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Abstract

Optimizing computer game play necessitates an understanding of specific game design goals
and general presentation strategies, wherein game play can be both challenging and fun. Al-
though only rarely utilized in this context, the ever-advancing field of computer graphics,
and particularly non-photorealistic rendering (NPR), hold untapped potential in optimizing
game play. We introduce the conceptsopportive presentatiQmvherein graphical presen-

tation planning aims to maximize player enjoyment. To this end, we provide (1) tools and
empirical psychological evidence utilizing NPR-specific presentation methods; (2) tools for
advanced camera control; and (3) a system for integrating key aspects of game design and
development for supportive presentation. Lastly, drawing on examples of supportive pre-
sentation in potential game applications, we outline directions for future research between
graphics and psychology to promote a better understanding of the influence of presentation
methods.






Zusammenfassung

Um die Interaktion in Computerspielen verbessern @arlen, ist ein tieferes Veistdnis

der spezifischen Ziele bei der Erstellung eines Spiels und der dabei angewandten allge-
meinen Pasentationsstrategien notwendig. Diese d@glichen es erst, dass das Spielen
eines Computerspiels sowohl eine Herausforderung darstellt als auch dem Spieler Freude
bereitet. Obwohl beide Forschungsgebiete in diesem Zusammenhang nur selten Verwen-
dung finden, stellen dasastdig weiter voranschreitende Gebiet der Computergraphik und
insbesondere das Gebiet des nicht-photorealistischen Renderings (NPR) noch nicht genutzt-
es Potential zur Optimierung des Spielgeschehens zutiy@ny. Die vorliegende Ar-

beit stellt das Konzept der untdittenden Risentation vor, welches die Maximierung

des Spielspasses durch graphischsentationsplanung beinhaltet. In diesem Zusammen-
hang werden (1) Werkzeuge zur Verwendung von NPR-Methoden entwickelt und dazu em-
pirische psychologische Untersuchungeasantiert, (2) Methodenif eine fortgeschrit-

tliche Kamerasteuerung entworfen und (3) ein System vorgestellt, das die Integration von
Schlsselaspekten der Spieleentwicklunig £ine untersttzende Pasentation integriert.
Abschliessend werden, basierend auf Beispielgrdie unterditzende Pasentation in po-
tentiellen Computerspiel-Anwendungenpilichkeiten aufgezeigtif die weiterfihrende
Forschung auf dem inderdiszipéiren Gebiet zwischen Computergraphik und Psychologie,
um ein besseres Ve#stdnis des Einflusses derdBentationsmethoden zu d@rgtichen.
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1 Introduction

Fundamentally, every good game maintains certain basic elements of play that make it
distinctly compelling—uniquely combining enjoyable challenges, clear goals, specific but
broad strategies for success, and the opportunity to socialize with other players or simply
escape from reality altogether. The understanding and effective application of a success-
ful game design, much like the understanding of art, is an internalized process—typically
relying on a ‘gut’ feeling [Rouse Ill, 2003] rather than a formal combination of the above
elements with other design strategies. In order to maximize the player’s enjoyment of the
game, the designer must ‘feel’ and bring out those elements that makes it both absorbing
and fun.

As computer and video games are now firmly established within the modern gaming cul-
ture, game design and development has taken on a slick, dynamic, and increasingly realistic
face. Technologically, computer games have drastically advanced over the past decades as is
clearly seen in the astonishing progress of real-time photorealism (PR). With the establish-
ment of 3D graphics, gamers are playing a new kind of game—one that more closely reflects
the physical capabilities and limitations of our own senses. In a world where game develop-
ers tend to invest a majority of their resources in advancing current rendering algorithms it
seems counter-intuitive that these algorithms rarely contribute to actually optimizing the ele-
ments of play. Thus the question emerges: aside from achieving PReleesan computer
graphics be employed within game design?

In this thesis, we explore alternative presentation strategies and tools that allow game
designers to more closely correlate game design intentions with visual variables in order to
augment individual game experiences. Specifically, we formally introduce the concept of
supportive presentatigavherein graphics can be employed in direct support of game design
and respective elements of play:

e Supportive PresentationA graphical presentation specifically tailored to augment
individual user experiences by supporting the design intentions underlying the im-
mersive virtual environment.

Formally, the task of augmenting ‘individual user experiences’ necessitates a deeper un-
derstanding of the user on multiple levels—specifically, a concise knowledge of the pa-
rameters and limitations within user-game interactions. Although ‘rules-of-thumb’ can and
do contribute to designing enjoyable games, they frequently overlook certain variables or
erroneously ascribe the assumed boundaries of a non-formal paradigm. Consequently, an
empirical approach—one that explores the psychological parameters of the user-game in-
teractions in terms of graphics, is clearly necessary to effectively implement supportive
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presentation strategies within a game. In essence, supportive presentation must go beyond
creating and manipulating computer-generated images to formally probe the psychological
potential therein.

1.1 Graphical Presentation Planning

Clearly, the premise of understanding user-game interactions is to enable the game design
process to be better tailored to the goals of supportive presentation via the informed devel-
opment of new tools and presentation strategies. Moreover, in order for supportive presen-
tation to be effective, the communicative goals within the game must first be satisfied, such
that the player successfully absorbs and responds tm#éamningof a graphical presenta-

tion within the framework of the game objectives. A central tenet of graphical presentation
planning is what can be conveyed to the viewer, or more precisely, what might or might
not be understood by different viewers. Indeed, Seligmann [1993] argues that communi-
cation within computer graphics can be problematic—even though graphics can generate
the exact same presentation to different viewers, they may be interpreted by individuals in
different ways. Thus, we outline a strategy which reflects aspects of Seligmann’s presenta-
tion pipeline, while considering how supportive presentation can be best integrated into this
model.

(1) What is the communicative goal? To begin, the game designer must define what the
graphical presentation shoudcomplishwith the intentions of supportive presenta-
tion in mind. Depending on the game, communicative goals will be framed within
a conceptual premise. At this stage, the actual styles and images are not being con-
sidered, but rather the game intentions—such as clarifying an aspect of the game,
conveying object or character values, or influencing the next move of the player. For
example, multi-player games will consider such things as how best to level the playing
field between players of different skill levels, while exploratory games might attempt
to better coordinate player performance with successive challenges in completing fu-
ture goals.

(2) Defining the presentation strategy The game designer must now determine the
visual effect(s) that can effectively satisfy the communicative goals. Essentially, spe-
cific presentation strategies must be defined—for examlatvisual cues and effect
can best clarify a given part of the game, influence player decisions, or convey object
or character value. An effective strategy might emphasize particular objects, or map
visual attributes to characters/objects.

(3) Defining the presentation method Given the presentation strategy, the game de-
signer now specifieeow the visual effect can be realized. For example, a strategy
that uses emphasis may be achieved by requiring the scene element concerned to have
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a prominent size and location in the image, or by using a particular rendering style to
distinguish it from surrounding objects or give it particular attributes.

(4) Image generation Based upon the selection of the presentation methods, the spec-
ified visual properties can now be applied. This process may involve optimizing the
camera position or rendering of various styles.

It is important to realize that although this pipeline is a conception of how to achieve
effective communication between game designers, developers, and users, these stages do not
necessarily encompass what is currently possible in the game-design process. Specifically,
the latter three stages rely on research considerations of user-game interactions to establish
effective communication strategies. We must first formally explore, define, and establish
the parameters and limitation of player responses to given graphics variables within the
game environment before presentation strategies and methods can be effectively employed
to achieve a set of communicative objectives. Finally, the first two stages are somewhat
confined to the functionality of the tools used to specify presentation methods, which in
turn are dependent on algorithms to generate images.

1.2 Objectives

In order to begin providing the necessary concepts and tools for supportive presentation, we
must:

e Formally understand the impact graphics exerts on the viewer in order to effectively
support game design.

Computer graphics, and non-photorealistic rendering (NPR) in particular, can be used
to influence more than just ‘cool graphics, holding the potential to uniquely impact
game design and subsequent play as never before. This potential is not only defined
by the boundaries of technological advancement, but demands a deeper understand-
ing of how computer graphics can influence the viewer. Formalizing psychological
knowledge via new research paradigms within computer graphics will promote gen-
eral awareness of alternative, non-psycho-physical visual influences and thus, increase
innovative methods for supporting game design.

¢ Allow designers to focus on illustrative intent by visually specifying effects without
requiring an in-depth knowledge of the implementation processes.

The conceptual process of specifyibateffects will best convey communicative in-

tent should not necessitate a technical understandingwthese effects are achieved.
Freeing the designer to focus on effects themselves (and not how to generate them)
will facilitate the game design process creatively—opening new visual avenues within
supportive game designs.
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e Design and streamline algorithms within a system model which supports a variety of
visual specifications and effects, which can then be employed as supportive presenta-
tion methods.

Algorithms designed with only one specific presentation method in mind remain lim-
ited in their scope and future applicability. Combining existing algorithms within a
system model that enables easy application is crucial to ensure powerful and flexible
systems capable of supporting and combining various presentation methods.

We focus on two central types of presentation methodsual contentand visual ap-
pearance as both can be applied to more closely correlate game design intentions with
visual effects. Specifically, we explore aspects of how the camera captures presentation
content, and how rendering variables define the visual appearance of that content.

1.3 Results and Thesis Structure

Below, we present a brief overview of our tools and concepts that significantly contribute
to supportive presentation applications in the areas of non-photorealistic rendering (NPR),
camera techniques, user interfaces, and action summarization techniques:

e Empirical psychological evidence for utilizing NPR-specific presentation meth-
ods. NPR offers opportunities beyond photorealism to carry significant implicit in-
formation that affects choice and judgment, which we empirically demonstrate to
convey levels of threat, character strength, and potential for interaction in terms of
navigation, exploration, and object availability.

e Tools for the creation of NPR styles at all user levelsWe present a modular NPR
system based on a first unifying framework for NPR which includes a novel interface
for designers to experiment on presentation methoagdmsting new rendering styles
without knowledge of dimensionality of data, ordering of modules, or type conversion
requirements.

e Tools for advanced camera control.Real-time frame-coherent techniques for a vir-
tual camera are introduced whose behavior can be specified from a shot property tax-
onomy and complemented with methods for automatic feature extraction returning
timing information of important events in games.

e A proposed integrative system that focuses key aspects of game design and devel-
opment within a basic supportive presentation framework. A system integrating
the above tools is presented with examples for supportive presentation in potential
game applications for which we outline required future interdisciplinary research in
graphics and psychology to further explore and evaluate the influence of presentation
methods.



1.3 Results and Thesis Structure

The following sections detail the thesis contents in terms of individual chapter objectives
and how these respective goals are achieved.

Chapter 2: Supportive Rendering

Current presentation approaches in the game industry offer few means of supporting the
player, thus we aim to demonstrate the potential of alternative presentation methods to vi-
sually influence player response via rendering styles hypothesized to access higher-level
cognitive perceptions.

Trends in the game industry are analyzed that reveal evolving problems in game designs,
for which we subsequently propose alternative solutions and test 12 specific hypotheses
on 156 subjects to probe the effectsman-photorealistiacendering styles in influencing
human judgment and interactions. We interpret our results and discuss the merits of using
these techniques within computer games in terms of supportive presentation.

Chapter 3: Non-Photorealistic Rendering Tools

Our objective is to first demonstrate the necessity for an effective rendering system that
allows artists, as well as programmers, to create new visual effects without technical knowl-
edge of how the effects are generated, and secondly, describe the results and applicability of
a unifying framework created to this end.

We design a unifying framework for NPR and specify how users of all knowledge levels
can interact to create effects. A specialized NPR systereENNPAR, is built on this frame-
work that is comprised of modules that can be fitted arbitrarily into a rendering pipeline. We
then observe how it can mimic a designer’s creative process with a novel interaction method,
which works to produce new visual styles. Lastly, we consider how these can contribute to
computer game development and supportive presentation.

Chapter 4. Camera Control

The camera should provide a supportive role in capturing objects and associated events, with
the goal of enabling the designer to precisely specify when and what content to capture in
real-time during the game.

To specify visual content, we construct a low-level shot property taxonomy that is inte-
grated into our camera systemARZPLAN—demonstrating that consistent results for spa-
tially similar scenes and solutions in unique regions can be found. The shot property tax-
onomy is subsequently refined and specialized for real-time application inRlBBAPOR
camera system, wherein novel algorithms for maintaining frame-coherence over time are
introduced. Finally, methods are designed for automatically evaluating game variables to
detect specific events, used to return time intervals for capturing content.
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Chapter 5: Integration and Future Research

An integration of the above tools towards improving presentation methods is necessary to
optimize existing supportive presentation variables. Additionally, the inherent flexibility
of NPR and thus its psychological functionality, remain largely unexplored. Together, a
theory of psychology within NPR and existing tools must emerge to be collectively applied
to further supportive presentation within computer games.

A system diagram is constructed which integrates and highlights the use of each system
and tool formerly described. Examples are then provided to illustrate the effective cohe-
sion of this model via our graphical presentation pipeline. Directions for future research
are discussed for each example, as supportive presentation in general necessitate a deeper
understanding of the influence(s) computer graphics can exert on the viewer.

Chapter 6: Conclusion

If we can provide designers and artists the tools to experiment and create both a broader and
deeper range of game designs and solutions, developers will have a better chance of creating
games that continue to increase in their innovative capabilities.

We summarize the contributions of this thesis, comprising new and advanced presentation
strategies and tools that incorporate a variety of new techniques. This chapter concludes by
outlining additional future directions for supportive presentation and potential implications
in designing new games.
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Game developers utilize each advance in graphics hardware to create products that are more
innovative than previous releases: but such innovation is too often limited to ‘visual real-
ism’. In this chapter, we argue that non-photorealistic rendering (NPR) provides an oppor-
tunity to influence the game experience in novel ways. However, although the technical side
of NPR has advanced significantly over the past decade [Strothotte and Schlechtweg, 2002;
Gooch and Gooch, 2001], the understanding of how and why to apply this technology has
lagged, and the ideas presented here represent a contribution to closing this gap, primar-
ily: (1) the empirical testing of a number of hypotheses regarding the influence of rendering
styles on user response, (2) an analysis of how NPR can be used to affect higher-level cogni-
tion, and (3) a discussion of the relevance and applicability of these results within computer
games.

In Section 2.1 emerging factors in computer games are outlined in the context of pho-
torealism and the need for supportive game designs that cater for different types of users.
Section 2.2 introduces alternative rendering strategies and outlines an approach to build on
communication via latent knowledge that will prove invaluable in supporting user assess-
ments and interaction in virtual environments, for which the design of an empirical study is
given in Section 2.3. Specific hypotheses and results are reported in Section 2.4, followed
by an interpretation of these results in Section 2.5. Finally, a discussion of our achieve-
ments and its contribution to computer games, and computer graphics in general, is given in
Section 2.6.

2.1 Emerging Factors in Computer Games

Game design has changed dramatically over the years. In the past, games were typically
very repetitive due to tight technical limitations such as the amount of information one could

fit into memory, processing power, and graphics resolution. Games were often organized
around distinct levels that could be completed in a linear fashion, with the player beginning

each gaming session by starting at the first level. Failure at a particular task or challenge
usually required the player to revisit an earlier stage in the game. Today, however, techno-
logical advances allow for enriched game designs that have enabled a more varied playing
experience. Rather than requiring a game to be a series of difficult interaction tasks that
require dedication to improve skills and progress to the next stages of a game, the playing
experience can be much more open. This progression has allowed the introduction of a dif-
ferent class of gamer, those normally not found down at the arcades. As a result, a number
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of game design issues have emerged that are discussed in the following subsections.

2.1.1 Introducing the Casual Gamer

Adams [2000] identifies two gamer type extremes: the casual and the core gamer. The
casual gamer invests limited resources (time, or money!) on games, regarding them as
the occasional short-lived entertainment and considers alternatives such as reading a book
or watching television, whereas hardened core gamers devote much of their life to games.
However, Adams also highlights a more important distinction between these types of gamer:
whythey play games and what they expect from them.

e Core gamers, who were the initial enthusiasts, are compared with athletes: their aim
is to win, they approach games as a gruelling, exhausting, sometimes painful, chal-
lenge, and they will spend hours learning complex controls and experimenting with
gameplay to achieve perfection.

e Casual players, on the other hand, are a more recent phenomenon. These players want
to challenge their minds as much as their motor skills and are much less tolerant of
frustration in order to achieve something.

>

Gamer Population

core
Gamer Types

Figure 2.1:Speculated computer game player population distribution: From Casual to Core
(adapted from [Ip and Adams, 2002]).

The importance of catering a game for both casual and core gamers cannot be understated.
As can be observed in Figure 2.1, the expected distribution of gamers comprises mostly
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casual gamers [Ip and Adams, 2002]. A goal for the industry is to get these casual players
more into the hardcore market to increase the regular game buying population.

2.1.2 Skill and Challenge

In order to reach the casual gamer, game design needs to involve challenges that are not
just nasty, mean, and hard to beat, but clever, exciting, and fun to beat [Adams, 2000]. In
addition, the casual and core player must be able to play the same game. For producing
a successful title (i.e., those that sell well), Shelley [2001] emphasizes providing multiple
gaming experiences that cater for different skill levels and challenges. As a result, core
gamers will tell others about their favorite games that will get more casual players to buy
them too. The casual players might not be able to compete with star players, but by adjusting
parameters they can still find the type of game that suits them and have fun. In the end more
people are able to buy a game and be happy with it with potential for becoming further loyal
customers [Shelley, 2001].

To address the problem of meeting all players with a satisfying degree of challenge, a
number of different strategies can be used to regulate the challenge level in a game to support
both skilled and unskilled players [Pagulayan et al., 2003]. For instance, the use of rubber-
banding, or providing the trailing player with tools that have certain advantages. Achieving
this successfully is complicated even for single-player games, but becomes very difficult
when pitting players of different skills against one another [Pagulayan et al., 2003]. The
game designer must come up with ways to maintain challenge, reward, and progress for the
unskilled playemwithout severely hampering the skilled player.

2.1.3 Guided Interaction

With the advent of the casual gamer, game designers must create an experience that is much
more open than the linear challenges of skill that have historically appealed to core gamers.
Rouse [Il [2001] points out that the reason players often fail to finish games is that they
become stuck at a particular juncture and thereby can no longer advance. For casual gamers,
such hurdles mean that abandonment of play leads to abandonment of the game. Thus, the
game designer is to make sure not to beat the player [Bates, 2002, Chapter 2].

This problem can be ameliorated by introducing a range of options that a player can take
at any given time. However, introducing such non-linear gameplay presents new problems:
players can get lost in the space of options, and then waste time worrying that they are doing
the wrong thing. Some kind of reassurance is required, for example incremental rewards as
the player progresses towards their goals. They should be gently guided to appropriate
locations and challenges, yet also be informed when they are straying from the path [Bates,
2002, Chapter 2]. Or put another way, the designer’s job is to take care of the (casual) player,
not to be their hidden adversary. Guidance in navigation and exploration are especially

regulating gaming parameters (e.g., maximum speed, acceleration) in favor of trailing players
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important when learning how to play a game [Pagulayan et al., 2003]. Creating a suitable
game experience in this manner involves consideration of a range of issues, for example
narrative, task, and interaction. The concern here, however, is with rendering, and one
account of how this relates to casual game play is given in the following analysis, by Bates:

The single biggest problem of puzzles in action games is that players often
don’t know where they are. Sometimes a player will slay all the monsters on a
level, yet still be left wandering around wondering why he’s not done. After a

while, he’ll either give up in disgust or reluctantly reach for the strategy guide.

Only then will he learn that the ledge that looked too narrow can actually be
traversed, the jump he tried five times can really be made, or the wall he tried
to climb in six places can be scaled from a seventh.

This problem arises from the wealth of realistic graphical detail we can now

put in our levels. If we can make the entire level look interesting and beautiful,

how do we draw the player’s attention to the spots that are actually important?
[Bates, 2002, Chapter 5]

Bates suggests providing players with cues, for example: atrail of blood to a particular spot,
a glimpse of an adversary making a jump from one ledge to another, or a blatant message
over the radio that tells the player where to go and what to do. In certain game genres (e.g.,
adventures), clues can be given in appropriate locations. For example, a player who is unable
to unlock the secret of a room, relevant objects could be highlighted, possibly in a sequence
leading to a solution. Another option, suggested by Falstein, is to increase the chance of a
player progressing within a game by rewarding task completion with information or material
that then supports subsequent tasks [Falstein, 1999].

However neither of these options address the source of the problem, that the uniform
level of realism achieved by photorealistic rendering provides little scope for conveying
cues about the game situation. In fact, the uniformly photorealistic appearance of objects
in virtual environments can often confuse novice or casual users as to which objects are
interactive and which are merely ‘decoration’. In addition, certain successful game formulas
twenty years ago will no longer appeal as casual players often expect real-world logic to be
applied to photorealistic environments—they are not motivated, as still required by many
modern games, to blow up all wooden crates on a level with rocket launchers and expect to
find contained power-ups, such as medikits, that survive the blast.

The way that games are presented should adapt to the evolution of the casual gamers:
game graphics need to go beyond images that are merely ‘realistic’ and engrossing, to im-
ages that carry cues and hints that will support and enhance the experience of the casual
gamer.

2.1.4 Differentiation and Innovation

Despite certain issues raised by photorealism, with every advent of new technology emerg-
ing on the market, there is a persistency for computer game developers to rush in games
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that attempt to sell on advances in visual effects. This inspired Adams in 2001 to challenge
designers to stop relying on these advances in game technology to push games, arguing that
too much time was spent on getting used to technological hardware and not enough on game
design [Adams, 2001].

This situation is somewhat ironic. One of the biggest imperatives for game design is to
differentiate and innovate [Shelley, 2001], such that each game quickly grabs the player’s
attention and is noticeably different than the last otherwise the player risks losing interest
[Pagulayan et al., 2003]. Those games that become relegated to clones because of a lack
of distinction are usually commercial failures [Shelley, 2001]. Thus, it seems odd that
most games differentiate themselves by converging to the goal of visual realism instead of
employing different visual means that actually might be more suitable to the game design
itself. Hecker regards that:

“The game industry is not experimental enough...games cost a lot of money,
and publishers want some chance of making that money back, so that leads
to conservative and incremental designs...that’s not healthy for the medium in
the long term...[In other art forms] there are built-in mechanisms for experi-
mentation and exploiting experimentation...Games, as an art form, have hardly
scratched the surface of their potential, but [the game industry has] already cal-
cified” (Chris Hecker in [Adams, 2002])

One of the goals of this thesis is to provide tools that allow the creation and application
of presentation styles that contribute towards innovative game designs. Thus, rather than
using graphics as a medium within itself, we aim to use graphics in a way that supports the
intentions of the game design.

2.2 Alternative Solutions in Game Design

The previous section outlined some considerations in game design, but also identified that
the market is open to innovation and experimentation—especially one that deviates from
expenses of implementing advances in photorealistic rendering. This section proposes the
use of alternative rendering styles to convey information in the game beyond the simple
object-level model conveyed through photorealism.

The alternative to photorealistic renderingn@nphotorealistic rendering (NPR), which
continues to provide new tools and techniques for both communication and the experience
of synthesized worlds, including aspects of shape and detail in technical and artistic illus-
tration [Strothotte and Schlechtweg, 2002; Gooch and Gooch, 2001]. While many of these
techniques have been applied in real-time [Lake et al., 2000; Raskar, 2001; Freudenberg
et al., 2001, 2002; Praun et al., 2001] and can be used in computer games, they do not cur-
rently contribute more than just a new look. NPR has been known to provide communicative
possibilities, and, coupled with its inherent flexibility, it could support many communicative
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intents behind game design. However, despite this potential in NPR, Section 2.2.1 describes
how concrete investigations into NPR research have so far not gone beyond perceptual prin-
ciples, with only a few works suggesting an actual influence on user responses. Two works
in particular, and motivation derived from empirical studies in psychology, suggest that
there are qualities of images, independent of overt structure, that influence interpretation
and judgement. The theory behind this is described briefly in Section 2.2.2, which opens
the possibility of using NPR to communicate at@n-structural level, for which we lay out
specific questions in Section 2.2.3 to drive an investigation of its potential within computer
games.

2.2.1 Communication via Non-Photorealistic Rendering

While algorithmic issues in NPR are of concern (e.g., see [Strothotte and Schlechtweg,
2002]), more pertinent are questions pertaining to the use of such images. The bottom line
is the question, which image, or more generally, what kind of non-photorealistic rendition,
is appropriate to use in what context.

As early as 1956, a study [Ryan and Schwarz, 1956] showed that cartoons, by exagger-
ating relevant cues and reducing unnecessary detail, are identified more rapidly than realis-
tic line drawings. More recent work has examined perceptual optimization [Reddy, 1997,
2001], space perception [Gooch and Willemsen, 2002], and the use of line direction [Gir-
shick et al., 2000], texture [Interrante, 1996; Interrante et al., 1997; Interrante, 1997], and
non-realistic lighting [Hamel, 2000] to convey surface information. These studies build
largely on the established link between rendering and psychophysics, which can be traced
back to questions of perceptual acuity and discrimination arising from progress towards pho-
torealism (PR). NPR research also draws on wider sources of inspiration, such as comic art
[McCloud, 1994], and analyses of the perceptual merits of artistic techniques [Durand et al.,
2002; Laidlaw et al., 1999] to understand the utility of rendering styles in communicating
shape or multi-dimensional data.

Communication, however, is about more than just perception. For instance, it has also
been shown that variations in sketch rendering parameters can be used to draw attention to
particular parts of a scene [Strothotte et al., 1994]. However, while NPR distinguishes itself
from PR byselectivelyapplying the rules of visual perception, it has yet to begin exploiting
the interplay between rendering and other cognitive processes. For example, sketch ren-
dered images of architectural designs—in contrast with PR designs, result in qualitatively
different (and improved) dialogue between architects and clients [Schumann et al., 1996].
Sketchiness seems to convey a sense of openness to change and modification. This effect is
not just a matter of perception, but also involves levels of cognition connected with judge-
ment and articulation. In psychological terms, the image has an affective content, separate
from its structural detail.

The motivation for a further investigation into the potential influence of NPR stems from
an early investigation of radar display design which established that affective information
(in this case, the sense of ‘friend’ versus ‘foe’) can be conveyed quickly through qualities
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Figure 2.2:Radar display (after Provins, [1957])

of shapes [Provins et al., 1957]. When asked to glance at the display (see Figure 2.2) and
immediately identify which group (circles or triangles) of aircraft are the hostile forces,
nearly all subjects identify the triangular symbols. Since there is no overt information in
the scene that triangles are hostile, this is unlikely to be a reasoned response. The following
section argues that instead, such responses utilize latent knowledge.

2.2.2 Latent Implicational Knowledge

It is well known that the brain integrates internal and external stimuli both within and across
modalities. Barnard and May [1995] argue that this integration is largely governed by la-
tent, rather than overt knowledge to create a coherent understanding of the world. In
Provins’ radar display (Figure 2.2) the sharp shapes invoke a connotation of threat. In evolu-
tionary terms, rapid reaction to sharp shapes (e.g., in the form of fangs) may have conveyed
a survival advantage, and become encoded into the brain. Another relevant example of such
integration is captured by Davis [1961] in the following experiment:

Figure 2.3:Two connotative shapes (after Davis [1961])

When associating the shapes in Figure 2.3 with the words ‘Ulloomo’ and ‘Takete’, most
people associate Ulloomo with the image on the right and Takete with the image on the left.

2Latent knowledge is effectively ‘hard-wired’ into the brain and utilized without conscious awareness
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If a subject is then asked to explain the correspondence between these sounds and shapes,
they experience difficulty articulatingghy these qualities match— a response characteris-

tic of latent knowledge. Further, response to latent invariants is extremely rapid, as shown
by Guthrie and Weiner [1966]. In their experiment subjects were asked to make character
judgements based on an outline image of a seated figure. The subjects were shown an ex-
tremely brief, subliminal image of a complete outline, followed, for a longer duration, by

an outline with missing segments. The study showed that the figure was judged as more
hostile and aggressive when the subliminal image contained angular features, as opposed to
curved features. Interactive Cognitive Subsystems (ICS) is a model of human information
processing which accounts for this and similar phenomena [Barnard and May, 1995, 2000].
Although the experimental results and analysis given in subsequent sections can be under-
stood without recourse to this theory, a short account of the ICS model provides insight into
our approach.

ICS is part of a theoretical movement within cognitive psychology that views human
information processing as behavior emerging from the coordinated operation of a highly-
parallel, modular architecture (see also work on EPIC [Kieras et al., 1999]). Our interest in
the model stems from its distinction between the latent processipgpbsitionalandim-
plicational knowledge Propositional knowledge is concerned with referential information
or ‘facts about the world,’ which, in part, processes basic structural information derived from
raw visual input. In the case of a computer game, propositional information might be the
fact that another player is standing by a door, or that the door is opening. In contrast, impli-
cational knowledge utilizes schematic models to capture the affective content: in gameplay,
this might be associating passing through the door with potential danger or safety. Although
implicational knowledge is easily abstracted from propositional information, it can also be
extracted directly from visual stimuli.

2.2.3 Non-Photorealistic Rendering as a Presentation Strategy

Thus, the focus of this chapter is whether, through NPR, we can manipulate the implicational
content of visual input to influence user response. For this first investigation, we refine the
question into four specific issues:

e To what extent can we generalize and extend Provins’ radar display research to in-
fluence latent responses to other images? That is, can more complex images be ren-
dered to effectively convey implicational information regarding object and character
attributes, such as danger or strength?

¢ If sketched images are capable of drawing attention to specific areas, and ‘sketchiness’
can convey a sense of un-definedness, is it possible to influence latent navigation
and exploration tendencies by controlling rendering parameters such as level-of-detail
(LOD) and silhouette strength?
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e In cartoons, characters perform acts which completely violate normal expectations
derived from real-world experience, yet viewers watch such features without a sense
of disbelief that might be engaged if realistic characters and scenery were present. In
this respect, can NPR be used to convey an appropriate sense of what is possible in an
environment?

e Complex environments often comprise large numbers of objects that appear useful,
but few of which actually have behavior attached. In realistic rendering, this is prob-
lematic: if all of a scenappearsrealistic, should not all of the scebehaverealisti-
cally? In contrast, can the flexibility of NPR styles be used to intuitively distinguish
objects that are available for interaction from objects that serve solely as environment
detail?

From these questions, we derive 12 specific hypotheses (in Section 2.4) to probe the
effects of various rendering styles in influencing human judgment and interactions. In sum-
mary,we hypothesize that it is possible to effectively render images to convey implicational
information regarding danger, strength, and interactive potential in terms of exploration,
navigation, and object availability

2.3 Experimental Design

Subjects are tested on two PC laptops with 15" 26I#D0 displays. The overall exper-
imen comprises 12 sequential tests and a post-test questionnaire regarding age, gender,
nationality, experience with games, and attitudes toward NPR. Tests are ordered to mini-
mize any undesired priming effects. All test questions are scrolled across the bottom of the
screen from left to right at a readable rate (50ms/character). An automatic timer records all
subjects accordingly (timing onset: text stops scrolling; offset: subject makes final selec-
tion). For each test, a thermometer-style timer is shown on-screen, imposing a 30 second
time limit (see Figure 2.4). This rapid-response imperative is intended to increase subject
reliance on latent knowledge and reduce propositional analysis of the task and image which
may introduce confounding factors such as personal preference or analysis of demand char-
acteristics.

Subjects are tested in a sterile environment alone or with one other subject, both are
unable to communicate or see each other’s responses. Testers are unaware of assigned test
conditions for all subjects, as conditions are automatically generated on each computer using
a pseudo-random algorithm. Prior to the actual testing, all subjects are briefed (verbally and
on-screen) regarding the format of the test and given two initial un-scored practice tests to
familiarize them with testing procedures. Testers are not present during testing, but remain
easily available for questioning.

3This work was done in collaboration with Mara Mellin and David Duke and will appear as [Halper et al.,
2003b]. Selected results can be found in [Halper et al., 2003c].
4Any cues indicating the test’s purpose.
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One-hundred-and-fifty-six subjects (108 male, 48 female) of 29 different nationalities
were tested; none were previously informed of the experimental purpose. Approximately
71% of subjects took the test in their first language (L1) and 29% in a second language (L2).
Over 93% of subjects have some affiliation with the University of Magdeburg. Subjects
age ranges from 15 to 58, with an average of 26, and a mode of 22. The SPSS statistical
package is used to conduct ANOVAs and chi-square tests on all ordinal/scalar and nominal
data respectively. The program and images used for the experiment are available on the
accompanying CDROM.

This radar display shows positions of enemy and friendly units
Click on your FRIENDLY units

Figure 2.4:Screenshot of the radar teBlote: the ‘next’ button (bottom-right) appears after
a selection has been made.

2.4 EXxperiments

The following tests are grouped according to type: A$sessments of danger and safety
(2) Assessment of strength and weakné3sNPR-world vs. PR-world expectatigrend

(4) Goal-directed interactionsThe experimental test questions are presented in their cor-
responding figure caption. A summary of individual tésks/potheses and relevant results
are reported.

5The ordering of tests as presented do not necessarily reflect that of the experiment.
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Statistical significance is reported wher 5. The mean response time (MRT) is a
secondary measure of performance, defined via individual test times per subject using 5%-
trimmed means to reduce effects of extreme outliers. In order to retain statistical validity,
MRTSs are only reported for L1 unless otherwise stated, as the overall MRTs for L1 (5.3s)
and L2 (8.0s) are significantly different€p001). In order to extract confounding factors for
language comprehension, L2 data is excluded when the following conditions are satisfied:
(1) the MRTs of L2 significantly differ from L1, (2) L2 responses differ not&ldhpm L1,
and (3) L2 responses alone are not significant.

2.4.1 Assessments of Danger and Safety

Our initial test is designed to verify the results from Provinset al. (1957), wherein subjects
assess the affective content of simple shapes. The subsequent two tests expand on the logic
of the first: objects rendered using sharp-edged or jagged lines may connote threat to the
viewer both in terms of danger and safety.

Assessment of Friend vs. Foe

Hypothesis Subjects shown a radar image depicting circles and triangles (Figure 2.4) and
asked to identify their friendly troops, will select circles over triangles.

100 16

86
80

*78
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Time for Selection (s)
£

14

Percent

0 N= 97 14

Circles Triangles Circles Triangles

Radar: Identification of Friendly Units Radar: L1 Identification Response Times

Figure 2.5:(left) A majority of subjects select circles over triangleg(l,156)=80.41, g.001). (right)
Boxplot of L1 response times for circle and triangle selection. MRTs differ significantly for
circle (2.8s) and triangle (5.7s) selection (F(1,109)=21.48)pp1).

Results Figure 2.5 shows that a majority of subjects select circles with significantly quicker
response times than those who select triangles.

Sthe term ‘notable’ is used when sample sizes are too small to report a potentially significant effect.
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Assessment of Danger

We then attempt to render ordinary objects as threatening and therefore dangerous. Subjects
are shown three randomly placed doors rendered with simple, wavy, and jagged lines (Fig-
ure 2.6(a)). The ‘wavy door’ controls for the tendency to respond to objects because they
look different from the ‘normal’ image.

Hypothesis When asked to select a door containing danger, subjects will select the jagged
door over the simple or wavy door.

Agaga

(a) “Behind one of these doors lies danger. Which one?”
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Jagged Straight Wavy N= 81 12 18
Jagged Straight Wavy
Doors: Identification of Potential Danger Doors: Response Times for L1

(b) (left) Language groups differ significantly (p=.017): 73% of L#(2,111)=78.97, p..001) and 53%
of L2 (x?(2,45)=9.73,p=.009) choose the jagged door. (right) Boxplots of L1 response times. The
MRT for the jagged door (3.3s) is a hotable 20% lower than the MRT for other door-selections (4.2s).

Figure 2.6:Door experiment

Results A majority of subjects (67%) select the jagged door, while 21% select the wavy
door, and 12% select the simple dogf(2,156)=82.65, p..001). Figure 2.6(b) shows both
a significantly increased ratio for L1 choice relative to L2, and a lower L1 response time for
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jagged door selection over other door selections.

Assessment of Safety

If rendering style influences assessments of danger, it may be possible to convey a sense of
danger, even in objects typically regarded as safe. All subjects are shown one of three varied
images, depicting a house and trees and asked to identify the safest location (Figure 2.7).
Hypothesis 1 subjects shown a simple-house and simple-trees, or a simple-house and
jagged trees, will select the house.

Hypothesis 2 When shown a jagged house and simple-trees, subjects will instead select
the trees as the safest location.

Results Figure 2.7(b) shows that most subjects select the simple objects as hypothesized,
and significantly faster than for other responses. Moreover, the MRTSs differ significantly be-
tween genders, with females (2.7s) responding 30% faster than males (3.8s) (F(1,109)=8.48,
p=.004).

2.4.2 Assessments of Strength and Weakness

We test the effect of varying silhouette thickness and solidness on assessments of weakness
and strength for both basic and complex images. Specifically, a light, broken silhouette
might convey a sense of weakness, and thick, solid silhouettes might appear stronger.

Assessment of Weakness

Within the experiment, this test follows the radar test from Section 4.1.1., in order to fa-
miliarize subjects with the radar units. Subjects are shown groups of circles and triangles
rendered in thick and dotted lines on a radar image, (Figure 2.8(a)). For this test, triangles
are not selectable.

Hypothesis When asked to identify their weakest units, subjects will select the dotted
circles over the thick circles.

Results Subjects (88%) tend to select the dotted circlgq1,156)=92.31, p..001). If
subjects who chose triangles as friendly from the previous test are then excluded: 92%
of the circle-consistent subjects respond as hypothesigdd,134)=96.99, g.001). In
addition, Figure 2.8(b)) shows a higher ratio of selection for L1 relative to L2, with subjects
responding about 35% faster for dotted circle selections.

Assessment of Character Strength

To extend assessments of weakness and strength to images of higher complexity, subjects
are shown three geometrically-identical men, randomly ordered, and drawn with varied sil-
houette strength and solidity: thick and angular, light and broken, and a control image with
simple lines (Figure 2.9(a)).
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(b) (left) Given the simple-house and trees, most subjects select the hpi(4¢58)=28.70, p:.001).

Similarly, subjects shown the simple-house and jagged trees tend to select thext¢L&1j=29.82,
p<.001). Lastly, most subjects select the trees over the jagged hgtike52)=19.69, g:.001).

(right) Boxplot of L1 response times. The MRTs for hypothesized responses (3.1s) are lower than for
other responses (4.4s) (F(1,109)=7.41, p=.008).

Figure 2.7:Using rendering style to influence assessment of safety
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Figure 2.8:Using rendering style to influence assessment of strength

21



2 Supportive Rendering

Percent

22

(a) (i) “Click on the character which appears the STRONGEST” (ii) “Click on the character
which appears the WEAKEST”

60 80
50
6 60 63
40
39

30 40

Gender Gender
20

- Female 20 7 - Female

15 = =

10 N =48 ,,q:_; P N=48

[Cmate < CImale

[
0 N=108 o 0 N=108
Light Sketch Simple (control) Thick Angular Light Sketch Simple (control) Thick Angular

Men: Strongest Character Choices Men: Weakest Character Choices

(b) Results for character selection across gender.

Figure 2.9:Assessment of Character Strength and Weakness



2.4 Experiments

Hypothesis When asked to select the strongest man, subjects will select the thick silhouette
character over the control, and the control over the light silhouette character.

Results Subjects by in large choose the thick (43%) and control (44%) characters over the
light character (13%)x((2,156)=27.73, g.001). Further analysis reveals notable gender
differences for MRT (males 4.8s; females 3.8s) and character selection (see Figure 2.9(b)

(Ieft)).

Assessment of Character Weakness

Subjects are shown the same characters as in Section 4.2.2 (Figure 2.9(a)) with re-randomized
positions, to further account for any variations in selection, this test is immediately preceded
by the ‘evaluation of character strength’ test.

Hypothesis When asked to identify the weakest character, subjects will select the light
character over the control, and the control over the thick character.

Results A significant majority of subjects (67%) select the light characté(4,156)=72.46,
p<.001) with notable differences in gender preferences for the lesser selected characters (see
Figure 2.9(b) (right)). No gender differences for MRT are observed.

2.4.3 World-Based Expectations

If it is indeed possible to convey implicit information via line style variations between ob-
jects, there exists the potential for entire environments rendered in a specific style to also
convey implicit information. Specifically, it is arguable that an environment rendered in a
more cartoon or comic-book style might be perceived as less bound to real-world physics
than an identical PR image. In other words, an NPR environment might maintain a wider
perceived range of viable options for behaviour between objects. In the following two ex-
periments we measure individual expectations using geometrically identical PR and NPR
images, while asking subjects to make scaled assessments of probability regarding the de-
picted scenarios.

PR vs. NPR Jump

A PR scene is generated wherein a man is shown standing on top of a building in the centre
of a cityscape across from another building some distance away (Figure 2.10(a)). Addition-
ally, a geometrically-identical NPR cartoon scene is generated (Figure 2.10(b)). We used a
seven point scale ranging from "impossible” to "easily,” wherein subjects are shown either
the NPR or PR version and then asked to judge the likelihood that the man-with a running
start, will make the jump.

Hypothesis: subjects shown the NPR image will make relatively more optimistic judge-
ments than those shown the PR image.
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Figure 2.10:With a running jump, what is your character's chance of making the jump?”

Results: General pessimism was observed from the distribution of frequencies for responses
exhibiting a normal curve peaking at ‘unlikely’. However, we found no significant differ-
ences between, within, or across groups.

PR vs. NPR Weights

To further test PR-NPR variations in expectations, a PR scene is shown depicting a mus-
cular man standing in front of a seven weights ranging in descending size and apparent
heaviness (Figure 2.11(a)). A geometrically-identical NPR cartoon scene is also generated
(Figure 2.11(b)). Subjects are shown either the PR or the NPR image and asked to select
the heaviest weight the man could lift.

Hypothesis: subjects shown the NPR image will make relatively more optimistic judgments
than those shown the PR image.

i

Figure 2.11 Click on the heaviest weight this character can lift”
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Results: There were no significant differences between, within, or across groups. The
distribution of frequencies for responses exhibited a normal curve peaking at the 3rd heaviest
weight.

2.4.4 Goal-Directed Interactions

The following experiments attempt to measure effects of rendering on exploration, navi-
gation, and interaction. Specifically, LOD is adjusted to test exploratory and navigational
decisions. Finally, a variety of objects are rendered in two different styles, distinguishing
those objects that are interactive from those that serve as decoration.

Guided Exploration

Subjects are shown an image depicting two divergent paths. One group is shown the image
with the left path rendered in high LOD)XL..,;) as seen in (Figure 2.12(a)), and the other
group is shown its mirrorimage{D R..,;). Image mirroring controls for potential left-right

or content biases.

Hypothesis When asked to select a path to further explore, subjects shown the original or
mirror image will select the high LOD path.

Results Figure 2.12(b) shows a tendency for subjects to select the high-LOD paths, and in
particular forDL.,,, a 35% less MRT than low-LOD selection.

Guided Navigation

Subjects are shown two divergent paths in the foreground with a single path leading to a
house in the background. Groups are randomly assigned to the following test conditions:
left path high LOD (OL,,,), right path high LOD DR,,.), the mirror image ofDR,,,,
(mDL,,,), and the mirror image oD L,,.., (mnDR,4,). DL,., andDR,,, can be seen in
Figure 2.13. Image-mirroring and LOD variation controls for potential left-right or content
biases.

Hypothesis When asked to select the path leading to the house, subjects from all four
groups will select the high LOD path.

Results Subjects chose the high LOD path accordingly, as shown in Figure 2.14. Further-
more, a tendency for subjects to select the opposite side relative to the exploration test is
observed (F(1,154)=5.30,p=0.023). Figure 2.14 also shows that response time3, fQr
andmDL,,, are significantly lower than fobL,,, andmDR,,,, .

Guided Selection of Objects

Subjects are shown an image of a bookshelf and 20 different objects. Two mutually exclu-
sive test conditions (group A, group B) are assigned, wherein subjects are shown half of the
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(a) “Choose a path to explore further (click on ‘left’ or ‘right’ box below to pick the path)”
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(b) Most D L., subjects choose the high LOD pat{¥(1,66)=15.52, p:.001). FormD R.,; subjects,
a notable majority select the high LOD path. (right) Boxplot of response time®1far,,; . The
DL, MRT for the high LOD path section (4.0s) is significantly lower than the MRT for the low
LOD path (6.2s) (F(1,75)=6.87,p=.011).

Figure 2.12Rendering for exploration.
26



2.4 Experiments

Figure 2.13!Click on ‘left’ or ‘right’ to choose the path that leads to the house shown in
the distance” 27
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objects rendered as ‘toon’ to connote interactive qualities, while the other half are ‘painted’
as part of the background (see Figures 2.15).

Hypothesis When asked to choose three objects, subjects will tend to select toon objects
over painted objects, resulting in exclusive choice sets for each groups.

Results In both groups, subjects show a significant tendency to select two or more toon
objects (see Figure 2.16).

2.5 Interpretation

Our results suggest that rendering variables can be manipulated to effectively guide user
responses to (1) character and object attributions, (2) aspects of navigation and exploration,
and (3) interactive choices. In terms of ICS, we are specifically interested in understanding
subject responses to rendering styles used to convey latent affective content, or ‘implica-
tional rendering.” We accordingly discuss the meaning and potential of our restiie
considering design limitations within the experiment. Overall test design limitations are:
the timer and ‘next’ button, which are consistently viewed on the right of the screen, and
may effect mouse placement, image evaluation, and subsequent responses. Since our se-
lectable items are large, according to Fitts’ Law (Fitts 1955) mouse placement and use do
not significantly contribute to variations in response times.

Further evaluation of MRT allows for a better understanding of subject responses, wherein

“In [Duke et al., 2003] we develop a deeper theoretical analysis of the results in terms of the ICS model
mentioned in Section 2.2.2.
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Figure 2.15*Click on THREE objects”
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2.5 Interpretation

higher MRTs suggest more time spent analyzing the task and image, whereas lower MRTs
indicate less analytical, latent responses. Moreover, the rapid-response imperative induced
by the timer pre-disposes subjects to answer as quickly as possible, thereby enhancing la-
tent information processing. Therefore, if implicational rendering is truly ‘tapping into’
latent implicational processes, subjects responding as hypothesized should demonstrate sig-
nificantly lower MRTs than those responding otherwise. Indeed such an effect is observed
within our overall results.

2.5.1 Attributions of Strength and Danger

The overall results for implicational rendering in simple images (radar units, doors, houses
and trees), clearly suggests that it is possible to influence attributions of unit ‘friendliness’
and weakness, as well as assessments of danger and safety. The initial radar test reveals
that subjects selecting triangles, rather than circles as their friendly units, tend to respond
in the minority on all tests, suggesting individual predispositions to further analyze the
tests. Gender differences are observed for the tree and house tests, wherein females tend
to respond as hypothesized more often and more rapidly than males, though a relatively
small female sample and lack of a control image prevents significance. Despite the house
and tree not controlling for responses based solely on how different images appear from the
simple image, the door test demonstrates that ‘threat-connotative’ implicational rendering
overrides this tendency. Responses to the control door may be partially due to cultural or
language differences, as L2 selects the control and simple doors more than L1. Because this
is a first analysis of implicational rendering, simple images are used to extract the impact of
rendering on assessments of danger and strength.

It is possible that due to both the simplicity of images and the relative deviation of ren-
dered lines from the objects’ ‘normal’ physical structure, assessments of danger may be
influenced by a changed perception in the physical characteristics of the images. Thus sub-
jects could assess objects based on a literal analysis of its physical structure (e.g., “The
house appears physically jagged and therefore more dangerous than the non-jagged image,
as jagged shapes hold the potential for inflicting pain”). However, given the fact that the
rapid response times in the assessments of relative danger were similar across test types—
regardless of the presence of a ‘jagged’ image, it is unlikely that such overt consideration
took place, and more probable that subjects are assessing an abstract representation of ob-
jects. Thus, at a rather simplistic level, implicational rendering demonstrates itself to be
guite effective and necessitates further study of effects in terms of line variables and image
complexity, while accounting for potential gender variations.

When assessing strength for the complex image, males respond fctalagr and dif-
ferently than females who respond most to the thick character, and least to the light charac-
ter, whereas males select the control over the thick. In accounting for these results, further
consideration reveals that the thick character’s lines diminish his apparent muscle mass rel-

8Unfortunately, low numbers of female subjects could not show statistical significance
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ative to the control and light character, thus suggesting that males engage in more overt
analysis of the image than females. Subsequent results for assessment of character weak-
ness, while generally supporting our hypothesis, reveal a similar trend for the minority who
respond otherwise. Generally, responses to the complex image suggest implicational ren-
dering influences attributions of strength when using extreme line variations to assess weak-
ness or strength. Further work is necessary to test varied rendering parameters, the impact of
threat-connotative lines on more complex images, and the impact of image-type on gender.

2.5.2 Expectations in Rendering

In ICS terms, the difficulties with the jump and weight tests (Section 2.4.3) stem from atten-
tion being drawn to the structural detail of the scene, and (consequently) focusing awareness
on matching the semantics of the scene with the task description. A better approach would
be to set up an assessment to draw attention on a secondary task, leaving assessment of the
physical circumstances to latent implicational knowledge. For example, the jump test could
ask whether the character would be able to retrieve some object (which happened to be lo-
cated on the other side of the gap). A more in-depth ICS analysis is given in [Duke et al.,
2003], that notes this would encourage buffering at the propositional level, allowing direct
mode processing of any implicational invariants.

2.5.3 Guiding Navigation, Exploration, and Interactions

Given theDL.,,, imagé€, most subjects select the high LOD pathDR,.,; subjects also

show a notable preference for the high LOD path, although the sample size is too small to
determine significance as L2 results are omitted. Potential cultural or language comprehen-
sion effects invalidated L2 results. For the sake of simplicity when discussing the navigation
test, ‘DL,.,’ and ‘DR,,,’ refers to both the original and mirror image. A notable content
bias is observed, wherein the high LOD pathi®,,,, is strongly preferred both indepen-
dently and relative to the high LOD pathsin.,,, .

These differences are best understood in terms of (1) the pre-conditioned test objective
and (2) potential biased image content. First, there is a pre-defined goal, wherein subjects
are asked to deduce which path leads to the house, thus potentially directing subjects to an-
alyze and respond to the differentially rendered paths in an overt—rather than latent manner
according to which foreground path appeared most similar to the background path. Al-
though during informal questioning after testing, a number of subjects tended to admit they
did not really notice the relative appearance of the background path. Second and perhaps
more importantly, the background path veers to the right as it approaches the foreground,
potentially predisposing subjects to the right-hand path regardless of LOD.

In addition,D L,,,, Subjects take significantly longer to respond tiaR,,,, subjects, po-
tentially due to additional image analysis By ,,., subjects to the LOD, in opposition to the

9For the exploration test, L2 results are omitted as they satisfy all conditions for data exclusion.
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content-bias. If content biases are extracted, results suggest that LOD can influence explo-
rational and navigational decisions. Further tests are needed which control for content and
cultural biases, thereby more precisely defining the impact of LOD on general exploratory
and navigational decisions.

Results from the ‘guided selection’ test strongly suggest that implicational rendering can
influence subject response, wherein toon (active) objects are significantly preferred over
painted (inactive) objects. A basic consideration in understanding subject responses is the
nature and effects of the specific rendering techniques employed. In this particular case,
heavily silhouetting objects (rendered as active in a toon style) may actually highlight the
object and any perceived relevance. Thus, it is possible that different rendering techniques,
using thinner silhouettes and less distinct color tonalities may lead to a lower selection
percentage among viewers. Since the goal of rendering an object as active is to visually
distinguish it from merely decorative objects, whether an object is perceived as highlighted
or active, is somewhat of a semantic distinction as both terms serve the same end: function-
ally, the attention of the viewer is inadvertently drawn to active objects relative to inactive
objects.

Interestingly, informal post hoc questioning revealed most subjects as unaware of the two
different rendering styles, despite selecting a majority of active objects. This may be due
to familiarity and acceptance of toon and paint style animation (e.g., Disney Feature Ani-
mation films). Furthermore, a small percentage of subjects—claiming to notice the distinct
rendering styles, admitted to purposefully select a painted (or inactive) object because they
'’knew’ they were supposed to select a toon object. Thus—despite reacting negatively to
the demand characteristics of the test, these particular responses imply the effectiveness of
implicational rendering given a real-world application. In other words, these subjects both
deduce and respond to the images according to implicational rendering styles in a manner
that would be effective in goal-oriented games. More sophisticated test designs, perhaps
utilizing real game properties would better disguise existing demand characteristics, thus
revealing the extent to which rendering objects as active or inactive can actually facilitate
user-object interactions.

By in large, object attractiveness, as defined by relative brightness, size, and simplicity,
is another notable factor for this test. Those objects that are selected when inactive are gen-
erally amongst the more attractive, whereas darker, smaller, and more complex objects are
only selected once they are active. In addition, every object is selected more times when
active than when inactive. Thus, the overriding factor is not the attractiveness of the object,
but whether it is rendered as active or inactive. Although further research might uncover
potentially unaccounted for effects, these results suggest that implicational rendering is im-
mediately useful in a variety of interactive graphics settings.
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2.6 Discussion

This chapter began by discussing emerging factors in computer games and identified pho-
torealism as a cause for many problems in game design. Game designers strive to make
compelling games which emotionally absorb the player by stimulating affective areas of the
brain and have generally made the assumption that the more realistic a graphical environ-
ment appears, the better the sense of presence and thus arousal. However, little research has
been carried out in this context and photorealistic effects are both computationally expensive
and require large resources for production.

As an alternative presentation strategy, NPR was considered, but a lack of an effective
evaluation of NPR motivated a first empirical study. While psychophysical studies in com-
puter graphics tend to study visual perception in terms of shape or structure, our experiments
reveal that other cognitive processes can be influenced by rendering. Specifically, we effec-
tively influence character and object attribution, while guiding interactive decisions via ma-
nipulating the latent implicational content of rendering. Because these processes can occur
simultaneously with the processing of basic structural information, NPR has the potential at
a pre-conscious level to facilitate user interactions.

Our experimental results suggest that game graphics can be extended by using NPR to
provide connotative effects and convey cues (particularly to novice players) about possible
and/or appropriate actions, specifically:

e relevant cues about the level of threat (Section 2.4.1) or capabilities of characters,
objects, or locations in an environment (Section 2.4.2).

e guidance for choosing between options, such as which path to follow or object utility
(Section 2.4.4). NPR effects could also be modified based on player progress, and/or
changes brought about by other agents. For example, an explored area could be ren-
dered in low detail to discourage re-entry, but if the actions of another player then
change the area, detail levels would again increase.

e Our results demonstrate that it is possible to use implicational rendering to success-
fully distinguish between active and inactive objects. Thus, NPR could effectively
cue users to objects and areas available for use, while others objects or areas rendered
as inactive still maintain the world’s structure and organization by providing critical
spatial information or content.

Rendering can be ‘tuned’ to players based on their performance by turning NPR effects
on/off, or (possibly) by varying parameters. This offers the potential to dynamically adjust
the balance between player skill and confronted challenge and allow newcomers to become
involved in the game without becoming frustrated while more skilled players can still be en-
tertained by the competition. In addition, supportive rendering has the particular advantage
of influencing the quality and enjoyment of the game without actually altering the variables
for gameplay control and balance.
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The range of non-photorealistic rendering effects is very large, and therefore the number
of options to influence the player by subtly bringing across messages and information is
greatly increased. Photorealism simply does not offer the range of communicative possi-
bilities without actually distracting the player from the immersive qualities of the game. In
this respect, implicational rendering styles resonate more closely to elements of play that
are fun.

An effective application of these effects requires further investigation using low-level
tests to establish precise mappings between observed effects and drawing parameters (for
example, line thickness, style, and angle of ‘sharp’ features). Part of this responsibility lies
in the hands of game developers and designers and the tools that can be provided. The
rendering system and interface discussed in the following chapter allows programmers and
designers to experiment with visual styles to support game goals. Later in Chapter 5, we
revisit these techniques in the framework for supportive presentation applied to specific
application scenarios.
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3 Non-Photorealistic Rendering
Tools

The nature of non-photorealistic rendering (NPR) in its simplest definition, is a form of
visual communication. As communication is virtually endless in its possibilities, NPR at-
tempts to succinctly define options within this scope. Particular rendering styles are capable
of conveying context-specific information in an application-dependent environment. Cur-
rent NPR applications are costly to develop because their data and methods are not re-used.
Consequently, there is a need for an effective rendering system that provides support for
multivariate applications.

Despite the plethora of non-photorealistic effects available, there exists a rather limited
number of primitives (such as lines, points, surfaces, etc.) actually employed to gener-
ate these effects. There also remains a similarly limited number of general techniques for
the application of these primitives. The ingenuity of the algorithms underlying the afore-
mentioned effects, lies not in the mere application of these primitives, but rather, in their
combination Thus, a system could be designed wherein all modular components are freely
combined and interchanged. Moreover, photorealistic rendering is often used to comple-
ment NPR. Therefore, this system could also include photorealistic capabilities.

To achieve the necessary modularity for the proposed system, NPR techniques must first
be categorized according to their various properties (e.g., the similarity of their data struc-
tures and algorithms). It is then possible to apply specific classes of algorithms to the
same sets of data—consequently sidestepping unnecessary data conversions between soft-
ware projects. Additionally, NPR algorithms can be individually broken down into a set of
smaller algorithms, wherein an ‘elementary set’ of algorithms is eventually defined. Logi-
cally, keeping modules small and simple increases the range and flexibility when generating
more complex algorithms.

Finally, functionality is little without application. An effective means of presenting avail-
able options in the system to a variety of users will allow content creation at a level that
satisfies individual requirements. Involved herein are those who actually create the mod-
ules, those who plug the different modules together to create a specific rendering pipeline
for a certain style, and finally those who use the rendering pipelines in order to produce
images.

This chapter is structured based on these user classes and we describe the tasks involved
at each level of abstraction. Our main contribution is a first attempt to unify many NPR
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technigues within a single framework. We present the initial syst@RENNPAR, which
embodies this framework in Section 3.1. Developing extensions to the system is described
in Section 3.2, programming using the system in Section 3.3, and using the system to design
new effects in Section 3.4. We base our discussion in Section 3.5 on our achievements.

3.1 OPENNPAR

In this section, we outline and motivate our design goals used to structure the basic architec-
ture for our NPR system, RENNPAR. We first categorize our base classes for algorithms
and groups of users on which we base a conceptual framework. We then introduce initial
components for the core system and provide examples for their usage.

3.1.1 Classes of Algorithms and Users

The field of NPR contains a large number of different rendering algorithms that come from
many areas. This diversity makes it difficult to come up with a single system that encom-
passes all NPR styles and techniques. However, there are similarities between algorithms
that make a classification possible. For instance, Durand [2002] proposes a classification
into four parts: (1) thespatial systemvhich deals with the spatial properties of the image
(e.g., mapping 3D properties to 2D properties via projection matrices), {éjative sys-
temwhich maps primitives in object space (points, lines, surfaces) to primitives in image
space (points, lines, regions) as in, for example, silhouette extraction, &éyiate system

which assigns visual properties (e.g., color, transparency, thickness), anchédlk aystem

which is the implementation of primitives placed at their spatial location with corresponding
attributes.

Whereas Durand proposes a useful classification of systems for discussion and termi-
nology, there is still no clear direction for a unification of algorithms into a single system.
Indeed, there are many open problems and approaches to producing NPR images. In this
respect, our basic philosophy is to allow users of the system to define their own approach
into producing the final output by making available a powerful, flexible, and extensible set
of tools. We aim to achieve this by providing small well-identified modules for better inter-
operability, centered around a small set of basic primitives. Thus, we focus on the direct
relationships between primitives: primitives serve as states in our system described by at-
tributes, and processes describe operations on or between those primitives. In Figure 3.1
we propose a classification of three main categories of primitives on which algorithms can
operate. Note that the processes (arrows) in the conceptual diagram can fall into any of the
four categories proposed by Durand above. We explain the general use of these classes of
primitives below:

YInitial developments on the ENNPAR system were made in collaboration with Tobias Isenberg and Felix
Ritter. Parts of this chapter involve contributions from additional co-authors in [Halper et al., 2003a] and
[Halper et al., 2002].
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generate

process

Figure 3.1:Conceptual model for algorithms in NPR

Images store two dimensional arrays of data, such as color, depth, normal data, etc. Even-
tually, most output is rendered into images either for viewing or for later use in an
algorithm. Images can use image processing algorithms to modify their content. Data
stored in images can be used to affect surfaces (by defining textures), or generate
strokes (as in [Salisbury et al., 1994]).

Surfaces define objects and their appearance in 3D. The way that surfaces il images
is described by components such as coordinates, connectivity information, texture
mapping, and so on (see [Lake et al., 2000] for a few examples). Surfaces can also
generate strokes, such as placing strokes along the silhouette of an object, or adding
‘graftals’ (a special kind of stroke) onto the surface [Kowalski et al., 1999].

Strokes are individual primitives that create tone and texture depending on their placement,
number, and parameterization. A high stylistic variety of effects can be achieved
when strokes are ‘drawn’ to an image, such as stippling, pen-and-ink illustration, and
painting. Strokes can also be mapped onto surfaces indirectly by first drawing them to
an image, and then texture mapping this image to a surface (e.g., [Praun et al., 2001]).

Visualizing the classification of primitives according to Figure 3.1 enables us to create
building blocks (individual processes) that can be used in various combinations (a sequence
of processes) for different rendering pipelines (the collective sequence of processes). In
fact, many hybrid algorithms use combinations of two or all three of these classes (for
an overview see [Strothotte and Schlechtweg, 2002; Durand, 2002]). Table 3.1 outlines
processes between primitives according to our conceptual model for several ‘classic’ NPR
algorithms. Having such basic building blocks, the user can freely combine NPR algorithms
in order to achieve a certain kind of image. However, the amount of knowledge involved
in the “programming” process for a rendering pipeline is different depending on the level
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| Name | Description
Saito and Takahashi [1990]Surfaces fill Images with shadegd, normal data; Im-
Comprehensible Renderingages process silhouette Image; Image processing (com-
posite shaded and silhouette)
Salisbury et al. [1994] Pen-Surfaces fill reference Image; reference Image gener-

and-Ink ates Strokes; Strokes draw into Image

Meier [1996] Painterly Images generate Strokes (particles); Strokes map to
Rendering and Images texture Surfaces

Kowalski et al. [1999] Surfaces fill ID Images and desire Images; ID Image
Graftals processing; desire Images generate Strokes; Strokes

draw into Images

Table 3.1:A selection of classic NPR algorithms and how they relate to our conceptual
model.

of abstraction. Hence, a distinction into different types of users is needed. These types
are—with increasing level of abstraction—developer, programmer, and designer.

e Thedevelopelmhas the scientific knowledge to come up with new algorithms and tech-
niques.

e Theprogrammertakes these algorithms and turns them into the aforementioned basic
building blocks for rendering pipelines.

e The designerknows how to combine these building blocks and thus how to create
different rendering pipelines.

At each level of abstraction, certain knowledge is needed; the higher the level, however,
the less significant are technical and technological details so that the designer can concen-
trate on the image generation process. Thus, the goalPeNYPAR is to embody our
conceptual model for algorithms in NPR shown in Figure 3.1 and support user groups of
various knowledge levels for creating NPR images.

elements - .
modules modules modifiers images

Developer «— | OPENNPAR |—— Programmer —— Designer — End User

develops uses modules uses modifiers 1'/l€WS
modules to pr_oduce to generate images
modifiers effects

Figure 3.2:Knowledge pipeline for developers, programmers, and designers

In Figure 3.2 we show the knowledge requirements and dataflow between the various user
groups and ®ENNPAR. Designers are given the task of creating new images by applying
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a selection of effects onto existing images. Thus, to work effectively designers only need
knowledge of whatesultsare produced once processes reach the final image. The selection
of effects offered to designers are assembled by programmers. Programmers understand
the relationships between processes and the various categories of primitives. From this
knowledge they can assemble modules into a rendering pipeline to produce an effect. The
more modules that are provided to programmers, the more operations and thus effects they
can offer to designers. The developer’s task, therefore, is to broadeRNIPAR’s base
functionality by extending classes of primitives (by creating elements) and adding modu-
lar operations that decide what to do with them. Before we go into details for the user
categories, we first describe some initial componentsref N PAR.

3.1.2 Basic Architecture

OPENNPAR is to provide an architecture that supports our conceptual framework with the
following requirements:

e High-Level API:this would be structured for ease of use in plugging modules into a
rendering pipeline.

e Object-Oriented:an object-oriented approach is necessary to support re-usable, well-
engineered, and extensible code.

e Cross-Platform: should be able to support development on a variety of platforms,
including Windows, SGI, and Linux.

For these reasons, we choose to base the framework FaNDPAR upon QPEN IN-
VENTOR, an object-oriented graphics architecture that uses a scene-graph based approach
[Strauss and Carey, 1992]. P@N INVENTOR is a proven and extensible architecture that
provides all major graphics functionality and scene-graph management (e.g., interaction,
I/0O, textures, VRML). In addition, it has a large support group (newsgroups, websites),
with both LGPL and commercial licenses available.

Although GPEN INVENTOR provides a standard set of functionality, it must still be able
to capture the processes in Figure 3.1. Below, its main features are outlined (based on Wer-
necke [1994]), which include additional descriptions of its use IPEKNPAR to support
our conceptual model:

Scene Database: consists of information representing one or more 3D scenes. It can con-
tain several scene graphs, which can also be read from and written to a file.

Whenever ®ENNPAR extends the base functionality oPENINVENTOR, these ex-
tensions update the scene database. New scene descriptions can then be automatically
written to and read from files. Scenes are also capable of containing 2D information,
thus we can also include methods to store image primitives.
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Scene Graphs: consist of one or moreodes each of which represents a geometry, prop-
erty, or grouping object. Hierarchical scenes are created by adding nodes as children
of grouping nodes, resulting indirected acyclic graplisee Figure 3.3).

light @ transform Q robot

)|)] camera topology

body head

group appearance

- Q200 ®O0

translate bronze cylinder translate silver sphere

separator

-00®
OO0

-, subgraph

Figure 3.3:(left) OPENINVENTOR example nodes and (right) a scenegraph that describes a
robot (adapted from Wernecke, 1994).

In our conceptual diagram processes may be iteratively applied between primitives,
which suggests the use of undirected cyclic graphs. FortunatelgNONVENTOR

does not enforce a policy on the organization of a scene database, thus nodes can
be organized into structures that are not graphs. In addition, fields (see later) can
propagate information inside and between scene graphs.

Nodes: A nodeis the fundamental element of a scene graph. It contains data and methods
that define some specific 3D shape, property, or grouping. Three basié tfpes
nodes are: (13hape nodesvhich represent 3D geometric objects; @ perty nodes
which represent appearance and other qualitative characteristics of the scene; and (3)
group nodeswhich are containers that collect nodes into graphs.

In Figure 3.3 the bronze and silver nodes describe material properties for their subse-
guent cylinder and circle shapes respectively. Therefore, property nodes are capable
of changing the appearance and rendering style of objects. Thus, they play an impor-
tant role in PENNPAR in defining the properties and appearance of primitives.

Actions: When an action is applied to the scene graph, each node encountered in the graph
implements its own action behavior. For each action, the database marnisyessal
state(similar to rendering state in ENGL), which is a collection oklementqor
parameters) in the action at a given time. Typically, executing an action involves
traversing the graph from top to bottom and left to right. During this traversal, nodes
can modify the traversal state, depending on their particular behavior for that action.

2these groupings are not strict and are only used to highlight different Inventor classes
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In some cases, a particular type of node does nothing for a particular action. For
instance, a material node does nothing when a bounding box action is applied, but
will set material elements when a rendering action is applied.

All processes (arrows) in our conceptual model (Figure 3.1) are performed within the
render action procedure of a node. However, to maintain efficient use of modular-
ity care must be taken to ensure that the render action procedures do not describe
more than one process. For instance, in Figure 3.3 the ‘myCylinder’ and ‘mySphere’
are shape nodes that both describe 3D dathrender 3D data during the traversal

of a render action. Thus, these describe a process that modifies a primitive (loop-
ing arrow) and a process that transforms data to another primitive (an arrow drawn
from one primitive to another, in this case the rendering process from surface to im-
age). Whereas efficient for photorealistic purposes, these two stages must be separated
so that the description of a scene can be accessed and modified by NPR algorithms
(which often need access to normal and coordinate data) to influence output. Thus,
all scenes in ®ENNPAR are described using property nodes (such as coordinate
and normal nodes that describe their respective coordinates and normal data), and all
rendering is performed by shape nodes that do not encapsulate any additional data.

Elements: The rendering traversal state consists of a set of elements, each which can be
altered by a given class of nodes. When a rendering action is applied, each element
is used and interpreted in a specified manner. A few of the elements in the traver-
sal state include: current geometric transformations, material components, lighting
model, drawing style, coordinates, normals, lights, and viewing specification.

In OPENNPAR, primitives are represented by elements. Each element may be used
to describe aspects of different primitives. For instance, coordinate and material ele-
ments can describe properties of both surface or stroke primitives.

Fields: Fields are structures that store parameters for nodes. They are always contained
within nodes. However, they have additional functionality to simple parameters, since
they: (1) provide consistent methods for setting and inquiring values; (2) provide a
mechanism to detect changes to the database; and (3) can be connected to fields in
other nodes.

Fields provide a powerful means of capturing processes between primitives. For in-
stance, an image primitive may be connected to an image field in a node that describes
a texture property for a surface primitive. Thus, when operations are performed on
the image primitive, the field connection automatically captures the process of map-
ping the image primitive to properties of the surface primitive. In addition, field con-
nections can propagate data back to an earlier part of the scene graph for iterative
processing. Finally, fields allow for multiple inputs that come from different sources
(e.g.,n outputs fromn nodes in different scene graphs can be connected into input
fields of a single node for processing).
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In summary, primitives are composed from elements, whereas processes are performed in
the render action procedure in hodes during a rendering traversal. Nodes operate on primi-
tives by accessing and modifying elements and fields=e X PAR’s operation of ®ENIN-
VENTOR limits each node to perform one individual process only, as depicted in Figure 3.1,
during a rendering traversal. This results in small well-identified operations that improve
the inter-operability of nodes. To distinguish typical node operationsHENONVENTOR
from the disciplined use of nodes to support the conceptual frameworkfaNDPAR we
introduce the following definition:

Module: A module represents the use of arEN INVENTOR node that performs only one
individual process on or between primitives during a rendering traversal.

In keeping with design goals of inter-operability, elements should be as generic as pos-
sible. Modules, on the other hand, can be numerous but succinctly defined. This allows
groups of modules to operate on similar sets of elements, thus facilitating their combina-
tion.

3.1.3 Initial System

In this section we motivate the use of some initial componentsrefNN PAR that form part

of its core system for NPR algorithms. In addition, we provide examples for how elements
and modules are added to the system and how they interact with each other in the system
data flow.

An Initial Set of Elements

As stated in our design goals earlier, the number of elements should be kept to a minimum
but provide a wide range of generic functionality in describing primitives to promote inter-
operability between modules. We implemented a few initial extensions and additions to
elements in ®ENINVENTOR to provide data structures that support our various primitives:

e Winged Edge Data Structurgarovides surface connectivity information used to de-
scribe surface primitives and covers a large, and often very efficient, generality of use
[Baumgart, 1975]. Almost all current NPR algorithms that compute on object data
can be implemented using this structure.

e Images: two-dimensional storage of pixel information. PEN INVENTOR includes
functionality for storage of byte data (e.g., used to store RGB values). Many NPR
algorithms require storage of additional data in image buffers. Thus, we extesd O
INVENTOR's image class to include floating point data so that it can store normals,
depth information, and othé&-buffer data [Saito and Takahashi, 1990].
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e Strokes:coordinate, material, and normal elements iPEQ INVENTOR can be used
to describe points along a line or curve. However, strokes are more than just lines.
Thus, we add elements that store thickness and orientation values to describe a stroke
primitive. Existing elements like textures and texture coordinate data can also be used

to define the stroke.

An Initial Set of Modules

Adding new elements to extend primitives requires the use of modules to either: (1) generate
these elements from existing data, or (2) define data directly for pushing into the element
state. Thus, in this section we describe how an initial set of modules useful for a large
number of non-photorealistic algorithms are incorporated infEMNPAR. In addition,
simple examples are provided that highlight the interaction between modules and elements.

¢ Render modulesA standard means of viewing primitives is to render the various
classes of primitives using RENGL. Thus, we extend ©EN INVENTOR to include
specialized ®ENGL render modules for surfacgstrokes, and images.

camera light coords render
surface
to image

In the example above, a scene graph is created containing a camera defining a view-
ing specification, a light at the camera position, and a geometry module that defines
surface coordinates and connectivity information. The surface render module is ap-
pended at the end of the scene graph. During a rendering traversal, the first three
modules set their respective elements in the traversal state and the surface rendering
module then reads the current state of surface primitive data and viewing specification
to render the surface to an image.

3Standard shape nodes iPEN INVENTOR already perform ®ENGL rendering, but these are not modules
(see Section 3.1.2 for details).

45



3 Non-Photorealistic Rendering Tools

e Surface modulesOPEN INVENTOR includes many nodes that can be treated as sur-
face modules. However, we add a module to generate generic descriptions of sur-
faces in winged-edge element data. This allows additional surface modules to be
implemented that require connectivity information. The most widely used NPR algo-
rithms that require such information are silhougtieneration algorithms (see [Isen-
berg et al., 2003]). Thus, we include a silhouette module that reads winged-edge
element data to generate stroke element data.

group

camera light

generate
winged-edge

generate render
silhouette strokes

strokes to image
A

P
[
N4
coords render
surface
to image

We modify our previous scene graph by grouping surface modules under a winged-
edge group module. The winged-edge module generates winged-edge elements that
describe the surface of all of its children. A silhouette module is inserted that accesses
the generated winged-edge elements and the viewing specification to generate stroke
elements that describe the silhouette of the surface. Finally, a stroke rendering module
is added that renders the newly generated stroke primitive state to the image giving
the final output.

Stroke modulesStrokes offer great potential for an expressive variety of styles. To of-
fer this kind of variety, stroke modules are introduced that modify the stroke primitive
state. Moreover, the effects of subsequent strokes modules can be cumulative. The
initial set of stroke modules include: thickener modules (which introduce and modify
thickness elements by either a constant value, depth, lighting, etc.), smoothen mod-
ules (which add coordinate elements alongéaiBr path), stroke orientation modules
(which add orientation elements that can affect thickness direction, such as calligra-
phy styles, or placement of points in smoothing a stroke), and perturbation modules
(which influence coordinate elements to distort stroke paths).

4By silhouette we mean those edges of a polygonal surface that share a front and back facing polygon from
a particular viewing direction.
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generate group

50 6550

coords render generate smoothen thicken render
surface silhouette  strokes strokes strokes
to image strokes to image

camera light

In this example we add modules to modify the stroke primitive state. First, all stroke
modules are grouped under a group node. Two stroke modules are inserted after
the module that generates silhouette strokes—the first adds coordinates elements to
smooth the stroke along aBier curve, and second then adds thickness elements for
each coordinate element. Thus, the render stroke module subsequently reads stroke
primitive data and outputs a thicker, smoother silhouette.

Image modulesOPEN INVENTOR offers image classes to support surface texturing,
but does not feature any image processing capability. We add image modules that
comprise image input fields, on which to process data, and output fields to which the
data is transferred. The output is computed during rendering only when the input field
has actually changed value. If an image field is not connected for an image module,
then the frame-buffer (to which strokes and surfaces are rendered) is assumed.

group i
/,
Q generate
l@l winged-edge é group
distort

camera light
image

coords render generate smoothen thicken render
surface silhouette  strokes strokes strokes
to image strokes to image

In example above, an image module is inserted in the scene graph before the stroke
modules. The image module distorts the image present in the frame-buffer (since
its input and output field is not connected) which at this stage comprises only the
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3 Non-Photorealistic Rendering Tools

rendered surface of the cone. Thus, the stroke render module draws its strokes as
before to the image, which results in a distorted surface rendering underneath the
original surface silhouette.

3.2 Developing O PENNPAR

The developer’s job is to add functionality toPONNPAR by extending or creating new
elements and modules. A primary challenge for the developer is to support inter-operability
between modules and encourage their re-use. This can be done by adding a great number
of modules, but constraining the functionality of each to compute a single, specific task. In
contrast, elements in the system should be kept generic to maintain a small set that covers
a broad range of applications. In this manner, a variety of modules can operate on the
same set of elements which aids the interchange of data and resulting flow of computation.
We now demonstrate these principles by showing examples of effective contributions to
OPENNPAR.

3.2.1 Modularizing Stroke Operations

Our first example demonstrates how breaking down algorithms into elementary tasks adds
flexibility and maintains modularity in @NNPAR. Each elementary algorithm is encap-
sulated inside a module that can then be used independently or in combination with other
modules.

We want to add functionality to @ENNPAR that enables the use of 3D stylized strokes
within rendered environments. To do this, there are a number of problems to overcome.
First, we require that stylizations be applied across long, smooth strokes. Second, we ex-
perience stylization artifacts when strokes are projected to the viewport from 3D. Our final
problem is that stylization modules can potentially alter positions of strokes that then inter-
fere with the scene.

We solve each of these problems with singular modules: (1) a module that connects
strokes sharing common vertices; (2) a module that filters stylizations artifacts in projected
strokes; (3) a module that performs fast hidden line removal (so that strokes could be ren-
dered ‘on top’ of scenes). Details of these algorithms can be found in [Isenberg et al.,
2002]. In terms of Durand’s system classification [Durand, 2002], these three modules each
comprise part of a primitive system.

By keeping basic functionality in separate modules, we can apply them in a flexible vari-
ety of combinations in addition to the problem for which they were implemented. Further-
more, they are simple to use since the results of each module are tightly defined. One or
more of these modules are used in each of our programming examples in Section 3.3.
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3.2 Developing OPENNPAR

3.2.2 Modifying Elements for Surface Shaders

Often developers can add modules to manipulate elements in unconventional ways. As a
result, existing modules designed to use these elements will produce output differing from
their initial intentions.

For example, surface shadmig generally achieved by modifying elements so that sub-
sequent rendering modules produce a different result. From a developer’s perspective, a sur-
face shader module simply sets values in elements used by rendering modules. For instance,
we can add a module to modify texture coordinate elements based on lighting conditions.
When inserted along with a texture module containing a two-tone image before the actual
surface rendering module, we achieve the cartoon effect in [Lake et al., 2000].

We also take advantage of modularity present in modern graphics hardware programma-
bility. To implement hardware features, we add elements that indicate current hardware
options to use, and modules that load vertex programs and texture combiners to the graphics
card. We leave the programmers to actually define what the hardware should do by allow-
ing them to place code into a text field that is then compiled by the hardware modules. In
this case, it is the hardware configuration that influences the subsequent output of rendering
modules.

3.2.3 Re-using Elements for Skeletonization

As new algorithms are introduced, developers will often be required to support these us-
ing additional data structures. However, rather than adding new data structures for every
new algorithm, algorithms can be mapped onto existing ones. This increases potential for
alternative uses of elements and re-use of modules.

We demonstrate this by adding support for skeletonizationra N PAR, which is used
in many NPR techniques (e.g., [Deussen et al., 1999; Raab, 1998]). The skeletonization
process collapses edges in a surface definition. To do this, we make sure to load surface def-
initions into the winged-edge element using an existing winged-edge module. Now, we can
add a skeleton module that computes using the winged-edge element. Rather than adding a
new element to store the skeleton data, we leave the skeleton as represented by the winged-
edge. These ‘skeleton’ elements can now be accessed by any subsequent modules in the
scene graph. In addition, a separate module was included to generate a set of strokes from
the winged-edge data. Now we can also view and manipulate the skeleton using available
stroke modules. The stroke generation module can also be re-used on ‘regular’ winged-edge
surface definitions. This would now produce strokes from the wire-frame of a surface with
equal opportunities for manipulation and stylization.

Sby surface shading we mean the combination of modules to create effects when the surface is rendered.
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3.2.4 Extending Modules to Encapsulate Interaction

Developers are not constrained to exteneE@NPAR in terms of rendering only, but can

also extend ®EN INVENTOR s functionality for interaction. The functionality of KEN-

NPAR can also be extended beyond the representation and rendering of primitives. For
instance, we can extendP@N INVENTOR''s interactive functionality to incorporate a novel

form of interaction for NPR by adding a surface module that evaluates whether or not object
shadows on a plane are touched by the mouse pointer. To pass information about the shadow
plane down the rendering pipeline, we added an element encapsulating the coefficients of
the plane equation. Hence, the surface module can test for an intersection of the ray from
the mouse pointer to its shape in the shadow plane. An application that uses this interaction
method is discussed in Section 3.3.2.

3.2.5 Polymorphic Rendering

Developers can present a variety of modules used for the same intent, but which produce
results tailored towards a specific application requirement. For example, different rendering
requirements can be supported byENNPAR by increasing our choice of rendering mod-
ules that act on the same element data. In terms used by Durand, this would be different
implementations of attribute data in the mark system [Durand, 2002].

In this case, we can implement a stroke rendering module that computes a particle simula-
tion of paint along the course of a stroke (e.g., [Curtis et al., 1997]) and another that employs
a hairy brush algorithm (e.g., [Strassmann, 1986]). These can take the same stroke elements
as suggestions for using varying brush widths and sizes, speed, pressure, and so on. Fur-
thermore, output does not need to be constrained to the visible frame-buffer. A module that
takes strokes and generates a Postscript file is possible by translating the stroke coordinates
and thickness elements into the required format. As another alternative form of output, we
have implemented a module with an input image field that consequently produces a video
file. This allows renderings to be captured ‘live’ or sequenced into a steady animation.

3.3 Programming with O PENNPAR

The programmer accesses the functionality @EQ@NPAR with the understanding of how
modules can be placed into a rendering pipeline to produce desired results. Currently, a
programmer can construct content by editing a scene-graph description in a text file and
viewing the scene, or by callingENNPAR’s API directly within an application.

In some cases, there are dependencies between modules and care must be taken to ensure
they are placed in an appropriate order with their field connections properly setup. How-
ever, since modules in EENNPAR are sufficiently succinct, relationships between them
can be easily identified. Therefore, the real task given to the programmer is to exploit
OPENNPAR'’s range of effects and, at times, define new algorithms by coming up with
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novel ways of ordering modules and interchanging data. In the following subsections, we
look at how a few examples of these are constructed through different means of using the
OPENNPAR API.

3.3.1 3D Painter

Our first example is simply an exercise in using theeEQNPAR API directly within an
application. This program allows a user to import any 3D scene and directly ‘paint’ on its
surface. We use RENNPAR to render the painted strokes as well as accessing many of
its standard operations such as picking, interaction, and shading methods. Figure 3.4 shows
how the scene graph was composed of three main subgraphs: (1) the original scene on
which to pick points and influence interaction presentation, (2) the stroke geometry that is
constructed based on user interaction and picked points, and (3) a group which defines and
renders strokes. The interaction technique used is much like the algorithm shown in [Kalnins
et al., 2002] where strokes are formed in 3D by ‘drawing’ on the surface of an object. The
difference here is that each point picked on a surface maps its surface coordinates, normal,
and color (from material or texture) to the stroke point. Additionally, the application allows
for an undo-history of stroke operations by directly accessing the field data of the relevant
coordinate, normal, and material modules for stroke elements.

As a consequence of usingeONNPAR, the entire C++ code for this application (includ-
ing comments) is less than 1000 lines. Despite this remarkably small program, it allowed
an animation of the painted scene in Figure 3.4 to be created by a user in a very short frame
of time when given the model.

3.3.2 Interactive lllustration

Here, our computer generated illustrations make extensive use of non-photorealistic abstrac-
tion techniques to reduce the complexity of depicted structures. As the user interactively
explores relationships in the scene, relevant details are emphasized whereas less important
aspects are deemphasized or omitted to guide the focus of the viewer.

Figure 3.5 depicts the application oP@NNPAR modules to illustrate the current inter-
action context. Additional information about correlations between structures of a 3D model
are displayed in shadows to enhance a user’s contextual understanding. In addition to photo-
realistic modules, the programmer made use PEANPAR’s modules that cast individual
shadows on a plane to enable a special kind of interaction (see Section 3.2.4). We also see
two alternative uses of modules: first, a silhouette module placed so that stokes are aligned
around the outline of shadows, rather than the actual structures, and second, modules to de-
rive skeletons were used to guide placement of annotation anchors. In addition to color, line
styles applied to the strokes of the outlines emphasize the relevance of important structures.
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OpenNPAR

group group group
(3D scene) (stroke geometry) (stroke style and render)

N 7

S’
drawing render coords material thicken generate texture render

style surface to strokes texture strokes to
image coords image

% USER

(a) 3D Painter application system view

(b) View of original scene (c) Flat lighting during stroke  (d) View of fully painted scene
input

Figure 3.4:3D Painter Application:Textured strokes are used to ‘paint’ over models in this
still life scene
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Figure 3.5:lllustrative Shadows (courtesy of Felix Ritter).

3.3.3 NPR in Games

Figure 3.6 shows a sample scene from a game prototyping todtiNOPAR. Since games
demand real-time, the programmer makes optimal use of the programmability features of
hardware surface shader modules. We see examples of cool-to-warm shading, cel shading,
stroke textures, and colorized hatching.

The cool-to-warm shading [Gooch et al., 1998] is achieved by defining the vertex pro-
gramming module to honor material colors of surfaces. As a result, this can be combined
with a material module and is used for the teapot and environment. Colored hatching also
reflects an object’'s color. However, a texture combiner module is added so that the in-
terpolated diffuse color is blended with white based on a gray-scale image defined by a
texture module. The cel shading is achieved by instructing the vertex programming module
to generate texture coordinates for a one dimensional gray-scale texture based on the an-
gle between a surface normal and light vector. This is combined with a texture combiner
module programmed to use this texture to darken or lighten the object’s base color. The
black-and-white stroke textures are rendered as described in [Freudenberg et al., 2002].

3.3.4 Using an External Application for Stippling

Programmers of external applications can still uRsEG@NPAR’s features. We take the case
of frame-coherent stippling, designed and implemented outsidee@N®PAR. This is a
stippling technique where most of the computation occurs as a pre-processing stage that
structures a point hierarchy before the points are selectively rendered at run-time.

The point generation is done off-line independently frorREGNPAR. The output of
this stage, however, can be written to a file which complies with one RENDIPAR’s
file formats that defines the stipples as ‘point’ strokes. While the stipple generation stage
still lies on the side of the producer, the rendering part now relies BENDPAR. Thus,
potential for additional rendering features IPENNPAR, such as its silhouette generation
modules, can be used to generate the final image (see Figure 3.7).
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group group
(cool-to-warm shader) (cel shader)

material vertex render material  texture Vertex program hardware render
program surface (1D grayscale) (generate texcoords register surface
(color vertices) to image based on lighting) combiner  to image

(color and texture)

group
(colored hatching)

000 ®

group
(b&w stroke textures)

material  texture  hardware render texture  hardware render
(grayscale) register surface (grayscale) register surface
combiner  to image combiner  toimage

(color (texture thresholding)

and texture)

Figure 3.6:Modular surface shaders integrated into a game environment (image courtesy of
Bert Freudenberg).

input
Generate scene
winged-
edge coords
(stipples)
group sil-houett;es A styl-e;-+ r;r‘;der
and visibility strokes to strokes to
image image
(scene description)
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zutpu.t .:f:ene silhouette silhouette generated stipple
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modules style stipples style scene
external viewer
application application

scene data

Figure 3.7:The external application outputs a scene description and stipple pointsEr-O
NPAR’s file format. A viewer application then renders the stipples and silhou-
ettes (image courtesy of Oscar Meruvia).
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3.3.5 Editing an Animation Description to Export Filtered Video

An external 3D application can output an animation to a file that is then marked up by
the programmer to produce a video including a few special effects freeNPAR. No
compilation is necessary—a simple text editor and knowledgereNDIPAR’s API format

is required.

input output
group group : scene scene animation
- e viewer —l
application video file

? scene annotation

% USER

(a) Annotating a scene description text file to output video

(b) An animation played back with nine different image filters for artistic effect

Figure 3.8:Using OPENNPAR to produce filtered video effects for a 3D scene animation

OPENNPAR is able to read in VRML files that include additional animation nodes (cur-
rently we support vertex interpolation and group translation/rotation). The programmer
edits the VRML scene description to add an image module at a specific location to read in
contents of the frame-buffer once the initial rendering of an animation frame was complete
(see Figure 3.8). A variety of image processing modules were then appended to the scene
graph. The effects for the image processing modules are controlled by their input image
fields—in this case by typing in external image file names to use as filters—and connecting
their outputs and inputs to propagate results. The last image processor module’s output was
connected into the image field of a video module, which was parameterized to insertimages
at specific time intervals to a video file. Producing this file was now simply a matter of
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using an available viewer application to read in the scene which would automatically run
the animation.

3.3.6 Creating Level-of-Detail Silhouettes

Clever use of modules often allows programmers to define new algorithms. For this exam-
ple, we construct a silhouette algorithm to generate stylized silhouette strokes at interac-
tive rates that also uses a level-of-detail technique. As in the previous section, this can be
achieved entirely through the use of a text file without need for recompilation.

We first insert the silhouette generation module that fills the stroke pipeline—the stroke
elements—with silhouette edges. The stroke rendering module, at this moment, would sim-
ply produce thin lines for the silhouettes since no stylistic elements of the strokes have been
used. To this effect, three stroke modules to support the 3D stylization of strokes (that
we introduced in Section 3.2.1) were added directly after the silhouette module (see Fig-
ure 3.9(a)). Now, we can add stylization modules to affect the visual appearance of strokes
and render these by disabling thdouffer field in the surface renderer so that clean strokes
are drawn ‘on top’ of the scene. The stylization achieved in Figure 3.9(b) combined stroke
modules to influence stroke thickness elements, texture modules to read RGBA images from
an external file, and a texture coordinate generator module to define the mapping of the tex-
ture onto each stroke.

Q group
Generate group group
winged-edge (silhouettes and visibility)

group style + render
strokes to
image

____________ generate concatenate filter stroke
(scene descnptlon) silhouette strokes stroke visibility
strokes artifacts

(a) Scene graph for stylized silhouettes (b) Output of scene graph

Figure 3.9.Visible silhouettes rendered in real-time with oil paint texture and depth cuing
on thickness of strokes

For reduced level-of-detail (LOD), we simply replace the silhouette generation module
with a skeletonization module and load the stroke pipeline with the skeleton data (see Sec-
tion 3.2.3). This would similarly concatenate the skeleton edges to strokes and apply styliza-
tion to it. We notice that the skeleton is effective in conveying a good idea of the shape of an
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object when the object is far away (see comparison in Figure 3.10(b)). In addition, it proves
computationally efficient due to viewpoint independence and typically generates less lines
to convey the whole object than the full silhouette. To combine these two results, we add a
standard ®@ENINVENTOR LOD group node that selects between silhouette generation and
skeletonization modules depending on the projected size of objects (see Figure 3.10(a)).
Thus, when this scene is now loaded into a viewer application, the stylized silhouette of an
object is replaced with its skeleton as it recedes into the distance.

Q group

Generate
winged-edge

LOD select

group
strokes to
image

and visibility)

skeletonize  generate strokes
from winged-edge

(a) Scene graph for LOD selection of silhouettes (b) Comparison of rendering silhouette drawings
or skeleton or skeleton drawings for different sizes of the
object.

Figure 3.10.Combining silhouettes and skeletons for real-time stroke representations of ob-
jects

3.4 Designing with O PENNPAR

Designers are given the task of creating visual results that carry a desired communicative
intent. Whereas the programmer has the technical expertise to experiment with the system
at a modular level, the designer is much more productive when part of an entirely visual and
iterative creative process.

However, PENNPAR at the modular level still imposes knowledge requirements about
the inter-operability of modules which can potentially hinder the creative process. For in-
stance, knowledge of the order in which modules can be inserted into the rendering pipeline
and type conversions between field connections, in addition to modules relying on others to
be previously inserted.

As a consequence, we devised an interface to overcome these impositions on designers
by mimicking the designer’s creative process in coming up with new images [Halper et al.,
2002]. The contributions to the interactive design of effects are as follows:
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¢ A method of interactionvhich leaves the user unaware of the dimensionality of the
data and type-conversion being used to create a given special effect, and

¢ A method of computatiowhich assembles a unique pipeline of graphical operations
to achieve the desired special effect.

This gives designers freedom to experiment interactively with images through the use of
modifiers In Section 3.4.1 we look at how the designer can use modifiers at a level that
allows them to intuitively create a broad variety effects that encapsulate entire algorithms.
This in turn outlines requirements for modifiers in achieving the functionality and ease-of-
use desired by the interface. Thus, modifiers abstract technical knowledge from designers
about module use in EENNPAR, which is detailed later in Section 3.4.2.

3.4.1 Mimicking the Designer's Approach to Creating an Image

How a designer produces an idea varies greatly from individual to individual. Therefore, in
this section, we provide a very general and simplistic overview of steps involved to generate
new ideas and visual effects. From these steps, we are then able to layout the general rules
for a user interface and interaction tasks.

The Designer’s Approach

Some of the key issues in the design process that will influence the user interface are the
following:

e Designers usually start with a blank sheet of paper.
e Designers start sketching some simple ideas.
e Designers possibly reuse previous ideas and combine them into their new design.

e Designers play with ideas.

The most important part here is the ‘playing’ with ideas. A designer normally does not
get the final idea at once, rather, it is a visual and creative process where the ideas evolve.
Visual feedback is very important in this process: You see what you have, and you see where
you can take it. Mostly designer’s attentions are focused on the sheet of paper in front of
them that contains previous sketches comprising experimented variations on visual styles.
Whenever designers are happy with particular stages of their sketching process, they may
clump ideas together, or redraw sketches that evolved from others. They may even go back
to a variation on an early sketch and take it in an entirely different direction. In short, at
every stage in the creative process designers are constantly comparing the visual effects of
styles that they have come up with to see which look best and which have potential to be
taken further.
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Sometimes designers even make mistakes, or come up with results that they did not intend
because of the way they applied a tool, or they just expected something else to come from
it. However, often results through experimentation, especially those that are unexpected or
bizarre, inspire. Ask any artist, and they might tell you that some of their best ideas or works
were created by ‘accident’. As a final remark, note that anyone not involved or monitoring
the creation process might have trouble understanding what was going on—most often only
the designer herself can see the stages in the development clearly.

The General Interface

Here we look at which important features a system interface must comprise in order to stay
close to the designer’s creative process as described in the previous section:

e The interface starts out with a blank screen of infinite size, that can be moved freely
— called thesketchpad

e The interface enables the designer to introduce some original images or scenes.
e The interface allows the designer to apply existing algorithms to images or scenes.

e The interface allows the designer to play with images or scenes by adding effects or
applying variations to their visual style.

An effect or variation is something that when applied, either adds to or alters the rendering
style. Throughout this paper, these are also referred toaifiersthat a user may work
with to influence the rendering output.

As a general rule, we do not want to take the users attention away from the sketchpad and
break the fluidity of the interaction. Overlaid floating or pop-up windows in this respect are
undesirable, because the designers attention is taken completely away from the sketchpad
area into a separate window.

Interaction Tasks

The designer can insert a scene or image into the sketchpad by clicking on any empty space.
An import modifier is then added to the sketchpad at the appropriate location. In order
to maintain visual feedback, rather than replacing images, we simply add the new images
with their variations applied to the sketchpad. To apply a variation the user simply sketches
a line starting from the image to apply the variation on to a new location, as shown in
Figure 3.11(a).

The approximate size of the box determines the size of the new image to render. If no
box is sketched, then the same size as the previous image size is taken. Once the user
releases the pen or mouse button, she may decide which effect or variation to apply to the
image, as shown in Figure 3.11(b). Here we use pie-menus [Hopkins, 1991] for several
reasons. The number of available options to the user can be large, from anywhere between
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Figure 3.11interaction Method of Applying Modifiers

one to hundreds of modifiers. Since modifiers can be grouped based on the effect they
have, hierarchical pie-menus can be used. Interface widgets such as a taskbar featuring drag
and drop functionality may have space problems in this respect. Also, regular pull-down
menus would become quite large and also draw the user’s attention to a completely different
location on the screen (see [Callahan et al., 1988]). Figure 3.11(c) then shows the result of
these simple steps.

So far, we have achieved the following:

e The user’s focus has remained on the area of the sketchpad comprising the images of
interest at all times.

e Placement and size of the new image is intuitive.

e Both images are maintained and still accessible in the sketchpad for potentially ap-
plying further variations.

e The image on which the variation was applied is clearly traceable because of the user’s
original sketched line to the location of the new image.

e The name of the variation is labeled next to the image, with its effect clearly visible.

Inputs to a variation can be changed at any time, simply by sketching from a desired image
to the image that has that variation (see Figure 3.12).

Note that any changed image will propagate its changes automatically to the entire sub-
sequent connected paths of images that apply variations on it. In addition, connections can
be easily re-connected back to the original simply by re-doing the initial sketch for that
connection. Some existing systems provide a history window (such as Adobe Systems Pho-
toshop), whereby you can also see the results in the history pipeline, and you can undo a
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silhouette thicken silhouette thicken

Figure 3.12Changing an input by sketching the new connection as indicated by the gray
arrows (left). The old connection is automatically removed (right)

current state to a previous one. Many design books (e.g., Shneiderman [1992]) highlight
the importance of providing a big friendly undo button. However, in our interface, there

is no explicit “undo” option — it is inherent in the process since we have visual access to
the entire history and for the created images imoa-linearfashion. This is an important
feature, since often the undo button is used when “mistakes” have been made, and it breaks
the continuous process if used because it reverts “back” to a previous state. In the process
of a design, users do not want to go back a step, they want to see themselves taking ideas
forward. In our interface, mistakes are not considered “undone”, but “redone” according
to what looked best (e.g., sketching to replace a new input gives a result, and to undo this
action, we just sketch the previous connection back in). Such a visual representation of the
history of actions can greatly facilitate the user in making appropriate changes or fine-tuning
results [Kurlander and Feiner, 1992].

Sometimes variations may be applied as a result of a combination of more than one image
or scene (i.e., a modifier takes more than one input). In this case, when the user is asked to
select an effect, and chooses one which requires multiple inputs, is then asked in a similar
fashion which of these inputs he wants to connect to. Any modifier that has not been given
its required number of inputs places a default image at the location where the resulting image
should be, so that it is clear that another input is required for the variation to be applied.

Once a user has finished parts of a design or decided that a certain group of modifiers
performs an operation which can be regarded as a modifier in its own right, the user can
group these and thus create a new modifier. This is done by simply circling the affected
modifiers. The system will then create a new modifier that encapsulates the selected group
and computes the number of necessary inputs and outputs. The new modifier can then be
used in the same manner as any other previously defined or given modifier. The user can
then go to a different area of the sketchpad (or start a new sheet) and simply bring that
modifier back in. Most importantly, it can be assigned a name (labels may also be given for
each input) and saved for later reuse in a different project.

The interface that we have shown here shares similarities with data-flow interaction tech-
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niques as used in several professional packages (such as the image compositing tools in
Discreet’s Combustion, or Silicon Grail's RAYZ). However, we have both tightened and
simplified our interface with our task goal in mind - we wish to create new rendering al-
gorithms. This differs from, for instance, purely image compositing tasks that can be per-
formed most often by re-using the same combinations of tools with different parameters.
We keep the workspace with the hand-drawn sketch connections, rather than computing an
algorithm to make neater connections, because we do not want to give the impression of
a finalised result. This takes ideas from NPR concepts in general (e.g., the presentation of
sketched architectural drawings, [Schumann et al., 1996]). The connections created by our
system are also abstracted to the user so that the visual display of the data-flow to the user
is not necessarily the same as that undertaken by the system.

For example, in Figure 3.13 we see an applied sequence of modifiers. The visual results
of each modifier are consistent with designer expectations. However, from an algorithmic
point of view we notice that certain computations in this order are actually infeasible. For
instance, the computation of the base color surface modifier cannot be done given a 2D
image result (from the lighten modifier) as an input. In the next section, we show how this
is made possible.

haseZ.iv Tighten silhouette soften basecolor thicken

=P ¥ F 3V B

Figure 3.13Designer’s view of piping modifiers.

3.4.2 Supporting the Designer’s Interface with O  PENNPAR

As discussed in the introduction, the tools that are created by programmers for designers
are calledmodifiers In this section, we detail the implementation of modifiers and their
integration into the interface that serve to abstract technical knowledge abexNPAR

from the designer.

Modifiers

A modifier manipulatesadds or removesnodules in a scene graph. In order for a modifier
to adapt to our interaction method, it has to fulfill the following requirements:

e Modifiers must have (one or more) inputs and one output.
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e Connections from the output of one modifier to the input of any other modifier must
be possible.

e Whenever an input to a modifier is changed, its output needs to be newly generated.
This output may be connected as an input to another modifier, thus propagating the
re-computation to all subsequent connected modifiers.

The user interface as introduced earlier, requires that we show the result of applying a
modifier and thus provide direct visual feedback to the user. Hence, whenever a modifier is
introduced to the sketchpad, we need to store its output as an image (this is done simply by
rendering to and reading from an off-screen buffer) that is constantly linked and updated to
the presentation of the modifier in the sketchpad.

In this respect, modifiers provide a simple means for designers to interlREsNPPAR,
whereby the modular components have been abstracted by the programmer into effects that
produceresults In addition, each modifier is limited to use only its class of modules (e.g.,

a modifier cannot affect both a surface-shading module and an image module in the scene
graph). We do this because: (1) this makes implementing modifiers quick and easy; (2)
elementary building blocks are vital for flexibility and power in more complex structures.

Here, we give a few examples of simple modifiers that use various modules:

e Surface Modifiers:

— Light Intensity Filter: Parses an input scene and sets all material modules to
use a white, non-specular material. On its own, this renders a gray-scale image
corresponding to scene illumination.

— Base Color:Changes the lighting module in the rendering pipeline to use base
color illumination. On its own, this would effectively render colors based only
on material diffuse properties.

e Stroke Modifiers:
— Silhouette GenerationAdds a silhouette module that computes a set of silhou-
ette strokes.
— Stroke ThickenAdds a module to influence stroke thickness.
— Stroke WavinessAdds a module that applies a wave function over stroke paths.

¢ Image Modifiers:

— Lighten: Takes an image as an input, and lightens all the pixels in the image for
the output.

— Dither: Takes as input an image defining a dither-matrix and source image, and
applies half-toning to produce an output image comprising only black and white
pixels.
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3 Non-Photorealistic Rendering Tools

— Selector:Takes as input three images. One input image defines threshold values
that select corresponding pixels from the other two images in generating the
output image.

Piping Modifiers Together

Each modifier that the designer applies is computed by first structugrapdn of modifiers
from its inputs. Then, the applied modifier is inserted into the appropriate location within
this graph of modifiers. Its field connections into other modifiers are then organized (or
re-organized). If field connections must undergo conversion into the correct types, we make
sure that the relevant conversion modules are present in the scene graph and use them. Thus,
each modifier maintains an internalized ordering of the application of previous modifiers
that serve as inputs to it.

The rules for inserting modifiers into a graph of modifiers are outlined below:

e Import modifiers are placed first in the dataflow, or after any already existing import
modifier.

e A surface-shading modifier is appended after the last surface-shading modifier in the
dataflow. In the case of no previous surface-shading modifiers in the dataflow, it is
placed directly after the import modifier.

¢ A stroke modifier is appended after the last stroke modifier in the dataflow. If there is
no stroke modifier already present, it is placed after the last surface-shading modifier
if there is one, otherwise it is placed after the last import modifier.

e An image modifier is appended at the end of the modifier dataflow.

The end result is a dataflow of modifiers that start with import modifiers. These introduce
a scene graph that is first filtered through surface-shading modifiers and then stroke modi-
fiers before converting 3D data into 2D images for input into subsequent image modifiers.

In Figure 3.14 we see the actual translation of the designer’s visual dataflow (from Fig-
ure 3.13) to the underlying system’s dataflow. Whenever the designer applies an image
modifier to the sequence the system first checks if 3D information must be converted to an
image. For instance, when the lighten modifier is added, a conversion module is inserted
that renders the imported scene into an image. Stroke modifiers are placed after surface
modifiers so that when the designer applies a silhouette modifier to generate strokes from
the lightened result, the system places the silhouette modifier directly after the last available
3D information in the pipeline (which is after the imported scene), and then a re-conversion
to a 2D image is necessary to be fed back into the lighten modifier to give the appropriate
combined result.

Once the modifier pipeline comprises each of the modifier classes, we simply append new
modifiers to the last modifier in its class, undergo conversions for the subsequent classes,
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Figure 3.14System view of piping modifiers. Each of the displayed results at the top store
a graph of modifiers (in this example a linear sequence) applied to the original
scenes. Computational short-cuts are indicated by the dotted lines between
successive modifier graphs.

65



3 Non-Photorealistic Rendering Tools

and recompute the modifiers that lie later in the sequence if necessary. The dotted lines
in Figure 3.14 from a previous pipeline to the next indicate a computational shortcut for
improving efficiency. For instance, in the case of applying the stroke thicken modifier,
we can start the new computation after the silhouette modifier from the previous modifier
graph; thus, we only need to re-convert the data to an image and reapply the lighten and
soften modifiers.

3.4.3 Interaction Examples

Here we provide a sequence of screenshots to give an overview of the interface and some
feel for the creative process that the user undergoes during the interaction. Looking at the
screenshots may be a little overwhelming at first, but actually being part of the process as
the ideas build up feels very natural to the user. Our examples use a rather limited set of
modifiers, but even so, a large range of visual effects can be created.

An Interaction Sequence

In Figure 3.15(a), the user has imported a 3D model that is rendered usowgdshading

and displayed in the upper left corner of the sketchpad. From this, the user has found a way
to create a cartoon effect by using a selector that takes the light intensity of the model to
choose whether or not to use a lightened base color image, or a darkened base color image.
At the top, we also see that the user has created a dithered image by importing a dither
matrix that is fed into the dither modifier and thus applied to the scene image. The user has
then extended the cartoon image and dithered it using the same dither matrix.

In Figure 3.15(b) the user changes the result simply by replacing one input to the selector
modifier. This modifier now takes as input the dithered image instead of the light intensity
image. The result is that the graphical representation of the selector modifier is immediately
updated, and also the dither modifier placed at the bottom right of the sketchpad that it
connects into. The original connection from the light intensity modifier to the selector is
removed.

The user has continued with the same sketchpad and played with the interface to give a
variety of results as shown in Figure 3.15(c). The modifiers from the first two examples can
still be seen in the upper left section of the sketchpad. Note that in all these examples, all
results are produced by only using one imported image (the dither matrix), one imported
scene, and nine elementary modifiers.

Comparison of Interaction Methods

In Figure 3.16 we see a comparison of the sketch interface with and without the abstrac-
tion of modifier application order from the underlying system. In each of the sequences,
theintroductionorder of modifiers watghe samdi.e., in both sequences the scene was first
inserted, followed by the dither modifier, followed by use of the base color modifier, etc.).
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(a) First stages in the development of effects (b) Changing an input and propagating effects
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(c) Zoomed out view of the sketchpad after the user has played with it for some time

Figure 3.15An interaction sequence of applying modifiers
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Figure 3.16:Comparison of two interaction results given the same introduction sequence of
modifiers. Notice that below, we see a linear progression of effects, whereas
above, the user has to backtrack to apply effects at appropriate insertion points.
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Figure 3.16(a) shows a result in which the user must be aware of the application order of
surface, stroke, and image modifiers. Here, the user often had to find a correct insertion
point in the flow of modifiers, especially when modifications to the silhouette style were de-
sired. Furthermore, whenever a modifier was inserted additional overhead was required to
connect its output into the rest of the sequence. Eventually the spatial organization of mod-
ifiers in the sketchpad forced the user to start adding modifiers around the final image of
interest (the select modifier in the middle). In contrast, in Figure 3.16(b) the interface maps
the user’s intention onto the underlying system order of application of effects (as detailed
in Section 3.4.2). Here we clearly sedireear progression of effects—the silhouette mod-
ifier was applied after the selector modifier, and its silhouette line stylization appropriately
followed in sequence. This example is best visualized with the accompanying video.

Creating Complex Effects from Simple Modifiers

Programmers can implement a very limited set of modifiers in a short space of time. Yet even
with this limited set, enough functionality is provided so that designers can come up with
interesting and diverse effects. Expanding the modifier library would widen the range of
technical abilities to which the user has access, and thus greatly expand the range of effects
that may be produced. This is made possible by the modular capabilitieseENNIPAR.

Tightintensity

Figure 3.17Producing complex effects from modifiers that manipulate modules in a ren-
dering pipeline

For example, the programmer introduces two new modifiers: an image modifier that ran-
domly spreads pixels over the image, and an image modifier that ‘paints’ by evening clumps
of colors in the image. These took little time to implement. Nevertheless, the designer can
quickly experiment with these new modifiers to come up with a ‘sponge-painting’ effect
shown on the right of Figure 3.17.
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3.4.4 Re-Use of Graphs of Modifiers

Our examples have shown that modifiers can produce a variety of results. In this section we
provide a means for saving these results for re-use. In essence, modifiers are self-contained
effects that encapsulate a history of operations as a graph of modifiers. This lets us easily
export and import combinations of modifiers, calle@mpoundmodifiers, for re-use. We
demonstrate this with a few examples that combine both 2D and 3D effects.

In Figure 3.18 (left) we show how to construct a composite effect from an image modifier
(selec) and a surface modifieblack). Note that output from the import modifier could be
any class of modifier. In Figure 3.18 (right) we collapse the circled modifier and rename it
to compositeIts inputs are then mapped fasegroundandbackgroundnto the appropriate
dataflow.

In the next example (Figure 3.19 (left)) we combine surface and image modifiers to create
a cartoon effect. Circling the modifier indicates that we want to save this effect into a new
modifier, that we rename toartoon which is re-used in Figure 3.19 (right). Finally, Fig-
ure 3.20 shows the combination of both the composite and cartoon modifier that integrates
all the 2D and 3D effects.

To compute the saving and renaming of modifiers into new modifiers we count the number
of unique import modifiers that enter the modifiers’ dataflow encapsulation. For instance,
the composite example (Figure 3.18 (right)) has two unique import modifiers that form
part of its encapsulated dataflow, therefore the newly created composite modifier has two
inputs that can be renamed (as they are in the example). The cartoon shader (Figure 3.19
(right)) has only one unique import modifier entering its dataflow, therefore requiring only
one input.

3.5 Discussion

We have presented®RENNPAR, a versatile and flexible system that addresses a major gap
in the creation of NPR and animation—namely a unifying framework that combines many
NPR techniques accessible by all user levels. The underlying intent behind NPR is to opti-
mize the communication of a visual goal in a specific context—the scope, thus, is virtually
endless. ®ENNPAR appears to be the first system of its kind that allows for a range of
different user classes to both reproduce a variety of algorithms as well as create new ones.
Consequently, BENNPAR offers potential for defining an effective method within such a
scope. This was made possible by structurirge@NPAR onto a conceptual framework

for NPR that categorizes algorithms and primitives to support the interchange and re-use of
data.

A limitation of the system is that algorithms are constrained to formulations in the scene
graph. Thus, certain NPR pipelines utilizing multiple primitives, in particular those re-
quiring feedback loops, require atypical structuring of the scene-graph. This may invoke
additional implementation overhead and loss of performance. However, we hypothesize
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Figure 3.18(left) Combining surface and image modifiers for a composite effect. (right)
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that any existing NPR algorithm can be created by modularizing components rg-O
NPAR . The effectiveness of the system lies in the flexibility of available modules and the
completeness of its elements.

Development principles have been outlined and demonstrated using examples to effec-
tively extend @PENNPAR’s functionality. Programmers can access this functionality either
by linking an application directly to @&NNPAR or through textual descriptions of modules
in a rendering pipeline. Due to its modular structure, pre-defined effects can be reproduced
or entirely new ones created through the manipulation of interchangeable modules. These
modules need to be correctly arranged in the rendering pipeline to comply with the system
requirements of dataflow. In the past, designers of special effects have had to manage the
data with respect to its dimensionality and handle the sequence of operations explicitly. In
this chapter, we have given a detailed account of a new method of achieving visual effects. It
relies on the programmer to defingeph of modifiersThe designer can then experiment
with NPR effects by editing the graph. The key to the method is that the dimensionality of
the data no longer need concern the designer. This is achieved by a method of computing a
unique pipeline of graphics operations for each node in the graph.

The method relies on a dataflow system but with two major differences:

e Computation may be carried out in different order than the dataflow diagram would
visually suggest;

e Modifiers presented to designers as images encapsulate entire dataflow system pro-
cesses which can be re-used by applying them on new inputs for animation or alter-
native scenes.

Using this method, we have provided a user interface that enables and encourages de-
signers to “play with ideas” in order to combine modifiers that affect the rendering pipeline
without actually having to write any code. Each application of an idea generates a new
image, such that each image in the process of the evolved idea can be seen. Thus, at every
point in time, visual feedback is given and maintained. The designer may take any image
in the creative process, and start a new direction of ideas. Possibilities are left open to re-
duce limitations imposed on designers—maodifiers can be linked together in arbitrary ways,
regardless of how inappropriate the connections may seem. Results may not quite be to the
designer’s liking, it might not even be what was expected, but we decided not to give the
power to the programmer to constrain how the designer chooses to combine effects. In-
stead, designers are left to make their own mistakes, with the hope of providing inspiration
throughout the course of the creative process.

In conclusion, @ENNPAR holds vast potential as a tool for the development, augmen-
tation, and creation of NPR. Further information about featuresrENDIPAR as well as
animations and sample applications can be foundvatv.opennpar.org . Many ques-
tions and directions for future work arise from the work shown in this paper. We outline a
few of the main areas below.
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3.5.1 Significance to Computer Game Development

OPENNPAR offers a top-down approach to the creation of NPR effects by giving designers
control in defining which algorithms should be used, and offering programmers and de-
velopers the option of optimizing the implementation for the results. Designers are able
to declaratively specify effects to apply without concern for algorithmic type restrictions

or organizational issues of controlling dataflow. Whereas this interactive method sacrifices
some control, we do propose that designers, at least in the experimental stage, should be
unencumbered by interaction overheads. In practice, there is also a lot of cross-over and
communication between user groups. Thus, we suggest allowing more control in subse-
guent stages of designing effects. For instance:

1. Designers come up with the initial look, working with the range of available effects
and combining them in ways that give effective results, with a primary emphasis on
experimentation. In this stage, designers can independently concentrate on visual
goals.

2. Additional control for effects in the created pipelines are given. This would allow
tuning of visual results and using functions to map effects onto more complex struc-
tures. Depending on the experience of designers, they can either continue to work
independently or with more technical knowledge support from others.

3. Atthis stage, a pipeline has been created with configurable parameters built from a set
of simple modules. These modules can then be integrated into an optimized pipeline
(e.g., combining a number of effects in one pass). This is left to the experts of the
system.

As a result, programmers defiméhat can be usedand designers tell programmers pre-
ciselywhat should be usedandhow. Thus, designers are no longer inhibited to work with
rigid rules, and programmers take their knowledge of how things really work to structure a
more efficient rendering pipeline.

3.5.2 More Powerful Modifiers

Modifiers could be extended to not only allow a variation to be applied to a certain state
but also provide more powerful features. For instance, a modifier could compute based
explicitly on its inputs, such as connecting two entire separate sequences of modifiers. Such
a combiner modifier could, for instance, connect a cartoon-shader and a pencil-sketch shader
as shown in Figure 3.21. This might also require an intelligent selection of parts of an image
or scene to which the effect can be constrained.

Another powerful feature would be to be able to directly interact and sketch ‘into’ each
presented image at any given stage in the sketchpad, as in, for example, the WYSIWYG
system by Kalnins et al. [Kalnins et al., 2002]. This would let us vary parameters, or
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Figure 3.21An intelligent combiner modifier

simply add to the images with additional editing tools, and see the effects propagate to the
subsequent connected modules automatically. In effect, by sketching into a modifier, we
are editing the modifier and may even save its changes as a new modifier. This leads to the
general question of how the user can specify parameters for a modifier. Taking into account
the design goals stated earlier, the use of sliders, dialog boxes, or menus would not be the
method of choice. The level of abstraction when using such tools is different from the user’s
task which opens potential for distraction. A direct manipulation by, for instance, sketching
the desired result of a parameter change, would greatly enhance the interface.

3.5.3 Improving Scalability

Many interactive systems experience problems with scalability. We currently provide only
two methods to address scalability issues in the design of effects: (1) the feature of sketching
out from any image to directly apply further effects, and (2) the grouping mechanism.

Problems sometimes arise when combining many multiple-input modifiers. In this case, it
is not clear where new modifiers should be inserted into which previous chains of modifiers.
Appropriate insertion points can also be dependent on the actual multiple-input modifiers
used, so the addition of self-defined insertion rules for modifiers may produce more appro-
priate cumulative effects.

Unfortunately, at this time a full implementation of the grouping mechanism was not
complete for evaluation. Grouping components in an interface raises many questions such
as how to re-use and combine groups as well as accessing internal components of the group.
A number of papers have approached this issue in more depth and may provide fruitful
insights [Herman et al., 2000], in particular the image graph technique that represents not
only results but also processes of data visualization [Ma, 1999].
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3.5.4 Generalizing the Sketch-Interface Approach

The interaction method used for the sketch-interface addresses the fundamental issue that
the complexity of interfaces is rising because of the complexity of the algorithms that oper-
ate on the underlying data structures. Finding ways to coalesce data structures so that they
can work for different user interface requirements is a step towards providing a solution for
overly cluttered or too complex user interfaces.

Our approach can be generalized to other systems that follow rigid pipelines, in partic-
ular for rapid-prototyping applications. For instance, we can create a process for users to
come up with new shaders with more specialized modifiers that manage low-level tasks
such as hardware register combiners or vertex programs for the creation of real-time special
effects. Here we have a fixed pipeline whereby vertex programs are modified first, and then
data is sent to register combiners for shading effects that must also follow certain dataflow
rules. However, since vertex programs are independent from register combiners, we could
find ways to translate user input for use in register combiners, and simply pipe that after
the modified vertex programs. This would allow any user to experiment with very little
knowledge of graphics hardware the visual effects that can be achieved.

In this respect it is also possible to use the interface to present available resources. Many
NPR methods, especially simulation approaches, are rather time and resource consuming.
On the other hand, many methods can also be implemented using modern graphics hardware
(as with register combiners). Due to a limited number of such hardware resources, we may
extend the interface to provide some sort of resource management, such as suggesting better
paths through modifiers, or highlight paths that use too many resources.

A further development of an NPR system that is designed to primarily support the user and
the creative process in designing images is only possible with the participation of the target
group. Thus, a comprehensive user study will not only clarify some of the issues raised
earlier but also lead to new ideas which themselves will move the development forward.
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4 Camera Control in Computer
Games

The current use of camera techniques in computer games is comparable to the situation in
the early days of motion pictures. Back then, actors and directors were used to the theater
stage and the viewer had only one perspective for the whole performance. There was no
moving camera, no cuts, and only one shot size. Over the following decades, cinematogra-
phy developed and people became accustomed to its language. Today, camera techniques
form an important part of the story-telling process. The right use of a camera can enhance a
viewer’s experience as much as poor camera handling can destroy it.

In the past, games provided a first-person view or allowed the gamer to choose from one
of several predefined camera positions including one or more over-the-shoulder views. The
use of first-person views places the gamer inside his player character and has the fortunate
side effect of freeing the game developer from any serious camera work. This is a valid
approach for the type of first-person shooters that have dominated the real-time 3D game
sector, but there is now a need for a more sophisticated camera handling. Indeed, camera
settings can reveal information to the user in a subtle way. Third person views, for instance,
are often associated with higher player-character identification.

We begin in Section 4.1 with an overview of camera planning problems and related work.
Section 4.2 describes a declarative camera planning approach in which an initial camera
system is built that constructs a set of shot properties used to specify visual goals. This
system is used to demonstrate the versatility and power of declarative specification meth-
ods to capture content in a precise yet natural manner. Section 4.3 uses such a declarative
approach that is optimized to find frame-coherent solutions in real-time based on a simpli-
fied subset of camera operations. This camera engine can be directly applied in computer
games. Thus, the developer is in a position to specify visual goals that the camera can then
satisfy. However, there are often situations in computer games where it is desirable to auto-
matically generate visual goals to capture events that occur during the course of a game. In
Section 4.4, we provide methods that return keyframe and timing information of appropriate
events in a game that can be given to the camera for capturing of live content or post-game
summarization. Finally, we conclude by discussing achievements and future extensions in
camera planning.
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4 Camera Control in Computer Games

4.1 Previous Work

Much work has been done on enabling users to directly manipulate the camera [Hanson and
Wernert, 1997; Mackinlay et al., 1990; Ware and Osborn, 1990; Ware and Fleet, 1997] or
on providing camera assistants [Phillips et al., 1992; Gleicher and Witkin, 1992; Jardillier
and Langénou, 1998]. However, relatively little has been done in immersing the user in
an environment by controlling an object or character, whereby the camera process should
be invisible to the user. Nevertheless, allowing communication of important visual goals
such as navigational information, or notable features in the environment, should be enabled
so that the player is not left running into the unknown. In this section we look at camera
techniques that can be applicable in the context of computer games.

4.1.1 Real-Time Constraint Satisfaction

Most real-time games solve camera positions procedurally, using specialized camera rou-
tines adapted to the design of each level. This makes for an inflexible camera engine, and
often leads to situations where the camera is not showing the best view for the user. In
Tomb Raider, for example, the camera can produce awkward views in closed spaces when
Lara Croft (the heroine) is backed up against a wall, because the camera computes without
explicit consideration for visual properties in the view.

Blinn [1988] describes how vector algebra can be used to position a camera given the
desired position of two objects in the viewplane, and this method was used in the compiler
for the Declarative Camera Control Language (DCCL) which allowed the specification of
cinematic idioms in camera planning for animations [Christianson et al., 1996]. The limi-
tation of this approach is that it uses point abstractions of the objects, and therefore cannot
account for the range of visual effects that arise from the fact that real scene elements have
finite extents (e.g., occlusion between scene elements).

Drucker et al. [1992] and Drucker and Zeltzer [1994, 1995] set up an optimal camera po-
sition for individual shots subject to constraints. The camera parameters are automatically
tuned for a given shot based on a general-purpose continuous optimization paradigm. These
methods proved effective and allowed the design of camera modules. However, the camera
modules, such as used in theNEMA system, experience problems combining and con-
straining multiple procedures, requiring specifically tailored procedures to be setup. [Bares
etal., 1998; Bares and Lester, 1999] have developed<IRAINTCAM, a real-time camera
visualization interface for dynamic 3D worlds OQSTRAINTCAM allows the specification
and real-time solution of three classes of constraint: viewing angle, viewing distance and oc-
clusion avoidance. Although the expressiveness of this set is limited (e.g., it is not possible
to locate objects at particular positions in the image) the strength of the system is the uti-
lization of solution techniques that allow real-time satisfaction of constraints sets. However,
neither of these systems provide predictive analysis for their interactive environments, nor
do they offer the ability to impose constraints based on existing camera situation and move-
ment. This in turn means that they cannot achieve a high level of camera frame-coherence.
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Jardillier and Langéanou [1998] have reported an approach which uses interval methods
to find camera paths which yield sequences of images fulfilling temporally indexed im-
age properties. Although the properties are once again very limited, and the method com-
putationally expensive, the interval-based approach has the advantage of guaranteeing the
maintenance of visual properties for the duration of their temporal indexing. This contrasts
favorably with techniques which rely on only a sample of the positions along a camera’s
path.

4.1.2 Visibility

Few interactive systems propose methods that effectively avoid occlusion. This is surprising
considering the importance of maintaining an objects’ visibility in shot. Christianson et al.
[1996] check for occlusion given a camera shot by testing against overlapping bounding
spheres and incrementing an occlusion counter, but do not adjust camera state to accom-
modate visibility. Halper and Olivier [2000] (see Section 4.2.2) use image precision calcu-
lations to assess visibility, but employ offline genetic algorithms for optimal camera state
generation. Tomlinson et al. [2000] test against occlusion in their interactive environment
by shooting a ray to the object in question, and adjust the camera vertically only, although
this method is mostly suited for use in sparse outdoor environments.

target D

Figure 4.1:Current visibility algorithms do not process depth information across other an-
gles of visibility, such that a viable point P can be returned.

Phillips et al. [1992] developed an algorithm based on the hemicube [Cohen and Green-
berg, 1985] to select viewpoints and viewangles to ensure that a manipulated object is not
obstructed by other objects. They use a cube centered around the origin of the object being
manipulated, and orient it towards the camera position, whilst projecting the geometric en-
vironment onto each cube face to achieve a visibility map. If the camera is obstructed, they
look in the neighborhood of the direction of the camera for an empty area in the visibility
map, which suggests a location of the camera from which the object will be visible. Drucker
[1994] processes the visibility map to create a potential map, which is followed from the
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initial location down to the nearest location in the visible region. Phillips et al. [1992] ac-
knowledge that their algorithm will often fail in an enclosed environment without the use

of depth information in the visibility map. Bares and Lester [1999] accommodate this fact
when their optimal vantage angle is occluded by decreasing the distance of the camera to the
object until it is placed in front of the nearest obstacle. However, none of these techniques
can compute a position such as P shown in Figure 4.1, and can only resolve visibility for a
single point. Our algorithm described in Section 4.3.3 is able to find points such as P, and
resolves occlusion constraints for an arbitrary number of points.

4.1.3 Computer Games and Cinematography
We agree with the game developer Barwood [2000], who notes that

“[computer games] are as different from [movies] as movies are different from
theater”

This means that camera techniques used in future games will have to develop and employ
languages and rules on top of cinematographic techniques. Differences arise from the fact
that computer games are highly interactive (unlike film or theater). This makes it impos-
sible for any director module to stage and rehearse actions beforehand. Therefore, even
if computer games’ camera modules would possess the cinematic knowledge of directors,
they could not apply it since these techniques depend to a great part on trial and error.
Also, when shooting a real movie, directors are at liberty to reposition actors and change
the scene, even the script. In contrast, a camera module is typically given the scene as itis.
If, due to geometric constraints, a good camera position can not be found in the scene as
it evolved up to that moment, a less-than-satisfactory camera position must be used. Thus,
encoding cinematographic techniques into idioms provide opportunities for predefined film
scenarios (e.g., the Virtual Cinematographer guarantees results in a common shot form [He
et al., 1996; Christianson et al., 1996]), but lack camera setups to convey visual goals that
aid interactivity for the player.

Game companies such as Lucasarts have a great series of adventure games in 3D, but have
rigid fixed camera positions, so that if not everything is going to plan or not all characters
are in place, it will not be shot right. Therefore they must limit their interactions based on
pre-defined scenarios.

Systems such as CATHI [Butz, 1997] or by Karp and Feiner [1990, 1993] encode idioms
in the form of film grammars, using a top-down approach in generating a sequence of shots.
They are able to produce camera paths that achieve certain visual goals, but use timing in-
formation in the animation and therefore cannot be directly applied to reactive environments
like computer games.

Tomlinson et al. [2000] propose a behavior-based autonomous cinematography system by
encoding the camera as a creature with motivational desires, focusing on camera movement
styles and lighting in order to augment emotional content. This is a step in the right direc-
tion for autonomous camera agents in interactive worlds, as their camera creature attempts
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to capture sequences that are of interest to the viewer. However, their constraint solver
is computed procedurally based upon requirements for their system, losing the flexibility
desired for developer-defined specifications.

The use of the camera in a movie is highly dependent on the current situation. To ap-
proach the quality of film’s camera techniques in computer games, games can classify each
possible situation during the game into a (hopefully) small number of variants. Each of
these can be associated with a number of techniques describing how to shoot that scene,
where to place virtual cameras, how to follow an actor and when to cut (switch between vir-
tual cameras). For instance, in a dialog situation, the camera can focus on the participants
alternately as they speak, starting with an establishing shot framing both speakers. When ex-
ploring unknown territory, the camera — which normally follows the player character — can
provide hints for the gamer by looking elsewhere if there are important clues to be found
(or missed). In interactive applications, all shots are presented to the viewer immediately
without any editing and montage of the raw footage, therefore a director engine should also
know what is likely to happen next so that it can plan shots and their transitions (panning or
cuts) in advance.

4.2 A Declarative Camera Planning Approach

In order to be able to communicate certain goals, we need a way of specifying how we
want to communicate those goals. In this section we look at a viable approach towards
specifying and achieving visual goals that can be captured with the camera. Our initial goal
is to incorporate a camera planning subsystem of Seligmann’s four-stage architecture (see
Section 1.1), which resides within the latter two stages. We now impose a division of camera
planning into three sub-problems:

1. specification of shot objectiveshots are specified not only in terms of explicit spa-
tial relationships between the camera and scene elements, but also in terms of the
objectives (visual and spatial properties) of the desired image;

2. evaluation of objectivedor any position of the camera, each objective must be well
defined and efficient to evaluate with respect to the underlying graphical modelling
paradigm (i.e., geometric abstraction of the graphical model of the scene should be
resisted);

3. acquisition of a camera statéhere must be a mechanism by which the camera state
(location, orientation and field of view) can be established such that the fulfilment of
the specified objectives is maximized.

Each of these issues are resolved in the following subsections. We begin by creating

a taxonomy of shot properties in Section 4.2.1. These properties are implemented into a
presentational graphics system calledMPLAN, described in Section 4.2.2, that acquires
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a camera state by evaluating shot propertieaMELAN is then used to demonstrate the
viability of a declarative camera planning approach in Section 4.2.3.

4.2.1 Specification of Shot Properties

In this section we establish a set of shot properties which the user can select for a presen-
tation. The elements of the set of shot properties can be classified according to their type,
guantitative character (absolute or relative) and the reference frame with respect to which
they are characterized.

Studies of human cognition yield several possible reference frames, for example, relative
to which spatial references (e.g., the use of spatial prepositions) may be made. In general
these are the intrinsic (object centered), deictic (viewer centered), and allocentric (world
centered) reference frames. Whilst a camera is essentially a deictic point of view, specified
by its orientation, position in space, and field of view, the properties of a shot (for example,
the position of an object in a shot) for a camera state can be further characterized with
respect to the viewplane, viewport and viewpoint of the camera:

Viewplane: the surface which extents infinitely in all directions perpendicular to the view
direction of the camera. Often it is useful to specify objects in off-screen space (e.g.,
relate part of an object outside the screen with those in the screen).

Viewport: subset of the viewplane with a defined bounded region for the view with centre-
point of projection (0.0, 0.0) and upper-left corner (-1.0, 1.0). This specifies the view
and comprises the image output.

Viewpoint: the location of the camera. Camera placement can be controlled in an en-
vironment by using properties defined over elements surrounding the viewpoint by
specifying positional measures such as angle or distance.

Specification of shot property values and tolerance settings can be made either explic-
itly or implicitly to these reference frames. Hence, two additional characteristics of shot
properties:

Absolute: The shot property types are defined explicitly, as an absolute relationship (e.qg.,
object A is to be projected 20% the size of the viewport).

Relative: The shot properties for objects are defined by reference to the properties of other
objects (e.g., object A is to be projected 20% bigger than object B in the viewport).

A type of image property is that which is most characteristic of the constraint imposed
on a scene element. For an object in a scene this includes its position, size, visibility and
orientation. Ideally, these types should be independent of knowledge about the topology of
objects and the spatial arrangement of the scene so that they can be applied generically.
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Position: the location an element of the scene, with respect to the reference frame (view-
point, viewport or viewplane). Thus, a user may characterize both the physical loca-
tion of an object (position with respect to the viewpoint), visual location of an object
(position with respect to the viewport) and the off-screen visual location of an object
(position with respect to the viewplane).

Size: how large an object is to appear. The projected size of an object is dependent on the
actual physical size of the object, the field of view of the camera, and the distance to
the point of projection. This also provides an indirect, but often more natural, means
for the user to specify distance to an object and its visual impact.

Orientation: each scene element can have a specified orientation in the final image. Orien-
tation shot properties enable the user to view certain sides of an object that might be
difficult to specify otherwise.

Visibility: the requirement that some portion of an object must be viewable in the image.
Visibility properties may be used to specify the general visibility of an object, or
that two or more objects are in a specific occlusion relationship (thereby indirectly
characterizing the orientation of a scene to a camera).

A taxonomy of image properties was created by considering permutations of the image
property types with relationships in the various dimensions (viewpoint, viewport, view-
plane, absolute and relative). Tables 4.1 to 4.4 show the current set of image properties
implemented. In addition, the graphical models allow the specification of the part-whole
structure of each scene element, thereby allowing the specification of scene properties over
named parts of scene elements. The user may also apply properties across a group of spec-
ified named parts. Furthermore, the user must be able to specify tolerance on these proper-
ties.

4.2.2 The CAMPLAN System

CAMPLAN is a system that extends ideas from Drucker and Zeltzer [1994] in an attempt to
address the principal short-comings of the approaches outlined in Section 4.1: the restriction
placed on the range of image properties that may be specified and the unrealistic point-based
characterizations of scene elements. Each of the shot properties defined in Tables 4.1t0 4.4
has been implemented intoa@ PLAN.

In the following subsections we briefly describe the operationafi@LAN for its evalu-
ation of shot properties (specified in the previous section) and its acquisition of camera state.
The strength of the system is in planning expressive static visual shots of scenes intended to
achieve a specific visual communicative goal. Readers interested in a full characterization
of the implementation of @M PLAN are referred to [Halper, 1999].
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Position | Viewplane Viewport Viewpoint

Absolute | CenterX/Y/XY AngleX/Y
BetweenX/Y BetweenX/Y BetweenAngleX/Y
Behind/InFrontOf

Relative | CenterX/Y/XY AngleExtentsX/Y/Z
BetweenObjectsX/Y BetweenObjectsX/Y AngleX/Y
CloserThan Distance
ExtentsX/Y/Z ExtentsX/Y/Z

Table 4.1Position properties. Gray text indicates identical viewplane and viewport functions. In

the case oBetweenX/Y , the extent values are clipped to the viewport.

Size Viewplane Viewport Viewpoint

Absolute | ProjectedArea ProjectedArea ProjectedArea
ProjectedLengthX/Y ProjectedLengthX/Y ProjectedLengthX/Y
SpanXorY SpanXorY AngleWidth/Height

Relative | ProjectedArea ProjectedArea ProjectedArea
ProjectedLengthX/Y ProjectedLengthX/Y ProjectedLengthX/Y
SpanXorY SpanXorY AngleWidth/Height

Table 4.2:Size properties. Viewport evaluates only clipped view portions of projected area, whereas

viewpoint evaluates areas projected onto a sphere surrounding the camera.

Orientation | Viewplane Viewport Viewpoint
Absolute Angle Angle
Relative N/A N/A N/A

Table 4.3:Orientation properties. Viewplane and viewport describe identical image properties. No
relative relationships exist since orientation of scene elements relative to one another is

independent of camera position.

Visibility | Viewplane Viewport Viewpoint
Absolute | Occluded Occluded Occluded
InViewport
Relative | Occluded Occluded Occluded
OccludedBy OccludedBy OccludedBy

Table 4.4 Visibility properties. The viewport gives clipped view evaluations of occlusion, whereas
the viewpoint computes occlusion by projecting onto a camera surrounding sphere.
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Evaluation of Shot Properties

CamMPLAN implements evaluation methods over polygonal representations of scene ele-
ments. The models themselves allow the specification of the part-whole structure of each
scene element which enables the specification of scene properties over named parts of scene
elements. For polygonal models, occlusion constraints are evaluated in a two stage manner,
first over a bounding sphere approximation of the polygonal object, followed by an adaptive
scanline visible surface algorithm for which the resolution is dynamically assigned depend-
ing on the tolerance of the specified occlusion property. For a more complete account see
[Halper, 1999; Halper and Olivier, 2000].

Acquisition of Camera State

Given the selection of the shot properties, we must produce an image that maximizes the
fulfillment of these objectives. This is cast as a standard optimization problem. At present
only the camera state is modified to achieve the final output. Possibilities for modifying
lighting or introducing cutaway shots of objects (to achieve further visual properties) can be
applied in a future extension.

CAMPLAN uses a genetic algorithm (a nondeterministic optimization method) to find the
optimal camera position whereby all seven elements of the camera state vector (position/3,
angles/3 and field of view) are encoded in the chromosomes of each gene. A population of
cameras is randomly distributed in a pre-specified bounded search space. A fithess value,
derived from a linear combination of normalized values returned from the evaluation of each
fitness function, is computed for each camera state. The top 90% of the population survive
to the next generation, and the remaining 10% are re-generated by random crossover and/or
mutation of chromosomes. Each successive generation is produced until the user aborts the
search or an optimal combination of chromosomes is found for the camera state.

The fitness functions pertain to each shot property and are evaluated in sequence given
each new gene (camera state). In order for a gene to survive to the next generation it must
give a higher fitness value than the existing top ten percent of the population. This allows
the program to check the current accumulated progress of the shot properties for the gene
and if it is not possible for the gene to survive to the next generation then all remaining shot
evaluations may be evaluated under approximate, less expensive algorithms. In addition,
shot properties can be arranged such that the most computationally expensive evaluations
are executed last (e.@ccludedIinViewport ).

4.2.3 Applicability of Declarative Camera Planning

Human photographers and cinematographers will casually satisfy communicative goals such
as “locate the door” by applying suitable composition styles or cinematic idioms. However,
our approach to camera planning depends on the specified image properties defining sets
of images that satisfy the attendant communicative goals. Since the images produced by

85



4 Camera Control in Computer Games

house rclown

lamp  cabinet

plant pine03 pine01
table i : O O O
pine02

chair trash

)

cake

bclown  yclown

Figure 4.2:Test scenes and names of scene elements.

CAMPLAN are intended to function in the same way as human-composed photographs the
appearance of styles when similar communicative goals are applied to similar scenes may
be anticipated. Hence we attempted an evaluation of the ability of the system to generate
recognizable styles.

The first set of the following examples observeMPLAN s satisfaction of progressively
more restrictive sets of image properties for the emergence of common styles. We then
demonstrate that &M PLAN is able to find a solution in a tightly constrained space and that
it can provide a natural way of describing a view to generate an image.

Stylistic Consistency

Here we demonstrate that stylistic consistency can be achieved when applying the same
set of image functions across object isomorphisms in scenes with similar spatial properties
[Olivier et al., 1999].

The same sets of properties are applied to each scene in turn and the results of five random
runs are given. Isomorphism between the elements of the different scenes are characterised
as sets (see Figure 4.B={lamp, trash, cake}, B={table, housetable}, C={chair, rclown,
pine01}, D={plant, yclown pine02, E={cabinet bclown pine03. The same objectives
are applied across the scenes for isomorphic elements. For example, for every image in
which pineQlis involved in the specification of a property, there are images in watdwn
andplant are identically involved.

Figure 4.3 shows the set of solutions for each scene using the set of objectives given
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-.

Figure 4.3:Example output under the constraint that all objects must appear in the viewport.

below. These simply specify that all the scene elements must lie in the viéwport

EntirelylnViewport objectA
EntirelylnViewport objectB
EntirelylnViewport objectC
EntirelylnViewport objectD
EntirelylnViewport objectE

Although the projections of all five objects are required to be entirely within the viewport,
the location of the camera may take any value in the range (1000, 0..500, 1000). Since the
region of space within which camera location will yield an image where the scene elements
are of a reasonable size is small compared to the size of the total space, it is predictable that
the resulting images comprise views in which the scene elements occur in the distance.

The undesirably small size of the scene elements in Figure 4.3 can be addressed by con-
straining the screen size of a particular element (e.g., the largest) to have particular dimen-
sions in screen space. IM&@PLAN the height and width of the viewport is two units, and
so the additional constraint in the new set given below requires oBjé@be tables and the
house) to be between 40% and 60% of the screen width.

EntirelylnViewport objectA
EntirelylnViewport objectB

1The ‘EntirelylnViewport' command defines the ‘BetweenX/Y’ objectives to be enclosed within the viewport
dimensions
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EntirelylnViewport objectC
EntirelylnViewport objectD
EntirelylnViewport objectE
HorizSize objectB 1.0 0.2

Figure 4.4:.Example output after the addition of the constraint that the projected width of
objectB be about half the screen

Figure 4.4 shows example solutions for each of the scenes after the addition of this ob-
jective. Although the camera positions are closer to the scene elements than before, there
remains a significant variability both in the direction from which the scene is viewed, and
in the positions of the scene elements in the viewport.

As with all the previous image objectives, when we place a restriction on the direction
from which an object is viewed, it must be as independent as possible of implicit knowledge
about the scene.

EntirelylnViewport objectA
EntirelylnViewport objectB
EntirelylnViewport objectC
EntirelylnViewport objectD
EntirelylnViewport objectE
HorizSize objectB 1.2 0.2

2In the furniture scene (top row), the distance of the cabinet behind the table, and the requirement that all
objects are in the viewport, results in views fulfilling this objective having to be shots from in front of the
table.
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ObjectCloserThan objectA objectC
ObjectCloserThan objectA objectD

Figure 4.5:Example output for addition of the constraint tieis closer to the camera than
bothC andD.

Thus, rather than referencing orientation information of any particular object, we restrict
the orientation of the view by requiring one of the objects to be closer to the camera than
two others. The resulting images are shown in Figure 4.5. A degree of compositional
regularity has resulted, although there is still some variation in the position of the elements
in the viewport.

The addition of this objective relies on a number of assumptions including the fact that
the closer object is not significantly larger than its separation from the background objects,
and that the three objects (in this case objéctS andD) are not collinear.

Restricting the position of the scene elements in the viewport may be achieved by placing
a restriction on the image coordinates of one of the scene elements.

EntirelylnViewport objectA
EntirelylnViewport objectB
EntirelylnViewport objectC
EntirelylnViewport objectD
EntirelylnViewport objectE
HorizSize objectB 1.0 0.2
ObjectCloserThan objectA objectC
ObjectCloserThan objectA objectD
PositionY objectB 0.6 0.3
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Figure 4.6:Example output for addition of constraint that the posit&dmust be in lower
section of screen.

In this case the centre of the bounding sphere for oldedthe object with the size
restriction) is required to lie in the bottom 15-45% of the image. The resulting images are
shown in Figure 4.6 and we can observe a further increase in the compositional consistency.
However, it is apparent, from the party scene (middle row) and the house scene (bottom
row), that objects may fully, or nearly fully, occlude each other.

The final objective is the removal of the possibility that any of the scene elements can be
either fully, or nearly fully, occluded by another scene element. Thus we require all of the
objects to be at least 20% unoccluded. Examples of the images resulting from the addition
of these final objectives are shown in Figure 4.7.

EntirelylnViewport objectA
EntirelylnViewport objectB
EntirelylnViewport objectC
EntirelylnViewport objectD
EntirelylnViewport objectE
HorizSize objectB 1.0 0.2
ObjectCloserThan objectA objectC
ObjectCloserThan objectA objectD
PositionY objectB 0.6 0.3
OccludedinViewport objectA 0.0 80.0
OccludedInViewport objectB 0.0 80.0
OccludedInViewport objectC 0.0 80.0
OccludedInViewport objectD 0.0 80.0
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OccludedinViewport objectE 0.0 80.0

Figure 4.7:.Example output after the final addition of occlusion objectives.

Finding unique solutions

We now demonstrate the system’s performance on a more complex scene (a virtual recon-
struction of Eschers “Ascending and Descending”) comprising over 60k polygons. Fig-
ure 4.8 shows how &M PLAN has found a tight unique solution region over a set of prop-
erties designed to produce the correct perspective view of the Escher building by aligning
certain visual keys. Note that an additional constraint was used so that the center of the
building’s bounding sphere is forced to be located in the center of the view. This removes
3 degrees of freedom (the camera orientation is fixed to face a target given its position) and
the convergence of the GA towards a solution is improved dramatically RLAN is able

to find a solution on average within a few seconds. Without forcing the camera to focus on
the center of the building the GA converges much slower (taking minutes or hours). This
suggests that removing degrees of freedom and introducing methods to restrict the search
space will result in significant improvements for the search time.

What-You-Specify-Is-What-You-Get

To show the advantages of a declarative approach to shot specification, and in order to give
a clearer shot of the models construction and illustrate how the illusion of the infinitely
ascending and descending steps is created, a small number of properties breaking the main
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The shot properties are set to
align the grid bars such that the
vertical and horizontal extents
coincide exactly using the
relative position properties.

Similarly for the window
ledges, their X and Y extents
should coincide to start andend
s at the same point.

N The entire building should also
d \ be in the center of the shot and
projected at least half the size of

the viewport.

Figure 4.8:Camera state found in a tightly constrained solution region.

CenterShot "Escher building"
EntirelyInViewport "Escher building"
OccludedInViewport "step high" 0 80
OccludedInViewport "step low"™ 0 80
NotOccludedBy "step low" "step high"
NotOccludedBy "step high" "step low"

CenterShot "roof"

Unoccluded "roof" 100 tolerance 0

SpanXorY "roof" 2 tolerance 1.2

PositionRelativeX "pillar0l" before before "roof"
PositionRelativeX "pillar03" after after "roof" "grid"
OccludedInViewportBy "pillarOl" 100 tolerance 99

Figure 4.10Directly specifying the desired compositional properties of a view.
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features of this illusion are specified. The two steps which are disjoint in the cycle should
be in some part visible, and that they should not overlap each other. A typical result of the
images produced in satisfying these properties is shown in Figure 4.9.

Another set of properties demonstrates how the user can specify a view in a natural way.
Figure 4.10 shows a view where the camera was desired to be placed in a position to give an
unoccluded shot of the roof of the building leading to the steps as seen between two pillars
of the small tower. The model itself has a grid fence which is discontinuous, and the user
may hide this by specifying that this grid should be overlapped by the pillar which is to be
placed to the left.

4.3 A Camera Engine for Computer Games

In the previous section we have found a viable method of specifying camera goals that can
be tied to game goals through declarative specification to satisfy visual properties. In this
section we provide new methods for real-time declarative camera specification and show
how the camera subsystem can be integrated into the game pipeline [Halper et al., 2001].

High-level .
flexibility Game logic, NPCs, story
A
Processes script, interaction
Flexible
constraints Camera state captures events
camera state
Set lights for emphasis
v
Hard Output scene

constraints

Figure 4.11The game pipeline.

We propose that a camera module should be a part of the game engine pipeline as shown
in Figure 4.11. Each module generates its own output down the pipeline from the given
inputs. The story engine drives the motivations for the actions in the game, and is the most
flexible and creative part of the project. The action module creates events—interactions
from the player with the environment and story-related actions. On the bottom extreme
of the pipeline, we find the renderer. This engine must produce consistent crisply defined
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results. The lighting module is a step higher, but is dependent on adjusting settings to
emphasize visual goals depending on the camera state. The camera module finds itself in
the middle of the pipeline, a balance between flexibility and hard constraints—it must try
to convey visual goals that dramatize the action, but is still confined to properties of the
environment.

Two works in camera planning demonstrate two extremes in camera planning systems—
the Virtual Cinematographer [He et al., 1996] and a cinematography system based on action-
selection [Tomlinson et al., 2000]. Whereas the former uses fixed hard-encoded shot tem-
plates, the latter uses an action-triggered function for camera movement. The proposed
method will be to use a hybrid-system which allows users to encode their own styles to
be applied to scenes through the use of dynamic parameterized camera templates that are
solved through a camera constraint solver. We can reduce the camera engine requirements
down to three basic requirements:

e Flexibility: must use parameterised techniques and versatility in defining constraint
specifications in order to adapt to the output of events from the action module.

¢ Information: the more the camera knows about what is going on in the world, the
better. We need event calls, information from actors, player motivations, and visual
goals.

e Satisfaction: a best-fit solution will not always be present. Therefore, we need partial
satisfaction solutions, and incorporate adaptive degradation, so that we can at least
convey the most important visual cues at any given time.

Note that constraints are based on targeted objects and have to be re-evaluated as they
move. In addition, events generated by the story and action modules can change each frame,
producing different visual goals and constraint specifications for each situation. A purely
reactive application of constraints, such as [Bares and Lester, 1999], will give rise to ‘jumpi-
ness’ as the camera constantly jumps to global best-fit solution spaces, in particular when
avoiding viewing obstructions. To address jumpiness we have to maintain frame-coherence.
Since frame-coherence makes for smooth camera motion, it must be given priority over
strict constraint adherence. A system which addresses these issues is shown in Figure 4.12.
Details of the various system components are described in the following subsections: A di-
rector module takes events as input and specifies constraints in Section 4.3.1, Section 4.3.2
constructs a constraint-solver pipeline that computes new positions from existing camera
state and adds relaxation parameters to the constraints, Section 4.3.3 details the occlusion
avoidance algorithm, and Section 4.3.4 uses lookahead algorithms to adjust the camera to
future situations.

4.3.1 Director

The director takes input from the action list generated from the previous stage in the game
pipeline. The Camera Expert requests settings for a certainttinBased on input from
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Figure 4.12The camera module.

the event list, the director selects templates using the Template Selector, and prepares the
constraints for the Constraint Solver. The director selects templates available from the shot
library, using a number of transition rules so that successive $ihodgether. In the case

that a particular shot may not be satisfiable, the director can try a different shot that might
not include all visual goals but one that might satisfy an important subset of them.

Emotion Templates encode various factors that may influence the results of camera shots.
For instance, shot specifications can show a certain style of shot, whereas dynamic modi-
fications to those specifications can produce various moods. We can influence the parame-
terizations of the shot properties defining a shot such that they accentuate a certain effect.
For instance, we may add a height angle to the camera, and produce a ‘moody’ effect. The
amount of ‘moodiness’ can influence the scale of the alteration to the height angle.

A director does not plan shots by their low-level parameters such as camera position
and direction, but by their desired visual properties. Earlier in Section 4.2, we proved that
enough flexibility and expressive power is possible by declarative constraint specification
and made a first attempt at providing a complete set of workable properties. The class of
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declarative constraints are refined here—we remove constraints that are either redundant or
not useful in the context of computer games. We also find ways to integrate these constraints
into a real-time constraint-solving pipeline detailed in Section 4.3.2 that effectively satisfies
specified combinations of constraints for arbitrary numbers of objects.

Level At: The camera should be offset at a certain height relative to the object. This con-
straint often applies to portraits where the camera is facing the actor, or when we want
to follow a target.

Angle to line-of-interest:  The angle from which to look at the target, specified relative to
the line-of-interest, that is usually the line of interaction between characters or directly
defined. This constraint is mutually exclusive with the next one.

Facing: Each object has a vector that defines the ‘front’ of the object. Since this direction
is tied to the target, the camera moves when the target turns. From this we can also
specify informative 3/4 viewing angles to objects, or create over-the-shoulder shots
by setting the desired viewing angle to look from behind the object.

Size: This is actually used to control the camera’s distance to the target. Since finding
the right distance depends on the targets shape and size as well as viewing angle and
focal distance, the camera distance is better specified in terms of the resulting size
of the targets projection on screen. When maintaining constraints over time, blind
adherance to a size constraint dependent on camera or object orientation can result
in oscillating camera movements as the size measures vary (e.g., this would occur
if we measure size as the relative number of filled pixels in the view for an object).
Therefore, direction invariant metrics such as the bounding sphere radius are a better
choice than constraining against more precise measures.

Height angle: Instructs the camera to watch the target at a specified angle from above or
below.

View at angle ( # and ¢): Position the camera so that the line from target to camera has a
specified angle to the viewing direction. If set at 0.0, this puts the target in the center
of the screenf angles other than 0.0 move the projection of the target to the left or
right side of the screen; the angle is used to push the target toward the top or the
bottom. For the target to remain on screen, these angles should be set smaller than the
camera’s field of view irf or ¢. We define position of objects as angles, so that it is
possible to specify placements of objects surrounding the camera.

Visibility: The target is to remain visible to the viewer, such that unwanted obstructions
from scene geometry between the camera and target are avoided.

These constraints and specifications have been designed so that they can sufficiently de-
fine a camera position and viewing direction. Some combinations of constraints will be
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Figure 4.13(left) The order in which constraints are applied. The current camera state
is shown as a triangle, the target as a square and the goal state as a circle.
Each successive constraint minimally influences output of previous constraints.
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impossible to satisfy, especially when constraints are specified across multiple objects at
the same time. Therefore, if shooting more than one target, the sets of constraints must be
carefully chosen to guarantee a solution. However, the constraint-solver may still try to find
a partial best-fit solution for all constraints, as detailed below.

4.3.2 Constraint Solver

To achieve frame-coherence we compute new solutions for camera state based on existing
camera state. Thus, we plan the position of the camera for the next subsequent frame. Since
not all constraints can be fully satisfied for each change in the scene, we get approximate
results by first solving for certain constraints, and then modifying the camera state to ac-
comodate the other specified constraints. The end result is one that best approximates the
desired output, and allows a variety of heterogenous constraints to be integrated and put to
practice.

Figure 4.13 (left) shows how these constraints are applied. Note that each successive
constraint in the constraint-solver pipeline minimally influences the previous adjustments.
Figure 4.13 (right) shows what happens when constraints of the same type are used for mul-
tiple objects. There we test for cases and adapt to multiple settings and reach approximate
results. Alternatively, we get more precise results for specific visual goals by using a special
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constraint combiner, that explicitly has an algorithm to solve. For instance, we are able to
solve for a size and viewport position constraint on one object, plus an additional position
in viewport constraint on another.

All constraints cannot be instantly satisfied for each change in the scene, since this pro-
duces arigid camera feel. Therefore, each constraint has an optimal setting (e.g., size 30%)
which defines a goal for the camera. A tolerance region is also specified, so that if the cam-
era does not lie in the optimal state, we can compute how far it is from this goal. Depending
on relaxation parameters, the camera can be placed aprataser to this optimal state.
Applied to each frame in the sequence, this acts in similar fashion to a local optimization
search, as the camera fluidly moves to a more satisfiable region. In the case that the camera
lies outside the tolerance region for a constraint, then it must be placed at the borders of the
tolerance region. If too many constraints are outside their tolerance regions, then the camera
may select an additional set of visual properties for the shot, or use a transitional cut.

4.3.3 Visibility Solver

The technique we use to compute a new camera position that provides an unobstructed view
of points of interest addresses the shortcomings of the algorithms outlined in Section 4.1.1.
A flexible and robust method is introduced that allows user-definable visibility goals to be
applied to an arbitrary number of points.

We allow constraints on the camera in the processing of occlusion avoidance by using
what we callPotential Visibility Region§PVR). The developer/designer can impose con-
straints on camera movement for the task of occlusion avoidance by defining a set of ge-
ometric constraints using polygons. To denote preference, polygons are shaded a brighter
color than those geometric regions of less preference. This geometry defines the PVR to
which the camera may move in order to obtain an unobstructed view of the points of inter-
est.

In order to find the best position that satisfies visibility requirements, we first define an
offscreen viewport buffer and set its viewing matrix so that it renders from the view of
the target object position looking directly at the camera position. Then, we write only
depth information from the potential occluders to the buffer. Next, we render the potential
visibility geometry in order of most desirable regions (with the brightest colors) to least
desirable regions (darker colors), stencilling the regions which are rendered first. The result
is an image buffer that representwigibility mapg whereby the brightest colors that first
pass the depth test are visible. Thus, the brightest color in the visibility map that lies closest
to the camera position (center of its viewport) denotes the most desirable position for the
camera to move to. Finally, the depth value at this position is read so that we can reverse
project from viewport coordinates to get the unoccluded 3D world location. The following
pseudo-code describes this algorithm in more detail:
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/I STAGE 1: write occluder depth information to buffer
setViewingMatrix(positionAtTarget, pointToCameraPosition());
clearBuffer();

disableColorWrite();

drawPotentialOccluders();

/I STAGE 2: render PVR
disableLighting(); // just want PVR base colors
enableColorWrite();

/I all lighter colored PVR geometry will write its color
/I and stencil the areas that pass the visible depth test
for lightest_color_PVR_geometry to
darkest_color_PVR_geometry do:
render_and_stencil_PVR();

/I STAGE 3: extract 3D position of best visible PVR
/I find best PVR color and visible pixel location
Scan pixels in buffer:
best PVR_position = lightest_color_closest_to_buffer_center();

/I now reverse project from position and depth in buffer
/[ to get 3D world coordinates
depth = readDepthValue(best_PVR_position);

unoccludedPoint = UnProjectTo3D(depth, best PVR_position);

The flexibility in this algorithm is in design of the PVR. As an example, Figure 4.14
demonstrates how to draw geometry in order to find the closest distance from the camera
to an unoccluded view. In addition, we can constrain the camera such that it may move
closer to the object or along the world-coordinate y-axis only. The choice of the PVR can
be dependent on the tolerance settings of other constraints. If we had a hard constraint on
size, we could draw a bounding sphere around the object of interest with radius set to the
distance defined by the size constraint, such that visibility solutions will only be found on
this sphere, maintaining full satisfaction of the size constraint. These visibility regions also
have the possibility to be defined without modifications to the core algorithm—they can be
input as geometric data at run-time. Figure 4.15 shows a number of examples.

The PVR algorithm described so far only solves visibility for a single point used to repre-
sent the target object. This can produce undesirable effects if, for instance, the camera finds
small holes in the scene through which to view a point on the target and still leave the rest
of the target occluded. This problem can be ameliorated by rendering occluding geometry
somewhat larger than used in the real séene

However, with the introduction of PVR defined by geometry, combined with the advent

3This is similar to many collision detection techniques that expand the environment geometry by a factor
relative to the size of the ‘colliding’ object so that point collision computations can be used
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Figure 4.14Solving visibility constraints with the PVR. In this example, the brightest PVR
seen by the target is the closest unoccluded point at which the target becomes
visible to the camera.
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Figure 4.15Four PVR constraints to find visibility solutions under various conditions.
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Figure 4.16The multiple point visibility algorithm: View from Target A shows the visibil-

ity map view which includes Target A's occluding geometry and shadows cast
from a point light source from Target B onto the PVR. The lightest point closest
to the center of the View from Target A denotes the best point on the PVR to
which the camera should move to. View from Target B computes the shadow
map depth information to cast on the PVR in View from Target A—shadows
from Target A and the PVR are rendered for this example only in order to pro-
vide a better context. An oblique view of the PVR with the shadows cast from
both Target A and B is shown bottom right. Notice how the shadows define the

occluded space.
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of new shadow casting algorithms and hardware, the visibility search can be extended to
return an unobstructed view for multiple points of interest in real-time. This allows a target
to be represented with enough points of interest to cover its main features. A projective
shadow casting algorithm [Zhang, 1998] can be rendered in real-time using hardware reg-
ister combiners [Heidrich, 1999]. Alternatively, real-time can be achieved by stencilling
shadow regions generated by object silhouettes [Kilgard, 1999]. In either case, shadows
can be cast upon the PVR from each point of interest (that are in essence treated as a light
source), resulting in a cumulative shadow that describes occluded regions from all points of
interest. We render the potential visibility geometry from the point of interest closest to the
camera and cast shadows from every other point of interetkis spares performing one

full read of the depth buffer and shadow rendering for the closest point of interest. A visual
example is shown in Figure 4.16, whereas pseudo-code to detail the algorithm is shown
below:

/I SETUP STAGE: read shadowmap information for occluders
/I first find point of interest (POI) closest to camera
closestPOIl = POlclosestToCamera();

/[ then generate shadow maps for every other POI
for i = each POI that is not closestPOI do
setViewMatrix(POI facing cameraPosition);

clearBuffer();
drawPotentialOccluders();
POlshadowmap[i] = readDepthMap();

/I STAGE 1: write occluder depth information to buffer

/I using view from closestPOI
setViewingMatrix(positionAtclosestPOI, pointToCameraPosition());
clearBuffer();

disableColorWrite();

drawPotentialOccluders();

/I STAGE 2: render PVR
disableLighting(); // just want PVR base colors
enableColorWrite();

/I all lighter colored PVR geometry will write its color
/I and stencil the areas that pass the visible depth test
for lightest color PVR_geometry to
darkest_color_PVR_geometry do:
render_and_stencil_PVR();

4Further investigation may reveal more advantageous views from which to compute the visibility map in
terms of precision and consistency of results across frames
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/I configure nVidia register combiners so that black

/[l color values are only written when a rendered pixel

/I is in shadow.

glDepthFunc(GL_EQUAL); // only render if matches depth in buffer
configureRegisterCombinersForShadowAlgorithm();

/I Now render shadows cast from the other POIs onto the PVR.

/[ Each POI sets up texture generation based on its viewing

/[ matrix. The register combiner setup tests visibility by

/[ comparing rendered geometry depth against shadow map

/I depth values. If a pixel is determined to be in shadow

/I it is written in a black color.

for i = each POI that is not closestPOI do
configureTexGenForPOI(i)
renderPVRregions();

/I STAGE 3: extract 3D position of best visible PVR
/I find best PVR color and visible pixel location
Scan pixels in buffer:
best PVR_position = lightest_color_closest_to_buffer_center();

/I now reverse project from position and depth in buffer
/I to get 3D world coordinates
depth = readDepthValue(best_PVR_position);

unoccludedPoint = UnProjectTo3D(depth, best PVR_position);

The cost of solving visibility using multiple points is linear wrt. the number of points
we solve for. For each point, we need to render a view (depth-write only) and read from
a depth buffer. This buffer can be set to as little as 32x32 pixels to reduce polygon-fill
and read-buffer overhead, and gives approximate results that may produce inaesthetic shad-
ows for visualisations purposes, but serve well for occlusion information. Note also, that
the occluding geometry need not be as complex as the actual geometry visualised by the
player, allowing further reduction of rendering cost by using coarser occluder geometry as
a representation of the actual finer detailed models.

4.3.4 Camera Expert

A camera cannot make an intelligent move without at least considering a future situation. In
order to achieve higher frame-coherence and smoother camera movement in a reactive en-
vironment, the camera is to progress consistently from frame-to-frame, without disorienting
the player with rapid swinging camera movements. This is the role of the camera expert.

We are able to make some guess as to where objects and the camera are likely to be a
given timet in the future. To do this, we use approximative calculations for future scene
and object state based on past trajectory and acceleration information, and solve the camera
for that predicted state. The current camera trajectory is adapted so that the camera will be
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at this predicted position at the given timjeand we compute an estimated camera position

for the next frame along this path. Now the camera expert calls the constraint solver on that
expected position, to give the solved camera state for the next frame. Slight deviations to
the expected may occur, but because recomputations are made every frame, the camera is
able to intelligently adjust ahead of time to a large number of situations. The camera expert
is summarized in Figure 4.17.

4.4 Capturing Action

In previous sections tools for specifying camera placement have been described. In this
section, we look at methods of automatically guiding the camera to specific locations at
appropriate times All kinds of games can be characterized by a small number of “interest-
ing” events in which the players have to make important decisions or execute appropriate
actions which lead to significant changes in the game’s status. It is often of interest to the
players to view, or review, such situations for any one of a number of reasons.

We present an approach for the automatic generation of action summaries from computer
games whereby interesting events can be extracted by the analysis of specific game variables
[Halper and Masuch, 2003]. Considering information like player status and 3D information
allows an elaborate analysis of what events are taking place. On the basis of a game’s log
our methods propose a selection of events that represent the most exciting action scenes.
These scenes can then be presented to the spectator as a sequence of representative images
after the game, or given as timing requirements over to the camera for live viewing of action.

4.4.1 Related Work

Many games, especially sports titles, have features for replaying an exciting event shortly
after it has occurred. Options typically include a choice of camera angles, and forward and
rewind controls. Typically, though, it is left to the viewer to find interesting events manually
from a fixed set of camera viewpoints.

In addition, not all games exhibit specific highlights. For instance, whereas sports titles
(e.g., soccer) have defined action that occurs (e.g., a goal being scored) they often have
subtle measures of good play (e.g., an excellent sequence of passes towards the goal). If a
player requests to see a three minute summary of a game, and, for instance, no goals have
been scored, what three minutes of play should be covered then? Thus, measures are needed
for automatically evaluating quality of play.

Rather than replaying an event, the player could also choose to follow a game as a specta-
tor. In this case, the camera should present the most exciting action to view. Thus, spectators
who wish to attend interesting events during a game can be guided to the places and times
where action takes place. In realtime spectator modes the challenge is in viewing the most

SWe gratefully acknowledge the help of Nico Flohr whose earlier work [Flohr, 2001] and ideas contributed
to much of this section.
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interesting events when there are several events going on simultaneously. Thus, a funda-
mental question arises: how can we determine what makes an ‘interesting’ event? Half-Life
Television (HLTV) was a big success at a game tournament that captured action during live
games [HLTV]. However, there remain problems in setting up an appropriate context for
the viewer—the camera would often jump to ‘death scenes’ only a few seconds before they
would happen, but this would leave the viewer disoriented because not enough time was
given to establish a context rising to the climax of the action. In multiplayer shooter games,
the rising action, arguably, is more interesting than the actual instance of the death.

Video summarizations have the task of selecting a number of representative images from
n frames of an image sequence (e.g., [Brand, 1997; He et al., 1999]). Techniques deal pri-
marily with automatic image recognition of 2D images from a sequence of frames. Key
frames are detected by looking for cuts in the film, camera movements, or blending in suc-
cessive frames [Ahn and Oh, 1995; Patel and Sethi, 1997; Stringa and Regazzoni, 2000].
However, statistical information for each frame can be generated, but little contextual in-
formation about events within the frames can be considered, and thus are not suitable for
action summarizations of computer games. Games, especially action ganiasslilker-
son Shooter¢FPS) usually do not comprise ‘cuts’ in the action either (e.g., game play is
linear in time, whereas movies typically edit time). In this respect, games can have long
time spans of uninteresting action (e.g., when all players are lurking, waiting for some-
one to move first). Others attempt to summarize movies semantically and apply similar
techniques [Vasconcelos and Lippman, 1998]. In order to structure films into logical com-
ponents, only information about the film’s contents or the analysis of frame information can
help [Hanjalic et al., 1999]. Further applications of video summarizations can be found in
[Gunsel and Tekalp, 1998; Wactlar, 1999]. In addition, it is possible to extract new infor-
mation about subsequent images through interpolation. For instance, a number of computer
vision techniques and hidden-markov models can be applied to 2D images to describe a
sequence [Brand, 1997]. However, good results are only achievable under a controlled lab
environment. Eickeler et al. [1998] try a similar approach, but limit it to recognizing human
gestures.

These works show that information about the contents of frames is important for the
evaluation of film, animations, and computer games. The key is to extrapolate relevant data
and its contribution to contextual information. Computer games can be thought of as a type
of digital film—including the need to find relevant data contained within each frame in order
to be able to extract a kind of summarization from it. Therefore, for a function representative
of features or action in a game, a certain combination of input data can be found to give an
evaluation of excitement, or interest, within the game.

4.4.2 An Evaluation Framework

Our goal is to provide a general framework for multiple game genres to support (1) live
viewing of action, and (2) action summarization. In contrast to extracting information from
videos and images, computer games have the significant advantage that all necessary infor-
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mation for summarization is already contained and readily accessible within a closed and
defined world. On the other hand, games do not only comprise a singular sequence of events
and typically have many things happening at the same time. Thus:

e Contextual information can be directly generated from the game world.

e Large amounts of data that comprise the game have to be filtered to only those relevant
for action extraction.

e Multiple independent events occurring at the same time in a game require efficient
computation and methods for comparison.

Thus, data must be efficiently stored in some kind of ‘game log’ that represents a game’s
history readily available for efficient computation and comparison between multiple events.
For this purpose, we introduce an evaluation function over time that returns how relevant,
or interesting, a particular moment is at tiheWe name this function, thefunction (for
‘interest’ function). An example of its possible output is shown in Figure 4.18. From
this, peak moments of interest can be found (local maxima), and also whether an event is
becoming more interesting (positive slope) or less interesting (negative slope).
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Figure 4.18 An example of ani-function (x-axis is time, y-axis shows interest value)

For fast storage and extraction, the evaluation data is sampled into arrays. The time-
intervals for each computed value by th&unction are kept regular to represent the same
evaluation space. The fidelity of the sampled data is determined byatingling rate—
lowering this rate reduces storage, but also reduces accuracy of representation. However,
sampling rate can be considered high enough when maxima and minima in the evaluation
representation can be found within a certain accuracy based ogurioklywe must react to
changes in action. For instance, in a fast-paced action game (lik&K) changes in game
status are occurring all the time, thus our sampling rate should be high enough to capture
this. In strategy games, like@d3diMAND AND CONQUER, even though action is constantly
present, changes in maneuvers and other events could be sampled every second. Hardware
constraints may also limit sampling rate, such as network data transfer rate in networked
games.
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Figure 4.19Framework for our action extraction system

In Figure 4.19 we show our evaluation framework for action extraction. The first stage
outputs data from the game relevant for action extraction. This dateaa data can be
stored whenever thangesvith an associated time stamp, thus providing an efficient signal-
based means of storage. Specific variables from its contents that potentially comprise part
of some action are then processed. In most cases, many different variables contribute to
perceived action. Thus, in stage 3 results are combined that define action events. Since
action is normally perceived assequencen time, events are split into scenes in stage
4. Scenes can then be weighted according to certain criteria (stage 5) in order to aid the
selection of particular action sequences either for summarization or live coverage (stage 6).
The first three stages deal with extracting and converting game variablesfumtctions,
and are covered in Section 4.4.3. In Section 4.4.4 we detail stages 4 and 5 that group action
into scenes. Section 4.4.5 then covers options of using this information for capturing action
as summarizations or live coverage.

4.4.3 Defining Action

Action typically occurs when the status of a game or player has significantly changed state
that contributes to the overall perception in achieving goals in a game. For instance, FPS
games concentrate on the elimination of opponents. Reduce an opponents energy (hitpoints,
armory or whatever) enough times to zero, and your victory ensues. Every time you success-
fully manage to target your opponent under the shot of your weapon, a degree of satisfaction
arises—something has happened, you have managed to hit him, and his energy has changed
state. More than that—this was the point in time where you gained the lead. Your number
of ‘frags’ just exceeded your opponents’. But wait, one additional factor — it was your last
shot of ammunition, and you pumped out those bullets faster than ever b&fosavould

be an interesting scene. Strategy games, on the other hand, exhibit a more linear increase in
the progression of the game status as actions in general have more long-term consequences.
This makes it more difficult to define thdunction, although we hypothesize that there are
successful combinations of genre-specific data that lead to action. In the following subsec-
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tion we introduce how game variables can contribute to perceived action. However, game
variables are only pieces of the action, thus we also describe how ‘real’ action can be found
by analyzing combinations of variables over time.

Choice Data

A first step in detecting action is in determining which game variables contribute towards
an interesting event—we call these varialbtasice data Typical variables that contribute

to action are attention focus, visibility information, positional information, player status (hit
points, ammunition etc.), and game status. For instance, in the multiplayer example above,
FPS usually exhibit very abrupt and extensive changes in the games status such as player
health, rate of fire, and the moment of victory in a deathmatch—all of which contribute to
the game goal of eliminating opponents.

Usually, choice data related to game state is interesting to evaluate in terms of changes to
this data. For instance, in our FPS example, changes in a player’s health. The actual value
of a player’s health is not particularly exciting — more exciting, is when this value drops to
indicate that the player is involved in some kind of dangerous activity. Thus, for this kind
of choice data, we indicate how it affects action by computing the derivative of ita.data
time function. In this manner, the times when data is changing is represented as well as the
magnitude of the change. The amount of change is likely to correlate with the degree of
action.

However, computing a derivative to discrete changes in data results in sharp peaks of the
curve. Since action is perceived over a duration of time, and not in split seconds, we compute
a moving average over the curve. Applying the moving average over greater time-spans
places more emphasis on consistent sequences of changes to choice data, giving higher
values when more changes hapmem@r time whereas a short moving average results in
more interest being given to individual changes in choice data.

Choice data computed from amaluationof a game state can directly contribute to action
detection. For instance, the visibility properties of an opponentin a players view—the larger
and more visible the opponent is, the more the opponent contributes to a perceived part of
the action.

Defining events

A variety of factors may contribute to perceived action. We can define action as a group

of particular occurrences over a particular time period. In this respect, choice data is often
interdependent in contributing to perceived action. For instance, shooting a weapon may
only be relevant to action when additional variables, such as opponent visibility, also have
suitable values. We term @aventas the combination of choice data that indicatbenand

how choice data contributes to action over time. Event definition can only be done semi-

automatically, as the overall visualization goal has to be initially specified by the user, and

these may be as simple or complex as necessary.
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As an example, in a racing game for a car over taking maneuver, we can consider position,
acceleration, and proximity to other cars. The position of cars detects the actual ‘over-take’
event, whereas acceleration and proximity variables contribute to how exciting the over-
take was. Thus, we could apply a short moving average to changes in position (a few
seconds) and multiply thisfunction to the acceleration and proximityfunctions. The
result is an event that reads zero when no over-takes are occurring, but which rises to values
representative of our various action criteria when there are.

4.4.4 Determining Action Scenes

At this stage, we have severafunctions that represent levels of action for events. These
can be referenced to determine which periods of time for which events are more exciting
than others. As action rises and falls, the task is to find sequences of frames that cohere to a
singlescene Despite the lack of a precise definition for a scene within cinematography, it
is largely accepted to be a complete unit of film narration that comprises a series of shots or
single shot. In addition, each shot is bound by a given spatial context—whether an event, a
physical location, or a group of characters engaged in some activity.

The particular context for a scene within eacfunction is currently provided by the
programmer who defines conditions for input of choice data. For instance, a physical context
for ani-function can be established by confining its processing of choice data to a defined
area. In this manner, for games comprising multiple locations that segment action, each
location could have its owitfunction to process all events that occur therein. Therefore,
any extracted scenes from thos&inctions would be bound to a particular location. In
contrast, certain games like multi-player action games involve characters moving across
several areas within an environment. The action in this case is not divided into particular
locations, but is rather defined by groups of interactions. As a resfufctions can be
dynamically created for each detected group of interactions over a period of time. In the
simplest case of a first-person shooter where a number of players compete against each other
in a small confined environment, it may be sufficient to have a siiglaction represent
all the random interactions between individual competitors and their setting.

In addition to providing a context for the action, afunction defines each of its scenes
with:

e A beginning and end point in time
e A unique frame used to represent the scene

¢ A value denoting its importance

A measure of a scene’s importance is necessary for action summarization as each scene
in everyi-function must be compared for selection. The calculation of the above points for
scene definition are discussed accordingly in the following subsections.
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4.4 Capturing Action

Defining Scene Boundaries

Characteristics of the-function can be used to split action into various segments. i:The
function typically exhibits minima and maxima—jpeaks of action lie at local maxima which
reside between two local minima. Between these points, the curve either slides up or down,
indicating rising or falling action. Therefore, scene boundaries can be defined by local
minima of thei-function, with the representative frame for a scene, ocliteax, as the
maximum value thereif.

a) b)
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Figure 4.20Problems with defining scenes between local minima only

However, sometimes a number of local minima can be found close together in time which
causes problems in the evaluation of what should comprise a scene. For example, in Fig-
ure 4.20 we observe a number of problem cases. In Figure 4.20 (a) and (b) we observe a
short fall and rise in the overall slope of the curve, whereas in Figure 4.20 (c) we observe
local minima near the ‘peak’ of interest. These are not points where one would logically
split action.

In Figure 4.20 (d) we also encounter an inappropriate scene division. Henarks the
beginning of a scene, an¢g the end of it and the beginning of the next scene. However, a
spectator would feel that these two scenes should actually form parts of the same scene, and
thus would remove, so that the scene sequence is composed of two scenest{ and
t3 —t4). TO compensate these errors, two neighboring scenes are merged whenever the value
at their shared boundaries are close in value to either of their local maxima. For example,
the scene distance between a local minima at a boundary and a local maxima is shown in
Figure 4.21, which is found to be lower than a given tolerance and thus the boundary is

6The problem of detecting local and global minimum or maxima is well know in mathematical optimization
theory. A number of strategies can be seen in [Chong and Zak, 2001].
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removed to produce the merged scene. We continue to do this until no two neighboring
scenes have a minima-maxima difference below the given threshold.

A
[

scene_dist I

t1 t3 t4 t

Figure 4.21Merging neighboring scenes with small differences in interest between local
minima and maxima.

Weighting Scenes

In selecting scenes we can observe a time/interest problem that deals with the length of a
scenevs. its relative importance. Is a scene more important than another when itis longer or
rather, when the peak moment of action in the scene is higher? For instance, in Figure 4.22,
given a choice of one scene to use in a summarization, which should be chosen?

A
[

scene 1 scene 2

»
»

t

Figure 4.22Which scene is most important?

To evaluate the relative importance of scenes, the respective merits of both a scene’s
duration and content (interest values) should be assessed. Below, a number of methods for
selecting scenes are outlined and briefly analyzed:

¢ Order-dependent selectioaveryn'” scene is selected. This is the most trivial method
of selection that allows action to be summarized evenly across the history of a game,
which leaves a good impression of its general scope, although key scenes may be
missed.
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4.4 Capturing Action

e Duration-dependent selectioacenes are selected based on their time-span. Whereas
this can return scenes that match a suitable duration, they might not hold much inter-
est.

e Representative-dependent selectisnenes are selected based on the value of their
global maxima. The advantage of this selection criteria, is thatthrest exciting
points in time will be represented. However, short bursts of high action will always be
favored over longer scenes that comprise more strategic elements with slightly lower
maxima (see Figure 4.22).

e Area-dependent selectiorscenes are weighted according to the area under their
curves. This directly addresses problems with duration-dependent selection (no con-
sideration for the interest value of a scene) and representative-dependent selection (no
consideration for duration of a scene). Thus, this method is of good practical use.

The algorithms for scene-based selection demonstrate only a few possibilities, but they
suggest important clues for introducing new criteria and extending or combining scene-
based selection strategies. For example, the following factors can also be considered: aver-
age slopes towards local maxima, number of local maxima in a scene, duration-dependent
selection to vary duration of scenes in summarization, and other time/interest correlations.
For instance, scenes can be weighted depending on a more time representative criteria for a
post-game summarization. Conceptually, a good result would return a distribution of scenes
over time and select some scenes that, even though containing less action, would give the
player a better idea of what actually happened over the course of the game. For instance, the
weightings of neighboring scenes can be reduced according to their distance in time from a
selected scene (i.e., its immediate neighbors are greatly reduced in interest because they lie
very close in context to the chosen scene).

Weighting Concurrent Scenes

In games we often find a number of concurrent independent events. This requires that each
event be evaluated and weighted for selection. For instance, if we consider a car race with
three drivers like in Figure 4.23 we simply weight each scene respectively. Determining the
order of importance can be done by sorting scene weights across all events.

In some cases, the types of events that are summarized can be varied. This can also
overcome potential ‘normalization’ problems with weightings across different event scenes.
This can be achieved by dampening each scene weight in an event sequence whenever a
scene is selected.

4.4.5 Timing the Action Capture

The weighted action scenes provide information regarding where and when action takes
place. In a real-time spectator mode, it would be of little use to detect where an exciting
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j ACarA

Figure 4.23Scenes of a car race are weighted in order of importance across three concurrent
events that are split into their respective scenes.

event has just occurred only to have the camera jump to the scene of the crime after it has
been committed (unless we are talking about a detective game). Therefore, it is necessary
to integrate techniques that involve the timing of the camera shot according to interesting
events, so that the camera can be positioned in place just as the action is about to happen.

We describe two methods for viewing live action: (1) viewing of the current most excit-
ing scene and persist in viewing until it is over, and (2) viewing the current most exciting
scene at every instance. When viewing a scene to completion, we have the advantage that
the spectator will observe an identifiable sequence with build-up and denouement of ac-
tion. However, often action will go missed if another independent event occurred during the
viewing of the current one. These situations can be overcome by briefly buffering the action
and viewing concurrent events synchronously (i.e., re-viewing an event that was missed at a
later time when little action is occurring). This is generally favored over a simultaneous dis-
play in a split screen as it gives the viewer a single focus. However, if sequentially queuing
action is not an option, then jumping to a more exciting scene as it occurs can be adopted
instead. We discuss both methods in the following subsections.

Viewing a scene to completion

To view a scene until completion, we must first consider when it is appropriate to start
viewing the scene. In Figure 4.24 we see three currently available scenes and their respective
weightings. If we simply select the highest weighted scene at#iwewould select scene
1. However,t lies after the peak value ih, suggesting that most of the action has already
been missed.

A viable alternative is to select a scene to view based both on its weight and whether or
not we still have the climax of the scene to come. In this manner, a worst-case scenario
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t

Figure 4.24Which scene shall we start viewing at tirtf& Scenes are numbered according
to highest evaluation.

can be avoided as shown in Figure 4.25 where each successive scene is less interesting
than a previous one. For the selection strategy of choosing the best scene at a given time
when we just finished watching a scene, we get the timing results shown witA. liRer
instance, once we finish viewirly we then choos@ to view next since it has the highest
scene weight from the available choices. Howefdras passed its climax, but we view it

to the end. Once we finish viewirgy 3 is the next best scene, but again, we have missed

its climax. Thus, we view each scene in turn, but miss each scene’s climax. Compare this
to the selection stratedy, where we favor scenes that still have their peak to come. In this
case, we are able to view most of the actiorijr8, and5. The price, however, is that we

have misse@ and4 entirely.

Viewing the most exciting scenes all the time

Given a timet, which scene should we be viewing at that time? This differs slightly from
selecting a scene to view until the end, because we are in a position to jump between scenes
before the scenes are over. Thus, we need to make sure that we are actually jumping to view
more interesting situations, rather than jumping out of them.

Here are a number of viable arguments and we will scrutinize their implications and
results. Our points below follow the curve and results shown in Figure 4.26.

e Method A view the scene comprising the highésfalue at time. Thus, we view the
most exciting moment at the given time. However, curve values can change quickly,
and thus, the problem of jumping back and forth between scenes, as shown by the rel-
atively rapid change-overs in Figure 4.26 frdrto 2 briefly and to3 before returning
to 2 again. This also does not consider that the peak action might already be over,
thus, even though the value of the curve is high, the actual value of interest may be
low.
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1 2 3 4 5 6

B | : : ——p
1 3 5 6

A: Select best scene to view until end

B: Select best scene before MAX until end

Figure 4.25A worst case scenario for starting to view new scenes: each successive scene
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is less exciting than the previous one. The two lines under the graph show the
selection strategy results if started viewing at time t.

Method B the scene with the highest value at timevith preference for scenes with
before their maximum value. Similar to methAdexcept scenes are disregarded that
have passed their climax.

Method C take the best scene evaluation present at tinthus always viewing a
portion of the most overall exciting scene. However, problems with the worst-case
scenario occur as shown previously in Figure 4.25, where we will often switch to a
scene whose peak interest is already passed.

Method D take the best scene evaluation present at tintaut favor those scenes

that still have their peak value to come. A consequence is that sometimes we may be
viewing the best scene, but at the point after its climax we may potentially jump to a
less interesting scene.

Method E take the best scene evaluation present for tinhat favor those scenes that

still have their peak value to conamd their current value at is higher than the best
scene evaluation value at timeThis overcomes most of the problems of all previous
methods. The best scene is viewed until its peak interest, and thereafter we only jump
to another scene if that scene’s interest value at the given point in time is higher than
the one we are currently watching.
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A: Highest Point D: C: after MAX
B: Highest Point after MAX E: Best scene before MAX,
C: Best scene evaluation after MAX, if value > best scene,

then choose best before MAX

Figure 4.26Four independent scenes and the results of different selection strategies for
viewing them in a linear fashion

4.5 Implementation and Evaluation

The camera techniques from Section 4.3 are implemented into a real-time camera engine
called the REDATOR’. The more successful the camera engine is, the more subtle its
satisfaction of visual goals will be. For this reason, we find it best to evaluate camera
movement over specific scenarios in the following subsections. We begin by applying a
‘camera-chase’ shot specification on three different scenes. Look-ahead algorithms and
relaxation of constraints are important for smooth frame-coherent results, which we demon-
strate by discussing the effects of removing key features in thEeDRTOR system. To
improve computational performance in highly detailed scenes, reduced LOD can be used
in PVRs for visibility satisfaction. PVRs also find an alternative use in assisting pre-
defined camera paths. In addition, theEBPATOR is tested in a real-time multi-player
game environment which allows the user to tweak visual specifications. Selected videos of
these results can be viewed on the accompanying CD or at the following wellitgjite:
/lIwwwisg.cs.uni-magdeburg.de/nick/cameraEngine

Finally, the algorithms from Section 4.4 form thaluURAI system for action extraction,
applied to a popular commercially available game in Sections 4.5.6 and to the author’'s game
for post-game summarization in Section 4.5.7.

"PREdictive DeclarATive frame-cOherent Response camera system
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4.5.1 Exploration

To allow the player to explore her environment, we constrain the camera to focus on the
object using asize visibility and alookAtconstraint. This gives the effect that the camera
‘chases’ the player, maintaining an unobstructed view at all times.

We have tested the exploration template on three different scenarios: (1) A teapot flying
through a highly cluttered attic; (2) a helicopter flying through a city; and (3) a human
figure exploring inside a medieval building. Sequences of images representing the teapot
and helicopter animations are shown in Figures 4.27 and 4.29 respectively. The camera
performs remarkably well in all three cases, avoiding obstructions and collisions, being
capable of adjusting appropriately to many situations despite the varied spatial arrangements
and complexity of each environment.

4.5.2 Effects of Predicting Camera and Environment State

Here we show and evaluate stages in the evolution of our camera engine. Diagrams of
typical results are shown in figure 4.28.

A naive implementation uses just the hard constraints without visibility solving. The re-
sults are smooth, but collision through objects and obstructed player views are frequent. A
better version uses constraints including visibility computation, but without tolerance set-
tings or predictive measures. We expect that these results are similar to the work of Bares
and Lester [1999], causing ‘jJumping’ artefacts and poor frame coherence. Next, we intro-
duce relaxation of constraints. The camera movements are smoother, but still have prob-
lems with frame coherence when jumping out of visibility traps. After applying inertia to
the camera, so that it prefers to continue along the path it came from, results are less jumpy
than before, but we get a ping-pong effect from the change of directions when resolving
visibility positions. Finally, estimation routines adjust the camera movement to solved pre-
dicted camera states. Now the camera is able to adjust ahead of time to players moving
around corners and through objects, and accommodates to situations where the player en-
ters a room, providing a view of the door and its contents before the player is fully inside.
In our implementation, we achieve surprisingly good visual results from state predictions
based only on past motion data. In a computer game, the prediction accuracy would depend
on what information can be supplied by the action module and simple extrapolation of past
data would only be a worst-case scenario.

4.5.3 Using Level-Of-Detail Geometry

The effects of using coarser geometry for visibility constraints depend on the game scene
and interactive freedom of the player. Our helicopter animation that flies through a city

allows buildings to be represented as bounding boxes for use on the PVR, creating a sub-
stantial frame-rate increase, without detriment to the camera movement. However, those
objects which the player may move through (e.g., moving under a table or through a hoop),
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Figure 4.27Frames from an animation sequence in which the camera chases a flying teapot
through a cluttered attic.
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no visibility check no frame coherence no prediction
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Figure 4.28Common artefacts of reactive camera planning, only with the introduction of
predictive camera planning can we react to avoid certain situations.

not only need to share strong similarities in topology, but must also guarantee that the sim-
plified object’s volume is a superset of the original object, which prevents the camera from
‘colliding’ with the visualized geometry. Large supersets can also be used to make the
camera take a wide berth around certain objects.

4.5.4 Fixed Camera Paths

In some cases prior knowledge about a scene is known. There might be a cut-scene in which
the player is known to travel along a certain path, or a small enclosed room to which the
player is constrained to a limited area. A cut-scene artist can then plan a fixed camera path to
express certain visual goals or create dramatic views and effects manually. However, there
may be certain aspects of the scene that have been generated at run-time (such as additional
characters present) and could not have been accounted for in the game design stage.

In such cases, the camera must adjust for additional possibilities of occlusion, and we may
place PVR along the preset camera path or fixed camera setups. For instance, we adjust the
camera along the camera path whenever occlusion occurs, or cut to a new pre-setup camera
position also defined in the PVR.
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Figure 4.29Following a helicopter through a city.
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455 Camera in a real-time 3D Shooter

The author has implemented a prototype Quake-Elgaene with multi-player network
functionality. Players compete against one another in a complex 3D environment with the
ability to navigate rapidly under and over bridges, hide behind objects, and shoot at their
opponents. It includes a spectator mode used to testrRE®AOR system, shown in Fig-

ure 4.30. Here, the user can specify parameters for various constraints. In this case, the
target (one of the players) is to be visible and have a predominant size and location in the
image, with the camera levelled at about twice the player height, and provide a view of the
general direction that the player is facing. The lookahead option is also checked, and in this
case is set to view the action one second behind the live events in order to smoothly adapt
the camera state to future conditions. Often, there are cases whereby the player turns to go
behind an object, for which the camera orients itself ahead of time to cue the spectator as to
the player's subsequent movement.
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Figure 4.30Spectator mode for our 3D shooter game. Constraints settings for the camera
can be adjusted with the interface on the right, which includes some pre-defined
shot templates and options for viewing specific players.

4.5.6 Extracting Action

Although the action extraction algorithms in theNMlURAI system present work in progress,
preliminary results are promising. The event detection by our system worked out very well

81D software: see Quake atww.idsoftware.com

122



4.6 Discussion

for our FPS examples. For choice data we used health, movement speed, and shots fired.
We tested our techniques with two gamesiARE ARENA® (cf. Figure 4.31) and our own
gaming environment where we have better access to all of the essential information. Un-
fortunately, an implementation that combines both tiRePATOR and S\MURAI systems

is not complete at this point and as such we lack a formal evaluation. Interestingly, even
given just the first-person views, when théunction rises it instigates a rising degree of
anticipation in the viewer. Thus, we can expect that people like to see not only the exciting
event itself but also the action that led to that event, requiring the camera to be positioned a
few seconds in advance of the imminent action to provide a context.

One could also notice that action can sometimes be ‘falsely’ detected if players trig-
ger events without any real cause. For instance, in our shooter games, we define damage
and shot variables as part of some action. If a player stands against a wall with a rocket
launcher and blasts himself to bits, this might be considered more an act of suicidal stupid-
ity rather than something genuinely exciting. On the other hand, this might be occasionally
entertaining, especially if a final game outcome is influenced. Frequently repeated events,
nevertheless, become repetitive. This suggests that measures should be introduced to lessen
the impact of similar events over time.

4.5.7 Post-Game Summarization of Action Scenes

Action scenes can be automatically summarized post-game simply by selecting the top
weighted scenes (see Section 4.4.4). We use amuURAI system, shown in Figure 4.32

to adjust the particular weights for choice data in defining events and scene construction on
trace data from our 3D shooter game (see Figure 4.30). Typically, the duration of scenes
in this example which comprise action typically lie between 5 and 20 seconds (longer se-
guences are observed in times of little action), which is a comfortable time frame for view-

ing.

4.6 Discussion

We have presented what we believe to be the first effective frame coherent constraint-based
camera engine that allows visual goals to be applied on interactive 3d computer games
comprising scenes of arbitrary spatial configurations and complexity.

We have made the following observations:

¢ Visibility satisfaction should be an integral part of any camera system and should be
coupled closely to the satisfaction of camera constraints.

9Choice data was extracted using the@us system by Martin Otten. Output from theax8URAI system
was then synchronized with captured video from the two Quake sequences.
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Figure 4.31The bar on the scales on each side of the player windows represents the con-
currenti-function value for each player.
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Figure 4.32The SAMURAI System: (top) scene frame intervals (1/20th second) and peak
values; (right) a simple GUI for specifying weights on choice data; (bottom)
graphical output of the action divided into weighted scenes. Dashed lines rep-
resent peak values whereas colored bars represent importance of scenes
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e The only way to avoid backing out of a dead-end is to look ahead in time before you
go in. Therefore, developing algorithms that estimate the future state of an environ-
ment are necessary for high quality control of the camera. The more effective these
predictive algorithms, the more subtle the camera motions will be.

e Using a global best-fithess camera state is not necessarily the best solution for pre-
senting visual goals. Choosing a partially satisfied camera state that lies closer to the
current state often results in smoother and more subtle animations.

e Interesting events can be extracted by the analysis of specific game variables.
We conclude our results as follows:

e We have been able to show how a camera engine is to be successfully integrated as part
of the dynamic game environment. Dynamic templates are created from conditions
set by events, from which constraint-based specifications are formed.

e We have introduced an efficient and highly flexible way to compute visibility con-
straints for an arbitrary number of points.

e Our camera system works for arbitrary dynamic scenes and spatial complexities of
environments. The camera needs no specialised collision information — this is handled
effectively and automatically by the visibility constraint computed from the scene
geometry.

e We are the first to provide a constraint-solver based on existing camera state and mo-
tion characteristics. The methods are fast, consistent, and robust, producing intelligent
"nearest-best-fit” frame-coherent camera animations in real-time by reacting to future
conditions.

e We presented an approach for the automatic generation of action summaries for com-
puter games.

For future work, we are now able to go a step higher in the presentation pipeline. We can
solve for visual goals knowing that our low-level constraints will produce coherent results,
that they stay in a partially satisfied region rather than jump erratically to global best-fit
regions. Using an evolutionary design we can start adding and learning new techniques
for camera management, introducing more sophisticated navigational goals and predictive
techniques. The goal is to lead to an even more enticing atmosphere created by effective
camera work and we conclude this chapter by identifying and looking at a few of the main
areas for future research.
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4.6.1 Predictive Scripts

An extension to using lookahead algorithms for placement of the camera is simply to ‘know’
what is about to happen. In certain situations we can determine events in advance either by
predictive means or by following a generated script. For example, in an action sequence
whereby one player comes through a door amidst a conversation between two other charac-
ters, the camera could position itself ahead of time to capture the surprise entrance.

4.6.2 Higher-Level Constraints

The evaluation of stylistic consistency in Section 4.2.3 is very limited in its scope. Each
scene has the same number of objects, three of which are identical or similar in their spatial
characteristics, and one which is significantly larger than the others. Although within these
restrictions it is apparent that some degree of stylistic regularity can be imposed, an immedi-
ate requirement for research into camera planning is the development of a both a systematic
evaluation framework, and a means of eliciting image objectives.

For instance, in Figure 4.33 we notice visual artifacts despite successful solutions to sets
of visual properties. Notice, for instance, in Figure 4.33(a), how the head of the foreground
character occludes the character on the left (top output), or how the head aligns ‘too close’ to
the arm (middle output). In Figure 4.33(b) we again see secondary occlusion and alignment
artefacts. Thus, even though we have achieved a degree of compositional regularity, there is
no design of aesthetics. Even choosing a specification for a suitable evaluation of a visual
property also raises questions, such as consideration of different evaluation results for a size
constraint shown in Figure 4.34.

As with existing work [Christianson et al., 1996], one potentially fruitful source of im-
age objectives are the accounts of cinematic practice (e.g., [Arijon, 1976]). Another source
of inspiration for the design of image objectives is the visual cognition literature, and we
envisage that sets of cognitively motivated constraints will be useful in tuning results ini-
tially derived from objectives motivated by insights from graphic design. For example,
cognitive theories of recognisability [Biederman, 1987], depth perception [Rolland et al.,
1995], and figure-ground separation [Koffka, 1935] offer many insights into how the poten-
tial for visual ambiguity can be minimised. We also intend to investigate the feasibility of an
algorithmic characterisation of concepts from graphic design [Lauer, 1979] and visual aes-
thetics [Bethers, 1964], for example, unity, emphasis, balance, contrast, pattern, movement
and rhythm.

4.6.3 Camera Language and Rules for Computer Games

Within interactive fiction, much effort has been put into examining whether games and nar-
ratives are fundamentally incompatible [Smith, 2000]. Film theory argues that the essence
of film is editing [Dudley, 1976]. If we note that it took the film industry 20 years to develop

a foundation of cinematographic principles, we can realize that another 20 might be required
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(PersonTalking cut at torso, head quite big and level with
PersonTalkedTo head, and in front of PersonTalkedTo)
PositionViewplaneBetweenY "torso" -1000.0 -0.5
PositionRelativeY "woman01 head" x i "man01 head"
SpanXorY "man01 head" 1.0 0.4

PositionRelativeZ "woman01" b b "man01"

CenterShot "woman01*

(PersonTalking and PersonTalkedTo entirely inside screen)
PositionViewplaneBetweenX "woman01"-1.0 1.0
PositionViewplaneBetweenY "woman01"-1.0 1.0
PositionViewplaneBetweenX "man01"-1.0 1.0
PositionViewplaneBetweenY "man01"-1.0 1.0

(PersonTalking and PersonTalkedTo mostly visible, with heads totally visible, and PersonTalkedTo
not occluded by PersonTalking)

VisibleInViewport "woman01" 90.0 10.0

VisibleInViewport "woman01 head" 100.0 0.0

VisiblelnViewport "man01" 90.0 10.0

VisibleInViewport "man01 head" 100.0 0.0

OccludedInViewportBy "woman01" 0.0 0.0 "man01"

(PersonTalking large on screen and in front of PersonTalkingTo)
SizeViewplaneLengthY "man01" 2.0 0.5
PositionRelativeZ "woman01" b b "man01"

(b) Shot properties defining a full view of a conversation.

Figure 4.33Multiple-shots generated from the same sets of constraints.
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@@

LengthX/Y 0.5 0.5 0.5 0.5 0.02
Area 2% 50% 2% 50% 2%
BoundSphere | 0.6 0.6 0.6 0.5 0.5

Figure 4.34Which is the best evaluation of the perceived size of an object?

for effective camera work in computer games and (to coin a term) ‘interactographic’ prin-
ciples. With this in mind, games should feel free to try to build camera rules for their own
goals in the hope that we’ll see an evolution of techniques and foundations over the years.

Thus, of most importance is to determine what works for the player—this can then guide
the use of camera specifications. Pagulayan et al. [2003] performed a case study on camera
techniques in “Munch’s Oddysee”. In this game, the camera’s behavior was programmed to
create maximal cinematic effects and enhance gameplay. The camera would often provide a
specific view with the intent of showing the user what was behind ‘the next door’ or on the
other side of a wall whilst still keeping the main character in view. The most common user
complaint was that although they often liked the look, style, and behavior of the camera, they
wanted more control over the behavior of the camera as other games in the same genre have
done. Based on this response, the camera was changed so that users could regain control
when they wanted. This resulted in more frequent use of a third-person follow camera. The
more advanced camera behaviors are still part of the game but localized to areas where these
alternative camera behaviors can only create an advantage for the user.

A potentially invaluable tool for exploring viable camera behaviors would offer a way

of creating shot templates for developers to define their own rules and setups in a WYSI-

WYG?® manner. The developer could move around in scenes and position objects in front
of the camera and take a snap-shot. Algorithms for automatically encoding what the de-
signer sees into a set of constraints could then define the shot. Finally, additional templates
that create a certain cinematic effect could be introduced, much like a director’s style. Cin-

ematic templates could alter viewing style by varying parameters such as favoring certain
size ranges, viewing angles, camera motion, and frequency of cuts.
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4.6 Discussion

Figure 4.35Suggested interface for action summarization.

4.6.4 An interface for Summarization

Future work for action summarization will focus on the refinement of the selection process
of choice data and presentation of summarizations. Templates for certain game genres could
support the user in the process of selecting choice data. Presentation of a summarization
would benefit greatly from an interface such as shown in Figure 4.35. Pictures can be shot
using the @M PLAN system (Section 4.2.2) at the point in time determined by each scene’s
representative (i.e., maximum value), with size proportional to action and importance. The
length and form of these summaries could be specified by the user with parameters for scene
weights and could range from a small number of single frames to a set of animation clips.

0what-you-see-is-what-you-get
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5 Integration and Future Research

As in any field of research, computer graphics cannot truly survive or evolve without in-
put from other relevant schools of thought. More importantly, computer graphics is now
technologically ripe to begin considering the psychological repercussions of its art and un-
derlying tools on the user. Indeed, the functional relationships between various visual pre-
sentation methods and their viewers must emerge to define the more subtle—though poten-
tially powerful—cognitive, emotional and behavioral consequences of interactive computer
graphics. Moreover, the psychology community itself can only indirectly contribute to this
understanding, as our theories survive not on understanding how perception works, but how
it can be effectively applied within interactive graphics.

Additionally, although rules-of-thunttcontinue to provide insightful presentation tech-
niques (e.g., [Arijon, 1976; McCloud, 1994; Durand et al., 2002]), their informal approach
alone cannot substantiate the implementation of a psychologically driven system model, but
may instead highlight possibilities within future, more formalized research. Consequently,
an empirical approach that tests core assumptions within computer graphics, and specifically
in terms of supportive presentation, is absolutely necessary.

Conceptually, supportive presentation should invoke an effect on the player without ne-
cessitating conscious attention to that effect. However, the visual effect itself must also
be homogenously inscribed into the image for it to be accepted, as certain styles do not
mesh well or effectively convey the desired intent. Thus, the design of suitable presenta-
tion methods requires @eativemind. Although this type of creativity cannot necessarily
be formally itemized or defined, it can be facilitated and even inspired via exposure to and
experimentation with the appropriate concepts and tools.

Figure 5.1 highlights how creativity, psychology, and technology interlink to comprise
the three fundamental elements necessary to supportive presentation concepts, tools, and
applications. Specifically: psychologically-geared research can assess and validate effects
from artists while testing environments from programmers; artists can experiment with tools
provided by programmers to create images that embed known psychological effects; and
programmers can improve technology to accomplish artistic effects and parametric control
over images and their influence as defined by psychological research.

The technological component of the supportive presentation triangle is defined and sup-
ported in Section 5.1, via the integration of tools as presented in Chapters 2 and 3 into a
larger framework. This integration coupled with knowledge gained from our empirical ex-
periments to design effects, allows us to finally apply supportive presentation at all levels.

Lor ‘craft skills’ within the CHI community
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Psychology

Figure 5.1:The cornerstones of supportive presentation.

Section 5.2 subsequently tackles common issues in game design using three different ap-
plication scenarios that employ supportive presentation guided by the conceptual graphical
presentation pipeline introduced in Chapter 1. Finally, Section 5.3 discusses various factors
and future directions in an interdisciplinary approach for supportive presentation.

5.1 System Integration

Figure 5.2 demonstrates how the tools presented in this thesis can be integrated into a larger
framework which drives the tools and concepts of supportive presentation. First, the game
designer recognizes good elements of play in the game and considers communicative goals
for maximizing player enjoyment. Game variables are then used for supportive presenta-
tion and passed from the game application toSheportive Presentation ManagésPM),

where the game designer sets conditions for selecting presentation strategies. For assis-
tance, the 8MURAI system (Section 4.4) evaluates action and certain characteristics of the
gamé. Combinations of camera and rendering methods are selected from templates that

2In this context, the SMURAI is considered a presentation strategy
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Figure 5.2:Supportive presentation framework.

specify how presentation strategies are achieved. Shot templates for camera methods can
be specified by thdirector who visualizes the required shot properties. Similaghaphic
designerause the sketch-interface (Section 3.4) to visually specify rendering methods. Shot
objectives are satisfied by th& PDATOR camera system (Section 4.3), which then sends the
solved camera state toF@NNPAR (Section 3.1). In contrast, rendering methods specify
variables and parameters directly with theENNPAR rendering API. Lastly, BENNPAR

then outputs the final image to the players and spectators.

5.2 Application Scenarios

This section provides hypothetical applications for supportive presentation in terms of the
graphical presentation pipelih@troduced in Chapter 1. For each application scenario, we
draw upon existing psychological data which indicate or clarify roles of rendering styles
on the user. Thereafter, we detail how the SPM would effectively apply those styles in the
final application. However, even the simple applications outlined below demonstrate just
how limited our understanding of the psychological effects of presentation styles and their

3With the exception of image generation, as this is performed automatically without interference from the
game designer
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potential applicability are. Clearly, the complexity of interactions between presentation

methods and the viewer necessitates further controlled experimentation. For simplicity,
although we provide examples for both camera and rendering methods, efforts for future
research primarily focus on non-photorealistic methods alone. For the interested reader,
[Halper et al., 2003c] details further insights into collaborative research between NPR and

psychology.

5.2.1 Multi-player Action Games: Balancing Player Skill

In this case study the goal is to cater to a varied range of skill levels within a competitive
multi-player game setting, in order to better maintain a satisfying degree of challenge for
each player. As discussed in Section 2.1.2, this is a non-trivial task.

Communicative Goals:  The overall goal is to involve players in balanced (or fair)
confrontations, wherein less-skilled players are given more information to better compete
with the more-skilled players. Specifically, we can: (1) warn players of dangerous/stronger
opponents, (2) indicate opportunities to lead a successful attack on opponents, and (3) lure
players into advantageous or safer locations.

Presentation Strategies: Warning players of dangerous opponents can be achieved by
indicating the whereabouts of these opponents and their respective levels of threat. Indicat-
ing the strength of an opponent will cue the player to attack those of a weaker disposition.
Luring players to advantageous or safer areas can be achieved by emphasizing the appear-
ance of the location such that attention is increasingly drawn to those locations.

Presentation Methods: The director (from Figure 5.2) can specify camera shot prop-
erties to provide views around corners to ‘hint’ at stronger players or traps. Levels of threat
can be communicated using the threat-connotative styles from Section 2.4.1, wherein the
graphic designer assumes responsibility for effectively mapping threat-connotative effects
into a coherent visual style for characters, as is shown in Figure 5.3 with the camera meth-
ods.

Tactical locations can be emphasized using the LOD methods in Section 2.4.4 to guide
the player along a path to specific opponents or appropriate weapons: Potentially, users
view increased LOD as more interesting for exploration relative to lower LOD. Thus, we
employ extra shaded lines and thicker silhouettes around doorways of interest, as shown in
Figure 5.4.

SPM Application:  Communicative goals are employed based on relative player perfor-
mance, wherein presentation strategies are selected to provide advantages for lower ranked

134
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/

Figure 5.3:(left) Normal player view. (right) The same situation, but the camera has po-
sitioned itself to warn the player of potentially dangerous opponents. (Images
courtesy of Mara Mellin)

Figure 5.4:Using LOD to guide the player to specific locations. (Image courtesy of Mara
Mellin)
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Figure 5.5:.Using the 3\MURAI to automatically evaluate success strategies by correlat-
ing player characteristics with performance. The top evaluation function evalu-
ates player performance relative to an opponent. The middle functions evaluate
player characteristics, and the bottom function is a measure of weapon charac-
teristics. In this example, the player is most successful against this opponent
when agile and precise in using a high powered weapon.

players against those of higher rénk

In this respect, the 8MURAI system (see Section 4.5.6), whose primary function is to
evaluate action, can be alternatively used to evaluate player performance since action in
multi-player games closely correlates to the performance of players—when players perform
well, action rises. Thus, as shown in Figure 5.5, them8RAI system can be used to
automatically evaluate characteristics of player performance under various conditions.

Based on these evaluations, the SPM applies presentation methods based on the following
conditions:

e Opponents with stronger weapons, higher skill, and additional health are mapped with

41t could be possible to us#isadvantageousues for higher ranked players. However, our objective is to
help weaker players rather than hinder skilled players

136



5.2 Application Scenarios

threat-connotative silhouettes.

e Weak-connotative styles can be applied to those higher ranked players capable of
being beaten by a lower ranked player who is capalgizen the proper weaponry
and power, of inflicting the necessary damage to defeat the opposition.

e LOD is used to lure players of equal stature to the same locations. In contrast, LOD
is also used to lure players away from others of different skill levels.

e LOD is used to lure the lowest ranked players into locations that offer additional
protection or more powerful weapons.

e The camera warns the player with a ‘sneak-peak’ of lurking higher-ranked players.

Future Work:  More complex images, subtler test questions, and an in depth understand-
ing of how assessments of danger, safety, and strength are influenced by visual cues will re-
veal more definitive insights into how NPR can be used to guide users and their perceptions
of images and environments. In particular, low-level tests are needed to establish precise
mappings between observed effects and drawing parameters before these can be embed-
ded successfully into fully-featured environments. Other relevant considerations are how
levels of line thickness, style, and angles of ‘sharp’ threat-connotative features, influence
graded perceptions of threat. Of additional importance, is the necessity of knowing whether
and how these features can effectively be implemented in combination with the following
factors: animation, fast camera movement, high color levels, and audio effects.

In Chapter 2, assessments of safety and danger are considered in the context of social
judgments, while Provins’ [1957] radar research demonstrates that identification of trian-
gles as foes and circles as friendly are pre-conscious processes. Consequently, such assess-
ments of friend and foe could prove effective in facilitating gameplay via rapid character
assessment within a game. Further research is necessary to elicit the extent to which tri-
angulation of lines influence both pre-conscious and conscious assessments of danger and
how effective they can be within an animated game context.

A second necessary psychological issue to explore is how the effgut®pknowledge
influence player assessments of opponents, objects, and entire game settings. At a physio-
logical level, increased brain activity is typically observed when subjects are exposed to new
stimuli, specifically visual stimuli [Herrmann and Bosch, 2001], thus indicating increased
levels offeature bindin§ and attention in order to categorize and respond to new images.
Images already represented in memory usually require less attention because identification
occurs rapidly, whereas new objects require increased attention before identification and
categorization occurs.

Sbased on statistics assimilated from thev®RAI system
Sthe combining of different visual elements (e.g., shape, size, movement) to create a cohesive image(s) for
identification and categorization (“that is a dog and it looks dangerous”)
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Moreover, the type of memory can influence both attention and player expectations, such
that a negatively remembered object may increase attention over a new object, whereas an
object or character consistently paired with a rewarding experience (getting points, beating
an opponent etc.) may later prove to be the downfall of an unobservant player when the
previously rewarding object or character becomes threatening. To further demonstrate the
possible role of specific presentation strategies in influencing player expectations: if the
camera consistently moves to provide views of stronger opponents that hide around corners,
the player may begin to expect theret to be an opponent around a corner when the cam-
era does not move around to show it. This may, or course, be false if there is actually a
weaker player around the corner. Clearly, there exists a number of variables which must
be accounted for before psychologically driven supportive presentation strategies can be
implemented.

Additionally, even if precise measures are found which convey the desired communica-
tive goal(s), the player remains an unknown. In other words, there exist different types of
players, or player personalities: while one player would flee from the conveyed danger or
threat, there is an aggressive percentage who would likely choose to take their chances and
perceived fighting prowess to attack the opposition. Thus, virtual test environments could
be designed precisely to categorize different ‘player personalities’ and subsequently provide
a plethora of useful data for both the computer game industry and psychology proper.

In terms of lower level tests, there is much potential for biological and neurological
psychology to physiologically demonstrate just how effective certain presentation methods
are. For exampleglectroencephalografEEG) measures could be correlated with an eye
tracking device to analyze player responses to varied threat-connotative rendering styles.
Specifically, such measures could reveal when attention-related increases in brain activity
are present for those objects rendered as dangerous relative to those rendered using lesser
threat-connotative silhouettes. These experiments could be conducted across a variety of
contexts—animated or not, with or without sound, thus, indicating how much influence ex-
ternal variables have on a given presentation method. Additionally, an eye-tracking device
could record any differential eye movement patterns and observation times from subjects
exposed to mixed and independent PR and NPR images. If such variance does indeed ex-
ist, both NPR and PR presentation strategies and tools must then be explored in parallel to
uncover their respective optimal applications within animated and gaming environments.

5.2.2 Massive Multi-Player Online Games: Encouraging
Cooperation

The success of massive multi-player online games (e.g., Everquest) depends on both the
opportunity to socialize with other players and solve tasks together. Primarily they require
features that support and encourage reciprocal altruism and ensure that actions have con-
sequences [Smith, 2002]. Moreover, they offer the most potential for non-linear gameplay,
since agents and players in the environment can make changes to already explored locations,
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which may require players to backtrack and complete additional tasks.

Communicative Goal:  To help players and support a sense of community, the presenta-
tion should: (1) cue players to the relevant grayf) discourage interactions with ‘misfit’
characters, and (3) communicate changes and challenges of the environment.

Presentation Strategy: Players and groups can be encouraged to interact with one
another via mutual emphasis (i.e., focus is given both to players of potential interest to a
given group, and to any groups of potential interest to a given player.)

Social perception and social judgment utilize learned values and behaviors to respond to
socially ambiguous situations, wherein interpretation of other people and their expressions—
verbal and non-verbal, are necessary [Bente aréhi@r, 2002; Brner and Schaub, 2002].
Thus, simple optical elements may be employed to evaluate ‘misfit’ characters by using
stereotypical visual character attributions when too little explicit information is available
(e.g., a character who frequently steals from other players could develop increasingly large
hands).

Finally, changes and challenges of the environment can be communicated via a sense
of completeness—areas that are more game-relevant should become more interesting or
attractive, while areas that are more or less ‘used up’ or no longer game-relevant, would
become less interesting or attractive.

Presentation Methods: The camera could prove an effective presentation method in
attracting players to one another, as shown in Figure 5.6. Once again the director from
the supportive presentation framework can specify visibility and positional properties in
the viewport for relevant characters and groups. Herein, LOD can also detail the given
characters of interest.

Although we lack a presentation method to indicate misfit players, threat-connotative
styles character silhouettes in these cases may discourage further interaction (cf. Figure 5.3).
In similar fashion to the experiments in Section 2.4.4, familiarity with a specific area may
be cued by decreasing LOD, while unknown areas may be depicted with increased LOD to
support spatial exploration behavior. LOD may also represent a level of completeness—Ilow
levels of detail result in less visual appeal, thus encouraging players to progress towards

other areas offering additional challenges.

SPM Application:

¢ When entering a location, the camera cues the player to interact with any potentially
relevant groups, and likewise, players in relevant groups are offered a view of the
incoming and potentially relevant player (Figure 5.6).

"those that offer the same level of experience in the game or to which the player could contribute their own
set of skills
8players who purposely try to ruin the gaming experience for others
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Figure 5.6:Left figures show normal views, right figures show supportive presentation
views designed to accommodate players in selecting appropriate groups. (top
left) Newcomer sees two groups of people, and (top right) camera and LOD em-
ployed to encourage approaching the group on the right. (bottom left) A group
member in conversation with two other members, and (bottom right) the camera
and LOD suggest welcoming the outside player into the group. (Images courtesy
of Mara Mellin)
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e Silhouettes for ‘misfit’ players are rendered in threat-connotative Styles

e LOD is mapped to buildings, areas, or paths leading to new locations proportional to
their relevance in completing another challenge.

e LOD is used on paths that connect relevant groups of players together.

Future Research:  Further studies of exploration and navigation can by guided by NPR

in conjunction with psychological theories. For instance, the home range concept [van Vliet,
1983] demonstrates that human exploration patterns tend to resemble an ever-expanding
circle, wherein space immediately next to the familiar locations is first explored until it
becomes familiar before moving outward and so on. Combining experiments that encour-
age exploration based on visual stimuli could aid level-design to more effectively influence
players towards exploring particular areas.

Aggressivandaltruistic player behaviors may also be influenced by aspects of NPR. For
example, NPR and social psychology would benefit from tests measuring the behavioral
consequences of negative reciprocity [Mummendey et al., 1984; Patchen, 1993] and whether
they vary depending on how a character is rendered (strong, dangerous, etc.). These results
might also extend Zimbardo’s [1969] early studies on de-individuation, wherein aggressive,
reckless, and chaotic behaviors increased in subjects when their identities were masked.
Indeed, game environments might reveal much potential in these areas as online players fre-
guently conceal or change their identities. It is possible that via rendering attributes, which
convey more information about the player’s behavior, certain negative behaviors would then
decrease as a result of a sort of ‘unmasking’ that takes place when the player is no longer
able to completely conceal negative aspects of their behavior. Lastly, game designers could
systematically vary characters and scene presentation for their own utility within the game,
or create ‘game’ programs employed towards both psychological and gaming goals to better
understand the psychosocial impacts of the increasing online game world.

5.2.3 Adventure Games: Assist Player Progression

Adventure games require players to solve puzzles in order to advance to subsequent stages in
the game. Modern non-linear gameplay tends to be combined with rather impressive visual
realism in complex environments, such that the fundamental challenge for game designers
today is to effectively draw player attention to areas that are actually important within these
visually fantastic worlds without losing the casual game player in the details altogether
[Bates, 2002]. Often, the player will become stuck at one or more puzzles and be forced
either to try tedious combinations of object interactions, look at released solutions, or simply
give up.

9Several measures can be used to detect misfit players. One method, for instance, is to let players vote on
characters, as in the www.eBay.com rating system for users.
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Communicative Goal: ~ When the player is experiencing difficultly, the communicative
goal is to make solutions subtly more apparent when a current task remains unsolved by: (1)
guiding the player to relevant locations; (2) directing player attention to particular objects;

Presentation Strategies: Players can be guided to locations and objects by attracting
the player’s attention. Moreover, to guide user selection to a constrained set of objects,
‘active’ and ‘inactive’ styles can be employed (see Section 2.4.4).

Gestalt Law indicates that objects rendered in a similar fashion will be perceived as be-
longing to the same group, and thus, are considered functionally similar. These concepts can
be used to further cue the player to the appropriate objects, their related functions within a
given setting, and any potential combinations therein.

Presentation Methods:  Although precise properties of effective rendering styles in
representing active and inactive objects are unknown, psychological research reveals that
homogenously structured surfaces are easier to categorize as belonging to the same object
[Hoffman, 1998]. Therefore, rendering objects using defined ‘figure’ or ‘ground’ styles will
enable the viewer to more rapidly and accurately assess the status of objects within complex
scenes. Feature binding is also relevant within this process—when different parts of an
object(s) share the same qualities (in this case rendering style) it is easier for our brain to
bind these parts together as a whole object or field of related objects.

Using this information, the graphic designer from the supportive presentation framework
can then experiment with designs via the sketch-interfaceRENNIPAR, including any
variations used in associating different objects. In our example, we chose cartoon rendering
styles similar to those in Figure 2.15, and varied the silhouette styles to increase Gestalt
mappings.

In addition, player attention can be focused by keeping relevant objects and locations in
view. In this respect, the director can define view specifications for HEDRTOR system
to maintain relevant objects’ visibility and placement in the viewport. Finally, the LOD
methods from previous examples can again be employed to guide the player to appropriate
locations.

SPM Application:  The following techniques can be introduced progressively depending
on player circumstances:

1. All objects with behavior attached are rendered as active; while all objects that serve
as background detail are rendered as inactive (Figure 5.7(a)).

2. Given difficulty in solving a puzzle, the player can initially be guided to appropriate
locations using LOD.

3. Slowly, more objects can be rendered as inactive, leaving a smaller and smaller set of
objects as active (Figure 5.7(b)).
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(c) Associating objects with similar shading styles.

Figure 5.7:Using rendering style to visually suggest relationships between objects.
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4. The camera can begin to suggest objects of particular importance by keeping them
focused in view.

5. Objects that are used with each other in solving a puzzle can be rendered in similar
shading and silhouette styles (Figure 5.7(c)).

6. Given continued difficulty in finishing a task, only the objects immediately relevant
to solving a problem are rendered as ‘active’ and with similar rendering styles.

Future Research:  The cognitive processes necessary to effective figure-ground segre-
gation via active/inactive rendering require increased levels of attention, such that those
objects perceived as foreground logically receive more attention. However, further testing
can confirm whether these conditions hold when the overwhelming majority of objects are
rendered as active, potentially causing the few remaining background objects to then, in
effect, ‘pop out'.

A second consideration in rendering objects active or inactive, as seen in Figure 2.15 is
that aspects adissociative learning inevitably emerge. Specifically, if a set of objects is
rendered as active and also as belonging to the same group, there is the potential for interfer-
ence with certain feature-binding processes or more simply put, confusion as what objects
belong to what functional group. For example, rendering parameters for a Gestalt group of
objects might erroneously be perceived as background or non-relevant, and thus ignored.
Consequently, understanding the effects of such possible rendering variables requires addi-
tional research into the specific qualities of rendering elements for associative conditioning
and the number that can be simultaneously used while still maintaining active/inactive ob-
ject identification.

Although one intention of the application example above is to eliminate objects that are
not pertinent to a puzzle by blending active objects into inactive objects, it is not clear how
prior knowledge about selectable active styles will compete with prior knowledge of which
objects were previously selectable. In contrast, prior knowledge may reinforce behavior in
the guided selection of objects—repeated and consistent object interactions would likely
strengthen the influence of rendering style until players cease to interact with background
objects altogether. Furthermore, research could reveal that graded levels of active and in-
active rendering styles associated with object functionality might reveal different subject
responses.

Thus, experiments that measure the extent to which prior knowledge and rendering prop-
erties play a role would shape the domain in which styles can be chosen for active and
inactive objects. However, even though the use of stylistic variations in NPR overshad-
ows possibilities within PR, its deviation from realism consequently requires evidence that
chosen styles can still be understood. In this respect, recent research indicates that objects

10when two or more stimuli become associated with each other, such that they are perceived to have a rela-
tionship.
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rendered in non-realistic styles do not influence primary feature binding processes neces-
sary for basic object identification, which maintains the potential for NPR to vary aspects of
identified objects in manners not possible within photorealism. For instance, memory is not
dependent on how realistic an image appears and has been demonstrated in infants as young
as 11 months—infants tend to attend new or implausible objects longer than previously seen
objects, while the duration of object fixation (or attention) was independent of how realistic

or simplified the objects appeared (cf. Figure 5.8) [Pauen, 2003].

Figure 5.8:Realistic (top) and simplified (bottom) toy animals lead to the same attention
levels in 11 month old infants. Memory plays a central role in how images are
visually perceived.

5.3 Discussion

The simple scenarios shown above clearly indicate that developments in the application of
supportive presentation can only be driven in conjunction with psychological paradigms,
which in turn, necessitates both creative design concepts and effects. There are other links
between graphics and psychology that have not been touched on here. For instance, tem-
poral qualities of animation and movement are likely to have a strong effect on perceived
character—the rate-of-change of coarse silhouettes may invoke a sense of aggressiveness,
hostility, or even nervousness as we associate the instability of rendering animation to the
character itself (e.g., see the animation examples from [Curtis, 1998]). There are also links
to be explored with the use of sound in virtual environments; as the ulloomo/takete example
from Section 2.2.2 shows, sound also has affective properties, something which cinema uses
to good effect in creating and sustaining emotional states.

The ICS model (also Section 2.2.2) includes acoustic processing, and as such it provides
a natural route for exploring the theoretical basis for multimodal blending. It is clear that
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a model is needed to effectively underpin the development and deployment of NPR in a
manner similar to that of psychophysics and models of human vision, which have supported
development of realistic rendering. Such a model may remain a long term goal, and our re-
cent paper [Duke et al., 2003] is only a first step towards achieving it. Most importantly, we
have demonstrated that the effects we describe are outside of the realm of low-level visual
perception, and involve semantics, affect, and other high-level cognitive processes wherein
meaning is ultimately conveyed and interpreted. Understanding the meaning carried by
rendered images demands a broader approach within human information processing.

In addition, part of our long-term goal is to extendPENNPAR and the REDATOR
camera system to include psychological methdidsctly within their API. This could sig-
nificantly ease the configuration of effective supportive presentation to optimize conditions
in virtual environments. For instance PENNPAR could systematically adjust renditions
in the application, based on empirical evidence as to the psychological effect of NPR, to
achieve a desired effect on the end-user.

As the application scenarios have shown, it is relatively easy to define a presentation
strategy for a game, and yet another to find the right presentation methods to bring it fully
functioning in an aesthetic application. In this respect, the creativity of designers (and col-
laborations with psychologists) will play a major role in defining supportive presentation,
potentially driving technological requirements, which utimately will advance the body of
knowledge and applications within the field of NPR.

The real question remains: how will players actually react to supportive presentation in
computer games? Needless to say, feedback from simple game applications which employ
basic supportive presentation will reveal many further directions for interdisciplinary work.
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Modern technology continues to surpass initial expectations of the nascent years of com-
puter game design. Even so, an observable and specific sort of stagnation is emerging
within the modern game industry, wherein game companies—employing evolutionary game
designs, largely distinguish individual games via achievements in increasingly spectacular
graphical realism. Indeed, one might say that motivation for buying a game these days
almost entirely hinges on the evolution of the previous version’s graphical improvements
within the realm of photorealism. This has inevitably led to an exponentially growing race
within the gaming industry, wherein developers tend to focus on visually representing real
life more accurately than the currently ‘less impressive’ versions on the shelf. The resulting
fester of eye-candy can leave players, especially novice ones, lost in the details and wonder-
ing what to do next. Moreover, aspects of game play may be compromised with the excess
of game-irrelevant (but realistic) effects absorbing the player’s attention to the point of dis-
traction. Worse though, is the fact that such games simply do not appeal to those people
who begin to feel it too much resembles a skewed version of real life, effectively removing
that simple feeling of ‘play’ that is, after all, the purpose of playing a game.

This thesis has introduced the conceptsapportive presentation Rather than using
graphics to simply enhance visual appeal, graphics can be used to augment the gameplay
experience. Unfortunately, although photorealistic mastery has come a long way, tools that
allow tailored visual presentations have not. Additionally, we still lack a comprehensive
understanding of the effects of existing and potential presentation methods on the viewer.
As such, a finished application utilizing supportive presentation is beyond the scope of a
single thesis. However, the overall intent—to empower designers to specifically tailor a
graphical presentation to carry across a communicative goal, will enable game designers to
truly think outside of the box; to use graphics as a medium to support elements of the game
in terms of the player(s), thus making the game experience more absorbing and ultimately
more satisfying.

The remainder of this chapter summarizes our main contributions: The tools and vision
for supportive presentation within game design.

6.1 Summary of Contributions
The main contributions of this thesis and how they relate to supportive presentation are

subsequently summarized. It is necessary to note that although this thesis has focused on
supportive presentation for computer games, our contributions are not restricted to this do-
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main. In fact, our techniques are suited to all applications that seek to convey user presence
within a synthetic environment and engagement with the objects therein. Games are simply

a specialized instance of an immersive environment, chosen in this context because their
goals are easily identifiable. Thus, many of the concepts and tools for supportive presenta-
tion described below are equally relevant to, for instance, virtual reality systems that demand

clear communication and high levels of user interaction.

6.1.1 Empirical Evidence for Supportive Rendering

In Chapter 2 options for presentation strategies were introducing via the rendering method,
implicational rendering conveying latent affective content through rendering style. A first
empirical study demonstrated that NPR can play a subtle yet effective role in guiding judg-
ment and subsequent user interactions, implying that powerful effects are present in human
responses to rendering style.

Consequently, we discussed the relevance and applicability of these results within com-
puter games. Although our knowledge and tools are not ripe enough for a full implementa-
tion, Chapter 5 describes potential applications using these techniques for supportive presen-
tation. These included use of relevant cues about level of threat, capabilities of characters,
objects, or locations, and guidance when choosing between options such as which path to
follow or even object utility.

Although knowledge of the effects of rendering are limited and player responses are
subject to significant variation, these are amenable to systematic enquiry, wherein appro-
priate experimental design can further uncover and develop the relationship between ren-
dering style and implicational knowledge. Thus, we outlined how existing psychological
paradigms can be utilized to drive further research in NPR by using proper psychological
measures ranging from statistical analysis of user selection to lower-level studies of brain ac-
tivity. While we are far from providing a full theoretical account of the relationship between
NPR and psychology, our research results are clearly suggestive of this interdisciplinary
potential.

6.1.2 Rendering Methods

Supportive presentation requires visual styles to be tailored towards achieving a specific
effect. To this end, we presented theENNPAR system, a unifying framework that sup-

ports a wide variety of NPR techniquesPENNPAR is the first system of its kind to allow

for a range of different user classes to both reproduce and create algorithms. Consequently,
OPENNPAR is an invaluable tool for supportive presentation, offering potential for defining
effective presentation methods within the virtually limitless scope of NPR. Developers can
extend @ENNPAR'’s functionality by adhering to the development principles supported by
our examples. Due to its modular structure, programmers can create new effects or assemble
pre-defined effects via the manipulation of interchangeable modules. Knowledge of module
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assembly requirements is abstracted in a novel interface which frees designers to test new
presentation methods without requiring in-depth technical knowledge.

The ability of OPENNPAR to create visual effects at all user levels is important for com-
puter game development. Designers work at high levels of abstraction to explore presenta-
tion methods, which are then fine-tuned by programmers, and finally optimized by devel-
opers. This fits into the ideology behind the graphical presentation pipeline, wherein the
higher-level tasks are executed first to more closely and effectively define the communica-
tive intent behind supportive presentation.

6.1.3 Camera Methods

To further the ongoing development of camera techniques within interactive graphics, we
provide tools that enable the designer control over the camera to more precisely define when
and what content to capture.

The CaMmPLAN system allows for experimentation with declarative constraints to eval-
uate their effectiveness in camera shot specification and communication before real-time
solutions are worth investigating. Camera objectives are specified using visual properties
selected from a complete taxonomy of specifications. We demonstrate that desired views of
a scene can be defined naturally with these visual properties to produce results with stylistic
consistency whilst also proving powerful enough to control precise viewing instructions.

An optimized subset of the visual properties fromNOPLAN are applied to the REDA-
TOR camera engine, wherein visual goals can be solved in real-time using novel techniques
for interactive 3D games comprising scenes of arbitrary complexity. HEDRTOR sys-
tem solves visual constraints based on existing camera state and motion characteristics,
reacting to predicted future conditions to produce results that are consistent, robust, and
frame-coherent. Each of these constraints are specifiable by a user, including the Potential
Visibility Regions that offer advanced methods for solving multiple visibility constraints.
The camera engine offers potential for a director to declaratively specify shot templates in
composing sets of re-usable presentation methods.

To control when particular content should be captured, we outlined how the camera en-
gine can be successfully integrated as part of a game pipeline that generates events, and
implemented the &1URAI system which presents an approach for the automatic genera-
tion of action summaries. Herein, interesting scenes are extracted by the analysis of specific
game variables, and can be subsequently presented to the player as a sequence of repre-
sentative images or given as timing requirements to the camera for live viewing of action.
Although still in its early stages, theaBURAI offers additional assistance for the selection
of presentation strategies in particular contexts, such as evaluating player performance in
fine-tuning presentation methods to players.
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6.2 The Horizon

Throughout this thesis we discussed possible extensions or improvements to the render-
ing and camera tools. Employing these would certainly improve the functionality of tools
and thus potential for devising and using a broader, more powerful range of presentation
methods. However, there remains much to explore before the potential for supportive pre-
sentation can be fully realized.

6.2.1 An Interdisciplinary Approach

As discussed in Chapter 5, creation of effective supportive presentation involves the skills of
psychologists, programmers, and designers. As a result, supportive presentation will bene-
fit from bridges of communication with each area. Psychologists will provide insight into
parameterizations for API's in system models for effective rendering and camera methods,
but must at the same time communicate primary effects to designers. Designers are then
responsible for creatively integrating essential visual components into an aesthetic result.
Their images must be tested and re-affirmed by psychologists in conjunction with virtual
test environments constructed by programmers. If the technological tools are too limited
for designers to create desired images to be embedded into these virtual environments, ad-
ditional functionality must be developed.

Consequently, regardless of where an idea for supportive presentation originates, best
results can only be achieved by combining the expertise, imagination, and discipline within
these three fields.

6.2.2 More than Just Graphics

The era of employing evolutionary graphical realism as a primary factor in game production

is coming to an end. Graphics in games have now reached a maturity whereby any additional
visual improvements are simply becoming details. Games can no longer be improved by, for
instance, including a more advanced ‘hair’ shader into a sports game. It is also important
to realize, that neither can games be improved by simply replacing realistic effects with
alternative visual effects that are just a new look [Rubins, 2003]. We conclude this thesis by
guoting the CEO of a game company, one which has traditionally thrived by taking existing
game designs and pushed graphics to make the best looking game available, who comments
on the issue of using non-photorealistic rendering styles in games:

“It looks cool the first time, it may actually sell games the first time, but [eventu-
ally people will] expect you to do something unique and original with rendering
style, just like when you walk into a new art show, you expect somebody to have
done something different with the painting... You have to go beyond just do-
ing some new style... You have to say something with the painting, and we're
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going to have to do something with the game...In the past, getting more col-
ors, or more pixels, or more polygons, allowed you to do things that couldn’t
be done [before]... How is anything relative to cel-shading, giving...the ability
to do something in the game, that couldn’t have been done using the normally
rendered ink?"—Rubins [2003].

Indeed, the answer lies in supportive presentation.
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Appendix A: List of Implementations

All implementations were done in C++ and with the Openlnventor API with the exception
of CAMPLAN which is implemented solely in C++ and OpenGL. The following applica-

tions/tasks were done independently by the author (estimated times are m = man months, w
= man weeks, d = man days):

Application Section Specific Tasks Time
OPENNPAR interface 3.4 4m
3D Painter 3.3.1 3d
Animation filter 3.35 1d
Camplan 4.2 Extensions from Master’s thesis im
4.2.3 Modelling Escher structure for testing 1w
PREDATOR 4.3 3m
3D Multi-player 4.5.5 3m

networked game
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Appendix A: List of Implementations

The author gratefully acknowledges the participation and respective contributions of co-
authors in assisting with the following:

Application Section Authors Tasks Time
Imp. Rendering 2.3 Nick Halper Exp. design, image creation, 3m
Experiment test program, subj. testing, stat.
analysis
Mara Mellin Exp. design, image creation2m
subj. testing, stat. analysis
David Duke Exp. design 3w
OPENNPAR 3.1 Nick Halper Framework, line stylization, im8m+

age processing, video output,
animation modules, examples,

etc.
Tobias Isenberg  Please see www.opennpar.org 24m+
Felix Ritter for a full list of contributors
Roland Jesse and their accomplishments

Bert Freudenberg
Oscar Meruvia

OPENNPAR 3.4 Jana Hintze Icon design im
interface Iryna Davydova  Additional image processing filtm
ters
SAMURAI 4.4 Nico Flohr, 1st version Im
Nick Halper
Sven, Rico 2nd version (linked to game) 3w
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