ein eindeutiger Rückgang der Erkennungsleistung im
Zusammenhang mit der Abnahme der Signalqualität erkannt werden.

Zur weiteren Nutzung der Datenaufnahmen im realen Fahrzeugumfeld wurde eine
Annotation der Daten durchgeführt. Dies beinhaltete eine dimensionale und katego-
riale Bewertung, die in sich eine hohe Übereinstimmung aufwiesen. Die Ergebnisse
zeigen, dass die Emotionen des Fahrers auch in seiner Sprache widergespiegelt wur-
den und somit als Datenbasis für die automatische Erkennung natürlicher Emotionen
im Fahrzeugumfeld genutzt werden können.

Aus der (automatischen) Sprachverarbeitung ist bekannt, dass die Anwendung von
Sprachverbesserungs-Verfahren (engl. speech enhancement) zu einer bemerkenswer-
ten Erhöhung der Erkennungsraten und des Sprachverständnisses führen kann. Um
zu untersuchen, ob dieser Effekt auch einen Einfluss auf die Erkennungsrate der
Emotionen hat, wurden Untersuchungen zur Anwendbarkeit dieser Algorithmen auf
verrauschter emotionaler Sprache durchgeführt. Es konnte festgestellt werden, dass
die Anwendung dieser Verfahren zu einer starken Manipulation des Merkmalsraums
führt, die im Vergleich zu verrauschter Sprache jedoch keine Verbesserung der Er-
kennungsleistung mit sich bringt. Um die Manipulation des Merkmalsraum nicht
als zusätzlichen Freiheitsgrad in die Prozesskette mit einfließen zu lassen, wird die
Anwendung eines solchen Verfahrens nicht empfohlen.

Unter Berücksichtigung der vorangegangenen Ergebnisse wurden schlussendlich zwei
unterschiedliche Klassifikationsverfahren angewandt (Support Vector Machines und
Random Forests), um die Emotion des Fahrers anhand realer Fahrzeugdaten zu
erkennen. Die Klassifizierer wurden dazu in einem leave one speaker out Kreuz-



validierungsverfahren trainiert, optimiert und getestet. Die Optimierung erfolgte
dabei durch die Anwendung eines random search-Verfahrens zur Hyper-Parameter-
Optimierung, einer wrapper basierten Feature Auswahl und einer gezielten Redu-
zierung/ Auswahl der verwendeten Sprachdaten aus dem Datensatz. Unter Berück-
sichtigung all dieser Aspekte, konnte als bester Klassifizierer ein Random Forest
entworfen werden, der dazu in der Lage ist, den emotionalen Zustand des Fahrers,
im vorliegenden 4-Klassenproblem, mit einer precision von über 52% und einem
recall von über 35% zu erkennen.





Abstract

With an increase of autonomy in vehicles, also the importance of driver state detec-
tion systems is becoming more relevant. By analyzing the driver’s steering behaviour
and her/ his gaze direction, the modern automotive industry is able to detect a li-
mited number of driver states (e.g. tiredness or attention). The true intrinsic state
of the driver, which is, for example, communicated through feedback signals in her/
his speech, facial expressions or gestures, is still being neglected.

The goal of this Thesis is to close this research gap by considering the driver’s speech
data to detect her/ his emotional state. This does not only include the design of
a classifier, but the whole process chain of performing a suitable data collection,
pre-processing of said data, implementation of relevant signal processing steps (e.g.
speech enhancement) and finally also validating the designed classifier. This broad
field of research also reasons the size of the Thesis.

At the beginning of the Thesis the following three research hypotheses are introduced
to the reader and will accompany her/ him throughout the Thesis:

1. Hypothesis: It is possible to induce naturalistic emotions in the driver, while
driving in a real vehicle.

2. Hypothesis: It is possible to compensate effects of speech distortion.

3. Hypothesis: Under the assumption that hypotheses 1 and 2 apply, it is possible
to automatically detect the emotional state of the driver by only considering
the speech signal of the driver and its prosodic features.

Because of the relatively low amount of freely available emotional speech data in
in-vehicle environments, two data collections focusing on this noise environment (si-
mulated and real-world) were performed. The simulated data was used to receive
first insights on the noisy speech characteristics and its potential to be used to de-
tect the driver’s emotional state. A second real-world data collection was performed
afterwards, and used to gain detailed information on the four most relevant emotio-
nal states occurring while driving (neutral, positive, angry and anxious). By using
the drivers’ self-reports (obtained by utilizing the Geneva Emotional Wheel and the
Self-Assessment Manikins) and the recordings of their bio-physiological parameters,
it was possible to validate the emotion inducement method and the usability of the
collected real-world data.

The just mentioned data collections are highly time consuming to conduct and were
not available at the start of the Thesis. Therefore, the first investigation presented
in this Thesis, was performed on compressed speech data. This degraded data was
used to analyze the effects signal-processing can have on the speech signal itself, the
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signal quality and the ability to correctly classify the emotional state of a speaker.
It was identified that, especially for speech emotion recognition, codecs developed
for music compression are more suitable than codecs developed for speech compres-
sion. In some cases it was even possible to increase the recognition performance by
applying music compression algorithms, compared to the recognition performance
on uncompressed speech. Similar investigations on noisy speech were performed on
the simulated in-vehicle speech data. By comparing the original emotional speech
samples with their degraded noisy counter parts, it was possible to identify that
the naturalness of the original speech samples plays a decisive role on the effect in-
vehicle noises have on the signal quality. Furthermore, with decreasing signal quality
also the recognition performance of the classifier decreased.

To verify the usability of the real-world driving data, a further annotation of the
speech samples considering their emotional content was needed. This annotation
was done utilizing a dimensional (valence vs. arousal) and a categorial (4 considered
emotional states) labeling approach. In this process both approaches showed a high
consistency in their results. These results show that the emotional state of the driver
is also mirrored in the speech signal and that the recorded data is suitable for
automatic speech emotion recognition in a real-world driving environment.

In case of noisy speech data and (automatic) speech recognition, it is known that
by applying speech enhancement algorithms, significant increases in recognition rate
and speech understanding can be achieved. To identify if these effects also occur in
case of speech emotion recognition, suitable speech enhancement algorithms were
applied to the simulated in-vehicle data. It was identified that by applying this
method of signal processing steps to the noisy speech samples, the features used for
the speech emotion recognition task were altered significantly but the recognition
performance was not improved. To prevent this additional factor from influencing
the emotion recognition task, it was decided to not apply speech enhancement in
the further scope of the Thesis.

Finally, by considering and utilizing the above findings, two classification approaches
(Support Vector Machines and Random Forest) were used to identify the driver’s
emotional state in a real-world driving scenario. By utilizing a leave one speaker
out cross-validation scheme the classifiers were trained, optimized and tested. The
optimization step included a hyper-parameter optimization using random search, a
wrapper based feature selection and an adjusted of the data set, by reducing the
data set to a tailored selection of speech samples. With regard to this approach,
as best performing classifier for the present four class classification task, a random
forest with a precision of over 52% and a recall of over 35% was designed.
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Chapter 1

Introduction

Contents
1.1 Safety in Automated Driving . . . . . . . . . . . . . . . . . . 3

1.2 Level of Adaptation Towards the Driver . . . . . . . . . . . . 4

1.3 Impact of Emotions while Driving . . . . . . . . . . . . . . . 6

1.4 Three Main Research Hypotheses . . . . . . . . . . . . . . . 7

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 8

IN today’s automotive industry a focus is drawn on increasing the safety of driv-
ing. The developed safety functions mainly cover the field of preventing critical/

dangerous driving situations by monitoring the vehicle itself and the surrounding en-
vironment (e.g. other road users or environmental conditions). The inter-individual
differences of the drivers themselves, however, are still less considered, even though,
it is widely known that the maturity of the driver plays a decisive role. When it
comes to accessing the maturity of a driver a focus is often drawn on the driving
practice, driving experience, involved accidents, number of traffic violations and
the driver’s self-evaluation over a given evaluation period. These measures how-
ever, do not contribute actively to a safer way of driving, as they give information
in retrospect. To be able to also actively include the driver’s inter-individual be-
havioural differences an online monitoring of the driver himself is needed. These
so-called driver state monitoring systems include a recognition of the driver state
and a constant tracking of changes of the driver’s behavioural factors. By tracking
these changes it is possible to identify differences in the driver’s behavioural pattern
and actively inform the driver about said changes.

One area of interest, which is recently receiving increased attention, is the mon-
itoring of the driver’s state with an increase in automated driving functions, as the
driver is less involved in the driving task, but still holds the full responsibility. A
recent statistics performed on data of the year 2019 shows that the number of Ad-
vanced Driver Assistant Systems (ADAS) has increased substantially in case of newly
registered passenger cars compared to already registered cars. In case of drowsiness
detection, one of the most prominent driver states, it is shown that the percentage of
vehicles equipped with these systems in newly registered cars is twice as high (30%)
as in registered used cars (15%) (cf. [Kords 2021]). This is also due to the General
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Safety Regulations (GSR) approved by the EU-Parliament in 2019, which standard-
izes the presence of a drowsiness detection system in newly certified vehicle types
from 2022 onwards and newly register vehicles from 2024 onwards. The drivers’
affect and consequently their emotions, however, are still less considered. Affect,
in the machine recognition literature (cf. [Picard 1997]), is considered in a broad
sense to cover all conscious subjective aspects such as affection, passion, sensation,
inclination, intention, inward disposition or feeling. Emotion is used in a narrower
sense, as an invoked sensation reaction, primarily as basic emotions [Plutchik 1958]
or such emotions which can be composed from basic emotions. Affects and emotions
can play a decisive role when it comes to the comfort of the driver and, even more
relevant, the safety of driving manually and automated. The methods applied to
detect the driver’s affective state are diverse and range from the recognition of facial
expressions, over assessing bio-physiological signals to speech emotion recognition.

The mentioned methodologies hold different advantages and disadvantages, which
need to be identified beforehand. A vision on how these kind of modalities can be
used to identify critical driver states and mitigate the effect of incapacitated drivers
was investigated in the research Project ADAS&ME 1, which was successfully re-
viewed and completed in 2020. The goal of the project was to develop a driver state
detection system for multiple driver states (i.e. fatigue/ drowsiness, stress, inat-
tention/ distraction and impairing emotions) in combination with multimodal, user
oriented interaction strategies. Among others, this included the development of al-
gorithms (e.g. for the detection of the individual driver states), sensing technologies
(e.g. electrocardiogram (ECG)-steering wheel and ECG-seat), supportive technolo-
gies (e.g. vehicle automation and V2X-communication) and Human-Machine Inter-
face (HMI)-components. As part of this research project, results were achieved in
driver state emotion and in the development of the speech based detection systems
as well as the late-fusion of the individual driver states. The research conducted
for these topics, and the publishing and publicizing of the relevant results, were
performed under the responsibility and lead, and with major contribution, of the
author of this Thesis.

A great benefit of recognizing the emotional state from the drivers’ speech, by
using prosodic features only, is the potential to be used in a cross-cultural and
cross-lingual setting. Especially when evaluating facial expression, this is not al-
ways the case, as emotions may be communicated differently throughout cultures
(cf. [Jack et al. 2009]). Furthermore, the environmental conditions of in-vehicle emo-
tion recognition are highly limited by the vehicle and the driving task itself. In many
cases not the full frontal face of the driver may be in the field of view of the camera.
This makes it challenging to analyze the facial expression of the driver. It further
has been shown that facial expressions can be easily manipulated by the subject

1https://www.adasandme.com/, funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 688900
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himself and may not per se give insight into the actual intrinsic state of the driver.
Considering bio-physiological signals, the main disadvantage lies in recent sensing
technologies, as they are mainly based on body attached sensor systems. Especially
with a focus on usability, these intrusive measurements are not seen as user-friendly
and are rather inconvenient. With an increased connectivity between the vehicle
and the driver, for example, by connected consumer electronics, an excess to the
user’s health tracker may be possible in the future. Until now, this connectivity
is strongly limited to a number of manufacturers and cannot be seen as standard.
Furthermore, the development of non-body attached sensor systems is highly cost
consuming, which will increase the purchasing price of such vehicles and make them
unaffordable for a majority of buyers (cf. [Calem 2019]). Therefore, as a preferred
modality, this Thesis will focus on the detection of the driver’s emotional state from
speech.

Emotion recognition from speech has already received increased attention in the
past years. While we have now reached a state where emotions in laboratory en-
vironments can be recognized with high recognition performances, the application
of speech emotion recognition systems in everyday “in the wild” situations is still
very challenging. Depending on the application domain the requirements on the
speech emotion recognition system can vary strongly, as the environment in which
the speech signal needs to be processed can be seen as non-static. This specific
processing environment of in-vehicle speech will be evaluated in the scope of this
Thesis, under the assumption that the driver is interacting with a co-driver or, for
example, an integrated infotainment system, such that the speech signal is available
and processable. With regard to this assumption, I will now present to the reader
the three main motivational aspects the Thesis is based on (cf. Sections 1.1 - 1.3),
as well as the three identified main research hypotheses (cf. Section 1.4).

1.1 Safety in Automated Driving

In these times and days the field of autonomous driving and ADAS has gained
increased interest. A forecast of the global autonomous car market size from 2019 to
2023 indicates an increase from 24.10 billion US $ to 37.22 billion US $ (cf. [Statista
2021b]). With a focus on ADAS-functions, a growth from 17.6 billion US $ in 2020
to nearly 32 billion US $ by 2023 may be reached (cf. [Statista 2021a]). In the
automotive industry a trend is observable from fully manual driving (standardized
automation level by the Society of Automotive Engineers (SAE): no automation
- SAE Level 0) over semi-automated driving (Partial automation - SAE Level 2)
to fully automated driving (Full automation - SAE Level 5) (cf. [SAE 2018], for
detailed information on the SAE Levels of driving automation). In Europe, we have
now reached a state of conditional automation (SAE Level 3). At this state, the
System is fully taking over the transverse and longitudinal guidance of the vehicle
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and the monitoring of the environment, which is, for SAE Level 2 and lower, in
control of the human driver. However, in contrast to high or full automation, the
human driver serves as the fallback solution in case of automation outage and needs
to be physically able to take back the control from the automation function.

Especially the “Tesla incident” in 2018, where a 38 year old Tesla driver died
from major injuries after his car crashed into a non-operational crash attenuator
without braking, while the car was driving in “autopilot”, led to huge debates on the
safety of autonomous vehicles. This led the US - National Transportation Safety
Board (NTSB) to introducing nine safety recommendations. The investigation of the
incident further identified seven safety issues in 2020 that included, among others,
the drivers’ distraction and the lack of a driver engagement monitoring, leading to
the recommendation of a driver monitoring system for vehicles equipped with SAE
Level 2 automation or higher by the American Society of Mechanical Engineering
[ASME 2020]. Similar aspects were already included in the European New Car
Assessment Programme (Euro NCAP)2 roadmap 2025 of 2017 [NCAP 2017]. In
this roadmap, the Euro NCAP recommends the integration of driver/ occupant
monitoring systems into the vehicles to prevent the two major “human mistakes”
of violations against given regulations and human errors occurring while driving in
an vehicle. These include, among others, detecting and mitigating the effects of
intoxicated drivers (e.g. alcohol or drug violation) and incapacitated drivers (e.g.
fatigue or distraction).

We can now further deduce that not only the human driver is able to take over
the vehicle in critical situations, but that the vehicle could also monitor the human’s
driving behaviour while manually driving, to identify critical driving or driver states
in which manual driving leads to an endangerment of the surrounding traffic, and
take over the control from the driver. In case of sleepy drivers a warning of the driver
is already state-of-the-art, and a majority of automotive companies has integrated
driver drowsiness detection systems in their vehicle fleets. An intervention from the
vehicle’s side, however, is not yet realized. The detection of other disruptions like
distraction, stress and emotion, has, until now, rarely been addressed, although they
influence the driving performance provably. A reliable monitoring of the driver’s
state, however, serves as prerequisite to enable an intervention from the vehicle’s
side.

1.2 Level of Adaptation Towards the Driver

To increase the safety and comfort of manual and automated driving, most vehicles
are nowadays already equipped with a various number of ADAS systems. These
systems support the driver in critical situations, which may be caused by the vehicle

2Providing recommendations, rating and standardizations regarding vehicle safety since 1996
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environment or the driver himself (e.g. emergency brake assist, blind spot monitor,
or lane departure warning), but can at the same time also increase the comfort
of driving (e.g. intelligent speed assist, adaptive cruise control, or intelligent park
assist). Considering the current development progress of such systems, it is possible
to differentiate vehicles into three categories (cognitive cars, intelligent vehicles and
empathic vehicles), which can be seen as different development stages regarding
their level of adaptation towards the driver.

• Starting off with the cognitive car, this vehicle shows the least amount of
adaptation towards the driver. It solely monitors the interaction between
driver, vehicle and traffic and reacts in relevant situations [Heide & Henning
2006; Gadsden & Habibi 2009]. Considering the recent technology progress in
automotive industry, this type of vehicle can be seen as current state-of-the-
art.

• The next level of adaptation towards the driver is met by introducing the in-
telligent vehicle. This type of vehicles are cognitive cars that are additionally
able to monitor critical states of the driver (e.g. drowsiness or distraction).
Whenever a critical driver state is detected, the vehicle warns the driver and
partly/ fully takes over control from the driver [Flemisch et al. 2013]. With re-
gard to the above mentioned Euro NCAP recommendation, a progress towards
intelligent vehicles can be seen. The considered driver states, however, mainly
focus on the detection of “obvious hazards” caused by sleepy or distracted
drivers. The impact of emotions on the driver is mostly neglected.

• While the aforementioned vehicle types focus on the pure prevention of danger-
ous incidents by warning the driver and taking over the control of the driver,
empathic vehicles are additionally able to recognize, understand and give a
tailored response to the driver’s internal state of interest [Oehl et al. 2020].
This is, for example, realized by mirroring or balancing the emotions of the
driver [Hernandez et al. 2014; Drewitz et al. 2017; Braun et al. 2019]. In con-
trast to cognitive cars and intelligent vehicles, empathic vehicles can be seen
as a future technology trend.

With the increase of adaptation towards the driver also the complexity of the
driver monitoring system increases. While cognitive cars and intelligent vehicles
do not dialogically interact with the driver, the empathic vehicle needs to commu-
nicate to the driver using additional HMI components, which may lead to further
distraction of the driver from the primary driving task. This also leads to addi-
tional requirements to develop such systems, for example, by including a Decision
Support System (DSS) to prioritize and assess the driver state, and provide tailored
mitigation strategies [Löcken et al. 2017; Braun et al. 2019].
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1.3 Impact of Emotions while Driving

With regard to the aforementioned progress in automotive technology, emotions are
still less considered. While drowsiness and distraction are already seen as highly
relevant for vehicle safety (cf. [NCAP 2017; ASME 2020]), the impact of emotions
on the primary driving task is mostly neglected, although its impact on the safety
and comfort of driving has been proven for several years [Pêcher et al. 2010]. On
the one hand, emotions may directly impact the driving behaviour as they affect
driving-relevant cognitive capabilities, such as the build-up of a sufficient situation
representation [Jeon 2015] or decision making [Freese & Jipp 2015], in both negative
and positive ways. These impairments, however, are barely compensated by the
driver, as the driver is often unaware of the effects they have on the driving beha-
viour, unlike impairments caused, for example, by distraction or drowsiness [Jeon
2015]. On the other hand, emotions, especially negative ones, may influence the user
experience and, hence, the acceptance of technical systems and automated driving
functions (cf. [Picard & Klein 2002], [Klein et al. 2002], [Koo et al. 2015] and
[Drewitz et al. 2017]). Therefore, especially in the field of automated driving and
with regard to the future technology of empathic vehicles, emotions should receive
increased attention.

Most investigations based on emotions while driving concentrate on negative emo-
tions with a focus on frustrated and anxious drivers. Frustration can not only lead
to aggressive driving behaviours, but can culminate in so-called road rage [Shinar
1998]. According to German insurance companies, one third of deathly road in-
cidents are caused by aggressive driving behaviour [Grasberger 2013]. In case of
anxious drivers two behavioural patterns have been identified. On the one hand,
anxiety may have a positive effect on manual driving, as it can lead to an increase
of situation awareness [Lu et al. 2013], leading to less risk-taking and an adapta-
tion of the driving behaviour towards the given environmental circumstances (e.g.
heavy rain causing slowing down in speed). On the other hand, it may also have a
negative effect, as it can cause a decrease of the driver’s attention focus [Jeon et al.
2014]. Disregarding negative emotions, it has been shown that also positive events
can affect the longitudinal and lateral driving parameters, for example, by listening
to “happy music” [Pêcher et al. 2009; Steinhauser et al. 2011]. In [Taubman-Ben-Ari
2012] it is further shown that positive affects can lead to a greater willingness of
reckless driving.

As a consequence, this Thesis is based on the following main motivational aspects:
Increasing of safety in automated driving by monitoring the driver’s ability to take
over the vehicle in case of automation outage, and in manual driving by warning the
driver in case of an identified critical driver state or even intervening by taking over
the control from the driver, increasing the level of adaptation towards the driver to
enable a more natural-like interaction between vehicle and driver and, consequently,
decreasing the negative impact emotions have on the driving behaviour.
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1.4 Three Main Research Hypotheses

From the presented motivational aspects three main research hypotheses were iden-
tified. These hypotheses aim at covering the requirements to develop a speech based
emotion recognition system in an in-vehicle environment.

1. Hypothesis: It is possible to induce naturalistic emotions in the driver, while
driving in a real vehicle.

The basis of a reliable speech based emotion recognition system is conditioned
by the underlying/ utilized data base. A suitable database is, however, in
most cases not available, especially when it comes to fundamental research in
newly identified research areas. The data availability of in-vehicle emotional
speech data is still very limited, especially with regard to highly natural and
low-expressive emotions, as they occur in everyday driving situations. I hypo-
thesize that it is possible to induce naturalistic emotions to the driver, while
driving in a real vehicle. This Thesis, therefore, includes a data collection of
real-world in-vehicle emotional data in three modalities. To the date of real-
ization of the data collection in 2018, there did not exist a publicly available
data set of this scope. The realized data collection is based on designated use
cases and study designs, which were identified beforehand. The recorded data
is afterwards validated to identify the reliability and usability for the present
in-vehicle emotion recognition task, on the one hand by evaluating the corres-
ponding bio-physiological signals and on the other by annotating the speech
signal.

2. Hypothesis: It is possible to compensate effects of speech distortion.

Considering “in the wild” speech emotion recognition environments, it can be
assumed that the audio quality is strongly degraded compared to the audio
quality of speech recordings obtained in a laboratory environment. With a
focus on in-vehicle environments, there exist various factors that can affect
the audio quality. The two main effects, causing these differences, are changes
occurring in the acoustic characteristics, depending on the vehicle itself (e.g.
type of vehicle, size and material of the cabin), and environmental noises (e.g.
engine sounds, road surface and traffic noises). It needs to be identified how to
cope with these effects and their influence on the speech signal. I hypothesize
that it is possible to compensate for these effects, for example, by applying
well-established speech enhancement or noise reduction algorithms. Therefore,
I will first evaluate the effect of audio quality on the speech emotion recognition
system and further evaluate the influence of digital signal processing steps on
the features used to recognize emotions from speech and consequently the
effect on the recognition performance.
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3. Hypothesis: Under the assumption that hypotheses one and two apply, it is
possible to automatically detect the emotional state of the driver by only
considering the speech signal of the driver and its prosodic features.

By utilizing machine learning algorithms it is possible to design a classification
model to identify the current emotional state of a speaker. Depending on the
classification task, identifying the optimal model can be quite challenging. Es-
pecially in case of low-expressive and highly natural emotions, the clusters of
the individual emotional classes can strongly overlap. This makes it difficult
to distinguish the emotional classes. There exist multiple ways to optimize
the classification process, for example, by performing a feature reduction or
parameter optimization. Therefore, I further hypothesize that, under the as-
sumption that hypotheses one and two apply, it is possible to automatically
recognize the natural emotional state of the driver by only considering the
speech signal of the driver, without further evaluating the spoken content of
the driver’s speech. This is evaluated by designing a classifier that is able
to detect the emotional state of the driver well above chance level. The per-
formance of this classifier is further increased by applying customized feature
reduction and parameter optimization methodologies.

1.5 Structure of the Thesis

The remainder of this Thesis is structured as follows.

In Chapter 2, I will first give insights to the reader on relevant state of the art re-
search and methodological background, which serves as a prerequisite of the Thesis.
The Chapter includes all relevant information on generating emotional speech,
speech emotion recognition in general (e.g. how to model and evaluate a speech
emotion recognition system and recent findings in speech emotion recognition), the
effect of speech quality and speech disturbances on speech emotion recognition and
finally an in-depth literature review on speech emotion recognition in in-vehicle sur-
roundings. At this point I want to mention that Chapter 2 is the only chapter not
based on own contributions.

Chapter 3 serves as basis of most of the investigations presented afterwards. In
this Chapter, I present to the reader the realized data collections. This includes
a collection of simulated and a collection of real-world emotional in-vehicle speech
data. In case of the real-world data collection an additional validation of the data is
presented. Furthermore, the collected data does not only include audio recordings
but additional video recordings of the driver’s face and recordings of the driver’s bio-
physiological measures, which were not evaluated to their full extend in the scope
of this Thesis.
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Chapter 4 focuses on the evaluation of speech quality of compressed and disturbed
speech samples and the ability to detect emotions from degraded speech. For the
evaluation of the speech quality, state of the art quality measures as well as a newly
developed quality measure that can be applied to both compressed and disturbed
speech are presented.

In Chapter 5, I will examine the necessity of applying processing steps to the un-
processed emotional speech samples. On the one hand, I will describe the annotation
process and present the annotation results of the conducted real-world driving study
of Chapter 3. On the other hand, I will investigate the effect of speech enhancement
on speech emotion recognition in terms of altered features, speech quality and the
recognition performance.

The ultimate research hypothesis of this Thesis (hypothesis #3) will be evaluated
in Chapter 6. I will present to the reader the design of a feature and parameter
optimized speech emotion recognition system. Two classification approaches will be
presented, evaluated and put in comparison. This process further includes a feature
reduction and hyper-parameter optimization of the individual classification models.

Chapter 7 concludes this Thesis. In this Chapter, I will recapitulate the findings
of the previous four Chapters with respect to the presented three main research
hypotheses, and compare the main research results with recent state of the art
investigations. I will further give insight on remaining open research questions and
possible future development approaches, which have not been covered in the scope
of this Thesis.
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IN every good book the reader should be provided with the most relevant in-
formation on the main characters, to build up a relation with the characters and

empathize with the circumstances of the evolving story line. This is also the case
for a good Thesis, where the reader should be introduced to related publications
and relevant methodical approaches. The aim of this Chapter is to provide this
information.

As already mentioned, this Thesis covers multiple research areas, therefore, it is
also necessary to include an extensive state-of-the-art literature review covering each
of the listed research areas. To limit the extent of this Chapter, further textbook
knowledge is either referred to as citation or presented in additional appendices.

2.1 Generating Emotional Speech Data

I will start off with an introduction on how to generate emotional speech data. This
will serve as basis for the realized data collection presented in Chapter 3 and the
performed annotation in Section 5.1. First of all, I will emphasize the importance
of defining the scope of the data collections correctly, as the obtained data should
meet the requirements of the later application domain. As I focus on the collection
of emotional speech data, I will introduce the reader to the concept of emotion, how
emotions are expressed by humans and how they can be represented. Afterwards, I
will present an overview of methodical approaches on how emotions can be elicited
in a test subject. Especially for real-life data collections the probability of inducing
a said emotion identically to different test subjects is rather low, due to changing
environmental conditions and differences in the subjects themselves. It is assumed
that the experimenter is a-priori unaware of the emotions felt by the subjects (cf.
[Larradet et al. 2020]). Therefore, a posteriori annotation of the collected data needs
to be conducted to generate a ground truth. The Section will be concluded with an
overview on relevant benchmark data sets used in the scope of the Thesis.

2.1.1 Scope of the Data Collection

The speech signal is a highly variable signal, which is strongly dependent on
the speaker characteristics (e.g. age, gender, health, cultural differences), speech
style, speaking rate, dialect differences, non-native accents (cf. [Babel & Munson
2014; Docherty & Mendoza-Denton 2011]), present background noises (also see Sec-
tion 2.5.1), side talk, as well as the recording environment (e.g. microphone setup in
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the wild, anechoic chamber, tv-studio) [Yu & Deng 2015]. A data collection which
covers all these variations could be seen as an universal data set, used to describe
the population as a whole. This, however, is highly challenging when it comes to
enriched data, as it is the case for emotional speech [Böck et al. 2019]. While there
exists a huge amount of transcribed speech data in various languages for speech
recognition, the amount of annotated/ labeled emotional speech data is still lim-
ited. With regard to the aforementioned variations of the speech signal, it is rather
unlikely, that there exists a data set, which contains enough data to represent the
population as a whole. This issue will also be addressed later, when it comes to
the recent findings of speech emotion recognition in the wild (see Section 2.3), as,
especially in data driven machine learning, the utilized data set needs to represent
the population in a sufficient way. When it comes to the collection of suitable, reli-
able, trustworthy and reproducible speech data, it is, therefore, of high relevance to
design the data collection with regard to the above mentioned factors and specify
each factor in a distinct way, such that it meets the requirements of the desired
application domain without the pretension to cover the whole population. Hence,
the desired application domain determines the scope of the data collection.

Additional factors, which need to be considered when it comes to emotionally
enriched speech data, are the naturalness of the expressed emotion and the coverage
of the search space. Typically, it is distinguished between acted, scripted and natur-
alistic emotions (in increasing level of naturalness) (cf. [Siegert 2015]). While data
sets of acted emotions mainly contain sentences of emotional content uttered by
actors in a highly expressive way (e.g. Berlin Emotional Speech Database (EmoDB)
[Burkhardt et al. 2005], Danish Emotional Speech Database (DES) [Engberg et al.
1997] or Polish-EMO [Staroniewicz & Majewski 2009]), the expressiveness further
decreases with an increase of naturalness. In case of scripted emotions, the speaker
is still aware of the purpose of the data collection, but, in contrast to acted emo-
tions, is prompted to express said emotion in a more natural way based on scripted
plays or spontaneous hypothetical scenarios (e.g. eNTERFACE’05 [Martin et al.
2006] and IEMOCAP [Busso et al. 2008]). The highest level of naturalness is ob-
tained in case of naturalistic emotions. Here, the emotions are naturally induced
to the speaker while she/ he is unaware of the actual purpose of the data collection
(e.g. FAU Aibo Emotion Speech corpus [Batliner et al. 2004] or RECOLA [Ringeval
et al. 2013]). The advantages of natural emotions will be addressed in the further
course of this Section, with regard of how emotions affect the human bodily func-
tion. As second factor, the collected emotional data needs to cover the search space
sufficiently. Ideally, this would imply that all considered emotions are equally rep-
resented in the data set, by an equal number of male and female speakers for each
age group (just to name some features considered in the search space). For acted
and scripted emotions, the equal distribution of all considered emotions is controlled
easily by giving correct instructions to the speaker. In case of natural emotions, this
is more challenging and controlled by the used experimental design and employed
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inducement method. The true coverage of the search space and true emotional state
of the speaker can, in this case, only be assessed by annotating the recorded speech
samples (see Section 2.1.4).

2.1.2 Concept of Emotion

Until now I have shortly presented to the reader which factors impact the scope of
emotionally enriched data collections. One aspect which has not been addressed so
far, is the definition of emotions, how they are expressed by humans and how it is
possible to represent the emotional state.

The nature of emotions has already been addressed by ancient Greek philosophers
like Socrates or his student Aristotle. Even though they did not literally used
the word emotion, their work on ‘passion’ or ‘mood’ show a strong consistency
in their definition compared to today’s appraisal theory (cf. [Solomon 2000]). In
[Aristotle & McKeon 1941]1 Aristotle, for example, defined emotions as a state
affecting one’s judgment and being accompanied by pleasure and pain. He further
names concrete emotional states such as anger, fear, and pity, and even gives clear
definitions on single states, such as anger. This definition does not only include
a distinct cognitive component, but also a specific social context, a behavioural
tendency, and a recognition of physical arousal. Comparing the following definition
with most recent definitions in appraisal theory, there exist astonishing similarities.

The recent definitions of emotion in appraisal theory have started to evolve since
the 1960th (cf. [Stearns 2000]) leading to the introduction of the component process
model of emotions by Scherer [Scherer 1987; Scherer 2009]. Based on this assumption
Scherer defines emotions as...

“... an episode of interrelated, synchronized changes in the states of all
or most of the five organismic subsystems in response to the evaluation
of an external or internal stimulus event as relevant to major concerns
of the organism.” [Scherer 1987]

With regard to this definition, an emotion is not a state but a process consisting
of changes in the five organismic subsystem. Scherer further defines five components
of an emotion episode which are used to describe this process. These components
are:

1. Cognitive component: Evaluation of objects and events as information pro-
cessing unit, leading to continuous changes in the appraisal processes of the
central nervous system.

2. Neurophysiological component: System regulation as support unit, leading to
changes in the response pattern in the neuroendocrine, autonomic, and somatic
nervous system.

1As translated in [Solomon 2000]
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3. Motivational component: Preparation and direction of actions as executive
unit, leading to changes in behavioral tendencies.

4. Motor expression component: Communication of reaction and behavioral in-
tention as action unit, leading to changes in the facial expression, body move-
ment and vocal expression.

5. Subjective feeling: Monitoring of internal state and organism-environment
interaction as monitoring unit, leading to subjective changes in the own con-
dition of interaction with the environment.

There are several ways to measure the changes occurring in the different com-
ponents of an emotion episode (cf. [Scherer 2005b]). The cognitive component (1.)
and subjective feeling (5.) can be assessed by employing self-reports or measuring
neural activity through electroencephalogram (EEG) or functional Infrared Spectro-
scopy (fNIRS). Changes in the physiological component (2.) lead to changes in the
arousal and can be assessed through physiological (e.g. heart rate, skin conductance
or blood pressure) and hormonal parameters. Behavioral changes (3.) again are
hard to assess and are highly domain dependent. While it is possible to measure
especially expressive behavior, behavioral changes of lower expressiveness are still
challenging to assess [Harrigan et al. 2005]. Changes in the facial expression, body
movement and vocal expression (4.), however, can be tracked by analyzing video and
audio signals of the subject [Schirmer & Adolphs 2017]. With regard to these meas-
urement options, this Thesis focuses on the detection of emotions by the changes
occurring in the motor expression component, represented by changes in the speech
of the speaker. In [Ekman 1999], the author gives further evidence on how certain
emotions correlate with the five components.

We now know how emotions are naturally produced and expressed by the hu-
man organism, however, it now needs to be further defined how emotions can be
represented in a distinct way. In general it is distinguished between two types of
emotion representation methods, categorial and dimensional. A good overview on
the representation and elicitation of emotions is presented in [Becker-Asano 2008]
and [Siegert 2015].

Categorial Emotions

The categorial representation of emotions relies on the assumption that emotions
can be described using so-called psychological primitive building blocks (cf. [Ortony
& Turner 1990]). These emotions are also referred to as primary or basic emotions
(cf. [McDougall 1908]). These basic emotions differ one from another in important
ways, which lead to an unambiguous description of the subject’s emotional state.
There have been different assumptions on how many basic emotions exist. The
most commonly used definition of basic emotions is introduced in [Ekman 1972],
where the authors defined six basic emotions based on universal facial expressions
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which occur cross-culturally when humans express certain emotions, namely, anger,
disgust, fear, happiness, sadness and surprise. Ekman later extended this list of
basic emotions to also include contempt, considering 12 characteristics which are
found in nearly all basic emotions and changed his view on the definition of basic
emotions (cf. [Ekman 1999; Ekman & Cordaro 2011]).

Another approach suggesting the existence of basic bipolar emotions is presented
in [Plutchik 1958]. Plutchik agrees on Ekmans general concept of basic emotions, but
introduces a new concept, the wheel of emotions (cf. [Plutchik 2001]). His concept
is based on the assumption that there exist primary emotions (i.e. basic emotions),
which can be conceptualized analogously to a color wheel, as already supposed in
[McDougall 1908]. The wheel of emotions includes eight primary emotions (joy,
trust, fear, surprise, sadness, disgust, anger and anticipation), which are ordered in
a circumplex fashion with similar emotions close together and their complementary
emotions lying on the opposite side (cf. [Plutchik 1980]), just like complementary
colors in a color wheel. The eight primary emotions can be mixed together to form
other emotions (e.g. joy and trust mix together to form love). Plutchik further
adds a third dimension to the wheel, which indicates the intensity of emotion (e.g.
annoyance < anger < rage). The total concept of his emotional representation is
shaped like a cone (depicted in [Plutchik 2001], Figure 6 on Page 349), but can also
be represented in a flattened 2-dimensional way (see Figure 2.1).

Dimensional Emotions

Contrary to the assumption of Ekman on basic emotions, Mehrabian and Russell
argue that emotions are not discrete and separate, but need to be described using
the three dimensions of valence (negative vs. positive), arousal (high vs. low) and
dominance (high vs. low) [Mehrabian 1996; Mehrabian & Russell 1974]. Synonyms
also used in the field of emotion science are pleasure instead of valence, activation
instead of arousal and control instead of dominance. Russell further presents the
circumplex model of affect, where the dimension of valence and arousal span a two-
dimensional space of core affect [Russell 1980]. He assumes that discrete emotion
categories and the core affect are related to each other systematically and presents
a schematic map of the core affect, as well as a mapping of the six basic emotions
onto the core affect (cf. [Russell & Barrett 1999] and Figure 3.5 on page 93).

In the course of this Thesis, the reader will be confronted with both representation
methods of categorial and dimensional emotions.
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Figure 2.1: Wheel of emotions in 2-dimensional representation (adapted from [Plutchik
2001]).

2.1.3 Inducing Emotions

With the knowledge of how emotions are expressed by humans and how they can
be represented in a distinct way, we will now focus on how to reliably induce the
desired emotional state to a subject.

When collecting emotional data, it is of high importance to ensure the correct
inducement of the desired emotional state to the subject. This is especially relevant
when used in natural emotion recognition and applied for data-driven classification
tasks, as used in the scope of this Thesis. Depending on the research question,
individual inducement methods can be applied and will lead to an individual sat-
isfactory level regarding the correctness of inducement. In the following, multiple
inducement methods, their impact on the naturalness of the uttered emotion and
their suitability for different recognition tasks will be presented.

There exist simple ways to collect emotional data for speech, facial expressions
or body postures by using no emotion elicitation method at all, but pretending to
experience a certain emotion (e.g. acted and scripted emotions). This approach
is rather challenging when it comes to the elicitation of emotions in the subject’s
physiological reaction, as the subject may not be able to simulate this reaction.
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Furthermore, early research has already shown that acted emotional data can differ
significantly from emotions experienced in real-life (e.g. [Hoque et al. 2012]) and,
hence, will not lead to reliable results when used to train a data-driven classifier
for a later real-world application (cf. Section 2.3 and, for example, [Devillers et al.
2005; Healey et al. 2010; Wilhelm & Grossman 2010] and [Xu et al. 2017]). In
the literature several methodological approaches can be found, used to induce/ eli-
cit emotions in a more natural fashion, leading to certain response patterns in the
subject’s physiological data. A more recent publication on how emotions can be in-
duced is [Larradet et al. 2020]. Here, the authors distinguish between seven different
inducement methods ranging from self-inducement and retrospection (i.e. thinking
about and narrating specific situations in which the subject experience a certain
emotion) (cf. [Vrana 1993; Pasupathi 2003]), over validated experimental protocols
(i.e. exposing subjects to pre-defined and pre-validated emotion stimuli like pictures
(e.g. IAPS [Lang et al. 2008], GAPED [Dan-Glauser & Scherer 2011],...), movie
extracts (e.g. LIRIs-ACCEDE [Baveye et al. 2015], FilmStim [Schaefer et al. 2010],
E-MOVIE [Maffei & Angrilli 2019],...) or music (e.g. film music data set [Eerola
& Vuoskoski 2011], DEAM [Aljanaki et al. 2017],...) and active participation of
the subject using video games or virtual reality) (cf. [Dikecligil & Mujica-Parodi
2010; Fox et al. 2010; Schmidt et al. 2011; Walter et al. 2011; Rooney et al. 2012;
Konečni 2008; Kreutz et al. 2008; Vuoskoski & Eerola 2011; Tognetti et al. 2010;
Ververidis et al. 2008; Bassano et al. 2019] and [Kim & André 2008]), self-reporting
using annotation interfaces (i.e. self-reported affect ratings of subjects while exper-
iencing certain media) (cf. [Melhart et al. 2019; Girard 2014]), methods based on
facial feedback theory [Tomkins 1962; Izard 1977] (i.e. guided activation of specific
facial muscles or postures [Zajonc et al. 1989]), to simulated realistic social interac-
tions (cf. [Harmon-Jones & Sigelman 2001; Niewiadomski et al. 2016; Harmon-Jones
et al. 2007]) and supervised real-life studies (i.e. putting the subjects into a situ-
ation in which they experience strong emotions) (cf. [Dikecligil & Mujica-Parodi
2010] and [Healey & Picard 2005]). Especially when applying the later listed meth-
ods of simulated realistic social interactions and supervised real-life studies it is of
high importance to keep the subject unaware of the actual data purpose to receive
spontaneous unbiased emotions.

In this Thesis two of the presented inducement methods are applied in Chapter 3,
namely, emotion elicitation through retrospective and through supervised real-life
studies. In Section 3.2.3, it was further confirmed that these inducement methods
led to a successful inducement of the relevant emotional states.

2.1.4 Generating the Ground Truth

With the correct inducement method and study design, it could be assume that
the collected data material meets all the requirement needed for the later emotion
recognition task. Nevertheless, with a strong inter-individuality of the human sub-
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jects, a ground truth of the data is needed to assure the usability of the data for the
desired application domain (i.e. recognition of natural emotions from speech).

As emotions evolve over time and are not continuously expressed by the speaker
(cf. [Pell & Kotz 2011]), the speech data needs to be divided into smaller sub-
samples, for which the emotional state can be assumed to be constant. In most
cases this is done by labeling the speech signal utterance wise or in speech-segments
of equal length. Afterwards, there are multiple ways to determine the ground truth
and label of the obtained sub-samples. They can be roughly distinguished into
subjective and objective measures. While subjective measures are based on the
subjective feedback given by the test subject herself/ himself, objective measures
are based on externally measurable signals, such as but not limited to changes in
bio-physiological signals or annotations provided by independent labelers. To assess
the emotional state through changes occurring in bio-physiological signals of the
subject an accurate response pattern needs to be available. In case of emotional
arousal, a clear relation to an increase or decrease in heart rate, cutaneous blood
flow, piloerection, sweating and gastrointestinal motility is observed [Purves et al.
2001]. In [Ekman 1999], the authors state that there exist distinctive patters of
the autonomic nervous system for the states anger, fear, disgust and sadness. The
automatic generation of the ground truth by mapping a distinct emotion category or
dimensions of the emotional space to these response patterns is, however, still chal-
lenging. Therefore, the speech data needs to be labeled using either the subjective
self-report of the speaker or an objective annotation of independent labelers.

One could assume that a labeling based on a subjective self-report would show
the true emotional state of the speaker. This, however, is disproved in [Truong et al.
2012]. Here, the authors show that the agreement between multiple self-ratings of
the speaker is lower compared to the inter-rater agreement of multiple independent
labelers. They further identify that this does not only affect the outcome of the
labeling but also the performance of the speech emotion recognition system trained
on this kind of labeled data. From emotion theory it is known that the expression
of a certain emotion by a subject is affected by so-called display rules, which are
strongly dependent on the individual’s cultural, gender and family background [Ek-
man & Friesen 1975]. This also affects the way a certain emotion is perceived by
the subject’s counterpart. Another disadvantage of utilizing subjective self-reports
is the disruption of the subject while being involved in the experimental scenario
at regular intervals. Not only might the speaker not be able to verbalize the actual
emotional state felt while conducting the experiment, she/ he might also be dis-
tracted from the actual experimental scenario utilized to trigger a certain emotion
[Scherer 2005a]. One way to subsequently determine the ground truth would be to
conduct post-hoc interviews. This however, is a costly process, as a trained psycho-
logist is needed to perform and analyze these interviews. A more common way to
generate the ground truth is therefore to assess the experimental data by a large
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number of independent labelers and determine a valid emotional label by performing
a majority voting. To ensure the reliability of the labeling, the labelers need to be
well-trained and familiar with the assessment of emotional speech. Furthermore, it
is also advisable to assess the quality of the obtained labels by calculating suitable
measures such as the Inter-Rater-Reliability (IRR) (see page 22).

Labeling Methods

In either case, subjective self-report or independent labeling, a suitable labeling
method needs to be provided to the labeler. A good overview on relevant emotional
labeling methods is given in [Siegert 2015]. I will now only introduce those methods
used in the scope of this Thesis, namely free text input, word lists, Self Assessment
Manikins (SAM) [Bradley & Lang 1994] and the Geneva Emotion Wheel (GEW)
[Scherer 2005b; Scherer et al. 2013].

Free Text Input: The labeler can describe the experienced/ perceived emotional
state in their own words, without further instructions. She/ He is free to state
emotional bullet points or write whole sentences. This on one hand gives the
labeler an unrestricted possibility to describe the perceived emotion, but on
the other hand is in need of a costly post-evaluation of the provided labels, as
the provided text input needs to be mapped into clusters of similar meanings.

Word Lists: A list of emotional words is provided to the labeler. She/ He can
choose from these words to label the experienced/ perceived emotional state.
To gain reliable results the labeler needs to undergo a training process in
which she/ he is introduced to the given labels and their meaning [Morris
1995]. Furthermore, the labeler is strongly restricted in the decision process,
by the pre-defined labels. This may lead to an information loss of the labeled
data, if several emotions are merged into one emotional term. This, however,
may also be intended in some cases, where a fine-grained differentiation is not
wanted/ needed. To prevent this information loss, in some cases an additional
free text input is provided to the labeler. Commonly used words used in
emotional word lists are: basic emotions as provided by Ekman (cf. Section
2.1.2), positive vs. negative or specific task related words (cf. [Lefter et al.
2012; Devillers & Vasilescu 2004] or [Lee & Narayanan 2005]).

Self Assessment Manikins: The SAM-scale (cf. [Bradley & Lang 1994]) is used
to annotate the dimensions of valence, arousal and dominance based on a
picture-oriented labeling process containing five images for each emotional di-
mension [Bynion & Feldner 2017]. The original SAM-scale, as described in
[Bradley & Lang 1994], consists of a five-point scale (see Figure 2.2). It was
first introduced by Lang to self-assess the emotional response to an object or
emotion [Bynion & Feldner 2017] (cf. [Lang 1980]). Nowadays, it is also used
in case of independent labeling. There also exist larger versions containing a 9-



Chapter 2. State of the Art 21

Figure 2.2: Self Assessment Manikins (SAM) (adapted from [Bradley & Lang 1994]).

or 21-point scale with intermediate decision points lying in-between two con-
secutive images. The upper image row, depicted in Figure 2.2, corresponds to
the dimension of valence from left, positive valence, to right, negative valence,
the middle row corresponds to the dimension of arousal from left, high arousal,
to right, low arousal, and the bottom row corresponds to the dimension of dom-
inance from left, low dominance, to right, high dominance. Depending on the
utilized scale the labeler chooses one of the images (or intermediate points)
for each dimension. This imagery-based approach is not restricted to a certain
language and can be used cross-lingually and cross-culturally [Bradley et al.
1992]. This also enables the usage by children [Lang 1985].

Geneva Emotion Wheel: The GEW (cf. [Scherer 2005b; Scherer et al. 2013])
consists of 20 emotion families arranged in a circle (see Figure 2.3). It is de-
signed to combine the approaches of discrete and dimensional emotion assess-
ment, and aligns the emotion families to the dimensions of valence and control
in a circular arrangement, separating the wheel into for quadrants (negative
valence - low control, negative valence - high control, positive valence - low
control and positive valence - high control). The labeler can choose between
the 20 emotion families and additionally rate the intensity of the experienced/
perceived emotion. Furthermore, she/ he has the option to label none (no
emotion) or other (not included emotion). The authors further provide a sep-
arate instruction document on their homepage2, stating three alternatives on
how to utilize the GEW. The first alternative instructs the labeler to rate the
intensity of the one emotion which best describes the experienced/ perceived
emotional state. The second alternative instructs the labeler to rate the in-

2https://www.unige.ch/cisa/gew/
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Figure 2.3: Geneva Emotion Wheel (GEW) (cf. [Scherer 2005b; Scherer et al. 2013]).

tensity of those emotions in the wheel, which contribute to the experienced/
perceived emotional state. The last alternative instructs the labeler to rate
the intensity of all the emotions in the wheel and rate those emotions, which
were not experienced/ perceived at all with the lowest intensity.

These four methods are all applied in the course of this Thesis. Other methods,
which were not applied are: the FEELTRACE [Cowie et al. 2000], the Product Emo-
tion Measurement Tool (PrEMO) [Desmet et al. 2007], the AffectButton [Broekens
& Brinkman 2009; Broekens & Brinkman 2013], the PANAS [Watson et al. 1988],
the 26-item scale Berlin Everyday Language Mood Inventory (BELMI) [Schimmack
1997], the 5-point Differential Emotions Scale (Version 4) (DES-IV) [Izard et al.
1993], and the 18-point bipolar Semantic Difference Scale (SDS) [Mehrabian & Rus-
sell 1974]. While the first three methods (FEELTRACE, PrEMO and AffectBut-
ton) can be used in case of self-reporting and independent labeling, the latter are
developed for self-reporting only.

Inter-Rater-Reliability (IRR)

As stated earlier in this Section, the way humans express and perceive certain emo-
tions is strongly affected by so-called display rules (cf. [Ekman & Friesen 1975]).
When employing multiple labelers to annotate the same emotional data, it is assum-
able that they will not rate the perceived emotion identically but with a variation
depending on their individual cultural, gender and family background. Therefore,
the reliability of the obtained annotation results needs to be determined by calcu-
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Figure 2.4: Recommendations of interpretation of the IRR, as presented in [Landis &
Koch 1977; Krippendorff 2004; Fleiss et al. 2003; Cicchetti 1994] and [Koo & Li 2016]

lating the IRR of the employed labelers/ raters (r = 1, ..., R, with R being the total
number of employed raters).

The most commonly used IRR-measures are Cohen’s κ [Cohen 1960] and κ related
measures (e.g. Bennett, Alpert and Goldstein’s S [Bennett et al. 1954], Scott’s π
[Scott 1955], Fleiss’ Multi-π [Fleiss 1971], Multi-κ [Light 1971; Davies & Fleiss
1982] or Cohen’s weighted κ [Cohen 1968]), Intra-Class-Correlation (ICC) [McGraw
& Wong 1996; Shrout & Fleiss 1979], and Krippendorff’s α [Krippendorff 2004]
(cf.[Hallgren 2012]). Their values all range from -1 to 1, with 1 indicating an identical
labeling of the raters, 0 a random labeling and -1 a complete reverse labeling (similar
to the correlation coefficient used to measure the statistical relationship between two
variables). The interpretation of the values is, however, strongly dependent on the
annotation task and there exist several recommendations on how to assess the IRR
(cf. [Landis & Koch 1977; Krippendorff 2004; Fleiss et al. 2003; Cicchetti 1994] and
[Koo & Li 2016]). Figure 2.4 gives an overview on these recommendations.

Furthermore, all measures have advantages and disadvantages and are therefore
more or less suitable depending on the present annotation task (cf. [Hallgren 2012;
Artstein & Poesio 2008]). The measure holding the most limitations is Cohen’s κ.
It is based on the probability of agreement with consideration of the expected agree-
ment obtained by chance. One serious disadvantage of κ is that all disagreements
of raters are treated equally (e.g. nominal data) and that it is primarily developed
to determine the agreement of two raters only. There do exist adaptations of Co-
hen’s κ (κ-like measures), that can be used in case of non-nominally scaled data or
multiple raters. These measures, however, do only consider either the application
on non-nominally scaled data or multiple-raters and not both at the same time. A
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second measure, which has lesser limitations than Cohen’s κ is the ICC. The estim-
ator of the ICC is based on the random effect model, which states that the observed
value by the rater is a combination of the true label, the deviation of the true label
from the mean rating of the to-be-labeled item and the measurement error. It is
applicable with two or more raters on ordinal, interval and ratio data, but cannot be
applied to incomplete data containing missing values. The most extensive measure
is Krippendorff’s α, as it can be used with multiple raters, it gives the possibility to
define a distinct distance measures for different data types (e.g. nominal, ordinal,
interval, ratio, ...) and it is applicable in case of incompletely labeled data. Fur-
thermore, Krippendorff introduces his measure for application in content analysis,
like it is the case for speech emotion annotation. Therefore, I opt for Krippendorff’s
α to determine the IRR of the labeling performed in the scope of this Thesis (cf.
Section 5.1) and will hereinafter give a more detailed insight on how Krippendorff’s
α (αKr) is calculated.

Krippendorff’s αKr

Unlike Cohens κ, κ-like measures or the ICC, Krippendorff’s α (αKr) origins as
a measure of variance and is based on similar assumptions as made for a single
factor Analysis of Variance (ANOVA), with each item representing a different factor
group (cf. Appendix C on page 272). This leads to the following Equation used to
determine αKr:

αKr = 1− s2
within

s2
total

(2.1)

= 1− Do

De

=
Average δ2

kj ,kl
within all units

Average δ2
kj ,kl

within all data
(2.2)

with s2
within being the within item variance, s2

total the total variance of all data, Do

being the observed disagreement and De the expected disagreement. In case of a
perfect agreement (Do = 0), α equates to 1, indicating an excellent reliability of the
labeled data. In case of random agreement (Do = De), α equates to 0, indicating
the absence of reliability. In case of systematic disagreement or sampling errors α
can also equate to negative values (Do > De). The term δ2

cj ,cl
represents the squared

distance metrics between any two classes cj and cl, with j, l = 1, ..., C and C being
the number of classes included in the labeling process. As distance metrics any
square difference function can be used [Artstein & Poesio 2008], such that Do and
De equate to
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Do =
1

IR(R− 1)
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C∑
j=1
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2
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and (2.3)

De =
1

IR(IR− 1)

C∑
j=1

C∑
l=1

ncjnclδ
2
cj ,cl

. (2.4)

The term ni,c corresponds to the number of raters who assigned class c to item i,
with i = 1, ..., I and I being the number of items included in the labeling process,
and the term nc to the number of times class c was assigned by any rater to any
item. Most commonly used distance metrics for δcj ,cl are provided in [Krippendorff
2004], namely:

Nominal metric: In case of nominal data, the class labels are not related to any
quantitative values. The labels of a considered item either match or mismatch
and there exists no better or worse agreement of mismatching labels. This is,
for examples, the case when utilizing emotional word lists as labeling method.
The distance metric is determined by the following function:

nominalδ
2
cj ,cl

=

{
0, if cj = cl
1, if cj 6= cl

(2.5)

In general, the distance between matching values equates to 0, and the dis-
tance between mismatching values equated to 1. Hence, all mismatching labels
contribute equally to the determination of α in Equation 2.1.

Ordinal metric: For ordinal data the value of the assigned class can be ranked in
a distinct order. The class c does not correspond to a numerical value but
describes the order of the values with the algebraic difference being unknown
(e.g. option 4 is better than option 3, but it is unknown how much better).
This is, for example, the case when utilizing the SAM scale as labeling method.
The metrics function is based on the number of ranks lying in between the
labels of two raters and is determined as follows:

ordinalδ
2
cj ,cl

=

ncj
2

+

cg<cl∑
cg>cj

ncg +
ncl
2

2

. (2.6)

The distance of labels that lie only a few ranks apart is generally lower than
the distance of labels with a high difference in their rank. It is evident that
this distance metric is symmetric, as the rank difference between two ranks is
independent of the order of the ranks and always positive (i.e. δcj ,cl = δcl,cj).
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Furthermore, in case of matching ranks, the distance should always equate to
0 (i.e. δcj ,cj = δcl,cl = 0).

Another labeling method where the labels are ranked in a two-dimensional
circular way is used in the GEW. This two-dimensional representation requires
an adaptation of the metric presented in Equation 2.6. In [Siegert et al. 2014]
the authors present a novel approach to determine a distance for the circular
representation of emotions by calculating the Euclidean distance between the
chosen state on the GEW and considering the GEW as coordinate system of
two dimensions. The distance metric is then determined as

ordinal,2Dδcj ,cl =

√(
cosϕcj − cosϕcl

)2
+
(
sinϕcj − sinϕcl

)2
, (2.7)

with the distance from one to another emotion family given as the angle φ =

360◦/C.

Interval metric: Contrarily to ordinal data, interval data is labeled using numer-
ical values. In this case, the numerical values also give insight on the algebraic
difference of the labels obtained from two or more raters. An example of in-
terval data is the temperature scale in Celsius or Fahrenheit. To determined
the distance metric, the simple algebraic difference is calculated:

intervalδ
2
cj ,cl

= (cj − cl)2 . (2.8)

In case of ranked data of equal frequency, ordinalδ2
cj ,cl

and intervalδ
2
cj ,cl

lead to
identical αKr-values in Equation 2.1.

Ratio metric: The most sophisticated metric is used in case of ratio data. Here,
not only the algebraic difference matters but also the relation to their reference
point (i.e. how far they lie away from zero). This implies that differences of
small values, lying close to zero, are weighted higher than the same differences
between large values, lying further away from zero. This is, for examples,
the case for age, weight and income. While the difference of one year of age
when rating an older persons age corresponds to a remarkable accuracy, the
difference of one year when rating the age of a baby correspond to a rather
inaccurate result. Considering this relation to zero, the distance metric of ratio
data is determined as follows:

ratioδ
2
cj ,cl

=

(
cj − cl
cj + cl

)2

. (2.9)

With regard to these four distance metrics, Krippendorff introduces a highly con-
servative interpretation scheme of the corresponding α-values [Krippendorff 2004],
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which is presented in Figure 2.4. A recommendation of this interpretation, however,
is only valid for the presented work of content analysis by Krippendorff and would
lead to unsatisfactory results when applied without further adaptation [Hallgren
2012]. Therefore, it is recommended to interpret Krippendorff’s α depending on the
considered study method and research question. One publication focusing on the
IRR of annotated emotional speech data is [Siegert et al. 2014]. The authors apply
Krippendorff’s α on the annotations of multiple benchmark emotional data sets.
The annotations are either provided with the data set or are assessed using multiple
labeling methods (Word lists, SAM, FEELTRACE and GEW). Depending on the
utilized labeling method they either apply a nominal or ordinal distance metric. In
case of the well-known Vera am Mittag (VAM) data set (cf. Section 2.1.5), the
authors use the annotations provided with the data set, which were obtained using
the SAM scale of valence, arousal and dominance. By applying an ordinal distance
metric they achieve αKr of at most 0.199 (valence), 0.485 (arousal) and 0.443 (dom-
inance), respectively. Considering the original recommendation of Krippendorff, this
indicates a poor reliability of the annotations. In case of the SEMAINE Solid-SAL
data set [McKeown et al. 2010], containing more natural evoked emotions, the re-
liability of the provided annotations of the five core dimension (intensity, valence,
arousal, power and experience) using the FEELTRACE is even lower. The best
IRR is obtained for the dimension of intensity with an αKr of 0.14. For all other
dimensions the IRR ranges between 0.09 and 0.12. This indicates a poor reliability
of the annotations. From these results, the authors of [Siegert et al. 2014] conclude
that emotion or affect annotation will lead to rather low IRR values compared to an-
notations of more objective measures like gesture, head position or linguistic turns.
This supports the previously made assumption that the interpretation of the IRR
is strongly dependent on the present annotation task.

Costs and Cost-Reduction

Especially for natural speech data, a complete manual annotation is difficult to
obtain, as it is extremely time consuming and in most cases further limited by
a fixed budget for employing (expert) labelers. Therefore, it is of high interest to
decrease the amount of manually labeled data and consequently the annotation cost.
This research topic will also be addressed in Chapter 5 of this Thesis. In general,
there are multiple ways to decrease the annotation effort. An overview on relevant
approaches and comparable results will be presented now.

One method is to reduce the amount of, by human experts, manually labeled
samples, as it is the case in Passive Learning (PL) and Active Learning (AL) (e.g.
[Zhang & Schuller 2012], [Han et al. 2013] and [Zhang et al. 2015]). For both ap-
proaches it is assumed that there exists some initial labeled data on which a first
model of a classifier can be trained. From the remaining unlabeled data only a
sub set is re-evaluated by human labelers. The main problem is how to decide
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which samples of the unlabeled data set should be re-evaluated to obtain a good
performance of the classifier. This is done iteratively by selecting a sub set out of
the unlabeled data pool, re-evaluating this sub set and re-training the model using
all labeled instances. The number of iterations is set by the experimenter. In PL a
sub set of samples is picked out at random. For AL the algorithm actively chooses
the data from which it learns by selecting those samples from the unlabeled data
pool that are intended to be the most informative. The degree of informativeness
can be obtained by different query strategies. In [Settles 2010] an overview on the
most common AL approaches and query strategies is given. One well established
query strategy is called uncertainty sampling [Lewis & Gale 1994]. Here the in-
formativeness of the samples is obtained by computing the posteriori probability or
confidence values of the class assignment obtained by utilizing the model trained on
the existing labeled data. The sample for which the classifier is least certain on how
to assign a label is then chosen to be re-evaluated by a human expert. Other vari-
ants of uncertainty sampling are margin sampling, where the sample achieving the
lowest margin between the two most popular class labels is chosen for re-evaluation
[Scheffer et al. 2001], or methods based on the information entropy of the sample
(e.g. [Z. Zhang et al. 2018]). A way to also deal with noisy data is to use a me-
dium certainty query strategy as presented in [Zhang & Schuller 2012]. By using
the medium certainty level, data including acoustic distortions or labels obtained
from unreliable annotation data are being disregarded for a re-evaluation, as they
would most certainly lead to low confidence values but not contain the desired high
informativeness. From more recent investigations, as presented in [Abdelwahab &
Busso 2019] and [Chen & Hao 2020], it can be seen that the performance of AL is not
only dependent on the type of emotional data (categorial/ discrete or dimensional/
continuous) but also on the utilized machine learning algorithm for the classifier.

Another method to reduce the annotation effort is based on eliminating the inter-
vention of a human annotator completely, for example by utilizing Semi-Supervised
Learning (SSL) strategies. An overview on most relevant SSL strategies is given
in [Zhu 2008]. As for AL, a first model is trained on already existing labeled data
samples and iteratively re-trained by the re-evaluated sub set of the unlabeled data
pool. In contrast to AL, the re-evaluation of the sub set is not based on human
expert labeling but relies completely on the results of the initially trained model.
The sub set is chosen by evaluating the certainty value of the predicted class. Only
those samples achieving high certainty values are considered in the sub set. This
well-established SSL strategy is called Self-Training. Another approach is the so-
called Co-Training [Blum & Mitchell 1998], where the decision is not based on one
model, but on two models, initialized based on two independent feature sets which
are sufficient to train a good classifier. The sub sets are then chosen independently
for each model and the classifiers are re-trained using the obtained sub set of the
other model.
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The main problem with the presented approaches of AL and SSL is that the sub
set they are trained on is only partly based on annotations done by human experts.
For the in-vehicle real-world data presented in this Thesis, it can be assumed that
AL and SSL will not lead to satisfying results, as the data set comprises not only
noisy data but also highly natural low-expressive emotions for which an automatic
recognition is highly challenging and of lower reliability (cf. Section 2.6). Therefore,
a manual annotation is inevitable to achieve reliable recognition performances.

As SSL relies completely on the performance of the initially trained model, even
when the whole unlabeled data pool is labeled by the model, the algorithm would
not reach the performance of the classifier trained on the fully manually annotated
set. From [Zhang et al. 2015] it can be seen that the performance of the SSL
self-training and co-training algorithm never reaches the Unweighted Average Recall
(UAR) (cf. Section 2.2.7) of the corresponding baseline Support Vector Machine
(SVM) classifier (cf. Appendix A) for discrete speech emotion recognition, but
converges towards a much lower UAR with an increased number of labeled instances
(difference in-between UARs ranging from 3.3% to 6.7%).

For AL, studies have shown that the number instances which have to be manually
labeled can be slightly decreased while receiving a similar UAR as when utilizing the
fully manually labeled data set. In [Han et al. 2013], depending on the AL strategy,
at least 88% manually labeled samples out of the unlabeled data pool are needed to
achieve a recognition performance comparable to the results obtained on the fully
manually labeled data utilizing Support Vector Regression (SVR) on continuously
labeled values of valence and arousal. In a different study, by applying AL strategies
for discrete speech emotion recognition and SVMs as classifiers, a reduction of the
number of manually labeled data up to 85% of the unlabeled data pool is achieved
(i.e. at least 15% manually labeled data) while the UAR is kept at a similar level
as when utilizing the complete unlabeled data pool [Zhang et al. 2015; Zhang
& Schuller 2012]. However, the UAR when manually labeling all samples of the
unlabeled data pool is never outperformed (depending on the annotation quality
this phenomena could also occur). It should be kept in mind that the presented
numbers do not include the amount of manually labeled data needed to initialize
a first classifier. Taking into account this amount of needed labeled data, 55.9%
of data samples have to be manually labeled. Therefore, the goal of the approach
presented in this Thesis, was not to limit the number of samples labeled by a human
labeler, but to decrease the annotation effort (mostly in time) while receiving a
full manual annotation. This approach will be presented in Chapter 5 later in this
Thesis.
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2.1.5 Relevant Benchmark Data Sets

There exist various well-established benchmark data sets that are commonly used in
the field of speech emotion recognition. As already stated earlier in this Section, the
data sets can be roughly distinguished regarding their level of naturalness (e.g. acted
emotions, scripted emotions, natural emotions), their recording setup (e.g. anechoic
chamber, studio, in the wild) and the utilized emotion concept (e.g. categorial
emotions, dimensional emotions). An extensive survey article providing information
on currently available benchmark data sets is, for example, presented in [Akçay &
Oğuz 2020]. I will now introduce the reader only to those data sets which were
further utilized in the scope of this Thesis, namely, EmoDB [Burkhardt et al. 2005]
and VAM [Grimm et al. 2008]. Table 2.1 gives an overview on the characteristics of
the EmoDB and VAM data sets.

Berlin Emotional Speech Database (EmoDB)

The EmoDB data set [Burkhardt et al. 2005] contains 494 emotional speech samples
spoken by ten German speaking professional actors (five females) and recorded in-
side an anechoic chamber. The actors are instructed to simulate ten sentences of
emotionally neutral content in seven emotion categories (anger, boredom, disgust,
fear, happy, neutral and sadness). This results in a total of 800 emotionally colored
speech samples. These recordings were afterwards annotated by 20 independent
labelers according to their emotion recognizability and level of naturalness. The
final data set only includes those samples with an emotion recognition rate of more
than 80% and rated naturalness of more than 60%, resulting in 494 speech samples
(127 anger, 79 boredom, 38 disgust, 55 fear, 64 happy, 78 neutral and 53 sadness) of
approx. 2 seconds length and a total of 22 minutes of recorded audio material. The
audio recordings are obtained using a sampling rate of 48 kHz but are provided to
the user in a downsampled version of 16 KHz.

Vera am Mittag Corpus (VAM)

The VAM corpus [Grimm et al. 2008] is a German audio-visual emotional data
set containing 946 speech samples (47 minutes of audio recordings) of 47 non-
professional speaker (36 females). It consists of recordings taken from the Ger-
man talk-show Vera am Mittag, where the guests of the show perform unscripted
spontaneous discussions moderated by the anchorwoman, Vera. The recordings are

Table 2.1: Overview on benchmark emotional speech data sets employed in the scope of
the Thesis.

Name Reference Samples [#] Cat. Dim. Naturalness Rec. Environment

EmoDB [Burkhardt et al. 2005] 494 7 - acted anechoic chamber
VAM [Grimm et al. 2008] 946 - 3 scripted television studio
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recorded inside a television studio with a sampling rate of 44.1 kHz but are later
downsampled to 16 kHz. Even though the discussions are named to be unscripted
and spontaneous, the discussions often escalate quickly which leads to a strong ex-
pressiveness of the emotions. Furthermore, the discussions mostly evolve around
negative topics, which makes it assumable that the data set comprises a majority
of negative emotions. The audio recordings of 12 broadcasts of the talk shows are
divided into utterances (complete sentences, exclamations, affect burst or grammat-
ically incomplete sentences) and afterwards annotated by 17 independent labelers
in the three dimensions of valence, arousal and dominance using the SAM scale. A
histogram, showing the distribution of samples along the three dimensions, provided
in [Grimm et al. 2008] confirms the previously made assumption that a majority of
the annotated samples lie in a region of neutral or negative valence. In [Schuller;
Vlasenko; Eyben et al. 2009] the authors provide a mapping of the provided labels
onto four quadrants (q1, q2, q3, q4) of the valence-arousal space, as depicted in
Figure 5.1 on page 142. Considering this mapping, the VAM corpus contains 21
samples in q1, 50 in q2, 451 in q3 and 424 in q4. With q3 and and q4 lying in
the negative valence half-space, this indicates a strong bias of the dataset towards
negative emotions.

2.2 Modeling a Speech Emotion Recognition Sys-
tem

As soon as suitable data is available, it is possible to build a classification model
for the considered speech emotion recognition task. The approach presented in this
Thesis is based on supervised data-driven machine learning algorithms. A schematic
overview on how to build this kind of systems is shown in Figure 2.5. First, emotion-
relevant speech features need to be extracted from the speech signal. Then, those
features contributing most to the recognition task need to be identified by applying
a feature reduction algorithm. Afterwards, the data is split into an independent
train and test set. The independence of the data sets is inevitable to overcome over-
fitting of the classifier. The train set is then used to train the classification model.
Finally, the classification model is optimized (i.e. via hyper-parameter optimization,
typically on a held-out evaluation data set) and validated using the reduced feature
set of the independent test set. In this Section, I will provide a detailed description
on how to proceed in the process of building a speech emotion recognition system.
This will be done by clearly differentiating speech emotion recognition from Auto-
matic Speech Recognition (ASR) and giving deeper insight on the feature space
used for speech emotion recognition, suitable machine learning based classification
algorithms and finally validating the classification model. This information will later
be used to realize the classification experiments presented in Chapters 4, 5 and 6.
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Figure 2.5: Schematic overview of the procedure to build a speech emotion recognition
system.

2.2.1 Introduction to Automatic Speech Recognition

To highlight the main differences and similarities between speech emotion recogni-
tion and ASR, I will now give a brief introduction in the field of ASR. This introduc-
tion includes the general architecture of the recognition system, the utilized features,
and most commonly used machine learning approaches, known from literature.

The general classical architecture of an ASR system, as described in [Yu & Deng
2015], consists of four main processing units. First, a pre-processing of the speech
signal including the feature extraction is performed. Second, these features are fed to
the acoustic model to estimate the likelihood of the recognized phonetic unit. Third,
a language model is utilized, which estimates the probability of a hypothesized word
sequence. All available words are taken from a dictionary, which can vary depending
on the application domain or language the ASR system is designed for. Last, the
likelihood of the phonetic unit sequence and hypothesized word sequence are com-
bined and the hypothesis search component renders the word sequence obtaining
the highest probability score.

Commonly used acoustic features for speech recognition, as state in the literature
(cf. [Benesty et al. 2008; Yu & Deng 2015]), are Mel-Frequency Cepstral Coefficients
(MFCCs), Perceptual Linear Prediction (PLP) coefficients, and Linear Predictive
Coding (LPC) coefficients, together with their deltas and delta-deltas. For speech
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emotion recognition, features and statistics are calculated frame-wise. While for
speech emotion recognition the decision of the feature space strongly influences the
performance of the recognizer (cf. Section 2.2.2), this is only to a small degree the
case for speech recognition. Here, the performance for a continuous speech recog-
nition system is mostly influenced by the chosen acoustic and language model, and
utilized prescribed dictionary. First, the feature vectors are passed to the acoustic
model and a phonetic likelihood is estimated. One main problem which needs to
be stated at this point is the strong variability of time duration of each utterance.
Even when repeating the same sentence multiple times, each utterance will have a
unique length [Deng & Li 2013]. This implies that the same sentence will also res-
ult in a variable feature vector length. By applying techniques like Dynamic Time
Warping (DTW) and Hidden Markov Models (HMMs), this problem is solved [Yu
& Deng 2015], by learning the time-alignment of the training and test phrases. A
commonly used method to recognize a word sequence is by combining traditional ma-
chine learning techniques like Gausian Mixture Models (GMMs), SVMs or Artificial
Neural Networks (ANNs) with HMMs in so called hybrid models. Some approaches
also utilize ANNs (e.g. Deep Neural Networks (DNNs)) only, these approaches are,
however, in need of large training material to obtain reliable recognition results
with high recognition performances (cf. [Padmanabhan & Premkumar 2015; Solera-
Ureña et al. 2007] and [Deng & Li 2013]). To further simplify the recognition task,
the utilized dictionary is used to limit the number of possible entities (phonemes,
syllables, etc.) that can be recognized by the acoustic model. Second, the lan-
guage model is used to gain information on the probability of a hypothesized word
sequence (P (W )), with regard to the correct, or commonly used, grammar of the
sentence (cf. [Yu & Deng 2015]). This information is typically taken from text-based
training corpora. By introducing this additional language model to the recognition
process, the high degree of freedom of a recognized word sequence by the acoustic
model is limited to possible word sequence candidates. This simplifies the process
of continuous speech recognition, compared to using an acoustic model only, which
would need an horrendous amount of training material. It is assumed that certain
word sequences appear with a higher probability than others, and some may not be
covered by the language model at all, leading to a considerably low probability of
the recognized word sequence in these cases. The word sequence probability is then
determined based on the probability of a certain word following the past n words:

P (W ) =
∏

(wk | wk−1, wk−2, ..., wk−(n−1)). (2.10)

By utilizing this, so called, n-gram model, the probability of a word wk, given
the preceding n− 1 words, is estimated [Wendemuth 2004; Benesty et al. 2008]. n-
gram models are often described using finite-state models, with one state for every
word wi and a transition between the words forming a grammatically correct word
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sequence. Each transition between the words is weighted by a transition probability,
estimated for the present word sequence [Benesty et al. 2008].

As this Section only gives a very brief overview on ASR systems, I recommend to
read [Benesty et al. 2008] or [Yu & Deng 2015] for more detailed information.

2.2.2 Choosing the Feature Space

In the classical approach of speech emotion recognition, the feature space is based
on the features used for emotion perception by humans. Here, in contrast to ASR,
not the spoken content of the speech itself is of interest to gather information on
the emotional state of the speaker, but the prosodic information (paralinguistic
features) is needed [Frick 1985; Scherer 1986a]. Early research has already shown
that it is not only possible to communicate emotions through prosodic information
within one culture, but also in between cultures and languages [Clynes & Nettheim
1982; Davitz & Beldoch 1964; Krauss et al. 1983]. However, there exist differences
in the communication of emotion of different cultures [Kramer 1964; Sogon 1975].
Even though the cross-cultural communication of emotion is less applicable for some
cultures, a highly effective communication is still noticed [Frick 1985]. For within
culture emotion communication, it is even shown that with increasing time of com-
municating (e.g. roommates sharing the same household) the ability to interpret
the prosodic information correctly increases and hence also the ability to perceive
the emotion correctly [Hornstein 1967]. It is further shown that with loss of pros-
odic information, the emotion perception is impaired [Lieberman & Michaels 1962;
Knower 1941; Dusenburg & Knower 1939; Pollack et al. 1960; Burns & Beier 1973;
Ross et al. 1973; Kramer 1964]. This is especially the case when information on the
pitch or loudness of the speech is degraded (cf. [Lieberman & Michaels 1962]) or
frequencies above a certain frequency-level are filtered from the signal (cf. [Burns
& Beier 1973; Ross et al. 1973]). Some relevant features and their correlation to
certain discrete emotional states are presented in [Frick 1985; Scherer 1986a], with
a special focus on automatically extracted features in [Scherer et al. 2003]. A broad
overview on the past findings in vocal emotions is presented in [Murray & Arnott
1993] and, with a focus on speech emotion recognition, in [Cowie et al. 2001]. It can
be summarized that especially the fundamental frequency (pitch), pitch-contour,
lower formant frequencies, loudness, intensity, speaking rate and voice quality have
great impact on the perceived emotion. Furthermore, [Breitenstein et al. 2001] show
that a manipulation of these features can significantly affect the perceived emotional
state.

Considering only the paralinguistic features, in [El Ayadi et al. 2011] a grouping
into four feature categories is presented: continuous features (e.g. pitch, formants
and loudness), spectral features (e.g. MFCCs and LPCs), voice quality features (e.g.
tense, harsh and breathy voice) and Teager Energy Operator (TEO)-based features
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(cf. [Teager & Teager 1990] and [Kaiser 1990]). The latter ones are primarily used
for the detection of speech under stress condition [Zhou et al. 2001; Cairns & Hansen
1994]. Stress not per se defines an emotion but rather a transactional process requir-
ing psychological, physiological and/ or behavioral effort by the individual to retrieve
her/ his personal well-being related to an event, which is perceived as relevant to the
individual [Lazarus & Folkman 1984]. Nevertheless, several well known-researchers
in the field of emotion science have investigated the relation between stress and
emotion and show that stress is interdependent with the field of emotion, especially
considering negative emotions (e.g. [Lazarus 2006; Scherer 1986b]). In the scope of
this Thesis, the effect of stress on the emotional state of the driver is not further
investigated. Furthermore, in case of voice quality features, there occur two main
challenges. Firstly, the voice quality is mostly described using impressionistic la-
bels like tense, harsh and breathy [Cowie et al. 2001]. These are subjective labels,
which needs to be judged auditorily by an individual and can only to some limit
be extracted from the speech signal automatically. In [Laver 1980] a wide range
of phonetic variables is presented, which are assumed to impact the subjective im-
pression of the voice quality. Out of these measures a direct relation to emotions is
drawn for the open-to-close ratio of the vocal cords, jitter, harmonics-to-noise ratio
and spectral energy distribution [Klasmeyer & Sendlmeier 1995]. A simple way to
include information of the voice quality is therefore to utilize spectral properties,
which are already assumed to give relevant information on the emotional state, as
stated previously. As this information can be seen as redundant, a unique objective
measure of voice quality needs to be found. This can be done by recovering the
glottal waveform from the speech signal, which is a highly challenging process, as
it is neither a measurable signal nor are the vocal track filter parameters known [El
Ayadi et al. 2011]. By utilizing inverse-filtering techniques, as presented in [Gobl &
Chasaide 2003], it is, however, possible to estimate the glottal waveform. A second
challenge of using voice quality as emotional feature is that from literature there ex-
ist contradictory statements on the relation between voice quality and the perceived
emotion (cf. [El Ayadi et al. 2011; Scherer 1986a; Cowie et al. 2001]). Considering
these findings on TEO-based features and voice quality features, the most relevant
features when it comes to speech emotion perception are continuous and spectral
features. These features can be obtained straight from the speech signal in time
or frequency domain and are therefore of high interest when it comes to automatic
speech emotion recognition. For further elaboration I want to refer to [El Ayadi
et al. 2011; Swain et al. 2018] and [Akçay & Oğuz 2020], who give a good overview
on speech features and how they influence the recognition performance of emotions.

A further aspect that needs to be addressed is the fact that speech signals are
transient signals with all their features changing constantly over time. To obtain
reasonable feature values, the signal from which the features originate needs to be
quasi-stationary. This is accomplished by dividing the speech signal into small con-
secutive overlapping time windows (i.e. frames) of the same length, in which the
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speech signal is assumed to be short-time-stationary. This process is referred to as
windowing and is a common methodology in digital speech processing (cf. [Wen-
demuth 2004]). The emotion speech features are calculated for each sample of the
considered time window. To aggregate the changes occurring within the time win-
dow, statistics, such as mean, min, max, range and other variability coefficients,
are determined. Consequently, for each speech sample a vector of each feature and
statistic is generated, resulting in a high dimensional feature matrix. There exist
multiple designated feature sets based on the paralinguistic features presented be-
fore, which are commonly used for speech emotion recognition. These features sets
are described using so-called Low-Level Descriptors (LLDs) and statistical function-
als. While the LLDs correspond to the global feature (supra-segmental), which is
extracted directly from the speech signal, the utilized functional correspond to the
applied statistics (super-segmental). An overview on benchmark feature sets is given
in the next Section.

2.2.3 Feature Sets

In literature there exist multiple feature sets, which are used in the field of speech
emotion recognition. The most commonly used feature sets are referred to as baseline
feature sets and comprise the emobase and emo large feature set, provided by the
OpenSMILE toolkit [Eyben et al. 2009; Eyben et al. 2010], the IS’09 Emotion fea-
ture set, provided by the INTERSPEECH 2009 emotion challenge [Schuller; Steidl
& Batliner 2009], the IS’10 Paralinguistic feature set, provided by the INTER-
SPEECH 2010 paralinguistic challenge [Schuller et al. 2010], the ComParE’13 fea-
ture set, provided by the INTERSPEECH 2013 computational paralinguistic chal-
lenge [Schuller et al. 2013], and the more recently established GeMAPS feature set,
which is strongly based on features related to the phonetics of emotional speech [Ey-
ben et al. 2016]. The GeMAPS feature set is the first approach towards phonetic
based features. There exists a minimal and an extended version of the set, with
the minimal set containing only features based on the phonetics and the extended
set containing further spectral features like the MFCC 1-4 and formant bandwidth.
These benchmark feature sets can be automatically extracted from the speech sig-
nal/ sample by utilizing the OpenSMILE feature extraction toolkit [Eyben et al.
2010], which provides designated configuration files for each set. OpenSMILE was
used throughout this Thesis to extract the utilized feature configurations.

The main difference of the presented features sets is the number of LLDs and
functionals, which are applied to the speech signal. Table 2.2 gives an overview on
the different feature sets and the number of included LLDs and functionals. It needs
to be noted, that not all functionals are applied to each LLD and that not only the
LLDs but also their deltas and delta-deltas (i.e. first and second order derivatives or
differences) are applied in some cases. For a more detailed description of the feature
sets, please refer to the stated references. Further, it can be seen that a majority
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Table 2.2: Overview on benchmark speech emotion feature sets sorted by year of public-
ation. All feature sets comprise a different number of LLDs and applied functionals,
with not all functionals necessary being applied to each LLD.

Name Reference LLDs [#] applied ∑
functionals [#]

emobase [Eyben et al. 2009;
Eyben et al. 2010] 26 19 988

emo large [Eyben et al. 2009;
Eyben et al. 2010] 56 39 6552

IS’09 Emotion [Schuller; Steidl &
Batliner 2009] 16 12 384

IS’10 Paralinguistic [Schuller et al. 2010] 38 21 1582
ComParE’13 [Schuller et al. 2013] 64 61 6373
GeMAPS [Eyben et al. 2016] 18 16 62
eGeMAPS [Eyben et al. 2016] 25 16 88

of the available feature sets comprise large numbers of features. Only the GeMAPS
contains a low number of features which were designatedly chosen and are assumed
to carry the most valuable information regarding speech emotion recognition.

In general, when choosing one of these benchmark feature sets, one needs to
consider the curse of dimensionality (cf. [Bellman 1961]). The number of utilized
LLDs and statistical functionals in the set define the complexity of the considered
feature space. Regarding the number of available data samples for each class of
the considered classification problem, the feature space, and all its combinatorial
possibilities (#LLDs#statistics), needs to be sufficiently covered by the data samples.
With an increasing number of features and hence complexity of the feature space,
also the number of utilized data samples needs to be increased dramatically. Without
an increase of sample size, the feature space is only sparsely covered and it becomes
much easier to find clusters of data samples inside the feature space, which can lead
to an overfitting of the classifier [Spruyt 2014; Keogh & Mueen 2017]. However, there
exists no simple way to determine a suitable number of feature space dimensions
or data samples, as many factors contribute to this problem. One mayor factor is
the correlation of the features included in the set. Assuming all features contribute
the same amount of information to the recognition performance of the classifier,
at least N l samples are needed to densely cover the entire feature space, with N

being the number of samples needed to sufficiently cover one dimension in the feature
space and l being the number of dimensions considered [Theodoridis & Koutroumbas
2009]. This assumption is, however, not always valid, as for most cases there exists
a correlation in between the features with some features contribute more to the
classification task than others. For this case, it can be assumed that a much lesser
number of data samples is necessary to overcome the cures of dimensionality. In
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literature there exist three common ways to cope with this issue (cf. [Clarke et al.
2009; Theodoridis & Koutroumbas 2009; Keogh & Mueen 2017]):

1. Cross-validation:
The sample set is divided into two independent sets of training and test data.
The classifier is then trained on the one set and afterwards applied to the
other set. By testing on an independent set of data samples, one can prevent
overfitting. If the classifier works well on the training set but does not show
a good performance on the utilized test set, overfitting is most probably the
case.

2. Feature extraction:
The feature space gets reduced by combining features, which show a high
correlation among each other into one feature. By combining different features,
the interpretation of the new feature, as physical parameter of the production
system, is, however, not possible anymore.

3. Feature selection:
Only those features showing high importance for the present classification task
and, hence, are most informative are being selected. By utilizing a feature se-
lection those features contributing the most to the classification task are iden-
tified and an interpretation of the paralinguistic information is still possible.
Features not contributing to the classification task are excluded from the set.

With regard to the problem of high dimensional feature spaces and small data
sets, emobase shows a good performance on the most prominent benchmark emo-
tional data sets presented in Section 2.1.5 (cf. also [Haider et al. 2021]). To make
the results presented in this Thesis comparable among each other and to other in-
vestigations presented in literature, I therefore opt for this feature set. Even though
the GeMAPS feature set comprises a much lower number of features and seems to
be of higher suitability in case of small data sets, this set was outperformed by all
other benchmark feature sets when applied for classification on the benchmark data
sets (cf. [Eyben et al. 2016]). Furthermore, the contribution of different features to
the recognition performance can vary dramatically depending on the utilized data
set (cf. [Siegert et al. 2017]). By conducting a feature selection, the most relev-
ant features of the present classification task can be identified. Another side effect
of performing a feature selection is an increase of the recognition performance, as
irrelevant features or redundant features are being excluded from the feature set.

To get a better insight on the utilized feature set, I will now give a brief overview
on the features included in the emobase feature set. The set contains a large range of
prosodic (e.g. pitch, loudness), spectral (e.g. MFCCs, Line Spectral Pairs (LSPs))
and voice quality related features (e.g. voicing probability), which are named to
have a high impact on emotion recognition from speech (cf. Section 2.2.2). In
detail 26 LLDs are include in the set. Furthermore, a broad number of 19 statistical
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Table 2.3: LLDs and applied functionals of the emobase feature set provided by the
OpenSMILE feature extraction Toolkit (adapted from [Requardt; Ihme et al. 2020]).

LLDs (26 x 2) Functionals (19) Features [#]

Pitch, pitch envelope,
intensity, loudness, 12
MFCCs, probability

of voicing, 8
frequencies of LSPs,
Zero-Crossing-Rate

(ZCR)

min/ max value and index of
position within the signal, range,

arithmetic mean, 2 linear
regression coefficients and linear
and quadratic error, standard
deviation, skewness, kurtosis, 3
quantiles and 3 inter-quantile

ranges

(26 x 2) x 19 = 988

functionals are applied to each LLD and their deltas. This sums up to 988 features
included in the emobase set. A detailed listing of the utilized LLDs and functionals
is presented in Table 2.3.

2.2.4 Feature Reduction

As already stated, one major problem in using existing feature sets is their pretension
on applicability for emotion recognition from speech in general. However, depending
on the classification task and utilized data set, some features may be of higher
importance than others and some features may show a high correlation in their
contribution on the classification task. A second problem, which was stated just
previously in this Section, is the curse of dimensionality, and that with an increase of
utilized features also the number of data samples needs to be increased exponentially
to densely cover the whole feature space. Therefore, it is advisable to perform a
feature reduction and identify those features carrying the most importance for the
considered classification task or combine features showing a strong correlation. This
will on the one hand decrease the number of features and can on the other hand
have an impact on the recognition performance (cf. [Özseven 2019] and [Daneshfar
& Kabudian 2020]). Feature reduction will play a decisive role in Chapter 6 of this
Thesis. In the following, I will refer to the two most commonly used methods of
feature selection and feature extraction/ generation, which have been introduced
above, jointly as feature reduction.

By conducting a feature extraction/ generation, an information loss of the para-
linguistic information occurs, as features with a high correlation are combined and
a new feature is generated. In the present Thesis, I focused on feature selection, as I
wanted to identify those paralinguistic features contributing the most to a good re-
cognition performance of the present real-world in-vehicle speech samples. It should
be noted that in the following I will only give a brief overview on past and present
work in feature reduction, as depending on the utilized data and feature set, the



40 2.2. Modeling a Speech Emotion Recognition System

effect of the applied feature reduction method on the classifiers performance can
largely vary. If the reader is interested in more detailed information on the recog-
nition performance obtained when applying different feature reduction methods, I
refer to the publications referenced.

The most popular feature extraction methods presented in literature are factor
analysis, Linear Discriminant Analysis (LDA), Principle Component Analysis
(PCA) and Independent Component Analysis (ICA) (cf. [Clarke et al. 2009;
Theodoridis & Koutroumbas 2009]). In speech emotion recognition the most prom-
inent feature extraction algorithm is PCA. [Daneshfar & Kabudian 2020] present a
comparative study utilizing PCA, probabilistic PCA, LDA and factor analysis, as
well as a novel approach based on quantum-behaved particle swarm optimization.
They further compare their results obtained on the data samples of the EmoDB and
IEMOCAP Corpus (cf. [Busso et al. 2008]) with the results of several other public-
ations utilizing these data sets. Further investigations based on PCA are presented
in [You et al. 2006a; You et al. 2006b; Sidorov et al. 2015; Siegert et al. 2015] and
[Lee & Narayanan 2005; Chen et al. 2012; Xu et al. 2015], with a special focus on
noisy speech environments in [You et al. 2006b]. LDA and factor analysis is applied
in [You et al. 2006a; You et al. 2006b] and [Xu et al. 2015; Wu et al. 2011], and in
[Wang et al. 2012; Song et al. 2015] and [Desplanques & Demuynck 2018], respect-
ively. Although most of the investigations presented in literature show promising
results, one major disadvantage of feature extraction is the remaining high computa-
tional effort, as all features need to be determined to apply the mentioned extraction
methods. This is not the case for feature selection, where only relevant features need
to be determined for a later application of the designed classifier.

The list of publications with a focus on feature selection is even larger. It can
be distinguished between so called wrapper and filter methods (cf. [Theodoridis
& Koutroumbas 2009]). Broad survey articles, covering mainly feature selection
approaches, are provided by [Chandrasekar et al. 2014; Swain et al. 2018] and [Akçay
& Oğuz 2020] and give a good overview on utilized feature selection methods in the
field of speech emotion recognition from the past two decades. I will now briefly
describe the two approaches of feature selection, with a special focus on wrapper
methods, as the utilized feature selection method presented in Chapter 6 is based
on this approach.

Wrappers are based on the selection of those feature subsets which contribute
the most to a good classification performance [Theodoridis & Koutroumbas 2009;
Stańczyk et al. 2018]. It is distinguished between greedy algorithms, like forward
and backward feature selection, and genetic algorithms. In case of forward selection,
features contributing the most to the classification performance are subsequently
added to the feature subspace. In backward selection, features contributing less to
the classification performance are excluded from the feature set and the remaining
subset is kept as the optimal set. Contrary to these greedy methods, the genetic



Chapter 2. State of the Art 41

algorithm is based on evolutionary principles like mutation and selection of features
[Goldberg 1989]. As the selected features are chosen based on the performance of
the applied classifier, the generalizability of the selected feature sets is rather low.
Furthermore, the presented methods are highly resource consuming, as an individual
classifier needs to be validated for each selected feature or feature group (i.e. trained
and tested). However, since wrapper methods are designed for one particular com-
bination of classifier and dataset, the selected feature subset will most certainly
outperform any other set applied to this constellation regarding their classification
performance. Most common wrapper techniques used in literature are: Sequential
(Floating) Forward/ Backward Search (S(F)F/BS) and genetic algorithms. Invest-
igations based on greedy algorithms are presented in [Kwon et al. 2003; Ververidis
et al. 2004; Luengo et al. 2005; Lin & Wei 2005; Özseven 2019; Schuller; Müller
et al. 2005; Rong et al. 2009; Pérez-Espinosa et al. 2012; Planet & Iriondo 2012;
Egorow et al. 2018] and [Lee et al. 2001; Lee & Narayanan 2005; Wu et al. 2011;
Schuller & Lang et al. 2005]. The utilization of genetic algorithms seems to be still
less common in the field of speech emotion recognition. Some publications based
on these methods are presented in [Schuller; Reiter et al. 2006; Sedaaghi; Ververidis
et al. 2007; Sedaaghi; Kotropoulos et al. 2007; Hübner et al. 2010; Sidorov et al.
2014] and [Sidorov et al. 2015].

The filter approach is based on statistical analysis of the features included in the
feature set and is independent of the recognition performance and utilized classifier.
To determine the most relevant features, distance and correlation measures are util-
ized to determine the class separability (cf. [Theodoridis & Koutroumbas 2009]).
With known class labels (i.e. supervised learning), either the distance between the
considered classes is determined, or the assumption that a good feature subset must
contain features which are highly correlated within one class and uncorrelated among
the different classes, is used to obtain information on the class separability. These
approaches tend to be much faster and of stronger generalizability than wrapper
methods, as the feature subset is chosen by only evaluating the intrinsic properties
of the data. This implies that by applying a filler method it is possible to receive
a feature subset which performs good when applied to a broad range of classifiers,
but which will most certainly be outperformed by a selected feature subset when
utilizing a wrapper method on one particular classifier. Most prominent filtering
techniques used in literature are Fisher’s discriminant ratio (FDR) (cf. [Theodor-
idis & Koutroumbas 2009]), distance-based, correlation-based and statistical testing
based methods. Filter methods based on FDR are utilized in [Sun et al. 2019; Har-
imi & Esmaileyan 2014; Liu et al. 2018] and [Chen et al. 2012; Wu et al. 2011].
In [Vogt & André 2005; Schuller 2011; Mencattini et al. 2014] and [Özseven 2019]
a focus is drawn on correlation-based filter techniques. Feature selection based on
distance measures is presented in [Wang & Guan 2004] and [Liu et al. 2018], and
statistical testing based methods utilizing ANOVA and the Kolmogorov-Smirnow
test are presented in [Sheikhan et al. 2013] and [Ivanov & Riccardi 2012].
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It should be noted, that the presented studies on feature reduction only cover
investigations based on speech emotion recognition. Furthermore, this listing is
only an abstract of the available work and should not be taken as comprehensive.

2.2.5 Feature Normalization

From the field of phonetics it is known that there exist differences in the individual
speaker characteristics with regard to form, size and mass of the vocal organs and
their state of health [Scherer et al. 2003; Laver 1994]. These differences also affect the
characteristics of the features used for speech emotion recognition. A common way
to cope with this problem in speech emotion recognition is to normalize the feature
values originating from the different speakers. A comparative study on efficient
ways to normalize speech features is presented in [Böck et al. 2017]. In this paper,
the authors apply different normalization techniques to nine emotional speech data
sets. As normalization methods they utilize standardization (transformation of the
measured values into standard values with an expected value of 0 and variance of
1), range normalization (transformation of the measured values into a range interval
of [-1, 1], often also referred to as min-max feature scaling), centering (shifting
the measured values to a mean value of 0; only the value changes not the scale)
and neutral normalization (determination of the normalization parameters only on
samples labeled as neutral and then applied to samples labeled as other emotion
[Busso et al. 2011]). By using SVM classifiers (cf. Appendix A) and Leave-One-
Subject-Out (LOSO) cross-validation (cf. Section 2.2.7), it is shown that feature
normalization can lead to a significant increase of recognition performance compared
to when utilizing non-normalized features. It is assumed that by normalizing the
feature values, the inter-individual effects of the speaker on the speech signal are
adjusted while the effects of the emotion on the speech signal is maintained. For
all nine evaluated data sets the recognition performance is increased when applying
standardization. Two sets achieve the highest recognition results when applying
standardization in combination with natural normalization. Only for one data set
the best result is obtained by applying range normalization. Centering never leads
to an increase of recognition results. In contrast, this normalization approach even
shows a decreasing behaviour for four of the nine data sets. The strongest increase in
recognition performance is achieved for EmoDB, where the non-normalized features
accomplish 47.4% UAR, while the standardized features reach 77.2% UAR. Overall
it is concluded that standardization in most cases leads to substantial improvement
of the recognition performance for all evaluated data sets. Considering this finding,
for all classification experiments presented in this Thesis a feature normalization
using standardization was realized.
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2.2.6 What Kind of Classifier to Use

In contrast to ASR, where also the spoken content of the speech is needed, speech
emotion recognition can be based on paralinguistic features only. There does exist
work, which includes the detection of emotional keywords into the speech emotion
recognition system (e.g. [Chuang & Wu 2004]). This, however, will not always
lead to an increased recognition performance, as emotional phrases like “I’m happy.”
or “Everything is Okay.”, do not always refer to the intrinsic state of the speaker
[Chopade 2015]. The assumption of not considering the spoken content differenti-
ates speech emotion recognition significantly from ASR, as no vocabulary, language
model or correct grammar is needed.

In literature it is assumed that the emotional state of the speaker can change
rapidly over time, even within one sentence [Pell & Kotz 2011]. Therefore, the
classification of the speech signal is mostly performed over small speech segments,
for which the emotional state of the speaker is assumed to be constant. Hence, in the
field of speech emotion recognition, mostly a focus is draw on the detection of the
emotional state in a considered discrete time interval. To also include the evolution
of emotion over time it is possible to utilize HMMs or DNNs (e.g. [Schuller et al.
2003; Ntalampiras & Fakotakis 2011]).

In case of data driven machine learning approaches, the classifier will only be as
good, as the data it is trained on. This is one of the main challenges considered
in this research domain, as the generation of valuable data is costly in resources
and time. Therefore, it is essential to make use of classification algorithms, which
can cope with the available amount of data. Most commonly used machine learning
approaches in speech emotion recognition are SVMs, decision trees (e.g. Random
Forests (RFs)), ANNs, DNNs, Long Short-Term Memorys (LSTMs) and autoen-
coders. Even though a comparatively high number of emotional data was obtained
during the data collection realized in this Thesis (cf. Section 5.1.2 on page 140)
compared to the number of samples included in benchmark emotional data set (cf.
Section 2.1.5), this is not sufficient to obtain reliable results from ANN or DNN
approaches. Therefore, I opt for SVMs and RFs as classifiers. A further positive as-
pect of these classification algorithms is that they can cope with biased-distribution
data sets, as it is the case for the present data. There further exists a high number
of comparable studies from other researchers, which also employed SVMs and RFs
as classifiers, allowing to draw conclusions and comparisons. For more information
on the SVM and RF machine learning algorithms, I refer the reader to Appendix A.

2.2.7 Evaluating the Recognition Performance

In the introduction of this Section, I have mentioned the validation of the classific-
ation model by utilizing an independent validation set, also referred to as test set.
This set is used to determine the classification model performance on unknown data
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samples. There exist designated performance measures, used in the field of machine
learning. Furthermore, when modeling multiple classifiers, it is of high importance
to determine if there exist a statistical difference between the models. This can be
done by applying suitable statistic analyses. The three steps of validating the model
(test set), determining the performance of the model (performance measures) and
determining the significance of the performance (statistical analysis) is presented
hereinafter and will be used throughout this Thesis.

Validating the Model

There exist different methods to split the data samples into a training and test set.
While the training set is used to train the classifier, the test set should solely be used
to validate the model and should therefore not include samples already contained in
the training process. Commonly used methods are random k-fold cross-validation
(cf. [Schaffer 1993] and [Kohavi 1995]), LOSO cross-validation (cf. [Picard & Cook
1984] and [Schuller et al. 2008]) and Leave-One-Subject-Group-Out (LOSGO) cross-
validation (cf. [Schuller; Vlasenko; Eyben et al. 2009]).

In case of k-fold cross-validation the data set is randomly split into k equal sample
sets. Afterwards, each of the k sets is used to validate a model trained on the remain-
ing k − 1 sets. This corresponds to k classification experiments. The performance
measures obtained for each experiment are then averaged over all k experiments
to estimate the average performance of a classifier trained on completely unknown
data samples. A less random method to split the data set into more representat-
ive training and test sets, is stratified cross-validation. Here, the data distribution
of the training and test set is chosen in the same proportion as in the underlying
population (e.g. age or gender).

One disadvantage of the k-fold cross-validation is that a speaker dependency of the
samples is left out of consideration. This could lead to an overfitting of the classifier,
as the classifier could be tested on speech samples originating from a speaker already
used during training, implying that the speaker is not unknown to the model. This
problem can be overcome by utilizing a LOSO cross-validation. For this method, the
data samples are split by their origin, such that the number of subjects/ speakers
included in the data set, determines the number of folds and, hence, the number
of performed classification experiments, with each fold containing only samples of
one speaker. Furthermore, the LOSO validation scheme leads to a generalization of
the classification results and takes into account the inter-individual differences of the
subjects. As with an increasing number of subjects also the validation effort increases
dramatically, another way to maintain speaker independence is by performing a
LOSGO cross-validation. Here, the data is split into groups of independent subjects/
speakers, with a maximum limit of 10 groups, such that the number of folds and,
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hence, classification experiments is limited to 10 3 (also see [Schaffer 1993] and
[Kohavi 1995]). This decreases the validation effort while maintaining a speaker
independence.

Determining the Performance of the Model

To determine the performance of the model, the predicted output obtained by the
classifier is compared to the true label of the sample. There exist several measures
to evaluate the performance of the model (cf. [Olson & Delen 2008; Powers 2007]).
Most of these measures are established to evaluate binary classification system with
the assumption that the outcome is either positive or negative. A frequent way to
represent these results is by utilizing a confusion matrix, as depicted in Table 2.4.
Here, it is distinguished between True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) classification results. The TPs entries cor-
respond to the number of samples correctly predicted (green entries) as positive,
TNs correspond to the number of samples correctly predicted as negative, FPs cor-
respond to the number of samples falsely predicted (red entries) as positive and FNs
correspond to the number of samples falsely predicted as negative.

By utilizing the terms defined in the confusion matrix, it is possible to determine
different performance measures. The most frequently used measure is called Accur-
acy (ACC). This measure represents the percentage of correctly predicted instances
and is determined by calculating

ACC =
TP + TN

TP + FP + FN + TN
. (2.11)

Its compliment is referred to as Error Rate (ER) and determined by calculating

ER = 1− ACC =
FP + FN

TP + FP + FN + TN
. (2.12)

Especially in case of unbalanced data set distributions the interpretation of the
ACC and ER can be misleading, as the dominant class will bias the measure towards

Table 2.4: Confusion matrix of a binary classification problem.

Predicted
Positive Negative

True Positive TP FN
Negative FP TN

3This number of folds is at least needed to obtain a minimal statistic and can be seen as rule
of thumb.
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its detectability. Measures, which take into account such imbalances are Recall,
Precision and F1-Measure. The Recall, also referred to as Sensitivity, determines
the percentage of the correctly predicted positive samples out of all true condition
positive samples:

Recall =
TP

TP + FN
. (2.13)

Its compliment is referred to as Specificity and determines the percentage of the
correctly predicted negative samples out of all true condition negative samples. The
Precision determines the percentage of the correctly predicted positive samples out
of all predicted positive samples, i.e. the probability of the true prediction to be
correct:

Precision =
TP

TP + FP
. (2.14)

Its compliment is referred to as negative predictive value and determines the
probability of the false prediction to be correct.

In general, Recall and Precision are correlated with each other and, to achieve a
satisfactory performance of the classification model, a good trade-off between both
measures needs to be achieved. A measure considering this correlation is called F-
measure, which combines Recall and Precision using its harmonic mean and controls
the trade-off by introducing the constant β. In most cases, however, β is chosen to
be 1 and the corresponding F1-measure is determined as:

F1-measure =
(1 + β2) · Recall · Precision

(β2 · Recall) + Precision
, (2.15)

=
2 · Recall · Precision
Recall + Precision

. (2.16)

In case of multi-class classification problems, the terms in Table 2.4 can be dir-
ectly adapted, by considering each class separately in a “one vs. all” manner, as
exemplary shown in Table 2.5 for class 1 of a three class classification problem.
The performance measures can then be computed as described in Equation (2.11)-
(2.15). In case of multi-class problems the performance measures are often stated as
macro-average over all considered classes. These averaged values are then denoted as
Unweighted Average Recall (UAR) and Unweighted Average Precision (UAP). The
corresponding macro F1-measure is then determined by calculating Equation (2.15)
using the UAR and UAP. In case of cross-validation results, the UAR, UAP and F1-
measure, are also used to represent the average measures per class, macro-averaged
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Table 2.5: Exemplary confusion matrix of a multi-class classification problem, represent-
ing the TP, TN, FP and FN of class 1.

Predicted
class 1 class 2 class 3

True
class 1 TP1 FN1

class 2
class 3 FP1 TN1

over all cross-validation experiments. In this Thesis, these results will be indicated
accordingly, to avoid confusion.

Statistical Analysis of the Performance

Whenever multiple classification models are trained to solve identical classification
problems, it needs to be determined how the models differ in their performance and
if this difference can be seen as significant. This is done utilizing so called statistical
hypothesis tests (cf. [Bortz & Lienert 2008] and [Bortz & Schuster 2010]). De-
pending on the type of data (parametric and non-parametric, paired and unpaired),
number of factor groups and number of factors in each group, different types of stat-
istical tests need to be utilized. These are, for example, t-tests, in case of parametric
paired and unpaired data samples of two factor groups, and single factor ANOVAs,
in case of parametric unpaired (one-way ANOVA) and paired (repeated-measures
ANOVA) data samples of multiple factor groups. Furthermore, the data samples
need to fulfill certain requirements before correctly applying said statistics. A more
detailed description of relevant hypothesis testing methods and their requirements
is presented in Appendix C of this Thesis.

2.2.8 Hyper-parameter optimization

In this Thesis a focus is drawn on the classification of highly natural and low express-
ive emotional data. It can be assumed that the recognition performance on this kind
of data is comparatively low, unlike for a classification performed on well-established
baseline data sets (e.g. EmoDB [Burkhardt et al. 2005] and DES [Engberg et al.
1997]) [Siegert; Lotz; Egorow; Böck et al. 2016]. To increase the performance of the
classifier and push it to its limits, a hyper-parameter optimization is inevitable and
will play a decisive role in Chapter 6 of this Thesis.

There are multiple ways to perform a parameter optimization. In this Section a
brief overview on the most relevant parameter optimization methods is given. This
includes random search as special case of the well-established grid search, cross-
validation and heuristic choices. Of course there are also mathematical optimization
methods known from non-linear programming, e.g. Simplex or Gauss-Newton al-
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gorithm [Grimme & Bossek 2018], which can be used to solve the given optimization
problem. These approaches however are accompanied with high computational costs
and, depending on the initial point and complexity of the problem, do not guaran-
tee to find the most optimal solution in a reasonable computing time [Steinwart &
Christmann 2008]. Because of the nature of the utilized data set, an implementation
of this approach would be too time consuming and is therefore left unconsidered.

Grid Search (Random Search)

In Grid Search, for each of the to-be optimized hyper-parameters a search vec-
tor is defined in which the parameter values are distributed in an equidistant or
geometrical way, such that they form a grid in the search space of all hyper-
parameters [Steinwart & Christmann 2008]. Afterwards, for each combination of
hyper-parameters classification experiments are conducted and the best perform-
ing parameter combination is chosen as optimal hyper-parameter set. To evaluate
the different parameter combinations, this approach is often combined with cross-
validation (described in Section 2.2.7 on page 44). One major problem of this
approach is the curse of dimensionality, as the number of parameter combinations
increases exponentially with the number of hyper-parameters [Bellman 1961]. Addi-
tionally, the narrowness of the grid plays an important role on whether it is possible
to find the optimal combination of hyper-parameters. In case of a widely distributed
grid, it might occur that only a local optimum or no optimal solution at all is found,
as the performance of the classifier would not change significantly with respect to
the other parameter combinations (cf. [Scheibner 2012]). By tightening the grid,
the chance to find a solution close to the global optimum increases but at the same
time the computational costs of the performance evaluation increases dramatically
(cf. curse of dimensionality). Two simple measures taken to overcome this problem
are:

1. starting with a widely distributed grid and tighten the grid only in the region
of the search space where an increase of performance occurred (only possible
if a significant change in performance was observed) or

2. changing the parameter distribution in the search space from equidistant/
geometric to random, also referred to as random search [Bergstra & Bengio
2012].

By randomly distributing the parameter combinations in the search space, the
subspaces of the parameters are covered in a more sufficient way. Especially in
parameter combinations for which one parameter is less important than the others,
random search can lead to better results, respectively.
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Cross-Validation

A cross-validation is performed as described in Section 2.2.7 on page 44. The hyper-
parameters are optimized for each of the conducted experiments separately (e.g. by
performing a grid search or choosing heuristically). The optimal hyper-parameters
are chosen by selecting those hyper-parameters, which performed best on average
over all the experiments. By averaging the performance measures of the individual
models over all experiments it is possible to give an estimate of the classifier’s
predictive performance on unknown data. One disadvantage of this approach is that
the sub sets are generated on a random basis. This implies that samples originating
from the same subject can occur in both training and validation set of the classifier
which can lead to overfitting, as described earlier. This problem can be avoided
by performing a Leave-One-Subject-Out (LOSO) or Leave-One-Subject-Group-Out
(LOSGO) cross-validation instead [Schölkopf & Smola 2003].

Heuristic Choices

The method of heuristic choices is based on educated guessing. In [Schölkopf &
Smola 2003] several methods are listed for SVM hyper-parameter optimization ran-
ging from using parameter settings, which worked well for similar problems, up to
using theoretical approaches like considering the Vapnik-Chervonenkis Bound (cf.
[Vapnik 2000]). A different approach based on theoretical considerations and empir-
ical results is presented in [Cherkassky & Ma 2004]. For RF, [Hastie et al. 2009] give
recommendations on which default values to use to obtain satisfactory classification
results. However, they also state that the right parameter choice is strongly depend-
ent on the considered classification problem and should therefore always be treated
as tuning parameter. From only considering heuristic choices and making educated
guesses it is most unlikely to find an optimal hyper-parameter combination.

Overall, it can be stated that each of the presented approaches can be used to
tune the classifier’s hyper-parameters with more or less success. Depending on the
determining factors of the parameter optimization, certain approaches are more
suitable than others. Especially with an increase of data, the use of grid search
leads to extremely high computational costs. Therefore, the number of experiments
which can be conducted in an appropriate time span is very limited. To be able to
cover the search space in the best possible way while keeping the computational cost
in an acceptable region, I opt for random search in combination with a LOSO cross-
validation. To determine the search space of the hyper-parameter optimization,
heuristic choices as well as predefined search intervals taken from literature were
utilized in the scope of this Thesis.
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2.3 Recent Findings in Speech Emotion Recogni-
tion

In the previous Sections I have already given an introduction to the concept of
emotions in general (cf. Section 2.1.2) and emotions in speech in particular (cf.
Section 2.2.2). It was stated that the first mentioning of passion and mood was
already made by the philosopher Socrates and his student Aristotle in the ancient
Greece, while the classical definition of emotions received increased attention from
the 1960th onwards. It took another 35 years until Rosalind Picard founded the field
of Affective Computing, also referred to as emotion AI, along with the same titled
publication [Picard 1997]. Since then the research on automatic emotion recognition
from different modalities (e.g. bio-physiological signals, facial expressions, gesture
or speech) has evolved quickly.

The field of speech emotion recognition has gained increasing attention in the past
20 years of research [Schuller 2018]. Starting with emotion recognition from acted
emotional speech in the early 2000s, the research focus is now drawn to emotion
recognition in the wild. This leads to many challenging situations such as but not
limited to, non-optimal recording conditions, non-stationary environmental condi-
tions and low-expressiveness of emotions in natural everyday communication. A
first large scaled comparative study with an attempt towards emotion recognition
in natural communication environments is presented in [Schuller; Vlasenko; Eyben
et al. 2009]. It is shown that speech samples obtained under non-optimal recording
conditions of non-professional speakers can already lead to a decrease of recognition
performance by 61.1% compared to similar classification experiments realized with
speech under optimal recording conditions of professional actors (from 84.5% ACC
for EmoDB down to 23.5% ACC for SmartKom [Schiel et al. 2002]). Several survey
articles have followed since then, which emphasize the importance of a suitable emo-
tion concept, data set, feature set and classifier, specially designed for the considered
application domain (cf. [El Ayadi et al. 2011; Swain et al. 2018; Akçay & Oğuz 2020]
and [Chen et al. 2012], only to name some). The term emotion recognition in the
wild is, however, not used consistently. While in some publications the authors define
in the wild as emotion recognition in a natural everyday spontaneous speech envir-
onment (e.g. in [Albanie et al. 2018; Avila et al. 2021] or as presented in the stated
survey articles), others present cross-corpus evaluations on a mix of acted, scripted
and spontaneous emotional speech, to achieve a high variability of the employed
speech data and generate a general emotion classification model. In [Kaya & Salah
2016] it is shown, that by utilizing a cross-corpus evaluation the performance on
the spontaneous speech data could not be increased (ACC = 34.20%, for a six-class
classification problem). As in the wild data they employ the AFEW 4.0 data set (cf.
[Dhall et al. 2014], which contains video and synchronous audio clips of emotional
movie scenes annotated using the movies’ transcripts for the visual impaired [Dhall



Chapter 2. State of the Art 51

et al. 2011]). However, their classifier is trained and tested on samples originating
from this data set. In a comparable study, the authors of [Avots et al. 2019] draw
a distinct line between data sets used for training and testing of the classifier. As
test set, only samples of the AFEW 4.0 are utilized, while the training set contains
samples originating from three benchmark data sets (eNTERFACE’05 [Martin et al.
2006], SAVEE [Haq & Jackson 2010] and RML [Wang & Guan 2008]). With this
approach they achieve an ACC of 27.1%, utilizing the speech signal only. In [Kim
et al. 2017] a cross-corpus evaluation among six data sets containing acted and
natural emotional speech is presented. By conducting baseline within-corpus exper-
iments on each data set (training and test data originate from the same data set),
the authors achieve high recognition accuracies in case of acted emotional speech
(range: 53.7% - 95.3%, depending on data set and applied classifier). In case of nat-
ural emotional speech, the recognition accuracies are noticeable lower (range: 40.9%
- 56.9%, depending on data set and applied classifier). The corresponding cross-
corpus experiments show an even stronger decrease in the recognition performance.
Independent of naturalness of the emotional speech data the accuracies range from
32.7% to 49.8%, which corresponds to a decrease of performance for all data sets.

It can be summarized that by concentrating on the present application domain
(within-corpus evaluation), the performance of a speech emotion recognizer is in-
creased compared to cross-corpus evaluation experiments. Even though the cross-
corpus evaluation takes into account the high variability of the speech material, to
obtain high recognition results it is recommended to use data originating from the
considered application domain. This is also reasonable, as not only additive environ-
mental noises (e.g. background noises), but also manipulations of the speech signal
through sound propagation, as described in Section 2.5.1, can degrade the speech
signal and its features used for speech emotion recognition. With an increasing num-
ber of available emotional data sets originating from various application domains, a
cross-corpus evaluation could, however, in the long term, lead to classification mod-
els of higher generalizability. This goal has not yet been reached, and with a special
focus on the in-vehicle noise environment considered in this Thesis, an extensive
domain dependent analysis is not available. The goal of this Thesis and especially
Chapter 6 is to give novel insights on this field of research.

2.4 Speech Quality

As concluded in the previous section, especially for in the wild emotion recognition
from speech, the speech quality plays a decisive role, as the environmental conditions
influence the quality of the recorded audio signal. This includes the presence of
background noise or other disturbances (cf. Section 2.5) and non-optimal recording
setups. But what exactly is speech quality? Is it the pure potential to understand the
speech content in terms of speech intelligibility of the signal, or is it the listening
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quality as level of pleasantness? At this point it needs to be stated, that speech
quality and speech intelligibility are not the same. While intelligibility measures
how well comprehensive the speech content is, the speech quality focuses on how
well the speech signal is produced by the speaker in terms of naturalness, clarity,
pleasantness, brightness, etc. [Loizou 2011]. Some investigations have shown that
there exists a correlation between speech quality and speech intelligibility (cf. [Taal
et al. 2009; Chiaramello et al. 2015; Prodeus et al. 2018] and [Ma et al. 2009] only
to name some). Nevertheless, there exist distinct subjective and objective measures
to evaluate speech intelligibility (e.g. Articulation Index (AI) [French & Steinberg
1947], Speech Transmission Index (STI) [Houtgast & Steeneken 1973; Steeneken
& Houtgast 1980] and its successor Speech Intelligibility Index (SII) [ANSI/ASA
1997]) and speech quality (e.g. Mean Opinion Score (MOS) and Signal-to-Noise
Ratio (SNR), cf. Section 2.4.1). In some investigations speech intelligibility is
synonymously used with the word error rate [%], which describes the percentage of
correctly understood speech content. This, however, is not the definition of speech
intelligibility in general (cf. [ANSI/ASA 1997]).

A majority of investigations in the field of disturbed speech and in-vehicle noises
utilize speech intelligibility as a measure to evaluate the effect of signal processing
steps on the speech signal (e.g. speech enhancement or speech coding). This is
reasonable, as these investigations focus on how well comprehensive the speech con-
tent is compared to the unprocessed speech signal. In case of speech enhancement,
the intelligibility should be increased compared to the original noisy speech signal,
whilst for speech coding a high intelligibility of the compressed speech signal should
be sustained. It is assumable that for speech recognition, where the correct recogni-
tion of the textual information is of interest, a good speech intelligibility also leads
to high recognition performances. Research conducted in medical science in the
field of speaking disorders, where the pronunciation of words by the speaker is dis-
turbed, confirms this relation (cf. [Maier et al. 2009] and [Schuster et al. 2006]). In
[Gallardo et al. 2017] the authors show that for compressed speech, utilizing several
audio codecs, a low word error rate is correlated with a high speech intelligibility. As
the work presented in this Thesis focuses on the detection of the emotional state of
a driver based on paralinguistic cues only, and the textual/ linguistic information is
left unconsidered, I assume that speech quality measures are more relevant when it
comes to speech emotion recognition, as they describe the quality of the signal itself.
Therefore, I will now give a brief overview on speech quality assessment methods
and introduce two speech quality measures (MOS and SNR), which are the most rel-
evant for the investigations presented in this Thesis (cf. Section 2.4.1). Afterwards,
a focus will be drawn on the speech quality of in-vehicle speech (cf. Section 2.4.2).
Here, I will also address the relation between the subjective speech quality measure
MOS and the objective measure SNR. Furthermore, a first insight on how the qual-
ity of noisy speech affects the speech emotion recognition performance will be given
in Section 2.4.3.
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2.4.1 Relevant Speech Quality Measures

To investigate the speech quality, a description of two quality assessment methods
of speech audio recordings will now be given, and will be later applied in Chapter 4.
This includes a common assessment method designed to evaluate the listening qual-
ity of speech (MOS) as subjective measure, and one method describing the quality
from the signal side (global SNR in time-domain) as objective measure. One major
problem when assessing the speech quality is the lack of a clear definition of speech
quality. Good overviews on common subjective and objective measures for speech
quality assessment are given in [Loizou 2011] and [Kondo 2012]. In these book
chapters, the authors distinguish between subjective listening tests and objective
quality measures. While the subjective listening tests are based on the subjective
rating of human labelers asked to rate the quality of the original and processed
speech signal, the objective quality measures are based on the numerical distance
between the original and processed signal. Depending on the application domain
(i.e. compressed speech, noisy speech) different approaches are recommended. The
most commonly used subjective speech quality measure is MOS, which can be util-
ized for compressed speech, while for noisy speech an adaption of the listing test
needs to be made (cf. [ITU-T 2003b]). As subjective listening tests are highly
time and resource consuming, a realization, in the scope of this Thesis, was not
possible. However, there exist possibilities to predict the test results regarding the
MOS by utilizing a Perceptual Objective Listening Quality Assessment (POLQA)
(cf. [ITU-T 2018]). As second objective speech quality measure, I opt for the SNR,
which is widely used in the speech processing community. The original aim of the
SNR is to calculate the ratio between the clean speech power and the power of the
present background noise (cf. Equation (2.17) on page 54). There are possibilities,
as described in [Kondo 2012], to apply the SNR also to compressed speech, where
no increase in the signal power will occur. In this case, the power of the noise signal
is defined as the absolute power difference between both signals and can, therefore,
not be compared to SNR values obtained for noisy speech signals. Because of this
difference in the definition of the SNR, when applied to compressed or noisy signals,
the SNR will only be used in case of present background noise.

Mean Opinion Score

The Mean Opinion Score (MOS) is a subjective measure to evaluate the quality of a
speech sample in terms of listening quality as defined in the ITU-T recommendation
P.800 (08/1996) 4 [ITU-T 1996] for audio compression. It is based on a 5-point
category-judgment scale ranging from 1 bad to 5 excellent. One way to obtain the
MOS-value is by letting subjects rate the quality of the speech on the presented 5-
point scale. This approach corresponds to a subjective measure obtained by human

4https://handle.itu.int/11.1002/1000/3638
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raters and should be conducted as described in ITU-T P.800. Another way to assess
the MOS-value is by utilizing a POLQA with regard to the ITU-T recommendation
P.863 5 [ITU-T 2018] (Version used in the scope of this Thesis: P.863 (09/2014) [ITU-
T 2014]). It is designed to predict the overall listening speech quality of degraded
speech samples compared to their uncompressed high quality samples as perceived
by the user in a listening test, as defined in ITU-T P.800. This predicted value is
referred to as MOS - Listening Quality Objective (MOS-LQO). However, it should
be noted that it does not replace subjective testing. POLQA can be applied in two
operating modes: narrowband (NB) (300 - 3400 Hz) and super-wideband (SWB)
(50 - 14000 Hz). For the investigations presented in this Thesis, the SWB-mode
was utilized. For this mode the MOS-LQO saturates at MOS-LQOswb = 4.75. The
MOS-LQO can be utilized for both, compressed and noisy speech signals.

Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is defined as the unit-less ratio between the power
of a speech signal and the power of the background noise [Benesty et al. 2009],

SNR =
Ps
Pn
, (2.17)

where Ps =
∑∞

n=−∞ |x(n)|2 denotes the total signal power of the clean speech
signal x(n) and Pn =

∑∞
n=−∞ |d(n)|2 the total signal power of the background

noise d(n) under similar recording conditions. When considering the SNR in the
logarithmic decibel scale,

SNRdB = 10 · log10(
Ps
Pn

) = 10 · log10(Ps)− 10 · log10(Pn), (2.18)

the SNRdB corresponds to the signals’ log power difference of the clean speech and
the present background noise. A schematic visualization of the SNRdB is depicted
in Figure 2.6. A positive SNRdB value indicates that the total power of the speech
signal is higher than the total power of the present background noise and vice versa
for a negative value. This SNR is also referred to as global SNR, as it is based on
the total power of the speech signal.

To get a rough feeling on how the SNR affects the speech intelligibility I will
now briefly introduce the SII, which describes the intelligibility of speech in terms
of audibility and usability (e.g. the clearness and comprehensiveness of the spoken
content) (cf. [ANSI/ASA 1997]) not to be confused with the listening quality (MOS).
The SII ranges between 0 and 1, with 0 implying that none of the speech information
is available to the listener and 1 implying that all information is given to the listener.

5https://handle.itu.int/11.1002/1000/13570
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Figure 2.6: Schematic visualization of the SNR in the logarithmic decibel scale [dB].

In [Hornsby 2004] it is stated that with an SII of 0.5 a none-impaired listener is able
to understand up to 100 % of the spoken content correctly. An increase of the SII
is only given for SNRs up to 30 dB [Sauert et al. 2006]. Afterwards, there exists
no audible difference for the listener in the correct understanding of the spoken
content. A good communication system is indicated by an SII of 0.75 and higher.
Poor communication systems show an SII of 0.45 and lower. However, the SNR
level at which a speech signal is still clearly intelligible is strongly dependent on the
acoustic characteristics of the room (i.e. vehicle interior) [Dong & Lee 2018] and the
type of noise signal [Goli & Karami-Mollaei 2016]. Therefore, the SNR at which a
certain SII-value is reached can strongly vary depending on the present background
noise. From [Goli & Karami-Mollaei 2016] it can be seen, that for traffic noise an
above poor communication is possible with an SNR of -5 dB and higher. A fairly
good communication is possible from 0 dB onwards. In contrast to traffic noise, for
factory, white and babble noise an above poor communication is scarcely reached at
an SNR of 0 dB. The SNR itself can, additionally, be influenced by the recording
conditions (e.g. distance speaker to microphone, reverberation times) [Hodgson
& Nosal 2002], as well as the environmental conditions (i.e. road surface, vehicle
velocity and/ or weather conditions). In [Botinhao & Yamagishi 2017] the influence
of the road type and velocity of a passenger car on the SNR is addressed. Depending
on these factors the SNR ranges from -25 dB under highway driving conditions up
to 5 dB while parking. It can be assumed, that the SNR-values presented in this
Thesis lie in comparable regions.

2.4.2 In-Vehicle Speech Quality

I will now address the relation between speech quality measures with a special focus
on the in-vehicle noise environment. This field of research will also be addressed
later in Section 4.3 in my own work.

While most of the presented work is based on out of the shelf car noises added with
different SNRs, a small share of investigations is based on real recordings of in-vehicle
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noises under different driving conditions. For this kind of real in-vehicle noise data,
a natural high variation of speech quality is present, due to changes in the velocity,
road surface or vehicle type. This results in a natural Gaussian distribution of the
SNR-values. By adding real noises with different SNRs this natural information is
lost. A focus is drawn on these naturally occurring quality measure distributions.

A majority of the publications presented in this Section are based on additive car
and traffic noises. Investigations based on real in-vehicle noises distributions, which
are later added to well-established benchmark data sets, in this case with a focus on
emotional speech, are presented in [Grimm; Kroschel; Schuller et al. 2007; Grimm;
Kroschel; Harris et al. 2007; Schuller; Rigoll; Grimm et al. 2007; Schuller 2008;
Tawari & Trivedi 2010a] and [Tawari & Trivedi 2010b]. One investigation based
on speech recorded inside a real driving environment, is presented in [Botinhao &
Yamagishi 2017].

In [Grimm; Kroschel; Schuller et al. 2007; Grimm; Kroschel; Harris et al. 2007;
Schuller; Rigoll; Grimm et al. 2007] and [Schuller 2008] the same in-vehicle noise
recordings are utilized. The noise recordings are obtained inside four different vehicle
types (BMW 530i (Touring), 645Ci (Convertible), M5 (Limousine) and Mini Cooper
(Convertible)) under three different driving conditions (city road, highway and big
cobbles) and afterwards added to three benchmark emotional data sets (EmoDB
[Burkhardt et al. 2005], VAM [Grimm et al. 2008] and eNTERFACE’05 [Martin
et al. 2006]). The authors show that the SNR differs significantly depending on the
utilized vehicle type, driving condition and data set. However, independent of the
vehicle type and added emotional speech material, the lowest SNRs are obtained
under big cobble road surface and the highest SNRs in case of the city driving
condition. The SNRs obtained under highway driving condition lie in-between these
two cases. It is further shown that the SNRs of the in-vehicle noises recorded inside
the BMW 645i (Convertible) and BMW M5 (Limousine) are higher than the ones
obtained for the remaining two vehicle types.

The authors of [Tawari & Trivedi 2010a] and [Tawari & Trivedi 2010b] focus on
three different driving conditions (highway, parking lot and city street) but give no
further insight on the vehicle they are recorded in. A detailed SNR distribution is
only given in case of the highway and parking lot driving condition. After super-
imposing the recorded noise segments to the LISA-AVDB (cf. [Tawari & Trivedi
2010a] and Section 2.6.3), the SNR for highway driving, ranges from -10 dB up to
15 dB. The SNR obtained for the parking lot driving condition ranges from 0 dB
up to 25 dB. This distinct difference is evident, considering the perceived noise level
when driving on a highway compared to the more silent parking lot condition.

While the previous investigations are based on additive noise on emotional bench-
mark speech data, in [Botinhao & Yamagishi 2017] real SNR-distributions of in-
vehicle speech are presented. The authors replay emotional speech data inside a
running hybrid compact car under three different driving conditions (city road,
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highway and parking) and re-record the data using a head and torso mannequin.
The replay volume of the speech material is chosen in a way that it is similar to
real in-vehicle communication, with a constant volume in each driving condition.
Considering this recording setup, in case of the highway driving condition the SNR
ranges from -25 dB up to -10 dB. For the city route and parking driving condition the
SNR follows a bimodal distribution of two overlaying Gaussian distributions. This
is reasonable, as for the highway driving condition the speed of the vehicle shows
only little variation, while for the city route condition, the vehicle is accelerated and
slowed down at traffic lights and other traffic incidents. In case of the parking lot
driving condition, the hybrid car would switch at low velocities to electric mode,
which causes a much lower noise level compared to the petrol mode used at higher
velocities. The bimodal Gaussian distribution of the city route condition ranges
from -27 dB up to -3 dB and from -5 dB up to 0 dB, respectively. For the parking
lot condition the highest SNRs are ranging from -14 dB up to 0 dB and from -5 dB
up to 5 dB, respectively. This represents a similar tendency as the results presented
in the previous paragraph.

As MOS describes the subjective listening quality of the speech, most investiga-
tions analyze the relation between the objective SNR and the subjective MOS. This
is for example done in [El-Solh et al. 2007]. Here, the authors investigate the listen-
ing quality of car noises added to a clean speech signal with different SNRs. They
identify that with an increasing SNR also the MOS-LQO increases. Similar findings
were made in [Sharma et al. 2010] and [Gelderblom et al. 2019]. In [Sharma et al.
2010] the authors further identify that the MOS-LQO converges towards a satura-
tion for noises of 30 dB onwards. It can be summarized that for all the presented
investigations the relation between MOS and SNR is striking, meaning that an in-
crease of SNR is always accompanied by an increasing MOS. This information will
be used later in Section 4.3 to validate the performance of the novel Compression
Error Rate (CER) (cf. Section 4.1.2).

2.4.3 Relation between Speech Quality and In-Vehicle Emo-
tion Recognition Performance

The most commonly used speech quality measure when it comes to emotion recog-
nition from speech in noisy environments is the SNR. The number of publications
covering the relation between the listening quality MOS and recognition performance
is, however, still limited. One more recent investigation, not considering in-vehicle
noises, is presented in [Avila et al. 2018]. Here, the authors investigate the effect
of speech enhancement on speech quality and the ability to automatically recognize
the speaker’s emotional state. As data the RECOLA data set (cf. [Ringeval et al.
2013]) containing airport babble noise with different SNRs is utilized. They identify
a clear increase of recognition performance for arousal with increasing MOS and
SNR of the unprocessed and speech enhanced data samples, respectively. For the
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recognition of valence a much lesser increase of recognition performance is achieved
for the unprocessed samples. For the speech enhanced samples no increase of re-
cognition performance (of value) is observed. For some cases even a slightly reverse
behavior is noticed (decrease of recognition performance of valence with increasing
MOS and SNR), but this has not further been analyzed. In the previous Section,
I stated that there exists a clear relation between MOS and SNR. This is in line
with the findings made in [Avila et al. 2018]. Therefore, it can be assumed that both
measures also have a similar impact on the speech emotion recognition performance.

First results based on in-vehicle noises are presented in [Grimm; Kroschel; Schuller
et al. 2007; Grimm; Kroschel; Harris et al. 2007; Schuller; Rigoll; Grimm et al.
2007] and [Schuller 2008]. They all utilize the same in-vehicle noise recordings (cf.
Section 2.4.2), which are added to the clean speech signal. As emotional speech data
the EmoDB [Burkhardt et al. 2005], VAM [Grimm et al. 2008] and eNTERFACE’05
[Martin et al. 2006] data sets are utilized. When training the classifier on clean
speech samples and testing it on unknown noisy speech samples (cross-validation),
a clear increase of recognition performance with increasing SNR is observed for the
VAM and eNTERFACE’05 speech samples. In case of the EmoDB data samples, an
almost random behavior, without a clear relation between recognition performance
and SNR, can be observed. This, however, could be attributed to the nature of the
data samples, which contains data recorded under ideal recording conditions inside
an anechoic chamber.

In [Tawari & Trivedi 2010b] similar classification experiments, utilizing the
EmoDB speech samples but different in-vehicle noise recordings, are presented. In
contrast to the previously presented investigations, not the natural SNR distribu-
tions of the noise recordings are evaluated but the recordings are added to the clean
speech signal with predefined SNRs (5 dB, 10 dB and 15 dB). For these experiments
a clear increase of recognition accuracy is observed with an increasing SNR. The au-
thors further evaluate a data set of real in-vehicle recordings and scripted emotions
(LISA-AVDB, see [Tawari & Trivedi 2010a] and Section 2.6.3). However, they only
collect speech data inside the vehicle without driving and other in-vehicle disturb-
ances. Afterwards, the same noise recordings as utilized for the EmoDB data set
are added to simulate a real driving environment. As for the experiments performed
on the EmoDB samples, a clear relation between SNR and recognition accuracy is
noticed.

Another investigation based on additive in-vehicle noises in different SNRs (0 dB,
5 dB, 10 dB and 15 dB) is presented in [Chenchah & Lachiri 2016]. Here, the authors
add different pre-recorded noise types to the well-established IEMOCAP data set
(cf. [Busso et al. 2008]). Considering the experiments carried out using in-vehicle
noises, the worst recognition performance is achieved when adding noise with a 0 dB
SNR. An increase of recognition performance is shown up to 10 dB SNR. With an
SNR of 15 dB the performance decreases slightly, but never below the performance
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obtained with 0 dB. The authors of the work, however, did not comment on these
findings. Nevertheless, the presented results could be interpreted as a saturation of
the recognition performance.

A more detailed insight on the classifiers performance, in relation to the recogni-
tion of emotions, obtained in the stated publications is presented in Section 2.6.1.
Furthermore, these findings are used as requisite of the investigations presented in
Chapter 4 to identify statistical evidence of the relation between the speech quality
and the speech emotion perception/ recognition performance.

2.5 Disturbed Speech

To get a better insight on the nature of disturbed speech, a brief overview on differ-
ent noise types and their occurrence will be given. In the remainder of this Thesis,
I will focus on two types of external disturbances. These are acoustic disturbances
where the speech signal is affected by external factors (i.e. acoustic characteristics
of the room and additive environmental noises) and signal degradation based on the
manipulation of the speech signal by a signal processing unit (i.e. speech coding,
speech enhancement). Internal disturbances (e.g. interference or crosstalk6), influ-
enced by the recording equipment, will not be further addressed. As the main focus
of the Thesis lies in the evaluation of emotional speech in noisy in-vehicle environ-
ments, I will first describe the effect of acoustic noises and their influence on speech
emotion understanding and recognition. Realistic emotional speech data in an in-
vehicle environment is, however, hardly available (cf. Section 2.6.3) and difficult to
establish (cf. Section 2.1). Therefore, I will further give insights on the signal de-
gradation occurring in speech coding technologies. Contrarily to noisy speech, this
data is easy to generate by applying the desired audio codec on existing emotional
speech data and will be exploited in Section 4.2 later in this Thesis. Furthermore,
the degradation of the speech signal, defined as changes in the power spectrum and
waveform (i.e. canceling certain frequencies out of the spectrum), can be assumed to
have a similar effect on the performance of a speech emotion recognizer as changes
occurring through other disturbances.

2.5.1 Noisy Speech

Acoustic disturbances can be roughly distinguished between disturbances caused by
the acoustic characteristics of the room and additive environmental noises. While
the first describe the manipulation of the signal through sound propagation inside
the room, the second is defined as an additional sound signal disturbing the primary
speech signal.

6electromagnetic interference of transmission channels [Slavik 2008]
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In general, the sound propagation from point A to point B inside a room can
be described by introducing the impulse response h(n). The term h(n) takes into
account all the manipulations of the sound signal arising from being produced at
point A to being observed at point B. This includes reflections of the sound signal on
the walls of the room, absorption of sound through the walls and diffraction of sound
around obstacles. Depending on the dimensions, material and interior and hence
the acoustic characteristics of the room, the impulse response can differ significantly.
With the assumption of superposition and time-invariance of the sound signal, the
observed signal y(n) at point B can now be calculated as

y(n) = x(n) ∗ h(n) (2.19)

with x(n), as the excitation signal produced at point A (i.e. clean speech signal),
convoluted with the impulse response h(n).

In case of additive environmental noises a second sound source d(n) (disturbance
signal) is added to x(n). Now, the room acoustic influences both sound sources and
the impulse response is, therefore, convoluted with both, x(n) and d(n):

y(n) = x(n) ∗ h(n) + d(n) ∗ h(n). (2.20)

This equation is further simplified to

y(n) = x(n) + d(n), (2.21)

with x(n) and d(n) already including the convolution with the impulse response
of the room, if not indicated differently. Common background noises, evaluated in
literature are: babble noise, factory noise, airplane noise and vehicle noise (NOT
in-vehicle noises!). The definition of Equation (2.20) plays a decisive role when
it comes to the simulation of specific noise types and will be further discussed in
Section 2.6.1 and 2.6.2. Furthermore, this information emphasizes the necessity of
a real-world data collection (cf. Chapter 3), as the specific in-vehicle environment
strongly influences the impulse response in Equation (2.20).

Disturbances in the In-Vehicle Environment

I will now give a brief overview on factors influencing the recording of in-vehicle
data to highlight how important a suitable data collection is to receive reliable and
reproducible results of the investigations presented in this Thesis. As described
previously in this Section, the impulse response h(n) is influenced significantly by
the material, the dimension and the interior of the room. This is also the case for the
in-vehicle acoustic characteristics. Depending on the type of vehicle (e.g. convertible
car, station wagon, truck, ...), the size of the cabin can already differ significantly
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and, hence, influence the sound propagation through the room. Furthermore, the
material of the body and interior lining plays a decisive role, especially when it
comes to absorption of sound and transmission of environmental noises, as their
absorption factors can vary largely. For example, soft-cover convertible cars have
much lower absorption factors than hard-cover convertible cars or station wagons
and, therefore, the environmental noises from outside of the vehicle are transmitted
much stronger.

Typical in-vehicle noises which arise while driving in a convenient gasoline powered
vehicle are engine sounds, exhaust noise, noises of the wheels on the road surface,
noises of the body flow around and noises of the surrounding traffic [Lerch et al.
2009]. While the noise of the wheels on the road surface and the body flow around are
of higher relevance while the vehicle is moving with a speed of over 30 to 40 km/h,
the engine sound and exhaust noise also occur while the vehicle is at stillstand
or moving slowly. When driving with a higher speed the most observable noise
originates from the body flow around, which increases with the sixth power of the
speed [Lerch et al. 2009]. The noise of the wheels on the road surface is also strongly
dependent on the road surface itself. Uneven road surfaces will more certainly lead
to an increased noise pollution than even road surfaces.

Speech Emotion Perception/ Recognition from Noisy Speech

In this Thesis I primarily focus on the effect of in-vehicle noises on speech emotion
recognition. Therefore, a more in-depth consideration on the in-vehicle noise envir-
onment is presented in separate Sections of this Chapter. In Section 2.6 the focus is
drawn to speech emotion recognition in noisy in-vehicle environments and Section 2.4
emphasized already the relation between speech quality and speech intelligibility and
the effect of speech quality/ intelligibility on speech emotion recognition, especially
in the field of in-vehicle speech. Speech intelligibility and quality, should, however,
not be confused with speech emotion perception/ intelligibility, as emotion intelli-
gibility refers to the correct understanding of the emotional content and is hardly
related to the correct understanding of the speech content. Even without a clear
understanding of the spoken content a correct perception of the emotional content
is possible (cf. Section 2.2.2).

With a focus on in-vehicle speech, speech emotion intelligibility is still a less
investigated field of research. To my knowledge, there only exist a few publications
focusing on speech emotion intelligibility in general. In [Parada-Cabaleiro et al.
2017] and [Malik et al. 2020] the authors evaluate the ability of emotion perception
by humans employing the GEMEP data set (cf. [Bänziger et al. 2006]) and three
different noise types (white, pink and brownian noise). The noise is added in three
different SNR levels (+3 dB, +1 dB, -0.5 dB and -1 dB). In [Parada-Cabaleiro et
al. 2017] it is shown that the best emotion intelligibility is achieved when no noise
is added to the signal, independent of the considered emotional state (cold anger,
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elated happiness, hot anger, panicked fear, pleasurable happiness and sadness). For a
majority of the evaluated emotional states, pink noise achieves the lowest perception
accuracy by the human labelers followed by white noise. The best results are always
received under brownian noise. For this perceptual study 50% of the subjects are
native German speakers (13 subjects). The rest of the subjects belong to seven other
nationalities (India, Tunisia, Spain, Iran, Mexico, Russia and United Kingdom).
Even though utilizing the same data set under comparable noise conditions and a
similar experimental setup of the perceptual study, the results obtained in [Malik
et al. 2020] differ significantly. These differences can be attributed to the fact that
different participants are employed to participate at the study. Unfortunately, no
detailed information on the nationality of the participants is given. Surprisingly,
the authors state that the best results are not always achieved when listening to
the clean (no noise added) emotional speech sample. This fact is, however, hardly
addressed in the discussion of the publication. A third study investigating the effect
of background noise on speech emotion intelligibility is presented in [Dmitrieva &
Gelman 2012]. In this journal article, it is shown that the ability to detect a certain
emotion correctly (joy, neutral and anger) decreases when background noise is added
to the clean speech signal. However, it is very unfortunate that the authors do not
state what kind of background noise was added to the clean signal.

A more deeply investigated field of research is automatic speech emotion recog-
nition from noisy speech (cf. [Schuller; Arsic et al. 2006; You et al. 2006b; Pao
et al. 2007; Schuller; Rigoll; Grimm et al. 2007; Schuller; Seppi et al. 2007; Yeh &
Chi 2010; Yang et al. 2014; Zhao et al. 2014; Chenchah & Lachiri 2016; Satt et al.
2017; Avila et al. 2018; Avila et al. 2021; Bashirpour & Geravanchizadeh 2018], only
to name some). In these publications the authors utilize speech from different lan-
guages (e.g. German, English, Danish, Chinese mandarin and Persian speech) and
add different kind of noises to the clean speech samples (mostly babble and white
noise with different SNRs). In some cases the noise is added to the clean speech
signal, while for some investigations the speech signal is already recorded inside the
noisy environment (e.g. by employing the SUSAS [Hansen & Bou-Ghazale 1997;
Schuller; Arsic et al. 2006] or AIBO corpus [Batliner et al. 2004; Schuller; Seppi et
al. 2007]). The importance of this differentiation is addressed in Section 2.6.1 and
Section 2.6.2. Furthermore, the ground truth used to evaluate the reported emo-
tion recognition tasks is based on the original emotion labels obtained under clean
speech conditions. A comparison to the ability of a human to recognize the emo-
tional state under the considered noise conditions is hardly addressed. In general,
without applying any further speech enhancement, it is shown that for a majority
of the presented investigations the accuracy of the recognition system increases with
an increased SNR and that a recognition on the noisy speech samples is mostly
outperformed by the recognition on the corresponding clean speech samples.
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2.5.2 Denoising - Speech Enhancement

One major challenge of noisy speech, especially in case of additive background noises,
is their negative impact on the speech quality and intelligibility (cf. Section 2.4)
[Kunche & Reddy 2016]. It affects the ability of humans to communicate in a
noisy environment and consequently also the ability to perceive the speaker’s emo-
tional state from the communicated prosodic information (see Section 2.2.2). To
increase the speech quality and intelligibility of the degraded speech signal, speech
enhancement algorithms, also referred to as noise reduction algorithms, are applied.
This reduces the effect of noise for speech communication and can improve the per-
formance of speech applications such as speech compression and speech recognition
[Kunche & Reddy 2016]. Nevertheless, it is not possible to reduce the noise without
also affecting the original clean speech part included in the noisy speech signal.
Hence, the applied speech enhancement algorithm should consider the right trade-
off between speech distortion and noise reduction [Boll 1979]. In Section 5.2 of this
Thesis, I will focus on this research question and investigate, if speech enhancement
has a positive impact on the present speech emotions recognition task. In the fol-
lowing paragraphs I will therefore introduce the reader to the most relevant speech
enhancement methods.

There are multiple factors which influence the performance and, hence, decision
on the optimal speech enhancement systems. These are, for example, the number
of available noise sources and the number of speech sources corrupted by said noise
[Banchhor et al. 2013]. The different enhancement systems can be distinguished
by the number of available input channels, the domain of processing (i.e. time or
frequency domain) and type of algorithm (i.e. adaptive or non-adaptive) [Kunche &
Reddy 2016]. In literature it is typically only distinguished between single-channel
and multichannel speech enhancement systems [Loizou 2007]. While single-channel
systems only employ one audio-channel (i.e. one single microphone), multichannel
systems are based on employing multiple microphones either separated in space,
or combined into one microphone array. I will now give a short introduction into
single-channel and multichannel enhancement systems and their application domain.

Single-channel speech enhancement systems are commonly used for speaker and
speech recognition, mobile communication and hearing aids [Kunche & Reddy 2016].
In these application domains a second microphone is usually not available. This
single-microphone system is, compared to multichannel systems, easy to build and
less expensive. Nevertheless, they have some major disadvantages, as no dedicated
microphone to continuously pick-up the noise signal only is available and, there-
fore, no adaptive noise cancellation is possible. The main assumption made by
single-channel systems is that the present noise signal is stationary over the speech
intervals. This approach does not take into account the natural variation of the noise
signal over time. The noise only audio parts are used to determine the noise signal,
which is afterwards subtracted from the noisy speech audio signal to estimate the
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clean speech signal. A good overview on speech enhancement methods applicable
for this kind of setup is given in [Loizou 2007].

For adaptive noise cancellation at least two microphones need to be integrated
into the system (i.e. multichannel enhancement system), one primary microphone,
which receives the noisy speech signal, and one reference microphone receiving the
noise only signal, which is uncorrelated with the speech signal. This noise only
signal is put through an adaptive filter, which is adjusted automatically by feeding
the system’s output (i.e. denoised speech signal) back into the filter [Widrow et al.
1975; Chhikara & Singh 2012; Kunche & Reddy 2016]. The most commonly known
application of this kind of adaptive noise cancellation algorithm is used in noise
canceling headphones, where it is easy to pick up the noise signal only. Whenever it
is not possible to integrate a reference microphone, which is uncorrelated with the
speech signal, it is recommended to utilize a microphone array. In general, the lar-
ger the number of microphones inside the array, the easier the speech enhancement
becomes [Loizou 2007]. Typically, the design of the microphone array is conditioned
by the used enhancement method and restrictions given by the application envir-
onment. One commonly used speech enhancement method is based on broadband
beamforming [Nordholm et al. 2014]. The general approach of beamforming is based
on the delay in the signals’ time of arrival at each microphone inside the array. The
synchronized signals’ components form the desired direction of arrival (i.e. direction
of source/ speaker regarding the microphones beampattern) are then summed to-
gether to obtain an enhanced speech signal (delay-and-sum beamformer). However,
this approach is mostly based on the assumption of a far-field source, for which it
can be assumed that the source’s direction of arrival is approx. the same for all
microphones inside the array [Benesty et al. 2016]. This can either be achieved
by increasing the distance between array and source or by decreasing the distance
between the microphones inside the array. Adaptions of the algorithms to be used
in the near-field or mixed near- and far-field are possible, but are not in the scope
of this Thesis [Doclo & Moonen 2003]. For speech and audio signals, the bandwidth
can range from 60Hz to 20kHz. As the beampatterns of a microphone varies with
different frequencies, it is not possible to design a simple delay-and-sum beamformer.
Here, a so-called broadband beamformer needs to be utilized. This can be realized
by using nested microphone sub-arrays, where each sub-array is designed for one
specific frequency range [Benesty et al. 2016].

Speech Enhancement and its Impact on Speech Emotion Perception/
Recognition

The effect of speech enhancement on speech emotion perception and recognition
is still a scarcely investigated field of research. Some investigations focus on emo-
tion recognition from enhanced speech and compare these results to the results
obtained under noisy speech conditions. Depending on the utilized data set, type
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of noise, feature set and speech enhancement algorithm the results of these studies
differ significantly. While in [Tawari & Trivedi 2010b] speech enhancement always
leads to an increase in recognition performance, in [Triantafyllopoulos et al. 2019]
the recognition results obtained from the clean speech signal always outperform
those from the enhanced signals. In [Pohjalainen et al. 2016; Avila et al. 2018] and
[Triantafyllopoulos et al. 2019] the same data set is employed, namely RECOLA
(cf. [Ringeval et al. 2013]). However, all studies utilize different speech enhance-
ment algorithms, feature sets, noise types and classification algorithms, hindering
a reasonable comparison of their results. Nevertheless, a clear consistency in the
recognition performance among the experiments is shown, with a majority of the
experiments performed on the clean speech signal outperforming the other classi-
fication experiments. Only in [Pohjalainen et al. 2016] the results obtained when
applying cepstral noise reduction outperform the results of the clean speech ex-
periment. In [Chenchah & Lachiri 2016] the authors do not compare their results
with the results obtained from the clean speech signal. Depending on the utilized
noise type the results differ significantly when applying different speech enhance-
ment algorithms. One investigation, also stating an emotion dependent recognition
performance, is presented in [Xiaoqing et al. 2017]. When utilizing the EmoDB
data samples (cf. [Burkhardt et al. 2005]) with additive white noise in different
SNRs and SVMs as classifiers, the authors show that depending on the considered
emotional state the recognition performance can increase (anger, neutral), decrease
(fear, happy) or stay approx. the same (sad) when using the speech enhanced data
samples. They further apply a feature selection filter method (cf. Section 2.2.4) on
the utilized feature set and evaluate the recognition performance dependent on the
utilized number of features. The authors state that with an increasing number of
features also the emotion recognition performance tends to increase.

However, none of these investigations utilize the effect of the applied speech en-
hancement algorithm on the feature space, which was used to automatically recog-
nize the emotional state. This is a highly risky approach, as speech enhancement is
based on the manipulation of the noisy speech signal and provides only an estimate
of the original clean speech signal. This implies that the signal may sound well
intelligible, but has significant differences when it comes to the actual features char-
acterizing the signal, compared to the original clean speech content. In [Chenchah &
Lachiri 2016] the authors investigate the effect on the utilized features when apply-
ing speech enhancement. It is shown that when employing Gammatone Frequency
Cepstral Coefficients, the recognition performance obtained under enhanced speech
condition decreases compared to the results obtained from the noisy speech signal,
while for MFCCs the results always increase with enhanced speech. This, however,
only gives a marginal insight on the effect of speech enhancement on the feature
space. Therefore, this issue will be addressed in the own work in Section 5.2 of this
Thesis. Furthermore, the results presented in the current Section are only based on
noisy speech obtained by artificially adding different noise types to benchmark data
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sets. I will later explain why this artificially added noise is not per se comparable
to speech data obtained under noisy recording conditions (cf. Section 2.6.1 and
Section 2.6.2).

2.5.3 Compressed Speech

As stated earlier in this Section, the generation of compressed speech is, in con-
trast to real-world noisy speech, simple to generate. Therefore, first investigations,
presented in Section 4.2 of this Thesis, were done utilizing compressed speech sig-
nals. Depending on the application domain, compression is either used to reduce the
space needed to store a certain amount of data, or to reduce the transmission band-
width and latency of a certain amount of data. The first aspect is of large interest,
especially, in the era of “Big Data”, where more and more data is produced and
stored [Shen et al. 2016], and, more classically, when only having a limited amount
of data storage available (e.g. storing the maximum amount of music on a CD while
maintaining a high listening quality). Depending on the data type, a compression
can lead to a significant decrease in needed storage space. While text does not need
a large amount of space to be stored uncompressed, this is different for video or
audio data, where already for a small amount of high quality recordings a large
space is required [Salomon 2007]. The second aspect - reducing the transmission
bandwidth and latency - is primarily used in the field of mobile communication. In
this field, a low transmission latency is needed to experience a transparent interac-
tion [ITU-T 2003a]. Acceptable transmission latencies, as defined by the ITU-T in
recommendation G.1147, range from 150 ms up to 400 ms, depending on the com-
munication type (end-to-end or one-way). To maintain this limitation, the amount
of data communicated via the network in the desired time needs to be limited. This
is achieved by compressing the original audio signal and thereby reducing the data
size. With regard to in-vehicle speech emotion recognition, the second application
domain is of greater interest, especially when it comes to online machine learning
solutions [Fontenla-Romero et al. 2013] where the existing classifier is continuously
updated with new incoming training material such that it dynamically adapts, for
example, to the current user. These solutions are mainly realized using vehicular
cloud computing, which is based on a wireless communication between the vehicle
sensors/ electronic control units and a cloud platform providing computing power
and data storage [Whaiduzzaman et al. 2014]. For this approach, it is reasonable to
not only transmit the processed signal values to the cloud platform, but to transmit
the raw sensor signal, as it enables an adaptation of the signal processing com-
ponents (e.g. feature extraction, signal enhancement) inside the cloud without the
vehicle being physically present. Therefore, it is of great interest to investigate how
much the audio data can be compressed while maintaining a high usability for a
later application in machine learning with a focus on speech emotion recognition.

7http://handle.itu.int/11.1002/1000/6254
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Audio Coding Technologies

In this Section, the most prominent audio coding technologies used in everyday
applications, such as Voice over LTE (VoLTE), Voice over Internet Protocol (VoIP),
Skype, Spotify, Amazon Music and Apple Music, are presented. Standard audio
codecs can be grouped in three categories based on different compression technologies
and their application domain (music vs. speech). These are Analysis-by-Synthesis
(AbS), perceptual coding and hybrid coding. Depending on the application domain
(i.e. data storage as used in music compression, and audio transmission as used
in mobile and internet telephony) certain compression technologies are more or less
suitable. In case of music storage a focus is drawn on maintaining a high listening
quality while reducing the file size. For these applications perceptual coding, based
on the human auditory system, is used. Signal parts, which the human ear is unable
to perceive, are being discarded in the compressed signal. In case of mobile and
internet telephony a focus is drawn on low transmission bandwidths and latencies
in context with high speech intelligibility. Codecs applied in this research area
mostly use AbS, which is based on a closed-loop optimization technology. Newer
audio codecs can also operate in a, so called, hybrid mode based on both AbS
and perceptual coding and distinguish between speech and non-speech audio parts
automatically or make use of both techniques at the same time. In the following
a broad overview on the technical functioning of AbS and perceptual coding will
be given. The presented algorithms are mainly based on the descriptions presented
in [Chen & Thyssen 2008], [Herre & Lutzky 2008] and [Sinder et al. 2015]. All
information based on different references will be indicated as such. A more detailed
description of the most relevant audio codecs that utilize the introduced coding
technologies is given in Appendix B.

Perceptual coding is motivated by the perceptual properties of the human audit-
ory system and is mostly used in codecs designed for music compression. It aims to
represent the original audio signal in a more compact way while maintaining the ori-
ginal perceived sound quality. Consequently, a focus is drawn on the optimization of
the perceived speech quality. This is done by exploiting irrelevances in the signal and
discarding those signal parts, which are supposed to be beyond the resolution of the
human auditory system, in the compressed audio signal. This is realized by utilizing
filter bank-based audio coding technologies. They consist of an analysis filter bank
that maps the speech signal to a spectral representation. The most commonly used
filter banks are Modified Discrete Cosine Transforms (MDCT) and hybrid struc-
tures of other filter banks used in combination with MDCT [Brandenburg et al.
1992]. Furthermore, a perceptual model is utilized, which estimates the signal’s
time- and frequency dependent threshold of perceptibility, by considering psycho-
acoustic effects like masking in frequency domain. The spectral values obtained
from the filter banks are then quantized and coded with regard to the threshold
of perceptibility obtained by the perceptual model. The result is packed into a bit
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stream and transmitted to the decoder. The size of the bit stream is defined by
the chosen bit rate, which describes the number of bits transmitted in one second
([bit/s]). Hence, with increasing bit rates also the compression ratio decreases and
the compressed sound contains more information of the uncompressed sound signal.
The decoder consists of a decoding of the bit stream and inverse quantization. Fi-
nally, a synthesis filter bank maps the spectral values back into time-domain. Most
prominent codecs, relevant for this Thesis, that utilize perceptual coding are MPEG-
1/MPEG-2 Audio Layer-3 (MP3), Advanced Audio Coding (AAC) and Windows
Media Audio (WMA) (cf. Appendix B).

In contrast, AbS coding is based on waveform-approximating coding (waveform
coders) and is mostly used in codecs designed for speech communication. An
AbS standard which utilizes waveform coders is Codec-Excited Linear Prediction
(CELP), which uses closed-loop optimization for en- and decoding of the speech
signal. To understand the AbS waveform coding, first the basic linear predictive
speech waveform coding will be introduced. This approach is then adapted to the
basic AbS coder. During the encoding process of linear predictive coding, the speech
signal is compared to a predicted version of the signal. The residual between the
two signal is calculated and quantized sample by sample. This quantized residual is
then added to the predicted speech signal resulting in the quantized speech signal.
The linear predictor, represented as a transfer function (P (z)), uses this quantized
signal as its input and produces a new predicted speech signal. This predicted
speech signal is then, again, compared to the input speech and produces a “new”
predicted residual. In the process of quantization the quantizer produces a signal
codebook which is transmitted to the decoder as a compressed bit stream. During
decoding this codebook is applied and the quantized residual is added back to the
predicted speech signal and output as quantized speech. This feedback loop can
be regarded as a synthesis filter with a transfer function of 1/[1 − P (z)]. In linear
predictive coding, the major task of the encoder is to identify the model parameters
of this synthesis filter. In case of AbS the residual signal is not quantized sample
by sample but block by block with blocks of sample size K and bit rate r. This
results in 2K·r residual candidates, also called excitation candidates, which are each
passed through the synthesis filter and result in a synthesized speech signal, which
is then compared to the input speech and produces a new excitation signal (former
predicted residual). In this case, the task of the encoder is to choose the excitation
candidate that minimizes the error between the synthesized and input speech. The
model parameters of the synthesis filter are derived directly from the input speech
signal itself. The most prominent audio coding technologies to date, based on AbS,
are Algebraic CELP (ACELP) [Laflamme et al. 1990], Embedded ACELP [ITU-T
2009], Forward Backward linear predictive coding (FB-LPC) [Andersen et al. 2002;
Andersen et al. 2004] and Two-Stage Noise Feedback Coding (TSNFC) [Chen 2006].
Well-known audio codecs based on AbS are Adaptive Multi-Rate (AMR), AMR
Wideband (AMR-WB) and Speex (SPX) (cf. Appendix B).
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So called hybrid codecs are a mixture of both AbS and perceptual coding and can
be used more universally for both speech communication and music compression.
Most codecs switch between the two coding modes frame by frame in case of speech
presence or absence in the current audio frame (e.g. AMR-WB+). Others utilize
both coding modes at the same time, for example, by running a filter bank-based
audio coding on top of the underlying AbS coder (e.g. MPEG-4 Scalable Audio
Coding, not further considered in this Thesis), or by coding high and low frequency
bins utilizing different coding modes (e.g. OPUS, cf. Appendix B).

Speech Emotion Perception/ Recognition from Compressed Speech

Until now, the focus of both application domains (i.e. reduction of storage size and
transmission latency) is the reduction of data size while maintaining a good listen-
ing quality [Salomon 2007]. This, however, is not enough when it comes to speech
emotion understanding and recognition, as the decrease in data size is mostly ac-
companied with an information loss. With regard to speech quality and listening
quality, this information loss can be neglected from certain compression bit rates
upwards, depending on the type of audio codec. From the signal point of view, this
information loss corresponds to differences in the waveform itself and differences in
the spectral power of the signals (cf. Figure 4.1 on page 111, depicting an exem-
plary power spectrum of an uncompressed and compressed speech sample and the
resulting error). These differences in the speech signals are barely investigated, as
the scope of audio compression desires mainly a good listening quality. Especially
for emotion understanding, however, this information loss is of high importance,
as, without regarding textual features, the emotional content is taken mainly from
paralinguistic cues (cf. Section 2.2.2). In [Labelle et al. 2016] and [Lahaie et al.
2017], the authors state that the ability to perceive the emotional content from
speech decreases when an audio codec or bandwidth limitation is applied to the
speech signal. As for automatic speech emotion recognition the relevant speech fea-
tures are automatically extracted directly from the speech signal in time and/ or
frequency domain, it is assumable that a similar decrease in the recognition perform-
ance will also occur. One of the first studies where the effect of audio compression
on speech based emotion recognition is investigated is presented in [García et al.
2015]. Here, the authors investigate the impact on the accuracy of detecting fear-
type emotions of the EmoDB (cf. [Burkhardt et al. 2005]) and eNTERFACE’05
(cf. [Martin et al. 2006]) data sets by applying several speech codecs and GMMs
as classifiers. As evaluation scheme a LOSGO cross-validation is performed utiliz-
ing the corresponding clean and compressed speech samples for training and testing
(matching conditions). Depending on the considered data set and whether voiced
or unvoiced speech segments are employed, some audio codecs lead to an increase of
accuracy. In case of voiced speech segments, an increase occurs when applying the
AMR-WB codec with low bit rates and the OPUS codec with an average bit rate
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of 64 kbit/s on the EmoDB data samples. For the eNTERFACE’05 data samples,
this is only the case when the OPUS codec is applied. When utilizing the unvoiced
speech segments only, the EmoDB data samples never show an increase in accuracy
when applying an audio codec. In case of the eNTERFACE’05 data samples, a clear
increase in accuracy is observed with the AMR-WB coded samples at all bit rates.
In [Albahri & Lech 2016] and [Albahri et al. 2016] the authors investigate the effect
of four audio codecs (AMR, AMR-WB, AMR-WB+ and MP3) on the accuracy of a
speech emotion recognition of the EmoDB data set when utilizing GMMs, consider-
ing three different acoustic feature types (MFCCs, TEO features, and glottal time
and frequency domain features). As evaluation scheme a 15-fold cross-validation is
performed utilizing 80% of samples for training and 20% for testing of the classifier
(matching condition). When applying MFCCs or glottal frequency domain features,
the accuracy obtained on the uncompressed speech samples always outperforms the
results obtained on the compressed samples. In case of the TEO features, this is not
the case when utilizing the AMR-WB codec with a bit rate of 6.6 kbit/s. When ap-
plying glottal time features it further needs to be distinguished between female and
male speaker. For female speakers, the best results are always achieved when using
the original speech samples. In case of male speakers, the AMR-WB coded samples
when applying various bit rates and the MP3 coded samples with 8 kbit/s show an
increase in accuracy compared to results obtained from the original uncompressed
samples. The, to my knowledge, newest investigation on speech emotion recogni-
tion from compressed speech is presented in [Oates et al. 2019]. Here the authors,
present a broad range of audio codecs and utilized bit rates for three different speech
emotion data sets (EmoDB [Burkhardt et al. 2005], Polish-EMO [Staroniewicz &
Majewski 2009] and eNTERFACE’05 [Martin et al. 2006]). As classifier a simple
SVM with linear kernel is chosen and four feature sets, designated for speech emotion
recognition, are utilized (IS’09 Emotion, ComParE’13, emo large and eGeMAPS, cf.
Table 2.2). As validation scheme they utilize a LOSO cross-validation with match-
ing and mismatching training and test conditions. Depending on the utilized feature
and data set the results of the emotion recognition experiments differ significantly.
Therefore, a clear statement on the influence of the feature set and applied audio
codec on the recognition performance cannot be made. By specifying the perform-
ance of the classifier as UAR, these results are comparable to the results, which will
be presented in Section 4.2 of this Thesis.

2.6 Speech Emotion Recognition in Vehicles

We have now come to a point of this Chapter where I have introduced all building
blocks of speech emotion recognition, speech quality and disturbed speech to the
reader. Based on this foundation, I will now focus on a more specific introduction
to the research field of speech emotion recognition in in-vehicle environments. The



Chapter 2. State of the Art 71

research results presented in this Section serve as basis for the study design of the
data collections in Chapter 3, the quality assessment and first recognition experi-
ments on simulated in-vehicle emotional speech data in Section 4.3, and in-depth
recognition experiments on real-world in-vehicle speech data in Chapter 6.

2.6.1 Simulated Driving Environment

Most of the work on in-vehicle emotion recognition presented in literature focus
on the evaluation of speech emotion recognition systems in a simulated driving
environment. This includes recordings obtained inside a real car body, but also more
simplified simulation environments, where the simulator consists of a car seat and a
steering wheel. Others do not use a simulator environment at all and add in-vehicle
noises to benchmark data of emotional speech. As mentioned in Section 2.5.1 and
defined in Equation (2.20) on page 60, in real-world scenarios the speech signal and
noise signal are both convoluted with the impulse response defined by the present
room acoustics. This implies that by simply adding in-vehicle noises to a speech
signal, the in-vehicle acoustics are left completely unconsidered and only the original
recording conditions effect the signal, meaning that the utilized speech and noise
signals are convoluted with the impulse response of the original recording setup.
Based on Equation (2.20), this would result in the following equation for the obtained
observed signal:

y(n) = x(n) ∗ h1(n) + d(n) ∗ h2(n), (2.22)

with h1(n) representing the impulse response of the original clean speech record-
ing setup and h2(n) representing the impulse response of the original in-vehicle noise
recording setup. For other investigations, where real in-vehicle noises are replayed
inside a simulation environment, it has to be distinguished between a real person
talking inside the simulator and a data set being replayed. In case of a real person
talking inside the simulator, h1(n) represents solely the impulse response of the sim-
ulator and x(n) the raw speech signal. For the second case, where recorded speech
samples are replayed, x(n) also contains the speech signal, but this signal is already
convoluted with the impulse response of the original recording setup. The same
holds for d(n), when replayed inside a simulation environment. These assumptions
are quite different compared to real-world driving scenarios, where h1(n) = h2(n)

and h1(n) represents the impulse response of the in-vehicle environment, and x(n)

and d(n) represent the raw excitation signals of the speech and noise source. Invest-
igations evaluating the effect of the in-room acoustics of university lecture rooms
have shown that this effect should not be neglected with regard to speech emo-
tion recognition ([Höbel-Müller et al. 2019]). Furthermore, a replay of benchmark
emotional speech data sets does not mirror the communication inside a real-world



72 2.6. Speech Emotion Recognition in Vehicles

driving situation and does not take into account the Lombard-effect, occurring in
natural human communication inside noisy environments.

Emotion Recognition in a Simulated Driving Environment

I will now give an overview on hitherto published work on speech emotion recognition
in a simulated driving environment. It can be distinguished between four types of
simulation: 1) Additive in-vehicle noises in different SNRs on benchmark emotional
speech data sets, 2) Additive in-vehicle noises with natural SNR distribution on
benchmark emotional speech data sets, 3) Additive in-vehicle noises in different
SNRs on real in-vehicle audio recordings of acted emotional speech, and 4) Replayed
in-vehicle noises with natural SNR distribution on real in-vehicle communication
data. All these simulation types differ in the definition of the observed signal in
Equation (2.22) and will now be described in more detail.

1) Additive in-vehicle noises in different SNRs on benchmark emotional speech data
sets

For this case h1(n) and h2(n) correspond to the impulse response of the original
recordings’ setup of the emotional speech data set and noise data recording
setup, respectively. This approach is used in [Chenchah & Lachiri 2016]. Here,
the authors utilize the IEMOCAP data set (cf. [Busso et al. 2008]), containing
English emotional speech in four emotion categories (anger, happy, neutral and
sad) with four artificially added noise types (car, babble, train, and airport
noises) in four different SNRs (0 dB, 5 dB, 10 dB and 15 dB). Furthermore, the
influence of three different speech enhancement methods is evaluated. By util-
izing HMMs with MFCCs as prosodic features and a cross-validation scheme
(training on clean speech, testing on noisy/ enhanced speech), a recognition ac-
curacy ranging from 57.71% to 58.66% for noisy speech and 56.13% to 59.73%
for enhanced speech is reached for the car noise condition. A more natural data
set is utilized in [Weninger et al. 2011], where babble and street noise of the
Aurora noise database (cf. [Pearce & Hirsch 2000]) is added to the close-talk
microphone recordings of the German FAU Aibo Emotion Speech corpus (cf.
[Batliner et al. 2004]). The different noise recordings are artificially added in
four different SNRs (-5 dB, 0 dB, 5 dB and 10 dB). Afterwards, classification
experiments are conducted using a cross-validation scheme. The validation
schemes, relevant for in-vehicle emotion recognition, are based on a training of
the classifier on clean, babble noise speech, street noise speech and a multicon-
dition (clean + babble + street) training and testing on the street noise speech
samples. As classifier a SVM with linear kernel and hyper-parameter optim-
ization is utilized to classify the two emotion categories, negative valence and
neutral. This results in UARs ranging from at most 60.60% to up to 67.20%
for the different training conditions and feature sets. Furthermore, a strong
deviation of the recognition performance is noticed for the different SNRs. In
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case of a two class classification problem, where the chance level lies at 50%,
these results are rather unspecific. However, in [Weninger et al. 2011], the
utilized street noises correspond to observations made from the outside of the
vehicle on the traffic occurring on the street. This is only partly related to
real noises observed inside a vehicle while driving. A different study, utilizing
self-recorded noise samples, is presented in [Tawari & Trivedi 2010b]. Here, the
noise recordings are obtained inside a real vehicle while driving. The record-
ings are obtained under highway, parking lot and city street driving conditions
and are artificially added in three different SNRs (5 dB, 10 dB and 15 dB). The
EmoDB data set, containing German acted speech samples in seven emotion
categories (anger, boredom, disgust, fear, happiness, sadness and neutrality)
(cf. Section 2.1.5) is utilized and a SVM with linear kernel and a 10-fold
cross-validation (training on clean speech, testing on noisy/ enhanced speech)
is applied. As features 1054 acoustic features are used and a 10-fold selection
procedure is applied to select the most relevant features out of the set. The
resulting recognition accuracy ranges from 16.4% to 37.0% under noisy test
conditions and 37.5% to 63.0% under speech enhanced test conditions.

2) Additive in-vehicle noises with natural SNR distribution on benchmark emotional
speech data sets

As for case 1), h1(n) and h2(n) correspond to the impulse response of the
original recordings’ setup of the emotional speech data set and noise data re-
cording setup. Contrarily to case 1), here, the real SNR distribution of the
noise signal is employed, without artificially manipulating the SNR. Before
adding the noise signal to the emotional speech samples, it is normalized to fit
the loudness of the clean speech signal. First investigations are presented in
[Schuller; Rigoll; Grimm et al. 2007]. In this publication, self-recorded noise
samples are added to the EmoDB data set. The noise samples are recorded
inside a simulator, with a microphone mounted in the middle of the instru-
ment panel, where the microphone of the in-vehicle communication system is
commonly installed. The in-vehicle acoustics of four different car types (BMW
530i (Touring), 645Ci (Convertible), M5 (Limousine) and Mini Cooper (Con-
vertible)) and three road types (big cobbles at 30 km/h, smooth city road
at 50 km/h and Highway noise at 120 km/h) are emulated by the simulator.
As classifier a SVM with linear kernel and 1406 acoustic features is utilized.
Further, the acoustic features of each speaker are normalized and a LOSO
cross-validation is conducted. Two different validation strategies are presen-
ted: training on clean speech and testing on noisy speech and training and
testing on noisy speech. This results in error rates ranging from over 25%
(ACC = 75%), for strong noise disturbances and clean training condition, to
below 19% (ACC = 81%), for weak noise disturbances and noisy training condi-
tions. In [Schuller 2008] the presented classification experiments are applied to
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the more ”natural“ speech samples of the eNTERFACE’05 data set (cf. [Mar-
tin et al. 2006]). This data set comprises scripted English speech samples in
six emotion categories (anger, disgust, fear, happiness, sadness and surprise).
Additionally to the experiments presented in [Schuller; Rigoll; Grimm et al.
2007] a feature selection is performed for both data sets, EmoDB and eNTER-
FACE’05. This results in an increase of accuracy for the EmoDB data set up
to 83.0%. For the eNTERFACE’05 data set the recognition accuracy ranges
from below 49%, for strong noise disturbances and clean training condition, to
over 63%, for weak noise disturbances and noisy training conditions. By con-
ducting the feature selection it is even increased to 65%. Similar classification
experiments, utilizing the same noise samples but a different emotional speech
data set, are presented in [Grimm; Kroschel; Schuller et al. 2007] and [Grimm;
Kroschel; Harris et al. 2007]. Here, the VAM data set is used, comprising emo-
tional speech in the three dimensions of valence, activation and dominance (cf.
Section 2.1.5). By utilizing SVR with a Radial Basis Function (RBF) kernel
and 20 prosodic features, which were selected by sequential forwards selection,
correlation coefficients ranging from 0.10 to 0.45 for valence, 0.40 to 0.81 for
activation and 0.40 to 0.79 for dominance are obtained. The lower values are
obtained under strong noise disturbances and clean training condition and the
higher values under weak noise disturbances and noisy training conditions, re-
spectively. The comparatively low recognition measures obtained under clean
training conditions are, however, expectable, as the clean speech data differs
significantly from the noisy data the classifier is tested on. In real-world ap-
plications it can be assumed that a clean version of a speech signal is not
available. Therefore, the results obtained from training and testing on the
noisy speech signal are of higher relevance for the investigations presented in
this Thesis.

3) Additive in-vehicle noises in different SNRs on real in-vehicle audio recordings
of acted emotional speech

For this case h1(n) corresponds to the impulse response of the real in-vehicle
recording setup, while h2(n) corresponds to the impulse response of the noise
data recording setup. This approach is presented in [Tawari & Trivedi 2010a]
and [Tawari & Trivedi 2010b], respectively. The authors utilize a self-recorded
data collection of English in-vehicle acted emotional speech, the LISA-AVDB
(cf. Section 2.6.3) in three emotion categories (positive, neutral and negative).
The speech data is recorded in both stationary and moving car environments.
The authors, however, only utilize the recordings obtained in the stationary
mode and artificially add noise recordings to these speech samples with three
different SNRs. The noise recordings correspond to the ones utilized in [Tawari
& Trivedi 2010b] and presented in case 1). Similar classification experiments as
presented in [Tawari & Trivedi 2010b] are performed (SVM with linear kernel
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and a 10-fold cross-validation). The recognition results range from 53.6% to
81.7% under noisy test conditions and 62.5% to 82.1% under speech enhanced
test conditions, for the three-class classification problem.

4) Replayed in-vehicle noises with natural SNR distribution on real in-vehicle com-
munication data

This case is the most natural way to simulate the in-vehicle environment, as
h1(n) and h2(n) correspond to the impulse response of the in-simulator record-
ing setup. The term d(n), however, already includes the convolution of the raw
noise signal with the impulse response of the noise recording setup. Depending
on the type of simulator and how close it is to a real driving experience, more
or less natural in-vehicle driving situations can be simulated. A first investig-
ation on simulated in-vehicle communication scenarios is presented in [Jones
& Jonsson 2005]. Here, the authors present a data collection of real in-vehicle
Human-Computer Interaction (HCI), where a system initiates a conversation
between the car and the driver. The simulator, however, only consists of a car
seat, steering wheel, accelerator and brake pedals inside a not further specified
room. From the pictures presented in [Jones & Jonsson 2005], it can be as-
sumed that the room does not comply with any in-vehicle circumstances. An
initial ANN is trained on English clean speech data in five emotion categories
(boredom, sadness/ grief, frustration/ extreme anger, happiness and surprise),
utilizing the deltas of 10 acoustic features. This classifier is then applied to
the simulator recordings and achieves a recognition accuracy of 60% to 70%.
In [Jones & Jonsson 2007] the authors further distinguish between different
gender groups and could thereby increase the recognition accuracy to 64% for
female and 67% for male drivers. In [Jones & Jonsson 2007] a special focus
is drawn on older drivers, for which a recognition accuracy of approx. 70%
is achieved. A more recent publication by Cevher et al. is focusing on real
in-vehicle communication scenarios between the driver and co-driver [Cevher
et al. 2019]. The presented driving scenarios used to induce emotions are based
on conversational driven and task oriented emotion induction. This approach
is closely related to the approach utilized in this Thesis and presented in Sec-
tion 3.2 (cf. [Lotz; Ihme et al. 2018; Requardt et al. 2018]). It can be assumed
that the conversational driver emotion inducement method is the most natural
compared to real in-vehicle Human-Human Interaction (HHI). Unfortunately,
the authors do not give any detailed information on the classification approach
and utilized feature set. A focus is drawn on the detection of insecure, an-
noyed and happy drivers. For this three-class classification problem a macro
averaged F1-score of 29% is achieved. This corresponds to a recognition below
chance level (∼33%).
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2.6.2 Real-World driving Environment

In contrast to Section 2.6.1, where speech emotion recognition in a simulated driving
environment is evaluated, I will now focus on the current state of the art in speech
emotion recognition inside a real-world driving environment. A comparable real-
world data collection will be presented in Section 3.2. For this real-world scenario,
the observed signal inside the running vehicle is calculated as stated in Equation
(2.20), with h(n) representing the impulse response of the real in-vehicle recording
setup, and x(n) and d(n) representing the excitation signal of the speech and the
noise source. Unfortunately, the work done on real-word in-vehicle speech data is
strongly limited. One of the very few publications taken into account this natural
recording setup is [Abdić et al. 2016]. Here, the authors focus on the recognition
of frustrated drivers. The utilized data is recorded inside a 2013 Chevrolet Equinox
and a 2013 Volvo CX60 while driving on a highway (cf. [Mehler et al. 2015] and
Section 2.6.3). It contains only recordings of HCI and no natural interaction between
humans. To detect the driver frustration from speech, a SVM with a linear kernel is
utilized. As feature set the GeMAPS feature set is used. The classification problem
consists of two classes: high and low frustration, with the ground truth extracted
from the driver’s self-report and not obtained through an expert labeling. This
approach results in a recognition accuracy of 77.4%. A second investigation based on
a real in-vehicle driving environment is presented in [Bořil et al. 2010]. The authors
utilize the UTDrive data set, as presented in Section 2.6.3. By employing a GMM-
based maximum likelihood classifier and utilizing a speaker/ gender-independent
split of the training and test set, they achieve equal accuracy rates ranging from
66.4% to 69.3% for the two-class classification problem (neutral vs. negative).

2.6.3 Available Modalities and Data Sets

As described in Section 2.6.1 and Section 2.6.2, most investigations in the field
of in-vehicle speech emotion recognition are based on well-established benchmark
emotional speech data sets with additive in-vehicle noises. The reason for this
circumstance is that the number and amount of real-world in-vehicle speech data is
still limited. An open source data set on natural in-vehicle emotional data is, to my
knowledge, not yet available. All presented publications not based on benchmark
data sets, utilize their own designated audio recordings, which in most cases are
not publicly available. The realization of these designated data collections is highly
resource and time consuming and cannot be established without a certain financial
and technical support. An Overview on available speech emotion data sets utilizing
an in-vehicle environment is given in Table 2.6. In the following, a more detailed
description is given for each set separately.

One early project considering in-vehicle emotions is the Emotive Driver Project
presented in [Jones & Jonsson 2005]. Here, emotional speech data is collected inside
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Table 2.6: Overview on in-vehicle emotional speech data sets. Empty entries were not
made available in the referred publication.

Name Samples [#] Cat. Dim. Naturalness Rec.
Environment Interaction

Emotive Driver pro-
ject [Jones & Jonsson
2005]

- 6 - natural simulated HCI

LISA-AVDB [Tawari
& Trivedi 2010a] 224 3 - acted/ natural real world HHI

AMMAR [Cevher et
al. 2019] 288 6 3 natural simulated HCI/ HHI

TUDrive [Angkiti-
trakul et al. 2007;
Bořil et al. 2010]

- 2 - natural real world HCI

[Malta et al. 2011] - 2 - natural real world HCI
[Mehler et al. 2015;
Abdić et al. 2016] 596 2 - natural real world HCI

a simulator consisting of a screen, car seat, steering wheel with haptic feedback and
a brake and acceleration pedal. The emotions are elicited by communicating with
an in-car information system, which informs the driver on topics related to the road
conditions, traffic and driving conditions, and engages the driver into a conversation
based on interview-like questions. It is not specified what kind of driving scenarios
are employed in the simulator and if it only contains straight driving or also other
disturbances. No specific emotions are induced and the data is afterwards labeled
by trained experts in the categories boredom, sadness, anger, happiness, surprise
and neutral. The disadvantages of this approach are evident. First, the utilized
simulator is not similar to a real vehicle in various aspects (e.g. acoustics, driving
behaviour, etc.). Second, the emotions are not induced. For driving without further
disturbances it is rather unlikely to observe an emotion different from neutral or
boredom. This is also confirmed by the labeling results which mostly correspond
to a neural and bored state of the driver. The full data set comprises data from 41
English speaking participants (21 females) in the same age group (18 to 25 years).

In [Tawari & Trivedi 2010a] a more realistic driving environment is utilized and a
multimodal collection of audio and video data, called the Audio-Visual Affect Data-
base (LISA-AVDB), is presented. This data set is collected inside a real operating
vehicle as well as inside a stationary vehicle. The vehicle type and other envir-
onmental conditions, as street type, vehicle average speed or road surface are not
introduced to the reader. To elicit a certain emotion in the driver, two different ap-
proaches are utilized. First, the driver is prompted by a computer system to express
a specific emotion, giving example sentences on how to express the said emotion.
Second, free conversations between the driver and a passenger are recorded. Here,
no emotion is induced. The emotional speech data is then labeled into the categories
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positive, neutral and negative expressions. In total 224 speech samples (82 positive,
82 negative and 60 neutral) from four English speaking participants (two females)
are obtained. No further information on the segmentation of the speech signals for
the annotation is given.

A more recent collection of in-vehicle emotional data is presented in [Cevher et al.
2019]. The, so called, AMMAR data set comprises multimodal data of audio, video
and bio-physiological recordings. Furthermore, the audio signal is transcribed to also
obtain the textual information. The data collection is performed inside a fixed-base
driving simulator consisting of a car cabin (only frontal area of the car body) and
a wide screen. As driving environment, ”everyday driving situations“ on highway,
rural roads and city streets are utilized and a focus is drawn on the interaction
between the driver and a virtual agent as well as a co-driver. To withhold the actual
goal of the driving task (i.e. collection of emotional data) from the driver, a cover
story is used. The drivers are told to evaluate and improve a given driving assistant
system. Furthermore, to reinforce the emotional state, the drivers are told to reach
the desired destination as fast as possible, observing the traffic rules and speed
limits. The emotions themselves are induced by several events occurring during
the driving task. First, the car is cut off by another car and blocked by trucks on
both lanes. Second, a skateboarder appears unexpectedly on the street, and finally,
the driver is pressured to reach the desired destination first, compared to other
participants. The situations are reinforced by the virtual agent, asking situation
related questions. Further, the drivers are involved in conversations with the co-
driver on rather positive experiences (i.e. last vacation, dream house and perfect
job). As ground truth an emotion self-rating of the participants is used, in which
the participants listen to their own audio recordings and label every utterance in
emotion categories (annoyance, insecurity, joy, relaxation, boredom and no emotion)
and dimensions (valence, arousal and dominance). In total 288 speech utterances
(90 joy, 26 annoyance, 49 insecurity, 9 boredom, 111 relaxation and 2 no emotion)
from 36 German speaking participants in between the age of 18 to 64 years are
obtained. It can be stated, that the general study design is closely related to the
approach presented in [Lotz; Ihme et al. 2018] and Section 3.2. Nevertheless, it
can be assumed, that the secondary task of reaching the desired destination first,
will most likely have a negative effect on positive emotions. And strong negative
emotions may be reinforced. Furthermore, positive emotions are only induced by
highly natural conversation with the co-driver and not intensified by the driving
scenario. This may also explain the low recognition rates obtained on this data,
which were reported in the previous Section.

While these three data sets comprise speech in multiple emotional states, the fol-
lowing publications focus on the inducement on negative emotions/ frustration of
the driver only. In [Bořil et al. 2010] the dialogue systems scenario of the UTDrive
data set [Angkititrakul et al. 2007] is annotated in two categories (neutral and neg-
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ative). This data base contains audio and video recordings inside a real vehicle in
a residential area and business district. During the dialogue system scenario the
driver needs to call an airline’s flight connection system to get information on the
arrival/ departure gates of a particular flight, and a voice portal to obtain informa-
tion depending on the driver’s personal interests. An inducement of emotions is not
per se a goal of the data collection. The dialogue system scenario, however, induces
negative emotions in the driver, because of the high number of speech recognition
errors occurring while communicating with the automated systems. In total 68 Eng-
lish speaking drivers (33 females) of the UTDrive data base are annotated by one
expert annotator.

A second data set on frustration only is presented in [Malta et al. 2011]. The
authors present a multimodal data collection on audio, video and bio-physiological
recordings obtained in a real vehicle under city street environmental conditions. To
induce frustration, the experimental route is chosen in a way that the number of
frustrating environmental factors (e.g. high traffic density) is increased. Further-
more, the drivers need to perform a secondary task where they have to retrieve and
play as many songs as possible, within a certain time limitation using an automatic
speech recognition system. This system is highly prone towards speech recognition
errors and regularly misunderstands the driver’s commands. Except for the sec-
ondary task, the drivers are not encouraged to speak during the experiment. An
annotation of the data is performed by utilizing the video recordings only and is
carried out for the two categories of neutral and non-neutral. The true label of frus-
tration is taken from the participants’ self-report in the two categories frustrated
and non-frustrated. The results are stored in a continuous stream of binary inform-
ation. In total 30 Japanese speaking participants (10 females) in between the age of
20 to 58 years are included in the data set. One major concern on the experimental
setup is that the secondary task will not only increase the frustration level of the
driver but may also lead to cognitive overload due to the time limitation given for
the task. This, however, is not further taken into consideration by the authors.

In [Abdić et al. 2016], the authors utilize a subset of the data collection presen-
ted in [Mehler et al. 2015]. This data collection is originally designed to evaluate
the effect of voice interfaces in embedded vehicle systems on the driver’s visual
and manual distraction. It comprises multimodal data of audio, video and bio-
physiological recordings. The effect of voice interfaces is evaluated by performing
three different secondary tasks per participant inside a real vehicle under highway
environmental driving conditions. These tasks include entering an address into a
navigation system via voice control, manually phone calling, and calling a person via
voice control. After each task, the participants self-report their work load (no scale
provided). This also includes an assessment of the frustration level on a scale from
1 not frustrated to 10 very frustrated after each driving task. All tasks with ratings
of 4 to 6 are assumed to indicate a neutral frustration state and are excluded from
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the data set. Everything above 7 is assumed to indicate frustration and everything
below 3 satisfaction of the driver. Out of the 80 initially collected English speaking
participants, only 20 participants are used in the frustration data set, equally dis-
tributed in age and gender. This subset of the original data set comprises 596 audio
samples of different duration with a majority of samples labeled as frustrated.

As stated earlier, speech data is highly affected by the environment it is recorded
in (cf. Section 2.5.1). Therefore, it is assumed that a classifier designed for a certain
application domain should be also trained on data originating from this domain. It
is a rather vague assumption that a classifier trained on a random set of emotional
speech data will later also work in its designated application environment. It can be
summarized that an open source benchmark data base on in-vehicle emotional speech
data would be highly conductive for an unspecific evaluation of emotional speech in
an in-vehicle environment, especially for research institutions with small budgets.
Nevertheless, for real world application either a designated data set is needed or a
much wider range of data comprising a variety of in-vehicle emotional speech data.
By the second approach, a more general data set is generated representing the entity
of in-vehicle emotional speech. This, however, seems rather challenging with regard
to the low number of available data sets focusing on different languages, naturalness,
interaction and recording environments. With a higher number of available in-vehicle
data it would further be possible to adapt the features extracted in a non-driving
environment. This, however, is not possible so far.

2.6.4 In-Vehicle Emotion Recognition from different Modal-
ities

In Section 2.1.2, I presented the concept of emotions and appraisal theory. Consid-
ering the measures presented in this Section, there are different ways to recognize
a change in a person’s emotional state, which are more or less convenient when it
comes to the detection of the driver’s emotions. Until now, a focus was drawn on the
detection from vocal expressions only. To complement this information, I will now
give a brief overview on drivers’ emotion recognition considering the measurement
of the changes occurring in the five components of an emotion episode.

1. Cognitive component: A measurement of the neural activity of the driver is
highly obtrusive. The attachment of electrodes on the scalp of the driver can
effect the human-vehicle interaction and disable a natural driving behavior.
Even though there has been improvement in dry and portable measurement
systems in the past years (e.g. [Zander et al. 2011] and [Volkening et al. 2018]),
this approach can be seen as rather inconvenient in the driving context.

2. Neurophysiological component: There exist different methods to measure the
drivers’ physiological parameters. These range from more obtrusive meth-
ods, as utilizing body attached electrocardiogram (ECG) measurement sys-
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tems (e.g. ECG-belts, finger sensors or ECG-electrodes attached to the chest
of the driver), to less obtrusive contactless systems, such as the ECG-steering
wheels (cf. [Gomez-Clapers & Casanella 2012; Lourenço et al. 2015]) or the
smart driver seats (cf. [Vetter et al. 2017]).

3. Motivational component: In contrast to everyday behavioral changes, which
are rather challenging to assess [Harrigan et al. 2005], the changes occurring in
the driver’s behavior are comparatively well measurable. They can be assessed
through changes occurring in the interaction of the driver with the vehicle,
either by directly measuring the vehicle speed, acceleration or time headway,
or from input devices in the vehicle, such as the brake, the throttle, or the
steering wheel. However, especially in the driving context, these changes are
not used by humans to communicate there emotional state to the environment,
but can be seen as the consequence of an emotional incident [Scherer 2005b].

4. Motor expressive component: The facial expression, body movement and vocal
expression of the driver, can be easily assessed by integrating cameras and
microphones into the vehicle cabin. This can be done in a non-disruptive way,
not leading to disturbances in the human-vehicle interaction. While many
vehicles are equipped with hands-free speaking systems and a microphone
array being already integrated inside the vehicle-cabin, the availability of a
camera system inside an ordinary vehicle is yet uncommon.

5. Subjective feeling: The assessment of the subjective feeling while driving is
highly inconvenient, as the driver needs to provide explicit information on
their internal state. It can be assumed, that in a natural driving environment
it is very unlikely that the driver will provide this information without being
prompted to do so. This is a common way used in psychological investigations,
but is highly unsuitable in a driving context.

With regard to the above stated assessment methods, some research is already
available in the field of automatic in-vehicle emotion recognition. While using be-
havioral changes to detect the emotional state of the driver is still under-researched
(e.g. in [Shafaei et al. 2019]), there is more work available investigating auto-
matic emotion recognition based on bio-physiological measures and video signals
(cf. [Nasoz et al. 2004; Katsis et al. 2008; Malta et al. 2011; Gao et al. 2014; Verma
& Choudhary 2018b; Verma & Choudhary 2018a; Ihme; Unni et al. 2018] and [Zepf
et al. 2019]).
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2.7 Summary of this Chapter

This Chapter of the Thesis provided the reader with the necessary information
needed for the investigation of the three main research hypotheses, as introduced
in Section 1.4, and understand the research content presented in the following
Chapters. Furthermore, this Chapter provided information on how to generate
emotional speech, model a speech emotion recognition system, in the wild emotion
recognition, speech quality and disturbed speech.

The next Chapter will focus on the collection of own simulated and real-world
in-vehicle emotional speech data.
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FROM literature it is known, that in machine learning the recognition perform-
ance of a classifier is strongly dependent on the quality of the data it was

trained on, as discussed in Section 2.2.6. Not only a high standard of the tech-
nical equipment (e.g. microphones, audio interface) is needed, as also the recording
characteristics themselves can strongly affect the recognizer’s performance. This in-
cludes the level of naturalness of the data (acted vs. spontaneous) and the recording
setup (e.g. room acoustic characteristics, noise conditions, etc., cf. Section 2.5.1).
For emotion recognition from speech, recognition rates can drop considerably from
over 80% for acted emotions under clear recording conditions, to below 25% for nat-
uralistic emotions under moderate recording conditions [Schuller; Vlasenko; Eyben
et al. 2009] for comparable four class classification problems. Therefore, it is of high
importance to operate with data, which is comparable to the data used during the
later real-world application. If this condition is neglected, the obtained test results
of the emotion recognizer cannot be taken as valid.

With regard to this information, it should be clear that a superimposition of in-
vehicle noises to well-known emotional speech data sets is not enough to receive
a trustworthy statement on the performance of a speech emotion recognizer under
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realistic disturbed recording conditions, as it is the case for most of the investiga-
tions presented in Section 2.6. An accessible real-world data collection, comprising
spontaneous affected speech in in-vehicle environments, is, to my knowledge, yet
unknown (cf. Section 2.6.3). Furthermore, the in-vehicle acoustics are influenced by
many factors. These are, for example, the cabin size, the cabin interior or its mater-
ial, which have an impact on the impulse response of the room (cf. Section 2.5.1).
These differences can already have a considerable effect on the performance of the
speech emotion recognizer. This implies, that not only a similar recordings setup
inside a real vehicle with realistic in-vehicle noises is needed, but also the vehicle
itself is important. While for different vehicle types like the passenger car or motor
truck, the difference in the acoustic characteristics is striking (cf. cabin size and
interior), for different passenger car models (e.g. limousine and station wagon) this
difference is less obvious, but can still lead to noticeable differences in the quality of
the audio recordings (cf. motion dampening and sound absorption).

To obtain realistic in-vehicle emotional speech data, with regard to the above men-
tioned requirements, two data collections were realized in the scope of this Thesis.
As reliable data collections of naturalistic emotional speech are highly resource con-
suming, especially when it comes to the development of a reproducible test-scheme
and the generation of a ground truth, the first data collection comprises re-recorded
benchmark emotional speech data inside a fixed-based driving simulator. A detailed
description of these simulated in-car recordings is presented in Section 3.1 and is
based on [Lotz; Faller et al. 2018]. The data was later used for the investigations
presented in Section 4.3 to get a first insight on the influence of speech quality in
speech emotion recognition, and in Section 5.2 to describe the effect of speech en-
hancement on the recognition performance. Further advantages of this setup are the
relative ease of recording even extensive speech material, and the comparability to
results in other environments, as the originating data is a well researched benchmark
data set.

The results obtained from the simulator recordings, and presented in Chapters 4
and 5, however, are not sufficient to describe the performance of a speech emotion
recognizer in a real-world application to the full extent. From the simulated data,
it is possible to analyze the effect of in-vehicle noises on the speech quality, the
features used for emotion recognition and other speech processing artifacts (e.g.
speech enhancement), and give first insights on the feasibility of speech emotion
recognition in a driving environment. Nevertheless, the naturalness of the in-vehicle
speech is neglected. Therefore, a second data collection was realized, comprising
realistic highly natural emotional speech samples as they would occur in real-world
driving situations inside a designated test vehicle. The details of this data collection
are presented in Section 3.2 and are based on [Lotz; Ihme et al. 2018]. Furthermore,
the usability of this data collection was evaluated and validated in Section 3.2.3 of
this Chapter and is based on the results presented in [Requardt et al. 2018]. The



Chapter 3. Realized Simulated and Real-world In-Car Data Collections
85

recorded data set was later used in Section 5.1 to obtain a ground truth of said data,
and in Chapter 6 to evaluate the ability to detect the driver’s emotional state from
in-vehicle speech.

As the approaches and results presented in this Chapter were already published
in [Lotz; Faller et al. 2018; Lotz; Ihme et al. 2018] and [Requardt et al. 2018], several
phrasings are taken literally from these publications.

3.1 Simulated In-Car Recordings

The first data collections were conducted by re-recording two well-known benchmark
emotional speech data sets inside a fixed-based driving simulator consisting of a real
car body inside a simulated environment as presented in [Lotz; Faller et al. 2018]. It
was used to get an insight on the influence of real-world in-vehicle speech data on the
speech quality and the ability to automatically recognize the drivers emotional state
under non-ideal recording conditions. The databases comprised speech samples of
different naturalness (acted and scripted emotions) and recording conditions (inside
an anechoic chamber and a television studio) of the EmoDB and VAM data sets
(cf. Section 2.1.5). An advantage of this approach is that the recognition results
obtained from the original clean data samples serve as baseline for the evaluation of
the non-ideal re-recordings. This makes it possible to discuss the effect of different
signal processing steps, such as speech enhancement, and of noise conditions on
the feature space and consequently on the recognition performance, as presented
in Chapter 4 and Section 5.2. Furthermore, the conducted experiments, presented
later, are also comparable to other state-of-the-art studies based on the evaluated
data sets (cf. Section 2.6). This data collection was accomplished with the help of
colleagues from the Continental Automotive GmbH. All evaluations on this data,
presented in this Thesis, were done by myself.

3.1.1 The Simulator and Simulation Environment

The simulator is located inside a workshop shed at the premises of the Continental
Automotive GmbH in Babenhausen, Germany. To dampen the noises coming from
the workshop it is additionally placed inside a semi-anechoic chamber. The simu-
lator itself consists of a BMW 5-series chassis, connected to the simulation environ-
ment and placed in front of a wide screen (due to copyright restrictions, please refer
to [Lotz; Faller et al. 2018] for a picture of the simulator). The screen is used to sim-
ulate the driving environment and to give visual feedback to the driver. Additional
acoustic feedback is generated to simulate environmental noises and engine sound.
The environmental noises (e.g sound of tires on road surface, passing vehicles) are
replayed by three speakers located in each front door and the rear window shelf
of the vehicle. This placement of the speakers generates a listening experience of
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surround sound for the driver. To generate a realistic engine sound, an actuator is
placed underneath the engine hood using it as a resonator. For technical reasons
the dashboard of the cabin is replaced by a structure of strut profiles, simplifying
the integration of various sensors into the car.

To enable playback and recording of the EmoDB and VAM data samples, similar
to manual driving situations, the simulator was operating in automated mode. This
allowed the placement of an active loudspeaker at the position where the driver’s
head would commonly be located while driving manually. The driving scenario
of the simulator was designed as a two-lane highway driving task with a varying
traffic density to generate diverse environmental noises during the experiment. Ad-
ditionally, the driving behavior of the vehicle was manipulated manually from the
simulator’s control room. Changes in the vehicle’s velocity and the traffic lane were
initiated at certain points of time and logged onto a separate log file tracking the
course of the simulation.

3.1.2 Microphone Integration

Two high resolution directional shotgun microphones (Sennheiser ME66) were in-
tegrated onto the strut profile, corresponding to a placement on the dashboard at
both A-pillars of the chassis. In the following, the placement will be denoted as
left and right microphone. The inlets of the microphones were directed towards the
loudspeaker. An illustration of the hardware setup can be taken from Figure 3.1.
To synchronize the audio channels of both microphones, an audio interface (Stein-
berg MR816CSX) was connected to the recording laptop using FireWire. The audio
streams were recorded using the recording software Cubase1. The gain settings of
the microphones and loudspeakers were set to a subjective volume comparable to
passengers talking insider a running car. This setting was identical for all conducted
recording setups.

Figure 3.1: Schematic top view on the frontal area of the simulator’s cabin.

1MIDI-sequencer and digital audio workstation developed by Steinberg Media Technologies.



Chapter 3. Realized Simulated and Real-world In-Car Data Collections
87

3.1.3 Recording Setup

All samples of the EmoDB and VAM data set were re-recorded using two different
recording setups. For the first recording, the simulator was turned off and only
the in-car acoustics of the vehicle were influencing the recording. The recordings
obtained under this setup are further referred to as re-recording under silence con-
dition. For the second setup, the simulator was turned on and operating in the
simulation environment, as described in Section 3.1.1. This led to a distortion of
the obtained audio recordings by environmental noises and engine sound. The ob-
tained recordings are further referred to as re-recording under disturbed condition. In
the following chapters of this Thesis, the re-recorded data-samples under silence and
disturbed conditions will be referred to as re-recorded EmoDB under in-car record-
ing conditions (EmoDB-Car) and re-recorded VAM under in-car recording conditions
(VAM-Car).

3.2 Real-World In-Car Recordings

To also gain real-world data of emotions while driving, additionally to the simulator
recordings, a second data collection with naturalistic in-car emotions was realized
(cf. [Lotz; Ihme et al. 2018]). The goal of this data collection was to generate
reliable, reproducible, multimodal and highly natural emotional in-car data, as they
occur in everyday driving situations. Therefore, a strong focus was drawn on the
comparability of the data with real-world driving situations. This was accomplished
by a well-elaborated experimental setup and study design. To receive a more detailed
insight on these important aspects, a detailed description of the data collection will
be provided in Sections 3.2.1 and 3.2.2. To verify the usability and quality of the
collected data, a validation of the data set, utilizing the driver’s subjective self-
reports and their peripheral physiological data, was conducted. The results are
presented in Section 3.2.3 and are based on the work presented in [Requardt et al.
2018]. The recorded audio data will be used later, in Section 5.1, to generate the
ground truth of the driver’s emotional state, and in Chapter 6 to evaluate the ability
to detect the driver’s emotional state from in-vehicle speech.

The data was collected as part of my work for the project ADAS&ME2. While this
Thesis focuses on the recognition of emotions from speech, other project partners
focused on a recognition of emotions considering different modalities. Therefore,
these modalities were also recorded during the data collection. The integration of
the sensors, except for the microphone system, were not part of my work. The
presented experimental setup and study designs, however, was a main contribution
of myself in co-operation with the German Aerospace Center (DLR). In the later

2Funded by the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 688900)



88 3.2. Real-World In-Car Recordings

realization of the data collection, I only gave support regarding the audio recordings,
whereas the evaluation of the recorded speech material was solely done by me.

3.2.1 Experimental Setup

Test Ground and Driving Environment

The real-world in-vehicle data collection was conducted at the compound of the
DLR in Braunschweig, Germany, which is a designated test ground for driving ex-
periments. The traffic density on the compound is comparable to a quiet residential
area ensuring a realistic driving experience and driving environment. On the test
ground, driving is allowed with a maximum speed of 30 km/h. For the experiment a
fixed driving round course of around 900 meters was determined, which is depicted
in Figure 3.2. One round on the course took approx. 2.5 minutes and was driven by
each participant 20 times, interrupted by small pauses of approx. 5 minutes after
every 5th round, used to collect the self-reported measures and as recreation of the
driver. All recordings were conducted during daytime, to ensure optimal lighting
conditions for the video recordings, and under similar and constant weather con-
ditions, to ensure comparability among the recordings of the different participants.
Because of the high sensitivity of the in-vehicle audio recordings towards environ-
mental disturbances, the termination criteria of the data collection were strong rain
and/ or thunderstorm. During the driving experiment, three persons were seated
inside the car: The test subject/ driver on the driver seat, one investigator on the
passenger seat, and one technician on the rear bench behind the driver. The invest-
igator was leading the driver through the experimental course and the technician
was responsible for the supervision of the sensor data recordings. The whole driv-
ing experiment took approx. 2 hours (1 hour of driving) per driver. This included
the equipment of the participants and all further tasks like briefing, debriefing and
answering provided questionnaires.

Figure 3.2: Round course at the DLR compound in Braunschweig, Germany (taken from
[Lotz; Ihme et al. 2018], map taken from https://www.openstreetmap.de/)

https://www.openstreetmap.de/
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Ethical Statement

The study procedure was reviewed and approved by the ethics committee of the
Otto-von-Guericke University in Magdeburg, Germany (reference number 173/17).
Furthermore, it was in accordance with the regulations and guidelines of the DLR.
Before the start of the experiments, all participants had to provide a written in-
formed consent to participate in the study.

Involved Participants

In total 30 drivers (seven females) were employed in the presented driving experi-
ment. They were on average 30.5 years ± 5.0 years old and, hence, of the same age
group (25 - 40 years). Furthermore, all participants were native standard German
speakers without any speaking disorders, to guarantee that the differences occur-
ring in their manner of speaking would not be influenced by their idiom or accent.
Before the appointment of participants, they all had to answer a socio-demographic
questionnaire and a general questionnaire regarding their driving experience. For
safety reasons, only participants which were in possession of a valid driver’s license
and confirmed an annual mileage of at least 5000 km were taken into consideration
for conducting the experiment. Furthermore, pregnant, physically impaired, heart
and/ or neurologically disordered people were excluded from the study.

As the experiment took place on the DLR site in Braunschweig, all participants
were employees of the DLR by the time of the experiment. To compensate their
time effort, each participant received 30 e as reimbursement. At the beginning of
the experiment, the participants were further asked to fill out the ATI-scale used
to measure their attitude towards technology [Franke et al. 2017] and the Big Five
Inventory (BFI-10) [Rammstedt & John 2007] to assess the big five OCEAN per-
sonality traits (i.e. Openness on experience (O), conscientiousness (C), extraversion
(E), agreeableness (A) and neuroticism (N)). From literature it is known, that the
personality can affect the ability to perceive/ utter certain emotions [Revelle &
Scherer 2009]. This, however, was not further evaluated in the scope of this Thesis.

Test Vehicle

For the data collection the research vehicle FASCar II provided by the DLR was
utilized [Fischer et al. 2014] (see Figure 3.3). The FASCar II is developed for testing
driver assistance systems and automated driving. It is equipped with a unique steer-
by-wire system to support innovative haptic feedback and intervention strategies. To
meet the standard safety regulations an additional brake pedal is available at the co-
drivers side. It is used for the safety driver to intervene in critical driving situations
but can also be used to conduct Wizard-of-Oz (WoZ)-like driving experiments [DLR
2011; DLR 2019].
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Figure 3.3: Research vehicle FASCar II (taken from https://www.dlr.de/ts/
desktopdefault.aspx/tabid-1236/1690_read-13097/)

Sensor Integration

Three different sensor systems were integrated into the car to collect emotional data
from three modalities: speech, facial expressions and physiology. The sensor systems
were mounted onto the dashboard of the vehicle or were directly attached to the
driver’s body. Other hardware, necessary for the data collection, was mounted in
the trunk of the car, not being visible to the driver.

A microphone system was used to record the speech of the driver. The system
consisted of three microphones (two shotgun, one headset microphone) and an au-
dio interface. The two highly directional shotgun microphones (Shure VP 82) were
mounted on the dashboard of the car using elastic mounting to dampen the car’s
movement, one behind the steering wheel in front of the driver (not impairing her/
his visual field), and one at the right A-pillar (cf. Figure 3.4). Both microphones
were directed towards the mouth of the driver to suppress as much as possible sur-
rounding noises. Additionally, a headset microphone (Sennheiser HSP-4 EW-3) was
worn by the driver to collect high quality reference recordings without further dis-
turbances of the driver’s speech signal. These recordings were later used to obtain
the ground truth of the data, by conducting a manual annotation (cf. Section 5.1).
The different microphone tracks originating from the three microphones were recor-
ded synchronously using an USB audio interface (Steinberg UR44) and the recording
software Cubase3 with a sampling rate of 44.1 kHz and a bit-depth of 16 bit.

The facial expressions of the driver were extracted from the video images captured
by a Smart Eye Pro (SEP) Multi Camera System4. It consists of two high resolution
infrared cameras with active infrared illumination. The system was attached to the
dashboard on both sides of the steering wheel (cf. Figure 3.4). The recordings were
obtained using a frame rate of 60 Hz, which is highly resource consuming (compu-

3MIDI-sequencer and digital audio workstation developed by Steinberg Media Technologies.
4Smart Eye AB, Gothenburg, Sweden, www.smarteye.se

https://www.dlr.de/ts/desktopdefault.aspx/tabid-1236/1690_read-13097/
https://www.dlr.de/ts/desktopdefault.aspx/tabid-1236/1690_read-13097/
www.smarteye.se
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Figure 3.4: Schematic top view on the frontal area of the FASCar II test vehicle. Sensors
with high relevance regarding this Thesis are denoted in bright color.

tation time and storage space). Therefore, an additional computer was mounted in
the trunk of the car, dedicated to record the video images only.

The peripheral physiological data was recorded using the wireless sensor system
Heally5. It consists of a standard 3-lead system and a finger sensor. The 3-lead
system was used to measure the electrocardiogram (ECG) with a sampling rate of
500 Hz, the finger sensor measured the finger temperature and skin resistance at the
index finger of the non-dominant hand of the participant with a sampling rate of
50 Hz. Both sensors communicate via Bluetooth to a computer stored in the trunk
of the car.

All sensor systems were synchronized using a trigger signal coming from the SEP
system. While the recordings of the peripheral physiological data were directly
triggered by the SEP system, a manual synchronization was needed for the audio
recordings. The SEP provided an isochronous impulse signal, which was fed to the
audio interface as a separate input signal. This impulse corresponded to a flash
occurring in the video images. The time stamps of these impulses and flashes were
afterwards overlain to synchronize both signals.

3.2.2 Study Design

Target Emotional States

As already stated in the introduction of this Thesis, the most frequent emotions
occurring while driving in a car are positive, anger and fear. Most of these emo-
tions are highly expressive and do not occur in everyday driving situations but are
triggered by challenging driving situations or defining experiences from the past
(e.g. serious accidents)(cf. [Plutchik 1980]). For this data collection a special focus
was drawn on milder versions of these emotions with less intensity , which are of
frequent occurrence in everyday driving scenarios and can elicit stronger versions of

5SpaceBit, Eberswalde, Germany, http://spacebit.de/html/body_heally.html

http://spacebit.de/html/body_heally.html


92 3.2. Real-World In-Car Recordings

said emotions. These states are denoted as neutral, positive, frustration and anxiety.
In this Thesis, the positive state includes all relevant positive emotions occurring in
the driving context like joy, amusement, contentment or happiness. From literat-
ure it is known that especially negative emotions can strongly influence the driving
behavior in a negative way and lead to aggressive driving and distraction of the
driver. Therefore, a more detailed focus is drawn on the detection of frustration and
anxiety. A distinction between frustrated and angry driving as well as anxious and
fearful driving is, however, a highly challenging task in speech emotion recognition,
as frustration and anger show a significant correlation in their subjective emotion
ratings (cf. [Liscombe et al. 2003]), and in [Schmidt-Daffy 2013] the author states
that the symptoms of fear and anxiety are barely distinguishable from each other.
Therefore, a distinction between these states will not be addressed in the scope of
this Thesis.

More important, to design appropriate driving scenarios, a clear definition of the
emotional states is necessary. By using the circumplex model of emotion concepts by
Russell and Lemay, the target emotional states were mapped onto the dimensions of
valence and arousal (cf. Figure 3.5) [Russell & Lemay 2000]. This model defines the
neutral state as the region around the origin of the valence and arousal space with a
moderate level of arousal and neutral valence. Furthermore, all expressions having a
positive valence define the positive state. For the states of frustration and anxiety, no
clear distinction regarding valence and arousal was possible, as both, anger and fear,
are defined in a region of negative valence and high arousal. Therefore, additionally
definitions, obtained from literature, were consulted, which defined frustration as
the unpleasant feeling, which occurs in situations in which a person is detained from
reaching a desired outcome/ goal and anxiety as the unpleasant feeling of dread over
anticipated negative events [Lazarus 1991; Schmidt-Daffy 2013]. The corresponding
driving experiments were designed such that the emotion elicitation would meet
these definitions.

To sum up, the target emotions comprise neutral, positive, frustration and anxiety,
which were mapped onto the valence-arousal-space as depicted in Figure 3.5. In the
reminder of this Thesis both, the four emotion categories, as well as the dimensions
of valence and arousal will be used to classify the drivers emotional state.

Driving Experiment

In the following, a detailed description of the different driving scenarios used to in-
duce the four target emotions will be presented. The scenarios were designed such
that the driving itself would only minimally influence the driver’s emotional state.
To hide the actual goal of the driving experiment from the participants, a cover story
was provided. This cover story mainly focused on the evaluation of different newly
developed driving assistant systems by the participant. For each driving scenario
five rounds on the round course described in Section 3.2.1 had to be driven. The
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Figure 3.5: Defined target emotional states mapped onto the circumplexmodel of emo-
tions concept (cf. [Russell & Lemay 2000], adapted from [Lotz; Ihme et al. 2018]).

inducement of the target emotions was based on two different approaches, by con-
ducting a secondary task and by emotional elicitation through recalling memories of
emotional significance (cf. Section 2.1.3). By utilizing emotion induction methods
the emotion is verifiably reflected in the participant’s facial expression, speech and
physiological data (cf. Sections 2.1.2 and 2.1.3). Most of the recent benchmark
emotional data sets are based on acted, scripted and task-induced natural emotions
(cf. Section 2.1.5). The approach of emotion elicitation by recalling memories of
emotional significance is hardly used. One benchmark data set utilizing this specific
kind of emotion inducement is presented in [Martin et al. 2006] as the eNTER-
FACE’05 audio-visual emotion database. In this Thesis, for each target emotion a
distinct driving scenario was designed, which was split into three phases:

1. Baseline driving (1st round):
Driving without further disturbances of the participant. During this round,
baseline measures of the peripheral physiological data were recorded. Fur-
thermore, the participants could take the time to acclimatize to the driving
situation and diminish influences of the previous scenario.

2. Secondary task (2nd & 3rd round):
Inducement of the emotional state by conducting secondary tasks while driv-
ing. The task was designed in a way that it would induce the considered
target emotion. This was mainly accomplished by realizing so-called WoZ ex-
periments, where the user believes that she/ he is testing an autonomously
working technical system, while the system is actually controlled by a human.
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This information was withheld from the participants but later revealed during
a debriefing.

3. Conversation-driven emotional recall (4th & 5th round):
Stimulating the recall of the considered target emotion by the participants’
themselves by asking questions and starting a conversation on related top-
ics while driving. The investigator initiated a conversation starting from the
just experienced situation (i.e. just accomplished secondary task). A list of
pre-defined questions and topics was available to the investigator to keep the
conversation alive. Nevertheless, the interviewer was briefed to individualize
the conversation, to sustain a natural-like interaction with the participant, and
to prevent the conversation from developing in the wrong direction.

In between each of the four driving scenarios the participants had at least
5 minutes of recess to fill out provided self-reports (cf. next Section). This took on
average 2 minutes. The rest of the time the participants could relax to get back to
the neutral state. The order of the four driving scenarios was kept constant for all
participants.

A detailed description of the driving scenarios is given in the following:

The participants started with the neutral driving scenario. As for all other
scenarios, this scenario began with one round of baseline driving. In this scenario
no secondary task was used to induce the driver state. During the 2nd and 3rd
round of the course, the investigator initiated a conversation on neutral topics (e.g.
educational background, commute to work, weather, etc.). During the 4th and 5th
round of driving, another baseline driving was conducted. This was presented to
the participants as a training phase.

Second, the participants underwent the positive driving scenario. They were
told that before starting with the actual evaluation of the driver assistant systems, a
testing of the audio setup was necessary. This was done by replaying a sound file via
the loudspeakers during the 2nd and 3rd round of the driving course. As sound file
two episodes of the funny radio podcast “Wir sind die Freeses” of the radio station
NDR2 was used [Altenburg 2017]. The topics of the chosen episodes were based
on, at that time, recent public events (i.e. personal assistants like Amazons Alexa
and Bitcoin mining). Starting from these topics and depending on the participant’s
reaction on the radio show, the investigator initiated a conversation. This was done
during the 4th and 5th round of driving.

Next, the frustration driving scenario was conducted. For this scenario, a
WoZ-based navigation system was utilized. During the 2nd and 3rd round of driv-
ing, the participants were told that they should evaluated this newly developed
navigation system. The system would only respond to speech comments and would
not react to other modalities such as touch or gestures. The participant’s task was to
enter a specific address and start the routing. The system, however, was controlled
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by the technician seated behind the driver and would regularly misunderstand or not
understand the participant’s comments to induce frustration. During the 4th and
5th round, the investigator initiated a conversation on similar frustrating experiences
also based on technical systems.

The anxiety driving scenario was the last one to be conducted for the parti-
cipants. This scenario was also based on a WoZ setup, where the participants were
told to evaluate the usability of a brake assistant. This task was conducted during
the 2nd and 3rd round of driving. By utilizing the thinking aloud technique the
participants were encouraged to use speech based feedback. The participants were
told that the system was able to detect traffic cones at the side of the street, which
were used to represent a person approaching the vehicle, and stop automatically in a
sufficient distance to the obstacle. To inform the driver of the upcoming braking, a
warning signal was replayed through the loudspeaker. The brake, however, was con-
trolled by the investigator with the additional brake pedal at the passenger seat. To
induce anxiety, the warning signal would sometimes occur without an actual braking
of the car and vice versa. During the 4th and 5th round, the investigator initiated a
conversation on similar alarming experiences in driving situations, eliciting anxiety.

The effective operation of the individual driving scenarios was validated in
[Requardt et al. 2018] using the subjective self-reported feedback forms (cf. meas-
ures presented in the next Section) and the peripheral physiological data. A detailed
description of the validation results is presented in Section 3.2.3.

Assessing the Driver’s Subjective Emotional State

To assess the driver’s subjective emotional state, three self-report measures were
employed, namely, the Geneva Emotion Wheel (GEW) [Scherer et al. 2013], Self
Assessment Manikins (SAM) [Bradley & Lang 1994] and free text input (cf. Sec-
tion 2.1.4). The GEW contains 20 discrete emotion terms which can be rated in
five intensity levels (cf. Figure 2.3 on page 22). The participants were asked to give
feedback on all the emotions stated in the wheel. This corresponds to alternative 3
presented in Section 2.1.4. For the SAM rating a 5-point Likert-scale was utilized to
assess the emotional dimensions of valence (negative to positive) and arousal (low
to high) (cf. Figure 2.2 on page 21). The free text input allowed the participants to
describe the experienced emotional state in their own words.

To get a first insight on the quality of the emotion inducement methods used in
the four driving scenarios, the different measures were inquired before, during and
after the driving experiments. Before the experiment, all of the self-report measures
were utilized to assess the participant’s emotional baseline state. In between the
different driving scenarios, the GEW was provided to the driver, accompanied by
additional dummy scales to camouflage the actual purpose of the experiment. These
scales included the Karolinska Sleepiness Scale [Akerstedt & Gillberg 1990], the
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Stress Scale [Dahlgren et al. 2005] and the Scale of Thermal Sensation [Gagge et al.
1967]. After the experiments, a more detailed questionnaire focusing only on the
experienced emotions during the drives was filled out by the participants. For this
questionnaire the SAM scales were inquired separately for the conversation and task
phase of the emotion induction. Furthermore, a free text input was possible to rate
their experienced emotion during the secondary task.

3.2.3 Validating the Collected Data

In total 27.49 hours of audio data were recorded during the data collection. For each
participant on average 54.99 minutes± 4.89 minutes of audio material were obtained.
To verify the usability and quality of the recorded data, the data was validated using
the evaluation results of the drivers’ subjective self-reports (i.e. GEW, SAM and free
text input) and the peripheral physiological data (i.e. heart rate, finger temperature
and skin conductance level). The presented results were achieved with the help of
Dr. Klas Ihme, who is a post-doctoral researcher at the DLR, with a scientific
background in psychology and cognitive science. As not all measures were available
for each participant, only those participants providing a complete data recording (i.e.
self-reported measures and peripheral physiology) were utilized for the validation.
A full data recording was available for 28 of the 30 participants.

Evaluating the Drivers’ Self-Reports

As first indicator for the quality of the recorded data, the results of the self-reported
questionnaires obtained for each driver were evaluated. This was done by comparing
the received outcome of the drivers’ subjective self-reports of the GEW, SAM and
free text input for each driving scenario with the induced target emotion. In order
to perform this comparison, a pre-processing of the measures needed to be realized.
Afterwards, these pre-processed results were compared to the induced target emotion
of the considered driving scenario. A detailed description of this process will be given
now.

Geneva Emotion Wheel:
For the GEW the items best describing the target emotions in the GEW were
selected. For frustration and anxiety, these were the items anger and fear,
respectively. In case of the positive target emotional state, a composite of
the items amusement, joy, pleasure and contentment was formed, which was
further referred to as positive affect scale. A description of the neutral state
was not possible by considering certain items of the GEW, as the design of the
GEW will always lead to a selection of emotions with low intensity (cf. Sec-
tion 2.1.4). Whenever the GEW was applied during the driving experiment,
the drivers were asked to give feedback on all the emotions they experience
and their intensity in the present driving scenario. If a certain emotion was



Chapter 3. Realized Simulated and Real-world In-Car Data Collections
97

Table 3.1: Mean and standard deviation of the descriptors of the GEW for the target
emotions in the four driving scenarios (adapted from [Requardt et al. 2018]).

Scenario Positive Anger Fearaffect

Neutral 3.4 (0.9) 0.0 (0.2) 0.1 (0.6)
Positive 3.6 (1.0) 0.1 (0.3) 0.1 (0.4)
Frustration 2.9 (1.3) 0.6 (1.2) 0.1 (0.4)
Anxiety 3.1 (1.1) 0.2 (0.8) 0.3 (0.9)

not perceived at all during a drive, this emotion was rated with the intens-
ity level “0”. The other intensity levels were rated increasing from “1” (low)
to “5” (high). The intensity values, obtained for the items described above,
were averaged over all drivers for each driving scenario and are stated in Table
3.1. By applying repeated-measures Analysis of Variances (ANOVAs) on each
descriptor of the GEW (i.e. positive affect scale, anger and fear) the following
was noticed: Even though, the positive affect scale showed considerably high
values for all driving scenarios, a significant effect of the scenarios was ob-
served (F(2.1,56.7) = 9.5, p < 0.05, Greenhouse-Geisser-corrected). Post-hoc
t-tests revealed that the neutral and positive scenarios were rated significantly
higher than the frustration scenario (all p’s < 0.05, Bonferroni-corrected).
Furthermore, the positive scenario received significantly higher ratings than
the anxiety scenario (p < 0.05, Bonferroni-corrected). For the item anger
it was shown that there exists a significant difference regarding the driving
scenarios (F(1.5,42.2) = 4.7, p < 0.05, Greenhouse-Geisser-corrected). Even
though the item anger showed the highest intensity during the frustration
scenario, non of the post-hoc t-tests showed a significant difference (all p’s >
0.05, Bonferroni-corrected). The item fear was the only descriptor that did
not show a significant difference in the driving scenarios (F(1.1,31.2) = 1.1, p
= 0.305, Greenhouse-Geisser-corrected). However, the highest intensity of the
item fear was present in the corresponding anxiety scenario.

Self Assessment Manikins:
In case of an emotion inducement based on a task and a conversation, the
SAM was assessed twice, for each inducement method once. This was the
case for the positive, frustration and anxiety scenario. For these scenarios, the
values of the valence and arousal scale were averaged over both approaches
to obtain one value per driving scenario. For the neutral scenario no task
based induction was performed. Therefore, there also existed only one value
of valence and arousal for this scenario.

The valence and arousal values averaged over all drivers are stated in Table 3.2.
The highest valence value (high positive valence) was obtained for the positive
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Table 3.2: Mean and standard deviation of the valence and arousal rating obtained
through the SAM scale in the four driving scenarios (adapted from [Requardt et al.
2018]).

Scenario Valence Arousal

Neutral 4.1 (0.6) 2.1 (1.0)
Positive 4.4 (0.6) 2.1 (1.1)
Frustration 2.9 (0.8) 2.5 (0.9)
Anxiety 3.0 (0.6) 2.6 (1.0)

scenario and the lowest value (slight negative valence) for the frustration scen-
ario. For arousal the highest value was received during the anxiety scenario and
the lowest value for the neutral and positive scenarios. However, all arousal
values obtained for the different driving scenarios indicate a moderate arousal.
A repeated-measures ANOVA revealed that the driving scenarios strongly sig-
nificantly affected the valence level of the drivers (F(2.3,63.2) = 61.9, p <
0.001, Greenhouse-Geisser-corrected). By conducting post-hoc t-tests it was
shown that the valence level obtained for the positive and neutral scenario was
significantly higher compared to the frustration and anxiety scenario ([neut-
ral, positive] vs. [frustration, anxiety], all p’s < 0.05, Bonferroni-corrected). A
significant effect of the driving scenarios was also noticed for the arousal rat-
ing of the drivers (F(2.2,57.6) = 6.2, p < 0.01, Greenhouse-Geisser-corrected).
Post-hoc t-tests revealed that the arousal experience in the anxiety scenario
was significantly higher compared to the neutral and positive scenario (all p’s
< 0.05, Bonferroni-corrected).

Free Text Input:
During the experiment the drivers were asked several times to describe their
current emotional state using a free-form input. This was done before the start
of the actual driving task, and after the driving experiments were completed
for each performed secondary task (i.e. radio show, navigation system and
brake assistant). To get comparable results among the different drivers, the
text input was analyzed in three steps: First, the text was digitized. After-
wards, as some of the participants did not stick to the provided examples of
text input, but wrote whole sentences or gave general feedback on the situ-
ation or task, the text was reduced to only contain content related to their
current experience. This was done by excluding non experience-related words
and transforming all remaining words into adjectives. For example, frustra-
tion [German: Frustration] was transformed into frustrated [frustriert] and
phrasings like “it was amusing” [“es war lustig”] were transformed into amused
[belustigt]. Additionally, repetitions of words per secondary task and parti-
cipant were excluded. In the third step the occurrence of each adjective was
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Table 3.3: English translation of the free text input regarding the experienced emotion
before the driving experiment (baseline) and during the secondary tasks of the positive,
frustration and anxiety scenario. The word “amused” is mentioned twice, as the uttered
German words “belustigt” and “amüsiert” are both translated with “amused” (adapted
from [Requardt et al. 2018]).

Words (count > 2)

Baseline
excited (9) interested (6)
curious(4) neutral (4)
happy (4) expected (3)

Radio show
amused (8) relaxed (4)
irritated (4) entertained (4)
distracted (4) amused (3)

Navigation
irritated (11) frustrated (6)
upset (4) misunderstood (3)
amused (3) uncertain (3)

Brake assistant
insecure (5) puzzled (4)
interested (4) excited (4)
surprised (3) uncertain (3)

counted over all participants for each secondary task and the baseline inquiry
separately. Furthermore, the resulting list of adjectives was translated into
English. The translated results, containing words mentioned more than two
times by different participants, are presented in Table 3.3. The original Ger-
man words can be taken from [Requardt et al. 2018].

For the baseline survey, the participants were biased towards a positive state,
which was reasonable, as the participants were full of expectation towards the
upcoming experiment. This was reflected by emotional words describing the
excitement and interest towards the upcoming driving experiment. Only four
participants stated to be in a neutral state. However, “neutral” was only stated
in the baseline survey and never during the report on the experiences during
the secondary tasks. For the positive secondary task (listening to a funny radio
show), the participants described to have experienced predominantly positive
emotions. Nevertheless, also words related to negative emotions were expressed
(irritated and distracted). This was expectable as the radio show targeted a
specific type of humor, which is not necessarily perceived as funny by different
participants. During the frustration task (evaluating a hands free navigation
system) the participants expressed mainly words related to negative emotions
(e.g. irritated, frustrated and misunderstood). However, three participants
stated to be amused, which may be seen as a grim sense of humor. The final
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task, conducted to induce anxiety (evaluating an automatic brake assistant),
was perceived as negative and positive. The expressed negative words were
mainly related to an uncertainty of the participant, while the positive words
“interested” and “excited” were elicited by the novelty of the conducted task.

Evaluating the Drivers’ Peripheral Physiological Data

A more objective validation was obtained by evaluating the drivers’ peripheral
physiological data. The heart rate of the driver was determined by counting the
number of R-waves per minute from the ECG signal. The finger temperature was
directly taken from the raw signal obtained by the finger sensor. This sensor also
provided the skin resistance, which was inverted to calculate the skin conductance
level. As the physiological activity is strongly affected by inter-individual variabil-
ity [James 1884], a reference value for each participant and driving scenario needed
to be determined. This reference value was calculated by averaging the raw value
of the considered physiological measure over a certain time span of the 1st round
of each driving scenario (1 minute after start till end of 1st round). This part of
the experiment was selected, as during the first round of driving for each scenario,
the driver was unaffected by any further disturbances except the driving task it-
self. The obtained reference value was then subtracted from the average raw value
obtained while a certain emotion was induced (2nd to 5th round of each driving
scenario). These reference-corrected values of the four driving scenarios averaged
over all participants are stated in Table 3.4.

For the heart rate, it was noticed that all reference-corrected values showed an in-
crease compared to the reference value. By conducting a repeated-measures ANOVA
it was shown that the driving scenario significantly affected the reference-corrected
heart rate values (F(3,84) = 3.52, p < 0.05, ε = 1, no correction needed). Post-hoc
t-tests revealed that the heart rate was significantly higher for the positive scenario
compared to the neutral scenario (p < 0.05, Bonferroni-corrected). For anxiety, a
clear increase of heart rate compared to the neutral scenario was observed. This
difference was, however, not significant. A strongly significant effect of the scenarios
was present for the finger temperature (F(2.6,71.8) = 5.46, p < 0.01, Huynh-Feldt-

Table 3.4: Reference-corrected mean values of the Heart Rate (HR), Finger Temperature
(FT) and Skin Conductance Level (SCL) for the four driving scenarios. Brackets denote
standard deviation (cf. [Requardt et al. 2018]).

Scenario HR [bpm] FT [◦C] SCL [10−4µS]

Neutral 0.70 (2.72) -0.12 (0.79) 5.33 (8.08)
Positive 2.85 (3.12) 0.23 (0.73) 2.87 (7.43)
Frustration 1.59 (3.74) -0.22 (0.75) 3.17 (17.90)
Anxiety 2.24 (3.44) -0.30 (0.73) 0.53 (12.40)
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corrected). Except for the positive scenario all other scenarios showed a decrease in
finger temperature compared to the reference value. A post-hoc t-test revealed that
the increase of finger temperature during the positive scenario was even significant
compared to the decrease of finger temperature occurring during the anxiety scen-
ario (p < 0.05, Bonferroni-corrected). For the skin conductance level, no significant
effect of the driving scenarios was noticed F(1.7,49.5) = 1.12, p = 0.326, Greenhouse-
Geisser-corrected). Nevertheless, the skin conductance level was highest during the
neutral scenario and lowest for the anxiety scenario.

3.2.4 Findings on the Real-World Driving Scenarios

From the results obtained through the drivers’ self-report and peripheral psycholo-
gical data the following was noticed for the four driving scenarios:

For the neutral driving scenario the GEW showed no significant differences
compared to the positive scenario. Regarding the positive affect scale a significant
decrease of intensity was observed for the frustration scenario. A similar observation
was made for the valence and arousal values obtained through the SAM scale, where
no significant differences between the results of the neutral and positive scenario were
identified. Compared to the two negative scenarios the participants experienced a
significantly higher valence and lower arousal. With respect to the physiological data
it was shown that the heart rate was significantly lower compared to the positive
scenario. The low heart rate obtained for the neutral scenario indicates a successful
inducement of the neutral state. The results of the self-report, however, indicate
that there is no significant difference compared to the positive scenario.

Regarding the positive driving scenario, the GEW indicated that the parti-
cipants felt more positive compared to the frustration and anxiety scenario (signi-
ficantly higher positive affect scale). This observation was also made for the valence
scale, where significantly lower values were obtained for the negative driving scen-
arios. For the arousal scale a significant increase was noticed in case of anxious
driving. From the free text input it was revealed that the participants felt amused,
relaxed and entertained. However, also words related to negative emotions were
expressed. As the utilized radio show targets a specific kind of humor, it can be
assumed that perceived emotions differ strongly between the participants. The eval-
uation of the physiological data revealed that the heart rate was significantly higher
compared to the neutral scenario. Furthermore, a significantly higher finger tem-
perature compared to the anxiety scenario was observed. This is in line with the
observations made by [Kreibig 2010], where it is stated that happiness comes along
with an increased heart rate and finger temperature. More recent investigations
hypothesize that skin temperature can be seen as a measure of control over the
situation, associating higher finger temperature with a higher control (cf. [Fontaine
et al. 2007] and [M. Zhang et al. 2018]). Overall, it can be concluded that the in-
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ducement of a positive emotional state seemed to be successful for a majority of the
participants.

For the frustration driving scenario the GEW showed a significant lower in-
tensity in the positive affect scale compared to the positive and neutral scenario. A
similar observation was made for the obtained valence rating. For the arousal no
significant difference compared to the other scenarios was observed. This is in line
with the assumption of frustration being related to a rather negative valence and
an only moderate arousal compared to anger having a moderate negative valence
and a rather high arousal (cf. [Russell & Lemay 2000; Ihme; Unni et al. 2018] and
[Ihme; Dömeland et al. 2018]). This also explains that, regarding the results ob-
tained from the physiological data, no difference compared to the other scenarios
was observed. Furthermore, for the item anger, obtained from the GEW, no sig-
nificant effect regarding the frustration scenario was noticed. This indicated that
the participants did not experience anger, but rather a mild negative emotion. This
assumption is backed up by the results obtained through the free text input, where
the participants stated to have felt irritated, frustrated, upset and misunderstood,
which is closely related to frustration. None of the participants stated to have felt
angry. As already indicated, some participants also mentioned words related to pos-
itive emotions. This, however, may be interpreted as a grim sense of humor. It can
be concluded, that the induction of frustration worked very well for the presented
driving scenario.

The interpretation of the results obtained for the anxiety driving scenario was
more challenging. From the GEW it was shown that the experience of positive
affects was lower compared to the positive scenario. The anger and fear items,
however, showed no significant differences to other scenarios, but comparatively
lower and higher intensity values, respectively. Regarding the SAM scale, the anxiety
scenario obtained significantly lower valence and higher arousal values compared to
the neutral and positive scenario. This is in line with the general classification
ability of anxiety in the valence/ arousal-space as observed in [Fontaine et al. 2007].
Furthermore, the measured physiological parameters showed a significant decrease
in finger temperature compared to the positive scenario. As stated above, the skin
temperature is assumed to be related to the control over the situation, indicating
that for the anxiety scenario a loss of control was experienced by the participants
caused by the unforeseeable reaction of the tested brake assistant system. The
results obtained from the free text input, however, showed that the participants did
not experience pure anxiety but a rather mild form indicated by the words insecure,
puzzled, surprised and uncertain. The word anxious was only mentioned once. It
can be assumed that we did not accomplish to induce strong anxiety, but a milder
state which is more related to uncertainty or insecurity. Therefore, this scenario will
further be referred to as mild anxiety scenario.
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3.3 Summary and Discussion

In this Chapter I presented two data sets, which were recorded in the scope of this
Thesis to evaluate the ability to detect emotions from speech in an in-vehicle setup.
A first data collection was performed inside a fixed-base simulator utilizing well-
known benchmark data samples of the EmoDB and VAM data sets, re-recorded
under silence (simulator turned off, only recording setup and in-vehicle acoustics
influencing the recording) and disturbed (simulator turned on) conditions. This
data collection served to evaluate the influence of in-vehicle noises on speech quality
(cf. Section 4.3) and to analyze the effect of speech enhancement in speech emotion
recognition (cf. Section 5.2). These effects can only be investigated when an in-
formation of the clean speech signal (original EmoDB and VAM) is available. The
re-recorded data samples are further refered to as EmoDB-Car and VAM-Car.

From these simulated data, it is now possible to analyze the effect of in-vehicle
noises on the speech quality, the features used for emotion recognition and other
speech processing artifacts (e.g. speech enhancement), and give first insights on the
feasibility of speech emotion recognition in a driving environment. Nevertheless, the
naturalness of the in-vehicle speech is neglected. Therefore, a second data collection
was realized. Specifically selected emotions, typically occurring in everyday driving
situations (i.e. neutral, positive, frustration and anxiety), were induced without
informing the participants about the actual goal of the data collection. This ensured
that the participants were unbiased towards the experience of the target emotions.
The data was recorded inside a test vehicle driving on real roads comparable to a
quiet residential area. The collected data was validated by utilizing participants’ self-
reports and their peripheral physiological data. It was shown that the inducement
of the positive and frustration scenario seemed to have been successful, regarding
both self-reports and physiology measures. For the anxiety scenario only a milder
state, more related to uncertainty or insecurity was experienced by the participants.
The neutral driving scenario did not show significant differences in the participants’
self-reports compared to the positive scenario. From the physiological data a clear
difference was observed for the heart rate and finger temperature.

Overall it can be stated that the inducement of the four target emotions was
successful. From emotion theory it is known that emotions are communicated by
humans through changes in the facial expression, body movement and vocal expres-
sion. These feedback signals have not yet been considered. Therefore, in the scope
of this Thesis, it further needs to be evaluated to which extend the experienced emo-
tions are also reflected in the drivers speech. This annotation of the speech data will
be presented in Section 5.1 and will be conducted in a much finer division, as emo-
tions from speech are not continuously expressed by the speaker (cf. Section 2.1.4).
The data with the final annotation will then further be utilized in Chapter 6 to eval-
uate the ability of detecting the driver’s emotional state from real-world in-vehicle



104 3.3. Summary and Discussion

data. In the next chapter, I will draw the attention of the reader to speech quality
and its impact on the emotion recognition task.
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Speech Quality Assessment and its
Impact on Speech Emotion
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FOR speech emotion recognition the quality of the speech signal is of great in-
terest, as degraded speech samples will also lead to degraded speech features,

due to an impaired quality of the speech signal. These features are further used
to train the speech emotion recognizer. From literature it is well-known that the
utilized feature set and recording setup can strongly influence the recognition per-
formance (cf. Section 2.2.2). Therefore, it can be assumed that a degradation of the
feature values will also influence the performance of a speech emotion recognizer.
The big question is, how can we measure this signal degradation and does there ex-
ist a correlation between the level of degradation and the recognition performance?
One way to measure the level of degradation of the signal is by utilizing a speech
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quality measure as presented in Section 2.4. To get an insight on the effect of de-
graded speech on speech quality measures and emotional speech, first investigations,
realized in co-operation with colleagues of the Otto-von-Guericke University, were
utilized on compressed speech data. In contrast to noisy speech data, where a data
collection inside the considered noisy environment needs to be conducted to receive
reliable data samples, compressed speech data is easy to obtain by applying com-
mon audio codecs on available emotional speech data sets. In this context, internal
differences occurring during the transmission of the signal (e.g. jitter or package
loss) are not further taken into consideration. To get a better insight on the utilized
audio codecs, a short introduction on audio compression is given in Section 2.5.3
and the most relevant audio codecs are presented in Appendix B. Further, a brief
overview on existing quality measures and a detailed description of the most rel-
evant ones, in the scope of this Thesis, are given in Section 2.4.1. In the present
Chapter, I will introduce an own measure based on the work presented in [Siegert;
Lotz; Duong et al. 2016], which can be used to describe the difference between the
power spectrum of two correlated speech signals (Compression Error Rate (CER))
(cf. Section 4.1.2). Afterwards, this novel measure as well as the MOS - Listen-
ing Quality Objective (MOS-LQO) and an adapted version of the Signal-to-Noise
Ratio (SNR) (cf. Section 4.1.1) will be applied to compressed (cf. Section 4.2)
and noisy speech (cf. Section 4.3), respectively, and it will further be investigated
how the speech quality affects the ability to recognize the speaker’s emotional state.
The results presented in these two Sections are based on [Siegert; Lotz; Maruschke
et al. 2016; Lotz et al. 2017] and [Lotz; Faller et al. 2018]. While for the investiga-
tions performed on compressed speech, a selected number of codecs is applied to the
well-known EmoDB data samples, for the investigation performed on noisy speech,
the re-recorded EmoDB under in-car recording conditions (EmoDB-Car) and re-
recorded VAM under in-car recording conditions (VAM-Car) data sets presented in
Section 3.1 are utilized. This Chapter will be concluded with a statement on how
well the utilized speech quality measures can be used to assess the recognition per-
formance of a speech emotion recognizer. As parts of this Chapter are based on work
already published in [Siegert; Lotz; Duong et al. 2016; Siegert; Lotz; Maruschke et
al. 2016; Lotz et al. 2017] and [Lotz; Faller et al. 2018], several phrasings are taken
literally from these publications.

4.1 New Measures for Speech Quality Assessment

With regards to the commonly used quality measures MOS-LQO and SNR, as
presented in Section 2.4.1, I will first present an adaptation of the well-known SNR
measure, so that it can also be applied to data of varying recording conditions (cf.
Section 4.1.1). As most quality measures have advantages and disadvantages when
applied to compressed or noisy speech, respectively, I will furthermore present the
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self-developed CER, which I introduce to describe the direct difference between the
power spectrum of the original and the compressed/ noisy speech signal (cf. Sec-
tion 4.1.2). This measure can be utilized to get a general overview on how much the
original speech signal was affected by a degradation through compression or noise.
When the signal is compressed it can be assumed that the power of the compressed
speech signal decreases, as signal parts which carry less information for the later
application domain are being discarded. In case of noisy speech, the power of the
noisy speech signal increases compared to the reference signal, as the noise is su-
perimposed to the clean speech signal. Both, increase and decrease of the power
spectrum can have a negative impact on the recognition performance. Furthermore,
I investigate, whether an easy to calculate difference in spectral power can already
give information on a later speech emotion recognition performance. One advantage
of the newly introduced CER is that the signal is first segmented and then analyzed
segment by segment in frequency domain. From literature there already exist several
measures based on a segmentation of the signal in frequency domain. These are for
example the segmented SNR, the spectral distance and the Bark distortion measure
(cf. [Loizou 2011]). For the segmented SNR it can be assumed, that the calculation
will have the same disadvantages as the SNR, as described in Section 4.1.1. The
spectral distance is based on the cepstral coefficients of the clean and disturbed
speech signal. As some of the relevant speech features used for speech emotion re-
cognition are based on the cepstral coefficients (cf. Section 2.2.2), it is assumed that
this difference will only describe the changes in the recognition performance affected
by these features. The Bark distortion measure is closely related to the newly intro-
duced CER, as it determines the mean difference between the loudness spectra of
the clean and disturbed speech signal by utilizing the Bark frequency scale [Loizou
2007]. Other authors tried to use differences in paralinguistic features extracted
from the speech signal itself like LPC coefficients, fundamental frequency, formants
or spectral center of gravity (e.g. [Son 2005]), which are all based on the speech sig-
nal in frequency domain. These measures, however, are also designated features used
in speech emotion recognition, such as the cepstral coefficients described previously.

4.1.1 Adapted SNR

In this Thesis, the SNR will be used to investigate the influence of acoustic condi-
tions and in-vehicle noises on the clean speech signal and the ability to automatic-
ally detect the driver’s emotional state. This will be done by utilizing the original
EmoDB and VAM data sets and their corresponding re-recordings under silence and
disturbed recording conditions (EmoDB-Car and VAM-Car). To do so, the speech
samples of the original data sets will be compared to the corresponding re-recordings.
However, when utilizing the SNR certain limitations need to be considered, which
will be explained in detail now.
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As defined in Equation (2.18) the power of the clean speech signal as well as the
power of the noise signal need to be available under similar recording conditions
to correctly calculate the SNR. This is not always the case, as, depending on the
application domain, not all relevant power values can be determined. Whenever
one of the required signal streams is not measurable using a designated microphone
setup, an estimate of the SNR needs to be determined with regard to the unknown
power value. For this investigation, as there exist only recordings of the clean speech
signal and the noisy speech signal, an estimate of the SNR was utilized based on an
estimate of the power of the noise signal (Pn). This was done by subtracting the
power of the clean speech (Ps) from the power of the noisy speech (Pns), under the
assumption of superposition of multiple sound sources (cf. Section 2.5.1)

Pn = Pns − Ps. (4.1)

Applied to Equation (2.18) this led to

ŜNRdB = 10 · log10(
Ps

Pns − Ps
), (4.2)

as an estimate of the SNR in the logarithmic decibel scale. This assumption is
valid for similar recording conditions of the clean and noisy speech signal. For the
utilized data sets of the EmoDB-Car and VAM-Car data sets this corresponds to
the re-recordings under silent and disturbed recording conditions, but not to the
recordings of the original EmoDB and VAM data samples. In this Chapter I will,
therefore, distinguish between two types of SNRs, which I refer to as real SNR and
relative SNR. The real SNR denotes the estimate of the SNR (ŜNRdB) as presented
in Equation (4.2). The relative SNR denotes an estimate based on a clean speech
signal obtained under “ideal” recording conditions (i.e. original EmoDB and VAM
data samples unaffected by the in-car recording setup), which are not comparable to
the recording conditions of the EmoDB-Car and VAM-Car re-recordings. These SNR
values are only comparable among other SNRs based on this reference clean speech
signal. To determine the relative SNR, the estimate presented in Equation (4.2)
needed to be adapted. This led to two major difficulties, which will now be addressed
and solved if possible:

Issue 1:
For the re-recordings the volume of the original speech samples was adjusted
to match the loudness of a speaker inside a running vehicle (not considering
the Lombard-effect occurring in natural human communication in noisy en-
vironments). Additionally, the acoustic conditions inside the simulator vehicle
suppressed the speech signal replayed by the loudspeaker. This led to a general
reduction of the signal’s power.



Chapter 4. Speech Quality Assessment and its Impact on Speech
Emotion Recognition 109

Mitigation Strategy 1:
This issue could presumably be solved by normalizing the original and re-
corded speech samples to the same loudness. However, a speech signal is a
highly dynamical signal and already small changes in the recording setup lead
to changes in the waveform of the signal and subsequently to differences in
the shaping of the frequencies. Therefore, none of the common normalization
methods, as standardization or range normalization, can be utilized, as they
would distort the characteristics of the speech signal. An alternative normal-
ization method utilized for speech signals is the, so called, peak normalization.
For this normalization approach, the speech signal gets normalized to a de-
sired maximum amplitude of the waveform (dB). It is clear that this is only
feasible if the in-vehicle acoustic and superimposed noise do not manipulate
the waveform of the original speech signal, leading to a shift of the maximum
amplitude. This, however, was especially the case for the re-recordings under
disturbed recording conditions, as the amplitude of the noise signal exceeded
the maximal amplitude of the speech part. This led to a normalization of the
signal to the maximum amplitude of the noise and not the speech content of
the signal. Furthermore, already small differences in the signal waveform ac-
cumulated to large differences in the signal’s power, leading to deficient SNR
values. This lies in the nature of the SNR, as it is calculated based on the
total power of the speech signal. Consequently, it was concluded that Issue 1
was not satisfactorily solved by applying normalization.

Issue 2:
From a theoretical perspective it could be assumed that the SNR of the loud-
ness normalized original speech sample and the recording under silence condi-
tion was considerably high, as only the in-vehicle acoustic and the microphone
setup affected the recorded speech sample. However, as the power of the ori-
ginal speech signal was suppressed during the re-recording, this led to a lower
signal power of the re-recorded speech sample compared to the original sample.
When estimating the noise power by applying Equation (4.1), this led to a neg-
ative denominator in Equation (4.2). As the calculation formula of the SNR
is only valid for positive ratios between speech and noise power, this led to an
incorrect SNR value including imaginary parts.

Mitigation Strategy 2:
To cater for the suppression of the power of the original speech signal dur-
ing the re-recording, the power of the clean speech signal Ps was weighted
using a positive constant α, based on the approach presented in [Botinhao &
Yamagishi 2017]

SNRdB,α = 10 · log10(
α · Ps

Pns − α · Ps
). (4.3)
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Here, α suppressed the clean speech power and was chosen so that

Pns − α · Ps > 0 (4.4)

was true for all speech samples. To maintain the comparability of the different
speech samples, α was calculated based on the speech samples of each utilized
data set under silence recording condition. Then the minimum α value, that
satisfied condition (4.4) was selected as global α and applied for the calcula-
tion of the SNRdB,α under silence and disturbed recording conditions of the
considered data set.

As the power values of the re-recorded speech samples were not normalized
to the loudness of the original speech samples, α equated to a very small value
(αEmoDB-Car = 0.004, αVAM-Car = 0.0539) indicating a strong suppression of the ori-
ginal clean speech power. Therefore, the obtained SNRdB,α values are only com-
parable within the two recording setups and not to other SNR values stated in the
literature. In the further context of this Thesis, this modified SNR value is referred
to as relative SNR.

4.1.2 Compression Error Rate

In [Siegert; Lotz; Duong et al. 2016] Ingo Siegert and I investigated the impact
of audio compression on the spectral quality of speech data. Here, I introduced
a measure to assess the quality of speech by determining the differences occurring
in the spectrum of the uncompressed high quality speech samples compared to the
compressed version of said speech signal. This measure was further referred to as
Compression Error Rate (CER). In the development process of the CER two different
versions were introduced and utilized in [Siegert; Lotz; Duong et al. 2016; Lotz et
al. 2017; Lotz; Faller et al. 2018]. Depending on the use case either a CER based
on the average difference between the Power Spectral Density (PSD) in [dB] of the
compressed and uncompressed speech signal (CERdB) or the percentage difference
between the PSD of the signals (CER%) was applied. For within data set evaluations
the CERdB gives a direct insight on the differences occurring in the signal energy.
With regard to between data set evaluations, the differences in the signal energy
are strongly dependent on the utilized data set. Therefore, the CER% should be
utilized.

Figure 4.1 gives an insight on how audio compression effects the PSD values
of the speech signal. A clear deviation between the clean and compressed speech
signal is observed. For the utilized speech codec (MPEG-1/MPEG-2 Audio Layer-3
(MP3) with 24 kbit/s) it was noticed that especially the higher frequency bins were
strongly affected by the compression. This was in line with the statement made in
[Eppinger & Herter 1993], where it is stated that especially frequency bins up to
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Figure 4.1: Power spectrum of an a) uncompressed and b) compressed speech sample
when utilizing the MP3 encoder and decoder with 24 kbit/s. c) depicts the difference
between the PSD-values of a) and b) in [dB].

4 kHz contribute to a good speech intelligibility, which is the desired goal of most
audio codecs (cf. Section 2.5.3). From the results presented in [Siegert; Lotz; Duong
et al. 2016] it was noticed that this phenomenon occurred for all evaluated audio
codecs except for Speex (SPX). Furthermore, it was noticed that compression led to
both in- and decreases of the PSD values. An increase of the PSD values was mostly
observed in regions of low spectral power where no speech was present. Especially,
audio codecs designed for music compression, as it is the case for MP3, showed this
behavior. This was reasonable, as music does not contain large parts of silence.
With an increase of the bit rate this phenomenon was attenuated.

The two approaches to calculate the CER will now be presented and discussed.
It should further be noted that the development of the CER was, until recently,
an ongoing process. Therefore, the result presented in this Chapter of the Thesis
were solely based on the newest versions of the CER and may differ from the results
presented in [Siegert; Lotz; Duong et al. 2016], [Lotz et al. 2017] and [Lotz; Faller
et al. 2018].
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Actual Change of Power Spectral Density in Compressed Speech (CERdB)

The first version of the CER, as presented in [Siegert; Lotz; Duong et al. 2016],
was based on the averaged absolute difference between the spectral power of the
compressed and uncompressed power spectrum in each speech segment and was
referred to as CERdB.

To calculate the CERdB, first the power spectrum of both signals was calculated.
This was done by applying the Wiener-Khintchine theorem, which defines the PSD
as Discrete-Time Fourier Transform (DTFT) of the auto-correlated speech signal
series (sxx[κ])

SXX(k) =
∞∑

κ=−∞

sXX [κ] exp−i2π
N
κk, (4.5)

where N denotes the sample size of the signal and k the frequency bin index
(k = 0, ..., N − 1). As this definition is only valid for stationary signals and speech
is highly non-stationary, Equation (4.6) was applied to short consecutive signal
segments of 12.5 ms length and an overlap of 5 ms, for which the signal is assumed
to be short-time stationary [Wendemuth 2004]. Depending on the sampling rate
Fs of the speech signal, the number of samples inside each segment was given as
N = Fs ∗ 0.0125s. The PSD was then calculated for each speech segment as

SXX(t, k) =
∞∑

κ=−∞

sXX [t, κ] exp−i2π
N
κk, (4.6)

with t as segment index (t = 0, ..., T − 1, T =̂total number of segments) and the
auto-correlation series sXX [t, κ] determined as

sXX [t, |κ|] = sXX [t,− |κ|] =
1

N

N−1−|κ|∑
n=0

x[t, n]x[t, n+ |κ|], (4.7)

where κ denotes the overlap of the speech segment with itself in terms of sample
number.

Second, the difference between the PSD values of the compressed (sXX,cs[t, |κ|])
and uncompressed/ clean speech (sXX,s[t, |κ|]) was calculated for each speech seg-
ment in the logarithmic decibel scale as

∆SXX(t, k) = 10 · log10(SXX,cs(t, k))− 10 · log10(SXX,s(t, k)). (4.8)

Negative ∆SXX(t, k) values denote a decrease in the spectral power in dB of
the compressed speech segment in frequency bin k compared to the uncompressed
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counterpart and positive values an increase, respectively. To get a general statement
on the spectral power difference of the whole signal and not only on the considered
segment and frequency bin, the Root Mean Square (RMS) of the power spectral
difference for each signal segment was calculated by

RMS∆(t) =

√√√√ 1

N

N−1∑
k=0

∆Sxx(t, k)2. (4.9)

Afterwards, the CERdB was determined by averaging the RMS∆(t) over the total
number of signal segments. This equated to

CERdB =
1

T

T−1∑
t=0

RMS∆(t)

=
1

T

T−1∑
t=0

√√√√ 1

N

N−1∑
k=0

(10 · log10(SXX,cs(t, k))− 10 · log10(SXX,s(t, k)))2.

(4.10)

Negative CERdB indicate an average decrease of the signal power in dB compared
to the original clean speech signal and positive values an average increase. A value
of 0 dB with an standard deviation of 0 dB indicates no changes of the signal
power compared to the original clean speech signal. By utilizing the CERdB on data
originating from one data set it is possible to get a direct insight on the average
changes occurring in the power spectrum of these signals.

Relative Change of Power Spectral Density in Compressed Speech
(CER%)

The CERdB only gives information on the actual change in spectral power and not
on the relative change with regard to the original clean speech sample. Therefore,
an adaption of the CER was realized so that the difference between the two power
spectrums was given as a percentage value. By introducing this adaptation in the
calculation of the CER, it was further possible to also compare samples originating
from different data sets with each other, which was a limitation of the CERdB.
This adapted value was referred to as CER%. The CER% was also based on the
PSD values SXX(t, k) of each segment t and frequency bin k of the compressed and
uncompressed speech signal. In contrast to the CERdB, the CER% was calculated
by determining the percentage difference between SXX,cs(t, k) and SXX,s(t, k). To
do so, the compression rate (CR) between the PSD values of the signals of each
segment and frequency bin was calculated in the logarithmic decibel scale as
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CRdB(t, k) =
10 · log10(SXX,cs(t, k))

10 · log10(SXX,s(t, k))
. (4.11)

Then the average ratio over all frequency bins in one signal segment was de-
termined and averaged over all speech segments, and, afterwards, transformed into
percentage values

CER% = 100− 100 · 1

T ·N
T−1∑
t=0

N−1∑
k=0

CRdB(t, k). (4.12)

In this process, outliers of the CRdB(t, k) values were excluded to overcome a
bias of the average towards these values. In practice, the mean value excluding
the outliers corresponded to the Q0.5-Quantile and is identical to the median of
the CRdB(t, k) distribution [Bleymüller & Weißbach 2015]. As for the the CERdB,
positive CER% values indicate an increase of the signal power and negative values
a decrease. A value of 0% with a standard deviation of 0% indicates no change
compared to the original clean speech signal.

The CER as presented in Equations (4.10) and (4.12) is not limited to the applic-
ation of compressed speech signals and can also be used to evaluate the distortion
of a noisy speech signal compared to its clean speech counterpart. For this case
SXX,cs(t, k) is replaced with SXX,ns(t, k), the PSD of the noisy speech signal. Even
though the corresponding CER values are not anymore related to audio compres-
sion, we will further refer to this measure as the Compression Error Rate. As for
the SNR, it should be noted that, when applied to the re-recordings of the EmoDB-
Car and VAM-Car data set, there exists a general reduction of the signal’s power
compared to the original data samples. For the CER, however, no adaption of the
measures’ equation is necessary, as it is based on the PSD values, which describe
the speech intensity per frequency bin and not the power of the signal over time.

Similarities and Differences to the Bark Distortion Measure

At the beginning of this Section I have mentioned the high similarity between the
Bark Distortion Measure (BSD) (cf. [Loizou 2007]) and the newly developed CER.
Therefore, I will now briefly introduce the BSD and its area of application. As for
the CER the calculation of the BSD is based on the difference between the clean
and the reference speech signal in their signal power:

BSD(k) =

Nb∑
b=1

[Sk(b)− S̄k(b)]2, (4.13)
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with Nb being the number of critical frequency bands b of the bark frequency
scale, and Sk(b) and S̄k(b) corresponding to the loudness spectra of the clean and
enhanced signal, respectively. The bark scale is a psycho acoustic scale which divides
the frequency scale into 24 critical frequency bands of human hearing. By utiliz-
ing this distribution of frequencies the measure takes into account psycho acoustic
information of the human listening process, which is also indicated by its high correl-
ation with the Mean Opinion Score (MOS) (ρ = 0.9) used to determine the listening
quality of audio signals. Despite the fact that the BSD utilizes the enhanced speech
signal as reference signal and the CER the compressed/ noisy speech signal, major
difference lie in the utilized frequency scale and the applied statistics (i.e. mean
square vs. root mean square). As the CER was not intended to describe the listen-
ing quality but rather the speech/ signal quality, and provide a general overview on
the the signal’s information loss, the application of the BSD would not meet these
demands. Furthermore, by utilizing the RMS the physical quantity of the PSD is
maintained.

4.2 Exploring Compressed Speech

In this Section I will investigate the effect of audio compression on speech emotion
recognition based on the results published in [Lotz et al. 2017]. For that, I will first
examine how well human labelers are able to perceive emotions from compressed
speech. Afterwards, comparable automatic speech emotion recognition experiments
are presented. The Section will be concluded by evaluating the correlation between
speech quality and the results of the human labeling and speech emotion recognition,
respectively.

To investigate the effect of audio compression three well-known lossy audio codecs
were utilized (i.e. MP3, SPX and AMR-WB). In Appendix B an overview on the
most relevant codecs and their application domain is given. To get a broad overview
on the effect of audio compression, the codecs were chosen such that they would cover
the three main application purposes: music (MP3), internet telephony/ Voice over
Internet Protocol (VoIP) (SPX) and high quality mobile telephony/ Voice over LTE
(VoLTE) (AMR-WB). Additionally, the lossless audio codec Free Lossless Audio
Codec (FLAC) was utilized. As reference format the standard Waveform Audio File
(WAV) format was used. The audio codecs were applied to the speech samples of
the EmoDB data set by utilizing the encoders and decoders listed in Table 4.1. A
convenient framework for audio and video conversion is provided by the software
FFmpeg1 (Version 2.8.2). It provides encoders and decoders for a broad range of
audio codecs. Some codecs, however, are supported by external libraries. As some
of the utilized audio codecs are open source, these designated reference encoders and
decoders were used instead of FFmpeg. This was the case for FLAC encoding, MP3

1https://www.ffmpeg.org/
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Table 4.1: Overview on the utilized audio codecs and bit rates.

Name WAV FLAC MP3

Compression No Yes Yes
Lossless – Yes No
Bit rate [kbit/s] 265 – 8, 16, 24, 32, 64, 96
Compression level – 0-8 –
Encoder – flac lame
Decoder – ffmpeg lame
File size [%] of WAV 100 78.8 - 76.4 3.34, 6.47, 9.71, 12.94, 26.24, 39.36

Name Speex AMR-WB

Compression Yes Yes
Lossless No No
Bit rate [kbit/s] 6.6, 11.11, 22.06 6.6, 12.65, 23.85
Compression level 1, 3, 6 –
Encoder speexenc ffmpeg (libvo-amrwbenc)
Decoder speexdec ffmpeg
File size [%] of WAV 2.76, 4.34, 8.62 2.83, 5.18, 9.57

and SPX encoding and decoding, where flac2, lame3 as well as speexenc and speexdec
[Valin 2007] were utilized, respectively. For AMR-WB the external encoding library
libvo-amrwbenc of ffmpeg was utilized. Table 4.1 also gives a general overview on
the utilized audio codecs and applied bit rates (for more details on bit rates and
compression please refer to Appendix B). For FLAC it should be noted that the bit
rates correspond to average rates over all compressed speech samples, as this codec
is based on different compression levels with variable bit rates, to dynamically adapt
to the complexity of the audio signal. Furthermore, the file size of the compressed
speech signal is stated as average value over all speech samples of the EmoDB data
set. Previous investigations, presented in [Siegert; Lotz; Duong et al. 2016], showed
that with increasing bit rates for the MP3 codec, a saturation of the compression
was reached and no further changes in the file size occured. This was also confirmed
by applying the CER, which saturated from MP3 and 96 kbit/s upwards with a
CERdB of 2.76 dB.

4.2.1 Human Speech Emotion Perception

There only exists few research work on the ability of a human to perceive the emo-
tional content of compressed speech (cf. [Labelle et al. 2016] and [Lahaie et al.
2017]). These studies, however, emphasize on bandwidth limitations and compres-
sion using the AMR-WB codec. To get a broader insight on the effect of audio
compression on human emotion perception from speech, further listening experi-

2https://xiph.org/flac/index.html
3https://lame.sourceforge.io/index.php
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ments were conducted on the original and compressed version of a sub set of the
EmoDB data samples.

Listening Experiment

For the listening experiment seven native German speaking labelers (five females)
were employed. None of the labelers had participated in this kind of listening ex-
periment before. Before conducting the actual labeling task, each labeler underwent
a training phase in which they had to listen to one original uncompressed sentence
of the EmoDB data set spoken by one speaker in all seven emotion categories. This
ensured that all labelers were able to distinguish between the different emotions
uttered by the actors. The training samples were excluded from the samples set
used for the listening experiment. During the experiment, the labelers listened to a
subset of the EmoDB data samples under 12 encoding conditions (cf. Table 4.1)
and the original WAV format. The FLAC format was excluded from the experi-
ment, as no information loss was present and, therefore, no difference in the speech
signal was audible compared to the original WAV format. The task of the listening
experiment was to assign one out of seven emotion categories (i.e. anger, boredom,
disgust, fear, joy, neutral and sadness) to the heard speech sample. This was done
by utilizing the software tool ikannotate (cf. [Böck et al. 2011]). As listening ex-
periments are highly time consuming and fatiguing, only a number of 26 different
speech samples of the EmoDB data set was utilized. This subset comprised four
different sentences spoken each by one speaker (two female and two male speakers)
in all seven emotion categories, if possible. This resulted in four speech samples
for each emotion category except for joy and sadness. For these categories only
three speech samples were utilized. To sum up, each labeler listened to 338 speech
samples (26 samples ·(12 codecs+1 reference) = 338). After each 26 speech samples
the labeling was interrupted by a music file of 3 minutes length, this was done to
reduce the probability of a labeler to memorize the speakers voice in combination
with a certain emotion category. The samples were presented in pseudo-random
order (i.e. no consecutive samples of the same speaker or emotion category) to over-
come memorizing effects, but kept in this fixed order for each labeler to guarantee
comparability of the experiment’s results. On average the listening experiment took
100 minutes per labeler.

Experimental Results

To get an overall insight on the results of the listening experiment, the Unweighted
Average Recall (UAR) over all emotions and labelers for each considered audio codec
was determined (UARh). The results are presented in Figure 4.2. It can be seen that
for all considered codecs and bit rates a UAR of over 86% was achieved. A repeated-
measure Analysis of Variance (ANOVA) (cf. Section C.1) revealed that there exists
no significant difference between the results of the listening experiment on com-
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Figure 4.2: Mean and standard deviation of the UAR of the listening experiment (cf.
[Lotz et al. 2017]).

pressed and uncompressed emotional speech (main effect codec: F(3.0,17.9) = 1.16,
p > 0.05, Greenhouse-Geisser corrected). The lowest UAR was obtained for SPX
with 6.6 kbit/s and the highest for the uncompressed WAV format. Furthermore,
with increasing bit rate also an increase of the UAR was noticed for all evaluated
audio codecs, except for MP3 with 96 kbit/s. For this audio codec configuration
the UAR decreased. It was further noticed that not even for the uncompressed
WAV samples an agreement of nearly 100% was achieved. This was reasonable, as
the ground truth of the EmoDB data set relies on the emotional state given to the
actors during the data collection and shows an emotion recognizability of over 80 %
and naturalness of over 60% (cf. Section 2.1.5). This was in line with the emotion
wise results presented in Table 4.2 where for each considered emotional state an
UAR above 80 % was achieved during the listening experiment.

To evaluate how good the listeners were able to perceive the separate emotions,
the UAR for each emotion averaged over all labelers (UARh,emotion) was determined.
The results obtained for each considered audio codec are stated in Table 4.2. Red
and green entries indicate values outside of the standard deviation (above-green,
below-red) and bold entries the highest UAR for each considered emotion. Overall,
all emotions were perceived by the listeners with an UAR of at least 75%. Only for
three cases an average recall of over 80% was not reached. This was the case for the

Table 4.2: UARh,emotion for each considered codec configuration. Recognition results
outside of the standard deviation of each emotion are highlighted in red (below) and
green (above). The best results are denoted in bold font.

codec WAV MP3 MP3 MP3 MP3 MP3 MP3 SPX SPX SPX AMR AMR AMR
bit-rate 256 8 16 24 32 64 96 6.6 11.11 22.09 6.6 12.65 23.85

anger 100 100 100 100 96.43 100 96.43 100 100 96.43 96.43 96.43 96.43
boredom 92.86 85.71 85.71 96.43 92.86 92.86 92.86 82.14 96.43 89.29 78.57 85.71 85.71
disgust 96.43 82.14 85.71 85.71 82.14 92.86 82.14 82.14 89.29 85.71 82.14 89.29 89.29
fear 85.71 82.14 85.71 82.14 85.71 92.86 85.71 75.00 89.29 89.29 82.14 82.14 82.14
joy 95.24 90.48 95.24 95.24 95.24 90.48 95.24 90.48 90.48 95.24 90.48 90.48 95.24
neutral 100 96.43 96.43 85.71 96.43 89.29 96.43 100 96.43 92.86 96.43 96.43 92.86
sadness 90.48 85.71 85.71 95.24 95.24 95.24 95.24 76.19 85.71 100 100 95.24 90.48
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emotions boredom, fear and sadness for the lowest bit rates of the codecs SPX and
AMR-WB. These two audio codecs also showed the lowest UARh. Especially for
SPX with 6.6 kbit/s, low UARs were achieved for a majority of the emotions. As
each emotion was only represented with four or three samples in each audio codec
and bit rate, already a small amount of misclassified samples led to a strong decrease
of UARh,emotion. To increase the validity of the results a more representative sample
set needs to be considered. This, however, is only possible by increasing the number
of speech samples in the listening experiment. As an increase of samples will lead to
an increased duration of the listening experiment and therefore can lead to fatigue
of the listeners, the listening experiment would need to undergo other limitations,
for example, by considering certain emotional states only or by conducting several
sessions of the experiment with the same subjects. This approach would on the
one hand lead to a better validity of the experiment, but on the other hand also to
much higher costs. This was not possible in the scope of this Thesis. The emotion
wise results presented in Table 4.2 can, therefore, be seen as a first attempt towards
investigating the ability of humans to recognize emotions from compressed speech.

4.2.2 Automatic Speech Emotion Recognition

Comparable state of the art speech emotion recognition experiments as presented
in Section 4.2.1 were carried out to investigate to which extent audio compres-
sion influences the recognition performance and consequently the features used to
automatically recognize the emotional state of a speaker. To accomplish speaker
independency, the Leave-One-Subject-Out (LOSO) validation scheme was applied,
resulting in 10 independent classification experiments (i.e. one per subject/ speaker)
per considered audio codec configuration. Furthermore, the training and test sets
were obtained by utilizing the same codec configuration (within codec classification
experiments). As classifier a Support Vector Machine (SVM) with linear kernel
(C = 1)) was applied using the software tool WEKA [Hall et al. 2009]. As feature
set all features of the emobase set were utilized (cf. Section 2.2.2).

Similar to the results presented in Figure 4.2 and Table 4.2, Figure 4.3 and
Table 4.3 present the corresponding results of the speech emotion recognizer. As
for the listening experiment the UARs were calculated by averaging the recall over
all carried out classification experiments for each codec (UARa). These results are
stated in Figure 4.3. A repeated-measures ANOVA revealed that there exists a signi-
ficant difference in the results obtained for the different codec configurations (main
effect codec: F(3.5,31.7) = 3.87, p < 0.05, Greenhouse-Geisser corrected). Sub-
sequently carried out post-hoc t-tests showed that significant differences occurred in
the recognition performance between MP3 with 8 kbit/s and MP3 with 32, 64 and
96 kbit/s (all p’s < 0.05, Bonferroni-corrected). Similar observations were made for
MP3 with 16 kbit/s and MP3 with 32 kbit/s (p < 0.05, Bonferroni-corrected). For
MP3 and AMR-WB an almost continuous increase of the UAR with an increase of
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Figure 4.3: Mean and standard deviation of the UAR of the speech emotion recognition
experiments. Stars denote level of significance (α = 0.05) (cf. [Lotz et al. 2017]).

bit rate was noticed. This was not the case for SPX, where clearly the best recogni-
tion performance was present for a bit rate of 6.6 kbit/s. This codec configuration
not only showed a comparatively high UAR but also the highest file size compression
(2.76% of the original WAV). The worse results were obtained for MP3 with 8 and
16 kbit/s and the best for MP3 with 32 kbit/s.

Table 4.3 shows the results obtained for the individual emotions and codec con-
figurations (UARa,emotion). Red and green entries indicate values outside of the
standard deviation (above-green, below-red). The best results for each emotion are
highlighted bold. A clear differentiation between good and bad performing codecs
is visible. Especially for MP3 with low bit rates only low UARs were achieved. The
codec configuration with 16 kbit/s even showed below average recognition results
for six out of seven emotions. The best results were obtained when utilizing MP3
with higher bit rates (above 24 kbit/s). Above average results were obtained for
three out of seven emotions for MP3 with 32 and 96 kbit/s. These results were
not only above average but the best for four out of the seven evaluated emotion
categories. The best results for fear and sadness were achieved by applying MP3
with 64 kbit/s. Only for the neutral state, the best result was obtained when util-
izing SPX with a bit rate of 11.11 kbit/s. However, the results achieved for the

Table 4.3: UARa,emotion for each considered codec configuration. Recognition results
outside of the standard deviation of each emotion are highlighted in red (below) and
green (above). The best results are denoted in bold font.

codec WAV MP3 MP3 MP3 MP3 MP3 MP3 SPX SPX SPX AMR AMR AMR
bit-rate 256 8 16 24 32 64 96 6.6 11.11 22.09 6.6 12.65 23.85

anger 92.00 92.03 85.88 87.38 91.29 88.86 92.77 87.61 90.15 85.49 90.81 90.72 90.46
boredom 86.85 88.92 82.74 82.85 90.81 88.56 87.10 86.78 85.20 88.88 87.13 85.42 84.06
disgust 53.57 42.52 33.09 50.47 50.71 49.71 53.57 52.14 38.71 39.71 39.71 42.57 41.14
fear 80.92 57.49 80.33 80.58 84.58 87.09 86.53 84.63 73.60 83.18 84.87 86.52 85.74
joy 65.65 50.48 56.00 65.76 70.21 65.44 69.94 67.13 66.81 64.02 62.24 68.50 59.89
neutral 82.71 78.96 78.16 79.44 88.59 84.60 80.28 81.03 88.77 84.14 79.53 78.01 81.37
sadness 79.05 80.90 73.30 82.66 81.51 87.66 85.16 85.52 76.79 81.51 71.59 81.03 83.53
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neutral state and MP3 with 32 kbit/s were only slightly below this value. It was
further noticed that SPX with 6.6 kbit/s showed above average results for sadness
and disgust. The results for all other states lay within the standard deviation. This
was in line with the results presented in Figure 4.3, where this codec configuration
achieved the 4th highest UARa. The AMR-WB codec showed no major benefit when
applied for speech emotion recognition. For this codec a majority of the emotions
and codec configurations showed an average recognition result. Surprisingly, almost
none of the best results were achieved when utilizing the uncompressed WAV speech
samples. For WAV only one emotion was detected with the highest recall, namely
disgust. This emotion, however, showed the same recall for MP3 with 96 kbit/s. In
contrast to the results of the human labeling, presented in the previous section, it
was further possible to identify either increasing or decreasing influences (outside of
the standard deviation) of the applied codec configurations on the UARa.

These results were explicable by the different application purposes and compres-
sion technologies of the codecs. The MP3 codec is specially designed for music
compression and is based on perceptual coding. As one research field of music psy-
chology focuses only on the relation between music and emotions [Juslin & Sloboda
2001], it can be assumed that the transmission of emotions for music is of high im-
portance. From this assumption it could further be reasoned that not all information
contained in the uncompressed WAV speech signal is necessary to automatically re-
cognized the emotional state. Especially in the here presented approach, where only
the prosodic information and no spoken content of the speech is evaluated. First
investigations on this assumption were presented by Siegert and myself in [Siegert
et al. 2018]. By applying the OPUS codec (cf. Appendix B), the successor of SPX, a
hybrid coding based on both Analysis-by-Synthesis (AbS) and perceptual coding, to
three benchmark speech emotion data sets, it was possible to achieve a remarkable
performance increase of 1.66% to 4.47%. These results confirm that the differences
in the speech signal caused by audio compression do not per se have a negative im-
pact on the emotion recognition performance. To further evaluate this hypothesis,
the results of the human labeling and the automatic speech emotion recognition, will
now be compared to the speech/ audio quality to identify if there exist a correlation
between these measures.

4.2.3 Correlation of Speech Quality and Speech Emotion Per-
ception/ Recognition

To evaluate the correlation between speech quality and the ability of a human to
perceive a certain emotion and automatic speech emotion recognition, respectively,
two quality measures (MOS-LQO and CER, as presented in Section 2.4.1 and 4.1.2,
respectively) were utilized. It is hypothesized that, related to the nature of the MOS
and CER, representing subjective and objective speech quality measure, respectively,
the subjective measure achieves a higher correlation with the results of the human
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Table 4.4: UARa,UARh and mean quality assessment measures (CER & MOS) over all
evaluated subjects/ labelers. Brackets denote standard deviation.

codec WAV FLAC MP3 MP3 MP3 MP3 MP3
bit-rate 256 – 8 16 24 32 64

UARh [%] 94.39 (5.53) – 88.95 (7.17) 90.65 (5.34) 91.50 (9.05) 92.01 (5.74) 93.37 (6.80)
UARa [%] 77.25 (8.56) 77.25 (8.58) 70.19 (8.19) 69.93 (7.61) 75.59 (5.39) 79.67 (7.69) 78.85 (8.57)
CERdB [dB] 0 (0) 0 (0) 11.91 (2.53) 8.85 (1.84) 7.32 (1.53) 4.78 (0.97) 3.25 (0.69)
CER% [%] 0 (0) 0 (0) -14.34 (3.23) -8.09 (1.86) -4.51 (1.24) -1.57 (0.36) -1.58 (0.30)
MOS-LQO 4.59 (0.18) 4.59 (0.18) 1.68 (0.18) 2.82 (0.30) 3.51 (0.29) 4.04 (0.27) 4.55 (0.17)

codec MP3 SPX SPX SPX AMR AMR AMR
bit-rate 96 6.6 11.11 22.09 6.6 12.65 23.85

UARh [%] 92.01 (5.74) 86.56 (8.77) 92.52 (5.90) 92.69 (6.09) 89.46 (6.71) 90.82 (7.00) 90.31 (7.54)
UARa [%] 79.34 (7.76) 77.83 (6.26) 74.29 (6.92) 75.25 (8.96) 73.70 (8.05) 76.11 (7.83) 75.17 (7.78)
CERdB [dB] 2.76 (0.62) 6.03 (1.00) 5.49 (0.64) 4.72 (1.16) 6.11 (1.04) 5.23 (0.88) 4.86 (0.82)
CER% [%] -1.69 (0.32) -4.67 (1.38) -2.53 (0.46) -2.52 (0.44) -5.06 (0.92) -3.31 (0.93) -2.08 (0.68)
MOS-LQO 4.61 (0.17) 2.07 (0.39) 2.96 (0.49) 3.91 (0.57) 2.71 (0.57) 3.51 (0.67) 3.79 (0.63)

listening test and the objective measure with the automatic emotion recognition
results. Table 4.4 provides all relevant quality measures and recognition results
of the listening experiment and the automatic speech emotion recognition task for
all considered codec configurations. The CERdB and CER% were calculated as
described in the previous Section, by applying Equations (4.10) and (4.12).

To determine the correlation between the different measures, Spearman’s rank
correlation coefficient (Rs) was calculated (cf. [Spearman 1904]). This coefficient
can be utilized to determine the correlation between two ordinal and/ or metric
scaled measures. Negative values indicate an inverse dependency, values from 0 to
0.2 a none to poor, 0.2 to 0.5 a weak to moderate, 0.5 to 0.8 a clear, and values above
0.8 a high to perfect correlation. To apply Rs, the ranks of the measures are needed,
this was done by conducting a top-down ranking, ranking the best value with the
highest rank “1”. Depending on the evaluated measure, the best value corresponds
to the highest or the lowest value (e.g. best value: UARh = 94.39,CER% = 0).

First, a comparison of the quality measures presented in Table 4.4 was real-
ized. This resulted in a high correlation of Rs(MOS-LQO/CERdB) = 0.9133,
Rs(MOS-LQO/CER%) = 0.9161 and Rs(CERdB/CER%) = 0.9286. Afterwards, the cor-
relation of the results obtained from the listening experiment and the automatic
speech emotion recognition task was determined (Rs(UARh/UARa) = 0.4154), which
corresponds to a moderate correlation. From these results it was concluded that
there exist only small differences in the quality assessment but rather big differ-
ences in the performance assessment, respectively. It could be assumed that the
differences in the performance assessment are related to different quality aspects,
e.g. listening quality and spectral quality. From speech emotion recognition it is
known that especially the spectral information of the speech signal has a high impact
on the performance of a recognizer (cf. Section 2.2.2). Therefore, it was assumed
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Table 4.5: Spearman’s rank correlation coefficient determined to calculate the correlation
between the performance measures (UARh and UARa) and quality measures (MOS-
LQO, CERdB and CER%).

Rs(x/y)
x

UARh UARa

y
MOS-LQO 0.7989 0.6850
CERdB 0.7510 0.7088
CER% 0.7758 0.7363

that the CER is more relevant when it comes to speech emotion recognition as it is
based on the spectral difference of the signals. To verify this assumption the correla-
tions between the quality measures and the performance measures were determined,
resulting in the Rs values presented in Table 4.5. These values indicated a clear cor-
relation between the quality measures and the performance measures. Furthermore,
the MOS-LQO showed a higher correlation with the results of the human listen-
ing experiment versus both CER measures and vice versa for the automatic speech
emotion recognition results. This confirmed the previously made assumption, but it
should also be noted that the differences between the Rs values were comparatively
low, which was expectable because of the high correlation obtained in between the
different quality measures.

Comparing the performance results of the human labeling with the automatic emo-
tion recognition, it was noticed that the human labeling achieved an overall higher
recall than the automatic emotion recognition. This was expectable, as the human
auditory system is able to distinguish emotions in a much higher resolution and
the listener has gained experience on how certain emotions are transmitted between
humans, while the automatic emotion recognition is solely based on the data it was
trained on. Especially for SPX with a bit rate of 6.6 kbit/s, a distinct difference
in the performance of human and automatic emotion recognition was noticed. For
this codec configuration the results of the human labeling showed the lowest UARh

with the highest standard deviation. Surprisingly, in case of the automatic emotion
recognition, this configuration showed a higher UARa than the one obtained for the
uncompressed WAV codec with one of the lowest standard deviations. This reverse
behavior was also noticed when comparing the results obtained for each emotion over
all codecs of the two recognition tasks with each other (e.g. row anger in Table 4.2
vs. Table 4.3). By determining the correlation coefficient for each considered emo-
tion, an average Rs(emotion) value of -0.05 (0.10) was reached. The lowest value was
obtained for anger (Rs(anger) = −0.25), indicating an anti-correlation. For all other
emotions no correlation was shown. Furthermore, it was determined if there existed
a correlation between the ability to perceive/ recognize a certain emotion within a
codec (e.g. column MP3-8 in Table 4.2 vs. Table 4.3). Depending on the considered
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audio codec, the Rs value showed a different behavior: Rs(WAV) = 0.25, Rs(MP3) =

0.52 (0.16), Rs(SPX) = 0.30 (0.36) and Rs(AMR-WB) = -0.03 (0.03). It was noticed that
especially for AMR-WB no correlation between the results of the human labeling
and the automatic recognition was present. For MP3 a clear correlation of above
0.56 was reached for 8, 24, 32 and 64 kbit.

"
For 16 and 96 kbit/s only a moderate

correlation was achieved. This, on average, clear correlation of MP3 was explicable
by the codec’s compression algorithm, as mentioned earlier in this Section. For SPX
the widest range of the Rs values was observed, ranging from 0.05 with 6.6 kbit/s to
0.71 with 11.11 kbit/s. This is in line with the previously observed reverse behavior
for SPX with 6.6 kbit/s.

4.2.4 Findings and Recommendations on Compressed Speech

In this Section it was shown that the application of the audio compression led to sig-
nificant differences in the results obtained by applying a speech emotion recognizer.
For human speech emotion perception, the best UAR was achieved when utilizing
the uncompressed WAV speech samples. For the speech emotion recognizer, this was
not the case. Here, the best result was obtained when utilizing MP3 with higher bit
rates (over 24 kbit/s). In case of a high file size compression, the SPX codec with
6.6 kbit/s is recommended. The results obtained for this codec configuration showed
comparable high recognition results while achieving the highest file size reduction
(2.76 % of the original WAV format). Surprisingly, the human ability to correctly
identify the emotional state for this configuration was the lowest, compared to all
the other codec configurations. From an emotion wise comparison of the audio co-
decs it was shown that there exists a clear correlation between the recall of human
emotion perception and automatic emotion recognition for the MP3 codec config-
urations. This lies in the nature of the MP3 codec, which is specially designed for
music compression. It is based on perceptual coding which is closely related to the
human auditory system. From music psychology it is well-known that there exists a
relation between music and emotions. Therefore, music compression not only keeps
the audio quality high, but also maintains a good emotion perception. It was further
investigated, if there exists a correlation between speech quality and speech emotion
perception/ recognition. It was shown that there exists a high correlation between
the speech quality measure MOS-LQO and the newly introduced CER measures.
Furthermore, it was shown that there exists only a moderate correlation between
the results of the human labeling and the speech emotion recognizer. From a theoret-
ical perspective it was assessed, that the MOS-LQO would show a higher correlation
with the ability of humans to perceive a certain emotion and the CER with the per-
formance of a speech emotion recognizer. Because of the high correlation between
the quality measures it was expected that the differences between these correlation
coefficients would be comparatively low. This was confirmed by the results stated
in Table 4.5, where a clear correlation for all measures was obtained.
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It can be concluded that there exists a clear correlation between speech quality and
speech emotion perception/ recognition. However, there exist exceptions for which
this is not the case. For human emotion perception a clear deviation between the
listening quality (MOS-LQO) and the human recall of emotions (UARh) was shown
for MP3 with 96 kbit/s, SPX with 11.11 kbit/s and AMR-WB with 23.85 kbit/s.
Even though the MOS-LQO indicated a good listening experience for the MP3 and
AMR-WB configurations, the UARh only reached comparatively low values and
vice versa for the SPX configuration. For the performance of the speech emotion
recognizer a clear deviation between the speech signal quality (CER [%]) and the
recall of the automatic emotion recognition system (UARa) was noticed for SPX
with 6.6 kbit/s. This codec configuration showed a low signal quality but achieved
a comparatively high recognition performance.

Nevertheless, it needs to be stated that the results presented in this Section are
only based on the EmoDB data set, which contains highly expressive acted emo-
tions. Especially for in the wild emotion recognition, where these kind of emotions
occur less frequent and with low expressiveness, an application of audio compres-
sion may influence the recognition performance in a different manner. To get a more
general insight on the effect of audio compression on speech emotion perception and
recognition, the experiments need to be repeated on more natural speech emotion
data sets. First investigations by Siegert and myself already showed, when utilizing
MP3, AMR-WB and the successor of SPX, OPUS on the Danish Emotional Speech
Database, that the recognition performances have similar tendencies as reported in
this Chapter for the EmoDB data set [Siegert et al. 2017]. In [Siegert et al. 2018]
we could even show that it is possible to improve the recognition performance by
utilizing the OPUS codec in Constrained Energy Lapped Transform (CELT) mode
(only based on perceptual coding). Furthermore, it would be interesting to evaluate
the effect of audio compression on the feature space. This could be done by utiliz-
ing Wilcoxon signed-rank test (cf. Section C.2), similar to the approach presented
in Section 5.2.2. This test can be used to determine if there exists a significant
difference between a feature in the compressed and uncompressed state. It is not
recommended to use the Pearson correlation coefficient, as it only identifies if there
exists a linear relation between the feature values. This, however, is also the case
when a feature shows a consistent increase/ decrease, which could still represent a
significant alternation in the feature values. An evaluation of these differences was
not done in the scope of this Thesis, but can be seen as potential future work.

4.3 Exploring Noisy Speech

In the previous Section I could show that there exists a clear correlation between
the speech quality and the results of an automatic speech emotion recognizer. As
not only compression leads to a degradation of the speech signal but also other
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disturbances like environmental noises, it was assumed that the evaluation approach
presented for compressed speech can be adapted to be used for the analysis of
disturbed speech, with a special focus on in-vehicle noises. This was done by utilizing
two quality measures, the SNR and the CER. In the previous Section it was already
shown that for emotion recognition the highest correlation between speech emotion
recognition performance and speech quality was achieved by applying the CER [%].
Therefore, the CER [dB] and MOS-LQO were not considered for the investigations
presented now. Furthermore, from literature it is known that there exists a high
correlation between the SNR and MOS (cf. Section 2.4.2). Therefore, it can be
assumed, that both quality measures can be used equally. As noisy speech data the
EmoDB-Car and VAM-Car data samples, as presented in Section 3.1, were employed.
By utilizing re-recordings of well-known emotional speech data sets, a reference clean
version of the signals was available. Furthermore, the utilized data sets comprise
different emotion naturalness and recording qualities. These are acted emotions
recorded in an anechoic chamber (EmoDB) and scripted emotions recorded in a
television studio setting (VAM), respectively. This made it possible to also evaluate
the influence of the original recording quality on the speech quality and the emotion
recognition performance of the re-recordings.

4.3.1 Quality Assessment of Emotional In-Car Speech Data

To evaluate the speech quality the SNR and the CER [%] measures, as introduced
in Equation (4.3) and (4.12), were calculated. The original speech samples of the
data sets were used as reference clean speech samples of the re-recorded noisy speech
samples. For the re-recording two shotgun microphones were integrated into a driv-
ing simulator, mounted onto a strut profile at the left and right A-pillar of the
chassis (cf. Figure 3.1 on page 86). Therefore, there also exist two recordings per
recording condition. This resulted in eight experiments, which were carried out to
evaluate the speech quality of in-car emotional speech data (cf. Table 4.6). As the
clean speech samples were recorded under different recording conditions than the
re-recordings (i.e. different room acoustics and microphone setups), the resulting
SNR is not comparable to other SNRs presented in the literature and will be referred
to as relative SNR (cf. Section 4.1.1). For the different recording conditions it was
assumed that the recordings obtained under silence condition were only influenced
by the in-vehicle acoustics and the recording setup, while for the recordings under
disturbed condition an additional environmental noise was present. For the CER
this would result in a negative CERdB under silence condition, which would later
increase under disturbed condition. A negative CER is possible for both, silence and
disturbed conditions, as the reduction of the spectral power caused by the in-vehicle
acoustics and recording setup may overrun the increases caused by the in-vehicle
noises. Furthermore, it was assumed that the recordings of the left microphone,
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Table 4.6: Carried out experiments to evaluate the quality of the noisy speech data of the
EmoDB-Car and VAM-Car data sets under silence and disturbed recording conditions.

Experiment Recording Condition Microphone

EmoDB-Car

(1) silence left
(2) right
(3) disturbed left
(4) right

VAM-Car

(5) silence left
(6) right
(7) disturbed left
(8) right

which was located closer to the loudspeaker, would receive better speech quality
compared to the recordings of the right microphone.

An overview on the results obtained for the quality assessment is presented in
Table 4.7. The mean and standard deviation of the relative SNR and the CER% are
stated for each experiment. A detailed distribution of the quality measures is given
in Figure 4.4 and 4.5 for both data sets, recording conditions and microphone setups.
A repeated-measures ANOVA conducted for all data sets revealed that there exists
a highly significant difference for both quality measures regarding the recording
condition and microphone setup (all p’s < 0.001, Greenhouse-Geisser-corrected). By
conducting post-hoc t-tests it was shown, that the differences between the recording
conditions and microphone setups were always highly significantly different (all p’s <
0.001, Bonferroni-corrected). Furthermore, it was noticed that the obtained quality
measures of the right microphone setup showed a higher standard deviation than the
left microphone setup. This was expectable, as the right microphone was located
further away from the loudspeaker.

In Figure 4.4 it can be seen that for the relative SNR the left microphone always
achieved lower values than the right microphone, contrarily to the assumption made

Table 4.7: Mean and standard deviation of the quality measures SNR and CER [%] for the
eight carried out experiments averaged over all samples included in the corresponding
data set.

EmoDB-Car
Experiment (1) (2) (3) (4)

relative SNR -11.01 (1.20) -2.49 (2.71) -14.11 (1.75) -8.02 (2.37)
CER% [%] -17.63 (1.54) -25.75 (2.28) -13.93 (2.44) -21.15 (3.35)

VAM-Car
Experiment (5) (6) (7) (8)

relative SNR -9.76 (0.76) 0.58 (1.93) -12.02 (1.88) -4.79 (3.05)
CER% [%] -6.84 (0.84) -15.07 (1.48) -4.62 (1.76) -12.19 (2.70)
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Figure 4.4: Histograms and fitted normal distributions of the relative SNR distribution
of the EmoDB-Car and VAM-Car data samples under silence and disturbed recording
conditions obtained for the left and right microphone location.

previously. As the left microphone was located closer to the loudspeaker, the signal
was recorded with a higher loudness resulting in a higher power of the noisy speech
signal Pns compared to the recording of the right microphone. With regard to
Equation (4.3) and applying one constant α for the left and right microphone setup,
this resulted in a higher denominator for the left microphone. As the results were
based on the same clean reference recording, an adaption of the α values for both
microphones was not recommended. This would abolish the relation between the
two recordings. It was further noticed, that the results obtained under disturbed
recording conditions showed lower relative SNR values than the ones obtained under
silence recording conditions. This was in line with the assumption that the disturbed
recordings contain more noise than the silent recordings.
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Figure 4.5: Histograms and fitted normal distributions of the CER% distribution of
the EmoDB-Car and VAM-Car data samples under silence and disturbed recording
conditions obtained for the left and right microphone location.
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The results of the CER can be taken from Figure 4.5 on page 128. Here, a con-
trary behavior compared to the results obtained for the relative SNR was observed.
In case of the microphone setup, the left microphone always showed a higher CER
than the right microphone. Considering the recording condition, the CER under dis-
turbed condition always achieved higher values than under silence condition. The
second observation, however, lies in the nature of the CER, as it describes the per-
centage difference of the spectral power. Whenever noise is added to a signal, the
spectral power will increase, while for the recording under silence condition, the re-
cording setup and in-vehicle acoustics suppress the spectral power. As the disturbed
condition contains both, suppression by in-vehicle acoustics and additive noise, an
increase compared to the results obtained under silence condition is possible. It was
further noticed that for both quality measures, the results obtained for the VAM-Car
data samples were higher than the results of the EmoDB-Car samples. This was
explicable by the differences in the original recording quality of the two utilized data
sets. The EmoDB samples were recorded in an anechoic chamber with no ambient
noise being present, while the VAM samples were recorded in a television studio
with audience and other interference factors. This made the EmoDB samples more
prone to the in-vehicle acoustics and the environmental background noises of the
simulator.

Because of the mentioned restrictions and difficulties occurring when applying the
relative SNR (cf. Sections 4.1.1 and previously in this Section), it was assumed that
this measure is rather unsuitable when it comes to the assessment of speech quality
under non-ideal recording conditions. Nevertheless, a robust SNR, comparable to
results presented in literature, could be obtained when the reference signal is recor-
ded using a similar recording setup as the noisy counterpart. This was the case for
the re-recordings under silence and disturbed recording conditions. Assuming that
the re-recording correspond to the reference and noisy speech signal, respectively,
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Figure 4.6: Histograms and fitted normal distributions of the SNR distribution of the
EmoDB-Car and VAM-Car data samples.
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the real SNR was calculated by applying Equation (4.2). This resulted in an average
SNR of 0.95 (3.77) and -1.25 (4.16) for the left and right microphone of the EmoDB-
Car samples and 1.68 (3.18) and -0.61 (3.60) for the VAM-Car samples, respectively.
The detailed distribution of the SNR values for the left and right microphone of both
data sets can be taken from Figure 4.6. As assumed, the left microphone setup out-
performs the right microphone setup. Contrarily to the relative SNR and the CER,
however, it is not possible anymore to give a statement on the speech quality com-
pared to the original EmoDB and VAM data samples, as the original samples were
not considered in the calculation of the real SNR.

4.3.2 Speech Emotion Recognition in In-Car Environments

Similarly to the experiments carried out to evaluate the speech quality, classifica-
tion experiments were carried out to evaluate the performance of a speech emotion
recognizer on noisy speech data. The classification experiments were realized by
utilizing a SVM with a linear kernel (C = 1) using the software tool WEKA [Hall
et al. 2009]. As feature set the emobase set was used. The classifiers were trained
and tested by applying the LOSO validation scheme and the results were averaged
over all speakers of the corresponding data set. Training and testing of the clas-
sifiers were performed on samples originating from the same recording setup only.
Furthermore, additional baseline experiments were realized by applying the original
samples of the EmoDB and VAM data sets.

The mean and standard deviations of the UAR for all performed classification
experiments are stated in Figure 4.7. It was noticed, that the recognition results
obtained for the EmoDB data samples achieved higher values than the ones ob-
tained for the VAM samples. This was on the one hand explicable by the different
emotion naturalness of the data, and on the other hand also by the different record-
ing qualities. With an increasing level of naturalness, of both the uttered emotions
and the recording setup, the ability to automatically detect the emotional state of
a speaker decreases dramatically (cf. Section 2.1.1). This also explained the high
standard deviations in the results obtained for the VAM data samples. It was fur-
ther noticed that the differences in the results obtained under silence and disturbed
recording conditions were comparatively higher for EmoDB than for VAM. This was
attributed to the fact that the naturalistic VAM data samples were recorded under
non-ideal recording conditions with perturbing acoustic conditions. Therefore, the
in-car setting had little further disturbing effects on the recognition performance. By
conducting repeated-measures ANOVAs for both data sets, it was shown that there
exists no significant differences in the results obtained for the different recording con-
ditions and baseline classification experiments (main effect EmoDB: F(0.17, 1.55)
= 6.14, p > 0.05, Greenhouse-Geisser-corrected; main effect VAM: F(1.53, 70.41) =
1.98, p > 0.05, Greenhouse-Geisser-corrected). However, the results obtained under
disturbed condition for the left and right microphone recordings of both evaluated
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Figure 4.7: Mean and standard deviation of the UAR of the carried out LOSO classifi-
action experiments of both utilized data sets (cf. [Lotz; Faller et al. 2018]).

data sets were noticeably lower compared to the baseline results. Furthermore, it
was noticed that the baseline results of both data sets always outperform the results
obtained under the different recording conditions for both microphone setups. This
is reasonable, as the speech quality assessment, presented in Section 4.3.1, revealed
a significant difference in the speech quality of the silent and disturbed recordings
for all experiments, with the disturbed speech samples being of lower speech quality
than the samples recorded under silent condition. It can therefore be assumed that
speech quality affects the emotion recognition performance. However, the results
obtained for the left and right microphones for each recording condition showed a
high similarity, indicating that for speech emotion recognition the recording condi-
tion has a higher influence on the recognition performance and is, hence, of higher
relevance than the microphone setup.

4.3.3 Findings on Noisy Speech

In this Section, I evaluated the effect of in-vehicle noises on the speech quality of
emotional speech and the performance of a speech emotion recognizer. To evaluate
the speech quality two quality measures were utilized (CER% and relative SNR). It
was shown that both measures have advantages and disadvantages when it comes
to the assessment of the speech quality. For the relative SNR, especially the quality
differences between the recordings of the left and right microphone were not assessed
correctly. This was due to the restrictions and adaptations made in Section 4.1.1.
To solve this issue, an adaptation of the constant α in Equation (4.3) for the speech
samples originating from the left and right microphone would be needed. This,
however, would abolish the relation to the original EmoDB and VAM data samples
used as baseline for the calculation. Furthermore, the obtained results were not
comparable to other SNRs presented in the literature. By utilizing the re-recording
under silence and disturbed conditions, I was able to calculate the real SNR of the
simulator recording setup. The obtained values lie in the region of comparable SNRs
presented in Section 2.4.2. However, a statement on the speech quality compared
to the original EmoDB and VAM data samples is now not possible anymore.
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Overall, it can be concluded that the SNR, as introduced in Equation (4.3), is
unsuitable for the assessment of speech quality when it comes to re-recordings under
non-ideal recording conditions. For the CER it can be stated that, with regard
to the assumptions made at the beginning of this Section (i.e. left microphone
and silence recordings are of higher speech quality than the right microphone and
disturbed recordings, respectively), the measure behaves as expected. However,
it is of high importance to understand how the CER is designed, as it calculates
the percentage difference compared to the reference signal. This could lead to a
confusion in the interpretation of the measure, as the quality of the samples under
disturbed recording conditions showed a higher percentage agreement compared to
the recordings under silence condition. This is valid, as the additive vehicle and
environmental noises included in the disturbed recordings lead to an increase of
signal power compared to the samples recorded under silence condition.

By utilizing two different speech emotion data sets of different recording natur-
alness (i.e. acted vs. scripted emotions and anechoic chamber vs. television studio
recording setup), I was able to show that the recording naturalness has a high impact
on the utilized quality measures. For the VAM data samples, originally recorded
under non-ideal recording conditions, the re-recording under silence and disturbed
recording conditions were less influenced by the additional disturbances compared
to the EmoDB samples. This was confirmed by the utilized quality measures which
indicated an on average higher speech quality of the VAM-Car samples compared to
the EmoDB-Car samples, with respect to the original VAM and EmoDB samples.

It was further investigated, if there exists a relation between the speech quality
and the performance of a speech emotion recognizer. For both investigated data
sets a clear decrease in the performance of the re-recordings was present. Especially
the recordings under disturbed recording condition showed considerably lower UARs
compared to the baseline results obtained by utilizing the original EmoDB and VAM
data samples. This is in line with the hypothesis that the disturbed recordings are
of lower speech quality and that there exists a relation between speech quality and
recognition performance. For the microphone setup this, however, was not the case.
Here, a significant difference in speech quality between the left and right microphone
recordings was identified. The results of the corresponding emotion recognition ex-
periments, however, did not reveal any significant difference. This indicates that, in
case of speech emotion recognition in noisy environments, the recording/ noise con-
ditions are of higher relevance than the microphone setup. Furthermore, the quality
decrease from original to re-recorded speech was much higher for the (originally
anechoic chamber-recorded, acted speech) EmoDB data set than for the (origin-
ally TV- studio-recorded, scripted speech) VAM data set. This also resulted in a
higher performance decrease for the automatic emotion recognition task in case of
the EmoDB, respectively.
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4.4 Summary and Discussion

This Chapter highlights the effects of speech quality on the ability to perceive the
emotional content by humans from speech and in an automatic application domain
(i.e. speech emotion recognition), with a focus on compressed and disturbed emo-
tional speech. As the number of available noisy speech data obtained in an in-vehicle
environment is still limited and the realization of a reliable data set is highly time
and resource consuming, first investigations were carried out by utilizing compressed
speech samples of the well-known EmoDB data set. To get a broad insight on audio
compression, a short overview on relevant compression techniques and audio codecs
was given in Section 2.5.3 and Appendix B. Furthermore, measures to assess the
quality of compressed and disturbed speech were introduced. As most of the com-
mon measures are highly limited in their application, a new measure, the CER, was
introduced. This measure determines the average difference of two speech samples
under different recording conditions as actual change ([dB]) or as relative change
([%]) compared to the original clean recording.

Initially, the effect of compressed speech was investigated. Three lossy audio
codecs, intended to be used in different application domains and following different
compression techniques, were utilized (i.e. MP3 - music - perceptual coding, SPX
- VoIP - AbS, AMR-WB - VoLTE - AbS). As reference the standard WAV format
was used. I was able to show that audio compression strongly influences both, the
ability to perceive the emotional content by humans and to automatically recognize
the emotional state of the speaker. For human emotion perception it was shown
that the best emotion intelligibility was present for the reference high quality WAV
format. This was not the case for the speech emotion recognizer, where the best
results were obtained for MP3 with high bit rates (over 24 kbit/s). When it comes
to a high file size reduction, the best results for the speech emotion recognizer were
achieved by SPX with 6.6 kbit/s. Contrarily, this codec achieved the worst results
when it came to human speech emotion perception. It was further noticed that
the results obtained from the human labeling and automatic emotion recognition
for each considered emotion were clearly rank correlated when applying the MP3
codec. Overall, the correlation between the human labeling and automatic emotion
recognition was only moderate. This is explicable by the compression technique
used for the MP3 codec, which is designed especially for music compression. From
music psychology it is well-known that there exists a relation between music and
emotions. Therefore, music compression not only keeps the audio quality high,
but also maintains a good emotion perception. The introduced quality measures
themselves showed a high correlation among each other. I could identify that the
MOS-LQO measure achieved a higher correlation with the results obtained from the
human labeling than the results of the automatic emotion recognition. A contrary
correlation was shown for the CER%, respectively. This is in line with the hypothesis
made at the beginning of the corresponding Section that subjective measures better
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describe the ability of a human to perceive a certain emotion than objective measures
and vice versa in case of speech emotion recognition.

With this prior knowledge, the CER% was applied to investigate the performance
of a speech emotion recognizer on disturbed/ noisy speech samples in an in-vehicle
environment. As reference well-known quality measure for disturbed speech, an
adapted version of the SNR was utilized. As data sets, two benchmark data sets
re-recorded in an in-vehicle simulator environment were employed (EmoDB-Car and
VAM-Car). It was shown that there exists a significant difference for both quality
measures depending on the recording condition (silence and disturbed) and micro-
phone setup (left and right). Also the recording setup of the original data set influ-
enced the quality of the re-recordings. While the quality of the samples originating
from the EmoDB data set (acted emotions in anechoic chamber) were strongly influ-
enced by the recording conditions, the samples originating from the VAM data set
(scripted emotions in television studio) showed a lower loss in quality, respectively.
This finding corresponds to the observed differences in the results of the performed
speech emotion recognition experiments. The results obtained for the EmoDB-Car
data samples show a noticeably stronger decrease in the UAR compared to the
baseline results than the results obtained for the VAM-Car data samples.

Overall it can be concluded that there exists a relation between speech quality and
the ability to perceive and automatically recognize the emotional state of a speaker.
This can be done by utilizing well-known quality measures but also by utilizing the
newly introduced CERmeasures. Furthermore, it should be noted that the presented
results are based on benchmark data sets, commonly used in the field of speech
emotion recognition. By utilizing the VAM data set I was able to give a first insight
on how in-vehicle noises influence emotional speech with a more realistic non-ideal
recording setup. Nevertheless, especially in noisy environments other effects can
occur that influence the way of speaking, which were left out of consideration in this
Thesis. With a focus on in-vehicle communication the reader can refer to [Landgraf
2018]. However, it can be assumed that these effects do not influence the speech
quality but rather the ability to perceive and automatically recognize the emotional
state of the speaker. This aspect will be addressed in Chapter 6 where naturalistic
real-world in-vehicle speech data is employed. The next Chapter will focus on the
pre-processing of the raw audio material.
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UP to this point, the focus of this Thesis was drawn on the collection of sim-
ulated and real-world speech data in Chapter 3, and the influence of speech

quality on speech emotion recognition in Chapter 4. It was already state in the intro-
duction of this Thesis, that the performance of a machine learning based classifier is
strongly affected by the quality of the data they are trained on (also see [Marsland
2015] and Section 2.2.6). Most of the factors affecting the quality of the utilized
data set can be influenced in advance by an extensive experimental study design
as highlighted in Section 3.2. Here, it was already shown that the collected real-
world audio recordings are suitable for the present emotion recognition task. Other
factors, such as inter-individual differences of the subjects (i.e. is the emotional
state also reflected in the drivers speech) or restricting environmental conditions,
need to be evaluated afterwards. The former is necessary to assess the trustworthi-
ness of the data samples, while the later can contribute to the performance of the
subsequent classification task or simplify the design of the classifier. Therefore, be-
fore designing a classifier to automatically recognize the driver’s emotional state (cf.
Chapter 6), a pre-processing of the raw audio material in necessary. This will on the
one hand include the annotation of the real-world in-car audio recordings presented
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in Chapter 3 and on the other hand the evaluation of a speech enhancement method
and its applicability in speech emotion recognition.

First, a detailed description of the annotation process and its results, which are
based on [Lotz; Ihme et al. 2018] and [Requardt et al. 2018], will be given in Sec-
tion 5.1. The pre-processing of the raw audio recordings of the real-world in-vehicle
data collection, presented in Section 3.2, will be presented in Section 5.1.1. In Sec-
tion 5.1.2, additionally to the results obtained when applying a standard manual la-
beling process, a machine-learning-assisted emotion labeling approach will be presen-
ted, which enables the full annotation of an emotion data set in noticeably less time
compared to a conventional fully manual annotation. The presented approach is
based on the semi-automatic annotation approach developed by Egorow and myself
in [Egorow et al. 2017]. As the annotation of the data was performed on clean
reference recordings of the driver’s speech only, a post-annotation processing of the
annotated data samples based on the noisy shotgun microphone recordings will be
presented in Section 5.1.3.

Second, in Section 5.2, the suitability and necessity of a pre-processing of the
raw audio material in terms of speech enhancement will be investigated. The main
goal of speech enhancement is to improve the speech intelligibility of the disturbed
speech signal by applying different digital signal processing algorithms in time and
frequency domain [Benesty et al. 2009]. This, however, does not automatically lead
to a better understanding of the emotional content, as they are primary optim-
ized to increase the perceptual quality of degraded speech with disregard of the
changes occurring in the speech signal. From literature it is known that, especially,
for speech emotion recognition spectral-based speech features are of high relevance
[El Ayadi et al. 2011; Eyben et al. 2016]. I will first give some basic theoretical
background on how the selected speech enhancement algorithm operates (cf. Sec-
tion 5.2.1). Afterwards, in Section 5.2.2, it will be analyzed how the application
of a conventional speech enhancement algorithm modifies the original speech sig-
nal (in time and frequency domain and feature space). It will be further evaluated
in Section 5.2.3 whether positive effects occur when executing emotion recognition
tasks on the enhanced speech signal. The Chapter will be concluded in Section 5.2.4
by giving a recommendation on the application of speech enhancement for speech
emotion recognition tasks.

As parts of this chapter are based on work already published in [Requardt; Egorow
et al. 2020; Lotz; Ihme et al. 2018; Requardt et al. 2018] and [Egorow et al. 2017],
several phrasings are taken literally from these publications.

5.1 Annotation

To obtain a ground truth of the real-world in-car recordings presented in Section 3.2
a manual annotation by trained labelers was performed. In total three independent,
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German speaking, female labelers in between the age of 20 to 35 were employed.
They all underwent a pre-training where they were introduced to the annotation
software ikannotate2 (cf. [Siegert & Wendemuth 2017]) and had to conduct 20 test-
annotations of speech samples originating from the Vera am Mittag (VAM) data set
[Grimm et al. 2008]. This data set was chosen, as it contains spontaneous speech
samples of non-professional German speakers under non-optimal recording condi-
tions, which is comparable to the recording quality of the data collection presented.
All samples in the VAM data set are provided with a corresponding emotion label in
the dimensions of valence, arousal and dominance by the corpus developers, and a
mapping onto the four quadrants of the two-dimensional valence-arousal space was
conducted by [Schuller; Vlasenko; Eyben et al. 2009]. These mapped results served
as ground truth and were used to verify the assessment of the test-annotations. If
one of the labelers showed strong deviations from the ground truth they were given a
more detailed instruction on how to assign the dimensions of valence and arousal and
additional 20 test-annotations needed to be conducted by them. The test-samples
were chosen such that they would cover all quadrants of the valence-arousal space
equally in a randomized order.

For the actual annotation process, only the recordings obtained by the high quality
headset microphone were used. Compared to the shotgun microphone recordings,
the headset recordings contain considerably less noise, as the microphone inlet was
directed towards the driver’s mouth with a cardioid directional pattern suppressing
sound coming from other directions. To increase the quality of the annotation results
and to terminate the annotation effort by excluding unsuitable speech material,
a pre-processing of the raw audio signal was necessary. The utilized ikannotate
annotation software does not provide this kind of internal audio processing (i.e.
voice activity detection and splitting of the speech material into suitable smaller
sub-samples). Therefore, an additional pre-processing of the raw-audio material
was performed before conducting the emotion labeling (cf. Section 5.1.1). All audio
samples generated during the pre-processing were then annotated in a three step
procedure:

1. Annotation of the dimensions of valence (from negative to positive) and arousal
(from low/ calm to high/ aroused) using the 5-point Self Assessment Manikins
(SAM) scale [Bradley & Lang 1994] (for more details see Section 2.1.4). This
scale was also used as self-report measure in the detailed feedback form, which
was filled out by the drivers after finishing all four driving scenarios (cf. Sec-
tion 3.2).

2. Annotation of the four emotion categories: positive, neutral, frustrated/ angry
and anxious/ fearful, which correspond to the induced emotional states in the
four driving scenarios. Additionally, a free text input was available for the
labelers to allow the annotation of a self-chosen emotion category in case one
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of the predefined category did not match. This option, however, was never
applied by the labelers.

3. Rating of the labelers’ level of satisfaction of their own current labeling using
a 5-point Likert-scale from 1 (very dissatisfied) to 5 (very satisfied). This
step was included to get a direct subjective feedback on the quality of the
annotation and conclude the reliance of their decision.

Another aspect which needs to be addressed is the reliability of the annotation
results regarding the agreement of the three labelers. Therefore, the Inter-Rater-
Reliability (IRR) utilizing Krippendorff’s alpha was determined (cf. Section 2.1.4
and Section 5.1.2). The IRR is a measure to assess the agreement between the
annotation results of two or more labelers [Hallgren 2012; Krippendorff 2004]. De-
pending on the data properties (i.e. nominal, ordinal or interval scaled data) the
distance measure δca,cb , defined as the distance between the assigned class c of labeler
a and b, needs to be determined. When utilizing the SAM scale an ordinal distance
measure is applied, while for the evaluation of categorial annotations the application
of a nominal distance measure is required. Labelers lowering the IRR by 0.05 were
excluded before assigning a certain label to the considered speech samples, as these
small deviations in the IRR can already affect the annotation results in a noticeable
way. This made the label assignment more conservative.

For the categorial labeling, the labels were assigned based on a majority voting
of the labelers’ annotations. When a labeler was excluded from the assignment pro-
cess, the remaining labelers had to be fully conform in their annotation result. All
samples for which no distinct assignment of a categorial label was possible, were
excluded from the ground truth obtained for a categorial emotion evaluation of
the data set. For the dimensional labeling, the average valence and arousal level
over the reliable labelers was calculated. Here, no samples were excluded from the
ground truth obtained for a dimensional emotion evaluation of the data set. The
results obtained from the annotation of the categorial and dimensional labeling are
presented in Section 5.1.2. Here, also a statement on the labeler’s reliability by
evaluating their level of satisfaction and the IRR is made. To confirm the consist-
ency of both annotation approaches, a comparison of both approaches is conducted.
Furthermore, to gather additional information on the quality of the annotation, a
comparison of the results obtained by the drivers themselves (drivers’ self-reports)
and the annotation results is presented. As the annotation approach presented is
very time consuming an alternative machine-learning-assisted annotation approach
is introduced.

Finally, the labels obtained from annotating the high quality audio recordings of
the headset microphones were mapped onto the corresponding speech samples of the
noisy shotgun microphone recordings, which will later be used to classify the drivers’
emotional state in a non-intrusive way. These noises do not only include environ-
mental disturbances but also overlapping speech of the co-driver. As the inlet of the
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headset microphone was directed towards the driver’s mouth, overlapping speech
was not received by this microphone. Therefore, all samples containing overlaps in
the shotgun microphone recordings were excluded from the data set. The results of
this post-annotation processing are presented in Section 5.1.3.

5.1.1 Pre-Processing the Raw Audio Material

During the data collection the audio recordings of the three synchronized micro-
phones, which were integrated onto the dashboard of the vehicle, were received for
each of the four driving scenarios separately. This resulted in 12 audio recordings
per driver (four audio recordings per driver for each of the three microphones).
Unfortunately, due to the unstable energy supply inside the vehicle, which led to
interruptions of some audio recordings, for some drivers more than one recording
per driving scenario was received. By manually inspecting the recordings, they were
sorted to the corresponding driving scenario afterwards. Furthermore, only those
recordings containing speech data from the driver needed to be annotated by the
labelers. These speech segments were extracted from the recordings by applying the
Sound Finder tool provided by Audacity® 1 on the high quality headset recordings.
To ensure a high accuracy of the speech segments, all segments for which sound was
detected by the tool, were manually checked and, if needed, corrected or removed.
Additionally, to ensure a reliable annotation of the extracted speech segments the re-
cordings were divided into smaller sub-samples of about 2 seconds length, for which
it can be assumed that no change in emotion occurs while an optimal length for a
reliable decision making of the labelers is available [Pell & Kotz 2011]. If a segment
needed to be divided, the remaining part should not be below a sufficient length
of 0.5 seconds. Therefore, these short segments were added to the previous sample
coming from the same speech segment, such that a sample could reach a maximum
length of 2.5 seconds.

This segmentation process resulted in 16988 speech samples (6.96 hours of speech
recordings) originating from 30 drivers (seven female drivers), which were annotated
by the labelers as described. Table 5.1 gives an overview on the number of samples
originating from the four different driving scenarios. On average female drivers
uttered 594 speech samples during the data collection, while male drivers uttered
558 samples. A repeated-measures Analysis of Variance (ANOVA) (cf. Section C.1)
revealed that the number of samples originating from the different driving scenarios
are significantly different (F(2.9, 84.4) = 35.4, p < 0.001, Huynh-Feldt-corrected).
By performing post-hoc t-tests it could be shown that the number of samples ori-
ginating from the mild anxiety scenario is significantly higher than the number of
samples recorded from the other emotion scenarios (all p’s < 0.001, Bonferroni-
corrected).

1Audacity® software is copyright ©1999-2019 Audacity Team. The name Audacity® is a
registered trademark of Dominic Mazzoni.
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Table 5.1: Number and length of time of samples originating from the four different
driving scenarios. Brackets denote the share of male/ female samples.

Scenario Samples [#] Time [min]

Neutral 3968 (2987 / 981) 101.60 (77.17 / 24.43)
Positive 3529 (2681 / 848) 87.98 (67.19 / 20.79)
Frustration 4206 (3114 / 1092) 99.35 (73.79/ 25.57)
Mild Anxiety 5285 (4048 / 1237) 128.86 (97.48 / 31.39)∑

16988 (12830 / 4158) 417.80 (315.62 / 102.18)

5.1.2 Annotation Results

In total the three labelers needed to annotate 6.96 hours of speech material, com-
prising 16988 speech samples. It took on average 43.78 hours for each labeler to
conduct the full annotation consisting of the dimensions valence and arousal, the
emotion categories and the satisfactory level of the labeler’s annotations. In sum
131.35 hours of annotation time was needed to obtain a ground truth of the real-
world in-car data collection described in Section 3.2. From the labelers’ satisfactory
level a high usability of the annotation results can be concluded. For 4.44% of
the annotations the labelers reported to be very satisfied in their decision process,
for 80.71% satisfied and for 14.10% neutral. Only 0.60% of the annotations were
assigned to dissatisfied and a very small share of 0.16% to very dissatisfied. For
all three labelers an increase of satisfaction of their annotation with an increasing
number of conducted annotations was noticed, indicating that a self-training of the
labelers occurred while conducting the annotations.

Inter-Rater Reliability

By determining the IRR separately for the dimensional and categorial annotation,
a labeler who annotated contrarily to the other labelers was excluded from the
labeling process. Table 5.2 shows the average IRR over all evaluated drivers for
all possible combinations of the three labelers. For the annotation of valence and
the emotion categories the best results were obtained when leaving out labeler 2,
while for the annotation of arousal leaving out labeler 1 resulted in the best IRR.
The IRR when leaving out labeler 3 even dropped to negative values indicating a
negative correlation between the labelers’ results. This implies that labeler 1 and 2
have a strong disagreement within their annotations, especially for arousal.

For the dimensional approach, by leaving out labeler 2, an increase of the IRR of
valence was achieved, while leaving out labeler 1 led to an increase of arousal. The
difference between the IRR of the valence and arousal annotation when leaving out
labeler 2 is noticeably higher compared to when leaving out labeler 1. To ensure
that both dimensions are labeled sufficiently reliable, it could be assumed that it is
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Table 5.2: Average and standard deviation of the IRR for all possible combinations of
labelers for the dimensional and categorial annotation.

Valence Arousal Categorial

All 0.37 (0.09) 0.16 (0.10) 0.24 (0.05)
w/o Labeler 1 0.35 (0.14) 0.24 (0.15) 0.21 (0.07)
w/o Labeler 2 0.49 (0.08) 0.18 (0.17) 0.30 (0.07)
w/o Labeler 3 0.22 (0.12) -0.05 (0.18) 0.20 (0.07)

advisable to rather leave out labeler 1, which results in a satisfactory IRR for both,
valence and arousal, than leaving out labeler 2. However, as this assumption is
based on the average values stated in Table 5.2 and leaving out labeler 2 for arousal
showing a noticeably high standard deviation in relation to its average value, it
is recommended to also perform a driver dependent evaluation of the IRR. In this
driver dependent evaluation of the IRR, it was assumed that the threshold of leaving
one labeler out of the labeling process is set to a delta of ±0.05. When doing so,
it was noticed that using all labelers or leaving out labeler 3 would never result in
an increase of IRR above this threshold, but leaving out either labeler 1 or labeler
2 always led to an increase above the threshold. As described above, in case of
dimensional annotation, a compromise between a good annotation of valence and
arousal needed to be made. This decision was made for each annotated driver
individually. Out of all 30 drivers, labeler 1 was excluded from the labeling process
14 times and labeler 2 16 times. By considering these cases an average IRR of
0.44 for valence and 0.31 for arousal was achieved. From Section 2.1.4 these values
indicate a fair and moderate agreement of the labelers (cf. Table 2.4 on page 23),
respectively, and, in case of valence, even outperform reported IRRs of comparable
data sets (e.g. 0.199 for valence and 0.485 for arousal in [Siegert et al. 2014]).

For the categorial annotation the best average IRR was achieved when leaving out
labeler 2. From the driver dependent evaluation it was noticed, that the best results
for each annotated driver were obtained when leaving out labeler 1 one time, labeler
2 16 times and labeler 3 one time. For the remaining 12 drivers the best IRR was
achieved using the annotation results of all three labelers. Considering these cases
an average IRR of 0.30 was reached. This indicates a fair agreement of the labelers
(cf. Table 2.4 on page 23), comparable to other reported studies (i.e. 0.208 for a
word list of size eight, and 0.195 for a word list of size 11 in [Siegert et al. 2014]).

Label Assignment

The labels of the dimensional approach were assigned to the desired audio sample by
averaging the annotation results of the considered labelers. The averaged values of
the valence/ arousal levels, obtained by utilizing the SAM scale, were then mapped
onto the four quadrants and the origin of the valence-arousal space (q1 - q4, n) (cf.
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Figure 5.1: Mapping of the valence/ arousal values onto the four quadrants of the valence-
arousal space using the 5-point SAM scale.

Figure 5.1). The detailed mapping of the averaged valence and arousal intervals
onto dimensional categories is stated in Table 5.3. Own pre-studies indicate that
these intervals show the best agreement with the categorial annotation approach
(cf. Table 5.4 on page 143). Choosing the neutral interval in a more narrow region
would result in a stronger confusion of neutral categorial samples lying in an area
of distinct high/ low arousal and positive/ negative valence. Additionally to the
four quadrants and the neutral area, samples lying outside of the neutral area and
directly on either the valence or arousal axis were labeled as high, low, positive and
negative, respectively. This mapping resulted in 14291 n, 280 q1, 499 q2, 968 q3,
102 q4, 1 high, 620 low, 156 positive and 70 negative speech samples.

Table 5.3: Mapping of the valence and arousal values, obtained by utilizing the 5-point
SAM scale, onto the dimensional categories.

Valence Arousal

n [2, 4] [2, 4]
q1 (4, 5] (4, 5]
q2 (4, 5] [1, 2)
q3 [1, 2) [1, 2)
q4 [1, 2) (4, 5]
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The large amount of samples mapped onto the neutral region of the valence-arousal
space is striking, but reasonable for this kind of highly natural and low expressive
recorded audio data.

For the categorial labeling a majority voting of the labelers’ annotation results was
conducted. In case of a labeler lowering the IRR below the threshold, as described
before, these labelers were excluded from the majority voting and the remaining two
labelers had to be fully concordant in their annotation result. This resulted in 11230
categorially labeled audio samples, which corresponds to 66% of the original speech
samples. In detail 5139 neutral, 2150 positive, 2329 frustrated and 1612 anxious
speech samples were obtained. The high number of neutral samples is explicable
by the experimental design, as a neutral emotional state will naturally occur in all
designed driving scenarios, without the need of being induced.

To verify the annotation results obtained by both annotation approaches inde-
pendently, the confusion matrix of both approaches was determined. The results
are presented in Table 5.4. Because of the low number of dimensionally annotated
high samples, this label was left unconsidered. In Table 5.4, green entries denote a
correlated assignment between both annotation approaches, while red entries denote
an uncorrelated assignment. A high correlation of the annotation approaches is in-
dicated by high values in green and low values in red entries. For the stated confusion
matrix, a high consistency between the two annotation methods can be concluded.
Already slight changes of valence and arousal indicate a change of the emotional
state. Therefore, the assumption could be drawn that the true neutral region lies
closer around the origin of the valence/ arousal dimensions than assumed. However,
This would results in a much higher confusion of neutral categorial samples, as de-
scribed earlier in this Section, which would reduce the high consistency of the other

Table 5.4: Confusion matrix of the speech samples assigned to the emotion and di-
mensional categories. Green entries with high values and red entries with low values
indicate a high relation between the two assignment methods. Bold values indicate
a high consistency between the assignment of a certain dimensional category and an
emotion category.

n q1 q2 q3 q4 low positive negative

Neutral 4479 1 156 109 0 394 0 0

Positive 1587 261 165 0 0 2 135 0

Frustrated/
Angry 2060 1 3 99 93 17 0 55

Anxious/
Fearful 1126 0 6 423 2 51 0 4
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annotation results. For the dimensional categories of q1 and q4 a clear assignment
to the emotion categories of positive and frustrated, respectively, was possible. For
q2 and q3 a large share of samples was assigned to positive and anxious, respectively.
A majority of the remaining samples were assigned to the neutral emotion category.
This is in line with the emotion models presented by [Holzapfel & Fuegen 2002]
and [Almeida et al. 2016] where it is assumed that the neutral region is elongated
towards low arousal in the valence-arousal space. Furthermore, this assumption was
confirmed by the large number of labels assigned to the neutral emotion category
but mapped to the low dimensional category.

Evaluating the Experimental Setup

The categorial annotation approach was designed in a way that the emotion cat-
egories would correspond directly to the induced emotional states during the driving
scenarios of the experimental setup. By determining the share of categorially annot-
ated samples originating from the four driving scenarios, a clear statement on the
correctness of the experimental design was made. A confusion matrix of the results
is given in Table 5.5. Each column of the Table contains the samples annotated as
one of the emotion categories originating from each driving scenario. It can be no-
ticed that the annoation results are in line with the experimental setup, as a relative
majority of samples annotated to the emotion categories originated from the corres-
ponding driving scenario where this emotional state was induced. The large number
of samples labeled as neutral over all driving scenarios (first column) is reasonable,
as neutral speech was uttered in all the designed scenarios. The same holds for the
number of samples labeled as positive (second column) as most of the participants
were very positive during the conversation with the interviewer. Also the low num-
ber of samples labeled as frustrated and anxious in the neutral and positive scenario
is reasonable as the participants also talked about frustrating situations they exper-
ienced beforehand. As the mild anxiety scenario was conducted after the frustration
scenario and they were both based on the evaluation of a technical system which
did not work properly, some of the participants also experienced strong frustration
during the anxiety task. This explains the high number of samples labeled as

Table 5.5: Confusion matrix of the categorial annotation in the four driving scenarios.

Scenario Neutral Positive Frustrated/ Anxious/
Angry Fearful

Neutral 1693 564 192 203
Positive 1156 916 189 104
Frustration 1035 349 1239 227
Mild Anxiety 1255 321 709 1078
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Table 5.6: Mean and standard deviation of the valence and arousal annotation in the
four driving scenarios. Arrows describe the tendencies of the mean values compared to
the mean of the neutral scenario.

Scenario Valence Arousal

Neutral - 3.14 (0.19) - 2.32 (0.29)
Positive ↑ 3.28 (0.17) ↑ 2.44 (0.28)
Frustration ↓ 2.83 (0.19) ↑ 2.62 (0.29)
Mild Anxiety ↓ 2.79 (0.14) - 2.34 (0.25)

frustrated in the mild anxiety scenario. This tendency is in line with the drivers’
self-report obtained by utilizing the Geneva Emotion Wheel (GEW) and presen-
ted in Table 3.1 on page 97. In this Tables, the items anger and fear were more
likely selected during the corresponding driving scenarios, while positive affects were
experienced in all driving scenarios. Only a small increase of experienced frustra-
tion during the mild anxiety scenario was noticed, which also corresponds to the
annotation results obtained for this scenario.

Analogous to the categorial approach, the dimensional approach was used to val-
idate the four driving scenarios. This was done by determining the average valence
and arousal values over all speech samples originating from the four driving scen-
arios. The averages and standard deviations of these values are stated in Table 5.6.
From a theoretical perspective and the results presented in Table 5.4, it was assumed
that in comparison to the valence and arousal level during the neutral driving scen-
ario the valence level would increase for the positive scenario and decrease for the
frustration and mild anxiety scenarios. For the arousal level it was assumed that for
the positive and frustration scenario an increase of arousal would occur, while for
the mild anxiety scenario this value would decrease. Except for the average arousal
value of the mild anxiety scenario, where a small increase of arousal was noticed, all
theoretical assumptions were met. This also corresponds to the results obtained by
the drivers’ self-report presented in Table 3.2 on page 98. In this Table, the average
valence values of mild anxiety behave as expected, while the average arousal values
show a significant increase compared to the neutral and positive scenario.

Reducing Annotation Time: Semi-Automatic Labeling

From the previous Section it is known that the annotation of emotional states of
the driver is highly time consuming (i.e. 43.78 hours of annotation for 6.96 hours
of speech material in the present case). As many annotation processes are limited
with their resources regarding time consumption and budget limitations, it is of
large interest for the machine learning community to reduce the annotation time
while maintaining a high quality of the annotation results. Therefore, a machine-
learning-assisted annotation approach is presented in the following (as introduced
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in [Requardt; Egorow et al. 2020]), based on the semi-automatic labeling approach
developed in [Egorow et al. 2017]. In this publication, Egorow and I present a semi-
automatic approach for the detection/ annotation of filled pauses. Because of the
low amount of available training material for this kind of rare speech events and the
high effort in utilizing a conventional fully manual annotation [Böck et al. 2019], a
semi-automatic annotation approach based on transfer learning was presented (cf.
Section 2.1.4 on page 27). First, a filled pauses classifier trained on already existing
annotated data (of low amount) was established. Afterwards, this classifier was
tested on unknown data. By manually correcting the detected filled pauses of the
unknown data the number of training material could be increased while the effort of a
manual annotation was decreased dramatically. In the presented approach it was not
aimed at achieving high detection rates but rather to increase the amount of exact
training material of less-observed rare speech events. Therefore, the number of false
negatives (not detected filled pauses) was left unconsidered and only the exactness of
true positive detected speech segments (i.e. percentage overlap between the detected
filled pause and the verified filled pause) was further evaluated while false positive
detected segments were removed manually. By measuring the time it takes to adjust
and verify the automatically detected filled pause, we could determine an average
time of 20 s for the adjustment and verification of a true filled pause and 5 s to
remove a wrongly detected filled pause. To estimate the time of the semi-automatic
annotation process the following equation was introduced:

Tsemi_auto = TP · 20 s + FP · 5 s, (5.1)

with TP being the number of true positives, for which the annotation of the filled
pause was done correctly but an adjustment of the label was necessary and FP being
the number of false positives with a filled pause being falsely detected and needed
to be removed. Compared to the conventional way of a fully manual annotation, we
could decrease the annotation effort by 85% (cf. [Egorow et al. 2017]).

To decrease the annotation time of the emotional in-vehicle data presented earlier
in this Section, the developed semi-automatic approach of filled pause detection
was adapted to be used for annotation of categorial emotional states. Therefore, a
classifier was trained only considering the annotation results of the first subject. Af-
terwards, this classifier was applied to the unknown pre-processed speech samples of
the next subject. Theoretically, the next step would be to let the labelers re-evaluate
the outcome of the classifier. During this step, two cases need to be considered, which
are True Positives (TPs) for which the emotion label is set correctly by the classifier
and False Positives (FPs) for which the emotion label is set incorrectly. It was as-
sumed that in case of expert labelers the time needed to verify a TP is much lower
than the time needed to re-evaluate a FP, as the labeler not only needs to decide for
a wrong classification, but also needs to assign a new label to the sample. As for the
present in-vehicle data the labels of the full manual annotation were available, these
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labels and the statistics of this labeling process were used to present an estimate
of this re-evaluation step. The results of the (estimated) re-evaluation were then
used to train a new classifier using all annotated and verified data samples. The
resulting classifier was then, again, applied to the unknown pre-processed speech
samples of the next subject. This process was repeated until the data of all subjects
was annotated. To evaluate, whether this approach would lead to a major decrease
of annotation effort, the estimate of this semi-automatic approach is presented in
the following.

From the annotation of the full speech data set (cf. previously stated in this
section on page 140) it is known that the complete annotation of all 30 subjects took
131.35 hours (on average 43.78 hours for each labeler). In this time, the labelers
annotated the dimensions of valence and arousal, the four emotion categories and
rated the satisfaction level of their annotation. By excluding the time needed to
rate their level of satisfaction, an average annotation time of 35.62 h ± 3.70 h for
each labeler was obtained. For each speech sample the labelers took on average
6.66 s ± 1.02 s, which includes the time needed listening to the speech sample and
excludes outliers. On average the labelers listened to each speech sample 1.46 ±
0.29 times before making their decision. As in total 16988 samples of approximately
the same length were evaluated, these statistics represent the population in a high
quality. A separation of the time needed to conduct the categorial and dimensional
annotation was not possible, as these times were not tracked independently. In
the annotation process this was not reasonable as the labelers were aware of the
sequenced annotation process and it cannot be said, when they decided on which
label to choose for the two different approaches. This, however, was not a problem,
as both estimate and real value are based on the same averaged annotation time and
the time needed to obtain the dimensional label can therefore be taken as systematic
error. In the presented approach the time used to verify a TP (T̂TP) and re-evaluate
a FP (T̂FP) was estimated using the above presented statistics of the full manual
annotation results. This resulted in the following equation to determine T̂TP :

T̂TP = 1.46 · 2 s + 1 s = 3.92 s < 4 s, (5.2)

with the estimate of 1.46 times listening to the speech sample of an average length
of 2 s (cf. Section 5.1.1) and the assumption of 1 s needed to verify the perceived
emotional state. The estimated re-evaluation time of FP was calculated as

T̂FP = 6.66 s < 7 s, (5.3)

which corresponds to a similar annotation time compared to a fully manual an-
notation of one speech sample. Based on T̂TP and T̂FP and the number of TP and FP
for the considered subject, the estimated time needed to perform the semi-automatic
annotation was determined as
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T̂semi_auto = TP · T̂TP + FP · T̂FP + TS1 (5.4)
< TP · 4 s + FP · 7 s + 4020 s, (5.5)

with TS1 denoting the time needed to manually annotate the first subject’s speech
samples which corresponds to 4020 s for the utilized data set.

To verify the stated averaged annotation times the total estimated time needed
to conduct a fully manual annotation T̂manual was calculated using

T̂manual = #Samples · 7s. (5.6)

This led to an estimated manual annotation time of 33.03 h, which lies inside the
standard deviation of the real value of 35.62 h± 3.70 h.

By conducting classification experiments as described, it was possible to identify
5313 samples correctly while for 11052 samples the label of the emotional state
needed to be changed manually. As classifier a baseline Support Vector Machine
(SVM) with a Radial Basis Function (RBF) was utilized. As hyper-parameter the
default values of WEKA [Hall et al. 2009] were applied (γ = 1/dim(FeatureSpace)

and C = 1). The classifier was trained and tested on the emobase features of
the high-quality headset microphone recordings. By applying Equation (5.5) an
estimate of 28.51 hours for the semi-automatic annotation approach was obtained.
Compared to the conventional fully manual annotation this corresponds to a time
reduction of 19.96% for each labeler. The accumulated confusion matrix of the
conducted experiments is stated in Table 5.7. As the annotations of the emotion
categories were obtained by conducting a majority voting, for some samples no true
label was obtained. This case was added as additional class to the classification
problem and is referred to as N/A. However, it was not included in the training

Table 5.7: Confusion matrix of the performed classification experiments to determine the
efficiency of the semi-automatic annotation approach. All TPs are highlighted in green.
The last column of the table only contains “0” entries, as this class was not included in
the classification process (adapted from [Requardt; Egorow et al. 2020].

Predicted
anxious frustrated neutral positive N/A

True

anxious 565 140 655 149 0
frustrated 324 667 853 370 0
neutral 663 467 3199 580 0
positive 308 246 654 882 0
N/A 1297 703 2706 937 0
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process of the classifier, as it would bias the classifier towards recognizing this widely
spread class which could include samples belonging to any of the four emotional
states. From conducted comparable classification experiments this statement was
verified. As the classifier was forced to assign one of the four emotional states to
each sample, even with the true label being N/A, it is assumed that the labelers re-
evaluated these samples. By doing so, we achieve an overestimation of annotation
time. Consequently, by applying the semi-automatic approach to a comparable
categorial emotion labeling this would lead to an even higher percentaged decrease
in annotation time compared to the estimated value presented. Nevertheless, an
achieved annotation time reduction of 19.96% is of high importance especially for
annotation processes which go along with high annotation effort.

An additional positive side effect which can be observed is the continuous increase
of the classification performance with an increasing number of the manually labeled
data samples inside the training set. Especially for applied research, this can be
of great interest, for example if a certain performance of the classifier is needed
before switching to a Semi-Supervised Learning (SSL) based labeling approach for
incoming new data samples. The increase of performance in terms of F1-measure is
stated in Figure 5.2. An increase of the classification performance with the amount
of manually annotated training data can be noticed. The small drops in the classi-
fication performance are explicable by the recording setup. Even by utilizing high
quality headset recordings, there exist quality differences between recordings of dif-
ferent drivers. Additionally from further evaluations presented in Chapter 6, it is
known that not all drivers were able to express the relevant emotional state in a suf-
ficiently expressive manner allowing it to be correctly detected by the classification
algorithm, which was especially the case for subject no. 27.
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Figure 5.2: Evolution of the F1-measure with increase of manually annotated training
data and index number of subjects. The red line represents the linear regression line
through the data points, indicating a clear increase in F1 (adapted from [Requardt;
Egorow et al. 2020]).
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5.1.3 Post-Annotation Processing

All annotation results presented in the previous section were obtained by evaluating
the high quality headset microphone recordings as well es the self-reports filled out
by the subjects during the four different driving scenarios and served to gather the
ground truth of the noisy speech samples recorded by the two non-intrusive shotgun
microphones mounted on the dashboard of the vehicle. The speech samples extrac-
ted from the high quality headset recordings do not contain disturbances by other
passengers inside the vehicle and considerably less noise, as the microphone’s inlet
was located closely to, and directed towards, the driver’s mouth with a cardioid dir-
ectional pattern suppressing sound coming from any other direction. Even though,
the integrated shotgun microphones have a highly directional supercardioid/ lobar
beam pattern, the location of the microphones on the dashboard of the vehicle and
the distance between speaker/ mouth and microphone inlet make the recordings
prone to external disturbances. These circumstances may lead to the occurrence of
speech not associated with the driver or overlapping speech. Furthermore, additional
disturbances of the speech signal, which make it impossible to perceive the speech
of the driver may occur. Therefore, all corresponding speech samples of the shotgun
microphone recordings were manually checked by the author of this Thesis. In this
process each speech sample was labeled as yes, no or overlap. With yes assigned
to all suitable samples, no assigned to all unsuitable samples (i.e. no perceptible
speech content) and overlap assigned to samples containing overlapping speech. The
explicit label of overlap was not further evaluated in the scope of this Thesis, but
made the data suitable for the evaluation of overlapping speech as investigated by
my colleague in [Egorow & Wendemuth 2019]. Only for those samples assigned with
a yes a mapping of the emotion label for the noisy speech samples was carried out.
As no clear distinction between the critical emotional states of frustration and anxi-
ety was possible by evaluating the drivers’ valence and arousal level (cf. Table 5.4),
a focus was drawn on the categorial annotation, which allows to distinguish four
emotion categories of neutral, positive, frustrated and anxious drivers.

The resulting sub set of annotated noisy speech samples is presented in Table 5.8.
It contains in total 7562 samples originating from 28 participants (six females) and
comprising 186.24 minutes of speech material. The data of two participants (one
male, one female) were left unconsidered due to the high number of frame drop-outs
in the audio recordings. It can be seen that all emotion categories are represented
with a sufficient number of samples. A repeated-measures ANOVA revealed a signi-
ficant effect of the emotion categories on the number of speech samples (main effect
category: F(1.5,40.1) = 41.1, p < 0.001, Greenhouse-Geisser-corrected). A post-hoc
t-test further revealed that the number of neutral samples is significantly higher
than for all other emotion categories (all p’s < 0.001, Bonferroni-corrected). Still,
none of the emotions is strongly underrepresented, such that a bias of the developed
classifiers towards over-represented categories is unlikely. Furthermore, classifiers
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Table 5.8: Number of suitable categorially labeled samples contained in the emotional
real-world in-vehicle recordings of the shotgun microphones. Brackets denote the share
of male/ female samples.

Label Samples [#] Time [min]

Neutral 3689 (3005 / 684) 88.90 (72.45 / 16.44)
Positive 1168 (897 / 271) 30.15 (23.50 / 6.65)
Frustrated 1606 (1140 / 466) 40.34 (28.26 / 12.07)
Anxious 1099 (879 / 220) 26.48 (21.35 / 5.49)∑

7562 (5921 / 1641) 186.24 (145.57 / 40.67)

that are able to process the degree of unbalanced data distributions in the used data
set were chosen.

The post-processed annotation results were used in Chapter 6 to evaluate the
ability to detect the emotional state of a driver in a real-world driving scenario. By
excluding samples with no perceptual speech, speech not associated with the driver
and overlapping speech, it is possible to remove the influence of these factors on the
emotion recognition performance and focus on the effects of in-vehicle noises on the
speech signal. For future research it would be of great interest to also consider the
difference of the individual recording setups on the recognition performance (e.g.
headset vs. shotgun microphone vs. unprocessed recordings). This, however, was
not investigated in the scope of this Thesis.

5.2 Speech Enhancement

In this Chapter I will investigate the effect of a selected conventional speech en-
hancement method on the recognition rates of speech emotion recognition and give
a recommendation whether speech enhancement can lead to reliably significant im-
provement of the recognition performance. The experiments were performed using
the re-recorded Berlin Emotional Speech Database (EmoDB) under in-car recording
conditions (EmoDB-Car) described in Chapter 3.1. First, a brief overview on relev-
ant speech enhancement approaches is given, followed by a more detailed description
of the applied speech enhancement method (cf. Section 5.2.1). Afterwards, a focus is
drawn on an evaluation of the enhanced speech signal compared to its counterparts
under disturbed and silence recording conditions, respectively (cf. Section 5.2.2).
This evaluation is based on a feature-value similarity analysis and occurring differ-
ences in the waveforms and power spectrums of the considered signals. Hereinafter,
classification experiments based on the enhanced, disturbed and silence recordings
are utilized (cf. Section 5.2.3). The Chapter is concluded in Section 5.2.4 by a recom-
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mendation on the application of speech enhancement methods for speech emotion
recognition.

An overview on the most relevant speech enhancement methods applied to increase
the speech intelligibility of disturbed speech is given in Chapter 2.5.2. Regarding
these algorithms in combination with the simulated in-car recordings, one major
challenge is the absence of a microphone dedicated to pick up the noise signal only,
as it needs to be the case when applying adaptive noise cancellation approaches.
Furthermore, most speech enhancement algorithms, without a reference microphone
capturing the noise signal only, are based on the application of a microphone array.
Even though two microphones were integrated into the simulator, this setting is not
suitable for speech enhancement using a microphone array, as the array needs to sat-
isfy special restrictions (e.g. number of microphones, distance between microphones,
far-field source assumption). These restrictions can be met, if the application of an
speech enhancement technique were the main scope of the research. In this Thesis,
however, the focus is drawn on the emotion recognition of disturbed speech, for
which high quality audio recordings are needed. To achieve this, highly directional
shotgun microphones were chosen, which are unsuitable to be arranged in huge mi-
crophone arrays. Therefore, commonly used speech enhancement methods based
on delay-and-sum beamforming cannot be utilized using the presented microphone
setup. As no advantage of the two-microphone setup can be drawn for speech en-
hancement, a method suitable for the application on one single microphone receiving
a noisy speech signal needs to be considered. In co-operation with a colleague from
NUANCE, using his experience and expertise in speech processing, we opt for the
Optimally-Modified Log-Spectral Amplitude (OM-LSA) speech estimation and Im-
proved Minima Controlled Recursive Averaging (IMCRA) noise estimation approach
as presented in [Cohen & Gannot 2008]. Contrarily to other speech enhancement
methods, it is not based on a voice activity detection where the noise estimate is
updated only in case of speech absence, but on a continuous update of the speech
and noise estimate by utilizing the speech presence probability.

5.2.1 Theoretical Background on Speech Enhancement

This Section gives a brief overview on statistical model-based speech enhancement
methods in frequency-domain as described in [Loizou 2007] and the applied OM-
LSA-IMCRA method (cf. [Cohen & Gannot 2008]). The goal of speech enhancement
in general is to improve the speech intelligibility of a disturbed speech signal. It is
assumed that the signal is degraded by additive noise. The observed, sampled signal
is given by

y(n) = x(n) + d(n), (5.7)
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with x(n) representing the clean speech and d(n) the additive noise signal. By
applying the Short-time Fourier Transform (STFT) the signal is transformed into the
frequency-domain. In comparison to the Discrete-Time Fourier Transform (DTFT),
only short segments of (10-30 ms) of speech are analyzed by introducing a sliding
analysis window w(n) of the size N . This enables the possibility to process short-
time stationary signals, as it is the case for speech. By applying STFT the observed
discrete signal spectrum is given as

Ytk =
N−1∑
n=0

y(n+ tM)w(n) exp(−i2π
N
nk) = Xtk +Dtk, (5.8)

where M denotes the number of samples separating two consecutive window
frames (N−M=̂ overlap of consecutive frames), t the time frame index (t = 0, 1, ...)
and k the frequency bin index (k = 0, 1, ..., N − 1). Xtk and Dtk denote the corres-
ponding STFT of the clean speech and noise signal. The goal of speech enhancement
is to determine an estimate X̂tk such that it minimizes the squared error distortion
measure

d(Xtk, X̂tk) =
∣∣∣g(X̂tk)− g̃(Xtk)

∣∣∣2 , (5.9)

with g(X) representing specific functions as fidelity criteria. The estimate of the
clean speech signal is then obtained by applying the inverse STFT to X̂tk,

x̂(n) =
∑
t

N−1∑
k=0

X̂tkw̃(n− tM) exp(−i2π
N
k(n− tM)), (5.10)

with w̃(n) being a synthesis windows that is bi-orthogonal to w(n). Considering
two hypotheses of speech presence (H tk

1 ) and speech absence (H tk
0 ),

H tk
1 : Ytk = Xtk +Dtk, (5.11)

H tk
0 : Ytk = Dtk, (5.12)

an estimate of X̂tk can be obtained by determining

min
X̂tk

E{d(Xtk, X̂tk) | p̂tk, λ̂tk, σ̂2
tk, Ytk}, (5.13)

with p̂tk as speech presence probability, λ̂tk as estimate of the variance of Xtk

under H tk
1 and σ̂2

tk as variance of Dtk.
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OM-LSA-IMCRA

For the Optimally-Modified Log-Spectral Amplitude (OM-LSA) approach, as fidelity
criteria the minimum mean squared error of the log-magnitude spectra is used, with
g(X̂tk) = log

∣∣∣X̂tk

∣∣∣, in Equation (5.9). Applying this function to Equation (5.13),
this results in

log
∣∣∣X̂tk

∣∣∣ = p̂tk · E{log |Xtk| | H tk
1 , λ̂tk, σ̂

2
tk, Ytk}

+ (1− p̂tk) · E{log(Gmin |Ytk|) | H tk
0 , Ytk}.

(5.14)

Now, by solving this Equation we get

X̂tk =
[
GLSA(ξ̂tk, γ̂tk)

]p̂tk ·G(1−p̂tk)
min · Ytk, (5.15)

with GLSA(ξ̂tk, γ̂tk) representing the LSA gain function derived by [Ephraim &
Malah 1985] and Gmin << 1 as a constant attenuation factor needed to retain the
naturalness of the noise during speech absence (cf. [Cohen & Berdugo 2001]). The
terms ξ̂tk and γ̂tk denote the estimate of the a-priori and the a-posteriori Signal-to-
Noise Ratio (SNR), respectively. To be able to solve Equation (5.15) we now need
to determine the estimates of the speech presence probability (p̂tk), as well as ξ̂tk
and γ̂tk.

The speech presence probability is estimated by determining the a-priori speech
presence probability estimate p̂tk|t−1 and applying the Bayes’ rule. By applying
local and global averaging windows in frequency domain on the recursive averaged
a-priori SNR, a local and global estimate of speech presence in the k-th frequency
bin of the t-th time-frame is determined (P local

tk and P global
tk ). Additionally, P frame

t is
determined, which is based on the speech energy in neighboring frames and averaging
the recursive averaged a-priori SNR over a certain frequency bin. Afterwards, p̂tk|t−1

is determined by calculating

p̂tk|t−1 = P local
tk P global

tk P frame
t . (5.16)

The a-priori SNR can be recursively estimated under a Gaussian model as

ξ̂tk = αtkξ̂tk|t−1 + (1− αtk)(γ̂tk − 1), (5.17)

with αtk (0 < αtk < 1) as weighting factor that controls the trade-off between
the noise reduction and transition distortion introduced into the signal (cf. [Cohen
2005]).
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The a-posteriori SNR equates to

γ̂tk=̂
|Ytk|2

σ̂2
tk

. (5.18)

By applying the Improved Minima Controlled Recursive Averaging (IMCRA)
method the estimate σ̂2

tk of the noise spectral variance is obtained. This method
is based on recursive averaging, by averaging over past spectral power values of the
noisy measurement in periods of speech absence and holding the estimate during
periods of speech presence:

σ̂2
t+1,k = p̃tkσ̂2

tk

+ (1− p̃tk) ·
[
αdσ̂2

tk + (1− αd) |Ytk|2
]
,

(5.19)

with αd (0 < αd < 1) as a smoothing parameter. The term p̃tk represents an
estimate of the speech presence probability, distinct from p̂tk used for estimating
the clean speech X̂tk in Equation (5.15), with p̂tk ≥ p̃tk. Hence, this approach is
more prone towards detecting speech absence compared to p̂tk. The term p̃tk|t−1

is determined by conducting two iterations of smoothing and minimum tracking.
In the first iteration a rough voice activity detection for each frequency band is
performed. In the second iteration only those components containing primarily
noise, obtained in the first iteration, are analyzed. Finally, by applying the Bayes’
rule p̃tk is determined and the estimates σ̂2

t+1,k and γ̂tk are calculated, respectively.

The OM-LSA-IMCRA speech enhancement can be applied to single-channel re-
cording setups with no dedicated noise/ speech only recording being available. As
described earlier, for the EmoDB-Car data samples, this is the case. With regard
to the evaluation of the two individual microphone setups, a multi-channel speech
enhancement approach was not necessarily needed, as this could lead to an inter-
ference of the microphone recordings, which would make an individual evaluation
unfeasible. To generate the enhanced audio signals, a MATLAB-script provided by
the inventor of the OM-LSA-IMCRA approach, Prof. Israel Cohen, was utilized 2.

5.2.2 Examining the Feature Space of Speech Enhanced Data
for Speech Emotion Recognition

One important aspect which needs to be addressed is the effect of speech enhance-
ment algorithms on the feature space. Speech enhancement is based on the modi-
fication of the disturbed speech signal to achieve better intelligibility of the audio
parts where speech is present. The effect these enhancement method have on the

2Code available on https://israelcohen.com/software/

https://israelcohen.com/software/
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ability to recognize the emotional content of said speech parts is barely investigated.
By modifying the speech signal not only the raw signal itself gets modified but also
all the features characterizing the signal. As the emotion classification approaches
presented in this Thesis are based on machine learning algorithms using the extrac-
ted features of the speech signal, it needs to be investigated to which extent the
feature space is influenced by the applied speech enhancement. This was done by
comparing the feature sets of the speech signal of the simulated in-car recordings
EmoDB-Car under silence, disturbed and enhanced condition (cf. Section 3.1) with
each other using the Wilcoxon signed-rank test of significance (cf. Appendix C). In
the presented investigation, the samples comprise the recordings and their feature
characteristics originating from different recording conditions (silence, disturbed and
enhanced). The test was conducted over all ten speakers of the EmoDB-Car data
set for each extracted feature of the emobase feature set. This resulted in 988 tests
conducted on the same data set. From statistics it is well-known that this kind of
multiple testing can lead to a so-called family-wise error also known as α-inflation (cf.
Appendix C). One way to prevent α-inflation is by utilizing a Bonferroni-correction.
With this approach, the level of significance gets reduced depending on the number
of tests carried out. A different approach to prevent α-inflation is by dividing the
data set into convenient sub sets and conducting a majority voting of the significant
features over all sub sets. For this approach, no adjustment of α is needed as the
majority voting aggravates the assumption of significance. One suitable way to split
the EmoDB-Car data set is according to the speaker of an utterance, as there exist
multiple utterances which originate from each speaker. One major advantage of do-
ing this is the speaker dependency of the significantly different features, which would
not be considered by utilizing a Bonferroni-correction. Therefore, I opted for this
approach to prevent the α-inflation. The results of this approach obtained for three
different level of significance with α = [0.05, 0.01, 0.005] are stated in Table 5.9. The
Table gives an overview on the number of significantly altered features as percentage
split of all evaluated features of the three performed experiments. With silence re-
ferring to the re-recorded data samples of EmoDB-Car with the simulator turned off
(only in-car acoustics present), disturbed referring to the re-recorded data samples

Table 5.9: Percentage split of significantly altered features considering tree different level
of significance (α = [0.05, 0.01, 0.005]). The total number of altered features is denoted
in brackets.

Experiment α
0.05 0.01 0.005

(1) silence vs. disturbed 76% (751) 69% (680) 67% (661)
(2) silence vs. enhanced 74% (732) 64% (636) 60% (588)
(3) enhanced vs. disturbed 81% (796) 74% (736) 71% (700)
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with the simulator turned on (additional environmental noises and engine sound)
and enhanced referring the the speech enhanced disturbed data samples. By using
re-recordings only and not considering the speech samples of the original EmoDB
data set, we prevent differences in the volume-related features like loudness and
intensity, as the recording’s setup was kept unchanged throughout the whole data
collection. Consequently, changes in the feature values originate from the in-vehicle
noises and influences coming from the signal modification of the utilized speech
enhancement algorithm only.

Figure 5.3 shows the waveforms of an original EmoDB sample and the correspond-
ing re-recordings under silence, disturbed and enhanced condition of the EmoDB-
Car data set, respectively. From a theoretical perspective it can be assumed that
by utilizing speech enhancement the enhanced speech signal will align with the sig-
nal under silence condition, however, the spectra give more information and will
be discussed later. Considering Figure 5.3, this is the case. A clear disturbance
of the signal is present in Figure 5.3 c), which depicts the waveform of the noisy
speech sample. Figure 5.3 d) corresponds to the speech enhanced version of c) and
shows high resemblance with the original and silent waveform (a) & b)). It could be
assumed that the features originating from waveform d) would also show a greater
agreement to these two speech signals compared to the disturbed signal.
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Figure 5.3: Waveforms of an exemplary a) original EmoDB sample, b) corresponding si-
lent re-recording of EmoDB-Car, c) corresponding disturbed re-recording and d) speech
enhanced disturbed re-recording.
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Figure 5.4: Venn diagram of significantly altered features (α = 0.05) of the three exper-
iments, showing the total number of dedicated and consistently altered features over
several experiments.

This, however, is not reflected by the results stated in Table 5.9. When looking
at the results of significantly altered features with α = 0.05 in detail, the following
was noticed: the number of significantly altered features of experiment number (2)
shows a considerable high percentage split of 74%. Compared to experiment (1)
this comprises a difference of 2% only, which corresponds to a total number of 19
features. From the assumption made previously, one would expect to get a much
lower number of altered features for experiment (2) than for experiment (1), as
the speech signal of the enhanced samples align considerably more to the original
and silent samples than to the disturbed samples. Additionally, an even higher
number of altered features was identified for experiment (3). The results imply
that there exist features which are significantly altered over all given experiments,
otherwise the number of altered features in (2) would need to be significantly lower.
To confirm this statement a detailed evaluation of significantly altered features of
each experiment is presented in Figure 5.4. The total number of altered features
for each dedicated experiment and features altered over several experiments can be
taken from this Venn diagram. As stated, the majority of features were altered over
all three experiments (576 features) and therefore are significantly different in their
speech signal even with a high alignment of the speech signal over time.

To understand this high number of altered features throughout the different re-
cording conditions and to get a more detailed insight on the changes arising through
speech enhancement we will now take a look at the power spectrum of the differ-
ent signals, which was obtained by calculating the STFT (cf. Figure 5.5). From
the experiments conducted in Section 4.3 it is already known that under non-ideal
recording conditions the quality of the speech signal decreases considerably. For
the silence condition a decrease of spectral power is noticed due to the absorb-
ing characteristics of the in-vehicle recordings (non-linear distortion) while for the
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disturbed condition an increase of spectral power is noticed caused by added high-
way noises of the simulator environment. By applying speech enhancement to the
disturbed re-recordings c), the enhanced speech signal d) is obtained. A clear de-
crease of spectral power, below the spectral power of the speech signal under silent
condition b), is visible. This is also confirmed by the calculated Compression Er-
ror Rate (CER) (cf. Section 4.1.2 and Equation (4.12) on page 114) values for
enhanced speech tested against the silence condition of both microphone settings
(CER%,enh,l = −3.94, CER%,enh,r = −7.70). To recap, a negative CER indicates a
decrease of spectral power while positive values indicate an increase. However, the
CER only gives a general overview on the average signal power and does not distin-
guish between speech present and speech absent parts. This is an important issue,
as the speech presence parts carry the most information considering speech emotion
recognition. When going back to Figure 5.3 it can be noticed, that from second 0.48
to 0.74 there exists a voiced speech part in the original and silence signal, while this
part is almost completely absent in the enhanced signal. This is also reflected in
the power spectrums presented in Figure 5.5 where for this segment of the signal a
noticeable lower spectral power is present, especially in the higher frequency bands
above 4 kHz. In general, especially for the higher frequency bands it can be noticed
that the signal power is suppressed by the speech enhancement method compared to
the power spectrum presented in Figure 5.5 a) and b), respectively. Only for those
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Figure 5.5: Power spectrum of an exemplary a) original EmoDB sample, b) correspond-
ing silent re-recording of EmoDB-Car, c) corresponding disturbed re-recording and d)
speech enhanced disturbed re-recording.
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signal parts containing speech with a high spectral power a correct identification as
speech present was obtained by the enhancement algorithm. Those parts containing
speech with lower spectral power were strongly overlain by the in-vehicle noises and
were not detected by the speech presence estimator of the OM-LSA-IMCRA speech
enhancement algorithm. Consequently, these speech parts were assessed as noise by
the enhancement algorithm and were therefore attenuated in the enhanced signal.
For those signal parts of speech absence, it can be noticed that the enhanced signal
shows a noticeable lower spectral power compared to the original and silence signal,
respectively. Overall, it can be stated that by applying speech enhancement the
signal obtained under silence condition shows distinct differences in the power spec-
trum compared to the enhanced signal. While the changes arising in the disturbed
recordings can be explained by added environmental noises and engine sound, the
changes obtained by applying speech enhancement are less reproducible.

5.2.3 Classifying Emotions from Enhanced Speech

To validate the statements made in the previous Section, several classification ex-
periments, applying the Leave-One-Subject-Out (LOSO) validation scheme, were
carried out using the baseline SVM-classifier with a linear kernel of the software
tool WEKA [Hall et al. 2009]. As feature set all features of the emobase set were
utilized. Additionally, two cross-recording evaluations were carried out, where the
classifier was trained on disturbed and enhanced speech and tested on silent speech,
respectively. The Unweighted Average Recalls (UARs) of the performed experiments
are depicted in Figure 5.6. The baseline, silence and disturbed results correspond
to the results presented in Section 4.3 and Figure 4.7 on page 131. Additionally,
results obtained from experiments tested and trained on the enhanced recordings
and the cross-recording experiments, which were tested on the silence recordings
(cross-disturbed and cross-enhanced), are presented. A repeated-measures ANOVA
revealed that there exist significant differences in the recognizer performance consid-
ering both microphone settings individually (main effect left: F(2.2,19.5) = 4.6, p <
0.05, Greenhouse-Geisser-corrected; main effect right: F(2.6,23.3) = 4.7, p < 0.05,
Greenhouse-Geisser-corrected). The results obtained from the left and right mi-
crophone under similar recording conditions did not reach the level of significance.
By conducting post-hoc t-tests a significant difference between the classification
results obtained from the left microphone recordings under silence condition and
obtained under disturbed and cross-disturbed condition was shown (all p’s < 0.05,
Bonferroni-corrected). For the right microphone recordings a significant difference
between the results obtained under silence condition and under cross-enhanced and
cross-disturbed condition was shown (all p’s < 0.05, Bonferroni-corrected). For the
remaining post-hoc tests the corrected level of significance was nearly reached. This
is in line with the results obtained from the feature space analysis, where experi-
ment (2) showed a lower number of significantly altered features as experiment (1).
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Figure 5.6: UAR and standard deviation of the performed LOSO cross-validation exper-
iments on the original EmoDB, re-recorded EmoDB-Car and enhanced EmoDB-Car.
Cross-experiments correspond to classifiers trained on enhanced/ disturbed speech and
tested on silent speech. All other experiments were performed under matching training
and testing condition. Stars denote the level of significance (α = 0.05).

The high numbers of altered features in experiment (1) and (2) explain the strong
decrease in the recognition performance between the matching results of the silent
experiments and the cross-recording experiments, as it can be assumed that fea-
tures of higher importance for detecting emotions from the silent speech samples
were not chosen in the training process utilizing the enhanced and disturbed speech
samples. This further supports the importance of choosing the correct data set, es-
pecially when it comes to non-optimal recording condition. In particular the results
obtained for the cross-enhanced experiments are of high relevance for this state-
ment, as it demonstrates that for emotion recognition speech enhancement will not
automatically lead to an improvement of the recognition performance.

5.2.4 Findings and Recommendations on Speech Enhance-
ment

It can be summarized that by utilizing the OM-LSA-IMCRA speech enhancement
algorithm I was able to obtain an enhanced speech signal which aligns well to the
speech signal under the silence condition. However, a majority of the extracted
features from the enhanced signal is altered significantly compared to the features
obtained under the silence and disturbed condition. These strong differences can be
explained by the differences in the signals’ power spectrum. Especially for higher
frequency bands and speech absence signal parts, the enhancement algorithm lowers
the spectral power noticeable compared to the silence recordings. For signal parts
containing speech with a low spectral power, which were strongly disturbed by the
in-vehicle noises, the speech presence estimator of the algorithm is unable to detect
the speech reliably. Hence, these signal parts are incorrectly diminished. This is
not the case for the disturbed signal, as the signal corresponds to the recording
under silence condition (affected by the in-vehicle acoustics only) with added envir-
onmental noises and engine sound. The speech content of the signal itself remains
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unchanged, as it was recorded under the same room acoustics. Additional classifica-
tion experiments revealed that there exists no significant difference in the recognition
performance when using disturbed or enhanced speech signals, respectively. There-
fore, it is advisable, for the investigations presented in this Thesis, not to use speech
enhancement in case of speech emotion recognition but rather stick to the disturbed
speech signal without speech parts being diminished by the enhancement algorithm.

5.3 Summary and Discussion

In this Chapter the pre- and post-processing of real-world in-car recordings was
presented. This included the pre-processing of the raw-audio material obtained from
the headset microphone worn by the driver. These recordings are assumed to be of
higher recording quality, as the inlet of the microphone was directed towards the
driver’s mouth suppressing noises coming from other directions. The pre-processing
included the partitioning of all voiced speech segments into smaller sub-samples in
between 0.5 and 2.5 seconds of length. This resulted in 16988 speech samples which
then were annotated by three independent, German speaking, expert labelers. The
annotation process was conducted in three steps: first, an annotation of the emotion
dimensions of valence and arousal was conducted. Second, one out of four emotion
categories (neutral, positive, frustrated and anxious) was assessed to the speech
sample. Finally, the satisfactory level of the current label assignment was assessed.
From the annotation results I could show that there exists a high correlation between
the two approaches of dimensional and categorial annotation. However, it is not
possible to distinctively distinguish between the emotion categories of a frustrated
and an anxious driver by only considering the emotion dimensions of valence and
arousal (cf. Table 5.4). Therefore, for the further investigation on the classification
of the driver’s emotional state, only the results obtained by the categorial annotation
are utilized. As the classification should be done by only considering the disturbed
recordings of the shotgun microphones, a post-annotation processing of the disturbed
speech samples was conducted. All speech samples containing noise and overlapping
speech were manually removed from the data set. Afterwards, the labels obtained
from the categorial annotation of the high quality headset recordings were mapped
onto the disturbed speech samples. This resulted in 7562 speech samples distributed
among the four emotion categories as presented in Table 5.8.

As a fully manual annotation of low-expressive naturalistic speech samples is
strongly time consuming, an estimate of time needed to conduct a machine-learning-
assisted manual annotation of categorial emotions was presented. This theoretical
approach resulted in a decrease of annotation time of at least 19.96%. Because of
the limitations accompanied by the presented manual annotation approach (e.g. se-
quenced dimensional and categorial annotation, majority voting to obtain categorial
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labels), it can be assumed that the actual decrease in annotation time would be even
higher.

Furthermore, the effect of speech enhancement on the performance of a speech
emotion recognition task was investigated. By applying speech enhancement I was
able to align the waveform of a noisy speech signal well to its counterpart under
silence recording condition. However, as speech enhancement is based on applying
different filter techniques in time and frequency domain onto the original noisy
speech signal, the denoised signal does not correspond to a similar speech signal
recorded under silence condition. This led to a significantly high number of altered
features between the denoised speech samples and their corresponding recordings
under silence condition and to noticeable differences between their signals’ power
spectrum (cf. Figures 5.4 and 5.5). From conducted classification experiments it
can be recommended to not apply speech enhancement in case of the speech emotion
recognition task presented in this Thesis.

The Results obtained in this Chapter will be used in the next Chapter to evaluate
the final research hypothesis of recognizing the drivers emotional state in an everyday
driving environment.
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UNTIL now I have presented the collection of real-world emotional speech
data in an in-car driving environment (cf. Chapter 3) and its pre- and post-

annotation (cf. Chapter 5). The classification results in Chapter 4 and Chapter 5,
however, were solely based on processed benchmark data samples (i.e. re-recorded
Berlin Emotional Speech Database (EmoDB) under in-car recording conditions
(EmoDB-Car) and re-recorded Vera am Mittag (VAM) under in-car recording con-
ditions (VAM-Car)). This Chapter will now focus on the detection of highly natural
and low expressive emotional speech samples and is based on the work presented
in [Requardt; Ihme et al. 2020]. The challenges associated with this kind of classi-
fication task were already addressed in Chapter 2 with a focus on different factors
affecting this task, such as the experimental setup of the data collection, utilized
speech pre- and post-processing steps or the design of the classification model. It
was stated that for the present kind of low expressive and highly natural emotional
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speech data, under non-optimal recording conditions, the automatic emotion re-
cognition task is highly challenging and will most certainly lead to low recognition
performances of the classifier (cf. Section 2.3). Therefore, a feature selection and
hyper-parameter optimization, to push the classifier to its recognition performance
limits, is inevitable. Furthermore, with the present lack of available emotional speech
data and strongly unbalanced data distributions, it is wise to utilize classification
approaches, which can cope with these kinds of limitations. Suitable classifiers for
this kind of data are Support Vector Machines (SVMs) and Random Forests (RFs),
which were therefore applied for the present classification task (cf. Appendix A for
detailed description of the algorithms).

To identify the best performing classifier, several classification experiments were
conducted, which will be presented hereinafter. An overview on these experiments
is given in Figure 6.1. It depicts all relevant steps from the feature extraction on
the post-annotated data samples to the sum of cross-validated classification models,
from which the best performing model was later chosen. As data the post-annotation
processed data samples, as presented in Section 5.1.3 were utilized. This data com-
prises 186.24 minutes of speech material, which corresponds to 7562 speech samples
originating from 28 participants (six females). The detailed samples’ distribution
can be taken from Table 5.8 on page 151. Using the feature extraction toolkit
OpenSMILE, the emobase features (cf. Table 2.3 on page 39) were extracted from

Figure 6.1: Schematic diagram of the experimental setup (adapted from [Requardt;
Ihme et al. 2020]).
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the speech samples. Afterwards, a feature selection was performed by utilizing a
feature importance ranking based on the recognition performance of a RF classifier
(i.e. wrapper method, cf. Section 2.2.4). A detailed description of the utilized fea-
ture selection method and its results are presented in Section 6.1. This approach
resulted in 20 feature sets, which were used to train and validate classification mod-
els of a SVM and RF, utilizing the Leave-One-Subject-Out (LOSO) cross-validation
scheme (cf. Section 2.2.7). As for each cross-validation experiment each subject was
used once to validate the classification model and all 20 feature sets needed to be
evaluated, this resulted in 560 classification experiments for each classification ap-
proach. Additionally to the selection of the optimal feature set, a hyper-parameter
optimization was performed. I here took into consideration 14 parameter combina-
tions (optimal parameter candidates), which were obtained by performing a random
search (cf. Section 6.2). The selection of the optimal hyper-parameter sets resulted
in additional 14 classification experiments which had to be performed for each of
the 560 cross-validation experiments. Considering this, in total 7840 classification
models needed to be trained and tested to choose and validate the optimal classi-
fication model for each, SVM and RF, classification approach (cf. Section 6.3). All
implementations presented in this Chapter were performed using MATLAB (Version
R2018b).

As parts of this chapter are based on work already published in [Requardt; Ihme
et al. 2020], several phrasings are taken literally from this publication.

6.1 Choosing the Optimal Feature Set

As already introduced in Section 2.2.3 and Section 2.2.4, the reduction of the utilized
feature set plays a decisive role when it comes to validating the designed classification
model. Especially in case of large feature sets, a low number of available data samples
for the considered emotional class, and ambiguous data clusters, the probability of
overfitting the classifier increases. Therefore, it is of high relevance to only include
those features into the feature set contributing the most to the present classification
task. By leaving out features not contributing to the classification task, not only
overfitting is prevented, but also the recognition performance may be increased (cf.
[Egorow et al. 2018]). Another side effect when utilizing feature selection is that in
case of a later real-time application of the model, also the computational effort and,
hence, latency of the system can be dramatically decreased, as only the relevant
features need to be extracted (cf. Section 2.2.4). This, for instance, would not be
the case when utilizing a feature extraction method (i.e. generating new features by
combining correlated features).

To perform the feature reduction, I utilized a wrapper feature selection method
based on the RF recognition performance and feature permutation. This feature
selection was performed using the emobase benchmark feature set including 988
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features originating from 19 functionals applied to 26 Low-Level Descriptors (LLDs)
and their deltas (see Table 2.3 on page 39 for more details).

6.1.1 Feature Selection Using Random Forest and Feature
Permutation

The approach utilized in the course of this Thesis is a RF based wrapper method (cf.
Section 2.2.4). I opt for this approach, as a comparable approach shows promising
results in [Egorow et al. 2018], where a feature importance ranking based on the RF
recognition performance is utilized and the selected features are later applied on a
SVM classifier. Independent of the utilized data set, the reduced feature set shows
an increase of recognition performance compared to the original emobase feature set,
when utilizing 40% to 60% of the original 988 features. This results in an increased
UAR by approx. 2% to 3%, compared to the recognition performance when using
all the features.

I will now further describe the used feature selection wrapper method, which is
a greedy algorithm based on feature permutation and minimizing the Out-Of-Bag
(OOB)-error (cf. [Breiman 2001]). The OOB-error corresponds to the error rate
obtained on the OOB-observations of the RF. OOB-observations are those observa-
tions not included in the training process of the tree because of the bootstrapping
procedure used to re-sample the training data (cf. Appendix A). For every indi-
vidual decision tree (t = 1, ..., numTrees, with numTrees being the total number
of trees in the forest) of the RF, the OOB-error (ε(t)) is computed. At each split
of the decision trees, a pre-defined number of features (numFeatures) is chosen
randomly from the feature set (Subset(t) ⊆ F , with F being the set of features).
The chosen feature values of each feature used at each split of the individual tree are
permuted for each feature successively among all OOB-observations and an updated
error rate using the permuted feature vector is calculated (ε̃(t, f), with f ∈ F for
all f ∈ Subset(t)). By determining the difference between the OOB-error and the
updated error rate (d(t, f) = ε̃(t, f)− ε(t)) the influence of this feature on the recog-
nition performance of the considered tree is evaluated. If a change in the prediction
error occurs, this indicates an influence of the feature permutation on the model and
vice versa. As only the pre-defined numFeatues are used at the split of each tree,
in case of features which are not represented at the split of the tree, d(t, f) is set to
zero. Finally, the feature importance (I) of feature f is determined by

I(f) =
d(f)

σ(f)
, (6.1)

with d(f) being the average value of d(t, f) for each feature f over all trees and σ(f)

representing the corresponding standard deviation. Using I(f) we can now rank
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the features according to their importance and only consider those features having
a high impact on the present classification task.

6.1.2 Evaluating the Feature Selection

As I wanted to determine the optimal feature set, which performs best also on un-
known subjects, it was decided to not apply the presented feature selection approach
on the data of all 28 evaluation subjects, but to perform LOSO cross-validation ex-
periments. By doing so, one of the 28 subjects was always unknown in the decision
process also resulting in 28 different sets of features ranked by their importance. In
case of a high correlation (r > 0.80) between all the obtained feature rankings, a
simple averaging of the feature importance for each feature would have been suffi-
cient to select those features reaching the highest value and, hence, contributing the
most to all LOSO experiments. However, by determining the Pearson correlation-
coefficient r of the obtained feature rankings only a moderate positive correlation
over all experiments was achieved (r = 0.60 (0.01), brackets denote standard devi-
ation). I, therefore, introduced a new procedure of selecting the optimal reduced
feature set in [Requardt; Ihme et al. 2020], which will be described in detail herein-
after.

Novel Feature Selection Approach

The novel feature selection approach was based on choosing the optimal feature
set from the top 100 features of all LOSO experiments. It was first determined
how many features were included in all 28 top 100 feature rankings. This resulted
in 15 very highly correlated features being present among all experiments (r =

0.90 (0.02)). The low number of consistent features indicated a high diverseness
of the important features between the different subjects and, hence, the feature
characteristics. It was assumable that these features would most certainly not lead to
the best recognition performance. To increase the probability of finding an optimal
feature set, the feature selection was extended to generate multiple sets of optimal
feature set candidates. These additional sets were generated by successively adding
those features, which were consistent in 28−n LOSO experiments, with n = 1, ..., 27,
while maintaining a high correlation of the newly generated reduced feature sets of
r ≥ 0.80. This correlation limit was reached in case of n = 19 and, hence, resulted in
19 additional optimal feature set candidates. An overview on all generated feature
set candidates, including their number of features and their correlation among all
experiments, is presented in Figure 6.2.

At this point it can already be anticipated that the classification results, when
utilizing feature set 1 (15 features), did not per se differ significantly from the results
obtained when utilizing all 988 features of the emobase feature set (cf. Figure 6.4
and Figure 6.5). This may be attributed to the fact that the utilized 15 features are
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Figure 6.2: Correlation coefficient r of the optimal feature set candidates. Brackets
denote the corresponding feature set numbers (adapted from [Requardt; Ihme et al.
2020]).

assumed to be those features contributing most to the present classification task.
Therefore, it was assumed that this low number of utilized features was sufficient to
obtain a comparable recognition performance, as when utilizing all features, while
reducing the number of features to 1.52% of the original feature set. Further emotion
recognition experiments, utilizing RF and SVM classification models, and statistical
analysis (repeated-measures ANOVA) of the obtained recognition results for the
different optimal feature set candidates, are presented in Section 6.3. This will also
include results with regard to the influence of hyper-parameter optimization, as
introduced in the next Section.

6.2 Improving the Recognition Performance using
Hyper-Parameter Optimization

To further push the speech emotion recognition system to its performance limits
it is inevitable to perform a hyper-parameter optimization. Especially in case of
real-world data samples, which show a high variation in their feature characteristics
and, hence, are more spaciously distributed among the search space (i.e. ambiguous
class boundaries), a hyper-parameter optimization can lead to significant improve-
ment of the recognition performance (cf. Section 2.2.8). Therefore, a random search
was performed to optimize the relevant hyper-parameters of the designed RF and
SVM classification models. This was done by randomly choosing ten parameter
combinations from a pre-defined discrete search interval. To validate these para-
meter combinations, LOSO cross-validation experiments were performed and the
parameter combination performing best among all LOSO-experiments was chosen
as the optimal one. This was done individually for each optimal feature set can-
didate generated in the previous Section. In the following, I first present how the
search interval of the random search was determined. Afterwards, the results of the
LOSO cross-validation experiments are presented, first averaged over all generated
feature sets, and later individually for each utilized feature set.
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6.2.1 Determining the Search Interval

The search intervals of the RF and SVM hyper-parameters were determined separ-
ately and individually for each considered hyper-parameter. As hyper-parameters
the most commonly used parameters, as introduced in Appendix A and Section 2.2.8,
were utilized. The search intervals of both classification approaches were based on
the heuristic choices presented in the literature (cf. [Hastie et al. 2009; Liaw &
Wiener 2002] and [Hsu et al. 2016]).

In case of a RF classifier, relevant hyper-parameters are the number of trees in-
cluded in the forest (numTrees) and the size of the feature set used at each split
of the decision trees (numFeatures). A detailed description on how these two
parameters influence the recognition performance and generalizability of the clas-
sifier is stated in Appendix A. Considering the recommendations presented there,
the parameter interval of numTrees was specified ranging from 10 - 1000 trees,
which is comparable to the experimental setup presented in [Probst et al. 2019].
The interval of numFeatures was chosen based on the recommendations made
in [Hastie et al. 2009]. Depending on, whether the designed classifier is used to
solve a classification or a regression problem, the authors recommend to use either
numFeatures =

√
(p), with p being the total number of features inside the fea-

ture set, or numFeatures = p/3, respectively. Considering the feature selection
presented in the previous section, the utilized feature sets were comparatively low.
With a maximum number of 98 features included in the largest set (cf. Figure 6.2
on page 170), choosing numFeatures <

√
(p) would not be reasonable. There-

fore, the lower limit of the search interval was chosen as
√

(p). The upper limit of
the search interval was chosen based on the assumption made in [Breiman 2001],
where it is stated that for regression problems a larger number of numFeatures is
needed. Bearing in mind that the recommendations made in [Hastie et al. 2009]
are only valid in case of ideal class separability, I extended the search space up to
numFeatures = p/2. As the size of the utilized feature set varies from p = 15 up
to p = 98 features, also the search interval changes. By generating a random seed,
ten integer values lying in between the upper and lower limit of the search inter-
vals of numTree and numFeatures were generated. This resulted in ten optimal
parameter combination candidates as stated in Table 6.1. The numeration of the
parameter sets was not chosen randomly, but in increasing order of the F1-Measure
obtained during the later evaluation of the associated hyper-parameter combinations
(cf. Table 6.2 and Table 6.3 on pages 175 and 178). In case of numFeatures, the
percentage split of randomly chosen features out of all features in the set, averaged
over all feature sets, is given. Additionally to the randomly generated parameter
combinations, all combinations of the upper and lower limits of both search intervals
were evaluated. With regard to the expected computational costs arising when per-
forming a hyper-parameter optimization in combination with choosing an optimal
feature set and LOSO cross-validation (cf. Figure 6.1 on page 166), evaluating a
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Table 6.1: Optimal parameter set candidates of the RF and SVM classifier generated using
random search on the pre-defined search intervals (adapted from [Requardt; Ihme et al.
2020]). In case of RF, the relevant parameter combinations correspond to numTrees
and numFeatures, whilst for SVM the relevant parameter combinations correspond
to C and γ.

Par. Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RF numTrees [#] 10 10 61 134 555 1000 516 215 711 446 898 298 1000 894
numFeatures [%] 16 50 24 16 16 16 25 35 32 30 36 39 50 40

SVM C 2−5 2−3 215 211 23 213 2−5 21 2−5 27 23 215 27 21

γ 23 23 23 21 2−1 2−7 2−15 2−3 2−11 2−13 2−11 2−15 2−11 2−5

larger number of hyper-parameter combinations would go beyond the scope of this
Thesis.

In case of a SVM, the classification algorithm is based on finding a hyperplane in
the transformed feature space, which linearly separates two classes. As the utilized
data samples contain real-world speech data recorded under disturbed environmental
conditions, it was assumed that standard SVMs would not lead to satisfactory clas-
sification results. To also achieve reasonable results in case of non-linearly separable
data samples, there exist ways to adapt a standard SVM. This can be done by intro-
ducing a soft margin using the cost-value C and by utilizing the so-called kernel-trick
(cf. Appendix A). The cost-value C penalizes those samples lying inside and on the
wrong side of the margin. Depending on the used kernel, different parameters are
used for hyper-parameter optimization. The most sophisticated kernel is the Ra-
dial Basis Function (RBF)-kernel as presented in Equation (A.22) on page 259. For
this kernel, the only relevant hyper-parameter is γ, which affects the width of the
Gaussian.

For the recognition experiments performed in this Chapter, I opt for a SVM with a
soft margin and a RBF-kernel. The parameters C and γ were therefore considered as
relevant hyper-parameters for the present classification task. Unlike the parameter
numFeatures of the RF, the parameters of the SVM were chosen independent from
the utilized feature set. Therefore, the parameter values presented were identical
for all considered feature sets. However, in [Steinwart & Christmann 2008] it is
stated that the scaling of the kernel parameter γ has the same effect on the classifier
as scaling the input space. With an additional change in the dimensionality of
the considered feature space, this implies that with a change in the input space
also the influence of γ changes. I, therefore, assumed that the optimal parameter
combination is also dependent on the chosen feature set.

To identify the search space of C and γ, the findings made in [Hsu et al. 2016]
were applied. In this work, the authors present an optimization based on grid-search.
By conducting various cross-validation experiments they identify a discrete search
interval of
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C = [2−5, 2−3, 2−1, 21, 23, 25, 27, 29, 211, 213, 215]

and
γ = [2−15, 2−13, 2−11, 2−9, 2−7, 2−5, 2−3, 2−1, 21, 23].

The optimal hyper-parameter candidates were randomly taken from these inter-
vals. In this process repetitions of the parameter values were allowed. As for the
RF, ten parameter combinations were chosen randomly and four combinations were
generated using the upper and lower limits of both search intervals. The resulting
14 optimal parameter set candidates are stated in Table 6.1.

6.2.2 Evaluating Optimal Parameter Combinations

The optimal hyper-parameter candidates, as presented in Table 6.1 on page 172,
were validated using the LOSO cross-validation scheme. This was done for each fea-
ture set separately and resulted in 7840 experiments performed for each considered
classification approach (cf. Figure 6.1 on page 166). The computational costs arising
during this process of training and testing the individual classification models are
presented in Figure 6.3. The computational costs were summed up for each feature
set (i.e. 28 LOSO-runs and 14 parameter sets). A clear relation between the size of
the feature set and the computational cost of the classifier is noticed (see Figure 6.2
on page 170 for feature set sizes). In case of the RF classifier the computational cost
grows with the increase of the feature set. This can be attributed to the increase
of features from which the classifier can choose at each split of the decision trees.
For the SVM classifier a strong decrease of computational cost with an increase of
features is noticed. This may be due to the computational effort of finding a sep-
arating hyperplane, which is easier for high-dimensional spaces (but often leads to
lower generalization). Already anticipating the recognition performances presented
in Figure 6.4 and Figure 6.5, it can be stated that the high computational costs
obtained with small feature sets were accompanied by lower UARs, indicating that
the determined separating hyperplanes are less suitable to clearly divide the feature
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Figure 6.3: Computational costs of performing a hyper-parameter optimization on the
SVM and RF classifier, utilizing a LOSO cross-validation for each identified feature set.
With an increase of the feature set number also the size of the feature set increases.
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space into clusters of the four considered emotion categories. Considering the total
amount of computational cost, the optimization of the SVM took an overall training
and testing time of over 675 hours, while the corresponding RF optimization took
only 250 hours. However, with the last considered feature subset (Set 20) the courses
of the computational costs of both classification approaches intersect. To confirm
this trend, further feature subsets need to be generated and similar classification
experiments need to be performed. This, however, was not done in the scope of this
Thesis.

The obtained recognition performances were afterwards used to identify if there
existed a distinct hyper-parameter combination which outperformed all others, re-
gardless of the utilized feature set. As performance measures the UAR, UAP and
corresponding F1-measure, as presented in Section 2.2.7 were utilized. As described
earlier in this Section, the size of the feature set influences the search interval of the
hyper-parameter optimization. Consequently, it is assumable that an optimal para-
meter combination needs to be chosen individually for each considered feature set.
The results will be presented separately for the utilized classification approaches.

Parameter Optimization for the RF Classifiers

To receive an overall insight on how the different parameter candidates performed
on the recognition task, the performance measures were averaged over all feature
sets. In case of the F1-measure, the metric was determined for each feature set
separately and later averaged over all feature sets (macro-average)1. The obtained
values are stated in Table 6.2. The best results regarding the individual performance
measures are marked in green color. The first column refers to the considered optimal
parameter set candidates, as defined in Table 6.1 on page 172, and was chosen in
increasing order of the obtained macro-averaged F1-measure, as this measure takes
into account the trade-off between UAR and UAP. For all performance measures
values above 25% were achieved, which indicates a recognition performance above
chance level for the considered four-class emotion recognition problem. Brackets
denote the standard deviation. It can be seen that for the UAR a very low standard
deviation, ranging from 0.44 to 0.68 was achieved. This indicated, that the results
obtained for the individual feature sets did not show a strong variation. In case
of UAP and F1-measure a higher variation among the feature sets was noticed
(indicated by the higher standard deviation). With regard to the results stated
in Table 6.2, it was noticed that parameter sets 1 and 2 showed a considerably
lower UAP and F1-measure compared to all other parameter sets. Therefore, it was
assumed that these parameter sets do not serve as optimization candidates (marked
in red color). The later presented detailed statistical analysis of the results will
further reveal the unsuitability of parameter set 3.

1A different result would be obtained when determining the micro-average (e.g. calculating
the F1 based on the already averaged UAR and UAP values)
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Table 6.2: UAR, UAP and F1-measure of a 4-class driving condition problem averaged
over all investigated feature sets for the different parameter combinations (Par. Set)
of the RF classifier with ascending F1-measure (macro-averaged). Brackets denote the
standard deviation. The best results regarding the individual performance measures
are marked in green color. Red entries indicate parameter sets which were identifies as
unsuitable during the statistical analysis.

Par. Set UAR [%] UAP [%] F1[%]

1 31.86 (0.68) 33.97 (1.20) 32.87 (0.88)
2 32.01 (0.67) 33.86 (0.82) 32.91 (0.70)
3 32.10 (0.56) 41.88 (1.84) 36.34 (1.00)
4 31.73 (0.51) 43.01 (2.26) 36.50 (1.10)
5 31.48 (0.48) 43.70 (2.23) 36.59 (1.07)
6 31.41 (0.44) 43.94 (2.32) 36.61 (1.07)
7 31.67 (0.55) 44.00 (2.82) 36.81 (1.31)
8 31.99 (0.48) 43.45 (2.05) 36.83 (1.01)
9 31.83 (0.57) 44.13 (2.79) 36.96 (1.34)
10 31.86 (0.54) 44.08 (2.57) 36.96 (1.21)
11 31.80 (0.55) 44.22 (2.52) 36.98 (1.22)
12 31.92 (0.59) 43.98 (2.09) 36.98 (1.10)
13 31.92 (0.55) 44.39 (2.24) 37.12 (1.13)
14 31.89 (0.60) 44.59 (2.59) 37.16 (1.27)

The results obtained for each individual feature set (averaged over all subjects)
are stated in Appendix D (see page 288 ff.). The Tables clearly indicate that,
for most of the considered parameter sets, with an increased number of features
also the performance increased up to a certain value. An exception was noticed
in case of parameter sets 1 and 2, for which the UAR changed irregularly, also
supported by its higher standard deviation in Table 6.2, and for which the UAP
achieved noticeably lower values compared to all other parameter sets. Considering
the associated parameter values of numTrees and numFeatures, the number of
trees of sets 1 and 2 both correspond to 10 trees. Therefore, it was assumed that
this low number of trees is insufficient for a reliable classification, as they will not
lead to a sufficient generalizability of the classifier (cf. Appendix A).

The assumptions made above were also confirmed by the results obtained from a
repeated-measures Analysis of Variance (ANOVA) performed on the UAR, UAP and
F1-measure over all considered parameter sets. This revealed a highly significant
effect of the chosen parameter set (par. set) for all performance measures (main
effect par. set UAR: F(4.9,93.0) = 8.38, p < 0.01, Greenhouse-Geisser-corrected;
main effect par. set UAP: F(5.2,98.2) = 148.79, p < 0.01, Greenhouse-Geisser-
corrected; main effect par. set F1: F(5.2,98.3) = 115.25, p < 0.01, Greenhouse-
Geisser-corrected). By performing post-hoc paired t-tests on the F1-measure, I
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was able to identify three parameter sets which showed significant differences in
their performance. These were parameter sets 1, 2 and 3. While the averaged
performances of sets 1 and 2 were highly significantly lower than for all other sets
(all p’s < 0.01, Bonferroni-corrected), set 3 showed a significantly lower performance
than six other sets (set 3 vs. sets [9, 10, 11, 12, 13 & 14], p’s < 0.05, Bonferroni-
corrected) and a higher performance than sets 1 and 2 (set 3 vs. sets [1, 2], p’s < 0.05,
Bonferroni-corrected). A similar significant effect was obtained when performing
post-hoc paired t-tests on the UAP with sets 1 and 2 showing a highly significantly
lower performance than all other sets (all p’s < 0.01, Bonferroni-corrected) and set 3
showing a significantly lower performance than 10 other sets (set 3 vs. sets [5, 6, 7, 8,
9, 10, 11, 12, 13 & 14], p’s < 0.05, Bonferroni-corrected). The results obtained on the
F1-measure and UAP were, however, in conflict with the post-hoc results obtained
on the UAR. Here, sets 1 and 2 showed no noteworthy significant differences and
set 3 even outperformed seven other sets (set 3 vs. sets [4, 5, 6, 7, 9, 10 & 11], p’s <
0.05, Bonferroni-corrected). With regard to the present challenging recognition task
with comparatively low recalls, it is of high importance to achieve a high precision,
as this indicates a low number of false positives (cf. Table 2.5 on page 47 and
Equation (2.14) on page 46) and, hence, a high trustworthiness of the identified
emotional state. Considering the parameter values of set 3 it was further noticed
that this set comprised a comparatively low value for numTrees. It was, therefore,
assumed that the obtained RF classification model is not sufficiently generalizable,
implying that the (on average) higher UAR could also occur by chance. This is also
in line with the results presented in [Oshiro et al. 2012], where it is stated that for
a good recognizer performance more than 100 decision trees are needed.

From the obtained results of the statistical analysis, three parameter sets (1, 2
and 3), which were identified as non-optimal parameter candidates, were discarded.
However, it was not possible to identify one parameter set, which outperformed all
other sets.

To verify this result, an additional repeated-measures ANOVA was performed on
the remaining 11 parameter sets. For all performance measures, a significant effect
of the parameter set was revealed (main effect par. set UAR: F(4.4,83.3) = 14.25,
p < 0.01, Greenhouse-Geisser-corrected; main effect par. set UAP: F(5.0,94.2) =
2.59, p < 0.05, Greenhouse-Geisser-corrected; main effect par. set F1: F(4.5,85.5)
= 3.51, p < 0.01, Greenhouse-Geisser-corrected). However, for the UAP and F1-
measure this effect was noticeably lower compared to the results obtained when
utilizing all parameter sets. Additional post-hoc paired t-tests revealed that there
exists no parameter set, with an overall significant higher or lower performance in
UAP or F1-measure, compared to all other parameter sets. Only considering the
UAR, the post-hoc t-tests revealed that the sets 5 and 6 performed significant worse
than a majority of the other sets (set 5 vs. sets [4, 8, 9, 10, 11, 12, 13 & 14], p’s
< 0.05, Bonferroni-corrected, and set 6 vs. sets [4, 7, 8, 9, 10, 11, 12, 13 & 14], p’s
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< 0.05, Bonferroni-corrected). However, especially when considering the trade-off
between UAR and UAP, an overall significant effect in the F1-measure is reasonable
when choosing the optimal parameter combination. Therefore, no further parameter
sets were excluded from the list of potential candidates and the best performing
parameter set was chosen independently for each feature set. At this point, it can
already be disclosed that the performances of the different parameter sets for the
individual feature sets did not differ significantly. The best performing parameter set
for each feature set was chosen based on the micro-averaged F1-measure. The results
of this feature set dependent LOSO cross-validation is presented in Section 6.3.

Parameter Optimization for the SVM Classifiers

Similar analyses were performed for the SVM classification models. Analogously
as for the RF classification models, Table 6.3 gives an overview on the recognition
performances (UAR, UAP and F1-measure), averaged over all feature sets. Green
entries correspond to the highest value obtained for the individual performance meas-
ures. It is clearly noticeable that the first three parameter sets did not lead to a
performance above chance level. This implies that the classifier was unable to differ-
entiate between the individual emotional states. For these parameter sets almost all
test samples were assigned to the same emotional state over all LOSO experiments,
namely neutral. Therefore, these parameter combinations were excluded from the
list of potential candidates. When considering the corresponding parameter values
as stated in Table 6.1 on page 172, it can be seen that the value of γ was assigned
to the highest possible value of the search interval (γ = 23), while the value of C
was assigned as well to the highest, as to the lowest possible value of the search
interval (C = [2−5, 215]). This already gave a first evidence towards the choice of
γ being of higher relevance than the choice of C. In case of the parameter sets 4
and 5, slightly higher performance measures were obtained, respectively. They were,
however, outperformed by all other sets. Therefore, it was assumed that the para-
meter sets 1, 2, 3, 4 and 5 do not serve as optimal parameter candidates (marked
in red color). Furthermore, it was noticed that, in contrast to the RF classifier,
the range of the averaged performance measures was considerably wider. While the
difference in between the highest and lowest values of the RF classifier equated to
∆UAR = 0.69%, ∆UAP = 10.73% and ∆F1 = 2.29%, the difference in case of
the SVM was considerably higher with ∆UAR = 6.21%, ∆UAP = 30.38% and
∆F1 = 19.72%.

As for the RF approach, the results obtained for each individual feature set (av-
eraged over all subjects) are stated in Appendix D (see page 291 ff.). For each para-
meter set a uniform increase and decrease of the individual performance measures
was observed. While for most parameter sets the recognition performance increased
with an increase of features included in the set, in case of parameter set 8 a decrease
of performance was noticed. The utilized heat map in Appendix D visualizes the



178
6.2. Improving the Recognition Performance using Hyper-Parameter

Optimization

Table 6.3: UAR, UAP and F1-measure of a 4-class driving condition problem averaged
over all investigated feature sets for the different parameter combinations (Par. Set) of
the SVM classifier with ascending F1-measure (macro-averaged). Brackets denote the
standard deviation. The best results regarding the individual performance measures
are marked in green color. Red entries indicate parameter sets which were identifies as
unsuitable during the statistical analysis.

Par. Set UAR [%] UAP [%] F1[%]

1 25.00 (0.01) 11.99 (0.68) 16.20 (0.58)
2 25.00 (0.01) 11.99 (0.68) 16.20 (0.58)
3 25.00 (0.01) 11.99 (0.68) 16.20 (0.58)
4 25.06 (0.16) 14.03 (4.10) 17.71 (2.92)
5 25.57 (0.41) 23.23 (6.73) 23.85 (4.13)
6 27.59 (0.66) 32.79 (1.94) 29.95 (1.12)
7 29.13 (1.23) 33.00 (1.95) 30.94 (1.49)
8 28.07 (0.78) 35.66 (2.66) 31.39 (1.46)
9 29.87 (0.80) 34.70 (3.17) 32.07 (1.78)
10 30.20 (0.91) 38.30 (5.37) 33.67 (2.64)
11 30.28 (0.99) 38.55 (5.48) 33.82 (2.74)
12 30.45 (0.81) 38.88 (4.40) 34.09 (2.20)
13 30.50 (0.87) 39.61 (4.66) 34.39 (2.34)
14 31.21 (0.72) 42.37 (2.56) 35.92 (1.34)

performance weakness of parameter sets 1, 2, 3, 4 and 5, which is in line with the
averaged results presented in Table 6.3.

Even though the unsuitability of parameter sets 1, 2, 3, 4 and 5 seems evident.
This assumption was confirmed by the results obtained from a repeated-measures
ANOVA. This revealed a highly significant effect of the parameter sets on all per-
formance measures (main effect par. set UAR: F(1.2,13.6) = 303.69, p < 0.01,
Greenhouse-Geisser-corrected; main effect par. set UAP: F(1.5,27.6) = 193.50, p <
0.01, Greenhouse-Geisser-corrected; main effect par. set F1: F(1.4,27.2) = 257.55,
p < 0.01, Greenhouse-Geisser-corrected). Post-hoc paired t-tests further revealed
that sets 1, 2, 3 and 4 performed highly significant lower than the remaining ten
sets for all three performance measures (all p’s < 0.01, Bonferroni-corrected). In
case of parameter set 5, a significant higher performance compared to sets 1, 2, 3
and 4 was obtained (all p’s < 0.01, Bonferroni-corrected). Nevertheless, this set
performed significant lower than the remaining nine sets (all p’s < 0.01, Bonferroni-
corrected). This is in line with the assumptions made previously, of sets 1, 2, 3,
4 and 5 not serving as optimal parameter candidates. It was further noticed that
there exist three sets which outperformed a majority of the other sets for all per-
formance measures, these were sets 12, 13 and 14. In case of set 14, it was even
shown that this set performed significant higher than all other sets (all p’s < 0.05,
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Bonferroni-corrected), and vice versa sets 12 and 13 performed significantly lower
than set 14 (all p’s < 0.05, Bonferroni-corrected). Considering the post-hoc results
obtained from the F1-measure, set 12 performed significant higher than nine other
sets (set 12 vs. sets [1, 2, 3, 4, 5, 6, 7, 8 & 9], p’s < 0.05, Bonferroni-corrected) and
set 13 significant higher than 11 other sets (set 13 vs. sets [1, 2, 3, 4, 5, 6, 7, 8, 9,
10 & 12], p’s < 0.05, Bonferroni-corrected).

From the obtained results of the statistical analysis, five parameter sets (sets 1,
2, 3, 4 and 5), which were identified as non-optimal parameter candidates, were
discarded. Furthermore, it was possible to identify three parameter sets, which
outperformed a majority of the other sets (sets 12, 13 and 14).

These results were verified by repeating the statistical analysis on the remaining
nine parameter sets. As before, a highly significant effect of the parameter sets
on the different performance measures was revealed (main effect par. set UAR:
F(1.3,25.5) = 73.13, p < 0.01, Greenhouse-Geisser-corrected; main effect par. set
UAP: F(1.6,29.9) = 25.41, p < 0.01, Greenhouse-Geisser-corrected; main effect par.
set F1: F(1.6,29.8) = 36.62, p < 0.01, Greenhouse-Geisser-corrected). In contrast
to the RF approach, a noticeable higher effect on all performance measures, com-
pared to the results obtained when utilizing all parameter sets, was obtained. This
indicates that, with regard to the remaining parameter sets, the RF classifier is
more robust against differences in the chosen parameter set than the SVM classifier.
The post-hoc t-tests further revealed a consistent impact of the parameter sets on
the different performance measures. For all considered measures, set 14 showed a
significant higher performance compared to all other parameter sets (all p’s < 0.05,
Bonferroni-corrected). Additionally, three other sets (sets 11, 12 and 13) performed
significantly better than at least three other sets (sets 6, 7 and 9) for all considered
performance measures (all p’s < 0.05, Bonferroni-corrected). Furthermore, for sets
6 and 7, a significant lower performance compared to a majority of the remaining
sets was achieved (set 6 vs. sets [7, 9, 10, 11, 12, 13, & 14], p’s < 0.05, Bonferroni-
corrected; set 7 vs. sets [9, 10, 11, 12, 13, & 14], p’s < 0.05, Bonferroni-corrected). It
can be anticipated at this point that these two sets were also never chosen as optimal
parameter set during the later feature set dependent evaluation in Section 6.3.

Considering the presented results, it was possible to draw conclusions on the
influence of the cost parameter C and the kernel-parameter γ on the recognition
performance of the SVM classifier. By evaluating the number of times a certain
parameter set was chosen for the individual feature sets, it was noticed, that in cases
of small feature sets (≤ 20 features), a γ ≤ 2−3 was needed to obtain reasonable
classification results. The only exception was noticed in case of γ = 2−7 (set 6), which
performed significant lower than seven other sets (see above). With an increased
number of features also γ decreased. For feature set sizes in between 23 and 70
features a γ ≤ 2−5, and sizes from 78 features onwards a γ ≤ 2−7 was needed,
respectively. However, these results only describe tendencies, which could not be
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confirmed by statistical analysis on the individual feature sets (see Section 6.3).
Hence, as for the RF classifier, it is recommended to choose the parameter set
individually for each feature set. During the later performance validation of the
different feature sets, it was further possible to confirm the assumption made before,
which state that cost-parameter C has a much lower influence on the performance
of the classifier than the parameter γ.

6.2.3 Findings on Hyper-Parameter Optimization

To sum up, in case of the RF classification approach, no optimal parameter set
which outperformed all other sets could be identified. A repeated-measures ANOVA
revealed that the choice of the parameter set has a significant effect on the considered
performance measures. However, this effect was mainly caused by three parameter
sets performing significantly lower than a majority of the other sets. These were sets
1, 2 and 3, which were excluded for the further evaluation of the individual feature
sets. For these sets, a comparatively low number of numTrees was chosen, for
which it can be assumed that the classifier is not generalizable. Furthermore, there
exists a strong interdependency between the chosen hyper-parameters numTrees
and numFeatures, and a dependency between the parameter values and the size
of the feature sets. This was also confirmed by the results obtained after excluding
parameter sets 1, 2 and 3 from the statistical analysis. For this case, it was not
possible to identify parameter sets, which outperformed a majority of the other
sets. Therefore, I opt to choose the parameter sets individually for each considered
feature set. The optimal parameter candidates which are used for this feature set
dependent evaluation in Section 6.3 are parameter sets 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
and 14.

However, it needs to be stated that not finding an optimal set which outperformed
the other sets, may also be justified by the low number of evaluated parameter
sets, which did not cover the whole search space. Furthermore, by considering the
Tables presented in Appendix D, a much stronger influence of the chosen feature
set, compared to the choice of the parameter set, was identified. The visualized heat
map in Appendix D shows that with an increased size of the feature set also the
classification performance increases. A further evidence of the strong influence of
the feature set is the comparatively low range of the averaged performance measures
presented in Table 6.2 on page 175. Especially after the exclusion of the parameter
sets 1, 2 and 3, the difference of the mean values for each performance measure
equated to 0.58% for UAR, 1.58% for UAP, and 0.66% for F1, accompanied with
only small variations in the standard deviation.

In case of the SVM classification approach, by utilizing the identical evaluation
procedure, it was possible to identify five parameter sets which were significantly
outperformed by a strong majority of the remaining sets. These were sets 1, 2, 3,
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4 and 5. With regard to the associated hyper-parameters, it was noticed that for
these parameter sets the highest values of γ were utilized, while the cost-parameter
C would range in between the highest and lowest possible value of the search inter-
val (C = [2−5, 215]). At this point it was already anticipated, that for an optimal
performance of the classifier, an increase of the size of the feature set needed to be
accompanied with a decrease of γ. The influence of the second optimization para-
meter C, however, was much lower, respectively. It was further possible to identify
three parameter sets which would outperform a majority of the other parameter
sets. These were sets 12, 13 and 14. This effect was also observed when excluding
sets 1, 2, 3, 4 and 5 from the statistical analysis. This two stage approach was
chosen to confirm the statistics when excluding “outliers”. Additionally, this second
statistical analysis further revealed two more parameter sets (sets 6 and 7) which
were outperformed by a majority of the remaining sets leading to seven parameter
sets which are used for the feature set dependent evaluation in Section 6.3 (sets 8, 9,
10, 11, 12, 13 & 14). In contrast to the RF classifier, the heat maps in Appendix D
show that the recognition performance is strongly dependent on both, the chosen
parameter set, and utilized feature set. This is also reflected by the comparatively
high differences of the averaged UAR, UAP and F1-measures presented in Table 6.3
on page 178, which equate to 3.62%, 9.58%, and 5.97%, respectively (after exclusion
of parameter sets 1, 2, 3, 4 and 5).

6.3 Classifying Drivers’ Emotions

Until now, only the influence of the chosen hyper-parameter set on the recognition
performance of the individual classifiers has been addressed. It was identified that
the effect of the chosen parameter sets on the average recognition performance of the
individual feature sets was, in most cases, not significant. Therefore, it was stated
that the optimal parameter set needs to be chosen separately for each individual
feature set. I will first evaluate if there exists a feature set which outperformed the
other sets. Afterwards, I will validate the performance of the classifier by presenting
the emotion-wise results of the best performing LOSO cross-validation experiments.
This was done individually for the considered classification approaches.

6.3.1 The Influence of the Feature Set

The evaluation of the feature set was performed by utilizing the LOSO cross-
validation results obtained when performing a hyper-parameter optimization for
each feature set separately. The UAR and UAP, averaged over all LOSO experi-
ments are stated in Figures 6.4 and 6.5, respectively. The parameter set was chosen
based on the micro-averaged F1-measure. Additionally to the optimized results
obtained for the individual feature sets, baseline results using all features of the
emobase feature set are presented. The baseline results were obtained by utilizing a
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Figure 6.4: Mean UAR of the optimized RF/ SVM classifiers for each individual feature
set.
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Figure 6.5: Mean UAP of the optimized RF/ SVM classifiers for each individual feature
set.

standard non-optimized Classification and Regression Trees (CART) approach (cf.
[Breiman et al. 1984]) with a default number of 200 decision tress in the forest (red
dashed line), an optimized RF (red solid line) and an optimized SVM (green dashed
line), using the remaining parameter sets of the previous Section 6.2.

Feature Set Analysis for the RF Classifiers

To identify if there exists a feature set having a significant effect on the recognition
performance of the classifier, a repeated-measures ANOVA was performed using the
results obtained from the optimized LOSO cross-validation experiments. In case of
the UAR, the ANOVA revealed that the feature sets highly significantly affected
the recall of the experiments (main effect feature set UAR: F(7.2,195.7) = 4.24,
p < 0.01, Greenhouse-Geisser-corrected). By conducting a post-hoc paired t-test,
one feature set was identified, which outperformed nine other sets and the baseline
(RF) classifier, this was set 15 (set 15 vs. sets [baseline (RF), 2, 3, 4, 5, 6, 7,
9 & 12], p’s < 0.05, Bonferroni-corrected). It was further noticed that especially
small feature sets could not reach the performance of the baseline classifiers. This
effect was even significant considering sets 1, 4, 5 and the baseline (RF) classifier in
contrast to sets 14 to 18 (all p’s < 0.05, Bonferroni-corrected). As for the UAR, a
significant effect of the feature sets on the UAP was revealed (main effect feature
set UAP: F(7.3,196.3) = 2.42, p < 0.05, Greenhouse-Geisser-corrected). However,
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from the post-hoc t-tests it was not possible to identify one feature set, which would
outperform a majority of the other sets. Nevertheless, it was possible to identify
two sets, which were outperformed by a majority of the considered other sets. These
were sets 1 and 2 (set 1 vs. sets [baseline (CART), 7, 8, 9, 12, 14 & 16], p’s < 0.05,
Bonferroni-corrected; set 2 vs. sets [baseline (CART), 7, 9, 10, 11, 12, 13 & 15], p’s
< 0.05, Bonferroni-corrected).

Based on the results of the statistical analysis, I opted for feature set 15 as optimal
feature set, as the recall obtained when utilizing this set was not only noticeable
higher compared to all other sets but even significant. This was also in line with the
statement made in the previous Section, of an increased performance of the classifier
with an increased feature set size. Considering the Tables in Appendix D (see
page 288 ff.), this effect was even independent of the chosen parameter set. This also
substantiates the statement that, in case of a RF classifier, a feature selection is of
higher importance when it comes to boosting the classifier’s performance, compared
to a parameter optimization for the individual feature sets.

Feature set 15 includes all features of the emobase feature set, which were ranked
in the top 100 feature ranking of at least 14 LOSO experiments (cf. Section 6.1.2).
From Figure 6.2 on page 170 it is known that set 15 contains 65 features of the
original emobase set, which equates to 6.6% of the original features. It was no-
ticed that the most frequently occurring LLDs (cf. Table 2.3 on page 39) were
related to the Mel-Frequency Cepstral Coefficient (MFCC) No. 1 and 2 (7 and 12
features, respectively), and the Line Spectral Pair (LSP) of the Linear Predictive
Coding (LPC)-coefficients No. 1, 3 and 7 (7 features, 6 features and 7 features,
respectively). These features all belong to the feature category of spectral features,
introduced in Section 2.2.2. Furthermore, all these LLDs, except for LSP frequency
No. 7, describe harmonics close to the fundamental frequency F0 (lower frequency
range). Only eight features included in feature set 15 did not belong to the spectral
features category, but were related to loudness (1 feature), intensity (1 feature),
Zero-Crossing-Rate (ZCR) (5 features) and probability of voicing (1 feature). It
was further possible to identify those functionals, which were applied the most fre-
quently to the LLDs. These were the arithmetic mean (7 occurrences), minimum and
maximum value (6 occurrences each), quartiles (16 occurrences) and inter-quartile
ranges (12 occurrences).

Feature Set Analysis for the SVM Classifiers

Similar evaluations were performed on the results obtained from the LOSO cross-
validation experiments for the SVM classifier. The feature set dependent optimized
results are presented in Figure 6.4 and 6.5. In case of the UAP, the baseline (SVM)
classifier clearly outperforms all other feature sets. This was confirmed by the res-
ults obtained from the statistical analysis (main effect feature set UAR: F(5.5,147.4)
= 8.69, p < 0.01, Greenhouse-Geisser-corrected). A post-hoc paired t-test revealed
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that the baseline (SVM) classifier would reach significantly higher UAR values com-
pared to all other feature sets, except for feature set 16 and 20 (all p’s < 0.05,
Bonferroni-corrected). As second best feature set, set 20 outperformed five other
feature sets. These were sets 1 to 5 (all p’s < 0.05, Bonferroni-corrected). It was fur-
ther possible to identify one feature set, which performed significantly worse than a
majority of the other sets. This was set 2, which was outperformed by all other sets,
except feature set 4, and the baseline (SVM) classifier (all p’s <0.05, Bonferroni-
corrected). In case of the UAP, again a significant effect of the feature sets was
revealed (main effect feature set UAP: F(5.8,155.6) = 2.93, p < 0.05, Greenhouse-
Geisser-corrected). The observed effect was, however, much lower compared to the
effect on the UAR. Here, only one set, performing significantly worse than the oth-
ers, was identified. This was feature set 2 (set 2 vs. sets [baseline (SVM), 6, 7, 8, 9,
10, 14, 16, 18, 19 & 20], all p’s < 0.05, Bonferroni-corrected). As it was not possible
to identify one feature set which significantly outperformed the other sets, the best
performing set was chosen. In both cases, UAR and UAP, this was feature set 20,
which included 98 features (9.9%) of the original emobase set, which were ranked in
the top 100 feature ranking of at least 9 LOSO experiments (cf. Section 6.1.2 and
Figure 6.2 on page 170).

In comparison to feature set 15, chosen as optimal feature set for the RF classi-
fier, feature set 20 includes 84 features belonging to the spectral features category
(MFCCs and LSP of the LPC-coefficients) and 9 features related to the ZCR. The
remaining features cannot be grouped into meaningful categories and were related
to loudness (1 feature), intensity (2 features) and probability of voicing (1 feature).
The most frequently applied functionals were the arithmetic mean (9 occurrences),
minimum value (8 occurrences), maximum value (10 occurrences), quartiles (24 oc-
currences) and their inter-quartile ranges (17 occurrences).

Findings on Feature Selection

From the evaluation of the individual feature sets it was possible to identify one op-
timal feature set per utilized classifier. As expected, the optimal feature set of the
SVM classifier (feature set 20) did not agree with the optimal feature set of the RF
classifier (feature set 15). This was assumable, as the two investigated classification
approaches differ strongly in their learning algorithm. Therefore, it is also possible
that the different approaches are in need of individual feature sets to achieve the
highest possible performance. Furthermore, the utilized feature selection method
was a RF-based wrapper method, which chooses the relevant features based on the
performance of the RF classifier. Nevertheless, this feature selection approach was
chosen based on the results presented in [Egorow et al. 2018]. Here, the authors
identified, that the number of features needed to outperform the baseline SVM clas-
sifier is strongly dependent on the utilized data set and can reach up to 40% of
the original feature set. With the largest utilized feature set containing 98 features
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(10% of the original emobase set), it may be considered as plausible that the op-
timal number of features needed to achieve above baseline recognition results may
not yet be reached. Due to the low correlation of the feature importance over all
features included in the emobase set (r = 0.60(0.01)) and the noticeable decrease of
correlation with increasing size of the identified feature sets (from set 1 r = 0.90 to
set 20 r = 0.81), it was not reasonable to also consider larger feature sets.

It was further noticed that the optimal feature sets obtained by evaluating the
UAR and UAP were confirmed by the obtained macro-averaged F1-measure. This
is not evident, as the F1-measure takes into consideration the trade-off between
UAR and UAP, which may deviate strongly from the individual UAR and UAP res-
ults, especially, when the individual results drift apart. For both classifiers the best
F1-measure was obtained when utilizing the corresponding optimal feature set (see
Table 6.11 on page 194). The Table comprises the macro-averaged F1-measures ob-
tained for the individual classifiers, utilized data set, and subset (see Section 6.3.3).
In both cases one of the baseline classifiers outperformed these results (not signi-
ficantly). Nevertheless, the main objective of the feature selection was to decrease
the feature size drastically, to decrease the computational cost and latency of the
system, and make the classifier applicable for a later real-time online application.

6.3.2 Emotion-Wise Evaluation of the Classifier’s Perform-
ance

Up to now, I have identified the classifier’s setup (optimal parameter and feature set
combination), which on average showed the highest performance in the considered
classification task. Nevertheless, I have not yet investigated the ability of the clas-
sifier to detect a certain emotional state. The results obtained for the considered
emotional states will now be presented and evaluated. For this investigation, only
the results obtained when utilizing the previously identified optimal feature set and
corresponding best performing hyper-parameter set were taken into consideration.

Random Forest and Support Vector Machine

The performance measures of the optimized RF and SVM classifiers are stated in
Tables 6.4 and 6.5. The measures were obtained by averaging the UAR, UAP
and F1-measure over all LOSO cross-validation experiments per emotion. The best
results obtained for each performance measure are denoted in bold. It can be seen
that for both classifiers only frustration and neutral achieved values above chance
level for the UAR (chance level =̂ 25%). Nevertheless, all emotional states achieved
UAPs ranging from lowest 35.53% for the SVM-recognition of positive to highest
54.99% for the SVM-recognition of frustration. This indicated that even with a
low percentage of truly positive or anxious speech samples being recognized, the
ones recognized as said emotion truly belonged to this state above chance level.



186 6.3. Classifying Drivers’ Emotions

From the Confusion matrices presented in Tables 6.6 and 6.7 further insight on the
confusion in-between the recognition of the individual emotional states was drawn.
The main diagonal corresponds to the percentage split of correctly classified samples
for each state on basis of the true state of this sample. These values match the
values obtained for the UAR in Tables 6.4 and 6.5. It was noticed that the low
performance measures for the emotional states anxiety, frustration and positive were
mainly caused by a confusion with the neutral state (red entries). The confusion
between other emotional states was, with one exception, below 10% in both cases,
FP and FN (see Table 2.5 on page 47 for explanation). This exception was observed
in case of true positive samples being predicted as frustration. Especially for valence-
related features, lying in the same half-space of arousal (cf. Figure 3.5), as it is the
case for expressive positive emotions and frustration/ anger, there exists a strong
ambiguity in the classification of these emotional states (cf. [Harimi et al. 2015] and
[Wu et al. 2011]). This is due to the fact of spectral features mainly contributing to
the differentiation between different arousal levels (cf. [Kim et al. 2009]).

When computing the macro-averaged F1-measure over all LOSO experiments and
considered emotional states, it was further noticed that the RF approach slightly
outperforms the SVM approach (F1RF = 38.77% and F1SVM = 38.05%). From
the emotion-wise evaluation it was shown that both classification approaches have
individual strengths of recognizing certain emotional states. While the RF classifier
outperformed the SVM in case of the anxiety and frustration, a contrary behaviour
was observed in case of positive.

Findings on Emotion-Wise Performance Evaluation

From the presented results it can be concluded that both classifiers were unable
to detect all emotional states with a sufficient recall. Especially for anxiety and
positive the UARs did not reach the critical value of 25% (chance level). The
highest mismatch of emotional states was related to the prediction of a neutral state
with actually one of the other emotional states being truly present. This can be
contributed to the fact that the utilized data set comprises highly natural and low
expressive emotions, where the threshold between the induced mild emotion and
the neutral state is too low to be fully distinguishable. This is also in line with the
annotation results presented in Section 5.1.2 and the observations made in [Siegert
et al. 2014]. In Section 5.1.2 it was shown that a majority of the samples labelled as a
mild emotional category belonged to the neutral space of the dimensional annotation
approach (cf. Table 5.4 on page 143). Nevertheless, for each emotional state a high
precision of at least 35.53% was reached, which indicates an above chance level
probability of the emotional state being correctly assigned to said state, for the
considered categorial four-class classification task.

From the results obtained for the individual LOSO experiments, it was noticed
that for some subjects the classifiers were unable to detect certain emotional states
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Table 6.4: UAR, UAP and F1-measure in [%] of the optimized RF classifier (feature set
15 and parameter set 14), investigated separately for each emotional state. Brackets
denote standard deviation. The best results regarding the individual performance
measures are indicated in bold (adapted from [Requardt; Ihme et al. 2020]).

anxious frustrated neutral positive

UAR 9.52 (6.76) 28.11 (18.57) 87.63 (10.83) 6.66 (7.45)
UAP 49.77 (31.73) 49.75 (24.82) 51.96 (13.28) 36.67 (33.67)
F1 14.17 (8.71) 31.60 (18.15) 64.06 (12.10) 10.48 (11.05)

Table 6.5: UAR, UAP and F1-measure in [%] of the optimized SVM classifier (feature set
20 and parameter set 11), investigated separately for each emotional state. Indications
as in Table 6.4.

anxious frustrated neutral positive

UAR 6.36 (6.60) 25.05 (18.38) 87.84 (10.57) 9.34 (10.26)
UAP 44.14 (31.36) 54.99 (29.74) 51.68 (13.35) 35.53 (32.14)
F1 11.74 (11.22) 29.72 (18.00) 63.77 (11.77) 11.64 (11.86)

Table 6.6: Confusion matrix of the optimized RF classifier (feature set 15 and parameter
set 14) given as percentage split of the actual class. Brackets denote standard deviation.
Grey entries on the main diagonal corresponds to the percentage split of correctly
classified samples on basis of the actual class. Red entries denote the highest confusion
for each emotional state (adapted from [Requardt; Ihme et al. 2020]).

Predicted
anxious frustrated neutral positive

A
ct
ua

l anxious 9.52 (6.76) 6.63 (8.76) 82.59 (10.16) 1.25 (2.17)
frustrated 1.91 (1.75) 28.11 (18.57) 65.97 (19.37) 4.02 (5.58)
neutral 2.10 (2.45) 8.82 (10.15) 87.63 (10.83) 1.45 (2.96)
positive 3.43 (6.58) 14.63 (15.63) 75.28 (20.21) 6.66 (7.45)

Table 6.7: Confusion matrix of the optimized SVM classifier (feature set 20 and parameter
set 11) given as percentage split of the actual class. Indications as in Table 6.6.

Predicted
anxious frustrated neutral positive

A
ct
ua

l anxious 6.36 (6.60) 5.70 (8.77) 85.18 (11.48) 2.76 (4.62)
frustrated 2.05 (2.49) 25.05 (18.38) 66.53 (18.17) 6.37 (10.80)
neutral 2.41 (3.59) 6.76 (9.16) 87.84 (10.57) 2.99 (5.32)
positive 1.91 (3.35) 12.21 (15.27) 76.53 (19.46) 9.34 (10.26)

at all. This was especially the case when subjects showed a low expressiveness in
all of their utterances. The dimensional annotation results of the relevant subjects
revealed that a majority of their speech samples laid in the neutral space of the
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dimensional space (moderate to low arousal and neutral valence). To verify that the
low recognition performance for these subjects was related to the low expressiveness
of the speech samples, also subjects leading to high recognition performances were
examined. For these subjects the dimensional annotation results also revealed a
much higher expressiveness of the speech samples. This indicated that in case of only
mild emotions with low expressiveness, the algorithms were unable to distinguish
between these mild states and a neutral state and, hence, a minimum amount of
expressiveness of the speech sample would be needed to receive reliable results from
the classifiers. With regard to the desired application domain this limitation is
acceptable and could only be discarded with a massive increase in the size of the
data set.

6.3.3 Adjusting the Data Set

From the previous Section it was possible to identify subjects from the original data
set, which would not contribute to the performed recognition task. These subjects
were excluded from the cross-validation process, as they showed an inconsistency
in their emotional behaviour obtained through the annotation process. Here, the
results of the categorial and dimensional annotation approaches were heavily con-
flicting. Therefore, these subjects would contaminate the investigation. As a side
result, which is by construction not a tempering with the data, the recognition per-
formance of the classifiers for the remaining subjects increases, as confusions are
reduced. Furthermore, the reliability of the classifiers increases.

Therefore, in this Section, I re-evaluated both classifiers using only the corres-
ponding subset of subjects. This re-evaluation, additionally, involved an individual
feature selection, hyper-parameter optimization, and performance validation of the
adapted RF and SVM classification model. The process of feature selection and
hyper-parameter optimization was performed similar to the one when utilizing the
complete data set. The results will, however, be presented in a less extensive way,
focusing on the most relevant findings only.

The Reduced Data Set

The reduced data set only contained those subject for which the classifiers were able
to detect the considered emotional states. From previous findings in this Thesis (cf.
Section 5.1 and Section 6.3.2), it was concluded that the left out subjects showed in-
sufficient expressiveness to automatically and manually classify the emotional states
correctly. By excluding these subjects from the data set, it is possible to increase the
sensitivity of the classifiers towards more expressive emotions. This further implies
that, if the speech based emotion recognition system is unable to detect any other
state than neutral, a different modality needs to be considered to detect the driver’s
emotional state.
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Table 6.8: Samples contained in the reduced subset of the emotional real-world in-car re-
cordings. Brackets denote the share of male/ female samples (adapted from [Requardt;
Ihme et al. 2020]).

Label Samples [#] Time [min]

Neutral 2137 (1605 / 532) 51.19 (38.04 / 13.15)
Positive 716 (527 / 189) 17.88 (13.41 / 4.48)
Frustrated 1087 (724 / 363) 27.02 (17.73 / 9.28)
Anxious 691 (533 / 158) 16.64 (12.49 / 4.15)∑

4631 (3389 / 1242) 112.73 (81.67 / 31.07)

In total 11 subjects were excluded from the original data set. The reduced data
set contained 4631 speech samples originating from 17 speakers (four females). An
overview on the corresponding subset is presented in Table 6.8.

Feature Selection

As the feature selection methodology presented in Section 6.1 is based on the per-
formance of the RF classifier, the importance of the individual features also changed
when utilizing only a subset of the original data samples. When repeating the fea-
ture selection on the reduced data set, it was noticed that the correlation among the
feature importance of the 17 LOSO cross-validation experiments was much lower
compared to the correlation obtained for the whole data set (r = 0.49 (0.02)). The
decrease in correlation may be caused by several factors, for example, the highly
inter-individual feature characteristics of the speakers themselves and the considered
emotional states. This was also observed when considering those features, which
were included in the top 100 feature importance ranking among all subjects. Sur-
prisingly, this first feature set (Set 1*) also comprised 15 features (cf. Set 1 of original
data set). These 15 features, however, were not identical. Nevertheless, there was a
consistency of 73.33% in their feature composition. The corresponding correlation
of the importance ranking of the new set, however, reached only r = 0.79 (0.04). In
the previously presented feature selection process, only those feature sets achieving
a high correlation of r ≥ 0.80 were considered. To select the most relevant feature
sets, for the reduced data set, this correlation limit needed to be reduced to 0.70.
By doing so and proceeding the process presented in Section 6.1.2, 13 feature sets
were identified. The resulting r-values and numbers of features included in the sets
are presented in Figure 6.6. To indicate the difference of the feature sets, the sets
obtained from the reduced data set are marked with a star.
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Figure 6.6: Correlation coefficient r of the reduced feature sets obtained when utilizing
the reduced data set. Brackets denote the corresponding feature set numbers. Stars
denote feature set numbers obtained from the reduced data set

Parameter Optimization

The hyper-parameter optimization was based on a random search. During this
process I identified a search space from which the optimal parameter combinations
were chosen randomly. This search space was identical to the search space utilized
during the hyper-parameter optimization performed on the complete data set. Con-
sequently the identical parameter combinations, as stated in Table 6.1 on page 172,
were utilized. The numbering of the parameter sets was maintained, to prevent
confusion. Nevertheless, the performance measures averaged over all feature sets

Table 6.9: UAR, UAP and F1-measure of a 4-class driving condition problem averaged
over all investigated feature sets for the different parameter combinations (Par. Set)
of the RF classifier with ascending F1-measure (macro-averaged) when utilizing the
reduced data set. Brackets denote the standard deviation. The best results regarding
the individual performance measures are marked in green color. Red entries indicate
parameter sets which were identifies as unsuitable during the statistical analysis.

Par. Set UAR [%] UAP [%] F1[%]

2 33.52 (0.88) 35.96 (0.90) 34.69 (0.86)
1 33.62 (0.64) 36.14 (0.84) 34.84 (0.73)
3 34.52 (0.62) 45.26 (1.95) 39.16 (1.08)
4 34.58 (0.52) 47.89 (2.44) 40.15 (1.18)
12 34.92 (0.55) 48.04 (2.76) 40.43 (1.35)
8 34.80 (0.59) 48.34 (2.77) 40.45 (1.35)
13 34.90 (0.65) 48.56 (2.71) 40.60 (1.38)
9 34.87 (0.72) 48.82 (2.84) 40.66 (1.47)
10 34.88 (0.57) 48.82 (2.73) 40.67 (1.33)
6 34.65 (0.52) 49.58 (2.90) 40.77 (1.34)
7 34.88 (0.48) 49.16 (2.71) 40.79 (1.25)
11 35.00 (0.58) 48.93 (2.83) 40.79 (1.37)
5 34.66 (0.49) 49.71 (2.47) 40.83 (1.15)
14 34.98 (0.64) 49.33 (3.08) 40.91 (1.50)
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and ranked in increasing order of the macro-averaged F1-measure (cf. Tables 6.9
and 6.10), shows a deviation from the results obtained when utilizing all subjects
included in the data set (cf. Table 6.2 on page 175 and Table6.3 on page 178).

Especially in case of the RF classification approach, the ranking differs consider-
ably. By performing repeated-measures ANOVAs, it was possible to identify para-
meter sets, which were outperformed by a majority of the other sets (marked in red
color). These parameter sets were identical to those identified when utilizing the
complete data set for both classification approaches. The best results obtained for
individual performance measures are marked in green color.

Again, the statistical analysis was repeated after exclusion of said sets. As before,
in case of the RF, it was not possible to identify a parameter set outperforming
all other sets. This was also indicated by the ranking of the remaining parameter
sets (cf. Table 6.9), which shows a correlation to the original ranking in Table 6.2
on page 175 and again shows only small performance measure ranges. From the
obtained results of the two statistical evaluation, three parameter sets (1, 2 and 3),
which were identified as non-optimal parameter candidates, were discarded. How-
ever, it was not possible to identify one parameter set, which outperformed all other
sets. Consequently, the 11 remaining parameter sets 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
and 14 were used later for the feature set dependent evaluation of the RF classifier.

Table 6.10: UAR, UAP and F1-measure of a 4-class driving condition problem averaged
over all investigated feature sets for the different parameter combinations (Par. Set)
of the SVM classifier with ascending F1-measure (macro-averaged) when utilizing the
reduced data set. Indications as in Table 6.9.

Par. Set UAR [%] UAP [%] F1[%]

1 25.00 (0.01) 11.36 (0.39) 15.62 (0.36)
2 25.00 (0.01) 11.36 (0.39) 15.62 (0.36)
3 25.00 (0.02) 11.36 (0.39) 15.62 (0.36)
4 25.03 (0.11) 13.92 (4.47) 17.53 (3.29)
5 25.51 (0.50) 20.58 (6.70) 22.22 (4.47)
6 29.62 (1.35) 37.26 (2.43) 32.99 (1.67)
8 29.40 (1.92) 37.94 (2.43) 33.08 (3.12)
7 32.37 (0.57) 40.05 (1.93) 35.79 (1.06)
9 32.50 (1.02) 42.99 (3.51) 36.99 (1.91)
12 33.57 (1.18) 45.93 (4.16) 38.75 (2.18)
10 33.33 (1.41) 46.95 (4.11) 38.95 (2.31)
14 34.00 (0.92) 45.69 (2.67) 38.97 (1.47)
13 33.83 (1.33) 46.56 (4.09) 39.15 (2.22)
11 33.44 (1.52) 47.67 (4.51) 39.26 (2.49)
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In case of the SVM, parameter sets 10, 11, 12, 13 and 14 outperformed a majority
of the remaining sets, and sets 6, 7 and 8 were outperformed by a majority. This is
in line with the results obtained on the original data set, with a high correlation in
the ranking of the parameter sets and again wider performance measure ranges (cf.
Table 6.10 and Table 6.2 on page 175). With consideration of the first statistical
analysis on all parameter sets, eight parameter sets, were excluded and the remaining
six parameter sets 9, 10, 11, 12, 13 and 14 were used later for the feature set
dependent evaluation of the SVM classifier.

Performance Validation

The UAR and UAP of the optimized RF and SVM classifiers, utilizing the remaining
parameters sets identified in the previous section and averaged over all LOSO cross-
validation experiments for the newly generated feature sets, are stated in Figures 6.7
and 6.8. To identify if there exists one feature set, which outperforms the other sets,
repeated-measures ANOVAs were performed. They revealed a significant effect of
the feature set on the performance of the classifiers. Nevertheless, it was not possible
to identify one feature set outperforming a majority of the others, in case of the
RF classifier. Here, the best feature set achieving the highest macro-averaged F1-
value (see Figures on page 288 ff. in Appendix D) was chosen as best feature set
(Set 10*). This set included 63 features with a 70% agreement in the features
compared to set 15, chosen as optimal feature set for the complete data set. As for
set 15, set 10* includes mainly features related to the MFCC No.1 and 2 (9 and 12
features, respectively) and the LSP of the LPC-coeffcient No. 3 and 7 (6 features,
each). The main difference compared to feature set 15 lies in the share of spectral
features. While set 15 included 88% of spectral features, set 10* only included 81%
of these feature type. Especially the amount of features related to intensity (3
features) and probability of voicing (3 features) was increased. The most frequently
applied functionals were the maximum value (8 occurrences), minimum value (7
occurrences), quartiles (13 occurrences) and inter-quartile ranges (8 occurrences).
Furthermore it was possible to identify a decrease of features based on the arithmetic
mean (5 occurrences) and an increase of features based on the standard deviation
(5 occurrences).

In case of the SVM classifier, it was possible to identify one set outperforming
a majority of the other sets in their UAR (set 13* vs. sets [1*, 2*, 3*, 4*, 5*, 6*,
7*, 9* & 10*], all p’s < 0.05, Bonferroni-corrected). For the UAP no feature set
could be identified. As set 13* also achieved the highest F1-measure, this set was
chosen as the best performing feature set. As for the results obtained when applying
the complete original data set, set 13* corresponds to the feature set containing the
largest number of features (115 features). In comparison to set 20, set 13* only shows
an agreement in 56% of the features included in both sets. The highest agreement
was found in the category of spectral features. Again most of the features were
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Figure 6.7: Mean UAR of the optimized RF/ SVM classifiers for each individual feature
set. The classifiers were tested and trained on the reduced data set.
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Figure 6.8: Mean UAP of the optimized RF/ SVM classifiers for each individual feature
set. The classifiers were tested and trained on the reduced data set.

grouped in this category and related to the MFCC No.1 and 2 (16 and 14 features)
and the LSP of the LPC-coefficient No. 1, 3 and 7 (7 features, 7 features and 8
features, respectively). Nevertheless, as for the RF classifier, the share of spectral
features decreased from 87% (set 20) to 78% (set 13*) with an increased number
of features related to the voice probability (6 features), intensity (6 features) and
loudness (5 features). In case of the most frequently applied functionals, similar
findings as for the RF classifier were made. Additionally to the minimum and
maximum value, quartiles and inter-quartile ranges (cf. results obtained for RF
classifier), it was noticed that for SVMs also the range (10 occurrences) played a
decisive role. Furthermore, an increased number of features related to the standard
deviation (7 occurrences) was identified.

By utilizing the reduced data set and applying the feature sets to the RF and
SVM classifiers with optimized parameter set, it was possible to increase the overall
recognition performance. The corresponding macro-averaged F1-measures obtained
on the classifiers with optimized feature and parameter set, and trained and tested
on the original data set and reduced subset, are stated in Table 6.11. Additionally,
the results of the performed baseline classification experiments are stated. It can
be seen that the overall recognition performance increased considerably for both
classification approaches. In agreement with the results obtained on the complete
data set, the RF classifier outperformed the SVM classifier.
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Table 6.11: F1-measure in [%] of the most relevant RF and SVM classification experi-
ments.

baseline set 15 set 20 subset(set 10*) subset(set 13*)

CART 38.94
RF 37.62 38.77 42.68
SVM 38.63 38.05 41.87

The emotion-wise results of the LOSO cross-validation experiments, when apply-
ing the identified feature sets to the RF and SVM classifiers with optimized para-
meter sets, are stated in Tables 6.12 and 6.13. In both Tables, bold entries denote
the best results obtained for each evaluated performance measure. The correspond-
ing confusion matrices are stated in Table 6.14 and 6.15. For both classification
methods a distinct increase of the recognition performance for the emotional states
of anxiety, frustration and positive was noticed, while the recognition performance
of the neutral state decreased. In case of the SVM classifier, a substantial increase
for the recognition of the anxiety and positive state was noticed. In contrast to the
results obtained on the complete data set, the F1-measure increased from 11.74% to
19.39% for anxiety, and from 11.64% to 19.40% for positive. While the UAR could
still not reach the chance level of a random guess for a four class-classification prob-
lem (25%), the UAP noticeably increased. In case of the RF classifier, the achieved
performance outperformed an UAP of 50% for each emotional state. In case of
frustration, the RF classifier outperformed the SVM classifier in all performance
measures. For this state, the UAR increased substantially from 28.11% to 38.60%
accompanied with a decreased standard deviation. A nearly contrary finding was
observed for the anxiety state, where the SVM classifier outperformed the RF clas-
sifier for UAR and F1, while the UAP was almost identical. Again, compared to the
results obtained on the original data set, the standard deviation decreased for UAP
and F1. Considering the confusion matrices stated in Tables 6.14 and 6.15, still a
majority of the confusion was caused by a prediction as neutral. Nevertheless, this
confusion was noticeably lower compared to the results obtained on the complete
data set. Furthermore, an increase of confusion with frustration was noticed. This
may be attributed to the higher expressiveness of the utilized speech samples. It
can be assumed that a higher expressiveness is accompanied with a higher arousal.
With all three considered emotional states lying in the same half-space of arousal
(cf. Figure 3.5 on page 93) this, consequently, is also leading to a higher ambiguity
in the classification of these emotional states (cf. results obtained on the complete
data set).
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Table 6.12: UAR, UAP and F1-measure in [%] of the optimized RF classifier (feature set
10* and parameter set 7), evaluated on the reduced data set, investigated separately for
each emotional state. Brackets denote standard deviation. The best results regarding
the individual performance measures are indicated in bold.

anxious frustrated neutral positive

UAR 9.93 (6.87) 38.60 (15.81) 82.72 (10.29) 12.24 (7.57)
UAP 51.36 (32.19) 54.76 (22.22) 51.28 (11.50) 53.30 (23.65)
F1 14.09 (7.05) 40.28 (12.55) 62.16 (9.94) 18.63 (10.72)

Table 6.13: UAR, UAP and F1-measure in [%] of the optimized SVM classifier (feature set
13* and parameter set 11), evaluated on the reduced data set, investigated separately
for each emotional state. Indications as in Table 6.12.

anxious frustrated neutral positive

UAR 13.82 (7.73) 35.69 (15.55) 81.08 (10.10) 14.20 (10.59)
UAP 51.33 (25.06) 52.78 (20.81) 51.64 (12.40) 42.81 (24.21)
F1 19.39 (8.20) 38.82 (11.71) 61.91 (10.71) 19.40 (13.56)

Table 6.14: Confusion matrix of the optimized RF classifier (feature set 10* and para-
meter set 7), evaluated on the reduced data set, given as percentage split of the actual
class. Brackets denote standard deviation. Grey entries on the main diagonal corres-
ponds to the percentage split of correctly classified samples on basis of the actual class.
Red entries denote the highest confusion for each emotional state.

Predicted
anxious frustrated neutral positive

A
ct
ua

l anxious 9.93 (6.87) 9.91 (10.12) 78.19 (9.93) 1.97 (3.57)
frustrated 1.80 (1.96) 38.60 (15.81) 54.67 (12.03) 4.92 (6.38)
neutral 3.29 (4.89) 12.61 (12.07) 82.72 (10.29) 1.38 (1.41)
positive 4.26 (7.11) 19.93 (17.12) 63.57 (17.50) 12.24 (7.57)

Table 6.15: Confusion matrix of the optimized SVM classifier (feature set 13* and para-
meter set 11), evaluated on the reduced data set, given as percentage split of the actual
class. Indication of as in Table 6.14.

Predicted
anxious frustrated neutral positive

A
ct
ua

l anxious 13.82 (7.73) 9.94 (11.79) 73.65 (10.33) 2.59 (4.40)
frustrated 2.36 (2.29) 35.69 (15.55) 55.04 (13.58) 6.91 (9.24)
neutral 3.96 (4.24) 11.80 (11.75) 81.08 (10.10) 3.15 (4.36)
positive 3.42 (5.07) 19.26 (15.91) 63.12 (19.53) 14.20 (10.59)
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Findings on the Reduced Data Set

From the results obtained on the reduced data set it can be concluded, that be-
sides an optimization of the classification model, by utilizing feature selection and
parameter optimization, also the utilized data samples play a decisive role. Even
though the evaluation of the annotation presented in Section 5.1 showed a high
reliability and consistency of the annotation results, it can be assumed that the util-
ized speech samples are not automatically suitable for speech emotion recognition.
This can be mainly attributed to the human auditory system which is trained to
distinguish emotions in very fine gradations and is also highly dependent on the
individual’s cultural, gender and family background (cf. Section 2.1.4). Especially
for an automatic detection of emotions, low expressive emotions can only hardly
be distinguished from a neutral state. Therefore, it was assumed that by excluding
those subjects from the data set showing a low expressiveness in their utterances,
the individual emotional state can be better distinguished from one another. This
assumption was on the one hand confirmed by the changes of the features identified
as most relevant for the present recognition task. Here, an increased importance of
voice probability, intensity and loudness related LLDs was identified and the applied
functionals showed an increased importance of range and standard deviation. These
functionals are strongly related to the subject’s individual speaking characteristics
and indicate an increased importance of their inter-individual variability. On the
other hand, also an increased overall and emotion-wise recognition performance of
the classifiers was noticed. While the overall macro-averaged F1-measure could be
increased from a maximum of 38.77% (RF) to 42.68% (RF), the emotion-wise in-
crease in recognition performance was even more impressive and strongly classifier
dependent. In case of anxiety, the F1-measure could be increased from 14.17% (RF)
to 19.39% (SVM). For frustration the F1-measure was increased from 31.60%(RF)
to 40.28% (RF) and for positive from 11.64% (RF) to 19.40% (SVM). In contrast to
this large increase of at least 5.22% for the anxiety, frustration and positive state,
the decrease in the F1-measure for the neutral state is comparatively low with a
decrease from 64.06% (RF) to 62.16% (RF).

6.4 Summary and Discussion

In this Chapter, I investigated the ability to automatically recognize the driver’s
emotional state by utilizing real-world emotional speech data. To do so, two different
machine learning approaches were utilized (RF and SVM) and validated using the
data samples of the real-world in-car speech recordings presented in Section 3.2
and processed in Chapter 5. The validation was performed using the LOSO cross-
validation scheme, which ensures speaker-independent recognition performances. To
further boost the recognition performance of the classifiers, a feature selection and
hyper-parameter optimization was conducted.
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As feature selection a RF wrapper method was applied. It was possible to identify
up to 20 feature sets for which the feature importance of the individual features
showed a sufficient correlation. The parameter optimization was based on a ran-
dom search performed on a predefined search interval of the most relevant hyper-
parameters of the RF and SVM classification methods. By performing a statistical
analysis on the overall recognition performances, it was possible to identify that, in
case of the RF classifier, the feature selection is more relevant for a good recognition
performance than choosing the optimal parameter combination. Furthermore, no
relation between the parameter combination and the performance of the classifier
could be drawn. This is contrary to the results obtained for the SVM classifier, where
the optimal feature set was strongly dependent on the chosen parameter combination
and a clear dependency of the hyper-parameter γ and the size of the feature set was
noticed. When utilizing the identical feature set for both classification approaches,
it was further noticed that the RF classifier would, in most cases, outperform the
corresponding SVM classifier. This, however, may be also attributed to the utilized
feature selection method which is a wrapper method based on the performance of
a RF-classifier. It is assumable that the application of a SVM based wrapper or a
filler feature selection leads to an increase in the recognition performance.

From the emotion-wise evaluation of the recognition performance, it was further
noticed that there exist some subjects for which an automatic and manual differen-
tiation of the emotional states was not possible. It was assumed that these subjects
showed too low expressiveness in their speech utterances and, hence, their data was
not contributing to the presented emotion recognition task. Furthermore, taking into
account the annotation results from Section 5.1.2, an inconsistency in whether their
speech samples contained emotional content or not was identified. Consequently, by
leaving out these uncertain samples, not only the performance of the classifier can
be increased, but also its trustworthiness. From these results, it was concluded that
a certain amount of expressiveness is needed to be able to automatically distinguish
between the individual emotional states. This was confirmed by repeating the LOSO
cross-validation experiments on the reduced data set. This also led to differences
in the feature selection and hence, led to different features inside the identified fea-
tures sets. The overall statistical analysis, however, led to a similar behaviour of the
considered classification approaches, with the RF classifier outperforming the SVM
classifier.

Finally, by reducing the original data set, in combination with an independent
feature selection and hyper-parameter optimization, it was possible to increase the
overall F1-measure from 38.77% up to 42.68%. This corresponds to an increase
from 32.98% up to 35.87% in the UAR and an increase from 47.04% up to 52.67%
in the UAP. The utilized feature set comprised 63 features, which corresponds to
an astonishing reduction down to 6.38% of the original emobase feature set. With
regard to the computing time, especially for a later real-time in-car application, the
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number of features plays a decisive role. From the emotion-wise evaluation it was
shown, that the investigated machine learning algorithms show individual strengths
regarding the individual considered emotional state. While for both classification
approaches the UAR of detecting anxiety and positive could not reach the chance
level, the UAP of the RF classification approach achieved values above 50%. For the
detection of frustration, UARs above chance level were achieved by both classifiers,
with the RF outperforming the SVM.

Overall, it can be stated that for both classification approaches, the feature se-
lection, hyper-parameter optimization and adjustment of the data set significantly
affected the recognition performances, which reinforces the importance of such meas-
ures to be taken. By reducing the feature set to 6.38% of the original set, the
performance of the speech emotion recognizer was not only maintained but even in-
creased, which plays a decisive role for a later real-world application. It was further
shown that a system needs a certain amount of expressiveness in the users speech to
obtain applicable results. In case of too low expressiveness, a distinction from the
neutral state is not possible.

With a focus on emotion recognition in-the-wild and in in-vehicle environments,
these results pave the way to the detection of novel driver states in automotive in-
dustry. To my knowledge, these kind of highly natural and low expressive everyday
driver’s emotions have not been available to the research community. First attempts
towards in-vehicle emotion recognition have already been made based on simulated
and real-world speech data, and were presented in Section 2.6. Nevertheless, these
results are not generalizable and an systematic extensive analysis, as presented in
this Chapter of the Thesis, is rarely addressed. Furthermore, this Chapter also con-
sidering aspects for a later real-time in-vehicle application, by drastically decreasing
the number of relevant features needed for a trustworthy emotion recognition and
consequently also the computational cost.

In the next Chapter, I will conclude this Thesis and recapitulate the findings of the
Chapters 3 to 6. The main results will be highlighted, and open research questions
and future work will be discussed.
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AT the beginning of this Thesis I have presented to the reader three hypotheses.
In the progress of this Thesis we have now come to a point where these

hypotheses have been examined.To recap the findings, I will now come back to
these main hypotheses and draw a conclusion on the overall underlying research
questions. Furthermore, I will present to the reader the open research questions,
which have not yet been answered in the scope of this Thesis.

7.1 Conclusions on Main Hypotheses

1. Hypothesis: It is possible to induce naturalistic emotions in the driver, while
driving in a real vehicle.

To validate the first hypothesis, a data collection inside a real vehicle was
conducted. This data collection included the induction of four target emotional
states while driving in a conventional gasoline passenger car, namely, neutral,
positive, frustration and anxiety. The emotions were induced by using emotion
elicitation through supervised real-life studies (i.e. conducting secondary tasks
while driving, designed to induce a certain emotion) and through retrospective
(i.e. initiating a conversation on related topics and experiences of the driver).
To prevent a bias of the driver towards a certain emotion, after each emotion
scenario a short 5 minute recess was scheduled. Furthermore, the order of
the emotion scenarios was chosen in a way to avoid a negativity bias for the
neutral and positive emotional state.

The data was collected in three modalities (audio, video and bio-physiological
data) and afterwards validated by analyzing the bio-physiological signals of
the driver, while driving under emotional influence. The validation results
showed clear differences in their characteristics considering the different emo-
tion scenarios of the experimental setup. These differences were, however, not
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significant for all emotional states. A further, more fine grained, annotation
of the speech signal itself showed expressions of emotions via speech prosody
(without considering the spoken content). By evaluating the individual driv-
ing scenarios it was shown, that the occurrence of emotional speech also match
the induced emotional state of the different driving scenarios. Based on these
results it can be concluded that it is possible to induce an emotional state in
the driver while manually driving a vehicle.

2. Hypothesis: It is possible to compensate effects of speech distortion.

For the second Hypothesis, it was investigated if the effect of speech distor-
tion can be compensated by applying speech enhancement. To do so, I first
evaluated the quality of the speech signal of compressed and noisy speech.
First investigations were done on compressed speech, as this kind of speech
is “easy” to generate, as the signal is manipulated by digital signal processing
steps and not by external noises. Hence, the original clean speech signal is
available, which is necessary to determine the quality of the distorted signal
(i.e. Signal-to-Noise Ratio (SNR) or newly developed Compression Error Rate
(CER)). This is more challenging when it comes to noisy speech, as the clean
speech signal is in most cases not available and highly challenging to obtain in
real-life settings. For compressed speech, by applying different audio codecs
and bit-rates, it was shown that there exists a clear correlation between the
speech quality and the performance of speech emotion perception by humans
and automatic recognition systems. Surprisingly, in case of automatic speech
emotion recognition, the best results were not obtained on the original uncom-
pressed signal, but when utilizing the MP3 codec with higher bit rates (over 24
kbit/s). This may be contributed to the fact that MP3 uses perceptual coding
as coding technology, which reduces redundancies in the speech signal by dis-
regarding those signal parts which are supposed to be beyond the resolution
of the human auditory system.

For noisy speech, regarding speech quality, a highly significant effect of the
recording condition and microphone setup was identified. In contrast, regard-
ing the recognition performance, the effect of the recording conditions and the
microphone setup was not significant, even though, a clear decrease of recog-
nition performance with decrease of speech quality was identified. Considering
these findings, the necessity of taking into account the speech quality in case
of noisy speech is not evident. This was also confirmed by the results obtained
when applying a speech enhancement algorithm (i.e. Optimally-Modified Log-
Spectral Amplitude (OM-LSA)-Improved Minima Controlled Recursive Aver-
aging (IMCRA)). Even though the statistical analysis of the utilized speech
features showed a significant alteration, no significant effect on the perform-
ance of the speech emotion recognition system for enhanced and disturbed
speech was identified. With regard to the high number of altered features in
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case of enhanced speech, it is recommended not to use speech enhancement in
case of noisy speech.

For hypothesis two, it can be concluded that in case of noisy speech no com-
pensation of its effects on the speech signal is needed. For compressed speech,
however, its effect on the speech signal and the performance of the speech
based emotion recognition system is strongly dependent on the utilized audio
codec. In some cases it is even possible to increase the performance of the
system by applying a specific audio codec.

3. Hypothesis: Under the assumption that hypotheses one and two apply, it is
possible to automatically detect the emotional state of the driver by only
considering the speech signal of the driver and its prosodic features.

The final research hypothesis examines the ability to automatically recognize
the driver’s emotional state in a naturalistic everyday driving situation by ap-
plying suitable machine learning algorithms. Here, the evaluation results of
hypotheses one and two play a decisive role, as they form the base of this
research question. Only with highly natural and low expressive emotional
speech data being available and the knowledge on how to cope with distorted
in-vehicle speech, a meaningful validation of the classification results is pos-
sible. By utilizing LOSO cross-validation experiments and applying feature
selection and parameter optimization strategies, and an adjustment of the ori-
ginal data set, two classifiers were identified. The best classification result of
42.68% F1-Measure was achieved when applying a RF classifier and a feature
set of 63 features including 81% of spectral speech features. In comparison,
the baseline RF classifier without feature selection, parameter optimization
and data set adjustment only achieved 37.62% F1-Measure. Considering the
emotion wise classification results of the investigation, it was possible to detect
neutral and frustration emotions well above chance level. In case of anxiety
and positive emotions, a rather low recall below chance level was achieved.
Nevertheless, the precision for these states was almost equal as for neutral and
frustration. A majority of the occurring mismatches in the emotional states
were related to the confusion with the neutral state (ranging from 54.67%
for frustration to 78.19% for anxiety). This implies that a mismatch with an
emotional state other than neutral is comparatively rare.

Therefore, in case of hypothesis three, it can be concluded that it is possible
to detect the driver’s emotional state from speech. However, the speech signal
needs to contain a certain amount of emotion expressiveness, whereas the
emotions occurring in everyday driving situations are in most cases of low
expressiveness and only to some extent distinguishable from a neutral driver
state. Nevertheless, a precision of detecting a certain emotion of above 50%
was achieved for all emotions. With the highest confusion occurring with the
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neutral state, it is most certain that whenever a different emotional state is
detected this state is also true.

7.2 Discussion, Open Issues and Future Research

As already stated in the previous Section, the results presented in this Thesis can be
seen as first attempt towards detecting emotions from speech in a highly natural and
low expressive in-the-wild environment. Even though the results are still capable of
improvement, they are highly promising, especially in contrast to available compar-
able results presented in Section 2.6 at the beginning of the Thesis and with regard
to the very limited data availability, leading to a comparatively high optimization
demand. Furthermore, the results contributed to a successful final evaluation of the
ADAS&ME research project and were acknowledged by the reviewer.

With a focus on a later real-world in-vehicle application, the investigations presen-
ted on compressed speech are of high interest, as cloud-based Advanced Driver
Assistant Systems (ADAS) become more relevant in today’s automotive industry
[Volkswagen AG 2019]. By integrating the “Automotive Cloud” into their automot-
ive technologies, the computational costs inside the vehicle are drastically decreased
and upgrades to novel in-car applications or updates of already integrated systems
can be remotely enabled. To implement these kind of systems, the raw sensor signals
need to be communicated to the cloud server. In case of safety relevant systems,
the latency of this data transmission plays a decisive role, as the raw sensor signals
are often of large data volume. By utilizing signal compression this latency is re-
duced and a real-time application is feasible. Especially when utilizing multimodal
data, this aspect is of increasing relevance. Considering the recommendation made
on speech enhancement, these results can be of interest when it comes to the pro-
cessing of in-vehicle speech, as omitting these signal processing steps will also reduce
processing time and, hence, the latency of the signal transmission. However, these
results can only be seen as a first tendency, as the investigations were not per-
formed on real in-vehicle speech data but on benchmark emotional speech data sets
re-recorded inside a fixed-based driving simulator.

It can be be summarized that the results pave the way to a later real-world
application, but are not yet applicable inside a real vehicle. To achieve the goal
of an in-vehicle application, a further evaluation and validation is needed. Only to
mention some open issues, I will now concentrate on possible future work based on
the contributions of this Thesis and how the work of this Thesis can contribute to
other research questions out of its intended scope.

Considering the presented work, it is without question that there exists a large
number of research questions which have not yet been (completely) investigated.
As this Thesis focused on emotion recognition from speech, the data obtained in
the real-world data collection (cf. Chapter 3) has not been analyzed to its full
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extent. Only considering this fact, there exists a comparatively large number of
highly natural and low expressive emotional data of bio-physiological signals and
facial expressions, which have not yet been evaluated. Regarding the evaluations
of the real-world speech data, it is further possible to expand the presented work
by making more use of the dimensional annotation results, which have only been
considered in a small scope.

With a focus on in-vehicle noisy speech data and the experiments performed in the
scope of this Thesis, it is further possible to identify lack in fundamental research
in the field of speech emotion perception. While there exists some work on the
emotion perception with additive white, brown or pink noises, environmental noises
have rarely been investigated. With the existing simulated and real-world data
presented in Chapter 3, first insight on emotion perception could be obtained by
utilizing a listening experiment similar to the experiment performed in Section 4.2.1
on compressed speech. Another field of research, which has received less attention, is
speech emotion recognition from enhanced speech. Until now, a focus of the research
community was drawn on the potential to detect emotions from noisy or enhanced
speech. However, in these studies the effect noises or digital signal processing steps
can have on the raw speech signal is mostly neglected. Considering the feature based
speech emotion recognition task presented here, the feature characteristics are of
high relevance. First tentative insights on this research question are presented in
Section 5.2. Here, it would be of great interest to break down the presented results
to the emotion level, to also be able to investigate, if the utilized enhancement
algorithm effects the recognition of certain emotions to a greater or lesser extent.

Another open issue already receiving attention for many years is the reliability of
the ground truth, which the determined classification models are based on. In this
Thesis the ground truth of the data was determined by performing annotations by
expert labelers. Hence, the reliability of the annotated data conditions the quality
and reliability of the recognition results. This issue is also addressed in Section 3.2.3
and Section 5.1.2 of this Thesis. Even though it was possible to validate the induce-
ment of the target emotions, a significant effect compared to the neutral driving
state was not present for all emotions. Furthermore, an averagely fair to moder-
ate Inter-Rater-Reliability (IRR) was achieved for the performed annotation tasks.
Compared to the results presented for other annotation tasks performed on natur-
alistic emotional speech data, these results are promising, especially with regard to
the high inter-individual differences in emotion understanding (e.g. dependent on
cultural, gender and family background). Nevertheless, compared to the annotation
reliability of more objective measures these results are of rather little explanatory
power. This also makes the process of defining the actual/ true ground truth highly
challenging. It can be assumed that the annotation of the emotional state of the
driver by (expert) labelers will never completely agree with the drivers’ true intrinsic
emotional states. Even though this problem has received increased attention, still,
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there exists no generally agreed state-of-the-art approach to solve this problem of
emotion labeling.

Despite these open research questions, the results presented in this Thesis are
highly representative when it comes to real-world in-vehicle speech emotion recog-
nition. However, to make the results applicable in a wider scope, some further steps
can be taken. This could, for example, be an increase of robustness towards vari-
ances in the recording conditions by evaluating the classifier in a cross-corpus setting.
Furthermore, one major assumption made in the introduction of this Thesis is that
a speech signal is available to the system. This, however, is a highly challenging
endeavor, as speech is not naturally present in everyday driving situations. Never-
theless, it is assumable that in-car speech will become more natural and present, as
it is increasingly being made operational to a multitude of service function inside the
car. To, on the one hand, cope with this situation and, on the other hand, increase
the reliability of the system, it is advisable to utilize a multimodal approach based
on several modalities like speech, facial expression and bio-physiological paramet-
ers. Especially for the present emotion recognition task, speech and facial expres-
sions supplement each other, as facial expressions are challenging to detect reliably
whenever the driver is speaking and speech may not always be available while driv-
ing. By performing first investigations on the recorded speech and video data of the
real-world data collection, it was already possible to show that the two approaches
complement each other in case of signal outages. Furthermore, the confidence val-
ues of the individual recognition rates can be used to increase the reliability of the
system, as these values can be used as weighting factor of the individual outputs.

Until now I have focused on open issues regarding the presented data and research
results of this Thesis. To reach the major aim of developing a speech based emotion
recognition system for in-vehicle application and reassure its performance in un-
known real-world scenarios, some consecutive validation steps are needed. This can,
for example, be done by performing large scaled field studies where the system is
evaluated in real driving situations. A first small-scaled field study, only considering
eight participants, was performed in the final phase of this Thesis and is shortly
presented in Appendix E. In this study, frustration was induced to the participants
in a similar way as for the data collection in Chapter 3. From these results a vague
positive tendency on the performance of the audio-based classifier, with focus on
detecting frustrated drivers, can be drawn. The results, however, lack of statistical
evidence as the sample set does not represent the population in a sufficient way.
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7.3 Paving New Ways

Even though the previous section has shown that there exist multiple research top-
ics which have not been evaluated to their full extent, the results presented in this
Thesis contribute strongly to the field of speech emotion recognition in natural non-
ideal real-world surroundings. These contributions are, more evidently, paving the
way towards empathic vehicles. The vision of this future technology is to recognize,
understand and give a tailored response to the driver’s internal state of interest.
The main basis of this vision is to be able to recognize the driver’s intrinsic state
correctly. In combination with other fields of emotion research, i.e. emotion percep-
tion/ understanding, and Human-Computer Interaction (HCI), the results of this
Thesis could contribute largely to a first prototypical implementation of such an
empathic system. Not only do the investigations give evidence for natural speech
emotion recognition, they also give first insights on the detection of complex driver
states other than sleepiness, attention and distraction. These states have already
been extensively investigated and are already seen as state-of-the-art in the auto-
motive industry. With a focus on natural emotion recognition it is further possible
to obtain first insights in other research areas, outside of the in-vehicle setting, where
the detection of a natural emotional state is of high relevance. This is, for example,
the case in natural everyday communication and, more essential, miscommunica-
tion. It is known from communication research that emotions play a decisive role
when it comes to misunderstandings in interpersonal communication. This makes
it reasonable that emotions also play a decisive role in natural HCI. A less apparent
contribution of this Thesis can be seen in medical research. The collected and utilized
data set comprised highly natural emotional speech of low-expressiveness. Despite
these challenging circumstances, it was possible to identify all emotional states with
a high precision, by only considering prosodic features and not the spoken content
itself. This approach could be beneficial when communication with persons who
are unable to communicate their emotional state verbally (i.e. in case of pervasive
developmental disorders like autism).

To sum up, this Thesis gives evidence towards the ability of detecting emotions
from speech in a natural real-world in-vehicle environment. It does not provide a
complete solution on all the underlying research questions, however it paves the way
to many subsequent investigations, for example, in the field of automotive research,
communication research or medical research.





Glossary

Accuracy

Performance measure of a machine learning based classification approach rep-
resenting the percentage of correctly predicted instances.

Annotation

Enriching data (e.g. video or audio) with additional information, for example,
the emotional state of the speaker, by performing expert labelings.

Compression Error Rate (CER)

Novel measure to assess the quality of speech by determining the differences
occurring in the spectrum of the uncompressed high quality speech samples
compared to the compressed version of said speech signal. Can also be applied
in case of noisy speech.

Cross-Validation

Method used to validate a classifier by separating the utilized data samples into
independent data sets to train an test the algorithm. The independence of the
data sets can be increased by performing a Leave-One-Subject-Out (LOSO)
or Leave-One-Subject-Group-Out (LOSGO) cross-validation.

Deltas

First (delta) and second order (delta-delta) derivatives of the utilized features
in the feature set.

EmoDB-Car

Re-recorded Berlin Emotional Speech Database inside a fixed-based driving
simulator under silent and disturbed recording conditions (i.e. simulator
turned on and simulator turned off).

Emotional expressiveness

Describing the intensity of showing an emotion. Can be related to the natur-
alness of the data. While acted data is mostly of high expressiveness, natural
real-world data shows less expressiveness.

F1-Measure

Performance measure of a machine learning based classification approach con-
sidering the trade-off between recall and precision.
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Inter-Rater-Reliability (IRR)

Performance measure to determine the reliability of a multi-rater labeling.

Labeling

Methodology of adding additional information to data.

Low-Level Descriptors (LLDs)

Global features/ characteristics of the speech signals which are most relevant
for speech emotion recognition (e.g. pitch, formants, loudness, MFCCs, LPCs,
...).

Naturalness of Data

Describing the naturalness of the emotional content of a data set. It is distin-
guished between acted, scripted and natural emotions.

Precision

Performance measure of a machine learning based classification approach de-
termining the percentage split of the correctly predicted positive samples out
of all predicted positive samples, i.e. the probability of the true prediction to
be correct.

Recall

Performance measure of a machine learning based classification approach de-
termining the percentage split of correctly predicted positive samples out of
all true condition positive samples. Also referred to as sensitivity.

Statistical Functionals

Statistics applied to the Low-Level Descriptors (LLDs) of a speech segment to
extract the emotion speech features.

VAM-Car

Re-recorded Vera am Mittag Database inside a fixed-based driving simulator
under silent and disturbed recording conditions (i.e. simulator turned on and
simulator turned off).
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APPENDIX A presents a detailed description of the Support Vector Machine
(SVM) and Random Forest (RF) classifier. All descriptions are taken ana-

logously from [Theodoridis & Koutroumbas 2009; Clarke et al. 2009] and [Breiman
2001], if not indicated differently.

A.1 Support Vector Machine

SVMs are based on the assumption that samples originating from two different
classes (ω1 and ω2) can be separated, if necessary in a transformed space, by a
linear hyperplane, i.e. the data samples belonging to the two classes are linearly
separable. Whenever more than two classes need to be separated the problem is
split into binary classification problems either by testing one class against the sum
of all other classes (one vs. all) or each class against each other (one vs. one). The
separating hyperplane g(x) of the two classes is defined as

g(x) = wTx + wo = 0, (A.1)

with w = w1, w2, ..., wl as weight vector of the feature vector x = [x1, x2, ..., xl] in
the l-dimensional feature space and w0 as the threshold. However, this hyperplane
is not unique and there exist multiple hyperplanes which can be used to separate
both classes (cf. Figure A.1). The basic principle of a SVM classifier is to find the
optimal hyperplane which maximizes the distance between two classes such that the
margin corresponds to 2z, with z being the distance between the hyperplane and
the nearest data samples belonging to class ω1 and ω2, respectively. The distance
between the hyperplane and the data samples is determined as

z =
|g(x)|
‖w‖ . (A.2)
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Figure A.1: Data samples of a two-dimensional, two-class classification problem and
two possible separating hyperplanes g1(x) and g2(x). The solid lines correspond to
the separating hyperplanes and the dashed lines to the margin of the corresponding
SVM-classifier of distance z1 and z2, respectively. The red and blue color indicates the
membership of the data samples belonging to the two considered classes.

The nearest sample point belonging to the classes ω1 and ω2 are referred to as
support vectors. To simplify the optimization problem the supporting hyperplanes,
defined by the support vectors, are scaled by w and w0 such that g(x) = ±1. By
doing so the margin now corresponds to 1

‖w‖ + 1
‖w‖ = 2

‖w‖ such that

wTx + wo ≥ 1,∀x ∈ ω1, and (A.3)
wTx + wo ≤ −1,∀x ∈ ω2. (A.4)

This leads to the following constrained non-linear quadratic optimization problem:

minimize J(w, w0) =
1

2
‖w‖2 (A.5)

s.t. yi(w
Txi + w0) ≥ 1, i = 1, 2, ..., N,

with yi being the class indicator (yi = +1 for ω1 and yi = −1 for ω2) and N

being the total number of data samples. This optimization problem can be solved
as described in Appendix C of [Theodoridis & Koutroumbas 2009]. By considering
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the so called Lagrangian duality, the optimization problem represented in its Wolfe
dual representation is as follows:

maximize L(w, w0, λ) =
1

2
wTw −

N∑
i=1

λi[yi(w
Txi + w0)− 1] (A.6)

s.t. w =
N∑
i=1

λiyixi (A.7)

N∑
i=1

λiyi = 0 (A.8)

λ ≥ 0 (A.9)

with λ being the vector of Lagrangian multipliers. By substituting (A.7) and
(A.8) into (A.6) the following optimization task is obtained:

max
λ

(
N∑
i=1

λi −
1

2

∑
ij

λiλjyiyjx
T
i xj

)
(A.10)

s.t.
N∑
i=1

λiyi = 0 (A.11)

λ ≥ 0

One major disadvantage of the introduced basic SVM is that it only works properly
if the classes are linearly separable. In some cases, however, the data samples are non
ideally separable by a linear hyperplane. Therefore, the soft margin is introduced
which allows data samples to lie inside the margin. When introducing the soft
margin there exist three different types of data samples:

1. Samples that are correctly classified and lie outside of the margin
(yi(wTxi + w0) ≥ 1),

2. samples that are correctly classified and lie inside of the margin
(0 ≤ yi(w

Txi + w0) < 1) and

3. samples that are misclassified (yi(wTxi + w0) < 0).

By introducing the slack variable ξ these cases can be summarized into one in-
equation:

yi[w
Txi + w0] ≥ 1− ξi, (A.12)
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with ξi = 0 for case 1, 0 < ξi ≤ 1 for case 2 and ξi > 1 for case 3. This leads to
an adaption of the previous optimization problem (A.5) to:

minimize J(w, w0) =
1

2
‖w‖2 + C

N∑
i=1

ξi (A.13)

s.t. yi[w
Txi + w0] ≥ 1− ξi, i = 1, 2, ..., N,

ξi ≥ 0, i = 1, 2, ..., N.

and hence:

max
λ

(
N∑
i=1

λi −
1

2

∑
ij

λiλjyiyjx
T
i xj

)
(A.14)

s.t.
N∑
i=1

λiyi = 0 (A.15)

0 ≤ λi ≤ C

The parameter C, also referred to as cost-value, is a positive value which penalizes
those samples lying inside and on the wrong side of the margin. High values imply a
strong penalization of wrongly separated samples, while low values indicate a weak
penalization [Steinwart & Christmann 2008]. C is one of the most commonly used
parameters used for hyper-parameter optimization (cf. Section 2.2.8).

In most cases, however, a non linearly separable classification problem will not be
solved satisfactorily by introducing a soft margin only. When this is the case, one can
make use of the so called kernel-trick. By applying the kernel-trick, the original l-
dimensional data samples are transformed into a higher k-dimensional feature space
where the classification problem becomes linearly separable (cf. Figure A.2):

x 7→ Φ(x) ∈ H (A.16)

with H being a Hilbert Space equipped with an inner product operation
〈Φ(x),Φ(y)〉. Considering the optimization problem as presented in (A.14) and
with 〈Φ(xi),Φ(xj)〉 = K(xi,xj) the following optimization problem now needs to
be solved
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Figure A.2: Data samples of a non linearly separable two-dimensional, two-class classific-
ation problem. By applying a kernel (Φ(x)), the two-dimensional classification problem
is mapped onto a three-dimensional feature space where the problem is linearly separ-
able by one linear hyperplane. The red and blue color indicates the membership of the
data samples belonging to the two considered classes.

max
λ

(
N∑
i=1

λi −
1

2

∑
ij

λiλjyiyjK(xi,xj)

)
(A.17)

s.t.
N∑
i=1

λiyi = 0 (A.18)

0 ≤ λi ≤ C

where K(x, y) is also referred to as kernel function. Commonly used kernel func-
tions are:

Linear kernel:
K(x, y) = 〈x,y〉 . (A.19)

Polynomial kernel:

K(x, y) = 〈x,y〉d (A.20)
= (xTy + 1)d (A.21)

with d being the degree of the polynomial.

Gaussian radial basis function kernel:

K(x, y) = exp−‖x− y‖2

2σ2
(A.22)

= exp−γ ‖x− y‖2 (A.23)

with γ = 1
2σ2 affecting the width of the Gaussian. Small γ imply a large

variance of the Gaussian and vice-versa. This also implies that for large γ
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values special attention to overfitting of the training data needs to be drawn
[Hsu et al. 2016].

Depending on the utilized kernel, the parameters d or γ are often used for hyper-
parameter optimization.

A.2 Random Forest

A different machine learning approach used for classification are so-called Random
Forests (RFs) [Breiman 2001]. They are based on ensembles of simple binary decision
trees, Bootstrap Aggregation (Bagging) and random feature selection at each split.

RFs were first introduced by Breiman in [Breiman 2001]. By combining multiple
decision trees, the classification results become more accurate compared to the res-
ults of the individual models. One well-established, so called, ensemble method is
Bagging [Breiman 1996]. The training set of one tree model is selected randomly
from the existing data samples using bootstrapping. Bootstrapping is a re-sampling
method to create multiple subsets out of the original data set of same sample size
using sampling with replacement. This implies that the new subset can contain the
same data sample several times and leave samples of the original set out, respect-
ively. The samples which are left unconsidered in the training set of the individual
tree model are called Out-Of-Bag (OOB)-observations. The selected number of
decision trees (numTrees) defines the number of generated bootstrapped training
sets. In the standard Bagging algorithm, the models of the individual trees are
trained on each sample of the training set by selecting the best split out of all
available features, which is also referred to as Classification and Regression Trees
(CART)-approach [Breiman et al. 1984]. In contrast, in case of RF-classification
the optimal split is chosen out of a limited number of randomly selected features
(numFeatures). By limiting the numbers of randomly selected features used at
each split the individual tree models are less correlated compared to the standard
Bagging algorithm and with a decreasing correlation of the decision trees also the
generalization error of the forest decreases. For the evaluation of the RF-classifier a
separate test set is not mandatory, as the classifiers performance can be internally
evaluated using the OOB-observations. By computing the OOB-error for each tree,
which corresponds to the prediction error of the OOB-observations, an independent
test set for the individual trees is already present. However, this does not give an
information on the global performance of the classifier, but only on the performance
of the individual decision trees. An overall evaluation of the classifier is therefore
still advisable, also considering subject-independent test results. As the classifier
will generate prediction values using the individual decision trees, a majority voting
over the individual prediction results is carried out to state the prediction result of
the RF-classifier. In addition to the predicted output class, a prediction probability
for each test-observation and each class can be calculated by computing the average
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of the fraction of training-observations of a specific class of the reached tree leaf
over all trees. One major advantage of the RF classification approach is that with
an increased number of decision trees in the forest the algorithm does not tend to
overfit but the generalization error converges towards a limit.

Parameters commonly used for hyper-parameter optimization are numTrees and
numFeatures. However, there exists no common way to choose the ideal number
of numTrees and numFeatures, as the parameters are strongly dependent on the
number of samples included in the training data set and the number of features
in the utilized feature set. During Bagging one training set for each decision tree
is generating using sampling with replacement. The number of uniquely generated
bootstrapped training sets is therefore limited by the number of training samples
and their possible unique combinations. Consequently, with an increasing number of
numTrees also the probability of a bootstrapped training sets to occur repetitively
in the forest increases. It further needs to be distinguished between small and large
training sets. In case of small sets, depending on the research question, the samples
are not able to represent the population in a sufficient way. Hence, it is wise to
choose large numbers of trees. In case of large sample sizes, however, the samples
themselves are more representative and numTrees can be chosen in a much lower
region. Furthermore, deciding on the right numTrees is highly dependent on the
size of numFeatures, as with a high number of features chosen from at each split
of the decision tree, the probability of a certain feature to be chosen at this split
decreases [Liaw & Wiener 2002]. Hence, with a too low number of trees certain
features might not be used in the decision process of the random forest.

As already stated, the idea of choosing features randomly at each split of the
decision tree is to de-correlate the individual trees in the forest. By choosing the
features on a random basis, all trees utilize a different, random, combination of
features. In this process, only the size of the randomly chosen feature subset is
given (numFeatures) and not the features themselves. For small random feature
subsets, the probability of a feature to occur in multiple sets decreases and hence the
de-correlation of the individual decision trees increases and the generalization error
decreases. In [Hastie et al. 2009] a recommendation on how to choose numFeatures
is given. In case of classification problems, the authors recommend to use a default
value of numFeatures =

√
(p), and, in case of regression problems, a value of

numFeatures = p/3. The parameter p denotes the total number of features included
in the feature set. The higher number of features needed for regression problems
is already addressed in [Breiman 2001], where it is stated that the generalization
error decreases much slower for regression problems than for classification problems.
These values, however, should only be used if a tuning of the classifier is not essential
for a good performance.

Lastly, it needs to be emphasized that the number of decision trees largely affects
the computational cost of the classifier, not only during training but also when
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applied to unknown data samples. Especially for a later real time implementation,
a good trade-off between the computational cost and the generalizability of the
classifier has to be met. Pre-studies, presented in [Liaw & Wiener 2002], have
shown that for large training sets an upper limit of numTrees = 1000 leads to a
reasonable performance of the classifier while keeping the computational costs in an
acceptable region.



Appendix B

Relevant Audio Codecs

APPENDIX B gives an overview on the most commonly used audio codecs,
applied in everyday telecommunication and audio streaming applications. A

description of the different audio coding technologies, utilized in the now presented
audio codecs, is given in Section 2.5.3 of this Thesis.

Waveform Audio File (WAV) is the standard Windows format to store raw au-
dio material. It was introduced by Microsoft and IBM in 1991 and is based on
the Research Interchanged File Format (RIFF) container format [IBM Corpor-
ation & Microsoft Corporation 1991]. It uses a linear pulse code modulation
encoding, where the magnitude of the signal is linearly quantized at regular
sample points, given by the sampling rate of the raw audio signal. The bit rate
describes the number of bits stored in one second of the signal. This is depend-
ent on the bit depth (bits per sample). Audio signals usually have a bit depth of
16 bit. For a high quality stereo recording with a sampling rate of 44.1 kHz this
would result in a bit rate of 1411.2 kbit/s (44.1 kHz·16 bit·2 = 1411.2 kbit/s).

Free Lossless Audio Codec (FLAC) is a non-proprietary, fast and widely sup-
ported lossless audio codec [Coalson & Xiph.Org Foundation 2020]. It was
developed by the Xiph.Org Foundation in 2001 and is based on linear pre-
dictive coding. Unlike other audio codecs the compression is not defined by a
given bit rate but by nine compression levels (0–8) from fast/ low (0) to slow/
high (9) compression. The different compression levels are not achieved by
constant bit rates but by variable bit rates, which dynamically adapt to the
sound file. The decoded signal is indistinguishable from the original WAV file,
therefore, this compression is also referred to as lossless.

MPEG-1/ MPEG-2 Audio Layer-3 (MP3) was developed by the Moving Pic-
ture Experts Group (MPEG) and is a lossy audio codec based on percep-
tual coding using Modified Discrete Cosine Transforms (MDCT) [Branden-
burg 1999]. The first development phase already started in 1988 as MPEG-1
audio standard. MPEG-1 consists of three operating modes (layers) for high
sampling rates (i.e. 32, 44.2 and 48 kHz). With each layer, the complexity
and performance of the codec increased. Layer-3 represents the highest com-
plexity mode, providing the highest quality at low bit rates. It supports bit
rates from 32 to 320 kbit/s. This standard was introduced in 1992 as part
of the international standard on coding of moving pictures and associated au-
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dio (ISO/IEC 11172-3:1993) [ISO/IEC 1993]. The second phase of MPEG
was finalized in 1994 as MPEG-2 audio standard (ISO/IEC 13818-3:1998)
[ISO/IEC 1998] with a support of additional low sampling rates (i.e. 16, 22.05
and 24 kHz). This standard supports bit rates from 8 to 160 kbit/s. In case
of MPEG-1/2 Layer-3 a switch between the bit rates of each audio frame is
supported. This enables variable bit rate coding as well as constant bit rates.
Furthermore, a backward compatibility between the MPEG-1 and MPEG-2
standards is given.

Advanced Audio Coding (AAC) was developed as the successor of the MP3
audio codec [Brandenburg 1999]. It is a lossy audio codec based on perceptual
coding and was introduced by the MPEG in 1997 as enhanced multi-channel
coding standard (ISO/IEC 13818-7:2006) [ISO/IEC 2006]. With this new
audio standard a backwards compatibility with the MPEG-1 codec was ter-
minated. AAC follows the same coding strategy as MP3 but with enhanced
coding efficiency and quality improvement at low bit rates. The codec can
be used within a wide range of sampling frequencies (8 to 96 kHz) and bit
rates (16 to 128 kbit/s per audio channel). One prominent streaming service
provider using AAC is Spotify [Spotify:2020]. Depending on the network
connection and the player type (i.e. webplayer or desktop version), bit rates
from 24 kbit/s (low streaming quality) up to 320 kbit/s (very high streaming
quality, only available for Spotify premium users) are utilized.

Windows Media Audio (WMA) was developed as a competitor of MP3 and
is a lossy audio codec designed for music compression based on perceptual
coding. It uses a proprietary coding technology developed by Microsoft and
was first released in 1999. To date there are four different versions of the
WMA codec, namely, standard WMA, WMA Professional, WMA Lossless
and WMA Voice. All of them have been developed to be used in different
application domains [Microsoft 2018]. The standard WMA codec supports
bit rates from 64 to 192 kbit/s with constant or variable bit rates. WMA
Professional, additionally, supports multiple channel settings as stereo, 5.1
channel and 7.1 channel surround sound at 128 to 768 kbit/s. It is stated that
for 5.1 channel surround sound with a compression bit rate of 384 kbit/s no
audible difference compared to the original music file is perceived. The WMA
Lossless codec is a lossless version of the standard WMA codec that creates a
bit-for-bit duplicate of the original audio file. Last, WMA Voice is specially
designed for audio files containing speech. It has a mixed mode that can be
used to compress audio files containing speech and music and supports low bit
rate compression from 4 to 20 kbit/s.

Adaptive Multi-Rate(AMR) was developed by the 3rd Generation Partnership
Project (3GPP) and the European Telecommunication Standards Institute
(ETSI) as lossy standard speech codec designed for narrowband (200-3400 Hz)
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mobile communication in 1999 [3GPP/ETSI 2018a]. It is based on Analysis-
by-Synthesis (AbS) and utilizes the Multi-Rate Algebraic Codec-Excited Lin-
ear Prediction (CELP) (ACELP) (MR-ACELP) technology. The Adaptive
Multi-Rate (AMR) codec supports eight compression modes with bit rates
ranging from 4.75 to 12.2 kbit/s. There exist two successors of the AMR
codec. The first on, AMR-WB, was introduced by 3GPP/ETSI in 2001 [3GP-
P/ETSI 2018b] and approved by the ITU-T as Recommendation G.722.21

[ITU-T 2003c]. As its precursor, it is also based on MR-ACELP, but provides
an extended bandwidth of 50 Hz to 7 kHz and supports nine compression
modes with bit rates from 6.6 to 23.85 kbit/s. A second successor was in-
troduced as new telecommunication standard AMR-WB+ in 2004 by 3GPP/
ETSI [3GPP/ETSI 2018c]. In comparison to its precursors, a hybrid coder
is utilized, which is either based on ACELP, for speech parts, or filter bank-
based transform coded excitation (perceptual coding), for non-speech parts,
that can be switched for each frame of the signal. It supports bit rates from
5.2 to 48 kbit/s.

Speex (SPX) was started as project of the Xiph.Org Foundation in 2002 to address
the need of a free, open-source speech codec [Valin 2006]. It is a lossy audio
codec and mainly designed for the application in Voice over IP and not for
mobile telephony. It utilizes AbS based on the CELP audio coder and supports
different quality levels that range from 0 to 10 [Valin 2007]. This quality
parameter controls the tradeoff made between the speech quality and the bit
rate and is also referred to as compression level. As bit rates a range from 2 to
44 kbit/s is supported by the codec. In case of constant bit rates the quality
parameter is denoted as an integer, in case of variable bit rates as a float. The
codec can operate in three different modes, namely narrowband (up to 8 kHz),
wideband (up to 16 kHz) and ultra-wideband (up to 32 kHz). Early versions
of Apples personal assistant Siri (iPhone 4S) are named to have uses SPX as
audio codec [Schwan 2011].

OPUS is the successor of SPX and was developed by Skype in cooperation with
the Xiph.Org Foundation in 2012 as communication standard [Valin et al.
2012]. It is a lossy audio codec and uses hybrid coding, namely, a modified
version of Skypes SILK codec and Constrained Energy Lapped Transform
(CELT), developed by the Xiph.Org Foundation. Unlike AMR-WB+, the
codec uses either both coding strategies (SILK and CELT encoding) in parallel
or one of them solely, based on the utilized bit rate setting. The bit stream is
generated through range encoding and contains bits of the SILK and CELT
encoders. Depending on the audio stream (speech or music), either SILK,
which is based on linear predictive coding (AbS), or CELT, which is based
on MDCT (perceptaul coding) can be utilized. The codec can be used in

1http://handle.itu.int/11.1002/1000/6506
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narrowband (up to 8 kHz), medium-band (up to 12 kHz), wideband (up to
16 kHz), super-wideband (up to 24 kHz) and fullband (up to 48 kHz) operation
mode. The hybrid mode can be applied in super-wideband and wideband
mode. Here, SILK codes the low frequency bins of the signal and CELT the
high frequency bins. The cut of lies at 8 kHz, the maximum wideband speech
audio bandwidth. The supported bit rates range from 6 kbit/s in narrowband
mode to 510 kbit/s in fullband mode, this also enables an application for
surround sound application.
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Statistical Analysis of Parametric
and Non-Parametric Data

IN this Chapter I will give an overview on the statistical analysis methods utilized
in this Thesis based on the descriptions presented in [Bortz & Lienert 2008] and

[Bortz & Schuster 2010]. A main focus is drawn on the analysis of parametric data
(e.g. normally distributed data), as it is the case for naturally formed data like
speech, and the method of Analysis of Variance (ANOVA) in combination with
post-hoc t-tests, in case of multiple testing. Generally, these measures are used
to identify if a factor (e.g. medication), or multiple factors (e.g. medication and
gender), has a significant effect on an observed measure (e.g. blood pressure) of a
representative number of test subjects per factor group (e.g. placebo, single dose
and double dose). Commonly, the ANOVA is used to determine if there exists a
general significant effect of the factor on the observed measure. Afterwards, a post-
hoc t-test reveals how the different factor groups affect the observed measure. These
post-hoc tests can be seen as multiple testing, as the measured data samples of each
factor group are tested multiple times against each other (cf. Section C.4). In case
of a factor only comprising two factor groups (e.g. gender: female and male) the
results of the post-hoc t-test correspond to the results obtained when utilizing an
ANOVA under similar testing conditions. As no testing on multiple factors was
applied in the scope of this Thesis, these methods will not be addressed.

In general, this kind of testing is also called statistical hypothesis testing and is
based on an alternative hypothesis (H1) and a null hypothesis (H0). The alternative
hypothesis describes a newly made assumption, which has not yet been proven to be
correct (e.g. a certain medication leads to differences in the average blood pressure
of a patient). It is distinguished between one-sided hypotheses (directional, e.g.
the measure increases/ decreases) and two-sided hypotheses (non directional, e.g.
it is unknown if the measures increases/ decreases but assumed that there exists a
difference). The null hypothesis describes the counter hypothesis of the alternative
hypothesis (e.g. the blood pressure stays constant at an average of µ0). Regarding
these hypotheses, three possible hypotheses pairs can be defined considering the
observed measure average (µ):

1) H0 : µ = µ0 versus H1 : µ > µ0 (one-sided, the measure increases),

2) H0 : µ = µ0 versus H1 : µ < µ0 (one-sided, the measure decreases),
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3) H0 : µ = µ0 versus H1 : µ 6= µ0 (two-sided, there exists a difference).

To determine if a null hypothesis gets rejected, the level of significance α is intro-
duced. This level denotes the probability of a null hypothesis being rejected with
regard to committing a type I error (the null hypothesis gets incorrectly rejected).
Regarding the example introduced above, this could imply a significant effect being
incorrectly determined between the double dose and placebo factor group. Espe-
cially, in the application domain of medication efficiency, this could result in serious
problems when a certain medication treatment is applied, but actually not affecting
the concerned health issue. Or even more dramatically, a patient being diagnosed
with a serious disease while actually being healthy and vice versa. Commonly used
levels of significance range from α = 0.05, in case of less serious consequences, to
α = 0.001, in case of very serious consequences. To decide if the null hypothesis is
satisfied regarding the given level of significance, a test statistic needs to be evaluated
which is then compared to the critical value of the underlying samples distribution
function. Considering a one-sided hypothesis as described in 1) and 2), the decision
on the null hypothesis being accepted or rejected is defined as followed:

for 1)
test statistic ≥ crit. value → H0 rejected
test statistic < crit. value → H0 accepted

for 2)
test statistic ≤ crit. value → H0 rejected
test statistic > crit. value → H0 accepted

In case of a two-sided hypothesis as described in 3), H0 is rejected when
|test statistic| ≥ crit. value. The main difference when utilizing different statistical
analysis tests is the utilized test statistic and corresponding critical value. Mostly,
the test statistic is calculated based on the statistics of a set of random samples
(average and standard deviation) of the observed measure for each factor group.
Whenever huge sets of random samples are available the test statistic is assumed
to describe the distribution of the real population. When utilizing parametric data,
the samples are assumed to be standard normally distributed. In case of an un-
known distribution function of the underlying population, the average and standard
deviation of the population needs to be approximated using the random samples
statistical values. This distribution is then called a t-distribution. When the dis-
tribution of the real population is available the test statistic is described using the
z-distribution (normal distribution). Depending on these two factors either a z-test
or a t-test is utilized. Assuming that the population is fully described, utilizing a
z-test, the critical z-value (zcrit) is defined by the percentiles of the corresponding
level of significance. For a one-sided z-test this would correspond to the value z1−α
or zα for case 1) and 2), respectively. A visualization of the region of rejection, with
the hypothesis that an increase of the considered measure is present (case 1)), is
given in Figure C.1 a). For a two-sided z-test (case 3)), the region of rejection is
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split into a lower and upper region of α
2
and the critical z-values would correspond to

zα
2
and z1−α

2
(cf. Figure C.1 b)). For convenience, there exists tables from which the

critical z-values can be easily obtained (e.g. in [Bortz & Schuster 2010] and [Kvam
& Vidakovic 2007]). It is now assumed, that the random samples’ distribution is
consistent for the different factor groups (i.e. µ = µ0, the null hypothesis is accepted
and there is no significant difference) with

xi N (µ0, σ
2), fori = 1, ..., n.

The term, xi represents the measured data of the random sample set of size n.
Hence, a z-value can be determined for the random sample set

z =
√
n(
x̄− µ0

σ
), (C.1)

that corresponds to the test statistics and is later compared to the critical z-value.
Furthermore, it can be calculated what percentage of the random sample set lie above
the test statistic. This value is called the p-value and can be directly compared to the
utilized level of significance. Whenever p exceeds α, the null hypothesis is accepted
and no significant difference between the different factor groups is present (H1 gets
rejected).

0 z1−α

α

(a) one-sided z-test with the hypothesis H1 :
µ > µ0

zα
2 0 z1−α

2

α
2

α
2

(b) two-sided z-test

Figure C.1: Standard normal distribution with critical z-values for a a) one-sided z-test
with H1 : µ > µ0 and b) two-sided z-test. The critical z-values correspond to the
1− α-percentile in a) and the α

2 - and 1− α
2 -percentile in b), of the z-distribution.

To sum up, statistical hypothesis testing determines if there exists a significant
difference between the average value of an observed measure and the null hypo-
thesis. It is assumed that the utilized random sample set is normally distributed.
With regards to these assumptions, a test statistic and critical value can be determ-
ined which is then compared to each other, based on a given level of significance
(α). If the random samples’ set sufficiently describes the population, the data is
assumed to be standard normally distributed (z-distribution) and a simple z-test
can be utilized. In most cases the distribution of the population is, however, not
sufficiently described by the random sample set and a t-test needs to be applied. To
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compare two factor groups or more with each other the hypothesis test needs to be
adapted. Another aspect which needs to be addressed is whether the random sample
set contains paired data samples (e.g. samples originating from the same subject in
different factor groups). The just presented general approach is only valid for un-
paired data samples. In the following Section C.1 more details on these hypothesis
testing methods, utilized in the scope of this Thesis, are presented. These include
paired and unpaired testings of factors including two groups and multiple groups.
The general idea behind these test methods, however, follows the just presented
description of the z-test.

C.1 Parametric Statistics

In this Section I will present all relevant hypothesis testing methods, which are
found to be applied to parametric data in the Chapters of this Thesis. A special
focus is drawn on paired testing, as the performed experiments are based on compar-
isons within the utilized subjects (e.g. effect of speech enhancement on the speech
emotion recognition performance compared to the performance of the corresponding
clean speech experiments). The following descriptions on parametric statistic and
hypothesis testing are based on [Bortz & Schuster 2010], if not indicated differently.

C.1.1 t-Test

As already mentioned in the previous Section, the obtained random sample set of an
observed measure does, in most cases, not sufficiently describe the real population.
Therefore, the data is not assumed to be z-distributed but t-distributed. Now, the
test statistic can be calculated by

t =
√
n(
x̄− µ0

s
). (C.2)

with s being the approximated standard deviation of the population obtained from
the random sample set. Now, as described for the z-test, a critical t-value needs
to be obtained by determining the percentile of the corresponding t-distribution
under one-sided or two-sided testing conditions. Here, the following aspects of a
t-distribution need to be considered:

1. The t-distribution is strongly dependent on its degree of freedom (df = n−1),
which determines the shape of the distribution.

2. It is unimodal and symmetric. With increase of degree of freedom it converges
towards a standard normal distribution.

3. The percentiles of the t-distribution are used as critical values and are referred
to as tdf .
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4. tdf can be taken from the corresponding table provided in several books on
hypothesis testing (e.g. [Bortz & Schuster 2010]).

The only requirement to apply this, so called, one sample t-test is that the random
sample set is normally distributed.

With the presented approach we are now able to compare a t-distributed random
sample set to a given average of the null hypothesis. For most applications, however,
a comparison between different factor groups is needed. In case of two factor groups
the hypothesis testing needs to be re-defined. The null hypothesis now assumes that
the there exists no difference between the observed measure of the random sample
set obtained for the two factor groups and the alternative hypothesis assumes that
there exists a difference:

1) H0 : µ1 = µ2 versus H1 : µ1 > µ2 (one-sided, the measure increases),

2) H0 : µ1 = µ2 versus H1 : µ1 < µ2 (one-sided, the measure decreases),

3) H0 : µ1 = µ2 versus H1 : µ1 6= µ2 (two-sided, there exists a difference).

It now needs to be further distinguished between unpaired (non-related) and
paired (related) data samples. In case of two unpaired independent data sets of
size n1 and n2, the test statistic, as presented in Equation (C.2), can be adapted to

t =
(x̄1 − x̄2)− (µ1 − µ2)

sx̄1−x̄2
, (C.3)

and

sx̄1−x̄2 =

√
s2
p(

1

n1

+
1

n2

). (C.4)

In this Equation, x̄1 and x̄2 correspond to the average values’ observed measures
(xi1,1 and xi2,2) of the random sample sets. With regard to the null hypothesis
(µ1 = µ2) and the assumption that both random sample sets have common variances,
s2
p is determined by

s2
p =

s2
1 + s2

2

2
, (C.5)

and the test statistic t is calculated as

t =
x̄1 − x̄2

sx̄1−x̄2
. (C.6)

As two random sample sets with possibly different sample set sizes are utilized,
the corresponding t-distribution is now dependent on df = n1 + n2 − 2 degrees of
freedom. As for the one sample t-test, the critical t-value tdf ;p can be taken from
the corresponding table provided in books. Contrarily to the one sample t-test, to
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apply the unpaired t-test, an additional requirement needs to be fulfilled. This is
the homoscedasticity of the random sample sets variances.

In case of paired data samples, the random sample sets are of equal size (n1 = n2)
and the different samples of set 1 can be directly compared to their corresponding
pair in set 2. Consequently, there exist nd = n1 = n2 pairs of samples and the dif-
ference di between each sample pair (xi,1, xi,2), with i = 1, ..., nd, can be determined
as

di = xi,1 − xi,2. (C.7)

Accordingly, also the differences of the average sample values can be defined as

d̄ = x̄1 − x̄2. (C.8)

Considering these simplifications, the two factor t-test is transformed back into a
one sample t-test, with the test statistic defined as

t =
√
nd(

d̄− µd̄
sd

). (C.9)

The term sd is defined as the sample standard deviation of the differences di. With
regard to the null hypothesis (µ1 = µ2) and consequently µd = 0, the test statistic
is calculated by

t =
√
nd(

d̄

sd
). (C.10)

As we reduced the two sample problem to a one sample problem, the degree of
freedom of the samples t-distribution is determined by df = nd + 1 and, again, the
critical t-value tdf,p can be taken from available tables. The requirements to apply
a paired t-test are similar to those of a one sample t-test, with the difference pairs
di being normally distributed.

C.1.2 Analysis of Variance

Whenever a factor contains more than two factor groups, it is not possible anymore
to apply a t-test but a, so called, Analysis of Variance (ANOVA) needs to be em-
ployed. Here, a factor A contains i = 1, ..., p factor groups. The observed measure
of each factor group i and test subjects m is denoted as yi,m, with m = 1, ..., n. It
further is assumed that each factor group contains the same number of observations,
such that n is equal for all factor groups and yi,m spans a matrix of size p× n, with
N = n · p entries.
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As for the hypothesis testing methods presented previously, we want to determine
if there exists a difference between the average value of the observed measure of the
p factor groups. Following this assumption, the null hypothesis is defined as

H0 : µ1 = µ2 = ... = µp, (C.11)

and the alternative hypotheses states that there exists a difference between the
µi-value of at least two factor groups.

In case of a single factor ANOVA, the difference in efficacy of each factor group
is determined by the sum of squares of its observed measure. It is known that the
sum of squares describes the overall variation of the observed measure (i.e. total
variance). With this knowledge, an F-test, also used to determine if there exists
a significant different between the variance of different factor groups, is utilized
(cf. Section C.3). For this test, the test statistic follows an F-distribution and is
calculated as

F =
MSA
MSe

=

SSA
dfA
SSe
dfe

, (C.12)

with MSA and MSe denoting the mean square of the sum of squares in between
the factor groups (SSA) and within each factor group (SSe), respectively. The Terms
SSA and SSe are determined by

SSA = n ·
∑
i

(Āi − Ḡ)2, and (C.13)

SSe =
∑
i

∑
m

(yi,m − Āi)2, (C.14)

and the correspond degrees of freedom by

dfA = p− 1, and (C.15)
dfe = p · (n− 1) = N − p. (C.16)

The term Āi denotes the average observed measure of the factor group i

(Āi = 1
n

∑
m yi,m) and Ḡ the average observed measure over all factor groups

(Ḡ = 1
N

∑
i

∑
m yi,m). With regard to Equation (C.12), the critical F-value FdfA,dfe is

dependent on the two degrees of freedom and the desired level of significance. While
for the t-test it was distinguished between a one-sided and a two-sided t-test, in
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case of the single factor ANOVA we are only interested in if there exist a difference
between two of the factor groups. Therefore, the H0 is rejected whenever

F ≥ FdfA,dfe (C.17)

is satisfied. The critical F-values defined by the percentiles of the F-distribution
can, again, be taken from tables provided in several books on hypothesis testing
(e.g. [Bortz & Schuster 2010]). Requirements relevant to apply the single factor
ANOVA are normally distributed random sample sets and homoscedasticity of the
sets.

We now need to further distinguish between unpaired and paired ANOVAs. In
case of unpaired data samples, there exist no dependency of the different subjects
of the factor groups with each other. Therefore, all factor groups are independent
and the total sum of squared is determined as

SStot =
∑
i

∑
m

(yi,m − Ḡ)2 = SSA + SSe, and (C.18)

dftot = N − 1 = dfA + dfe. (C.19)

The applied single factor ANOVA is also referred to as one-way ANOVA.

In case of paired data samples, there exists an additional dependency of the sub-
jects of each factor group. To evaluate if a certain factor group has a significant ef-
fect on the observed measure, however, it is not of interest to include the in between
subject differences in the test statistics, as these differences are already known and
would distort the effect of the factor groups. Hence, the total sum of squares is split
into an in between and within subject variance:

SStot =
∑
i

∑
m

(yi,m − Ḡ)2 = SSbetween + SSwithin, with (C.20)

SSbetween = p ·
∑
m

(P̄m − Ḡ)2 and (C.21)

SSwithin =
∑
i

∑
m

(yi,m − P̄m)2 = SSA + SSe. (C.22)

While SSA still only takes into account the in between factor group difference (cf.
Equation (C.13)), SSe is now determined by

SSe =
∑
i

∑
m

(yi,m − Āi − P̄m + Ḡ)2. (C.23)
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The corresponding degrees of freedom are:

dftot = N − 1 = dfbetween + dfwithin, and (C.24)
dfbetween = n− 1, and (C.25)
dfwithin = dfA + dfe = (p− 1) + (n− 1) · (p− 1) = N − n. (C.26)

Considering the adapted term of SSe, the test statistic F is determined as presen-
ted in Equation (C.12) and the critical F-value FdfA,dfe can be taken from available
tables. This kind of ANOVA is referred to as repeated-measures ANOVA, as it is
originally designed to compare repeated-measures of the same subject under differ-
ent testing conditions (e.g. blood pressure without medication, with placebo and
with medication, respectively). Nevertheless, it is also often used to compare dif-
ferent moments of observation with each other (e.g. blood pressure after one week,
two weeks, .... of medication, respectively). To apply the repeated-measures AN-
OVA, the random sample sets of the different factor groups need to be normally
distributed. Contrarily to the one-sided ANOVA, no homoscedasticity, but spheri-
city (homoscedasticity of the difference between the paired samples) is required.

An overview on how the different requirements of the unpaired and paired t-
test, and one-way and repeated-measures ANOVA are determined is presented in
Section C.3.

C.2 Non-Parametric Statistics

In case of small or not normally distributed data samples, it is not recommended
to utilize parametric statistics. For each of the above presented hypothesis testing
methods, there exist designated testing approaches in case of non-parametric data.
Again it is distinguished between two factor groups and multiple factor groups,
and unpaired and paired data samples. In case of two factor groups and unpaired
data samples the Mann-Whitney U-test is applied. For paired data samples of two
factor groups Wilcoxon (signed-)rank test can be used (cf. [Bortz & Lienert 2008]
and [Bortz & Schuster 2010]). Whenever more than two factor groups need to be
evaluated, Kruskal-Wallis H-Test and Friedman-test in case of unpaired and paired
data samples, respectively, need to be applied (cf. [Bortz & Lienert 2008]). As in
this Thesis only paired samples of two factor groups will be compared, only the
Wilcoxon signed-rank test is described in detail in the present Section based in the
descriptions in [Bortz & Lienert 2008].



276 Appendix C

C.2.1 Wilcoxon Signed-Rank Test

This test is specially designed to test the significance of two related samples of
non-parametric distributions. Wilcoxon signed-rank test is based on the paired t-
test described in the previous Section. As described in Equation C.7 the difference
between the observed measure of the two factor groups is calculated, with nd denot-
ing the number of samples of each factor group. Contrarily to the paired t-test, the
test statistic is not based on the difference of each sample pair (di) but the rank of
the absolute difference |di|. The rank of all sample pairs i is determined in ascend-
ing order from 1 to nd (e.g. the minimal difference is assigned with rank 1 and the
maximal difference assigned with rank nd). Afterwards, the rank is weighted by the
sign of di and divided into two sub-classes of positive and negative rank values. The
terms T+ and T− comprise the sum of ranks of the positive and negative sub-class,
respectively. The test-statistic can now be defined as

T = min(T+, T−). (C.27)

When applying an one- or two-sided test, to determine if there exists a significant
difference in the considered feature and hence reject the hull hypothesis (H0 : µ1 =

µ2), the test statistic T should not exceed the critical value of the considered level of
significance (T < Tcrit). The critical value Tcrit can be taken from tables provided in
several books on non-parametric statistics (e.g. [Bortz & Lienert 2008] and [Kvam
& Vidakovic 2007]).

In case of large sample sets nd > 50, T converges to a normal distribution and
the z-value can be approximated using the standardized normal distribution (z-
distribution). This z-value is then compared to the critical z-value of the considered
level of significance. If the z-value exceeds its critical value (z < zcrit) the null
hypothesis is rejected and it can be assumed that there exists a significant difference
in the considered feature of the two factor groups.

C.3 Review of Requirements

In the previous Sections C.1 and C.2, different hypothesis testing methods to eval-
uate whether certain factors have a significant effect on an observed measure are
presented. The use of these methods is, however, conditioned by certain require-
ments on the utilized random sample sets. These requirements are: the random
sample sets being normally distributed, and homoscedasticity and sphericity of the
sets. For all these requirements there exist designated hypothesis testing methods. I
will now only give a brief overview on available testing methods, without a detailed
description of the methodological background. Only to name some, the following
tests can be utilized:
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Normally Distributed Samples: Shapiro-Wilk-Test [D’Agostino 2006]

Homoscedasticity: F-test or Leven-Test [Bortz & Schuster 2010]

Sphericity: Mauchly-Test [Rasch et al. 2014]

If these requirements are not fulfilled by the utilized random sample set there exist
ways to modify the applied t-test and ANOVA. In case of not normally distributed
sample sets and heteroscedasticity, a non-parametric approach can be chosen (cf.
Section C.2).

In case of non-spherical data a correction of degree of freedoms can be applied.
However, the reliability of the Mauchly-test is controversial, as, especially for a low
number of test subjects the test shows a low statistical power (i.e. data being not
spherical, although the Mauchly-test obtained no significant result). At the same
time, in case of a large number of test subjects, the test often obtains significant
results while the data is actually spherical [Rasch et al. 2014]. Therefore, it is
recommended to always apply an adjustment of the degree of freedom of both,
numerator (dfA = p − 1) and denominator (dfe = (p − 1) · (n − 1)), of the critical
F-value FdfA,dfe , independent on the outcome of the Mauchly-test. This is done
by weighting the degree of freedom with a factor ε, with ε < 1. Depending on
the strength of violation of the assumption of sphericity, either a small ε, for strong
violations, or a value close to 1, for weak violations, is chosen. In general, the smaller
ε is chosen, the stronger the adjustment of the degree of freedom. This adjustment
will lead to an increase of the critical F-value and therefore to a progressive decision
on H0.

There exist different ways to determine ε. The most conservative adjustment is
obtained when choosing the lowest possible value for ε:

ε =
1

p− 1
. (C.28)

The correction of the degree of freedom is obtained by calculating

dfA = ε · (p− 1) and (C.29)
dfe = ε · (p− 1) · (n− 1). (C.30)

This correction is also referred to as the lowerbound-correction.

A less conservative method is introduced by Geisser and Greenhouse. Here, ε is
estimated based on the covariance matrix C, of size p ·p, of the random sample sets:

ε̂ =
p2 · (c̄ii − c..)2

(p− 1) · [∑p
i=1

∑p
j=1 c

2
ij − 2 · p ·∑p

i=1 c̄
2
i. + p2 · c2

..]
, (C.31)



278 Appendix C

with c̄ii denoting the average of the main diagonal of C, c̄i. the average of the i-th
column of C and c̄.. the average over all elements of C. An adjustment utilizing this
estimate ε̂ is also referred to as Greenhouse-Geisser-correction. In case of ε̂ < 0.75

it is recommended to apply a Greenhouse-Geisser-correction (cf. [Rasch et al. 2014]
and [Bortz & Schuster 2010]). For larger values (ε̂ ≥ 0.75) a less conservative cor-
rection is recommended, which is called the Huynh-Feldt-correction. This approach
is dependent on the number of factors evaluated. As only single factor evaluations
are performed in the scope of this Thesis, the corresponding Huynh-Feldt-epsilon
(ε̃) is determined by

ε̃ =
n · (p− 1) · ε̂− 2

(p− 1) · [n− 1− (p− 1) · ε̂] . (C.32)

It is possible that the estimate ε̃ exceeds a value of ε̃ > 1. In these cases ε̃ is set
to ε̂ = 1.0 and no correction of degree of freedom is performed.

C.4 Multiple Testing

Whenever multiple tests are carried out on the same data, this is referred to as
multiple testing, for example, when there exist more than two factor groups (e.g.
medication groups: placebo, single dose, double dose), which should be tested among
each other (placebo vs. single dose, placebo vs. double dose and single dose vs.
double dose) in a number of post-hoc t-tests.

C.4.1 α-Inflation

By conducting multiple tests on the same data, the probability of committing a
type I error increases with each additional test. This increase is also referred to
as α-inflation. The Family-Wise Error Rate (FWER) describes the probability of
committing at least one type I error and is determined by

FWER = 1− (1− α)M , (C.33)

withM being the number of tests carried out on the data set and α being the level
of significance [Bortz & Schuster 2010]. In case of the introduced three factor group
problem, with a level of significance of α = 0.05 this would result in FWER = 0.143.

C.4.2 Bonferroni-Correction

One way to prevent α-inflation is by utilizing a Bonferroni-correction. Here, the
level of significance gets reduced depending on the number of tests carried out:
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α′ =
α

m
, (C.34)

this reduced α’ is substantially smaller than α. Therefore, it is much harder to
reach the level of significance [Bortz & Schuster 2010]. For our example, this would
results in an corrected α value of α′ = 0.017 for the carried out post-hoc t-tests.
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Big Tables

APPENDIX D contains all the big Tables related to the results presented in
Chapter 6.
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Appendix E

Real-World Validation

THE recognition results presented in this Thesis are all based on empirical
research. However, when it comes to a later real-world application further

experiments need to be performed to reassure the performance of the system also in
unknown real-world scenarios (i.e. field research). This can, for example, be done
by performing large scaled field studies where the system is evaluated in real driving
situations.

A first small-scaled field study, where frustration was induced to the driver in a
similar way as for the data collection in Chapter 3, was performed in the final phase
of this Thesis. This was done by prototypically implementing the classifier on an
in-car processing unit and communicating the output stream as JSON-message1 to
a central computer via MQTT2. The output of the classifier contained a continuous
stream of JSON-messages consisting of speech analysis windows of 2 seconds length.
These messages also included segments where no speech was present for the analysis
of the emotional state. However, the results lack of evidence as only a very small
number of eight subjects took part in the study and a ground truth was not assessed.
The only available data used to evaluate the algorithm were the output stream
of the classifier, field notes of an experimenter, self-reports of the driver and the
knowledge of the experimental phase of the test drive. The results, presented as
number of speech segments classified by the audio-based emotion algorithms, are
stated in Table E.1. The Table also includes the self-reported frustration level on a
10-point Lickert-scale for each subject averaged over the whole test scenario. Bold
numbers indicate the number of segments classified as the target state of the driving
scenario.

As stated in Chapter 6, the implemented classifier is strongly biased towards de-
tection of a neutral emotional state. A confusion with an emotional state different
from neutral is very unlikely. This also explains the high number of detected neut-
ral speech segments for all subjects. The second highest number of detections is,
nevertheless, obtained for the state of frustrated driving. A repeated-measures AN-
OVA revealed that there exists a significant difference between the number of speech
samples classified as a certain emotional state (main effect: F(1.6,11.0) = 66.7, p

1JavaScript Object Notation; Data communication format
2Message Queuing Telemetry Transport; Network protocol for data communication between

devices
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Table E.1: Number of speech segments classified by the Audio-based emotion classifier,
including audio segments where no speech was present, presented per evaluated subject.

Subject No./ 1 2 3 4 5 6 7 8
∑

Predicted State

No speech 40 26 11 27 25 19 29 18 195
Neutral 75 67 72 64 48 61 37 47 471
Positive 0 4 1 1 3 0 0 22 31
Frustrated 2 4 15 0 23 1 10 15 70
Anxious 0 0 0 3 0 3 1 0 7

Self-report 1.8 6.25 1.75 6.8 8.25 5.75 6.8 8.25 /

< 0.01, Greenhouse-Geisser-corrected). Nevertheless, a post-hoc one-sided paired t-
test revealed that the only significant difference was between the number of samples
classified as the neutral state compared to all other emotional states (p < 0.05,
Bonferroni-corrected). It was further noticed that in most cases a high self-reported
frustration level is related to high numbers of detected speech samples classified as
frustration. One exception was seen for participant No. 3 for whom a large num-
ber of speech samples was detected as frustration while the self-report indicated a
very low level of frustration. Another discrepancy was noticed for participant No.
8 for whom a considerably higher number of speech samples classified as positive
was present compared to all other participants. To investigate the high number of
samples classified as frustration and positive for participant 3 and 8, respectively, a
more detailed insight into the conducted evaluations is necessary.

From these results a vague positive tendency on the performance of the audio-
based classifier, with focus on detecting frustrated drivers, can be drawn. The
results, however, lack of statistical evidence as the sample set does not represent the
population in a sufficient way.
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